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PREFACE TO THE SECOND EDITION 

The past decade has brought forth many imj)()rtant develop¬ 

ments in instruments and methods used in (leodetic Surveying, 

and these changes have made necessary a thorough revision of 

this book. The principal changes include, i, new designs for 

theodolites, vertical collimators, signal lam])s, oljserving towers, 

and leveling rods; 2, the use of radio signals for determining 

longitude; 3, the method of standardizing tapes; 4, new programs 

and new standards of accuracy for base-lines, triangulation, and 

leveling; and 5, the addition of Clarke’s formulae for geodetic 

positions. Advantage has been tal^en of this opportunity to 

make numerous imi)rc)vements and to correct any typographical 

errors known to exist. 

The author desires to acknowledge his indebtedness to the 

Coast and Geodetic Survey for the use i photographs and for 

information; to C. L. Rerger Sons for photographs and c'uts; 

and to Dr. William Bowie and Major C. \b Hodgson, of the 

Coast and Geodetic Sur\'cy for information and helpful sug¬ 

gestions. 
G. L. H. 

Camuridc'.f, S( pi nih, r, i()2<). 

iii 





PREFACE TO THE FIRST EDITION 

In this volume the author has attempted to produce a text¬ 

book on Geodesy adapted to a course of moderate length. The 

material has not been limited to what could be actually covered 

in the class, but much has been included for the purpose of giving 

the student a broader outlook and encouraging him to pursue the 

subject farther. Numerous references are given to the standard 

works. 

Throughout the book the aim has been to make the underlying 

principles clear, and to emphasize the theory as well as the details 

of field work. The methods of observing and computing have 

been brought up to date so as to be consistent with the present 

practice of the Coast and Geodetic Survey. 

The chapters on astronomy and least squares are included for 

the sake of completeness but do not pretend to be more than in¬ 

troductions to the standard works. The student cannot expect 

to master either of these subjects in a short course on geodesy, but 

must make a special study of each. 

The author desires to acknowledge his indebtedness to those 

who have assisted in the preparation of this book, and especially 

to Professor J. W. Howard of the Massachusetts Institute of 

Technology for suggestions and criticism of the manuscript; to 

the Superintendent of the Coast and Geodetic Survey for valuable 

data and for the use of many photographs for illustrations; and to 

Messrs. C. L. Berger & Sons for the use of photographs of the 

pendulum apparatus and several electrotype plates. Tables XII 

to XVII are from electrotype plates from Breed and Hosmer’s 

Principles and Practice of Surveying, Vol. II. 

G. L. H. 

Cambridge, April, 1919. 
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GEODESY 

CHAPTER I 

GEODESY AND GEODETIC SURVEYING — 

TRIANGULATION 

1. Geodesy. 

Geodesy is the science which treats of investigations of the 

form and dimensions of the earth’s sur!*ace. The methods which 

have been chiefly employed in determining the earth's figure 

are:—(i) the measurement of the lengths of arcs (meridians, 

parallels, or oblique arcs) on the surface of the earth, combined 

with the determination of the astronomical positions of points 

on these arcs; (2) the measurement of lengths in a network of 

triangles which covers an area, combined with the determination 

of astronomical positions; and (3) the measurement of the varia¬ 

tion of the force of gravity in different parts of the earth’s surface. 

Methods (1) and (2) give the form and size of the earth. Method 

(3) gives the form but not the absolute dimensions. 

2. Geodetic Surveying. 

Geodetic Surveying is that branch of the art of surveying which 

deals with such great areas that it becomes necessary to make 

systematic allowance for the effect of the earth’s curvature. 

In making an accurate survey of a whole country, for example, 

the methods of plane surveying no longer suffice, and the theory 

of locating points and calculating their positions must be modified 

accordingly. Such surveys require the accurate location of 

widely separated points to control the accuracy of subsequent 

surveys for details, such as those for coast charts and topographic 

maps, or national and state boundaries. The general method 
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employed is that of triangulation, in which the location of points 

is made to depend upon the measurement of horizontal angles, 

the distances being calculated by trigonometry instead of being 

measured directly. 

Although we may make this distinction when defining the 

terms it is not necessary to sejiaratc the two in practice, and in 

fact it is not usually possible to do so. It is evident that geodetic 

surveys must be made before accurate dimensions of the earth 

can be computed; and, conversely, it is true that before geodetic 

surveys can be calculated exactly the earth’s dimensions must 

be known. Hence, geodetic surveys are usually conducted with 

a twofold purpose: (i) for collecting the scientific data of geodesy, 

and (2) for mapping large areas; every survey depending upon 

data previously determined, but also adding to or improving the 

data already existing. For this reason the measurements are 

often made with greater refinement than would be necessary for 

practical purposes alone. 

The work of the geodesist is closely associated with various 

branches of other sciences, such as practical astronomy, geology, 

seismology, oceanography, and terrestrial physics. The activi¬ 

ties of a geodetic survey usually include triangulation, astronom¬ 

ical observations, and leveling, for the control of surveys, and 

for studies of geodetic problems, topographic and hydrographic 

surveys, tidal and current observations, magnetic observations, 

seismological observations, gravity measurements, and cartog¬ 

raphy. 

Some of the observations made by the geodesist reveal im¬ 

portant facts about the internal constitution of the earth, and 

this information in turn is put to practical use in geological work. 

Methods used by the geodesist for studying variations in density 

of the earth’s crust are also used for locating mineral wealth. 

The hydrographic charts are made to aid the navigator; hori¬ 

zontal and vertical control points and topographic maps are of 

assistance to engineers and others. Seismological studies are an 

aid to engineers and architects in designing structures to resist 
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earthquakes. Thus it is seen that geodesy is in close touch with 

science on the one hand and commerce and industry on the other. 

3. Triangulation. 

A triangulation system consists of a network of triangles the 

vertices of which are marked points (triangulation stations) 

on the earth’s surface. It is essential that the length of one side 

of some triangle should be measured directly, and also that a 

sufficient number of horizontal angles should be measured to 

make possible the calculation of all the remaining triangle sides 

in the net. In addition to the measurements that are absolutely 

necessary for making these calculations it is important to have 

other measurements for the purjiose of testing and verifying the 

accuracy of both the calculations and the field work. These 

may consist of check angles, additional base-lines, or observed 

astronomical azimuths. 

It should be understood that after the field measurements of 

a triangulation are completed and computations made which 

reveal the errors in the angles and the distances, the entire system 

of triangulation is “adjusted” by the “method of least squares” 

so that all inconsistencies arc removed from the final calculated 

results. 

4. Classification of Triangulation. 

There are two ways in which triangulation systems may be 

classified, and names are required for each. When classifying 

with reference to the use to which a system is put and its relation 

to other triangulation in the same system we speak of the larger 

triangles as the ‘'main scheme” or the “principal triangulation,” 

whereas the triangulation of lesser importance is called the “sub¬ 

sidiary ” triangulation. When classifying according to the degree 

of accuracy finally secured we speak of the “order” of the tri¬ 

angulation. In 1925 th^ Board of Surveys and Maps of the 

Federal Government adopted for all branches of the government 

service the following classification: 
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Triangu¬ 
lation 

First order. Second order. Third order. Fourth order.* 

Average tri¬ 
angle closure 
i", check on 

base 
1/25,000 

Average tri¬ 
angle closure 
3", check on 

base 
1/10,000 

Average tri¬ 
angle closure 
5'', check on 

base 
1/5000 

Graphic or 
transit angles 

In this table are given the ^‘errors of closure^’ of the triangle 

which may be used as a field test of the accuracy of the work. 

In first-order work the average error of closure of a triangle in 

the net should not be more than about i", and the maximum error 

of closure should not exceed 3". The expression check on 

base ” is interpreted to mean that when a connection is made with 

a measured base, or with an adjusted line of a previously executed 

triangulation, and after the adjustment has been made for angle 

equations and side equations,! the remaining discrepancy between 

the computed and the measured lengths of this base shall not 

exceed one twenty-five thousandth part of the length of the base 

itself. The specifications for second-order and third-order work 

are to be interpreted similarly. 

Formerly the words primary, secondary, and tertiary, were used 

to designate the different classes of triangulation. As these terms 

were used differently by different organizations and since they have 

been officially replaced it is not advisable to continue their use. 

The function of the main scheme of triangulation in a survey 

is ordinarily to furnish the ^Vontrol,” that is, to furnish a suffi¬ 

cient number of accurately located points to make certain that 

the accuracy of the dependent triangulation and traverses does 

not fall below a certain specified amount. The subsidiary tri¬ 

angulation furnishes the points used immediately for the mapping 

work, or it may serve merely to connect these latter stations with 

stations in the main scheme. 

* A committee of the American Society of Civil Engineers is now at work upon 

specifications for fourth order triangulation and traverse. 

t See Art. 8 and Chapter XII. 
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The government program for horizontal control contemplates 

filling in belts of first-order triangulation about lOO miles apart, 

and second-order belts in between until there shall be no con¬ 

siderable area in the United States which is more than 25 miles 

distant from a triangulation station of the first or the second order. 

4a. Traverses. 

Under ordinary circumstances traverses are not so accurate 

as triangulation. In traversing, it is necessary to pass over the 

intervening ground, which may be extremely rough, and to 

measure distances under unfavorable conditions. Where the 

distance measurements are much inferior in accuracy to the angle 

measurements the traverse is necessarily less accurate than the 

triangulation. Formerly traverses were not regarded as suffi¬ 

ciently accurate for geodetic work. In recent years, however, 

traverses of the same, or nearly the same, order of accuracy as 

triangulation have been extensively used in flat, wooded country 

where triangulation would have been difficult and expensive. 

The following specifications have been adopted by the Fed¬ 

eral Board of Surveys and Maps for tra\ erses used in govern¬ 

ment surveys: 

First order. Measurements to correspond in accuracy with 

first-order triangulation; the check on the position of a point to 

be within one part in 25,000.* Directions to be kept accurate 

by azimuth observations made every 10 to 15 stations, the 

‘‘probable error’’ to be about o".5 of angle. 

Second order. The distance check to be not less than i/io,ooo; 

azimuths to be observed every 15 to 20 stations with a probable 

error of i".5. 

Third order. The distance check is to be 1/5000; the dis¬ 

tances must be measured with standardized tapes, using spring 

balance and thermometer; azimuths to be observed every 30 to 

50 stations with a probable error of 5". 

* That is, the actual error in position must not be more than 1/25,000th part 

of the distance traversed, when the closure is made on an adjusted triangulation 

point. 
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Fourth-order traverse is for mapping purposes only and in¬ 

cludes tape, stadia, or wheel traverse. 

6. Length of Line. 

The length of line which may be used in the main triangulation 

is determined largely by the character of the country to be 

surveyed. In California and Nevada, where the mountains are 

Fig. I. Triangulation in California and Nevada (Davidson Quadrilaterals). 

high and the atmosphere is exceptionally clear, the scheme of 

triangulation known as the ^^Davidson Quadrilaterals,’' (Fig. i) 

contains lines from 50 miles to nearly 200 miles in length. The 

longest line sighted over was that joining Mt. Shasta and Mt. 
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Helena, a distance of 192 miles. The longest line used in the 

final computations was from Mt. Ellen to Uncompaghre Peak, 

a distance of 182.7 miles. In flat and wooded country the lines 

may be from 10 to 25 miles, and in some cases considerably 
shorter than this. 

Although long lines apj)ear to give more rapid progress, they 

are not necessarily the most economical or useful. So far as 
accuracy goes, it makes little difference whether lines are 5 kilo¬ 

meters or 300 kilometers in length. But points separated by 

such distances as the latter arc not suitable for mapping purj^oses, 
and it would be necessary to locate a very large number of other 

stations before the detail work could begin. Another point to 
consider is that in an atmosphere which is not particularly clear 

the delays in observing over long lines may offset the advantages 

of a reduced number of stations. The decision should rest upon 

the following two considerations: i. The cost of the work, 

including reconnoissance, signal building, and angle measuring 

should not be excessive, and 2. There should be a sufficient 

number of accessible stations established to serve the immediate 
purpose of the survey and also to leave points which will be useful 

to engineers. In other words, we should use that length of line 
which gives the maximum of usefulness combined with the 

minimum of cost. 

6. Check Bases. 
It has already been stated that at least one line in a system 

must be measured. In order to verify the accuracy of the tri¬ 

angulation it is customary to introduce additional base-lines 

at intervals varying from 50 to 500 miles. The lengths of these 
bases may be found by calculation of the triangles as well as by 

the direct measurement; this furnishes a most valuable check on 

the accuracy of the field work. In the triangulation of the United 

States Coast and Geodetic Survey the frequency with which 

bases should be measured is determined by the ''strength factor 

described on page 12. If the character of the country is such 

that a base may be measured almost anywhere then the factor 
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between bases should be about 8o. This will correspond to 

a chain of from lo to 25 triangles, depending upon the strength 

of the figures secured. If conditions are such that it is difficult 

to measure a base in the desired location XRi may be allowed to 

approach but not to exceed no. If, however, the factor is 

Cooper 

close to this limit, there is danger that the check on the base 

will not meet the specified requirement and that in consequence 

another intermediate base will have to be measured. 

In the triangulation of New England there are three bases: 

(1) the Fire Island base, about 9 miles long, measured in 1834; 

(2) the Massachusetts base, about 10 miles long, measured about 
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1844; (3) the Epping base, about 5 miles long, measured in 

1857. (Fig. 2.) The total length of the triangulation between 

the Epping and the Fire Island bases is about 400 miles. The 

accuracy with which the triangulation was executed is indicated 

by a comparison of the computed and measured lengths. The 

length of the Epping base as calculated from the Fire Island 

base is 0.042 meter less than the measured length; the length of 

the Epping base calculated from the Massachusetts base is 0.136 

meter less than the measured length. This triangulation was 

executed long before the strength factor’^ test came into use. 

As another illustration of a belt of triangulation between two 

bases Fig. 2a shows that portion of the Texas-California arc 

which joins the Stanton base (Texas) with the Doming base 

(New Mexico). 

7. Geometric Figures. 

The geometric figure generally recognized as the best one for 

a belt of triangulation is the completed quadrilateral, consisting 

of four stations joined by six lines, thus forming four triangles in 

which there are altogether eight locall> independent angles to 

be measured. This figure furnishes a large number of checks as 

compared with the number of angles measured, and gives a strong 

determination of length. The polygon having an interior station 

is also a strong figure; it is particularly well adapted to surveying 

an area rather than a belt. Figures which are more complex 

than these are apt to be expensive and troublesome to adjust, 

while single triangles do not furnish a sufficient number of checks 

and this results in diminished accuracy. In the work of the 

United States Coast and Geodetic Survey the principal triangu¬ 

lation is made up chiefly of quadrilaterals, and polygons having 

an interior station. In these figures all of the stations are sup¬ 

posed to be occupied with the triangulation instrument. 

8. Strength of Figure. 

In deciding which of several possible triangulation schemes to 

adopt it is important to inspect the different chains of geometric 

figures with a view to ascertaining which is the strongest^ that is. 
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which one will give the calculated length of the final line with the 

least error due to the shape of the triangles and the composition 

of the figure. 

An estimate of the uncertainty in the computed side of any 

triangle is given by its probable error as found by the method 

of least squares. If p is the probable erroi of the logarithm of 

the side AC of a triangle as calculated from the base BC, then 

pi ^ _2 

in which bA and bB are the differences in the log sines of angles 

A and B corresponding to an angular difference of i", and r 

is the average probable error of the adjusted angles. If d is 

the (average) probable error of an adjusted direction^ then 

p- — 3 + bAbs + 5j5“). 

A and B are the only angles used in the calculation of AC from 

BC' and are called the distance angles. It is thus seen that the 

cTror of the computed side depends upon the size of the angles 

occurring in the triangle and that it ma> be computed from the 

differences for as found in a table of log sines. The unit is 

ordinarily taken as one in the sixth decimal place. 

Whenever the geometric figure is comjiosed of several triangles 

connected in such a way that the length of the final line may be 

calculated l)y more than one route through the triangulation, 

the result obtained from such a figure is more accurate than that 

found by a simple chain of triangles. The greater the number 

of checks the greater the accuracy. In this case the square of 

the probable error of the log of any triangle side is given by the 

approximate formula 

* When the horizontal angles of a triangulation are obtained by use of the 

so-called “direction theodolite” the angles are not determined separately as with 
the repeating instrument (or the ordinary transit), but the directions of signals 

are sighted and read in order around the horizon; the angles are obtained from the 

differences in direction. It is customary, therefore, for some purposes, to regard 

the directions of the different lines as observed independently, even though the 

measurements may have been made with a repeating theodolite. For the probable 

error of an observed direction see table on p. 97. 
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= I d^. [5^2 + + 5^2] 

in which 

T> — the number of new directions observed 

C = the number of geometric conditions that must be 

satisfied in the figure 

Sa and Sb = the differences for i" in the log sines of the 

angles A and B in units of 6th decimal place 

d = the probable error of an observed direction* 

S = the sum of all the quantities in brackets. 

In each separate triangle, and bn must be taken out for the 

two distance angles, whatever their designation may be. 

D - C 
Evidently the factor —jj— depends upon the nature of 

the figure chosen, and the quantity in brackets depends upon 

the shape of the triangle in question. The product of the two 

(called the strength factor, R) is a measure of the strength of the 

figure and is independent of the precision with which the angles 

themselves are measured. The strength, R, of any figure is 

given by 

D — c 
R = ^ 

The smaller the value of R the stronger the figure, that is, the 

smaller the error in the computed length of the final line. 

If the value of this factor be computed for every possible route 

through any one triangulation system there will result a minimum 

value (7?i) for the best chain, a second best value (7?2), a third 

and a fourth and so on. It will be found that the chain of tri¬ 

angles having the greatest influence in fixing the final length of 

the line (after adjustment) is that corresponding to i?i, or the 

best chain. The second best {Rf) has some influence, and the 

others correspondingly less. In other words, when the system 

is adjusted the angles of the Rv chain will receive smaller cor- 

See page 97. 
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rections than those of the R> chain, and so on. Hence in choosing 

between two or more possible systems of triangulation which 

join a given line with a given base, that route having the smallest 

Ri is to be preferred (so far as accuracy is concerned) unless Ri 

proves to be nearly the same for the different routes, in which 

case that chain having the smallest R2 would be chosen. 

As an example of the way in which the preceding method would 

be applied, take the case of the quadrilateral shown in Fig. 3. 

Assuming the base AB to be a line already fixed in direction and 

length, the point C is then determined by observing the new 

directions AC and BC. 1) is fixed by the directions AD and 

Fig. 3. 

BD. In addition to these four, the directions CB, CA, CD, 

DC, DB, DA, are all observed. This gives 10 observed (new) 

directions as the value of D in the formula. In determining the 

number of geometric conditions, C, it is seen that there are four 

triangles, and that in each one the sum of the three angles must 

equal a fixed amount, 180° + the spherical excess of the triangle. 

It will be found, however, that if any three of these triangles are 

made to fulfill these conditions, the fourth will necessarily do so, 

and hence is not really independent; in other words there are 

three conditions dependent upon the closure of the triangles. 

In addition to these three angle conditions there is also a distance 

check, that is, the angles must be so related that the computed 

distance CD will come out the same, no matter which triangles 
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are used in making the computation. The angles in each tri¬ 

angle may in each case add up to the correct amount, and yet 

the figure will not be a perfect quadrilateral unless this last con¬ 

dition is also fulfilled. There are then, in all, four geometric* 

conditions existing among the angles. (C = 4.) The factor 

for the completed quadrilateral is, therefore, 

D - C TO - 4 

In the triangle ACB (Fig. 3) the distance angles for computing 

AC are A = 62° and B = 76°. The difference for i" for 62° = 

1.12 and for 76*^ = 0.53, in units of the sixth decimal place. 

The quantity in brackets in the formula is, therefore, 

(([.12)= + J.12 X 0.53 + (0.53)-) = (1.25 + 0.59 + 0.28) =2.12, 

or 2 to the nearest unit. 

In Table I these numbers are given for all combinations of 

angles which will occur in practice, so that this factor may be 

found at once by entering the table with the two distance angles. 

Ordinarily the smaller angle will be found at the top and the 

larger angle at the side. Accurate interpolation is unnecessary. 

For the triangle DC A the angles are 2g° and j 20^, the correspond¬ 

ing number being 11. Therefore, the value of R is 0.60 X (2 +11) 

= 7.8. For the triangle A 795 the angles are 7]"^ and 71"^, and the 

number is 2. For triangle BDC the angles are 38*^ and 93°, the 

number being 7. The corresponding value of R is 0.60 X (2 + 7) 

= 5.4. For triangles ACB and DCB, R = 15.6; for triangles 

DBA and DC A, R = 30.6. Therefore, we have 

Rx = 5.4 

R, = 7-8 
R^ = 15-6 
Ra = 30.6 

* The above mentioned condition equations arc not the only ones that might 

he selected and used for adjusting a quadrilateral. The total number, however, 

is always four. 



stri:ngtii of figure 
15 

In comparing the strength of this quadrilateral with that of any 

other figure reliance would be placed mainly upon = 5.4 and 

partly upon R2 = 7.8. 

D — C 
Following are the values of ——— for several figures frequently 

occurring in triangulation:- single triangle, 0.75; completed 

cjuadrilateral, 0.60; quadrilateral with one station on fixed line 

not occupied, 0.75; quadrilateral with one station not on fixed 

line not occupied, 0.71; triangle with interior station, 0.60; 

triangle with interior station, one station on fixed line not oc¬ 

cupied, 0.75; triangle with interior station, one station not on 

fixed line not occupied, 0.71; four sided figure with interior sta¬ 

tion, 0,64; five sided figure with interior station, 0.67; six sided 

figure with interior station, 0.68. For additional cases see U. S. 

Coast and Geodetic Survey special publications 26 and 120. 

From the jireceding discussion it will be seen that if a small 

angle occurs ojiposite the base or the side being com])uted the 

determination is weak, as indicated by a large R factor. If 

this is R\, the figure is weak. But if the small angle is not op¬ 

posite either the base or the advance side, the figure may be 

strong. Akso, if the small angle occurs in R-^ or R\ the figure may 

be strong. 

It should be remembered that the above criterion is a test for 

length only, and not for azimuth or absolute position. 

Another point to be noticed is that a figure may be strong and 

yet advance so slowly in the general direction of the triangulation 

as to make it an uneconomical one to use. 

Figure 4 illustrates a figure that is strong, but gives slow prog¬ 

ress in the general direction of the triangulation, while Fig. 5 

is weak but advances rapidly. Figure 6, although badly dis¬ 

torted is fairly strong. Figure 7 is strong. Figure 8 and Fig. 

9 are examples of good expansions from bases. In Fig. 8 the 

ratio of expansion is 2 to i. The Ri factor 5 indicates that this 

is a strong figure. Figure 9 in which i?i = 9 is also a good figure 

for expanding a base. 
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9. Number of Conditions in a Figure. 

In determining the number of conditions in any figure it is 

well to proceed by plotting the figure, point by point, and writing 

down the conditions as they occur, but it will be of assistance to 

have a check on the results obtained by this process. If n repre¬ 

sents the total number of (locally independent) angles measured, 

and s the number of stations, then, since it requires two angles to 

locate a third point from the base-line, two more to locate a 

fourth point from any two of these three points, and so on, the 

number of angles required is 2 (5 — 2); and since each additional 

angle gives rise to a condition, the number of conditions will 

equal the number of superfluous angles^ or 

C — n — 2 (s — 2) 

= n — 2 s + 4. 

For example, in a quadrilateral in which one station is unoccu¬ 

pied there are six angles measured, and 

r = 6 — 8 + 4 = 2. 

The number of conditions may also be found from the equation 

C = 2 / — /i — 3 j + 4 

where / = the total number of lines 

h = the number of lines sighted in one direction only 

.V = the total number of stations 

Su = the total number of unoccupied stations. 

In the preceding example this equation becomes 

C=I2 — 3— 12 + 1+ 4 = 2. 

10. Allowable Limits of Ri and R2. 

In triangulation of the first order the value of R for any one 

figure (between base nets) should not exceed 25 in the best chain 

(R]) and 80 in the second best chain {R2); and it is desirable to 

keep the values far below these limits. 

In general a new base should be measured whenever i?i amounts 

to 80. This will correspond to a chain of from 10 to 25 triangles. 
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according to the strength of the figures chosen. If it is difficult 

to secure a base site at the point indicated = 8o) then 

may be as great as ito but must not exceed this amount. For 

first order accuracy the base check must not exceed one part in 

25,000, so if 2Ri is allowed to approach the higher limit there is 

danger that a new intermediate base may become necessary. 

11. Reconnoissance 

The work of planning the system is in many respects the most 

important part of the project and demands much experienc'c and 

skill. Upon the proper selection of stations will depend very 

largely the accuracy of the result, as well as the cost of the work. 

No amount of care in the subsequent field-work will fully com¬ 

pensate for the adoption of an inferior scheme of triangulation. 

Three points in particular will have to be kej)t in mind in planning 

a survey: (i) the strength^’ of the figures adopted; (2) the dis¬ 

tribution of the points with reference to the requirements of the 

subsequent detail surveys; and (3) the cost of the work. In de¬ 

ciding which stations to adopt it is desirable to make a prelimi¬ 

nary examination of all available data, such as maps and known 

elevations. If no map of the region exists, a sketch map must be 

made as the reconnoissance proceeds. While much information 

may be obtained from such maps as are available, the final de¬ 

cision regarding the adoption of points must rest upon an exami¬ 

nation made in the field. All lines should be tested to see if the 

two stations are intervisible. This may be done by means of 

field glasses and heliotrope signals. In cases where the points 

are not intervisible, owing to intervening hills or to the curvature 

of the earth’s surface, it will be necessary to determine approxi¬ 

mately, by means of vertical angles or by the barometer, the 

elevation of the proposed stations and of as many intermediate 

points as may be required, and then to calculate the height to 

which towers will have to be built in order to render the proposed 

stations visible. If the height of the towers is such as to make the 

cost prohibitive, the line must be abandoned and another scheme 

of triangles substituted. 
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12. Calculation of Height of Observing Tower. 

After determining the elevations of the stations and the inter¬ 

vening hills along a line, as well as the distances between them, 

the height of the tower required may be found by the following 

method: The curvature of the earth’s surface causes all points 

to appear lower than they actually are. A hill appearing to be 

exactly on the level of the observer’s eye is in reality higher above 

sea-level than the observer. The light coming from the hill to 

the observer’s eye does not, however, travel in a straight line, 

but is bent, or refracted, by the atmosphere into a curve which 

is concave downward and is approximately circular. The result 

is that the object appears higher than it would if there were no 

refraction. The amount of the apparent change in height due 

to refraction is found to be only about one-seventh part of the 

apparent (lej)ression due to curvature. Since these two correc¬ 

tions always have opposite signs and have a nearly fixed relation 

to each other, it is sufficient in prac¬ 

tice to calculate the correction to the 

difference in height due to both cur¬ 

vature and refraction, and to treat 

the combined correction as though it 

were due to curvature alone, since the 

curvature correction, being th(' larger, 

always determines which way the total 

correction shall be applied. 

In Fig. lo, A is the position of the 

observer, looking in a horizontal di¬ 

rection toward point B. BC is the amount by which B appears 

lower than it really is, since A and C are both at the same eleva¬ 

tion (sea-level). 

By geometry, BC : AB = AB : BD 

or BC = 
AB\ 
BD^ 

Since BC is small compared with BDj the percentage error is 
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small if we call AB — AC and BD = the diameter of the earth, 

whence 

BC 
(dist.)“ 

diameter 
(approx.). 

The light from B' (Fig. ii) follows the dotted curved path 

which is tangent to the sight line at A. The observer therefore 

sees B' at B, In order to find the relation 

of BB' to BC it is convenient to employ m, 
the coefficient of refraction, which is defined 

as the number by which the central angle 
AOB must be multiplied in order to obtain 

the angle BAB', therefore 

angle of refraction — BAB' 

= ni X AOB 

= m X 2 BAC. 

Fig. II. Since these angles are small, distances BB' 
and BC are nearly proportional to the angles themselves, hence 

BB' : BC = BAB' : BAC 

and BB' = 2 m X BC, 

The net correction (B'C = h) is the difference between the two, 

that is 

h = BC - BB' 

(dist.)^ (dist.)^ 
~ diam. ^ ^ diam. 

(dist.)2 
diam. 

(t — 2 m). 

The mean value of m is found to be about 0.070. Substituting 

this, and the value for the earth's diameter, and reducing h to 

feet, we have 
h (in feet) = (in miles) X 0.574, 

or K (in miles) = (in ft.) X 1.32, 



CALCULATION OF HFKiH'r OF OBSERVING JOWKR 21 

in which A is the distance in miles. Values of h and K for dis¬ 

tances up to 6o miles will be found in Table II. 

As an example of how this formula is applied, suppose it is de¬ 

sired to sight from A to B (Fig. 12), and that a hill C obstructs 

the line. At A draw a horizontal line AD and also a curve AE 

Fk;. IJ. 

parallel to sea-level, d he distance' from the tangent to the dotted 

A “ 
curve at C is -71-, which for 46 miles is 1411.0 ft. Similarly, (ham. “T / jj 

at B, - 4708.0 ft. But since the ray of light from B io A 

is curved, B is seen at B', or 659.2 ft. nearer to the tangent AD] 
similarly, C appears to be 197.7 nearer the tangent line. 

Therefore, in deciding the question of visibility we may compute 

the combined correction and say at once that the curve at C is 

1214.2 ft. below AD, and at B is 4048.8 ft.* below AD. Adding 

2300 ft. (the elevation of A) to each of these values of //, we ob¬ 

tain the (vertical) distances from the tangent line down to sea- 

level, namely 3514.2 ft. and 6348.8 ft. at C and B, respectively. 

Subtracting the elevations o!" C and B, we obtain 2464.2 ft. and 

* Since the table extends only to 60 miles, the value of h is first found for half 

the distance (42 mi.), and the result multiplied by 4. 
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4548.8 ft. as the distances of points C and B below the tangent 

line AD. The three points are now referred to a straight line 

(the tangent), and the question of visibility is determined at 

once by similar triangles. In Fig. 13 it will be .seen that the 

straight line from B' to A is ^ X 4548.8 = 2491.0 ft. below the 

tangent (opposite C’), and consecpiently is 26.8 ft. lower than C. 

Twcnty-.seven-foot towers would therefore barely make B' visible 

from A. In order to avoid the atmospheric disturbances near 

the ground at C the towers would really have to be carried up to a 

height of 40 ft. or even more. Of course the line of sight is not 

actually straight between A and B, as shown in the diagram; 

but this method of solving the ])roblem gi\X‘s the same rc^sult as 

though the curvature and refraction were dealt with separately 

and the sight lines all drawn curved. Notice that the two cor¬ 

rections arc never separated in practice, but are used as combined 

in the table like a single correction. 

If it were required to find the heights of towers necessary to 

make it possible to sight from A across a water surface to D, we 

Fig. 14. 

should proceed as follows: Suppose the elevation of A above the 

water surface is 20 ft. and that of D is 10 ft. From A we may 

draw a line tangent to the water-level at 2’ (Fig. 14). Knowing 

the height of 2I, we may find the distance AT from Table II. 

Subtracting this distance from ADj we find the distance TD. 
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From this latter distance we may compute the height of the tan¬ 

gent line above the surface at D, and, finally, knowing the height 

of we find the distance of D below the tangent line. Now 

that the points are referred to a straight line, we have at once 

the height of tower required on D alone. If the two towers are 

to be of equal height, we may estimate the required height 

closely and then verify the result by a second computation, add¬ 

ing the assumed height of the tower to the elevation oi A, 
If it is desired to keep the line of sight at least 10 ft. above the 

surface at every point in order to avoid errors due to excessive 

refraction, we may draw a jiarallel curve 10 ft. above the water 

surface and solve the problem as before. I'hc difference in radii 

of the two curves will not have an ajijirecialile effect on the com¬ 

puted values of h and K. 
13. Method of Marking Stations. 

The imiKirtance of permanently marking a trigonometric sta¬ 

tion and connecting it with other reference marks cannot be 

easily overestimated, since by this means we may avoid the costly 

work of reproducing triangulation points which have been lost. 

When the station is on ledge, the point is best marked by 

making a fairly deep drill hole and setting a copper bolt into it. 

A triangle is chiseled around the hole as an aid in identifying the 

point. Other drill and chisd marks should be made in the 

vicinity, and their distances and directions from the center mark 

determined; these will serve as an aid in recovering the position 

of the center mark in case it is lost. 

If the station is on gravel or other soft material, the station 

mark on the surface is usually a stone or concrete post, set deep 

enough to be unaffected by frost action and having a drill hole 

or other distinguishing mark on top. There is usually also a sub¬ 

surface mark, such as a second stone post, a bottle or a circular 

piece of earthenware, placed some distance below the surface 

mark, to preserve the location in case the latter is lost. The 

Coast and Geodetic Survey and the United States Geological 

Survey use cast bronze discs provided with a shaft ready to place 



F^g. i6. Reference Mark. {Coast and Geodetic Survey.) 



METHOD OF MARKING STATIONS 25 

in concrete, and liearing an inscription giving the name of the 

organization and other information. (See Figs. 15 and 16.) 

The following description and sketch are given to illustrate a 

description of a triangulation station. 

Fig. 17. Sketch of 'rriangulation Station. 

Triangulation Station ** Beacon Rock.” 

The station is in the town of_, _, on a hill on the 

property of John Smith situated on the north side of the road from Bourne to 

Canterbury. It is reached by a trail which leaves the road at a point about 

250 meters west of Smith’s house. It is alxiut 225 meters by trail to the 

station. The point is marked by a one-inch copper bolt set in a drill hole 

in the ledge and with a triangle chiseled around it, and by witness marks as 

shown in the accompanying sketch and table. The hill is somewhat wooded 

to the north and west, but there is a clear view in all other directions. 
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DISTANCES AND AZIMUTHS FROM CENTER 

Station. Azimuth. Dist. to drill hole. 

Holder. . 21° =50' 71.3 m. 

Bear Hill . . 121° IO' 41.0 m. 

Witness Mark. . ^^5° 30' 21.47 m. 
Dayton. . 259° 10' 101.2 m. 

Witness Mark. .283° 05' 78.34 m. 
Sheep Id. . 325°40' 

14. Signals, Tripods. 

In order that the exact position of the station may })e visible 

to the observer when measuring the angles, a signal of some sort 

is erected over the station. For comparatively short lines, less 

Fig. 18. Tripod Signal. 

than about lo miles, the tripod signal is often sufficient. (See 

Fig. 18.) It is not expensive to build, saves the cost of a man to 

attend signal lights (as is necessajry with heliotropes or electric 

lights), and permits setting the instrument over the station with- 
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out removing the signal. It usually consists of a mast of 4'' X 

spruce, with legs of about the same size. Three horizontal braces 

of smaller dimensions (2" X .s'O tie the mast to the legs, and 

three longer horizontal braces are nailed to the legs. If the 

signal is very large, additional sets of braces may be put on, to 

give greater stiffness. The size of the mast may be increased by 

nailing on one-inch boards, giving a mast 6" X 6''. 

The objection to such a signal for precise work is that there is 

almost always some error due to phase,that is, stronger 

illumination on one side than on the other. It is nearly always 

possible for the observer to see two sides of the scjuared pole, and 

one side is usually better illuminated than the other, so that the 

pointings with the theodolite are not directed toward the center 

of the pole, but toward the center of the part that is distinctly 

visible. This error may be avoided, if it is not necessary to 

point at the signal from more than one station at one time, by 

using for a target a I)oard facing exactly toward the observer and 

centered exactly over the station mark. Even the small error 

due to thickness of the board may ])e axoided by bevelling the 

edges. This must be shifted each time it is sighted on from a 

new station. 

16. Heliotropes. 

When sighting over longer liiies it is necessary to use heliotrope 

signals if observing by day, and electric lights if observing by 

night. The heliotrope is simply a j)lanc mirror with some device 

for pointing it so that reflected sunlight will reach the distant 

station. The two more common heliotropes arc (i) the one in 

which the light is directed through two circular rings of slightly 

different diameters (Fig. 19), and (2) that known as the Steinheil 

heliotrope (Fig. 20). 

The ring heliotrope consists essentially of two circular metal 

rings, of slightly different diameters, mounted on a frame, and a 

mirror mounted in line with the two rings in such a manner that 

it can be moved about two axes at right angles to each other. 

For convenience in observing distant stations these two rings and 
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the mirror are often mounted on the barrel of a telescope. The 

rings should be so mounted that the line between the centers of 

the rings may be adjusted parallel to the line of sight of the 

telescope. In using the heliotrope the axis of the rings is pointed 

by means of threads which mark the center of the openings, or by 

means of the telescope itself after the axis of rings and the line of 

sight of the telescope have been made parallel. Since the sun’s 

Fig. 19. Ring Heliotrope. 

apparent diameter is about 0° 32', the angle of the cone of rays 

reflected from the mirror is also 0° 32'. It is not necessary, 

therefore, to point the beam of light with great precision. If the 

central ray is nearly a quarter of a degree to one side of the 

station, there will still be some light visible to the observer at the 

distant station. On account of the rapidity of the sun’s motion 

it is necessary to reset the heliotrope mirror at intervals of one 

minute or less. 

The Steinheil heliotrope consists of a mirror with both faces 

ground plane and exactly parallel and so mounted that it can be 

moved about two axes at right angles to each other. One of 

these axes is coincident with that of a cylindrical tube which 

contains a small biconvex lens and a white surface (usually 

plaster of Paris) for reflecting light. This tube may be moved 

about two other axes at right angles to each other. A small 

circular portion of the glass in the center of the mirror is left 
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Fig. 21. Showing Optical Principle of the Steinhcil Heliotrope. 
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unsilverecl, so that light may pass through the glass plate down 

into the tube. 

In pointing the Steinheil heliotrope the cylindrical tube con¬ 

taining the lens must be pointed toward the sun, so that the light 

which passes through the hole in the mirror will pass through the 

lens, and, after reflection from the plaster surface, will again pass 

Fig. 22. Box Heliotrope. {Coast and Geodetic Survey,) 

through the lens to the back surface of the mirror, there to be 

partly reflected and j)artly transmitted through the glass. 

Keeping the tube in this position, the mirror itself must be so 

turned that the spot of light made visible by this last reflection 

will appear to cover the hill or station to which the light is to be 

sent. 

One form of heliotrope, in use by the Coast Survey, called a 
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box heliotrope, consists of a pair of rings with a mirror mounted 

behind them, and with sights above the rings for pointing. A 

telescope is sometimes mounted to one side of and parallel to 

the heliotrope. The various parts remain in position in the 

box when in use. (Tig. 22.) Some of these heliotropes have 

no telescope. 

The size of mirror used in any heliotrope must be regulated 

according to the length of line and the atmospheric conditions. 

Most heliotropes are provided with some arrangement for varying 

the size of the opening through which the light passes. If the 

exposed portion of the mirror subtends an angle of about o".2 

the amount of light will be sufficient for average conditions. 

Different atmospheric conditions will require different openings. 

This matter is of less imj)ortance on long lines than it is on short 

lines. 

All heliotropes are provided with a second mirror, usually 

larger than the first, called the back mirror; this is to be used 

whenever the angle between the sun and the station is too great 

to permit sending the ray by a single reilection. The back 

mirror is set so as to throw light onto the first mirror and the 

hcliotropie is then adjusted to the reflection of the sun as it 

appears in the back mirror. 

16. Lights for Triangulation. 

Since 1Q02 triangulation has been systematically carried on 

at night as well as during the day. Triangulation at night was 

found to be somewhat more economical than day observations, 

because there is almost no delay due to clouds, as is so frequently 

the case when using heliotropes. Night observations are also 

more accurate than day observations. The systematic twist in 

azimuth, which is apt to characterize observations made in 

sunlight, is absent in the results of night observations. 

Acetylene lamps were formerly used for night observations; 

these have now been superseded by incandescent electric lights. 

These new signal lamps have a large reflector and are lighted by 

ordinary dry cells. They are light in weight and easily portable. 
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Sometimes an ordinary bulb is used, but the best form consists 

of one having a special filament much reduced in size, so that the 

light virtually radiates from a point. Some signal lamps are of 

the automatic type, that is, a clock mechanism switches the 

light on each night at the hour set for beginning observations 

and switches it off again at the hour lixed for ending the work for 

Fig. 23. Signal Lamps for Triangulation. {Coast and Geodetic Survey.) 

the night. As these clocks will run for several days without 

winding, one person can attend to several stations; this results 

in a great saving over the older methods, which required the 

presence of a light keeper on each station during the entire 

period of observation. These electric lights are found to be 

entirely satisfactory on all ordinary triangulation. 

17. Observing Towers. 
Where a line is obstructed by hills or woods, or where the 

curvature of the earth is sufficient to make the station invisible, 

it becomes necessary to construct observing towers. If there 

is much heavy timber about the station, placing the instrument 

on the ground may necessitate so much cutting that it will be 

more economical to erect a tower than to cut the timber. 
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Observing towers are sometimes made of wood, sometimes of 

steel. The form of wooden tower which has been used by the 

United States Coast and Geodetic Survey for many years is very 

light and slender as compared with the older ones. This kind 

of tower (Fig. 24) admits of more rapid construction and can 

be built at a lower cost; it is sufficiently rigid to withstand all 

Fig. 24. Eighty-foot Wooden Tower. (Coast and Geodetic Survey.) 

ordinary storms. The manner of framing the tower is shown in 

Fig. 25. When the ties arc nailed on, the legs are sprung slightly 

into a bow, thus giving additional stiffne.ss to the structure. 

One side of the inner tripod, which is to support the instrument, 
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PLAN OF SCAFFOLD AND TRIPOD 

Fig. 25. Framing Plan of 6o-foot Wooden Tower. {Coast and Geodetic Survey.) 
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is first framed on the ground. This side and the third leg of the 

tripod are raised into position by a fall and tackle and a derrick, 

which may be a tree or a section of one of the legs of the outer 

scaffold. The derrick should be at least two-thirds the height 

Fig. 26. Forty-foot Wooden Tower. 

of the piece to be raised. After the tripod is raised and all braces 

nailed on, it is itself used as a derrick for hoisting the two opposite 

frames of the outer scaffold into position. The ties and braces 
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of the Other two sides are then nailed in place. It should be 

observed that the inner and outer structures are entirely separate, 

.so that the movement of the observer on the platform of the 

scaffold will not disturb the instrument. The legs of the tripod 

Fig. 27. Fifty-three foot Tower built of poles. 

and the scaffold are anchored by nailing them to foot pieces set 

underground. The outer tower is guyed with wire as a protec¬ 
tion against collapse in high winds. 
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This kind of signal saves lumber, transportation, and cost of 

construction; it has a small area exposed to the action of the 

wind; the short ties have the elTect of reducing the vibration due 

to wind, which is troublesome in large towers; the light keeper 

is placed above the observer (lo ft. or so) and can operate his 

lights without interfering with the observations. Another ad¬ 

vantage of these towers is that the amount of twisting due to the 

sun’s heating is found to be exceedingly small. (For further 

details consult Coast Survey Report for 1903, p. 829.) 

In 1927 the Coast Survey tried out a new tower designed by 

Mr, J. S. Bilby, in charge of signal building on that survey. 

It is built of steel and is similar in its construction to those used 

for windmills. Both the inner and the outer towers are tripods. 

The surface exposed to wind is very small, and the tower is 

found to be quite steady. As soon as observations are com¬ 

pleted at a station the tower may be taken down and shij)ped to 

another station, and thus used over and over. This tower can 

be erected or taken down in a sxarprisingly short time. The 

tower is built by placing each rod separately in position and 

bolting it, instead of hoisting completed frames as in case of 

the wooden tower. 

The United States Lake Survey uses a tower constructed 

entirely of gas pipe, which has proved to be more economical 

than timber. It is put together in sections and hoisted as it is 

built. The upper part of the structure is built first and is then 

hoisted from the ground by means of tackles; the next section 

is then added on, all the work being done from the ground. 

This kind of tower is easy to construct, and the materials port¬ 

able; the area exposed to wind is very small. 

18. Reconnoissance for Base-Line. 

With the invar tape apparatus, to be described in detail in 

Chapter II, base-lines can now be measured over much rougher 

ground than was formerly possible where bar apparatus had to 

be used. So far as accuracy goes it is possible to measure a 

base-line on any grade up to about 10 per cent. Gulleys and 
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El Paso Base 

Fig. 27b. Base Nets. 

Lampasas Base 
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ravines which are not wider than the length of the tape (50 

meters) can be spanned without special difficulty. The length 

of base in first-order triangulation should not be less than 4 

kilometers. In the network oi triangles connecting the base 

with the main triangles great care should be used to secure as 

good geometric conditions as possible; this net should not be 

longer than two ordinary figures in the triangulation. The 

strength should be tested in the same manner as for other tri¬ 

angulation. While it is desirable that the base be located on 

smooth ground, it is always better to place the base on rough 

ground in order to secure a well-shaped base net, rather than 

to adopt weak triangles in order to place the base on level ground. 

In the base net it is permissible to sight over additional lines in 

order to strengthen the figure. But this should not be carried 

so far as to make the adjustment difficult and expensive. 

Figure 27b shows the base nets on several different belts of 

triangulation. In some instances it has been found practicable 

to use the side of one of the main triangles as a base. For 

example, in the triangulation between Texas and California the 

Stanton base, which was one of the main lines, (8 miles long) 

was measured directly with the tape. (Fig. 2a.) 

PROBLEMS 

Problem i. What is the strength of the quadrilateral having all the angles equal 

to 45°? In case one station on the base is not occupied with the instrument, what 

is the strength? If one station not on the base is unoccupied, what is the strength? 

Fig. 28. 
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Problem 2. Compare the strength of the three figures given in Fig. 28. 
Problem 3. Compute Ri and Rz in Fig. 29; (i) when the interior station is 

occupied; (2) when the interior station is not occup)icd. 

Problem 4. Three hills A, B, and C are in a straight line. 
The distance from 2I to B is 10 miles and the distance from B to 
C is 15 miles. The elevations are A — 600 ft., B = 550 ft., and 
C — 650 ft. respectively. Comjmte the height of a tower to be 

built on C the top of which will just be visible from A. 
Problem 5. Four hills A, B, C, and D are in a straight line. 

The elevations are A — 810 ft., B = 775 ft., C = 1030 ft., D = 

1300 ft. respectively. The distances of B, C, and D from A are 
8 miles, 28 miles, and 38 miles. Find the height of towers on 
A and D to sight over B and C with a lo-ft. clearance. The two Fic. 29. 
towers arc to be of the same height. 

Problem 6. What angle is subtended by a si.x-inch mast at a distance of twelve 
miles? 

Problem 7. If a fourteen-inch mirror is used on a heliotrope at a distance of 150 
miles, what is the apparent angular diameter of the light? 

Problem 8. A heliotrope is sighted accurately on a station 20 miles away. How 
far would one have to go either to the right or to the left of that station before the 
light from the heliotrope would disappear? 



CHAPTER II 

BASE-LINES 

19. Bar Apparatus for Measuring Bases. 

In nearly all the earlier base-line measurements (up to about 

1885) the apparatus employed consisted of some arrangement of 

metal bars. Such apparatus was capable of yielding accurate 

results, but was slow and cumbersome to use, making the base¬ 

line a comparatively exj)ensive part of the survey. An account 

of the development of base-measuring apparatus will be found 

in Clarke’s Geodesy and in Jordan’s Vermessungskimde^ Vol. Ill; 

descriptions of numerous forms used in this country will be 

found in the annual reports of the superintendent of the Coast 

and Geodetic Survey. 

20. Steel Tapes. 

Experiments with the use of steel tapes for base-line measure¬ 

ments were made by Jaderin at Stockholm in 1885, by the 

Missouri River Commission in 1886, and by Woodward on the 

Coast and Geodetic Survey base at Holton, Indiana, in 1891. 

The use of steel tapes for this purpose was attended with such 

success that for twenty years they were very generally used, and 

by 1900 they had almost wholly superseded the bar apparatus 

in this country. 

The greatest practical difficulty encountered in the use of steel 

tapes for precise measurement is that of determining the true 

temperature of the steel when making the measurements in sun¬ 

light. The air temperature, as indicated by ordinary mercurial 

thermometers, is seldom the correct temperature for the tape, 

except during rainy weather or at night. For this reason it was 

found necessary to make all mea.surements of base-lines at night 

in order to secure the required accuracy. 
42 
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21. Invar Tapes. 

In 1906 the Coast and Geodetic Survey conducted a series 

of tests on the use of tapes made of the alloy called invar. This 

alloy was discovered by Dr. C. E. Guillaume, Director of the 

International Bureau of Weights and Measures at Sevres, near 

Fig. 30. Invar Tape on Reel. 

Paris. It contains about 35 per cent of nickel and 65 per cent 

of steel, and is given a special heat treatment; this produces 

a metal having a very low coefficient of expansion. The tem¬ 

perature of a tape during a measurement does not have to be 

determined so closely as when using steel. Invar is softer than 

steel and is more easily bent; it must be wound on a reel of not 
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less than i6 inches diameter to prevent changes in length due to 

bends, and it must be handled carefully at all times. 

Invar tapes were found to give results of the required accu¬ 

racy for base-lines even when used under the most unfavorable 

conditions as regards temperature. They have the advantages 

that the work may proceed in daylight and that it is unneces¬ 

sary to standardize the tapes in the held, as was done with steel 

tapes, but the comparison may be made at Washington at the 

beginning and at the end of the season. Invar tapes proved to 

be so satisfactory that they have been almost exclusively used 

for base measurement ever since their introduction. 

The coefficients of the earlier tapes were about o.ooo ooo 3 

to 0.000 000 4 per degree centigrade. Tai)es were afterward 

produced having coefficients near to zero, or even negative in 

sign. Unfortunately the metal in such tapes proved to be un¬ 

stable, and they are subject to changes in length which are 

much greater than the changes in the earlier tapes. Efforts are 

now being made to produce a stable alloy which still has a very 

low coefficient. 

22. Description of Apparatus. 

Invar tapes are about 53 meters long with the end graduations 

50 meters apart. Intermediate graduations such as every 10 

Fig. 31. Apparatus for Setting 

of Tape 

meters or at the 25 meter 

point, are added if desired. 

Some tapes have a decimeter 

at each end sub-divided into 

millimeters. In section the 

tape is about 6 mm. by 0.5 

mm., and weighs about 25 

grams per meter. While in use 

the tape is supported at three 

points, at five points, or full 

length, according to circum¬ 

stances. An apparatus for setting and holding the zero mark 

in position is shown in Fig. 31. The bar is set firmly into 
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the ground and takes the full tension. The ratchet wheel for 

quick changes in position and the slow-motion screw for the 

fine adjustment enable the operator to set the zero quickly and 

accurately against the mark. Such an apparatus is a trifle 

slower to use than direct setting but permits of great accuracy. 

The Coast and Geodetic Survey uses a simple bar, the point of 

which is set into the ground, the setting being made directly by 

moving the top of the bar. The slow motion adjustment is 

made by the man who attends to the rear contact; he takes hold 

of the tape and flexes it sufficiently to bring the zero to the mark. 

Fig. 33. Pulley for Testing Spring Balance. {Bureau of Standards.) 

This arrangement permits greater speed than the first and in the 

hands of trained men yields all the accuracy required. The ten¬ 

sion is applied by means of a spring balance the smallest reading of 

which is 50 grams. The ordinary working tension i s 15 kilograms. 

The stretching apparatus is similar to that shown in Fig. 32. 

The point of the steel bar is pressed into the ground and 
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the upper end moved right or left so as to bring the tap>e 

over the measuring stake. The balance can be raised or 

lowered, and clamped in any position by means of a set screw. 

The reading of the spring balance for a true tension of 15 kilo¬ 

grams is found by means of a standard 15-kilogram weight and a 

frictionless pulley. (Fig. 33.) The reading of the balance is 

subject to changes due to temperature; it should be tested at 

the beginning and at the end of each day’s work, and also when¬ 

ever the load has (accidentally) been released suddenly so as to 

jar the mechanism of the balance. The thermometers used with 

this apparatus are graduated to degrees or half degrees and are 

provided with metal spring clips for fastening them to the tape. 

It is a good plan to fasten the thermometers to the tape with a 

piece of adhesive tape, which prevents their changing position 

or becoming lost. The thermometers are placed one meter in¬ 

side the end graduations, exactly as they are when the tape is 

tested in the Comparator. It is important that the thermome¬ 

ters used in the field work should weigh the same and be in the 

same position as those used in the standardization. 

23. Marking the Terminal Points of the Base. 

The ends of the base-line are marked in the same manner as 

triangulation stations. On modern bases the end points are 

marked by bronze castings set into concrete or into rock. On 

the older bases they were often marked by copper bolts in drill 

holes in stone monuments. The points are tied in by reference 

measurements to aid in the recovery of the station if lost. There 

is often a sub-surface mark (see Art. 13) to aid in recovering 

the station if the surface mark is lost or disturbed. Interme¬ 

diate points on a base are sometimes marked in a similar manner. 

24. Preparation for the Measurement. 

Before the measuring* can begin the line must be run out and 

all obstructions removed. This may involve cutting timber, 

brush, or grass, and leveling off small irregularities in the ground. 

* For the methods of the U. S. Coast & Geodetic Survey see Special Publication 

No. 120, by Major C. V. Hodgson. 
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Where there are gullies crossing the line, or high obstructions 

which cannot be leveled off, it may be necessary to build meas¬ 

uring platforms for the observers. Next the measuring stakes, 

4 in. X 4 in., are set in position accurately on line and one tape 

length apart. This must be done accurately enough so that the 

end marks of the tape will come on lop of the stakes. An old 

(spliced) invar tape, not suitable for the final measurement. 

Fig. 33a. Setting the Measuring Stakes. 

may be used to advantage in this preliminary work. The 

stakes must be set firmly and if necessary braced laterally by 

1 in. X 4 in. pieces driven into the ground and nailed to the 

stakes. The stakes must be high enough so that the tape will 

not touch the ground or bushes at any point. The line is marked 

in pencil on top of the posts. Before the measurement is begun, 

strips of zinc or copper are tacked on top of the post so that one 

edge is exactly on line. All of this line work may be done with 

an ordinary engineer’s transit of good quality. The slope of 

each tape length as well as the actual elevation of each stake is 
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then determined by direct leveling on top of the stakes. The 

absolute elevation is needed for calculating the reduction to 

sea-level, but this need not be known with great precision. 

The difference in elevation, however, must be obtained very 

accurately for the purpose of calculating the grade correction, 

especially when the grade is steep, say near lo per cent. Some¬ 

times a clinometer is used for taking the slope when it is impor¬ 

tant to save time. It is placed either at the middle of the tape 

or at the middle of one of the loops. The stake for the middle 

support may be set in advance, like the end stakes, or it may be 

lined in by eye for both line and grade, when the measurement 

is made. If the wind is blowing hard it may be necessary to 

introduce two additional supports at the 12.5 meter and the 37.5 

meter marks. When the base-line is on a highway or when¬ 

ever the use of stakes would be impracticable, iron tripods with 

small measuring tables on top are used instead of the regular 

stakes. These tripods have two ball and socket joints for ad¬ 

justing the height and the i)osition and for leveling the top. 

If the measuring is done along a railway line the tape is laid on 

top of a rail. In this case it is advisable to place small rollers 

under the tape to avoid errors due to friction. Friction on the 

tops of measuring stakes is a fruitful source of error. 

From 3 to 5 kilometers of line can be prepared in a day by a 

party of 5 men under average conditions. 

26. Measuring the Base. 

A base may be conveniently measured by a party of six men, 

the front contact man, rear contact man, front stretcher man, 

rear stretcher man, middle man, and recorder. The actual 

measurement is begun by stretching the tape between the ter¬ 

minal point and the first measuring stake. The zero mark of the 

tape is set over the end mark of the base either by means of a 

plumb bob or a transit set off line on the perpendicular from the 

terminal point. The tape must be high enough to clear all 

obstructions, which may require setting a tripod over the end 

mark or building a small measuring table. Its height above the 
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end mark must be measured. The middle support may be lined 

in by eye with sufficient accuracy, both vertically and hori¬ 

zontally. Square pieces of white cardboard with one corner 

held at the tape will facilitate lining in the middle point. The 

rear stretcher man plants his staff in the ground and with the 

top of his staff behind his shoulder adjusts for height, line and 

grade, so that the zero mark will fall over the end mark. The 

forward stretcher man applies the tension gradually until 15 

kilograms is reached. Care should be taken not to injure the 

balance by jerking it or by releasing the tension too suddenly. 

When the zero is in position and the tension is correct the for¬ 

ward contact man marks with an awl on the coi)j)er strip the 

point opposite the 50-meter mark. The end of the graduation 

which was used in the comparison is indicated in the certificate; 

this same end should be used in the field measurements, and the 

zinc or copper strips must be placed accordingly. The tape 

should l)e on top of the stake with its edge in contact with the 

metal strip, so that their upper surfaces arc at the same level. 

Idle tape should not drag on top of the stake but should be a 

millimeter or so above it, so that the contact men have to place 

a finger on the tape to bring it down in contact with the stake. 

The thermometers are read as soon as the mark at the 50-meter 

point is made, and the two temperatures and the distance are 

recorded. The front contact man reads the front thermometer 

and the rear contact man reads the rear thermometer. If the 

readings of tape and temperature are satisfactory, the tape is 

unhooked from the spring balance and carried forward by the 

front contact man, the middle man, and the rear stretcher man. 

It should be held high above the ground so that it will not drag 

and so that no kinks or twists will occur. Care should be taken 

not to injure the thermometers. Upon arrival at the next stake 

the front stretcher man checks by eye the alignment and grade 

of stakes to see that none has been accidentally moved. The 

tape is placed in position and the same routine is repeated. 

The rear contact man attends to setting the zero line on the 
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scratch already made, using an ordinary reading lens for this 

purpose. The front contact man is usually in the best i)osition 

to judge when all conditions arc satisfactory for making the 

readings, and he usually acts as chief of party. 

Any short distance, at the end of a base, for cxami)le, may be 

measured with a section of the invar tape or with a metric steel 

tape. Whenever the spacing of the stakes is such that the 

SO-meter mark will not fall on top of the stake a “set-up"’ or 

a “set-back” may be made on the preceding stake. This con¬ 

sists in measuring forward or backward a few centimeters and 

making a new scratch from which to measure. Careful record 

should be made so that no mistake will occur in computing the 

final length. The metal strips are usually jireserved as a part 

of the record. 

By the process just described a base-line can be measured 

at the rate of about 2 kilometers an hour by a party of six men. 

It has been found that when measurements are made in a 

rain or in a heavy fog the weight of the water which adheres to 

the tape is sufficient to introduce more error than can be toler¬ 

ated in the best grade of base measurement. Therefore no 

measurements of a first-order base should be made when it is 

evident that an error will enter from this source. 

26. Accuracy Required. 

The base-line is divided into sections about i kilometer in 

length; it is also divided into 3 divisions, the end of a division 

coinciding with the end of a .section. At least 3 different tapes 

are used in the measurement of the same base, and these are 

used in such a way as to give an intercomparison of the tapes 

and detect any possible change of length. A different pairing 

of tapes is used on each section of the three divisions. Each 

tape will be run forward on one division and backward on the 

other. Only two measurements of any section are made unless 
the discrepancy in millimeters between the two measurements 

exceeds 10 ^K {K being the length of the section in kilometers), 

in which case additional measurements are made until two meas- 
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urements do agree within this limit. The two complete meas¬ 

urements of the base should give an accuracy for the result 

represented by a probable error not greater than one in one 

million. The actual errors due to poor alignment, marking the 

tape lengths, and errors due to grade, tension, and tempera¬ 

ture should not individually exceed one part in half a million. 

27. Computation of Probable Error of Base. 

In the Report of the Superintendent of the U. S. Coast and 

Geodetic Survey for 1910 there is given a method for calculating 

the probable error (p.e.) of a base. Three causes of error were 

considered: 1. the uncertainty in the lengths of the tape; 

2. the error in the temperature coefficient, and 3. the errors of 

measurement. In computing the p.e. of each section the error 

in length was taken as the number of lengths in the section («) 

times I + ^’2^ where Ci and C2 are the errors of the two tapes 

used in the measurement. The error due to temperature co¬ 

efficient was taken as n (/o — t) X i in which n is the 

number of taj)e lengths, /o the standardization temperature, t 

the observed temperature, and ci and the p.e.^s of the coeffi¬ 

cients of the two tapes. The p.e. of a section due to errors of 

f 2 
measurement is fo= •b74< \ ~t7^,-^ ki which v is a residual, 

' ^ ▼ n in — 1) ’ 

and n' is the number of measures of a section. I'he final p.e. 

of a section is the square root of the sum of the sc|uares of these 

three errors. The p.e. of the entire base is the scjuare root of 

the sum of the squares of the probable errors of the sections. 

It is often considered that the errors of standardization and 

determination of coefficient are included in or are masked by 

discrepancies in the measured lengths of the sections. The 

probable error of each section is therefore computed by the 

equation 
r~~^2 

p.e. - 0.6745 Vjijrr-;) 

where v is a residual and 7t the number of measures of this 

section. Where a section is measured but twice the p.e. will 
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be 0.6745 times one-half the difference between the two measured 
lengths. The p.e. of the whole base is the square root of the 

sum of the squares of the j)robable errors of the sections. 

28. Corrections to Base-Line Measurements. — Correction 
for Grade. 

Where the slope is determined by direct leveling, the most 
convenient formula for computing the horizontal distance is one 
involving the difference in elevation of the ends of the tape. 
In Fig. 34, let h be the difference in elevation of the end points 

B 

Fig. 34. 

A and B, and let 
distance. 'Then 

C'orr. for grade 

/ be the length and d Ine re(iuir(‘d horizontal 

lP --t i\/1 - 

But 

Therefore 

/ _ h-y. _ ^ _ T. _ 
1-) ' " 2/- 8/^ 

, , ( 
^ - ly ■ 2/2 “ 8/^ 

If the slope has been found in terms of the vertical angle a, the 

correction may be computed by the expression 

Q = 2 / sin^ = I vers a. [2] 

In good base-line work the errors in length due to errors in 
determining the grade should never exceed one part in half a 

million. 
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29. Correction for Alignment. 

The errors in aligning a base-line can easily be kept so small 

as to be negligible. If any point is found, however, to be out of 

line by an amount sufficient to affect the length, the correction 

may be computed by formula li|. 

30. Correction for Temperature. 

The temperature correction may be computed if we know the 

coefficient of expansion, the actual temjx'rature of the tape and 

the standard temperature, and the measured length of line. If 

k is the coefficient, / the observed temperature, /o the standard 

tern]:)eratlire, and L the measured length, then 

Temj)t'rature correction = +kL{l — Q. [4] 

The temperature correction is often expressed as a term in the 

tape equation, as shown in the following article. 

3Ca. Correction for Absolute Length. 

The length of the tape is often expressed in the form of an 

ecjuation, such as 

- 50"^ + (12.382'"'^* zh o.oi(rv 

-f (0.0178"'"* dz o.ooo;"*"*) (/ - 25^ .8 C.), [5J 

meaning that tape number 516 is 12.^82"*"' more than 50"* long 

at a tc’mperature of 25^.8 C., ajid that 0.016"'"' is the uncertainty 

of this determination. The quantity 0.0178 is the change in 

length of the 50"* tape for a change in temperature of 1°, and 0.0007 

is the uncertainty in this number. (The temperature coefficient 

for this tape is 0.000,000,356.) 

Ac'cording to the present practice, tapes are standardized at 

the Bureau of Standards, Washington, under exactly the same 

conditions, in regard to tension, temperature determination, and 

manner of support, as those which are to govern the field meas¬ 

urements. By this means ah uncertainty in the absolute length 

and in the tension correction is kept within narrow limits. 

31. Reduction of Base to Sea-Level. 

In order that all triangulation lines may be referred to the 
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same surface it is customary to employ the length of the line at 
sea-level between the verticals through the stations. 

In Fig. 35 let B represent the measured base at elevation h 

above sca-lcvel (supposed spherical), and b the length of base 
reduced to sea-level, being the radius of curvature of the 

Each section is ordinarily reduced .separately, unless the whole 
base is at nearly the same elevation. The elevation used is 
the means of the elevations of the ends of the sections. 

Qucblion. Is it necessary to reduce each triangulation line separately to sea- 

level? 

32. Correction for Sag. 
Between any two consecutive points of support the ta})e hangs 

in a curve known as the catenary, its form depending upon the 
weight of the tape, the tension applied, and the distance Ixdween 

the points of support. 
In Fig. 36 let I be the horizontal distance between the supports, 

the two being supposed at the same level; let n be the number of 

such spans in the tape-length, / the tension, and w the weight 

of a piece of tape of unit length. Also let v equal the (vertical) 

* See formula at foot of page 40S. 
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sag of the middle point of the tape below the points of support. 

Since the curve is really quite flat under the tension actually 

employed in field-work, the length of the catenary will be sen¬ 

sibly equal to that of a parabola whose axis is vertical and which 

H-1->1 
Fig. 36. 

passes through the points A, B, and C. The equation of this 

parabola is = “ • y, and the length of curve, found by the 

usual method of the calculus, is 2 .s' == / -f —j + . . . * The 

difference, 2 5 -- /, between the length of curve AB and the 

chord* AB is approximately 

2 s — I 
8 v'^ 

X"/ 3 I 
[a] 

If we consider the forces acting on the tape at the j)oint C, and 

take moments about the point of sujiport A^ we have 

Therefore 

wl 

2 

I 
X = V • t. 

4 

V = 
wB 

[b] 

Substituting in fa] the value of v found in [ft], we find that the 

shortening of this section of tape due to sag is 

2 
8 /wB\' 

3 7 \ 8 / ^ 

For n sections, we have nl = L, whence 

L (wl\^ 
Correction for sag = C,. = —I ~r ) - 

24V// [7] 

* If we assume that the curve is circular the same length is obtained if we drop 

terms of the 5th power in the series. 
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33. Tension. 

The modulus of elasticity of the tape due to the tension applied 
equals the stress divided by the strain. If a = the elongation 

and L the length, and if I equals the tension and 5 the area of the 
cross-section, then the modulus of elasticity E is given by 

_ y 
Sa 

The elongation is 

where G is the correction for the increase in length due to tension. 

Evidently the difference in length due to a change from tension 
L , 

k to tension / is c/ = {t — /„). 

The value of E must be found by trial applying known ten¬ 
sions and observing a directly. 

To allow for slight variations in tension, such as those due to 

the failure of the spring balance to give the desired reading the 
instant the scale of the tape is read, the correction may be de¬ 

rived as follows: 

Since the effective length of the tape depends both upon the 
elongation due to tension and upon the shortening due to sag, 

and since these both involve /, the variation may be found by 

differentiating the expression 

U Cs 

LtL 

^ + SE 24 

regarding 

gives 

as the independent variable. The differentiation 

[9] 
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This is the correction due to small variations in This quantity 

may be found more satisfactorily by actual tests, varying t by 

known amounts and observing the change in length directly. 

It was once the practice to compare the tape with the standard 

when it was supported its entire length, and to calculate the sag 

and tension corrections to obtain the effective length when sup¬ 

ported at a few points. The present practice of comparing 

the tape under the same conditions that are to exist in the 

field-work eliminates all uncertainty in these computed cor¬ 

rections. 

33a. Change in Weight or Position of Thermometers. 

If the thermometers used arc of different weight from those 

used in the standardization, or if placed in a different position 

on the tape it is possible to compute the effect on the length by 

means of a formula given by Dr. W. I). Lambert of the Coast 

and Geodetic Survey. If s is the length of the curve (catenary) 

with the thermometer attached, .^o is the length without the 

thermometer, a is half the distance between supports, h is the 

distance from the center of the curve to the thermometer, 

c = T ^ m, where T is the tension and m the weight of tape per 

unit of length, and I = p m where p is the weight of the 

thermometer, then 

>^0 

This gives the change in length for a single loop. If the tape 

is supported in the middle the result should be doubled. If we 

assume a 50-meter tape weighing 25 grams per meter, supported 

at the middle, having two thermometers each weighing 25 

grams attached one meter from the ends, and under a tension of 

15 kilograms, then s — = 0.000 0347 meter. If we change 

p to 45 grams then s — So = 0.000 0643 meter. Therefore a 

change in the weight of the thermometers from 25 to 45 grams 

changes the length of the tape 0.000 0592 meter, or more than 

I part in i million. 



STANDARDIZATION OF TAPE 59 

34. Standardization of Tape. 

The standard of length for the United States is the meter 

deposited with the International Bureau of Weights and Meas¬ 

ures at Scwrcs, near Paris. This is a platinum-iridium bar with 

three fine lines at each end. The distance between the middle 

lines of the two groups, when the bar is at temperature o° C., 

and is supported at the neutral points 28.5 cm. each side of the 

center, is one meter by definition. Two copies of this bar (called 

prototype meters) Numbers 27 and 21 are in possession of the 

United States and are dejiosiled with the U. S. Bureau of Stand¬ 

ards at Washington.* 

These were received from the International Bureau of Weights 

and Measures in i88q. These meters are comj)osed of an alloy 

of 90 per cent platinum and 10 per cent iridium, and are X- 

shaped in cross-section. 

Bar M 27 is the standard of length in the United States. 

Its length equation is 

No. 27 = I w — 1.6 M + 8*^57 )u/ + 0.00100 Ai/- 

where i micron (//) = 0.000,001 meter and t is the temperature 

in centigrade degrees of the international hydrogen thermometer. 

This bar was compared with the Paris meter in 1904 and again 

in 1922. No appreciable change was detected.f 

The probable error of the comparison of the national proto¬ 

types with the international meter was found to be zh 0.04 /x- 

It is estimated that the uncertainty in the lengths at tempera¬ 

tures between 20^^ and 25° lies between ±0.1 /x and ±0.2 /x. 

Bar M 27 is preserved in a fireproof vault at the Bureau of 

Standards and is used only for comparison with No. 21 and other 

platinum-iridium bars. No. 21 is used for comparison with 

secondary standards, and for testing tapes for geodetic work. 

When a 50-meter invar tape is to be tested, the first step is to 

* For details see Circular No. 332, Bureau of Standards, 1927. 

t See “Creation du Bureau International de Poids et Mesures.” — by Ch.- Ed. 

Guillaume, Director of the Bureau. Paris, 1927. 
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test the 50-meter base in the tape testing tunnel. This distance 

is marked by means of two spheres set into concrete posts so 

that the tops of the spheres are at the level of the floor. The 

measurement from the end sphere to the first microscope (also 

on a concrete post) is made by the use of what is known as 

the ‘‘cut-off cylinder.'’ (Fig. 37.) This consists of a vertical 

tube having at the lower end a conical hole, the axis of which 

coincides with the axis of the cylinder. When the cylinder is 

placed over the sphere the center of the sphere is always ex¬ 

actly in the axis of the cylinder. A spirit level is provided for 

making the axis of the cylinder truly vertical. On top of the 

cylinder is a millimeter scale on which readings can be taken 

with the microscope. 

At every 5 meters* in the tunnel is a post for supporting 

a microscope. Between the 8th and 9th posts are additional 

posts set every meter. The 50-meter distance is tested by 

means of a steel 5-meter bar known as the Woodward bar, or 

“B 17.” (Fig. 38.) This steel bar is compared with No. 21 

at intervals by means of the microscopes set i meter apart. 

When in use B i7t is packed in melting ice in a Y-shaped trough 

to control the temperature. 

The complete test of the tape consists in measuring first a 

5-meter distance between microscopes by means of M 21, then 

a 50-meter distance between the spheres by means of B 17, and 

finally a comparison of the tape with the 50-meter distance, the 

tape being supported in the same manner and under the same 

tension that it is in the field measurements. 

The error in laying off* the 5-meter distance has been estimated 

as i.i or about i in 5 000000, and that of laying off the 

50-meter distance (in terms of 10 times the length of B 17) as 

0.015 mm. The error of comparing the tape with the base is 

* See Circular No. 328, Bureau of Standards, 1927, by Dr. Lewis V. Judson^ 

associate physicist. 

t See Appendix 8, U. S. Coast and Geodetic Survey Report for 1892, p. 339. 

On p. 480 of the same report will be found an article on the theory of tapes. 
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Fig. 37. The Cut-off Cylinder. {Bureau of Standards.) 
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Fig. 38. Tape Testing Tunnel at Bureau of Standards. (Showing 5-meter steel 

bar in Y-shaped Trough.) 
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LVJ:JPM 
11-I Department of Commerce 

bureau of 
CERTIFICATE 

Bureau File Reference: 
FOR 11-I, Test No. Twl 51915 

50-METER INVAR TAPE 
B. S. No. 4111 

Maker: No. S.I.P. 215 

SUBMITTED BY 

Mas.'i. fnsiflute of Technology., 

Cambridge, Mass. 

THIS CERTIFIES that the above-described tape has been compared with 

the standards of the United States and found to have the length given below 

when under a horizontal tension of 16 kilograms and when supported at the 

0, 26y and 50 meter points: 

(0 to 60 meters) = 49 99639 meters, at 21.4 

When supported at the 0, 12.6, 26.0, 37.6, and 60 meter points: 

(0 to 60 meters) = 49.9990H meters, at 21.4 "C. 

When supported on a horizontal surface, throughout its entire length: {value 

computed from observations taken on the tape when supported at 3 and at 5 points). 

(0 to 60 meters) == 50.00004 meters, at 21.4 

For the first and second of the above conditions thermometers weighing 45 

grams each were attached at the points 1 meter inside the terminal marks 

during the test. 

The above comparisons were made on the section of the lines near the 

end on the edge of the tape farthest away from the observer when the zero is at his 

left. 
The above values are correct within 1 part in 300,000; the probable error 

does not exceed 1 part in 1,000,000. 

The thermal expansion coefficient of this tape was found to be (C — 21.4 ) 

{0.017 ww. db 0.001 nun.) per 50 meters. 

The weight per meter of this tape was found to be 24.7 grams. 

Test completed, February ii, 1928 
L. J. Briggs, Acting Director 

George K. Burgess, Director. 
Washington, D. C. 

Form 5S4 
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from I in lo ooo c50o to i in 5 000 000. It is believed that the 

absolute error of the determination of the tape length does not 

exceed one part in one million. The certificates furnished with 

the tapes state that the probable error of the length given does 

not exceed one part in 1,500,000 and that the absolute error does 

not exceed i in 500,000. The principal source of error in the 

determination of the tape length is apparently the uncertainty 

in the length of the i-meter bar itself, although this error is so 

small that it cannot affect the tape standardizations appreciably. 

In other words, the least accurate determination in the stand¬ 

ardization process is more accurate than is ever required for 

geodetic work. 

PROBLEMS 

Problem i. Derive the equation of the parabola mentioned in Art. 32. Com¬ 

pute the length of the parabola between the points of support A and B. 

Problem 2. The difference in elevation of the ends of a 50-meter tape is 7.22 

ft., obtained by leveling. What is the correction (in meters) to reduce the slope 

distance to horizontal distance? 

Problem 3. The length of a base-line is 17486"*.5800, measured at an (average) 

elevation of 34-16 meters above sea-level. The latitude of the middle point is 

38® 36'. The azimuth of the base is 16° 54'. What is the length of the base re¬ 

duced to sea-level? 



CHAPTER III 

FIELD-WORK OF TRIANGULATION — MEASURP:- 

MENT OF HORIZONTAL ANGLES 

35. Instruments Used in measuring Horizontal Angles. 

Instruments intended for triangulation work are of two 

kinds: the direction instrument, first designed in England by 
Ramsden in 1787; and the repeating instrument, first used in 

France about 1790. The former is the one chiefly used at the 
present time for triangulation of the highest order; the repeat¬ 

ing instrument, on account of its comparative lightness and 

simplicity, is much used on triangulation of less importance. 
Triangulation instruments are larger than ordinary surveying 

transits, the diameter of the horizontal circles varying from 30 

inches in very old instruments to about 8 inches in modern 
instruments. It has been found by experience that small 

circles can be graduated so accurately that nothing is gained by 

using very large circles, the accuracy of results depending more 
upon the accuracy of the dividing engine than upon the size of 

the graduated circle itself. Furthermore, the smaller circles 

are less affected by flexure than the larger circles and are much 
easier to transport. All triangulation instruments are designed 

with three leveling screws; this produces a much more stable 

instrument than the four-screw transit. The instrument is 

usually mounted on a solid support, such as a concrete pier, a 

wooden stand, or on the tripod of an observing tower. Such 
instruments are not used on ordinary tripods for precise work. 

36. The Repeating Instrument. 
The repeating instrument has an upper and a lower plate 

arranged exactly as in the surveyor’s transit, and the gradu¬ 

ated circle is read by two or more verniers graduated to 10" 
65 
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or to 5". Verniers reading liner than 5" are not practicable, 

and dependence must be placed upon the repetition principle 

Fig. .39. Dividing Engine for Graduating Circles. (C. L. Berger b* Sons.) 

for securing greater precision. Figure 40 shows a repeating 

instrument having an 8-inch circle which is read by two opposite 

verniers to 10 seconds. The telescope of this instrument has 

an aperture of inches and a magnifying power of 30. Since 

an instrument of this kind is likely to be used in sighting on pole 

signals, the cross-hairs are usually arranged in the form of an 
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X, the pole being made to bisect the angle between the hairs 

when the pointing is made. Single vertical hairs would not be 

practicable except on very short lines and wide signals, as the 

width of the ordinary hair is so great that it would completely 

obscure the pole on long distances. 

37. The Direction Instrument. 

The direction instrument has but one horizontal circle, read 

by two or more micrometer microscopes instead of verniers. 

The circle can be turned freely about the vertical axis so as to 

make any desired setting in the microscopes. In some instru¬ 

ments the circle is clamped in position, while in others it is held 

by friction alone. The peculiarity of the direction instrument 

is that the motion of the alidade, that is, the upper part carry¬ 

ing the telescope and the microscopes, is entirely independent 

of the motion of the circle itself; the latter can be shifted while 

the upper part remains clamped. This would be im])ossible, of 

course, with an ordinary transit. It is evident that a repeater 

could be used as a direction instrument, but that a direction 

instrument could not be used for measurinf]^ angles by the repe¬ 

tition method. 

The circle of the direction instrument is usually graduated 

into 5' spaces. The direction of the line of sight of the telescope, 

referred to the direction of the graduation, is read by first 

noting the degrees and 5' spaces in the microscope chosen as the 

index microscope, and then accurately measuring with each 

microscope the fractional part of the 5' space which lies between 

the zero point of that microscope and the last preceding gradua¬ 

tion. The micrometers can usually be read to seconds directly, 

and to tenths of seconds by estimation. The mean of the re¬ 

sults from all the microscopes added to the reading of the de¬ 

grees and 5' spaces is taken as the direction of the line of sight 

of the telescope. 

The telescope of the 12-inch Coast Survey theodolite (Fig. 41) 

has an aperture of 2.4 inches, a focal length of 29 inches, and 

magnifying powers of 30, 45 and 60. The circle is graduated to 
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Fig. 41. Twelve-inch Theodolite. {Coast and Geodetic Survey.) 
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5' and is read to single seconds by means of three microscopes. 

A small index microscope is provided for reading the degrees 

and 5' spaces. A camers-hair brush (inside the cover plate) 

Fig. 42. Hildebrand Theodolite. 

sweeps over the graduations. The base is made very heavy, 

and the bearing surfaces of the centers are glass hard. The 

centers on this instrument are very long. The upper parts of 

the instrument are made chiefly of aluminum, in order to dimin- 
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ish the weight bearing upon the centers and thus reduce wear. 

