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AUTHOR'S PREFACE 

Many years of teaching and association among Builders and 
Engineers have convinced me that there is a definite demand 
for a book where the principles of Building Mechanics are treated 
in simple and general terms. 

It is primarily intended to introduce building mechanics in 
such a way that the student may readily visualize the essentials 
of the subject without the necessity of an advanced knowledge 
of mathematics. 

Whatever small measure of success in the engineering field 
the writer has achieved, he owes very largely to the keen and 
very able tutors under whom he studied at evening classes. 

Students who are attending classes for the ordinary National 
Certificate, “Strength of Materials" or “Building Mechanics" 
may find this J^ook helpful. 

It is designed to make certain principles clear and to encourage 
students to stick to their studies. If that object is achieved, the 
Author will be well satisfied. 

I would like to take this opportunity of expressing my thanks 
to the editor and proprietor of the Illustrated Carpenter and 
Builder for their permission to incorporate in this volume many 
of my articles which have appeared in their excellent journal, 
and also to place on record my appreciation of the help and 
assistance given to me at all times by my publishers, Messrs. 
Chapman & Hall Ltd. Finally, I wish to thank Mr. Colin 
Peter, A.M.I.M.E., and Mr. E. Walters Page, who have assisted 
me in reading and revising proofs. 

My thanks are due to Mr. G. R. Lloyd Jones for pointing out 
a number of slips in the original printing, and for making a 
number of valuable suggestions for improving the book. 

N. T. 
London. 
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CHAPTER 1 

TECHNICAL TERMS 

Bolts. A bolt may be described as a metal pin or rod with 
a head at one end and a thread or nut at the other. There are 
a great many different forms and shapes, and usually bolts are 
considered as a temporary fixing. However, although rivets are 
nearly always used for making connections on steel-framed build¬ 
ings more than two storeys high, there are quite a number of 
single-storey constructions, such as garages or sheds, where bolts 
can be satisfactorily used for fixing the various parts together. 
Even in larger constructions there is no great objection to the use 
of bolts provided the holes are drilled and thfe bolts are turned and 
fitted. A point directly arises, that where turned and fitted bolts 
are used the cost may be as much or more than putting in rivets. 
Whatever may be said about the theory of using black bolts, there 
is no doubt that many scores of single-storey buildings have been 
made with bolted connections and have proved satisfactory in 
service. 

The most common type of bolt used in constructional steelwork 
and steel bridges is shown in Fig. i (a). This is known as X 0 X, 

which means hexagonal head, round shank, and hexagonal nut. 
The length of the bolt is the distance from the inside of the 
bolt head to the end of the shank, and a bolt such as shown 
in Fig. i (a) would be denoted “ bolt X 0 X, f in. diameter by 

3 in. long ”. 
i 
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Quality of Steel. The British Standard Specification No. 15 
gives the quality of steel from which mild steel bolts are made. 
Large quantities are made black, that is, with only the thread of 
the bolt and the thread of the nut machined. All the rest of the 
bolt is unmachined. In machine-tool work and for- important 
constructional work when bolts are used, turned and fitted bolts 
are required. In these cases sometimes all the bolt and nut are 
machined, while in other cases the shank or rod part is machined 
and the bolt head and nut are left black; there are, however, 
cases where the use of black bolts is not allowed. 

Fig. 1 (6) shows a bolt with a square head and square nut, and 
to prevent the bolt from rotating while the nut is being screwed 
on, 'a part of the shank is also made square. 

Two types of bolts used in timber constructions are shown in 
Fig. 1 (c) and (i). Fig. 1 (c) has a cup head and square shank, and 
Fig. 1 (d) is the well-known coach screw. 

Jumped-up threads are illustrated in Fig. 1 (/). Clearly the 
ordinary thread, as shown in Fig. 1 (e), has a less area at the 
bottom of the thread than the area of the bolt shank. In the 
case of the plus-thread or jumped-up thread, the bar is enlarged 
so that the area at the bottom of the thread is at least equal to 
the area of the bar itself. These jumped-up threads are often 
used in tie rods. 

Rivets. A rivet is a permanent fastening. It is described 
by its diameter and its length, the length being the distance from 
the. inside of the head to the end of the shank. A typical cup- 
head rivet before being closed is shown in the drawing. Before 
closing the rivet is heated so that it is easy to form. It will 
contract when cooled, and will tend to draw the plates connected 
closer together. The closing is done either by hand riveting, 

Fig. 2. 

hydraulic' riveting or a compressed air machine. The grip of the 
rivet is the distance between the finished heads of a snap or cup 
rivet. In Figs. 2 (a), (b) and (c) the various types and proportions 
of the more common types of rivets are shown. Probably the one 
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most generally used is the cup or snap rivet, in which the head of 

the rivet is cup shape and the closed end is also cup shape. It is 
to be clearly understood that although only six different types 
are shown, it is quite possible to have a rivet with a cup at both 
ends, or a rivet countersunk at both ends, or a rivet pan shaped at 
both ends, and so on. 

In structural work most rivets are $ in., | in. or \ in. diameter. 
Rivets formed in the shop or yard are likely to be better made 

than rivets made in the field or on the site. Pneumatic riveters 
are now very much used, both in the shops and during erection, 
but it is generally accepted that site riveting is not as good as the 
work done in the structural shops. For this reason it is common 
practice to allow one or two more rivets where the work will be 
done on the site than is strictly necessary by calculations, and in 
ordinary steel-frame building practice the diameter of the rivets 
which are to be put in on the site is generally not more than f in. 

Rolled Steel Sections.—Some of the principal sections used 
in building constructional work are shown in Figs. 3 and 4. The 
student will be well advised to notice carefully the manner in 
which these various sections are referred to in practice. All these 
sections are produced by passing white or red-hot solid bars 
through rolls, and they are called rolled steel sections. 

The H Beam. The rolled steel joist shown in Fig. 3 (a) is 
the most common form of steel beam. It is sometimes called an 
I beam and sometimes an H beam. The two thick parts are 

called flanges, and the thinner piece which joins them together is 
the web. The round part between the web and the flange is 
known as a fillet. The largest British section of joist is 24 in. deep, 
7$ in. across the flange, and weighs 95 lb. per foot of length, while 
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the smallest is 3 in. by i£ in. and weighs only 4 lb. per foot. 
When specifying for British rolled steel joists it is only necessary 
to refer to three things, the totals depth, the width of the flange 
and the weight per foot, so that if a beam of the section shown in 
Fig. 3 (a) is required anywhere in Britain, it would be sufficient 
to demote it as 15 in. by 6 in. by 45 lb. per foot. 

The channel section shown in Fig. 3 (b) is denoted in the 
same way. In this case it will be 10 in. by 3^ in. by 24-46 lb. 
per foot. 

An angle section is shown in Fig. 4 (a). This section is very 

commonly used for roof-truss members and bracings. It is 

denoted by the dimension of each leg and the thickness of steel. 
The weight is not used. The angle shown would be 6 in. by 4 in. 
by \ in.- 

In Fig. 4 (6) a tee-section is shown. Obviously it gets its name 
from its shape. It is very important that the student should 
remember that the first dimension given is the width of the table 
or flange. The correct indication for the tee shown would be 
6 in. by 4 in. by \ in. It would be wrong to mark this section 
4 in. x 6 in. x \ in. 

Two dimensions only are required for the flat bar, the width 
and the thickness, while the square bar is denoted by the measure¬ 
ment of one side, and the round bar by the diameter. 
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Riveted Joints. The design of riveted joints will be dealt 
with later, but attention is now drawn to two important methods 
of failure. It will be noticed in Fig. 5 (a) and (b) that the rivet 
is in single shear—that is to say, that if the two plates pull apart 
as shown in Fig. 5 (6), the rivet will only have been cut or broken 
across one section. 

RIVET SHEARED OR 
CUT AT ONE 

In Fig. 6 (b) the middle plate has been pulled out, and in order 
to do this the rivet itself must have been cut or sheared across at 
two sections. It is therefore not difficult to see that as far as the 
strength of the rivet is concerned, it will take twice as much pull 
to cause failure as shown in Fig. 6 (b) as it takes to cause failure as 
by the method shown in Fig. 5 (b). 

RIVET SHEARED OR CUT 
AT 2 SECTIONS 

Fig. 6. 

Technical Terms. Frequently the non-technical man uses 
words which to him mean something quite different from what 
they would convey to a technically trained man, and for this 
reason some of the terms commonly used will be explained here 
more fully than is possible by a sentence or two giving vague 
definitions. 

Stress. Stress may be described as (1) The internal dis¬ 
tributed force which resists a change in shape and size of a body 
subjected to external forces ; (2) the state of affairs existing 
between the particles of a body transmitting a load or force. 

To try and make this clear, consider two wood blocks, A and B, 
each 3 in. square and 8 in. long, as shown in Fig. 7 (a). A slab 



6 PRACTICAL BUILDING MECHANICS 

of plasticine or soft putty is placed between these two blocks. 
If a weight of 56 lb. is placed on the top of the blocks as shown in 
Fig. 7 (b), then (if the weight of the wood itself is neglected) it is 
easy to see that the load of 56 lb. will be transmitted to the slab 
of soft putty or plasticine, which would not be strong enough to 
resist the pressure and would be squashed and spread out as 
shown. If the wood blocks were built of a series of slabs all the 
same size as the plasticine slab, there is a tendency to squeeze each 
little block out of shape. The only thing which prevents this 
being done in the case of a wood block is the internal strength of 
the wood itself, and it is this internal resistance of the wood itself 
which is called “ stress ”. If the wood was not strong enough to 

resist or balance the external load or force, the block would change 
in shape and crush. 

The timber block is 3 in. square, and if the weight of this is 
neglected, then the total stress at any horizontal section will be 
56 lb. Obviously there is much less likelihood of the block 
breaking than if it is made 2 in. square, although the total load 
and total stress remain constant at 56 lb. What is really altered 
is the unit of unital stress. This is the intensity of stress per unit 
of area, and when the load is evenly distributed over the area the 
unit stress at any point is the total stress divided by the area. 
With a block 2 in. square the area at any horizontal section will be 
4 sq. in. With one 3 in. square, the area will be 9 sq. in. 

It is very necessary to make clear whether the stress is the total 
stress or unit stress, and in the case of unit stress the figures should 
always be expressed as pounds per square inch, hundredweights 
per square inch, tons per square foot, etc. It is not sufficient to 
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ive a figure of so ttiany pounds or so many tons without stating 
whether it is per square inch or per square foot. 

As a formula: 

Unit stress = 
Area (i) 

Problems. The load on a short timber post 2 in. square is 720 lb. 

Vhat is the stress in pounds per square inch ? 
The total stress is the total load, which is 720 lb. 

Load 720 
Unit stress = -r- = - =*180 lb. per square inch. 

Area 2x2 A 

A short timber post 3 in. square carries a load of 720 lb. What is 
he intensity of stress ? 

Intensity of stress = 
720 

3x3 
= 80 lb. per square inch. 

The question of what is a long and what is a short timber post is 
lefermined by the relationship of the length to one side. This question 
vill be dealt with more fully later, but the student can assume that if the 
ength is less than 10 times the side of a wood post, it can be considered 
is a short post. 

Compressive Stress or Compression. In the case we 
lave just considered, the weight on the post tries to shorten it, 
md the stress is therefore compressive. In building and engineer- 
ng work there are many examples of parts or members which are 
ubjected to these compressive stresses. Look, for instance, at 

Fig. 8. 

the crane illustrated in Fig. 9. A wire rope from a winch drum 
passes round a head pulley and suspends a weight. It is not diffi¬ 
cult to see that the inclined member, which is called the jib, is in 
compression, that is, it tends to shorten in length. A steel column, 
as shown in Fig. 8, is another example of compression member. 
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Fig. io. 

It should be noticed in this 
area of any cross-section would 

Tensile Stress or Tension. 
A tension or tensile stress has 
exactly the opposite effect to 
a compression or compressive 
stress.. Three examples of ten¬ 
sion are shown in the diagram 
Fig. io (c) shows a chain carry¬ 
ing a weight. Obviously the 
chain tends to lengthen and not 
shorten. Similarly the horizontal 
tie-bar in the crane illustration 
would stretch if made of rubber, 
and it requires very little imagi¬ 
nation to realize that the rope 
on the crane is also in a state of 
tension. 

Mild streel is strong both to 
resist tensile and compressive 
stresses. On the average it will 
break at about 30 tons for each 
square inch of area. 

Problem. If a tie-rod or tension 
member is ijin. diameter, what pull 
or force would probably break it ? 

>e that no length is mentioned. The 
the area of a ij-in. diameter bar. 

_ _ 7i 3 3 22 
— D x D x - = - x - x -5 = 176 sq. in. 

4 2 2 28 ^ 

If it takes 30 tons to break 1 sq. in., then it will take 30 tons x 176 
= 52*8 tons to break a tie-rod. 

Shear Stress. When one part of a body tends to slide past 
another it is said to be in shear. In Fig. 11 (a) is illustrated a 

Fig. 11. 
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plasticine bar being cut by a 
pair of shears. Obviously, 
when the bar has been cut 
into two pieces, one piece 
will slide or shear past the 
other. In the case of a steel 
rivet connecting two plates 
together, this shearing ten¬ 
dency is clearly shown, and 
if the rivet is not strong 
enough it would break by shearing, as shown in Fig. n (b). 

In Fig. 12 we see a short wood beam broken by shear. In 
actual practice beams are subject to bending stresses as well as to 
shearing stresses, but the illustration clearly shows the tendency 

Fig. 12. 

of one part to slide past another. 
Torsion or Twisting Stress. 

This is illustrated in Fig. 13. A 
weight attached to the end of a lever 
is holding the weight supported by 
the rope passing over the pulley. 
The shaft or axle is supported by 
two bearings quite close to the 
pulley, and the shaft itself is in 
torsional or twisting stress. If, for 
instance, the shaft is considered as 
being made up of a* number of small 

discs, it is easy to see that each disc would try to slide around 
the one next to it. 

Strain. Strain has been described as the deformation in 
a body due to the application of load or stress. This deformation 
under a tensile force or pull is elongation or stretch, and under 
a compressive force or push is shortening. The student should 
be very careful not to mix up the words stress and strain. Some¬ 
times the word strain is used when stress is meant. Strain is the 
alteration of shape as the result of a stress. 

Refer now to Fig. 14 (a), (6) and (c). In Fig. 14 (a) an india- 
rubber band is shown ; Fig. 14 (b) shows the same band being 
stretched by a weight attached at its lower end ; while in 
Fig. 14 (c) a second load has been applied. Although the stretch 
of the rubber is related to the strain, it is not correct to say that the 
stretch is the strain. 

We will try to make this clear. Suppose the distance between 
pins A and B in Fig. 14 (a) was originally 3 ft., and after a weight 

B 
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had been put on the collar the dis¬ 
tance had increased to 3 ft. 6 in. 
Then the alteration of length is 
clearly 6 in. This would be the 
stretch, but it would not be the 
strain. Actually the strain would 

be the alteration of length of stretch 
divided by the original length. As 
a formula it could be written— 

Strain = 
Alteration of length , . 

Original length^ ’ ' 

In the case we are considering— 

. 6 in. 6 in. , 
Strain = =. — . = £. 

3 ft. 36 m. 

It should be noticed that this 
one-sixth is the relationship be¬ 
tween the alteration of length and 
the original length. It is not a 
dimension—that is to say, it is not 
one-sixth of an inch, or one-sixth 
of a foot, but is one-sixth of the 
original length. The importance of 
clearly understanding this will be 

seen if we consider Fig. 14 (c). Here 
the rubber has been stretched so that the distance from A to 
B is 4 ft. The stretch is therefore 1 ft. as compared with the 
original unstretched length (Fig. 14 (a)). 

Fig. 14. 

Strain = 
1 ft. 

3 ft- 
= i 

Students with an elementary knowledge of mathematics will 
see that by using this formula the actual change of length can be 
found if the strain and the original length are known. 

Change of length = Strain x Original length . (3) 

Change of length 
Original length 

Strain (4) 

Problems. If the strain on a loaded steel rod (in Fig. 5) is and 
the original length of the rod before loading was 50 in., what is the change 
of length ? 

Change of length ** x 50 i in. 
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Similarly it is easy to find the original length if we are told that the 
stretch is } in. and the strain is , 

Original length = —p = J x ioo = 50 in. 
T5T) 

The loaded rod shown in Fig. 10 (b) is in a state of tension and 
will definitely stretch, although, of course, not nearly as much as if 

the rod was made of rubber. This question is very important, and 

will be dealt with at length later. At this stage we will only say 

that steel and nearly all other metals have definite elastic pro¬ 

perties, and if they are put under a tensile stress they will stretch, 

and if the load is removed the bar will retux^i to its original length. 

Similarly, when a steel column in a building is loaded, it definitely 

shortens in length, and if the load is removed the column will again 

stretch out to its original length. 



CHAPTER 2 

STRESS. STRAIN*: ELASTICITY 

All metals are to some extent elastic, which means in other 

words that if a tensile or pulling force is applied to them they 
stretch, and when the load or force is removed they return to 
their original length. In like manner, if a compressive load or 
force is put upon them they shorten, and return to their original 
length if and when the load is removed. The amount of shorten¬ 
ing or lengthening is in direct proportion to the load. 

Hooke’s Law. This elastic property of metals breaks down 
long before the breaking strength of the material is reached. 
The fact that a bar lengthened or shortened in direct proportion 
to the load placed on it was discovered by Dr. Hooke, and is 
known as Hooke's law. The elastic limit can be described as 
the maximum stress per square inch which can be applied without 

causing any appreciable set or alteration in length. 

Fig. 15 (a) shows the results of a test which was made to 
find out the elastic properties of a mild steel rod, and the 
student is advised to consider this test carefully, as it will prob¬ 
ably enable him more clearly to understand what has just been 
said about the elastic properties of metals. 

In the test a mild steel rod J in. diameter and about 11 ft. 

long was suspended from a very stiff beam and gauge points 
1^0 in. apart were marked on the suspended rod. 

In a previous chapter it was shown that 

Load 
Stress 

Area* 

The area of a rod £ in. in diameter is 0*049 scl* which is 
practically of a square inch. It is therefore easy to see that 
if a load of 1 cwt. be put on such a rod the stress per square inch 
will be 

1 cwt. 
Stress = 1 cwt. 

1 

20 Area 
= very nearly 1 ton per square inch. 

In other words, if a pull of 1 cwt. is exerted on a bar £ in. 
diameter, it will have the same effect as a pull of 1 ton on a bar 
having an area of 1 sq. in. 

An Experiment.—Now let us return to the experiment 
shown in Fig. 15 (a). A load of 5 cwt. was steadily applied to 

12 
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;he rod, and the length between the gauge points are found to 
neasure 120-045 in. Therefore, since the gauge length before 
oading was 120 in., the load of 5 cwt. had caused a stretch of 

SKETCH SHOWING EXTENSIONS ON ROD V4 IN PI & 
ORIGINAL LENGTH BETWEEN GAUGE POINTS JO £ EJ V 

0-045 in. The load was removed and the rod quickly returned 

to its original length. A load of 10 cwt. steadily applied caused 
a stretch of 0-09 in. Again the rod returned to its original lfength 
when the load was removed. From 10 cwt. upwards additional 
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loads of i cwt. were applied. The rod stretched in proportion 
to the load, and when 14 cwt. had been applied the rod returned 
to its original length after this 14 cwt. load had been removed. 
This shows that up to this point the bar was perfectly elastic. 
(As the load applied was 14 cwt., the stress was approximately 
14 tons per square inch.) 

The student should pay particular attention to the behaviour 
of the rod. A load of 15 cwt. produced a stretch of 0-135 in. 
Notice that the stretch for each 5 cwt. has been 0-045 in. The 
stretch up to this point is still proportional to the load, but when 
the 15 cwt. load was removed the bar did not completely retym to 
its original length of 120 in. It has therefore lost some of its 
elastic properties, and the true elastic limit has been passed, 
although the stress and strain are still proportional. 

Yield Point. A load of 16 cwt. was now applied to the rod, 
and it was found that the stretch was still very nearly proportional, 
but with a load of 17 cwt. the extension was not proportional, and 
a load of 18 cwt. stretched the bar so that the gauge length was 
120*20 in. It is clear to see that for each 5 cwt. of load up to 
15 cwt. the rod had stretched 0*045 in. For the 3 cwt. addition 
after the elastic limit had been passed the stretch was 0*065 in., 
showing clearly that the rod is now stretching out of proportion to 
the load applied. 

As near as could be measured the proportionality of extension 
to load held good until the point B was reached, that is, until a 
weight of 16 cwt. had been applied to the rod. A load of 18J cwt. 
stretched the bar to 123 in. before the experiment was stopped. 
All these results are shown in Fig. 15 (a). The point A indicates 
the elastic limit, point B the limit of proportionality, and the 
point C the yield point. 

Although it is very necessary that the student should under¬ 
stand the difference between these three points, in actual building 
practice the yield point is often the only one used, and it is gener¬ 
ally assumed that the elastic limit and the yield point are about the 
same. 

Fig. 15 (6) shows the same curve as Fig. 15 (a). The points 
A, B and C are indicated, and this curve will help the student to 
understand Fig. 16. 

In the experiment which has just been described, a long rod 
was used so that the extensions could be measured by students, 
and the experiment was stopped after the yield point had been 
reached. In practical testing short test specimens are broken in 
machines specially made for this purpose. 
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In using a short test bar and a testing machine, the results 
would be as shown in Fig. 16. Here the bar is made of mild steel, 
machined to 1 in. diameter in the centre part. Gauge or centre 
punch marks are made 10 in. apart. Fig. 15 (c) shows what the 
bar would look like before and after the test. It follows that on 
such a short length as 10 in. the extensions must be very small, 
and these would be measured by a special instrument called an 
extensometer, by which it is possible to measure changes of length 
as small as part of an inch. 

Fig. 16. 

The results of the tests follow on exactly the same lines as for 
the previous experiment. The position of the true elastic limit is 
found to be at nearly 14 tons per square inch ; the limit of pro¬ 
portionality is reached at a stress of about 15 tons per square inch, 
and the yield point when the stress in the bar is 18 tons per square 
inch. It will be seen that when the stress on the bar is about 
18 tons per square inch, the bar continues to stretch until the 
gauge points are 10-2 in. apart. The steel then seems to recover 
strength, and the stretch is only 0 5 in. when the stress per square 

inch reaches 27-5 tons. 
Increasing loads now stretch the bar rapidly, because it is now 

necking or reducing in diameter. The test is continued until the 
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bar breaks. In this case the ultimate strength was 34 tons 
per square inch. At this stage the bar has stretched so much and 
the neck is so small that if some part of the load is taken off the 

stretching still continues, and the break will take place at a lower 
stress per square inch than the ultimate. Strictly speaking, the 
full line indicates the nominal stresses, and does not indicate the 
actual stresses, as the bar is reducing in area, the nominal stresses 
being taken on the original area of the bar. These actual stresses 
taken on the reduced area are indicated by a dotted line. In 
practical testing no account is taken of the reduced area, and the 
breaking strength is based on the original dimensions of the 
test bar. 

Strength of Materials. In the table the average strength 

of materials are indicated, and the student is advised to remember 

Average Strengths or Materials 

Material 

Ultimate Strength Safe Stress for Dead Load Factors of Safety ] Modulus 
of 

Elasticity Compression] Tension] jSwCAfl Compressor Tensio^ Shear Dead 

Load 

Variable 

Load Shocks 
Tons per Square Inch Tons per Square Inch Tons per S9 In. 

Mud Steel 30 30 20 1$ it 5 4 6 10 13,400 

Wrought Iron >8 24 20 *t 6 5 4 6 10 12,500 

Cast Iron 40 10 12 7 11 2 6 10 20 8,000 

L8S per Square-Inch Lbs per Square Inch Lbs per Sq In. 

Oak 7,500 10,000 1,250 1,600 6 8 15 1,300,000 

Pitch PW 6,000 7,000 1,000 1,200 6 8 15 1,500,000 

Douglas Fir 5,000 6,000 800 1.000 6 8 15 1,600, 000 

that they are average strengths and that the actual strengths of 
materials vary quite a lot. For instance, the average ultimate 

strength,of mild steel in compression and tension is given at 
30 tons per square inch. Actually the strength of mild steel may 
vary between 28 and 35 tons per square inch, but the figure of 30 
is about the average. All students will be aware that the strength 
of timber varies over very wide limits, depending on whether it is 
a good timber, and whether it is green or seasoned. 

In constructional work it would be courting disaster to load a 
member up to its ultimate strength, or above the elastic limit, as 
a permanent set in the member would probably cause distortion of 
the structure it forms part of, and eventually the collapse of the 
structure. 

For this reason a member is only stressed to a fraction of the 
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ultimate strength, and it is this divisor that is termed the factor of 
safety. As a formula it would be written: 

Safe working stress = 
Ultimate strength 

Factor of safety • (5) 

In the table the ultimate strength of steel is given as 30 tons 

per square inch, but a safe working stress of tons per square inch 
is the maximum that can be set up in a member. In this case, 
therefore, 

„ , £ £ , Ultimate strength 30 
Factor of safety = —--—--— = 

Safe working stress = 4* 

The safe stresses which can be used when the load is a dead load 
are shown in the table. However, if the load is a variable one'or 
takes the form of a series of shocks on the member, then the factor 
of safety must be increased, as a body is more liable to failure 
under fluctuating loads and shocks than under a dead load. Suit¬ 
able average factors of safety are shown in the table for variable 
and shock loads and the safe working stress for these types of 
loads will be obtained by dividing the ultimate strength of the 
material by the factor of safety given. 

The last column on the table gives the modulus of elasticity 
of materials. It is often termed Young’s modulus, and is denoted 
by the letter E. 

, - 1 ~ Stress per square inch 
Modulus of elasticity = E =-----—v- 

Strain 

If it were possible to stretch a bar originally 10 in. long to 
20 in. (that is, twice its original length) without breaking it, the 
unit stress which would do this would be the modulus or measure 
of elasticity. 

The modulus of elasticity of the steel used for the experiment 
shown in Fig. 15 (a) can be found from the results obtained. 
Up to B, the limit of proportionality, stress and strain are pro¬ 
portional, and the modulus of elasticity equation will hold good. 
In Fig. 15 (6) it will be seen that the rod had stretched o-i in. 
when the stress of the rod was 11 tons per square inch. 

We have previously shown that 

c+ro.n _ Stretch 

am - original length 

Therefore strain = Q I—I— = 0-000833 
120 in. 
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It has also been shown that 

Modulus of elasticity = 
Stress 

Strain 
from which 

Modulus of elasticity = 
n tons 

0-000833 

110,000 

8-33 
=5= 13,200 tons per square inch. 

For structural steel the modulus of elasticity is usually taken 
at 30,000,000 lb. (13,400 tons) per square inch, but it should be 
remembered that the actual modulus of elasticity of mild steel 
varies between 29,000,000 lb. and 31,000,000 per square inch. 

It is of course, not possible to stretch a steel bar to twice its 
length, as it would break long before this extension was reached, 
but the importance of the modulus of elasticity will be clear if the 
student has understood the elastic properties of steel, and the fact 
that, until the elastic limit is reached, the amount of stretch or 
elongation of length is in direct proportion to the load on the bar. 

It should, therefore, not be difficult to see that if a load of 
30,000,000 lb. per square inch is required to stretch a bar to twice 
its length, a stress of 30,000 lb. (13J tons) per square inch would 
stretch the bar y^th part of its length, so that if a bar of 1 sq. in. 
area and 100 in. long is pulled by a force of 30,000 lb., the bar will 
stretch in. 

Similarly, if the same bar was bedded in a concrete column, and 
pushed with a load of 30,000 lb. it would shorten in. It has 
already been made clear by the experiments which have been 
described that the elastic limit is not very much more than 
30,000 lb. (13^ tons) per square inch, and therefore the actual 
alteration of length in beams or columns in a bridge or building 
is not muclv ^because the actual stress which can be allowed must 
be less than the stress which would destroy the elastic properties of 
the steel. 

Various problems will now be worked out so as to make clear 
how the various terms, such as stress, strain, modulus of elasticity, 
factor of safety, and ultimate strength are made use of in actual 
practice. 

Problem i. A flat steel bar 3 in. by £ in. in section and 10 ft. long 
is used as a tie-bar in a roof truss. It is subjected to a pull of 11 tons at 
the ends, and the modulus of elasticity for the steel is 13,400 tons per 
square inch. Find how much the bar stretches. If the ultimate strength 
of the steel is 30 tons per square inch, and a factor of safety of 4 is to 
be used, And if the bar is stressed above the safe working stress. 
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Answer. 

_ Stress 
E = strain = I3'4°° *ons P61 scluare inch. 

from which 

Also 

Strain 
Stress 

i3>4°° 

Stress = 
Load 11 tons 

Area “ 3 in. x J in. 
7 33 tons per square inch. 

Therefore 

so that 

from which 

Strain = 733 
13,400 

= 0000547 

„ . Change of length 
Strain = . . .-1— = 

Original length 
0000547 

Change of length = Original length x 0-000547 
= 120 in. x 0-000547 
= 0 0656 in. 

If the ultimate strength of the steel is 30 tons per square inch, and 
a factor of safety of 4 is used, then 

Safe working stress = 
Ultimate strength 
Factor of safefy 

= — =7*5 tons per square inch 
4 

Actual stress in bar as found previously 

— 7-33 tons per square inch. 

Therefore the actual stress in the bar is less than the allowable stress, 
and the member is strong enough. 

Problem 2. A timber post 12 in. square and 10 ft. long carries a 
load of 40 tons. If E for the timber is 1 500,000 lb. per square inch, how 
much would the post shorten ? 

Stress 

“ Strain 

Stress =s 
Load 
Area 

40 tons x 2,240 

12 in. x 12 in. 
=* 622 lb. per square inch 

therefore E 1,500,000 
622 

Strain 

from which Strain = -- = o-000415 
1,500,000 

Change of length __ Change of length 
train — Qrjgjnai length ~~ 120 in. 

from which 

Change of length — Strain x 120 in. « 0 00415 x 120 = 0 0498 in. 
Thus the column would shorten about in. 
Problem 3. A concrete column is 12 in. square and 10 ft. long. 

When loaded with 40 tons it shortens 0 0375 in- Find the modulus of 
elasticity of the concrete. 
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Therefore 

E = 

Unit stress — 

Stress 

Strain 

Load 

Area 

40 tons x 2,240 

12.in. x 12 iri. 

Strain = 

E - 

= 622 lb. per square inch 

Change of length 0-0375 
= 0-000312 

Original length 120 

622 lb. per square inch 
0000312 

= say, 2,000,000 lb. per square inch. 



CHAPTER 3 

STRESSES ON OBLIQUE PLANES 

Metals are elastic, and the elastic properties of mild steel, 
as shown by experiments, were dealt with in the preceding 
chapter and such terms as factor of safety, modulus of elasticity, 
ultimate strength, and safe stresses for various materials have 
been explained. The simple formula that the Stress per unit 
area can be found by dividing the total load by the total area 
concerned is fundamental. 

Up to the present stresses have only been considered on a 
plane or cut which was perpendicular to, or at right angles to, 
the axis of the bar or column. The load was also considered to 
be axial or concentric. In other words, the load was considered 
as acting down the centre of the bar, and the unit stress was 
found on the area cutting straight across the bar. 

Stresses on Oblique Planes.—When materials are tested 
in compression they generally fail along a surface which is not 
at right angles to the vertical axis. In other words, they seem 
to slide away. A piece of cast iron loaded so that it fails under 
pressure would probably break in a manner somewhat similar 
to that shown in Fig. 17 (a). Results of many tests show that 

Typical Failures of Diffexent Materials 
SHOWING EFFECT OF SHEARING FORCES 

a timber block loaded until it breaks in compression would 
probably look like Fig. 17 (b). A piece of concrete might fail in 
the manner shown in Fig. 17 (c). 

The student will immediately notice that these materials are 
relatively brittle, and that the actual line where the failure takes 
place is not straight across the specimen, but on an inclined or 
oblique plane. It is therefore necessary for us to give some 

21 
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consideration to the stresses which occur 
on a plane which is not at right angles 
to the load. 

Consider'* a bar in compression, me 

conditions are as shown in Fig. 18. We 
have already seen that on a cut or plane 
A A the stress per square inch would be 

Stress = 
Load 

Area 

W 
A 

where W is the total load. 
A is the cross-sectional area on line A A. 

