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PREFACE

The exclusion of zoology from the roster of the exact sciences

has usually been a subject of self-congratulation for zoologists

and of reproach for their more mathematically inclined associates.

The abstract mathematician is inclined to believe that the reduc-

tion to numbers of all descriptions of the phenomena of nature

is not only theoretically possible but also practically desirable.

Some zoologists would grant the theoretical possibility; but few

conceive of it as at present practicable, and perhaps none admit

its general desiralnlity. The zoologist is not, and surely should

not be, interested in reducing his observations or theories to a

purely numerical basis simply because he likes numbers. His

interest is not at all in formulas or digits, but in animals. He is

concerned with the anatomy, behavior, and relationships of these

animals; and he quite properly refuses to fit his studies into any
a priori framework, such as that of formal mathematics or

statistics.

In zoology, numVjers and formulas are of no interest or value

for their own sake but only to the extent that they may be the

best means of describing and of interpreting what animals are

and do. In presenting to zoologists and paleontologists a book
especially devoted to numerical concepts and containing many
mathematical symbols and formulas, it is essential to state this

fact at the outset and to maintain and stress this viewpoint

throughout, as we have done. The symbols are merely short-

hand expressions for concepts that necessarily enter into most
work in zoology. The formulas are only the most convenient

and usable way of summarizing operations that have logical,

common-sense meanings.

If in the course of using such mathematical methods these

zoological, nonmathematical implications are lost sight of the

zoologist will also lose sight of the whole purpose of his work and
will fall into futility or even absurdity, although his arithmetic

is perfectly correct. While urging and facilitating the use of

numerical methods, the authors have tried at every point to
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guard against these grave dangers and to insist that the methods

be used zoologically, not by rote and not as mathematical

abstractions.

Whether from inertia, from ignorance, or from natural mistrust

engendered by some ill-advised efforts, or from a combination of

these, most zoologists and paleontologists have distrusted the

overt use of any but the very simplest and most obvious numerical

methods. They have, in fact, been dealing with some very

subtle and difficult numerical concepts, but too often they have

failed to recognize them as such, and frequently this has resulted

in their serious misuse. There is little need for the use of more

numerical concepts and methods in zoology, but there is great

need for recognizing them as such and for according them more

correct and careful treatment. To the still rather slight extent

that this improvement has been made and the great extent to

which it can be made, the data of zoology are susceptible of

marked betterment, its conclusions can be made more logical and

reliable, and it can reach out to interpretive phases that are of

basic importance and that have now been barely touched.

If zoology and paleontology have lagged behind most other

sciences in their numerical methods, a major reason has been the

extreme difficulty of learning the methods that are known in

other fields and of adapting them to this one. In order to obtain

the mathematical and statistical information pertinent to his

own problems, the zoologist has had to wade through great

masses of difficult material, most of it not directly useful to him
and none specifically arranged for his purposes.

This was the experience of the senior author of the present

text some ten years ago when he set out to work toward a con-

scious, rational numerical methodology, the absence of which

was increasingly apparent to him in his own work and in that

of almost all his colleagues. In order to accomplish anything

in this line without abandoning his regular work, it was necessary

to seek the aid and collaboration of someone who, without being

a professional mathematician, was thoroughly familiar with the

desirable mathematical and statistical concepts and was accus-

tomed to using them in practical research in some life science.

The junior author of this volume possessed these qualifications,

and for several years she has devoted much of her time to the

joint research in methodology of which this book is one result.
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It was first anticipated that the senior author would write the

more zoological and the junior author the more mathematical

parts of the book, but in the end each author contributed so

largely to both and the two aspects of the subject became so

completely fused that individual responsibility cannot be

assigned for any passage. For the sake of uniformity of style

and treatment, the actual words of the final manuscript were

written by the senior author, but the work involved has been

equally shared and the collaboration is complete.

This text presupposes no knowledge whatever of statistics,

and of mathematics no more than elementary algebra. If the

reader is willing to take for granted a few derivations and trans-

formations of formulas, almost all the procedures recommended
can be carried out with no more elaborate preparation than a

knowledge of arithmetic. Anyone studying college zoology or

engaged in research in this field can understand and use these

methods, however slight his mathematical interests or training.

Many of the passages, essential as they arc for our subject, deal

with quantitative concepts without involving any actual mathe-

matical operations.

The discussion of concepts is based on long experience in

the use of numerical data in research in several different life

sciences and on wide reading of publications presenting such data.

Every procedure recommended or explained has been tested in

connection with some real zoological problem. A great mass of

material was rejected because it appeared to be of relatively little

use to the average zoologist, and many procedures were modified

to adapt them to this purpose. Much of the material in the

first few chapters is well known to working zoologists, but it is

important to present it to students more consistently and fully

than has been customary; even advanced workers may profit

by an explicit statement of some of the fundamentals underlying

their practices. Some current procedures, even of the simplest

sort, are open to criticism and require defense or abandonment.

Most of the more advanced procedures, especially those of a

statistical sort, are widely employed in other sciences but have

not generally been adopted by zoologists or modified for their

use. From their special point of view, the authors find that some
statistical procedures in common use are inadequate or erroneous,

and these have been modified or criticized, without intending
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any general survey of statistical theory. Some new concepts and

methods have been proposed, for instance, those discussed in

connection with single specimens.

Although statistics necessarily figures in much of this work,

this is a book on the methodology of zoology, and not on statistics

or even (as a whole) on the use of statistics in zoology. Advanced

statisticians, if any refer to this work, may detect in it what will

appear to them two principal shortcomings; these should be

briefly mentioned here. In the first place, the authors have

not followed Fisher and some of the other most specialized recent

statisticians in using a double set of symbols and terms, one for

the parameters of populations and one for the calculated esti-

mates of these parameters. They have explained and have

maintained the important distinction here involved, probably

to a greater extent than in any other introduction to the use of

statistics in a particular field of research, but they believe that

the use of two systems of notation, instead of clarifying this

distinction, would prove confusing, repellent, and unnecessarily

difficult for their special audience. In fact, within this field the

dual system would not be much more logical than the one that

has been used, for the group concepts involved are not two but

three—samples, actual populations, and theoretical or abstract

populations—or even four, since the theoretical population

envisioned by hypothetical deduction from the sample is not

the same as the abstraction derivable from the real popvdation.

These distinctions, which may appear unduly subtle to a

zoological reader if this is read before the body of the text, but

which should later become sufficiently clear, are related to the

problem of inverse probability. This problem is essential in

the philosophy of numerical method, and it underlies the whole

structure of statistics as a logical treatment of data. The
authors have been aware of the problem, and they have endeav-

ored to avoid errors in this respect (errors commonly made even

by professional statisticians), but they have not included any
explicit and detailed treatment of inverse probability. A
condensed discussion would be almost incomprehensible to the

average zoological reader; an adequate discussion would carry

the book far beyond reasonable length and belongs in an advanced
treatment of statistics rather than in an introductory work on
zoological method.
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As the clearest method of explanation, examples have been

freely introduced, generally based on real and typical zoological

data. These data have been drawn from many sources, as

credited in each case. With few exceptions any calculations

based on th(vse data have been made by the present authors,

rather than by the original publisher of the raw data. The
calculation has been done twice: first by hand or with simple

aids available to all zoologists and second on modern electric

calculating machines. The purpose of the duplication was not

only to eliminate errors so far as possible but also to test the

practicability and the accuracy of carrying out such work by the

simplest means, within the reach of any student in this field.

Calculating machines are a great convenience, but most
zoologists do not now have them; they are not necessary for

correct numerical treatment of zoological data, and to have

assumed that they would be used would greatly have decreased

the usefulness and acceptance of this work. Formulas for their

use are therefore relegated to an appendix, and in the main

text it is assumed that calculation will be done by hand or with

an inexpensive pocket abacus and a slide rule, plus a few numeri-

cal tables—equipment readily available to and easily used by any

student of zoology.

Without making themselves responsible for our judgment

or use of the data, several colleagues, including specialists in

almost all the various divisions of zoology and paleontology,

have suggested sources of numerical data and discussions and

exemplifications of numerical methods. Among those to whom
the authors are indebted for this or similar assistance are Dr.

E. H. Colbert, Dr. J. E. Hill, Mr. J. T. Nichols, Dr. G. K.

Noble, and Mr. J. T. Zimmer. Mr. Morton Jellinek criticized

certain statistical parts of the manuscript and pointed out some

pitfalls in this field. The authors are also indebted to Miss

Evelyn Horton and to the statistical laboratory of Teachers

College, Columbia University, for the use of calculating machines.

New York,
May, 1939.

George Gaylord Simpson,

Anne Roe,
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QUANTITATIVE ZOOLOGY
CHAPTER I

TYPES AND PROPERTIES OF NUMERICAL DATA

THE MEANING OF NUMBERS IN ZOOLOGY

When a zoologist sets out to describe or discuss any animals,

he almost inevitably finds that he is using some numbers. Usu-

ally, measurements of the dimensions of individual animals are

given; the proportions of the different parts of the animal are

considered; different animals are compared as to size and propor-

tions; abundance or scarcity of a species may be mentioned; the

number of teeth, scales, fin rays, vertebrae, and the like are

recorded; and in many other ways essentially numerical facts and

deductions enter into the work. Commonly these ob.servations

are given by actual numbers; but not infrequently they may be

expressed in words and without the use of figures. When it is said

that one species is larger than another, that a given animal is

abundant in a certain area, or that a mammal lacks canine teeth,

for instance, this is only a verbal expression of a numerical idea.

If such an observation can be reduced to concrete figures, the

expression will usually be made more accurate and more succinct.

Even if it cannot well be expressed except in words, the essentially

numerical nature of the concept demands recognition and requires

knowledge of the properties of numbers and of the ways in which

they should be used and understood.

Numbers are of several different sorts, not always clearly

distinguished, and each sort has its own meaning and properties.

When it is said that a bird lays clutches of 4 eggs each, that its

eggs are 4 cm. long, and that the bird was observed to leave its nest

4 times in one day, the number 4 is being used in three quite

different and not interchangeable ways. These illustrate the

three fundamental types of numerical data in zoology. In the

first instance, the figure 4 is a count of discrete objects; it means
that there were 4 such objects, no more and no less, in the unit of

I



2 QUANTITATIVE ZOOLOGY

observation (the clutch). Fractions and indeterminate numbers

obviously do not exist in such observations. In saying that any

given object is 4 cm. long, on the contrary, a measurement and not

a count is given. It does not mean that the length is exactly

4 cm. or that the only adjacent possibilities are that it might be

3 or 5 cm. in length, but only that the length is nearer to 4 than to

3 or to 5, that it is greater than 3.5 and less than 4.5, without

specif3dng just where in that range the absolute measurement lies.

Such numbers may be fractional, in practice almost invariably are

so if the observation is closely accurate, and often they are prac-

tically or really indeterminate. There is a continuous, infinite

series of possibilities, and the figure given merely limits the

observation to a particular part of this series. In the final

instance the number 4 is again a count and again means exactly

4 with the only adjacent possibilities 3 or 5; yet it is essentially

different from the first use of the figure. It is a count not of

concrete, discrete objects but of the number of times that some-

thing occurred, a frequency.

In correct logical and mathematical procedure these three kinds

of numbers are quite different sorts of data, and procedures and

deductions proper with one may be entirely wrong in application

to another. They are all means of giving particular values for

things that vary in nature, and this is in the broadest sense the

only and the whole reason for making any zoological observation.

Zoology is entirely concerned with the study of things, of what-

ever sort, that vary in nature and that are in any way related to

animal morphology and behavior. Such variables as cannot be

reduced to numerical expression are attributes. Variables that

can be expressed as counts or measurements, and hence in num-
bers, are given the special name variate, a term that, in numeri-

cal zoology and in the pages of this book, has this special meaning,

not being synonymous with ‘Variable” but designating a special

kind of variable. Since the number of times that a thing occurs is

a numerical observation, whether the thing itself is all attribute

or a variate, any sort of zoological variable can give rise to

numerical data; and these observations are called ^‘frequencies,”

also here used in this special sense rather than in its nea^^ly

synonymous but broader colloquial meaning.

As shown in the example of the bird and its eggs, variates

include two different types of observations recorded by two
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distinct kinds of numbers. Variates, like the number of eggs in a

clutch, that can only take certain definite values,^ almost always

integral, are called discontinuous variates because no matter how
numerous the observations they never form a continuous series.

An increase or decrease in value cannot be indefinitely or infi-

nitely small but proceeds by a definite jump to a next higher or

lower value. Variates, such as the length of an egg, that theo-

retically can take any of an infinite series of different values are

called continuous variates because their numerical values express

approximate position on a continuous scale. The difference

between two observations may be indefinitely or infinitely small.

The principal sorts of primary numerical data available in

zoological research are thus as follows;

1. Measurements of continuous variates, among others the following:

a. Linear dimensions.

h. Areas.

c. Volumes.

d. Weights.

c. Angles.

/. Temperatures.

g. Periods of time.

2. Counts of discontinuous variates, especially of elements serially arranged

in animal structures or any separate but related or homologous structures,

etc.

3. Counts of frequencies:

o. Of continuous variates.

6. Of discontinuous variates.

c. Of attributes, actions, or related phenomena.

DATA FROM DIRECT OBSERVATION

The raw data for the numerical analysis and synthesis of

zoological materials must be derived from direct observation. In

starting work, for instance, on an unstudied group of specimens

these observations are in most cases lists of the specimens with

simple measurements suspected of being significant and verbal

notes of qualitative differences. As study progresses, some of

these first observations will, in all probability, prove to be unim-

portant for the object in view and will be discarded, while new
observations of the same sort but of different variates or attributes

may prove to be desirable. When the work has progressed to the

point of recognizing particular groupings, whether qualitative or
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quantitative, it becomes possible to compile numerical values of a

different category: frequencies, that is, counts of the numbers of

observations belonging, in a given respect, to one of the categories

recognized. This operation often derives numerical data from

observations that are not numerical in their own character.

Thus the presence or absence of a keel on a given tooth cusp would

not primarily be expressed by a number; but if it appears that this

has some significance for the work being done, it becomes subject

to numerical analysis and statistical study when the number of

specimens with the keel and the number without it are counted.

Or, in taxonomic work, after all the specimens have been identi-

fied, the number of individuals in the collection belonging to each

species gives numerical data involving biological conclusions not

themselves of a numerical character. From the point of view of

basing inferences of a higher order on the data and particularly of

using statistics as a basis for such inferences, all of these direct

numerical observations are primary observations or raw data,

even though, as in the last example given, the possibility of mak-
ing them comes only after the making of many secondary observa-

tions necessary in order to recognize the groups involved.

There is an almost unlimited variety of different sorts of

primary numerical data possible under each of the broad cate-

gories of continuous variates, discontinuous variates, and fre-

quencies, about as many sorts as there are different zoological

problems to be solved. In the field of animal morphology and

taxonomy the greater number of useful continuous variates are

linear dimensions. Areas have some significance, for instance,

the area of grinding teeth in mammals, important in considering

food habits, or of the caudal fin in fishes, essential in studying

their locomotion. Areas have, however, the serious disadvantage

that they cannot be directly measured but must be calculated

from linear dimensions or otherwise. This calculation is often

difficult, may introduce errors or inaccuracies, and involves

certain obscure peculiarities analogous to those of ratios, discussed

on a later page. For these reasons it is usually preferable and
possible to treat the same problems by the use of the more
directly measurable dimensions from which the area would be

calculated, its linear components. Volume is to even greater

degree open to objection on the same grounds and if it must be

c^culated from linear dimensions should generally be used only if



TYPES AND PROPERTIES OF NUMERICAL DATA 5

the problem cannot well be attacked in any other way. It can,

however, also be measured directly, as by displacement of liquids

or filling cavities with a measured volume of fine shot or similar

substances, and in such cases may be reliable and useful. Among
mammals, cranial capacity is an important character properly

recorded in this way.

In most cases, weight, rather than volume, is used in recording

and comparing the bulk of animals and of their various organs.

It is directly measurable to any desirable degree of accuracy and
is usually at least as directly related to the zoological problem

under attack as is volume. In problems of growth, it is the most
important single factor; and it is also conveniently used in con-

sidering the relative strength of muscles, development of glands,

etc. A few special problems of laboratory technique are involved,

for instance, in recording weights of animals that ingest large

quantities of heavy food or in weighing parts, like bones, in which

the weight is greatly altered by methods of preservation and

preparation. These can all be met by the simple but sometimes

neglected principle of assuring that measurements to be com-

pared were obtained under exactly comparable conditions. In

paleontology, weight has, however, few' valid uses, for measurable

weights of fossils have no constant relationship to those of the

living animal and are not reliably comparable with each other.

Occasionally brain casts are compared by weight, but this is

really an indirect comparison of volume; and the same is true of

relative weights of plaster casts of bones, which do have an

approximately constant relationship to the volume (but not to the

weight) of the original bone.

Angles measure an important category of animal characters not

measurable in any other way; and the numerical results, aside

from the inconvenience of not being simple decimal numbers, are

continuous variates subject to much the same sort of comparison

and analysis as are linear dimensions. They record such

biologically and taxonomically important characters as cranio-

facial flexion, limb angulation, or axial rotation of skeletal

processes. The exact measurement of angles in zoological mate-

rial is difficult but can usually be adequately achieved by methods

of graphic projection.

Temperature typifies a class of physiological characters, to

which basal metabolism, blood pressure, pulse rate, and numerous
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others also belong, that are essentially continuous variates and

may be treated as such mathematically. ^ They clearly can be

related to taxonomy, although it is generally impractical to use

them in that way, but they are principally involved in biological

problems, where they are of the greatest importance. The
measurement of periods of time delimited by some animal activity

is also important in physiological, biological, and ecological

studies, and these are also continuous variates. Pulse or respira-

tion rate may also be expressed as the period between pulsations

or respirations; periods of incubation and gestation are time-

period variates; so are length of life, time of hibernation, or length

of oestrous cycle; and there are numerous other essential time

measurements involved in zoological research.

Discontinuous variates, not always recognized as such, are

almost as abundant as continuous in zoological data. They are of

major importance in taxonomy because they often have more

limited individual and specific range and variability than do

continuous variates and hence may characterize genera or higher

groups. Their character and significance are more often obvious

on inspection and without analysis, although this is not always

true. Dental, vertebral, and phalangeal formulas often charac-

terize super-specific categories and usually are of obvious sig-

nificance. Cuspule or striation counts on mammal teeth, fin-ray

counts on fishes, feather or egg counts for birds, blood-corpuscle

counts for any vertebrate, and many others are discontinuous

variates commonly highly variable and demanding some formal

analysis for their successful interpretation. Any serial or repeti-

tive structures are discontinuous variates whatevef the scope of

the taxonomic or other category within which they vary; and all

may, if desirable, be treated as such statistically by methods

discussed on later pages.

Frequencies, which are fundamental in the most useful statisti-

cal procedures, are expressed or implied in any collection of

numerical data. They are simply counts of individuals belonging

to any selected category. The categories may be based on any
measurements or counts of variates, either as observed or as

* Pulse rate would appear at first sight to be a discontinuous Variate, since

discrete pulsations are counted; but in fact it is a continuous vamte. The
number of pulsations per minute accurately involves a fraction and can

theoretically take any value in a continuous spriea
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gathered secondarily into groups. The categories may, further-

more, be based on any logical consideration, even one wholly non-

numerical or fundamentally subjective. Thus frequencies may
be based on simple attributes, such as the presence or absence of a

vestigial tooth (which may, however, also be considered a dis-

continuous variate) or differences in geological or geographical

origin. They may be counts of the individuals of each species in

a certain collection, counts of the number of known species in each

of several genera, counts of the species of a given fauna grouped

by their probable habits of life, etc., each of these and the

innumerable other possibilities having a definite bearing on some

type of zoological research. All observations involve frequencies,

even if the frequency be 1 (or 0, the characteristic sought not

being found in any case)
;
and in many cases these frequencies are

at least as essential to consideration of the problem in hand as are

other types of data.

Since a continuous variate may theoretically take any of an

infinite series of values, it follows that absolutely accurate

measurements of any two values of such a variate would never be

the same and consequently that the frequency of any one value

would always be one and the concept of frequency useless. In

fact it has been pointed out that such absolutely accurate meas-

urements are not possible (or desirable) and that the measured

and recorded value of the continuous variate is in practice only a

conventional means of defining a greater or smaller span on the

continuous scale within which the real or absolute value is known
to lie. Thus the record 3 mm. means that the true value is

known to be greater than 2.5 and less than 3.5mm., 3.1 mm. means
that the true dimension is greater than 3.05 and less than 3.16

mm., etc. ^ Thus the record 3. 1 mm. can include various different

exact values of a continuous variate between 3.05 and 3.15 mm.,
and recorded values of continuous variates can and do have
frequencies greater than 1 in practice. The groups of values thus

brought together can be made larger or smaller at will, and a

similar sort of grouping may be applied to discontinuous variates,

so that the frequencies can be manipulated into the form most
advantageous for the problem in hand, a subject discussed in

detail in Chap. HI.

i In practice, in approximating measurements by dropping the last digit,

it is customary to count 3.06 to 3.14 as 3.1, 3.15 to ^24 as 3.2, etc.



8 QUANTITATIVE ZOOLOGY

RATIOS AND INDICES

Ratios, products, indices, and other numbers obtained by the

combination in various ways of two or more numbers are them-

selves raw numerical data from a statistical point of view; but

they are secondary, not derived from direct observation, and they

have properties unlike those of numbers obtained by direct

observation. Of these, the most important are ratios, which give

by a single number or expression the relative sizes of two other

numbers. A valid ratio is the quotient of two numbers which

must express observations of the same sort, for instance, linear

dimensions, and must be in the same units, for instance, milli-

meters. The resulting ratio is independent of the absolute size of

the original figures
;
for instance, 5 : 10 is the same ratio as 500 : 1 ,000

and is also independent of the original units of measurement; for

instance, 5:10 mm. is the same ratio as 5:10 years. The result,

ordinarily expressed as .5 for all these examples, is a pure number
divorced from any particular system of mensuration.

Ratios of two continuous variates are in proper and widespread

use in zoology, and they express characters that are of funda-

mental importance. They have, however, certain peculiar and

generally ignored properties that must be kept in mind and that

may in some cases make conclusions based on them inaccurate or

even invalid. They are themselves continuous variates, and the

numbers in which they are written are of the indefinite kind that

express approximate position in a continuous series; but the

accuracy and limits implied are not the same as for the direct

measurements on which the ratios are based.

Ratios frequently vary more than do the dimensions on which

they are based. Thus if the lengths of a given sample of homol-

ogous teeth vary from, say 0.9 to 1.1 mm. and the widths also

vary from 0.9 to 1.1. mm., the possible length: width ratios vary

from 0.8 to 1.2, a markedly greater range. The relative vari-

abilities of ratios and of their constituent dimensions are tied up in

an intricate way with the correlation between the latter (see

Chap. XII).

The most confusing characteristic of ratios is that they are

grouped in a peculiar way not determinable by simple inspection

of the figures and that this may be a source of error in basing

deductions on them. A length recorded as 1.0 mm. isknown to be
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somewhere between .95 and 1 .05 on the continuous scale, a simple

and obvious relationship, but this is not true of a ratio recorded as

1.0. For instance, a length : width ratio of 1.1 : 1.1 mm. would be

recorded as 1.0, but its real value may be anywhere between .92

and 1.09, or in round figures from .9 to 1.1.^ Furthermore this

peculiarity may result in writing two really different ratios as the

same or two really identical ratios as different. It has been shown
that the ratio 1 . 1 : 1 . 1 may really be anywhere from approximately

.9 to 1.1. Similarly the ratio 1.0: 1.1 may really lie anywhere

from .8 to 1.0, a range widely overlapping that of the other and
apparently different ratio. These possible limits of the true

values of ratios are never obvious from inspection of the ratio, and
ratios recorded as identical may in fact have quite different limits.

Thus the real value of the ratio 9:9 is somewhere in the range

.90-1.11 and that of 1.9: 1.9 somewhere in the range .95-1.05—

a

considerable difference in accuracy, but written as a single figure,

according to usual practice, these ratios are given as identical.

These difficulties are far outweighed by the usefulness of ratios;

but they must be understood, and it should not be supposed that

a figure representing a ratio is necessarily as accurate as those on

which it was based or that it is on the same standing. If minute

differences are important and the status of ratios doubtful, it may
occasionally be advisable to abandon these and deal with the

problem directly from the original measurements.

Ratios may also be usefully based on discontinuous variates and

on frequencies. The ratio of dorsal to lumbar vertebral counts,

for instance, may express an important character in the clearest

way, or, as another example, the ratio of number of individuals

(frequency) with skulls longer than a selected standard to that of

those with skulls shorter than the standard may be a valuable

means of characterizing the group as a whole. Ratios based on

such data are themselves discontinuous variates. They do not

have the disadvantages of ratios that are based on continuous

variates, but they have an extraordinary peculiarity of their own

:

although discontinuous they are usually fractional and sometimes

indeterminate. An example will make this clear. Suppose that

^ Because each of the component dimensions, as far as shown by the

record of them, may be anywhere from 1.05 to 1.14. If the real length is

1.05 and the real width 1.14, the real ratio is .92; and in the converse case

the real ratio is 1.09.
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each of two discontinuous variates can take the value 1, 2, 3, or 4.

Ratios between these two can take the values shown in Example 1.

Example 1.—Ratios between Two Discontinuous Variates, Each
WITH Values of 1 to 4

(Hypothetical data)

1:4 =0.25
1:3 = 0.333 . . .

1:2, 2:4 =0.5
2:3 = 0.666 . . .

3:4 =0.75
1:1, 2:2, 3:3, 4:4 = 1

4:3 = 1.333 . . .

3:2 =1.5
2:1, 4:2 =2
3:1 = 3

4:1 =4
This series of 1 1 possible values is irregular and follows no obvious system

;

7 of the values are fractional, and 3 are infinite repeating decimals. Never-

theless they are the possible values of a discontinuous variate. Each value

is definite and exact, not an approximation or group symbol as for a continu-

ous variate; and under the postulated conditions they are the only values

that the variate can take, intermediates between them being impossible.

It is also noteworthy that more combinations of the original dimensions

result in a ratio of 1 than any other figure, a peculiarity that also may
strongly affect conclusions based on such ratios.

The word index is used in somewhat different technical

senses in statistics and in morphological zoology. In the latter,

unlike statistics, an index is obtained directly from individual

measurements and not from statistical or group data. The uses

of the words ratio and ^^index'^ in comparative morphology are

not strictly standardized. Index is generally used for a figure

obtained by dividing a given dimension by some particular larger

dimension of the same anatomical element and multiplying by 100

(or expressing as a percentage). Unless the dimensions are

otherwise specified, it is generally understood that they are the

minimum and maximum dimensions of the anatomical unit.
^
‘ Ratio is a more general word, which may include indices, but

usually refers to proportions between dimensions of different

anatomical elements.^

^ Hue (1907) defines index'' as always based on these dimensions, but

this seems an unnecessary limitation. Troxell (1915) limits “ratios" to

comparisons of homologous dimensions of different individuals and calls all
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The useful broad categories of ratios based on dimensions

appear to be as follows:

1. The ratio (or index) of two different dimensions of one anatomical

element of one individual.

2. The ratio of two analogous dimensions, one for each of two anatomical

elements of one individual.

3. The ratio of homologous dimensions of homologous anatomical ele-

ments of two individuals.

Theoretically there are four other possibilities:

4. The ratio of nonanalogous dimensions (e.gr., length and width) of

different elements of one individual.

5. The ratio of nonhomologous measurements of homologous elements

of two individuals.

6. The ratio of analogous dimensions of nonhomologous elements of two
individuals.

7. The ratio of nonanalogous dimensions of nonhomologous elements of

two individuals.

But these last four ratios are of little or no practical value.

They make comparisons of things that usually are not related to

each other in some simple, orderly, and significant way, or,

differently expressed, they obscure significant dependence by
introducing variables too numerous or essentially independent.

The three useful categories of ratios of dimensions express

different sorts of characters or concepts, and the inferences based

on them are of different kinds. Indices or ratios under (1) are

essentially unit characters not markedly unlike linear dimensions

in the concept involved. The index (breadth X 100)/length of a

given tooth is a simple character for that tooth, as are its breadth

and its length individually. Such indices are sometimes desig-

nated by their supposed or actual correlation with some other

function or character; e,g,, the index (length X 100)/breadth of a

limb bone has been called the speed index” because it is

advanced as a hypothesis or supported as a theory that the larger

the value of this index the more rapid, in general, the locomotion

of the animal. Even aside from the fact that this is not a con-

stant relationship (and even that the exact opposite can be

demonstrated to be true in some cases), this naming of a ratio by
the inference that is expected to be drawn from it is unsound.

proportions of one individual ** indices.” Although there are many such

variant usages, the exact meaning is usually clear from the context.
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The conclusions that may be drawn from numerical data should

not be confused with the data themselves.

Ratios under (2) of the above list express a dilferent sort of

character, for they are descriptive of a larger anatomical unit than

that measured by either of the primary figures from which the

ratio is derived. Thus if teeth are used as examples again, the

ratio length of trigonid/length of talonid belongs to this category,

and it expresses numerically a character of the tooth as a whole,

whereas neither of the direct measurements applies to the whole

tooth. Similarly length of humerus/length of radius is a charac-

ter of the forelimb, and length of humerus/length of femur of the

locomotive apparatus as a whole. By analogous dimensions'’

is meant length against length, etc. There may well be some
relationship between the length of one element and, say, the width

of another; but this is a somewhat confusing concept and one of

little practical use.

Ratios listed under (3) are far the most common in zoological

work and in some form or other are almost universally employed.

Thus the statement that one species is larger than another is

merely a crude expression of a ratio of this sort. A statement,

such as is frequently made, that one species is 20 per cent larger

than another is, however, a gross misstatement of the actual facts.

What it usually means is that some given dimension of one

specimen of one species is 20 per cent larger than the same dimen-

sion of one specimen of another species. That all the dimensions

of all the individuals of one species should be 20 per cent larger

than the corresponding dimensions of all the individuals of

another species is impossible; and it is preferable to say what is

really meant. This exemplifies the usefulness of defining species,

whenever possible, by the statistical constants of their several

variates, rather than by individual values of these variates, and of

always specif3dng the particular variate involved. ^

' Troxell (1915) confines the word ratio to ratios of our class (3) and
makes the astonishing statement (p. 615) that ^'apparently nowhere in the

literature has such an application been made of 'ratios,^ comparing one type

to another.” It is fairly obvious that such ratios have always been used, in

one form or another, in almost every description of a species. However, it

appears from the context that what is particularly meant is more specific:

the use of ratios between the dimensions of various fossils and those of some
one more complete specimen (particularly a recent skeleton) and the com-

parison of different individual fossils by means of their ratios to such a
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There is a higher, derived category of ratios the formal recogni-

tion of which is infrequent but which are often implied and which

may be useful, that is, the ratio of two ratios. Thus the ratio of

the cephalic index of one specimen to that of another is a ratio of

two ratios which can be written in this way:

Breadth of skull A X 100^ breadth of skull B X 100

Length of skull A * length of skull B

This is a means of comparison as logical as the ratio of linear

dimensions, for instance,

Breadth of skull A
Breadth of skull B

but the ratio of two ratios suffers in an exaggerated degree from

the peculiar and disadvantageous properties of ratios in general

and should be used with the greatest caution.

Ratios and indices may be expressed numerically in several

different ways:

1. As the unreduced ratio of the actual measurements, e.g., 5:10 mm., or

5:10.

2. As a fraction, €,g., Ko or 2̂ -

3. As a quotient, e.g.^ 0.5.

4. As a percentage, e.g.^ 50 per cent.

5. As a quotient multiplied by a constant, e.g, (using 100 as the constant,

the usual form), 50.

For purposes of inference or of analysis, ratios are still raw
data. Their only essential difference from the numbers on which

they are based is that they express a different sort of character.

complete specimen. The application of this principle in certain specific

circumstances is useful and already generally understood. Thus if it is

important to compare two incomplete specimens that have no parts in

common, this obviously can only be done through their comparison with a
third individual, as nearly similar to them as possible, in which parts also

present in each of them are known. The results are frequently unreliable

and in such cases the method is used only faute de mieuz. As a general

principle of research it is undesirable to compare two things not directly

with each other but each with a third thing extraneous to the particular

problem being studied. It is of course quite sound when the third thing, or

standard of comparison, is not actually extraneous to the problem, and it is

necessary when a comparison is essential but cannot be made more directly;

but it is never so reliable as direct comparison.
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In general the further study of ratios follows the same lines as for

any other raw numerical data. As with any other data, however,

their morphological meaning and arithmetical derivation must
be kept clearly in mind. For instance, in considering variation

and variability, the fact that linear dimensions may or do vary

within related groups relative to the mean of each group does not

warrant the assumption, a priori, that ratios based on these dimen-

sions will vary in the same or a similar way, since the ratios are not

dimensions but are pure numbers derived from but independent

of the mean dimensions (see also Coefficient of Variation,

Chap. VI).

In general, it seems probable that biological characters and

relationships of the sort involved in ratios are adequately and

most clearly expressed by the mean value of the ratio and some
form of correlation of the measurements involved in the ratio

(rather than in terms of the distribution of the ratio itself; see

Chap. XII). 1

There are several other types of calculated but essentially raw

data that are analogous to ratios in expressing by one number
some relationship between two measurements but that involve

distinct concepts and operations. Few of these are in use in

zoology, and we know of none likely to be of really general value;

but some may be useful in certain special problems. Such a

figure is, for instance, (length + width)/2 (sometimes called a

‘^module ^^). This may be a useful concept in cases where there is

no marked functional difference between the two dimensions and

they tend to vary about the same or approximated means.

In cases where one dimension tends to increase as the other

decreases,^ this module will generally vary less than does either

1 The mean of a ratio is most easily calculated by dividing the mean of one

set of measurements by the mean of the other, but note that this is not

proper unless all the measurements are paired. That is, if, for instance, a

mean length : width ratio is sought, it may be obtained by dividing the mean
length by the mean width if each length is accompanied by the corresponding

width of the same specimen and each width by the corresponding length.

This is not always true of paleontological data; and if unpaired measure-

ments have been included in the means of the two primary measurements,

the ratio of each individual must be taken and the mean of the ratios then

calculated. The difference is seldom significant, but this procedure is

technically the correct one.

* Negative correlation or inverse covariation.
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dimension (whereas the ratio will vary more than either) and may
be useful on that account. Measures of area, length X width, are

in a sense analogous and have the same property of tending to be

less variable than the length or width if these two have an inverse

relation to each other. There are numerous cases in nature (e.p.,

the surfaces of grinding teeth) where the functional character is

the module or area rather than the linear dimensions; and it

would be interesting to examine a number of these and to see

whether they are not better described in terms of a module or

similar figure than in terms of the original linear measurements or

of area.

Various limb modules, such as

Length humerus + length radius

2

or

Length tarsus + length metatarsus

2 ’

are also logical concepts that may serve to bring out relationships

not immediately visible from the original measurements; and

many similar formulas will suggest themselves in the course of

special investigations.

From the standpoint of any particular problem, the purpose

is to find a figure, all the elements of which are related to the

problem, which has some property not possessed by the primary

elements, such as being more constant than are they or varying in

some definite and ascertainable way with respect to a different

variate, to function, etc. Other general possibilities to bear in

mind aside from ratios (quotients), modules (arithmetic means),

areas (and analogous cases, products), and deviations (remainders

of subtraction) are geometric means (roots of products), as well as

many secondary or tertiary figures such as powers of ratios or of

deviations, quotients of modules. Such figures should onlyappear

in the final work, however, if they did really prove to express

characters or have useful properties other than those of the

original measurements.



CHAPTER II

MENSURATION

REQUIREMENTS OF GOOD MEASUREMENT

An infinite number of numerical observations may be made on

any one zoological specimen, and each may be made in many
different ways. The first approach to a problem in this field is

decision as to what is to be measured and how. The most

important criteria of good numerical observations are that they

should be:

1. Of a logical unit.

2. Related to a definite problem,

3. Significant.

4. Adequate.

5. Well delimited.

6. Standardized or well spe(ufied.

7. Accurate.

8. As refined as desirable.

9. Unbiased and consistent.

Paleontologists seem to use illogical and nonunit measurements

more often than do neozoologists, for instance, such a measure-

ment as length from the second premolar through the first molar

in a mammal. This has no natural unity, measures no biologi-

cally important single character, and is poor for comparisons (the

only purpose of taking it) because the measurement is not likely

to be available in the literature for other specimens and on many
specimens otherwise comparable it may be impossible to make.

Measurements of each single tooth should be given, and measure-

ments of groups of teeth should be of natural groups—of the

whole cheek series, of all the premolars, or of all the molars.

A general principle of measurement, involved in several of the

criteria listed above and violated in the example of illogical

measurement just given, is that those measurements are usually

best that permit the greatest number of valid comparisons. In

paleontology such violations of the principle as that of the

16
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example are generally caused by incompleteness of the material.

It is possible to measure only what is preserved, but this is hardly

worth while at all unless natural units can be measured. Such

an odd and relatively useless dimension as length is

probably given, instead of measurements of individual teeth, on

the premise that the percentage of error will be less for a large

measurement than for a small one. This argument, however,

merely shows that the technique used should be one producing

accuracy at the desirable degree of refinement whatever the size of

the measurement. In fact, in paleontology, the premise here is

often fallacious, for a longer measurement is more likely to be

affected by distortion than a shorter, so that its accuracy as an

estimate of what the dimension was in the living animal may be as

low as for a smaller dimension or even considerably lower. This

is particularly true in dealing with teeth or similar series in which

the individual elements are usually little distorted but the series

as a whole is frequently seriously distorted.

As regards relationship to a problem in hand, this requirement

is so obvious and so rarely transgressed as to require no emphasis

except to point out that the relationship should be as direct and

as simple as possible and that the problems of other workers

should also be kept in mind to some extent. Brain grow^th, for

instance, can be studied from the skull dimensions or endocranial

capacity, and in some cases must be because other data are

unobtainable; but neither is related directly and simply to the

question studied, and the best measurement is weight or volume
of the brain itself. It is, however, pertinent to give measure--,

ments that will be useful to others working on related problems

even though they may not be necessary for the purposes of the

immediate enquiry. In taxonomy many standardized dimensions

may be quite unnecessary to define a species or subspecies and yet

should be included as a regular practice to facilitate future work.

It is always better in assembling raw data to take too many
measurements than too few. At this stage in research it is com-
monly inadvisable to adhere too rigidly to a criterion of direct

relationship and preferable to measure most variates with any
conceivable bearing on a problem, for in this way important and
unsuspected relationships are often discovered. Such data

require in ^ny case careful analysis. Certain of them will prob-

ably turn out not to be significant or necessary to demonstrate the
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point at issue. In this case (except for standard dimensions that

will surely be useful to others or in the future), they should be

discarded, no matter how much work has been involved in obtain-

ing and evaluating them. Zoological literature is replete with

long tables of measurements that prove nothing and the publica-

tion of which was unnecessary, expensive, and really a discourtesy

to other students. In this respect the methods, largely statistical,

discussed in succeeding chapters are invaluable. They provide

definite tests as to whether measurements really are significant,

facilitating the selection of essential and rejection of nonessential

data; and they also assist in reducing raw data to the most

compact and most useful form.

Equally common and perhaps still more open to criticism is the

gathering and publication of inadequate numerical data. In

discussing a species from a taxonomic point of view, it is usually

unnecessary to give all the pertinent dimensions for each of a

large series of specimens; biit at least this does make the data

available and is preferable to the practice of using only the

dimensions of the type or of giving only the mean dimensions of

the whole series. Many studies that purport to deal with varia-

tion give only the maximum and minimum dimensions observed,

or sometimes these and the mean. Occasionally the number of

specimens involved is also given, but the frequency of omission of

this absolutely essential datum is remarkable. For a real study

of variation and indeed for most purposes of valid comparison,

such data, even if the means and the number of specimens are

recorded, are a little better than nothing, but not much better.

Far more important are data on the way in which the observations

were distributed about the mean, on the probable relationship of

the observed extremes and mean to those of the whole population

from which the sample was drawn, on the probable significance of

differences in ranges and means, and similar questions. Measure- "

ments and other observations are inadequate if they do not

permit the calculation of such data, and the publication of results

is inadequate if such data are not obtained and recorded.

Some measurements are useless or nearly so because they have

no well-defined limits and hence cannot approach an adequate

standard of accuracy and refinement. For instance, an attempt

has been made to use the distance of the narrowest^point on a

slender limb bone from the proximal end of that bone as a
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numerical character of animals. The sides of the limb bone being

nearly parallel, its narrowest point is so vaguely defined that any
reasonable degree of accuracy is impossible and the character,

although real, is generally useless because it is not well delimited.

To be comparable, measurements must be taken in the same
way; and to be comprehensible, they must be exactly specified.

The first of these requirements is largely mechanical and depends

on adequacy of equipment, practice, and experimentation to

produce sufficiently consistent results. Absolute consistency is

impossible, but assurance is necessary that it is approached

closely enough not to affect the results derived from data. Speci-

fication demands mention not only of exactly what measurement
was taken but also of exactly how it was taken, unless both are

certainly obvious or understood by the readers addressed. In

taxonomic work on fishes, which is largely based on proportions

(f.e., ratios) because few ichthyologists have learned how to use

linear dimensions properly with their sort of materials, propor-

tions are usually obtained by using dividers which are set at the

smaller dimension, the integers of the proportional value of the

larger dimension stepped out with the dividers, and the fractional

excess estimated by eye. Such grossly inaccurate methods are

not to be condemned on that score alone if the low accuracy is

really adequate for the purposes intended;^ but clearly they are

not comparable with more refined methods, and their use should

be specified. Similarly mammalogists usually measure the

longer dimensions with a ruler and the shorter with calipers; but

some use ruler and some calipers for both, some use simple

dividers read against a ruler, and some use other methods, such as

measuring with the short end of proportional dividers and reading

the long end against a ruler. The refinement of each method is

different and may need specification, even though in this case all

the methods mentioned are sufficiently refined for the usual

purposes.

The condition of the material and the way in which it is held for

measurement also affect accuracy and comparability and may
require specification. Living animals, dead unprepared animals,

animals in preservatives, and skins all differ to some extent in

dimensions; and the different preservatives and methods of

^ But some of the results suggest that they are frequently not sufficiently

accurate as used.
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preparation may also have effects so different as to render meas-

urements incomparable. Sumner (1927) has shown, for instance,

that the mean total length of 10 mice (Peromyscus maniculatus

gambelii) was 166.65 mm. at time of death and 164.10 two hours

later. ^ Differences between freshly killed animals and skins as

customarily preserved in collections are usually still greater.

Measurements of one specimen held free, one l3dng flat, and one

stretched out may also differ considerably for some types of

material, especially live or freshly killed.

Specification of the thing measured is equally important, and

current practices are still more varied and confusing. Checking

over some recent literature, the dimension given simply as

^'length” for mammal teeth was found to have been applied in at

least six different ways:

1. Greatest distance between planes tangential to the margin of the crown

and at right angles to the longitudinal skull axis.

2. Distance between planes tangential to the crown margin, parallel to

each other, and approximately parallel to the anterior and posterior edges

of the crown.

3. Greatest horizontal distance along the outer or inner face of a tooth

along the ectoloph).

4. Distance from anterior to posterior borders along the midline of a tooth.

5. Greatest diameter of the tooth crown (sometimes longitudinal, some-

times transverse, sometimes vertical, and generally somewhat oblique).

6. Distance from tip of crown to tip of root.

Probably other usages are also current. Obviously length of

tooth is a meaningless designation unless some further specifica-

tion is made or distinctly understood.

It is, however, most usual for a dimension taken to be the

maximum distance between parallel planes tangential to the

designated anatomical element. For length, the planes are

usually considered to be oriented vertically to the axis of the body
through the axial anatomical divisions and their parts—teeth,

skull, vertebrae, etc.—and vertically to the proximodistal axis

for nonaxLal elements—ribs, limbs, etc. Width is the dimension

at right angles to the length and most nearly in a horizontal

plane, and depth or height the dimension at right angles to these

two and nearly in a vertical plane. These definitions apparently

conform to a consensus at present and, although not recognized

* The difference ie probably real and significant although Sumner does not

give the data by which this can be evaluated.
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rules, might well be made so. In some groups, specialists under-

stand other conventional designations without specification; but

in general any departure from these general definitions should be

specified.

SYSTEMS OF MENSURATION

Experience in ascertaining the most useful measurements, the

irksomeness of fully specifying a dimension each time it is used,

and the need to make the work of different observers as compar-

able as possible have led to some standard systems of mensuration

more or less generally used within the various zoological groups

and for various types of zoological problems. There is not and

cannot be a single standardized system for zoology in general.

Even the vertebrates differ too much in structure^ their dimen-

sions differ too much in significance, and the variety of problems

that arise is too great for such an end to be practicable or desir-'

able. Systems already in use are so numerous that they cannot

be usefully summarized but only a few examples briefly mentioned

in a general work like this; and the student must become familiar

with those employed in his own field through its special literature

and then adopt them or replace them by one specifically suited to

his own problems.

Measurement of dimensions of animals is most suited for reduc-

tion to a standard system, supplemented in most instances by
some counts of discontinuous variates. In most cases the princi-

pal purpose of such a system is taxonomic, and it usually con-

centrates on external characters.

For fishes, few standardized linear dimensions seem to be

generally recognized, and the customary numerical data are

proportions, usually the total length of the fish divided by a lesser

dimension such as length of head or depth of body, with counts of

scales (usually along, above, and below the lateral line), of spines,

and of fin rays. Such a system is briefly explained by Nichols

(1918), and variations are exemplified in all systematic mono-
graphs on fishes. Relatively little work seems to have been

done on the careful mensuration of fish skulls or other internal

structures, but an excellent system has been proposed by Gregory

(1933).

Among lizards and snakes few linear dimensions except total

length and tail length are commonly used in w
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which is mainly based on discontinuous variates such as tooth

counts, scale counts on rather elaborate systems, and counts of

elements in repetitive color patterns. An excellent exemplifica-

tion of such a system is given by Blanchard (1921). For turtles

the simple linear dimensions of carapace, plastron, tail, etc., are

the usual numerical data. Kalin (1933) has given a complicated

system for numerical study of the crocodile skull involving

numerous linear dimensions and 12 indices.

The measurement of birds for taxonomic purposes is more
nearly standardized than for most lower groups, Ridgway^s

system usually being employed. Because it is so widely accepted

and as an example of such a system, its standard measurements,

all linear dimensions, are listed (from Ridgway 1901):

Length.—From tip of bill to tip of tail. (This may differ greatly in

recently killed birds and prepared skins and may also be difficult to measure

accurately.)

Wing.—From the anterior side of the carpal bend to the tip of the longest

primary (feather).

Tail.—From between the shafts of the middle pair of rectrices at the

base, pressed as far forward as possible without splitting the skin, to the

extremity of the longest rectrix.

Culmen.—From the tip of the bill to the edge of the feathers on the dorsal

side. (This is sometimes called '^bilT^ if it extends to the true base of the

bill and ‘‘exposed culmen” if the base is partly covered by feathers.)

Depth of Bill at Base.—From the lower edge of the mandibular rami to the

highest portion of the culmen.

Width of Bill at Base.—Across the chin between the outside of the gnath-

idea at their base.

Taram.—From the tibiotarsal joint on the outer side to distal end of the

tarsus.

Middle Toe.—From the distal end of the tarsus to the base of the claw, not

including the claw unless so stated.

Graduation of Tail.—From the end of the outermost rectrix to that of the

middle or longest, the tail being closed.

As proposed, the length was to be taken with tape or ruler, the

other measurements with dividers (then read against a ruler).

As with all such systems, the whole series of measurements is not

invariably made (frequently only wing, tail, and culmen)
;
and in

some groups other measurements may be needed. Except for the

total length, these dimensions are nearly the same on skins as on

the living birds.

Among mammals the standard external measurements (see

Anthony 1925 or Sumner 1927) are;
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Total Length.—Tip of nose to tip of tail, laid out as nearly as possible in a

straight line. In this and all other measurements the limits are on the skin,

with hair excluded.

Tail Length.—From tip of tail to point where tail breaks from body when
held at right angles to the latter. This is usually designated length of tail

vertebrae”; but the designation is false, for it often excludes the most

proximal vertebrae.

Body Length.—This is not measured but is the total length minus the tail

length.

Foot Length.—From the posterior edge of the heel {i.e., the skin over the

extremity of the calcaneum) to the end of the longest toe, including the claw,

stretched out as straight as possible. Sumner proposes always using the

left foot unless it is injured.

Ear Length.—From the tip of the ear either on the medial side to the

junction with the crown of the head, when it is specified as “from crown,”

or on the lateral side to the bottom of the notch, specified as “from notch.”

Sumner also proposes using the left ear as far as possible.

Weight.—This is hardly a standard measurement, for it is still usually

neglected in making systematic collections; but it is recognized as important,

and efforts are being made to procure its more frequent record.

It is customary to take the longer dimensions with a rule and

the shorter with calipers or dividers. Except for foot length, all

these measurements may be significantly different in the living

animal and in prepared specimens, so that they are generally

taken on the freshly killed animal and any deviation from this

practice must be specified.

Taxonomists tend for practical reasons to concentrate on

external characters like those given above for birds and for

mammals, especially when they are interested in smaller groups,

such as species and subspecies. These characters are superficial,

both literally and figuratively, and so are not very reliable for the

taxonomy of higher groups. They are usually not available in

fossils, which, with unimportant exceptions, can be studied only

by osteology and dentition. Their comparison with living

animals also requires study of the hard parts in the latter.

Numerical and other characters derived from the teeth and
skeleton are of great value and are widely used in mammalogy,
both recent and fossil. As regards the skeleton, they are of equal

value among the lower vertebrates but have as yet been less used

for recent animals.

Paleontological mensuration differs little from that of the hard

parts of recent animals. Fossil material is almost invariably

less complete, so that a standardized system of a few measure-
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ments is less practical and requirements must in each case be

adjusted to possibilities. Fossil bones are also commonly dis-

torted so that their measurements are generally less reliable than

are those of recent animals; this may make some measurements,

especially those of proportions, unusable. Some groups of

extinct animals are so unlike any living forms that they present a

different problem in mensuration. All of these factors also

militate against systematization of paleontological data; but they

do not make it impossible, and there is room for great improve-

ment in this respect. In much paleontological publication, aside

from a few obvious measurements, the numerical data either are

inadequate or seem to have been selected at random and without

rational criteria.

Perhaps the most detailed system of osteological mensuration

for mammals is that of Duerst (1926), who also gives references to

and synonymy with the practices of other workers. Osborn’s

elaborate studies on the osteometry and craniometry of peris-

sodactyls (especially 1912 and 1929), although based on a single

group of mammals, also repay close study by anyone engaged in

gathering numerical zoological data. Within the limitless field of

special problems, only two strikingly different and suggestive

examples will be mentioned. Zeuner (1934) has used a system of

cranial angles as a basis for biological inferences regarding

rhinoceroses, and Soergel (1925) has employed numerical and

mathematical procedures in studying footprints and inferring

from them the sort of animal that made them.

Aside from dimensions and counts like those mentioned above,

color is a very important character in the study of recent animals.

Usually this is roughly described in the vernacular; or an attempt,

much better but still inexact, is made to match the color against

a standard chart, of which Ridgway^s (1912) is the most widely

used. The most precise method would be by photometric

spectroscopic analysis, but this is such an elaborate and exacting

process that it is impractical in most zoological work. Numerical

data on color can, however, be obtained more simply with a color

top or a tint photometer. In using a color top (see Collins 1923),

segments of white, black, and a set of standard colors, usually

complementary and primary, are adjusted to match the color to

be measured when they are spun so as to blend into a single color.

Adjustment of the segments by trial and error is a long process,
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and the matching is subjective and does not give very consistent

results. In a tint photometer (see Sumner 1927), reflected light

from a white surface and from the colored object to be measured

are viewed simultaneously through a color filter, and the light

from the white surface is cut down by a diaphragm until it

matches in intensity that from the object, giving a relative

measure of the amount of light, of the wave lengths passed by the

screen, that is reflected by the object. The percentage of closure

of the diaphragm is read from a scale and recorded numerically.

If several screens are used and a reading taken for each, a good

numerical measure of color can thus be obtained. The procedure

is reasonably rapid and simple, and the estimate of relative

intensity of light is easier and involves less subjective inconsist-

ency than the matching of colors. This method also has draw-

backs, especially its requirement of a complex apparatus and the

fact that it does not measure the whole color but only certain

components in it (the color bands passed by the filters). With-

out the use of an impracticably large number of filters, the color

could not be reproduced exactly from data gathered in this way.

This is, however, the most practical valid method of reducing

color to exact numerical terms that has yet been devised.

ACCURACY AND REFINEMENT

Since a continuous variate may take any of an infinite series of

values, its exact measurement would require an infinite number of

decimal places^ and is impossible. Such a measurement is there-

fore never an exact value but always a conventional representa-

tion of a range within which the exact value is believed to occur.

If the exact value does in fact occur within the indicated range,

the measurement is accurate, regardless of how many or how few

places are recorded. The smaller the indicated range (the more
places accurately recorded), the more refined the measurement.

Thus if an exact value of a given variate is 2.30749 . . . (plus an

infinite series of smaller decimals), measurements and records, as

2, 2.3, 2.31, 2.307, or 2.3075, are all accurate since each designates

a range within which the exact value does in fact lie, the limits

implied being respectively 1.5~2.5, 2.26-2.35, 2.305-2.315,

2.3066-2.3075, and 2.30745-2.30755. The impUed ranges are

^ This would be true even if the exact value were an integer, for this could

be represented only by an infinite series of zeros after the decimal point.
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thus respectively 1, .1, ,01, .001, and .0001; and the measurements

are progressively more refined because the ranges within which the

exact value is shown to lie are progressively smaller.

In practice a point of refinement is eventually reached where

accuracy is no longer possible. Thus in the preceding example

the material and methods might well be such that the third

decimal would not always be measured as .007 but might be

measured within a range of error of .005-.009, the whole measure-

ment recorded as 2.305, 2.306, 2.307, 2.308, or 2.309, of which only

the middle value is accurate since the true value does not, in fact,

lie within the ranges implied by the others. This range of error

has nothing to do with the range implied by the recorded figures,

which are accurate only so far as they can be carried out without

any range of error appearing.

With some exceptions, which are discussed later, refinement

should not be carried beyond the limit of accuracy. It is not,

however, true that refinement should always be carried to that

limit. It frequently happens, for instance, that accurate measure-

ments can be made to two decimal places but that the results

obtained from the actual use of these measurements would have

been the same if they had been carried only to one place. In such

a case it is a waste of labor and space to make or publish the more
refined measurements. Two factors, accuracy of measurement

and refinement desirable for the purpose in mind, are thus

involved in the ideal of making measurements neither more nor

less refined than necessary and of making them accurate to that

optimum degree of refinement.

Accuracy of measurement depends on the nature of the mate-

rial, equipment used in measuring, and personal factors such as

bias and consistency (reliability) discussed in the following

section. The degree of accuracy obtained under given circum-

stances can be determined experimentally. As an example, one

of the present authors made a measurement of tooth length such

as is routine work in vertebrate paleontology, repeating the

measurement independently on six different days, using a low-

power binocular microscope and a caliper calibrated to.l mm.
The results were as follows

:

13.0 13.1

13.3 13.0

13.2 12.9
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Expressed in integral millimeters, these measurements are all

13, while in tenths of a millimeter they range from 12.9 to 13.3,

averaging 13.1. From the distribution of these measurements

and other criteria extraneous here, it is certain that the exact

value was somewhere in the range 13.0-13.2. The measurements

are thus all accurate to two figures (13); for that implied range

(12.5-13.5) certainly includes the true value. They are not

accurate to three figures (one decimal place)
;
for no single one of

these more refined figures certainly includes the true value, and

two of them certainly do not (12.9, 13.3). This is nevertheless a

case in which records to three figures, one inaccurate, are prefer-

able to the accurate two-figure measurements.^ All the three-

place figures, even the most divergent, are closer to the exact

value than are the limits 12.5-13.5, implied by the two-place

figure 13. As a general criterion, inaccurate figures are useful if

their range of error is less than the implied range of the accurate

figures available, in other words, if the range of error for any one

place is less than 10 units, as in the example the range in the first

decimal place is .4, less than 1.0.

The smallest of the six measurements made in this experiment

is certainly 98 per cent or more of the exact value and the largest

102 per cent or less. It is thus certain that any one measurement

was within 2 per cent of the real value of the dimension measured.

Supposing, as other experiments show to be highly probable, that

this represents the degree of accuracy generally obtainable with

such equipment and with little or no personal bias,^ it is possible

to work out a schedule for measuring that will assure gathering all

the useful data and none that is so inaccurate as to be useless.

With a probable range of error of 4 per cent, as in this experiment,

such a schedule would be;

1 It might, of course, be preferable to have the third figure also accurate

if it is to be recorded; but the example is chosen to illustrate the fact that one

inaccurate figure may sometimes be legitimately recorded and that valid

results may be based on such figures. The reasons for this phenomenon
and the circumstances under which advantage may be taken of it are dis-

cussed in Chap. VIII. With much paleontological material, as in this

example, it is a practical impossibility to achieve complete three-figure accu-

racy; yet three-figure records may be better than two.
* In this case the same experiment was conducted independently with two

other observers equally accustomed to using the same equipment on similar

material and gave substantially the same results.
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Between .2 and 2, use two decimal places (.20-1.99).

Between 2 and 20, use one decimal place (2.0-19.9).

Between 20 and 200, use units (20-199).

Etc.

Another expression of the same rule is: Under the given or

similar conditions of material and technique, record three digits

if the first (to the left) is 1, and otherwise record only two. In

practice this means that a record of a tooth as 15 mm. in length is,

for practical purposes, absolutely accurate and a record as 15.8

is a better approximation for most purposes although not

absolutely accurate, but a record as 15.82 is in no respect better

than as 15,8. If the measurements are large, it is advisable to

change the unit so that no number larger than 199 need be used.

Thus, under these conditions, 390 mm. should be recorded as

39 cm.
;
for the figure 390 implies a range 389.5"390.5, whereas the

range really intended is 385-395 mm., expressed by 39 cm., z.c.,

38.5-39,5 cm.

Such a rule naturally is valid only for the given conditions,

but there is no difficulty in applying similar methods to any sort

of measurement. If the degree of accuracy obtained proves to

be insufficient for the purposes in mind, a refinement of technique

and increase of accuracy are usually possible. Considerable

inaccuracy is inseparable from the nature of some material, and

in such cases, refinement of technique is useless, and only prob-

lems soluble by the relatively inaccurate data can be usefully

attacked. In most paleontological work the degree of accuracy

shown by the preceding example is quite adequate for the pur-

poses involved, and in many cases a markedly higher degree of

accuracy is impossible. In some other fields such measurements

would be grossly inadequate, and accurate four- or five-digit

measurements may be both possible and desirable.

In the absence of any other criterion, it is proper to record as

many digits as are accurate or are found to be useful approxima-

tions by tests like that just described. When refinement may be

increased indefinitely by changes in technique, there nevertheless

comes a point beyond which it is useless to go; and for the deter-

mination of this point statistical methods provide the best

criterion. If a series of specimens is to be measured, the most

useful rule is to measure the largest and smallest specimens and

then to adopt a minimum unit of measurement such that it is
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contained at least 16 and up to 24 times in this range. If an

adequate series is not available, a much rougher but still useful

rule applicable to most linear dimensions is simply to record three

digits.^

In practice this means that measurements of a variate ranging,

say, from 10 to 12 mm. should be taken to .1 mm. This would

give 20 steps within the range, which sufficiently meets the first

rule. If the range were 75-95 mm., no decimal places need be

recorded, for there are 20 integral steps in the range. The first

example conforms also to the second rule. The second does not;

but the rougher rule would result only in making measurements

somewhat more refined than necessary, which does no harm.

Except in a few special cases it is useless greatly to exceed the

requirements of either mle, and unnecessary work can thus be

avoided. For instance, with a range 10-12 mm., measurements

to .01 mm,, giving 200 steps within the range, even though

entirely accurate would generally serve no useful purpose; and

the refinements of technique and added labor involved in making
such minute measurements would simply be wasted.

^

In the great majority of cases these rules ensure data that will

provide a maximum of useful information, sufficing for efficient

statistics and for any other usual zoological purpose. It is not

^ These may here be advanced as rules of thumb, but their real basis and
validity will appear when statistical methods have been discussed. For
reference, their derivation is as follows. Efficient statistics, those that give

more accurate information for a given sample than could have been derived

from any smaller sample, generally require grouping with a class interval not

exceeding one-fourth of the standard deviation of the distribution. The
smallest class interval available is the smallest unit of mensuration used for

the raw data. The standard deviation cannot be exactly determined before

the raw data are all gathered; but the range can readily be obtained, and the

standard deviation is almost never less than one-sixth or more than one-

fourth of this. Hence the efficient class interval and the largest suitable

unit of measurement should be contained not less than 16 and preferably

up to 24 times in the range. The more general but rougher rule depends on
the fact that the range is seldom less than 15 per cent of any single value of

the variate, generally much more. If it were at this low figure, a value 100
would usually imply a range cf 15 or more, 200 of 30 or more, 300 of 45 or

more, etc.
;
hence a record of three digits will almost always make available

at least 16 steps within the range, which complies with the preceding rule.

* This applies only to the raw data. Statistical constants are often

significant to more places than are these original observations.
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true that the rules must be met in order to provide useful data.

Measurements of the optimum refinement are not always prac-

ticable, and yet such substandard data are not on this account

any less accurate and may be highly useful. They are merely

less eflScient.

BIAS AND CONSISTENCY

One of the most troublesome difficulties in using numerical

data is bias, a tendency to favor some hypothesis or to lean toward

a numerical result not purely objective. In this sense, bias is

assumed to be unconscious and to have no flavor of disingeniious-

ness. It usually arises either in sampling, discussed in the

chapter, devoted to that subject, or in measurement.

Bias in measurement is subjective and personal. It usually

takes such forms as tendency to overrun or not quite to reach the

accurate figure for the measurement in question, tendency

toward or away from integral or some other certain values, or

tendency to favor or oppose a given hypothesis. The existence

of a tendency to overrun or underrun measurements can usually

be detected by having two workers independently make a large

series of measurements of the same objects in the same way. If

the average result obtained by one is significantly smaller than

that of the other, the existence of bias may be assumed and
similar further tests made to determine whose the bias is, what its

direction, and what its amount. The same sort of bias may often

be both detected and corrected by taking measurements in

duplicate in two different directions, for instance by opening

calipers to the dimension sought, then closing them to it, and

taking the mean if the two differ.

There is also a tendency when taking a series of homologous or

numerically closely similar measurements to make them more
nearly similar than is correct. This tendency, almost universal

if attention is not paid to it, may be largely eliminated (1) by
deliberately ignoring preceding readings and (2), when using

calipers, by throwing them far off the last measurement before

bringing them to the next. This precaution is an essential

feature of good measuring technique.

If not forewarned, many students have a bias toward integral

values; and if detected, this may be overcompensated by bias

away from them. Such bias with respect to particular numbers
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can usually be detected by checking over a large series of measure-

ments of many different sorts and determining whether any one

final digit occurs oftener than would be likely by chance. Care

must be taken that the data are not such as would really tend to

be concentrated about any one number in the last place. Tend-

ency to favor a hypothesis is perhaps the most obscure bias of all

and the most diflScult to detect or to avoid. If there is any real

possibility of such bias, measurements may be made by a worker

not acquainted with the hypothesis in question.

In addition to the forms of bias mentioned, there are also biases

of procedure, of instruments, and of materials. Some systems of

dealing with specimens consistently make them appear longer or

shorter than others. Biased instruments, such as one that does

not return precisely to zero when closed or an inaccurately

calibrated ruler, naturally produce biased results. Measure-

ments of shrunken or swollen skins and other specimens are

biased with respect to fresh materials. Inexact or incorrect

specification of the dimension measured also produces an effect

analogous to bias. The correctives for all these are fairly

obvious.

The possibility of bias can generally be reduced to insignificance

by duplication of measurement (perhaps varying the direction),

by maintenance of an objective attitude, by carefully standard-

ized procedure, by the use of highly refined instruments, by
recording exactly what the measuring instrument says, by ignor-

ing the purpose of the measurements as far as possible while they

are being made, and by recording the results in smaller units than

are to be used in ensuing calculation or publication. For trained

observers some of these precautions are automatic, and others are

unnecessary; but the complete elimination of bias is very diflScult.

The distinctive feature of bias is some degree of consistency, a

tendency to deviate from the ideal more often in some particular

direction than in others. Since the usual purpose of measure-

ments is to make comparisons, such deviations may have little

or no effect on the conclusions drawn. Thus, such a form of bias

as the almost unavoidable shrinkage of dead materials may be of

no importance if it is sufficiently consistent; and the deviations

from live measurements are hardly to be considered as bias as long

as comparisons are made only between specimens comparably
preserved. Similarly a worker may have a marked bias, and yet
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it may not affect his comparisons so long as he is highly consistent

and uses only measurements made by himself. It is a well-

recognized fact in zoology that measurements made by one

observer are always better comparable than those made by two or

more different observers. Here there is not only the element of

bias as it has hitherto been defined but also the related element

of personal idiosyncrasies in the exact definition and orientation of

measurements, which even the most rigidly standardized systems

of mensuration do not wholly eliminate.

The factor of consistency is thus at least as important as

that of bias, strictly speaking. Both factors are visible in

such examples as that given by Sumner (1927) in recording the

means obtained by each of three different observers measuring

the same sample of 10 specimens on two successive days. The
figures, for tail length in a sample of Peromyscus maniculatus

gambeliiy are given in Example 2.

Example 2.—Mean Measurements Taken by Three Observers on
Two Days

(Data from Sumner)

First

day

Second

day

Sumner 74.9 74.4

Second observer 70.9 72.2

Third observer 70.2 71.1

The second and third observers were clearly biased with respect

to Sumner, or he with respect to them; for his mean is on both

days considerably larger than theirs.^ The consistency involved

is of two sorts: that for the figures of a single observer and that

between those given by different observers. Each observer is

reasonably consistent with himself, Sunmer more so than the

other two. The figures of the second and third observers are

fairly consistent, but those of Sumner are not consistent with

theirs. In fact the figures strongly suggest that the second and

third observers used the same technique in nearly the same way
and that Sumner used a different technique—on the face of the

1 He does not give the data on which the significance of the difference could

be evaluated, but it is so marked that it may reasonably be assumed to be

significant.
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figures it does not necessarily follow that Sumner^s technique was

more accurate or more refined, although this also is hinted. Such

is, in fact, the case. Sumner measured the specimens on a special

measuring frame with calipers calibrated to .1 mm., and the other

two measured the loose specimens with a ruler. Incidentally the

figures clearly show that measurement to .1 mm. was here unduly

refined, even for Sumner’s more precise methods, and that the last

digit is not in any case either accurate or useful.^

Although the method is somewhat laborious, both of these sorts

of consistency can be measured. Any rather long series of

measurements is made by the same observer at two different

times or by two observers, and the two sets of measurements are

correlated (as explained in Chap. XII), the result being a coeffi-

cient that measures the agreement between the two sets and

hence the consistency of the two series of measurements of the

same objects. This is commonly called a ^^coefficient of relia-

bility,” but the term is misleading. Reliability more logically

relates to the approximation of recorded to true values. This

coefficient actually measures only consistency. An observer may
have a strong bias, hence be unreliable (unless the bias is known,

measured, and corrections applied); yet if this is consistent, the

coefficient in question will give him a high rating. In fact since

bias always involves some sort of consistency this method is not

adapted to detecting or measuring this common defect in numeri-

cal data.

1 Much the more so since these are means and not raw measurements.

A large range of error of measurement in the first decimal place is implied

even with Sumner’s unusually fine technique.



CHAPTER III

FREQUENCY DISTRIBUTIONS AND GROUPING

FREQUENCY DISTRIBUTIONS

The first step in reducing original observations to more compact
form and in preparing to draw any sort of conclusions from them
is to tabulate them in the form of a frequency distribution. A
frequency is the number of observations that fall into any one

defined category, and a frequency distribution is a list of these

categories with the frequency of each. Such distributions are

the basis for almost all important numerical operations in

zoology, and the use of numerical data depends on the definition

of the categories or groups in which the data are to be placed.

Qualitative Distributions.—The grouping need not be and often

is not in itself numerical. A common zoological grouping is that

of the taxonomic system, the group being a subspecies, species,

genus, or larger category in the hierarchy. Frequencies are

employed when it becomes necessary to count the number of

individuals within a given taxonomic unit observed under certain

conditions: the number observed in traversing a defined area,

the number caught by fishing operations, etc. Example 3 is a

frequency distribution of this sort.

Example 3.—Specimens of Fossil Mammals from the Scabritt Quarry,
Montana

(Original data)

No. of

Species specimens

Ectypodus hunteri 57

Leptacodon cf . iener 6

Bessoecetor thomsoni 30

Palaeosinopa senior 3

Unuchinia asaphes 1

Pleaiadapis anceps 10

Carpodapies hazelae 11

Phenacohmur frugivorus— ; 3

hitoleates notiaaimua 61

Condylarths or Creodonts, undetermined 9

Pantolambdid undetermined 2

84
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In other studies the groups may be defined ecologically, and the

frequencies may be either of individuals or of species or genera

observed within certain limits. Thus for the Bridger (Middle

Eocene of Wyoming) mammalian fauna as known to Matthew
(1909), a frequency distribution can be compiled as in Example 4.

Example 4.—Distribution of Bridger Mammalian Fauna by Habitat
Type

(Data from Matthew 1909)

Habitat
No. of

known genera

No. of specimens in

American Museum
collection

Aerial 0 0

Arboreal

:

Surely 13 184

Probably 11 485

Terrestrial 17 314

Fossorial 3 8

Amphibious or aquatic 1 12

The groups may be geographic or based on habits and activities

or on nonnumerical anatomical characters. Examples 5 and 6

will suggest the wide range of possibilities of this sort.

Example 5.—Physiological Condition op Specimens of the Eastern
Chipmunk, Tamias striaiusy Taken in July

(Data from Schooley 1934)

Condition Frequency

With embryos 11

Has ovulated recently 14

Not gravid, no recent ovulation 22

Example 6.—Bill Color in the European Starling, Siurnus vulgaris

vulgaris, in February
(Data from Hicks 1934)

Color Frequency
Yellow (bills more than 85 % yellow) 33

Partial (20 to 85 % yellow) 20

Dark (less than 20% yellow) 29

Quantitative Distributions.—Qualitative groupings pve fre-

quency distributions of nonnumerical variables, attributes. The
analysis and use of such data are treated in Chap. XIV. This
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and the several succeeding chapters are devoted more particularly

to distributions of variates, those in which the categories are

defined by numerical characters.

It was shown in the preceding chapters that the values of a

continuous variate are already grouped as they are originally

observed and recorded. Thus 9.2 mm. is not an absolute meas-

urement but is the designation of the midpoint of a group of

measurements, the absolute values of which may be anything

greater than 9.15 and less than 9.25. Such a figure as 9.2 in this

usage is thus simply a conventional way of representing a group

with the limits 9.15 and 9.25.

When continuous variates are designated by a single figure, this

figure is almost always the midpoint of the implied group. There

are, however, some exceptions, and these may lead to serious

numerical errors if not detected and adjusted to the usual conven-

tion. Thus in representing ages, this is usually done by the lower

limit of the group. A child 2 years old is not between the ages of

1 year 6 months (1.5 years) and 2 years 6 months (2.5) but

between the ages of 2 and 3. In all statistical operations,

including taking the mean, commonest of all such operations, this

has a strong influence as the following hypothetical distribution

shows

:

Recorded age

2

3

4

Frequency

6

20

5

Calculated on these data in the ordinary way (more fully expounded in

Chap. V), the mean or average age of this group of infants would appear

to be 3.0 years. The calculation is, however, invalid unless the records are

adjusted to represent group midpoints, thus:

Midpoint of

age group

2.5

3.5

4.5

Frequency

6

20

5

The mean age is now correctly found to be 3.5 years, a decided difference.

Some other age records are even more confusing. For instance,

horse breeders advance the nominal age of all horses, whenever

they were really foaled, on January 1, so that a ‘‘l-year-old
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horse may in reality be anything from just over 0 to just under

2 years in age, a '^2-year-old” between 1 and 3 ye^^rs, etc.^

Almost all numerical procedures are based on the convention

that the figure recorded is the midpoint of the group; and if this

is not true of a given set of data an adjustment must be made.

GROUPING

In making measurements the record is to the nearest unit,

which may be at any point on the decimal scale, and the implied

grouping is of the sort just discussed, with the record understood

as the midpoint of a group extending one-half unit below and
above this point. In compiling frequency distributions, it is

often advisable to expand the group limits (called here secondary

grouping), thus giving fewer groups and higher group frequencies.

Such groups usually are represented not by a single figure, ^ but

by two figures, called the "group limits” or "class limits,” joined

by a hyphen.

The relationship between the original measurements, the

so-called group limits, the real limits of the groups so designated,

and the midpoints of the groups is somewhat confusing, so much
so that most textbooks on statistics and biometry give an incor-

rect usage and one that has led to errors, sometimes significant, in

a great deal of the work published in this field even by professional

statisticians. If original measurements are taken to .1 mm., then

the classes of their distribution are designated by a series of single

figures each .1 mm. larger than the last, as in Example 7.

Example 7.

—

Distribution of Measurements as Usually Given
(Hypothetical data)

Measurement Frequency

9.1 1

9.2 5

9.3 10

9.4 7

9.5 3

9.6 2

^ Apparently a special sort of grouping with the midpoint designated; but

the situation is more complex than this, for the relationship of designation to

group depends on the time of the year when the records were made. This

particular case is of little interest to zoologists, but similar anomalies in data

should be noted and taken into account.

* Except in the special case of “rounding*' numbers; see p. 44.
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If this were translated into the real group limits of the meas-

urements, a form of record unnecessarily complex and never

employed, although many errors might have been avoided in this

way, it would read as in Example 8.

Example 8.—Distributions of Measurements by Real Group
Limits

(Same data as in Example 7)

Limits of measurements Frequency

9.05-9.15 1

9.15-9.25 5

9.25-9.35 10

9.35-9.45 7

9.45-9.55 3

9.55-9.65 2

If, now, it is decided to gather these measurements into larger

groups, these new groups are usually designated by the smallest

and the largest original measurements placed in them

:

Group Frequency

9. 1-9.3 16

9.4-9. 6 12

These figures 9. 1-9.3 and 9.4-9.6 are what are called the group

or class limits, but obviously they are not real limits. If they

were, there would be no place in this grouping for measurements

that lie between 9.3 and 9.4. Moreover, since all measurements

of 9.1, 9.2, and 9.3 were placed in the 9. 1-9.3 group, and since

these measurements included, respectively, those between 9.05

and 9.15, 9.15 and 9.25, and 9.25 and 9.35, all measurements

between 9.05 and 9.35 are included in the group labeled 9. 1-9.3,

and these are the real limits of that group. Similarly the real

limits of the group labeled 9.4-9.6 are 9.35-9.65. This peculiarity

arises from the fact that the figures 9.1, 9.3, 9.4, and 9.6 were

themselves the midpoints, and not the limits, of groups.

The midpoints of the new groups thus formed are respectively

9.2 and 9.5, In calculations based on grouped data, these mid-

points are taken to approximate the average value of all the

measurements placed in the corresponding groups; and calcula-

tions are based on the midpoints, the fixing of the true value of

which is thus important. For purposes of calculation the mid-

point is often added in tabulating a frequency distribution of this

sort:
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Group
1

Midpoint Frequency

1

9. 1-9.3 9.2 16

9. 4-9.

6

9.5 12

This implies that although the 16 measurements placed in the

group called 9.1-9.3 are really scattered from 9.05 to 9.35, their

average value is about 9.2, which is exactly in the middle of their

range.

Most workers have hitherto assumed that the lower figure in

the group designation is in fact its lower limit, so that the group

9. 1-9.3 does not include any measurements below 9.1 (not even

9.0999 . . . ) and does include all measurements between 9.1

(exactly) and the lower limit of the next group, 9.4, or that the

group limits are 9.10000 ... (to as many decimal places as

desired) and 9.39999 ... (to as many places as desired). This

assumption is very seldom true. With some types of data it

could perhaps be made true, although this is almost never done;

but measurements of the sort here under discussion cannot be

placed in groups of which this assumption is true, although almost

all biometricians have supposed that this could be and was done.

Since everything from 9.05 to 9.15 was measured and recorded as

9.1, it is obviously impossible to place those of them below 9.10

in one group and those above in another. All go into the 9. 1-9.3

group. Similarly measurements above 9.35 are not, as these

workers imply, placed in the 9. 1-9.3 group but in the 9.4-9.6

group.

If this assumption were correct and the lower so-called group

limits were the real lower limits, then the midpoint of the group

9. 1-9.3 would be 9.25, not 9.2, and they would arrange the

distribution given correctly above in the following incorrect way:

Group Midpoint Frequency

9. 1-9.3 9.25 16

9. 4-9.

6

9.55 12

Abundant examples of this erroneous identification of the

midpoint may be found in almost any textbook of statistics or
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report on research in which grouped data were used. The same
error is also common, with even less reason, in dealing with

grouped distributions of discontinuous variates.

The relationships between recorded measurements, conven-

tionally stated class limits, real limits and midpoints, and the

false limits and midpoints so often used are clearly shown in the

accompanying diagram (Fig. 1). The magnitude of the groups

formed is designated by the class interval, which is the distance

from any point within a group, such as the lower stated limit or

the midpoint, to the corresponding point in the next higher or

lower group. The class interval is .3 in the examples just dis-

6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9

S-bted limits

Limifs of measurements

really included and '

the real midpoint

Incorrectly assumed
limits and the .

false midpoint 6.15 6.45 6.75

Fig. 1.—Midpoints and limits in primary and secondary grouping. The
horizontal line represents the scale of all possible measurements of a continuous
variate. The numbers above this line are original measurements, to .1 mm.,
which are in fact the midpoints of primary groups the ranges of which are shown
by the brackets beneath the recorded measurements. Below the line is indicated
secondary grouping with interval .3 mm. The stated limit’s are in terms of the
original measurements and are shown not to correspond with the real limits.

The lowest set of brackets shows an assumption commonly made as to limits and
midpoints demonstrated by the diagram to be incorrect.

cussed. Although it is usual and preferable for most purposes to

designate secondary groups by their conventional limits, a

distribution may also be given by midpoints alone, even though

the grouping is larger than that of the original measurements.

If the classes are designated by one number and the difference

between successive designations is not a single unit, it may be

understood that the numbers are midpoints of enlarged groups

and not measurements.

In some cases, classes are designated with a closer approach

to the real limits by giving the second number one or two added

places, generally filled by 9^s, for instance, 9.1-9.399. Such a

group does nearly approach the limits often erroneously assumed

for a group 9. 1-9.3, that is, it is meant to include everything

-I—I- i—i—

i

—
I I I !

I I

6 .0- 6.2

6.1

I I I

6.3- 6.5

6.4 6.7
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greater than 9.100 and less than 9.400. Of course, measurements
to a single decimal place cannot be grouped in this way. The
exception to the practice and usages already explained is only

Example 9.—^Length of P4 in a Sample of the Extinct Mammal Ptilodus

monianus from the Gidley Quarry
(Original data)

A B

Original measurement,
Midpoints Frequencymm. (class interval Frequency (interval .3 mm.)

.1 mm.)

7. 1-7.3 7.2 2

7.1 1 7. 4-7.

6

7.5 8
7.2 1 7. 7-7.9 7.8 17

7.3 0 8. 0-8.

2

8.1 20

7.4 0 8. 3-8.

5

8.4 21

7.5 6 8. 6-8.8 8.7 6

7.6 2 8.9-9.

1

9.0 1

7.7 5

7.8

7.9

8
A

C
4

8.0 4
Class limits

Midpoints8.

1

8.2

8

8
(interval .3 mm.)

Frequency

8.3

8.4

6

8

8.5 7 6.9-7.

1

7.0 1

8.6 6 7. 2-7.4 7.3 1

8.7
1

0 7. 5-7.

7

7.6 13

8.8 0 7. 8-8.0 7.9 16

8.9 0 8. 1-8.3 8.2 22

9.0 0 8.4-8.

6

8.5 21

9.1 1 8. 7-8.

9

8.8
1

0

9 . 0-9 .

2

9.1 1

D

Class limits

(interval .5 mm.)
Midpoints Frequency

6, 8-7.

2

7.0 2

7. 3-7.

7

7.5 13

7.8-8.

2

8.0 32

8.3-8.

7

8.5 27

8. 8-9.

2

9.0 1

apparent, if this sort of designation is correctly used, for it really

implies data to as many places as are given by the second figure.

The group 9.1-9.399 in this type of designation is, or should be,

the same as 9.100-9.399 in the type of designation previously
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explained. The real midpoint of this group is 9.2495. It is

generally assumed to be 9.25, which is not exactly right but is

almost always an adequate approximation.

Example 9 shows a frequency distribution in terms of the

original measurement to .1 mm. and with three different second-

ary groupings, two with class interval .3 mm. but with the limits

at different points on the scale and one with class interval .5 mm.
To compile such frequency distributions, it is first necessary to

make the measurements to as fine a point as will be required for

any desirable grouping. These records will be irregularly

scattered, for it is not practical to make them in the order of their

magnitudes. The next procedures are to write down all the steps

from the smallest to largest in the unit of measurement (to .1 mm.
in the example), to tally against this from the original measure-

ments, and then to reduce the tally marks to numbers. This

results in the first form of distribution given above. ^ If a larger

unit of secondary grouping is to be employed, the interval to

be used and the point at which to start (or positions of the mid-

points, determined by this) are decided and the frequencies taken

from the distribution of the measurements. ^ This may be facili-

tated as in Example 10, using data from sections of the first two

distributions, in Example 9.

This also facilitates the selection of the best secondary group-

ing, discussed in the next section.

It is customary to speak of the distribution in terms of the

original measurements (z.c., with the class interval equal to the

smallest unit of measurement) as ungrouped and of a distribu-

tion with larger class interval as ^‘grouped,^^ but this is here

avoided. Especially in conjunction with the record of measure-

ments by midpoints rather than by limits, it obscures the fact that

the measurements are really grouped (if of a continuous variate),

a fact that should always be kept in mind.

Nondecimal Units.—Some workers take measurements in units

that are not decimal and yet write them in the ordinary way, e.g.,

measure only to half millimeters but record these as decimals.

1 In some cases it is unnecessary to take this step if only larger groups are

to be used—^tallying may be directly against the class limits employed. It

is, however, usually convenient also to have the original measurements in

the form of a frequency distribution.

* Or tallied from the original observations.
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This practice is confusing and indefensible in the face of the

universal convention as to limits in decimal measurements. Such

an author will record 2.3 mm. as 2.5, because it is nearer to that

than to 2.0. By 2.5 he means a group 2.25-2.75, but his reader

can only infer that 2.5 stands for the group 2.45-2.55 according to

convention, a group to which the measurement does not really

belong. It would be preferable to write the measurement as

2}/2 nim., thus showing that the unit of measurement was ^2 nim.

Example 10.—Secondary Grouping, or Decreasing the Number op
Groups in a Frequency Distribution

(Part of data of Example 9)

Original

measure-

ments

Frequency

Frequency

(interval

.3 mm.)

Limits

(interval

.3 mm.)
Midpoints

7.7 5

7.8 8 17 7. 7-7.9 7.8

7.9 4
.

8.0
1

4

8.1 8 20 8.0-8.

2

8.1

8.2 8

8.3 6

8.4 8 21 8. 3-8.

5

8.4

8.5 7

and that the group implication is that the dimension is nearer

23^ than any other multiple of 3-^, i.e., that the class limits are

234'~2^. Such a record ha-s, however, the serious drawback that

an integer, as 2, does not indicate the unit of measurement.