This design produces an instrument of exceptional stability. 

In some of these instruments the micrometers are provided with 

two sets of parallel hairs set about 4' apart. When a setting is 

made on a graduation to the left the left-hand pair is used; 

when setting on the next graduation to the right the right-hand 

pair is used. (See Art. 39.) This saves turning the screw 

through five whole revolutions each time the microscope is read. 

In some instruments the microscopes are vertical and are 

read by means of angle jmsms. This makes the whole instru¬ 

ment more compact. 

The Hildebrand theodolite (Fig. 42) has a circle about 21 

centimeters in diameter and is read by two microscopes which 

read directly to single seconds. The focal length is 380 mm. 

and the magnifying powers are 42 and 56. The microscopes 

are marked A and B; the A microscope is ordinarily used as the 

index microscope, i.e., to read the whole degrees and the 5' 

divisions. 

Direction instruments are used chiefly on long lines and in 

connection with heliotropes or electric lights. The cross-hairs 

usually consist of two vertical hairs, set so as to subtend an angle 

of about 25" to 40", and two horizontal hairs, set much farther 

apart and used merely to limit the portion of the vertical hairs 

to be used in pointing. 

In order to steady the theodolite on its support it is sometimes 

held in position by means of cords or wires which pass over the 

base near the leveling screws and which are attached to heavy 

spiral springs. This is equivalent to hanging heavy weights 

on the base. 

38. The Micrometer Microscope. 

The construction of the micrometer is shown in Fig. 43. The 

graduated drum attached to the head of the screw is divided 

into 60 divisions corresponding to seconds of anglt. As the 

screw head is turned the slide carrying the two parallel hairs in 

the field of view is moved in a direction perpendicular to the 
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Fig. 42a. First-order I'heodolitc. {Coast and Geodetic Survey.) 
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lines of graduation. The hairs are spaced just far enough apart 

so that a graduation does not quite fill this space but leaves a 

small white strip on each side of the line when it is centered 

accurately between the hairs. The pitch of the screw and the 

focal length of the microscoj)e are so related that one turn of 

the screw corresponds to one minute. (In the Hildebrand 

theodolite it is two minutes.) Thus 5 whole turns (or 2j turns) 

will carry the hairs from one graduation to the next. The 

number of minutes or turns passed over may be counted on a 

notched (comb) scale placed in the upper portion of the field of 

view of the microscope. The fraction of a 5' space which is to 

be measured is that lying between the zero point of the micro¬ 

scope (indicated by a deep notch in the comb scale and a zero 

reading of the drum) and the graduated line lying to the ap¬ 

parent left of the zero point. So if we start with the microme¬ 

ter at zero and turn until the preceding graduation is between 

the hairs the reading of the comb scale and drum will give this 

angle directly. It is not necessary that the hairs should actually 

be set at the zero position before passing to the graduated line; 

the same reading would be obtained regardless of the position 

of the hairs before making the setting. It may be easier, how¬ 

ever, to understand the operation if it is described as though the 

hairs really started from the zero position. It should be re- 
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membered that the microscope inverts the image of the gradu¬ 

ations, so that the readings appear to increase from left to right 

in the field of view of the microscope. The readings on the 

Fig. 44. Showing Micrometer Lines set (a) at zero, and (b) at the 
forward reading 2' lo". 

screw head increase as the screw is turned left-handed, and the 

hairs move back toward the graduation last passed over. 

To measure the space between the zero of the microscope and 

the last line passed over, it is only nece>sary to turn the screw 

until the graduation in question bisects the space between the 

hairs, and then to read the comb 

scale and the drum. This read¬ 

ing is to be added to the num¬ 

ber of the graduation to obtain the 

direction as shown by this micro¬ 

scope. For example, if the screw 

is turned two revolutions and lo 

divisions in order to center the 

47° 05' line between the hairs (Fig. 

44), the reading of the microscope 

is 47''o5'+ 2'to" = 47''o7'10". 
Since this gives a direct measure of the direction of the line of 

sight it is called the ‘'forward'’ reading. 
It should be noticed that since the screw is supposed to make 

a whole number of turns in passing from one line to the next, 

the reading on the drum should be exactly the same if the hairs 

Fig. 45. Showing Micrometer 

Lines set at back reading 2' 10". 
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were set on the lo' line. If the micrometer screw shown in 

Fig. 44 is turned 5 times in the right-handed direction, the 

micrometer hairs will be in the'position shown in Fig. 45. This 

is called the “back reading.” 

39. The Run of the Micrometer. 

If the microscope is perfectly adjusted with respect to the 

graduated circle, and if the latter is i)errectly plane, then 5 

whole turns of the screw should carry the hairs from one line to 

the next and the reading of the screw should be the same on all 

lines. Since this condition is rarely fulfilled, there is ordinarily 

a small difference between the forward and the back readings, 

called the error of run of the micrometer. 

The forward reading F is taken when the threads are set on 

the graduation last passed over (25' in Fig. 46). The back 

reading B is taken when the threads are set on the next following 

graduation, (30' in Fig. 47.) Suppose the forward reading to 

be 1' 26".2 (on the 201^ 25' line); the direction as obtained from 

the forward reading would then be 201° 26' 26".2. If the screw 

is now turned to the right so as to carry the hairs to the position 

shown in Fig. 47, the readings on the screw drum decrease. 

Suppose that the back reading is i' 24". 2. This means that the 

screw has actually made more than 5 turns, that is, it has passed 

the reading 26".2 and gone 2 divisions farther. The direction 

as derived from the back reading would be 201° 26' 24".2. The 



THE RUN OF THE MICROMETER 77 

true reading, as obtained from a perfectly adjusted microscope, 
is somewhere between these two results. 

Without assuming anything with regard to the actual value 
of j turn of the micrometer’screw or j division of the drum, 

the true value may be computed by dividing the angular space 

between divisions (assuming the graduation to be perfect) 
by the number of divisions recorded in passing from one gradu¬ 

ation to the next. If D is the true angular value of one division, 

then 
^ _^ 

300 -]r F — B 300 -f- r 

where r is the run of the micrometer in seconds divisions, as 
indicated by the difference between the forward and back 

readings; it is + if F is greater than B, d'he true reading is 

found by multiplying the number of divisions in F by the true 

angular value of one division, that is, 
ff 

^00 
True rea^iing = F X —,— • 

300 + r 

For the set of readings shown in Figs. 46 and 47 the true reading 

is 

86.2 X —= 8=;".620 
300 + 2 

-j'25".629 

If it is desired to compute a correclion to the forward reading 

F, we have 

f ^ F ( ' 1 
\3oo + r) 

1 + — 
300/ 

r 
F- 

300 
(a) 

or, correction to F = —F 
300 
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In the preceding example this gives 
2 

True reading == 86.2 — 86.2 X = 86.2 — o."575 

= 85".625 + 

= i'25".625 + 

Another formula which is sometimes used is derived as follows: 

if the back reading is also corrected for run the result is 

The mean of (a) and (b) is 

F + B r F + B ^ r 
__ _j_ 

222 300 

F B , 
If-= m, then the correction to m, the mean, is 

2 

r r 
— m- 

2 300 

In the example on page 77 this gives 

1.0 — 8^.2 X — 
300 

i.o - .568 = .432. 

Corrected reading = 1' 25".2 + .432 = i' 25".632. 

It should be observed that when m is less than 150" (the 

middle of the 5' space) the correction is positive (for a positive 

value of r); when m is more than 150" the correction is negative. 

For any two readings which are equidistant from the middle 

point of the space the two corrections cancel each other. By a 

proper distribution of the settings in a complete set of observa¬ 

tions it is possible to make the net correction for this microscope 

equal to zero. This makes the mean for all the microscopes 
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nearly zero and makes it unnecessary to calculate corrections 

to each microscope reading. This is done in the program of 

observations given on page 91. 

The discrepancy between the two readings (forward and back) 

is not only due to run, but also in part to errors in setting the 

hairs and in reading the drum scale. Sometimes the readings 

are treated as though these latter errors absorbed-the effect of 

run, and the mean of F and B is taken as the final reading, the 

effect of run being disregarded entirely. 

40. Design of Centers. 

The design of the centers of a theodolite has much to do with 

the accuracy of the final results. In most instruments the 

Fig. 48. Center haV- luG. 49. Center having Two 

ing Single Conical Bear- Conical Bearings, 

ing. 

centers have a conical bearing like that shown in Fig. 48, with 

a small thrust bearing at the bottom. With such an instrument, 

provision must be made for raising or lowering the center to 

allow for extreme temperature changes; otherwise, the center 

will sometimes be too tight or too loose. A center designed in 

the Instrument Division of the U. S. Coast & Geodetic Survey’*' 

* Designed by Mr. D. L. Parkhurst. See Jour. Franklin Inst.y Vol. 206, No. 5. 

Nov., 1928, p. 623. 
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has a two-conc bearing, the apexes being coincident. (Fig. 49.) 

This bearing tends to wear itself in. If there is more friction 

on the upper cone than on the lower one, it tends to wear until 

the pressure on the lower cone is increased. If the upper bearing 

is too loose, the lower cone wears until the center lowers and 

increases the pressure on the upper bearing. Other features 

of this theodolite are: 

1. A nine-inch horizontal circle (not beveled) read by vertical 

microscopes, j)rovided with reflecting (angle) prisms for con¬ 

venience in reading. This makes the instrument more compact. 

2. An internal focusing system. A negative lens between the 

objective and the ocular can be moved so as to bring the image 

into the plane of the cros.s-hairs. Therefore, the telescope is 

short and is tight and dustproof. 3. There is no clamj) on the 

horizontal circle. 4. The center is of steel, turning in a cast- 

iron socket of the same coeflicient of expansion. 5. An im¬ 

proved form of tangent screw. 6. The drums of the microme¬ 

ters are of frosted glass with a small electric bulb inside for night 

reading. 7. A new design of vertical circle which is dustproof. 

8. The runner of the micrometer is mounted on ball bearings 

and is practically frictionless. 9. The cross wires are of line 

glass fibres; these reflect the light and appear as dark lines in 

the field of view. 

41. Adjustments of the Theodolite. 

The adjustment of the levels attached to the alidade is made 

by means of reversals about the vertical axis of the instrument, 

exactly as with the engineer's transit. 

The adjustment of the stride level is tested by placing it on the 

horizontal axis, reading both ends of the bubble, and then re¬ 

versing the level and reading again. The adjusting screws of 

the stride level should be turned so that the bubble moves half¬ 

way back from the second position to the first. When the 

stride level is so adjusted that it reads the same in either position, 

it is in correct adjustment, and the horizontal rotation axis may 

then be leveled by moving the adjustable end of the axis until 
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the bubble is in the center of its tube. Of course the two adjust¬ 

ments may be made simultaneously. If desired, the stride level 

may be used also to make the vertical axis truly vertical instead 

of using the plate levels. 

The adjustment of the line of sight in a plane i^erpendicular 

to the horizontal axis may be made by reversals about the hori¬ 

zontal axis as in testing an engineer’s transit; or it may be made 

by sighting an object, lifting the telescope out of its bearings, and, 

after reversing the axis, replacing it in the bearings. If the 

object first sighted is no longer in the line of sight, the reticle is 

brought halfway back from the second position toward the first 

by means of the adjusting screws. 

The test of the adjustment of the microscopes is made by 

measuring the run of each micrometer, taking first a forward 

reading and then a back reading. This should be repeated 

several times on the same pair of 

graduations so as to eliminate acci¬ 

dental errors of setting and reading. 

The test should also be made in sev¬ 

eral equidistant parts of the circle. 

If the run is more than 3", the mi¬ 

croscopes should be adjusted. The 

short tube carrying the objective of 

the microscope can be moved in or 

out of the main tube and the entire 

microscope can be raised or lowered 

in its suj)ports. If the image of a 

circle space is too large, that is, 

greater than 5 turns of the screw, the 

objective should be moved away from 

the circle so as to decrease the angle 

at the optical center subtended by the 

two graduations. This is done by pushing the objective tube 

into the microscope. Doing this causes the image of the gradua¬ 

tions to fall in a plane below the micrometer lines. In order to 
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bring this image again into the plane of the micrometer lines, the 

whole microscope must be lowered. The result of this second 

adjustment is to decrease slightly the effect of the first adjust¬ 

ment. It is advisable, therefore, to overcorrect a little when 

pushing the objective tube into the microscope tube. It will re¬ 

quire several repetitions of this operation to perfect the adjust¬ 

ment for the run of the micrometer. 

The adjustment of the drum so that it will read zero when the 

hairs are in the zero notch may be made by holding the drum 

firmly with one hand so that it reads zero and turning the screw 

with the other hand until the hairs are centered in the zero 

notch. The drum is ordinarily held merely by friction so that 

this adjustment is easily made. If there is a set screw holding 

the drum it must be loosened first. 

To adjust the B microscope so that it is exactly i8o° from the 

A microscope set the A micrometer to read zero and then move 

the alidade until a graduation is between the hairs of the micro¬ 

scope. Then set the hairs of microscope B on the opposite 

graduation and, holding the screw in this position, turn the 

drum until it reads zero. If the position of the comb scale is 

out of adjustment it will be necessary to correct this first. 

This adjustment can usually be made by means of a screw in 

the end of the micrometer box which shifts laterally the frame 

carrying the comb scale. 

42. Effect of Errors of Adjustment on Horizontal Angles. 

The effect of errors due to the inclination of the horizontal axis 

to the horizon, and those due to the imperfect adjustment for 

collimation (line of sight), are not independent of each other. 

These errors are usually so small, however, that it is permissible 

to compute their effect separately, as though only one existed at 

one time. In Fig. 51, Z is the true zenith and Z' the point where 

the vertical axis of the instrument prolonged pierces the celestial 

sphere. 5 is a point whose altitude is A. Assuming that the 

horizontal axis makes an angle i with the horizon, and that all 

other errors are zero, then from the figure it will be seen that we 
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may write 

sin _ sin IIS 
sin i sin Z'S 

or, with sufficient accuracy, 

Z = i tan //, [ii] 

where li is the angular altitude of the point sighted. 

It appears, then, that for each point sighted there should be a 

correction to the circle reading equal to i tan h. Triangulation 

points are usually so nearly on the horizon, and by careful atten¬ 

tion to the leveling the error i may easily be kept so small, that 

Fig. 51. Error in Horizontal Axis. 

there is seldom any necessity for applying the correction for in¬ 

clination except for such observations as those on a circumpolar 

star for azimuth. 

In the preceding paragraph it is assumed that the vertical axis 

is truly vertical, the graduated circle being horizontal, while the 

horizontal axis is not horizontal. If the two axes are at right 

angles to each other, but the vertical axis is inclined to the true 

vertical by a small angle owing to imperfect leveling, it may be 

shown, by a diagram similar to Fig. 51, that the same correction 

applies to this case also. 

The error of a horizontal direction due to an error of collima- 

tion may be computed as follows: Let the error in the sight line 

be represented by c; then, when the axis of collimation (Fig. 52) 
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traces out the great circle ZiV, the line of sight traces out the 
parallel circle SA, which is c seconds from ZN. If S be any point 

toward which the cross-hair is pointing, and if arc SN be drawn 

perpendicular to ZN, then the error in direction, or the angle at 

Z, is found from the equation 

sin Z sin c 
sin N sin ZS 

or, since ZN = 90°, Z = c sec [12] 

Each direction should therefore be corrected by the quantity 

z 

c sec h. On account of the small value of c in a well-adjusted 
instrument this correction is necessarily small; furthermore, it is 

usually eliminated from the fmal result by the method employed 
in making the observations. 

43. Errors of Graduation. 

The errors in the positions of the graduations on the circle 

may be either periodic or accidental. In a good instrument 
these errors should not be more than about i", or in any case 

2". Since the total angular space about the center is a fixed 
amount, positive periodic errors in one part of the circle must be 

balanced by negative periodic errors in another part of the circle. 
If, when measuring directions or angles, the circle is shifted 

between sets of observations so that the readings on any signal 
are distributed uniformly around the circle, the errors must 
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balance to a large extent; the greater the number of such read¬ 

ings the more nearly will the final mean be free from errors of 

graduation. The accidental errors follow no law except that 

of the theory of probability. Their effect on the final angle is 

diminished as the number of readings is increased, that is, as 

the number of lines used is increased. 

44. Errors of Eccentricity of Circles. 

Errors of this kind are due to the fact that the center of the 

alidade does not coincide with the center of the graduated circle. 

The effect of this error on the readings is periodic as will be seen 

b d 

Fig. 53. Showing Errors due to Eccentricity of Circles. 

by Fig 53. If C is the center of the graduated circle and A 
is the center about which the alidade revolves, then the distance 

CA is interpreted as an arc bd in seconds on the graduated 

scale and is called the eccentricity. LL' is the line of centers. 
If a vernier or a microscope is at L it reads the same as it would 

if there were no error of eccentricity; whereas at b it is in error 

by 6 = bd, the full amount of the eccentricity, CA. In inter¬ 

mediate positions the error of reading will be found to equal 

e sin 6, 6 being the angle LCe. 
A microscope supposedly at b will actually be at d and will 



R
E

A
D

IN
G

S
 

O
F
 

M
IC

R
O

S
C

O
P

E
*

 
86 FIELD-WORK OF TRIANGULATION 

I I I I t 
v-a 

Fig. 54. Test of a Theo¬ 
dolite. 

read too much by the amount +e. The 

opposite microscope will be at instead of 

h' and will read too small by —e. The 

mean of the two readings is free from this 

error e. A microscope at e reads an amount 

corresponding to /, which is too large by 

the amount +c sin 6; the opposite micro¬ 

scope reads /', which is too small by the 

amount —c sin 6. The mean of the two 

microscopes is therefore free from errors 

of eccentricity. That is, if we take the 

mean of the readings of opposite micro¬ 

scopes, the result is the same as though 

there were no eccentricity of the circle. 

It may be shown that the mean of three 

microscopes 120° apart, or any number of 

microscopes equally spaced around the 

circle is free from the effects of eccentricity. 

In general each microscope reading re¬ 

quires the correction 

+c" sin (z + E) 

where z is the microscope reading and E 

is the angle between 0° and the line of 

centers. 

44a. Test of Theodolite. 

When a new theodolite is being used it is 

desirable to test the accuracy of its gradu¬ 

ated circle and the microscopes. This may 

be conveniently done by taking readings 

around the circle at equal intervals as fol¬ 

lows : Set microscope A at 0° 00' 00" and 

read microscope B. This will differ from 

the A reading by the constant angle (a) 

between the microscopes, the errors of 

graduation, eccentricity and run of mi- 
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crometer. Then set microscope A on and read B; and so 

on until the entire circle has been covered. The differences, 

B — may be plotted on coordinate paper and the resulting 

curve studied to judge the amount of the different errors. It is 

possible to calculate these, but the main thing desired is to know 

in a general way whether the instrument is of good or poor 

quality, so it is doubtful whether it is worth while to calculate 

all of the component errors. 

If the algebraic mean is taken of all the B — A readings the 

result is the constant angle (o:) between microscope B and a point 

180^ from microscope A, since the eccentricity terms will cancel 

each other. If this amount is subtracted from the values oiB — A 

the remainder in each case is composed of errors of eccentricity, 

graduation and run. These may be separated by computation. 

If the plot shows a distinct sine curve, it indicates eccentricity 

combined perhaps with periodic errors of graduation. In a good 

instrument these errors should be small. Variations of points 

from the mean curve shows accidental errors of graduation and 

micrometer errors. If the points show variations from the mean 

curve of more than i" or 2", the graduation of the circle is prob¬ 

ably of inferior accuracy. Figure 54 shows the results of a test 

of a theodolite. The B microscope is about 3''.3 less than 180° 

from microscope A. A smooth curve through the points shows 

that there is a small amount of eccentricity, probably combined 

with graduation errors. The variations from the mean are small 

except in one instance, where there appears to be an accidental 

error of more than i". 

An approximate value for the amount of eccentricity and the 

approximate position of the line of centers may be computed 

from four equidistant readings,* say 90°, ]8o° and 270°. If 

we put B — A =71 then each pair of readings gives an equation 

of the form 

n = a A- ^ e sin (z + £). 

Chauvencl, Spherical and Practical Astronomy, Vol. TI, p. 40. 
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Let the four values of n be 

Wo = a + 2 c sin jG = a + 2 e sin i? 

Wi = a + 2 c sin (£ + 90°) = a + 2 ^ cos E 

Ui = a + 2 c sin {E + 180°) — a — 2 e sm E 

W3 = « + 2 c sin {E + 270°) — a — 2 e cos E 

Therefore Wo — Wo == 4 c sin £ 

and Wi — 11 > = 4 c cos E 

from which we may compute £ and e. The value of a. is the 

mean of the four values of n. 

Take, for example, the following four readings, 

A B B - A 
0° 179° 59' 57".5 «„ = -2 ".5 

90° 269 59 55 -4 Wi = —4 .6 

180° 359 59 55 -8 

1 II 

270° 89 59 57 -4 W3 = — 2 .6 

From which we obtain 

4 c sin £ = +I'^7 log 0.2304 

4 c cos £ = — 2".o log 0.3010 w 

£ = 139^38' 

e = o".66 
log tan £ 9.9294 n 

log cos £ 9.8819 

log 4 c 0.4191 

log 4 0.6021 

log c 9.8170 

Therefore each microscope requires the correction for eccentricity 

+o".7 sin {z + 139° 38'). 

The value of a is 

46. Method of Measuring Angles. — Repeating Instrument. 

In measuring the angles of a triangulation with the repeating 

instrument, it is common practice to measure the angle six times, 
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beginning with the left-hand signal of a pair and measuring 

toward the right; then, after reversing the telescope, to measure 

six times beginning with the right-hand signal and ending on 

the left-hand signal. In order to eliminate any possible error 

due to drag of the lower plate by the alidade or the center, the 

telescope is always turned in a clockwise direction. In the 

second half of the set of 12 angles the telescope is moved from 

the right-hand signal toward the right through an angle of 

360° — X until it sights the left-hand signal. This brings the 

vernier almost exactly to the same reading that would be ob¬ 

tained by turning toward the left, but it differs in the mechanical 

action. 

The reversal of the telescope is for the purpose of eliminating 

errors due to non-adjustment of the line of sight and of the hori¬ 

zontal axis. It should be observed that it does not eliminate 

the error due to imperfect leveling of the circle. It is important 

to watch the levels and to keep them adjusted and centered. 

They may be re-leveled without affecting the angles whenever 

the lower clamp is loose. The change in direction of the meas¬ 

urement of the two half-sets (left to right and right to left) is in¬ 

tended to eliminate twist of the supporting tower. This is very 

small with the modern towers, but any twist which does occur 

and which takes place at a uniform rate is eliminated by this 

method of observing. 

Errors due to faulty graduation may be eliminated to a large 

extent by changing the initial reading of vernier A in each 

set in such a way as to distribute the readings uniformly around 

the entire circle. If the initial reading is advanced each time 

by an amount equal to 
3^" 
mn 

(where m is the number of sets to be 

measured, and n is the number of verniers) the readings will be 

distributed uniformly about the circle. For example, if 6 sets 

are to be taken with a 2-vernier instrument the reading of vernier 

A should be advanced 30° each time. Errors in the graduation 

of the verniers can be partially eliminated by so arranging the 
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initial settings that the readings are distributed uniformly over 

the smallest space on the graduations. For example, if 6 sets 

Fig. 54a. Theodolite mounted on Tower for measuring Horizontal Angles. 

are to be measured and the smallest division is 10', the initial 

settings of vernier A would be 00' 00", 30° 01' 40", 60° 03' 20", 
etc. 
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Direction Instrument. 

When the direction theodolite* is used, the telescope is first 

sighted approximately at one of the signals selected as the initial 

for the series, and the circle is then turned so as to bring any 

desired reading under the index microscope. The pointing on 

the initial signal is then perfected and all the microscopes are 

read. The telescope is then pointed on the second signal, (to 

the right), the circle remaining in the same position, and the 

microscopes are again read. This process is continued until the 

last signal has been sighted and the microscopes read. The 

telescope is then inverted, the last signal again sighted, and the 

readings taken. The signals are sighted in order, from right to 

left, until the initial point is again sighted. This completes the 

observations in the first “position.’’ The number of positions 

to be used depends upon the accuracy desired. For first-order 

triangulation 16 positions arc required. 

Just as with the repeating theodolite, the reversal of the 

telescope of the direction instrument eliminates errors due to 

faulty adjustment of the line of sight and the horizontal axis. 

The instrument must be kept accurately leveled as this error is 

not eliminated by reversal. The change in direction from left 

to right and then from right to left eliminates twist. The drag 

is eliminated by bringing the telescope up to the initial point 

from a position a little to the left, so that the drag is taken out 

before the series is begun; on the second half the telescope is 

turned to the last signal in the series from a position a little to 

the right of it. The change in the reading on the initial signal 

and the distribution of the micrometer readings over the smallest 

space of the circle are made in a manner similar to that explained 

in the preceding article. In the following tables will be found 

the initial settings for a 3-micrometer and a 2-micrometer 

theodolite, for 16 positions and 8 positions respectively. When 

* For the methods used by the U. S. Coast & Geodetic Survey see Special 

Publication No. 120, by Major C. V. Hodgson. 
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THEODOLITE SETTINGS WHEN 16 POSITIONS OF THE CIRCLE 
ARE USED 

1 With a 3-micromcter theodolite. With a 2-micrometer theodolite. 

Position 

No. 
SettinK. 

Position 

No. 
Setting. 

0 / n 0 t If 

T 0 00 40 I 0 00 40 

2 15 01 50 3 

0
 

0
 

3 30 03 lO 3 2 2 0.3 10 

4 45 04 20 4 33 04 20 

5 64 00 40 5 45 00 40 
6 79 oi 50 f) 56 01 50 

7 94 03 i0 7 67 03 TO 

8 T09 04 20 8 78 04 20 

9 128 00 40 9 90 00 40 

10 143 01 50 TO TOT OT 50 

T 1 158 03 JO T1 IT 2 03 10 

T 2 173 04 20 1 2 123 04 20 

13 192 00 40 13 T35 00 40 

14 207 01 50 14 J46 01 50 

15 222 03 10 15 157 03 TO 

16 237 04 20 16 168 04 20 

THEODOLITE SETTINGS WHEN 8 POSITIONS OF THE CIRCLE 
ARE USED 

With a 3- micrometer theodolite. With a 2-micrometer theodolite. 

Position Position, 

No. 
Setting. 

No. 
Settmg. 

0 / // 0 / ff 

I 0 00 40 I 0 00 40 

2 15 01 50 2 22 01 50 

3 30 03 TO 3 45 03 10 

4 45 04 20 4 67 04 20 

5 52 00 40 5 90 00 40 

6 67 01 50 6 II2 01 50 

7 82 03 TO 7 135 03 10 

8 97 04 20 8 157 04 20 
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the above programs are carried out it is found to be unnecessary 

to apply corrections for run. (See page 78.) 

When making bisections of the signal or when making mi¬ 

crometer settings, it is advisable to proceed as rapidly as possible 

without making blunders. The observer should make the set- 

Fig. 54b. Triangulation with Direction Instrument. 

ting at once, should decide promptly whether it is correct, and 

then proceed to the next operation. If much time is spent in 

watching signals to see if they remain bisected and in resetting 

micrometers to see if the same reading is obtained several times 

in succession, the result is liable to be less accurate rather than 

more accurate. The reason for this is that the instrument and 

its support are continually in motion owing to temperature 

changes and other causes. The longer the interval between 

pointings the greater these errors are liable to be. The errors 

entering the result from these causes are probably larger than 



94 FIELD-WORK OF TRIANGULATION 

those which are being reduced or eliminated by the perfection 

of settings and pointings. The checks of the microscope read¬ 

ings are therefore likely to be deceptive. 
Rejecting Observations. The limit for rejecting a single ob¬ 

served direction (U.S.C. & G.S.) is 4" from the mean. This 

value is found from experience to be a safe one to use and is 

much more readily applied than any of the usual rules based on 

the theory of probability. 

Errors in Azimuth. 

Investigations of the accumulated error in the azimuth of a 

chain of triangles shows that there is a systematic tendency to 

twist in azimuth; this is due to the unequal heating of different 

parts of the theodolite during observations made in daylight. 

On arcs extending north and south the error is greater on the 

eastern side of the chain than on the western side. This is 

apparently due to the fact that the observations were formerly 

made almost wholly in the afternoon, and the instrument on 

the eastern side of the triangulation cannot be so completely 

shielded from the sun as it can be when on the western side of 

the chain. Observations made at night show no such systematic 

difference between the two sides of the triangulation. 

The error in azimuth just mentioned can be much reduced by 

turning the graduated circle 180° between positions.’’ This is 

provided for in the program of observations already described. 

At the end of each series of readings the telescope is in the 

opposite position from what it was at the beginning. If it is 

left in this position (instead of turning it back to the normal 

position each time before beginning a new series) it will then be 

necessary to turn the circle nearly 180® in order to bring the next 

initial reading in the list under the index microscope. 

For a method of correcting azimuths for the error of accu¬ 

mulated twist, see page 259. 

In this connection it is important to notice a source of error 

in azimuth which becomes systematic under some circum¬ 

stances. Whenever a triangulation line passes close to the side 
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of a hill or mountain there is a bend in the ray of light due to 

horizontal refraction. This is probably because the variation 

in density of the layers of air has a tendency to follow the per¬ 

pendicular to the surface rather than the true vertical. This 

error of course affects the closure of the triangles containing such 

lines. If a survey is carried along a river the same kind of error 

is likely to occur many times over and thus introduces error of a 

systematic character into the final results. (See Bull. No. 56, 

National Research Council; J. L. Rannie, Geodetic Survey of 

Canada.) 

Time for Measuring Horizontal Angles. 

It was formerly the practice to measure angles only during 

the day time, and only during that part of the day when the 

signals appear steady, that is, during the latter part of the after¬ 

noon. On the triangulation of the 98th meridian, observers were 

instructed to measure angles whenever the results indicated that 

the required accuracy was being obtained, and not to rely upon 

the appearance of the signals. The results showed that good 

observations can often be made when the appearance of the 

signals would seem to indicate that good results could not be 

obtained. Triangulation at night was also tried in comparison 

with the daylight observations. The results were almost uni¬ 

formly more accurate than those of day observations; they were 

also obtained more economically because there were fewer delays. 

Observations on heliotropes are often held up for hours and days 

at a time when the sun is obscured by clouds, whereas electric 

lights can be seen under nearly all conditions except in foggy 

weather. The greater part of the first-order triangulation at 

the present time is done at night. This has the additional ad¬ 

vantage that the observations for astronomical azimuths can be 

combined with the measurement of horizontal angles, which 

results in a considerable saving. 

Forms of Record. 
The following are forms of record which may be used for 

horizontal angles in a triangulation. 
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HORIZONTAL ANGLES. DIRECTION INSTRUMENT 

Station, Corey Hill. Date, May 21, 1907. Observer, A. N. Recorder, 
W. R. N. Instrument No. 31. Position No. 2. 

Station 

observed. 
Time. 

Tele¬ 

scope. 

D. or R. 

Micro. 

Circle. 

Run. Mean. 
Cor. for 

run. 

Cor’d 

•secs. 
0 , F. B. 

h m 
Blue Hill 4 30 Dir. A 15 01 5* -5 505 

B .34 0 53-7 
C 49 0 4H-5 

1 \ 
.31 -5 .30-Q 0.6 .31-2 

Prospect Dir. A 30 20.9 20.5 
B 22 0 21 5 
C t8 I 18.0 

20.3 20.0 0-3 20.2 

HORIZONTAL ANGLES. REPEATING INSTRUMENT. 

Station, Corey Hill. Date, May 21, 1907. Observer, J. N. B. Instr. 
B. & B., No. 1567. 

Station. Time. Tel. Rep. Ver. A. B. Mean. Angle. Mean. 

h m 0 , 0 / 0 r 

Blue Hill 3 20 D 0 0 00 00 00 00 
to 

Prospect P.M. I 123 28 10 20 15 

6 *20 49 40 40 40 123 28 16.7 

R ' 0 20 49 40 40 40 

123 28 15.0 
1 

6 0 00 10 10 10 123 28 15.8 

Note. — Since the angle is over 120 degrees the A vernier has passed 360 degrees twice in the 

six repetitions. In computing the mean we divide the 720 degrees by 6 mentally and write down 

12 —, then divide the 20 degrees by 6, add the whole degrees to 120, and then divide the minutes 

and seconds. Observe that when six repetitions are used, the remainder, when dividing the 

degrees by 6, gives the first figure of the minutes, i.e., 20 degrees -4-6 = 3 degrees in the mean, 

plus 2 degrees to be carried to the minutes column giving 20 minutes. Similarly in dividing 

the minutes by 6 the remainder is the tens place in the seconds. 
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46. Accuracy Required. 

The accuracy required in the different ^'orders” of triangu¬ 

lation has been stated (page 4). After the triangulation has 

been adjusted by least squares, the ^‘probable error of an ob¬ 

served direction” becomes known. This is in some respects a 

better measure of the precision than the triangle closure, which 

was used in the field to test the accuracy of the results. The 

following brief list, taken from a more extended list in Special 

Publication No. 19, U. S. Coast & Geodetic Survey, will show the 

degree of accuracy actually reached on several different triangu¬ 

lation arcs. 

Section. 

Nevada — California. 
New England. 
Eastern Obliciue Arc. 
Holton Base net. 
Atkinta base to Dauphin 

Island-base. 
Lampasa base to Seguin base 
Calif.—Washington An* .. 

1 Probable error 

of an observed 

Average 

closing Max. cor. to 

Maximum 

c losing 

direction. 
error of a direction. er**or of a 

triangle. In mgle. 

drO. 23 0-57 0 60 1-57 
±0.26 0 75 I 17 2 .02 

=fco.,^o 0.78 0 74 2.73 
±0.34 0.79 0.84 2.28 

±0.36 1.10 0.84 2 .69 

±0.45 1.13 I .96 3-31 
d-0.53 i .22 2.03 6-35 

47. Reduction to Center. 

If some of the lines from a station are obstructed, or if the 

nature of the signal is such that the theodolite cannot be placed 

directly over the center, it becomes necessary to set the instru¬ 

ment over a point at one side of the center, called an ^‘eccentric 

station,” and to measure the angles from this new point. These 

angles are to be measured with the same degree of precision as 

though they were taken at the center; and, in addition, suffi¬ 

cient measurements must be made to enable the computer to 

find the true central angles. These additional measurements 

include the distance from the center to the eccentric station 

and the angle (at the instrument) between the center and some 

one of the distant signals. 
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It is also necessary to know approximately the lengths of the 
sides of the triangles involved. These can usually be computed 

with sufficient accuracy from a 

known base by means of other 
angles which are not dependent 

upon eccentric stations. 
In Fig. 55, C is the center 

mark, E is the theodolite at the 

eccentric station, and 5 is one 
of the distant stations. CE — d is the eccentric distance and may 
be measured with a tape. CS is the triangulation line { — D) 

supposed to be approximately known. Angle CES = a is the 
direction of 6* referred to EC as an initial direction. It is meas¬ 
ured with the theodolite and is always counted toward the right. 

For any other signal it may be comjiuted by combining the 
angle CES with the angle between S and the station in ques¬ 

tion. Angle ESC — S is the angle of swing” and is the cor¬ 

rection to be applied to the direction ES to obtain the direc¬ 
tion CS. 

In order to compute the angle S solve the triangle CES 
(law of sines), obtaining 

Angle of 'Swing" 

Angle of "Swing” Ed. 
Theodolite 

Fig. 55. Eccentric Station. 

or 

sin 5' 
CE . 

l:s 
d . 
7;, • sin a 

5" 
d sin a 

D arc i" 

From the angles between distant stations and the angle con¬ 
necting one of these with the initial station (C) we may compute 

the direction of every signal sighted, referring these directions 
to the initial station as 0°. For convenience in applying the 
corrections, we may retain the seconds and fractions, but this 

is not necessary for the purpose of taking out the log sines. 
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Then for each distant station we compute the correction {S") 

with its appropriate algebraic sign. An examination of the 

direction (a) and the algebraic sign of the correction US'") at 

each station will show that if sin a is given the proper algebraic 

sign according to whether a is under or over the resulting 

sign of the correction (5") will be that which must be added to 

Stnith’s 

the observed direction to give the true direction from the center. 

After the correction (5") has been added (algebraically) to each 

direction the results are the true directions from the center. In 

Fig. 56 these are shown by the dotted lines. If the dotted lines 

are moved parallel to themselves until E coincides with C then 

these dotted lines coincide with the true directions from the center. 

If the true angle between any two stations is desired, it is found 

by taking the difference between the two corrected directions of 

the stations in question. 
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EXAMPLE OF REDUCTION TO CENTER 

Harpers A d 1^.342 log = 0.12775 

colog sin i" = 5-31443 
Eccentric Sta. No. i. log constant == 5.44218 

Measured angles: — Center to Smith’s Cupola, 42® 14'20"; Smith’s 

Cupola to Cotton’s, 62° 33' 10".i; Cotton’s to White Flag, 56® 22' 36.1"; 

White Flag to Baldwin’s, 43® 59' 57".4. The directions from the center 

as 0° are computed by adding the angles in succession; the results are shown 

in the table. 

Station. Smith’s Cupola. Cotton's. White Flag. Baldwin’s. 

Direction («) 42° 14' 20".0 104° 47' 3o"*i 161 ° to' 06".2 205° 10' 03".6 

log sin a 
colog (list, 
log const. 

9-8275 
6.1052 
5.4422 

9-9853 
6 0640 

5 4422 

9 5090 
6 2672 
5.4422 

9 6286 W 
6 0909 

5 4422 

log S" I -3749 J -4915 1.2184 I 1617 71 

Corr’n., S" + 23"-7 + i6".5 -I4".S 

Corrc'ctcd 1 
Din'ction j 42° 14' 43"-7 io.|48' 01 ".I 161 10' 22".7 205“ 0;)' 4y".i 

Taking the differences between th(‘ corrected directions we obtain the 

correct(‘d angles; Smith's Cupola to Cotton’s, 6233' i7".4; Cotton’s 

to White Flag, 56° 22' 21 ".6; White Flag to Baldwin’s, 43° 59' 26".4. 

48. Phase of Signal. 

When sights are taken on poles, either of square or of circular 

sections, the illumination is likely to be stronger on one side 

than on the other. The observer therefore cannot see the whole 

width of the pole, and bisects the part that he can see. Various 

formulas have been worked out for computing the correction 

to the observed direction. If the direction of the sun is meas¬ 

ured with reference to the line of sight, and if the dimensions of 

the pole are known, it is a matter of simple geometry to calculate 

the error. These are not considered very reliable, however, 

because there are other factors than those mentioned, such as 

the intensity of light and nature of the material. Wherever it is 

possible to do so, a signal without phase should be used. 
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49. Measures of Vertical Angies. 

The method of determining the elevations of triangulation 

points will be discussed in a later chapter, but since the field¬ 

work of measuring the vertical angles is carried on in connection 

with the measurement of the horizontal angles, it will be briefly 

discussed here. The instrument used for these measurements 

may be a repeating circle or a fixed circle read by microscoi)es. 

On account of the difficulty of ascertaining the exact effect of 

atmospheric refraction, vertical angles are subject to much 

greater errors than horizontal angles. A relatively small num¬ 

ber of measures of the vertical angle, half with the instrument 

direct and half with it in the reversed position, is sufficient to de¬ 

termine the angle as closely as the uncertainty of refraction will 

permit. Owing to diurnal changes in the amount of the re¬ 

fraction, it is advisable to make the measurements between 

II A.M. and 4 p.m., because the refraction is nearly stationary 

during these hours. About an hour before sunset the refraction 

is very uncertain. 

If it is necessary to observe vertical angles at night there 

should if possible be some station in which verticals have been 

taken during both day and night in order to furnish a comparison. 

The refraction at night is liable to be erratic. In recording the 

angle it is essential to state exactly the height of the instrument 

above the station mark and also the exact point sighted, so that 

the angle on each line may be reduced to that of the line be¬ 

tween the two station marks. 

The vertical angles may also be obtained by means of the 

micrometer in the eye-piece of the theodolite, if it is placed so as 

to measure angles in the vertical plane. Micrometer readings 

on the different stations, in connection with readings of the 

spirit level on the alidade, will give the differences in vertical 

angles. If the vertical angle of any one station is known, the 

others may be determined. 
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Fig. 56a. Vertical Circle. {Coast and Geodetic Survey.) 
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60. Vertical Collimator. 

The vertical collimator is an instrument designed and used 

for the special purpose of placing a theodolite (or a tower) 

exactly over the station mark on the ground. The older pattern 

(Fig. 57) was used on the top of the tower and consists of a tele- 

Fig. 57. Vertical Collimator. (Coast and Geodetic Survey.) 

scope mounted in the vertical position and used to sight directly 

at the station mark. It is provided with a spirit level and can 

be turned on its own axis for the purpose of adjustment, similar 

to the manner in which a Wye level is rotated in its bearings for 

the adjustment of the cross-hairs. The telescope may be re¬ 

moved from its sleeve and a plunger inserted in its place. The 

point of the plunger shows the point on the cap of the tripod 

over which the theodolite should be placed. 

The new pattern of vertical collimator (U.S.C. & G.S.) is 
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Fig. s8. Vertical Collimator. (C. L. Berger 6* Sons.) 
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placed on an ordinary tripod on the ground and the telescope 

sights vertically upward (Fig. 58). A prism between the ob¬ 

jective and the eye-piece enables the observer to see the top of 

the tower by looking horizontally through the eye-piece. When 

the instrument is adjusted and is placed over the center mark, 
the theodolite can be placed directly in position so as to cover the 
intersection of the cross-hairs in the vertical collimator. 

PROBLEMS 

Problem i. The circle of an alt-azimuth instrument is graduated into lo-minute 

spaces. The pitch of the micrometer screw is such that two turns arc required to 

move the hairs from one graduation to the next. The head of the screw is divided 

into minutes and each minute into lo-second spaces. The forward reading (on the 

260° I o' line) is 4' 03"; the back reading (on the 260° 20' line) is 3' 55". What is 

the run of this micrometer? What is the correct reading? 

Problem 2. The forward reading in a microscope is 2' 10".5, on the 70° line; 

the back reading is 2' i2".o on the 70° 05' line. What is the correct reading of 

the direction? 

Problem 3. The readings of a striding level on a theodolite show that the hori- 

/iontal axis is inclined 1.5 divisions, (he left end being higher. What error will this 

cause in the azimuth reading on the pole 

star, at an altitude of 41° 20', if the value 

of one division of the level is io".o? 

Problem 4 If a horizontal angle is 

measured between a mark 12° above the 

horizon and bearing N 45° W, and the 

pole star, 41° altitude, what is the error 

in the angle produced by an error of 8" 

to the right in the (collimation) adjust¬ 

ment of the vertical cros.s-hair. 

Problem 5. The angle between sta¬ 

tions A and B is measured from station 

A'and found to be 71° 10' iq".5. The 

angle from O, to the right, to station 

A is 110° 15'. The distance OE is 7.460 

meters. OA is 17,650 meters and OB is 

24,814 meters. (Fig. 59.) Reduce the 

angle to the center O. 

Problem 6. The angle from the center 

(6.00 meters away) to signal A (clock¬ 

wise) is 31° 10' 29".o; from A to B 

61® 59' oo".o; fromiS to C is 129® 29' i7".2. The distances from the center 
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to i4, and C, are 8000^., 9000^., and 95oo»»., respectively. Reduce these an¬ 

gles to center. 

Problem 7. If the diameter of a graduated circle is 8 inches, and the center about 

which the telescope rotates is one ten-thousandth of an inch from the center of 

the graduated circle what is the maximum error of eccentricity that will affect any 

single microscope reading? 



CIIAI^TER IV 

ASTRONOMICAL OBSERVATIONS 

61. Astronomical Observations — Definitions. 

In every trigonometric survey, whether made for scientific 

purposes or for the purpose of making maps, it is essential that 

some of the triangulation points be located on the earth’s surface 

by means of their astronomical coordinates. In determining the 

earth’s size and figure by measuring arcs on the surface it is 

essential that the curvature be determined by means of astro¬ 

nomical observations. If the triangiilation is used to control 

the accuracy of a toi)ographical survey, the astronomical work 

furnishes the data necessary for correctly locating and orienting 

the map on the earth’s surface. The astronomical data also 

furnish a means of detecting the accumulated twist of a chain of 

triangulation, and of correcting the azimuth at intervals along 

the line. Astronomical observations are also frequently made in 

order to supply data to lie u.sed in other measurements, as, for 

example, when rating chronometers for gravity or magnetic 

observations. These astronomical observations form a distinct 

branch of geodetic work. 

It will be assumed that the student has a general knowledge 

of astronomy, and only such definitions will be given as are 

essential in viewing the subject froi;i\.^he standpoint of the geod¬ 

esist. The astronomical observations which it is important for 

us to consider include the determination of the following four 

coordinates: (i) time, (2) longitude, (3) latitude, and (4) azi¬ 

muth. Before describing the instruments and methods, we will 

define the following terms which are to be employed. 

The vertical at any point on the earth’s surface (OZ, Fig. 60) 

is the direction in which the force of gravity acts at that point. 
107 
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In general it does not perfectly coincide with the normal to the 

spheroidal surface, and hence there is a difference between the 

astronomical coordinates and the geodetic coordinates. The 

deflection of the plumb line from the normal at any place is called 

the station error. The point vertically overhead (Z) is called 

the zenith. We may consider that the universe is bounded by a 

z 

sphere of infinite radius, and that the zenith is the point where 

the vertical pierces that sphere. The horizon (NEHS) is the 

great circle on the celestial sphere which is everywhere 90° from 

the zenith. Its plane passes through the observer and is per¬ 

pendicular to the vertical line. Any plane which contains the 

vertical line cuts from the sphere a vertical circle {HDZ). 

The earth’s rotation axis, prolonged, pierces the sphere in two 

points, called the north celestial pole (P) and the south celestial 
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pole {P'). The great circle which is everywhere 90° from the 

poles is the celestial equator {QVR). Any plane through the 

axis or parallel to it cuts from the sphere an hour circle {PVP'), 

The vertical circle which passes through the celestial pole is 

called the meridian (SQZ). If the vertical does not intersect the 

earth’s axis, the meridian plane cannot contain the axis but is 

parallel to it. The prime vertical is a vertical circle perpendicular 

to the meridian. The ecliptic is a great circle cut by the plane of 

the orbital motion of the earth {MVL). That point on the sphere 

where the ecliptic and the equator intersect, and where the sun 

passes (in March) from the southern to the northern hemisphere, 

is called the vernal equinox. 

The altitude (h) of a point is its angular distance above the 

horizon. Its zenith distance (f) is the complement of the altitude. 

The azimuth (Z) of a point is the horizontal angle between the 

meridian and the point. It is usually reckoned from the south 

point of the horizon, right-handed, from 0° to 360^^. The dec¬ 

lination (5) of a j)oint is its angular distance north (-f) or south 

( —) of the equator. Its polar distance (/>) is the complement of 

the declination. The hour angle (/) of a point is the arc of the 

eejuator measured from the meridian westward to the hour circle 

through the point. The right ascension (a) is the arc of the 

equator measured from the vernal equinox eastward to the hour 

circle through the point. 

The astronomical latitude"^ (</>) of a place is the angular dis¬ 

tance of the zenith north or south of the equator, or, in other 

words, the declination of the zenith. The longitude (X) of a 

place is the arc of the equator between the observer’s meridian 

and a primary meridian, as Greenwich or Washington. 

62. The Determination of Time. 

The determination of time, practically considered, means the 

determination of the error of a chronometer on the local sidereal 

time at the station. The sidereal time (5) at any instant is the 

hour angle of the vernal equinox; it is usually expressed in hours, 

* For geodetic latitude see p. 166. 
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minutes, and seconds. Yrom a consideration of the definitions 

of sidereal time, hour angle, and right ascension it is evident that 

the first equals the sum of the other two; that is, 

S = a + /. [15] 

When the star is on the meridian, / is obviously equal to zero, 

and we have 
S ~ a, [16] 

that is, the right ascension of any star is equal to the sidereal 

time at the instant when that star is passing the meridian. If 

we note the chronometer reading when a certain star is i)assing 

the meridian, we know that the loc'al sidereal time (or true chro¬ 

nometer reading) at that instant is the c.ame as the right ascension 

of that star as given for that date in the Ephemeris,* and that the 

error of the chronometer is the difference between the two. The 

determination of time with a transit mounted in the plane of the 

meridian depends upon the foregoing principle. 

63. The Portable Astronomical Transit. 

The instrument chiefly used for determining time and longitude 

in geodetic work is the portable transit. This class of work 

necessitates carrying the instrument to many stations located 

in places which are difficult to reach; hence it should be light 

enough to be easily transported. The small size of the transit, 

however, docs not necessarily imply inferior accuracy in the 

results; it is found by exi)erience that comparatively small in¬ 

struments, when properly handled, give results of great accuracy. 

Indeed, the very fact that the instrument is light is a point in its 

favor, for this makes it easier to reverse, and obviates certain 

difficulties encountered in using large instruments in observa¬ 

tories, for example, the error due to flexure, or those due to 

temporary strains caused by reversal of the instrument. The 

portable transit is usually mounted on a brick or concrete pier, 

or on a heavy wooden support. 

* The American Ephemeris and Nautical Almanac, published by the Navy 

Department. 
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The transit instrument itself consists of a telescope with a 

rotation axis rigidly attached at right angles to it; this axis 

terminates in pivots which rest in wye bearings at the upper ends 

of a pair of standards. A stride level is provided for measuring 

the inclination of the rotation axis. The axis of collimation, 

which is a line through the optical center of the objective and 

perpendicular to the rotation axis, rotates in a vertical plane 

when the horizontal axis is truly level. For the purpose of 

determining the time the instrument may be set in any vertical 

plane, for example, the vertical plane through a close circumpolar 

star; but in this country it is used almost exclusively i:i the plane 

of the meridian. 

Figure 6i shows a portable astronomical transit used for the 

determination of time and longitude by the Goast and Geodetic 

Survey. The focal length is 94 cm., the aperture 76 mm., and 

the magnifying power J04 diameters. 

64. The Reticle. 
In the old style of transit the reticle consisted of several closely 

spaced vertical spider threads or of lines ruled on glass, and two 

horizontal threads or lines to limit the portion of the vertical 

threads used for observations. A common arrangement of the 
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vertical threads, when the chronograph is to be used for recording 

the observed time, is shown in Fig. 62, the smallest intervals 

corresponding to about 2.5^ of time for an equatorial star 

66. Transit Micrometer. 

The hand-driven transit micrometer has now replaced the old 

style of reticle on the instruments of the United States Coast 

Survey. In this instrument (Fig. 63) a single vertical thread is 

made to traverse the field of the telescope at such a speed that it 

continually bisects the star that is being observed. The record 

on the chronograph of the passage of the star over certain fixed 

points in the field is made automatically by means of an electric 

circuit. An automatic cut-out is so arranged as to keep the 

circuit broken except during four revolutions of the screw in the 

central part of the field. The contact points are placed so as to 

record twenty observations on the star, arranged in four groups. 

The observer has sim2:)ly to set the thread on the star and follow 

it until it has passed beyond the range of observation. The 

observer does not know exactly when the observations are being 

made; he simply watches the thread and the star and keeps the 

bisection as nearly perfect as he can. It is necessary to use both 

hands in order to give the thread a steady motion. The result 

of these observations is the same as though the observer had 

noted accurately the time of passage of the star over 20 vertical 

threads. The great advantage of the instrument is that the 

large personal error due to estimating times of transit over the 

threads is almost wholly eliminated. A further advantage is 

that 20 observations may be made in about ten seconds, on an 

equatorial star, thus permitting observations on stars culmi¬ 

nating in quick succession. 

66. Illumination. 

The field of the telescope is illuminated by means of a lamf> or 

an electric bulb which sends light through the hollow axis of the 

instrument to a mirror at the center of the telescope, which re¬ 

flects it down the telescope tube to the reticle. The threads 

appear as black lines against a bright field. 
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Fig. 63. The Transit Micrometer. {Coast and Geodetic Survey.) 
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66a. The Broken Telescope Transit. 

During the trans-Allan tic longitude determinations of 1916 the 

Bamberg ''broken-telescope” transit was used, and with such 

satisfaction that ever since that time this type of transit has 

been the favorite one for this kind of work. The object glass 

has an aperture of 7 cm. and the focal length is 67 cm. The 

eye-piece is mounted at one end of the (hollow) axis of the transit 

Fig. 64. The “Broken-Tclcscopc’^ Transit. (Coast and Geodetic Survey) 

and the light passing through the objective is reflected at right 

angles by a prism placed at the center of the instrument. (Fig. 

64.) This instrument is fitted with a micrometer similar to that 

shown in Fig. 63, which records at each one-tenth of a turn. Two 

additional contacts are placed, one each side of the center, to 

identify the zero mark. 

At the opposite end of the axis from the eye-piece is a small 

electric light which illuminates the field of view. A very small 

prism is cemented to the larger prism on the center line of the 

ajiis, and with the faces parallel, so that the light passes directly 
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to the eye-piece. A small setting circle (15 cm. in diameter) 

is placed just back of the micrometer. This carries a vernier 

and level, and reads to i'. 

A reversing apparatus enables the observer to turn the transit 

quickly from the direct to the reversed position. In using the 

transit for time observations it is customary to reverse the axis 

for each star observed, in the middle of the series of observations, 

thus eliminating the collimation error for each star separately. 

This necessitates two settings of the finder circle for each star. 

The setting is made for the first position of the axis and, before 

the observations are begun, and without disturbing the position 

of the telescope, the setting is made ready for the second position. 

The cross level hangs beneath the horizontal axis instead of 

being placed above it as in the ordinary form of transit. Two 

small cross levels show when the hanging level is in the correct 

position to read. 

The instrument is carefully counterpoised so as to avoid 

flexure of the telescope tube, and a portion of the weight rests 

on springs in the reversing apparatus, thus relieving the pivots 

from undue wear. 

This instrument can also be used for observing latitude by 

the Horrebow-Talcott method. A different micrometer is used 

for this work, and twin levels can be attached when observing 

for latitude. 

67. Chronograph, 

The chronograph is a registering apparatus driven by clock¬ 

work, and connected electrically with a chronometer and with 

either the transit micrometer or an observing key. The record 

is made on a sheet of paper wound around a drum which revolves 

once per minute. A pen fastened to the armature of an electro¬ 

magnet is carried by a screw in a direction parallel to the axis 

of the drum. These combined motions cause the pen to draw a 

line spirally around the drum. When the sheet is laid flat, the 

record appears as a series of straight parallel lines. The chro¬ 

nometer breaks the circuit once per second (or two seconds), 
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and this break allows the armature spring to move the pen to one 

side and make a small notch on the record. The times of passage 

of stars over the threads of the transit are also recorded in a 

similar manner. The character of the two kinds of marks is 

usually dissimilar, and they may easily be distinguished. If any 

Fig. 65. Chronograph. {Coast and Geodetic Survey.) 

one of the chronometer marks on the record sheet is identified, 

then the chronometer time of every mark on the sheet becomes 

known, and the determination of the fraction of a second for 

each observation is simply a matter of scaling off the position 

of the corresponding mark. A convenient way to mark the time 

without disturbing the sheet is to make notches on the sheet by 

means of the observing key, the number of marks so made show¬ 

ing the number of some minute of the chronometer reading. 

The speed and the diameter of the cylinder are usually such as 
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to make one second of time occupy a space of one centimeter. 

Figures 65 and 66 show chronographs such as are used in longi¬ 

tude observations. 

Figure 69 shows a portion of a chronograph record. 

Fig. 66. Fillet type of Chronograph. {Coast and Geodetic Survey.) 

68. Circuits. 

The arrangements of circuits for operating the chronograph 

arc shown in Figs. 67 and 68. The chronometer is placed in a 

separate circuit having a battery of only one cell, in order to 

avoid injury to the mechanism, and operates the chronograph cir¬ 

cuit through the points of a relay. The transit micrometer 

operates on the make-circuit, which is converted into breaks by a 

relay. If a key is used, it replaces the micrometer relay and 

breaks the circuit when the key is pressed. 
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Battery 

Fig. 67. Elect rical Connections — Time Observations by Key Method. 

Transit Micrometer 

Fig. 68. Electrical Connections — Time Observations by Transit Micrometer 
Method. 
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59. Adjustment of the Transit. 
In placing the transit on the supporting pier before adjusting 

it in the meridian, the base of the instrument must be placed so 
nearly in the meridian that all further adjustment in azimuth 

62 8 54 8 6^/1 g/i 35m oo« 2® 

Fig. 69. Chronograph Record. 

may be made by the adjusting screws provided for this purpose. 

The foot plates should then be cemented to the pier. The tele¬ 

scope is focused as in an engineer’s transit — first the eye¬ 

piece, then the objective. A distant terrestrial object may be 

used for the first trial, but the final focusing should be done at 

night on the stars. A difference is usually noticed between the 
focus required by day and that found at night when artificial 

light is used. 

The striding level and the horizontal axis may be adjusted 
simultaneously by placing the level in position, reading both 

ends of the bubble, then reversing it, end for end, and taking 

another set of readings. Half the displacement of the bubble 
may be corrected by adjustment of the level and half by leveling 

the axis. 
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The verticality of the threads or the micrometer line is tested 

by rotating the telescope slightly about its horizontal axis and 

noting whether a fixed object remains continuously on the thread 

as it traverses the field of view. Adjustment is made by rotat¬ 

ing the diaphragm or the micrometer box until this condition is 

fulfilled. 

The collimation is adjusted by placing the middle line of the 

reticle or the mean position of the micrometer line as nearly as 

possible in the collimation axis. To test this, point the wire on 

some object, reverse the telescope in its supports (axis end 

for end), and see if the object is still sighted. If it is not, 

bring the wire halfway back by means of the lateral adjusting 

screws. 

The finder circles should be tested to see if they read zero when 

the collimation axis is vertical. Point on some object, level the 

bubble, and read the circle. Reverse the telescope, point on the 

same object, and repeat the readings. The mean reading is the 

true zenith distance, and half the difference between the two 

readings is the error of adjustment. Set the vernier to read the 

true zenith distance, sight the object again, and then center the 

bubble by means of the adjusting screws. 

To place the line of collimation in the meridian, first determine 

a rough chronometer correction by leveling the axis and setting 

the circles for the zenith distance of some star which is near the 

zenith and which is about to culminate. If the (sidereal) 

chronometer is nearly regulated to local sidereal time, the right 

ascension of such a star will be nearly the same as the chronom¬ 

eter reading. If the chronometer is not regulated at all, it may 

be set approximately right by calculating the sidereal time cor¬ 

responding to the mean time as indicated by a watch. An 

error of one or two minutes will not cause great inconvenience, 

as all that is necessary is to identify the star and begin observing 

before it has passed. The time at which this star will pass the 

middle vertical thread must necessarily be very close to the true 

sidereal time (right ascension of star), because near the zenith 
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the effect of the azimuth error on the observed time is very small. 

The difference between the right ascension of the star and the 

chronometer reading is an approximate value of the chronometer 

error. Using this value of the chronometer error, calculate the 

chronometer time when some slowly-moving (circumpolar) star 

will pass the meridian. When this calculated time arrives, point 

the middle thread or the micrometer thread on the star, using 

the azimuth adjustment screws. This places the instrument 

nearly in the meridian. A repetition of the whole process (on a 

different pair of stars) will give a still closer approximation. 

It is not necessary or desirable to spend much time in re¬ 

ducing the errors of azimuth, level, and collimation to very small 

quantities. They should be so small as to cause no inconvenience 

in making the observations and in computing the results, but 

since they must be determined and allowed for in any case, the 

final result is quite as accurate if the errors themselves are not 

extremely small. 

60. Selecting the Stars for Time Observations. 

There are two general methods of selecting the stars to be used 

for a time determination. The older method requires observa¬ 

tions on ten stars, five with the axis of the telescope in one posi¬ 

tion (say illumination or clamp east) and five with the axis re¬ 

versed (illumination or clamp west). In each half-set one of the 

stars is a slow-moving one, that is, one situated near the pole. 

Of the remaining four stars in each half-set two should preferably 

be north of the zenith and two south of the zenith, and in such 

positions that their azimuth errors balance each other, that is, 

their A factors (see Art. 66) should add up to zero. 

In the more modern method, used with the transit micrometer, 

twelve stars are employed, six in each position of the axis. None 

of these is near the pole, but their positions are so chosen as to 

make the algebraic sum of their A factors nearly equal to zero. 

By the older method the error in azimuth adjustment is more 

accurately determined, but with a proper selection of stars the 

value of the azimuth correction need not be determined so ac- 
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curately, because it has a relatively small effect upon the com¬ 

puted chronometer correction. 

In preparing for observations a list of stars should first be made 

out, giving the name or number of each star, its magnitude, right 

ascension, declination, and zenith distance, together with the 

star factors depending upon its position, as explained later. The 

declination of the stars chosen should be such that the algebraic 

sum of the A factors is less than unity. It is desirable that the 

list contain as many stars per hour as possible, but sufficient 

time must be allowed for reading the stride level, reversing the 

instrument, making records, etc. The telescope should be re¬ 

versed before each half-set. In preparing this list the zenith 

distance of a star is computed by the relation 

f = ^ [17I 

where f is the zenith distance (positive if south of the zenith), 0 

is the latitude, and 5 is the declination (positive for stars north 

of the equator). 

61. Making the Observations. 

In beginning the observations, set the vernier of the finding 

circle at the zenith distance of the first star and bring the bubble 

to the center of its scale by moving the whole telescope. The 

clamp had better not be used if the telescope can be relied upon 

to remain in position when undamped. When the star appears 

in the field, bring it between the two horizontal hairs by tapping 

the telescope with the finger. Set the micrometer line on the 

star and keep it bisected until the observations (4 turns of screw) 

are completed. If the instrument is not provided with a mi¬ 

crometer, the observer simply presses the observing key as the 

star passes each of the vertical threads. When the observations 

are made by the key method, the observer attempts to press the 

key as soon as possible after the star is actually bisected by the 

wire. In doing this he makes an error which tends to become 

constant as the observer gains in experience. This is known as 

his personal equation. Since the personal equation depends 
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chiefly upon the rapidity and uniformity with which the observer 

is able to record his observations, rather than upon his ability to 

bisect the star’s image, the use of the transit micrometer very 

nearly eliminates this error. 

After half the stars in one set have been observed, the axis 

should be reversed, end for end, in the supports. The striding 

level should be read one or more times during each half-set. If 

the pivots are not truly circular in section, the average inclina¬ 

tion of the axis may be found by taking level readings with the 

telescope set at different zenith distances, both north and 

south. 

The striding level should be used with great care, because the 

level corrections may be relatively large and cannot be eliminated 

by the method of observing, as in case of the collimation error 

and, to some extent also, the azimuth error. 

Following is a record of a set of observations as read from the 

chronograph sheet, together with the readings of the striding 

level. (See United States Coast and Geodetic Survey Special 

Publication No. 14, p. 21.) 

62. The Corrections. 

The corrections that have to be applied to the mean of the 

observed times, to reduce it to the time corresponding to the 

meridian passage are those for (1) level, (2) collimation, (3) 

azimuth, (4) rate, and (5) diurnal aberration. 

63. Level Correction. 

The level correction to any observed time, Bb^ is made up of 

the constant 5, depending upon the level readings, and a factor 

depending upon the position of the star and upon the observer’s 

latitude. If w and e are the readings of the west and east end 

of the level bubble in one position, and w' and the readings for 

the second position, then for the first position, the inclination of 

the axis of the level in terms of scale divisions h \ {w — e)\ for 

the second position it is | {w' — c')* The mean of the two is the 

inclination of the transit axis, free from errors of adjustment of 

the level. If b represents the inclination, then 
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Station, Key West. Date, Feb. 14, 1907. Instrument, transit No. 2, 

with transit micrometer. Observer, J. S. Hill. Recorder, J. S. Hill. 

Chronometer, Sidereal 1824. 

Star; S. Monocer. \l/^ Aurigae 18 Monocer. C Geminor. {■ Geminor. 63 Aurigae 

Clamp: W w W W W W 

Level; 

W E W E W E 

d d d d d d 

N 62 0 20 0 S 6t.2 19 4 ^sI 61,5 19 5 

17 7 59 5 17.7 59 fi 17 7 59^ 

+ 44 3 -39 5 +43 5 —40 2 +43 8 -40.2 

+4 8 +3 3 +3 (■> 1 

d 

Computation of level eonsiant: Mean N -f 4 20 

I ! I s + jjo 
3 7S X o 0.^9 o 146 -- 

1- 

h m h m h m h m h m h m 

f> 35 6 39 6 42 6 46 6 5 8 7 04 

„ 'A „ 1/7 <0 
P s p P p c 
p ri s 3 

rf. cr; i-yj 
- . 

‘j: 

■ 

GO X' 

32 0 41 1 73 4 41 3 54 0 95.3 41 5 50 5 92 0 19 5 ,10 1 49 9 ,6. 2t> 0 42 2 55 3 67 0 12.1 3 

32 4 41 \ 0 5 41 8 53 5 0 3 41 9 50 2 0 I 20 0 30 1 50 1 16 s 25 5 2 0 55 6 6«) 5 0 1 

33 1 40 4 0 5 42 8 52 6 0.4 42.5 49 7 0 2 20 6 29 4 0,0 17.2 24 8 2 0 56 4 65.8 0 2 

33 39 8 0 4 4.4 5 51 9 0.4 43 I 49 1 0 2 21 3 28 7 0 0 17 7 24 3 2.0 57 I 6s.i 0 2 

33 9 39 5 0.4 43 9 51 4 0.3 43.3 48 8 0 i 21 7 28 3 0 0 18.0 23.9 1 9 57 5 64 6 0 1 

34-6 38 8 0.4 44 7 50 6 0 3 44 0 48 1 0 i 22 3 27 6 49 9 18 8 23 1 I 9 58 4 63.9 0 3 

35 0 38 5 0 5 45 3 50 3 0 6 44 3 47 9 0 2 22 8 27 1 9 9 19 1 22.9 2 0 58.8 63.4 0 2 

35 6 37 9 0 5 46 0 49 3 0 3 44 8 47 3 0 1 23 6 26 4 50 0 19 8 22 3 2 I 59.5 62.6 0 I 

36.1 37 4 0 5 46 9 48 5 0 4 45 4 46 6 0 0 24 3 25 7 0 0 20 5 21,6 2 1 60.3 61.9 0 2 

36-4 37 I 0 S 47.2 48 1 0 3 45.7 46 3 0 0 24 6 25 4 0.0 20.7 21 4 2 1 60.7 61.5 0 2 

Sum 734.6 Sum 953 6 Sum 921 0 Sum 499-8 Sum 420 3 Sum 1221.9 

Mean 36-73 47 68 46.0s 24.99 21 02 01.10 

K — 0 02 — 0.03 — 0.02 - 0.02 — 0 02 — 0.02 

Bh + 0 14 + 0.19 + 0 14 + 0.17 + 0.16 + 0.18 

t 6 35 36.8s 6 39 47.84 6 42 46 17 6 46 25 14 6 58 21,16 7 OS 01.26 

a 6 35 51.85 6 40 02 92 6 43 01 21 6 46 40.17 6 58 36 16 7 05 16.28 

(a~l) +15 00 +15 08 +15 04 +15 03 + 1500 + 15.02 1 

* K, correction for rate, is negligible in this time set. 
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b = \ [K^c' - e) + i (w' - e')] 

= \ [{w + u<') - (c + e')]. 

If is the value of one division of the level scale expressed in 

seconds of arc, then b in seconds of time is 

b = + W) - {e + e')\, [i8j 

in which the scale divisions are supposed to be numbered each 

way from zero; b is positive if the west end of the axis is too high. 

If, however, the divisions of the level are numbered continuously 

from one end of the tube to the other, the equation is 

J - %v') + {e - c')], [19] 

in which the primed letters refer to that position of the level in 

which the zero of the scale is west. 

64. Pivot Inequality. 

If the pivots are found to be unequal in diameter, then the 

apparent inclination as found from the level readings must be 

corrected by a quantity /?, which is the inequality as found by a 

special set of readings of the level. If ft and <6^^, are the inclina¬ 

tions as derived from the level readings, and ft and b^, the true 

inclinations for the two positions of the axis. 

then 

also 

and 

ft 

be 0c- P] 

b-w — 0w P' \ 
for clamp west.’’ [20] 

To determine the effect of this inclination error on the observed 

time of transit of any star, let S (Fig. 70) be the star observed, 

and let IIS be the path of the vertical thread, inclined to the true 

vertical at an angle i. In the triangle PHS the angle at P is the 

error which is to be computed. The angle at is 6; PS is the 

polar distance, or 90° ~ 5; IIS is the altitude (nearly), or 90° — 

From the triangle PHS, 
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sin P _ sin HS 

sin U sin PS 

or P = b cos f sec 5 (approx.) 

== b • B. [21] 

The factor B may be taken from Table III when the zenith 

distance and the declination of the star are known. 

N 

66. Collimation Correction. 

The correction to the observed time is cC, c being the constant 

angle between the collimation axis and the mean thread, expressed 

PL 

in seconds of time, and C the collimation factor, varying with the 
position of the star. The collimation constant c may be found 
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by special observations, but is usually computed from the time 

observations themselves, as explained later; it is considered 

positive if the line of sight is east of the true position when 

the clamp is east. 

In Fig. 71, P is the pole, S the star, PN the meridian, and SL 

the trace of the thread all points of which are at the same dis¬ 

tance (c) from PN. The error is the angle P. Since the angle 

N is 90^ 

. sin SN sin c 
sin P = —-777, = - 

sin PS cos 6 

or P = c sec b = cC. [22] 

The collimation factor C will be found in Table III. 

66. Azimuth Correction. 

The error of setting the instrument in the meridian is measured 

by the constant a, the azimuth of the axis of collimation expressed 

N 

in seconds of time. This constant is derived from the varia¬ 

tions in the observations themselves. In Fig. 72, P is the pole, 

Z the zenith, and 5 the star. In the triangle PZS, P is the re¬ 

quired correction, and S'ZS is a, the azimuth error. Applying 

the law of sines. 
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sin P sin f 

sin S'ZS ~ cos b' 

or P = a sin f sec 5 

= a ■ A. [23] 

The azimuth factor A may be taken from Table III. The con¬ 

stant a is positive when the plane of the axis of collimation is east 

of south. A is positive for all stars except those between the 

zenith and the pole. 

67. Rate Correction. 

In order to compute these corrections it is necessary to reduce 

all observations of the chronometer correction to some definite 

epoch, for example, the mean of all the observed times, so that 

variations in the chronometer correction itself will not affect the 

determination of the transit errors. This is done by applying 

the correction 
R = (t - T,) O;, [24] 

where t is the chronometer time of transit, 

To is the mean epoch of the set, 

and rjt is the hourly rate of the chronometer, positive if losing, 

negative if gaining. 

68. Diurnal Aberration. 

The motion of the observer due to the diurnal motion of the 

earth makes all stars appear farther east than they actually are; 

in other words it apparently increases their right ascensions. The 

amount of the correction is expressed by the equation 

K = 0^021 cos (j> sec 5. [25] 

This formula may be derived as follows: the velocity of a point 

on the earth’s equator (toward the east) is 0.288 mile per second. 

For any other latitude the velocity is 0.288 cos <!> mile per second. 

The velocity of light is 186,000 miles per second, and the angular 

displacement (k) of the star toward the east point of the horizon 

, . , 0.288 cos <l> 
IS therefore equal to tan“^ — 777- 

^ 186,000 
The effect on the ob- 
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served time is the angle k at the pole, Fig. 73. Hence 

sin K sin / 

sin 90"^ cos 6 

or K = o".3i9 cos </> sec 5 

= 0^021 cos sec 5. 

Values of this correction will be found in Table TV. 

Ftg. 73. 

69. Formula for the Chronometer Correction. 
The true sidereal time, or right ascension of the star, is given 

by the equation 

a = / T -f- #c T Bh -f“ Cc, [26] 

in which t is the mean of the observed transits and AT is the 

chronometer correction. Since the corrections for aberration, 

rate, and inclination may be found directly, they are applied to 

t at once. If we call h the value of t thus corrected, then 

OL — ti = AT A a CXy 
or AT = (a — t\) — Aa — Cc. [27] 

70. Method of Deriving Constants a and c, and the Chro¬ 
nometer Correction, AT. 

The method shown in the following table is the one used when 

the observations are made with the transit micrometer and 
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when the latitude is less than 50°. For greater latitudes the 

observations are reduced by the method of least squares. 

COMPUTATION OF TIME SET. 

[Station, Key West, Florida. Date, Feb. 14, 1907. Set, 2. Observer, J. S. 
Hill. Computer, J. S. Hill.] 

The serial numbers in the lower part of the table show the 

order of the different steps of the computation. Equation i is 

obtained by taking the terms corresponding to the three southern¬ 

most stars (that is, Nos. r, 3, and 5), substituting the sums of 

these numbers in the equation AT + Cc + .4a — (a — /i) = o, 

and treating this result as though it were the equation for a single 
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star. Equations 2, 3, and 4 are found in a similar manner. This 

gives four equations for the twelve stars, two for each half-set. 

Since there are now as many equations as there are unknowns, 

the quantities c, dR, and AT may be found by solving these 

equations simultaneously. Notice that in this solution 15^ has 

been dropped from AT, and that bt is the small correction which 

must be added to 15^ to obtain AT. 

The following method of deriving the constants and the 

chronometer correction without employing least squares is 

applicable when the two groups of stars have A factors which are 

not so nearly balanced, or where the list of observed stars con¬ 

sists of one slowly-moving (azimuth) star and several time stars 

in each half-set. This method gives, by a series of approxima¬ 

tions, very nearly the same result that would be obtained by the 

method of least squares. The various steps in the computation 

are shown in tabular form in Fig. 74. 

The formulas on which the method is based are as follows: 

For each star we may write an equation of the form 

OL — li — A-/ Ad “b C c, [28] 

Then for the east and west groups we have 

(a — ti)w = AT + Awdw + CwCj ] , s 

(« — ti)E = AT + AEdE + Crc. j 

Assuming at first that dE and aw are equal, we find an approxi¬ 

mate value of c by subtracting the second equation from the 

first. Solving for c, we find 

_ ~ — {a ~ t[)E 

Cw ~ ^ E 

In the above example, 

c 
1Q.25 - 1Q.17 

1.42 + 1.34 
+0.03. 

Using this approximate value of c, the last terms in Equations (a) 

are computed and subtracted from {a — /j) in each case, leaving 
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the equations in the form 

(« i\ — Cc) = AT + Awa^r. 

Taking each half-set separately, and also grouping the azimuth 

star and the time stars separately, we have for the next group 

(a — /i — Cc) ~ Al {Awii^w) I . 

(a — ti — Cc) = AT + (^Awiiw) I 

and a similar pair of equations for the second j^osition of the axis. 

From Equations {h) we derive 

LlW 

In the example, 

and 

(o: t\ Cc)az. ^ c) time 

Qe = 

clw = 

Aaz. A/ifne 

IQ.qS — 1C).21 

— 0.96 — 0.03 

20.74 — 19.21 

-2.05 + 0.03 

= —0.78 

= —0.76. 

Employing these approximate values of aE and the A a cor¬ 

rections are computed and subtracted, giving the value in the 

column headed a — h — Cc — Aa. For the time stars these 

values are 19.23 and 19.ig. Since these values do not agree for 

the two positions of the instrument, the value of c is evidently in 

error. A second approximation must be made by treating the 

difference of these numbers (0.04) as an error in c and obtaining 

a correction to c by the same process that was used in finding c in 

the first instance, that is, 

. ig-fO “ 19-3 
Correction to c =-r—- = —0.014. 

1.42 + 1.34 

Hence c -= +0.03 - 0.014 = +0.016. 

With this improved value of c new values of as and aiv are com¬ 

puted as before. The second values are aE = -0.768 and aw = 

—0.772. Using these values, the chronometer corrections are 

found to agree, and hence no further approximation is necessary. 

The azimuth and collimation corrections are now found for each 
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Star, as shown in the upper part of the table. The mean of the 

AT's for all the stars is the chronometer correction for the mean 

of the observed times. The residuals (v) are computed by sub¬ 

tracting AT for each star from the mean of the AT\s for that 

group. These should add up nearly to zero. 

Whenever the most accurate results are desired, the computa¬ 

tion may be made by the method of least squares. For the 

details of this method see Coast and Geodetic Survey Special 

Publication No. 14, page 41. 

71. Accuracy of Results. 

The error in the computed value of AT due to accidental 

errors may easily be kept within a few hundredths of a second. 

Observations made by the key method may be subject to a large 

constant error, the observer’s personal equation, which may be 

several times as large as the accidental error. Observations made 

with the transit micrometer are nearly free from personal errors. 

72. Determination of Differences in Longitude. 

The determination of the difference in longitude of two sta¬ 

tions consists in measuring the difference between the local 

sidereal times at the two places, usually determined by transits 

of stars over the meridian. Previous to 1922 the method almost 

exclusively used in this country for accurate longitudes in places 

where a telegraph line was available was that in which the local 

sidereal times are compared by electric signals sent over the 

telegraph line. 

According to the usual program each observer, provided with 

a transit, chronometer, and chronograph, determines the local 

sidereal time by the method previously described; then the 

two chronometers are directly compared by means of arbitrary 

signals, which are sent over the telegraph line and recorded 

simultaneously on the two chronographs; and finally, each 

observer again determines the local time by star transits. 

According to the Coast Survey instructions (Special Publica¬ 

tion No. 14) each half-set should consist of observations on 

from 5 to 7 stars (preferably 6), all of which are time stars, no 
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azimuth star being used in this method. The algebraic sum of 

the azimuth factors {A) should be less than unity. Four half- 

sets are observed during an evening, and the telescope axis is 

reversed before each half-set. The observers do not exchange 

places, during the occupancy of the stations, as was formerly 

the practice, since the transit micrometers eliminate most of the 

personal error. Observations on three or four sights usually 

give the required accuracy. 

Figure 75 shows the switch-board and the arrangement of the 

electrical circuits required in longitude observations. When the 

observer is making observations for time the circuit is arranged 

as shown in Fig. 68. Figure 76 shows the circuits as arranged 

during the exchange of arbitrary signals. These signals are 

made by tapping the signal key in the main-line circuit. Half 

of these signals are sent by the eastern observer, and half by the 

western observer; the error due to the transmission time is 

eliminated by taking the mean. The chronometers mark the 

record sheets while the signals are being sent, so that the time 

of each signal may be read from each chronograph sheet. These 

chronometer times are reduced to true local sidereal times by 

applying the interpolated chronometer corrections. The differ¬ 

ence in longitude is the difference between the true sidereal times. 

73. Observations by Key Method. 

If the transit micrometer is not used, the selection of stars 

must be modified so as to allow more time between observations. 

Since the observed times will be subject to the personal errors of 

the observers, it is important that the observers exchange places 

at the middle of the series, so that their relative personal equa¬ 

tion will enter the latter half of the observations with its alge¬ 

braic sign changed. The arrangement of the circuits is shown 

in Figs. 67 and 77, in which an observing key replaces the relay 

and circuit of the transit micrometer. 

73a. Longitude by Radio Time Signals. 

Since 1922 the difference of longitude has been determined by 

recording on the chronograph of the observing station the 10 p.m. 
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Fig. 76. Electrical Connections — Exchange of Signals — Transit 
Micrometer Method. 

