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PREFACE 

This book is designed for students who, after an introductory 

course on calculus based on the geometrically and intuitively per¬ 
ceived notion of the Continuum, desire to proceed to a course 
preparatory to a serious study of the purely arithmetical theory of 

functions of real variables in its completely general aspects and is 
based on the lectures which the author has, from year to year, been 

delivering to the students preparing for the M.A. (Mathematics) 
examination of the Punjab University. 

The treatment of the various topics is essentially rigorous ; at 

the same time an attempt has been made to present the subject in a 

clear, lucid and intelligible manner. 

The book contains a large number of examples some of which 

have been solved. 

I have been, during my study of the subject influenced by the 

works of a large number of authors including Goursat, Carslaw, 

Pierpont, Courant, Landau, Kowalewski and Perron and I feel deeply 

grateful to them all. 

I take this opportunity of also thanking the publishers and the 

printers who did all they could to give the book the best form 

possible under the present very difficult circumstances. 

May, 1945. 
SHANTI NARAYAN 
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CHAPTER I 

AGGREGATE OF REAL NUMBERS 

1. The modern Theory of Functions, also known as Analysis, is a 
development of the notion of number. Its concepts and results along 
with the proofs of their correctness may be suggested by intuition or 
by some physical experience—in fact this suggestion is almost always 
there—but their actual description and their statements must be 
given strictly in terms of numbers. Some of the concepts which are 
so suggested, are Length, area, between, inside, etc., but before they 
can become the subject of discussion in analysis, they have to be 
adequately and properly defined in terms of numbers. In general, 
the same word is used to denote the two similar and corresponding 
concepts, one physical and the other analytical, but this ambiguity 
causes no confusion and rather proves helpful and suggestive. 

1*1. In the course of development of mathematics, the notion 
of number has been subjected to a series of extensions. The system 
of numbers consisting of positive integers only has been extended 
so as to contain positive fractions, negative fractions including 
negative integers, and the system thus obtained is called the system 
of rational numbers—every rational number being of the form p/q, 
where p, q are integers, positive or negative ; p may be zero but 
not q. From the system of rational numbers, we pass on to the 
system of real numbers and then again to the system of complex 
numbers. 

The treatment of rational numbers in Elementary Arithmetic 
proceeds along concrete lines and employs notions foreign to pure 
mathematics and does not, therefore, satisfy the demands of 
modern Analysis. 

In Elementary Arithmetic a positive fraction p/q is introduced 
so as to denote p of the q equal parts in which any given unit magni¬ 
tude is divided and a negative rational number, x, where x is positive, 
is introduced so as to denote a loss of ,r rupees as against a profit of 
x rupees which is denoted by x, 1 he same concrete aspect is 
employed in Elementary Arithmetic in order to define and to 
determine the laws of the operations of addition, subtraction, 
multiplication, and division. 

In this connection it is interesting to recall the manner in which the 
truth of the proposition 

4 X 5 = 5 X 4, 

is established in elementary arithmetic. 

Consider 4 rows each consisting of 5 cross signs. Now 5x4, xxxxx 
which denotes the number of things obtained by adding 5 things xx*xx 
4 times, denotes the number of cross signs if we count them horizon* 
tally in rows. Similarly, 4 x 5 denotes the number of cross signs xxxxx 
if we count them vertically in columns. The number of signs being xxxxx 
independent of the two different modes of counting, we see that, 
4 X 5=»5 X 4. 
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* Analytical discussion of the theory of rational numbers is 
not, however, within the scope of this book. It will be assumed 
here that the reader is familiar with rational numbers and with the 
laws of manipulation with them. Some properties of the aggregate 
of rational numbers, reference to which is important from our 
present point of view, will be given in the next section. 

The treatment of real numbers, as given in books on 
Elementary mathematics, is also far from satisfactory ; in fact the 
satisfactory accounts of the theory of real numbers have only 
recently been given by Dedekind, Cantor and Weierstrass. The 
account as given by Dedekind, with some modifications of details, 
will be considered here. 

The treatment of complex numbers is not included in the 
scope of this book, dealing as it does with functions of real 
variables only. , . ^ 

" 2. Some properties of the Aggregate of rational numbers. 
In the following a,b,c; etc., denote rational'numbers. 

\S*I. The aggregate is ordered. This means that if the rational 
numbers a, b are different, then either a>b or a<b. 

v/* Also, if a < b < c, then a < c. In this case b is said to lie between 
a and c. 

-^11. The aggregate is dense. This means that between two 
different rational numbers there lie an infinite number of rational 
numbers. 

’■"'III. The aggregate is invariant with respect to the four opera¬ 
tions of addition, subtraction, multiplication and division; the 
division by zero being the only meaningless operation. This means 
that the four operations are always possible, so that if ay b be two 
rational numbers, then a-\-b, a—b, a.b, ajb are also rational. 

[The student may easily see that the aggregate of positive integers is not 
invariant with respect to subtraction and division and the aggregate of positive 
rational numbers is not invariant with respect to subtraction.] 

The four operations obey the following laws :— 

Addition 

(i) a+b—b+a, Commutative law. 

(ii) a + (b+c)~(a+b)+c, Associative law. 

(Hi) If a<b, then a+c<b+c, Law of monotony. 
V 

Subtraction 

(tv) b+(a—i)=a. 

Multiplication 

(p) ab~ba, Commutative law# 

(pi) a{bc)~(ab)c, Associative law. 

* For such a discussion the reader is referred to Chap. I of the Theory 
of functions of real variables, Vol. I, by Pierpont. 
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(vii) (a-rb)c~ac+bc, Distributive law. 
(viii) If a>b and c> 0, then aobc, Lazo of monotony. 

Division 

(i#) b.^- = a. (&-y£0). 

IV. The system is Archimedian. This means that if a>b, 
then there exists a positive integer n such that nb>a. 

3. Sections of Rational Numbers. Let the aggregate of 
rational numbers be divided into two classes L and R, in such a 
way that 

(i) each class exists, i.e., the numbers do not all belong to the 
same class so that the other class contains no number ; 

(ii) each number has a class, i.e., no number escapes classifi¬ 
cation ; 

(Hi) every member of L is less than every member of R. 

Such a division of rational numbers into two classes L and R 
is called a section of rational numbers and is denoted as (L, R) ; 
L is called the lower, and R, the upper class of the section. 

Ex. Show that if (L, II) is a section, then any rational number which is 
less than a member of L is also a member of L and any rational number greater 
than a member of R is also a member of R. 

3*1- Three types of sections. 

(i) Let every rational number less than any rational number, 
say, 3, belong to L and every rational number 3 belong to R. 
Clearly the two classes L and R constitute a section, satisfying as 
they do the three characteristics of a section given above in §3. 

The class L has no greatest member but the class R has a 
least member, viz., 3. 

(ii) Let every rational number ^ any rational number, say, 3 
belong to L and every rational number >3 belong to R. 

The class L of this section has a greatest member, viz., 3, but 
the class R has no least member. 

(Hi) Let every negative rational number, zero, and every 
positive rational number whose square is less than 2 belong to L 
and every positive rational number whose square is > 2 belong to R. 

In order to be sure that no number escapes classification, it is 
necessary to prove that there is no rational number whose square 
is equal to 2. 

If possible, let p/q be a rational number such that 
(Plq)2=2 or p2~2q2. (i) 

We suppose that p, q have no common factor, for, such factors, 
if any, can be cancelled to begin with. 

From (i), we see that p* is an even number. Therefore p must 
also be even. Let, then, p=2m, where m is an integer. Therefore 

4m8=*2g* or 
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Thus q2 is also even and so q is even. 

Hence p, q have a common factor 2 and this conclusion contra¬ 
dicts the hypothesis that p, q have no common factor. 

It will now be shown that L has no greatest member and R 
has no least. 

If possible, let K be the greatest member of L so that 
0<K and K2<2. 

Consider, now the positive number (4-f 3K)/(3 + 2K). We have 

2 —K2 

\3 + 2K/ (3 + 2K)2 
>0, so that 

/4-f 3K\2 
W+2K) 

<2; 

4-f 3K_jr 
3 + 2K 

2(2 —K2) A , 

8+2K >0> 80 thftt 
4+3K 
3 + 2K 

> K. 

Thus the positive number (4+3K)/(3+2K) belongs to L and 
is greater than K so that we have a contradiction. 

As above it may also be shown that if K is the least member 
of R so that K2>2 then (4-f 3K)/(3 + 2K) is a still smaller member 
of R so that we again have a contradiction. 

Conclusion. Thus we see that a section (L, R) may be such 
that 

(i) L has no greatest member, but R has a least; 

(ii) L has a greatest member, but R has no least; 

(Hi) L has no greatest member, and R has no least. 

In order to see that these are the only three possibilities, it is 
necessary to show that for no section (L, R) can L have a greatest 
member and also R a least. This fact is easily seen to be true if 
we observe that in such a case the infinite number of numbers lying 
between the greatest member of L and the least member of R will 
neither belong to L and nor to R and thus escape classification so 
that the classes L, R will not constitute a section. 

3*2. Modification in the definition of a section. It will be 
seen that to each rational number there correspond two sections 
according as it is the greatest member of the lower class or the 
least member of the upper class. The development of the theory 
of real numbers is a good deal simplified if we so modify the 
definition of a section that to each rational number there corres¬ 
ponds only one section. Accordingly we modify the definition by 
insisting that the lower class must not have a greatest member. Thus 
we now say that any division of rational numbers into two classes 
L and R is a section if 

(i) each class exists; (ii) each number has a class; (Hi) every 
member of L is less than every member of R; (iv) L has no greatest 
member. 

Note. An equally suitable modification could have been that H has no 
least member but what we have done above is more usual. 

3*3. The following simple theorem which can be easily 
established will prove very convenient for the later developments ; — 
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Any given aggregate of rational numbers can form the lower class 
of a section if and only if it is such that 

(i) all the rational numbers do not belong to it; 

(ii) it has no greatest member ; 

(in) a rational number which is less than any member of the 
* aggregate is also a member of the aggregate. 

If these conditions are satisfied then all those numbers which 
do not belong to this aggregate form the upper class of the section 
in question. 

Ex. What are the conditions which must be satisfied by an aggregate so 
that it may form the upper class of a section. 

3'4. A property of sections. Corresponding to any positive 
number ky however small, there exists a member x of L and a member 
y of R, such that 

y—x—k. 

Let a and b be any two members of the classes L and R 
respectively. There exists a positive integer n such that (§ 2 IV), 

nk>b—a, i.ea+nk>b. 

Consider the set of numbers 
a, a+/c, a+2k.a+nk. 

The number a belongs to L and a-\-nk to R. There must 
exist, therefore, two consecutive numbers a-f-rA;, a+(r+l)k of 
this set such that a+rk belongs to L and a+{r-\-l)k to R. 

These are, then, the required numbers x and y. 

4* Definitions. 

1. Real number. A section of rational numbers is called a 
real number. 

2. Real rational number,. irrational number. A section is 
said to be a real rational, or an irrational number according as the 
upper class of the section has or does not have a least member. 

If r be the least member of the upper class R of the real rational 
number (L, R), then we say that the rational number r corresponds to 
the real rational number (L, R)m 

Notation. The real rational number corresponding to a rational 
number x will always be denoted as x. 

Note. In view of the modified definition of a section, we see 
that to each rational number r there corresponds only one real 
rational number (L, R) where L consists of all those rational 
numbers which are <r and R of those which are also to each 
real rational number (L, R) corresponds only one rational number, 
viz,, the least member of R. Thus there is a one-to-one correspon¬ 
dence between the aggregate of rational numbers and the aggregate of 
real rational numbers which is the aggregate of those sections for 
which the upper class has a least member. 

Note. To a beginner it might appear strange to call a section, which is 
only a division of rational numbers into two classes, a real number. There may 
be several reasons for this attitude on his part. One reason may be that the 
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definition of a real number as a section is abstract and the idea of magnitude is 
foreign to it and the reader finds it difficult to disassociate number from any idea 
of magnitnde which is the very basis of the manner in which he is introduced to 
the notion of number in h lementary Mathematics. Another reason for his 
difficulties may be that he is at a loss to understand as to how the notion of 
order and the four operations of addition, etc., can be extended to the new 
aggregate. This latter difficulty is only temporary and in the following sections 
it is shown as to how this can be removed. 

5. Relationship of order between real numbers. Let 
aJ = (L1, Rj) and ct2ee (L2, Rj)) 

be two real numbers. 

The following are the three mutually exclusive possibilities : — 

(i) Lxis a proper part of L2, i,eti every member of Lx is also 
a member of L2 but every member of L2 is not a member of Lx; 

(it) L2 is a proper part of Lx; 

(Hi) Lx and L2 are identical, i.eevery member of L* is a member 
of L2 and every member of L2 is a member of L*. 

In case (t) we write ax<a2, in case (u) ax>a2, and in case 
(Hi) 04=a2. 

Note. Since L* has no greatest member, we see that if Lj is a proper part 
of La, there exist an infinite number of members of L2 which do not belong to Llf 
and which, therefore, belong to Rx. 

Ex. Show that a1<a2, if a2>ala 

Ex* Show that if and only if Lj and Ra have an infinite number of 
common members. 

^ome Simple Results. 

N/6-1. If a, ft, y are three real numbers such that a< ft and @<y, 
then a < y. 

Let a s (L1# R^, £~(L2, R2), y = (L3, R3). 

Since every member of Lx is a member of L2 and every member 
of L2 is a member of L3, therefore every member of Lx is a member 
of L3; also, there exists a member of L3 which does not belong to 
L2 and this, again, cannot belong to Lv for, if it did belong to Lv 
it will also have to belong to L2. Hence Lx is a proper part of L3. 
Thus a < y. 

Ex* If a==P and f>y ; show that 

5*2. I* ax and a2 are two rational numbers, then 
ax>a2 or ax<a2 or ax~a2, according as d\>di or ai<a2 or &x =a2» 

where du a% are the real rational numbers corresponding to the 
rational numbers av a2 respectively. 

Let ^i=(Li) Rj) i fljsriLj, Rg)> 
so that av a2 are the least members of Rj and R2 respectively. 

het flj ^ fljji 

A rational number which is <a1 is also <a2 so that every 
member of Lx is a member of L2; also, the rational numbers which 
lie between ax and a2 belong to L2 but not to Lv Thus Lx is a 
proper part of L2 and, therefore d\<d%> 

Let at>a% so that a2<ax. From above d2<di, and, therefore 
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The case of equality is obvious. 

5*3. Ir av a2 be any two members of the classes L, K respectively 
of the real number a = (L, R), then 

ai<a and af^a. 

Let Rx) and #2^=(L2» Rg), 
so that av az are the least members of the classes Rx and Ra 
respectively. 

Every member of Lt which consists of the rational numbers <ax 
is also a member of L which contains ax and, therefore, also every 
number < ax; also, ax is a member of L but not of Lv Thus L! is a 
proper part of L and, /. d\<a. 

If at be the least member of R, then L and L2 are identical 
and, therefore, a=a2* 

If at be not the least member of R, then it may also be easily 
shown that L is a proper part of L2 so that a<a2. 

5*4. Between two different real numbers, there lie an infinite 
number of real rational numbers. 

Let ai=(Li, Ri) and &g=(L2, Rg) 
be two different real numbers. For the sake of definiteness suppose 
that a1<a2 so that Lx is a proper part of L2. 

There exist an infinite number of rational numbers which belong 
to L2 but not to Lx and, therefore, belong to Rx. The real rational 
numbers corresponding to them are all less than a2 and all, (exclud¬ 
ing at the most one) greater than av (§5*3). 

ylo. Zero, positive and negative real numbers. 

The real number, 0, corresponding to the rational number zero is 
called the real number zero. Thus the real number (L, R) is the real 
number zero if 0 is the least member of R. 

real number is said to be positive or negative according as it is 
greater or smaller than the real number zero, i.e., 0. 

It is easy to show that (L, R) is positive, if L contains atleast 
one and, therefore, an infinite number of positive members; also it 
is negative if R contains at least one and, therefore, an infinite 
number of negative members. 

Ex. I. Show that every positive real number is greater than every negative 
real number. 

Ex. 2. Show that a is positive or negative according as the rational 
number a is positive or negative. 

7. Sum of two real numbers. Let a1~(L1, Rx) and 
ass(L* R,), be any two real numbers. 

Let a class L be formed of numbers obtained by adding every 
member of Lx to every member of L2. 

Clearly, the class L exists and does not contain all the rational 
numbers. 
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In order to show that L can be the lower class of a section, we 
have to prove that any rational number which is less than any member 
of L is also a member of L. Let * b 9 be a rational number less than 
any member * a ’ of L which is obtained by adding the members 
fli, a2 of Lj, L2 respectively so that a=at+a2. 

We write 
b^a-~K—al-\ra2—x—(al~x)-\-a2, 

where x is a positive rational number. 

The number ax—x which is less than the member ‘ ax of Lx 
must also be a member of Lr Thus we see that the number ‘ b 9 
can be obtained by adding the member ax—x of Lj to the member 
a2 of L2 and accordingly it must belong to L. 

Since Lx and L2 have no greatest members, L, also, can have 
no greatest member. 

Thus we find that L can be the lower class of a section ($3*3 . 
The section (L, H), where R consists of all those rational numbers 
which do not belong to L, is called the sum of (L*, Rx) and (La, R2) 
and this relationship is exhibited as 

(L, R)=(L1, Rx)-f (L2, R2)=a+/1. 
Ex. Prove that a-f p is positive if a, p are both positive and negative if 

they are both negative. 

Some simple results. In what follows, a, /?, y will denote real 
numbers. Also, a = (L1? Rj), j8=(L2. R2), y=(L3, R3). 

7*1. a+/J=/? + a, 
so that the Commutative law holds for real numbers. 

Let av a2 be any two members of Llt L2 respectively. The 
result now follows from the fact that a1+a2=a2+«i, so that the 
two classes formed of numbers obtained by adding the members of 
Lx to the members of La and the members of L2 to the members of 
hx are identical. 

7 2. a+(0 + y)=(a + /?) + y, 
so that the Associative law holds for real numbers. 

Let av a2, az be any three members of Llt La, Ls respectively. 
The result now follows from the fact that the Associative law holds 
for the addition of rational numbers, i.e.% 

ai^{azJra^)~{aiJra2)~ra$. 

7 3 If a>jS, then aJry>p+y- 

We have as(Lx, R^, 0 s (L2, R2), y = (L3, R3). 

Let a+ys(L\ R'), 0+yH=(L", R"), 
so that the two classes L', L" are formed of numbers obtained by 
adding the members of hx to the members of Ls, and the members 
of L* to the members of L„ respectively. 

Since every member of L2 is a member of Lv therefore every 
member of L" is also a member of L\ 

Let % be any member of Lx which does not belong to La so 
that it belongs to Ra. Let ax be any member of Lj which is >ax. 
Let a/—Ojssrf, so that € is a positive rational number. 
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There exists a member az of L3 and a member bz of R3 such 
that &3~03=€, (§ 3-4). We have ax +a3—ax+t+b3—*=zax+bz. 

Now, flj'-f tf3, which is obtained by adding the member ax of 
Lx to the member az of L3 is a member of L'; also ax+b3 which is 
obtained by adding the member ax of R2 to the member b3 of R3 is 
a member of R". Thus there exists a common member of L' and 
R" i.e„ there exists a member of L' which does not belong to L". 

Thus L" is a proper part of Lx. Hence the result. 

7 4. To prove that a-f0—a. 

Let 0=(L', R'), # 
so that L' consists of all the negative rational numbers and 0 is the 
least member of R'. 

Let a~(LXl Rx), and a+0 = (L, R). 

We have to show that the classes L, Lx are identical- 

A member of L, obtained, as it is, by adding some member ax 
of Lx to a member of L' which is negative is essentially less than ax 
and must, therefore belong to Lx. 

Let be any member of Lx. Since Lx, has no greatest 
member, there exists a member ax+A, of Lx greater than ax> 
(k>0). The member ax of Lx which can be obtained by adding 
the member ax+k of Lx to the member —k of L' is also a member 
of L, 

Thus the classes L and Lx are identical. Hence the result. 

7’5. If ay b be two rational numbers, then 
a+b—a+b, 

t.e., the sum of two real rational numbers is a real rational number 
corresponding to the sum of the corresponding rational numbers. 

Let a**(l*it RJ, 6=(L2, R2)» a+^=(L, R). 

Let x, y be any members of Lx and L2 respectively so that x-\-y 
is any member of L. 

V x<a and y<b, x+y<a+b, so that every member of L is 
<a+b. 

Again consider any rational number a+b—k, (k> 0), which 
is <a+b. We write 

A==(a—JA). 

Since a—\k belongs to Lx and 6—|k to L2, therefore a+b—k 
belongs to L. 

Thus every rational number <(a+b) is a member of ' L._ 
Hence (a+6) is the least member of R so that a+6=a+6. 

Ex. Show that the sum of a real rational and an irrational number is 
necessarily irrational. 

8. The negative of a real number as(Lx, Rlf). We form a 
class L of numbers which are the negatives of all the members of 
Rx> excepting that of the least member of Rx, if there be any. 



10 MATHEMATICAL ANALYSIS 

Clearly the class L exists and h as no greatest member. 

In order to prove that L can be the lower class of a section, it 
has to be shown that a rational number which is less than any 
member of L is also a member of L. 

Let ai be a rational number less than any member ax of L. 

Since — (—a1)=av i.eax is the negative of ~-ah therefore —ax 
belongs to Rv Also 

V ax <av .*. —«/>—%. 

Thus —a/ is a member of Rx and accordingly — (—ax)~ax is 
a member of L. 

Since L is not to have the negative of the least member of Rv 
therefore it cannot have a greatest member. 

The section (L, R), where R consists of all those rational 
numbers which do not belong to L, is called the negative of (Lx, Rx) 
and is denoted by —a or by — (Llf Rx). 

It is easy to show that R will consist of the negatives of Lx 
and the negative of the least member of Rv if there be any. 

Some simple results. 

8*1. To prove that — ( —<x) = a. 

Let a~(L1, Rj), —a = (L, R), —( — <x) = (L', R'). 
It has to be shown that Lx and L' are identical. 
The class R is composed of the negatives of the members of Lx 

and the negative of the least member of Rv if it exists, (this will 
be the least member of R also). 

The class L' is composed of the negatives of the members of 
R excluding the negative of its least member, if it exists, i.e., it 
consists of the members of Lx. 

Thus Lx and L' are identical. Hence the result. 

8*2. To prove that the real number —a is positive, negative or 
zero according as a is negative, positive or zero. 

Let a=(Lj, Rj), -a = (L, R). 

Suppose that a is negative so that Rx consists of an infinite 
number of negative members. Since the negative of a negative 
rational number is positive, we see that the class L consists of an 
infinite number of positive members. Hence —a is positive. 

The remaining cases can be similarly disposed of. 

8*3. Ij a>fi9 then —a< — 

Let a=(L15 Rt\ J3=(L„ R2>, ~a=s(L\ R'), -jBs(L", R"). 

Since L2 is a proper part of Lv therefore R" is a proper part 
of R' and therefore L' is a proper part of L". Hence the result. 

8-4 The negative^ of a real rational number a is also a real 
rational and — (o)= (—a). 
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Let as(L1# Rx), -5s(L, R)=(-a)== (L', R'). 

Since a is the least member of Rlf therefore —a is the least 
member of R. (§ 8). Also, by def., —a is the least member of 
R'. Thus R, R' are identical. 

9. The difference of two real numbers. The difference a—£ 
of two real numbers is defined by the equality 

so that to obtain a— we add, (§7), the negative of (§8), to a. 

Ex. If a< (*, show that a — 7 c 0 — 7. 

Some simple results. 

9*1. To prove that a—a~0. 

Let a =E (Lj, Rj), —a EE (L, R), a—a=a-f-(—a) EE (L^, R;). 

The class L' is formed of numbers obtained by adding to the 
members of Lx the negatives of the members of Rx excepting that 
of its least if there be any, these latter being the members of L. 

Now, if ax be any member of Lx and bv any member of Rv (not 
the least), then L' consists of the numbers of the type ax+(—£>x) 
i.ea1—bv which are necessarily negative. Thus every member of L' 
is negative. 

Again, if k be any negative rational number, there exists a 
member bx of Rx and a member ax of Lv such that 

bl—a1—~k, (§ 3*4) 

i.e.y <2i+(—bfj^^ky 
so that k belongs to L'. Thus every negative rational number 
belongs to L\ 

From above we deduce that 0 is the least member of R'. 
Hence the result. 

9*2* To prove that a+(jS — a)=£. 

We have 
a + — a.)=a-f- + ( — a)]» § 9 

=a+[(—a)+^], § 7*1 

= fa+(—a)]+^, § 7-2 

=0+& § 9-1 

§ 7’1 

-J8. § 7-4 

Ex. Show that -(a+P)»-«-P, - (a-f*. 
Ex. Ifa=*f+y, show that a-p=7. 

9*3. To prove that a—JS is positive or negative according as 
a>p or a</J. 

Let a=(L„ RJ, /3==(L* R,), a-0*(L, R). 

Let a>P so that L, is a proper part of Lv or that L,, have 
an infinite number of members in common. Let &i, at' be any 
two such common members so selected that none of them is the 

least of R3. Let at < at\ 
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Considering a/ as a member of L* and ax as a member of R2, 
we see that the number a/—ax which is positive belongs to L, 

Hence a—is positive. 

The second case may be similarly discussed. 

9*4. If a, b be two rational numbers, then 

a—b~a—b, 
i.et9 the difference of two real rational numbers is a real rational 
number corresponding to the difference of the corresponding 
rational numbers. 

Let as(Lv Rj), 6=s(L2, R2), «-6s(L, R). 

Let x be any member of Lx and y=fcb> any member of R2. 

V x<a and y>b, x—y<a—bt so that every member of L 
is <a—b. 

Again, consider any rational number a—b~k, (k>0) which is 
<o-fe. We write a—b-k=(a-i*) —(6+jfc). 

V a—\k belongs to Lx and b + lk to Ra, a~b—k belongs 
to L. 

Thus every rational number <(a—b) is a member of L. 

. Hence (a—6) is the least member of R so that 

a—b—a—b. 

10. Between two different real numbers there lie an infinite 
number of irrational numbers. 

Let a, fi be two real numbers and let a</9. Take y any 
irrational number. 

<*<0, 

a+( — y)<P+( — Y) i-e-> a~y<P — y. 

Let a be any one of the infinite number of real rational 
numbers lying between a—y and y, (§ 5*4). We have 

a—y<a<fi—y. 

°r a+(—y)+y <a+y <£+( —y) + y 

or a+0<d+y <0+0 
or a<a+y<jS, 

so that the irrational number a+y lies between a and 0. 

11. The product of two real numbers. Let 
ai=(L15 Rj) and aa£E(L2, R2), 

be any two real numbers. 

Firstly we suppose that a, jS are both positive, so that Lx and 
La contain some positive rational numbers also. 

Let a class L be formed of (i) all the negative rational numbers, 
(it) the rational number zero, (Hi) all those positive rational 
numbers which can be obtained by multiplying a positive member 
of Lj with a positive member of La. 
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It will now be shown that L can be the lower class of a section. 

Clearly the class L exists and does not contain all the rational 
numbers. 

Let ‘ b 9 be any positive rational number which is smaller than 
a positive member ‘ a 9 of L. Let ‘ a 9 be obtained by multiplying 
the positive members al9 a2 of Lv L2 respectively. 

Let b/a=x so that 0<a;<l. 

We have b—ax=(axa2)x~ax(a2x). 
The number a2x which is smaller than a2 belongs to L2. Thus we 
see that * b 9 is the product of the members ax and a^x of Lx and L2 
respectively and accordingly it is a member of L. 

Since L1 and L2 have no greatest members, we easily see that L 
also cannot have a greatest member. 

Thus we see that L can be the lower class of a section, say, 
(L, R). 

The section (L, R) is called the product of (Lv Rt) and (L2, R2) 
and this relationship is exhibited as 

(L, R)=(L1, R1).(L2, R2) = a./3 
or (L, R)=(L1, Ri)(L2, R2) = a/?, omitting the dot. 

Let, now, a be positive and P negative so that —p is positive. 
Then, by def., 

a.fi— [a.( $)]• 

Let P be positive and a negative so that —a is positive. 
Then, by def., 

[( a)./J]. 
Let a, p be both negative so that —a, ~P are both positive. 

Then, by def., 

Let either a or p or both be zero, then, by def., 
CLp — 0* 

Ex. Show that for all the real numbers a, p 
a(-p), = -(ap), (-a)P= ~(ap). 

By def., ( — a)( — p) = ap, if ap be both negative. 

Let a, p be both positive so that — a, — p are both negative. Therefore, 
by def., 

(^a)(~P) = [7(-a)][-(-P)], 
= ap. § 81. 

Let a be positive and p negative so that — p is positive and — a negative. 
Py def., 

{[-(-«)][-«} 

Let a be negative aod p positive so that — a is positive and 
By def., 

(—«)(—p)s=— {( — «)[ —(—p)] } 
*-[(-a)p] = ap. 

The remaining two results may be similarly proved. 

-p negative. 

Ex- Prove that the product of two numbers, both positive or both 
negative is positive, but if one number is positive and the other negative then the 
product is negative. 
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Some important results. 

111. To prove that 
a(Commutative Law) 

The proof is simple and depends upon the fact that the Com¬ 
mutative law of multiplication holds for rational numbers. 

11*2. To prove that 
(af$)y=:a(Py). (.Associative Law) 

The proof is simple. 

11-3. To prove that 
a(P-\-y)=zapjray. (Distributive Law) 

Let a=z(Lv R^, £=e(L2, R2), y = (L3, R3). 

Let a($+y) = (L, R) and ajS+ay=(L', R')» 

Firstly we consider the case when a, /S, y are all positive. 

All the negative rational numbers and the rational number 
zero are necessarily members of L as well as of L\ 

The positive members of L are of the type 

and the positive members of L' are of the type 

where av at’ are any positive members of L2 and a2, a3 are any 
positive members of L2, La respectively. 

Since «i(«2+a3)==aifir2+aia3» 
therefore, on taking a1,=al9 we see that every positive member of 
L is also a member of L'. 

Any member a1a2-\-a^az of L' is clearly a member of L, if 
In general, let ax>a{ so that al,jal<l. 

We write a1/a3=a1[(a17«i)%]=«i«3'» say. 
Now az,=(a1r/a1).az < 1 .a3= as, 

and therefore az belongs to L8. 

Since axa2-\-a^ az=^axa2+axaz ~ax(a2+az), 
we see that every positive member of L' is also a member of L. 

Thus L, L' are identical. Hence the result. 

Before proceeding to consider the other cases, we prove that 
a(P-y)=aP-aY, 

where o, /?, y are all positive. 

Case I. Let j8=y 
L. H. S.=a(/}—/3)=a.0=0. 5 11 
R. H. S.=saj3—aj8=0. § 9*1. 

Case n. Let p>y so that /3—y is positive. § 9'8. 

We have «j8=a[y+(j3-y)], § 9-2. 
=ay-f-a(j3—y), proved above 

a/9—ay=ay+[a(/3—y)— ay] 
»a(/S—y). § 9’2. 
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Case HI. Let 0<y so that fi—y is negative and y—j8 positive. 
We have proved in case II that 

a(y—■/9)=ay—aft. 
Now a(fS—y)=—aj[—(fi—y)]}, by def., 

= — [a(y—ft)]. Ex. after §9-2. 
= — [ay—afS], proved above 
= aj3—ay. Ex. after §9 2 

We now return to the main result. 

Let a, fi be negative and y positive and let /J+y be positive. 
We have a(j8+y)= —[(—a)(]8+y)] 

= -<(—«)[-(—0)+y)]>. § 8-1 
=-K-«)[y—(—£)]> 
= — [(—a)y—(—a)( — j8)], proved above 
“ C aY af}]— ( ay) ( a/?) 
=ay+afi=afi + ay. 

Let a, /? be negative and y positive and let /J-f y be negative. 

We have a(j9+y)=(—a)[-(j8+y)] 
= (—a)(~fi—y), Ex. after §9*2 
= (—a)(— /J)-~(—a)(y), proved above 
= ajS + ay. 

The other possibilities may be similarly diseussed. 

A property of positive sections. Corresponding to any 
rational number k> 1 and any positive real number (L, R), there 
exist positive members x, y, of L, R respectively such that yjx~k. 

Let a, 6 be any positive members of L, R respectively. 

We write &=14-Z, so that l is positive. 

There exists a positive integer n such that 
n.al>(b—a) i.e., a(l+nl)>b. 

Consider the set of numbers 
a, ak, ak%... a&n. 

Since akn=za(l+l)n>a(l+nl)>b, we see that a&n belongs to R. 

There must exist two consecutive numbers akrf akr+l of this 
set such that akr belongs to L and akr+x to R. These, then, are 
the required numbers x and y. 

11# 4. To prove that 
if a<fi and y is positive then ay < fiy. 

Firstly suppose that a, fi are both positive. 

Let as(L1, Rj)* fi == (Lj» Ra)> y (La, Ra) 
ay ~(L, R), fiy~(L', R'). 

All the negative rational numbers and the rational number 
zero are neeessarily contained in L as well as L'. 

Since every member of Lx is a member of La„ therefore every 
member of L is also a member of L\ 

Let a2 be any positive number which is a member of La but 
not of Lv Since La has no greatest member, there exists a member 
of La, say aa', which is > av 
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The numbers a2, a2 both belong to Rx. 

Let a2 la3~k, which is greater than 1. 

There exist positive members a3, bz of L3, R3 respectively 
such that b3/a3^=k. 

We have a2'a3=a2A:a3=aa63. 

Since a2 is a positive member of L2 and a3 a positive member 
of L3, therefore a2a3 ia2b3 belongs to L'. Also since a% is a 
member of Rx and bz of R3, therefore ajbz belongs to R and not to 
L. Thus every member of L' is not a member of L. Therefore L 
is a proper part of L'. Hence the result. 

Let, now, a, p be both negative so that —a, —j8 are both 
positive. 

Since a<p, therefore — a> — /? or — £< — a. §8*3 

— /?y<~ay, as proved above 
or — (—Py)> — ( —ay), §8 3 
or Py > ay, 

If a be negative and ft positive then ay is negative and Py 
positive and accordingly ay c £y. 

115. To prove that 
if a<P and y is negative, then ay> py. 

Since y is negative, therefore — y is positive. 

«(—y)<P(—y) or — («y)<— (py) 
or — [—(oy)]>— [-(0y)]> *•«•, ay> Py. 

11*6. To prove that a.I=a. 

Let a —: (Lx, Rx), 1=e(L2, R2)> ct*l==(L, R). 

Since 1 is the least member of R2, L2 is comprised of all those 
rational numbers which are < 1. 

Let a be positive. 

If ax be any positive member of Lx and a2 of L2 then axa2 is a 
member of L. 

Since axa%<al»li we see that axa2 is also a member of Lx. 
Thus every member of L is a member of Lv 

Let ax be any positive member of Lx. Let a2>ax be also a mem¬ 
ber of Lx Since ax/a2<l, therefore aj/a2 belongs to I*. We have 

«i=02*(ai/aa) 
so that ax appears as the product of a positive member of Lx and of 
a positive member of La and accordingly ax is a member of L. Thus 
every member of Lx is a member of L. 

Therefore L, Lx are identical. Hence the result when a is 
positive. 

Let, now, a be negative so that —a is positive. As proved 
above, we have 

(—a).I=(—a) 

-C(-a).T] = ~(-a) 
- -[-(a.T)] —(-a) 

a.I=a. 
or 
or 



REAL NUMBERS 17 

11*7. Ifa, b be two rational numbers, then 

a . b=a.bt 
i.e., the product of two real rational numbers is also a real rational 
number which corresponds to the product of the corresponding 
rational numbers. 

Let fls(Lj, Hj), b ~e (L2> R2), ® • ^==(L, R). 

Let a, b be both positive. 

Let x, y be any positive members of Llt L2 respectively so that 
xy is a positive member of L. 

V x<a and y<b, .\ xy<ab. 

Thus every member of L is < ab. 

Again consider any positive rational number abk which is 
<ab ; k< 1. 

-i. / 1+& 2ft We write ft=s—-y. 
2 1+ft 

Since ft<l, therefore (l+ft)/2 and 2ft/(l+ft) are both less 
than 1. 

We have a&A=( ).( 6.-^). 

Sincea.(l-|-ft)/2<a and &.[2ft/(l+ft)] <b, therefore a.(l+ft)/2 
belongs to Lx and &.[2ft(l+&)] belongs to L2 and accordingly 
their product abk belongs to L. 

Thus every rational number < ab is a member of L. 

Hence ab is the least member of R so that 

a * b—ab. 

12. The reciprocal of a non-zero real number. 

Let a=(Lj, Rt) be any positive real number. Let a class L 
be formed of (i) all the negative rational numbers, (ii) zero and (in) 
the reciprocals of all the members of the class Rt excepting that of 
its least if it exists. 

If ax be any positive member of L, then 1 jax must be a member 
of Rv Let bx<ax be any positive rational number. 

We have l/61>l/a1 so that l/bx belongs to Rx and accordingly 
l/(l/bx) i.ebx belongs to L. 

It is now easy to see that L can be the lower class of a section, 
say, (L, R). 

This section (L, R) is said to be the reciprocal of (Lls Rx), i.e,, 

a and is denoted as a. 

If a be negative so that —a is positive, then, by def.; 

« . . 
Ex. Show that a is positive or negative according as a is positive 01 

negative. 
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The quotient of two real numbers. If a, /3 be two real numbers 

and P9^0, then the real number a./?, which is the product of a and 
the reciprocal of j8, is said to be obtained on dividing a by ft and 
we write 

Some important results. 

121. To prove that 
•x- __ ^ 

a.a = l, where a^(5. 

To start with we suppose that a is positive. 

Let a = (LJ, Rx), a~(L, R), a.a=(L', R'). 

Let at be any positive member of Lx and bt any, but not the 
least, member of Rx so that 1 /bx is a positive member of L. 

The positive members of L' are, therefore, of the type ajbx. 
Since a1/61< 1, we see that every member of U is <1. 

Again, let k be any positive rational number < 1. 

There exist positive members av bx of Lx, R1? such that al/b1--~k. 

Since we see that every rational number <1 is a 
member of L\ 

Hence 1 is the least member of R' and accordingly 

(L\ R#)sl, 

Let, now, a be negative so that —a is positive. 
* * 

Also, therefore, a is a negative and (—a) is positive. 
We have, by def., 

* * 
a.a==(—-a)( —a)=l. 

12‘2. To prove that 

T * 
We have — =1. a=a. 

On account of this result the reciprocal a of a number a is 

denoted as -- or I/a. 
a 

12*3. To prove that 

a.— where a^=0. 

We have 

-(4)-(*r)-( i*) 
=( -t)-#-**-*■ 



REAL NUMBERS 10 

12*4. To prove that if a, are two positive real numbers such that 

a<£, 

T/a>T/P. then 

The proof is simple. 

12'5. To prove that 
a 
b ■rf)- 

i.e., the quotient of two real rational numbers is also a real rational 
number which corresponds to the quotient of the corresponding 
rational numbers. 

Let 6=(Lj, Rx), l =(L. R). 

Suppose that 1> is poisti^e. 

Let x=f^b, be any positive member of Ri so that 1 jx is a member 
of L. 

V x>b, v l/x<l/b. 

so that every member of L is <1/6. 

Let k/b, where k< 1 be any positive number < 1/b. 

V b/k>b, A b/k is a member of Hi and therefore its reciprocal 
k/b is a member of L. Thus every number <l/b is a number of L. 

Hence 1/6 is the least member of L and accordingly = ^- j. 

If 6 be negative, we have 

I- = — -i- = — as proved above 

13. The modulus of a real number. Def. By the modulus 
of a real number a is meant the real number a, —a or 0 according as 
a is positive, negative or zero and is written as | a | . 

It will be seen that the modulus of a real number cannot be 
negative. 

Ex* Show that | a— £ | = | (J— a | . 

Some simple results. 

13*1. To prove that 

I a+P I ^ I a I + I P I • 
Case I. Let a, fi be both positive so that a+fi is also positive. 

We have 
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Case H. Let a, p be both negative so that a+jS is also negative. 
We have 

| a-j-p | ==-(“+£) 

==(—a)+(~P)~ | a | + | P | . 
Case HI. Let a be positive and p negative. 

(i) Let a+P be positive, we have 

| a+p | =a+/?. 

Since P is negative so that —jS is positive, we have 
p<-p. 

I « + I =a-f/?<a+( —/?) = | a | + | P \ . 
i.e., | a-\~P | < | a | + | p | 

(ii) Let a+/? be negative. 

We have 

I a+P I = (a~{-P)= a P== a + ( P) 

— M + I0l< |«| + |j*|, V | a | > | a | . 
Case IV. Let a be negative and p positive. 

This follows from Case III on interchanging a, P. 

13‘2. To prove that 
I «-P I > I I a | - | P | r • 

We have 
a=a —p-\~p. 

M a-P+p\ < \a-p\ + \P\ 

or |a|-|j8|<|a-j8| + |j8|-|j8| 

\a-p\> \a\-\P\. 

Also, | a—P | == | P~a | ^ | P | — | a | 

Now | | a | — | P | | is 

either = [ a | — | P |„ 

or ==-{ | a | - | p | } 

-m + i/n = m- 
\a-P\> | | a | -\p\ |. 

a—P +0 
a—p 

13-3. If \a-p\ < y, 
then P~y<a< P+y. 
If a—p be positive, we have 

a—p= | a—p | < y 
«—P+P<y+P 

or a+(—p)+P<y+P 
or a+[(P+(—p)]<y+P 
or y-\-p, t,e„ a<y-\-p—P~\-y 
or a <P+y. (i) 

Again, since a—j3 is positive, we have 
a>p, 

a+(-y)>£+(—y) or a—y>P—y. 
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Again, V 0>—y, y being necessarily positive,* 
A a=a+D>a+(—y)=a~y 
A a>fi—y, (ii)L 

Thus we have, from (i) and (ii) 

/?—y<a</?+y. 

Let a—/? be negative. We have 

| a—/} | = | /?—a | . 
Since —(a~iS)= —[ot+(—^8)] 

= —[( — + —<X==:^ — Ct, 

we see that a is positive. 

Since jS—a is positive and | /?—a | <y, we have from above 

a—y< /?<a+y 

/?<a+y, A /?—y<a+y—y=a 
or a>f3—y. (Hi) 

Again, y 0 >a—y A 0+y >a—y+y=a 

or a<P+y. {iv) 

From (in) and (iv) 

0—y<a<0+y. 

Hence the result. 

13*4. To prow? JAa* 

|e/»| = |«|.h9|. 
Case I. Let a, /? be both positive so that a/3 is also positive. 

We have | ajS | =a£= | a | . | jS | . 

Case II. Let a, j3 be both negative so that aj3 is positive. 

We have 

| | =aj8=(-a).(-j3)= | a | . | 0 | . 

Case HI. Let a be positive and j3 negative so that ap is negative. 

We have 
I O0 I =-(aj3)=-<-[(«X(-/3)]> 

= («).(—J8)= | a | . | p | . 

Case IV. Let a be negative and 0 positive. 

We have 

| afi [ = | j8o | = | 0 | . | a J , Case III above. 

= M . I 0 I • 
13-5. To prove that 

a a | 

T\ ~ p\ 
if/j^n. 

i i 
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if p be negative, then l/p is also negative, so that we have 

-P 
1 
T 

Finally, we have 

“1 lir ia 1 ■[}} HiL 
N"'f4. Sections of real numbers Dedekind’s theorem. 

ihe real numbers be divided into two classes L and R such that 

j a 
-!a 1 

\J “!a-j3 

If all 

{i) each class exists, [ii) each real number has a class, (Hi) every 
member of L is less than every member of Ry then 

either the class L has a greatest member, or the class R has a least 
member, 

We form two classes L1? Rx consisting of rational numbers which 
correspond to the real rational members of L, R respectively. 

Let ihe class Lx have a greatest member say, a. The real rational 
number a will belong to L. It will be shown that a is the greatest 
member of L. 

If not, let a be a greater member of L. 

Let b be any one of the infinite number of real rational numbers 
lying between a and a so that we have 

a<b<a. 
Since b is Jess than a member a of L it must itself belong to L 

and accordingly b is a member of £,. 

Also, v a<b, * 

acb. 
Thus b9 a member of Lv is greater than the greatest member a 

of Lj. 

This conclusion is absurd. 

Hence in this case L must have a greatest member. 

Let ihe class Rx have a least member, say, b. In this case b will 
be the least member of R. This may be proved as above. 

Let neither Lx have a greatest member nor Rv a least. In this case 
the section (Lx, Rx) is an irrational number a which must either 
belong to L or to R. 

Let a belong to L. It will be shown that a is the greatest 
member of L. If not, let p be a greater member of L. 

Let a be any real rational number such that 

a <a<p. 
The number a belongs to L and therefore a belongs to L1# 

Thus there exists a member a of the lower class of a real 
number a=(Llt Rj) such that 

a >a 
and this is absurd. §5*8. 

It may similarly be shown that if a belongs to R then it is the 
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least member of R. 
Note 1. The theorem is sometimes stated in the following equivalent 

form ;—If all the real numbers are divided into two classes L, R such that, 
(t) each class exists, (it) each number has a class, (Hi) every member of L is less 
than every member of R, then there exists a real number a such that every real 
number less than a belongs to L and every real number greater than a belongs to R; 
a itself may belong to either class. 

This number a is the greatest member of L or the least of R which ever may 
exist. Also, this number a is said to determine the section. 

Note 2* The theorem discussed above indicates a fundamental difference 
between the sections of rational numbers and the sections of real numbers in as 
much as we have seen, that if (L, R) be a section of rational numbers it is possi¬ 
ble that neither L may have a greatest member nor R may have a least, but if it 
were a section of real numbers, then this cannot be the case. This difference is 
generally described by saying that there may be a gap between the classes L, R 
of rational numbers but there is no gap between the classes L, R of real 
numbers; the system of rational numbers has gaps while the system of real 
numbers has none. 

Note 3. It is easy to show that any given aggregate of real numbers will 
form the lower class of a section if and only if (t) all the numbers do not belong 
to it (ii) a number which is less than any member of the aggregate is also a 
member of the aggregate. 

15. Representation of real numbers by points along a 
straight line. Every thinking person possesses an intuitive idea of 
a straight line which, further, he can easily conceive as composed 
of points, even though this physical notion of a straight line 
and that of points on it has nothing to do with Analysis as such, 
yet it provides a very convenient and helpful picture of the aggre¬ 
gate of real numbers and is often employed in the course 
of study of Analysis to provide suitable language and suggest 
ideas. One danger, which is inherent in this use should, however, 
be avoided ; it may be that we accept a proposition suggested by 
this picture, obvious as it may seem, as obviously true and this 
obviousness may blind us to the necessity of a rigorous proof. 

We now proceed to see how a straight line can be employed to 
provide a picture of the aggregate of real numbers. 

Representation of rational numbers by the points of a line. 
We consider any straight line and mark any two points O and A 
on it. The point O divides the line into two parts ; the part con¬ 
taining the point A will be termed positive and the other negative. 

According to the usual convention, the line in question is 
always drawn parallel to the printed lines of the page and the 
point A taken on the right of O. Representing the rational 
numbers 0 and 1 by the points O and A respectively, we fiud a 
point P of the line representing any rational number pjq, (j >0) by 
marking from O, | p J steps each equal to gth part of OA to the 
right or to t|ie left of O according as p is positive or negative. 

It is easy to see that if a, b be two rational numbers and a < b, 
then the point representing b lies to the right of the point repre- 
renting a. 

If we call the points which represent rational numbers as rational 
points, we see that, since the aggregate of rational numbers is dense, 
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an infinite number of rational points lie between every two different 
rational points. 

Insufficiency of rational numbers to provide a picture of 
straight line. Even though, as we have seen above, a line can be 
covered with rational points as closely as we like, there exist points 
of the line which are not rational. For example, a point P such 
that OP is equal to the diagonal of the square with side OA is one 
such point (§ 8*1). Also a point L on the line such that OL is any 
rational multiple p/q of OP cannot be a rational point. For, if 
possible, let L represent a rational number m/n, so that we have 

£ .OP=OL= B or OP=mq/np, 

which shows that OP is rational i.e.9 P is a rational point and this 
is a contradiction. 

Thus we see that the aggregate of rational numbers is not 
sufficient to provide us with a picture of complete straight line. 

Real numbers. 

Let a=(L, R) 
be any real number. The section (L, R) of rational numbers deter¬ 
mines a section of the rational points of the line into two classes 
A and B such that A consists of rational points corresponding to 
the members of L and B of rational points corresponding to the 
members of R. Every point of the class A will lie to the left of 
every point of the class B. 

From our intuitive picture of a straight line and its continuity, 
we can convince ourselves that there will exist a point P of the line 
separating the two classes in the sense that every point of the line 
lying to the left of P belongs to the class A and every point lying 
to the right of P belongs to the class B. This point P, we say, 
denotes the real number (L, R). Thus to every real number there 
corresponds a point of the line. 

Conversely, let P be any point of the line. The point P divides 
the rational points of the line into classes A and B such that the 
points lying to the left of P belong to A and those to the right of P 
belong to B ; the point P, if rational, belongs to B. The classes 
A, B of rational points determine a section (L, R) of rational 
numbers, which corresponds to the point P. 

Thus to every point there corresponds a real number. 

The aggregate of real numbers is called the Arithmetical 
Continuum and the aggregate of points on a straight line is called the 
linear or Geometric Continuum. In view of what has been shown 
above we see that there is a one-to-one correspondence between 
the two aggregates or continua and it may be found convenient 
to use the word * point* for * real number \ 

16. Notation for real rational numbers. From above it will 
be seen that if (L, R) is a real rational number, then the point P 
which denotes this real number also denotes the rational number 
which is the least member of R and which, we knowr, is the rational 
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number corresponding to (L, R). Thus we see that, according to 
the manner of representation explained above, a real rational 
number and the corresponding rational number are denoted by the 
same point of the line. 

In view of this, we agree to denote, for future developments, a 
real rational number by the same symbol which demotes the correspond¬ 
ing rational number so that if 4 a ’ is a rational number, then the 
same symbol 4 a 9 will also, now, be used to denote the correspond¬ 
ing real rational number which has so far been denoted by <3. 

The context in which the symbol may appear will fix the 
interpretation. 

This use of a single symbol to denote two different concepts 
leads to no confusion, but is helpful, in as much as we have seen that 
a statement, which describes some relation between rational numbers, 
remains true when the symbols for rational numbers are interpreted 
as symbols for the corresponding real rational numbers. 

In fact it has been shown that 
if a>b, then a>b; 

if a±b=c, then 

if ab-=c, then a.b=c; 

if a/b—c9 then a/b=c, 

where a, 5, c denote rational numbers. 
Thus, for example, the proposition 

2+3 = 5, 

where 2, 3, 5 denote rational numbers, remains true even when they 
denote corresponding real rational numbers which have so far been 
denoted by the symbols % g, 5. 

An important note: In the following chapters the word 
4 number ’ will always mean 4 real number 9 and the word 4 rational 
number will mean 4 real rational number \ 

EXAMPLES 

1. Give an account of Dedekind’s theory of real numbers. Show that 
there are gaps between rational numbers, but the continuum of real numbers, as 
postulated by Dedekind, is free from gaps. (P. U., M.A., 1939 ) 

2. In order to generalize the conception of number, what are the essential 
requisites which must be satisfied. Develop Dedekind’s theory of real numbers, 
and show how far this theory satisfies these requisites. (P. U., M.A., 1937.) 

3* State and prove * Dedekind’s theorem.’ (P. U., M.A., 1940.) 

4. Explain briefly the theory of real numbers and establish their corres¬ 
pondence with the points of a line continuum. 

Define addition of irrational numbers by the use of a partition of rational 
numbers, and show that the Associative law of addition holds. 

(P. U., M.A., 1936.) 

5. Develop Dedekind’s theory of real numbers. When are two numbers 
equal or unequal to, greater or less than, each other in accordance with this 
theory. (P. U., M.A., 1938.) 

0, What is Arithmetic and what is Geometric continuum. Explain under 
which conditions they are equivalent. 



CHAPTER II 

ELEMENTS OF THE THEORY OF AGGREGATES 

vl7. An aggregate or set S of numbers is defined, when there is 
given a law or laws which determine, without ambiguity, whether 
any given number does or does not belong to it. An aggregate of 
numbers may also be spoken of as an aggregate of points, 

'w^Gntervals, closed and open. The aggregate of.numbers a?.«jwch 
that a^x^b, where a, b are any two numbers, is called 
interval (a, J). The aggregate of numbers x such that a<^x < b is " 
called an open interval [a, &]• The aggregates a^x<b 
are called the intervals open on the left and open on the right 
respectively and are denoted as [a, b) and (a, &]♦ 

Sub-aggregates. An aggregate Sx is said to be a sub-aggregate 
or a sub-set of another aggregate S, if every member of Sx is also a 
member of S. 

Finite and infinite aggregates. An aggregate is finite if there 
exists a positive integer n such that it contains just n members and 
otherwise the aggregate is infinite. 

E. G. The aggregate of all the integers between—20 and 80 is finite, but 
the aggregate of all the rational numbers between—29 and 30 is infinite. 

8. Greatest and least members of an aggregate. A number 
M is the greatest member of an aggregate S, if (i) M is a member of 
S ; (ii) no member of S is greater than M. Again, a number m is 
the least member of an aggregate S, if (i) m is a member of S; 
(ii) no member of S is less than m. The greatest and least members 
are also respectively called the maximum and minimum members 
of the aggregate. 

Every finite aggregate has necessarily a greatest and a least 
member, but an infinite aggregate may or may not have a greatest 
or a least member. 

^E. G. The aggregate of all the integers has neither a greatest nor a least 
member; the aggregate of positive integers lias no greatest member but has a 
least viz., 1; the aggregate of negative integers has no least member but has a 
greatest viz., —1. 

is the greatest and 0 is the least member of the closed interval (0, 1); the 
open interval [0,1] has neither a greatest nor a least member; the semi-closed 
interval (0}1] has no greatest member but has a least viz., (0); the interval [0,1) 
has, no least member but has a greatest member, viz.; 1. 

J 19. Bounded and unbounded aggregates. If there exists a 
number K such that every member of an aggregate S is ^K, then 
we say that S is bounded above or that it is bounded on the right and 
further say that K is a rough upper bound of S. 

Similarly, if there exists a number k such that every member of 
an aggregate S is ^k, then we say that S is bounded below or that 
it is bounded on the left and further say that & is a rough lower bound 
of S.- 
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An aggregate is said to be bounded if it is bounded above as. 
wein^MoiE^ ™ *.—- 
w^BTg. The aggregate of all the integers is neither bounded above nor 

below*; the aggregate of all the positive integers is bounded below but not 
above; the aggregate of all the negative integers is bounded above but not 
below. 

The intervals (0,1), [0,1], (0,1], [0, X) are all bounded. 

Ex. 1- Show that if K is a rough upper bound of an aggregate S and 
K' > K, then K' is also a rough upper bound of S ; also give examples to show 
that if K'<K, then K' may or may not be a rough upper bound. 

State a similar result concerning aggregates which are bounded below. 

Ex. 2. Show that an aggregate with a greatest member is bounded above 
but that the converse is not necessarily true. State a similar result for aggre¬ 
gates which are bounded below. 

Ex. 3. Show that every sub-aggregate of a bounded aggregate is bounded. 

Ex. 4. Show that for a hounded aggregate S there exists a positive number A 
such that | x | < A, where x is any member of S. 

Since S is bounded, there exist numbers k and K such that 

K. (i) 

Let A be any number greater than both | k | and | K [ so that we have 

-A<k and K<A. (it) 
From (t) and (it), we have 

— A</c<#<K<A, t.c,, — A<x<A, 

or | x | <A. 

Conversely, if | x | < A, then — A<x< A so that the aggregate is bounded. 

Ex- 5- x, y are any two members of the bounded aggregates and Sa res¬ 
pectively ; show that the aggregates of numbers, x+y, x—y, xy are also bounded. 

Ex. 6- Show that the aggregate of rough upper bounds of an aggregate 
bounded above is bounded below. State a similar result for aggregates which 
are bounded below. 

S 20. The upper and lower bounds. The two theorems obtained 
^in this section are fundamental in the discussion of bounded 

aggregates. 

v .20 1. Theorem. For every aggregate S bounded above} there 
exists a number Bsuch that 

(i) every member of the aggregate is less than or equal to B; 
(ii) every number less than B is smaller than at least one member 

of the aggregule,i.e\f however small the positive number i may be, 
there is jarmmber of S greater thanB—f t 

XTivide all the numbers into two classes L and R, putting a 
number in L if it is smaller than atleast one member of S and 
otherwise in R. 

Clearly each number has a class. Since a number less than any 
member of S belongs to L and K, any rough upper bound of S, 
belongs to R, we see that each class exists. Finally, a number 
which is less than a member of L is necessarily less than a member 
of the aggregate, and accordingly it belongs to L. Thus the two 
classes L, R determine a section of the real numbers. There exists, 
therefore, a number B separating the two classes such that every 
number less than B belongs to L and every number greater than B 
belongs to R. It will now be shown that this is the number B of 
the theorem* 
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Any number B—€, (€>0), which is less than B belongs to L and 
is, therefore, smaller than at least one member of the aggregate. 

Also no member of the aggregate is greater than B. For, if 
possible, let there be a member B + 1?, of the aggregate which is 
greater than B.^ > 0). The members of the open interval [B, B+ty] 
all belong to R, for each of them is greater than B ; also they all 
belong to L, for each of them is smaller than a member B + 7/ of the 
aggregate. This is a contradiction. 

Thus we have proved that the number B, which separates the 
two classes, possesses the two properties stated in the theorem. 

This number B is said to be the upper bound of the aggre¬ 
gate S. 

Remarks 1. It is easy to see that the upper bound B is a rough upper 

bound of S such that no number less than B is a rough upper bound, i.e.t B is the 
least of all the rough upper bounds. In other words, therefore, the theorem 

states that the aggregate of rough upper bounds of an aggregate bounded above 

possesses a least member. 

2. The maximum i.ethe greatest member of the aggregate, in case it 
exists, is also the upper bound, and we then say that the aggregate attains its 
upper bound. 

y 20*2. Theorem. For every aggregate S bounded below, there 
exists a number b such that 

(i) every member of the aggregate is greater than or equal to b ; 

(it) however small the positive number € may be, there is a member 
of S less than b+€. 

Its proof is similar to that of the previous theorem on upper 
bounds. To prove it, the real numbers will have to be divided into 
classes L and R such that a number will belong to R if it is greater 
than at least one member of the aggregate and otherwise to L. 

This number b is said to the lower bound of S. 
Remarks 1. It is easy to see that the lower bound b is the greatest of all 

the rough lower bounds of S so that, in other words, the theorem states that 
the aggregate of rough lower bounds of an aggregate bounded below possesses a 
greatest member. 

2. The minimum, if it exists, is the lower bound, and we then say that the 
aggregate attains its lower bound. 

3. Obviously B>6. 

Ex- I is the upper bound and 0 is the lower bound of each of the four 
intervals ( 0, 1), [0, 1], (0, 1], [0, 1). 

Ex The upper bound of the set of numbers 

1 1 1 1 

’10’ 102.* ». 

is 1; what is the lower bound ? 

Ex. Construct examples to show that the bounds may or may not them¬ 
selves be members of the aggregate. 

Ex. Show that the greatest member of an aggregate, in case it exists, is 
the upper bound and the least member, if it exists, is the lower bound. 

Ex. The members of a bounded aggregate are ail positive ; show that the 
bounds cannot be negative. 

f/'&Q'Z. Oscillation of a bounded aggregate. The differeru:e B—b, 
of the bounds B, b or a bounded aggregate is called its oscillation. 
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EXAMPLES 

1. B, b are the bounds of an aggregate S and Blf bL are the bounds of a sub¬ 
aggregate of S ; show that 

Every member of Sj is a member of S and, accordingly, it must be <B and 
thus B is a rough upper bound of Slm The upper bound of SL being the least 
of its rough upper bounds, we have 

BA<B. 

In the similar manner it may be proved that 

6^61. 
Also, obviously bx < Bx. 

2. x is any member of a bounded aggregate Sl whose bounds are Blf bx; chow 
that the bounds of the aggregate S of numbers —x are — bl9 —Bv 

Since therefore — — blt where —a; is any member of S. (i) 

Let € be any positive number, however small. There exists a member x 
of St such that 

x<bl+G, 
which shows that there exists a member — x of S such that 

— x>—bl—€. (ii) 

Hence — bx is the upper bound of S. 

It may similarly be shown that — Bj^ is the lower bound of S. 

(In examples 3—0 below x, y denote any two members of the bounded 
aggregates Sx, S2 and B1# bt ; B2, are respectively their bounds). 

3. Show that the bounds of the aggregate S of numbers x + y are B^Ba, bLJrbi. 

Since and ?/<B2, 

therefore aj+y<Bl+Bs, (*) 

where x \-y is any member of S. 

Let € be any positive number. There exist members x, y of SA, Sa respec¬ 
tively such that 

?/>B2-i€, 

which show that there exists a member x-\-y of S such that 

+ (ii) 

Thus (B^Bjj) is the upper bound of S. 

It may similarly be shown that b1-\-b2 is the lower bound of S. 

4* Show that the bounds of the aggregate S of numbers x—y are B,—&2, 
bi Bjj. 

5. If the members of the aggregates Sif S% are all positive, then show that the 
bounds of the aggregate S of numbers xy are Bl B2, bL b2. 

The numbers Bx, B2, bl9 bt must all be non-negative. 
Since ,r<Bj,t/<B2J 
therefore a^<B1BSv (i) 
where xy is any member of S. 

Let € be any given positive number, however small. 
If €*. are any two positive numbers, then there exist members x> y of 

Slf S2 respectively such that 
oj>B1-€1, i/^B2~€a 

whence we have xy>(Ci)(Ba—€*). (**) 

It will now be shown that it is possible to choose €x, €a in terms of € 
such that 

(B,-€1)(B8-€,)>B1B2-«. (<«) 

so that it will be deduced from (ii) and (iii) that there exists a member xy of S 
such that 

(to) xy>BlBl-t. 
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Now, (B^ C1)(Ba— €a) — €, 
if exBa+€aBl^€+€i€a 
or if CjBj~f* CgBj^ C» 
Taking €lS=€/3Ba, €|=*€/8Bj, if Blf ^0, B2^0, we see that 

€1B3+€8B1 = §€<6. 
The argument ean be easily modified if either or both of B,, B3 are zero. 

The case of lower bound may be similarly discussed. 

6. If the members of Slt S2 are all positive and bt?*0t show that the bounds of 
the aggregate S of numbers xjy are BJb2f bl/B2. 

The numbers Blf Ba, blf b2 must all be non-negative. 
Since d1<a;<B1, £>2<j/<Ba or l/Ba<l/2/<l/&2> 

(i) therefore 
y 

where xjy is any member of S. 

Let € be any given positive number. 

If €*, €a be any two positive numbers, then there exist members x, y of S, 
and Sa such that 

x>Bx—elf J/^ft2+€2 
whence we have 

_x__ ^ Bt— Ci 
y &•+€/ 

(U) 

It will now be shown that it is possible to choose €a in terms of € 
such that 

viv* <«<> oa-f-€a oa 

so that it will then be deduced from (ii) and (in) that there exists a member 
xjy of S such that 

Now, (in) will hold. 
y h 

it 

i.e., if 

or it 

or if 

(B1-€1)d1>(&i+€1)(B1.-€6«) 
f^ + CiB x<€V-f €€a6a 

€A+€tB 
^1/^2+ €. 

Taking €! = €&a/3 and «tsC&st/8B1 we see that 

fi , 5i?ia €<€. 

The case of lower bound may be similarly discussed. 

7. Show that the bounds of the aggregate S consisting of the members of 
both S, and S, are Max. { B1# Bf }, min. { bl9 fca } . 

8. x, y are any two members of a bounded aggregate S; show that the upper 
bound of the aggregate S1 of numbers 

(»') x-y. (ii) | x-y | , 
is the oscillation of S. 

Let B, b be the bounds of S. 

(i) Since #<B and or —^<—6, 

therefore aj—y<B-6 (i) 
where a?—y is any member of the aggregate St. 

Let € be any given positive number. 

There exist two members x and y of Sx such that 

a»B-|€, or 

whence we see that there exists a member y of Sx such that 

x—y*B~&— €. (ft) 



THEORY OF AGGREGATES 31 

Thus the oscillation B—b is the upper bound of the aggregate of numbers 

(ii) It is now obvious. 
/ 

/ 21. Limiting point of an aggregate. Def. A number £ is said 
Ho be a limiting point of an aggregate, if every interval (£—€, £+€'), 
which encloses contains an infinite number of members of the 
aggregate ; €, €' are any positive numbers. 

The limiting points of a set may or may not themselves be 
members of the set. 

Obviously, a finite aggregate cannot have a limiting point; it is 
only infinite aggregates which may have one, more or even an 
infinite number of limiting points. Of course, even some infinite 
aggregates may have no limiting point. 

The examples below illustrate the various possibilities. 

Ex. Every real number is a limiting point of the aggregate of rational 
numbers. (Refer $?5*4<) 

Rational limiting points are members of the aggregate but irrational limiting 
points are not. 

Ex. Every real number is a limiting point of the aggregate of irrational 
numbers. (Refer §10) 

Ex. The aggregate of integers, even though infinite, has no limiting point. 

Ex, The aggregate of numbers 

has only one limiting point, viz,; 0, and it does not belong to the aggregate. 

Ex* The aggregate 

1 + 1, -l-b 1 + i, -1-1, 1 + 1, -1-1,. 
has two limiting points, viz. ; 1 and — I. 

Ex* The aggregate of numbers 

.L+i+>. 
m n p 

where m, n, p take up all integral values is the aggregate of numbers 

and the number 0. 

Ex. Limiting point of any sub-aggregate of an aggregate S is also a 
limiting point of S. 

Ex. S^S, are two aggregates and an aggregate S consists of the members 
of Sx and S2; show that a limiting point of S must be a limiting point of either 
St or of Sa and conversely. 

Ex. Show that the upper bound of an aggregate S which does not have a 
maximum is a limiting point of S; state and prove a similar result for lower 
bounds. 

r 21*1. Weirstrass’s theorem on the existence of limiting 
j>oints. 

Every infinite bounded aggregate has atleast one limiting point. 
Let S be any infinite bounded aggregate. 

Since S is bounded, there exist real numbers k, K such that 
every member of S belongs to the interval (fe, K). 
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Divide all the numbers into two classes L, R, putting a number 
in L if it exceeds only a finite number of members of S and other¬ 
wise in R. 

Clearly each number has a class. Also k belongs to L and, the 
aggregate being infinite, K belongs to R and therefore each class 
exists. Finally, any number which is less than a member of L can 
exceed only a finite number of members of S and accordingly it 
must belong to L. Thus the two classes L, R determine a section 
of real numbers. There exists, therefore, a number g separating the 
two classes. It will now be shown that g is a limiting point of S. 

Consider any interval (g—•€, g+e') which encloses g. Now, g—€ 
which belongs to L can exceed only a finite number of members of 
S, andg+*\ which belongs to R, must exceed an infinite number of 
members of S and accordingly there must belong an infinite number 
of members of S to the interval (g —€, g+€'). 

Hence g is a limiting point of S. 

Ex- A number c is the only limiting point of a bounded aj gregate S; I is 
any interval which encloses c ; show that there can exist, at the most, a finite 
number of members of S not belonging to I. Construct an example to show 
that the result may not necessarily be true if S is not bounded. 

/22. Derived Aggregates. The aggregate consisting of the 
limiting points, if any, of another aggregate is called the first 
derivative or simply the derivative of S and is denoted by S'. The 
derivative of S' is called the second derivative of S and is denoted 
by S". Proceeding thus we may have a number of sets 

S, S', S", .S<*>, 

which are the successive derivative of S. 

If the nth derivative S(n> contain only a finite number of 
members then it has no limiting points and this chain of successive 
derivatives ceases at S(n>. In such a case when an aggregate possesses 
only a finite number of derivatives, we say that the aggregate is of first 
species and otherwise of second species. 

Ex. Show that the aggregate of numbers 1/m-H/w-f-l/p, where m, n, p 
take up all integral values is of first species. 

Ex. Show that the aggregate of rational numbers is of second species. 

/ 221. Theorem. The derived aggregate of a bounded aggregate 
/is bounded and attains its bounds. 

Let S be any bounded aggregate and let its every member 
belong to an interval (k, K), 

Clearly, no limiting point of S, no member* of the deri¬ 
vative S'can be less than k or greater than K, and accordingly S' is 
bounded. Let g, G be the bounds of S'. It will now be shown that 
g, G are themselves members of S', i.e.9 limiting points of S. 

Let (G—€, G+€') be any interval enclosing G. 

Since G is the upper bound of S', therefore there must exist a 
member £ of S' such that 

G—€<|<G. 
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The interval (G —€, G-f €'), which encloses the limiting point £ of 
S, must contain an infinite number of members of S and accordingly 
G must be a limiting point of S. 

It may similarly be shown that g is a limiting point of S. 
Note* The theorem may also be stated thus : The derived aggregate of a 

bounded aggregate is bounded and possesses greatest and least members. 
G, g are the greatest and least limiting points of S. 

y 23. Def. Upper and lower limits. The greatest limiting 
point G is called the upper limit and the lowest limiting point g the 
lower limit. 

23*1. Two characteristic properties of the upper limit G. 

If € be any positive number, however small, then 

f (i) an infinite number of members of the aggregate are greater 
than G — €; 

(ii) a finite number, at the most, of members of the aggregate 
are greater than G+€. 

23*2. Two characteristic properties of the lower limit g. 

If € be any positive number, however small, then 

(i) an infinite number of members of the aggregate are smaller 
than g+€ ; 

(ii) a finite number, at the most, of members of the aggregate 
are smaller than g—€. 

These properties are easily deducible from the fact that G and 
g are the greatest and least limiting points. 

Note 1* It is important to remember that for a bounded aggregate S, 
Kg<G<B, 

as may be easily seen. 

2. Throughout this book, the maximum, the upper bound and the upper 
limit of an aggregate will be denoted by M, B, G, respectively similarly the 
minimum, the lower bound and the lower limit will be denoted by m, b, g 
respectively. 

24* Theorem. For a bounded aggregate, 

(i) M, B, G cannot all be different numbers ; 

also («) ro, b, g cannot all be different numbers. 

(i) Let S be any bounded aggregate. 

In case S has a maximum, i.e., if M exists, then 
M=B. 

Now, let M not exist so that B is not a members of S. In this 
case, as will be shown, 

G=B. 

Consider any interval (B—€, B-f«) enclosing B. 
No member of S is greater than B. 

If possible, let only a finite number of members of S lie between 
B—•€ and B so that there will be a greatest of them, say, X* 

Since X^&B, we see that no member of S is greater than X 
which is less than the upper bound B and this is impossible. (§20*1) 
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Thus there belong an infinite number of members of S to 
(B—€, B) and consequently to (B —€, B+€) and accordingly B is a 
limiting point. 

Thus B<G. 

If possible, let B < G. 

Since B is the upper bound, no member of S is greater than B 
and accordingly G cannot be a limiting point. This is a contradiction. 

Thus B=G. 

It may similarly be shown that tn, b, g cannot ail be different. 

EXAMPLES 

1. Construct bounded aggregates for which 

(i) (ii) bcg<G —B. 

(Hi) b<g — G<B. (iv) b<g=G~B. 

(v) b—g<G<B. (vi) b—gcG — B. 
(vii) b=g—G<B. {viii) b~g = G=B. 

The following aggregates exhibit the above possibilities :— 

(i) 14*1 In, —1 — 1 /n. (ii) — 1 —1/w, 1 (n. 
(in) -2, 2, -1 /», 1 In (iv) -2, -1 /«. 

(u) -l + l/», 1 + 1/n. (vi) -1 | l/«, l-l/n. 

(vii) 2, -1-f 1 (n. 

(viii) This case is not possible. 

Here n takes up different positive integral values. 

The student may construct other aggregates exhibiting the various 
possibilities.] 

2 Construct an aggregate whereof no element lies between its upper and 
lower limits. 

3. Examine the existence and the values of M, B, G; tn, b, g for the 
following aggregates :— 

(i) 3, 2, (2n"1 + l)/2w, (2* —1)/2W. 

(ii) 8, 3, 3, 4, 2J, 4J, 2^, 4|, 4|, 2^j, 4^,. 

(Hi) •$, — §> f, — f* — I* f* if*. 

(iv) 0, 1, j, I, f, J, I* I* I* e9 h ?* f* ?>*•**•• 

(p) 

(m) a—n<“1)n, 
n takes up all positive integral values. 



CHAPTER III 

^5. 
SEQUENCES 

Sequences. Any set of numbers 

such that to each positive integer n there corresponds a number ««, 
is called a sequence. 

The notation {an> is adopted to denote the sequence whose nth 
member is a». The integer n is known as the suffix of an. 