If W = 27 tons and A = 9 sq. in., then 
27 

Stress per square inch on AA = ~ = 

3 tons per square inch. 
The line CD represents an inclined or 

oblique plane inclined at 60 deg. to A A, 
and we shall consider the stresses on this 

Fig. 18. plane due to the load W. At this stage 
we introduce a little elementary trigo¬ 

nometry so as to make clear the terms used and the method of 
applying them. Fig. 19 (a) represents a right-angled triangle, 
and the lengths of the different sides are, of course, AC, BC, 
and AB, which are respectively the hypotenuse, perpendicular, 
and base lines. It is well known that there are rules for finding 
the lengths of the various sides when one side and the angles 
are known. Three of the most common terms in trigonometry 
are sine, cosine, and tangent. 

sin 0 == 
BC 

AC 
cos 6 = 

AB 

AC 
tan 6 = 

BC 

AB’ 

A very helpful method for remembering these formula is the 
first letters of the words of the following sentence : “ Peter’s horse 
brings home Peter’s bread. Notice 

One angle remains fixed at 90 deg., then if we know one of the 
other two angles it is quite an easy matter to find the third, 
since there are 180 deg. in every triangle. 

We now return to considering the stresses on the oblique 
plane (Fig. 18). The length A A is known and the angle called 0 
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is also known, therefore we can easily find the length of CD by 
using the simple rules just mentioned. 

CD 
AA 

cos O' 

Reference to any table of trigonometrical ratios will show 
that cos 60 deg. is 0-5. Therefore if length AA is 3 in., 

q in 
then the length CD will be -—1 = 6 in. 

6 °*5 
A little consideration of Figs. 17 (a), (b) and (c) will show that 

failure occurs by the two pieces sliding one over the other, and 
this is, of course, a shear, as was explained in an earlier chapter. 
Therefore in some way or the other a vertical push or load has been 
changed to an inclined force. Students who have an elementary 
knowledge of forces and their resolution, or who have done graphic 
statics, will know that one force can have two components, or 
that two forces can be substituted for or in place of one force. 
There may be some who have either forgotten or have not under¬ 
stood this point, and we shall try to make it perfectly clear by 
a simple example. 

Fig. 19 (b) represents a block of stone. The lines and arrows 
marked M represent men pushing in the direction shown, each 
exerting the same force as the other. If sufficient force was 
used the block of stone would move in the direction shown by 
the arrow marked W. It is obvious that if, instead of the men 
pushing at the back of the stone as shown by the arrows, they 
were pulling on it by means of a rope as shown by W, the same 
effect would be gained (and with less effort). The point I am 
trying to make is that the stone could be moved forward 12 in. 
either by a pull on a single rope in the direction of arrow W, 
or it could be moved 12 in. forward by men pushing at the 
corners. In technical language we therefore say that one force 
can be substituted in place of two others, or we can resolve 
a single force into two other forces, which would have the same 
effect. 

The load or force W in Fig. 18 will now be split up into two 
other forces, one marked S and one marked N. S is the com¬ 
pression or force of the load W which tries to make the top 
part T slide past the bottom part Bt as shown in Fig. 19 (c). 
N is the normal force, or force at 90 deg., to the plane CD, which 
tries to squeeze or crush the two pieces together, as shown in 
Fig. 19 (d). If the material is weak in shear, the shearing forces 
which are shown separately in Fig. 19 (c) are those which will cause 
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C 

failure, and this explains why the two pieces break off in the 
oblique or inclined plane, as shown in Fig. 17. 

Normal and Shear Stresses. The forces which act at 
right angles or normal to the plane, Fig. 19 (d) are called normal 
forces. The forces which act along or parallel to or tangential 
to the plane (Fig. 19 (c)) are called shear forces. 

Our next problem is to find the amounts of these normal 
and shear forces. We know the direction and the amount of 
the force W. We also know the direction, but not the amount 
of forces N and S. The amount of these forces can be found 
by drawing as shown in Fig. 20 (b). W is drawn to scale, and the 
two other forces are known by direction, so that they can only 
intersect at one point. The length of N and S, if scaled off to 
the same scale as W, will show the amount of the forces. It 
is also simple trigonometry that as S is parallel to plane CD 
and N is normal to it, the angle between N and S must be 90 deg. 
The other two angles can be found by inspection. Then it is 
not difficult to see that N — W x cos 0 and S W x sin 0. 

N is the total normal force on the plane CD and S is the 
total shear force on CD. 
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The stress due to shear can now be easily found, because we 
have the total shear load, and the total area on which it acts 
will be the length of CD multiplied by the thickness of the block. 
We have considered the thickness as being 3 in. It has been 
previously shown that 

Length of CD = Length of AA 

Cos 0 for 60 deg. is 0*5, so that length CD is twice the length 
A A. The through dimension remains the same, so that the new 
area on the plane CD will be 6 in. x 3 in. = 18 sq. in. Fig. 21 
shows this. 

Then total normal load N = W x cos 0 — W x 0 5 

= 27 x o*5 = 13 5 tons. 

Total shear force S = W x sin 0 

= W x o-866 
= 27 x 0-866 = 23-4 tons. 

Normal stress per square inch = ^ 

= 0-75 per square* inch. 

Shear stress per square inch = ^ 

= 1-30 tons per square inch. 

c 
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The explanation which has just been given in very simple 
language is generally written in text-books as follows : 

Normal intensity of stress per square inch on 

W 
inclined plane CD = — cos2 6. 

Tangential or shear stress per square inch on inclined plane 
W 

CD = x sin 0 cos 0. This can also be written as shear stress 
A 

W 
= — sin 20. 

2 A 
W 

Let P — -j- = stress per square inch in plane A A, 
A 

then 
p 

shear stress — — sin 20. 
2 

The maximum value of shear stress occurs when 0 = 45 deg. 

Then 20 = 90 deg. and sin 20 = + 1 

Therefore maximum shear stress occurs on a plane inclined at 
45 deg. to the horizontal and 

From which it will be seen that the maximum shear stress pro¬ 
duced in a body due to a stress being applied at its ends and 
acting down the centre of the body is equal to one-half this 
stress P. 

Fig. 20 (a) shows this plane of maximum shear. Consider now 
another plane EF inclined at 90 deg. to the plane of maximum 
shear. This plane will be inclined at 45 deg. + 90 deg = 135 deg. 
to the horizontal. 

p 
Shear stress = — sin 20. 

2 

In this case 0 = 135 deg. 20 = 270 deg. sin 20 = — 1. 

P P 
Therefore shear along plane EF = — x — 1 = -. 

2 2 

Thus the shear occurring along a plane at 90 deg. to the 
principal plane is also a maximum. This shows that the maxi¬ 

mum shear stress on one plane is accompanied by an equal 
shear stress acting on a plane perpendicular to it. 

In the first case the shear is positive, and in the second case 
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negative, which shows that they are acting in opposite directions, 
see Fig. 20 (a). 

A piece of cast iron may have a breaking strength of 40 tons 
per square inch in compression and 12 tons in shear. It is 1 in. 
square. If it is loaded with 30 tons then a compressive stress 
is set up = 30 tons per square inch, which is only three-quarters 
of the breaking strength of the material in compression. The 
shear stress on a plane inclined at 45 deg. to the axis of the 

bar = — = 15 tons per square inch, which is more than the 
2 

ultimate strength of the material. Therefore the bar will fail 
by shearing in a manner similar to that shown in Fig. 17 (a). 

Fig. 22 (a) shows the lines of stress in a simply supported beam 
uniformly loaded. 

Fig. 22. 

In a concrete beam, if failure occurs, it is probable it will 
be along the wavy lines shown inclined in Fig. 22 (b). 

This shows the tensile stresses produced by the shear forces. 
These stresses will be further explained later when we shall deal 
with the design of wood, steel and reinforced concrete beams. 

Bolts and rivets are the principal means used for fastening 
together steel plates, angles and beams, although welding is now 
being much more used than formerly. In timber construction 
bolts are generally used. They are also used for temporary steel¬ 
work. They have the advantage when compared with rivets that 
they can be taken out if the nut is unscrewed, whereas the rivet 
is a permanent fastening, which when once made can only be 

taken out by knocking off the head. Well-formed rivets fill 
completely the holes, whereas if ordinary black bolts are used 
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the holes are not completely filled and therefore there is not the 
same strength nor rigidity in a joint secured with black bolts 
as there is in one fastened with well-made, rivets. Turned bolts 
which are made to fit tight into drilled holes are as good as 
rivets, but they have the disadvantage of being more expensive. 

Types of Rivets. Several types of rivets and the propor¬ 
tions of the heads were given in Chapter i. Of these, the snap 
or cuphead is the most common, but countersunk heads are also 
much used. The grip of the rivet is the distance between the 
finished heads, or in other words the total thickness of the plates 
which have to be joined together. Where there are three or 
four plates it is difficult to get the holes exactly opposite, and 
in practice, there is a certain amount of zig-zagging. It is there¬ 
fore considered good practice that the maximum grip should not 
be more than four or five times the diameter of the rivet. 

The distance from the centre of one rivet to the centre of 
the next is called the pitch, and should never be less than three 
times the diameter of the rivet. In general constructional work 
rivets of § in., f in., or f in. diameter are most commonly used, 
but in light sheet steel tanks and hoods, rivets of £ in. diameter 
are very commonly encountered. 

Riveting which is done in the steel shops or steel yard is 
known as shop riveting, while that done on the site is called 
site riveting or field riveting. In both these spheres pneumatic 
or compressed-air tools are now chiefly used. There is still a 
good deal of hand riveting, and in the shops hydraulic machines 
are still largely used on heavy work. 

Size of Rivets. The student will very soon find that one 
of his difficulties is to get a formula giving a suitable diameter 
of rivet. Unfortunately, in text-books one frequently finds 
words like these : " According to Unwin's formula the diameter 
of the rivet should be i in. This is larger than is suitable, and 
for practical reasons we shall use rivets f in. diameter." In 
general it can be said that f-in. diameter rivets are about the 
largest which can be made by hand riveting, and the student 
will not be far wrong if he assumes that this is about the largest 
size of rivets which should be used when dealing with problems 
which he is likely to get in examinations. 

The general routine of hand riveting is to heat the shank to 
a red heat, and to hold the formed head against the underside 
of the plates by a dolly or die which is carried at the end of a 
long steel (or wood) handle. At a point a few inches from the 
rivet there is a fulcrum provided either by a hook bolt or chains, 
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and it is easy to see that by pressing on the long end of the 
handle a tremendous upward force can be exerted on the head 
of the rivet. The red-hot shank is then hammered down either 
by hand hammers or by a compressed-air machine, and during 
this process the red-hot metal fills the drilled or punched holes. 
The newly formed heads are then finished off by snaps or cutters. 
A sketch showing the position of the rivet before the closing is 
done was shown in Chapter 1. 

IF THE DISTANCE FROM THE CENTRE OF THE RIVET HOLE TO THE 
EDGE OF THE PLATE IS MADE 1*5 X DIAMETER OF RIVET THIS 

Fig. 23. 

Different Joints. Types of Joints. Pages 29 to 32 show 
various types of joints and the methods by which they are likely 
to fail if badly designed are shown. Fig. 23 (a) shows a typical 
single lap-joing. It is easy to see that this takes its name from 
the fact that one plate is placed over or laps over another plate. 
This sort of joint is easy to make, but has certain disadvan¬ 
tages. As shown in Fig. 24, the forces or pulls or tensions tend 
to bend the plate so that the forces act in one straight linev. 
This causes the rivets to bend and may result in the rivet heads 
breaking off. 

A single-cover butt joint is shown in Fig. 25 (a), and has the 
same disadvantages as the lap joint. It gets its name from the 
fact that the main two 
plates are butted together, 
and on one side only there ^ 
is a strip or single cover 
strap. 

The question of single 
shear has already been 
briefly referred to, and it 
will be considered more 
fully later, but in the mean- Fig. 24. 
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time the student will notice that in both the cases just mentioned 
the rivets are in single shear. A much better joint than either 
the lap joint or the butt joint with single strap is the butt joint 
with double cover straps, as shown in Fig. 26. In this case 
there is no tendency to bend the plates, and the rivets are in 

double shear. 

Failure of Riveted Joints. There are several ways by 
which a riveted joint may fail: 

(1) By the plate tearing (Fig. 23 (b)). 
(2) By the plate bursting at the end (Fig. 27 (a)). 
(3) By the plate crushing (Fig. 27 (b) ). 
(4) By the rivet shearing (Fig. 28 (a)). 

It is extremely unlikely that the plate will fail by bursting 
in front of the rivet, as shown in Fig. 27 (a), if the distance from 
the centre of the rivet to the edge of the plate is made 1-5 x dia¬ 
meter of the rivet, or, in other words, if the distance from the 
edge of the rivet to the edge of the plate is not less than the 
diameter of the rivet there is plenty of strength. We are therefore 
left with three probable causes of failure, and these will be 
considered in detail. 
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In the following, let 

P — load applied on each end of plates 
W — gross width of plate in inches 
d = diameter of rivet and rivet hole in inches 
t — thickness of plate in inches. 

Failure of Plate in Tension. If the forces P are sufficiently 
big it is not difficult to see that the two plates m'ight pull apart 
as shown in Fig. 23 (b). The area of the material which is broken 
is shown shaded in Fig. 29 (b). The amount of metal which has 
pulled-apart is 2 x B x t, but 2 x Bis the same as W — d, so 
that the area broken is [W — d) x t. 

Failure in Bearing or Compression. This method of 
failure is shown in Fig. 27 (6), and it may help the student to 

IF the Oistance from the centre of the rivet hole to the 
EDGE OF THE PLATE IS MADE 1-S X. DIAMETER OF RIVET THIS 
TYPE OF FAILURE WILL NOT OCCUR 

realize clearly the principles involved if he will consider one of 
the plates as being £ in. thick, and the other, say, only f in. It 
is not difficult to visualize that if the plates were pulled apart 
the thinner plate might fail by compression or crushing of the 
plate in front of the rivet. This sort of failure is not likely to 
arise if the thickness of the plate is made somewhere near half 
the diameter of the rivet, but this is a practical hint only, and 
will not enable students to solve questions set in examinations 
or from the actual design point of view. 

Effective Bearing Area.—Refer to Fig. 29 (b) and (c) and 
consider the forces pulling these plates apart and causing the top 
plate to bear against the rivet. Although theoretically it would 
touch on half the circumference of the rivet, the effective bearing 
area is only the diameter of the rivet multiplied by the thickness 
of the plate. I know only too well that many students will use 
half the circumference multiplied by the thickness of the plate 
as the bearing area. Bearing area however = d x /. 
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cut across out face . 
This is single ShCAR 

Fig. 28. 

Shear strength. Fig. 28 (a) shows the joint failing by the 
rivet shearing or being cut in half. For the rivet to do this it 
must be cut right through its cross-section. The area of the cross- 
section of a rivet is that of a circle, and the area of a circle is 

n x r2 or —where n = 3-14 approximately. 
4 

r — radius of rivet, d = diameter of rivet. 

Before the joint can fail, therefore, the rivet must be cut through 
7Z X d^ 

an area equal to-. It will be noted that the rivet is cut 

in one place only in this case, and this is known as single shear. 
If the rivet had been cut as shown in Fig. 29 (a), it would have 
been cut at two sections, and this is known as double shear. A 
rivet in double shear is about twice as strong as one in single 
shear. 

Notice that t*e effective area 

Fig. 29. 
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Breaking and Safe Stresses. In Chapter 1 we showed 
that it is not the ultimate or breaking strength of a material 
which is used when designing, but something considerably less. 
The relationship between the stress which is allowable and the 
breaking stress is called the factor of safety, and in riveted con¬ 
struction work a factor safety of 4 is generally used. If the 
crushing strength of steel is 46 tons per square inch, and a factor 
of safety of 4 is used, then the safe or working or permissible 
stress in crushing or bearing will be 46 4- 4 = nj tons per 
square inch. In the table of strengths of materials (Chapter 2) 
it was shown that the breaking strength of mild steel in tension 
is about 30 tons per square inch. Again, if we use a factor of 
safety of 4, the permissible tensile stress will be 

Ultimate tensile stress 4- Factor of safety 

= 3° 4- 4 = 7$ tons per square inch. 

In like manner we find the permissible shear stress, given that 
the ultimate shear stress is about 20 tons per square inch. So 

20 
that permissible shear stress will be — = 5 tons per square inch. 

4 
The student is warned against thinking these figures are 

absolutely correct. They are average figures, and nothing more. 
It should be realized, and will certainly be shown to students 
in technical classes, that the ultimate bearing strength of mild 
steel might be anything between 44 and 50 tons per square inch, 
the ultimate tensile strength anything between 28 and 33 tons 
per square inch, and the ultimate shear strength anything between 
18 and 24 tons per square inch. 

Similarly, the factor of safety of 4, which is very commonly 
used, is not the only factor of safety. *It might be in some cases 
justifiable to use a factor of safety of only 3, while in other cases, 
where there is vibration, shock, or temperature variation, a factor 
of safety of 6 or 8 is not uncommon. It is for these reasons 
that the student will find in the various text-books and hand¬ 
books different values given for shearing and bearing strength 

of mild steel rivets. 
Bearing Strength. The safe bearing or crushing strength 

is generally taken as 10 or 12 tons per square inch. Both these 

values are commonly used. 
The safe tensile strength of mild steel plates is generally taken 

at 7$ or 8 tons per square inch, and the safe shear strength 
of rivet steel is generally taken at 5 or 6 tons per square 
inch. 
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Let Ft be the safe tensile strength of plate = i 
Fb be the safe bearing strength of plate = 
Fs be the safe shear strength of rivet steel = J. 

We shall now return to the various methods by which a 
riveted joint may fail, and calculate the amounts which would 
probably cause failure, and also the safe loads. 

Consider case i, the failure of plate in tension. The net area 
broken is (17 — d) x t. Let breaking strength of steel = 30 tons. 
The probable pull to cause failure would be (W — d) x / x break¬ 
ing strength, which equals {W — d) x t x 30 tons. 

If Width of plate, W = 3 inches 
Diameter of rivet hole, d = J inch 
Thickness of plate, t = £ inch 

then probable pull which would cause failure will be 

(3 - I) X \ x 30 = x 15 = 33J tons. 

It has been shown that the permissible value would be very 
much less than this, in fact, it would only be about a quarter 
of this load. 

We can calculate as follows: 
Safe load so far as the strength of the plate in tension is 

concerned equals 
Safe load = {W — d) x t x Ft. 

If Ft is taken as 8 tons per square inch, then 

Safe load = (3 — |) x j x 8 tons 
= 2\ x 4 = 9 tons. 

It will be clear that this is the maximum pull which could be 
safely resisted by the plate against failure, as shown in Fig. 23 (b). 

Failure by Crushing. We shall now consider the possible 
failure by crushing or bearing (Fig. 27 (b)), and here, again, we 
can only find the approximate force which would cause bearing 
or crushing failure. This is found by the formula: 

Breaking load — d x t x crushing strength 

If d is f in. diameter 
t is \ in. thick. 

Crushing strength is 44 tons per square inch, then 
Breaking loid = f. x $ x 44 = 16$ tons. 
Here, again, the student will clearly understand that though 

it would require a force of 16J tons to cause failure by the plate 
crushing, the permissible load would be only about a quarter of 
this amount. Then^- 

Safe bearing stress — d x t x Fb 
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ALTHOUGH THIS JOINT IS 
SOMETIMES USED BECAUSE 
IT IS EASY TO MAKE , IT IS 
NOT A GOOD TYPE. 

/±V A 
—^r 

Fig. 30. 

which equals in the case considered, taking Fb at 12 tons per 

square inch. 

Safe bearing stress = £ x \ x 12 = 4% tons. 

This method failure is not very easy to visualize, but the 
fact that the rivet might pull apart is very easy to imagine. 

The strength of one rivet in single shear is area x shearing 
strength. Let shearing strength of rivet steel = 20 tons per 
square inch, then 

Breaking load on rivet = ^ x i% x 20 

= x | x f x 20 = say 8-8 tons. 
4 

Using a factor of safety of 4, the safe shear stress Fs of mild 
steel would be 5 tons per square inch, and the safe working load 
on one rivet f in. diameter in single shear would be 

5^4 x d2 x Fs = x 075 x 075 x 5 = 2*2 tons. 
4 4 

Collecting all these figures together, we find that a joint of 
the dimensions given would be safe as far as the tensile strength 
of the plate is concerned to resist a pull of 9 tons. It would 
be safe as far as bearing or crushing is concerned to resist a pull 
of 4^ tons, while the rivet would be safe in shear if the pull on 
the plates was 2*2 tons. 

Figs. 30 and 31 show a lap joint and a double cover butt joint. 

Fig. 31 



CHAPTER 4 

SIMPLE STRESSES AND STRAINS 

We have already dealt with several technical terms and their 
meanings, and shall now proceed to show how these can be used. 

If the student has clearly understood the difference between 
stress and strain, and the meaning of elastic limit and yield point, 
he will not find much difficulty in understanding why the per¬ 
missible or working stress is only about one-quarter of the break¬ 
ing stress. It is not very easy to realize why it is that if it will take 

a pull of 30 tons to break a bar, it is only considered safe for the 
same bar to be pulled to to 8 tons. There seems to be such an 
extraordinary difference in these values. 

Fig. 32 shows three different' bars pf the same cross-sectional 
area but of a different shape. If these bars are made of mild steel 

Fig. 32. 

they will have a breaking strength of about 30 tons per square inch. 
The area of the square, round and rectangular bar is in each case 
about 11 sq. in. It therefore follows that if we apply a load of 
about 45 tons on the end of each bar it will probably break. This 
shows that the strength of a bar in tension is in proportion to its 
cross-sectional area. 

The following questions will help to make dear the points 
which have been dealt with so far with regard to the design of 
riveted joints. 

Question i . What is the probable pull which would cause a mild steel 
bar 3 in. wide and J in. thick to break in tension ? 
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Answer. This bar would be of the type shown in Fig. 32 (c). The table 
given on page 16 showed that the average breaking strength for mild 
steel in tension is 30 tons per squate inch. The area of a baj 3 in. wide 
and | in. thick is i£ sq. in., so that 

Breaking load = Area x Breaking strength 
= i*5 x 30 * 45 tons 

Question 2. What is the safe load which could be carried by a mild 
steel bar 3 in. by £ in. in section ? 

Answer. Using a factor of safety of 4 

Working stress = 
Breaking stress 

Factor of safety 

Working stress 
30 

= 7i tons per square inch 

Safe load = Area x Allowable stress 

=» 15 x 7*5 = 11*25 tons 

Notice that this is not tons per square inch, but the total load which 
can safely be carried by a mild steel bar of the size given. 

Question 3. What load would 
probably break a mild steel bar 3 in. 
wide and £ in. thick, with a hole } in. 
diameter drilled in the bar ? 

Answer. Fig. 33 shows this bar, 
and it is easy to see that less load will 
be required to break the bar in this 
case than for the bar given in Ques¬ 
tion 1. The effective area is now 
reduced bv the hole which has been 
drilled. 

The amount of material which would 
have to be pulled apart or broken is 
called the net area, and, as explained 
in the preceding chapter, the net area 
is the total width less the diameter of the hole, multiplied by the thick¬ 
ness of the plate. 

It can be written as 

Net area = (W — d) x t 
where W is the width of the plate 

d is the diameter of the rivet hole 
t is the thickness of the plate 

The probable force required to break the bar would be 

Breaking load = Net area x Breaking strength 
== Net area x 30 tons 
» (3 — i) X £ by 30 tons 
= 2j X £ x 30 
= ij x 30 = 3375 tons 

- -j; NET AREA At ' 
V^-SECTION b.k 

Fig. 33. 

Question 4. What is the safe load or pull which a mild steel bar 
3 in. wide by £ in. thick, with a hole J in. diameter drilled through the 
bar, can stand ? 
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Answer. Again using a factor of safety of 4— 

Safe load = Net area x Allowable stress 
«** ij x 7-5 tons 
= nearly 8J tons 

In practice, the load or force which a bar must carry is often known 
from the design sheet9, and it is necessary to fix up a bar of suitable size 
to resist this load. 

Question 5. What is the'probable force which would cause a rivet 
f in. diameter to fail in single shear ? 

Answer. The student will understand what shear is, and also the 
difference between single and double shear. The probable force which 
would cause a rivet or round bar to fail in shear is 

Shearing force = Area x Shearing strength 

The area of a round bar is ^ x r*. 

n x d2 
This can also be written as -. 

4 

n is the relationship between the -circumference and the diameter of 
a circle, and amounts to 3-14. 

22 
The area of a circle can also be written as -5 x d%. 

28 

3/4 DlA RIVET 

Fig. 34 (a) shows how in single shear the rivet is cut at one section only, 
therefore 

Shearing force = Area x Shearing strength 

3*14 
— x } x J x 20 tons 

= 0*44 x 20 tons 
*= 8-8 tons 

Question 6. What is the safe strength of i. J-in. diameter rivet in 
single shear ? 
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Answer. 

Safe shearing strength = 
Breaking strength 
Factor of safety 

8-8 
— =2-2 tons 
4 

Question 7. What is the probable foxce which would cause a rivet 
} in. diameter to fail in double shear ? 

Answer. The term double shear means that the rivet will be cut 
across two faces, as shown in Fig. 34 (6), and it will therefore require twice 
as much force to do this as to cause the rivet to fail in single shear. 

Shearing force = 2 (Area of rivet x Shearing strength) 

Area = - x dx 
4 

Therefore 
3*14 

Shearing force — 2 x - x } x { x 20 
4 

= 2 x 0-44 x 20 
= o-88 x 20 = 17-6 tons 

In practice, the resistance in double shear is often taken as only 
175 times the value in single shear, but unless the local authorities limit 
the double shear to only 1 75 times the single shear value, there is no 
reason why the double shear value should not be taken as twice the single 
shear value. 

Question 8. What is the safe strength of a { in. diameter rivet in 
double shear ? 

Answer. This will be twice that of a rivet in single shear (Question 6) 

= 2 x 2*2 = 4 4 tons 

Question 9. Two plates are connected by a lap joint, as shown in 
Fig. 35 (a). If the plates are J in. thick, what force would probably cause 
crushing in front of the rivet, if this was } in diameter ? 

3/4* 01 A. RIVET 

(a) 

Puu 

QUESTION 9 
BEARING 
STRENGTH. 

Answer. This is generally called the bearing strength, and 

Bearing force *= d x t x Fc 
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where d is the diameter of the rivet 
t is the thickness of the plate 
Fc is the crushing strength of the plate 

Force to cause failure =» } x 1 x 40 tons 

= x 40 = 7J tons 

We know that if a pull of 7J tons would cause failure that it is only 
safe to allow a pull of about a quarter of this amount. The allowable 
or safe resistance against bearing or crushing failure in the conditions just 
mentioned would be 

Safe load = 
Crushing strength 

Factor of salety 
Zi 
4 

= 1 £ tons 

By similar reasoning the student will have no difficulty in finding that 
the safe crushing strength, if the plate is made in- thick, would be 
2-3 tons, and we have already found that the allowable single shear on 
a }-in. rivet was 2 2 tons. Therefore if the plate is made £ in. thick the 
safe bearing force is 1-9 tons, which is less than the shear value, in which 
case the bearing strength is less than the shearing strength of the rivet. 
If, however, the plates are made in. thick, the safe bearing strength 
is 2-3 tons, which is greater than the single shear value of the rivet. From 
this it follows, that when using }-in. diameter rivets in single shear, if 
the plates are made -&• in thick, they are not likely to fail by bearing in 
front of the rivet, whereas if the plates are made J in. thick there is more 
likelihood of the plate failing in bearing than of the rivet failing in shear. 

Question 10. The tension in a railway bridge tie-bar is 40 tons. 
If the bar is to be made } in. thick, what is a suitable width for the bar, 
if the permissible working stress is 7 tons per square inch ? 

Answer. 
Permissible load = Area x Permissible stress 

Area 
Permissible load 

Permissible stress 

Area 
40 tons 

7 tons per square inch 

57 sq. in. 

The area of a flat bar is Width x Thickness. 

Therefore Width x Thickness =57 

And since the thickness is known, we can find the necessary width. 

Width = = 57 X - = 7-6 in. 
i 3 

It should be carefully noted that this 7-6 in. is the actual net width 
of bar which is required, and if three holes on the same line are drilled 
in the bar, as shown in Fig. 36, and these holes are 1 in. diameter, it is 
clear that the effective or net width would be 7 6 less 3 in. or an effective 
width of 4*6 in. This is clearly not strong enough. In order to leave 
the bar with an effective width of 7-6 in. after the rivet “holes had been 
taken out, it would be necessary to make the bar 10J in. wide in the first 
case. Three j-in. holes taken out of this would give the required net area. 
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GROSS OR 

sectional area Of-—' sectionaOarea of 
BAR ALONG A.A. BAR ALONG B.B 

-(W-3d)*t s Wxt 
-5-7SQ.INS t 7-9 SQ. INS- 

Fig. 36. 

It will be noted that the plate is weakest along section A A where 
the cross-sectional area is least, while along section BB the plate is a 
good deal stronger. The rivets could be placed as shown in the drawing. 

Question ii. A tie-bar in a roof truss has a pull of 10 tons on it. 
Design a suitable butt joint with double cover straps, using rivets } in. 
diameter. 

Answer. 
Load 

Tension : Net area of bar required = 0 7—-- 
^ Safe stress 

Allowing a safe stress of 7J tons per square inch. 

Net area iiw uiva — . . — i*33 sq. in. 
7b tons 1 

Rivets in Shear : Since the joint is a butt joint with cover straps on 
each side, the rivets will be in double shear. 

T . Total load 
Number of rivets required —  ---r-—,-.——3—r;-r— 

^ Strength of 1 rivet in double shear 

Strength of one j-in. diameter rivet in double shear — 44 tons. 
. , 10 tons 

Number of rivets required =-7— = use 3 rivets. 
^ 4 4 tons J 

The student should be careful to note that three rivets are 
required on each side of the joint, see Fig. 37 (a). This will be clear 
by looking at Fig. 37 (6). The pull on the main plate is 10 tons, and 
if the rivets were too weak the plate could be pulled away from the 
cover straps as shown, and to do this it is only necessary to shear 
the rivets on one side of the joint. 

Bearing. We have now found the net area required and 
the shearing strength of a f-in. rivet in double shear, but we have 
not found the shape of the main member. The thickness will be 
such that the bearing strength is at least equal to the shearing 
strength of a rivet in double shear. 

D 
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Fig. 37 (c) shows how the plate tends to bulge in front of each 

rivet if the plate is made too thin. 

Bearing strength = d x t x Fb 

where d is the diameter of the rivet 
t is the thickness of the plate 
Fb is the allowable bearing strength, say io tons per 

square inch. 

plate pulling out 
SHEARING 3 RIVETS 
ACROSS 2 FACES. 

0 ^ 
plate crushing in (q) 
FRONT OF 3 RIVETS. 
SEARING STRENGTH 

Fig. 37. 

The total shear resistance of one rivet in double shear is 

2 x Area x Fs. 

Area = ~ x d% 
28 

Fs = allowable shear stress = say, 5 tons per square inch. 
If we make the total bearing strength equal to the total shear 

strength of one rivet in double shear, we get 

22 
dxtx 10 = 2X-Sxdixs 

28 
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So that it is safe to assume that if the plate thickness is made 
about o-8 of the rivet diameter when the rivet is in double shear, 
the joint will be strong enough for bearing. Similarly, if the plate 
is made 0-4 x the diameter of the rivet, when the rivet is in single 
shear the bearing strength will be adequate. 

It is therefore now possible to find a suitable thickness for the 
bar, using the formula just obtained. 

In this case t = o-8 x £ = o-6, say £ in. 

Net area = (W — d) x ! 

i-33 = {W - |) x | 

^ x 8 = w _ 3 

5 

2-13 + 075 = W 
W = 2-88, say 3 in. 

In practice, cover plates are generally made about five-eights 
the thickness of the njain bar. In this case f in. thick would do 
nicely. 

Pitch of Rivets. The distance centre to centre of rivets in 
the same row is called the pitch, and for rivets £ in. diameter, 
z\ in. or 3 in. centres are very common. The pitch should never 
be less than three times the diameter of the rivet. The complete 
design is shown in Fig. 37 (a). 

To sum up, it is near enough to assume that the single shear 
strength of a rivet §-in. diameter is i\ tons, in double shear 3 tons, 
while a f-in. rivet is good enough for z\ tons in single shear and 
4^ tons in double shear. 