This difficulty could be overcome only by writing all measure-

ments as fractions, multiples of the unit used, i.e., writing 2 as

^ and 2}^^ as % if the unit was Yz Even this is clumsy and

makes subsequent calculation based on the measurements

difficult. Still worse are cases in which nondecimal fractional

measurements are used but the fractional unit is not the same for

the different measurements to be compared, for instance, one

measurement may be recorded as 33^^, another to be compared

with this as 33>^^, another as 33-^, etc. ^ It is practically impossible

^ This has been a common practice in recording fish proportions.
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to base valid frequency distributions and make accurate compari-

sons and calculations on such data. The general solution of these

difficulties is to make measurements in decimal units whenever

possible and, when this is not possible or for some special reason is

undesirable, to make records by class limits, not by class mid-

points. Thus inm. should be recorded decimally as 2.3-2.7

(conventional limits) or 2.25-2.75 (real limits), not as 2.5.^

Rounding Figures.—The practice of rounding figures, that is, of

reducing the number of places or digits recorded, is a special

case of grouping in which the class intervals are increased in

powers of 10. Thus a measurement 2.132 mm. has a class

interval of .001 mm. If rounded to 2.13, the interval is multi-

plied by 10, becoming .01; or if rounded to 2, the interval is

multiplied by 1,000, becoming 1.

Rounding introduces a special difficulty not present in enlarg-

ing groups by multipl3dng intervals by any number not a power

of 10. If the multiplier is not decimal, the real class limits are not

integral in the last place recorded in the original measurement;

but with a decimal multiplier they are. Thus if records are to .1

mm., interval .1, and the interval is increased to, say .4 mm., the

new class limits are not integral tenths but in multiples of .05.

A measurement of 2.5 mm. (real limits 2.45-2.55) will then fall

into such a group as 2.4-2.7 (real limits 2.35-2.75). There is no

ambiguity in placing any multiple of .1 mm. in such a group.

But if the class interval is multiplied by 10, making it 1 mm. and

rounding the figures to integral millimeters, real class limits

become 1.5-2.5, 2.5-3. 5, etc. (not 1.45-2.55 or any similar

multiples of .05). Where, now, is a measurement of 2.5 to be

placed? It could either become 2, of which it is the upper limit,

or 3, of which it is the lower limit.

A possible solution for a series of such measurements would be

to round half of them into the lower and half into the upper group,

but this is seldom practical. Moreover, the operation of round-

ing is applied to single figures as often as to series. Another and

better solution is to go back and carry out the original measure-

ment, or the calculation from which a figure to be rounded was

derived, to more places, until it is no longer on a limit of the

rounded group. Thus, if a number 2.35 is to be rounded to

VThe class midpoint 2.5 would, however, be used in some subsequent

operations, such as finding the mean.
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multiples of .1 mm., it could be placed with equal reason either as

2.3 or as 2.4. If, however, the original measurement or calcula-

tion be carried out to another place, the figure might prove to be

2.347, showing that it should be rounded to 2.3, or 2.351, to be

rounded to 2.4, etc. If the third decimal place proves to be zero,

that is if the figure is 2.350, a fourth place will have to be obtained,

when, for instance, 2.3498 will be rounded to 2.3 or 2.3502 to 2.4.

That is the only accurate, unbiased way of rounding numbers
that happen to fall at the class limits. In dealing with measure-

ments, however, it is seldom practicable. The original specimens

may not be available, or more refined measurements may not be

accurately possible. Even with a number derived from calcula-

tion, its carrying to more places may be unnecessarily laborious

and may take it beyond any reasonable limits of accuracy and
significance. It is therefore customary in rounding numbers to

take arbitrary limits at .5 below and .4 above the midpoint of the

rounded group: 2.35 is rounded to 2.4; 2.34, to 2.3; 1.5 or 2.4, to 2;

but 1.4 to 1, and 2.5 to 3.

This convention introduces bias into figures. The real class

limits of 2.3 are 2.25 (or 2.250)-2.35 (2.350). The rounding

convention makes the limits used actually 2.245-2.345, or .005

lower than the real limits. Thus, rounding by this rule tends to

reduce the recorded values of numbers by an amount equal to

one-half the smallest unit of the original number. This means

that if numbers to two decimal places are rounded to one decimal

place, they will, on an average, be reduced in value by .005; or if

numbers to one decimal place are rounded to integers, they will,

on an average, be reduced in value by .05. This is a small

difference; it usually has no significance, and the slight loss of

accuracy is compensated by the simplicity of rounding in this

way. At the same time the existence of this bias should be

known; and if it has any probable bearing on the results obtained,

it should be eliminated either by not rounding or by rounding in

the accurate way explained above.

FREQUENCY DISTRIBUTIONS AND GROUPING
OF DISCONTINUOUS VARIATES

The quantitative distributions and groupings hitherto con-

sidered have all been of continuous variates. Discontinuous
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variates also yield quantitative frequency distributions that, with

a few exceptions, have the same properties and are the basis for

the same sorts of calculations and statistical operations as the

distributions of continuous variates. Typical but varied

examples of discontinuous variates are given in Example
11 A-D.
Such data may be grouped in the same way as those of con-

tinuous variates. In such grouping, the recorded counts are to be

considered as midpoints and not as limits, and the midpoints of

the groups are halfway between the original counts.^ Among
numerous other ways, the last example given could be grouped as

shown in Example 12.

Example 11.—Distributions of Discontinuous Variates

A. A variable physiological function. Number of breaths taken in a single

breathing period by a young Florida manatee (data from Parker 1922)

Breaths taken No. of times observed

(the variate) (frequency)

1

2

3

4

16

13

2

2

B. Variable reproduction. Number of young in nests of tree swallows,

Iridoprocne bicolor (data from Low 1933)

No. of young No. of nests

(variate) (frequency)

1

2

3

4

5

6

7

1

4

7

31

56

17

4

C. Discontinuously variable anatomical character. Number of serrations

on the last lower premolars of specimens of the extinct mammal,
Ptilodus montanus

No. of serrations No. of specimens

(variate) (frequency)

13

14

15

8

19

2

* Most statisticians use the counts as if the first were a lower limit and, for

instance, give the midpoint of a group 46-42 of a discontinuous variate as

41,6; but this is certainly incorrect. The midpoint of 46-42 is 41.
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Example 11.—Distributions of Discontinuous Variates.—(Continued)

D. Discontinuously variable anatomical character. Number of caudal

scutes in the king-snake, Lampropeltis getulus getulus (data from

Blanchard 1921)

No. of caudals No. of specimens

(variate) (frequency)

40 3

41 2

42 4

43 4

44 4

45 7

46 6

47 3

48 9

49 2

50 5

51 2

52 1

53 2

54 3

55 0

56 1

57 0

58 1

For a discontinuous variate, the raw data, the individual counts, are not

grouped but are absolute values. The 6 specimens of Lampropeltis g. getulus

with recorded caudal counts of 46 do not have from 45.5 to 46.5 caudals.

Each of the 6 has exactly 46 caudals.^

In the grouping with interval 4 (or any other even number), the

midpoints are fractional and are not values that the variate can

actually take. This introduces a series of imaginary values if the

midpoints are used in calculation, and the conception is difficult

and (some believe) logically objectionable. For this reason it

may be preferred to use only groupings with intervals of odd

numbers, so that the midpoints will be integers and will be real

values of the variate. In fact, however, the use of imaginary

values as midpoints is not mathematically invalid, the results

^ Occasionally there is some doubt in the observations; it may be, for

instance, that a count could equally weU be called 5 or 6. In such cases, if

decision is really impossible by any objective means, it may be valid to record

the count as 5)^, and this may even produce greater accuracy in the derived

statistical data. If this method is employed, attention should be called to

the exact usage, since there is no general understanding of such a convention.
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based on them are just as accurate as those based on real values as

midpoints, and there is no reason why they should not be used if

more convenient in other respects.

For purposes of calculation the ungrouped data are usually used

for discontinuous variates. This is more accurate, and the

number of steps is seldom so great as to make the calculation

unduly laborious. The form of the distribution is, however,

Example 12.—Two Forms of Secondary GroupincxS of Data from
Example IID

A. Interval 3 B. Interval 4

Group Midpoint Frequency Group Midpoint Frequency

40-42 41 9 40-43 41.5 13

43-45 44 15 44-47 45.5 20

46-48 47 18 48-51 49.5 18

40-51 50 9 52-55 53.5 6

52-54 53 6 50-59 57.5 2

55-57 56 1

58-60 59 1
[

usually clearer if some grouping is employed, especially with the

small samples usual in zoology.

NUMERICAL QUALITATIVE GROUPING

In the distributions of variates discussed so far, the categories

in which the observations are grouped and for which frequencies

are recorded are themselves quantitative concepts. It is also

possible and often is highly useful to employ categories that are

defined by numerical data but that are conceptually qualitative

and the consideration and analysis of which should be with the

viewpoint and methods of the study of attributes rather than of

variates. Because the categories are defined numerically, such

groupings are easily confused with truly quantitative distribu-

tions, and it is important to recognize the distinction.

One of the commonest of such arrangements of data, especially

useful in studying association (see Chap. XIV), is the division

of a frequency distribution into two groups, one in which the

values of the variate exceed and one in which they are less than
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a given value. The value selected may be the midpoint of the

distribution or may be at a break in the distribution or at any
other point suggested by the problem in hand. In any case,

the resulting twofold grouping, although literally quantitative,

is effectively qualitative. It is a division not into a series of

equal, quantitative steps, but into larger and smaller qualitative

groups. Such a division, from data for a continuous variate,

using a break in the distribution as the division point, is given

in Example 13.

Example 13,

—

Total Length of Females op the King-snake,
Lainpropeltis elapsoides elapsoides

(Data from Blanchard 1921)

A. Quantitative grouping (interval

25 imn.)
B. Qualitative grouping

lAiiigth Frequency Length Frequency

150-174 1 IjCss than 300 9

175-199 2 Greater than 300 25

200-224 3

225-249 2

250-274 0

275-299 1

300-324 0

325-349 2

350-374 2

375-399 5

400-424 4

425-449 4

450-474 3

475-499 2

500-524 3

Such a grouping might be made, for instance, to see whether

larger size and smaller size, as attributes, can be associated with

greater age and lesser age, or with occurrence in two different

regions, or with any other factors.^

Sometimes a multiple grouping will be suggested as in Example

14.

^ The association is almost certainly with age in this example, although the

data to prove this are not available.
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Example 14.

—

Total Length of the Recent Fish Caranx melampygus

(Data from Nichols 1935)

Qualitative length

groups

104-115

120-125

128-136

147-169

195-208

Frequencies

4

7

5

2

2

Such a grouping suggests a quantitative frequency distribution

and may be mistaken for one or may even be supposed by its

author to be one. If it were so intended, it would be a very

careless and unsound grouping, and conclusions based on it

would be inaccurate and probably invalid. As a qualitative

grouping, however, it is valid and useful. In the example these

are qualitative age groups necessarily defined indirectly in

terms of size and shown to be associated with various growth

phenomena.

CRITERIA FOR SECONDARY GROUPING

In designating numerical groups, it must be clear whether the

numerical designation is the midpoint, lower limit, upper limit,

or both limits, and whether the limit is absolute or is in terms

of the original measurements. It is assumed that a single num-
ber designates a midpoint unless the contrary is explicitly stated.

If only the lower limit or only the upper limit is given, this

usage must be specified. If two figures separated by a dash are

given, these are the two limits. It may usually be assumed that

these are given in terms of the original measurements, hence

that they are midpoints of the smaller groups of observation

from which the larger groups have been derived. If the figures

are intended as absolute limits, they are generally and should

always be distinguished either in words or by added decimal

points on the second figure. Thus 20-22, designating a group

for a continuous variate, will be assumed to be in terms of original

measurement and hence to have the true limits 19.6-22.6 and

midpoint 21; but 20-21.99 is assumed to represent absolute

limits, not 19.6-22.5 but 20-22, the midpoint still being 21. It

has been noted that two-place data cannot be distributed within

groups of such absolute limits. An observation 20 would be
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indeterminate as to group, for its value can be anything from
19.5 to 20.5 and if it is below 20.0 it does not belong in the

20-21.99 group. It does belong, however, in a 20-22 group (in

terms of original measurements).

For discontinuous variates the group limits are also assumed
to be in terms of the original counts.

The first requirement of valid grouping, and one of the most
frequently ignored, is that the group designations be accurately

defined and that all the data enter the groups as designated.

In quantitative grouping the next requirements are that the

groups should be of equal size and mutually exclusive. Within

a single distribution, groups such as, for instance, 10.5-11.4

and 11.0-11.9 or 10.5-11.4 and 11.5-11.9 are incompatible and
should never be used. The data must be arranged in groups such

as 10.5-10.9, 11.0-11.4, 11.5-11.9, or any other series of equal

and exclusive steps. In qualitative grouping, whether on

numerical or other definitions, the criterion of equal size does

not apply; but the principles of unity and exclusion are equally

important and sometimes are more obscure so that failures in this

respect are common in the literature. It is frequently stated that

a given cliaracter is present in a certain number of cases (has a

certain frequency) and absent or indeterminate in so many others.

This grouping is invalid because the second group may or does

include among the indeterminate cases some that had the

character and hence belong in the first group. The twofold

grouping is not mutually exclusive, and there are really three

groups; present, absent, and indeterminate. But presumably it

is the presence or absence of the character that is being studied,

so that the indeterminate specimens really have nothing to con-

tribute to the problem and should not be included in the data.^

Decision as to what secondary grouping is to be made depends

on the uses to which the groups are to be put. These uses are

1 This simple logic is so often contravened that it apparently is not obvious

and requires statement. Commonly the form of the error is to say that

50 per cent of the specimens have the character and that in the other 50

per cent it is absent or indeterminate; or, slightly better but still wrong in

most cases, that 50 per cent have the character, 30 per cent do not, and

20 per cent are indeterminate. The correct expression of these facts is that

of the determinable specimens 62.5 per cent have the character and 37.5

per cent do not.
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discussed in detail in the following chapters, and the purposes

and procedures of grouping will be clearer when these chapters

Example 15.—Two Arrangements of Secondary Grouping, with the
Same Interval

Original

incasureiTient
Frequency

A. Grouped fre-

(luency (interval

.3)

[B. Same in differ-

ent position

8.7

8.8

8.9

9.0

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

0

0

1

0

8

10

7

5

2

7

0

0

1

18

14

7

1

25

14

Distribution A Distribution B

Class

limits
Midpoints

1

Average of

individual

measure-

ments

included

Class

limits
Midpoints

Average of

individual

measure-

ments
included

8. 7-8.

9

8.8 8.90 8. 8-9.0 8.9 8.90

9.0-9.

2

9.1 9.15 9. 1-9.3 9.2 9.20

9.3-9.

5

9.4 9.36 9. 4-9.

6

9.5 9.51

9. 6-9.

8

9.7 9.60

In the first grouping A, the frequencies are irregularly distributed within

each of the classes shown. As a result, the class midpoints differ by .10, .05,

.04, and .10 from the means of the individual measurements which, in calcu-

lation from such grouped data, they are taken to represent. In the second

grouping B, the frequencies are almost symmetrically distributed in each

class, and the class midpoints agree almost exactly with the means of the

individual measurements.

have been read. In general the purposes of secondary grouping

are to simplify calculation and to bring out formal characteristics
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of the distribution. Frequently, especially with small samples,

the same grouping will not serve well for both purposes.

Grouping is defined by the class interval and by the position

of any one limit or midpoint. The class interval together with

the total range of the observations to be grouped determines how
many classes or steps there will be in the grouped distribution.

This, in turn, determines the concentration or dispersion of

frequencies. Since the total frequency is fixed, if there are

fewer classes each will tend to have a higher frequency; and if

there are more each will tend to have a lower frequency. In

grouping for calculation the number of classes should generally

be between 15 and 25. If the original data cover only 25 or

fewer steps, calculation should be based on these data and not

on further grouping.^ It is rarely advisable to group discon-

tinuous variates for calculation.

In calculating from secondary grouped data, the class mid-

points are taken to represent all the observations included in

the class. It therefore follows that in grouping for this purpose

that arrangement is best that produces groups in which the mid-

point of each class most nearly corresponds with the mean of the

individual values included in the class, or in other words in

which the individual values in each class are most symmetrically

distributed around the midpoint of the class. If the secondary

grouping is done from a frequency distribution of the individual

values (original measurements), the degree to which this ideal is

approached and the position of the classes that best corresponds

with it may easily be determined by inspection and trial. Thus

in Example 15, an extract from a (hypothetical) distribution,

arrangement B is clearly better than arrangement A although

the interval is the same.

Even if the secondary grouped distribution is not to be used in

calculation, it is well to follow this criterion as much as possible.

The more nearly these conditions can be fulfilled, the more proper

it is to reduce the number of classes or to increase the class

interval.

1 Some of the examples in this book do not follow this rule. They are

given to show the method involved and not for the sake of their concrete

results. The method is sometimes easier to comprehend if fewer groups are

used than should be employed in actual research, and space is also saved with

this gain in clarity. In practice, also, fewer than the ideal number of groups

may sometimes be used to obtain a quick result in preliminary work.
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If the frequencies are low, the whole sample small, even

though the number of steps (classes) in the original data is con-

siderably greater than 25, secondary grouping for calculation may
be unjustified. In addition to the criterion just explained, in

such cases this grouping, without reducing the number of classes

below 15, should produce a marked concentration of frequencies

in some classes and should tend to eliminate frequencies of 0 or

1 except toward the ends of the distribution.

Grouping that is satisfactory for calculation is also satisfactory

for the further purpose of reducing the bulk of the data for publi-

cation. All that is required for publication is that satisfactory

results be derivable from the data published, so that a compact

table on which accurate calculations can be based is just as good

as a much longer and more diffuse table of the raw measurements.

The way in which secondary grouping can be used to bring out

the form of the distribution is well exemplified by the figures for

caudal scutes of Lampropeltis getulus getulus on pages 47-48.

The frequency distribution of the original data is long and irregu-

lar, and it is difficult to detect any pattern in it. When these are

grouped with interval 3, giving 7 classes, a very definite pattern

emerges. When they are grouped with interval 4, 5 classes, a

similar pattern is evident but it is now so compressed as to be

less clear. Evidently for these data a secondary grouping with

interval 3 is better than the raw data or than any other grouping

to show the distribution pattern. That secondary grouping is

best for this purpose which most clearly and smoothly brings out

such a pattern, a criterion that will be more easily applied when
the sorts of patterns involved have been considered in the next

and subsequent chapters.

Secondary grouping for this purpose generally requires fewer

classes than are advisable for calculation, and this is particularly

true with small samples such as are usual in zoology. The num-
ber of classes should usually be less than 16 and more than 4,

while for calculation they should if possible be more than 15. In

grouping for pattern, it is often an advantage to have an odd
number of classes; for this will give a middle class, an important

point in most zoological distributions. It should tend to smooth
out any small random fluctuations in the frequencies so that they

tend to rise or to fall steadily through several successive classes.

In Example 12, with interval 3, they rise through the first three
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and fall through the last five classes in an orderly way, and in

the raw data (Example 11) they reverse direction eleven times.

The grouping should tend to eliminate frequencies of 0 within the

distribution and also any very low frequencies except toward the

ends. In the example mentioned, the raw data have two internal

zeros and several low frequencies of 1 to 3 far from the ends, and

the grouped data have no internal zeros and have relatively low

frequencies only in the last two classes, where they may be

expected to occur in any case.



CHAPTER IV

PATTERNS OF FREQUENCY DISTRIBUTIONS

GRAPHIC REPRESENTATION

A frequency distribution has characteristics of its own, not

seen in the isolated observations, and these are properties of the

data as a whole on which the most important deductions and

comparisons can be based. The essential characteristic of a

distribution is a pattern formed by the rise and fall of the values

of the frequencies as the values of the variate increase. This

pattern is shown by the distribution in numerical form, but it

almost always stands out more clearly if it is made into a dia-

gram or picture, and such graphic distributions may convey

much of the information in the most simple, rapid, and concise

way.

In all graphs of frequency distributions, the values of the

variate are laid down on a horizontal line, the a:-axis, as abscissa,

starting at the lower left-hand corner of the diagram, and fre-

quencies are measured from the same point upward along the

vertical ^/-axis as ordinate. For purposes of such plotting, the

axes may be called the A- and /-axes, X being a conventional

symbol for the value of a variate and/ for its frequency, which in

these cases takes the place of the conventional y in mathematical

curve plotting.

Aside from a few exceptional cases, the initial value of the

/-axis should be 0. It would be preferable also to begin the

X-axis scale at 0; but if the lowest X of the distribution is a large

number, as it often is, this means that a large blank space will

occur to the left of the diagram. In such cases it is usually

advisable to begin the X-scale at an arbitrary number shortly

below the lowest observed value of X.

The simplest way to construct such a diagram is to place dots

at points defined by the pairs of corresponding X and / values.

These are not very satisfactory because the scattered dots do not

56
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readily suggest a pattern^ and the magnitudes involved are not

readily grasped.

A dot diagram of this sort is changed into a frequency polygon

by drawing a line from each dot to the next. The line is pref-

erably joined to the edge of the diagram by including on each

side a value of the variate for which the frequency is 0.^ In a

frequency polygon (if both ends have 0 frequency), the whole area

is proportional to the total frequency, and the distances from the

points (usually angles of the polygon) to the X-axis are propor-

tional to the class frequencies. This type of diagram has the

disadvantages that the verticals to the X-axis are proportional to

frequencies only at these points, where the frequency is supposed

to be concentrated, and that the areas above the X-axis for

the given classes, magnitudes generally clearer to the eye than are

the linear distances, are not proportional to the frequencies. The
principal advantage of the frequency polygon is that it nearly

resembles a curve, the theoretical form to which the angular

pattern is to be related. This advantage is generally not great

for anyone accustomed to the use and characters of distributions,

and frequency polygons are not very commonly used. They
should particularly be avoided if there are abrupt changes of

slope, which tend to make the polygon misleading.

The commonest and for most purposes the best graphic repre-

sentation of a frequency distribution is by a histogram. To make
a histogram, a vertical line is erected at each class limit, and these

are connected across their tops by horizontal lines at a height

equal (on the /-scale) to the frequency of the class. If raw

measurements or counts are used, it should be remembered that

these are midpoints, and the class limits should be drawn halfway

between them. If secondarily grouped measurements are used,

the true limits and not those of any convention are to be used

(see Chap. III). Sometimes in the final drawing vertical lines

within the diagram are omitted and only the external boundaries

of the histogram drawn, but such a diagram is usually harder to

read.

^ They are also liable to confusion with a scatter diagram, which is quite

different from a frequency distribution (see page 265).

* Occasionally there is no such value, when the diagram is simply framed

arbitrarily, or the abscissa X - 0 will have a frequency above 0, when the

line ends at the /-axis.
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The /-scale is marked to the left of the diagram either in units

or in convenient multiples, as by fives or tens. The unit of the

X-scale should be the class interval, and designations should be

either at (true) limits or at midpoints. The latter is usually

preferable, and in either case the numbers should be so placed

as to leave no doubt as to their positions in the classes. In

frequency polygons and in graphs of discontinuous variates the

designations on the X-scale must represent midpoints.

Example 16.—Frequency Distributions

A. Widths of last upper molars of the extinct mammal Acropithecus rigidus

Measurement
(original data)

frequency Measurement Frequency

5.4 1 6.1 8

5.5 0 6.2 6

5.6 0 6.3 2

5.7 5 6.4 0

5.8 2 6.5 2

5.9 5 6.6 0

6.0 4 6.7 1

Size of sets of song-sparrows, Melospiza melodia heata (data from Nice

No. eggs No. nests

1933)

No. eggs No. nests

(X) (/) (X)’ if)

1 1 4 25

2 2 5 14

3 19

In a histogram each class is represented by a rectangle. The
horizontal widths of these are all the same, and their heights are

proportional to the class frequencies. The areas are therefore

also proportional to the class frequencies, the great advantage of

this sort of diagram.^

The same distribution may be represented by histograms of

markedly different superficial aspect depending on where the

classes are placed and on their magnitude. If the class inter-

val is increased, the frequencies of many or all classes will

also be increased and those with frequencies already high

will be increased the most. The histogram with larger class

intervals will therefore rise higher and will have greater relief.

^ Sometimes the rectangles are not of equal width, different class intervals

being employed in different parts of the distribution. The result is exceed-

ingly confusing, and this method should be employed only in very except

tional cases.
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This is a characteristic only of the secondary grouping and not

of the distribution, so that it is necessary to recognize essentially

the same types of curves with different groupings and also to

employ, as far as possible, the same class intervals for two dis-

tributions that are to be compared. In placing the classes on
the scale, the position that gives the most symmetrical result is

usually preferable.

Figures 2, 3, and 4 show various forms of graphic representation

of frequency distributions using the two sets of data given in

Example 16, one of a continuous and one of a discontinuous

variate.

THE MEANING OF DISTRIBUTION PATTERNS

If a frequency polygon were based on a series of observations

that can be multiplied indefinitely and at the same time made
more refined at will, it would be possible to decrease the class

interval and at the same time to increase the number of observa-

tions so that the class frequencies remained reasonably large.

Continuing this process, a condition would be reached when the

dots, the angles of the polygon, were so close together that they

became indistinguishable; for the horizontal distance between any

two successive dots is equal to the class interval, and this is made
indefinitely small. The polygon would then cease to have

visible corners and angles and would become a smooth curve.

The same procedure applied to a histogram would produce the

same result, since the horizontal lines forming the tops of the

rectangles would become shorter and shorter with decrease of

the class interval, to which they are equal, until eventually they

would appear only as points which would coalesce and form a

curve.

This curve that is approached as a limit when the class intervals

are decreased and the total frequency increased is the ideal

pattern of the corresponding frequency distribution. In practice

the curve cannot be obtained in this way; for no method of

measurement is sufficiently refined for the indefinite reduction

of the class interval, nor can the number of observations ever be

really increased indefinitely. The true ideal curve would, indeed,

only be reached when the class interval reached zero and the

total frequency infinity, an obvious impossibility in practice.

Yet the approach of the distribution to this purely theoretical
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Width,mm.

FREQUENCY POLYGON GROUPED TO INTERVAL 0.2 MM.

(Designafhns ofX are midpo/nfs)

Ftg. 2.—Graphic representationa of a continuous frequency distribution. Width of the last
upper molar in the fossil mammal AeropUhecut rigidui (data of Example 16^1). A, the raw
data plotted by dots. J?, the raw data as a frequency polygon. C, frequency polygon of the
data regrouped to interm .2 mm., more clearly oringing out the real form of the distribution.
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5.25 5.45 5j65 5.85 6.05 6.25 6.45 6.65 6.85

Width,, mm.

HIST06RAM,6R0UPED WITH INTERVAL 0.2 MM.
(Designaf-ions ofXarernidpotnfs)

Width,mm. Wiolth,mm.

HISTOGRAMS,GROUPED WITH INTERVAL 0.3 MM.,WITH LIMITS IN DIFFERENT POSITIONS

(Designations ofXare midpoints)

Fig. 3.—Histograms of a continuous frequency distribution (same data as in

Fig. 2). A, regrouped to interval .2 mm., corresponding to the polygon of Fig.

2C. B, regrouped to interval .3 mm., showing change of form by broadening of

class intervals; the grouping of Fig. 3A is preferable as it is more refined and yet

gives an equally clear pattern. C, regrouped to interval .3 mm. with the mid-

points taken at different values; the position shown in Fig. 3i? is preferable as

it more correctly shows the essential symmetry of the distribution.

Number of eggs Number of eggs Number of eggs

OBSERVED DATA FREQUENCY POLYGON HISTOGRAM

(A) (B) (C)

Fio. 4.'—Graphic representations of a discontinuous frequency distribution.

Number of eggs in nests of the bird Mdospizo, md^odia hcoXo, (data of Blxample

16B). A, the raw data plotted by dots. B, the same plotted as a frequency

polygon. C, the same plotted as a histogram.
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limit is a real phenomenon, and the theoretical curve is the best

possible representation of the distribution as a whole. The
study of a frequency distribution thus commonly involves setting

up a hypothesis as to the curve represented by the data of the

actual observations and estimating the mathematical constants

by which the curve can best be defined.

The importance to the zoologist of these operations and of

the numerical values assigned to constants of frequency dis-

tribution curves is very great and can hardly be overemphasized.

They give him a way of describing not single individual specimens

or observations but the whole series of specimens and observa-

tions available to him. They permit estimates of the characters

of the whole population from which his series is drawn and
measurements of the probability that two sets of observations

are drawn from the same or from different populations. The
importance of such data for taxonomy is obvious and their

importance is equally great for any consideration of variates. In

fact, single observations on variates are practically meaningless in

themselves. They are only a means to an end, and the end is

estimating characters of frequency distributions. The essential

character of a variate is its frequency distribution pattern, and

no work in this field is really valid and useful unless it is done

from this point of view.

GENERAL TYPES OF DISTRIBUTION PATTERNS

In the great majority of cases the characters, anatomical,

physiological, psychological, or other, with which a zoologist deals

are distributed in such a way that certain classes of these variates

are more frequently observed than others and that the frequency

becomes progressively less as the classes are farther in either

direction from these most common values. This fact, so often

seen by anyone dealing with zoological data that it becomes a

basic assumption of the science, is often called Quetelet^s law or,

better, principle.^ As with most of the so-called laws of biology

^ L. A. J. Quetelet (1795-1874) was a Belgian astronomer, meteorologist,

and statistician. He observed that the individual characters of man are

distributed about the value for the hypothetical ‘^average man^^ in the same
way that single observations of mathematical probabilities are arranged

around a mean result. This opened the way for the application of the

theory of probabilities to the study of numerical observations on biological

and zoological materials.



PATTERNS OF FREQUENCY DISTRIBUTIONS 63

and zoology, there are some exceptions; but these are rare and

usually belong to certain distinctive classes of data, so that

zoological variates may generally be assumed to fall into a

pattern approximately specified by Quetelet^s law.

A large number of specific types of curves have been observed

in frequency distributions of zoological variates. The dis-

tinction and specification of many of these require such extensive

data and such intricate mathematical procedures that they are

of little or no use to the zoologist, and, even if not entirely beyond

FREQUENCY POLYGON H ISTOGRAM
(A) (B)

Fig. 6.—An essentially symmetrical frequency distribution following Quetelot’s

law. Lengths of the fish Pomolobua aeativalis (data of Example 17). A, as a

frequency polygon. B, as a histogram. The degree of asymmetry observed is

usual in samples of essential symmetrical populations.

his powers, such work would be a waste of time and effort.

Moreover, many of these curves, most of those commonly involved

in zoological work, approach a few standard types so closely

that they are most usefully studied as approximations of these

standard curves and specified in terms of the latter with, if

necessary, estimates of deviation from them.

All such curves can be classed in four general groups;

1. Those high at a midpoint and sloping away nearly symmetrically on

each side of this.

2. Those with a high point not at the midpoint of the distribution and

sloping away from this with moderate asymmetry.

3. Those with the high point near or at one end of the distribution and

strong asymmetry.

4. Those with a low point within the distribution and rising at both ends.
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These are not absolutely clear-cut categories: 1 grades into 2,

2 into 3, and 3 into 4; but a given distribution can usually be

referred to one of these general types.

Absolute symmetry almost never occurs in a limited set of

observations, indeed so rarely that its appearance may be viewed

with suspicion. Distributions nearly enough symmetrical to be

considered as essentially so are, however, common. This is the

ideal form of most animal characters that follow Quetelet^s law.

Numerous examples appe^ar in the pages of this work; and Exam-
ple 17, given in graphic form in Fig. 5, serves to illustrate the

type here:

Example 17.

—

Frequency Distribution. Lengths of Specimens of the
Glut-herring Pornolohus aestivalis^ Caught in Chesapeake Bay,

October 16-31

(Data from Hildebrand and Schroeder 1927)

Length, mm. Frequency

40-44 1

45-49 4

50-54 47

55-59 71

60-64 33

65-69 4

70-74 2

This is slightly asymmetrical since classes at corresponding distances on

each side of the middle do not have the same frequencies and the frequency

below the middle class, 52, is greater than that above, 39. ^ It is, however,

an approximation to symmetry about as close as is commonly to be expected

unless the total frequency is very large. The highest frequency is in the

middle class, and the distribution does taper olf steadily for equal distances

on both sides of this.

Moderately asymmetrical curves are spoken of as being

moderately skewed and may be loosely defined as those in which

the highest frequency is definitely not near the middle or near

the ends of the distribution. Skewed curves in which the right-

hand limb tapers off more gradually than the left-hand, hence

in which the class with highest frequency is below the middle

of the distribution, are said to be positively skewed, or skewed

to the right. Similarly those with the left-hand limb longer

and the class with highest frequency above the middle are nega-

‘ Curves may, however, be asymmetrical without the total frequencies

above and below the middle being unequal.
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Example 18.—Frequency Distributions. Standard Lengths of Sam-
ples OF THE Flying-pish, Parexocoetus brachypterus hillianus^

Collected in the Atlantic during Two Different Months
(Data from Bruun 1935)

Standard

lengths,

cm.

Frequencies

A. November B. April

1.5- 1.9 1 0

2.0- 2.4 I
I

0

2.5- 2.9 0 0

3.0- 3.4 0 15

3.5- 3.9 0 35

4.0- 44 0 13

4.5- 4.9 0 13

5.0- 5.4 0 5

5.5- 5.9 0 3

6.0- 6.4 0
1

0

6.5- 6.9 0 2

7.0- 7.4 1 1

7.5- 7.9 1 0

8.0- 8.4 0 1

8.5- 8.9 1 1

9.0- 9.4 2 0

9.5- 99 2 0

10.0-10.4 21 0

10.5-10.9 46, 1

11.0-11.4 I 19 0

11.5-11.9 4 0

12.0-12.4 0 0

12.5-12.9 0 1

The distribution for November is skewed to the left, or negatively, since

the class with highest frequency is well above the middle class; it is the

nineteenth of 23 classes. The distribution for April is skewed to the right,

or positively, because the class with highest frequency is far below the middle

class; it is the second of 20 classes.^ The skewing in this instance is so well

marked that it might, especially for the April sample, be considered an
example of extreme rather than of moderate skew.

1 The biological significance of the skewing and its reversal at different

seasons in this example are clearly related to the existence of a restricted

spawning season and to changing growth rates. If it were possible to gather

a sample of these fishes all of the same age, the curve would almost surely be

symmetrical. As in many cases of marked asymmetry this is probably thus

due to heterogeneity of the sample. It is not a characteristic of length dis-

tribution in specimens essentially similar in everything but length.
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lively or left skewed. Interesting examples (Fig. 6) of the two

types are furnished by the data in Example 18 on samples of the

same subspecies of fish caught at different times in the year.

Every gradation from no skewing to extreme skewing is

encountered. Indeed, as will be shown in Chap. VII, a slight

degree of skew, usually to the right, is to be expected with many
zoological variates and may usually be ignored. A large skew,

however, demands recognition and explanation either as a

character of the variate or a result of peculiarities in the sample.

Length , mm.

Fig. 6.—Moderately but significantly asymmetrical frequency distributions.

Lengths of the fish Parexocoetua brachypterus hillianua (data of Example 18).

The polygon in continuous outline represents the November catch and is skewed
to the left. The polygon in broken outline represents the April catch and is

skewed to the right.

It is possible to measure the degree of skewing and to estimate its

significance (see Chap. VII).

The most extreme form of skew is one in which a terminal

class (in practice usually the lowest) has the highest frequency.

Such a curve with its high point at one end and hence with the

frequencies dropping at first rapidly and later increasingly slowly

to zero is usually called a J-shaped distribution.^ It does not

follow Quetelet^s law; and with most characters of animals,

especially continuous variates, it will be found that an apparently

J-shaped distribution is simply a humped very asymmetrical

distribution with the class intervals too large. Thus if the

April distribution of Example 18 were grouped with interval

2.0 instead of .5 it would appear as in Example 19.

' Although it is almost always reversed, with the high point to the left,

and does not rise again at the other end, as would a reversed letter J.
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Example 19.—Regrouping of Example 18

Length
3.0- 4.9

5.0- 6.9

7.0- 8.9

9.0-10.9

11.0-12.9

Frequency

76

10

3

1

1

This appears to be a J-shaped distribution but is not really so, since

splitting up the first class into much smaller classes would show the fre-

quencies falling steadily to 0 at this end of the sciries as they do more slowly

at the other end.

\2r

II
-

10 -

9 -

8 -

c T-
a>
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ol I I 1

19 20 21 22 23
Number of Dorsal soft fm rays

Fig. 7.—An extremely asymmetrical or J-shaped frequency distribution.

Number of dorsal soft fin rays in the fish Caranx radamwguB (data of Example
20B). Such a left-skewed J-shaped distribution is less common than one skewed
to the right (e.f?., Fig. 11).

In zoology, true J-shaped distributions are usually of dis-

continuous variates, anatomical or otherwise, although this is not

the commonest form even for discontinuous variates. Simply

from the logical and biological aspects of the problem it is usually

obvious when a terminal class may be expected to have the

highest frequency and hence when a J-shaped curve is the

probable pattern of the frequency distribution. Such variates

are either structures, events, etc., not normally occurring but

occasionally observed in varying number, or more rarely, variates

in which the usual value is never exceeded or is always reached
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Example 20.

—

J-shaped Distributions

A. Number of times individual female snowshoe-hares were live-trapped

(data from Aldous 1937)

No of times trapped No. of hares

1

2

3

4

365

163

103

58

5

6

7

8

9

10

11

12

13

33

14

6

4

1

0

0

0

1

B. Number of dorsal soft fin rays in the fish Caranx melarnpygus (data from

Nichols 1935)

No. of fin rays No. of fishes

20

21

^2

23

1

2

6

11

Obviously more individuals will be trapped once only under ordinary

conditions than will be trapped two or more times, so that a J-shaped distri-

bution such as actually occurs in A is to be expected. This cannot be made
into a moderately skewed distribution by splitting the classes, since an

animal cannot be trapped a fractional number of times. ^

As it stands, B is a J-shaped distribution skewed to the left. The species

usually has 23 such rays, and as far as these data show it never has more but

may have less. It is probable, in this and in most analogous cases, that the

J-shape is illusory, however, and is only a chance result in a small sample.

It is highly probable that further search would result in finding some indi-

viduals with more than 23 rays; for most distributions of this sort are only

moderately skewed, and there is no obvious reason why this should be

extremely skewed. Most J-shaped distributions in which the class with

highest frequency is not 0 (or 1 in cases like example A), would probably

lose the J-shape if a very large total frequency were available; and this

pattern in such a case is distinguished from the sort of asymmetrical distri-

butions previously discussed only by being still more skewed.

^ That is, the variate is discontinuous with integral values. Nor can a

slope downward to 0 be added, for as it stands the frequency of the class 0
comprises the number of animals not trapped at all (unknown but pre-

sumably larger than those trapped once). Also since the subject of enquiry

is retrapping, an equally or more valid form would be to use number of times

retrapped as the variate, when class 0 would have frequency 365, class 1

frequency 163, etc.
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or exceeded. Example 20 gives two such distributions (see

also Figs. 7 and 11).

U-shaped distributions, rising to a peak at both ends, are

of rare occurrence with any type of data and are almost non-

existent for variates used in zoology. Some of the distributions

of the special sort mentioned at the end of this section may
approximate the U-shape, however. In other instances an

apparently U-shaped distribution may result from incorrect

sampling or similar errors in technique resulting in the fusion of

two curves strongly skewed in opposite directions. Thus the

combined data for the whole sample of Parexocoetus hrachypterus

hillianus from which the skewed distributions on page 65 were

drawn (from Bruun 1935) could be presented in this form:

Standard length

1 . 5- 4.4

4 . 5- 7.4

7 . 5

-

10.4

10 . 5-13.4

Frequency

66

28

39

83

As it stands, this is U-shaped; but this is because most of the

specimens were collected in two months, November and April,

when their distributions were strongly and opposing!y skewed.

If the specimens had been collected in about equal numbers at

all times of the year or if only those collected at one time were

counted, the distribution would not be U-shaped.^ Moreover
if the class intervals were made smaller, as they should be, it

would be obvious that this is not a U-shaped curve but two
moderately skewed curves. An apparently U-shaped distribu-

tion of zoological variates is usually an indication of faulty

procedure or of heterogeneity of the materials included.

There are a few zoological variates that tend to fall into a

curve more complex than those already mentioned. Generally

the presence of two high points on a curve is a sign that the

sample is heterogeneous and that the curve is really composed

of two or more curves that should, if possible, be separated.

An exception to this rule is the possibility that the variate may
naturally take only low or high values, a rarity with zoological

materials. Thus the Patagonian rhea frequently lays one or a

few eggs in isolated spots but otherwise tends to concentrate a

^ Bruun presents his data correctly, and we have recast it in incorrect

form only as an example.
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large number of eggs in one spot, a crude nest. Figures on this do

not seem to be available; but the observed habit suggests a

hypothetical distribution of this general form, as in Example 21.

Example 21.

—

Hypothetical Data on Sets of Rhea Eggs
No. of eggs No. of sets

1- 5 20

5-10 5

11-15 10

15-20 15

21-25 20

25-30 10

31-35 5

The curve begins high, falls, then rises to a second apex, then falls again.

Even such cases, however, may properly and most conveniently be con-

sidered as composed of two separate curves, in the example, a J-shaped curve

of sets not in nests and an approximately symmetrical curve of sets in nests.

THE NORMAL CURVE

The complete specification of a distribution curve would

involve giving a mathematical formula with the values of the

variate X and the frequencies / as the variables and with such

numerical constants as were needed. To do this for every dis-

tribution would, however, involve an enormous amount of

difficult and essentially useless labor. The simplest and most

useful method is to relate the various distributions as far as

possible to some mathematical curve that they approximate,

that has a logical bearing on distributions, and that has useful

and readily apprehended properties.

By far the most important of such standard curves is that called

the normal curve, Gaussian curve, ^ or Laplace^s normal curve. ^

This curve was discovered in considering the theory of probabili-

ties, and the way in which it was developed can most simply be

explained by the classic example of coin tossing.

If a single coin is tossed, supposing the coin itself and the

method of tossing to be without any bias, there are two ways in

^ K. F. Gauss (1777-1855) was a German mathematician and geodesist

who published on numerical series, including that from which the normal

curve is derived.

*P. S. Laplace (1749-1827) was a French astronomer who studied the

theory of probabilities and laid the foundation on which many statistical

procedures are based.
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which it can fall, head or tail, of which one is as probable as the

other. The probability of each can be expressed by a fraction

with the number of possibilities (2 in this case) as the denomina-

tor and the number agreeing with a set condition (that it be a

head or that it be a tail, 1 in each case) as numerator. Thus

the probabilities with a single coin are

No. of heads == Probability, or theoretical

value of variate (X) relative frequency

0 M
1

If two coins are tossed, there are four possibilities: the first

can be a head and the second likewise a head; first head, and

second tail; first tail, and second head; first tail, and second tail.

The theoretical distribution is now:

No. of heads Relative frequency

0

1

2 M

Since these are relative frequencies, they may be multiplied

by the denominator (or only the numerators read) to give a

theoretical integral distribution, making the values just given 1,

2, and 1, In this way one can build up a whole series of distribu-

tions, the first few of which are as in Example 22. They are

presented in graphic form in Fig. 8.

Example 22.—Theoretical Integral Frequencies. Coin Tossing

No. of

heads

With
1 coin

With
2 coins

With
3 coins

With
4 coins

With
5 coins

With
6 coins

With
7 coins

0 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7

2 1 3 6 10 15 21

3 ! 1 4 10 ' 20 35

4 .

.

1 5 15 35

5 1 6 21

6 1 7

7 1

Of course if 1 coin is tossed only 2 times, we will not always get

1 head and 1 tail; and if 2 coins are tossed only 4 times, the result
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frequently will not be to get 2 heads once, 2 tails once, and 1

head and 1 tail twice. These are, however, the proportions

in which these results tend to be distributed; and if the experi-

Fio. 8.—Changes in symmetrical binomial probability histograms as the
number of possible different outcomes (classes) and the number of possibilities

of occurrence (frequencies) are increased so as to keep the chances of occurrence
integral. The diagrams are centered so that the middle classes, those represent-

ing the most probable outcome, are in the same central position in each case.

The chances represented are those of obtaining specified numbers of heads by
tossing different numbers of coins, the middle class in each case representing the

chances of obtaining half heads (and half tails). A, 2 coins tossed 4 times.
B, 4 coins tossed 16 times. C, 6 coins tossed 64 times. D, 8 coins tossed 256
times. (See Example 22.)

merit is made a great many times, these relative values will

be approximated, as shown by experiment in tossing 4 coins 80

times, the results of which are given in Example 23.

Example 23.—Observed and Calculated Frequencies in Tossing

4 Coins 80 Times

No. of

heads

Observed

frequency

Calculated

frequency

0 4 5 (1 X 5)

1 23 20 (4 X 5)

2 32 30 (6 X 5)

3 15 20 (4 X 5)

4 6 5 (1 X 5)
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Although the observed frequency, a real thing, almost never

exactly corresponds with the calculated frequency, a theoretical

thing, the latter and the general type of distribution on which

it is based are the best general description of such observations.

This is the ideal toward which the observations tend, and they

approach it closer and closer as more and more observations are

made. The calculation has the advantage of giving an expression

valid for an infinitely large number of observations, and for

general descriptive purposes this is more enlightening than the

more irregular data of a few observations.

All the theoretical frequency distributions given above have

about the same form. They have a high midpoint,^ and they fall

away on each side of this with perfect symmetry. The variate

in this example is discontinuous, and the frequencies hence always

go up by definite steps. A graph of them would never be a real

curve, but the distribution approaches a curve as a limit. If

the number of coins used is increased indefinitely, the number of

classes, in this case always one more than the number of coins

for any one toss, also increases. If now the graphic representa-

tion of the class interval is made smaller and smaller, a point

will be reached where the eye cannot distinguish the interval,

and the boundary of the graphic distribution will appear to be a

curve. This curve is the limit of distributions based on the

laws of probability when the chances of an event’s occurring or

not occurring (as of a head turning up or not turning up when a

coin is tossed) are equal, and it is called the normal curve. A
distribution that approaches it as a limit as the frequency is

increased is a normal distribution (see Fig. 9).

It was Quetelet’s discovery that this curve, originally derived

mathematically to represent theoretical probabilities, also repre-

vsents the way in which many zoological characters are distributed

in nature. It was found empirically by observation and com-

parison that numerous zoological frequency distributions do in

fact closely approach normal curves if the frequencies are made
large enough. It is also theoretically likely that they should do

so, although the factors governing such fluctuations are so com-

plex that theoretical demonstration of exact equivalence to a

' When the number of classes is even, the midpoint falls between the two

middle classes, which are therefore equal; but this does not change the

essential character of the distribution.
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normal curve is not very satisfactory. It does not matter to

the zoologist whether the data really exactly represent a normal

curve or something so like one that the difference has no effect

on the zoological conclusions to be drawn.

The normal curve is of fundamental zoological value in two

ways: as an approximation of zoological frequency distribution

patterns and as a representation of probabilities under certain

conditions. Its importance in both these respects is so great

of the symmetrical binomial probability distribution. The histogram represents

a symmetrical binomial with 24 classes. The curve is normal and approximates
this histogram in area and form. If the classes of the binomial and the included
frequencies were increased indefinitely, the outline of the histogram would
approach that of the curve as a limit. B, two curves, both normal and with
equal means, but one (the higher) with less and the other (the lower) with
greater dispersion. (Note that the higher curve is not leptokurtic and the lower
curve not platykurtic : lepto- and platykurtic curves are more or less peaked than
the most nearly corresponding normal curves, whereas, both those curves are

normal curves.)

that a special chapter (Chap. VII) is later devoted to the proper-

ties of the normal curve and to how these are used. Mathe-

matical consideration of the curve is therefore deferred to that

chapter.

In considering a normal curve as an approximation of an

actual distribution, it is necessary first to specify the particular

normal curve that most nearly approximates the distribution.

This is done by three numbers calculated from the data: the

average value of the variate, which shows where the center of

the curve will lie on the scale; the frequency, which shows how
high the curve will be; and a more complex figure, the standard

deviation (Chap. VI), which shows how rapidly the curve falls

off on each side of the midpoint.
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A given distribution will usually differ in some degree from

one truly normal, even though the resemblance is close enough

for most practical purposes. The most important of such

deviations are that a distribution may be sharper or flatter than

the normal, a property called kurtosis, or that it may be asym-
metrical, a property called skewness. Measurements of kurtosis

and skewness are discussed in Chap. VII. For the normal curve,

both kurtosis and skewness are zero; and if these are slight, it is

usually not worth while to go through the complex process of

measuring them, and the nearest normal curve may be taken as

an adequate approximation.

THE BINOMIAL DISTRIBUTION

If the probability that an event will occur is represented by p,

the probability that it will not occur by g, and the number of

trials made, or opportunities for occurrence existing, by n, then

the probability of occurrence of the event 0, 1, 2, 3, etc., up to

n times is given by the algebraic multiplying out or expansion

of the expression

(p + qY

This expression is a binomial, it is expanded by the binomial

theorem, and the series resulting from the expansion is a binomial

distribution. The coin-tossing series given in the last section

are in fact binomial distributions in which p and q are equal;

both = 3^. The normal curve is the limit approached by such

a series when n is increased indefinitely, and the normal distribu-

tion is in this sense a special case of the binomial distribution.^

When p and q are equal, the limit of the binomial series is a

^ The binomial distribution was in fact known first and the normal distri-

bution developed from it. The theorist and mathematician insist on keeping

binomial and normal distributions in separate categories. The former deals

only with discrete steps, hence is applicable only to discontinuous variates;

and the latter is a continuous curve and hence can exactly correspond only

to a continuous distribution. Although correct in theory, this distinction

has little bearing on zoological practice. A real sample of a continuous

variate is never continuous in fact, and its approach to the theoretical normal

curve is no closer than that of a discontinuous variate. In the actual oper-

ations useful to a zoologist, who is employing statistics only as a means to an

end, it is usually as valid to apply the statistics of the normal curve to a dis-

continuous as to a continuous distribution; and when this can be done, the

results are more readily useful than would be the statistics of a binomial

distribution.
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normal curve. When this condition is nearly or quite fulfilled,

it is usually proper as a practical convention to consider the

distribution as normal, rather than as binomial.
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Flo. 10.—Asymmetrical binomial probability histograms. The histograms
represent the chances of throwing a given number of aces with different numbers
of dice and frequencies increased so as to make the chances of occurrence integral.

A, with 1 die. B, with 2 dice. C, with 3 dice. D, with 4 dice. with
6 dice. (See Example 24, and compare Fig. 8.)

The practical use of the binomial distribution is in studying

discontinuous variates when p and q are not equal and the dif-

ference between them is a significant element in the problem.

Inequality of p and q introduces skew into the distribution, and
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the stronger the inequality the greater the skew. As an analogy

to the coin-tossing series, the number of times that a 1 will

appear in throwing dice may be considered. Here there are six

possibilities and only one of them fulfills the condition, so that

the probability of occurrence p is the probability of non-

occurrence q is Distributions for small numbers of dice are

given in Example 24, and represented graphically in Fig. 10.

Example 24.—Binomial Distribution Resulting from Dice Throwing

Number of I's

appearing

(N)

i

Theoretical integral frequencies

With 1

die

With 2

dice

With 3

dice

With 4

dice

I

With 5

dice

0 5 25 125 625 3125

1
1

1
1

10 75 500 3125

2 1 15 150 1250

3 1 20 250

4 1 25

5 1

These are strongly skewed because p and q are very unequal.

Every gradation from perfect symmetry to still stronger skewing

may appear in binomial distributions. The value of any one

class frequency in such a distribution is given by the expression

K
n(n — l)(n — 2) (n - Z + 1)'

X(X ~ 1)(Z - 2) 1
IpAqn

where A = the total frequency.

n = the number of opportunities of occurrence (the num-
ber of dice in the example).

X == any possible value of the variate (the steps in the

discontinuous distribution or, if the observations are

grouped, the class midpoints),

p == the probability of occurrence,

q = the probability of nonoccurrence.

It happens only rather rarely with zoological data that it is

more advantageous to use the binomial distribution than to use

the normal distribution as an adequate approximation. Exam-
ple 25, from data on human families, is one in which the binomial

distribution is properly used and brings out facts less clear in

the normal distribution:
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Example 25.

—

Binomial Distribution. Number of Boys in German
Families op 8 Children

(Data from Geissler; binomial distribution from Fisher 1936)

No. of boys

in family

No. of families

observed

Theoretical

binomial

distribution

Theoretical

normal
distribution

0 215 165.22 209.69

1 1,485 1,401.69 1,676.90

2 5,331 5,202.65 5,871.25

3 10,649 11,034.65 11,742.50

4 14,959 14,627.60 14,678.13

5 11,929 12,409.87 11,742.50

6 6,678 6,580.24 5,871.25

7 2,092 1,993.78 1,676.90

8 342 264.30 209.69

The normal distribution agrees fairly well with the observed facts, but it is

noticeable that above the middle class the observed frequencies are con-

siderably higher and below this most of them are lower than the normal
frequencies. The divergence is so marked and so regular that it demands
explanation. Now the normal distribution assumes that a child born to a

German family is as likely to be a boy as a girl, in other words that the

probability p of a child’s being a boy is equal to the probability q of its not

being a boy. The divergence of the observed frequencies suggests that this

is false and that in fact p is greater than q. This conclusion could safely be

drawn from the two distributions, and it is the only conclusion that could be.

A study of actual figures on the sexes of all children born in Germany shows
that boys are in fact more numerous than girls, hence that p is greater than q.

If now the values of p and q thus determined are used, the theoretical

binomial distribution shown above is obtained. This agrees better with the

observed facts than does the normal distribution, but now that allowance has

been made for the sex ratio in the whole country an additional conclusion

can be drawn from these particular figures. It is noted that the more
extreme classes are in excess, their frequencies larger than the calculated

frequencies in the binomial distribution; and it can be shown by methods
not pertinent in this chapter that this result is significant, is not due to

chance. The new biological conclusion, not discernible without the use of

the binomial series, is that large German families tend to have either more
girls or more boys than does the general population, or in other words that

large families tend to run to one sex instead of having the two sexes repre-

sented about equally.

THE POISSON SERIES

It has been shown that the normal curve is the limit of the

binomial (p + when p and q are equal and n is made increas-
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ingly larger. When p and q become increasingly unequal, or in

other words when one becomes very small, and n is made increas-

ingly larger so that both np and nq remain finite quantities even

though p ox q becomes very small, then this binomial approaches

another limit that also is of use in some zoological work. This

limit is called the Poisson series,^ and it is the theoretical dis-

tribution of a discontinuous variate the probability of the

occurrence of which is very small but which does occur if enough

observations are made.

The general expression for any one class frequency in a Poisson

distribution is

Ne~^ X{X - 1)(X - 2j
• •

• 1

where N = the total frequency.

e = the number 2.71828 (base of Napierian logarithms).

M = the mean value of the observations.

X = any possible value of the variate.

The series thus begins as follows:

Value of variate Class frequency

(^) (/)

0 Ne-^f

1 Ne-^(M)
2 Ne-^{My2)
3 Are-^(MV6)
4 iVe'^(A/V24)

Most of the pertinent cases are distributions of discontinuous

variates involving sampling operations. The most important

use of the series is in showing how nearly the results of sampling

agree with those theoretically to be expected, giving a check on

the correctness and efficacy of the sampling. The biological

importance of the series was first recognized in dealing with

hemacytometer counts, and it finds considerable use in analogous

biological problems. In more strictly zoological work, to which

this book is devoted, the Poisson series is of relatively little use.

^ Named for S. D. Poisson (1781-1840), a French mathematician who
published on the series in 1837. It has since been independently discovered

by several other statisticians.
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The present brief section is devoted to it principally for reference

on the few occasions when it will be helpful to zoologists, and the

reader may prefer to omit close study of this section until such an

occasion arises.

The use of the series and a relatively easy way to carry out

the calculations involved are best shown by a simple example,

which is provided by a sampling operation in paleontology closely

analogous to hemacytometer counting (Example 26).

Example 26.—A Poisson Series

Distribution of the number of specimens of the extinct mammal Litolestes

notissimus found in each of 30 squares of horizontal quarry surface

about one meter on a side (original data)

No. of specimens

per square No. of squares

(^) Cf)

0 16

1

9

2

3

3

1

4

1

5 and over 0

N = total number of squares = 30

M = mean number of specimens per square = .73

log e = .43429

log = .43429 X (-.73) = -.31703 = 9.68297 - 10
€~m = antilog 9.68297 - 10 == .482

From these data, the relative frequencies are calculated as follows:

X = 0 e-^ = .48

X - 1 e-^M = ,482 X .73 = .35

X = 2 = -482 X .269 = .13

X = 3 «'"(^’) = -482 X .066 = .03

X = 4 e""(^) = -482 X .014 = .01

X > 5 1 — (sum of preceding terms) = 1 — 1.00 = .00*

The theoretical frequencies, those that the sample would take

if it had this mean and total frequency and were perfectly dis-

tributed in a Poisson series, are calculated by multiplying each

relative frequency by the total frequency (N = 30, in the

example). The sum of the relative frequencies is always 1, which

*The value of the remainder of the series is always greater than zero,

but the record .00 indicates that it is less than .005 and for the purposes

of the present calculations is negligible.
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Example 27.—Poisson Series

Comparison of observed and theoretical frequencies

No, of specimens per square

j

Observed

frequencies

Theoretical fre-

quencies from

Poisson series

0 16 14.4

1 9 10.5

2 3 3.9

3 1 .9

4 1 .3

5 and over 0
1

0
1

In view of the small size of the sample, the agreement is remarkably close.

Fig. 11.—Histograms of a Poisson series and of an observed distribution

approximating it in form. The solid lines represent numbers of specimens of the
extinct mammal LUolestes notiasimua found in each of 30 sq, m. of quarry surface
(data of Example 26). The broken lines show an approximately equivalent
Poisson distribution (see Example 27).
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may be used, as above, to get a relative frequency for all higher

classes at any point. ^

The observed frequencies and the theoretical frequencies so

obtained compare as in Example 27 and Fig. 11.

Length Length

(A) (B)
Fig. 12.—Graphs of cumulative distributions. Lengths of the fish Pomolobus

aestivalis (data of Example 17 as rearranged in Example 28). A, frequencies

cumulative from below. B, frequencies cumulative from above. These graphs
approximate right- and left-handed ogive curves.

It will be noted that a Poisson series, in terms of relative fre-

quencies, is fully determined by the mean so that a distribution

^ For instance the low frequencies for X == 3 and X = 4 might have been

considered unimportant in the example and total relative frequency for all

values greater than 2 obtained by subtracting the sum of the first three

frequencies from tmity: 1 — (.48 4- .35 + .13) - 1 — .96 = .04. The
total relative frequency above X = 2 is thus approximately .04, giving with

X = 30 an absolute theoretical frequency of 1.2. Carrying out to two

subsequent steps, as in the text, shows that this is distributed more precisely

as .9 for X =3 and .3 for X * 4.
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that falls into such a series is adequately defined by this single

number. ^

The Poisson series just calculated is strongly asymmetrical, and

this is true of any in which M, the value of the mean, is

PjXample 28.

—

Ordinary and Cumulative Distributions

(Data from Example 17)

Ordinary Cumulative

Ijcngth, mm. Fretpjency !

^ B

Length / Length /

40-44 1 Below 44.5 1 Above 39 .

5

162

45-49 4 Below 49 .

5

5 Above 44 .

5

161

50-54 47 Below 54 .

5

52 Above 49 .

5

157

55-59 71 Below 59 .

5

123 Above 54 .

5

110

60-64 33 Below 64.5 156 Above 59 .

5

39
65-69 4 Below 69.5 160 Above 64 .

5

6

70-74 2 Below 74.5 162
1

Above 69.5 2

The two cumulative distributions are approximately mirror images of

each other and would be exactly so were the frequency distribution perfectly

symmetrical. The figure given for the terminal class (the last class in

cumulative distributions of type A and the first in those of type B) is always

the total frequency. Note that classes are designated by limits and that

care should be taken to use the real limits and not, as is usually done, the

conventional limits. Cumulative distribution A in the example would

usually have the classes listed as ^^below 45,” ^q^elow 50,” etc.; but this is

wrong.

low. If M is 1 or less, the resulting distribution is J-shaped.

With M low but above 1, the distribution is humped but strongly

skewed. With high values of Af, it becomes more nearly sym-

metrical and may approximate a normal distribution. In such a

case, as for relatively symmetrical binomial distributions, it

is often useful and simpler to compare the distribution with the

normal rather than with the theoretically more correct Poisson

series.

' It is also a peculiarity of this series that the variance (as defined in Chap.

VI) is equal to the mean. Approximation of variance and mean thus sug-

gests that a distribution may be in a Poisson series, although it does not

prove this to be the case.
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CUMULATIVE DISTRIBUTIONS: THE OGIVE

In the distributions previously discussed in this chapter, the

frequency within each class is given. It is sometimes more

convenient and may be more directly related to a problem in

hand to give the total frequency above or below each class, and

distributions given in this way are called cumulative. The

distribution given on page 64 is used as an example, repeated

in the usual form and given in the two types of cumulative

distributions in Example 28.

The curve approached by normal distributions when placed

in cumulative form is called an ogive, and its approximate shape

can be judged from the accompanying graph (Fig. 12). While

cumulative distributions are often useful as such and as graphic

diagrams, their numerical characters are more easily and usefully

calculated from the ordinary frequency distributions, and it is

unnecessary to consider the mathematical properties of the ogive.



CHAPTER V

MEASURES OF CENTRAL TENDENCY

Most zoological variates are so distributed as to be more

frequent near some one value and to become less and less fre-

quent in departing from this value in either direction, a fact of

experience summed up in Quetelet^s principle. The normal

distribution is one that complies fully with this principle; and so,

in essentials, do many distributions that differ from the normal

in various ways such as kurtosis or skewness. Clearly the most

important things to observe and to measure in such a distribution

are (1) the point around which the observations tend to cluster

and (2) the extent to which thfiy are concentrated around this

point.

To say simply that observations tend to cluster around some
particular values or, in more technical language, that they have a

central tendency is an expression too vague to lead to an accurate

measurement or estimate of the tendency without further qualifi-

cation. The important feature may be a mean value of all the

observations (and ‘‘mean^^ is also a loose word requiring specifica-

tion), or the point at which the highest frequencies are observed,

or the point where the middle observation lies, or even the middle

of the observed range of values. In a given distribution these

various values may all be different, and the different ways of

looking at central tendency and its meaning involve several

different constants used to designate or measure it. This general

group of constants are all called averages. The most important

of these are the arithmetic mean, the median, and the mode,

discussed in that order below; and at least four other, relatively

unimportant measures of central tendency are also in occasional

use.

ARITHMETIC MEAN

The arithmetic mean is used so much more than any other that

it is usually simply called the mean; other types of means are

86
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specified in the rare instances when they are used. This is by

far the most widely employed statistical constant, and everyone

who uses numerical data at all has at some time calculated a

Example 29.

—

Calculation of the Arithmetic Mean op the Length op

THE Third Upper Premolar of the Extinct Mammal Ptilodus montanus

(Original data)

Measurements

(A)

3.0

2.8

3.4

3.2

3.0

2.9

2.6

3.3

3.1

2.9

2.9

3.0

2.8

2.9

2.7

2.9

3.1

2.8

3 0

3.1

3 0

2;(A) =62.4 (sum of measurements taken)

N — 21 (number of measurements taken)

2(X) _ 6^
N 21

M = = 2.97

mean.^ The mean is an average obtained by adding together

all the observed values and dividing by the number of observa-

tions. Its general formula is

M = S(X)
N

1 Even zoologists who scorn statistics commonly use arithmetic means
(which is what they usually imply by the loose term average without

being aware that these are the basic statistical constants and without

bothering to think just what they indicate or what their properties are.
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where M = the mean (arithmetic only).

S (Greek capital sigma) = the result of adding together all

the data indicated by the symbol
following it in parentheses.

X = any given value of the variate.

N = the number of observations made,

the total frequency.

These symbols and a few others explained as they appear are

used consistently throughout the present book, and learning

this shorthand notation greatly simplifies not only the explana-

tion of these processes but also their use.^

Example 30.

—

Same Data as in Example 29, Recast as a Frequency
Distribution and Mean Based on This

Measurements

(class midpoints)

(A)

Frequencies

if)

Frequencies times

class midpoints

(fX)

2.6 1 2.6

2.7 1 2.7

2.8 3 8.4

2.9 5 14.5

3 0 5 15.0

3.1 3 9.3

3.2 1 3.2

3.3 1 3.3

3.4 1 3.4

2(7) = N^Z 2f ZifX) =62.4

M Z{fX) _ 62.6

N 21
2.97

An instance of the simplest possible calculation of a mean is

given in Example 29.

Even with such a short series of measurements, the duplica-

tions and irregularity make this a clumsy and time-wasting

1 Certain of these symbols, like S, are used in the same way by almost all

authors. Regarding others there is wide divergence of usage. The mean,

for instance, is often designated by X, Any system is adequate if consistent

in the book used, but unfortunately this lack of uniformity requires caution

when more than one text or reference work is employed. We have tried to

select symbols simple typographically, as nearly self-explanatory as possible,

and in as wide use as any others.
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method. If the number of observations were large, say several

hundred, it would be practically impossible, without the use of an

adding machine. It is much better to place the observations in a

frequency distribution and then to calculate the mean with a

modified but arithmetically equivalent formula

in which f designates a class frequency. The same calculation

made in this way is shown in Example 30.

When the number of classes is small as in this example (only

9 classes), it is better to work from the original measurements.

If the number of classes is very large (generally not unless it

exceeds 20 or 25), it may, however, be advisable to increase the

class interval and group the data more broadly. In such a case

the operation is carried out by the same formula, remembering

that X is the true class midpoint. This is done in Example 31

with the same data as that of the last two examples for the sake

of comparison although in ordinary practice the secondary

grouping would not be justified in this case.

Example 31.—Same Data as in Last Two Examples, Grouped with

Interval .2 Mm. for Calculation of the Mean

Class
Class midpoint

(X)

Class frecjiiency

(f)

Frequenej^ times

class midpoint

(/X)

2.6-2.

7

2.65 2 5.30

2.8-29 2.85 8 22.80

3.0-3.

1

3.05 8 24 . 40

3.2-3 3 3.25 2 6.50

3. 4-3.5 3.45 1 3.45

2(/) = iV = 21 Z(JX) =62.45

_ 62.45 _

The mean here obtained differs very slightly from that based on the

original data because of inaccuracies introduced by the grouping.^

‘ As pointed out in considering grouping, many statisticians would call

these class midpoints 2.7, 2.9, etc. This would make the mean 3.02, far

from being as close an approximation of the more accurate figure based on the

original measurements as is obtained by using the real class midpoints.



MEASURES OF CENTRAL TENDENCY 89

Calculation of the mean from grouped data depends on the

assumption that each class midpoint does not differ significantly

from the mean value of the observations that fall in the class,

This assumption is more likely to be true with small class intervals

than with large, because the midpoint cannot differ from the

mean for the class by more than half the class interval. It is

also more likely to be true with high class frequencies than with

low, because if many observations enter into a single class they

are likely to be well scattered in it and hence to have a mean value

near its midpoint. Grouping always involves some inaccuracy,

even when it is only the grouping of the original measurements
of a continuous variate; but if these sources of inaccuracy are kept

in mind, its extent seldom is great enough to affect the final

result significantly. If there is any question about this, it is

invariably true that the mean as calculated from grouped data

is within one-half class interval of the true mean, and usually

it will be within one-ttmth class interval or even less. Despite

the unduly large interval in the example just given, the calculated

mean is probably not more than .01 from the true mean, and the

class interval is .2.

When only the mean is to be calculated, the use of the formula

X{fX)/N is often sufficiently easy and may be the most satis-

factory. In calculating certain measures of dispersion, however,

it is necessary to obtain deviations; and in such cases another

method of calculating the mean may be more convenient.^ This

is based on assuming the mean and then calculating the difference

between the assumed mean and true mean. The formula is

M = A = A + c

in which A is the assumed mean and cIa is the difference between

the assumed mean and the class midpoint. Any number may
be used as the assumed mean, and it does not matter how far it

later proves to be from the real mean. The expression I>{fdA)/N

1 The method about to be explained is usually called the short method”
and that based on 'L{fX)/N the ‘^long method.” Since the so-called short

method is apparently less direct and more complex, these terms may not

seem well applicable. Aside from convenience, when a whole set of sta-

tistical constants is to be calculated, however, the arithmetic involved in the

short method is often easier, especially with large samples.
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is the correction for the assumed mean and is often designated by

c (for correction^ 0* Example 32 shows the use of this formula.

Example 32 .—Calculation of the Mean by the Deviation Method,
Lengths of Pomolohus aestivalis

Data as in Example 17

Classes
Class

midpoints

Frequencies

(f)
dA idA

40-44 42 1 -15 - 15

45-49 47 4 -10 - 40

50-54 52 47 - 5 -235

-290
55-59 57 71 0 +235

60-64 62 33 + 5 + 165

65-69 67 4 + 10 + 40

70-74 72 2 + 15 + 30

N - 162 S(/d^) = -55

A (arbitrarily chosen)

c

M

= 57

__ X{JdA) _~ N 162
= A + c = 57 - .34 - 56.66

= -.34

For convenience in tabulation, lines are drawn above and below the value

of A, and in the/d^ column, instead of that value (which is, of course, zero)

the sums of negative and positive values of Jd^ are noted here. The column

value ZifdA) is the algebraic sum of these.

To demonstrate that the value taken as A has no influence

on the outcome of the calculations, the same operation is shown in

Example 33 with A taken at a different point.

The logic of this superficially esoteric method is quite simple.

From the definition of the arithmetic mean, it follows that the

sum of all the individual deviations from the mean is always 0.

Hence if A were guessed at the real mean, Z(fdA) would be

0. The farther A is from Af, the larger this sum 2(fdA) will be,

either positively or negatively depending on its direction from M;
and this increase is likewise proportional to JV, since N = 2(J).

Thus X(fdA)/N is always the distance between A and AT.

This method may be made still easier arithmetically by

omitting the use of class midpoints and taking the deviations in
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Example 33.—Same as the Last Example, with a Different Assumed
Mean

Classes
Class

midpoints / dA /dA

40-44 42 1 -25 - 25

45-49 47 4 -20 - 80

50-54 52 47 -15 - 705

55-59 57 71 -10 - 710

60-64 62 33 - 5 - 165

-1,685
65-69 67 4 0 4- 10

70-74 72 2 + 5 + 10

N - 162 ^(JdA) - -1,675

A = 67

c = -1,675/162 = -10.34

M = 67 - 10.34 = 56.66

This gives the same value for the mean; but it is clear that it is not so easy

arithmetically since higher numbers have to be multiplied to get /dx. For

this reason it is better to assume A as the midpoint of the class with the

highest frequency if this is reasonably near the center of the distribution.

For the same reason it is better to assume A at a midpoint, although it may
be taken as any number whatever.

terms of class intervals, later applying a correction for this. In

this case, using the formula

M = A + c

as before, a new c is used, from the formula

c =
2(/rfA).

where = deviation in terms of class intervals.

i = the class interval.

The same problem calculated in this way is given in Example 34.

This seems offhand to be a long way around to reach the

desired result; but (aside from the relationship to calculations

discussed in the next chapter) the arithmetic in the last example

is really simpler than in any other way of obtaining the mean,

and the chances of errors are fewer.
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It is valid to base a mean on two or more other means; but this

requires logical consideration of what is being done and in most
cases involves a correction, or weighting, if tlie means are derived

from distributions with different total frequencies. If one wishes

to calculate the mean length of species within a genus, this can

be done by the ordinary formula M = X(fX)/N in which X is a

t^XAMPLE 34 .—Same Data as Preceding Problem, with Mean
Calculated by Deviations in Terms of Class Intervals

Classes /
(Ia (in class

intervals)
fdA

40-44 1 -3 - 3

45-49 4 -2 - 8
50-54 47 -1 -47

-58
55-59 71 0 +47

60-64 33 -fl +33
65-69 4 +2 + 8

70-74 2 +3 + 6

N = 162 S(/dA) = -11

i = 5

A = midpoint of class 55-59

, = IlLI X 5 =N ^
162

^ ^

M = A + c = 57 - .3A = 56.66

57

.34

value of the mean for any one species and N is the total number
of species. If, however, one wishes to calculate the average

size of the (available) individuals within a genus or if one wishes

to average the means for two or more different samples of a

single species, the result will not be valid unless the means are

weighted according to the frequency of the sample on which

each was based. This can be done by multiplying each mean
by its corresponding frequency (N), adding the figures thus

obtained, and dividing by the sum of the frequencies, which can

be expressed in formula by

_ NiMi + N2M2 + NsM, •
• •

NiA- N2 + Nz — •
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Since N for the whole combined sample is equal to

iVi + N2 + Ns,

etc., and since N\Mi = 2(/iXi), and X(fX) for the whole sample

is X(fiXi) + X(f2X 2) + etc., it is evident that this

formula is merely a convenient form for the special case exactly

equivalent to the usual formula M = X(fX)/N.
The mean has many properties that make it the most widely

used and most useful of all averages. Its wide use and the rela-

tive simplicity and ready comprehensibility of the concept are

in themselv(\s advantages. The computation is simple, and it

may be calculated, by one method or another, from few data.

It can be treated algebraically, for instance, a mean may be

derived from a series of other means, ^ which is not true of some
other averages in current use. It also has several advantages or

properties the wsignificance of which involves operations dis-

cussed in later chapters: that the sum of the deviations

about it is zero, that the sum of the squares of these deviations

is less than for any other point, and that its standard error is

less than for the median. It also has the property, sometimes

advantageous but more often a disadvantage, that it is strongly

affected by extreme values among the observations.

Widespread use of the mean as if it were in itself a sufficient

summary of the data and as if means w^ere directly and simply

comparable betrays inadequate comprehension of just what a

mean is and how means are validly compared. For purposes of

comparison, a mean drawn from a limited number of observa-

tions is merely an estimate of what the mean would be if all

possible observations had been made. For instance, a mean
length for 10 specimens of a given species is an estimate of the

mean length for all individuals belonging to that species. This is

necessarily the logical background, since explicitly or implicitly

the purpose in such a case is to characterize and compare species,

not simply chance groups of specimens.

A calculated mean is never exactly equal to the general mean
of which it is an estimate. The larger the sample, the closer

the estimate; so that A, total frequency, should be given for

every mean and should enter into any comparisons of means.

^ But generally when this is done, the means must be weighted according

to the frequencies represented by each (see preceding paragraphs).
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The accuracy of estimate also depends on the dispersion of the

distribution. Obviously the estimate will be closer if most

individual observations are near the mean than if the observa-

tions are widely scattered. The real significance of the mean as

calculated thus also involves some measure of dispersion (see

Chap. VI), and such a measure should also be given for each

mean and must also enter into a valid comparison of means.

Although the mean is the most useful and the basic statistic,

it is thus not adequate alone for the purposes for which it is

commonly used.

MEDIAN

The median is the value of the middle observation in a fre-

quency distribution. If it is to be recorded in units not smaller

than the class interval, it can be read directly from the frequency

distribution with little or no calculation. For instance, in Exam-
ple 30 (page 87), N is 21

;
so the middle observation is the eleventh

from either end, and this is at once seen to be in the class with

midpoint 3.0. The class interval is .1; so this value of the

median is accurate to the first decimal place. If the same data

are grouped with interval .2 (Example 31, page 88), the median

is seen to lie in the class 3.0-3. 1 ;
^.e., it is somewhere between 2.95

and 3.15, but it cannot be read directly to the first decimal

place.

If, as is usually desirable, the median is to be calculated to more

places than the original data or in smaller units than the class

interval, it is necessary to estimate its position within the class by

interpolation. In Example 30, the middle value is the eleventh,

which is the lowest of the 5 in the class with midpoint 3.0

and implied true limits 2.95-3.05. For purposes of calcula-

tion it is assumed that the observations within the group are

evenly distributed. Thus with/ = 5, as here, it may be assumed

that the middle one of these 5 is at the class midpoint, that those

on each side are at a distance equal to class interval above

and below the midpoint, and that the last two are at distances of

% class interval above and below the midpoint. This leaves

a distance of M X or 3^0 class interval between the most

divergent observations and the true class limits. Such considera-

tions lead to the following general formula for interpolation in

finding a median

:
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Median = L, +
~

= L, +

where Li = the true lower limit of the class in which the median
lies.

n = the serial number of the desired observation within

the class.

i = the class interval.

/ = the frequency of the median class.

In Example 30 the median class has the true limits 2.95-3.05.

Hence Li = 2.95. The median observation is the eleventh, and
there are 10 below the median class; so the median observation is

the first in that class, and n = 1. Also f = .1, and / = 5. The
median is then

Median = 2.95 + ^
^f>

. ^ ^ = 2.95 + .01 = 2.96
5

Calculation from the same data grouped with interval .2

(Example 31) gives

Li = 2.96 n = 1 f = .2 / = 8

Median = 2.95 + ^ - = 2.95 + .01 = 2.96

The preceding formula assumes that the median is found by
counting up from the lower end of the distribution. There is no

particular advantage in doing so, and the same result can be

achieved in counting down from the upper end. In this case the

formula is

Median =

where L„ = the upper limit.

The data of Example 30 would then be

= 3.05 n = 5 (in counting down, there are

6 observations before the median class

and hence one wants the fifth in that

class)

i = .1 / = 5

Median = 3.05 - —~ y -
- - = 3.06 - .09 - 2.96
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The result is the same as before, cheeking the correctness of

the procedure^ (see Fig. 13).

In the example thus far treated, the total frequency 21 is odd,

so that there is a middle observation. When not obvious on

inspection, the middle observation in such cases can be deter-

mined by the expression (N + l)/2, N being the total frequency.^

True class ^rr
limits 2.65

Frequencies l_

N-ei

N±L
2

//

1 3 6 > 5 3 I
1 I

10 1 10

The middle observation

Median =2.95+ = 2.96

Median=3.05- ^
^
---2.96

Fig. 13.—Diagram showing the calculation of the median. Length of the

third upper premolar of the extinct mammal Ptilodus montanus (data of Example
29). Measurements were to .1 mm., implying the true primary class limits

shown. The positions of the measurements within each primary class are not,

in fact, known; but in calculating the median it is assumed that observations in

each class are arranged symmetrically and evenly about the midpoint, as repre-

sented in the diagram. As there are 21 observations, the middle observation
is the eleventh. The position of this observation under the assumptions made
is the median and is given by the formulas, in one case by calculating from the

lower and in the other from the upper end of the distribution.

If the total frequency is even, there is not in fact any one middle

observation, but there are two, one above and one an equal

distance below the middle of the series. Thus there cannot really

be a median according to the definition of that average. The

1 Here again we find ourselves in disagreement with many statisti-

cians. The formulas for the median in most books on statistics are

Median = L/ -f ji or Lu — ji. These formulas do not agree with the

assumption that the observations are evenly distributed within the class.

The first formula moves them all up toward the upper limit and gives too

high a value for the median and the second moves them downward and gives

too low a value. That this is true is easily seen in Fig. 14 and also from the

fact that the two formulas do not give the same result, as do the correct

formulas given in our text. For Example 30, the first of these erroneous

formulas gives 2.97, and the second gives 2.95. The correct result is 2.96.

As in other cases, many statisticians also use incorrect class limits.

2 Some statisticians use A'/2, but this is obviously wrong. The middle

observation of 21, for instance, is (21 -|- l)/2 = 11. There are 10 observa-

tions above the eleventh and 10 below, so that the eleventh is in fact the

middle as a matter of sheer common sense. The formula N/2 gives

21/2 = 10.5, leaving 10 observations on one side and 11 on the other.
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distribution, however, can be thought of as essentially having a

median regardless of the chance occurrence of an even or odd
total frequency. It is a valid and necessary convention to modify

the strict definition of the median as being the value of a single

middle observation and to add that it may also be the midpoint

(A)

True class limits 2.85

Midpoints

Frequency

3.05, Poor approximation

of median

2.95 3.05

2.90

2.95-1-
fxOJ-J.OS

3.04,Good approximation

of median

CB)

True class limits 2.85

Midpoints 2.90

2.95 3.05

3£oi^3^
3.15

Frequency 5 4

2.95 0.1=3.04

Fig. 14.—Diagram showing meaning of alternative methods of calculating

the median. Both methods are meant to assume that the observations are

evenly distributed within each class. A, calculation on the usual formula
N

Li -i- yt, showing that the calculation does not really suppose even distribution

within the classes and hence is contrary to the assumption and gives incorrect

results, if, calculation on the formula Li -f i, showing close approx-

imation to the stated assumption and to the correct value.

between the value.s of two middle observations. The data of

Example 32 (page 90) give these results in calculating the median

:

= 162

Middle observation (i.e., in this case, midpoint between two

middle observations) = N + 1

2

163

2
81.5

There are 52 observations below the middle class
;
hence the one

wanted in that class has the serial order 81.5 — 52 = 29.5 = n.

The middle class has the real limits 54.5-59.5; so Li = 54.5.

/ = 71

i = 5
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Medi.„ - L, + . 5, 5 + (29,5^5

= 54.50 + 2.04 = 56.54

This may be checked by using the formula for the upper limit.

Lu = 59.5

n = 81.5 - 39 = 42.5

/= 71

Medto - L. - <" -»)’ . 59.5 -

= 59.5 - 2.96 = 56.54

The result is the same, and the correctness of the formulas in

application to distributions with N an even number is confirmed.

There is a simple but not particularly useful graphic method of

finding the median. The distribution is put in cumulative form

and plotted as an ogive. A horizontal line is now drawn at a

position corresponding to (iV + l)/2 on the /-scale. A per-

pendicular from the point where this intersects the curve gives the

value of the median on the X-scale.

The median is usually easier to calculate than the mean, and it

has a few other advantageous properties. It is less distorted by
extreme values than is the mean or is less sensitive to extreme

values—often advantageous although it may also be a disadvan-

tage. It can be calculated from some imperfect data, for instance,

when the more divergent observations are grouped as so much
“and over” or “and under,” when the mean cannot. But the

mean can also be calculated from data inadequate for a median,

and either can be calculated from any properly collected and
tabulated data. An observation selected at random is as likely

to be above the median as below. The sum of the deviations

(ignoring negative signs) is less about the median than about any
other point.

These properties make the median an advantageous average in

certain cases, but in ordinary practice they are outweighed by
disadvantages. It is impossible to base a median on other

medians. Medians cannot enter into many important algebraic

calculations. They cannot be compared so simply and accurately

as can means. Their standard errors are larger than for means.
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In general the mean is a far more important and useful average

than is the median. One essential use of the median (which also

requires the use of the mean) is to approximate the value of the

mode, as explained in the next section.

In a normal or in any other perfectly symmetrical distribution,

the median is equal to the mean. Since actual distributions are

rarely completely symmetrical, however, there is usually a small

difference between these two averages.

MODE

For normal distributions and for those nearly like these and
following Quetelet^s principle, it is a fair generalization to say that

an average is a value around which observations tend to cluster.

The idea of the observations being crowded toward an average

value applies well to the median and almost as well to the mean
in such cases. In extremely skewed or J-shaped distributions,

however, an average like the mean is not really a nucleus or a

point of concentration of values. It is still true that the observa-

tions are arranged around the mean in such cases, and the calcula-

tion of the mean is still an essential part of their study, but the

point around which they are really clustered may be well removed

from the mean.

For studying distributions in which there is a significant degree

of skewness, it is therefore necessary to have another sort of

average, one that really designates in all cases a center of cluster-

ing or piling up of observations. Such a value is that at which the

frequency is greatest, and this average is called the mode.