Thus a sequence is an aggregate whose members are arranged so 
as to correspond to the set of positive integers. 

E. G. The sets of numbers 

(i) h b h.. 1 /»,.. 
(ii) -1, 2, -3, 4,.. (-1 )wn,., 

(m) -1, It -1, 1,.. (-1)”,. 

(m) 1, 2, 3, 5, 7, , ..., .. 
where an denotes the nth prime, 

(V) 2, §, y, g, g, f, |,.. 
where a„=(l + l/n) or ( —1 —1/n) according as n is even or odd, 

(^0 ..•••> a*>.. ^ 

where an— H—~~rt+.+ —r~ V 
\n+l n + 2 1 n+nj 
are all sequences. / 

26. The upper and lower limits of a bounded sequence. 

The upper limit G of a bounded sequence {a*} has the following 
two characteristic properties : — (Refer §231) 

U € be any positive number however small, then 

(i) G—€<an for an infinite number of values of n ; 

(ii) there exists a positive integer m such that an <G+€, for every 
positive integral value of n^m. 

Here m is any integer greater than the suffix of every member 
of the sequence (which are finite in number) >G+€. 

The lower limit g of a bounded sequence (an) possesses the 
following two characteristic properties :—(Refer §23*2). 

//€ be any positive number, however small9 then 

(i) an <g+€ for an infinite number of valuee of n; 

(ii) there exists a positive integer m such that g—*<an, for every 
positive integral value of n^m. 

Here m is any integer greater than the suffix of every member 
of the sequence (which are finite in number) <g—€. 
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The above results follow from §28, or directly from the fact that 
G, g are the greatest and the least limiting points respectively of 
the bounded sequence {an>; their existence having already been 
established in §22. 

Note. If an infinite number of members of a sequence are all equal to the 
same number, say, k i.e.; if an~k for an infinite number of values of », then the 

number k will be considered as a limiting point of { an } . With this under¬ 

standing it will be seen that every bounded sequence will have atleast one 
limiting point. 

Ex. Find Mt m; B, b; G, g, whichever may exist, for the following 
equences : 

(0 Qn~( (it) on = l + (Hi) crn=(-l)w(14-l/»). i(n + l)/», when 
(n+2)l2n> when n~ 3m+1; 
l/(n*4-l , when n"3m-j~2, 

m being a positive integer. 

(v) art=(4w-f~l)/4n or (1 — 4n)/4n according as n is even or odd. 

(w) “»=[«+( —l)”]/n. 

Ex. Construct a sequence with +2 for its bounds and ;£l for its upper 
and lower limits such that no member lies between Htl. 

J? 27. Convergent sequences. Def. A bounded sequence {an} is 
Vsaid to be convergent if it has only one limiting point and this unique 

limiting point is called the limit of the sequence. 

Jf / be the limit of a convergent sequence (an}> then we say that 
{a»> converges to the limit l and symbolically write 

It an—l, or an-*l as w—>oo. 

«~>oo 

It will be seen that a bounded sequence {an> is convergent if 
and only if its upper and lower limits are equal. 

An important note. It will be well to emphasize that the 

symbolic statement U a=J is e<luiva,ent to the following two 
J n-»oo 

assertions :— 

(i) The sequence {an} is convergent. 

(it) The limit of the convergent sequence {««} is L 

271. Theorem. The necessary and sufficient condition for a 
sequence {a*} to converge to a limit l is that to every positive num¬ 
ber c, however small, there corresponds a positive integer m such that 

| c»—l | <€, when n^m. 
Remarks. Before proceeding to prove this theorem, we observe that the 

condition implies that if I be any interval [/—€, J-f €] enclosing l, then a finite 
number of members of the sequence, at the most, can be outside I, {,e., all the 
members excepting, at the most, a finite number of them belong to I. Here m 
denotes any integer greater than the suffix of every member which does not 
belong to I. 

The condition is necessary. Let the sequence {a,} converge 
to a limit / so that it is bounded and l is its only limiting point. 
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Let € be any positive number, however small. There lie, at the 
most, a finite number of members of {an> outside [Z—€, Z+c], for, 
if they were infinite, then the sequence, which is bounded, will have 
at least one more limiting point which is different from L. 

Let m be any positive integer greater than the suffix of every\ 
member which lies outside [Z—€, Z + €]. Then we have \ J 

Z~€<a»<Z+e, i.e., | a» — Z \ <€, when n>m. ' 

The condition is sufficient. It will firstly be shown that under 
this condition the sequence is bounded. 

Consider any interval, say, [l~ 1, Z+l], which encloses Z. There 
exists a positive integer p such that every member of the sequence 
excepting at the most av a2.ap_x belong to this interval. If k 
be the least and K be the greatest member of the finite set of 
numbers 

Op-i> Z 1, Z + l, 
we see that 

for every value of w, 
so that (on> is bounded. 

Clearly Z is a limiting point of {an} and we have now to show 
that this is the only limiting point. 

If possible, let Z'+:Z, be anyother limiting point. 

We enclose Z in an interval I so small that V does not belong 
to it. According to the given condition, a finite number of members, 
at the most, can lie outside I so that V cannot be a limiting point. 

Thus the condition is sufficient also. 

Note. It should be carefully noted that a convergent sequence 
is necessarily bounded. 

28. Noil-convergent bounded sequences. A bounded sequence 
{an) which does not converge is said to oscillate finitely. 

29. Unbounded sequences. In the case of sequences, which 
are not bounded, we distinguish the following three behaviours. 

29’L Divergence to oo. If to every positive number A* 
however large, there corresponds a positive integer m such that 

a»> when 
then we say that {#«} is divergent and that it tends (or diverges) 
to oo as n tends to infinity and, in symbols, write 

an~>oo as n-+oo. 

292. If to every positive number A, however large, there 
corresponds a positive integer m such that 

an<—A, when n!>m, 

then we say that {an> is divergent and that it tends (or diverges) 
to — oo as n tends to infinity and, in symbols, write 

oo as n-*oo. 

29*3. If an unbounded sequence does not diverge, i.e., when it 
neither tends to oo nor —oo, then we say that it oscillates infinitely. 
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Ex* Show that a divergent sequence cannot have a Mmil 

Ex- {<*,*} an(* {bn} are two sequences; {a£Jp6: 

fcw>«n f°T every n ; show that bn also diverges to infinity 

Ex- The sequence { an } is divergent and the sequem 

gent; show that the sequence { an f bn } is also divergent, 

7^ V 
Ex- Show that a sequence obtained on re-arranging the metetfers of 

another convergent sequence is also convergent and that the limits are the same. 

(A sequence { bn } is said to be obtained on re-arranging the members of 

the sequence { an } , if every member of either sequence is some member of the 

other. 

The result follows from the fact that the aggregates consisting of the 
members of such sequences are identical.] 

Ex • PrOVe that lf O % +.+ n*)=2- 

Ex- Show that the sequence { an } , where does not converge. 

Ex Determine the least value of tn for which it is true that 
| ni+n+l _ i 

3 1 I Sn»-fl 
€ being any positive number. 

|n24-n + l 1 

< €, when 

Now, 
8na-fl 

i 3n-f2 3fi + tt 0 
rw+r--«?-•,fn>- 

4 
— _ < €, if n> 4/9€. 

vn 
The integer just greater than 2 and 4/9€ is the required value of m. 

For example m — 5 if € — , w — 45, if € ■=* 

It shows that It [(»•+» *1- l)/(3n2 + l)] = l/3. 

Ex. Show, with the help of §27*1, that 

..... n ... . n2 + 2 ...... 4»3-fOn — 7 
(t) It '3=1. («) It , 0. (tn) It .-~r~i-—4* 
x ' n -f I n3--1 ' ’ n*+2w*-f 1 

Ex* Show, with the help of §29, that 

(*) It (n8 —2n)~oo. (ii) It [(n*-f l)/(n-rl)J-=oe. 

tftfl lt[n + (~l)w]*oo. (iv) It [(2-w2)/(n+l)]-:~-oo. 

{v) {«( —l)n} oscillates infinitely. 

30. Instrinsic tests of convergence. The condition, as 
obtained in §271, answers the question “Is any given number l the 
limit of a sequence <an}, or is it not.” If, with the help of this 
condition, it be shown that a given number l is not the limit of 
{an}, then it will not follow that the sequence does not converge; 
there being another possibility also, viz., that {an} may converge 
to a number different from L Thus this condition examines the 
question of ‘Convergence to a number V and not that of * Essential 
convergence’ which question, as will be seeh, is of more frequent 
occurrence in the theoretical parts of the subject. To this purpose 
of examining the question of essential convergence are directed two 
tests which are developed in the following two sub-sections. 
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/y^O‘1. Cauchy®’general principle of convergence. The nece¬ 
ssary and sufficient condition for the convergence of a sequence {a#} is 
that to every positive number €, however small, there corresponds a 
positive integer m such that 

j On+p — an J 
wken n^m and p has any positive integral value. 

Observation- The theorem may also be stated as follows :~ 

The necessary and sufficient condition for the convergence of { an } is that 

to every positive number €, however small, there corresponds a member am of 

the sequence such that the absolute value of the difference between any tltfo 
members (not necessary consecutive) which come after am in the succession 

°i> am }-l. » 

is less than €l 

2'he condition is necessary. Let the sequence converge and let its 
limit be l. If € be any positive number, then there exists a positive 
integer m such that 

| an—l | < when n>w ; 

from this wc deduce that 

| an+p—l | < $€, when andp^O. 
• • | a<n-{-p an } ==: I an+p l~\~l Qn | 

< I an+p-l I + I l~ an I 
€ + $€ = € 

i.ej aw+;i— aH j <€, when n^m and p^O. 

The condition is sufficient. It will firstly be shown that under 
this condition, the sequence is bounded. 

We give any particular value to €, say, 1. There exists, there¬ 
fore, a positive integer r such that 

| an+p~~a,, | <e, when n>r and/);>0, 

From this, taking n=r, see that 
| ar+p—ar | c*, when 0 

i.e„ af—€<ar+p<ar+€, w hen 
This means that all the members of the sequence {an}, except, 

perhaps, the finite set of numbers 
^2* #8* • •• V 

lie between two fixed numbers af—€ and ar + €. 
If h be the least and K the greatest of the finite set of numbers 

ai, ..• *..Uf—j, flf — €, 
we see that 

K, for every value of n, 
and accordingly {an} is bounded. 

The sequence {an\ has, therefore, at least one limiting point, 
say, L If possible, let there be another limiting point l\ 

Let € be any positive number, however small. There exists a 
positive integer m such that 

| an+p~~a» | <|€ when n^m and p>0. (1) 
Also, since I, V are the limiting points, there exist positive integers 
mif mt which are both such that 

j flWi-z j <\t, | a^-r | <}«. (2) 
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From (I), we have, in particular 

I amt-ami | <$«. (8) 

From (2) and (3), we obtain 

| V — l | = [ l ^ | 

^ | V—am^ | + | am^ amj | -j- | ami ^ I 

<j€ + i€ + |€=€ 
i.e.t f i'—/ | <€. 
** Thus a non-negative number | I'—Z J is less than every positive 
number € and accordingly it must be 0 so that Z'=Z. 

Thus we prove that {an} is convergent. 
[Alternatively, the sufficiency may also be seen in another way as 

follows:— 

Let Z'>Z and let Z=3€. The numbers l-j-€ and l-f- €_V— € 
/— C lie between l and V and Z-f € <!'— €. 7 Z' 

There exists a member am such that every two members of the sequence 

which appear after am differ from each other by a number which is less than €. 

Since Z, V are the limiting points, there exist members which appear after am 

and lie in the intervals (Z~€, Z+O and (Z'— €, /'+€) and such members, 
obviously, differ from each other by a number greater than €. This is a 
contradiction]. 

^4J0.2. Monotonic Sequences and their convergence. 

A sequence {an} is said to be monotonically increasing 
if «n+i>«n» for every value of n ; 
it is said to be monotonically decreasing 
if for every value of n. 

A sequence which is monotonically increasing or decreasing is 
known as a monotonic sequence. 

E, G. The sequence { an } , where 

(i) on=l/n, is monotonically decreasing, (f) an= — 1/n, is monotonically 

decreasing, (in) an~( — l)njnf is not monotonic. 

'y/<30‘21. Theorem. The necessary and sufficient condition for 
the convergence of a monotonic sequence is that it is bounded. 

The condition is necessary. This is obvious as a convergent 
sequence is necessarily bounded. 

The condition is sufficient. Let a monotonic sequence {an} be 
bounded. 

Firstly let it be monotonically increasing and let B be its 
upper bound. It will be shown that B is the limit. 

Let € be any positive number, however small. 

There exists a member say, am> of the sequence such that 
B—€<om.(§20,l) (1) 

Also, since an is monotonically increasing, 
am^anf when n>m. (2) 
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From (1) and (2), 
B—t<ani when n>m. (3) 

Also, since an<B, therefore an<B + €, for every value of n, and* 
in particular 

<2W<B+«, when n^ra. (4) 

From (3) and (4), 
B —€<tf«<B+€, when n^m, 

so that the sequence {an} converges, its limit being the upper bound 
B. 

It may similarly be shown that a bounded monotonically 
decreasing sequence is also convergent ; the limit, in this case, 
being the lower bound. 

Cor. If K be a rough upper bound of a monotonically increas¬ 
ing sequence {anb then 

It 0„<K ; 
if & be a rough lower bound of a monotonically decreasing sequence, 
{&„}, then 

It &*>&. 
Ex. Show that a monotonic sequence which is not bounded diverges to oo or 

oo according as it is increasing or decreasing. 

Let { an } be a monotonically increasing sequence which is not bounded. 

Let A be any positive number, however large. 

Since {an} is not bounded, there exists a member am of the sequence 

such that 

<1> 

As { a } is monotonically increasing, 
n 

an>am< when n>m■ (2) 

From (1) and (2), we deduce that 
ow> A, when 

so that { an } diverges to oo. 

The second part may be similarly proved. 

Ex. { an } and { bn } are two convergent sequences ; deduce from §30.1 that 

{an-\-bn} is also convergent. 

Let € be any positive number. 

Since { an } and { bn } are convergent, there exist positive integers ml9 

such that 
I I ^i€* when n>m1 andp>0; (*) 

I t>n+p~bn | <J€* when and p>0. («) 

Let m — Max(mv ma). From (t) and («), we deduce that for every n>m 
and p> 0,_ 

I ^n-fp+^n-fp^tt+^n 1 ^ I an-\-p~an I + I bn-^p—bn | ^£€-fJ€=f. 

Hence { «w4 6n } is convergent. 

Ex. If {an } and { bn } are convergent, then prove that { an.bn } is 

also convergent. 

Ex. Show, with the help of §30*1, that the sequence { an } , where 

“«==1+4+¥4"+F 
not convergent. 
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Suppose that { an } is convergent. Taking € —}, we see that there exists a 

positive integer m such that when n>m and p>0, 

1 
un+p~ -f JL + ...+ 

ln-fl fH-2 n+p\ 
1 

< 4 ‘ 
In particular, taking n=*m, we see that for every value of pt we must have 

m-f-1 m-f-2 ”4* 
Taking p=m we see that 

1 -f —1 j. -f —1 ^ _ I 
m-j:l m-j-2 * m+p 

«o that we arrive at a contradiction. 

Ex. 5/rozt> that the sequence { an } , where 

is convergent. 

We have, 

_i, i , 
°n n+i n+2 

...+JL 
n-f-n 

1,1 
an+l «+2 n+3+ 2n-f*2 

„ _ 1 ^ 1 1 
« + l n 2n-f~l 2n+2 n-f l #p i * -f-l)(2n-f-2) * 

so that { an } is monotonicaily increasing. 

Wchave „ =-i_+-l_f... + -A_ 
" n-f-1 w-f2 n-f-n 

< JL-f ...4-n_—i_1 ^ 
n -f-1 w-f 1 n 4* 1 »+l n-j-l 

Thus the monotonicaily increasing sequence { a } is bounded and accord¬ 
ingly it is convergent. n 

Ex. Show that the sequence { an } , where 

k+T± + 7*-+'"+fn’ 
is convergent and that 

2<ltan<3. 

Clearly { an } is monotonicaily increasing. 

Also a„<l + l + ~ + !^+ ... + -i-1 = 1 + 2U-(i)w] 

—a~(4)w““1<3, for all n, 

so that an is bounded above. 

Hence the result. The second part is obvious. 

Ex. Show that the sequence xn is convergent if and only if — 1 <#<. 1 „ 

(i) Let x>l. We write x—l+h so that h is positive. 

By mathematical induction it may easily be shown that 

Let A be any positive number, however large. We have 

l+n*>A, if n>(A-l)/ft. 

Taking m as any positive integer >( A — 1 )/4, we see that 

®n> A for n>m, so that It crn~oo, 

(«) Let a?=l. Clearly, in this case, It £*=>1. 

(Hi) Let Q<%< 1. We write £= 1/(1 -f h, so that h is positive. 
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We have 0<xn=ll(l + h)n<ll{l+nh). 

Let f be any positive number, however small. We have 

ll(l+nh)<*,itn±(ll€~l)(h. 

Taking m as any integer ^ (1 /C — D/b, we see that 

0< Tn<«or | xn | <€, forn>m, 

so that lta?w — 0. 

(iv) Let “0. Clearly, It a?w=0. 
(v) Let — 1 <#<0. We write #■= —a so that 0<a<l. 

We have | a?n | = aw. 

It now follows from (Hi) that It a?n=0. 

(vi) Let x« — i. Obviously #n oscillates finitely. 

(m«) Let x< — 1. We write a:— — a so that a > 1. 

Now n-*oo and, therefore, takes values, both positive and negative 

greater than any assigned number. Hence xn oscillates infinitely. 

Ex* Show that x n monotonically decreases if 0<#< 1 and monotonically 
increases if a?>l, and hence deduce the result of the previous example. 

31. Some fundamental theorems on limits. If {an>, {bn) 
be two sequences such that, when n-*oo, 

It an=A, It bn=B, 
then 

(1) + i 

(2) lt{a%—bn}—A B; 

(8) Itian bn) =AB; 

(4) lt{an/bn> ~A/B, if B=£0. 

(1), (2). Let c be any positive number. 

There exist positive integers mv such that 

| an~~A J < j€, when n^mv 
I bn—B | < $€, when 

Let m=Max (mx, ma). Then we see that for every n^tn, 

| On—A | < j bn — B | <§€. 
Thus for every 

I flw+^w~"A+B | ^ | an—A j + | bn-~B j 
and | an—bn~A—B | < j aw—A j + | B—j <i€+i€=€, 
which show that 

>(A-f*B) and {an &*}—►(A B). 

(8). We have, for every value of n, 
I aA-AB I = [ a,A-B)+B(o„-A) I 

< I «. I I b,~B | + I B | | a„—A | . 
Since {a*} is convergent, there exists a number K such that 

| an | <K, for every value of n. 

Thus | aA-AB | <K | bn-B | +{ | B | +1) | A | , for 
every n. 
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Let € be any positive number. There exist positive integers 
mv w2 such that 

I bn—B I <€/2K, for n>mj (ii) 

and | an —A | <€/2{ j B | +1}, for n>m2 (Hi) 

Let w?=Max. (mv m2). 

From (i), (it) and (iii), we deduce that for every 

| anbn— AB | <€, 

so that {anbn}~*AB. 

Note. If in »). we had not introduced | B | 4-1 in place of | B | , then in 
(Hi), we would have to render | —A ! <€/2 | B | , which will fail if B~0and 

thus the proof, as given, will hold only if Bj^O, It is to include this case that 
w'e had introduced this aitifice, for | B J 4-1 cannever be 0. 

(4) We have, for every value of n, 

| a„ _ A | iB(a„—A)-A(fc«—B)| 
Ik B"i“r Bi„ ■ i 

-- I B I I an~A | + | A I I bn—B \ ^ yg J j 6b ( " . l*"> 

Since {6W)~>B^0, there exists a positive integer mx such that 
when n'^mu 

| bn B | <i | B | , 
or j B | — |M <|6b-B| <\ |B| 

i-e., I I B | < | 6, | . 

From (iv) and (v), we see that for every n'J?mr, 
(v) 

“n 
B 

<- 
B «»»—A ! + | A | | bn- 

4 I B I* 
■B I 

I B 
I A 

< rgi I 'A I +*i4Sr-.1 I 6»-B I • (*> B 

Let € be any positive number, however small. There exist 
positive integers m2 and m3 such that 

2 C 
for every n>m„ | a„—A | <i | B | €,i.e., yg-j | o„—A | < 2-.(i>u) 

I g I 2c 

for every n>?w3, | bn~B | <|- 
TA | +r 

i.e,. 
2 I A | +1 i . 

I B I '* 1 bn 2 - (»***) 

Let to—Max. (to,, to,, to,). 

From (pi), (vii) and (viii), we deduce that for every n^m, 

|«„_A 
! fcn B 

so that {a„/b„}-*A/B as n-^oo, 

<€, 

Note. As a particular case of the theorems proved above, we 
note that if the sequences jan}, \bn\ be convergent, then the sequ- 
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ences {an3zbn\, \an.bn\ are also convergent; further if It bn^o, then 
\an/bn\ is also convergent. 

The converse however may not be true as the following examples 
show : 

(i) Taking aM=( —l)”*1 and 6rt=(—-l)w, we see that {an+M is 
convergent but jan[ and [bn\ are not. 

(ii) For a„=( — l)n, &„ = ( — 1)", \an-/>„!, \an.bn\, \an/bn} all 
converge, but jan\ and {bn} do not. 

32. Theorem. jan}, jcn} are three sequences such that 

(i) dn^bn^cn, for every value of n ; (i) 

(it) It a„=lt cw = Z ; 

Then It &„ = /. 

Let € be any positive number. There exists a positive integer 
7n such that, for every value of n^ra, 

/—€<«„</+€, (H) 
/—€<cn <Z+€. (Hi) 

From (i)f (ii) and (Hi), we deduce that 

Z—€<6n<Z+€, for n>m. 

Hence \bn\->l. 

EXAMPLES 

1. { an } —■►0 and { bn } oscillates finitely ; show that { «n&n } -*>• 

2. ( aw } convergent and { bn } divergent; show that { an jbn } -M). 

3. If {\} is convergent and {&n} divergent, then {an+bn\ is 

divergent. 

4* If (an} then ( I an I }->!«!• 

(It follows from the inequality | | an \ — I a I I ^ 1 an _"a 1 )• 

5. If { an } and for all n, then &n-*J0* 

0. It an=*a and 6 is a number such that an<b, for all n, show that a<6. 

7. it an=ao and c is a number such that c<an, for all n ; show that c<a. 

33. An important limit. The number e. To show that the 
sequence (l + l/w)n is convergent. 

We have, by the binomial theorem, 

an=U + l/tt)w 
, , „ 1 | n(n-1 1 , , n(«-i)(n-2).X 

=1+n._ + +.+ I » • n* 

',+1+Te(1“"”“)+. 
.'•» 
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From this we easily deduce that {an) is a monotonically increas¬ 
ing sequence. From (1), 

+ -+ — H—say. (2) 

As shown in an Ex. on P. 42, 

6*<3, for all n. 

Thus {an} is convergent. 

The limit of this convergent sequence (1 -f l/w)n is denoted by e.- 

[It is interesting to note that It 6M=lt «w. From (2), 

*=lt aw<lt bn~b> say. (**) 

Again, if m is any integer >w, we deduce from (1), 

am> l + i+y (i_)... + -^(1-i-)-(1-V )• 
Keeping n fixed and letting m-»oo, we obtain from (4), 

e^bn. 

Therefore b— It bn*^e, / 

(4) 

(5) 

From (8) and (5), e—b. 

34. Infinite aeries. Its convergence and sum. If \an\ be any 
given sequence, then a symbol of the form 

oo 

S <*n, 
n=l 

i.e., ' «i+«2+o34-.+«n+ 
is called an infinite series. 

This infinite series is said to be convergent, if the sequence {£„}. 
where Sn denotes the sum 

Cf1 + Oa + fl8+...... 

is convergent, and It Sn9 in case it exists, is said to be the sum of the 
series. 

The series is said to be divergent (or oscillatory) if the sequence 
}Sn| is divergent (or oscillator^). The question of the sum of such 
a series does not arise. 

f) 
Note. If we add the first two terms of an infinite series, and thegu-add 

the sum so obtained to the third, and thus go on adding each term to th4~"sum 
of the previous terms, we see that, as there is no last term of the series, the 
process will never be completed. In the case of a finite series, this process of 
addition will be completed at some stage, however large a number of terms the 
series may consist of. Thus, in the ordinary sense, the expression “ Sum of an 
infinite series’* has no meaning. The notion of limit has, therefore, been 
employed to give a meaning to this expression. 

EXAMPLES 

1. Show that the infinite geometrical series 
oo 

2*W, 
n-0 

is convergent, if and only if | a? j < I. 



SEQUENCES 47 

2. Show that the series where an~( — t)n U not convergent. 

3. Show that the following series are convergent; also find their sum : — 

^ f.2+2.3+374+.+ n(«+T) +. 

... _1 , J__1 , 1 __ , 
'**' i.2.8 ' 2.8.4 ‘ 3.4.5 '. n(n+l)(n + '2)+. 

(Hi) 1-f 2a?-f &raH-.+nxn~~l -f., | x | < | . 

4. Show that 

v /_\\n _jfJ*___ ] 

n=0 
5. Show that 

”_»s+9n+5__ 5 (MT 
r (» + l)(2n + Sj(2»+5)(«+4) 30' ' ’ ' 

6- Show that the arithmetic series 

a 4* (a 4* d) -j- (a -j- 2d) -f-.fid) 4*. 

is always divergent, except when a, b are both zero. 

7. A series is convergent and k is a constant.; show that the series 

is also convergent. 

8. A series ~an is given ; a sequence { bn } is defined such that. 

n * m a g*ven positive integer ; 

show that the series and 2&n have the same behaviour in relation to 

convergence or otherwise. 

9. 2«n, are two convergent series, S, being their sums ; show that 

the series 2(an-f 6^) is also convergent and its sura is equal to S^-f-S*. 

10. Show that a sequence {an} is convergent if and only if the series 

k convergent. 

35. Convergence of an infinite series. 

35.1. Cauchy’s general principle of convergence of a series. 
The necessary and sufficient condition for the convergence of an infinite 
series 2«» is that to every positive number €, however small, there 
corresponds a positive integer m such that * 

| .+fln-fp | <€* 

for every n^m and every p^O. 
We write Sn=uzx+a8+.+an. 

From §30.1, the necessary and sufficient condition for the 
convergence of {S*}, i.e,9 of %an is that to every positive number €♦ 
however small, there corresponds a positive integer m such that, 
for every n>m and every 0, 

I Sn-f-p Sn | 

| "1".I 

35.2. Convergence of a positive term series. The necessary 
and sufficient condition for the convergence of a series 2anf whose 
terms an are all >0, is that there exists a positive constant K such that 

*S'p=:al+at+.*f a»<2T, 
for every w, Sn is bounded above. 
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The result follows from the fact that if every then the 
sequence jSn} is monotonically increasing and will, therefore, be 
convergent if and only if it is bounded above. (§80*2). 

Ex. Show that the series 

.+^)B+1 1 -JL+.I 
2 8 4^5 6 

is convergent. 

This is not a positive term sejies. 
It is easy to see that 

11,1 1 
n+l + + . + n + 2 1 w-f-3 n+4 

is positive and less than l/(n + l). 
Let € be any positive number. We have 

I S„+p—S„ | =L"ri—^ri»+.+ 

+ • 

n+p 

(-!)•>+» 

n-t-p 
(-l)H-i _ 

+--.< - < €, 
n+p n+1 

1 
|n+l n+2 

—i_— +. 
n+l n+2' 

if n>(l/€ —1). 

Let m be any integer greater than (l/€ — 1). Then we have 

| Sw+P—Sn | <€, for n>m and 0. 

Hence the series converges. 

Ex. Show that the series 

1 + I +~l +T+T +.+ n +. 
does not converge. 

This is a positive term series. 

Suppose that it converges. There exists a positive integer m 
such that for every n^m, and every p^0, 

,1.1. ,1 -4—— 4-. 
n+l^n+2^ 

+ n+p 
1 

4 
(Taking €==1/4) 

In particular taking n=ra and p=m, we see that 

JL+^L +. 
TO+1 ' WJ + 2 ' 

1 > m 

2 m 2m 
1_ 

2 

Thus we have 
converge. 

a contradiction. Hence the series does not 

Appendix 

36. The meaning of a*, when a>0, and x is any rational 
number. When x is a positive integer, the symbol a* denotes the 
product 

a.c.a.a.a, {x times) 
and when a? is a negative integer so that —x is a positive integer, 
we have 

a*=l/a~#. 
Thus the concepts of multiplication and division (^§11, 12) are 

all that we require in order to define a*9 when x is any integer. 
The theorem below is fundamental for giving a meaning to the 

symbol a* when x is any rational number, and a is positive. 
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36.1. Theorem. If m is a positive integer, and a, any given 
positive number, then the equation 

xm - a, (i) 
in x, has one and only one positive root. 

Divide all the real numbers into two classes L and R, putting 
(i) all the negative numbers, (ii) zero, (in) all the positive numbers 
x such that x^^a, in L and all the others in R. 

Clearly every number has a class The class R exists, for 
any number k which is greater than a as well as 1 belongs to R. 
Also if y be any positive number less than a member x of L, we 
have ym<xmk^a and accordingly y belongs to L. Thus the 
classes L, R determine a section of real numbers. Let B be the 
number which divides the two classes. 

Clearly B cannot be negative. If possible, let B=0 so that 
1/n which is >B=0, belongs to R, and accordingly 

(1 /n)m>a, (ii) 
n being any positive integer. 

If n->oo, we obtain, from (1), O^a, so that we have a contra¬ 
diction. 

Thus B is necessarily positive. 

It will be shown that 
Bm=a. 

For every positive integral value of n, B-—1/n belongs to L and 
B-fl/n to R so that we have 

(B-l/n)m<a<(B+l/n)w. (in) 
Let n-»oo. We obtain, from (Hi), 

B"<«<B™ 
so that Bw =a. 
Thus B is the positive root of xm~a, If possible, let R' be 

another positive root. From 
B'^B, 

we deduce B,m ^ Bw, 

and so B*, B'*71 cannot both be equal to the same number. 

Def. The unique positive root of the equation 
(?) xm=a, (a>0, m, any positive integer) 

is symbolically written as 
1/m 

and is called the mth root of a. 

m, 
or 

Note. If a >0, and m is even, the equation (t) possesses a negative root 
~B also ; but if m is odd, it cannot, obviously, have any negative root. 

Ifa<0, and m is even, the equation cannot, obviously, have any root, 
positive or negative, but if m is odd, it has no positive root but has a negative 

root — B, where B is the positive root of xm — — a. 

To avoid this ambiguity and indefiniteness, we will always take the base a 

positive, and the symbol a}^m will, then, always denote the positive root of (i). 

Def. If x is a rational number n/m, where m is positive, then 
by def. 

a being positive. 
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By def., a°=l. 

(The following examples are to be considered as a part of the 
text). 

Ex. 1. Prove that (*J/flr)n==^/(an). 

Ex. 2, x, y are any rational numbers and a is positive ; show that 

(i) a*.a<'=a-+«'. (ii) (a*)v=ax». 

(Reduce x, y to a common denominator). 

Ex. 3. a, b are two positive real numbers and # is a rational 
number ; show that 

Ex. 4. a?, y are two rational numbers such that x>y ; show that 
ax^av, according as a^l. 

Ex. 5. x is any positive rational number ; show that 

> > 
a*=l, according as a=l. 

< < 

Ex. 6. a, b arc positive numbers, and x is any positive rational 
number ; show that 

ax^bx according as a^b. 
Ex. 7. Show that 

lt^/a = 1, when n->oo. (a>0) 

For o=l, the result is obvious. 

Let a> 1. We write 

\/a= l+h„, 

so that hn>0. We know that 

(l+A»r>l+n*n. 

a=(l+An)*>l+*An, 

or 0<hn<(a~~l)/n. 
Let € be any positive number. There exists a positive integer 

m such that (a—l)/n<€, for n]>ra. Thus, we have 

—€<0<An< (o—l)/n<€, for n^m 

or | I | = | hn | <€, for 

Hence the result. 

If a<1, we write a=l/5 so that b> 1. 

^/a=l/^/5 and the result now follows. 

Ex. 8. Show that It a"~Vn=l. 
Ex. 9. is any sequence of rational numbers such that It xn~0, 

when n->oo ; show that 

ax*~* 1, when n-*oo. (a> 0) 

l/w 
There exists a positive integer m such that for a and 

fl—l/n botli lje between i_€ and i-fe and, in particular, allm 

and a~^lm lie between 1—€ and l+€. 
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Since It #»=0, there exists a positive integer mx such that 
n^mv 

aXn lies between a1//m and afor n^mv 

for 

Thus we see that there exists a positive integer mx such that for 

n^muaXn lies between 1—€ and 1+6. 

Hence the result. 

36.2. Powers with arbitrary real indices. To define ax, 
when, a, is any positive real number and, x, any real number. 

Let \xn\ be *any monotonically increasing sequence of rational 
numbers such that 

It xn=x. 
cc 

If a> 1, the sequence a n is monotonically increasing and 

bounded above in as much as aXn < a ^ , where k is any rational 

cc 
number greater than x. Thus the sequence \a *\ is convergent. 

CC 
If a<l, the sequence a * is monotonically decreasing and 

bounded below in as much as aX,l> 0. Thus \aXn\ is convergent. 

Let, now, \x'n\ be any convergent sequence such that 

It x\~x. 

The sequence {x'n-xn}-*0 and, therefore, the sequence 

(Ex. 9> page 50) 

Now, 
X n X n - a n=a n ~Xn Xn 

We have 

It ax'n=\t ax'n~~Xn.lt a*"=l.lt aXn=lt a*n. 

X* 
Thus we see that {a n( is convergent and its limit is the same 

as that of the convergent sequence \aXn\. 

This discussion justifies the following definition of a v:— 
If a>0% and x is any real number, then aT is defined as the limit 

of \aXn\, where \xn\ is any sequence of rational numbers with x as 
its limit. 

Of course, it has already been shown that \aXn\ is convergent 
and its limit is the same whatever be the sequence provided 
It xn—x. 

* One such sequence arises if we take a?n as any rational number such that 

x— 
1 

n 
1 

n+r 
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Note. The laws of indices, viz., 

ax.av—a*+v9 (aby=ax.bx9 (a*)y=a*y, 

may easily be shown to remain valid when x9 y are any real 
numbers and a> 0. 

For example, let {xn}9 {yn} be any two sequences such that 

It xn=x, It yn=y, 

so that It (xn+yn)=x+y, It (xnyn)=xy. 

We have aXn. a^n=aXn^^n . 

Taking limits, when n—»oo, we obtain 

a*.av=a*+v. 

37. Theorem. If x be any real number and, r, s, two rational 
numbers such that 

r<x<s9 

then ar^ax^a*, if a^l. 

Let a> 1. Let {xn\ be any sequence of rational numbers such 
that {xn}—>x. Consider any pair r', s' of rational numbers such 
that 

r<r'<x<s'<s. 

As (V, s') is an interval which encloses x9 there exists a positive 
integer m such that 

r' <xn<s', when n^m. 

ar'<aXn<a*f when n^m. (Ex. 4, Page 50). 

Let n—»oo, so that we obtain 

But we know that 
ar<ar* and a8'<a* 

ar<ax<a*. 

The case, when a< 1, may be similarly discussed. 

37.1* Cor. If xf y are two real numbers such that 

x<y, 

then ax^av9 if a^l. 

Let r be any rational number such that 

x<r<y. 

Then ar^ar^ay, according as a^l, 

or a*^av9 according as a^l. 

38* Theorem. If (an> is any convergent sequence of real 
numbers such that 

It {an}=a, 

It oan=fla. (a> 0) then 
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To each number a*, we can associate a pair of rational numbers 
rn and rn-fl/n such that 

rn<an<rn + l/n, (i) 

or 0 < an~rn < 1/n. 

It (an—rn) = 0, 

or It rn = It an = a. 

Also, It (rn-fl/n)=a. 

From (t), ar” ^aa"1//n, according as 

Taking limits, we obtain 

It aan=aa. 

39. Logarithms. 

Theorem. If a, b are any two real and positive numbers and 
a-=fcl, then there exists one and only one real number x such that 
ax—b. 

Leta>l. We divide all the real numbers into two classes L 
and R putting any number x in L if ax^b and otherwise in R. 

Clearly each number has a class ; also each class has a number, 
for a negative integer —k such that a~k < b belongs to L; and a 
positive integer m such that a~* >b belongs to R. (The existence 
of k and m follow from the fact that a~n-»0 and an—»oo, as n—»oo). 

Also from § 37*1, it follows that each member of L is less than each 
member of R. Thus L, R determine a section of real numbers. 

Let £ be the number which separates the two classes. It will 
£ 

be shown that flr=&. 

Now £ — 1/n belongs to L and £ + l/n to R, n being any positive 
integer We have 

J~1,n^b<a^ + l,n. 

Let oo, so that we obtain 

a^^b^a^, i9e„ = 

Thus £ satisfies the equation aT—b. 

If possible, let y be another root. We have 

according as *7^£, 

and, accordingly, we cannot have a =&=as. 

If a< 1, we take, a=l/n so that a> 1. The number £ is then 
obtained from a*=l /6. 

Hence the theorem. 

Def. If a and b are any real positive numbers, then the number 
x, which is uniquely determined by a*=6, is called the logarithm of b 
to the base a, and written as logjb. 

Ex. a, x9 y are any real positive numbers ; x>y; show that 
loga^^logGt/, 

according as a^l. 
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Ex. a9 x, y are any real positive numbers ; show that 
(*). loga(xy)=\ogav+\ogay. 

(W). logfl(^/.V) = loga^ —logat/. 
(in), loga(ap)—y logaa?. 

Solved Examples 

1. Show that U */n~l. 
We write an=tyn. 

Let an~l+hn, where hn> 0. 
We have n=ann = (l +hn)n 

= l+nhn + \n(n — l)hn2+.+Anw 
>±n(n — l)hn2. 

A»a<2/(n—1),_ 
or 0<An<v2/(n-l). 
The result now follows. To be rigorous, let € be any positive 

number. Now 
•J2/(71 — 1)<€, if l+2/€2. 

If m be any integer >l+2/e2, we see that, for 
—€<0<hn< V2/(n—1)<€. 

Hence An-*0. 

2. a sequence such that 
It l^n+l/^n} = 

rt’Aere | / j <2 ; sAoze> /Aa* ft fln=0. 
Since | / | < 1, we can choose a positive number e so small that 

I l | +€< 1. 

There exists a positive integer m such that for 

or —--1 < | l | say, where k< 1. 
on 

Changing w to m, m+1, m+2,..., (n—1) and multiplying, we get 

1 j?2 

I dm 
Since kn—>09 we have the required result. 

< &n -m or | an | < kn, | am | /km. 

Note. The general result obtained here enables us to prove the 
following particular but important results on limits :— 

(i) It (xnl\n)~ 0, x any number. 

(it) It (nrjaJn)=0, | a? | >1. 

(Hi) It 1*1 <1. 

3. If {&*) <* « sequence such that an>0 and It {an+1/an}=l>l9 
then It an=oo. 

We choose a positive number € such that J—€>1. 
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There exists a positive integer m such that for 
/—€<an+1/an</+€, 

Thus for 
an+l!an>l~£~k, say. (k> 1.) 

From this we deduce that 
an>Icn.(am/km). 

Since ^”->00, we have the required result. 
4. If the sequences \an(, {6n} tend ted and ?/ is a strictly 

monotonically decreasing sequence so that bn>bn+1>0, then 
if fin _if ^n_^“#n41 
ll j— — U , j 

bn bn—bn+x 
provided that the limit on the right exists, whether finite or infinite. 

Case I. Let It where l is finite. 
bn~ bn+x 

Let € be any positive number. There exists ,a positive integer 
such that 

l—€<?n—?—</+€, when n>m, 
On — l)n± l 

i.e., (i~€)(/>n-&M+i)<K~fln+i)<(^+#n-when n>w?, 
for (^w — &n4i) is positive. 

Changing n to n, n + 1, n + 2,..., (n-\-p — 1), in turn and adding 
we see that 

(l-e)(K-bn+p)< an~-an+p)<(li-€)(bn-bn+p), 
for every n^m and every p^O. 

Keep n fixed and let p-*oo. Since ati+p-+0 and 0, there¬ 
fore we obtain 

(J —*)&n<an<(f + €)&n, 
or €<(an/6n)^/+*, for every n>m. 
Hence an/bn^l as n—»oo. 

Case II. Let ft "nIl"2±i=oo. 
Un On-fi 

Let A be any positive number. There exists a positive integer 
m such that 

0n~“ 
> A> when n^m, 

6W ^n4-l 
t.e., (an —a«4-1)> A(£>»— 6»4-ih when for (i>n—6n+1) is positive. 

As in Case I, we obtain 
^n4-p ^ ^ (^n ^n4p) 

or a«!>A^nt Ai when n^m. 
Hence aw/5w—as n-*oo. 
5* If \bn\ is a strictly monotonically mcreasing sequence so that 

bn+i>bn and if &n-»oo and {a*J ant/ sequence, tten 
I* _u ®»4*1 

provided that the limit on the right exists, whether finite or infinite, 

Case I. Let 2* ?——^ =/, where l is finite. 
*>n4l— 

Let € be any positive number. There exists a positive integer 
m* such t hat 
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(l—it)(bn+1—bn)<(an+1-an)<(l+'e)(bn+1-bn), when n>m1. 

Changing n to n, n + 1, n+2, n+p—], in turn and adding, we 
see that 

(J~' i^)(bn+p bn) < (fln+p ®n) (I"f* s€)(^n+p bn). 

Dividing by bn+p and adding a„/bn+p, we obtain 

«-*«)( 1- 
Vn+p 

-J~ ^n < anJtP 

^»+P ^»+P 

for every and p>0 

We keep n fixed and let 

^n-fp 

S<<l+w(,-*s)+*2i 
(<) 

Since 
/+&, 

and 

(*-?«)(] 
<*» 
«+p 

we see that there exists a positive integer m2 such that for every 
p^m2 we have 

H«-i«<(i-W(i-L-]+)r- </-$«+*«. (») 

(m) 

n~t*p ‘ 

bn 
and + 

From z), (ii) and (Hi), we obtain 

l-t <£** </-+«. 
^n+P 

for every n^ml and p>m2, 

i.e., Z—€< fn </+€, for every n^(m1+ma). 

Hence an/bn-*l, as n—>oo, 

Case H. Let It =°o. 

Let A be any positive number, however large. 
There exists a positive integer m1 such that for every n^mv 

®n-\-1 >(&~}" l)(^n-f-l bn)* 

As in Case I, we obtain 
^n+P *> (^"f* f )(^n-fp bn) 

or U»±P 

bn+P > 
(* + l)(l- M, —. 

bn+p) bn-i-p 
+i (0 

Keeping n fixed and letting p—»=», we see that 

so that there exists a positive integer mt such that for every p^mv 

{k+l)-l<(k+l)[l~^j+^<(k+l)+l, («) 

From (i) and (ii), we obtain 

~&>k, when n'^ml and p>wt, 

i.e., ~->k, when 
bn 

Hence aw/6»-»:» as n-»oo. 
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6. If 

then 

It an=l, when n-»oo, 

n 
.+an It 

n—^oo 

(This is known as Cauchy’s first theorem on limits). 

We write an—l=bn 
so that the sequence )&n}—>0. 

We have &,+.<k+''' +*”=;l+h+*l±^+ 
n n 

so that we have to prove that (bx+b2+...+bn)/n-*0' when &n-»0. 

Let € be any positive number. There exists a positive integer 
ja Such that 

| bn | < Jc, when n>/*. 

Also since {bn\ is convergent, it is bounded and, therefore, there 
exists a number k such that 

| bn [ <ky for all n. 
We write 

hi+V+-...+& hM+1 +hlt+2+...+h„ 

n n 
^ I hi I + | h, | +...+ I | j j +...+ | h„ | 

n ^ n 
- /cm , €(n—m) ^ &M , € 
^ n + 2n < n 't'2- 

n 

We keep m fixed and see that 
At/a 

if n > 
2At/a 

€ * 

Let v be any positive integer greater than 2kv/t so 
n>v, kp/n<e 2. 

Let m=Max (/*, v). 
Thus, for every n^m, we have 

I + < ^ 
I n 

Hence the result. 

that for 

Note. This result could also be deduced from Ex. 5, Page 55, by putting 
(a, 4-aa“K "-fan) for an and n for bn. 

7. If It (aw+1~an)=:/, then It (an/n)=L 
n—> oo n—>oo 

8. The s quence {xn} tends to the limit l, finite or infinite ; (an) 
is another sequence of positive members such that the sequence 

+°n> diverges to oo ; prove that 

as n-»oo. 
al*Tfl2 • ••• +°n 

Let a?„—/=y„. Then we have to prove that 2 art/r/2ar-^0, 
r=l / r=l 

n 
when and 2af-»oo. 

r ==1 
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Let € be any positive number. There exists a positive integer 

M such that | yn | <}€ for every Also there exists a number 

k such that | yn | < A, for all n. 
We have 

n p- n 
2 GrJ/r 2 Or | yr | S Of | Vr | 

r=I <f==1 r=P+1 
n ^ n f « 
2 2 flr 2 ar 

r=l r=l r=/‘+l 
kc 

^ n ' 2 9 
2 &r 

r=l 
A4 

where c is the constant 2 ar> A4 having been fixed. 
r=l 

There exists a number v such that for n^v, 

. 2/cc . Ac 
2 ar>~——— 

r=l € n 2 ’ 
2 ar 

r=l 

If m=Max (as v), then for n^m, 

r=n 

2 *r!/r 

r=l <€. 
n 
2 

r=l 

Hence the result. 

9. // {an> {A„} converge to A and B respectively, /Am 

n 

10. If {an} be a sequence of positive terms, proce /Aa/ 
It [</fln]=I/ [an+1/a»]> 

n—»oo n—*oo 

provided that the limit on the right exists, whether finite or infinite. 

(This is known as Cauchy’s second theorem on limits). 

Case I. Let / be finite. 

Let € be any positive number. There exists a positive integer 
m* such that for every n^mv 

*-»«<“<*+K 

Changing n, n to n+1, n+2,...(n+p—1) and multiplying, we get 

(*-w <aj**<(i+w 
un 

or (an)*+p(l- Je)»+F< (aN+p)"+F< (l+\e«^(an)”+p' 



SEQUENCES 59 

Keeping n fixed, we let p-+oo. Since 

and (an)n"H>(Z-f 
we see, as in Ex. 5, Page 55, that there exists a positive integer m% 
such that 

i 

/—€<(an-fp)n+p<i+€, when n'^m1 and p^m2 
or /—€<</an</+c, when n^mj+mg). 

Hence the result. 

Case II. Let l be infinite. 

Let A be any positive number. There exists a positive integer 
mx such that for every n^mv 

an+Jan>( A + l). 
Changing n to n, (n+1), (n+2),..., (n+p—1) and multiplying, 

we get 

(an+p)"+p > (0»)n+*.(A +1 )"+*. 
The right hand expression-»( A + l), as p~»oo, keeping n fixed. 

There exists, therefore, a positive integer mt such that for every 

A==A+l-l<(an)^.(A+l)^< A + l+l=A+2. 
From above, we deduce that, for every n^mj+tn,), 

f/an> A, 
i.e , oo. 

II. If xv x2 are positive and ^n+i^aO^+^n-i)* then the 
sequences 

*^i» Xi, .j and xg, x.. 
are one a decreasing and the other an increasing sequence, and they 
have the common limit £(*r1+2a?2). 

Let xx>xz. On this account, we have 
xz<xz<xx. 

Also, since xz>xZi we have 
XZ<XA<XZ. 

In this manner, we may easily see that 
xA<xz<xz ; xi<x6<x5; x6<x7<x5 ; and so on. 

Thus x2<xx<xz< ...<xz<xz<xx. 

Thus xv a?3, «r5,...is decreasing and x2, xA, o?6,...increasing and 
being bounded, they are both convergent. 

We have xz—xz^= xt). 

xi~x2^xi~xz+xz~-xt==--l(xl--xz)+l(xl‘~-x2) 

—«s+«6—ara=(^—a!,)( — +J—J -f-j). 
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In general, we get 

- 22+ 2s—1*.terms) 

= f (a?i—^a)( 1 - ^ - 2 ) J->g- («!-**)» 
as w—>00. 

A a?#—whether n-*oo through even or through 
odd integral values. 

12 If k is positive and a, —p are the positive and negative 

roots of x2-~x—k=zOi prove that 

if wn= v (/r+Wn-i) and ux > 0, then ww-»a. 

We have 

— (*+W»-a)=Wii-i— 
so that Un^Un^n according as anc^ thus {wn> is a 
monotonic sequence ; it is increasing or a decreasing sequence 
according as u2 > or < uv 

Since x2—x—h~(x—a)(x+p), 

therefore u —ut— v ut—a)( +P). (1) 
Let u1>ai then ul2—u1—k> 0 so that 

W2=v/(W1 + &)<^1* 
Therefore jw„( is a decreasing sequence. 
Now, >ww+&, i.eww2 —w;t—A;>0. 
Therefore from (I), we deduce that un>a. 
Hence un-*a limit, say, l. Clearly 
We have 
(un~a){un+p)==(un2-un~k)-(un2---un_1-k)==un.1-un. 

In the limit, we get 
(/ —a)(/-f'^)==0, 

so that !=a, for l cannot be equal to ~-/5 which is <a. 
The case in which ux<a can be similarly considered. 

EXAMPLES. 

1. (t) {an} and {&n} are two sequences such that an<bn, for every 
value of n. If an—»a and bn-~>b, show that a<fc. 

Given an example to show that the equality is possible. 
(it) If an-*a and 6n—>b and if cn=Max (an, bn)t show that cn~»Max (a, b). 

(M.T ) 
[Max (a, b)=a or b according as a >6 or bp a.] 

2. Find the limit of 
2n—1 mn-1 

2n+l 
as n~>oo. 

Find n such that for all values greater than this, the given sum differs from 
the limit by a number less than 1/1000. 

3. If { an } is a decreasing sequence, if { bn } is an increasing sequence, 
and if { an—bn } —>0 as «—»00, prove that both the sequences tend to the same 
finite limit as n-»00. (M.T.) 

4. Prove that, when n-»00, 

(») It [ v7(nq_^)+ v'(n*+2)+'"+ v;(n>+n)]=1' 

(<»t) lt[^+7^^+ -, 2n 1= ' 
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5. Prove that the sequence 

•Z2, x/sTTsT, v/2~72T72, ■ • •. 
converges to 2. 

0. Prove that the sequence 

'/7> ’/7+vT'« ^7+ ^7+77,..., 

converges to the positive root of #a — x—7 = 0. 

7. Prove that 

n('+i + S+ +^)-°- 
(«, u i+v/»+«+...+y._, 

n 

8. Show that 

(i) It {[(n + lKn+2)...(n+n)]1/n/n> =4/e. 

(it) It {([n ) 1^n/n} =e~1. 

9- If/cp*0and { an } is a sequence such that {an+l^an)^kt then an-»00 

or — 00 according as & is positive or negative. 

10* If X, fi are two given numbers and { an } is a given sequence such that 
(i‘ | X | <1, (ii) <un+1 rXan+/J)->0, 

then show that —^/(1 + X). 

11. { «n > and { } are two infinite sequences such that 
<*) bn>0. (it) Sn = (6j-i-62-J-...-f-fen) is divergent, (tit) anlbn-*s. 

Show that 

It 
bi+b2 -f-... +&n 

12. If a sequence of intervals (an, 6n), any one of which is entirely 
contained within the preceeding one, is such that It (bn — an)=0, show that 
there is one and only one point common to all the intervals of the sequence. 

Show that the sequence of intervals 

V 2n • 1 2n ) 
satisfies the conditions of the above theorem and determine the point common 
to all of them. 

13. If a, ax are positive and an=a/(l-han_i)» then the sequence {an} 
tends to a, the positive root of the equation as* 4- x—a. 

14. If & is positive and a, — p are the positive and negative roots of 
x^x—k—0, prove that 

if Vn—\ and vl<k, then nn-^(5. 
15- If Mi, vx are given unequal numbers and 

Mn“i(Mn_i + nn_i), un = \/(«rl.inn_i)for n>2 
prove that (i) un decreases, and on increases as n increases (ii) { un } , { vn } 
are both convergent and have the same limits. 

10. If xlt yx are positive and if, for 1 

2*n+iss*n+!fm 2/t/n+i = l/*n+ l/yn» 
then show that {a?n } and {2/n } are monotonic sequences and approach a 
common limit lf where /8=a71?/1. 

17. If a?!, are positive and £n+1 = *S(xnxn ,), then the sequences 
Xu x8t xbt.; x2) x4, x6. 

are one a decreasing and the other an increasing sequence and they have the 
common limit 

18. { an } , { bn } are two bounded sequences ; prove that 

(i) finoTan -f Um bn > limT(an-f-bn). 

(ii) to an-yim 6n<lim (an + tn)‘ 

(Hi) lim ( — an)=«—lim (an). 

[Pm an and Hm an denote the upper and lower limits of the sequence { an }.] 



CHAPTER IV 

FUNCTIONS AND THEIR CONTINUITY 

Limit of a Function 

40« Variable and its domain. If a symbol, x, denotes any 
member of a given aggregate, S, of numbers, then we say that the 
aggregate S is the domain of variation of the variable x. 

If, now, to each value of the variable, x, there corresponds, 
according to any law whatsoever, a value of another symbol y, we 
say that y is a function of x defined for the aggregate, S, and symbo¬ 
lically write y~f (x). 

Also, x, is called the independent variable and, y, the dependent 
variable. 

Sometimes, for a given function, the law of correspondence itself 
suggests the domain for which it is defined. 
Illustrations. 

1. If 2/~0, when x is rational and t/=l, when x is irrational, then y is a 
function of x defined for [— oo, oo], i.e., for the whole continuum. 

2. If y=j x f then y is a function of x defined for the aggregate of positive 
integers, 

3. If «/=[»], where [x] denotes the greatest integer not greater than x, 
then y is a function of x defined for [ — 00, 00 ]. 

4. If y—1/(1+ x), then y is a function of x defined for the entire continuum 
excepting —1, since the determination of y for x— — 1 involves the meaningless 
operation of division by 0. 

(1/(1+*), when xp^ — lf 
10 , whena?= — 1, 

then the function y of x is defined for the entire continuum. 

5. I(y= 

0. A sequence is a function ; the domain of definition being the aggregate 
of positive integers. 

Ex. Compare the domains of definition of the functions (a?a—l)/(#—l) 
and 3+1. 

401. Classification of functions • 
(i) Algebraic, (it) Transcendental. 

Before defining an algebraic function, we note that a function 
of the form 

aa+axx-\-atx*-\-...+amxm, 
where a0, a,,..., am are constants and m is an integer ^0, is called 
a polynomial. 

(i) A function f (x) is called an algebraic function, if it satisfies an 
equation of the form 

PJLM1T+ 
where P0, Pv..., P„ are polynomials. 

A polynomial itself is a particular case of an algebraic function 
as we may see on taking n=l and P0*= a constant. 
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The rational function, i.e.9 a function of the form 
• • • ~\~anX* 

bQ+b1x+b^+ ...+b^x™' 
is also an algebraic function. 

(it) A function which is not algebraic is called a transcendental 
function. 

40 2. Bounded and unbounded functions. A function is 
said to be bounded if the aggregate of its values is bounded ; the 
bounds of this aggregate, in case they exist, are said to be the 
bounds of the function. 

Ex. Show that the function 
/!/*• when x^O, 

* ' ' (0, when a?=0, 
is not bounded. 

Ex. Show that the function #/(a?-f-l) is bounded in (0, ooj. Find its 
bounds and show that it attains its lower bound but not the upper bound. 

41. Limit of a function. A function f (x) is said to tend to the 
limit, Z, as x approaches, a, or, symbolically 

It /(®)=Z or f (a?)—>Z, as x-»a, (1) 
x—>a 

if to every positive number €, however small, there corresponds a 
positive number such that 

| r(x)—l | <€, when 0< | x—a | '<£, 
i.e., for all those values of x, (except possibly a), which belong 
to the interval (a—tf + S),/(zr) lies between Z—€ and Z+€. 

Note 1. In order that J(x) may tend to a limit as x-*at it is necessary, 
that/(x) should be defined in a certain interval (a — h, a-fh) except possibly 
at 

Any interval {a~h, a±h) enclosing a is said to be a neighbourhood of a. 

Note 2. The symbolic statement 

«/(*>-«. 
x-*a 

means two things s—(*) the limit of /(a?), as x-+a, exists; (ii) the limit is 
equal to /. 

Ex- Criticise the following statements : 
A function/(a?) is said to tend to the limit l as x tends to a, 

(f) iff(x) is nearly equal to l when x is nearly equal to a. 

(«) if as x approaches nearer and nearer a, then / (x) approaches nearer 
and nearer l. 

(Hi) if the difference between /(x) and l can be made as small as we like 
by taking x sufficiently near * a \ 

Ex. Show that a function/(x) cannot tend to two different limits. 

42. One sided limits. 

42‘1. Right handed limit. If to every positive number €, 
there corresponds a positive number ft, such that 

| f(x)—l | <6, when a<®^a+ft, 
we say that/(x)-*l as x-*a through values greater than a, and 

mbolically write 
It f(*)=h or/(o+0)=I. 

«->(a+0) 
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42*2' Left handed limit. If to every positive number €, 
there corresponds a positive number g* such that 

| /(®)—i I <€, when a—$^x<a, 
we say that f(cc)-*l as x~+a through values less than a, or 
symbolically 

It f(x)=l or f (a—0)=l, 
x-±(a—0) 

Note. It is easy to see that 
It f(x)=l, 

if and only if 
It f (x) = 1— It f (x). 

x—>(a+0) #-»(a —0) 
In case either or both the limits, viz.; It f (a?) and 

x-*{a + 0) 
It f (x) do not exist, or exist but are not equal, then It f(x) 

x~*{cl— 0) x->a 
does not exist. 

Ex. If */=[#], show that 
It t/~2, It t/ = l,but It y does not exist. 

a?-»(2-b0) a?-*(2~0) a?-*2 

Ex. Show that It [ \ x \ lx] does not exist. 
a?-»0 

Ex- A function /(#)—»/ as x~-and a sequence { xn } —»a, show that the 
sequence / (a?n)~ 

Ex. If f(x)—>l as a?—»a, then there exists a neighbourhood of a in which 
/ x) is bounded. 

Ex. Show that 
(t) It (&34-3a?) —4, as 

{it) It (2a?2-f 3 /(#+1) —3, as w0. 

43*1. It f(x) = Z; It f(x) = Z. 
X—>oo X—>— oo 

If, to every positive number €, there corresponds a positive 
number A such that 

\ f(x)—l | <€, when 
then we say that / as a>-»— oo, or 

It f (x)—oo. 
x~*a 

Similarly, if, to every positive number €, there corresponds a 
positive number A such that 

\f(x)—l\ <€, when — A, 
then we say that f (x)-*l, as —oo. 

43*2. Infinite limits. The definitions, as given in §41 and 
§43 1 above, may be easily modified to give precise meanings to the 
following :— 

It f(x) = z£oo9 It /(®) = ±oo, It f (a?) = dtoo. 

43 3. Finite and infinite oscillation. If a function /(a?) 
neither tends to a finite nor to an infinite limit as x-±a9 (oo or — oo), 

we say that it oscillates ; the oscillation is said to be finite or infinite 
according as/(x) is bounded or not in a certain neighbourhood of 
a, (in a certain interval [X, oo] or [—oo, X]). 
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44. Condition for the existence of finite limit. The necessary 
and sufficient condition thatf(x) may tend to a finite limit, as x tends 
to a> is that, to every positive number €, however small, there corre$~ 
ponds a positive number ft, such that 

I '>2)-/(*i) | <f. 
for every pair of values of x which satisfy the inequalities 

0< | xx —a | <ft, 0< | x2—a | <ft, 
i.e., for every pair xv x2 of values, other than a, which belong to 
the interval (a—-ft, a + ft). 

The condition is necessary. Let / (#)-»/, as »a. 

Let € be any positive number. There exists a positive number 
ft such that 

| /(x)—l | < when 0< j x—a | <ft, 
so that if xv x2 be any two numbers such that 

0< | xx-a | <ft, 0< | xt—a | <ft, 

we have 
I f (x 1) J 1 < !/(^2) ^ I <}*> 

and accordingly 
I fM-ffri) I = I /(*a)-i+i-/(«i) I 

< I /(*.)-* I + I *-/(* 1) I 
< + 5€=€. 

TAe condition is sufficient, Let 
€|»,•••••• (i) 

be any monotonically decreasing sequence of positive numbers 
which converges to 0, as n tends to infinity. 

To each positive number there corresponds a positive 
number ftn, such that 

I /(**) — /0*i) I <*n> when 0< | xx— a | <ftn, 0< | #a~a | <ftn. 
Thus we obtain another sequence 

Sv &2* ftl>.. Sni. (2) 
of positive numbers corresponding to the sequence (1). 

Obviously, we may suppose that this sequence }ftnJ is also 
monotonically decreasing. 

Writing a+ftn for and x for xv we see that 
I f(x)-f(a+En) | <€n, When 0< I x—a | <ftn. 

Thus for all values of x, other than a, which belong to the 
interval (a—ftn, #+ftn)>/(#) belongs to the interval 

[/(a + ftn)—€n,/(a + ftn) + €n]> 
which we call An and whose length is 2€n. 

Since ftn+1<ftn, we may suppose that the interval An+X is 
contained in An. 

* Thus we obtain a sequence of intervals 
A|> Aj, Aa,.«.•••, An,. (8) 

such that each member of the sequence is contained in the preceeding 
one. Also the length 2€* of An-»0 as 00. 

* As the sequences [f {a -f 5 n)~ €n]» [/ (aT 5 n) + €nL formed of the end 
points of the intervals, are monotonio and bounded, and therefore convergent 
and, since [/(a-f 5 nH-CnH/fii-f- 8n)-€n]=s2«n^O, they converge to the 
same point which will be common to all the intervals. 
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There exists, therefore, one and only one point, say, /, common 
to all the intervals of the sequence (3). 

Let c be any positive number. 

We choose n so large that 2€„ < €. We have 

f (a "hljn)-(a + 6n) + *n> 
and • /(«+£»)—€»</(#)</ (a+5«)+€n, 

when 0< | x—a | 
| f(x)—l | <2(„<e, when 0< | x—a | <£„. 

Hence / (x)—>l, as x—*a. 
Ex. State and prove the corresponding theorems for the existence of the 

right handed and left handed limits. 

Ex. Prove that the necessary and sufficient condition that /(«) may tend 
to a finite limit as a?—>oo is that to every positive number f, there corresponds 
a positive number A such that 

* I /(*j>-/(*i) i <«. 
for every pair a?lt a?, of numbers which are both greater than or equal to A. 

State and prove a similar condition for f(x) to tend a finite limit as 

45. Monotonic Functions, Let a function /(x) be defined 
in an interval (a, b) and let xv xt be any two points of this interval 
such that x1<xi. Then the function is said to be monotonically 
increasing if /(#i)<^/(#a) and monotonically decreasing if 
f(xxf (xa)* 

A function/(x) is said to be strictly monotonically increasing, if 
/(xi)> f (xi)* when 

so that the sign of equality is not admissible. 
For a strictly monotonically decreasing function /(x)9 

f (x2)<f (a^)* when <r2>rr 
The properties of monotonic functions in regard to the existence 

of limits are quite similar to those of monotonic sequences and may 
be similarly proved. 

We have the following results for monotonically increasing 
functions ;— 

(i) If/(a?)is a monotonically increasing function in (a, ©o], 
and there exists a number k such that /(#)<&, when x^at then 

It /(a?) exists and is 
X—>oo 

(it) If/(a;)is monotonically increasing in f—oo, a) and there 
exists a number A such that/(x)^k when x^a, then 

It f(x) exists and is 
X-> — oo 

(fit) If/(x) is a monotonically increasing function in the open 
interval [a, 6] and there exists a number k such that 

(ai /(a?)<* in [a, 6], then/(ft—0), f.<?., It f(x), when 0), 
exists. 

(b) f(x)>k in [a, 6], then/(a+0), i.e., It /(#)> when #-*(0+0), 
exists. 

Similar results are easily obtained for monotonically decreasing 
functions. 
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46. Fundamental theorems on limits. If fi(x), f2(x) be two 
functions such that, when x-*a, 

It fi(%)=li> It f2(x)~l2 
then 

(<) U [ /i(#) ± /2(#)] = Z* ) =fc It f2(x)=Z1zt/2- 

(«) It [fl(&)•&{%)!; S=ltfl(x).ltf2(x)=^lVli. 

(in) It [fx^/Mx^^ltf^/ltf^^lJl^ when 1^0. 

The proofs are similar to those of the corresponding results on 
sequences. §81, p. 43. 

Proof. (i) The proof is simple and is, therefore, left to the 
student. 

(ii) Let € be any positive number, however small. 

We have 

I /i(*)/.(*)-JA I = I /«(*)[/i(*)—U+W/i(«)-U I 
< i m i i M*)-h i + Mi i i /,(*)-/, i 

There exists a positive number such that 

I | <€', I MX)-/, I <*' 
when 0< | x—a | 

where e' is any given positive number. 

Since | ft(x) | - Mi I < I /,(«)-*, | <«', 

I /.(*) I < Ma I +«'. 
Therefore when 0< | x—a | <£, we have 

I /i(«)/^)-Vt 1 <( I ** I + *>' + I It I €'-[ | lZ I + I h I +«']€'. 
Choosing c' any positive number less than 

1 and <€/[/2 | Z2+ I lx | +1], 

where € is the given positive number, we see that 

I f\(x)fi(x)~hl2 I <*> when °< I x~a I <fr- 

Hence the result. 

(ii) Let € be any positive number. 

We have 

Ji(x) [i_ I tj(fi(x)mm~ti) ^i( fi(x) lj) 
f%(x) l2 I ttf2(x) 

<JA1 I iM=k 1 + 1^1 1 ft^tzk I m 
^ Mi i i •w 

There exists a positive number fit, such that 

I I < i Mi I * when 0< | x—a | <g'1, for lj=£0. 

<*• Mil — I /a(®) I ^ I f*(x) h I <\ M* I » 
or | ft(x) | >J Mai. when 0< [ x—a | (if) 
There exists a positive number £"3 such that 

I/i(®)~A I <* - I f»(w)—h I <6,» when 0< |«—o| '<6‘i (Hi) 
where c' is any given positive number. 

If £=*min (Jlt fit), we deduce from (»), (ii), (iii), that when 
0< j x—a | 
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Choosing (' any positive number less than 

« K I */2[ M* I + Mi | ], 
where € is the given positive number, we see that 

/aO) 
A 
4 

<€, when 0< | x—a | 

Hence the result. 

Ex. /(#)—>1 as x—>a and k is a constant, show that 

Itkf (x)*=kl, as x—>a. 

Ex. If the functions fx{x), f2(x),., fn{oc) approach finite 
limits, when x approaches a, and kv k2i kz... kn are constants 
then 

(*) It (k1f1-\-k2f2-\-.*.-\-knfn)=k1 It fx“f-k2 lt/2+...+&n It jn> 
n n 

(ii) It v fr(x) = v ltfr(x). 
r=l r=l 

Ex, If It /(#)=0, show, by giving examples, that l/f(x) may 
x->a 

tend to +oo, ~oo or may oscillate infinitely. 

Ex. If It f(x)=0 and f(x) is positive for values of x in a 
lv~>a 

certain neighbourhood of a, show that 1//(a?)~»oo as «r-»a . 

Ex* /(#), 0(«O* 'l'(z) are three functions such that for all values 
of x, (excepting a), which lie in a certain neighbourhood of a, 

and It/(a?)=lt \J/ (#)=/, as ; 

show that <p[x)-*a as #-»a. 

Ex. /(#)-»/ as ; show that I / (#) | | M > hut the 
converse is not necessarily true except when /=0. 

Ex. Show that 

e=lt (l + l/o:)x= It (1+1 /«)*= It (l+z)1/z’ 
tT—> — oo 2—>0 

(i) Let x be any real number greater than 1 and let the positive 
integer n be chosen so that 

n^x<n +1. 

>1- 
n + I 

or (^r>Air>K-w 
Let a?—>oo ; then n also-»oo. We have 

“ (i+in=it 

u(.+^r-u(.+„-irir/'t(>+--Tl)=^ 



FUNCTIONS AND THEIR CONTINUITY 69 

Hence It (l+I/x)*=e. 

(ii) Let x——y so that f-°° as x—*—oo. We have 

(■+i)H-7r=Kir-Kii) 
V-J'+ h—■ 
(Hi) Putting z=l/x so that s-»(0+0) or (0 — 0) according as 

x—»+oo or —co, we obtain this result. 

47. Continuous Functions. 

Let /(x) be defined in an interval (a, b). 

Continuity at an interior point. The junctionf (a*) is said to be 
continuous at any interior point c, a<c<b, if 

lt,f (x)=f(c), when x-*c. 

Leif It f(x) exists and is equal to /(c). 

Continuity at an end point, f (#) is said to be continuous at the 
left-end a, if 

It f (x)=f (a), when a?~»(a+0) 

and is said to be continuous at the right end b; if 

It f (#)=/(/), when x-+(b—0). 

Continuity in an interval. / (x) is said to be continuous in an 
interval (a, b), if it is continuous at every point of the interval. 

In case/(#) is continuous at every interior point but not at the 
end points a, b, we say that it is continuous in the open interval 
[a, 6]. 

Criticise the following statements :— 

1. “A function f(x) is said to be a continuous function of x between the 
limits a and b, when, to each value of x between these limits, there corresponds 
a finite value of the function and when an infinitely small change in the value 
of x produces only an infinitely small change in the function.’* 

2. “ The continuous function of a variable is a quantity that changes 
gradually and passes through every intermediate value from an initial to a final 
value as the variable that enters it passes through every intermediate value 
from its initial to its final value.” (See Cor. to fc50*l). 

3* “/(a) is continuous between x—a and x~b, when the locus of t/ = / (x) 
between the points [a,/(a)] and [&,/(&)] is an unbroken line, straight or curved.” 

Ex- Formally prove that the functions 

(t) k, a constant; (ii) x, 

are continuous for every value of x. 

48. Classification of discontinuities. Let c be any point of 
the interval of definition (a, b) off (x). For continuity at c, it is 
necessary and sufficient that Itf x) should exist and be equal to /(c). 

Let, now,/(x) be discontinuous at c. 

The discontinuity at c is said to be of the First kind, if It /(#) 
exists finitely but the limit =j£/ (c), and it is said to be of the second 
kind if ltf(x) does not exist finitely, 
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Further classification of the points of discontinuity of the 
second kind. 

(i) If lt/(a?)=oo or — oo, c is said to be a point of infinite 
discontinuity. 

(ii) Iff (an) oscillates as x tends to c, then c is said to be a point 
of oscillatory discontinuity. 

Note- We may also sometimes distinguish between the two sides of c. 
Thus if It fix) exists and~/(c) but It /(a?) does not exist finitely 

x-+{c-fO) 0) 
then c is a point of continuity on the right and of discontinuity of the second 
kind on the left. 

Similarly wc may describe the nature of the discontinuity at the point c in 
the other cases. 

Ex. What is the nature of the discontinuity at 
(i) #=1 of the function [a?], (u) a?=0 of \[x. 

Ex. Obtain the points of discontinuity of the function f (t) defined in 
(0, 1) as follows 

f(ir)=0 when x—0, to x in Ocx<±, to ± when ** J, to J—a? when £<£<1 
and 1 when x—1. 

Examine also the nature of discontinuity. 

Functions defined by means of limits. 

Ex. Examine the nature of the points of discontinuity of the function 
defined as follows, n tending to oo ; 

(») It (J!n—l)/(£Cn-f l). 

(It is easy to see that 1 when \ x \ >lt 0fa?)== —l when | x | -cl, 
(P{&) *=0, when a? = l and <t>(x) is not defined when jc = —1). 

(ii) It [1/(1 4-*an)]. (Hi) It [*"/(** +1)]. 

(ii>) It [fig/vl+ »!*]. (iv) It [(zan-f ain-f-i)]. 

49. Continuity of functions which are combinations of continuous 
functions. The following theorems follow easily from the definition 
of continuity and the theorems on limits proved in §46, 

49*1. (i) The sum, the difference, the product of two functions 
which are continuous at a point, (in an interval) are continuous at 
that point, (in that interval). 

(if) The quotient of two functions which are continuous at a point 
(in an interval) is continuous at that point (in that interval) provided 
that the denominator does not vanish at the point (at any point of the 
interval). 

As an illustration, we consider the case of product. Let fi(x), 
f2(x) be continuous at a point c so that 

It /i(<r)=/,(c); It /,(*)=»'j(c). 
X-*C X-+C 

By §46, 

B f/i(*)/a(*)3= It It /s(*)=/x(c)-/*(c), 
x-+c x-*c x-*e 

which Is the value offx(x)f2(x) at c. 