The table below gives the shear strengths of various diameters 
of rivets and the bearing strengths of plates using these rivets. 

S WEARING AND BEARING VALUES OF RlVETS AND BOLTS. 

Diameter of 

Rivet or Bout 
Inches 

Ama Of Rivit 
0« Bolt 

Square Inches 

Shearing Yalues at 
5 TONS PER SQUARE INCH 

Bearing Values at 10 tons per Sq. Inch | 

Thickness of Plat e in Inchc 9. 
Single Smeia Double Smeaa '/4 vs Vt H 

* •9B 1-96 1.25 m 

\ . 

__ 
'307 1*53 3*07 1.56 2.34 

*4 '442 2-21 4-42 1.66 2-61 3-75 

% •601 3-01 6.01 2.19 3.26 4.38 5.47 

Welding. Notes on welding appear in Chapter 21, page 216. 



CHAPTER 5 

RIVETED JOINTS 

We have already discussed the elementary principles of 
riveted-joints, and showed that the point to be kept in mind when 
designing them is the strength of the rivets in shear, and strength 
of the main plate in tension, and the crushing or bearing strength 
of the plate in front of the rivet, should be kept as near equal as 
possible. 

We shall now show a design for a butt joint with double cover 
straps suitable for connecting two flat bars together. We shall 
also show the importance of getting a correct arrangement of the 
rivets if the most economical joint is to be obtained. Students 
preparing for examinations in strength of materials, machine 
design, theory of structures, or for the examinations of the 
Institution of Structural Engineers or the Royal Institute of 
British Architects, should know something of the principles 
involved in finding the strength and efficiency of riveted 
joints. 

In examination questions the size of the flat bar for which 
a joint is required is often given. In practice, the size of this bar 
must be found from the amount of stress or pull which the tension 
bar is to carry. The joint itself is required either at the end of the 
tension member to connect it with gusset plates, or alternatively 
it may be required near the centre of the member if the length is 
too long to permit one bar being used. 

Example. A mild steel tension bar in a structure is 9 in. wide and 
f in. thick. Using a safe tensile stress for the steel of 8 tons per square 
inch, a safe shearing strength for the rivets of 5 tons per square inch, 
and an allowable bearing or crushing strength of 10 tons per square inch, 
design a suitable butt joint, using double cover straps. What is the 
efficiency of the joint ? Design two alternative butt joints which will 
withstand the same load. 

Answer. There are many possible arrangements for the joint. Three 
are shown in design A, design B and design C (Fig, 38). 

Design A is the one most commonly used, and we shall make our 
design on these lines. Later we shall show that this type is more econo¬ 
mical than either design B or design C. 

All the rivets are in double shear. The joint may fail in foux 
ways: 

(1) By all the rivets on one side of the joint shearing. Notice 

44 
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(2) The main bar may fail by tearing across any of the lines 
A B, C, or D. 

(3) The joint may fail by crushing in front of the rivets if the 
bar or cover plates were too thin. 

(4) The joint may fail by both the cover straps tearing across 
line DD. (In practice it will generally be found that if each of the 
cover straps be made five-eights the thickness of the main bar they 
will be satisfactory. 

Number of Rivets. Before we can find the number of rivets 
required we must find the maximum force which the joint can be 
called upon safely to resist. This wiU depend upon the tearing 
strength of the main bar. 

Tearing Strength of Main Bar. The tearing strength of the 
main bar is least across line A A. This will he proved shortly. 
At this point there is one rivet hole, so that across A A the main 
bar has a net sectional area = (W — d) x t (see Fig. 39 (a)). 

Rivets either £ in. or £ in. diameter could be used. For this 
design we shall use rivets £ in. diameter. 

Net section area of main bar across A A 

= (9 - !) x Iin- 
= 8£ x £ in. 

= 5‘I5 sq. in. 

Safe tensile stress is 8 tons per square inch, so that 
Safe load in tension on main bar 

= Net area x Safe stress 
•= 5*15 x 8 tons 
= say 41 tons. 

Therefore the main bar can safely resist a pull of 41 tons. 
Number of Rivets Required. The number of rivets required 

will be governed either by shear or bearing. (This was explained 
fully in the preceding chapter.) 

The strength of 1 rivet in double shear 

= 2 x Area of rivet x Safe shear stress 

= 2x^x|2x5 tons 

= 4*42 tons. 

The strength of £ in. rivet in § in. thick plate in bearing 

= d x t x Safe bearing stress 
= J x | x 10 tons 
= 47 tons. 
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As the shear strength is lower than the bearing value the shear 
strength must be used in the design. 

Number of rivets required in double shear 

_ Total load 

Shear strength of 1 rivet 

41 tons . , 
=-= Q rivets. 

4-42 tons 

The nine rivets will be arranged as shown in design A (Fig. 38). 
Safe Loads. Efficiency of Joint. The efficiency of a joint is 

the relationship between the load the main bar could safely carry 
if there were no rivets in it, and the actual load the joint can safely 
carry. Consider the efficiency of the joint across line AA. 
A 9 in. x | in. solid bar could safely carry, allowing a safe tensile 
stress of 8 tons per square inch, a load of 

9 in. x f in. x 8 tons = 45 tons. 

At section A A the safe load which the main bar could carry 

— (9 — f) X f x 8 tons = 41 tons. 

Thus the efficiency of the joint at this section 

= — x 100 = 91 per cent. 
45 

That is to say, the joint at this section is ^ths of the strength of 
the main plate. 

Now consider section BB. Here two rivets are taken out, 

as shown in Fig. 39 (b). 
Thus the net area of main bar at this section 

= (W -2d) x t 

= (9 - i|) x | 
= 7* X | in. = 47 sq. in. 

Safe tearing strength of main member at BB 

= 47 x 8 tons = 37-6 tons. 

It is important to notice, however, that before the bar can tear 
along BB the rivet No. 1 must be cut in double shear. Until this 
occurs failure by the bar tearing along BB cannot take place. The 
safe strength of a f-in. diameter rivet in double shear has been 
found to be 4-42 tons. We have just seen that the bar itself at 
section BB is safe to resist a pull of 37 6 tons. The strength of 
the end rivet in double shear (4 42 tons) must be added to this 
amount in order to find the total strength at this section. 

Total safe load along BB = 37 6 + 4 42 = say 42 tons. 
This shows that the joint on this line is stronger than along A A. 



48 PRACTICAL BUILDING MECHANICS 

Section CC is shown in Fig. 39 (c). The main bar itself has a 
safe strength against tearing of 

(W — $d) x t x Safe tensile stress 

= (9 — 2\) x | x 8 tons 
= 6f x 5 = 33*8 tons. 

Before the joint can fail along CC 
the rivets 1, 2, and 3 must shear. 
The strength of three rivets in double 

shear 

= 3 x 4*42 = 13*26 tons. . 

By similar reasoning it is easy to 

see that 

Safe load on joint at CC = 

33-8 + 13-2 = 47 tons. 

Since we have already shown that 
the safe strength of the main bar 
itself at any point outside the joint 
is only 45 tons, it is clear that the 
safe strength of the joint on the line 
CC is more than the actual bar itself, 
and therefore failure will not take 
place by the main bar tearing along 
this line. 

Tensile Strength. At section 
DD there are again three rivet holes 
in the main bar (Fig. 39 (d)). There¬ 
fore along this section the bar will 
have a safe tensile strength of 33*8 
tons (as shown in section CC). Be¬ 
fore failure of the main bar can 
occur along this line the rivets 1, 
2, 3, 4, 5, and 6 must all fail by 
shear, and the strength of six rivets 
in double shear = 6 x 4*42 = 26*5 
tons. 

Safe load on main bar at DD 

= 33‘8 + 26 5 = 60*3 tons. 

Failure will therefore not occur 
by the main plate tearing along this 
line. 
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Summarizing the results, we have 

Safe load along section A A — 41 tons 

„ „ 1 * BB - 42 „ 

ft tt *t CC 47 M 

DD -60 

49 

It follows that the efficiency of the joint is determined by 
Section AA, and is 95 per cent. 

The statement made previously that the main member is 
weakest along A A has thus been proved. This is an important 
point, because when we know this, it is possible to find the section 
of the main member if we know the load which the bar must 
carry. This is always the procedure in practice, because the 
force in the bar must first be found and then a suitable section to 
carry that force. 

Tearing Strength of Cover Straps. The cover straps must be 
made sufficiently thick to ensure that they are as strong as the 
safe strength of the main bar along line A A. We have just seen 
that this is 41 tons. If the cover plates were made too thin, 
examination of design A will show that the whole joint might fail 
by the cover plates tearing along a line DD, as shown in Fig. 38. 
If the cover plates fail by tearing along this line the joint fails. 

The strength of two cover plates along DD will be 

2 x (W — 3d) x t x Safe tensile stress 
= 2 x (9 — 2\) x t x 8 tons 
= 2 x 6J x / x 8 = io8*. 

The value of t must be such that the cover plates are safe for 
a tearing stress of 41 tons. 

Therefore loSt = 41 tons 

t = m = °'378 in' 

so that the thickness of each cover could be | in. 
We will now consider the alternative design B. The main 

member (shown in Fig. 38) will be weakest along the row of four 
rivets (line EE). 

Although the net area of the bar along the line of the five rivets 
is less, it must be remembered that the row of four rivets must fail 
in double shear before failure of the joint can occur. 

Net sectional area of bar required 

Load _ 41 tons 

Safe stress 8 
= say, 5 sq. in. 



5<> PRACTICAL BUILDING MECHANICS 

Fig. 40. 

Along the row of 4 rivets, 

Net area = (W — 4^) x t = (W — 3 in.) x $ in. 
This must equal 5 sq. in., so that 

(W - 3) x | = 5 sq. in. 
IT-3=8 

= 8 + 3 = 11 in. 

In this case the bar would need to be n in. x $ in. as against 
9 in. x | in. for design A. Some length would be saved in the 
cover straps, but this would not justify using design B. 

Weakest Section. Consider design C (Fig. 38). Note that 
in this case, since there is the same number of rivets at any section 
throughout the main bar and at any section through the cover 
straps, the covers could be made half the thickness of the main bar 

Fig. 41. 
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in this case. The weakest section of the member will be along the 

outside row of three rivets, at FF. 

Net sectional area = (W — 3d) x t = 5 sq. in. 

(W - 2j) x | = 5 

W — 2^ = — X — = 
i 5 

W = 8 + 2\ = 10^ in. 

Again, in this case a wider plate than for design A is required, 

so that design C would not be as economical as design A. 
In Fig. 40 a special type of lap joint is shown, and it will be 

noticed that one of the plates is hammered to a thin wedge shape. 

This type of joint is quite commonly used on large storage tanks 

and boilers. A type of tank used on the railways for carrying 

liquids is shown in Fig. 41. 



CHAPTER 6 

BASES FOR COLUMNS 

In Chapter 5 we showed the importance of the arrangement of 
rivets, and also the complete design of a riveted joint for connect¬ 
ing mild steel flat bars together by using a butt joint, with double 
cover straps. 

On page 54, the details of a riveted base for a steel column are 
shown. The chief principles involved in making such a design 
will be considered here. 

The base plate is necessary in order to spread the load passing 
down the column over a sufficient area to ensure that the column 
does not sink into the ground or crush the support on which it 

rests. It is not difficult to imagine that if there was no base plate 
provided, and that if the rolled steel joist which forms the column 
shaft was set directly on a masonry or concrete block, the steel 

would sink into the pier and break up the bricks or concrete as 
shown in Fig. 42 (a). 

Masonry and Concrete. The safe bearing capacity of 
masonry and concrete has been found by many years of experience 
and actual tests. It is quite safe to allow the following pressure 
on concrete foundations: 

1 : 10 mass concrete = 10 tons per square foot 

1 : 8 „ „ =15 
1:6,, „ =20 

For good concrete with a mixture by volume of one of cement, 
two of sand and four of aggregate, the bearing pressure between 
the steel base plate and the foundation block might be as high as 
30 tons per square foot. 

While on this subject of bearing pressure we may as well keep 
in mind that the safe bearing pressure on the ground below the 
concrete block is very much less than the safe bearing pressure 
between the steel base of the column and the top of the concrete 
block. It is easy to imagine that if a concrete foundation block 
2 ft. square and 1 ft. thick was put on to new-made ground, a load 
of 10 tons would probably cause it to sink several inches into the 
ground, as shown in Fig. 42 (6). In order to ensure that the 
foundation block does not settle, it must be made with an area 
big enough to ensure that the load on each square foot is not 
more than the ground will carry. 

52 
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THIS SKETCH SHOWS HOW A 
COLUMN WOULD SINK INTO THE 
CONCRETE OR MASONRY FOUNDATION 
IF NO BASEPLATE WAS USED 

THIS SKETCH SHOWS IN AN 
EXAGGERATED FORM HOW A 
COLUMN SHAFT WHICH IS NOT 
MACHINED DEAD SQUARE Wll l. 
NOT REST FLAT ON THE BEDPLATE 

0 FouVi 
' *6 u 

(a) 

• V 
ation * 

*cV 0 * 

THIS SKETCH SHOWS HOW 
THE FOUNDATION BLOCK 
WILL SINK INTO THE GROUND 
IF THE AREA IS NOT BIG ENOUGH 

.These 3 sketches Show 
HOW BECAUSE OF BAD WORkmAnShiP 

ONLT PART OF THE LOAD FROM 

THE COLUMN IS TRANSFERRED TO 

THE BASEPLATE 8T DIRECT 

Bearing, The remainder must 

Be transferred through 
THE RUSSET PLATES, ANQlES 
And rivets. I 

WWW 

GUSSET PLATE NOT RESTING 
SQUARE ON BASEPLATE. 
NECESSITATING USE OF 
FLANGE ANGLES AND 
RIVETS TO TRANSFER LOAD 
TO BASEPLATE 

Fig. 42. 

The following table gives values of what are generally con¬ 
sidered to be about the maximum permissible loads on ground in 
tons per square foot: 

Newly-made ground . . . not more than \ ton 
Soft clay, wet or loose sand . . „ ,, ,, i ton 
Firm dry clay or ordinary good 

ground . . . . 2 to 3 tons 
Compact sand or gravel, very good 
ground.„ ,, „ 4 tons 

Where the foundation is hard, solid chalk or soft rock, a safe 
bearing pressure of anything up to 20 tons per square foot may be 
allowed. 

Question. What area of concrete block would be required under a 
steel column carrying a load of 80 tons, if the ground was good haijd 
clay capable .of safely supporting a load of 4 tons per square foot ? 

Answer. 

Area of concrete block 
Load 80 

Safe pressure ~~ 4 
20 sq. ft. 
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If the block were made square it would be about 4 ft. 9 in. each way, 
and if made rectangular, it could be about 5 ft. by 4 ft. 

It has already been stated that th$ object of the steel plate 
under the column shaft is to spread the load, but the load can only 
be transmitted to the baseplate either by direct bearing of the 
shaft with the plate or by passing the load through other members 

connected by rivets or bolts. 
With a base plate perfectly flat and the end of the column shaft 

machined, very few rivets will be required to make the connection. 
In actual construction, however, the end of the column shaft is 
often sawn off and not machined up square. As a result only 
three of the four corners of the bottom of the shaft may touch the 
baseplate in a manner similar to a table or chair when one of the 
four legs is shorter than the others (see Fig. 42 (c)). For this 
reason it is generally assumed that part of the load is transmitted 
direct to the baseplate from the column,.the remaining being trans¬ 
mitted to the baseplate by means of rivets, side plates and angles. 

Load on a Column. Where the load carried by a column is 
relatively small, say, less than 20 tons,'it is usual to put in 
sufficient rivets to transfer the whole of the load to the baseplate. 
Where the column carries more than 50 tons, it is generally 
assumed that 40 or 50 per cent of the load is transferred to the 
baseplate by direct bearing, and that about 50 or 60 per cent is 
taken by the rivets. In other words, in designing a column base 
for a column carrying 100 tons, it can be assumed that 40 tons of 
the load is transferred to the baseplate by part of the column 
section resting on the baseplate, and that sufficient rivets must be 
provided to transmit the other 60 tons. The following design will 
make this clear. 

Question. Design a suitable riveted base for a column made of one 
R.S.J. 12 in. by 8 in. The load on the column is 80 tons. Assume the 
rivets take 60 per cent of the total load. Safe bearing pressure between 
steel baseplate and concrete foundation block equals 20 tons per square 
foot. 

Answer. Baseplate : 
Total load 80 tons 

Required area of baseplate = -=-1- = 4 sq. ft. 
^ Safe pressure 20 tons n 

The baseplate should be kept as near square as possible, so that a 
baseplate 2 ft. by 2 ft. will be suitable. Baseplates are generally made 
between £ in. and } in. thick. In this case use baseplate | in. thick. 

Transmitted to Baseplate. Load transmitted direct to 
baseplate ; 40 per cent of 80 tons is transmitted by direct bearing 
to the baseplate. 
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= — x 8o = 32 tons. 
100 

Load to be transmitted to baseplate by rivets : 60 per cent of 
80 tons. 

= — x 80 = 48 tons. 
100 

If the base of the column does not touch the baseplate squarely 
(see Fig. 42 (d)), then this 48 tons must be transmitted through 
web angles, flange plates and flange angles to the base. 

‘ Cross-section area of 12 in. by 8 in. joist = 
19-1 sq. in. Referring to Fig. 43, it will be seen 
that the area of the web of the column is 10 in. x 
0-45 in. = 4*5 sq. in., and the area of the two 
flanges of the column is 2 x 8 in. x 0-9 in.= 
14*4 sq. in. 

Over the total sectional area of the column 
of 19-1 sq. in. there is a total load of 48 tons, 
which has to be transferred to the baseplate by web angles, flange 
angles, flange plates, and rivets. 

The web angles (see Fig. 44) should transmit their share of this 

Fro. 43. 

— Column carrying a tOAD — 

Fig. 44. 
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48 tons to the baseplate. The area of the web is 4-5 sq. in., so that 
the load transmitted to baseplate by web angles 

Area of web of column „ . 4-5 0 

Total area of column 19-1 

= roughly 11-5 tons. 

The remainder of the 48 tons (that is, 48 — 11-5 = 36-5 tons) 
must be transmitted to the base by the flange plates and angles. 

Reference to Fig. 42 (e) will show that if the bottom of the side 
plate (known as gusset plate) is not machined true the load will 
not be transmitted correctly to the baseplate, and to prevent this, 
flange angles are connected by rivets to the side plates, and these 
angles transfer the whole 36 5 tons from the plates to the base¬ 
plate. 

Rivets. The web angles a.re connected to the column web by 
rivets, and the number of these depends on the strength of one 
rivet. Through the column web the rivets will be in double shear, 
and if we use |-in. diameter rivets the strength of one rivet in 
double shear — 6 tons. The strength in bearing of |-in. rivet in 

0-45 in. thick column web 

= | in. x 0-45 in. x 10 tons = 3-94 tons. 

The bearing value being the lower, this will be used in the design. 
Number of rivets required through web of column. 

Load on web 11-5 tons . , 
= -tv- t-- 1 = —-= 3 rivets. 

Strength of 1 nvet 3-94 

To prevent failure of the web angles themselves in bear¬ 
ing, they should be each made at least half the thickness of 
the column web. Two angles, 3| in. x 3| in. x § in. will do 
nicely. 

The flange plates or gusset plates are connected to the column 
flanges by a sufficient number of rivets to transmit 36-5 tons to the 
baseplate. This 36-5 tons load is the load down two flanges, so 
that the rivets in each flange will only take one half this amount, 
say, 18-25 tons. 

With a flange of about § in., rivets of f in. diameter could be 
used. 

Bearing Strength. In Chapter 4 the question of single 
shear, double shear, and the strength of rivets in shear and 
bearing have been fully dealt with, and the student will have no 
difficulty in checking up that the strength of a |-in. diameter 
rivet in single shear is 3 tons. The gusset plates should have a 
thickness to ensure that the bearing strength of the rivets is 
approximately the same as the single shear value of 3 tons. 
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Bearing strength = D x t x io tons. 
Single shear strength of one rivet = 3 tons. 

Therefore \ in. x t x 10 tons = 3 tons 

from which t — -- * ft = — = 0*34 in. 
7 x 10 70 

The flange plates can therefore theoretically be § in. thick. In 
practice they would probably be made in. or \ in. thick. 

Number of rivets required in each flange 

__ Load on one flange _ 18-25 _ g rjvets 
Shear strength of one rivet 3 

The position is that we have now found the number of rivets to 
fasten the side plates to the column, but the bottom edge of 
the side plate might not 
fit absolutely square on 
the baseplate, and it is 
therefore generally con¬ 
sidered better to assume 
that the base angle rests 
on the baseplate, and that 
sufficient rivets are put in 
the vertical leg of the angle 
to take the total load com¬ 
ing down the side gusset 
plates. Two rivets will 
pass through the angle, 
side plate, and the column 
flange, so that we will re¬ 
quire four more, and these 
are provided two on each 
side as shown on the draw¬ 
ing. Angles 3^ in. x 3$ 
in. x § in. can be used for 
these flange angles. Fig. 
45 {a) shows the complete 
base riveted up together. 

It will be noticed that 
in this design it has been 
necessary to use flange 
angles and plates and web 
angles to make a satisfac¬ 
tory job. Nowadays it is 
becoming more and more 

E 
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general practice to do away with these plates, and angles to 
a considerable extent by machining the end of the column so 
that the column fits exactly on to the baseplate. 

It is clear that the same area of baseplate will be needed for the 
same pressure per square foot to be kept between the solid slab and 
the concrete block. Examination of Fig. 45 (6) will show that 
there are no side gusset plates to stiffen up the baseplate, so that 
this needs to be a good deal thicker than is required for the 
design shown in Fig. 45 (a). There is, however, a good deal less 
cutting and riveting to do, and for columns carrying heavy loads 
a type of base (Fig. 45 (b)) is more economical than the design 
shown in Fig. 45 (a). 

Stresses in Thin Boiler Shells. In Chapter 5 an example of a 
riveted lap joint suitable for tanks and boilers was given. If this 
figure is referred to it will be seen that while there is only one row 
of rivets round the circumference of the shell, there are two rows 
horizontally along the shell. The following explanation of the 
stresses acting in these thin shells will make the reason for this 
type of riveting clear. 

Cylindrical Tanks. Fig. 46 shows a transverse section of 
a cylindrical tank. If we fill this tank with steam or a liquid 

STRESS IN RIM ON TRANSVERSE SECTION 

AT IINF A.A = S = P-—- 
4t Ap = UNIT PRESSURE INSIDE CYLINDER 

D- DIAMETER OP CYLINDER 

1/ 

A 
Fig. 46. 

under pressure, then a time will come when the shell will tend 
to expand and finally crack. The steam will push against each 
end of the shell, as shown in Fig. 46. If p is the pressure per 
square inch of the steam, it follows that as the area of the end 

of the cylinder will be -, that the total pressure will be 
4 

p x - x D\ 
4 
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Such a pressure on each end of the cylinder will tend to stretch 
it and to cause failure along some line such as A A. It follows, 
if failure is not to occur, that some forces such as 5 must act in 
the opposite direction to p, and that the total pressure on the 
end of the cylinder must be balanced 
by the total stress acting in the 
opposite direction around the rim 
of the cylinder. 

Fig. 47 shows these stresses S. 
The sectional area of the thin rim of 
a cylinder is very nearly equal to 
circumference x t. The circumfer¬ 
ence = n x D, from which it follows 
that average total stress in rim = n 
X D x t x 5, where S is the tensile 
stress per square inch in the cylinder. 
As the pressure on end of cylinder is balanced by total stress in 
rim, then 

7ixDxtxS=px-xD2 
4 

CROSS SECTIONAL AREA 
OF RIM Of LYLINOER 
= TT X D X t VERY NEARLY 

A 
Fig. 47. 

p X - XD* 
4_ 

7i x D x t 
\p x D __p x D 

T 

This is called the longitudinal tension. 
Now consider Fig. 48 (a). Atwell as pressing on the ends of 

the cylinder, the steam will try tA increase the diameter of the 
cylinder by pressing out radially. Imagine that the cylinder was 
half full of ice, as shown in Fig. 48 (b), then the same conditions 
obtaintas for Fig. 48 (a), as regards the part of the cylinder above 
the centre line. 

For equilibrium the pressure on the part of the cylinder above 

Fig. 48. 
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the centre line BC must be balanced by that below the centre line, 
or else the cylinder would move its position. 

The pressure acting down on the ice on a length of cylinder 

equal to unity (that is-i) = ^ xD X i. 
If the lower half of the cylinder is not to break off from the 

whole cylinder, stresses T must act on both sides of the rim along 
BB and CC, and these must balance the internal pressure. 

Upward tensile force = T x Area of rim. Where T is the 
tensile stress per square inch in the rim. 

There are two sections along which T is acting, that is, BB 
and CCt so that area of rim on a length equal to unity = zt x I. 
Upward tensile force — T x 2t x i. 

For equilibrium, 

T x2tfxi=£xDxi 

, ~ p x D x i p x D 
from which T = r- = --. 

2t x i 21 

This is termed the circumferential tension. It will be observed 
that the longitudinal tension S is half the circumferential tension 
T. For this reason more rivets are required in the longitudinal 
joints which resist the circumferential tension than are provided 
in the joint running around the shell which resists the longitudinal 
tension. This will make clear the reason for forming the joints as 
shown in Figs. 49 and 50. 

butt-jo»nts 
WITH DOUBLE 
COVER STRAPS 

Fig. 49. Fig. 50. 



CHAPTER 7 

CENTRE OF GRAVITY 

We shall shortly be coming to the designing of beams, when 
the term neutral axis will be constantly cropping up. In order 
to find the neutral axis it is necessary to be able to find the 
centre of gravity, hence we will now deal with the centre of 
gravity of various shapes and sections and the various methods 
of finding them. 

Centre of Gravity. Various methods can be used to find the 
centre of gravity of a section— 

(1) by suspension (see Fig. 52 (a) and (b)) 
(2) by balancing on a knife edge (Fig. 54) 

(3) by the principle of moments (Figs. 56, 58 (a) and (b)) 
(4) by graphic statics (Figs. 55, 57 (a) and (b) ). 

For such shapes as rectangles and squares it is easy to see 
where the centre of gravity lies. For 
instance, Fig. 51 shows a square plate, 
and the intersection of the diagonal lines 
drawn from the corners of the square will 
show the position of the centre of gravity 
or centroid. 

Where the figure is irregular in shape 
the position of the centroid, or centre of 
gravity, is not so easy to obtain. One 
method would be to make use of the well- 
known fact that if a thin sheet of metal 
or cardboard is freely suspended it will hang so that the centre 
of gravity is vertically below the point of suspension. 

Fig. 52 ia) shows an example of this. 
A flat-bottomed rail section cut out of a piece of thin sheet 

steel is shown suspended by a piece of string. Through the 
same hole in the rail another piece of string is placed to 
which a small weight is attached to. keep the string hanging 
vertically. The web of the rail is marked where the string 
passes over it. Somewhere on this line lies the centre of 
gravity. 

The rail is now suspended from another hole, as shown in 
Fig. 52 (6), and again the web is marked where the string 
passes over it. We shall now have two lines on the web, and 
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DIAGONALS 

DIAGONALS DRAWN FROM 
CORNERS OF A square 
OR RECTANGLE INTERSECT 
AT ITS CENTRE OF GRAVITY 

Fig. 51. 
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where these intersect is the centre of gravity of the whole 
section. 

In this particular case it is easy to see that the centre of 
gravity will certainly be on the centre line marked A A, as the 

UJ LU 

i/)<S) or 

section is balanced on each side of this line, but if there is any 
doubt on this point the section could be suspended from another 
point. There would the a be three lines all intersecting at one 
point. The hole fr0in which the suspension is made should be 
kept as small as possible. 



CENTRE OF GRAVITY 63 

Centre of Gravity by Moments. The moment of an area with 
respect to any axis is the same as the sum of the moments of 
the small parts of the area. The moment of each little piece 
is its own area multiplied by the dis¬ 
tance from itself to the axis or line 
considered. 

Consider a figure such as shown in 

Fig. 53- ^ if is assumed to be made 
up of a large number of little pieces of 
area dA located at distances h from the 
axis XX, then the position of the 
centre of gravity of the complete figure can be determined by 
the following equation : 

Let A be the total area of the figure 
H be the distance of the centre of gravity of the whole 

figure from the axis XX. 

Then AXH - Eh x dA. 

In other words, the total area multiplied by the distance of 
its centre of gravity from the axis XX is equal to the sum of 
all the small areas multiplied by the distance of their respective 
centres of gravity from the same axis XX. 

This will probably be clearer if we consider the example 
shown in Fig. 54. The section is split up into three rectangular 
pieces marked D, B, and C. The centre of gravity of each 
of these rectangles can be found at the intersection of the 

diagonals, and will, of course, 
be in the centre of each rect¬ 
angle. We now take each 
separate area and multiply 
it by the distance of its own 
centre of gravity from the 
base line. Now add the re¬ 
sults obtained as follows : 

(D x d) + (B x b) + (C x c) 

and all this is equal to the 
total area multiplied by the 
distance of the centre of 
gravity of the total section 
from the base line. The 
total area of the section 
will be D + B + C. 

AREA OF EACH 
small piece 
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Area of D = 12 x ij = 21 sq. in. 
B = 16 x i| = 24 „ 
C = 6 x i\ = 9 „ 

Total area A — D + B + C = 54 „ 

The moments of the various rectangles will be 

(21 x J) + (24 x 9!) + (9 x i8£). 

These three added together are the sum total of all the 
moments of each separate area multiplied by the distance of 
its own centre of gravity from the base line XX, and we have 
already said that this is equal to the total area multiplied by 
the distance of the centre of gravity of the complete section 

from the line XX. 
Therefore 

A x H = (21 x J) + (24 x 9f) + (9 x i8£). 

H = (2I x I) + (24 x 9f) + (9 x 18$) 
54 

= 775 in. 

Thus the distance of the centre of gravity from the base 
line is 7f in., and since the total depth of the beam is 19J in., 
the distance of the centre of gravity from the top flange is 

n£ in. 
The same position would have been found if the moments 

had been taken about the top flange. In this case the result 
would have shown that the distance of the centre of gravity 
from the top flange would be n| in. 

Alternate Method. Centre of Gravity by Graphic Statics. 
An alternative to the method described for finding the centre 
of gravity is by graphic statics. Consider Fig. 55. The centre 
of gravity for this section has been calculated. To find its centre 
of gravity graphically proceed as follows : Divide the figure up 
into rectangles C, Bt and D. The place where the diagonals 
cross will be the centre of gravity. 

Calculate the area of each rectangle and set these off to some 
suitable scale. One inch on the line can be made to represent 
10 sq. in. of area. Select a pole 0 somewhere below this line 
and join up the points as shown. The exact position of this 
point 0 is not important as the same result would be obtained 
wherever the point 0 was chosen, but experience shows that it 
is wise to choose a point approximately in the position shown. 

From the centres of gravity of the three rectangles project 
horizontal lines out to the right of the figure. From some point 
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along the line projected from the centre of gravity of rectangle 
C draw line b parallel to line b in the polar diagram, finishing 
where it meets the line projected from the centre of gravity of 
rectangle B. From here draw line c parallel to c in the polar 
diagram, stopping where it reaches the line projected from the 
centre of gravity of rectangle D. 

Now draw a line d parallel to d in the polar diagram, and 
another line a parallel to line a in the polar diagram from the 

o 

upper junction point. These lines a and d cross as shown in 
Fig- 55- A horizontal line projected from this point will pass 
through the centre of gravity of the complete section. As the 
figure is symmetrical about the vertical axis it follows that the 
centre of gravity will pass down the centre of the web. 

If we cut out of a piece of sheet metal a shape of the dimen¬ 
sions shown in Fig. 55 and drill a small hole through the point 
marked as the centre of gravity, the whole piece would remain 
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hanging horizontally as shown in Fig. 56 if suspended from a 
piece of string or wire. Again, if a wire was put through the 
hole so that it fitted through loosely, and the ends of the wire 
were supported, the whole piece of plate could be rotated, and 
it would not stop at any particular position. 

Fig. 57 (a) shows the method of finding graphically the centre 
of gravity of a section such as is used for retaining walls, dams, 
etc. To find the centre of gravity divide AB into two and CD 
into two equal parts. Join EF. From B draw a horizontal 
line equal in length to CD, and from C a horizontal line equal 
in length to AB. Join G to //. Where GH and EF intersect 
is the position of the centre of gravity of the body. 