In a frequency distribution so grouped as to approach a fairly

smooth curve, that is, with one class of outstanding frequency and

with the frequencies of the other classes falling away evenly and

definitely from this, the class in which the mode must occur, that

with the highest frequency, is obvious on inspection. Thus in

Example 32 (page 90), the mode is evidently in the class 55-59.

If there is no single class with decidedly highest frequency, how-

ever, the position of the mode cannot be so closely approximated

by simple inspection. Thus neither in Example 30 (page 87) nor

in the same data more broadly grouped (Example 31, page 88)

can one class be selected by inspection as containing the mode.

If the size of the classes could be reduced and the total frequency

increased indefinitely, it would be possible eventually to show a
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definite modal class with interval as small as desired and so to

determine the mode to any desired degree of accuracy, but this is

impossible in practice. The total frequency cannot be increased

at will, and if the class intervals are unduly decreased, the

distribution becomes irregular and the mode cannot be placed at

all.

The only accurate way to calculate the mode is to fit to a

distribution the closest possible ideal mathematical frequency

curve and then to calculate the point at which this curve has the

highest ordinate. Such close curve fitting is an extremely

complex process and requires more extensive data than are com-

monly available in zoology. The most accurate determination

of the mode therefore has no practical value in zoology.

There are, however, several methods of approximating the

mode that are useful in zoology and that give values accurate

enough for practical purposes. The first and least refined of

these is that already mentioned, grouping a distribution so that

it is regular and has one class of outstanding frequency, then

taking that class as an approximation of the mode.

A second method takes advantage of the fact that for moder-

ately skewed curves the median lies at about one-third of the

distance from the mean to the mode. This empirical rule, found

to be closely followed by all but strongly skewed distributions,

depends on the fact that the mode is not at all affected by
extreme values, the median is somewhat affected, and the mean is

most strongly affected, the effect on it being about one and one-

half times as strong as on the median. This relationship gives an

approximate formula for the mode;

Mode = mean — 3 (mean — median) = 3 median — 2M

This formula cannot be used for extremely skewed distribu-

tions, and in them approximation by inspection is the only easy

and practical method.

There are several other methods giving still closer approxima-

tions; but they are also more complex mathematically, and the

two mentioned suffice for any ordinary zoological work.

In the distribution of Example 32 (page 90) the mode is seen

to lie in the class 55-69, Le., within the true limits 54.6-59.5.

From calculations already given, the mean of this distribution is

56.66 and the median 56.54. Then since
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Mode = mean — 3 (mean — median)

Mode = 56.66 - 3 (56.66 - 56.54) = 56.66 - .36 = 56.30

This gives a reasonably accurate value which is within the class

selected as modal by inspection.^

The import-ance of the mode is that since it is the value taken

b}^ the greatest number of observations it is in that sense the most

typical. It can often be approximated roughly by simple inspec-

tion with no calculation, and it is independent of extreme values.

It has the serious disadvantage that its exact calculation is

practically impossible with limited data and is in any case

extremely difficult and that, like the median, its usefulness for

further calculations and for comparisons is far less than that of the

mean. It may have the further disadvantage that for very small

samples, such as are common in zoology, the mode may be quite

indeterminate or may even be said, as far as a given concrete

sample is concerned, not to exist.-

In practice the most important property of the mode and the

only usual reason for its use is its being unaffected by extreme

values. For instance, in a right skewed curve there is an e^xcess of

high values, to the right in a graph. These affect the mean, so

that it lies well to the right of the mode and the difference between

mean and mode thus provides a measure of skewness (see Chap.

VII). Like the median, the mode is equal to the mean in a

normal or other perfectly S3anmetrical distribution. In skewed

distributions, the only ones for which its use is worth while, the

mode may be a zoologically more important average than any
other.

OTHER MEASURES OF CENTRAL TENDENCY

Several other measures of central tendency have been devised

and are in occasional use, but they have relatively little practical

value except in a few special problems, and only four of them will

be mentioned here.

^ It is not at the midpoint of the modal class, and such a midpoint is not a

good approximation of the mode. The mode always lies on the side of the

midpoint toward the greater frequencies in the classes beyond the modal

class.

2 Because the frequencies of all the measurements may be 1, or the differ-

ences in frequencies so slight as to have no discernible significance.
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Range Midpoint.—This value is obtained by adding the lowest

and highest observed values and dividing by 2. It is thus deter-

mined entirely by the extreme values and depends more on chance

than on any real characteristic of the distribution. It is men-
tioned here only to observe that it has no practical use and should

not be employed. It is generally avoided but occasionally •

appears in zoological work, sometimes with the wholly unwar-

ranted assumption that it approximates or is equal to the

arithmetic mean.

Geometric Mean.—The geometric mean is obtained by multiply-
ing all the observed values and taking the iVth root of the product

{N being total frequency as before). In mathematical notation

Geometric mean = * X 2 * Xs •
. . .

•

X being the value of one observation of the variate.

The calculation can be greatly simplified by the fact that the

logarithm of the geometric mean is the arithmetic mean of the

logarithms of the individual observations.

The geometric mean has many of the advantages of the arith-

metic mean; but it is relatively difiScult to compute, the concept

is not easily grasped or used, and it is indeterminate when negative

values or zero occur among the observations. Its principal use is

in the computation of index numbers as used especially in com-

mercial statistics.

Harmonic Mean.—The harmonic mean is the reciprocal of the

arithmetic mean of the reciprocals of the observed values.

h -

H being the usual symbol for the harmonic mean.

The harmonic mean is always smaller than the geometric mean
based on the same data, and the geometric mean is always smaller

than the arithmetic mean. The harmonic mean is used in averag-

ing rates.

Quadratic Mean.—The quadratic mean is the square root of the

arithmetic mean of the squares of the observed values.

Quadratic mean =



MEASURES OF CENTRAL TENDENCY 103

It is seldom used as such, but it is involved in some methods
of calculating measures of dispersion (see Chap. VI).

The various measures of central tendency are illustrated

graphically in Fig. 15.

True
modoil

2i 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 6.0 8.5 9.0 9.5 10.0 lOi 110 11.5 1?0 12.5 13.0 135

Standard length, mm.
Fio. 15.—Diagram illustrating the relationship between various measures of

central tendency in an asymmetrical distribution. Standard lengths of speci-

mens of the fish Far^iXocoeluB brachyptenia hillianus, April collection. Note the
follovnng points: the range midpoint gives no conception of the actual distri-

bution; the mean is on the right of the median in the diagram, that being the side

of the distribution with the longer tail; the mode is on the other side of the
median. Note also that, because of the extreme skew of the distribution, the

mode calculated from the rough formula, mode » 3 median ^ 2 mean, is

obviously incorrect.

THE MEANING OF AVERAGE, TYPICAL, AND NORMAL

An average, as defined and used in this chapter, is any constant

measuring central tendency in a frequency distribution. It is

generally given as a single figure, representing a point or a small

class in the distribution around which the observations tend in

some way to cluster. Since this clustering is a complex phe-

nomenon, there are many sorts of averages, each with its own
distinctive properties.

In common speech the word ''average,'^ if it is intended to be

used exactly, is generally taken to signify only one of the many
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averages of technical usage, the arithmetic mean. It is, however,

seldom used so exactly in the vernacular and generally implies

that the average is a large group including all but a few strongly

aberrant observations. Hence occasional outbursts of indigna-

tion that a third, or some other large fraction, of our human
population lives in conditions below the average, or has an income

below average, or is below average intelligence. When one con-

siders what averages really are, such statements are obviously

ridiculous and tell nothing about the real distribution of living

conditions, income, or intelligence. Obviously if the average in

question is the median or (more approximately) if it is the mean,

half the population must inevitably be below average in every

respect. If the mean is high, a person may be far below average

and yet be living luxuriously. This and analogous widespread

fallacies in the use of words are both amusing and dangerous in

the mouths of legislators. The reason for emphasizing them here

is that many zoologists tend to carry over this looseness of

thought into their work and to confuse vernacular and techni(*al

usages of such words as average.

The w^ord typical is also subject to such confusion, so much so

that it is hard to give it an exact sense. It implies the existence of

a standard of comparison, a type. In the vernacular the type is

sometimes supposed to be the average, or a member of a large

group around the mean, and sometimes is a sort of ideal by no

means really average. The usual description of the ^‘typical

American has more to do with what the speaker or writer wishes

were the mean in our population than with what the mean really

is. In somewhat better defined usage, one as common in scientific

as in popular language, the typical condition is taken to be that

most frequent. Typical then signifies in more technical language

belonging to a modal group. This usage, proper but requiring

definition, is in turn often confused with the strictly technical use

of types in zoology. The type of a taxonomic group is the basis

and standard of comparison for that group, but it need not neces-

sarily be and very frequently is not in a modal class in the fre-

quency distribution for the taxonomic division. It may be far

removed from any average and is quite likely to be, since it is

usually the first specimen that came to hand by chance. The
type of a species is thus not, or not necessarily, typical in any of

the more usual senses of the word.
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The word ^^normaT^ in the vernacular is subject to a curious

dual usage, in which two mutually exclusive ideas are confused

and confounded. It is supposed in the first place that the normal

is a sort of average and in the second place that it means the

absence of some particular sort of variation regardless of the fact

that such variations do occur and hence do in some degree charac-

terize the average. Physicians are the worst technical offenders

in this sense, and medical literature is full of equivocations result-

ing from this double usage. It is assumed that the normal condi-

tion is the mean condition and also that the normal condition is

one without any pathological factors. Normal cannot mean both

thcvse things at once. If anyone in a population is ill in any way,

as of course is true of all populations of any size, then the mean
condition of the whole population is one of partial illness. The
typical condition, in the sense of the modal condition, may or may
not include pathological factors, but the mean condition always

does. In practice the modal condition usually does also. Perfect

health is relatively rare. It is in an extreme, not a middle, posi-

tion in the frequency distribution of health, and normal health in

this sense is an unusual and not an average condition.

It is more reasonable in such a distribution to think of all the

observations that really fit into the distribution as normal. It is

as normal to be on the point of death as to be in perfect health.

The smallest member of a species is as normal as the largest or as

one of mean size. It is unfortunate that the word normal is used

in a still more special and logically unrelated way in the name of

the normal distribution.” This is a highly special and technical

use of the word to mean not only conforming to a pattern but to

one particular pattern of distribution. By no means all normal

variations, in any but this one special sense, fall into a normal

distribution.



CHAPTER VI

MEASURES OF DISPERSION AND VARIABILITY

The determination of any of the various averages gives a point

or a small group around which observations are arranged in some
way. In most cases the arrangement is that they tend to cluster

around this value, to be crowded toward it, or to pile up on it,

with frequencies falling away from it in both directions.^ The

Example 35.—Hypothetical Distributions to Show Different
Dispersion with Identical Ranges and Means

A B

Measurements / Measurements /

4.9 2 4.9 1

5.0 3 5.0 1

5.1 2 5.1 2

5.2 1 5.2 5

5.3 4 5.3 11

5.4 3 5.4 3

5.5 2 5.5 2

5.6 1 5.6 0

5.7 2 5.7 1

In both of these the range is 4.9~5.7 and in both the mean is 5.28, yet

they are decidedly different types of distribution. If, for instance, these

were lengths of individuals of a given species, it would be justified with

distribution B to consider the values 4.9 and 5.7 as exceptional; and if an

individual were found with length 4.7 or 5.9, there would be some probability

that it did not belong to this species. But with distribution A the values

4.9 and 5.7 are not exceptional, and there is no probability against reference

of individuals measuring 4.7 or 5.9 to the species. In biological terms a

character distributed like A is more and one distributed like B is less variable,

even though in the samples at hand the range covered may be the same in

each case.

1 As pointed out in the last chapter, this is invariably true only of the

mode, but it is an approximate statement of the usual relation of frequencies

to other averages.

106
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determination of such a point, essential as it is, does not tell

enough about the real nature of the distribution. It is necessary

to know also about how far the observations extend on each side

of this point and about how fast the frequencies fall away from it,

or, expressing the same thing from a different point of view, to

what extent they are piled up around it. It makes a great differ-

ence in the conclusions to be drawn from a series of measurements
whether they run, say, from 2.8-7.6 or from 4.9-5.7, although in

both cases the mean may be the same.

It also is a very essential factor whether the frequencies are

rather evenly scattered or are strongly concentrated at some
point, even though the range and the mean of the observations

may be the same in either case, as shown by Example 35.

The adequate measurement of these very important character-

istics of frequency distributions is one of the greatest problems of

zoology, and it is one toward which most zoological work so far

published makes little progress. There are, however, good

methods of making such measurements, called measures of dis-

persion, and this chapter is devoted to the most useful of these.

OBSERVED RANGE

The observed range is the difference between the highest and

the lowest observed values of a variate, usually and most usefully

expressed by giving these extreme observed values although,

strictly speaking, the observed range is not these values but the

difference between their limits. Thus in Example 36, giving data

that will be used throughout this chapter so that the different

measures and means of calculation can be easily compared, the

observed range is best recorded as 52-68 mm. The difference

between these, the actual value of the observed range, is 17 mm.^
The observed range, usually but with some danger of confusion

simply called the range, is a useful datum and should be given

whenever pertinent, but it has many drawbacks and it is not a

good measure of dispersion. Because of its simplicity, obvious

meaning, and requirement of no calculation it is frequently given

in zoological publication, which is desirable; but unfortunately it

1 Not 16 mm. as is usually stated in analogous cases. The range really

lies between the implied limits of the extreme measurements, i.e., between

51.5 and 68.5 mm. in the example, not between the recorded measurements,

which are midpoints and not limits.
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is often given without any way to assess its value and it is often

assumed to be an adequate representation of a distribution and to

be a significant measure of variability, which it is not. Indeed

most zoologists who have discussed variability and variation,

perhaps the most important single aspect of zoological work, have

made this erroneous assumption, making their work relatively

usele^^s and revealing ignorance of a basic concept of zoology, what

variability really is.

Example 36 .—Tail Length in Millimeters of Specimens of the
Deek-mouse, Peromyscus maniculatus bairdii, Both Sexes, in the

l-YEAR Age Class, Taken near Alexander, Iowa
(Data from Dice 1932)

Tail length No. of observ

(X) (/)

52 1

53 0

54 3

55 0

56 3

57 8

58 7

59 11

60 11

61 10

62 6

63 14

64 6

65 3

66 1

67 1

68 1

In the first place, it is clear that the observed range is dej^end-

ent on the number of observations made. If only one is made,

the observed range is zero. Certainly this does not mean that the

species, or other category, measured does not vary at all in nature.

If two observations are made, the observed range may be large or

small but will probably be small. In general the probability is

that the more observations are made the larger will be the

observed range. Unless the total frequency is also given, an

observed range is thus meaningless. Even if the total frequency

is given, the meaning of the observed range is uncertain, for its

incr^se yrjth increased number of observations depends in large
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measure on chance and its value with any given is a matter of

probability, usually with a large element of uncertainty, rather

than of any simple and easily calculable relationship.

Any variate does have a real range. In any given species, for

instance, there really does exist in nature one individual that is the

largest and one that is the smallest. The difference between

these, the real as opposed to the observed range, is an important

significant character of the species or more generally of any
variate; but it is never surely available. The chances of actually

observing the largest and smallest of all existing values of any
variate are obviously very small, and in most cases it would be

impossible to know that they were the extreme values even if they

were observed.

The observed range is significant only as an approximation of

the real range. With small samples the approximation is so poor

in most cases and so unreliable in all that the observed range is not

very helpful. With large samples the observed range may be a

relatively good approximation of the real range; but even in such

cases a more reliable estimate of the real range can be obtained

by calculation from other measures of dispersion, especially from

the standard deviation (see the following paragraphs).

In any event, as the distributions on page 106 show, the range,

especially observed but even real, does not give all the desired or

necessary information about dispersion and variability. In

terms of frequency curves, it shows at best only where the curve

ends and tells nothing of the equally or more important shape of

the curve between the ends. For all these reasons the observed

range is the poorest of all the measures of dispersion.

MEAN DEVIATION

The range is dependent on only two values, the most extreme

available. Clearly a better measure of dispersion can be obtained

if all the values are taken into consideration and some figure

calculated that depends on their spread from a given point, an

average. Of such measures, the simplest is the mean deviation,

which is the arithmetic mean of the distances of the individual

observations from the arithmetic mean of the whole distribution.

The fact that some observations are above the mean (have larger

values) and some below is represented in usual calculation by
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making the former distances from the mean positive and the latter

negative. If this were done in calculating the mean deviation, it

follows from the definition of the mean that the mean deviation

about the mean would always be zero. In fact, the concern here

is with the distances from the mean, that is, the deviations, not

with their direction from the mean, so that all the deviations are

taken to be positive or, as it is usually but less logically expressed,

the signs are ignored. The calculation is by the following

formula:

M.D. N

in which M.D. is the mean deviation, d any one deviation from the

arithmetic mean (in either direction), and the other symbols as

Example 37.—Calculation of Mean Deviation from the Data of

Example 36
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previously explained. ^ The calculation is exemplified in Example
37.

The mean deviation is a distance that is in the same units as the

measurements involved, or, for a discontinuous variate, it is a

count of the same units as the original data. The mean deviation

calculated in Example 37 is 2.46 mm.

Example 38.—Calculation op Mean Deviation about the Median
FRoai THE Data of Example 36

X f d fd

52 1 8.41 8.41

53 0 7.41 0

54
:

3 6.41 19.23

55 0 5.41 0

56 3 4.41 13.23

57
I

8 3.41 27.28

58 7 2.41 16.87

59 11 1.41 15.51

60 11 .41 4.51

61 10 .59
1

5.90

62 6 1.59 9.54

63 14 2.59 36.26

64 6
1

3.59 21.54

65 3 i
4.59 13.77

66 1 5.59 5.59

67 i
1 6.59 6.59

68 1 7.59 7.59

A = 86 S(/d) =211.82

Median class = 60 Li = 59.5
n = 43.5 - 33 = 10.5

/
i

Median

M.D.Quediim

11

1

59.5 4- - 60.41

2(fd) 211.82 _ „
AT

""
86

The mean deviation can be calculated not only about the mean,

the usual practice, but also about any other average. The only

other one commonly used is the median. A mean deviation

' Explanation of the commonly used symbols is not repeated each time

they are used. They are all also given in the Appendix for reference (with-

out having to go back over the text to search for them).
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about the median should be so specified, since mean deviation

otherwise is taken to be about the mean. Example 38 shows the

calculation about the median.

It is noteworthy that 2(/d) is less for the median, 211.82 in the

example, than for the mean, 211.86, bearing out the statement

made in the last chapter that this figure is less for the median

than for any other average. In the example the mean and

median are so nearly the same that the mean deviations about

them are the same to two decimal places.^

There is a short method for calculating mean deviations

analogous to that for calculating the mean, explained in the

preceding chapter. Since it is seldom necessary to calculate a

mean deviation, however, and since with most zoological data this

can be done readily enough by the long method, space is not taken

here to exemplify the short method.

It is easy to understand what the mean deviation signifies, and
this measure of dispersion is relatively easy to calculate, although

the difference from the standard deviation in ease of calculation

will not be found great. If there are large erratic deviations

beyond the bulk of the distribution, they usually disturb the

mean deviation less than the standard deviation, and if they are

not considered significant for the problem, the mean deviation

may in such cases be preferable. In general, however, the mean
deviation is not the best measure of dispersion. Its use in

algebraic calculations is inconvenient, and its relationships to the

normal curve and the theory of errors and its use in comparing

means or other constants are also relatively inconvenient and not

so well worked out as for the standard deviation. In almost

every case the standard deviation, which will be discussed next, is

preferable. The mean deviation has been introduced at this

point and explained at this length not so much to recommend its

use as because it provides a simple introduction and logical back-

ground for the problems of dispersion and the use of deviations in

general.

STANDARD DEVIATION

If the direction from the mean is taken into account, or in other

words if the signs are retained, the sum of the deviations about

^ Further decimal places in these instances would not be significant for the

problem. This question of significant places is discussed in Chap. VIII.
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the mean is always zero—a statement obviously true because the

process of finding the mean is simply a method of determining the

point above and below which the deviations are equal in quantity

although opposite in sign. The mean deviation would therefore

always be zero except for the expedient of ignoring the directions

of the deviations. The standard deviation is a measure obtained

without recourse to this artifice, but taking advantage of the fact

that any number, positive or negative, has a positive square.

One has, then, only to square the deviations to be sure that their

sum will always be positive and, in practice, will always be greater

than zero.

The mean of the squares of the deviations is called the variance

of the distribution and it is fundamentally the most important

statistical constant measuring dispersion. The formula is

simple:^

Vm = N
'

in which Vm is the variance about the mean.

^ K, A. Fisher (1936) gives the formula (in his own notation) as

Vm
^(d^)

~ N - I

and remarks, ‘Tn large samples the difference between these formulae is

small, and that using N may claim some theoretical advantage if we wish an

estimate to be used in conjunction with the estimate of the mean from the

same sample, as in fitting a frequency curve to the data; in general it is best

to use (A^ — 1). In small samples the difference is still small compared to

the probable error, but it becomes important if a variance is estimated by
averaging estimates from a number of small samples.” Many other

biometricians do not as yet accept Fisher^s formula. Without questioning

the logic involved, it appears that the formula X{d^)/N is usually better

for the uses that we contemplate. It is now in universal use, so that results

are strictly comparable only if it is employed. Even for small samples, as

Fisher observes, the value obtained is generally not significantly different

from that of Fisher’s formula. It is generally used, in zoological work, in

conjunction with the mean and in ways related to that for which Fisher also

grants it a theoretical advantage. It does not appear to be a question of

right and wrong but only of different conventions or ways of treating the

data. The usual procedures and tables presuppose that this formula rather

than Fisher’s will be used. For these reasons we retain it in general and
suggest that Fisher’s formula may be advantageous only in cases like those of

averaging estimates derived from a number of small samples, a procedure

relatively rare in zoology as opposed to experimental biology, and for

special uses with very small samples, on which see Chap. XI,
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In practical use, it is almost always more convenient to use the

square root of the variance. This reduces the magnitude to one

directly comparable to the deviations themselves and hence is

particularly adapted to such uses as considering the significance of

individual deviations and in general serves better the purposes for

which a measure of dispersion is wanted. This constant, the

square root of the variance, is the standard deviation

<r =

in which er (Greek lower-case sigma) is the almost universally used

symbol for the standard deviation.

The calculation of <r by a method analogous to the long method
of finding the mean is given in Example 39.

The variance Vm around the mean M has a simple relationship

to the variance Va around any other point A :

Va == Vm + d\

where == the difference between the mean and the other point

(M - A).^

This relationship proves the statement previously made that

the variance is less around the mean than around any other point,

because d\ is always positive and has the value 0 only when
A M. For this and other reasons the variance and the stand-

ard deviation are always taken around the mean; but the relation-

ship to variances around other points is used to shorten the

calculation of (r by using an assumed mean A^ analogous to the

* If is a deviation from the mean, a deviation from Aisd + {M — A), or

d -f dA. If deviations from A are designated by 5,

5 == d -f- dA
52 = d* + 2ddA + d\

S(fi2) = S(d2) -f 2dxS(d) + Nd\

Since 2(d) is always 0, the second term vanishes:

2(52) 2(d2) -f Nd\
2(5*) 2(d2)

“ST N -f di

which is the same as

Va ^ Vm A d\
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short method of calculating M given in the preceding chapter.

The variance is calculated around an assumed mean in terms of

class intervals, the midpoint of the modal class usually being

taken as the assumed mean since this simplifies the arithmetic;

Example 39.—Calculation of Standard Deviation by the Long
Method from the Data of PJxamplb 36

Tail

length

(X)

No.

observations

(/)

Deviation from mean

d

52 1 -8.43 71.0649 71.0649

53 0 -7.43 55 . 2049 0

54 3 -6.43 41.3449 124.0347

55 0 -5.43 29.4849 0

56 3 -4.43 19.6249 58.8747

57 8 -3.43 11.7649 94.1192

58 7 -2.43 5.9049
i

41.3343

59 11 -1.43 2.0449 22.4939

60 11 - .43 . 1849 2.0339

61 10 .57 .3249 ! 3.2490

62 6 1.57 2.4649 14.7894

63 14 2.57 6.6049 92.4686

64 6
j

3.57 12.7449 76.4694

65 3 4.57 20.8849 62.6547

66 1 5.57 31.0249 31.0249

67 1 6.57 43.1649 43.1649

68 1 7.57 57.3049 57.3049

N = 86 S(/d*) = 795.0814

M = 6 0.43

, . .y/Ip .

and from this is subtracted the square of the difference between

the true mean and the assumed mean, the difference also being in

class intervals. The square root of the remainder is the standard

deviation in terms of class intervals; and if these are not 1, this is

multiplied by the class interval to give the standard deviation in

ordinary units. The general formula is

* It should be noted that the calculations in this and other examples in

which the arithmetic is somewhat difficult need not be carried out arith-

metically and are not in practice. Logarithms, tables of squares and roots, a

slide rule, a calculating machine, or any combination of these are to be used

(see Appendix).
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where = the deviation from the assumed mean in terms of

class intervals.

i = the class interval.

Cl = the difference between mean and assumed mean in

terms of class intervals.

This correction factor can be calculated otherwise but is most

easily found from the relationship

Cl = N

The correction factor c, for finding the mean, is equal to ici.

The calculation of M and g by the short method is shown in

Example 40.

The slight differences in M and g obtained in this example from

the more accurate values of Example 39 are caused by the group-

ing, not by any inaccuracy in the short method. The short

method can be applied equally well to the original measurements,

and the long method can be applied to the data grouped to class

interval 2 (or any other, using class midpoints); and when the

grouping is the same, the two methods give the same results.

The short method has been exemplified here only with the larger

grouping for the sake of brevity.^

^ The use of grouped data to obtain the variance implies that the fre-

quencies are concentrated at the class midpoints. In fact they may be

scattered over the whole class interval, and this difference of fact from theory

introduces an element of inaccuracy. If the frequency distribution is con-

tinuous and if it tapers off gradually to zero in both directions, the average

effect is to increase the variance by the constant amount K 2 ~ .0833, in

terms of the units in which the deviation is measured. The subtraction of

this figure from the variance (before the standard deviation is obtained from

the variance) is Sheppard's correction. This is inapplicable to discontinuous

distributions or to strongly skewed distributions and is in any case only an

average effect: the actual effect in a given case cannot be measured and may
be much less, especially with small samples. The application of the cor-

rection is, indeed, so doubtful in practice and the difference that it makes so

slight that in practical work it is commonly omitted unless there is strong

reason to believe it applicable and the data permit and the problem demands
extreme accuracy. Although hardly called for in most zoological compu-
tations, it is mentioned because of these rarer instances when it should be
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Example 40.—Calculation of Standard Deviation from Data of
Example 36 by the Short Method, after Secondary Grouping

Tail length
Number of

observations
dx Ha

52-53 1 -4 - 4 16

54-55 3 -3 - 9 27
56-57 11 -2 -22 44
58-59 18 -1

1

1

-18 18

1

1

!

-53
60-61 i 21 48

62-63 20 1 20 20

64-65 9 2
!

18 36
66-67 2 3 6 18

68-69 1 4 4 16

0011 2(/rfx) = - 5 = 195

1=2
A = midpoint of class 60-61 = 60.5

S(/rfA) _ -5
N 86

Cl = = 02.- = -.058 2 — .0034

c = fci = 2 X -.058 - -.12

M = A 4* c = 60.5 -f (-.12) = 60.38

<r - .0034

= 2\/2.2640 = 2 X 1.505 = 3.01

The Jd\ column is obtained by multiplying /dx by dx, and it is not neces-

sary to obtain d\ separately.

With distributions reasonably near symmetry, the mean devia-

tion is usually about four-fifths of the standard deviation. In

used and because it will occasionally be encountered in the literature. In

Example 39 the application of Sheppard’s correction would make <r » 3.03,

as opposed to 3.04 without the correction, a difference not significant and not

certainly a real increase in accuracy. In Example 40 it would make <r = 2.95

as opposed to 3.01, a difference that may well be a decrease, not increase, in

accuracy.

Most authors apply the correction, if at all, only to data grouped with

intervals larger than the original unit of measurement. But the original

measurements are just as much grouped as are any secondary groupings

based on them, and it would seem that the correction if applicable to either

would be applicable to both.
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Example 37 the mean deviation was found to be 2.46, and in

Example 39, using the same data, the standard deviation is 3.04.

2.46

3.04
= .81

which is very nearly four-fifths, as called for by this rule.^

The standard deviation, like the mean deviation, is an absolute

figure in the same units as those of the original measurements or

counts. Although usually written as in Example 39 where it is

recorded as simply 3.04, it must be remembered that this is not

an abstract number or a relative value but is itself a measurement,

in this case 3.04 mm.
The standard deviation is usually the best available measure of

dispersion. It is not much more difficult to calculate than is, for

instance, the mean deviation; it can conveniently be used in

algebraic calculation; and its relationship to the normal curve and

to the theory of errors is relatively simple and direct. Its

properties and uses are so extensive and important that they are

given in the course of subsequent chapters rather than attempting

to sum them all up briefly here, but one important point may be

mentioned. If, as is so often the case, a normal distribution is an

adequate approximation of an actual given distribution, then

about 68 per cent of the observations will be distant not over one

standard deviation above or below the mean, about 953^ per cent

will be distant not over two standard deviations, and for practical

purposes all the observations (theoretically about 99^ per cent)

will be within three standard deviations of the mean. From these

relationships it follows that 6<r is a much better approximation of

the real range and {M — 3<t) and {M + 3cr) of its limits than are

the observed range and observed limits. In Example 39, based

on an excellent sample of a nearly normal distribution, 6(r is about

18 and {M — 3<7)-*(Af + 3<r) is about 51-fi9. The observed

range is 17, 51.5-fi8.5. The agreement is excellent and confirms

the relationship. Few distributions are as good as this; and the

observed range is usually irregular and considerably smaller

relative to 60- or, it may safely be inferred, to the real range. The
observed range is generally from 4(r to 6<r, a fact that may be used

1 Based on the fact that in the normal curve, which is approximated by
such distributions as are included in the rule, M.D. « .7979rr.
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as a rough check in computing cr to see whether the value obtained

is of the right magnitude.

SEMI-INTERQUARTILE RANGE

Quartiles measure the values of a variate below which lie one-

fourth, two-fourths, or three-fourths of the observations and are

designated respectively as the first, second, and third quartiles.

Obviously the second quartile, with two-fourths or one-half of the

observations below it, is the median, and it is usually called by
that name, only the first and third quartiles being explicitly called

quartiles.

The calculation of the first and third quartiles is the same as for

the median except that a different value is given to n for each.

. i, +

Q. . L. +

in which ni is found by subtracting the total frequency below the

first quartile class from (AT -f- l)/4 and ris by subtracting that

below the third quartile class from 3(A^ + l)/4.^

^ As with the median, most statisticians use N where we use iV -f 1, and
apparently none uses the correction of subtracting from ni or uz] but the

same logic applies here as for the median, as discussed in Chap. V.

For the data of Example 40 (page 117) iV is 86, and i is 2.

N 4- 1

4
21.75

^{N -h 1)

4
65.25

The first quartile must lie in the class 58-59, lower limit 57.5, frequency 18,

and the frequency below this class is 15; therefore

ni = 21.75 - 15 = 6.75

Similarly the third quartile is in the class 62-63, lower limit 61.5, frequency

20, frequency below this 54; so

713 = 65.25 - 54 = 11.25

Placing these values in the formulas,

Qi = 57.5 + = 57.5 + .69 = 58.19

Qs = 61.5 + = 61.5 + 1.08 - 62.58

The median, which is Qj, has already been found to be 60.41, In a sym-
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The distance between Qi and Qz is a measure of dispersion.

Half the observations are piled up within this distance, a quarter

below it and a quarter above. The measure usually taken,

however, is the semi-interquartile range, half of this distance,

which is the average distance (regardless of direction) from the

median to the first and third quartiles. It is also called the

quartile deviation.

Q.D. = Oa “ Q\

in which Q.D. is the quartile deviation or semi-interquartile range.

In the example used above

Q.D.
Qz- Qi ^ 62.58 - 58.19

2 ~ 2

4.39

2
“ 2.20

In distributions approximately normal, this is usually about

two-thirds of the standard deviation.^ In the example

^ - 79
(T 3.04

'

a value somewhat higher than expected under the empirical rule,

because the distribution is not, in fact, quite symmetrical, but

still approximately two-thirds.

The quartiles and the semi-interquartile range have much the

same advantages and disadvantages as the median. They are

relatively simple and obvious characteristics of a distribution and

are not infrequently employed on that account; but they do not

lend themselves to calculation and comparisons so well as do the

mean and the standard deviation, and their general use is not

recommended.

In place of quartiles, quintiles, dividing the frequencies into

5 equal groups, deciles, dividing them into 10, and percentiles,

dividing them into 100 groups, are sometimes useful in special

cases, mostly outside the field of zoology. They are calculated

like the median, getting an appropriate n for each by starting

metrical distribution, this lies halfway between first and third quartiles,

which it nearly does in this case

:

Median or Q* — Qi = 60.41 ~ 58.19 = 2.22

Qz — median or Q 2 = 62.58 — 60.41 » 2.17

^ Because in the normal curve Q.D. = .6745<r.
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with multiples of {N + l)/5 for quintiles, of {N + 1)/10 for

deciles, and of {N + 1)/100 for percentiles. If such figures are

of any use, it is easier and usually sufficiently accurate to get them
graphically, plotting the distribution as an ogive and drawing

horizontal lines at heights corresponding to the desired fractions

of the total frequency. The median can also be obtained in this

way, as already mentioned, and so, of course, can the quartiles.

Mean
Skewness = -0. 10 (slightly

skewed to left)

Kurfosis -+}.94 (distribution

teptokurtic)

Primarily grouped data
(interval 0.1mm.)

K 1 Secondarily groupeddata
(interval 0,2mm.)

^//A Secondarily grouped data
(interval 0.3mm.}

Fia. 16 .—Various representations and group measures of an approximately
normal frequency distribution.

Widths of last upper molars of the extinct mammal AcropUhecu^ rigidxia. Broken line,

frequency polygon of the raw (primarily grouped) measurements (see Fig. 2). The histo-
grams show the same data secondarily grouped with interval .2 mm. and ,3 mm. (see Fig. 3).
The three curves are normal curves roughly fitted to these three forms of the data. Their
essential parameters are exactly the same; and they differ only because the broader groupings
give fewer classes, hence higher class frequencies, and hence larger ordinates in the curves.
The principal measures of central tendency and of disi>er8ion are given. Note, in this
satisfactory sample of moderate sise, the close approximation of Af ± 3o- to the observed
range. The coeracients of skewness and of kurtosis measure the principal departures from
the normal distribution, neither very marked.

RELATIVE DISPERSION AND VARIABILITY

All the measures of dispersion so far discussed are absolute.

They are themselves measurements or counts of the variate, and

their interest is that they are particular values of the variate lying

at certain fixed and characteristic points in the given distribution.

Valuable as such measurements are, they do not make possible a

direct comparison of the dispersion and variability of variates of

different absolute mean sizes, and just such comparisons are what
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the zoologist usually has in mind when he talks of variability. In

most fields a measure of relative variability is useful, and in

zoology it is indispensable.

The fact that elephants, for instance, may have a standard

deviation of 50 mm. for some linear dimension and shrews a

standard deviation of .5 mm. for the same dimension does not

necessarily mean that the elephants are more variable, in the

essential zoological sense, than are the shrews. The elephants

are a hundred times the size of the shrews in any case, and we
should expect the absolute variation also to be about a hundred

times as great without any essential difference in functional

variability. The solution of this problem is very simple: it is

necessary only to relate the measure of absolute variation to a

measure of absolute size. The best measures to use for this pur-

pose are the standard deviation and the mean, and since their

quotient is always a very small number it is convenient to

multiply it by 100. The resulting figure is a coefficient of varia-

tion, or of variability.^ The formula is F = lOOcr/ikT, F being

the standard symbol for this coefficient of variation. The value

of F, unlike that of cr, is usually spoken of as a pure number,

divorced from any unit of measurement. More accurately, it

measures a characteristic in units peculiar to itself, and its mag-
nitude is not commensurate with the lengths, weights, or other

units of standard mensuration.

The valid use of F depends on the assumption that variation as

a biological function is relative to absolute size or, in terms of

distributions, that absolute dispersion increases in direct propor-

tion to the mean in variates of essentially the same variability

from a biological point of view. It is logical in our understanding

of what variability is that this should be so. It has also been

empirically determined by many calculations on samples of all

sorts of animals that this is at least approximately true of most of

the variates used in zoology.

The comparison of values of F derived from different distribu-

tions is almost invariably valid and useful if the variates are

homologous. If they are not, experience suggests that the com-

^ Proposed by Karl Pearson (1857-1936), English leader in biometrics.

As much as any one man, he was responsible for the extension and develop-

ment of statistical and other advanced quantitative methods in the life

sciences.
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parison is still generally valid if the variates are analogous and
belong to the same category, for instance, if they are all linear

dimensions of anatomical elements, the usual case. It is also

helpful that the units of measurement have no influence on the

comparison as long as they are in one category: a V derived from

measurements in millimeters is directly comparable to one from

measurements in feet. As a rule, however, coefficients of varia-

tion for variates of essentially different categories cannot be use-

fully compared. V for a continuous and V for a discontinuous

variate, V for a temperature and V for a mass, V for a linear

dimension and F for an area, and the like, are not to be considered

comparable unless this is shown to be warranted by logic and by
experience. It is also necessary to bear in mind that the implica-

tion that absolute dispersion relative to the mean measures

biological variability is only a broad rule, mainly empirical in

foundation, and that it is always open to exception. V is in

every case a good measure of relative dispersion, but relative

dispersion is not always a good measure of variability. It is,

however, usually so, and V is by far the most useful measure of

this characteristic that has yet been proposed. Its use involves

only the common-sense necessity of remembering what V is and
being sure that this is really what one wishes to compare.

Discernment of the meaning of a value of V is largely a matter

of experience. Its interpretation on functional zoological grounds

depends on nonnumerical biological knowledge. We have com-

pared dozens of F^s for linear dimensions of anatomical elements

of mammals. As a matter of observation, the great majority of

them lie between 4 and 10, and 5 or 6 are good average values.

Much lower values usually indicate that the sample was not

adequate to show the variability. Much higher values usually

indicate that the sample was not pure, for instance, that it

included animals of decidedly different ages or of different minor

taxonomic divisions. If the sample is adequate and reasonably

unified, then different values of F generally represent in a clear

and useful way inherent differences in variability.

For the data of Example 39 (page 115), F is calculated as

follows:

100(r 100 X 3.04 ^M 60.43
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Example 41.

—

Skull Measurements or Males, Adult unless
Otherwise Noted, of the Northern White-tailed Deer,

Odocoileus virginianus borealis, from New England, All but
One or Two from Maine
(Data from Phillips 1920) ^

Variate V
1. Palatal length 4.32

2. Audito-basal length 4.55

3. Ijength lower tooth row 4.97

4. Zygomatic width 5.11

5. Length upper tooth row 5.39

6. Orbital width 5.62

7. Mastoid width 7.10

8. Length of nasals 9.89

9. Antler length, adults 13.78

10.

Antler length, 95 adults and 13 juveniles 18.66

The first six variates listed show about average variability, and such

differences in V as exist show moderate increase in this characteristic in the

order of listing. The seventh and eighth variates must be considered

markedly variable for an adult sample of one sex of a single subspecies. In

the case of length of nasals the variability is doubtless influenced by vari-

ability of suture form, always rather high. The figure for adult antler

length is very high. Biologically there are doubtless two factors here: (1)

variability proper, which is evidently high for this dimension; and (2) the

fact that antler size in individual deer does not, like the other dimensions

listed, reach a maximum and then remain nearly constant but declines

markedly in adults past their prime. To get a measure strictly of variability

for this dimension it would be necessary for all the animals observed to have

been in the same year of their age and merely selecting adults is not adequate.

The last figure given has no real usefulness; for to the two factors just men-
tioned is added marked heterogeneity by mixing in some juvenile specimens,

an unwarranted procedure.* This is stressed to point out once more a fact

that cannot be overemphasized: that the mathematical procedures in this

book are not mystic formulas and have in and for themselves no usefulness

or validity except as they help to record and interpret useful and valid

zoological facts. They are not to be viewed as producing numbers important

per se, but only in the light of their zoological (and logical) meaning.

^ V*8 should generally not be published without also giving other constants

of the distribution, and we do so only for the sake of illustrating this one

point. Phillips also gives N, M, <r, observed range, and dimension of type,

an unusually good publication of numerical data in its most usefully com-
plete and yet compact form. It should be noted, however, that he quotes

an incorrect definition of the standard deviation and that there are certain

unnecessary and confusing irregularities and ambiguities in his data and

conclusions.

* It might be a useful thing to calculate the mean length of antlers in all

males of the subspecies, regardless of age. This could be done only by
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This is a usual value for such a variate in a relatively uni-

fied sample. It shows this dimension to have about average

variability.

The interesting series of values in Example 41, one of the few

such series available in the published literature, also shows about

how values of V commonly run.

The means for the dimensions of Example 41 run from 4.27 to

49.8. The second dimension listed has a mean (26.65) about

three times that of the third (8.31), but their F's (4.55 and 4.97)

and variability are almost the same. This tends to corrob-

EIxamplb 42.

—

N and V for Width of in Samples of the
Tree-hyrax, Dendrohyrax dorsalis emini

(Calculated from measurements by Hatt 1936)

Sample N V

1. Males only, 1 locality, Niapu 10 4.2

2. Combined males from 4 localities, Niapu,

Akenge, Gamangui, and Ngayu 16
1

4.0

3. Females only, 2 localities, Niapu and Medje. . 8 3.1

4. All specimens, males and females, 5 localities

.

24
i

3.8

Sample 1 of this example is as homogeneous as a zoological sample could

well be. The specimens are all of about the same age (adult), are of one sex,

come from a single locality, and belong to a single subspecies. V is relatively

low, as would be expected because it is strictly a measure of variability, other

causes of dispersion being excluded by the purity of the sample. Even
within the pure sample this is one of the least variable dimensions, as other

measurements given by the original author show. Sample 2 is less homo-
geneous as to locality, but all the specimens were taken within the range of a

single race and the resulting V is not significantly different from that of the

entirely homogeneous sample. The females are, in this dimension, even less

variable than the males, probably a real sex difference although proof of this

would involve analysis not pertinent in this chapter. The combined sample

of males and females is slightly (not significantly) less variable than a sample

of males alone. The reason for this is that the females are in this case less

variable than the males without differing significantly in absolute size. If

the females did differ in mean size (in this dimension) from the males, the V
of the combined sample would be higher than for either sex alone and would
not be exclusively a measure of variability but of this plus sex divergence.

measuring adults and juveniles in the same proportion in which they usually

occur in nature, which certainly is not 95:13 as in this sample. Even in

such a case, however, V would not really measure variability in a biological

sense and would have little value.
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orate the belief that this measure is a valuable one even for

widely unequal and for nonhomologous but broadly analogous

dimensions.

Example 42 shows F’s for relatively small samples, such as are

more common in zoology.

As is discussed at greater length in Chap. IX, it is practically

impossible to get a paleontological sample as homogeneous as a

well-selected group of recent animals. The sexes usually cannot

be separated, age groups may not be clear, and there will in many
cases be unavoidable small differences in geological age and in

race. It may therefore be expected that F^s based on fossil

material will run higher than those based on well-recorded and

-selected recent material. They do so in general, but the

differences are not great if the paleontological sample is also as

well selected as the exigencies of collection permit. Example 43

is typical of many values of F based on fossils.

Example 43.—Coefficients of Variability of Linear Dimensions of
Teeth of the Extinct Mammal Litolesles notissimus. Sexes Indis-

tinguishable, Derived from a Single Quarry but not Exactly
the Same Stratigraphic Level

(Original data)

Variate V
Length jP4 6.6

Width P 4 7.1

Length Mi 5.1

Width ilfi 6.5

Length il/2 5.6

Widths, 5.6

Length Ms 6.9

Width Ms 4.3

One of the essentials in good taxonomy is to select characters

that are relatively little variable within a taxonomic group, for

taxonomic comparisons are more easily and more reliably based

on these than on highly variable characters. The coefficient of

variation is very useful as a guide in the selection of such charac-

ters, too often merely guessed at or accepted with no real criterion.

For instance, in dealing with fossil mammals of the family Ptilo-

dontidae, order Multituberculata, there is a strong temptation to

use the third upper premolar in taxonomic definition because it

shows such strong and clear-cut differences. In a sample of

Ptilodua monianus, a member of this group, the F^s for other

linear tooth dimensions are for the most part around 5 or 6, with
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only one as high as 10; but for length of this figure is 18.5.

Obviously the tooth is extremely variable and is not a good

taxonomic guide, or expressed in other words, its variations reflect

intraspecific variability and not reliable taxonomic differences.^

A measure of relative dispersion that is implied in some zoologi-

cal procedures is the ratio of the extreme observed values. Such a

statement as that the largest individual of a species is 15 per cent

larger than the smallest is a use of this sort of measurement of

relative dispersion. The same sort of measurement is implied in

comparing species when, for instance, it is given as a specific

character that the type of one species is in some dimension 20 per

cent larger than the type of another species. Stated in this usual

way with no other data, the implication is that individuals within

one species do not differ so much in size as do the types of the two
species. Usually no evidence for this implied belief is given; and
it is, in fact, usually wrong.

The best way to record this measure of relative dispersion

would be (100 X highest observed value) /lowest observed value,

giving the highest as a percentage of the lowest value. Of all

measures of relative dispersion, this is undoubtedly the worst;

and it is discussed only to draw attention to the fact that it is so

poor and yet is implied in so much zoological work. It is also

important to note that the figures thus obtained even for good

samples of relatively low variability are usually higher than most

zoologists seem to know or suspect. It is commonly stated or

implied that 115 per cent, or 115, is a high value for a single

species (or other natural group). Actually it is an unusually low

Example 44.
100 X Highest Observation

POR Dat.a of Example 41,
Lowest Observation

WITH CORH'^SPONDING F’s

F
1. 12o 4 32

2, 127 4.55

3. 130 4 97

4. 129 5.11

5. 142 5.39

6 . 129 5.62

7. 143 7.10

8. 179 9.89

* The biological explanation of this extraordinarily high V seems to be

that P* in this family is not functional and is being lost. Organs in this

condition are usually extremely variable.
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value. Example 44 illustrates this, as well as the irregularity of

such a measurement.

These samples are large for zoology (91 to 96 individuals), and

so the observed limits are somewhere near the true limits. For

the more usual small samples such a measure bears little rational

relationship to the real variability.

If such a measure were really desirable, it would be much
better to calculate it as 100(ikf + 3(t)/(M — 3(t), using the best

available approximation of the true range limits. This measure

is not in use, nor is there any justification for it except as an

improvement on the one that is in use. If <t is calculated, it is

easier and better to use V.

Several other measures of relative dispersion are in occasional

use and may be mentioned. They have no advantages over V ;

and it is urged that the latter alone be employed, keeping all such

data comparable. Formulas for some such measures in use are

( 1 )

(2)

(3)

(4)

100 X M. D.

Mean
100 X M .D. Wian

Median
100 X Q.D.

Median

100«?3 - Ql)

Qs + Ql
also sometimes modified as

100(Q3 - Ql)

2(^3 + Ql)

The values of these various coefficients for a single distribution

are given for comparison in Example 45.

Example 45.

—

Various Measures of Relative Dispersion Calculated
FOR the Distribution Given in Example 36 (Page 108)

lOOtr 100 X 3.04 _
F =^ ^ ^

100 X highest observation _ 100 X 68 _
Lowest observation 52

100(M -f 3<r) _ 100 X 69.55 _
M -Sa 51.31

100 X M.D. ^ 100 X 2.46

Mean 60.43

100 X M.D^nedun ^ 100 X 2.46

Median 60.41

100 X Q.D. ^ 100 X 2.20
^

Median 60.41

100(0* - Oi) _ 100 X 4.39

0* + 0i
“ 120.77

3.64



CHAPTER VII

THE NORMAL CURVE

The normal curve and the normal distribution have been

briefly characterized in previous pages, and it has been mentioned

that their great importance for the zoologist is two-fold: they

approximate many actual distributions that he encounters, and
they provide the background for determinations of probability

and for comparisons of various measures. It is now necessary to

consider in greater detail the way in which the normal distribution

is used as an approximation of real distributions, how normal

curves are specified, and what the properties are t hat underlie the

various operations in which it is involved.

THE NORMAL CURVE AND REALITY

It is convenient to call some real distributions ^^normaP^and

to speak of many others as if they were merely imperfect repre-

sentations of what would be normal distributions if only our data

were complete. It is, however, necessary to bear in mind that

this is only a manner of speaking, adopted to save constant

verbose qualification and circumlocution, and to remember that

no real distribution, even if all existing data on it were at hand,

can ever actually follow the normal curve or any other purely

mathematical concept. To the mathematician and statistician

these mathematical abstractions are the ideal and are perhaps in

a philosophical sense the ultimate reality. To them, the actual

concrete data of observation are only an imperfect approach

toward such an abstraction. The zoologist has and should have a

very different point of view. His observed distributions are the

reality with which he is concerned, and the normal (or any other)

curve is only an imperfect but helpful means of describing these

and of otherwise drawing useful deductions from them.

A curve as a representation of a frequency distribution is, at

its simplest, a limit that a real distribution would reach if the

number of observations were infinite, Obviously the number of

129
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observations is not infinite. Within limits it can often be

increased at will, but it is rigidly restricted by the fact that there

is always a finite, even though usually large, number of possible

observations, and it is more loosely but also inevitably restricted

by the fact that it is seldom really practical to make more than a

small fraction of all possible observations. Thus in fact a dis-

tribution never could become literally normal.

This discrepancy would involve little or no difference between

the zoological and the mathematical point of view if it were a fact

that all possible observations, if they were made, would ever be

distributed so as to differ from the normal only in being finite

rather than infinite in number. If, in other words, a frequency

polygon of all existing values of a variate differed from a normal

curve only in being outlined by a succession of exceedingly short

straight lines instead of by a literal curve, then it would be proper

to think of the distribution as merely an imperfect approach

toward the normal curve. This, however, is also false. No
matter how large a series of observations are made, the normal

curve is not approached in this simple way by any distribution

based on real things.

The fact that the normal curve approximates real distributions

is largely a matter of empirical observation. It has been repeat-

edly tried and has been found rather closely to approximate

certain types of distributions more often than not. It has never

been found to be exactly like a real distribution, even in the sense

of the preceding paragraph. There is no reason why the normal

curve should not be a good approximation, on theoretical and
logical grounds there is some positive probability that it would be,

and from observation it is a fact that it often is. It does not,

then, matter in use that exact equivalence does not exist. The
absence of any exact relationship is easy to prove. In the normal

curve, the value of / is always greater than 0, whatever the value

of X. For very high values of X, / may be very small
;
but it is

always a definite positive figure. This is good mathematics, but

it is utter nonsense as zoology. If animal size were distributed

normally, this would mean that we had only to collect enough
specimens to find a mouse with ears a mile long or a snake long

enough to girdle the earth at the equator.

To relate the normal curve to reality it is, then, necessary to

make an assumption that is bad mathematics but good zoology,

that is, that small fractional values of/ do not exist at all. When
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the normal curve tails off above and below the mean and the

indicated class frequencies become less than unity even for a large

total frequency, it is correctly assumed in zoological practice that

/ becomes 0 and that the curve touches the X-axis and ends,

although it never does so mathematically. The approximation of

the curve to a real distribution is accepted as valid only within a

reasonable distance (about 3<t) of the mean.

The approximation of such a curve to a distribution of observa-

tions actually made provides a good numerical method of describ-

ing all of these available observations as a unit, instead of giving

each one as an isolated thing. It also has another and still more
important use. The observations that have been made con-

stitute a sample drawn from a larger unit, from the total of all

possible homologous observations. In studying a sample, it is

desired to draw from it information regarding this larger unit, the

population from which the sample is drawn. For instance if

10 specimens of one subspecies of rodent are collected and
measured, it is desired to infer from these measurements what the

distribution of these dimensions is in all the rodents of that sub-

species, wherever they may be. All existing members of the

subspecies together form the population, which cannot be made
available as a whole, and the 10 individuals actually caught and
measured are a sample of the population.

In order to draw such inferences about something not available

from a relatively small sample that is available, it is necessary to

assume some definite relation between the two. The theory and
practice of sampling, discussed in more detail in Chap. IX,

assume that the distribution of the sample is similar to that of the

population. Its differences from and irregularities with respect

to the population depend on the chances of collecting the data,

and the probability that the numerical characters of the popula-

tion lie within a certain range of those of the sample can be

(jalculated from the properties of the normal curve. Moreover, if

a curve can be fitted reasonably well to the sample, there is a

definite and usually high probability that the population fits in

much the same way a similar curve with higher frequencies. A
mathematical curve is thus a means of arguing from the particular

to the general, of deducing the properties of the population from a

givenisample, and for this purpose the normal curve is by far the

most useful. The procedure and logic involved in this operation

are to calculate from the sample numerical characteristics, called
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constants or parameters, of which M and cr are the best and most

important, that determine the form and position of a normal

curve. The curve so determined is assumed hypothetically to

represent the distribution of the population.^

PARAMETERS OF THE NORMAL CURVE

The mathematical equation of the normal (‘urve is^

y ==

(T

N——c
\/^

2(r*

1 This discussion differs from usual statements of statistical procedure in

two possibly subtle but important respects. In the first place, statisticians

usually speak of the “infinite population.^' For the zoologist, at least, there

is no such thing as an infinite population, and he has no interest in this

useless abstraction. He is interested in the real population, which exists

even though all of it is not available and which obviously is not infinite. He
is not, as statisticians usually say they are, calculating the properties of an

infinite population. In the second place, statisticians usually state that

they calculate the probability that a sample is drawn from a population with

certain mathematical characteristics. On the contrary, what is actually

done is to use the sample to set up a hypothetical distribution and to estimate

the probability that a real and finite population is correctly represented by it.

Correct comprehension of these two points will help to avoid errors in logic

and in procedure.

R. A. Fisher, some of whose important publications are cited in the

bibliography at the end of this volume, Ls one of the few statisticians who
consistently maintain a point of view valid and useful to zoologists; his work
is of outstanding value for anyone working in this field, although it is at times

hard to follow without more mathematical knowledge than a zoologist is

likely to have or really to need. Fisher has recently adopted the conven-

tion of using Greek letters for the parameters of theoretical curves and italic

letters for the calculated constants that are estimates of these. For instance

he uses s for a calculated standard deviation and tr for the unobtainable

standard deviation of which s is an approximation. For our purposes it

seems sufficient to state the distinction and to assume that it is understood

hereafter. It hardly seems necessary in zoological practice to have a whole

set of symbols for theoretical values never actually obtained or used. It

also seems less confusing to use symbols in the more usual way even though

their significance is viewed in a somewhat different light from that most

common. We therefore do not follow Fisher's convention or use his dual

system of symbols; for instance, we use <r for any standard deviation, as is

usually done. It is, however, desirable to direct attention to the more
important differences between our usages and Fisher's, since his is the work
to which the student is best referred for further information on various

points.

® The equation is derived by taking a symmetrical binomial series (p = q)
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in which x and y are used in the usual mathematical way, corre-

sponding in a frequency distribution to d and /, respectively;

N is the tot^al frequency; <r is any number and is the standard

deviation of the corresponding distribution; tt is the familiar value

3.1416, and e is another natural constant (base of Napierian

logarithms) with the value 2.7183.

The numbers 2, tt, and e that occur in the equation are invari-

able in value. N and cr may take any value, and for each specified

set of values for these there is a different normal curve. If we
know these values, it is possible to determine a value of

2/ for any
value of X or one of x for any of y and to plot out the whole curve.

In other words, the values of N and a determine the whole shape

of the particular normal curve with which one has to do. Such

elements in an equation are called constants or parameters—we
shall use the name parameter because constant’^ has so many
other vernacular and technical meanings that it is confusing.

Given an actual sample, iV, the number of observations in the

sample, is known, and <t can be calculated as shown in the preced-

ing chapter. These figures for the actual sample are also param-

eters of a normal curve, and the particular normal curve that

they specify is taken as an approximation of the distribution

represented by the sample.

According to its equation, the curve is taken as centered on the

2
/-axis (the /-axis of a frequency distribution) and the values of x

are distances from this center (they are d, not A, of a frequency

distribution). To use the curve it is necessary to know also at

just what point on an absolute scale (a scale of measurements or

counts, Xj as observed) is the center of the curve. This point is

the mean Af
,
and M is therefore the third and last parameter that

must be calculated to specify the exact form and position of a

normal curve.

and finding the equation of the curve that it approaches as a limit, a mathe-

matical operation unnecessary here but mentioned in order to affirm that

the complicated equation for the curve does have a rational derivation.

Yule (see Bibliography) gives the operations involved in this derivation.

In practice it is not necessary to solve this difficult equation or to plot the

curve from it. Statisticians have calculated tables of all the necessary

values so that zoologists and others using the curve as a practical means
toward an end are spared any operations with the equation and can simply

refer to the tables.
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In using the curve one must thus have a frequency parameter,

the best of which is iV, a dispersion parameter, the best of which is

<r, and a central tendency parameter, the best of which is M, It

is possible to use other parameters; but generally their relation-

ship to the curve is less simple and useful than the relationship of

Ny (Xy and M. Another possible frequency parameter is the

frequency of the middle class; and this does have an important

special use, as shown later in this chapter. If the curve is really

normal, median and mode are both equal to the mean, so that

median and mode as central tendency parameters are of no use

for the normal curve itself but are useful for showing the differ-

ence (by skewing) of an observed distribution from the normal

distribution that most nearly approximates it. Mean deviation

and semi-interquartile range could be substituted for o* as disper-

sion parameters because in the normal curve they have a constant

relationship to cr;^ but for this same reason there is no particular

reason for using them, and there are good reasons for not using

them. 2

There are certain natural sets or families of parameters, and if

the distribution is approximately normal the pertinent numerical

data for any series of observations are best given by such a set.

1. Ny My and <t.

2. Ny My and M.D.
3. Ny median, and M.D.median.

4. Ny median, and Q.D.

Of these the first is far the best, and the others should be used

only in special cases. If they are used, it is highly desirable not

to mix up parameters of different families, as some zoologists have

done. It is, for instance, confusing and bad practice to use Ny

My and Q.D., or N, median, and <r, for the Q.D. is measured from

quartiles, of which the median, not the mean, is one, and cr is

calculated from deviations around the mean, not the median.

For each parameter except N its standard error® should be

given—the calculation and significance of these are explained in

^ M.D. = .7979<r and Q.D. = .6745<r in normal distributions.

* They could, indeed, be used in comparison with <r to measure skewness

in an only approximately normal distribution, but this is so much more
simply done by a comparison of mean and mode that this use, also, is

impractical.

* Or probable error, but the standard error is much to be preferred.
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the next chapter. In addition to the parameters, it is generally

useful to give the observed range and the coefficient of variation.

Although so poor as an approximation, the observed range does

convey some rough information about the sample in the most
obvious way; and F is a highly useful figure in dealing with linear

dimensions and some other variates.^ The best set of data on a

given sample thus comprises Ny R (for observed range), M and its

standard error, a and its standard error, and V and its standard

error. For the data of Example 36 (page 108), this set is as follows

:

Variate N R ! M
I

1

1

^ V

Tail length 86 52-68
1

60.43 ± .33
1

8.04 ± .23
1

i

5.2 ± .4

This conveys all the useful information contained in the com-

plete list of 86 original measurements, it expresses it much more

succinctly, and it gives it in the clearest and most useful possible

form.

If N is so low that the values of a and V are too unreliable to be

useful, they may be omitted. Even in such cases, however, it is

usually best to give some measure of dispersion for purposes of

comparison with other small samples, and it is always well to give

either cr, ^(/d^)^ or the variance, f.c., X{fd^)/N, no matter how
small the sample is.

AREAS AND ORDINATES

The most important property of the normal curve is that the

part of the curve beyond a distance of a given multiple of a from

the mean always encloses the same fraction of the total area,

whatever the parameters of the particular curve in question may
be. If, on a normal curve, vertical lines are drawn at points

corresponding on the X-scale to (M + a) and (M — a), the area

between these lines is always 68 per cent of the total area, and the

area beyond them, in the two tails of the curve, is 32 per cent of the

total area. If the lines are drawn at (M + 2a) and {M — 2a),

the area between them is 95.5 per cent of the total, that outside of

them 4.5 per cent. If the lines are at (Af + 3a) and (M — 3a),

^ F is also in one sense a parameter of the normal curve, but it is not a

simple one since it combines two of the primary parameters (M and <r) and

its usefulness is not as a parameter.
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the area between is 99.7 per cent and that outside is .3 percent.

In accordance with the nonmathematical assumption that small

fractional frequencies are nonexistent, this means in practice that

the whole area of the curve is between {M + 3cr) and {M ~ 3cr).

This is the basis of the statement (page 118) that these are good

approximations of the limits of the real range in a roughly normal

distribution.

The area enclosed by any part of the curve and verticals to the

base line (X-axis) is proportional to the frequency of the group

enclosed by such verticals. In a large number of observations

distributed normally, 68 per cent of the observations would be

greater than {M — a) and less than (M + o-). This is absolutely

true of the normal distribution, and it is for practic^al purposes

sufficiently close to the truth in any real distribution approxi-

mately normal in form. The conception of probability as applied

to sampling and various other operations is based on this property

of the curve. If a population is approximately normal, the

probability that a specimen selected from it by chance will lie

within a certain distance of the mean is proportionate to the area

enclosed by verticals at this distance from the mean on a normal

curve. The chances that a single specimen taken at random
from such a population will be between (M — a) and (M + o') are

68 in 100; the chances that it will not are 32 in 100. Expressed in

another way, if a sample of 100 is taken, about 68 will probably be

within those limits and about 32 outside them; in a sample of 50

specimens about 34 will be within the limits and about 16 outside

them; etc.

Still another expression and use of this relationship involve^

comparing a specimen with a population. The parameters of the

population have been estimated from a sample drawn from it and

a value of a obtained. Another specimen is found, and it is

desired to know whether it does or does not belong to the popula-

tion, for instance, whether it is of a certain species. Its deviation

d from the mean for the sample is determined and then is expressed

in terms of cr, by the quotient d/o-. The probability that it

belongs to the population can then be read from a table of areas

for various values of d/a. If this quotient is 1, the probability

that it does belong to the population is proportionate to the area

outside the limits {M + a) and {M — o-), or is 32 in 100. This is

a large probability, so that the specimen may very well belong
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to the population in question. If d/<r is 4, the probability is .006

in 100, so small as to be nonexistent in practice, and it is certain

that the specimen does not belong to the population.

Table I gives the areas between and outside of limits expressed

in terms of (r, or by d/cr.

Table I.

—

Areas of the Normal Curve

d/a
Percentage of area

between limits

Percentage of area

outside limits

.00 0 100

.10 8 92

.20 16 84

.30 24 76

.40 31 69

.50 38 62

.00 45 55

.70 52 48

.80 58 42

.90 63 37

1.00 68 32

1 . 10 73 27

1.20 77 23

1.30 81 19

1.40 84 16

1.50 87 13

1 .60 89 11

1.70 91 .

1

8.9

1.80 92.8 7.2

1.90 94.3 5.7

2.00 95.5 4.5

2 10 96.4 3.6

2.20 97.2 I 2.8

2.30 97.9 2.1

2 40 98.4 1.6

2 50 98.8 1 .2

2.60 99.1 0.9

2 70 99.3 0.7

2.80 99.5 0.5

2.90 99.6 0.4

3.00 99.7 0.3

3 25 99.88 0.12

3.50 99.96 0.04

3.75 99.98 0.02

4.00 99.994 0.006
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This table combines the areas on both sides of the mean. For

instance, for d/<f = 1.00, the 68 per cent of the area between the

limits is composed of 34 per cent above the mean and 34 per cent

below it. The 32 per cent outside the limits consists of 16 per

cent in the tail of the curve to the left, below — lo-, and 16 per cent

in that to the right, above H-lcr. It is sometimes desirable to

know the chances that a specimen will differ from the mean in a

given direction, and not in either direction as is given by this

table. The areas appropriate for this problem are on one side of

the mean only, and the percentages are therefore just half those

given in the table. Such tables are, in fact, frequently given in

this form, but for zoological purposes it is less generally useful;

and if such a figure is desired it is easy simply to divide an entry

of Table I by two.

Note that these values do not hold good for some uses with very

small samples. Procedure and values for these special conditions

are considered in Chap. XI.

Another occasional problem for which tables are available is to

obtain the percentage of the area above or below a single limit,

for instance, above or below {M + a). The area outside (Af + a)

and (Af — <r) on both sides is seen by Table I for the value

d/<r = 1.00 and is 32 per cent. Then the area above (Af + cr)

will be the corresponding value for one side of the curve only and

will be 32 per cent/2 = 16 per cent. All the rest of the area is

below this; so the area below (Af + a) is 84 per cent.^ This, too,

is a type of normal curve area seldom used and easily calculated

from the data of Table I, and so no separate table is given for it.

Just as these areas are proportionate to frequencies, the height

of any vertical line from the curve to the base line (X-axis) is

proportionate to the frequency at that point. Thevse vertical

lines are parallel to the 2/-axis (/-axis of a frequency distribution)

and are in fact ordinates of the curve. The longest such ordinate

is at the point of highest frequency, the mode of a distribution,

which in the normal curve is also the mean. If this maximum
ordinate at the mean is taken as unity, the proportionate length

of an ordinate at any given distance from the mean is the same for

^ Consisting of the area between {M — a) and (Af -f a), seen by the table

to be 68 per cent, and the area below (Af — cr), which is 16 per cent.

68 -f“ 16 = 84. The result is the same as the operation in the text, which is

100 - 16 = 84.
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any normal curve, whatever its parameters. These values are

given in Table 11.

Table II.

—

Ordinates of the Normal Curve
d/a

(abscissas in terms of with the

origin at M)
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

1.1

1 .2

1.3

1.4

1.5

1.6

1.7

1 .8

1.9

2.0

2.1

2 2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.5

4.0

Proportion of the corresponding

ordinate to the maximum ordinate

2/0, at the mean
1.000

.995

.980

.956

.923

.883

.835

.783

.726

.667

.607

.546

.487

.430

.375

.325

.278

.236

.198

.164

.135

.110

.089

.071

.056

.044

.034

.026

.020

.015

.011

.0009

.0003

Since the normal curve is symmetrical, the ordinate at

{M + 2(7), shown by the table to be .135 times the maximum
ordinate, will be the same as that at {M — 2a), The maximum
ordinate is conveniently designated as yo, signifying the value of

y in the normal equation that corresponds with a: = 0, or a devia-
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tion from the mean of 0 in a distribution. The conversion factors

for other ordinates, their proportion to yo, are symbolized by a.

CURVE FITTING

These proportions of the ordinates in a normal (uirve are used
to calculate the class frequencies of a normal distribution nearly

corresponding with an actual distribution. This in turn makes
it possible to draw up a histogram or frequency polygon for such a
normal distribution or to draw its limiting normal curve without
the effort of plotting the latter from its complex equation. By
comparing the numerical values or graphs with those for the
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observed distribution, the important resemblances and differences

of the two can be seen.

In order to do this, it is evidently first necessary to get a value

for ?/o, the frequency in the class that includes the mean. This is

done from the following relationship, always true of the normal

curve. ^

N

The value of y/2T is 2.506628—the value 2.51 is usually suf-

ficiently refined.

The frequency of this mean class in actual distributions is,

however, also proportionate to the class interval, so that this

value i must be inserted in the equation, giving

Ni
/o"(T\/2Tr

The value of any ordinate other than yo will then be

y = ayo

a being the proportionate value given in Table II and y being a

value of the ordinate corresponding to a given d/a. In practice

this must be calculated for each class midpoint, obtaining a value

of d/(T for each of these midpoints. The method of calculation is

shown in Example 46, and the resulting approximation of a

normal to a real distribution is also graphically shown in Fig. 17.

This agreement between the normal and the observed distribu-

tions is fairly good, about as close as it will be with most zoological

data. A method for measuring the degree and significance of this

agreement is given in Chap. XIV,

It is also possible to calculate a theoretical normal distribution

not from the maximum class frequency (jyo) and the proportionate

sizes of ordinates but from the total frequency and proportionate

areas (as in Table I) . This method gives slightly different results

;

but it has no particular advantage over the ordinate method and

is somewhat more tedious, so that it is not necessary to give it
«

* The derivation of this equation may be taken for granted here. It will

be noted that it is the multiplier in the equation for the normal curve (page

132 ).
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Example 46.

—

Fitting a Theoretical Normal Distribution to the

Observed Distribution of Fjcample 40 (Page 117)

Tail length,

mm.
Class

midpoints
d dja

Theoretical

frequencies
Observed

frequencies

a ayo
(j)

52-53 52.5 8 2 7 026 . 6 1

54-55 54.5 6 2 0 .135 3.1 3

56-57 56.5 4 1.3 .430 9.8 11

58-59 58.5 2 .7 .783 17.9 18

60-61 60.5 0 .0 1 .000 22.9 21

62-63 62.5 2 .7 .783 17.9 20

64-65 64.5 4 1.3 430 9.8 9

66-67 66.5 6
i

2.0 .135 3 1 2

68-69 68.5 8 2.7
1

.026 .6 1

iV = 86 = 3.0 i - 2

M = 60.4, but for purposes of calculating the theoretical normal distribu-

tion it is taken as at the midpoint of its class = 60.5.

_ N X t _ 86 X 2 _ 172 _
3.0 X 2.507 7 :5^1

The values of a are read from Table II opposite the values here obtained

for d/cr. Note that in these calculations the frequency of each class is

assumed to be at its midpoint and the distribution is assumed to be symmet-
rical. It is, of course, unnecessary to calculate values for classes both above

and below the middle class, since these are symmetrical.

here—it can be found in some textbooks of statistics {e.g.y Arkiii

and Colton) or can be worked out as an exercise.

These methods are only approximate. They do not inevitably

lead to the theoretical normal distribution closest to the observed

distribution but to one that is close enough for practical purposes.

The relationship between the two is only approximate in any case,

and great precision is usually a waste of effort. More exact

curve fitting is a very difficult and complicated process even for a

normal curve and exceedingly so for curves differing from the

normal in any respect. Zoological data are seldom extensive

enough to warrant such treatment, and even if they were the

results woulfl seldom justify the labor involved. Curve fitting

more complicated than by the simple method just explained is one

of the statistical procedures not necessary in zoology.
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SKEWNESS

It has been mentioned that distributions approximately normal
may yet differ from the normal in two significant ways, skewness

and kurtosis. Skewness is a deviation from the normal by
asymmetry of the distribution, which falls off more rapidly on one

side of the high point than on the other. Its high point, the

mode, no longer coincides with the mean, as in the normal dis-

tribution, for the mean is strongly affected by extreme values and
the mode is not affected at all by them. Advantage is taken of

these facts to devise a measure of skewness. The distance

between the mean and the mode is such a measure, but it is not

satisfactory. In the first place it depends not only on skewness

but also on the degree of dispersion, and in the second place it is

an absolute figure and hence is not readily used in comparisons of

variates of different magnitudes. Both these objections are met
by dividing the difference between these averages by the standard

deviation, giving Sk = (mean — mode)/cr, Sk being the usual

symbol for this measure.

It was shown in Chap. V, however, that exact calculation of

the mode is impractical and that it can most easily be approxi-

mated by the relationship

Mode = 3 median — 2 mean

Substituting this in the equation for skewness gives

_ mean — (3 median — 2 mean) _ 3(mean — median)

This is the best form for calculating this measure.^ In a

symmetrical distribution mean and median are equal; so Sk is 0.

In a right-skewed distribution there are extreme values to the

right of the averages; hence the mean is larger than the median,

and the coefficient of skewness is positive. Similarly in a left-

skewed distribution the coefficient is negative. There is no

theoretical limit to the magnitude of the coefficient, but in fact

it seldom is less than — 1 or more than + 1 in distributions even

distantly approaching the normal.

^ There is also a measure of skewness based on the quartiles and given by
the expression (Qs *f Qi — 2 median)/Q.D. Its use is not recommended.
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ICxAMPLE 47 .’—Head Breadth of Cambridge (England) Students in

Inches, Exemplifying a Typical Positively Skewed Frequency
Distribution

(Data from Macdoiiell 1902)

X / dA fdA

5.5 3 -5
, 15 75

5.6 12 -4 ~ 48 192

5.7 43 -3 - 129 387

5.8 80 -2 - 160 320

5.9 131 -1 - 131 131

- 483

6.0 236 0 + 1,098

6.1 185 1 185 185

6.2 142 2 284 568

6.3 99 3 297 891

6.4 37 4 148 592

6.5 15 5 75 375

6.6 12 6 72 432

6.7 3 7 21 147

6.8 2 8 16 128

iV - 1,000 ^(fdA) = 615 2(/(i5) = 4,423

1 Anthropological data are generally not used in the examples, but it is desired to show
calculation for one example with a large N, here 1,000, and also to exemplify a type of

moderately skewed curve very common in zoology by a distribution large enough to show
the form clearly and with no question. In any case Cambridge undergraduates are zoologi-

cal materials.

i — .1

Cl = +615/1,000 = +.615

c = .615 X .1 = .0615

Af = 6.0 + .0615 = 6.062

cl = .3782

- -3782 = . 1^4:6448

= .201

23 1
Median = 5.95 + = 6.048

p 3 (mean — median) +.042

This distribution is nearly normal, certainly near enough to use the param-

eters of the normal curve in dealing with it, but it does have a moderate

positive skew. The approximate mode is 6.02, falling in the 6.0 class, and

there are 8 classes above and only 5 below this, so that the skewness is visible

on inspection.^

1 Skewness may, however, be present and calculable without being obvious

as it is here.
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In the distribution of Example 46, the mean, as already cal-

culated for the same data in Chap. VI, is 60.43, the median 60.41,

and O' 3.04. Hence

Sk
3(60.43 - 60.41)

3^04
+ 02

3.04

This is too small to be significant, and the distribution is

essentially symmetrical. Example 47 shows the calculation of

this coefficient for a distribution that is clearly skewed.

Moderately right-skewed distributions of this type are common
in zoology, and, although an adequate census has not been made,
they appear to be more common than are left-skewed distribu-

tions. In biological terms a right-skewed distribution indicates

that large variants are more common than small variants within

the sample representing the population. Although there are

abundant exceptions, this seems to be a general tendency of

morphological characters in zoology.

With the smaller samples usual in zoology, the values of Sk are

inevitably somewhat (‘rratic, and a general tendency can only be

detected by comparing a considerable series of such values.

Example 48.—Coefficients of Skewness for a Series of Small Samples
OF Teeth of the Extinct Mammal Litokstes notissimus

(Original data)

Variate N s*

Length P 4 10 + .19

- .52Width Pi 11

Ivength Ml 19 - ,21

Width Ml
:

19 + .52

- .17liCngth M 2 28

Widffi Mi 29 0

Ijength Ms
1

24 + .45

+ .19Widffi Mz 24

Length P* 7 0

Width P^ 7 -.51
Ijength M^ 10 + .29

+ .83

- .18

Width M^ 10

Length M* 13

Width M^ 13 - .54

Length M® 8 + .60

Width M* 9 + .43

Mean /S* ; -f . 09
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Example 48 shows typical values for such a series with the usual

small samples of zoology and paleontology.

It may be noted that the assumption on which the use of V and

the study of variability in general are based involves a constant

tendency for such characters to show a small positive skew. This

assumption is that the dispersion is proportionate to the absolute

value of the variate. If this is true as between different samples

and different variates, it should be true also within a single

distribution. The absolute dispersion should tend to be, or for an

average of many different homologous distributions should be,

greater for higher values of the variate than for lower and should

increase steadily from the left-hand end of the graphic distribution

through to the right-hand end. Since the values thus tend to be

spread farther on the absolute scale above the mode than below

it, a positive skew^ is involved. A given value below the mode will

bear the same ratio to the mode that the mode will bear to a

corresponding value (one of theoretically the same frequency)

above the mode, instead of being simply equidistant from the

mode as in the normal curve. From this relationship of ratios as

opposed to simple linear distances, it follows that the geometric

mean and the mode will tend to coincide, whereas in the normal

distribution the mode and arithmetic mean coincide (the geomet-

ric mean being smaller than the arithmetic for any distribution).

It is probable that the slightly skewed form of curve thus

determined is a better theoretical description of most zoological

variates than is the normal curve. Basing calculations on the

skewed curve would, however, be exceedingly difficult, and it

would almost never really make the results significantly better in

practice, however preferable in theory. The skewed curve thus

determined differs very little from the normal, so little as to be

wholly obscured by chance fluctuations in almost all zoological

samples. Even with the large sample of Example 47 (page 144),

skewness caused by this relationship is too small to have a really

appreciable effect. The geometric mean for this distribution is

6.058, the arithmetic mean 6.062. Rounded to the number of

places really accurate and significant these two are exactly the

same, 6.1 or 6.06, and there is no demonstrable effect of this sort

of skewness in the data. The observed significant skewness of

this distribution is thus due not to this phenomenon but to some
other biological factor.
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KURTOSIS

Kurtosis is the property of being more pointed or flatter than a

normal curve with the same parameters. It does not involve

symmetry and usually cannot be detected by inspection unless it

is very great. Unfortunately the measurement of this character-

istic is somewhat laborious, although not unduly complicated.

The best coefficient of kurtosis K is the value of the expression^

^{d^)/N ,

It will be remembered that a = so that =

and this expression may sometimes be more advantageous in

calculation.

When the coefficient of kurtosis is 0, the distribution is neither

more peaked nor flatter than the normal curve and is sometimes

spoken of as mesokurtic.

When this value is positive, the distribution is more peaked or

sharper than the normal curve and is called leptokurtic.

When it is negative, the distribution is flatter than the normal

curve and is called platykurtic.

Platykurtic distributions generally tend to have relatively

large cr and F. The flattening usually reflects either high vari-

ability or some heterogeneity in the sample. Conversely,

leptokurtic curves usually have lower a and F, and the peakedness

generally reflects low variability. The calculation of a coejBBcient

of kurtosis is shown in Example 49.

^Sheppard has proposed a correction whereby Z{d^)/N (known as the

fourth moment around the mean) is replaced by —^
_
7_

240
*

The difference is usually slight, and it is generally not worth while to make
this correction.

General statistical theory involves much consideration and use of a series

of parameters called moments. The nth moment about the mean is calcu-

lated as X{d^)/Nj subject to various corrections and adjustments. Thus
the first moment about the mean (always 0 for the normal or any other

symmetrical distribution) is X(d)/N, The second is Z{d^)/N and is the

variance. The fourth moment is used in calculating the coefficient of kurto-

sis. Despite their theoretical importance and their use in fitting curves,

moments other than those already discussed in the text have little practical

use for such problems as are treated in this book.
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p]xAMPLE 49.

—

Calculation of the Coefficient of Kubtosis from Data
OF Example 40 (Page 117)

Tail length / dA 4 fd\

52-53 1 4 256 256
54-55 3 3 81 243

56-57 11 2 16 176

58-59 18 1 1 18

60-61 21

62-63 20 1 1 20

64-65 9 2 16 144

66-67 2 3 81
1

162

68-69 1 4 256 256

00li
^ifdi) = 1.276

In terms of class intervals:

From Example 40:

Cl

K =

= .06

= 2.20

1,275

86
(.06)^

(2.26)2

j4.8256 - .00001296

5:1076
- 3 = 2.90 - 3.0 -.10

Note that the formula is valid regardless of the units in which the devia-

tions are taken so that the whole calculation can be carried out in class inter-

vals without changing into the units of measurements, ci is the standard

deviation in terms of class intervals, hence in the example only half as large as

<r, the class interval being 2. In using the short method, as in the example,

it is, of course, necessary to correct both the sum of the fourth powers and <ri,

to refer them to the true mean.

The distribution is slightly platykurtic. By referring to Example 46

(page 142), it will be seen that the modal frequency is slightly lower and the

adjacent frequencies slightly higher than those of a normal distribution.

This makes the distribution less peaked and is the visible flattening that is

measured by the coefficient of kurtosis.



CHAPTER VIII

PROBABILITY AND RELIABILITY

STANDARD ERRORS

When any measure of central tendency, of dispersion, or of

variability has been calculated from a given sample, it is abso-

lutely accurate for that sample within limits related only to the

accuracy of the original observations. Viewed as devices for the

description of actual samples, these values thus involve no

inaccuracies or approximations bc^yond those readily visible and

ascertainable in the technique of observation and in arithmetical

calculation: they are themselves measures of real properties of real

and available things and are not estimates from this point of

view.

When, however, it is desired to infer the properties of a whole

population from a given sample, the values calculated from the

sample clearly are not accurate measures applicable to the whole

population. It is impossible, within reason, for a sample that is

only a fraction of the whole population to have exactly the same

mean, standard deviation, coefficient of variation, or other param-

eters, as the population; for all these values depend on each

particular individual observation in the sample, and these

individual observations are selected by chance from the popula-

tion. There is no conceivable way of selecting observations that

will be distributed exactly like the whole population. If, how-

ever, the sample is properly taken, which means only that it is

taken entirely at random, and if it is sufficiently large, its dis-

tribution will approximate that of the population, and the

calculated parameters accurate for the sample will be more or less

good approximations of those of the population. From this

point of view the parameters calculated from the sample are

estimates of the unknown and incalculable (but really existing)

parameters of the population.

It is of prime importance in making any inferences about the

population to know the probability that these estimates do repre-

149
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sent the population parameters or (what more nearly expresses

the intention of what is done) to know the probability that the

population parameters lie within a certain distance of these

sample parameters used as estimates. This is possible because of

the fact that these sample parameters are themselves usually

normally distributed. If, for instance, a number of separate

samples of the same size were taken from a single population and

the mean were calculated for each sample, each of the means thus

obtained would be different, although usually only by a small frac-

tion of their absolute values. This series of different but approxi-

mated means could then be placed in the form of a frequency

distribution, and their distribution would be approximately

normal,^ with their mean in practice very close to the mean of

the population and in theory exactly equal to it. By increasing

the number of samples used, the population parameter could

thus be estimated as closely as desired, and the value obtained

would in effect become an actual measurement of the population

parameter as accurate as the more direct measurement on a single

sample (see Fig. 18).

It is not, in fact, practical to carry out this procedure. In

dealing with any given problem, the usual procedure is to com-

bine all the observations on a single sample and to obtain from

it a single estimate of each desired parameter of the population.

Advantage is then taken of the fact that this estimate is a chance

value drawn from a normal distribution of values that would

be obtained from a large number of samples of the same size as

the one actually available. From the properties of the normal

curve and corresponding normal distributions, discussed in the

preceding chapter, it is then necessary only to know the standard

deviation of this hypothetical distribution of sample parameters

in order to know the probability that the particular estimate in

hand lies within a given distance of the mean of that distribution,

which signifies that it is within a given distance of the real value

of the parameter for the whole population. Thus if the standard

deviation of this sample parameter distribution is .31 and the

calculated value of the parameter for the single sample is 5.20,

it is a safe conclusion in almost all circumstances that 5.20 is

1 This would be true of any parameter of a distribution itself approxi-

mately normal. For some parameters, notably the mean, it is true whether
the population distribution is normal or not.
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distant not over three times the standard deviation from the

true value of the population parameter. In other words, it is

demonstrated for all practical purposes that this parameter of

the population is within a distance of .93 of the parameter of the

sample, or within the range (5.20 — .93) to (5.20 + .93), f.c., the

range 4.27-6.13. It will probably be within a still smaller range.

rMean

.’Mean

(D) (F)

/Mean

Fig. 18.—Diagrams to show the meaning of the standard error of the mean (trjjf).