Hence fi(x) f3(x) is continuous at e. 

49*2. Continuity of a function of a function. Let /(«) be a 
function defined in an interval (a, b) and f>(t) a function defined in 
(a, ft); and let every value of P(t) belong to theinterval (a, b). 
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Writing 
X=4>{t), y=f («), 

we see that y is a function of t defined in (a, /?) and which we may 
write as 

y=fW)l 
Here y is a function of a function of t. 

Theorem. If if) be a continuous function of t at a point t0 
of (a, p) and y=f (x), a continuous function of x at the corresponding 
point XQ—j>(tQ\ then t/=/[0(/)], is a continuous function of t at 10. 

Let € be any positive number. Let y0=f(x0). 

Since y=f (x) is continuous at xQ, there exists a positive number 
g^such that 

I 2/—2/o I <*> when i x~~xo I <So- (1) 
Again, since x=i> (t) is continuous at l0, there exists a positive 

number g" such that 

| x—x0 | <£0» when | t—t0 | <g\ (2) 

From (1) and (2), we see that there exists a positive number £ 
such that 

I S'—^0 I When [ t-t0 | <5'. 
Hence the result. 
Ex* 1- Show that a polynomial is continuous for every value of x. 

Ex. 2. Show that an algebraic rational function of x is continuous for 
every value of x which is not a zero of the denominator. 

Ex. 3. Show that 
/ (*)=(a?v—7*8 -f 3a: — 1 )l(x* — Sar) 

is continuous at x=2 and hence find It f (x) when a>-»2. 

50* Properties of functions which are continuous in any 
closed finite interval. 

50’1. Theorem, ///(a?) is continuous in a closed interval 
(a, b) and f (a), f(b) have opposite signs, then f{x) vanishes for atleast 
one point of the interval. 

Lemma 1. If fix) is continuous at any interior point c of 
(a, b) and f(c)^= 0, then there exists an interval (c—g\ c+g’) enclos¬ 
ing c such that for every point x of this interval /(x) has the sign 
of/(c). 

If € be any positive number, whatsoever, there exists a positive 
number g* such that 

I /(*)“/(«) R«, i.e.,f(c)-e<f(x)<f(c)+e, 
for every point, x, of the interval (c—ft, c+ft). 

Let f (c) be positive. If we take for t any positive number less 
than/(c), we see that for every point x of (c—ft, c+ft), f(x) is 
positive, lying as it does between two positive numbers /(c)—« and 
/(e)+€. 

Let f (c) be negative. If we take for « any positive number less 
than —/ (c), we see that for every point x of (c—ft, c+ft), / (x) is 
negative, lying as it does between two negative numbers /(c)— e 
and /(c)-f€. 



72 MATHEMATICAL ANALYSIS 

Lemma II. If/(x) is continuous at the end point a of (a, b) 
and f(a)=?LO, then there exists an interval (a, a+£) such that for 
every point x of this interval/ (a?) has the sign of/(a). 

A similar result holds for continuity at b. 

The proof is exactly similar to that of Lemma I. 

Proof of the main theorem. Take the number c=J («+&), the 
mid-point of (a, b)< In case f(c)=0, we have finished. 

If /(c)=£0, then either/ (a), /(c) or /(c), f (b) have opposite signs. 
Of the two intervals (a, c) and (c, b), the one at the ends of which 
f(x) has opposite signs, we re-name as (av bx). 

Tnus in every case we have 

bt—a^Kb—a); 

f (ai)’f (Pi) have opposite signs. 

We now bisect (av bx) and proceeding as above, see that either 
/(#) =0 at the mid-point c*—} (flj+fci) of (av bx) or otherwise we 
obtain an interval (cr2, b2) such that 

^2“ °2~ 5 —(5 )2(^ —(°) 

/(a2),/(b2) have opposite signs. 

Proceeding as above we see that either, after a finite number of 
steps, we will arrive at a point at which the function vanishes, or 
we will obtain an infinite sequence of intervals 

((Zj, bj), (<z2* b%)bn) ... 
such that 

<bn^.,.^b2^.bi<.b f (i) 

bn-an=(b—a)/2" ' (n) 

/(fln), /(&n) have opposite signs. (in) 

From (i), we see that the sequence }an[ is monotonically 
increasing and bounded above and the sequence is monotoni¬ 
cally decreasing and bounded below and accordingly we see that the 
sequences jan|, \bn\ are both convergent. 

From (u), we see that 
^ {bn Gn) = 0, 

Now, since {an} and j6n} are convergent, therefore 

0—11 (bn—an)~It &„*—It an 

or It 6n=It say. 

The point £ may be either an interior or an end-point of (a, b). 
It will be shown that / (£)=0, If possible, let /(^)^O. 

Let £ be an interior point. There exists, by lemma I, an interval 
(£—£, £+£) such that for every point x of this interval f(x) and / 
(£) have the same sign. 

Also, since 0n~>£ from below and 6n-*£, from above, there exists 
an integer m such that (amt bm) lies within (1—6“, £+£) and accord- 
ingly //(pm) have the same sign so that we arrive at a 
contradiction of (Hi). Hence /(£)=0. 
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Let £ coincide with a. In this case for every n. Since 
/(a)^0, there exists an interval (a, a+£) such that for every point 
x of this interval f (x) and f (a) have the same sign. Also, since 
bn-*g—a, there exists a positive integer m such that a<6m<£+5‘, 
and accordingly/(am' = /(a) and/ (6m) have the same sign so that 
again we have a contradiction. 

Hence £ cannot coincide with a. 
It may similarly be shown that £ cannot coincide with b. 

Another proof. For the sake of definiteness, we suppose that 
f (a) > 0 and f(b)< 0. 

Since f(x) is continuous at a and f (a)>0, there exists an 
interval (a, a-ffr), (£ >0), such that for every point x of this interval 
/ (x) is positive. (Lemma II). 

Consider an aggregate S defined as follows :— 
Any point x of (a, b) belongs to S, if f(x) is positive for every 

point of the closed interval (a, x). 
Clearly S exists in as much as a+£ belongs to it. Also S is 

bounded above, b being a rough upper bound. 
Let c be the upper bound of /(x). Suppose that c is an interior 

point of ,a, b). It will be shown that /(c) = 0. If possible, let 
/ (c)=£ 0. 

There exists an interval (c—h, c-\-h) such that for every point 
x of this interval f(x) and f (c) have the same sign. 

Since c is the upper bound of S, there exists a member ^ of S 
such that 

c—h<y^c. 
As V belongs to S,/(x) is positive for every point x of (a, V) and, 

in particular, f (V) is positive. Also since ^ is a member of 
(c—h, c-\-h), we deduce that for every point x of (c—h, c+/<), /(x) 
is positive. 

Thus we see that fix) is positive for every point x of (a, c+&) 
so that c+h belongs to S and this contradicts the fact that c is the 
upper bound of S. 

Hence /(c) = 0. 
If possible, let c coincide with b. Tftere exists an interval 

(b—k, b) for every point x of which/(a?) is negative. Also since b 
is the upper bound of S, there exists a member a of [(6—k)f 6J such 
that f(x) is positive in (a, a) and, in particular f(a) is positive. 
Thus we have a contradiction so that c cannot coincide with b. 

Cor. ///(«) is continuous in a closed interval (a, b) andf(a)^ f (b)t then as 
x changes from a to b, f(x) assumes atleast once every value between f (a) and f{b). 

Let k be any number between /(a) and/(ft). The function 
<t>[x)=f (x)—kt 

is continuous in (a, b) and $(a)~f (a)~ic and <p(b)=f(b)—k have opposite signs. 
There exists, therefore, a point c of (a, b) such that 0—0(c) =/—/:, (c) or 
f {c)ssxk* 

50*2. Theorem. If f (x) is continuous in a closed interval 
(a, b), and € is any positive number, however small, then there exists a 
division of (a, b) into a finite number of sub-intervals such that 

. * i/(«a'-/(*i)| <«> 
where xv x2 are any two numbers belonging to the same sub-interval. 

We assume that the theorem is false, i.e.$ we suppose that it is 
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not possible to divide (a, b) into a finite number of sub-intervals 
which possess the required property. 

Take c= J (a+fe). 

The theorem must be false for atleast one of the two sub¬ 
intervals (a, c) or (c, b , for, otherwise, the theorem would be true 
for (a, b). Let the sub-interval in which the theorem is false be 
re-named as (av bx), If there be a choice, which will happen if the 
theorem is false for both, we may, for the sake of definiteness, 
consider the left-hand interval (a, c). In every case, we have 

&i—fli=i 
the theorem is false in (av by). 

We now bisect (av bt) and proceeding, as above, obtain another 
interval (a2, b2) such that 

fc2-a2=i(6,-a1) = (i)2(6-a), 

the theorem is false in (a2, b2). 

Proceeding as above, we will obtain an infinite sequence of 
intervals 

(^1* ^l)» (&2* ^2)••• ••»* (^n» bn), 
such that 

(i) .^.ftn<bn.^b2^.b^<.b9 

(ii) bn—an=:{b~-a)l2«. 

(Hi) the theorem is false in (an. bn). 
From (i) and (ii) we easily deduce, as in §50.1 that the 

sequences {«„}, {bn> converge to the same limit. Let this 
common limit be c. The point c may be an interior or an end point 
of (a, b). 

Let c be an interior point. 

Since/(®)is continuous at c> there exists a positive number 
ft such that 

I/(*)“/(«) I <!«. when I *-<0 I <6‘- 
If xv x% be any two members of (c—5", c+ft), we have 

l/(*l)-/(c) I <i«> \f{xi)~f(c) I <»€» 

and, accordingly, 
\f(xt)~f (®i) I = |/(**)-e+«-/(*i) I 

< l/(*a)—■c I + I c—/(* 1) I <i€ + |€«€, 
so that the theorem is true for (c—ft, c+ft)* 

Let m be a positive integer so chosen that (aw, bm) lies within 
(c—ft, c+ft). The theorem being true in (c-~ft, c+£)> we see 
that it is also true in (am, bm) which is a part of (c—ft, c+ft) 
and thus we arrive at a contradiction. Hence the assumption that 
the theorem is false for (a, b) is not true* Thus the theorem 
is true* 

Let c coincide with the end point a. There exists a positive 
number ft such that 

|/(a?)—/(a) | < j€, when a<tf<a+ft. 
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Now, if xv x2 be any two members of (a, a+ft) we prove, as 
above, that 

l/(‘r2)-/(a"l) I <«. 
so that the theorem is true for (a, a-f g"). 

If m be a positive integer so chosen that bm<a + g\ then 
(ami bm) lies within (a, a+£) and accordingly the theorem is true 
in (ami bm) which is only a part of (a, a+S)- 

Here, again, we have a contradiction and so on. 

The case when c coincides with b may be similarly disposed of. 

50*3. Theorem. If a function f(x) is continuous in a 
closed interval (a, 6), then it is bounded in the interval. 

Let € be any positive number. 

We can divide (a, b) into a finite number of sub-intervals 
such that 

I /(**)— /(^l) I <€,- 
when xv x2 are any two members of the same sub-interval. 

Let <7, /j, t2i tf—\> tr, .—b 
be the points of division. 

If x be any point of (a, /t), we have 

—!/'(«)—/(«) I <€,*..*.,/(«)-€</(*)< f(a)+e; 
if x be any point of (tv /2), we have 

I /(*)-/(<i) I <«» /(<»)—€</(*)</(<i)+«; 

if a? be any point of (*r, 4-fi)* we have 

I f(<*>)-fie) I <«, i-e.,/(<,)-€</(*)</(M+«; 
...*.. » 

finally, if x be any point of (tn-v b)9 we have 

I /(*)-/(*»-1) I <«> -€</(*)</(<»-i)+€. 
If ft be the least member of the finite set of numbers 

f (a) €, f (t\) €,.. f (tr) €,.? f (tn- 

and K be the greatest member of the finite set of numbers 

/(a) + €, /(/i)+€,.. /(*r) + €, /(tn-1) +€, 

we see that for every x of (a, b), 
k<f(x)< K, 

i.e.,/(#) is bounded. 

Another proof If € be any positive number, then, because of 
the continuity of f(x) at a, there exists a positive number g* such 
that for every point x of (a, a+g-), 

I /(* -/(a) I <«. i.e.,f{a,)-t<f(x)< f(a)+«, 
so that we see that/(a?) is bounded in (a, a+g-) 

Consider, now, an aggregate S defined as follows :— 

Any point x of (a, b) belongs to S, iff (x) is bounded in (a, x). 
The aggregate S exists in as much as a+g' belongs to S and, as no 
number of S is > b, it is bounded also. 
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Let c be the upper bound of S. Now c<!6. 
If possible, let c be an interior point of S. 

There exists an interval (c—hf c+h) such that for every 
point x of this interval, f(x) lies between /(c)—-€ and/(c)+€so 
that we see that f(x) is bounded in (c—h, c+h). 

Since c is the upper bound of S, there exists a member of S 
such that 

c—h<y^c. 
As v belongs to S,/(#) is bounded in (a, 9). 
As V is an interior point of (c—h9 c+h), we deduce from above 

that/ (x) is bounded in (a, c+h) and accordingly c+h is a member 
of S and this plainly is a contradiction. Thus c cannot be an 
interior point so that we have c — b. 

As/(x) is continuous at b there exists an interval (b—k% b) 
such that for every point x of this interval f (x) lies between 
/(&)—€ andf(b)+z i.e., f(x) is bounded in this interval. 

There exists a member p of S such that 
b—k<p^b. 

Now, f(x) is bounded in (a, /x) and in (b—k, b) and, therefore, 
we deduce that it is bounded in (a, b). 

Hence the result. 

Another proof. Suppose that / (#) is not bounded. On this 
account, to every positive integer n, there corresponds a points of 
(a, b) such that 

! f(tn) | >«• 
Now is a bounded infinity sequence and has, therefore, at 

least one limiting point. Let t be any limiting point of {/n|. 

As f(x) is continuous at t, there exists a positive number S’ 
such that. 

I /(*)—/(0 | <1, when | x—t | <g\ [taking €=1]. 
or I /(*) I <1+ | fit) | , 

for any member x of the interval (/— 
The interval (t—fr, t+fr) contains an infinite number of members 

of the sequence {tn}. Thus for an infinite number of positive 
integral values of n, 

«< I /(<») I <1+ ! fit) |, 
which is clearly not true. 

Hence f(x) must be bounded in (a, 6). 
Ex. Show, by a process of continued bisection, that if a function f(x) is 

defined in any interval (a, 6), 

(t) and is not bounded, then there exists a point c of (a, b) such that 
f(x) is not bounded in any neighbourhood of c. Deduce theorem above. 

{ii) and is bounded, then there exists a point c of (a, b) such that in any 
neighbourhood of ct the upper bound of f(x) is the same as the upper bound 
of f(x) in the whole interval. (Weirstrasas’ Theorem). 

50*4. Theorem. If a function f(x) is continuous in a 
closed interval (a, b), then it has greatest and least values, £.£.» it 
attains its bounds at least once in the interval. 

It has been shown above in §50*8, that /(x) is bounded in (a, 6). 
Let M, m be the bounds of/(a?). 
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We have to show that there exist members a, p of (a, b) 
such that 

/(a)=M, /(/?)«■ m. 

We consider the case of upper bound. Suppose that/(a) 
does not attain the value M for any value of x so that M—f (x) 
does not vanish for any point x of (a, b). 

From §49*1, we deduce that M—f(x) and therefore, 1/[M— f(x)] 
is continuous in (a, b) and accordingly 1/[M—f (x)] is bounded. 

Let k be any positive number, however large. 

Since M is the upper bound of/ (x), there exists a value /(c) 
of/ (a?) such that 

/(c)>M—1/ft or M-/(c)<Hk or 1/ M — /(c)]>£\ 

There exists, therefore, a value of the function 1/fM—f(x)] 
which is greater than any positive, number k, however large, i.c., 
1/[M—/(£)] is not bounded. This is a contradiction. 

Hence the theorem. 

The case of lower bound may be similarly disposed of. 

Cor. I. The function /(x) which is continuous in (a, b) must 
also be continuous in (a, (3) and so must assume every value 
between/(a)=M and/(/?,i=ra. 

Thus a function which is continuous in a closed interval must 
assume every value between its upper and lower bounds. 

Cor. II. If a function /(x) is continuous in a closed interval 
(a, &), and € is any given positive number, then there exists a 
division of (a, b) into a finite number of sub-intervals such that 
the oscillation of/(x) in every subinterval is less than €. 

This follows from §50*2 and the cor. I, above. 

60#5. Uniform continuity. 

Theorem. // a function f(x) is continuous in a closed interval 
(a, 6) and € is any given positive number, then there exists a positive 
number £ such that the oscillation of f (x) in every sub-interval of 
length less than §* is less than €. 

We can divide (a, b) into a finite number of sub-intervals such 
that 

I /(**)-/(*i) I <4*. 
where xv x2 are any two members of the same sub-interval. 

Now every one of these sub-intervals has a length. Let £ be 
the least of these lengths. Clearly £ is positive. 

Consider any pair of points xv x2 such that | x2— xt | The 
points xv x2 either belong to the same or to two consecutive suh- 
intervals of the division obtained above. 

In case they belong to the same sub-interval, we have 

I /(*»)-/(#!.) I <4«<« s 
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If they belong to two consecutive sub-intervals, let t, be the 
common end point. We have 

I /(*.)-/(*l) I = I /(*l)-/(<r) + /(<r)-/(®l) I 

< I | + | /(<,)-/(*») | 
< j€ + |6=6. 

Now, consider any arbitrary sub-interval of (a, 6) whose 
length If Mr, mT be the bounds of /(x) in jj,, there exists 
points |r, vr of this interval such that 

/(ir)=M„/(»?r)=mr. 

Since | £r—V, | we have 

M r-mr=f(£r)-f(vr) 

- I /(fr)~/(7r! <€• 
Hence the theorem. 
Note. The property of continuous functions proved above is known by 

the name of uniform continuity so that the theorem may be restated as 
follows : — 

A function which is continuous in a closed interval U also uniformly con• 
tinuous in that interval. 

We now consider the justification for the name ‘ Uniform continuity.’ 

The continuity of f(x) at a point x' implies .that there exists a positive 
number 5 such that 

I /(«)-/<*') i <€, when | x-x' | < 5 , 

€ being any given positive number. Corresponding to the same €, there 
exists a number 8 for every point icof (n, b). The question arises, does there 
exist a positive number 8 which holds uniformly for every point of (af b). The 
theorem proved above shows that such a choice of 5 is possible. In fact it has 
been shown there that corresponding to any positive number 6, there exists a 
positive number 8 * such that 

|/(*«)-/(aj) ! 

where xx, x2 are any two numbers such that 

| ®1 i ^ S • 
v^/^Ex. If f{x)—x2 + 2x in ( — 1, \),flnd a 5 so that 

|/(#2)~/(#i) | <€ whenever | x2-~xx | 5 . 
We have 

\f(x2)-fyxx) | = | xt-xx | | «, + «!+8 | < | xt-xx | [ | | + | *1 | +8] 
<5 | x2 —xx | €, if | xt—xx | < €/5. 

Thus 5 =€/5. 

In particular 8 —5^, if € = Tl0 : 8 if € = iiti etc, 

Ex. Do the same, as in the Ex. above, for 

(t) f(x)=x3+3x*~~2x+7 in (-3, 2) 

(it) f(*)=<x+2)/(2x+8) in ( —1, 5) 

51. Inverse functions. Theorem. If a function f (x) be con¬ 
tinuous and strictly monotonic in (a, b), then there exists one and 
only one value of x which satisfies the equation 

/(*)** lb (*) 
where y is any number lying between f (a) and f (6). 

The existence of at least one value of x follows from the fact 
of continuity of /(x), (cor. to §50 1). Also since the function is 
strictly monotonic there cannot exist more than one such value. 
Hence the result. 
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61*1. Continuity of Inverse Functions. 
To each value of y, lying between f (a) and J (b), there corres¬ 

ponds one and only one value of x, as determined from (i), and 
thus (i) determines x as a function of y, say, <p(y), defined in the 
interval [f(a),f(b)] or [f(b),f(a)]. 

This function <p(y) is said to be the inverse of/(x). We now 
show that fi(y) is continuous in its interval of definition. 

Let yx be any value of y and let xx~j>yx) so that, 
we have /(^i)=2/i. 

Let € be any positive number. 

Firstly suppose that/(#) is strictly increasing. 

Let /(ffi-e) = .Vi-6v/(*i+«)=J/i+5a. 
fil9 fi2 being necessarily positive. 

Since f(x) is strictly monotonic, y will lie in the interval 
(!/i—6i> J/i+W when * lies iQ (*1—«. %+€)• 

If £=rnin (fil9 fi2), we see that 

I x-xx I <€, i.e., I <P(y)—t>(yi) | <€, when | y-yx | 

Hence <f>(y) is continuous at yt and, therefore, in [/(a),/(&)]. 

The continuity of $(y) can be similarly established if f(x) is 
strictly decreasing. 

It should be understood that the inverse function <p(y) exists 
and is continuous if and only if f(x) is continuous and strictly 
monotonic. 

52. The continuity of a*, (a>0). To show that a* is conti¬ 
nuous for every value of x. 

Let c be any value of x. 

Suppose that a* is not continuous for x=c. 

This implies that there exists a positive number €, such that 
whatever be the interval (c — fi, around c, for at least one 
point x of this interval, 

| a*—ac | >€. 

Consider a sequence of intervals (c—1/n, c+l/n) around c. There 
exists a point xn of (c —1/n, c+l/n) such that 

! | >€. (1) 
Since c—l/n < <rn<c+l/n, 

we see that the sequence converges to c, and hence 

It a*w=nc (§83, P. 52) 

and this conclusion contradicts the statement (1). 
Hence the result. 

Cor. The exponential function e9 is continuous for every 
value of x. 

Cor. Since aw is continuous and strictly monotonic, its inverse 
function, viz., the logarithmic function logay is continuous for 
every positive value of y. 
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It should be remembered that the logarithmic 'function Jogax is 
defined for positive values of x only. 

Cor. (i) If/(x) is continuous in any interval, then is also 
continuous in the same interval. 

<ii) Iff(x) is positive and continuous in any interval, then 
log/(x) is also continuous in the same. 

These results follow from §49 2, P. 70. 

Cor. If f(x)9 P(x) are continuous in any interval and f(x) is 

also positive then f{xf*^ is continuous in the same interval. 

This result is seen to be true on writing 

f/(*)/(*> log^x) 

Examples 

Ex, 1. Consider the continuity for x=0 of 

/(a?)=2/(1—e^X) when x~^L0 andf(0)=0. 

Now l/ar—»oo or—oo according as (0-f 0) or (0—0). 

Thus It f (*r)=0, 
£-»(0+0) 

and It f(x) — ltior lte*X=0, 
x—»(0—0) 0) 

Since these two limits are different, It f (x) as #-»0, does not 
exist. Thus f(x) is discontinuous for x=0 and the point of dis¬ 
continuity is of the second kind. 

Of course the function is continuous on the right and has a 
discontinuity of the second kind on the left of x=0. 

Ex. Show that 

/(«)=(*-1 )/[l+e1/(*~1), x* 1, til)=0, 
is continuous for every value of a. 

Ex. Show that 

/(a!)=(e1/ir—l)/(e1/a:+l), when a^0;/(0)=0, 
is continuous for every value of x except x~0. What is the nature of the 
discontinuity at a?==0. 

Ex. Consider the continuity of 

/(a?)==e1/aj*/(e1/a!* -1), when ar^0;/(0)«l. 

53. To prove that 
l a) It a* oo or 0 according as a > or <1; 

>oo 
(b) It a9 2=0 or oo according as a > or « 1. 

oo 

The result (a) follows from the facts that (i) the sequence a* 
tends to oo or 0 according as u>l or Cl<a<l, (if), a* is positive 
and monotonically increasing or decreasing according as a>l or 
0<a<I. 

The result (b) can be deduced from (a) by putting 
xz=—y so that op as co. 
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53*1. Theorem. To prove that 
It loga*=oo or — o© according as a> or <1, 

X~*oo 

It logaar = -roo or oo according as a> or <L 

This can be deduced from above on writing 
t/=logax i.e.t x—a?. 

54. Infinitesimals. A variable which tends to zero is called an 
infinitesimal, In order to know whether a function is an infini¬ 
tesimal or not, we must know the independent‘Variable and its 

-l Kx—a)1 
limit. For example (a?2—-a2), e IK 1 are infinitesimals only 
when x-+a and l/x is an infinitesimal when An independent 
variable which tends to zero is also an infinitesimal. 

Comparison of infinitesimals. Let f (x), (x) be two infini¬ 
tesimals. The following cases arise :— 

(i)//0—0. In this case we say that f(x) is an 
infinitesimal of the same order as <p(x) and symbolically write 

/(;r)=0|>(a:)]. 

In case /= 1, we say that the two infinitesimals are equivalent 
and write / (x) — j>(x) 

Iff(x)~0[i>r(x)] so that f (x)/<pr(x)~*a finite non zero limit, 
we say that/(x) is an infinitesimal of order r with respect to <p(x). 

0. In this case we say that f (x) is an infinitesimal 
of higher order and $!>(#) of lower order and write 

f(x)—0[<p(x)]. 

(Hi) f !p-+oo or — oo so that 4>lf-*0. In this case we have 
p(x)=0[f (*)], 

(iv) f I p oscillates; we write 
f(x)=0[P(x)]. 

if the oscillation is finite. 
Thus 

2*+®*=sO(a;), if x->0, 2a:+ir®=0(a:s), if x~+ao, 

Principal part of an infinitesimal. If an infinitesimal be 
expressible as a sum of a number of infinitesimals of different 
orders, then the one of lowest order is called the principal part. 

Note. It should be carefully noted that a constant number, 
however small, is not an infinitesimal. A great deal of confusion has 
arisen because of the assumption in the older forms of presenta¬ 
tion of analysis that there existed numbers so small that they 
can be neglected. 



CHAPTER V 

THE DERIVATIVE 

65. Derivability. Derivative. Let / (x) be a function defined 
in an interval (a, b). 

561. Derivability at an interior point. Let c be any interior 
point of (<a, b). We take c+A, any other point of the same interval. 
Then/(#) is said to be derivable at if 

U !f(c+h)-f(c)\ 
A-»ov h 

exists; the limit, which is called the derivative oh f (x) at x=c, is 
symbolically denoted A 7/'(c). 

One sided derivatives. The 

It \U(c+h)-f{cW\. 
A—>(0-}”fi) 

in case it exists, is called the right hand derivative of f(x) at x=c 
and is denoted by R /'(e). 

Similarly 
It \[f(c+h)-f(c)}/h\, 

A->(0—0) 
in case it exists, is called the left hand derivative of f(x) at x=c and 
is denoted by L f\c). 

55'2. Derivability at end points. f(x) is said to be derivable 
at a, if R/'(a) exists and f'(a), then, means R/' (a); it is said to 
be derivable at 6, if L f'(b) exists and /'(&), then, means L f'(b). 

Note* It is obvious that for an interior point c, f'(c) exists if and only if 
R /'(c), L/'(c) both exist and are equal, and conversely ; also, then 

/,(c)=L/,(e)=R/,(c). 

55 3* Finitely derivable functions. A function is said to be 
finitely derivable at a point, if its derivative at that point exists 
and is finite, 

55*4. Derivability in an interval. Derived function. A function 
is said to be derivable in an interval, if it is derivable at every 
point thereof. The function determined by the values of the 
derivatives of f{x) for points of (a, b) is called the derived function 
of / (x) and is denoted by 

f{x), df/dx or D 

Ex* Show that the functions 
{{) k, a constant, (it) x, 

are derivable for every value of x. 
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50. Theorem. If a function is finitely derivable at a point, it 
is also continuous at that point, 

Let f(x) be finitely derivable for <r=c so that \\ f (c+h)-- f (c)]/h\ 
tends to a finite limit denoted by f'(c) as 0. We have 

It [f(c+h)-f c)]=\t^h^&CX\t A=/'(c).0=0 

lt/(c+/t)=/(c). when /»-»0, 
i.e., It f(x) — f (c), when x->c. 

Hence f (x) is continuous at x=c. 

Note. This theorem may also be stated as follows: The necessary condition 
for a function to be finitely derivable at a point is that it is continuous at that point. 

The converse of this theorem is not necessarily true i.e., the condition of 
continuity is not sufficient for derivability. 

Consider the derivability of 

/<*)= 1*4- 
for x — 0. We have 

f(0 /(&)__ |JM ^ f 1, if 
/i 4 h l —l» if*<0, 
R/'<0) = 1 and L/'(0) = -l. 

Hence / '(0) does not exist. 

To examine the continuity, we take any positive number €. We have 
I /(‘*0-/(°) | = | x | ^ €, when \ x\ < 5 , 

S being any number < €, 
and thus f(x) is continuous lor a? = 0. 

Hence the result. 

Ex. Show that Jaj-hl | -f- |n?| -f- |o? — 1 | is continuous but not derivable 
for — 1, 0 and 1. 

Note. There exist functions which are continuous in an interval but are 
not derivable for any point thereof, but the consideration of such functions is 
not easy. 

Note. The student would do well to remember that the statement 
/ \c)=ly 

is equivalent to two distinct statements, viz., (t) that / (x) is derivable at c and 
(ii) that the derivative is l. 

Note. The existence of the derivative of / (a?) for sc—c implies that 

(i) f (x) is defined in a certain neighbourhood of c; 

(ii) f(x) is continuous at c. 

57. Differentiability and differentials. A function f(x) is 
said to be differentiable at a point x of the interval of definition 
{a, b) off(x), if the change, f/(#+£#)—/(#)], in the function which 
corresponds to the change fix in x is capable of being expressed in the 
form 

$f /(#)= 
where A is independent of fix and € is a function of fix which ~±0 as 

Taking fix as the principal infinitesimal, we see that the principal 
part of the infinitesimal fif is Afix. This principal part is called 
the differential of f(x) and is denoted by df (x) or simply df. If 
y represents/(a?), then the differential of/ (a?) is denoted by dy. 
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Theorem, The necessary and sufficient condition for f(x) to be 
differentiable at a given 'point is that it possesses a finite derivative at 
that point. 

Let f (x) be differentiable at x. We have 
/(#)=A fix+tfix 

or [/(tf+£a)~/(ff)]/5^=A+€. 
Let fix-*0. In the limit, we see that 

f'(x)—A, 
so that f(x) is finitely derivable at x, the derivative being A. 

Letf(x) possess a finite derivative f \x) at x so that 
It {[f(x+fix)~f(x)']lfix\ = f'(x) as fix-*0. 

We write 
lf(x+fix) — f(x)']l{}x—ff(x)—t, so that €-»0 as fix-±09 and 

obtain 
f(x+fix)-f(x)=fi(x)f'(x)+€fix. 

Thus /(*r) is differentiable at x. 
By definition, we have 

dy—Afix=f'(x)fix9 for A =/'(#)♦ 
Taking y*=x, we see that 

dx—dy—l.fix or dx—fix, 
ite., the differential of an independent variable may be taken equal 
to the arbitrary increment fix in x Thus we have 

dy=f'(x) dx. 

Since the derivative f'(x) appears as the coefficient of the 
differential dx, the derivative f'(x) is often called the differential 
coefficient of /(x) and the process of obtaining the derivative is 
called differentiation. 

58. Fundamental theorems on Derivation. If fx(x), f2(x) are 
derivable for x=c, then 

(*) ^'(c)=/1'(c)±/2'(c), where i>(x)= fy{x)± f2(x). 
(«) i>'(c)=f1'(c)f2(c)+f2'(c)f1(c). where <p{x) = 

(in) ^'(c)=t/1'(c)/2(c)-/2'(c)/i(c)]/[/2(c)]2, where Hx)=fi(x)/f»(x) 
and/2(e)^0. 

(i) We have __ 
<p(c + h)—<p(c)_ /1(c+fo)±/2(c4-A'i —/1(c)±/a(c) 

h h 
_fl(c+h)-f1(c) Uc+h)-f2(c) 

~ h ~ *•” h ’ 
The result now follows from §46. 

(it) We have 
Hc+h)—1>(c)_fi(c+h)ft(c+h) — /i(c)/2(c) 

4 -Mc+kA(€+hl-w+m 
Since /2'(c) exists, fa(x) is continuous for x=c, i.e., 

/*(c+h)-»/2(c) when 0. 
The result’now follows from §40. 

(n't) As ft(e) exists, therefore fs(x) is continuous at c. Also 
/s(c)^fe0. There exists, therefore, an interval (c—f, c+£), such that 
ft(x)^0 for any point x of this interval. 
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Let (c-f h) be any point of this interval so that/a(c+A)=£0. 

We have 

<p(c+h)— <p(c) 

h 
[fijc+h) Me) 1i 
lf2{c+h) /2(c)J/ 

h 

Mc+W-Uc) 
h 

The result now follows from §46. 

f2(c±h)-f2'c) 

h 

Note. As a particular case of the above we see that if 
two functions be derivable at a point (or in an interval), then 
(i) their sum, difference and product are also derivable at that 
point (or in that interval), (it) their quotient is also derivable 
at that point (or in that interval) provided that the denominator 
of the quotient is not zero at that point (or at any point of that 
interval). 

59*1. Derivation of function of a function. If i>(t) possesses 
a finite derivative at a certain point t andf (a?) possesses a finite 
derivative f'(x) at the corresponding point x=<P(t), then the function 
\f/(t) ~f[<p(t)J also possesses a derivative at t and 

V(t)=f'(x).<P\t). 

We write 0=>MO=/[0(O]. 
With usual notation since x =^(f) and y=f(x) possess finite 

derivatives, therefore 
§x—<p'(t) 5t+t^t, where as JW0 ; 

— S#+€2S^> where €2-»0 as 

From these we obtain 
f '{x)P'(t)£t+l*xf ' (0+€2^' (0+MjIP 

==//(£C)J:>,(iC)^+€3 fit, where €3-»0 as 

Thus y is a differentiable function of t and 

r(t)=f'(*mo, 
Note. The proof given in elementary text books, which is based on the 

equality 

i 8* 

5 t 8 ® . o t * 
is incomplete in as much as no heed is paid to the case which arises when 
8^=0 for some point in every neighbourhood of the point t. For examples of 

such functions refer to Chapter VII, 

59*2* Derivation of inverse functions. Let t/= / (#) be 
continuous and strictly monotonic and let x=g{y) be its inverse 
and let f(x) possess a finite non-zero derivative f'(x), at a point x, 
then g(y) also possesses a finite derivative at the corresponding 
point y such that 

g'(!/)=l//'(*). 
With usual notation, we have 

I ($1) 
„ Sy l\s»r 
Proceeding to the limit, we obtain the required result. 
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60. Derivatives of log,,*, axt x\ 
60*1. The function logax is derivable for every value of x for 

which it is defined, i>e.f for positive values of x and its derivative is 
logaejx. (a>0). 

Let y~ log0a?. 

*+£Tw- 
When 5>->0, | 1 and, since log* t is a continuous 

function of f, therefore 

u iog.( 
Thus U (fyfox) exists and we have 

dx x 
logae. 

If y =rlog57=log^a?, then dy!dx^= 1/x 

Cor. l£f(x) is positive and derivable, then log f(x) is also 
derivable and its derivative is /'(#)// (x). 

Follows from §59*1. 
60* 2. The function ax is derivable for every value of x and its 

derivative is ax logea. (a 70) 

The function y=ax is the inverse of the derivable function 
a;=logay. Hence y is derivable (§59*2). Also 

a*“V® =1 lilog>e/y)==y l°z*a=aX iog.«. 
Cor. If f(xi is derivable, then is also derivable, (a>0), 

and its derivative is 

afW.f\x) Iogea. (§59-1) 
Cor. If f (x), <p(x) are derivable and /(x) is positive, then 

/ (x)^^ is also derivable. 

{Write 
60*3. The function xn is derivable for every positive value of x 

and its derivative is nxn~l, n being any real number. 

We have 
n n log x y~xn=e 6 

and, therefore, by Cor. to §60% y is derivable, and 
dys 
dx~ 

n log x ■ nx' n~i 

Cor. If/(<r)is positive and derivable, then \f(x)]n is also 
derivable and its derivative is n[f (a?))*”1/'(#)• 

Note. If n is a positive integer, then xn is derivable for every value of x ; 
and if n is a negative integer, then xn is derivable for every value of x except 
aero. The proof based on the binomial theorem for a positive integral index, as 
given in elementary books, is satisfactory for this case, 
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61. Meaning of the sign of derivative. 
Let c be any interior point of the interval of definition (a, 6) of 

a function /(x). Let / '(c)> 0. 

To each positive number €, there corresponds a positive number 
£ such that 

_ f’(C) | <€) when 0< | h | <g\ 

i.e.,f'(c)-t<{[f(c+h)-f(c)]/h}<f'(c)+€, when 0< | h | 

Giving to € any positive value smaller than the positive number 
/'(c), we find that 

[f(c+h) — f (c)]/h>0, when 0< | h | <g\ 

i.c., f(c+h)> f (c), when 0<A<5', 

and f(c + h)< f(c), when — gX^<°. 
Thus we conclude that if/'(c) be positive, then there exists a 

neighbourhood (c — g“, c + fr) of c such that 
f(x)>f (c), for any point x of [c, c+g1), 

/(x)< f(c), for any point x of (c—g", c]. 
Let f,{c)<0. We write 

0>(#)=:—/(#) so that <p’(c) = — f'{c) >0. 

From above we see that there exists a neighbourhood (c—g“, c-f g") 
of c such that 

f (x) < f (c) for any point x of [c, c-f£), 
4>(x) < <P(c), i.e.,f(x)> /(c) for any point x of (c—£, c]. 

These results may also be obtained independently exactly in 
the manner in which the first case has been treated. 

We now consider end-points. It is easy to show that if 

(i) f a) is positive, (negative), there exists an interval (a, a+£) 
such that/(#)> f(a)t [(/(#)</(a)], for any point x of [a, a+g“). 

(ii) /'(£>) is positive, (negative , there exists an interval (& — g\ 6) 
such that/(#)< / (b) [/(#)> /(&)] for any point a? of (b—g“, b]. 

62* Darboux’s theorem. If f (x) is derivable in a closed 
interval (a, b) and f'(a)>f'(b) are of opposite signs, then there exists 
at least one point * c ’ of the interval such that f\c)=sO. 

For the sake of definiteness, we suppose that f\a) is positive 
and f(b) negative. On this account there exist intervals (a, a-j-g), 
(6—Jm)9 b), (g‘>0), such that 

for every point a? of [a, a+$)> f (®)> f (a) ; (i) 
and for every point x of (6 — g\ b], f (x)>f (b). (ii) 
Again/(#), being derivable, is continuous in (a, b). Therefore 

it is bounded and attains its bounds. Thus if M be the upper 
bound, there exists a point c such that/ (c) = M. 

From (i) and (ii), we see that the upper bound is not attained at 
the end points a and b so that c is an interior point of (a, 6). 

If /'(c) be positive, then there exists an interval (c, c+*?), (*? >0) 
such that for every point x of this interval /(#)>/ (c)=*M and this 
is a contradiction ; 
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if j '(c) be negative, then there exists an interval (c—y, c], (V>0) 
such that for every point x of this interval /(#)>/(c)=M and this 
is a contradiction. 

Hence /'(*)=o. 
Cor. If / (x) is derivable in a closed interval (<a, b) and 

ff(a)z^=/'(&) and k is any number lying between f'(a) and 
then there exists at least one point c of the interval such that 

f'(c)=k. 
We write ^(#) = f (x)-~kx. 
The function <p(x) is derivable in (a, b) and 0'(a)=/'(a) — k\ 

<p'(b)=zf'(b)~-k are of opposite signs. Therefore there exists at least 
one point c of (a, b) such that tf>'(c) = 0, i.eti f'(c)—k~0V A 

63. Rolled theorem. If a function f (x) is 

^ (i) continuous in a closed interva 
(ii) derivable in the open interval 

and (iii) /(«) = /(b), 
then there exists at least one point c of the open interval 

f ,(c)==0. 
(4 such that 

As f(x) is continuous in fa, £), it is bounded and attains its 
bounds, so that if M, m be theJ bounds, there exist points c, d 
such that 

/(c)=M,/(d)«m. 
Now, 

either M=m or M^ra. ^ 
If M=m, the function f(x) is clearly constant throughout (a, b)J 

and its derivative/'(#), therefore, is equal to 0 for every value of x 
in [a, 6], Hence the theorem is proved for this case. 

If M^m. then at least one of them must be different from the 
equal values/(a), /(b). Let M=/(c) be different from them. The 
number * c being different from a and b belongs to the open 
interval {a, fij. 

The function f(x) which is derivable in the open interval ([a, £J) 
is, in particular, derivable at #=c, i.£.,/'(c) exists. _ 

If f'(c) be positive, then there exists an interval £c, c+£)( such 
that for every point x of this interval/ (x)> f (c)=M and this is a 
contradiction. - ^ 

If/'(c) be negative, then there exists an interval \c—Jjy) such 
that for every point x of this interval / (x) > /(c)=M and this is a 
contradiction. 

Hence /'(c)=0. 
[The vanishing of/ '(c) may also be shown as follows :— 

We have K/'(c) = L/'(c)=/'(c). 

Also /(*+*)-/( tXO, 
for every point (c+fc) of (a, 6). 

[/(c+A)-/(c)P<0, whenA>0 I 
and [/(c+h)-/<c)]/ft>0, when /k0. II 
From I, we have, R/'(c)<0, t\e.,/'(c)<0 

From II, we have, L/'(c)>0, 
Hence 1 /'(c)« 0. 
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^'04. Lagrange’s mean value theorem. If a function f(x) is 

(i) continuous in a closed interval (a, b) ; 
and (ii) derivable in the open interval [a, b] ; 
then there exists at least one point ‘c* of the open interval [a, b] such 
that 

b—a 
=f(c). 

Let a function p(x) be defined by 
cf>{x)=f x)+Ax, 

where A is a constant to be determined such that 
*'(*) —0(6). 

This requires 
f(a)+Aa=f(b)+Ab. 

A== —[/(*)—/(«)]/(*—«)- 
The function $(x) is continuous in (a, b), derivable in [a, b]9 and 

<fj(a)~<f>(b). Hence, by Rolle’s theorem, there exists at least one 
point V of [a, 6] such that <f>'(c)= 0. 

But ^(*) =/'(*) +A. 
0=p,(c)rr=f'(c) +A, 

or /'(c) = -A^M.-. a<c<6. 
J v ' o—a 

Another form of statement. If a function f(x) is, (t) continuojis 
in (at a-\-h), (u) derivable in [a, a+h], then there exists atleast one 
number 9 between 0 and 1 such that 

f(a+h)-f(a)=hf'(a+9h). (O<0<1). 

65. Theorem. If f(x) is continuous at a point *c and 
It . /' x)—l, 

x~~*c 
then f'(c)=l. 

The condition that f'{x}-+l as 0) implies that there exists 
an interval [c, c+h)t (h> 0) for every point % of which f'(x) exists 
and therefore, f(x) is continuous. Since f(x) is given to be continuous 
at c also, we see that/(%) is continuous in the closed interval (c, c-f/i). 
If x be any point of this interval, we have 

/(*)“/(<>)==(*—c)/'($), c< $<* 

or 

Let x-+(c+0). Then we have 

R/'(c)= It /'(?)= It /'(*)=/. 
#-*(c+0) x—►(c+0) 

It may similarly be shown that 
I/'(c)=L 

Thus f(c) exists and is equal to l. 

66. Some elementary deductions from the mean value theorem. 
It will be assumed that the function fix) is continuous in the closed 
interval (a, b) and derivable in the open interval [a, b\ so that the 
mean value theorem is applicable to the interval (a, b) and, therefore, 
also to any sub-interval thereof. 
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66*1. Theorem. If /'(#)=0 for every point x of [a, 6], then f(x) 
is a constant in (a, ft). 

Let x be any number such that 
a<*<ft. 

Applying the mean value theorem to (a, x), we get 
f(x)-f(a)=(x-a)f'($) where a< £ <* 

=0, 
or /(*)=/(«)• 
Hence the result. 

Cor. .If f'(x)=k, for every point x of [a, ft], k being a constant, 
then f(x) is of the form kx+l, where l is a constant. 

If x be any number such that a<Xft, then we have 
/(*)-/(«)=(*-«)/'(£). where a < $<x 

~k(x—a) 
or f(x)=kx+l, where l=f(a)~ak. 
As f(x) is continuous at a, 

/(«)= It /(*)=ka+l, 
x-*a 

so that the result is true for x=a also. 

Cor. If two functions f(x), F(#) are (i) continuous in (a, b) 
(ii) derivable in [a, ft] and (Hi) f'(x)=F’(x) in [a, ft] ; then f(x) and 
F(*) differ by a constant. 

Let <fi(x)=f(x)—F(x). 
Then <f>'(x)=f’(x)-F’(x)=0. 

<l>(x)=a constant. 

66*2. Theorem. ///'(*)>0 for every point x of [a, ft], then f(x) 
is strictly increasing in (a, ft). 

Let xv x2 be any two numbers such that 
&^%1<CX2ft* 

We have 
/(**)-/(*= /'($), *1< $ <*, 

>0 
/(*»)>/(*i)- 

Hence the result. 

Cor. If/'(#)>() in [a, ft] and does not vanish throughout any 
sub-interval of (a, ft) then f(x) is strictly increasing in (a, ft). 

If xlt x2 be any two numbers such that 
<**sx1 <x2^b, 

we have 

so that f(x) is a monotonically increasing function. We have now to 
show that no two values of the function can be equal. If possible, let 

where a^ a < ft. 

For any x in (a, /J), we have 
/(«)</(*K/(/S)=/(«), or, /(*)-/(;«) 

i. e., f(x) remains constant in (a, ft). Therefore f(x) vanishes, 
throughout («, ft) and this is a contradiction. 
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66*3. Theorem. 1 f f'(x)<0 for every point x of [a, b], or if 
/'(%)< 0 in [a, b] and does not vanish in any sub-interval of (a, b) then 
f(x) is strictly increasing in (at b). 

The proof is similar to that of the .last case. 

Cauchy’s mean value theorem. If two functions f(x) and 
F(x) are 

(i) continuous in a closed interval {a, b) ; 
(it) derivable in the open interval [a, b] ; 

and (Hi) F'(x)pOfor any point x in the open interval [a, 6], 
then 

there exists atleast one point ‘c’ of the open interval [a, b] suck 
that 

m-f(a) f(c) 
F(6)-F(a) “ iF'(c) - 

a<c<6. 

Let a function i>(x) be defined by 
<Hx)=M+AF(*), 

where A is a constant to be determined such that 
4>(a)^(bY 

This requires 
[F(6)-F(a)]A=» -[/(&)-/(«)]. Vl) 

Now, [F(&)~F(a)]^0, for, if it were 0, then F(x) would satisfy all 
the conditions of Rolle's theorem, and its derivative would, therefore, 
vanish atleast once in [a, b] and the condition (in) would be contra¬ 
dicted. On this account, we have from (1), 

A- — C/(6) —/(*)]/[F(6) 
The function <f>(x) is continuous in (a, b), derivable in [a, b], and 

p(a)~<p(b). Hence, by Rolle's theorem, there exists atleast one point 
*0* of [a, b] such that £'(c)=0. 

But p'(x)~f (x)+AF' (x). 
0-*\c)=/'(c)+AF'(c), 

or f'(0 = —A= m-m F'(c)/0. 
F(c) ” F(6) —F(a) ' 

Another form of statement. If two functions f(x), F(#) are conti¬ 
nuous in (a, a + h), derivable in [a, a+h] and F'(x)^0 in [at a+K]t 
then there exists at least one number between 0 and 1 such that 

f(a+h)-f(a) _f'(a+6h) 
F(a+h)~F(a) F'(a + 0h) ' 

Note : Taking F (*)=*, we may nee that Lagrange’s mean value 
theorem is only a particular case of Cauchy s’ theorem. 

68. Higher derivatives. Let f(x) be derivable i. e., let f(x) exist 
in a certain neighbourhood of c. This implies that f(x) is defined and 
continuous in a neighbourhood of c. If the function f'(x) has a 
derivative at c, then this derivative is called the second derivative of 
f(x) at c, and is denoted by f"(c). In this case, f'(x) is necessarily 
continuous at c. 

In general, if fn~~1(x) exists in a neighbourhood of c, then the 
derivative of fn~l(x) at c, in case it exists, is called the nth derivative 
of f(x) at c and is denoted by fn(c). 
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62. Tfcylor's theorem. If a function f(x) is such that 

(i) the (n—l)th derivative fn~l(x) is continuous in a closed 
interval (a, a+h), 

(ii) the nth derivative fn(x) exists in the open interval [a, 
and (Hi) p is any given positive integer, 

then there exists at least one number Q between 0 and 1 such that 
b'i hn~~l 

f(a+h)=f(a)+hf(a)+ -/'»+. 

+FW'/W(a+W.(1) 
The condition (i) implies the continuity of 

/(*)./'(*)./"(*)../’*“*(*) in «+*)• 
Let a function <j>(x) be defined by 

*(*)“/(*)+(«+A-*)/W 
+A (a+h—xy\ 

where A is a constant to be determined such that 
p(a) — p(a+h)t 

Thus A is given by 

f(a+h)=f(a)+hf'(a)+,^f''(u)+. + —"■'./-‘(aRA^ ...(2). 

The function <p(x) is continuous in (a, a+A), derivable in [a, a+A] 
and 0(a)—0(a+A). Hence, by Rolle’s theorem, there exists atleast 
one number 0 between 0 and 1 such that 

0'(a+©A)=0. 

But 0’(x)» 7ti (#)-M(a+*-*)P ~ 

... o=^(a+©*)» 

or A= A*~f j1 ~..Qfor (1 —0)^0 and hfO. 
p.(n—1)! 

Substituting this value of / in (2), we get the required result (1). 

(«) Remainder after n terms. The term 

is known as the Taylor's remainder Rn after « terms and is due to 
Schlomilch and Roche. 

(ii) Putting ^>=1, we obtain 

which form of remainder is due to Cauchy, 

(in) Putting p—n, we obtain 

R«= 

which is due to Lagrange. 
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Cor. Let x be any point of the interval (a, a-\-h). 

Let f(x) satisfy the conditions of Taylor’s theorem for (a, a+h). 
Then it satisfies the conditions for (a, x) also. 

Changing a+h to x i. e., h to x—a, in (1), we obtain 

f(x)^f(a) + (x-a)f'(a) + (*-«)* f>, /"(«)+ 
(x-ay 

/'"(«) + . 

+. 
0<9<L 

This result holds for every point x of (a, a+h). Of course, 0, may 
be different for different points x. 

Cor. Maclaurin's theorem. Putting a=0, we see that if x is any 
point of the interval (0, h), then 

f(x)=m+xf'(0) + +f"(0)+ ?, /"'(0) +. 

4. xn_— + —{-_^ fnlfjx) 
+ (n-1)!; [V> + />.(«-])! } h 

which hofds when 

(i) fnmml(x) is continuous in (0, h), 
and (it) fn(x) exists in [0, h]. 

Putting 1 and n—p, respectively in the Schlomilch form of 
remainder 

xn(l~ 6)n~i) fn(6x) 
p.(n—l) ! ' 

we see that Cauchy's and Lagrange's forms are respectively 

—-i)T" f iex) and ~n ! 
70. Taylor's infinite series. Suppose that a given function f(x) 

possesses a continuous derivative of every order in (a, a+h). 

Then to every positive integer n, however large it may be,, 
there corresponds a result of the form 

J»n- 1 

f(a+h)=f{a)+hf'(a)+.+ (£-If | («) + R*» 

where Rn denotes Taylor's remainder after n terms. 

We write 

s»=/(«)+*/'(«)+.+(—Tj)1, («), 

so that f(a+h)=Sn+Rn. 

If Rn~-*0, as n—>oo we have 

It Sn=/{a+h), 
so that the series 

f(a)+hf'(a)+.+^Hjjj/n~J W+^f/w (*) +. 

converges and its sum is equal to f(a+h). 
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Thus we have proved that if 

(*) f(x) possesses continuous derivatives of every order in (a, a-\-h), 
and (ii) Taylor’s remainder Rn-*0 as 
then 

lifl 

f(a+h)~f{a)+hf,(a)+.+ /*(<*) +. 
rt ! 

Note. The infinite series 

f(a)+hf’(a) +.+/"/«(«) 4-. 

is known as Taylor's series. 

It should be clearly understood that the mere convergence of this series does 

not mean that its sum is equal tof(a+h). (See § 80, Page 104) 

70.1. Maelaurin's infinite series. From above we deduce that 
if f(x) possesses a continuous derivative of every order in (0, x) and 
Rn~~►O as n~+ oo, then 

/(*) =/(°) +*/'(0)+2t/"(0)-f”(0)■+. 

71. Maclaurin’s expansions of e®, log (1+x), (l+x)n. 

71.1. Letf(x)=e*. We know that e* possesses continuous deri¬ 
vatives of every order for every value of x. In fact,/n(*)—e®. 

If R„ denotes Lagrange’s remainder, we have 

Thus 
If be positive, then £ </r ; and if # be negative, £ < 1, 

!R« 
*n I @x f(xn/n !). e*t if #>0. 

* e !) , if £<0. n ! i 

Since f xn/n ! |-*0 as n-*oo, we see that Rn-*0 as n-*oo, for 
every value of x. 

The validity of Maclaurin’s infinite expansion for e* has thus 
been established for every value of x; making substitutions, we obtain 

y2 
e*=l+x+2l+—+. 

xn 

•+*-! +• 

71.2. Let f(x)=log {1+x). 

We know that log (1+#) possesses continuous derivatives of 
every order for every value of x such that (1+*) is positive, ». e.t 

%> — 1. In fact, when *> — 1, we have 
_(-!)>-! (n-1) 1 

(l+*)n. 
If Rn denotes Lagrange’s form of remainder, we have 

/•(*)= 

(e*)=(-i) -'-"-■il.TS,)" 
Let 0<#<1 so that x/(l+Qx) is positive and <1. We have 

I Rn | <i 
Therefore Rn-*0, when 
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Let —1<*<0. In this case xl( 1+Qx) may not be numerically 
less than unity so that we fail to draw any conclusion from 
Lagranges’ R„ in this case. Taking Cauchy’s form of remainder, 
we have 

R»“(,=in<1-e)"‘ • -,+ei 
Since I x 1 <1, [(1—6)l(}+9x)] is positive and less than unity and 

hence 

Also 
lx l- 

Finally #»~>0as n — HX, 

Thus Rn-~*0, as n-*oo. 

We have thus established that the Maclaurin’s expansion for 
log (l-f#) is valid when — l<;t^:l ; making substitutions, we obtain. 

log (l+x)=x-2-.+ 3—r.+ (-!)» -■ +. 

71-3. /(jt) = (l +a:)w. 

If m is a positive integer, then we know that /m+l (#) and the 
following successive derivatives are identically zero for every value 
of x, so that we may easily show that, when m is a positive integer, 

(l+x)m==l+mx+™~ft^ j .+xrn, 

for every value of x. 

If m is any real number, not necessarily a positive integer, then 
we know that (l+#)m possesses continuous derivatives of every 
order for values of x such that (1+tf) is positive, ix., #> — 1- 
We have 

/n(*)_ _*»(«-I).(m-n+1) 

If R„ denotes Cauchy’s form of remainder, we have 

R«=(“T)- ! (!—©)«-*/» (ex) 

(„_!)! ^ 

//I*I <1. 

--- 

1-©*1 <1. 

(!+©*)"• 
, - f(l + l)m“!==2m'1, if (w-1) is positive 

— I x I )"~li if («—1) is negative- 
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Thus R^O as n~*o©, when | x | < j 
Maclaurin's infinite expansion for {l+x) 

[ x | <1, we see that 

(l+#)w,==1-f-mx+n^™ 

when | x | <1. 

being thus valid when 

n ! 

Note. It is easy to show that we cannot prove thwt tine Lagranges' 

form of Rn—when — l<O<0. 

71 Young's form of Taylor's theorem. If a function f(x) be 
such that fn{a) exists and M be defined as a function of h by the 
equation 

hi kn 
f(a+h)=f(a)+hf-(a)+r{f"(a) f-.+ (^, M- 

then M~*fn(a) as h +0. 

The fact that fn (a) exists implies thatf{x), f(x), ff(x)t...,f*~l (x) 
all exist in a certain neighbourhood (a — 8, a-f-6) of a. 

The result holds good whether /w(a) be finite or infinite. 

Case I. Let fu{a) be finite. 

Let f be any positive number. 

Firstly we take /?>0. We define a function <p(h) as follows : — 
h2 }tn-1 Ln 

m=f{a)+hf'(a)+2lf";an.+ ~(«)+ ~-,[/»(«)+«] 

-f(a+h). 
We easily see that 
<£(Q)=0, -p\0)=0., ^^-i(0)=() and ^(0) = €>0. 

Since <£n(0) is positive and —1(0)=0, we see that there exists 
an interval [0, 8J such that for every point h of this interval <f>n~~]{h) 
is positive. (§61, Page 87). 

Since <fn l(h) is positive in [0, 8,] and 0*-‘i(O)=O, we see that 
(j>n ~~ 2(h) is positive in [0, 8J (§ 66*2, Page 90). 

Now successively applying the theorem of § 66*2, we deduce that 
<f>(h) is positive in [0, 8J. 

Thus we see that there exists a positive number 8X such that for 

°<h<Sv 

Similarly we may prove that there exists a positive number 8^ 
such that for 0</t<82 

/(«)+/;/'(a)+2^/"(a)+...+(—^,/»-1(«)+^[/R(a)-e]-/(a+A)< 0 

But, as given, 

f(a)+hf'(a)+ -/»+..•+ (~r, /»-'(*)+- M-f(a+h)~0. 

Let ’?=min (8,, 8,) 
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From above we deduce that corresponding to every positive 
number € there exists a positive number y, such that 

/n(a) —€<M</*(a) + €, *\e., | M—/»(<*) j <€, when 0<&<^. 
It M=/W(fl). 

h -(0+0) 
Taking negative values of /*, we may similarly show that 

It M=/tt(a). 
^-^(0—0) 

Hence M~*/7'(a) as &->0. 

Case II. Z,^/»(a) £0 infinite. 

Let A be any positive number, however large. Firstly we take 
#>0, and define a function ?>(&) as follows : — 

m=M+hf'(a)+? /"(«)+...+^r1) , /'*->(«) + -’* A-/(«+*) 

We easily see that 
<£(0)=0, ^(0)=0.<£*->(0)=0. 

Also since =fn~'(a) +/t& (<*+•&), 
|~^ /»• i(g-fA)-/»-Wfl) j 

and [/n~1(a+&)---/^(a^/A-^co as /*->(), we see that there exists a 
positive number 8 such that for 0</^8, #>n 1 (h) is negative. 

Now, proceeding as in case I, we prove that there exists a 
positive number 8L such that for every point h of (0, SJ. 

4,(h)=f(a)+hf>(a) /'>) + ... + ^‘^ /«->(*)+A -/(a+A)<0 

Also, as given, 

M + V'(«)+2i /"(«)+• ■ •-+ (^T)l /" ''(«)+^M-/(a+A)=0. 

From above we deduce that corresponding to every positive 
number A, however large, there exists a positive number bx such 
that for every point h of [0, 8X), 

M> A i.e.f It M=oo 
Zt—>-(0—1—0) 

It may similarly be shown that 
It M=oo. 

h -*(0-0) 
Hence M-*oo as 0. 

75. The application of Taylor's theorem. 
The application of Taylor's theorem in a finite form to the 

problem of Extreme values of a function and to the problem of the 
evaluation of a certain special kind of limits popularly known as 
Indeterminate forms is given in the following three sections. 

76 Extreme values of a function. Maxima and minima. 
If ckbe any interior point of the interval of definition (a, .6) of a 

function f(x), then 
(i) f(c) is said to be a maximum value of /(*), if there exists some 

neighbourhood (c~8, c+8) of 0 such that for every point x of this 
neighbourhood, other than c, 

' /(*)>/(*); 
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(ii) f (c) is said to be a minimum value of f(x)t if for every point 
other than c, of some neighbourhood (c—8, c-jrS) of c, 

M<f(x); . . . _ 
(«f) / (c) is said to be an extreme value of /(#), if it is either a 

maximum or a minimum value. 

For / (c) to be an extreme value, 

/(*)-/(*) t ‘ , 
must keep the same sign for every point x, other than c, of some 
neighbourhood (c—8,c-f 8) of c. 

76-1 Theorem. If f(c) be an extreme value of a function /(*), 
then f (c), in case it exists, is zero. 

If f'(c) be not 0, then in every neighbourhood of c there exist 
points x for which / (*)>^(c) and points# for which /(#)</(c), 

(§61. Page 87) so that f(c) can not be an extreme value. 

Note 1* The theorem may also be stated a little differently as follows :— 

Thi necessary condition for f{c) to be an txtreme valut is that f'{c)***Q, in cast it 
exists. 

To show that this condition is only necessary and not sufficient, we con¬ 
sider the iunction/(*) when x~0. 

Clearly 
/'(0)=0. 

Also, when x>0,/(*)^>/(0), and when *<0, f{*)<Cf(o), so that/(O) 
not an extreme value even though /'(0) = 0. 

Note. 2. If /(*)= 1*|, then clearly /(0) is a minimum value and 
/'(O) does not exist. (Note § 56, Page 83). 

This example shows that /(c) may be an extreme value even when /'(*) 
does not exist. 

76*2 Criteria for extreme values. Let c be an interior point of 
the interval of definition (ta, ft) of a function /(#). Let 

(i) fn (c) exist and be not zero, 
and (ii) f (c)-T(c)-/^)-..0; 
then /(c) is not an extreme value if n is odd ; and y n be even, /(c) is a 
maximum or a minimum value according as fn(c) is negative or 
positive. 

The condition (t) implies that /'(#), f*(x),.all exist in 
a certain neighbourhood, (c-S^ c+Sj), of c. I 

Asfn(c) exists and /o, there exists a neighbourhood (c—8, c+8) 
of c, (0<8<Sl) such that 

/*~1 (#)</*~J(c)= 0, when c—8<#<c 
/n'1W>/w“1(c)==0, when c<s<c+8, 

. P. 87),II 

in case fn(c) is positive ; 

and /* l(x)>f*~'(c)^0, when c~8<x<c 
/rt~A*)</n~J(c)=0, when c<#<c+8, 

in case /«(c) is negative. 

J(S61. P87), III 

Because of I, we have, by Taylor’s theorem, when | h ) ^ 8, 
h* h.n — 1 

f(c+h)=f(c)+hf'(c)+n2]f’(c)+.+(^_jr|/«-J(c+M), 

which, by virtue of {ii), gives 

f(c+h)-f(c)= ^^fn-^c+eh) 

where e+$h belongs to the interval (c—8, c+S). 
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Let n be even. From II and IV, we deduce that if /«(c) be>0, 
then for every point #=c-fh of (c—8, c+S), other than c, 

f(c+h)>f{c), 
i.e.f(c) is a minimum. 

From III and IV, it may similarly be shown that f(c) is a maximum 
if/"(c) be <0. 

Let n be odd. From II and IV, we deduce that if /n(c)>0fthen 
f{c+h)>/(c), when c<%=c+&^c+8 

and /(c-f/*)</(c), when c—8<*=c-|-/*<c 
so that /(c) is no extreme value. 

It may similarly be shown that /(c) is not an extreme value when 
/•M< o. 

Another proof. We now have another proof which is dependent 
upon the Young's form of Taylor’s theorem. 

We have 

f(c+h)=/(c)+hf'(c) + ^f"(c) +.fn-\c)+h^M. 

where M-+fn(c) as 
With the help of (it), it becomes 

hn 
f{c+h)-f(c)=^M. V 

Since M-+/» (c) as h-*0, there exists a positive number $# suda 
that for 0< | h | <8, M has the same sign as fn(c). 

From V, we now deduce that 

when n is even f{c+h)—f(c) has the same sign as /*(c) for 
0< | h | <8, so that f(c) is a maximum or minimum according as 
/"(c) is negative or positive, and 

whemw is odd, f(c-\-h)—f(c) changes sign with the change in the 
sign of h so that /(c) is not an extreme value. 

Ex. If c be an interior point of the interval of definition of a function 
f (*) then 

/ (c) is a maximum value of /(*), if 
~ *>. £/'(*)= oo, 

and/(c) is a minimum value of /(*), if 
Rf'(c) = oo, //'(c) = -oo. 

77. The Indeterminate form, 0/0. 

771 

and 

then 

Theorem. Let f(x), g(#) be two functions such that 
(i) U f(x)=o. It g(x)—0, 

x-*c x-*-c 
(it) f(c). g'(c) both exist and g’{c)?0, 

u 
X-+C S(x) g’(c) ■ 

Since f(x)t g(x) are derivable at e, therefore they are continuous 
at c and accordingly /(c)=g(c) = 0. 

We have 
/'(C)-It f(c+h)-f(c) It J{c±h) 

h-* 0 h * h~+o h 9 

g'(c)=lt g(c+h)-g(c) It g(c+h) 
h~+ 0 h h—►O c 0 



100 MATHEMATICAL ANALYSIS 

/'(c) It /(g-t-A)/A Jt f(c+h)_ it /(*) 
5(c) A-*0 g(c+A) h h-*0g(c+h) x~*cg(x) 

Note. This result may also be stated as follows :—If f(c) =g(g)mO, and 
/'(c), g'(e) exist but g'(c)#), then It [f{x)lg[x\]=j'(c)/g'(c)t whtn x-*c. 

77*2. Theorem. Let f(x), g(#) be two functions such that 
(i) u f(x)=o, u g{x)=0 (i) 

x-±c x~*c 
and (it) It [f'(x)/g’(x)]=l, when x-*c. (ii) 
then It [f(x)lg(x)]=l, when x~*c. 
The condition (it) implies that f'(x) and g'(x) exist and gf(x)^o 

at every point x, other than c, of a certain neighbourhood (c—8, c+S) 
of c. 

We suppose that f(c)—g(c)=0, for this change in the defi¬ 
nition of f(x) and g(x) influences neither the hypothesis nor the 
conclusion of the theorem. 

If x be any point of (c — 8, c+8), we have, by Cauchy's theorem, 

fix) f(x)-f(c) J'U) 
g(x) g(x)-g{c) g'dY 

where £ lies between c and x and also depends upon x. 
By virtue of (ii), /'(£ )/g'( as 

f(x)Jg(x)-+l as x-*c. 
Note. The reader will find it useful to compare the hypotheses and the 

conclusions of the two preceding theorems. In §77*1, the derivabilitv ol ftx) 
*nd *(x) is assumed at only whereas in §77 2, while assuming the deriv- 
ability oif(x), g(x) in the neighbounhood of x«c, it is exactly at x—c where we 
have not needed it. (Tor illustrations of each of these theorems, see examples 
2 and h at the end of ch. VU ) 

77*3 Theorem. Let f(x), g(x) be two functions such that, 
when x-*c, 

(*) pt /(*)=It /'(*)=.-It /»->(*) - 0, 
1 It5W=lt 5'(*)=.=lt 5"'1(;*:)=0» 

*md (ii) It [r(x)/g«(x)]=l. 
then It [f(x)lg(x]]~l, when x-*c. 

Since It fn~l(x)—lt g*~l(x)~ 0 and It [fn(x)/gn(x)]^l, 
therefore It [fn '(x)lgn~l(x)]—l, §77*2 above 
Again, since It/n~a(#)=lt £»-*(#)=0 
and It [ fn ~~ *(x) lgn 1 (#)] ==/, 
therefore It [fn~~3(%)tgn~~*(x)]~l. 
Proceeding in this manner, we finally prove that 

It [f(x)lg(*)]~l, 
when %-~+c, 
77*4. Theorem. Let f (x), g(x)be two functions such that 
when x-+c 

(i) nt/(*)==it/'(*)==.-it/»-j(*)«0 

tit 5(*)=lt g'(x)=.==lt 
and (ii) f«(c), gv(c) exist and gn(c)f 0, 
then It t f{x)lg(x)]—/n(c)lgn(c), when x~*c. 
By virtue of («), on applying the theorem of §771, we see that 

it /"-’(*) __/"(c) 
gn~,(x) g"(cY 

Also from theorem of §77-3, changing n to (n—1), we see that 

u f&l u /a~'W /”(c) 
H fe = ~5n(c)' 
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77'5. Theorem. Let f tx\g(x) be two functions such that 
(*') /(c)-/'(c)=/'1(c)=.=/»->(c)=0, 

=.=gn_,W=0 
«**<f («) /"(cl, g»(c) msJ bot g"{c)f 0, 
<A«» It [/(*)/£(*)] =/R(c)/r (c), whenx~»c. 

Employing Young’s form of Taylor’s theorem, we have 

f(c+h)=f{c)+hf'{c)+.+(“lV)!/n_1(c)+?!M=?!Af 

g(C+A)=g(c)+Ag'(C) +.+ (-^11)!r-1W+MiM'= 

/jc+A) _*L 
g(c+A) Af' 

It /(*)_ It Ac+h) it M _f*(c)_ 
x-*c g(x) h-*0g(c-\-h) *->0 M' g (c) ' 

Note. The theorems of this and the preceding section are really 
identical, even though they appear to have been stated difierently. 

77 6. Theorem. Let f(x), g(x) be two functions such that 
(*) U f(x) = 0, It g(x)=0, 

and (ii) It [f'(x)lg'(x)]=l, 

then It [f(x)lg(x)]=l. 
*-*oo 

We write x—1 jz so that x-*oot when z-*(0+0). 

Let F(z)=/(l/z), G(z)=g(l/z), 
so that It F(z)=0, It G(z)=0. 

z-*(0-f0) z-»(0+0) 

wehave P«—/'(i). G'W- 

(»> 

F'i2J JVM 
g'w ~g'm 

so that, by (»»), F'(z)/G'(z)-+J, when z-*(0+0). (2) 

Hence, from (1) and (2), 
It [F(z)/G(z)]=/, 

*->(0+0) 
i.e.. It [f(x)/g(x)]=l. 

X *oo 

78. The indeterminate form (oo/oo). 

78*1 Theorem. If f(x), g(x) be two functions such that when- 
> c, 

0 » I *(*) I 

« I'M _o * 
' ' U g'(x) -°* 

then ...fix) _ , 
It *V7r=0, when x-*c. 

g{x) 
The condition (it) implies that there exists a neighbourhood, 

(c—S, c+8) of csuch that for every point *, other than c, pf this- 
neighbourhood, /'(*), £’(*) exist and g'(x) /0. 
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From Darboux's theorem of §62. P. 87, it follows that gf(x) keeps 
the same sign, positive or negative for every point x of [c, c-f8], and 
the same thing is true for [c—8, c] also. 

Firstly we consider [c, c-f 8]. Let gf(x) remain positive in it. 

Let € be any positive number, however small. There exists 
by virtue of (it), a positive number 8X <8 such that for every point 
*.of [c, c+8r]. 

K,((*)_0 < 2~*'e"l | <*e 
i.e., -\e. g'(x)<.f’(x)<Che. g'(x). 

By virtue of the theorem of § 66. P. 89, we have 

-u fe(c+S)-ff(*)K[/(c+«)-/(*)]<4«. fe(c+5)-*M] 
i.e., i f(c+h)-f(x) | <u 1 g(c + b)-g M 1 
or I/M 1 - l/M-8) 1 <i€. 1 g(c+S) 1 + 1 g(x) | 
or I/M 1 <i« 1 g(x) 1 +J«- i <?(c+8) 1 4- i /(c+8 | , 
or I/M 1 <£«•1 g(x) ! +*, for any point x of [c, k 

being free of x, 

There exists a positive number 8a<81, such that 
k . , 

I g{x)T<*€’ 
for any point x of [c, c+8J. 

Thus we see that corresponding to every positive number c there 
exists a positive number 82, such that for every point x of [c, c-f-S8], 

JSI <‘ 

Hence lt 
H (c+0) i(*) 
It may similarly be shown that 

^ /<*»=«. 
x-*(c-0) g(*> 

Thus f(x)lg{x)-*0 as x-*c. 

78-2. Theorem. 
If f(x), g(x) be two functions such that when x~*-c. 

(*) It I g(x) !=~ (»») It [f'(x)lg'(x)]=l, \ 

then lt f(x)lg(x)~lP when x-+c 
We write $(x) =/(*) —lg{x) » 

We have 

it *(*> „ 
xlog® 

It ^ K ] 
x-*c S M 

0, 
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t. e.t 

or 

It 
x- 

lt 
x- 

[£ !-']=» 
M 

■c g(x) 
=/. 

Note. As in §77 6, it may be shown that this result remains true even 
when x—>oo. 

Note. It should be specially rioted that in the preceding theorem nothing 
whatsoever has been said about the limit of/(x) as x—so that the result holds 
good independently ol the behaviour of/{x). In particular, therefore, the 
result holds good when/ (x)-*oo as x—*c; this being the form in which the 
theorem is usually stated. 

79. Two important special cases of limits. 
79*1. Theorem. To prove that 

>* 
x >oo e 

where a, m are any positive numbers whatsoever. 