Fig. 77. Electrical Connections — Exchange of Signals — Key Method. 
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lime signal (Eastern Time) sent out by the U. S. Naval Observa¬ 

tory at Washington, either over NSS (Annapolis) or NAA 

(Arlington). It is therefore unnecessary to occupy two longitude 

stations, as was formerly done, because in all cases the Naval 

Observatory replaces one of them. The receiving apparatus 

used for recording this signal was developed at the U. S. Bureau 

of Standards for the U. S. Coast and Geodetic Survey in 1921. 

The radio apparatus consists of a three-stage radio amplifier 

and a radio recorder. The latter has a high resistance radio 

relay which operates the circuit of the chronograph. Figure 78 

shows the wiring diagram of the hook up for longitude work. 

The original apparatus is described in Special Publication No. 

109, by George D. Cowie, Geodetic Engineer, Coast and Geo¬ 

detic Survey, and E. A. Eckhardt, Physicist, Bureau of Standards. 

The star list used and the method of making the observations 

are nearly the same as those previously given. The lag of the 

signal, which includes that of the local circuits, must be deter¬ 

mined for any apparatus, but once determined appears to be very 

nearly constant. The time signal gives the instant of 22^ 

Eastern Standard Time. This is reduced to Sidereal time at the 

center of the clock house of the Naval Observatory, longitude 

5*08^ 15^784. All time signals are received at the observatory 

so that any error in the time of sending the signal is measured 

and recorded. The effect of this error may be included in the 

computation of the longitude. About 40 radio signals are used 

in comparing the local time with Washington time. The accu¬ 

racy required can be obtained from about 3 or 4 nights observa¬ 

tions. 

This method eliminates one observing station and is therefore 

less expensive than the older method. The observer is inde¬ 

pendent of the location of telegraph lines and may determine a 

longitude at any place to which the instruments can be trans¬ 

ported. The total time required is materially less than with 

the older method. Another advantage of this method is that 

since all stations are compared directly with Washington errors 
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cannot accumulate from station to station. The accuracy of 

the results appears to be quite as high as with the older methods. 

In all longitude determinations one of the largest errors is 

the uncertainty in the chronometer correction. This is liable 

to vary irregularly, and even during the short interval between 

the two sets of time observations it may appreciably affect the 

time signals between the longitude stations. It has been pro¬ 

posed to use a half-seconds invariable pendulum to control the 

chronometer error. (See Chapter IX.) The variations in the 

period of these pendulums is found to be very much smaller than 

the variations in the running of a chronometer and this method 

promises to increase greatly the accuracy of longitude deter¬ 

minations. The chronometer can be compared with the pen¬ 

dulum by the method of coincidences, so it is possible to obtain 

a complete record of the variations in the chronometer rate 

during the longitude observations. 

74. Correction for Variation of the Pole. 

The periodic variation of the position of the pole affects all 

observations for longitude and must be allowed for by applying 

the corrections for the date of the observation. (See Art. 8i, 

p. 149.) 

74a. Accuracy of Results. 

The accuracy of longitude determinations has been greatly 

increased by the introduction of the transit micrometer. As an 

example of results obtained with the broken telescope transit 

equipped with transit micrometer we may quote the results 

obtained in 1916* in connection with the trans-Atlantic longi¬ 

tudes, which are as follows: 

Longitude differences. 
Probable error of 

determination. 

Far Rockaway— Washington. ±oLoo28 

±0L0024 

±aLoo3i 
Cambridge — Washington. 
Cambridge — Far Rockaway. 

* U. S. Coast and Geodetic Survey Special Publication No. 35. Observations 

by Fremont Morse and O. B. French. 
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The longitudes of stations in the United States as determined 

from Europe through cables previous to 1900 were sul)ject to 

errors of some 0^05. Subsequent improvements in the methods 

and instruments gave results showing errors of only about one- 

tenth of this amount. 

The accuracy of longitudes determined by radio signals 

appears to be about as high as that of the telegraphic determina¬ 

tions. The uncertain factor in these radio determinations is 

the amount of lag in the mechanical parts of the apparatus. 

The amount of this lag has been determined and it is considered 

that radio longitudes are sufficiently accurate for geodetic 

purposes. 

76. Determination of Latitude. 

The method which has been chiefly used in this country for 

determining astronomical latitudes for geodetic purposes is that 

known as Talcott’s (or the Harrebow-Talcott) Method. The 

instrument employed is the zenith telescope, illustrated in Fig. 

79. The principle involved is that of measuring, not the absolute 

zenith distances of stars, as is done with the meridian circle, but 

the small difercnce between the zenith distances of two stars 

which are on opposite sides of the zenith. By a proper selection 

of stars this difference in zenith distance may be made so small 

that the whole angular distance to be measured comes within 

the range of the eye-piece micrometer, which for most instru¬ 

ments is about half a degree. A sensitive spirit level attached 

to the telescope serves to measure any slight change in the in¬ 

clination of the vertical axis of the instrument between the two 

observations on a pair of stars. The accuracy of the results 

obtained by this method is superior to that of every other field 

method, and compares favorably with the results obtained with 

the largest instruments. 

The horizontal axis of the telescope is very short as compared 

with that of the transit instrument; small errors in the inclina¬ 

tion of the axis, however, have very little effect upon the results; 

a close adjustment is therefore unnecessary. Since the instru- 
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Fig. 79. Zenith Telescope, (Coast and Geodetic Survey.) 
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merit is used in the plane of the meridian and must be quickly 

turned from the north side to the south, or vice versa, the hori¬ 

zontal circle is provided with stops which are adjustable, so that 

the telescope may be quickly changed from one side of the zenith 

to the other. The micrometer, placed in the focal plane of the 

eye-piece, is set so as to permit of measuring small angles in the 

vertical plane. The head of the screw is graduated to read to 

about o".5 directly and to o".o5 by estimation. The spirit level 

has an angular value of one (2^^) division equal to about i".5. 

76. Adjustments of the Zenith Telescope. 

When the instrument is in perfect adjustment, the plate 

levels should be central in all azimuths as the telescope is turned 

about the vertical axis. The leveling may be perfected by use 

of the more sensitive latitude level. The horizontal axis must 

be at right angles to the vertical axis. The movable micrometer 

threads must be truly horizontal. They may be adjusted by a 

method similar to that used in adjusting the engineer’s level — 

by swinging the telescope horizontally through a small angle and 

observing whether the thread remains on a fixed point. The 

collimation adjustment should be made in the same manner as in 

a transit, but is not of so great importance. Allowance must be 

made for the eccentricity of the telescope when making the colli¬ 

mation adjustment. The value of one turn of the micrometer 

may be determined approximately by observations upon a close 

circumpolar star near its elongation. The most satisfactory way, 

however, is to derive the value of one turn from the latitude 

observations themselves, by the method of least squares. The 

value of one division of the latitude level may be determined by 

means of a level trier, or it may be found by varying the inclina¬ 

tion of the telescope and employing the eye-piece micrometer to 

determine the amount of this inclination by observations on a 

terrestrial mark. 
When in use the instrument is mounted on a wooden or concrete 

pier. It is usually protected by a tent or other temporary shelter. 

In order to make the observations, it is necessary to have a 
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chronometer regulated to local sidereal time with an error not 

exceeding one second of time. 

77. Selecting Stars. 

The list of stars in the American Ephemeris will not ordinarily 

be sufficient for latitude observations, on account of the exacting 

nature of the conditions. It will be necessary to consult such 

star catalogues as Boss’s Preliminary General Catalogue of 6188 

stars for the Epoch igoo^ or one of the Greenwich catalogues. In 

order to keep the zenith distances within the required limits, it 

will often be necessary to observe on stars which are much fainter 

than those used for time observations. The pairs of stars selected 

should, if possible, differ by less than 20^ in their right ascension 

and by less than 20' in their declinations. The actual zenith 

distance of a star should not exceed 45°. Following is a speci¬ 

men star list for zenith telescope observations. 

OBSERVING LIST (FORM 1). 

[St. Anne, Ill., June 25, 1908. Zenith telescope No. 4. <f> — 41° 01'.3. 

Search factor = 2 = 82° 03'.] 
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4327 4 •5 16 55 22 82 II N T2 

4379 4 •9 17 IX 53 — 0 21 82 32 8x 50 -13 -17 S 41 16 28 

4441 5 9 17 28 13 28 28 S 10 

4494 5 8 17 42 04 53 50 25 22 82 18 + 15 + 20 N 12 41 30 

4f>^3 5 I 18 13 22 64 22 N 24 

4651 5 4 18 18 45 17 47 46 35 82 09 + 6 4- 8 S 23 3 8 16 

4669 5 9 18 22 26 29 47 S 20 

4711 5 5 18 31 52 $2 17 22 30 82 04 + T + I N 11 IS 20 

* a — number of turns of the micrometer screw in one minute of arc = 1.34. The value of 

one turn of the micrometer screw — 44",65o. 

78. Making the Observations. 

In observing on a pair the finder circle is set for the mean of the 

two zenith distances, and the level is brought nearly to the center 
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of the tube. If the northerly star of the pair culminates first, 

the telescope is set on the north side of the meridian by means 

of the azimuth stop. When the star enters the field, the observer 

bisects it with the micrometer line. If a pair of lines is used, the 

star is centered in the space between the two. When the star is 

on the meridian, as shown by the chronometer reading, the bi¬ 

section of the star is perfected; the latitude level is read im¬ 

mediately, and then the Lcale of the micrometer screw. As soon 

as these readings are recorded, the telescope is turned to the 

south side of the meridian and the bubble is brought to the center, 

if necessary, by moving the whole telescope. In leveling the 

bubble the tangent screw of the setting circle must not be dis¬ 

turbed in any case, because the accuracy of the method depends 

upon preserving a fixed relation between the direction of the 

zero micrometer reading and the axis of the latitude level. The 

slightest change in the angle between these two during the ob¬ 

servations on a pair will render the observations worthless. 

When the southern star appears in the field the pointing and the 

readings are made exactly as for the northern star. 

79. Formula for the Latitude. 

The principle involved in this method may be seen in Fig. 80. 

The latitude, EZ, as derived from the southern star, is 

EZ = £5, + 5,Z, 

Dr 0 = 5^ -f- 

and from the northern star it is 

EZ = ESn - ZSn, 

or ^ K - f«. 
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The mean of the two values of <l> is 

If we let 

^5 + 

<p = :: "T — [29] 

fts and 5^ = the level readings for the southerly star, 

n„ and = the level readings for the northerly star, 

d = the angular value of one division of the level, 

Ys and Tn — the refraction corrections, 

Ms and = the micrometer readings, 

and R — the value of one turn of the micrometer, 

then the latitude is determined by the equation 

0 == - (5^ q. ^ q. q. 

+ ^(rv-‘rj. [30] 

This formula applies when the zero of the level scale is in the 

center of the tube. If the zero is at the objective end of the 

tube, the level correction is 

- n„) + {Ss - 5„)}. 
4 

If for any reason the observations are not made when the star is 

exactly on the meridian, another term must be added to the above 

formula; this will be of the form +| (nis + fn„) when nis and 

are the reductions of the measured zenith distances to the true 

zenith distances. (See Special Publication No. 14, p. 119.) For 

the application of least squares to the computation of latitude see 

Chauvenet, Spherical and Practical Astronomy; Hayford, Geodetic 

Astronomy; and Coast and Geodetic Survey Special Publication 

No. 14. 

80. Calculation of the Declinations. 

When the stars selected are not found in the Ephemeris, it 

will be necessary to calculate the apparent declinations for the 

date of the observation. Formulae and tables for making these 
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reductions will be found in Part II of the Ephemeris. See also 

Coast and Geodetic Survey Special Publication No, 14, p. 116. 

81. Correction for Variation of the Pole. 

The observed latitude may be in error by several tenths of a 
second, owing to the fact that the observed value necessarily 

riG. 81. Showing Changes in Position of North Pole between 1912 and 1920. 

refers to the position of the pole at the date of the observation, 

whereas the fixed value of the latitude of a place is that referred 

to the mean position of the pole. Figure 81 shows the plotted 

positions of the pole for every o.i year during the period 1912.0 

to 1920.0. The coordinates of the instantaneous pole and data 

for correcting observed values were formerly published by the 

International Geodetic Association. They are now (1929) 

published by Prof. H. Kimura in the Proceedings of the (Jap¬ 

anese) Imperial Academy. 
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82. Reduction of the Latitude to Sea-Level. 

In order that all latitudes may refer to the same level surface, 

they are all reduced to their values at sea-level. If we suppose a 

lake surface, in the northern hemisphere, to be at a great height 

above sea-level, then it may be shown that the northern end of 

this lake surface is actually nearer to the surface of the sea than 

is the southern end of the lake surface. If we imagine a series 

of such surfaces at varying heights above sea-level, it is obvious 

that the vertical is a curved line, since it must at every point be 

normal to the level surface passing through that point. Evi¬ 

dently this curved line is concave toward the earth’s rotation 

axis. To correct an observed latitude at elevation h to the cor¬ 

responding latitude at sea-level, it is necessary to apply the 

correction 
A0 = —o".o52 h sin 2 <^, [31] 

where h is in thousands of feet. If h is expressed in meters, the 

formula becomes 

A0 = —0.000171 h sin 2 (j). [32] 

(See Art. 170, p. 325.) Values of this correction will be found 

in Table VII. Below is an example of the form of record and 

computation of latitude from Special Publication No, 14. 

RECORD OF LATITUDE OBSERVATION. 

[Station, St. Anno. Date, June 25, 1908. Chronometer, 2637. Observer, 

W. Bowie.] 

No. of 

pair. 

Star 

number 

Boss 

cat. 

N or 

S. 

Micrometer. Level. 
Chro¬ 

nom¬ 

eter 

time of 

culmi¬ 

nation. 

Chro¬ 

nometer 

time of 

observa¬ 

tion. 

Meri¬ 

dian 

dis¬ 

tance. 

Re. 

marks. 

Turns. Div’s. North, South. 

4623 'n 24 88.2 9-2 42 .6 

71.6 103.8 18 13 18 

II 4651 s 16 66,0 42.2 - 8.7 * 18 18 39 
* 

+ i6t 
103.2 71 .0 

.... . 

• These columns used only when star is observed off the meridian. 

t This is the continuous sum, up to this pair, of the south minus the north micrometer turns. 
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LATITUDE COMPUTATION 

Value of one division of latitude level; Upper —i" ^>00 

Lower — i 364 

Mean — i 482 

Value; of one turn of micrometer = 44".650 

83. Accuracy of the Observed Latitude. 

The latitude may be determined by this method with a prob¬ 

able error of from o'^3 to o".4 from one pair of stars. The final 

value for the latitude of the station determined from as many 

pairs of stars as can be observed on one night may be found with 

an error of from o".o5 to o".to (or 5 to 10 feet). It is not consid¬ 

ered advisable to observe the same pair of stars on several 

nights, as was formerly the practice, owing to the comparatively 

large errors in the declinations themselves. The present practice 

is to observe each pair but once and to observe such a number 

of pairs that the uncertainty of the final latitude is not greater 

than o".io. 
In view of the fact that nearly every latitude is affected by a 

station error which may amount to several seconds, and that the 

real object of the observation is to determine this station error, 

it is better to determine a large number of latitudes with the 

degree of accuracy above mentioned than to attempt to diminish 
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the error of observation and occupy but a small number of 

stations. This results in the practice of occupying stations but 

one night, unless for some reason it is apparent that the required 

accuracy will not be reached without additional observations. 

84. Determination of Azimuth. 

When determining an azimuth for the ])urpose of orienting a 

triangulation system, the observer usually has a choice of several 

methods, all of them capable of yielding the required accuracy, 

for example, (i) measuring the angles between a circumpolar 

star and the triangulation lines by means of the direction in¬ 

strument, (2) measuring from a triangulation station to a cir¬ 

cumpolar star with the repeating instrument, or (3) measuring 

from a circumpolar star to an azimuth mark with the micrometer 

of a transit instrument. In all determinations of azimuth it is 

necessary to know the local time in order to compute the azimuth 

of the star. This must be found by special observations, unless, 

as is often the case, the longitude is being determined at the same 

time and the chronometer correction is already known. For the 

purpose of orienting the primary triangulation it is necessary to 

determine the azimuth with an error not exceeding ©".50. At 

Laplace stations (coincident triangulation, longitude, and azi¬ 

muth stations), where the accumulated twist of the chain of tri¬ 

angles is to be determined, it is desirable to determine the azi¬ 

muth within 0^.30 or less. It is also desirable that the instru¬ 

ment station and the azimuth mark should both be triangulation 

stations. When horizontal angles are being measured at night, 

the azimuth observation is made a part of the same program by 

including pointings on a circumpolar star with the regular series 

of pointings on lights at the triangulation stations. An azimuth 

found by this method is more accurate than one determined by 

means of an auxiliary point and subsequently connected with 

the triangulation by means of a horizontal angle measured by 

daylight. 

On account of the slow apparent motions of stars near the pole, 

nearly all accurate azimuth observations are made on close cir- 
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cumpolars, since errors of the latitude and the time have less 

effect on the result than for stars farther from the pole. The 
stars ordinarily used for azimuth observations are shown in 
Fig. 82. 

86. Formula for Azimuth. 

In general all these methods consist in calculating the azimuth 

of the star at the instant of observation and combining this 

azimuth with the measured horizontal angle from the star to the 
station. The azimuth of a circumpolar star is found by the 

formula 

,, sin / , , 
tan Z = —-—-^—-- 

cos </) tan 6 — sin </> cos I 

where Z is the azimuth measured from the north toward the east, 

and t is the hour angle. 
If Equa. [33] be divided by cos 0 tan 5, then 

„ cot 5 sec 0 sin t 
tan Z = —--“TT---, 

I — cot 5 tan 0 cos t 

= — cot 5 sec 0 sin t 1,34] 
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If values of —— are tabulated,* this formula will be found more 
1 — a 

convenient than Equa. [33J. 

86. Curvature Correction. 

In computing the azimuth of the star it would evidently be 

inconvenient to apply the formula to each separate pointing on 

the star, on account of the large amount of computation. It is 

simpler and sufficiently accurate to calculate the azimuth of the 

star at the mean of the observed times of pointing, and then to 

correct the computed azimuth for the small difference between 

this azimuth and the mean of all the azimuths. The correction 

for this difference is 

2 sin^- 

Curvature Correction = —tan Z - X—:-77 > 

in which n = the number of pointings 

and T = the interval of time between the observed time 

and the mean. 

The sign of the correction is such that it always decreases the 

angle between the star and the pole. For the derivation of this 

formula see Hayford’s Geodetic Astrojiomy, p. 213. The correc¬ 

tion may also be written in the form —tan Z [6.73672] ^ r^. 

(See Doolittle’s Practical Astronomy, p. 537.) 

87. Correction for Diurnal Aberration. 

On account of the motion of the observer, due to the earth’s 

rotation, the star is apparently displaced toward the east. The 

correction to the computed azimuth for the effect of this apparent 

displacement is given by the expression 

r Ai // cosZcos</> , 
Corr. for Aberra. = o .12-- h6 

cos A ^ 

This correction is always positive for an azimuth counted clock- 

For a table of values of log —^ see Special Pub. No. 14. 
1 — a 
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wise. For the derivation of this formula see Doolittle’s Practical 
Astronomy, p. 530. 

88. Level Correction. 

If the horizontal axis is not level when a pointing is made on 

the star, the observed direction must be corrected by the follow^ 
ing quantity: 

Lev. Corn == ^\{w + w') — (c + c')] tan h. [37] 

For proof of this formula see pp. 83 and 126. If the level is 
graduated from one end to the other 

Lev. Corr. = - l(io — «»') + (c 
4 

c')] tan //, 188] 

where w and e are read before, and w' and c' are read after, the 

reversal of the striding level. If the azimuth mark is not near 

the horizon, it is necessary to apply a similar correction to the 

observed direction of the mark. The correction is to be added 

algebraically to readings which increase in a clockwise direction. 

89. The Direction Method. 

In observing for azimuth by this method the measurements are 

carried out very nearly as they are for triangulation, except that 

the chronometer is read whenever the star is sighted and that 

level readings are taken to determine the inclination of the axis 

and altitude readings of the star arc taken. 

The observations should be taken in several positions of the 

circle. In each position of the circle the observations will include 

(1) a pointing on the mark, with readings of the microscope, 

(2) a pointing on the star, with reading of chronometer, striding 

level and microscopes, (3), after reversal of the telescope, a 

pointing on the star with readings of the chronometer, striding 

level and microscopes, and (4) a pointing on the mark with 

readings of the microscopes. If the different steps are taken 

in the following order it will be found to economize time and yet 

give the bubble of the striding level time to settle and also give 

the recorder ample time to read the chronometer and record the 
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time. After completing the pointing and reading on the mark 

sight the telescope approximately on the star, and call for the 

recorder to be ready. Place the striding level in position, point 

accurately on the star and call “tip” to the recorder when the 

pointing is made. Read the two ends of the bubble, but do not 

give them to the recorder until his time record has been made. 

Reverse the striding level, and prepare to read the first microme¬ 

ter. As soon as the recorder calls “ready” the first level read¬ 

ings are given to him, and then the micrometer readings, in 

their proper order. The second (reversed) readings of the striding 

level are taken and called off to the recorder. This completes 

half the set for this position of the circle. Remove the striding 

level, reverse the telescope, bring the star to the center of the 

field, call for the recorder to be ready, place the striding level in 

position, then perfect the pointing on the star, etc. Complete 

the readings exactly as for the first half. Finally make a second 

pointing on the mark. The altitude of the star should be read 

to the nearest minute after each pointing, or at least twice during 

the observations. 

If the azimuth mark is far above or below the horizon, level 

readings should be taken when the mark is sighted. 

If the azimuth observation is being taken as a part of the pro¬ 

gram of triangulation at night the above directions should be 

modified accordingly. The signals should be sighted in order 

around the horizon, the star being sighted in its turn; after 

reversing the telescope the signals should be sighted in the re¬ 

verse order, the star being sighted again in its turn. The details 

of the sight on the star would be the same as already described. 

On pp. 157 and 158 is an example of the form of record and 

computation of an azimuth by the method of directions. 
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HORIZONTAL DIRECTIONS 

[Station, Sears, Tex. (Triangulation Station). Observer, W. Bowie. In¬ 
strument, Theodolite i68. Date, Dec. 22, 1908.] 
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COMPUTATION OF AZIMUTH, DIRECTION METHOD. 
[vStation, vSears, Tex. Chronometer, sidereal 1769. </> = 32° 33'31" 

Instrument, theodolite 168. Observer, W. Bowie.] 

Date, 1908, position . Dec. 22, I 2 3 4 
Chronometer reading. 1 49 50 8 2 01 33 0 2 16 31 0 2 43 28 8 

Chronometer correction. — 4 37 S — 4 37 5 - 4 37 4 — 4 37 3 
Sidereal time. 1 45 13 3 I .56 55 5 2 II 53 6 2 38 51 5 
a of Polaris. 1 26 41 9 1 26 41 9 1 26 41 8 1 26 41 8 

t of Polaris (time). 0 18 31 4 0 30 13.6 0 45 118 I 12 09.7 

t of Polaris (arc). 4“ 37' 51" 0 7° 33' 24" 0 11” 17' 57".0 18° 02' 25" 5 

8 of Polaris. 88 49 27 4 

log cot 5. 8 31224 8 31224 8 31224 8 31224 

log tan 0. 9 80517 9 80517 9 80517 9 80517 
log cos t. 9.99858 9 99621 9 99150 9 97811 

log a (to five places). 8.11599 8 11362 8.10891 8.09552 

log cot 5. 8 312243 8 3122.13 8 312243 8 312243 
log sec 0. 0 074254 0 074254 0 074254 0.074254 
log sin t. 8 907064 9.118948 9.292105 9 490924 

I 
log.. 0.005710 0 005679 0 005618 0.005445 

I — a 

log (—tan .1) (to 6 places). 7 299271 7 511124 7 684220 7.8S2866 

A — Azimuth of Polaris,from north* 0 06 50 8 0 11 09 2 0 16 36 9 0 26 15.0 

DilTerence in time between D. m A m -S'' m 5 m s 

and R. 2 30 2 00 A t8 i 38 

('urvature correction . 
1 * 

0 0 0 

0“ T~ y // 0 ’ / // 

Altitude of Polaris = h. AJ 46 33 46 3.1 46 33 46 

- tan h — level factor. 
4 

0 701 0 701 Q 701 0 701 

Inclination t. -7.0 -7 2 -7. 0 — 1 8 

Level correction. -4.9 —5 0 -4 9 -I 3 
Circle reads on Polaris. 252 01 29.6 86 S8 11 2 281 54 27 0 116 45 48 6 

Corrected reading on Polaris. 252 01 24 7 86 58 06 2 281 54 22.1 II6 45 47.3 
Circle reads on mark. 170 14 57 0 5 15 58.2 200 17 42,4 35 18 45.4 

Difference, mark — Polaris. 278 13 32 3 

0
0

 17 52.0 278 23 20.3 278 32 58.I 
Corrected azimuth of Polaris, from 

north *. . 0 06 SO 8 0 II 09 2 0 16 36 9 0 26 IS O 

180 00 00.0 180 00 00 0 180 00 00 0 180 00 00 0 

Azimuth of Allen . 98 06 41 5 98 06 42.8 98 06 43 4 98 06 43.1 

(Clockwise from South) 

To the mean result from the above computation must be applied corrections for diurnal aberra¬ 
tion and -^‘ccentricity if any) of Mark. 

Carry times and angles to tenths of seconds only. 
* Minus, if west of north. 
t The values shown in this line are actually four times the inclination of the horizontal axis 

in terms of level divisions. 
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90. Method of Repetition. 
In observing by the repetition method the program given on 

p. 89 is followed, with the addition of readings of the chronom¬ 
eter and the stride level, taken when the telescope is pointing at 
the star. The altitude of the star should be measured, if possible, 
but may be computed from the known time if necessary. The 
verniers are read only at the beginning and end of a half-set, as 
when measuring the angles of a triangulation. 

Following is an example of the form of record and computation 
of an azimuth by the method of repetition. 

RECORD — AZIMUTH BY REPETITIONS. 

[Station, Kahatchcc A. State, Alabama. Date, June 6, 1898. Observer, 
O. B. F. Instrument, lo-inch Gambey No. 63. Star, Polaris.] 

(One division striding level = 2 "67.] 

(Jl)jects. 
Chr. time 
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Level read¬ 
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h VI s 

. 
0 , „ 

Mark. D 0 178 03 22.5 20 21 . 2 

Star. 14 4G 30 I 4 5 10.7 

9-2 5-9 
49 08 2 

52 51 D 3 9TI 5.6 

5 2 1 •) .0 

50 10 R 4 TI-3 4-0 
7.8 7-4 

Srt No. 5. . 14 59 12 5 
15 01 55 R G 8.7 6.G 100 16 20 20 20 72 57 50.2 

II 9 3 4 

14 54 17.7 68.2 53-6 
-f 14.6 

Star. 15 04 44 R I II.9 3-4 

8-5 6.8 

07 t8 2 

09 54 R 3 7-9 7-3 
11.2 41 

Set No. 6. . 14 15 D 4 9-0 6.1 

5-9 9.6 

16 U 5 
15 18 24 6 5-9 9.6 

9-1 6.2 

Mark. D 177 27 00 00 00 72 51 46.7 

15 II 48.2 69-4 53 • I 

1 

4-16.3 
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COMPUTATION — AZIMUTH BY REPETITIONS 
[Kahatchee, Ala. 0 = 33° 13' 40".33.] 

Date, 1898, set.. . June 6 5 
T4 54 17-7 

-31 I 
14 53 46.6 

I 21 20.3 
13 32 26.3 

203^06'34".5 
88 45 46.9 

8.33430 
9.81629 
9.96367^ 

J une 6 6 
15 11 48 2 

-31 1 
15 II 17.1 

1 21 20.3 
13 49 56 8 

207° 29' 12".0 

8.33430 
9.81629 
9.94798^ 

Chronometer reading. 
Chronometer correction. 
Sidereal time. 
a of Polaris. 
t of Polaris (time). 
t of Polaris (arc) 
5 of Polaris. 

log cot h. 
log tan 0. 
log cos t. . 

log a (to five places) ... | 8.ii426n 

log cot 5. ' 8 334305 
log sec 0. 0.077535 
log sin /. ' 9 -593830” 

. 9994387 

8,0985711 

8.334305 
0.077535 
9.664211« 

9 994584 

log ( — tan A ) (to 6 places). 
A = Azimuth of Polaris, from 

north *. 

8.000057w 

o°34' 22".8 
m s " 

(7 47-7 119 3 
5 09.7 52.3 

1 1 26.7 4.1 
1 1 52.3 69 

4 54.3 47.2 
I7 37 3 114.0 

343-8 
57.3 

1-758 

9 758 
— 0.6 

8.070635;! 

0° 40' 26".8 
m s " 

7 04.2 98 I 
4 30.2 39.8 
1 54.2 7.1 
2 26.8 II.8 
4 25.8 38.5 
6 35.8 85.4 

280.7 
46.8 

1.670 

9-741 
—0.6 

2 sin^ Jt 
T and —;-77—. 

sini" 

Sum. 
Mean. 

logi . 
* n ^ sin I 

log (curvature corr.). 
Curvature correction. 

Altitude of Polaris = /?... 

- tank = level factor. 
4 
Inclination. 
Level correction. 

32° 07' 

0.419 

+3.6 
-i"-5 

72 57 50.2 

0.419 

+4-1 
~i''.7 

72 51 46.7 Angle, star — mark. 

Corrected angle. 
Corrected azimuth of star *. 

72 57 48.7 
0 34 22.2 

72 51 45-0 
0 40 26.2 

Azimuth of mark E of N. 73 32 10.9 

180 00 00.0 

253 32 10.9 

73 32 II.2 

180 00 00.0 

253 32 II.2 Azimuth of mark. 
(Clockwise from south) 

To the mean result from the above computation must be applied corrections for diurnal aberra* 
tion and eccentricity (if any) of Mark. Carry times and angles to tenths of seconds only. 

• Minus if west of north. 
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91. Micrometric Method. 

In employing this method it is necessary to place a mark nearly 

in the same vertical plane with the star at the time of the obser¬ 

vation. For greatest accuracy, as well as for convenience, the 

star should be observed when near its greatest elongation. Near 

culmination the star’s motion will carry it beyond the range of 

the micrometer in a comparatively short time. The small 

difference in azimuth between the star and the mark is to be 

measured with the micrometer in the eye-piece of a transit in¬ 

strument. The instrument is clamped in azimuth, and the read¬ 

ings are taken in the following order: take five pointings on the 

mark; point toward the star and place the stride level in position; 

take three pointings on the star with their corresponding chro¬ 

nometer times; read and reverse the stride level; take two more 

pointings on the star, noting the times; read the stride level; 

reverse the horizontal axis of the instrument in the bearings, 

point the telescope at the star, and place the level in position; 

take three pointings on the star, with chronometer times; read 

the level and reverse it; take two more pointings on the star and 

the times; read the level; finally, take five pointings on the mark. 

Three such sets will be found to require from thirty to fifty 

minutes^ time. Either the altitude or the zenith distance of the 

star should be read twice during the set, in order that an altitude 

for use in calculating the azimuth may be interpolated. 

The angle given by the micrometer readings is in the plane of 

the line of collimation and the horizontal axis. To reduce this 

angle to the horizontal plane, multiply it by the secant of the 

altitude. Each half-set may be reduced separately. The alti¬ 

tude for the middle of each half-set may be used for reducing to 

horizontal. The value of one turn of the micrometer screw may 

be found by observing a circumpolar star near culmination, or, 

better still, by measuring a small angle by means of a theodolite 

and then measuring this angle with the micrometer. 

Following is an example of record and computation. 
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RECORD AND COMPUTATION — AZIMUTH BY MICROMETRIC 
METHOD 

[Station No. 10, Mexican Boundary. Date, Oct. 13,1892. Observer, J. F. H. Instrument, Fauth 
Repeating Theodolite, No. 725 (10 in.). Star, Polaris near eastern elongation.] 

(hr- 

cle. 

Level readings. 
Chronom¬ 

eter time. 

2 sin^ \ T 

Micrometer read¬ 

ings — 

W E 
sin 1" 

On star. On mark. 

E 80 99 

10. 7 3 

h m $ 

9 06 38 0 

07 32 0 

m s 

3 58 6 

3 04 6 

31 05 

18 .59 

18' 379 

0 388 

18' 310 

0 3i5 

\ = 2'* 12"‘ W of 

Washington 

0 31“ 19' 3S" 

1 div. of level 

-3".68 

I turn of mic. 

= 123" 73 

Means 

E 

-flS 0 —17 2 

d~o 8 

08 05.5 

09 13 0 

09 48 0 

2 31 1 

1 23 6 

0 48 6 

12 4.S 

3 82 

1.29 

0 400 

0 424 

0 430 

0 315 

0 311 

0.316 

1 

18 4042 18.3134 

W 90 90 

7.0 10 9 

9 12 01.a 

12 24 7 

I 25 2 

I 48.1 

3 96 

6 37 

t8 ioo 

0 100 

iR 290 

0 27s 

W 

+ 16 0 —19 9 

-3 9 

Me;i n l**. 55 

12 48 3 

13 36 3 

13 S8 I 

2 II 7 

2 59 7 

3 21 5 

9 4O 

17 61 

22 14 0
0

0
 

II
I 0 279 

0 281 

0.279 

9 10 36 6 12 67 18 0912 18 2808 Mean.s 

f of star at middle of first half of sot = 58° 48'. eosee f = r 1691. cot 58° 47' — 0.606. 

f of star at middle of .second half of set — 58° 46'. cosec f = 1.1695. 

a = i'* 20in 07*.4' 5 = 88° 44' 10".4. 

Collimation axis reads i (18.3154 + 18.2808)* = 18* .2971 
* In this instrument increased readings of the micrometer correspond to a movement of the 

line of sight toward the east when the vertical circle is to the ea.st, and toward the west when the 
vcrtica.1 circle is to the west. 

Mark east of collimation axis 18.3134 — 18.2971 = o 0163 = 02".02 
Circle E., .star E of collimation axis (18.4042 — 18.2971) (1.1691) = o .1252 
Circle W., star E of collimation axis (18.2971 — 18.0912) (1.1695) — o , 2408 

Mean, star E of collimation axis - 0 .1830 = 22 64 

Mark west of star = 20 62 
Level correction (1.55) (0.92) (0.606) = —o 86 

Mark west of star, corrected — 19 .76 

Mean chronometer time of observation == 
Chronometer correction — 
Sidereal time = 
a — 

Hour-angle, t, in time 

21^ 10"* 36*.6 

— 2 II 28 .2 

18 59 08 .4 

I 20 07 -4 

17 39 01 .0 

cot S 
tan<^ 
cos t 

a 
cot S 
sec 0 
sin t 

log (—tan A) 
A 

log. 12.67 

log. curvature corr. 

“ in arc 264" 45' iS".o 
= 8.34362 
BB 9 78436 
** 8 96108« 
as 7.08906 n 
= 8.34.3618 
= 0.068431 

9.998177 w 

= 9 999467 
Curvature corr. —0.33 

8 409693w Diur. Aber. corr. +0.3J 

-|-i° 28' 16" 91 Mean azimuth of star = -1-1° 28' 16". 90 
== I.10278 Mark west of star 19 .76 

9 51247 Azimuth of mark, E of N = d-I°27' 57" 14 
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92. Reduction to Sea-Level. 

If the azimuth mark is at a high elevation, the computed 

azimuth must be reduced to its value at the point where the 

vertical through the mark intersects the sea-level. This cor¬ 

rection in seconds is 

. .> • , 1 +-;-Tr • cos*' <l> sin 2 a, I mj 
2 a sin I ’ 

in which h is the elevation, is the latitude, a is the azimuth, and 

e and a are for the Clarke Spheroid of 1866 (see Art. 102, p. 182). 

If /ms expressed in meters, this becomes 

+0".000109 h cos- <t> sin 2 a. [40] 

(log of 0.000109 = 6.0392 — 10.) 

If the mark is either northeast or southwest of the oliserving 

station the observed azimuth must be increased to obtain the 

correct azimuth; if the mark is northwest or southeast, the ob¬ 

served azimuth must be decreased. 

Reduction to Mean Position of the Pole. 

The observed azimuth must be reduced to its value ( orrespond- 

ing to the mean position of the pole. In latitude 50° (northern 

United States) this correction may be as great as half a second 

(sec p. 149). 
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PROBLEMS 

Problem i. What should be the linear distance between the vertical threads of 

a transit having a 30-inch focus in order to give 2^.5 intervals of time between 

threads for an equatorial star? 

Problem 2. The following readings were taken to determine the pivot inequality 

of a transit. Clamp east, level direct, w = 43.5, e = 34.0; level reversed, w = 36.7, 

e = 41.0. Clamp west, level direct, w = sg.i, e = 37.0; level reversed, w = 34.2, 
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e = 41.8. The value of one division of the level is o",ys. This level has the zero 
at the center and is numbered both ways. Find the pivot inequality. 

If a star is observed with the transit in the position clamp east what is the level 

correction to the observed time of transit if 5 = + 30° and 0 = + 40®? 
Problem 3. If the collimation axis of a transit has a true bearing of S 0° 00' 15" 12 

what is the correction to the observed time of transit of a star if 6 = + 39° a-nd 

</> = + 30°? 
Problem 4. If a latitude is found to be 36° 49' 50".261 at an altitude of 6250 feet 

what will this latitude be when reduced to sea-level? 

Problem 5. Compute the latitude from the following zenith telescope observa¬ 
tions. 

Star No. 2125, south; chr. time 13^ 37"*; micrometer 16^063; level, n 83.0, s 30.0. 
Star No. 2141, north; chr. time, 13^43^; micrometer, 13'.504; level n 31.0, s 83.5. 

Eye-piece on side toward micrometer head; level zero on side opposite to eye-piece. 
Declination of 2125, 28° 34' 09^.80; declination of 2141, 39° 00' 0880. One 
division of latitude level = i".oo. One turn of micrometer = i55".8o. In this 
case the micrometer readings decrease as the zenith distances increase; the sign 
is therefore the oppo.site of that given in Equa. I30] p. 148. 



CHAPTER V 

PROPERTIES OF THE SPHEROID 

93. Mathematical Figure of the Earth. 

In calculating the positions of survey points on the earth, it is 

necessary to consider these points as lying upon some mathe¬ 

matical surface, like the sphere or the ellipsoid, taken to repre¬ 

sent the figure of the earth. This is accomplished by projecting 

the position of the station vertically downward onto the surface 

in question. The actual shape of the earth’s surface is quite 

irregular and, from the nature of the problem, can only be de¬ 

termined approximately. But even if it could be found exactly, 

it would not be adapted to the purpose of computation. For 

this rea.son it is necessary to select some figure, the use of which 

will simplify the computation, but which will nowhere depart 

from the true figure by an amount sufficient to produce serious 

errors in the results. The figure generally adopted is the oblate 

spheroid or ellipsoid of revolution. Such a figure is generated by 

rotating an ellipse about its shorter axis. This surface ap¬ 

proaches much nearer the actual figure of the earth than does the 

sphere, but perhaps not quite so near as an ellipsoid of three un¬ 

equal dimensions. The latter, however, would be an inconven¬ 

ient figure to use, and the gain in accuracy would be very 

slight. 

The oblate spheroid is an ellipsoidal surface with two of its 

axes equal, but with the third axis, about which the figure rotates, 

shorter than the other two. All plane sections of such a surface 

are ellipses, except those cut by planes perpendicular to the rota¬ 

tion axis. Sections through the rotation, or polar, axis are 

ellipses whose major axes are the equatorial diameter, and whose 

minor axes are the polar diameter, of the spheroid. The nature 
165 
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of this surface will be understood best if we investigate first the 

properties of the ellipse which generates the spheroid. 

94. Properties of the Ellipse. 

In Fig. 83, PP' is the polar axis of the spheroid, and EE' is any 

one of the equatorial diameters. F is one focus of the ellipse. 

At Af, any point on the curve, the line MA is drawn tangent to 

the ellipse; MH is perpendicular to the tangent, that is, normal 

P' 

Fig. 83. 

to the curve. MH is the direction that the plumb line at M is 

supposed to assume unless deflected by local causes, such as 

variations in density. The distance MH { = terminating in 

the minor axis, is called the normal. MD { = n) is the normal 

terminating in the major axis. The angle made by the normal 

with OE', that is, with the plane of the earth’s equator, is the 

geodetic latitude (</>).* The angle made by MO with OE' is the 

geocentric latitude (if). 

Another angle which is of importance in the geometry of the 

ellipse is the eccentric angle, or reduced latitude, 6. It is the angle 

E'Om, Fig. 84, in which M is any point on the ellipse, MN is 

* The astronomical latitude is the angle made by the actual direction of gravity 

(plumb line) with the plane of the equator. 
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perpendicular to OE\ and m is the point where this perpendicular 
cuts the circle whose center is O and radius OE\ 

The equation of the ellipse whose major and minor semiaxes 

are a and 6, referred to its own axes as coordinate axes, is 

Fig. 84. 

To deterniine the coordinates of any point M (Fig. 83), in terms 

of the latitude, differentiate this equation and the result is 

y b " dx . . 

X ~ a' dy ^ 

Since the tangent line to an ellipse makes an angle with the axis 

of X whose tangent is 

tan (90° + <^>) 

tan <f) = 

The eccentricity e is the distance from the focus to the center 
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divided by a, that is P'rom the triangle OFF it will be seen 

that 
a- — h- 

’ 
a- 

or = T — 
a- 

Therefore (i) may be written 

^ = (| - c') tan 4,. (2) 

I"rom the equation of the ellipse, 

y2 

Squaring (2) and substituting in the result the value of from 

(3), we obtain* 

a cos </> 
a: = .y-:.=.—-„-^=rrr. 

V I — <32 0 

, a (i — C") sin </> 
and y = --y— 

V I — ^j2 gjj^2 0 

[41] 

I42] 

96. Radius of Curvature of the Meridian. 

To find the radius of curvature of the meridian (Fm), apply the 

general formula 

F = 

From (t) 
dy X 
dx y 

* The relation i -h tan^ 0 = sec^^ is used in this transformation. 
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Differentiating this equation, we have 

dx^ a- \ y‘^ ) 

_ _ -A- ^ 
ary- V y ^V 

- _-A_ 
a‘V‘ 

Therefore 

Then, since 

a-y^ 

[aY + 

Values of log will be found in Table X. For latitudes 

o°, 45°, and 90° these are as follows: 

Lat. log Rm Rm 

0" 6.8017489 h 335 033' 

45 -8039574 b 3^7 331 

90° 6.8061733 6 399 901 

DifTerence 

32 298"* 20.07 miles 

32 57o»* 20.24 “ 

96. Radius of Curvature in the Prime Vertical. 

The radius of curvature of the surface of the spheroid in a 

plane through the normal and at right angles to the meridian 

may be proved to be equal to the length of the normal {N) 

* The negative sign indicates only the direction of bending. It is customary to 
regard the value of Rm as positive. 
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terminating in the minor axis. If a section be taken through 

the center of the ellipsoid in a plane at right angles to the meridian 

•11 1 1 .r ^ ^ ^ its semiaxes will be a and OM = x sec \[/ — 
V I — sin- 0 

Fig. 83). The radius of curvature at the end of the minor axis 

of any ellipse is a- — b. For the central section this gives p = 
a Vi 

(see 

sin^ </) 
for the point M. From Meunier’s Theorem 

cos (t> sec ^ 

we know that the radius of curvature of the normal section (p') 

equals the radius of curvature of the inclined section (p) divided 

by the cosine of the angle between the two planes. From Fig. 

83 this angle is seen to be <^> — xp. Therefore 

, a vV 
p = 

By Equa. [51] 

sin- (p 

cos 4) sec yp cos {<j> — \p) 

a v^i — sin- <t> 

cos'-^ (f) sin 4> cos </> tan xp 

a V I — e- sin- <f> 

cos- 0 + sin </) cos 0(1— e-) tan 0 

a Vi — c- sin- </> 

cos*-^ (p + sin‘^ (p — sin- <p 

a 

V7 
N 

e- sin- (p 

(by Equa. [44]) 

Or, p' may be found directly from Equa. [46], since in this 

case p — Rp = N cos 0, and the angle between the sections is <p. 
Therefore p' = A". 

To show this geometrically, let A and B in Fig. 85 be two points 

on the same parallel of latitude. The normals to the surface 

at A and B always intersect at H on the minor axis. Let C be a 

point on the prime vertical section through A, and also on the 

meridian of B, The normals to this plane curve at points A and C 
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intersect each other at some point K, above H. Therefore, K is 

approximately the center of curvature of the arc AC, Observe 

that CK is not normal to the surface. When the meridian PBC 
is taken nearer to A, points A and C approach each other, the in¬ 

tersection of the normals to the plane curve AC approaches the 

true center of curvature, and the length CK approaches the true 

radius of curvature. But the nearer C approaches A, the nearer it 

approaches B and the nearer CK becomes normal to the surface. 

Hence CK must ultimately coincide with AH] that is, 11 is 

the point toward which the center of curvature is moving and 

the normal N is the radius of curvature of the prime vertical 

p 

Fig. 85. 

section at A. Note that BH and CK do not really intersect 

in space, although they appear to on the diagram. 

From Fig. 83 it is evident that 

cos 0 

Values of log N will be found in Table X. 
Notice that the difference between N and is greatest 

at the equator (about 26 miles); at the pole N and Rm become 

identical. 
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The normal terminating in the major axis is 

n 
y a{i — er) 

sin <t> \/j _ ^2 gjj^2 0 
iV (i - e^). 

The radius of the parallel of latitude (= x) is given by 

Rp = N cos </). 

[45J 

[46] 

97. Radius of Curvature of Normal Section in any Azimuth. 

Having found the radii of curvature of the two principal 

sections, it now remains to find a general expression for the radius 

of curvature in any azimuth, and it will be shown that this may 

be expressed in terms of the two radii already found. 

The equation of the spheroid is 

. Zl 1 ^ 
0^“ 62 

or = a-b-. (a) 

In Fig. 86 the Zi-axis coincides with the polar axis of the spheroid. 

If M be any point on the meridian Zii/, and MY any section cut 

by a plane through Mil (the normal) making an angle a with the 

meridian, then the equation of the spheroid may be transformed 

so as to refer to the origin C, the new Z axis CM, and a new 

Y axis at right angles to CM, Let the coordinates of any point P 
be 0:1, yi, Zi, and let the new coordinates be x, y, z. Then, from 

Fig. 86, the relation of the new coordinates to the old is given by 

Xi = OG = OC + X + z cos <t> + y cos a sin 0 

= cos<t) + X + z cos (t> + y cos a sin <^, 
yi = y sin a. 

Si = s sin </) — y cos a cos 0. 

Substituting these values in (a), 

{Ne^ cos <!> + X + z cos 4* + y cos a sin <t>y + b'^y^ sin^ a 
+a^{z sin </> — y cos a cos 0)2 = 

which is the equation of the spheroid referred to the new axes. 

If X is made equal to zero, then P will be on the curve MY, and 
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the equation becomes the equation of this plane section, that is, 

b^(Ne^ cos 0+2 cos <p + y cos a sin 0)^ + sin- a 
+aHz sin <!> — y cos a cos 0)- = a-b^, 

the equation of the ellipse MY. 
z. 

To determine the radius of curvature at M it is necessary to 
dz d*^^ 

find T“ and and to substitute these values in the general 
ay dy^ 

formula for radius of curvature. 
Expanding the last equation, collecting terms, and dividing 

through by 

y- [i — c“(i •- cos^ a cos^ 0)] + 2^(1 — cos^ 0) 
— yz{2 cos a sin 0 cos 0) + 2 y (i — e-) • iV • cos a. sin 0 cos 0 
+ 2 2c^(i —■ e'^) • N ' cos*-^ 0 = (i — e^) — Ne^ cos^ 0), 



174 PROPERTIES OF THE SPHEROID 

or, in abbreviated form, 

y-A + z-B — yzC + yD + = 7^. 

Differentiating this equation, y being taken as the independent 

variable, 
dz dz dz 

2 yA + 2 z-j-B — Cy — Cz A' D + R- o. 
dy ' dy dy 

Differentiating again, 

2 ^ + 2 5 +(I)) - c (>- - r.dz d'-z 

dy' 
I (2 Bz - Cy + £) = - (2.4 + 2 5 - 2 T g). 

d^ 
dy^ 

fdz\ d‘. 
2/1 +2^(:t-) - 2C 

\dy/ dv 

2 Bz — Cy + E 

For point M, y = o and s = w = TV (i — e~). Therefore 

dz 
dy 

N (i —e-)(2e^co8Q!sin</)COS<^)-~2(i —c~) Ne'cosas\n(f)Cos>(f) 

2 Bz — i 'y + E ~ 
and 

Rz __ _2 [r — (r — cos- a cos^ 0)1 

dy^ 2 N{i — e^) (i — cos^ 0) + 2 e- (i — c-) cos‘^ 0 • N 

I — COS^ OL cos^ 0 

N{i - e^) 

(r — €-) (siiT^ a + cos^ a) + cos^ a {\ — sin^ 0) 
iV (i - 

(i — e^) sin^ a + cos- a — cos- a • sin^ (p Rm 

Nil- e^) 

Rm 
Rm sin^' a + ^ a(i — sin® <#>) 

w:. 
R„ sin® a + iV cos® a 

NK 
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Substituting these differential coefficients in the usual formula 
for radius of curvature, we have* 

R = ^ _ r , 
“ iV cos-'a +/^„sin“a' ^471 

If a = 0°, 

R -^-R 

the radius of curvature of the meridian; and if 

a — 90^, 

then Iva = — = iV, 

the radius of curvature of the prime vertical. 

Values of log for different latitudes and azimuths will be 

found in Tabic XI. Observe that the value of R^ for azimuth 

in this table equals that of R^ in Table X, and that for 90*^ 

azimuth equals N. 
98. The Mean Value of l?«. 

The mean value of R^ at any point on the spheroid for all 

azimuths from 0° to 360^ may be found as follows: The mean 
value of any function of x between the limits a and b is 

h — a 

Substituting in this general equation we have 

? TT — O •/ 0 

jl- r'_ 
2 TT t/n N i 

Ra doc 

2 TTi/o N cos^ a + Rm sin^ < 

ttJqN cos^ a + Rfn sin^ a 

T sin^ cc cos^ oc 
* Students who are familiar with Euler’s Theorem, —I—5— , will see 

Ka iV Km 

that Equa. [47] follows at once from that theorem. 
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To integrate this expression it is necessary to change the variable. 

If we let 

t — tan a then dt s/'- ^ _J_ 
N cos^ a 

By dividing both numerator and denominator by N cos^ a 
and factoring NR^ the integral may be put in the form 

mean R„ = ^ ^RmN f 
^ J y) 

which becomes 

N cos^ a 
da 

I + 

mean R^ — ^ ^RnJV f 
TT Jo 

Rtn sin ’ a 
N cos“a 

dt 
I 

= -W^,V[tan->/]* 
TT 

TT 2 

= [48] 

The mean radius of curvature is, therefore, the geometric mean 
of the radii of curvature of the two principal sections. The 

log of the mean radius is the arithmetical mean of the logs of 

the two radii. 

99. Geometric Proof of Equa. [47]. 

Geometric proofs of the last two formulae will be found in¬ 

structive. To find Ra geometrically, imagine a tangent plane 

at the point M and also a parallel plane at an infinitesimal dis¬ 

tance below M, This second plane will cut from the surface a 

small ellipse. It has already been shown that the radius of 

curvature in the prime vertical plane is N. In Fig. 87 tT, M, 

and E are three points on the circle of curvature whose radius is 

N and whose center is the point H on the axis. By similar 
triangles, 

MC : CW ^CW : CK. 
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Since MC is infinitesimal, 

MC = 
2N' 

similarly, for three points in the plane of the meridian 

2 JVfn 

and, in general, for any azimuth a, 

MC 
2Ra 

M 

Fig. 87. Circle of Curvature. Fig. 88. Section of Ellipsoid. 

The coordinates of the point P (Fig. 88) are 

X = s • sin a and y — s • cos a. 

Substituting these in the general equation of the ellipse, 

s- sin^ a cos^ a 

But, from the preceding equations, 
^ P c* 

N 
Ra ^ Ra 
- and ^ = 

hence 
Ra. • 9 I 2 

• sm2 a + • cos^ a = I, 
IV 

Ra 
NRa 

N cos* a + R„ sin* a or [47] 
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99a. Geometric Proof of Equa. [48j. 

To show geometrically that the mean value of 

observe that, as before, 

mean == “ / • da 
2 TT Jo 

and, from the preceding article, 

Therefore 

Bui 

Therefore 

But 

Therefore 

mean 

^ 0 

/f. - i ■,/«. 2 7rJ(, b- 

s~ da = area of ellipse = wab. 

^ I r Rm (iRm 

mean R^ = X irab X r*r = “2“ 
TT b- b 

a fx 
h ~ V R„ 

mean = v NRm. [48] 

100. Length of an Arc of the Meridian. 

Any small arc of the meridian ellipse may be regarded as an arc 

of a circle whose radius is R^, the error being very small for short 

arcs. The length, therefore, is 

s Rm d<b, 

or, if dib is in seconds of arc, 

s = Rfn (/</»" • arc i". [49] 

If the arc is so long that the value of Rtn varies appreciably, it is 

necessary to find 5 by integrating the expression 

a (i — e^) 
ds 

(i — sin“ (by 
deb 

between the limits (bi and 02. 

If we expand the denominator by the binomial theorem, we 

have 

ds = a (1 — ^2) 8 ^2 sjjj2 0 1^5 ^4 sjj^4 ^ 8 fi ^6 <^ . . .) d<b. 
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Integrating, 

i = a(i —e-) f (i+-|c2sin2<^+y <;^sin'‘</> + i*;';c''’sin*'<^ • • ■)d(f>. 
*J 01 

In order to integrate the terms of the series in parenthesis we 

simplify the expression by means of the following relations: 

sin- (p = I ~ I cos 2 0, 

sin^ 0=8-2 2 0 + J cos 4 0, 

sin« 0 = - 11 cos 2 0 + cos 4 0 - cos 6 0. 

Integrating and substituting the limits 0i and 0i>, and putting 

for abbreviation, 

^ = I + J r ■- + III = T.005 1093 

[0.0022133] 

li + 10 + III = 0.005 J-02 

17.709287] 

c = «'r + III = 0.000 0108 

[5-03342] 

D = T.'V\ — 0.000 0000 

12.3 26] 
we obtain 

5 = (/ (i — c~) {A (02 — 0]) — 2 ^ (sin 2 02 — sin 2 0i) 

+ 1 C (sin 4 02 — sin 4 0i) 

— ID (sin 6 02 — sin 6 0i)). [50] 

100a. Area of a Quadrilateral on the Spheroid. 

Two parallels of latitude separated by the distance d(j> 

lie on the surface of a cone and their circumferences are each 

2 ttN cos 0. The area of the enclosed strip is 

dA = 2 irNRtn cos 0 J0 

= 2 cos 0 J0 (i — e- sin“ 0)~2. 

Expanding the last factor 

(i — sin^ 0)"2 = I + 2 sin^ 0 + 3 sin'* 0 

+ 4 e® sin® 0 + 5 e® sin® 0 + • • • , 
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we have 
dA = 2 irh'^ cos 0 (i + 2 sin^ 0 4* )• 

If we integrate each term of the series the integral will be of the 
general form 

/ cos 0 sin” 0 ^i0 = 

The integration of the series gives 
\ 02 

n + 1 
sin”+' <t>. 

A^l = 2b^Tr (sin 0 + 3 e'^ siiv’ 0 + ? <;■• sin'* <t> + i e*’ sin^ 0 + • • • )«■ 

= 2 ((sin 02 — sin 0,) + ^ e- (sin" 02 — sin" 0i) + • • • )• 

From trigonometry we have 

sin" 0 = I sin 0 — { sin 3 0 

sin" 0 = sin 0 - /if sin 3 0 + sin 5 0 

sin" 0 = sin 0 - sin 3 0 + sin 5 0 - sin 7 0 

A% = 4 b-w sin <^os <t>m - B sin cos 3 0„ 

+ C sin 5 
. /A0 
in r I- y) cos 50„ - Z) sin 7 y~ - D cin -7 ^ r, ^ COS 7 0„ H-^ 

in which 

+ = I +-~ + 8 e" + /c c® + c" = 1.003 4016 
[0.001 4748] 

B = s e" + /« c* + /c c* = 0.001 1368 
[7.05568] 

C = /o e* + I'c + f,\ e* = 0.000 0017 
[4.2304] 

D = 11^ + 58 0 = 0.000 0000 

For a quadrilateral 1° on each side, 

A0 = 02 — 01 = 1°, and 2I1 = A^] -7- 360. 

Ai = — IT {A sin 0° 30' cos 0„ — 5 sin 1° 30' cos 3 <t>„ 

+ C sin 2° 30' cos 5 0„ - Z> sin 3° 30' cos 7 0„ • • • ). 



MISCI'ILLANEOUS FORMULAS l8l 

Values of these areas for lo', 15' and 30' on a side will be found 

in ^‘Geographic Tables and Formulas, S. S. Gannett, U. S. 

Geological Survey, 1904. 

101. Miscellaneous Formulas. 

The following formulas, relating to the ellipse, are given here 

for convenience of reference. 

The geocentric latitude may be found from the expression 

tan = = (1 A r e-) tan 0 == — tan <^. [51 

The maximum difference between </> and \p is about 0° 11'40", at 

latitude 45°. At the equator and at the poles the difference is 

zero. 

The reduced latitude, 6 (see Art. 94, p. 166), may be found 

from the geodetic latitude by means of the relation 

a tan 6 ~ b tan <t> 

which is readily derived as follows: 

Let MN (Fig. 84) = y, and mN = V. 

[52] 

For the ellipse, 

For the circle 

Subtracting, 

72 ^ 

a- b 

For the diagram, 

1^2 
“.7 T ~ — i* a- 

whence - = - or 
y b 

tan 6 = 
mN 
ON 

mN 
MN 

and tan p = 

mN 
MN '' 

MN 
ON 

a 
V 

tan^ 

But 

from which 

tan yp b 

b b^ 
- tan 6 = tan \p = ~ tan 0 
a Cl 

a tan 6 = b tan </>. 

by [51] 

[52] 
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The compression of the spheroid, that is, the flattening at the 

poles, is expressed by 

The length of a quadrant of the meridian is given by 

ut / 
64 )* IS4l 

102. Effect of Height of Station on Azimuth of Line. 
Since the normals drawn from two points on the surface do not 

F 

in general lie in the same plane, there will be an error in the 

observed horizontal direction of a station, depending upon its 

height above the surface of the spheroid. This error may be 

* From the equation for the length of a meridian arc, we have for the quadrant 
TT 

q-a{i~ (i +4C’ (i — cos 2<^) -h (3 — 4 cos 2 0 -h cos 4 (/>)) d</> 

[0 (i + J + IJ - I sin 2 0 - sin 2 0+ sin 40]^ = a (i — e^) 

= a (i ~ e^) {i + lc^ + ne*+- ■ •) ] 
). 
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likened to the error of sighting on an inclined range-pole; the 

higher up the sight is taken, the greater the error in the horizontal 

angle. In Fig. 89 the observer is at A and sighting at point M, 

which is at an elevation h above sea-level. The vertical plane of 

the instrument projects M down to sea-level at B on the line MH^ 

H being the end of the normal at A. The point which is verti¬ 

cally below M is as determined by the normal Mil'. Denote 

by 5 the angle IIMH' or, what is nearly the same, IIBH', The 

Fig. 90. A vertical in latitude 0° and a vertical in latitude 60°; 

d\ — 80°; e — 0.81; (looking SW). 

angle (x) subtended by BB' at point A (the observer’s position) 

is the correction desired. The latitude of A is <^, and that of M 

is 4>'. In the triangle MHH' 
sin 5 Hir Hir , ^ , 

HB + BM HB 

HH' 
or 5 = * cos (t>, 

where is the latitude of 
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Now HE' = OH' - OH 
— sin — fi) sin </> 

= N'c^ sin <t)' — Ne^ sin 0. (See Equa. [45].) 

Therefore 

5 = {N'e^ sin 0' — Ne‘^ sin 0) 

ae'^ cos 0 

AT \(i 

' / sin 0^ sin 0 \ 

\(i — e^sin^0')^ (i — ^^sin-0)^/ 

by Equa. [44]. Clearing of fractions and expanding the radicals 

in the numerators, 

.(sin0'( I — —sin^0 * • • ) —sin0( i— —sin20' • • ‘\\ 
__ ae^ cos 0 \ 2 / \ 2 / 

^ “ N V i-e“^sin2 0,„ / 

ae'^ cos 0 
J (sin 0' ~ sin 0) f I + ~ sin 0 sin 0' 

I - sin‘^ (t>^ 

ae^cos 0 

N 

a^^cos 0 

/ . A0/ . . 
d 2 cos (pm Sin — II + — sin 0 sin in (f)'^ 

1 — e'^ sin*-* (p„, 

N p 

I H— sin 0 sin 0' 
2 

1 — sin^ 0,„ 

3 f I +—sin0sin0' 
ae2cos0' (i -62sin2 0)^ 1 ^ 
“Iv-COS0„.5COS«. 

-- • (i - e2sin2 0)^^i + jsin0sin0 1 

cos^ 0 • 5 • cos a 
iV(l - ^2) 

+ term (negl.). 

The linear distance 55' = A5, and the correction to the 
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azimuth (x) at point A is given by 

,, hb sin OL 
X = -77 

s arc I 

he^ cos^ 0' cos a sin a. 
^ "7v'(r- arc i" 

= ^ * cos- 0 sin 2 a 

155] 

156] 

in which k = 

2 (1 — C“) arc 1" 

The logarithm of A for latitude 45° = 2.84685. 

When the signal is northeast or southwest of the observer the 

azimuth must be increased to obtain the correct azimuth at 

sea-level; if the signal is northwest or southeast the observed 

azimuth must be decreased. 

For 0 = 45°, a = 45°, and h ~ 1000 meters, the value of 

x'^ = o".o55. This is much smaller than the probable error of 

an observed direction (see p. 97), and is therefore negligible 

except for great heights. This correction has been applied to 

angles measured in the main triangulation of the California 

and Texas arc and the California and Washington arc. It is 

too small to affect the triangulation of the eastern half of the 

United States. 

103. Refraction. 

Inasmuch as the refraction acts in the vertical plane at any 

point, and the vertical plane changes its direction as the ray pro¬ 

ceeds along the line, it is evident that there must be some hori¬ 

zontal displacement of the object sighted, due to the refraction. 

Investigations show that this error is quite inappreciable for all 

lines that can actually be observed. 

104. Curves on the Spheroid. The Plane Curves. 

When a theodolite is set up at any point A and leveled, its 

vertical axis is made to coincide with the direction of the force 

of gravity at which, except for local deflections, coincides with 

the direction of the normal A, If another theodolite is set up 
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at B, in a different latitude and a different longitude, it is evident 

that these vertical axes are not in the same plane, since their 

normals (plumb lines) never intersect. The greater the latitude, 

the lower the point where the normal intersects the polar axis. 

It is clear that the line marked out on the surface of the spheroid 

by the line (or, rather, plane) of sight of the first theodolite is not 

the same as the line marked out by the vertical plane of the other 

theodolite. If A is southwest of then the curve cut by the 

plane of the theodolite at A is south of that cut by the plane of 

sight of the theodolite at B. This may be seen from the fact 

that both planes contain the chord AB\ and since the normal 

at A is higher at the polar axis, the curve itself must be lower 

(farther south). 

106. The Geodetic Line. 

Another curve which holds an important place in the theory 

of geodesy is known as the geodetic line. This is the shortest 

line that can be drawn on the surface of the spheroid between 

two given points. It is not a plane curve, but has a double cur¬ 
vature. A characteristic property of the curve is that the oscu¬ 

lating plane* at any point on the curve contains the normal to 

the surface at that point. In most cases the geodetic line is 

found to lie between the two plane curves and has a reversed 

curvature. Figure 91 is a photograph of a model, the semi-axes 

of which are a = 6 inches and b — 2,-S inches. The two plane 
curves are shown and between them, with the curvature slightly 

exaggerated, is the geodetic line. 

In order to obtain a clear conception of the nature of the 

geodetic line, let us imagine that a transit instrument is set at 

point A (Fig. 92), leveled, and then sighted at point B. Then 

it is moved to point J5, set up, and leveled again, and a back sight 

is taken on A; point C is then fixed by reversing the telescope. 

When the sight is taken to A, the sight line traces out the plane 

* The osculating plane may be considered to pass through three consecutive 

points of the curve. In reality it is the limiting position approached by the plane 

as the distance between the three points decreases indefinitely. 
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curve BbA; and when point C is sighted, it traces out BbC. The 

instrument is then taken to C and the process repeated. It 

should be observed that the (vertical) sight plane of the instru¬ 

ment coincides with the normal to the surface at each station. 

If the points A, B, C, D are imagined to approach nearer and 

nearer, so that AB, BC, etc., become infinitesimal elements of the 

curve, the plane which contains three consecutive points of the 

curve also contains the normal to the surface. If we imagine 

the instrument to move along this line, it is seen that the vertical 

plane of the instrument twists so that it always contains the 

normal. 

One of the characteristic properties of the geodetic line is 

shown by the equation 

Rp sin a = k, a constant [57] 

Rp being the radius of the parallel and a the azimuth of the ge¬ 

odetic line at any point. This equation may be derived analyti¬ 

cally by the methods of the calculus of variations (see Clarke, 

Geodesy, p. 125) or by geometric construction (see Jordan, Ver- 
messungskunde, Vol. Ill, p. 395). From this equation it will be 

seen that when a is a maximum (90°), sin a = i and Rp = k. 
The constant of the equation is therefore the radius of the parallel 

of latitude beyond which the geodetic line does not pass. When 

a is a minimum, Rp is a maximum, that is, Rp = a, the equatorial 

radius of the spheroid. This shows that in general a geodetic 

line cutting the equator at any angle a may go northward up to 

some (limiting) parallel of latitude 4!^ (corresponding to Rp k), 
but will not pass north of this parallel. In the southern hemi¬ 

sphere it will reach a limit ( —<^°) having the same numerical 

value. Such a geodetic line, when traced completely around the 

spheroid, will not in general return exactly on itself, but will pass 

the initial point on the equator in a slightly different lon¬ 

gitude and then proceed to form another loop around the 

spheroid. 

Except for a few particular cases the geodetic line lies between 
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the two plane curves and divides the angle between them in the 
ratio of about 2 to i, as shown in Fig. 93. 

If the terminal points P and Q are in nearly the same latitude, 

the geodetic line may cross the plane curve. 

It is important to bear in mind that the lengths of these 

diflFerent curves on the spheroid differ by quantities that are 

quite inappreciable in practice. The differences in length are far 

shorter than the distances by which the curves are separated at 

their middle points (Art. 107), and even these latter are negligible 

in practice. Also the angle by which the azimuth of the geodetic 

differs from the azimuth of the plane section is much smaller than 

can be measured. 
It should be noted that the geodetic line itself cannot be sighted 

over directly, because it is not a plane curve, and that the geodetic 
triangle can be obtained only by computation. 

106. The Alignment Curve. 
Another curve which may be drawn on the surface is defined 

in the following manner: if the theodolite be supposed to move 

from A to B, keeping always in line between the two points (that 

is, the azimuths of A and B iSo"" apart), and the instrument being 

always leveled, its path will be a curve which lies very close to 
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the geodetic line and generally between the two plane curves. 

This is called the alignment curve. 

It is possible to define other curves* between these two points. 

Such curves are of theoretical value only, since the lengths of all 

such lines on the earth’s surface differ from each other by quanti¬ 

ties too small to measure. The two plane curves, however, are 

separated by a distance which is sometimes quite appreciable. 

107. Distance between Plane Curves. 

The maximum separation of the two plane curves may be 

computed approximately as follows: the angle (6') between the 

Sovtli plane 
curve 

two planes is very nearly equal to the angle 5 multiplied by sin a, 

since h is the angle measured in the plane of the meridian, whereas 

the angle desired (5', Fig. 94 ) is that perpendicular to the planes 

of sight. Therefore 

5' = 
se'^ cos^ 0 cos a sin a 

N{i - 

(sec Equa. (a), p. 184). 

* See Coast Survey Report for 1900, p. 369. 
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The distance of the chord AB (Fig. 95) below the surface {D) 

at its middle point is given by 

or, approximately, 

D = 
8 TV* 

The curves are separated at their middle points by the hori¬ 

zontal distance 

Db 
^2 ^ ^ ^^2 (.Qg2 0 (.Qg Q, gjj^ ^ 

cos^ <t> cos a sin a 

^ 8 (i - e^) [58] 

The difference in azimuth may be computed approximately 

by finding the angle between the two tangents to the curve drawn 

from one of the stations and prolonged half the distance (Fig. 

96). The terminal points of these tangents will be at a distance 
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D above the surface and will be separated by a distance 2 Db\ 

The angle between these two lines is nearly 

I s arc 1" 

2 6’“ cos^ 4> cos a sin a 

^ S¥- ‘ Xi 5arc 

5- C“ cos“ cos cx sin a ^ 

(i -c^)arci" 

For the oblique boundary line between California and Nevada* 

5 = 650,000 m., (400 mi.), (t>fn = 37"" 00', a == 134° 33'; whence 

Z)5' = 1.8 meters and the difference in azimuth = 2".3. 

For the western boundary of Massachusetts 5 = 80,930 m., 

(50 mi.), = 42"^ 24', a == 195° 12'; this gives Db' = 0.0015 

meter and Aa = o".oi6. 
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PROBLEMS 

Problem 1. What is the distance in miles from the center of the ellipsoid to the 

plumb line (normal) at New York (Latitude 40° 42' N.)? 

* See Coast Survey Report for 1900, p. 368. 
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Problem 2. If a section of the ellipsoid is cut by a plane one millimeter below 

and parallel to a plane which is tangent to the surface in latitude 40°, what are the 

semi-axes of this ellipse? 

Problem 3. Compute the length in meters of a quadrant of the Clarke Spheroid 

of 1866. (See pp. 182 and 409). 

Problem 4. Compute the ellipticity of the Clarke sf)heroid. 

Problem 5. If a sphere whose radius is y/R^N is tangent to the spheroid in 

= 45° how far is the spherical surface from the spheroidal surface at a distance 

of 160 kilometers from the point of tangency. {a) in the plane of the meridian. 

{h) in the east-west plane. 

Problem 6. WTiat is the area in sq. meters between the 40° and 41° parallels 

and two meridians 1° apart? 

Problem 7. What is the error in the direction of a sight taken on Pike’s Peak, 

whose altitude is 14,108 feet? (Art. 102.) 



CHAPTER VI 

CALCULATION OF TRIANGULATION 

108. Preparation of the Data. 

From the records of the field-work of the triangulation we ob¬ 

tain a value for each angle, supposed to be freed from the errors 

of the instrument, eccentricity of station, phase of signal, eleva¬ 

tion of signal, etc. Before these angles are employed for solving 

the triangles, they should be examined to see if they satisfy any 

geometric conditions existing among them. If at any station 

two or more angles and their sum have been measured, then these 

angles must be so corrected that they exactly equal their sum. 

If the horizon has been closed^ the measured angles must be ad¬ 

justed so that their sum equals 360°. If the angles have been 

measured with different degrees of precision, as, for example, 

with different instruments or a different number of sets or of 

repetitions, the different angles should be given proper weights; 

and if the best possible values are desired, the angles at each 

station should be adjusted by the method of least squares. 

After the station adjustment^ as it is called, has been completed, 

the triangles must be examined to see if the sum of the three 

angles in each triangle fulfills the requirement that this sum 

shall equal 180° plus the spherical excess of the triangle. The 

verticals at the three triangulation stations are not parallel to 

each other, because the surface is curved. Consequently the 

sum of the angles will exceed 180*^ by an amount which, on a 

spherical surface, would be exactly proportional, and which, on a 

spheroidal surface, is nearly proportional to the area of the tri¬ 

angle. 

As was shown in the preceding chapter (Art. 102), the error in the 

direction of an object, due to the fact that the earth is spheroidal 
194 
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instead of spherical, is extremely small, even when the object 

is several thousand meters above sea-level. Hence it follows 

that if the vertices of a spheroidal triangle are projected vertically 
onto the surface of a tangent sphere,* the errors thus produced 

in the horizontal angles of the triangle will be much less than the 

errors in the measurement of the angles, because the points on 

the sphere and those on the spheroid are separated by compara¬ 
tively short distances. This enables us to compute spheroidal 

triangles as spherical triangles and greatly simplifies the com¬ 

putation. The lengths of the triangle sides will be practically 

the same on the two surfaces. 

In this connection it is 

well to bear in mind that if 

the topography of the earth’s 

surface were represented on 

an 18-inch globe the total 

variation in elevation would 

scarcely be greatct than the 

thickness of a coat of var¬ 

nish. The elevation of the 

geoid above the spheroid 
would be very much smaller 

than this, and the distance between the spheroid and the tangent 

sphere at any station would usually be still smaller. This will 

give some idea of the minuteness of the errors under discussion. 

It should be remembered that, whereas the triangulation 

stations themselves are at various heights above sea-level, 

these are all supposed to have been projected down vertically 

onto the spheroid before beginning the computation of the tri¬ 

angle. The points of which we shall speak in discussing the 

solution of the triangles and the geographical positions of the 

stations are these points on the spheroidal surface and not the 

original station points. 

* The sphere is supposed to be tangent at the center of gravity of the triangle to 

be computed. 

station 
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In solving triangles by the methods given below, the following 

approximations have been made, and it is assumed that the 

resulting errors are negligible. 

1. The reduction to sea-level reduces the observed direction 

to that corresponding to the geoid (or actual surface), not the 

spheroid, as is assumed. 

2. The effect of local deflection of the plumb line is not usually 

allowed for. In some cases, however, it becomes appreciable. 

3. The effect of atmospheric refraction on the direction (hori¬ 

zontal component of the refraction) is neglected. 

4. The reduction of the observed direction (plane curve) to 

that of the geodetic, or shortest, line is omitted. There are in 

reality eight triangles formed by the plane curves, which are 

treated as if they were identical (see Art. 104). 

109. Solution of a Spherical Triangle by Means of an Auxiliary 

Plane Triangle. 

The direct solution of the triangles of a net as spherical triangles 

would be unnecessarily complicated. This may be avoided by 

employing a principh* known as Legendre’s Theorem, namely, 

that if we have a spherical triangle whose sides are short com¬ 

pared with the radius of the sphere, and also a plane triangle 

whose sides are equal in length to the corresponding sides of the 

spherical triangle, then the corresponding angles of the two tri¬ 

angles differ by approximately the same quantity, which is one- 

third of the spherical excess of the triangle. 

110. Spherical Excess. 

The spherical excess of a triangle is directly proportional to its 

area, as shown in spherical geometry. Hence, if 2!' is the area 

of any triangle, R is the radius of the sphere, 5 is the surface of 

the sphere, and e is the spherical excess of the triangle; then, 

since the spherical excess of the tri-rectangular triangle is 
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or 

Therefore 

2 e _ 2 

TT TtR^ 

A' 
^ “i?2‘ 

To express e in seconds of arc, divide by arc i", and we have 

A' _ sin ^ 

R arc 1" 2 R arc i' 
[60] 

where and A are two sides and the included angle of the plane 
triangle, h and c being in linear units. 

The sphere which is tangent to the spheroid at the center of 

gravity of the triangle, and which has the same average curva¬ 

ture, is a sphere of radius = whence 

e ff 
be sin A 

arTT"' 
mbc sin A. [61] 

The log of the quantity .-'■p'= m is given for different 

latitudes in Table XIL The latitude to be used in finding m is 

the mean of the latitudes of the three vertices of the triangle. 

Questions. — Is this auxiliary plane triangle the same as the chord triangle 

formed by joining the points by straight lines? Arc the two similar in shape? 

The formulae for given in Equas. [60] and [61] are sufficiently 

accurate for all triangles except a few of the very largest, such 

as those occurring in the Davidson Quadrilaterals in California 

and Nevada. When the sides of the triangle are over 100 

miles in length it may become necessary to use the following 

more accurate formula:* 

or, 

ei 
_ Area / b- + c-\ 
~'i^-sini"\ 24i?“ / 

Ci e" + X 

24 R- 

24 R 

* For proof see Appendix. 

[61 a] 
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111. Proof of Legendre’s Theorem. 

To prove Legendre’s theorem, let A\ B' and C be the angles 

of the spherical triangle, and A, and C those of the plane tri¬ 

angle; the lengths of the sides of the plane triangle are a, h, and 

c, and those of the spherical triangle are a'R, h'R, and c'R, then, 
in the plane triangle, 

cos A == 
+ 

2 he 

or sinM = 1 — cos-^ = 
4 

4 bV 
2 a-h- + 2 + 2 bV ~ — ¥ — 

4 b'h:‘^ 

{a) 

ib) 

In the spherical triangle, 

cos 
cos a' — cos b' cos 

sin b' sin c 

Expanding each sine and cosine (omitting terms of higher 
order than the fourth). 

cos yl' 

+ c'-^) - ,V («>'* + c'" - a'‘‘) - 1 h'H'^ 

J'2 _|. c'2 _ ^'2 J'4 ^ c'* - a'*+(> b'^c"^ 

2b'c' 

+ 

24 b’c' 

-a'^b'^ + //" + 2 b'^c'^ - a'V^ + c'* 

12 b'c' 

whence cos^d' = 

b'^ + c'^ - a'^ I 2a%'^ + 2a\'^ + 2b\'^-a'*-b'*-c'* 
2 b'c' 4 b'c' (c) 
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From (a), {b), and (c) 

cos A' = cos A ~ ^ b'c sin^ A. 

Let X be the difference between A and A'. Then 

cos X = 1 and sin x = x" arc i" (nearly), since x is small, 

and cos A' = cos (A + x) 

= cos A — sin 

= cos A — 1 b 

that is, x" arc i" sin A = 1 Vc' sin'*-’ A. 

Therefore 
„ b'c' sin A 

6 arc I 

or, since b' = ^ and c' 

__ // 

x" = 
be sin A 

c 

R’ 

6 R- arc i 
[62] 

It will be noticed that this is one-third of the spherical excess 

as found in Equa. [60J. The same result would also be found 

for angles 3 and C. 

112. Error of Legendre’s Theorem. 

The error in Legendre’s theorem* as applied to the sphere may 

be studied by carrying out the above series so as to include terms 

of higher powers than the fourth. Jordan {Vermessungskunde) 

gives a numerical example showing the amount of this error in a 

triangle of which the side AC is about 65 miles in length; the 

angles are shown below: 

^4' = 40° 39' 3o"-3^o 

B' ~ 86 13 58 .840 

C = 53 06 45 .630 

180° 00' i4".85o 

Denoting the spherical angles by B\ C', and the correspond¬ 

ing plane angles by A^ B. C, the differences are as follows, the 

first column containing the values derived from Legendre’s 

* See Coast Survey Special Publication No. 4, p. 51. 



200 CALCULATION OF TRIANGULATION 

theorem in its ordinary form, the second containing the smaller 

terms which are usually neglected. 

Approx. Exact. 

A' — A 4".95oot8 4.950036 

B' - B 4 .950018 4.949997 

C' — C 4 .950018 4.950021 

113. Calculation of Spheroidal Triangles as Spherical Triangles, 

It is customary to assume that the differences between the 

spherical and spheroidal triangles are negligible when the actual 

points are projected down onto a tangent sphere of radius 

Clarke, in his Geodesy, shows the error of this assump¬ 

tion in the case of a triangle having a side over 200 miles long, 

the result being as follows: 

Spheroidal 

A' 98° 44' 37"-0965 A 

Sphericiil 

98® 44' 37".1899 

B' 58° 16' 46".S994 B 58° 16' 46".4737 
C 23^' 00' 12". 7303 C 23° 00' 12''. 7634 

e' i' 36".4262 e i' 36"4270 

The preceding example indicates that in triangles whose sides 

are lines that can be sighted over on the earth’s surface the error 

involved in computing spheroidal triangles as spherical triangles 

is negligible in practice. 