The centre of gravity of any four-sided figure can be found 
as follows : Divide each side of the body into three equal parts as 
shown in Fig. 57 (6), and draw lines through the points nearest 
to each comer. The four points so drawn will form a parallelo¬ 
gram, and if diagonals are drawn from the corners of this paral¬ 
lelogram their intersection point will show the centre of gravity 
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of the original figure. This method would be equally applicable 
for the wall section shown in Fig. 57 (a). 

Problem, (i) The flange of a girder is made up of two angles 
4 in. x 4 in. x 4 in. and two flange plates 14 in. x 11 in. thick (Fig. 58 (a)). 
Find the position of the centre of gravity'of the whole section. 

CENTRE OF GRAVITY 

Y (cC) 

j-fi!-j (b) 

Fig. 58. 

Answer.—The centre of gravity can be found by the method of sus¬ 
pension as shown in Figs. 52 (a) and (6), or by the graphical method shown 
in Fig. 55, or by the system of moments. We shall employ the system 
of moments to find the solution, and the students should check the result 
by one of the other methods. 

Then A x H = UdA x h. 

Divide the flange into rectangles D, B, and C. 

Area of D = 14 in. x ij = 21 sq. in. 
B = 2 x 3J in. x 4 in. = 34 sq. in. 
C = 2 x 4 in. x 4 in- = 4 scl- *n- 

Total area of section = 21+34 + 4= 284 sq. in. 
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Then using the outside edge of the flange plates as- our axis XX, 

28$ x H = (21 x |) + (3} x if) + (4 x 3}) 

H 
15! + 6 + i4j 

28J 
35* , in 
58* = 126 in- 

The flange is symmetrical about axis YY, so that the centre of gravity 
occurs on axis YY in one direction and 126 in. from the outside of the 
flange plates in the other direction. 

Problem. (2) A runaway girder if made of a rolled steel channel 
12 in. x 3$ in. set on a 16 in. x 6 in. joist (Fig. 58(6)). Find the position 
of the centre of gravity of the whole section. 

Answer. The rolled steel joist 16 in. x 6 in. is a symmetrical figure, 
and its centre of gravity will occur along the centre of the web and 
half-way up. 

Taking axis XX about the lower edge of the girder, proceed as follows : 
Divide the channel into pieces C and D. 

Area of rolled steel joist = (2 in. x 6 in. x 1 in.) 
-f (14 in. x £ in.) = 19 sq. in. 

Area of piece C = 12 in. x £ in. = 6 sq. in. 
Area of piece D = 2 x 3 in. x 1 in. = 6 sq. in. 

Total area of girder = 19 -f 6 4- 6 = 31 sq. in. 
Then 

31 x H = (19 x 8) + (6 x 14$) + (6 x 16J) 

152 + 87 + 974 33&i To qr - 
H =-=- = io os in. 

3i 3i 

The centre of gravity of the girder will occur down the web of the 
joist and at a distance 10-85 in- from the bottom flange. 

The student will now have a fair idea of what is meant by 

such terms as stress, strain, modulus of elasticity, working stress, 

factor of safety, ultimate strength, single and double shear, dead 
and live loads, centre of gravity and bearing pressures. 



CHAPTER 8 

MOMENTS AND REACTIONS 

It is necessary to understand clearly what the term bending 
moment really means before we can design beams. The type 
of scale shown in Fig. 59 was formerly used for weighing 
coal. The platform carrrying the weight W is suspended 
at a point 3 ft. from the pivot, while the load marked P 
is suspended at a point 1 ft. 
from the pivot, which is 
called the fulcrum. Clearly 
the load P in the box would 
have to be considerably 
more than the weight W on 
the table to keep the beam 
horizontal. Actually the load 
P would be three times the 
weight W. 

Equal 44 Moments 
The moment of the weight 
W about the pivot will be 
the weight multiplied by 
the distance at which it 
acts. In this case the distance is marked B and is. 3 ft. The 
moment of the load P will be its weight times the distance at 
which it acts from, the pivot; in this case A is 1 ft. If the 
beam is to remain horizontal these two moments must equal 
each other. 

The moment of the load P is P x A 
(Force x Distance) 

The moment of the load W is . W x B 
(Force x Distance) 

and if these moments balance each other it follows that 

(P x A) = (W x B), from which 

W x B 
and W 

P x A 
B * 

Considering the fulcrum point as the centre of a clock face, 
the weight W tries to turn the beam in the same direction as 
the hands of the clock, and it is therefore called a clockwise 

69 
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moment. The load P tries to turn the beam in a contrary direction, 
and is called an anti-clockwise or counter-clockwise moment. 

A moment is the product of a force multiplied by a distance 
(the distance is called the arm) and'a moment can only be balanced 
by another moment acting in the opposite direction. Where the 
moment causes bending, it is called a bending moment. (Some¬ 
times the moment causes twisting, as in the case of a crankshaft. 
In this case it is called twisting or turning moment.) 

The centre post and pivot of the scale shown in Fig. 59 will 
have to support the combined loads P and W. This force is 

known as the reaction. In 
the case of Fig. 63 (a) 
and (c), each wall will 
carry half the total load. 
These reactions are indi¬ 
cated as Rx and Rt. 

Fig. 60 (a) shows a 
diving-board on which is 
a man weighing 140 lb. 
His position is 3 ft. from 
the point where the div¬ 
ing-board is supported. 
Notice that this is the 
fulcrum point, and that 

lbs the holding-down bolt, 
which is marked Rtf is 
really a balancing force. 

Fig. 60 (a) and (c). Looking at the three 
arrows in Fig. 60 (c), 

marked W, Rx and R%, and imagining these to be a balance, 
with Rx as the centre post, W as the weight, and Rt as the 
load P, then we can write 

W x L, x R, x L%. 
The moment of W is W x L. This is the bending moment at 
the support, and its amount will be 

Bending moment at support = W x Lx 
= 140 lb. x 3 ft. = 420 ft.-lb. 

It is very important to be quite clear in what units the bending 
moment is taken. It would be quite correct to say 
Bending moment of support = io stones x 36 in. = 360 in.-stones. 

It would be equally correct to say 

B.M. = 140 lb. x 36 in. = 5,040 in.-lb. 
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Although the figures are very different, the bending moment is 
the same. This shows the importance of stating the units. 

1 Y1 | 

L w ' 

fiti t?_ nr r 

— BM »T gtCTlQN — 

_YY_ 

In Fig. 60 (c) on the reaction line marked R x, mark off a distance 
below the beam to represent the bending moment at the support 
to some scale. Just as on a motoring map 1 in. can represent 
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a mile, or a J in. can represent a mile, so on these diagrams the 
scale used is the one most convenient. 

If we choose a scale of, say, 1 in. represents 20,000 in.-lb., 
then a line J in. long will represent 5,000 in.-lb. and a line about 
this length will represent the bending moment at the support 
or on the line R^ To find the bending moment at any other 
point on the beam, proceed as follows. 

It is not difficult to see that if the man was standing directly 
over the place where the plank is supported, there would be no 
bending moment, because at that point we have a weight acting 
at no distance. Therefore B.M. at point X = W x 0 — 0. 

ACommon Snag. Consider section Y at a point 18 in. from 
the man. The' author, after many years of teaching experience, 
is well aware that the clear understanding of bending moments 
and the position at which bending moment occurs is where many 
students become rather shaky. If we consider a bending moment 
at any section, all the forces or loads-on one side can be com¬ 
pletely ignored, and it is a good idea to imagine the beam built 
into a wall up to the section which is being considered. If this 
is done there is no difficulty in seeing that the only force is W, 
which acts at a distance of 18 in. 

B.M. at section YY = 140 x 18 = 2,520 in.-lb. 

A line representing this bending moment to scale will be 
exactly half as long as the line representing the bending moment 
at R. There is no bending moment under the head W. If the 
student will take the trouble to work out the bending moment 
on every 6 in. from the line and mark these to scale, then 
if the points are joined together he will get a triangle such as is 
shown in ABC, Fig. 60 (c), and this is called the bending-moment 
diagram. In this case of a cantilever the maximum bending 
moment occurs at the support. It will be shown later that in the 
case of beams loaded as shown in Fig. 63 (a) and (c), the maximum 
bending moment occurs at the centre of the beam. 

Fig. 60 (b) shows that if the man walks to the end of the spring¬ 
board, which is 6 ft. from the point of support, the plank will 
bend a lot more, and the bending moment will also increase. 

The bending moment at the support will now be 

W x L = 140 lb. x 72 in. = 10,080 in.-lb. 

By exactly the same methods as we used previously, the 
bending moment at any point along the beam can be calculated, 
and the bending moment diagram drawn as shown in Fig. 60 (d). 

Reactions. These have already been briefly mentioned. If 
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the holding-down bolts shown in Fig. 60 {a) and (b) are taken out, 
the right-hand ends of the planks would fly up into the air. We 
can find the amount of force in these bolts in order to keep the 
right-hand end of the plank down. 

To keep the beam balanced the sum of the clockwise moments 
about the support Rx must equal the sum of the anti-clockwise 
moments. We have two moments around the pivot or turning- 
point. The weight of the man W acts at a distance of 3 ft. in 
the case of Fig. 60 (a), and the force in the holding down bolts Ru 
acts at a distance of 1 ft. from the pivot. These two moments 
are equal and therefore 

W x Lx = Rt x L% 
140 lb. x 36 in. = R, x 12 in. 

Therefore R% = = 420 lb. 
12 

We have therefore a force Rt of 420 lb. and a load W of 
140 lb., so that the upward force or reaction on the point on 
which the plank turns is W + R2 = 560 lb. 

An Interesting Problem.—In the case of Fig. 60 (6) the man 
has moved along the plank, and therefore the holding-down bolts 
will have to resist a greater moment. If the reader will work 
out the figures, it will be found that R2 is 840 lb. and Rx is 980 lb. 
These results are very interesting, because although the man's 
weight does not vary, the actual amount of upward reaction Rr 
varies with the man’s position on the board. If the man stands 
directly over the point of support there is no bending moment 
at all, and the reaction Rt will then be only 140 lb. 

Combined Loads. With two men on the diving-board, as 
shown in Fig. 60 (e), there will clearly be more acting sagging or 
deflection of the board, and the bending moment at the support 
will be found by adding together the bending moments shown in 
Fig. 60 (c) and (d). The effect of the man at the end of the plank 
is shown in the top triangle, and the effect of the man in the 
middle of the board is shown in the second triangle, which is 
added to it. In text-book language, the bending moment at 
any given point is described as “ The sum of all the moments 
of all the forces on either side of the point considered/' The 
simple problems and explanations which have just been given 
will make this definition clear. 

Before we can deal with the practical design of cantilever 
beams it is necessary to see what effect this bending moment 
actually has. Fig. 61 [a) shows a beam in which a notch is cut from 

F 
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the outside to the middle. If this beam is fixed into a wall at 
one end and a weight is placed at the other end of the beam, 
it will bend, and the notch will open on the top side. If the 
beam is placed the other way up, as shown in Fig. 61 (c), the notch 
will close. This shows us that the top layer or skin of a canti- 

Ife 

Fig. 6i. 

lever beam is stretched when the beam is loaded, and that the fibres 
or skin on the underside of the beam is compressed or squeezed. 

Where a beam is supported at both ends and loaded so that 
it bends, the stresses are exactly the opposite. This is shown 
in Fig. 62 (a), (b) and (c). In this case the wood fibres on the top 
side of the beam are closed or squeezed by the action of bending, 
while those on the underside are stretched or opened. The 
reader can very easily check this by bending a piece of rubber 
between the fingers and making an indentation with the thumb 
on one side. The rubber will very quickly open. If a small 
notch is made in one side of the rubber, and it is bent the other 
way, the notch closes. 

The student will remember that in an earlier chapter we 
dealt at considerable length with the question of elasticity of 
materials. It was shown that if a body is pulled it is in tension 
and stretches, while if it is pushed it is in compression and 
shortens. These points will be more fully dealt with later on 
when we come to beam design. 

One of the things which it is not easy to see is that a wall 
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or support pushes upwards. To illustrate this, consider Fig. 62 (i). 
Spring balances placed between the beam and the support will 
register the amount of each reaction. The balances are shown 
with the pan on top of the wall, and since the hand has turned 
round there must be an upward force to make it do this. 

Elastic Properties. The student will readily understand 
that a wall prevents the beam from falling, but it is not so easy 
to visualize that the wall pushes up. This pushing up force is 
due to the effect of the downward load on the wall, which com¬ 
presses the wall and therefore shortens it. (Read again Chapter 1.) 
The wall has elastic properties and tries to get back to its original 
height. It is this actual pushing-up force which is technically 
called a reaction. 

The position of the load on the beam greatly affects the 

bending moment and the amount the beam bends. In Fig. 63 (a) 
a plank spans between two walls and is loaded with bags of 
c&nent. In this case the load is said to be uniformly distributed 
over the whole length (often written U.D.L.). This loading 
would cause the plank to bend as shown. 

In Fig. 63 (c) the same bags are placed on the same plank, 
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but in this case they are placed one on top of each other at the 
centre of the beam. Every student knows perfectly well that 
this would cause the beam to bend more than with the bags 
laid out as shown in Fig. 63 (a). This system of loading is called 

concentrated loading, or a 
point load at the centre of 
the span. Strictly speaking, 
very few loadings act at a 
point, but in practice it is 
often considered that they 
do. Fig. 63 (b) and (i),show 
the method generally used 
in technical journals and 
text-books for indicating the 
loadings shown in Fig. 63 {a) 
and (c). 

We will now proceed to 
consider the case of a beam 
which is supported on a wall 
at both ends and carries a 
load distributed over its 
whole length. A case such 
as this occurs where a beam 
spans over a doorway or 
large window-frame and car¬ 
ries a brick wall. A beam 
loaded in this manner is 
shown in Fig. 64. 

Arching Effect. We 
shall show later that where 
the brick wall is higher than 
the span of the beam, there 
is .a certain arching effect 
which should be taken into 
account, and this makes it 

possible to use a lighter beam than if the total weight of the 
wall was considered as being supported by the beam. At this 
stage, however, and with a wall only about half the height of 
the span between the supporting walls, it will be correct to 
consider all the weight as being carried on the steel beam. 

Weight of Wall. Assuming brickwork to weigh 120 lb. per 
cubic foot, then the total weight of the wall will be 

12 ft. x 7 ft. x f ft. x 120 lb. = 7,560 lb. 
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Fig. 64. 

The beam spans over 12 U., so that each foot of the beam will 

carry = 630 lb. 

In addition to the weight of the wall, the beam must, of 
course, carry its own weight. We do not yet know how much 
the beam will weigh, but we can make some allowance. If we 
assume that the total load on each foot run of the beam including 
its own weight is -^th tons (672 lb.), we shall then have added 
to the weight of the wall 42 lb. to cover for the weight of each 
foot of the steel beam. This may be on the top side, but we shall 
assume the beam to carry a uniformly distributed load of 0*3 tons 
on each loot. 

In Fig. 65 (a) this loading is represented by 12 small rectangles, 
each 1 ft. long and weighing 0 3 ton. It was shown in Chapter 7 
that the weight of a body acts through its centre of gravity, 
and that the centre of gravity of a rectangle acts down its 
middle. We can assume, then, that each 0-3 ton weight acts 
down the centre of the rectangle as shown in Fig. 65 (<a). 

Reaction. The total weight which the walls have to support 
will be the weight of the brick and the weight of the beam. 
Each wall will carry half the total load, as the loading is 
symmetrical. 

Therefore the reaction of the left-hand wall will be 

„ Total load 0-3 tons x 12 0 , R =-= ^- = i-8 tons 
2 2 

Rt — Rx — 1-8 tons. 

In this case the reactions are easy to find by examination 
only. In many cases it is necessary to calculate them by using 
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the principle of moments. This will be dealt with when we 
come to deal with more advanced problems of bending 
moments. 

We shall now work out fully the bending moment which 
occurs at each of the sections marked, A A, BB, CC, etc., in 
Fig- 65 (a). The student will remember that a bending moment 

has been described as " The algebraic sum of all the moments of 
all the forces on either side of the point considered.” 

That word " algebraic ” has certainly caused a lot of anxiety 
to many. If one has 2s. 6d. in one pocket and is. in another 
pocket, while at the same time he owes is. 6d. to his friend, 
then the real amount of money to his credit is the algebraic 
sum of these, that is 2s. 6d. + is. — is. 6d. His credit is there¬ 
fore 2s. The sum of 2s. 6d., is. and is. 6d. is 5s., and clearly 
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his credit is not 5s. The algebraic sum really means that we 
take away from the credit the amount that he is owing. 

When dealing with bending moments the algebraic sum means 
the difference between the moments clockwise and the moments 
anti-clockwise. That is, we add together all the clockwise 
moments, then we add together all the anti-clockwise moments ; 
the difference between these two totals is the bending moment 
at the section considered. 

Consider the section at A A, Fig, 65 (a). In order not to get 
confused with the loads on the left-hand side of the section, make 
a little sketch (Fig. 66 (a)) and show only the forces on one 
side of the section we are considering. Students are strongly 
advised to cultivate the habit of making sketches on the lines 
shown, for most of the mistakes which occur in finding a bending 
moment arise from the fact that a sketch of the conditions has 
not been made. 

At section A A there are only two forces to the right of the 
section. One force is a load of 0-3 ton acting at the centre of 
gravity of the foot-long rectangle, that is, at a distance 6 in. 
from the wall, and this is a clockwise moment. The other is 
the upward force of the reaction, which is i-8 tons, acting at 
a distance of 12 in. from the section considered. This is anti¬ 
clockwise, and the difference between the moments of these two 
forces will be the actual bending moment at the section A A. 

B.M. at AA = (i ST x 12 in.) — (0 x 6 in.) 
= 21-6 — i-8 = 19-8 in.-tons. 

Bending Moments. The bending moments at the various 
sections, BB, CC, DD, EE, and FF, have been fully worked 
out, and are shown on the drawing. To summarize these we 
find the bending moments as follows : 

Section A A . 19-8 in.-tons 
„ BB . 36-0 
„ cc . . 486 
„ DD . • 576 
„ EE . . 63-0 

„ FF . 648 

With regard to the bending moments at sections LL, KK, 
JJ, HH, and GG, it is not necessary to make a separate calcu¬ 
lation, as a little consideration will show. For instance, the 
bending moment at LL will be exactly the same as at A A. The 
conditions are shown in Fig. 66 (a). Similarly at HH the bending 
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moment will be exactly as was calculated for DD. Fig. 66 (/) 
shows the loading in this case. 

Earlier it was stated that the bending moment was the 
algebraic sum of all the moments of all the forces on either 
side of the point considered. In order to make this clear, con¬ 
sider the section EE. Fig. 66 (g) shows all the forces which 
act on the right side of the section, and the bending moment 
is shown as 63 in.-tons. Fig. 66 (A) shows the same section, 
but considering the forces on the left side of the section. The 
calculation shows that the bending moment for this case is also 
63 in.-tons. It will be found in any and every case that the 
bending moment can be calculated on either side of the section 
considered and the same result will be obtained. 

Cantilever Beam. Bending-Moment Diagram. In Chapter 8 
the bending-moment diagram for a cantilever beam was shown. 
In Fig. 65 (b) a diagram has been drawn to represent the bending- 
moments which have now been found by calculation. The length 
of line on section FF, which represents 64*8 in.-tons, will depend 
on the scale chosen. One inch might represent 50 in.-tons or 
1 in. might represent 25 in.-tons. The scale is chosen as a matter 
of convenience. What is important is that the scale used for 
section FF must be used for all other sections, such as DD, 
BB, etc. The student will therefore see that the saucer shape 
may be very shallow or very deep, according to the scale 
chosen. 

Accurate Bending-Moment Diagram. Fig. 65 (b) showed the 
bending-moment diagram plotted out from the results obtained 
by calculating the bending moment at various sections of the 
beam. It will be remembered that we assumed that the loading 
on the beam was divided up into i-ft. lengths, each foot carrying 
a load of 0 3 ton. If, however, we had divided the beam into 
4-in. lengths, each length would carry 1 ton. The same loading 
would apply, but the number of sections would be increased, 
and the bending-moment diagram would be made up of a greater 
number of straight lines than is shown in Fig. 65 (b). 

If we still further reduced the lengths of the rectangles in 
Fig. 65 (a) a time would come when the bending-moment diagram, 
instead of being made up of a number of short straight lines, 
would become a curve as shown in Fig. 65 (c). It can be proved 
that this curve is a parabola. If the maximum bending moment 
is known we can draw a parabola and scale off the bending 
moment at any distance along the beam. 

The method of constructing a parabola for a bending-moment 
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B.M. AT Section D.D. - 0'8T« 48’)- (.3T> 42’)-(-3T * 30‘)-(-3TX I8‘) -(.JT 

86-4- 12*6-9-5*4"*‘8 » 57-6 InCh-TonS. 

Note that the sehdikq moment at section H.H will also be 

51*6 Inch-Tons, as the loads and Distances are 

MERFLT REVERSED thus 

(f) 

BM.AT Sea ion E,E » (t-BTx 6o) ^*3T*54H*T*42')-(’3Tx3d)-(;3Tx 18'] 

* 108-lb-2-12*6-9-5-4-1*8 = 68-0 Inch-Tons 

The SAME RESULT will 8E OBTAINED whichever end op the beam the moment 

are taken ABOUT Ip The LECTHAND End op THE beam is used Then THE I 

f:r section E.B will be as Shown — 

Then B.M, at Section E.E »0*8Tx84‘) 

-(•3Tx 78')- (,3Tk66“)-(,VTx 54"M3Tx 42“) 

-(•3TkBO')-(-3TxI80-03Tx6“) 

“I5H2-2U-I98- I6.2-I2.6-9-5.4-1.8 

*63*0Inch-Tons, which is the same 

RESULT AS WAS OBTAINED USlN(j THE 

Riqhthand end op beam 

B»<t S'eCTiOW FF- fl'8T.12j-(-31»es)-('3T,54)-(-3T.42)-(3T,30’) 

-(•3T*6')-129.6 - 19.6- IS Z-12 S-9- 5-4-1-8 - 64-8 Inch-Tows 

Fig. 66. 



82 PRACTICAL BUILDING MECHANICS 

diagram is as follows. Draw a horizontal line ^4^4, see Fig. 65 (c), 
equal in length to the span of beam. Divide A A into two equal 
lengths, AB and BA. Draw a vertical line BB equal to scale 
to a maximum bending moment at the centre of beam. From 
B draw BC parallel to AA, and from A draw AC parallel to BB. 
Divide AC into a number of equal lengths, such as 1, 2, 3, 4, 
and 5. Divide BC into the same number of equal l engths, 1, 2 
3, 4, and 5. Join points 1, 2, 3, 4, and 5 on AC with point B. 
From point x on BC project vertically upwards until the line 
running from x on AC to B is reached. This junction joint is 
a point on the parabola. From 2 on BC project vertically up 
till the line joining 2 on AC to B is reached. This is another 
point on- the parabola. 

Proceed exactly the same for the other points, and finally, a 
set of joints as shown in Fig. 65 (c) will be obtained. If these 
points are joined by a curve, then the result is the left half of 
a parabola. The right half of the curve can be drawn in like 
manner, and finally the bending moment diagram will be obtained 
from which the' bending moment at any point along the beam 
can be reached. 

In practice the bending moment at the various sections of 
a beam which is loaded uniformly need not be calculated out 
fully as we have done. Only the maximum bending moment at 
the centre of the beam is required. If a parabola is drawn the 
bending moments at any other section can be scaled off. 

The bending moment at the centre of a beam, uniformly 
loaded as shown in Fig. 65 (a), can be found directly if we assume 
that.all the load on the right of section FF is one rectangle 
instead of six as shown. 

Centre of Gravity. The centre of gravity (Centroids, 
Chapter 7) of a rectangle 6 ft. long would occur at 3 ft. from 
FF. At this point would be concentrated the load on the right 
half of the beam = 0-3 tons x 6 ft. = i-8 tons. Therefore we 
will have a clockwise moment of i-8 tons x 36 in. due to this 
force. 

We shall also have an anti-clockwise moment due to the 
reaction of the wall R of i-8 tons x 72 in. Therefore bending 
moment , at FF = (i-81 x 72 in.) — (i-81 x 36 in.) 

= 129-8 — 64-8 = 64-8 in.-tons. 

This figure agrees with the previously calculated. If we call 
the span of beam — L — 144 in., W — total weight carried by 
beam = w x L = W — 3 6 tons, then 1-8 tons = and 
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72 in. = \L, while 36 in. = \L. Therefore bending moment at 

FF = (|W x \L) - {\W x \L) = \WL - \WL = iPTL = S 
O 

This is the maximum bending moment on a beam simply 
supported at the ends and carrying a .uniformly distributed load. 

You have already been shown how to find the maximum 
bending moment for -a beam supported at the ends and carrying 
a uniformly distributed load, and also how to construct the 
bending-moment diagram for this loading. It will be remembered 
that we found that the bending-moment curve took the form of a 
parabola, and that if we knew the value of the maximum bending 
moment on the beam, the bending moment at any other part of 
the span would be in direct proportion to it. 

The beam and loading considered and the bending-moment 
diagram constructed are shown again in Fig, 67 (a) and (b). The 
maximum bending moment at the centre of the beam was found 
to be 64*8 in.-tons. To refresh the student’s memory, the easiest 
way to find this moment will be again shown. Consider Fig. 67 (c)r 
which shows the left half of the beam. The bending moment at 
any section (in this case at the centre of the beam) is equal to the 
algebraic sum of all the moments on one side of the section. We 
have a clockwise moment at the centre of span which amounts to 
reaction from wall x 72 in. 

Clockwise moment = i-8 tons x 72 in. — 129-6 in.-tons. 
The load on half the span will produce an anti-clockwise" 

moment. Each foot of beam carries a load of 0-3 tons ; half the 
span is 6 ft., so that the total load on half-span will be i-8 tons: 
This load will act through its centre of gravity, which is 36 in. 
from the centre of span. 

Anti-clockwise moment = i-8 tons x 36 in. = 64-8 in.-tons. 
The bending moment is the difference between all the clockwise 

moments and all the anti-clockwise moments on either side of the 
point considered. (In this case we have only one clockwise 
moment and one anti-clockwise moment, the point considered is 
the centre of the beam, and we are taking moments to the left side, 
as shown in Fig. 67 (c)). 

Sum of clockwise moments == 129-6 in.-tons. 
Sum of anti-clockwise moments = 64-8 in.-tons. 
Difference in bending moment = 64-8 in.-tons. 

Therefore the maximum bending moment is 64-8 in.-tons, as 
shown in Fig. 67 (6), and the B.M. at any other point in the span 
can be obtained by scaling from the diagram. 
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It was shown in Chapter 8 (by means of a pair of scales) that 
one moment can only be balanced by another moment. (It will 
be remembered that the definition of a moment is—a force multi¬ 
plied by an arm or distance.) Having now a clear idea of what a 
bending moment is, we will proceed to deal with another kind of 
moment called “ resisting moment 

A resisting moment is the strength of a beam to resist bending 
moment. The bending moment is the effect on the beam caused 
by the load or weight which the beam carries. The resisting 
moment is the strength of the beam itself, and if it is more than 
the bending moment the beam will not fail. 

Fig. 68 (a) shows an ordinary rolled-steel beam before loading. 
Fig. 68 (b) shows the same beam after loading The bending has 
been greatly exaggerated in order to show clearly that the top 
flange shortens when the beam is bent and the bottom flange 
lengthens. It has already been shown that all metals have elastic 
properties and that a compression force causes shortening, while 
a tension or pulling force causes lengthening. The top flange is 
said to be in compression and the bottom flange to be in tension. 

The Neutral Axis. Assuming that the top flange shortens 
by the same amount as the bottom flange lengthens, there will be 
no change of length along a line half-way between the top and 
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bottom flanges. Along this line the steel has no stress due to 
bending, and for this reason it is called the neutral axis, since it is 
not in tension or compression. 

Resisting Moment. If the beam is hinged at the centre as 
shown in Fig. 68 (c), and the top and bottom flanges cut away, 
we shall be able to see more clearly what happens when the 

UNBENT BEAM 
BEFORE LOADING 

Toy Flanse 

AJ WTOWHI EH ESS 1-- 
OF iB 

*□ 
777 1 4 

Bottom Flaw<|1 

Span 

AN UNIFORMLY 
DISTRIBUTED LOAD 

VCE NOTCH 

Fig. 68. 

beam bends. Fig. 69 (a) shows an enlarged view of the hinge 
and the beam before bending. 

A block of rubber is placed in the vee-notch opposite the top 
flange. A strip of rubber is bolted to the bottom flange. If the 
beam is bent it will turn around the hinge pin and the top block 
of rubber will be compressed or squeezed, while the bottom strip 
will be stretched. This is shown in Fig. 69 (b). In an actual 
beam there is, of course, no rubber, and although it is not so easy 
to see the actual shortening and lengthening of the steel in the 
top and bottom flanges, it does nevertheless take place. 

Fig. 69 (c) shows the forces set up in the beam flanges in order 
to resist the bending moment. 

We shall now consider the forces in the two pieces of flange 
which have been cut away and replaced by a piece of rubber. In 
the actual beam the piece of top flange which is shown in 
Fig. 70 (a) can be considered as a short column, of width W and 
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Fig. 69. 

thickness T. If PV' is 4 in. and the thickness T is £ in., the area is 
2 sq. in. The breaking strength of mild steel will be around 
30 tons per square inch, so that the force or load to crush this piece 
of steel would be 60 tons. 

Tensile Stresses. A short length of bottom flange is shown 
in Fig. 70 (b). In this case the force is tensile or trying to pull 
the bar apart. (These tensile or pulling stresses have already 
been dealt with.) The cross-sectional area is the same as for the 
top flange, that is 4 in. x £ in. or 2 sq. in., and if the tensile 

AfPiox. Moment op Ruistancc • Mofi. x *P* 
« >440 x 8 Toms / U.510 Inch-Tom> . 

Fig. 70. 
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strength of the steel is 30 tons per square inch, it would take a 
pull of 60 tons to break this flange along a line A A. 

Now look at Fig. 71 (b), and a little study will show that the 
strength moment of the top flange will be 60 tons multiplied by its 

d 
effective arm, which is while the strength moment of the bottom 

2 

flange will also be 60 tons multiplied by its effective arm, which is 

also 
2 

Total resisting strength of the beam is therefore 

where d is the effective depth of the beam, or the distance between 
the centres of gravity of the forces in the two flanges. It is not the 
total depth of the beam. 

If the beam is 8 in. deep the effective depth d will be about 
in. (see Fig. 72). 
The resisting moment will then be 

60 tons x 7^ in. = 450 in.-tons. 

What this really means to say is that if we had a beam 8 in. 
deep with flanges 4 in. wide by \ in. thick, which was made of mild 
steel with a breaking strength of 30 tons per square inch, then if 
the loading on the beam was such that the resulting bending 
moment amounted to 450 in.-tons, the beam would be just about 
at breaking-point. 
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In practice, of course, beams must be strong enough to be safe, 
and for this reason the bending moment which a beam will safely 
carry should not be more than a quarter of the bending moment 
which would break the beam. This matter was dealt with at 
length in an earlier section under the heading of “ Factor of 
Safety 

To return to. our steel beam 8 in. deep and 4 in. wide, with 
flanges \ in. thick, if we use a factor of safety of 4, the safe stress 
in the flanges will only be tons per square inch, and the safe 
resisting moment will therefore be a quarter of 450 in.-tons, or 

112^ in.-tons. 
Therefore a rolled steel joint 8 in. x 4 in. x \ in. would be 

safe if the maximum bending moment did not exceed no in.-tons. 
Resisting Moment of R.S.J.— 

Let A be the area of one flange in square inches 
d be the effective depth of beam in inches 
f8 be allowable stress in tons per square inch. 

Then resisting moment of R.S.J. = A x d x f8. 
In practice, the allowable stress is often taken at 8 tons 

per square inch. 

Typical Problem. Design of R.S.J. Find a suitable section of 
R.S.J. to carry a uniformly distributed load of 0 3 ton per foot run over 
a span of 12 ft. The weight of the beam itself has been included in the 
uniformly distributed load (see Fig. 67 [a)). The allowable stress per square 
inch is to be 8 tons. 

Answer. The maximum bending moment can be shown to be 64*8 
in.-tons, and the diagram is shown in Figv 67 (b). In order to avoid 
excessive deflection, Ihe depth of a steel beam is not to be less than J in. 
for each foot of span. (In bridges and plate girders the depth of the 
girder is often made about one-tenth of the span.) In this case the beam 

must be at least -j^th of the span, or say, 6 in. 