Let f(x)=xm, g(x) =eaX, 

so that f(x)~+ oo and g(x)-^oo) as x~*c>o 

We can write 
m—n+p, 

where n is some positive integer and / is a number such that 

It is easy to see that /'(*), /"(#),...,/"(*) all tend to oo and 
/r,+1(^)~>0 as #-+oo. 

Also g'(x), gn 

Thus It 

(*), g"’ (x),.all tend to 

f*+l(x)lg»+'(x) j=0 

* tends to » more rapidly than any positive power of x, when x—»oo. 

Therefore from the theorem of §78*2, we deduce that 
It [/(*)/£(*)] =0, when X—> oo. 

Note. The result of this theorem is roughly [expressed by saying that 

79*2. Theorem. To prove that 

It S3U£ _o, 
X ►oo xa 

where a, m are any positive numbers whatsoever. 

The independent proof is similar to that of the preceding result. 
Otherwise if we write log x=y, we see that 

it feuC- It -£«0. 
x-*oo xa y~*°° e y 

Note. This shows that a positive power of x tends to infinity more 
rapidly than any positive power of log x, as *-*oo. 

Cor. 3_^o+0) [*°; (log x)”1] = 0, a, m being any positive 

numbers. 

Putting x~l/y, we may easily obtain it. 
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SO. Note on a special function. The fuaction/(x), dsfined as 

when x$0 ; /(O)**!), 

possesses a remarkable property, viz, th&t /n(0)5aa0 for every value of *♦ 

We have 

. it M-m * - Jf- 
x—*0 x 

/'(0)= = It 
x—->0 

It y* 
J~*QQ 

«oAy**1!*) 

/'(*)-(2/,*) e~'/x\ when * ^ 0. 

/'(0) 

->) 

x-*o 
2* -I A* 

It 

/"(0) : It 
*-»0 

x *-*0 X* y~* oo 

)< . when x$0, 

6 \ -l/x*_ It 4y*-6y* 

~?r j->°° 

gv 
V* 

If we form the higher derivatives for x#Q, we shall obviously always 

obtain the product of e and a polynomial in 1 /#. Thus we see that all 
the higher derivatives will vanish at the point x=0- 

It is thus seen that this function possesses a continuous derivative for 
■every value of x. Maclaurin’s infinite series for this function is 

0-f x.o+ ~y . 0+ **, .0 4-.4-"i • 0+ . 

which is certainly not equal to f(x) for every value of x. 
Thus ws ste that there ex'st funuions which possess■ continuous derivatives for every 

value of x and yet cannot be expanded in terms of Maclaurin s series. 

Examples 

L U . fi 
l/x — 1 lx 

f(x) - ,---—j—f when icpo, and/(0) =0, 

show that fix) is continuous but not derivable for x~0\ show that 
R/'(o) = 4-1, L/'(0)« -1. 

2. Verify the Rolle’s theorem in (a, b) for 
(i) log [tf+ak)l(a+b)x]. (») x(*-2)<r*/2. 
(hi) (x-a)w(x-^)n, m, n being positive integers. 

3. Verify Lagrange’s mean value theorem for 
(i) lxtjrmx+n in («, A), (it) x(x—l)(x—2) in (0. t)« 

4. Discuss the applicability of Rolled theorem to/ (*)— I * I *n (-L1)* 
5. Apolying Lagranges’mean value theorem in turn to the functions 

log x and determine the corresponding values of 9 in terms of a and «• 
Deduce that ^ ^ _ r, „ ,w ,^f 
O') 0<[log(14-x)]'’1-x“1<ll (n) 0<x 1 lorf(«x-l)/*]<i. 

6. Show that 
(•"> **>(l+*l[log (1+*Y]* for *>0. 
(«») *<log [l/(l-*)]<*/(t-»), where 0<*<l. 

7. Prove that e is an irrational number. 
If possible, let *-/>/?, where p> q are integers. 
Let n be any integer greater than qt 
By Maclaurin’s theorem, with Lagrange's form of remainder after « 

terms, we have ' 

-2+T1+.+ f! + (a+IT!e> where0<*<1 

n! . , ,_l_J 
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Now, n ! . e**n \{p/q) must be an integer, and since e* we have 

0< £ /(n + l)<l» 

Hence, we see that 

an integer»an integer plus a non-zero proper fraction, and this is 
impossible* 

7. Prove that ex is not a rational function 

If possible, let 
* flo**1-!-*!!*™-1 4- -h Qfn. 

=*/(*)» say 

where a0$o» b0po. 

Obviously f(x)/xm~n-*a0fb0 as*—»oo and this is impossible if /(*)=#*• 
(Refer theorem of § 791, P. 303 ). 

8. Show that which occurs in the Lagrange's form of remainder; viz% 
(hnln !) fn(a-\~$h) tends to the limit 1/(n-fl), when h~>0, provided that /*+*(*) is conti¬ 
nuous at a and/n+1 {a)^0. 

Since/*+1{*) is continuous at a, there exists an interval (a—8, a-f8) at 
every point of which/» H(*) exists. Also, therefore, f(x), /'(*),./*(*) are 
all continuous in (a—S, a-fS). If («-f h) beany point of this interval, we 
obtain, the necessary conditions being satisfied, 

/[«+*)-JW+V'(«> +. + -/»(«+ $h) 

and A*+h)~f(a)+hf’(a) +.+ ^/"W +( ~^-|/»+‘(a+ 9'*). 

/n(a+ $h) —fn(a) = -Aj /"+>(«+9'*)- 

Again, applying Lagrange’s mean value theorem to the expression on the 
left, we see that 

0A/»+>(a+00'A)~-A- /n+.(a+^A) 

i.ff/«+>(a+99'A)--^Y- /»+l(a+9'A). 

Let h-*o. Then, we obtain 

• It 0/*+1(«) *= n^r/n+IW, V /n+,W is continnons. 

or 1U“ «+T’ *•* /*+‘«#>. 

9. If #'(x)>0 for every value of *, then 

10, Assuming/'(*) continuous in (a> b), show that 

M-fC«) -iEs - ■«*> *EH(*-«)(*-4)/'<$) 
where c and £ both lie in (tf, &). 

It# If/n(x) = 0 for every value of x in (a, b)$ then there are numbers 
<*©» **..i such that 

n*l 
/(*>- S *r*r, 

r*0 
in (a, b). 

12# If a derivable function/(«) satisfies the equation 

fl*+*HfW ZOO. 
then either/(x)s0 or else/(*) «* /**. 

13. If a derivable function/(#) satisfies the equation 

then /(*) «=a log *. 



CHAPTER VI 

RIEMANN THEORY OF DEFINITE INTEGRAL 

81. Riemann integrability and the integral of a bounded function 
for a finite range. Let f(x) be a bounded function defined for some 
finite interval (a, b). 

Divide (a, b) into a finite number of sub-intervals by means of 
any arbitrary set of points x0, xlf x2,.--xr_v xr,...xn, where 

a^=Xo<^X \<^X2.. 
Thus 

(Xq, X\), (X» X2)t.xr).(xnmmV Xn) 
are the sub-intervals in which (a, b) is divided. 

Let the sub-interval (xrmml, xr) and also its length xr—xr^x be both 
denoted by 8r. 

The function f(x) which is bounded in (a, b) is also necessarily 
bounded in each sub-interval 8r. 

Let Mn mr be the bounds of f(x) in 8r. 

Set up the two sums S and s defined as follows :— 
r—n 

S==M1S1+.~f Mr8r+.-|~M7l8n=i! Mr8r, 
r=l 
r—» 

5=w181+.+wr8r+......+wn8n =S tnr 8r. 
r=l 

If M, m be the bounds of f(x) in (a, b), we have for every value of r,. 

or m8r^tnr8r^ Mr8r< M8r. 

Putting r=l, 2,.. n, and adding, we deduce that 
(1). 

Now, a pair of sums S, $ correspond to each mode of division of 
{a, 6) into sub-intervals and from (1) we see that the aggregates of 
the sums S, s, obtained by considering all possible modes of division, 
are bounded. 

Def. The lower bound of the aggregate of the is called the 
upper integral of f{%) over (a, b) and is denoted by 

b 

u= | f(x)dx. 

a 

The upper bound of the aggregate of the sums V is called the lower 
integral of f(x) over (a, b) and is denotedby 

b 

L= J f(x)dx. 

a_ 

[Clearly the upper bound of the sums #S* is M(*~a) and the lower bound 
of the «nmb •*' is *mb~d) and they are attained.] 
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A bounded function f (x) is said to be Riemann intertable, or 
dimply integrable, (for the purposes of this book), over (atb) if its upper 
and lower integrals are equal; the common value of these integrals which 
is called the Riemann integral or simply the integral is denoted by the 
symbol 

b 

I=J f(x)dx. 

a 
Note 1. The numbers a, b are respectively called the lower and the 

upper limits of integration. 

Note 2. The definition of in testability given above is based on the 
notion of bounds. Another equivalent definition based on the notion of limits 
is given in § 83. 

Note 3# It should be clearly understood that every bounded function is net 
necessarily integrable, i.e. there may exist a bounded function f(x) for which 

b b 

| /(*)<** i | /(*)</*• 

a a 

The necessary and sufficient condition for the existence of the symbol 
b 

J* /(*)d* *.*• for the integrability of fix) over (at b) is obtained in § 84. 

a 
Note 4. The concept of integrability of a function over an interval 

as introduced here, is subject to two very important limitations, vir. (i) 
the function is bounded (ii) the interval is finite so that neither end point is infinite. 
In chapter VIII we shall see how these limitations can be removed and the 
concept generalised so as to be applicable to cases where the function is not 
bounded or where one or both the limits of integration are infinite. 

kib ” 

Note 5. The statement that J f{x)dx exists, implies that the ianctioa 

a 
f{x) is bounded and integrable over (a, b). 

Note 6. The symbol 
Dfa***^. **».*r_i« *r.*w~^)» 

will be used to denote the division obtained by inserting the points 
*r_i» *r -...*11 between a and A. The numbers 

lt, t *0**1* *».*t~i *r».*n 
will be called the points of the division D, and the sub-intervals 

„ , f (*o. *i>*.C*r-i* *r),.(*n_i, *n) 
will be called the intervals of the division D. 

The length of the greatest of all the intervals *r) of D will be called 
the norm of the division D. 

Note 7. The sums S, s corresponding to a division D are sometimes 
written as Sn sn respectively. Clearly 

SD£*. 

Note 8* Oscillatory Sum. We have 

SD-*D-Smr *r~'Zmr (Mf-mf )5f-S Of Zf§ 

where Of denotes the oscillation of the function in 8f . The sum X Or &r 

is called the oscillatory sum and is denoted by , 

As Of >0, the oscillatory sum consists of the sum of a finite 

number of non-negative terms. 
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^samples. 
1* II 

/(#)» f ^h®1*® * *8 rational, 
J v ' [ 1, where x is irrational, 

«bow that/(x) is not integrable in any interval* 

2. Show that 

| **-J kdx—k(b-a). 

where k is a constant. 
(This proves that every function which is a constant is integrable*) 

3. A function/(*) is bounded in (a, b); show that 

T b b b 

(0 J */«*=* | f{x)dx, J kf{x)dx — k | f(x)dx, 

■where A: is a positive constant. 

b b b b 

(it) J kf(x)dx=k j f(x)dx, J kf(x)dx =* J /(*)</*, 
a a a a 

where A: is a negative constant- 
Deduce that if f{x) is bounded and integrable over (a, b) then so is kf(x), where 

k is any constant, and that 
b b 

J k/{x) dx=k | J(x)dx 

a a 
[If Mr, mr be the bounds of f(x) in 8r, then £Mr, kmfi (kmr, kMr) are the 

hounds of kf(x) in £r> when k is positive, (k is negative). 

4. A bounded function/(*) is integrable over (ay b) and M, m are the 
bounds of/(x), show that 

h 

a 

82. Darboux’s theorem. I. To every positive number €, there 
corresponds a positive number 8 such that 

b 

s< | f(x)dx-\- 6 
a 

for every division whose norm is less than or equal to 8. 

Lemma. Let [ f(x) | <& in (a, b) and Dx any division of (a, b) 
and let 8 be a positive number such that the length of every interval of 
Dv is <8. Then if Z>2 be any other division of (a, b) consisting of as 
tis points of division, all the points of Dt and at the most p more then^ 

S > Sj^ ~2pk8. 

Firstly suppose that ^>=1 so that-e^y only one interval, say 
8r, of Dj is divided into intervals, say 8V and 8"r. Let Mr, MV# M"r 
be the upper bounds of f{x) in 8r, SV, S'V respectively. r 
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We have 
SD1_SD, =Mr8r-(M 'rS',+M"r$,) 

= (Mr—MV)8r-f-(Mr—M'VJSr, for Sr=8V-|-8’V. 
Now, since | f(x) | < k, therefore 

-£<M'r<Mr<A:, *•«•. 0<Mr-M',<2£ 
Similarly 0<Mr—M",<2£. 

SDi~SDa}<2£Sr<2AS 

Now supposing that each additional point is introduced one by 
one, we obtain the result. 

We now prove the main theorem. 
As/ (x) is bounded, there exists a positive \ number such that 

| /(*) | <k in a, b). 
Since 

b 

a 

is the lower bound of the aggregate of the sums S, there exists a 
division, 

DJa—Xp, xlf xx.# a; , —b) 
’ P-1 v 

such that for the corresponding sum S Dlt we have 

b 

sDl< J Mdx+-\. 

a 

The points of Dj are (£+1) in number. 

We determine a positive number 8 such that 
2^-l)8 = j€, 

Consider any division D whose norm is less than or equal to 8. 
consider a division D3 consisting of, as its points of division, the 
points of D! as well as of D. 

We have 

\ + J dx>So1 >SDj >SD -2(P-WS (Lemma) 
a 

b~ 

or SD <2^-l)«+-« + J f{x)dx 

a 
b 

= | f(x)dx+t. 

a 
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Darboux’s theorem II. To every positive number c, there corres¬ 
ponds a positive number 8, such that 

b 

s> | f(x)dx-t, 

a 

for every division whose norm is less than or equal to 8. 

The proof is similar to that of the corresponding result on the 
upper integral. 

Note. Darboux\s theorem may also be symbolically exhibited as 
folio ws : 

b b 

it Nj)=u s}) ** J/w*. 
a a 

when l, the norm of the division D, tends to zero 

b b 

COr' J f(x)dx> JAx)dx. 

a a 

If possible, let 
b b 

I f{x) dx < | f(x)dx. 

a a 

Let k be any number lying between the upper and lower 
integrals. 

There exists, by Darboux’s theorem, a positive number 5, such 
that for every division whose norm is <8*, 

Also, there exists a positive number 82 such that for every 
division whose norm is^8«, 

s>k. 
If 8 be any positive number smaller than both 8t and 81# then 

for every division whose norm is ^8, 
S<&<s, t.e., S<s, 

which is absurd. 
Hence the result. 
Ex. Show that 

SD1>iD. 
•even when Dj, D* are two different divisions 

(This atonce follows from the cor. above). 

83. Another equivalent definition ot integrablllty and Integral. 
Let f(x) be a function defined in (a, b). 

Let 
D(a=*„<*i<**.<*,-i<*r<.*»=*&) 

be any division of (a, 6) and (jr any arbitrary point of 8r~(xr_lt xr)» 
Form the sum 

23 /(^r)8r=/(5x)8i + ...+/(5r)8f+...+/(^»)8|i. 
f=l 
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Def. The Junction f (x) is said to be integrable over (a, b), if 
there exists a number I, such that to every positive number however 
small, there corresponds a positive number 8 such that for every division 

D(a=x0<xxr,...xn=b) 
of norm ^8, and for every arbitrary choice of in [xr-i, xr), 

r—n j 

^ A$r)(xr-*r~l)~I <«. 
r=l | 

Also, then, I is said to be the integral of f{x) over [a, b), 
In a more concise but le^s precise manner the definition may be stated 

m little differently as follows :—A function fx) is integrable if 

8-»0 f-1 r r' 

exists and is independent of the choice of the interval tf and of the point £r of ; 

the limit I, if it exists, is said to be the integral of f{x) over (a, b). 

The equivalence of the two definitions will now be established. 

Let a bounded function f(x) be integrable according to the former 
definition so that 

T b b 

| f(x)dx— J f(x)dx = J f(x)dx. 

a a_^ a 

Let € be any positive number. 

By Darboux's theorem, there exists a positive number 8 such that 
for every division D whose norm is < 8, 

r b 

j \j{xdx-\-t= J/(*)<**+€, (1) 

a 

l 

SD>\ 

a 

) b 

f(x)dx—t— j / x)dx—€. (2> 

a a 

If be any point of the interval 8r of D, we have 

5D ^ (3) 
r~ 1 

From (1), (2) and (3), we deduce that every division D, whose 
norm is ^8, 

b b 
r=n 

t.e., 

jf(x)dx-/(tr)S,.< |f(x)dx+ i 

b 

2*/(Sf) *r- ( 
= 1 J 

a 

|r=« 
4 

r 
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and accordingly f(x) is integrable according to the latter definition 
also and 

b 

1= | f(x)dx. 

a 

Now, let f{x) be integrable according to the latter definition so that 
lt2/(*r)8r, 

exists, as the norm 8~*0. 
It will firstly be deduced that f(x) is bounded in (a, b). 
If possible, let f(x) be not bounded. 

There exists a division D such that for every choice of £r in 8rt 
I L1 /(£</<) I j < 1. 

or |2/($r)8ri< |I|+L 
As f(x) is not bounded in (a,b), it must also be so in atleast one 8r 

say in 8m, 

We take £ r-=xr, when r^m so that every number £r, except 
£ is fixed and, accordingly, every term of £r)Sr except the term 

/(£ m)$m is also fixed. Since f(x) is not bounded in 8m, we can choose 
a point jyi in 8m such that 

|2/(lr)*rf >|I|+1 
and thus we arrive at a contradiction. Hence f(x) is bounded in 
(a, b). 

Now, let € be any positive number. There exists a positive 
number 8 such that for every division whose norm is ^8, 

| 2/($r)8r-I | <H 

I-i6<S/(^)Sr<I+i€( (I) 
for every choice of the point £ r in Sr. 

If Mr, mr be the bounds of f(x> in 8r, there exist points ar. 
of 8r such that 

f(a?) >Mr— € /2(6—a), 

f(Pr)<mr+t:2(b-a). 

From these we deduce that 
2/(«r)«r>S-l€ orS<S/(ar)8,.+l«. (2) 

2/03r)Sr<s+i«or s>2/(j3r)8r—(3) 

From (1), (2) and (3) we deduce taking £ ,.=ar and £r that 
I-€«S<I + €, (4) 

for every division whose norm is < 8. 

Also we know that 
b V 

| f(x)dx^ | f(x)dx*Z S (5) 

a_ a 

From (4) and (5), we have 
b b 

I“€< f /(*)<**< J Mdx<I+«. (6) 

a a 
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b b 

or 0^ J f[x)dx— J /(*)«£*< 2« 

a a 
so that the non-negative number 

b b 

| J(x)dx— j f(x)dx 

a a 

is less than every positive number ; € being arbitrary, and hence 

V b 

J/(*)<**- | f(x)dx=0, (7) 

a a 

so that the function is integrable according to the former definition 
also. 

From (6) and (7), we have 
b 

i-«< J/(*)<**< i+«, 
a 

and since, € is arbitrary, this gives 

b 

1= J f(x)dx. 

a 

Thus the equivalence is completely established, 

84. The condition for integrability. 

84.1. First form. The necessary and sufficient condition for the 
integrability of a bounded function f(x) is, that to every positive number 
«, there corresponds a positive number 8, such that for every division l) 

whose norm is ^ 8, the oscillatory sum wD is <€. 

The condition is necessary. The bounded function fix) being 
integrable, - 

b b h 

J /(*)<**= J f(x)dx= { f(x)dx. 

a a a 

Let e be any positive number. By Darboux's theorem, there 
exists a positive number 8 such that for every division D whose 
norm is < 8, 

b b 

SD < | /(*)<**+ 2~** | /(*)**+ | ’ 
a 
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b b 

and sD > -* = J f(x)dx—~- 

a a 

b b 

J/(*)<&- * < Sl)^sl)< | f(x)dx+ ~ 

a & 

or “'n ”SD —SJ> < *’ 

for every division D whose norm is 

The condition is sufficient. Let € be any positive number. 
There exists a division D such that 

Since each one of the three numbers 

r h h h 

sn - | f(x)dx- | fx)dx, | f(x)dx-sD 

a a a a 

is non-negative, we see that 

b b 

0< | f(x)dx- | f(x)dx'' (, 

a a 

As € is an arbitrary positive number, we see that the non¬ 
negative number 

b h 

| f{x)dx— | / (x)dx, 

a a 

is less than every positive number, and hence 

7>~ b b b 

jf{x)dx~ j"/ (x)dx*eQ or J f{x)dfm J {/)#**, 
a a ax 
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so that f(x) is integrable. 

Thus the theorem is established. 
Note. This theorem is sometimes stated differently as follows 

Tht ntttssary and sufficient condition for a bounded function /(*) to b» integrate 
in (a, b) is that 

It 

whiro 5, tht norm qf tht division D, tends to 0. 

84.2. The condition of integrabllity. Second form. The necessary 
and sufficient condition for the integrability of a bounded function f(x) 
is that to every positive number e, there corresponds a division D such 

that.the. corresponding oscillatory sum « <€. 

That this condition is necessary follows atonce from the first 
part of 584.1. 

The condition is sufficient. As in the second part of §84.1, 
we write 

b r b b 

SD - J f(x)dx j + I J f(x)dx~ J f(x)dx 

a a a 

+ | | f(x)dx-sD 

a 

and see that 
b b 

J f(x)dx- J f(x)dx<(. 

a a 

From this relation, which holds for every positive e, we deduce 
that 

b b b b 

| f(x)dx— | f(x)dx—0, i.e., J f{x)dx— j f(x)dx. 

a a a a 

Note. On comparing; the two forms of conditions, the reader will 
easily see that, from the point of view of necessity, the first form is re ore .valu¬ 
able than the second but, from the point of view of sufficiency, the second 
form is more valuable than the first. 

85. Particular classes of bounded integrable functions. 

85.1. Every continuous function is integrable. 

Suppose that f(x) is continuous in (a, b). 

Since f(x) is continuous, it is bounded. 

Let e be any positive number. 
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Wc divide (a, b) into a finite number of sub-intervals *8/ such 
that the oscillation of f(x) in each sub-interval is <f/(6—a) ; this 
being possible as proved in §50.5. 

If Wp be the oscillatory sum for this division, 

<oD =E(Mr^mr)8XS[€/(^«)]Sr-[€/(8--a)]28r 

*>D<«. 

Hence f(x) is integrable in (at b). [§84.2]. 

85.2. A bounded function f(x) which has only a finite number of 
points of discontinuity in (a, b) is integrable in (a, b), 

Let 
aS>.>apt 

be the finite number of points of discontinuity of f(x). 

Let € be any positive number. 

We enclose the points au av>.,aP) in p non-overlapping 
intervals 

{<> o. (**', O.Mr, *p") 
such that the sum of their lengths is <€/2 (M—m), M, m being the 
bounds of f(x) in (a, b). The oscillation of f(x) in each of these 
intervals is <(M — m) and accordinglv the oscillatory sum for these is 

<[€/2(M-w)] " (M~w) = €/2. 

Now,f(x) is continuous in the (p+1) sub-intervals 
(a, «/), af),.,(aP", b). 

As in §85.1 above each of these (^>+1) sub-intervals can be 
further sub divided so that the part of the oscillatory sum arising 
from the sub-intervals of each of them separately is <C€/2(p+l). 

Thus there exists a division of (a, b) such that the corresponding 
oscillatory sum is 

<2+2(f+V)' ^+,)==€' 

Hence f(x) is integrable in (at b). 

85.3. If a function fix) is bounded in (a, 6) and the aggregate of 
its points of discontinuity has only a finite number of limiting points, 
then f(x) is integrable in (a, 6). 

Let 

&\> &2, .. ^P* 
be the limiting points of the aggregate of the points of discontinuity 
oif(x). 

We enclose them in p non-overlapping intervals 

K. <’). «a"),.(ap\ dp") 

such that the sum of their lengths is <«/2(M—m); M, m being the 
bounds of f(x) in (a, b). The oscillatory sum for these intervals is 

< t/2. 
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Only a finite number of points of discontinuity of f(x) can lie in 
each of the (^>+1) intervals 

(a, <v), (ax'\ af),.(ap", b), 

so that, as in §85.2, they can be so sub-divided that the part of the 
oscillatory sum arising from the sub-intervals of each of these (p + 1) 
intervals is separately <€/2(/>4-l)- 

Thus there exists a division of (a, b) such that the corresponding 
oscillatory sum is 

Hence f(x) is integrable in (a, b). 

85.4. If f(x) is monotonic in (a, then it is integrable in (a, b). 
Clearly f(x) is bounded and f(a), f(b) are its two bounds. 

Let e be any positive number. 

For the sake of definiteness, we suppose that f(x) is monotoni- 
cally increasing. 

We divide {a, b) so that the length of each sub-interval is 
< «/[/(&)■-/(«) + !]• 

Let 
D(a=*0, x„ xz,.xr,.xn~b) 

be any one such division. 

Let hr—xr—x,..v 

Here Mr=/(*,.). 
“d tnT)Sr = li [/(*,) f{xrm.i)]8?. 

</l-/(a)Tl ' 2 [ f{xr) f{xr—\)] 

T ' 
Hence /(*) is integrable in (a, b). 
Note. If we had taken [/(6) — /(<j)1 instead of [f(b)—f(a)-f 1], the proof 

would not have been valid for the case when f(b) —f(a)?--0. i.e , when /(*) is a, 
constant The artifice of taking [fib)— ~f{d)+k] where k is positive, or, in 
particular/^)-/(a) +1 serves to make the proof applicable even to this case. 

Ex. 1. A function /(*) is defined in (0, 1) as follows :— 

/(0)«0f 

/(*)==!, when 4<*<l, 

/(*)“$» when (£)* <^i. 

f{*)Mi)*~\ when 

show tkatf(x) is integrable. 

Since/W is monotonieally increasing in C0» l), it is integrable, (§ 85*4) 

Or, we notice that/(x) is continuous in (0,1) except at the set of points 
, t o, i m (o*,.(v«. 

which has only one limiting point, viz»> 0 and hence/(x) is integraole. (§ 85*8). 
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!*• 2. A function/(x) is integrable in (a, A): show that 

CO It 2, AAa+fA) == [f(x)dx, 
f—i 1 J 

when A—»0, #-*», nh—b—» 

<*) It X f(ar^> *) (ar^ - a,p~')' 

P~ 1 

b 

J /(*)*. 
a 

when r—H, n—►<», 

86. Properties of integrate functions. 
861. If a bounded function f\x) is integrable in (a, b), /Am it is 

also integrable in (a, c) and (c, b), where c is any point of (a, b), 

Conversely, if f(x) is bounded and integrable in (a> c), (c, b), then 
it is also integrable in (a, b). 

Also in either case 

b c b 

| f{x)dx = | f(x)dx+ | f(x)dx. a<c<b. 

a a c 

Suppose that f{x) is bounded and integrable in (a, b). 

Let € be any positive number. 

There exists a positive number 8 such that for each division of 
(a, b) whose norm is ^8, the oscillatory sum is < c. Let D be a 
division of (a, b) such that V is a point of I) and that the norm of D 
is < 8. 

The oscillatory sum for the division D breaks itself into two 
parts, respectively consisting of the terms which arise from the sub¬ 
intervals of (a, c), and (c, b). Since the terms of an oscillatory sum 
are all positive, each part must itself be <c. Hence f(x) is integrable 
both in (a, c) and (c, b). 

Let, now,/(*;) be bounded and integrable in (a, c) and (c, b). Let 
€ be any positive number. There exist divisions of (a, c) and (c, b) 
such that the corresponding oscillatory sums are < c/2, The 
divisions of (a, c) and (c, b) give rise to a division of (a, b) for which 
the oscillatory sum is <(c/2+c/2) = €. Hence f(x) is integrable in 
(a, b). 

The relationship of equality is to be proved now. Let c be any 
positive number. 

As/(*) is simultaneously integrable m (a, c), (c, b), and (a, 6), 
there exists a positive number 8 such that for divisions of norm ^ 8, 
and of which c is a point, we have 

S 
(«. o) 

/(Sr) *, 

c 

\j(x)dx !<-*, 

b j 

2 Mr)K- {/(*)&:<-!. 
(c, b) ' | 3 
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r b 

X Mr)*r - f /(*)<** < 4: 
(a, b) J 6 
v ' a 

where the meanings of the symbols X /( £ r)$r> etc., are obvious. 
(a, c) 

Since s /(tr)*r + s /(«r)*r = 2 Mr)h> 
(a, c) (c, b) [a, b) 

we deduce that 
bcb 

\f{x)dx- \f{x)dx-\ f(x)dx j < €, 

a a c I 

from which it follows that 
b c h 

j f(x)dx- J f(x)dx- | f{x)dx=0, 

a a c 

* being an arbitrary positive number. 

Cor. If f{x) is bounded and inferrable in (a, b), then it is also 
bounded and integrable in {a, ft) where a<f 

As f(x) is integrable in (a, b), therefore it is integrable in (a, ft) 
and hence also in (a, ft). 

88*2. If f{x) and g(x) are two functions, both bounded and inte- 

grable in (a, b), then /(*)+#(*) are also bounded and integrable in 
(a, b), and 

b b b 

| [f(x)±g{x)]dx = | f(x)dx + | g{x)dx. 

a a a 
Let € be any positive number. 

Since f(x), g(x) are integrable, there exists a positive number 5, 
such that for every division of norm < S and for every choice of | 
in Br> 

; b 

| xf(tr)K- J JW* : <4- (0 

! a 
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Hence f{x)±g{x) are integrable in (a, b) and 

b b b 

| [f(x)±g{xi}dx = ^f{x)ix± | g(x)dx. (§83) 

a a a 

Cor. The result can be extended, by Mathematical induction, 
to the case of the algebraic sum of any finite number of functions. 

86*3. If f(x)t g(x) are two functions, both bounded and integrable 
in (a, b), then f(x) g(x) is also bounded and integrable in (a, b). 

Since f(x), g(x) arc bounded, there exists a number k, such that 
for every x in (a, b). 

\M\<k, \g(x) \<k. 

Therefore j f(x) g(x) | in (a, b) so that f(x) g(x) is bounded. 

Let 
D(a^x0, xlt x2,.„ j, x.,.,xH~b) 

be any division of (a, b). 

Let M'r, m'r ; M"r, w,fr ; Mr, mr 

be the bounds of/(*), g(x) and f(x) g(x) in 8r~(xr v xr). If av aa 

be any two points of 8r, 

/(>2» /(al) g(ai)=S,(«i)[/(“2)-/(«i)]+/(a1)[^(tf2)-g(ai)] 

+ /(al) I l) 

or \f(aa)g(ai)- /(“j) g(ai) i ^ i g{a2) | |/(a2)-/(a1) 

-m' (1) 

Now let ( be any positive number. 

Since f(x), g[x) are integrable, there exists a positive number 8 
such that for every division of norm^8, the oscillatory sums of f(x) 
and g(x) are both <e/2&. 

We now suppose that D is any division of norm^S, so that for 
D, we have, from (1), 

<6.(e/2A)4-£.(e/2&)—€, 

i. e., the oscillatory sum 2(M,.—mr)8r<f_(. 

Hence f(x)g(x) is integrable in (a, b), 

Cor. The result can, by Mathematical induction, be extended 
to the product of a finite number of bounded and integrable functions. 

86 4. If f(x), g(x) are two functions, both bounded and integrable 
in (a, b), and there exists a positive number 't‘ such that | g'x) | >t. 
in (a, b), then f(x)jg(x) is bounded and integrable in {a, b). 

Since there exist positive numbers g and t such that in (a, b) 

\f{x)\<K I £(*) I <k> lf(*)l>*. 
therefore 

\mm \'<ki* 

in (a, b), Hence f(x)!g{x) is bounded. 
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Let D(a=#c, xv.. xr v xr,.bxn~b) 
be any division of (a, b) and let M'r, *n'r ; M"r, m,fr ; Mr, mr be the 
bounds of f(x), g(x), f(x)lg(x) in Srs(^r.lf xr). If aa be any two 
points of Sr 

fat) _/(«i)_ ; = j) [g(g,)-g(ai)] j 
g(a*) g(oi) I g(«i)g(ga) t 

<(*/<*) I (/(«*)-/(ai) I +(*/**) I g(aa) g(ai) I 
<(A/<i)(M'r-«'r) + (A//»)(M,V-m",.) (Ex. 8. Page 30) 

Let, now, € be any positive number. 
Since f(x), g(x) are integrable, there exists a positive number 8 

such that for every division D of norm ^8, the oscillatory sums for 
f(x), g(x) are both less than t2tl2k. 

We now suppose that D is any division of norm ^ 8 so that for 
D we have, from (1), 

S(Mr-mr)8r<(A//*)S(MV-fnV)8r+(W*) S(M"r-m\)8r 

< (k/t')(t*s;2k)+{W){tHl2k)= e. 

Hence f(x)fg(x) is bounded and integrable in (a, /;). 

80'6. If f(x) is hounded and integrable in (at by then | f(x) | is 
also bounded and integrable in (a, b). 

There exists a positive number k such that | f(x) j <fk so that 
| f(x) I is bounded. 

Let € be any positive number 
Since f(x) is integrable, there exists a division 

D(a—s0f xlt x2,., x,—j, xr,.. xn=b) 
such that the corresponding oscillatory sum for f(x) is 'e. 

Let Mfr, m\ ; Mn mr be the bounds of f(x) and , j f(x) | in 
Sr~(xr.v xr). 

If iv be any two points of 8r, 

I ’/(■»*) ! - I /(CL,) 1 i ^ |/(«,)-/(«,) | 
<M\—mr’ 

M,.—mr^Wr—m'r (Ex. 8. Page 30). 

This gives ii (M2 (M'r—w',.)Sr< e 

i.e., 2(Mf-wr)8,.<€. 

Hence | f(x) | is integrable in (a, b). 

Note. The converse of this theorem is not true. If we take 
f(x)**r when x is rational* 
J ' ' L-l, when x is irrational, 

v O 

| /(*)</*—(*-«), | f(x)Jx=*=-(i-a) 

so that 

| Mix 

does rot exist, 
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But since | /(*) | » | , for all x, therefore 
b 

J I /(*) I 4* exists and is equal to (6— a) 

a 

87. Definition. The meaning of 
b 

| f(x)dx. 

a 
when b^a. 

If f(x) be bounded and integrable in (b} a) where a yb, then, 
by def., 

b a 

| f(x)dx— — | f(x)dx. 

a b 
a 

Also, by def., J f(x)dx~0. 

a 

It is easy to show that the results about integrals obtained 
in §§85, 88 hold true even when the upper limit ^ the lower limit. 

Note. The reader may carefully note that the statement 
«b ” 

J f(*)dx exists, 

a 

means that f{x) is bounded and integrable in (a, b). 

88. Theorem. If b 

j f(x)dx 

a 

exists and M, m are the hounds of f(x) in (a, b), then 
b 

m(b~aa), 

a 

if b^a, 

b 

m{b—a)y j f(x)dxyM(b~~a), if a. 

a 

For ar=bt the result is trivial. 
If by a, then for any division D, we have 

b 

J f(x)dx^SD^U{b-a), (§81) 
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b 

i.e., m(b—a)% j f(x)dx^M.(b— a), 

a 
If f><«, i.e., a^>b, then, as proved above, 

a 

m(a—bJ f(x)dx^U.(a—b). 

b 
a 

-»(*-&)>-J/(*)&> 

b 
b 

i.e., m(b—a)> J j(x)dx^M(b—a). 

a 
Hence the result. 

b 

Cor. 1. If | f{x) dx exists, then there exists a number lying 

a 
between the bounds of f(x) such that 

b 

| f(x)dx=p{b-a). 

a 

Cor. 2. If f(x) is continuous in (a,b), then there exists a number fc’ 
lying between a and b such that 

b 

| f(x)dx=(b—a) f{c). 

a 
Note. We may write —a), where 

b 

Cor. 3, If | f(x)dx exists, and k is a number such that, for all x. 

i m\<k, 
b 

{ /(*) dx 
a 

For a=b, the result is trivial. 
* We have 

-k< f(x)<k, 

so that if M, m be the bounds of f(x) in (a, b), 

—k^m^f(x)^M^,k. 

<k| b—a | 

0) 
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Let b^>a. Therefore, from 1, 
b 

-k(b—a)^m(b—a)<^ j f(x)dx^M(b—a)^k(b—a) 

or J/M dx <k j (b-a) 

Let b<C.a. We have, from above, 

I 
f f(x) dx | a-b | , 

i.e.t J /w dx < k | ft—a 

Cor. 4. If | f{x)dx exists and /(a;)>0, then 

a 

h 1 f // \ j / >0, when b>a ; 
J f(x) dx |^o, when b^a. 

a ' 

For b=a, the result is trivial. 

Since/(*)>0, therefore, m>0. 

Let ft>#. We have 
b 

| f(x)dx^M(b--a)>0. (ft—a)=0. 

a 

Let b<^a. We have, as proved above, 

a 

j f{x)dx>0. 

b 
b a 

*' j f{x)dx=- j/(*)<*#< 0. 
« ft 

ft ft 

| /(*) | §(x)dx 

a a 

Cor. 5. If 
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exist and /(*)>g(*), then 
b 

| /(*)</*> | g(x)dx, when b>a, 

a 
b 

a 
b 

| f(x)dx^ | g(x)dx, when 6<a. 

a a 
Under the given conditions [f(x)—g{x)] is integrable 

Therefore 
b 

| [/(*)—£(*)]<&>0 or <0, 

according as or 
ft ft 

J f(x)dx— | g(x)dx>0 ors^O, 

a a 
according as 6>a or b^a. 

Hence the result. 

Cor. 6. If 

| f(*)dx, 

exists, then 

I f(x)dx J I/M dx\ 

It has been shown in §86*6, that 

b 

J \A*)\i* 
a 

exists. We have 
- I/(*) I </(*)< I/M I • 

If we have 
6 b b 

-f |/(*)|d*< J/(*)*< | | /(*) | dx. 

a 
b 

a a 
b b 

J /(*) dx < | 1 /(*) | dx= ( l/WV* 
a 4 a 

and>0. 

cor. 5 
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If a, we have, as proved above, 

a 1 a 

J fix) dx |< J 1 fix) 1 dx 

b b 
b | b 

\ fix) dx < J 1 fix) | dx 

a a 

89. Functions defined by definite integrals. If 

B 

} f{x)dx 

a 

exists, then the function j>(t) of t, where 

* i 

#)= j f(x)dx, 

a 

is defined in (a, b). It is now proposed to study the properties of 
^(/), in relation to continuity and derivability. 

The function <p(x) may be called the integral function of f(x). 

b 

89.1. If j f(x)dx exists, then 

a 
b 

t(t)= J f[x)dx 

a 

is continuous in (a, b). 

There exists a number k such that I f{x) | <& in (a, b). 

Let c be any point of (a, b). 

Let € be any positive number. We have 

c c+h 

</■(«)= | f(x)dx, <f>(c+h) = | f(x)dx. 

a a 

c-\-h 

| <f>(c+h)—p(c) | = J f(x)dx < j h | .k (cor. 3. §88) 

c 

<«, if I h\<tlk. 
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Hence i>(t) is continuous at any point c of {a, b) and so in the 
interval (a, b), 

Ex. If I f(x)dx exists, prove that 

b 

^(0= j /(*)</* 
is continuous in (a, b), 

89.2. If f(x) is continuous in [a, b)t then 
t 

0(0= J f(x)dx, 

is derivable in [a, b) and 

*'W=/W- 
Let c be any point of (a, 6). We have 

cA-h 

i{c+h)-Uc)= J f{x)dx=hf{c-[-6h). (O^tf^l). (cor. 2. §88) 

Since f(x) is continuous at c, therefore, when h >0, 

It f(c+0h) = f(c). 

Hence It it /(c+0/*)==/(c). 
/?-*0 * 

Thus ^'(c)=/(c). 
As c is any point of (a, b), we have in (a, 6), 

Ex, If/(x) is continuous, prove that 
b 

*M- J /(*)& 

f 

is derivable in (*, £), and /(0* 

Note. Primitive. If there exists a derivable function 0(*) such that 
9m*') is equal to a given function/(x) in (a, £) then we *ay that 0(*) is the 
primitive of /(#). The theorem above shows that Every continuous function 
possesses a primitive♦ 

Cor. If a function m possesses a continuous derivative <f>'(x), then 
b 

| P’(x)dx=P(b)-p{a) 

a 

The continuous function is integrable. Let 
t 

$(*)** | f(x)dxt 

a 
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Since i>'(x) is continuous, we have ^'{t)Therefore the 
functions differ by a constant. Let 

t 

rj>(t)z=ip[t)-\-k— J p'(x)dx -\-k 

a 

where k is a constant. 
*(a)=0+A=A 

b 

t(b)= J t'(x)dx+k 

a 

b 

Hence £>(&) —/(a) = f <f>'{x)dx. 

90. The Fundamental theorem of the Integral Calculus. If 

j f(x)dx 

exists and there exists a function j>(x) such that 
?>'(*)=/(*) in (a, b), 

b 

then { f(x)dx=i(b)-?(a). 

Let € be any positive number. Since <fi'(x)~f(x) is integrable in 
(a, b), there exists a division 

IX-y, %2>.fXr Xyt...,. b) 

such that 

r^n b 
2 0'(£,)8r- [ <p{x)dx <*, 

r=l > 
a 

We particularise the arbitrary point of 8r~(xr„lt xv), in the 
following manner :— 

By the Lagrange's mean value theorem of differential calculus i 
there exists a point £r of 8r such that 

Xfltr^mxJ-MXr-^WHm 
b 

4>(b)-^(a)~ J 4>'{x)dx <(, 
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As € is an arbitrary positive number* we have 

b 

4>(b) — if>(a)— | 4>'(x)dx=0. 

a 

Hence the result 

Mote. In the Cor. to the preceding section and in the present 
section, we have established the truth of the same equality, viz., 

b 

a 

but the proofs are different, depending as they do upon the different 
conditions imposed upon the function in question. 

For the validity of the proof given in the Cor., p'(x) has to be 
assumed continuous but for the validity of the proof in the present 
section we require fp'(x) to be merely bounded and integrable. Thus 
the present proof seems to be more valuable, but the reader would do 
well to notice that the value of the theorem in the preceding section 
lies in the fact that it sets down a sufficient condition for the exis¬ 
tence of a function <f>(x) whose derivative is a given function f(x); 
such a function 0(x) is usually known as the primitive or the 
indefinite integral of f(x). Thus the theorem of the preceding section 
may be stated a little differently as follows : — 

The sufficient condition for a function f{x) to possess a primitive 
is that f(x) is continuous and the primitive is, then, given by 

x 

| f{x)dx+c, 

a 

where c is any constant whatsover. 

The present theorem is quite unconcerned with the question of 
the existence of a primitive of f(x) ; it simply states that if a bounded 
and integrable function f(x) does possess a primitive <P(x), then* 

b b 

j" f(x)dx=* J <f>'(x)dx=<f>'b) — f(a). 

a a 

91. Mean value theorems of the Integral Calculus. 

911. First mean value theorem. If 

b ' b 

J f(x)dx and j <p(x)dx 

d (t 
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both exist and i(x) keeps the same sign, positive or negative, through¬ 
out the interval of integration, then there exists a number /*, lying 
between the upper and lower bounds of f(x) such that 

b b 

| f(x)p(x)dx=tl | p(x)dx. (1) 

a a 

Firstly suppose that ${%) is positive. 
of /(*), 

ni^ f(x)%M. 

If M, m be the bounds 

m | 

b 

m i 
a 

miS(*)< /(*)0(*)<M0(*), for p (x)>0. 

b b 

i(x)dx^ | f(x)<f>(x)dx^M j <fi(x)dx, 

a a 

b b 

P(x)dx> | f(x)p(x)dx>M j f(x)dx, 

a a 

if ; 

(§88 Cor.5 P.124) 

if b^a. 

In either case we see that there exists a number lying be¬ 
tween M and tn, such that (1) is true. Hence the result. 

The case when $(x) is negative may be similarly disposed of. 

Cor. In addition to the conditions of the theorem, if f(x) is conti¬ 
nuous also then there exists a number £ belonging to the range of 
integration such that 

b b 

| f(x)i>{x)dx=f{ |) J <f>(x)dx. 

a a 

fll.2. Second mean value theorem. If 

b b 

| f(x)dx and j <p(x)dx 

a a 

both exist and i>{x) is monotonic in (a, b), then there exists a point 

| of (a, 6) such that 

b | b 

j f(x)p(x)dx=<f,[a) | f(x)dx+f{b) J f(x)dx. 

a a % 
(This theorem is due to Weitrs trass). 
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Abel's Lemma. The proof of the theorem depends upon a lemma 
which is due to Abel and which we now state and prove. 

(») «j, at,.an is a monotonicatty decreasing set of n 
positive members, 

(ii) rj, v.it.,vn is a set of any n numbers, 

and (Hi) k, K are two numbers such that 

for all p^n, 
k<Cv1+vi+.+fi><K, 

r—n 
then 2 ar v^afK. 

r=1 
We write 

We have 
Sj>=Vi-fi>J+.+vp. 

2 arvr—S„ j) 
r—l 

=(al-a2)S1+(a2-a3)S2+.+ («»-i-«/»)S,,-i+anS„. 

Now, by (i), (al—a2), (a2—a3),.,(an -i—a„), an are all positive. 
Also, by (in), A<S^<K, for all p^n. 

Therefore 

r=n 
2 ctrvr<f.(ai~«j)K-f-(aa—,«a)K-f- 

r=I 
+ art)K+aBK=fl1K, 

r—n 
2 ar vr'^(a1 a^)k-\-(a2 aa)A+.^(^n-i—af)k-\-ank^=-aik. 

r=l 

Hence the lemma. 

Proof of the theorem. Firstly we prove the following :— 

b b 

If J f(x)dx and J \ (x)dx both exist and p(x) is monotonicatty 

a a 

decreasing and positive in (a, b), then there exists a point $ of (a, b) 
such that 

6 $ 
| f(x)<l>(x)dx=lfl(a) | f(x)dx. 

a a 
(This result is due to Bonnett). 

Let 

D(<*=*0> ..> xr-i, xr,....... x,t—b) 

be any division of (a, b). Let Mr, mr be the bounds of f(x) in 
®rs(*r-i» xr)- Let =a and let when rf 1, be any krbitrary 
point of 8f. 
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We have 

*r 

tHr 8?. ^ j f(x)dx ^ M,. 8r 

Xr-i 

mr Sr < /( £ r)^r^ Mr Sr 

Putting r==l, 2, 3,.tp where p^nt and adding we obtain 

. xp 
'=P f r=P \ 

2 mr 8r ^ I f(x)dx < 2 My 
J r=l 
a y 

r—P r=p r=p 
2 «t,.5y< 2 /(ir) ^ 2 MySy 

f==l r—1 r=l 

This gives 

J/W* - sf /(!,)«, 

r=p r—n 
< 2 (My-mr)8f ^ 2 (M,.-mr)Sr, 

r~1 r=l 

>-=« r=p Xf r—n 
or -]/(*)<**- 2 Oy8y< 2 /(?,.)«,< /(*)<** + 2 Or 8r, 

4 r==l r—I J r—1 
a a 

where Or=(M,.—mr) is the oscillation of f(x) in Sr, 

t 

Now, | f(x)dx, being a continuous function of t, (§ §89*1, 50*3) 

a 

is bounded. Let C, D be the bounds. Therefore we have 

r=n r=p r—n 
C- 2 Or8r*Z 2 f(tr)*r<D+ 2 Or8r. 

r—1 r=l r—1 

In the Abel’s lemma, we put, as is justifiable, 

V=/(5r)*r ar~P(^r)'> 
* = C- 2 OySy, K = D+ 2 Oy8y, 

and obtain 

r—n 
2 orar 

r—1 ] < '2Air)Htr)*r< 
r=l 
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Let the norm of the division tend to 0. We then obtain, in the 
limit, 

b 

C j/(*) 1> (x)dx^D t(a), 

a 

b 

or J f{x) >p 

a 

where ^ is some number between C and D. 

The continuous function 

t 

J f(x)dx 

of t must obtain, for some value £ of t, the value M which lies bet¬ 
ween its bounds C, D. (Cor. 1 to §50*4). Thus we obtain 

b 5 

j f(x) f (x)dx = lA(a) J f(x)dx (!) 

We now return to the theorem proper. 

Let <f>(x) be monotonically decreasing so that 

f(x)=t(x)-<l>(b) 

is monotonically decreasing and positive. 

There exists, therefore, a number £, between a and b, such that 

b £ 

| /(*) W*)-?(&)]<**=J f(x)dx 

a a 

b * 6 5 

or | f{x) <f>(x)dx°=<f>(a) J f(x)dx+<f>(b) J f(x)dx - J f(x)dx 

a a a a 

5 b 

=Ha) | f(x)dx+t{b) | f(x)dx. 

a 5 

Let p(x) be monotonically increasing so that 

t(x)=t{b)-i>{x) 

is monotonically decreasing and positive. 
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There exists, therefore, a number |, between a and b, such that 
& I 

} /(*) W)-i‘{x)¥x=[i>{h)-Ha)'] J f{x)dx 
a a 

Thus we have completely established the theorem. 

Note. The reader may easily show that the theorem holds good even 
if a^b. 

Ex. Taking/(#)-*x and $(x)**s* verify the two mean value theorems 
for the interval (—1, 1). 

Ex. Show that the second mean value theorem does not hold good in 
the interval (— 1, 1) for/(x) = 0(*)«=*■. What about the validity of the first 

mean value theorem in the same case. 

92. Change of variable in an integral. If 
b 

(t) J f(x)dx exists, 

a 
(it) x=tf(t) is a derivable function in (a, ft) and <t>'(t)f*0 for any 

value of tf and $(a)=a, <f>(p)=b, 

(Hi) f[4>(t)} and ?>'(/) are bounded and integrable in (a, £), 
b t3 

ihen }/(*)<**= \ fW)l t'W- 
a a 

Since 0'(<)#>, it follows by Darboux’s theorem (§62, P. 87) that (0 
must always have the same sign and therefore 0 (<) must be strictly 
monotonic in (d, p) (§66), 

let D(a=f0, tx, t2, .>tr-i, tr).fn~l> 
be any division of (a, p) and 

let D'{a^x0i xlt x2).xr,lt xr,.,xn_v xn=b) 
be the corresponding division of (a, b), </>(tr) being equal to xr. 

By the Lagrange’s mean value theorem, we have 

where Vr lies between tr^x and tT. 

Let $>(77r)=£r. 
We have 

2 M r)(*r-*;-:) = 2 RH^r)] r(Vr){ir-tr-i) 
r=l r=l 

(1) 
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Now f(x) is integrable in (a, 6) ; 

also are integrable in (a, 0) so that is 
also integrable in (<*, 0). 

As the norm of the division D-*0, the norm of Dr also -►0. 
From (1), therefore, we obtain in the limit 

b fi 

\f{X)dx ={ nm f(t)dt. 

a a 

Note* The theorem holds even if 0'(f)=O for a finite number of values of t belong¬ 
ing to (a, 0) In this case we can divide the range (a, 0) into a finite number 
of ranges in each of which 0(0 is strictly increasing or decreasing and repeat 
the argument for each interval in turn and add the results. 

93. Integration by parts. If 

b b 

J f{x)dx, j g(x)dx 

a a 
both exist and 

x x 

F(*)=A-f J f(x)dx, G(z)=B + | g(x)dx, 

a a 
where A, B are two constants, then 

b b b 

J F(a) g{x)dx= | V(x) G(x) | - J G(x)f(x)dx. 

a a a 
b 

[Here | F(#) G(*) | denotes the difference [F(b) G(6)—F(a) G(a)]. 
a 

Proof. Let 

. D{a=x0, xv xt, ..xr „ xr,., xn*=b) 
be any division of (a, b). We have 

I F(*) G(%) |= 2 [F(#f) Gf^-Ff*,..,) G(^_j)] 
a r — \ 

«LF(ATr) [G(xr)-G(xr_,)]+SG(%,.,)[F(xr)-F(^._x)] 

Xr xr 

- 2F(*r) | g(x)dx+xG(xr_,) J /(*) dx (1) 

%r-l Xr-i 

Let Mr, tnr, 0,. denote the bounds and oscillation of fix) and 
MV, m'r, 0'r those of g(x) in xr). 

For every x in Sr, 

1 S(x)-g(xr) | ^0',, \f(x)-f(xT_,); ^0,, 
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g(*r)-0'r*£g(*Kg(*r)+0'r;) f(x «i)— Or^f(x)^.f(xrmmmi)’\'Or, ) 
• T 

[g(*r)-0V]8,^ J g(x)dx^[g(xT)+0’r)br; 

[/(*,-,)-Or] «r< J /(*)i*<[/(*r-x)+Or]«r. 
These give 

| g(x)dx=[g(Xr) + 6'r.O'r]Sr ' 

Xr-1 xr 
I f(x)dx=[f(xr_i)+eT.Or]8r, 

where — 
From (1), (2) and (3) we obtain 

b 
| F(*) G(x) I =2 F(*r) g(*,)Sr+2 G(x)..I)/(^._1)8/+<r, (4) 

a 
where <r s=S[F(^,.)^,?.0'r+G(^;._1)flr 07.]Sr. 

Sine F(x), G(x) are continuous, therefore they are bounded. Let 
k be a number such that 

I F(*) | <kt | G(x) | <A. 

I c i <*[s or+sov]afe 
Let the norm of the division D -*0 so that c* -►O. 
From (4), we now obtain 

b b b 

| F(*)G(*) | = j F(x) g(x)dx+ J G(x)f(x) dx. 

a a a 
Hence the result. 

Cor. If a function g (x) is bounded and integrable in {a, t) and 
a function /(*) is derivable in (a, b) .and the derivative/' (x) is 
bounded and integrable, then 

b x b b x 

\ /(*)£(*)<&* /(*) J S(x)dx - | /'(*) | g{x)dx dx 

d u a u a 

i(b) | g(x)dx- J ■ /'(*) J g{x)dx | dx 
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Examples 
1. (i) Show that if f(x) is a continuous function of x in x ^b, 

then 
x 

lx I 
a 

Hi) If Glx t_1)’ when * (tt) ?)- | when 

and if f(x) is a continuous function of x in 0< x< 1, 

1 

and if g(x)= J/( f) G'x, \)A%, show that g"(x)=/(x), 

0 

and find g(0) and g 1). 
% 1 

(ii) Sol. [g(x)= J /«)*(*-!)<*$ + { /($)*(*-!)<*$ 

o * 

* l 

=(*-!){ !/($)<*$+*{(t-l)/(f)<* I 

0 * 
1 % 1 

=* J J 
0 0 * 

1 1 

S’{x)= f mWt-xAx)+xf{x)-\f(\)i\. 

0 * 

g(0) and g(i) are both zero.] 
2. If f{y, *) = l-f 2x, fory rational 

/0's *) ** 0, for^ irrational,* 
calculate 

1 

o 
3. Integrate in (o> 2) the function *[*], where M denotes the greatest 

integer not greater than x. 
4. Evaluate 
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where 
/(*) = 0, when x=n/(n+i),(rt-f l)/«, (««1,2, 8,.). 

/(x)=*l, elsewhere. 
Is/(x) integrable in (0, 2) ? 

Examine for continuity the function so defined at the point x*«l. 

5. A function/(x) is defined, for x>0, by 
1 

f _dt_ 
/(*)“ J \/(l —2/x-f x9)' 

-1 
Prove that if 0^ x ^l,/(x)=2. What is the value of fix) if x>l ? Has 

the function/(x) a differential co efficient/or x= i. 

[For x >1, /(x) «=2/x, f{x) is not derivable for x=*l even though it is 
continuous thereat.] 

6. Prove that if the functions f(x) and tf(x) are bounded and 
integrable in (a, b), then 

b b b 

[ | u(x)fdx. J mx)Ydx. 

a a a 
Under what conditions does the sign of equality hold ? 
Sol. We have 

b 

[ | f{x)1(x)dx =[lt S(*,.-*r_i)/d,)*dr)]' 

a 
b 

J/*(*) «fc=4t SCvA*,.-*,-!)/d,)]s 

a 
b 

\^(x)dx=ltX[(xr-Xr.M( Sr)]*- 

a 
Now putting 

a,-'J{xr-xr-\)f{ $ ,•), b,- </{x,.-xr^)<f>{ $ ,.) 
in the Cauchy's inequality 

Sa2r %b*^[Xatbry, 

we get the required result. 
The sign of equality holds when 

ai a_2 __. 
^2 

i. e.t Mi) =/(€x> _ 
*($i> *(*t) 

i, e.> when f(x), i>(x) are both constants 
7. Show that 

It 
m oo 

a: 

J ~i/ta0, /of—1<#^L 

0 
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[LetO<*<l. Then 

t”dt= 
M+l Hi + 1* 

o o 

Let —Putting t~—u, we obtain 

h +t 
dt 

—x 

H 
um du 

<rU 
-x 

umdu < 

0 
8. Show that, when | # | ^ 1, 

x 
r dt i K , i i 
)-T+t*=x--SX +9 xB-13x1'+- 

(w+l^+l)- 

We have 

1^=1-^+^-^+.+(-!)•-» *‘»-4+ 

•J 1+t* 5 +9 13 +.+—4nxn 

+ M)"J tin 

l+t* 
-dt. 

Now, we have 

(K 

so that 

9. Prove that 

X X 
f tin 

r~dt < J t*ndt 
X*n+l 

i l+t* 4«-f 1 
0 0 

< 
4n-j-1 

it r tin ,,n 
« +o° J i+iid ~0' 

o 

it -X* 
X—+oo 

At 

j e* dt=0. 

If f{x) is positive and monotonically decreasing in fl ool 
how that the sequence { A„ >, where ' J’ 

A»= | /(l)+/(2)+.+/(«) — | f(x)dx | . 

1 ' 
is convergent. 

Deduce the convergence of (l-|-}.f$-|-.-f i-logn). 



CHAPTER VII 

UNIFORM CONVERGENCE 

Trigonometric Functions 

94. Limit function of a convergent sequence of Functions. Let 

[SnML i-e-, 
S1(^r), Sa(*),., Sn(#),. 

be a sequence, every member of which is a function of x defined in 
some interval (a, b). 

To each point c of (a, b), there corresponds a sequence 

Si(c), S»,.,Sn(c),. 

of constant numbers. We suppose that all such sequences obtained 
by taking different points of (a, b) are convergent. The limiting 
values of these sequences define a function, say, S(*), such that the 
value S(c) of this function for a value c of * is the limiting value of 
the convergent sequence { SM(c) }. This function S(x) is said to be 
the limit function or the limit of the convergent sequence { Sn{x) }. 

Again, let { fn(x) } be any given sequence of functions. 

Consider the infinite series 
AW +AW +.+AtW +. (1) 

This series gives rise to a sequence of functions { Sn(x) }, where 

Sn W =A W +A W +.+fn W • 
The series (1) is said to be convergent, if the sequence { Sn(#) } 

is convergent and the limit S(%) of the sequence is said to be the sum 
function or the sum of the series. 

95. In the chapters, IV, V, VI, it has been shown that the 
algebraic sum of a finite number of continuous (derivable, integrable) 
functions is itself continuous (derivable, integrable). Also if 

S«(*)=/i W+/a M+.+/«(*). 
then 

S'»(*)=/'1(*)+/'2(*)+.+/'«(*) 

t.e., i 2/,.W=S ~fr(x), dx 

where each, fr(x), is derivable, 
and 

b b b b 

| Sn[x)dx~ \f,{*)dx+ | ft(x)dx+...+ j fn(x)dx, 

a a a a 

b b 

| Xfr{x)dx—X | fr{x)dx, 

a a 

where each fr{x) is integrable in (a, b). 
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We now consider some examples which illustrate that these 
results may not hold good in case the number of functions is infinite, 

95*1. Let/n(*)=**(l-*2)*-i. 

The series 5 i-e-> 

x2+x%(l—xi)+x1(l — #2)*+.+x2(l~~x2)n~l~{~. 

is a geometrical progression whose common ratio is (1—xz). 
Sn(x) of the n terms of this series is given by 

Sn{x) 
x2[l — (1 —#“)n] 

1—(i—^rr 
= 1 — (1— x2)* ; if xfQ, 

and Sn(*)=0, if *=0. 

The sum 

We know that if xfO, then It (1— x2)* exists finitely and =0, if 
and only if 

—1< X —a;2< 1, i.e., if \x\<V2. 

Thus we see that if S(,t) denotes the sum to infinity of the given 
series, we have 

Q, v fO, when *=0 
11, when 0< \x\<V2. 

This shows that the sum function S(x) is not continuous for 
*=0 even though every term fn(x) is continuous for x~0. 

95-2. Let fn{x)=nxe nx' -(«-!) xe~^n ^ 

It will now be shown that 

1 

| [ fi(x) +/»(*) +.+/» (*) +.]dx 
0 

I 1 1 

+ | fi{x)dx+ I Mx)dx+...+ | fn(x)dx+..., (1) 

0 0 0 

i.e., the integral of the sum/the sum of the integrals. 

The sum Sn(x) of the first n terms of the infinite series is given by 

S n(x)=:nxe~~nx2' 

We know from §71T, P. 94 that for every value of * 

nx~ 
en* >(n*2)2/2==n2*V2 

so that nxe 
-nx1 s* 1 * 1_5L 

^'ntx%/2 n | x , if #/0. 

Thus we see that as n-*oo, Sn(*)~>0 for every value of xt i.e., 

S(*)=0, for every value of x. 

Therefore the left hand side of (l)=o* 
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The sum p of the infinite series on the right hand side of (1) is 
the limit of P„ where p* denotes the sum of the first n integrals. 
Since 

1 

| nxe~nx* dx— — \ 

0 • 

—nx* 
e 

1 

=1(1-0. 
o 

we have 
1 

J /Mdx=l(l-0~£ ( j } , 
0 ’ 

and accordingly 

P,,=1(1-0- 
P=lt Pn=l/as n~*oo. 

Since o/l, we have the required result. 

95 3. Let + 

It will be shown that 

the derivative for *=0 of the sum S(x), i.c.} S'(0) 

^the sum of the derivatives, i.e2 f'n(0). 
We have 

S(*)=0, for every value of x, 

S\0)=0. 

Also it is easy to see that /\,(0) = 1, for every value of n, so 
that £ /'n(O) is a divergent series. Hence 

dx 2 2 & 
for 0. 

Note. It will thus be seen that the inversion of the operations of addition and 
integration as implied by the equality 

b b 

| £/tt(*V=**X | fnfx)dx 

(integral of the sum*the sum of the integrals) 

and the inversion of the operations of addition and differentiation as implied by the 
equality 

£/»<*) 

(derivative of the sum«=the sum of the derivatives) 
(which are certainly valid when the summation extends only to a 
finite number of terms) may not be valid when the summation extends 
to an infinite number of terms. The concept of Unffom convergence which is 
introduced in the following section enables us to obtain sufficient conditions 
for the validity of the inversions in the case of an infinite nupabpr of 
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96. The uniform convergence. The condition that S(a) may be 
the limit of a convergent sequence of functions-} Sn(x) } in (a, b), is 
that to each positive number e, there corresponds a positive integer 
w such that 

I Sn(*) —S(at) | <*, when «>*«. 
Obviously the value of m will depend upon e as well as % and 

as such it may be written as 

Suppose, now, that we fix € and vary x. To each value of x 
will correspond a value of tn. The infinite aggregate of these 
values of m may or may not be bounded above. In case 
this aggregate is bounded above there exists a value mQ, 
(the upper bound of the aggregate of the values of m), such that 

I s,(*)—s(*n <€, 
when «>w0 and x has any value whatsoever. In such a case we say 
that the sequence uniformly converges. 

“/~vd£)ef. A sequence { Sn(x) } is said to converge uniformly to a 
function S(x) in (a, b), if, given any positive number €, there exists a 
positive integer m such that 

I Sn(#)—S(#) | <€, 
for every value of n^m and every value of x in (a, b). 

Also a series X fn{x) is said to converge uniformly if the sequence 
{Sn(x)}t where 

Sn(x) ~fi{x) -\rfi{x) +.+ fn(x)> 
uniformly converges. 

We now illustrate the notion of uniform convergence by con¬ 
sidering some particular cases. 

1. Let S»(#)=»/(#+«). (z>0). 
We have, when w-> oo, 

S(*)=lt [«/(#+»)] = 1, for every value of x. 

If € be any given positive number, we have 

I Sn(x)~~S(x) I =*/(#+«)<€, if »>#(l/€—1). 

Here tn(t, *)=the integer just greater then — 

Obviously m{$, x) increases as x increases and ~>oo as x *oo so 
that it is not possible to choose a number mQ such that 

| Sn(#)-S(#) | <€, 

tor every and every value of x in (0, oo). 

Thus the convergence is not uniform in (0, oo). 

If, however, we consider the interval (0, k), where k is any fixed 
number, however large, wfc see that the maximum value of x(l/t-~~ 1) 
is &(l/c—1) so that, taking w0=any integer greater than *(l/€ — 1), 
we have 

I S„(*)—S(x) I <€, 

for every «>w0 and every x in (0, k). 
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Thus we see that the sequence { S„ (x) } converges uniformly 
in the interval (0, k) where k is any fixed positive number, however 
large. 

Note. It may similarly be shown that the sequence converges uni¬ 
formly in (— k, 0), where k is any fixed positive number, however large. 

2. LetS„(x)—xn. (0<»^1). 

We have, when n-> °o, 

We consider 0<*<1 i.e., the interval (0, 1]. 

Let € be any positive number. We have 

| Sn(x)-S(x) | 

if (l/*r>l/€, i.e., if n log(l/*)>log(l/€), \ when xjq 

or if »>log(l/€)/log(l/#), i 

Thus, when */0, m(t, a:)—the integer just greater than log (l/€)/log(l/%) 
Also obviously w(c, x) —1, when x—Q. 

We now see that m($, x) increases and->oo, when #, starting 
from 0 increases and tends to T so that it is not possible to choose 
m0 such that 

I Sn(*)-S(») | 
for every and every value of % in (0,1]. Thus the conver¬ 
gence is not uniform in the interval (0, 1]. 

If, however, we consider any number k such that 0OO* we 
see that the maximum value of log (l/€)/Iog(l/*) is log (l/€)/log(l/£) 
so that if we take ;n0=any integer greater than this maximum value, 
we have 

I S„(*)-S(*) I <€, 

for every n^m0 and every x in (0, k). 

Thus the convergence is uniform in (0, k). 
Note. The point which is such that the sequence does not con¬ 

verge uniformly in any neighbourhood of *=l, however small it may be, is 
said to be a point of non-uniform convergence of the sequence. 

3. Let $n(x)=e-n* x>Q. 

We have, when **->00, 

sM=,ts 

We consider #>0, 
Let € be any positive number. We have 

I S„(*)-S(x) | 
if emT>l/«, i.e., if M*>log (l/e), 

or if »>log (!/«)/*• 
Here w(e, *)=the integer just greater than log (1 lt)/x. Arguing 

as before, we see that the convergence is not uniform in [0, «*], but 
it is uniform in (k, °o], where k is any positive number whatsoever. 

The point x—0 is a point of non-uniform convergence of the 
sequence. 
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Ex. Show that ‘O' is a point of non-uniform convergence of the 
sequence { S„(x) }, where Sn(x)~ 1 —(l—#8)*. 

It is easily seen that 
e/-A ( 0, when *=0, 

^ ' (1, when 0< | x | < V2. 

Let, if possible, the sequence be uniformly convergent in a 
neighbourhood [0, k) of ' 0 * where k is a number such that 
0< | k | < V2. There exists, therefore, a positive integer m such that 
taking * = 

|S*(*)-S(*) | = (1~*3)"<4, (1) 
for every value of x in [0, k). 

Since (1— x')'11 -*1 as ;v ^0, we see that the inequality (1) cannot 
hold true in the neighbourhood of *=0 Hence the supposition is 
wrong. 

Ex. Show that ‘o' is a point of non-uniform convergence of the 

sequence { Sfi(x) }, where Su{x ~nxe nx 

It is easily seen that S(x)=0 for every value of x. 

If possible, let the sequence be uniformly convergent in a neigh¬ 
bourhood (0, k) of 0, where k is any positive number. 

There exists, therefore, a positive integer m such that, taking 
€ = 1, 

i S„(*)-S(*) j =nxe~nx*< 1. (1) 

for every value of (x) in (0, k) and for n > m. 

In particular, the inequality (1) must be true for *=1 js/n where 
n is any integer >l/&2 as well as w, so that we have 

nxe u ==Jn/e< 1. (2) 

Since x ->0 when n *oo, we see that on taking x sufficiently near 
0 we can take n so large that and thus we have a contradic¬ 
tion of (2). 

Ex. Show that #=0 Is a point of non-uniform convergence of the se¬ 
quence [»j»/(l+nV)]. 

Ex. Show that the series 

X x x 

*+l +(*+l)(2*+l) +(2*+1)(3*+i)+-" 

is uniformly convergent ip C*> «]. where k is any positive number and that 
#«*0is a point of non-uniform convergence. 

Ex. Show that the series 

— . 

is notnniformly convergent in (0, 1). 

Ex. Show that the series 

v_?— 
** n(n-f*l) 

is uniformly convergent in (0,k) where k is any positive number whatsoever 
hut that it does not converge uniformly in (o, *>}. 
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07. Test for the uniform convergence of a series. 
971. General principle of convergence. The necessary and suffi¬ 

cient condition for the uniform convergence in (a, b) of a series 2/„ {x) 
is that to every positive number € there corresponds a positive integer m 
such that 

I fn fiM“h/n f 2M ~f“  .+fn±p(x) [ <€, 

for every n> m, every positive integer p and every value of x in (a, b)t 

The condition is necessary. Let € be any positive number. 

Let S* (x) ^ffx) +f2{x)+.+ fn(x), 

and S(v)—It Sn(x), when n~*oo. 

Since the series is uniformly convergent, there exists a positive 
integer m such that 

I sn(*)~?W i <J«, (i) 
for every n > m and for every value of x in fyi, b). 

Also, therefore, 
! s*4j»W-S(*) I <R (2) 

for every w>w, every positive integer p and every x*in {a, b), 

From (1) and (2), we see that 

I /n+i(*)+/#tJ*(*) +.+/»»fp(*) I = I Sn(#) ! <€, 
for every every positive integer p and every x in (a, b). 

The condition is sufficient. We know that when this condition is 
satisfied the series is convergent. (§35*1, P. 47). All that we have now 
to show is that the convergence is uniform. Let S(x) be the sum of 
the series. 

Let € be any positive number. There exists a positive integer 
m such that 

I Sn\p(*)Sn(x) I <U, 
i. e. Sw(%) $ €<1 S,n.| p(x) Sn(x) + J €, (3) 

for every n^m, every 0 and every x in (a, b). 

Keeping n fixed, let p -»oo so that Sn+;>(x)~>S(x). 

Therefore we have, from (3), 
(%) i € ^ S (x) ^ S.h (x) -j- \ € 

i. e. | $n(x)~${x) | ^$€<€, 

for every n>w and every x in (a, b). 

Hence the series is uniformly convergent. 

97 2. Weierstrass’s M-test for uniform convergence. A series 
Xfn{%) mil converge uniformly in (a, b), if there exists a convergent 
series £Mn of positive constants such that 

I fn(x) I (i) 
for every value of n and every value of x in (a, 6). 

Let € be any positive number. Since is convergent, there 
exists a positive integer m such that 

I .j (it) 

for every and every p>0. (§35i, P. 47). 
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From (i) and («), we obtain 

I /n+i(#)+/n4a(*) +.+/n+/>(*) I 

^ +1 -f Mn+ 2 +.+ Mn 4/] < €, 
for every #>w, every ^>>0 and every x in (a, 6). 

Hence %fn(x) is uniformly convergent in (a, b). 

98. Properties of uniformly convergent series. 
98*1. Continuity of the sum. The sum function of a uniformly 

convergent series of continuous functions is itself continuous. 

Let S fn(x) be a series which is uniformly convergent in (a, b) 
and let each term fn (x) be continuous in (a, b). It will be shown 
that the sum function S(x) of the series is also continuous in (a, b). 

Let S„ (x)=f1(x)+f2(x)+.+/»(*)• 

Let c be any point of (a, b). 

Since the series is uniformly convergent, there exists a positive 
integer m such that 

j Sn(x)-S(x) ! <j€, 

for every and every x in (a,b). 