Jordan, VoL III, p. 579, gives for the triangle mentioned in 

Art. 112, 
A = 4".950 184 

B = 4 .949 969 

C = 4 .949 901 

e = i4".^^5o 054 

These are the seconds of the angles corrected for spheroidal 

excess; this shows that for ordinary triangles the differences 

between spherical and spheroidal angles are beyond the thou¬ 

sandths place of the seconds. 

114. Calculation of the Plane Triangle. 

After the spherical excess has been computed, the angles of an 

auxiliary plane triangle may be found by applying Legendre’s 
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theorem, that is, by deducting one-third of the spherical excess 

from each spherical angle. The difference between the sum of 

these plane angles and i8o® is the error of measurement and may 

be distributed equally among the three angles unless a least- 

square adjustment is to be made. In any case this method of 

distributing the error may be used for a preliminary determina¬ 

tion of the distances. The lengths of the triangle sides are now 

found by plane trigonometry. Since all three angles of a tri¬ 

angle will usually be known, the only formula that will be used, 

except in rare cases, is the sine formula, 

a sin A 

b sin B 

or, log a — log b + log cosec B + log sin A. 

A convenient arrangement of this computation, used by the 

Coast and Geodetic Survey, is shown in the following table. The 

spherical excess of the triangle in this case is o".86, which gives 

I ".24 as the error of closure of the triangle. 

Stations. 
Observed 

angles. 

Correc¬ 

tions. 

Spheri¬ 

cal 

angles. 

Spheri¬ 

cal 

excess. 

Plane 

angles and 

distances. 

Loga¬ 

rithms. 

Blue Hill to Prospect. . 2272j. 08 m. 
Of // 

4..^56 4673 

Observatory. Oi 47 iS 80 —0.41 18 .?9 —0 29 61 47 18 10 0.054 9218 

Blue Hill. 45 15 40 —0 41 14 99 —0 29 35 45 14 70 9.766 6415 

Prospect. 82 27 27 90 —0 42 27 48 — 0 28 82 27 27 20 9.996 2261 

Observatory to Prospect .. 

Observatory to Blue Hill.. 

ji8o 00 02 10 -1 24 00.86 -0 86 180 00 00 00 

15067.1,^ m. 

25563.20 m. 

4.178 0306 

4.407 6152 

116. Second Method of Solution by Means of an Auxiliary 

Plane Triangle.* 
Another method of solution which has been used to some ex¬ 

tent in Europe is as follows: 

See Jordan, Vermessungskunde, Vol. Ill, § 39. 
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Let ABC (Fig. 98) be the spherical triangle and A^B'X an 

auxiliary plane triangle having two of its angles, a. cind /?, equal to 

the corresponding angles in the spherical triangle. Evidently 
the third angles will not be equal. 

ITg. 98. 

Let a' and b' in the plane triangle be the sides corresponding 

to a and h. 

In the spherical triangle we have 

sin a 

sin ^ 

sin 

sin 

and in the plane triangle 
sin a a' 

sin (3 V 
for all values that may be given to a' and V] whence 

. a a' 

a' R 

. b ' b' b' 
sin^ J? 

This equation is satisfied if we place 

a' a 

R ^ 

b' . b 

R ~ ^^"^R 
and 
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The general expression for any triangle side may be written 

R 

s' being the side of an auxiliary plane triangle corresponding to 
the side s of the s})herical triangle. 

Taking logs of both members, 

log 
K 

, .X , /s .S« \ 
= log sm = log .. .) 

= log| + log(i-^-^ 

Now, since 

log (t + x) = M G 
(where M = logmc = 0.4^42945, the modulus of the common 

logarithms), we may write 

log^ - log sin^ - log^^ 

+ m(- ~ + ...)- ■^^(- 

6R-' 

Therefore 

or 

, s . M s- 
logo - logw = 

, Mj2 
log 5 - log 5 = 

R 6 

Ms^ 
[63] 

which is the correction to the log of the triangle side. 
In calculating this correction, should be replaced by RmN. 

Values of these corrections will be found in Table XIII for the 

argument log s. 

* The next term = = 0.000 000 0001 for a distance of 100 kilometers 
180 
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Example. 

Stations. Spherical aiiRlcs. Distances. Loj^arithins. 

Blue Hill to Prospect.. 0 / // 22,723.08 4.356 4673 
Correction. 9 
s'. 4-35^ 4664 
Observatory. 61 47 18.39 0.054 9215 
Blue Hill. 35 45 14-99 9.766 6423 
Prospec t. 82 27 27.48 9.996 2262 

4.178 0302 
Correction. 4 
Observatory to Prospect.. . 15,067.13 4.178 0306 
P. 4.407 6141 
Correction. 11 
Observatory to Blue Hill. . 25,563.20 4.407 6152 

Notice that after the base of the first triangle has once been 

reduced by subtracting the correction, the computation of the 

whole chain of triangles may be carried out, using the spherical 

angles only. It is not necessary to add the corrections to the 

logarithms of the computed sides until their true values are to be 

found. 

PROBLEMS 

Problem i. Compute the area in square miles of a triangle on the earth’s sur¬ 
face having a spherical excess of i", assuming that the earth is a sphere of radius 
3960 miles. 

Problem 2. Compute the sides of the following triangles: 

Station. 

Correction to 

ariKles from 

figure adjustment. 

Error of 

closure of 

triangle. 

Corrected 

spherical angles. 

Spherical 

excess. 

(fl) Mt. Ellen -o".7o 1 f 49° 36' 36".88 
Tushar +0 .98 -\-o".22 1 55 56 26 .70 1 34"-33 
Wasatch 0 1 [ 74 27 30 .75 , 

Wasatch to Mt. Ellen; azimuth, 333° 01' 08".65; back-azimuth, 153° 25' o5".oo; 
dist., 123,556.70 meters; logarithm, 5.0918663. Latitude of Wasatch, 39° 06'- 
54".362; longitude, 111° 27' ii".9i5. (Tushar is SW of Wasatch.) 

{h) Uncompahgre -fo".i7 1 f 31° 54' 6i".57 j 
Mt. Waas — 0 .10 / +o".65 98 16 41 .16 46".is 
Tavaputs 

00 

0 
-f 1 49 48 63 .42 J 
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Mt. Waas to Uncompahgre; azimuth, 288° 01' 25".71; back-azimuth, toq® 07'- 
o6".ii; dist. 162,928.01 meters, logarithm, 5.211 9958. Latitude Mt. Waas, 
38® 32' 2i".444; longitude, 109° 13' 38".302. (Mt. Waas is SW of Tavaputs.) 

Problem 3. Position of point B 

Position of point C 

lat. 39° 13' 26".686 
long. 98° 32' 30".506 

lat. 38° 51' 5o".9i3 
long. 98° 29' 15".508 

Azimuth B to C 353° 17' 2i".8i; dist. 40232.35 meters; (log = 4.604 5754); 
back-azimuth 173° 19' 24".64. 

The spherical angles are A 57° 53' i4".39 (A is east of BC.) 
B 62° 23' 31 ".40 

L 59° 43' i7"-93 

Compute the spherical e.xcess and solve the triangle. 

Problem 4. Position of pt. L\ latitude 42° 26' 13".276, longitude 70° 55' 52".088. 
Distance L to N, 3012.0 meters flog = 3.478 8600). .4zimuth L to iV, 314° 34' 00"; 

back-azimuth, 134° 35' 03". Position of pt. N, latitude 42° 25' 04".764, longitude 
70° 54' 18".232. Angle at L, 36° 15' 07"; at .V, 63° 44' 59"; at E, 79° 59' 57''. 
{E is east of LN.) Compute the S})herical excess and solve the triangle. 

Problem 5. The observed angles of a triangle and their corrections as found by 
adjustment are as follows: 

Angle. Corrections. 

Sand Hill 

0 0 57' 28' '13 -o".35 
Rutherford 54 22 59 •51 — 0 .61 
Miller 84 39 35 •03 

0 1 

The position of Rutherford is latitude = 37° 08' 57".928 N, longitude = g8° 06'- 

31".618 W. The position of Miller is latitude = 37° 02' 20^.963 N, longitude 

97° 55" 43''*9o8 W. The azimuth from Miller to Rutherford =127° 28' 17".95; 
back-azimuth 307° 21' 47^.30. Distance in meters, 20139.64; logarithm, 4.304 0518. 

Solve the triangle. 

Problem 6. Show that the substitution of Equas. (a) and (/>) p. 198 in Equa. (c) 
p. 198 is permissible under the assumptions made in Arts. loq and iii. 

Problem 7. The angles and sides of the Mt. Lola — Mt. Diablo — Mt. Helena 

triangle are as follows: — 

Lola 28° 49' of'.goo 107 728.96"* 
Diablo 73 06 32 .540 213 873.23 
Helena 78 05 16 .803 218 704.43 

Compute the second term of the spherical e.xcess. The mean latitude is 38° 40' N. 
Problem 8. The sides of the triangle Shasta — Helena — l^la are approxi¬ 

mately 133 mi., 167 mi., and 190 mi. The value of e" is i42".696. Compute the 

second term of the spherical excess. 



CHAPTER Vn 

CALCULATION OF GEODETIC POSITIONS 

116. Calculation of Geodetic Positions. 

In geodetic surveys covering large areas the positions of the 

triangulation points are expressed by means of their latitudes 

and longitudes. Over limited areas a system of rectangular 

spherical coordinates may be used to advantage, but for such 

areas as have to be surveyed in this country the latitude and 

longitude system is preferable. 

Before the latitude and longitude of one triangulation station 

can be calculated from the coordinates of another station, it is 

necessary to know the dimensions of the spheroid which is taken 

to represent the earth’s figure, and also to fix definitely the lati¬ 

tude and longitude of some specified station, as well as the 

azimuth of the direction to some other triangulation station. 

This selected position and direction determine the relative posi¬ 

tion of the whole survey with respect to the adopted spheroid, 

and constitute what is known as the geodetic datum. The surveys 

of different countries may be computed on different spheroids 

or may be located inconsistently on the same spheroid. The 

different portions of a survey of the same country will be located 

inconsistently on the same spheroid until they have been con¬ 

nected by triangulation. 

The two spheroids which have been most extensively used for 

geodetic surveys are (i) that computed by Bessel in 1841, and (2) 

that by Clarke in 1866. The Bessel spheroid was computed from 

data obtained chiefly on the continent of Europe, and conse¬ 

quently conforms closely to the curvature of that portion of the 

earth. This spheroid is still in general use in Europe. Clarke’s 

spheroid of 1866 was computed from arcs distributed over a much 
206 
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larger portion of the earth’s surface; it shows a greater amount 

of flattening at the poles than the Bessel spheroid, and conse¬ 

quently assigns a flatter curvature to the surface in the latitude 

of Europe and of the United States. The Bessel spheroid was 

employed by the Coast Survey in the earlier years. As the sur¬ 

veys gradually extended, the errors due to using this spheroid 

became more and more apparent, until finally, about 1880, it was 

decided to change to the Clarke spheroid. The latter conforms 

much more nearly to the curvature of the surface in the United 

States. 

117. The North American Datum.* 

In 1901 the United States Coast and Geodetic Survey adopted 

what was then called the United States Standard Datum, 

by assigning to the station Meades Ranch the following position 

on the Clarke spheroid: 

Laliludc, Sq'’ 13' 26".686 
Longitude, 98° 32' 30".506 

Azimuth to Waldo, 75° 28' 14 ' 52 

In 1913 this datum was adopted by the governments of Canada 

and Mexico, and it is now known as the North American Datum. 

In deciding upon a geodetic datum it was necessary to con¬ 

sider two important points: first, the datum should be so chosen 

as to reduce to a minimum the labor of recomputing the geodetic 

positions; second, it must place the triangulation system in such 

a position that no serious error will occur in any part of the sys¬ 

tem. At the time this datum was selected a large number of 

triangulation points had already been located along the Atlantic 

Coast. By selecting a position for Mcades Ranch consistent with 

the old datum upon which this triangulation was calculated, a 

large amount of recomputation was avoided. At the same time 

it was apparent that this also placed the triangulation very near 

to its theoretically best position. 

* Sec Coast Survey Special Publication No. 24, p. 8, or Special Publication No. 

19, p. 80. 
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118. Method of Computing Latitude and Longitude. 

Assuming that the latitude and longitude of a station (A) 

are known, as well as the distance and azimuth to a second sta¬ 

tion (B), we will now develop the formulae* necessary to compute 

the geodetic latitude and longitude of the second point. In 

doing this we shall have to solve the differential spherical tri¬ 

angle formed by joining the two points with the pole. 

119. Difference in Latitude. 

In Fig. 99, P' is the pole of the spheroid. P is the pole of a 

sphere tangent to the spheroid along the parallel of latitude 

* These formulae were first given by Puissant; see his Traits de Geodesic, Vol. I; 

see also Coast and Geodetic Survey Repc*** for 1894, and Special Publication No. 8. 



DIFFERENCE IN LATITUDE 209 

through A, The radius of the sphere is N, and its center is at 

H. Let A be the known station and B the unknown station. 

The angular distance of A from the pole is 7; the unknown dis¬ 

tance of 5 is 7'; a is the arc AB; a is the azimuth; and € = 

180° - a 

If 7' is computed by a direct solution of the spherical triangle 

ABP, the required precision can be reached only by the use of 

about ten-place logarithms. It is more convenient, and quite 

as accurate, for such short lines as occur in practice, to employ for¬ 

mulae giving the dijjerencc in latitude, that is 7 — 7'. 

The formula for the direct solution of 7' in the spherical tri¬ 

angle is 
cos 7' = cos 7 cos (7 + sin 7 sin a cos e. (a) 

Since 7' is a function of a, its value may be expressed as a con¬ 

verging series by means of Maclaurin’s formula (p. 408), giving 

7' = T'ct 

dY 

dCtr 
o- + 

1 

2 da^ff 

I d^y' 

6 
(7^ + (b) 

To evaluate the three differential coefficients, differentiate 

Equa. (a) three times in succession, and in each resulting equation 

substitute <r = o. The results of the first two differentiations 

are as follows: 

— sin 
,dy' 

^ Ta 
— cos 7 sin <7 sin 7 cos <7 cos €, ic) 

. ,dW 
— sin 7 — cos 7 — cos 7 cos (7 — sin 7 sin <t cos e 

-cos t', (by (a)). {d) 

Before differentiating a third time, {d) may be written 

Differentiating {e), we have 

. 0/^7' 
ian 7 

d(T^ 
+ sec^ 7 d(T 

d^y^ dY 

d(T“ ^ da 

d^ 

da'^ 
= O. (/) 
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When 

and (c) becomes 
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cr = O, 7' = 7, 

dY 
— sin 7 —- = sin 7 cos e. 

da 

Therefore 

(e) becomes 

Therefore 

(/) becomes 

dy' 

da 

dV 

J- = —cos e. 
da ii) 

tan 7 -7-^ + cos“ e = I. 
da^ 

dn 

da“ 
sin- e cot 7. {h) 

tan 7-^^ +sec-7 ( — cos e) (sin-e cot 7) + 2 ( — cos e)(sin- € cot 7) =0. 

dW 
Therefore = cos € sin^ e cot- 7 (2 + sec- 7) 

= (2 cot^ 7 + cosec- 7) sin- e cos e 

= (i + 3 cot- 7) sin- e cos e. (f) 

Substituting these results, (^), {h), and (f) in equation (/>), 

Maclaurin’s series, we obtain 

a^ a^ 
7' = 7 —(TCOS€+~-sin2€Cot7+-^“(i +3cot‘‘^7)sin“6COSe+• • •. (7) 

Changing to latitudes and azimuths by placing 
f ,r 7 = 90 — 0 , 

7 = 90"" - <t>y 

€ = 180^ — a, 
Equation (j) becomes 

/ • 
(p — <f) =a COS « + " sin^ a tan cp 

— “ (i + 3 tan2</>) sin^a ebsof. ... (k) 

The difference in latitude being in radians on the sphere. 
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In order to transfer the coordinates of the triangulation points 

from the sphere to the spheroid, it should be noticed that if the 

radius of the sphere is N (the normal) and its center is at H (Fig. 

99), and the polar axes of the sphere and spheroid coincide, then 

the parallels of latitude through A coincide, the spheroid being 

tangent to the sphere along this parallel; also, the latitude (</>) 

will be the same for both surfaces, and the distances and azimuths 

oi A B on the two will differ by inappreciable quantities. We 
5- 

may therefore put where 5 is the distance in linear units.* 

Then (k) becomes 

S cos ct S" 

-f-^2sin2atan<)l.-^,sin2acosa(i+3tanV)- (/) 

The difference in latitude should be measured, however, on a 

curve of radius Rm, since it is measured along the meridian P'A, 

Fig. 99. The linear difference in latitude is very nearly the 

same for the two surfaces, and the angular difference in latitude 

will vary inversely as the radii; that is, 

5 = ((f) — (f)') N = A(/)" Rm arc i". (See Equa. [49].) (w) 

N 
Therefore A</)" = (<#>- </>') ------ 

Km arc 1 

A0" being in seconds of arc on the meridian of the spheroid, and 

Rm the radius of curvature of the meridian at the middle point 
between the parallels through A and B. Therefore the difference 

in latitude (remembering that a positive value of cos a corre- 

sp)onds with a decrease in latitude) is given by 

- A</>" 
S cos a 

Rm^tc 1" 

^-sin^a tan0 s^sln'^a cos a (1+3 tan^^) 

2NRm^c7''' bmRMdiTCl" 
• w 

The negative sign is introduced because when a is in the first 

* The following more accurate expression is given by Clarke, 

; + 
sin* I 

N sin i" 6(1— e^) 
cos^ 4> cos^ a. [63a] 



212 CALCULATION OF GEODETIC POSITIONS 

or the fourth quadrant and cos a is positive the difference in 

latitude is negative. 

Since the middle latitude is not known at the beginning of the 

computation, it is more convenient first to take out the value of 
Rpi for the known latitude of A, which will give an approximate 

difference in latitude, which we may call 5^", and then to change 

to that corresponding to Rm by multiplying by the inverse ratio 

of the radii. 

Since 
64>" _ 

Rm Rm 

A<t>’' = 6<i>" §=- = 84>' 
_ Rm — 

,, / dR]^\ 
= 5</) I ^ -^“1 approximately, 

dR 
in which ^ is a correction to be subtracted from the first 

^M 
value. 

From [43] R„ = 

Therefore dR^ = 

a (i — e^) 

(i — 6“ sin^c^)- 

a (1 — e^) • s ^ d(t> 

(i — e- sin^ 0)^' 

Since dR^ is the change from the starting point to the middle 

point, the differential d<l> is taken as half the difference in latitude, 

50; that is, 

50 arc I 

Therefore 50^ 

If we now put for brevity 

d(t> = 
z 

fdRfn 3 g^sin0 COS0 arc 

Rm^ 2 (i — e^sin^<t>) 

= D • (50")^ 

I 

Rtn arc I // “* R) 

(50")^ 

tan 0 

2 NRfn arc i 
7/ = C, 
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5 COS a 7 I + S tan2 <f) ^ , 

R^sir^' ^ ^ -tW-"" 

Equa. {n) becomes 

— A<^" — s • B • cos a + s^ - C • sin^ a 
+ (60")^ • D — h * s^ • E • sin^ a, [64] 

the difiference in latitude now being in seconds. 
The new latitude is given by 

0' = (A + A<^". [65] 

The logarithms of the factors B, C, D, and E are given in 

Table XIV, p. 433, in metric units, for the Clarke spheroid of 
1866. 

The D term is inserted before the E term, because it is usually 

the larger. The E term may be omitted when log s is less than 

4.23. .. . The D term may be omitted when log s is less than 

2.31 . . . , and h'^ may be substituted for (5(/>")^ when log s is less 
than 4.93. . . . The fourth differential coefficient in the series 

may be neglected except for the very longest lines (see Coast 

Survey Report for 1894, p. 284). 
Whenever the azimuth, a, is less than 90® or more than 2^o^ 

(S W or S E) the B term is positive. Since the C and D terms 

contain squares they are always positive and are therefore added 

to the B term. The E term (A positive) is subtracted. When a 
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is between 90° and 270° (N W or N E) the B term is negative 

and the C and D terms are (numerically) subtracted from it, 

while the E term is added to it. 

If a perpendicular is dropped from B to the meridian through 

A (Fig. 100) it is readily seen that the first term of the series 

{B term) is (very nearly) equal to the projection AC. This is 

the same as the ‘‘latitude^’ employed in plane surveying, but 

converted into seconds by the factor B. The difference in 

latitude between stations A and B is not AC, but the distance 

from A to the parallel of latitude through B. It is therefore 

necessary to add the distance CD, which is nearly equal to the 

offset at B from the tangent {DE) to the parallel of latitude. 

This is the C term. This term is proportional to the square of 

the distance out {BC or DE) and is the offset used in establishing 

a parallel of latitude in the surveys of the public lands. 

120. Difference in Longitude. 

The difference in longitude is such a small angle that we may 

obtain it with sufficient precision by a direct solution of the tri¬ 

angle PAB, Fig. 99, (but on a different auxiliary sphere), using 

7-place logarithms. 

Applying the law of sines, 

sin a sin a 

The sphere on which the points are projected is that whose 

radius is N' and whose center is at H' corresponding to point B, 

As before, let 

rT.1 r . . 5 sin a . . 
Therefore sin AX = sin • -7, • (p) 

N cos 0 

In practice it is more convenient to solve the equation in the 

form 
s 

AX" arc i^^ = ^7 • sin a sec 0', 

and then to apply corrections for the difference between the arc 
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and sine; the equation should therefore be written 

5“ 
AX" - corr-i.jg^x = yv^”arcT" ’ ~ 

since each side of the ecjuation is too large by the difference be¬ 

tween the arc and sine. 

Placing ^7—”"-7^ = A \ the equation becomes 

AX" = yl' • 5 • sin a sec <#>' + corr.i,,gAx — corr.iog^ [66] 

in which the corrections are to be applied to the logarithms. 

Values of log A' will be found in Table XIV, p. 433. 

In Art. 1 j 5, p. 201, it was shown that 

? 9 lif 
log-^-logsin^^ = ^-^,, 

where ^ is the length of any line (great circle) on the surface. 

If is an angle expressed in seconds, then the last equation 

becomes 

K(garc=.'' 
, ■'f , . -y \^ / 
log^ - log sin^ = --- 

Taking logs of both members, 

log (diff. of logs) = log(^-^y-^) + 2 log(^)- 

Applying this formula first to AX", we have 

log (diff. of logs) = 8.2308 + 2 log AX". (g) 

s 
Applying the formula to ^7 ^ and, observing that the second term is 

log (diff. of logs) = 8.2308 + 2 log 5 + 2 log A' 

= 5.2488* + 2 log s. 

* Based on the value 8.5090 for log i4'. 

W 

(s) 
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s 
This correction is to be subtracted because arc ^7 is greater than 

In Table XIII the corrections are tabulated to show the values 

of log s and log AX" for the same log diff. The correction for 

log s is negative and that for log AX" is positive. The algebraic 

sum of the two corrections is to be added to log AX". The 

method of making these corrections is illustrated in the example 

on p. 220. The new longitude X' is given by 

X' = X + AX" [67] 

In the formula 

AX" = T77-Tf sin a sec <t>' 
arc I 

it will be seen that s sin a is the ‘departure" (of plane surveying 

or of navigation) expressed in linear units. This is reduced to 

seconds of arc of a great circle by the factor arc i". This 

result is changed to seconds of arc of the parallel of latitude by 

the factor sec </>'. 

In west longitudes a positive sign for the sine of a {a between 

0° and 180°) gives a positive sign to the difference in longitude. 

If a is between 180° and 360° the sine is — and the longitude is 

decreased. 

121. Forward and Back Azimuths. 

Owing to the convergence of the meridians the forward and re¬ 

verse azimuths of a line will not differ by exactly 180°, as in plane 

coordinates. The amount of this convergence is computed as 

follows 

In the triangle PAB^ Fig. 99, by Napier’s analogies, 

tan I (i4 + J5) = cot JAX • —^ . 
cos t(7 + 7) 

Substituting, and noting that ^ B + Aa = 180®, and that 
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an increase in AX causes a decrease in Aa, 

. 1 . . 1 .V cos|((/) >- <t>') 

- cot J Aa = cot t AX 1—1 ' 

sm i {(t> + <t>) 

whence tan i Aa = tan J AX 
sin ^ + <t>') 

cos (<^ -- </)') 

= tan ^ AX 

Therefore — — = tan~^ I tan — 
AX sin (f)„ 

Putting for | Aa the series 

tan ^ AX 
A0 

cos — 
2 

and for tan J AX the series 

i tan i AX- 

(h AX)^ 

-4Aa = iAX + 
AX'M sin 
24 / A</) 

cos — 
2 

AX A sin 0^ 

24 / A</) 
cos — 

2 

, sin<^^ AX'^ sin AX^ sin^ 

- ^ A0 24 ' A0 24 ■ A0 
cos— cos- COS'^— 

2 2 2 

Multiplying by 2 and factoring out 

~ ^ cos I A<^> \cos I Ai^ cos® A<j>/ 

Placing cos | A(^ = i in the small term and reducing Aa and 
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AX to seconds of arc, 

— I^a' = AX'' + A (ax")’* sin cos" (l>^ arc^ i" 
cos 2 

== AX" sin (l)„i sec ^ + (AX")-* • 7^', [68] 

in which F is an abbreviation for sin efy^ cos" (jy^ arc" i" and is 

given by its log in Table XlVa, p. 431. This F term amounts 

to only o".oi when log AX" = 3.36. . . . 
The back azimuth a is given by 

a' = a Aa" T 180*^^ [69] 

It will be seen that the first term in the expression for Aa 

At#) 
(omitting the factor sec — > which is always nearly equal to 

unity) is the same as the formula used for calculating the con¬ 

vergence of the meridians, as when estab- 

^ lishing township and section lines or when 

checking azimuths in a traverse. 

From Fig. loi it will be seen that if a 
is less than 180°, B is west of A, and Aa 

must be subtracted from a (and 180° added) 

to obtain a'. 

In calculating the geodetic ix)sition of a 

point, the azimuth of the line to that point 

is to be found from the known azimuth of 

the fixed side of the triangle by using the 

corrected spherical angle, not the plane angle of the auxiliary 

triangle. The computations of </>' and X' may be verified by com¬ 

puting the position from two sides of the triangle and noting 

whether the same and X' are obtained from the two lines. 

The reverse azimuths are checked by noting whether their differ¬ 

ence equals the spherical angle at the new station. In this 

manner the calculation of each triangle may be made to check 
itself. 
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122. Formulae for Computation. 

For convenience of reference the working formuke are here 

brought together. 

— A0 ==.v • B • cos . ,^-2. [64] 

AX = yl' • 5 • sin sec </>' [66] 

(or, log AX" = log .9 + log sin a + log A' + log sec (/>' + C “ Ci„g 0, 

— Aa" — sin 2 (<^ 4“ fp') ^ A(/) (AX 

in which 

h — s • cos a • Bj 

— 60" = • cos a • B «s'“ siiT^ a • C — lis^ sin^ a • E. 

The position of the new i^oint and the reverse azimuth are then 

given by 
^ + A0", [65] 

X' = X + AX", [67] 

= a -|- Aa^^ -|- 180°. [69] 

The arrangement of the computation is illustrated by the fol¬ 

lowing example. The two pages show the two computations of a 

position in the same triangle. 

In the first page of the computation, the known station is Waldo 
and the position of Bunker Hill is to be found. Since the value 

of Aa depends upon AX and AX depends upon 0', the three parts 

of the solution must be carried out in the order indicated. In 

computing A0, take out By C, Z>, and E for the given latitude 0. 

The (60) used in the D term is usually taken as the algebraic sum 

of the first two terms of the series; if the E term is large, it should 

be included also. The h in the E term is the first {B) term alone. 

The algebraic signs of the functions of a are important and should 

be carefully attended to. 

When computing AX, 0' is known and the factor log A' must 

* The value of — A0 may be made more accurate by the addition of the following 

term: 
— J • /r • £ -b 3 cos2 a-k- E-^ ^ cos^ a sec^ 0 • ^ arc^ i", 

in which k = s‘^ • sin^ a • C. 
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a Waldo to Meade’s Ranch 255* 17' 17' .52 

Z Meade’s Ranch and Bunker Hill 86 20 54 .50 

a Waldo to Bunker Hill 341 38 12 .02 

Aa +4 43 .09 

180" 

a' Bunker Hill to Waldo 161 42 55 .11 

Third angle 38 08 34 02 

0 3y“ oy'55'^645 W'aldo 

! 

1 ^ 
98“ 49' .50". 128 

A<t> — 17 39 209 ^ = 34.407 64 meters AX - 07 29 652 

38 52 16 .436 Bunker Hill 1 X' 98 42 20 .476 

s 
i 

4 536 6549 9 073.ii 

1 

(6(^)2 6.0499 -A 3 0249w 

cos a 9 977 3018 sin^ a 8.99674 sin® a 8.0700 

B 8 5109150 C I 3I5S3 D 2.3832 6 0871 

h 3.024 8717 9.38558 8.4331 7.1820 n 

1st term 1058". 9409 3d term +0 0271 (AX)s 7 959 

2d term 0 .2429 4th term —0 0015 F 7.872 

1059 .1838 +0.0256 5 831 

3rd and 4th 4 5366549 

terms + .0256 sin a 9.498 368o« Arg AX 2 652 877 rt 
—A<i> 1059.2094 A' 8 509 1469 — 21 sin i (<> + 0') 9 -799 043 

i (0 + ^') 39* 01' 06",04 sec <>' 0.108 7088 AX sec i (A0) I 

2.652 8786 « ('orr. -18 1 2.451 921 n 
18 —Aa 

0
 1 

1 
2.652 8768 n 

AX —449"-652 

be taken out for this new latitude not for 0. The primes are 

inserted to call attention to this. To correct for the difference 
between the arc and the sine, enter Table XIII with log AX and 

log s as arguments. The algebraic sum of the two values of 

^^log diff.” is the correction to be applied to log AX. The value 

of Aa is found last. 

The values of 0' and X' are checked by noting whether the 

same values are obtained from the two computations. The two 

reverse azimuths should differ by the spherical angle at the new 

station, which checks the computations of Aa. 

122a. Subsidiary Triangulation. 

In calculating the positions of points in subsidiary triangula¬ 

tion the work may be somewhat simplified since it is unnecessary 
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l 
a 

Aa 

Meade’s Ranch to Waldo 
Bunker Hill and Waldo 
Meade’s Ranch to Bunker Hill 

Bunker Hill to Meade’s Ranch 

75“ 28' 14" 52 

55 30 33 73 

19 57 40 79 
—06 II 66 

180 
199 51 29 .13 

<t> 

Ai> 

39“ 13'26".686 
—21 10 250 

Meade’s Ranch 
s ~ 41,661.11 meters 

Bunker Hill >
' 

>
' 

98“ 32'30".506 

4-09 49 969 

38 52 16 436 98 42 20 .475 

s 4 619 7308 52 9 23946 (5<A)- 6.2076 -h 3.1037w 
cos a 9 973 0924 sin* a 9 06649 5* sin* a 8.3060 

B 8 510 9105 C I 31644 I) 2 3835 E 6 0882 

h 3.103 7337 9 62239 8.5911 7.4979 n 

1st term +■1269 795 3d term 4-0 0390 (AM* 8 312 
2d term 0 419 4th term —0 oou I 7 871 

+1270 214 4-0 0359 6 183 
3d and 4th .V 4 619 7308 

term 4-0 036 sin Of 9 533 2455 ArK. AX 2 770830 

4-1270.250 A' 8 509 1469 5 -3T sin 1 (<^ 4-0'') 9 799 317 
sec <t> 0 108 7088 A\ 4-06 sec i (A0) 2 

i U + 39“ 02' 51" 56 2 770K320 ("orr. j -25 2 570 149 

-25 1 

2 7708295 371" 66 
A\ 4-589" 9694 

to make use of the smallest terms, such, for example, as the E 
term in the latitude equation, the corrections to the longitude, 

A</) . . , . 
or the factor sec and the F term in the azimuth equation. 

The working formulae would then take the form 

— A</)" = s • B • cos a + • C • sin^ a + {b(i>'y^ D 

AX" = ^' • .V • sin a sec <j>' 

— Aa" = AX" sin I (0 H" (p')- 

The computation would be carried out as shown on p. 222. 
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POSITION COMPUTATION, SUBSIDIARY TRIANGULATION. 

a 

Z 

a 
Aa 

Sand Point to La Salle 

La Salle & Indianola 

2 Sand Point to i Indianola 

8 43 54 0 

+44 46 17 3 

5^ 30 II 3 

- I 54 7 

180 00 00 0 

a 1 Indianola to 2 Sand Point 233 28 16.6 

1 

1 
Third angle of triangle 77 56 09 6 

! 

0 

0 / // 

2« 35 02 377 2 Sand Point X 96 26 59 604 

A0 — 2 36 805 AX + 3 59 900 

4>' 28 32 25 572 I Indianola X' 96 30 59 504 

\{tl> -f 4>') 

0 / // 

28 33 44 

5 

cos a 

B 

3 909 175 

9 774 355 
8 511 GGG 

52 

sin2 a 

C 

7 818 

9 810 

I 142 

A2 

D 
4 39 

2 32 

ist term 

2d and 3[1 

terms 

+ 156 7458 

+ 0594 

h 2 195 196 8 770 

.0589 

6 71 

0005 

-A0 + 1.56 8052 

5 
sin a 
A' 

sec0' 

AX 

From Coast and Geodetic Survey Special Publication No. 8. 

3 909 17s 

9 905 196 

« 509 391 
o 056 268 

2 380 030 

+239 900 

AX 

sin + <f>') 

2 38003 

9 67953 

2 0595G 

+114 7 

122b. Clarke’s Formulae for Computing Geodetic Positions. 

The Puissant formulae are sufficiently accurate for lines up to 

about 70 or 8o miles in length and these usually satisfy all the 

requirements of triangulation. In a few instances, however, 

it has been necessary to employ more accurate formulae for 

computing the positions. The following solution of the problem 

was given by Clarke in the Report of the Ordnance Survey of 
Great Britain 1858, and in his Geodesy] these formulae were used 
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in the calculation of the fJavidson Quadrilaterals in California 
and Nevada. 

In this solution the triangle formed by joining the two stations 
and the pole, Fig. 99, is first solved directly in order to obtain 

(simultaneously) the angle at B and the difference in longitude. 

The calculation is ordinarily made with lo-place logarithms. 

The interior angles, rather than the azimuths are employed in 

the solution. The difference in latitude is found last. Using 

the same notation as before, except for the azimuths, we have 

-.Tg cos- </> cos- a 
TV sin 6 (i - c-) 

,, ^in t" 
y — -</) sin 2 a 

4(1- e^) 

1 / / . \ '> (7 — O’) Ci 
Ian \ (a + f + AX) = U , TT’ S 

cos I (7 + <j) 2 

J. W / , . .. ^ sin « 
- ^ ^ ^ ^ sm + <r) 2 

.V sin fa-'+f-a) f o-^sin-]" / n1 

3ini sin,U«+i+«)L 12 J 

[Gge] 

[69a] 

[69*] 

[69c] 

[6qd\ 

sin 

In these formulae f is the small angle (at B) between the two 

plane curves, a and a' + f are the interior angles of the triangle 

PAB, Fig. 99. The computations arc necessarily carried out 

in the order given above. Positions obtained by these formulae 

are reliable up to about 200 miles. 

122c. Dalby’s Theorem. 
In deriving formula [68] and also formulae [69c] and [69^] it 

was assumed that the spherical formula (Napier’s analogies) 

would give the difference between the forward and back azi¬ 

muths on the surface of the spheroid. Dalby showed that the 

error in this assumption is negligible, and it is usually known as 

Dalby’s Theorem. Helmert (Hdhercn Geodasie, Vol. I, p. 150) 
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shows that the error may be expressed in the form 

aBA - (iAB = a'BA - ci'ab + 7-^—7, sin ( “ ) sin^ A0 sin </> cos^<t> • • • , 
4 arc I vV / 

and that this small term is ordinarily less than one-thousandth 

of a second. The spheroidal azimuths are indicated by aAB and 

dBA, the spherical azimuths being indicated by the primed letters. 

Clarke, (Geodesy, p. io6) shows that if a and a are the interior 

angles (spheroidal) and and /?' are the corresponding spherical 

angles, then, 

a + a' = 15 + +-7, ( “ ) sin a cos- a sin (j> cos^ <^ • • • , 
4 arc 1 \a/ 

k being the chord distance. This is nearly the same as the 

preceding. The small term is less than a ten-thousandth of a 

second for the longest lines which can be sighted. 

From these equations we infer (i) that the difference in azi¬ 

muth at two stations may be calculated as spherical without 

sensible error, and (2) the spheroidal excess equals the spherical 

excess of a spherical triangle having for its vertices the pole and 

two points having the same latitudes and longitudes as the 

stations in question. 

123. The Inverse Problem. 

Not infrequently it is required to find the distance and mutual 

azimuths between two stations whose latitudes and longitudes 

are known. 

If we place x = s sin a and y = s cos a, then, from Equa. [66] 

and [64], we have 

X 
AX" cos 0' 

T [70] 

and y 

from which 

and 

■ ^ [A0" + Cx2 + D (50")2 + E (A0") 

X AX cos 
tan a == = —77—j— 

y A • h 
5 == y sec a ] 

== X cosec a. I 

[71] 

[72] 

I73] 
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The inverse solution may be worked out on the same printed 

form that is used for the direct solution, but the order of procedure 

is modified as follows: First, compute x by Equa. [70], then the 

C, D (and E) terms in Equa. [71], obtaining finally y. The azi¬ 

muth is then found through its tangent; 5 may be calculated 

from the x term or from the y term, whichever is more accurate. 

The calculation of Aa gives a'. 

In the following example of a solution of the inverse problem, 

the two latitudes and the two longitudes are known and 5, a, 

and a are to be found. The only difference between this form 

and the preceding one is the calculation of tan a and .y in the 

lower right-hand corner. 
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POSITION COMPUTATION, SECONDARA^ TRIANGULATION. 

INVERSE SOLUTION 

a to 

53 30 11 5 

“ I 54 7 

z & 

a 

Aa 

a' 

2 Sand Point to i Indianola 

1 Indianola to 2 Sand Point 

Third angle of triangle 

ISo 00 00 oo 

23? 28 i().8 

0 . 1 0 / // 

23 35 02 377 2 Sand Point X C)6 2(> 59 f>04 

A<f> — 2 3^i «05 AX + .5 59 900 

<t>' 2.8 32 25 572 I Indianola X' 9<' 30 sy 504 

2 + i>') 

0 / n 

28 33 44 

s 

cos <x 
1 3 (>«3 529 

.v2 

sm- a 
j 7.C)287 h- 4 39 

N 8 511 666 C I 1410 D 2 32 

ist term 

2d and 30! 
-1-15(1 7455 h 2 195 195 8 7706 6 71 

terms + .0595 .0590 . 0005 

-~A0 4-156 8050 

.V sin« — 3 814 371 

cos a = 3 683 529 

tan Of = 0 130 842 

1 3.814 371 

8.509 391 
0 056 268 

AX 

sin \{4> <t>') 

2.380 03 

_9 (I79 53 

a = 53 30 11.5 

cos« = 9 774 355 

^ = 3 909 174 

2.380 030 2.059 56 

4-239 900 -Aa 4-114-7 

(F'rom Cuast and Geodetic Survey Special Publication No. 8.) 
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123a. Tabulation of Data Derived from Triangulation. 

In tabulating the geodetic positions, distances, azimuths, etc. 

for publication the following form is frequently used. The 

column “seconds in meters” is useful when plotting the position 

on a sheet showing the minutes of latitude and longitude. 

Station. 

Latitude 

and 

longitude. 

Secs. 

in 

niett;rs. 

Azimuth 
Back 

Azimuth. 

To 

station. 

Dis¬ 

tance. 

Loga¬ 

rithm of 

distance 

Unkonoonuc 42 5H 59-864 1847 4 

0 / n 

249 36 12.62 70 12 57-15 Agamenlicus 77686.6s 4 8903464 

(N.H.) i860 71 85 19-380 439 9 I9fi 35 18.88 16 44 18 82 Gun stock 61992 11 4 7923364 

Monadnock 42 51 41.174 1270 6 219 13 05.04 39 43 25.22 Gunstock 94468 57 4 9752873 

(N.PI.) i860 'J2 06 30.776 698 6 252 07 57.59 [ 72 29 12.03 

I 

Unkonoonuc 44548 68 4.6488348 

124. Location of Boundaries. 

Whenever it becomes necessary to establish on the ground a 

boundary line between two states or countries, the length of 

the lines and the accuracy demanded usually make it necessary 

to employ geodetic methods. A boundary may consist of a 

meridian arc, a parallel of latitude, or a great circle inclined to 

the meridian; or it may be a combination of these. 

126. Location of Meridian. 

If a boundary is a meridian arc the longitude of which is fixed 

by law, it is first necessary to assume approximate positions for 

the terminal points, and then to determine the longitude of these 

by direct observations. These points are then corrected in 

position. After the terminals have been established on the 

ground, the line may be run from one to the other as a random 

line, to be subsequently corrected if necessary. Observations on 

Polaris for azimuth will show the direction of the meridian. The 

line is then run out by backsighting and foresighting. If neces¬ 

sary, the direction of the meridian may be determined at inter¬ 

mediate points. When the second point is reached, the error in 

the running of the line becomes known, and the random line may 

be set over or re-run in the usual manner. If the boundary is 

long, the intermediate points may be found by triangulation in- 



228 CALCULATION OF OEODKl’IC POSITIONS 

stead of by direct measurement. In any case triangulation will 

furnish a valuable check. 

126. Location of Parallel of Latitude. 

In order to establish a parallel of latitude on the ground, it is 

necessary to assume a point as nearly as may be on the desired 

parallel. The exact position of this assumed point is then de- 

termined by Talcott^s method, and the station moved, if neces¬ 

sary, to the correct position. If the difference between the ob¬ 

served and the desired latitude is A<^, the sea-level distance which 

the station must be moved is 5' = Rm A0" • arc i". 
At higher elevations s' should be increased in proportion to the 

distance from the center of the earth (Equa. [6]). If the error in 

Iiosition proves to be large, it may be 

advisable to make another determi¬ 

nation of the latitude, in order to 

avoid the effect of station errors. 

(See Art. 83, p. 151.) 

The next step is to determine the 
azimuth of a reference mark, by ob¬ 

servation on Polaris, and to estab¬ 

lish the direction of a great circle 

at right angles to the meridian 

(prime vertical). Points on the 

parallel of latitude are then deter¬ 

mined by measuring offsets from the prime vertical as a 

reference line. 
In Fig. 102 we have, in the triangle PAB, 

PA = 90° — 0, 

A = 90^ 

and tan g = tan AX cos 0, 

or (T = tan“^ (tan AX cos 0) 

Expanding g by the formula for tan~^ x, p. 408, and also 



LOCATION OF ARCS OF GREAT CIRCLES 229 

tan AX in terms of AX by the formula for tan x, p. 408, we have 

0- = AX cos 0 + 3 (AX cos 4>y tan^ 

or s = <tN = NA\" • cos </) • arc i" 

+ 3 iV (ax" cos 4> • arc i")*** tan'^ <t>, [74] 

which gives the distance AB corresponding to any difference in 

longitude AX". 

If in Equa. {n), p. 211, we place a = 90°, 

" _ tan <j> 
2 NRm arc i" 

The offset P from the prime vertical (tangent) for any distance 

s from the initial point is 

r. // // tan 0 , , 
P = Rm arc i = l75l 

Since P varies as s-y the offsets for equidistant intervals along 

the line may be readily calculated. The direction of the pole 

from any point (a*) on AB is given by 

PxA = 90° + Aa, 

in which it is sufficiently accurate to take 

— Aa" = AX" sin [76] 

Since the numerical value of Aa" increases directly as AX", it will 

be sufficient to take the increments of Aa" as proportional to s. 

If the arc of the parallel is a long one, it is advisable to break 

it into sections, and to establish a new point at the beginning of 

each section by direct latitude observation. 

(See United States Northern Boundary Surveys Washington, 

1878.) 

127. Location of Arcs of Great Circles. 

The general method of laying out arcs not coincident with the 

meridian is that of determining astronomically the latitudes and 

longitudes of the terminal points, and then running a random 

line between them. The direction and distance between the 
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terminals may be found by Formulae [70] to [73] for the inverse 

solution of the geodetic problem. The azimuth is determined 

by observation at intermediate points. The error of the random 

line is corrected in the usual way. For long arcs triangulation 

would be substituted for direct measurement. 

(See Appendix 3, Coast Survey Report for 1900, ^^The Oblique 

Boundary Line between California and Nevada.”) 

128. Plane Coordinate Systems. 

When all the points to be located in a survey are comprised 

within a relatively small area, such as a city or a metropolitan 

district, the calculations are greatly simplified by the use of plane 

coordinates. Many of the large cities. New York, Cincinnati, 

Rochester, Atlanta, Boston, Baltimore, and others, have adopted 

such a system. If there are reliable triangulation points already 

established within the area, these will naturally be used as a basis 

for the new survey, or at any rate to check the new triangulation. 

In establishing a system of plane coordinates it is necessary to 

decide first upon the positions of the coordinate axes. These 

will naturally be a meridian and a great circle at right angles to 

it; or, more properly speaking, they will be straight lines tangent 

to these two circles at their point of intersection, all points being 

supposed to lie in the plane defined by these two lines. The 

origin of the system must be defined in terms of the coordinates 

of some specified point of the survey (geodetic datum, p. 206). 

Unless this is done, the origin will not be the same when derived 

from different points, and ambiguity will exist regarding the true 

position of the origin. The origin may be taken as coincident 

with the selected triangulation point, as in the case of the survey 

of Boston, Massachusetts, and Baltimore, Maryland; or it may 

be the intersection of a selected meridian and parallel as derived 

from the assigned latitude and longitude of some station. In 

Springfield, Massachusetts, for example, the origin is the inter¬ 

section of the 42^04' parallel and the 72^^ 28' meridian, as de¬ 

termined by the published latitude and longitude of the United 

States Armory flagpole. The direction of the meridian must be 
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defined as making a certain angle with a specified line of the sur¬ 

vey, preferably one which passes through the fundamental point. 

The point at which the plane is tangent to the spheroid must 

not be confused with the (o, o) point of the system. The former 

should be within the area surveyed, preferably at its center, in 

order to avoid large spherical errors. The latter may be taken 

at any convenient distance outside the area by assigning to the 

tangent point large values of x and y, in order to avoid negative 

values in the coordinates of the survey points. The tangent 

point is on the sphere as well as on the plane; the (o, o) point is 

]iot necessarily on the sphere. In case the area is large it is 

sometimes advisable to use more than one tangent point. This 

was done in the survey of the city of New York. 

129. Calculation of Plane Coordinates from Latitude and 

Longitude. 

In calculating the plane coordinates of a point, we may apply 

Formuke [70] to [73] for the inverse solution of the geodetic 

problem, one of the points being the origin (tangent point) whose 

coordinates are <j> and X, and the other the triangulation point the 

coordinates of which are </>' and X'. The x and y there given are 
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the plane coordinates desired. If the coordinates of many points 

are to be transformed, it will prove to be more convenient to 

use specially prepared auxiliary tables and to modify the calcula¬ 

tions as follows. 

In Fig. 103 P is the triangulation point whose latitude and 

longitude are known, and whose coordinates x and y with refer¬ 

ence to the origin O are desired. For such distances as are likely 

to occur in a plane system it may be assumed that PE = PD\ 
that is, X equals the length of the arc of the parallel PD. The 

ordinate y = PC may be taken as PA (the difference in latitude) 

plus J3C* (the offset from great circle to parallel). From For¬ 

mula [70], 

X PD ^ AX" • 
cos 0' 

A' ’ [77] 

If X is to be expressed in feet, 

X = AX" • X 3.28081 [78] 

= AX" X H. 

Values of log H for every 30" of latitude from 0 = 42° 10' to 

(l> = 42° 30' are given in Table A. Proportional parts for the 

seconds are given at the right. 

Since the factors A' and cos <t>' appear in Equa. [78] we should 

use latitude when taking out the factor H. 

* UP is south of the origin, the offset must be subtracted. 
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TABLE A. VALUES OP LOG ^^’ + 0.515 9842* 

Distance west of origin in feet = x = AX" X H 

1- 

Log H. Lat. <^'. LogH. P. P. .70 572 574 576 

0 t n 0 / // /r 

42 10 1.876 8536 42 20 1.87s 7103 1 19 19 19 19 
2 38 38 38 38 

30 7966 30 6530 3 57 57 57 S8 
4 76 76 77 77 

II 7396 21 5957 5 95 95 96 96 

30 6825 30 5383 6 114 114 115 115 
7 133 134 134 134 

12 625s 22 4809 8 152 153 153 154 
9 171 172 172 173 

30 5684 30 423s 10 190 191 191 192 

13 5114 23 3661 II 209 210 210 211 
12 228 229 230 230 

30 4543 30 3086 T3 247 248 249 250 
14 266 267 268 269 

14 3971 24 2512 15 285 286 287 288 

30 3400 30 1937 16 304 305 306 307 
17 i 323 324 325 326 

15 2828 25 1362 i8 342 343 344 346 
19 361 362 364 365 

30 2256 30 0787 20 380 381 383 384 

16 1684 26 1.875 0212 21 399 400 402 403 
22 418 419 421 422 

30 11x2 30 1.874 9636 23 437 439 440 442 
24 456 458 459 461 

17 1.8760541 27 9061 25 475 477 478 480 

30 1.8759968 30 8485 26 494 49b 497 499 
27 513 515 517 518 

18 9396 28 7910 28 532 534 536 538 
29 551 553 555 557 

30 8823 30 7334 30 570 572 574 576 

19 8250 29 b757 

30 7677 30 6181 

20 1.875 7103 30 1.874 5604 

* This is the form adopted by the city of Springfield, Mass., for its coordinate system. 

Note: More complete tables, extending from lat. 24® to lat. 49° (10" intervals) 

will be found in U. S. Coast and Geodetic Survey Special Publ No. 71. (1921). 
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TABLE B. VALUES OF 0.5159842 - log 5 

Dist. N. of Origin in Feet = X K + x'^ 
2 iv 

Dist. S. of Origin in feet — X K — x’^ 

Lat. Log. K. Lat. Log. K. P. P., Difif. i' = 12.8. 

42 10 2.005 2981 

0 / // 

42 20 2.005 3109 T 0 

// 

22 5 

30 2988 30 3116 2 0 23 5 
II 2994 21 3122 3 I 24 s 

30 3000 30 3129 4 I 25 5 
12 3006 22 3135 S I 26 6 

30 3013 30 3141 6 r 27 6 
13 3019 23 3147 7 I 28 6 

30 3026 30 3154 8 2 29 6 
14 3032 24 3160 9 2 

30 3039 30 3167 10 2 

IS 3045 25 3173 11 2 

30 3052 30 3180 T2 3 
16 3058 26 3186 13 3 

30 3064 30 1 3^93 14 3 
17 3070 27 3199 15 3 

30 3077 30 3205 if) 3 
18 3083 28 3211 17 4 

30 3090 30 3218 18 4 
19 3096 29 3224 19 4 

30 3103 30 3231 20 4 
20 2 .005 3109 30 2.0053237 21 4 

The difference in latitude PA is converted into feet by multi- 
*2 2808“ 

plying A</)" by —- (= A"). (See Table B.) Use the middle 

latitude when taking out this factor K {D term not used). 

The offset BC (Formula [75]) = ^ [TQ] 

The factor (= A), in feet, may be taken from Table C 

which was calculated by the formula 

log = log C - log B - log 3.2808^ [80] 

* For another method of calculating this offset, see an article entitled “ A Method 

of Transforming Latitude and Longitude into Plane Coordinates,’^ by Sturgis H. 

Thorndike, Journal Boston Society Civil Engineers^ Vol. 3, No. 7, September, 1916. 
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TABLE C. VALUES OF LOG ^ (ft.) = log C - log3 - 0.515 9842 

Offset from parallel = log L-j- 2 log x 

Lat. Loj?. L. Lat. Log. L. P. DifT . i' = 25 4. 

42 10 2.33 460 42 20 2-33 714 

0 

I 0 24 10 

30 473 30 727 2 T 25 IT 

II 486 21 739 3 T 26 1 I 

30 499 30 752 4 2 27 I 1 
12 512 22 765 5 2 28 12 

30 525 30 778 6 3 29 12 

13 537 23 790 7 3 
30 550 30 803 8 4 

14 562 24 815 9 4 

30 575 30 828 TO 4 
15 587 25 840 II 5 

30 600 30 853 12 5 
16 6t2 26 865 13 6 

30 625 30 878 14 6 

17 658 27 892 15 G 

30 651 30 905 iG 7 
18 663 28 917 17 7 

30 676 30 930 18 8 

19 689 29 942 •9 8 

30 702 30 955 .?o 8 

2-33 714 30 2.33 9^7 ( 9 1 

2 2 9 
23 10 

Example. As an illustration of how this method would be applied, let us sup¬ 
pose that it is desired to compute the plane coordinates of A Powderhorn in a system 
whose origin is the dome of the State House, Boston, Massachusetts. We first 
compute A<t>" and AX" and then apply formuhe [78], [79] and [80] as shown. 

Powderhorn Lat. 42° 24' o4".683 Long. 71® 01' 52".oo6 
State House 42 21 29 .596 71 03 51 .040 

2'35"-o87 i' 59"-034 
A4>" = i55"-o87 AX" = ii9".034 

log — 7.90183 log A<f)" = 2.190 5754 log AX" = 2.075 6710 
log L = 2.33752 log K = 2.005 3145 ^ = 1-^75 2422 

log = 0.23935 log = 41Q5 ^^99 log ^ — 3 950 9132 
Offset = 1.7352 ft. 15699.65 ft. X = 8931.27 ft. East of 

1.74 State House. 

y = 15701.39 ft. North of State House 

If it is preferred to make the conversion from AX to x always 

on the same parallel of latitude, that of the origin, a table may be 

calculated, giving the length of each minute (i' to 10') and each 
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second (1" to 60") of arc on this parallel; the difference in longi¬ 

tude may be taken out, by parts, from this table. If this is done, 

however, it is necessary to make allowance for the convergence 

of the meridians between the two parallels by solving for the dis¬ 

tance AB = y sin 0 (Fig. 103). The convergence 6 = AX" sin 

and its sine may be tabulated for different values of AX and 0^. 

If the triangulation point is north of the origin, AB is to be sub¬ 

tracted; if south, it is to be added. 

The plane coordinates computed in this manner are based 

upon sea-level distances, since all the triangulation was reduced 

to sea-level through the reduction of its measured base-lines. 

If the mean elevation of the district is high the positions of the 

triangulation points as given by these x, y, coordinates will not 

be consistent with those obtained directly by field measurement. 

If the line OP (Fig. 103) has an elevation of 1000 feet the com¬ 

puted position of P will be nearer to O by about 2 0.0 of 

the distance OP than it would if measured directly on the surface 

of the ground. In order to avoid this difficulty, and also the 

inconvenience of reducing all measurements to sea-level, it is 

customary to correct the coordinates of such triangulation 

stations by increasing the distances in proportion to the mean 

height of the district above sea-level. (Equa. [6].) If this is 

done there need be no further reduction to sea-level because all 

distances will now be on the same surface of reference. The 

position of the origin, however, must still be considered as its 

sea-level position in order that this survey may have its correct 

location with reference to other surveys. 

130. Errors of a Plane System. 

In order to investigate the errors of a plane coordinate system 

like the preceding, let us assume that a line starts from the origin 

0, Fig. 104, in an azimuth a, and follows the surface of a sphere of 

radius VR^ (for latitude 0) for a distance s meters, to point A ; 

and that another line OA\ having the same azimuth and length, 

lies in the plane which is tangent to the sphere at 0. The point 

A^ in the plane then represents the point A on the sphere as de- 



ERRORS OF A PLANE SYSTEM 237 

termined by a direct measurement from the origin. The defects 

of the plane system as a means of representing points on a sphere 

will be shown by the error in reproducing point A' by following 

different routes, such, for example, as traversing due north and 

then due west on the sphere, or due west and then due north. 

Fig. 104. 

If a perpendicular AF (an arc of a great circle) be let fall from 

A (Fig. 104) to the meridian through O, its length will be deter¬ 

mined by , a , $ . 
sin • sin a, 

where a is the perpendicular distance in meters and R is the 

radius of the sphere. 

For the corresponding distance on the plane, 

a == 5 • sm a. 

Distinguishing the plane and spherical values of a by sub¬ 

scripts, p and .V, the difference in length may be found as follows: 

dp -- <is — s sin a. ] a — R sin~^ ^sin a sin 

in«-^[sin«(|-6-i, 
Rs sin a 

R 

\ sin’a/s V" 

6 . 
+ ^sina sin'"^ a + 

sin a cos^ a + 
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Assuming that <t> = 40°, a = N 45° W, and s = 20,000 meters 

(about 12 miles), then ap — as — o"'Loii6 If another such line 

were to extend 20,000^, N 45° E, to 5, the terminal points A and 

B would then be 027^2 farther apart if calculated on a plane 

than if calculated on the sphere.* 

If the survey proceeds from 0 northward to the point E, where 

the great circle from perpendicular to the meridian, inter¬ 

sects that meridian, and then westward along this great circle to 

A, the point A would be reached without error, if the measure¬ 

ments were perfect. The point computed on the plane would 

not agree, however, with A' as already established. The excess 

of the spherical distance hs, along the meridian to the foot of the 

perpendicular F, over the plane distance hp is found as follows: 

In the spherical right triangle. 

b s 
tan 73 = tan cos a. 

K K 

Then 

hs— hp = R tan~^ ^tan^cos — 5 cos a 

cos a sin‘^ a 

Assuming the same data as before, we find that in order to reach 

A, on the sphere, we must run N 14142.15886 meters and then 

W 14142.12400 meters. Since in this case 5 sin a = 5 cos a = 
14142.13563^, such a traverse, when computed on the plane, 

gives a point o"*.02323 N and o"*.oii63 E of point A\ A similar 

traverse running west to point G (Fig. 104) and then north to A 
would give a point o*”.oii63 S and 0*^.02323 W of point A'. The 

relative positions are shown (actual size) in Fig. 105. 

The maximum discrepancy in the traverse is then about 0^.05, 

or about two inches. This would appear as an error of closure 

of the traverse OF AGO even if there were no error whatsoever in 

the measurements themselves. 

* This does not refer to the chord-distance AB, but to the distance on the 

spherical surface. 



ERRORS OF A PLANE SYSTEM 
239 

The difference in length between an arc of the parallel and an 

arc of the great circle is found as follows: In Fig. 106, 5 AB = 

.AX „ . 0 T. , . 
r sin — = A sin -. Replacing the sines by their series in terms of 

/AX AX^X „/e e»\ 
the arcs, r (^2 ” difference between 

r AX, the arc of the parallel, and Rd, the arc of the great circle, is 

rAX — Re 

since 6 

Therefore rA\ — Rd 

AX» 
r — 

24 

7, 7, AX’COS® / 
Acos.^— - /e-—- (approx.) 

AX cos 0, nearly. 

^ cos </> AX'^ (1 — COS" 0) 

R (ax")3 • arc^ i" cos 0 sin^ 0. 

Fig. io6. 

In order to compare this with the previous examples, we must 

put AX" = ii92".4, which corresponds to the distance between 

A and B, The error rAX — Rd is found to be o'”.oi86 for the 

total arc, or o"*.oo93 half arc. The difference between 

the length of the parallel and the x coordinate is therefore 

o"‘.oii6 — o”‘.oo93 = o"*.oo23. 

These results indicate that a plane system may be extended 
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over an area twelve miles in radius without involving errors of 

computation as great as the errors of measurement, and also that 

the formulae given may be used whenever it is safe to use plane 

coordinates. 

The error resulting from the use of plane coordinates when 

carried to various distances from the origin is shown in the fol¬ 

lowing table, taken from U. S. Coast and Geodetic Survey, 

Special Publication No. 71. 

Distance.' from origin. Ace-nracy of ulane e-oordinates. 

Kilometers. Miles. 

30 18.6 I part in 100 000 
40 24 9 I “ 50 000 
64 40 1 “ 20 000 
90 55-9 I “ 10 000 

128 79 • 5 I “ 5 000 

131. Traverses. 

For methods of executing first order traverses and adjusting 

them to established triangulation, reference is made to Special 

Publication No. 137, U. S. Coast and Geodetic Survey. 

PROBLEMS 

Problem i. Calculate the latitude and longitude of point Problem 3, Chapter 

VI, from both lines, and the back azimuths AB and AC. 

Problem 2. Calculate the latitude and longitude of point F, Problem 4, Chapter 
VI, and the back azimuths EL and EN. 

Problem 3. Calculate the position of Sand Hill in Problem 5, Chapter VI. 

Problem 4. What will be the error of closure of a survey which follows the cir¬ 

cumference of a circle whose radius is 20,000 meters (on the earth’s surface) if the 

survey is calculated as though it were on a plane, the latitude of the center being 

40® N. and the measurements being exact? 

Problem 5. What error will be caused by dropping the small term in formula 

[63a] (footnote) if the distance is 200 miles and = 45°, and a — o°? 

Problem 6. Compute the position of B by formulas [64] to [69] and by formulae 

[69a] to [bpd- 

The latitude of = 41° 01' 17".240 N 
Longitude of ^4 = 114® 04' 36''.286 W 

Distance AB = 237 770.57^ (log = 5.3761 5810) 

Azimuth from A to B — 303° 40' i6".6o8 
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Problem 7. Compute the value of the neglected term in Dalby’s Theorem (Art. 

122c) when the distance is 200 miles, <f> - 40° and a ~ 45°, 

Problem 8. Calculate the plane co^irdinates of the point L fProblem 4, p. 205) 

referred to the point N as an origin, and employing the Tables and formulas of 

Art. 129. Verify the result by using the known azimuth and distanc e from N to 

L. 
Problem q. The position of point A is 44° 43' 41".254 N, 67° 24' 25".8i7 W. 

The position of B is 44” 41'50".873 N, 67° 22' 56",o62 W. It is desired to use these 

points from which to extend a survey. The distance between them and the azi¬ 

muths are unknown. Compute a and a!. 



CHAPTER VIII 

FIGURE OF THE EARTH 

132. Figure of the Earth. 

The term “figure of the earthmay have various interpreta¬ 

tions, according to the sense in which it is employed and the de¬ 

gree of precision with which we intend to define the earth^s 

figure. When we say that the earth is spherical, we mean that 

the sphere is a rough approximation to the true figure, sufficiently 

close for many purposes. We adopt the sphere to represent this 

figure because it is a simple surface to deal with mathematically. 

When a closer approximation is required, we employ the spheroid, 

or ellipsoid of revolution. This figure is so near the truth that no 

closer approximation has ever been needed in practical geodetic 

operations, although an ellipsoid (three unequal axes) or an 

ovaloid (southern hemisphere the larger) may be nearer the 

truth. All the surfaces mentioned are regular mathematical sur¬ 

faces, substituted for the true surface on account of their sim¬ 

plicity. 

In defining the true figure it is necessary to distinguish be¬ 

tween the topographical surface and that surface to which the 

waters of the earth tend to conform because they are free to 

adjust themselves perfectly to the forces acting upon them. It 

is this latter surface with which we are chiefly concerned in 

geodesy; the land surface is not referred to except in such ques¬ 

tions as the effect of topography upon the direction and in¬ 

tensity of gravity. The true figure, called the geoid, is defined 

as a surface which is everywhere normal to the force of gravity, 

that is, an equipotential surface; and of all the possible surfaces 

of this class it is that particular one which coincides with the 

mean surface of the oceans of the earth. Under the continents 
242 
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it is the surface to which the waters of the ocean would tend to 

conform if allowed to flow into very narrow and shallow canals 

cut through the land. It is necessary to suppose these canals 

narrow and shallow in order that the quantity of water removed 

may not modify the figure over the ocean areas. 

Some idea of the relation of the spheroid, the geoid, and topo¬ 

graphical surface may be gained by an inspection of Fig. 107. It 

will be seen that the geoidal surface coincides with the surface 

of the ocean, and that it intersects the spheroid at some distance 

z 

out from the shore line. The inclination of the normal to the 

plumb line (station error) shows the angle between the two sur¬ 

faces at this point. 

The surface of the geoid may be represented conveniently by 

means of contour lines referred to the spheroid as a datum sur¬ 

face. In Fig. 108, which shows contours of the geoid within the 

limits of the United States proper, that portion of the contours 

shown in full lines is taken from a map published by the Coast 

and Geodetic Survey in ‘^Figure of the Earth and Isostasy’’ 

(1909); the remaining portions (dotted) were sketched in by 

eye, following in a general way the topography of the continent. 

Such a map conveys no real information about the elevations 

of the geoid except along the full lines, but is given simply to 

show how the contours would be used in representing the geoid. 

When we speak of the spheroid as the figure of the earth’’ we 
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mean that particular spheroid which best represents the earth as 

a whole, or which most closely fits some specified area. The 

dimensions of such a spheroid arc not to be regarded as fixed, 

but are subject to revision with each accession of new data. This 

statement does not apply, however, to the spheroid used for the 

standard datum. The latter would not be changed unless it was 

found to be so seriously in error as to cause inconvenience in 

conducting the survey. 

The principal methods of determining the spheroid are (i) by 

the measurement of arcs, which may be portions of meridians, 

of parallels, or of great circles; (2) by means of areas containing 

several astronomical stations rigidly connected by triangulation; 

and (3) by observations of the force of gravity. 

133. Dimensions of the Spheroid from Two Arcs. 

The simplest method by which the dimensions of the spheroid 

can be determined is by the measurement of two meridian arcs. 

The length of each arc and the latitudes of the terminal points of 

each must be measured. If the earth were a perfect spheroid, 

and if there were no errors of measurement, the two arcs would 

determine exactly the elements of the spheroid. 
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In the equation of the ellipse there are two constants to be 
determined, and it will be shown that the determination of the 

curvature of the meridian ellipse at two points will enable us to 

compute these constants and consequently all the other elements 

of the ellipse. In Fig. 109, suppose that the lengths of the two 

meridian arcs have been measured by triangulation and that 

their lengths are ^ and s'j and that the differences of the latitudes 

log. 

of their terminals arc A<j!) and A<^', respectively. The radii of 

curvature of the ellipse at the middle points of the arcs are 

and 

^ (i — sin^ 0)'^ 

p / = ^ 

“ (l — sin“ 

in which 0 and 0' refer to the middle points of the arcs and a 
and e are unknown. If the two arcs are regarded as arcs of 

circles whose radii are to be found, then 

A0 arc I 
and RJ = 

A</)' arc i' 
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are the two radii of curvature, A(/> being in seconds. The 

shorter the arcs, the less the error involved in assuming that 

they are circular. 
Equating the two values of and RJ, we have 

5 a{i — e^) 

A4> arc i" (i — gs gin^ 0)5 
(a) 

5' a (i - 

A0' arc 1" (i - gin^ 4>')^ 
(b) 

Dividing (a) by {b) and solving for 

/5 A(j>'\i 
^ “ [Ta^) 

~\7m) 

[81] 

Having found from Equa. [81], the equatorial radius a may 

be computed by substituting the value of in either (a) or {b). 

The value of b may then be found from the relation 

== (1 — e^). (c) 

The compression / is given by 

/ = [53] 

The length of a quadrant of the meridian may be found by 

applying Equa. [54], Chapter V. 

In this method of determining the elements of the spheroid it 

should be observed that there are just enough measurements to 

enable us to solve the equations, and no more. All errors of 

measurement and of local attraction affect the result; so we 

should not expect to derive very accurate values from two arcs. 

As an illustration of the preceding method let us take the 

Peruvian Arc and a portion of the Russian Arc, the data for 

which are as follows: 
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PERUVIAN ARC 

Station. Astr. lat. 

Dist. in meters 

between the parallels 

of latitude. 

Tarqui. 
Cotc'hcsqui. 

0 , 

S 3 04 32.068 ) 
No 02 31.387 ) 

344,740.5 

RUSSIAI vl ARC (Northern End) 

Tornca. 
Fuglonae:^. 

0 / // 

N 65 49 44.57 ) 

N 70 40' 11.23 ) 539.841.7 

Substituting in Formulas [81], (a) and (c)^ the resulting values 

are 
= 0.0065473, 

^ = 6,377,352 m, 
b == 6,356,440 m, 

134. Oblique Arcs. 

If an arc (AB^ Fig. no) is inclined to 

the meridian at a small angle, it may be 

utilized to determine the curvature of the 

meridian as follows: Referring to Equa. 

(w), Chapter VII, it is seen that the dif¬ 

ference in latitude of the terminal points 

of the line is given by the series for A<j>'\ 

Hence the length of the meridian arc is 

given by • arc i", and 

A<l>" • Rnt * arc i'' = — s cos a — ^ ^ 

+ 7-47^.y*^sin“a cosa(i +3tan2<^). [32] 
6 

Each line of a chain of triangles may be projected onto the merid¬ 

ian, and its length found by this formula. The length and dif¬ 

ference in latitude of the end points are thus found, and the 
projection treated as though it were a measured meridian arc. 
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The sum of all these short arcs may then be treated as a single 
arc to be combined with another similar arc in the computation 

of a and e. 
136. Figure of the Earth from Several Arcs. 

When several arcs are to be used to determine the elements of 

the si)heroid, there are more data than are necessary for the 
direct solution as given in Art. 133. The arcs usually consist of 

several sections; that is, the latitudes of several stations along 

the same meridian are observed and the distances between them 
are determined by the triangulation. The problem is one of 

combining all these measurements by the method of least squares 

in order to obtain the most probable values of the elements. 
Only the outline of the method can be given here. 

From Equa. [qg] we have for the length of a meridian arc 

.S' == A<f> ‘ Rm * arc i", 

which is sufficiently accurate for short arcs. P'or long arcs a 

more accurate expression is necessary. Suppose that an arc 
consists of several sections, the latitude of the initial point being 

</>!, the second 4>2, etc., and that the meridian distances between 
the stations are .v, S], etc. From the first two latitudes 

in which 

<t>2 — 4>] ~ 

s 
Rm arc I 

1 (j — </>)-. 

Rpt U (l C“) 

(e) 

(/) 

Instead of finding a and directly, it is more convenient to 

assume approximate values of these quantities and to compute 
the most probable corrections. Let us assume the equations 

a == (Zo ”f” 

and + de^. 

Let Ro be the value of R^ corresponding to eo^ and a^. Ex- 
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paneling (/) by Taylor's theorem, 

T 
(^) 

Evaluating the two differential coefficients, 

(i — e- sin- (l>y^ 
(1 - e^) 

\ 

a‘^ 

neglecting the e' terms, and 

"k), 
de^ 

a(\ — cr) • ♦ (i — sin"</>)'=^ sin ~(j> —(i — r- sin^<^)^ » a 
(i - e-) 

= - (1 — ^ sin‘^ 0), neglecting e“ terms. 

Substituting these values in (^^), 

■ ba + (1-1 sin2 </>) • be\ 

Hence {e) becomes 

The errors in the measured latitudes are so large in comparison 

with the errors in the measured arcs that the lengths arc con¬ 

sidered exact and the observed latitudes are given corrections 

Vi, z»2, etc. Equa. (h) then becomes 

<;^>2 + ^2 01 ”” = 

s /1 8a 
arci"\i?<, 

+ (i (i) 

In the small terms, containing 8a and 8e^, the e- terms were 
omitted; thatis,^^ was placed equal to zero. This makes = a 

and 02 — 01 == ^ arVi”~^ these terms. 
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Substituting in (i), 

= - -■’ ■ 5a + (i - -j sm''‘</))(<p-2-<^,) ■ Se-+ ^ .,//■> “ (02-0i)-(y) 

If we place 
X = 5a, 

V = 

substituting in (y), we have 

aix + /}iy + /i = V2 " ifiy (^’) 

</>•» — </>i 

where ai = ~..> 

l>i = (<i>-j - <Pi) (i - 2 sin^ 4’), 

= y^„arc i" " 

It is evident that an equation of this form (k) may be written 

for each section of each arc. There will be more equations than 

there arc unknown quantities to be found. From these equations 

we may form a set of normal^’ equations (Art. 201, p. 365), 
equal in number to the number of unknown quantities, that is, 

equal to the number of arcs plus two. The simultaneous solu¬ 

tion of the normal equations gives the corrections 8a and 8c-y and 

also the correction to the initial latitude of each arc. 

136. Principal Determinations of the Spheroid by Arcs.* 

The spheroids which have l)ecn most extensively used are those 

of Bessel (1841) and Clarke (1866). Bessel’s determination was 

based on the following arcs; the Peruvian, French, English, 

Hanoverian, Danish, Prussian, Russian, Swedish, and two 

Indian arcs. The resulting elements of the spheroid are generally 

used in Europe at the present time in geodetic surveys. They 

* For an account of the different arc measurements sec A History of the Determi¬ 

nation of the Figure of the Earth from Arc MeasurementSy by A. D. Butterfield, 
Worcester, 1906 
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were employed in the United States up to about 1880. Clarke s 

spheroid (1866) was calculated from the following six arcs, the 

total amplitude being about 76° 35'; the French, English, 

Russian, South African, Indian, and the Peruvian. The Clarke 

spheroid is larger and flatter than Bessel’s. It was adopted by 

the Coast and Geodetic Survey about 1880, after it became evi¬ 

dent that the surface in this part of the globe has a flatter curva¬ 

ture than that indicated by the Bessel spheroid. The semiaxes 

of these two spheroids are shown below, their dimensions being 

based on Clarke’s value of the meter, namely, 1^* = 39.370432 

inches.* 

a (nu'LcTs). b (meter'.)- 

Bessel (1841). 377 397 C> 35G 079 
Clarke (1866). 6 378 206 6 356 584 

Several other spheroids have been calculated from different 

groups of arcs, but have not been extensively used for geodetic 

purposes. 

137. Geodetic Datum. 

The ciuestion of where to place the spheroid with respect to the 

station points of a survey, and the question whether a certain 

spheroid properly represents the curvature of the area being 

surveyed, are determined by a comparison of the geodetic and 

astronomical positions of the survey points. As the survey 

progresses the geodetic latitudes and longitudes will be calculated 

on the surface of the adopted spheroid, starting from some 

assumed position of one of the triangulation stations. At the 

same time the positions of many of the stations will be deter¬ 

mined astronomically. The differences In the latitudes, as¬ 

tronomical minus geodetic (A — G)^ the differences in the longi¬ 

tudes, and the differences in the azimuths are computed for every 

* See a report on ‘‘The Relation of the Yard to the Meter,Coast Survey 

Report for 1890. 
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station where the astronomical observations have been made. 

A study of these differences and their manner of distribution will 

show what corrections to the assumed position of the initial 

point will reduce the algebraic sum of the quantities (A — G) to 

a minimum. If these differences were due wholly to errors in 

the assumed latitude and longitude of the initial point, it would 

be possible to reduce '^{A — G) to zero, but a part of this differ¬ 

ence is due to local deflection of the vertical, that is, to the dif¬ 

ference in slope of the geoidal and spheroidal surfaces. For this 

reason the most that can be expected is to place the spheroid so 

as to reduce — G) to a small quantity. The remaining 

values of (A — G) at the different stations after a recomputation 

has been made, serve to indicate the slope of the geoid with 

reference to the spheroid. 

If the reference spheroid adopted has too great a curvature, 

the computed latitudes will increase or decrease faster than the 

astronomical latitudes as the survey proceeds north or south 

from the initial point (Fig. 112). This was observed as the sur¬ 

veys in this country were gradually extended on the Bessel 

spheroid. If we consider an area instead of a meridian arc, then 

we see that if all the astronomical zeniths are swung inward with 

reference to the geodetic zeniths, the spheroid that we are using 

for the calculations must have too great a curvature for the area 
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in question. If the observed latitudes are sometimes too great, 

sometimes too small, as we proceed along a meridian, this simply 

shows that the verticals are deflected locally, and that the 

average curvature of the surface is nearly that of the spheroid. 

138. Determination of the Geoid. 

The form of the geoid is determined by observing the local 

variations from the spheroid as a surface of reference. These 

deviations may be determined either from the station error 

(difference between astronomical and observed position) or from 

the observed variation in the force of gravity. 

The station error at any point, or local deflection of the vertical, 

is a direct measure of the slope of the surface of the geoid with 

reference to the spheroid. The geodetic coordinates of the point 

are computed with reference to a line normal to the spheroid, 

while the astronomical coordinates are referred to the actual 

direction of the plumb line, which is normal to the geoidal 

surface. 

139. Effect of Masses of Topography on the Direction of the 

Plumb Line. 

The deflection of the plumb line by masses of topography may 

be computed by a])plying Newton’s law of gravitation, that is, 

Fig. I13. 

if Mi and nio be any two masses, Z) the 

distance between them, and k a con¬ 

stant (to be found by experiment), 

then the force of attraction between 

Mi and W2 is 
nii * m2 

k • 

that is, the force of attraction is pro¬ 

portional to the product of the masses 

and varies inversely as the square of 

the distance between them. The 

effect of any mass, such as a moun¬ 

tain, in deflecting the direction of gravity at any station may 

be found by combining the attraction of the mountain with the 
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attraction of the earth regarded as a sphere. It may be shown 

that the attraction of a sphere at any external point is the same as 

though its mass were concentrated at its center. The relative at¬ 

tractions of the mountain and the earth upon the plumb bob at the 
fyi Jlf 

station are as to (Fig- T13), where m is the mass of the moun¬ 

tain, M that of the earth, and d the distance of the mountain 

N 

Fio. 114. 

from the station. The angle D through which the plumb-line is 

deflected is given by 

tan D = 
mR^ 

The earth’s mass is | xJ?® X 5.58 (the constant 5.58 being the 

mean density of the earth). If the mountain has a volume v and 

density 5, and the earth’s radius be taken as 6370 kilometers, 

then 

D" = 0.00138^* 

the dimensions being in meters and the angle in seconds. 

I83] 
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In order to take into account all of the topography about a 
station when computing the deflection of the plumb line, the 

following method may be employed (see Clarke, Geodesy^ p. 294). 

The area surrounding the station is supposed to be divided into 
circular rings of any desired width, and the rings cut into four¬ 

sided compartments by radial lines, as in Fig. 114. 

It is desirable to separate the component of the deflection in 

the meridian plane from that in the prime vertical. Let h be the 

height of the upper surface of the mass above station O; let a and 

r be the azimuth and horizontal distance to any particle P in the 

mass; and let z be its height above O and 6 its density. The mass 

of the particle is then 8 • r • da • dr ‘ dz. The attraction of the 

particle on O is 

8 • r • da • dr • dz 
A? •-r~;—^ 

r- + S“ 

k being the gravitation constant.* 

The component of this attraction in the plane of the meridian 

is the total attraction multiplied by the cosine of the angle be- 

1 1 • 1 • ^ a tween FO and oO, which is 
Vr^ + 

The total attraction of the mass in the compartment in the 
direction SO is 

A 
8 ’ r- • cos a da • dr ’ dz 

+ s=)-" 

= k 
r^ dr dz 

= k • 8 • h (sin a' — sin ai) 

= k ‘ 8 ' h (sin a' — sin ai) log^ 

dr 

r' + 

ri 4- + h'^' 

* The gravitation constant may be defined as the attraction of one unit mass 
on another unit mass at a unit distance away. In the C. G. S. system this ir. 