The safe resisting moment of the beam must be at least equal to the 
maximum bending moment. 

Therefore Maximum B.M. = Resisting moment 
Resisting moment =~ A x d x fg. 

ft — 8 tons per square inch, and if the effective depth is assumed as 6 in., 
we can find the area of the flange. 

64-8 = A x 6 x 8 
64*8 =» 48^ 

648 
-j-g- = A =* 1-35 sq. in. 

If the width of the flange is 3 in., the thickness required will be 

i'35 
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If the flange is 4 in. wide, the thickness required will be 

i*35 —- = 0 34 in. 
4 

Reference to any steel-maker's lists will show that one of the British 
Standard sections is a 7-in. x 3J in. R.S.J., and that the flange thick¬ 
ness is 0 4 in. Our previous calculations seem to show that this section 
will be about right, but we shall now check it. The effective depth will 
be 6*6 in. 
Therefore 64-8 — Ax 6-6 x 8. 

The width of the flange in this case is 3J in. and the thickness 0 4 in. 
The resisting moment of a 7-in. x 3j-in. R.S.J. is therefore 

(3i x °*4) x 6-6 x 8 = 73 9 in.-tons. 

This is greater than the bending moment, and this beam would be 
a suitable section to use. (Fig. 71 (a) shows this section.) 

The next smaller section is a 6-in. x 3-in., with flanges | in. thick, 
and the student should test to make sure that this section is not strong 
enough. 

Plate Girders. Where the span is too large or the load too 
heavy to permit a rolled-steel section to be used, a built-up girder 
of the type shown in Fig. 70 (c) may be used. This is called a plate 
girder, because the web is made of a rolled-steel plate. The 
flanges are made of plates and angles. The effective depth of such 
a girder will be approximately the distance between the centre of 
gravity of the two flanges. In Chapter 7 the method of finding 
the centre of gravity for such a type of flange was shown. 

Plate Girders. The approximate resisting moment of a 
plate girder will be : Effective area of one flange (shown in section 
lines) x Allowance stress x Effective depth of the girder. 

In other words— 

Approx. R.M. = A xf8xd 

where R.M. is the resisting moment of the beam 
A is the area of one flange 
f8 the safe stress per square inch. 

If the area is in square inches, the depth in inches, and the safe 
stress in tons per square inch, then the resisting moment will be in 
inch-tons. If the effective depth is taken in feet the resisting 
moment will be in foot-tons. The student should be very careful 
to see that the bending moment units and the resisting moment 
units are the same. A more accurate method of finding the 
resisting moment of a built-up section will be given later. 

Question. What is the maximum bending moment which could be 
safely resisted by a plate girder with a cross section as shown in Fig. 70 (c) ? 
Take /, *8 tons per square inch. 

G 
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Answer. The girder consists of two flanges connected by a web plate. 
Each flange consists of 

One plate 14 in. x } in. Area = 7 sq. in. 
One plate 14 in. x J in. Area = 875 sq. in. 
2 angles 6 in. x 6 in. x $ in. Area = 14-20 sq. in. 

Total area of one flange . . . 29-95 sq- in* 

R.M. = A x d x /, 

where A is the area of one flange = 29-95 sq. in. 
d is the effective depth of the beam, or the distance between the 

centres of gravities'of the flanges, which in this case will be 48 in. 

/, = 8 tons per square inch. 
R.M. = 29 95 x 48 x 8 = 11,520 in.-tons. 

Therefore, if the section has a safe resisting moment of 11,520 in.-tons, 
it can safely resist a bending moment of the same amount = 11,520 in.-tons. 



CHAPTER 9 

RESISTING MOMENTS 

We have found when dealing with a rolled-steel joist that 

Resisting moment = A x d x f8 

where A is the area of one flange of the joint 
d is the effective depth of the joist, i.e. approximately the 

distance between the centres of gravity of the flanges 
/, is the safe stress per square inch in the steel. 

This expression is easily applied to rolled-steel joists which are 
made with two thick flanges, assumed to take all the bending 
stresses. The web which joins them is assumed to take none of 
these bending stresses. However, when it is desired to find the 
resisting moment of a rectangular section, such as a timber beam, 
the equation given above does not apply. 

Fig. 73 shows a timber beam section 4 in. wide and 8 in. deep. 
Fig. 74 (a) shows an elevation of the beam. If the beam was 
made up of eight planks of equal 
length, securely strapped together, 
it would bend as shown in Fig. 74 (b) 
when loaded. Notice that the upper 
planks have shortened and the 
lower planks have lengthened. The 
diagram is, of course, considerably 
exaggerated so that this shortening 
and lengthening may be seen. In 
practice the beam does not bend 
nearly as much as shown, but the shortening and lengthening 
does actually take place when the beam is bent. 

Half-way between the top and bottom faces there would be a 
length where the plank would remain unchanged. It is therefore 
easy to see that the wood on the top face shortens more than any 
other and the wood on the bottom face lengthens more than any 
other. The shortening and lengthening of any particular fibre 
will depend on its distance from the neutral axis. 

To make this point clear, consider Fig. 75 (a). This is an enlarged 
view of the centre of the beam which has been notched top and 
bottom and hinged along the neutral lamina or neutral axis. At 
the faces of the beam the notches are 1 in. wide, reducing to zero 
at the neutral axis or centre of gravity of the section. Under the 

91 
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Fig. 75. 

load the beam is bent as shown in Fig. 75 (6). Then the top notch 
closes while the lower notch opens. If the lower notch now 
measures ij in. it will have stretched J in. and the upper notch 
will have decreased the same amount, and will now measure £ in. 

Section Modulus. At any other point between the neutral 
axis and the outside face of the beam the stretch or contrac¬ 
tion is in direct proportion to the distance from the outside 
fibres. For instance, at A A, which is half-way between the outer 
face and the neutral axis, the contraction will be half of \ in. or 
£ in. Similarly, at BB the stretch will be J in. Then the fibres 
of the beam itself will stretch and contract in exactly the same 
manner. 

Then we can write 
e = S 
y~T 

where e is the alteration in length of the fibres at the outside face 
of the beam 

y is the distance from the neutral axis to the outside fibres 
T is the distance from the neutral axis to the part con¬ 

sidered 
S is the alteration of length of the fibres at distance T from 

the neutral axis. 
Earlier we showed that stress and strain are proportional 

within the elastic limit and we had a formula which read— 

Modulus of elasticity E = 
Strain 

or 
Stress x Original length 

Alteration of length 

The original length at the outer face and at the neutral axis 
will be identical when the beam is unbent, and the value of E will 
be constant for any given material. 
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Ex Alteration of length 
Then as Stress =-—rv-- ----- 

Original length 
£ 

we can call —-7f v -m = a constant = K 
Original length 

Stress — Alteration of length 
K 

then 

or Alteration of length = Stress x K. 

The stress in the outside fibres of the beam being /, then we can 
immediately find the stress of any point between the NA and the 
outside face of the beam by direct proportion. 
Then S = K x stress at point T distant from NA 

e = K x stress at point y distant from NA 

= K xf. 

As - = ^ then S = tJLZ. 
y T y 

and substituting the values of S and e in this equation we have 

K x stress at point T distant from NA — 
y 
T 

and stress at point T distant from NA = / x — 
y 

where / is the stress at the outside fibres of section 
T is the distance from NA to point considered 
y is the distance from NA to outside fibres of the beam. 

From this formula it will be seen that / is a maximum at the 
outside fibres and is zero on the neutral axis 

It is therefore clear that the intensity of stress may be illus¬ 
trated as shown in Fig. 76 (a) and (b). Fig. 76 (a) shows the 
stresses due to the bending moment in the beam, while Fig. 76 (b) 
shows the resisting stresses set up in the material acting in the 
opposite direction to and resisting these bending stresses. We 
have shown that the stress is proportional to the distance of the 
fibres from the neutral axis, and we can now proceed to find the 
moment of resistance of the rectangular section. 

A clear understanding of this feature is absolutely essential if 
the student is to really get a grip on this all-important subject of 
the strength of a beam. He must have no doubts that in a 
rectangular beam there is a lot of material which is useless so far 
as the strength to resist bending moment is concerned. Suppose 
the loading of the beam produces a stress of 1,000 lb. on each 
square inch of material along the outside face EE (see Fig. 76 (c)). 
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The same load and the same bending moment can only produce a 
stress of half this amount, or 500 lb. per square inch, along the 
layers at FF. It produces no stress at all along the fibres at the 
centre of the beam, that is, along the neutral axis. 

It therefore follows that c 
if we could make a beam as * 
shown in Fig. 77, then each 
layer of the beam would 
have the same stress to it 

>-*ao 

per square inch. Each little 
piece of timber would do the 
same amount of work as 

UJ2UJ 

each other piece. There 
would be no waste of mate¬ 
rial. In other words, the ^ 
parts shown shaded in Fig. _00 j § 
77 are useful, while the parts / g g 
shown not shaded are waste / js. ^ % F 
material so far as the strength 0 TVyj/xf"! 8 
to resist bending is con- *3 ^ NJT ’ 5 S 
cerned. Of course, for prac- S ? ^ 
tical reasons it is not possible £* * £ £ 2 
to make beams of this section, ^ £5 
and there is also the question 15 y £ £ 
of shear to be considered. / / ^ t 
(This question of shear will —— 
be dealt with later.) £ 

The effective strength of yT" 0 | ' £1 £ 
a rectangular beam is there- <ilS“ § I 
fore the shaded part shown > $ S 
in Fig. 77. This really forms 

the two flanges of a beam Sis — I s 
and resists the bending y' -• 2 
moment. In the case of a o ^ 
rolled-steel beam, the effec- I*5 £ ” 
tive lever arm was shown to i®/ I / £ 
be the distance between the j/ / £ 
centres of gravities of the ~ 
forces in the two flanges. In this case the effective lever arm 
is exactly the same, that is, the distance between the two centres 
of gravity. Remember that in this figure each little piece of 
material is equally stressed. Therefore the total strength of 
the top half of the beam to resist compression will be:— 

y * 5 

vrC> * * 
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C.OFG.OF 
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MOMENT 
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STRENGTH IS CONCERNED 

Fig. 77. 

where 

B D 
Area of triangle XYZ x Fc = — x — x Fc 

2 2 

Area XYZ = - x - 
2 2 

and Fc is the compressive strength of the material. 
B D 

Total strength of the box com triangle will be - x - X Ft, 
2 2 

where Ft is the tensile strength of the material. 
Notice that this is exactly the same as we showed was the case 

for a steel beam. What we have now obtained is really the 
strength of the tension side and the compression side. The 

2 D 
compression side acts with a lever arm of - x — and the tension 

3 2 
... ,2 D 

side also acts with a lever arm of - x -. 
3 2 

Total strength to resist tension is therefore 

B D 2 D -x - x Ft x - x -. 
22 32 

BD2 
This can be reduced to x Ft. 

Total strength to resist compression is therefore 

B D r- 2 D 
-x x Fc x - x - 
22 32 

which can be reduced to X Fc. 

Total strength of the beam is the tensile strength added to the 

compressive strength 

')+ (■ 
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If the beam is assumed to be approximately as strong in 
compression as it is in tension, then 

Total strength of the beam to resist bending moment will be 

where / is the safe strength of the material against bending 
stresses. This is called the resisting moment or moment of 
resistance of a rectangular beam. 

Z?Z)2 
There are two distinct parts in this formula: is the 

modulus or shape, measure of strength, and depends only on the 

size and shape of the beam. The strength of the material is 
denoted by /. It is obvious that if two solid rectangular beams 
are both made 8 in. deep and 4 in. wide, and one was made of 
timber while the other was mild steel, that the steel beam will 

safely carry more load than the timber beam. In both cases the 
BDl 

modulus of shape measure is the same, that is , but in the case 

of timber the safe stress would probably be about \ ton per 
square inch, while in the case of the mild steel beam the safe stress/ 
would probably be about 8 tons per square inch, so that the mild 
steel beam would be about 16 times as strong as the timber 
beam. 

The terms bending moment, section modulus (usually denoted 
by Z)t and moment of resistance have now been fully explained, 
and in future chapters we shall use them with the greatest 
confidence. 

A Timber Beam. It will be remembered that in Chapter 8 
we designed a steel beam suitable for carrying a bending moment 
of 64-8 in.-tons. We shall now proceed to design a timber beam 

for the same conditions of loading. 

Question. Design a suitable beam of northern pine to carry the load 
shown in Fig. 78 (a). Take /, the safe stress of the timber at 1,000 lb. per 
square inch. 

Answer. The maximum bending moment for a beam simply supported 
W x L 

at each end and carrying a uniformly distributed load =--— 

where W is the total load on the beam 

= 3*6 tons or 8,064 lb. 

L is the span = 12 ft. = 144 in. 

tj 8.°64 lb. X 144 in. .. .. 
Max. B.M. = 145,152 in.-lb. 
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Fig. 78. 

If the resisting moment of the beam is equal to or greater than the 
bending moment the beam will not fail. 

Resisting moment = Bending moment 

B x D% 
Resisting moment =--- X / 

B x D* 
X 1,000 lb. 

B x D* 
--- x 1,000 = 145,152 

B x D* — I45’152 X 6 - 870. 
1,000 ' 

Try a beam 7 in. wide, then 

7 x D1 = 870 

r.. _ 87° ... 

D = V 124 = say, 11 in. 

This section will be suitable, and we could use a beam of northern 
pine 7 in. broad and 11 in. deep. 

It is a good plan to make the breadth of a timber beam between 
half and two-thirds of the depth. 

It will be well to note that the figure of 145,152 in.-lbs, for the bending 
moment need not be taken as accurate. The loading is never known to 
exact limits, and even distribution is almost impossible. In practice the 
figure would be quite accurate enough at 145,000 in.-lbs. Working to 
figures of extreme accuracy are not necessary and a waste of time. 



CHAPTER 10 

BENDING MOMENTS 

The student cannot hope to understand bending moments 
and the design of beams except by actually working out many 
problems for himself. It is quite a different thing to read an 
article and say, “ Yes, I understand that/' from being able to 
do it in an examination room or to reason it out without the 
aid of a text-book. Accordingly he is strongly advised to work 
out for himself many problems, not only on the question of 
bending moments, but on each of the various*subjects which 
have already been covered and will be dealt with in this book. 

Various types of loading for beams are shown on pages ioi 
and 105. These are a little more complicated than the problems 
we have dealt with so far. In each case keep in mind that the 
beam is considered as being simply supported at the ends not 
built-in or fixed. 

Cantilever with Point Load at Free End. This type is shown in 
Fig. 79. 

Taking moments about Rt 
W x L = i?! x A 

„ W x L 
from which Rx — ^ • 

WL 
Total load on support = W + Rx = W -f = R%. 

To find the bending moment at any point on the span, calculate the 
algebraic sum of the moments on either side of the section considered. 
For instance, to find bending moment' of 'Rx take moments to left of 
section, and 

B.M. at R1 = W x iL. 

At a distance half-way along the span B.M. = £L *= \WLt while at 
distance quarter-way along the span from W, B.M. = W x JL = ±WL. 
At the load W the bending moment would be zero. 

If we construct a bending-moment diagram from these results, a figure 
such as shown in Fig. 79 will be obtained. The maximum B.M. will occur 
at the support Rx and will equal WL(WL means W x L). The portion 
of the bending-moment diagram shown dotted is not usually drawn in 
practice. 

Question i . A cantilever beam carries a load of 3 tons at the end 
of a 10-ft. span. Calculate the maximum bending moment on the beam. 

Answer. 
Maximum bending moment = W x L 

= 3 tons x 10 ft. 
« 30 ft.-tons 
«* 360 in.-tons. 

99 
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Cantilever Carrying Uniformly Distributed Load Over Entire 
Span. This is shown in Fig. So. The load on the beam is w per foot 
run, so that total load on beam is wL, which will also be called W. From 
the theorem of centre of gravity it will be remembered that a load acts 
through its centre of gravity, which in this case will be half-way along 
the span of it. The load acting through this point will be wL or W. 

L 
Then W x - = Rx x A 

2 

WL 
from which R. = —7. 1 2 A 

The support has to carry the load W and also Rv so that 

WL 
= W + R, = W + 

The bending moment at any point along the beam can be found by 
calculating the algebraic sum of the moments acting on either side of 
the section considered. Taking moments to the left of R2 we have 

WL 
B.M. at R% = W x JL - -. 

2 

The bending moment at midspan can bb found from the fact that if 
we take moments to the left of midspan we have a load of \W acting 
through its own centre of gravity, that is, half-way along half the span, 
or at JL. 

B.M. at midspan = x \L = ~. 
O 

The student should calculate the bending moment at other places 
along the beam and plot the bending-moment diagram from these. 
Finally, from the values obtained a bending-moment diagram similar to 
that shown in Fig. 80 can be drawn, and it will be found that the shape 
of the curve is a parabola. The dotted shape of the bending-moment 
diagram to the right of R1 is not generally drawn in practice. It will 
be noted that the maximum bending moment again occurs at the support 
R2 and that its value is 

WL uol 2 
- or as W = wL maximum B.M. =-. 

2 2 

Question 2. A cantilever beam carries a load of £ ton per foot over 
a span of 12 ft. Calculate the maximum bending moment on the beam. 

Answer. 
Maximum bending moment = W x \L 

w x L2 
~ 2 

i ton x 12 ft. x 12 ft. 

= 36 ft.-tons 
— 432 in.-tons. 

Beam Simply Supported at Each End and Carrying Point Load 
at Midspan. This is shown in Fig. 81. As the load W is located at 
midspan, each support will take one-half of this load or \W. Therefore 

R « iW and R% = \W. 
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Cantilever with Point load 
AT FREE END 

For equilibrium W*L = Ri*A 

R, = W4I*. and Rj*w + ^ 
, T A 
Max. B.M occurs at_Rp_anp equals Y/L 

Fio. 79. 

CAMTiLgVER CARRYING UkiFORmlt 

1>istribut6X> load Over entire span 

K... L (U'o'-W) .4_, 
| (^T PER FT W-6T) 

^Loab * i*J pea ft. run T®tai. ioad «tJx Dj 
QiiiriirnTiTrTT ittttttt mmuTT U _I r 
l_ 

_c‘! 8 “ U__M61'0') $1 
*2 I total load r N 

Yf ON erAV! T < 
* K 

For equilibrium YDL =R|*A 
2 , 

Hotc THAT IN this CASE The load ACTS 
TMRO'j^h ns centpe cr QQA<itt, wmicm is 
I prom Rj. Tweh R, r VfxL and 

Max.BM occurs AT Rj = WxL = WL 0R 

e 2 2 

Fig. 80. 

Beam simplv supported at each end 

AND CARPYihG; A POINT LOAD AT MIDSPAN, 

Y\[ f 10Tons) 

Beam simply Supported at eacm end 

CARRYING A IhD.LoftP OVER ENTIRE SPAN 

'[]<* pi* n IN* 10Tons) 
toAD=UPER FT.Rjn. Total LOAD ■V«i**W 

Fig. 81. 

Eac« Support takes' *alf total load 

on beam « W or ***L 
t ? 

Taking MOMENTS about m^DSPAn (which iS 

PCS'T'CN of Max B , tmE load Cm S'Gwt 
MAlF OF spam s w TWROUGW >tS CENTRE" 1 
OF GRA/ITX AT L2 riSTANCEOF K*L FROM MIDSPAN | 

Mc» BM ff MIDSWH = »?) s T 0R 

Fig. 82. 

Taking moments to the left of midspan we have 
IF/ 

B.M. at midspan = x £/. ^ JTF x £/- - J1FL or -. 
4 

At a distance JL to left of load W we have, taking moments to the 
left of this section 

WL 
B.M. at quarter span « Rx x JL - \W x \L = -g-. 
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Further calculations should be made at various points along the span, 
and finally from the values obtained a bending-moment diagram similar 
to that shown in Fig. 81 can be drawn. Note that bending moment at 
the supports is zero, while the maximum bending moment, which occurs* 

at midspan, is —j-. 

Question 3. A beam 20 ft. span carries a point load of xo tons at 
its centre. Find the maximum bending moment on the beam. 

Answer. 
Maximum bending moment at centre of beam 

WL 

4 

10T x 20 
4 

** 50 ft.-tons 
= 600 in.-tons. 

Beam Simply Supported at Each End and Carrying a Uni¬ 
formly Distributed Load Over Entire Span. This type of loading 
is shown in Fig. 81. The beam carries a load of w per foot run, or a total 
load of w x L, which is also called W. The load being symmetrical on 
the beam, each support will take half the total load or \W each. Take 
moments to the right of midspan to find the bending moment at this 
point. The load on the right half of the beam will be half total load = \W. 
This \W load will act through its centre of gravity, which will be at a 
point half-way between midspan and support R%, or at a distance 
from midspan. Now take moments. 

We have anti-clockwise moment ~ Rt x \L 
and clockwise moment ~ \W x £L. 

If we take the difference between these two moments we find the 
bending moment at midspan. 

Bending moment at midspan 

- (*. x iL) - (JW x \L) 
- dw x iL) - (iW x m 
- HWL) - (iWL). 

A quarter minus one-eighth equals one-eighth, so that 

WL 
B.M. at midspan = -g-, or as W =■ w x L 

wJJ 
8 * 

B.M. = 

The bending moment at any other point along the span can be found 
in like manner. The bending moment at a point JL to right of midspan 
can be calculated as follows. Take moment to right of point considered. 
We have a load of \W (the load one-quarter of span) acting through its 
centre of gravity at a distance \L from the section being considered. 
We have therefore 

Anti-clockwise moment = R2 x \L 
Clockwise moment \W x \L 



BENDING MOMENTS 103 

B.M. at quarter span = (i?, x. JL) — (£W x JL) 

- m x m - aw x \d 

32 ’ 

The bending moment at any other point along the beam can be found 
in a similar manner and finally from the results so obtained a bending- 
moment diagram as shown in Fig. 82 can be constructed. It will then 
be found that the maximum bending moment occurs at midspan and 

WL wL% 
equals —3- or -5-. Note that the bending moment is only a half of 

8 8 
that obtained with a point load at midspan as shown in Fig. 81. A lot 
of work can be saved from the fact that the curve of this bending-moment 
diagram is a parabola, and as the maximum value of the bending moment 
is known, the moment at any other part of span can be obtained by 
drawing a parabola, using this maximum value as the apex value. The 
method of constructing a parabola was dealt with in Chapter 8. 

Question 4. A beam 20 ft. span carries a uniformly distributed 
load of £ ton per foot run over its extreme length. Find the maximum 
bending moment on the beam. 

Answer. 
Maximum bending moment, at centre of beam 

__ 5!^ 
~ 8 

_ wL* 
~ 8 

JT x 20 ft. x 20 ft. 
g — 

= 25 ft.-tons 
= 300 in.-tons. 

Beam Simply Supported at Each End and Carrying Two Point 
Loads. The first things to calculate in this case (see Fig. 83) are the 
reactions and Rt. If distances ABC are unequal, the loading will 
not be symmetrical over the span, so that Rx and Rt will probably have 
different values. 

The bending moment over the support of any beam simply supported 
at its ends is zero. If we take moment at about Rlfc algebraic sum of the 
clockwise and anti-clockwise moments to the right of this point must 
be zero. 

We have clockwise moments of (W1 x A) -f (Wt x D) and an anti¬ 
clockwise moment of R, x L. 

Then (Wl x A) + (Wt x D) — (Rt x L) = o 
or (Wx x A) + (Wt x D) = Rt x L, and 

_{WlxA) + (Wt x D) 
R* " L 

i?! will be the difference between the total load on the beam and 
i?, or = (Wx + IT,) - R,. 
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The bending moment at any section can be found by the usual manner 
of taking moments about any side of the section considered, and if wc 
take moments to the left of Wx we have 

B.M. at Wx « Rx x A, 

and taking moments to the right of Wt we have 

B.M. at W2 = R2 x C. 

If other sections are taken, and the bending moments obtained for 
these, a bending-moment diagram as shown in Fig. 83 can be drawn. 
The maximum value of the bending moment will be found to occur under 
either Wx or Wt, depending on the values of these. 

Question 5. A beam 15 ft. span carries two point loads, one of 
3 tons at a distance of 3 ft. from the left-hand end of the beam, and 
one of 5 tons at 8 ft. from the right-hand end of the beam. Find the 
amount and position of the maximum bending moment. 

Answer. Referring to Fig. 83, then 

Wx = 3 tons 
W2 = 5 tons 

A — 3 feet 
B = 4 feet 
C = 8 ft. 
D = 7 ft. 
L = 15 ft. 

Then R1 x L = (Hr, x A) + (W, x D) 
Ri x 15 = (3T x 3) + (sT x 7) 

R, 

Rx 

9 + 35 
15 

44 

15 
2-93 tons. 

— total load on beam — R2 

= 5 + 3 ~ 2‘93 = 5 07 tons 
Maximum bending moment occurs under either 

Wx or W2. 

Under Wv B.M. = Rx x A — 5 07 x 3 = 15-21 ft.-tons. 
Under IVt, B.M. = R2 x C = 2*93 x 8 = 23-44 ft.-tons. 

The maximum bending moment therefore occurs under the 5-ton load 
and equals 23*44 It.-tons or 282 in.-tons. 

Beam Simply Supported at Each End and Carrying Two Point 
Loads and a Uniformly Distributed Load Over Entire Span. This 
type of loading is shown in Fig. 84. It is a combination of the loadings 
shown in Figs. 82 and 83, and the bending moment at any section will 
therefore be a combination of those shown in these figures. The reactions 
will also be a combination of those obtained for these loadings. 

W IWX x A) + {Wt x D) 

R* = T +-/..— • 
Rx * w + Wx + Wt - Rr 

The position of the maximum bending moment is not so easy to see 
in this case. The maximum bending moment for U.D. Loads is at mid¬ 
span, and for point loads under one of the loads, but when combined, 
the position of the maximum bending moment will be somewhere between 
midspan and the position for the point loads. 
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Beam simply supported at each end 

and carrying two point loads. 
Beam simplv supported at each end carrying 

two POINT LOADS AND U D- LOAD C^R ENTIRE SPAN 

H.0BT) 

MWi 
t,;w liT»wf’) 

-*'* m u D LOAD -Id PM FT 
/-Total U 5 Load• 

nr TTflmrnnn 

v i_.Um.__J 
D(io') - -C W)—J 

3 

NED\ 

B M DlAQRAM^v. 

This pe of loading is a combination of ] 

ruoSE SHOWN IN FlCrS. 4 AND 5, AND MAX. BM 

OCCURS SOMEWHERE BETWEEN MlDSPAN AND 

THE POSITION OF MAX 8 M FOR THE POINT LOApS] 

Fig. 84. 

Beam simply supported at each end 

And Carrying- four Point loads 
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||Ma* Bm occurs under Wi,Wi,Ws,or--V4 

"Under Wi Bm = (t?,*a) , 

Vfe - 4*,*f)-(W,xb) 
: Yf ” - ?2«K)-CW4xD)- 
" Wa " ‘(KuE)- 

Fig. 85. 

Beam Simply supported at each end 

carrying UP Load oh part of span on it 

L * _ 
! LoA£ nr ar f t j 2T|fiJ 

. SiDEnfiiPi 

l_c 

(2’f 

(w) (?°- l f ? ~_ 
C OF Q OF -- . 

Load OW 8e*m 1 !X 

1 Ts 6-7 

- -JR* (HIT) 

= -<jx B (A+£p) R, * <j-£ - R2 

Max Bm occurs when X = 

Max BM = [*ax(X+c)] “ [«X * ix] — 

Fig. 86. 

An easy way to find the position of the maximum B.M. is as follows : 
Starting from one support, note the value of the reaction, which is a 
force acting upwards. Travel along the beam adding together all loads 
acting downwards until a point is reached where the sum of the down- 

H 
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wards loads is as near as possible equal to the reaction. This is the 
position of minimum shear and maximum bending moment. 

Consider in Fig. 84 that R x = 16 tons, R2 = 14 tons, Wx and W2 each 
equal 5 tons, A = 3 ft., B = 2 ft., and C = 5 ft., while L *=* 10 ft. 
U.D.L. on beam = 2 tons per foot. Starting from Rv we have an up¬ 
ward force due to the reaction of 16 tons. For every foot we move along 
to the right of Rv there is a downward load due to the uniformly dis¬ 
tributed load of 2 tons, so that at 3 ft. from Rv or at Wv the 
U.D.L. = 3 ft. x 2 tons = 6 tons. Also at Wx there is a downward 
load of 5 tons, making a total down load of 6 4- 5 = 11 tons. 

The difference between this figure and the reaction Rx = 16 — 11 
= 5 tons. To balance upward and downward loads we therefore need 
a downward load of 5 tons. Moving along to the right of Wl the U.D.L. 
increases at 2 tons per foot, so that at 2 ft. 6 in. from Wx the U.D.L. 
will have increased 2 5 x 2 = 5 tons. This section, therefore, is where 
upward and downward forces balance, and where the maximum bending 
moment occurs. 

Checking to the right of this reaction we have a U.D.L. of 
4 ft. 6 in. x 2 tons = 9 tons, and a point load Wx — 5 tons, making 
a total of 14 tons, which agree with the reaction Rt. The maximum 
bending moment therefore occurs at 4 ft. 6 in. from J?a, and it is now 
only necessary to take moments on one side of this point to calculate 
the value of the maximum bending moment. 

Question 6. A beam 20 ft. span carries two point loads, one of 
4 tons at 5 ft. from the left-hand end, and one of 6 tons at 10 ft. from 
the right-hand end, and also a uniformly load of 1 ton per foot over its 
entire length. Find the position and amount of the maximum bending 
moment. 

Answer. The supports will each take one-half of the uniformly dis¬ 
tributed load and part of the point loads. 

Then 

Then Rt x L 

Rt 

Rx takes the remainder of the load = 4 4- 6 4- 20 — 14 = 16 tons. 

It is now necessary to find the position of the maximum bending 
moment before this can be calculated. This will occur where the sum 
of the downward loads is equal, or as near equal as possible, to the reaction. 

Starting from Rx = 16 tons acting upwards, proceed along the beam. 
From Rx to Wx there is a 5-ft. length of the uniformly distributed load 
of 1 ton per foot, that is, a total load of 5 x 1 = 5 tons. At Wx the 

Wx — 4 tons 
Wt = 6 „ 

A = 5 ft. 

B = 5 „ 
C = 10 „ 
D = 10 „ 

L = 20 

\xA) + (Wt xD) +(W x ID) 

x 5) 4- (6 x 10) -h (20 x 10) 

20 

4- 60 4- 200 280 
--—_   — T A f Ano 
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point load is 4 tons, making a total downward load up to this point of 
5+4=9 tons. 

Proceeding still further along the beam, there is a 5-ft. length of the 
U.D.L. between Wx and Wv that is, a total load of 5 x 1 = 5 tons. 
Total downward load just before W2 is reached = 9 + 5 = 14 tons. 
Rx = 16 tons, so that reaction still exceeds downward loads by 2 tons. 
At Wv however, the point load of 6 tons will bring the total downward 
loads to 20 tons, thus exceeding Rx by 20 — 16 = 4 tons. At this section 
the sum of downward loads is as near equal as possible to the reaction, 
and the maximum bending moment therefore occurs under load Wt. 
Taking moments to the right of W2 we have 

B.M. = (R2 x C) - (w x C x £C). 

The $C comes from the fact that- the load on length C will act through 
its centre of gravity at a point \C from Wv 

Then maximum B.M. under W2 

*= (14 tons x 10) — (1 x 10 x 5). 
= 140 — 50 = 90 ft.-tons 

= 1,080 in.-tons. 

Beam Simply Supported at Each End and Carrying Four Point 
Loads. This loading is shown in Fig. 85. It will be solved in the same 
manner as in Fig. 83. 

B.M. at Rx will be zero, so that 

Rt x L = (Wx x A) + (W2 x F) + (Wz x G) + (WA x H) 

n (Wx x A) + (W2 x F) + (W3 x G) + (W% x H) 

Rx will be the difference between the total load on the beam and R2. 

R1 = (Wx + W2 + W3 + W€) - R2. 

The maximum bending moment will occur under any one of the loads, 
depending on their values. Taking moments at the various sections, then 

Under Wx B.M. = {Rx x A) 
W2 B.M. = (R2 x F) - {Wx x B) 
Wz B.M. = (R2 x K) - (WA x D) 
W4 B.M. = (R2 x E). 