In particular, this gives 

| Sw(*)-S(*) | <R for every * in (a, b), (i) 

and | $m(c)-S(c) | <R (si) 

Now §m(x), being the sum of a finite number m of continuous 
functions, is also continuous. (§ 4 >, P. 70) 

There exists, therefore, a positive number 8 such that 

I Sm(*)-Sm(c) ! <$€, when ( x-~c | <8. (in) 

From (i), (ii), (m), we deduce that when | x—c | <8, 

| S(*)—S(c) | = | S(.r)^Sm(^)+Sm(.r)~SM(c)+Sw(c)-~S(c) | 

<€. 
Hence S (x) is continuous at any point c and, therefore, in (a, b). 

Note. This theorem shows that if the sum function of a series of con¬ 
tinuous functions is discontinuous at any point* then that point must be a point 
of non-uniform convergence of the series. tOn the other hand, as the following 
example shows, the condition of uniform convergence is only sufficunt but not 
nectssary for the continuity of the sum function. 

T , r t x n* (»-1)* 
Let /n(*)« f+llV i4*(n—l)ai* 

We have 
Sw(*)*iw/(l+»V)- 

••• S(x)»0, for every value of x 

so thafcS(#) is continuous at x®»0 even though, as may be easily shown, #*■»() is 
a point of non-uniform convergence of the series. 

98*2. Term-by-term integration. If 

(i) S fn{x) is uniformly convergent in (atb) 
and (ii) each fn(x) is bounded and integrable in (a, b)g 
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then the sum function S{x) of the series is also bounded and intertable in 
(a,b), and 

b b 

J 2,fn{x)dx - — 21 fn(x)dx. 

a a 

Firstly, we will show that the sum function Sfx) is integrable in (#, b). 
Let i be any positive number. 

Since the series is uniformly convergent, there exists a positive* 
integer m such that 

| Sn(x)—S(x) ) <e/4(b-a)t 

for every n>m and every x in (a, b). 

In particular, we have 

I Sm(x)—S(x) | <«/4(6—a), 
for every # in (a, ft). 

We write 

S(r) Sm(r) = Rm(r), i. S(x)=Sm(x)+R?n(x). 

Now the function Sm(x), being the sum of a finite number m of 
integrable functions, is itself integrable. (§ 86 2,P.119). There exists, 
therefore, a division D of (a, b) such that the corresponding oscilla¬ 
tory sum for Sm (x) is <£*. 

Since for every x in (a, b), \ Rm (x) | <€/4(6-~a), the oscillation 
of Rm(*) in every sub-interval of (a, b) is <2. €/4(6—a) = </2(&—a). 
Thus the oscillatory sum corresponding to any division and, in 
particular, the division D is 

<(&—a).€/2(&~a)=j€. 
Now corresponding to any division, the oscillatory sum for the 

sum of two functions is< the sum of the oscillatory sums for the two 
functions. (Use the result,proved in Ex. 8, P. 30). Thus there exists a 
division D such that the corresponding oscillatory sum for S(x) is 
<(i€+i€) = €. Hence S(x) is integrable in (a, b) This proves the 
first part. 

Again, let € be any positive number. 

Since the series is uniformly convergent, there exists a positive 
integer m such that 

|S„(*)-S(*) | <€/(>-«), 

i- e., — €/(6—<Sn'Ar)—S(^)< €/(*—a), (1) 

for every and every x in (a, b) 

Now Sn(#\ being the sum of a finite number n of integrable 
functions, is itself integrable. Also S(x) is integrable. Therefore 
Sn(# —S(x) is integrable. From (1), we have, therefore, 

b b 

— €< | §n(x)dX— J S(#)i%<€ 
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j b b 

I J S„(x)dx— | S(x)dx < t, 

U a 

for every n >w, 
Also, we have 

b 6 .. 

| S„(x)dx*= | J] /,.(*)<**■= 2 | f,.(x)dx. (cor. to §8fl-2, p. 120) 

so that the relation (2) means that 

.. .. b b 

It 2 [/, {x)dx— [ S(x)dx= f It 2 /,(*)<**. 
n-+oo f==l J j j n~+oo f= 1 

a a a 

b b 

2 J fn(x)dx= | 2 fn(x)dx. 

Note. From (1), we have 

X X 

| | SnWA- | S(x)dx | < [«/(*-«)](*-«)<«, 

a a 

^ x x 

| \fr[X]dx~ f SWA | <«, 

for every n^m and every x in (at b). 
x 

This shows that the series 2 J/»(#)rf*, *• *» 

a 
x x x 

| /i(*)A+ |/,(*)A+...+| fn(x)dx+. 

a a a 
x 

is also uniformly convergent in (a, b). Also since rach J /r(*)rf# is integra- 

a 

hie, (in fact continuous), we deduce that the operation ef successive integra¬ 
tion may be carried out any number of times. 

Note. The condition of uniform convergence is only sufficient but not 
necessary for the validity of term by term integration, as is shown by consider¬ 
ing the series £)/«(*)» for which the sum SnW of the first n terms is given by 

Sn(*)~«*/(l-f»,*i) (See note after § 98. 1) 
We have 

1 1 l | 2 fn'x)dxm> | S(*)A= J’oAeO, 
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md 
t~*n i 

X I /rW^« ~ logO-M*) which—>0 as #—»o#, 
rta I j 

Thu* 

1 1 

J X/»M*“ £ J/*(*)*. 
0 0 

*ven though 0 Is a point of non-uniform convergence of ihe series. 

98*8. Term-by-term differentiation. If 

(i) the series S(x)~Xfn(x) is convergent in (a, b)t 
(ii) each term fn(x) is derivable in (a, b), 

and (Hi) the series <r (x)—Xfn'(x) is uniformly convergent in (a, b) 

then 
r(x)=S'(x). 

Let c be any fixed point of (a, b), 

Lety be a variable which varies in the interval (a—c,b—c)' so 
that c+y is also a variable which varies in the interval (a, b). 

We define, as follows, a sequence { <f>n (y) } of functions of y. 

(/.(t+y)-m when /0 

*M~ ) , , „ 
( A(c), when ^=.0. 

By the Lagrange’s mean value theorem, there exists a number 
V lying between c and c-\-y, i. e., between a and b such that 

[fn(c+y)-fn(c)yy=f'n(V). 

Thus we see that for any value of y in (a—c, b—c), there exists 
a value of x in (a, b) such that 

<tn(y)=f'n(x). 

Since the series X f'n(x) is uniformly convergent in (a, b), there 
exists a positive integer m such tnat 

I A+1M+A + 2M +.+A+0G*) I 
for every n>w, every />>0 and every x in (a, b). 

Therefore we have 

19Wx(;y)+9W:y)+.+4>^v{y) I <«. 
for every w>m, every ^>>0 and every y in (a—c, b—c), so that 
the series %<f>n(y) is uniformly convergent in (a—c, b—c). From the 
definition of yn(W> we see that 0n(y) is continuous fory=0. Therefore 
from § 98T, we deduce that the sum function G(y)—X1>n(y) is also 
continuous for y~0. 

We have 

^(c)=S/'«W=2^„(0)=G(0) 

= It G(y)= It %4>n(y) 

y-+0 y~*0 
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It v /n(C+y)-/«(c) 

“>-0 y 

_ It 
y-*0 y 

Since c is any point of (#, 6), we have 

<r(*)=S'(*). 

A simple case of term by term differentiation. If we assume that 
each function f'n(x) is continuous in {a,b), then the proof becomes 
much simplified. 

Since %f*n(x) is a uniformly convergent series of continuous and, 
therefore, integrable functions, the term by term integration is valid, 
so that we have 
xxx x 

( = f f\(x)dx+ \ ft{x)ix+...+ \f\{x)ix +. 
a a a a 

oo OO OO 

« 2 [//W-/;■(«)]- 2 /,(*)- % f,{a) 
r= 1 r = 1 

—S(*)—S(a). 
Since c-(*) is continuous, (§98*1), we have, on differentiating 

with respect to *, (§89 2, P. 127)., 

e-(*)«S'(*). 
This is the form in which the theorem is generally proved. 
Note. The reader should note that for the validity of term-by-term 

differentiation, it is the derived series *hich must be uniformly convergent 
and that the original series need only be simply convergent. 

99. Analytical theory of Trigonometrical Functions. The fun¬ 
ctions sin x and cos x. 

99T. Theorem. The two series 

©0/1 Ot u!ttM y) 

(A) 

(B) 

S TtfZ i 1\ I « *•*•>* '31“*" 5 f 
n=0 (2m+1) ! 

°° (-l)V* . . x'x* 
2S o.. I » t. e.f 1 n 

«=0 2m 1 2 ! 4! 

are uniformly convergent in every interval [a, h). 

Let M be any positive number greater than | a | as well as | 4 | so 
that if x denotes any number in (a, b), we have 

I (-l)**1*** 
I (2«+l) !' 
! (-1)B*£W I 

Ms" n 

iSTHfl* 
M** 
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Consider now the two series 

(Q 
vr , M» M» , 
M+3T +-5T+' 

(D) 1 + 
M* . M« 

+ 4 i +• 

W# know that, (§711, P. 94.) 

M M* M3 
i+M +fr + 3-r+- 

••• if 

i 

—M , Mi M3 , 
$ =1- -M+ jj- ' 3 ! + 

M , -M ) , , M2 , M* 
—14- g r +~4l ' 

M — M ) „ , M' , M3 
c —e | 

=M+ ST •+5! 
1-.. 

This shows that the series (C), (D) are convergent, whatever the 
positive constant M may he 

Therefore, by Wcierstrass’s M test, we prove that the series (A), 
(B) are uniformly convergent in (a, 6'. 

Definitions. This theorem justifies the following two definitions:— 

/AN • ,(“ 1)"***H (A) sin x—x Q-f r c ,.+ i i \ 

(B) cos x=l- 

3! ' 5 !' 

x* 
2 ! ' 4 ! 

(2» + l) ! 1 - 

,+ 2 n\~ + - 

99‘2. The functions sin x, cos x are defined and continuous for 
every value of x. This follow’s from §98-1. 

99 3. Hie functions sin x, cos x are derivable for every value of x 
and 

d(sin x) _ 
dx 

COS X ,«i A<fj> 
dx 

—sin x. 

If we differentiate term by term the convergent series (A), we 
get the uniformly conveigent series (B) and hence, (§98*3), sin x is 
derivable and (sin *)'=cos x. 

Again, on differentiating term by term the convergent series (B), 
we get the uniformly convergent series 

and hence cos x is derivable and (cos x)'~ —sin x. 
99 4. sin 0=0 and cos 0=1. The proof is obvious. 
99*5. sin (—*)« —sin x and cos(—x)—cos x. The proof is 

obvious. 
100. The addition theorems. If x, y are any numbers, then 

sin (x-\~y)~sin x ccsy-f-cos x sin y ; 
cos (.t+y)=ros x cosy—sin x siny. 

Giving any value tojy and then keeping it fixed, we wiite 
/(#) —sin (#4jy)—sin x cos y—cos x sinjy ; 
g(x)»cos (*+y)—cos x cosy+iin x siny. 
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We have 
f'(x)= cos (x+v)—cos x cosy+sin x sin y=g(x), 
g'(x)= —sin (x-4-y) —sin x cosy+cos x siny— —f(x) 

... =2f(x) f'(x)+2g(x) g'(x) 

=2\f(x) g{x)-2g{x)f(x)=0, 
so that 

/*(#)+£*(#) is a constant. 

Hence for every value of x, 
/*(*)+g*(%) =/2(0) +ga(0)=0 

f(x)=0, g{x)=0. 
Hence thetheorems. 

Cor. 1. cos2 x+sin2 x—\. We have 
1=cos 0—cos(x—x)=cos x cos( — *) —sin x sin( —x) 
=cos x cos *+sin x sin *=cos- *+sin2 x. 

Cor. 2. | sin % ^ 1, | cos x ; 1. 
This follows from the preceding corollary. 

Cor. 3. Changing y to x, we have 
sin 2*=2 sin x cos x, cos 2#=cos2 x—sin3 x. 

Cor. 4. Changing y to —y, we have 
sin (#—y)=sin x cosy—cos * siny ; 
cos (x— y) = cos x cos y-f sin % sin y. 

101. The number n. Smallest positive root of the equation 
cos x=0. Theorem. To prove that there exists a positive number 'n such 
that cos(7r/2)=0, 

and cos #>0, for 0<*<7r/2. 
Consider the interval (0, 2). 
We know that cos 0, ( = 1), is positive and we will now show that 

cos 2 is negative. We have 

cos 2=1- 

Since the brackets are all positive, we have 

0 22 / 22 \ 1 

cos 2<1 2JX1 34/~ 3* 
so that cos 2 is negative. 

There exists, therefore, atleast, one number a between 0 and 2, 
such that cos a=0. Also there cannot exist more than one such 
value, for, if possible let 0 be another so that 

cos a=0, cos 0=0, 0<a, 0<2. 
By Rolle’s theorem, there exists atleast one number A between 

a and 0 such that the derivative, —sin x, of cos x vanishes for *= A, 
i. e., 

sin A—0 0<A<2. 

b« ■to’i-rKi—^')+tKi-w)+. 
which is clearly positive. 
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Thus there exists one and only one root of the equation cos *=0 
lying between 0 and 2. Denoting twice this value by n, we see that 
w/2 is the least positive root of the equation cos #=0. Also, there¬ 
fore, we have cos #>0, when 0<#O/2. 

102. Sin *>0, when 0<*< Jtt. 

Since the derivative cos x of sin x is positive in (0, Jtt], therefore 
by §66 2, P. 90, sin x is strictly increasing. Also, since sin 0=0, we 
see that sin x is positive when 0<X|t7. 

103*1. S»»(ir/2) = 1. 
Since sin^Tr/2) +cos''(w/2) = 1, 
therefore sin?(7r/2) = l or sin (n/2) = + l. 
But, by the Lagrange’s mean value theorem, 

sin(7r/2)=sin(7r/2)— sin 0=(7r/2)cos a>0, 0<a<>/2. 
sin (w/2) = l. 

103*2. Cosn= — 1, sin rt =0. 
cos 77=2 coss(t7/2) —1 = —1 and sin 77=2 sin 77/2 cos tt/2=0. 

103*3. Cos 277=1, sin 2tt=0. 
cos 277=2 cosV —1 = 1 and sin 2t7=2 sin 77 cos 77=0. 

103*4. Cos(77/4)=sm(77/4) = l/N/2 
We have 0=cos(77/2)=2 cos2(7t/4) — 1, 

cos(77/4) = 1/ \J2t 

rejecting the negative sign as cos 77/4 is necessarily positive. §101. 

Also l=sin(77/2)=2 sin(ir/4) cos (n/4) 
sin(77/4) = l/V2. 

103*5. Sin (£77--x)~ cos x, cos ($77--#) = sin x. 
Sin (£77 + *)= cos x, cos (\v-\-x)~ — sin x. (w) 
Sin ( 77+^)=—sin x, cos ( *+x)~—cos x. (*fi) 
Sin ( n—x)— sin x, cos ( 77—x)~~cos x. (it/) 

Sin (277+^)= sin x, cos (2n-\-x)—cos x, * (v) 

These are easily proved with the help of the addition formula®. 
Note. Because of the formulae (v), sin x, cos x are said to be petf&dic 

functions with 2^r as their period. 

104.1. Cos #>0, when 0^:#<i77 or 
Cos x<0, when \,7r<X77 or 

When 0<#<j7r, we know from §101 that cos #>0. 
When i77<%^77, we write x=\ir+y so that 

COS X = COS 77 +^)=—sin ,y<0. (§102). 
When ii^#<|7r, we write x—n-j-y so that 0^y<iw. 

cos *=cos(ix+^)=—cosy<0. (§101). 
When f ir<x<2jr, we write x=v-\-y so that Jjr<;y<C7r. 

cos *=cos (» +y] = — cos jy> 0. 

104 2. sin *>0, when 0<#<w; sin *<0, when n<^x<^2n. 

The proof is similar to that of the preceding theorem. 
Ex Discuss how sin x and cos x vary, (monotonically increase or decrease,) as x varies 

in the interval (0, 2ir), 
Ex. Show that when n is any integer, 

Rinmr^o, cos 4(2«+l)ir*0; 
sin i(2« f ( - l)n, cos 
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105. The function tan x. 

tan x 

Tan x is defined by the relation 

sin x 
"cos X- 

Clearly tan x is defined, continuous and derivable for all values of 
x except those for which the denominator cos x vanishes which is the 
case for x=h(2n+l)ir, n being any integer, positive, negative or zero. 

From the formula (in) of §103-5, we have 
tan (i7+*)=tan x, 

so that we see that tan x is a periodic function whose period is w. 

Also we may easily show that when xf\{2n-\-\)ir, 

<f(tan x) _d(sin x/cos x) __ 1 

dx ~~ dx “COS* X’ 

105*1. To show that 

It tan x=oo, It tan x=—co. 
X~*(^1t— 0) 0) 

Let G be any positive number, however large. 

Since sin x-*sin 4tt = 1 as x—y]n there exists a positive number Sj 
such that, (taking €=£), 

$< sin when Jw—Sl (1) 

Since cos x-»0 as there exists a positive number 8, such 
that, —l/2G<cos x <1/2G, when Jw—5a<x<JjT+88. 

As cos x is positive in (0, £ir] and negative in [\ir, it), we have 

0<cos *<1/2G, when Jjr—84<x<Jjt. (2) 

and —l/2G<cos #<0, when ^jr<x^Jw+82. (3) 

From (1) and (2), we have, if 8=min (Sj, S2), 

sin x 
tan x—->G. when Aw—8<*<lw 

cos x 3 

and from (1) and (3), we have 

tan when iw<;v<i,r+8- 

Hence the results. 

106. The inverse trigonometrical functions, shrty, cos^y, tan~]y. 
106*1. Sinwly< Since, as may easily be seen, y=sin x strictly 

increases from —1 to 1 as x increases from -~|ir to r, we have x as 
an inverse function of y, (§51 P. 78), known as inverse sine ofy. In 
symbols, we write 

x~$in~ly. 

Thus sin"*1}/ is the number x lying between — Jtt and Jir whose 
sine is jy. 

Clearly sin^y is defined in the interval (—1, 1) only. 

To prove that sin"1 y is derivable in the open range [—7, 1] and 
that its derivative with respect to y is lj \/(l—y2). 
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Let tf—sin^y so that y=sin x, 

We have dy/dx~cos x, which is 0 only when #= —or Jir i, e 

wheny=* —1 or 1. 
,\ when y^l or —1, we have 

dx   1   1__ 1 
dy cos x V(l~ sin2#) ^(1—y*)9 

as cos# is necessarily positive in [ — J7r, Jv], 

106 2. Cos”Jy. Since y=cos x strictly decreases from 1 to —1 
as x increases from 0 to n, we have x as an inverse function of y and 
write 

#=cos~1y. 

Thus cos~Jy is the number x, lying between 0 and n, whose 
cosine is x and is defined in the interval ( — 1, 1) only. 

It is easy to show that cos^y is derivable in the open interval 
[—1, 1] and that its derivative is —1/ V{\— y3). 

106 3. Tan~3y. Since, as may easily be seen, y=tan x strictly 
increases from — oo to oo as x increases from — \tt to we have x 
as an inverse function of y and write 

^=tan”1y. 

Thus tan~Jy is the number % lying between — \n and whose 
tangent is jy and is defined for the entire aggregate of real numbers. 

It may easily be shown that tan^y is derivable for every value 
of y and that its derivative is 1/(1 +ya). 

Examples 

1. (i) Show that It sin (l/*), when *-»0, does not exist, 

(«) Uf(x)—x sin (l/x), when x^O and/(0)=*0, show that/(x) is continuous 
but not derivable for *=0. 

(Hi) If/(*)=** sin (I/x), when x$j and/(o)==0 show that f'(x) exists for 
every value of x but is not continuous forx=o* 

2. If 
sin(l/x), when x$) 

0 > when 

and g(x)~xt 

show that It [/'(*)/#'(*)], as x-»0, does not exist, but It [/(*)/$(*)] exists and is 

equal tof'(o)lg\0). 
3. llf(x)mz | x | , g(x)*a2 | x | . show that /'(o) and *'(o) do not exist but 

Itr/W/fWl exists and is equal to It [f'(x)lg'(x)]t when #-*0. 

4. If 

f(x)=e~^txi sin(l)x), for */0, ;/(0)=0, 
show that (i) this function has at every point a differential co-efficient 
and this is continuous at x—0, (ii), the differential co-efficient vanishes 
at x—0, and at an infinite number of points in the neighbourhood of 
x—0, 
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e~V** . i i \ 
When x^Q,f'(x)= —— ( 2 sin——* cos—), 

and when #=0,/'(0)= 
It g~1/X> sin(l/*)—0 

Since el'x >1/*3, we see that 

j e~llx* sin(l/*) / x*.\ _ , v , 
I * ^ |Fj 1 1 ‘ 

/'(0)=0. 
Areo, when */0, 

e~I/** / . 1 1 v[ 

/'(*)-/'(«) = | sm cos JL)| 

—l/*a 

< W (2+ I * I )• 

Since > l/2x\ we see that 
l/,W~/'(0)l<2|%l(2+U|), 

so that [f'(x)—j'(0)]->0, as x->0, i. e.,f'(x) is continuous for #==0. 
We have now to show that f\x) vanishes at a point in every 

neighbourhood of x=0. 

Let S be any positive number however small. 

There surely exists a positive integer n such that 

°< (STFIJ^iS <S- 
It is easy to see that, 
for x—lInn, f'(x) is —ve or +ve according as n is even or odd, 
for x=2l(2n + \)ir,f,(x) is+ve or —ve according as n is even or 

Therefore f’(x), which is continuous, must vanish atleast once 
between 2l(2n+l)n and l/tin. 

We may similarly dispose of left-handed neighbourhood of #=0. 
6. If __ 

J{*)**x/x{l±x sin 1 lx), for *>0 ; 

— sin l/*), for ^<0 ; 
, /(o)-o, 

show that/'(*) exists everywhere and is finite except at ***0, in the neighbour¬ 
hood of which it oscillates between indefinitely great positive and negative 
values. 

7. Show that the function 

/(*)«x[l-H sin (log*1)], when *#>, 
/(0)-0, 

Is everywhere continuous but has no differential co-efficient at *—0. 

8. Show that the function 

/(*)“44-7*-b*#(8+* sin 1/*), 
where * Bin (i/*) is zero for**«0 has a first derivative but no second derivative 
at the origin. 
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9. Find the points of discontinuity ©f 

/(*)« It (cos Trx)tm ; $!#)=“ ft It (cos trn ! x),m] 
m—n—>x m-»oo 

[y (#)=*! when x is an integer and otherwise/(x)=0« Since, when x is rational 
n ! x is an integer for sufficiently large values of n therefore 0(x)«l when x is 
rational and 0 when x is irrational]. 

10. Find the points of discontinuity of 

«>/(*)=,i 
r(l4- simrx)* ~l 

(1+sin ttx)* +1 

(ii) f(x)m It It .jrinLtlLgL 
t ) J w sin1^ ! 'ffx)-Ml 

/(x)«sin x sin (l/sin x), when 0<C*<C^<C*<C2ir> 
and /(*)*■() when x=o, 2** ; 
show that/(x) is continuous but not derivable for x—O^i 2^, 

12. If Oqj alf a8.an are real and 

I *0 I + I ai I + I H I +.+ I fln_i I <Cfln» 
show that 

«w ««•+«» cos x-f flicos 2x-f.“f^n cos nx 

has atleast 2a zeros in the interval Show also that u'(x) has atleast 
2n zeros in the interval a^x<[2'fl'-f a for every real &• 

0(0), u(ir/n), u{2ir/n).,«(2mr/fl) have positive and negative signs 
alternately) 

13. By use of the inequality sin x<^x, or ortherwise, prove that, if 
0< i, then 

1 

2 J -Jil-c* sina*) dx > ^/(l—e*)+l. 

14. If 
0 

f{v\ _ It log (2+*)-*in sin x 
n->oo l-fx,n 

explain, why the function does not vanish anywhere in the interval (0, !*«“), 
although/ (o) and/(|TT) differ in sign. 

15. Determine the differential co-efficient, if any, of 

a J/(*-*) , r> -\Kx-a) 
Ax) = (x-a) -ZT,J^ar*» 

/(«) = 0, 
when x=a. 

16. A function/(x) is defined as follows 

/(*)■* (* - Wj) (x -wt)1 (x -w8)Bsin r—. sin r— ; sin —-, 
(*~w) (x-»a) (x-w8y 

for all values of x except wl9 wti wz in a domain (a, b), and /(x)*0 
when x^wt or wit w8. Show that 

(t) dfldx does not exist at the point x=a/t> 

(ii) dfldx exists but has a discontinuity of the second kind at x**hv 

(«0 4fldx exists and is continuous at x=*ie>j, 

17* If a is a fixed positive number, prove that 
a 

it [ 
h->0 J 

hdx 

h*+x% 
— TT. 

-a 
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18. Assuming that | n | $ | m | , prove that 
y 

It ~Lf sin n x sin m x dx~Q, 
y—» jo y J 

0 
■ 19. lff(x) is continuous in (0, 1\ show that 

lt j x+Jx* dx~ 2 ^0)' 
n~> oo 

0 
We write 

1 1 iVn 1 

f «/ *) f ?/(*)_ dx+ f nMdx. 
J l+«v J l+»s** J 

l/Jn 0 

By the first mean value theorem, we have 

i u* Vsl* 
r nf(x) . , r ndx 

0 
l+«2*2 

*-/(«.) j r~|2, whereO^ 
0 

=/(«„). tan'1 Vn, which -*/(0).Jtt as «-*■<». 

Again 

, where II r^l-k-'J -iSi 
1/V« 1 IVn 

— !/(/9n)(tan-,«—tan-1 V«) | 
<M (tan '*«—tan 'xJn), which ->0, as w-*=° 

M, being the upper bound of | f[x) | . 

20. If/O) is continuous in the interval (—1, l), prove that 

-1 

[Split up the range (—1, l) into three ranges (—1, —\/^)> \A)» 
WK i)]. 

21. In the second mean value theorem of Integral Calculus, show that 
$(#) must be necessarily monotonic by proving that the theorem does not 
hold if 0(x)=«co8 *,/(*) = **. 

22. If (.x) is bounded and integrate in the range {a, b), show that 

b 

It J f(x) cos nx dx=0. 
n~+ oo ** 

We write In= J f{x) cos nx du 
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Let € be any positive number. Since f(x) is bounded and integ- 
rable in (<?, b)t there exists a division 

D(fl=#0 .<Cxr-l ^xr^. 
such that the corresponding oscillatory sum 

^ (xr x y i €» 

Or being the oscillation of f(x) in (xr^lt xr). 
We have 

wwr 

In=sj/W cos nx dx 

=2/(*,-1) | cos nx dx+X J [/(*)—/(*,_i)]cos m; nx dx. 

J I„ |s£2 | f(*r l) I | COS W * dx + 

*r-i 
xr 

SJI {'« —f(xr-i) ^COS nx | dx 
xr„i 

As x varies in (xr.lt xr), we have 

I/W-/WKO, 

and | [/(*W(*r-i)] cos w* | ^Or. 
xr 

Also J | cos nx dx | < i-j j sin nxr | + | sin nxr_x j 

^ ^ /(*?•-1) +2(*r—xt — l)0?’ 

^4 2 | /(*,->) + 

Keeping the division D fixed, we see that 2 | f(xr~i) I is fixed. 
We now choose a positive integer m such that 

- 2 I /(*,—i) <'2 > where n>m 

Thus for «>w, | IB | <«. 

Hence the result. 
It may similarly be shown that 

b 

it j/w sin nx Ax ~ 0. 
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23. Ilf{x) is bounded and integrable in (<a, b), show that 

b 

^ f /(*) *~rd*-0, when 0<a<£b. 
n-*QQ J * ^ 

0 

24. Show that, for 0<a<f>, 

b b | 

(*) | dx < | , (i») | sin ** 

d a 

26. S/toir that It /», zeAere 
h 

T f sin . 
'•=j——*• 

0 
ms/s w-^oo through positive integral values and that the limit is 
equal to ir/2. 

The integrand becomes continuous for every value of x, if we 
assign to it the value n for .r=0. The result will be proved in three 
steps. 

I. Firstly, it will be proved that { ln }is convergent. Putting 
nx~t, we have 

nh 

i„-J -siV^- 
0 

{n+P)h 

Up- In = { dt 

nh 
As 1 It is positive and monotonically decreasing in [nh, (n-\-p)h], 

we have, by the Bonnetts form of the second mean value theorem, 

a 

| J =~ | sin t dt < < «, if « > 2/c/t 

nh 

Hence, by Cauchy's principle of convergence, { I„ } converges. 
(§30T, P. 39) 

II. It will now be proved that, when oof 

if 7T 

t u sin 7 
It In=lt —dx. 

n . sm a: 

We write 
in h 
f sm nXj f sm nx, . f sm nx 3 
J -T *“J — *+ J — *• 
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As proved in Ex. 22 above, J sli^.—^->0 as «~»oo. 

h 

iw . 
ltl„=lt J -~-dx. 

0 
Again, taking /(#)=(1/#— 1/sin x) in Ex. 22 above, we have 

h” 
It f (* ^sin nx dx=0, J \i sm x/ 

0 
for f{x) is continuous in (0, |tt), if we set /(0) = 0. 

¥ h” 

lt[sinnx dx=\t f S^—dx 

'-“I 
\v . 

p sin nx 
f=lt f ~ 

J sir 
0 0 

To determine the actual value of the limit we proceed by making 
«-»oo through odd integral values. 

III. We have, as may be easily shown, * 

i~t^-x=2[i+c°s 2x-f cos 4xcos 2nx] 

Jtt 
r sin (2n+\)x , n 
] dx=~2‘ 

Hence the result. 
26. Show that 

«= — 00 
converges uniformly in any fixed interval (a, b). 

27. Show that the series 

is uniformly convergent for all values of x; and that S'(x) ig given by term- 
by-term differentiation. 

28. Show that 

s(*)= S 

converges uniformly for all values of *, examine whether S'(0) can be found 
term by term differentiation. 

29. Show that the series is uniformly convergent in (l-b$,oo] 
where 8 is any positive number. Show also t hat term-by term differentiation 
is valid in the same interval. 

30, Show that the following series converge uniformly in the intervals 
ndicated* 

x~-x,+**-x4-fx8-*6-f. 
*x+#2*+^x+,4x-hff. 



CHAPTER VIII 

IMPROPER INTEGRALS 
107. The theory of Riemann integration, as developed in 

Chapter VI, expressly requires that the range of integration is finite 
and that the integrand is bounded in that range. It is possible, 
however, to so extend the theory that the symbol 

b 

| f(x)dx 

a 
may sometimes have a meaning (i, c.t denote a number) even when 
f(x) is not bounded or when either a or b or both are infinite. In 
case f[x) is unbounded or the limits a or b are infinite, the symbol 

b 

a 
is called an improper (or generalised or infinite) integral. Thus 

r dx f dx r dx 
J > 
0 

J} (l-*)(2-*) ’ J 1+A-- 
— CO 

are examples of improper integrals. 

For the sake of distinction an integral which is not improper 
will be called a proper integral. 

We know (Ex. after, § 50 3, P. 76) that if a function f(x) is 
not bounded in a finite interval (a, b), then there exists atleast 
one point * c ’ of the interval such that in every neighbour¬ 
hood of c, however small it may be, f(x) is not bounded. Such 
a point ' o ' is a point of infinite discontinuity of the function 
f(x). It will always be assumed that the function f(x) is such 
that its points of infinite discontinuity, which lie in any interval, 
finite or infinite, are finite in number ; the consideration of 

functions having an infinite number of points of infinite discontinuity 
being beyond the scope of the book. 

In a finite interval which encloses no point of infinite disconti¬ 
nuity, the function is always bounded and we assume, once for all in 
order to avoid tedious repetition, that it is also integrable in such an 
interval. 

108. Definitions. 
1081. Convergence at the left-end. Let ‘a’ be the only point of 

infinite discontinuity of a function f(x) in a finite interval (a, b) so 
that, according to the assumption made in the last paragraph, the 
integral 

b 

{ mdx, 

* + € 
exists and is a function of e, say £(e). 

where 0<«<(&—«) 
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If, when c->(0+0), <f>(*) tends to a finite limit, say I, we say that 
the improper integral 

b 

(1) 

a 
exists, or converges at a, and use the symbol (1) to denote the 
number I. Thus 

b h 

[ /(*)<**= It f f(x)dx, 

a « + € 
provided that the limit on the right exists. In case the limit does 

b 

not exist we say that J f{x)dx does not exist or that it does not 

a 
converge. 

b c 

Ex. 1. Show that if J f{x)dx converges at at then f A*)dx, (««*) 

a a 

also converges at a. 
b 

Ex. 2. The improper integral J f(x)dx converges at a and k is any con¬ 

stant ; show that { V(*)d* also converges at a and conversely. 

108*2. Convergence at the right-end. Let b be the only point 
of infinite discontinuity of f(x) in a finite interval (a, b). If then the 
proper integral 

b~~ € 

j f(x)dx, where 0<c<(6—a) (1) 

a 
which is a function of €, tends to a finite limit, as €“>(0+0), we say 
that the improper integral 

f A*)dx (2) 

a 
exists or converges at b and use the symbol (2) to denote the limit of 
(1). 

Ex. Examine the existence of the improper integrals 
1 1 

dx 

vTCTj* 
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(i) The left-end point ‘0’ is the only point of infinite disconti¬ 
nuity of the integrand l/x* in (0, 1). We have, when 0<€<1, 

1 1 

H*)= j ”r*= \~\ | = which-> + oo as €->(0+0). 

€ € 

Thus we see that <£(e) does not tend to a finite limit. Hence 
the improper integral, in question, does not exist. 

(it) The right-end point T, is the only point of infinite dis¬ 
continuity of in (0, 1). We have 

1-6 

</>(€) = J ~ sirT^l —€), which vSias 6-*0. 

Thus the improper integral exists and is equal to \tt. 

Note. The reader will note that the integrand 1/a* is not defined for 
x**0 and \/\/(l—x%) is not defined for x=l. We may assign to the integrand 
at such points any value we please without affecting the existence and the 
value of the corresponding improper integral. 

108 3. Let the end points a and b be the only two points of infinite 
discontinuity of f(x). 

We take any point c within (a, b). 

If the improper integrals 
c b 

| f{x)dx and J f(x)dx 

a " c 
converge at the left-end a and at the right-end b respectively, 

b 

we say that the improper integral j f(x) dx exists and write 

a 

b c b 

| f(x)dx— | f(x)dx+1 f(x)dx. 

a a c 

It is easy to show that the existence and the value of the improper 
integral, in question, is independent of the position of c. If d be any point of 
(«> b)f we have 

d e d 

| /(*)* = J f{x)dx + | /(*)</*, 

<*+ € a-f- € c 
d d 

If €—>0, we see that J /(*)«/* tends to a finite limit t. t4i J f{*)dx 

a t« a 
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V (r 

exists if, and only if, J /(*; dx tends to a finite limit u J/(x)<fx exists. 

€ a 
ixist finitely, 
d c d 

| f(x)dx = J f{x)dx + | f(x)dx. 

d-f € 
Also, in case they exist finitely, 

d c 

a c 

b 

It may similarly be shown that J f(x)dx exists if, and only if, J /(*}</* 

d c 
exist and in case they exist, 

b c b 

| f(x)Jx = | f{x)‘!x + J f(x)dx. 

d d e 

Adding, we get 

d b c b b 

| SW.dx + J f(x)dx = | f(x)dx + | f(x)dx = | fix'idx. 

a d a c a 

Ex. Examine the existence of the improper integrals 

(i) fT&*- {ii) J ^ m J - - 
ooo 

108*4. Let cv c2, c3,.cn be any finite number of points of 
infinite discontinuity off(x) lying in (a, b), where 

ft ^ ^1^ ^2 ••••*• —1^ Cn^bt 

If the improper integrals ^ 
Ci C2 Cn b 

j f{x)dx, J f(x)dx,.. | f{x)dx, J f(x)dx 

ft cl Cn_i Cn 

Cl 

all exist in accordance with the definitions given above and J f(x)dx=0 

a 

b b 

if Cj=a and J f(x)dx~0 if b=cn> then we say that J f{x)dx exists 

X ' s 

J f(x)dx= | f{x)dx+ J,f(x)dx +.+ J f(x)dx. 

and write 
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108 5. Infinite Range of Integration. Convergence at oo. Let 
f(x) be bounded and integrable in [a, X) where X is any number> a 
so that the proper integral 

X 

J m* 
a 

exists and is a function of X, say, <f>{X). 

If <f>{X) tends to a finite limit, I, as X-*oo, we say that the 
improper integral 

| f(x)dx (1) 

a 
exists or that it converges at oo and regard the symbol (1) as 
denoting the number I. Thus 

OO X 

^J(x)dx=x^oa j f(x)dx, 

a a 
provided the limit exists. 

Ex. Examine the convergence of 
OO 00 

£•■ <“> 1 
1 

to Jr 
dx 
? # 

108*6. Convergence at—oo. If f(x) be bounded and integrable 
in (X, b) where X^b, and 

b 

J /(*y* (i) 
X 

tends to a finite limit as X-* —oo, we say that 
b 

J f{x)dx (2) 

exists and regard the symbol (2) as denoting the limit of (1). 

108-7. Let (he range of integration be (-oo, oo). 
If c be any number and 

C 09 

J f(x)dx, j f(x)dx, 

— oo C 

both exist in accordance with the definitions already given, then we 
oo 

say that J f(x)dx exists arid write 
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OO C OO 

J / (x)dx= |/ (x)dx f | / (x)dx. 

— OO —OO C 

It is easy to show that the existence and the value of 
OO 

J / (x)dx 

— OO 

is independent of the choice of c. 

107 8. If an infinite range of integration includes a 
finite number of points of infinite discontinuity, then we arbitrarily 
consider an interval (a, b) which embraces all the points of infinite 
discontinuity off(x) and examine the existence of the three improper 
integrals 

a b oo 

I f (x)dx> j / (x)dx, J j(x)dx 

— oo a b 
in accordance with the definitions given above, and in case they all 
exist we say that 

oo 

f f(x)dx 

-OO 

exists and write 
oo a b oo 

| / (x)dx= J / (x)dx-}- j / (x)dx+ | f(x)dx. 

—oo —oo a b 

Note* It may be seen that in order to examine the existence of any given 
improper integral, we have to examine the convergence of a system of 
improper integrals of the four types which have been considered in the sub¬ 
sections 108*1, 108 2, 108*5. 108*6. Also we see that the case §108 2 
Is analogous to that of §K)8’1 and the case of §108*6 is analogous to that of 
§1085. 

109. From the foregoing it will be seen that it is enough to 
consider tests for the convergence of 

b 

(t) | / (x)dx at a, where / (x) is bounded and integrable in 

a 
(«+€, b), 0<«<(*-*). 

oo 

(it) | / (x)dx at oc, where / (*) is bounded and integrable 

a 
in (a, X), X>a. 
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E*> Examine the existence of the following improper integrals and 
evaluate those which exist: 

(<) 1 (i° f Jl+Srx' W 

oo 1 2 oo 

(*) | *(TTx*)- (w‘) | loe * (*>*0 I jptfZi) (»''•> J ** *• 
— oo 0—2 0 

Note. In the example* given above the improper integrals are such that 
the integrands admit of primitives in terms of elementary functions. In inch 
cases the examination of the existence is generally easy but more advanced 
methods are necessarv when the integrand does not possess a primitive in 
terms of elementary functions. 

110. Test for convergence at ' a/ Positive integrand. Let a be 
the only point of infinite discontinuity of f(x) in {a, b). The case 
where the integrand / (x) is positive in a certain neighbourhood (a,c) 
of * * is particularly simple and important and covers a large class 
of improper integrals 

Since 
b c b 

| f(x)dx= f(x)dx+ jf{x)dx, 

a+€ «+€ c 
it follows that either 

c b 

| / (x)dx and J / (x)dx 

a a 

are both convergent at 'a’ or both non-convergent. It is, therefore, 
no loss of generality to suppose that f(x) is positive in (a, 6). 

The question of the existence of the , integral is, in such a case, 
decided by comparison with another suitably chosen integral whose 
existence or otherwise is already known. 

110*1 The necessary and sufficient condition for the convergence 
of the improper integral. 

b 

{/(*¥* 

a 

at'a,‘ where, f(x) is positive in (a, b), is that there exists a positive 
number ‘M\ independent of €, such that 

b 

f f(x)dx < M, where 0< «< (b—a). 
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The proof follows from the fact that, since f(x) is positive in 
0, b), the integral 

b 

\f(x)dx 

monotonically increases as € decreases and will, therefore, tend to a 
finite limit if, and only if, it is bounded above. 

b 

Note. In case 0^€)=* J f(x)dx is not bounded above, then *-f o© as 

tf-f € 

0) and we say that the improper integral J /(*>& diverges to oo. 

a 

110 2. Comparison of two integrals. Let f(x) and f(x) be two 
functions such that in [a, b), they are both positive and f(x)^<f>(x) ; then 

b b 

(*') {f{x)dx converges tJ 

a 

b 

if | <p{x)dx converges, 

a 

b 

and (ii) J f>(x)dx does not converge if J f(x)dx does not. 

a a 

It is assumed that f(x) and t (x) are both bounded and integrable 
in(a+€, b), a), and 'a' is the only point of infinite dis¬ 
continuity. 

We have 

b b 

J f(x)dx < j P(x)dx. (cor. 5, § 88. P. 124) (1) 

a+« 

Let J f{x)dx converge so that there exists a number M such that 

| ft(x)dx< M for 0<«^ (b—a) (2) 

«+« 
From (1) and (2), 

b 

| /(*)<**<M for 0< sC (6—a), 



IMPROPER INTEGRALS 171 

therefor* | f(x)dx converges at 'a' 

a 
b 

For the second part we see that if j f(x)dx does not converge 

at «, then | f(x)dx is not bounded above and consequently, from 

a-f « 
b b 

(1), J <f>(x)dx is also not bounded above so that J <p(x)dx does not 

a 
converge. 

110*8. If f{%)!${%)-+1 when x-+a, and l is neither 0 nor infinite, 
then the two integrals 

b b 

| f(x)dx and J <f>(x)dx 

a a 
either both converge or both do not converge. 

Since f(x)/(f>(x) is positive, l cannot be negative. 
Let 8 be any positive number less than l. 
There exists a number c, (a^c^b), such that 

/—8</(%)/<^(x)</+8 for#<#<c, 
i.e.t in [a, c), we have 

f[x) {f) 
and f{x)<d+h)^>[x) (ii) 

b 

| f(x)dx conv converge ; 

{ f(x)dx converges 

•*. from (*), (/—8) | <j.{x)dx converges ; 

| $(x)dx converges 

hence f 4>(*)dx converges. 
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From (*), it may similarly be shown that if J j>(x) dx dots not 

a 
b 

Converge, then j f(x)dx, also, does not. Also, from (it), we may 

a 
b b 

prove that if J <f>(x)dx converges, then J f (x)dx converges, and if, 

a a 
b b 

J / (x)dx does not converge then J $(x)dx also does not. 

a a 
b b 

Ex. Prove that if /(*)/# then J /(*)</* converges if 10 (*)</* con- 

a a 

b b 

verges and that if /(*)/#(*)->then j&(x)dx converges it J /(*)<& con- 

o a 
verges. 

110 4V An important comparison integral, j ^ 

w a 
The improper integral 

r ^ 
1 *" ~~ji converges if, and only if, /* < 1. 
J (x—a) 
a 

We have, if 
b 

dx 
/*—-1 

J (x-a)1* 1 (1—/x)(^_a) 
a+« a 

/-i}’ 

which tends to 1/(1-(*-)(&-*) ** lor +°° accordin§ as ^<1 or>l. 
Again, if 

b 

f —=log(6—«)—log t, which-* + oo as e-*(0+0), 
i x—a 

Hence the theorem. 
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f dx 
Note. The integral 1 fi ii proper if The notion of the 

J (*-a) 
« 

convergence of improper integrals has enabled us to give a meaning.to the 

\ dx 
symbol I /lT~ even for those values of ^ which are positive bat < 1. 

J (x-a) 
a 

Tor the symlol does not represent any number. 

111. With the help of § 110, we now deduce two important 
practical tests for the convergence at V of 

b 

J f(x)dx. (1) 

I. Let f(x) be positive in (a, b). Then the integral (1) con¬ 
verges at *a' if there exists a positive number less than 1 and a fixed 

IJU 
positive number M such that f(x)^M/(x—a) in the interval a<C*^b. 

Also, the integral (1) does not converge if there exists a number 
u 

|*>1 and a fixed positive number M such that f(x)^MI(x—a) in the 
interval a<x^b. 

a 
II. If It [f(x)(x—a) ] exists and is equal to 'V and *V isneither 

x->a 
0 nor infinite, then the integral (1) converges if, and only if, /*<1. 

Examples 

1. Examine the convergence of 

1 1 , 1 
m dx . dx m dx 

(<) J *Wr (,V) m J **(!-.)» 
0 0 0 

The integrands are all positive. 
(i) Here, *0* is the only point of infinite discontinuity of the 

integrand. Let 

/(*H i/**<i+*»). 

Now, (x—0)^ f(x)~* 1 as .*-»() so that 

1 

Therefore J f(x)dx converges. 

0 

(ii) Here '0* is the only point of infinite discontinuity of the 
integrand. 

Let /(*)~l/*s(l+*). 
Now x2f(x)-* 1 as so that 2^>lt 
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* 

Therefore j f(x)dx does not converge. 

(*»*) Here, *0’ and *1' are the two points of infinite discontinuity 
of the integrand. 

Let /(*)=1/**(1-a)*. 
We take any number between 0 and 1, say, and examine the 

convergence of the improper integrals, 

4 i 
J f(x)dx and J f(x)dx 

0 4 
at ‘0’ and 'V respectively. We have 

4 
(x—0)^-f(x) -1 as * *0 so that |X = $<1. j f(x)dx exists. 

0 
1 

(l-x)V(*) -1 as as— 1 so that ^f(x)dx exists. 

1 
1 

Hence J f(x)dx converges. 

0 
1 

2. Show that J dx exists if, and only if, mt n are 

0 
loth positive. 

The integral is proper if w>l and n> 1. 
The number 'O’ is a point of infinite discontinuity if *#< 1 and 

the number '1* is a point of infinite discontinuity if n< 1.- ' 
Let tn< 1 and n<£ 1. 
We take any number, say between 0 and 1 and examine the 

convergence of the improper integrals 
ji 1 

x*n~i(]—x)n~*dx and J xrn~1(l—x)n~l dx 

0 i 
at '0* and *1* respectively. 

Let f(x)=*xm~'( l_*)n-i. 

Wehave [(*—0)l~m as x-*0. Here ^ = 1 — my 

\ 
Therefore J f(x)dx converges if, and only if, m)<l, 

0 ^ 
». e„ if, and only if, 
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* 

Also (1— x)l~n as x-*l. Here M«=»l —n so that 

| f(x)dx converges if, and only if, /A=*(l~n)<l i. e., if, and only if, 

i 
n>0. / 

1 

Thus | xm~l(l ~x)n~l dx exists for positive values of m, n 

0 
only. It is a function of m, n and is called Beta funetion denoted by 
B(m, n). 

8. Shotit that 
in Ixm d% 

{stn'x)n W 
0 

exists if, and only if, «<(w + l). 

Writing, 

W-Wiy “(ir,)’*’-’- 

we see that if then, /(*)—►O if (w—w)>0 and -*oo if (w—n)<0. 

Thus (i) is a proper integral if (w—n)>0 ; and improper 
if (f«—w)<0, ‘O’ being the only point of infinite discontinuity of 
the integrand in this case. Let (m—w)<0. 

Now, [xm/(sin x)n].(x—1, as x~>0, and therefore the 
integral converges if, and only if, (n—m) < 1 i. e.t if, and only if, 
n<(w+l),which also includes the case n^m when the integral is 
proper. 

4. Examine the convergence of 
1 

| x*~*f}og x)dx. 

0 

The integrand is negative in the interval (0, 1) and we, therefore, 

consider J —x"-*1 log x dx. 

0 

The integral is proper if (« — l)>0, in as much as the integrand, 
then, -*0 as x~±Q. (Cor. to §79*2, p. 103) 

Let («~~ 1)^0 so that we have now to examine the convergence 
at 'O'. Let a* be a positive number such that 

1) is >0. 
We have 
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so that for values of x, sufficiently near 0, 

—* log*<«, 

where e is a given positive number. 

or — log #< tlx1* 
n 

Now, the integral of e/x converges at ‘O’ if, and only if, /*<1. 

It is possible to choose a number /*< 1 such that (ju-f-n—1) >0 
if, and only if, w>0. 

Thus the integral converges if w>0. 

When n=0, the integrand becomes log We have 

1 I (log 
x~l log a: dx = — which > ~oo as € ->0. 

€ 

When w<0, we have 

for x in (0, 1), 

so that in this case also the integral does not converge. Thus the 
integral converges if, and only if, 0. 

4. Test the convergence of the following infinite integrals :— 

vl 2 vl 2 
f c°sa , .... f sin * , f a®"1 , 

W J Tn # («)J (•“) J 

o u 
1 2 

/• X f v®-*1 f (,r) J “rzr- *• w J 7*^*. 
0 
-n/2 

7T/4 

f 
("> J V't&nx" 

m J sinm_l 

0 
1 

x cos’*'1 x dx. (rioj 

(*») 

(«) 

0 

3 

\ 
0 
It 

e~x dx. 

dx 
m 

['*-1)* (*—2)3]^ 

r 

Bin * 
(*<«) 

(x) I X^ log x dx 

J (1+*)*'" 

f-- j cos a— COS * 

5, Show that 
h* 

| sin x log sin x dx 

is convergent and its value is (log 2—1), 
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Integrating by parts, 

i' , 

l sin x log sin x dx~ —cos * log sin #-f log tan £%+cos x 

€ * 
== — (1—COS €) log sin i€ + 0OS € log 2 COS J C—cos €+log COS 

Now, when *-*0, 

It (1—cos c) log sin j€==lt 2lz log t\ when /-+(), (/=sin jc) 
=0 

l* 

| sin x log sin x dx~log 2 — 1. 

6. Show that I log sin x dx converges. 

112. f(x), not necessarily positive. We now obtain a general test 
for convergence at *a of the infinite integral 

J f(x)dx. ^ 

The necessary and sufficient condition for the convergence of the 
improper integral (1) at ‘a’ is that corresponding to every positive 
number V there exists a positive number 8 such that 

a “j- 6 2 

i | f{x) dx O, 
i 

where e1# c2 are any two positive numbers less than or equal to 8. 

We write 
b 

f(x)dx. 

«+€ 
From § 44, p. 65, we know that the necessary and sufficient con¬ 

dition for It 4(c) to exist finitely is that corresponding to every 
positive number v, there exists a number 8>0 such that when 
0<«lt «a<8, then 

I ^(€s) | <7, 
b b «+*« 

i.e. j f(x)dx— | f{x) dx <9 or I f{x) dx <’?. 

#+€i + |a+€i 
1124. From above we deduce an important sufficient test for con* 

vergence viz j 
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If | | f(x) | dx exists, then j f{x)dx also exists, 

a a 
b 

(It is assumed that the proper integral j" f(x)dx exists). 

This theorem follows from the general condition of convergence 
above and the inequality 

€2 

| f(x) dx «s J fix) | Ax 

a + *i *+«i 

Del. Absolute convergence. The improper integral J f(x) dx is 

a 
b 

said to be absolutely convergent if J | fix) j dx is convergent. 

a 

From the result proved above it follows that every absolutely 
convergent integral is also convergent 

1 

Ex. 1. Test the convergence of J S~~^~ dx. 

0 
Let / (x)=sin (1/x)/ </x. Here there is no neighbourhood of the 

point 'O' in which f(x) constantly keeps the same sign. 
In [0, 1), we have 

sin 1 [x I _ | sin 1/x j 1 
Vx ~ Vx ^Jx • 

1 

Also | ~jx dx is convergent. 

0 
1 1 

| dx is convergent so that J S~^~— dx is absolu- 

0 0 
tely convergent. 

118. Convergence at oo, Convergence of 
OO 

| /(*) dx, 

a 
where f{x) is lemded end integrate in (a, X) for every X^a. 
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Positive integrand. Let f(x) be positive in (a, X). The necessary 
OO 

and sufficient condition for J f(x)dx to be convergent is that there exists 

a 
a positive number M, independent of X, such that 

X 

| f(x)dx<^M for every X^a. 

a 
The proof follows immediately from the fact that, since f(x) is 

positive, the integral j f{x)dx monotonically increases as X increases 

a 
and will, therefore, tend to a finite limit or to oo according as 
it is bounded above or not. 

From this we immediately deduce that if f(x) and p(x) art both 
positive and f(x)^f(x) in (a, X), then 

oo oo 

| p(x) dx converges if J f(x)dx converges. 

a a 

Also, it may be shown that if f(x) and p(x) are positive and, when 
%-* oo, then It {ftp) exists and is equal to l and *V is neither 0 nor oo, 

then 

J f(x)dx and J (x) dx either both converge or both do not converge. 

a a 
Ex. What con elusion can be drawn if / is zero or infinite. 

118*1. An important comparison integral. To prove that 
oo 

f dx 
(«>0) 

(1) 

converges if and only if 1*>1. 
We have, if j*/l, 

X X 
C dx 1 1 1 _ -j_r 

|X-~1 
xT 

- [ 

a 
X**" 

A*-l 
which-* 1/(|*—l)a or oo according as /*> 1 or 1. 

For M=l, we have 
X 

f =]og —, which-*oo as X~*oo. 
J x ° a 

Hence the result. 
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Adopting (1) as the comparison integral and employing the 
test of §113, we may now easily obtain the following practical tests 
for convergence at oo. 

113*2. If f(x) is positive in (a, X), then the integral converges 
i) there exists a positive number p greater than 1 and a fixed positive 
number M such that 

fi 
f(x)^M/x for every 

Again, the integral does not converge if there exists a positive 
number /*^T1 and a fixed positive number M such that 

/x 
f(x)^M/x for every 

/i t 
113*3. If, when x -oo, // [f(x) x ] exists finitely, the limit 

being neither 0 nor infinite, then the integral converges if, and only 

iJ,P> I- 
Examples 

1. Examine the convergence of 
oo CO 

t n f xdx 
(«) 

r dx 

W ) (!+,)»■ J (1+atKA 
0 1 

oo 

(«0 \-r*x 
' X* (1+*)* 

(tv) 

oo 

f sin2 x , 
1 ~^~dx- J X* 

0 

(»') Let f(x)=x/(\+x)' 

We have It x<if(x)=z 1 so that m=2]>1. 
,Y-*oo 

(ii) Let 

We have 

xdx 
(i+x) 

j is convergent. 

We have x^»oo = L so that /*=5>1. 

oo 

| f(x)dx is convergent. ' 

1 

(Hi) Let f(x)^\jx^(\-\-x^. 
6 

Now x*'f(x) ->1 as x-^-oo. Here m=S<1. 

f(x)=l/(\+x) Vx. 

J f(x)dx is divergent. 

(iv) Let f(x)—sini xjx*, 
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Here x*f(x)=sin* x, which does not tend to a limit but is bounded. 

OO 

But —anc* | dx converges. 

1 
oo oo I sin2 x f sin2 x 

—-j- dx converges. Also | — a - dx is a proper integral 
X j X 

1 0 

lor It (sin8 xjx*)—! when x >0, so that 'O’ not a point of infinite 

discontinuity. Therefore J f(x)dx is convergent. 

0 
OO 

2. Show that j e~x dx is convergent if, and only if, a >0. 

0 

Let /(*)=*«-> e-v. 

Here,‘O’is a point of infinite discontinuity of f(x) if a<l. 
Thus we have to examine the convergence at oo as well as at ‘O’. 

We consider any positive number >0, say 1, and examine the 
convergence of 

1 oo 

| f(x)dx and j f(x)dx 

0 
at 0 and oo respectively 

(t) Let«<l. 
1 

It xx~a f(x)—\ so that 1 f(x)dx converges if, and only if, 

*“*° 0 
(1—a)<l, i.e., if 0<«. 

(«) We know that erf>xa+l whatever value a may have 

But | ~ dx converges. 

1 
for every value of a. 

OO 

Therefore j x*~l e~Tdx also converges 

1 

oo 

Thus | xa~l e~* dx converges if, and only if, a>0. 

0 
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©O 

The integral J xa~] e~* dx, which is a function of a, is called a 

Gamma Function and is denoted by a 

3. Discuss the convergence of the following 

(«’) J X-~~^-dx. (it) [ dx. (m>0, «>0) 

0 3+* 0 
00 00 

i c 
—.dx' (»») 1 *m 1 f~nx dx* 

| *m(l0£ *)n dx. (ui) 
(1+*)* D + Oog*)1] 

4, Show that the improper integral 

00 

| log(l +2 sech x)dx 

converges. 

[log(1+2 sech *)<2 sech *, 

5. Show that 
ex+e-x^ ex J’ 

oo I cosh bt 
cosh at di> 

for log (!+*)<#, if *>0 

«>0, b^09 

v 
converges if, and only if, 6<a. 

[If b<£at we have 

cosh bt e** +£*~’^ y +g^* — 

cosh at gat at 

and if £><*, we have 

COSh bt _ ebt+e~bt ^ ebt 

cosh at ” (<tt+rat^ at+(al 

6. Show that 

Jsinh bx . _ ^ ^ ^ 
sinV«*> o>0, *>0, 

U 
converges if, and only if 

[If a^b, we write 

and if <*<£, we write 

jsinh bx ^ g 
sinh i# a* 

eb* . 

*'-1 

~e~h* ,4*-l * _ 

—i 
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7. Show that 

is convergent. 

OO 

1 \dx 
sink x )x 

The point 'O’ is foot a point of infinite discontinuity of the 
integrand in as much as the integrand — J as %-*►(). We have, therefore, 
to examine the convergence at oo only. We have 

1 __ 1 \ 1 
x sink x / x x£(ex—e~x) x2{e*—e~x)t 

for #>0 

e 2® 1 
— 1 ' x1 * 

Since ctxl{eiw—1)~>1 as x -^oo, we can find a number X such 
that for #>X 

***/(«**-1)<|. 
Thus for *>X, 

sinh x / x 'i 

so that | -dx is convergent, and, also, therefore The 

given integral is convergent. 
8. Show that the integrals 

{ r*'d* and J r{x-alx)‘dx 
— 00 — oc 

converge. 

9. Show that the integral 

0 
is convergent, 

gX_J_x 

[The integrand, gJpjTffix > is clearly positive, when x>0. 

Also, *0’ is not a point of infinite discontinuity, for the integrand tends to 

J as x-*0. For the convergence at oo, we rewrite the integral a* 

i- (ffs~£) and note that (rfc -^)-»iaS*-»oo. 
* 

oo 

114. Convergence of J f(x)dx at oo, when f(x) is not necessarily 

a 

positive, Genoral test for convergence. 
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The necessary and sufficient condition for the convergence of 
OO 

J sw* 
a 

at oo is that, corresponding to every positive number y, there exists 
a number X, such that 

|Xa 

j f{x)dx 

X, 

<V, 

when X1< X2 are any two numbers >X. 

We write 
X 

^(x)= | f(x)dx. 

From § 44, we know that the necessary and sufficient condition 
for It <p(x) to exist finitely is that corresponding to every positive 
number y there exists a number X, such that when Xlt X2 are >X, 

I *(X,)-*(X,) I <9, 

• x2 X! |X2 

t.e., J f(x)dx - J f(x)dx <V or | f f{x)dx 

' a a x, 

O 

115. Theorem. If J | f(x) | dx converges, then J f(x)dx also 

a a 
converges. 

OO 

Let V be any positive number. Since j | f(x) | dx converges, 

a 
there exists a number X, such that 

IX, 

Also, 

f l/(*)l dx <’?, where Xx 

Xi 
X, xf 

[/(*)**! < J I/M 1 dx 

xa \i 
(2) 

From (1) and (2), the result follows. 
00 

Del. Absolute convergence, The improper integral J f(x)dx is 
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said to be absolutely convergent if J | f{x) | dx is convergent. 

a 
From the theorem above it follows that every absolute conver¬ 

gent improper integral is convergent. 
It will later on be seen that the converse is not necessarily true, 
(See Ex. 4 p. 190, at the end of this chapter). 
115*1. Test for the absolute convergence of the integral of a pro¬ 

duct Let p{x) be bounded in (a, oo] and integrable in (a, X) where X is 
oo 

any numbered. Let J f(x)dx converge absolutely at oo. Then 

a 
oo 

J /(*) H*)t* 
a 

is absolutely convergent. 

Since is bounded in (a, oo] there exists a positive constant A 
such that 

| <f>(x) | ^ A, for every #>a. (1) 
oo 

Since J | f(x) | dx is convergent, there exists a positive 

a 
number B such that 

X 

J | f(x) | dx< B, for every X>«, (2) 

a 
the integrand, | f(x) | , being positive. (§ 113). 

We have, from (1), 
I/(*) t{x) I | f[x) | , for every x>« 

X . X 

| I f(x)<f>(*) | dx<ZA | j j(x) | dx^AB, for every X>a. 

a a 
X 

so that | | f(x) <f>(x) | dx is bounded above for X>«, 

He»ce J | f(x) <f>(x) | dx is convergent, 

*.* . \f(x) *{x)dx is absolutely convergent. 
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Bx. Discuss the convergence of the following integrals : 

oo oo 

(») J ~jf-— dx. (if) | e~ax cot x dx. 

1 0 

116. Tests for conditional convergence. 
1161. Abel’s theorem for the convergence of the Integral of a 

product. Let 4>{x) be bounded and monolonic in (a, oo] and 

OO 

lei | f(x)dx be convergent, 

a 

Then J f{x) <P(x]dx is convergent. 

a 

The bounded‘function <f>(x), which is monotonic in is 
integrable in (a, X) where X is any number>a. 

Applying the second mean value theorem, we have 

x2 6 x2 
J f(x) *(*)i*=;(X,) j/(*)<fr+*(X,) J f(x)dx, (1) 

X, X, * 

where a<XA< £ ^X2, 

Let V be any positive number. 

Since </>(x) is bounded in (a, oo], there exists a positive number 
A such that 

j <f>{x) | <A, for every *>a. 
In particular, j t(Xx) | s?A, | <p(X%) | ^A. (2) 

oo 

Also, since J f(x)dx is convergent, there exists, by $114, a 

a 

number X„ such that, 

X, 

| f(x)dx < ~, for X,, X,>Xa. 

Xx 
We now suppose that in (1), Xj( Xa are numbers > Xa so that 

$, which lies between Xx and X,, is also>Xa. 

{ X, 

{ f[*)dx < ^ and J f(x)dx < ’A (3) 

Xx $ 

From (1) and (2) and (3) we deduce that there exists a number 
X„ rich that for *ny pair of numbers X„ X,>X„ 
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+ IW I ! I 
i $ 

where *1 is any positive number assigned arbitrarily. 
oo 

Hence J f(x) <p(x)dx converges at oo. 

a 

116 2. Drichilet s theorem for the convergence of the integral of a 
product. Let <j(x) be bounded and monotonic in (a, oo] and 

X 

let <fi{x)-*Q} when x »oo, Let J f(x)dx be bounded when X>a. 

a 

Then J f(x) <j>(x)dx is convergent, 

a 

The function 1>(x), which is monotonic in (a, oo], is integrable in 
(a, x) where X is any number >a. 

Applying the second mean value theorem, we have 

X2 a Xa 

|/(a) 4 (x)dx=4>(X1) ( f(x)dx+<f>(Xa) J f(x)dx, (1) 

X, X, $ 
where a<X,< £ <X,. 

X 

Since f f(x)dx is bounded when X>a, there exists a number A 

such that 
|X 

| J f(x)dx 

a 

j $ 

I f f(x)dx 

< A, for every X > a. 

* X, 

= ^f(x)dx- | f(x)dx 

\ a a '1 

A+A=2A, (2) 
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Similarly 
ix(* 
I J < 2A 

Let V be any positive number. 

Since i>(x)~* 0 as *-*», there exists a number X0, such that 
I H*) I <V/4A, when x>X0 . (4) 

We now suppose that Xv X3 are any two numbers>X0, so that 
from (4), 

|*(Xa) | <i?/4A, | f(X2) | <*?/4A (5) 

From (1), (2), (3) and (5), we deduce that there exists a number 
X0, such that for any pair of numbers X„ XS>X„ 

* ^ f /(x)+(x)dx < | (<f>(Xt) f f(x)dx 

* 

+ | i> (X.) | J / x)dx 

^ (Vl4A).2A+(V/4A).2A<** V, 
where V is any positive number arbitrarily assigned. 

CO 

Hence J f(x) <f>(x)dx converges at °o. 

a 

Examples 
1. Show that 

is convergent. 

Since the integrand-^, as *-*0, therefore ‘O' is not a point of 
in fi nite discontinuity. 

Now, consider the improper integral 

oo 

fsin XJ J *• <2> 
1 

The factor 1/x of the integrand is mdnotonic and~*0 as x~*oo. 

X 

[sin xdx OS 

J 

\ 
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so that 
X 

J sin * dx is bounded above for every X>1. 

1 

Here by §116*2, the integral (2) is convergent. Now since 

| is only a proper integral, we see that the integral (1) is 

0 
convergent. 

OO 

2. Show that J sin x1 dx is convergent. 

We write 
0 

sin x*~2x • 2* sin x9, 

and consider the improper integral 

OO OO 

| sin x2 dx, i.e., ^ 2x sin x9 dx. 

1 1 

Now, 1/2% is monotonic and-*0 as x -*©o. Also 

x ! 
i 1 2x sin ** dx i 

1 1 

cos X*+cos 1 <2, 

so that 
X 

| 2x sin x9 dx is bounded for X>1. 

Hence 

J _I.2% sin x*dx, i.e. j sin x*dx 

1 1 
is convergent. 

1 

Since J sin x* dx is only a proper integral, we see that the 

given integral is convergent. 
3* Show that 

OO 

# 

it convergent, 



190 MATHEMATICAL ANALYSIS 

is xnonotonic and J (sin x/x)dx is convergent. 

0 
4. Test the following for convergence 

<"> <i) pV'* 

o 0 
oo a 

(iff) J sin 2bx ~~ * (it) J 

0 0 

OO Of. 

cos ax co6 bx 
dx 

sin *m 
*« ix <«) 

sin *( 1 ~ cos x) 
dx 

(m) 
. f sin (x+x*) 

0 
oo 

\ X* dx 
/ - x f *m cos ax , (»<••) J T+,n" * 

0 0 

Examples 

b 

1. If $(x) is bounded and integrable in an interval O, b) and J/ (x) dx 

a 
h 

converges absolutely at o, then J f(x)$(x)dx also converges absolutely at a. 

a 
[Analogue of§U5]. 

b 

2. If fS(*) is monotonic in an interval (a, b) and J f(x)dx converges at 

a 
b 

a, then j* f(x)$(x)dx also converges at a. [Analogue of §116*1]. 

a 
b 

3. If 4>(x) is monoionic in (a,b) and —»0, as a:—>and J / (x) dx 

X 
b 

is bounded for all X such that then J f(x)$(x) dx converges at *, 

a 
[Analogue of §116.2]. 

4. Show that the improper integral 

stn x 
dx 

is not absolutely convergent, 
0 
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We have to show that 

J| sin x 

x ~ 

0 

is not convergent. 

Consider the proper integral 

tin 

f I sin x 
dx, 

0 

where n is a positive integer. We have 

nn Yn 

f Sin * ' f I sin * i dx. 
J X 1 J * 
0 (r-l)ir 

We put x—{r—\)n+y so that 3' varies in (0; n). We have 
| sin[(r— \)n+y] | = j (— l)r —1 sin jy j =siny. 

m 

( . S1“ * J dx== [ dy. 
J x J (r— \)ir+yJ +y 

(r—\)v 0 

Since nr is the max. value of [(r—l)ir+,y] in (0, n), we have 

n tt 
2 

v 

rn' Idy>l 
0 

m 

■ I x 

2 » 1 

j Yn n f r 

tt 1 
Since X ->oo as «-^oo(we see that 

1 ' 

nn 

i 
0 

sin x 
dx-*co, as u—*oo4 

Let, now, X be any real number. There exists a positive integer 
n such that 

nn<^X^ (ft-f l)*r. 
We have 

X 
‘ [ sin x | 

. x 
0 

nn 

*>J ^ 
~d.x 



m MATHEMATICAL ANALYSIS 

Let X-*oo so that n also -* 

X J I sm* I 
0 

co. Thus we see that 

dx ->oo as X^oo. 

so that j -!— -■ dx does not converge. 

0 

5. Show that 
oo 

f xdx 
J 1 +x? sin*x 
0 

is convergent. 

The integrand is positive for positive values of x but the test 
obtained in §113 does not enable us to establish the convergence. 

In order to show that the integral converges we proceed as 
follows. Consider the proper integral 

n rt 
x dx 

1 +x* sin2 x * 

and write 
nrr Yn 

f X dx n f - 2 1 
J l+x* sin* x ~ r=s J 

(r l)ir 
Now, if x varies in (r-i tr, m)t we have 

x ^ rrt 

x dx_ 
[+xP sin31 x 

r* 

l+x6 sin* x ^1 + ^—1)*ji* sin1 x 
r* 

. f .JLt- / f _i J 1+#® sin**^ J 1 +-(r— 
r* dx 

1 sin; 
(r-l)w <r-l)* 

Putting x={r—1)* +y, we see that 

ir/2 

+(r—l)®#8 sin** 
=ar, say 

-1 
mdy 

\ 
_mdy_. 
l-f(r—!)•»* sin* y l+(r—lj*ir» sinsy' 

0 0 

If A>0, we have 

ir/2 jr/2 n /2 
Idy f cosec* y dy 1 I , coty I 

1+Asin*y“ J A+l+cot*yx=_v'(A+l) | V(A+1) I 

*2* ‘ vTaW 
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«.=* 

Trr 

1 fir* 
2 v'[(r-l)V+l]-“V[(r-l)V+l]- 

f * j ^ rni s r 1 
' 1 J l + x» sin* a: V[l + (r-fj5 *6]<(r-l)» ’ ir ’ 

(r-l)n 

Now 
(r-l)*_(r-l')* + (r~l)' 

OO 

and, 2 1 1 
^ and 2 —are both convergent. 

r=2 ("-1)2 r=2(r-’)3 

00 r 1 
v is convergent. 
r=rr 

llTT 

I 
x dx 

1 -f a6 sin* a' 
*a finite limit as »->oo. 

7T 
OO 

I a: a* 
converges. 

l + *°sma.r ° 

6. SAow /Aa* 
a; dv 

1+a;4 sin2 v 
is divergent. 

YTT 

We write 
Wff 

a; ^ac 

1 -f-A;1 sin2 a; 
0 (r— 1) fl¬ 

it a; varies in (r-1 77, m), we have 

(r—l)ir . * 

Ja; v f 
1+a;4 sin2 | J 

<, 

or 

Now 

1-f (rw)4 sin* x ^ 1 -j x4 sin2 x 
YTT YfJ 

f Jr-!)” 
J 1 4 {ytt)* sin2 x 

(r— l)ff (r — 1) 7r 

rir 

( (r-1) 

rfa:< j” H-^4 sin* xdx 

’ J 1+^ dn’* f ] 
(r-lW 0 (r—l)»r 

7r/2 

dy 
l + (rn)4 sin2 jy 

-2^r l)w J f+(r»i* sin*y“2(f '^'2 ' V[l + M4] 

■ V[i+M*3 

(r/l) 
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(r^iua 
The infinite series 2 , ~ diverges as we see on compari- 

vl^Ti^rJ 

sion with t(l!r). Hence the integral does not converge. 

7. Show that 
OO 00 

J T+*‘iin‘ * converges but J Bill2 X (l°es no^' 

0 0 
8. Show that the following improper integrals converge :— 

1 1 oo 
log x , ,.. .v f x 

(i) j log x ]og(l+x)dx. (ii) | dx. (Hi) j 
0 0 0 0 

OO 

(l+*a)^sin x 
dx 

(iv) [ e UX log cos2 x dx, (d^O) (v) f dx. (<*>0) 
J J vsini: 
0 

OO 

0 
OO 

n —a2x%—b3lx* 
(in) flog(l -\-x)dx. J m | <1 (vii) f x% e v dx. 

0 («>-i) 0 
CO 

(viii) | c r .v" _1(log x)'» dx. («>0 and m is a positive integer). 

0 

Hk"4' !*!<>• w I?*swT+lSt**• 
0 

OO 

(**■) } 
cosh ax cosh bx 

cosh x 
dx. a\ + \b\<l. 

9. Show that the integral 
OO 

dx («>0#5>0) 

0 
converges and is equal to log (bja). 

Since, when x-* 0, 
ax --ta: 

It - - =-a+b, 
X 

we see that x=0 is not a point of infinite discontinuity. 

Again, since £ax>a3#3/6, i.e(0~ft*/#)<(6/a8#4), therefore 
OO 

e~ ardx r e~ 
J ~x 
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converges at oo. Similarly 
OO 

f e~bXdx 

converges at oo. The convergence follows by Abel's test §(116T) also 

Now, we have 

dx- 
g—*a,x __ b q) fp-ax 

dx, 
A-»0 0 " - A 

the integral being a continuous function of A . 
OO OO 

(e-ax r e~t 
Putting ax—t, J dx— I - dt \ 

a7\ 
oo 

e 
putting bx—t, | e—- dx= j 

-t 

7 
■dt. 