A is the normal frequency curve of a hypothetical population, the mean being
indicated. B, C, D, and E represent histograms of distributions of small
samples drawn from this population, the mean being shown in each case. This
varies from sample to sample. F shows a hypothetical distribution of the mean
values of a large series of such samples. The standard error of the mean of A
is the standard deviation of this distribution (F).

the probabilities being given by the areas of sections of the normal

curve as given in Table I (page 137).

In order to distinguish this standard deviation of a (hypothet-

ical) distribution of sample parameters from the standard devia-

tion of the distribution of values of the variate in question, it is

called a standard error. Every calculated parameter when
used as an estimate of a corresponding population parameter has

its own standard error. The symbols for these are in each case <r
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(because they are standard deviations although of a different sort

from that hitherto considered) with a symbol of the parameter

as a subscript. Thus (Tm is the standard error of the mean,

Ca is the standard error of the standard deviation, and av is the

standard error of the coefficient of variation. The standard error

is writtem with a plus and minus mark after the value of the

sample parameter; thus 5.20 ± .31 means that the value of the

parameter calculated from the sample is 5.20 and that as an

estimate of the population parameter this has a standard error

of .31.

It is most unfortunate that the word ^^error^^ is used in this

connection, for its various vernacular uses lead to confusion.

It seems to imply that there is something wrong with the figure to

which a standard error is appendi'd, that an attempt is being

made to allow for some mistake made. Even some statisticians

carelessly fall into this entirely wrong assumption. The fact is

that the figure itself is perfectly accurate if correctly cahmlated

and recorded and that if there were any errors in calculation,

bias in observation, or other sources of inaccuracy in obtaining

this figure, the standard error would give no information whatever

about them and make no allowance for them. A correctly

calculated and recorded figure is, however, a(‘curato only for the

data used in obtaining it, that is, for the sample. The standard

error is not a correction of this result but is an estimate of the

probability that the result applies also to the population from

which the sample was drawn. The standard error is used not

to give any information about the sample but to give information

about the population.

A figure like 5.2 ± .3 is sometimes erroneously used to mean
that the observed or calculated figure 5.2 is known to be inac-

curate but that its true value is believed to be between 4.9 and

5.5. The correct way to record this is to give this range and

make the record 4.9-5. 5, or to say that the value is 5.2 to the

nearest .3 or is 5.2 with class interval .6. The correct meaning of

5.2 ± .3 is that the observed or calculated value is accurately 5.2

and that its standard error is .3. Hence the corresponding value

for the whole population is about 5,2; more exactly the odds are

about 38 to 62 that it was in the range 5.2 — (.3) to 5.2 + 3^ (.3)

or 5.05-5.35; about 68 to 32 that it was in the range 4.9-5.5;

about 95 to 5 that it was in the range 4.6-5.8; etc., according
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to the table of relative areas within the normal curve (Table I),

up to the point where it is practically certain that this value was
in the range 4.3-6. 1.

When a sample is very small, and under some other special

circumstances, it is not always safe to assume, as this procedure

does, that sample parameters would fall into a normal distribu-

tion
;
these may be less good as estimates of population parameters

than would appear from the usual use of standard errors. This is

discuswsed in Chap. XI; the present chapter applies to the more
common use and calculation of standard errors, valid in most

cases.

Many authors use instead of the standard error a figure that

they call the probable error, symbol PE. This is obtained by
calculating the standard error, as explained below, and then

multiplying by .6745. The probability that a population

parameter will be within one standard error (plus or minus) of the

sample parameter is 68 in 100, or .68. The probability that it

will be within one probable error is 50 in 100, or Yi- The sim-

plicity of this fraction is the principal excuse for the common use

of the probable error, ^ but it is not a valid reason. There is no

special virtue or usefulness in this particular fraction. It enters

into no criteria of significance or other special uses of the probable

or standard error. Other and more important multiples of the

probable error do not give simple fractions, for instance, for

±2PE the probability is .82, and for ±3PE it is .96. The
probable error thus has no real advantage over the standard

error, and it has decided disadvantages. It is theoretically less

advantageous because it is not, like the standard error, a direct

and simple parameter of a normal curve; and it is practically

disadvantageous because to calculate it the standard error must
first be obtained in any case and then subjected to another

mathematical operation, involving some labor and chances for

mistakes without gaining anything. In short the current tend-

ency to use the probable error is supported only by the fact that

it is current, and the sooner it is dropped the better.

Because of this difference of usage, an author should state

whether he uses standard or probable errors. If he does not, it is

necessary either to ignore his figures, since the two are too

^ Perhaps also the apparently simple meaning of the name, but this is

merely misleading, even more so than the name ‘^standard error.”
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different to be in any degree interchangeable, or to calculate one

from his data (if his publication provides any way of doing this)

and see which he used,

CALCULATION OF STANDARD ERRORS

The larger a sample is, the more nearly its parameters are

likely to approximate those of the population. The standard

error therefore varies inversely with some quantity involving total

frequency iV, and the formula for calculating any standard error

is therefore always a fraction with N appearing in some way in

the denominator. If the dispersion is small, a sample of a given

size will give a better estimate for the population than if the

dispersion is large, since the chance of the sample observations

being far from an average value is obviously less with small

dispersion. Therefore the standard error varies directly with

some quantity involving dispersion, and some measure of dis-

persion will always appear in the numerator of its formula.^

The following are the formulas for standard errors of the more
important frequency-distribution measures so far discussed.

When other measures are introduced in subsequent chapters,

their standard error formulas will be given with them. The
derivations of these formulas are somewhat complicated mathe-

matical operations based on the theory of probabilities and will

not be explained here. Most of them are given by Yule.

Standard error of the arithmetic mean:

Standard error of the median:

^luedikD — 1.2533
Vn 1.2533<riif

^ It should be noted in passing that some authors imply or even explicitly

state that the size of the standard (or probable) error is also determined by
the refinement of observation or accuracy of preceding calculations. Of

course incorrect data produce incorrect standard errors; but the standard

errors do not detect, allow for, or correct such mistakes. If the refinement

of observation was adequate for the problem in hand, further refinement will

have no appreciable influence on the standard error. Those who make
opposite statements have evidently themselves been confused by the differ-

ence between the meaning of the word “error'' in its vernacular and techni-

cal uses and have forgotten what a standard error really is.
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Standard error of first or third quartiles :

<^Qi = = 1.3626—^^ = 1.3626<rjf
\/N

Standard error of standard deviation:

O'

(Ta = —=7

y/2N

Standard error of mean deviation:

O'M.D, ~ .6028 = .6028o'<y

V2N
Standard error of the coefficient of variation:

lOOa V *
(jfy — TTTrrzr — >-=rrr=.MVW V2N

Except that for o-m, these formulas assume that the distribu-

tions are approximately normal.

The calculation of these for the data of Example 36, used

throughout Chap. VI to illustrate sample parameters, is given in

Example 50.

Generally adequate^ records of these parameters would thus be:

M = 60.4 ± .3 Median = 60.4 ± .4 M.D. = 2.46 ± .14

^ = 3.04 ± .23 Qi = 58.2 ± .4

F = 5.0 ± .4 Qz = 62.6 ± .4

In order to exemplify and clarify the relationships between

samples, populations, their respective parameters, and standard

* This is an approximate formula only, the exact formula being

-

=

In practice the expression in brackets can almost always be ignored.

For V = 20, as large a value as it commonly takes with zoological data, the

expression in brackets is equal to 1.04, which would not affect the first deci-

mal place of ffy and would have no real significance. It need be used only

with extraordinarily large values of V.

^The record is generally adequate when given to a smaller number of

places than are used in calculation or for some special reasons. Criteria for

this are given later in the present chapter.
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Example 50.—Calculation of Principal Standard Errors for

Distribution Given in Example 36

- 86 \

M = 60.43 Median =60.41/
(T = 3.04 Qi = 58.19) from calculations in Chap. VI

M.D. = 2.46 Qa= 62.58\

V = 5.03 /

\/N = = 9.27

= Vi72 = 13.11

(7m = <r/\/N = 3.04/9.27 = ±.33

<^iuediau = 1.25a'.V/ = 1.25 X .33 = ±.41

= 1.36<rM = 1.36 X .33 = ±.45

o-a = c!-\/2N = 3.04/13.11 = ±.23

= .60<r<r = .60 X .23 = ±.14

= VlV^M = 5.03/13.11 = ±.38*

errors, the experiment summed up in Example 51 was made.

The length of the second lower molar was measured on the

available specimens, 61 in all, of a species of fossil mammal and

the standard data calculated. These figures (aside from N
and R) may be considered as estimates of the parameters of a

population consisting of all the members of this species that

lived in the Bighorn Basin in the Lower P]ocene. For experi-

mental purposes it may be taken that there were only 61 members
in this population, that we have them all, and that the parameters

as calculated are those of the population—if this were really true

the calculation of standard errors would, of course, be pointless.

Now smaller samples can be drawn from the wdiole series and

considered as samples drawn from a population.^ The param-

eters of these smaller samples could then be directly compared

with those of a known population.

To test the bearing of the experiment on zoological practice,

a variate with rather high dispersion was deliberately chosen,

* By the more exact formula crv =5.03/13.11^/1 ±-2(5.03/100)® =

.38^/1.00506 = .38 X 1.003 == ±.38. The correction makes no difference

in the second decimal place and is insignificant.

^ As a point of technique, the 61 observations of the large sample (the

population of the experiment) were written on 61 exactly similar slips of

paper, shuffled and spread out so that the numbers could not be seen, and a

sample drawn. Then the slips were returned and reshuffled and a new
sample drawn.
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Example 51.

—

Comparison op Parameters of a Population and of
Samples from It

Length of M 2 m Phenacodus primaevus from the Gray Bull Formation,

Bighorn Basin, Wyoming. All available specimens (61) and five smaller

samples drawn from this (original data)

Sample N R M a V

A 61 10.6-13.8 12.12 ± .18 .96 ± .09 7.9 ± 0.7
B 10 10.7-13.5 12.26 ± .30 .95 ± .21 7.7 ± 1.7

C 10 10.8-13.6 12.07 ± .28 .88 ± .20 7.3 ± 1.6

D 10 10.7-12.8 11.93 ± .22 .71 ± .16 5.9 ± 1.3

E 5
1

10.9-13.8 12.18 ± .49 1.10 ± .35 9.1 ± 2.9

5 10.9-13.2 11.98 ± .40 .91 ± .29 7.6 ± 2.4

Weighted means for the five small samples

M <T V

12.09 .94 7.3

Differences of values for the small samples from that for the large sample

divided by standard errors for small samples

Sample

M r 1

d d/<TM d d/cTjr d dhy

B -f .14 + .5 -.01 -.05 - 2 - .3

c
!

-.05 -.2 -.08 - .4 - .6 - .4

D -.19 -.9 -.25 -1.6 -2.0 -1.5
E + .06 + 1 + .14

I

+ -4 + 1.2 + .4

F -.14 -.4 -.05 - .2 - .3 - .1

and the subsamples were made smaller than is considered valid

by most statisticians. Despite these unfavorable circumstances,

the experiment entirely confirms what has been said about stand-

ard errors, the only unexpected result being that in this experi-

ment by chance the results obtained from the small samples are

somewhat better estimates than would have been expected on

the theory of standard errors. The parameters of the small

samples are in every case closer than two times their standard

errors to the “population parameters'' (those of the large sample).
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In only two cases {a and V of sample D) are they over one

standard error from the ‘^population parameters/^

It is noticeable that the standard errors are considerably larger

for the smaller samples. For the samples with iV = 10 they are

around twice as large as for the large sample and for those with

N — b about twice as large as for those with N = 10. The
accuracy of the samples as estimates is thus seen to decrease

rapidly with decrease in size of the sample, or in other words the

small samples give only much broader ranges within which the

population parameters can be inferred to lie and hence do not

give as detailed or refined information about the population.

Nevertheless they do give some information, and w^hat they

give is correct.

It may be emphasized again that the parameters of the small

samples are inaccurate not in themselves but only as estimates of

those of the large sample. Similarly the parameters of the large

sample are accurate for that sample but are only estimates of

the parameters of the real population. The samples with iV = 10

give better information about the large sample than do those with

AT = 5. Thus sample D (AT = 10) shows the mean of the large

sample surely to be in the range 11.27-12.59 while sample

E (A^ == 5) confines it surely only to the much larger range

10.71-13.65. Both implications are perfectly correct: the mean
of the large sample, 12.12, is in both these ranges. The small

samples also imply that the mean of the real population is within

these ranges. The large sample surely fixes this parameter in

the considerably smaller range 11.64-12.64. It is only in this

sense that the large sample gives more or better information than

do the small samples. It is a closer estimate and to that extent

more reliable.

CONSISTENCY, EFFICIENCY, AND SUFFICIENCY

It has been shown that, in estimating a population parameter

from a sample, the closeness of the estimate increases with an

increase in the size of the sample; or in other words that the

larger the sample the smaller the range within which the popula-

tion parameter is shown to lie. The exact course of this rela-

tionship is different for different parameters. For the mean,
for instance, the closeness of estimate is inversely proportionate

to the square root of the number of observations in the sample so
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that in samples of 5, 10, and 61 specimens, as in the experiment

just given, the estimates are closer approximately in the ratio

\/5- VlO: a/61, not far from 1:2:4, which was seen to be

roughly the inverse relation of the sizes of the actual calculated

standard errors, which measure the closeness of estimate.

All estimated parameters tend thus to smaller standard errors

as the sample size increases, with the result that they approach

fixed values, accurate to any number of decimal places. If this

exact value toward which they tend is also the exact value of

the real parameter of the population, the measures based on

samples are said to be consistent. The arithmetic mean is a

consistent measure, and so are most of the others here recom-

mended. Inconsistent measures are those that also tend to a

fixed value with increased sample size but for which the fixed

value is not exactly that of the population parameter. Generally

such inconsistent measures are outside the pale of decent

usage^^/ but in some cases the value toward which they are

tending is so close to the population parameter that the difference

has no practical bearing on their use, and in such cases incon-

sistent measures are properly employed if they are considerably

easier to calculate than the corresponding consistent measures.

The standard deviation by the formula \/S(d2)/A’ is an incon-

sistent measure that nevertheless is near enough to consistency

for almost any practical purpose. The same is consequently true

of V and all the standard errors into the calculation of which a

standard deviation calculated in this way enters.

Efficiency as applied to numerical observations and operations

means obtaining the maximum closeness of estimate from any
given sample. For instance, if a sample of 100 observations gives

about the same variance, and hence approximately the same
standard deviation and standard errors, £ts a sample of 50 observa-

tions drawn from the same population, then the treatment of

the large sample has been only 50 per cent efficient. Efficiency

is influenced by the refinement and accuracy of measurement and
by the magnitude and sort of secondary grouping. General

rules for maintaining efficiency in these respects were given in

Chaps. II and III. The best criteria are that the class midpoints,

whether of original observation or of secondary grouping, should

be about cr/A distant from each other, that the records should be

^ R. A. Fisher.
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accurate to that point, and that the observations should be as

evenly distributed as possible about the midpoint in each class.

As a matter of fact the influence on efficiency of unduly large

grouping or (what amounts to the same thing) of unduly coarse

measurement is often surprisingly slight, as Example 52 shows.

Example 52.

—

Influence op Various Degrees of Grouping on the
Standard Deviation and on the Standard Error of the Mean

IN the Samples of S^xample 51 (Page 157)

Sample N
1

i No. of steps a (TM

A 61 .1 33 .96 ±.18
A 61 .5 8 .98 ± .18

A 61 1.0 4 .97 ± . 18

B 10 .1 29 .95 ±30
B

i
10 1.0 4 1.02 ± .32

E 5 .1 30 1.10 ± .49

E 5 1.0 4 1.17 l± o

For the large sample A, even the grouping to 1.0 mm. (or original measure-

ment only to the nearest millimeter), giving the theoretically inexcusably low

number of 4 steps in the distribution, hardly makes an appreciable differ-

ence in the efficiency of estimate. For the smaller samples the effect of this

coarse grouping is appreciable but is not great. This small degree of differ-

ence cannot, however, be relied on and does not excuse using coarse grouping

if fine is obtainable and theoretically better. It does tend to show that if

fine grouping is not obtainable, the data are still useful even though less

efficient. In any (!ase, grouping finer than about cr/4 does not noticeably

increase the efficiency and is useless. The estimates of the above samples

with interval .25 are in every case as good as with interval .1, and those with

interval .3 are not appreciably different.

The principal difference in closeness of estimates in such

samples is caused by the total frequency. In practice, then,

failure to use all of the available sample is the most important

source of inefficiency of estimation—^^nefficiency^' is here used

in a slightly different sense, but the effect is the same. The
common zoological and to still greater degree paleontological

custom of selecting from a sample a single specimen or a few

specimens as types and describing only these thus results in very

low numerical efficiency, not necessarily in relation to what
could have been done with the specimens actually measured but

in relation to what could have been done with the sample avail-
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able. Unless the available sample is extraordinarily high, run-

ning into the hundreds or thousands, there is no excuse for not

using it all.

Even if the sampling and grouping are adequate, there are some
measures that are, inherently, mathematically less efficient than

others. The efficiency of different formulas designed to measure

the same thing can be calculated and compared, but the methods

of doing this are rather laborious. In general the measures and

formulas recommended in this book are all adequately efficient,

efficiency 100 per cent or near enough to that for the purposes in

mind.

There are a few measures that are not only consistent and

efficient but also sufficient in the sense that such a measure gives

in itself all of the information about a sample that is pertinent to

a given problem. The arithmetic mean of a Poisson series is

sufficient in this sense, and, under certain circumstances, the

mean of a normal distribution may be so. For the general

presentation of numerical zoological data there is no one suffi-

cient measure, but for many particular problems there are

sufficient measures. When these exist, they are the ones here

recommended.

SIGNIFICANT FIGURES

In the record of any numerical value, significant figures are

in a strict sense those digits that are accurate, that is, such that

the last is correct within a half step and implies a range within

which the exact value does lie. In a broader sense one digit

beyond these may be considered significant if it is nearer the

exact value than would be the limit of the range implied by the

preceding digit. Thus if an exact value is 2.5834 and a measure-

ment or calculation of it gives the result 2.5843, the first three

digits 2.58 are significant in the strictest sense. They imply

the range 2.575-2.585, and the exact value is in this range.

The fourth digit is not significant in this sense because the exact

value is not in its implied range 2.5835-2.5845. It is, however,

significant in the broader sense, since it is nearer to the exact

value than is the limit of the range implied by the last accurate

figure, that is 2.584 is nearer to 2.583 than is 2.585. Thus this

fourth digit, although inaccurate, is a better approximation

than is the number to three digits. The fifth digit of the observed
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or calculated result, however, gives no additional information

and is not significant in any sense. It should be stressed that 0

is a digit and may have significance. The number 2 (as part of a

continuous series) is not the same as the number 2.0, nor is the

latter the same as 2.00. If 2.00 is accurate, it has three, not one,

significant figures.

In general it is incorrect and misleading to record and publish

figures that are not significant. As a regular practice they

should be significant in the strict sense. In figures to be used

in calculation the last recorded digit may be significant only in the

broad sense if it appears that the result of the anticipated opera-

tion will thus be improved.

As applied to the making and recording of original observa-

tions, the identification of significant figures is relatively simple

and has been discussed in Chap. II. The significance of figures

resulting from calculation is equally important and is neither

simple nor obvious so that it requires further consideration.

In the first place, it is necessary to remember that there are

two kinds of numbers, continuous and discontinuous, and to

know the kind involved in a given operation. Ungrouped dis-

continuous numbers are generally exact, and so is the result of any
operation using only numbers of this class—the available number
of significant digits is often infinite. Thus one-third of 10 eggs is

3.333333 . . . eggs. One could write a million 3’s, and every

one would be significant in the strict sense; but one-third of 10 in.

is not 3.333333 . . . in.

The sum of 2, a discontinuous number, and of 3.12, a con-

tinuous number, is 5.12. The limits of 3.12 are 3.115 and 3.125;

the 2 is exact; so the limits of the correct sum are 5.115 and

5.125, correctly represented by 5.12. In such a sum there are

as many significant figures as in the continuous number. This is

not, however, true if both numbers are continuous. Then the

limits of 2 are 1.5 and 2.5, those of 3.12 are 3.115 and 3.125, and
the limits of the sum are 4.615 and 5.625. There is no accurate

answer to this problem: for the sum does not have even one digit

significant in the strict sense, for 5 excludes possible exact values

between 5.500 and 5.625 and the exact value is not necessarily

in the range implied by the single digit. The single digit 5 is,

however, significant in the broad sense, for it approximates the

possible range of true values, Two digits are not significant in
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any sense, since 5.1 is not necessarily closer to the exact value

than either limit of the range implied by 5. The sum of 2 and

3.12, both being continuous numbers, is thus approximately 5.

It is not 5.12 or 5.1. The range of the sum of continuous 2.0 and
3.12

is 5.065-5.175. Of the result 5.12, the first digit is strictly

significant, the second broadly so, and the third is not significant.

The general rule for addition to be derived from these relation-

ships is that in a sum reached by adding continuous numbers
there are usually as many broadly significant places as in the

number with the fewest strictly significant places and generally

one fewer strictly significant places in the result. If continuous

numbers are to be added, they should therefore all have the same
number of significant places and this should be one greater than

the number of strictly significant places desired in the result.

Subtraction is analogous to addition, and the same rule applies.

Similar considerations apply to the results of multiplication

and division. The product of discontinuous 2 and continuous

3.12

is 6.24, with all digits broadly and the first two strictly

significant, the range of the product being 6.230-6.250. Unlike

addition and subtraction, the multiplication of a discontinuous

and a continuous number gives a result in which the last digit is

generally broadly but not strictly significant. The number of

broadly significant places in the result of such an operation is

generally equal to the number of strictly significant places in

the continuous number. Division, on the other hand, com-

monly increases the number of broadly significant places by one

and retains the number of strictly significant places. The quo-

tient 3.12/2 (2 being discontinuous) is in the range 1.5575-1.5625,

so that in the recorded value 1.56 all the digits are strictly

significant and an added 0, making 1.560, is broadly significant.

Thus while 3.3333 . . . and so on indefinitely is correct as one-

third of 10 eggs, one-third of 10 in. is 3 as far as strict significance

goes and 3.3 if broad significance is allowed. In any case it is not

3.33.

Multiplication of two continuous numbers introduces remarka-

bly complex relationships. The product of continuous 2 and

3.12

may readily be verified as having the possible range 4.6725-

7.8125. Thus the arithmetic result 6.24 has no strictly significant

digits, and only the 6 is broadly significant. The tendency here

is toward the same rule as for addition : the result of the multipli-



164 QUANTITATIVE ZOOLOGY

cation of two continuous numbers has as many broadly significant

places as the fewer strictly significant places of either number
and has one fewer strictly significant places. The area of a

square 99.9 mm. on one side and 77.7 on the other is accurately

(but not exactly) 77 sq. cm. and is approximately 77.6 sq. cm.

The result 7762.23 sq. mm. has three wholly insignificant and

therefore misleading digits. The range within which the

unknown exact result lies is 7753.3525-7770.5575 sq. mm.
The quotient of the continuous numbers 3.12/2 is in the range

1.246-2.083333 .... The arithmetic result 1.56 therefore has

no strictly significant figures, and a broadly significant figure is

obtained only by rounding to 2. The quotient 3.12/2.00 is in

the range 1.55361 . . . -1.56641 .... Tlie arithmetic result

1.56 has two strictly and one broadly significant digits. The
tendency is the same as for multiplication.

The plain fact that with many of the numbers used by zoolo-

gists 2 and 2 is not 4, but any number from 3 to 5 makes it dif-

ficult to judge the significance of figures even in the results of

simple operations like finding an arithmetic mean. For such

operations as getting a standard error, it is practically hopeless to

try to work out limits as has been done in the very simple

examples given above. Fortunately there is another factor at

work in these operations, and there is also an empirical but ade-

quate way of deciding how many places are probably significant.

The saving factor is that of probability. Although 2 + 2

(both being continuous) may be anywhere from 3 to 5, it is often

more likely to be about 4, or to be in the range 3.5-4. 5, than to

be in the partial ranges 3.0-3.5 and 4. 5-5.0. Moreover if a

series of such additions are made, there are likely to be about as

many exact values in the low partial range 3. 0-3.5 as in the high

partial range 4.5-5.0; therefore these will tend to cancel out, and

the mean result will in all probability really be in the range 3.5-

4.5, accurately recorded as 4. The probability that this will be

true is directly proportional to the number of operations or

observations and inversely to their dispersion.

Thus the result of operations like finding the mean or the

standard deviation tends to have more significant figures than

the original observations rather than less. Like the standard

error this tendency is related to total frequency and to dispersion,
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but the relationship is inverse to that of the standard error.

The larger the standard error, the fewer the significant figures.

On this probability is based the best rule for significant figures

in calculated parameters: A calculated parameter may be con-

sidered as probably significant to the number of places indicated

by the first digit (not 0) of one-third of the standard error. Thus
if a standard error is .36, one-third of it is .12, and the correspond-

ing parameter value may be taken as significant to the first

decimal place. If the standard error were .24, it would be

significant to the second decimal place.

From the considerations clear in the preceding discussion it is

best to carry out all calculations to at least one more decimal place

than will be significant in the result. In recording the result,

however, it is seldom worth w^hile to give more than the significant

figures. It is best to give a measure and its standard error to

the same number of plac^es. If the value obtained is to be used

in further calculations, it may sometimes be advisable to give

one more place than is significant. In a list of comparable

values it may also be neater or more useful to give all to the great-

est number of pla(;es significant for any. In either case, record

of the corresponding standard errors will give adequate warning

that nonsignificant digits are recorded.

Application of this criterion to actual cases bears out the

statement that parameters usually have more significant places

than do the observations on which they are based. Thus from

the data of Example 51 (page 157) it is seen that for sample A the

mean has two significant decimal places, although the original

measurements had only one; and indeed the mean still has two

significant decimal places even when the original measurements

are rounded to integers. ^

1 This increase in refinement or in number of significant places has also

been verified experimentally by Pearl.



CHAPTER IX

SAMPLING

Any particular set of observations usually has little or no

interest unless it reveals characteristics of broader scope and

wider application than those actually observed. Even observa-

tions that are truly unique, such as those of abnormalities not

repeated, have no value unless they cast light on more normal

and widespread processes like heredity and embryology. Zool-

ogy is, or should be, a study of populations;^ but a whole popula-

tion cannot be brought into the laboratory or examined in the

field, so that the only practical approach is by the method of

samples. Undue preoccupation with what is actually observed

and failure to relate it to broader issues and conclusions are a

constant danger of the method. It is a failure to see the forest

for the trees, the population being the forest and the sample a

few trees from it. The logical transition from the particular to

the general is the most difficult part of research, and it is the

point where the student is most likely to go astray. Observation,

in itself, is not science and has no value except as a basis for

interpretation and some degree of generalization. In previous

chapters, something has been said of the relationship between

samples and populations. With this as a background, it is now
possible to consider in more detail and with better understanding

the actual process of sampling, which is the obtaining of the

individual observations by means of which the population is to be

studied.

^ The word population^' in this sense is not only literal, applying to a

natural assemblage of animals, but also figurative, applying to all existing

phenomena of which a few are observed. Thus when specific characters are

determined from a sample, the population is literal, the assemblage of all

animals of the species. When an individual's behavior is studied, the popu-
lation is figurative and twofold : it is (1) the whole of the individual's behavior

in this respect, before, during, and after actual observation; and (2) the

behavior of all animals in which that behavior follows recognizably similar

patterns.

166
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CHARACTERISTICS OF GOOD SAMPLES

The ideal representative of a population is a sample that is

homogeneous, adequate, and unbiased, three requirements which

mean that

:

1. All individual observations in the sample belong to a single, defined

population.

2. These observations inc^lude all the essential variations within the

population.

3. These variations ocicur in the sample with about the same relative

frequencies as in the population.

The more nearly a sample meets these three requirements, the

better it is and the more reliable are conclusions based on it.

The requirement of homogeneity is in practice subject to at

least one qualification and one exception. Often it is impossible

to say that a given population is itself homogeneous, and the very

purpose of sampling is to learn from the sample whether the

population is pure or mixed with respect to the problem in hand.

When, for instance, all the generally similar fossils from one

horizon and locality are laid out, the first concern is to see

whether they are a homogeneous taxonomic group or really

represent two or more groups, and hence populations. Samples

have in this respect one very important limitation. They can

frequently prove beyond reasonable doubt that the population

is heterogeneous, but they can never strictly prove that it is

homogeneous. That is why assurance of homogeneity depends

primarily on the specifications of the population and not on

observations on the sample.

If a distribution of a sample is definitely bimodal and can be

shown to combine two distributions with significantly different

parameters, then the sample and the population are surely

heterogeneous—some tests for this are discussed in the next

chapter. If many different distributions can be made for differ-

ent variates of a single sample and if none indicate heterogeneity,

it becomes probable that the sample and population are homo-
geneous. This, however, is frequently^ impossible because only

one variate is pertinent to the problem, or for various other

reasons; and in any case the negative cannot be really proved,

it cannot be established that the sample is not heterogeneous.
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In taxonomic work, two closely related subspecies may be

mingled in a sample and their combined variation may be such

that it is impossible to separate them or even to establish the

fact that two subspecies are present. This exemplifies the

importance of population specdfication. If the sample were from

populations known beforehand to be homogeneous in every

respect, the subspecies would not be mingled and it would be

possible from their separate samples to prove that they are in

fact distinct and to show just what the distinctions are. Knowl-
edge of homogeneity is derived from collection records, and in

taxonomic studies it involves homogeneity:

1. Of place, derivation from a single locality or small an^a.

2. Of environment, ecological unity.

3. Of time, contemporaneity of the animals studied.

4. Of age, animals all in about the same stage of their lives.

5. Of sex.

Sometimes all of these specifications cannot be met or clearly

determined, and this may introduce uncertainty into the results.

Other specifications may also be necessary for the problem in

hand, such as homogeneity of physiological condition (all ani-

mals gravid females, all undiseased, all with some specified

disease, and the like). Good sampling starts with decision as

to what homogeneity is for the problem to be attacked, in other

words, with specification of the population. Good collecting

involves as complete record of all specifications as possible so

that samples of a population meeting any necessary requirements

as to homogeneity can be drawn from the collection.

Another common purpose and result of sampling is to prove

that difference in specifications did not produce evident hetero-

geneity. For instance, it may be found that samples from

different localities (but otherwise homogeneous) are not signifi-

cantly different. In taxonomy, the conclusion is that the same
species (or smaller unit) does occur at both localities. If the

populations compared are well specified, this may amount in

practice to proof of homogeneity, although without good specifi-

cation such proof is impossible.

Exceptions to the requirement of homogeneity are provided

by problems in which heterogeneity of population is itself an
element. Obviously this is not an exception to the requirement
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for specification of population, for such problems cannot be

attacked at all without such specifications. For instance,

in the study of body temperature if the problem is individual

variability, the population should be specified as homogeneous:
in race, sex, age, perhaps weight or other growth characteristics:

in physiological conditions except body temperature; and in

environment, particularly environmental temperature. But if

the purpose is to measure homothermy, the samples should

deliberately be selected so as not to be homogeneous in environ-

mental temperature but on the contrary to be as heterogeneous as

possible in this respect, the environmental temperature being,

however, exactly recorded for each body temperature observation.

Even in such problems, in which heterogeneity is deliberately

and necessarily sought, homogeneity is also of prime importance.

Every effort should be made to keep all the population specifica-

tions except the one under consideration as homogeneous as

possible. For instance, in determining homothermy, hetero-

geneity in any respect except environmental temperature may
obscure or falsify the result. If some animals are old and some

young, some male and some female, some hibernating and some

not, some resting and some exercising, some well and some ill,

or some fat and some thin, the results will not be valid. The
influence of each of these or of any other factors could be deter-

mined by keeping it as the variable and making the sample as

homogeneous as possible in every other respect. The element of

individual variability must also be eliminated or measured and

allowed for. In fact this problem would be best attacked by
multiple samples, each derived from a population comprising

the body temperatures of a single animal over a short period and

in one physiological state with varying environmental tempera-

tures. Body temperature is taken here only as an example. The
same sort of considerations applies to any sampling to determine

relationships between two variable factors (see Chaps. XII and

XIII).

It should hardly be necessary to add that observations for

which an essential specification is lacking should never be

included in a sample. If, for instance, there is any reason to

believe that fossil animals from two successive geological horizons

differ or if it is desirable to test whether they differ or not, speci-

mens of unknown or inexactly known horizon must be omitted.



170 QUANTITATIVE ZOOLOGY

They must be omitted even if they greatly outnumber those of

known horizon and even if the student thinks that he can make
a subjective separation of them. If recorded population specifi-

cations are inadequate, the problem simply cannot be studied in

this form and either the sample itself must prove heterogeneity

(which it often will not do even though heterogeneity be a fact),

or the problem must be abandoned as insoluble from the data

available.

This is why such a large amount of material in collections is

entirely unfit to provide samples that will really solve urgent

and legitimate problems to which the collections are related.

It is why poor collecting or collection by inadequately informed

amateurs or by careless, venal, or dishonest persons is more
likely to make problems insoluble than to help to solve them.

It is why so many species and subspecies, especially those of a

century or more ago but also a painfully large number up to the

present day, are completely and permanently unrecognizable

on the basis of the type specimens;^ and hence why the, rigidity

of the International Rules of Nomenclature may make a valid

nomenclature impossible.

The requirement that a sample should include all the essential

variations of the population does not mean that it must include

observations exactly at the range limits and at every possible

point in between. This would, it is true, be ideal; but it is

impossible either to obtain such observations in every case

or to know them to be such if they are at hand. For quantitative

observations, variates, it is enough if the observations are well

distributed within the range so that they permit reasonable

inference as to the population range. The extent to which they

do this is well shown by the standard deviation and its standard

error, as shown in the preceding chapter. Even from single

specimens or inadequately small samples, some idea of the

population range can be obtained (see Chap. XI), although of

course the information is less exact and less reliable than for

larger samples.

As regards qualitative characters, attributes, the basic sam-

pling requirement is that each important variation should occur

' Many taxonomists refuse to admit the possibility, but it is a demonstra-

ble fact that two specimens may not differ significantly in any respect and
yet may belong to two valid, different, and recognizable subspecies or species.
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at least once in the sample. The adequacy of the sample in

this respect can be determined from the theory of sampling

limits, which is discussed in a separate section later in the present

chapter (page 182).

In zoology the sample size is usually fixed in practice by what
can be obtained. Instances in which a sample can be made of

any desired size are rare, and it is a good general principle to

use all the available observations. The question of adequacy

is not so much that of deciding how large a sample is desirable,

but how adequate the sample actually in hand is and whether it

suffices to solve a given problem. There is very seldom any

excuse or reason for not using all the observations that can be

obtained with proper specification. Availability means observa-

tions possible on all the collections accessible to the student

or the observations on living wild or laboratory animals that

can be made in the time available and before conditions change

so as to involve a change in specifications. Even one observa-

tion can throw important light on a problem, and hundreds of

observations are seldom too many to handle or so many that

equally good results can be obtained from fewer. In the rare

(;ases where the available sample is really too large or unneces-

sarily large, subsampling can be carried out on the same principles

as sampling in general, considering the unduly large sample as if

it were a population and sampling it to reach conclusions regard-

ing its characteristics.

Bias may enter into qualitative sampling, but it is a still

greater danger in quantitative sampling. If an essential varia-

tion of the population cannot be inferred from the sample or if

the sample is such that inferences based on it as to the frequencies

of variation in the population are incorrect, then the sample is

biased, and conclusions based on it are unreliable or wrong.

Sampling bias may be very difficult or even impossible to detect.

If bias is suspected, it is sometimes possible to obtain a new
sample from exactly the same population, preferably by a

different sampling technique. The bias may then appear from

significant differences between the samples, which should give

essentially the same results if the sampling were unbiased in

both cases.

The most practical way to avoid bias is to give careful con-

sideration to the specifications and sampling technique so that
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they cannot conceivably bias the result. A few examples of

specifications and technique will suggest the innumerable ways

in which bias can arise and the importance of considering all

possibilities before selecting a sample. It was pointed out above

that specimens of unrecorded horizon should be rejected in

studying the relationships between fossils of successive strata.

It is extremely unlikely that there is any relationship between a

record or its lack and any morphological characters of the

specimens. It is therefore safe to assume that this selection

does not bias the result. But suppose^ for instance, that specifi-

cation of essential homogeneity of individual age were omitted

and that, as often happens, the animals of one stratum were

mostly juvenile and those of the other mostly mature. Many
morphological characters are influenced by age, and the samples

are therefore biased with respect to these characters by faulty

specification. Or suppose that growth of a mammal limb bone

is being studied and that it is specified that the limb bones be

complete. A common reason for incompleteness is loss of

epiphyses. This occurs only in young animals and so is directly

related to the problem of growth, and the specification strongly

biases the sample for the study of that problem. Again some
detailed experiments were made on heritability of acquired skill

in animals, and the sampling was done by opening a cage and

taking the first animal that came to hand. Now the coming of

the animal is evidently likely to be affected by its past experience,

intelligence, or activity; and these are elements in its acquisition

of skill. The sampling technique therefore very probably

introduced bias into the results. Similarly field collecting some-

times tends to get an unduly large proportion of the more bulky

or more active animals or to be otherwise biased. Often there

is little that can be done about this, but it must be kept in mind in

interpreting the results.

The theory of probability on which inference from sample

to population depends assumes that the sample is taken at

random. Conscious selection is involved only in specifying the

population. The sample should be selected only by chance, and
any element not chance and random may introduce bias. The
sampling of laboratory animals, as in the learning-inheritance

experiment, would be unbiased if each animal were numbered

and the numbers written on identical balls or cards, thoroughly
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mixed, and the required sample taken at random from these.

In collecting wild animals, the method used should be as little

selective as possible so that the collection will be random, or as

nearly so as possible, within each specified population. Once
the specimens are collected, it is necessary to assume that they

are a random sample, or to allow for this if it is known that the

collecting was biased. Then the whole collection is used as far

as it meets population specifications or, in rare cases, subsampled

by chance methods, such as drawing numbered cards or balls.

Sampling is random and meets the requirements for being

unbiased when within a population any one individual observa-

tion is as likely to be drawn in a sample as any other. It follows

that a population from which a sample has been drawn and not

returned cannot give another absolutely unbiased sample,

because there is no chance that the second sample wdll include

any of the observations already withdrawm but nevertheless

pertinent to the j^opulation. If the population is very large and

if the first sample is unbiased, a subsequent sample will not in

general be significantly biased. If, however, the first sample is

biased or if the population is small, subsequent sampling will

often be significantly biased. For instance, it is impossible to

obtain an unbiased sample of male deer in this country, because

the game laws assure the withdrawal from the population of a

biased sample by huntems at each open season. It is likewise

impossible to split up a large laboratory sample into a series of

smaller unbiased samples—only the first sample can be unbiased,

and the subsequent samples are more and more biased until

the last is not selected by chance at all.^

It is, however, possible to devise suitable sampling techniques

by which a sample can be split into subsamples biased with

respect to each other or to the sample, but not significantly

biased as representatives of the population for some particular

problem. If this were not true, good parallel experiments on

laboratory animals would not be possible. A sample split

simultaneously into subsamples of equal size gives such essen-

tially unbiased representatives of the population if the original

sample was unbiased, if the splitting of it was at random, and if

each subsample is of adequate size for the problem. It is also

^ But repeated unbiased sampling pan be done, as in Example 51 (p. 157),

if each sample is returned to the population after being recorded.
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possible for a sample to be biased in some respects, yet to be

essentially unbiased in others. The bias is important only if it

is related to the conclusions based on the sample.

FAUNAL SAMPLING

Most field collecting is a sampling operation in which the

population is specified as all the animals of some zoological group

(such as all insects, all fishes, all birds, all mammals, all carni-

vores, all cats) living in a given area. Data are recorded with the

collections whereby smaller samples with more limiting specifica-

tions can be drawn from the collection. The requirements of

different sorts of animals and of different types of problems are

so various that no general schedule of data for all vertebrates is

useful, but the following include the most commonly useful

specifications

:

Date of collection and, if possible, time of day.

Weather: temperature, light, humidity, and precipitation.

Place (geographic region).

Height or depth (from sea level and from local surface of land or water).

Station (local habitat).

Field identification (for help in sorting, not an adequate population

specification).

Individual age (as closely as possible).

Sex.

Field measurements and counts, color notes, and other observations of

variates best taken on recently dead material.

Method of taking (including such details for trapping, for instance, as

type of trap, number of trap, interval since trap last visited, number of days

for trap in same location, exact character of trap set, bait used).

Physiological condition (oestrous condition, sleeping, feeding, hibernating,

shedding, etc.).

For fossils only the exact locality and stratigraphic horizon

are pertinent field sample data.^

With good field data of this sort a collection can become a

source of samples with almost any pertinent specifications. The
collection is, however, a sample in itself, properly a faunal

sample. Almost all older collections and most of those still

made are intended only as qualitative faunal samples. The

^ For convenience and museum record, not as sampling data, field identifi-

cation, anatomical elements preserved, name of collector, and date of collec-

tion should also be recorded.
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purpose is to include at least one representative of each taxonomic

unit pertinent to the collecting, with no concern for relative

frequencies. The collector simply moves into an area and
employs as many different collecting methods in as many different

places and ways as hold any promise of getting different species

or smaller groups of the animals that interest him. The com-
plexity of such qualitative sampling for large zoological divisions

is suggested by methods used to get a qualitative sample of the

fishes of Panama (Meek and Hildebrand 1923) : drag net, set net,

tide net, dip net, dynamite, two kinds of poison, hook and line,

and dredge—and even this extensive list does not include all

the methods of taking faunal samples of fishes. Each method
took some species collected by no other.

Collection of this sort is skimming, the intention being, so to

speak, to skim off a few representatives of each kind of animal

in an area. If the samples could be of the same size for each

kind, so much the better. The collection is not really considered

as a sample itself but only as a series of samples specified by

taxonomic, considerations, to be sorted and studied separately

in the laboratory.

In recent years increasing attention has been paid to faunal

sampling as such, or to quantitative faunal sampling in which

the purpose is not only to learn what kinds of animals live in a

given area but also to observe their relative frequencies in that

area and in the various local habitats or stations within it. This

is not necessarily effected by killing and bringing back a faunal

sample with the same relative composition as the fauna; in fact

when possible it is preferable to collect a qualitative sample and

to make the quantitative observations on the living animals.

Good quantitative sampling, however, often does involve making

a quantitative collection.

Quantitative sampling, whether on living animals or by col-

lecting, involves counting individuals of each species^ under such

conditions that (1) the observed counts for the various species

have the same relative sizes as do numbers of those species living

in the area, or (2) the observed count for each species has an

approximately known ratio to the whole number of individuals

of that species in the area. Fulfilling either of these conditions

^ Or subspecies or any other taxonomic group. ** Species” is used in the

text as an example and for brevity.
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always involves considerable difficulty, and except with very

localized and special groups neither one can ever be achieved with

complete accuracy.

Collections made in the ordinary sort of qualitative sampling

often give approximate quantitative data. P"or instance, with

fishes that are all easily taken on hooks of the same size with the

same bait, the catch will be a good quantitative sample, or a

drag net with large enough mouth and small enough mesh to

catch both larger and smaller fishes will generally give a fair

quantitative sample of the water it traverses. But the drag-net

sample will not be comparable with one taken by dredging or by
spearing, and the hook-and-line sample will not be comparabh'

with any of these.

The principal methods especially devised for quantitative

sampling are the quadrat, station, and traverse methods and
various adaptations and combinations of these. In the quadrat

method the area to be sampled is sul)divided into squares or

quadrats, and an effort is made to count or collect all the animals

living on each of a selected number of these quadrats. If the

quadrats are well chosen and the observation or collecdion is

made rapidly and well, the total number of animals in the area

can be closely estimated by multiplying the quadrat observa-

tions by the ratio of the total area to the area of the selec^ted

quadrats.

The desirable size and number of such sampling quadrats

necessarily vary greatly, depending on the animals sought,

nature of the country, and other factors. The size of the

quadrat must depend largely on the normal range of individuals

of the species sought and should be large enough so that several

individuals will occur on each quadrat. Collecting or observa-

tion should be as rapid and yet thorough as possible in order to

include most or all of the animals in the quadrat when the work
is begun but not to give time for others to wander in.^ The
quadrats should themselves be an adequate random sample of

the area, including its various local habitats in the right propor-

tions and chosen by chance, if possible by laying out on a map
and taking every fifth, tenth, etc., quadrat mechanically. Not

^ Unless, of course, the quite separate problem of wandering is also being

investigated, when the initial work should also be rapid but should be con-

tinued in the same quadrats.



SAMPLING 177

less than 10 quadrats is advisable, and a higher number is better

if possible.

The distance between the chosen quadrats should also be

great enough, redative to the size of the quadrats, so that the

operations do not seriously disturb the animal population and,

if collecting .is the method, so that the local fauna will not

be depleted or seriously unbalanced—this appiks to any type

of colle(*ting, for the collector as such is not a proper agent of

animal control. If sampling quadrats are well selected, even the

(complete extermination of the animals in them does no harm, for

the relative numbers of animals of various species are not changed

and the empty quadrats quickly fill up by normal increase around

them. Skimming sampling is much more likely to upset a fauna.

It is not iKicessary or even desirable that each quadrat include

a representative assemblage of all the species of the area. It is

much better both as a sampling operation and as a conservation

measure tliat the' sampling quadrats be small and widely scat-

tered, each with only a random and not complete representation

of the fauna. If the quadrats are a good sample of the area,

the animals of all combined will be a good sample of the fauna

even though thos(‘ of any one quadrat are not.

Perfect sampling is an impossible ideal. With relatively

sedentary and easily captured or observed animals, the quadrat

method seems to approach the ideal most closely. In other

circumstances it may be poor or even wholly impractical.

The principle of the traverse method is the same as that of

the quadrat method, but the observations are made along lines

instead of in squares. The lines should be parallel, numerous

enough to sample the area properly, and far enough apart for a

single individual rarely to be recorded on different lines or, in

collecting, for one line not to draw^ animals from the same area

as any other. It is preferable to run the lines simultaneously if

possible, and in any event as rapidly as may be. When the

area has settled down, another set of traverses may be run as a

check at right angles to the first. The system of moving trap

lines covering a band is a combination of the quadrat and

traverse methods, usually difficult to evaluate, but sometimes

giving better absolute results.

The great drawbacks of simple traversing are that the size

of the area of observation relative to the whole area of the region
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sampled is very difficult or impossible to evaluate with any

accuracy and that different species will be drawn from areas of

different sizes. More wandering species will appear relatively

more abundant (as they are likely to by any method, but espe-

cially by this)
;
and larger, less timid, or more distinctive animals

will be observed at greater distances. This cannot wholly be

avoided by restricting observations to the path in which small

and obscure species can be identified, for many animals tend to

move out away from the line. Distance from the line is there-

fore an essential datum, and the interpretation of results may
become very complex and uncertain. In favorable circum-

stances, however, traversing gives reasonably good data on

relative abundance. It seldom gives a very adequate idea of

absolute abundance although it may set a minimum.
Adapted forms of both quadrat and traverse methods are

used in the station method.^ The principle of this is to estab-

lish a number of stations of observation or collection and to

record for each species the number of different stations at which

it was taken (not, as in the quadrat and traverse methods,

the number taken at each station). The stations may be quad-

rats, traps or trap lines, unit linear distances along traverse lines,

scattered points or circles of observation, or time units. In

using time stations, the period of observation or collection for

any one region or place is divided into equal intervals, and the

number of separate intervals in which each species was seen is

the record.

This apparently simple method is more complex numerically

than may appear at first sight. The relation of the data to

either relative or absolute abundance is not direct and may be

indeterminate, and it seems likely^ that in most cases the data of

ordinary qualitative sampling are more satisfactory, even

quantitatively, than are those of the relatively elaborate station

method. Surely well-conducted quadrat or traverse studies are

preferable. Unlike these, the station method requires a high

number of units, preferably 100 or more; and it logically requires

^ Originally proposed for floral studies by Raunkiaer and by Gleason,

extended to mammals by Kenoyer and in various other forms by Grinnell

and Storer, by Lirisdale, and by Dice (for references and further details see

Dice 1931).

* As one of its proponents, Dice, also concludes.
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units so small that the occurrence of any one species in them is

relatively uncommon. If this condition is met, then most
really rare species will be missed altogether; and if it is not met,

then all the species except those really rare will be given high and
about equal frequencies. Communal animals which are very

abundant but only at limited spots will appear rare by the station

method, and rare but solitary and widely dispersed species may
appear abundant. In fact the station method really measures

not relative frequency, as its users generally claim or suppose,

but relative dispersion, which is quite a different thing in faunas

as it is in variate distributions. As a measure of faunal dis-

persion it may prove to have considerable value. It is also

fairly well adapted to studies of faunal fluctuation from hour to

hour, season to season, or year to year, where frequency is a

function of dispersion or where dispersion is the important

factor.

PALEONTOLOGICAL SAMPLING

The problem of sampling in paleontology is very different from

that of sampling among recent animals and constitutes a special

problem, although the treatment of the samples, once obtained,

is often the same in both fields. The most marked sampling

difference is that, in paleontology, field collecting cannot meet

any of the usual specifications except those of place and geological

age. To these may be added a few very special data such as

type of matrix and manner of occurrence, to some extent per-

mitting specifications analogous to those of habitat or method
of taking for recent animals. But many specifications often

well filled from recent field data, like those for sex and individual

age and those requiring that values of variates shall be those of

living (or recently killed) animals, cannot be met at all by
paleontological collecting; and heterogeneity in these respects

can be determined, if at all, only from operations with the sample

itself. Paleontological samples are thus always somewhat

heterogeneous in fact as they come to the laboratory, and it is

seldom possible to make them completely homogeneous by any

amount of study and selection. They usually demand broader

treatment, but within these broader limits work on them may
be and should be just as accurate and just as useful as on recent

materials.
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Another peculiarity of paleontological samples is that they are

always biased in some respects. They may not be biased for a

particular problem, and it is often possible to determine the

bias roughly and to allow for it; but its existence demands
recognition.

The agencies by which paleontological faunal samples are

biased are: (1) biotic areas or facies, by which the animals were to

some extent sorted out while still alive; (2) agencies of burial

and fossilization, by which the animals whose remains are

actually preserved were selected; (3) agencies of exposure, by
which some, but in no case all, of the preserved animals are made
available to the collector; and (4) the collector, who finds and

collects some but never all of the available fossils. This multiple

sieve through which the animals are, so to speak, sifted before

they become a sample for investigation exerts a pronounced

influence on the nature of the sample. Nothing can be done

about this (except, to some extent, as regards factor 4); but

bearing these vai'ious factors in mind permits some judgment as

to the degree and nature of the imperfection of a paleontological

sample and may lead to considerable modification of the infer-

ences based on it.

Factor 1, biotic areas or facies, means that every paleon-

tological sample is biased at the start. Seldom or never does

any geological formation yield all the types of animals living at

any given time, even in the general area in question. It includes

only animals that lived in some one type or a few types of sur-

roundings, perhaps marshy, or desert, or (in practice extnmiely

rare) mountainous. Study of the fauna itself, its entombing

sediments, analogous recent faunas, etc., permit some judgment
on this point. Another sort of facial bias exemplified in several

collections is due to the fact that some species frequented the

area in question only at certain periods of the year or of their

lives.

Factor 2 is analogous to facies or tends to emphasize or

modify facial differences, in that some types of vertebrates are

much less likely to be fossilized than others. The usual relative

scarcity of bird, bat, or higher primate remains in the paleon-

tological record doubtless results principally from this cause.

Other influences also may have a strong and fairly obvious

selective influence; for instance, small animals necessarily pre-
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dominate in deposits in narrow fissures, and large animals are

likely to predominate in coarse gravels.

As far as it is natural, factor 3, exposure, is generally, but not

invariably, an unbiased sampling agency. In a well-exposed

formation, fossils are likely to be exposed in about the propor-

tions in which they actually occur in the rock. Some incidental

factor may, however, cause bias. For instance, a stratum laid

down at some particular time may have been formed under

conditions that gave it a distinctly different fossil content from

adjacent strata and that also gave it a physical nature promoting

better or worse exposure, thus definitely biasing the collection

from the formation as a whole. Weathering of the l)ones after

exposure may also be differential, those of sonu^ particular

zoological or size group breaking down more rapidly under

weathering and thus being abnormally few in the collection.

Collecting bias, factor 4, depends on ability and on attitude

and purpose. It is well known that two collectors may con-

sistently differ in tludr results, one finding, perhaps, a much
higher percentage of small animals than the other. Also a

collector who is instructed or who naturally tends to collect only

for exhibition or for any specified and limiting aim will inevitably

make a biased collection of the fauna as a whole and often even

of any particular species in the fauna (for instance, may tend to

(•ollect chiefly large variants).

Two other factors may modify a paleontological sample for

practical purposes, both affecting chiefly the apparent relative

number of individuals of various groups in the collection. The
first is that some animals actually have a much greater number
of hard parts suitable for fossilization than have others. Thus
an armadillo, thanks to its armor, has hundreds of bones more

than has a rodent; therefore, a much greater number of pieces

in a collection may not represent a correspondingly large number
of individual animals in the population. The other factor might

be called bias of identifiability. Although two species might be

actually equally abundant in a collection, one would be recorded

as more abundant if it were more readily identified from poorly

preserved material. Or the apparent size of a species might be

considerably greater than the real mean size if, for instance, its

larger or adult specimens were more easily distinguished from

some related form than its smaller or juvenile specimens.
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SAMPLING LIMITS

For variates, the probable relationships between observations

on a sample and characters of a population are generally well

shown by the various parameters and their standard errors. No
such means have been given for estimating the frequencies and

distributions of attributes, nonnumerical characters, in the

population from those of a sample. This can be done, although

the results are not so definite or the implied limits usually so

narrow as for variates.

The distribution of an attribute usually has only two classes: it

is present or it is absent. Its frequency distribution consists only

of the relative or absolute number of individuals that have and

that do not have the character in question, and such a frequency

distribution is not subject to the sort of analysis and synthesis

explained in previous chapters. Nevertheless, there are many
urgent zoological questions that can be answered only by such

data. As regards sampling, such questions are:

Supposing that a character occurs in a certain proportion of the

individuals of a species, how large a sample would be necessary to

be sure, for all practical purposes, to include at least one indi-

vidual with this character?

Given a sample of a certain size that does not include a given

character, how large a proportion of the population can have had
the character?

Given a sample of a certain size, what is the smallest proportion

of the population in which a character must have occurred for it to

be surely present in the sample?

Given a sample of a certain size in all the observations of which

a character is ptesent, what is the smallest proportion of the

population that must have had the character?

The answers to these and many similar questions are given by
the theory of sampling limits. The answers vitiate many con-

clusions that zoologists have based on small samples a;nd show
how necessary it is to pay especial attention to this important

subject. To anticipate the results of the following enquiry, few

zoologists would hesitate to say, for instance, that a character

was absent in a species if 10 specimens did not show it; but all this

really proves (assuming that the character is biologically possible

in the species) is that not many more than half the individuals of

the species had the character.
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The sampling limits here involved are determined by a binomial

of probability and by the assumed normal distribution of random
samples. If a character is present in, say, 30 per cent of a popula-

tion and absent in 70 per cent, then the probability of its occur-

rence in a sample is .3, and that of its nonoccurrence is .7. This

means that if a great many samples of 10 specimens each were

taken, on an average the character would occur in 3 specimens of a

sample and be absent in 7. But this would be only an average

result, and in fact such small samples are strongly affected by
chance. It might happen that in a given sample the character

would not occur at all or that it would occur up to 8 times instead

of only 3. For a great many samples of this size a frequency

distribution could be made, X being the number of times the

character occurs and/ the number of samples in each class. This

distribution would be approximately normal; and therefore, if the

standard deviation is obtained, the probability that X will be

above or below any given value can be found from the table of

areas of the normal curve. The standard deviation for such a

distribution is

\/N X p X q

where N = the total frequency of each sample (t.e., 10 in the

preceding discussion).

p = the probability that the character will appear,

expressed as a fraction (.3).

q = the probability that it will not occur (.7).

In this case therefore

VN XpXq = VWX .3 X .7 = VO = 1.45

The mean value will be near the most probable value, which is

3. What we wish to know is the smallest number and greatest

number of practically possible occurrences, in other words, the

theoretical range limits; and study of the normal curve showed
that these are practically always included between (M — 3<r) and
(Af + Scr). In this case {M — 3<r) is less than 0, which is the

minimum possible value, and so 0 is the lower limit. (M -b Sa)

is 3 + 4.35 = 7.35. But the values are always integral in fact,

and it is well to play safe. Therefore, this can most safely be

called 8; and it is established that in a sample of 10 specimens it is

certain, for all practical purposes, that not more than 8 will have

the character. These are the sampling limits for N « 10 and
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p = .3.^ Of course it remains true that the sample is more likely

to have 3 than any other number of occurrences of the character,

but this probability is not great enough to be a safe basis for

conclusion with so small a sample.

On this basis, similar sampling limits can be calculated for any
percentage of occurrence in the population and for a sample of any

size, the lower limit being {Np — ^\/Npq) and the upper

{Np + 3\/Npq)j N being the size of the sample, p the fraction of

occurrence in the population (expressed as a decimal), and q the

fraction of nonoccurrence (= 1 — p). If the calculated lower

limit is negative, it is recorded as zero; and if the calculated upper

limit exceeds the size of the sample, it is recorded as iV, since 0 and

N are actual absolute limits imposed by the conditions.

Table III.—Sampling Limits

Size of

sample
Percentage of occurrence in population

N 10% 20% 30'% 40% 50% 60•% 70% 80% 90* %

5 0 3 0 4 0 5 0 5 0 5 0 5 0 5 1 5 2 5

10 0 4 0 6 0 8 0 9 0 10 1 10 2 10 4 10 6 10

15 0 5 0 8 0 10 0 12 1 14 3 15 5 15 7 15 10 15

20 0 6 0 9\ 0 12 1 15 3 17 5 19 8 20 10 20 14 20

25 0 7 0 11 0 15 3 18 5 20 7 23 10 25 14 25 18 25

30 0 8 0 13 1 18 4 20 6 23 10 26 13 29 17 30 22 30

40 0 10 0 16 3 21 6 25 10 30 14
i._. .

34 19
1

.

37 24 40 30 40

50 0 12 1 19 5 25 9 31 14 36 19 41 25 45 31 49 38 50

75 0 16 4 26 10 35 17 43 24 51 32 58 40 65 49 71 60 75

100 1 19 8 32 16 44 25 65 35 65 45 75 56 84 68 92 81 99

‘ The most doubtful theoretical point is whether a very asymmetrical

binomial, say for p .9, g = .1, would not be too far from the normal curve

for this reasoning to apply; but Pearl (1930), from whom this discussion is

paraphrased with some change, has shown that the difference is not signifi-

cant even with this asymmetry.
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Representative values, rounded to integers somewhat irregu-

larly but so as to give safely high probabilities for each figure, are

given in Table III. In each cell of the table the figure to the left

is the lower limit and that to the right the upper limit. Thus for

a sample of 20 and proportion of population occurrence 40 per

cent, the limits are seen to be 1 and 15; in other words, in these

conditions the sample would surely have the character represented

once and would not have it represented more than fifteen times.

Any conditions not covered by the table can easily be inserted in

the formulas given above.

With this table or the formulas it is easy to answer questions

like those posed at the beginning of this section. The following

statements can be verified by the table :

If a character occurs in 20 per cent of the population, a sample

of 50 specimens is necessary to be certain to include one with this

character (in the 20 per cent column the number 1 first appears as

lower limit in the row N == 50).

If a character does not occur in a sample of 15 specimens, it did

not occur in more than 50 per cent of the population (in the

N — 15 row, the 50 per cent column is the first in which the lower

limit is not 0).

A character must occur in at least 40 per cent of the population

to be surely represented in a sample of 20 specimens (in the

N = 20 row, the 40 per cent column is the first with the lower

limit above 0).

If a character is present in all individuals in a sample of 25

specimens, it must have occurred in at least 70 per cent of the

population (in the N = 25 row, the 70 per cent column is the

lowest with the upper limit equal to N),

It may be reiterated that these are limits of probability so great

as to amount to certainty, the only ones on which conclusions

may safely be based. Possibility and probability near an even

chance, far from certainty, are different. Thus, if a character

occurs in 20 per cent of the population, it is possible for it to occur

in any sample of 1 or more individuals, and it is more likely than

not to appear in any sample of 6 or more individuals, but it is only

certain (for all practical purposes) to appear in a sample of 50 or

more individuals. It is practically impossible for it to occur in all

the individuals of any sample larger than 3 and improbable for it

to occur in the whole of a sample of any size.



CHAPTER X

COMPARISONS OF SAMPLES

Most of the discussion up to this point has been devoted to the

study of individual samples and of their relationships to popula-

tions. Probably the most frequent zoological operation with

numbers, however, is in the comparison of two samples. Even in

the study of a single sample, the usual aim is to obtain and present

data that will permit subsequent comparisons. Such compari-

sons can be made intelligently and with reasonable objective

probability only after the characteristics and relationships of

samples and of distributions based on them are thoroughly under-

stood. Once these ideas and the numerical operations based on

them have been grasped, their use in comparisons is relatively

simple; but without such data and concepts as means, standard

deviations, and standard errors, comparisons are largely sub-

jective, highly unreliable, and often erroneous or meaningless.

In comparing two samples, the primary operation is of course to

see whether they are or are not different and what the degree of

difference is. In practice two samples always are different, for

the chances of two samples, even though drawn from exactly the

same population, being identical in character are practically nil.

The degree of difference may be slight or great, and the real

purpose of the comparison is to judge from this difference whether

the samples were or were not drawn from the same population.

If the probability of their being from the same population is very

small, so small that it is generally safe to consider it zero, then the

difference between the samples is significant in a technical sense.

If there is a definite possibility that the two samples are from one

population and that their difference arose only from the chances

of random sampling, then the difference is not significant—it is

unreliable, and conclusions cannot safely be based on it.

This is the logic involved in any comparison, however poor and

subjective may be the method of carrying it out. When a speci-

men is compared with a type and decision is made as to whether

it belongs to the same species, the two are really being treated as

186
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samples. The idea is to see whether the specimen to be identified

was drawn from the same population, the species, as the type.

This simple comparison as it is so often carried out is a thoroughly

unscientific procedure. It involves no definite criterion of sig-

nificance, nor idea of what the range of variation really is, no
conception of the relationship of the type to the variation of the

species as a whole, and no method of relating the specimen being

identified to this specific distribution beyond a vague and sub-

jective opinion that is shown by more reliable methods to be as

often wrong as right. It is possible to obtain definite criteria on

all these points, as will be shown in the present chapter.

No method of comparison is absolutely infallible. All

methods rest on a basis of probability and so are conceivably open

to exception. It is, however, possible to estimate closely what
the probability is and to accept as significant only conclusions in

which the probability of error is known to be so small that it can

almost always be neglected. If, moreover, the conclusions are

accompanied by the estimate of probability, everyone can judge

what the chances of error are; and the published finding can

hardly be considered erroneous even in the worst outcome, since it

carries its own objective evidence and possible corrective.

Establishment of the significance of a difference between two
samples is not in itself a zoological conclusion but only a datum
that makes such a conclusion possible. The zoological conclusion

is not numerical and cannot be reached mathematically. If two
samples differ significantly, then it is certain for practical purposes

that they represent different populations and that the degree of

difference of the populations can be estimated; but it is not

demonstrated what the populations are or why they differ, what
the zoological meaning of the difference is. If two samples of

zoological specimens are significantly different in morphological

character, they may belong to different species or other taxonomic

groups, they may represent different sexes, they may be of differ-

ent age groups, they may have been affected by different food, one

may have been affected by disease—these and many other possi-

bilities remain to be considered and to have a choice made
between them on zoological nonnumerical grounds. Correct

numerical treatment does not assure a correct conclusion, but it

makes such a conclusion possible. Incorrect numericaltreatment

makes a correct conclusion impossible except by blind luck.
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In the present chapter three very common types of comparison

are treated: comparison of a single specimen with a larger sample,

comparisons of the means of two samples, and comparison of the

parts of a single sample drawn from more than one population.

Some almost equally important but more difficult comparisons

are treated in subsequent chapters: for instance, the comparison

of two very small samples or single specimens (Chap. XI),

comparisons of related values of dependent variates (Chaps. XII
and XIII), and comparisons of differences between two series of

values of a variate (Chap. XIV). The general principles estab-

lished by the cases treated in this chapter apply also to these

more complex operations.

COMPARISON OF A SINGLE SPECIMEN WITH A LARGER SAMPLE

It was shown in Chap. VII that if the distribution of a variate

is approximately normal in a population the chances that an

observation drawn at random from the population will lie at or

beyond a given distance from the mean are given by the table of

areas of the normal curve lying outside of limits at that distance

from the mean, the distance being measured in units equal to

the standard deviation.

Taking the calculated values for a sample as estimates of the

population parameters, it is thus simple to calculate from the

mean and standard deviation the chances that any one obser-

vation belongs to the same population as the sample. It is

necessary only to find the absolute distance of the value of the

observation from the mean of the sample, a deviation that may be

symbolized by d, to express in terms of the standard deviation cr

by dividing by the latter, giving d/o',* and to read the probability

from the normal-curve area table (Table I, page 137). The ^^per-

centage of area between limits^' is the probability (as parts of 100)

that a deviation equal to or greater than the one in question would

not be obtained by random drawing from the same population as

the sample, and the percentage of area outside limits is the

probability that such a deviation might be so obtained.

For instance, if an observation is distant 2cr(i.c., d/e = 2) from

the sample mean, the probability that its deviation would not

be equaled or exceeded by one drawn at random from a population

* Biological statisticians sometimes call d/tr the ** coefficient of abmodal-

iiyy
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with the same parameters as the sample is 95J^ per cent, or .955,

and the probability that it might be is 4)^ per cent, or .045.

This means that if 1,000 single observations were drawn from the

population the chances are that about 955 of them would be

nearer the mean than the observation in question and only 45 as

far away or farther; or in still other words that it would be neces-

sary on an average to draw about 22 observations (1,000 -r 45)

at random from the population to get one that deviated as far

from the mean as does the observation at hand.

As stated, these probabilities do not logically apply to the single

observation being studied. The measured probabilities are not

those of drawing this particular observation from a given popula-

tion but the probabilities of drawing any observation with a

deviation greater or less than that of the observation in question.

The reasoning from this to the sort of conclusion actually sought

involves one more step, and again we insist that numerical data

and formulas should never be used by rote but only with compre-

hension of the logic behind each such step. If the chances of

drawing an observation from the given (or, more strictly, esti-

mated) population with deviation equal to or greater than that of

the particular observation at hand are very small, it is safe to

assume that this observation was not derived from that popula-

tion. If, on the other hand, the probability is large enough to

make the chance one to be reckoned with, it does not follow that

the particular observation did come from the population. This is

not, as often stated, a measure of the probability that it belongs

to the population. All that does follow in such a case as regards

this particular observation is that it might have come from the

population, that it cannot be safely concluded on these grounds

that this was not its origin.

Example 53 shows the use of this method of comparison.

The deviation d is obtained by subtracting the mean of the

sample with which comparison is made from the single observa-

tion being compared, and d/<T by dividing this result by the corre-

sponding standard deviation of the sample. P is used, as it will

be in all such comparisons, to represent the probability that the

single deviation could have been equaled or exceeded by one

drawn at random from the population represented by the sample.

In this case, P is read from the normal-curve area table. How-
ever derived, it is best expressed as a decimal fraction instead of as
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Example 53.

—

Comparison op Dimensions of Teeth in a Single

Specimen op the Fossil Pig Cfdeiuiatochoerm, from the Pliocene
OF China, with the Distribution of These Dimensions in

A Larger Series op Specimens of the Same Genus prom
A Different Locality

(Data from Pearson 1928)

Variate

15-16 speci-

mens from

locality 49

Single specimen from

locality 862

M a

X
(measure-

ment)

d (differ-

ence from

M for

locality

49)

d/a P

Length M\ 13.6 .7 14.3 .7 1.0 .32

Width Afi 9.6 .5 9.4 - .2 - .4 .69

Length 16.4 .8 16.7 .3 .4 .69

Width 11.9 .7 10.9 - 1.0 -1.4 .16

a percentage, giving the probability as a fraction of unity

(1.00 == 100 per cent probability). It is customary to record the

sign (+ or — ) with the values of d/cr, as this usefully shows the

direction of deviation; but sign is ignored in using the normal-

curve area table. In these simpler comparisons it is not necessary

or customary to publish the value ofP (given here only for illustra-

tion), for the value of d/cr adequately carries the desired informa-

tion to anyone familiar with such measures. In some more
complex comparisons the value of P is the usual and best record.

This operation gives a good estimate of probability, but it

remains to be decided what value is small enough to be ignored or

to show that the deviation is significant. Decision on this point

is necessarily somewhat arbitrary and must depend in some
measure on the particular problem in hand. In principle it is

necessary to consider what P means and what is its largest value

that will give a sufficiently reliable criterion of significance for the

problem in hand. In some cases, P < .05 may indicate a

significant difference; and in other cases it may be necessary for

P to be less than .01 to give sufficiently reliable conclusions. As a

general statement applicable to most zoological problems,
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P < .01 is almost always significant, P < .02 is usually sig-

ficant, P < .05 is sometimes significant, and P > .05 is not

significant. The deviations in Example 53 are not significant,

since the smallest P is .16.^

Table IV, which is merely a different form of such data as are

given in Table I, shows values of d/a corresponding to certain

values of P and hence serves to set up criteria of significance in

terms of d/a.

Table IV.

—

Relationship of P and d/a

p dja d/a
1

P

.06 1.96 2.0 .045

.04 2.05 2.5 .012

.03 2.17 3 0 .003

.02 2.33 3.5 .0004

.01 2.58

.005 2.81

.001 3.29

Roughly transferring the same general criteria of significance as

those given for P into values of d/o-, it is reasonable to con-

clude that a value d/a > 3 is almost always significant, d/a > 2.5

is usually significant, d/a > 2 is sometimes significant, and
d/a < 2 is not significant.

Although the use of probable errors is strongly deprecated, they

are in fact used in many past publications, and the intelligent

reading of these necessitates some criterion of significance in terms

of the probable error P.E.; therefore, a summary table (Table V)

of corresponding values of P and of deviations in terms of the

probable error is also given.

Table V.

—

Relationship of rf/P.E. and P
d/P.E. P
2.0 .18

2.5 .09

3.0 .04

3.5 .018

4.0 ,007

4.5 .002

^ Hence the single specimen is not shown by these variates to be from a

different population from the sample from locality 49. It is not, however,

proved by these figures necessarily to be from the same population.
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In terms of d/P.E. it may be said that values >4 are almost

always, >3.5 usually, >3 sometimes, and <3 not significant.

COMPARISON OF THE MEANS OF TWO SAMPLES

If two samples are drawn from a single population, the chances

are enormously great that they will not have exactly the same

mean. Their means will in practice be found always to differ, and

if the operation were repeated indefinitely with many pairs of

samples from the same population these differences would

generally tend themselves to fall into an approximately normal

distribution. This distribution would have 0 as a mean, since the

true value of the difference of means in the original population is 0

(there is only one mean, or all are the same, in the population)

;

and positive and negative differences would be distributed on each

side in frequencies proportional to areas of the normal curve.

Given two samples, the purpose of comparing their means is to

determine whether the two populations from which they are

drawn can have had equal means. This is the practical approach

to the problem of whether the two populations are really identical,

since in that case their means must be the same, or to the related

but distinct problem as to whether the two populations, although

distinct, are or are not distinguishable by mean values of this

particular variate. The method is to estimate a standard error of

the difference between the means of. two samples on the hypoth-

esis that the means of the corresponding populations were

equal. If the observed deviation in terms of this standard error,

a form of d/cr, is greater than could reasonably arise under this

assumption, for instance if it is greater than 3, it is established for

any practical purpose that the hypothesis is incorrect, or in other

words that the samples are from different populations and that

those populations do have different means.

Such a standard error of the difference between two means can

be estimated by using the calculated parameters of the two
samples as follows:

.2

M, +

This is numerically equivalent to the following two formulas

(again using values calculated from the two samples)

:
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•Td

<Td 4.

S(rf?) + 2(dl)

N1N2

The second of these three formulas, being fewer operations

removed from the raw data, generally gives the best result; but

the result from the others will not be substantially different, and
they are sometimes more readily useful.

The formulas given in almost all texts on statistics and hitherto

almost universally used are quite different.

<Td = V
or

These give results numerically equal to those of the preceding

formulas only when the two samples are of the same size. If the

samples are very unequal, these current formulas may lead to a

decision as to significance different from those given by our

formulas, although in the usual cases of large samples of more or

less similar size the results are not importantly unlike.

The disagreement does not mean that one method is right and
the other wrong, but that they involve different assumptions and

hypotheses. The one to be used is that really based on the

hypothesis which is to be tested. In most cases the use of

the current formulas is incorrect because it does not really follow

the user’s intentions. The formula

tests whether the samples could come from populations with the

same mean and variance, in other words, whether they really

could come from one population. This is almost always what the

zoologist intends to test, and the general use of the other formula

is therefore commonly wrong.

This other formula

+ O'M,
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assumes that the variances of the two populations are different (if

the sample variances are different), that they are in fact well

estimated separately by the two samples, and tests whether the

two samples could have come from two different populations with

such distinct variances but with equal means. The first formula

is the one to use, for instance, to test whether two samples might

represent a single species. The second is correctly used to see

whether two separate species differ significantly in the mean for

some variate.^

^ Since the first formula differs markedly from that in most current

statistical use it is advisable to explain its derivation, although this is some-
what lengthy and may be skipped by readers not especially interested in the

point.

If Z{dX)/N\ is used, according to the formula hitherto employed, for the

variance of one sample and 'L{dX)/Ni for that of the other, the best estimate

of the variance of a single population from which both samples are supposed

by hypothesis to come would be

2 -
iVi -f N,

which is a method of pooling the variance from the two samples.

It has been shown that the variance of a mean is that of its distribution

divided by iV(t.e., that (tm = (r/\/N) a standard error or deviation is the

square root of the corresponding variance). Taking the value of given

above as the variance of the hypothetical population, the variance of the

first sample mean Mi would therefore be a^/Ni and that of would be

The variance of the difference between the means would be the

sum of their separate variances, because they can vary either toward or away
from each other and the difference between them changes from an average

value by an amount that is the sum of their individual departures from their

own average values. The variance of this difference is therefore

or, substituting the value of given above,

r
N, + N,\ ^ 2:(d\) + 2:(t^)

[ Nt+N, A NiNt } N^N2

The standard error of the difference is the square root of this variance,

that is,

lx(dl) + 2{d|)

''“V mN,

Since A S(df)/2V’i; so = Z{d\)/N\y
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The correct use of these two diJBferent sets of formulas is shown
in Examples 54 and 55.

Example 54.—Comparisons of Means of Two Samples, Test of the
Hypothesis that Two Samples Were Drawn from One
Population or from Populations with Equal Means

and Variances
Mandible length in samples of Peromyscm manicvlatm hairdii: A, from

Alexander, Iowa; and B, from Grafton, N. D. (data from Dice 1932)

Sample N M aM

A 13 15.721 .175 .030625

B 43 15.492 .062 .003844

d = Afi - M2 - 15.721 - 15.492 = .229

+ It"* = Vs "" +

s

d/ad = .229/. 148 — 1.55. . . . The difference is not significant. The
two samples could have been drawn from a homogeneous population.

In comparing two lots of specimens, for instance, in deciding

whether they belong to one species or not, a sample is obtained

from each lot for each of a number of different variates and each

variate is compared. In these circumstances, judgment as to the

significance of deviations is inevitably and properly colored by the

relationships of all the variates instead of being decided separately

in each case. For instance, if the deviations for most of the

variates fall well short of significance but one is just over an

arbitrary limit of significance, it is well to reexamine the problem

and see whether this one may not in fact also be a chance devia-

tion and not truly significant. Or if, on the other hand, many
variates are near but just below the chosen limit of significance

and some beyond it, the conditions of the problem may warrant

and S(df) = and similarly S(d|) * N\a\i^. Substituting these in

the formula for ad gives

ad 4 NiNi

This derivation is based on a more succinct and rather difficult explana-

tion by Fisher of the derivation for an analogous formula for small samples,

given in our next chapter.



196 QUANTITATIVE ZOOLOGY

Example 55.

—

^Tbst of the Hypothesis that the Two Different
Populations Represented by Two Samples had Equal Means

Ratio of distal width to length in the ulna of: A, a fossil turkey Parapavo

californiciLs; B, an allied living species Meleagris gallopavo (data from

Howard and Frost; see Howard 1927)

Sample N M <^M

A 133 10.8 .033 .001089

B 29 10.1
1

.077 .005929

d ^ Ml - M 2 10.8 - 10.1 = .7

= V^Ir7+^, = \/.001089 + .005929 = .084

d/cTd == .7/.084 == 8.3. The result is strongly significant, and the two
populations surely did have different means.

Neither of these methods is reliable when the total frequency of the two
samples is less than about 25, and in such cases the special method of com-
parison given in the following chapter should be used.

lowering the criterion of significance—the many nearly sig-

nificant^^ deviations tend to reenforce each other and to be

significant together, although not clearly so singly.

Such problems of the combined significance of sets of deviations

are usually best decided on nonnumerical considerations, and in

any case the zoological meaning of the figures should be the

primary consideration. They are susceptible of further numeri-

cal treatment useful in some cases. One method suggested is to

calculate d/adfoT each variate and to square these values and add
them. Supposing the criterion of significance to be d/cra = 3

and the number of variates so treated to be n, the combination of

the deviations is taken to be significant if the sum is greater than

nX32==nX9. The relationship of this operation to prob-

ability is, however, complex and obscure; and its relationship to

the zoological considerations involved is uncertain and probably

spurious in many cases. For instance, if there were a series of

nearly significant deviations, say with d/ad = 2.9, 2.8, and 2.7, and
one above significance, say 3.2, the sum of their squares would be

33.78 and well below the combined criterion of significance

n X 9 = 36. In fact in most zoological problems it is logical to

suppose that the combination of such values makes them more
significant than they are singly, and not less so as this operation

would suggest. This and other doubtful points make the use of
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this and analogous methods in zoology open to serious doubt.

They may violate the principle, open to no exceptions, that

however correct mathematically a numerical operation may be, it

is invalid in zoology unless clearly and logically related to the

zoological facts being studied.

HETEROGENEITY OF SAMPLES

When a collection is brought in from the field, it is always

highly heterogeneous. Except as a broad faunal sample it is not a

sample of a single population for any study purposes but is made
up of a mixture of samples of many different populations. The
first step in study is to separate the collection as nearly as possible

into samples, each drawn from a single population. This is done

in the first instance by setting up population specifications that

can be met from the field data. It will, for instance, usually be

necessary to specify populations by localities or areas or by
geological horizons and to separate the collection, according to the

field data, into samples representative of these. Even for studies

not primarily taxonomic, it almost always becomes necessary

eventually to set up taxonomic specifications and to separate the

samples into subspecies, species, genera, etc., and this is, of course,

the principal aim of strictly taxonomic studies. Sometimes these

specifications can be met from the field data, which means that

the taxonomic groups are so readily recognizable that part of what
is essentially laboratory study could in fact be done in the field.

More often this is not true, and taxonomic separation of samples

must be done from the collection as a secondary operation and not

simply by filling specifications from field data.

The problem of splitting a heterogeneous sample into relatively

homogeneous parts on the basis of its own characteristics thus

arises from almost all field collecting. The same problem some-

times arises in other ways than taxonomic. It is, for instance,

frequently desirable to learn from a sample whether it is essentially

homogeneous or recognizably heterogeneous as to age groups or

as to sex. Observations on habits or other nonmorphological

characters may also prove to be heterogeneous. With laboratory

observations and controlled experiments, such heteroge'neity can

and should usually be avoided beforehand by meeting careful

specifications; but this cannot always be done in the laboratory

and often cannot in the field.
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Examplb 56.—Sputting a Heterogeneous Sample
Distributions of length of last lower premolar in small members of the extinct

mammalian group Ptilodontidae, a heterogeneous sample from

approximately the same horizon and locality, Lower Fort Union

of the Crazy Mountain Field, Mont, (original data)

X Interval, .1 mm. Interval, .3 mm.

2.3 0

2.4 0 1

2.6 1

2.6 2

2.7 0 3

2.8 1

2.9 2

3.0 0 2

3.

1

0

3.2 2

3.3 1 6

3.4 3

3.3 0

3.6 1 2

3.7 1

3.8 0

3.9 0 0

4.0 0

4.1
j

0

4.2 0 0

4.3 0

4.4 0

4.5 0 0

4.6 0

4.7 0

4.8 0 1

4.0 1

6.0 1

6.1 1 3

6.2 1

6.3 1

5.4 2 3

6.6 0

5.6 0

5.7 0 0

5.8 0
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The observations as made, interval .1 mm., are highly irregular. But by
grouping secondarily with interval .3 mm., a considerable degree of regularity

is attained, and it becomes clear and certain that at least two populations are

represented, one by the specimens 2.5 to 3.7 mm. in length and the other by
those 4.9 to 5.4 mm. in length. These are obviously separate distributions

with a long span of zero frequencies between them. These two distributions

and the two samples that can now be separated on their evidence may still

be heterogeneous, but at least each is more nearly homogeneous than was
the single sample before this division.

The easiest and the only conclusive method of splitting hetero-

geneous samples is by frequency distributions that are plainly

multiple and that do not overlap. If the frequencies are low and
are irregular, this cannot be observed or determined. If, how-
ever, the distribution can be so grouped as to give a fairly regular

sequence and if it then has two definite modes and a definite

break, with frequencies zero somewhere between these modes, it is

obvious that two distributions are really present and they can be

separated by inspection. A special example of this sort is given

in Chap. XVI (Blanchard) . Example 56 shows another such case.

It may happen, however, that there are two modes but that the

ranges overlap extensively. Even though the sample is really

heterogeneous, the modes may be so close together and the ranges

so nearly coextensive that it is impossible in a given distribution

to detect the heterogeneity or to be sure that an apparent bimodal-

ity reflects two populations and is not the chance result of random
sampling of one population. In taxonomic studies and others in

which the sample observations are derived from a series of speci-

mens with several variates pertinent to the problem under

consideration, the correct procedure in such cases is to make dis-

tributions for all such pertinent variates. If any of these distri-

butions show a clear and definite separation into two or more, it is

possible to separate the specimens into groups on this basis and

then to separate the other observations according to the specimen

groups, even though these observations do not themselves have

surely bimodal distributions.

In practice, taxonomically heterogeneous collections of related

animals that are sufficiently homogeneous as to locality and, for

fossils, horizon usually have at least one variate the distribution

of which falls decisively into two or more parts and reveals the

taxonomic heterogeneity. With the specimens of Example 56,

for instance, the first of the two groups there visible did not
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clearly split into two in any other distribution, and therefore the

suggestion of bimodality here seen (one apparent mode in group

2.6-2.8 and the other, more definite, in 3.2-3.4) was very

probably the result only of chance. The second group, however,

did plainly split into two distributions for several variates {e.g.,

number of cusps on Afi) and therefore is really heterogeneous even

though there is no clear hint of this in the distribution given in the

example.

This usual result in zoology whereby heterogeneous samples

are most reliably split in practice is made more probable by the

zoological law of ecological incompatibility which is, in its

simplest form, that closely related and closely similar animals do

not usually live together in one environment at one time. This

has nothing to do directly with mathematics, but like many
zoological principles it is essential in interpreting the results of

numerical analysis. It may be restated from the present point of

view: Really separable taxonomic groups of animals such that all

their variates have extensively overlapping distributions are very

rarely found together in nature. Such completely intergrading

groups, usually contiguous geographic races or successive geologic

subspecies, do occur, but not normally in full association with

each other. DLstribution of variates from samples of such

populations are shown in Example 57.