The bending moment at each of these sections should be calculated 
and a bending moment diagram as in Fig. 85 can then be constructed. 
The results of the calculations will show under which load the maximum 
bending moment occurs. 

Question 7. A beam 30 ft. span carries four point loads situated 
at 5 ft., 10 ft., 20 ft., and 25 ft., respectively, from the left-hand end. 
Find the position and amount of the maximum bending moment if the 
loads are 5 tons, 7 tons, 4 tons, and 8 tons, respectively. 

A nswer. 

Rt x 30 ft. = (5T x 5 ft.) + (7T x 10 ft.) + (4T x 20 ft.) 

+ (ST x 25 ft.) 

R> 
25 + 70 + 80 + 200 375 

30 
— = 12*5 tons 
30 J 

Rx a Total load — = 5+ 7+ 44-8 — 125 = 115 tons 
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The maximum bending moment will occur under one of the loads. 

Under Wx B.M. m Ri x 5 ft. = 11-57 x 5 ft. = 57-5 ft.-tons. 
Under W2 B.M. - (Rt x 10 ft.) - ($T x 5 ft.) 

= (11*57 x 10 ft.) — 25 ft. = 90-0. 
Under Wz B.M. = (R2 x 10 ft.) — (87 x 5 ft.) 

= (12-57 x 10 ft.) - 40 ft. = 85-0. 
Under W4 B.M. = R2 x 5 ft. = 12-57 x 5 ft. = 62-5. 

The maximum bending moment therefore occurs under the 7 tons load 
and its amount is 90 ft.-tons, or 1,080 in.-tons. 

Beam Simply Supported at Each End and Carrying a Uni¬ 
formly Distributed Load on Part of Span only. For this loading 
see Fig. 86. It is a type of loading half-way between a point load, as shown 
in Fig. 81 and a U.D.L. as shown in Fig. 82. The beam carries a load 
w per foot run over a length Bona beam which is L long. If it is assumed 
that all the load acts through its centre of gravity, in the manner of a 
point load, at a distance \B from the end of the load, then the total load 
on the beam will be wB, and taking moments about R we can find the 
values of the reactions. 

Rt x L = wB x (A + JB) and Rt = wB^A + iD) 

Rt will be the difference between the total load on the beam wB and 
the reaction R2, therefore 

Rx = wB — R2. 

At the right-hand edge of the load, taking moments about this point. 
B.M. at right edge of load — R2 x C. 
Left — 7?j x A. 
These two figures will give us the points XX on the bending-moment 

diagram. The bending moment varies from zero at the supports, and 
will be represented on the diagram by straight lines as far as XX. Although 
for the purposes of calculating the reactions we assumed the load to act 
through its centre of gravity, it is a uniformly distributed one, and the 
bending moment diagram for a U.D.L. has been found to take the form 
of a parabola. Therefore the part of the diagram between XX will not 
be a straight line as shown dotted, but a parabola as shown in full, the 
base line of the parabola being the dotted straight line XX. 

The position of the maximum bending moment can be found easily, 
as it will occur at the point where downward loads equal the reaction. 
Starting from R2, then the maximum bending moment occurs at some 
distance X from the right-hand end of load. On this length X there will 
be a downward load of wX. This will equal the value of R2 at the place 
of maximum bending moment. 

Then 
wX = Rt 

wX _ "BiA +JB) 

wB(A + iB) _ B(A + \B) 

A ' wL ' /. - 



CHAPTER 11 

PLATE GIRDERS 

The question of what safe stresses should be allowed will 
depend to some extent on the nature of the loading. The ques¬ 
tions of live loads, dead loads, and factor of safety have already 
been covered. 

Span of Girder. For the purpose of this particular design 
it will be considered that the plate girder has a 6o-ft. span and 
is in a steel-framed building, the load from the floors being trans¬ 
mitted to the plate girder by smaller size floor beams, generally 
known as secondary beams. These will be assumed effectively 
to stiffen the top flange against side buckling, and for this reason 
the full stress of 8 tons per square inch will be allowed. Actually, 
since we shall make the compression flange of the same area as 
the tension flange, the actual stress on the compression flange 
will be something less than 8 tons (actually it will be a little 
over 7 tons per square inch). 

Loading. The girder will carry two point loads of 30 tons 
each. These loads come down steel columns and are located at 
10 ft. on each side of the centre line. In addition, the girder 
will carry a uniformly distributed load of 4 tons per foot run. 
This load includes the weight on the floor, the weight of the 
floor itself, and the weight of the plate girder and any concrete 
casing which may be used. The plate girder is carried from 
steel columns. 

Reactions. Total load carried by the plate girder will be : 

Point loads, 2 x 30 =60 tons 
Distributed load, 4 x 60 = 240 tons 

Total load = 300 tons 

All the loads are symmetrical about the centre line of the 
girder, so that the reaction at each end will be one-half the total 
load, therefore the rivets in the end angles which connect the 
plate girder to the columns will have to be strong enough to deal 
with a shear of 150 tons. The general layout of the loading is 
shown in Fig. 87 (a). 

Depth of Girder. For economical construction the depth of 
a plate girder is generally made between one-tenth and one- 
twelfth of the span where the head room permits. In this case 
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we shall assume a depth of web plate equal to one-twelfth of 
the span, so that the distance outside to outside of the flange 
angles will be 60 ft. -r- 12 = 60 in., and for preliminary calcula¬ 
tions this will be considered as the effective depth of the beam. 

Bending Moment Due to Point Loads Only: 
Bending moment at one 30-ton load 

= 30 tons x 20 ft. = 600 ft.-tons. 
Bending moment at centre 

= 30 tons x 30 ft. — (30 tons x 10 ft.) 
Bending moment at centre == 900 — 300 = 600 ft.-tons. 

The bending-moment diagram for these point loads is shown 
in Fig. 87 (6), points A, B, C, D, F, F, G, and H. 

Bending Moment Due to Distributed Load Only. 

„ , , , Total load x Span 
Bending moment at centre =  -—-—-p -- 

Bending moment of centre = 4 X 60 X 60 

8 
= 1,800 ft.-tons. 

The bending-moment diagram for the uniformly distributed 
load will be a parabola. This is shown in Fig. 87 (b) by the 
points A, H, .G, F, E, L, K, and /. 

To form the complete bending moment diagram add the 
bending-moment diagram for the point loads to the bending- 
moment diagram for the uniformly distributed load, as shown in 
the drawing. A little thought will make it clear that the bending- 
moment diagram due to all the loads on the plate girder is as 
shown in A, H, F, F, 0, N, and M. 

Maximum Bending Moment. This occurs at the centre of 
the beam, and amounts to 

1,800 ft.-tons + 600 ft.-tons = 2,400 ft.-tons. 

This can also be written as 28,800 in.-tons. 
Flange area required at centre of span 

Bending moment in inch-tons 

Effective depth in inches x Safe stress 

28,800 , 
— ' ~ == 60 sq. m. 

60 x 8 

The bottom flange is in tension and will be weakened by rivet 
holes. The top flange is in compression and will not be weakened 
by rivet holes, since the spaces will be filled up by rivets. Strictly 
speaking, therefore, the tension flange should have more steel 
provided than the compression flange. In practice they are 
often made the same. 
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Some designers assume that one-sixth of the gross area of 
the web can be considered as part of the flange to resist bending 
moment. Others use one-eighth of the gross area of the web. 
Many designers assume that none of the web is available to resist 
bending stresses, and that the flanges, which consist of the flange 

(*) l 

REACTION 
a 150 TONS 

Net Funqi Arm 

_;V S§Jns,_a[, 
Angles I^J.87 

lotftfl 3.75 

2D-0* 10- 0* J 0*0’ • 20-0' 

Uniformly Distributed L 0 AD (NCLUDlNRr W€l®WT OF 1 eam • 4 Tons piR foot Run 

-nrnTnmmniiiiiiiillllHi 1111ITTfTTTTI r 1111111 mu' ■iiminiimmujiiiimir 

P L _ A T E _!Ll 
R D E R 

; 60 -0* 
REACTION 
* 150 TONS 

. 30-0‘* B.M. AT CENTRE 
h— ' " -DUE TO POINT LOAOS * t- —;- 

30-0- -1 

/ 1 r)) *4- 

= 600 FT-TON 

FO_l 

Total 

/^\ COLUMN 
( C) SUPPORTING 

GIRDER, 

DEPTH OF GIRDER 
OVER ANGLES - 
sS-O" 

W"« V Plate 14.00 

lf)V/V Pi at I M.00 — 
£ n_^ 

i8\V Plate. 1400 

bi r:- >,;c 

59. W Solus, 

—^3-0'| 4-0'j 4-0' ,j 4-0‘ >0 ^ 3;Q" ^ 
J 

Fig. 87. 

USU-5'°'U 
\kJCO ’ 1 1/MhiT .1. 

i'-tf 4- 5^0- 1 4'-o__j_ ,.4i4* [■♦’•tf.j.W* 

WEB; 1 JOINT IN ^ ‘ 
JOINT EOT TOM FLANOI 

angles and flange plates, should be sufficiently strong to take all 
the bending moment without any assistance at all from the web. 

Area of Tension Flange. In this case we shall assume that 
one-eighth of the web can be considered as part of the flange. 
We shall also consider the effective area of the tension flange as 
being the gross area less the area of the rivet holes. 

Although not strictly necessary, we shall make the compres¬ 
sion flange the same area as the bottom or tension flange. 

C
o
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m
n
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Area of web plate = Depth x Thickness 

Max. shear Max. reaction 
Area required gafe g^ear stress Safe shear stress’ 

Allowing a safe shear stress of 5 tons per square inch : 

Area required 
150 

= 30 sq. in. 

Depth of web is 60 in., so that required thickness 

= I- = ! in- 
60 

Tension Flange Afea. It has been shown that the net effective 
flange area required is about 60 sq. in. With one-eighth of the 
web available, the net flange area consisting of the flange angles 
and flange plates, will be: 

60 - ($ x 30) = 60 - 375 = 56*25 sq. in. 

Assuming the flange angles should be at least one-fourth of 
this, net area of the flange angles required will be : 

^= about 14 sq. in. 

4 
The largest British standard section of angle which is com¬ 

monly made is 6 x 6 x f in. 

Sq. in. 
Area of 2 angles, 6 x 6 x J = 16*87 
Two holes, 1 in. dia. from each angle 4 x (1 x |) = 3*00 

Net area of two angles (16*87 “ 3*00) = 13*87 

Net area of flange angles and cover plates required = 56*25 
Net area of flange angles = 13*87 

Net area of flange plates (56*25 — 13*87) 

Assume width of flange plates as 

= 42-38 

60 X 12 

40 

Span 

40” 

18 in. 

Since it is necessary to deduct the rivet holes from the flange 
plates, the gross sectional area would have to be more than 42-38. 

Sq. in. 
Area of 3 plates, 18 in. x } in. = 47-25 
Area of 2 rivet "holes, 1 in. dia. = 2 x 2§ x 1 = 5-25 

Net area of flange plates = 42-00 
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This section seems about right for the tension flange, and 
as Stated before, although the compression flange could, strictly 
speaking, be somewhat less, the areas will be kept the same. 

The cross-section of the girder at the centre line has therefore 
been found to be : 

Web plate, 5 ft. deep and \ in. thick. 
Each flange composed of 

3 plates, 18 in. wide x J in. thick 
2 angles, 6 in. x 6 in. x | in. 
This section is shown in Fig. 88 (a). 
Although the section just found by approximate methods is 
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not, strictly speaking, accurate, it is a method very often used 
in practical design. 

Bending Moment. The section of the girder which has now 
been found is the material required to resist the maximum 
bending moment, which, as shown in Fig. 87 (ft), is in the centre 
of the girder. Examination of the bending-moment diagram 
shows that at other places along the beam the bending moment 
reduces, and consequently less material is required in the flanges. 
For instance, it is easy to see that if the beam is kept the same 
depth and the bending moment is reduced from 28,800 in.-tons 
to 14,400 in.-tons, that the net area of one flange will require 
to be only one-half of the 60 sq. in. necessary at the centre of 
the girder. Therefore there is no need to carry all the plates 
the full length of the girder, as this would be waste of material. 

We have allowed one-eighth of the web as being considered 
part of the flange area. The web plate section is not altered 
and the flange angles run the full 60 ft. span. The net' area of 
two angles 6 in. x 6 in. x J in. and one-eighth the web is 
17-62 sq. in. The net area of the total flange is 59-62 sq. in. 
Assuming the effective depth is not changed, the bending moment 
which the angles and part of the web will resist (without any 
flange plates) will be 

—^ X 2,400 ft.-tons = 709 ft.-tons. 
59*62 

Therefore, until the bending moment exceeds this amouUt, no 
flange plates are required. 

Increased Strength. When one flange plate is added, the 
strength of the girder is increased so that it is capable of resisting 
a bending moment of 

oj.6T2 
- ■ x 2.400 ft.-tons = 1,275 ft.-tons. 
59-62 

This section is therefore sufficient until the bending moment 
exceeds this amount. By scaling the bending-moment diagram 
the position at which these bending moments occur can be found. 
For instance, the position when the maximum bending-moment is 
709 ft.-tons is shown at XX in Fig. 87 (b), and the horizontal 
distance to this point from the end of the girder is found to be 
5 ft. 1 in. The total length of the girder is 60 ft. and 5 ft. 1 in. 
off feach end indicates that the theoretical length of the flange 
plate nearest the angles will be 60 ft. — 10 ft. 2 in = 49 ft. 10 in. 
Generally, in order to ensure development of rivet strength, the 
plates are actuaUy made between 1 ft. and 2 ft. longer than this 
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theoretical length. The dotted lines shown in Fig. 87 (b) are 
the theoretical length of the flange plates and the full lines the 
actual lengths. 

Length of Flange Plates by Calculation. Instead of drawing 
the bending-moment diagram, the lengths of the flange plates 
could be found by calculation as shown below. . At any point 
between the reaction and the column load of 30 tons the bending 
moment on the beam 

= (Reaction x P) — (U.D.L. on length P x |P) 
where P is the distance from the support to the position being 
considered. The U.D.L. on length P will be 4 tons x P = 4P. 
This load will act through its centre of gravity, that is, at a 
position \P from the position being considered. 

B.M. = (150 tons x P ft.) — (4P x AP) 
= 150P — 2P2 ft.-tons. 

The net flange area is made up as follows : 
Sq. in. 

Net area of angles and one-eighth of web . 17-62 
,, ,, 1 flange.plate, 18 in. x J in. . . 14-00 
M II I II II II II I4’00 
II II 1 II II II II • • 14*00 

Total net flange area .... 59*62 

If the total area of 59*62 sq. in. will resist a bending moment 
of 2,400 ft.-tons, it follows that 

Ft.-tons. 
17*62 

Angles and web plate only will resist ^962 X 2’400 = 7°9 

Angles, web plate, and one flange plate 31-62 
will resist 59-62 

Angles, web plate, and two flange plates 45-62 
will resist cn.62 

x 2,400 

x 2,400 = 1,831 

It we equate each of these resisting moments to the bending- 
moment formula we can find the value of P. 

Taking first the angles and one-eighth of the web plate we 
have 

150P — 2 P2 = 709 
75P - P2 = 354 5 

P2 - 75P* = - 354-5 

pa _ ?5p + (TAJ = _ 354.5 + (7iy. 
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Take the square root of each side, then 

P ~ 37’5 = V- 354'5 + 1.406 = Viiw ± 32-41 

P = 37'5 - 32-41 == 5 09 ft. = 5 ft. 1 in. 

Then at a distance of 5 ft. i in. from each end of the girder 
the bending moment equals the resisting jnoment of the flange 
angles and one-eighth of the web, so that at this point a flange 
plate must be added to take care of the increasing bending 
moment. 

Length of plate theoretically =60 ft. 
— (2 x 5 ft. 1 in.) 

= 60 ft. — 10 ft. 2 in. = 49 ft. 10 in. 

Taking now the angles, web plate, and the one flange plate, 
we have 

150P - 2 ps = 1,275 
75 p - p2 = 637.5 

p2 -75 p = - 6375 

p - 37-5 -V- 637-5 +1,406 = V768-5 = ± 2771 

p = 37-5 - 2771 = 979 ft. = 9 ft. 9 in. 

Theoretical length of second flange plate 

= 60 ft. — (2 x 9 ft. 9 in.) = 40 ft. 6 in. 

Actual length of second flange plate 

= 40 ft. 6 in. + 1 ft. 6 in. = 42 ft. 

Lastly we have the angles, web plate and two flange plates, 
which will resist a maximum bending moment.of 1,831 ft.-tons. 

150P — 2 P2 = 1,831 

75P - P2 = 915-5 

P ~ 37-5 = V- 915-5 + 1,406 = V490 5 = ± 22-13 

P = 37-5 - 22*13 = 15-37 ft- = 15 ft- 4 in. , 
/ 

Length of outer flange plate would therefore theoretically 
need to be 60 ft. — (2 x 15 ft. 4 in.) = 29 ft. 4 in. 

Actual length of outside flange plate will be made 

29 ft. 4 in. + 1 ft. 8 in. = 31 ft. 

It will be found that these lengths of plates agree with those 
found by the graphical method. 

Number of Rivets.—Fig 88 (c) shows a detail of the end 
connection of the girder to the supporting column. Remember¬ 
ing that the rivets passing through the web of the girder will be 
in double shear, and those passing through the column will be in 



PLATE GIRDERS 117 

single shear, the student should check up that the number of 
rivets shown are sufficient to make a sound connection between 
girder and column. 

Although it is possible to get a web plate 60 ft. long, it is 
very probable that owing to the difficulty of handling the plate, 
a joint would be made somewhere near the centre of the girder. 
Sometimes the flange and web joints are made at the same place, 
but this is not considered very good practice, and at Fig. 88 (b) 
the detail of a suitable web joint is shown. 



CHAPTER 12 

SHEAR STRESSES 

In Chapter i the nature of shear and its definition were 
given. In addition to the bending action which takes place in 
a beam, there is also a shearing action. For instance, consider 
the beam shown in Fig. 89 (a). .This beam is of rectangular 
section, and is simply supported ?t each end. 

If this beam was made out of 13 separate small blocks, as 
shown in Fig. 89 (b), then when the beam is loaded the small 
blocks will try to slide past each other vertically as shown. 
This is known as vertical shear. If each small block K to L 

Beam simply supported at each end 

■7777777; 

(a,)\ Span. . 
\ 
s. 
s. 

SKETCH OF BEAM 
MADE OF BLOCKS 
TO SHOW PRESENCE 
OF VERTICAL SHEAR 

MAXIMUM SHEAR OCCURS 
AT SUPPORT, AND IS 
EQUAL TO THE REACTION 

Fig. 8g. 

carried a load of 1 ton, then block A would carry 1 ton, and if 
block A was not to fall out of the beam, the two side faces of 
this block must each exert an upward force or reaction of $ ton. 

If the blocks were glued together along their side faces, then 
the glue between A and B and between A and C must be strong 
enough to resist a shear of \ ton. As each block, A, B, and C, 
has a load of one ton on it, then blocks A, B, C carry a load of 
3 tons, so that the shear on faces BD and CE will each be one- 
half of this, that is i£ tons. Then if blocks A, B, and C are 
not to fall out by failure along BD and CE, the glue along these 
two faces must resist a shear of ij tons. 

If we continue this procedure until we reach the supports, 
then the 11 blocks A to K and A to L will be supported by the 

118 
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glue along faces MK and LN. Total load on these 11 blocks 
will be 11 tons and each of faces MK and LN will take one-half 
of this 11 tons, or 5$ tons. Therefore the glue along faces MK 
and LN will have to be strong enough to resist a shear of 5| tons. 

SKETCH OF SEAM MADE OF 
PLANKS TO SHOW PRESENCE 
OF HORIZONTAL SHEAR 

BEAM FAILING BY CONCRETE IS WEAK IN TENSION 
A COMBINATION AND SHEAR. TO PREVENT THIS 
OF VERTICAL AND SORT OF FAILURE * STEEL WHICH 
HORIZONTAL SHEAR IS STRONG IN BOTH TENSION 

AND SHEAR IS USED TO 
STRENGTHEN THE BEAM * 

Fig. 90. 

It is obvious that, even if the beam is not made of separate 
blocks, when it is loaded this same sliding or shearing action 
will tend to take place, and that the timber at the supports of 
the beam must be strong enough to resist a shear force of 5| tons. 
Note, also, that the shear at the support is equal in value to the 
reaction. 

Next we come to horizontal 
shear. , Let the beams be made 
of three planks as shown in 
Fig. 90 (a), then, upon bend¬ 
ing, the three planks tend to 
slide one over the other. If 

ENLARGED VIEW OF 
SQUARE ELEMENT P 

the three planks were glued 
together, the glue would have 
to be strong enough to prevent 

= HORIIOWTAL SUGAR STRESS. 

fv = Vertical smear stress. 
{ * Binxxmg stress.' 

this sliding action. 
Both horizontal and vertical 

shear take place in a beam, 
and the resultant failure would 
be as shown in Fig. 90 (b). A 

SKETCH SHOWING 
THAT VERTICAL SHEAR. 
MUST BE BALANCED 
BY HORIZONTAL SHEAR. 
OR THE BEAM WILL— 
TWIST OUTOF SHAPE 
AS SHOWN 

small element, P, taken from Fig. 91. 



120 PRACTICAL BUILDING MECHANICS 

the top half of the beam and enlarged, would appear as shown 
in Fig. 9T (a). If extremely small, then we have horizontal 
shear acting along the top and bottom faces of the element = fh. 
Also we have vertical shear acting along the side faces = /„. 
Then we have the compressive stress due to bending acting 
normally to the side faces = /. 

From the theory of moments, it is known that if a body is 
to be in equilibrium the sum of the moments about any point 
must be zero. Taking moments about point X we have— 

Clockwise moments = (/„ x °) + (fv x AB) + (/ x BE). 
Anti-clockwise moments = (A x o) + (/ x AF) + (fh x BC). 

Summing these we obtain 

(/. x AB) + (/ x BE) = (/ x AF) + (/ft x BC). 
But BE — AF, so that 

(fv X AB) + (/ x AF) = (/ x AF) + (/„ x BC) 
fv x AB = A x BC. 

But AB = BC so that fv = fh. 
For the element to be in equilibrium the vertical shear must 

equal the horizontal shear. In a beam vertical and horizontal 
shear are equal. If this was not so the section would twist out 
of shape, as shown in Fig. 92 (b). 

Shear Stresses. It will be remembered that when dealing 
with bending moments we assumed that the bending-moment 
stresses were taken care of by the flange of a steel beam. In 
like manner the shear stresses are taken care of by the web. 
In a rectangular timber section, the section must take care of 

both bending and shear stresses. In a steel plate girder the 
combination of horizontal and vertical shear produces diagonal 
stresses in the web, which tend to make this buckle in one direc- 
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tion and to tear in the opposite direction. For this reason it is 
often necessary to put in stiffeners as shown in the plate girder 
in Chapter n. 

Distribution of Shear Stress. The shearing stress across a 
beam is not uniformly distributed. For instance, in a timber 
beam 4 in. wide and 8 in. deep, and assuming the shear at one 
of the supports (that is, the maximum shear) is 3,200 lb., then 

Average shear stress per square inch = 
Total shear 

Area 
3,200 lb. 

8x4 
100 lb. 

Reference to Fig. 92 (a) and (£>) shows how the shear stress 
is distributed over the section. It varies from a maximum at the 
neutral axis to zero at the upper and lower faces of the beam. 
(Note that this is exactly the opposite to the bending stress, 
which varies from zero at the neutral axis to a maximum at the 
outside faces.) The distribution of the stress, however, takes 
the form of a parabola as shown. The total shear force in the 
beam is represented by the area shown shaded. If the length 
AD represents area of beam = B x Dt and the horizontal shade 
lines, the stress at various sections of the beam, total area of 
shaded portion will represent B x D x Average stress = Shear 
force in beam 

The area under a parabolic curve 

2 
= Base x - Height = B x D x Average shear stress. 

From this it will be seen that at the neutral axis the shear 
stress will be 

2 3 
Average stress -f- - = Average stress x 

Therefore 
, 3 Shear force 

Maximum shear stress = - x _ - 
2 B x D 

o 
Maximum shear stress = — - 

2 
x 

3,200 

4x8 
= 150 lb. per square inch. 

The strength of the timber in shear must take care of this 
stress of 150 lb. per square inch, and not the 100 lb. per square 
inch average stress. 

Shearing Force Diagrams. As well as for finding the value 
of the maximum shearing force in a beam, shear force diagrams 

i 
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are also very useful for finding the position to the maximum 
bending moment. Maximum bending moment occurs at the 
position of minimum shear. Minimum shear can occur at more 
than one place ; for instance, it can be zero at> one point and 
very nearly zero at another. In such cases it is necessary to 
calculate the bending moment at each point in order to find 
which is the maximum value. 

Various types of beam and loadings are dealt with below, 
and the accompanying examples will help to make clear the 
method of finding maximum and minimum shear. 

Cantilever with Point Load at Free End. This is shown in 
Fig. 93. When dealing with bending-moment diagrams, the first 

Cantilever with Point-Load at Free End. 

Fig. 93. 

thing we had to calculate was the reactions, this applies to shear- 
force diagrams also. Then remembering that the algebraic sum 
of the moments about any section must be equal to zero for the 
beam to be in equilibrium, we have 

W x L = lix x A, from which 7?l = 
A 

The reactions of a beam must total the same as the loads, 
so that 

R, = W + R, - W + W-y~. 
A 

The method of constructing a shear-force diagram is as 
follows. Starting from one end of the beam, in this case from 
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the right-hand end, take note of all upward reactions and down¬ 
ward loads coming on the beam. In Fig. 93 we have a downward 
force of Rx. Choosing some suitable scale, say, 1 in. to represent 
2 tons, draw a vertical line equal in length to Rx immediately 
below Rx. This is the shear acting at Rx. As there are no 
other loads until we reach Rit the shear does not alter and is 
the same on the shear diagram. Therefore we draw a horizontal 
line until point C is reached, which is directly under Rt. 

At this point we have an upward force due to the reaction 
i?a. An upward vertical line representing this reaction runs 
upwards from C. It finishes at B. Between B and the load 
W no other loads occur, so that the shear is constant between 
these two points. At W there is a downward force which is 
represented by a downward vertical line equal to scale to the 
value of W. If the diagram has been correctly drawn, a hori¬ 
zontal line XX will joint the starting and finishing points of our 
diagram. Then the shear at any point on the span can be scaled 
off the diagram. 

Note that one part of the diagram is above the line XX and 
one part below. This is because the shear changes from positive 
to negative at the support R%. It is usual when dealing with 
cantilevers to deal only with the part of the beam outside of 
the wall, and the part of the shear diagram shown dotted is not 
usually drawn. 

Question i. A cantilever carries a load of 3 tons at the end of a 
10-ft. span. Find the maximum shear occurring on the part of the beam 
outside the wall. 

Answer. The shear force remains constant between the support and 
the load is equal in value to the load = 3 tons. Maximum shear = 3 tons. 

Cantilever Carrying Uniformly Distributed Load Over Entire 
Span. This is shown in Fig. 94. It will be remembered that a uni¬ 
formly distributed load can be assumed to act through its centre of 
gravity, so that 

W x \L = ^ x A 

Reaction = Total of loads on beam. 

W x L 

2 A 
+ W. 

To draw the shear-force diagram, start from the right-hand end of 
the beam. Directly under the force Rx draw a line equal to this. Shear 
is constant until point C is reached, and then comes the upward reaction 
Rt, represented by the line CB. Now every foot we travel along the 
beam we have the U.D.L. of w acting downwards. It follows that the 
shear decreases accordingly. At the free end of the beam the shear will 
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Cantilever carrtin$ U.d.Loap over entirb span. 

L«(g-Q*»i44,l ..A 

R. (4 Tom pu rrW>(W»6T) 
|l0A« W H« FT. *UW. TOTK LOAB»W 

immmiTiiTTimi nimfr 

SHEAR VARIES FROM ZERO 
AT FREE END OF BEAM TO 
A MAXIMUM JUST TO LEFT 
OF WALL - W !• i1 

t' Tm ft 
I MM 
I I i I I 

JJllL 

Fig. 94. 

be zero, so the decrease of shear due to U.D.L. between support and 
end of beam will be w x L = W. At point X the shear line will be a 
distance equal to W below point B. Then a horizontal line XX will join 
starting and finishing points of the shear diagram. The dotted part of 
the diagram is not usually drawn in practice. From this diagram it will 
be seen that outside the support the shear varies from a maximum of W 
to zero. 

Question 2. A cantilever beam carries a load of £ ton per foot over 
a span of 12 ft. Find the value and position of the maximum shear. 

Answer. Maximum shear occurs just to left of support 

= W x L = W = 6 tons. 

Note that shear changes from positive to negative at Rv so that the 
maximum bending moment occurs here. 

Beam Simply Supported at Each End and Carrying Point 
Load at Midspan. This is shown at Fig. 95. As the load is located 
at the centre of span each reaction will take half total load = \W each. 
Starting at the left side of the beam from point X we have an upward 
force of \W from the reaction Rv The shear is then constant till the 
load W is reached, so that a horizontal line is drawn on the diagram 
from Rr to W. At midspan we have a downward load of W, represented 
on the diagram by the length BC. Shear is then again constant until 
Rt is reached, where there is an upward force of \W. A line XX joining 
starting and finishing points completes the shear-force diagram. 

The shear at any point on the span can now be scaled off. Note that 
the shear changes from positive to negative at midspan. Midspan is the 
point of minimum shear and position of maximum bending. Maximum 
shear occurs between the support and midspan, and is equal to the reaction 
in value. 

Question 3. A beam 20 ft. span carries a point load of 10 tons at 
its centre. Find the maximum shear and position of minimum shear. 
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Shear is constant between Support and load at mijspan, 
WHERE SHEAR CHASES PAOM POSITIVE TO NEGATIVE. 

At MIDSPAN SHEAR If IERO. 

Maximum shear « = Reaction. 

Fig. 95. 

Answer. Maximum shear occurs at support (also at any point between 
support and midspan) = Reaction = \W = 5 tons. Minimum shear 

occurs at midspan. 
Beam Simply Supported at Each End and Carrying U.D.L. 

over Entire Span. This is shown in Fig. 96. Starting from the left- 
hand side of the beam, draw upwards line equal to Rv As the load is 
uniformly distributed, then for every foot we move along the beam we 
have a downward force of w. Total down force on £ span — \WL — \W. 
Therefore at midspan the shear will have decreased from \W, its value 
at Rv to zero. Continuing along th'* beam, the total downward force 
due to the U.D.L. will equal w x L = W. Therefore point B on the 
diagram should be a distance equal in value to W below point A. At 

£mear varies prom a Maximum OP ^ AT SUPPORT TO 
ZERO AT MlDiPAM. 

Maximum Shear • ijr ■ Reaction. 

Fig. 96. 
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Rt we have an upward force of \W. A horizontal line XX joining start¬ 
ing and finishing points completes our diagram. Then it will be seen that 
the maximum shear force occurs at the support and is equal in value to 
the reaction. The minimum shear occurs at midspan, whifch will also 
be the point of maximum bending moment. 

In Practice 

Question 4. A beam 20 ft. span carries a uniformly distributed load 
of $ ton per foot run over its entire length. Find the value and position 
of the maximum shear and maximum bending moment. 

Answer. Maximum shear occurs at the support 

= \wL = 1 x 1 x 20 = 5 tons. 

Maximum bending occurs at position of minimum shear = at midspan. 
Beam Simply Supported at Each End and Carrying Two Point 

Loads. This is shown in Fig. 97. First it is necessary to find the 
reactions. 

Beam Simply supported at each end and carrying 2 point loads. 

Ma*. Shear occurs at one of supports. (.In cxawpi* at 
lift support) * Maximum reaction. 

Minimum shear (also position of max bm) Will occur 

either under Wi (in example under Yfo) 

Fig. 97. 

Taking moments about Rv then 

R2 x L = (Wx x A) + (Wt x D) 

from which 
(W1 x A) + [W9 x D) 

L 

Rl = W1 + W1- Rv 

Starting from the left-hand support, commence the shear diagram by 
drawing upward line equal to Rv Shear remains constant until Wx is 
reached, so that a horizontal line is drawn from Ri to Wv At W1 there 
is a downward load of Wv and the shear is decreased on the diagram by 
this amount. Shear now remains constant until Wt is reached, where 
load Wt acts downwards. Shear is again constant until R% is reached, 
where there is an upward force equal in value to the reaction. Line XX 
joining the starting and finishing points will complete the diagram. The 
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maximum shear occurs at one of the supports, whichever has the greater 
reaction. Minimum shear will occur under one of the loads. 