A 
OO 

b A 

a> b A 
f , i e~'dt te-*dt t ~{dt 

• J—— *“|--Jt=) — 
A »A b A a A 

6 
f - Ay 
l ——- <fy, where y: 
J «l> tit'Jr, 

t 

A 

Since £ ^-*1 as Ajy~>0, there|*exists a positive number b, 
corresponding to any positive number €, such that 

| 1! <€, when 0< Ay<S. 

If y lies in {a, b), Ay^ A&, so that we see that 

! e 1I when A<8/&, 
for every value of jy in (a, b). 

This gives 

Li* 
y ^ y y ’ 

or -- dy—log — 
y y ° a < € log —■, when 0< A < ^ 

h r 
,-*0 j 

•Ay 6 

y 
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10. Frullani’9 Integrals. 

to II #(x)dx 

converges or oscillates between finite limits at oo and 0(x) tends to a definite 
limit 0o as x tends to 0, prove that 

j^0 

[The integral considered in the previous example is only a particular case 
of the one considered here. 

(b) If <fi(x) tends to a definite number as x—>oo and to a definite 
number 0# as x—>0 then 

J 0Co*L0(i£)rf< . (0,-0.) log 

[In this case the integral of 0(x) diverges at oo u nless 9^i=0], 

(c) Evaluate 

tan 1 ax — tan"1 bx 
dx. 

11. Show that a, b being positive, 
00 

cos ax—cos bx 

I 
i) 

dx =log 
b 

and deduce that 

0 
12. Show that 

f sin ax sin bx a+b , ^ _ 
J --x log aZb > (a>i>0). 

J’! 

r* “ j L J * n—>oo J 
0 0 

if2» + l)ir 

dx— It 
n—> oo 

sin (2n-f l)x 
dx 

0 
(ti) Integrating by parts or otherwise, (see Ex. 22, p. i59 end Ex# 25, 

p, 16l) show that 
iir 

Jh, f8in (2n+1)* ClT7—t) '*=0- 

(Hi) Show that 
i rTT 

* sin (2n-f l)x 1 *“T J 
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13. Show that 
oo fsin OX TT IT 

ir~dx=t* 0 or ■ 2 ’ 

o 
according as a is positive, zero or negative. 

14. Show that 
00 fsin* x , tt 

TT dx~ 2 

(Integrate by parts) 

15. Show that 

i 
0 

(Integrate by parts), 
16. Show that 

oo 
* sin ax sin x 

cos ax - cos bx it % ^ ^ v 
-dx=~,~ (b-a). (a>0, 6>0) 

f 
0 

oo 

when (O^Ta^Cl) ; Jtt when (o^l). 

| sin aym1 x dx^Va^_o) when (C^fl^2) ; Jw when (o>2). 

n 

17. Find the value of the definite integral 
7T 

Sin x dx 

\ v/(1 — 2 a cos K-t-fl1) 
V 

where a is positive. 

18. Evaluate the integral 

+ 1 

f—- J 1 — 2# 
sin a dx 

cos a-f-#1 
- J 

for what value of a is the integral a discontinuous function of a, 

19. Show that 
1 
f_ dx_ 
J #*-j-2# cos a-H **2 sin a ’ 
0 

if —ir, except when a=0, when the value of the integral is }» 

20. Prove that 

J log U +d%x~t)dx*=*itQi if 0, 

21, Discuss the convergence of 

J cos 2nx log sin x dxt 

and evaluate it when n is a positive integer. 



198 MATHEMATICAL ANALYSIS 

[0 is the only point of infinite discontinuity. Now, since, when #—»0, 
it (\/x log sin x . cos 2nx) = 0, therefore for values of x sufficiently near 0, 

| cos 2nx log sin x | <€/v/x. 
For evaluation, proceed integrating by parts], 

22. From the preceding example, deduce that 
a 

J cos 2nx log cos x dx=( — l)*+l . 

0 
TT 

f IT 
I cos nx log 2 (l — cos x)dx** — - 

cos nr log 2(1-f cos x)dx=( — l)«+l n ~ 

23. Prove that if g(x) is bounded and integrable then 
b 

J g{x) sin nx dx—>0 as n-»oc, 

a 
where (a, b) is any finite interval. 

If further J | g{x) | dx is convergent, prove that 

i g(x) sin nx di~»o as 

24. Prove that 

We write 

f dx_r dx f dx 
J J !+*?> + J i+kxl(i * 
° ° € 

where € is any given positive number. Now, we have 

1-f kr10 

Iix _ . f dx_\ . 1 
1 + j kx'°~9k&<€> 11 

0< I l+kx'°<2*’ Uk>$i». 

Hence the result. 
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25. Prove that as p -»0 through positive values, then 

P ri. hW-' 
Since (l-f-/>)>0, therefore the infinite series £(l/rl+^) is con¬ 

vergent. 

Let 
n 

$n~ 2 
i 

S-l 1 
r=l r'+P 1 r= l'"» 

1 
2 
r 1 1 

We have 2]+y ^ J xl^P t!x^ ] H 71 ’ 

1 

1 

3 

f 1 J .b dx^ 2>+y 

»>+? ^ f *»+/' («-!)' 
« — 1 

r*r 

Sn~1]S* i x'W = / ( 1 ( s"“»i+?] 

1 

Let n->oo. 

(s-lKl/Ks or K/>s<(j» + l) 
lt/>s=l as j5>-*(0+0). 

26. Prove that 

It It ( a 2 tL) ='• 
a-^{0+0) n-»oo V j rl+a/ 

27. If/(*) is positive and decreases for *]>1, prove that 

« n 

un— X f{r)— f f{*)dx 
r«* 1 J 

1 

tends to a limit l as «-»oo and that 0^/^/(l)* 

[Show that («n) is a monotonic bounded sequence]. 

Prove that if j>1, then 

i, 
tends to a limit as «—»oc (j beintr fixed) and that ii this limit is PM then, 

0<lPM+(*-iriK('-i). 



CHAPTER IX 

FUNCTIONS OF SEVERAL VARIABLES 
Differentiation 

117. Upto this point we have concerned ourselves with func¬ 
tions of one independent variable only but in the following part of the 
book the functions of several variables will be considered. 

It is usually sufficient to consider the case of two independent 
variables only, for the extension to three or more variables can, in 
general, be made without introducing any essentially new ideas. In 
order to avoid complicating our statements, notations and proofs, 
we 'shall, therefore, mainly confine ourselves to functions of two 
variables only. 

118. A function of two variables defined in a certain domain. 
Let x, y be two variables. One of these variables, say x, may have 
any value belonging to a certain given interval and corresponding to 
this value of x, y may have any value belonging to any given interval 
or a set of given intervals. In this way we obtain a system of ordered 
pairs of numbers {%, y). If, now, to each possible pair (x, y)t there is 
associated, in any manner whatsoever, a value of another variable z, 
then we say that z is a function of xt y, and the aggregate of the 
pairs of numbers (x, y) is said to be the domain or region of definition 
of the function. 

The simplest domain arises when the range of x is an interval 
(a, b) and for each value of x, y has the same range (c, d). Such a 
domain is called rectangular and will be symbolically denoted as 
R(a, b ; c, d). 

Note. In the theory of functions of two variables, an ordered pair of 
numbers (x9y) is called a point. The use of the word ‘point’ is suggested by 

t‘Plane analytical geometry’ where, by choosing a pair of co-ordinate axes, a 
point is represented by a pair of numbers. Obviously, a domain R (a, b ; c, d) 
corresponds, when geometrically interpreted, to the geometrical rectangle 
bounded by the lines x=a, x=>b,y=*c9y=*d. 

Illustration. For the domain of variation of a point defined by 
the inequalities x^d, y^O* x+y^i, x varies in the* interval (0> 1) and to each 
value of x in this interval y varies in the variable interval (0, 1— x). Geometri¬ 
cally this domain consists of the points lying in the interior and on the 
boundary of the triangle formed by the co ordinate axes and the line #+>** 1« 

Analytically a domain is always given by means of relationships of in¬ 
equality between x and y. 

Ex. Locate geometrically the domains of definition of the following 
functions : 

(0 Z^x/il-x'-y*). (it) z<-y/[lx-j)/(x+y)]. (fit) C-flogfoOF1. 

1181. The neighbourhood of a point. The square 
('a—8, #-f~8 \ b—8, 

where 8 has any positive value whatsoever, is said to be a neighbour¬ 
hood of the point (af b). 

119. Simultaneous limit. It f(x, y), 
(x, y)~+(a, b) 
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A function f{x,y) is said to tend to the limit l, as a point (x,y) 
tends to the point (a, b), if, to every positive number €, there corres¬ 
ponds a positive number 8, such that 

I f(x,y)-i\<*> 
for every point (x, y), [different from (a, b) itself ], which belongs to the 
domain of definition of the function and which is such that 

| x-a | <8, | y-b | <8. 

This means that for every point {x,y)>other than (a b)t which is common 
to the domain of definition of the function and to the square 
(fl—8, <1+8 ; 8, £ + 8), f(x,y) differs from l numerically by a number 
which is less than €, 

Note. Instead of saying that '(x^y)-*^, b)\we also sometimes say that 
*x-*a andy-^b' and write 

It /(#iy)—l* 
X— 

y~~>b. 

Note. In ”*the definition of limit, we can replace the domain 
“ | x—a | ^8, |y—b | ^8” by the domain 

Ex. If It f{xty)—l9 then It /(x, £>)=* It f{a,y)—l. 
(x,y)-*(atb) x-*a y-*b 

119-1. Non-Existence of a.limit In general, to determine whether 
a simultaneous limit exists or not, is a difficult matter but a simple 
consideration, as we now describe, sometimes enables us to show that 
the limit does not exist. 

It is easy to see that if 

It f(x,y)=l, 
(x,y)^>(a, b) 

and if y=</>(x) is any function whatsoever such that 

(j>(x)~>bt when x-*a, 
then, when x-±a 

It f[x, i>{x)] 
must exist and be equal to l. 

Thus if we can determine two functions <f>,{x), <t>2(x) such that 
the limits of f[x, </>fx)] and f[x, ffx)} are different, then we can 
certainly say that the simultaneous limit, in question, does not exist. 

(The reader is advised to geometrically interpret the consideration out¬ 
lined here) 

Ex. Show that 

It [2xyl(x2+y2)]t when (x,y)-+(0, 0) 
does not exist. 

Taking y=mx, we see that when x-+0, 

H %xmx _ 2m 
* %2-{-m2x2 1 + ml 9 

which is different for different values of w. Hence the limit does not 
exist. 

Ex. Show that 

It x*~+y** when 0)* 
does not exist. 

[Consider the relation x^my*] 
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Ex. Evaluate the following limits or show that the limits do not exist 

(>') It 
xy* («) It (x+y) 

y+ (*+>)* 
J'-fc+.r)8 

(fit) It xy 

Vix'+y’) 
(tn) It (y sin l/x+x sin 1/y) 

when, in each case, (x,y)—*(0, 0). 

120. Theorem. If, when (x,y)^(a, h), 
ltf(x,y)=li, It g(x, y) =l2 

then 
(*) u [ f(x, y)±g(x, y))=h±k (**) It [ f(x, y) g(x, _y)]=Vs 

(in) It [f(x,y)lg(x,y)]=l1ll2, if l2f0. 

The proofs are exactly similar to those of the corresponding 
results in the case of functions of one variable. 

121. Repeated limits. Let f(x,y) be defined in a certain 
neighbourhood of (a, b). Then 

]t /(*. y). 
x-*a 

if it exists, is a function of y, say ${y). If 
It ${y), 

y~*b 
exists and is equal to A, we write 

It It f(x, jy) = A, 
y-'b x >a 

and say that A is a repeated limit of f(x, y) as %~*a and y~*b. A 
change in the order of passing to limits may produce a change in the 
final result. Thus 

It It f(x, y), 
x y-+b 

where y-+b and then x~±a may be different from A . 
Ex. We have 

It It Jt ^ - -1, 
*—»o x~*~y jv—>o y 

It It ~J’m, It - =1, 
x—>0 y—>0x~ry x~»0 x 

so that the two repeated limits are different. The simultaneous limit, as may 
easily be seen, uoes not even exist. 

122. Continuity. A function f(x, y) is said to be continuous at a 
point (a, b) of its domain of definition, if 

lt f{x. ,y)=M &)• 
(x,y) >(a, b) 

Again f(x, y) is said to be continuous in a domain if it is conti- 
nuous at every point of the domain. 

It can now be easily shown that (i) the sum, difference, and pro¬ 
duct of continuous functions are also continuous, (it) The quotient of 
two continuous functions is continuous except where the denominator 
vanishes. (Hi) Continuous functions of continuous functions are 
themselves continuous. 

Note* Jt is easy to show that if/(x,^) is a continuous function of two 
variables at {a, b), then/(x, t) is a continuous function of one variable x for 
xvofl andf{a,y) is a continuous function of one variabley for.y«<«&f 
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The converse of this result is not necessarily true as may be seen by 
considering a function f(x,y) which is such that f{xfy)~0 when x is 0 or when 
y is 0 and/(x, y)~l elsewhere. 

Note. The continuous functions of two variables have properties ana¬ 
logous to those of a single variable and attention to some of these properties 
will be paid in Chap. XI. One property whose proof is simple may, however, 
be stated here :— 

Iff(x,y) is continuous at (a, b) andf(a, 6)*0, then there exists a neighbourhood of 
(a, b) such that for every point of this neighbourhood /(#, y) has the sign off(a, 6). 

Ex. Discuss the continuity and discontinuity of the following 
functions :— 

(*) /(*» y)—/(*8-fy) when (x,y)*{0p 0) and/(0, 0)-o. 
(ti) $(x,y)**2xy/s/'xt+yt) when (x,y)$(0,0) and 0(O,o)=*O. 
Ex. Show that the following function is continuous at (0 0). 

/(*,y)z=e'~ \*~y\ Kx' — lxy H? )t when (x,y)$({\ 0) and/(0» Q)"*0, 

Ex. Show that the f unctions 

p*) f(x>y)~x*y*l(xt+yi)*f when (*, >>)^(0, 0) and/(0, 0)-*0 
(iii) 0(x, y)=*x*/(x*+y%~x) when 0) and 0(0, 0)==0. 

tend to 0 if (*, y) approaches the origin along any straight line, but that 
they are discontinuous at the origin. 

[Hint. lt/(x,^) = J, It 1 if {x,y)—>(0, 0) along/***]. 

123. Partial Derivatives. Let (a, b) be any point of the do¬ 
main of definition of a function f(x,y). Then 

i, /(*+*> b)~f(a< l’) 

hi 0 . * . 
if it exists, is called the partial derivative of f{x, y) with respect to 
x at (a, b) and is symbolically denoted by fx(a, b) or 3f(a, b)/dx. 

Similarly 

u /(«, b+3zfiaj.b) 
II k * 

k >0 ... 
if it exists, is called the partial derivative with respect to y at (a, b) 
and is denoted by fv(a, b) or d /(tf, b)/dy- 

Now, if, f(x, y) possesses a partial derivative w. r. to % at every 
point of its domain of definition, then the function determined by 
the aggregate of the values of the derivative, is called the partial 
derivative of f(x, y) w. r. to x and is denoted by fx (.x, y) or dfldx. 

Similarly the partial derivative w. r. toy may be defined. 
Note. If (a-6, a+ 5 ; 6-5, 6 + 5) be a neighbourhood of (a, 6), then the 

question of the existence and values of the partial derivatives ol /(*, y) at 
(a, 6) depends only on the values of the function at those points ot the 
neighbourhood which lie along the lines x=a, y=b and is absolutely indepen¬ 
dent of the values of the function at the remaining points of the neighbour¬ 
hood. The question of continuity at (a, 6), however, takes into account the 
values of the function at every point of the neighbourhood. There is, there¬ 
fore, nothing surprising in the fact, which we will now illustrate by means 
of an example, that the partial derivatives of a function may exist at a point at which 
the function is not even continuous. Consider a function f(x,y) such that 

f(x, y)*mQ when either x or y is 0,ue, along the lines xsssO,y=*Q and 
/(*»/) “"l elsewhere. 

Clearly/(#,>) is not continuous at (0,0) even though /x(Q, 0),/^(O, 0} 
bath e*ist *nd are aero, 
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Ex. If 
${%>y)=(xn+y*)l(x-y) whenx+y, 
<f>(x, y) =0 when x—y, 

show that this function is discontinuous at the origin, but that the 
partial derivatives exist at that point. 

Putting y=x—mx*, we see that 
It <p(x, y)—2lm, 
x—>0 

so that this limit is different for different values of nt. 

Thus It <f>(x, y) when (x, y) *(0, 0) does not exist and there¬ 
fore the function is necessarily discontinuous at (0, 0). 

Again, we have 

**(0. 0) = = It 
A-»0 

4>(0+h, 0)-g(0, 0) 
.~h - “ r=0; 

h— 0 h 

0,0.= It 
A->0 

^0+k)-±(0,0)_ -k* 
r, ' — 11 i. 

k-+0 
Ex. ltf(x.y)=*xy(x*—y*)Kx*+y%) when x and y are not simultaneously 

zero and/(0, 0) = 0, show that/*(*, 0)*0 and/y(0,^) 

Ex. Show that the function 

\J{x%+yx) if and/(0, 0)*=0 

possesses partial derivatives/* and fy at every point (#, y) but they are not 
continuous at (o, 0), 

Ex. Show that/(*, y) — v/(*84-y*) possesses partial derivativesfx and fy 
at all points different from the origin. 

124. Differentiability and Differentials. Let (a, b), (a+h, b+k) 
be any two points of the domain of definition of a function f(x, y)t 
Now/(tf-f/&, b+k)—f(a, b) is the change in the function as the point 
{x,y) changes from (a, b) to {a+h, b+k). 

The function f(x, y) is said to be differentiable at {a, b) if, as (x, y) 
changes from (a, b) to (a +h, b+k), the change in the value of the 
function can be expressed in the form 

f(a+h, b+k)—f(a, b)~Ah+Bk+h<f>(h, k)+kt(f(h, k), 

where A, B are constants independent of h and k and <f>(h, k), p(h, k) 
are functions of h and k such that 

It <f>(h, k)^0= It i[f(h, k). 
(h,k)-+(0, 0) (h, k)-»(0, 0) 

Also then Ah+Bk is called the differential of f(x, y) at (a, b) and 
is denoted as df(a, b). 

Ex. Show thatf(x>y)**xy is differentiable at every point (*,.?). 

1241. Theorem. If f(x, y) is differentiable at (a, b) then it is 
also continuous at (a, b). 

Since 

f(a+K b+k)~f(a, b)= Ah+Bk+hp{h, k)+ty(h, k), 
we have, when (ht 0), . „ .. yt'+w+n-M 6)]-.o, 

y) is continuous at [$, o). 
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The converse of this result is not true. (See Ex. 1, below). 

124*2. Theorem. If f(x, y) is differentiable at {a, b), then it also 
possesses the partial derivatives fx(a, b) and fy(a, b). 

Putting in the relation 
f(a-\-ht b-\-k)—f(a, b)~Ah-\~3k-\-h<l>(h, k)-\-kij/(h, k), 

we have [f a+h, b)-~f(at b)]fh~A+p(h, 0), 
so that when A-*0, we obtain 

/>, b)= A. 
Similarly fy{a, b)=B. 

The demonstration also shows that if f(x, y) is differentiable at 
(a, b) then A, B are uniquely defined in as much as they are the 
partial derivatives of f(x,y) at (a, b). 

The converse of this theorem is also not true. (See Ex. 1, below) 

Ex. 1. Given 
f(xty)=xyfj(x2+y*) when (x,y)p(0,0), 
f(x,y)~0 when (x, y) = (0,0), 

show that f(x, y) is continuous, possesses partial derivatives but is not 
differentiable at (0, 0). 

We have 

I__n_I I 
I -J(xi+y*) v' {x't+y1) 

Putting x=r cos 9, y=r sin 9, we see that 

I cos 6 sin 9 I 
Again 

A*+y%)<*; if « M <€//2, | y | <€/v2. 
Thus f(x, y) is continuous at (0, 0). 

Also it is easy to see thatfx (0, 0)=0=/y(0, 0) so that if f(xty) 
were differentiable at (0, 0), we should have, by definition, 

^lhit+¥)==Z°h+Qk+h^h‘ *>+**(*» k) (!) 
where <f>(h, k) and h, k) —0 as (h, &)-*(0, 0). 

Putting k—mh and letting h-+0, we obtain from (1), 
mf V(l -f w2)=0 

which is absurd, as m may have any value whatsoever. Hence f(x, y) 
is not differentiable at (0, 0). 

Ex. 2. Show that/(*,y)« | x | + \y | is continuous but not differenti¬ 
able at (0, 0). 

Ex. 3. Discuss the differentiability of the following functions at (0, 0) 

(O V' l xy | • 
(«) /(*»y)=**>%/(** +>*) when (*,>)*(0, 0) and/(0, 0)-»0, 

Examine them for continuity also. 

Ex. 4. Hf(x,y)«*x sin l/x+ysin l/y when *#), y$0; /(*, 0)-*x sin 1/# 
when x#),/(0,y)«y sin Uy when ^^0 ;/(0, 0)=0, show that/(x,j>) is continuous 
but not differentiable at (0, 0). 

124*3. A sufficient condition ior differentiability. Theorem. If 
(a, b) be a point of the domain of definition of a function /(#, y) 
such that 
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(0 f*(a, b) exists, 
(«) fi,(x,y) is continuous at (a, b), 

then f(x, y) is differentiable at [a, b). 

The condition (ii) implies that fy (x, y) exists in a certain 
neighbourhood [a—8, a-f S ; b—b, &+&) of (a, 6). Let [a+h, b+k) 
be any point of this neighbourhood. We have 
/(«+*, b+k)~f(a, b)=f(a+h, b+k)-f(a+h, 6)+/(a+A,6)-/(a, 6). (1) 

The function f(a-\-h, y) of y is derivable w. r. to y in the 
interval (b, b+k). Therefore, by mean value theorem, 

/(*+*, &+*)-/(«+*, b)=kfy{a+h. b + dk), (2) 
where 0, which lies between 0 and 1, is a function of h and k. 

Now, if we write, 

fy{a+h, b+ek)-fy{a, b) = $(h, k), (3) 

we see that, because of the condition (ii), <p(h, k)-*o as 
(h, ft)-(0, 0). 

Again, because of the condition, (t) we have, when />-.(), 

,,, 
so that if we write 

tf(a+h, b)-f(a, 6)]/A-/>, 6)-0(A) (4) 

then <p(Ji)-±0 as 

From (1), (2), (3), (4), we obtain 

/(«+*, b+k)-f(a, b)=hfx{a, b)+kfy (a, b)+h<f>{h)+k<f>(h, k). 

Hence the result. 
Note. It may similarly be shown that if fy (a, b) exists and /*(#, y) is 

continuous at (a, b) then/(x, y) is differentLable at (a, b). 

Note. We have shown above that the mere existence of one partial deri¬ 
vative and the continuity of the other is sufficient for the differentiability of the 
function but, by considering an example, we now show that the condition of 
continuity is not necessary so that a function may be differentiaDle even though 
neither partial derivative is continuous. 

Let f(x,y)=*x* sin (1/xJ-fy1 sin (fly) when x^O^o, 
/(x, 0)=** sin (l/x) when xd0,y**0 
AO,y)~y2 sin (l/y) when yf 0, x*=0 
A0, 0)-0. 

It is easy to see that 
fx (x,j»)=*2x sin (l/x)—cos(i/x) when (x#0) and/^ (o,y}*0, 

fy (xty)**2y sin (l/y)-cos(i/>0 wheny*0 andj^ (#, 0)«0, 

so that neither/ C*» A nor/ (x,y) is continuous at the origin# x y 
Again, we have 

f(ht *)-/(o, 0)*A* sin (l/*)4-*8 sin (1 /A) 
==0A-f 0A4*A (h sinl/A)4-M* sin l/k) 

so that, since (h sin l/h) and (k sin 1 Ik) both—>0 as (h, A)—>(0, 0)>f(x,y) is differ* 
entiable at (o» 0). 

126. Theorem. If f(x,y) and g(x, y) are differentiable at (a, b), 
then 
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also if g(a, b)f 0, then f(x, y)/g{x, y) is differentiable at (a, b) 
and d(flg) = (gdf-fdg)/g* 

The proof is simple. 
126. Partial derivatives of the second and higher orders. Suppose 

that a function/(*, y) possesses partial derivatives fx(x, y), jy(x, y) 
of the first order in a certain neighbourhood of {a, b). 

Then we write 

It f^aAh’ b\~iAi b)-=f {a, b), 
h~r 0 h x 

It ALa>A±h\~AaiAL =f,/x(a, b) ; 
k—0 k 

U 6), 

in case the limits exist. 
/ .2 (fl> h)> / {a, b), f (a, b), f , (a, 6) are known as partial deri- 

y# yy v* 
vatives of second order at (a, &) and are also sometimes written as 
(dtflcXi){a, b), (?:tfl?y?x)(a, b), (c'f/dxdy)(a, b,) (e2jldy2)(a, b) res- 
pectively. 

The reader should carefully note the difference in the meanings 
of fyM> h) and fxy(a, b). 

Partial derivatives of the third and higher orders can be similarly 
defined. 

126T. Change in the order of derivation. In general, a partial 
derivative has the same value in whatever order the different opera¬ 
tions are performed. Thus, for example, in general, we have 

/*=/,/ =/■ /' 
xy yx x2y J xyx x2y* Jxy:xy2 

That this is not always the case is shown below by considering 
an example. 

127. It is easy to see a priori why fvx{a, b) may be different 
from fxy(a, b). 

We have 

/„(..»)- h\h-+h’iTL ’-“! 
Also /,(«+*. b)- It /(“+'•■ b+k)-fia±Ky, 

and b)~ It Vi+9-^a 
£-»0 

it it 
h-*0 k 0 

= It It z i * 'v' < 

It may similarly be shown that 

fn(a, b) = It It 
k-*0 h~>0 l,k 

f(a~\-h, l-{-k)—f(a-\h, b)—f(a, b-\-k)+f(a, b) 
' hk 

*(*.*) mv 
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Thut we see that fy„{a, b) and fxy(a,'b) are repeated limits of the 
same expression taken in different orders. 

Ex. 1. If f (x, y)=xy(xa—yi)l(x2+yt) when (x,y)4(0,0) 
and /(0,0) =0, 

show that /rf/(0, 0)ff,/x(0, 0). 

We have 

4/(0, 0) = it /y(0+*. 0)—y?/(0. 0) 

h >0 h 

But /?,( o. o) = It m o+*)-/(o, o)_ 

A—0 k 

and /#, 0) = it M-AfV-Ah, o) = 
&_*n h i 

k-*0 

It 
hk(h* 

W2+ki) 
'-h 

/.y(o, oy - it 
h-+ 0 h 

Again /,A.(0, 0)= It ,°) 
A-.0 * 

It AO-i *, 0) —/((), O)_0 

h-> 0 
But 

and 

/•(0, 0) 

_ u w+h’A-mk)^ hk(h* 
L xX O i Lot —* * /*(0- A) — iV , 

/f->0 n 

fyjp, 0)=lt =~=-l 
£->0 * 

-Aa) 

/.y(0, 0)^(0, 0). 
Ex. 2. Given that 

f{xty)^xy if I * I and /(*,>)« -#if |j|>M 
show that Jxy(0, 0). 

Ex. 3. Examine for the change in the order of derivation at the 
origin 

(0 /(*,.?)= I **-/ I 
(«) f(x*y)~x* taa~Hy/x) tan*/0, ^0 

elsewhere. 

127. We now prove two theorems which lay down sufficient 
conditions for the validity of the statement fxy~fyx. 

127*1. Schawarz's theorem. If {a, b) be a point of the domain of 
definition of a function f(x, y) such that 

(i) fx{x, y) exists in a certain neighbourhood of (a, b) ; 
(ii) fxV{xt y) is continuous at [a, b)t 

then 
fyx{a> b) exists and is equal to fxy(at b). 

The given conditions imply that there exists a certain neighbour¬ 
hood of (a, b) at every point (x,y) of which fK{xy y), fy(x,y) and 

y) exist. Let (a+h, b+k) be any point of this neighbourhood. 
We write 

<f>(h, k)=f(a+h, b+k)~f(a+h, b)—f(a, b+k)+f{a, b)t 
g{y)H{*+K y)-f(a, y)> 

so that <f>(h, k)^g{b+k)—g{b) (1) 
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Since/, exists in a neighbourhood of [a, b), the function g(y) is 
derivable in (b, b+k), and therefore, by applying the mean value 
theorem to the expression on the right of (1), we have 

W, k)=kg(b+9k) (O<0<1) 
=k[ft{a+h, b+9h)-Ma, b+dk) (2) 

Again since fxy exists in a neighbourhood of (a, b), the function 
fy(x, b+Bk) of x is derivable w. r. to x in (a, a+h) and therefore 
by applying the mean value theorem to the right of (2), we have 

k)=hkf„y(a+0'h, b+6k) (0<6'<D 

„ 1 rf(*+h, b+k)-f(a, 6+ k)_f(a+h, b)-f(a, b)) or k | h J 
=/. (a+6% b+dk) 

Since fx{x, y) exists in a neighbourhood of (a, b) this gives, when 
h~* 0, 

/^arb+kjpfJa’3 = it fr,(a + 6'h, b+8k) 
k h-* 0 

Let, now, &->-0 Since fxy{x, y) is continuous at (a, b), we obtain 
fya>(a> b)— It It fx{a+6'h,b+0k)=fx(a,b) 

k -*-0 h~* 0 

Cor. 1. Hfxy{x, y) and/J*, y) are both continuous at (a, b), 
then fay{a, b)=fyx{a, b). 

128-2. Young’s theorem. If {a, b) be a point of the domain 
of definition of a function f(x, y) such that fx(x, y)and fy(x, y) are both 
differentiable at [a, b), then 

f*y(a> b)=fvx(a> b)- 
The differentiability of fx and fy at (a, b) implies that they 

exist in a certain neigbourhood of (a, b) and 

fx2’ fyx’ fxy’ fy- 
exist at (a, b). Let (a+h, b+h) be any point of this neighbourhood. 

We write 
<p(h, h)=f(a+h, b+h)—f[a+li, b) —fa, b+h)+f(a, b) 

g(h)=f(a+h, y)—f(a, y) 
so that <f>{h, h)=g(b+h)-g{b) (1) 

Since fy exists in a neighbourhood of (a, b), the function g(y) 
is derivable in (b, b+h) and therefore by applying the mean value 
theorem to the expression on the right of (1), we obtain 

h)—hg'(b+6h) (0<0<1) 
—h[fAa+h> b+0h)—fy(a, b+6h)] (2} 

Since fy{x,y) is differentiable at {a, b), we have, by definition, 

fy (a+h> b+M)-fy(“. b)=hfxy (a> b)+ehfyt (a- b)+f*Pi(h, h) 

+6^, h), (3) 
and fy(a> b+6h)-fy(a, b) =0^, {a, b) + 6h pt{h, h), (4) 

where <f>], all-*0 as h-+ 0 
From (2), (3) and (4), we obtain 

f{ht h)lh'c*/xy{a, b)+pl(h, h)+$pi{h> (5) 
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By a similar argument and on considering 
H(*)=/(*, b+h)-f(x, b), 

we can show that 
t(h, h)lh'=fyx(a, b)^3(h, h)+d'Mh, h)-6'UK h) (6) 

where <f>3, </>3, ty3 all->0 as h^0 

Equating the right hand sides of (5) and (6) and making h-+ 0, 
we obtain 

fMa> b)=fyx(a- b)- 
Ex. In view of the Schwarz’s and Youngs theorems, explain the in¬ 

quality fxy(0, 0)fifyx(0, 0) for the function considered in Ex. 1 after §127, 
p. 208. 

[Show that neither/xy(#,jv) nor fyx (*,y) is continuous at (0, 0) and that 
fx (*,y) and fy (x>y) are not differentiable at (0, OjJ. 

Explain the same inequality for the functions considered in Ex 2 and 
Ex. 3 also. 

128. Theorem. If f(x, y) possesses continuous partial deriva¬ 
tives of the nth order at a point {a, b), then 

f. . , , (a, 6)=/ (af b) 
PnPn-i-PfPi 

where each p and q is either x or y and the number of %*s among p’s is 
the same as the number of xs among q’s and similarly about the y’s. 

The proof which is simple, may be obtained by the principle of 
mathematical induction from the cor. of §127T. 

For example, the theorem shows that when n~3, 
f =/' z=f 
J x2y xyx yx2. 

Ex. f(xiy)~{xt+y%) log (** -fj*) for (*, y)^(0, 0) and /(0, 0)=0. Show 
that/xy and fyx are not continuous at (0, 0), bat/xy(0, 0)**fyx(0, 0). 

129. Differentials of second and higher orders. Let z=f(x, y) be 
defined in a domain E and let it be differentiable at every point 
(x, y) of the domain. The differential dz of the function z at any 
point (x, y) is given by 

<» 

where we have taken Bx, 8y for h, k respectively and 32/3#, d*ldy 
denote the partial derivatives of the function z at (x, y). 

Taking z=x, we obtain from (1) 
dx=dz=l . 8^+0 . By~Bx 

Similarly taking z=y, we obtain dy=Sy. 
Thus we see that the differentials dx, dy of the independent 

variables y are Bx and By respectively so that we can write 

dz*=p dx +l-dy. (2) 
dx dy 

Regarding dx and dy as constants, we see that the differential 
dz is a function of two variables x and y and is itself differentiable 
in the domain E, if dz/dx, dzjdy are both differentiable in E. 
(§125, p. 206) and also then 

*(*)"*(fj) ix+*\k )** 
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Replacing z by 92/3# and dz/dy in (2), we obtain 

^0* 

/0£ 
\dx 

dxa 

)='- dxd 

dx- 
0*z 

dydx 

, , 0** 
0*0y ^+0y* 

- dy ; 

dy. 

Since dz/dx, dz/dy are differentiable in E, we have, by Young’s 
theorem, at every point of the domain, 

d'z/dxdy—d'z/dydx. 
Thus denoting d(dz) by dlz, we obtain 

dh=p- dx-+2 -1— dxdy+—i dy1, 
dx1 ^ s«v •yTsy y> 

where dx2—(dx)1, dy1=(dy)1. 

For the sake of brevity this is usually written as 

dh-- dx?- +dyd 
dx dy 2, 

whose meaning is self evident. 

Again, d'z is differentiable in the domain E if the second order 
partial derivatives d*z/3x\ d%'d%dy, d’z/dy2 are all differentiable in E. 
This condition ensures the legitimacy of the inversion of the 
order of derivation w. r. to x and w. r. to y in the. partial derivatives 
of the third order. Thus we have 

+dyy) *• 

Proceeding in this manner we see that inz exists if dn~lz is 
differentiable which is the case when all the partial derivatives of 
the (n—l)th order are differentiable. This condition also ensures 
the legitimacy of inverting the order of derivation w. r. to x and 
w. r. to y in the partial derivatives of the nth order. The expres¬ 
sion for dnz in terms of partial derivatives of the nth order, as may 
be shown by Mathematical induction, is given by 

dnz=d~n dxn+n 
0”z 

0V0*’1’1 
dydx"~l-\- 

n(n—1) 9n2 

2 ! 0y39*H *1 
dy1dxn~i-\- 

. dnz , 
.+-— dy* 

0y» * 

dx, -■ +dy 
dx ^ dy 

0 l*. 2. i.e., i"2=^ 

130. Differentiation of Functions of Functions. If 

x=<f>(u, v),y=^{u, v) 

be two functions of (u, v) defined in a domain E of the point (w, v), 
then the domain E, of the point (x, y) as («, v) varies in E is said 
to be the image of E. 
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Theorem. If 

(i) (u, v), y^=ip(u, v) are two differentiable functions of 
(u, v) in a domain E, 

(ii) z~f(x,y) is a differentiable function of {x, y) in a domain Ev 

(Hi) Ex is the image of E, 
then 

z, regarded as a function of u, v, is differentiable in E and 

dz=—■ dx +*~ dy. 
dx yy 

[This theorem shows that the expression for dz is the tame whether the 
variables x,y are independent or dependent upon some other variable*. Of 
coarse dxt afyare not constants vvhenx,^ are dependent variables]. 

Let (u, v) and {u+hu, v f-Sv) be any two points of E, and let 
(x, y) and (*4-§*, v + Sy) be the two corresponding points of Ex so 
that 

Sx—'Piu + Bu, v+bv)—(p(uf v), 8y~\l/(u+Su, v+bv) — tl/(u, i>). 

Because of the differentiability, i>{u,'v) and v) are continuous 
functions of u and v} i. e.} hx and by >0 as (8ut bv)~*(Q, 0). 

Since x~<j){u, v)t y=^^(uf v) are differentiable at (u, v), therefore 
hx=(f>uS w + ^(8v+#>18w + ^28i’, (1) 

by tbu~\-rbv-\-\p xbu-\-\jj 2bv, (2) 
where <f>2) #it \p2 are functions of bu, 6v and *0 as (8w, 8v)->(0, 0). 

Also since z=f(x, y) is differentiable at (x, y), therefore 
Sz=frSx +fPdy +f1hx+fihy, (3) 

Twhere /„ /a are functions of 8%, 8y and-»0, as (dx, hy) -»(0, 0). 

From (1), (2), (3), we obtain 

S^=(/»^+/y^,)8«4-(/^r+/^„)8t»+F18M+Fl8i>, 
where Fx = ( ?/>/'i +/i$„+/i'f'l +/a<P« +/2l/'i) 
and F2=(/>J+/j^2i/1f,+/1^a+/Jf.+/J^) 

Since the co-efficients Fx and Fa of Sw and 8u-» 0 as 
(8m, 8z>)-+(0, 0) we see that z is a differentiable function of (w, v) and 

dz— (fx4>< +frPMu+( fx^v+fy'P <)dv 
=fA?Ju+0dv)+f {fju+<p,)dv 

dz dz 
- , dx + V- dy. 

dx dy J 
1301. Differentials of higher orders of functions of functions. 

From the preceding theorem we deduce that if dz/dx, dz/dy are 
differentiable functions of x, y (so that they are also differentiable 
functions of u, v) and dx, dy are differentiable functions of u, v (i. e., 
d2x, dly exist, then dz is a differentiable function of u, v and we have 

d2z=d(dz)= dl^dx +?^d(dx)+d[fy)dy +fyd(dy) 

(§125, p. 206) 

02^ , a . 0 8az , , , 
fx‘d*+\,dyi’“‘y + 

t’i i/‘+4"" J’x+^i’y 
ay* ;t5* dy j 



FUNCTIONS OF SEVERAL VARIABLES 213 

Proceeding in this manner we see that dn"lz is a differentiable 
function of u, v, i. e., dnz exists, if the (n—l)th order partial deri¬ 
vatives of z are differentiable functions of x and y and the nth 
differentials dnx) dny of x, y exist. But the formation of differentials 
of higher orders becomes more and more complicated and no simple 
general formula exists for dnz in this case. 

Note In case *, y are linear functions of u and v i. e., x,y are of the form 
x*ma+bu+cv% y*=*d+eu+fv, then d2x, d2y and all higher differentials of x and y 
are 0 and, therefoi’e, we have 

**-(■&* +{ydyY*' 
so that the form is the same as if x and^> are independent. 

131. Derivation of functions of functions. If (i) v), 
y-=-^{ut v) possess continuous first order partial derivatives in a domain 
E of the point (u, v) (ii) z=^f(x,y) possesses continuous first order 
partial derivatives in a domain Ex of (x, y) and {Hi) Ex is the image 
of E, then z possesses continuous first order partial derivatives w, r. to 
u, and v in E ; also 

3£ ?z dx , 3 z dy 
du dx ' du dy du 

3 z 0Z dx , dz 
' dv dy ' 

dy 
dv dx ' dv ’ 

Because of (i) x, y are differentiable functions of u, v and 
because of {ii) z is a differentiable function of x, y. Hence from §130. 
z is a differentiable function of {u, v). Therefore 0z/0w, dz/dv exist 

dz— —du + ~ dv 
0« cV 

Also from §130, we have 

(1) 

dz—~dx +-—iv 
dx ^ dy y 

dz 
dx ■( 

?-du +~dv 
du T dv dy 

dz_ 
dx 

\du 

dx §f+ii P. \du +(- 
\ dx du dy du I 

From (1) and (2), on comparison, we obtain the values of 3z/3« 
and dz/dv. 

dv 

_ , 3f dy 
dv dy 3v 

yv (2) 

Again, because of the conditions (i) and (ii), we see that dz/du 
and dz/dv are continuous functions of {u, v). 

Cor. If (i) x=1>(ut v), y=${u, v) possess continuous wth order 
partial derivatives in the domain E of (u, v), {ii) z=f(x, y) possesses 
continuous nth order partial derivatives in the domain E* of (x, y) 
and (in) Ex is the image of E, then z possesses continuous nth order 
partial derivatives w. r. to u and v in the domain E. 

Because of (i) and (ii), l%~~'xt dn~ly are differentiable in E and 
dn~'z in Ej so that the result now follows from §130*1. 
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Cor. A particular case. If z~f(x, y) possesses nth order partial 
derivatives and x=a+ht, y=b + kt, where at b, ht k are constants, then 

sd
 ft

¬ 
's

!*
8 

II 

(*!.-+*&) 
n 

2. 

We have 
dz 
dt 

= .0A. 
dx 

dx , 02 dy_ , 02 

dt dy ~df~ dx + *0^ 
diz 
w 

dx , 022 d%y' 
dt dydx dt J+ k 

r 
[ 3*3jy 

,0*2 

+0? 

dy] 
dt J 

_ =h' Ai+2M-Al 4-A! — A -| + k z. 
d*x dxdy dy* 0* dy 1 

By Mathematical induction, we may now obtain the value of 
dnzldtn. 

132. Taylor’s theorem for a function of two variables. If f(xt y) 
possesses continuous partial derivatives of the nth order in any 
neighbourhood of a point (a, b) and if (a+h, b-\-k) be any point of this 
neighbourhood then, there exists a positive nvmber 0 which is less than 1 
such that 

• f(a+h, b-\-k)—f(a, b)+ ( *A+* A )/(«, b) 

+ Al( hix+ kTy)f[a,h) +. +(«=T)t( hdx+ kdf f[a,b] 

+ -L,( kTx+ kjy) f{a+9h’ b + 9k)’ 

x=a-\-th, y—b+tk (O^^^l) 
We write 

Let 
f(x, y)=f(a+ih, b-{-tk)~g(t). 

Since all the partial derivatives of f(x, y) of order n are continu¬ 
ous, gn(t) is continuous in (0, 1) ; also, as proved in § 131, we have 

Applying Maclaurin’s theorem to g(t), we obtain 

^)=g(0)+^'(0)+-2!-g"(0) + . • + 
tn-i 

\n-\) ! 
g»-.(0) +~g*{0t) 

For/=l, this becomes 

g(V=g(0)+g\0)+±g'(0) +.+(n3iy! 

Since g(l)=J(a+h, b+k) ; g{0)=/(a, b) 

•3 , t3 

(0<6<l) 

«*-le0) +^-gn(8) 

g'(0) = ( h-dx+ k°y\f(a, b) ; g"(0) f *a--+*a~ \ 3* dy )/(«. t>) 

gn(e) = [ hjx + k^nf(a+dh, b+dk), 
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We get the result as stated. 

[It is easy to see that Taylor’s theorem can also be written more 
compactly as 

■ f{a+h, b+k)=f(a, b)+df(a, <**/(«, &))+. 

+.+ ^f(a, b) + i i*f(a+0h, b+6k) 

Ex. Show that 

(i) sin x sin.)'3®*y—8C(■**-i-cos Qx sin ^-Ky+S^sin 9* sin 9y] 
(O<0<1) 

(»i) esin by**by + abxy f —3^*^*)sin o-f (3a%bx*y — b*y%) cos 
where u—a$x, v*=*b$y, (0<t?<l). 

133. Maxima and Minima for functions of two variables. Let 
(a, b) be any* inner point of the domain of definition of a function 
f(x, y). Then f(a, b) is said to be an extreme value of f(x, y), if for 
every point (x,y), [other than [a, 6)], of some neighbourhood of (a, b)t 
the difference 

/(*> y)—Ra> b) 
is of the same sign ; the extreme value f(a, b) being called a maximum 
or a minimum value according as this difference is negative or positive. 

133 1. The necessary conditions for f(a, b) to be an extreme value 
of f(x, y) are that 

/»(*. J)=° =/*(«. b), 
provided that these partial derivatives exist. 

If f(a, b) is an extreme value of the function f(x, y) of two 
variables then, clearly, it is also an extreme value of the function 
f(x, b) of one variable x for x~a and therefore its derivative fx[a, b) 
for x=a must necessarily be 0. Similarly we have fy(a, b)=0. 

Note. If /(*, when x=0 or ^**0 and/(x, >)=l elsewhere then 
fx(0, 0)=0=jfy (0, 0) but / (0, 0) is not an extreme value so that we see that 
the conditions obtained above are only necessury and not sufficient. 

Ex. Show that/(x,^)=» | x | -f \y | has an extreme value at (0, 0), even 
thou£fh/x(0, 0),/y(0, 0) do not even exist. 

133*2. To determine sufficient conditions for f(a, b) to be an 
extreme value off(xt y). 

We suppose that 
/>. b)—0—fy(a, b). 

Also we suppose that f(x,y) possesses continuous second order 
partial derivatives in a certain neighbourhood of (a, b) and that 
the derivatives at (a, b), viz., 

fx\ («. h)> fxyia' b), fyi {a, b) are not all zero. 

We write 
A=4,K b), B=/xy(a, b), C=/y (a, b). 

By Taylor’s theorem we have 
b-\-k)=f{a, b)-j-h/x(a, b)+kfy(a, b) 

*A point (a, b) Is aaid to be an imur point of a domain if every point ef 
•owe neighbourhood of (a, *) Is a point o( the domain, 
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+4,[*7*, («.p)+mxy(«. fi)+»fyt(«.«] 

where a=a+Oh, f$~b-\-6k and O<0<1. 

We write 

/*.(«+•*. »)«Pi. 

fxy(a + 6h> b+Ok)- fXy(a, b)=p2, 

fy*{* + Oh, £+<9/e)~ }yt (a, &;=P3, 

so that Pj, P2, P3 are functions of h and k and-*0 as (A, A) -*0. 
.'.f(a+h, b+k)-f{a, &)=$[AA*+2BA*+aHP(*l+*a)]. 

where P is a function of A, A defined by 
p .;**+**)«/,*pl+2*Apf+A-pt. 

Since | p ) i Pi I +2 h+J I Pai I + h2+k* * I 

< I Pi I + I Pt I + I Pa I i 
we see that p~v() as (h, h)~+(0, 0). 

Writing 
A=r cos j>, k~r sin 0, 

we obtain 
/(a+A, 6+A)--/(a, 6)=^r2[A cos20d-2B sin 0 cos 0-fC sin20+P] (1) 

We now determine conditions for the function 
G(/>)~A cos1 <f>-f-2B sin 0 cos 0+C sin3 0 

of 0 to be definite, semi-definite, or indefinite. 

(The definitions of definite, semi-definite and indefinite functions are 
given in a note at the end of this section,) 

Let Af 0. Then 
G(0)=*[(A cos 0-fB sin 0)3-f(AC —Bl) sin3 0]/A 

If(AC—B*)>§tthen G(j>) has always the sign of A and is, 
therefore, definite. 

The only possibility of tha vanishing of G(0) arises when sin 0*0 as well 
as A cos 0-|-B sin 0=*0, when sin $5*0 and cos 0*0 but this is impossible. 

If AC—B2=0 then the function is semi-definite, for it vanishes 
when A cos j>+B sin 0=0 and has for every other value of 1> the 
sign of A. 

If (AC—B2)<0( then the function is indefinite, for it assumes 
value of different signs when sin 0=0 and when A cos 0+B sin 0=0. 

Let A~0 but J3/0, Cf 0. Then 
G(0)=2B sin 0 cos 0-f C sin2 0=[(C sin <p+B cos 0)a—Ba cos* 0]/C 

is clearly indefinite. 

Let A*=0, 13/0, C=0. Then 
G(0)=2 B sin j> cos 0=B sin 20 

is clearly indefinite. 

LetA**Q, 0, C/0. 

Is semi-definite. 

Then 
G(/')«C sin* $ 
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Thus we see that G(1>) is definite if and only if (AC—B)~i>0 ; 
also, then, it is positively or negatively definite according as A (or C) is 
positive or negative. 

We now return to the equality (1), viz., 
f(a-\-h, b-\-k)—f(a, 8)=£r*[G(^)-)-p]. 

f Let G(P) be positively definite. There exists, in this case, a 
positive number m, the lower bound of the continuous function G(^), 
such that for every value of f, 

m%G(i). 

Also, since p 0 as (It, k)-*(0, 0), there exists a positive number 
8 such that, when | h | C8, | k j ^S, we have 

| P j i.e., 

Thus when | h | < 8, | k | < S, we have 
G(^) + p>w—i»t=^w>0. 

Hence f(a, b) is a minimum value of f(x, y) in this case. 

Let G(p) be negatively definite. There exists in this case a 
negative number M, the upper bound of the continuous function 
G(£), such that for every value of p, 

G(.v)<M. 

Also there exists a positive number S such that when 
! h | <8, I A | ^8, 

iPK -JM, i.e., 

Thus when | h [ <8, | k ! ^S, 
G(94) + p<^M<0. 

Hence f(a, b) is a maximum value of f(x,y) in this case. 

Let G(t‘) be semi-definite. This case is doubtful for the sign of 
f(a-\-h, b-\-k)—f(a, b) depends upon p. 

Let G(t/>) be indefinite. Let <&l and p, be any two numbers such 
that 

G(^)>0GW<0. 
There surely exists a positive number tn such that 

G(0i)>m, G(9Sa)< -m. 

We choose a positive number 8 such that when j h 1 <8 and uia 
! P I <i*n, i. e., —|m<P<£>n. 

Thus when | h | <8, i k ! <8, 
. G(f>;)+P>iw>0 and G(^2)+P< -iw<0, 

so that in every neighbourhood of (a, b) there exist points 
(a+h,b-\-k) for which the difference /(a^h, b+k)--/{a, 6) has 
different signs. Hence f(a, b) is not an extreme value in this case. 

Rule. If at a point (a, b) 

fx{a, b)=*0=fy(a, b) 

and fxt (*, b) fyt (a, b)-fy^(a, b)>0, 

then f(a, b) is an extreme value which is a maximum or a minimum 
according as A<0 or>0 (and consequently C<0 or>0). 
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Note. The case when A = B=CV0 or the doubtful case which arises 
when AC—B'=»0 or when A«B=0and C^O require more elaborate conside¬ 
ration where we have to employ Taylor’s theorem with remainder after three 
or more terms but this consideration is beyond the scope of this book. 

Note* Any function G($*) of 0 is said to be definite if for every value of 
# it assumes values which have always one sign ; also a definite function is 
said to be positively or negatively definitely negative according as the sign is 
positive or negative. 

2. The function is said to be semi~definite if it can vanish for some value 
orvalues of 0 and yet, when not 0, has always one sign, 

3. The function is said to oe indefinite if it can assume values which are 
of different signs 

Note. Since df(a, b)—hf v(a, b)+kf v[a, b) 

and d*f(a, 6)-**/^, (a, b) +2hkfxy(*. b) + *'/ , (*. b) 

=P2[cos2 if t (a, b)+2 sin </> cos <£/ (a, b) 
x xy 

+ sinWy (a- &)]. 

we see that f(at b) will be an extreme value of (x, y) if at (a, b) the first 
differential df~ 0 and the second differential d2f is of invariable sign 
(i.ets definite) for all values of h and k. Stated in this form the result 
is quite general and applies to a function of any number of variables 
as can be proved by an obvious extension of the method for two 
variables. 

Examples 

1. Examine the following for extreme values 

(i) y*+4xy+3x*+x*. 

(tit) y%+x*y+ax*, 

(») x*y(l2-3*-4y). 

(wi) 2xyz + xi+y'+zi, 

2. Show that 

(it) 3x4y—6xxy14- 3**-f 2yP—6**—Qy%+1. 
(iv) x%+xy+y*+ox-tby. 

(») 
(viti) 2**-f 

f{*,y)”(y-*Y+(*~ 2)4 
has a min. at (2, 2) even though at (2, 2), 

yk S xy * 0 * 

3. Show that 
f(x, y)**y'+x*y+xi 

has a min. at (0, 0) even though at (0, 0) 

JX Jy\ J Xy 

4. Show that 

has neither a max nor a min. at (.0, 0) where 

J#ry*-s\r o. 

5. Find the maximum and mirdmnm values of the function 

(.•-f/)*6**2** (/. c. s.) 
6- If r is the distance between two points P and Q situated respectively 

on the cu»ves 
and f*— 

the pos tionp of P and Q when r is a maximum or a minimum and interpret 
the results geometrically, 



CHAPTER X 

IMPLICIT FUNCTIONS 

134. If f(x,y) be a function of two variables and y~<f>(x) be a 
function of x such that for every value of x for which f(x) is defined, 
f[x, <t>{x)) vanishes identically, then we say that y—j(x) is an 
implicit function defined by the functional equation f(xt y)= 0. 

A functional equation may not define any implicit function or it 
may define one or more than one such lunction; for example, the func¬ 
tional equation *2+y2~l:=0 determines two implicit functions, viz., 
y=zj(l— x2) andy= — \/(l — x ), whereas the equation x^+y^I =0 
determines no such function. 

It is only in elementary cases, such as those given above, that 
we may be able to determine the implicit functions, (in case they 
existb defined by a functional equation. For more complicated 
functional equations such as x'y+<my-flog x-0, no such determi¬ 
nation is possible; this impossibility of determination, however, does 
not rule out the possibility of the existence of the implicit function or 
functions defined by an equation. The question of the existence of 
implicit functions, (apart from their actual determination) will be 
investigated in this chapter. 

135. Implicit functions determined by a functional equation. 
Let f(x, y) be a function of two variables and let (a, b) be a point of its 
domain of definition such that 

(*') /(«. b)=0, 
(ii) the function possesses continuous derivatives fx and fy in a 

certain neighbourhood of (a, b), and 
(Hi) fy{a, b)fQ; 

then there exists a rectangle (a—h, a+h, b—k, b+k) about (a, b) 
such that for every value of x in the interval [a—h, a+h), the equation 
f(x, y)=0 determines one and only one value y=<f>(x) lying in the 
interval (b—k, b+k) and this function <f(x) is such that 

(1) bm*(a). 

(2) f[x, <f>(x)]=0 for every value of x in (a—h, a+h). 

(3) f>(x) is derivable and both i>(x) as well as <f>'(x) are continuous 
in (a—h, a+h). 

(The reader is advised to follow the following line of argument by means 
of the diagram which he may easily construct for himselfj. 

Without any loss of generality, we suppose that fy(a, b) >0, for, 
otherwise we should only have to replace f(x, y) by —f(x, y) and this 
change would leave the equation f(x, y)— 0 unaltered. 

Unique Existence. Let fr, fv be continuous in the neighbourhood 
R»(*-A|, of («,&)• 
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Since fx,fy are continuous in R., therefore f(x, y) is also continu¬ 
ous in Rx. 

Since fy(x, y) is continuous at (a, b) and fy(a, A)>0, there exists 
a rectangle 

R2(a—h2, a+h2 ; 6 —k,b+k) A,<A,, k<kx 
such that for every point (x,y) of this rectangle R2, fy(x, y)>0. 

Now, since fy(x, y) >0 in R2, therefore for every value of x in 
(<i—A2, a+Ai), the function f(x, y) of y strictly increases asy increases 
from b--k to b4-A. In particular, since f(a, 6)= 0, we have 

/(a, 6-A)<0, /(*, £+£)>0. 

In view of this and the fact that f(x, y) is continuous, there 
exists an interval (a—h, a+Ji), (A<A2) such that for every x of this 
interval, we have 

Now for every fixed value of * in (a—h, a+h) the continuous 
function f(xf y) of y strictly increases from a negative to a positive 
value asy increases from b—k to b + k and therefore there exists one 
and only one value of y for which the function f(x, y) vanishes. 

Hence for each value of x in (a—h,a\-h) there is a uniquely 
determined value of y for which/(x, y) = 0 ; this value of y is a func¬ 
tion of x, say 4>(x) such that the properties (1) and (2) are true. 

This completes the proof of the existence and the uniqueness of 
the implicit function f(x). 

Continuity. We now prove that <P(x) is continuous in 
(a—h, a+h). Let xQ be any point of this interval and let y0~$(x0). 
Let ( be any given positive number. Let 

R'(%0—S„ *.+S, ; y0 €, _y0+«) 

be a rectangle entirely lying within the rectangle 

R(a — h, a+h ; A—k, b+k) 

found above. For this rectangle we can carry out exactly the 
same process as before in order to obtain a solution of f(x, y)=0. 
Since the solution was uniquely determined in R which encloses R', 
we see that the same function viz., y~$(x) is the solution in R' also. 
Thus there exists an interval (x0~~8fx0—8), such that for every 
value of x in this interval y=<£(#) lies between y0—€ andy0+€# i. e.t 

| y-y0 | = | | <e, when j | <8. 

Hence ${x) is continuous at x0 and, therefore, in (a—h, a+h). 

Derivability. Let x be a point of the interval (a—h, a+h) and 
let x+hx be another point of the same interval. Let 

y=f{x), y+Sy=<l>{x+Sx), 
so that 

f(x, y)=0,/(x+Sx, y-j-Sy)=0. 

0*=f(x+8x, y+Sy)-f(x, y) 
«=/(*+8*, y+hy)-f(x+tx, y)+f{x+Bx, y)-f(x, y) 
—Syfv(x+&x, y+6l6y)-\-Bxfw(x+eabx, y) 

(By mean value theorem) 
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Since/y/0 in R and (x-\-Sx, y+B^y) is a point of R we have 

}y__ _ f„(x+0tBx, y) 
Sx fyix'+Sx.y+ejy)' 

Since <j>{x) is continuous, By >0 as S.ic-*0. Therefore, fx and ft 
being continuous, we obtain from above, when (Sx, Sy)-*(0, 0), 

*y_-, /■(*» y) 
dx fy(x, y) - m- 

Thus <f>'(x) is derivable and <f>'(x)= —fx(x, y)!fy(x,y). Also this 
formula for f’(x) shows that it is continuous. 

Note. The functionyt=(fi(x) is said to be the unique solution of/(x,y ■»0 
near (a, b) or the unique implicit function determined by/(x, yjmiQnear (a, b)» 

Examples 

1- If/(x,y) is a continuous function of each variable x and y separately 
in a certain neighbourhood of (a, b),f{a, b^o,fy{x1y) is continuous at (a, £) 
and/y(a, b)# », then the equation f(xty)^=0 determines a unique continuous 
implicit functiony~${x) near (a, b). 

2. Iff(x,y) is a continuous function of each variable x and.? separately 
in a neighbourhood of [a, b), /K 6) = 0 and fy{at b) exfits and^O, then the 
equ*tion /(x,y = 0 determines atlcasl one continuous implicit iunction y**${*) 
uear [a, b). 

3. f(xtv) is a continuous function of x and y in the neighbourhood of 
a, b such fchat/id, b)—0 ; and further/(*,.?) is, tor all x in the neighbourhood of 
<*, a strictly increasing iunction of y. Prove that there exists a unique Junc¬ 
tion 7=0(x), which when substituted in the equation /(x,y*=0 satisfies it 
identically for all values of x in the neighbom hood of a, and that <fi(x) is conti¬ 
nuous for all values of x in the neighbourhood of a. 

Itf (x,y)~yi—y1 -f **, discuss the existence of the function^^^(x) in the 
neighbourhood of x=*o» ^“=0. 

4. Show that the following equations determine unique implicit func¬ 
tions near the points indicated ; find also the first derivatives of the solutions* 

(0 **+>•—3xy+jr*0f (l, 1). (si) xy sin x+cosj>=*0, (0, i^r). 

(m) / cos x+y sin1 x—7, (Jit, 2) (ip) 2*7-log xy~2, (1, l). 

5. Examine the following equations lor the existence of unique implicit 
functions near the points indicated and verify by direct calculation. 

(i) y —^x1—2x6**0 near (o, 0) and (1, — l). 

(u) y+/*•-. 2*#-0 near (i, 1). 

(tit) y+2x^+**-0 near (1, —1), 

(ip) y x*=0 nesr (0, o), 

6. Show that the least positive root of xy^tan^ is a continuous function 
of x throughout the interval (1, and iucreases steadily from 0 to Jir as x 
increases from i towards oo. 

(Use §51, p. 78). 

136. Before considering the question of the^existence of implicit 
functions determined by a system of functional equations containing 
any number of variables, we give, m this section, a few necessary 
definitions. These definitions constitute an obvious extension of those 
given in the preceding chapter for functions of two variables. 

A point in a space of n dimensions. Any ordered set of n numbers 
(au ap a%.aH)is called a point in a space of n dimensions 
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A set of points (xv xt,.. xn) such that 

I *l-«l | V I xt~a3 I <^2. I | 
is said to be a rectangle with the point (av a2,.an) at its centre 
and will be denoted by 

(fll—hlt \ d2— h2, ». » O'*, ^n> 

If to each point (xlt x2,., x,}) of anv given set of points in 
the space of n dimensions, be associated a value of another variable 
h, then we say that u is a functiou of the n variables xlt x2,.,xn 
and the given set of points is said to be the domain of definition of 
this function. 

Ex. “ •+#n is a fuaction of the n variables xl% xt% , x*. 

Neighbourhood of a point. The rectangle 

(aA—Ax, ax+hx ; a2—hv aA+h2 hni afi+hn) ; 

when hv h2.hn are any positive numbers whatsoever is said to be 
a neighbourhood of (ax, ar.., an) 

Continuity. A function/^, x2>.>.tx„) is said to be continuous 
at a point P(a,, a2t...,an), if to every positive number there 
corresponds a neighbourhood of P such that for every point 
(*v **-> **) of this neighbourhood 

I /(*i. Xi,...,xn)~f{alt a„) | <e 

Partial Derivatives. The limit 

]t /(«)+V «2. gn)-/(«l,«g,-,fln) , 

ht-0 >h 
if it exists, is called the partial derivative of the function / w. r. to 
#, at (av a„) and is denoted as 

f (®1» ^2>*"> ^»)' 
X1 

We may similarly define other partial derivatives of the first 
and of the second and higher orders. 

137. Implicit function determined by a functional equation. 
General Theorem. Iff(xv xt,..., x„, y) be a function of (w-f-1) vari¬ 
ables and (alt a2,...,an, b) be any point of its domain of definition 
such that 

(*) f{au b)=0, 

(it) the function possesses continuous first order partial deriva¬ 
tives w. r. to the (tt+1) variables in a certain neighbourhood of the 
point («x, fla,..., an, b), and 

{Hi) f,j(av aa,..., an, b)f0, 

then there exists a rectangle 

(a,—A,, flj+Ai ; aa—h2, a2-\-h2 ; ... ; an—hn, an+hn ; b—k, b+k) 
such that for every point (xv xa,..., x„) of the rectangle 

; Uf—hf, flj+Aj ;... ; an—hn, an-\-hn) 
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the equation f(xv xnt y)=*0 determines one and only one value 
y^=zif>(xv x2Xn) lying in (b—kt b-{~k) and this function ${x) is 
such that 

(1) b~<f>(a}, a2 aan) 

(2) f[xlt x2,...t xn, 0] = O for every point {xv x2i..., xn) in R 

(3) 0 is continuous and possesses continuous partial derivatives 
of the first order w. r. to xlt x2,..., xn in R. 

The proof of this general theorem follows exactly on the same 
lines as the proof of the preceding theorem (§ 135) and offers no 
fresh difficulties. 

138. Jacobians. If uu u2, un ke n functions of n 
variables xv x2f...,xn possessing partial derivatives of the first order 
at every point of the domain of definition of the functions, then the 
determinant 

dUj f cux t dfh j 
d%i d%2 

j du2 ^ du2 f 0w2 
i d%i 0* 2 

dUn f dUn JM* 

0#1 ()X2 <^xn 

is called the Jacobian of uly un w. r. to xv x2,..., xn and is 
denoted by 

Un) or t/ui> un\ 
?{xlf JUi, xn) 

139. Implicit functions determined by a system of functional 
Equations. Theorem. Let f,(x, y, z, u, v) and f2(x, y, z, u, v) be two 
functions of five variables and let (at, a2, fl3, bv b2) be a point of their 
domain of definition such that 

(i) &2> ^3» tfj> a%, Jj, b2), 
(ii) the functions possess continuous first order partial derivatives 

w. r. to the five variables in a certain neighbourhood of the point 
K, a2f aZi b19 b2), and 

(Hi) d(AJ%)ld(u, v)fO at (au a2t az, bu bf), 
then there exist one and only one pair of functions 

(x>y,z)9 v=;<fi2(xtytz) 

of x,y, z defined in a certain neighbourhood of (av a2, af) such that 
(1) fiW )=b$ 
(2) Mx> y> z> $1> ^2)~Q~MX> y> z> <P\> 02) f°r e™ry point x, y, z 

of the dcmain of definition of and 02. 

(3) 0j, tf>2 are continuous and possess continuous first order partial 
derivatives w. r. to x, y, z. 

Proof. Since 0( fv /2)/0(w, v)fO at (av a2i a2, bu b2), one atleast 
of the partial derivatives dfjdv, dfzlZv must not vanish at this point. 
Suppose that dfildvfO, 
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Then, by the preceding theorem (§ 136) the equation 
. ,JV , fi(x,y,z,u,v)=0 
is satisfied by one and only one function 

v=g{x, y, z, «) 

defined in a certain neighbourhood of («,, a3l a3, 8,) and such that 
ijmxg(a,, a3, a3, 6,1; the function g is continuous and possesses conti¬ 
nuous first order partial derivatives. Replacing y by g(x, y, z, u) in 
the function f%<x, y, z, u, v), we write 

h(x, y, z, u)=f3(x, y, z, w, g), 
so that h(a„ at, a3, 6,1=0 

We have, at (au at, a3, 6,) 

?*_0A , djt . Qg 
du 0m "rgv 0W 

Also, since fi(x,y, z, u, g)—0, we have at («,, a3, a3, 6,). 

?A, a/,. rg=0 

s« r» 
From these we obtain 

_3[/i, AV3(«._!') 
cm dJJZv 

so that 0/i/g«/O at (a,, a3, 6,). 
Thus, again, by the preceeding theorem the equation 

h(x, y, z, u)—0 

is satisfied by one and only one function 

«=<£,(*, y, z) 

defined in a certain neighbourhood of («„ a2, aj and such that 
«s)- Replacing « by 0,^, y, 2) in g(ar, y, 2, «) we 

obtain 

y, z, )=?»(*> y. z) 
where 02(a„ <rs> a3)*=g{au a3> a3, 6,)=6a. 

It is easy to see that $S,, are continuous and possess conti¬ 
nuous first order partial derivatives. 

Hence the theorem. 

Cor. To determine rju/dx, cu/dy, dvldx, dv/dy. 

Applying the theorem on the derivation of functions of functions 
to/,(*,y, 2, m, v) and /„(*, y, 2, «, a) where u—<f>x x, y, 2) and 
v—4>% x, y, 2), we have, /„ f3 being indentically zero, we have 

. ?“ . fA . ^_o 
S2; 't'3« 02;+8v 6* 

?/»,3/s. , aA. 0? 0 
3* 0w 82; 32; 

which give 
0«_ d(fi,f2Vd(x, v) 'dv d(f\,f-)/d(x, u) 

dx d{fi.ft)ld(U,v) dx 0(A- A)/0l«. w) 

We may similarly determine 3u/dy and dv/dy- 
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140. Change of variables. If z—f x, y) be a function of two inde¬ 
pendent variables x and y, and if u, v be two new variables connected 
with x and y by the relations 

x—<t>{u, v), y=p(u, v), 

to express the first and second order partial derivative of z with respect 
to x and y in terms of u, v and the partial derivatives of z with respect 
to u and v. 

By the rule of 5131, we hive 

?z ^ Zz Zx , 2z_ Zy 
Tu ?x ' ~?u 2y ' ~?u 

Zz m ?z ?x , _?_y 

dv Zx Zv cy dv ' 

whence we obtain 

Zz 
Zx 

A IL 
Zu 

+ B 
?z 
Zv ' 

where A= 

C= 

2i 
Zy 

Zz 
Zu 

+ D _CZ 

cv 

?y I Z_(x_, y) _ ?y / Z'x.j) 

1 Z[u, v) ' Zu 1 'Z(u, v) ’ 

3* / Z'x.y) D_ Zx / ?(*, y) 
dv *~d\u, v) * dv I 3(«, v) ’ 

are known functions of u and v. The determinant d(x, y)fd(u, v) 
cannot vanish, for, if it did, the change of variables performed would 
have no meaning. (§139) Thus we see that the derivative of z with 
respect to x is the sum of the two products formed by multiplying the 
derivatives of z with respect to u and v by the known functions A, B 
respectively. Similar rule holds good for d*!dy* These rules may be 
expressed as follows : 

f =A ~-+ B ~ , i=C i + DT3. 
Zx Zu Zv cy Zu Zv 

In order to calculate the second derivatives, we apply the above 
rule to the first derivatives and obtain 

Zx’ Zx (a*) a*(A 

3 

dz 
du +bD 

Ay + B 
du 2v cu +Bf' 

C2 
A lz + B „ 

Zu Zv )+Hi 
Zz 

--A* —+2AB — +B* 
Zu* ZuZv~ 

Z*z 
Zv’ 

SB 

Zu 

+(a 

+B-f) 
cu Zv > 

Zur°Zv ) 

/ 

h 
Zu 

+ B 
2B \ Zz 
Zv )~Zv 

Zz 
Zv' 

ZZ*zlxZy, Z**!Zy* can be similarly obtained. 
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Example* 

1. If x be a function of the two variables x, y and 

Prove that 
x=r cos 9, y—r sin 6, 

3*2 
V ■+■ 

3*2 
3jy* 

II +- 

We have 

32 -ii 3* 
- + 

?z |V
5 

3r 3r ? y 32 
32 3* 4-. 32 3^ 
30 2a: 30 

1 
3^ 30 

These give 

V* , l 
39* r 

?* 

3» 
2r 

=cos 9 c*—|-sin 9 
3* 

?z 

3* 
cy 

= —r sin 6~ +r cos 0 
ex 

3* 

32 
3* 

3z 

=cos 

=sin 6 
ly 

Hence 9 

?Z 
‘ 

3* 
* C? 

3* 

sin 0 

+ 

r 

cos 0 
r 

--v- t.e. 
_3z 
30 

?Z 

3 =cos 

_ 3 / 3*_\/ 
?xi dx\ dx ) { 

30 ' t e’’ 

cos 8 ~-sin 6 

3 
3r 

3 

=cos* 0 
3*2 
3ra 

3* 

3 
3y 

3 
cr r • 30.n^'' 3' 

2 sin 0 cos 0 3*2 , sin* 0 
r ~3r30i" r* 00* 

32_ 
3r 

sin I 
r 

cos 
r -*•>+ 

,) (cos 

, 2 cos 8 sin 0 j)r , sin* 0 
30 + r" 

30 
3 
39 

3a \ 
'30 ) 

Similarly 
3*2- • j a 3*2 . 2 sin 9 cos 0 3*2 I cos’ 0 
3y* 3r* r 3rc0 x* 

2 cos 0 sin 0 3z , cos* 8 
r*~ 3 8^ r 

3** 
30* 

3x 

3r 

On adding, we get the result as given. 

2, If e be a function of two variables * and y and 

xsse cosh « cos v, sinh u sin a, 
prove that 

S+S ~i** (cosh 2“-cob 2’ )(t£+i? )• 
3. Express in terms °* derivatives of / 

with respect to u and v where u**x*~y, u-*2xy, /(«, *)•*#(*>>). 

Deduce that the most general function of x,y satisfying 
Jgg 
3*1 + V 1 

is anr-f*. v here o and b are constants and find the jn oat genera) function of 
""/) the equation- 
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4* A function/(*,y)t when expressed in terms of the new variables u,v 
defined by the equations 

y***uo, 
becomes g(u, t) ; prove that 

JlL 4.2_i JZ xiVxi i/\ 
Me 4 \a** ^ y a*ay T ay ^y ay/ 

5, If F(m, v) is a twice differentiable function of (ut v) and 
f«-2xy# preve that 

4(1*+®*)** + ZuF0 + 2v?u~xy(fx% ) + («• -y*)/^ 

fi. Show that if * 

jy 
ax* 2x* 

then 

i*/, 
3/ 

ay. 
dud« 

+ ■ *A 
\ a« + a* / 

141. Dependence of Functions. Let ult u2)uz,...tun be n func¬ 
tions of n variables (x\, x2, x3,...,xn). The functions are said to be 
dependent if they satisfy one or more equations in which the 
variables xlf x2,...,xn do not appear explicitly and otherwise they 
are said to be independent. Thus if 

u==x+y—z, v===x~~y+z,w=x2-i-y*+z*--2yz 

then u, v, w are dependent in as much as we have the relation 
w2-f v~~2w which does not contain x, y, z explicitly, and, which, 
therefore, is satisfied by every set of values of y, z. 