If such a heterogeneous sample, composed of two or more over-

lapping populations, cannot be split on the collecting data, it

usually cannot be split at all, and the zoological problem is usually

insoluble.^ There are ways in which the heterogeneity can be

detected, or at least suggested, but even in such cases there is

usually nothing practical that can be done about it. It may, for

instance, be possible to show that two overlapping populations are

represented and even, in the best possible circumstances, to

calculate what percentage of specimens in the region of overlap

belongs to each; but still the samples could not be separated, and
it could not be determined what actual observations were from

each population.

^ It is possible to think of any given heterogeneous distribution as caused

by the addition of two or more normal distributions and to calculate what
normal distributions would give this result. As a mathematical problem,

this is soluble, although with great labor. As a zoological procedure, the

solution is usually impractical or meaningless—it has no real place in zoology.
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Example 67

A. Distributions of the discontinuous variate serration number for

P4 of two geographically and geologically separate samples of

fossil mammals of the genus Ptilodiis (original data)

f

X
Sample from Torrejon, Sample from Fort Both

N. M. Union, Mont. together

12 5 0 5

13 1 8 9

14 0 19 19

15 0 2 2

B. Distributions of tail length in geographically separate samples of the

deer-mouse Peromyscus manicvlatus (data from Dice 1932)

f

X
Sample from Alexander,

Iowa

Sample from Grafton,

N. D.

Both

together

52-53 1 0 1

54-55 3 1 4

56-57 11 2 13

58-59 18 2 20

6(M)1 21 3
1

24

62-63 20 8 28

64-65 9 25 34

66-67 2 11 1 13

68-69 1 10 11

70-71 0 5 5

72-73 0 7 7

74-75 0 2 2

76-77 0 2 2

In each of the examples given, the combined distribution for the two

samples is not visibly bimodal. It would be impossible to learn from such a

sample alone that it is heterogeneous. But in both cases the samples from

populations specified as to locality are from decisively different populations,

as comparison of the means has shown. The samples cannot be split except

by specification of population from the field data, again emphasizing the fact

that populations may be quite different, taxonomically or otherwise, and yet

be quite inseparable on the basis of a mixed sample derived from both.
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There axe other hints of heterogeneity that never amount to

proof but may be suggestive. A distribution with an unduly

large V, much larger than for the same variate in related samples,

is likely to be heterogeneous, and so is one that is strongly

platykurtic. For instance, the large V for the tenth variate in

Example 41 (page 124) suggests that the sample was heterogeneous,

which was the fact; and so does the evident platykurtosis of the

combined distribution of Example 57B (page 201), which is also

heterogeneous in fact. Some homogeneous distributions do,

however, have high F’s, and some are platykurtic, so that this is

never conclusive evidence of heterogeneity. A significant deflec-

tion, a high F, and strong platykurtosis are no more than hints

that something may be wrong with the sample; and the best thing

to do in practice is to reexamine the sample and to try to get

better data, permitting assurance of essential homogeneity by

specification of population.



CHAPTER XI

SMALL SAMPLES AND SINGLE SPECIMENS

Statistical use of measures of central tendency, dispersion, and
probability assumes for the most part that the samples involved

are large and that the characters of a population may take any
values and can be judged only from the dispersion of the sample

and the calculated standard errors of its various parameters.

Measures and procedures that are only approximations or that

are slightly inconsistent as estimates of population characteristics

are sufficiently reliable and accurate in dealing with large samples,

but some of them become unreliable when the samples are small.

Many statisticians therefore do not use such methods on small

samples, and some go so far as to deny that it is possible to obtain

any useful information about a population from a small sample.

There is no general agreement as to how big a small sample is,

but it is often said that it is useless to try to do anything with

fewer than 30 observations.

This attitude is all very well if samples of almost any desired

size can be obtained. Certainly there is no excuse for using a

small sample if a large sample is available. Yet if it were true

that any sample with N < 30 is small and that small samples are

useless in the estimation of population characteristics, then the

sciences of zoology and paleontology would become practically

futile. A homogeneous sample of 30 specimens is a rarity in

paleontology, and a large part of zoology is also based on smaller

samples than this. Some zoologists likewise feel that such

samples do not warrant synthesis or calculation of group charac-

ters and agree with the statisticians that statistical methods are

not applicable to their materials. They apparently do not

perceive that this stultifies their whole work. Such a conclusion

really means that it is impossible from a usual zoological sample to

learn anything useful about a population; and if this be true,

zoologists are not studying nature, species, or general princi-

ples but are only amassing meaningless and incoherent single

observations.

203
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The zoologists in question naturally do not draw this logical

conclusion
;
their agreement with the more extreme statisticians is

merely an excuse for their loose and sometimes absurdly incorrect

use of numerical data. In fact if such data are to lead to any

broad reliable useful conclusions, they can do so only if based on

methods essentially statistical in background if not in exact

procedure. If such methods are available and applicable, they

must be used if really good results are sought. If they are not,

the fact must be faced that zoology is a very minor science

indeed and that most of its results are meaningless.

Fortunately statisticians more conversant with the problems of

small samples and zoologists more rational and realistic in their

attitude toward their own problems have shown beyond question

that small samples and even single observations do, or can, give

useful information about populations. In the first place many
procedures are equally valid for small samples and for large. As

descriptions of the sample itself, measures of averages or of disper-

sion are accurate whatever the size of the sample, whether it

include one observation or a million. Estimates of population

parameters and of the probable significance of deviations are

closer and in this sense more reliable for large samples than for

small. A sample of 10 observations does not give so close an

estimate as one of 30, and for that matter one of 30 does not give

so close an estimate as one of 100. Nevertheless for many
measures the estimate from a sample of 10 is valid as far as it goes

and leads to correct conclusions as long as its probable closeness to

the population parameter is understood. The fact that a closer

estimate, if it had been possible, might have been more useful does

not mean that a broader estimate is useless. It is necessary to

take the best available and to do as much with this as possible,

not to adopt the attitude that anything less than perfection is

hopelessly bad.

In the second place, even in instances where estimates, of

probability based on the theory of large samples are unduly

unreliable in their application to small samples, there are usually

special methods, modifications, or corrections that do serve

reliably for small samples. Some of these, those dealing with the

most important of all numerical procedures in zoology, are given

in the present chapter.
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Finally, the statistical assumption that estimates may take any
values whatever and that limitations are placed on them only by
the sample itself is true mathematically but not zoologically.

This makes the rigidity of statistical theory merely academic for

the practical zoologist, who is not interested in mathematics for

its own sake, and enables him to reach conclusions that cannot be

absolutely proved in theory but that are correct in practice in such

a large proportion of cases that he is quite justified in accepting

them. The zoologist can, for instance, often assume a priori with

high zoological (even though with very low mathematical)

probability that the relative dispersion of a population will fall

within certain limits, say that V will be greater than 3 and less

than 10 in a given case. This has two useful corollaries: It often

makes methods sufficiently reliable for small samples although

they would not be so without this assumption; and it provides

special methods for rational and useful even though broad estima-

tion from single specimens, from which practically nothing can be

learned regarding populations on the basis of the purely mathe-

matical theory of large samples. This does not mean that mathe-

matical procedures can be dispensed with: on the contrary, it

makes them more useful and more necessary.

DEVIATIONS FROM THE MEAN IN SMALL SAMPLES

It has been noted that the standard deviation calculated from

the formula

may lead to somewhat inaccurate estimates of probability for

small samples and that in such cases the value

/1MI^ ~ \ (N - 1)

in which o-' is used for this special small sample standard deviation

to distinguish it from <r as hitherto used, often gives a better

result. If the purpose of calculating the standard deviation is to

estimate the significance of deviations, as it usually is, it will be

found in practice that <r' hardly ever leads to a value of d/or' so

different from d/a as to affect the conclusion as long as iV is 10 or
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greater and that it seldom does so even for values of N less than 10

but greater than 5. In general, although contrary to strict

mathematical theory, it is a safe rule in almost all zoological prac-

tice that it is not worth while to use (t' for samples of 15 or more
observations and that under 15 it is usually worth while only when

Table VI .—Table of t

N N , + N 2

P

.10 .05 .02 .01

2 3 6.3 12.7 31.8 63.7

3 4 2.9 4.3 7.0 9.9

4 5 2.4 3.2 4.5 5.8

5 G 2.1 2.8 3.7 4.6

6 7 2.0 2.6 3.4 4.0

7 8 1.9 2.4 3.1 3.7

8 9 1.9 2.4 3.0 3.5

9 10 1.0 2.3 2.9 3.4

10 11 1.8 2.3 2.8 3.3

11 12 1.8 2.2 2.8 3.2

12 13 1.8 2.2 2.7 3.1

13 14 1.8 2.2 2.7
1

3.1

14 15 1.8 2.2 2.7 3.0

15 16 1.8
I

2,1 2.6 3.0

16 17 1.8 2 .] 2.6 2.9

17 18 1.7 2.1 2.6 2.9

18 19 1.7 2.1 2.6 2.9

19 20 1.7 2.1 2.6 2.9

24 25 1.7 2.

1

2.5 2.8

00 00 1.0 2.0 2.5 2.8

the result is very near the criterion of significance so that great

exactness has some real bearing on the conclusions reached.

It was also noted, however, that the distribution of deviations

or of differences between single specimens and means or between

means of two samples can be referred to an approximately normal

curve only for relatively large samples and that this assumption

tends to be unreliable for small samples. The estimate of prob-
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abilities by the areas in the normal curve therefore tends to break

down with small samples and needs replacement by tables for

other probability distributions, var3dng with the size of the

sample. Such tables have been worked out,^ and a summary
extract from them, suflSicient for any zoological purpose, is given

in our Table VI.

The form of the table is different from that of the d/a tables,

which serve the same purpose for larger samples; for here N must
be taken into account, and the relationships are so complex that it

is advisable to record and publish the value of P, instead of assum-
ing that a figure analogous to d/a will adequately convey the

information. In order to distinguish between the measure of

relative deviation used'in this table and that of a d/a table, it is

called t in the present case. In essentials, t is simply a value

analogous to any d/a adjusted to allow for the size of the sample.

In the table, N is the size of the sample,^ and P is the probability

that a value would appear by chance in random sampling,

expressed as a decimal fraction (1.00 is 100 per cent probability).

The entries in the body of the table are values of t corresponding

to the values of N to the left and those of P above them. Thus,

for instance, if a sample of 13 specimens gives a value of t between

2.2 and 3.1, P is between .05 and .01; and if t is greater than 3.1,

P is less than .01. The Ni + column is for use in comparing

two samples.

Supposing d/a and t to be nearly equal, as they almost always

are for V > 15 and often are even for smaller values of V, it will

be seen that the general criteria of significance given above for

d/a apply reasonably well to t except for very small samples.

Thus it was said that:

1. d/a > 3 is always significant. For f > 3, in a sample of 15 obser-

vations P is less than .01; in one of 10 observations P is less than about .015,

and for one of 5 observations P is less than about .04.

^ By **Student,” a pseudonymous English statistician. Their mathe-

matical derivation is complex and need not be followed, so long as their

logical basis and practical use are understood.

* If reference is made to the more extensive table of t in Fisher and some

other texts, note should be made that Fisher's n (VS etc., of some other

authors) is not the total frequency of the sample but one or two less.

Fisher's » is (V — 1) in our notation for a single sample and {N\ -f Va — 2)

for two samples.
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Example 58.—Comparison op a Single Specimen with the Mean op a

Small Sample, Tail Length of the Eastern Vesper Sparrow,
Pooecet€9 graminevs gramineuSf Adults in September at Eastham,

Mass.
(Data for distribution from Broun 1933)

X
Sample

/ (Ia fdA fdl.

60 1 -3 -3 9

61 0 -2 0 0

62 1 i -1 -1 1

• -4
63 1 0 3 0

64 1 1 1 1

65 1 2 2 4

A = 5 ^(JdA) = -1 S(/4) =

i
-

1

Cl =. ~l/5 = -.2 cl = .04

M * 62.8

c, = - ,04 - = 1.7

S(/4)

1 )

— Cl = 1 X

Single specimen not known to belong to sample has X

= 1.9

= 68.

d - X - ilf = 5.2

t = dy - 5.2/l,9 = 2.7,

From table of P is greater than .05.

The deviation is not shown to be significant.

d/<T - 5.2/1.7 = 3.1.

The deviation would appear to be significant if this procedure were used.

The calculation is given in detail to show the short method of getting o-',

which is the same as for a except for one substitution of {N — 1) for N.

Ordinarily a would not be used in such a case, but it is also given in the

example in order to show that it can give misleading results for very small

samples with deviations near the boundary of significance. As was empha-
sized for d/cf this does not prove that the difference is not significant but

only that the data do not show it to be so. A bird with tail length 68 cannot

be concluded to be from a different population from the sample here given.

With a larger sample it might or might not prove to be from a different

population.
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2. d/<r > 2.5 is usually significant. For i > 2.5, in a sample of 15 obser-

servations P is less than about .025; in one of 10 it is less than about .04,

and in one of 5 it is less than about .08.

3. d/<r > 2 is sometimes significant. For i > 2, in a sample of 15 obser-

vations P is less than about .04; in one of 10 it is less than about .09, and in

one of 5 it is less than about .1.

It is thus seen that these criteria hold well enough for any
practical purpose if N is 15 or greater, that they hold reasonably

well in most instances for N between 10 and 15, but that they are

generally not good enough for use if N is less than 10. For small

values of iV, t also tends to be smaller than a corresponding d/o-, so

that this adds to the unreliability of the d/a criterion in samples

smaller than 10. On the other hand in dealing with most
morphological variates there is a strong zoological probability that

the dispersion will be limited, often that V will be less than 10,

and this nonmathematical consideration adds to the zoological

reliability of d/<r, which in such circumstances is greater than

purely statistical procedures allow. Such considerations warrant

our use of slightly broader or less exact criteria of significance

under these special circumstances than are allowed by most

statisticians.

For estimating probability for the deviation of one observation

from the mean of a small sample, t is calculated exactly like d/a

except that a' is used

:

._d_ X^M __
<r' VW^W-'D

The use of this method is shown in Example 58.

SIGNIFICANCE OF MEANS OF SINGLE SAMPLES

It has been shown that a^y the standard error of the mean,

serves to estimate the probability that the population mean is

approximated by the mean of a sample. This measure can thus

be used to estimate the probability that the mean of the sample

differs significantly from any value set up by hypothesis as

expected. Supposing to be a hypothetical mean, the calcula-

tion is

d ^ M - Ma
cr (Xm
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entering a table of d/<T with the value thus obtained. Many
experiments are so set up as to give an expectation that themean
result will be 0 under defined conditions. Ma then being 0, the

appropriate analogue of d/a for judging whether a value of M
greater or less than 0 is significant or whether it could have arisen

by chance is

d^M
<T <Tm

These are formulas for large samples. For small samples

another form of <7m, which may be represented by is calculated.

r ^{d^)

\N’(N-^ VN SN’JN-I)
In such a case the value of t, to be used in place of d/o-, is

M - Ma
t =

or, if Ma is 0,

entering the usual table of t with the value thus obtained.

^ .r'

COMPARISON OF THE MEANS OF TWO SMALL SAMPLES

The use of d/o*, in the form d/cr^, for comparison of the means of

two large samples was explained in the last chapter. The same
thing can be done with small samples, making adjustments for the

use of (iV — 1) in place of Ny thus obtaining a ^which is a form of

d/aa adapted to small samples.

t = (Ml - MiWNiNi/{N, + Ni)

lljdl) + S(di)

V JVi + JVs - 2

in which Mi, Ni, and di are respectively the mean, total fre-

quency, and deviations from the mean for one sample andM2, Ni,

and d2 are the same for the other sample. ^

1 This formula is equivalent to d/tra ==

except that (Ni — 1) and (ATj — 1) are used in place of Ni and Nt for esti-

(Mi - M2)

4N, ^ Ni
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If the data include the standard deviations of the two distribu-

tions or the standard errors of their means, one of the following

numerically equivalent formulas may be used:

N1N2
'n, + AT*

>|N^ + ^'2-2

1
N1N2

N^ + N,

V Ni + Ni- 2

These formulas assume that a, not is used.^

In consulting the table of the sample size is read in the

+ ^^2 column. The calculation and use of this method are

shown in Example 59.

It should be noted that t cannot be used to test the validity of

the results of dissecting a distribution or splitting a heterogeneous

sample. What t measures in such uses is the probability that a

difference observed between two means could have been equaled

or exceeded by chance sampling of one population. If a sample

is divided into two on any rational basis, t will always show the

means of the resulting two samples to be significantly different, in

other words, not to have arisen by chance—but this is obvious, for

mating the variance (but not for other purposes) and that the formula is

given in terms of variance instead of standard errors of the means. It has

been developed into a form convenient for calculation, although this some-

what obscures its derivation. Since, with the exception noted, it is derived

in the same way as the formula for large samples, discussed in the preceding

chapter, the derivation is not given here.

^ If <r' were used, the denominators would be

l)<rl + {Ni - 1)<tI Ni(Ni —

Ni^N,-2
iNiiNi - IW:

\ n[ -hiV2 -2
where

ff sx ' sa ^ I sW»)

- l)
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the samples were separated deliberately and not by chance. This

has no bearing on the probability that they are from different

populations.

Example 59.

—

Comparison op the Means for the Ratio Length
M r.Length Ma in Two Small Samples of the Fossil Mammalian

Genus Notostylops prom the Two Localities in Patagonia
(Original data)

Sample M S(d*)

Cafiaddn Vaca 6 .82 .0072

Colhu6-Huapi 3 .89 .0051

t

(Ml •-M,)^1
NiN,

(Wf) + 2(dD

Ni-{- N2 - 2

.07 .099 ^

^:6or76
“ .042

^ 2.4

(.82 - .89).^
(6X3
6+3

yj

/.0072 + .00'51

6 +3 -- 2

ATi + = 9

From Table VI, P is seen to be .05. Significance is possible but dubious.^

SIGNIFICANCE OF SINGLE OBSERVATIONS

Perhaps the commonest of all procedures in zoology is the

comparison of the linear dimensions of two specimens. In

taxonomic work, for instance, especially in paleontology where

large samples are exceptional, a species is often represented chiefly

or solely by its type, and identification of other specimens or

description of other species involves comparison with this one

specimen. The methods hitherto discussed are obviously inap-

plicable; and much as they may be desired the comparison must
be made without their aid. The procedure, however, is funda-

mentally the same as if groups of specimens and not single

examples were available and is much clarified and placed on a

much sounder basis if the relationship to such groups is recognized.

A single dimension of one specimen is part of a distribution

even though it is the only known part. It is in every case

^ It happens in this case that several other variates in the same samples

lie near the border of significance, and some are decidedly significant. It is

then a reasonably safe zoological conclusion that the difference shown in the

example is also significant.
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assumed, consciously or unconsciously, that in comparing these

isolated observations they are really considered as members of

groups. This involves certain assumptions:

1. That the observation in hand is in fact representative of a group of more
or less similar observations possible in nature; in other words that it belongs

to a population.

2. That it is more or less characteristic of that group.

3. That the group has a certain variability, the extent of which is at least

vaguely in mind.

The second of these assumptions involves the belief that the

observed value of the variate is within a limited range about tht

unknown mean of the population. Now it has been seen thae

the probability that the specimen is within a given distance of the

mean can be closely estimated if the value of a (the standard

deviation) is known. In a normal curve, a little over 95 per cent

of the area is included between {M — 2(t) and (M + 2cr)
;
or in

other words, the chances are somewhat more than 95 in 100 that

any one random observation will be within a distance of 2<t of the

mean. Study of actual distributions of variates of reasonably

homogeneous samples will readily show that the observed range

does in fact nearly coincide with these limits in most cases.

For present purposes, then, the theoretical or inferred range of a

variate on which only one or a few observations are available may
be taken to be from {M — 2(r) to (M + 2<r). This implies that

the specimen at hand is within those limits or is not over 2o- from

the mean, an assumption sufficiently probable to be acceptable as

a tentative working basis, in default of better evidence.^

The value of a is unknown; but if, as is necessary for the draw-

ing of most sorts of inferences from single observations, a value of

F, the coefficient of variation, is assumed, then by direct calcula-

tion from the equation V = 100<r/ikf, it is possible to calculate a

hypothetical value of <r corresponding with any position that the

unique specimen may be assumed to have in the distribution, that

1 Hitherto, (M ± 3cr) has been noted as the best figure to use for theo-

retical range, and these limits are often nearly reached by very large samples.

Here the problem is different. It is estimating where in the range a single

observation would be likely to fall. Usually, (M ± 2<r) is adequate for this

purpose. Moreover, as will be shown, the particular way in which these

limits are used makes the conclusions usually still more reliable than appears

from the use of 2<r.
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is, with any value of its deviation from M and the consequent

assumed position of M. By assuming a value for V and suppos-

ing the specimen to be first at {M — 2<t) and second at {M + 2<r),

its extreme probable positions, the extreme probable positions of

M and of a for the otherwise unknown group of which the speci-

men is a member may be calculated.

In such biological inferences, the assumption of a value for V
is readily guided by analogy with known calculated values from

larger samples of other groups. It is, for instance, reasonable to

assume that if V for a linear dimension of a tooth is known on

fairly good data in one or several species and appears to be fairly

constant, it will have about the same value in another sample of

these species and will not differ greatly in another closely related

species. In general, in dealing with linear dimensions of func-

tional unreduced anatomical elements, V may be assumed prob-

ably not to exceed 10, and it is almost never so great as 15.

Usually it is from 3 to 7, provided that the sample is reasonably

homogeneous.

The general concept here involved may be most readily repre-

sented by graphic means. In graphs, the range, real or, as in this

case, theoretical or inferred, is represented by a horizontal dis-

tance. From the meaning and derivation of F, it is clear that

the greater the F, the greater the linear distance representing the

range, provided that M remains the same. If, however, F is

supposed to remain the same, the basis of the present procedure,

but M can take different values, then the greater the mean, the

greater the range. It is not necessary to the solution of the

problem but would certainly greatly facilitate and clarify things

if the representation of the range could be made the same for any
given value of F or retain the same proportion to the value

of F, whatever the value of M—in other words, if the ratio

(Af + ar) - (M
F were constant. This will be true if

instead of the direct values of the various figures involved their

logarithms are used or if (what amounts to the same thing) they

are plotted on logarithmic graph paper. ^

An exarqple, plotted by logarithms, is given in Fig. 19. In this

figure, A represents known constants for the length of Ma of the

^ It seems unnecessary to prove this fact here. If in doubt, refer to any
elementary discussion of the properties of logarithms.
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fossil mammalian species Plesiadapis gidleyi. The circle is the

mean, the short vertical lines plus and minus lo-, and the longer

vertical lines plus and minus 2(r. The horizontal line is the

actually observed range. The dots in the series B represent the

actual length of a single Afa of the series P. tricuspidens, a close

I

I ° I

i

B4
I

I ° I

I

^3
I

I ° H
B2 U °

I
I

Fia. 19.—Graphic estimation of the probable variation of a species represented

by a single specimen. The variate is length of last lower molar in specimens
of the extinct mammalian genus Pleaiadapis. The horizontal scale is logarithmic,

and the vertical scale is not used. In A are shown the mean (circle), {M ± la)

(short verticals) ,
and (M ± 2a) (long verticals) for an adequate sample of Plesi-

adapia gidleyi. In B, all the black dots represent a single specimen of Pleaiadapia

tricuapidena. The short and long verticals are laid out as in A on the hypothesis
that V (not a) is the same for this species as for P. gidleyi. In Bi, the single

specimen is assumed to be at the mean; in B2, at (M — a)\ B3, at {M 4- o’)

;

in B4, at {M — 2<r); in B5, at {M 4- 2<r). In Be, the distance between verticals

is the greatest theoretical range of this variate in P. tricuapidena^ and the circles

represent extreme theoretical positions of the true mean. This range is so far

removed from that of A that it is certain that the two species are different in

this variate. C and D represent single specimens that have been supposed to

belong to P. tricuapidena. Their distance from the range shown in B« shows
that they do not belong there.

ally of P. gidleyi. The assumption is made that V for this species

is the same as for the latter. The corresponding a values may
then be shown by making the horizontal distances (plotted by

logarithms) the same as in A. As in the latter, circles represent

means, short vertical lines la, and longer vertical lines 2<r.

In Bi the specimen is assumed to be at the mean for its species,

in

B

2 at — la, in Bs at +la, inB 4 at —2a, and in Be at +2a. The
theoretical extreme probable range of the species is then the
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extreme distance between — 2(r of Bg and +2<r of B4 and is shown
above as a broken horizontal line. In practice the result may
be reached by simply marking off on each side of the actual posi-

tion of the specimen a distance equal to that between the longer

vertical lines of A. Any specimen that does not fall within this

range probably differs significantly from P. tricuspidens in the

length of ilfs. Any specimen within this range cannot be

assumed with any probability to differ significantly, on these data,

although of course it might prove to do so were fuller data avail-

able. The circles connected by a dotted line represent the
' extreme probable positions of the mean of the species to which B
belongs.

The points C and D represent two isolated specimens that one

student (Lemoine) believed to differ specifically from P. tricuspi-

dens but that another student (Teilhard) referred to that species.

Both are far outside the theoretical extreme range for the species,

and the conclusion is that they almost certainly have significantly

shorter last lower molars than in P. tricuspidens and therefore

probably are not of that species.

The various values involved may also and somewhat more use-

fully be computed. This computation is much simplified by
using the logarithms of the values, known and hypothetical, of the

variate. The theoretical range corresponding to a given value of

V will then have the same value regardless of the value of M, in

other words, of the absolute size of the species. This theoretical

range, on the distribution of logarithms, is then, by definition

D = log (3f + 2<r) ~ log {M - 2c)

Since V = lOOtr/Af,

VM
""

100

Substituting this expression for <7 in the formula for the theoreti-

cal range D,

And by a series of eliminations this becomes

D = log (60 + F) - log (50 - F)
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Table VII gives values of D corresponding to integral values of

V up to 20, and also antilogarithms of Z), which represent the

numerical value of (M + 2(t)/(M — 2(r), the quotient of the

upper theoretical limit divided by the lower, the use of which is

explained below.

Table VII,

—

Table of the Quotient op Upper Limit op Range Divided
BY Lower Limit (Antiloq D) and op Its Logarithm (D) Corre-

sponding TO A Fixed Value op the Coefficient of Variation
(F)

V D antilog D

1 .017 1.04

2 .035 1.08

3 .052 1.13

4 .070 1.17

5 .087 1.22

6 .105 1.27

7 .122 1.33

8 .140 1.38

9 .158 1.44

10 .176 1.50

11 .194 1.56

12 .213 1.63

13 .231 1.70

14 .250 1.78

15 .269 1.86

16 .288 1.94

17 .308 2.03

18 .327 2.13

19 .347 2 23

20 .368 2.33

The general graphic solution of the problem may be made from

these figures without the preliminary plotting of a known variate

(A in the example above) and for any known value of F. On
ordinary graph paper, place a dot at the point corresponding to

the logarithm of the absolute value of the variate in question.

Assume any desired value for F, and mark off on each side of the

dot the distance designated by the corresponding D. The total

distance thus indicated (twice D, with the observed value of the

variate in the middle) is the extreme probable range of the hypo-

thetical species, and a second specimen must fall outside this to be

probably significantly different as regards this variate.
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Another form of comparison between two specimens possibly of

one species is to make the probable assumption that the smaller is

at or above (M — 2<r), the larger at or below (Af + 2cr), and to cal-

culate the least value of F for a species which would include both.

Subtract the logarithm of the smaller measurement from that of

the larger, set this as equal to [log (50 + 7) — log (50 — F)], and
solve for F, or with this as D find the closest corresponding value

of F in the table given above.

For instance, comparing B and D of the above example,

Length Mz of B — 7.2 mm log .85733

Length Ms of D — 4.8 mm log .68124

Difference in logs, D = . 17609

Minimum value of F = 10, from Table VII

Another exactly equivalent working of this type of problem is

to divide the larger by the smaller number, when D will be the

logarithm of the quotient (the subtraction of the logarithms, as

above, being equivalent to a division and giving the logarithm of

the quotient). The corresponding F may be found simply and
with sufficient accuracy by considering this quotient as the

antilog of D and finding the nearest F in the table above.

This relationship has an important application in a very com-
mon type of comparison different in form but basically the same as

the examples just given. It is commonly said that a given dimen-

sion in one specimen is a certain percentage of, or percentage

larger or smaller than, the same dimension in another specimen.

This percentage is of course a quotient. If one value of a variate

is 25 per cent greater than or 125 per cent of another, the quotient

of the larger divided by the smaller is 1.25; and if the logarithm of

this number is taken as D, the minimum probable F of a species

including both can be read directly from the table. In this case,

F is between 5 and 6. As before, the percentage, as a quotient,

may be considered as antilog D and used to enter the table.

It is a commonly used criterion in some taxonomic work that a

difference of 15 per cent in a linear dimension is in itself of probable

specific value. This is traditional rule of thumb with no scientific

basis. Clearly it implies some criterion as to variability, the

most useful and exact measure of which (in dealing with analogous

linear dimensions) is F. Now a difference of 16 per cent implies a
quotient of 1*15, and the corresponding minimum probable value
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of V is between 3 and 4. This is a small value even for a pure
sample of a single local race, and the conclusion is that the 15 per

cent rule^' will inevitably separate some specimens of a single

species.

The nearest integral values of V corresponding to a given

percentage of difference are given in Table VIII. As before, V
refers to the distribution of this variate in a hypothetical popula-

tion to which both observations belong, on the assumption that

one observation is at (M — 2(r), and the other at {M + 2cr).

Table VIII.—Percentage Difference between Two Observations and
Corresponding Minimum Value of F in a Population Including

Both
Percentage difference V

5 1

10 2

15 3

20 5

25 6

30 7

40 8

50 10

60 12

70 13

80 14

90 16

100 17

In general, relying on no other criteria or characters, it is

improper to' assume that a difference in a linear dimension may
characterize different taxonomic groups unless it implies a

minimum V of at least 10, since V^s as high as 10 or even somewhat

higher are known to occur in such characters of pure races.

Therefore if a percentage rule of thumb is to be used at all in

comparing isolated specimens, a difference of 50 per cent is

necessary to indicate sufficient probability of a real taxonomic

distinction. This is, of course, true only in dealing with a single

observation on a single variate and when there is no valid reason

to assume a value for V lower than 10.

It should be emphasized that the purpose and result of this

procedure are to prove the probability of a negative: to show that

it is highly probable that two observations do not belong to one

population. It cannot prove that they do belong to one popula-

tion. It is sound procedure for the burden of proof to be on the
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negative; and this is especially true in taxonomy, in which many
inferences of this sort are involved. It must be assumed that any
two comparable specimens are of one species unless it can be

shown to be highly probable that they are not, and in general it is

usually proper to assume that any two observations are from one

population until the contrary is proved.

The degree of accuracy and probability achieved and the exact

meaning of what is demonstrated in these procedures are made
clear by the following considerations. Consider the distribution

of the variate in question for the theoretically infinite population

of which a single observation is available as a single normal

curve of definite constants, and consider how much of this normal

curve is actually included within the limits given by the above

procedure (within the range 2D when plotted by logarithms). If

the unique observation happened to be at the actual mean, the

limits here used would include 99.99 per cent of the real curve, or

for any practical purpose 100 per cent. Any observation on the

population would certainly be included in the theoretical limits.

Now the farther the observation really is from the real mean, the

lower this figure will be. In approximately 955 cases out of 1,000,

however, which is a sufficiently high probability to serve as a

practical criterion, it will fall within the limits of {M — 2(t) and

{M + 2(x). Now even if the specimen was actually at one of

these limits on the real curve, the theoretical limits will include

97.73 per cent of the original curve, so that 955 times out of 1,000

the procedure here suggested will include within the theoretical

limits at least 97.73 per cent (and generally much more, approach-

ing 100 per cent) of all observations of the population. This high

degree of probability is the basis for saying that if a second

observation is not within these limits it is probably not from the

same population as the first and may reasonably be separated.

In order to reach this degree of probability for the negative con-

clusion, which is sought, the limits have necessarily been so placed

that in every case they extend somewhat beyond the real (but

unknown and indeterminable) limits of the population. For this

reason, they may include observations that are in fact sig-

nificantly different from those at hand but that cannot be shown
to be so on these data. Therefore the positive proposition that all

observations within the theoretical limits do belong to the same
population is not true.
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Finally the general validity of the procedure as establishing a

reasonable degree of probability is shown by the fact that in less

than 3 cases in 1,000 (0.27 per cent) will the unique specimen at

hand deviate as much as 3(t from the unknown real mean in the

distribution of the variate considered and that even in this

extremely improbable case the theoretical limits here used would

include 84 per cent of the real distribution.



CHAPTER XII

CORRELATION

The idea that two variates may be related so that one tends to

vary in such a way as to maintain a fairly constant relationship to

the values of the other is fundamental and widespread not only in

zoology and in kindred sciences but also in the whole field of

human thought. Tall parents tend to have tall children and

short parents short children. Children tend to weigh more as

they become older. Animals with larger heads tend also to have

longer tails. The weather tends to be stormier when the sun has

more spots. Increases in wages are generally accompanied by
increases in living costs. Colored people tend to be darker the

larger their percentage of African negro blood. A man is gener-

ally hungrier the longer he has gone without eating. These and
thousands of other statements and ideas about every aspect of

human life and of the universe are all examples of the correlation

of two variates. All involve the idea that a change in one

phenomenon or characteristic is usually accompanied by a change

in some other.

It is not necessary to suppose that the relationship is constant

and predictable in individual cases; indeed it is seldom so in

practice. Tall parents do sometimes have short children, chil-

dren do sometimes lose weight, numerous animals with large heads

do have short tails, the weather is sometimes calm when the sun

has many spots, etc., but on the whole these relationships hold

good and it may confidently be stated from experience that they

will always be true of averages if enough observations are made.

It is obvious, however, that the correlation may differ in intensity

or in the accuracy of its predictions.

Complete correlation or 100 per cent accuracy is almost con-

fined to mechanical things and practically never occurs in

biological data. That an automobile travels farther the more
times its wheels turn around on the road is a positive correlation

222
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that is 100 per cent true; but that larger individuals have larger

offspring may be true only two-thirds of the time, and that larger

animals dig deeper burrows may be true only one-third of the

time. The intensity of a supposed correlation may also prove

to be zero, or in other words the supposed relationship may not

exist. For instance, the old idea that some plants grow better

if planted in the dark of the moon is shown by recent experiments

to be a correlation with value about zero. A negative correlation

is one in which an increase in the value of one variate is usually

accompanied by a decrease in the value of another, and those also

are common in nature. For instance, molar-tooth crown height

and age are negatively correlated in most mammals: the older

a horse becomes, the less is the distance from grinding surface to

roots on his cheek teeth.

Most data of this sort can be reduced to numerical terms, and
once this is done it is possible to measure the exact degree of

correlation shown by a given series of observations and from this

as a sample to estimate the probable degree in a population.

The importance of these procedures for zoology is so great and so

obvious that it hardly needs emphasis, and mention of a few

types of problems suffices to show how essential numerical corre-

lation is in this field. Correlations between characters of

parents and offspring show the effect and consistency of heredi-

tary factors.^ Correlation between environmental conditions

(such as temperature) and physiological variates (such as respi-

ration rate) or morphological characters (such as total length)

show whether the latter are influenced by the former. Corre-

lation of age with any physiological, psychological, or morpho-

logical characters reveals the phenomena of growth. Correlation

of any two variates of an animal shows whether they are inde-

pendent or linked together in some way, again throwing light on

the phenomena of heredity and also on the functions of growth,

on physiological mechanisms, and on many other problems. It is

also interesting in this connection that different taxonomic groups

are often characterized by different intensities of correlations of

this type.

^ Applied to human beings, this was the first field in which numerical

correlation was used, and it sufficed to demonstrate and to measure heredity

without experimentation and before anything was known of the mechanisms

or laws of heredity.



224 QUANTITATIVE ZOOLOGY

THE CORRELATION COEFFICIENT

Several different means of measuring correlation numerically

have been devised. They usually take as a basis a conception of

perfect correlation as one in which an increase in the value of one

variate is always accompanied by an exactly proportionate change

(increase in positive correlation and decrease in negative) in the

other. Thus in these series of paired observations

X Y X Y

1 1 1 8

2 2 2 6

4 4 4 2

both are perfect correlations, the first positive, because every

time that X increases the corresponding Y increases by an equal

amount, and the second negative, because every time X increases

Y decreases by an amount twice as great as the increase in X,

Perfect correlation involves only the same relative change, not

the same absolute change. The following series all have perfect

positive correlation:

X Y X Y

1 — 1.0 1 50

2 1.5 2 100

4
!

.08
1 Hlii 2.5 4 200

The measure of correlation is then a measure of how nearly the

/actual observations come to this relationship. The best measure

would be analogous to the measure of dispersion for one variate by

its variance or standard deviation but would involve a relation-

ship between the variances of two variates as arranged in paired

observations, their variance together or covariance. Such a

measure, devised by Pearson, which has been found to have very

useful properties, is the ratio of the mean product of correspond-

ing deviations of the two variates^ to the geometric mean of their

^ It has been noted that a mean deviation is called a moment. This mean
product of deviations is a product moment, and the correlation here die*

cussed is generally called the product moment correlation.
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separate variances. This measure is always symbolized by r,

and the term ‘‘coefficient of correlation/^ if not qualified, gener-

ally refers to r, the formula for which is

r = ndxdy)
V^S(rfi)S(d|)

in which dx Is any deviation of a value of X from the arithmetic

mean of X and dr is the corresponding deviation of Y from the

arithmetic mean of The formula is exactly equivalent to

^ _ ^(dxdy)

NcxOy

in which N is the number of pairs of observations and ax and ay
are the standard deviations of X and F respectively.^

This formula gives the value +1 for perfect positive and — 1

for perfect negative correlation, 0 for absence of any correlation,

and other values between these limits.® Two digits are usually

significant, and it is customary to record two decimal places for r,

although more may occasionally be useful.

' This is the same as the ratio of the mean product of the corresponding

deviations to the geometric mean of the two variances and is derived as

follows

:

The ratio stated is exactly symbolized as

X(dxdy)/N: y/x(Al)X(dl)/NxNY,

N being the number of pairs and Nx and Ny the number of observations of

X and Y respectively. But under the conditions of correlation, values of

X and Y are always paired; so Nx always equals Nyy and either is equal to

N. The expression thus becomes

S(dxdr)
,

h{di)X(df) ^ J^jdxdy)
^

N ^ ^{dxdy)

N N* N V"2(di)2(4) V2(4) 2(^’

*This follows from the relationship of variance and standard deviation.

* It is, however, important that the values between 0 and ± 1 are not

simply fmetional parts of complete correlation in any simple or obvious sense

and that the steps are not of equal value in relation to significance in most

problems. Thus r .80 does not mean 80 per cent of complete correlation,

and the step from r =* .10 to r = .20 is not so important a difference as that

from r * .80 to r *= .90. The relative complexity of these relations is

among the arguments for transforming r into a measure with simpler

properties (see the following pages).
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Example 60.

—

Calculation op r

Correlation of number of tail scutes and tail length in females of the king-

snake, Lampropeltia pclyzona (data from Blanchard 1921) _

Caudal

scutes

X

Tail

length

Y
dx dy +djrdr — djrdr dx dj.

45 37 -5 -68 340 25 4,624
46 130 -4 25 100 16 625

46 137 -'4 32 128 16 1,024

47 156 -3 51 153 9 2,601

48 49 -2 -56 112 4 3,136
48 93 -2 -12 24 4 144

49 68 -1 -37 37 1 1,369

49 155 -1 50 50 1 2,500
49 106 -1 1 1 1 1 1

86 -1 -19 19 1 361

51 142 1 37 37 1 1,369

51 142 1 37 37 1 1,369

52 53 2 -52 104 4 2,704
52 51 2 -54

1 108 4 2,916

52 50 2 -55 no 4 3,025

53 149 3 44 132 9 1,936

54 187 4 82 328 16 6,724

55 146 5 41 205 25 1,681

55 54 5 -51 255 25 2,601

951 1,991 1,271 -1,009 167 40,710

Mx « 50 Afy * 105 'Zidxdr) * +262 crx - 2.96 cry « 46.3

^{dxdy) ^ 262 ^ =* + 10
\/2((ii)s(4) Vie? X 40,no 2,607

^

or,

2(dxdr) _ 262 262
^ “

Nax<Tr 19 X 3 X 46 “ 2,622
“

(The slight difference in denominators is caused by rounding in obtaining

arx and ay; the values obtained for r are identical with the second decimal,

which is sufficient for most purposes.)

The example has been chosen as one of a type common in zoological work,

as being arithmetically relatively easy, and as testing a relationship that

might well exist but the presence or absence of which is not obvious from the

raw data. The value of r obtained is vory small, +.10; in fact, as will be
shown later in this chapter, it does not differ significantly from 0. As far

as this sample shows, the number of caudal scutes is not correlated with the

length of the tail. ^
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The correlation coefficient may be calculated from a list of the

corresponding measurements of the two variates, using either

form of the formula, as shown in Example 60 (see Fig. 21, page
232).

Even with this simple example, this method of calculation is

rather laborious; and with larger samples or where still more
digits must be carried, it becomes almost prohibitive unless a

calculating machine is available. There is, however, another

method that facilitates reduction of the complexity of the data

and of the arithmetic and also gives a good visual representation

of the correlation. It involves making a correlation table and
basing the calculation on this, using a procedure analogous to the

short method of getting M and cr.

A correlation table is made on paper ruled into squares, with

values of one variate scaled vertically at the left side and those

of the other horizontally along the top of the table. The data

can be grouped fn any convenient way, and the values written

on the scale are conventional class limits. Within the table

there is thus a square, or cell, corresponding to any combination

of values of the two variates, and the observed frequencies are

entered in the cells. ^

By totaling the frequency in each line, across the table from

left to right, an ordinary frequency distribution for one variate

is obtained and written to the right of the table. By totaling the

columns, from top to bottom, such a distribution is obtained for

the other variate and written below the table; Mx, Afr, <txj and

<7r can then be obtained from these distributions by the short

method. The additional datum needed to get r is X{dxdY)/N,

A value fdxdris calculated for each cell in which a frequency of 1

or more occurs. These may be written in the cells themselves,

to one side, or, more conveniently, in a column to the right of the

other tabulations, negative and positive values being put in

different columns for ease in algebraic addition. In this connec-

tion it is helpful to note that the table, divided into quadrants by

the mean row and mean column, has two diagonally opposite

quadrants in which values of dxdr are positive and two in which

they are negative. Which are positive and which negative

^ In publication this is usually done in ordinary numerals. In tabulating

from the original data before calculation, it is most easily done by tally

checks.
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depends on the direction in which the scales are written. If the

scale is as in the next example (Example 61), in the most usual

form, the positive quadrants are the upper right and lower left,

and the other two are negative. Taking dx and dy from assumed
means, as in the short method for M and o-, the result is properly

and requires correction to give the desired value

for deviations from the true mean. This correction factor is

simply the product of the two correction factors, cy for X and F,

used for obtaining a by the short method. Thus the true value

of Z {dxd y)/X is

N
— ClxCly

This gives the value in units equal to the class interval. Since

in any case the class interval would appear in both numerator and
denominator of the formula for r and so would cancel out, it is

easier to use this and, of course, also to use ax and o-r in class

interval units, or ax/i and ar/t-

Although perhaps confusing when expressed in words, the

operations involved are really simple and may best be learned by
working examples. Two are given in Example 61 (see also

Fig. 21, page 232).

The tabulation shows the following values, which in practice are not

written down separately:

= -14 = -18

S(/4^) = 106 S(/di,) - 262

= -14/19 - -.737 ix =20 cx = -14.7

== .5432 Mx = 120 ~ 14.7 - 105.3

= \/i0K9~ -5432 - 2.244

ci^ = -18/19 « -.947 ir = 100 cf = -94.7

c\^ = .8968 ilfF = 900 - 94.7 = 805.3

- .8968 = 3.59

» (-.737) (-.947) = +.698

in terms of class intervals = — .6979 = 7.9863N 19

axar in terms of class intervals = 2.24 X 3.59 = 8.0416

“ ——5^— X —^ either in uiiits of measurement or, as here, in classN axar
intervals *= 7.9863/8.0416 « .9931 = .99

The correlation is positive and is remarkably high, indeed almost perfect.



Exahflb 61 .—Cobbblation Tables and Short Calculations of Mx^
Mxi <rxt o‘r> and rxr*— (fJontinued)

B. Lengths of Mi and M% in the fossil mammal Pheruicodm pritnaevm from

the Gray Bull formation of the Bighorn Basin (original data)
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Aside from the relative ease of calculation/ placing the

data in this tabular form also gives an immediate picture of the

relationship. If the frequencies in the table tend to be arranged

along an oblique line, then they show some correlation. If the

X-Tail length, mm,.

Fio. 20.—Scatter diagram of a nearly perfect positive correlation. Total
length against tail length in females of the snake LampropdtU polyzona (data of

Example 61). The evident trend from lower left to upper right shows that the
correlation is positive, and the very close clustering of the observations around
a straight line shows that it is very strong (r « +.99).

line runs from lower left to upper right (as in Example 61), the

correlation will be positive; if from upper left to lower right,

negative. The straighter the line, the more closely the frequen-

cies are concentrated on it, and the more nearly it bisects the

^ If '^rdative ease*’ seems too strong an expression, note that these calcu-

lations give the useful and generally necessary values of M and <r for both

X and K, as well as r, and yet are not much more complicated and are no
more difficult than getting M and v for these two variates separately.
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quadrants, the higher the correlation. In Example 61 the fre-

quencies are more linear and concentrated in A than in B, and
r is greater in A than in B. If, on the other hand, the frequencies

are about equally scattered around the center of the diagram, are

about equally divided between positive and negative quadrants,

or are grouped roughly horizontally or vertically, the correlation

will be low and probably not significant. Example 60 is such a

case, as is clearly seen without calculation by putting it in tabular

form as in Example 62.

Jt-Nymber of caudoil scutes

Fio. 21.—Scatter diagram of the relationship of two variables without
significant correlation. Tail length against number of caudal scutes in females
of the snake Lampropdtia polyzona; data of Example 60. The absence of evident
trend and fairly even scattering of observations in all four quadrants show
absence of correlation (r » -{-.10, which is far from significant).

The use of r is based on the assumption that a significant

correlation will be not only linear but also rectilinear. There are,

however, cases in which a strong correlation exists but is curvi-

linear. Such cases can usually be identified by sight in a corre-

lation table. With a slight curve, r is usually still sufficiently

valid and useful. With a strong curve, however, r is not a valid

measure and should not be employed. The most common
instances of this in zoology are in correlations of age and of

vari^,tes involved in growth, which may be nearly linear for

limited periods of growth but are almost always strongly curved
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at some period in the whole life span. Some suggestions for

handling this important and difficult type of relationship are

given in Chap. XVI.

Example 62.

—

Raw Data of Example 60 (Page 226) in Tabular Form

X—caudal scutes

45 46 47 48 49 50 51 52 53 54 55

180-194 1

165-179

150-164 1 1

135-149 1 2 1 1

120-134 1

105-119 1

90-104 • •
!

1

75- 89 1

60- 74 1
...

45- 59 1 3 ’ 1

30~ 44 1

There is here no suggestion of linear arrangement, and the frequencies in

positive and negative quadrants are about equal. As would be expected

from this pattern, calculation showed the correlation to differ little from

zero (r = .10). With a little practice, it is possible to see at a glance from

such a table whether the correlation is likely to be significant or not, which

may save the labor of calculation. ^

SIGNIFICANCE OF r

Even if no real correlation, positive or negative, occurs in a

population, it is very unlikely that a sample will show a corre-

lation of 0.00. It will almost certainly show chance fluctuations

one way or the other, and, as with estimates of the parameters of

distributions, it is necessary to have some means of judging the

probable value of r in the population as opposed to the more or

less chance value in a sample. In the case of correlation, the

most important point is to determine whether a deviation of r

from isero could have arisen by chance. If it could, the observed

• 1 But of course if the correlation might be significant, r should be calcu-

lated, and it should usually be calculated if the table shows it clearly to be

significant. If it is certainly not significant, there is seldom any point in

calculating r.
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correlation cannot be taken as certainly real in the population.

If it could not, a significant degree of correlation is demonstrated

to exist in the population. The obvious method would be to

calculate a standard error for r. Then, according to the theory

of errors already explained, r would be certainly significantly

different from zero if its value were three or more times its own
standard error. This is, indeed, commonly used as a test of the

significance of r, the formula for its standard error being

1 - r2

VN
or (for small samples) more consistently

1 — 1-2

Despite its wide use, however, this test is so uncertain and so

often wholly erroneous that it should be abandoned. It is

reasonably vaUd only for large samples and for very low values of

r. In zoology, large samples for correlation are exceptional, and

a measure valid only for them is of limited use. In any field it

is not the low values of r that need testing, for they are seldom

significant in any case, but those of medium or relatively high

value, for instance, beyond +.35. For these, the standard

error is usually so misleading that its use is worse than applying

no test at all.

The reasons for this are: (1) that a small sample may give a

very unreliable value for <rr) and (2) and more important that

even for large samples and relatively good estimates of o-r of the

population, the distribution of this is approximately normal only

if the value of r is low. For increasingly high values of r, the

distribution of ffr rapidly becomes strongly asymmetrical; and
if r is very high, the distribution of ur is practically J-shaped.

The use of a standard error as a test of significance assumes that

its distribution is approximately normal; and since this is far from

being the case for when r is large, it follows that the test is not

valid in such circumstances.

The problem, then, is to obtain from r, or some other measure

of correlation, either a value that has a known and tabulated

distribution for all values of N regardless of the absolute size of r

or a value that is approximately normal in distribution regardless
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of the absolute values of both N and r. Both these solutions are

available, and either is incomparably preferable to the use of <rr.

The first solution is analogous to that of finding criteria for the

usual distribution parameters as estimated from small samples

and is solved in an analogous way, by obtaining from N and r a

value that is distributed like t and that can be used as ^ in a table

of t, Ny and P. The following is such a value:

/
— r\/N — 2

N is the number of pairs of observations. In using Table VI,

it is read in the Ni + N2 (and not the ordinary N) column.

In application to Example 60, this gives

, .lOv/lO^ .412

Vi - (.10)*

iV is 19, and so it is seen in Table VI (page 206) that P is much greater than

.10 (it is in fact between .6 and .7) and hence that r is not significant. The
standard error in this case is

Vl9 4.369

Thus, r/ar is .10/.23 == .43. Using this as d/<r shows that P is greater than

.6 (it is in fact between ,66 and .67). The results of the two tests are about
the same, because the sample is not unduly small and the value of r is very
small, the conditions under which the use of r/tr,. is valid.

For Example 61B, t is

S^^a-7,02
VI - (.82)'

and P is less than .01, showing that r is significant. For this same example,

<rr is .064 and r/cr .82/.064 * 12.8. The values of r and N are so large

that significance is certain by either test; but the numerical results are quite

different, and the r/o-f test greatly overestimates the significance, a most
important point when the limit of significance is more closely approached.

By the use of this formula for ty it is clearly possible to calculate

a value of r for any value of N such that any equal or greater

value of r will give a value of P not greater than any chosen

criterion of significance. The effort of calculating t in each case

can thus be avoided by tabulating these values, which is done in

sufficient detail for most zoological purposes in our Table IX. ^

^ This is taken from Fisher, with some modifications. Fisher’s n is 2 less

than our in this table.
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Table IX.

—

Significance of the Correlation Coefficient r for
Different Sizes of Samples

(Using the distribution of ^ as a measure of probability)

P
N

.10 .05 .02 .01

3 .9877 . 9969 . 9995 .9999

4 .900 .950 .980 .990

5
1

.81 .88 .93 .96

6 .73 .81 .88 .92

7 .67 .75 .83 .87

8 .62 .71
,

.79 .83

9 .58 .67 .75 .80

10 . 65 .63 .72 .76

11 .52 .60 .69 .73

12 .50 .58 .66 .71

13 .48 .55 .63 .68

14 .46 .53 .61 .66

16 .44 .51 .59 .64

20 .38 .44 .52 .56

22 .36 .42 .49 .54

27 .32 .38 .45 .49

32 .30 .35 .41 .45

37 .27 .32 .38 .42

42 .26 .30 .36 .39

47 .24 .29 .34 .37

62 .23 .27 .32 .35

62 .21 .25 .29 .32

72 .20 .23 .27 .30

82 .18 .22 .26 .28

92 .17 .21 .24 .27

102 .16 .19 .23 .25

Using the number of pairs of observations as JV, this table

shows the value of r corresponding with each of the four stated

values of P. A value of r greater than that entered means thatP
is less than that of the given column. Thus in Example 61B,
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N is 26. For the next smaller N of the table, 22, an r of .54

corresponds with a P of .01. Hence in the example an r of .82

means a P considerably less than .01, and the table shows the r

to be significant, without the trouble of calculating t This is,

nevertheless, a use of since it was used to calculate the table.

The significance of r should always be judged from this table or

by calculating t, and not from cr^. It will be noted that very

small samples, less than 7, will almost never give surely significant

values of r, since calculated values of r greater than .90 are rarely

encountered. In fact it is seldom worth while to calculate r

for less than 10 pairs of observations unless a correlation table

shows an unusually clear-cut linear arrangement.

TRANSFORMATION OF r TO z

Fisher, to whom are owed so many of the methods of valid

numerical study of small samples, has worked out a method of

transforming r into another measure, symbolized as z, which
minimizes or does away with the disadvantages of r and also has

valuable additional properties of its own. For almost all

zoological purposes, z is a better measure than r, and its general

use is urged. Since, however, r is at present more familiar, it is

advisable to give both r and z in publication. This entails no

extra work, since r must be calculated to obtain z. z is the limit

approached by adding an infinite series consisting of odd powers

of r each divided by its exponent, that is.

^3 •'S •'7

^ = ^ + 3- + 6 +7 +

Since only odd powers are used, z is negative when r is negative.

It can also readily be seen that when r = 0, z = 0 and that when
r = ±1, z = ±00 (infinity). For very low values of r, z is

nearly equal to r; but when r is large, z is relatively still larger,

and small increments in r make large increments in z. The
calculation of z is most easily carried out with Napierian (or

natural) logarithms^ as follows:

^ Logarithms with the constant « ( « 2.7183) as a base, symbolized by log,,

instead of 10 as in common logarithms, logic or simply log. Most trigo-

nometric texts and mathematical handbooks give tables of log, sufficiently

detailed for present purposes. Our table of r and z (Table X) will make it

seldom necessary to calculate z, but the formula given here and any table of

log, make it possible to do so should occasion arise.
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. _ log« (1 + r) - log, (1 - r)*

2

The method of calculation is shown in Example 63.

Example 63.—Tranbfokmation op r to 2

A. Data of Example 60

r = .10 1 4-r - 1.1 1 - r = .9

log* 1.1 =* 10.095 ~ 10

log, .9 9.895 - 10

log, (1 + r) - log, (1 - r) « .200

log, (1 -h r) - log, (1 - r) .200
^ ^

=. __ « JO

For such a low value of r, z and r are practically identical.

B. Data of Example 61A
r = .99 1 + r = 1.99 1 - r = .01

log, 1.99 = 10.688 - 10

log, .01 = 5.395 - 10

log, (1 4- r) - log, (f- r)
- 5.293

z « 5.293/2 * 2.6465 or 2.65

For such a high value of r, z and r are very unequal.

The most important properties of z are

:

1. It is dependent on r but varies from — « through 0 to -f whereas

r varies from —1 through 0 to -HI.

2. When the value of r is low, below about .5, the value of z is nearly the

same.

3. When the value of r is high, that of z is still higher; and the dispropor-

tion increases more rapidly the nearer r approaches its limits ±1.

4. For the relatively unimportant lower levels of correlation, r and z

thus have steps of about equal value; but for the more important higher

levels, z has increasingly smaller steps relative to r and hence is an increas-

ingly delicate measure as delicacy becomes more desirable.

5. Although z can theoretically take any values to ± «, in practice it

almost never exceeds ±3.^

6. The standard error of z is independent of its own value and is the

simplest of ail commonly used standard errors to calculate. It is

* This is equivalent to the other equation for z previously given, and it can

easily be seen that it also gives values from 0 to ± 00 as r varies from 0 to ± 1.

Thus when r » 0, this formula reduces to 0/2 which of course is 0; when
r « ±1, log«(l — f)is — 00

, hence the formula gives (log«2 -H ‘»)/2 » -H « ;

and when r * — 1, the formula becomes (
— 00 — log, 2)/2 * — «o,

^ z m. 43 corresponds with r » ±<995, a correlation so nearly perfect that

it is almost never encountered.
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7. When as often happens, several correlations are based on the same
body of data, all the resulting a’s have the same standard error, and all

differences between them also have a single standard error. This is excep-

tionally convenient in itself and also makes it practical to table these

standard errors. Neither is true of r.

Table X.

—

Corresponding Values of r and z

(All values may be either + or —

)

z r r z

.1 .10 .05 .05

.2 .20 .10 .10

.3 .29 .15 .15

.4 .38 .20 .20

.5 .46' .25 .26

.6 .54 .30 .31

.7 .60 .35 .37

.8 .66 .40 .42

.9 .72 .45 .48

1.0 .76 .50 .55

1.1 .80 . 55 .62

1.2 .83 .60 .69

1.3 .86 .65 .78

1.4 .89 .70 .87

1.5 .91 .75 .97

1.6 .92 .80 1.08

1.7 .94 .85 1.26

1.8 .947 .86 1.29

1.9 .956 .87 1.33

2.0 .964 .88 1.38

2.1 .970 .89 1.42

2.2 .976 .90 1.47

2.3 .980 .91 1.53

2.4 .984 .92 1.59

2.5 . 987 .93 1.66

2.6 .989 .94 1.74

2.7 .991 .95 1.83

2.8 .993 .96 1.95

2.9 .994 .97 2.09

3.0 .995 .98 2.30

>3.0 1.00 .99 2.65

1.00 3.0

Tlie following points will be noted : r and z do not differ in the first decimal

place below z »» .6, r * .5; also, z goes from 1.08 to 2.65 while r is going

from .80 to .99; and in this important part of the scale z has 158 steps (to

two decimal places—it is, of course, a continuous variate) where r has only

20 .
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8. The signihcance of the difference between two values of z is very easy

to estimate, that between two values of r very difficult.

9. Although the distribution of r changes enormously both in peakedness

(or kurtosis) and in symmetry as the value of r changes, the shape of the

distribution of z is almost constant whatever its value.

10. Although the distribution of r is never normal and is not even roughly

so when the value of r is large, the distribution of z approaches the normal so

closely that it may safely be called normal in practice whatever the value of

z,

11. Although the value of r is too inaccurate for small samples to serve

as a valid estimate of the correlation of the population, that of z is generally

sufficiently accurate for this purpose even in small samples.

12. From properties just mentioned, it follows that Cr is a very poor and
often quite invalid means of testing the significance of r, while at is almost

always a valid and adequate means of testing the significance of z.

Example 64.

—

Calculation of and z/tr, for the Data of Example 63
(Page 238)

A.

AT = 19
1

2 = .10 £
O’*

JIO
"

.25
^

3

.40

= I
= .25

\/l6 4

The table of d/a shows that P is greater than .6 (it is in fact between .68

and .69), and hence the value of z is not significant. Note that this result is

very close to that of the accurate t test on the same data (page 235) which

gave i = .42 and P between .6 and .7, while r/<rr is .43. Even with this fair-

sized sample and very low r, the r/^r value differs slightly from that of

z/vz and is to that extent less reliable.

N = 19

z « 2.30

B.

1
cr* =

Vio
L «^
a-g .25

.25

9.2

This is decisively significant. Note that the value of <r, is the same as in

A, although the value of z is nearly 30 times greater. This peculiar property

also increases the delicacy of the z!at test for large values of r or z. For this

same example, at is .009, making rjat about 110, a remarkably gross

overestimate.

It thus appears that z is far superior to r in every respect except

ease of calculation, and this difficulty is largely done away with

by the use of tables. Fisher tables r and z in considerable detail.

Our simpler and somewhat different Table X is adequate for most
purposes.



CORRELATION 241

Since z is approximately normal in distribution, 2!/<r* is a good
measure of significance, entering a table of d/a with this value.

This test and the calculation of <t* are shown in Example 64.

Values of a^ for samples of sizes usual in zoology are given in

Table XI, which in most cases will make it unnecessary to calcu-

late this value.

Table XI.

—

Standard Errors of z and op the Difference between
Two Values of z from Samples of Equal Size

N
i

<rd.

5 .71 1.00

6 .58 .82

7 .50 .71

8 .45 .63

9 .41 .58

10 .38 .53

11 .35 .50

12 .33 .47

13 .32 .45

14 .30 .43

15 .29 .41

16 .28 .39

17 .27 .38

18 .26 .36

19 ,25 .35

20 .24 .34

21 .24 .33

22 .23 .32

23 .22 .32

24 .22 .31

25 .21 .30

26 .21 .29

27 .20 .29

28 .20 .28

29 .20 .28

30 ,19 .27

35 .18 .25

40 .16 .23

50 .15 .21

75 .12 ,17

100 .10 .14

N is the number of pairs for <r,. For <fa, it is the number of pairs in each

sample (not in both together). The table gives values of cr* only when both
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samples are of equal size. When they are not, the formula

” Vjv, - 3 iV, - 3

must be used.

DIFFERENCE BETWEEN TWO CORRELATION COEFFICIENTS

As with means and other measures, it is often desirable or

necessary to estimate whether the difference between the corre-

lation coefficients of two samples is significant. This is practi-

cally impossible from r alone. It is possible to get a t value

analogous to that for the difference between two means, but the

work is complex and laborious. If, however, the r’s are trans-

formed to z^Bj the comparison can be made by a standard error

Example 65.—Computation of Standakd Errors and Significance of

Differences between Two Correlation Coefficients

A. Total length and tail length in males and females of Lampropeltis

polyzona (raw data from Blanchard 1921)

N r z

1. Males 24

19

.974

.988

|2.16j

2.56!
^

Calculation

1
not shown2. Females

+ B - vim - -33

d* « Zj — Zi 2.56 — 2.16 = .40

d 40-1 « as 1.21. The difference is not significant.
vd, .33

B. Total length and tail length in females of Lampropeltis polyzona and of

Lampropeltis elapsoides elapsoides (raw data from Blanchard 1921)

N r z

1. L. polyzona 19 .988 2.56

2. L. e, elapsoides 25 .899 1.47

o-d^ a/Hz + He ** -108 .33

d. « 2.56 - 1.47 « 1.09

— ** 3.3. The difference is significant.^
(Td, .33

^ For such comparisons it is often desirable to work out r and z more
exactly than in Table X, and this has been done in the example. Using the

table would, however, have given the same result but with iffight overesti-

inate of significance (d,/<rd, «* 3.6).
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of the difference which is very easy to obtain. It is

in which Ni and N2 are the numbers of pairs of observations in

the respective samples. The calculation and ensuing test of

significance are shown in Example 65.

Tabling o-d. for all combinations of Ni and N2 would be involved

and seems unnecessary. It often happens, however, that Ni — N2

(for instance in partial correlation, discussed later); and values

of (Td, under this condition are given in Table XI.

CAUSE AND EFFECT AND SPURIOUS CORRELATION

Measures of correlation and tests of their significance demon-
strate only that two variates are shown or are not shown by a

given sample to vary in such a way as to tend to maintain a

definite relation to each other. They tell nothing about the

cause of the relationship but reveal only its existence or the lack

of reliable evidence for it.^ There is a danger in passing from

these numerical results to biological conclusions that the relation-

ship may be misunderstood or may, without due consideration,

be assumed to represent cause and effect. The fallacy is that

most common in vulgar thought, post hoc, ergo propter hoc (or cum
hoc propter hoc), and is among the foundations of much of the

untrue ^'natural wisdom '' of the unlettered and of astrology,

alchemy, and the other false sciences. On these discredited

levels the fallacy is easy enough to detect, and numerical corre-

lation itself disposes of many logically obscure cases by showing

that the supposed or apparent correlation is not significant.

This fact, however, increases the danger of supposing that a

causal relationship does exist when the correlation is found to be

numerically significant, although even on this level common sense

is an adequate safeguard against the more egregious blunders.

It may be shown that rodents are more abundant in an area when
crop prices are lower, in other words, that number of rodents and

crop price show significant negative correlation; but no one would

conclude that rodents tend to lower crop prices or that cheap

crops tend to increase rodent families. It is obvious that the

^ Of course they do not reveal nonexistence.
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two phenomena are really quite independent except as both may
depend on a third factor, crop abundance or, still more remotely,

favorable weather. The relations may in other cases be so

obscure that considerable analysis is necessary to differentiate

cause and effect or to distinguish a real correlation from one that

is spurious, being caused not by any true relationship between the

variates considered but by their relationship to a third variate

that has been omitted from the problem.

It is not true that any correlation between variates not truly

related as cause and effect is to be considered spurious. Some
of the most useful correlations are between two variates both of

which are affected by the same unmeasured cause. In fact, such

correlations may reveal the existence of an important variate or

characteristic that cannot be directly observed and may serve

to measure it indirectly by measuring its effects. Such corre-

lations are common in zoology, and that between lengths of two

adjacent teeth (Example 61B) is a good example. Obviously

these are not cause and effect; but they are, or more properly

their relationship is, the result of some cause that cannot other-

wise be detected or measured. The data do not show what this

cause is, whether genetic, environmental, or otherwise. Its

existence having been detected in this way, its nature remains to

be determined, if possible, by further observation, calculation,

and experimentation.

There is no general rule for differentiating true and spurious

correlation beyond the application of logic and testing of other

possible correlations of the variates in question. It is, however,

usually true that the correlation technique is properly applied to

two variates that may be related as cause and effect or that may
be analogous effects of a cause not directly observable.

Aside from purely spurious correlation, a true correlation may
have its value falsified by the existence of another distinct corre-

lation not excluded from the data and tending to either increase or

decrease the correlation that is sought. For instance, correlation

between thymus size and body size of a species of mammal may
correctly be sought, and its result may throw important light on

the biology of the species; but a good sample of the whole species

will hot give the correct value of the correlation. Thymus size

will probably be found to be positively associated with body size

in animals of the same age, but negatively correlated with body
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size if age is not excluded because it shows a stronger negative

correlation with age than positive correlation with body size.

Correlation either with age or with body size is real and
significant, but correlation with either that does not exclude the

effects of the other gives a false value. Such relationships may
become very complex, but their disentanglement can often be

accomplished in one of two ways. It may be possible to select

a sample such that all but two of the variates involved, or

possibly involved, in the correlation are made as nearly constant

as possible, thus making possible a true observation of the corre-

lation of those two variates. Sometimes, however, this will

reduce the available sample so that it is too small to detect a

significant correlation, and even with abundant data it may be

impossible to keep all but two variates approximately constant.

In such cases the only practical solution is, if possible, to measure
all the variates involved in the correlation and to derive a cor-

rected true correlation value for any two of them from the inter-

relationships of all.

PARTIAL CORRELATION

The process just mentioned is called partial correlation. When
a measurable correlation involves more than two factors or

variates, partial correlation is a technique for finding how much
of the correlation value results from the relationship between

any two of these variates. A variate the value of which depends

on that of two or more other variates is said to show multiple

correlation; and partial correlation, defined in another way, is the

measurement of the relationship between the value of the given

variate and that of any one of the other variates on which it

depends. Partial correlation is used when it is not practical to

keep all but two variates involved in correlation constant, and it

gives a numerical result not significantly different from what
would have been obtained had this been possible.

Partial correlation is possible only when corresponding values

of the three or more variates involved can be obtained from the

same body of data. When this is possible, the process is sur-

prisingly simple in concept, although the calculation involved

may be laborious, sometimes prohibitively so if there are more

than three variates. With three variates the formula is

^ _ Tn - ri8r28

V(1 ^ rj,)(l - ri.)
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The subscripts 1, 2, and 3 refer to the three variates. The
first step is to correlate these in pairs from the original data, corre-

lating the first two and obtaining a coeflBicient ri2 ,
the first and

third, giving r^, and the second and third, giving r28 . These are

total correlations, because in obtaining them nothing was
excluded—the value of may still be influenced by that of ris

and of r28 . The symbol ri2.3 represents the partial correlation

of variates 1 and 2 with the effect of the variation of 3 on either

of them eliminated. Similarly a partial correlation ri 8.2 (of 1 and
3 with 2 eliminated) may be obtained by transposing 2 and 3

throughout the formula and a partial correlation r2 z.i by trans-

posing 1 and 3.

If there are four or more variates, it is necessary to eliminate

them one at a time. Thus with four variates it is first necessary

to obtain ri2 . 4 ,
^ 13 . 4 ,

and r28.4 by applying the formula three times

and then to use these values, with the effect of 4 eliminated, in the

formula to obtain ri2 . 34 ,
the correlation of 1 and 2 with the effects

of the variability of both 3 and 4 eliminated, as follows:

ri2
,
/is, ri4,

r28 ,
^24 ,

and r84 are first calculated, and then the

following:

ri2 — ri4r24

V(1 - r!4)(l -“rU
>•18 — ri4r84

VCl - rj4)(l - rlt)

rn — ruTzi

V(1 - r|4)(l - r|4)

ri2.4 — ri8.4r23.4

\/(l — rf3 , 4)(l — ^28.4)

ri2.4 =

ri3.4 =

^28.4 =

ri2.84 =

With four variates the rather laborious operation summarized

in the formula thus has to be performed four times, and this

labor increases more rapidly than does the number of variates:

for five variates the formula is calculated ten times, for six, twenty

times, and for ten, two hundred and twenty times. ^ In some

sociological, medical, psychological, and kindred studies, partial

correlation with large numbers of variates is used. For most

^ The labor is shortened by using Miner's tables of (1 — r*) and y/1 — r*,

cited in our bibliography, but remains considerable when the number of

variates is more than three or four.
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BIxaMPLB 66.—COMPtJTATIONS OF PARTIAL CORRELATIONS WITH ThREE
Variates

Maximum length, width, and height of crowns of last upper molars of the
extinct mammal Acropithectta rigidua (original data)

Variates:

1. Length)

2. Width * 28

3. Height)

Total correlations:^

T\2 =» *-|“.355

ri8 = -f.795

r28 = —.046

Partial correlations:

ri2 T\%r2iri2 ~ rigras ^ .355 - .795 X (-.046) .355 -f .037

VCI - r!,)(l - r*,j \/(l - .795«)(1 - .046^
~

-s/.368 X .998

.392
. .

, = '•n ~ _ -111 , afi7

V(1 - '•u)(l - r^,)
-333

r„.. = = •=^ - -.684
V(l - - r?,)

-562

Tests of significance:

cr, «= --
7= * .20 (same for all z*b)

\/25

ria = .355 gia =® .37

ri8 ~ .795 gl3 ™ 1.08

r„ « -.046 gai " -.06

rii.i «* .648 gll.8 .77

riA* « .867 gl8.* * 1.32

r**.! « -.584 gjl.l » -.67

1 =
O'* .20

g ^ 1.08 _
cr* .20

£ »
(Tg .20

g .77
“

.20
“

g ^ 1.32 _
<r.

“
.20

£ « Hi??“ .20

1.85 Not significant.

= t An Surely

significant.

- - 26
significant.

3.85

significant.

1 These are calculated As in Ebcample 61. The work of calculating the three total correla-

tions is much less than three times the work of oaloulating one correlation because the

correction factor and standard deviation (ci and ei, if in terms of class intervals) need to be

ealoulated only onee fw each variate desfdte the fact that each is used twice in the course of

obtaining the three total correlations. This part of the work, which is the most laborious,

is ^lerefore only one and one-^half times as peat for these three correlations as for one.
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zoologists, the use of three variates or at most four is adequate.

The process of obtaining ri2.3 is shown in Example 66.

The problem chosen, although relatively simple arithmetically

as an example of partial correlation, has somewhat complex

zoological connotations, and the partial correlations give informa-

tion not visible or directly deducible from the original data and not

so well shown by any other method of analysis. The unexpected

nature of some of these results and their hardly obvious zoological

meaning exemplify very clearly (1) the need for numerical analysis

in such problems and (2) the fact that the results of such analysis

are not zoological conclusions but must be interpreted logically

and with care in the light of the real meaning of each operation,

starting with the gathering of the original measurements. The
zoological consideration of this problem and of its numerical con-

clusions will therefore be given in more detail than for most
previous examples, since the reasoning involved is analogous to

that for any problem of partial correlation and cannot be taken

for granted.

The measurement of length was taken on the wearing surface of these

teeth, and so it changes or may change with degree of wear. This is in this

case almost invariably the maximum length of a tooth as preserved. It

would be preferable to take a length measurement not affected by wear, but

this was not done in this case for three reasons : because it had not usually

been done in samples of allied animals, and hence the measurement as taken

is more nearly comparable with data already available; because it is desirable

to find out what influence wear does have on this length measurement; and
because length on the wear surface can be accurately measured in all cases,

and other lengths can be accurately measured only on isolated teeth out of

the jaw. The maximum width is at the base of the tooth and had not been

visibly affected by wear in any specimen measured. The maximum crown
height would doubtless vary in unworn teeth, but all these teeth were in

fact worn to various degrees. The differences in height caused by wear were

obviously very much greater than any such differences could have been on
the unworn teeth, so that this measurement is for all practical purposes a

measure of degree of wear rather than of genetic differences in tooth heights.

It is thus indirectly an approximate but useful measure of individual ages.

Age cannot, of course, be measured directly for fossils; but it is certain that

if it could it would show a very high positive correlation with molar wear
and hence an equally high negative correlation with molar height. It can

thus be reasonably assumed that molar height is a good approximate inverse

indirwt measure of age.

In order to understand and interpret this sample correctly, it is necessary

to know and measure two things that are not apparent from the original

data: the rdationship between length and width and the relationship
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between length and age, or wear, or molar height. We want, in other words,

reliable measures of the correlation of 1 and 2 and of the correlation of 1 and
3. The total correlation gives a result that is not significant, but evi-

dently this may not be reliable; for if either 1 or 2 is also correlated with 3,

which is known from the method of measurement to be probable for 1, then

3 also influences the value of 2:12. Similarly it cannot be assumed that zn
is a reliable measure, for 2 may well be correlated with 1 and hence may
influence this value. The only way to get the information sought is there-

fore somehow to eliminate any influence of 3 on the correlation of 1 and 2

and any influence of 2 on the correlation of 1 and 3.

One solution would be to select specimens in which height, 3, is the same
for all and to obtain a value of 212 from them, then to select specimens of the

same width, 2, and obtain a value of 213. If this were done, 212 and Zn
would be reliable measures of the relationships being investigated; but in

this case it could not be done because the largest available samples with

nearly constant height or width would (as the original measurements show)
have included only three or four specimens, too small to give a useful value

of 2. Recourse is therefore had to partial correlation, which produces the

same result but uses all the observations made. 212.8 and 213.2 are reliable

measures of the two relationships sought.

2i 2 does not differ significantly from 0, but 212.8 shows a significant positive

correlation. The zoological conclusion is that for any given height, hence

in any given wear stage, any given period of life, or for unworn teeth, greater

length tends to be accompanied by greater width, and vice versa. It then

follows, zoologically, that length and width are affected by some common
influence, almost surely genetic, and further that they would tend to have an

approximately constant ratio in teeth unaffected by wear. These are impor-

tant conclusions essential to intelligent study of the specimens involved, and
they could not be reached by any more direct consideration of the actual

measurements available.

The value of 21s differs significantly from 0 and that of Zis.2 still more so,

showing that a correlation existing between 1 and 2 or between 2 and 3

tended to reduce and to that extent to falsify the value of 213. For constant

width, there is a strong positive correlation between length and height.

There are really two factors in this, both tending in the same direction so that

correlation of length with only one of them would be less; but they cannot

be separated on these data, and their separation is not really necessary.

One factor is variation in original unworn height, and the other is variation

in height caused by wear; but the former is certainly very slight compared

with the latter (as known on zoological grounds, although not numerically

demonstrable from these data), and it may safely be concluded that there is

a significant negative correlation between length and wear and beyond that

between length and age. We have, then, demonstrated beyond reasonable

doubt that in these teeth the length of the grinding surface tends to become

less as the animal grows older. Aside from the importance of this fact in

itself, it also has an important practical bearing, for it shows that compari-

sons of lengths of these teeth with any others will not be valid unless height

is also taken into account and its influence eliminated or discounted.
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In this case the value ^as.i does not measure any relationship of zoological

importance or answer any question naturally suggested by the data. In the

actual research there was no reason to calculate or discuss this correlation,

but it is given in our example because the value will probably be found sur-

prising and because it well illustrates the danger of hasty judgment or of

faulty nonnumerical reasoning in dealing with numerical procedures. The
value of 2:23 is very small and certainly does not differ significantly from 0,

but the value of 222.1 shows a fairly strong, surely significant negative correla-

tion between width and height if the effect of length on these is discounted.

On the face of it, this seems to mean that these teeth become wider (at the

base, beyond the reach of the actual wear) as they are worn down, which

might be considered either as a sensational discovery or as a manifest

absurdity.

In fact this is not at all what the negative partial correlation means. It

means only that in teeth of a given length those that are narrower will tend

to be less worn. We know, from the value of 213.2, that length and height are

positively correlated. It can then logically be seen that a tooth in which the

unworn length was greater will have to be worn down to some degree before

its length becomes equal to that of a smaller unworn tooth and hence that

when two teeth have the same length the tooth that was longer when unworn
will tend at this stage to have the lesser height. But we also know from the

value of 2 i 2.8 that the tooth longer when unworn will, at any wear stage, tend

to have the greater width. Hence it follows inevitably that in a miscellane-

ous sample with all stages of wear represented greater width will be asso-

ciated with lesser height, in other words, that width and height will be

negatively correlated. This is what the value of 223.1 means, and it has no
particular zoological significance, certainly not that suggested at first sight.

It is simply a corollary of the high positive values of 213.2 and 212.3 and is seen

to follow inevitably when the real meaning of these is kept in mind.

RANK CORRELATION

Aside from r, the only directly calculated measure of correlation

in general use is Spearman ^s measure of rank correlation, usually

designated by p (Greek lower-case rho). This method arranges

the two series of values in the order of their magnitude and gives

each a rank according to its position in the series. Thus the

largest value of X is ranked as 1, the largest value of Y also as 1,

the next value of each 2, etc. The differences in rank between

corresponding values of X and Y are then recorded (none being

regarded as negative) and the measure calculated as follows:

where d

N

p= 1
6S(d2)

N{m - 1)

a difference in rank.

the number of pairs of observations.
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CxAUPLB 67.

—

^Thb Usb op p
A. Calculation of p from data of Example 61B

Original

measurements
Ranks Difference in rank

X Y X Y d d*

9.8 10.2 1 1 0 0
10.5 10.7 2.5 2.5 0 0

10.5 10.7 2.5 2.5 0 0
10.8 10.8 4 4.5 0.5 0.25
11.0 11.0 5. 6 1 1

11.1 11.4 6.5 7 0.5 0.25
11.1 12.1 6.5 9 2.5 6.25

11.3 12.6 8
*

14 6 36

11.4 12.8 10 17 7 49

11.4 10.8 10 4.5 5.5 30.25

11.4 12.6 10 14 4 16

11.9 12.3 12 10 2 4

12.2 12.4 13.5 11.5 2 4

12.2 12.0 13.5 8 5.5 30.25

12.3 13.7 1 15.5 25 9.5 90.25

12.3 13.0 15.5 18 2.5 6.25

12.4 13.2 17.5 20 2.5
i

6.25

12.4 12.4 17.5 ' 11.5 6 36

12.5 13.8 19 26 7 49

12.7 13.5 20 22.5 2.5 6.25

12.8 13.3 21 •21 0 0

13.0 12.7 22 16 6 36

13.1 13.1 23 19 4 16

13.2 13.6 24 24 0 0

13.4 12.6 25 14 11 121

13.5 13.5 26 22.5 3.5

1

12.25

2(d‘) = 666.50

JV - 26

62(<i*) _ , 6 X 556.60 _ , 3,339 _ , _
^ - 1)

" 26(26‘-l)“' 17,660

r for these data is .82, a very close agreement.

.81

If two or more observations have the same value and hence are

tied for rank, they are best given the middle value of the ranks

that they would occupy if different, and the next higher value is

given its correct serial ranking. The value of p is generally about

the same as that of r if the original distributions were approm-
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Example 67.

—

The Ube of p.

—

{Continued)

B. Demonstration of some relationships between p and r

1. The following hypothetical distribution has r = -\-l:

1 -
3^“i) =1-0 = 1 When r = +1, p = +1.

2. The following has r = — 1

:

/> = 1 - 3 (9-^“i)
= 1 - 2 = -1 When r = -1, ^ = -1.

mately normal; and p is somewhat easier to calculate than is r, but

this is almost its only advantage. The use of p in zoology is not

recommended except as a relatively quick way of finding whether

r is likely to be significant, or when rank can be determined but

accurate and equally spaced absolute values cannot, or when
accuracy and exact tests of significance are not required.^ The

^Some workers habitually calculate p, because this is easier, and then

convert it to r by means of a formula that we prefer not to give. This pro-

cedure is thoroughly unsound and should never be followed. The conver-

sion formula demands the assumption that the original observations on both
vamths were normally distributed. If this assumption is correct, the

great^t possible difference between p and r is about .02, which is practically

never a significant difference, and usually it is less. If the assumption is not

correct, the difference between p and r may be greater than .02 and may be
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Example 67.

—

The Use op p.
—(flonlinmd)

8. The following has r 0:

1

Ranks

X Y X Y
d

1 1 1.5 1.5 0 0

1 3 1.5 3.5 2 4

3 1 3.5 1.5 2 4

3 3 3.5 3.5
1

!

0 O

00II

6X8
p = 1 -* 1 ” -2 When r = 0, p is small but is not

necessarily 0. (It is 0 only when the distributions are normal.)

4. The following has p — -hl.‘

X Y dx du dxdy d\ dl

1 1 -1.33 -1 1.33 1 . 7689 1

2 2 -0.33 0 0 0 0

4 3 1.66! 1 1.66 2.7556 1

=2.99 S(d^) = 4,5245 Z(dl) = 2

AT, - 2.33

My = 2.00

r = 2.99/\/4.5245 X 2 « .99 When p = -fl, r is large but is not

necessarily +1. (And when p * — 1, r has a large negative value but is

not necessarily —1.)

calculation is shown in Example 67, as well as a demonstration of

some of the relationships between p and r.

From their respective formulas, it can be seen that p shows

perfect correlation, +1, if all the corresponding ranks of

X and Y are in the same order and hence if Y increases or

decreases with every increase of X (or vice versa), regardless of

significant; but then the formula does not properly correct this and does not

give a reliable value for r. In other words, when the formula works it is

not needed, and when it is needed it does not work, p and r are not inter-

convertible under ^the ordinary conditions of research, and the attempt

should not be made.
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the amount of increase or decrease, while r does not show perfect

correlation unless this condition is fulfilled and also the condition

that the ratio between increments of X and Y is constant. For

this reason, for certain t3rpes of curvilinear correlation p will give

higher and perhaps more truly representative values than will r;

but this relationship is usually unreliable in practical use, and p

may overestimate or (less often) underestimate the true value of

the correlation.



CHAPTER XIII

REGRESSION

SCATTER DIAGRAMS AND TREND

The present chapter is devoted to the graphic analysis and to

certain special types of study of the relationship between two
variates, involving data similar to that of correlation and methods
supplementing those of correlation as discussed in Chap. XII.