Question 5. A beam 15 ft. span carried two point loads, one of 
3 tons at a distance of 3 ft. from the left-hand end of the beam, and one 
of 5 tons at 8 ft. from the right-hand end of beam. Find the value and 
position of maximum shear and position of maximum bending moment. 

Answer. Taking moments about JRV then 

R2 x 15 ft. = (3T x 3 ft.) + (5T x 7 ft.) 

R2 = ^ = 2-93 tons. 

= 3^ 4- 5^ - 2-937 = 5-07 tons. 

Maximum shear = Value of greatest reaction = 5-07 tons. Therefore 
maximum shear occurs at left-hand support = 5-07 tons. To the right 
of Wx this reaction is reduced by WX($T) to 5 07 — 3 = 2 07 tons. To 
the right of W2 shear is equal to R2 — 2-93 tons. The part of the diagram 
above XX is positive and that below the line is negative, so minimum 
shear and maximum bending moment occurs under W2. 

Beam Simply Supported at Each End and carrying Two Point 
Loads and a U.D.L. over Entire Span. This is shown in Fig. 98. 
It is a combination of the types of loading shown in Figs. 96 and 97. 
The first step is to find the reactions. Having done so, begin the shear 

8eam supported each CND.cASRrixg 2 point loads and u p, LoAp. 

Wrt Vfe(CT) 

In this type of loading maximum 6hear occurs at onC cf 

tmf Supports and will equal the value of maximum reaction. 

Fig. 98. 

diagram by drawing upward line Rv equal in value to this reaction. From 
Rx till Wx is reached the shear is decreased by the U.D.L. acting down¬ 
wards. Just as Wx is reached the U.D.L. will have decreased the shear 
by w x A, as shown by the diagonal line. At Wx the shear is further 
decreased by the point load — Wv From Wx to \V2 is reached the 
U.D.L. decreases the shear by w x B. A diagonal line from \VX to W2 repre¬ 
sents this on the diagram. At W2 the point load acts downwards. From 
Wt to Rt the U.D.L. produces a downward load starting at zero at W% 
and increasing to w x C at the support. At Rt we have an upward 
force of Rt. 



128 PRACTICAL BUILDING MECHANICS 

A horizontal line starting and finishing points will complete the dia¬ 
gram. Then the maximum shear will occur at the support which has 
the maximum reaction. The position of minimum shear will depend on 
the values of the loads, but can be found easily if the method described 
above is followed. 

Question 6. A beam 20 ft. span carries two point loads of 4 tons 
at a distance of 5 ft. from the left-hand end of the beam, and of 6 tons 
at 10 ft. from the right-hand end, and also a uniformly distributed load 
of 1 ton per foot over its entire length. Find the value and position of 
maximum shear and position of maximum bending. 

Answer. First calculate the reactions. Take moments about Rv 

x 20 ft. = ($T x 5 ft.) 4- (6T x 10 ft.) 4- (1T x 20 ft. x 10 ft.) 

i?a 
20 4- 60 -f 200 

20 
280 
- = 14 tons 
ort r 

Ra = Total load — R2 = 4T 4-6T 4- 20T — 14T = 16 tons. 

Maximum shear occurs at maximum reaction, that is, at left-hand 
support, and its value is 16 tons. 

From Rx to W1 shear decreases by 5 ft. x 1 ton = 5 tons. At Wx 
it is further decreased by a point load of 4 tons. Between Wx and Wt 
it is further decreased by 5 ft. x 1 ton = 5 tons. Just to the left of 
W2 shear = Rx — ($T 4- 4T 4- $T) — 16T — 14T = 2 tons, ^provides 
a downward load of 6 tons, so that just to right of W% there is a shear 
of — 4 tons. 

Minimum shear occurs under W2, and this will be the position at 
which the maximum bending moment occurs. 

Beam Simply Supported at Each End and Carrying Four Point 
Loads. This is shown in Fig. 99. The shear diagram can be drawn 
in exactly the same manner as for Fig. 97, and the maximum shear occurs 
at one of the supports, whichever has the greater reaction. Minimum 
shear will occur under one of the loads. 

MAX.StfiAR OCCURS AT SUPPORT WITH GREATER REACTION (In T Hi 

CXAMPtf At Mmtmahs Support). 

Minimum shsar occurs unci* sithir Wi,Y&,W3;0R W4 jipchoinq 

ON TMt VAUJII OF THIS! LOASS (In EXAMPLE MINIMUM SHEAR IS AT WjJ 

Fig. 99. 
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Question 7. A beam 30 ft. span carries four point loads situated 
at 5 ft., 10 ft., 20 ft., and 25 ft., respectively, from the left-hand end. 
Find the position and value of maximum shear and position of maximum 
bending, if the loads are 5 tons, 7 tons, 4 tons, and 8 tons, respectively. 

Answer. Take moments about Rv then 

Rt x 30ft. « (5T x 5ft.) + (7T x 10ft) + (4T x 20ft.) 4- (87 x 25ft.) 

R2 
25 + 70 -f 80 -f 200 

30 

375 

30 
= 12-5 tons 

= Total load — R2 = 24r — 12*57 = 115 tons. 

Maximum shear occurs at Rit the right-hand support = 12*5 tons. 
Reference to Fig. 15 shows that minimum shear occurs under Wt. 

Beam Simply Supported at Each End and Carrying a U.D.L. 
over Part of Span only. This is shown in Fig. 100. First calculate 
the value of the reactions. For this purpose it can be assumed that the 
load acts through its centre of gravity. At Rx there is an upward force 
equal to the reaction. From Rx to the point where the load commences 
the shear is constant. 

Beam simple supported at each ehd, carbyihr U-PI* on part or spam' 

Max Bm occurs at Support with larger reaction. 

Zero shear occurs somewhere between ends of load (In 

EXAMPLE ZERO shear IS AT 2.4 FT. FROM LEFT END OF LOAD) 

Fig. ioo. 

From the start to finish of the uniformly distributed load there is a 
downward force of w per foot run. The diagonal line in Fig. 16 shows 
the effect of this load. From the finish of the load to R2 the shear is 
again constant, and represented by a horizontal line. At R2 we have 
an upward force due to this reaction. Horizontal line XX joining start¬ 
ing and finishing points of the diagram complete it. 

The part of the diagram above the line XX is positive *and that below 
is negative. Maximum shear occurs at whichever support has the maxi¬ 
mum reaction, while minimum shear will occur somewhere between the 
ends of the uniformly distributed load. 

Question 8. A beam 20 ft. span carries a uniformly distributed load 

of 2 tons per foot over 8 ft. of its length, the left-hand end of the load 
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being at 10 ft. from the left-hand support. Find the position and magni¬ 
tude of maximum shear and position of minimum shear. 

Answer. Assuming that the load acts through its centre of gravity, 
then we have a total load of 2 tons x 8 ft. = 16 tons acting on a distance 
of 14 ft. from Rv 

Taking moments about Rx we have 

i?, x 20 ft. = 16T x 14 ft. 

id 16 x 14 R = -- = 11*2 tons 
2 20 

Rt = Total load — R2 = 16T — 112T — 4-8 tons. 

Maximum shear occurs at the right-hand support Rs, and equals 
11 2 tons. At the left-hand support Rx m 4 8 tons. This shear remains 
constant until the left-hand end of the load is reached. It then decreases 
at the rate of 2 tons per foot, so that at 2-4 ft. from the left end of load 
the shear has decreased 2 4 x 2T = 4*8 tons, and its value is now zero. 
Therefore minimum shear occurs at a point 2*4 ft. from left end of load 
or 10 -f 2-4 = 12 4 ft. from Rv 

The student should make up problems for himself on shear 
forces, and work them out, for by so doing he will soon become 
conversant with the methods employed in shear calculations. 

In some cases the shear forces acting in a beam control the 
size of it. For instance, the following problem shows how neces¬ 
sary it is to check up and see that a beam is strong enough against 
failure in shear. 

Question 9. A beam is required to span over 8 ft. and to carry a 
uniformly distributed load of ij tons per foot run. Find a suitable 
section using a safe horizontal shear stress of 120 lb. per square inch, 
and a safe bending stress of 1,000 lb. per square inch. 

Answer. 

Max. B.M. 
w x L% 

8 

i£ tons x 8 ft. x 8 in. 
—v—__- = I2 ft.-tons 

=* 12 x 2 240 x 12 = 322 500 in.-lb. 

Resisting moment of section = Max. B.M. — 322 500. 

B x D2 
Resisting moment of section — -g— x Safe bending stress. 

Therefore 
B x D2 
—~— x 1,000 = 322,500 

BD% „ 322.500x6 

1,000 1.935- 
If B, the breadth of the beam, is made two-thirds of the depth D, then 

JD X D* = 1,935 

D% = 1,935 x | = 2,900 

D = if 2,900 = say, 14 in. 
B « = } x 14 = say, 10 in. 



SHEAR STRESSES 

A beam io in. wide and 14 in. deep is suitable as regards bending. 
We shall now check up for shear strength. 

Load _.... 8 X , x._. .. . .. «. Reaction = = Maximum shear 6 tons = 13,440 lb. 

w . , 3 Total shear 
Maximum shear stress = — x —^~— 

2 b x D 

= 3 x 13.440 
2 x 10 x 14 

= 144 lb. per square inch. 

Since the shear stress must not exceed 120 lb. per square inch, it is 
quite clear that the beam must be made of a larger section than 
14 in. x 10 in., otherwise it is too weak in shear. 

Maximum shear stress ==120 lb. 

3 Total shear 3 13,440 

= 2 X BxD = 2 X Txl) 

B x D - 
3 x 13,440 

= 168. 

If B is made 10 in., then 

say, 17 in. 

Therefore, although a beam 14 in. deep and 10 in. wide would have 
been large enough to resist the stresses due to bending, it is necessary 
to use a beam 17 in. deep-x 10 in. wide, because of the shear stresses. 
(This does not often arise in practice.) 



CHAPTER 13 

REINFORCED' CONCRETE 

We have previously dealt with the design of steel beams, both 
of the rolled joist type and the built-up type, and with timber 
beams. Beams can also be made of concrete, suitably reinforced 
with longitudinal bars of steel, which take the tensile stresses. 
Concrete by itself is strong in compression, being capable of safely 
carrying a stress of from 600 lb. to 800 lb. per square jnch, 
depending on the quality of the mix. 

Various types of mix, and their approximate compressive 
strengths, are given in a table on page 137. The figures 1-2-4 
mean that the concrete is made of a mix of one part of cement, 
two parts of sand, and four parts of aggregate or broken stones. 
Similarly, a mix of i-i^~3 means one part of cement to one and 
a half parts of sand, to three parts of aggregate. 

In tension, concrete is very weak, and as any loaded beam will 
have compression stresses at one face and tensile stresses on the 
opposite face, the tensile side of the beam must be strengthened. 
This is done by running bars of steel along the beam near to the 
tension face. These steel rods can be stressed to from 16,000 lb. 
(about 7 tons) to 18,000 lb. (about 8 tons) per square inch with 
safety. 

Central Load. In a beam simply supported at each end and 
loaded at the centre, the bottom face of the beam is in tension. 
The tensile stresses will vary from a maximum at the outside face 
to zero at the neutral axis. Therefore we need to have steel 
reinforcing near the lower face of the beam to take this tension. 
If the beam was a cantilever, then the upper face would be in 
tension and the lower face in compression. In this case we need 
the bars near the upper face of the beam. 

It is generally assumed that the concrete resists compressive 
stresses only. The tensile strength of the concrete is small and 
is neglected, sufficient steel being put in to resist all tensile stresses. 

Fig. iox shows a water tank carried on rolled steel joists which 
rest on two concrete beams A. Assuming these to be simply 
supported at each end, the part of the beam above the neutral 
axis is in compression, while that below is in tension. 

Strength of Reinforced Concrete Beams. When dealing with the 
elasticity of materials we found that materials stretch at different 
rates. For instance, a piece of rubber would stretch more under 

132 
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a load than a similar piece of mild steel would under the same load. 
We found (see Chapter 2) that within the elastic limit 

£ _ Stress 

Strain 

where E is the modulus of elasticity of the material 

Strain is 
Alteration of length 

Original length 

U5LJ 

Concrete will stretch about 15 times as much as mild steel 
under a given load (within its elastic limit). 

Then we can say that 

where Et is the modulus of elasticity of the steel 
Ee is the modulus of elasticity of the concrete 
m is the ratio between modulus of elasticity of steel and 

modulus of elasticity of concrete, and is called the 
modular ratio. 

When a steel bar is embedded in solid concrete, the steel bar 
cannot stretch with the concrete round it stretching the same 
amount, and vice versa. Within the elastic limit, stress is 
proportional to strain, and on bodies of the same original length 
stress is proportional to stretch. 
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When Concrete Stretches. If a steel bar 8 ft. 6 in. long is 
stressed to 16,000 lb. per square inch of cross-sectional area it may 
stretch, say, ^ in. Therefore the concrete surrounding that bar 
must stretch in. Under any given load the concrete by itself 
would stretch 15 times as much as the steel, but it can only now 
stretch as much as the steel, then the stress in the concrete can 
only be -^th of that in the steel. If the steel is stressed to 
16,000 lb. per square inch, the concrete immediately surrounding 
the steel will be stressed 

16,000 16,000 
= 1,066 6 lb. per square inch. 

Generally, 600 lb. per square inch is the safe stress allowed on 
concrete in compression. (750 lb. is sometimes used.) 

The student is already aware that the maximum compressive 
stress in a beam occurs at the outside face, and gets less towards 
the neutral axis, where it becomes zero. From the neutral axis 
to the other face of the beam the stress increases, but instead of 
being compressive, it is now tensile. This was fully explained in 
Chapter 8. The stress distribution due to bending is shown in 
Fig. 102(a). Notice that triangles ABC and CDE are similar. 

It follows that — AE AB + DE 

lt f AC 600 . 
therefore 

600 + 1,066-6 
= 036. 

But AE is the distance from the top of the beam to the 
reinforcing bars. We call this distance d, the effective depth of 
the beam, and the reader should be careful to remember it is not 

the total depth of the beam. The distance ^4C from the top of 
the beam to the neutral axis is denoted usually as tt. 

ft 
Therefore - — 0-36 or n — 0-36d. 

d 
This remains to say that the neutral axis is located at a 

distance of 0-36 of the effective depth below the top face of the 
beam. The stress in the concrete above the neutral axis varies 
from a maximum of 600 lb. at the outside fibres to zero at the 
neutral axis, so that the average stress will be 

Average stress = 0 = 300 lb. per square inch. 

The cross-sectional area of the beam above the neutral axis 

= B x » 
= B x 0-36d 

where B is the breadth of the beam. 
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CENTRE OF GRAVITY OF 
STRESSES IN CONCRETE 
ABOVE N.A. 

STRESS ‘N CONCRETE 
AT UPPER FACE OF 
BEAM a 600 LBS/SQ.IN. 

tvmti ™»s lever arm 
fy a is usually 

Vtaken as 7/^d 

STRESS IN CONCRETE AROUND 
REINFORCING BARS % 16.0004- m 
= 16.000^-15 
= 1066'S LBS./SQ.IN 

COMBINED VERTICAL ^ (q) 
AND HORIZONTAL 
shears tending-^ 
TO CAUSE TEARING 
ALONG X~X 

Fig. 102. 

In the part of the beam above the neutral axis, we have 
therefore a total compressive force acting of 
Compressive strength = Average stress x Area of compression 

side of beam 
= 300 x B x 0-36*2 lb. 

Now consider the tension side of the beam. If it is assumed 
that the concrete on this side takes none of the tensile stresses, 
the force acting will depend on the steel area. 

Tensile strength = A8 x 16,000 lb. 

where A8 is the cross-sectional area of the horizontal reinforcing 
bars. 

In Chapters 8 and 9 we showed that the moment of resistance 

of a beam was 

Moment of resistance = Force in one flange x Distance between 
the centres of gravity of the forces in the two flanges. 

If we consider that the concrete above the neutral axis is one 
flange of a beam, and the steel bars below the neutral axis are the 

other flange, then we can apply the above formula. 
The stress distribution in the concrete above the neutral axis 

is that of a triangle, so that it can be assumed that the force acts 
through the centre of this triangle, which will be at a distance of 
one-third the height of the triangle from the base line ABt that is, 
at a distance of from the top face of the beam. The force in 
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the steel reinforcing bars can be assumed to act through their 

centre. 
The distance from the centre of gravity of the compres¬ 

sive force to the neutral axis = n — \n = \n, which in our 
case will be $ of 0-36^ = 0-24^. The distance from neutral 
axis to centre of steel bars is the difference between d and n, 
in our case d — 0-36(2 = 0-64(2. Then the distance from 
centre of compressive force to centre of gravity of tensile force 
= 0-24d + 0-64(2 = o-88<2. This is known as the lever arm of the 
beam, and generally it is taken as $ x d. 

If the steel is stressed to 16,000 lb. per square inch, and the 
concrete to 600 lb. per square inch, then 

Resisting moment of concrete = Compressive force x Lever arm 
= 300 x B x 0-36d x o-88(2 
= 95jB(24 in.-lb. 

If we equate this to the actual bending moment on the beam 
we can find the breadth and depth of a suitable beam to withstand 
this bending moment. 

Resisting moment of steel = Tensile force x Lever arm 
= A, x 16,000 x o-88(2 

■ = 14,080 A, x (2. 

Therefore, if we know the bending moment on a beam and a 
suitable depth <2, we can calculate the necessary cross-sectional 
area of reinforcing bars required to take care of the tensile stresses 
in the beam. 

Equating these formulae we can find the area of steel required. 

14,080 x Aa x (2 = 95 x B x (22 

. 95 x B x <2* , 

* 14,080 x d ,0 
Let p = the economic percentage of reinforcement in the beam 

with regard to the cross-sectional area B x d, then 

, 0-00675 x B x (2 ,. 
P =-AA..x 100 = 0-675 per cent. 

B x d 
x 100 = 0-675 per cent. 

This means that if we had a concrete beam 10 in. wide and 
with an effective depth of 20 in., giving an area of 200 sq. in., 
the percentage of steel would be 0-675 per cent, and the area of 
steel would be 0-675 per cent of area of beam 

0-675 
= —— x 200 = 1-35 sq. m. 

100 

By varying the allowable stresses in steel and concrete, the 
position of the neutral axis will be altered, and this will alter the 
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values of the effective lever arm (denoted by a) and the value of 
the resisting moments. The table with Fig. 103 gives values for 
nf a, p, and the resisting moment of concrete, using various safe 
stresses for the steel and concrete. 

Shear Stresses. In addition to the bending stresses, there are 
also horizontal and vertical shear stresses in the beam. The 
effective cross-sectional area of concrete which resists these shear 
stresses is breadth of beam x lever arm a. The proof of this is as 
follows. 

Fig. 103 (a) shows the bending and shear stresses on a small 
length of a beam of the type we are considering. C and Ct denote 

Factors for Reinforced Concrete Beam Design 

Sam 
STRESS 

•" Steel 
Lm/SoIa 

Safe 
Cemnnsm 
w Concrete 

LitjSik 

5 a fj 
$UCM$*OS 
in Countr» 

Lm|3b1n 

Yaiu* 

or 
TV 

YAlUE 
OF 

*n\ 

Value 

Or 

a. 

Economic 
f^EACENT. 

df Steel 

R.M.or 

Concrete 

Tyre or 
CONCRETE 

Mi* 
coo CO •3€4 15 •114 •C7S* 95 B4* 1:2:4 

16,000 700 70 •40d 15 •874 •675 % 121 Bi* 1:2: 4. 

ftOO 80 15 •8C4 1.075'/, 147 B4* 1 s 13: 3. 

€00 60 •334 15 •sail • 5557,1 19 Bi* 1:2:4. 

11,000 700 70 •374 15 •884 • 720*4 113 B4* 1: 2 : 4. 

800 

0
 

co •404 15 •874 •830^ IS9B4? 1 *• <?: S. 

THE RESISTING MOMENT Of THE STEEL IS 
f-QUM TO THE RESISTING MOMENT OF CONCRETE 

Fig. 103. 

the compressive forces acting in the compression side of the beam, 
and T and Tx the tensile forces acting in the steel reinforcing bars 
It should be noted that as the bending moment varies along the 
beam, then if the beam is the same depth all the way along, then 
the stresses due to bending will vary along the span. 

Sv and Sh are the shear stresses in the beam. Then the 
horizontal shear acting just above the reinforcing bars will be 
r, — T. This shear acts on a horizontal area of length of small 
piece of beam x breadth of beam = E x B. Then the unit 
shear stress at any place between the neutral axis and the steel 

= r, - t 
E x B' 

K 
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Above the neutral axis the shear will diminish to zero at the 

outside face. 
If this piece of beam is to be in equilibrium, then the sum of 

the moments about any point will equal zero. Take moments ^ 

about X. 
Then (7\ - T) x a = S„ x E 

or Tx - T = S» 
a 

where a is the lever arm of the beam. 
Substitute this in the first formula, and 

5 
Unit shear stress = —-- 

a x B 
or 
Shear force = Unit shear stress x Breadth of beam x Lever arm. 

The effective area of the beam to resist shear is therefore 
breadth of beam multiplied by lever arm. 

The lever arm is approximately \d, so that 

Unit shear stress = ,-3—- - = - x 
\d x B 7 B x d 

where St is the shear force of the section considered 
d is the effective depth of the beam 
B is the breadth of the beam. 

A small element of the beam shown in Fig. 105 (b) is enlarged 
in Fig. 102 (b). Here we have the horizontal and vertical shearing 
forces acting on it. These forces combined will tend to crack the 
concrete along line XX (Fig. 102 (c)). Unless the concrete itself 
is strong enough to resist this tension, steel reinforcing must be 
provided, otherwise the beam will crack along this sloping plane, 
due to shear stresses (see Fig. 18, Chapter 3). 

To prevent this failure occurring, vertical steel stirrups are 
inserted in the beam as shown in Fig. 104. These bars act in the 
same manner as the stiffeners in plate girders. The main 
reinforcing bars are turned up at about 45 deg. and they help to 
resist failure due to the diagonal tension, caused by shear. 

Design of Concrete Beams under Water Tank. We now proceed 
to design the concrete beams A shown in Fig. 101. As the 
load, including the weight of tank, water, steel, and concrete 
beams, is 30 tons, each beam A will carry one-half of this, that is, 
15 tons. This load will be transmitted to the concrete beam by 
rolled steel joists, which are placed at 5-ft. centres. The two 
centre joists will each carry 10 tons, and the two outer joists 5 tons. 
Each concrete beam takes half of these loads, as shown in 
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2 RODS 2R6DS 

Via stirrups op f Wo\A>sy 
// V®" 01 A. WIRE 

IG. IO^. 

Fig. 105 (a). As the load is symmetrically distributed over the 
beam, each concrete post will exert an upward reaction of 7\ tons. 

Note that at the supports we have an upward force of tons 
and a downward load of 2\ tons. The tons load in the end 
steel beams will pass straight through the concrete beam and 
down the concrete post. We can therefore consider the loading 
on the concrete beam to be as shown in Fig. 105 (b). 

The maximum bending moment occurs under the 5-ton loads. 
Taking moments about the left 5-ton load (point X) we have 

Max. B.M. = Reaction x 5 ft. = 57' x 5 ft. 

= 25 ft.-tons = 25 x 2*240 x 12 = 672,000 in.-lb. 

The complete bending moment diagram is shown shaded in 
Fig. 105 (1c). We have to design a beam strong enough to provide 
a resisting moment equal to (or greater than) this bending moment. 

Where compressive stress in concrete — 600 lb. per square inch, 
and tensile stress in steel = 16,000 lb. per square inch, 

95Bd2 = resisting moment of concrete 
— bending moment 
= 672,000 

D,0 672,000 Bd2 = ~LJL- = 7-070. 
95 
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The depth of a beam should not be less than ^th of the span, 
and the breadth is usually between £ and f of the depth. Try a 
beam 15 in. wide, then 

15^2 = 7,070 

d = V475 = say, 22 in. 

Allowing 2 in. extra for covering the bars, the total depth D 
of the beam will be 24 in. 

Economical percentage of steel — 0-675 per cent. 

Economical area of steel — 0 ~ R w A x B x d 

0-675 
100 

x 15 X 22 = 2-2 sq. in. 

A J-in. diameter round bar has an area of o-6 sq. in. Four ol 
these will give an area of 2-4 sq. in., which is slightly more than 
the required area of 2-2 sq. in. These four bars will be arranged as 

shown in Figs. 104 and 105 (d). 
Plate Girders. It will be remembered when dealing with 

plate girders that the flange plates were cut short to suit the 
bending moment. In a concrete beam the full number of rein¬ 
forcing bars is not required to run the full length of the beam, as 
the bending moment decreases towards the end of the span. 
Instead of cutting some of the bars short it is usual to turn them 
up at an angle of about 45 deg. and continue them up to the top of 
the beam. By doing this the inclined part of the rods will take 
care of diagonal tension due to shear in the beam. We can in this 
case turn up two of the f-in. bars shown in Fig. 104. 

The maximum bending moment on the beam occurs at one of 
the 5-ton loads, and is 672,000 in.-lb. (see Fig. 105 (c)). It re¬ 
quires 2-2 sq. in. of reinforcing to resist this. Four £-in. diameter 
bars have an area of 2-4 sq. in., and two have an area of 1-2 sq. in. ; 
2*2 sq. in. of steel will resist 672,000 in.-lb., so that 1-2 sq. in. will 

1-2 
resist — x 672,000 = 367,000 in.-lb. Therefore, when the 

2*2 

bending moment falls below 367,000 in.-lb., it is only necessary 
to have two reinforcing bars near the tension face of the beam. 
The bending moment varies directly from zero at the support to 
672,000 at the 5-ton load, and their distance is 5 ft. or 60 in. 
Therefore the bending moment will be 367,000 in.-lb. at a distance 

of 367.000 50 jn _ say ,3 in. from the support. 
672,000 J 
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We can turn up two of the reinforcing bars as shown in Figs. 
104 and 105 (d). As the inclined length of steel will be assumed 
to take tensile stresses, then its resisting moment will have to 

COMPLETE LOADING 
DIAGRAM OP ONE 
CONCRETE BEAM A 

Force Diasra^ 

Fig. 105. 

SHEAR IS CONSTANT 
OVER THIS LENGTH 

be taken into account until the neutral axis is passed. This is 
shown in the resisting moment diagram (see Fig. 105 (c)), 

Fig. 105 (e) shows the shearing-force diagram. Between the 
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loads, there is no shear on the beam, and it is constant at 5 tons 
from support to the load. 

It is necessary to check up to see if the safe unit shear stress 
of about 60 lb. per square inch in this case has been exceeded, 
and if any stirrups are required. 

, , 8 Max. shear 
Max. shear stress = - x —^-5— 

7 B x d 
8 51 x 2,240 „ , , 

= - X -- ---- . — 39 lb. per square inch. 
7 *5 x 22 

There, theoretically, no stirrups are required to resist shear. In 
practice, however, it may be advisable to put these in to stop the 
main reinforcing bars from sagging, and the spacing between these 
stirrups should not exceed a distance equal to the effective depth 
of the beam. Fig. 105 (d) shows a suitable spacing of about 
21 in. The diameter of the stirrups will be made f in. The 

ends of the main reinforcing bars should be hooked to prevent 
the bars from pulling out of the concrete. The general propor¬ 
tions of these hooks is given in Fig. 102 (d). 

Design of Steel Beam. In Fig. 101 the tank is shown resting on 
steel joists. We found that the two outer joists carried a load of 
5 tons each, the two outer ones 10 tons each. The depth of steel 
joists should be at least ^th of the span or J?th of 

15 «. = = 7i in. ' 

The breadth should be at least ^th of the span,, or 

—- = *n- 
40 

Therefore we require beams at least 4^ in. wide and 7^ in. deep. 

Inner Joists. 

Max. B.M. = 
W x L __ 10T 

8 
x 15 x 12 ^ . , 
—__y. — = 225 in.-tons. 

Resisting moment of joist = Area of one flange 

x Effective depth x Safe stress 
— Modulus of section x Safe stress. 

Try a 12-in. x 5-in. x 30-lb. R.S.J. with a flange thickness 
of \ in. 

Take safe stress at 8 tons per square inch. 
Resisting moment of 12-in. x 5-in. R.S.J. 

= 5 in. x | in. x n| in. x ST 
= 2875 x 8 
== 230 in.-tons. 



REINFORCED CONCRETE 143 

As the maximum bending moment is 225 in.-tons this section 
is suitable for the inner-joists. 

Outer Joists. The smallest standard section with depth 
and breadth dimensions of over 7! in. x 4^ in. is the 
10-in. x 4^-in. x 25-lb. R.S.J. with a flange thickness of \ in. 
Tty this section for the outer joists. 

Maximum bending moment will be half that on the inner joists 
or 

— = II2-5 in.-tons. 
2 

A 10-in x 4i-in. joist will have a section modulus of 
4$ in. x ^ in. x 9J in. = 21-4 in.® units. 

Resisting moment of 10-in. x 4|-in. joist = Section modulus x /, 
= 21-4 x 8 = 171 in.-tons. 

This section is strong enough for the outside beams. A pad 
could be made on the concrete frame so as to make the top side 
of all four beams level. 

Note.—The reinforced concrete beam has been assumed to be 
only freely supported at each end, so as to show the design of a 
simple beam. In reinforced concrete frames the beam ends are 
fixed and the posts and beams are designed as a complete frame. 
It would, of course, be possible to make the concrete beams and 
the concrete posts separate from each other, in which case the 
conditions assumed for the problem would be correct. 
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ROOF 

PTER 14 

TRUSSES 

carry the covering over buildings 

>of principles. Fig. 106 shows a 
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general view of a steel shed, and the roof truss shown is a very 
common type where the span is between 40 ft. and 60 ft. This 

truss is known as the Fink type, and is one of the commonest 
forms of steel truss. 

The covering for these roof trusses can be of various materials, 
either slates or boards, slates on laths, tiles, or corrugated sheets 
made of asbestos or steel. Purlins between these coverings and 
the roof trusses run lengthways of the building, and are made 
of wood, rolled steel angles, channels, or joists. 

Fig. 107 (a) shows a detail quite commonly used where glazing 
covers part of the roof and corrugated sheets the remainder. 
The purlins transmit the load to the roof rafters. On each rafter 
there is a small angle called a cleat, to which the ends of the 
purlins are connected. Various forms of these cleats are shown 

in Figs, no, in, and 112. 
The glazing is carried on steel tee-bars generally in. by 

1 \ in. by J in., and to prevent the glazing from sliding off the 
end, each tee-bar is slightly turned up. A hard-wood peg is 
generally put in the vertical leg of this tee astragal to keep the 
glazing from jumping up. The joint is made tight by lead 
flashing, which runs along the underside of the glazing and along 
the top side of the corrugated sheets. When used in chemical 

Fig. 108. 
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or metallurgical plants where 
there would be a good deal 
of corrosion, various brands 
of specially protected corru¬ 
gated sheets are used. 

Fig. 108 (b) shows a type 
of roof covering which is now 
being largely used on house 
construction and cinema 
buildings. These Spanish- or 
pan tiles are made in various 

colours and have a very good appearance. The tiles can, of 
course, be laid on boards instead of laths if a better job is 
desired. 

In Figs. 197 (b), 108 (a), 109, no and m are showp other 
forms of covering which call.for no special comment. 

Fig. 112 shows a picture view of a good detail for a steel roof 
shoe and the method of making the connection to the top of a 
steel column. 

Loads on Roof Trusses. These fall into two general 
categories : (1) dead loads, and (2) live loads. 

The dead loads consist of the roof covering—slates, sheets, 
tiles, etc.—the purlins, and the roof truss itself. The live load 
consists of the wind. In countries where there is a heavy snow 
load, this must also be taken into account, but in English practice 
it is often assumed that if a wind load is allowed for the snow 
load can be neglected. 

In industrial construction, runway-beams are often fastened 
to the underside of the roof truss, along which run pulley blocks 
and tackle for lifting weights. These must also be considered 

Le^d Rid£e Covering 

Fig. 109. 