Theorem. The necessary and sufficient condition that a Junctional 
relation independent of x, y, z should exist between the three junctions 
u9 v, w (i.e.y u, v, w be dependent) of the three independent variables 
x, y, z is that the Jacobian 

3(«, v, w)ld(x, y, z), 

vanishes identically. 
« 

The condition is necessary. There exists a function 0(m, v, w) 
which vanishes for every set of values of x, y, z. The partial 
derivatives, of 0(m, v, w) must vanish identically, so that we have 

3 it dx+dv dx^dw dx== ' 
3_0 # 3m 30 # dy 30 # 3uj 
3m dy^'dv dy’' 3w By'* ' 

30 _ 3m 30 < 3r 30 _ Sw 
3m d*+dv dz+dw dx ** ' 

Eliminating the partial derivatives £0/3m. 30/3v, 30/Sw, 
we get ,Q 

c(x,y, z) 

Thus the condition is necessary. 
The condition is sufficient. 

Ut «-/»(*» y> *)> y. 2). »«“/»(*, y, *) (») 
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The Jacobian 9(u, v, w)!d(x, y, 2) =0, 

i V , 3/i, 0/i | 
■ 9a: 0y 0z 1 

! V* ( 0/s f 0/*j_o 
: 0a: ' 0y 0z j 
0/j , S/a , 0/s i 

i 0* dy 02 [ 

(2) 

Suppose that one atleast of the first minors of the Jacobian, say 
0(«, v)id[x, y)/0. By theorem §139, the functional equations 

u-f\x, y, z)=0, v-ft{x, y, z) = 0 (3) 
determine implicit functions 

x=gi u, v, z),y=ga(u, v, z). (4) 
These give 

U>=h(*’ y. z) =Mgv £2. Z)=h(u, V, z) (5) 

We will now prove that ?lt/0z=O. 

In the following discussion, u, v, z will be looked upon as inde¬ 
pendent variables and x, y, w as dependent. 

From (5), differentiatiating with respect to 2, 

dhjh , 0gj 0/,, dgz 0/3 

02 dx 02 ^dy 02 '02 

From (3), differenting with respect to 2, 

o_0/i , dgj 0/i _ 0gs 0/i 
0a: 02 ‘ 9y 02 *"02 

q_0/j . ££1,2/2 . 0£a . 0/i 
0a: 02 "^Dy 02 • 

Multiplying' the elements of the I, II, columns by dgjdz, dg»ldz 
respectively and adding to those of the third in the determinant (2) 
we obtain 

9/i , 0/i 
dx dy 

. 0 

0/j, 9/* 
dx dy* 
Vs, Vs 
0a: 0y 

=0 

(dhldz)d(fvft)ld(x,y)=0, 

Therefore dh/dz=0 so that does not depend on * and 
w**h(it, v) is the relation sought. 

Now, suppose that all the first minors of the Jacobian are zero, 
but one of the second minors, say dJihu^Q. Therefore, by theorem 
{137 the functional equation «—/*(*, y, z)— 0 determines an implicit 
function 

X=g[u, V, 2) 
so that we get 

y, 2)==/«(g, y, 2)*A,(m, y, 2) 
y, *)=Ms, y, *)-/»,(«, y, *) 
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For the lollowing discussion, w, y, z will be looked upon as 
independent variables and x, v, w as dependent. 

We have 

Also 

zhjlh . 9s , a/», 
9 y cx dy^dy 

. 9^ 9/s f 

9 y dx dy^cy 

0 JJj . , 9A 
dx dy^dy * 

3*t=9/.. ,0/a 
9* 9* 
^—^/s . 0/ , 0/a 
9* 9a; 9*'9* 

0=9/i . , 9/i 
9* 8*'r0z 

Since 

1 ?/i IL ! ?/i ?/i cfl_ ?/l j ?/i LA 
CX C.y cx ?z _n . dx ?y CX CZ 

16 = 0' .?/, eft 
=U , III if* r' 

lex 'ey j 
-v *\ „ 
C* cZ dx cy ! cx 2z 

we see on making use of the relations obtained above 
0= ?hj ?y= chx! ?2— ?*,/ ?y = ?V 

so that the functions A, and /*2 do not contain y and z. There are 
thus two relations in this case. 

Note. The theorem above is capable of generalisation to n functions of 
n variables. 

Ex. If u = (ayz+by+bz+c)/(y—z), 
v**{azx+bi±bx+c I z—*)t 

w=*(axy+bx+by+c)/{x-~y)t 
show that u, v, w arc connected Dy a functional relation and find it. 

Ex. Show that 
Ux=3x+2y—zt v~x — 2v+z,w=*x(x + 2y—*) 

are connected by a functional equation and and hud it. 

Ex. Show that the quadratic forms axt+lhxy+byt and Ax,-f2Hxy+B>>* 
are independent unless 

a b 

A - B- 

141. Extreme values of a function of n variables. Stationary 
points and stationary values. As in the case of functions of one and 
two variables, we say that a function f[Xlt xti., xt() has a maxi* 
mum (or a minimum) at a pointy, aif.. an) if at every point in a 
certain neighbourhood of (av ait.av) the function assumes a 
smaller value (or a larger value) than at the point itself; in either 
case we say that (ai9 a2,.. an) is an extreme point and that 
f(al$ o%>.. an) is an extreme value of the function. 

If f(av ..a„) is an extreme value of the function 
f(xv xv.xH), then it is also an extreme value of the function 
f(xltat,., an) of one variable x{ lor xx^ax and therefore the 
derivative / (av ap.an), in case it exists, must be zero. 

xi 
Thus we see that the necessary conditions for f(alt ait.tan) to 

bean extreme value of the function f(xlt *a,.xn) are tne equations 

fM (ai* au as> ••*..*! an)**Q, 
*% 
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r (#ll #*> #S> 
]*% 

•» ^n}3*5 0, 

J (al> a2> .» > 
*n 

incase the function possesses partial derivatives, question, at the 
point (*lf a2> .. ««). 

To find the position of the extreme points of a function 
f(xi, x2, ., xn), which possesses partial derivatives at every point 
of its domain of definition, we have to find the points (xx, x2, 
which satisfy the n equations, obtained by equation to zero the 
partial derivatives of the function. Since there are as many 
unknowns as there are equations we can calculate the positions of 
the extreme points by means of them. But a point obtained in this 
way may not necessarily be an extreme point ; further investigation 
is necessary to decide whether it is really an extreme point or not 
(See note below). 

It proves useful to have a special name for the point at which 
the necessary conditions for the extreme position are satisfied, 
irrespective of whether it is really an extreme point or not. Thus 
we say that a point (ax, ait a3t ....... an) is a stationary point if all 
the first order partial derivatives of the function vanish at that point. 

The conditions for a stationary point may also be given an 
other more compact form. Thus if [ax, at, ... , an) is a stationary 
point then 

df(av ax, .. <2n)==0> 
i.e.f the differential of a function vanishes at a 'stationary point, no 
matter what values may be assigned to the differentials dxx, dx3,...dxn 
of the independent variables. For, we have 
df(av at, ...,«»)=/ (av ap .... an)dxt+f (av av...,an)dx,+...==0 

xi xt 

Conversely, if the differential df is 0 for arbitrary values of the 
differentials dxlt dx2t etc., of the independent voriables, then sepa¬ 
rately taking all but one of these differentials equal to zero, we can 
show that all the partial derivatives are zero. 

Note.— It is easy to see that the results obtained m § 133, con¬ 
cerning the extreme values of a function f(xf y) of two variables may 
be restated in the following form : — 

If at (a, b), the first differential if— 0, then 

(i) f(at b) is a minimum or a maximum according as d?f is a 
positive or a negative form ; (it) f(at b) is not an extreme value if d?f 
is indefinite and finally (Hi) the case is doubtful if i%f is a $emi-iefin$U 
form. 

Similar results hold true for a function of any number of vari¬ 
ables also but the details of the proof will not be given beta. 

Thus in the case of a function f(x, y, x) of three variables 
sufficient conditions for (a, b, c) to be an extreme value are that 

df(a, b, c) ~fsdx +fody +/ 
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for Arbitrary values of dx, dy, dx, e., 
/•-A-/.-0. 

and (»») *f(a, 6, c) =4, (ft)* +/y (iy)*+/,, (<iz)*+Vxydxdy 

+Vyz dydt+‘lfix ixit 

is definite, i. e., assumes values of the same sign for abitrary values 
of dx, dy, da. 

Also if the conditions are satisfied, f(a, b, c) is a maximum or 
minimum according as d1/ is a negative or a positive definite form. 

It will thus be seen that in order to find out whether a stationary 
point is also an extreme point or not one has to examine the charac¬ 
ter of the second differential. 

143. Stationary points under subsidiary conditions. The problem. 
To find the stationary points of the function 

. *«;«!. «».«m) (!) 
of (m+w) variables which are connected by the m equations 

i>r(xltxt,.,xn;uuut;.«,„)= 0. (r=l, 2,.m) (2) 
If we assume that the system of equations (2) is such so as to 

determine the m variables ult ut,., um as functions of xlt xt,...,x„, 
then the functions / in (1) is essentially a function of « independent 
variables xv x2,., xn. 

For a stationary point of this function, we must have <f/= 0. 

0 ^.+ WnJXn +S1dUl’ + -, + ~$L dUm 
(§130), (3) 

Again differentiating the system of equations (2), we obtain 

dxj+. 

3* 
3*! 

dXn+ du, 4- 
dxn 3m, ^ + 

•+g^+gs+- 

Mi 
2um ■ + -e dum~0 \ 

0. 
^ ?tvm 

(4) 

Solving the system (4) of m equations for the tn differentials 
i*i$ dut.dum of the dependent variables in terms of the n differen¬ 
tials dxlf dx2.of the independent variables and substituting 
their values in (3) we will express df in terms of tie differentials of the 
independent variables only. Since df~Q, the co-efficients of each of 
these n differentials must separately vanish. These n equations 
together with the system of equations (2) constitute a system of 
(m-fn) equations for determining the (m+n) co-ordinates of the 
stationary points. * 

Ex. Find the stationary points of the function xy where x,y are connected 
by the relation 

Ex* Find the stationary points of the function *VV, where x,y, z are 
connected by the relation 

144. Lagrange'* method of multipliers. Lagrange has given a 
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method of forming the system of equations for the determination of 
stationary points, which is often useful. It rests on the introduction 
of.certain undetermined multipliers 

^1* ^i».» 

Multiplying the system of equations (4) of §143, by \v \2,.7^m 
and adding to the results to the equation (3), we obtain 

sr)*- +.+ (/£+*»' &)*■> 
+.«0(5) 

We now assume that the m multipliers A1( A,,., have 
been so chosen that the m co-efficients of the differentials duu dua... 
dum all vanish, i. e., 

Then (5) gives 

cf , v r ?4r 
2«, c«, 

=0,. 
cum oum (6) 

<W/» 
?V+27'r Y7dXi+- •+(?^T+2^a& 

)dxn 

so that the differential df which vanishes is expressed in terms of the 
differentials of the independent variables only. Hence 

ixt+x 
O=o, 
CX\ 

21 
cxn 

=0 (7) 

The systems (3), (6) and (7) of (m+m+n) i. e(n+2m) 
equations suffice to determine the values of the m multipliers and of 
the (m+n) co-ordinates of the stationary points of the function/. 

An important note. We define a function 
g=f-{- >1^4- A 2^2+.+ 

and observe that, considering xv x2,.x,lf uv w8... 
variables, 

_r^==o =0 **.«<> .... 
C*i k# .' ?*« ' CUX 

are exactly the systems of equations (7) and (6). 

> as independent 

?g 
dun 

-=0 

In practice, therefore, the system of equations (6) and (7) may 
be conveniently obtained by first forming the function tgt and then 
equating its first order partial derivatives to zero, considering all the 
variables as independent. 

To determine whether a stationary point is really an extreme 
point or not it is necessary to consider the second order differential i%F 
where F denotes the function / considered as a function of xv xv...txn 
only. In this connection it is generally found convenient to make 
use of the fact that at a stationary point d2F~d2g, where the differen¬ 
tial dlg is calculated on the supposition that all the variables are inde¬ 
pendent. 

Let / and g considered as functions of xv x2f.,xn alone be 
denoted as F and G. Since, at the stationary points s* vanish, we 
have 

xt,.. xn), 
and (PF-i* G 
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But d*G=*Pg+ S ( le-i%+.+ (§130.1, P.212) 

Hence the result. 
Examples 

Ex. 1. Jf w/tere l/A: + l/y+l/z=l, show 
that a stationary value is given by ax— by—cz and this gives a tme 
maximum or a minimum if abc(a + b-\-c) is positive. 

Let g(x,y,z)=a3x2-{~b3y'i+c‘'iz2+7\(\lx -f \ly-\-l/z—l). 
Equating to zero, the first order partial derivatives of the 

function g, we obtain 
2a3x— A/,r2“0, 2b$y~~ A/y2—0, 2c3z— 7\/z2=0, (i) 

which give ax=by=cz. (it) 

To determine whether the stationary value, in question, is an 
extreme value or not, we find d2g. We have 

d's"[ldx +3liy +idzf's 

)H+{^ +2#) (*)‘ 
=6[a3(dx)i+b3(dy)2-\-c*(dz)%], from (i). 

There being only two independent variables, we shall express 
d2g in terms of dx and dy alone. From the relation $l/x=l, we have 

Xdxlx2—0 or Za*dx={)r from (ii) 

d2g~ -~ { (c+a)a3(dx)2-\-2a2b2dxdy+(c-{-b)b3(dy)2 ) 
c 

We have seen in §133.2, P. 215, that Ah2-{-2Bhk-\-Cki is definite 
if Ba—AC is negative. d*g is definite if 

a4&4^(c+a)(c-j-&)a3 53___ —(a-\~b-\-c)a3b3__ ~~(a+6+c)(aic)8 

c4 c* c c1 
is negative, i. e., (a+b-\-c)abc is positive. 

Ex. 2. Find the rectangular parallelepiped of greatest volume 
that can be inscribed in the ellipsoid xtlai+y*lb*-\‘Z%lcl~ 1. 

The problem is to find the greatest value of V=8*v£ where x,yt z 
are all positive and subject to the condition 

x11 a2 +y2jb2jrz2/c2~ 1. (1) 
Let g{x>y,z)~8xyz+ 7\(x2la*+y2/b2~\~z2lc2-~l). 
For extreme points, we have 

gx^Syz+27\x/ai^Ot (2) 
gy^Szx+2 Ay/&?=0, (3) 
gz=Sxy+2 A zlc2=0, (4) 

Multiplying (2), (3), (4) by x, y, z respectively and adding, we get 
24^+2A=0, or 7\=—12xyzf using (1), (5) 

Thus we obtain, from (2) and (5), #=a/y'3. 
Similarly y== 6/^3, z=*cl s/3. 
Thus the stationary value of V~8abcj3j3. 
Again 

d*gm2 A X(A%)tlai+ \Qtydzd%xz--{Babel ✓3)S(i»),/«l+(16/ V3)%bdzdx(6) 
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Now, we have 
xdxja% 4 ydyjb2-\-zdz!c2=0, 

i. e., dx/a-f-dylb+dzjc—O, 
for the stationary point in question. 

These give 
2dxdy/ab^ {dzY!c2-(dx)%!a*-{dyyib* 

and two similar results. 
Substituting these values of dxdy, etc, in (6), we see that 

d*g = (-l6abctj3)lv(dxyia*], 
which is a definite negative form. 

Hence the stationary value, in question, is a maximum. 
Note* As in the preceding example, the question could also be com¬ 

pleted by expressing d*g in terms o( dx and dy alone. 
Ex. 3. If (/>(a)—kfO,<p'(a)fO and x,y,z satisfy the relation 

prove that the function 

A*)+f(y)+f(z) 
has a maximum when x—y=z=a provideddhat 

/'(«) 
.£*(«) m >/"(«) 

Let g(x,y, z)=f(x)+f(y)+f(z)+\lf(x)<fi{y)<fi(z)~k!i] 
For stationary points, we have 

gx=f(x) + A0'W^O')^(2) = O 
gy=f'(x)+ A $(x)<P(y)4>(z)=0 
gz=f(z) +\<f>{x)<t>{y)<fi’[z)= 0. 

For the function to be a minimum at (a, a, a), we must neces¬ 
sarily have 

f(a)+W(a)1'(a)</i(a)= 0, 
i. e., A = —f (a)Ifi’(a)<fi2(a), for ?S'(a)^0, 0. 
Now, [/"(*) + 7\<f>"(x)<fi(y)<f>(z)](dx)i 

•4-2A W(x)1>'(y)<l>(x)dxdy 
=[f\a)+M%P'{amdxy 

+2A*|>'(a)]*2 ^xdy, at (a, a, a). 
From the given equation of condition, we have 

Xfi'{x)<t(y)r(z) dx—0 
so that for (a, a, a), we have 2 dx—0, 

This gives 
22 dxdy——X{dx)t. 

we have 
<i»g=[/"(«)-/'(«)^"(«)/f(a)]2(^)2+[/'(«)95'(«)/^(«)]2(^)1 

which under the given condition is a definite negative form. Hence 
the result. 

4. Find the minimum value of **+}*+!*, when 
(i) (ii) (it*) xyz***al 

5. Find the extreme values of xy when x'+xy+y'^xa*. 
6. Find the shortest distance of the point (a, bf c) from the plane 

Ix+my+nKr* 0. 
7. Find the shortest distance between the lines 

(x~xx)lti**(y-yl)/™i*=iU--Zi)lni; 
8. Find the point of the ellipse bx*-6xy+5y*m$ for which th# tangent is 

at the greatest distance from the origin* 
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9. Which point of the sphere x* is at the maximum distance 
from th® point (2, 1, 3). 

10. Determine the maximum and minimum values of u«=(x4-l)0,4-l)(£-M) 
where x, y, z are connected by the relation axb^cz»k, 

11* Given, xG,y0f Zq are constants and xv ylt Zi are variables such that 
2*0*»3*,=sl, /*,+1; find the minimum value of the function 

a'(yo-yi) (zo-~zi)jrbt(zo-z1)(x(>-xl) + it(x0-x1)(y(i-y1), 
wher® a, b> e and /, m, n are constants. 

12. Find the shortest distance between the points Pi(*j, yit h) and 
Pi(*i>>*»**), if Pi lies on the plane *4y4-£=2a and Pa lies on the ellipsoid 

13. Show that the lengths of the axes of the section of the ellipsoid 
x%/at+yt/bi + ztlc*~ \ bv the plane /*4 my+nz~0 are the roots of the equation 

I'a'f (r» - a%) 4 m'b'lir* - b%) 4 n V/(r!2 - c*) = o. 

14. If (xj £i), (*2, v2, z%) are two points on the conic 
lx+mv + nz=*0*=ax% +by1 4^V J 

the distance between these point* is stationary when 
/*/ (t — flr*)-f-m2/(l — br*) 4 n2/(l — rr2)»«0. 

15. Show that if 

V+V-fV+y*l4-^8,-ef,» 
then the maximum and minimum values of the determinant 

! zi 
i 

*8, Vi, *8 
are respectively 4- abc and — af r. 

16. Tf x. y, z are subject to the condition ax+by+cz—h show that, in 
general, x#4j',4^*—3vy^ has the two stationary values'* and (fl*4-^,4^l~3ak)'"1 

of which the first is a maximum or a minimum according as a-\-b-\~c^0, but 

the second is not an extreme value. Discnis, in particular, the case* in which 
ft) a 4-6 4-* ■“O, (ft) a^b—c. 

17. Obtain the station*rv values of 
x8 4_v* 4 z9 4 3mxyz, (m 2) 

when x, y, z are subject to the condition 
*4-y+**l. 

and show that the symmetrical stationary value is a maximum or minimum 

according as m^2. Show also that the other stationary values are not 

extreme values. 

Show that x*4y4*s46xv£ has only one stationary value and no extreme 
value. 

18. Establish Lagrange’s method of undetermined multipliers for finding 
the stationary values of a function f(x,y, z.) of n variables connected by 
m«ji) independent equations 0f(*,_y, **0, (r=i, 2,.m),/and & being 
supposed to have continuous 'derivatives for all values of the variables 
concerned. 

, The sum of 12 edges of a rectangular block is a ; the sum of the areas of 
the 6 faces is a*/25. Prove that, when the excess of the volume of the block 
over that of a cube whose edge is equal to least edge of the block is greatest, 
the least edge is a/20 and find the other edges. 

19. If x, y and z are connected by the relation 
/W+W+lfW=/W+0) + fW, 

show that the following conditions are sufficient for x*+y*+z* to have a 
maximum value at (a, b% *) ; 

A0,*M+< 0 <AB^1*W4BC/1«(a) + CA01W 
where 

A-1 - tf,-1 -W.W/tfiW, C-1 -*#.(*)/*iW, 
provided none of the derivatives fx(a), </>i(b)t if,t (c) is zero 
apd 

«//i (*) - */&(*) -«/ f i (*), 



CHAPTER XI 

PROPERTIES OF CONTINUOUS FUNCTIONS 

OF TWO VARIABLES 
Definite Integrals as Functions of a Parameter 

145. Theorem. If f(x, y) is continuous in a rectangle R (a, b\ c, d) 
and e is any positive number, then there exists a division of R into a 
finite number of sub-rectangles such that 

<e, 

where (xv vx) and (xit v2) are points belonging to the same sub- 
rectangle. 

We assume that the theorem is false in R. By drawing lines 
parallel to the co-ordinate axes, divide R into four sub-rectangles 

[a, b) ; c, £(c+<f)], !'£(«+&). b > £(c + ^)] 
[a, + ; \(c.-\-d),d ], Uj{a-\-b), h ; 4(c-| d), d). 

Because of the assumption, the theorem must be false in atleast 
one of these sub-rectangles, sav Rlf which we would rename as 
(alf bx ; cv dx). Subdividing Rx in a similar manner and continuing 
the process indefinitely, we would obtain a sequence of rectangles 

R„ R„ R*.., R«, 0) 
where Rn is the rectangle (an, blt ; cn, dn), 

The theorem is false in every rectangle Rn. As in §50 2, p. 73, 
it can be shown that the sequences { an } and { bn } approach a 
common limit £ and { cn } and { d,} } approach a common limit r/. 
This point (£ , V) belongs to every R„. 

Since f(x, y) is continuous at (£,*?), there exists a positive 
number S such that 

II (2) 
for every point (.*, v) of R which lies in the rectangle 

^U-§, S+§; V+S) (3) 
If (xv yj) and (x2, y2) be any two points of (3), we deduce from 

(2) that 

I <«■ 
Now, since there exists a positive integer m such that a. rectangle 

Rm of the sequence (1) lies wholly within the rectangle (3), we see 
that the theorem is true for Rm. Thus we arrive at a contradiction. 
Hence the theorem. 

Cor. 1. Iff x,y) is continuous in Rt then it is necessarily 
bounded in It We divide R into a finite number, say *p\ of sub- 
rectangles such that for every pair of points (xv yt) and (x2, v2) of the 
same sub-rectangle 

I /(*?. yt) I <«. 
so that if (a7.,jS,.) be any fixed point of the rth sub-rectangle and 
(x, v) any variable point of the same, we have 

f(ar, fi,.)-€</(*, y)<f(ar> &)+«• U) 
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From p inequalities, similar to (4), obtained for the p sub¬ 
rectangles we deduce as in (§50 3,P. 75) that f(x, y) is bounded. 

Cor. 2. If f{x, y) is continuous in R, then it must attain its 
hounds. 

The proof is exactly similar to the proof of the corresponding 
theorem for functions of a single variable. 

Cor. 3. If f(x} y) is continuous in R, then it is possible to divide 
R into a finite number of sub-redangles such that the oscillation of 
f(x, y) in every sub-reef angle is less than a given positive number. 

Follows from the main theorem and the Cor. 2. 

Cor. 4. Uniform Continuity. If f(x, y) is continuous in R, and 
€ is any given positive number, then there exists a positive number 3 
such that 

l/(*2. yJ-ftxv Vi) i <€, 
when (xlf y,), (x2, y2) are any two points such that 

| .To xx | | y2—V\ 1 
We divide R into a finite number of sub rectangles such that for 

every pair of points (xu j'j), (xv y2) of the same subrectangle 
l/(*2> v2)-/(*i> Vi) ! <!«• 

It will now be shown that a positive number 8 which is smaller 
than every side of every sub-rectangle is the requisite one. Now, 
a pair of points (xv yfl and [x%} y2) such that 

I *2“*i I y%—yi ! 
either belong to the same sub-rectangle or to two such sub¬ 
rectangles as have a side or a part of side in common. In the former 
case, 

l/(*s..VaW(*i<.vt) I <|e<e, 
and in the latter, if (xf y) be a point of the common side, we have 
l/(*2. I < |/(**.v*)-/(*•>’) | + i f{x,y)-f(xvy1) | 

"Cic-l-J €==€. 
Hence the result. 

Cor. 5. If (x, y) is continuous in R, then it must assume every 
value between its upper and lower hounds. 

Let M, m be the bounds and let 
/(«, /?)=M, /(y, 8) = m. 

The points (a, p), (y, 8) can be joined by any number of conti¬ 
nuous curves lying inside R. Along such a curve f{xy y) is a 
continuous function of only one variable and, therefore, assumes 
every value between M and m. 

146. Definite integral as function of a parameter. Let f{xt y) 
be a continuous function of two variables defined in R(<*, b ; c, d). 
For a fixed value of y in {c, d), the function f{x, y) of # is conti¬ 
nuous and therefore the integral 

b 

j f{x, y)dx 

a 
exists and defines a function of y ,say f>(y), in (c, d). 
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It is now proposed to investigate the nature of the function ^(y) 
in relation to continuity and differentiability. 

146*1. Theorem. The Junction <p(y) is continuous in (c, rf). 

Let v, y+ Ay be any two points of (c, d). We have 
h 

4>{y+ ky)-i>(y) = | [f(x,y+ &y)~/(x,y)]dx. 

a 
Let € be any positive number. 
Since/(x, y) is continuous in R theiefore there exists a positive 

number 8 such that 
! f(*2•y$)—f(xl, v,) I < e!(h a), when | xi-xl <8, ly^-yj | <8 

(Cor. 4, P. 237) 
In particular we see that when | Ay | and x has any value, 

we have 
! f(x, y+ Ay)-f(x, y) ! < c/(6—a). 

b 

| i>(y+ Ay)—t(y) | = J [f(x, y+ ay)~~f(x, y))dx 

j a 
b 

< | ! f(x> Ay)-f(x, y) | dx 

a 
^[€/(b—a).](b~a) = c, when | Ay | <8. 

Hence f(y) is a continuous function ofy. 
Ex. y) is continuous in R(a, b ; c, d) and F(x) is a function of * 

b 

which is bounded and integrable in (a, b) then y) F{x)dx is a continuous 

a 
function ofy in [c, d). 

146*2. Theorem. If, in addition to the continuity of f (x, y), 
f y[x, y) also exists and is continuous in R(a, b ; c, d), then <f> (y) is 
derivable in (c, d) and 

a 

so that the inversion of the operations of differentiation and integ¬ 
ration is valid. 

We have 
b 

#(y+ AyWO'H | [/(*, y+&y)-J{x, y))dx. 

* 
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By Lagrange’s mean value theorem, we have 

/(*, y + Ay)-/(*, y) = Ay/V (x, y+d&y) 
= Ay [/»(*. y+ e &y)-fy(x, y)+fy(x, y)] 

.•.we obtain 
b b 

j fy{x,y)dx= j [fy{x,y + 9zy)-fy{x,y))dx. 

a a 

Let € be any positive number. Because of the continuity of 
fy(x,y)> ^ere exists a positive number 8, such that when | &y | ^8 
and x has any value, then 

I fi(x,y+ SBy)-fv(x,y) | <tj(b-a). 

Thus there exists a positive number 8 such that 

I b 

I—v>-J Mx>y)dx <«>when I Ay ] 
| a 

Hence the result. 
Ex. If/(*, v) and fy(xt y) be continuous in R and F(x) be bounded and 

b 

integrable in {a, b)t then J F(x)dx is derivable in (c, d) and its 

a 
b 

derivative is J fy{*>y) F(*)</*. 

a 

Note. In the investigation above, the limits (at b) of integration were 
constants independent of y. The case where the limits are themselvea func¬ 
tions of y is considered below. 

146*3. Let f(x,y), fy(xt y) be continuous in R(a, h ; ct d) ; and 
let gi(y)> Si(y) be two functions of y derivable in (c, d) such that the 
points 

[gib’). y\ and [gt (y), y] 
belong to the rectangle R for every value of y in (c, d), then 

itiy) 

0(y)= J /(*.# 
gi(y) 

is derivable in (c, d) and 

g*(y) 
5*'(y)= J fy[x,y)dx-g1'(y)f[g1(y),y]+g,'(y)/[g,(y),y]. 

gi(y) 
We have 

54(y+Ay)-?5(y)= 
gi(y) gfy+by) 

| [/(*. y+ &y)~f{x,y)]dx— J fix, y+ c\y)dx 

g\(y) giiy) 

gab+ Ay) 
| /(*, y+ &y)dx 

g*(y) 
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Applying the result of Cor. 2 to §88, p. 123 to each of the last 
two integrals and dividing by Ay, we get 

0(y+Ay)-0(y) 
a y 

g* (y) 

= | fy{x, y+0&y)dx= 

Si(y) 

S&+0-JMM,y+ ay) +s,<> 

where ^^ lie between g^y), g,(y+Ay) and g,(y), g2(y+ Ay) respec- 
tively. As in the previous section it can be shown that when Ay-> 0 

then 

St(y) St(y) 

J fy{x,y+dCxy)dx~~ J fy{x, y)dx. 

Si(y) gi(y) 

Thus on taking limits, when Ay-+0, we deduce, that 

St(y) 

?'(y)= | fy{x, y)dx-g1,(y)f[gl{y), y]+g3’{y) f[g2(y), y]. 

gi(y) 

146-4. Inversion of the order of Integration. If f(x, y) be con¬ 
tinuous in R(a, b ; c, d), then 

d f b b | d j 

j j \}{x,y)dx\ dy= | j J f(x,y)dy \dx, 

c (a j a ( c ) 

i.e., the two repeated integrals are equal. 

Because of the continuity of f(x, y), the integrals of f(x, y) over 
(a, b) with respect to x and over (c, d) with respect to y exist 
(§85 1, P. 115) and are continuous functions of y and x respectively 
(§146*1, P. 238) and therefore both the repeated integrals exist. 

We consider two functions of t defined as follows :— 

t i b j bit j 

?K0=J I | J(x,y)dx \ dy; 0(0= | | j f{x, y)dy j dx, 

c \ c J a [ c J 
so that 0(0)=^(0) =0. 

Now, 

b 

0'(O= J f(x, t) dx 

a 

(§89*2, P. 127) 
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b / t 
rar *'(0- J ■ /(*, y)dy dx (| 146-2 P. 238) 

J fix, t)dx. (§ 89-2, P. 127). 

Since, therefore <p(t) and $(t) differ by a constant.Also, 
since ^(0) —^(0), we see that for every vaule of /, — Putting 
t~bt we obtain the required equality. 

Ex. Uf(xt y) is continuous in R(a, b ; c, d) and 

then «how that 

I)#duce that 
b , d 

'11 \^x,y^dx 'dy< 

C ' a ^S?i ■ 

Fx>“Fvx=/(x, y). 

J - | f(x,y)Jy ■ * -F(a, *) + F(*. d)-F(«, 0-F(», <) 

J J /(»,>!* f dy. 

Note. The theorems above enable us to evaluate certain definite 
integrals without the knowledge of the corresponding primitives. A 
few examples of such evaluation are given below. 

Examples 
b 

1. Since f tan-1 — , it follows on differentiating 
) * a a 

w. r. to a under the integral sign that 
b 

-2a f ——_ tan" 
a a(b*+a2) 

dx 1 b b 
(xs+a!)» = 2a'5 Un « +2a\63+«*)' 

if b is independent of a. 
Let b-* oo. We see that 

r dx 
J (xf+a*)*: (#>0). 
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2. Since J , (a>0), on applying the result of 

0 
i, 146*3, P. 239 it follows that 

a 
2 a 

. 0 
3. From 

,1 it . I* 

(*»+«*)“ + 2«,== —4as **' J I^+a1)8 
0 

7r 
f—*l_ 
J fl+6 COS X* 

dx 7r+2 

8?" • 

deduce that 

f----—* . ,nd [ 
J (<7-4-6 cos a:)* (a2-6*)* ^ 

cos x <f* 

0», | 4 I <«. 

irA 

(<7f6 cos *)* J (a+6 cos x)# (a*-6*)^ 

4. If 
iir 

/(*)* I log (1 —** cos* S)rfJ, 

prove that f(x) is finite if and that if **<1, 

i * 
£/(*)“ j | log (1 -** COS*0) | l/0, 

0 
and hence shour that 

/(*)**tt log (l+v/l-**)-‘ir log 2. 

Show also that the result is true even when #*~ I, 

5. If | a | <11 show that 
7T 

f i2£il±?-co-s— dx=v sin'1 a. 
J COS * 

0 
6. If | a | ^ | , show that 

it 

7. Show that 

| log (1 -fa co? x)dx=Tt log fi+lv'O—**)] 

0 

a 

|log (l+4») tan"* «. 

Hence, deduce that 
1 
flog (i-f*) _ TT l0g2 
J l+e« 8 * 
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9. Verify tbat 
x 

J’-y J f(0 sin k(x— t)dt, 

0 

satisfies the differential equation 
d%y 
d? 

where k is a constant. 

147. Uniform convergence of improper integrals. 
Definitions 1. Range Infinite. The convergent improper integral 

oo 

Hy) = | fix y)dx (i) 

a 

is said to converge uniformly w. r. toy in the interval c^y^d, if cor¬ 
responding to any positive number v there exists a positive number Xt 
which does not depend on y, such that 

X oo 

J f{x,y)dx-<f>{y) j=j J f(x,y)dx j <v, 

1 a i i X 
for X>Xx. 

2. The Integrand unbounded. Let f{x, y) tend to oo as 
The convergent improper integral 

b 

4>{y) = | f{x,y)dx (2) 

a 
is said to converge uniformly in the interval c^y^d, if corresponding 
to any positive number »?, there exists a positive number 8, independent 
of y, such that 

' ( f(x> y)dx—p[y) <v, 
I 

I a+€ 
for 0<€<8. 

148. The tests for uniform convergence. The following are the 
straightforward analogues of the tests for the uniform convergence 
of the series and may be proved in a similar manner. 

148*1. General test. The necessary and sufficient condition for 
the uniform convergence of the improper integral (1) is that corres¬ 
ponding to any positive number V there exists a positive number X, 
Independent of y, such that 

it \ \ f[x,y)dx <i),when Xv Xt>X. 

X, ■ i 
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148 2. Weierstrass’s M Test. If a function M(x)of x is positive 
such that oo 

| M(x)dx 

converges and if | f(x, y) | %^M(x) 
for c^y^d and every value of x belonging to the interval under con- 
sideration then the integral, (1) of §147 is uniformly convergent. 

Note. Similar theorems hold for the uniform convergence of 
b 

J f{x,y)dx. 

___ 4^1 
Ex. Since | e cosy* \^e for every value of y, and 

dx 

is convergent, therefore 

I—x1 
e cos yx dx 

is uniformly convergent iny in the interval [-oo, oo]. 

Ex. Since | cosyx/J(l — *2) ] ^l/v^l—**) 
+ 1 

and 

is convergent, therefore 

1 7(i -x1) 
-l 

dx 

+i 

f 

-l 
is uniformly convergent in y in the interval [—*>*>, oo]. 

Ex. The uniformity of convergence of 
OO 

[xJ™-Wdx J l-f*a 

cannot be established by M-test. 

For 1, x/(l-fx*) is monotonically decreasing and tends to 0 
as *-*oo so that employing Bonnett’s form of second mean value 
theorem we have 

e 

X, 
X, 
f * sin xy 

J H 
Xx 

\+x‘ 
dx i+x?l sia*ydx 

Hy^k, where k is any fixed positive number. 

. 2X, 
•ATi+x,*)’ 
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Thus we see that the integral is uniformly convergent for 
y>k> 0. (§148*1). 

Ex. Establish the uniform convergence of the following integrals :— 
OO 00 

(«■) 1 iffy' ’ (ii) | i~yx sin #</*,(/>*>()) 

0 0 
00 00 

(««) 
f —xy Sin x , , ^ N 
| * dx, (/>,») («o f * 

J J 
0 0 

00 

W 
0 

149*1. Theorems. Uniformly convergent improper integral of a 
continuous function is itself a continuous function. 

Consider the improper integral (1) of § 147, P. 243. We choose 
a number X such that 

00 
( 
j 

J f{x.y)dx 

1 X 
We have 

i 

X 

(f(x.y)dx-p(y) < * . 

. X 

I <t>(y+&y)-Hy) I j J lf(x. y+&y)-f(x,y)]dx 
2f 
3 ' 

The range (a, X) being finite and f(x, y) being continuous, we 
can choose a positive number 8, as in § 146 1, P. 238, so that the 
finite integral on the right is less than 6/3 when | Ay j <8. Thus 
4>(y) is continuous. 

149*2. If f(x, y) be a continuous function of the point (x, y) when 
and and the integral 

oo 

$(y)— | f(x, y)dx 

a 
is uniformly convergent, then <f>(y) can be integrated under the integral 
sign, i. e.9 

* ( oo 1 d oo d \ 
Ii f f(x, y)dx ■dy — | 4>(y)dy = | - J f{x,y)dy ■ 
c ^ [ a j c a k C i 

We choose a number Xx such that 

oo 

J/(*. y)dx | <il(d-c), when X>Xt 

X. ' 
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We have , 
d d i x \ d \oo I 

I | • J f(x,y)dx dy + J 1 J f(x,y)dx \dy 

c c [ a J c (X j 

In the first integral on the right, the order can be interchanged. 
We, therefore, have 

Id X d . 

j[ i>{ y)dy - j j J /(x,y)dy 

C 
i 

a c ; 

dx ^€, when X>X1( 

Hence the result. 

149'3. Theorem. If, in addition to the conditions of the preceding 
OO 

theorem, the integral J fy{x>y)^x 

a 
also converges uniformly in y in (c, d), then 

OO 

f(y)=* J fy(x,y)dx. 

a 
Let oo 

<Hy) =| fy{x,y)dx. 

a 
As proved above the order of integration can be changed so that 

we have 
y y oo oo y 

j Hy)ty = \&y j Mx> y)dx = J M*> y)*y 

c c. a a c 
oo 

J [/(*.y)~/(x, c)]dy^<t>(y)-<f>{c) 

<Hy) — P'(y)> Differentiating, we get 
as was to be proved. 

Note. Results similar to those above hold also when the range of integ¬ 
ration is finite but the integrand has a point of finite discontinuity. 

150. Evaluation of some improper definite integrals. 
1. Evaluate oo 

-ax sin fix 
/(<*. $*= | 

and deduce that 
sin 0* 

dx 

— dx, where a>0, 

if JB >0, 
o, if 0*=o, 

if K0. 
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When x >0, we have \e ax (sin ftx)/x\ aX /x and the in¬ 

tegral of (e aX fx) is convergent at oo if a >0, Thus we see that 
the integral is uniformly convergent with respect to ft as parameter 
varying in [-oo, oo] ; a being any fixed positive number. 

Again, the derivative of the integrand with respect to ft is 

—<x% l COS ftx. 
For a fixed a>0, we have 

I e cos ftx I < t , 

which is independent of ft. 

Since, when a>0, the integral of e ' converges over the range 
(0, oo], therefore, for a fixed positive <*, the integral 

oo 

J e~~aX cos ftx dx 

0 

is uniformly convergent w. r. to ft varying in [—oo, oo]. 

Thu&the differentiation under the integral sign is valid and we have 

fp(*> » — ax „ , 
e cos ftx dx — 

0 

—ax ft sin ftx—a cos ftx | , 
* aJ+>‘J I 

0 

-d/(a*+j8'). 
/(a, j8)s=tan~1(j9/a)+C, where C is a constant. 

To determine C we have 
0=/(a, 0)=0+C, i. t.t C=0 

It will now be shown that /(i, ft) is a continuous function of a 

also (for a>0 and for a fixed ft). We have 

[X* ’ i $ i I £ 
—a* sin ftc 

dx \ = 
-aX2 r sin ftx 

J * 
X, 

dx 

X, 
X 

Now, since 
sin 

~dx 

is known to be convergent, we deduce that the integral is uniformly 
convergent with a as parameter ; a being >0. 

■ /(0, f))= It /(a, 0=1*. when «-(0+0). (]8>0) 

or 
fsin 0* 
“—* -»*• WX>! 

The other results, now, at once follow. 
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Ex< Evaluate 

—X* 
e cos ax dx. 

0 

Since I xt sin ax | 
we see that the differentiation under integral sign is justified. 

OO 

_ 
xe sin ax dx. 

0 

Integrating by parts, we have 

. -*• • a f — X1 
— sin ax 

2~ J 
e cos ax 

a 
24 

0 0 

log /(a) = —Ja^+Cj or/(a)=Cf 
-la* 

Now, /(0) = | 
—x2 V v 

e dx= ~2~ (See Ch. XII) 

0 
C=/(0)=*/ff/2 

/(«)- »*/» 
Ex. Evaluate 

/M= J i + *8 ' 
« 

0 

It is easy to see that differentiation and integration under 
integral sign are valid. We, therefore, have 

O0 oo oo 

- J *- -1 I -&■ . 
0 0 0 

Again 

jy y oo oo y oo 

f/(y)<*y = j = J * j “ I JfTfS) * 
0 0 0 0 0 0 

A f'{y)=—| f(y)*y- y>°) (**) 

Since f(y) is continuous, we have, on differentiation, 
f"b')=f{y)- 

/(y)«-Aev+B<-y, where A, B are constants. 
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Since /(0) is easily seen to be nj2, we have, on making 0, 
^ 7T = A-f" B. 

Also, since from (ii), /'(0) — — rr/2, we see that 

Thus A=0, and B~\tt so that we have, when ^>0, 
oo oo 

f r-pJ and 14!n+?r^=^(1-''y)- 
0 0 

The necessary modifications can easily be made when y is 
negative. 

Ex. Show, by differentiating under integral sign, that 

r - (**-**/**;> . , -2 
* ^ 1 1 dx « Jv/ir £ -2 U 

Ex. Establish the right to integrate under integral sign 

I e~*y cos mx </x 

and deduce that 
oo 
r ~a* _ “4* i'+m5 
I ----COS WAT 

4*4-*»* 

Ex. By considering the identity 

■J - J dx, »0, 

deduce that 

~a*_ — bx 
. ..Zi_<fx-dog —, 

a, *>0. 

<f>0, *>0* 

Ex. Show that 
00 

scch ax — sech bx 
dx~log ■ (<*>0; *>o) 

[Change the order of integration in 

£ oo 

w sech xy tanh xy dx j.. 

a 0 

Ex# Under certain conditions show that 

oo 

d*~m log f. 



CHAPTER XII 

LINE INTEGRALS. DOUBLE INTEGRALS 

151. The concept of a plane curve. Let x=<j>(t), y=p(t) be two 
functions of l defined in an interval (a, /3). Then the aggregate of 
points (x, y) obtained by giving different values to / is called a 
curve. The curve is said to be closed if the points corresponding 
to the end points a, /S of the interval of t coincide, i.e., if 

If f(x) be a function defined in an interval [a, b), then the 
aggregate of points (.t, y) where y~f(x) is also a curve as we may see 
on setting 

*=*. 
Similarly x—p(y) is a curve. 

152. Line integral. Let 

be a curve C, where <P(t) and v(t} are functions of t defined in an 
interval (a, /?). 

Let f[x, y) be a function of * and y defined in a region contain¬ 
ing the curve C. 

To define the line integral, j f(x, y)dx. 

C 

Let D(a = t0</,<f2..<On-l<On—P) 
beany division of (a, fi)- 

Let xr~- <j>(tf.), y<j/(<,.). 

Let £y be any value of t belonging to the interval (tr_v tr). 

We form the sum 

S=S/W$r). H$r)](Xr-Xr-l)- (1) 
If, as the norm of D tends to zero, this sum, S, tends to a finite 

limit which is independent of the choice of the points £ r, then we 
denote this limit by the symbol 

| f{x,y)dx 

C 

and call it a line integral of the function f(x, y) along the curve C. 

152-1. A sufficient condition for the’.existence of the line Integral. 
Assuming that f{x,y), f (<; and p(t) are continuous and <t>(t) possesses 
a continuous derivative p'(t), we now show that this limit does exist. 

There exists a point *?,. of (tr_v tr) such that 

{xr~Xr^i)«s^(tr)~-ip(trm,l)c=(tf—tr^])p'(rtr)m*4,'(1lr)^r 
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We have 

=S /[*( ^ r), H t r)]f ( 6 ,)S,+2 /W I r)> *( $ $ r)]8, 
=S1 4-Sa 

Since and /[>(/), are continuous, it follows that the 
sum S^a finite limit, viz., 

P 

{/M). m*'w. 
a 

as the norm of D-*0. 

Since f&(t), f(t)) is continuous, it is bounded. Let A be a 
positive number such that 

I iK031 <A>for 1 in (a> £)■ 

Since is continuous, there exists a positive number 8 such 
that for every division D of norm less than or equal to 8, the oscilla¬ 
tory sum of p'(t) is less than the arbitrarily small positive number «/A. 

I Sa | ^AS | *'(*»,)-*'(*,) I 8r*AS(Mf-m,)8,<A(c/A)««. 
where M,., m,. are the bounds of $'{t) in 8r=-tr_v t,). 

Thus Sa -»0 as the norm of D ->0. 

Hence we see that the line integral, in question, does exist and 
further we have the equality 

{ f(x,y) dx = J 

C a 

where \vc have an ordinary integral on the right. 

Note. We may similarly define and examine the existence of the line 
integral 

J 
c 

Note* It is easy to see that the line integral 

| MM 
c 

along the cuive $(*), u^x^b, is equal to the ordinary integral 

b 

| /[*. ${*)]$'i*)**- 

a 

Kote. The m-dinary integral is a special case of a line integral) where 
we take an interval of the *orj» axis as the path of integration. 
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152-2. It can be easily proved that 

(*) line integrals are additive for arcs, i.e., 

J /(*. y)dx= j f(x,y)dx+ | f(x,y)dx+ | f(x,y)dx 

AB AC CD DB 

and (ti) f /(*, y)dx—— [ f(x, y)dx 

AC CA 

1. Evaluate 
Examples 

J (**+.y*)dx and j* C^#yl)dy 

C C 
where C Is the arc of the Parabolay2**=4ax between (0, 0) and (a, 2a). 

2. Show that 

| [(* -y) '</*+(*-.» Vy] « 3 rr«\ 

(J 
taken along the Circle = aa in the counter clockwise sense. 

3. Evaluate 

f d x~> J *+y 
o 

where C is the curve 

4 Show that the value of the line integral 

J (xy* dy—x%y dx) 

taken in the counter-clockwise sense along the Cardioide r«*«( l+cos 9) 1* 
35a4nyl6. 

5. Pind the value of 

J r(*+y)</*+(**-_>)<*)-] 
taken in the clockwise sense along the closed cuive C formed by and »■»* 
between (0, 0) and (1,1). 

6. Find the value of 

J {x*ydx+y*xdy) 

taken in the clockwise sen«e along the hexagons whose vertices are 
10 0), (***, (»*) (0, £3*), (t%/^ ±24), 
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153. The area of a plane region. 

The area of a rectangle R(a, b ; c, d). As suggested by intuitive 
considerations we define the area of a rectangleR(a, b ; c, d) to be the 
number (b—a)(d~c). 

The area of any bounded plane region E. Since E is bounded, 
there exists a rectangle R which completely encloses E. We divide 
R into sub-rectangles by drawing parallels to the sides of R. Let 
sD denote the sum of the areas of those sub-rectangles which consist 

entirely of points of E and let SD denote the sum of the areas of the 
sub-rectangles which have atleast one point in common with E. 
Clearly SD S . To each mode of division D of R will correspond 

a pair of sums Sq and sD . Clearly the aggregates of these sums 

are both bounded. 

The upper bound of the sums s will be called the inner area of 

E and the lower bound of the sums S will be called the outer area 
of E. 13 

The region E will be said to possess an area if the inner and 
outer areas are equal and the common value will be called the 
area of E. 

In §160, P. 261 will be obtained a sufficient condition for a region 
to possess an area. 

154. Integrability of a bounded function over a rectangle. Let 
f(x, y) be a bounded function of x, y defined in a rectangle 
K(a, b ; ct d). 

Let .Or-lOr<.On =6), 
and D\c=y0<y1<ya.Os-iOv<.<ym=*d), 

be any divisions of the intervals (a, b) and (c, d) respectively. These 
divisions of the intervals give rise to a division of the rectangle R 
into mn sub-rectangles x/t ; y#.l, y$) where r, s take up all 
positive integral values from 1 to n and 1 to m respectively. We 
will denote the rectangle (xr_lf xr ; y8_ x, ys) as well as its area 
{xr—xr~i)(y8—y8-i) by the same symbol, wrs. Let Mr*, mr$ denote 
the bounds of f(x, y) in wf6 Consider the two sums 

s~m r«n s~m r—n 

S= 2 2 Mrff wfet s== 2 2 
r—1 1 r—1 

It is easy to see that for every mode of division of R into sub¬ 
rectangles, we have 

tn(6—a)(d—c) ^ s ^ S < M(6—a)(d—c)f 

where M, m are the bounds of f(x, y) in (a, b ; c, d). 

Thus the two aggregates of the sum S and« are bounded, 
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Del. The lower bound of the aggregate of the upper sums S is 
called the upper integral and the upper bound of the aggregate of the 
lower sums s is called the lower integral of f(xt y) over R and are 
denoted by the symbols 

U= f j f{x,y)dxdyt L = u f(x, y)dxdy 

R JK 
respectively. 

In case these two upper and lower integrals are equal then 
f(x, y) is said to be integrable and the common value, which is 
denoted by the symbol 

I=J Jf{x,y)dxdy, 

K 

is said to be the double integral of f(X, y) over R. 

Note, In the same manner, we in ay define the triple integral of a func¬ 
tion oif(x,y, z) over a rectangular parallelopiped R(tf, b ; cy d ; eyf), 

Note. Norm of a division of a rectangle. By the norm of a division 

of a rectangle into sub-rectangles xr >ys~i* -V *s nieant greatest 

member of the set of numbers (xr —xf __ j) and (ys~ys_ j) ; r* b n; l, 

2,.. m. 

155. Darboux’s theorem. To every pre-assigned positive number 
€, there corresponds a positive number 8, such that for every division 
whose norm is < 8, 

S<U~f € ; s>L— 

The proof is exactly similar to the corresponding proof for func¬ 
tions of a single variable. 

Cor. The upper integral > the lower integral. 

156. Condition for Integrability. 

156 1. First form. The necessary and sufficient condition for the 
integrability of a bounded function f{x, y) over a rectangle R is that to 
every positive number c, there corresponds a positive number 8, such that 
for every division of R whose norm < 8, the oscillatory sum (S—s) is 
less than €. 

The condition is necessary. The bounded function f(x, y) beii\g 
integrable, 

U—L=I. 

If * be any positive number, then, by Darboux’s theorem, there 
exists a positive number 8 such that for every division of norm <8, 

S<U+i«-I + £€ ; s > L-i€ = I-j€ 

i.e., I-i «<s*£S<I+£ « 

or S—s < «. 

The condition is sufficient. There exists a division sueh that if 
S, * be the corresponding upper and lower sums, then 
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Since each one of the thcee numbers (S — U),(U—L),(L—$), is 
non-negative, it follows that 

0 < (U—L) < €. 

As € is an arbitrary positive number, we deduce that 

U-L=0, i. e., U-L. 

Therefore the function is integrable. 

156 2. Second form. The necessary and sufficient condition for 
the integrability of a hounded function f(x, y) is that to every pre- 
assipjied positive number e, there corresponds a division for which the 
oscillatory sum is less than e. 

The proof which .is quite similar to that of the first form is left 
to the reader. 

157. Particular classes of bounded integrable functions. 

157*1. Every continuous function is integrable. Let/(r, y) be 
continuous in a rectangle R(a, h ; c,d). Let € be any positive number. 
There exists (Cor 3 to §145, P. 237) a division such that the oscilla¬ 
tion of /(*, y) in every sub-rectangle of the division < t/(b—a)(d—c). 
For such a division, the oscillatory sum 

S-s=v a){d-c)]. 

Hence f(x,y) is integrable in the rectangle R. 

157 2. If a function f x, y) is bounded in R(a, b ; c, d) and is 
such that its points of discontinuity can be enclosed in a finite number 
of rectangles the sum of whose areas is less than a given positive 
number, then f(x, y) is integrable in R. 

Let € be any positive number. We enclose the points of discon¬ 
tinuity in rectangles the sum of whose areas is < €/2(M—m). The 
part of the oscillatory sum (S —s), arising from these rectangles or 
from the sub-rectangles into which they may be further divided 
is <€ 2. 

On producing the sides of the rectangles which enclose the points 
of discontinuity, we obtain a division of R into sub-rectangles. These 
sub-rectangles are of two types ; (i) those which include points of 
discontinuity and (ii) those which do not include any point of 
discontinuity. The sub-rectangles of the latter type can be further 
sub-divided such that the part of (S—s) arising from them is <€/2. 

Thus we have a division of R such that the corresponding oscil¬ 
latory sum is less than the given positive number e. 

Hence the result. (§156 2) 

Cor. If a function f(x,y) is bounded in R (a, b ; ct d) and its 
points of discontinuity lie on a finite number of curves of the form 
y~#(x), x=p(y)t etc., where f(x),\j/{y) etc., are continuous, then f(x,y) 
is integrable in R. 

Let p be the number of the curves in question. Let c be any 
positive number, 
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Since tf(x) is continuous in (a, b), there exists a division 

D(*==*o<*i<*2.<*r-i<*r.<** = &) of [a, b) 
such that the oscillation of <p(x) in every sub-interval is <€ ip{b—a). 

The points of y~P(x) which correspond to the values,of x of the 
sub-interv al (xr 1} xr) of the division D clearly belong to the rectangle 
(Vi.^; mr Mr) of area (x,.~xr m,) ; M?., mr being the 
bounds of $(x) in xr). Thus all the points of y=l>(x) have been 
enclosed in a system of rectangles of total area 2(*?•-“)(Mr—tnr) 
which is clearly less than (//>. 

Applying the same process to the other curves we see that they 
can all be enclosed in a finite number of rectangles of total area less 
any given positive nnmber*. Hence the result. (§157 2) 

158. The calculation of a double integral. Equivalence of a 
double with a repeated integral. Theorem. Ij the double integral 

| | /(*. y)dxdy 

R 

exists where R is the rectangle [a, b ; c, d) and if also 

b 
\f{x,y)dx 

a 

exists for each value of y in (c, d), then the repeated integral 

d 
f f 

exists and is equal to the double integral. 

[Observation. The proof depends upon a simple consideration, viz.» that 
if Dbe any division of {a> b) and Kr, kr be u rough upper and a rough lower 
bound of a function 0(x) in any sub-interval £r of the division, then 

6 ' h 

| <t>(x)dx^Sn 2<Kr8r and J ?(*)dx> tjt >£Mr- j 

a f 
Let U and L denote the upper and lower integrals of f(x, y) 

over R. Let € be any positive number. 

There exists a division of R into sub-rectangles (xT. x, xr ; y8_v yf) 
such that 

22M,g (xr-xr_1)(yt-ye,.,)<U+«. (§155, P. 254) (1) 

Since for every fixed value of y in (y,-j, ys), M;.s is a rough upper 
bound of f(x,y) in (xr_v xr), therefore 

b~ 

f f{x,y)dx< s when 
J r-1 

(2) 
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Since, from (2), 
r=n 

x M,.8 
r= 1 

is a rough upper bound of the function 

T 

| /(*. y) dx, of y in (yal,yt), 

a 

we have, by an application of the same reasoning, 

<r (i ! 
m n 

1 1 f{x,y)dx dy^ V V M,.s^r-A;r_1)(js-ys_<)<u+«, (3) 
J r = l 

c a 

As c is an arbitrary positive number, and by hypothesis 

b b b 

j Ax> y)dx~ | f(x, y)dx= | /(at, y)^r, 

therefore we have 

d i b d , b 

c ! a 

J j J /{*> y)dx j dy- | J | f[x,y)dx J dy%\;= J J f(xty)ixdy(4) 
c a R 

We can similarly prove that 

d i b j a [ b j 

J J J f(x> y)dy | dy= j ! | /(-v, y)dx j <fy>L= J J f(x, y)dxdy (5) 

c. ( a ' c [ a ) R 

Therefore 

A j b l 
| J /(*■ y)dxdy% j j | f.x, y)dx ydy 

_R c- 1 a 1 

^ j j | f(x,y)dx ]dy*Z | | f{x, y)dxdy. (6) 

r 1 a 1 R 

But by hypothesis 

{ f f(x,y)dxdy= j j f(x,y)dxdy (7) 

R _ 

Now, from (5), (6), (7), we have 
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d b 

J j /(*. y)dxdy= J ■ J /(#. y)dx j dy 

R c a * 

d b d ( 6 ) 

-J 
f f{x, y)dx J dy = [ j j f(x, y)dx 

C a J c 1 1 a 

Cor. If a double integral exists then the two repeated integrals 
cannot exist without being equal. 

Ex. A function /(*,_?), isdeiined in R(0, l ; 0, 1) as follows:— 
fK*>y) — h when.? is rational, f{xty)^x2, wheny is irrational. 

Show that f{x,y)dx j dy exists and is equal to i, but the double 

integral and the second repeated integral do not exist. 

Note. Hf{x,y> z) he continuous in R(a, b ; c, d ; t, f) so that tha triple 
integral exists, then 

JIJ 
R 

z)dxdydz~ j* dx 

d 

| dy 

f 

| f(*,y> K)dz 

Examples 

1. Evaluate the following integrals :— 

w 11 xy(x* -\-y%)dxdy over R(0, a ; 0, b). 

0*0 J J yt*y dxdy over R(0, a ; 0, b) 

m \ J drdy over R(0, 1 ; 0, 1). 
*+y 

[The integrand is bounded and (0, 0) is its only point oi discontinuity in 
the square (0, 1 ; 0, l)]. 

N f f dxdy 
W J J ^/[c*+(^j*] 0Vpr the square (0, a ; 0, a) 

W Hi xyz dxdydz over the rectangular parallelepiped 

(-1, 1 ; -1, I; -1, 1). 

2. Prove that 

1,1 > 1,1 

I tkfrdy 
0 

dx >=11>- i- J c zry. 
J (x+y)'' 
o 

dx dy, 

We suppose (x,y) to be any point of the square (0, 1 ; 0, 1). 
For any fixed value of x^0, the function (x—y)l{x+y)s is a bounded 
function of^ and if **0 then y**Q is a point of infinite discontinuity. 
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2x 1 

(*+-y)*~(*+y)* (1+*)1 

and i(0) does not exist. 

1 

Again, f»0(-i-+4-,)-l- 

I Ux+y? 
0 1 0 

If^o, J 
0 o' ) 

and ^(0) does not exist. 

as before, j <l>(y)dy= — i. 

The function (x—y)l(x+y)3 is not bounded in the neighbourhood 
of the origin (0, 0) and therefore the double integral does not exist. 

3. Show that 

0 0 

4. Show that 

Iff #*M(f*M* 
o d 

I J*(«) 'Hy)d*d> - [ J <t>'*)dx II fiy'ib j 
R a c 

where R is the rectangle (a, b ; c, </). 

159. Integrablllty and integral of a bounded function f(x, y) over 
any Unite region E. Since the given region E is finite, there must 
exist a rectangle R which completely encloses E. We define a 
function F(x, y) over R as follows : — 

Ffr vl- i /(*• y)> at a11 points of E, 
l* ^“10, elsewhere. 

Del. A function f(x, y) is said to be integrable over E, if F{x, y) 
*s integrable over the rectangle R and 

| J /(*. y) dxdy— J | F(x,y) dxdy. 
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1591. An Important case of integrabllity. If fix, ^y) is continuous 
in a region E which is bounded by a-finite number of continuous curves 
of the form y=f>(x), ,r=ip(y), etc., then 

| | f(x, y) dxdy 
E 

exists. 

The result follows from the fact that the only possible points of 
discontinuity of F(.r, y), defined as in §159 above, are the points of 
the curves y=f>(x), etc., (Cor. to §157 2, p. 255). 

159 2. Calculation of double integrals. If f{x, y) is continuous 
in a region E which is enclosed by the curves 

),=JWj=fvr) ; x—a, x=b ; 
where <t>(x), i[/(x) are continuous and f (,v) > $(.r) in (a, b), then 

h f[x) 

J J f(x.y)dxdy= J - | f(x,y)dy dx. 

E a \p{x) i 

Let R(a, b ; c, d) enclose the region E and let ¥{x, y) be defined 
over R as in §159. We have 

bid 

| J f(x,y)dxdy — | j F(x,y) dxdy— j • J f{x, y)dy -dx. 

E R a c 

b | $(x) <f>[x) d \ b <{>{x) 

— J ' | Fdy-f- | Fdy+ j Fdy dx= j j J Fdy 

a ' c <l/{x) <p{x) / a ' xp(x) 

each of the remaining two integrals being equal to zero. 

Note. If a function f(x> y) is continuous in a region E which is bounded 
by the curves x**<f> <y),x=<j/{y) ;y=c,y=d, where #(.y), tb(y) are continuoui 
and di(y,^1>(y), then 

**'y) 

J J /(>-,/, dxdy- J J J f x, y)dx j dy 

' 8 * 
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160. Area of a region. A sufficient condition for a region E to 
possess an area is that it is bounded by a finiter number, of continuous 
curves of the form y=<fi(x), x~tj/(y), etc., and the area is given by the 
double integral 

| | dxdy. 

E 

We enclose E in a rectangle R and define a function F[x> y) in R 
as follows : - 

F(*,y)==l at points of E and F(xty)=Q elsewhere. 

Corresponding to any division D of R into sub-rectangles, the 
upper sum S of F(.t, y) is tlie sum of the areas of those sub-iectangles 

which contain atleast one point of E and the lower sum $D of F(*, y) 

is the sum of the areas of those sub-rectangles which consist entirely 
of points of E. From this we conclude that the outer and inner 
areas of E are the upper and lower integrals of k(x,y) over R. 
Since these two integrals are equal, we see that E possesses an area 
and its area is given by 

| |f(x,y)dxdy 

R 

But, by del., 

J J dxdy— J | 1 ,dxdy=* J Jf(x,y)dxdy 

E E R 

Hence the result. 

Examples 
1. The double integral 

J J /(*. y)4*iy 
where the field of integration.is the circle #2+y2:=ctf3» is equivalent to 
the repeated integral 

+a **) 

\ dx \ /(*> y'Ay 
-a - V {a'—x1)' 

2. The triple integral in f(x, y, z)d xdydz, . . 

where the field of integration is the sphere *,+y,+^aa‘«,is equivalent 
to the repeated integral 

+a + +V(a'-x*-y*) 

| dx | dy " f{x, y, z)dz 

—a ■ «- /(**-#*); v“ 
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8. Evaluate 

J If (*+,y+*+!)* dxdydz 

throughout the region defined by 

z>0, x+y+z^l. 

The given integral is equal to the triple integral 

11—* l—x—y 

\dx | dy J (*+jy+r+l)*<fe**»fl. 

0 0 0 

4. Express, as a repeated integral, the double integral 

J | /(*. y'Ady 

taken over the quadrilateral bounded by the lines 
x-j-y~0, x —y = 0, 2x-y~l, 2x—3y + 5«*0, 

taken in order. 

5. Evaluate J f *2y* dxdy over the region defined by 

6. Show that the value of 
J JvWy-x')dxdy, 

taken over the interior of the circle x*~fjya =^2y is Tf-ffj- 
7. Express the integral 

2a \,'(2ax) 

| j V (*, _>) 
0 x1) 

by chaneing its order of integration. 
Ans. 

ta V(2ax) a a-—y%) 

J J V dxdy= J J V dydx 

0 v(2fl*-**) 0 y*/2<, 

+ J j v dyix+ j J > 
0 6+\Z(a*—y*) oy*lua 

8. Change the order of integration in 

2a 3a—x 

f f ${x9y)dxdy. 

0 *»/4a 

9. Show that 

b x a b b b 

j Jf dxdy- j Jf dxdy + j j F d* dy. 

a a* fx u%ib d*ly a y 

10. In the integral 
4 (20-4*)/(8-*) 

| J 0-4 )dydx, 

2,4/* 
change the order of integration, and evaluate the Integral. 
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11. By changing the order of integration, prove that 

2a ij(2ax—x*) 
f f (xM-y)* £ {y) dxdy J J VDaV-V+j-yj = 1Tfl [0(a)-0(°)] 
0 0 

12. Change the order of integration in the integral 

J * J (T+«>)vi*V-**-y) 
0 0 

268 

and hence evaluate it. 

13, Prove that 

dx 

Ux 
Iy dy 

(iTVja(r+7)=i(ir-1) 

14. Evaluate J / (x'+y'tfxdy over the region bounded by *>= 1, ^=0, 
*~2. 

15. Evaluate / / x% dxdy over the area bounded by **—^*=1, 
which contains tbe origin- 

16. Show that 

HI dxdydz 1 256 

(*4.74* 4'i)8 ~HT e*~ 

taken throughout the tetrahedron bounded by the planes x=0, .>>=0, c—0, 
*4*.y4-*~J. 

17. Show that 

J / / (Ix+my+nz)* dxdydz^ *(/«+*, «+«•), 

taken throughout the sphere *a=E 

18. Prove that the value of 

in 
xyz 

\/{^-ry'+z') ixdydl 

taken through the positive octant of the ellipsoid *2/<3*4-.?V^l4-*,/c,BBl is 

atbh* \bc-\-ca-\- ah)/ 15^4-*)^ “bo) (<*4 b). 

161. Del. A domain E will be said to be Quadratic with respect 
to y-axis, if it is bounded by the curves of the form 

y^<f>(x)ty=\l,{x) ; x=a, x = b, 

where <j>{x), \{/(x) are continuous and #>(*)>^(%) in {a, b). 

Thus a domain which is quadratic with respect toy-axis is such 
that a line parallel toy-axis and lying between x~a, x=b meets the 
boundary of E in just two points. 

Similarly we may have regions which are quadratic with respect 

vi82. Green's Theorem. Connection between double and line in¬ 
tegrals. Let f(x, y) and /, (x, y) be continuous in any region E which is 
quadratic with respect to y-axis, and let C denote the contour of E. 
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Let the region E be bounded by the curves x~a, x—b ; y=^(*), 
y=fi(x). VVe have 

b ■ i>{x) ; 

f f Mx- y)dx dy= f i J Mx> y)dy 

E a 1 . 'l'(x) 
b b 

= J fix, t[x)]dx- J fix, f(x)]dx 

a a 

Let Cv C2, C3, C4 denote the four parts of C taken in the positive 
sense, i.e., in such a way that the interior of the region lies to the 
left as the contour is described in the counter-clockwise. We have 

| f(x,y)dx= | f(x, y)dx+ J f(x, y)dx+ j f(x, y)dx+ J f(x,y)dx. 

c2 c3 c4 

j /(*. y)dx=Q= | f(x, y)dx, 

Cj Gj 
b 

j Ax> y)dx= | fix> $[*)¥*> 
Ca a 

a b 

J f(*.y) dx= | /[*. <fi{x)]dx~- | f[x, $(x)]dx. 

C4 b a 

J | fi(x> y.dx dy=— { f(x,y)dx 

D C 

We, now, generalise the above result. 

Let a region E be such as can be divided into a finite number of 
stib-regions Ex, Ea,..,, E„ each of which is quadratic with respect to 
y-axi*. 

C 

But 
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The contour C of the region 

of Ev E , E3,...E„ are to be 
so described that the corres- 
ponling region constantly 
lie on the left hand side. The 
theorem holds for each 
separate region, and on ad¬ 
dition. the parts of the line 
integrals along the connect¬ 
ing lines cancel one another - 
since each of these is des¬ 

and the contours C14 C8, (V..C# 

IV 

crib (1 twice, once in each direction, and we arrive at the theorem for 
the whole region. 

We have thus proved that if f(x, y) and /„(*, y) are continuous in 
a region E which can be split tip into a finite number of regions 
quadratic with respect to v-axis, and C is the contour of E, described 
in the positive sense, then 

| | /i (x> y)dx dy= — \ f[x, y)dx. (i) 

E C 

It may similarly be proved that if g{x, y) and gjxt y) are con¬ 
tinuous in a regitm E which can be split up into a finite number of 
regions quadratic with respect to x-axis and C is the contour of Et then 

J j gjx. y>'x <y= J g(x, y)dy. (|J.j 

E C 
Finally, on subtracting (i) from (ii), we see that 
If we suppose that fix. y\ g\x, y), /7i(r, y) and gjx, y) are con¬ 

tinuous in a domain E which can be split up into a finite number of 
regions quadratic with respect to either axis, then 

| t /(*. y)dx + S{x - y)dy] - J [gx{x, y) -Jy[x, y)]dxdy, 

C E 
where the integral on the left is a line integral round the contour C 
of the region taken in such a wiy that the interior of the region 
remains on the left as the boundary is described. 

This may be written as 

Ji/fa+ffW- \ 

C E 
A particular case. Taking f(x, v)—y, we see from (i) that the 

area of a domain which can be split up into a finite number of domains 

quadratic with respect to Y-axis-—— j ydx. 

C 
• Similarly putting g(x, y)=x, we see from (ii) that the area of a 

domain which can be split up into a finite number of domains 

quadratic with respect to X-axis = j xdy. 
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Thus the area of a region E, which can be divided into a finite 
number of regions quadratic w. r. to cither axis, is given by 

J J (xdy-ydx) 

C 
where the contour C of E is described in the positive sense. 

Ex. Verify the Greea*s theoiem by evaluating in two ways the following 
line integrals :— 

(i) J (x*ylx ^>y%dy), 
taken along the closed path formrd by y=v ami x*~-y' from (0» 0) to (1, 1). 

(it) J [ (v34y* dx + (x*4y)dy\t 

fc*ken alo^sr *he boundary of the pentagon whose vertices are (0, 0), (i, 0), (2, 1), 
(1,2, (0, i). 

163. Double integral as a limit. Let f(x, y) be continuous in a 
region E. Let the region E be divide i into sub-region* E2. E..E* 
with areas Alf Aa,..., An. Let (£r, vf) be any point of the sub region 
Ef. Form the sum 

}/($,, 7,)Ar. (1) 
By the diameter of a sub-region E,. will be meant the upper 

bound of the aggregate of the distances between pairs of points on 
its boundary apd the greatest of the diameters of all the sub-regions 
will be called the norm of the division. 

It can now be proved that as the norm 8 ~»0, the limit of the sum 
(1) is the integral of fix, y) over Et i e , 

J /(*- y)dxdy- 

The details of the proof will not be given here. 

Cor Jff{x,y)be continuous in a region E with area A, then 
there exists a point (£, 1) of E such that 

| J /(.t, y)dxdy=A/^, V). 

E 

164. Change of variables in a double integral. 
Lemma. Let 

x=<f>(u, v),y=*f(ut v) (1) 

be two functions of uf v defined in a certain region E1 of the uv 
plane bounded by a curve Cr We suppose that the two functions 
possess continuous first order partial derivatives at all points of Ex 
and Cv Further, we suppose that the equations (1) transform the 
region Ei bounded by Cj into a legion E of the xy plane bounded by 
a curve C in such a way that a one-to-one correspondence exists 
between the two regions and their contours. Finally, we suppose 
that the Jacobian c(x, y)l?(u, v) does not change sign at any point 
of E,, though it may vanish at certain points of Cr 

As the point (ut v) describes the contour Cj in the positive sense 
then the point (#, y) may describe C in the positive or else in the 
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negative sense without ever changing the direction of motion. The 
transformation will be said to be direct or inverse respectively in 
the two cases. 

We will now obtain a formula connecting the areas A and At of 
the regions E, 

We have 

A = | x dyt 

C 

taken along C in the positive sense. 

Changing the variables [x, y) to {ut v) in this line integral, we 
obtain 

A=± J ?(u, dv )* 
C, 

where the new integral is to be taken along the positive sense of Cx 
and the sign is -b or — according as the transformation is direct or 
inverse 

J du+$ij/v dv)=* in 
Applying Green's theorem, we have 

3Wr) _ cW'I'u) 
du dv 

Ei 
where (£, v) is a point ol Ex. 