Correlation mesisures the intensity of such relationships but gives

no additional information about its nature. A correlation table

itself does give a picture of the nature of the relationships

involved, but this can be more clearly and also more precisely

shown on ordinary graph paper and can be measured or numeri-

cally indicated only by methods additional to those of correlation.

Taking the values of one variate as X and those of the other as 7,

scales of X and Y are laid out along the bottom and to the left,

respectively, of the field of the proposed diagram on graph paper.

A dot is then placed in the field at a point corresponding to each

pair of observed values of X and F. The result is called a scatter

diagram (Figs. 20 and 21).

If there is a significant correlation between the two variates of a

scatter diagram, the dots representing the observations will tend

to be arranged along a line or in an elongate oval or elliptical

figure, a sort of path across the diagram. If the correlation is

positive, this line or the axis of this figure will trend from lower

left to upper right of the field of the diagram, and there will be

few or no dots in the upper left and lower right corners. Con-
versely, if the correlation is negative, the trend will be from upper

left to lower right, and the upper right and lower left corners will

be relatively or absolutely free of dots. Clearly, if the trend is

from lower left to upper right, it means that values of X farther to

the right, and hence higher, are usually associated with values of

Y farther above the base line, and hence higher; and this is the

relationship called positive correlation. It can similarly be seen

that the opposite trend, downward to the right, is a graphic
'.m
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representation logically related to what has been called negative

correlation. If there is no apparent trend, ^ the correlation is

slight or zero. The coefficient of correlation may, in fact, be

considered as a relative measure of the closeness with which the

observations are clustered about such an oblique axis or arranged

along such an oblique line, a relationship that will become more
evident as this chapter is studied.

There is involved in such a trend another important factor that

correlation alone does not give. It is desirable not only to know
the intensity of the trend, or closeness of clustering along it, but

also to know on an average how much larger (or, in negative

correlation, smaller) Y becomes with a given increase in X or how
much larger (or smaller) X becomes with a given increase in F,

factors reflected in the diagram by the slope of lines of trend.

These relationships are given the somewhat unfortunate name
‘‘regressions. The average amount that X changes for a unit

change of Y is the regression of X on F, and the amount that F
changes for a unit change of X is the regression of F on X. It

will be found that these two regressions are seldom equal to each

other or to the correlation coefficient. The simplest sort of

regression is one in which one variate, best treated as X, consists of

a series of single and unequal values and the other, F, has one

definite value for each of these. Such a relationship seldom arises

^ Or if it appears to be horizontal or vertical, an effect caused by using a

unit of measurement of X larger relative to its range than is the unit of

measurement of F to its range, producing an apparently vertical trend, or a

unit of Y larger relative to its range than is the unit of X to its range, pro-

ducing an apparently horizontal trend. If the units are so adjusted that the

ranges of X and F are represented on the diagram by approximately equal

linear distances, a low or zero correlation will show no apparent trend, and
any evident linear arrangement will almost certainly reflect a significant

degree of correlation.

* Unfortunate because it implies the act of regressing or stepping back

toward some fixed value, which is not the essential concept in regression as

the term is now used technically. Like so many concepts and procedures

useful in zoology, that of regression was first developed in the study of human
populations (by Sir Francis Galton, 1822-1907, a great British pioneer in the

field of statistics). It was first used to study the inheritance of stature in

men and was regarded as a ratio expressing how much a son had regressed^*

toward the mean for sons relative to his father's divergence from the mean
for fathers. The modem concept of regression includes this but is much
broader.
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except in time series, when X represents elapsed time and Y is any
variate observed (on the same individual or as a mean from the

same sample) at each of several different times, or values of X.
In such a case the regression and the trend sought are those of

Y on X—it is wished to determine how much, on an average, Y
changes with the lapse of a unit period of time. The opposite

regression, X on 7, here usually has no logical significance—it is

rarely desired to know how much average time elapses with a unit

change in F.

Since in such a case there is only one observation of X or F for

each value of X, it is possible to draw a single line between succes-

sive points on the scatter diagram; and this gives a rough indica-

tion of trend. Even if the trend is fairly well defined, however,

chance fluctuations in the value of F will usually make this line

irregular; and it would indicate average trend better and have a

closer correspondence with regression if it could be smoothed out

in some way. There are several approximate methods of

smoothing adapted to such examples, the simplest and, of course,

least accurate or useful of which is to sketch in a line freehand

that seems to strike a middle path between the fluctuations, the

peaks and valleys, of the line drawn from the actual observations.

Somewhat better is the semiaverage method, which is to divide

the observations into two equal parts, ^ obtain a mean value for X
and for F for each of them, put the two points thus determined on

the scatter diagram, and draw a straight line through them. If

the trend is significantly curved or if there are many sharp deflec-

tions, this method is poor; but otherwise it gives a fairly good

approximation of the trend.

A method less affected by these disadvantages but with some of

its own is that of moving averages. An average value of F is

taken corresponding to the first three values of X, then to the

second to fourth, third to fifth, etc.; and these successive values

are plotted with the corresponding middle values of X and are

connected by a line on the diagram. Any number of values may
be averaged, instead of three as just stated; but the number

should be small relative to the whole number of steps available,

and the calculation is much simpler if it is an odd number, so that

three or five is usual. Although occasionally helpful, these

^ If there is an odd number of pairs of observations, it does not matter

wlu4^ part mcludes the extra observation and hence has one more.
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methods borrowed from economic statistics are applicable in

relatively few zoological problems, and it is not necessary here to

consider their possibilities in further detail. They are generally

useful only for time series, and even with these more exact

methods are preferable if possible.

CONCEPTS AND ROUGH APPROXIMATION OF REGRESSION

Most regressions in zoology differ from such simple time series

in that two or more observations of either X or F may, and gener-

ally do, have a single value or fall within a single class of the

distribution. In such a case it is not possible to connect the dots

of the scatter diagram by a single line, and the simpler rough

indications of trend are not applicable. Even in such cases, how-

ever, a fair approximation of the trend can be obtained with

relatively little work by calculating an average value of F for each

class of the distribution of X and plotting these with the corre-

sponding class midpoints of X. A line connecting these points

will give an approximation of the trend of the regression of F on

X. A similar approximation of that of X on F can be obtained

and this line also plotted. The work is most conveniently

carried out in a table similar to a correlation table but giving total

frequency, 2)(X) or 2(F), and mean for each row and column.

The calculation is shown in Example 68.

The example demonstrates, and it is easy to grasp logically, that

the two regression lines do not ordinarily coincide. They do so

only if the observations are all exactly along a single straight line,

a condition practically never found in practice. Otherwise the

regression line of X on F will be distinctly different from that of F
on X. In the first instance, X is called the dependent, and F the

independent variable; and in the second, F is the dependent

variable, and X independent. The regression of X on F means
always that we are considering F as independent and are estimat-

ing the dependence of X on it.

In some cases, dependence and independence are logical con-

cepts in the problem, and it is not a matter of free choice whether

X or F is taken as the dependent variable. This is true in most
time series, in regressions of effect on cause, and some others.

Thus in the study of growth, total length or any othemgrowth
function is necessarily taken as the dependent variable, and time

is necessarily the independent variable, The regression of time on
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the growth function usually has little or no direct bearing on the

problem. Or again in the study of such relationships as that of

animal abundance or size to environmental conditions, it is certain

that if any causal relationship is found it will be the environmental

Example 68.—Calculation op Rough Regression Coordinates
Length of Mi and of M2 in the fossil mammal Phenacodus primaevica (original

data)
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Example 68.—Calculation of Rough Regression Coordinates
{Continued)

Regression of F on X Regression of X on F

Ordinates (class Abscissas (means Ordinates (means Abscissas (class

midpoints of X) of arrays of F) of arrays of X) midpoints of F)

10.0 10.0 10.0 10.0

10.5 10.5 10.5 10.5

11.0 11.4 11.2 11.0

11.5 12.3 11.0 11.5

12.0 12.3 11.5 12.0

12.5 13.3 12.3 12.5

13.0 13.1 12.4 13 0

13.5 13.0 12.9 13.5

12.5 14.0

The resulting rough regression lines are shown in Fig. 22 (see also cal-

culated regression lines in Fig. 23).

In the tabulation it is convenient to give both conventional class limits

and class midpoints on the scales. The values of one variate that corre-

spond with those of a single class of the other are called an array. Thus the

array of X, in this example, corresponding to the class 12.3-12.7 of F, is

as follows:

Class

11.3-

11.7

11 . 8-12.2

12.3-

12.7

12.8-13.2

13.3-

13.7

Frequency

2

2

1

1

1

The marginal values calculated are the frequencies/, summations of values

Z{JX) or Z{fY)f and means Mx or Afr, for each array of each variate.

factor that is cause and the zoological variable that is result. It

is necessary to take the regression of the latter on the former.

The regression of environment on a zoological variable is prac-

tically meaningless. In such cases the usual and best practice is

to plot the independent variable as X,

In many problems, however, perhaps the majority, the identi-

fication of one variable as logically independent and theikither as

logically dependent is impossible beforehand, or independence

and dependence may be mere conventions with no logical meaning.

In the study of regression, one must nevertheless necessarily be
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held as dependent and one as independent. In problems of this

class, it is therefore advisable to study and record both regres-

sions, to consider each character successively as dependent and

Length, ^2
Fio. 22.—Rough approximation of regression lines. Lengths of the first

and second lower molars of the fossil mammal Phenacodus privKievus (data of

Example 68). The irregular lines are the rough approximations of the least-

square fitted straight lines. Continuous lines represent regression of M i (or Y)
on Mi (or X) and the broken lines of iWa on Mi. The approximation clearly

is not very good, but better can hardly be expected from this easy but crude
method in dealing with a rather small sample.

each as independent; it is the two regressions together and not

simply one alone that are pertinent to the problem. The
example just discussed, of the lengths of two adjacent teeth, is

such a problem.
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The functions and properties of the independent and of the

dependent variables in regression are quite different. In any
method of representing or of measuring regression, the inde-

pendent variate is represented merely by the values it can take or

by certain of these, such as class midpoints within its range, which

were used in Example 68. The frequency distribution of this

variate does not enter into the problem at all, and it may have any
form without making any difference in the regression. The
values of the independent variate may be arbitrarily selected, and
the groups may be of any size or sort and need not even be equal

to each other (although preferably so), so long as they are

definitely determinable and errors in assigning observations to

their proper group are few or none. The other factors of grouping

will have little effect on the regression, but any errors may have a

noteworthy effect; for the method by which they are normally

neutralized, averaging, is not applied to this variate.

The frequency distribution of the dependent variate, on the

contrary, has a very decided effect on the regression. The values

of this variate are averaged, which not only makes the distribu-

tion a highly pertinent part of the problem but also tends to

minimize the effects of errors, if they are truly random. Unbiased

error in the dependent variate thus has little effect on the regres-

sion, although that in the independent variate generally has a

strong effect. Arbitrary selection and grouping, unimportant in

application to the independent variate, tend on the other hand to

have an important and generally misleading effect on the regres-

sion if applied to the dependent variate. Of course if each variate

is to be considered successively as independent and as dependent,

the data must be in a form appropriate for either use.

REGRESSION COEFFICIENTS

Assigning an exact value to a regression involves determining

a line of trend and then obtaining some numerical value that

defines this line. The simplest case is when the trend is straight

or nearly so, and the methods to be discussed first apply only to

such regressions. Except in the extremely rare cases of perfect

linearity of observations, several different lines may apjproximate

the trend about equally well from different points of view or for

different purposes, and the fiirst point in seeking the most practical

procedure is therefore to decide on a definition of the regression
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line to be employed. The line that is generally adopted and that

gives results most useful and most simply related to those of the

best numerical procedures in general is a line such that the sum
of the squares of the distances, or deviations, from it of the actual

observations will be lower than for any other line. This is called

the line of best fit, and the method is that of least squares.^

What is needed is, then, an equation that can stand for any
straight line and some method of calculating values to insert in

this equation that will make the line that of best fit.

The following hypothetical series of values of X and Y has a
single, straight regression line:

X Y
1 2

2 4

3 6

A unit increase in X obviously means an increase of 2 in F, and
they also maintain a constant ratio YfX ^ 2y so that a value of

F corresponding with any value of X can be calculated at once

from the equation

F = 2Z

which is thus the equation for the straight line representing the

regression of F on X. Similarly

is the equation of the regression of X on F. General equations

applicable to any case of this sort would be

F = hrxX
X - bxvY

in which b is any number, a constant or parameter to be calculated

and inserted in the equation, brx is used to symbolize the value

to be inserted in the equation for the regression of F on X, and bxr

for that of X on F. These quantities are called the regression

coefficients.

In the simple regressions just given brx is 2 and bxr is 34-

will be noted that even if, as here, the two regression lines coincide,

the two coefficients may be and commonly are different.

^ Ako tised for curved regressions or for fitting frequency distributions.
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Rectilinear regressions do not always take this form, however.

A series like the following also has a single, straight regression line,

yet the ratio Y\X is not constant:

X Y
1 3

2 5

3 7

When X increases by unity, F increases by 2, as before, and

so is again 2; yet the equation

Y = hrxX
or

F = 2X

is obviously incorrect. The equation must now become

F = 1 + 2X
or

F = (Xy hrxX

in which a is another constant, the value of F when X is zero.

In the example given or any just like it, the values of ay and of

brx are easy to calculate, because all the values of F lie exactly

on its regression line and the lines for F and for X coincide; but

in practice this almost never occurs, and it is necessary to take

the squares of their deviations from the line into account and to

derive two equations from the basic equation so that both

unknowns can be determined. The derivation of the formulas

is not given here,^ but it shows that the following two formulas,

each in the general form of F = ar + brxXj will give values of

ay and of byx that satisfy the criterion of least squares.

2(F) = Nay + 6rx2(X)
2(J5rF) = ar2(X) + 6rx2(X2)

The values 2(X), 2(F), 2(XF), 2(X2), and N can all be calcu-

lated from the observed data; and the values of ay and brx can

therefore be calculated from the two simultaneous equations.

In practice the work can be considerably simpMed because

for purposes of obtaining which simply measures slope of the

lines, it does not matter what point on the X-scale is taken as 0

^ It is given by Yule.



REGRESSION 265

or what point on the F-scale is taken as 0. This value can
arbitrarily be assigned to the means of X and of Y and dx and
dy substituted for X and Y throughout. This will give the same
value of brx as if X and F were used. But it follows from the

Fio. 23,—Scatter diagram and regression lines fitted by the method of least

squares (same data as Fig. 22).

definition of the mean that Xidy) = 0 and S(dx) = 0; so the

first equation becomes

0 == Nay + 0

and since N is not 0, ay must be 0, and hence a does not enter into

the regression equations when the means are taken asO.^ The

^ In more mathematical terms, when the origin (in the graph) is taken

atMx, Mr.
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Example 69.

—

Calculation of Coefficients of Regression Directly
FROM the Raw Observational Data

(Same sample as in Example 61)

Tail length

iX)

Total

length

(Y)

dx dy dxdy 4 4

37 284 -68 -511 34,748 4,624 261 , 121

49 375 -56 -420 23,520 3,136 176,400

50 353 —55 -442 24,310 3,025 195,364

51 366 -54 -429 23,166 2,916 184,041

53 418 -52 -377 19,604 2,704 142,129

54 408 -51 -387 19,737 2,601 149,769

68 510 -37 -285 10,545 1,369 81,225

86 627 -19 -168 3,192 361 28,224

93 683 -12 -112 1,344 144 12,544

106 820 + 1 + 25 25 1 625

130 1,056 -f25 +261 6,525 625 68,121

137 986 +32 +191 6,112 1,024 36,481

142 1,086 +37 +291 10,767 1,369 84,681

142 1,086 +37 +291 10,767 1,369 84,681

146 1,078 +41 +283 11,603 1,681 80,089

149 1,122 +44 +327 14,388 1,936 106,929

155 1,254 +50 +459 22,950 2,500 210,681

156 1,202 +51 +407 20,757 2,601 165,649

187 1,387 +82 +592 48,544 6,724 350,464

«

312,604 40,710 2,419,218

Mx
My

105

795 (calculated from the raw data—the different value in Example
61 is due to a nonsignificant error in calculating from coarser

grouping.)

hyx

bxY

^{dxdY)

S(di)

Zjdxdy)

2(4)

312,604
'

40,710

312,604

2,419,218

« 7.68

= .129

The equations derived from the data of the example are

dy 7.68dx

dx .129dr

To put these in terms of X and F, it is necessary to calci^te ay and axf

most simply done by these relationships:

(LY “ Mr hyxMx*
OjT * Mx — byrMy

Because ay is the value of Y when JT « 0. When X « 0, dx * -‘•Mx,
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Example 69.

—

Calculation of Coefficients of Regression Directly
FROM the Raw Observational Data.

—

{Continued)

With the data of the example these become

ay « 795 - 7.68 X 105 = -11.4

ax * 105 ~ .129 X 795 - 2.4

Hence the regression equations are

Y = 7.68X - 11.4

X - .129F + 2.4

From these the regression lines can readily be plotted. A straight line

can be plotted from any two known different points on it. With the data
in this form, the simplest way to plot the regression lines is to mark the

point X « Mxt Y ^ Myy since both lines must pass through this, then to

draw the regression line of Y through X = 0, Y = ay

^

and that of X
through X = axt F =* 0. If ar and ax are not calculated (and it is seldom
necessary to give them in practice), th^ simplest method is to take an
arbitrary integral difference of X from the mean, such as 10 or 100, and
then to calculate the corresponding value of F, as follows:

The coordinates sought are {Mx -f- dx) and (Afr -f dr), Mx and My
being known and dx arbitrarily selected, dy = hyxdx) so My dy =
My “H byxdx- For the data of this example, the following might be used:

dx - 100 Afr + dy * 795 -f 7.68 X 100 - 1,563

Mx + dx = 205

So the regression line of F on X passes through the point X — 205,

F = 1,563.

dr = 100 Mx + dx = 105 + .129 X 100 = 117.9

Mr + dr = 895

So the regression line of X on F passes through the point X =* 117.9,

F « 895.

Both lines pass through X — 105, F « 795; so both can now be plotted,

second equation becomes

2(dxdr) =« 0 + 6rx2(dx)

or

2(dxdr) = 6rx2(dz)

and

brx
^(dxdr)

so F will be Mr — hyxMxt which is therefore the value of ay sought. Simi-

larly for ax*



268 QUANTITATIVE ZOOLOGY

Similarly it can be shown that

:^{dxdy)

S(4)

Xidxdr), and S(dy) can be calculated directly from the

observational data. Hence there is only one unknown in each of

these equations, brx in one and bxr in the other, and the values of

these coefficients of regression can be readily and directly calcu-

lated from the data available. Such calculation is shown in

Example 69. Figure 23 presents the data of Example 68

graphically.

The quantities S(dxdr), S(d^), and are also used in

calculating the correlation coefficient and the last two also in

calculating ax and <ty. With any given body of data it is obvi-

ously unnecessary to calculate these values separately in order

to get the correlation coefficient, standard deviations, and regres-

sion coefficients. Instead of working out brx and bxr separately,

as was done in Example 69 in order to illustrate the process, it is

thus practical to put the observations in a correlation table and

to get all the desired constants or parameters from this one table,

which can be done with very little more work than the calculation

of any one of them. In fact, since brx and bxr use only summa-
tions also entering into r, axj and ctf, it is possible to obtain the

latter first and then to calculate the regression coefficients from

them, by these equations:

brx = r
(Tx

(TX
bxr =

ay

* The equation is derived as follows:

It has been shown that

byx - Zidxdy)

Ttidx)

whence, dividing both numerator and denominator by JV,

S(djrdy)
byx =

N- N
(Footnote continued on opposite page,)
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Using these formulas on the data of Example 61 (page 230),

based on the same raw measurements as Example 69, gives

results shown in Example 70.

Example 70.

—

Calculation of Coefficients of Regression from r,

<rxf AND ary

(Same raw data as Examples 61 and 69)

From data of Example 61 we have
= 2.244

= 3.59

r = .993

ix ~ 20

ir = 100

ax = ixai^ = 20 X 2.244 = 44.9

ay = iyai^ = 100 X 3.59 = 359

= .993 Xm = 7.94
crx 44.9

hxr = = .993 X^ = .124
ay d59

The results do not differ significantly from the more accurate values

obtained in Example 69. The differences shown are principally caused by
the coarser groupings of the observations and the greater rounding of

various values in Example 61. Carried out with equal accuracy, the two
methods give equal results. In this instance the less accurate but much
more easily calculated values are accurate enough for practical purposes.

Since, in cases where it is worth while to calculate the regression

coeflScients, it is usually advisable also to calculate r, cry, and ax,

this is the usual method of obtaining these coefficients. It is to

be emphasized, however, that this is only an arithmetical device

But

so

2

byx
Xjdxdy)

Na^x

and multiplying numerator and denominator by o-y and then factoring

brx
S(dxdy)<rr

Nvx^y

Zjdxdy)

Naxay

But it was shown in Chap. XII that S(dxdy)/Ar<rx<rr ** r

SO brx •“ r(ay/ax), and it can similarly be proved that bxr « r(ax/aF)*
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adopted for convenience and made possible by the fact that

some of the same values enter into the calculation of various

of these coefficients and standard deviations. The formulas do

not obviously suggest a clear and logical relationship of the

various concepts involved and for this reason have been intro-

duced only after the calculation of hrx and hxr from the original

data was explained. The formulas may suggest that hvx (and

hxYj understood to be analogous) is a sort of transformed r and

so is, like 2, in some way a measure of dispersion about the line

of trend. This is not true. The arithmetical derivation of hrx

in this formula removes from its value any measure of dispersion.

The dispersion (as involved in least squares) is used to fix the

line taken as that of regression, but the coefficient of regression

measures the slope of the line so determined and has nothing more
directly to do with dispersion.

Conversely it might be supposed from this formula that r is

a transformed regression coefficient and has something to do

with some line and its slope, but this is equally untrue. It is a

measure of dispersion only, with no direct relationship to slope. ^

From these equations certain interesting and useful relation-

ships between the two regression coefficients and that of cor-

relation can be deduced:

One regression coefficient always has numerical value ± 1 or less (and a

value of exactly ±1 is of course very rare).*

^ It seems easier to study correlation and regression in that order, and
it is customary and usually easier to caculate r first and then get the regres-

sion coefficients with its aid; but logically and historically r is based indi-

rectly on the regressions, not the latter on it. r measures the scatter or

dispersion of the observations about the regression lines. This does not

directly influence their slope, but it does influence their divergence from

each other: when they coincide, r = ±1; and when they are at right angles,

r « 0. This divergence can be expressed in terms of the two slopes. It is

thus true that r is both arithmetically and logically a sort of average of the

regression coefficients. It is, in fact, their geometric mean,

r *» y/hrxhxY-

•The maximum value of r is ±1; so from their equations with r, <ry.

and irx, the maximum value of hrx is ±(l/fexr). If hxr is greater (arith-

metically) than ±1, then this expression and hence the maximum value of

hrx must be less than ±L If 6xr » ±1, then hyx tn&y also be ±1 or

less but cannot be greater.
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The other regression coefficient may have any value from +00 to — oo.i

Both regression coefficients and r have the same sign; all three are posi-

tive, or all three are negative.*

byx, bxY) and r may all be equal, and in that case all are necessarily ± 1,

a condition almost never obtaining with real data. If any two of these are

equal, then the other is also equal, and all are ±1.’*

Unless all three are ± 1, one regression coefficient is always less than r

and the other is always greater than r,*

If r « ±1, the two regression lines coincide, but the slope and hence the

value of the corresponding regression coefficient of either of these may be

anything and is independent of this value of r. When the lines coincide,

r is always ±1 (unless the regressions are horizontal or vertical), and the

regression coefficients are always reciprocals.^

If r « 0, either the regression coefficients both are 0, or one is 0 and the

other is infinity. The regression lines are thus either coincident and hori-

zontal or vertical or at right angles, one horizontal and one vertical. If

they are at right angles, they are necessarily horizontal and vertical (because

otherwise they would not have the same sign), and r is necessarily 0. If

they are coincident and both horizontal or both vertical, r may be 0 but

may theoretically have any value between -hi and —1; this condition,

however, practically never occurs in real data unless r is 0.*

^byx = r(<rr/c7’x), and bxY = ^(o^xAr); so byx = r^/bxy and

bxY *= r^/byx^ As either regression coefficient approaches 0, the other

approaches ± 00 .

* Not subject to rigid mathematical proof. Tliis is, in fact, a convention

expressing the logic of the situation, not an inevitable numerical result.

byx and bxY necessarily have the same sign; but mathematically, however,

r does not naturally have any sign and is in reality always ± (since, mathe-

matically, our <r is ±), but it is conventionally agreed to give it the sign

of the regression coefficients.

* This follows in a simple and obvious manner from byx = r^lbxY and

byx “ r{<ry/cx)i bxY = r(ajr/<rr).

4 Bs r*/bxY- If bxY is greater than r, byx is less than r. If bxY *
both of these and byx are ±1. If bxY is less than r, byx is greater than r.

* When r »> ± 1 there is no scatter, all the observations are on one line,

and this must represent both regression lines. Also since byx ® r*/bxy

and bxY ** r^/byx, if r is ± 1 it necessarily follows that byx = l/bxY and

bxY ^ l/6rx; but either coefficient alone remains independent and may
take any value whatever, subject only to the conventional (logical), not

mathematical, requirement that all three coefficients have the same sign.

* byx =* r^/bxY- If r « 0, the equation can be satisfied only by

byx ** 0 bxY ** 0

byx ** 0 bxY =« ± 00

byx » ± bxY — 0

When brx « 0 and bxY * 0, only r * 0 satisfies the equation. But

when byx “ 0 and bxr « ± « or when byx « ± « and bxy • 0, any
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If r has any value between but not equal to 0 and ± 1, the two regression

coefficients are not reciprocals, and both cannot be 0, they cannot be equal,

and one may but both cannot be ±1. The regression lines cannot coincide

and cannot be at right angles but will be between these two conditions, and

one of them can have any slope (the slope of the other being dependent on

that of the one considered independent). The larger the value of r, the

greater the divergence between the regression coefficients.

The ratio Y/X is constant (has the same value for any defined class of X)
when My/Mx = brxi and the ratio X/Y is constant when Mx/My = hxY.

Both cannot be constant unless r — ±1, which practically never is true with

real data.^

This last relationship is particularly important in zoological

numerical theory. The extensive use of ratios in zoology is

based on the assumption, sometimes expressed and almost always

implicit, that ratios tend to be constant whatever the absolute

value of the measurements entering into them. The approxi-

mate equivalence of MyjMx to hyx and of MxfMy to hxr will

show whether this is really true or not. Often it is suflSciently

so for practical purposes; but it may not be, and the assumption

is not always justified. Ratios should be and will continue to be

used because of their simplicity of calculation and obvious

logical meaning; but the relationships that they seek to express

value of r satisfies the equation. The statements regarding the regression

lines follow inevitably from these relationships of their slopes.

1 r == aj. -f. hYxX
so

+ 6rx

This value of Y/X contains the variable X and is itself necessarily variable

unless the expression involving X is 0. This is always true and is only true

when or is 0, when Y/X = hyx, which is a constant.

But

Or — My — byxMx

and Y/X is therefore constant when and only when

which is the same as

0 = My — byxMx

My
Mx bYX

Similarly X/Y m constant when Mx/My « bxr.

If both Y/X and X/F are constant, it follows from these equations that

hrx =* l/bxYt and this is only true when r is ± 1.
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are much more accurately expressed by correlation and regres-

sion, and the latter are much more reliable than ratios. For

the data of Example 69,

My _ 795

Mx 105

Mx ^ 105

My 795

7.57

.132

hyx = 7.68

hxY = .129

Both ratios are very nearly constant, r has an extraordinarily

high value in this example. If, as is much more common,
r were lower, one or both of these ratios would be significantly

inconstant.

The regression coefficients show the slope of the regression

lines but do not show their absolute positions. These can be

fixed only by giving a point through which each line passes.

Mathematically the points X = 0, F = ar, and X = ajc, F = 0,

are perhaps the most natural ones to choose, for ay and ax are

constants in the most general form of the regression equations;

but these are seldom the best and are not the customary values

to give in practice. In the first place they require the calculation

of two numbers not needed for any other purpose; and in the

second place they have no real and logical meaning when,

as is true of so many zoological problems, X and F do not, in fact,

ever take the value 0. The values ol Mx and My are adequate

and are the most natural and useful means of fixing the absolute

position of the regressions. The single point determined by
these is on the intersection of the lines and so fixes both of them;

it thus has a special and important meaning; and Mx and My are

always needed in any case, and therefore their use involves no

additional calculation.

Adequate study and representation of the (rectilinear) rela-

tionship between any two variables thus call for:

1. A measure of scatter about the lines of trend, or of the intensity of

trend, r measures this and is useful in further calculation; and its trans-

formed value z is the best measure.

2. Measures of the two directions of trend or slopes of the regression lines.

hyx and bxy are the best measures of these slopes.

3. A measure of the absolute position of the regression lines. Mx and
My are the best measures for either line.

Thus in such problems the values of r, z, hyx or hxr or both,

Mxi and Jfr should be calculated and given. Generally the
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separate distributions of X and Y are also pertinent, and the

whole family of values (each, except 72, and r with its stand-

ard error) best given for the complete elucidation of such prob-

lems is:

For X For r
Nx Nr
Rx Ry
Mx My
<rjr OY

Vx Vy
bxY hyx

For both

rxY (and sometimes rxr^z or other partial correlation)

SIGNIFICANCE OF REGRESSION

One of the purposes of the regression coefficient is to predict

what value of the dependent variate will correspond with a given

value of the independent variate. Except in the usually only

theoretical case of perfect correlation, such a prediction cannot be

exact, for in practice the relationship is itself variable. That is,

several somewhat different values of Y may be observed in com-

bination with any one value of X. An array of values of F, con-

sisting of all those coupled with a single value or class of X, thus

has its own distribution and its own standard deviation. Gener-

ally the mean of the array will be a point on the regression line or

will, in other words, be the value of F predicted by the regression

equation. It would be possible to obtain a standard deviation

for each array of F, but this is not practical because it entails very

laborious calculation and because the number of observations in a

single array is often too small to give a useful standard deviation.

The usual practice is to obtain a combined standard deviation

for all the deviations of F from the regression line. The variance

will be the sum of all the squares of all the deviations of F from

the corresponding values of F, represented as Fc, calculated from

the regression equation, divided by N or, for small samples, by
(iST — 2). The standard deviation sought is th«n the square root

of this figure, or

_ /S[(F - F.)*]

\ N -2
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using the formula in the form valid for both large and small

samples. This special sort of standard deviation is called a

standard error of estimate and symbolized as Svy Y being con-

sidered the dependent variate.

The calculation of the formula as written may be labori-

ous because it calls for several series of calculated values, Ycj

(F — Fc), (F — Fc)^ and the summation of these, that are not

required for any other purpose. It can be transformed into an
arithmetically equivalent expression using only values already

known and thus reducing the work to a relatively short arithmeti-

cal operation.

* S[(F - F.)2] = s(F2) - NMlr -
Hence,

So,

Hence,

So

Sy

Sr ~

2(F») - NMl -

JV - 2

2(r*) = NMlr = 2(4)

[2(dx<ir)l*
4:

[2(4)]*

2(4) - [2(44)1*

2(4)
‘

[2(44)1*
1 -

'Si(dx)

N
{N - 2 )

]S(<ix)S(djr)

s(4)

2(4) - Ar4

Sy <ry\/l —
ijr

For large samples, N may be used in place of (N —
2),, so that the final

expression is simply

Sy ery'\/l — r*

On the other hand if, as is sometimes done, (iV *- 1) is used for N in

obtaining the formula becomes

Sy «* iry\/l ""
|
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Calculation and meaning of this value are shown in Example
71.

Example 71.

—

Calculation of Standard Error op Estimate for the
Data of Example 70

r = .993 AT « 19

cry = 359

Sy = = 359Vl - = 359 X .117 X

1.057 = 44.4

Considered as a standard deviation for any array of F, this measures the

probability that an observed value of F will differ by a given amount from

Fc, or the probable range about Ye (the calculated regression value) of F.

Thus for X = 100 the regression equation Ye = 7.68X — 11.4 (see Example

60) gives Fc =* 768 — 11.4 = 756.6, which is the calculated value of F, or

the probable mean value of its array, when X == 100.

Taking ±3<r as the probable range, the theoretical upper limit for F is

Ye 4- SSy = 756.6 -f 133.2 = 889.8, and the theoretical lower limit is

Fc — 3<Sr = 756.6 — 133.2 = 623.4. This means that if X is 100, the

data of this example prove, for all practical purposes, that F will be between

623.4 and 889.8.

Prediction of the sort made possible by the standard error of

estimate is sometimes highly important and useful. A principal

use of the standard error of estimate is, however, to obtain an

expression for the standard error of a regression coefficient. This

coefficient has taken into account not merely the dispersion or

deviation of the dependent variate but also that of the inde-

pendent variate. Its variance is that of Y for any given value of

Z, divided by the sum of the deviations ofX from its mean. The
standard error abn is thus

If Sr is not needed, it is simpler to calculate this from previous

data by one of the following equivalent equations:

[Footnote continued on opposite page,)
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The calculation is shown in Example 72.

Example 72.

—

Calculation of Standard Errors of Regression
Coefficients for the data of Example 70

N = 19 ax =* 44.9 byx = 7.94

r =a .993 ay = 359 hxy = .124

1 - _ 359^/1 - .993* ^

ax^A - 2 44.9 > 17
'

<rb^y =
— r*

r - 2
~ 44.9

359
X .0282 == .0035

)\/-
.0239

17
= 8 X .0282 = .23

Thence the two coefficients are:

hyx = 7.94 + .23

hxY = .124 ± .0035

As with other standard errors, that of a regression coefficient

can be used to test the significance of its deviation from 0 or any
other given or hypothetical value. The deviation is divided by
the standard error and the significance judged from a table of t

(using the Ni N 2 column) or for large samples from a table

of d/or.

From these concepts and operations it is possible to proceed to

an estimation of the significance of the difference between two
regression coefficients by a method analogous to that for the

difference between two means. The regression coefficients are

so,

xr

SO,

4
4(1 - t>)n

-2")
(the same as the second equation above)

2 (4 )
= Nal

Ob
YX

jorfi - r»\ ^ ov
/

\oj^\N - 2/ ox\
1 — r*

N~^
This last formula is valid for small or large samples and whether ax and ay

have been calculated as \^x(d^)/N or as For large

samples, only, the approximation

YX

is adequate. If ay was taken as WX{dY)/{N — 1), then the second form

of the formula becomes

ab
YX

for small samples.
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themselves complex measures; and this operation hence becomes

very intricate, especially if the formula is made valid for small

samples and for samples of unequal size, as it must be to have

much utility. It is a more complicated procedure than almost

any other given in this book; but it may be necessary in some
research, and so it is given. The formula is

4
- rf) + - rl)f 1

Ni + Ni y
or,

4
S(d*,)(l - r?) + S(d*.)(l - r|)

Ni + Ni- ^ (s(d|,) + S(d|.))

The second form is somewhat more accurate in dealing with

original data. The first uses only parameters usually published

and so is helpful in comparing with previously published results.

They are exactly equivalent, but rounding often makes the

arithmetic results slightly different. The first assumes that cr

is calculated as \/ l(d^)/N, *

^ Significance is tested by taking the difference between the two

regression coefficients, dividing by ad^, and entering a table of

using the value of (Ni + N2 — 2) in the (iV'i + A^2 ) column or of

(Ni + Nz ~ 3) in the N column.^

The calculation and use of this measure are shown in Example
73.

Cumbersome as this method is, it is the only one that permits

reliable comparisons of regressions. Such comparisons are often

essential, and the method therefore cannot be neglected in any

competent review of numerical methods for zoology. Differences

in regression may characterize not only sexes, as in the example

given, but also age groups or taxonomic units. Differences in the

regressions of time series and growth functions, as in relative

rates of growth under different conditions or in different species,

* The meaning of the operation is brought out in more detail by Fisher.

His procedure is very unlike ours but leads to essentially the same result.

Ours brings together all the operations into one formula and expresses this

in terms of values that may be assumed to be alread}^available when this

stage of study is reached.

^ For large samples a table of d/<r may be used. For such samples also,

(Ni ’i’ Ni) could be used in place of (JV^i + Ni — 4); but this is hardly any
easier, and the formula as we give it applies to samples of all sizes.



REGRESSION 279

Example 73.—Significance of the Difference between Two
Regression Coefficients

Regression of tail length on total length in males and females of Lampropeltia

polyzona (raw data from Blanchard 1921)

Sample 1

Males
AT * 24

2(4) = 55,020

2(4) « 2,275,088

try ~ 48

<Tx =* 308

r = .982

hyx « .153

Sample 2

Females

AT = 19

2(4) = 40,710

2(4) - 2,419,218

cy — 46

fTx = 357

r = .993

hyx - .124

4
Ari4^(l - r\) -f N^^ya - r\)

Nx + A^2 - 4

V'

p__+_L_)

24 X 2,304 X (1 .982») -f 19 X 2,116 X (1 - .993*)

24 + 19-4

V(
1 1

4
24 X 94,864 ^ 19 X 127,449^

1,974.0672 + 562.8560/ 1
+ OA39 V27276,736 ^ 2,421,531>

= ^65.0493 X700000085 = V.000055291905 « .007436

It is, of course, unnecessary to work both formulas, but that will be done
here to demonstrate that the results are substantially the same.

- V'

2(<ii.)(l - rl) + S(4,)(l - r*)/
1

Ni+N,-4 \S(d^,) ^ 2(di.)/

'56,020 X .0367 + 40,710 X .0140/ 1

'

1 >

39 A2,275,088 2,419,218j

-v/64.9783 X .00000085 = ^ 000056231666
.007432

This is not significantly different from the result reached by the first

formula. That it is different at all is caused by the different rounding in

the two sets of data. The second formula goes back one step farther for

its data and so is somewhat more likely to be reliable.

db «* hyx.

t
(h

- .153

.029

.007
“

- .124

4.14

.029

Ni + ATi — 2 »• 41. In the table of f, it is found that for any value of

(Ni + ATj — 2) greater than 5, a value of t « 4.1 gives a P smaller than .01.

The difference is therefore significant. The regression of tail length on total

length is significantly different in the males and females of this species.
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are also highly pertinent in various zoological problems. These

special uses of regressions are discussed more fully in Chap. XVI.
The adequate measurement of regression is itself so complex that

even long experience seldom permits reliable judgment of

significance without a check by actual calculation.

CURVILINEAR REGRESSION

If a regression line is really curved, as is not infrequently true,

the measures r and h may give misleading results. Since r is an
inverse measure of relative dispersion about a straight line, it

tends to give too low a value if the regression is not straight. The
observations may be perfectly linear along a smooth curve and
hence really be perfectly correlated, but they will obviously show
deviations from any straight line that can be drawn and hence

give a value of r less than 1. Similarly h shows only the slope of

a straight line, and this may give a sort of average for the curve

but will not be a good or reliable description of it. Moreover the

curved line may have positive slope for part of its course and

negative for part, so that the two parts may tend to neutralize

each other when a straight line is used and give still more mis-

leading values of r and 6,

The equation for a straight line has only two constants, a and b

as symbolized above, and is entirely determined by a single regres-

sion coefficient and a measure of absolute position, like ay or Mx
and Afr. A curved line, on the other hand, requires the deter-

mination of at least two coefficients for each regression and often

requires many more. The calculation of these coefficients

becomes very laborious as they increase in number, and the

results also become less reliable. Even for curves that follow a

relatively simple formula, the use of regression coefficients is

seldom practical. For more complex or for irregular curves it

may be impossible, and there is no general solution to the problem

of fitting curved lines to regressions. The use of any regression

coefficients for curvilinear data is so seldom practical in zoology

that their calculation is not discussed here, but only some approxi-

mate methods of studying such regressions without the use of

coefficients.^ (One very important special curved

regression is, however, discussed in detail in Chap. XVI.)

‘ The calculation of coefficients for a few types of curves has been worked

out by some statisticians. Fisher discusses their calculation for curves of
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If a regression is curvilinear, it may still be studied in one or

more of the following ways:

1. The method of rough graphic approximation given on page 269 is as

valid for curves as for straight lines and usually gives a fair visual conception

of the relationship although it does not measure this.

2. If the curve is slight and its sloi>e has the same sign throughout, the

values of hyx and hxr are often sufficiently good approximations to serve all

practical purposes.

3. With some data it is possible to divide the curve into segments, each

of which is nearly rectilinear, or to select one nearly rectilinear segment that

is in itself pertinent to the problem, and to apply rectilinear measures
separately to these segments or to this one segment.

4. It may be possible to convert the data of the curve into some form still

pertinent to the problem but rectilinear in regression or nearly so. The
only relatively simple and important way to do this is in special cases where
representing values of X, F, or both by their logarithms makes the regression

approximately rectilinear. The particular condition is that rate of change

as a proportion remains constant although absolute change does not. For
instance, the following is a (hypothetical) curvilinear regression that becomes
rectilinear if the values of Y are replaced by their logarithms

X Y

1

2

2 4

3 8

4 16

etc. etc.

because F is doubled each time that X increases by one unit.

THE CORRELATION RATIO

Pearson has devised a measure of correlation that is valid

without regard to the form of the regression line and that thus

presents a solution of the general problem of correlation for almost

any relationship of two variables, no matter how irregular. This

is called the correlation ratio and is usually symbolized by t)

(Greek lower-case eta). This quantity is the square root of one

minus the ratio between the square of the mean standard devia-

tion within the separate arrays and the square of the standard

deviation of the whole distribution for one of the two variates.

the general form F a -f -h cX* -f dX*. ... He also discusses regres-

sions corresponding with multiple and partial correlations, which we likewise

omit as being very complex and seldom of much practical use to zoologists*

The curved regression F * bX* is common in zoology, see Chap. XVI, where

the calculations of 6 and k are explained.



282 QUANTITATIVE ZOOLOGY

The value is essentially the same whichever variate is used.

Study of any correlation table will show that the mean standard

deviation of the arrays will be about the same as that of the

whole distribution if the correlation is low or about 0. Hence in

such a case the ratio will be about 1, and 1 minus it will be about

0. On the other hand, the higher the correlation, the smaller will

be the mean standard deviation of the arrays relative to that of

the whole distribution, and hence the larger the value of 1 minus

the ratio. If the correlation is perfect, the mean standard devia-

tion and hence the ratio will be 0, and the value of r\ will be

i 1.

For rectilinear correlation the value of rj is essentially the same
as that of r. If the correlation (or regression) is curvilinear,

however, r will underestimate the intensity of the correlation, but

rt will still measure it reliably. The difference between r and rj

is therefore also a measure of whether the regression is in fact

significantly curvilinear.

rj can be calculated much more simply than would appear from

its derivation because it can be shown that the following simple

formula gives the desired arithmetical result:

(TX

in which ctmj is the standard deviation of the means of the arrays

of X. ^ This new datum is relatively easy to calculate, and on the

whole ri can be obtained as easily as r, if not more easily. As a

first step it is well to calculate the rough regression as in Example

^ By definition 77* « 1 — if the mean standard deviation of the

arrays of X be represented by

From this

But it can be shown that

Therefore,
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68, for this gives at once the array means and frequencies needed

to calculate (jmx * This further work is shown in Example 74.

Example 74.

—

Calculation of the Correlation Ratio for the Data
OF Example 68

A. Using the distribution of X

Arrays

(K)

Mean of X
for each array

(Ma^)

— Mx
id)

/

14.0 12.5 .5 .25 1 .25

13.5 12.9 .9
i

.81 5 4.05
13.0 12.4 .4 .16 4 .64

12.5 12.3 .3 .09 7 .63

12.0 11.5 - .5 .25 2 .50

11.5 11.0 -1.0 1.00 1 1.00

11.0 11.2 - .8 .64 3 1.92

10.5 10.5 -1.5 2.25 2 4.50

10.0 10.0 -2.0 4.00 1
1

4.00

II 05 S(/d2) * 17.49

=* -v/17:49726 « .82 n ^ - .82/.95 - .863

<rx * .95

B. Using the distribution of Y

X d /

13.5 13.0 .7 .49 ' 2 .98

13.0 13.1 .8 1 .64 4 2.56

12.5 13.3 1.0 1.00 6 6.00

12.0 12.3 0 0 3

11.5 1 12.3 0 0 4

11.0 11.4
j

- .9
1

.81 4 3.24

10.5 10.5 -1.8 3.24 2 6.48

10.0 10.0 -2.3 5.29 1 6.29

26 24.55

ffur « V24:65/26 - .97 i, = .97/1.12 « .86

cry * 1.12

This result is practically the same as that based on X. r for these same
data is .92.
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Blakeman has suggested several tests of the significance of the

difference between rf and r. The following, modified after one of

his formulas, is generally valid for samples of moderate or large

size:

d _

Its use is shown in Example 75.

Example 75.—Comparison of r and 77, Data of Example 74

r = .82 r* = .6724

r, = .86 = .7396

- 26

d ^ .0672
*

2a /.0672T72^4* - .3276* -f T)
V 26

This is not significant. Hence the data do not show this regression to be

curvilinear.

1 - r 2 = .3276

1 - 77® = -2604

772 - r* = .0672

.0672 ^ .06^

2V^56^ '09^6

Although 7) is relatively easy to calculate, perhaps easier than r,

and applies to straight, curved, and many irregular regressions

and not, like r, only to those rectilinear, it has so many disadvan-

tages that it is not a very useful measure except as a makeshift

for strongly curved regressions and as an approximate test of

rectilinearity. One of the worst of these disadvantages is that it

is not strictly consistent. Samples from a population that really

has no correlation between two given variates will tend to give

values of 7; definitely greater than 0.^

* The difference is sometimes significant, and the possibility makes an
unreliable constant. Pearson has proposed a correction giving an approxi-

mate but somewhat more reliable value.

77'

ik - 3)

N
ik -S)
N

in which 17
' is the corrected correlation ratio and k is the number of arrays.

In Example 76 this would be

“ -*2

This differs still less from r than does 77, but the latter showed no significant

curvilinearity and so was not misleading, nor is it generally unless near the

limit of significance. The value 26 is a rather sm^ iV for the use of 17 in

this way, although quite large enough to give good estimates of r and z.



CHAPTER XIV

ASSOCIATION

Correlation is possible only between variates with definitely

ascertainable numerical values^ and when each variate takes a

considerable number of different values. The last two chapters

have suggested how wide a variety of important problems may be

treated by the methods of correlation and regression, but there

remain many problems of a similar sort not subject to these

methods.

Association is a relationship such that some category of

observations tends to occur together with a category of some
other given sort of observation more often than can be ascribed to

chance alone. It reveals the existence of some kind of connection

between two or more sorts of observations. Correlation is a

special sort of association in which all the categories are numerical

and each set of observations is divided into multiple categories.

It is also necessary to have some method of detecting the presence

of association when nonnumerical categories are included in the

data or when a set of observations falls into only two categories

or into a number too small to give reliable results by correlation

methods. The general types of association not susceptible of

correlation can be summarized and exemplified as follows:

1. Between a variate with multiple categories and a variate with few

categories, e.g.^ between depth of burrow and larger or smaller animals.

2. Between two variates with few categories, e.g., between counts of

dorsal and anal fin rays of fish, distribution of each only covering two or

three classes.

3. Between a variate with multiple categories and an attribute, e,g,^

between weight of fishes of a given species and geographic location.

4. Between a variate with few categories and an attribute, e,Q., between

number of cuspules on a tooth and stratigraphic occurrence of a fossil

mammal.
6. Between two attributes, c.g., between sex and susceptibility to disease.

^ Except rank correlation, which is possible without ascertaining any

absolute values. Rank correlation is, however, only an approximation,

and it is limited to variates the values of which, whether exactly known or

not, do follow a definite and known serial order.

285



28Q QUANTITATIVE ZOOLOGY

The same general methods can be applied to all these different

problems and to any analogous to them. The variety of prob-

lems that can be treated by general methods of association is,

indeed, much greater than of those that can be dealt with by cor-

relation, and their importance is not less, o It should be noted,

also, that a variate for which only inadequate or inaccurate data

are at hand can often be tested for association even though a

correlation coefficient could not be based on it. It is necessary

that the data suffice only for a reasonably good division into two

or more categories. For instance, association may be tested by
merely dividing a sample into smaller and larger observations by
rough measurement or without actual measurement. Likewise a

series of observations of a variate with multiple categories can be

arbitrarily divided at any point into two parts and its association

with some other variate or with an attribute tested, a procedure

that may greatly simplify problems and reduce the work involved

in studying them.

CONTINGENCY CLASSIFICATIONS

The simplest instances of association are those in which each

set of observations has two categories. For the combination of

the two sets, there are then four possible categories, and data

arranged in this way are said to be placed in a fourfold or 2 X 2

classification. For instance, in studying the association of sex

and susceptibility to disease, one set of observations has only the

two categories, male and female, and the other only the two, well

and diseased. The combination has the four categories:

Male and well.

Male and diseased.

Female and well.

Female and diseased.

This can also be arranged as a dichotomous classification

:

/xyr 1
iWell

j

ae
^Diseased

(Female—

.

\ ( Diseased

In practice it is usually most convenient and cotnprehensible to

arrange the data in what is called a contingency table, a set of
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rectangular cells with the categories of one set of observations

labeled at the top, those of the other at the left side, the corre-

sponding frequencies entered in the cells, and the totals of rows

and columns to the right and below the table. Such a table is

shown in Example 75.

Example 75.

—

Contingency Table op Geographic Locality and
Number op Serrations on Last Lower Premolar in Closely Similar

Members of the Fossil Mammalian Genus Ptilodus

(Original data)

Number of serrations on Pt

Less than

14

More than

13
Totals

Montana 8 21 29

New Mexico 6
1

° 6

14
1

21
1

35

General form of such 2X2 tables

First attribute or variate

1st category 2d category Totals

1st category a b ct “f* 6

2d category c d c -f- d

Totals
1

O “f" c 5 + d a + b + c d - N

In order to test whether such data show any association, it is

first necessary to establish what the frequencies would be if there

were no association, z.€., if the two sorts of things observed were

completely independent. Obviously the numbers of observa-

tions in the two samples have nothing to do with association, nor

have the total numbers of observations falling into any one

category. The marginal totals, in other words, have no direct

bearing on association, and in any specific problem they are to be

taken as given and immutable. The next step is, then, to see

what distribution of frequencies within the cells would give the

marginal totals actually observed and would show complete

theoretical agreement with the hypothesis that the two sets of

observations do not influence each other.
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These conditions would be fulfilled if the total (a + 6) were so

divided that a and h had the same ratio as (a + c) to {h + d) and

if all the other analogous ratios between cells were made equal to

those between marginal totals. This would show complete

independence; for then the cell frequencies would follow entirely

from the totals, and the totals are not affected by any dependence

between the two sets of observations. The conditions to be filled

are, then, to keep the same totals and also to make

A _ {a + c)

B “
(6 + d)

C _ (a + c)

D (b + d)

A _ (a + b)

C (c + d)

B _ (a + b)

D (c + d)

in which capital letters are used to indicate theoretical frequencies

consistent with independence and lower-case letters to represent

the observed totals. All the theoretical frequencies could be

calculated by using these as simultaneous equations, but it is

more convenient to use formulas by which each theoretical fre-

quency can be calculated separately and directly from the

marginal totals. The formulas best used are

. _ (a + b)(a + c)^
~N

(a + bUb + d)^ -N
^ _ (c + d){a -+• c)
^ N
^ _ (c + d){b + d)

N

The formulas can easily be remembered by the rule that the

theoretical frequency of any cell is the total for the row in which
it occurs multiplied by that for the column in which itoccurs and
divided by the total frequency. *

A contingency table can be made with any number of cells, and
the rule for finding the theoretical frequencies is the same what-
ever the size of the table. In practice there are seldom both



ASSOCIATION 289

many rows and many columns in a table. 2X2 tables are the

simplest and also the most common, 2X3, 2X4, and 2X5
tables are not uncommon, and 3 X 3 or 3 X 4 tables may also be

useful occasionally. Larger tables are cumbersome and are

seldom necessary. If a set of observations is on a variate and has

many categories, it is usually better to lump these into two or,

exceptionally, three. Attributes seldom have many categories

and can often also be lumped if they are too finely subdivided for

ease of handling.

The work of calculating theoretical frequencies in a simple

2X3 table is shown in Example 76.

Example 76.—Contingency Table of Number of Serrations and
Length of Last Lower Premolars of the Fossil Mammal Ptilodus

montanus and Calculation op Theoretical Frequencies
ON the Hypothesis of Complete Independence

(Original data)

Length
Serrations

Totals

13 14 15

>7.9 mm. 15

<8,0 mm. 14

Totals 8 19 2 29

The theoretical frequencies are entered in the upper left corners of the cells.

They are calculated as follows:

15 X 8 * 4.1
15 X 19

29 29

15 X 2 = 1.0
14 X 8

29 29

14 X 19 = 9.2
14 X 2

29 29

With a slide rule or machine these can be calculated easily and immediately

from the table, and it is not necessary to put down any of the arithmetic.

TESTS OF SIGNIFICANCE

It is not to be expected that the frequencies actually observed

in samples will correspond exactly with the theoretical frequencies

or with their nearest integral values even if the variates and

attributes studied are really completely independent in the
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population. Chance necessarily plays a part, and the chance of

complete agreement is always very small. What is needed, then,

is to determine the probability that deviations from the theoreti-

cal frequencies equal to those observed could have arisen by
chance in sampling a population in which the true proportions

were those indicated by the theoretical frequencies. If such

deviations could have arisen by chance, the data do not prove that

the hypothesis of independence is inapplicable. If they could not

have arisen by chance, then there is a significant disagreement

with the hypothesis of independence, and it follows that there is

significant association in the population.

The exact probability can be calculated,^ but this process is too

complicated to be satisfactory for practical use. It has, however,

been shown that if for each cell the deviation of the observed from

the theoretical frequency is squared and divided by the theoreti-

cal frequency, then the sum of these values for all the cells has a

determinable distribution, depending also on the complexity and
arrangement of the table, from which the desired probability can

be determined.^ This sum is generally called (Greek chi).

For a 2 X 2 table it is

ay (B - by (C -- c)2
,

(D - dy
^ " A B C ~ D

—and so on for larger tables, adding an analogous expression for

each cell.

If the probability had to be calculated from in each case,

the work would be so difficult that the method would have no

practical value, but this work has been done once for all, and

corresponding values of x^ and of P have been tabled. The
distribution of x^ depends on the number of degrees of freedom in

the contingency table, so that this value must also be known in

order to determine P from a table of x^* The number of degrees

of freedom is the number of cells that could be filled in arbitrarily

without disturbing the marginal totals. In a 2 X 2 table there is

only one degree of freedom: if one cell is filled in, this determines

the numbers that have to be placed in all the other cells in order
i

^ Fisher shows the procedure.

* The proof of this statement and the calculation of the parameters of

the distributions and of the probabilities are so complex and difficult

mathematically that they are not given here.
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to give the observed totals. In a 2 X 3 table there are two
degrees of freedom. The degrees of freedom can be determined

most simply by the rule

n = (r — l)(c — 1)

where n = the number of degrees of freedom.

T = the number of rows in the contingency table.

c = the number of columns.

(Or r and c are the numbers of categories in the two sets.) Thus
for a 3 X 6 table, n would be (3 ~ 1)(5 — 1) = 8. With this

and the value of x^, Table XII shows the relationship of the value

of P to the critical values concerned in estimating significance.

If P is small, the data show significant association. The criteria

of significance of P are the same as for tables of d/o- and P and of i

and P, since P has the same logical meaning wherever it is used. ^

If the theoretical frequencies are not desired for any reason

except the calculation of x^ this can be simplified by following

the formula

, _ N(ad - bey
^

(a + b)(c + d)ia + c)ib + d)

for a 2 X 2 table. For larger tables it is generally simpler to

calculate the separate values for each cell, as explained previously,

except that in the special case of tables with two categories in one

classification and two or more in the other there are special

methods the most useful of which will be explained later.

The calculation of x^, both directly and by calculating the

contribution to it of each cell, and its use in testing significance of

association are shown in Example 77.

' Values for large numbers of degrees of freedom are seldom necessary for

study of contingency tables; but x* bas other useful applications, as will be

shown, and sometimes these involve many degrees of freedom. {Several pub-

lications give more elaborate tables of x*, that in Fisher (on which our much
simpler table is modeled) being perhaps the most convenient. For the

higher values of n, generally above 30, the distribution of \/2x* is approxi-

mately normal about \/'2n — 1 as a mean with 1 as its standard deviation.

The probability can therefore be adequately estimated under these con-

ditions by calculating

\/5x* — V2n — 1

and considering the result as a form of d/c.
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Table XII.

—

Values of x* Corresponding to Given Values of P and
Given Degrees of Fipjedom

Degrees of
P

freedom
.1 .05 .02 .01

1 2.7 3.8 5.4 6.6

2 4.6 6.0 7.8 9.2

3 6.3 7.8 9.8 11.3

4 7.8 9.5 11.7 13.3

5 9.2 11.1 13.4 15.1

6 10.6 12.6 15 0 16.8

7 12.0 14.1 16.6 18.5

8 13.4 15.5 18.2 20.1

9 14.7 16.9 19.7 21.7

10 16.0 18.3 21.2 23.2

12 18.5 21.0 24.1 26.2

14 21.1 23.7 26.9 29.1

16 23.5 26.3 29.6 32.0

18 26.0 28.9 32.3 34.8

20 28.4 31.4 35.0 37.6

25 34.4 37.7 41.6 44.3

30 40.3 43.8 48.0 50.9

There are two important things to remember^^about any such

use of x®‘

1. The method is valid only as applied to frequencies. If the data are

expressed as proportions, percentages, rates, indices, or the like, the method
cannot be used.
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2. The result shows only the probability that deviations from the hypothe-
sis of independence are caused by chance. If this probability is very small,

the existence of dependence, that is, association, may be concluded. The
method as here given and the value of x* do not show: the degree of depend-
ence; the nature of dependence; whether the dependence is direct, true,

indirect, or spurious; what particular part of the table makes the result

significant; or whether all the cells differ significantly from the hypothesis.

The test of association thus is a necessary preliminary to any
reliable zoological conclusion, but it does not give a direct answer

Example 77.—Test of Association by x®. Dorsal and Anal Rats
OF THE Flyinq-fish, Exocoetus obtusirostru

(Data from Bruun 1935)

Anal rays
Dorsal rays

Totals
12-13 14-15

14 5 14

13
18.21^

22 29

Totals 21 16 43

A. X® from sums of contriliutions of cells:

M - a)» ^ 3^* _ 1 634
A “ 8.79

“

3^^ 2 757B 5.21

(C - c)» 3.79*

C
(D - d)*

18.21

3.79*

D 10.79

= .789

- 1.331

X* = 1.634 + .789 H- 2.757 -f 1.331 = 6.511

B. X* direct from raw data:

, Niad - 6c)*

“ (a +6)(c +<i)(a + c)(6 +</)

43(6 X 7 - 9 X 22)*

14 X 29 X 27 X 16

1,142,467

175,392
6.514

The two results agree to the second decimal place, and the third is not

significant, x* is 6.51, and n is 1. From the table of x*, P is therefore

very slightly greater than .01. Disagreement with the hypothesis of inde-

pendence is almost surely significant, and association is established by the

data beyond much doubt.
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to many of the questions legitimately referred to the data. These

may, however, usually be answered on a logical basis by reference

to the contingency table, and for this essential purpose it is

generally advisable or necessary to calculate the theoretical

frequencies. Thus in Example 77 it is plain that the observa-

Example 78.—Ratio Method op Calculating in a 2 X c Table.

Mortality op Young and Observation Substations op the Tree-
swallow, Iridoprocne bicolor

(Data from Ix)w 1934)

Substations

A B C F H M Totals

Hatched but not

fledged (a') 27 11 11 3 5 10 a » 67

Fledged (6') 28 4 9 21 14 12 6-88

Totals (a' + 60 • • 55

1

15 20 24 19 22 o + 6 = AT

- 155

Mortality ratio
1

. 4909 .7333
1

.6500 . 1250
[

.2632

t

.4645

a
» .4323

0 -f 6

i

13.2543 8.0663

1

6.0500 .3750 1.3160 4.5450
•fe)

28.9641

X2

n

SttrEints)

.

- (4t.)
-

33.6066 - 28.9641 4.6425

.4323 X .5677 ” .24542

(r - l)(c - 1) « (2 - 1)(6 - 1) = 5 P (from table) <.01

18.92

P is much less than .01, the deviation from independence is certainly

significant, and mortality and substations are surely associated in some way.
The data as here presented do not suggest why they are associated. They
do, however, show that for some reason substations B and C had remarkably
high mortality while F and H had remarkably low mortali|y, A and M being

not far from average. The calculation in this example is easier by this

method than would be calculating theoretical frequencies and contributions

to X* for each of 12 cells, and the quantities a'/(a* -f h') are ratios (mortality

ratios) highly pertinent to the problem and desirable in themselves as well

as for getting x*.
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tions show excess frequencies in cells h and c and deficiency in

cells a and d and hence that the nature of the association is that

fewer dorsal rays are more often associated with fewer anal rays,

more dorsal rays more often with more anal rays, fewer dorsal rays

less often with more anal rays, and more dorsal rays less often

with fewer anal rays than would be expected if the two variates

were independent. In other words, the association plainly has

the same nature as a positive correlation. The calculations also

show that cell h contributes the most to x^, and hence departs

most from the hypothesis of independence, and that cell c con-

tributes the least and departs the least from the hypothesis.

2 X c CONTINGENCY TABLES

If one classification has two categories and the other has two or

more, the theoretical frequencies and the cell contributions to

can be calculated as just explained and exemplified; but in some
cases another method may be more convenient and equally or

more enlightening. The data are set up in a contingency table

with two rows and two or more columns. For each column the

ratio of the number in the first row to the total is calculated, that

is,

a' + V

if a' is taken as a value in the first row and 5' as the corresponding

value in the second row. The analogous ratio is calculated for

the row totals, that is,

a

a + 5

where a == the total for the first row.

6 = the total for the second row.

The value of x^ is then

2[»'l
f a' Y
<o' + 67

.

- a|
< a \
<.a + b)

a

a 6

'

“ )]
.a + b/\

When there are many colmoons, this methodmay be quicker
;
and

it is also advantageous when, as happens, the ratios a^/ia* + V)
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and a/(a + 6) have a logical and pertinent connection with the

subject of the investigation. The calculation is shown in

Example 78.

SMALL SAMPLES

For the simplest calculation of from a contingency table as

hitherto considered, the samples should be relatively large. As
an arbitrary but generally valid rule, the number of cells with

small frequencies, say below 5, should be less than the number of

degrees of freedom. Since a 2 X 2 table has only one degree of

freedom, all four of its cells should have frequencies of 5 or greater.

If a larger table has too many cells with low frequencies, it is often

possible to eliminate these by combining categories and reducing

the number of cells. Even if the smallest possible table, 2X2,
still has cells with frequencies of 4 or less, it is possible to estimate

P from x^ with considerable accuracy, but this requires an adjust-

ment in the value of x^- The adjustment used is due to Yates

and is also discussed in some detail by Fisher.

The reason for an adjustment is that the distribution of x^ is

continuous, while that of the frequencies in a contingency table

is necessarily discontinuous. The x^ distribution is approached

as a limit by these discontinuous data, and if the frequencies are

not unduly low the approach is sufficiently close to give a valid

estimate of P from x^; but this is not reliable if the values of the

table are determined largely by very low frequencies in it. Sup-

pose, for example, that an observed frequency is 2 and that this is

lower than the theoretical frequency. What the use of x*

measures, for that particular cell, is the probability that a fre-

quency of 2, 1, or 0, that is, of 2 or less, would arise by chance if

the variables were independent. The probability is measured in

terms of the relative area of the curve for the distribution of x^

lying beyond the value of x^ resulting from a frequency of 2 in

this cell. The next possible higher frequency is 3; but the curve

for x^ is continuous, and there is an area between the points

corresponding to frequencies 2 and 3. Moreover for the same
reason there is no area corresponding exactly^and only to the

frequency 2 or 3; but each of these must be assumed to have a
certain range, and the intervening area must be divided between

them. The solution is to divide that area proportionately. This

is 'done if the frequencies are treated as if they were midpoints of
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groups of a continuous variate and the upper limit of 2 is taken as

2.5. The value of wanted is that giving the probable occur-

rence not of 2 or less but of 2.5 or less. The exact probabilities

have been calculated directly from the data for representative

problems, and it has been shown that this adjustment does in fact

lead to a significantly better estimate of P from the distribution of

x^. It tends somewhat to underestimate significance but under

the stated conditions is a closer estimate than is given by an

unadjusted x^ and it is better to underestimate slightly than to

overestimate markedly. With more evenly distributed and
higher frequencies the unadjusted x^ does not markedly over-

estimate, and the adjusted x^ does markedly underestimate,

significance.

Example 79.

—

Calculation of Adjusted from a Small Sample
Weights and Depths of Burrows of the Ground Squirrel,

Citcllus columbianus columhianus

(Data from Shaw 1926)

Raw data

Depth of burrow

P is slightly less than .01, and the association may be taken as significant.

Larger ground squirrels dig deeper burrows, x* calculated without adjust-

ment is 9.6, leading to a g^reat overestimate of significance.
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This adjustment may be applied to any 2X2 table that needs

it by increasing by .5 each of the observed frequencies that is

lower than the corresponding theoretical frequency and decreas-

ing by .5 each that is higher than the theoretical frequency, then

calculating in the ordinary way from these adjusted fre-

quencies. This is shown in Example 79.

The adjusted value of x^ can also and more simply be cal-

culated from the original (unadjusted) data by the usual formula.

, _ Niad - hcY
^ (a + b)(c + d)(a + cKb + d)

by adjusting the quantity (ad — 6c), the only one in this formula

affected by the adjustment. If this quantity is positive, N/2

should be subtracted, and if it is negative, N/2 should be added to

it.^ The adjustment and this method of applying it are valid

even if there are zero frequencies in the table. For the data of

Example 79, the simplified calculation of adjusted x^ is

2
22(1 X 3 - 10 X 8 + ^

^ 11X11X9X13

giving exactly the same value as before without the trouble

of calculating theoretical frequencies and adjusted observed

frequencies.

^ If od is greater than 6c, making (ad — be) positive, the adjustment of the

original data would make this expression

(a - .5)(d - .5) - (6 -f .5)(c + .5)

Multiplying these, it becomes

(ad - .60 - .5d -f .25) - (be -f- .56 -h .5c + .25)

which may be combined as

ad — be — .5(0 + 6 -f" c -f d)

and since (o -j- 6 4* c + d) =» iV, this is

ad — be —

Similarly it can be shown that the adjustment gives

od -6c

if 6c is greater than od.
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Example 80.

—

Association of the Data op Example 79 with the
Added Factor of Sex

A. Sex constant, association of weight and depth of burrow
All males:

(D

Adjusted x* = significant.

All females:

Depth of burrow

<32.7 >32.7 Totals

>494 1 8 9

<494 3 4 7

Totals 4 12 16

Depth of burrow

<24 >24 Totals

>325 2 2 4

<325 2 0 2

Totals
1

4
1

1

2 6

AJ- . J 5 6(2 X 0 ~ 2 X 2 -f 3)*
1VT A • C AAdjusted x* “ - 4X2 X 2 X 4

significant.

B. Association of sex and depth of burrow

Depth of burrow

<21 >21 Totals

Male 2 14 16

Female 4 2
i

6

Totals 6 16 22

Adjusted x*
22(2 X 2 - 14 X 4 4- 11)«

16 X 6 X 6 X 16
4.01

P < .05 > .02 Possibly significant under these circumstances prob-

ably so.
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Exakplb 80.—Association op the Data of Example 79 with the
Added Factor of Sex.

—

{Continued)

C. Association of sex and weight

Weight

Example 79 showed that animal weight and depth of burrow were asso-

ciated, but the sample was heterogeneous and included both males and

females. Example 80 shows that weight and depth of burrow are not, by

these data, demonstrated to be associated for males only or for females

only, that sex is surely associated with weight, and that sex Ls probably

associated with depth of burrow. The general conclusion is that the males

are heavier than the females and tend to dig deeper burrows. The data

do not show whether they dig deeper burrows because they are heavier (or

larger, or older) or for some other reason connected with their being males. ^

MULTIPLE AND SPURIOUS ASSOCIATION

Association is closely analogous with correlation
;
and what has

been said about the logic and pitfalls of correlation, especially as

regards cause and effect, spurious correlation, and the like, is also

true of association. Where three or more variables are or may be

involved in a given problem of association, the best approach is to

test the association of all the.se, two by two, and to base the

zoological conclusion on the significance of these results. Two
examples (80 and 81) and their consideration will make this

clearer than a longer abstract discussion.

HYPOTHESES OF DEPENDENCE

It has been emphasized that the technique does not directly

test association but that it tests agreement with a hypothesis by

showing the probability that observed deviations from that

hypothesis could have arisen by chance. In testing association

^ The author who published the data concluded that older animals dig

deeper burrows. The data do not reaDy prove or even suggest this

inclusion.
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the hypothesis set up is that of independence, and a significant

deviation from the hypothesis is taken to prove dependence or

association. It is equally valid and is often useful to set up a

hypothesis of dependence on some particular law or set of values

Example 81.

—

Data of Example 78 Related to Type of Nesting Boxes
Provided at the Various Substations

Type of box

Type 31

(substations

B, C, and M)

Type 32

(substations

A, F, H)
Totals

Hatched but not fledged 32 35 67

Fledged 25
.....

63 88

Totals 57 98 155

(32 X 63 - 35 X 25)* X 155

67 X 88 X '57 X 98"

P < .02 > .01 Probably significant.

Example 78 showed a sure association between substations and mortality

or survival of the young birds, without giving any suggestion as to the cause

of the association. The original data show that the substations differed

not only in locality but also in the type of nesting boxes provided. It was
therefore advisable to test the possibility that the mortality was associated

with the type of nesting box, and Example 81 shows that it very probably

was. Evidently the boxes of type 32 had a significantly better record of

survival of young birds. It is not clear from these data whether there was

also some other reason why some substations had higher mortality than

others or whether this was entirely caused by the type of boxes used; but

the boxes almost certainly had something to do with it.^

and to test by the use of whether the observed values are in

accord with the hypothesis. What can be shown is either that

the hypothesis is wrong or that the data are harmonious with it;

it is impossible to prove in any rigid and mathematical way that

the hypothesis is right.

The principal use of this method is to test agreement between

an observed frequency distribution and any theoretical distribu-

1 The original author does not explicitly point this out but does mention

that type 32 was a new (presumably improved) box used to replace type 31.

The association technique incidentally provides a conclusive means of

determining what boxes are best. Their acceptance by the birds should

also be tested—the data given in this example do not permit this.
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tion, such as a normal distribution, binomial series, or Poisson

series. Each item contributes to aii amount determined by
squaring the difference between observed and theoretical fre-

quencies and dividing by the theoretical frequency. If the

frequencies at either end are small and seem to make an undue

contribution to it is well to lump them in groups of so much
'^and over” or ^^and under,” a procedure invalid in correlation

but valid and often advisable in association and x^ technique.

In such calculations the degrees of freedom are one fewer than the

classes. The use of the test is shown in Example 82.

Example 82 .—x* Test op Observed Distribution and Approximately
Fitted Normal Distribution

(Data of Example 46, page 142)

Class

Observed

fre-

quencies

CO

Theo-

retical

fre-

quencies

(ayo)

d

(f - av„)
d'^fayo

65 and under. 4 3.8 .2 .04 .011

66-57 11 9.8 1.2 1.44 .147

58-59 18 17.9 .1 .01 .001

60-61 21 22.9 1.9 3.61 .158

62-63 20 17.9 2.1 4.41 .246

64-65 9 9.8 .8 .64 .065

66 and over. ,

.

3 3.8 .8 .64 .168

X* = SCdVoyo) = .796

Degrees of freedom: 6

P is very large, and the differences are not significant, that is, the observed

distribution could very well have been derived from a normally distributed

population, and the calculated normal distribution is an excellent fit to the

data of observation. It does not, however, follow that a better theoretical

fit is impossible.

Any hypothetical series of frequencies can be drawn up on the

assumption that it represents the true proportions in a popula-

tion, and its agreement or disagreement with an observed series

of frequencies can be tested. This is equivalent to testing

whether the hypothetical distribution could in fact represent the

true proportions in the population from which the observed

sample was drawn. An important use, for instance, is to test
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whether variations occur with frequencies consistent with

Mendelian ratios.

Another very important use of this technique is as a test of

homogeneity. In this case is calculated not from an observed

and a hypothetical distribution but from two observed distribu-

tions. The hypothesis is that the two were drawn from the same
population (the true proportions in which may be assumed to be

represented by either sample), and the test shows whether this is

possible or not. As a test for homogeneity it is often preferable

to those hitherto given, since it takes all the items of the distribu-

tions into account and makes no assumption regarding the

population distribution (for instance, whether or not it is normal,

as other tests of homogeneity often assume) except that it is

approximated by one or the other of the samples.

The method of Example 82 is applicable only when the two

distributions have the same total frequency and hence cannot be

used for two observed distributions with different totals. The
methods of association, either by theoretical frequencies or by
ratios in a 2 X c table, are therefore to be used for this purpose.

Two typical instances are given in Example 83.

Example 83.

—

Use of x* to Test Homogeneity of Samples
A. Two samples of length ofF 4 ,

both identified as the fossil mammal Ptilodus

montanus and from approximately the same horizon and locality but

collected at different times by different institutions (original data).

Calculation of x® by ratio method

Classes
Sample

1

Sample
2

Totals Ratios
Sample 1 X

ratios

7 - 5 and below 5 3 8 .6250 3.1250

7.6-7. 8 9 6 15 .6000 5.4000

7.9-8. 1 7 9 16 .4375 3.0625

8. 2-8. 4..: 8 14 22 .3636 2.9088

8 . 6 and above 7 7 14 ,5000 3.5000

Totals 36 39 ' 75 .4800 17.9963

Total sample 1 X total of ratios

. 17.9963 - 17.2800 «
“ .48 X.52

17.2800

The difference is not significant, and the samples are consistent with the

hypothesis that both are from the same population.
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Example 83.

—

Use op x* to Test Homogenity of Samples.—{Continued)

B. Three samples from different localities, hair counts of winter pelage of the

mouse Peromysous maniculatus rubidus (data modified from Heustis

1931). Calculation by contingency table. (The data have been

artificially simplified for clearer exemplification of method.)

Hair types
Samples

Totals

Coos Bay

Black overhairs Wk 70

Large banded hairs 39

Fur hairs 1S9 324

Totals 138 118 177 433

Contributions to y}\

(24 - 22.3)2 = .130
22.3

(19.1 - 16)2
= .503

19.1

(30 ~ 28.6)2 - .069
28.6

(12.4 - 9)2

12.4

(12 - 10.6)2

- .932

= .185
10.6

(18 - 15.9)2 = .250
15.9

(105 103)2

103
- .028

(90 - 88.2)2 = .033
88.2

(132 - 129)2 « .087
132

Total

n = 4

X* = 2.22

..2.217

P > .5

The difference is not significant, and the samples are consistent with the

hypothesis that all are from the same population.
**



CHAPTER XV

GRAPHIC METHODS

Almost any numerical data in zoology and many that are not

numerical can be represented graphically. A good graph spreads

before the eye in a unified and comprehensive way a picture of

facts and of relationships that cannot be so clearly grasped, if at

all, from any verbal or strictly numerical representation. Some-
times a graph may in itself permit an adequate solution of the

problems arising from the data, but more often it does not

supplant calculation and direct numerical treatment. Usually

the two supplement each other, the graphic method giving an

immediate and suggestive r4sum4 of what the written methods

reduce to exact values, prove, and interpret.

The most important graphic methods are those concerned with

frequency distributions (see Chaps. Ill to VII) and with correla-

tion and regression (Chaps. XII to XIII). These and a few

other graphic methods (e.g.^ for the comparison of single speci-

mens, Chap. XI) have already been adequately explained and

exemplified. They need no further discussion, but there are

many other sorts of graphs. The possibilities are, indeed, almost

unlimited; all cannot be considered, but only the more important,

with examples of various sorts and some suggestions as to general

principles. With so much basic knowledge and some ingenuity,

special graphic methods can readily be devised for any particular

problem.

TYPES OF DIAGRAMS

Most useful diagrams, although not all, belong to one of the

following types

:

1. Point Diagrams .—Here belong the point method of representing fre-

quency distributions (page 56), scatter diagrams of correlation (page 231),

and the like.

2. Line Diagrams .—These include frequency polygons (page 57), regres-

sion and other trend lines (page 261), theoretical curves like the normal

curve (page 74), and any other diagram that relates the original discrete

observations to some form of continuous line.

305
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3. Bar Diagrams.—In these a line or a rectangle represents each category

or variate, and its length is proportionate to the corresponding value.

Histograms (page 57) are a special type of bar diagram. Others are

mentioned below.

4. Area Diagrams.—A figure of standard shape is subdivided into areas

proportionate to values to be represented. The most useful type, the pie

diagram, uses a circle and subdivides it into sectors by drawing radii.

5. Three-dimensional Diagrams^ such as correlation surfaces, discussed

below.

6. Pictorial Diagrams.—This large and miscellaneous group includes maps,

diagrammatic pedigrees and phylogenies, graphic representations of numeri-

cal properties by actual pictures of animals used in various ways, and many
other methods. They include some concepts and methods not primarily

numerical; but many are analogous to numerical methods, and some could

be reduced to numbers if desired.

Most of these various types of diagrams involve a system of

coordinates, a mesh, net, or field of some sort such that position,

linear distance, angle, slope, or the like has a definite numerical

value in the diagram. Most important are rectangular coordi-

nates (Fig. 24A, B, C). All the diagrams given on preceding

pages of this book have rectangular coordinates, and their

general nature is already sufficiently clear. Arithmetic (Fig.

24A) coordinates, those usually employed, represent any two

equal differences in values along one axis by equal linear distances.

Usually the scales are the same for the A- and F-axes if these

represent analogous variates, and this is preferable when practical.

Sometimes, however, the ranges ofX and Y are so greatly unequal

that an awkward or impossibly large diagram can only be avoided

by giving the larger variate a smaller scale. When the two varia-

bles are not analogous, for instance, when one is a value of a

variate and one a frequency as in histograms, there is no necessary

relationship between the scales, and they are adjusted in each

case to produce a convenient and enlightening result.

Rectangular coordinates may also be logarithmic or semi-

logarithmic (Fig. 24B and C). On a logarithmic scale, equal

linear distances represent not equal absolute differences but equal

ratios. Thus on arithmetic coordinates the distance between

points scaled as 10 and 100 is ten times that fc^^ptween 1 and 10,

but on logarithmic coordinates the distances are equal because

1^00 = Ko- Logarithmic coordinates are logarithmic on both

X- and F-axes, while semilogarithmic^ coordinates are arithmetic

1 Also called **arithlog.”
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F1Q4 24.—Types of coordinates A to C, rectangular. A, arithmetic. B.

logarithmic. C; semilogarithmic or arithlog. D, angular. E» polar.
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on the X- and logarithmic on the F-axis. Such coordinates are

often used for plotting rates, ratios, geometric progressions,

and the like, because on them a geometric progression is plotted

as a straight line, equal lines correspond with equal ratios, and

equal slopes represent equal rates of change. Semilogarithmic

coordinates are most commonly used for time series, plotting time

arithmetically on the X-axis. They have the added advantage

that if two comparable variates are being plotted in the same

field and one is much larger than the other, the smaller is exag-

gerated, and the larger minimized
;
the comparison is thus clearer

and more convenient than on arithmetic coordinates. Paper

ruled logarithmically and semilogarithmically can be purchased.

If such paper is not readily available, the same result can be

obtained (but more laboriously) on arithmetic coordinates by
plotting the logarithms of the values appearing in the data. It

should be noted that there is no 0 on a logarithmic scale : its base

line is 1, since the logarithm of 1 is 0. (The logarithm of 0 is — oo

which of course cannot appear on the graph.)

Angular and polar coordinates (Figs. 24 D and E and 25) are

also occasionally used, but are relatively unimportant. Angular

coordinates represent a value by the angle between two lines

diverging from a given point. There is thus only one scale, and

values must almost necessarily be percentages or other fractions

of a total, facts that make angular coordinates of very limited

value except in the special form of pie diagrams. Polar coordi-

nates are angular coordinates with another scale added

—

distance from the central point. They are of considerable value

when one of the variables is in fact an angle or falls readily

into circular form. For instance, they could be used to plot

frequencies of cranial angles, and they are used to plot periodic

annual or seasonal phenomena, dividing the angular scale into

30-degree segments each representing a month. ^

The most common graphic representations of data are line

diagrams on arithmetic rectangular coordinates. These are so

widely used that a set of standards has been drawn up for them
bya committee representing many fields of study. The essentials

' Also for directional phenomena such as winds, letting the angular scale

represent the points of the compass. Such phenomena are rare in zoology

but not altogether unknown. Birdbanding data, for instance, usually

presented on maps, are well shown on polar coordinates (Fig. 25).
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of these recommendations are as follows, with some modification

and explanation pertinent to the special interests of this book:

1.

The general arrangement should be from left to right, that is, with
lower values (of X) to the left and higher to the right, and from bottom to

top, with lower values (of Y) below and higher above.

Fig. 25.—A graph on polar coordinates. Birdbanding data on herring
gulls banded at Beaver Islands near St. James, Mich., and recovered during
the first year (data from Eaton 1934). The angular distances, or directions of

radii, indicate directions of the compass away from the banding place; and the
concentric circles, or distances from the center, represent the dates of recovery,
and hence elapsed time and age, in months.

2. Quantities should as far as possible be represented by or proportionate

to linear magnitudes. In histograms and curves generally, areas are also

important and necessary representations; but in histograms, specifically,

these should be kept strictly proportionate to a linear magnitude (that of Y)

by keeping the horizontal intervals equal.

3, 4. The zero lines should if possible be shown on the diagram, and if this

leaves a large blank space it may be eliminated by a jagged break across the

diagram. This recommendation is, however, unnecessary for much zoologi-

cal work. The absence of the zero line is not misleading to anyone used to

such diagrams if the scales are clearly marked.
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5, 7. Coordinate lines that are natural limits, such as those for 0 or for

100 per cent, or that are otherwise exceptionally important should (or may)
be emphasized; and others should not.

8. On logarithmic coordinates the limiting lines of the diagram should be

powers of 10.

9. No more coordinate lines should be drawn than are necessary to guide

the eye. It is often sufficiently clear and is generally neater simply to give

scales at the left and bottom of a diagram and not to draw in any other

coordinates.

10. The curve (or other noncoordinate diagram line) should be sharply

distinguished from the coordinates, usually by being made heavier.

11. It is often advisable to emphasize individual observations, as distinct

from a line based on them, as crosses or distinct dots on the diagram.

12. This recommendation has been combined with recommendation 1.

13. 14. Scales should be along the axes (seldom applicable to zoological

diagrams) or to the left and at the bottom. Other pertinent data, formulas,

etc., may, if desired, be arranged along the other two sides of the diagram or

written within it,

15. The numerical data on which a diagram is based, if not clearly ascer-

tainable from the diagram, should be given beside it or in the accompanying
text.

16. Lettering should be clearly legible either as the diagram appears or

after rotating it 90 deg. clockwise.

17. Diagrams should be clearly titled and should, as far as convenient,

be self-explanatory without reference to an accompanying text.

SPECIAL TYPES OF GRAPfflC FREQUENCY DISTRIBUTIONS

The usual frequency polygons and histograms are limited to

distributions of the absolute frequencies of a single variate with

determinate numerical classes. Other types of graphs are

necessary to represent such distributions for

1. Relative rather than absolute frequencies.

2. More than one variable; or

3. Attributes or variates in which the classes are not numerically

determinate.