6673 X 10"*^*. 
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Unless h is very large, the equation may be written with 
sufficient accuracy 

A ^ k bh (sin a — sin ai) log<.-~; 

that Is, the mass is considered to lie in the plane of the horizon 
of the station. 

The attraction of the earth at point O, supposing it to be a 
sphere of radius R (3960 miles) and of density A, is 

A' == k‘ 

= k 

tirR^ 

^ tRA. 

The angle of deflection in the plane of the meridian is given 
by the ratio of attractions, that is, 

h (sin a — sin ai) log^. ~ 
Ti 

4 R 

B , , r 
= i2".44~ • h • (sin a — sin ai) log^-* [84] 

The ratio of densities -*may be taken as-— ;* 5 = 2.67 and 
A 2.0c/ ‘ 

A = 5-576. 

By extending the rings outward this computation may be 
carried as far from the station as desired. If a compartment is 
very far from the station, it becomes necessary to correct for the 
curvature of the earth, because the mass no longer lies in the 
horizon of the station, as at first assumed. 

If the angles ai and a are measured from the prime vertical 
instead of from the meridian, the formula gives the deflection in 
a plane at right angles to the meridian. 

By the foregoing process we may compute for any station 
what is called the topographic deflection. It shows what the 
deflection of the plumb line would be if no other forces acted 

* See Harkness, The Solar Parallax and its Related Constants^ Washington, 1891. 
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upon it than those mentioned. A comparison of the values so 

computed with the station errors actually observed shows the 

former to be much larger than the latter; from which we infer 

that the attraction of the surface topography cannot be the only 

force tending to deflect the plumb line. 

Laplace Points. 

As stated above, it is customary to resolve the deflection of the 

plumb line into two components, one in the plane of the meridian 

and the other in the plane of the prime vertical. The meridian 

component is found directly by subtracting the geodetic (com¬ 

puted) latitude from the observed astronomic latitude. The 

prime vertical component must be obtained indirectly either 

from the astronomic and geodetic longitudes or from the astro- 

N 

nomic and geodetic azimuths. In terms of the longitudes this 

component is 

p. V. component = (X^ — \g) cos 

In terms of the azimuth it is 

p. V. component = — (a^ — ac) cot 

Both of these relations may be derived from the figure (115). 

If we equate the two values for the prime vertical component 
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we obtain 

(aA — ac) = — (X^ — X<-) sin 4)g 

which is known as the Laplace equation. Triangulation stations 

at which the astronomic longitude and azimuth have been ob¬ 

served are called Laplace points. 

The geodetic and astronomic longitudes in the United States 

are subject to probable errors of less than 0^.5. The astronomic 

azimuths arc also determined with about the same accuracy. 

The geodetic azimuths, however, as carried through the tri¬ 

angulation, are subject to an error about ten times as great. The 

triangulation may therefore be greatly strengthened by correcting 

the geodetic azimuths at Laplace points by means of the above 

equation. 

The manner of correcting the geodetic azimuth is illustrated 

by the following example, taken from Supplementary Investiga¬ 

tion in j Qoc) of the Figure of the Earth and Isostasy. 

U. S, Standiird longitude of Parkersburg — ’ 01 ' 4</ '.00 

Astronomic “ it u _ 88 01 

A — G in longitude — o'' ’.70 

A ~ G in azimuth — (—0.70) ( —sin </>^) ~ +0 •44 

Astronomic azimuth Parkersburg to Denver — 14.^ 16 IS 
True geodetic azimuth Parkersburg to Denver = J43 “6 15 .11 

U. S Standard azimuth Parkersburg to Denver — 143 16 T5 
Correction to U. S. Standard azimuth = -0" •53 

140. Isostasy — Isostatic Compensation. 

For many years it has been known that the estimated and 

observed values of the station error are not in even approximate 

agreement, and it has long been suspected that the explanation 

would be found in the fact that the densities of the material 

immediately beneath the surface are unequal, regions of deficient 

density lying beneath mountain ranges, and regions of excessive 

density lying beneath low areas and under the ocean bottom. It 

is supposed that at some depth the excess above the surface is 

compensated by the defect below the surface, and vice versa. 

This condition is given the name isostasy. It appears that the 
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theory was first clearly stated by Major C. E. Dutton in 1889, 

and since that time it has been the subject of much study. 

In 1909 and 1910 there were published by the Coast and 

Geodetic Survey the results of a very extensive investigation 

conducted by Professor J. F. Hayford, then Inspector of Geo¬ 

detic Work and Chief of the Computing Division. The investi¬ 

gation was based primarily upon the computation of the topo¬ 

graphic deflections at a large number of astronomical stations in 

the United States. The best topographic maps available were 

used for this purpose. These computed deflections were then 

compared with the known (observed) deflections at these same 

stations as found from the triangulation and astronomical obser¬ 

vations. In substantially all cases the computed deflection was 

found to exceed the observed deflection by a large amount, 

although the two were usually of the same algebraic sign. Com¬ 

putations were then made to test the theory that this condition 

called isostasy actually exists. 

The condition known as isostasy may be stated as follows: the 

mass in any prismatic column which has for its base a unit area 

of the horizontal surface lying at the depth of compensation, for 

its edges vertical lines (lines of gravity), and for its upper limit 

the actual irregular surface of the earth (or the sea surface if the 

area in question is beneath the ocean), is the same as the mass 

in any other similar prismatic column having a unit area on the 

same surface for its base. Such prismatic columns have different 

heights but the same mass, and their bases are at the same depth 

below the geoidal (sea-level) surface. 

Computations were made assuming different depths of com¬ 

pensation, for the purpose of finding at what depth the computed 

deflections (taking isostasy into account) most nearly agree with 

the observed deflection. It was found that the compensation 

was most nearly complete (more than complete) at a depth of 

about 122 kilometers, or about 76 miles. (Later researches 

indicate that this should be about 60 miles). 

It should be observed that, while the densities in the prismatic 
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columns tend to compensate, the resultant deflection of the plumb 

line is not zero, for the portions of the column nearest the station 

have a much greater influence than the distant portions. The 

tendency is to throw all the zeniths outward from the continental 

dome, assigning to the surface a curvature which is greater than 

it should be. 

This investigation not only included a determination of the 

most probable depth of compensation, and a substantial proof 

of the validity of the theory in so far as it applies to the United 

States, but also included a determination of the most probable 

dimensions of the spheroid for that area. In this calculation 

the area method was employed. The dimensions of the spheroid 

resulting from this investigation are as follows; 

« = 6,378,388^ ± 18'", 

b = 6,356,909^, 

i= 297.0 ±0.5. 

The general conclusions in regard to the existence of isostasy 

within the limits of the United States were later confirmed by the 

results of a similar investigation of the compensating effect upon 

observed values of the force of gravity determined with the 

pendulum. 

The results of these investigations will be found in the follow¬ 

ing publications of the United States ("oast Survey: 

John F. Hayford, The Figure of the Earth and Isostasy from 

Measurements in the United States, 1909. 

John F. Hayford, Supplementary Investigations in 1909 of the 

Figure of the Earth and Isostasy, 1910. 

John F. Hayford and William Bowie, The Effect of Topography 

and Isostatic Compensation upon the Intensity of Gravity, Special 

Publication No. 10, 1912. 
William Bowie, The Effect of Topography and I so static Com¬ 

pensation upon the Intensity of Gravity, Special Publication No. 12, 

1912. 
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William Bowie, Investigation of Gravity and Isostasy, Special 

Publication No. 40, 1917. 

THE AREA METHOD 

The area method, already referred to, diiJers from the usual 

method, or arc method, in that no attention is given to whether 

the astronomic stations are located approximately on arcs, such 

as meridians, parallels, or obliques. Stations in any position 

may be used provided they are connected with each other by 

continuous triangulation, all computed on one basis, that is, all 

on the same reference spheroid and all referred to the same initial 

latitude, longitude and azimuth. Astronomic latitudes, longi¬ 

tudes, and azimuths all appear in one set of equations. 

The method consists in stating for each ob.served astronomic 

latitude a ‘‘condition equation’^ (see Art. 203) of the form, 

(0) + h (X) + Wj (a) + ni 

+ 0i (10 ooo£?“) + ((t)A — <i>') = Dm- 

For each longitude observation there is an equation of the form, 

k'z (0) “t" i'l (X) “1“ ^2 “t“ ri'i 

+ (10 oooe“) + cos 0' (Xyi — X') = Dp. 

and for each azimuth observation, one of the form, 

^3 (0) + (X) + W3 («) + ^^.3 

+ 0?, (lOOOOC“) — cot 0' {aA — ol) = Dp. 

These equations connect the observed deflections of the vertical 

with the constants expressing the shape and size of the earth. 

In these equations the quantities 0^, X^, a a are the observed 

astronomic latitude, longitude and azimuth; 0', X', a represent 

the geodetic latitude, longitude, and azimuth as computed on the 

U. S. Standard Datum; <t>A 0' is the deflection in the plane 
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of the meridian, cos </>' (X^ — X') is the prime vertical component 

of the deflection at a longitude station, and cot 0' (a^ — a) is 

the prime vertical component of the deflection of the vertical at 

an azimuth station as found from the observed azimuth. The 

quantities (0), (X) and (a) are unknown corrections to the 

initial latitude, longitude and azimuth of Meades Ranch. The 

corrections to the values of a and of the Clarke Spheroid are 

indicated by (iooooc‘“). The coefficients of these 

unknowns, k\, /i, etc., are computed from special formulae so 

as to show the effect of (0), (X), etc., at each station. For ex¬ 

ample, ki is a numerical coefficient such that if the initial lati¬ 

tude (at Meades Ranch) were corrected by the amount (0) the 

change produced in 0^ — 0' would be k^ (0). Similarly ^2 is a 

coefficient such that if the initial latitude were corrected by (0) 

the change produced in cos 0' (X^ — X^ would be ^2(0). The 

quantities in the right hand numbers of the equations are the 

residuals of the equations, and represent the final unexplained 

meridian component, and prime vertical component, respec¬ 

tively, of the deflections of the vertical. 

The prol)lem is to find the most probable values of the quanti- 

ties (0), (X), (a), (^) , and (icoooc“), that is the values which 

will make the sum of the squares of the residuals a minimum. 

This is effected by the ‘‘method of least squares” (see Chap. XII). 

A solution of the “normal equations” derived from these ob¬ 

servation equations will give the most probable values of the five 

unknown quantities. 

In the investigation of isostasy the depth of compensation was 

really a sixth unknown sought in the solution. Instead of in¬ 

cluding it as a sixth unknown in the equations, five solutions 

were carried out for five different assumed depths of compen¬ 

sation, and that depth adopted which showed the sum of the 

squares of the residuals to be a minimum. In these five solu¬ 

tions the only difference was in the values of the absolute terms. 
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In one solution it was assumed that there is no isostatic compen¬ 

sation and the absolute term should be the observed deflection 

of the vertical minus the computed topographic deflection. In 

another solution it was assumed that the compensation is com¬ 

plete at the surface of the earth, and that the absolute term 

should be the observed deflection, just as in the equations given 

above. The other three solutions were for assumed depths of 

162.2, 120.9, and 113.7 kilometers respectively. The most prob¬ 

able depth was estimated to be 112.9 kilometers. Later work 

(in 1909) taking into account all the Laplace azimuths available, 

indicated that this depth should be 122 kilometers. A complete 

account of the investigation will be found in the reports already 

cited. 

Since these original reports were published the matter has 

received much attention and further researches have been car¬ 

ried on. At the present time (1929) it is considered that the 

depth of compensation is probably 60 miles. 

Another interesting result of this investigation was the con¬ 

tour map of the geoid referred to the Clarke Spheroid of 1866 

and the U. S. Standard Datum. The contours were constructed 

by a purely mechanical process, quite similar to that used by 

military topographers. In sketching contours by means of the 

slope board and the plane table no actual elevations are found, 

but merely the slope of the surface from point to point. This 

gives the contour spacing. In contouring the geoid the slopes 

were given directly by the deflections of the vertical and the 

process of spacing the contours was reduced to a mechanical 

one which did not depend in any way upon the actual topography 

of the region. The results are shown by the full lines in Fig. 

108. 
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PROBLEMS 

Problem i. Compute the dimensions of the spheroid from the following arcs. 

Name. 
Lat. of middle 

point. 
Amplitude. Length in feet. 

Peruvian (Delambre’s). 
English. 

C / // 

S I 31 00 
N $2 35 45 

3 07 03.1 

3 57 13-1 

I 131 057 

I 442 953 

Problem 2. Compute the dimensions of the spheroid from the following arcs. 

Station. Latitude. Distance in meters. 

Formentera. 
Dunkirk. 

Of t f 

N 28 39 53.17 1 
N 51 02 08.41 / I 374 587 

Tarqui. vS 3 04 32.07 \ 
344 740.5 

Cotchc.squi. N 0 02 31 39 j 

Problem 3. Lake Superior arc; latitudes, 38° 43' 17".22 and 48® 07' 06".62; 

dist., i,o43,Q74 meters. Peruvian arc; latitudes, —3° 04' 32".o, -fo® 02' 3i".4J 

dist., 344,736.8 meters. Compute a and eL 



CHAPTER IX 

(tRAVITY MKASURKMENTS 

141. Determination of Earth’s Figure by Gravity Observations. 

The determination of the force of gravity by means of pendu¬ 

lums affords a means of determining the earth’s figure, which is 

entirely independent of the arc and area methods previously dis¬ 

cussed. In this method the force of gravity is measured at points 

of known latitude and longitude. From the observed variation 

of gravity with the latitude the polar compression may be com¬ 

puted. Such measurements, therefore, will give the form but 

not the absolute dimensions of the spheroid. 

In the following discussion the term gravity (g) will be taken 

to mean the resultant obtained by combining the force of the 

earth’s attraction due to gravitation and the centrifugal force 

due to the rotation of the earth. 

142. Law of the Pendulum. 

The relation between /, the length of a simple pendulum, P, 

its i)eriod of oscillation, and g, the force of gravity is given by the 

formula 

185] 

or, more accurately, 

^ +8l)’ 
where h is the height through which the point of oscillation falls 

during a half oscillation. 

143. Relative and Absolute Determinations. 

Determinations of gravity are of two kinds: 

(i) Absolute determinations, in which both P and I are measured 

and from which g may be calculated; and (2) relative determina- 
266 
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tionSj in which P is measured at two stations and the ratio of the 
corresponding values of g at the two places becomes known. If 

the time of oscillation P of the same pendulum has been ob¬ 
served at two stations, then 

Itt^ 
= p-2 

and 
/tt^ 

whence 
g2 

Absolute determinations of g are far more difficult than relative 

determinations, owing to the practical difficulties of measuring 
the length I with sufficient accuracy. 

Relative determinations may be made with very great ac¬ 

curacy, since the time of oscillation may be measured in such a 

manner that the personal errors of the observer have but little 

effect on the results. 
Most of the pendulum observations for geodetic purposes are 

now made by the relative method, and all values of g are made 

to (letDcnd upon some one reliable determination of the absolute 

value. The relative values of g in such a system, however, still 

remain more accurate than the computed absolute values. 

144. Variation of Gravity with the Latitude. 
The approximate law governing the variation of gravity with 

the latitude may be expressed thus: 

g* = ge(^^ + sin'’ [88] 

in which and gp are values of g at latitude <^), at the equator, 

and at the pole, respectively. By means of two such equations, 

one for g^ observed near the equator and one for g^ near the pole, 

the two unknowns ge and gp may be found. 
Equation [8-8] may be derived in a simple manner if we may 

neglect variations in the attraction at different parts of the sur- 
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face.* Suppose the earth to be a sphere of radius r, the attraction 

G having the same value everywhere. Then the resultant of 

the attraction G and the centrifugal force c, is found as follows: 

At the equator the centrifugal force ^ Ce = ojV.f At the pole 

Cp = o. 

Also at the equator 
ge = G - c, (a) 

and at the pole gp = G — Cp = G; 

whence gp *- ge = 

p 

Fig. II6. 

In latitude </> (Fig. ii6) = r cos </> and — co-r cos (l> — Cg cos </>. 

The component of directly opposed to G is Cg cos- <p (vertically 

upward). 

Hence g^ = G — Ce cos- </>. [89] 

Substituting in [89] the value of G from Equa. (a), 

= ge + Ce - Ce COS" 0 

= ge + Cg sin- 0 

= + {gp - ge) sin^ <t>-, 

* See Jordan’s Handbuch der Vennessungskunde^ Vol. Ill, p. 627. 

t The centrifugal force may be expressed by —, where v is the velocity of a par¬ 

ticle at the equator. The distance moved by a particle in one rotation (= i sidereal 

day = T seconds) is 2 irr. Hence the centrifugal force = (¥)' r = coV, where w 

is the angular velocity. T = 86,400 sidereal seconds = 86,164.09 mean solar 

seconds. 
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that is, g* = g sin’* • [88] 

In order to obtain an accurate numerical expression for g..py 

of the same general form as the above, we may write 

gt> = gc(i + 

and then determine the value of B which is in best agreement 

with all observed values of g. For such a formula Dr. Helmert* 

published, in 1884, the equation 

go = 978.000 (1 + 0.005310 sin2 (/)), [90] 

in which go is supposed to be the value at sea-level and the unit 

is dynes of force, or centimeters of acceleration. 

This may be expressed for convenience in terms of go at lati¬ 

tude 45°. Since sin^ 45° = 

and since 2 sin- </> = i — cos 2 0, 

sin- 0 = i i cos 2 0 

which becomes 

go = 980.597 (i — 0.002648 cos 2 0). fgi] 

In 1901 Dr. Helmert gave the more accurate forms 

go = 978.046 (i + 0.005302 sin^ 0 — 0.000007 sin'-^ 2 0) [92] 

and go = 980.632 (i - 0.002644 cos 20 + 0.000007 cos^ 2 0;, [93] 

* Helmert, Hohere Geoddsicy Vol. II, p. 241. 
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in which the number 0.000007 (= i ^4) is a coefficient found 

theoretically from assumptions regarding the internal structure 

of the earth. 

These formulx' refer to the absolute value of g at Vienna. To 

refer to the ^^Potsdam system,” to which all values of g observed 

in the United States are referred,* the equations must be written 

^^0 = 978.030 (i + 0.005302 sin- (/) — 0.000007 sin" 2 (/>) [94] 

and ^0 = 980.616 (i ■— 0.002644 cos 2 </> + 0.000007 cos*’ 2 </>). [95] 

In the Coast Survey Special Publication No. 12, entitled 

^‘Effect of Topography and Isostatic Compensation upon the 

Intensity of Gravity’^ (second paper) the following formula is 

given: 

= 978.038 (i + 0.005302 sin‘^0 ~ 0.000007 sin*- 2 0), [96] 

equivalent to 

^0 = 980,624 (i — 0.002644 cos 2 ^ + 0.000007 cos^ 2 <f>), [96(7] 

which is Helmcrt’s formula of 1901 corrected by 0.008 dyne. 

The constants in these eciuations were derived from observations 

in the United States only. 

In Special Publication No. 40, a study is made of observations 

in the United States, Canada, Europe and India. The formula 

resulting from this investigation is 

go = 978.039 (1 + 0.005294 sin^ <p — 0.000007 sin- 2 0), [97] 

146. Clairaut's Theorem. 

The relation between the flattening of the spheroid at the poles 

and the values of gp and ge is expressed by Clairaut’s theorem, 

published in 1743, namely, 

IZL * = .5 . £? _ gp - gc 

2 ge ge ’ 
[98] 

in which Ce is the centrifugal force at the equator. In this 

* The American observations for g were referred to Greenwich (England), Paris 

(France), and Potsdam (Germany) by observations made in 1900 by G. R. Putnam, 

(see Coast Survey Report for 1901). 
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formula the terms of the second order have been omitted. If 

these terms are included, the formula becomes 

2 Sc \3 \S‘/ H ge 21 

in which B and arc coefficients to be determined from the 

observations (Helmert, Hoherc Gcod'dsie, Vol. II, p. 83). It is 

by means of this equation that the form of the earth is com¬ 

puted from gravity observations. 

146. Pendulum Apparatus. 

Nearly all of the observations of gravity for geodetic purposes 

are made with pendulums of invariable length, by the relative 

method. The description of apparatus in the following articles 

will be limited to one type, the half-seconds invariable pendulum 

apparatus as designed and constructed by the United States 

Coast Survey. The first half-seconds invariable pendulum with 

electrical apparatus for determining the period appears to have 

been devised by Sterneck (Austria) in 1882. In 1890 T. C. 

Mendenhall, then Superintendent of the Coast and Geodetic 

Survey, designed an apparatus of this kind but differing in many 

details, however, from any previous design. This apparatus has 

been used ever since that time in substantially the same form 

excepting the addition of the interferometer for determining the 

flexure. This apparatus includes three half-second pendulums, 

each about 248'”'” long and having an agate plane at the point of 

suspension. The agate plane rests on a kni fe-edge support (angle 

of 130°) attached to the pendulum case in which the pendulums 

arc enclosed when they are swung. The use of the blunt angle 

on the knife edge and the placing of the plane (rather than the 

knife edge) on the pendulum are designed to secure greater 

permanence of length, upon which the accuracy of the method 

depends. The pendulums are made of an alloy of copper and 

aluminum and weigh 1200 grams each. The three are of slightly 

different lengths so that they will have different periods. Their 

form (Fig. 118) is such as to give strength and at the same time 
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offer but little resistance to the air. In addition to the three 

observing pendulums there is a dummy pendulum, of the same 

size and shape but carrying a thermometer packed in filings of 

Fig. 118. 

the same metal. There is also a small pendulum provided with 

a spirit level for leveling the knife edge. 

Pendulums made of invar metal have been constructed by the 

instrument division of the Coast and Geodetic Survey so that it is 

possible to make gravity observations on mountain peaks and 

other places where the control of temperature is difficult. The 

use of this metal makes it unnecessary to construct a “con¬ 

stant temperature room. 
The pendulums are swung in an air-tight case from which the 
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air may be nearly exhausted by means of a pump. Levers are 

provided for lowering the pendulum onto the knife edge and for 

starting and stopping the pendulum. Inside the case is a manom¬ 

eter tube for registering the air pressure, and also an additional 

thermometer. Levels are provided for leveling the case, and 

there is a graduated scale under the pendulum for reading the arc 

of oscillation. In the most recent work of the Coast Survey 

the pendulum receiver has been enclosed in a felt and leather 

case to prevent fluctuations in temperature. 

The observations are made by comparing the times of oscilla¬ 

tion of the pendulums with the half-second beats of a break- 

circuit (sidereal) chronometer connected electrically with the 

‘‘flash apparatus’’ used for observing the coincidence. 

The flash apparatus (Fig. iiq) consists of a shutter a operated 

by the armature of an electromagnet h in the circuit and a mirror 

c behind the shutter which reflects light through the slit d to two 

small mirrors c, which reflect it into an observing telescope/; one 

of the small mirrors is attached to the pendulum and the other 

to the knife-edge support. In the most recent form of the flash 

apparatus, the observer looks down through a vertical tel- 
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escope and sees the flash reflected by a prism. This arrange¬ 

ment is more convenient for the observer than the older form 

because the pendulum receiver is usually mounted on a very low 

support. 

When the pendulum is at rest and the shutter open, a beam 

of light from a lamp* at one side of the apparatus strikes the 

mirror c at an angle of 45° and passes through the slit; it is 

reflected from both mirrors at e and appears to the observer as 

two horizontal bright slits side by side. The mirrors may be 

adjusted so that these slits appear to be at the same height, so 

as to form one continuous band. If the pendulum is set swing¬ 

ing, the reflected image now appears to travel up and down, 

while the image from the other mirror is stationary. If the 

shutter is closed and allowed to open only for an instant at the 

end of each second (or each two seconds), the observer sees that 

at each successive opening of the shutter the moving image has 

changed its position relative to the fixed image. This is due to 

the fact that the period of the pendulum is longer than the 

sidereal second and the pendulum has made slightly less than 

one complete (double) oscillation. By watching the flashes and 

noting the chronometer readings when they coincide, the ob¬ 

server obtains the number of seconds between two successive 

coincidences. During this interval the pendulum has evidently 

lost just one oscillation on the (half-second) beats of the chronom¬ 

eter. In the interval between two successive coincidences the 

pendulum has made one less than twice as many oscillations as 

the chronometer has beat seconds. During the interval between 

any two coincidences the number of oscillations is twice the 

number of seconds {s) less the number of coincidence intervals 

(;/). Hence the time of one oscillation (P) is given by 

* An electric bulb placed inside the flash box is now used instead of the oil 

lamp. 
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An examination of this formula will show that an error in 

noting the times of coincidence produces a relatively small error 

in P, and for this reason the method is almost independent of the 

observer’s errors. 

On account of the variation of g (and consequently of P) with 

the latitude of the station, it is necessary to use a mean-time 

chronometer at stations situated near the pole, because the period 

of the pendulum approaches so closely to the sidereal half-second 

that the coincidence intervals are inconveniently long. In case 

a mean-time chronometer is used, the formula becomes 

P = 
5 

2 5 + W 
[loo] 

147. Apparatus for Determining Flexure of Support. 

Observations with pendulums mounted on a very flexible sup¬ 

port show plainly that when a pendulum is set swinging, it com¬ 

municates motion to the case and the support and sets them 

oscillating, and this oscillation in turn affects the observed period 

of the pendulum. The apparatus now used to measure the effect 

of this flexure is one which operates on the principle of the 

interferometer.* This is an optical device (Fig. 120) consisting 

of a lamp and lens arranged so as to furnish a beam of sodium 

light; a glass plate arranged so as to separate the beam of light 

into two parts, one of which is transmitted, the other reflected; 

two mirrors, one in the path of each beam of light; and a tele¬ 

scope for observing the image. When the different parts of the 

apparatus are properly adjusted, dark and light bands will appear 

in the field telescope, owing to interference of the sodium-light 

waves of the two beams. One of the mirrors is mounted on the 

pendulum receiver, while the rest of the apparatus is on an inde¬ 

pendent support in front of it. When the pendulum is set 

swinging, it sets the case in motion, and this in turn moves the 

mirror, causing a slight variation in the length of the path oi one 

* A description of the interferometer will be found in the Coast Survey Report 
for 1910. 
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of the beams of light. This causes the interference bands to 

shift back and forth; the amount of shift may be estimated by 

observing the motion of the bands over a cross-hair or a scale in 

the field of the telescope. It is usually observed by noting the 

scale readings of both edges of some band in each of its two posi¬ 

tions (before and after shifting). The movement of the edges 

of a band divided by the width of the band (in scale divisions) 

gives the movement in units of the width of a band. Figure 

Fig. 121. 

121 represents the interference (dark) bands and the scale divisions 
in the field of the telescope. 

Tests made with the pendulum mounted on supports of differ¬ 

ent degrees of flexibility will show the relation between the 

observed movement of the fringe bands and the resulting error in 

the period of the pendulum. In the Coast Survey tests the re¬ 

sults showed that a movement equal to the width of one band 

produced a change of 173 in P in units of the seventh decimal 

place. This is more conveniently expressed as follows: o.oi F 

produces a change of 1.73 in P, where F is the width of a band. 

This constant was determined with the pendulum swinging 

through an arc of 5^"* on the scale, and all observed flexures must 

be reduced to this arc before correcting P. 

148. Methods of Observing. 

The receiver should be mounted on a solid support such as a 

cement or brick pier, the foot screws cemented to the pier, and 

the instrument sheltered as in case of astronomical observations. 
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It is important that the instrument should be so sheltered that 

the temperature will not fluctuate rapidly. The apparatus 

should be leveled by means of the spirit level on the outside of the 

case and then the knife edge should be leveled by means of the 

leveling pendulum. In moving the pendulums great care should 

be used to protect them from injury and to prevent any foreign 

matter from adhering to them. The accuracy of the results will 

depend upon the permanency of length, and any injury due to 

fall, or change of period due to change in the mass, will affect the 

period and vitiate the results. The pendulums should not be 

touched with the hands, but should be lifted by means of a 

special hook made for this purpose. The flash apparatus, chro¬ 

nometer, and interferometer should be placed upon supports that 

are entirely independent of the pendulum support. 

Various programs of observing have been tried, but the follow¬ 

ing has been chiefly used by observers of the Coast Survey. Each 

of the three pendulums is swung first in the direct and then in the 

reversed position, making six swings each of eight hours’ dura¬ 

tion. The error of the chronometer is obtained by star-transit 

observations (Arts. 52-71) made just before the beginning and at 

the end of the series. The following table will indicate more 

clearly the order of operations. 

Star Observations 9-10 p.m. 

Start Pendulum No. i 10 p.m. 

Reverse No. i 6 a.m. 
Start No. 2 2 p.m. 

Reverse No. 2 to p.m. 

Start No. 3 6 A.M. 

Reverse No. 3 2 p.m. 

Star 01>servations 9 p.m. 

Stop Pendulum No. 3 after star observations 

If star observations are lost at the end of the set, the swings 

are continued until star observations are obtained. At the begin¬ 

ning and end of each swing several coincidences are observed. At 

the end of each swing several more are observed. Very little 

time is lost between swings, so that they are almost continuous 
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between star observations. For this reason the variations in the 

rate of the chronometer are almost entirely eliminated from the 

mean result of all the swings. 

Since 1913 the Coast Survey observers have obtained the 

chronometer corrections from the Naval Observatory time sig¬ 

nals instead of by direct observations. This results in a great 

saving of time and cost. Another change in the regular pro¬ 

gram, recently introduced, is to swing the pendulums for twelve 

hours instead of eight, and in the direct position only, instead of 

direct and reversed. 

After a pendulum is placed in position on its support, the case 

closed, and the air exhausted until the pressure is about 60”*'”, the 

observer lowers the pendulum until it rests upon the knife edge, 

starts it swinging through an arc of about 0° 53', and notes the 

arc on the scale. To observe coincidences, the observer switches 

in the chronometer and the flash apparatus and then watches the 

flashes to see when they are approaching coincidence. As the 

two approach he notes the hours, minutes, and seconds on the 

chronometer when the advancing edge of the moving flash touches 

the first edge of the fixed flash. A few seconds later he notes 

when the receding edge of the moving flash touches the second 

edge of the fixed flash. The mean of the two gives the true time 

of coincidence of centers more accurately than it could be ob¬ 

served directly. Such observations are made on several succes¬ 

sive coincidences, the flash moving alternately upward and 

downward. By combining the up and the down observations, 

errors of adjustment are eliminated. After a few of these have 

been recorded, the observer cuts out the chronometer and leaves 

the pendulum swinging for a period of nearly eight hours. Im¬ 

mediately after the observations for coincidences are completed, 

the temperatures are read on the two thermometers, and the 

pressure is read on the manometer tube. At the end of the 

eight-hour period the observer again observes a few coincidences 

as well as the arc (now diminished to about o® 20'), the pressure, 

and the temperatures. It is not necessary that he continue 
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observing throughout the whole eight-hour period, because the 

few observations already referred to make it possible to estimate 

correctly the number of coincidences which must have occurred 

between the observed times. It is customary to take the ob¬ 

servations with two or more chronometers as a check. 

This description applies to the 8-hour program outlined above. 

If the pendulums are swung for a 12-hour period it is necessary 

to start each pendulum with a somewhat larger arc (1° 27') in 

order that it may have a sufficient amplitude at the end of 12 

hours to enable the observer to read the coincidences of the flash 

conveniently and accurately. 

It is desirable that the temperature of the apparatus be 

kept as nearly uniform as possible, and that there be little 

vibration. In order to allow the pendulum time to assume the 

temperature of the receiver the next pendulum to be swung is 

placed inside the case before it is used in the observations. 

If invar pendulums are being used, however, this is not de¬ 

sirable, on account of possible magnetic effects. While the case 

is still in position the observer must place the interferometer in 

position and observe the movement of the interference bands 

while the pendulum is swinging. 

149. Calculation of Period. 

After the observations are complete and the time observations 

and the chronometer rates are computed, the time of one oscilla¬ 

tion for each pendulum in each position is found as follows: 

divide the total number of seconds in an interval by the num¬ 

ber of seconds found for one coincidence interval (see example), 

to obtain the number of intervals that have occurred during the 

swing. Since this must be a whole number, there will be no 

difficulty in determining it correctly. Then reverse the process, 

dividing the total interval by the number of coincidence intervals, 

to obtain the accurate value of the number of seconds (5) in one 

coincidence interval. The uncorrected period of the pendulum 

is found by 
[101] 
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for a sidereal chronometer, Table G, or 

P = 
s 

2 5 + 1 
[102] 

for a mean-time chronometer. 

160. Corrections. 
This period must then be corrected to reduce it to its value at 

assumed standard conditions, namely, 

Infinitesimal arc, 

Temperature 15° C., 

Pressure 60”'"' at C., 

True sidereal time, and 

Inflexible support. 

The correction to reduce P to its value for an infinitesimal arc 

is 
PM sin (0 + </>') sin (0 ~ 0') ... 

32 log sin 0 — log sin 0 ^ 

a formula given by Borda, in which P = the period, M = the 

modulus of the common system of logarithms, and 0 and 0' = 

the initial and final semiarcs. 

A modified form of this formula is 

— 0.1924 .-\- 
logio ao - logi„ Qn 

in which ao = 2 i?0, = 2 R<j>' and R is the distance from knife 

edge to arc scale, = 296.93^'” for the Coast Survey pendulums. 

This gives the correction in units of the 7th decimal place; it is 

based on the assumption that P = 0.5. 

The temperature correction is 

aP(l5°-n, [104] 

being the observed temperature centigrade and a the co¬ 

efficient to be found by trial. Substituting P = 0.5, the for¬ 

mula is iS (15^^ — r°). For the bronze pendulums 0 varies 
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from 0.000 00413 to 0.000 00419, For invar pendulums it is 

0.000 00028. 

The pressure correction is 

+0.^3677-]' 

in which Pr = observed pressure in mm^ 

= temperature centigrade, 

and K = coefficient to be found by trial. 

The value of K for the bronze pendulums is o.ooo ooo loi; 

for the invar it is o.ooo ooo 089. 

The constant 0.00367 is the coefficient of expansion of air for 

i"C. 

The rate correction is given by the expression 

+ 0.000011574 RP, [106] 

where R = daily rate of chronometer on sidereal time, + when 

losing and — when gaining. The coefficient is the reciprocal of 

the number of seconds in one day. 

The flexure correction is computed by dividing the observed 

movement of the fringe band (in scale divisions) by the width of 

a band and then reducing this to an arc of 5"”^ by dividing by the 

observed arc and multiplying by 5. The result is the displace¬ 

ment for a 5^”' arc in terms of the width of a band. This dis¬ 

placement, multiplied by the coefficient (173 mentioned before), 

gives the correction to be subtracted from P. 
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TABLE D. —REDUCTION OF SCALE READING IN 
MILLIMETERS TO MINUTES OF ARC 

Scale. i.o mm. 2.0 mm. 3.0 mm. 4.0 mm. 5-0 mm. 

mm. / t / / 0 

0.0 12 23 35 46 S8 
0.1 13 24 36 48 59 
0.2 14 26 37 49 60 

0-3 15 27 38 50 61 
0.4 16 28 39 SI 63 

0-5 17 29 4T 52 64 

0.6 19 30 42 53 65 
0.7 20 31 43 55 66 
0.8 21 32 44 56 67 

0.9 22 34 45 57 68 

TABLE E. ARC CORRECTIONS (ALWAYS SUBTRACTIVE) 
FOR HALF-SECOND PENDULUMS 

Arc at Beginning 

In practice it is convenient to combine Tables D and E into 

a single table computed for such intervals that little interpola¬ 

tion is necessary. 
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TABLE F. ~ CORRECTION FOR PRESSURE 

Temp. 
C. 

50 mm. S5 mm. 60 mm. 6s mm. 70 mm. 75 mm. 80 mm. 8s mm. 90 mm. 

0 4-10 45 0 -5 — 10 -15 — 20 -25 “30 
I 4-10 4-5 0 -5 — 10 -15 — 20 -25 “30 
2 H-io 45 0 ~5 - 9 -14 -19 -24 29 

3 11 6 +I 4 9 14 19 24 29 

4 II 6 4i 4 9 14 19 24 29 

5 11 6 4i 4 9 14 19 24 ?8 

6 11 6 4r 4 9 14 19 24 28 

7 11 6 2 3 8 13 18 23 28 

8 11 6 2 
3 8 13 18 23 27 

9 1 2 7 2 3 8 13 17 22 27 

10 12 7 2 3 8 13 17 22 27 

II 12 7 2 3 7 I 2 17 21 26 

12 1 2 7 2 2 7 1 2 17 21 26 

LS 1 2 7 3 2 7 12 17 21 26 

14 12 8 3 2 7 I I 16 21 26 

15 13 8 3 2 6 II 16 20 26 

16 13 8 3 2 6 ri 16 20 25 

17 13 8 4 I 6 11 15 20 25 

18 13 8 4 T 6 1 50 15 ^ 20 24 

19 13 9 4 — I 5 10 15 20 24 

20 13 9 4 — I i 5 10 ’5 20 24 

21 14 9 4 — I 5 TO M ! 19 24 
22 14 9 4 -I 1 5 10 J4 j >9 23 

^3 14 9 5 0 1 5 9 14 *9 23 
24 14 9 5 0 i i 4 1 9 14 18 23 

25 14 10 5 0 
1 
i 4 9 >3 18 2 2 

26 14 TO 5 4i 4 18 2 2 

14 10 5 4i 4 1 8 13 ! 17 2 2 

28 415 4lO 46 4i - 4 - 8 ~L3 ! 1 -17 2 2 

29 415 4-10 46 4i - 3 -r8 — I 2 -17 — 21 

30 415 4-10 46 4i - 3 ! - 8 — J 2 -17 — 2T 

Body of table gives corrections (in 7th decimal place of sec¬ 

onds) to period of half seconds pendulum. 
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TABLE G. — PERIODS OF QUARTER METER PENDULUM 

Note : To obtain period to 7th decimal place, prefix .50 or .500 to figures in the table. 

Body of table gives 

0 2200 2JOO 2400 2500 2600 2700 2800 2(JOO 3000 3100 

0 11,390 10,893 10.438 10,020 9634 9276 8944 8636 8347 8078 

1 84 89 34 16 30 73 41 33 44 75 
2 79 84 30 12 26 70 38 30 42 72 

3 74 79 25 08 23 66 35 27 39 70 

4 69 74 21 04 19 63 32 24 36 67 

5 11,364 10,870 10,417 10,000 9615 9259 8929 8621 8333 8064 

6 S8 65 I 2 9996 12 56 25 18 30 62 

7 S3 60 08 92 08 52 22 15 28 59 
8 4« 55 04 88 04 49 19 1 2 25 57 
9 43 51 10,399 84 01 46 16 09 22 54 

10 11,338 10,846 10,395 9980 9597 9242 8913 8606 8320 805 2 

II 33 41 1)1 76 93 39 10 03 17 49 
T2 28 37 86 72 90 35 06 00 14 46 

13 22 32 82 68 86 32 03 8597 11 44 
14 17 27 78 64 82 28 00 94 08 41 

15 11,312 ro,822 ‘0,373 9960 9578 9225 ,S«97 8591 8306 8031) 

16 07 iS 69 56 75 22 ! 94 88 03 36 

17 02 13 65 52 71 18 91 85 00 33 
18 11,297 08 61 48 68 15 1 ^7 82 8297 31 

19 92 04 56 44 64 12 84 79 95 28 

20 11,287 10,799 10,352 9940 9560 9208 8881 
1 

8576 8292 8026 

21 82 94 48 36 57 05 78 73 89 23 

22 76 90 43 32 53 01 75 70 86 20 

23 72 85 39 28 49 9198 72 68 84 18 

24 66 80 i 35 25 46 95 ! 68 64 81 15 
25 11,261 10,776 10,331 9921 9542 9191 8865 8562 8278 8013 

26 56 71 26 17 38 88 62 59 75 10 

27 51 67 22 13 35 84 59 56 73 08 

28 46 62 18 09 31 81 56 53 70 05 
29 41 57 14 05 27 78 53 50 67 I 03 

30 11,236 10,753 10,309 9901 9524 9^74 8850 8547 8264 8000 

31 31 48 05 9897 20 71 46 44 62 7997 
32 26 44 or 93 17 68 43 41 59 95 
33 21 39 10,297 89 13 64 40 38 56 92 

34 16 34 92 85 09 61 37 35 53 90 

35 II,211 10,730 10,288 9881 9506 9158 8834 8532 8251 7987 
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WHEN PENDULUM IS SLOWER THAN CHRONOMETER 

Top and left-hand arguments combined give interval 5-= ten coincidence intervals. 

t =• period in seconds. 

3200 .uoo 3400 ■iSoo 3600 3700 3800 .iPOC) :ooo 4100 4200 0 

7825 7587 7364 7153 <>954 6766 6588 6418 (DS8 6105 59^^o 0 

22 85 62 51 52 64 86 17 56 04 58 J 

20 83 59 49 50 62 84 15 55 02 57 2 

17 80 57 47 48 60 82 14 53 01 55 3 
35 78 55 45 46 59 81 1 2 52 6099 54 4 

7812 7576 7353 7143 6944 ^^757 6579 6410 G250 6098 5952 5 

10 74 51 4t 42 55 77 09 48 96 51 6 

08 71 49 39 41 53 76 07 47 95 50 7 
05 69 46 37 39 51 74 05 45 93 48 8 

08 67 44 35 37 49 72 04 44 92 47 9 
7800 7584 7342 7133 693s G748 <>570 6402 6242 6090 5945 10 

7798 62 40 31 33 46 69 00 41 89 44 11 

96 60 38 29 31 44 67 6399 39 87 42 12 

93 58 3^^ 27 29 42 65 97 38 86 41 13 

91 55 34 25 27 40 63 96 3 84 40 14 
7788 7553 7331 7123 6925 6738 6562 ^^394 6234 6083 5938 15 

86 51 29 21 23 37 60 92 33 81 37 16 

83 48 27 18 21 35 1 58 91 3T 80 35 17 
81 46 25 16 19 33 , 89 30 78 34 18 

78 44 23 14 18 3T ! 55 87 28 77| 33 ^9 
7776 7542 7321 7112 j 6916 6730 ^\553 6386 6227 <*^075 5931 20 

74 39 19 10 14 28 51 84 25 74 30 

1“ 

i 21 

71 37 16 08 12 26 50 82 24 72 28 22 

69 35 14 06 10 24 48 81 22 
! 27 23 

66 32 12 04 08 22 46 79 20 1 70 26 24 

7764 7530 7310 7102 6906 6720 ^>544 (^378 6219 6068 5924 25 

62 28 08 00 04 19 43 
1 

7^^ 17 66 23 26 

59 26 06 7098 02 17 4T 74 16 65 21 27 

57 23 04 96 00 15 39 73 14 64 20 28 

7754 7521 01 94 6898 13 38 71 13 62 19 29 

7752 7519 7299 7092 6897 6711 6536 6369 6211 6061 5917 30 

50 16 97 90 95 10 34 68 10 59 16 31 

47 14 95 88 93 08 32 66 08 58 14 32 

45 12 93 86 91 06 31 64 07 56 13 33 
42 10 91 84 89 04 29 63 05 55 T 2 34 

7740 7508 7289 7082 6887 6702 6527 6361 6204 6053 5910 35 
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TABLE G (Con.). —PERIODS OP QUARTER METER PENDU- 

Note : To obtain period to 7th decimal place, prefix .50 or .500 to figures in the table. 

Body of table gives 

0 2200 2.100 2400 2.S00 2600 2700 2800 2900 3000 3100 

36 06 25 84 7« 02 54 31 30 48 85 

37 01 20 80 74 9498 51 28 27 45 82 

38 11,196 16 75 70 95 48 24 24 43 80 

39 91 II 71 66 91 44 21 21 40 77 
40 11,186 10,707 10,267 9862 9488 9141 8818 8518 8237 7974 

41 8i 02 63 58 84 38 15 IS 34 72 
42 76 10,698 58 54 81 34 12 12 32 69 

43 71 93 54 50 77 31 09 09 29 67 
44 66 88 50 46 73 27 06 06 26 64 
45 11,161 10,684 10,246 9842 9470 9124 8803 8.‘:o3 8224 7962 

46 56 79 42 39 66 21 00 00 21 59 
47 51 75 38 35 62 18 8797 8498 18 57 
48 46 70 33 31 59 14 94 95 16 54 
49 41 66 29 27 55 II 90 92 13 52 
50 11,136 10,661 10,225 9823 9452 9108 8787 8489 8210 7949 

SI 31 56 21 19 48 04 84 86 08 47 
52 26 52 17 ' 16 45 01 81 83 44 
S3 21 47 12 1 12 41 9098 78 80 02 42 
54 16 1 43 08 08 38 94 75 78 8199 39 
55 IT,III 10,638 10,204 9804 9434 9091 8772 8475 8197 7936 

56 06 34 10,200 9800 30 88 69 72 94 34 
57 01 29 10,196 9796 27 1 84 66 69 91 32 
58 11,096 25 92 92 23 81 63 66 89 29 
59 91 20 88 88 20 78 60 63 86 26 
60 11,086 10,616 10,183 9785 9416 9074 8757 8460 8183 7924 

61 82 IT 79 81 13 71 54 57 81 21 
62 77 1 07 75 77 09 68 51 54 78 19 
63 72 02 71 73 06 65 47 52 75 16 
64 67 10,598 67 69 02 61 44 49 73 i 
65 11,062 10.593 10,163 9766 9398 9058 8741 8446 8170 7911 

66 57 89 59 62 95 55 38 43 67 09 
67 52 84 54 58 92 51 35 40 6s 06 
68 47 80 50 54 88 48 32 37 62 04 
69 42 75 46 50 84 45 29 34 59 01 
70 11,038 io»S7i 10,142 9747 9381 9042 8726 8432 8157 7899 
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LUM WHEN PENDULUM IS SLOWER THAN CHRONOMETER 

Top and left-hand arguments combined give interval 5 = ten coincidence intervals. 

/ •== period in seconds. 

.1200 3300 3400 3500 .ifioo 3700 .^00 3yoo 4000 4100 4200 0 

38 05 86 80 85 01 26 60 02 52 09 36 
35 03 84 78 83 6699 24 58 00 50 07 37 
33 01 82 76 81 97 22 56 6199 49 06 38 
30 7498 80 74 80 95 21 55 97 47 05 39 

7728 7496 7278 7072 6878 6693 6519 6353 6196 6046 5903 40 

26 94 76 70 76 92 17 52 94 44 02 41 
23 92 74 68 74 90 j6 50 93 43 00 42 
21 90 72 66 72 88 14 48 9^ 42 5899 43 
18 87 70 64 70 86 12 47 90 40 98 44 

7716 748s 7267 7062 6868 6684 6510 6345 6188 6039 5896 45 

14 83 65 60 66 83 09 44 87 37 95 46 
II 80 63 58 64 81 07 42 85 36 93 47 
09 78 61 S6 62 79 05 40 84 34 92 48 
06 76 59 54 61 77 04 39 82 33 91 49 

7704 7474 7257 7052 6859 6676 6502 6337 6180 6031 5889 50 

02 72 55 50 57 74 00 36 79 30 88 51 
7699 69 53 48 55 72 6499 34 77 28 86 52 

97 67 51 46 53 70 97 32 76 27 85 53 
95 6s 48 1 44 51 69 95 31 74 26 84 54 

7692 j 7463 7246 7042 6849 6667 6494 6329 6173 6024 5882 55 

90 60 44 40 47 65 92 28 71 23 81 56 
88 S8 42 38 46 63 90 26 70 21 80 57 
8S 56 40 36 44 ! 61 88 24 68 20 78 58 
83 54 38 34 42 1 60 87 23 67 18 77 59 

7680 7452 7236 7032 6840 i 6658 6485 6321 6165 6017 5875 60 

78 49 34 30 38 56 83 20 64 15 74 61 
76 47 32 28 36 54 82 18 62 14 73 62 

73 45 30 26 34 52 80 16 61 12 71 63 
71 43 28 24 32 51 78 15 59 II 70 64 

7669 7440 7225 7022 6831 6649 6477 6313 6158 6010 5868 65 

66 38 23 20 29 47 75 12 56 08 67 66 

64 36 21 18 27 45 73 10 55 07 66 67 
62 34 19 17 25 44 72 08 53 OS 64 68 

59 32 17 15 23 42 70 07 52 04 63 69 
7657 7429 721S 7013 6821 6640 6468 6305 6150 6002 5862 70 
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TABLE G (Cow.). —PERIODS OF QUARTER METER PENDU- 

Note ; To obtain period to 7th decimal place, prefix .50 or .500 to figures in the table. 

Body of table gives 

0 2200 2J00 2400 2SOO 2600 2700 2800 2900 3000 3100 

71 33 66 38 43 77 38 23 29 54 96 

72 28 62 34 39 74 35 20 26 51 94 

73 23 57 30 35 70 32 17 23 49 91 

74 18 53 26 31 67 29 14 20 46 89 

75 11,013 10,548 10,122 9728 9383 9025 8711 8418 8143 7886 

76 08 44 17 24 60 22 08 15 41 84 

77 04 40 13 20 56 IQ 05 12 38 81 

78 10,999 35 09 16 53 16 02 09 35 79 

79 94 3T 05 12 49 12 8699 06 33 76 

80 10,989 10,526 10,101 9709 9346 9009 8696 

fO
 

0
 

0
0

 8130 7874 

81 84 22 10,097 05 42 06 93 01 28 72 

82 79 18 93 01 39 02 90 8398 25 69 

8,3 74 13 89 9697 35 8999 87 95 22 67 

84 70 09 85 94 32 96 84 92 20 64 

8S 10,965 10,504 TO,081 9690 9328 8993 8681 8389 8117 7862 

86 60 10,500 77 86 25 90 78 86 14 59 

87 55 10,495 73 82 21 86 75 84 12 57 
88 51 9^ 68 79 18 83 72 8t 09 54 

89 46 87 64 75 14 80 69 78 06 52 

90 10,941 10,482 10,060 9671 9311 8977 866s 837s 8104 7849 

91 36 78 56 68 08 74 62 72 01 47 
92 31 73 52 64 04 70 60 70 8098 44 

93 27 69 48 60 01 67 56 67 96 42 

94 22 65 44 S6 9297 64 54 64 93 40 

95 10,917 10,460 10,040 9653 9294 8961 8650 8361 8091 7837 

96 12 56 36 49 90 57 48 S8 88 34 
97 08 52 32 45 87 54 44 S6 85 32 
98 03 47 28 41 83 51 42 S3 83 30 
99 10,898 43 24 38 80 48 39 5° 80 27 

ICO 10,893 10,438 10,020 9634 9276 8944 8636 8347 8078 7825 
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LUM WHEN PENDULUM IS SLOWER THAN CHRONOMETER 

Top and left-hand arguments combined give interval s = ten coincidence intervals. 

t ~ period in seconds. 

3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 0 

55 27 13 11 19 3« 67 04 49 01 60 71 
52 25 11 09 18 37 65 02 47 00 59 72 
50 23 09 07 t6 35 63 00 46 5998 58 73 
48 21 07 05 14 33 61 6299 44 97 56 74 

7645 7418 7205 7003 6812 6631 6460 6297 6142 5995 5855 75 

43 16 02 ot 10 30 58 96 41 94 S3 76 
41 14 00 ^>999 08 28 57 94 40 92 52 77 
38 12 7198 97 06 26 55 9^ 38 91 51 78 
36 10 96 95 05 24 53 91 36 89 49 79 

7634 7407 7194 6993 6803 6622 6452 6289 6135 5988 5848 80 

31 05 92 91 01 21 50 88 34 87 47 8r 
29 03 90 89 6799 19 48 86 32 85 45 82 
27 01 88 87 97 17 47 85 30 84 44 83 
24 7399 86 85 95 16 45 83 29 82 42 84 

7622 7396 7184 6983 6794 6614 6443 6128 5981 5841 85 

20 94 82 8r 92 T 2 42 Hoi 26 80 40 86 

17 92 80 ! 79 90 10 1 40 78 24 78 1 38 87 
15 90 78 i 77 88 09 ! 38 77j 23 77 37 88 

13 88 76 75 1 86 37 75: 2 2 75 36 89 
7610 7386 7174 1 <*^974 

i_____ 
6784 6605 6435 6274; 6120 , 5974 

1 
5834 
_ 

90 

08 83 72 : 72 82 03 33 

, 

72 18 72 33 91 
06 81 70 1 70 81 02 32 70 17 71 32 92 

03 79 67 68 i 79 6600 30 69 16 69 30 93 
01 77 65 66 1 77 ^^598 28 67 14 68 29 94 

7599 7375 7163 6964 6775 659^ 6427 6266 6112 5967 5828 95 

96 72 61 
1 

62 73 95 
1 

64 II 65 26 96 
94 70 59 60 71 93 23 62 10 64 25 97 
92 68 57 S8 70 91 22 61 08 62 23 98 

90 66 55 56 1 68 89 20 59 06 61 22 99 
7587 7364 7153 6954 ' 6766 6588 16418 6258 6105 5960 5821 jlOO 
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161. Form of Record of Pendulum Observations. 

Following is a sj3ecimen record of a single swing made with 

Apparatus belonging to the Coast Survey. 

Station: Savvah Locnto, Sumatra. Date: May 7, 1901. 
Observer: G. L. TI. Chronometer: Bond 541 (sid.) 

Pendulum B 4, Direct, on Knife edge I 

Observed coincidences. Pressure. Temperature. Arc. 

h m S mm. (C). mm. 
D 9 59 03 
U 10 02 12 275 
D 05 II 27-5 22“.6 4-5 = 52' 
U 08 18 55-0 

ir 12 
U 14 19 

1) 4 54 42 
U 58 12 28.0 

D 5 00 43 , 28 .0 28.8 0
 11 0
^ 

U 04 08 56.0 

D 06 4^ 
U TO 06 1 

1 

Pressure 55.5 Mean temp. 25.70 
4.2 Ther. error —.30 

51.3 at o® C. 25''-4o 

Total interval (mean) 6^ 55^^ 43^ = 24,943^. 
Approximate length of coincidence interval = 3^” 01^ == 181-^. 
Number of coincidence intervals — 138. 
Length of one coincidence interval = 180.75. 
Period (uncorrected) = 0.5013869. 

Uncorrected Period 0.5013869 
Corr. for Arc -5 

“ Temp. -436 
“ Press. 4-9 

Rate (No. 541) 4-128 
“ “ Flexure -6 

Corrected Period — 05013559 



REDUCTION TO SEA-LEVEL 

162. Calculation of g. 
After the period has been corrected for instrumental errors, 

the value of gravity (g) may be found by comparing the period 

(P) with that of the same pendulum at some point where the 

value of g is known, say at Washington. If the value at Wash¬ 

ington is gTt,, then 

J? = ^ • .‘.v [107] 

Evidently it is of the greatest importance that the period should 

not change during a series of observations made for the purpose 

of comparing P at different stations. The pendulum should be 

swung at frequent intervals at the base station, to test its in¬ 

variability; in any case it should be swung at the beginning and 

end of every series. 

Example. Suppose that the mean corrected period of a set of pendulums at a 
station is 0.5012480, and at Washington, the base station, is 0.5007248, and that gy, 

is taken as 980.112 dynes. Then, by formula [107], g — 978.067 dynes. 

163. Reduction to Sea-Level. 

The value of gravity found in the manner just described is the 

value at the station, assuming the length of the pendulum to be 

invariable and the chronometer correction to be correct. In 

comparing values at different stations, however, it is essential to 

reduce the observed value to the value at sea-level. A formula 

long used for this purpose is one devised by Bouguer when re¬ 

ducing observations made along the Peruvian arc in 1749. This 

formula is 

- f’I)’ [108] 

in which II is the elevation of the station above sea-level, 

r is the radius of the earth, 

5 is the density at the surface, 

and A is the mean density of the earth. 

The first term of this formula allows for the decrease in gravity 
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due to height alone; the second term, for the increase in attraction 
due to the topography beneath the station. 

The correction for height of station is derived from the law of 

gravitation, namely that the force of attraction varies inversely 
as the square of the distance; whence 

g 

Therefore [log] 

The correction for topography is based upon the assumption 
that is due to the attraction of a cylinder whose axis is vertical 

and whose height is small compared with its width. The at¬ 

traction on a unit mass at the station is shown by Helmert {Hohe. 
GeoddsiCy Vol. II, pp. 142 and 164) to be 

Ag = 2 irk bH. {a) 

The attraction of the sphere on the same mass is 

M X
 

II 1 
^

 

II 

<i (b) 

Dividing (a) by (6) and multiplying by g, 

II. 
r [no] 

Adding both corrections ([109] and [no]) and remembering 
that the two are of opposite sign, 

go==g + g 
iH 

g 3 A ^ 
A r 

S' 
= S + ■{))■* [hi] 

Another method of reduction which has been much used is to 

* See also Clarke, Geodesy, p. 325. For an additional term for irregularity in 
topography see Coast Survey Report for 1894, p. 22. 
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omit the last term of Bouguer's formula, and correcting for 

height only. In this case the correction to g is 

Corr. = + 
2H 

y [TI2] 

or Corr. = +0.0003086//(meters). [112a] 

This method was introduced because the former method 

showed large disagreement between observed and computed 

values. The second, or free-air,” method showed better agree¬ 

ments, indicating a compensation due to variations of density 

beneath. 

The method employed by Professor Hayford in the Coast 

Survey investigation shows that still better agreement is obtained 

by the introduction of the assumption of isostasy. The results 

corrected by this method show a close general agreement, but in 

certain localities there is evidence that the isostatic adjustment 

is imperfect — for example, near Seattle in the United States 

and at certain places near the Himalayas in India. 

164. Calculation of the Compression. 

By employing a large number of observed values of g the most 

probable values of the constants ge and gp may be found. From 

these data the compression may be derived by applying Clairaut’s 

formula, 
a - b ^5 Je _ Kp - 

^ 2 ' ge ge 
[98] 

The value of is where T = 86164.09 seconds and a is 

the equatorial radius. Using Clarke’s value of a the resulting 

value of Ce is found to be 

Ce = 0.033916, 

and using for ge the value of 978.038,* we obtain 

= 0.0034678. 
ge 288.37 

* See Coast Survey Special Publication No. 12. 
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Then for the compression, we have 

a — b 1 

a 297.1 

If the more accurate form [gSa] of Clairaut’s equation is em¬ 

ployed, the result is 
a — b I 

a 298.2 

By studying a large number of gravity observations in all parts 

of the world Helmert obtained the value 

a — h I 

a ~ 298.3 zb 0.7 fii3] 

In the publication entitled Effect of Topography and Isostatic 

Compensation upon the Intensity of Gravity the authors give 

a — h_I 

a ~ 298.4 db 1.5 Ijm] 

In a later report on gravity work (Coast Survey Special 

Publication No. 40, 1917), the compression calculated from the 

observations in the United States, Canada, Europe and India is 

a ~ b I 

a ~ 297.4 [iis] 

By employing Equa. [88] the value of g may be computed for 
each station on the assumption that the earth is a spheroid. A 

comparison at each station of the observed and computed values 

of gravity indicates to what extent the geoid departs from the 
spheroid at each point. 

164a. Gravity Observations at Sea. 

Within the past few years gravity observations of a precise 
character have been made at sea by Dr. Meinesz, of Holland, 

the measurements being made chiefly in submarines. The 

apparatus is a modified form of the Stiickrath pendulum ap¬ 

paratus, in which two pairs of pendulums oscillate in planes at 

right angles to each other. The swings are recorded photo- 
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graphically and time signals are received by radio for determining 

the periods of oscillation. The results of this work will add 

greatly to knowledge of the variations of gravity over the ocean 

areas. 

164b. The Eotvos Torsion Balance. 

Much research has been carried on in recent years, both of a 

theoretical and of a practical nature, by means of the Eotvos 

<u 

£ 

K(h) ^r 

Fig. 122. 

torsion balance, a very sensitive instrument which measures 

minute variations in the force of gravity. 

This balance has been designed in two forms. The fust may be 

described as a horizontal rod with nearly all of its weight con¬ 

centrated at the ends and which is suspended at its center by a 

fiber from a torsion head. (Fig. 122.) 

Under the action of the earth’s gravitational field the rod tends 

to turn into the plane of the prime vertical, because in so doing 

it ‘Tails” into a position of lower potential.* In order to see 

how this occurs let us represent on the same diagram the curves 

of equal potential in the meridian plane and in the prime vertical 

plane, the former by full lines and the latter by dotted lines. 

These curves are given consecutive numbers for identification, 

the same number representing the same equipotential, or level, 

surface. From Fig. 123 it will be seen that when the rod is in 

the meridian plane the weighted ends are on surface No. 3. If 

the rod is turned into the east-west plane the weighted ends are 

on surface No. 2. A change from the meridian plane to the 

east-west plane places the end in a position where the potential 

See Art. 165, Chapter X. 
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is lower. Therefore there is a force tending to turn the rod from 

the meridian into the prime vertical plane. This force is, of 

course, very minute. 

The torsion of the fiber used in suspending the rod is consider¬ 

able when compared with the small force in question. In using 

the balance the position of the torsion head corresponding to 

^^no torsion” is determined. By turning the torsion head in 

different azimuths, both to the right and to the left of the line of 

no torsion, the deflection of the rod with reference to the line of 

no torsion may be measured. From these measurements it is 

possible to calculate the maximum and the minimum curvature, 

or ^ and For a spheroid these would correspond to the 

meridian and the prime vertical, but in actual observations they 

seldom do so, because of local variations in the densities imme¬ 

diately beneath the instrument. The balance also gives us the 

directions of these two curvatures. It may be noted that these 

curvatures are related to the second derivatives of the potential 

function of the gravitational field. This instrument gives nu¬ 

merical values of 

dx^ 

d‘^V 

dy^ 
and of 

dx dy 

The second type of balance deals with forces at two different 
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levels at the same time. The horizontal rod has at one end a 

weight which is suspended at some distance below the level of the 

rod. (Fig. 124.) This balance 

therefore deals with the same 

forces which cause a change in 

the direction of gravity with a 

change in height. These forces 

are related to second deriva¬ 

tives of the potential function 

of the form 

dW , dW 
-—- and T— 

and this form of balance gives ‘ 

numerical value of these two derivatives. 

The Eotvds balance is extremely sensitive and for this reason 

can measure very slight variations in the forces acting upon it. 

It is used to study the geological formation of the earth’s crust 

immediately beneath the instrument station; it has been used 

successfully for locating salt domes, mineral deposits, etc. of 

commercial value. 
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Problem t. 

PROBLEMS 

Compute 
a — h 

a 
from the following data: 

Station. go- Latitude. 

Umanak, Greenland. 982.59s 
97S.057 

4-70 40 29 
— 00 41 40 ' Sawah Loento, Sumatra. 

Problem 2. If the coincidence intervals are 5^" during an 8-hour swing, what will 
be the error in P due to an error of in noting the time of a coincidence? 

Problem 3. If the error in determining the daily rate of the chronometer is o .1 
what is the error in the period? 



CHAPTER X 

PRECISE, OR FIRST-ORDER, LEVELING — 

TRIGONOMETRIC LEVELING 

166. Precise Leveling. 

The term precise leveling (now officially replaced by the term 

First Order leveling) is applied to the operation of determining 

differences in elevation of successive points on the earth's surface 

with instruments and methods which, though similar to those 

used in ordinary leveling, are more refined and capable of yield¬ 

ing a much higher degree of precision. In order to secure the 

greatest possible accuracy, it is necessary to modify our concep¬ 

tion of the nature of a level surface and to introduce certain 

corrections which are ordinarily negligible. It should be ob¬ 

served that since the line of sight of the instrument is always 

theoretically perpendicular to the direction of gravity at each 

station, it lies in a plane which is tangent to the geoid, not to the 

spheroid. In tracing out a level line by means of the spirit level 

we arc following the curvature of the surface of the geoid. 

The term precise leveling has for many years been applied to 

all leveling of a fairly high degree of precision, but there have 

been various limits of precision prescribed by the different or¬ 

ganizations carrying on the work. The accuracy obtainable has 

been so greatly increased through recent developments in instru¬ 

ments and methods that in 1912 a new class of leveling, known as 

leveling of high precision, was established by the International 

Geodetic Association; it is to include every line, set of lines, or 

net, which is run twice in opposite directions, on different dates, 

and whose errors, both accidental and systematic, computed in 

accordance with formulas stated in the resolution,* do not exceed 

* See Coast Survey Special Publication No. 18, p. 88. See also Report of In¬ 

ternational Geodetic Association for 1912. 

301 



302 PRECISE LEVELING — TRIGONOMETRIC LEVELING 

±1^^ per kilometer for the probable accidental error and ±0.2^^ 

per kilometer for the probable systematic error. 

In 1925 the Federal Board of Surveys and Maps adopted the 

terms First orderj second order, etc., and specified the accuracy 

for different classes of leveling, as shown in the following table. 

LEVELING 

First Order. Second Order. Third Order. Fourth Order. 

Error of closure 
of section 0.017 

feet V'miles or 

Error of closure 
of circuit 0.035 

feet Vmiles or 

l’>ror of closure 
of circuit 0.05 

feet Vmiles or 

Flying Y 
levels, 
vertical 
angles 

j^mm kilometers 8.4"*^ V ki lometcrs J2WW Vkilometers 

Many different instruments have been used in the past for 

precise leveling, some of the ^^wye” type and some of the 

dumpytype. All geodetic levels, however, have certain 

characteristics in common: namely, (i) a telescope of high mag¬ 

nifying power, mounted on a heavy tripod: (2) a sensitive spirit 

level: (3) a slow-motion screw for centering the bubble: (4) 

stadia wires for determining the length of sight: and (5) a mirror 

or other optical device for viewing the bubble from the eye end 

of the telescope. Before the year 1899 the precise leveling of the 

United States Coast Survey was done with a wye level and target 

rods. The target was not set exactly on the level of the instru¬ 

ment, but was set approximately, and corrections to this approx¬ 

imate reading were determined, using the micrometer screw to 

measure the small vertical angles. Since 1899* ^ dumpy level of 

new design has been substituted for the wye level, the self-reading 

rod adopted, and the micrometer screw used only for centering 

the bubble. This new instrument and method have been adopted 

by several other branches of the government service. 

* For a discussion of this change in methods see Coast Survey Report for rSgp, 

p. 8, and for a description of the new instrument sec Coast Survey Report for 1900, 
p. 521, and for 1903, p. 200. 
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166. Instrument. 

The geodetic level, sometimes called the prism levels is de¬ 

signed to reduce, so far as possible, any errors arising from un¬ 

equal heating of the different portions of the instrument. (Fig. 

125.) The telescope barrel was formerly made of an alloy of iron 
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and (36%) nickel having a low coefficient of expansion (0.000004 

per 1*^0.). The most recent levels are of invar having a coeffi¬ 

cient of 0.000001. The level vial is set into the telescope tube 

as low as possible without interfering with the cone of rays from 

the object glass. This diminishes the effect of differential 

Fig. 126. Geodetic Level. (C. L. Berger Sons.) 

expansion of the parts supporting the level. The level vial is 

provided with an air chamber for varying the length of bubble. 

At one side of the telescope is another (similar) tube containing 

a pair of prisms which, together with a mirror mounted above 

the telescope, enable the observer to view the ends of the bubble 

with the left eye at the same time that he looks at the rod 

with the right eye. The arrangement of mirror and prisms is 
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such that there is no parallax caused by 

the glass in the level or the mirror. 

The instrument is provided with the 

usual small level for the approximate 
leveling of the base. Jt is mounted on 

an unusually high tripod so as to avoid 

refraction near the surface of the 

ground. The magnifying power of the 

telescope is about 43 diameters; the 

level division inch) has an angular 

value of about i".7. The stadia con¬ 

stant varies from 1 in 328 to i in 348 

in different levels. 

In the instrument shown in Fig. 125 

the pivot, about which the telescope is 

tilted by the motion of the microme¬ 

ter screw, is pdaced near the forward 

end. In the recent levels the pivot is 

at the center. 

167. Leveling Rods. 

The rod in use at present (1929) by 

the Coast & Geodetic Survey is of one 

piece about 3.1 m. long, flat in section 

(see Fig, 127) and has a strip of invar 

attached to the front face, on which the 

centimeter divisions are painted. The 

details of the rod are shown in the cut. 

The rod is provided with a centigrade 

thermometer, and with a circular spirit 

level for plumbing the rod. Many 

rods have a scale of feet (or meters) 

p^ainted on the back for rough check 

readings. 
The rod used by the U. S. Geolog¬ 

ical Survey is similar in general de- 

Section 

P'lG. 127. Rod for Geodetic 
Ivcveling 
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sign, but is divided into hundredths of yards. This is con¬ 

venient when obtaining elevations in feet, since the sum of the 

three thread readings gives at once the mean reading in feet. 

168. Turning Points. 

Special steel pins are usually carried by leveling parties for 

use on highways or when the usual turning points are not avail¬ 

able. Since most of the first-order leveling is carried along rail¬ 

way lines the regular turning point is either a nail driven into 

a tie or a rail spike near the middle of a rail. The top of the 

rail was formerly used but this practice has been discontinued, 

as it was suspected that cumulative errors from this source 

may have entered the results. 

169. Adjustments. 

The adjustments of the level are nearly the same as those of 

the ordinary dumpy level. The rough level is adjusted so as 

to remain in the center when the telescope is revolved about the 

vertical axis. The axis of the long bubble tube is adjusted 

parallel to the line of sight of the telescope whenever it is appre¬ 

ciably in error. This adjustment is tested each day by taking 

four readings, like those used in the ^‘peg^’ method, except that 

the shorter sights are about lo meters in length and the longer 

sights are of the usual length, say loo"^. PTom these four read¬ 

ings a factor C is computed, which is the ratio of the correction 

for any reading to the corresponding rod interval. The differ¬ 

ence in the sums of the foresight and backsight thread intervals 

at any set-up is to be multiplied by this factor C. 

To find an expression for C, call n\ and Th the rod readings for 

the nearer sights, and d\ and the rod readings for the distant 

sights, Si and the near stadia intervals, and and 8% the dis¬ 

tant stadia intervals, the subscripts referring to the first and 

second instrument positions. Then the true difference in eleva¬ 

tion from the first set-up is 

{ni + Csi) - {di + C5i), 
and for the second set-up, 

{(h + CS^ — -}- Cs^. 
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Equating and solving for C we have, 

^ _ (Wi + W2) - (J, + (k) . . 
^ “(5,+5,) - +5,)' 

C is + if the line of sight is inclined downward. 

Below is a table showing a determination of C (from Coast 

Survey Report for 1903) 

DETERMINATION OF C. 8.20 A.M., AUGUST 28, 1900 

(Left-hand page.) (Right-hand page.) 

Number Thread Thread 

of reading, Mean. 
interval. 

Rod. reading, Mean. 
interval. station. backsight. foresight. 

1515 13 0357 105 

A 1528 1528.3 14 W 0462 0461.7 104 
1542 27 0566 209 

2252 105 1276 
B 2857 2357 0 105 W 1288 1288.3 12 

2462 210 1301 13 
0461.7 419 1528.3 25 

2818.7 52 2816.6 
Corr. for curv. and ref. —0.8 367 2817.9 

2817.9 367)-! 3 (- 0.004= c 

In this table A and B refer to the instrument stations, not to 

the points where the rods are held. The three numbers given 

in the column ^Thread interval’^ are first, the space between the 

lower and middle threads, second, the space between the middle 

and upper threads, and third, the sum of these two. The mean 

for the three rod readings (thread readings, second column) is 

found by dividing the difference between the upper and lower 

thread intervals by 3 and applying the result as a correction to 

the middle thread reading. The result is placed in the third 

column. For example, the difference between 13 and 14 divided 

by 3 gives 0.3 mm., which added to 1528 gives 1528.3, the 

correct mean of the three readings. 
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In order to make the additions conveniently when solving for 

C, the means are carried across to the opposite pages, that is the 

1528.3 is carried to the right-hand side and the 0461.7 to the 

left-hand side. 

The distant rod readings are corrected for the effect of curvature 

and refraction, which may be conveniently taken from Table H. 

In the example the distances are not corrected separately, but 

the sum of the two corrections is subtracted from the sum of 

the distant readings. In this particular instrument the stadia 

factor is 348, that is, the distance equals 348 times the thread 

interval. The distance corresponding to 0.209 m. or 0.210 m. is 

a little over 73 m. In Table H this gives a correction of 0.4 mm. 

for each distant reading. The sum of the two, or 0.8 mm., is 

subtracted from 2818.7 The value of the constant is 

therefore 

2816.6 — 2817.9 —i-S 
( = -= —= — .004 

419 - 52 3^7 

This indicates that the level is in good adjustment. The 

negative sign shows that the line of sight is inclined upward 

and that all rod readings are too great by the amount Cs, 

If the instrument were to be adjusted, it would be done by 

sighting at a distant rod with the bubble in the center of the tube 

and taking a reading. The telescope is then inclined upward if 

C is + (lowered if C is —) until the reading is increased (or de¬ 

creased) by an amount equal to Cs, With the telescope in this 

position the bubble is centered by means of an adjustment 

screw on the level case inside the telescope barrel. 

After the instrument is adjusted a new value of C must be 

determined to be used in correcting the results of subsequent 

leveling. 

If the value of C is less than 0.005, instrument should not 

be adjusted. If between 0.005 0.010, the observer is advised 

not to adjust. If over 0.010, the adjustment should be made. 

The adjustment is made by moving the level rather than the 
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cross-hair ring, in order to avoid moving the line of sight away 

from the optical axis. 

The rod level should be adjusted by using a plumb line to 

bring the rod to a truly vertical position and then centering the 

bubble by the adjusting screws. If the plumb line can be fas¬ 

tened temporarily to a corner of the top of the rod and the 

string is long enough to allow the plumb bob to swing clear, the 

rod may be plumbed in two directions at the same time. 

160. Method of Observing.* 
It is customary to use two rods, the one that is held for a fore¬ 

sight on a certain turning point being kept at the same turning 

point for a back sight. This results in alternating the foresights 

and backsights; that is, if the backsight is taken first at the 

first instrument station, the foresight is taken first at the second 

instrument station, and so on throughout the section. This is 

done so that any settlement of instrument or rod will be elimi¬ 

nated as completely as possible. Suppose that during the inter¬ 

val between a backsight reading and a foresight reading the 

instrument settles one millimeter. In this case the recorded 

backsight reading is too high for the position of the instrument 

at the time of the foresight reading, and the turning point is 

assigned too high an elevation. At the following station the 

foresight is taken first. The settlement of the level results in 

the backsight reading being too small and in the turning 

point elevation being that amount too low, which just balances 

the previous error. 

At the first station the instrument is set up and leveled,f and all 

three hairs are read on the back rod, the level being kept central 

at each reading. As soon as possible thereafter the three hairs 

are read in a similar manner on the forward rod. The readings 

are estimated to millimeters. The level should be shaded from 

* The General Instructions for First Order Leveling will be found in Coast 

Survey Special Publication No. 140. 
t The observer should determine the micrometer reading corresponding to 

the “ reversing point ” of the level, and set the micrometer at this reading when 

leveling the instrument. 
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the sun in order to avoid unequal heating of its parts. In select¬ 

ing instrument and rod points, the observer must keep the differ¬ 

ence in length of the forward and backward sight less than lo 

meters on any one set-up and less than 20 meters for the accumu¬ 

lated difference at any time. The readings of the upper and 

lower (stadia) wires enable the recorder to determine the differ- 

Fig. 128. First-order Leveling Party. 

ence in distance at each set-up. When leveling along railway 

tracks the lengths of sights are equalized approximately by 

counting rails. The maximum length of sight allowable is 

150^, a distance reached only under exceptionally favorable 

conditions. As already stated, at odd-numbered stations the 

backsight is taken first; at even-numbered stations the foresight 

is taken first. This results in the same rod being read first each 

time. The rod thermometers are read at each set-up. 

If there is much irregular atmospheric refraction near the 
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ground this will result in the rapid variations in the reading of 

the upper thread. This should be avoided so far as possible by 

setting the instrument high above the ground and by avoiding 

turning points which bring the line near the surface. It is found 

that whenever there are variations in the reading on a thread the 

accuracy is increased by selecting the lowest (least) reading rather 

than the mean. 

Lines between bench marks are divided into sections of about 

one kilometer each. Each of these sections is run forward and 

backward. If the two differences in elevation so determined are 

found to differ by more than 4"*"* VX (A" = kilometers), both 

runnings must be repeated until such a check is obtained. Lines 

may be run with such care that it is seldom necessary to repeat, 

but the maximum economy appears to be reached when from 

5 to 15 per cent of the sections have to be re-run. 

On page 312 is a set of notes used in leveling with this instru¬ 

ment (Coast Survey Report, 1903). The instrument stations 

(not rod stations) are numbered in the first column. The thread 

readings, means, and thread intervals arc arranged exactly as in 

the preceding table (p. 307). The last column ‘‘Sum of inter¬ 

vals’’ is seen to contain in each case the sum of all the preceding 

thread intervals. It is by means of this column that the recorder 

is able to see if the foresights are too long or too short and to 

warn the rodman that the foresight should be made shorter or 

longer in order to balance the two columns. One millimeter of 

stadia interval corresponds nearly to one foot of distance, so the 

recorder can at once call out the number of feet in this correction. 

The records are sometimes kept by entering the readings 

directly on an adding machine, one bank of keys being used for 

the backsight, the other bank for the foresight. 

The geodetic level is sometimes mounted on a motor velocipede 

car, either over its center or at one side so as to be read while the 

observer is on the ground. A similar car is used for the trans¬ 

portation of the recorder and the two rodmen. 

When a river crossing is being made the method is modified as 
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follows: Targets are placed on the rod so that one is below and 

one above the level line. The middle hair is made to bisect each 

target in turn by moving the micrometer screw. The readings 

of the micrometer drum for the two targets and for the zero posi¬ 

tion of the bubble, combined with the readings of the targets 

on the rod, furnish sufficient data for computing the rod reading 

of the middle hair for a horizontal sight. Observations are made 

simultaneously with two instruments. Observers then exchange 

places and repeat the whole operation. 

SPIRrr LEVELING 

{I.eft-hand page.) (Right-hand page ) 

Date: Augast 29, 1900. From B.M : 68. ro B.M. : (/ 

Sun: C. Forward. Wind: S.T. 

(Strike out one word.) 

Thread Thread 

No. of 

station. 

read- Thread Sum of Rod read- Thread Sum of 

iiig. Mean. inter- inter- and ing Mean. inter- inter- 

back- val. vals. tenip. fore- val. vals. 

siglit. siglit. 

43 0674 99 V 2683 99 

0773 0773.0 99 38 2782 2782,3 too 

0872 198 2882 199 

0925 io3 w 2415 103 
44 1031 1030.3 104 35 2518 2518.0 103 

1135 210 408 2621 206 405 

0484 98 V 2510 96 
45 0582 0582.3 99 35 2606 2606.0 96 

0681 197 605 2702 192 597 

46 
0398 97 W 2859 96 

0495 049s 0 97 34 2955 2954-7 95 
0592 194 799 3050 191 788 

1027 
i 

26 V 1006 29 
47 1053 1053.3 27 34 1035 1034.7 28 

1080 

3933-9 

53 85^ 
! 

1063 
11895.7 

— 7961.8 

57 845 

i 

2 : 25 p.M. 
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161. Computing the Results. 