\dudv 

raw.j 
1 3(«, i 

<fi) 1 (Cor. to §163) 
v) J 

A« 
— ILa(w,»)J £±Ax [JJ t,v Ax | J I 

*. V. 

Since A, Al are essentially positive, we see that the sign -4- or 
— should be taken according as J is positive or negative. This 
shows that the transformation is director inverse according as the 
Jacobiun J is positive or negative 

•it is assumed that 
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. Main theorem Let /(#, y) be continuous in the region E. We 
divide the region Ei by lines parallel to the «-axis and r-axis. This 

division of El gives rises to a curvilinear division of the region E. Let 
E',£ be any sub-region of E, and E;s the corresponding sub-regicn of 
E and let wfJ8, wlS be their areas. 

By the lemma, we have */.=»’». I J I , n 
s rs* 1rs 

where (£**. vr8) is some point of E'rs. Let {xfs,yrs) be the corres¬ 
ponding point of E,s. We have 

W rs'~f C^( $ ; $• ^ r$)t 'I'iirs’ ^ I J I ^ j • ia 

A similar equality will be obtained for each pair of correspond¬ 
ing sub-regions. Ad ling them and letting the noim of the divisions 
tend to zeio, we see that 

J J /(*. y)dxdy— J J /[$*(«, v), t(u, »)] j J j (huh, 

li Kx 

which gives the rule for change of variables in a double integral. 

1. Evaluate 

Examples 

f f a7v2) , , j7 rut's 
] ) 7W+«•>) dxdy. the field of integration 
- ' ■ j t 

being the positive quadrant of the ellipse xAta% +y~/6*==1. 

Changing the variables x, y to X, Y where 
1 x~aXt y~bY 

we see that, since d{x,y)lc(X, Y)=<?£, the integral 

=ab iu 1- X*-Y* 
4-XM-Y* 

rfXrfY, 

the new field of integration being the positive quadrant of the circle 
X'+Y'=l. 

Changing X, Y to r. f) where 
X=r cos 0, Y=r sin fl, 

so that c(X, Y)/3(r, 0)=r, wc see that the integral 

' Vd-r;) 
*ab ■JJ r drild. 
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It is easily seen that the positive quadrant of the circle X*+Y2=1, 
will be described if 0 varies from 0 to n 2 and correspon ling to each 
value of 0 between 0 and tr 2, r varies from 0 to l. This new field 
of integration, therefore, is the rectangle (0, 1 ; 0, £n). Thus, 

th' integrals \di { •'<[ 

0 0 0 
==■ in(n— 2 )ab, 

where the integral has been evaluated (,n putting r3r==cos /. 
2. Integrate the junction lxy over the urea bounded by the four 

circles x*+y*—ax, ax, by, by whetc a, a\ by b' are all positive. 

The integration is to be carried over the shaded area shown in 
figure. 

We change the variables to u, v where 
u — (\*-f ya) x, v = (x* by2) ry. 

It is easy to see that 0(n, v)/?(x, y)~ ~(x*+y*y/x*y2. 
*c(x,y)/u[n. v) — —x*y*lKxt-ry*)\ 

Since the Jacobian is negative, the transformation is inverse. 
This fact, may also be dnectly verified. The new field of integration 
is determined by the boundaries u=a, u~ar, v~b, v~b\ and is, 
therefore, the rectangle (a, a' ; b, 1)). Thus we see that 

the integrals J J j I J dudv « J J [xijyiy dudv 

a' b 

= f f ~~ dudv s= f - du ( ~ dv^log log - , 
J J uv J n J V ° a b b 

a b 

v) — Ku, v) and we upon u, v as tunctioua of * &ndy, 

j _3x 9u 3x~ m dv_ > 

Su dx 

c^y. ^ , 
3u 3*i~3i> 3* 

3« 

ltm3y . i_ ,3j\ 3u 
3u dy" 

?x ?* i ?u I 

. 3hi. v) Ju ?v ?»'_!' n|_i 
3 [X, y) “ s» >y P? | ® 1 I 

?« 3s 1 I 3y 3)1 
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8. By substituting x-\-y—u, x~uv, prove that the value of 

[ f y/[xy(l—x—y)] dxdy 

taken over the area of the triangle bounded by the lines y=Q, 
x+y~ 1=0 is 2*/105. 

Since x~uv, y~u{\—v)t we have 

c(xfy)lc(u, v) = -~u, 
which is negative. 

The Jacobian vanishes when «=0, i.e.t when *=^=0, but not 
otheiwise. It is easy to see that to the origin of the xy plane 
corresponds the whole line u=0 of the uv plane so that the coires- 
pondence ceases to be one to one In order to exclude %=0, y—0, we 
look upon the giv< n integral, which certainly exists, as the limit, 
when h-0, ol the integral over the region bounded by 

x-\-y~l, x~i), y—h, (A>0). 

The transformed region is, then, bounded by the lines 
u—\, v~i), n (1 

which correspond to the three boundaries of the region in the xy plane 
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Putting i^sin’ 0 and z^sin1 ip, we see that 

i hn * 

^ M* ^(1— u)du = 2 | sin® 6 cos' 0 dPms ^'gg J = jQg 

o 0 

1 \n 
f —- , f . _ . . 2 1.1 TT n 
J v^v(l —v) <?v~2 1 sm* ^ cos2 ^ 2* 2 ^8* 

0 0 

Hence the result. 

4. Prove that 

Q( T(nt) T(n) 
°{m'n)-T(m+n) (m>0,n>0) 

We have 

1 

fl(mt «) = | xm~l (1—a)”'1 dx~2 J cos1"1-1 6 sin2* 1 0 </0, (1) 

0 0 (putting ^=cos2 0) 

00 00 

r(#»)= J im~l e~{ dl—2 | rim-‘ e~r* <fr, (putting /=r*). (2) 

0 0 

From (2), the integral 

4 J J x2"1 '* ya,‘-1 <Lriy, 

E 
where E is the square (0. R ; 0, R) tends, 
as its limit, to r [m) r («) as R-*oo. 

The positive quadrant of the circle 
xr-\-y =R3 is a part of the square E 

which, again, is a part of the positive quadrant of the circle 
xi+y*~2Rt. We denote these positive quadrants by Eu E, 

respectively. The integrand being positive, we have, 

4 J J x2*-' ya”-» e-^-y dxdy^4 J | *am-i <r**V dxdy 

Ei E 

<4 | | xim-i yt*-i «-•*-?* dxdy 

Ea 

But changing the variables to r, 6 where #=sr cos 0, y=r sin 0t 
we h^ve 
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4 J J y* > (friy 

Li 
?ir R 

=4 J cos8"-1 0 sin8"”1 0 <10 JVr’ r8m (fr 

0 0 
R 

=2p[m, it) J e~r* r8m+*n”» <&>. 

0 
Similarly 

v'2R 

4 f f y-n’‘e~x'-’J3 dxdy=2j3(m, n) J «”r* H*+»-1 <fr. 

E2 0 
R 

2j5(m, «) J e~r* r™+ n'i J J .r8w“ vv ”> t-•*"** £r# 

0 E 
✓2R 

^2:j3(m. «) J <.-'•* <*, 

0 
Letting we obtain the required result. 
5. Evaluate 

I=J M 
throughout the ellipsoid x2ia*+y2:b,-\’Z /c' — 1. 

Changing the variables .r. j\ z to X, Y, Z where 
x~aX, y=bY, z — cZ, 

we see that since r(*, v, z)/,)(X, Y, Y)~ahc, therefore 
I-aW f J / \/(l — X* —Y2—Z*)iiXiY4Z, 

taken throughout the sphere X4-f Y!4-Z3=l. 

Changing X, Y, Z to polar coordinates r, 0, $ so that 
X=r sin tl cos Y—r sin 0 sin f>, Z=r cos 

we have, since ?(X. Y, Z)/?(r, 0, <£)=r* sin 
I=fl2£ c" J J J v^l—sin 0 drdQdfi. 

It is easily seen that to describe the whole sphere X,+Yl 
4-Z’=l, r varies from 0 to 1,0 from 0 to tt and from 0 to 2/r so 
that the new field of integration is the rectangular parallelopiped 
(0. 1 ;0f «r ;0f 2»). 

2n 7T l 

•\ I=a*&V | d<j> J sin 0 dO J ^/(l — r2)r2dr**{tfbWiT*. 

0 0 0 
6. Evaluate 

J 5 ^[x(2*~x)+y{2'»-y)]dxdy, 
over the circle x% by*—— 2/>7s=0. 

7. Evaluate 
J J 

over the circle ** =o* > 
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8. Show that 

J J *y (1 -x-yt* dxdy=0( V, Z)fl(I, *), 
over the triangle bounded by the lines #4-y=i. 

9. Show that 
f i Vt*V(l-x'-J>))d*dy~i /3(V. 1)0(1, ?), 

r»ver the positive quadrant of the circle x*+y**- 1. 

10* Show that 
2 * 

J J | + | ^dxdy~\log (l6/#). 

U 0 
by means of the transformation 

x=u{\+v)>y~v(i-± u). 

[3(jt, y)/^(t/, z>) = 14-u-i-fl, which is positive for non-negative values of «, *>• 
The field of integration in the xy plane is bounded by y—0, x=2,y**x» Taking 
into consideration only non-negative values of u and v we see that the cor¬ 
responding legion of the uv plane lies in the positive quadrant and is 
bounded by v**0, «(!+*>) **2, u**vt Therefore, the integral 

2 (2 — u)/u 

= | | dudv+ j* | dudv.) 

0 0 1 0 
11. Transform the integral 

*ir i*ir 

(sin 0 

sin 0 IU 
0 0 

d$d$ 

by the substitution x=*sin 0 cos 0,>==sin 0 sin $ and find its value. 

12. Change the variables in the integral 

2 a x/(4ax—xB) 

0 V(2 ax — x*) 

to r and 0, where cos* Q,y^r sin $ cos 9 and show that the value of the 
integral is (‘"■+3)0*. 

13. Transform the integral 

*» t- 

n 
0 0 

V (x,y) dxdyt 

by the substitution x+y—ufy=uv 

14. By using the transformation 
x~ut—v*ty~2uv> 

or otherwise, evaluate 
dxdy 

^/(x*+y') n 
taken over the region enclosed by arcs, of the confocai parabolas 

y*~4ar(x+ar)f (r—1, 2, 3) 
where #,<(). 

15. Eind the area of the curvilinear quadrilateral bounded by the four 
confocai conics of the system 

*7A+_y*/(A-c*)« 1 
which are determined by giving A the values Jc*, fc*, §c* respectively. 

(Transform into confocai co-ordinates, i.e, express x and y interns 
of A, the parameters of the two confocals which pass through (x,y), 
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16. Express the integral 

M 
v/(5-5x»/9) 

dy 

0 0 
in terms of the variables X and f1 defined by the equations 

X-/Wt(*-2)3+/] 
and thus verify that the value of the integral is £ 

17. Evaluate J J xy dxdy ; the field of integration being the area common 

to the circles *a-f?a««*, = y. 

[Change to «, v where u~(x*±y%)/x, o=r(*a-|~y*)/y. The new field m 

the uv plane is the square (0, l ; 0, 1)]. 

18 Evaluate 

J J (?y3-f x*y) dxdy, 

where the field of integration lies in the first quadrant and is bounded by the 

central conics 

ax^-rby*—!, axi-\-byi — m, axa — &ya = n, ax* — by*^p, 0; n>/f>0), 

19. Show that 

J J J Z dxdydz-^ h4 cot $ cot 0, 

taken throughout the volume bounded by the cone sa — x* tan2 0-fy* tan* 0 and 

the planes z^O, z~h. 

20. Show that 

the field of inte 
and x'+yt—ax. 

Ill z1 dxdydz — 
3077 — 32 

gration being the region common to the surfaces a* 

21. Show that the integral of the function 

^(x'la'+fib'+z'lc') 

taken throughout the volume of the ellipsoid x'/a'+y'lb'+z'ic*** 1 is 

4Trabc(e-2). 

22. Evaluate 

nive +?+>*+*V 
integral being taken over all positive values of x, y, z such that. **+.y,+£^L 

ijdxdydz, 

23. Show that m dxdydz ___ 7T* 

~ 8 ’ 
integral being extended to all positive values of the variables for which the 
expression is real. 

24. Integrate l/xyz throuphout the volume bounded by the six spheres 

**+.y2-f£3flBrflxf a'x, by, b'y, czf c'z, where a, a', b, b\ c, c' are positive. 

(Take «= (**-f J2+£*)/x, v^(xt^yi^-z2)ly, w** {x*+y* + z2) / Z* 

25. Prove that J J J yz dxdydz taken through the volume common to 

the three spheres **+y-K*~20x, xa-f./+^*=2^ is 
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26. Prove that 

ill ^a/(^+ 
taken through the volume common to the ellipsoid x%ja%JrytjbtJrz*lc% =* 1 and 
the part of the cone aVf /3y*=£a ior which is positive i* ir/a/J. 

27. Evaluate 

Ill 
when the variables are all positive and 

(Change to u, v, w where 

— z — uvw 

28. Show that 

/ f ; (t+jF+c)*^v dxdydz^u, 

throughout the region x+y+z^l> *^0,y^0, *>0. 

29. Evaluate 

/ J \*yz%dxdydz for 0^4(*~2)* + 0>-l)*-f9^06. 

30. Evaluate J J J (,yVH-c**8 +x2yl)dxdydz 

taken through the volume of the cylinder x* \-y* —‘2ax~Q between the sheets of 

the cone 

165. Evaluation of volumes. 

By triple integration. The triple integral 

carried throughout a region E in a space of three dimensions gives 
the volume of E. 

By double integration. 

Let C be the boundary of a region E of the xy plane and let a 
cylinder be constructed by lines through the points of C parallel to 
z—axis. Then the volume of the cylinder enclosed between the 

surface *=9*(*>y)> iKx>y)> [9{x> y)>'l'(x> y)] 
is, as can be easily seen, given by the double integral 

J J (0-iM* *y- 
E 

1. Find the volume included between the co-ordinate planes, the part of 
the right cylinder standing on the quadrant ^=^9—*a), x and^ both positive 
and the plane *=3—i#-iy. 

2. Show that the volume included between the elliptical paraboloid 
2z^xtlpyytIq, the cylinder #*+y = a* and the x}y plane is Tta\p+q)l&pq' 

3. Calculate the vclume bounded by the surface z^kxy, the plane OXY 
and the first quarter of the cylinder 
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4. Show that the volume of the solid bounded by the cylinder 
and the paraboloid84 ax is 8). 

5. Find the volume of the region bounded by the plane z^x+y and the 
paraboloid cz**x%+./• 

6. Show that the volume of the region bounded by the hyperboloid of 
one sheet *V a*-hya/^2~ £*/**== 1, its asymptotic cone xt/a2~\-y2lb2—zi/c2=‘0 and 
the planes z^Zu z~zs> fe>£i) is Trab(z2-Zi)- 

7. Prove that the volume in the positive octant bounded by the planes 
0, z~*h and the surface z/c=*(xla)m + (ylb)™ is equal to 

1abh(hlc)2lm T(l/m) r(l/w) 
(w+2) T(2/w) 

8. Show that the volume enclosed by the surfaces defined by the 
equations x2+y2—cz, x2+y2~ax, z=0 is 377j4/3*2<;. 

9. Show that the entire volume bounded by the positive side of the 

three co-ordinate planes and the surface (x/aft +(y/b)^ +(zlc)^ =1, is 
abc/90. 

[Change the variables to r, 0, 0 where 

x/aa=r4 sin4 $ cos4 &,y/b=r* sin4 Q sin4 0, sA=r4 cos4 9; 

r varies from 0 to 1, 9 from 0 to in and 0 from 0 to ^tt.] 

10. Show that the entire volume of the solid (x/a)^ -f (yjbft + (zjcfl *1 
is 4itabc/35. 

11. Show that the volume of the solid hounded by the cylinders 

bz2=c2y, bz2~ 2c*y, cx2=a*z, cxt~2a*z, ayt—b%xi ay* — 2b2x is jabc. 

12. The area lying in the first quadrant which is enclosed by the curves 

jr=zax*,y~bx*; x=*<78, x*=dy8, (a^>b, c^>d) 

revolves about X-axis ; obtain the volume of the solid generated. 

[The required volume is 
/ J 2 irydxdy 

change the variables to u, v where 
u~*ylx*f v-x/y*]. 



CHAPTER XIII 

FOURIER SERIES 
166. Fourier Series. A trigonometric series of the form 
\a0+(a1 cos x+bx sin x) + ... + {an cos nx+bn sin nx) + ... 

is said to be a Fourier series. Here an, bn are constants indepen¬ 
dent of x and are known as Fourier constants. In this chapter we 
propose to find a set of sufficient conditions for a function f(x) to be 
represented as a Fourier series and to find the constants an and bn if 
f(x) can be so represented. 

Since every term of the Fourier series is periodic with the period 
2it, it is obvious that the sum function f(x) of a Fourier series of 
the above form must also be necessarily periodic with period 2rr. It 
is not necessary, however, that f(x) should be a trigonometric 
function. A function with 2n as its period will arise if it is arbitrarily 
defined in an interval of length 2rr and then periodically extended 
beyond this interval to the left and to the right so as to satisfy the 
functional equation f(x + 2n)=*-f(x). 

Firstly, we proceed to show that the constants atl, bn can be 
easily determined if we assume that a given functionf(x) can actually 
be represented as a Fourier series and that the series is uniformly 
convergent. It should, however, be clearly understood that since 
there is nothing to prove, a priori, that these two assumptions are 
justifiable, this determination is purely formal. 

This determination depends upon the following simple integrals. 

-f- it -f* rt ~{~ 7T 

J sin nx dx~ 0~ j cos nx dx\ J sin mx cos nx dx— 0. 

— rr —it — rr 

J, fO, if tnjn . f . . , fO, if min 
cos mx cos nx dx**< .c '..Ism mx sin nx dx~ 1 ' * 

(^77, if m=n J 

—it —rr 

Integrating term by term from — n to +?r the hypothetical 
equality, 

/(*)=$ad+2(0n cos nx+bn sin nx), 
n~l 

+n 

LIJ 

we obtain — j f{x)dx. 

— IT 

Multiplying the equality (1) by cos nx and integrating term by 
term from — rr to +ir, we obtain 

+7T 

cos nx dx 

Which is seen to be true tor n—0 also. 

(2) 
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Finally on multiplying with sin nx, we obtain 

+ 7T 

&„=— | f(x) sin nx dx. (3) 

Note. The series (1) with 'the co-efficients (2) and (3) will be 
called the Fourier series corresponding to f(x) in the interval ( — n, n). 

Of course the mere fact that a series corresponding to a function 
can be written does not ensure its convergence, or if convergent, that 
its sum will be f{x). Complete result in regard to this is given 
in §169, P. 281. 

167. Theorem. Let f(x) be bounded and integrable in (0, a) and let 
it be monotonic in (0, h) where h is any positive number less than a. 
Then, as n-+oo, 

a oo I,, N sin nx , r / i m F sin x J /(*) —dx -/(+0) ] —~dx 

0 0 
where /(+0) denotes the limit of f(x) as x tends to zero through positive 
values. 

(Since/(x) is monotonic in (0, h)% therefore/(-f 0) must exist). 

Firstly we suppose that/( + 0)=0. Also, without affecting the 
result in any way whatsoever we can suppose that /(0)=0. 

By second mean value theorem, we have 

h hx h h 
f x. .sin nx , r sin nx , .... r sin nx , ./LS f sin nx * 
J dx=f(0) J —~ dx+f(h) J -j— dx=f(h) J dx 

0 0 h, h. 

Since 

nh nh 
,,,, f sin y , f sin x . -/(*) J ~ dy=f(h)} -^-dx. 

nhy nhx 

(1) 

I sin x 
dx 

0 
is convergent, there exists a positive constant k such that 

X 

IT 
0 

dx *Zk, for all X>0. 

nh j nh nh 

\ [™?xdx- [ 
J * 

nh, 1 
J * 
0 

J 
0 

Also f(h) -*0as />-*(0+0) 

(2) 

(3) 
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From (1), (2) and (3) we deduce that, there exists a positive 
number $ such that 

h 

J f(x)~^X dx | < 2A \f(h) | <%t, when 0</>< 5. 

0 
Now, we have 
aha 

.sin nx . f r. ,sin nx , . f r/ .sin nx , 
/(*)— <**=] /(*)—- <**+] /(*)— <** 

0 0 8 

’Since, as proved in Ex. 22, P. 159, the second integral on the 
right-*0, as M-+00, we see that there exists a positive integer m such 
that for«>f». 

! a 
: j d.X + = 
: 0 

Thus the theorem is proved in this case. 
In the general case, changing/!#) to [/(#)—/(+0)], we see that 

as n-*oo, 
a 

\ [/(*)-/(+0)] dx-*0, 

Now 
«« 

as w—►©©. 

x sin n%j „ , m f sin * , 
/(*) - J— /(•+0) ] —- • 

0 0 
Cor. If fx) satisfies the conditions of the theorem above and 

0<a<7r, tffow, as oo, 
# oo I,, vsin *?# r/ , m f sin x , 

f{x)^rnxdx-*^0))~dx 

We write 
,, . sm ft# . # sin w# -, , sm w# 

/(#) . =/(*) . •-=rQ(#) —- 
sm x sm x # w % 

where we assign the values 1 and n to (#/sin x) and (sin nxjx) respec¬ 
tively for #“0. Now we know that (#/sin x) is positive and 
monotonically increasing in (0, -Jtt). If f(x) be monotonically 
increasing in (0, A), (A<|tt), then G(x) is also monotonically increas¬ 
ing in (0, h). 

*f(x)/x being bounded and integrabie in (8, a). 
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Therefore, as n~+oo, 

a a Jr, x sin nx , r n sin nx , , A. f sin x , .. , ^ f sin x , 
/W sin* **= J GW ■—^ ‘G(+0)J ^ rf»=/(+0) f 

0 0 0 0 

If f(x) be decreasing, so that —f(x) is increasing, we see that, as 
ft—*©o 

a oo Ir ,, ^ sin nx , m f sin # , 
WWJ BTx' * —/(+0) ) x *■ 

0 

168. Ltf/ /(*) bounded and integrablc in ( —ir, n) and let it be 

monotonic in (—h, 0) and (0, h) (not necessarily in the same sense), 

where h is any positive number less than n. Then 

x ~ /(+0)+/(—0) f 
ifl0+i< an— 2 

«= 1 
where /(+()), /(•—()) denote the limits of f(x) as x tends to 0 through 

positive and negative values respectively. 

We have 

+w + 77 

1 m If If m 
.,-a0+ X an=0 f(x)dx+ f(x) X cos nx dx 
l „-l lit J V J 

+ 17 

— 77 —77 

_ l f /(-»■) > ( /(,)i!!L!2!+te* 
2w J 1 sin \x ^2n J JV ' sm \x 

0 0 

- *+1 -4V.^ *. 
0 o 

oo 

= 1 /(-0)+/(+0)l J S1" Xdx as m-»oo. 
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Taking /(*)«= 1, we see that 

+ 17 

— IT 

1 
2 fl°= 

4"7T 

1 . ^=1 and an = — j cos fl# 

n 

oo 
1 -f 1 f sin ^ 
r-Tr *■ i 

sm x . n 
-dx** - ~ 

x 2 

Hence the theorem. 

Note. The value of the integral of (sin #/*) over (0, oc) has also been 
already ootained in t*o ways in Ex. 12- P. 196 and §150, P. 246. 

169. Let f(x) be bounded and integrable in (—ir, n) and let It be 
possible to divide (—n, n) into a finite number of open sub-intervals, 
in eaeh of which f(x) Is monotonic. Then 

Ut/U-0)+/U+0)]. 
K+ s Kcos »(+;,, |1;/(l_0H/(J"+0"<5<' 

n ( for \ =»— not £ =77. 

Here/(£ —0) and /(£ 4-0) stand for the limits of f(x) as x tends 
to £ from values smaller than and greater than £ respectively. 
Under the given conditions /( £ —0) and /( £ +0) necessarily exist. 

Lemma. If f(x) is bounded and integrable in every interval and 
is periodic with 2tt as its period, then 

+ 77 + n 
J f(x)dx= | f(a+x)dx, 

— n —n 

a being any number whatsoever. 

Putting a+x=*y, we have 

+ n a+n 

| /(a 4 x)dx— | f(y)dy 

— n a— n 

— tt +7T 

= | f(y)dy+ | f(y)dy+ J f(y)dy. 

a —n — tt +• n 

Putting y=2—27t, we see that 

—n tt a + n a+rc 

J f(y)dy= \ f{z—2ti)dz~— J f(z)dz=- J f{y)dy 

a—it a 4-n it tt 

Hence the result. 
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Main theorem. We have 

m 
ifl0+ 2 («„ cos «$+&» sin «{) 

«=1 

+w +n 
If m \ f 

~2n J t(x)^x+ L' ^ ] f(x)(cos nx cos n£ -(-sin nx sin n\)ix 

— V —IT 

+ ir + TT 

l r i r 
'2^ j /Wn+22 cos »(*-£ )]rfx = — j /(•*+ $)[I+2 5 cos nx]dx 

—ir —rt 
(lemma). 

+» 

f/(*+S)!i” (”,+i!’* 2ir J sin 
— 77 

—77 0 

1 r fi %xt\sin(2m+1)>' J„ , 1 f no , .,sm(2m+lW . 
-V J A“2^+ 5} sin v-*y + „ J Wy+ « siiTy * 

-^{ 2 -/tt-onf ./(^o)] = ^L9j±/(A-o), as m >00. 

Note. The result arrived at above may be restated as follows : — 
If f{x) be bounded and integrable in (—tt, n) and if it be possible to 
ditide (a, &) into a finite number of open sub-intervals in each of which 
fix) is monoionic, then the Fourier series corresponding to f(x) converges 
for every value of x and if S(x) denote the sum function of the series, 
then 

S(*)=i[/(#+0)+/(*—0)] when — *00 

S(*)=i[/(w-~0) + ( — 7T+0)] when x=±rr. 

and S(x+2tt)=S{x). 

The relation S(#4-27r)=S(#) enables us to determine the value 
of the sum function at a point which does not belong to (—7r, w). 

Cor. At a point of continuity £ of f(x), 

4 ao+ 2 («„ cos n g +bH sin n ^) = M±2L±/(lz^L 
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Thus we see that if f(x) satisfies the conditions of the theorem of 
§169, in (—n,7r) then the sum of a Fourier series corresponding to f(x) 
is actually f{x) at all such points x of ( — 77,77) where /(a) is continuous; 
at points of discontinuity the sum of the series is |[/(*+0)+A* ~0)J. 

Note. It is not necessary that f x) be given by a single analytical 
expression. 

Ex. Expand in a series of sines and cosines of multiples of x a function 

f(x)=z% — TT, when — 77<^*<^0 ; f[x) = rr—x, when 0<C.x<^7t. 
What is the sum of the series for *= £77 and *=0. 

The given function f(x) satisfies the conditions of the theorem of §169. 

We have 
-fir 0 77 

| f(x) cos nx dx=^ J /(*) cos nx dx+^ J fsx) cos n% dx 

-77 

77 

0 

s-i J (x—v) cos nx dx-f — J [tt—x) cos nx dx. 

— 77 0 

Integrating by parts, we obtain 

2[1 —( —l)*j 
n* 77 

n&Q. 

fl.ae—77. Also, 

Similarly 
0 77 

bn— ~ f (x—77)sin nx dx+ — f (77—#)sin nx dx~ ?£ln(nlL^ 
17 J 77 J n 

— IT 0 

The co-efficients an and bn are zero when n is even. 

In ( — 77, 77), the points x~0 and f 77 are the only points of 
discontinuity of f(x). Therefore when x is different from 0 and +tr, 
we have 

/(,>_ .+^ I 4.4 
Tl cos sin x-\— 
II 1 77 

1 , 4 f cos 
"2w+'1t[-F 

* , cos 3a: , cos 5a; , 
H—3a- -r—si r* 5* 

1 
31 

] 

cos 3a: 

+ 3- sin 3*+. 

. [sin x , sin 3a: 1 

+4[t+T+.J. 
Since *=0 is a point of discontinuity of f(x), therefore, the sum 

of the series for x—0 
=H/(+0)+/(-0)]=KW+(-»)]=0. 

Thus we obtain a well known result that 

** . 1 1 1 
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For x~±irt the sum of the series 

0)+/( —fr + O)]—*[0+(—2w)] —— 
Putting xms+rt, we obtain the same result, viz., 1. 

170. Fourier Series for Odd and Even Functions. 

The Fourier series with sines only. If f(x) be an odd function, 
i. e.p if f(—x)-—f(x), then f(x) cos nx is an odd function and 
f(x) sin nx is even and hence 

+ 7T 

if/w cos nx dx=zQ, 

— 7T 

+ 7T 4-„ 

= ^ | f[x) sin nx dx~ ^ f J\x) sin nx dx. (2) 
* Jo ^ ' 

— 7T 
so that we see that the Fourier series corresponding to an odd function 
consists of terms with sines only and the co-efficients [b,t) may be 
computed by (2). 

The Fourier series with cosines only. If J\x) is an even function, 
i.e., if /(—*)=/(*) then f(x) cos nx is even and f x) sin nx is odd and 
hence 

J7 

2 r 
I f{x) cos nx dx, bn~Q. 

0 

so that we see that the Fourier series corresponding to an even 
function consists of terms with cosines only. 

171. Half range series. From the preceding we will now deduce 
the following two results 

171T. If f(x) satisfies the conditions of the theorem of §169 in (0, n), 
then the sum of the sine series 

7T 
2 r 

X bn sin nx, where bn=* — | f(x) sin nx dx, 

0 

is equal to |[/(#+0)+/(**“0)] at every point x between 0 and rr and is 
equal to 0 when #=0 and x=n. 

To see the truth of this result, we define an odd function F(#) 
in (— 7r# 7r) which is identical with f(x) in (0, ?t). Thus 

F(x)~f(x) in (0, n) and F(#) = — F(—x)*= -/(—*) in (—tt, 0) 
Clearly F(*) will satisfy the conditions of the theorem of § 169 in 
(—it, n) if f(x) does so in (0, rr). Thus we see that sum of the series 

rr 

X bn sin nx, where bn** f F(ar) 

% 

rr 
2 f 

sin nx dx— — J f(x) sin nx dx, 

" U 
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is equal to 
4 [F (*+0) + F(x —■ 0) ] =} [ f(x+0) +f(x—0)] 

at every point % between 0 and rr. 

At x=0, the sum of the series=4[F(-f-0) + F( —0)] =0, for F(*) is 
odd. Similarly we see that the sum of the series is 0 for #=?r. 

171*2. If f(x) satisfies the conditions of the theorem of § 169, 
in (0, tt) then the sum of the series 

77 
2 f 

i^o+2 an cos nx, where a„= ^ J f(x) cos nx dxf 

0 
is equal to ^[f(x+0)+f(x—0)] at every point x between 0 and tt and is 
equal to f{ +0) for x—() and /(77—0) for x—0. 

To prove this result we have to consider an even function F(*) 
defined in ( — 77, rr) which is identical with f(x) in (0, 7r). 

Note. The sum functions of the Half-range sine and cosine series 
are periodic with periodic 2^ 

Ex, Find (a) the Fourier sine series, and (b) the Fourier cosine 
series which represents f(x) = (rr — x) iw0<#<7r. 

To find sine series. We have 
rr 

2 f 2 
6n = — - I (77—*) sin nx dx=- ' 

tt J n 
0 

Since f(x) is continuous in 0<*<w, we have 

n—x— 2 £ „ sin nx—2 
sin x sin 2x sin 3x sin Ax 

\ T + -+■ + 
According to § 171.1, the sum ot series must be 0 for x=0 

and x=n and this fact can also be directly verified. The represen¬ 
tation holds for x—tt but not for *=0. 

To find cosine series. We have 
TT 

2 f. . . 2[1—(—l)n] ,A 
an= — j (w—x) cos nx dx= -—^ - t nf 0. 

rr * ttH * 
0 

Also, tf0=7T. 
Since f(x) is continuous in 0<*<7r, we have 

1 , , 2[ 1 — (— 1)n] 
cos nx 

1 
2 

TT 

4 (cos x cos 3x cos 5* 
+ 77 \V + 3* + + 

According to the theorem of § 171.2, the sum of the series must be 
/(-{-0)=*r for #=0 and/(77—0)=0 for *=77. This gives the result 

IT* ,,1,11, 

T~1+3*+ 5*+'7»+.’ 
which wai obtained on P. 283 also. 
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Observation. The series in the Ex. on page 283 and the two 
series abtained above have identical sums lor values of x which 
belong to the open interval [0, tt] but for values of x belonging to 
the interval [ — tt, Oj their sums are different. Thus for — 77<#<0, 
the sum of the series in the example on page 28+ is (x—tt) whereas the 
sums of the series above are — [tt—(—*)] = — (77+ x) and [77—( —%)] 
*=(77 + x) respectively. 

Similar differences in the sums exist for values of x outside the 
interval (—7t, n). 

The sum functions of all the three series are periodic with 
period 277. 

172. Other forms of Fourier series. The particular mterval (—tt, tt) 
which wc have so far considered had been introduced only as a matter 
of convenience We shall now see that it is easy to change to any 
other finite interval. 

1721 The interval (0, 277). We write #==y+7r so that y varies 
in (—77, 7t) as x varies in (0, 277). Let 

f(x)^f(y+-n)=F[y). 

Let f(x) satisfy the conditions of the theorem of §169 in (0, 2it) 
so that F(y) satisfies the same conditions in ( — tt, tt). Thus we see 
that the sum of the series 

Ko+2 (a'„ cos ny+b'u sin ny), 

+ 77 + 77 

where a'n—- f F(y) cos ny dy, b'n— 5 f F(y) sin nydy 
77 J TT J 

— 77 —77 

is J[F(y-f 0)+F(y— 0)] at any point y between — n and -n and is 
4[F(tt—O)-tF(--it-FO)] at y — ±n and is periodic with period 2w. 

Changing the variables, we see that 
2 tt 2tt 

1 f (— If" f 
a’„= — 1 F(x—it) cos n(x—rr)dx— --J f(x) cos nx dx 

0 u 

2 it 2 n 

1 r (—l)“f 
b’nt=— 1 F(*—w) sin n (x-n)dx—-—- j /(*) sin nx dx 

0 0 

Also cos ny—(—1)™ cos nx, sin ny=(—1)» sin nx. 

Finally, we have 
i[F(>'+0]+lr|.}'~0)] = i[/(.y-F»T+0) +f(y+n—0)]=jf /(*+0)+/(*—0)] 
and 4[F(7r-0) + F(-W + 0)] = jl/(2rr-0)+/t + 0)] 

Thus we see that if f{x) satisfies the conditions of the theorem of 
§169, in (0. 2 w), then the sum oj the series 

i«o+ 2{&h cos nx + bn sin nx), 

2,ir 2tt 

wher* «»w L J /(#) cos nx dx, J f{x) sin nx dx 
0 Q 
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$ f/(*+0) f{x—0)] every point x between 0 2ir is 
ir/2ir—0)+/{-f 0)] at x*=‘2rr and is periodic with period 2ir. 

172.?, The Interval(— 1, )), where l is any real number. Bv means 
of the substitution y—nx/l and considering a function F(y) such that 

, . f(x)=f(lyln)^lT(y) 
so thatjy varies in (—n, tt) as x varies in (—l, l), we can show as 
befoie that if f{x) satisfies the conditions of the theorem of §169 in 
[—1, l) then the sum of the series 

l<*o+£ 1>« cos(n7Tx/l) f bn sin (nnx/l)]t 

+1 +f 

where j f{x) cos = J f{xf^-~* dx 

-/ -/ 

is i[/(*+0) 4- /(^r—0)] a/ point x between —l and l and is 
*[/(/—0) */(—/+0>] 

for #=—Z awi *=/ awrf is periodic with period 21. 
Note, As in § 171, can have half range sine and cosine series at will 

for a lunct on f(x) given in (0, /). 

172 3 Any interval (a, b) If f(x) satisfies the conditions of the 
theorem of § 169 in [a% b) then the S'im of the series 

4#o + S { an cos[2n7Txfb—a)] + bn sin [2nrrxl(b— a)] } 
b b 

S=i \/w cos rSr) d‘■ K=b--a J/w !* 
a 

« *[/(* 4- 0) +/(*—0)] fz/rry point x between a and b and is 
i[f(ciJt~0)+f{b—0)} at x=a and at x=b and is periodic with period 
(b-a). 

This result follows on writting 

* 2t7 b+a 
y—. — x—,— 

/ —a 6—a 
7r 

so that varies in ( — ?r, 77) as x varies in (a, 6). 

Ex. Show that when 0<#<77, 

, , sin 2* sin Ax sin 6x , 
ir-**Jw + —-1-2~~+ "3" +. 

Each term of the series is periodic with period 77, Taking fl=*0 

and 6=77 in § 172.3, we see that a0 = ?7 

77 77 

2 f 2 f 1 
ane=— 1 [rr—x) cos 2fi* ^=0,(ti/l);6n = — 1 {n—x) sin 2nx dx*»— 

t J 77 J w* 

0 0 
Hence the result. 
Note. It will now be seen that we have obtained frur different series 

which represent (*i»—x) in 0<*<ir and it will natmally prove of *treat interest 
to examine the differences in the Mini* of the>e seriesfo« vulnrs ol x other than 
those which h*long to [0. ti] To do so, student would do well to draw the 
graphs of the four sum functions. 

•This transformation is obtained if we determine the two constants/ and 
w ptnch that the relation^**lx4-m gives when x—« aad^ir when x—k, 
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One important difference which must be emphasised is that the sum 
function of the series obtained above in § 172*3, is periodic with period * 
whereas the former three sum functions were periodic with period 2^. 

Examples 

1. If f(x)w*~\TT when -ir<x<0,/W=l»r when 0<x<v,/(-ir)« 
W) ~f(TT)*xQ and/(x+2rr)=/(x) for all x, show that 

f(x) *» sin x-fl sin sin 5*-f. 
for all values of x. Deduce that 

+ +. 
2. lfsf(x)~cx when — *<C x<C 'n>f{ — 'ir)~f{Tr) — 0J and /(x+2tt) —/(x) for 

all x, show that 
f\x)~2rfsin x-~J sin 2x+J sin 3x — i sin 4x-f.] 

for all values of x. Draw the graph of/(x). 

3. Show that the Fourier series which converges to/(x) in —tr^x^ir, 
where 

/(x)=x-fxa when — tt<^x<^7T and/(x) = 7T* when *=•= iir, is 

Deduce that 

IT1 , 11 1 _L 
1 * 02 4“ «j| 4* ai » • 6 * 1 22'r b|T 4* 

4. Obtain Fourier series which will be equal to,—it— x when ~ir^x<^ —Jrr; 
equal to x when — and equal to tt-x when iir^x^TT. Explain 
graphically howto obtain the sum of the series for any value of x. 

5. Obtain Fourier series whose sum is equal to f(x) where 
/(x) = 0 when — £ir, /( —i[7r)~ — J-yr, 
/u =rr when - £ r<x< 4^/(4-tt) =» Jir 
/(x)=0 when 

6. /(x) — cos x for 0<^ and/(x) = — cos x for —ir<^x<[0 ; show that 
the Fourier series which converges to f(x) is 

4/2 4 6 \ 

v \13 sin 2* + 3'S sin 4*+ ST sln ®*+.) 
Draw the graph of the sum function of the series for — 

7. Find the Fourier scries which represents | sin x | in 

8. Find a series of sines of multiples of *> which will represent f(x) in 
the interval 0<[x<£tj\ where 

f(x)-lTr, when oOf<i*ir ; 
*{x) ~0, when iTT^x^fir ; 

/(x) = —£rr, when |Tr<^x<^7r. 

Find the sums of the series at the points 27T/3 and tt, 

9. (a) Show that for —7r<^x<^7r, 

V - H r- 1 00 / t\n I 

>—- (cos hx—n sin nx) I f 
2 n*+ 1 

) • 

What is the sum of the series for x=* ±tt 

(b) Show that for 0<^x<^tt 

00 

If Tw 
_ .2_“ ( i_(_))n^yo 

w . \ /n’ 

7T . 
e — 1 cos nx 

+ 1 

What are th e *ums of these aeries for — tt^x^O. 
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10 Show that when 

COB kx« 
sin ktr / j 2 k cos* 2k cos 2 r \ 

V k + k*~%'~~ 

k being non-integral. Deduce that 

77 cot kir=+2ix/kr~-r 

and 

11. Obtain a sine series which will bn eqnHl to x* for Draw a 
graph of the sum function ol the sarics for — 2jj^x^27t, 

12 Show that in tO, ir) 

fix) 1G -22 
1 

cos (An—2)x 
~ (4« — 2J* ’ 

\vhere/(x)«}^x when O^x^iir and/x), when \rr<^^ir0 

13. Prove tliat when 0<^^<^27r, 

*(*-«- s 
n» 1 " 

Wliat is the sum of the series for 0«O and 0->27r. 

14. Provo that when — 1<C*«0> 
« 00 

x+x2 "“I-r 

2 oo p 

77 a (->)*[ 
2 COS ATT* 

ns7r 
sin mrx 

n 

15. Find (») tlie series of sines, («) the series of cosines, which will 
represent/(x) in (0, /), where 

/(x)=?Aw, when 0^*^$/,/(*)«*£(/—x) when 

16. If 0(x) be a periodic function of period 4 and such that 0(*)«*O 
when0<C*<O and (r)==x — 1 when l^v<2, and 0 2)=»0, express 0(*) as a 
series of sines of multiples of x. Draw the graph of 0(x), 

17. Show that for 

x~i 
sin 2nirx \ 

n J 

l 
73* 

00 

s 
fl-1 

cob 2ntfx \ 

I ’ 
**-s**+i*=4rl a,-^^-}. 

t «r= 1 n J (use §l72'3, taking a*»0, 

18. I f/(x) he a periodic function of period i^r and such that f(x)**$in x 
for O^A^iir and/(x)«*cos x for express/(x) as a Fourier series. 

19. If/M-1 when 0<*<^I, /(x) = 2 when l<x<3 and /(*)«*? when 
x=*0, 1 and 3 andf(x+3)**f{x) tor all x ; show that 

/M-f—i 2 cos 7i j n o 

for all x. 

20. x when and /(*)=*—Ja when kOCa, 
that for all x in G^x^a, 

show 

A*)' 
2a 

*7T* 

00 

-J (2«—1)* 
cos 

(4n-2)7r* 

21. Show that if a function/(x) is bounded in (0, Jir) and is such that 
it i* possible to divide (0, iir) into a finite number of open sub-intervals in 
each of which/(a) is monotonic, then/(x) can be expressed in the form 

bt sin x*f sin 3x-f£5 sin 5*+. 
for 0<Xfjr and obtain the eo-e/Reients bn and the sum of the series outside 
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It/(*)""sin x whan /{*)=*cos x when show that 

. Sin x 2 /sin 3* sin 5* , sin lit sin 13* . \ 

/(X)KS — + v{ 1 2 2~3 ^ 5.6 6 7 ^.) 

22, Expand in a Fourier series of the form an sin nir* a function f(x) 
givan by 

/(*)s»sinA 7tx, for /(0) «Q, lor }<*^1 * 

Deduce that 
OC 

2 
fJe= 1 

1 
n'+(n f 1)*“ 

IT 

2 
tanh 

23. Show that the graph of the equation 

A* l6fl* 

6 * ir* 
( 1 nl (2n 

-cos -— (2n~l 
— I) rr v 3 a* 
Ya f~fl* 

oo 
2 

(- l)n~x mrit . —. cos —. 
(2n i • a 

is a series of circles radius a c/mneced by straight lines of length ?at the 
origin bring the c* ntrA of *'»'e nf tb»* i*ii(’les. 

[Exp*n- f\,\) m — 'a 2a wh*‘»e f[x)~Q when —2 ~a} f(x)^a9 
when —i/t*)**^ - hen ^ 

Miscellaneous Examples, 

1. Show that an algebraical equation 
x,,+a1x11’ *4 a X" ~ 2+... + an~0, 

with integral co efficients, cannot have a rational but non-integral 
root. 

Deduce that J3 and ^2 are not rational. 

2. If mjn is a good approximation to V2, prove that 
(w+2w)/(w+«) 

is a better one, and that the errors in the two cases are in opposite 
directions. Apply this result to show that the limit of the sequence 

3. 

1 3 7 1 7 4 1 £9 239 ft 7 7 i/O 
T> 2> S> To9 i6«» 4Ug>***15> " 

Prove that, as w-*oo, 

[(2«) !/(n !)•]»-* J. (Use Ex. 10, P.58) 

4. Prove that, as n >oo, 
(n \)(aln)n-+Q or +oo, 

according as a<ie or a>e. (Use Ex. 2, Ex. 3, P.54). 

6. Show that, as n-* oo, 

(i) (»6/21,)-*0, (it) 
6. Denoting 

^[f + i + i + ..*+l~logw], (Ex. 10, P. 139). 
by y, known as Euler's constant, show that 

It 
1 rfl , M—l 
nll+ 2 

—log (n !)J=y. (Use Ex. 5, P.55) 

7. Prove that if a and b are positive, then 

K {un-\-bn) }”-* V(ab), as n-*oo, 

8. Prove that if x>0, then 
1 

n log { J(l+*s) }-> — $ log x, when n-*oo. 
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9. Prove that, if f'(c) exists and /0, then, as h~*0, 

#+*)_+*-*,-2/M ul^zM 
h J[c~h)-j[c) 

exist and find their values. State the theorems on limits you require 
in the proof. 

Examine the existence of the limits if /(.r) = | x | / 

10. State with reasons for your conclusion which!of the following 
sets of circumstances are sufficient and which of them are not sufficient 
to determine the value of /(0) for a function f(x) giving the value of 
7\0) where possible : — 

($) f(x)is continuous at a—0 and takes in any neighbourhood of 
x—0 both positive and negative values. 

(it) For any arbitrary positive €, there is a S such that 

| f(x) | <€ for 0< \x\ <8. - 

(Hi) ff(h)+f{—h)—2f(Q)]jh 4 and f{h) > a as h *0. 

11. If /(0)=0 and /"(x) exists in (0, oo], show that "f*1, • 
f'(x)-f(x)ix=lxf'U),0<i<x * " ' - 

and deduce that it/(()) =0 and /'(a) is positive for positive values 
of x, then /(x)/x is a strictly incicasing function of a. 

12. Let f(x) be continuous in (—1, 1) and assume rational values 
only and let/(0)=0. Prove that /(*) =0 everywhere. 

13. Show that the function defined as follows : — 

<fi(x)=x, when x rational, arid </(*) = 1 — x, when x is irrational, 
assumes every value between 0 and 1 once and only once as x increases 
from 0 to 1, but is discontinuous for every value of x except 

14. A function f(x) is defined for all values of x in the following 
manner : 

/(*)= 0, when x is irrational ; 
f(x) = l!q, when x is a rational number p/q, 

when plq is a fraction in its lowest terms. Prove that f(x) is conti¬ 
nuous for all irrational values of x and discontinuous for all rational 
values of x. 

15. If 0<x<£iir, show that tan x<4x/7t. 

16. Prove that a*>xa if x>a><?. 

[Let/(*)*=* log a—a log xt\ show that/(a)=0 and/'(*)>0]. 

17. If 

f(x>y)^(xy^xY)l(x24xy24yi), when (xty)^(0, 0) 
and /p, 0)=0, 
show that at the origin but that is continuous and fy 
differentiable at the origin. Discuss the applicab.lity of the condi¬ 
tions of §. 127. 

18 Discuss the existence and the equality at the origin of fty 
and /1 for 

fix, y)s=*(axii*2bxy+cytyj(x2+yi)% when (x,y)f(0, 0) 
and /(0,0)~0. 
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19. If at all points of the plane f(xt y) is continuous with respect 
to x and has a partial derivative fy(x, y) and if fy[xty) is bounded in 
the whole plane, prove that /(%, y) is continuous with respect to two 
variables at all points of the plane. 

20. The number 9 is defined by the Taylor’s formula 

b+k)=f(a, b)-\-hfx(a-\-9ht b~\-0k)-\-kfy(a-\~9h, b-\~6k). 

Prove that if fx and fy are differentiable at (a, b) and if 
(h, 0) so that 

(**+**)/< *:/Jfi. b)+2hkfxy(a, b) +k’fyt (a, b) > 

is bounded, then 6 

21. Discuss at (0, 0) the existence of the first order partial deri¬ 
vatives and the continuity and differentiability of f(x, y) itself when 
f{x,y) has the following forms : — 

(i) x?y2 Jog (x*+y2), (ii) xy log {x2+yl), 
/(0, 0) being equal to zero in either case. 

22. Show that, if fjx, y), fy{x, y) are differentiable at a point, 
then f(x, y) is also differentiable at the point. 

23. Prove that the functions 

ax2+byt+cz2} Aar+By+C:;, 

ah\Bic+Ob) + bY(C2a+A2c)+ch\Atb+B2a) 
— 2 a be (BCyz+C A zx+ABxy) 

are not independent and find the relation between them. 

24. Examine for extreme values the function 

2xyz-~4zx~~2yz+x2+y2 -\-z2—2x—4y+4*. 

25. Show that the function 

3 log (x*+ya4 2*) — 2*3—2y5—2z* 

has only one extreme value and find the same. 

26. Discuss for maximum and minimum values the function 

3x4jy3 ~6x2y,+3#44-2y8-~6#a~3y8+1. 

27* For 

u~(x+y-\~z)d~-3(x-\y+z)-~24xyz+a*, 

investigate the existence or otherwise of maximum and minimum 
values at each of the following points 

(1, 1, 1), (±1, 0, 0), (0, ±1, 0), (0, 0,±1), (-1, -1, -1.) 
28. Find the values of x, y, z for which the function e~u(x— y-\-2z) 

is a maximum where u~x*^-y:+2z2—2yz+2zx-xy. 

29. Prove that the maximum value of 

f(x, y, z)~{axJrby-\-cz)e~~*x' X%~~P y*~y z 

is V[i(«aa*2+b'fi ' 2+c*y~*)(e-*)]. 

30. Prove. that if *4y~\~z=3c, then J(x) f(y) f(z) will be a maxi¬ 
mum or minimum for x—y—z—c according as 

[/(«)]/”{*)< or > im* 
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81. Prove that if all the symbols denote positive quantities, the 
stationary value of lx-\-my~\-nz subject to the condition 

xP+y*'+zP=cP 
is given by 

where q=pl{p — 1). Show further that this value is a maximum or 
a minimum according as p > or < 1. 

32. Find the volume of the largest rectangular parallelopiped 
which has three faces in the co-ordinate planes and one vertex in the 
plane x/a+yjb+zlc—1. 

33. Find the dimensions of the rectangular box, without a top, of 
maximum capacity whose surface is a2. 

34. Given n points Pi whose co-ordinates are 
z>), (*=L 2; 

show that the co-ordinates of the point P{x, y, z) such that the sum 
of the squares of the distances from P to the points Pi is a minimum 
are given by 

[iXitn, %yiln, Zzjnl 

35. Find the maximum value of x2yh2 subject to the condition 
Interpret the result. 

36. If u=x'+y2+z* where x^+yv+zv^c}\ show that a station¬ 
ary value of the function u is equal to 3c'J and prove that this is a 
minimum or a maximum according as _£< or >2. 

37. Find the greatest and least distances from the origin of a 
point of the surface 

(xla)P + (ylby+(z/cy~l ; 
where a, b, c are fixed positive numbers and p is a fixed even integer 
greater than 2. 

38. By using the transformation 
x~uv, y—u( 1—v), 

prove that 

I J 
where the double integral extends over all positive values of x and y 
subject to x-\-y -<a. 

39. Show that the volume of the wedge intercepted between 
the cylinder *2-|-y!=2ax and the planes z=x tan a, z—x tan p is 
7r(tan p—tan a)as. 

40. Find the volume contained between the ellipsoid 
xtla%+yi/bi+zi/c1=l 

and the cylinder xija1+yilbi=xla. 

41. Show that the volume obtained by one revolution of the 
loop of the Folium x*+y3=3axy about OX is 4nfa3l3v'3. 

(Change the variables to u, v where w—x’/y, ussy*,*) 
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42. If #=r cos 9, y^r sin 8f find the volume included by the 
surfaces whose equations are r^a, z=0, 0=0, z=wr cos 6. 

43. ^ Using the transformation x=c cosh u cos v, y=c sink u sin v, 
where c ==a*~~b'\ or otherwise, show that the mean value of the pro¬ 
duct of the focal distances of a point inside the ellipse £2/a2+y2/6a==l is 

(The mean value=[ j ; SP.S'Pdxdy]/[ J f dxdy]. 

44. Evaluate 

J f (2x2+y2)/xy dxdy 

taken over the area in the positive quadrant of the xy plane bounded 
b y the curves 

-y2=h2, -*2+y7=A,a, y2=4ax, y2—4bx. 

45. The axes of two equal cylinders intersect at right angles. 
If a be their radius, show that the volume common to the cylinders 
is y a9. 

[If xt+yts=a9 and y,+2,=a* be the two cylinders, then the 
required volume 

a */(a2-xs) 

=8 jdxjdy | dz 

0 0 0 

46. By employing the first mean value theorem of integral 
calculus, show that, if A2<1, 

h 
>r f dx 7r 1 

6 *** J 
0 

47. Prove that 

1 00 

e-**dx<land0< | 

0 1 
and deduce that 

OO 

i( ‘-fW ‘-’“X'+z- 
0 

48. f(x) is bounded and integrable in (a, b) ; show that 

b 

J r/(*)]V*=0, 

a 

>1, and only if, /(c)*0 at every point c of continuity of f(x). 
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40. Prove that the graph of 

,-M—l J 2 f sin8 t cos x t 
it J t 3 

consists of parts of the lines y— — },y—0 and together with 
four isolated points. 

(Use the result obtained in $ 150, P. 246). 

50. lif(x, y)==xy,e~iy-\-xzyl(\+y) and a, b are positive, show 
that 

b b 

It f /(*, y)dx= [ ( It f{x,y))dx 
V—* ©o J J V 
y a a J 

Explain why the values are not equal when #=0. 

51* Show that, when n -oo, 
b b 

| f(x) 1 sin nx | dx~>^ ^f(x)dx 

a a 

52 If a, b are positive and p is a positive integer, show that, as 
n-+oot 

pn t 

w .*,*+> 

p" i i 
(it) V .. . - V 

rl\ na+rb b 

log (i+i) 

{ '»«( I+x)' 
53. Evaluate the limit of the sequence { un }, where 

V3+.+ j«)’ Wh“ 

54. Show that, as «- vt», 
2.2.4.4.6.6. .^( 2«) (2«)  , 
1.33:5.5.7...(2«— I)(2«+ f) * 2~' 

(Walli’s formula). 
Deduce that 

< [(« !)* 2'"]/(2n) ! Vn > — v 7r as oo, 

55. f(x) is a non-negative function admitting an elementary 
infinite integral and another function /n(x) is defined thus : — 

f (x\_ (/(*)> if/W<n 
Jn[ ]-\ n, if/(*)>*, 

show that 
$ 

(i) if the interval of integration is bounded, then as »- 
b b 

J/»(*) dx~> | f(x)dx. 
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(«) if the interval of integration is infinite, then as «-*oo 

+« -\-oo 

j fn(x)dx— j f(x) dx. 

—n —oo 

56. If f(x), f(x) are continuous in (a, b) and 

b 

Sn— 2 hf(a+rh), 1= f f(x) dx, 
r= 1 J ' 

a 
where h~(b~a)/n, then as n~>oo, 

«(SW—a) r/(6)—/(«)!- 
57. If 1, h have the same meaning as in the Kx. above, but 

now f"(x) is also continuous in (a, b) and 

Sn= X */[«+i(2r—1)AJ 
r=l 

show that, as w ^oo, 

58. If/(/, x) = 7T t sin 77 when and /'(/, .r)—0 

when 1/<<*^1> show that 

1 1 

f { ^ f(t, a)} ix=0y2= It { f /(/, x)dx\ 
Q W -voo CO ^ J J 

59. If /(/, show that 

0 0 

60. Prove that if 

(t) a is positive ; 

(*'*') /(*) is continuous except perhaps at the origin ; 

a a 

(in) | f(x)dx= It | f(x)dx, where the limit exists ; 

0 

(tv) g(x)r= J M-dt, 

then 

a a 

| £(*)<&«= 

0 0 
[HifitChange the order of integration.) 
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61. If 0<«<& and f(x) is continuous in (0, b), prove that 

u f M-/M dt 

exists and is equal to 

^(0+0)' 

m ioS * - f &§-**■ 

62. vShow that 

+ 1 
f \/ (1 — x2)dx j7r/2(l—a/3), if a*<l,8*<l, 

J^l+u2+2a.r)(l+iS<+2^) jff/2<x(a—0), if 

63. A is a fixed point on the axis OX and an ellipse is drawn with 
OA as its minor axis. Calculate the value of j [x'Ady —y2dx) taken 
along the ellipic arc from 0 to A, y negative and show that if it has 
its max. value, the eccentricity is v/(l -64/977'). 

64. If, for x >0, is defined as 
%-*+2 

11 **+r M—* oo 

and m=\ww, 
0 

prove that f(x) is continuous but not differentiable for x=l. 

65. By repeatedly employing the method of integration by parts 
,r 

to the integral 

show that 

e~tdt, 

e*=14-x+ -*-f- -**- +.+ ** +tr f ~ e-1 dt, 
^ +2! 3! n ! J w! 

( e~l dt is positive and < - - , which ~>0 as n *oo, for every 

0 
and deduce the Maclaurin’s infinite series for ex. 

x 
. , 

0 
value of*]. 

66. Obtain, by integration, from the identity, 

14.+ (-l)"-1 fn-l +(-l)» 

the Maclaurin’s infinite series for log (1 +.r) in [—1,1). 
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67. Show that, (a, b,>0) 

ta-1 _ 1 
+ + /a+»-‘ b-l+(-l)» T+F, 

and justify the equation 
1 

f Jl~l di=~ --1 + 1_L + 
' l + < a a+fc a^-26 a+Si'*' 
0 

Deduce that -I— r+j “/q+ - = 4 ( J3+1°6 2)' 1 4 

68. Show that 

yS yfi y7 

tan*-1 *=*— 3 + 5 *^-<7 +■•• + 
v7i"l 

"2 -1 ; J 1+** 

and deduce the Maclaurins’ infinite power series for tan-1 x in [—1,1) 
69. Show that, n->oof 

1 

J y^[log * <fx-0. 
0 

We write, (0<a<l) 
1 a 

j T~x log * ix- J *~x log * dx=z j T-x log * i*=Ii+1*’ 
a 

Now, | Ij | | i°T^| which + 0 as n->00 : a being<l. 

oi i 
Again, if we assign to the function log */(l—x), the value 1 for 

x—\t it becomes continuous in (a, 1). Thus log #/(l— x) is bounded 
in (a, 1). Therefore 

1 

| Ia | | xn+l dx, which -*0, as n—-o© 

a 
Hence the result. 

1 £«+l 
70. From the identity j-_^=l+*+**+-..+xn+ j , 

show by integration in the interval (0, 1) that 
1 

flog 
J l-*~ 
0 

- dx=- 
00 1 

S i? 
n«l 

71. If p, q are positive, prove that 

[\ + {p+T)x)-e-*'l\ + (q+T)x] 
dx 

%% -q-P + r\o 
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72. Show that , — dx= . , (0< P < 1) 
J +* sin pv v ^ ^ 

It is easy to see that the given improper integral converges, when 
(><''' 1. We have 

0 0 1 
Bv mean** of the substitution y=ljxt we see that 

oo 1 1 

f *0Jix~ (.y~ dV= [ 
J 14 x J 1+V ' J 

xP-t+x-P 

= J (xP-i+x-PHl-xirx1-.+ (_i)V+f- !).♦*> 

0 

= (_1) [k^p+k+l—p) +R"' 

1 1 

where | Rn ) = J ( *?'~M J ^ 

- 4- } , t ~*-0 as n-»oo. 
n + ^+1 w4-2—p 1 

1 + * * 
s J- • (See Ex-10> p* 2s9) ~0 \&+£ fe + 1—sin p rr 

73. Prove that P(*+l)=*r(#). 
74. S/iozi; F(«)r(l— a) = 72/sin aw. 

As proved in Ex. 4, P. 271, we have 

/?(«, i-a)=rMjl1p)=r(fl)r(i-a). 

l 
Also p(a, 1 —a) = J 

0 
By means of the substitution x=y/(l+y) 
we may now show that 

1 oo 

(V 'll-X) adx=* f y-r-dy= r-- - J v ' jl+y sBUir 
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Hence the result 
Taking a—we deduce that 

* J <-vVy==[lW=". 
75. Show that 

•(iHXD. 
76. Prove that 

n , 

= 1 l0g r in) 1) log (2W)-| log ». 

77. S/tow that f log log (27t). 
0 

The point * 0 * is a point of infinite discontinuity of the integral. 
We have Y(x.= V(x+l)lx, 
so that log rfar)=log r(^+lj—log x. 
We know that the integral of log x converges at 0 and the integral of 
log F (*-f1) is proper, and hence the integral of log F(#) is convergent. 
By means of the substitution x—\—y, we see that 

1 1 1 
J log V{x)dx— J log r(l ~y]dv~ J log r(l— 
0 0 " 0 

1 1 

=-i I log [l'(.r) r(l-*)]<**=$ j log log (2») 

78. Prove that {Vv)T{2x)=2,iX^ Y{x) V[x+\). 
1 

We have 
lW(J) 

i' *+§) 

a, n_ f t’-'dt 
-P(*. i)- J jn—ty 

T(x) T{x) >P(x, x)= J t*-'(l-t)x-'dt. 

In the latter integral, put v=2 t— 1 so that we have 
+ 1 1 

P(x, *) —2ri:i ]" (l—vi)9~'dv= | (1 —w)r~'w ^dw, (v*=w) 

=2i, P(l *)“2}r-A*-})- 

Since T(J)= V w, we can now obtain the given result, 



ANSWERS 
Pages 187-139. 

2. F(y) is 2 for_y rational and is 0 for y irrational. 
3. 4. f(x) is integrable ; 1 being the only limiting point 

cf the aggregate of the points of discontinuity ; the integral is 2. 
9. Use §78-2, p. 102. 

7/ 4 I 

10. An+1—A„-=[/(wf))— J f(x) dx,\ which is <0 by § 88 : 
n 

Also An= { [/(l) - J f(x)dx]+.[/(«-!)- }f(x)dx]}+f{n)>0. 
1 H-i 

{ An } is monotonicdlly decreasing and bounded below. 
Page 158. 

10 (i) x~n, n being any integer (ii) Every point x. 

15. Does not exist. 
Page 169 

(i) log 2. (ii) tt. (vi) —1. (viii) 2. The integrals (Hi), {iv), 
(v) and (vii) do not exist. 
Page 176. 

Ex. 4. C stands for Convergent and N.C. for Not convergent. 
(i) C for (ii) C for 2. (Hi) C for ay 0. 

(iv) N. C. (v) C. (vi) C. 
(vii) C for w>0 and n>0' (viii) C for a>0. (ix) C. 

(x) C for py-L (xi) N. C. (xii) N. C. 
Page 182. 

Ex. 3. (i) C for py(\+m-\-n) ; m, it, being>0. Consider also 
the case when either m or n or both are negative 

(ii) C for (n—m)y}.. (in) C for ()<>//, ;/< 1. 
(iv) C for w>0. (v) C for wi< — 1. 
(w) C for 0<(a+l)<&. 

Page 186. Ex. (i) C (ii) C for a>0. 
Page 190. Ex. 4. (i) C. (ii) C. (Hi) C. (iv) N.C. 

(7;) C for (1 — w)<w<(l-fwz). (w) Cfor0<a<4. 
(vii) C for —1<77<2. 
(viii) C for w>0, — 1 <^m<n and for 0>m>(n—1). 

Page 197. 
17. The integral is 2/a, —2/a or 2 according as a>l, a<—1 or, 

18. tt/2 if 2ni7r<^a<^ (2m~\-1)77 ; 
— w/2 if (2w+l)ir<a<(2w + 2)7r and 0 if a—2mir or (2w+1)7t ; 
m being any integer. 

21. —7r/4n. 
Page 202. 

Ex. (i) Does not exist, (ii) does not exist. (Hi) 0. (iv) 0. 
Page 208. Ex. (i) Discontinuous. (ii) continuous. 
Page 205. 

Ex. 8. (i) Not differentiable. (ii) not differentiable. 
Page 208. Ex. 3. (t) equal. (it) unequal. 
Page 218. 1 

(i) min. at (§,—$). (ii) min. at (1, 2) and (—1, 2) ; max. at (0, 0) 
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(in) min. at (0,0) if a> J. 
(iv) min. at [i(b—2a), j(a — 26)]. (v) max. at (2, 1). 
(vi) max. or min. at (la, \a) according as <*>0 or a<0. 

(vii) min. at (0, 0, 0). (viii) min. at (0, 0, —1). 
5. Extremes at (0, 0), ( — 1, 0), (—J, 0). 
6. The positions of the cm responding points P, Q are 

(3a, ± V12a), (3a, ± Y12a) ; (0, 0), (± v'12a+3a, 0) ; 
(a, 2a), (3a-f V6a, ± \/6a) ; (a, —2a), (3a±j6a, ± \^6a). 

Page 221. 
3. <t>{x) is not unique. 
5. (i) <f>(x) unique near (1, — I) but not near ( i, 0) 
(it) #(x) unique near (1, 1). (Hi) </> x) not unique but tin 

equation possesses a unique continuous solution x^ip(y) near (i, 1 
(it;) Does not exist. 

Page 226. 
3- 4 (fui +fv2), axy(x2 -y*). 

Page 229. 
Ex. 1 uv+vw+wu=ac—b*. Ex. 2 u‘~v*=8w. 

Page 234. 
4 (i) 3a1 for (a, a, a). (ii) 3as for (a, a, a), (—a, —a, —a). 

(Hi). 3a8 for (a, a, a , (—a, —a, a), (—a, a, — at, (a, —a, —a). 
5. —a* (min.) at (a, -a) and (—a, a) ; ja2 (max.) at 

(a/ V3, ja V3) and (-a/ V3, -a/J3). 
8. (1, 1) and (-1,-1). 9. (-2/^14, - WI4,-3/v'M). 

10. The extreme value is 

27 (log abck)3l(log a log b log c) 

and is a max. or min. according as log (abck)/(log a log b log c) is 
positive or negative. 

12. (VXai-2a)j V3. 

17. The symmetrical stationary value is £(l-fm)and there are 
three unsymmetrical values, each being equal to (w*~ w+l)/(wt+l)s 

18. (a/10, a/10). 
Page 242. 8. 
Page 252. 1. §a\ \“ba\ 3. 2 log 2. 5. 6. (»)38a4/v/3 
Page 258. 

1. (*) la2b2(a*+b3). (ii) (eah-\)/a-b. 
(Hi) 0. (iv) 2[a sinh-1(a/c)-)-c— v'(a!-fcJ)]. (v) 0. 

Page 262. 
0 J(2*+5) I |<2*+5) 2 i(2*+5) 

4. J dx l f dy + l dx J/ dy+ J dx J / dy 
-l -* 0 * 1 (2* — 1) 

a \/(4ay) 3a 3a -y 
6. nl96. 8. J dy J <f>dx-{- l dy J </> dx 

0 0 a 0 
10. 12—16 log 2^ 12. log [2e/(l + e)]. 14. 47/24. 
15. 8 sin-5 (V10/4)+* log [(v/3+ V5)/ V2]-3 V15/4. 

Page 272. 
6. §*• V(a*+br. 7. }a*(3n~4). 11. Jflf, J) /}(£, i) 

12. In the r6 plane the field of integration is bounded by the 
lines r=>2g, r*s4« ; 0=$w, r=2« see* 0. 
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1 c 
18. S J V[u(l— v),uv]u dudv 

0 o 
14. S(Va1— Vai)s/—a3. 
15. If 7\, p- denote the values of the parameter for the confocal 

ellipse and hyperbola respectively through (x, y), then 
y*+c2, A /a=c¥, 

so that *= J A y/c, 

the required area 
y— (-“A ——/*)/' c. 

■s/am(a- 

— A _ 

-m) 
dhdy. 

= 5c*(V lO-ZJsin-1! 

where for the double integral ; |ca< A<|cs. 

16. The field of integration in the xy plane is the positive 
quadrant of the ellipse x2/9-\-yiIS—l. As (x,y) moves along x-axis 
from (0, 0) to (2,0) the point (A, P-) moves in the A H- plane along the 
line A = 2 from (2, o) to' (2, 2) ; as (x, y) moves along x-axis from 
(2, 0) to (3, 0), (A, |x) moves along |X==2 from (2,2) to (3, 2); as 
(x, y) moves along the arc of the ellipse from (3, 0) to (0, *J5), 
(X, H-) moves along A =3 from (3, 2) to (3, 0) ; finally as (x,y) moves 
along x=0 from (0, ^5) to (0,0), (A, P-) moves along |*=0 from 
(3,0) to (2, 0). Thus the region in A |* plane is the rectangle 
(2, 3 ; 0, 2). 

Since, as may easily be seen, _ 

■ .x=i A>, y = W (V-~4j(4 - pA), 
d(x,y)l3(A, Pd can be calculated. 

17. „V Do this question by the substitution x—r cos 0, 
y=r sin 8 also. 

18. (n-p)(l~m)[(l+tn)(a+b)-(n+p)(a-b)]/32a‘,bt. 

22. Sw[j8(|, i)-m, J)]. 24. log (a’/fl) log (676) log (c’/c). 
27. T(/) r(w) r(«)/P(/+w+M+l). 29. 384jt/5. 
30. Vi9/ «7 *(**+*). 

Page 275. 1. 9(3»-5)/4. 3. 5- -|wc3. 

12. 
Page 288. 

4 — y s*n i K,r sin nx 
ir ** ri* 

5 * (v__ ^cosj^ir )sin 
it ' w 2 n ' 

- 2 _ v 4 cos 2nx 
' » 2 |4«*—-l)jr ‘ 

ft sin 2x .sin 4x , sin 8x sin lOx , sinJ4x 
». —j—+—2“ +-y-i—-5 --r- ? r. 

9. (a) cosh 7t. (6) — for —*<*<0 and 0 for *=0, +w , 
'.~r for —ti^x^O. 

11. 2 
— 2( —1)« 7T 4 

vn9 

sin nx. 18. 0 
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15. (i) 

(*'*') 

16. 2 

4 /A 1 
.i n‘ 
kl 4kl 
r+ -s 

sin 
nir nnx 

sin — i 

1 

2(- 

„ * cos 
ttc n*\ 
!)*-*_ 4 

nrr 

2 ' 
cos 

■ t) 
cos 

ftnX 

l 
nit 

nn 
4-2^2 4^/2 

77 77 

— —, -« sm ^ sm 
2 

r(—l)n_ i/21 

l 16V—1 

J sii 
njtx 

2 • 

cos 4n#. 18 

Pages 290—300. 
9. 0, —1. For f(x)= | x | and c—0 the first limit does not 

exist but the second exists and is equal to 1. For 0, both the 
limits exist. 

40. (i) /(0)=0. (if) /(0) is not determinable. (in) /(0) = a. 
11. By Taylor’s theorem, /(0)— /(*) = — xf'(x) + l/2\ %a/"(£) so 

that f'(x)—f(x)!xy*() and , d[f x)Ix] dx is positive. 
12. 
18. 

Use Cor. to §50T on p. 73. 17. fy;r{0, Q)~l^0~fxy(0, 0). 

21. f(x, y) is differentiable. 
23. w+abc v't—ibc Aa-f ca ' B*-f ah C2)u. 
24. min. at (1, 2, 0). 25. 1or(3/cs). 
26. max. at (0, 0) and min at | [1, 2) and (-1, 2). 
27. min. at (1, 1, 1) ; max. at (• — 1. -1. -1). 
28. (0,0, £). 32. J.abc. 
33. (a/ \/3, a/V3, a/2 V3). 34. ii 2 xit h 2 Ji, 35. 

37. The extreme distance, d, is given by 
40. $abc(3ir—4). 42. tma*. 

44. £(k*-h2) log (6/a). 

53. If Sn= 
( 1 

W 

1 
V1+V2+- .+ Vnl’ 

\ then since 

Vs/r< S(lls/x)ix<l/tf(r-l), 
r — 1 

we.have, on putting r=2,..., n, 
Sn — 1<2( l)<Sa—1/ Vn 
1 2 _ 1 

t.e., 

54, 
2+ “ — 7" < t~<2- w v«Nvft A/ft 

so that Sn/*Jn-+2. 

The formula follows from the following 3 results 
iir 

W 

(»») 

(n») 

w_^2.4.4.66... (2w) (2«) 
2 “1.3;3.5“.5.7.r.(2«-l)(2n+I) 

0<sin3n+1 x^sin%n tf^sin3*"1 x. 
I* 
J sin?n ~1 .v dx 
0 _ _ 2 ft +1 

i*« 2n “ • 
f sin*w+1 x dx 
0 

J* sin2n x dx 
o___ 
i7r 

j* sin3”*1 x dx 
0 