The representation of relative values, of frequencies or any
other variables, is discussed on page 321.

The simplest method of representing the frequency distribution

of more than one variable on a single diagram is simply to super*

impose separate frequency polygons on the same field (see Fig. 6,

page 66). They may be distinguished by the nature of the line

used, solid, dashed, dotted, etc., or by shading the enclosed areas

differently. If the magnitudes involved are about the same, the

same scales may apply to both or all the distributions included.
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but it may be necessary to give them separate scales. Such
diagrams tend to become too involved to follow easily, and they

should be avoided unless really simple, clear, and illustrative

of an important relationship. Histograms can occasionally, but
rarely, be combined in the same way without undue loss of

clarity.

A second method particularly useful for histograms is to

plot the combined distribution of two samples of the same

Fia. 26.—Combined histograms of two comparable distributions. Length
of first lower molar in the extinct mammal Aniaonchus sectorius (original data).
A, samples added to each other; the clear areas represent a sample from New
Mexico, and the crosshatched areas one from Montana. B, the same data
with specimens from New Mexico above the horizontal axis and those from
Montana below that axis.

variate, showing the contribution of the second by marking it

off above the first and shading its area (Fig. 26A). Or, what
amounts to the same thing, one sample can be plotted first and
another then added above it. Three or more samples can be

added together and plotted on the same chart in this way, and
frequency polygons may be used instead of histograms.^ For

clarity it is important that the samples really be analogous and
the variates homologous. It would, for instance, be valid and
useful to plot in this way distributions of the same variates for

males and females of one species collected together, or for two
geographic samples of the same species; but it would usually be

merely confusing to combine data on one variate for unrelated

species or on two unlike variates for a single species.

A far less common solution of the same problem is to scale

values on the F-axis both above and below its zero point, at

the intersection of the X-axis, and to plot one distribution in the

^ The ‘‘band charts” of commercial statisticians are multiple frequency

polygons of this sort.
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ordinary way, above the X-axis, and one below it, as if reflected in

a horizontal mirror (Fig. 26B).

Finally, it is possible to show the relationships of two frequency

distributions very clearly by introducing a third dimension.

The method is to prepare a correlation table and then to erect

on each cell a column proportionate in height to the cell fre-

quency. If the cells can be made very numerous and very small

and still retain frequencies in most of them, the tops of the

columns can be blended into a nearly smooth surface with hills

and valleys corresponding to regions of greater and less fre-

quencies. This is called the frequency surface or correlation

surface, and it gives an almost ideal plastic representation of

correlation. The construction of such three-dimensional models

and their representation in a figure for publication are, however,

too elaborate and too time-consuming for them to be used very

extensively. Their reduction to two dimensions for a figure

can be by perspective drawing or other oblique projection or by
contour mapping like that of geographic maps.^

A scatter diagram of the correlation of three variables can

be made by laying out the appropriate scales, two in a horizontal

plane on a wooden or composition base and one vertical, and

representing each triple observation by the head of a pin, its

length determined on the vertical scale, inserted at the proper

point on the horizontal base. Of several possible methods of

representation on paper, perhaps the most practical if the

observations are not too numerous is to represent each observa-

tion by a circle on the field of the horizontal scales with the third

value given as a number in the circle.

A simple and almost always suflScient solution of the problem

of graphic frequency distributions of attributes (and of numeri-

cally indeterminate variates) is to use a bar diagram. As in a

histogram, each class or category is represented by a rectangle

(or it may be in this case simply by a vertical line) with its

height proportionate to the frequency represented. In bar

diagrams, unlike histograms, a short space is generally left

between successive categories, and each is se|iarately labeled

instead of being scaled continuously along the base of the

diagram. The categories of attributes seldom have any neces-

sary or logical order, and the usual practice is to arrange them
^ Yule gives illustrations of both methods.
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in the order of their frequencies, the highest to the left. It is a

great advantage of this helpful and elegant method that almost

any number of contiguous bars can be placed in one category,

each representing a different sample, so that comparisons are

Pound Seines Gill Fyke Lines Eel Wise,

nets nets nets pots

Fig. 27.—Bar diagram comparing categories of two different samples of an
attribute. The attribute is method of collecting fishes in Chesapeake Bay
during 1920, with the categories shown. Frequencies are given as percentages
of total catch. The two samples are the Maryland catch (clear bars) and the
Virginia catch (hatched bars). {Data from Hildebrand and Schroeder 1928.)

greatly facilitated. It is advisable in such cases to shade the

bars differently for the different samples. A single diagram can

thus show the distributions of an attribute in males and females,

in young and adults, in different years, in samples from different

localities, etc. A bar may be given in each category to show an
average value for the samples represented. Samples may also
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be added vertically or their component subsamples represented

in the same way as for histograms of variates (see Figs. 27 and 28).

Pyramid diagrams may be used to represent distributions of

attributes or, especially, variates. They are constructed by
taking the rectangles of bar diagrams and histograms, turning

them so that they are horizontal, and piling one on top of the

other, centered on a vertical line, so that they look like an edge-

Fig. 28.—Bar diagrams of a frequency distribution of an attribute: food
habits of the coyote. A, number of stomachs in a sample of 185 containing
traces of each of 9 kinds of food; the distance above the crossline in 3 of these

represents carrion. B, food contents from the same stomachs classified on an
economic basis and represented by percentages of bulk. {From Dixon 1926.)

wise view of a stack of coins of different diameters but the same

thickness. They have little advantage over ordinary bar

diagrams and histograms and some disadvantages, and they are

rarely used.

COMPARISON OF RANGES AND MJ^NS

The importance of comparisons of samples of homologous

variates is great and has repeatedly been emphasized. The
correct graphic representation of such comparisons may convey

at a glance all that is most important in a long and complex series
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of measurements and calculations, and this is one of the most
useful of all graphic methods. The simplest form of the best of

such methods was early employed by Ruthven^ (1908). In it a
vertical scale is used for the values of the variate, and each sample
is represented by a vertical line, the ends of which correspond,

Chihuahua;

Chihuahua-

Fig. 29.—Simple graphic comparison of observed range and means. Number
of subcaudal scutes in the snake Thamnophis megalopa from five localities in

Mexico. Values of the variate are scaled vertically, not horiaontally as in most
diagrams. The heavy vertical lines represent observed ranges, and the short
crosslines are the means, connected by a broken line to facilitate comparison.
The numbers to the left of the vertical bars are the sizes of the samples. {From
Ruthven 1908, somewhat modified.)

on the scale, to the extreme observed values, A crossbar is

placed on this line at the arithmetic mean.^ If the samples have

a natural sequence, for instance, geographically, a line, preferably

broken to distinguish it from other lines in the diagram, con-

necting the successive means may be added, giving a graphic

representation of a sort of trend.® It is also helpful to write

1 Who states that it was suggested by Dr. Raymond Pearl.

* Ruthven used a cross (X), but a crossbar seems preferable. Ruthven

also placed a circle at the middle of each bar (t.e., at the mean of the two

extreme values), but this does not seem to us to be useful.

* This was also done by Ruthven. Of course, such a line has little useful

mc^aning if the sa-mples have no natural sequence, although even in such a

caae it may be a helpful guide for the eye.
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near the line for each sample a number indicating its total

frequency (see Fig. 29).

If the differences between the samples can be expressed numeri-

cally, it might be practical and certainly would be useful to lay

these values off on a horizontal scale and to make the distances

between the vertical lines representing the samples proportionate

to the numerical differences between them. This would, for

instance, be possible in many cases of samples geographically

separated (by miles, or latitude, or longitude) or samples taken

at different times (at different hours, on different days, in differ-

ent months, etc.) or in environments numerically different (in

temperature, humidity, etc.).

Another improvement over current practice would be to place

crossbars on or, when necessary, above or below the line for each

sample to correspond with the values {M + 3(r) and {M — 3<r),

for samples large enough to calculate a with reasonable reliability.

As has already been discussed, these points usually approximate

the real population limits more closely than do the extremes of

the actual observations.

A notable addition to such graphs was recently devised by

Dice and Leraas (1936) and promises to be one of the most

important of numerical methods in zoology. Crossbars are

added at {M + 2<r.\f) (twice the standard error of the mean, not

twice the standard deviation of the distribution) and {M — 2<tm)^

and these are connected by double vertical lines in order to

define clearly the range so laid out. If these ranges overlap for

two samples, it may usually (under conditions to be more exactly

defined in the following paragraphs) be assumed that the differ-

ences between the means are not significant; and if they do not

overlap, it may usually be assumed that these differences are

significant. The comparison of two means by more exact meth-

ods is not diflScult (see page 192), but it becomes laborious if

many samples must be compared. Thus for five samples, 10

standard errors of differences between means would have to be

calculated. The same information in less reliable but still

generally suggestive form can be obtained by this^^graphic method
with the calculation only of the means and their standard errors.

Since the method is only approximate, it cannot entirely replace

the exact calculation of the standard errors of differences between

means; but it will usually show at a glance what differences
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require testing in this way. It also presents the essential facts

as a unified whole and in a way easily grasped (see Figs. 30 and

31).

Fig. 30.—Graphic estimation of the significances of the difference between
several means. Tail length in the ma,mmal Peromyscua maniculatua hairdii

from seven localities. Values of the variate are scaled vertically and given

on both sides of the diagram to facilitate comparison by means of a straightedge.

The vertical lines are observed ranges, and the small rectangles represent the

range {M -f 2<rM) to (M — 2<rM), with a crossline at M. If these rectangles

do not overlap, it can be assumed under most conditions (as specified in the text)

that the means differ significantly. {From Dice 1937.)

The relationship between the standard errors of two means and

the standard error of their difference is given by the equation

aa =
\ N1N2

• See p. 192 . We here assume that the purpose is to test the probability

that the samples are from one population, which will usually be the intention.

If the purpose is to test differences between means of samples admittedly of
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This relationship thus depends on the relative sizes of the two

samples and the relative magnitudes of the standard errors of the

Fig. 31.—The data and method of Fig. 30 with the sizes of the samples

and theoretical ranges (Af ± 3<r) added. The theoretical ranges are represented

by broken vertical lines.

two means. For instance, if iVi = 2N<i and <tm^ = the

value of (Td can be thus expressed:

Cd V
(2iV2)V^, + Nl{2aMd^

i2N2)N2

an equation that is easily reduced to

different populations, some of the limitations mentioned below are removed,

and the method is still more generally valid.
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Therefore under these conditions Cd is equal to tr and is twice

orjifj. Now the difference that is taken to be significant by the

graphic method is 2am, + 2a and when o-m, = 2aM^j this is

equal to 3<rA/„ or Gcta/,. Therefore

d ficTM 1

<Td 2aMl

or

— = 3.00
a Aft

The graphic method takes this as the limit of significance

under the stated conditions. It corresponds with P = .003, and
though this is a somewhat low value as a criterion of significance

its use is valid, and the graphic method is a good approximation

under these circumstances. Similarly it is possible to calculate

what value of d/ad is being taken as the criterion of significance

with any other given relationships between Ni and and
between aMi and aM^. Because the method is so important and
because it cannot be used intelligently without some conception

of these values, we have calculated the values of d/ad and of P
automatically taken as criteria of significance when the ratios

N 1/N2 and aMl/aMi take certain representative values. The
results are presented in Table XIII. ^

When the value of P used as a criterion is too low, every

difference shown as significant by this method is so, but some

that are really significant will not appear as such on the diagram.

Such an error is on the side of safety, but it invalidates the

method (beyond the limits to which the table is carried) when

^ The table was calculated by the following formulas, which can be used to

obtain values for any conditions not approximated in the table.

Then

and

Let a - El
N,

and b

CTd

fTMt 4a*6* -f 1

— = 2 + 26
<rtr.

These formulas are of obvious derivation and simply sum up the procedure

explained in the text and place it in the easiest form for calculation.



320 QUANTITATIVE ZOOLOGY

it means that significant differences pertinent to the problems

studied will usually be missed. Too high a critical value of P,

on the other hand, means that the method will show differences

as significant when they are not. Circumstances that give rise

to this condition, including those on the table remarked as ‘Hoo

high,” make the method too misleading to be used at all.

Fortunately such circumstances will not often arise with

zoological data. It will be noted that if neither N nor (tm of one

Table XIII.

—

Criteria of Significance of the Difference between
Two Means Automatically Assumed by the Dice-Leraas Method

OF Graphic Comparison with Given Ratios of Sizes of

Samples and of Their Standard Errors of Means

N,/N2 <yMx/<rMi df<TMi d/cd P
Remarks on value

of P as a criterion

of significance

1 1 1.41 4 2.8 .005 Good
1 1.12 3 2.7 .007 Good
1 2 2.24 6 2.7 .007 Good
2 1.00 3 3.0 .003 Somewhat low

2 1 1.58 4 2.5 .012 Good
2 2 2.92 6 2.1 .04 Poor (high)

1 H 1.05 2% 2.5 .012 Good
1 3 3.16 8 2.5 .012 Good
2 Vz .85 2?3 3.1 .002 Somewhat low

2 3 4.30 8 1.9
1

.06 Too high

3 1 1.82 4 2.2 .03 Poor (high)

3 K .87 3 3.4 .001 Poor (low)

3 2 3.51 6 1.7
1

.09 Too high

3 Vz .82 2% 3.3 .001 Poor (low)

3 3 5.22 8 1.5 .13 Too high

sample is twice that of the other sample the criterion implied

will be valid and will generally be good, with high reliability.

The only exception is that some suspicion attaches to the results

even in these cases when the larger sample also has the higher

Cm) when both ratios are 2 the criterion is P = .04, considered as

usually valid by many workers but admitted no| to be invariably

reliable. If the samples are of about equal size, Ni/Nz = 1,

the results are good within the limits of our table and are in

fact acceptable with values of cujcut up to about 10 (when

P = .06; it becomes greater as this ratio increases). Such a
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great difference between the standard errors of the means of

homologous variates is very rare with zoological data, so that the

method is almost always valid when the samples are of about
equal size. When the ratio N1/N2 is greater than 2

,
however,

the method is so generally poor or essentially unreliable that it

should not be used, although, as the table shows, it still retains

some validity with N1/N2 = 3 if (tmJcm^ is 1 or less. Noting
the sample sizes on the diagram permits the reader to form
some judgment as to reliability. It is a drawback of the method
that the exact criterion of significance implied in it is variable and
is difficult to judge, but within its limitations the method has

advantages that outweigh this. In doubtful cases, (Jd should in

any event be calculated and given in the text.^

PROPORTIONS AND PERCENTAGES

In some cases, for instance, in the most practical methods of

colorimetry, observations are made and recorded as relative

rather than absolute values. In other instances, it is helpful to

reduce absolute data to relative values, usually to percentages, in

order to facilitate comparisons. Samples of different sizes but

with variations present in the same proportions may appear

very different in a graph if absolute values are used. The plotting

of percentages at once reveals their similarity. Such diagrams

^ Dice and Leraas use probable errors, marking out {M -f 3 P.E.jf) and
(M — SP.E.jif) but, as they note, this differs little from (M + 2<rAf) and
(Af ~ They imply that the method is more generally valid than now
appears to be the case; and their calculations, which they do not give,

evidently assumed that the samples were all of the same size or that com-

parisons were to be made only between populations known to be different.

Yet their method is certainly valid in most cases and is of great value.

Rosahn (1935) has devised another graphic method for the same purpose.

He makes a bar diagram with the vertical height of each bar scaled to the

value of the me.an for each sample. For the two samples he then calculates

the standard error of the difference between their means and lays out on the

diagram horizontal lines at intervals scaled to this value, so that the signifi-

cance of the difference in height of the two bars can be observed visually.

For multiple samples he takes a sort of average standard error of the differ-

ences and lays it on the diagram in the same way. He also assumes that the

samples will be of about the same size and that the standard errors of their

means will be nearly the same. The method is, under some special cir-

cumstances, more reliable than that of Dice and Leraas; but it is also much
more laborious and has other disadvantages that seem to make it of little

practical use for most zoological data, at least.
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have, however, the one serious drawback that they do not take

into account the varying reliabilities of the observed proportions

or their probable significance. They should, therefore, be accom-

D a y s

(A)

Fio. 32,—Growth curves of two variates recorded by absolute values. Mean
measurements on identical samples of the mammal Peromyscua maniculatua
artemiaiae. A, growth curve of mean total length. B, growth curve of mean
tail length. Because of the much smaller absolute values >|ff B, the curves appear
to be of different types. (From Svihla 1&25.)

panied by numerical data, in the text, in the legend, or lettered

on the diagram itself, by which these probabilities may be judged.

It is usually advisable to state the absolute values repre^nted
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by the percentages or the total frequency included. Further

analysis by various of the methods explained in previous chapters

may also be necessary.

Days
Fia. 33.—Growth curves of two variates recorded as percentages of total

growth attained in the period of observation (same raw data as Fig. 32). The
continuous line represents growth in total length, the broken line growth in tail

length. Reduced to a proper basis for comparison, the two curves are seen to

be almost identical in character.

Any graphic method representing absolute values may also

be used to represent relative values. Frequency polygons, histo-

grams; trend lines, and the like all lend themselves to this use.

It is, however, often desired to compare relative values from

two or more samples but also to retain the graphic record of

absolute values. This problem can be neatly solved by plotting
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the samples on a single diagram and equating critical values

involved in the problem, for instance, making the graphic repre-

sentation of total frequency the same for all samples or making

the initial and terminal points of growth curves coincide. The
values for the various samples are thus made graphically com-

parable and relative; the absolute values can be retained by
calculating and showing a different scale for each sample. The

Lebo surface

Locoi I ities

(24,25, Gidley

Fig. 34.—Graphic comparison of compositions of two samples by bar diagram.
Surface and quarry collections of fossil mammals from the Paleocene of Montana
(original data) subdivided by percentages of the various taxonomic groups
(orders) represented.

method becomes too elaborate with many samples but is excellent

for the comparison of a few. Figure 32 gives a typical example.

As originally published, the growth curves were separate and were

given by absolute values on the same scale for both. The two

curves then appeared to be very different, and their author con-

cluded that the growth of these two variates was quite distinctive.

Figure 33 shows that the growth curves are really almost identical.
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The apparent difference was not caused by kind or by relative

rate of growth but simply by the different initial and terminal

absolute magnitudes.

For representing relative frequencies of the different categories

of an attribute (or more rarely the different classes of a variate),

bar diagrams are useful. The samples are represented by
rectangles all of the same height, and each is subdivided by
horizontal lines into areas proportionate to the frequencies of

the various categories. Connecting the homologous division

lines by lines (often broken) from one rectangle to the next

generally makes the visual comparison still simpler and more
obvious (see Fig. 34).

A variation of this method is to represent each sample by a

vertical line clear across the field of the diagram (for instance,

from 0 to 100 per cent) and to record the proportions by drawing

oblique or horizontal lines between the proper points on the

various lines, these points being determined in the same way as

the division lines of the rectangles when these are used. In

drawing the diagram it is convenient to make the lines or rec-

tangles representing the sample 10 cm. (100 mm.) in length or

some integral multiple of this. Then the data in percentage can

be directly transfered with no further calculation; for (using

100 mm.) 1 mm. on the line represents 1 per cent in the data.

Following Sumner, this method is now generally used for graphic

representations of results of tint photometry. The samples in

this case are observations through different color screens, with

one observation, a relative value as read, in each sample. The
length of the vertical line for each sample represents the reading

for pure white, and the point graphed is at the relative value

of the reading for the object being observed (see Fig. 35).

Pie diagrams^ are circles divided into sectors proportionate in

area to the relative values of the categories represented. They
do not lend themselves well to the representation of anything but

proportions or percentages but are useful for this purpose. The
procedure is to change the data into percentages and then to

convert these into angles, measured in degrees, by multiplying

by 3.6. The zero or first radius is drawn vertically upward from

the center (to twelve o^clock on a clock dial). If there is no

natural order of the categories represented, it is customary to

‘ Galled sector diagrams by those who do not like pie in science.
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place them in the order of diminishing size clockwise (see Fig. 36).

If there is a natural order, the first sector lies immediately to

the right of the zero radius, and the others follow clockwise. If

there are many very small sectors, the radii may become too

Fio. 35.—Graphic comparisons of tint photometry data. Skins of the mam-
mal Peromyacua maniculatua bairdii from seven different localities. The scales
on the two sides are tint photometer readings, and each of the five vertical lines

between them represents the use of a filter of the designated standard color.

Sach of the oblique lines passes through the mean values for the sample from the
given locality, and each line as a whole thus represents the essential color data
for the corresponding sample. (From Dice 1937.)

crowded or tend to form a black blot near the center, and in this

case it is advisable to draw small and large concentric circles

and draw the radii only between these, not continuing them to

the center. It is also possible to draw one or more still larger

QTcles and to represent on them the proportions of the same data
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Fia. 36.—Pie diagram used for graphic representation of food habits. Winter
stomach contents of coyotes in percentages. {From Sperry 1934.)

Fio. 37.—Modified pi© diagram to show composition of a fatina. Percentages
of specimens belonging to various taxonomic groups in a collection of Paleocene
mammals from Montana (original data). The outer ring shows the orders

represented and the inner ring their constituent families in this faima. The
center is left clear to avoid the confusion of many lines converging to a point.
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arranged in different and broader categories; for instance, if

the categories are taxonomic, an outer ring may show relative

abundances by classes or orders and an inner ring or circle the

same by suborders or families (see Fig. 37).

Pie diagrams convey certain simple ideas more directly to

the eye than almost any other sort of graph, but they are not ideal

for scientific comparisons. Their most extensive use has been

to impress the layman and to popularize the numerical results

of some types of investigation. For this purpose their appeal

and their self-explanatory nature are often enhanced by putting

in each segment, if it is large enough, an actual picture of the

thing that it represents. For instance, if the categories are

families of animals, a typical member of the family may be

portrayed in each sector. In all cases the sectors should also be

labeled in words
;
and usually it is advisable also to give in each a

number indicating the percentage or, rarely, the absolute value

that it represents.

TIME SERIES AND PERIODIC PHENOMENA

Most time series really involve at least three variables: time,

frequencies, and values of a variate or categories of an attribute.

Graphic representation usually eliminates or omits one of these,

although all three can be shown if necessary. In series like

growth curves, frequencies usually do not appear. The curve is

based either on a single individual or on means for a group. In

either case, frequencies need not be represented, for they are

the same throughout. This is not invariably true of curves based

on groups, but as far as possible these should not only have the

same frequency throughout but also be based on precisely

the same individuals. If this cannot be done, the deficiencies

of the data should be very plainly stated, for the curve will then

be relatively unreliable and may be very misleading.

Time series showing means may often be improved and may
convey much additional and important information by plotting

also a line, distinguished in some way such ^as being broken,

through the points {M + <r) and {M — <r) or {M + 3<r) and
(Af — 3<r) for each time class. Changes in dispersion over

periods of time are thus represented, and these may be even more
enlightening than changes in means.
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In other cases there are only one or a few categories of the

variable being observed, and the time series is primarily con-

cerned with frequencies, these then being plotted on the vertical

axis against time on the horizontal axis. The frequencies may,
of course, be represented either in relative or in absolute form.

Fiq. 38.-—Graphic representation of periodic phenomena. Percentages of

males in two color phases in total collections of snowshoe rabbits taken through-
out the year, showing seasonal shift in dominant color phase. {From Aldoua
1937.)

Month June July August

Week 1 2 3 4 1 2 3 4 1 2 3 4
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•
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•

• •
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• •
• • • (

••
»•«VV

•
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Fig. 39.—Point diagram of a periodic phenomenon. Samples of female

Eastern American chipmunks collected during three summer months. Each
dot represents an individual, classed according to three physiological (reproduc-
tive) conditions. The diagram shows a marked breeding season beginning late in

June and culminating in July. {From Schooley 1934.)

If there is more than one category, lines for each, distinguislted

in some way, may be plotted on the same diagram (see Fig. 38).

The same method may be used in a bar diagram, with one bar

for each time class, its height proportionate to the frequency.

Additional categories may be represented by subdividing the

bars or by including in each time class a separate bar for each
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category. Times, frequencies, and observed values may also

all be shown at once in a diagram by various modifications of

scatter or point diagrams (see Fig. 39).

Phenomena that are periodic or cyclical with a definite period

can also be represented in any of these ways on rectangular

coordinates, but often they are particularly adapted to the use

of polar coordinates. In this case the angular scale represents

time, 360 degrees being equated to the length of the cycle, and

frequencies or values of a variate are represented by distance

from the center.

PICTORIAL DIAGRAMS

The name pictorial diagrams is here used broadly to mean most

sorts of diagrams not including a definite numerical scale or not

drawn on a system of coordinates and not only those that literally

involve pictures in the vernacular sense. Diagrams not essen-

tially pictorial may be dressed up with or expressed in terms of

pictures to make them more sprightly or to give them popular

appeal. This is often done with pie diagrams, as has been

mentioned. Another method is to represent classes (e.^., time

groups) by separate pictures of the thing being studied and to

make the sizes of the pictures proportionate to frequencies or to

values of a variate,^ or each class may be given a number of

repeated pictures of equal size in proportion to these frequencies

or values.

Many sorts of pictorial diagrams useful in zoology are essen-

tially nonnumerical and so fall outside the scope of this book,

but a few may be mentioned. Graphic representations of animal

phylogenies are of this type. Some of these are highly ingenious

and manage to convey much information even in addition to

the supposed lines of descent, for instance, about geographic

distribution, environment, habits, or morphological changes

^ These diagrams, widely used on posters and the like but not in scientific

work, are always misleading. If, as is usually done, the height of the

pictured person, animal, or thing is made proportionate to a frequency or

other value, the differences are exaggerated in apparei^l value. If the pre-

sumed vcdume of the thing pictured is used for scaling, the differences are

strongly minimised to the eye. What the eye actually judges in a printed

picture is area, but the use of area for scaling in such diagrams is not so

apparently logical as either height or volume and is almost never

encoimtered.
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(see Fig. 40). Usually, time is represented on a vertical scale in

such charts, with the oldest forms at the bottom. Still more

Fiq. 40.—Pictorial diagram of phylogeny, habits, and habitats in a group
of animals. Fossil and recent perissodactyls, as interpreted by Osborn. The
vertical scale represents time, and the horizontal dimension (not scaled) is

utilized to show the spread of the various phyla. Habits and habitats are shown
by special patterns. (From Osborn 1929.)

WhrO

Oy^l^ 6 i

_

o cSiJi £ioo
Fio. 41.*^Chart representing genetic descent and inheritance. The chart

represents a human family descending from the couple represented at the top.

Squares represent males and circles females. Those in solid black represent

bald individuals. (From Snyder and Yingling 1935.)

striking and convenient in many instances is a circular arrange-

ment with phyla radiating from a central point. Charts of
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genetic descent and relationship of individual animals also

belong to this general group; and they, too, manage to express

much more than descent alone by using symbols of different

shape, shading, and subdivision for the various individuals (see

Fig. 42.—Pictorial diagram of contrasting anatomical proportions. Limbs
of horse (left) and elephant (right), reduced to the same length, to show the
marked difference in proportions of segments correlated with different habits and
bulk. (From Osborn 1929.)

Fig. 41). Data dealing with geographic distribution of any
sort are also frequently and well represented pie^rially, on maps,

bathymetric charts, cross sections of parts of the earth, pictures

of landscapes, etc.

Among pictorial zoological diagrams, two of particular impor-

tance deal with essentially numerical ideas, even though usually
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omitting actual numbers, and so merit special comment here.

The first of these compares proportions or absolute dimensions

of various sorts in ancestral and descendent or in otherwise related

animals by presenting drawings of the anatomical elements con-

cerned with homologous points connected by lines, usually

broken (see Fig. 42). Numerical values of the proportions or

absolute dimensions may also be inserted on the figure.

Fig. 43.—Pictorial comparison of proportions by rectangular and deformed
coordinates. Diodon, left, has approximately normal fish proportions and is

laid out on rectangular coordinates. A corresponding deformed coordinate
system laid out on Orthagoristus, right, shows an almost perfectly regular expan-
sion of the posterior part. {From D'Arcy Thompson 1917.)

A more complex, very interesting way of making similar com-

parisons in greater detail and taking into account areas and

angles or directions as well as linear dimensions has been devised

by D’Arcy Thompson (1917) and has since been used chiefly by
paleontologists. On a drawing of all or any part of an animal a

regular system of rectangular coordinates is superposed* The
same parts of an allied animal are then drawn, and on it are

superposed lines, some or all of which usually must be curved,

such that each line passes as nearly as is practical through points

homologous with those touched by a corresponding line on the



334 QUANTITATIVE ZOOLOGY

Fig. 44.—Changing proportions in phylogeny shown by deformed coordinates.

C and D are skulls of modern rhinoceroses, D more primitive, to which B is

approximately ancestral. A represents the primitive , s|||Uoture of the whole
group and is laid out on rectangular coordinates, and the deformation of cor-

responding coordinates on the other skulls shows progressive irregular changes
in proportions. A, Subhyracodon occidentalis. B, Omndatherium browni,
C, Rhinoceros unicornis. D, Dicerorhinus sumatrensis, (After Colhcri, 1935.)
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first drawing and each space between the lines covers approxi-

mately the same anatomical features as a corresponding square

(or rectangle) on the first drawing. There is no way of making

all the points and areas correspond absolutely if the animals

differ markedly, but a close approximation is usually possible

for forms that are visibly related. An effort is made to make
the second system, the deformed coordinates, as simple as

possible, with its lines smooth curves and not strongly irregular

(see Fig. 43).

The method is most usefully applied by taking an ancestral or

a presumably primitive animal as a standard of comparison,

laying the rectangular coordinates on it, and then developing

from it systems of deformed coordinates for more specialized

descendants or relatives. The deformed coordinates then pro-

vide a vivid visualization of the differential expansion, contrac-

tion, and skewing that have taken place in the course of evolution

(see Fig. 44). The method has also been used, not always with

complete success but at least always with results more reliable

than the usual guesswork, to effect harmonious restora-

tion of missing parts in fossil animals and to reconstruct hypo-

thetical intermediate stages between less and more specialized

animals. ^

^ Osborn (1929) tried the experiment of drawing a short broad skull on a

sheet of rubber, stretching the rubber until the drawing was long and narrow,

and comparing with a naturally long and narrow related skull. What the

experiment revealed was that the artificial harmonic distortion did not very

closely approximate the naturally elongated skull, which differed from the

short broad skull not simply in being relatively longer and narrower but also

in the proportions of its various parts.



CHAPTER XVI

GROWTH

It would be impossible, in a work devoted to numerical methods

in zoology generally, to consider every sort of data and of

analysis involved in special zoological studies. There is, how-

ever, one group of problems that are of remarkable importance,

that demand some numerical methods in addition to those already

discussed, and that also illustrate in a clear, useful way the

application and adaptation of general methods in approaching a

specific problem. These problems, those arising from the

numerical phenomena of growth, are therefore given special

consideration in the present chapter. In addition to supple-

menting what has gone before, this chapter is in a sense a review

and a large-scale example of the whole subject of numerical

treatment of zoological data, for most of the principles and many
of the methods already expounded here find application. It is

also an introduction, elementary but adequate for any but

extreme specialists, to what promises to be one of the most

important and fruitful fields of strictly zoological and paleon-

tological research and one that has only recently begun to be

appreciated. It will be found also that many of the methods

and results based on growth have far wider applications and

implications.

AGE GROUPS

Since most animals have a more or less sharply defined breeding

season, the young are normally born during a definite season or at

least more commonly during some months of the year than

during others. It thus often happens that in collections made
over a short period of time the specimens will fall into distinct

age groups rather than being evenly distributed as to age. This

result is of great zoological significance. It is important in itself,

as showing rates of growth, breeding seasons, and age of maturity.

It also is important for taxonomy; for the different age groups

produce an effect on distributions almost identical with that of

336



GROWTH 337

different species, and competent taxonomy must thus bear this

possibility in mind. The study of variation has two aspects:

variation within a single age group and variation correlated with

age. The two must be separated for adequate analysis, and the

methods of studying them are not the same.

The degree of distinctness of age groups depends on these

factors:

1. Limitation of birth season. The shorter this is In relation to the life

span of the animal, the sharper will be the age group. If there is no definite

birth season (young are about as likely to appear at one time as another),

there will be no age groups. Man well exemplifies a species in which age

groups are practically undistinguishable for this reason.

2. Rapidity of growth, or of any changes correlated with age. Obviously

if these changes are rapid, the discontinuity between age groups will be
correspondingly great; and if they are slow, the discontinuity will become
obscure or disappear. In almost all animals, growth is more rapid in early

life than in maturity; and consequently the younger age groups are more
clearly distinguished than the later. In mature animals, age groups usually

are inseparable for this reason. The example given below, for Hemidactyl-

ium scutatuvij clearly illustrates this.

3. Variability within any one age group. Highly variable groups will

tend to overlap and less variable groups to be better distinguished.

4. Uniformity of growth within the species. This is a special case of the

last factor. If some individuals grow much more rapidly than others, they

may well overtake the slower members of the next older group; and hence

the groups will soon tend to merge.

5. Period of sampling. Age groups can be clear-cut only if the whole

sample is taken over a period of time that is short relative to the life span

of the animal, or, more strictly, relative to the time between hatchings and
seasons of parturition. If the sample is evenly distributed or taken at

random over a longer period of time, the concentration of the sample at

definite parts of the life cycle will not be likely to occur; and hence age

groups will not be distinguishable. Sampling of recent animals can be

controlled to any degree of accuracy in this respect. Even among fossil

animals it will be shown in a later paragraph that seasonal sampling does

occur.

Given a sample that is known or may reasonably be assumed

to be homogeneous except in age, age groups may be recognized

by biological or by statistical methods or by a combination of

the two. The appropriate statistical method is obtaining fre-

quency distributions for characters that change with age and
then proceeding to observe or to test the normality, modality,

and other characters of these distributions that show them to

include different groups. The most obvious and generally the
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most useful characters are linear dimensions involved in growth;

and if age groups are recognizable at all, distributions of these

dimensions will generally show distinct bi- or polymodality.

The fact that growth is usually differential may also be used by
obtaining frequency distributions of appropriate ratios. Thus
in salamanders the tail is often smaller relative to the body in the

young than in adults, so that the tail : body ratio may give clear

age groups. Similarly in mammals the head generally grows

more slowly than does the body, the legs may elongate more
slowly than they become stouter, etc. If age groups exist,

testing of all the possibly important characters of this sort will

almost inevitably reveal and define them.

Biological age grouping depends on the recording for each

specimen of a definite character that appears at approximately

the same time in the life of any individual of the species. Such

groups are not absolutely valid temporally, for there are no such

characters that appear at exactly the same epoch in every indi-

vidual; but many do distinguish years or even shorter periods.

There is also the distinction that they do not depend, as do

recognizable statistical age groups, on an actual discontinuity

in the appearance of young individuals, the criterion not being

such a discontinuity in group appearance but a milestone that

every individual passes, at whatever season. When clear-cut,

however, the biological groups do usually serve to distinguish

groups that are also statistically valid and often permit the

valid separation of the components of a polymodal frequency

distribution.

Most obvious of biological age criteria, for recent animals,

is the attainment of sexual maturity. More exact but less often

available are periodic phenomena that leave records of their

occurrence, such as fluctuations in rate of growth of fish scales

or of elephant tusks. Frequently these are annual but cannot

be assumed a priori to be so, each case demanding investigation

of this point. With the period of fluctuation determined, the

age of the animal can be closely determined by counting the

alternations of slowly and rapidly deposit^ tissue, just as is

done in determining the age of a tree by the rings in its wood.

Among mammals the loss of deciduous and eruption of permanent
teeth are also periodic phenomena that occur at approximately

the same rate for all individuals of a species. The fupon of
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epiphyses and sutures in mammalian skeletons also serves to

distinguish young and mature individuals.

An excellent example of both statistical and biological methods and of

their combination in determining age groups is given by Blanchard and
Blanchard (1931) for the salamander, Hemidactylium sadatum. Their

data for total length of males are reproduced in Fig. 45. In the histogram
of all their observations, the distribution falls into two sharply distinguished

groups, here lettered A and B.^ A, including the smaller individuals, is well

defined and seems evidently to comprise a homogeneous group. B, on the

other hand, is clearly heterogeneous and has at least two modes. This
group includes individuals both sexually mature and immature. On this

biological criterion, a group Bi can be dissected out that appears to be itself

homogeneous. The remaining group B 2 ,
including all the sexually mature

males, gives a frequency distribution that is no longer clearly bimodal
although it is skewed and tails off to the left in a way that suggests some
heterogeneity.

The authors show that the characteristics of the whole distribution can be
quite precisely related to biological facts. A, the numerous and sharply

defined group of small sexually immature males, consists of individuals in

their first year. The gap between this and B represents the growth made
by the next preceding generation during the winter months before the

appearance of the generation seen in A, a time when no salamanders were
being born. Group Bi, large sexually immature males, includes individuals

in their second year. In a quantitative sample, Bi includes fewer individuals

than A because of high mortality before reaching the second year and fewer

than B* because the latter includes several generations and Bi only one.

It is well separated from A because of rapid growth in the first two years but
overlaps Bj because of slower growth thereafter, so that large variants in the

second year are as long as small variants in the third year. B 2 includes the

sexually mature males, in their third year and older. It is broad, skewed,

and very obscurely polymodal because animals of more than one year are

included; but growth is now so slow that yearly age groups can no longer be

clearly separated.

The essential parameters of these groups are as follows:*

Age group N R M
\

cr V

A 81 25.8-38.3 31.93 ± .33 2.98 ± .23 9.3 ± .7

B 117 45,3-76.6 62.15 ± .75 8.10 ± .53 13.0 ± .9

B, 24 45.3-56.8 49,34 ± .65 3.20 ± .46 6.5 ± .9

B, 93 49.8-76.6 62.12 ± .64 6.12 ± .45
1

9.4 ± .7

^ The Blanchards do not give their combined data in this form.

• Calculftted from the grouped data given by the Blanchards as a histo-

gram. The less extensive calculated data that they give do not agree

precisely with these, presumably because they were based on raw measure-

ments or on a different grouping.
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Total length

ALL MALES

LARGE SEXUALLY IMMATURE MALES

SEXUALLY MATURE MALES
Fig. 45.—Age groups distinguished by discontinue's distribution of sise

and by physiology. Males of the salamander, Hemidactylium acutatum* The
upper histogram shows the distribution of total length in the whole sample.
Group A is manifestly distinct from Group B and was found to include individuals
in their first year. B is clearly bi- or polymodal but cannot be clearly split

mathematically. Physiological condition, recorded with the observations,
permits the separation of Bi, individuals in their second year, and Bs, individuals
older than two years. Bs is heterogeneous but cannot be further subdivided
on these data. {Bata from Blanchard and Blanchard 1931.)
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The variability of first-year individuals (A) is unexpectedly high, and the

lower figure for the second year (Bi) suggests the advisability of investigating

the significance and cause of this apparent change.^ The variability of each

of the separable components of B is notably lower than that for the whole
group, and the greater variability of B 2 over Bi agrees with the evidence

that the former is still heterogeneous.

If sexual maturity is not determinable or is reached in the

period from one breeding period to the next, such samples will

generally be divisible only into two groups, a relatively well-

defined immature group, born at the last hatching or bearing

epoch, and a large heterogeneous but practically indissectible

group of older individuals. This is, in fact, the usual condition

in collections of many species of vertebrates.

In dealing with fossils, even though individual age can often

be approximately determined, it is rare to find natural aggrega-

tion into age groups. The season of death (corresponding to

date of collection of recent animals) cannot be controlled or

determined. Many, perhaps most, fossil deposits include

animals killed at various different seasons, so that age groups are

not so sampled as to be kept distinct. Nevertheless it must
commonly occur that in a given deposit animals were entombed
more frequently or exclusively at one time of the year rather than

any other, for instance, because of winter mortality, spring floods,

summer droughts, or seasonal migrations to pastures and water-

ing places. In such cases, definite age grouping may also be

expected among fossils, and probably numerous examples will

appear when paleontologists have become more inclined to look

for and able to recognize such groupings.

One of the few examples yet recorded is that of the extinct horse Meryc-

hippus primus from the Sheep Creek beds of Nebraska. Matthew (1924)

has shown that a large sample of this species can be separated on the basis of

eruption and wear of teeth into four quite distinct groups of young and
adolescent animals, with no intergradations between the groups, and an

intergrading adult group perhaps separable into two to four additional age

groups. Matthew^s interpretation was that the younger, more clear-cut

groups represent animals in their first, second, third, and fourth years and

the more heterogeneous adult group, animals in their fifth year and later.

He further inferred that parturition must have been seasonal in this species

and that entombment of the animals must have occurred chiefly or wholly

at one season, conclusions inescapable on the data presented. The reasons

1 It will probably be found to be related to rapid growth, which usually

produces high apparent variability.
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for such seasonal fossilization are of course more obscure. Matthew sug-

gested that entombment was in the dry season, either of one year or recur-

rently. In the famous deposit of complete skeletons of the little camel

StenomyluSf also in Nebraska, similar age grouping has also been noted by

Loomis, who considered the seasonal sampling the result of a flood, while

Brown supposed it to have resulted from the rigors of winter. In any case

occurrences show that age groups do occur in samples of fossil animals and

therefore that seasonal sampling does exist in such deposits, whatever its

cause.

SAMPLING FOR GROWTH

One of the most important and difficult elements in studies

of growth is that of sampling. The technique of sampling for

such studies can involve the following procedures, in their

approximate order of accuracy and desirability:

1.

Measuring parts affected by growth in each member of a group of live

animals of known ages successively as each reaches certain fixed and pref-

erably equidistant ages. The group should include the same individuals

throughout, as far as possible, and the individual records should be kept

distinct. This is the only method that gives adequate and complete

information on growth. It gives a series of individual records and also a

series of means from which population values can be estimated. It also

shows the variation at various ages and possible changes in variability

correlated with age and growth. As far as possible, factors other than age

should be held constant, and all that might influence growth (e.g^., food,

temperature, humidity) should be recorded and their bearing on the matter

tested by partial correlation, association, or some analogous process. Gen-

erally this ideal technique can be applied only to laboratory animals, and

then it has the disadvantage that it cannot be directly related to what
actually happens in a wild population: it indicates only a sort of limit to

what could happen under conditions more constant than those under which

the animals really live. It is occasionally possible to sample wild animals in

this way with groups that can be tagged or otherwise surely identified, that

tolerate handling, and that remain available over considerable periods of

time. It can, for instance, often be applied to very young or to relatively

sedentary birds,

2. Measuring a single individual in the same way.

3. Measuring successive random samples from a population of known
age. It is preferable to make live measurements and to return the animals

to the population (laboratory or wild), for this leaves the succeeding samples

unbiased. In this case each sample should include^^s large a percentage

of the population as possible. Individual records have no value as such

(unless as in method 1 the individuals are repeatedly observed and exactly

identified); but the means and the dispersion are still useful, although less

exact and less comparable than for method 1. It may, however, be imprac-

tical to take live samples of wild animals, and in any ease the animals must
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be killed if the growth of some element not measurable on live animals is

being studied. In this case every sample after the first is inevitably biased.

For instance, if the mean of the first sample happened to be above the

population mean, the next sample will tend to be below the population

mean, etc. Successive dead samples from one population cannot be truly

random. Effects of this bias must be closely checked. For instance, if

there were really no growth at all but if the mean of the first 5 samples

of 10 happened to be below the mean for all 10 (and it will surely not be
exactly the same and is as likely to be below as above), then the mean for

the second 5 samples will certainly be above that for the first 5 and an
incautious worker will conclude that growth has occurred.^ This inevitable

bias is minimized by making the samples as small as possible in relation to

the population and yet large enough to reveal significant changes if they

occur. The best balance between these two points depends on the peculiar

conditions of each problem. It is a common laboratory technique to use

up the whole population in successive samples, but this makes the later

samples extremely biased. All the samples together should be only a small

fraction of the available population, preferably not over one-tenth. Thus,

if growth in laboratory animals is to be studied from 10 successive dead
samples of 10 specimens each, about as small a series of observations as will

give really reliable results, the samples should be drawn at random from a

homogeneous laboratory stock of at least 1,000 animals. This counsel of

perfection is almost never followed, but if it cannot be followed workers

should be more hesitant in stating their results than they usually are.

Sampling of wild populations should also be most carefully planned and
scrutinized to be sure that the sampling itself is biasing the population as

little as possible. Dead samples of single individuals for growth studies

are relatively unreliable but are sometimes the best that can be done. The
unreliable nature of the results must be fully appreciated. Finally, animals

that belong to the population but that die while the sampling is in progress

should be measured, if possible, and compared with the samples to deter-

mine whether their removal has significantly biased the population. If the

mortality is high and the population small, this effect may be very appre-

ciable, especially as the animals that die often average distinctly below the

mean size of the population, so that if they are not taken into account growth

win appear to be more rapid or more significant than it really is.

4. Successive samples of approximately known mean age but inexactly

known individual age can be taken and studied as in method 3. The means

obtained in this way for good samples will be about as reliable as those

from method 3, but the indicated variation will have less significance, for

it is here affected by growth as well as by variation, strictly speaking.

This is usually the only or the best method available for wild animals, to

which it can be applied when they have a fairly limited and known hatching

or breeding period.

^This is undoubtedly one of several falsifying factors that have led

certain observers to believe that the crowns of mammalian teeth grow after

eruption.
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5. Successive age groups in a large sample collected over a short period

of time can be compared. With well-defined age groups the method is

reasonably reliable. Its disadvantage is that the number of such groups,

and hence the number of growth stages available, is almost always small,

seldom more than two or three, which severely limits the information as to

growth as a continuous process. Caution must also be used in comparing

the younger groups with a combined adult group. The former, if recog-

nizable at all, are usually well defined, often representing animals bom in

one year; and their mean size and me^an age have real and reliable mean-
ings. The adult group generally covers animals with much greater age

differences, and the mean size is not a real and reliable measure of animals

of any particular single mean age.

6. Age groups separated physiologically or anatomically from samples

covering any period of time or, as with fossils, an indefinite period of time

can be compared. This and, to much less extent, the preceding method are

the only ones so far mentioned that are applicable to fossils. This method
is inaccurate because the age criteria used are themselves variable as to age

of appearance, because numerical values can seldom be given to the mean
ages of the groups, because each group generally does not tend to have its

values clustered around a mean, and because the successive groups usually

do not cover equal or measurably related periods of time. Rate of growth

cannot be studied from such data, and the results are generally somewhat
indefinite, but some valuable information can be gathered.

7. It is occasionally possible to get some idea of growth trends from a

sample that cannot be or is not sharply subdivided in any way correlated

with age. Thus in a large sample of animals of unknown age and without

sharply defined (discontifiuous) physiological age criteria, it may yet be

valid to assume that total length, or some analogous measurement, is

closely correlated with age. If other measurements are then plotted against

this, an idea, necessarily inaccurate but often suggestive, of their growth
trend can be obtained. This method also does not give any measure of

actual rates of growth, for that of the measurement used as a basis of com-
parison is not known. It may also give fallacious results because it starts

out by assuming the truth of something that it seeks to prove, that is, that

a measurement is correlated with age. As will be shown in detail, such

data are invaluable in studies of relative growth, but they are of relatively

little use in the study of absolute growth.

ABSOLUTE GROWTH AND GROWTH RATES

Without attempting an exhaustive discussion, some aspects

of numerical work on growth may be considered, assuming that

a good series of means or a good individual series of measurements
at known ages is at hand. The principal eleiiSents in growth are:

1. Initial size.

2. Proportion of tissues with different growth characteristics. This may
be so complicated that it is usual to assume that the whole of the material
included in a given dimension grows in the same way. If this does not
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give a good result, it may be assumed that a certain proportion of it does

not grow at all and that the rest all grows in one way. It is probable, in

some cases at least, that either of these assumptions is unreal and over-

simplifies the real conditions; but they are proper if they approximate the

observed results and reduce them to a basis that can be handled numerically

without unreasonable labor.

3. Initial growth rate (of the whole or of the assumed growing proportion).

4. Changes in growth rate.

Growth can be completely described and fully studied if

numerical valuCvS can be given to each of these four factors.

Omission of any one of them makes the study incomplete and to

that extent unreliable. The problem is essentially one of

trend and can be discussed in graphic terms and represented by
graphic methods. Factor 1 determines the starting point of the

growth line and hence its absolute position on a graph. Factor 2

can seldom be measured directly and often must perforce be

ignored; that is, it is usually assumed that growth is evenly

distributed over the material between the limits of the dimension.

If there are marked changes in growth rate that do not follow a

defined pattern or formula, they can sometimes be brought into

such a pattern by assuming the existence of a certain proportion

of nongrowing material. This assumption and the consequent

indirect measurement of factor 2 are largely numerical assump-

tions. They systematize and perhaps simplify study but are

not necessarily very closely related to the real but obscure facts.

Factor 3 determines the initial slope of the growth line and

hence in conjunction with the next factor determines the abso-

lute slope throughout. Factor 4 determines the relative slopes

of the growth line in its various parts. If there is no change in

rate, the line is straight, and its initial slope is maintained

throughout. This is almost never true for any growth line

covering the whole life span of an animal or even for any large

part of it. The principal and most difficult problem in the

study of growth is that of evaluating this factor.

The concept of growth rate requires further specification.

There are, in the first place, two quite distinct sorts of growth.

In some cases, growth is a simple accretive or additive process.

To the initial magnitude of the organ is added an increment

which does not itself grow. The relationship is then given by

the equation

« Fo + At
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where Ko = the initial size of the organ.

A = the additive growth rate.

t = the time elapsed.

Yt = the size of the organ at the end of this time.

If A is constant, then the growth line is straight, and A is simply

its slope. It is then exactly analogous to a regression coefficient

and can be calculated in the same way, fitting a straight line to

the growth graph by the method of least squares (see Chap XIII).

If A varies noticeably, which is usually the case if any considera-

ble part of the individuaPs life is studied, then an estimate of

the additive growth rate, a form of average, can be made for

each interval between successive observations by the simple

relationship

A -^ "
~t

(Fo being taken as the value, or mean value, at the last time

of observation and t as the duration of the interval between

observations).

Among vertebrates, additive growth is mostly confined to

organs like scales, feathers, hair, claws, teeth, and some types

of horns. It is also found in concretionary structures such as

otoliths or calculi. Among invertebrates, additive growth is

more important because most of their hard parts, notably the

shells of molluscs, tend to grow in this way. Most organs, how-

ever, do not have additive growth; nor does the body as a whole.

The other and more common type of growth is multiplicative,

sometimes contrasted as compound-interest as opposed to simple-

interest (additive) growth. In multiplicative growth the incre-

ment is itself alive and begins to grow as soon as produced. The
increase is thus not by arithmetic addition, as in additive growth,

but is by multiplication in a geometric series. The increment is

not to be considered as a lump amount independent of the amount
of material already in the organ but as dependent on the latter.

The rate is not a fixed increment per unit of time but a per-

centage of preceding size per unit of time, ^his may be called

the geometric as opposed to the arithmetic or additive growth
rate. Thus if an organ at first weighs 50 grams and has increased

to 60 grams 10 days later, its average absolute increment and its

additive rate of growth are 1 gram per day, and its geometric

increment is 20 per cent.
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It is necessary here to distinguish between geometric increment

and geometric rate of growth. The two are usually confused

but are quite distinct. The organ that grows from 50 to 60

grams in 10 days has increased in weight by 20 per cent, its

geometric increment, but it has not been growing at 20 per cent

per 10 days nor at 2 per cent per day. Supposing, for the

moment, that the increment is added instantaneously at the end

of each day, the result of a geometric, compound-interest rate

of 2 per cent per day is shown by the following series:

Days Weight
Increment (2 % of

weight at beginning

of day)

0 50 1.00

1 51 1.02

2 52.02 1 . 0404

3 53.0604 1.061208

4 54.121608 1.08243216

5 55.20404016 1 . 1040808032

6 56.3081209632 i 1 . 126162419264

7 57.434283382464 1 . 14868566764928

8 58.58296905011328
|

1.1716593810022656

9 59.7546284311155456 1 . 195092568622310912

10 60.949720999737856512 ^

Discontinuous geometric growth at 2 per cent per day would

thus cause 50 grams to increase to nearly 61, not to 60, in 10 days.

This series is analogous to interest of 2 per cent per day com-

pounded daily. In fact in such growth the compounding is

not daily or at any other fixed discontinuous points but is con-

tinuous. The interest, so to speak, is continuously due, is paid

instantaneously, and immediately becomes capital and starts

paying interest itself. Such growth is represented by the

equation

where Fo = initial magnitude.

Yt “ magnitude at time ty as before.

e is the base of Napierian logarithms.^

^ Most succinctly so designated, but it may be noted here and is true in

most other equations in which this constant appears that c enters into the

equation not because it is the base of these logarithms but because it is the
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G is the geometric or multiplicative growth rate, sometimes

also called the ‘instantaneous growth rate^^ because it

implies instantaneous compounding of the increments.

The practical determination of G demands converting the equa-

tion into logarithmic form. Using Napierian (natural) loga-

rithms, it becomes

loge Ft = loge Fo + Gt log„ e

and since logo e is, of course, 1, this is

logo Ft = logo Yo -\-Gt

whence

^ logo Ft - logo Fo

If common logarithms (base 10) are used

log Ft = log Fo -h Gt log e

and since log e (i.e., logic e) is .434294, this is

whence

or

log Ft - log Fo H- .434294 Gt

.434294^

G = 2.302585

There are four variables here; so any one can be found if the

observational data supply the other three. Thus 50 grams
growing at the geometric rate 2 per cent or .02 per day, com-

pounded instantaneously, would grow to about 61.01 grams in

10 days, as shown by the following:

Fo = 50 loge Fo = 3.91202

G = .02 per day f = 10 days Gt - .2

loge Ft = loge Fo -f - 3.91202 -f .2 = 4.11202

Ft =* antiloge Ft =* antiloge 4.11202 = about 61.01

sum (more strictly the limit of the sum) of the series

1+1 + 1 + 1 + L_^+...^1^1X2^ 1X2X3^1X2X3X4^
This series enters naturally into summation of a continuous geometric series,

and there is nothing arbitrary or esoteric about the appearance of e in

equations related to such series.
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If G is constant, the growth line will be straight on semilog-

arithmic coordinates, plotting Y logarithmically and t arith-

metically. G is the regression coefficient of log F on and if

G is constant, a least-squares line can be fitted and G calculated

like hyx (page 266), using log Y in place of the observed values

throughout. G is approximately constant over short periods

and often for longer periods in embryonic or earliest postnatal

life, but it is seldom even roughly constant throughout life.

It almost invariably drops as the organ in question nears its

definitive size; and even if growth is continuous throughout life,

the rate of growth becomes less. Constant multiplicative growth

leads eventually to such enormous increments that the slowing

down of growth is almost inevitable. For instance, if an animal

weighed 10 pounds at birth and grew steadily at 1 per cent per

day, in 10 years it would weigh more than 70,000,000,000,000,000

pounds! Yet most animals grow faster than 1 per cent per day
in early stages of growth.

The value of G obtained by the procedure just explained is the

value that would have effected the observed amount of growth
in the given time if G had been constant. If the growth rate was
approximately constant during that period, then G is a good
estimate. If it was not constant, then G is to be considered as a

useful form of average. Note also that G is in any case an actual

value that the growth rate did have at some time during the

period under consideration, even though the exact time cannot

easily be specified if G is changing.

Change in growth rate can be most usefully represented by
determining G for each of the successive time periods of observa-

tion. This gives not only the average rate for each of the suc-

cessive periods, but also a series of actual rates, and so well

represents the changes in rate that really occurred.

It is possible for the multiplicative growth rate to decrease as

growth proceeds (as F becomes larger) in such a way that
y(gO« which is the mean increment for any given period,

is constant. Then equal increments will be added in equal

periods of time, and as far as any external manifestation is con-

cerned growth will appear to be additive, not multiplicative. It

is clear, however, that this is in reality only a special case of

multiplicative growth; and it is preferable to treat it as such

rather than as additive growth.
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Example 84.—Tabular Records op Growth and
(Data from Jen-

Stage

Age, days

from

spawning

Elapsed

time,

days

No. of

individ-

uals

Mean
length of

head, mm.

Absolute i

mi

For

interval

ncrements,

m.

To date

I 49 0 200 36.1

II 63 14 209 53.4 17.3 17.3

III 77 28 198 68.1 14.7 32.0

IV 92 43 200 79.3 11.2 43.2

V 106 57 161 87.3 8.0 51.2

1 These should not ordinarily be used, for they are confusing. They are often mistaken

values of the latter.

It is thus possible to study growth from several different sorts

of data, choice among which is to be determined by the kind of

growth in question and by the purpose of the study. Most
important among these are:

1. The data as observed—necessarily corresponding observations of

magnitude Y and elapsed time with such other raw data as may be perti-

nent (number and nature of specimens, absolute ages, etc.).

2. Arithmetic or absolute increments— Yt — Yq.

a. For each step between successive observations.

b. Cumulative, giving the total increment since the first observation.

3. Arithmetic increments per unit of time, which are the average arith-

metic growth rates—{Yt To)

A

a. For each step.

b. Cumulative from the first observation.

4. Geometric increments

—

{Yt — Yo)/Yo.

a. For each step.

b. Cumulative.

5. Average geometric growth rates—flog* Yt — log, Yo)/t [not

{Yt Yo)/tYof which gives average geometric increments per unit of time

but not the geometric growth rates].

a. For each step.

b. Cumulative.

These are compared for a typical set of growth data in Example

84, and several are shown graphically in Fig. 46.
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Growth Ratbb. Length of Head in Eainbow Trout
kinson 1912)

Stage

i

Arithmetic
|

growth rates,

mm. per day

Geometric in-

crements in %

Geometric

growth rates

in % per day
,

Mean geo-

metric incre-

ments per day
in

For
To

For
To

For
To

For
To

inter-

val
date

inter-

f val
I

date

i

inter-

val
date

inter-

val
date

I

II 1.24 1.24
!
47.9

1

1

47.9 2.80 2.80 3.42 3.42
III 1.05 1.14 27.5 88.6 1.74 2.27 1.96 3.16
IV .75 1.00 16.4 120 a. 02 1.83 1.09 2.79

V .57 .90 10.1 142 .69
j

1.55 .72
1

2.49

for the average geometric growth rates and are given here only for comparison with the true

It would seldom be necessary or advisable to give the data in

all these different forms in any one study. In this case, growth

is surely multiplicative, and so the geometric growth rates are

most directly and truly related to the problem.^

As usually seen, a growth curve (arithmetic plot of magnitudes

against time) is convex upward, rising very steeply at first and

gradually leveling off until it becomes horizontal, or nearly so,

as the adult size is reached. If, however, the whole curve is

available, from the fertilized egg through the embryonic as well

as the juvenile growth, the early part is seen to be concave

upward, beginning nearly horizontal and curving upward until

it becomes steep and runs into the postnatal curve. The point

of inflection, where the concavity changes from upward (and to

the left) to downward (and to the right) is that at which the

increment per unit time, the arithmetic growth rate, is greatest.

Birth usually occurs at about this time, so that the earlier part

of the curve, with increments increasing more and more rapidly,

is mainly or wholly embryonic, while the later part, with incre-

ments decreasing more and more slowly, is mainly or wholly

^ All these data would be more enlightening if there were more steps,

observations at shorter intervals; but the example shows the general nature

of the different treatments, and a more elaborate series would be too bulky

for our purpose.
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postnatal. Most growth observations cover only the postnatal

period, and especially its earlier part.

The arithmetic growth rate begins essentially at zero, rises to a

maximum at about the period of birth, then falls off and eventu-

ally reaches zero when the animal stops growing. This curve is

Elapsed time in days (0 is 49 days from spawning

and is about the time of hatching)

Fig. 46.—Growth curve and growth-rate curves. Length of head in rainbow
trout (data of Example 84). {Data from Jenkinaon 1912.)

usually strongly skewed because the period of accelerating

arithmetic growth is generally much shorter than the period of

decelerating growth, so that the peak of the curve is far to the

left of its midpoint. The curve of the geometric growth rate

usually follows a very different course. This rate is often very

high in the earliest embryonic stages, then falls very rapidly and
may level out so that the rate is relatively constant, or fluctuates

about a nearly horizontal line of trend, through much of the
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embryonic period. Near the time of maximum arithmetic

growth, the geometric growth rate normally curves downward
again and falls off, at first rapidly, then more and more slowly,

until it finally reaches zero when maximum size is attained^

(see Fig. 47).

Fio. 47.—Idealized curves of growth and growth rates. Based on many
sets of data but generalized and idealized. The relatively longer periods of

maturity and senility are not included.

These relationships are subject to innumerable variations and
modifications. Growth may proceed by cycles instead of in a

single continuous curve. The rates are commonly highly irregu-

lar over short periods and show an even trend only over longer

intervals. Some organs (like the thymus) may have a very

different sort of growth pattern. These modifications cannot be

considered here, where the concern is only with the general

methods of study and not with its results. It is also often pos-

' The very earliest stages of embryonic growth are inadequately known,

but there is some evidence that the geometric rate is then usually at its

maximum. Embryonic growth after the earliest stages often approximates

B logarithmic curve, indicating a relatively constant geometric growth rate.
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sible to fit a mathematical curve to growth data over longer or

shorter periods, but relatively exact ^methods of doing this may
be very complex and laborious and belong in the domain of the

specialist and the skilled mathematician.^

PROPORTIONS AND SIZE

Even more important than changes of absolute dimensions

with growth are changes in proportions. It is a well-known fact

that such changes do occur, for instance, that young mammals
have larger heads relative to their bodies than do adults of the

same species. It is less well known but nevertheless has been

clearly shown that the same sorts of changes may appear not

only with age but with animals of the same age but of different

sizes, that is, that the smaller adults, for instance, may tend to

have relatively larger heads than do larger individuals of the

same age and species. It has even been demonstrated in

numerous instances that the same sort of relationship may appear

between larger and smaller species of a genus or in rarer cases

even between larger and smaller genera of a family. The rela-

tionship of proportions and size thus has far wider implications

than are involved in growth alone, although what appears to be

the, or certainly a, basic law of these relationships was discovered

^ The growth of a population usually follows what is called the logistic

curve, generalized as

Y =
1 + C'e»,*+«s'’+

• • •

(see Pearl, 1930, and the work cited by him). Anatomical growth commonly
follows an analogous pattern. There are various ways of applying to growth

data empirical curves such as

r - a log X -f 6

r = aX + 6(log X 4- c) + d

F = (aX 4- 6) + 60og X 4- c) 4- d

(see Donaldson, 1924, where these and others are applied to relative growth
in the rat). Such empirical curves are descriptive devices difficult to use and
of limited value in zoology, strictly speaking, since for the most part they

are not formalizations of the logical procedures itjsyolved in research but
only artificial approximations of observed trends. More useful are methods
that formalize certain hypotheses concemijig growth and facilitate compari-

sons of these with actual observations (see, for example, Robb, 1929, and
papers there cited by him, where the hypothesis that growth proceeds as

^oes an autooatalytic chemical reaction is tested in this way).
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from growth studies and has hitherto found its most important

applications in that field.

Relative proportions of two parts of an animal do not depend
directly on their respective absolute growth rates. If their

geometric growth rates are the same at all times, that is, maintain

the ratio 1, then the relative sizes of the absolute dimensions will

remain the same, no matter what those relative sizes are. Nor
does it then matter how much or in what way the growth rates

change in absolute value, so long as both change in the same
way and they maintain their ratio. The size of one structure

Y can then always be calculated from that of another X by the

simple relationship

Y == a + bX

In this equation, a is mathematically the value of Y when X
is zero. Zoologically X cannot be zero, but a nevertheless has

a biological significance: it is a basic size difference between X
and Yy unaffected by growth. Probably this represents a

certain proportion of nongrowing tissue, or possibly in some
cases it is a conventionalization of a proportion of more slowly

growing tissue. The constant b is mathematically the slope of

the regression line, or more strictly (if the line is not straight) the

slope of a tangent to it when X = 1. Zoologically it represents

a basic ratio of the absolute sizes of the increments of Y and X :

it is equal to the ratio of their arithmetic growth rates.

In practice it has been found that this relationship and others

similar to it are all special cases of the more general equation

r = a +
The value of k in this expression is the ratio of the geometric

growth rates of Y and X.^ This equation and all the others

developed from it by giving fixed values to a, 6, and k assume that

these three values are constant in any given case. Especially as

regards k, this is not necessarily true, and the equation

r = a + bX^

must itself be considered a special case of a still more general

^This is not obvious algebraically but can easily be proved by simple

calculus (see Huxley, 1932) and can be empirically checked by application of

the formula to actual cases of growth that follow this pattern.
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relationship in which one or two additional variables occur, cor-

responding with variable amounts of tissue involved in growth

and with a variable ratio of the growth rates of Y and X, Such

forms, however, are too complex for most practical purposes.

It has, moreover, been found that a, 6, and k are in fact usually

constant in zoological practice, if not over the whole of growth,

at least over such considerable periods of it as to make forms

derived from F = a + hX^ valid for most purposes. This

discovery has the most important and in part unexpected bearings

on zoology and paleontology in general, and this equation will

help to solve many of the most basic and most puzzling problems

of these sciences.

Before suggesting the sort of evidence and of conclusions

involved in this relationship, it is well to examine in more detail

the mathematical and zoological properties and relationships of

the equation. According to whether the various constants take

the values 0, 1, or neither, it has eight possible forms

(1) F - X (5) F = X*
(2) F - 6X (6) F = 5X*

(3) F - a -f X • (7) F - a + X*
(4) F - a + 6X (8) F - a + 6X*

Of these the first four have the growth ratio k, equal to 1.

That is, F and X grow at the same geometric rate. The regres-

sion of F on X is then a straight line on arithmetic coordinates,

and in practice the applicability of one of these formulas can be

recognized by observation of this graphic relationship. The last

four formulas, on the other hand, apply when F and X do not

grow at the same geometric rate {k is not equal to 1), but their

growth rates do retain a constant ratio. These regressions are

curvilinear on arithmetic coordinates but are rectilinear on

logarithmic coordinates (or when the logarithms of X and F
are plotted on arithmetic coordinates). Their properties may be

considered separately.

1. F == X. This is the simplest possible relationship in rela-

tive growth and proportions and indicates, of course, that the

VAlso theoretically passible are four other forms:
'*

F*0 F«a F-6 F = a+6

—but these are not possible in practice, for they make F invariable, whereas

it is defined as a variable for present purposes.
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two anatomical elements remain of the same size (Fig. 48A).

This is normally true, for instance, of two bilaterally sym-
metrical parts, such as right and left femora. The relationship

is so simple and obvious as to require no analysis. It should,

however, be noted that this and the subsequent more complex

forms are relationships of biological growth or relative size

factors and are only approximations to the detailed actual facts

of given cases. That is, right and left femora, for instance,

are never exactly and absolutely of the same size in nature.

In a group, each shows some variability about its mean, and the

correlation is not quite 1.00, although extremely high. Thus
F = X is only a close, valid approximation of their actual

relationships, but it is probably an exact statement of their

relative growth and size tendencies as aside from incidental

minor fluctuations caused by extraneous or nongenetic factors.

The graph of this equation on arithmetic coordinates is a

straight line extending up and to the right from the origin

(F = 0, X = 0) at an angle of 45 deg. (or with a slope of 1).

2. F = hX, The geometric growth rates are the same, the

ratio F/X is constant and is equal to 6, but F is not equal to X,

being smaller if h is less than 1 and larger if h is larger than 1 (see

Fig. 48B). This is approximately true of many variates and is

the general expression of harmonious growth, without change of

proportions. Confidence in this relationship as usually true

underlies the general use of ratios, instead of absolute dimensions,

in comparing different individuals and groups as in taxonomy.

The confidence is, however, frequently misplaced. More
thorough study tends to show that the relations F = a + 5X
and F = 6X* are both more widespread than is F = 6X, except

as a gross approximation, and in neither of them does the ratio

F/X tend to he constant. It is generally recognized that this is

often true of individual growth, that proportions often change

according to the age of an animal; but it is less generally realized

that proportions are often a variable function of absolute size

regardless of differences in individual age.

The graph on arithmetic coordinates is a straight line of any

slope (6 is the slope) passing through the origin F = 0, X = 0).

3 . F = a + X. The geometric growth rates are the same

(* = !), and every increase in one dimension is accompanied by

an equal absolute increase in the other (6 = 1); but there is a
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basic difference in absolute size (a) (see Fig. 48C). The ratio

of F to X is variable:
Y a + X

^ + 1. If a is positive.X X
this ratio is greater than 1 and becomes smaller as X becomes

Fig. 48.—The four types of isogonic growth and the simplest case of hetero-

gonic growth. In each diagram an initial size relation and two subsequent
growth stages are shown, with the size of one variate (X) shown by the area

above the base line and that of the other (K) below. Increments of both are

croashatched. A, Y and X are initially equal and remain so, growing by equal
increments; the arithmetic growth rates are the same, and the ratio of Y :X
is constant and equal to 1. B, F is initially twice as large as X and remains so,

its increments being also twice as large (b *= 2); the arithmetic growth rate is

twice as large as that of X, and the ratio of Y :X is constant. C, Y is initially

larger than X by a fixed amount a, represented in solid black, and grows by equal
increments; the arithmetic growth rates are the same, but the ratio of Y:X is

inconstant. D, Y is initially larger than X, and its increments are twice as

large (b » 2); the arithmetic growth rate of Y maintains a constant ratio 2
to that of X, but the ratio of their absolute values is inconstant. A to D are
the four basic types of isogonic relations in relative growth. E, Y is initially

of the same size as X, and its geometric growth rate is constantly twice as great
as that of X, making its increments progressively larger; the geometric growth
rates maintain a constant ratio (k » 2 in the diagram), but the ratio of FlX is

inconstant. E is the simplest case of heterogonic relative growth. {Based in
part on a diagram by Robb 1929.)

larger, approaching 1 as a limit. If a is negg^ive, which can be

and often is the case, the ratio F/X is less than 1, becomes larger

as X becomes larger, and also approaches 1 as a limit. This

and the following equations illustrate the difference between

zoological and mathematical possibilities. Because a mathe-
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matical equation may usefully represent a zoological relationship,

it does not follow that every correct mathematical solution of

the equation is a zoological possibility. The inferences cannot

be extended indefinitely beyond the field of observation, nor is

any mathematical result to be accepted unless it is logical and
meets the inherent nonmathematical postulates. In other

words, the formulas apply as far, and only as far, as they are

symbols of common-sense deductions.

In the use of these formulas in this section, it is in the first

place understood that neither Y nor X can have a negative value.

They represent measurements of anatomical variables; and these

may be 0 in rare cases, that is, the element may disappear, but

obviously cannot be less than 0. If the anatomical part is

essential to life, it obviously cannot measure 0 but has a lower

limit greater than 0, imposed physiologically, below which it is

too small to function so that life ceases if it drops below this point.

With less rigidity, it is also understood that Y is usually taken,

by convention, as the smaller or less inclusive of the two ana-

tomical variables. It is, for instance, to be used as tail length

against X as total length or as weight of brain against X as total

weight. In such cases the ratio Y/X obviously must be less

than 1, and usually much less. There is a zoological upper limit

of Y/X considerably lower than the mathematical limit. In

some cases, however, it may be convenient to represent by F a

variable that can exceed X in size, for instance, tail length against

-5l as body length. Then the ratio Y/X can be greater (or less)

than 1, but its upper limit is still imposed physiologically: it is the

point where the relative sizes are physiologically incompatible,

for instance, where the tail becomes too large relative to the body

to be nourished by the latter.

In the equation F = a + -S' if a is negative no value of X less

than (
— a) is possible; for that would make F negative, a zoologi-

cal impossibility. Further, if F represents a variate necessarily

smaller than X, then a must be negative.

The graph on arithmetic coordinates is a straight line leaving

the F-axis at a, if a is positive, or the X-axis at (—a) (t.e., the

positive arithmetic value of a), if a is negative, at 46®, slope 1,

running to the right and upward.

This relationship is, in fact, rare and of little practical signifi-

cance in zoology but does occur, at least approximately, and has
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been treated at this length because it shows most clearly the

meaning of a and the limitations of the zoological, as opposed

to the mathematical, facts. The equation applies when the

growth or increment rates of Y and X are constant and equal

but their ratio is not. The calculation of a is obvious; it is

simply Y — X for corresponding values of those variates or, more
accurately, for their mean values.

4. Y = a + bX, This relationship is true of relative size

and growth when the geometric growth rates of Y and X are

equal (A = 1) but the increments are unequal (6 is not 1) and
the ratio Y/X is not constant (see Fig. 48D). This is one of

the two most important expressions of relative size and growth

(the other being Y — bX^) and is very commonly a good approxi-

mation of the facts. The equation is the same as that for

rectilinear regression in general, and the calculation of a and b

has been amply explained (Chap. XIII). The graph is as for

form 2 of the equation except that the line may run in any direc-

tion with slope either greater or less than 1 (its angle greater or

less than 45 deg.), as given by the value of b.

Several possible alternatives demand consideration, depending

on possible ranges of a and b. In the first place, a and b may both

be positive, or either one may be negative, but both cannot be

negative (for then all mathematically possible values of Y would
be negative, and this is zoologically impossible). The other

important alternatives may be considered systematically:

A, b > 0, Y becomes larger as X becomes larger. In other

words, regression and correlation are positive, and the line

runs upward to the right.

a. a > 0. Y/X is necessarily greater than b and becomes

smaller as X increases. Zoologically, Y cannot have

any value less than a (because X would then be negative)

(1) 6 > 1. F is always larger than X. Therefore this

cannot be the case if, as by usual convention, Y
is taken zoologically as an element necessarily

smaller than X.

(2) 1 > 6 > 0. F is equal to X w^en X a/(l — 5),

is greater than X when X is less than a/(l — 6),

and is less than X when X is greater than a/(1 — ft).

a/(l — 6) is, then, the lower zoological limit of X
if F must be smaller than X.
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b. a < 0. Y/X is necessarily smaller than b and becomes
larger as X increases. Zoologically X is always greater

than —a/b; for if it were less, Y would be negative.

(1) 6 > 1. F is smaller than X when X is smaller than

a/(l — h)j equal to X when X = a/(l — 6), and
greater than X when X is greater than a/(l — b).

a/(l — b) is the upper zoological limit of X if F
must be smaller than X.

(2) 1 > b > 0. F is always smaller jthan X, and
there is no obvious upper limit to the value of X.
This is probably the most common rectilinear

relationship in growth or between the magnitudes

of two anatomical variates.

B. b < 0, Y becomes smallcfr as X becomes larger; regression

and correlation are negative, and the line runs downward
to the right. Such cases occur in zoology but are rare.

It is very common for F to become smaller relative to X
as X becomes larger, t.e., for Y/X to decrease with increase

of X, but very uncommon for F to become absolutely

smaller as X increases.

a. a > 0. F/X is greater than (—b) and becomes smaller

as X increases. X must be smaller than a/— b, and F
must be greater than a, for otherwise one or both would

be negative. F is greater than X when X is less than

a/(l — b) and less than X when X is greater than

a/(l — b). a/(l — b) is thus the lower zoological

limit of X if F must be less than X.

b. b < 0, a < 0, is a zoologically impossible combination.

5, 6. F == X^, Y = bX^, These represent simple multipli-

cative growth such that the geometric rates of growth of F and X
maintain a constant ratio, k. The ratio F/X is variable

(Fig. 49) and is always b when X = 1. F and X are equal

(F/X = 1) when bX*~^ — 1. F = X* is a relatively unimpor-

tant special form when F and X happen to be equal (both = 1)

when X =* 1. The value of b cannot be negative because that

would make F negative. There are the following special cases:

A. k > 1. Y increases as X increases and F/X increases with

them. That is, the two variables get larger together, but

F at a faster rate.
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a. 6 > 1. F is always larger than X. These conditions

therefore cannot apply if Y is defined as the smaller

variable. This sort of size relation is very rare in

zoology.

b. b < 1. Y = X when = 1/&, which is thus the

upper zoological limit of X if X must be larger than F.

This is a common and important relationship in zoology.

1 > A; > 0. F increases as X increases, but the ratio

F/X decreases as they increase. The two variables get

larger together, but X at a faster rate. F = X when
Xi-k ^ zoological lower limit of X if F must be

smaller than X. This is also an important relative growth

^
phenomenon in zoology.

C. k < 0. Y decreases as X ihcreases and F/X also decreases

as X increases. If X^~* is less than 6, F is larger than X

;

and this is therefore the lower zoological limit of X if F
must be smaller than X. Structures that become abso-

lutely smaller as the body or any considerable part of it

becomes absolutely larger are rare, so that this relationship

is unusual in zoology, but it does occur.

For the graphs of these curves and the calculation of

b and k, see below.

7, 8. F = a 4- X^. F = a + 6X*. The theoretical impor-

tance of these equations is as great as for the preceding or is

indeed greater, for F = a -f- bX^ is the generalization of all the

other equations here given and often would give the best repre-

sentation of the detailed facts. They have, however, little or

no practical value at present; for no adequate tests or considera-

ble use of them have been made, and the calculation of both a

and k in the generalized equation is usually impractical. It is

probable, however, that some of the instances of relative growth

that do not follow either F = a + 6X or F = bX^ and so have not

yet been reduced to rule and analyzed would be found to follow

F = a + bX^ were the values of all three constants determinable.

In practice, relative sizes, proportions, ,^d relative growth

can usually be approximated by either F = a + 6X or F — 6X*.

The first is the equation to use if the regression is approximately

rectilinear on arithmetic coordinates and the second if this is

true only on logarithmic coordinates. Ordinary linear regression



GROWTH 363

has already been amply studied, but further notice of F = bX^ is

necessary.

Fiq. 49.—Dependence of ratios on absolute size and coefficients of heterogony.

The ratio Y:X is plotted against absolute values of X for different values of k

in the equation Y « bX^. When A; *= 1, the ratio Y:X is constant. When k

is less than 1, the ratio becomes at first rapidly and then more slowly less as X
(the gross size of an animal, for instance) becomes greater. When k is greater

than 1 and less than 2, the ratio becomes at first rapidly and then more slowly

larger as X increases. When k is greater than 2, the ratio becomes at first slowly

and then more rapidly larger as X increases. For simplicity, h has been taken

as 1 in this diagram, but the forms of the curves would be the same for any values

of 6, only their positions on the coordinates shifting. By making such a diagram

for any values of b and k, the nature of the shift in ratios with changes in size can

be clearly shown for any given case.

Plotting this on logarithmic coordinates or plotting it on

arithmetic coordinates by the logarithms of F andX is equivalent

to plotting the derived equation

log F * log h + A: log X
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This is an ordinary rectilinear regression equation and shows

why the curve becomes a straight line in logarithmic plotting.

That is, log Y is now being used instead of Y, log 5 is a constant

and could equally well be symbolized as a, k is also a constant

taking the place of b in the regression equation, and log X is

Fig. 60.—^Logarithmic graph of observed and theoretical growth. Snout
length against total skull length in Alligator mississippienais (data of Example
85). The nearly rectilinear arrangement of the observations on logarithmic
coordinates shows approximation to the form Y *= and the straight line

representing the values b » .187, k » 1.216, very closely approximates the
ol^rved trend.

used for X; so this equation has the same form as F == a + bX.

It shows that k is the coefficient of regression of the logarithm of

F on the logarithm of X. If the original data, values of F and Z,

be replaced by their logarithms, it is a relatively simple matter to

fit a straight line to the logarithmic regres^kin by the method of

least squares, calculating the value symbolized in Chap. XIII as

brxy which is then equal to the k of the present problem. log b

can then be calculated as a was in Chap. XIII, and b taken as

the antilog of this value.
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Example 85.

—

Calculation of F = bX^ for Regression of Snout
Length on Skull Length in Alligator misaisaippiensis

(Data from Mook 1921 )'

Skull length
!

(X)

Snout

length

(Y)

....

Logarithms

X F dx dr dxdy dx

35 14 1 .544 1.146 -.471 -.574 .270354 .221841

40 15 1.602 1.176 -.413 -.544 ' .224672 . 170569

53 24 1.724 1.380 -.291 -.340 .098940 .084681

57 27 1.756 1.431 -.259I-.289 .074851 .067081

97 50 1.987 1.699 -.028 -.021 .000588 .000784

194 115 2.288 2.051 + .273 + .341 .093093 .074259

339 217 2.530 2.336 + .515 + .616 .317240 .265225

488 340 2.688 2.531 + .673 + .811 .545803 .452929

16.119 13.760 1.625541 1.337639

Mioi, X - 2.015 Mioa Y = 1.720

k = 1.625541/1.337639 - 1.215

The line passes through the means of the logarithms; so

1.720 * log 6 + 1.215 X 2.015

whence log 6 - 1.720 - 2.448 = 9.272 - 10

h = .187

The equation sought is thus Y * .187X^*®^®.

If desired, theoretical values of F corresponding to the observed values

of X can then be calculated as follows. These define points on the smoothed

logarithmic curve.

1.215 (log X)
Withlog6 * 9.272 - 10

added
Antilogs

1.876 1.148 14.1

1.946 1.218 16.5

2^.095 1.367
i

23.3

2.134 1.406 1 25.5

2.414 1.686
j

48.5

2.780 2.052 112.7

3.074 2.346 221.8

3.266 2.538 345.1

i It ifl to be noted that these data are very inadequate, for they represent measurements

of eight skulls only (of course, oi different individpals). They are nevertheless used because

they provide a numedoally simple and brief example, our interest here being method and
not resulta, and to show that even such poor data, analogous to many paleontologiGiU sam-

sitre a surprisingly good result.
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Example 85.

—

Calculation op F * for Regression op Snout
Length on Skull Length in Alligator mississippiensis

(Data from Mook).

—

{Continued)

In this case, k is significantly greater than 1. If it were assumed to be 1,

the rectilinear regression equation would be

Y = .711X - 15.9

Theoretical values of Y can also be calculated from this equation and
contrasted as follows:

. Observed

values of F

Theoretical values of Y

Y - .711J^ - 15.9 F = .

d d

14 9.0 -f5.0 14.1 - .1

15 12.5 +2.5 16.5
;

-1.5
24 21.8 +2.2 23.3 + .7

27 24.6 +2.4
i

25.5 + 1.5

50 53.1 -3.1 48.5 + 1.5

115 122 -7 113 +2
217 225 .

-8 222 -5
340 331 +9 345 -5

It is obvious that the values calculated from F = agree much
more closely with the observed facts; they are in every case closer to those

actually observed than are the values from the other equation. The fact is

that the length of the snout (preorbital part) of an alligator skull does grow
faster than the length of the skull as a whole and that, within the period

observed, its growth rate maintains an approximately constant ratio to that

of the skull as a whole.

The work of calculating these constants and obtaining a rela-

tive size equation is shown in Example 85 and Fig. 50 (see also

Fig. 51).

There are other, simpler ways to calculate k and 6 depending

on rougher methods of fitting a straight line to the logarithmic

data. As these methods of line fitting are much less reliable

than that of least squares, the resulting values of k and h are to

be viewed only as rough estimates and used only when greater

reliability is not desirable or is not possibl^’* and then only with a

definite indication as to how the values were calculated. A
straight line is determined by any two points, so that any two
pairs of values of F and X may be taken and assumed to lie

on the regression line. Then
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, _ log Yt - log Fo
log Xt - log Xo

where Xt = a higher value.

Xo = a lower value of the independent variate.

F< and Fo = corresponding values of the dependent variate.

The value of A; may thus be judged, very roughly, by any two
pairs of values of F and X. Obviously, however, the more
observations averaged into these values, the better the estimate.

It is also true, with some reservations, that the estimate is better

the farther apart are the values Xt and Xo. Averages of terminal

groups may be used, if these groups have reasonably high fre-

quencies, or the whole distribution may be split about equally

and each of the two halves averaged. In any case the line used

should be laid out on the log graph to see whether it does repre-

sent the apparent trend well.