In computing the difference in elevation the sums of the back¬ 

sights and the foresights arc computed and checked. In the 

notes shown these are 3933.9 and 11895.7 respectively. The 

difference, —7961.8, is the uncorrected difference in elevation, 

and shows that B.M. G is lower than B.M. 68. The notes show 

that the sum of the backsight distances (852) is but 7"*"* greater 

than the sum of the foresight distances (845); this means that 

the sights balance within 2.4 m. The correction for non-adjust¬ 

ment of level is but 7 X .004 = 0.03 mm. This correction is or¬ 

dinarily negligible if the balancing has been 2)roperly attended to. 

The difference of elevation as found from the notes must be 

corrected for (i) non-adjustment of level (already mentioned), 

(2) curvature and refraction (Table I, p. 316), (3) error in length 

of rod, (usually determined at Bureau of Standards), (4) temper¬ 

ature of rod if correction is apj^reciable, and (5) for convergence 

of level surface, or the orthometric correction,’’ (see Art. 169). 

162. Bench Marks. 

The bench marks used in geodetic leveling are of various types. 

Wherever it is practicable, the metallic plates shown in Fig. 129, 

set in concrete posts, are used to mark the points, but nearly all 

of the kinds of bench marks which are used by engineers are used 

also in this class of work. The distance between benches is not 

allowed to exceed 15 kilometers; every 100 kilometer section 

should have at least 20 bench marks, a good average distance 

being 2.5 kilometers. In cities the old bench marks are often 

utilized for the first-order levels. 

163. Sources of Error. 

The sources of error which it is particularly necessary to study 

in this class of work are (i) unequal effects of temperature changes 

on the adjustment of the instrument, (2) gradual rising or settling 

of the instrument or rods, (3) variations in refraction of the air 

in different parts of the day and on different days, (4) unequal 

lengths of sights, (5) errors in length and temperature of rod, and 

(6) convergence of level surfaces- 
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TABLE 11.—TOTAL CORRECTION FOR CURVATURE 
AND REFRACTION 

Distance. 
Correction to rod | 

reading. | 
Distance. 

C'orrection to rod 

reading. 

m. m. mm. 1 m. mm. 
0 to 27 0.0 ! 160 -1.8 

28 to 47 -O.I 170 — 2.1 

48 to 60 — 0.2 1 180 -2.3 

6i to 72 -0-3 i 190 — 2.6 

73 to 81 -0.4 ; 0
 

0
 

-2.8 

82 to 90 -0.5 210 -3-0 
91 to 98 —0.6 ■ 220 “3 3 
99 to 105 -0.7 1 230 “3-7 

106 to 112 —0.8 240 -4.0 

113 to 118 —0.9 ; 250 -4-3 
119 to 124 — 1.0 1 260 -4.7 

125 to 130 — 1.1 1 270 -5.0 

131 to 136 — 1.2 280 -5-4 
137 to T41 “1-3 290 "5 « 

142 to i4() -1.4 i 3OG -6.2 

147 to 150 -1.5 

164. Datum. 

The datum for geodetic levels is mean sea-level, or the surface 

of the geoid, as found from tidal observations. This is assumed 

to be correctly given by the mean of the several ‘‘annual means’’ 

as derived from tidal observations for sea-level. The heights of 

the tide are recorded on an automatic gauge. (Sec Fig. 130.) 

The vertical motion of the float is reduced (the ratio depending 

upon the range of tide) by passing the connecting wire and cord 

over a series of pulleys, and is communicated to a recording 

pencil which marks on a sheet of paper passing over a revolving 

drum. The drum is revolved at a uniform rate by clock mech¬ 

anism. The height of the water is referred to a bench mark in 

the vicinity. Figure 131 shows a smaller (portable) gauge also 

used by the Coast and Geodetic Survey. 

Observations of the tide should be extended over a period of 

at least one year in order to determine sea-level with sufficient 

precision for this class of leveling. In the tidal records at some 

stations there appear to be small systematic variations in the 
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TABLE 1. DIFFERENTIAL CORRECTION FOR CURVA¬ 
TURE AND REFRACTION 

Mean 
length 

of sight 
Difference of sights in rod interval in millimeters. 

interval 
in milli- 2 4 6 8 10 12 14 16 18 20 22 24 26 28 .^O 34 36 38 40 42 44 46 48 50 52 .=54 56 58 
meters. 

lO 0 0 0 0 0 

20 0 0 .0 0 .0 0 0 0 0 .0 

30 0 0 .0 0 0 .0 .0 .0 .0 0 0 0 .0 0 0 

40 0 0 .0 0 0 0 0 .0 .0 .0 .0 .0 0 0 0 .0 0 .0 0 0 

50 0 0 0 ,0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0 .0 0 0 0 0 ,0 0 

60 .0 0 0 0 0 0 0 ,0 .0 .0 0 0 0 0 0 0 .0 0 .0 0 0 0 .0 0 0 0 0 . 1 I 

70 .0 .0 0 0 0 0 0 .0 .0 .0 .0 0 0 0 .0 .0 0 .0 .0 .0 0 0 c I I I I I I 

80 .0 .0 0 ,0 0 0 .0 0 .0 .0 .0 0 0 0 0 0 0 0 0 0 1 .1 1 , I I 1 1 .1 1 

90 0 0 .0 .0 0 0 0 0 .0 .0 .0 .0 0 0 0 0 0 0 1 1 I ■1 I 1 , I . 1 I .1 1 

100 0 0 0 0 0 0 0 0 .0 .0 .0 0 0 0 0 0 1 1 I I 1 I .1 I I I I 

no .0 .0 0 0 .0 0 0 0 .0 .0 0 0 0 0 
■ 1 I 1 I I 1 1 I I I I 1 

120 0 .0 .0 0 0 0 0 .0 .0 0 0 0 1 I I I I I I I 1 1 1 

130 0 .0 0 0 0 0 0 0 ,0 0 0 0 I I 1 1 1 I I I I I .1 I I I 

140 0 0 0 0 0 .0 0 0 0 ,0 0 1 I I I 1 . 1 .1 1 I I 1 1 1 1 1 

150 0 .0 0 0 0 .0 0 .0 .0 0 I 1 I 1 1 . 1 1 1 1 1 I I I I 

160 0 0 0 0 0 .0 .0 0 .0 I I I r I I I 1 I I I 1 1 I r 

170 0 0 0 0 0 0 ,0 0 0 1 1 I 1 I 1 . 1 I 1 I 1 I I F 
180 0 0 0 0 0 0 0 .0 0 • I I 1 I I I I I 1 I I I i 2 .2 

190 .0 0 0 0 0 0 0 0 I I I I 1 1 I 1 I 1 T 1 u 2 .2 .2 

200 0, .0 .0 0 0 .0 0 .0 I I I 1 . 1 1 . I .1 .1 1 1 1 F 2 .2 .2 .2 

210 0 .0 0 0 0 .0 0 7 1 I 1 1 II I ,I .1 .1 i I 2 2 .2 .2 .2 .2 

220 0 .0 .0 0 0 0 0 r I .1 I I .1 . I I .1 I I F 2 2 2 2 .2 2 

230 0: .0 .0 0 .0 0 0 
I I I I I; I J 1 .1 F •2 .2 2 2 .2 2 .2 

240 0 0 0 .0 0 ■ 0 1 I I 1 I .1 I I I I .2 2 2 .2 .2 .2 2 2 

250 0 .0 .0 0 0 0 I 1 I 1 I .1 1 . I .2 2 .2 .2 .2 .2 .2 .2 2 

260 0 ,0 0 0 0 0 I I I I I .1 I . I I 2 2 2 .2 .2 .2 2 2 2 .2 .2 

270 .0 .0 .0 0 .0 0 1 I ■ I .1 I 1 1 • I , I .2 .2 2 2 2 .2 2 2 .2 .2 .2 

280 .0 .0 .0 .0 .0 I . I I 1 1 I I I I t 2 2 .2 .2 2 .2 .2 .2 .2 .2 .2 

290 .0 .0 .0 0 .0 I .1 I I 1 I I I I 2 2 2 • 2 .2 
1 

2 
1 

.2 .2 2 .2 .2 .2 F 
300 .0 .0 .0 .0 0 . I 1 1 

1 ^ 
I 1 .1 .2 .2 2 .2 2 .2 2 2 .2 .2 .2 .3 .3 

310 .0 .0 .0 .0 0 I 1 I I I I I 2 2 .2 .2 .2 .2 .2 
i 

2 .2 2 3 .3 

320 .0 .0 .0 ,0 1 . I I I 
1 

I I Ij .2 .2 .2 1.2 2 .2 .2 .2 2 . 2 F 3 3 ■3 

330 .0 0 .0 .0 I , I .1 ,I I .1 .1 . I .2 .2 .2 .2 .2 2 .2 2 .2 .2 -3 3 .3 3 3 

340 .0 .0 0 0 .1 . I .1 . I .1 I I .2 .2 .2 .2 .2 .2 .2 .2 2 .2 3 3 .3 3 .3 

350 .0 ,0 .0 .0 I .1 . I . I .1 .1 .1 2 2 2 .2 .2 .2 .2 2 .2 F 3 3 3 .3 3 

360 .0 .0 .0 0 1 .1 .1 .1 1 I .1 2 2 .2 .2 .2 .2 2 3 3 3 3 3 .3 

400 i.O .0 •0 .0 1 .1 .1 .1 .1 I F .2 2 .2 .2 .2 .2 2 r .3 .3 3 3 3 F 
440 .0 .0 • 0 . I .1 . I .1 . I .1 F 2 .2 2 .2 .2 .2 .3 3 3 .3 3 . 7 F 4 .4 

480 1.0 .0 !.o .1 .1 .1 .1 .1 . I F .2 .2 .2 2 2 .2 F .3 3 3 3 .41.41.41 .4 4 4 
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annual means extending over periods of several years; but, taking 

the records as a whole, the variations do not seem to follow any 

particular law, and they have been treated as accidental. 

From time to time evidence has appeared which indicated that 

lines of levels were not following exactly parallel to the surface 

shown by the tidal observations, and that mean sea-level is not 

Fig. 130. Automatic Tide Gauge. {Coast and Geodetic Survey^ 

everywhere at the same elevation, under the ordinary definition 

of elevation. In other words, the assumption that mean sea- 

level is an equipotential surface* was not exactly borne out by 

the tidal observations and the leveling operations. 

In 1928 the Coast and Geodetic Survey made a readjustment 

of 50 000 miles of first-order leveling, holding fixed only a single 

mean sea-level station. The result showed that the Pacific 

* See .Art. 168. 



3t8 precise leveling — trigonometric leveling 

Ocean on our western coast is about 2 feet higher (average) 

than the water of the Atlantic and Gulf on the eastern and 

southern coasts. The results also show that on both the Atlantic 

and the Pacific Oceans the mean sea-level slopes upward to the 

north. 

Fig. 131. Portable Automatic Tide Gauge. {Coast and Geodetic Survey.) 

166. Potential. 

In order to investigate the nature of the orthometric correction 

(mentioned in Art. 161) due to the convergence of level surfaces, 

it will be necessary to consider first some of the mechanical prin¬ 

ciples of the earth’s gravitation and rotation. 

Whenever two attracting bodies are separated, work is done 

upon them and energy is stored up; that is, the potential energy 

of the system is increased. The change in potential energy is 
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measured by the amount of work done. That is, the potential 

energy stored up is proportional to the height. When the bodies 

are an infinite distance ai)art, the potential energy is a maximum; 

when the bodies are in contact, the potential energy of the 

system is zero. If the masses are free to move, they will always 

move in such a direction as to diminish the potential energy of 

the system. 

If we imagine a unit mass placed at any })()int P in space and 

attracted by a mass If, and if the potential energy of the unit 

mass be measured by the work done upon it to move it from P to 

infinity, this quantity of potential energy is the j^roperty of the 

given point P. It is called the potential at that point. It is 

not necessary that there should actually be a unit mass at the 

point, but the conditions are such that if a unit mass were placed 

at P, it would have this amount of potential energy. Potential 

is analogous to level. A point at a high level has a high potential. 

166. The Potential Function due to Attraction. 

If an attracting body M be divided into small elements, and the 

mass Am of each element be divided by its distance from a point 

P, the limits of the sum of all these fractions as the elements arc 

made smaller, is called the value at P of the potential function 

due to If, or simply the potential of P. This function becomes 

numerically smaller as the heighi increases. It will be seen 

later that the gravitational potential is negative. Calling this 

function F, then 

F = limit [^^7] 

or, if Am is of density 5 and has the coordinates x', y\ z\ and P 

has the coordinates x, y, s, then 

h’dx' • dv' • dz^ 
-i* [118] 

Kx' - x)*^ + (y - + (s' - 

The integration over the entire mass gives the value of the po¬ 

tential function at P.* 

* See Peirre, Theory of the Newtonian Potential Function. 
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167. The Potential Function as a Measure of Work Done. 
The amount of work required to move a unit mass (concen¬ 

trated at a point) from a point Pi to another point P2, by any 

path (Fig. 132), against the attraction of a mass M (concentrated 
at its center), is equal to the change in potential, Vi — Fo, where 

Fi and F2 are the values of the potential function at the points 

Pi and P2. To show this, let r\ and ^2 be the distances from the 

M 

Fig. 132. 

center of M to the points Pi and P2. 
unit mass at Pi equals 

The attraction of JVf on a 

k being a constant whose value depends upon the units employed. 

If we take as the unit of attraction the ‘'attraction of a unit 
mass on a unit mass a units' distance away" then the attraction 
equals 

M 

The work done in moving the unit mass through a small space 

dr from Pi toward P2 equals (force times space) 

The work done in moving it from Pi to P^ is 

M_M 
Ti ri 

- Fi - F2. 
That is, the work done equals the change in potential. 

[119] 
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If the point P2 be supposed at infinity, V2 becomes zero, and 

the potential at Pi then equals the work done in moving the unit 

mass from Pi to infinity; or, it is the work done by it in moving 

from infinity to the point Pi. 

168. Equipotential Surfaces. 

A level surface, or equipotential surface, is one having at every 

point the same gravity potential. It is everywhere perpendicular 

to the direction of gravity.* 

The mean surface of the ocean is such a surface. The surface 

of any lake is also an equipotential surface. Such a surface is 

also a surface of equal hydrostatic pressure. 

The equation of an equipotential surface may be written as 

av 
~ds ~ ° 

or V = constant. 

If we consider the centrifugal force as well as the attractive 

force, and call the potential IT, then it may be shownf that 

C dm , , , 
M = J — + J (»•' + >’ ■') 

For this case also we shall find that the work done equals the 

change in potential. In this case too we have for the equation 

of a level surface 
aw 
as ~ ^ 

or W = constant. 

From these equations it follows that 

aw 
^ ~ dh 

and dW = —g dh. 

* It may be proved that if there is a resultant force at any point in space due to 

attracting masses, this force acts in the direction of the normal to the equipoten¬ 

tial surface through the point (see Peirce, Theory of the Newtonian Potential Func~ 

Hon^ p. 38). It should be kept in mind that “the force of gravity” is the resultant 

of the force of attraction and the centrifugal force, 

t Helmert, Ildheren Geodasie, Vol. 11, p. 8. 
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From the preceding discussion it is evident that if we consider 

any two equipotential surfaces, the difference in potential is the 

work done upon a unit mass in moving it from one surface to the 

other. The difference in potential is independent of any par¬ 

ticular points on those surfaces and of the path followed in 

passing from one to the other; for example, the work done in 

raising a unit mass from sea-level to the south end of a lake is 

the same as the work done in raising a unit mass from sea-level 

to the north end of the lake. Since the work done is the force 

(w) times the distance (d/i) through which it acts, it is clear that 

—wX dh is a constant between two nearby level surfaces. Also, 

since w = mg^ g varies as the weight (force), and therefore 

—g X dh is a constant between these two level surfaces. 

The force of gravity is less at the equator (Art. 144) than it 

is at the poles, chiefly on account of the action of the centrifugal 

force. At the equator we have ge = 978 and at the pole, gp = 

983, nearly. Hence we should expect to find that a given level 

surface is farther from sea-level at the equator than it is at a 

point nearer the pole. If several such surfaces be drawn (Fig. 

133), they will be seen to converge toward the pole. They are 

parallel to each other at the equator and at the poles, and have 

their greatest difference in direction at latitude 45°. 

Since g is about one-half of one per cent less at the equator than 

at the pole, the height h between surfaces is about one-half of one 
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per cent greater at the equator. Hence, if a level surface were 

1000 meters above the sea-surface at the equator, it would be 

only 995 meters above sea-level at the pole. A surface at half 

the elevation would converge (very nearly) half as much. In the 

line of levels run from San Diego to Seattle the convergence was 

found to be about i J meters, showing that at high elevations this 

error is by no means a negligible one in first-order leveling. 

It is evident that if a series of bench marks is established along 

a meridian (in the northern hemisphere), and all are placed at 

the same elevation, using the ordinary methods, those at the 

northern end of the line lie nearer to sea-level than those at the 

southern end of the line. It becomes necessary, then, to revise 

the definition of elevation. 

If the ordinary definition of elevation is retained, and no allow¬ 

ance made for convergence of level surfaces, then different results 

for the elevation of a point will be obtained, according to which 

path is followed. If we measure vertically upward from A to B 

(Fig. 134), and then level by means of the water surface BC, we 

obtain a greater height for point C than we should if we leveled 

by water from A to D and then measured vertically upward from 

D to C. If a correction is applied, however, to allow for the con¬ 

vergences of these surfaces, the result is that different portions 

of the lake surface have different elevations, which is apparently 

absurd if the true nature of the level surface is not understood. 
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In order to avoid this apparent difficulty another method some¬ 

times employed is to number all the surfaces with a serial number 

(called the Dynamic Number), so that all points on the same 

surface will have their elevation expressed by the same number. 

This number is defined as the work required to raise one kilogram 

from sea-level to the given surface, the unit being the kilogram- 

meter at sea-level in latitude 45°. The United States Coast 

Survey has adopted the method of applying to ordinary elevations 

the correction for convergence, called the 0 thometric Correction. 

The Standard Elevations of the Coast Survey in Special Pub- 

hcation No. 18 are given by the Orthometric Elevation. 

169. The Orthometric Correction. 

Let W be the work (in absolute units) required to raise a unit 

mass from sea-level to a point at orthometric elevation //, and 

let H be the dynamic number of the surface through the point, 

defined by the quotient W ^45, where ^45 is the value of g at 

sea-level in latitude 45° (Equa. [96a], p. 270). Then, since 

g X db is constant for two level surfaces separated by height dhy 

nh nh 

IV = I gdh = g45 I (i — o.cx>2644 cos 2 <^ . . . ) dh 
0 0 

in which the integration takes place along the curved vertical. 

, IV = ^45 Integrating, 

The dynamic number 

IV 

(1 — 0.002644 cos 2 <t>) h 
- h 

Jo 

= H ^ 
S4b 

h (i — 0.002644 cos 2 0.. 

[120] 

[121] 

The dynamic number may be computed from Equa. [121] if we 

neglect local variations in g and consider the earth to be truly 

spheroidal. It will be observed that H is constant for any sur¬ 

face, but that h is not. The two elevations, H and A, are equal 

in latitude 45®. 

To find the correction to the elevation due to a change in the 

latitude, differentiate the last equation with respect to 0 as the 
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independent variable, and we obtain 

o = dh {1 — 0.002644 cos 2 <t>) + 0.005288 h sin 2 <f> dcf), 

and dh ^ - 
0.005288 A sin 2 0 d<l) 

1 — 0.002644 cos 2 (t> 

= —(0.005288 A sin 2 0) (1+0.002644 cos 2 0 . . .)d0arc 1'/ 

[122] 

[123] 

the factor arc i' being introduced to reduce d<t> to minutes of arc. 

A more definite idea of the magnitude of this correction may be 

gained from the following example. Assuming that the ele¬ 

vation of Lake Michigan is 177 meters at Chicago, latitude 

41° 53', what is the elevation of the lake at Milwaukee, in latitude 

43° 03'? In the formula, h = 177”*, d<t> = 70', and 0 = 42° 28'; 

the computed values of dh is —0.0190”*, and the lake level at 

Milwaukee is therefore 176.9810 meters. Tables for computing 

the orthometric correction will be found in Coast Survey Special 

Publication No. 140. 

The relation between the dynamic numbers and the ortho¬ 

metric elevations is illustrated in the following table, which is an 

extract from the special publication just mentioned. 

Station. Latitude. Orth, elev meters. Dyn. number. 

Smithland, La. 30 55 14.7729 14-7545 
Meridian, Miss. 32 22 104.9494 104.8292 
Amblersburg, W. Va. 39 23 494-9221 494.6287 
Summit, Cal. 34 20 1165.4345 1164.locS 
lUordan, Ariz. 35 13 2216.5452 2213.8112 

170. The Curved Vertical. 

In view of what has been said regarding the change in the 

direction of level surfaces with an increase in elevation, it is clear 

that the vertical line is curved, being concave toward the pole, 

and therefore that any observation for latitude made at a point 

* For additional terms, neglected in the above formula, see Coast and Geodetic 

Survey Special Publication No. 18, p. 49. See also Ch. Lallemand, Nivellement 

dc Haute Precision^ Encydopidie des Travaux Publics^ Paris, 1912. 
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above sea-level is referred, not to the true normal to the surface 

at sea-level, but to the direction of that portion of the vertical 

which is at the elevation Qi) of the station. In order to deter¬ 

mine the amount of the correction to reduce the observed latitude 

to its value at sea-level, refer again to Equa. [122], p. 325. An 

inspection will show that the denominator of this fraction is 

usually not far from unity; and since the correction desired is 

itself quite small, we may assume 

dh = — 0.005288//sin 2 (/) c?(/). [124] 

The correction to the observed latitude is the difference in the 

slope of the two surfaces (sea-level and the level of the station) 

measured in the plane of the meridian. From Fig. 135 it is seen 

that the angle between the level surface through S and a surface 

parallel to sea-level drawn through S is dh R d(j>. But, by 

Equa. [124], 

dh 0.005288 h sin 2 0 

Yd4> ^ ~ R 

Reducing this to seconds of arc, 

dh 0.005288 A sin 2 

R d<f) ~ R arc i" 

Since R arc i" = 101.3 feet (very nearly), the correction to the 

latitude may be written 

— o".o522 h sin 2 0, [125] 
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where h is in thousands of feet; or, if h is in meters, the correction is 

— 0.000171 h sin 2 <t>. [126] 

Values of this correction will be found in Table VII, p. 416. 

171. Trigonometric Leveling. 

The method of measuring the vertical angles between triangu¬ 

lation stations has already been described in the chapter on field¬ 

work. From the field note-book we have the several measures 

of the angles, the height of the instrument, and also of the point 

sighted in each case above the station marks. The ele\aition of 

one station above sea-level is assumed to be known, and that of 

the other is to be computed. Before this can be done, the angle 

must be reduced to the value it would have if the instrument and 

the point sighted were coincident with the station marks. 

Fig. 136. Height of instrument and object, trigonometric leveling. 

172. Reduction to Station Mark. 

From the diagram (Fig. 136) it is evident that if / is the height 

of the instrument at A, and 0 that of the object sighted at and 

.5* the distance between stations, obtained from the triangulation, 

then the correction to the vertical angle at A is 

i - o 
Corr. = 

.s arc 1 
[127] 

Four places in the logarithms are sufficient in computing this 

correction. 
This reduction need be made only in case of reciprocal obser- 
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vations, that is, observations of the vertical angle from both ends 

of the line. In case of observations from one station only, the 

quantity i — o, in meters, can be applied directly to the com¬ 

puted difference in elevation. 

When a sight is taken from one station Pi to another station 

P2, the verticals of the two stations do not (in general) intersect, 

because they lie in different planes. If we imagine a plane which 

is parallel to both verticals, and then project both verticals onto 

this plane, we obtain the result shown in Fig. 137. 

173. Reciprocal Observations of Zenith Distances. 

In Fig. 137, Pi and P2 represent the two instrument stations; 

their elevations above sea-level are PiSi = hi and P2S2 = h- 

The ray of light is assumed to take the form of a circular curve, 

whose radius is determined by the coefficient of refraction used in 

the calculation. The two measured zenith distances are and ^2. 
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The angle of refraction is Af = TP1P2 = J^P^Pi == mB, where 

m is the coefficient of refraction, and B the central angle PiOPo. 

The radius of curvature of the section S1S2 is Ra^ approximately 

equal to 05i, or to 

The quantity to be computed is the difference in elevation 

hi — //i, which may be found by solving the triangle PiPoPs-* 

In the triangle PiPiLi^ P2L1 = h — Ih, the desired difference 

in elevation; P1L2 is the chord joining the two verticals at the 

level surface through Pi. Observing that PiM = (P^ + Ih) 

B 6 
sin and PiLi = 2 (R^ + hi) sin-, we have, by applying the 

law of sines, 

. 7 /^ sin a , , 
h.. - //i = 2 (R„ + //,) sm ^ (c) 

But in the triangle PiLoPi 

"=” 0 “ ^ 

=(90° “ 2) ~ ~ i’- ~ 

o ^ 
== — 90 — ^ + ^2 + Af. 

Also a = 180° — + Af + 90° — ^ 

= 90" -fi- Af+ 2* 

Taking the mean of (/) and (g) 

if) 

(g) 

cx ih) 

In the triangle P1P2O 

0 = f, + Af - 0. (i) 

Also, ;8 = 180° - f2 - Af. (J) 

* The following formulae are those adopted by the Coast and Geodetic Survey 

in 1915 (see Special Publications Nos. 26 and 28). 
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Taking the mean of ii) and (7), 

l:i - go" 

Substituting (//) and (k) in (e), 

h - //1 = 2 (/?„ + //,) sin -—---rr- (0 
2 / P , f2 — M \ 

Expanding the denominator and dividing both numerator and 

denominator by cos cos ^ , we ol^tain 

2 (Roc + h\) tan - inn (---- 

2 \ 2 / 

2 (Rcc + //i) tan - tan 

I -- tan tan I 
2 

Expanding tan ^ in series (see p. 408), retaining two terms in the 

numerator and one term in the denominator, we have, putting 

i. - J. - (. (. + 

= 5 tan . ,4 * B • C 

I + .9 tan 

in which 

the correction for elevation of the station of known elevation, 

B = I -^7" • tan 
2 
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the correction for the difference in elevation, and 

C - I + 
12 r/ 

the correction for distance. 

The logarithms oi A ^ and C are given in Tables K, L, and M, 

for the arguments //i, log .. tan ) , and log 5, respectively. 

174. When only one Zenith Distance is Observed. 

From {g) and (//) we have 

a -Af + 
0 

2 

The refraction angle is Af = where rn is the refraction 

coefficient, to be determined by actual observation. This co¬ 

efficient is on the average nearly equal to 0.07 t. Substituting 

mO for Af in the preceding equation we have 

= 90^ - + (0.5 - m) 0, 

and tan tan + (0.5 — nt) 

Reducing the small term to seconds, 

tan = tan [90° + (0.5 - m) - f:] > 

= tan [90'' + ^ ~ Ti]. {n) 

Substituting (n) in [129], 

h2 — hi = s tan [90° + k — ^i]A • B • C [130] 

in which A, JS, and C have the same meaning as before except 

that B is given for the argument log [s tan + k — fi)]. 

Example. Zenith Distance of Mt. Blue from Farmington, 87° 07' 18".8; dis¬ 

tance, 15,519 meters; m = 0.071; instrument 2.20 meters above station mark; point 

sighted 4.40 meters above station mark: elevation of Farmington, i8t 20 meters. 
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0.5 
m 0.071 

(0.5 —w) 0.429 log = 9.6325 
log = 4-1909 

colog Ra sin i" = 8.5092 
2.3326 90° 00' 00" 

\ogRu = 6.8052 k = 2i5".i = 03'35''-1 

“ sin i" - 4.6^ ^ = 87° 07' -8 
1.4908 -f 2° 56' i6".3 tan = 8.71029 

log .s = 4.1Q086 
2.90115 

A I 

B 3 
C o 

796.51 meters 2.90119 

Red. to Sta. 2.20 

DifT. Kleva. 794-3^ “ 
Kiev. Farmington 181.20 

Kiev. Mt. Blue 975-51 “ 

TABLE K=' 

Lok .1, Log .4, Log A, Log A, 

units of units of units of units of 

K fifth h,. fifth K fifth /h- fifth 

place of place of place of place of 

decimals. decimals. decimals. decimals. 

Meters, Meters. Meters. Meters. 

0 

0 
1541 

II 

3156 
2 ^ 

4770 

33 
73 1688 3303 4917 1 

1 12 -"3 34 
220 

2 
^835 

13 

3449 
24 

5064 

35 
367 

3 

1982 

14 

3596 

25 

5211 

36 

514 

4 

2128 

15 

3743 
26 

S3S7 
37 

66r 

5 
2275 

16 
3^90 

27 

SS04 

38 
807 

6 

2422 

17 

4036 

28 
5651 

39 
954 

7 
2569 

18 
4183 1 

29 

5798 
40 

IIOI 

8 
2715 

T9 
4330 

30 
S94S 

41 
1248 

9 1 
2862 

20 i 
4477 

3T 

6091 

^^94 
10 1 

3009 

21 1 

4624 
1 

32 ( 

1541 3156 i 4770 1 
1 

* In these tables log Ra is taken as 6.80444, the mean radius in latitude 40® on the Clarke 
Spheroid of 1866. 
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Table K gives the values of log A, the correction factor for the 

elevation of the known station, by showing the limiting values 

of the elevation /?i, between which log A may be taken as o, i, 

2, 3, etc., units of the fifth place of decimals. Log A is positive, 

except in the very rare case where Jh corresponds to a point 

below mean sea-level. 

TABLE L 

Lot? 5 tan J Lo .V tan J Log s tan 1 

(fa - Ti) or log Log B, units ^{*2 - fi) or log Log B units (f2 - f i) or log Log B units 

5 tan (90° + k of fifth place s tan (90° + k of fifth place i tan (90° -h k of fifth place 

-fi) • {s in of decimals. - fi) • (s in of decimals. — f 1) * {s in of decimals. 

meters.) meters.) meters.) 

0 

2.167 

I 
3-397 

9 

3-685 

17 
2.644 

2 
3-445 

10 
3-7II 

18 

2.866 

3 
3 489 

II 
3-735 

19 
3 .oil 

4 
3 528 

12 
3-758 

10 

3.121 

5 
3-565 

13 

3-779 
21 

3.208 

6 
3-598 

14 

3.800 

22 

3.281 

7 

3.629 

15 

3.820 

23 

3.343 
8 

3-658 
16 

3-839 

24 

3.397 3-683 3.857 

Table L gives the values of log J5, the correction factor for 

approximate difference of elevation by showing the limiting 

values of log [s tan ^ (^2 — fi)] or log ^ tan (90° + k — fi)] be¬ 

tween which log B may be taken as o, i, 2, 3, etc., units of the 

fifth place of decimals. Log B has the same sign as the angle 

i (f2 - fi) or 90° + ^ - fi; for example, if log [s tan | (fo -fi)] 

lies between 3.565 and 3.598 and I {^2 — Ti) is positive, log B = 

+0.00013, but if I (^*2 — rO is negative then log B — —0.00013, 

i.e,j 9.99987 — 10, the former way of writing being usually more 

convenient in practice. 
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TABLE M 

Log s (5 in meters). 
Log C, units of fifth 

place of decimals. 
Log s (s in meters). 

Log C, units of fifth 

place of decimals. 

0.000 
0 

5-297 

4 

4-875 
I 

5-352 
5 

S-II3 
2 

5-395 
6 

5-224 
3 

5-432 

! 5-4'\? 
7 

5-297 

Table M gives the value of log C, the correction factor for dis¬ 

tance between stations, by showing the limiting values of log 5 

between which log C may be taken as o, i, 2, 3, etc., units of the 

fifth place of decimals. Log C is always positive. 

Determining the Coefficient, m. 

In deriving formula [129] it was assumed that since the rays 

travel over the same path in opposite directions simultaneously 

the values of Af may be considered equal to each other and 

hence do not appear in the final equation. Whenever the differ¬ 

ence in elevation has been calculated from reciprocal observa¬ 

tions it then becomes possible to find what value of m will 

satisfy the equation for this particular line. If in [130] we sub¬ 

stitute the known difference in elevation Jh — hi and, regarding 

the k term as unknown, solve for the value of m, we then have a 

value consistent with the observed angles. 

Suppose that the difference in elevation of two stations is 1046.9 

meters, the distance is 23931.6 meters, and the angles (from the 

zenith) are 87° 35'01".i for the lower station and 92° 35'34".2 

for the upper station. The elevation of the lower station is 

108.87. 
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Solving equation [130] we have, 

log j 046.0 = 3-01991 
A = I 

B = 4 
C — o 

3.oto8() 

log .y = 4-37^97 

log tan (00° + /* - fi) 
(90'’ A- k ~ 

90° - .Cl 
k 

l<3g k 

8.64089 

2° 30' 16".5 
-4 5^ -Q 

0° 0=5' 17".6 
'.6 

kT. 
log (0.5 

05 17 
317' 

2.50188 

— 2.88<S7o 

;;;) - g.61318 
0.4104 
0.0896 

The value of m as found from a large numl)er of observations 

is given in the reports of the Coast and Ceodetic Survey as 

follows: 
Lines crossing the sea 0.078 
Between high stations 0.071 
In the interior of the country 0.06=; 

In Clarke’s Geodesy are found, 

Eor rays crossing the .sea .0809 
“ “ not “ “ “ .0750 

These values are but averages. The actual values vary con¬ 

siderably with atmospheric conditions. Some lines near the 

surface can be sighted on certain days, while on other days the 

signals are entirely invisible. At Mt. Diablo, Calif., the follow¬ 

ing variations were observed: 3* A.M., .0893; 9* a.m., .0812; 

2* P.M., .0640; 9* P.M., .0827. 

PROBLEMS 

Problem 1. Calculate the orthometric correction for a line of levels extending 

2° northward from a point in latitude 45° N at an elevation of 1000 meters. 

Problem 2. Compute the correction for reducing to sea-level a latitude observed 

at an elevation of one mile in latitude 45° N. 

Problem 3. Vertical angle from 5 to -f 2° 24' 58".94. Vertical angle from 

B to S, —2° 35' 34".20. Elevation of 3 = 108.87 meters; distance, 23,931.6 

meters. Compute the elevation of B. 



CHAPTER XI 

MAP PROJECTIONS 

176. Map Projections. 

Whenever we attempt to represent a spherical or a spheroidal 

surface on a plane some distortion necessarily results, no matter 

how small may be the area in question. The problem to be 

solved in constructing topographic or hydrographic maps is to 

find a method which will minimize this distortion under the 

existing conditions. The number of projections which have 

been devised is very great; for the description and the mathe¬ 

matical discussion of the properties of these projections the 

reader is referred to such works as Thomas Craig’s Treatise on 

Projectionsj United States Coast and Geodetic Survey^ 1882; The 

Coast and Geodetic Survey Report, 1880; C. L. H. Max Jurisch, 

Map Projections, Cape Town, 1890; G. James Morrison, Maps, 

Their Uses and Construction, London, 1902; A. R. Hinks, 

Map Projections, Cambridge, 1912; and Special Publ. 47, 49, 

52, and 130, U. S. Coast and Geodetic Survey. 

In this chapter we shall consider only those projections which 

are used for such maps and charts as are of importance in geo¬ 

detic surveys and in navigation. 

176. Simple Conic Projection. 

In this projection the map is conceived to be drawn on the 

surface of a right circular cone which is tangent to the sphere 

or the spheroid along a single parallel of latitude, usually the 

middle latitude. The apex of the cone lies in the prolongation 

of the axis of the spheroid. From Fig. 138 it is evident that the 

distance TA from the apex to the parallel through A is equal to 

N cot 0. If the cone is developed on a plane surface we shall 

have a sector whose center is T and whose radius is N cot 0. 
336 
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(Fig. 139.) All other parallels of latitude on the map will be 

circles drawn about the same center T, and all meridians will be 

represented by straight lines passing through T. The spacing 

between the parallels of latitude is obtained by laying off dis¬ 

tances along the central meridian which are proportional to the 

distances between the same parallels on the spheroid. The 

position of the meridians is found by subdividing the middle 

parallel into spaces which are proportional to the lengths of the 

arcs of the same parallel on the spheroid. Straight lines are then 

drawn from the center T through these points of sub-division. 

Any meridian or any parallel may be assumed for the central 

meridian and middle parallel of the map. It is evident from the 

above that this is not a true projection, that is, the points are not 

those that would be obtained by projecting radially from the 

center of the sphere onto the cone. If the scale of the map is 

such that the position of the center T cannot be represented on 

the paper, the curves may be laid off by plotting certain points by 

means of their rectangular coordinates as described later under 

the polyconic projection. Tables X, XV, XVI and XVII may 

be used for this purpose. 
It is evident that the meridians and parallels of a conic pro- 
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jection intersect at right angles in all parts of the map, as they 

do on the sphere. The scale of the map is not correct, however, 

except along the middle parallel. For a map having a great 

extension in the longitude and but little in the latitude, the 

conic projection is fairly accurate. Figure 140 shows a com¬ 

pleted conic projection covering the area of the United States. 

177. Bonne’s Projection. 

This projection is a modification of the simple conic and meets 

the objection that the scale of the latter becomes inaccurate as 

the distance from the middle parallel increases. The parallels 

of latitude are concentric circles as before, but each parallel is 

sub-divided into spaces which are proportional to the corre¬ 

sponding spaces on that parallel on the spheroid. The central 

meridian and all parallels are therefore correctly sub-divided. 

The meridians are obtained by joining the points of sub-division 

on the parallels. The meridians in this projection are all 

curved, except the central one, and they intersect the parallels 

nearly, but not quite, at right angles (Fig. 141). The distortion 

in this projection is very small, and for small areas it is practi¬ 

cally a perfect projection. It has been much used in Europe. 

178. The Polyconic Projection. 

The idea of using several cones, or the poly conic projection, 

is due to Mr. F. R. Hassler, the first superintendent of the Coast 

Survey. Each parallel of latitude shown on the map is de¬ 

veloped on a cone tangent along that parallel. The radius 

{TA) for any parallel (latitude <f>) is N cot 0; and the angle 

between two elements of the cone when developed is approxi¬ 

mately 6 — (dX) sin 0, as will be evident from Fig. 142. See also 

Equa. [68], p. 218. 

In constructing the map the degrees of latitude are laid off 

along the central meridian, the spacing corresponding to the 

distances on the spheroid. (Table X.) The points where the 

meridians intersect the parallels are plotted by means of their 

rectangular coordinates, the coordinate axes being in each case 

the central meridian and a line at right angles to it drawn through 
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the latitude in question. The coordinates themselves are found 

as follows: In Fig. 143, let^l be the intersection of some meridian 

and parallel which are to be drawn on the map. Then the 

radius TA = N cot 4> may be computed from the known lati¬ 

tude of Ay and the angle 6 may be computed from the known 

difference in longitude between O and A by the equation 0 — 

{d\) sin <t>. Then for x and y we have 

X = TA smB — N cot <t> sin (d\ sin <t>) [131] 

X 
and y — TA vers B = —• vers B 

sin B 
0 

- X tan 
2 

= X tan J {d\ sin 0) [132] 

Values of these numbers will be found in Tables XVI and 

XVII which are taken from a large general table in Coast and 

Geodetic Survey Special Publ. No. 5. 

It is evident that the parallels and meridians do not intersect 

at right angles except at the central meridian. The meridian 
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and parallels are both curved, as in Bonne’s projection, but 

since the lower parallels are flatter there is a separation of the 

parallels which becomes more marked toward the east and 

west margins of the map. For this reason this map becomes 

less and less accurate as the longitude is extended. In mapping 

areas which extend principally north and south, it is superior to 

other projections. It is in general use in the United States 

for Government maps. Figure 144 shows a polyconic projection 

covering the area of the United States. 

Another advantage of the polyconic projection is that it is 

adapted for use in any part of the globe. If a map is to be made 

in any region a central meridian is selected and the limits of 

latitude determined. Then the same tables of coordinates may 

be used for this map without any special computations. In any 

form of projection in which the standard parallels are fixed, 

such as the Lambert or the Albers projections, this cannot be 

done; the map must still refer to the same standard parallels, 

which may be far from the area being mapped. 

There is one disadvantage in the Polyconic and the Bonne's 

projections, namely, that if two maps of adjoining areas are 

to be placed side by side they cannot be placed exactly in con¬ 

tact because the limiting (common) meridian curves in opposite 

directions on the two maps. In the simple conic and in the 

Lambert projection, to be described in the next article, the 

meridians are straight and this difficulty does not exist. 

179. Lambert’s Conformal Projection. 

The Lambert projection having two standard parallels was 

invented about the middle of the eighteenth century, but has 

recently been brought into prominence through its use in the 

French battle maps. The fundamental notion is that of a cone 

tangent along the middle parallel of the map, the radius of this 

parallel (on the map) being N cot 0, and the angle between 

the central meridian and any other meridian being (dX) sin 0. 

This would give a map in which one parallel, and only one, is 

correctly divided. We may, however, modify the projection 
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SO as to have two standard (correct) parallels. This is done by 

reducing the scale (multiplying by a constant) and is practi¬ 

cally equivalent to employing a cone which cuts the spheroid in 

the two standard parallels. 

The other parallels are so spaced that the scale of the map is 

the same for all azimuths at any one place, that is, the scale 

along a meridian is the same as the scale in an east and west 

plane. A projection having this property is said to be ^^con¬ 

formal.’’ It may be proved that this condition is true if the 

spacing between parallels is (3 + 7—, where is the arc of the 
o Po“ 

meridian between parallels on the original tangent cone meas¬ 

ured from the i)ara]lel of contact, and po is the mean radius of 

curvature of the spheroid at a point on this tangent parallel. 

110" 100" 00" 80" 70"60"50''40"30‘20"10"0"10"20" .10" 40" 50" 60" 

70" 60" 60" 40 30" 20" 10' 0" 10" 80“ 
Fig. 145. Lambert Projection. 

Since the projection is conformal, all lines on the map cut each 

other at the same angles as do the corresponding lines on the 

spheroid. There is a tendency, therefore, for small figures to 

have the same shape on the map that they have on the earth’s 

surface. The scale of this map is correct on the two standard 

parallels. Between these two parallels the scale is a little too 

small and outside these parallels the scale is too large. The 
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error is not serious, however, if the standard parallels are 

chosen, as is usual, one sixth and five sixths the length of the 

meridian arc to be shown. Figure 145 shows a Lambert pro¬ 

jection. 

This projection may be extended indefinitely in an east and 

west direction without error. The error becomes greater and 

greater as the map is extended to the north and south. In 

this respect it is just the contrary of the polyconic projection. 

As compared with the polyconic projection for an area like that 

of the United States proper, the Lambert will give long diagonal 

distances (Maine to Arizona, for example) with a much smaller 

scale error than the polyconic. For a complete description of 

this projection, together with tables for projecting maps, see 

United States Coast Survey Special Publications 47, 49 and 52. 

179a. Albers Equal Area Projection. 

This is a conical projection in which the meridians are shown 

by straight lines and the parallels by concentric circles. It is 

also an equal area’^ projection, that is, areas on the map are 

proportional to the areas on the globe. The scale along two 

standard parallels is exact, as in the Lambert. This projection 

not only has a correct scale along the two standard parallels, but 

it has a minimum error along the borders and has no scale errors 

along two curves which lie close to the diagonals of the map. 

On the whole it has a smaller scale error than any other pro¬ 

jection that has been used. This projection is well adapted for 

constructing a large map of the whole United States. (See 

U. S. Coast and Geodetic Special Publ. No. 130.) 

180. The Gnomonic Projection. 

In the gnomonic, or central, projection the projecting point 

is at the center of the sphere and the plane of the map is tangent 

to the sphere at some selected point. Every plane through 

the center cuts the sphere in a great circle and cuts the map in 

a straight line; hence every great circle is represented by a 

straight line and every straight line on the map must represent 

a great circle. 
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Figure 146 shows the Atlantic Ocean projected on a plane 

tangent at </> = 30° N and X = 30° W. 

The meridians and the equator are of course represented by 

straight lines. The parallels of latitude are conic sections, in 

this case hyperbolas. The parallels are best constructed by 

employing the equations of the curves and plotting points by 

means of coordinates. 

If a gnomonic chart is constructed on a plain* tangent at the 

earth's pole the construction is quite simple. The angles between 

90“ RO'’ 70“ flO“ 50“ 40“ .^0" 20“ 10" 0“ 10" 20“ 30“ 

meridians are equal to the actual longitude differences, and the 

radius of any parallel of latitude is given by R cot </>, where R is 

the radius of the sphere. 

The gnomonic projection is used almost exclusively for deter¬ 

mining the positions of great circles for the purposes of naviga¬ 

tion. By joining any two places by a straight line the great- 

circle (or shortest) track is at once shown. The latitudes and 

longitudes of any number of points on this track may be read 

off the chart and, if desired, may be transferred to any other 



346 MAP PROJECTIONS 

chart and the curve sketched in. The point where the great 

circle approaches most nearly to the pole is found at once by 

drawing from the pole a line perpendicular to the track. The 

foot of this perpendicular is the vertex, or point of highest 

latitude. 

181. Cylindrical Projection. 

If a cylinder is circumscribed about a sphere so as to be tan¬ 

gent along the equator, and if points be projected onto the 

cylinder by straight lines from the center, the cylinder, when 

developed will give a map in which the meridians and parallels 

are all straight lines cutting each other at right angles, the relative 

distances between points being approximately correct near the 

equator but distorted in high latitudes. The meridians will all 

be parallel to each other. The jDarallels of latitude will be parallel 

to each other and will be spaced wider and wider apart as the 

latitude increases. Evidently the scale of the map is different 

for different latitudes. It is also true that at any point the scale 

along a meridian is not the same as the scale along a parallel. 

Such a projection is of no practical value, but its description aids 

in understanding the Mercator projection which is described in 

the next article. 

182. Mercator’s Projection. 

A modification of the above projection, known as Mercator’s, 

consists in so spacing the parallels of latitude that the relation 

between increments of latitude and longitude on the chart is 

the same as the relation between increments of latitude and longi¬ 

tude at the corresponding point on the earth’s surface, or ap¬ 

proximately, i' lat. on chart: i' long, on chart = i' lat. on 

spheroid: i' long, on spheroid. If this relation is preserved, 

it will be found that any line of constant bearing (called the 

loxodrome or rhumb line) will be represented by a straight line 

on the chart. 

In Fig. 147 let AB on the earth’s surface be represented by 

A'B' on the chart (actual size). In order that the two lines 

may have the same bearing it is necessary that 
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or 

^ _ 4^ _ 
dx CB ~ Rpd\ 

dx 

In other words, since the longitude has been expanded (in the 
a \ . . . ^ 

ratio ^ ] by the method of constructing the chart, it is neces¬ 

sary to expand the latitudes in the same ratio in order to preserve 

the scale and give AB the same bearing. Now since dx is rep¬ 
resented as large as the corresponding arc on the equator, we 

have 
dx a dx __ a 

RpdX RpdX Rp 

Substituting in (a), we obtain 

dy = Rmd<t> 

or, since Rp ~ N cos </> 

dy = 
Rn 

’-“X 

^ d<i> 
N cos <t> 

a(i — e^) 

cos <t> sin^ <f>) 

(i - e^) 

d<f> 

cos <^(i — sin^ <j>) 
d<t). 
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Multiplying by sin^ 0 + cos^ <^, the integral may be sep¬ 

arated into two, giving, after multiplying numerator and de¬ 

nominator by cos 0, 

y = 
cos <f) d<i> 

Jo cos- <j> 

e cos 0 (/(/) 

I — e'^ sin- <p 

a 

M 

I -f sin (f> 

1 — sin </) I e log 
I + c sin 0" 

] — c sin <t>jo 

where M = 0.4342945, the modulus of the common logarithms. 

Employing the formulae, 

and 

log 
j + X 

1 — X 

( x^ 
2[X + -J + • • ■) 

1 + sin X 

I — sin X 
VdnH 45° + 

X 

2 ) 
the equation may be expressed 

3’=^[logtan(45°+2)]^-«<^[«s'n</>+^^^^^ + • • [133] 

in which y is the same linear units as a. 

In order to express v in nautical miles or minutes of arc on the 

X * • • 1 • , 1 X 180 . . 
equator it is necessary to multiply by--—, giving, 

(ZTT 

1 / o 4\ / o • ^^sin’V\ r 1 y= 7915.705 log tan ^45 + -3437.7 sin <;5>+—-—j, [134] 

or 

3'= 7915.705 log tan ^45°+ fj - 22'.94S sin <^-0.051 sin’ <t>. [135] 

Also X = 60 X X°, [136] 

the unit being the nautical mile. Values of y, called meridional 

partsj will be found in works on navigation. (Bowditch, Table 3.) 

* The Nautical Mile contains 6080.20 ft., (Clarke Spheroid and U. S. legal 

meter); this is not identical with the number of feet in one minute of arc on the 

earth’s equator. For a discussion of this matter, see Appendix 12, Coast Survey 
Report for 1881. 
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This chart is much used by navigators because it possesses 

the property that the bearing of any point B from a point A as 

measured on the chart is the same as that bearing on which a 

vessel must sail continuously to go from A to B. The track 

cuts all meridians on the globe at the same angle, just as a 

straight line on the chart cuts all meridians at the same angle. 

This track is not the shortest one between A and jB, but for 

ordinary distances the length differs but little from that of the 

great-circle track. In following a great-circ'e track the navi¬ 

gator may transfer to the Mercator chart a few points on the 
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great-circle obtained from his great-circle chart, by means of 

their latitudes and longitudes, and then sail on the rhumb lines 

between consecutive plotted points. Figure 148 shows a Mer¬ 

cator chart. 

183. Rectangular Spherical Coordinates. 

A system of rectangular spherical coordinates, used in Europe, 

consists in referring all points to two great circles through some 

selected origin, one of them being the meridian, the other the 

prime vertical. Within small areas these coordinates are prac¬ 

tically the same as rectangular plane coordinates. When the 

area is so great that the effect of curvature becomes appre¬ 

ciable, small corrections are introduced, so that the form of the 

plane coordinates is retained without loss of accuracy. Such a 

system is very convenient when connecting detail surveys with 

the triangulation, particularly for local surveyors who may 

not be familiar with geodetic methods of calculating latitudes 

and longitudes. The method is not well adapted to mapping 

very large areas. (See Crandall’s Geodesy, p. 187.) 



CHAPTER XII 

APPLICATION OF METHOD OF LEAST SQUARES TO 

THE ADJUSTMENT OF TRIANGULATION 

184. Errors of Observation. 

Whenever an observer attempts to determine the values of 

any unknown quantities, he at once discovers a limit to the 

precision with which he can make a single measurement. In 

order to secure greater precision in his final result than can be 

obtained by a single measurement, he resorts to the expedient 

of making additional measurements, either under the same con¬ 

ditions or under different conditions. Under these circumstances 

it will be observed that the results are discordant and that the 

same numerical result almost never occurs twice.* The ques¬ 

tion at once arises, then. What are the best values of the un¬ 

known quantities which it is possible to obtain from these 

measurements? 

The method of least squares has for its main objects (i) the 

determination of the best values which it is possible to obtain 

from a given set of measurements, and (2) the determination 

of the degree of dependence which can be placed upon these 

values, or, in other words, the relative worth of different deter¬ 

minations; (3) it also enables us to trace to their sources the 

various errors affecting the measurements and consequently to 

increase the accuracy of the result by a proper modification of 

the methods and instruments used. The method is founded 

upon the mathematical theory of probability, and upon the 

* This is only true, however, when the observer is taking each reading with the 

utmost possible refinement. If, for example, angles are read only to the nearest 

degree, the result will always be the same no matter how many times the measure¬ 

ment may be repeated; but if read to seconds and fractions, they will in general all 

be different. 

351 
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assumption that those values of the unknowns which are ren¬ 

dered most probable are the best that can be obtained from the 

measurements. 

186. Probability. 

If an event can happen in a ways and fail in h ways, and all 

of these ways are equally likely to occur, the probability that 

the event will happen in any one trial is expressed by the fraction 

a ..... b 
^, and the probability that it will fail is expressed by 

Since it must either happen or fail, the sum of the two prob- 

a b 
abilities represents a certainty. This sum is + = I. 

Cl b O' b 
Therefore the probability of the happening of an event is repre¬ 

sented by some number lying between o and i, the larger the 

fraction the greater the probability of its happening. For ex¬ 

ample, a die may fall so that any one of its six faces is uppermost, 

and all of these six possibilities are equally likely to occur; the 

probability of any one of its faces being up is 

186. Compound Events. 

If a certain event can happen in a ways and fail in b ways, 

and if a second, independent, event can happen in a' ways and 

fail in b' ways, and all are equally likely to oci:ur, then the total 

number of ways in which the events can take place together is 

(a + b) (a' + b'). The number of ways in which both can hap- 

aa 
pen is aa' and the probability of its happening is ^ 

For example, the probability of double six being thrown with a 

pair of dice is J X i = jfV- It is evident that the probability 

of the simultaneous occurrence of two events is the product of 

the probabilities of the occurrence of the component events. 

In a similar way it may be shown that the probability of the 

simultaneous occurrence of any number of independent events 

is the product of their separate probabilities; that is, if Pi, P2, 

P3. . . are the probabilities of the occurrence of any number 

of independent events, the probability of their simultaneous 
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occurrence is 
P = Pi X P2 X P3 . . . , [137I 

187. Errors of Measurement — Classes of Errors. 

Every measurement of a quantity is subject to error, of which 

the following kinds may be distinguished. 

1. Constant Errors. 

2. Systematic Errors. 

3. Accidental Errors. 

188. Constant Errors. 

A constant error has the same effect upon all observations in 

the same series of measurements. For instance, if a steel tape 

is o.oi ft. too long, this error affects every 100 ft. measurement 

in just the same way. 

189. Systematic Errors. 

A systematic error is one of which the algebraic sign and the 

magnitude bear a fixed relation to some condition. For ex¬ 

ample, if the measurements with the tape are made at different 

temperatures, the error resulting from this variation of tem¬ 

perature is systematic and may be computed if the tempera¬ 

tures and the coefficient of expansion are known. 

190. Accidental Errors. 

Accidental errors are not constant from observation to ob¬ 

servation; they are just as likely to be positive as negative; in 

general they follow the exponential law of error, as will be 

explained later (Art. 197). The error of placing a mark opposite 

to the end graduation of the tape is of this class. 

191. Comparison of Errors. 

There is in reality no fixed boundary between the accidental 

and the systematic errors. Every accidental error has some 

cause, and if the cause were perfectly understood and the amount 

and sign could be determined, it would cease to be an accidental 

error, but would be classed as systematic. On the other hand, 

errors which are either constant or systematic may be brought 

into the accidental class, or at least made partially to obey the 
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law of accidental error, by so varying the conditions, instru¬ 

ments, etc., that the sign of the error is frequently reversed. 

If a tape has o.oi ft. uncertainty in length, this produces a 

constant error in the result of a measurement. If, however, we 

use several different tapes, each with an uncertainty of o.oi ft. 

this error may be positive or negativ^e in any one case. In the 

long run these different errors tend to compensate each other 

like accidental errors. 

In the class of systematic errors would be placed such errors 

as those due to changes in temperature, light, and moisture, 

or change in the adjustments of instruments. These errors 

may be computed and allowed for as soon as we know the law 

governing their action, or they may be partially eliminated 

by varying conditions under which the measurements are 

made. 

Under the constant class comes the observer’s error, which 

tends to become constant with increased experience in observing. 

This error may be allowed for as soon as its magnitude and sign 

have been determined, or it may be eliminated by the method 

of observation. Certain errors in the instrument may have a 

constant effect on the result; these may be dealt with in the 

same manner as the personal error. It should be noticed that 

after the constant error or the systematic error has been elimi¬ 

nated, there still remains a small error due to the fact that the 

magnitude of the constant error itself was not perfectly deter¬ 

mined or that its elimination was imperfect. This remaining 

error must be regarded as an error of the accidental class, since 

its magnitude is unknown and it is just as likely to be positive 

as negative. 

Under accidental errors are included all those which are sup¬ 

posed to be small and just as likely to be positive as negative. 

They are due to numerous unknown causes, each error being in 

reality the algebraic sum of many smaller errors. Under this 

class may be noted errors in pointing with a telescope, errors in 

reading scales and estimating fractions of scale divisions, and 
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undetected variations in all of the conditions governing syste¬ 
matic errors. 

192. Mistakes. 

These are not errors, but they must be considered in connec¬ 

tion with the discussion of accuracy of observations. They in¬ 

clude such cases as reading one figure for another, as a 6 for a o, 

or reading a scale in the wrong direction, as reading 46° for 34°. 

193. Adjustment of Observations. 

When the number of measurements is just sufficient to de¬ 

termine the quantities desired, then there is but one possible 

solution, and the results mu.st be accepted as the true values. 

When additional measurements are made for the purpose of 

increasing the accuracy of the results, this gives rise to discrep¬ 

ancies among the different measurements of the same quantities, 

since each is subject to errors. The method of least squares 

enables us to compute those values which are rendered most 

])robable by the existence of the observations and in view of 

the discrepancies noted; it cannot, however, tell us anything 

about the existence of constant errors, unless new observations 

made under different conditions reveal new discrepancies. For 

example, if a pendulum is swung and certain small variations 

in the last decimal place of the period are noticed, these may be 

regarded as due to small errors in the running of the chronom¬ 

eter and to accidental errors of ol)serving; but if the pendulum 

case be mounted on a support whose flexibility is very much 

greater than that of the first, and larger variations are now 

observed, it becomes apparent that an error of the systematic 

class is affecting all our observations, though it does not appear 

at all in the first observations, because all the measurements 

were affected alike. An investigation of the law governing 

this error, and the determination of its magnitude and sign, 

enable us to correct the result for such part of the error as we 

are able to determine. There remains in the result, however, 

an accidental error, namely, the error in the measurement of 

the flexure correction. 
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194. Arithmetical Mean. 

The formulae employed in adjusting observations are usually 

made to depend upon the axiom that if a number of observations 

be made directly upon the same quantity, all made under the 

same conditions and with the same care, the most probable 

value of the quantity sought is the arithmetical mean of all 

the separate results; that is, if the results of the observations 

are Mi, M2, Ms, . . . M„, the most probable value of the quan¬ 

tity, Mo, is given by 

Mo 
M, + A-Ai + - • • Mn ^ Xm 

n [>38] 

It is to be carefully noted that this is not the true value, M, 

but simply the most probable value under the circumstances; 

if additional measurements be made. Mo changes corresjx)nd- 

ingly in value, because we know more about its real value than 

we did at first. 

196. Errors and Residuals. 

It now becomes necessary to distinguish between errors and 

residuals. The error is the difference between any measured 

value and the true value. Its magnitude can never be known, 

because the true value can never be known. The residual is 

the difference between a measured value and the most probable 

value. This is a quantity which may be computed for any set 

of observations. In a set of very accurate observations which 

are free from constant and systematic errors the residual is a 

close approximation to the true error. It may be shown that 

for the case of direct observations the algebraic sum of the 

residuals is zero; that is, if we compute = Mi — Mo, V2 = 
M2 — Mo, etc., then = o, where Vi, V2 * • • are the residuals. 

196. Weights. 

In case the measurements are of different degrees of relia¬ 

bility, they are given different weights. The weight of an 

observation may be regarded as the number of times the ob¬ 

servation is repeated and the same numerical result obtained. 
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It expresses the relative worth of different measured values. 

Weights are purely relative and may be computed on any base 

desired. To say that two measurements have weights 2 and i 

respectively, is the same as saying that they have weights | 

and i. From the above definition it is apparent that the 

weighted mean is expressed by 

„ pMx + />»M, + • • • 
M() — ^ , 

Xp Xp 
that is, the weighted mean is found by multiplying each ob¬ 

servation by its weight, adding the results, and dividing by the 

sum of the weights. 

Multiplying an observation (Afi) by its weight (/?i) is the 

same as taking pi observations each equal in value to Mi. 

197. Distribution of Accidental Errors. 

An inspection of the results of a large number of measure¬ 

ments will show that 

(1) + and — errors are equally numerous. 

(2) Small errors are much more numerous than large ones. 

(3) Very large errors seldom occur. 

The curve which expresses the law of variation of such errors 

will be of the form shown in Fig. 149. In accordance with (1) 
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the curve is symmetrical; in accordance with (2) its maximum 

is at the axis of F; from (3) it is evident that the curve cuts 

the axis of .Y at some distance from O. 

The manner in which observations are affected by accidental 

errors is shown by the “shot api)aratus” shown in Fig. 150. A 

Fig. 150. ‘‘Shot Apparatus/’ 

large number of small shot, representing observations, are 

allowed to drop through an opening in the middle of the case. 

If there were no obstructions the shot would fall directly into 

the central (vertical) compartment. Between the opening and 

the vertical compartments a number of pegs are interposed, 

each representing a source of error or deflection of the shot 

from its natural course. The shot arc therefore diverted some¬ 

what from a straight course and arrange themselves in the 
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different columns in the manner shown. The curve joining the 

tops of the columns is seen to resemble closely the “curve of 

error. 

In order to obtain a formula expressing the law of error we 

suppose the curve asymptotic to the axis of X, and write the 

equation of the curve in the general form 

y=J(x), [140] 

where x represents the magnitude of an error and y the fre¬ 

quency with which this error occurs on a large number of measure¬ 

ments; / represents some unknown function of x. It is neces¬ 

sary to assume that the number of observations is very large; 

otherwise the supposed balancing of + and — errors will be 

imperfect. The true error x can never be loiown, but the 

distribution of the residuals about the most probable value 

will evidently follow the same general law, so we may write 

also 
y=f(v) [141J 

as the law to which the residuals must conform. This equation 

also expresses the probability of the occurrence of a residual v. 

If we let the total area between the curve and the axis of X be 

represented by unity, then the probability that a certain residual 

will fall between the limits v and v -{■ dv will be represented by 

the area included between the curve, the X axis, and the two 

ordinates at v and v + dv^ since in the long run the number in a 

given column will be proportional to the probability expressed 

by the ordinate at that point, that is, 

y dv = / (z>) dv. [142] 

If we suppose n observations of equal weight, giving the results 

Ml, M2, . . . Mnj to be made on any functions of the unknowns 

Zi, Z2, ... , Zy, giving the residuals V2, . . . , Vn, then the 

probability of the occurrence of these residuals is / (vi) dv, 

f {V2) dv . . .f (vn) dv. The probability of the simultaneous 

occurrence of these residuals is the product of the separate 
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probabilities, that is, 

P = f (vi) dv Xf (V2) dv X . . J (vn) dv [143] 

or, taking logs of both members of the equation, 

log P = log/ (vi) + log / (Vi) + . . .log / (Vn) + X log dv. 

The results desired for Zu S2, etc., are those for which the prob¬ 
ability of the occurrence of Vi, v^, ... is a maximum. Therefore 
P must be a maximum. To tind the conditions for this maxi¬ 

mum, differentiate log P with respect to each variable, Si, 22, . . ., 

and place the results equal to zero. This gives 

d log P I 3/ (»i) 1 5/ K) 
dZ\ " / (I’l) dZi ‘ ■ 7(^»)' dZi 

d log P 

dZ2 

T 3/ (I’l) , 
' dZ2 ' 

I 

' ’/(J’n) dZi 1 [144] 

.{q equations) 

But we observe that 

dz 
= /' (!») 

dv 

dz* [145] 

in which f represents some new function of v. 

For brevity place 

Then Equa. [144] become 

[146] 

[147] 

.{q equations).j 

These equations contain all the unknown quantities (s) and 

are equal in number to q^ the number of unknown quantities. 
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Hence, if the form of the function F were known, the solution of 

these equations would give the most probable values of Zi, Z2, etc. 

The above equations, being perfectly general, hold true for all 

cases, so they must hold true for any special case. The form of 

F determined for the special case must therefore be the form of 

this function for all cases. 

Consider n direct observations of equal weight on one unknown 

quantity Si, the results of the measurements being Mi, A/'2, 

. . . Mu, and the residuals being denoted by Vi^ V2, . . . Vn- 

The most probable value of Zi is given by 

Zi = Ml — Vi = M2 — V2 ‘ • • Mn — Vn* 

Differentiating with respect to 

dVi dV2 

dZi dZi 
1 = 

Szi 
(a) 

Substituting these values in Equa. [147], we obtain 

F (v,) + F (v^2) + • • • + F (tO = o. (b) 

But in this special case (Art. 195), 

V\ + Vo + • • • +Vn ^ O. (c) 

Hence, if both Equas. (6) and (c) are true, F must signify mul¬ 

tiplication by a constant; that is, 

F (v) = cv. [148] 

Substituting in Equas. [146] and [145], 

df W , . . dv 
dz ' dz 

and 
I df (v) __ dv 

f (v) dz dz 

Integrating both members, 

log/ (v) -= + c'. 

f(v) = + 

= ke^ Ofi 

Therefore 
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Substituting this in the equation of the curve of error {y=f (v)), 

we have 
3; = 

In reality y decreases as v increases; the exponent of e is there¬ 

fore negative, and, since the constants may be combined, we have 

y = [149] 

in which and k are constants depending upon the character of 

the observations. This equation expresses the law in accordance 

with which the residuals must be distributed in order to give a 

maximum value of P. If we replace v by x, the equation also 

shows the law governing the distribution of the actual errors. 

It is important to note that the law governing the distribution 

of accidental errors holds true in the long run; in order to have a 

close agreement of the theory with the results actually observed 

it is essential that the number of observations should be very 

large. With a limited number of observations we should expect 

that the residuals would follow the law only approximately. 

198. Computation of Most Probable Value. 

From Equa. [143] we have seen that 

P = f M X / W . . . X / (vn) {dvY = a maximum. [150] 

Applying Equa. [149], this becomes 

P = + + .= a maximum. [151] 

It is evident that P is a maximum when 

+ ^^2^ + * * * Vn^ = a minimum, [^52] 

that is, when the sum of the squares of the residuals has its least 

value. 

Equas. [147] express the conditions necessary to make P a 

maximum or to make the sum of the squares of the residuals a 

minimum. Since the function F means multiplication by a con¬ 

stant, Equas. [147] become 
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dVi dv-i 
13x -- + Xh — + 

oZi oZi 

dVi , dV2 , 
^ + ^'2 7- + 
0^2 ^‘^'1 

djU 
92i dz 

9v„ 
= o. 

[153] 

dVi dV2 
Vi :r" + ^^2 

dZn ^ dZc 

These equations are equal in number to the number, q, of un¬ 

known quantities, and their simultaneous solution gives the most 

probable values of the unknown quantities. They are usually 

called Normal Equations. 

199. Weighted Observations. 

If the observations are of different weights, each observation 

equation should be used (Art. 196) the number of times denoted 

by its weight. Hence, in forming the normal equations we 

should multiply each observation equation by the coefficient of 

the unknown and by the ivcight of the equation. The normal 

equations in this ca.se are as follows: 

dV] ()V2 

dVi dV2 
+ • • • = o. 

C/Z2 OZ2 

.= O. 

1^54] 

This same result will be obtained if we first multiply each obser¬ 

vation equation by the square root of its weight. This shows that 

multiplying a set of equations by the square roots of their weights 

reduces them all to observations of weight unity (equal weights). 

200. Relation between h and p. 

If the n observations have weights pi, p2, • . . , and the con¬ 

stant h is hi, hi, ... for these observations, then 

p = . . . 

= kih . . . + ^ {dvY, [i 55] 

and + • • • is to be a minimum. [156] 
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The conditions for this minimum are 

hiHi — + h2-v. — + • • • = o. 
oZi 0Z2 

7 2 _L 7 •. 1 — + lh-v->  -h • • • = o. 
dZ\ dZ2 

[‘57l 

Equas. [154] and [157J express the same conditions. 

Hence pi • p2 • • * * = : //2^ : • • • , [158] 

showing that the weight of an observation varies as the square of 

the constant h for the observation. Consequently the more 

accurate the observation the greater the value of h. 

Example. As an illustration of the manner of applying these equations to the 
computation of the most probable values of the unknowns, suppose that at a tri¬ 
angulation station O (Fig. 151), the angles have been measured as shown. 

Denoting the most probable values of these 
angles by ci, z-i, and cs, the measurements are 
given by the following equations: 

-I = 3T° ro' i7".o, 

Z2 ~ 40 50 10 .0, 

Zz - 4^ 10 19 •?> 

Si -f- S2 = 72 00 26 .0, 

Cl + ^2 + ris = 1T4 10 46 .0, 

C2 + C3 == 00 30 .2. 

Denoting by ?i, 1% etc., the residuals of the 
different measurements, these may be written 

Zi — 31° 10' i7".o = I'j, 

Z'l — 40 50 10 .0 = 

Zz — 42 10 19 .7 = Vz, 
Cl + S2 — 72 00 26 .0 = 2^4, 

Cl + C2 + C3 — 114 10 46 .0 = Vzj 
C2 4- C8 — 83 00 30 .2 = 7)c, 

which are called observation equations. 
If we apply equations (153), differentiating 

each V with respect to the three unknown quantities in succession and adding, we 

obtain the normal equations^ — 

3 Cl + 2 S2 + cs - 217® 21' 29".o = o, 

2 Cl 4- 4 22 4- 2 S8 ^ 310 01 52 .2 = o, 
Cl 4- 2 4- 3 S8 “ 239 21 35 .9 = o. 
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Solving these simultaneously, we obtain 

Cl = 31° 10' i6".45, 

-2 = 40 50 ot) •^75» 

S3 = 42 10 ig .90. 

These are the most probable values of the angles. 

201. Formation of the Normal Equations. 

It should be observed that since the observation equations are 

linear in this case, the differential coefficients are equal to the 

numerical coefficients. Hence, to form the normal equations we 

may proceed as follows: For each unknown, form a normal equa¬ 

tion by multiplying each observation equation by the numerical 

coefficient of the unknown in that equation, adding these results and 

placing the sum equal to zero. This rule is simply a statement in 

words of what is expressed in Formula [153] as applied to linear 

equations. If the observations are of different weights, the only 

change in the above rule is that each observation equation is 

multiplied by its weight as well as by the coefficient of the un¬ 

known. 

In regard to the observation equations it should be understood 

that they are not like ordinary equations. They are often 

written, however, with zero in place of the v in the right-hand 

member. Observation equations cannot be multiplied by any 

number or combined with each other (except when forming nor¬ 

mal equations); for if this is done, the weight of the observation is 

thereby changed. 

202. Solution by Means of Corrections. 

If the independent terms* in the observation equations are 

large, it will often save labor in the calculations if we place the 

unknown quantity Zi equal to an approximate value M\ plus a 

correction Zi, Z2 = M2 + Z2, etc. Substituting these values in 

the original observation equations, we obtain a new set of equa¬ 

tions in terms of the corrections and in which the independent 

terms will be small. By forming normal equations and solving 

* The independent term in any equation is that term which does not contain 

any of the unknowns. 
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as before, we find the most probable values of the corrections. 

Adding these corrections to the approximate values, we find the 

most probable values of the unknown quantities themselves. 

Example. In the example just solved, suppose we assume for the approximate 
values the results of the direct measurements, and let zij etc., represent the most 

probable corrections. Then the observation equations become 

= o, 

.‘:2 = o, 

-3 == O, 
Si + r:2 + i^'.o ~ o, 

4* -2 + + O .7 = 0, 

So + -3 — O .5 = O. 

These equations may also be written with z'l, ?•>, etc., instead of zeros in the right- 

hand member. 

Forming the normal equations as before, we have 

3 -1 + -2 + 4- i".7 = o, 

2 Cl 4" 4 --i 4" 2 4" 1 .2 = 0, 

4- 2 C2 4- 3 -3 4- O .2 = 0. 

The solution of these equations gives 

= -o"-55, 
Z2 = —O .125, 

-3 = +0 .20, 

which, added to the values observed directly, give the same results as before. 

203. Conditioned Observations. 

If the quantities sought are not independent of each other, but 

are subject to certain conditions, the solution must be modified 

accordingly. Each observation gives rise to an observation 

equation, and each condition may be expressed by a condition 

equation. The solution may be effected by eliminating, between 

the two sets of equations, as many unknowns as there are equa¬ 

tions of condition. From the remaining equations we may form 

the normal equations and solve for the most probable values of 

the unknowns. Substituting these values back in the original 

condition equations, we obtain the remaining unknowns. 

Example. The three angles of a triangle are A = 61° 07' 52".oo, B = 76° 50'- 

54".00, and C = 42° 01' 12".15. The spherical excess is 02".ii. The weights 

assigned to the measured angles are 3, 2, and 2, respectively. These angles are 
subject to the fixed relation A B C — 180° 00' o2".ii. 
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Letting Vi, V2, Vs be the most probable corrections to the observed values, tlie 
observation equations are 

ih ^ vi, wt. 3 
7»2 — Vi, “ 2 

Vs = Vsy “ 2 
and the condition equation is 

4- Vi Vs — 3"-9^ = O- (d) 

Eliminating vs, there remain 

Vi -= Vi, wt. 3 
Vi — Vi, “2 

Vs = —Vi — Vi + 3"-9b “ 2 

Forming the normal equations and solving, 

Vi — -ho".yy, 

7)2 = +1 .4‘^5- 

Substituting tliese values in equation (d). 

Vs = -hi".4S5. 

7'hese corrections, added to the measured angles, give the adjusted angles, as 
follows: 

A — 61° 07' 52" .Q9, 

B = 76 50 55 .48, 

C = 42 01 13 .64. 

Notice that the discrepancy is distributed inversely as the weights. This will 

always be the case when each unknown is directly ob.scrved, and there is but one 

equation of condition; that i.s, the correction to the first is 

r I 1 I I X + 5"-96 = +o"-99, 
■3 T" "2 T 2 

and the correction to the second is 

2 X +3"*9b = +i"-4«5* 
3 T" 2 "T 2 

The correction to the third is the same as the correction to the second. 

204. Adjustment of Triangulation. 

The adjustment of the angles of a triangulation net naturally 

divides itself into two parts: (i) the adjustment for the dis¬ 

crepancies arising at each station, and (2) the adjustment of 

the figure as a whole. According to theory these should all be 

adjusted simultaneously in order to obtain the most probable 

values of the angles. The usual practice, however, is to deal 
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with the two separately. The local, or station, adjustment is 

made first if the method of observing is such that a local adjust¬ 

ment is required. If the observations are made in accordance 

with the program given in Art. 45 (p. 88), no station adjust¬ 

ment is necessary. If the angles are measured by the repetition 

method and the horizon is closed, the error is distributed in in¬ 

verse proportion to the weights (see Art. 203). If there are con¬ 

ditions existing among the angles, due to measuring sums of the 

different single angles, the adjustment may be effected by ex¬ 

pressing these as condition equations and then forming normal 

equations and solving, as in the example, p. 366. 

This method of making the local adjustment first is justified, 

not only on the ground of saving labor, but also because of the 

well-known fact that the most serious errors are those due to 

eccentricity of signal and instrument, phase of signal, refraction, 

etc., which do not appear to any large extent in the local ad¬ 

justment but which do appear in the figure adjustment. If 

we compute the precision of angles from the discrepancies noted 

at each station, and then estimate from these values the error 

of closure to be expected in the triangle, we find that these are 

smaller than the errors of closure actually occurring, showing 

the presence of constant errors, which do not appear in the 

local adjustment. 

205. Conditions in a Triangulation. 

The geometric conditions connecting the angles in a net are 

of two classes: (i) those which express the relation among the 

angles of a triangle or other figure, and (2) those which express 

the relation existing among the sides of the figure. If we plot, 

for example, a quadrilateral figure, starting from one side as 

fixed, we shall find that if the sum of the angles in three of the 

triangles equals their theoretical sums, all sums in the other 

triangles will also (necessarily) equal their theoretical amounts, 

namely, 180° + e". This shows that of all the possible angle 

equations which might be written for this figure only three are 

really independent. 
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In order to determine the number of angle equations in any 

net, let s be the total number of stations, the number of 

stations not occupied, I the total number of lines in the figure, 

and li the number of lines sighted over in one direction only; 

then the number of angle equations in the figure is 

/ — /i — .V 4- + I • [^59] 

In a triangle it is necessary that all stations should be occu¬ 

pied and that all lines should be sighted over in both directions, 

in order to have one angle equation, that is, 

/ - + I = 3 ” 3 + I = 1. 

If a new station is added, it must be occupied and the two lines 

sighted over in both directions, in order to yield a new angle 

equation. If this is done, the quantity I — s h increased by 

2 — i — i. If a line is drawn between two stations already 

located, I is increased by i and there is a new angle equation 

corresponding. For each new line sighted in one direction 

only, I is increased by 1 and A is increased by i, so that the total 

is unchanged. 

The number of side equations in a net may be estimated as 

follows: Starting with one line as fixed, it is evidently neces¬ 

sary to have two more sides in order to fix a third point. Hence, 

in order to plot a figure, we must have at least 2 {s — 2) lines 

in addition to the base, that is, 2 5 — 3 lines in all. Any addi¬ 

tional lines used must conform to those already used, in order 

to give a perfect figure; hence the number of conditions giving 

rise to side equations will equal the number of superfluous lines, 

that is, / — 2 j + 3, where I is the total number of lines and s 

is the number of stations. It should be observed that while 

the side equation is primarily a relation among the sides, it is 

also a relation among the sines of the angles, and this fact en¬ 

ables us to adjust the figure by altering the angles. 

A check on the total number of conditions is obtained as fol¬ 

lows : If w is the total number of lines, n' the number of lines ob¬ 

served in both directions, 5 the total number of stations, and s' 
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the number of occupied stations, then the number of conditions is 

{n' - 5' + i) + 2 5 + 3) 

206. Adjustment of a Quadrilateral. 

For any quadrilateral figure in which all of the (eight) angles 

have been measured there may be found three equations which 

express the condition that the triangles must all close.” There 

are more than three equations which may be formed; but if 

any three of these equations arc satisfied, the others necessarily 

follow and hence are not independent. There will also be one 

side equation expressing the condition that the length of a side 

{AB), when computed from the opposite side (CD), is exactly 

the same, no matter which pair of triangles is employed in the 

computation. 

In selecting the three angle equations we may take any three 

triangles and write an equation for each expressing the con¬ 

dition that the sum of the three angles equals 180^ + c". It 

is advantageous in this case to avoid triangles having small 

angles. In selecting the side equation it is well, however, to 

select one involving small angles, so as to give large coefficients 

of the corrections. If the angle equations were also chosen so 

as to involve the small angles, the solution would be likely to 

prove unstable, on account of the equality of some of the co¬ 

efficients. 

A convenient method of writing a side equation is to select 

some point, called the pole, and write the three directions from 

it to the other stations in the order of azimuths. For example, 

taking the pole at A, Fig. 152, write first 

ABADAC, 

Then from this write the ratios 

AD ^ ^ 
AD' AC' AB' 

the method of forming which is evident. If we now replace 

each line by the sine of the angle opposite to it in the triangle 
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which is indicated l)y the fraction, and place the whole equal 

to unity, we have 

sin ADB sin ACD sin ABC 

sin ABD ^ sin ADC ^ sin ACB ^ 

It may be shown, by solving the different triangles and elimi¬ 

nating the sides, that this equation expresses the condition that 

B 

Fig. 152. Fig. 153. 

the length oi AB as computed from CD is the same no matter 

which route is followed in the computation. 

Problem. Prove by a direct solution of the triangles in Fig. 152 that Equation 

[160] is true 

Designating the angles by means of the numbers shown in 

Fig. 153, the equation becomes 

sin 2 sin (4 + sin 8 . , 
—7—i—: = T. iCi 

sm (i + 8) sm ^ sin ^ 

Before this equation can be used, however, it is practically 

necessary to reduce it to linear form, since an application of 

Equa. [153] to any but linear equations would be complicated. 

Suppose our equation to be put in the general form 

sin (Ml + ^1) ^ sin + ^3) 

sin (Af2 + 2^2) sin (M4 + 2^4) 
[162] I 
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in which the angle is written as an approximate value M plus a 

small correction v. Taking logs of both members and then 

applying Taylor’s theorem, we have, neglecting squares and 

higher powers, 

log sin Mx + (log sin Mi) »i + • • • 

- ^log sin M2 + (log sin Ms) i>2 + • ■ • ^ = o. [163] 

The quantity (log sin M\) is the variation per i" in a 

table of log sines, the correction v being in seconds. Hence, 

placing 81 = (log sin Mi), etc., we have 

— 82V2 + — diVi + • • • 

+ log sin Ml — log sin Af2 + • * • = o. [164] 

The algebraic sum of the log sines represents the amount by 

which they fail to satisfy the condition equation. Placing this 

sum equal to Z, the side equation given above becomes 

82V2 + 64+52^4+5 + ~ (Sj+s^^l+s + ^3^3 + 55D5) -h Z = O. [165] 

Example. Let us suppose that the measured angles are (Fig. 153), 

1. 61° 07' 52".oo 
2. 38 28 34 .90 

3. 38 22 19 .10 

4. 42 01 12 .15 

5. 29 14 32 .85 

6. 70 21 59 .20 

7. 49 26 21 .85 

8. 30 57 07 -lo 

These angles are supposed to have been adjusted for local conditions. 

To form the angle equations, take the triangles ABD, ADC^ and ABC for which 

the values of the spherical excess are i".36, i".77 and i".o2, respectively. The 

computation is shown in tabular form as follows: 
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1+8 92° 04'59". 10 
2 38 28 34 -QO 
7 49 26 21 .85 

179 59 55 -85 
180 00 01 .36 

+S"-SI 

3 38° ' 22' 19".10 
4 + 5 71 15 45 -oo 

6 70 21 59 .20 
180 00 03 .30 
180 00 or .77 

-i".53 

S 29° 14' 32".85 

6 70 21 59 -20 

7 49 26 21 .85 
8 30 57 0 0 

180 00 01 .00 
t8o 00 01 ,02 

+ 0".02 

This gives for the three angle oqualion'i 

(i + 8) + 2 + 7 " 180*^ 00' 01 ".36, 
3 4- (4 + 5) + 6 = 180 00 01 .77, 
5+ 6+ 7 + 8 = 180 00 01 .02, 

or, written as corrections, 

7’1 + 8 + Z’2 + V’! — 5.51 — O, 

+ 2^4 + 6 + + 1.53 =: O, 

^^6 + ^>6 + t'T + ~ 0.02 = O, 

the corrections being the same as the residuals in this case. 

To form the side equation, take the pole at A. Then we have 

jW 

ad' AC’ AB' 
giving 

or 

sin 2 sin (4 + 5) sin 8 

sin (i + 8) sin 3 sin 5 

log sin 2+log sin (4+5)+log sin 8—log sin (1+8)—log sin 3 —log sin 5 =« o. 

The computation of the constant term of this equation is given in the following 

tabic. The log sines of those angles appearing in the numerator, together with 

their diff. for 1" (in units of ihe 6th place of decimals) are placed in the left-hand 

column, and those in the denominator are placed in the right-hand column. The 
constant I is the difference in the sums of the log sines. 
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AngU'. log sine (+). DifT. i". Angle. log sine (—). Diff. 1".' 

44-5 
8 

9-7939242 
9.976350T 
9.7112329 

4-2.65 
4-0.72 
4-3-51 

i4-8 
3 
5 

9-9997129 
9•7929268 
9.6888702 

— 0.08 
4-2.66 
+3-76 

9.4815072 9.4815099 

1 . Z.L 
-27 

Therefore / = —2.7. 

The side equation becomes 

2.65 V2 + 0.72 1^4+5 4- 3-51 ^'8 4- 0.08 ?n-s ~ 266 vz — 3.76 v& — 2.7 = o, 

or, combining the and the Vs terms, 

4-.08 7’i 4- 2.65 7'2 — 2.66 Z'3 4" -72 Z'4 ” 3-04 4" 3-59 ^^8 2.70 = o. 

207. Solution by Direct Elimination. 

The observations are all direct and equal in number to the 

number of unknown angles, eight. The four condition equations 

have just been stated. We might, therefore, proceed as in Art. 

203, that is, eliminate four of the unknowns between these two 

sets of equations and then form normal equations and solve for 

the remaining four unknowns. Substitution back in the con¬ 

dition equations will enable us to find the four unknowns that 

were first eliminated. 

The foregoing process is not the shortest one available, nor is 

it the best from the standpoint of accuracy. The labor involved 

in eliminating the four unknowns, that is, expressing all of the 

residuals in terms of four selected unknowns, is often consider¬ 

able. Furthermore the coefficients arc often such that an accu¬ 

rate determination of the unknowns is difficult. The method 

of correlatives (Art. 210, p. 377) is generally more suitable for 

such adjustments. 

208. Gausses Method of Substitution. 

In solving a large number of equations simultaneously it is 

convenient to use some definite system of eliminating the un¬ 

knowns, in order to avoid labor and the danger of mistakes. 



GAUSS’S METHOD OF SUBSTITUTION 375 

Let us suppose that the observation equations are of the form 

a]X + 6)V + CiZ + /i = V], 

a2X + boy + CoZ + k = Vo, 

and that the normal equations are represented by 

[aa]x + [ab]y + [ac] z + [al] = o, 

[al)\x + [bh\y + [bc\ z + [bl] — o, 

+ [bc\y + [cc\ z + [d] == o, 

[i66] 

in which the brackets indicate the sum of all the terms found 

by multiplying the numerical coefficients according to the rule 

onp. 365. 

If the first normal equation be divided by [aa\ and solved 

for the result is 

__ 
^ [aa\^ 

Substituting this in the second equation, we have 

(|“1' H i“‘i) - U m)'+(i"I -[o'-)) 

This is usually abbreviated 

[bb • i] y + [6c • i] s + [bl • 1] = o. [idS] 

Substituting this in the third equation, we have 

[be • j]y + [cc • 1] z [cl • i] == o. [169] 

These two equations, [168] and [169], are called the ‘‘first 

reduced normal equations.” 

Solving [168] for y, 

[be • i] [bl • i] 

^ [66 • i] ^ [66 • i] ’ 

[cc • 2] 2; + [c/ • 2] = o, [170] whence 
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in which 

and 

[cc ■ 2] = [cc • i] - • ll 

The solution of [170] gives the value of z. By substituting 

this in [168J and [169] the value of y may be found. Finally, 

from [166] the value of x may be found. 

An inspection of [166] will show that all coelhcients below and 

to the left of a diagonal drawn from the x term of the first equation 

to the s term of the third equation are duplicates of the others. 

These may be omitted in writing the equations. 

Doolittle’s Abridged Method. 

In carrying out a solution by the Gauss method it will be 

observed that certain steps are taken which are not essential to 

the final result. In eliminating x from the equations the coeffi¬ 

cients of X are purposely made to add up to zero, so it is unneces¬ 

sary to write these coefficients and they may be omitted in the 

solution. Similarly, in eliminating y from the first reduced nor¬ 

mal equations the y coefficients need not be entered. Further¬ 

more the Gauss method calls for the addition of two equations 

(in the second elimination) to form a third, and then this third 

is later combined with a fourth, but is not used again. In the 

short method the first, second and fourth equations are combined 

directly and the third is not written at all. In each successive 

elimination the number of equations that are added at one step 

is increased. This method will be illustrated in detail in the 

examples in Art. 210. An explanation of the method will be 

found in Appendix 8 of the Report of the Superintendent of the 

U. S. Coast and Geodetic Survey for 1878. 

209. Checks on the Solution. 

In practice it would not be advisable to proceed in the solution 

of a large number of equations without some safeguard against 

mistakes of computation. A valuable check consists in adding 

to the normal equations an extra term which is merely the sum 
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of all the coefficients of Vi, V2, etc., and treating this term like any 

other term of the equation. This is illustrated later in the 

example on pp. 381 and 388. 

210. Method of Correlatives. 

When there are many condition equations, the method of sub¬ 

stitution is likely to prove laborious. If, as is usually the case 

in triangulation, the observations are direct and equal in number 

to the number of unknowns, the ^'Method of Correlatives” will 

be found preferable. By this method we eliminate one unknown 

for each condition equation, employing for this purpose the 

method of undetermined multipliers. 

Suppose that we have made m direct observations, Mi, 

M2, • • • , Mmj of m different quantities, of which the most 

probable values are 

3i = Ml + S2 = M2 + V2, . . . , = M,n + 

Let these m unknowns be connected by the following n con¬ 

dition equations: 

aiVi + a2V2 . . . atnV^ + U = o, 

hiVi + h^2 . . . + k = o, [171] 

the a’s being the coefficients in the first equation, the b's those of 

the second, etc. The quantities /i, 4, etc., represent the amounts 

by which the observations fail to satisfy the condition equations. 

If the original condition equations are not linear in form, they 

must be put in linear form by a method similar to that given on 

pp. 371-72. 

Since the most probable values of the z^'s are to be found, we 

must have 
' • • = a minimum, [172] 

or Vi dvi + V2 dv2 + • • • = o [172a] 

for all possible simultaneous values of dvi, dv2, etc. 

Hence it must hold true for the equations 
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ai dvi + a^dv^ + ‘ * * = o, [173] 

bi dvi + 62 dv2 "f* * * * = o, 

obtained by differentiating [171] because the values of v must 
satisfy the condition equations [171] as well as [172] or [i72aj. 

The number of these equations is n. The number of terms in 
[172] is m, m being greater than n. Let the first equation in [173] 

be multiplied by k\^ the second by ^2, etc., and Equa. [172] by 
— I. The products are then added, giving 

{aih + hik2 + • • • — dvi 

+ (02^1 + + • • * -^2) dv2 + ' • • = o. [174] 

The ^’s are to be so determined that this equation will hold true. 

This equation will be satisfied if the coefficient of each differential 

in it is placed equal to zero, that is, if 

kiai + k2bi + • • • kji = Vi, 

"h ^2^2 “f" * * * ~ ^2, [175] 

Substituting these values of Vi, V2, etc., from Equa. [175] in 
Equa. [171], we obtain 

ki \(Iq\ k2 \P'b\ ' kn [<2/] “f" /i = o, 

k\ [(z6] + ^2 [bb] + • • • k„ [W] + 4 = o, [176] 

The solution of these equations gives the values of ki, k2, ks, 

etc., which are the correlatives of the condition equations. By 

substituting these values in Equa. [175] the i>’s are found. Since 

the form of Equa. [176] is the same as that of normal equations, it 

is evident that they may be solved by the method of substitution. 

In case the observations are of different weight, the minimum 

equation would be 

piVi^ + + • • • pmVm^ = a minimum, [177] 

and the other equations would be modified accordingly. 
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Equations [175] and [176] may also be derived by the follow¬ 

ing method. If we multiply the condition equations [171] in 

succession by —2 ^1, —2 hi, etc., we have 

— 2 kia\V\ — 2 kiOiVi . . . = o 

— 2 kibiVi — 2 kjbiVi ... =0. 

Adding these to [172] and grouping the coefficients of the differ¬ 

ent 2fs, we have 

— 2 Vi {a\ki -h bihi + * • • ) 

— 2 V2 (ihki -b bihi + * * • ) 

+ • • • = a minimum. 

For a minimum the derivative of this expression with respect 

to each separate v must be zero, d'herefore, 

2 Vi —2 (aiki -b 61^2 + * ‘ = o 

2 V2 —2 {a^iki -b biki +•••)= o 

Solving for the 2^’s, 

Vi = aiki -b b^hi -b • • • 

V2 — aiki -b bihz + • ■ ' [17s] 

which express the residuals in terms of the correlatives. 

Substituting these values of v in the condition equation [171] 

we obtain the final equations [176]. 

Example. As an illustration of the method of correlatives and also the method 

of (abridged) substitution we will adjust the quadrilateral giv«m on page 372. The 

four condition equations are, {I'l + vg + + vi — 5-51 = 
V3-{- Dt Vt 1.53 = O, 

Vh Vfi V$ — 0.02 ~ O. 

Side equation, 

-bo.08 vi -b 2.65 Vi — 2.66 Vi -b 0.72 Vi — 3.04 Vb + 3.50 7;8 -• 2.70 = o. 

In order to facilitate the formation of the coefficients in the so-called “correlate” 

equations, [aa], [a6], etc., the coefficients of the four conditions will first be tabulated. 
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CONDITION EQUATIONS 

V\ V3 Vi Vi 1’6 Vj Const. 

a + I +I 4-1 -fl -5 51 
h + l +I +I 4-1 + ^ S3 
c 4-1 4-1 +I — 0.02 
d -fo.oS + 2.65 -2.66 4-0.72 -3 04 4-3-59 — 2.70 

Forming the coefficients and substituting in the correlate equa¬ 

tions [176] we have the following equations for determining the 

^’s, which are often called Normal Equations. 

4 A’l -f 0 /’2 -f 2 ^3 4- 6.32 ki — 5.51 ~ 0, 

0 ki 4 + 2 kti — 4.98 ki 4- 1.53 = 0, 

2 ki 4- 2 h 4- 4 ^3 4- 0.55 ki — 0.02 = 0, 

4- 6.32 ki — 4.98 ki 4- 0.55 ^’.31 + 36.75 ki — K>
 

0
 II 0
 

All those terms below and to the left of the zig-zag line are 

seen to be duplicates of others above and to the right; that is, 

the coefficients in the first column are the same as those in the 

first row; those in the second column as those of the second row, 

and so on. The coefficients of these equations are next tabulated 

in the form used for the solution. The terms to the left of the 

diagonal are omitted. For reasons which will be seen later on 

the first equation (p. 381) is assigned the Roman numeral I and 

the next three are assigned the Arabic numerals, 2, 3, 4. 

The first step in the solution is to eliminate ki between Equas. 

I and 2. This is done by transferring Equa. 2 below and writing 

beneath it Equa. I multiplied by the coefficient of ^2 and divided 

by the coefficient of ki, and with the sign reversed; the operation 

is indicated in the column at the right. This equation (not 

numbered) is then added to Equa. 2. In this case the equation 

added happens to have only zeros for coefficients. The result 

is Equa. II, the first reduced normal equation. In a similar 

manner we add to Equa. 3 the result obtained by multiplying I 

by the coefficient of ^3, dividing by the coefficient of ki with sign 
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changed. We also add to 3 the result obtained by multiplying 

II by the coefficient of ^3, dividing by the coefficient of ^2, and 

changing the sign. The sum of these three gives III, which 

contains only kz and and which is the second reduced normal 

equation. The last step is similar, giving Equa. IV, which con¬ 

tains only ki and may be solved for this correlative. 

h h h ki Const, Check. 

1 

2 

3 
4 

4 0 

4 
2 

2 

4 

-f 32 

- 4-9« 
+ 0 55 

4-s^L75 

-- 5 51 

+ 1-53 
— 0.02 

-2.70 

4- 6 81 

+ 2.55 

4- 8 53 

•+-35-94 

2 4 
0 0 

- 4 98 

0 
■f 1 53 

0 
+ 2-55 

0 I X - i’ 

11 4 -- 4.98 -f i 53 + 2-55%/ 

3 

III 

4 
— 1 

“ I 

+ 0 55 
- 16 

4 2.49_ 

— 0 1 2 

— 0 02 

-h 2.755 

" 0 765 

4- 1 97 

+ « 53 
~ 3 405 

- I 275 

H" 3 • ‘^5 

T X - ii 

11 X - ? 

4 4-36.750 
” 9•9^6 

— 2.70 

4- 8.706 
4-35-94 
— 10.76 

4 

— 6.200 + T.905 -f 3-175 IIX+l:^ 
4 

— 0 007 4- 0.118 -f 0.231 III X 4--“ 
2 

IV 4-20 557 4“ 8.029 -1-28.sSSv' 

The general process to be followed in writing any set of these 

partial equations may be seen by examining one group, as for 

example, those to be added to 3 to obtain III. The first coeffi¬ 

cient appearing in Equa. 3 is 4. Following this column to the 

top we find 2, which is the numerator of the multiplier of I. The 

denominator is the first coefficient in I, or 4. In forming the 

next equation follow up the same column until we reach Equa. 

II, the numerator of this multiplier being 2; the denominator is 

the first coefficient of Equa. II, which is 4. The same system 

will be seen to give the multipliers for the last group. 
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The check term in any equation is the sum of all of the other 

coefficients in that equation. Every operation performed on the 

coefficients of an equation is also performed on the check term. 

In all complete equations, therefore, like II, III, and IV, the 

check term should still equal the sum of the coefficients. In the 

other equations it should not, because some terms in these equa¬ 

tions have been omitted in writing. In summing the coefficients 

in any equation, say Equa. 3, start from the top of the column 

and follow down to the line of Equa. 3, then to the right. The 

coefficients for this equation are 2, 2, 4, + 0.55, —0.02; the sum 
is +8.53. 

From the four equations IV, III, II, and I we obtain the 
values of ^4, A’s, ky and ki as follows: 

k ^ 

h 

— 8.029 

20.557 
—0.3906 

+ .12 X — .3906 — 1.97 

2 
-1.008 + 

, —2 X —1.008 + 4-q8 X —.3606 — T.53 
k2 =-7—- = --3^5 

4 

, —2 X —1.008 —6.^2 X —.3906 + 5-51 , 
= ---^- = +2.50. 

4 

In finding the values of z^i, etc,, from the equations corre¬ 

sponding to those given in Equa. [175] it will be convenient to 

tabulate the correlatives as follows: 

Vi Vi vz Vi Tl vz Vl Vz 

k\ +2.50 +2.50 + 2.50 + 2.50 
k2 - .365 - .365 - .365 - -365 
ks — I .008 — 1.008 — 1.008 — I .cx)8 
k. - .031 — 1.036 4-1•040 -.281 4-1.189 i -1.404 

t! n /f // ff n n // 

Corr. + 2-47 -f I .46 +0.675 -0.65 
i 

— 0. t8 -1-37 + 1.49 +0.09 

In this particular example the coefficients of ki, and kz are 
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all unity; in the last line each is multiplied by the correspond¬ 

ing coefficient in the side equation. 

Applying these corrections to the original angles we obtain, 

1. 61° of 52".oo -h 2".47 = 54".47 
2. 38 28 34 .90 + I .46 = 36 .36 
3. 38 22 19 .10 + O .675 = IQ .78 
4. 42 01 12 .15 — O .65 = II .50 
5. 29 14 32 .85 — o .18 = 32 .66 
6. 70 21 59 .20 - I .37 = 57 -83 
7. 49 26 21 .85 -f- I .49 = 23 .34 
8. 30 57 07 .10 -1- o .09 = 07 .19 

To test these results the z^’s are substituted in the condition 

equations. 

ANGLE EQUATIONS 

(1) 

(2) 

(7) 

(8) 

(3) 
(4) 

(5) 

(6) 

(s) 
(6) 
(7) 

(8) 

4-2' '•47 
+I .46 

4-1 •49 
+0 .09 

+5 •51 Check 

+0' '•675 
—0 •65 
— 0 .i8 

— I •37 
— I •525 Check 

— 0' '.18 

— I •37 
fi •49 
4-0 .09 

4-0 •03 Check 

SIDE EQUATION 

+0.08 1^1 -f- 2.65 V2 — 2.66 I'S 4- 0.72 V4. — 3.04 ^6 + 3-59 1^8 — 2.70 = —0.027 

The side equation may also be tested by taking out the log 

sines of the corrected angles. 

Angle log sin (+) diff. i" Angle log sin (—) difl. I'' 

2 

44-5 
8 

9.793 9281 

9 976 349S 
9.711 2332 

9.481 5108 

4-2.65 

40.72 

43-51 

I48 

3 
5 

9.999 7127 

9.792 9286 

9 688 8695 

9.481 5108 

— 0.08 

42.66 

+3 76 
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The test of the sums of the angles in the triangles is as follows: 

ANGLE EQUATIONS 

(1) 54".47 
(2) 36 .36 

(7) 23 .34 

(8) 07 -iQ 

sum = i".30 = c 

Check 

(3) I9"*78 

(4) II -50 

(5) 32 .66 

(6) 57 -^3 

sum = i".77 = c 

Check 

(5) 32".66 

(6) 57 .«3 

(7^ 23 ,34 

(8) 07 .10 

sum = i".02 = r 

Check 

211. Method of Directions. 
The method of correcting the directions instead of the angles is 

particularly applicable when the measurements have been taken 
by the method of directions, Art. 

43. In the United States Coast 

Survey office it is the usual practice 

to employ this method of adjusting, 
whether the observations were 

made by the direction method or 

by the method of repetition. 

In the quadrilateral adjusted in 

Art. 210, let us denote the direc¬ 

tions by the numbers i to 12 (Fig. 

154) and the corrections to those 

directions by the same numbers, (i), (2), etc., enclosed in 

parentheses. Each angle is expressed as the difference of two 

directions; that is, the angle —4 + 5 means the angle between 

Fig. 154. 
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the directions marked 4 and 5. The four condition equations 

are the same as before except as to the change in notation. 

Angle equations 
-(4)+(5)-(0+(3)-(ii)+(i2)-S-5i = o- 

-(5)+(6)-(7) + (9)-(io)+(“) + i-53 = o- 
-(2)+(3)-(7)+(8)- (4)+ (6)-o.o2 = o. 

Side equation, 

-5.31 (ii) + 2.65 (12) + 3.04 (7) + 0.72 (9) - 3.51 (2) 

+3-59 (3) - (i) + 2.66 (10) - 3.76 (8) - 2.7 = o. 

If CD were a fixed line obtained by a previous adjustment, the 

corrections (9) and (10) would be omitted. The angle equations 

could be simplified in this case by selecting two equations which 

involve angles depending upon those two directions. 

The first table for the coefficients of the corrections is given 

below. 

Direction a b c d 

I — I ~o.o8 
2 _ j 

-351 

3 + l + l +3-59 
4 ~ I — I 

5 + l — I 

6 -fl + i 

7 — I — I +3 04 
8 + I -3.76 

9 + l +0.72 

10 — I + 2.66 

II — 1 + I -5-3I 
12 + l + 2.65 

The remainder of the work, that is, the calculation of co- 

eflScients etc., and the solution of the numerical equa¬ 

tions, is carried out as in the preceding example (Art. 210). The 

solution of the normal equations gives the corrections to the 

directions. The correction to any angle is the difference of the 

corrections to the directions of its sides. 
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212. Adjusting New Triangulation to Points already Adjusted. 

In the quadrilateral 

shown in Fig. 155 the tri¬ 

angle BDE is supposed to 
have been previously ad¬ 

justed. Point C is deter¬ 

mined by the directions i, 

2, and 3 in connection with 

the directions along the 

sides of the fixed triangle, 

and also by directions 4, 5, 
and 6. The directions to be found are i, 2, 3, 4, 5, and 6. The 

directions as taken from the field-notes are as follows: 

Point sighted. 
Direction after local 

adjustment. 
Corrected seconds. 

At C 

n t n 

P 0 00 00.00 

B 123 49 24-97 
E 207 52 33.50 

At D 

A 

0 / // 

0 00 00.00 00.67 

C 296 57 55-83 
R 3II 12 14,48 12.69 

B 258 27 57.39 57-18 

AtZi 

or tr „ 

D 0 00 00.00 01.32 

C 13 38 27.54 

B 81 28 43.98 43.05 

At B 

F 0 00 00.00 01.06 

E 122 32 11.29 12.56 

C ISO 38 41.62 

D 168 19 14.81 15-48 
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In taking directions from this tabic, the corrected seconds 

should be used whenever an adjustment has been made. 

The number of angle equations in the figure is Z — ^ + i, or 

6 — 4 + 1 =3. The number of side equations is Z — 2 5 + 3, 

or 6 — 8+3 = 1. Since, however, the exterior triangle is 

already adjusted, there will be but two angle equations needed 

in the adjustment. For these two angle equations let us take 

the triangles DCE and BEC\ 

then -{a) + (i) - (3) + (/) - (6) + (4) + 9"-56 = o 

and -(i) + ih) - (5) + (6) -(c) + (2) - 6".g8 = o. 

But since the exterior lines are not to be changed, (a), (/), 

(b), and (c) are all zero. 

The absolute terms in the angle equations are found as fol¬ 

lows: 
— (<7) + (i) 13° '38' 26' ' .22 

-(s) -f (/) 14 14 16 .86 

-(0) 4" (4) 26 •50 

180 00 0(} .58 

180 00 00 .02 

- ■09' '•5^> 

-(1) f (/» 67" 15' '•51 

-is) -f ((^) 84 03 08 •53 
-ir) + (2) 28 06 29 .06 

17() 59 53 .10 

180 00 00 .08 

For the side equation take the pole at C. 

sin (-(2) + (d)) _ sin (-(x) + (b)) _ sin (-(3) + (/)) 
sin (-(e) + (3)) sin (-(c) + (2)) sin (-(a) + (i)) 

Tabulating the log sines, 
log sin (+) diff. l" 

-(2) + (d) if 40' 33"-S6 9.4823521 -f-66.x 
— (i) -f (^) 67 50 15 .51 9.9666666 -|- 8.6 
-Cs) + (/) 14 14 16 .86 Q.3908478 +83.0 

8.8398665 

— W -f (3) 38® 29' 58".65 9.7941460 +26.5 
-(c) + (2) 28 06 29 .06 9.6731464 +39-S 
— (a) 4- (i) 13 38 26 .22 9.3726010 +86.7 

8.8398934 
8665 

constant = —269 
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The side equation is therefore 

+ 6.6i X - (2) + 0.86 X - (i) + 8.30 X - (3) 

- 2.65 X (3) - 3-95 X (2) - 8.67 X (i) - 26.9 = o. 

Carrying out the same process as outlined in Art. 210, we have 
the following: 

CONDITION EQUATIONS 

V\ V2 7*3 Vk 7’6 Const 

a -f I — I + l — I + 956 

b — I + I - 6.98 

c -9-53 

s 1 
1 

t/
i — to. 95 —*26.9 

Forming the correlate equations and tabulating as in Art. 210 

we find for the equations determining ^1, ^2, and ks the three 

numbered I, 2, and 3 in the following table. 

h k-2 ks ('onst Check 

1 “f-4 T 7.42 + 9-56 + 12 98 

2 +4 - 103 - 6.98 — 6.01 

3 + 322.24 -26.9 + 295.73 

2 +4 - I 03 - 6.98 “ 6.01 

— I + 0.71 + 478 + 6.49 IX- —1 

II -f-3 — 0.32 — 2.20 + 0.48 
4 

3 + 322.24 — 26.9 + 295 -73 
Ldf - 50 - 3-39 — 461 IX- 

4 
— OS — -24 + .05 

IIX- 
-.32 

3 
III +321.71 -3053 + 291.17 

From I, II and III we find 

ks 

k2 

k, 

30-53 = +.0949 
321.70 

.32 X .0949 + 2.20 

3 
+•7433 

2 X .7433 X .0949 - 9 56 
-2.052. 

4 
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Tabulating the corrections, we have 

Vi V-i I'.j Vi Vi Vi 

— 2.052 + 2 .052 — 2 .052 + 2 .052 

k2 -0.743 +0.743 -0.743 -0.743 
kii — 0 (_)04 —l.002 — I 039 

COTT. -3-^^99 — 0.262 -fl .013 -2.052 -0.743 + 2.795 

Applying these corrections to the observed directions, we have 

the final adjusted values. 

Direction No Observed directions Correct ion Corrected seconds 

4 0 00 00.00 -2.05 57-95 
5 123 49 24.97 -0.74 24 - 23 
(i 207 52 33-50 •f 2.8d 3<^-30 

I 13 38 27.54 -3.70 23.84 
2 150 38 41.62 — 0.26 41 -36 

3 296 57 55-^3 f I .01 56.84 

212a. Adjusting Traverses to Triangulation. 

Whenever a traverse starts from a fixed triangulation point 

and closes on another the angles of the traverse, or the sides, or 

both, must receive corrections so that the final results are in 

agreement with the fixed triangulation. The method of making 

such an adjustment as usually practiced is more or less arbitrary 

in character and depends upon the sort of errors of closure 

revealed by the particular traverse in question. There is no 

general rule which applies to all cases. The amount of error 

that is to be attributed to lengths and to angles differs according 

to circumstances. In Special Publication No. 137 of the U. S. 

Coast and Geodetic Survey will be found a discussion of the 

methods used for first-order traverse of that survey. 

The traverse is ordinarily treated as a plane figure because 

the area covered is not great, except in the case of some first- 
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order traverses. When the assumption of a plane figure can be 

made the only effect of curvature that must be provided for is 

the convergence of the meridians. This may be avoided by 

referring all bearings or azimuths to the initial meridian (or any 

other selected meridian). With such azimuths the entire trav¬ 

erse may be balanced according to the usual methods of plane 

surveying so that it will have the required length and direction 

between its terminal points. 

212b. Adjustment of Level Circuits. 

Whenever lines of levels have been run in circuits the resulting 

differences in elevation between bench marks will require an 

adjustment in order to remove any inconsistencies in these 

differences. The adjustment is made by writing a condition 

equation for each circuit closure and solving by the method of 

correlatives. (Art. 210.) In making this adjustment, it is 

advisable to draw a sketch showing all the lines that have been 

run; from this sketch the condition equations may be formed. 

On each line of the sketch are written (i) the distance between 

bench marks, (2) the observed difference in elevation, with its 

algebraic sign, (3) an arrow showing the direction in which the 

difference in elevation applies, and (4) a reference number. 

Inside of each circuit is written the amount of the error of closure 

of that circuit and also a reference number or letter. 

The errors of leveling are treated as accidental and the ob¬ 

served differences of elevation are therefore given weights which 

are inversely proportional to the lengths of the lines. This is 

done by dividing some arbitrarily chosen number by the different 

distances. 

In writing the condition equations it should be noted that 

there are as many equations as there are superfluous lines, that 

is, for each line which runs to a bench already established there 

will be a condition. The number of conditions will equal the 

number of lines — the number of bench marks +1. When 

forming these equations proceed around each circuit clockwise 

from start to finish. If any difference in elevation has an arrow 
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pointing in the opposite direction from this, the sign of the 

corresponding difference in elevation must be reversed. 

When the condition eciuations have been stated then Equas. 

[176] for the correlatives may be formed and solved. Substi¬ 

tuting the resulting values of the correlatives in Equas. [175] the 

corrections themselves are found. Adding these corrections to the 

observed differences in elevation the final adjusted differences in 

elevation are obtained. After the completion of the adjustment, 

the elevation of any bench mark as found by following any route 

should be the same as that found by following any other route. 

It is possible to make this adjustment by assuming approxi¬ 

mate elevations for the various bench marks and solving for 

corrections to these assumed elevations, instead of dealing with 

the differences in elevation for each line. 

If the elevations of more than one bench mark are to be held 

fixed in the adjustment extra equations must be introduced for 

this purpose. 

For examples of adjustment and details of the method see 

Leland’s Practical Least Squares^ p. 64, and U. S. Coast and 

Geodetic Survey Special Publ. No. 140, p. 53. 

213. The Precision Measures. 

Referring to the equation of the curve of error, Art. 197, 

>’ = [149] 

we see that there are two constants to be determined for any 

particular set of observations. These two constants are not 

independent, however, as will be shown. The total area be¬ 

tween the curve and the X axis was taken equal to unity; there- 

fore 

k I dx = 1, 
1/ —00 

or k J* dx = 

from which / e-^^^^hdx =-T- 
Jo 2 k 
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In order to integrate this expression let t = hx and dt = h dx. 

Then f dt — C dx. 
Jo Jo 

Multiplying this equation by jr»oo 

^ rf/ = / dh, 
0 Jo 

we have 

r /*** T /•*’ 

\J e-‘'-dt\=J J hdxdk 

- r - «-'“+”(-=«(■+»’)■** 

1 r" dx if T T - J. 
Therefore 

and 

or 

X V TT 

2 

a/tt h 

2 2 k 

k Vtt [178] 

which shows the relation between the two constants. 

The equation of the curve of error may now be written 

^ t^79] 

214. The Average Error. 

The average error (77) is the arithmetical mean of the errors, 

all taken with the same sign. To derive an expression for the 

average error, we see from equation (142) that / (^c) dx is the 

probability that an observation will fall between the limits x 

and X + dx] that is, it represents the proportion of all the errors 

that will probably fall within these limits. Hence, if n observa¬ 

tions are made, the number in this strip will he nj (x) dx. The 



JHE MEAN SQUARE ERROR 393 

sum of all the observations will be 

n I xf (x) dx, 
*/ —00 

or 2 xf (x) dx. 

The average error equals the sum of the errors divided by thf 
number, that is, 

I 

h Vw 
[i8o) 

216. The Mean Square Error. 

The mean square error (m) of an observation is the square 

root of the arithmetical mean of the squares of the errors. Since 

the number of errors between x and x + dx is nf (x) dx^ the 

sum of the squares of these errors is 

iiX'f (x) dx. 

The sum of the squares of all the errors is 

n I x^f {x) dx. 
—00 

h r* 
Therefore = ~t~ I c ^"'"^'x^dx. (d) 

V TT «/ —oo 

But ”7^ / dx = I, or / e~dx =-y-• 

If we differentiate this with respect to h as the independent 

variable, we obtain 

— 2hJ* x^dx ^ • {e) 
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Substituting (e) in (J), 

T 

^ h V2 
[i8r] 

216. The Probable Error. 
The probable error (r) of an observation is an error such that 

one half the errors of the series are greater than it and the other 

half are less than it; that is, the probability of making an 

error greater than r is just equal to the probability of making 

an error less than r. 

The probability that an error of an observation will fall be¬ 
tween the limits x and x + dxisf (x) dx. The probability 

that the error will fall between the limits +r and —r is given by 

/ (x) dx = J dx — 

by the definition. 

To integrate, let / = hx^ and dl = h dx, 

2 piir 
then -y- I e'^^'dt = 

VttJo 

If we evaluate this integral for assumed values of hr and 

then interpolate for the value of hr corresponding to J, we 

find it to be 0.47694. 

Therefore r = . [182] 

All the precision measures have now been expressed in terms 

of h, and it is evident that, 

r = 0.8453 77 [183] 

= 0.6745 M. [184] 

The mean square error (/x) is the largest, and the probable 

error (r) is the smallest, of the three precision measures. 

Any one of the three precision measures may be used to com¬ 

pare the relative accuracy of different series of observations, 

provided the different series are made under the same condi- 
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tions, so as to be affected by the same constant errors. In 

Europe the mean square error has been used more than the 

probable error; in the United States the probable error is gen¬ 

erally employed. There are some advantages, however, in the 

use of the average error (17). Theoretically it is slightly less 

accurate than either of the others; but inasmuch as the quan¬ 

tity itself is an estimate of an uncertainty in measurement, 

this objection is not a serious one. The value of rj lies between 

the values of fx and r. The method of computing r; is simpler, 

as will be shown later, than the computation of either m or r. 

Since in Equa. [158] it was shown that p varies as it follows 

that 

1185] 

that is, the weights of the different observations on a quantity 

vary inversely as the squares of the precision measures. 

If /X is the precision measure of a direct observation of weight 

1, and /io is the precision measure of the mean, then since the 

weight of the mean is the number of observations, 

217. Computation of the Precision Measures. 

Direct Observations of Equal Weight. To find /x? the mean 

square error of an observation, suppose that we have n direct 

observations of equal weight made on a quantity M, and that 

the results are Tfi, M2, • • • , and that Mo is the most probable 

value. Let the errors be Xi, Xo, . . . and the residuals z^i, V2, • . . . 

Then in this case the residuals are 

Vi ^ Ml — Mo, 
V2 = Mo — Mo 

and 



39^ ADJUSTMENT OF TRlAxVGULATION 

If Mo were the true value of M, the residuals would be the 
same as the true errors, and in that case 

M = [i86] 

But in any limited number of observations this is not suffi¬ 

ciently exact. To obtain a more accurate expression, place 

then 
Mo + Xo = M; 

= Ml — (Mo + Xo) = Vi — Xo, 

X2 = M2 — (Mo + Xq) = V2 — Xo, 

Squaring, adding, and dividing by 

Since = o, Art. 1Q5, this reduces to 

The real value of Xo is unknown; it may be taken as approxi¬ 

mately equal to the mean square error of Mo, which, from 

Equa. (/), is 

Mo == 
Vfi 

[187] 

whence 
, X'’ 

Therefore 
n — I [188] 

To find Mo, the mean square error of the mean value, we have, 

by Equa. (/), 
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From Equa. [184], 

, JW 
r — 0.674V 

n — 1 
[190] 

and 
J X"'^ 

r„ = 0.6745 V ^ [191] 

To find the average error (77) of a single observation, we see 

that, from Equa. [188], 

= {n - 1) 
n 

On the average the values of these residuals will be 

4 [n - 1 
Vt = V-- * ^2. ▼ n 

Adding and dividing by n, 

./n — I 2)^ .jn — 1 

n ^ n n ^ n 

Therefore 

and 

a/;; (n — i) ^ 

Vi) 

[192] 

[193] 
n — 1 

The probable error is sometimes computed from the average 

error in order to avoid computing the squares of the residuals. 

From Equa. [183], 

0-8453 

and 

r — 

ro 

Vw {n — i) 

0.8453 

n Vm — I 

Evidently the mean error may also be computed from ij. 

[194] 

[195I 
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218. Observations of Unequal Weights. 

If the observations have unequal weights, let pi, p2, etc., be 

the weights; then 
M] 

etc. 

By Art. 199, if each observation is multiplied by the square 

root of its weight, the observations are all reduced to weight 

unity. The residuals are therefore 

^’1 ^’2 ^p2, 
Applying Formuhe [188] to [195J to these residuals, we have 

ft — 1 

f^k 
pk in - 1) 

V 1) 

[196] 

[197] 

[198] 

J^pv^ 
n - 0.6745 V ^ • [199] 

4/ Xpv^ 

- 0.6745 [200] 

... 0.6745 

[201] 

{n — i) 
[202] 

[203] 
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Vz» p 
(«-1) 

from which 
ri = 0.8453 rju 

Yk = 0.8453 Vky 

To = 0.8453 7)0. 

219. Precision of Functions of the Observed Quantities. 

Suppose that a quantity M is defined by 

M = M, + 

where Mi and are independent and are observed directly. 

Let the mean square error (m.s.e.) of M\ be ix\, and let that of 

M2 be M2, the m.s.e. of the function M being denoted by ixp. If 

we suppose the errors in the determination of Mi to be Xi, X\\ 

Xi", . • . , and those of M2 to be Xo ^ X2\ ^2'", • • • ? then the 

real errors of i/, computed from the separate observations on Mi 

and M2y will be 
Xi dt X2f Xi' zh Xz", * * • , 

(x/ zb .T2O" + (x/^ + X2")^ . 
and fxr ---- 

+ 2^XiX2 +^X2^ 

n 

But the ^^1X2 terms will cancel out, because in the long run 

there will be as many + as ~ products 0^1X2 of the same magni¬ 

tude. 

Therefore = Mr + M2“- [208] 

From Equas. [183] and [184] it is evident that 

== rj^ + ^2“ [209] 

and r}F^ = vi^ + [210] 

Let us suppose that the function is defined by 

[204] 

[205] 

[2Q6J 

[207] 

M — aiM], 
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where ai is a constant; then the real errors of M will be 

Q'lXi , Q^iX\ aiXi 

and ^ 

or MF = OlMl- I211] 

By combining [208] with [21 ij it is clear that if 

M — diM 1 -j- (I2M2 "I” ‘,i “1” * ‘ , 

then MF' [212J 

rr [213] 

VP' = '^aW- [214J 

Suppose that the function is of the general form indicated by 

M {g) 

Let Ml = ai + mi, M2 = ^2 + nh, etc., in which ai is a close 

approximation to Mi, an is a close approximation to M2, and mi 

and m2 are small corrections such that their squares may be 

neglected. We may regard mi and m2, etc., as containing the 

real errors of Mi, M2, • • • , and yn, M2, • • • may be considered 

as the mean square errors of mi, m2, etc. Substituting in (g), 

we have 
M = f ((ai + mi), (02 + W2) . . . ). 

Expanding this function by Taylor’s theorem and denoting 

/ (ai, 02, . . .) by M', 
_ .w dM' dM' 
M = M + Wi + nh + {h) 

in which the terms containing the squares and higher powers of 

mi, m2, . . . have been omitted. Then the m.s e. of M is the 

same as the m.s.e. of the terms in (A). 

By Equa. [212], this is 

12 

+ 
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or, with sufficient accuracy, 

Similarly, 

and 

VdM' 2 fdM' 2 

- 
ldMx_ 

-f M2‘^ IdMij 
+ 

2 'dMl 2 

= n' 
_aM^\ + rr + 

'dMl 2 ~dM~\ 12 

If' = V\- + jm\\ + 

401 

[215] 

[216) 

[2171 

It should be observed that in the preceding cases the unknowns 

are supposed to be independent of each other. If the quantities 

Ml, M2, etc., are functions of the same variable, a different pro¬ 

cedure is necessary. 

Also, in case the unknowns are subject to any number of con¬ 

ditions, the computation of the precision measure of any function 

must be so modified as to take into account the effect of these 

conditions. 

220. Indirect Observations. 
The computation of the precision of the adjusted values in the 

case of indirect observations is more complicated than in the 

case of direct observations, because it is necessary to know the 

weight of each of the unknowns, and this can only be found by 

the solution of equations similar to the normal equations 

It may be shown that if there are n observations on q un ¬ 

knowns, then 

where m is the m.s.e. of an observation of weight unity. 

If pz is the weight of an unknown, then the m.s.e. of this un¬ 

known is 
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Similarly, 
J 

r =0.6745 [220] 

J 
r. - 0.6745 [221] 

and S' 
[222] 

1 

>
 

11 [223] 

221. Caution in the Application of Least Squares. 

In applying the preceding principles it should be kept in mind 

that the ordinary adjustment by the method of least squares 

deals with the accidental errors only and can tell us nothing 

about the constant or systematic errors which may affect the 

results of observation. The ‘^probable errormay therefore be 

far from the true error because such constant errors are present. 

We should think of the precision measures as indicating the de¬ 

viation of the result from the mean result of a large number of 

such observations, rather than its deviation from the true value. 

It is usually true that the constant or the systematic errors are 

far more serious than the accidental errors, the observer should 

be continually on the watch for constant errors which may affect 

his result. So long as the conditions under which a measure¬ 

ment is made remain exactly the same the systematic errors are 

likely to be the same and are therefore not observed. The 

presence of such errors is most likely to be observed when the 

conditions are varied as much as possible. If observations are 

made at different temperatures, or under different conditions of 

illumination, or with different instruments, the variations of the 

results are usually greater than when the conditions are not 

changed. These variations indicate the presence of systematic 

errors and often enable the observer to estimate their magnitude. 

The computation of the most probable value improves the 
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result with respect to the accidental errors, but leaves the more 

serious form oi error untouched. The futility of multiplying 

observations and adjusting them for the purpose of removing the 

small accidental errors, and at the same time failing to remove 

the large constant error, may be illustrated by the results ob¬ 

tained by a marksman who holds his rifle steadily and places all 

his shots in a small group, but whose rifle sights are so far out of 

alignment that his shots all strike far from the bull’s-eye. Of 

what use is the large number of shots under those circumstances? 

An adjustment of his results by least squares would correspond 

to an attempt to find the center of his group of shots, and would 

tell nothing about the distance from the bull’s-eye. A study of 

the causes of the error so that he could make an adjustment of 

his sights would accomplish more toward hitting the mark than 

an infinite number of shots fired under the original conditions. 

Of course the comparison is quite untrue in one respect; the 

marksman knows where his mark is, while the observer can never 

know the true value of the quantity he is measuring. 

While the method of least squares may not show directly the 

presence of constant errors, a study of the precision of the results, 

and a knowledge of the law governing the behavior of accidental 

errors, may enable the observer to detect the presence of constant 

error, or at least to decide whether it is probably present, and 

consequently to modify his methods of observing so as to reduce 

the effect of such constant error. Variations in the result which 

are greater than the error of observation shown by the precision 

measures is likely to mean that systematic error is present. This 

tracing of errors to their sources, and the consequent modification 

of instruments and methods, may constitute the most important 

application of least squares. 
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PROBLEMS 

Problem i. The following angles arc measured at station 0. 

AOB = 31° 10' weight (i) 

BOC — 19 21 17 .4 “ (i) 
AOC = 50 31 33 •5 “ (2) 
COD = 38 50 16 .0 “ (2) 
BOD = 58 II 32 .0 “ (1) 
AOD = 89 21 51 •5 “ (i) 

Adjust the angles. 

Problem 2. The angles of a triangle are as follows: 

A 53° 53' 38".94 wt. (3) 
B 79 22 56 .17 “ (4) 
C 46 43 29 .27 (2) 

The spherical excess is 2".83, 

Adjust the triangle. 

Problem 3. The angles of a quadrilateral are as follows, the numbers correspond¬ 

ing to those in Fig. 153. The weights are all unity. The spherical excess may be 

neglected. 
1. 23^31'I2".5 

2. 37 01 22 .5 

3- 67 3S 38 -3 
4. SI SI 26 .7 

5- 29 s6 SO -o 

6- 30 3S 33 -2 

7- 72 37 3S -o 
8. 46 49 47 .5 



PROBLEMS 405 

The sum angles arc 
8 + 1 70° 21' o5".o 

2 + 3 104 37 00 .0 

4 + 5 81 48 20 .8 
6 + 7 103 13 08 .4 

Adjust the quadrilateral. 

Problem 4. Adjust the quadrilateral given on page 372, taking the pole at 0, 

Fig. 153- 
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FORMULAE 

sin 

cos X 

tan X 

sin~^ X 

tan“^ X 

BINOMIAL THEOREM 

(a + /;)“ = a” + moT-^b + a”*-!/,! + . 
il 

MACLAURIN'S THEOREM 

/(*) =/(«) + p'(o) + ^/"(o) + (a) + . 

TAYLOR’S THEOREM 

f{x + h)=f (.t) + M' {x) + ^/" (,r) + W + 

LOGARITHMIC SERIES 

log (i + x) = M (^x - j + j - ^ + • • • 

log(i -*) = +j + ^ + • • • 

OTHER SERIES 

—-— + . . . • 
I — 

—?— = 1—+ •••• 
I -^x 

408 

SERIES 

.V . 
— Ii + ii-i7+-- 

,»*2 /%*4 .«6 

-■-i7+g-j6+'- 

X^ o ^-6 J^7 
= :L _i_ _i_ 2_±. _i- . 

6 40 112 

'■ X-1-- 
3 5 7 



FORMULAE 

ELLIPSE AND SPHEROID 

if — 
(f = 

if 

/ = 

Rm — 

N = 

Ru = 

a — h 
a 

a{\ — ^) 

(i — e^sirf<f>)^ 

__ a 
(] — c^sirfib)^ 

NRm _ 

N cos^ a + Rm sin^ a 

Mean radius = p ~ VNRm- 

CONSTANTS 

logio -r = M logc .r. 

M = modulus of system of common logarithms 

= 0.434 2945. 

\ogM = 9.637 7843. 

TT = 3.141 592 65. log = 0.497 1499. 

180 I Q A 
- = 57-29577. lf>« = 1.758 1226. 

IT 

180° X Co' , , 
-= 3437.747. log = 3.536 2739 

TT 

180° X 60' X 60" , ^ o I 
-= 206 264.8. log = 5.314 4251. 

TT 

= -—T, = (Approx.) 
arc I sin i tan i 

arc i" = 0.000 004 848 137. log = 4.685 5749. 

—~ ,1 = 206 264.806 ~ number of seconds in the radian, 
arc I 

arc i" — about 0.3 inch at distance of one mile. 

409 

CLARKE SPHEROID (1866) 

a = 6 378 206.4 meters. log = 6.804 6986. 

6 = 6 356 583.8 meters. log = 6.803 2238. 
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.006 768 658 log 7-830 5026 — 10 

I - 9.997 0504 - 10 

a (i — e^) 6.8oi 7490 

sin- i" 

6 (i — e‘^) 
6.426 4506 — 20 

sin i" 

4 (i - e^) 
1.916 9670 ~ 10 

sin2 i" 

12 
8.291 9685 — 20 

sin 1" 4 685 5749 — 10 

COAST SURVEY SPHEROID (1909) 

a — 6 378 388 ± 18 meters. 

^ = 297.0 ± 0.5. 

b — 6 356 909 meters. 

RELATION BETWEEN UNITS OF LENGTH 

(Legal) Meters in one foot = 0.304 8006. log = 9.484 0158. 

Feet in one (legal) meter = 3.280 8333. log = 0.515 9842. 

Inches in one (legal) meter = 39.37. 
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TABLE II. - CORRECTION FOR EARTH’S CURVATURE AND 
REFRACTION 
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TABLE III.— SHORT TABLE OF FACTORS FOR REDUCTION 
OF TRANSIT OBSERVATIONS 
Top Argument = Star’s Declination (6). 
Side Argument *= Star’s Zenith Distance (f). 

(For factor A use left-hand argument. For factor B use right-hand argument. For factor C 
use bottom line,] 

f 0° 10“ 15“ 20“ 25“ 30“ 35“ 40“ 45“ 50“ 55“ 60“ 65" 70“ r 

1° 0.02 0.02 0.02 0.02 i).02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.05 89° 
5 0.09 0.09 0.09 0.09 0.10 0 10 0.11 0.11 0.12 0.13 0.15 0.17 0.21 0.25 85 

10 0.17 0.18 0.18 0.19 0.19 0.20 0.21 0.23 0.25 0.27 0.30 0.35 0.41 0.51 80 

15 0.20 0.26 0.27 0.28 0.29 0.30 0.32 0.34 0.37 0.40 0.45 0 52 0.61 0.76 75 
20 0.35 0 35 0.36 0.38 0.40 0.42 0.45 0.48 0.53 0.60 0.68 0.81 1.00 70 
25 0 42 0.43 0 T1 0.45 0.47 0 49 0 52 0.55 0.60 0.66 0.74 0.85 1.00 1.24 65 

30 iHBi] 0.51 0.5210 53 0.55 0.58 0.61 0.65 0.71 0.78 0.87 1.00 1.18 1.46 60 
0 58 0.59;0 61 0.63 0.66 0.70 0.75 0.81 0.89 1.00 1.15 1.36 1.68 55 

0.64 0 65 0.67 0 68 0.71 0.74 0.78 0.84 0.91 1.00 1.12 1.29 1.52 1.88 50 

0.71 0 72 0 73 io 75 0.78 0 82 0.86 0.92 1 00 1.10 1.23 1 41 1.67 2.07| 45 
50 0 78 0 79!0 82 0.85 0,89 0 94 1.00 1.08 1.19 1.34 1 53 1.81 2.24! 40 
55 0.82 0 83 0 85 0 87 0.90 0 95 l.OO 1 07 1.10 1.27 1.43 1.64 1.94 2.40! 35 

60 0.87 0.88 0 90 0.92 0 96 1.00 1 06 1.13 1 22 1.35 1.51 1.73 2.05 2.53 30 
65 0.91 0 92 0.94 0.96 1.00 1.05 1.11 1.18 1.28 1.41 1 58 1.81 2.14 2.65 25 
70 0.94 0.95 0.97 1.00 1.04 1.09 1.15 1.23 1 33 1.46 1.64 1.88 2.22 2.75 20 

75 0.98 1.00 1.03 1.07 1.12 1.18 1.26 1.37 1.50 1.68 1.93 2.29 2.82 15 
80 0.98 1 00 1.02 1.05 1 09 1.14 1.20 1.29 1.39 1.53 1.72 1.97 2.33 2.88 10 
85 1.00 1.01 1 03 1.06 1.10 1.15 1.22 1.30 1.41 1.55 1.74 1.99 2.36 2.91 5 

90 
_ 

1.02 1 04 1 06 1.10 1.15 1.22 1.31 1.41 1.56 1.74 2.00 2 37 2 92 0 

TABLE IV.—DIURNAL ABERRATION W 

Lati- Deolioatiou « d. 
tude 
-0. 0“ 10“ 20“ 40“ 60“ 70“ 76“ 80“ 85“ 

0 
5 s s s s s s s s 

0 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.06 0.08 0.12 0.24 
10 0.02 0.02 0.02 0,02 0.03 0.03 0.04 0.06 0.08 0.12 0.24 
20 0.02 0 02 0.02 0.02 0.03 0.03 0.04 0.06 0.08 0.11 0.23 
30 0 02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.07 0.10 0.21 
40 0 02 0.02 0 02 0 02 0 02 0.03 0.03 0.05 0.06 0.09 0.18 
50 0 01 0.01 0.01 0 02 0 02 0 02 0.03 0.04 0.05 0.08 0.15 
60 0 01 0.01 0.01 0.01 0 01 0 02 0 02 0.03 0.04 0.06 0.12 
70 0 01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.08 
80 0 00 

. 

0.00 0.00 0.00 0 OOj 0.01 0.01 0.01 0.01 0.02 0.04 
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TABLE V. — CORRECTION TO LATITUDE FOR DIFFEREN¬ 
TIAL REFRACTION = i (r - r'). 

[The sign of the correction is the same as that of the micrometer difference.] 

One-half 
diff. of 
zenith 

distances. 

Zenith distance. 

0“ 10® 20® 25® 30® 35® 40® 46® 

0.0 0.00 0 00 0.00 0 00 0.00 0 00 
0.5 0.01 0.01 0.01 0.01 0.01 0 02 
1.0 0.02 0.02 0.02 0.03 0.03 
1.5 0.03 0.03 0.03 0.03 MEM 0.04 0.05 
2.0 0.03 0.03 0.04 0.04 0.04 0.05 0.07 

2.5 0.05 0.06 0.08 
3.0 0.05 0.06 0.09 0.10 
3.5 0 06 0.07 0.07 0.08 0 10 0.12 
4.0 0.07 0 07 0.08 0.08 0.09 0.10 0.11 0.13 
4.5 0.08 0.08 0.09 0.10 0.11 0.13 0.15 

5.0 0 09 0.10 0.10 0.11 0.13 0 14 0.17 
5.5 0.09 0 10 0.10 0.11 0.12 0.14 0.16 0.18 
6.0 0.10 0.10 0.11 0.12 0.13 0.15 0 17 0.20 
6.5 0.11 0.11 0.12 0.13 0 14 0.16 0.19 0 22 
7.0 0.12 0.12 0.13 0.14 0.16 0 18 0.20 0.23 

7.5 0.13 0.13 0.14 0.15 0.17 0. H) 0 21 0 25 
8 0 0.13 0.14 0.15 0.16 0.18 0 20 0 23 0.27 
8.5 0.14 0.15 0.16 0.17 0 19 0 21 0 24 0.29 
9 0 0.15 0 16 0.17 0.18 0 20 0 23 0 26 0 30 
0.5 O.Ki 0.16 0.18 0.19 0.21 0.24 0 27 0.32 

10.0 0.17 0.17 0 19 0.20 0.22 0 25 0.29 0 34 
10.5 0.18 0 18 0 20 0.21 0.23 0.26 0.30 0.35 
11.0 0.18 0.19 0 21 0.22 0.25 0.28 0.31 
11.5 0.19 0 20 0.22 0.23 0.26 0.29 0.33 0.39 
12.0 0.20 0.21 0.23 0.25 0 27 0.30 0.34 0.40 

12.5 0.21 0.22 0.24 0.26 0.28 0 31 0.36 0.42 
13.0 0.22 0.22 0.25 0.27 0.29 0.33 0.37 0.44 
13.5 0.23 0.23 0.26 0.28 0.30 0.34 0.39 0.45 
14.0 0.23 0.24 0.27 ! 0.29 0.31 0.35 0.40 0.47 
14.5 0.24 0.25 0.28 1 0.30 0.32 0.36 0.41 0.49 

15.0 0.25 0.26 0.29 I 0.31 0.34 0.38 0.43 0.50 
15.5 0.26 0.27 0.29 1 0.32 0.35 0.39 0.44 0.52 
16 0 0.27 0.28 0.30 0.33 0.36 0.40 0.46 0.54 
16.5 0.28 0.29 0.31 0.34 0.37 0.41 0.47 0.55 
17.0 0.29 0 29 0.32 0.35 0.38 0.43 0.49 0.57 

17.5 0.29 0.30 0.33 0.36 0.39 0.44 0.50 0.59 
18.0 0.30 0.31 0.34 0.37 0.40 0.45 0.51 0.60 
18.5 0.31 0.32 0 35 0.38 0.41 0.46 0.53 0.62 
19.0 0.32 0.33 0.36 0.39 0.43 0.48 0.54 0.64 
19.5 0.33 0.34 0.37 0.40 0.44 0.49 0.56 

20.0 0.34 0.35 0.38 0.41 0.45 0.50 0.57 0.67 
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TABLE VI. — CORRECTION TO LATITUDE FOR REDUCTION 
TO MERIDIAN 

(Star off the meridian but instrument in the meridian. The sign of the correction to the 
latitude is positive except for stars south of the equator and subpolars.] 

5 10* 15« 20* 22* 24« 26* 2S« 30* 32* 31* 36* 38* h 

\ 
•• // 

0 01 0 01 0.01 89 
2 0.01 0.01 0 01 0 01 0 01 0.01 0.01 0.01 88 
3 0,01 0 01 0.01 0.01 0.01 0 01 0.01 0.02 0 02 0.02 87 
4 0.01 0.01 0 01 0.01 0.01 0 02 0.02 0 02 0.02 0.03 86 
5 0 01 0.01 0.01 0 01 0.02 0.02 0.02 0.02 0.03 0 03 0.03 85 

6 0.01 0 01 0.01 0.02 0.02 0.02 0.03 0.03 0 03 0 04 0 04 84 
7 0 01 0 01 0.02 0.02 0.02 0.03 0 03 0.03 0.04 0 04 0.05 83 
8 0.01 0 02 0.02 0 02 0 03 0 03 0 03 0 04 0 04 0 05 0 05 82 
9 0 01 0.02 0 02 0.02 0.03 0 03 0 04 0.04 0 05 0.05 0 06 81 

10 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0 05 0.06 0.07 80 

12 0.01 0 01 0.02 0.03 0.03 0.04 0 05 0.05 0,06 0 06 0.07 0.08 78 
14 0.01 0 01 0 03 0 03 0.04 0.04 0.05 0.06 0.07 0.07 0.08 0.09 76 
16 0.01 0 02 0 03 0 03 0 04 0.05 0.06 0.07 0.07 0 58 0.09 0 10 74 
18 0.01 0.02 0.03 0 04 0 06 0.05 0 06 0 07 0.08 0 09 0.10 0.12 72 
20 0.01 0.02 0 04 0 04 0.05 0.06 0 07 0.08 0.09 10 0.11 0.13 70 

22 0.01 0 02 0 04 0 05 0.05 0 06 0 07 0.09 0 10 0 11 0 12 0 14 68 
24 0.01 0 02 0.04 0 05 0 06 0 07 0 08 ) 09 0 10 0.12 0 13 0.15 66 
26 0.01 0,02 0.04 0 05 0 06 0 07 0 08 0.10 0 11 0. 12 0,14 0.15 64 
28 0.01 0 03 0.05 0 05 0.07 0.08 0 09 0.10 0 12 0 13 0 15 0.16 62 
30 0.01 0 03 0.05 0 06 0.07 0 08 0.09 0.11 0.12 0.14 0.15 0.17 60 

32 0.01 0 03 0.05 0.06 0 07 0 08 0 10 0.11 0 13 0.14 0 16 0 18 58 
34 0.01 0,03 0.05 0.06 0.07 0.09 0 10 0.11 0 13 0 15 0.16 0.18 56 
36 O.Ol 0 03 0 05 0,06 0.07 0 09 0 10 0.12 0 13 0.15 0 17 0.19 54 
38 0 01 0 03 0.05 0,06 0.08 0 09 0 10 0 12 0 ,13 0 15 0 17 0 19 52 
40 0.01 0 03 0.05 0 07 0 08 0 09 0 11 0 12 0 14 0 16 0 17 0.19 50 
45 0 01 0 03 0 05 0 07 0 08 0 09 0,11 0.12 0 14 0 16 0 18 0 20 45 

S 40« 42* 44* 46» 48* 50* 52» 54* 56* 58* IIQIIII h 

\ 
0 01 0 01 0 01 

If 

0 01 

99 

0 01 0 01 0 01 0.01 0 02 0 02 89 
2 0.02 0.02 0.02 0.02 0.02 0 03 0.03 0 03 88 
3 0 03 0.03 0.03 0.03 0.04 0 04 0.04 0.04 0.05 0.05 87 
4 0.03 0.04 0.04 0 04 0 05 0 05 0.06 0 06 0.07 86 
5 0.04 0.05 0.05 0 06 0.06 0.07 0.07 0.08 0.09 85 

6 0.05 0.06 0 06 0 07 0.07 0 08 0 08 0 09 0.10 0.10 84 
7 0.06 0.06 0.07 0.08 0.08 0.09 0 10 0 10 0 11 0 12 83 
8 0.07 0.07 0.08 0.09 0.09 0.10 0.11 0.12 0.13 0.14 82 
9 0.07 0.08 0 09 BMul 0.11 0 11 0 12 0.13 0 14 0.15 81 

10 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0 16 0.17 80 

12 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0 17 0.19 0.20 78 
14 Eh3 0.11 0.12 0.14 0 15 0.16 0.17 0.19 0.20 0.22 0 23 76 
16 0 12 0.13 0.14 0.15 0.17 0.18 0.20 0.21 0 23 0.24 0.26 74 
18 0.13 0.14 0 16 0 17 0 18 0.22 0.23 0.25 0 27 0.29 72 

HI Mfl 0.15 0.17 0.19 0.20 0.22 0 24 0.26 0.28 0.29 0.32 70 

22 0.15 0.17 0.18 0.22 0.24 0 26 0.28 0.30 0.32 0.34 68 
24 0.16 0.18 0.20 0.21 0 23 0 25 0 27 0.29 0 32 0 34 0 36 66 
26 0.17 0 19 0.21 0.23 0.25 0 27 0.29 0.31 0.34 0 36 0.39 64 
28 0.18 0.20 0.22 0.24 0.26 0.28 0 31 0 33 0 35 0.38 0.41 62 

mm 0.19 0.23 0.25 0.27 0.30 0 32 0 34 0.37 0.40 0.42 60 

32 liKill 0.24 0.26 0.28 0.31 0 33 0.36 0 39 0.41 0.44 58 
34 0.22 0 24 0.27 0.29 0.32 0 34 0.37 0.40 0.42 0.45 56 
36 0.21 0.23 0.25 0.28 0.30 0 32 0 35 0.3 0.41 0.44 0.47 54 
38 0.21 0.23 0.26 0.28 0.30 0.33 0.36 0 39 0 41 0.44 0.48 52 
40 0.21 0.24 0.26 0 28 0.31 0 34 0 36 0.39 0.42 0.46 0.48 50 
45 0.22 0.24 0.26 0.29 0.31 0.34 0.37 0.40 0.46 0.49 45 
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TABLE VII. —REDUCTION OF LATITUDE TO SEA LEVEL 
[The correction is negative in every case.] 

\ 
h 

<t> 5“ 

85* 

10* 

80“ 

15“ 

75“ 

20“ 

70“ 

25“ 

G5“ 

30" 

60“ 

35“ 

55“ 

40“ 

50“ 
45“ 

Feet. Meters. - - n - - - - - - 

100 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
200 61 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
300 91 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 
400 122 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 
500 152 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 

600 183 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.03 
700 213 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.04 
800 244 0.01 0.01 0.02 0.03 0.03 0.04 0.04 0,04 0.04 
900 274 0 01 0.02 0.02 0.03 0.04 0.04 1 0.04 0.05 0.05 

1000 305 O.Ol 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.05 

1100 335 0.01 0.02 0.03 0.04 0.04 0.05 0.05 0.06 0.06 
1200 366 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.06 
1300 396 0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.07 
1400 427 0.01 0.02 0.04 0.05 0.06 0.06 0.07 0.07 0.07 
1500 457 0.01 0.03 0.04 0.05 0.06 1 0.07 0.07 0.08 0.08 

1600 488 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.08 0.08 
1700 518 0.02 0.03 ! 0.04 0.06 0.07 0.08 0.08 0.09 0.09 
1800 549 0.02 0.03 1 0.05 0.06 0.07 0.08 0.09 0.09 0.09 
1900 579 0 02 0.03 0.05 0.06 0.08 0.09 0.09 0.10 0.10 
2000 610 0 02 0 04 0.05 0.07 0.08 0.09 0,10 0.10 0.10 

2100 640 0.02 0.04 0.05 0.07 O.OS 0.09 0.10 0.11 0.11 
2200 671 0.02 0.04 0.06 0.07 0.09 0.10 0.11 0.11 0.11 
2300 701 0.02 0.04 0.06 0.08 0.09 0.10 0.11 0.12 0.12 
2400 732 0.02 0.04 0.06 0.08 0.10 0.11 0.12 0.12 0.13 
2500 762 0.02 0.04 0.07 0.08 0.10 0 11 C.12 0.13 0.13 

2600 792 0.02 0.05 0.07 0.09 0.10 0.12 0.13 0.13 0.14 
2700 823 0.02 0.05 0.07 0.09 0.11 0.12 0.13 0.14 0.14 
2800 853 0.03 0.05 0.07 0.09 0.11 0.13 0.14 0.14 0.15 
2900 884 0.03 0.05 0.08 0.10 0.12 0.13 0.14 0.15 0.15 
3000 914 0.03 0.05 0.08 0.10 0.12 0.14 0.15 0.15 0.16 

3100 945 0.03 0.06 0.08 0.10 0.12 0.14 0.15 0.16 0.16 
3200 975 0.03 0.06 0.08 0.11 0.13 0.14 0.16 0.16 0.17 
3300 1006 0.03 0.06 0.09 0.11 0.13 0.15 0.16 0.17 0.17 
3400 1036 0.03 0.06 0.09 0.11 0.12 0.15 0.17 0.17 0.18 
3500 1067 0.03 0.06 0.09 0.12 0.14 0.16 0.17 0.18 0.18 
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TABLE VII (Cow.).—REDUCTION OF LATITUDE TO SEA LEVEL 
[The correction is negative in every case.] 

\ 

h 

0 

\ 
5° 

85° 

10° 

80° 

15° 

75° 

20° 

70° 

25° 

65° 

30° 

60° 

35° 

55° 

40° 

50° 
45° 

Feot. Meters - - 

3600 1097 0.03 0.06 0 09 0 12 0.14 0 16 0 18 0,18 0.19 
3700 1128 0.03 0.07 0.10 0 12 0.15 0.17 0 18 0.19 0.19 
3800 1158 0.03 0.07 0.10 0 13 0.15 0 17 0.19 0.20 0 20 
3000 1189 0.04 0.07 0.10 0.13 0.16 0.18 0.19 0 20 0 20 
4000 1219 0.04 0.07 0 10 0.13 0.16 O.IS 0.20 0.21 0.21 

4100 1250 0 04 0 07 0.11 0.14 0 16 0 19 0 20 0 21 0.21 
4200 1280 0.04 0 07 0.11 0.14 0.17 0.19 0.21 0 22 0.22 
4300 1311 0.04 0.08 0.11 0.14 0.17 0.19 0.21 0.22 0.22 
4400 1341 0 04 0.08 0 11 0 15 0.18 0.20 0 22 0 23 0.23 
4500 1372 0.04 0.08 0.12 0.15 0.18 0.20 0.22 0.23 0.23 

4600 1402 0.04 0.08 0.12 0.15 0 18 0.21 0.23 0.24 0.24 
4700 1433 0 04 0 08 0.12 0 16 0 19 0 21 0 23 0.24 0.24 
4800 1463 0.04 0.09 0.13 0 16 0.19 0 22 0 21 0.25 0.25 
4900 1494 0 04 0 09 0 13 0 16 0.20 0 22 0 24 0 25 0.26 
5000 1524 0.05 0.09 0.13 0 17 0.20 0.23 0.24 0.26 0.26 

5100 1554 0.05 0.09 ! 0.13 0 17 0 20 0.23 0.25 e 26 0.27 
5200 1585 0.05 0 IK) 0.14 0.17 0 21 0.23 0.25 0.27 0.27 
5300 1615 0 05 0 09 0 14 0 18 0.21 0.24 0 26 0 27 0 28 
5400 1646 0 05 0 10 0 14 0 18 0.22 0,24 0.26 0.28 0.28 
5500 1676 0.05 0.10 0.14 0.18 0.22 0 25 0.27 0.28 0.29 

5600 1707 0 05 0.10 0.15 0.19 0.22 0 25 0.27 0.29 0.29 
5700 1737 0.05 0.10 0 15 0.19 0.23 0.26 0.28 0 29 0.30 
5800 1768 0.05 0 10 0 15 0.19 0.23 0.26 0.28 0.30 0.30 
5900 1798 0.05 0.11 0.15 0.20 0.24 0.27 0.29 0 30 0.31 
6000 1829 0.05 0.11 0 16 0.20 0.24 0 27 0.29 0.31 0.31 

6100 1859 0 06 0.11 0 16 0.20 0.24 0.28 0.30 0.31 0.32 
6200 1890 0.06 0.11 0.16 0.21 0.25 0.28 0.30 0.32 0.32 
6300 1920 0.06 0.11 0.16 0.21 0.25 0.28 0.31 0.32 0.33 
6400 1951 0.06 0.11 0.17 0.21 0 26 0.29 0.31 0.33 0.33 
6500 1981 ! 0.06 0.12 0.17 0.22 0.26 0.29 0.32 0 33 0.34 

6600 2012 0.06 0.12 0.17 0.22 0.26 0.30 0.32 0.34 0.34 
6700 2042 0.06 0.12 0.17 0.22 0.27 0.30 0.33 0.34 0.35 
6800 2073 0.06 0.12 0.18 0.23 0.27 0 31 0.33 0.35 0.35 
6900 2103 0.06 0.12 0.18 0.23 0.28 0.31 0.34 0.35 0.36 
7000 2134 0.06 0 12 0.18 0.23 0.28 0.32 0.34 0.36 0.36 
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TABLE VII (Co».). —REDUCTION OF LATITUDE TO SEA LEVEL 

[The correction is negative in every case.] 

\ 
h 

<f> 

X 

6® 

85“ 

10“ 

80“ 

1 

15“ 

75“ 

20“ 

70“ 

25“ 

65“ 

30“ 

60“ 

35“ 

55“ 

40“ 

50“ 
45“ 

Feet. Meters. - - - - - 

7100 2164 0.06 0.13 0.19 0,24 0.28 0.32 0.35 0.36 0.37 
72(X) 2195 0.07 0.13 0.19 0.24 0.29 0.33 0.35 0.37 0.38 
7300 2225 0.07 0.13 0.19 0 24 0.29 0.33 0.36 0.37 0.38 
7400 2256 0.07 0.13 0.19 0 25 0.30 0.33 0.36 0.38 0.39 
7500 2286 0.07 0.13 0,20 0.25 0.30 0.34 0.37 0.38 0.39 

7000 2316 0.07 0.14 0.20 0.25 0.30 0.34 0 37 0.39 0.40 
7700 2347 0.07 0.14 0.20 0.26 0.31 0.35 0.38 0.40 0.40 
7800 2377 0.07 0.14 0.20 0.26 0.31 0.35 0.38 0.40 0.41 
7900 2408 0.07 0.14 0.21 0.26 0.32 0.36 0.39 0.41 0.41 
8000 2438 0.07 0.14 0.21 0,27 0 32 0.36 0,39 0.41 0.42 

8100 2469 0 07 0.14 0.21 0,27 0.32 0,37 0.40 0.42 0.42 
8200 2499 0.07 0.15 0 21 0.27 0,33 0.37 0.40 0.42 0.43 
8300 2530 0.08 0.15 0.22 0.28 0.33 0,37 0,41 0.43 0.43 
8400 2560 0.08 0.15 0.22 0.28 0.34 0.38 0.41 0.43 0.44 
8500 2591 0.08 j 0.15 0.22 0.28 0.34 0,38 0.42 0.44 0.44 

>600 2621 0.08 0.15 0.22 0.29 0.34 0,39 0.42 0.44 0.45 
8700 2652 0.08 0.16 0.23 0.29 0.35 0,39 0.43 0.45 0.45 
8800 2682 0.08 0.16 0.23 0.29 0.35 0,40 0.43 0.45 0.46 
8900 2713 0.08 0.16 0.23 0,30 0.36 0,40 0 44 0.46 0.46 
9000 2743 0.08 0.16 0.23 0.30 0.36 0,41 0.44 0.46 0.47 

9100 2774 0.08 0.16 0.24 0 30 0.36 0.41 0.45 0.47 0.47 
9200 2804 0.08 0.16 0.24 0.31 0.37 0.42 0.45 0.47 0.48 
9300 2835 0.08 0.17 0.24 0.31 0.37 0.42 0.46 0.48 0.48 
9400 2865 0.09 0.17 0.24 0.31 0.38 0.42 0.46 0.48 0.49 
9500 2896 0.09 0.17 0.25 0.32 0.38 0.43 0.47 0.49 0.50 

9600 2926 0.09 0.17 0.25 0.32 0.38 i 0.43 0.47 0.49 0.50 
9700 2957 0.09 0.17 0.25 0.32 0.39 0.44 0.48 0.50 0.51 
9800 2987 0.09 0.17 0.26 0.33 0.39 0.44 1 0.48 0.50 0.51 
9900 3018 0.09 0.18 0.26 0.33 0.40 0.45 0.48 0.51 0.52 

10000 3048 0.09 0.18 0.26 0.33 0.40 0.45 0.49 0.51 0.52 
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TABLE VIII. —FOR CONVERTING SIDEREAL INTO MEAN 
SOLAR TIME 

(Increase in Sun’s Right Ascension in Sidereal h. m. s.l 

Mean Time = Sidereal Time — C'. 

Sid. 

Hrs. 
Corr. 

Sid. 

Min. 
Con-. 

Sid. 

Min. 
Corr. 

Sid. 

Sec. 
Corr. 

Sid. 

Sec. 
Corr. 

m s s s s s 
I 0 9.830 I 0 .164 31 5-079 I 0.003 31 0.085 

2 0 19 .659 2 0.328 32 5 .242 2 0.005 32 0 .087 

3 0 29.489 3 0.491 33 5 406 3 0 .008 33 0 .090 

4 0 39-318 4 0-655 34 5-570 4 0 .011 34 0 .093 

5 0 49.148 5 0 .819 35 5-734 5 0 .014 35 0 .096 

6 0 58 -977 6 0.983 36 5-898 6 0 .016 36 0 .098 

7 I 8 .807 7 I .147 37 6.062 7 0 .OIQ 37 0 .101 

8 I 18 .636 8 I .311 38 6.225 8 0 .022 38 0 .104 

9 I 28 ,466 9 I .474 39 6.389 9 0.025 39 0.106 

10 I 38.296 10 1.638 40 6-553 10 0 .027 40 0.109 

XI I 48.125 II I .802 41 6-717 11 0.030 41 0 .112 

12 I 57 -955 12 I .966 42 6.881 12 0-033 42 0.115 

13 2 7.784 13 2 .130 43 7-045 13 0.035 43 0 .117 

14 2 17,614 14 2 .294 44 7.208 14 0.038 44 0 .120 

15 2 27-443 15 2 -457 45 7 -372 15 0 .041 45 0.123 

16 2 37.273 16 2 .621 46 7 -336 16 0 .044 46 0 .126 

17 2 47.102 17 2.7«5 47 7 .700 17 0 .046 47 0 .128 

18 2 56.932 18 2.949 48 7.864 18 0 .049 48 O.I3I 

19 3 6.762 19 3-113 49 8 .027 19 0.052 49 0.134 
20 3 16.591 20 3 277 50 8 .191 20 0 .055 50 0.137 

21 3 26.421 21 3-440 51 8-355 21 0.057 51 0.139 

22 3 36.250 22 3 -604 52 8-519 22 0 .060 52 0.142 

23 3 46.080 23 3.768 53 8.683 23 0.063 53 0.145 

24 3 55 -909 24 3 -932 54 8.847 24 0.066 54 0.147 

25 4 .096 55 9.010 25 0 .068 55 0.150 

26 4.259 56 9-174 26 0.071 56 0.153 
27 4423 57 9-338 27 0.074 57 0.156 

28 4-587 58 9.302 28 0.076 58 0.158 

29 4-751 59 9.666 29 0.079 59 0 .161 

30 4-91S 60 9.830 30 0.082 60 0.164 
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TABLE IX. —FOR CONVERTING MEAN SOLAR INTO 
SIDEREAL TIME 

[Increase in Sun’s Right Ascension in Solar h. m. s.] 

Sidereal Time = Mean Time -f- C. 

Mean 
Ilrs. Corr. Mean 

MiiJ. Corr. Mean 
Min. Corr. M ean 

Sec. Corr. Mean 
.Se( Corr. 

m L S s s s b 

I O Q .856 I 0.164 31 5 063 I 0 .003 31 0 .085 

2 o 19 7^3 2 0.329 32 5 -257 2 0.005 32 0 .088 

3 O 2C) .560 3 0 .493 33 5 -421 3 0 .008 33 0 .090 

4 o 39.426 4 0.657 34 5 -585 4 0 .Oil 34 0.093 

5 o 49 .282 5 0 .821 35 5 -750 5 0 .014 35 0 .096 

6 o 59-139 6 0 .986 36 6 0 .016 36 0 .099 

7 I S-99S 7 I .150 37 6 .078 7 0 .019 37 0,101 
8 I 18.852 8 I -314 38 6.242 1 8 0 .022 3« i 0.104 

9 I 28 .708 9 I .47''^ 39 6-407 9 0 .025 39 0.107 

10 I 3^ -565 10 1 -643 40 6-571 10 0 .027 40 0 .110 

II I 48 .421 II I .807 41 6-735 II 0 .030 41 0.112 

12 I 58.278 12 1.971 42 6 .900 12 0.03.3 42 0.115 

13 2 8-134 13 2 .136 43 7 064 13 0 .036 43 0 .118 

14 2 17-99I 14 2 .300 44 7 .228 14 0 .038 44 0 .120 

15 2 27 .S47 15 2 .464 45 7 -362 15 0 .041 45 0.123 

i6 2 37-704 16 2 .628 46 7-557 16 0 .044 46 0 .126 

17 2 47-560 17 2 .763 47 7.721 17 0.047 47 0 .129 

i8 2 57-417 18 2 -957 48 7 -885 18 0.049 48 0.131 

19 3 7-273 19 3 -^21 49 8 .049 19 0.052 49 0.134 

20 3 17 .129 20 3 -285 50 8 .214 20 0.055 50 0.137 

21 3 26 .q86 21 3 -450 51 8-378 21 0.057 51 0.140 

22 3 36 .842 22 3 614 52 8.542 22 0 .060 52 0 .142 

23 3 46 ,699 23 3 77^ 53 8.707 23 0 .063 53 0.145 

24 3 56-555 24 3 *943 54 8.87r 24 0 .066 54 0 .14^ 

25 4.107 55 9-035 25 0 .068 55 0.I5I 

26 4.271 56 9-199 26 0 .071 56 0.153 

27 4 -435 57 9 -364 27 0.074 57 0.156 

28 4 ,600 58 9.528 28 0 .077 58 0 .160 

29 4 .764 59 9 692 29 0 .079 59 0 .162 

30 4 .928 60 9.856 30 0 .082 60 0 .164 
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TABLE X. — LENGTHS OP ARCS OF THE PARALLEL AND 
THE MERIDIAN AND LOGS OF N AND R™ 

[Metric Units.] 