HETEROGONY

Julian S. Huxley, whose interesting and invaluable book on
the subject (Huxley 1932) should be read by all zoologists, has

gone into the properties, meaning, and use of the equation

F = bX^ and of the coefficient A;, both of which he devised, in

great detail. Some of what has already been said and most of

what follows are based on his work, to which reference is to be

made for many examples and a fuller discussion than is possible

in this more general book.

An organ that grows at the same rate as the body as a whole

is isogonic; the relationship isogony. In heterogonic growth,

or heterogony, an organ grows at a different rate from that of the

body as a whole or of another standard of comparison. In

simple heterogony, the rate of the organ, although different,

bears a constant ratio to that of the standard of comparison. In

other words the relationship is that symbolized by F = bX*"-

The equation with numerical values of b and k inserted is a

heterogony formula for any given case, and k (the ratio of the

two rates of growth) is the constant differential growth ratio or,

as we prefer to say, the coefficient of heterogony. The heterog-

ony is said to be positive if it indicates an increase in the ratio

F/X with an increase in X, or in other words, if as X increases F
increases more rapidly, and negative if the ratio F/X decreases as

X increases, F increasing less rapidly than X or decreasing as X
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increases. Heterogony is positive if the coefficient is greater

than 1 and negative if the coefficient is less than 1, as shown by
the preceding discussion of the properties of the equation. ^

It is customary and preferable to take a total weight or large

dimension of the whole body or of a considerable part of it as

the independent variable {X of the equation) and a weight or

dimension of a part included in the independent variable or,

in any case, of a lesser part as the dependent variable (F of the

equation). It is for this reason that we have noted the points

where X = V as zoological limits of possible growth.

Huxley and others have shown that size relations do rather

closely follow the formula for simple heterogony in a large number
of cases among plants, invertebrates, and vertebrates. Here are

a few examples selected at random from the dozens available:

Shoot weight against root weight in plants (from Pearsall, given by
Huxley)

:

Daucus caroia (carrot ).—

k

=»= .55. Negative heterogony. The shoot

becomes larger as the root grows, but the root grows faster than the

shoot. The ratio of weights shoot: root becomes rapidly smaller as the

root grows larger.

Pisum sativum (pea, etiolated, one of three experiments ).—

k

~ 2.65.

Very high positive heterogony. The shoot grows faster than the root,

and the ratio becomes rapidly larger as the root grows.

Nuclear diameter against cell diameter in oocytes of Hydractinia echinata

(from Teissier, given by Huxley).—F = 1.5A'‘ ®®. Negative heterogony, the

nucleus growing less rapidly than the cell as a whole. From the discussion

on page 362, it follows that the zoological lower limit of C is reached when
« 5. This is true when X = 3.7. Then, according to the formula,

the nucleus would occupy the entire cell, and since this is impossible it

follows either that cells as small as this or near it will not occur or that the

heterogony formula is different for very small cells. In fact the smallest

observed value of X was 6.8, suggesting that the relationship does effectively

set a minimum cell size.

Weight of large chela against total weight in ?7co pugnax (from Huxley).

—

F = .0073A'^ ®*. (This example involves very abundant data and has been

thoroughly analyzed; it is interesting as being a principal basis for Huxley’s

development of the method here discussed.)

Length of face against skull length in the shci^ dog (on Becher’s data,

from Huxley): F * .28X^ *.

^ Note that a negative coefficient always indicates negative heterogony,

but that the heterogony may be negative although the coefficient is positive

(but less than +1).
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length of face against skull length in the baboon Papio porcarivs (Zucker-

man's data, from Huxley) : k is about 4.25, a remarkably high value. This
and the last examples illustrate a phenomenon common among vertebrates,

the fact that the preorbital part of the head grows more rapidly than the

postorbital part. It is clear that the heterogony coefficients of this and
other parts of primates are among their most important characters anatomi-
cally, functionally, and taxonomically. This very high k in the baboon gives

it its ^Mog face’^ and is aberrant among primates. Man certainly has a
very low corresponding value of fc, and values for most other primates lie

between these extremes.

Cranial capacity against skull length in Mus hactrianus (from Green):

Y — .0180X^ *®, Green (1933) has shown that heterogony coefficients can
be used to distinguish species and also that they reveal what differences in

proportions are not of taxonomic value but are only functions of size. He
has also shown the relationships of heterogony in hybrids to that of the

parent species. This and the other coefficients given by him are also inter-

esting because they are based on adult mice, not on juvenile growth. They
show that the essential character, even in a comparison of adults, is not the

ratio or proportion of two parts but their heterogony, a point also strongly

emphasized by Huxley and others.

Facial length against skull length in the horse (from Robb): Y = .30X^ ®®.

Robb (1935) has examined this relationship in the approximately direct

lineage of the horse, Hyracotherium to Equus^ in recent adult horses of vary-

ing size, and in growth stages of recent horses, and he shows that the

heterogony is approximately the same in all three series. The marked
change in facial-cranial proportions in the evolution of the horse appears

then simply as a function of size. It seems that there is no progressive

evolution of face length as such but that on the contrary the genetic heterog-

ony factor involved has not been affected by mutation. The adult size

has become larger, and the heterogony coefficient already fixed in Hj/ro-

cotherium has determined the relative facial length of all its descendants.

This progressive change in proportions is not, therefore, orthogenetic as

commonly stated but, in a sense, nongenetic. The persistence of an

approximately fixed value of k also explains the apparent recapitulation as

regards this proportion in the growth of the recent horse.

These few examples suggest something of the almost endless

possibilities and the extraordinary value of Huxley^s coefficient.

There are cases in which the two formulas

Y ^a + bX
Y - 6X*

give almost equally good results. The regressions then are

nearly linear both on arithmetic and on logarithmic coordinates,

the value of k differs little from 1, and the value a differs (relative

to absolute siaea of Y and X) little from 0. The first formida
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ignores the difference of k from 1. It may be preferable when
a is relatively large, that is, when it is large enough to have more
influence on the result than does the difference between k and 1.

The second formula ignores the difference of a from 0 and is

preferable when the value of k has more influence on the result

than does that of a. In practice the second formula is usually

preferable.

The following three heterogony formulas are based on the same specimens

of Alligator mississippiensis as Example 85 (data from Mook 1921):

X = median length of skull

1. y = maximum width of skull. Y - .56X

2. y = postorbital length of skull. Y = 1.43X-^®®

3. y = preorbital length of skull. Y =

Formulas 2 and 3 show significant heterogony, 2 negative and 3 positive.^

Huxley (1932) found that in the earliest embryonic growth

periods, when the geometric growth rate is very high and when
histological differentiation of the embryo is in progress, the con-

ception of simple heterogony is seldom or never fulfilled and the

laws of relative growth are quite different from those to be

deduced from subsequent relationships. He proposes to call

this phase histodifferentiation. After the completion of the basic

histological differentiation in the embryo occurs the phase called

1 These relate to two dimensions which together make up X, Therefore,

if one has negative heterogony, the other necessarily must have about an

equal degree of positive heterogony, which the formulas show to be the case.

It would be misleading and logically incorrect to use the isogony formula

y = a -+ hA for either of these, and in Example 85 it was shown for 3 that

the equation in this form (y = .71IX ~ 15.9) does not fit the facts so well

as the heterogony formula. In 1, however, the heterogony coefficient, .986

does not differ significantly from 1. The isogony formula therefore may fit

these data about as well as the heterogony formula. It is

y = .52X - .5

and by trial it is found that the two formulas do give about equally good
approximations of the observations. The geometric rates of growth are

about equal, and the ratio of width; length is about .52 and does not vary

greatly, a( — .5) being very small relative to the oiiserved values of F and X.
Nevertheless it is better to consider this relationship by the heterogony and
not the isogony formula. The growth involved is unquestionably geometric,

not arithmetic, the factor a is small and no serious error results from ignoring

it, and valid comparison with the distinctly heterogonic relationships of

Other parts of the i^uU can be made only by means of k.
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by Huxley auxanodifferentiation. In this phase, relative growth
often or usually follows the law of simple heterogony.

It has been found that instead of being about constant through-
out (or during auxanodifferentiation) k may successively take

two, three, or perhaps still more values. This is an unusual and

Log carapace length

Fio. 61.—Change in heterogony coefficient in a single growth series. Chela
length against carapace length in the crab P(daemon hengalensis, plotted by the
logarithms of the measurements in millimeters. In the males the coefficient

becomes abruptly larger in the older individuals, and there are two distinct

growth phases. The females apparently have but one phase within the limits

of these observations. [From Huxley 1932 {based on data from Kemp),]

unexpected phenomenon; for the examples studied do not show k

simply as variable or as shifting gradually from one value to

another,^ but show it as practically constant for a period, then

changing abruptly to a new value which in turn remains constant

for some time. In some cases the line on the logarithmic plot

^ There are, of course, cases in which k is variable or does show such shifts.

Their study presents notable difficulties, and little has been done with them

as yet except by purely empirical methods. The extraordinary thing is

that ib is so often constant or nearly so.
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bends at a greater or smaller angle to its former course (see Fig.

51). In others it is suddenly offset or turns at an angle for a

short distance and then resumes its former slope, continuing

parallel to the earlier part of the line. The bending of the line

represents a change in the value of both h and k, an offset a change

in the value of h only. In some instances abrupt changes of this

Fig. 62.—Growth gradients in limb segments. Weights of limb bones relative

to vertebral column in young Suffolk sheep. Both fore and hind limbs show a

strong regular growth gradient, with a distal center of negative heterogony.

{From Huxley 1931.)

sort are known to be coincident with a well-defined physiological

event, such as the onset of puberty. It may safely be assumed

that this is true of all cases in which k (and 6), otherwise con-

stant, take two or more definite values in ike course of growth.

A further important result of the study of heterogony has been

the discovery and evaluation of growth gradients. It has been

found that where any region of the body shows pronounced

heterogony, positive or negative, there are usually also hetero-
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gonic relationships within the smaller segments of this region and

that the heterogony coefficients for these segments are not

usually capricious and irregular in distribution but follow a

definite gradient; for instance in dealing with limbs the heterog-

ony is often most intense distally and becomes regularly less

intense in more proximal parts. As an example of this, Huxley

has given the following heterogony coefficients for designated

limb segments in young sheep, weights of skeletal parts in the

segment against the weight of the vertebral column:

Part k

Scapula 1.25

Humerus 1.01

Radius + ulna 80

Carpals 67

Metacarpals 60

Pelvis 1.74

Femur 95

Tibia -f fibula 84

Tarsals 70

Metatarsals 62

In this phase, although the girdles show positive heterogony, the limbs as

a whole are negatively heterogonic with respect to the vertebral column (or

to the body as a whole). They show a steep gradient with a distal center of

negative heterogony. These data can conveniently be represented graphi-

cally as in Fig. 52.

From such studies it appears that the body may be considered

as covered by a general field of growth potential and that changes

in proportions and the general phenomena of heterogony over

the body are the results of the varying intensities of this potential,

intensities distributed in orderly growth gradients. This, how-

ever, is a zoological conclusion beyond the results of numerical

method. The greatest importance of this method in particular

and of all numerical methods in general is that they provide a

firm basis for the discovery and study of such fundamental

zoological phenomena.





APPENDIX
CALCULATION

For calculation by any system, the orderly tabulation of data

is essential to efficient work. As observations are made or the

raw data first arranged for study, it is essential to record them as

neatly and logically as possible, putting on a separate sheet each

body of data that might possibly need to be considered as a

separate sample. It is easy to combine results or data but is

annoying and conducive to inaccuracy to work with confused or

mixed records.

Many of the most difficult but most common calculations in

numerical procedure are obviated by the use of tables. We have

given summary tables adequate for almost all zoological purposes

(see list, page xvii). Similar tables, in some cases in more detail,

are given in most textbooks of statistics, and there are a few other

sorts of statistical tables, more rarely necessary to the zoologist,

to be found elsewhere (see, for instance, Miner and Peaifson in

the Bibliography). In addition to these tables, it is convenient

or necessary to have a good table of common logarithms, prefera-

bly also one of Napierian logarithms, and a table of squares,

square roots, and reciprocals. Several mathematical handbooks

and texts, such as that edited by Hedrick (see Bibliography),

give these in convenient form.

Calculation that cannot be reduced to consultation of tables

seldom involves more than simple arithmetic and can all be done

longhand if necessary. It may, however, become laborious

when many plkces are to be carried or long lists of data added or

otherwise combined. The use of logarithms greatly reduces

work in multiplying, dividing, and taking powers and roots.

Logarithms are helpful, for instance, in calculating standard

deviations and standard errors.

Much time can be saved and greater accuracy can usually be

maintained if some mechanical aids are available for calculation.

Calculating machines are bulky, expensive, and not absolutely

essential but are ideal if available. Lacking one of these, a small

376
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pocket adding device and a good slide rule form a practical,

portable, and inexpensive combination. In this text it has

been assumed that nothing more elaborate than this is available.

The examples have been laid out with this in mind, and most of

them have been worked both by slide rule and by calculating

machine, many of them also longhand, as a check and to assure

the practicability and adequacy of simple means of calculation.

The formulas have been given in forms well adapted to slide-

rule or longhand calculation.

There are now on the market several practical adding devices

of pocket size operating on the principle of the abacus. A slide

rule for use in combination with a pocket abacus should be of

polyphase type, readable to at least three significant figures, with

two scales of squares A and B, an inverted scale C/, and the

ordinary scales C and D. For abacus-slide-rule computation

of the most used parameters, ilf, <r, and F, with their standard

errors, this form is convenient:

X / fx d fd‘ N «

1

N ^ Zf ^ Z(JX) * Z(Jd^) «

ii

II

II

U
II

Under X, enter individual measurements and under f the

frequency of each. Add column / by abacus, and enter the sum
as N. Determine the square root of N and of 2N by slide rule or

table, and enter. Multiply each X by the corresponding /,

enter in the fX column, and add. Divide the result by A', and
enter the quotient as M, Subtract each X from M, and enter

in the d column. Square each value of d by slide rule or, prefera-

bly, tables, and enter in d* column. Multiply each d^ by the

corresponding /, enter in fd^ column, and add. Further calcula-

tion is one continuous operation on the slide |rule if the polyphase

type mentioned above be used:

Set indicator to S(/d*) on scale A.

Slide N on scale B to indicator.

Read ^ on scale D at index.
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Set indicator to \/N on scale Cl, read standard error of M at indicator

on D.

Set indicator to \/2N on Cl, read standard error of tr at indicator on D.
Set indicator to M on Cl, read V at indicator on D.
Slide index to indicator.

Set indicator at \I2N on Cl, read standard error of V at indicator on Z>.

Even such relatively complex calculations as that of t for com-
paring means of small samples can be done quickly and with

sufficient accuracy on a slide rule. The following form can be
used to calculate this value:

ilf 1
- il/2 =

N1N2 =
S(d?) +
N -2 =

The values in the left-hand column may be entered directly

from the data for the two samples.

Having entered these values they may be placed in the formula

for ^ and calculated or may be calculated on the slide rule directly

as follows:

Set indicator to [2(d5) -f 2(<i5)) on A.

Slide N — 2 on to indicator.

Read D at index and write down value. (This is the value of the denomi-

nator of the fractional formula for t).

Set indicator to {N 1N 2 ) on A.

Slide iV on R to indicator.

Set indicator to (Mi — Mt) on C.

Slide value of denominator (as determined above) on C to indicator.

Read value of t at index on D.

Although the formula appears so complex; the whole calcula-

tion carried out in this manner need take no more than three or

four minutes. ‘

Although calculating machines are not necessary in zoological

practice, they do have obvious advantages in speed and accuracy.

Different makes of machines do not agree exactly in arrange-

ment, so that precise instructions for their operation cannot be

given here, but are provided with each type by the manufac-

turers. Simple adding machines have few advantages over an

abacus for this purpose, and in speaking of calculating machines

reference is to those that carry out most arithmetic Operations

Denominator of ^ =
t =
P ==
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more or less automatically. These have two banks of windows
in which the results appear.

In adding, the sum usually appears in the lower window, and
the number of items added in the upper. Although a machine

in proper repair is absolutely accurate, it is always possible to

strike a wrong key inadvertently; all operations should be

checked. With a machine that prints as it adds, addition can

be checked by comparing the printed items with the original

data. With machines that do not print, addition can only be

checked by repetition.

In subtraction the minuend is first entered and appears in

the lower window, the digit 1 appearing in the upper window.

After subtraction this digit should disappear, leaving only a row

of zeros in the upper window and the difference in the lower

window. To check, add in the subtrahend, when the minuend
should appear in the lower window.

In multiplication the machine is set for repetition, f.e., so that

the keyboard is not cleared automatically. The multiplicand

is punched on the keys and then entered as many times as

required, by the method specified in the instructions for any
particular type of machine. In the end, the multiplier appears

in the upper window, the product in the lower window, and the

multiplicand still on the keys. If multiplier and multiplicand

are correct as thus recorded, the product is correct.

In division the dividend is first entered and appears in the lower

window. The upper window and keyboard are cleared, and the

divisor is entered on the keyboard and subtracted repeatedly

from the dividend according to instructions with the machine.

In the end the quotient appears in the upper window and any
remainder in the lower window. To check, multiply divisor

and quotient, which should give the dividend.

Squaring is done by multiplication, and roots are taken by
a somewhat complex method outlined in special instructions for

each machine and essentially a series of subtractions. Squares

can be checked by division and roots by multiplication.

Time will be saved in the end if each unit operation is checked

before the next is begun. It is important t6 watch the position

of a decimal point carefully throughout a series of operations.

Calculation longhand or by slide rule is made easier by second-

ary grouping, by multiplying in the frequencies, and especially
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by calculating from deviations. The formulas given in this

book have mostly been given in forms facilitating this simplifica-

tion of arithmetic. If, however, a calculating machine is availa-

ble, this arithmetic work is not a serious burden in any case, and
the number of separate operations, rather than the numerical

complexity of each, becomes the important point. The number
of operations can be considerably reduced by working directly

from the raw data, and there are special forms of all the more
important formulas adapted to this purpose.

In cases where deviations enter into the usual formulas, the

raw-data formulas for machine calculation take advantage of a

special form of the “short method^^ explained in the text. As
in that method, they use an assumed mean and then apply a

correction, but the mean they assume is always zero. The raw

data are then themselves the pertinent deviations, since any
ordinary number is a deviation from zero, and the correction

factor, which is the square of the distance from the assumed mean
to the real mean, becomes simply the square of the mean, M^,

The following raw-data forms of the most used deviation

formulas show the way in which this special machine procedure is

applied:

(T =

r =
s(zy) - z{X)My

VTs(X^) - [2(Z)]M{2:(y2) -Ts(f)n

Note that S(Xy) - 2(Z)J»/r = UXY) - '2{Y)Mx, so that

either may be used as numerator.

t for comparing means of small samples:

nwT
l2(X!) - Ni3P, + Z(XI) - mMI
V iVi + JV* - 2

In machine calculation it is an unnecessary complication to

record the separate values of Z* or y*. If each of the values of

the variate Z is squared successively without clearing the

windows, when the whole column has been run through, the

upper window will record S(Z) and the lower 2(Z*). Repeat
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to check. Similarly each value of XF need not be separately

recorded. Each X is entered on the board and multiplied by
the corresponding F. When the series has been run through

without clearing, the upper window will show 2(F) and the

lower window 2(XF). Repeat with F entered on the board and

X used as multiplier to check.

SYMBOLS

The principal symbols consistently used with definite meanings

are here gathered and defined for reference. Some other symbols

are used for occasional purposes without standardization; and

a few of those here defined are used in more than one way, as

made clear in each specific instance by context or note. No two

workers agree exactly in notation, but the symbols here given and

used throughout this book are in common use, with very few

exceptions, and so are about as nearly standard as any. They
are listed nearly in the order of appearance in the text, which is a

reasonably natural sequence.

X =» any individual value of a variate. If two variates are involved.

X is usually taken as the independent variate.

Y « any individual value of a second variate, usually a dependent

variate.

/ »= any frequency within a single class.

N »= the total frequency of a given sample.

n » any number, also used in several special senses clear from the

context, e.g.j in a binomial to represent its power, in obtaining

the median to represent the serial number of the desired

observation, or in the x* technique to represent the degrees of

freedom.

p =5 in a binomial, the probability of occurrence.

g « in a binomial, the probability of nonoccurrence.

r « the summation of all quantities designated by a symbol follow-

ing in parentheses; e.g., Z{X) is the sum of all the values of a
variate symbolized by X.

M « the arithmetic mean,

A ~ (1) an assumed value, e,g., an assumed mean in the short

method of calculating ilf, <r, etc.; (2) the arithmetic growth
rate.

d =» any deviation from a given value, u,^ally, if not otherwise

specified, the deviation of a single observation from the

arithmetic mean for the sample of which it is part.

c » used alone or with various superscripts and subscripts for cor-

rections to be applied in any operation, especially in the short

method of finding the mean, etc. Also used rarely and wtien
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obvious from the context for a third parameter of a mathe-
matical equation.

i « the class interval.

i, a» etc. ** numerical subscripts ordinarily distinguishing data and param-
eters derived from each of two or more samples.

L = sometimes used for class limits. Li is the lower and Z/« the
upper limit.

M.D. = mean deviation.

<r » standard deviation. With some subscripts it represents

standard errors; e.^., (tm symbolizes the standard error of an
arithmetic mean.

V =* variance. Subscripts designate the point around which the
variance is taken.

Qi, Q * “ the first and third quartiles.

Q.D. = quartile deviation or semi-interquartile range.

V = coefficient of variation.

^ ~ the mathematical constant, ratio of the circumference of a
circle to its diameter, 3.14159. . . .

e == the mathematical constant, base of Napierian logarithms, limit

of the series 1 -f [ + ^ x
~
l

'

X 3
‘ ‘

»
'=2.7183. . . .

Xy y — here occasionally used in the usual mathematical sense of the

unknowns in equations, not the same as X, K, which are

values of variates, even when used in equations.

y « also used in the special sense of the second unknown in the

normal equation, hence to symbolize ordinates of a normal
curve. 2/0 is the ordinate at the mean, the maximum ordinate.

Sk = an approximate measure of skewness.

X « a measure of kurtosis.

P.E. « probable error.

r a measure of correlation, the product moment coefficient,

z = a measure of correlation, transformed from r.

t « (1) a value distributed in a definite way (as tabled), calculated

in various ways, and used to estimate probabilities in com-
parisons of several parameters estimated from small samples;

(2) time in the study of growth.

p coefficient of rank correlation.

1?
« correlation ratio. symbolizes the corrected value,

log « logarithm, on base 10 unless otherwise specified; log*
, Napierian

logarithm.

antilog » antilogarithm.

D ^ & theoretical range of logarithms of observed values as estimated

from a small sample or single specimen.

a » any constant to be inserted in an equation, especially the first

ccmstant of the rectilinear regression equation.

h «« usually the second constant of the rectilinear regression equa-

tion, the coefficient of regresedon. brx, regression of Y on X.

bxYi regression of X F.
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Sy “ standard error of estimate of Y (in its regression on X).

X* *= a value distributed in a definite way (as tabled), calculated in

any of several ways, and used, especially in the study of

association, to estimate the probable agreement between an
observed series of frequencies and a theoretical series,

G « geometric growth rate.

k = the coefficient of heterogony or constant differential growth rate.

FORMULAS

Such operations as can be reduced to formulas are here classi-

fied and listed for reference. Once the meaning of a procedure

has been grasped, its use can generally be guided by the formulas

alone and they are here given in such a form as to make unneces-

sary, in most cases, a search through the explanatory text. The
sequence is approximately that of the text with some rearrange-

ment to bring together formulas similar in nature or purpose.

Symbols sufliciently defined in the preceding list (page 380) are

not again explained here. There are a few special formulas

adapted for use with calculating machines only that are not

given in this list but in the section on machine calculation (page

379).

The normal curve

:

Distributions

N
y = y^e

— X*

Binomial distribution: Expansion of (p -f g)”. The frequency

of any given class X is given by the expression

/-K
n(n — l)(n — 2) • •

. (n - Z +_____
X(X - 1)(X

Poisson series: The frequency of any given class X is given

by the expression

<X(X - 1)(Z - 2)

Averages

Arithmetic mean: Ungrouped or primarily grouped data

—

M N
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Secondarily grouped data

—

M = N
Short method

—

ilf = ^ + c,

where c = ^{fdA)/N. If class intervals are not unity

where

M = A + Cl

Weighted arithmetic mean of arithmetic means:

_ NiMi + N2M2 + * ’ •

~N\ + N2+ - •

Median: Li H where n = the serial number of the

desired observation within the median class and / = the fre-

i. >1 - 1 T (n — .5)f
quency of that class, or Lu — —

j
— *

Mode: M — S (M — median), or 3 median — 2M.

Geometric mean: \/Z 1X2X3 . . . Xat, or antilog

Harmonic mean: The reciprocal of

/S(X^)
Quadratic mean:

^
1
---

—

Measures of Dispersion

Mean deviation: — in which all values of fd are arbitrarily

made positive.

Standard deviation:

f^(m
' N

" \N-1

For small samples,
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(7* and tr'2 (the same expressions without the radicals) are the

variances about the mean Vm> With an assumed mean, the

variance is va = t’Af + di, in which dA = M — A.

The standard deviation by the short method is

- c\

in which Cl =

intervals.

Semi-interquartile range

:

dA being X — A in terms of class

Q.D.
Qs — Qi

Coefficient of variation:

V = lOOcr

M
Correlation and Regression

Coefficient of correlation (product moment)

:

r — ^jdxdy) __ S(djcdr)

By the short method,

ndAdA^)
r = —7

“^—V —

\tx lY )

Transformed correlation coefficient:

^ = '• + 3+5+7
_ log , (1 + r) - loge (1 - r)

Partial correlation:

__ rit - Turn
* - (1 - rf,)(l - rh)

>*13.84
rn.4 — ri8.4ra8.4

(1 - r!..4)(l - ri,.4)
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Rank correlation:

p = 1 — 6S(q!2)

N{N^ - 1)

Rectilinear regression:

It — (Xy hrxX
1 ^(dxdy) (Jy
Oyx = —̂ ~rT2\

~ “ ^

—

^{dl) crx

ay — My — byxMx
r = \/hYxhxY

hOyx = 9

—

Standard error of estimate:

*1

For large samples the second radical can be omitted.

Correlation ratio:

Uncorrected

—

V =
(TX

where is the standard deviation of the distribution of the

means of the arrays of X,

Corrected

—

f
N

(k-3)
N

where k is the number of arrays.

Standard Errors

(All probable errors are .6745 times the corresponding standard

errors.)

Of arithmetic mean: (Tm

Vn'
Of median: 1.2533ffif

Of first or third quartile: 1.3626(rj(

Of standard deviation: a, =
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Of mean deviation: .6028(7,.

Of coefficient of variation:
V2A''

almost all cases the expression in brackets can be ignored.

1 —
Of coefl5cient of correlation: o-r = —-p= or, for small samples,

VN
1 —— but it is better to transform to z and use its standard

Of transformed correlation coefficient: az = l/y/N — 3.

Of regression coefficient: = S.

standard error of estimate (page 385).

'*'%/ S(d:
where Sy = the

IL
<rJ\N

Comparisons

The formulas here given are in part related to the distribution

of t and in part are standard errors of differences to be used in

the form d/a which, because of their distinct character and

purpose, are placed here rather than with the standard errors of

parameters, etc.

Comparisons of or with large samples: Use various forms of

d/ad with table d/a and P.

Comparisons of or with small samples: Use if with table of t

and P.

Comparisons of single specimens with means:

d X - M
a a

Comparisons of observed and hypothetical or assumed values

of means:
d M — Ma
a

t a*
M - Ma
I

N(N - 1)
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Comparisons of two observed means: For large samples use

d/cdi calculating Cd as follows:

On the hypothesis of derivation from one population or from

populations with equal means and variances

—

“ "
A/'i \ NiNi yjNi Ni

On the hypothesis of derivation from different samples with

equal means but with any variances, as estimated by the

samples

—

For small samples:

{M, - M,)^1

Ni + Ni

llidf) + 2(4)
iVi “H iV2 — 2

- M2)^1
NiNi

'jVi + Ni

yj

1
Nic] + N^l
Ni + N,-2

(M, - M,)^1
NIN2

Ni + Ni

INlcrl + NlfTl

NI + N2-2

Comparison of correlation coefficient with zero: Instead of

using r/ar, use

r\/N - 2
t = vT^

Or transform to z and use

Comparison of two correlation coefficients: Transform r to z

j d Zi — Z2
and use ~ =

<r Cd
\
in which

3 iVs - 3

Comparison of two regression coefficients:

/Ari4,(l - r?) + - rD( i

“ V ~1VV+A7-1 \Nia%,
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/S(4;(l - r?) + S(4,)(l - ri)/ 1 1 \

\ iVi + - 4 \Zidl) X{dl))

For large samples use as -y and for small samples use
(7

the same figure to enter a table of t.

Comparison of rj and r: For large samples only

—

d

^4
- r2)[(l ~ - (1 ~ r2)2 + 1]

N

Association

Theoretical frequencies: Using A, C, D for theoretical and

a, 6, c, d for observed frequencies, in a 2 X 2 table, the relation-

ships are

A - (a + b)(a + c)

N
(a + hXh + d)B _ ^

^ (c “f“ d) ((X ”i" c)
C ^
_ (c + d)(b + d)

The sum of the cell contributions = To get the

contributions of each cell, take the difference between the

observed and theoretical frequencies, square this difference, and
then divide by the theoretical frequency. Or in a 2 X 2 table

—

X^ =
N(ad - bey

(a + b)(c + d){a + c)(6 + d)

By the ratio method-

+ °(a4-b)

-JL-Fi / ^ \
a + ftL

where and 6' = individual values in the first and second rows,

respectively.

a and 6 ~ the corresponding totals.
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Growth

Arithmetic growth rate:

A = arithmetic growth rate.

Yt = value of variate at end of period of observation.

Fo = value of variate at beginning of period of observation.

t = period of observation.

. _ - FoA

Geometric (or so-called instantaneous) growth rate:

G = geometric growth rate.

Other symbols as for arithmetic rate.

Yt = Y,€f^K

log, Yt = log, Yq + GI.

Q = loge Yt ~ log, Fo ^ 2 3026
F, - log Fp

t t

Heterogony:

Y = hXK
log Y — log 6 + fc log X. k is calculated as a regression coef-

ficient in y = Or + brxX, by the following equivalences

—

log y = y
log b = ay

k = brx

logX = X
b = antilog (log Y — k log X)

For rough estimate of k—
, _ log Yt - log yp
" “ iog^Xr- log Xo

Miscellaneous

Ordinates of the normal curve:

y = oyo,

where Vo, the inaximum ordinate, = JVf/((T\/2ir), or iVi7(2.507tr).

a = d/a.

Skewness:

jS* »= (mean — mode) /o = 3 (mean - median) /<r.
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Kurtosis:

or by the short method

S(/dl) ^ ,4
’

Nf
' ^

K = . ~ ~ 3

Theoretical logarithmic range:

D = log (50 + F) - log (50 - V).

With two observations assumed to be at range limits

—

D — log Xi — log Xi
or

antilog D —
Â2

Degrees of freedom: In correlation, regression, and the com-

parison of two distributions, the degrees of freedom are one less

than the number of pairs of observations. In a contingency

table, the degrees of freedom are one less than the number of

rows multiplied by one less than the number of columns.
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Included in this brief glossary are the principal words used in a
technical sense in this book but not purely or primarily zoological

in connotation.

Abscissa.—Horizontal distance on a graph, values on the horizontal or

of-axis, usually taken as values of the independent variate.

Accurate.—When used in a technical sense, a range that includes the precise

value, or a class midpoint designation that implies such a range, as

opposed to exact
j
which designates the precise value, without implication

of range—a practical impossibility in observations on continuous variates.

Additive growth.—Growth by addi tion of increments that do not themselves

proceed to grow.

Arithmetic increment.—The absolute change in value of a variate over a

• period of time.

Arithmetic rate.—The absolute change in value of a variate per unit of time.

Array.—Among paired observations on two variates, as in regression, all

the values of one variate corresponding to any one given class of the

distribution of the other variate.

Attribute.—A qualitative character not primarily recorded by a number.
Bias.—Any tendency in sampling or in observations on samples for the

recorded values to depart from those that would arise purely at random or

from chance. Inaccuracy is not bias if the directions of the inaccuracies

are themselves random and inconsistent. Bias is by implication entirely

unconscious on the part of the investigator.

Bimodal.—In a frequency distribution, the presence of two distinctly

separate points or classes of high frequency separated by lower frequencies.

Binomial distribution.—A frequency distribution approximating the form

given by the expansion of the expression (p 4- g)**.

Cell.—^A rectangular space in a numerical table or diagram defined by its

position in a certain row and a certain column.

Class.—Any on^ category of a frequency distribution (grouped or un-

grouped) of a variate.

Class limits.—Distinguished as conventional or real (see page 37).

Coefficient.—A conventional calculated n\imerical representation of the

intensity of some characteristic. The most important are the coefficients

of variation, regression, and correlation.

Column.—In any numerical table, a vertical series of numbers, contrasted

with row.

Constant.—^An observed or calculated numerical value, taken as invariable

for any one set of observations, that may be inserted in an equation to

give an approximate formalisation of an observed frequency distribution*

391
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For instance, the mean and the standard deviation are constants of the

normal distribution (see Parameter).

Constant differential growth ratio.—The coefficient of heterogony (see

Heterogony).

Contingency table.—A table in which frequencies of a sample are distributed

by their pertinence to a certain category as regards each of two variables.

The categories of one variable are represented in the table by the rows and
of the other by the columns, each cell thus being defined by a definite

combination of values of the two variables.

Coordinates.—Any system of lines or any field imagined as containing lines

used for the graphic expression of numerical values. Rectangular coordi-

nates have the lines at right angles. If equal distances express equal

absolute values, the coordinates are arithmetic; if they express equal

ratios, the coordinates are logarithmic. Semilogarithmic or arithlog

coordinates are logarithmic in one direction and arithmetic in the other.

In angular coordinates^ lines radiate from a poirit, and numbers are repre-

sented by angles. Polar coordinates combine angular coordinates with

concentric circles or the expression of numbers also by distance from a

center.

Correlation.—The measurement of the degree in which two variates tend

to vary with each other or, in graphic terms, of the intensity of clustering,

along a line of trend of observations on two variates. Usually measured

by the coefficient of correlation r.

Correlation ratio.—A special coefficient of correlation ry, not assuming
rectilinearity.

Cumulative distribution.—A distribution in which each specified value of

the variate is accompanied by the number of observations with this or a

greater value, or with this or a lesser value.

Beeile.—One of nine points in a frequency distribution dividing it into

10 categories of equal observed frequency. The first decile is the point

below which one-tenth of the observations lie, etc.

Degree of freedom.—In a contingency table, frequency distribution, cor-

relation table, etc., the number of spaces that can be filled in at random
without affecting the pertinent totals.

Deviation.—The difference between any two values of a variate, especially

between an observed and a calculated or hypothetical value, and among
these especially between an observed value and the arithmetic mean for a
sample.

Efficiency.—^As applied to numerical observations on samples, the ratio

of the least number of observations from which equally good results would
have been obtained to the number of observations actually used.

Frequency.—-The number of observations in a given sample belonging to

any one category of record,

Frequency distributions.—In general, any classification of frequencies.

Usually and in particular, a list of values of a variate accompanied by the

numbers of observations of each value.

Geometric increment.—The change in a variate over a given period of time

expressed as a percentage of the vidue at the beginning of
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Geometric rate.—The percentage change in a variate per unit of time that
would, if acting constantly and continuously over a given period, have
produced the observed total geometric increment.

Grouping.—The classification of values of a variate in such a way that
more than one exact possible numerical value is included in a single

category. Observations on continuous variates are always grouped.
If recorded by the original measurements, the grouping is primary (by
most other authors erroneously called ungrouped). If recorded in

groups of larger scope than the original measurements, the grouping is

secondary (by most other authors simply called grouped).

Harmonious growth.—Growth in which a part maintains a constant ratio

to a whole (represented by the equation Y — bX).

Heterogony.—Growth in which one part grows at a rate different from
the whole or from another part. If the two growth rates are unequal but
maintain a constant ratio, the relationship is simple heterogony. If the
part grows more rapidly than the whole (or standard of comparison),
the heterogony is positive; if more slowly, it is negative.

Histograxn.—A graphic representation formed by plotting rectangles the

widths of which are the class intervals (with values of the variate as

abscissas) and the heights (ordinates) are the frequencies.

Index.—(a) In morphology, a special sort of ratio, usually a dimension
multiplied by 100 and divided by a larger dimension of the same ana-

tomical element, (b) In statistics, especially economic statistics, any
one of many proposed special measurements of relationships involving

ratios.

Instantaneous growth rate.—Same as geometric growth rate.

Interval.—In a distribution, the difference between corresponding points

in successive classes, as between their lower limits or their midpoints.

Isogony.—Growth in which one part grows at the same rate as another or

as the whole. The rates need not be constant so long as they remain

equal to each other at all times. Harmonious growth is necessarily

isogonic; growth may be isogonic but disharmonious.

Kurtosis.—The sharpness or peakedness of a curve representing a frequency

distribution.

Least squares.—A method of fitting a given form of mathematical equation

(such as a linear equation) to an observed distribution in such a way as to

give the least possible sum of the squares of the differences between the

observed valued and those theoretically demanded by the equation.

Leptokurtic.—Of a frequency distribution, one giving a graph sharper than

the most nearly equivalent normal curve.

Mean.-—One of several averages. If used without qualification, reference

is to the artthmetic mean, the sum of observed values divided by the

nunpiber of observations. For others, see Chap. V.

value of a variate such that in an observed sample half the

observations lie above and half below that value.

Mode.—A value of a variate corresponding with the peak of the frequency

curve best fitting a given series of observations. Also any obsen^ed high

fioquenoy point in a dist^
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Module.—One of several proposed measures, especially an arithmetic mean
of two different linear dimensions of a single individual.

Moments.—Average powers of deviations from a fixed value, usually the

mean. The first moment about the mean is the average of the deviations

and is always zero. The second moment is the average of the squares

of the deviations, the third moment the average of their cubes, etc.

(Some authors define moments as the sums, rather than the averages, of

powers of deviations.)

Multiple correlation.

—

A correlation involving more than two variates.

Multiplicative growth.—Growth in which the increments themselves begin

to grow as soon as formed. Also called compound-interest growth.

Normal curve.—A symmetrical complex mathematical curve that approxi-

mates the fluctuating variation of many zoological characters and of the

probability of random sampling under many conditions.

Normal distribution.—Theoretically a frequency distribution of a sample

from a population in which the same distribution would follow the normal

curve. In practice, in zoology, literally normal distributions do not

occur; but most distributions of variates approximate this form.

Ogive.—An oblique S-shaped curve that approximates the graphic form of a

cumulative frequency distribution.

Ordinate.—Vertical distance on a graph, values on the vertical or y-axis,

usually taken as values of the dependent variate or as frequencies.

Origin.—The point x « 0, y = 0, in a graph; the intersection of the axes in

coordinates.

Parameter.—Same as the special use of ‘‘constant^^ as defined above.

Strictly, parameters are the constants of purely mathematical abstrac-

tions. In practice and as usually used in this work they are estimates or

approximations of such constants calculated from the concrete data of

given samples.

Partial correlation.—In a multiple correlation of three or more variates, the

procedure of making allowance for the influence of the variation of the

third or later variates and estimating the correlation strictly between two.

Percentile.—One of the 99 points dividing a frequency distribution into

100 parts all of equal frequency. Thus the fiftieth percentile is the same
as the median, the tenth is tne same as the first decile, etc.

Platyknrtic.—Of a frequency distribution, one giving a graph flatter than

the most nearly equivalent normal curve.

Poisson series.—^A type of frequency distribution, essentially a special

case of the binomial distribution in which the probability of occurrence is

very small but the total frequency is great.

Population.—^The whole existing or possible group of individuals or of

observations fulfilling the specifications of a problem being studied on the

basis of a more limited grbup, the sample be^nging to that population.

The universe of discourse in investigation, in mathematical theory

infinite, in zoological practice finite, but Invariably more extensive than

the concrete data available.

Probable error.—^A value such that a single observation drawn at raiadom

from a normal distribution is as likely as not to Ik within tl^
(l^us or minus) of the mean. .6745 times any standard errors
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Product moment—In correlation, the average product of corresponding
deviations from the means of the two variates, r is usually called the

product moment coefficient of correlation.

Quadrat—In faunal sampling, a rectangular field area selected for collecting

or observation of its whole faunule.

Quartile.—Any of three points dividing a frequency distribution into four

parts of equal frequency. The median is the second quartile, as it is the
fifth decile and the fiftieth percentile.

Quartile deviation.—Half the difference between first and third quartiles,

also called the semi-interquartile range.

Quetelet's principle.—The empirical rule that most variations in nature
are such that frequencies tend to pile up on a central point and to fall

away more or less symmetrically on both sides of this.

Range.—The distance between extreme values of a variate, usually recorded

by giving these terminal values. The observed range is the range actually

seen in a given sample, as opposed to the real range in the population,

always greater than the observed range but never exactly determinable.

The theoretical range is an estimate of the real range based on an actual

sample, usually taken as {M + 3<r) — {M — 3<r).

Rank correlation.—A method of estimating correlation not on the actual

values of observations but on their serial order. The coefficient of rank
correlation is p.

Raw.—Data as derived and recorded from observation, without calculation.

Rawness does not technically imply any inaccuracy, inadequacy, or

crudity.

Refinement.—In measurement and calculation^ the number of significant

figures given. Refinement and accuracy are technically quite distinct:

a highly refined measurement may be and is quite likely to be inaccurate,

whereas one of little refinement may be and is more likely to be entirely

accurate.

Regression.—The average change in value of one variate accompanying a

unit change in another related variate; also the general phenomenon of

such consequent changes. The coefficient of regression of Y on Xy i.e.,

the average change in Y for a unit change in X, is hyx*

ReliabUity.—Aside from the usual vernacular meaning, used technically

to mean the probable degree of approximation to a population parameter

given by calculation of the parameter from a given sample.

Row.—In any numerical table, a horizontal series of numbers; contrasted

with column.

Sample.—Any series of specimens or of observations actually in hand

pertinent to a given problem and derived from a specified population which

is to be studied, on the basis of the sample.

Sampling.—^The obtaining of individual observations by means of which

the population is to be studied. Qualitative sampling seeks to obtain at

leaat one observation on each of the principal pertinent variations of

the population. Quantitative sampling seeks to obtain these approxi*

mately in the same proportions as in the population.

» population in which a character occurs in a

apMfied proportion and given a sample of a specified size, the sampling
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limits are the least and the greatest number of individuals in the sample

that might have the character according to theories of probability.

Scatter diagram.—A graph on rectangular coordinates in which each pair

of observations on two correlated variates is represented by a dot.

Semi-interquartile range.—Same as quartile deviation.

Significance.—^The general result of operations showing a figure to be

significant in the technical sense defined below. Thus the significance

of the difference between parameters calculated from two samples is

based on an estimate of the probability that two samples of the given

sizes and characters could have been drawn at random from a single

population.

Significant.—In statistical usage the statement that a result is significant

implies that an actual numerical test has been made and has shown
that it is highly improbable that the given result can have arisen by
chance. Usually the sense is that this result differs from some hypo-

thetical or expected value more than is likely by chance alone.

Significant figures.—In this phrase the word “significant^* is used in a

different sense from that of statistical significance or significant differ-

ences. Significant figures are those digits in a number that do approxi-

mate the real value of the thing measured. Strictly significant figures

are digits known to be accurate in a technical sense. Broadly signifiwant

figures are those not surely known to be accurate but known to make the

approximation to true values closer than if these digits were omitted.

Skew, skewness.—-The property of bilateral asymmetry in a distribution

or in a curve based on it. Differences from the normal curve in bilateral

symmetry are usually measured by the coefficient of skewness Sh. The
skewness is positive if the distribution tails off farther among the higher

values, or to the right in a curve, and negative if it tails off among lower

values, to the left in a curve.

Spurious correlation.—A correlation significant numerically but in fact

caused by relationship of both of two variates to a third, not perceived or

measured, and not by a relationship directly between the two correlated

variates.

Standard deviation.—^An essential parameter of the normal curve, sym-
bolized by <r, determining its dispersion, and hence the most important

estimate of dispersion that can be made from a sample.

Standard errin'.—^The standard deviation not of a primary frequency dis-

tribution but of any parameter of such a distribution. The standard

error of the mean, for instance, is the standard deviation of a distribution

composed of many means from many samples drawn from the same
population of specified character. The standard error thus permits some
judgment as to the probable closeness of the parameters as calculated in

a given sample to the real, but unknown, par^^eters of the population.

The standard error is simply a special and secondary sort of standard
deviation^ a measure of potential dispersion, and has nothing to do with
“error'* in the usual vernacular sense.

Standard error of eatlmato.-—in dorrelation, a measure of the average dis-

persion of vtdues of one variate withm the arrays defined by the other

variate.''
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Statistic.—A calculated, collective measure of some characteristic of a

whole group of markedly varying raw data. Estimates of population

parameters.

Statistics.—The science of the mathematical study of variation, of the

characters of groups, and of the reduction of numerical data.

Total correlation.—A measured correlation between two variates in which

the possible or certain influence of other variates is not taken into account

or excluded from the measurement.

Trend.—'In correlation, regression, time series, etc., as represented graphi-

cally, the general direction, axis, or line along which the individual sets of

observations tend to cluster.

Variability.—The theoretical, biological and not statistical, capacity for

variation, the innate tendency of which variation is in part the expression.

Variable.—Any thing or category of things that exhibits variations. Varia-

bles include variates and attributes.

Variance.—In any distribution, the mean of the squares of deviations from

a given value, such as the mean.

Variate,—A variable the variations of which are expressed numerically.

A variate is continuous if it can take any of an infinite number of exact

values within its range, and disco7itinuous if it must take one of a definite,

finite series of fixed values, such as the integral values.

Variation.—The phenomena of differences between observations classed

as belonging to a single category, e.g.y between observations on a single

thing over a period of time or on a group of biologically homologous

things. In numerical practice in zoology, variation usually includes any

such differences, without causal definition, embracing differences express-

ing innate variability or genetic mutation along with those caused by

extrinsic factors. Variation is also used to mean any one defined condi-

tion assumed by a variable.
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The purpose of the following references is (1) to give the sources

of data used in our examples and of other special points cited by
the author in the text, (2) to facilitate finding more detailed infor-

mation on various phases of the subject, and (3) to give a few

more or less typical examples of current usages. There has been

no previous attempt to review, even in an elementary way, the

whole subject of numerical and related procedures in zoology;

and the available studies fall into two quite distinct groups, here

made separate sections of the bibliography. On one hand there

are essentially mathematical or statistical texts and reference

works which contain material that is useful in zoology, generally

with a great deal that is not, but which are not written from a

zoological point of view, do not cover many important points in

that field, and do not show the zoological uses of the material

that they do give. On the other hand are zoological papers

which discuss or exemplify numerical methods but do not in any

one case cover much of this field and which are generally deficient

from a more definitely mathematical or statistical point of view.

MATHEMATICAL AND STATISTICAL REFERENCES

For general mathematical background any of almost innumer-

able textbooks are suitable, and none is cited except Hogben’s

work which is unusual in giving the basic concepts and operations

of almost the whole field of mathematics in a single volume

comprehensible to any intelligent person with no previous mathe-

matical training. As regards specifically statistical works, there

are dozens of available texts, all of which deal in an adequate

way with the more important parts of this broad field. Several

of the best of these are cited. The student who has sufficient

mathematical training and wishes to become proficient in statis-

tics would do well to work through Yule, then Fisher, and thence

will readily progress to more specialized and detailed studies.

Fisher's excellent book is written especially for biologists (chiefly

experimental biologists, not zoologists) and is perhaps the most
399
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logical and, within its scope, the best available work on statistics.

Although it is intended as an introduction, experience has sug-

gested that it is almost completely incomprehensible to anyone

not already well grounded in statistics. A small but adequate

selection of the many available sets of tables and other works of

reference is also here given.

Arkin, H., and R. R. Colton. 3934. An outline of statistical methods.

Barnes and Noble, Inc., New York. [A useful review outline, with refer-

ence's to many standard texts.]

Barlow, 1919. Barlow^s tables of squares, cubes, square roots, cube

roots, reciprocals of all integer numbers up to 10,000. Spon and Chamber-
lain, New York. [Or stereotype ed., 1927. Invaluable arithmetical tables.

]

Blakeman, ,J. 1905. On tests for linearity of regression in frequency

distributions. Biometrika, 4, pp. 332-350. [Including comparison of r

and r;.]

Buroess, R. W. 1927. Introduction to the mathematics of statistics.

Houghton Mifflin Company, Boston.

Camp, B. H. 1931. Mathematical part of elementary statistics. D. C.

Heath & Company, Boston.

CooLiDGE, J, L. 1925. An introduction to mathematical probability.

Clarendon Press, Oxford.

Davenport, C. B. 1904. Statistical method with special reference to

biological variations. John Wiley & Sons, Inc., New York.

Dice, L. R., and H. J, Leraas. 1936. A graphic method for comparing

several sets of measurements. Cont. Lab. Vert. GeneiicSy Univ. Michigan,

No. 3, pp. 1-3.

Fisher, R. A. 1935. Statistical methods for research workers. Bio-

logical Monographs and Manuals, V, 1 vol. Oliver and Boyd; Edinburgh
and London. [A standard biometric text, with special reference to small

samples, which are inadequately considered in most other works, especially

useful to zoologists.]

Haskell, A. C. 1919. How to make and use graphic charts. Codex
Book Co., New York.

Hedrick, E. R. 1929 [or other issue]. Logarithmic and trigonometric

tables, revised ed. The Macmillan Company, New York. [Also contains

squares, cubes, and roots and other usefid tables and is one of the most
convenient compilations of nonstatistical numerical tables.]

Hogben, L. 1937. Mathematics for the million. W. W. Norton &
Company, Inc., New York. [Somewhat biased in its brief treatment of

statistics but perhaps the most painless means of reviewing or acquiring

knowledge of mathematics more than adequatJB for present purposes.]

Kelley, T. L. 1923. Statistical method. The Macmillan Company,
New York. [An excellent general text.]

Mills, F. C. and D. H. Davenport. 1925. A manual of problems and
tables in statistics with notes on statistical procedure. Henry Holt and
Co., New York. [Not a text, and the problems are commercial ^ind eco-

nomic, but it contains convenient tables and formulas.]
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Miner, J. R. 1922. Tables of \/\ — r* and 1 — r* for use in partial

correlation and trigonometry. Johns Hopkins Press, Baltimore.

Pearl, R. 1930. Introduction to medical biometry and statistics.

2d. ed., revised. W. B. Saunders Company, Philadelphia. [Although
primarily medical, is also an excellent, unusually readable introduction to

biological statistics in general.]

Pearson, K. (editor). 1914. Tables for statisticians and biometricians.

Cambridge University Press, London.
Rietz, H. L. 1924. Handbook of mathematical statistics. Houghton

Mifflin Company, New York.

Rosahn, P. D. 1935. A graphic method for representing the sig-

nificance of the difference between means. Human Biology, VII, pp. 267-

271.

Walker, H. M. 1929. Studies in the history of statistical method with

special reference to certain educational problems. Williams and Wilkins

Company, Baltimore. [Of wider than educational interest.]

Yule, G. U. 1924. An introduction to the theory of statistics, 7th ed.,

revised. Charles Griffin & Co., Ltd., London; J. B. Lippincott Company,
Philadelphia. [Or other editions. Standard detailed general text. Few
tables but numerous references.]

ZOOLOGICAL REFERENCES

A very large proportion of the hundreds of papers on zoology

that now appear annually contain some numerical data or imply

the use of some essentially numerical concepts. The brief list

of references here given is therefore obviously only a very small

sample and is selected not so much to represent the best or worst

that has been or can be done as to give more or less typical

examples of such studies scattered over the whole field of verte-

brate zoological and paleontological research.

Aldous, C. M. 1937, Notes on the life history of the snow-shoe hare.

Jour, Mamrnalogy, XVIII, pp. 46-57. [Unusual distributions of trapping

data.]

Anthony, H. E. 1925. The capture and preservation of small mammals
for study. Amer. Mus. Guide Leaflet, No. 61, 53 pp. [Includes standard

mensuration.]

Blanchard, F. N. 1921 . A revision of the king snakes: Genus Lampro-

peltis, U. S. Nat. Mus., Bull. 114. [Many numerical data and ingenious

graphs of geographic variation.]

Blanchard, F. N., and F. C. Blanchard. 1931. Size groups and their

characteristics in the salamander Hemidactylium scuiatum (Schlegel).

Amer. Nat., LXV, pp. 149-164. [Statistical and biological age grouping.]

Broun, M. 1933. Some live weights and measurements of small birds.

BirdIrBanding, IV, pp. 52-54,

Bruun, A. Fr. 1935. Flying Fishes (Exococtidae) of the Atlantic.

Dana Report, No. 6. The Carlsberg Foundation, Copenhagen and London,

[Many interesting frequency distributions.]
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Bttbnoff, S. von. 1919. tJber einige grundlegende Prinzipien der

palmntologischen Systematik. Zeits, indukt. Abtstam.—u. Vererhungslehrej

XXI, pp. 168-168. [Usefulness of statistics in taxonomy of ammonites.

Use of standard deviation as a measure of dispersion urged. Species dis-

tinguished from larger genetic groups by the positive correlation of charac-

ters in the latter which vary independently in the former.]

Collins, H. H. 1923. Studms of the pelage phases and of the nature of

color variations in mice of the genus Peromyscus. Jour. Exper. ZooL,

XXXVIII, pp. 45-107.

Dice, L. R. 1931. Methods of indicating the abundance of mammals.
Jour. Mammalogy^ XII, pp. 376-381. [Quadrat, traverse, and station

sampling.]

Dice, L. R. 1932. Variation in a geographic race of the deermouse,

Peromyscus maniculatus hairdii. Occ. Papers Mus. ZooL, Univ. Michigan,

No. 239.

Dice, L. R. 1937. Additional data on variation in the prairie deer-

mouse Peromyscus maniculatus hairdii. Occ. Papers Mus. ZooL, Univ.

Michigan, No. 351.

Dixon, J. 1925. Food predilections of predatory and fur-bearing mam-
mals. Jour, Mammalogy, VI, pp. 34-46. [Includes graphic presentation.]

Donaldson, H. H. 1924. The rat. Wistar Inst., Philadelphia.

[Innumerable data, many reduced to empirical equations.]

Duerst, V. V. 1926. Vergleichcnde Untersuchungsrnethoden am
Skelett bei Saugern. Handh. bibl. Arbeitsmeth., Abt. VII, Heft 2, pp. 125-

530. [Very detailed system of mammalian osteometry, including synonymy
with many previously published systems,]

Eaton, R. J. 1924, The migratory movements of certain colonies of

herring gulls in EastCjrn North America. Bird-Banding, V, pp. 70 -84.

[Typical birdbanding data.]

Ehrenberg, K. 1928. Betrachtungen tiber den Wert variations-

statistischer Untersuchungen in der Pal^zoologie nebst einigen Bemcrkun-

gen liber eiszeitliche Baren. Pal. Zeits., X, pp. 235-257. [A critique of

Soergel on Pleistocene bears, concluding that numerical methods are of little

or no value and emphasizing morphological methods. The criticism is

partly a misunderstanding of the real nature and use of statistical concepts,

partly a valid objection to the use of poor statistical methods (e.g., the

range as a means of comparison).]

Frost, F. H. 1927. Statistical identification. I. As applied to

Parapavo. Univ. California Pub., Bull. Dept. Geol. Sci., XVII, pp. 57-62.

[Comparisons of means by a method analogous to Fisher^s ^-test. Exempli-

fied in paper by H. Howard, of which Frost^s note is an appendix, on fossil

bird material.]

Green, C. V. 1933. Differential growth in t^ crania of mature mice.

Jour. Mammalogy, XIV, pp. 122-131. [An excellent study of heterogony.j

Gregory, W. K. 1933. Fish Skulls: A study of the evolution of

natural mechanisms. Trans. Amer. Phil. Soc., XXIII, Article 2. [No

important numerical data, but an excellent osteometric system.]
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Gregory, W. K., and H, J. Cook. 1928. New material for the study

of evolution. A series of primitive rhinoceros skulls (Trigonias) from the

Lower Oligocene of Colorado. Proc. Colorado Mas. Nat. Hist., VIII, No. 1,

pp. 1-32. [Graphic presentation of frequencies of variates and attributes,

without, however, any objective analysis of the distributions.]

Hatt, R. T. 1936. Hyraxes collected by the American Museum Congo

Expedition. Bull. Amer. Mus. Nat. Hist., LXXII, pp. 117-141. [Series of

measurements on typical, well defined samples.)

Hicks, L. E. 1934. Individual and sexual variations in the European
starling. Bird-Banding, V, pp. 103-118.

Hildebrand, S. F., and W. C. Schroeder. 1927. Fishes of Chesa-

peake Bay, Bull. U. S. Bureau of Fisheries, XLIII, Part 1. [Many tables

of numerical data.]

How'ard, H. 1927. A review of the fossil bird, Parapavo californicus

(Miller), from the Pleistocene asphalt beds of Rancho la Brea. Univ. Cali-

fornia Pub., Bull. Dept. Geol. Sci., XVII, No. 1. [With an appendix Sta-

tistical identification as applied to Parapavo, by F. H. Frost.]

Hue, E. 1907. Mus6e ost<k)logique—fitude de la faune quaternaire:

ostcorn^trie des mammif(3res. Schleicher Frf>res, Paris. [A system of

mensuration and its applications.]

Huestis, R. R. 1931. Seasonal pelage differences in Peromyscus.

Jour. Mammalogy, XII, pp. 372-375.

Huxley, J. S. 1932. Problems of relative growth. Methuen & Co.,

Ltd., London. [A very able and important work on a phase of numerical

zoology, the pioneer and standard study of heterogony, with extensive tables,

statistics, and graphs.]

Jenkinson, j. W. 1912. Growth, variability and correlation in young
trout. Bio?netrika, VTII, pp. 444-455.

Kalin, J. A. 1933. Beitrage zur vergleichenden Osteologie des Croco-

dilidenschadels. Zool. Jahrb., Aht. Anat. Ont. Tiere, LVIl, pp. 535-714.

[A good osteological system and many measurements, but not well analyzed

and evaluated.]

Klahn, H. 1920. Der Wert der Variationsstatistik fUr die Palaon-

tologie. Ber. naturf. Ges. Freilmrg i. Br., XXII, Heft 2, pp. 7-224. [Elabo-

rate consideration of statistical concepts used in genetics and selection of

those believed applicable to invertebrate paleontology, the author’s judg-

ment of which is, Ju^wever, not supported by later and more critical studies.

Also an interesting but abortive attempt to deal with relative growth.]

KlXhn, H. 1929. Was nlitzt die Variationsstatistik der Palaontologie?

Zeits, deutsch. geol. Ges., LXXXI, Heft 1/2, pp. 23-35. [Important as one

of the few serious attempts to apply special statistical methods to paleon-

tological data, but unfortunate in choice of methods and inadequate in their

application.]

Low, S. H. 1933. Further notes on the nesting of the tree swallows.

Bird-Banding, IV, pp. 76-87.

Low, S. H. 1934. Nest distribution and survival ratio of tree swallows.

BirdrBanding, V, pp. 24-30.
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Macdonbll, W. R. 1902. On criminal anthropometry and the iden-

tification of criminals. Biometrika^ I, pp. 177-227. [Statistical data

on numerous dimensions of large groups of criminals and of Cambridge
undergraduates.

]

Matthew, W. D. 1909. The Carnivora and Insectivora of the Bridger

Basin, Middle lOocene. Mem. Amer. Mus. Nat. Hist., IX, Part VI, pp.

291-567. [Includes analysis of habitats in a fossil fauna.]

Matthew, W. D. 1924. Third contribution to the Snake Creek fauna.

Bull. Amer. Mus. Nat. Hist., Jj, pp. 59-210. [Pages 163-166, age groups in a

fossil horse Merychippus primus, recognized on biological rather than

statistical criteria.]

Meek, S. W., and S. F. Hildebrand. 1923. Marine fishes of Panama.
Field Mus. Pub. ZooL, XV, Part 1. [From the present point of view, chiefly

interesting as an extensive sampling operation.]

Mook, C. C. 1921. Skull characters of recent Crocodilia with notes

on the affinities of the rec^ent genera. Bull. Amer. Mus. Nat. Hist., XLIV,
pp. 123-268. [Many unreduced measurements.]

Nice, M. M. 1933. Nesting success during three seasons in a song

sparrow population. Bird-Banding, IV, pp. 119-131.

Nichols, J. T. 1918. Fishes of the vicinity of New York City. Amer.

Mits. Nat. Hist., Handbook Series, No. 7. New York. [Includes suggeistions

on mensuration.]

Nichols, J. T. 1935. The Hawaiian “Ulua.’^ Copeia, pp. 192-193.

[Distributions and grouping.]

Osborn, H. F. 1912. Craniometry of the Equidae. Mem. Amer.

Mus. Nat. Hist., n.s., I, pp. 57-100. [Review of several systems, and
mensuration essentially adapted to fossil and recent horses but in part of

much wider application.]

Osborn, H. F. 1929. The titanotheres of ancient Wyoming, Dakota
and Nebraska. U. S. Geol. Survey, Monograph 55. [Systems and numer-
ous applications and examples of mensuration, ratios, etc.]

Parker, G. H. 1922. The breathing of the Florida manatee (Trichechus

latirostris) . Jour. Mammal., Ill, pp. 127-135. [Typical numerical data

on a physiological variate.]

Pearson, H. S. 1928. Chinese fossil Suidae. Pcdaentologica Sinica,

V, Fascicle 5, Series C. [Excellent, carefully explained use of M, a, V,

Fisher^s /-test, and d/<r with fossil vertebrate material.]

Phillips, J. C. 1920. Skull measurements of the northern Virginia

deer. Jour. Mammalogy, I, pp. 130-133. [An unusually good study of

variation, especially by the use of V, although some of the samples are

poorly specified and statistical definitions are not entirely correct.]

Ridgway, R. 1901. The birds of North and Middle America . , . Part

I. Family Fringillidae. U. S. Nat. Mus., BiU\ 50, pp. i-xxxii, 1-716.

[Standard system of mensuration of birds.]

Ridgway, R. 1912. Color standards and color nomenclature. Pub-
lished by the author, Washington.

Robb, R. C. 1929. On the nature of hereditary size limitation: I,

Body growth in giant and pigmy rabbits. II. The growth of parts in

relation to the whole. Brit. Jour. Exper. Biology, VI, pp. 293-324.
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Robb, R. C. 1935. A study of mutations in evolution. I. Evolution

in the equine skull. II. Ontogeny in the equine skull. Jour. Genetics,

XXXI, pp. 39-52. [An outstanding study of heterogony and of numer-
ical data on relationships between phytogeny and ontogeny, size and
proportions.]

Ruthven, a. 1908. Variations and genetic relationships of the garter

snakes. U. S. Nat. Mus., Bull. 61. [Excellent numerical data and sane,

helpful suggestions on the place of such data in zoology.]

ScHOOLEY, J. P. 1934. A summer breeding season in the eastern

cliipmunk, Tamias striatus. Jour. Mammalogy, XV, pp. 194-196. [Physio-

logical numerical data.]

Shaw, W. T. 1926. Age of the animal and slope of the ground surface,

factors modifying the structure of hibernation dens of ground squirrels.

Jour. Mammalogy, VII, pp. 91-96. [Interesting data on a problem in cor-

relation or association, insufficiently digested to reveal its real bearing on

the questions considered.]

Simpson, G. G. 1937. The Fort Union of the Crazy Mountain Field,

Montana, and its mammalian faunas. U. S. Nat. Mas., Bull. 169. [Exam-
ples of applications of many numerical methods to the study of a fossil

fauna.]

Snyder, L., and H. Yingling. 1935. Studies in inheritance. XII.

Human Biology, VII, pp. 608-615. [Genetic diagrams.]

SoERGEL, W. 1925. Die Fahrten der Chirotheria. Eine palaobiolo-
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gel’s first statistical work on bears and discusses some abstract principles of
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morphological studies with more exact means, go far beyond purely morpho-
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Sperry, C. 1934. Winter food habits of Coyotes: A report of progress,
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materials to more complete related specimens, by means of ratios.)
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stratigraphie. Berlin. [One of the first applications of strictly statistical

concepts to paleontology. The statistical methodology j)roposed is, how-
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(Symbols, formulas, and definitions are not indexed separately as such,

but may be found in the text as indexed by subjects, and also in the compila-

tions in the Appendix, pages 380-397.)

A

Abmodality, coefficient of, 188n.

Absolute growth, 344-340, 350-354

Accretive growth (see Arithmetic

growth)

Accuracy, 25-30

Acropithecus rigidus, 58, 60, 121,

247

Additive growth (see Arithmetic

growth)

Age groups, 336-342

biological, 338-341

in fossils, 341-342

Aldous, C. M., 68, 401

Alligator ndssissippiensisy 364-365,

370

Angular coordinates, 307-308

Anisonchus sectorius, 311

Anthony, H. E., 22, 401

Area diagrams, 306

Areas, 4, 15

of normal curve, 135-140

table of, 137

Arithlog coordinates, 306-308

Arithmetic coordinates, 306-310

Arithmetic growth, 345-346, 350-

353

rate of, 346, 350-353, 355, 358

Arkin, H., 142, 400

Association, 285-304

hypotheses of dependence in,

300-304

multiple, 299-301

ratio method of, 294-296

significance of, 289-304

small samples, 296-298

Association, spurious, 299-301

Attributes, 2, 182

graphs of, 310, 312-314

sampling for, 170-171

Auxanodifferentiation, 371

Averages, 85-105

meaning of word, 103-105

B

Baboon, 369

Bar diagrams, 306, 312-314, 324-

325, 329-330

Barlow, P., 400

Bechcr, A., 368

Bias, 30-33, 45

in paleontological sampling, 180-

181

in sampling, 171-174

for growth, 343

Binomial distribution, 75-78

standard deviation of, 183

Birds, mensuration of, 22

Blakeman, J., 284, 400

Blanchard, F., 22, 47, 49, 226, 228,

242, 279, 339-340, 401

Broun, M., 208, 401

Brown, B., 342

Bruun, A, Fr., 65, 69, 293, 401

Bubnoff, S. von, 402

Burgess, R. W,, 400

C

Calculating machines, use of, 377-

380

Calculation, 375-380
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Camp, B. H., 400

Caranx melarnpygus, 67-68

Central tendency, measures of, 85-

105

Chipmunks, 35, 329

ChleuastochoeruSj 1 90

CiteUus columbianiis columbiamiSy

297

Class limits, 37-44

Coefficient, of abmodality, 188w.

of consistency, 33

of correlation, 224-254

of heterogony, 363-373

of regression, 262-274

of reliability, 33

of skewness, 143-145

of variability, 122-128

of variation, 122-128, 135, 146

Colbert, E. C., 334

Collins, H. H., 24, 402

Color, mensuration of, 24-25, 325-

326

Color top, 24

Colton, R. 11., 142, 400

Comparisons, of correlation coeffi-

cients, 242-243, 284

of means of two samples, 192-197

of regression coefficients, 277-280

of samples, 186-202

of single specimens, with large

samples, 188-192

with small samples, 205-209

Consistency, 30-33, 158-159

coefficient of, 33

Constant differential growth ratio

{see Coefficient, of heterogony)

Contingency classifications, 286-289

Contingency tables, 286-289, 295-

296

Continuous variates {see Variates)

Cook, H. J., 403

Coolidge, J. L., 400

Coordinates, 306-310

angular, 307-308

arithlog, 306-308

arithmetic, 306-310

deformed, 333-335

logarithmic, 306-308

Coordinates, polar, 307-308

rectangular, 306-310

semilogarithmic, 306-308

Correction factor, for arithmetic

mean, 90

Sheppard’s, for fourth moment,
147n.

for standard deviation, 116-117

Correlation, 222-254

coefficient of, 224-254

comparisons of (.‘oefficieuts, 242-

243

partial, 245-250

product moment, 224-237

rank, 250-254

relationship to regression, 270-

272

significance of, 233-237

spurious, 243

standard error of, 234, 241-242

transformation of coefficients,

237-240

Correlation ratio, 281-284

comparison with (orrelation coeffi-

cient, 284

Correlation surfaces, 306, 312

Coyote, 314

Crab, 371

Crocodiles, mensuration of, 22

Cumulative distributions, 82-84

Curve fitting, 140-142

Curves, asymmetrical, 64-66

of distributions, 59-75

growth, 351-354

logistic, 354n.

ogive, 82, 84

skewed, 64-66

{See also Normal curve)

Curvilinear regression, 280-284

D

Data, numerical, from direct obser-

vation, 3-7

Daucus carotay 368
Davenport, C. B., 400
Davenport, D. H,, 400

Deciles, 120
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Deer, white-tailed, 124

Deer-mouse, 108

Deformed coordinates, 333-335

Dendrohydrax dorsalis errtini^ 125

Dependence, hypotheses of, 300-

304

Deviations, significance of, 191

in small samples, 206-209

{See also Mean deviation;

Standard deviation)

Diagrams, types of, 305-310

area, 306

bar, 306, 312-314, 324-325,

329-330

line, 305

pictorial, 306, 330-335

pie, 306, 325-328

point, 305, 329-330

pyramid, 314

scatter, 232, 255-258, 265, 305,

312, 329-330

sector, 325n.

three-dimensional, 306

Dice, L. R., 108, 178n., 195, 201,

316-317, 321n., 326, 400, 402

Dice-Leraas method of comparisons

of means, 316-321

Dicerorhinus sumatrensisy 334

Dimensions, linear, 4

Diodon, 333

Discontinuous variates {see Variates)

Dispersion, measures of, 106-128

relative, 121-128

Distributions, binomial, 75-78

cumulative, 82-84

J-shaped, 66-68

patterns of, 59-75

qualitative, 34-35

quantitative, 35-37

U-shaped, 69

{See also Curves; Frequency

distribution)

Dixon, J., 314, 402

Donaldson, H. H., 354n., 402

Dot diagrams, 56-57

Duerst, V. V„ 24, 402

E

Eaton, R. J., 309, 402

Efficiency, 158-161

Ehrenberg, K., 402

Elephant, 332

Equus, 369
Error {see Probable error; Standard

error)

Exocoetus obtusirostrisj 293

F

Faunal sampling, 174-179

Fisher, R. A., 78, 113n., 132n., 2S0n.,

290n., 296, 400

Fishes, mensuration of, 21

Flying-fish, 293

Formulas, 382-390

for machine calculation, 379

Freedom, degrees of, 290-292

Frequencies, 2, 4, 6-7

Frequency distributions, 34-37, 45™

48

graphic representation of, 56-62

patterns of, 56-84

tests of agreement between ob-

served and theoretical, 301-

302

{See also Curves; Distributions)

Frequency polygon, 57-61, 305, 310

Frequency surface, 312

Frost, F. H., 196, 402

G

Gaindatherium browni^ 334.

Galton, F., 256n.,

Gauss, K. F., 70n.

Gaussian curve, 70

Geissler, 78

Geometric growth, 346-353, 355-

358

Geometric mean, 102, 146

Gleason, H. A., 178n.

Glossary, 391-397

Glut-herring, 64
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Graphic methods, 305-335

{See also Graphs)

Graphs, of attributes, 310, 312-314

of comparisons of ranges and
means, 314-321

of frequency distributions, 56-62

of more than one variable, 310-

314

of percentages, 321-328

of periodic phenomena, 328-330

of proportions, 321-328

of relative frequencies, 310, 321-

328

of time series, 328-330

of tint photometry, 325-326

Green, C. K., 369, 402

Gregory, W. K., 21, 402, 403

Grinnell, G. B., 178n.

Ground squirrel, 297

Group limits, 37-44

Grouping, 34-55

by ages, 36-37, 336-342

criteria for secondary, 50-55

numerical qualitative, 48-50

secondary, 37, 50-55

Growth, 336-373

absolute, 344-346

accretive or additive, 345-346,

350-353

arithmetic, 345-346, 350-353

compound-interest, 346-353

geometric, 346-353

heterogonic, 358

isogonic, 358

multiplicative, 346-353

of populations, 354n.

principal elements of, 344-345

relative, 354-373

sampling for, 342-344

Growth curves, 322-325, 351-354

Growth gradients, 372-373

Growth rates, 344-354

arithmetic or additive, 346, 350-

353, 355, 368

geometric or multiplicative, 346-

353, 355-358

instantaneous, 348

H

Harmonic mean, 102

Haskell, A. C., 400

Hatt, R. T., 125, 403

Hedrick, E. R., 400

Hemidactylium scutatunij 339-340

Herring gulls, 309

Heterogeneity of samples, 197-202

Heterogony, 367-373

coefficient of, 367-373

calculation, 363-366

{See also Growth)

Hicks, L. E., 35, 403

Hildebrand, S. F., 64, 175, 313, 403-

404

Histodifferentiation, 370

Histograms, 57-61, 306, 31 1-312

Hogben, L., 400

Homogeneity of samples, 168-170

association tests of, 303-304

Horse, 332

Howard, H., 196, 403

Hue, E., lOn.f 403

Huestis, R. R., 304, 403

Huxley, J. S., 355, 367-373, 403

Hydractinia echinata, 368
Hyracotheriuniy 369

I

Increments, in growth, 346-353

Indices, 10-13

Instantaneous growth rate, 348
Iridoprocne bicolor

j

46, 294

Isogony, 367

{See also Growth)

J

J-shaped distributions, 66-68
Jenkinson, J. W., 350-352, 403

K

Kalin, J. A., 22, 403
Kelley, T. L., 400

Kemp, S., 371
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Kenoyer, L. A., 178n.

King-snake, 47, 226

Klahn, H., 403

Kurtosis, 75, 147-148

coefficient of, 147

L

Lampropeltis elapsoides elapsoideSy

49, 242

Lampropeltis getulus getulus, 47, 54

Lampropeltis polyzona, 226, 228,

231-232, 242, 279

Laplace, P. S., 70n.

Laplace’s normal curve, 70

Leraoine, V., 216

Leptokurtic distribution, 147

Leraas, H. J., 316, 32 In., 400

Limits, of groups or classes, 37-44

Line diagrams, 305

Linsdale, J., 178n.

Litolestes notissimusy 80-81, 126, 145

Lizards, mensuration of, 21-22

lx>garithmic coordinates, 306-308

Ix)gistic curve, 354n.

Ix)orni8, F. B., 342

Low, S. H., 46, 294, 403

M
Macdonell, W. R., 144, 404

Mammals, mensuration of, 22-23

Manatee, 46

Matthew, W. D., 35, 341-342, 404

Mean, arithmetic, 85-94, 146

geometric, 102, 146

graphic comparisons of, 314-321

harmonic, 102

quadratic, 10^2-103

significance of, 209-210

standard errf)r of, 151-152, 154

differences of, 192-197, 317-

321

Mean deviation, 109-112, 117-118

standard error of, 155

Measurement, requirements of good,

16-21

Median, 94-99

standard error of, 154

Meek, S. W.y 175, 404

Meleagris gallopavo, 1 96

Melospiza melodia beata, 58, 61

Mendelian ratios, association as test

of, 363

Mensuration, 16-33

of birds, 22

of color, 24-25

of crocodiles, 22

of fishes, 21

of lizards, 21-22

of mammals, 22-23

osteological, 24

paleontological, 23-24

of snakes, 21-22

systems of, 21-25

{See also Measurement)

Merychippus primuSy 341

Midpoints, of groups, 37-43

Mills, F. C., 400

Miner, J. R., 401

Mode, 99-101, 146

Modules, 14-15

Moments, 147w.

Mook, C. C., 36.5-370, 404

Multiple association, 299-300

Multiplicative growth {see Geo-

metric growth)

Mus ha^trianuSy 369

N
Nice, M. M., 58, 404

Nichols, J. T., 21, 68, 404

Nondecimal units of measurement,
42-44

Normal, meaning of word, 103-105

Normal curve, 70-75, 129-148

areas of, 135-140

mathematical equation of, 132

ordinates of, 135-142

parameters of, 132-135

table, of areas, 137

of ordinates, 139

NotostylopSy 212

Numbers, continuous, 162-164

discontinuous, 162-164

meaning of, in zoology, 1-3

sorts of, 1-2
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Numerical data, types and proper-

ties, 1-15

O

Odocoileus virginianus borealis, 124

Ogive curve, 82, 84

Ordinates, of normal curve, 135-142

table of, 139

Orthagoristus, 333

Osborn, H. F., 24, 331-332, 335,

404

Osteology, mensuration, 24

P

Palaemon bengalensis, 371

Paleontology, mensuration, 23-24

sampling in, 179-181

Papio porcarius, 369

Parameters, families of, 134-135

of normal curve, 132-135

of populations, 149-153

rule for significant figures of, 165

of samples, 149-153

Parapavo californicus, 196

Parexocoetus brachypterus hillianus,

65-66, 69

Parker, G. H., 46, 404

Partial correlation, 245-250

Pearl, R., 184n., 315, 354n., 401

Pearsall, W. H., 368

Pearson, H. S., 190, 404

Pearson, K., 122, 281, 284n., 401

Percentages, graphic representation

of, 321-328

Percentiles, 120

Periodic phenomena, 328-330

Perissodactyls, 331

Peromyscus maniculaius, 201

Peromyscus nianiculatus artemisiae,

322

Peromyscus maniculatus bairdii, 108,

140, 195, 317, 326

Peromyscus maniculatus gambelii,

20, 32

Peromyscus maniculatus rubidus, 304

Phenacodus primaevus, 157, 230, 259,

261

Phillips, J. C., 124, 404

Photometry, tint, 25

graphic representation of, 325-

326

Pictorial diagrams, 306, 330-335

Pie diagrams, 306, 325-328

Pisum sativum, 368

Platykurtic distribution, 147

Plesiadapis gidleyi, 215

Plesiadapis iricuspidens, 215—216

Point diagrams, 305, 329-330

Poisson, S. D., 79n.

Poisson series, 78-83, 161

Polar coordinates, 307-308

Pomolobus aestivalus, 63-64, 82, 90

Pooecetes gramineus gramineus, 208

Populations, 166

growth of, 354n.

Probability, 149-165

Probable error, 1 34, 1 53

significance of deviations in terms

of, 191

{See also Standard error)

Product moment correlation, 224-

237

Proportions, anatomical, graphs of,

332-335

graphic representation of, 321-

328

in growth, 354-373

Ptilodontidae, 198

Ptilodus, 201, 287

Ptilodus monianus, 41, 46, 86, 289,

303

Pyramid diagrams, 314

Q

Quadrat sampling, 176-177

Quadratic mean, 102-103

Quartile deviation, 120

Quartiles, 119-120

first, 119

standard eiror of, 155

third, 119

Quetelet, L. A. J., 62n., 73

Quetelet’s principle, 62-63, 85

Quintiles, 120
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R

Rainbow trout, 350-352

Range, graphic comparisons of,

314-321

observed, 107-109, 135

real, 109

semi-interquartile, 119-120

theoretical, 216-218

Range midpoint, 102

Rank correlation, 250-254

Ratio method in assocuation, 294-

296

Ratios, 8-14, 272-273, 357-363

dependence on growth, 363

Raunkiaer, C., 178n.

Rectangular coordinates, 306-310

Refin(5ment, 25-30

Regression, 255-284

coefficients of, 262-274

curvilinear, 280-284

difference between (xx^fficients,

277-280

rough approximation of, 258-262

significance of, 274-280

standard error of, 276-277

Relative dispersion, 121-128

Reliability, 149-165

coefficient of, 33

Rhea, 69

Rhinoceros unicornisy 334

Ridgway, R., 22, 24, 404

Rietz, H. L., 401

Robb, R. C., 354w., 358, 369, 404-

405

Rosahn, P. D., 321n., 401

Rounding figures, 44-45

Ruthven, A., 315, 405

S

Salamanders, 339-340

Samples, characteristics of good,

167-174

comparisons of, 186-202

heterogeneity of, 197-202

homogeneity of, 168-170

small, 203-221, 296-298

{See aUo Sampling)

Sampling, 166-185

criteria of good, 167-174

faunal, 174-179

for growth, 342-344

paleontological, 179-181

quadrat, 176-177

qualitative, 174-1 75

quantitative, 1 75-179

skimming, 175

specifications, for fossil, 174

for vertebrate, 174

station, 176, 178-179

traverse, 176-178

{See also Samples)

Sampling limits, 182-185

table of, 184

Scatter diagrams, 232, 255-258, 265,

305, 329-330

of three variables, 312

Schooley, J. P., 35, 329, 405

Schroeder, W. C., 64, 313, 403

Sector diagrams, 325w.

Semi-interquartile range, 119-120

Semilogarithmic coordinates, 306-

308

Shaw, W. T., 297, 405

Sheep, 372

Sheep dog, 368

Sheppard, W. F., 147n.

Sheppard’s correction, 147n.

Significance, of association, 289-304

of correlation coefficient, 233-237

criteria of, 190-192, 206-209

of difference between correlation

coefficient and correlation

ratio, 284

of means, 209-210

of regression, 274-280

of single observations, 212-221

Significant figures, 161-165

Simpson, G. G., 405

Single specimens, 212-221

Skewness, 64-66, 75, 143-146

coefficient of, 143-145

negative, 64-66

positive, 64-66

Skimming sampling, 175

Snakes, mensuration of, 21-22

Snowshoe-hares, 68
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Snyder, L., 331, 405

Soergel, W., 24, 405

Song-sparrow, 58

Spearman, C., 250

Sperry, C., 327, 405

Spurious association, 299-301

Spurious correlation, 243

Standard deviation, 112-119

of binomial, 183

in small samples, 205

standard error of, 152, 155

Standard error, 134, 149-160

calculation of, 154-158

of coefficient of variation, 152-155

of correlation coefficient, 234

of difference, between correlation

coefficients, 242-243

between means, 192-197, 317-

321

between regression coefficumts,

277-280

of estimate, 274-276

of mean, 151-152, 154

in small samples, 210-212

of mean deviation, 155

of median, 154

of quartiles, 155

of regression coefficient, 276-277

of standard deviation, 152, 155

Starling, 35

Station sampling, 176, 178-179

StenomyluSj 342

Stock, C., 405

Storer, T. I., 178n.

Siumia vulgaris^ 35
Subhyracodon occidentalism 334

Sufficiency, 158, 161

Sumner, F. B., 20, 22, 32-33, 325,

405

Svihla, A., 322, 405

Symbols, 380-382

T

Tables {see list in front of book)

Tamias striaiuSy 35

Teilhard de Chardin P., 216

Teissier, G., 368

Temperature, 5-6

Thamnophis megedopSy 315

Thompson, D’Arcy, 333, 406

Three-dimensional diagrams, 306

Time, periods, 6

Time series, 328-330

Traverse sampling, 176-178

Tree-hydrax, 125

Tree swallows, 46

Trend, 255-258, 305

Troxell, E. L., lOn., 12w., 406

Turkeys, 196

Typical, moaning of word, 103-105

U

U-shaped distributions, 69

Uca pugnaXy 368

V

Variability, 121-128

coefficient of, 122-128

Variables, 2

dependent, 258-262

independent, 258-262

Variance, 113-115

Variates, 2

continuous, 3-6

discontinuous, 3, 6-7, 45-48

sampling for, 170

Variation, coefficient of, 122-128,

135, 146

relationship, to percentage differ-

ences in observations, 219

to theoretical range, 217

standard error of, 152, 153

Vesper sparrow, 208
Volume, 4-5

W
Walker, H. M., 401

Wedekind, R., 406
Weight, 5

Y
Yates, F., 296

Yingling, H., 331, 405

Yule, G. U., 133n., 154, 312n„ 401

Z

Zeuner, F., 24, 406

Zuckerman, R, 369
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