Latitude. Parallel. 
Value of 1 °. 

Meridian. 
Value of 1®. 

Lok N. Log Rm- 

0 Meters. Meters. 
0 00 111,321 110,567.2 6.8046985 6.8017489 

30 1,301 567.3 6987 7493 
1 00 1,304 567.6 ()990 7502 

30 1,283 508.0 6996 7519 
2 00 1,253 568.6 7003 7543 

30 1,215 569 4 7012 7573 
3 00 1,169 570.3 7025 7610 

30 1,114 571 4 7040 7654 
4 00 1,051 572.7 7057 7704 

30 110,980 574.1 7076 7761 
5 00 110,900 110,575.8 6.8017097 6.8017824 

30 0,812 577.6 7120 7894 
6 00 0,715 579.5 7146 7971 

30 0,610 581.6 7174 8054 
7 00 0,497 583.9 7203 8144 

30 0,375 586.4 7235 8240 
8 00 0,245 589.0 7270 8343 

30 0,106 591.8 7307 8452 
9 00 109,959 594.7 7345 8568 

30 9,804 597 8 7385 8690 
10 00 109,641 110,601.1 6.8047428 6.8018819 

30 9,469 604.5 ! 7474 8954 
11 00 9,289 608.1 1 7520 9(M)4 

30 9,101 611.9 7570 9241 
12 00 108,904 615.8 7620 9395 

30 8,699 619.8 7673 9555 
13 00 8,486 624.1 : 7729 9720 

30 8,265 628.4 7786 9892 
14 00 8,036 633.0 7845 6.8020070 

30 107,798 637.6 7907 0254 
15 00 107,553 110,642.5 6.8047970 6.8020443 

30 7,299 647.5 8035 0639 
10 00 7,036 652.6 8102 0839 

30 6,766 657.8 8171 1047 
17 00 6,487 663.3 8242 1258 

30 6,201 1 668.8 8315 1477 
18 00 5,906 674.5 8389 1701 

30 5,604 680.4 8465 1930 
19 00 5,294 686 3 8544 2165 

30 4,975 1 692.4 8624 2404 
20 00 104,649 1 110,698.7 6.8048705 6.8022649 

30 4,314 705.1 8789 2900 
21 00 3,972 711.6 8874 3155 

30 3,622 718.2 8960 3415 
22 00 3,264 725.0 9049 3680 

30 2,898 731.8 9139 3950 



422 TABLES 

TABLE X {Con.) — LENGTHS OF ARCS OF THE PARALLEL 
AND THE MERIDIAN AND LOGS OF N AND Rm 

IMetric Units.] 

Latitude. 
Parallel. 

Value of 1 ®. 
Meridian. 

V^alueofl®. 
Log N. Log Rm. 

23 00 
Meters. 

102,524 
Metens. 

110,738.8 6.8049231 6.8024225 
30 2,143 746.0 9323 4504 

24 00 1,754 753.2 9418 4788 
30 1,357 760.6 9514 5077 

25 00 100,952 110,768.0 6.8049612 6.8025370 
30 0,539 775.6 9711 5667 

26 00 0,119 783.3 9812 5968 
30 99,692 791.1 9914 6274 

27 00 9,257 799.0 6.8050017 6584 
30 8,814 807.0 0121 6897 

28 00 8,364 815.1 0227 7215 
30 7,906 823.3 0334 7536 

29 00 7,441 831.6 0443 7862 
30 6,968 840.0 0552 8190 

30 00 96,488 110,848.5 6.8050663 6.8028522 
30 6,001 857.0 0774 8857 

31 00 95,506 865.7 0888 9197 
30 5,004 874.4 1002 9539 

32 00 4,495 883.2 1117 9883 
30 3,979 892.1 1233 6.8030231 

33 00 3,455 901.1 1350 0582 
30 2,925 910 1 1468 0935 

34 00 2,387 919.2 1586 1292 
30 1,842 928.3 1706 1651 

35 00 91,290 110,937.6 6.8051826 6.8032012 
30 0,731 946.9 1947 2375 

36 00 1 0,166 956.2 2069 2741 
30 89.593 965.6 2192 3109 

37 00 , 9,014 975.1 2315 3479 
30 I 8,428 984.5 2439 3850 

38 00 7,835 994.1 2564 4224 
30 7,235 111,003.7 2689 4599 

39 00 6,629 013.3 2814 4976 
30 6,016 023.0 2940 5354 

40 00 85,396 111,032.7 
042.4 

6.8053067 6.8035734 
30 4,770 3194 6115 

41 00 4,137 052.2 3321 6496 
30 3,498 061.9 3448 6878 

42 00 2,853 071.7 3576 7262 
30 2,201 081.6 3704 7646 

43 00 1,543 
0,879 

091.4 3832 8031 
30 101.3 3960 8416 

44 00 80,208 111.1 4089 8802 
30 79,532 121.0 4218 9188 

45 00 78,849 111,130.9 6.8054347 6.8039574 
30 8,160 

1 
140.8 4476 9960 
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TABLE X 
AND 

Latitude. 

46 00 
30 

47 00 
30 

48 00 
30 

49 00 
30 

50 00 
30 

51 00 
30 

52 (K) 
30 

53 00 
30 

54 00 
30 

55 00 
30 

56 00 
30 

57 00 
30 

58 00 
30 

59 00 
30 

60 00 
30 

()1 00 
30 

62 00 
30 

63 00 
30 

64 00 
30 

65 00 
30 

66 00 
30 

67 00 
30 

68 00 
30 

(Con.). —LENGTHS OF ARCS OF THE PARALLEL 
THE MERIDIAN AND LOGS OF N AND Rm 

(Metric Units.) 

Parallel. 
Value of 1®. 

Meters. 

77,466 
6,765 
6,058 
5,346 
4,628 
3,904 
3,174 
2,439 

71,698 
0,952 
0,200 

69,443 
8,680 
7,913 
7,140 
6,301 
5,578 
4,790 

63,996 
3,198 
2,395 
1,587 
0.774 

59,957 
9,135 
8,309 
7,478 
6,642 

55,802 
4,958 
4,110 
3,257 
2,400 
1,540 
0,675 

49,806 
8,934 
8,057 

47,177 
6,294 
5,407 
4,516 

43,622 
2,724 
1,823 
0,919 

Meridian. 
Value of 1®. 

Meters. 

111.150.6 
160.5 
170.4 
180.2 
190.1 
199.9 
209.7 
219.5 

111,229.3 
239.0 
248.7 
258.3 
268.0 
277.6 
287.1 
296.6 
306.0 
315.4 

111,324 8 
334.0 
343.3 
352.4 
361.5 
370.5 
379.5 
388 4 
397.2 
405.9 

111,414.5 
423.1 
431.5 
439 9 
448.2 
456.4 
464.4 
472.4 
480.3 
488.1 

111.495.7 
503.3 
510.7 
518.0 
525.3 
532.3 
539.3 
546.2 

Log N. 

6.8054604 
4732 
4861 
4989 
5118 
5246 
5373 
5500 

6.8055628 
5754 
5880 
6006 
6131 
6256 
6380 
6504 
6627 
6749 

6.8056870 
6991 
7111 
7230 
7348 
7465 
7582 
7697 
7811 
7924 

6.8058037 
8148 
8258 
8366 
8474 
8580 
8685 
8789 
8891 
8992 

6.8059092 
9190 
9287 
9382 
9475 
9567 
9658 
9747 

I.og llm. 

6.8040346 
0731 
1117 
1502 
1887 
2270 
2653 
3034 

6.8043416 
3796 
4175 
4552 
4928 
5302 
5674 
6044 
6413 
6779 

6.8047144 
7506 
7866 
8223 
8578 
8929 
9279 
9624 
9968 

6.8050307 
6.8050644 

0977 
1307 
1633 
1956 
2274 
2590 
2900 
3208 
3510 

6.8053809 
4103 
4393 
4678 
4959 
5235 
5506 
5772 
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TABLE X 
AND 

Latitude. 

69 00 
30 

70 00 
30 

71 00 
30 

72 00 
30 

73 00 
30 

74 00 
30 

75 00 
30 

76 00 
30 

77 00 
30 

78 00 
30 

79 00 
30 

80 00 
30 

81 00 
30 

82 00 
30 

83 00 
30 

84 00 
30 

85 00 
30 

86 00 
30 

87 00 
30 

88 00 
30 

89 00 
30 

90 00 

TABLES 

(Con.). —LENGTHS OF ARCS OF THE PARALLEL 
THE MERIDIAN AND LOGS OF N AND Rm 

[Metric Units.] 

Parallel. 
Value of 1 “. 

Meridian. 

Value of 1°. 
Log N. Log Urn 

Meters. 

40,012 
Meters. 

111,552.9 6.8059834 0.8050034 
39,102 559.5 9919 6290 
38,188 111,565.9 6.8060003 6.8056542 

7,272 572.2 0085 6788 
6,353 578.4 0165 7029 
5,421 584.5 0244 7264 
4,506 590.4 0321 7495 
3,578 596.2 0396 7719 
2,648 601.8 0468 7938 
1,716 607.3 0539 8153 
0,781 612.7 0008 8301 

29,843 617.9 0070 8563 
28,903 111,622.9 6.8060742 0.8058759 

7,961 627 8 0805 8950 
7,017 632.6 0867 9135 
6,071 637.1 0927 9314 
5,123 641.6 0984 9487 
4,172 645.9 1040 9653 
3,220 650.0 1093 9814 
2,266 653.9 1145 9968 
1,311 657.8 1195 6.8060118 

20,353 661.4 1242 0258 
19,394 111,664.9 6.8061287 6.8060394 
8,434 668.2 1330 0523 
7,472 671.4 1371 0646 
6,509 674.4 1409 ; 0763 
5,545 677.2 1446 0873 
4,579 679.9 1480 0976 
3,612 682.4 1513 1074 
2,644 684.7 1544 1163 
1,675 686.9 1571 1248 

10,706 688.9 1597 1325 
9,735 111,690.7 6.8061620 6.8061395 
8,764 692.3 1642 1459 
7,792 693.8 1661 1517 
6,819 695.1 1678 1567 
5,846 696.2 1692 1611 
4,872 697.2 1705 1648 
3,898 697.9 1715 1679 
2,924 698.6 1723 1702 
1,949 699.0 1728 1719 

975 699.3 1731 1729 
0 111,699.3 6.8061733 0.8061733 
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TABLE XI.— TABLE OF LOGARITHMS OP RADII OF CURVA¬ 

TURE OF THE EARTH’S SURFACE IN METERS FOR VARIOUS 

LATITUDES AND AZIMUTHS 

[Based upon C'larke’s Ellipsoid of Rotation (t866).] 

Azimuth. 0° lat. r lat. 2® lat. 3° iat. 4“’ lat. .'i° hit. 6° lat. 

Meridian. 6.80175 6.80175 6.80175 6.80176 6.80177 6.80178 6.80180 
5 177 177 178 178 179 180 182 

10 184 184 184 185 186 187 188 
15 J95 195 195 196 197 198 199 
20 209 209 210 210 211 212 214 

25 227 228 228 228 229 230 232 
30 248 249 249 250 250 251 252 
35 272 272 272 273 273 274 276 
40 296 297 297 297 298 299 300 
45 322 322 322 323 324 324 325 

50 348 348 348 348 349 .S-W 351 
55 373 373 373 373 374 374 375 
60 396 396 396 896 397 .398 398 
65 417 417 417 418 418 418 419 
70 435 435 436 436 436 437 437 

75 450 450 450 450 451 451 452 
80 461 461 461 461 462 462 463 
85 468 468 468 468 468 469 469 
90 470 470 470 470 •471 471 472 

Azimuth. ()° hit. 7° hit. 8" hit. hit. 30° lat. 11° lat. 12” hit. 

Meridian. 6.80180 6.80181 6.80183 6.80186 6.80188 6.80191 6.80194 
5 182 184 18(i 188 190 193 196 

10 188 190 192 194 197 200 202 
15 199 201 203 205 207 210 213 
20 214 215 217 219 222 224 227 

25 232 233 235 237 239 242 244 
30 252 254 256 257 260 262 264 
35 276 277 278 280 282 284 287 
40 300 301 303 304 306 308 310 
45 325 326 328 329 331 333 335 

50 351 352 353 354 356 358 359 
55 375 376 377 379 380 382 383 
60 398 399 400 401 403 404 406 
65 419 420 421 422 423 424 426 
70 437 438 439 440 441 442 443 

75 452 452 453 454 455 456 457 
80 463 463 464 465 466 467 468 
85 469 470 470 471 472 473 474 
90 472 472 473 474 474 475 476 
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TABLE XI (6o».). — TABLE OF LOGARITHMS OP RADII OF 
CURVATURE OP THE EARTH’S SURFACE IN METERS FOR 
VARIOUS LATITUDES AND AZIMUTHS 

{Based upon Clarke’s Ellipsoid of Rotation (1866).j 

Azimuth. 12 Mat. 13° lat. 14° lat. 15° lat. ll)“ lat. 17° lat. 18° lat. 

Meridian. 0.80194 0.80197 6.80201 6.80204 6.80208 6.80213 6.80217 
5 190 199 203 200 210 215 219 

10 202 200 209 213 217 221 225 
15 213 216 219 223 227 231 235 
20 227 230 233 230 240 244 248 

25 244 247 250 254 257 261 205 
30 204 267 270 273 276 280 284 
35 287 289 292 295 298 301 305 
40 310 313 315 318 321 324 327 
45 335 337 339 342 344 347 350 

50 359 361 364 300 368 371 373 
55 383 385 387 389 391 394 390 
00 400 407 409 411 413 415 417 
05 420 427 429 430 432 434 430 
70 443 444 446 447 449 451 453 

75 457 458 460 461 463 464 466 
80 408 469 470 471 473 474 476 
85 474 475 470 478 479 480 482 
90 470 477 478 480 481 482 484 

Azimuth. 18° lat. 10° lat. 20° lat. 21° lat. ' 22° lat. 23° lat. 24° lat. 

0 

Meridian. 0.80217 0.80222 6.80220 6.80232 0 80237 0 80242 6.80248 
5 219 224 228 234 239 244 250 

10 225 230 234 239 244 250 255 
15 235 239 244 249 254 259 204 
20 248 252 257 262 206 1 271 277 

25 205 269 273 277 282 287 292 
30 284 287 292 290 300 305 1 309 
35 305 308 312 316 320 324 329 
40 327 330 334 338 341 345 350 
45 350 353 357 360 364 367 1 371 

50 373 376 379 382 386 389 392 
55 396 398 401 404 407 410 413 
00 417 419 422 424 427 430 432 
05 436 438 440 443 445 448 450 
70 453 454 456 459 461 463 465 

75 466 468 470 472 473 476 478 
80 476 478 479 481 483 485 487 
85 482 483 485 487 489 490 492 
90 484 485 487 489 490 492 494 



TABLES 427 

TABLE XI (Con.)-— table OF LOGARITHMS OF RADII OF 

CURVATURE OF THE EARTH’S SURFACE IN METERS FOR 

VARIOUS LATITUDES AND AZIMUTHS 

(Based upon Clarke’s Ellipsoid of Rotation (1866).] 

Azimuth. 24“ lat. 25“ lat. 26“ lat. 27“ lat. 28“ lat. 29“ lat. 30“ lat. 

Meridian. 6.80248 6.80254 6.80260 6.80266 6 80272 () 80279 6.80285 
5 250 256 262 268 271 280 287 

10 255 261 267 273 279 : 285 292 
15 264 270 276 282 288 294 300 
20 277 282 288 293 299 305 311 

25 292 297 302 308 313 319 325 
30 309 314 319 324 330 335 340 
35 329 333 338 343 348 353 358 
40 350 354 358 362 367 372 377 
45 371 375 379 383 387 391 396 

50 392 396 399 403 407 411 415 
55 413 416 420 423 426 430 434 
60 432 435 438 442 445 448 451 
65 450 453 455 458 461 464 467 
70 465 468 470 473 475 478 481 

75 478 480 482 484 487 489 492 
80 487 489 491 493 495 498 500 
85 492 494 496 498 501 503 505 
90 494 496 498 500 502 504 507 

Azimuth. 30“ lat. 31“ lat. 32“ lat. 
! 

33“ lat. 34“ lat. 35“ lat. 36“ lat. 

Meridian. 6.80285 0 80292 6.80299 6.80306 6.80313 6.80320 6.80327 
5 287 294 300 307 314 322 329 

10 292 298 305 312 319 326 333 
15 300 306 313 320 326 333 340 
20 311 317 324 330 337 343 350 

25 325 331 337 343 349 355 362 
30 340 346 352 358 364 370 376 
35 358 363 369 374 380 385 391 
40 377 382 386 392 397 402 407 
45 396 400 405 410 414 419 424 

50 415 419 423 428 432 436 441 
55 434 437 441 445 449 453 457 
60 451 455 458 462 465 469 472 
65 467 470 473 476 480 483 486 
70 481 484 486 489 492 495 498 

75 492 494 497 500 502 505 508 
80 500 502 505 507 510 512 515 
85 505 507 510 512 514 517 519 
90 507 509 511 514 516 518 521 
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TABLE XI (Com.). — table OF LOGARITHMS OF RADII OF 

CURVATURE OF THE EARTH’S SURFACE IN METERS FOR 

VARIOUS LATITUDES AND AZIMUTHS 

[Based upon Clarke’s Ellipsoid of Rotation (i866).] 

Azimuth. 36° hit. 37° lut. 38° lut. 39° lut. 40° lut. 41° lut. 42° lut. 

Meridian. 6.80327 6.80335 6.80342 6.80350 6.80357 6.80365 6.80373 
5 329 336 344 351 359 366 374 

10 333 340 348 355 363 370 378 
15 340 348 355 362 369 376 384 
20 350 357 364 371 378 385 392 

25 362 368 375 382 388 395 402 
30 376 382 388 394 401 407 413 
35 391 397 402 408 414 420 426 
40 407 412 418 423 429 434 440 
45 424 429 434 439 444 449 454 

50 441 445 450 454 459 464 468 
55 457 401 465 469 474 478 482 
00 472 476 480 484 487 491 495 
65 486 489 493 496 500 503 507 
70 498 501 504 507 510 514 517 

75 508 510 513 516 519 522 525 
80 515 517 520 523 525 528 531 
85 519 522 524 527 529 532 534 
90 521 523 526 528 531 533 536 

Azimuth. 42° lut. 43° lut. 44° hit. 1 45° hit. 1 46° hit. 47° hit. 48° lat. 

Meridian. 6.80373 6.80380 6.80388 6.80396 6.80404 6.80411 6.80419 
5 371 382 389 397 404 412 420 

10 378 385 393 400 1 408 415 423 
15 384 391 398 406 ' 413 420 428 
20 392 399 * 406 413 ! 420 427 434 

25 402 408 415 422 ' 429 436 442 
30 413 420 426 433 439 446 452 
35 426 432 438 444 450 456 462 
40 440 446 451 457 462 468 ! 474 
45 454 459 464 470 475 480 ! 485 

50 468 473 478 482 487 492 496 
55 482 486 490 495 499 503 508 
60 495 499 502 506 510 514 518 
65 507 510 514 517 520 524 528 
70 517 520 523 526 529 532 536 

75 525 528 531 534 536 539 542 
80 531 534 536 539 542 544 547 
85 534 537 540 542 545 548 550 
90 536 538 541 544 546 549 551 
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TABLE XI (Cow.).— TABLE OF LOGARITHMS OF RADII OF 

CURVATURE OF THE EARTH’S SURFACE IN METERS FOR 

VARIOUS LATITUDES AND AZIMUTHS 

[Based upon Clarke’s Ellipsoid of Rotation (r866).] 

Azimuth. 48° lat. 49° lat. 50° lat. 51° lat. 52° lat. 53° lat. 54° lat. 

Meridian. 0.80419 0.80426 6.80434 0.80442 0.80449 6.80457 6.80404 
5 420 428 435 443 450 458 405 

10 423 430 438 445 45.3 460 467 
15 428 435 442 450 457 464 471 
20 434 441 448 455 462 469 476 

25 442 449 456 403 409 476 482 
30 452 4.58 405 471 477 484 490 
35 402 408 474 480 480 492 498 
40 474 479 485 490 490 501 506 
45 485 490 495 500 505 510 515 

50 496 501 500 510 515 520 524 
55 508 512 510 520 524 528 533 
00 518 522 520) 530 533 537 541 
05 528 531 534 538 541 545 548 
70 530 539 542 545 548 551 554 

75 542 545 518 551 554 557 559 
80 547 550 553 555 558 561 563 
85 550 553 555 558 500 503 566 
90 551 554 550) 559 501 504 566 

Azimuth, r)4°l;d. 55° lat. { r)t)° l;it, : .'■‘7° hit. .58" hit. 59° lat. 60° lat. 

Meridian. 0.80464 0.80471 0.80479 (). 80480 0.80493 0 80500 0 80500 
5 405 472 479 j 48(*) 493 500 07 

10 407 474 ! 481 488 495 502 09 
15 471 478 1 485 492 408 505 11 
20 470 483 489 490 502 509 15 

25 482 ' 489 495 501 508 514 20 
30 490 496 502 508 1 514 519 25 
35 498 503 5(K) 515 520 525 31 
40 500 512 517 522 527 532 37 
45 515 520 525 530 534 539 43 

50 524 528 533 537 542 546 50 
55 533 537 541 545 548 552 56 
60 541 544 548 552 555 558 62 
65 548 551 555 558 561 564 67 
70 554 557 560 563 566 569 72 

75 559 562 565 568 570 573 75 
80 563 566 568 571 573 576 78 
85 560 568 570 573 575 578 1 80 
90 560 569 571 574 570 578 j 80 
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TABLE XI (Con.).— TABLE OF LOGARITHMS OF RADII OF 

CURVATURE OF THE EARTH’S SURFACE IN METERS FOR 

VARIOUS LATITUDES AND AZIMUTHS 

[Based upon Clarke’s Ellipsoid of Rotation (1866).] 

Azimuth. 60° lat. 61° lat. 62° lat. 63° lat. 64° lat. 65° lat. 66° lat. 

Meridian. 6.80506 6.80513 6.80520 6.80526 6.80532 6.80538 6.80544 
5 07 14 20 26 32 38 44 

10 09 15 22 28 34 40 45 
15 11 18 24 30 36 42 47 
20 15 21 27 33 39 44 50 

25 20 26 31 37 42 48 53 
30 25 30 36 41 46 51 56 
35 31 36 41 46 51 56 60 
40 37 42 46 51 56 60 64 
45 43 48 52 56 60 64 68 

50 50 54 58 62 65 69 73 
55 56 60 63 67 70 74 77 
60 62 65 68 72 75 78 81 
65 67 70 73 76 79 82 84 
70 72 74 77 80 82 85 87 

75 75 78 80 83 85 87 90 
80 78 80 83 85 87 89 91 
85 80 82 84 86 88 90 92 
90 80 83 85 87 89 91 93 

Azimuth. 66“ lut. 67“ lat. 68° lat. 69° lat. 70° lat. 71“ lat. 72° lat. 

0 

Meridian. 6.80544 6 80550 6.80555 6.80560 6.80565 6.80570 6.80575 
5 44 50 55 61 66 70 75 

10 45 51 56 62 66 71 76 
15 47 53 58 63 68 72 77 
20 50 55 60 65 70 74 78 

25 53 58 62 67 72 76 80 
30 56 61 65 70 74 78 82 
35 60 64 69 73 77 81 84 
40 64 68 72 76 80 83 87 
45 68 72 76 79 83 86 89 

50 73 76 79 83 86 89 92 
55 77 80 83 86 89 91 94 
60 81 84 86 89 91 94 96 
65 84 87 89 92 94 96 98 
70 87 90 92 94 96 98 6.80600 

75 90 1 92 94 96 98 6.80600 01 
80 91 93 95 97 99 01 02 
85 92 94 96 98 6.80600 01 03 
90 93 95 97 98 00 02 03 
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TABLE XIL —VALUES OF LOG m FOR COMPUTING SPHERI¬ 
CAL EXCESS. (Metric System.) 

Latitude Log m Latitude Ixjg m Latitude Log m 

0 / 

18 00 I .40639— 10 33 oc I .40520 — 10 

0 / 

48 00 I .40369— 10 
18 30 636 33 30 516 48 30 3^4 
IQ 00 632 34 00 511 49 00 359 
19 30 629 34 30 506 49 30 354 
20 00 626 35 00 501 50 00 349 

20 30 623 35 30 496 50 30 344 
21 00 6t9 36 00 491 51 00 339 
21 30 616 36 30 486 51 30 334 
22 00 6t2 37 00 482 52 00 329 
22 30 608 37 30 477 52 30 324 

23 00 60s 38 00 472 53 00 319 
23 30 601 38 30 467 53 30 314 
24 00 507 39 00 462 54 00 309 
24 30 594 39 30 457 54 30 304 
25 00 590 40 00 452 ! 55 00 299 

25 30 580 40 30 446 55 30 295 
26 00 dr 00 44 T 56 00 290 
26 30 57'^ tr 30 43^’ 1 5^> 30 285 

0
 

0
 

573 42 00 43 f ! 57 00 280 
27 30 5^19 42 30 426 57 30 276 

28 00 565 43 00 421 58 00 271 
28 30 560 43 30 416 58 30 266 
29 00 556 44 00 411 59 00 262 
29 30 552 44 30 406 59 30 257 
30 00 548 45 00 400 60 00 253 

30 30 544 45 3<^ 395 60 30 249 
31 00 539 1 46 00 390 61 00 244 

31 30 534 46 30 385 61 30 240 
32 00 530 47 00 380 62 00 235 
32 30 I-40525 

i 
47 30 I -40375 62 30 I .40231 

(The above table is computed for the Clarke spheroid of 1S66.) 

TABLE XrVa.—LOGF (—20) 

Lat. Log. F. Lat Log. F. Lat. Log. F Lat Log. F. Lat. Log. F. Lat. Log. F. 

0
 0
0

 
M

 7-738 24“ 7-823 30° 7.866 39" 7-877 42° 7.860 48° 7.814 
19 7-756 25 7-832 31 7.870 37 7.876 43 7-854 49 7.804 
20 7-77^ 26 7.841 32 7-873 38 44 7-848 50 7.792 
21 7-787 27 7.849 33 7-875 39 7.872 45 7.840 51 7.780 
22 7.800 28 7-8sS 34 7.877 40 7.860 46 7.832 52 7.767 
23 7.812 29 7.861 35 7.877 41 7.864 47 7-824 53 7-753 
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TABLE XIII. —CORRECTION TO LONGITUDE FOR DIFFER¬ 

ENCE BETWEEN ARC AND SINE 

log 5 (-). log difference. log d\ (+) log 5 (-). log difference. log d\ (+). 

3 876 0 .000 000T 2 ■3>^5 4 -871 0 .000 0098 3-380 
4 .026 02 2 .535 4 .882 10^ 3 -391 
4 114 03 2 .623 4 .892 108 3 -401 

4177 04 2 .68 9 4-903 II4 3 -412 
4 225 05 2 .734 4.913 119 3 .422 

4.265 06 2.774 4.922 124 3 -431 
4 .208 07 2 .807 4 -932 130 3 -441 

4.327 08 2 .836 4 .941 136 3 -450 

4 -853 OQ 2 .862 4.950 142 3 -459 
4 376 10 2.885 4.959 147 3 -468 

4 396 II 2 .QO5 4 .968 153 3 -477 
4 -415 12 2 .924 4 .976 160 3 -485 

4 .433 13 2 .942 4 985 166 3 -494 
4.449 14 2.958 4 -993 172 3 -5°^ 
4 .464 15 2.973 5 -002 179 3 511 

4.478 16 2.9S7 5 010 186 3 -519 
4 .491 17 3 .000 5 O'? 192 3 526 

4 .503 18 3 .012 5 -o^S 199 3 -534 
4.526 20 3 .035 5 -033 206 3-542 
4-548 23 3 -057 5 -040 213 3 -549 

4 570 25 3 .079 5 -047 22T 3 -.S-se 
4 -591 27 3 5 -054 228 3 -Sf’.I 
4 .612 30 3.121 .062 236 3 -571 
4 .631 33 3 .140 5 .068 243 3 -577 
4 -649 36 3.158 5 -075 251 3 -584 

4 .667 39 3 .176 5 .082 259 3 -.591 
4 .684 42 3 *93 5 .088 267 3 •.397 
4 .701 45 3 -210 5 -095 275 3 ■6°4 
4 .716 48 3.225 5 -102 284 3 -<^11 
4-732 52 3 .241 5 -108 292 3 •'■’17 

4.746 56 3.255 5 -114 300 3 -623 
4 -761 59 3 -270 5 -120 309 3 -629 
4-774 63 3 .283 5.126 318 3 -635 
4 .788 67 3 297 5-132 327 3 -^>41 
4 .801 71 3-310 5-138 336 3-647 

4.813 75 3-322 5 -144 345 3-653 
4.825 80 3 -334 5-150 354 3 -659 
4.834 84 3-343 5 156 364 3 -665 
4.849 89 3-358 5 161 373 3 -670 
4 .860 94 3-369 5-167 383 3 -676 
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TABLE XIV. —LOGARITHMS OF FACTORS FOR COMPUTING 
GEODETIC POSITIONS 

Lat. Log A Log/? LogC Log D Log£ 

o / — 10 —10 — 10 — 10 — 20 

i8 oo 8.509 5862 8.512 2550 0 .91816 2.1606 s -7317 
10 5^*36 2474 0 .92243 2.1641 5-7337 
20 5811 2397 0 .92667 2.1675 3-7358 
30 5785 2320 0 .93088 2 .1709 5-7379 
40 5759 2243 0 -oksoS 2.1742 5 -7400 

50 5733 2165 0.93919 ^ -1775 5-7422 

19 00 5707 2086 0.94330 2 .1808 S-7443 
10 5681 2006 0.94737 2.1840 5 -7464 
20 5654 1927 0.95^42 2 .1872 S -7486 

30 5627 1847 0 .95544 2 .1903 S-7S°8 
40 5600 1766 0 .95043 2 .1934 S-7S30 
50 5573 1684 0 .96339 2 .1965 5-7552 

20 00 3546 1602 0 .96733 2 .1996 S-7S74 
10 SS18 1519 0.97123 2 .2026 5-7.397 
20 5490 1435 0.975 IT 2 .2055 3-7619 
30 5462 135 r 0 .97896 2 .2084 5-7642 
40 5434 1267 0 .98279 2 .2113 5 .7664 

50 5406 1182 0 .98659 2 .2142 5 -7688 

21 00 .3377 1096 0 .99037 2 .2170 5-7711 
10 53‘l^ 1010 0 .99412 2 .2198 3-7734 
20 5320 0924 0 .997^5 2 .2226 5-7737 
30 5290 0836 I .00156 2 .2253 3 -7780 
40 5261 0748 I .00524 2 .2280 5 -7804 
50 5232 0660 I .00890 2 .2307 3 -7828 

22 00 5202 0571 I .01253 2 .2333 5 -7851 
10 5172 0481 I .01615 2 .2359 3-7875 
20 5^42 0391 1.01974 2 .2385 3 -7899 
30 5112 0301 I .02331 2 .2411 5 -7924 
40 5082 0210 1.02686 2 .2436 5 -7948 
50 5051 0118 1.03039 2 .2461 5 -7972 

23 00 5020 8.512 0026 I .03390 2 .2485 3 -7997 
10 4990 8.5119934 I .03739 2 .2510 5 .8021 

20 4959 9840 1.04086 2 .2534 5 .8046 

30 4927 9747 I .04431 2 .2557 3 -8071 
40 4896 9653 I .04775 2 .2581 5.8096 
50 4865 9558 I .05116 2 .2604 5.8121 

24 00 4833 9463 I .05456 2 .2627 3 -8146 
10 4801 9367 1.05794 2 .2650 5.8172 
20 4769 9271 I .06130 2 .2672 5 -8197 
30 4737 9174 I .06464 2 .2694 5 -8223 
40 4704 9077 1.06797 2 .2716 3 -8249 
50 4672 8970 1.07128 2 .2738 5 -8274 
60 8.5094639 8.511 8S81 I -07457 2.2759 5-8300 
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TABLE XIV {Continued) 

Lat. Log A Log B 

O f 
25 00 8.509 4639 8.511 8881 

10 4606 8783 
20 4573 8684 
30 4540 8584 
40 4507 8484 
50 4473 8383 

26 00 4439 8283 
10 4406 8181 
20 4372 8079 
30 4337 7977 
40 4303 7874 
50 4269 7771 

27 00 4234 7667 
10 4200 7563 
20 4165 7438 
30 4130 7353 
40 4094 7248 
50 4059 7142 

28 00 4024 7036 
10 I 3988 6929 
20 3952 6822 
30 3917 6714 
40 3881 6607 
50 3845 6498 

29 00 3808 6389 
10 3772 6280 
20 3735 6171 
30 3699 6061 
40 3662 5950 
50 3625 3840 

30 00 3588 3729 
10 3SSI 3617 
20 3514 3503 
30 3476 3393 
40 3439 3281 
50 3401 3268 

31 00 3363 3034 
10 3325 4942 
20 3287 4827 
30 3249 4723 
40 3211 4398 
50 3173 4483 
60 1 *•309 3234 * 5.5114368 

LogC Log£> Log E 

I 07457 2.2759 5 •8300 
I.077S5 2.2780 5 8326 
I .08111 2.2801 S .8352 
I.08435 2.2822 5 8379 
I .08758 2.2842 S -8405 
I.09080 2.2862 5 -8431 

I .09400 2 .2882 5-8458 
I.09718 2 .2902 S -8485 
I .10036 2 .2922 S -8512 
I-10351 2.2941 S -8539 
I .10666 2 .2960 5 .8566 
I .10979 2 .2978 s -8593 

I .11290 2 .2997 5.8620 
I .11600 2 .3015 5 8647 
I .11909 2 .3033 5 .8675 
I .12217 2.3051 5 -8702 
1 .12523 2 .3069 5 -8730 
I .12829 2 .3086 s -87,57 

I .13132 2 .3104 5 -8785 
I 13435 2 .3121 5 -8813 
1 -13737 2 .3137 S -8841 
j .14037 2 .3154 5 .8870 
I -14337 2 .3170 5 .8898 
I -14635 2.3187 5 .8926 

1.14932 2 5 -8955 
1.15228 2 .3218 S -8983 
I -15522 2 .3234 5 -9012 
I.15816 2 .3249 5 ■9°4i 
I.i6ioq 2 .3264 5 -9069 
I.16401 2 .3279 5.9098 

I .16692 2 .3294 5-9127 
I.16981 2.3309 5 -9157 
I.17270 2 .3323 5 -9186 
2.27338 2 -3337 5 -9215 
1.27843 2 .3351 5 -9245 
I.18131 2 .3365 5 -9274 

I .18416 2 -3379 5 -9304 
I.18700 2 .3392 5 -9334 
1.18983 2 .3405 5 -9363 
1.19266 2.3418 5 -9393 
I.19548 2 .3431 5 -9423 
I .19828 2 .3444 5 -9453 
1.20108 2 .3456 5 .9484 
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TABLE XIV {Continued) 

Lat. Log A Log B Log C Log D Log E 

o / 

32 00 8.509 3134 8.511 4368 I .20108 2 .3456 5 .9484 

10 3096 4252 I .20387 2 .3469 5 -9514 

20 3057 4136 I .20666 2 .3481 5 *9544 
30 3018 4020 I .20944 2 .3493 5 -9575 
40 2980 3903 I.21220 2 -3504 S 9605 

50 2940 3786 I .21496 2 .3516 5 9636 

33 00 2901 3669 I.21772 2 -3527 5 .9667 

10 2862 3551 I .22047 2 -3539 5 9698 

20 2823 3433 I.22321 2 .3550 5 9729 

30 2784 3315 I .22594 2 -3561 5 -9760 

40 2744 3197 I .22866 2 -3571 5 -9791 
50 2704 3078 I .23138 2 3582 5 -9822 

34 00 2665 2959 I .23409 2 .3592 5 -9853 
10 2625 2840 I .23680 2 .3602 5 9885 
20 258s 2720 I .23950 2 .3612 5 -9916 

30 2545 2600 I .24210 2 .3622 5 -0948 

40 2505 2480 I .24488 2 .3632 5.9980 

50 2465 2360 I •2475'' 2 .3642 6.0011 

35 00 2425 2239 I .25024 2 .3^\'>i 6.0043 

10 2384 2118 I .25291 2 .3660 6 .0075 

20 2344 1997 I 25557 2 .3669 6 .0107 

30 2304 1875 I 25823 2.3678 6 .0140 

40 2263 1754 I .26088 2.3687 6 .0172 

50 2222 1632 I -26353 2 -3695 6 .0204 

36 00 2182 1510 I .26617 2.3704 6.0237 

10 2141 1387 I .26881 2.3712 6 .0269 

20 2100 1265 I .27145 2.3720 6.0302 

30 2059 1142 T .27407 2.3728 6.0334 

40 2018 1019 I .27670 2.3733 6.0367 

50 1977 0895 T .27932 2.3743 6 .0400 

37 00 1936 0772 I .28193 2 -375° 6.0433 

10 189s 0648 I .28454 2 -3758 6.0466 

20 1853 0524 I .28715 2 .3765 6.0499 

30 1812 0400 I .28975 2 -3772 6 -0533 
40 1771 0276 I .29234 2 -3779 6.0566 

50 1729 0151 I .29494 2 -3785 6.0600 

38 00 1687 8.511 0027 I 29753 2 3792 6 .C633 

10 1646 8.5109902 I.30011 2 .3798 6.0667 

20 1604 9777 I .30269 2 .3804 6 .0701 

30 1562 9652 I .30527 2 .3810 6.0734 

40 1521 9526 I -30785 2 .3816 6.0768 

50 1479 9401 I.31042 2 .3822 6.0802 

60 8.509 1437 8.5109275 I.31299 2.3827 6.0836 
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TABLE XIV (^Continued) 

Lat. Log A Log B LogC Log D Log E 

o / 

39 oo i'-sog 1437 8-5109275 I .31299 2 .3827 6 .0836 

lO 139s 9149 I -31555 2 .3832 6 .0871 

20 1353 9023 I.31811 2.3838 6.0905 

30 I311 8897 I .32067 2.3843 6 .0939 

40 1269 8771 I 32323 2.3848 6.0974 

50 1227 8644 I 32578 2 -3852 6.1008 

40 oo 1184 8517 I 32833 2 .3857 6.1043 

10 1142 8391 I .33088 2 .3861 6 .1078 

20 1100 8264 I 33342 2 .3866 6.1113 
30 1057 8137 I -33596 2 .3870 6.T148 

40 1015 8010 1 -33830 2 .3874 6.1183 

50 0973 7883 I .34104 2 .3878 6.1218 

41 00 OQ3O 7755 1 -34358 2 .3882 6.1253 
10 0888 7628 I .34611 2 .3885 6.1289 

20 0845 7500 I .34864 2 .3889 6.1324 

30 0803 7373 I -35117 2 .3892 6.1360 

40 0760 7245 I *35370 2.3893 6.1395 
50 0718 7117 I*35623 2.3898 6.1431 

42 00 067s 6989 I -35875 2 .3901 6.1467 

10 063 2 6861 I .36r27 2 .3903 6.1503 
20 0590 9733 I -36379 ' 2 .3906 6.1539 

30 0547 6605 1.36631 2 .3908 6.1575 

40 0504 9477 1.36883 2 .3910 6.1612 

50 0461 6348 I -37i35 2.3913 6.1648 

43 00 0419 6220 I -37386 2 .3914 6.I684 

10 0376 6092 I -37638 2.3916 6.1721 

20 0333 5963 1.37889 2 .3918 6.1758 

30 0290 5835 1.38141 2 .3919 6.1795 
40 0247 5706 I -38392 2 .3921 6.1831 

50 0204 5578 1 -38643 2 .3922 6.1868 

44 00 0162 5449 1.38894 2 .3923 6.1905 

10 0119 5320 I -39145 2 .3924 6.1943 
20 0076 5192 I -39396 2 .3925 6.1980 

30 J « .5090033 5063 1.39648 2 .3925 6.2017 

40 ) 5 .5089990 4935 1.39898 2 .3926 6 .2055 

50 9947 4806 I .40149 2 .3926 6.2092 

45 00 9904 4677 I .40400 2 .3926 6.2130 

10 9861 4548 I .40651 2.3926 6.2168 

20 9818 4420 I .40902 2 .3926 6 .2206 

30 9776 4291 1*41153 2 .3926 6.2244 

4® 9733 4162 I .41404 2 .3925 6.2283 

9689 

!.5o8 9647 } 
4034 

5.5103905 
I *41655 
I .41906 

2 .3925 
2 .3924 

6 .2321 

6 .*359 
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TABLE XIV {Continued) 

Lat. Log A Log B Log 6* Log D Log JE 

o / 

46 00 8.5089647 8.5103905 I .41906 2.3924 6.2359 
10 9604 3776 I .42157 2 .3923 6 .2398 
20 9561 3648 I .42409 2.3922 6.2436 

30 9SI* 3519 I .42660 2.3921 6.2475 
40 9475 3391 I .42911 2.3920 6.2514 

50 9433 3262 I -43163 2 .3918 6 -2553 

47 00 9390 3134 I.43414 2.3917 6.2592 
10 9347 3005 I .43666 2.3915 6 .2632 
20 9304 2877 I .43917 2.3913 6 .2671 

30 9261 2749 I .441 2.3911 6 .2710 
40 9219 2621 I .44421 2 .3909 6.2750 

50 9176 2493 I .44673 2 .3906 6.2 790 

48 00 9133 2364 I .44026 2 .3904 6.2830 
10 9091 2236 I .45178 2 .3901 6 .2870 
20 9048 2108 I .45431 2 .3898 6.2910 

30 9005 1981 I .45683 2 -3^95 6.2950 

40 8963 1853 I .45937 2 .3892 6.2990 

50 8920 1725 I .46190 2 .3889 6.3031 

49 00 8878 1598 I .46443 2 .3886 6.3071 

10 8835 1470 I .46696 2 .3882 6.3112 

20 8793 1343 I .46950 2 3«7S ^•3153 
30 875° 1216 I .47204 2 -3875 6-3194 
40 8708 1088 1 .47459 2 ■3«7i 6 .3235 
50 8666 0962 I -47713 2 .3866 6.3276 

50 00 8623 0835 I .47968 2 .3862 6-3318 
10 8581 0708 I .48223 2 .3858 6 -3359 
20 8539 0581 I .48478 2.3853 6.3401 

30 8497 0455 I .48734 2 .3848 6 -3443 
40 8455 0328 1 .48989 2 .'3843 6 .3485 

50 8413 0202 I .49246 2 .3838 6.3527 

51 00 8371 8.510 0076 I .49502 2 .3833 6 .3.';69 
10 8329 8.5099950 I -49759 2 .3828 6 .3612 

20 8287 9825 I .50016 2 .3822 6 .3654 

30 8245 9699 I .50273 2.3817 6.3697 

40 8203 9574 I -50531 2 .3811 6.3740 

50 8161 9448 I .50789 2.3805 6.3782 

52 00 8120 9323 I .51048 2 -3799 6.3826 

10 8078 9198 I -51307 2 .3792 6.3869 

20 8036 9074 I .51566 2 .3786 6.3912 

30 7995 8949 I .51826 2 .3779 6 .3956 

40 7953 8825 I .52086 2 .3773 6.4000 

50 7912 8701 1 .52347 2 .3766 6 .4043 

53 00 7871 8577 I .52608 2 .3759 6 .4088 

10 7829 8453 I .52869 2 .3751 6.4132 

20 7788 8329 I -53131 2 -3744 6.4176 

30 7747 8206 I -53393 2 .3736 6 .4221 

40 7706 8083 I -53656 2 .3729 6.4265 

50 7665 7960 I -53919 2 .3721 6.4310 

60 8.508 7624 8.509 7838 1.54183 2.3713 6-43SS 
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TABLE XVI. —COORDINATES OF CURVATURE (Meters) 

Latitudes. 

26° 27° 

0
 

00 29° 

X y a: y X y X y 
1668 .7 0.1 1654-3 0.1 1639 .4 0 .1 1624 .0 0.1 

3337-3 0.4 3308.5 0.4 3278 .8 0.4 3248.0 0-5 
5006.0 1.0 4962 .8 1.0 4918 .2 I .0 4872 .0 I .0 

6674 .6 I -7 6617 .1 I -7 6557 -6 I .8 6496.1 I .8 

8343 -3 2 .7 8271 .4 2.7 8197 2.8 8120 .1 2.9 

lOOII .9 3*« 9925-7 3-9 9836 .4 4.0 9744.1 4.1 
I1680.6 5-2 1J579 .9 5 -4 11475 -7 5 -5 113^ .1 5-6 
13349 -2 6.8 13234.2 7-0 13115 -I 7.2 12992 .1 7-3 
I50I7.9 8.6 14888 .5 8.8 14754 .5 9 .1 14616.1 9-3 
16686.6 10 ,6 16542 .8 10 .9 16393 .9 11.2 16240 .1 II-5 

Long. 30° 31® 32“ 33° 

l' 1608.1 0 ,I 1591 .8 m 1574.9 0.1 1557-6 0 .1 

2 3216.3 0-5 3183-5 0.5 3149 .8 0.5 3115-2 0.5 

3 4824 .4 I .1 4775 -3 1.1 4724.8 I .1 4672 .8 I .1 
4 6432 .6 I .9 6367 .1 1.9 6299.7 I .9 6230.3 2 .0 

5 8040.7 2.9 7958 -9 5-0 7874 .6 3-0 7787 -9 3-1 
6 9648 .8 4.2 9550-6 4-3 9449 -5 4-4 9345 -5 4.4 

7 11257 .0 5-7 II142 ,4 5-8 11024 .4 6.0 10903.1 6 .0 

8 12865 .1 7-5 12734.2 7.6 12599.4 7.8 12460.7 7.9 

0 14473 -2 9.5 14325 -9 9 7 14174.3 9.8 14018.3 10 .0 

10 16081.4 II .7 15917-7 II .9 15749 .2 12 .1 15575-9 12.3 

Long. 34° 35° 36° 37° 

I' 1539 -8 0.1 1521 -5 0.1 1502 .8 0 .1 1483 .6 0.1 

2 3079 .6 0.5 3043 -0 0.5 3005 .5 0-5 2967 .1 0.5 

3 4619 .3 1.1 4564 S 1.1 4508 .3 I .2 4450.7 1.2 

4 6159.1 2 .0 6086 .0 2 .0 6011 .1 2 .1 5934 -2 2 .1 

5 7698 .9 31 7607 -s 3-2 7513-8 3-2 7417-8 3-3 
6 9238.7 4.5 9129 .0 4.6 9016.6 4.6 8901 .4 4.7 

7 10778.5 6.1 10650.5 6.2 10519 -3 6.3 10384 .9 6.4 

8 12318.3 8.0 12172 .0 8.1 12022 .1 8 .2 11868 .5 8-3 
9 13858.0 10 .1 13693 -5 10 .3 13524.8 10 .4 13352.1 10.5 

10 15397 -9 12.5 15215 -0 12 .7 15027 .6 12 .8 14835 .6 13-0 
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TABLE XVI (Con.). —COORDINATES OF CURVATURE (Meters) 

Latitudes. 

Long. 

38° 39*^ 
0 0

 41® 

X r a: y X Y X y 
I' 1463 .g 0.1 1443 -8 0.1 i 1423 -3 0 .1 1402 .3 0.1 
2 2927 .8 0-5 2887 .6 0-5 2849 .5 0 -5 2804 .6 0.5 
3 4391 -7 I .2 4331 -4 1.2 4269 .8 1.2 4206 .9 1.2 

4 5855-6 2 .1 5775-2 2.1 -0 2 .1 5609 .2 2.1 

5 7310 -6 3 3 721Q .0 3-3 7116.3 3-3 7011 .5 3-3 
6 8783.5 4.7 8662 .9 4.« 8530 -6 4.8 8413-7 4.8 

7 10247.4 6.4 10106 .7 ^>•5 9962 .8 ^>•5 9816 .0 6.6 
8 11711.3 8 .4 11550-5 «-5 11386.1 «-5 T1218 .3 8.6 
9 13175-2 10 .6 12994 .3 10.7 T2809.3 10 .8 12620 .6 10 .8 

10 14639.1 13 I 14438.1 13 .2 14232 .6 L3 -3 14022 .9 13-4 

Long. 42° 43" 44° 45° 

I' 1380.9 0.1 1359-I 0 .1 1336.8 0 .1 1314.1 0 I 
2 2761.8 0-5 2718.1 0-5 2673 .6 0-5 2628 .3 0.5 
3 4142.7 1.2 4077 .2 1.2 4010 .4 1.2 3942 .5 1.2 
4 5523-5 2 .2 543<^-2 2 .2 3347 -2 2 .2 5256.6 2 .2 
5 6904 .4 3-4 6795 -3 3-4 6684 .0 3-4 6570 .8 3-4 
6 8285.3 4.8 8134.3 4.9 8020 .8 4 -9 7884.9 4.9 
7 9666.2 6.6 9513-4 6.6 9357-7 6.6 9199.1 6.6 
8 11047 .1 8.6 10872 .4 8.6 io6()4 .5 8.6 10513 -2 8.6 
9 12428 .0 lo .9 12231 .5 10 .9 12031.3 10 .9 11827 .4 10 .9 

10 13808 .8 13 -4 13590-5 13-5 1,3368.1 T3-5 13141.5 13-5 

Long. 46° 47° 48° 

__.__ 
49° 

I' 1291.1 0 .1 1267 .6 0 .1 1243 .8 0 .1 1219 .6 0.1 
2 2582 .2 0.5 2535 -3 0.5 2487 .6 0.5 2439.1 0-5 
3 3873 -3 I .2 3802 .9 1.2 3731 4 1.2 3658.7 1.2 
4 5164.4 2 .2 5070.5 2 .2 4975 -2 2 .1 4878.3 2 .1 
5 6455 -5 3-4 6338.2 3-4 6219 .0 3-3 6097 .9 3-3 
6 7746.6 4.9 7605 .8 4.8 7462 .8 4.8 7317-5 4.8 
7 9037.6 6.6 8873 -5 6.6 8706.6 6.6 8537 -0 6.6 
8 10328 .7 8.6 IOI4I .1 8.6 993° -4 8.6 9756.6 8.6 
9 11619 .8 10.9 11408 .7 10 .9 I1T94 .2 10 .9 10976.2 10.8 

10 12910.9 13 -5 12676 .4 13-5 12437 *9 13-4 1219s .8 134 
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TABLE XVII. —COORDINATES OF CURVATURE (Meters) 

Latitudes. 

iyOUK 

25^^ 30"^ 35° 

F X Y y 
5° S04 f'4S 9 307 482 288 10 523 1 45^ 261 II 421 

zo I oo<S 603 37 215 903 658 42 074 911379 45 656 
15 I 511 190 X 443 193 94 591 I 364 214 102 619 
20 2 on 722 148 656 I 919 982 167 977 I 813 632 182 168 
25 2 509 518 -’3^ 03S 2 393 I16 262 089 2 258 507 284 102 
30 3 003 900 333 718 2 S61 694 37^> 749 2 6q7 724 40S 168 

Long. 

0
 0
 45° 50' 

D 

5° 426 757 IT 972 393 996 12 160 358 224 11 978 
10 852 171 47 ^52 786 492 4^ 594 714 847 47 859 
15 I 274 904 107 525 I 175 904 10(1 162 I 068 277 107 482 
20 I 693 628 190 805 I 561 019 IQ3 635 I 416 934 190 581 

25 2 107 023 297 430 I 940 103 301 6c;o I 759 262 296 785 

30 2 513 790 427 063 2 31I 802 432 9i« 2 093 731 425 619 





APPENDIX 

SPHERICAL EXCESS 

Formula [6r<7] for spherical excess may be derived as follows: 

Starting with the identical equation 

e sin J (yl +5 + C — 180°) cos ,1 (A + B — C -{■ 180°) 

4 ~ cos i (yl + 5 + C - 180°) ■ -C + 180°) 

we obtain, by applying formulae for cos x sin y and cos x cos y 

in terms of the half sum and half difference, 

e sin J (A + B) ~ sin I (t8o° ~ C) 

4 ~ cos I (A +B) - cos ’ (180° - C) 

_ ^ + B) — cos I C 
cos ^ (A + J5) + sin I C 

Substituting from Delambre’s Equations values of sin ^ {A + B) 

and cos \ [A + -B), 

^ I (a — b) — cos I c cos ^ C 
4 cos I (a + b) -f cos i c sin | C 

Applying to this the formulae for cos x + cos y and cos x — 

cos y, we have 

c _ sin \ {a — b c) sin \ { — a + ^ + c) C 

4 cos \ {a A- b A- c) cos \ {a + b — c) 2 

Substituting 5 = ^ putting for cot ^ C its 

equivalent in terms of the sides, 

tan - = ^^(tan | s tan | (s — a) tan ^ — b) tan J (s — c)) 
4 

which is Lhuillier’s theorem. 
443 
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Replacing each tangent by two terms of its series, and squaring, 

we have 

tan^- = 
4 

/5 \/s — a (s — ay\/s'-b (s — b)^\/s — c (s — cy\ 

+ 24R^ )\Tr'^ 24r0\^'^ / 

in which a, b, c now represent the sides in linear units. 

The square of the area of a plane triangle = = 5 (5 — 

{s - b) (s - c). 

Therefore 

^^"“4 ^ “ a)" +(^ - by + {s - c)* + s^) 

16 ' 192 

Taking the square root 

e 
tan 

Expanding, 

e 
tan - = 

4 

A 1 ̂ a} + 
4R^\ I H- 

< 12 R2 )- 

A 1 ( + 6= + c* , 
4R2' 

-u 
24 ^ ) 

Therefore 

4 ^ 4 
4- 

or e" = 

('+■ 2tR’ 

A_/ , + b^ + c^\ 

ini"V 24 ) 

} 
[61 a] 

CLARKE’S FORMULA 

Given <l>, X of station A (Fig. 156) and the distance s and the 

(interior) angle a to station B; to find <!>', X' of station B and 

the (interior) angle a. 

In Fig. 156 the heavy curve joining A and B is the plane 

(elliptic) curve cut from the surface of the spheroid by the vertical 
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plane at A and passing through B (plane AHB). The normal 

at B ends at K. The dotted curve is the curve cut by the plane 

BKA. The angle a' is the angle at B from BP to the right, to the 
dotted curve; it is less than the angle to the full line by the small 

angle f. The angle at B between the planes BKP and BKA 
is a' + 

We will first find the angle at II subtended by the plane arc 

s = AB, Join B and H. Suppose P' to be any point on AB 

and let s represent the distance from A to P', and a the cor¬ 

responding angle at H between IIA and HP'. Let HP' = r, 

HA = N, the normal, and the angle between HP' and the 

plane of the equator; (this is nearly but not quite equal to its 

latitude). The coordinates of P' (in the meridian plane of P') 

will be 

rr = r cos <j>H 

y = r sin (t>H ~ sin 
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Substituting in the equation of the ellipse 

r- cos2 (pff (r sin <fyn — sin 0)^ _j_ ^ 

Multiplying by a- = N'\i — sin^ 0), then squaring the sec¬ 

ond term and multiplying, we have 

, sin^ 0^' 2 rN sin 0/7' sin 0 sin^ 0 
cos-^ 0/7 H-^--- +-T" 

1 — 1 — i — 

= iV‘^ - sin^ 0 

in which 1 — e~ has been put for Substituting i — sin'^ <j>E 

for cos^ 07/', and rearranging the terms 

„ sin‘^ 4>n 2 e-rN sin 0^' sin 0 cW’ sin- 0 
;—-:i-+-r~ = 

or, r- — = 

Writing this in the form 

1 — 

1 — c 
(r sin 4>n — N' sin 0)^ 

yV2 

I — e- 
(r sin 0F ' — iV sin 0)-J 

and expanding, 

r^N- 

= iV- 

2 /V 1—6?' 
(r sin <t>n — sin 0)- + 

2 (i [ - ^2) ViV 
sin 2 0jff — 2 r sm <t>H sin 0 + sin^ 0^ • 

Putting r = iV in the small terms 

Ne^ 
r =N - 

2 (i — e^) 
(sin <j>s' ~ sin 0)^. 

To obtain the value of 0^' solve the spherical triangle formed 

by the three lines HA, HP, the sides of which are 90° ~ 0, 

90® — 0h', and a. The angles are A\ at the pole, a at A, and 

a •+• f at J5. Then by trigonometry, 

sin 07/' = sin 0 cos <r + cos 0 sin <r cos a. 
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Substituting in the equation for r, 

N , 
r = N — ^ ^ ^ ^ ^ ~ sin <^)2. 

Collecting the sin <j) terms and substituting for cos a- two terms of 

its series, squaring, and substituting a = sin cr, we may find, 

r 1 c*' . 
^ ^ _ -~ {(j" COS^ (j) COS^ a — 2 —Sin<#)COS<^COSa + • » •) 

N 21— 2 ^ 

= 1 + Po-*^ + + * * * , 

1 
in which P=~-;,cos2 a cos^ <t>, 

2 I — 

and V = --• cos a sin 2 0. 
4 I — c" 

Referring to Fig. 157, we have from the differential triangle 

or 

and 

(dsy = (dry + (rday 

ds = ((dry + (rday)^ 
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Integrating, 

APPENDIX 

7 ^ j 
= I r da + I — l:7~) da. 

Jo Jo 2r\da/ 

S — IV C (i H” Pa^ ~h * * * ) da i (2 NP^a^ “h * * * ) da^ 
Jo J 0 

c P 2 

= <r+j(l + 2/>),T» + • • •• 

Placing cr = ^ in the small terms, and neglecting P‘^, 

S I 

= M + Z-1^2 • cos" ^ cos" a • ijt:,' N 6 1 — e‘^ jys 

Reduced to seconds this is 

s e^a^sin^i 

jVsin 6(1 - e") 
COS^ <t> COS“ a. [63"] 

To determine f, the angle between the plane curves, consider 

the spherical triangle determined by BA, BH, BK. Figure 

158 shows this triangle as it appears looking down from B. 
By the law of sines 

sin (a + f) _ sin ABK 
sin a sin ABH 

In the plane triangle ABH 

IIB 
HA 

sin HAB 
sin HBA 

I ^ HB 
sin HBA HA • sin HAB 

sin + (X.') _ HB sin ABK _ r sin /x^ 

sin a HA sin HAB N sin /x 
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in which n = 90° — the depression angle to B and /z' == 90° — 

the depression angle to A. Expanding sin (f a) and putting 
(nearly), we have 

I + f cot a' = ^ 

_ * 

Since a is nearly equal to a\ 

and 

or 

cos a 
sin a 

I 

- • —~ 2 • a cos2 0, 

f = 

f" = 

I 

4 I 

e^<T^ sm I 
4 (l - £2) 

■ Sin 2 a COS*^ 

• cos^ <t> sin 2 a. 

The difference in longitude is found simultaneously with the 
angles by the formulae 

tan H“' + f 
cos - o) 
cos H7 + <t) 

tan § (a' + i" — AX) 
sin — (j) a 
sin § (7 + <1^) 2 
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In order to find the difference in latitude we make the assump¬ 

tion that 

S 
s 

(nearly). 

Clarke (Geodesy^p. 275) shows the error to be e^a^ sin- 2 a sin 2 0. 

S is the distance between the parallels of A and B. 
If we revolve the plane of the meridian of B (Fig. 156) into 

the plane of the meridian of A we shall have Fig. 159. If we 

find 4>h — 0 by the same process used in finding a we obtain 

<t>B' - 4> = ^( I + 6 1 — e'^ 
cos^ a cos 2 <j> 

(I)') 

The angle <t)n' — 0 may be found from the spherical formula, 

tan I (0jy' — 0) 
sin f ~ a), 0- .. .^ ^ 
sm f + «) 2 

= k tan 

whence i (<t>n - 0) = tan-i 

Substituting for - its series, and for tan“^ 

(^ tan 0- 

(^ tan 0 i 

i ^ (2 + 2^) - 5 (^ ^ + ^ ^) + 

its series, 

0JJ — 0' == ^0- + — (i — 

S = sk(i+^ii-k^)^ 

sin + f ~ «) / 

«)V = 5 . i / / , V I Ml ^-COsH smf (a + f + a) \ 12 
(a' — a)) • 
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The true difference of latitude, 0' — <j>, may be found by dividing 
S by the radius of curvature of the meridian for the middle 

latitude, jRjf. The error in this assumption is 

e- cos 2 0. 

The final formula for latitude is 

s 

Rm sin i" 

sin \ (a' + ^ - a) / 
sin J (a' + f + a) 

+ cos^ I (a 
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A 

Aberration, 124, 129, 154 
Absolute, determination of gravity, 266 

length of tape, 54 

Abstract of angles, 194 
Accidental error, 85, 353, 357 

Accuracy, of azimuths, 152 
base-line, 51 

horizontal angles, 97 
latitude, 151 
longitude, 142 

time observations, 136 

Acetylene, lamp, 31 
Adding machine, 311 
Adjustment, figure, 367 

level, 306 
level circuits, 390 
microscope, 81 

observations, 351, 355 
station, 194, 267 

theodolite, 80 
transit, 120 
traverse, 389 
triangulation, 367 

zenith telescope, 145 

Agate, 271 
Air, chamber, 304 

pump, 274 

Albers projection, 344 
Alidade, 80 
Alignment, correction, 54 

curve, 189 

of base, 49 

Alloy, 43, 44, 59, 271, 303 
Alt-azimuth, 105 

Altitude, 109 

Angle, equations, 369, 383 
horizontal, 82, 89, 91 
of swing, 98 
prism, 71 

vertical, roi 
Arcs, I 

meridian, 178, 24^ 

oblique, 247 
Peruvian, 246 

Russian, 246 
vibration, 278, 281 

Area, i, 179, 194, 196, 206 
method, 261 

Astronomical, coordinates, 107 
observatiojis, 107 
transit, no 

Astronomy, 2 

Attraction, 254, 267, 294 
Automatic, gauge, 315, 318 

signal lamp, 32 
Average error, 392 
Azimuth, 109, 152 

back, 216 
correction, 122, 124, 128, 259 

geodetic, 258, 259 
star, 134 

spherical, 224 
spheroidal, 224 

B 

Back-azimuth, 216 

-mirror, 31 
-reading, 76 

Bamberg transit, 115 
Barometer, 18 

Base apparatus, 41 

453 
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Base bar, 42 
invar tape, 43 

steel tape, 42 

Base-line, 4, 7, 37, 42 
Deming, 10 

Epping, 8 

Fire Island, 8 
Holton, 42 
marking, 47 

Massachusetts, 8 
measurement of, 40 
net, 40 
precision of, 52 

Stanton, 10 
Bearing, 79 
Bench marks, 313 

Bessel’s spheroid, 250 
Bilby, J, S., 37 

Board of Surveys and Maps, 3, 5, 302 
Bolt, 23 

Bonne’s projection, 338 
Borda, 282 

Boss’s catalogue, 146 
Bouguer, 293 

Boundaries, i, 227 

Bowie, W., 261 

Box heliotrope, 31 
Broken-telescope transit, 115 

Bronze casting, 23, 47 
Bureau of Standards, 54, 59, 63, 140, 

313 

C 

California, 6, 9, 185, 197 

Canada, 207, 270, 296 
Cartography, 2 
Catenary, 55, 58 

Center, of instrument, 70, 79 

reduction to, 97 
Central meridian, 338, 341 

Centrifugal force, 266, 268 

Certificate, 63, 64 
Chain, of triangles, 12, 94, 152, 247 

Check, base, 7 

Check, on solution, 376 
term, 376 

Chronograph, 113, 116 
Chronometer, 109, 121, 274 

correction, 130 

Circle of curvature, 177 

Circuits, electrical, 118 
level, 390 

Circumpolar, star, 122, 153, 161 

Clairaut’s Theorem, 270 
Clarke’s spheroid, 250 

formulae, 222, 443 
Classes of triangulation, 3 
Clearance, 23 
Closure, error of, 4, 97, 194, 370 

Coast and Geodetic Survey, 7, 33, 42, 
112, 140, 201, 260, 271, 302, 315, 

3«4 
theodolite, 72, 73, 79 

Coefficient, of expansion, 43, 44, 54, 80 
of refraction, 20, 328, 331, 335 

Coincidences, 275 
Collimation, 81, 112, 116, 121, 124 127 

error, 84 

Collimator, vertical, 103 
Comb, 74, 82 
Comparator, 47, 60 

Compensation, depth of, 260 

Compound events, 352 

Compression, of the earth, 182, 266, 295 
Condition equations, 262, 366 
Conditioned observations, 366 

Conditions, in a figure, 14, 17, 368 
Conformal projection, 341 
Conic projection, 336 
Constant error, 353 

Control, 4 
Contours, of geoid, 243 
Convergence, meridians, 216, 236 

level surfaces, 322 

Correction, 365 

absolute length, 54 
alignment, 54 
azimuth, 259 

chronometer, 130 
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Correction, collimation, 127 
curvature, 308 

grade, 49, 53 

level, 313 
orthometric, 324 
rate, 129 
run of micrometer, 77 

sag, 55 
temperature, 54 

to observed quantities, 365 ' 
to period of pendulum, 282 

Correlates, 377 
Correlatives, 377 

Cowie, George 1)., 140 
Cross-hairs, 66, 71, 80, 105, 112 

Current observations, 2 
Curvature, correction, 154 

of earth, i, 19, 257, 298 

of spheroid, 253 
mean, 175, 178 

radius of, 168, 169, 172, 176, 255 

Curve of error, 357, 359 

Curves, on spheroid, 185 
Cut-off cylinder, 60 
Cylindrical projection, 346 

D 

Dalby’s Theorem, 223 

Datum, for levels, 315 
geodetic, 206, 251 

Davidson quadrilaterals, 6, 197, 22 

Declination, 109, 148 
Deflection of plumb line, 185, 243, 255 

Deming base-line, 9 
Density of earth, 257, 259 

Depth of compensation, 260 
Derrick, 35 

Description of station, 25 
Direction, ii, 98 

instrument, 65, 68, 71, 91 

measurement of, 91 
method, 155, 384 
probable error of, 97 

Distance, angles, ii 

Distortion, of map, 33O, 338 

Distribution of stations, 7,18 

Diurnal aberration, 129, 154 
Dividing engine, 65, 66 
Divisions, of micrometer, 77 

Doolittle’s Abridged Method, 376 
Drag, on centers, 89, 91 

on tape, 50 
Drill hole, 23 

Drum, 75, 80, 82 
Dutton, C. K., 260 
Dummy pendulum, 273 
Dynamic number, 324 

E 

ICarthquakcs, 3 
Eccentric, angle, 97 

distance, 98 

station, 97, 194 

Eccentricity, of circles, 85 
of ellipse, 16 ) 

of signal, 368 
hxkhardt, E. A., 140 

Pxliptic, 109 

Electric light, 31 
Elevation, 323, 329 
Ellipse, 166, 176, 255 

Ellipsoid, 165, 242 

Ellipticity, 182 
Elongation, 57 

Eotvos, torsion balance, 297 
Ephemeris, no 
Epping base-line, 9 

I^qual area projection, 344 

Equator, log 

Equinox, 109 

Equipotential surface, 242, 317, 321 
Errors, 356 

azimuth, 94 

classes of, 353 

closure, 4 
collimation, 84 

graduation, 84 
horizontal angles, 82 
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Errors, Legendre’s Theorem, 199 

leveling, 313 
observation, 351 

plane coordinates, 236, 240 

run, 76 
Euler’s Theorem, 175 

Europe, 270, 296, 338, 350 
Exponential law of error, 362 

F 

Figure, adjustment, 367 
in triangulation, 9 

of earth, 242, 266 
strength of, 9 

Fillet chronograph, 118 
Finder circle, 121 

Fire Island base, 8 
Flash apparatus, 274 
Flexure, of pendulum support, 276 

of transit, no, 116 
Focus, 166 

Formulae, 407 
Forward, 

azimuth, 216, 227 

reading, 75 
Friction, on tape, 49 
Frictionless pulley, 47 

Function, precision of, 399 

Fundamental point, 231 

G 

Gas pipe tower, 37 

Gauge, tide, 315 

Gauss’s method of substitution, 374 

Geodesy, defined, i 
Geodetic, datum, 206, 251 

levels, 309 

line, i86, 196 

positions, 206, 222 
surveying, i, 

Geoid, 242, 254, 301, 315 

Geology, 2 

Geometric figures, 9 

Glass fibres, 80 
Gnomonic projection, 344 

Grade correction, 49, 53 
Graduation, 66, 68, 87, 89 

errors, 84 
on tapes, 44 

Gravitation, 254 

constant, 256 
Gravity, i, 107, 254, 266, 293, 296 
Grazing sights, 95 

Great-circle, chart, 345 
track, 345, 349 

Greenwich, catalogue, 146 

Guillaume, C. E., 43, 59 

H 

Hanging level, 116 
Harrebow-Talcott method, 143 
Hassler, F. R., 338 

Hay ford, J. F., 260 
Height of station, 182, 194 
Heliotrope, 18, 27, 95 

box, 31 

ring, 28 

Steinheil, 28 
Helmcrt, F. R., 269, 296 
Hildebrand theodolite, 70, 71 

Himalayas, 295 

Hodgson, C, V., 91 
Hookup, 140 
Horizon, 108 

Horizontal refraction, 95 
Hour, angle, 109 

circle, 109 

Hydrographic, maps, 2, 336 
surveys, 2 

I 

Illumination, 113 
Impersonal micrometer, 113 
Inclination error, 83 

India, 270, 296 

Initial station, 206, 207, 262 
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Instruments, horizontal angles, 65 
leveling, 303 
pendulum, 271 

Interference bands, 276, 278 
Interferometer, 271, 276 

Internal focus, 80 

International, Geodetic Association, 

149. 301 

Bureau of Weights and Measures, 

43, 59 
Invar, 43, 273, 304, 305 
Invariable pendulum, 271 

Inverse geodetic problem, 224 
Isostasy, 259 

J 
Jaderin, Edw., 42 
Judson, Lewis V., 60 

K 

I^ength, of line, 6 
of tape, 54 

Level, correction, 124, 155 
geodetic, 303 
latitude, 147 
pendulum, 274 
precise, 303 

rod, 305 
stride, 80, 112, 120, 124, 161 
surface, 321 
trier, 145 

trigonometric, 327 
Lights for triangulation, 31 

Local deflection, 185, 196, 246 
Locating, boundaries, 227 

meridian, 227 

oblique, 229 

parallel, 228 

Longitude, 109, 136 
difference, 214, 223 

Loxodrome, 346 

Key method, 137 
Kimura, H., 149 

L 

Lambert, W. D., 58 
Lambert’s projection, 341 
Laplace azimuth, 259, 264 

equation, 259 

stations, 152, 258, 259 

Latitude, astronomical, 109 
determination, 143 
difference, 208, 223, 247 

geocentric, 166 
geodetic, j66 
level, 147 
reduced, 166, 181 

reduction to sea-level, 150 
Law, of error, 362 

of pendulum, 266 
Least squares, 351, 362 

Legendre’s Theorem, 196, 198, 199 

Length, of base, 40 

M 

Magnetic observations, 2 107 
Manometer tube, 274 

Marking stations, 23 
Massachusetts base-line, 8 

Mast, of tripod signal, 27 
IVlean square error, 393 
Measuring, angles, 88, 91 

base, 49 
horizontal, 88 
platforms, 48 

vertical, loi 
Meinesz, 296 

Mendenhall, T. C., 271 
Mercator’s projection, 346 

Meridian, 109 

arc, 178 
Meridional parts, 348 

Meter, Clarke’s value, 251 
standard, 59 

Method of Least Squares, 351 
Meunier’s Theorem, 170 
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Mexico, 207 
Micrometer, loi, 143, 152, 161 

divisions, 76 

microscope, 68, 71 

run of, 76, 81 

transit, 113 
Micrometric method, 161 

Microscope, 68, 71 

adjustment 8* 
Mirror, 27 

back, 31 

size of, 31 
Missouri Riv^er Commission, 42 

Mistakes, 355 
Modulus, of elasticity, 57 

of logarithms, 282, 348 

Mount Shasta, 6 

Ellen, 7 

Helena, 6 
Nautical mile, 348 
Naval observatory time signals 

280 

N 

Negative lens, 80 

Nevada, 6, 197 
New England, triangulation, 8 

New Mexico, 9 
Newton^s law, 254 

Night observations, 31, 94, 95 

Normal, 166, 243 
equations, 250, 263, 363, 365 

reduced normal equations, 375 

North American Datum, 207 

O 

Oblique arcs, 247 
Observations, 123, 136, 143, 152, 155, 

278 

Oceanography, 2 

Order, of triangulation, 3 
of leveling, 302 

Ordnance Survey, Great Britain, 222 

Origin, 230, 231, 236 

Orthometric, correction, 313, 318 
elevation, 324 

Oscillation, 266, 275 

Osculating plane, 186 
Ovaloid, 242 

P 

Parabola, 56 
Parallel of latitude, 336 
Pendulum, 142, 261, 266, 355 

apparatus, 271 

Period of pendulum, 281 
Periodic errors, 84 
Personal equation, 123 

error, 113, 136, 267 

Peruvian arc, 246, 293 

Phase of signal, 27 100, 194, 368 

Pier, no, 120 

Pivot, 112 

in equality, 126 
Plane, coordinates, 230 

curves, 190, 191 
triangles, 196, 198, 200 

Plumb line, 243, 309 

deflection of, 185, 243 

Polar distance, 109 
Pole, 108 

of quadrilateral, 370 
variation of, 142, 149, 163 

Polyconic projection, 338 

Position, 91 
check, 5 

Potential, 297, 318 
energy, 318 
function, 298, 319 

Potsdam, 270 
Precise leveling, 301 

Precision, 351 
measures, 391, 395 

of base-line, 52 
of functions, 399 

Primary triangulation, 4 

Prime vertical, 109, 228 
component, of deflection, 258 
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Principal triangulation, 3 
Prism, T05 

angle, 71 
level, 303, 304 

Probable error, 394 

of base, 52 

of direction, 97 
of side of triangle, 11 

Probability, 352, 360 

curve, 357 
Projections, 336 
Prototype meter, 59 

Puissant Formulae, 208 
Putnam, G. R., 270 

Q 

Quadrant, 182 
Quadrilaterals, 13, 

adjustment of, 370 
area of, 179 
Davidson, 6 

on spheroid, 179 

R 

Radio, 137 
Ramsden, 65 

Rannie, J. L., 95 
Rate correction, 124, 129 
Reciprocal observations, 328 
Reconnoissance, for base, 37 

for triangulation, 18 
Rectangular coordinates, 338 

spherical coordinates, 350 
Reduced, latitude, 166, i8i 

normal equations, 375 
Reduction, to center, 97 

to sea-level, 54 

to station, 327 
Reel, for tape, 43 
Refraction, 19, loi, 185, 196, 368 

angle of, 20 
coefficient, 20, 328, 331 
differential, 148 

Refraction, horizontal, 95 
Rejecting observations, 94 
Relay, 118 

Relative determination of gravity, 266, 
271 

Repeating circle, loi 
instrument, 65 

Repetition, of angles, 88 
method, 159 

Residual, 356 

Reticle, 112 
Reversing apparatus, 116 
Rhumb line, 346 

Right ascension, 109 
Ring heliotrope, 27 
River crossing, 311 

Run, of micrometer, 76 

Russian arc, 246 

S 

Sag correction, 55 
Scaffold, of tower, 35 
Scale-error, 344 

Sea-level, 315 
determination of, 315 
reduction to, of angle, 182, 196 

of azimuth, 163 

of base, 54, 228, 236 
of gravity, 293 
of latitude, 150 

Secondary triangulation, 4 
Section, of base, 51 

of levels, 311 

Seismology, 2 
Selecting stars, 122 
Set-back, 51 

Set-up, 51 
Shot apparatus, 358 

Side, or sine, equation, 370, 383 
Sidereal time, 109, 121, 130, 137 
Signals, 26, 68, 89, 91, 97, 152 

Signal lamp, 32 
Slide, 71, 80 

Sodium light, 276 
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Spherical, coordinates, 350 
error, 236, 240 

excess, 13, 194, 196, 442 
triangles, 195, 196, 198, 200 

Spheroid, oblate, 165, 206, 250 

Spheroidal, excess, 200 
triangles, 195, 200 

Spring balance for tape, 46 
Stadia, 308 

Standard, 112 
datum, 244, 262 
parallels, 341 

weight, 47 
Standardization, of tape, 59 

Stanton base-line, 9 
Star factors, 123 

Station, 18 

adjustment, 367 

description of, 25 

error, 108, 151, 228, 243, 253, 254 

marks, 23, 327 

Steel tower, 37 

Steinheil heliotrope, 27, 28 
Sterneck, 271 

Strength factor, 12 

Strength of figure, 9 
Stride level, 80, 112, 120, 124, 161 

Stiickrath, 296 
Subsidiary triangulation, 3, 220 

Substitution, 374 

Sub-surface mark, 23, 47 
Swing, 98 

Systematic error, 353 

T 

Tables, 411 

Talcott’s method, 143, 228 

Target, 27 
Telegraph, 136 

Temperature, correction, 54 

of pendulum, 273 

of rod, 305, 310 
of tape, 42, 43, 50 

of theodolite, 79, 93 

Tension, 55, 57 

Tension, apparatus, 46 
correction, 57 

Terminal points of base, 47 

Terrestrial physics, 2 
Tertiary triangulation, 4 

Test of theodolite, 86 
Texas, triangulation, 9, 185 

Theodolite, adjustment, 80 

test of, 86 
Thermometers, base-line, 47, 50; 58 

hydrogen, 59 
leveling rod, 305 
p>endulum, 273 

Thread interval, 307 
Tidal observations, 2, 315 

Tide gauge, 315 
Time, determination of, 109 

stars, 134 

Topographic correction, 294 
deflection, 254, 257, 260 

maps, 260, 336 
surveys, 2 

Topography, deflection of plumb line, 

254 

Torsion, 298 

balance, 297 
Towers, 18, 19, 32, 37, 65, 89 

Transit, instrument, no 
micrometer, 113, 137 

observations, 123, 279 

Traverse, 5, 240 

Triangulation, 3 
length of lines, 6 

Tripod, for base, 49 
of instrument, 65, 302 

signal, 26 

twist of, 37, 89, 91 
Tri-rectangular triangle, 196 
Turning points, 306 

7 wist, of triangulation, 31, 94, 152 
of tripod, 37, 89, 91 

U 

Uncompaghre Peak, 7 

United States Geological Survey, 305 
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V 

Variation, of pole, 142, i4g, 16.^ 

Vernal equinox, 109 

Vertical, 107 
angles, 101 

circle, 102, 108 
collimator, 103 

curved, 150, 32$ 
Vertex, 346 
Vibration, 37 

Vienna. 270 

W 

Washington, triangulation, 185 

D. C., 44, 293 

I Vi'eight, 356, 363 
of tape, 44, 55 
on theodolite, 71 

Weighted mean, 357 
Wind, effect on base measurement, 49 
Witness mark, 25 

Wooden Tower, 33 
Woodward l^ar, 60 
Woodward, R. S., 60 

Z 

Zenith, 108 

distance, ioq 

telescope, 143 
Zero mark, of tape, 44, 49 
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