Fig. iio. 
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Asbestos Tiles or 
Corrugated Sheets 

Angle 
Cleat 

Kook* Bolt -for Holding 
Tilt* OT Corrupted 
Sheets to purlins. 

as live loads, and it is very important that their effect should 
not be forgotten when considering the strength of steel roofs. 

Two Methods. There are two methods of considering dead 
loads : (i) The load per square foot of ground area covered : 
(2) The load per square foot of inclined surface. 

The ground area covered is the width of the building multiplied 
by its length. Thus, if the distance between the side walls is 
40 ft., and the distance between the end walls 80 ft., the ground 
area covered is 40 ft. by 80 ft., which amounts to 3,200 sq. ft. 

Although the length of the roof covering in this case would 
still remain as 80 ft., the roof surface would be considerably 
more, as there are two sloping sides. The length of each sloping 
side may be 25 ft., in which case the total area of the covering 
would be 2 by 25 by 80, which amounts to 4,000 sq. ft. This 
makes clear the difference between area of the roof covering, and 
the ground area thus covered. 

Wherever possible, the actual weights of the roof coverings 
should be used, but if actual weights are not available, the table 

Qplumn 

Fig. 112. 
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given below can be used, to give a general idea of what roof 
coverings weigh. In each case, the weight is per square foot 
of roof covering. 

TABLE ^1 Approx. Weight 
in lb. per 

Material. square toot 

Galvanized corrugated Sheets ..... 3 
Slates on timber laths ...... 9 
Slates on boards . . . . .11 
Tiles ......... 10 
Glazing ......... 6 
Steel Purlins ........ 3 

The table below will give a guide to the approximate weights 
of steel roof trusses, but it must be remembered that the table 
is only intended to serve as a guide, and that the reader should 
make careful notes of the actual weights of roof trusses whenever 
he can. 

TABLE II 

Approximate Weight of Steel Roof Trusses 

Span of Truss Centre of Trusses, Approx. Weight 
in feet. in feet in cwt. 

35 10 8 

40 10 10 

45 12 12 

50 12 16 

55 15 20 

60 15 22 

Generally no allowance is made for snow load in England, 
because it is assumed that when a high wind is blowing no snow 
will remain on the roof. 

Although the speed of wind seldom exceeds 60 m.p.h., it 
sometimes reaches 80 or 90 m.p.h. when a gale is blowing. Many 
experiments have been made to find the pressure of the air 
which would result on a vertical surface in terms of speed or 
velocity. It may appear that if the wind is blowing against 
a vertical bill-boarding at a speed of 40 m.p.h., it will be pushing 
with half as much pressure as would result if the wind became 
a gale of 80 m.p.h. This is not so. The pressure varies as some 
constant multiplied by the velocity squared, and can be written : 

P = CxF2 

where P is the pressure of the air on each square foot of vertical 
surface, due to a horizontal wind pressure. 

C is a constant (some authorities say this should be 0-0032 and 
others 0*004. The average seems to be 0*0032). 

V is the velocity of the wind in miles per hour. 
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Example. What would be the pressure per square foot on a vertical 
surface resulting from a wind blowing at a speed of 90 m.p.h. ? 

Answer. If constant is 0 0032, then 

P = 0*0032 x 90 X 90 = 26 lb. per square foot. 

If constant is 0*004, then 

P — 0 004 X 90 x 90 = 32 lb. per square foot. 

In many cases roofs are designed to resist a horizontal wind 
pressure of 30 lb. per square foot. 

Generally, wind is assumed to blow horizontally, and as the 

sides of the roof are nearly always inclined, we must consider 
the effect of this. 

Assume a piece of timber 5 ft. square is hinged at one end 

(Fig. 113) and laid flat on the ground, then the wind would blow 
right over this, and have very little effect on it. Tf it is raised, 

Fig. 113. 

as shown in Fig. 114 (a), and the wind blows against it, it will cer¬ 
tainly fall down flat again unless it is propped up. A newspaper 
held along the top side of the timber would show that part of 

the wind was sliding up the timber. It is also easy to see that 
part of the wind tries to force the board down to the ground, 
and is only prevented from doing so by the inclined prop. We 

see the wind has two separate and distinct forces, one parallel 
to the board and the other perpendicular or at right angles to 
the board. This last force, which passes right down the inclined 
post, is called the normal component of the wind force. 

Many experiments have been carried out to find how much 
of the wind force slides up the incline, and how much tries to 

push at right angles to the timber. Most of the formulae for 
finding the normal wind pressure are complicated. If the hori¬ 
zontal wind pressure is around 30 lb. per square foot, there is 
a simple formula which gives satisfactory results. The formula is: 

2 x A 
Normal wind pressure 
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where A is the angle which the rafter of the roof truss makes 
with the horizontal. The following table gives the approximate 
normal wind pressure when the horizontal wind pressure is 
30 lb. per square foot. 

Angle A, Approx. Normal Wind Pressure 
degrees per square foot of Roof Area 

20 13 
25 17 
30 20 

35 23 
40 30 

Pitch or Slope of Roof. This is given in two forms : (1) The 
ratio of the rise of the roof to the span : (2) As an angle of 
inclination between the horizontal and the rafter. 

There are two very common slopes for steel roof trusses, and 
probably at least 80 per cent of steel roof trusses are made to 
one or other of these. They are : 

(«) Rise = §pan 
4 

(6) Inclination in degrees = 30. 

In house construction and other special construction, such as 
cinemas or church roofs, the angle of slope is often made 45 
degrees. 

Combined Dead and Wind Loads. We have shown that a 
roof truss must be strong enough to carry (1) Dead load of the 
covering, purlins, and its own weight: (2) The effect of the wind 
load. 
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It is shown in Figs. 113 
to 114 how the horizontal 
wind pressure can be split 
up into two forces, one of 
which slides up the sloping 
face of the roof, and the 
other pushes normal or at 
right angles to the roof. 

“ Normal Force.” To 
proceed a step further, we 
can consider that the pro¬ 
portion of the wind which 
slides up the roof is of no 
material importance, and 
that we are left with the 
force which acts normal on 
to the roof, as shown in 
Fig. 115 (a). 

This force has two effects; 
one to try and push the board 
horizontally, and the other 
to push it down vertically. 
Fig. 115 (b) shows the effect 
of the horizontal force which 
pushes the roller along the 
ground, and Fig. 115 (c) 
shows the vertical force 
which pushes the roller ver¬ 
tically into a pit or cavity. 
These forces are generally 
represented on drawings by 
lines, as shown in Fig. 115 (d). 
The horizontal force illus¬ 
trated in Fig. 115 (b) is called 
the horizontal component of 
the normal wind pressure, 
and the vertical force repre¬ 
sented in-Fig. 115 (c) is 
called the vertical component 
of the normal wind pressure. 

The horizontal wind force 
pushing against the side of 
the building or shed, and the 

151 
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horizontal component of the wind force on the roof, try to push 
the building over, and the columns themselves and the fixing at 
the base must be strong enough to resist this wind force. The 
vertical component of the wind force on the roof tries to buckle 
up or distort the members of the framework called the roof truss. 

Generally, when designing new trusses, the dead load of the 
covering and the normal wind load only are used, but it is pos¬ 
sible to design a roof truss which will be quite satisfactory by 
considering the weight of the covering, purlins, roof truss, and 
the vertical component of the wind force only. 

A perfectly satisfactory design will be obtained if it is assumed 
that the total of all loads amounts to 40 lb. per square foot of 
ground area covered. This 40 lb. might roughly be split up into 
20 lb. for the roof, covering, and purlins, and 20 lb. for the vertical 
component of the wind pressure. 

Fig. 106 shows how each roof tru^s in the centre part of the 
building carries a roof area of the length of the two rafters multi¬ 
plied by the spacing between the trusses. The ground area 
covered by this area of roofing is the span of the truss multiplied 
by the spacing between the trusses. 

Question. What is the roof area carried by a roof truss 60 ft. span 
if the spacing between the trusses is 15 ft. ? What is the ground area 
covered ? The trusses have rafters inclined to 30 deg. to the horizontal. 

A nswer. 

Length of one rafter = 
i span of truss 

cosine of angle 

3° ft. 

cos 30 deg. 

30 ft. 
0866 = 34 7J in. 

Roof area = 2 x Length of rafter x Spacing between trusses 
= 2 x 34 ft. 7i in. x 15 ft. = 1,040 sq. ft. 

Ground area covered « Span of truss x spacing between trusses 
== 60 ft. x 15 ft. “ 900 sq. ft. 

Question. If the horizontal wind pressure on a 60-ft. span with 
trusses spaced at 15-ft. centres is 30 lb. per square foot, what is the total 
vertical wind load on one truss causing distortion of its members ? The 
rafters of the truss make an angle of 30 deg. to the horizontal. 

Answer. From the table previously given a horizontal wind pressure 
of 30 lb. per square foot will produce a normal wind load of 20 lb. per 
square foot of roof area covered. Only the vertical part of this normal 
wind load is assumed to cause distortion in the truss members. Con¬ 
sideration of Fig. 115 (d) will show that the angle between the normal 
wind load and the vertical component is the same as the angle the rafter 
makes to the horizontal, in this case 30 deg. We therefore say 
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Vertical wind component = Normal wind pressure x cosine of angle A 
= 20 lb. x cos 30 deg. 
« 20 x 0 866 = 17 3 lb. per square foot of roof area covered. 

In the previous question we found that roof area — 1,040 sq. ft. From 
which 

Total vertical wind load on one truss 

= Roof area x Vertical wind pressure 
= 1,040 x 17 3 
= 18,000 lb. 

We previously found that the ground area covered by the load on one 
truss was 900 sq. ft. Therefore we can say 
Vertical wind pressure, per square foot of ground area covered 

Total vertical wind load on truss 
Ground area covered 

18,000 lb. 
900 

= 20 lb. 

This is the same figure as the normal wind force per square 
foot of roof area covered, and it is a good deal easier to work 
on ground area than roof area covered. To find the vertical 
wind load on a truss all we have to do is to multiply the vertical 
wind pressure per square foot of ground area covered (which is 
exactly the same figure as the normal wind pressure per square 
foot of roof area covered and can be obtained from the table 
given previously) by the ground area covered. 

Roof Coverings. Note, however, that the weight of roof 
coverings given are per square toot of roof area, and if we work 
in square feet of ground area these weights must be increased 
accordingly. Then 

Weight of roof covering per square foot of ground area 
covered = Weight of roof covering per square foot of 
roof area -4- cos A. 

where A is the angle the rafter of the truss makes with the 
horizontal. 

Question. A truss has rafters inclined at 30 deg. to the horizontal. 
The covering weighs 9 lb. per square foot of roof area. What is the 
weight of the roof covering per square foot of ground covered ? 

Answer. 
Weight of roof covering per square foot of ground area covered 

9 9 
«=-2— — —oT7 = say, io£ lb. cos 30 deg. o-866 3 a 

The weight due to dead loads and wind on a truss are trans¬ 
mitted to the truss by means of purlins which are connected 
to the trusses by cleats. In Fig. 106 there are ten purlins and 

L 
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each truss has nine panel points where the roof load is trans¬ 
mitted to the truss. The shaded area shows that all the panel 

points except the shoes take one-eighth of the roof load, While 

the shoe panel points take one-sixteenth of the total load. 

Question. What is the vertical load at point A in Fig. 106, assuming 
the trusses as in the previous questions, and that the truss is to be designed 
for a total vertical load of 40 lb. per square foot of ground area covered ? 

Answer. 
Ground area covered by load on A 

= | X 60 ft. x 15 ft. = 112J sq. ft. 

Total vertical load on A =40 lb. x 112J sq. ft. = 4,500 lh. 
All the other panels of the truss will have to carry 4,500 lb. except 

the shoes, which carry one-half of this, that is, 2,250 lb. 

The above questions and answers will give the reader a good 
idea of how to calculate the loads coming on roof trusses, and 

in the next chapter we shall show how to calculate the stresses 

in the various members of a roof truss, and how to draw the 
stress diagram. 



CHAPTER 15 

STRESSES IN ROOF TRUSSES 

We already know how the horizontal wind load acting on a 
roof truss could be resolved into a vertical load (see Fig. 115 (b) 
and (c) on page 151). So far as the roof truss is* concerned, a 
perfectly satisfactory design can be obtained by considering all 
the loads as being vertical, and if the truss is designed to 
carry a vertical load of 40 lb. per square foot of ground area 
covered, the sections which are so obtained will be quite 
satisfactory. 

Three Main Types. The attention of the student is at this 
point drawn to the fact that there are about three main divisions 
into which steel roof trusses can be placed : 

(1) Very light roof trusses, suitable for covering hayricks, 
or for conditions where failure would not have serious effects. 
In this case the tension members would be made of round bars 
or flat bars. 

(2) The general type of design for garages and industrial 
buildings. In these cases all the members are usually made of 
angles, so that bars which are normally in tension will be capable 
of resisting some compression should these arise. (This condition 
may easily arise due to the suction on the leeward side, or by 
someone hanging a pulley block to some member of the roof truss 
and lifting a motor or heavy machinery. This might cause not 
only increased stresses in some of the members, but might even 
change the stresses in a bar which is normally in tension to 
stresses in compression.) These terms, stress, tension and com¬ 
pression, have already been explained in earlier chapters. 

(3) The heavy type, where the truss is located over a chemical 
plant where the dusts and acids are corrosive. In such a case 
the members would be made somewhat thicker than theoretically 
required, to allow for some corrosion. 

The author knows of two roof trusses, both of the same span, 
and with the same arrangement of members, where the weight 
of one stress is very nearly twice the weight of the other. In 
one case the truss was designed by a firm in what is known as 
the " light construction ” trade, while the heavy truss was 
designed by plant engineers who had had some experience of 
corrosion, and were also well aware that whether a roof truss is 
designed for it or not, there is always a danger of someone lifting 
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weights by slinging chains round the horizontal members and 
attaching thereto a pulley block. 

These points are not likely to arise in examination questions, 
but they are mentioned as practical notes in the hope that they 
will help to explain to students and designers some of the reasons 
why there is such a variation in the weights of roof trusses. 

Design of Roof Trusses, 55 ft. Span. Spaced at 12-ft. Centres. 
Fig. 116 (a) shows the roof area and ground area covered by 

these panel points must 
Each take Vft of total 
LOAD ON TRUSS 

SKETCH SHOWING THAT 
HORIZONTAL COMPONENT OF 
WIND FORCE TRIES TO BEND 
THE COLUMNS, AND DOES NOT 
AFFECT THE DESIGN OF THE 
TRUSS TO ANY GREAT EXTENT 

THE LOADS AFFECTING THE DESIGN OF THE 
ROOF TRUSS ARE THE DEAD LOADS, AND 
VERTICAL COMPONENT OF WIND FORCE 

each roof truss. (Obviously the two roof trusses at the ends 
of the building only take half the loads of the intermediate 
trusses.) 

An allowance of 20 lb. per square foot of ground covered is 
very ample for the roof-covering purlins and roof truss. A 
further 20 lb. to allow for the vertical component of the wind 
load is also sufficient. 
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Fig. 117 shows in diagrammatical form the shape and arrange¬ 
ment of the members suitable for a roof truss of 55 ft. span. 
In this case the purlins are assumed to be at the panel points. 
A panel is the part of the roof truss rafter between the struts. 
The panel points are therefore located at 1, 2, 3, 4, etc. 

Question. What is the load carried at joint 1 and at joint 3 ? 

Answer. The ground area covered by the load on one truss 55 ft. x 12 ft. 
which amounts to 660 sq. ft. A little study of Fig. 116 (a) will show that 
the loads at points 1 and 9 will be one-half as much as the loads at the 
other panel points. 

We have therefore seven full-load panel points located 4t 
2, 3, 4, etc., and two half-load panel points located at 1 and 9. 
Therefore, if we divide the total weight on the ground area 
covered by 8, we shall get the load coming on each of the points 
2, 3, 4, etc., and if we again divide the figure so.obtained by 2, 
we shall get the loads at the points 1 and 9. 
Total load on roof truss = Span x Spacing x Load per square 

foot of ground area covered 

=* 55 ft. x 12 ft. x 40 lb. 
= 26,400 lb. = bay, 12 tons. 

Load of panel point 3 
Total load 

-g 

12 tons 
= tons. 

Load at panel point 1 — 
Load at panel point 3 

_ 1| tons 

~ 2 

2 

f ton. 

These forces are represented by vertical lines in Fig. 117, and 
the amount at each panel point is shown. Since all the load is 
vertical and symmetrical about the centre line, the load down 
each wall, or the reaction at each wall, will also be vertical, and 
will be each equal to half the total load, that is, 6 tons. 

Lettering each Space. We now proceed to letter each space 
between two forces (see Fig. 117) in accordance with Bow's nota¬ 
tion. Thus B denotes the space between point 1 and 2, C the 
space between 2 and 3, and so on. Each space in the roof truss 
itself also carries a letter. Each member or load is known by 
the letters on each side of it. For instance, the part of the roof 
rafter between 2 and 3 is known as member CN or NC. 

The next stage is to draw the load line, which is marked 
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a to k (Fig. 118). This line represents to some suitable scale the 
loads coming on the roof truss. All these loads are vertical in this 
case, so that our load line will also be vertical. Then ab on 
the load line represents AB (at point i) = f ton. The line, be 
represents load BC — i$ tons. The lines cd, de, ef, fg, gh, and 
hj, each represent a load of i| tons, which is the load at points 

3, 4, 5, 6, 7, and 8. Finally we have the load at JK represented 
by jk on the load line. The two reactions are (see Fig. 117) AL 
and KL. 

The point l can therefore be fixed, because al is 6 tons and 
kl 6 tons. In this case it is not necessary to draw either the 
polar diagram or the funicular polygon, but it has been drawn 
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because in many cases the point l, which gives the two reactions, 
is more easily found by this means. We shall see in a later 
chapter that the reactions may be different both in amount 
and direction. 

To find point l by graphical means, choose any pole 0. It 
is perfectly immaterial where the point 0 is chosen. Three other 
places are indicated in Fig. 118, and the result would have been 
exactly the same if the pole 0 had been taken in any of these 
positions. Generally it is a good thing to place the pole so that 
the outside lines of the diagram form something near to an 
isosceles triangle. Joint points b, c, d, etc., to the pole 0. This 
completes the polar diagram. 

Graphical Methods, From any point on the reaction line 
AL (Fig. 117) draw a line ob parallel to ob in the polar diagram 
(Fig. 118). This line runs between the reaction line and the 
projection of the load BC. From this intersection point draw 
oc parallel to oc in the polar diagram, then odt oe, etc., until oj 
finally cuts the reaction line LK. 

Join this point with the starting-point on reaction line AL 
by line ol; refer to the polar diagram (Fig. 118), and from the 
pole 0 draw line ol parallel to ol in the funicular polygon. Where 
the line intersects the load line a to k is the point l. Then la 
is the left-hand reaction and Ik is the right-hand reaction. If 
these distances ate scaled they will each be found to be 6 tons, 
apd this shows how the reactions can be obtained by graphical 
methods. 

Stress Diagram. We can now proceed to find the stresses in 
the members of the roof truss by drawing, or, as it is technically 
called, by graphic statics. Using the load line as a base, we can 
construct a figure, the sides of which to scale will represent the 
forces acting in the various members of the roof truss. From 
point b on the load line draw bm parallel to rafter BM on the 
frame diagram (Fig. 117). From l draw line Im parallel to 
member LM. Where these two lines intersect we get the point m. 
If the length bm is measured to the same scale as was used for the 
load line to a to ft it will give the stress in the member BM. 
Similarly the length of line Im gives the stress or force in the 
roof truss member LM. These figures are shown in the table 
on page 161. 

The stress in member BM is 11*9 tons, and the stress LM is 
10*3 tons. Now from point c draw a line crt parallel to CN in 
Fig. 117, and from point m (which has already been determined) 
draw mn parallel to member MN. The intersection of these 
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lines gives point n. By scaling, the stresses in MN and CN 
can be found to be 1-3 tons and 11*2 tons respectively. From 
n draw line no until it intersects the line Im, this intersection 
point being 0. Then the stress in member LO will be found to 
be 8*8 tons and that in member NO 1-4 tons. From d draw a 
line dq parallel to DQ and a line er parallel to ER. 

At this stage we find difficulty as we cannot locate either 
point q or point r. In order to locate point r we substitute 
another member into the roof truss. Looking at Fig. 117, we 
take out members QP and QR and substitute in their place the 
member (1) (2) shown dotted. Point 0 has already been found, 
and we can therefore draw line 0 (1) parallel to member 0 (1). 

This line strikes the line from d at point (1). Then d (1) repre¬ 
sents the force in member D (1). From point (1) draw line 
(1) (2) parallel to member (1) (2) until it meets the line e (2) 
drawn parallel to member E (2). This locates points (1) and (2). 

We have now found the stress in member E (2), and this 
stress will be the same whether members PQ and QR are in 
position or whether it is made with PQ and QR removed and 
the bar (1) (2) substituted in their place. Point (2) is therefore 
also point r. 

Having located this point, we now figuratively take out the 
bar (1) (2) and return to the original framework with the 
members PQ and QR. The length er is known and scales 97 
tons. From r draw rq until it intersects line dq at q. The stress 
in bar DQ is found to be 10*4 tons. The stress in member QR 
scales 1-3 tons. The lines rs and Is, drawn respectively parallel 
to members RS and LS, show the stresses in these to be 4*9 tons 
and 5*6 tons. Then, by drawing op parallel to OP and then 
drawing qp, we find the stresses in OP and QP are 2-6 and 1*4 
tons respectively. 

It will be noted that the stresses in the members shown in 
the table are the total load or force in the member, and not 
the unit stress or stress per square inch. The difference between 
these two terms has already been fully explained. 

Nature of Stress. By this term we mean whether the force 
tries to shorten the bar, in which case it is in compression, or 
whether it tries to lengthen the bar, in which case it is in tension. 
In Fig. 117 the members which are in compression, that is, the 
rafters and struts, are shown in thick lines, and the members 
that are in tension, or the ties, are shown in thin lines. The 
method of finding whether a member is in tension or compression 
will now be explained fully. 
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Stresses in Members of Roof Truss. 

Members 
Compression 

Tons. 
Tension 

Tone. 

B-M ANP J-Y R after. II -9 
C-N AND H-X u II. 1 
D-Q AND G-u • io.4 
E-R ANP F-T m 9.7 
L-M AND L-Y Lower Tic 10.9 
L-0 AND L-W m 6. 8 
L-S . M S.6 | 

A/l-N AND X-Y S TAUT 1.3 
N-0 AND W-X Til 1.4 

0-P AND Y-W Main St rot l. 6 

P-Q AMD U-V Tie 1.4 
P-S AND s-V n 9.4 
R-R AND T-U Strut 1.3 
R-3 AW 3-T Tic 4.9 

Examining Forces. Consider point i. Here we have only 
two members, BM and ML. Imagine the centre of the joint 
as being the centre of a clock face, and proceed to examine the 
forces in a clockwise direction. It makes no difference which 
force is taken first, so long as they are considered in a clockwise 
direction. If we start with the load AB in Fig. 117 we see that 
this load is acting downwards. On the load line in Fig. 118 put 
an arrow on length ab also acting down. Returning to Fig. 117,, 
our next force acts in the member BM. In Fig. 118 we put an 
arrow pointing from b to m. Now return to Fig. 117 and make an 
arrow near to the joint pointing in the same direction as that on 
the stress diagram. Still proceeding in a clockwise direction, 
our next member is ML. On Fig. 118 we make an arrow pointing 
from m to l, and returning to Fig. 117 we mark an arrow pointing 

in the same direction. 
The direction of the arrows which result in Fig. 117 shows 

whether the members are in tension or compression. If the 
arrow points towards the joint, then the member which carries 
this arrow is in compression. If the arrow points away from the 
joint the member is in tension. The arrow on member BM 
points towards the joint we are considering, so that member BM 
is in compression. The arrow on ML points away from the joint 

we are considering, so that ML is in tension. 
Each joint can be dealt with separately, and we will now 

proceed to joint number 3 to show a further application of the 
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method. To show that it makes no difference at which member 

we start, so long as we work around the joint in a clockwise 

direction, we will begin at member PO in Fig. 117. An arrow 

pointing from p to 0 is made on the stress diagram, and an arrow 

pointing in the same direction is transferred back to joint 3 in 

Fig. 117. The next member is ON. Again in Fig. 118 make an 

arrow pointing from 0 to n and another arrow in the same 

direction in Fig. 117. Proceed in like manner for the member 

NC, the load CD and members DQ and QP, and the nature of the 

force in each of these members will be found. The arrows for 

all the joints and all the members are shown in Fig. 117, and the 

arrows for the two joints we have just described are shown in 

Fig. 118. 
The stresses in the various members of a roof truss, such as 

shown in Fig. 117, where the loading is considered to be vertical, 

can also be easily found by calculation or by means of the tables 

giving coefficients of stresses which are to be found in many of 

the excellent hand-books issued by the makers of rolled-steel 

sections. In the tables referred to the lower tie of the truss is 

considered as being horizontal for all its length. If the lower 

chord is raised, as shown in Fig. 1x7, the effective depth of the 

roof truss will be lessened and the stresses in the rafters increased, 

but generally it will be found that this increase of stress is not 

sufficient to call for a larger size of member. Raising the roof 

tie slightly at the centre improves the appearance of a roof truss 

to a considerable extent. 

The table which follows gives the coefficients for roof trusses 

with a slope of 30 deg. and having the lower member horizontal. 

The coefficients can be used for any span of roof truss providing 

the arrangement of the various members is the same as shown in 

Fig. 117 and also provided that the slope of the rafter is 30 deg. 

If the slope of the roof is changed, the coefficients cannot be 

used, and the stresses in the members will be different. For 

instance, if the arrangement of members is kept the same and 

the slope of the rafter is less than 30 deg., that is to say, the roof 

is made flatter, then the stresses in the members will be increased. 

The stress in any member of a truss is to be found by multi¬ 

plying the load on each internal joint by the coefficient given 

in the table. (In this case the load on each internal joint is 

i*5 tons.) 
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Coefficient of Stresses for Ty,pe of Truss shown in Fig. 4. 

Slope 30°. 

Members. Coefficient. Stress. 

BM and JY + 7-00 4- 10*5 tons 
CN and HX + 6-50 4- 975 tons 
DQ and GU 4- 6-oo 4- 9*00 tons 
ER and FT + 5-50 + 8*25 tons 
LM and LY - 6-o6 — 9 09 tons 
LO and LW - 5‘2° — 7-8 tons 
LS - 3 46 — 5-19 tons 
MN and XY + 0-87 — i*3 tons 
NO and WX — 0-87 — x*3 tons 
OP and VW + 1-73 4- 2*6 tons 
PQ and UV — 0-87 - 1*3 tons 
PS and SV - i-73 — 2 6 tons 
QR and TU + 0-87 4- 1*3 tons 
RS and ST — 260 — 3*9 tons 

In the above table + denotes that the stress is a compressive 
one, while — denotes it is tensile. 

The total stress or force in every member of the roof truss, 
and the nature of these stresses, has now been found, and now 
we will proceed to find the size of the bars for resisting these 
stresses. 



CHAPTER 16 

DESIGN OF ROOF TRUSSES 

We found by graphical means the stresses acting in the 

members of a roof truss of 55 ft. span. Fig. 119 (a) on the folding 
plate shows this roof truss and also indicates the stresses acting in 
each member. We will now proceed to consider the design of 
suitable steel sections for these members. 

The stresses shown are of two kinds, one compression and the 
other tension. The tension members, or ties as they are called, 
are relatively easy to design, and the method to be followed is 
exactly that shown in Chapter 5, which dealt with riveted 
joints. It was found that the safe load which could be put to a 

plate, flat, or angle which was in tension, equals 
Safe load = Net sectional area x Safe stress per square inch. 

To connect the ends of the ties to the rafters or other members, 

gusset plates are used (see Fig. 119 (d), (e), (/) and (g)). Rivet 
holes made in a tie reduce the net area of the section and also its 
load-carrying capacity. In most of the sections used in roof 
truss construction only one rivet hole is taken out across any 

cross-section, so that generally (but not always, see Chapter 5) : 
Net sectional area of tie = Gross area — Area of one rivet hole. 

In roof truss design a safe stress in tension of 7 tons per square 
inch can be used for ordinary construction, while for light con¬ 
struction up to 8 tons can be adopted. 

The design of compression members, or struts, in a roof truss 
provides a different problem. If these struts are long compared 
with their cross-section, they will tend to bend when a com¬ 
pressive load is put on them. At this stage it is therefore neces¬ 

sary to consider how the strength of the strut is affected by the 
bending. 

Columns, struts and compression members in general may be 

divided into three classes: 
(1) Short pieces, where failure would be due to direct com¬ 

pression only. 

(2) Relatively short columns where failure would be due to 
a combination of compression and banding. 

(3) Long columns, where failure is chiefly due to bending. 

In Chapter 3 we showed the various kinds of failure which 
would result if short blocks of brittle and ductile materials were 
loaded to destruction. 
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The great majority of struts in roof trusses and columns in 
buildings can be classified as those where failure would result 
in a combination of compression and bending. 

Fig. 119 (b) shows a solid steel column 4 in. diameter and 
12 ft. high. If a 4-in. diameter steel bar 12 in. long was 
loaded to destruction, it might easily take a load of 350 tons 
to cause failure. It is not difficult to see that a very much 
smaller load would cause failure of a steel column made of 4-in. 
diameter metal, if the length was 12 ft. instead of 12 in. Long 
before this load was reached the column would have bent as 
shown (greatly* exaggerated) by the dotted lines, and the column 
would fail. 

Fig. 119 (b) shows a column of exactly the same height as that 
shown in Fig. 119 (c), but made of hollow steel. The section 
shown has the same area of metal as the solid steel column. In 
both cases the area is approximately 12J sq. in. It does not 
require a knowledge of mathematics or mechanics to see that the 
column shown in Fig. 119 (b) would bend more easily than the 
hollow column shown in Fig. 119 (c). In technical language we 
say that “ the hollow steel column is stiffer than the solid steel 
column," or, in other words, it is less slender. This slenderness 
ratio determines very largely the safe load which a column will 
carry. 

Slenderness ratio = ^ 
K 

where L is the length of the column in inches. 
R is the radius of gyration in inches. 

We shall have more to say about this term radius of gyration 
later, but in the meantime it can be stated that the radius of 
gyration is the square root of the moment of inertia divided by 
the area of the section. 

It is written 

If the length and the area of a column or strut remain constant, 
the strength will be increased as the radius of gyration gets 
bigger. 

The formulae used for finding the radius of gyration of a solid 
section and of a hollow section are shown in Fig. 119 (b) and (c) 
and in a table facing are shown formulae for finding the approxi¬ 
mate radii of gyration of various angles such as are commonly 
used in roof construction. 
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Safe Stress. If the steel column or strut,were very short, 
it would be possible to allow a safe working stress of about 7 tons 
per square inch. To make this clear, suppose we had a piece of 
mild steel 4 in. diameter and 12 in. long, and we used this as 
a post or column, then it would safely carry a load of 7 tons on 
each square inch of area. 

The area of a 4-in. diameter round bar is— 

22 
Area = ^ x 4 x 4 = approximately 12^ sq. in. 

Therefore tho safe load on this short steel post would be 

Safe load = Area x Safe stress 
= 12^ x 7 = say, 87 tons. 

If the column was 12 ft. long, it would bend much easier than 
the short column, and therefore the allowable stress on the steel 
must be reduced. We must use a working stress of something 
less than 7 tons per square inch. How much less than 7 tons is 
determined by the Slenderness ratio 

4 of the column or strut. 
K 

In designing roof trusses we can use a very simple formula 
which will give this safe working stress. It is 

Safe stress per square inch = 7 — tons. 

Question. What is the allowable working stress per square inch on 
a mild steel strut, which has a length of 6 ft. (72 in.) and a radius of 
gyration of 1 in. ? 

Answer. Safe stress per square inch 

= 7 ——— 

7 30 x 1 

= 7-2-4 
= 4*6 tons per square inch. 

We have already seen that the total safe load will be obtained 
by multiplying the safe stress per square inch by the area of the 
section in square inches. 

It is advisable, except in light work, to make the rafters and 
long struts of a roof truss of two angles with their long legs back 
to back. The most common sizes of angles for roof truss con¬ 
struction are shown in the table with Fig. 119. 

For roof trusses up to 30 ft. span either £-in. or §-in. diameter 
rivets are generally used, while for spans above 30 ft., f-in. and 
f-in. diameter rivets are common. To provide for proper riveting 
when usin^ these f-in. and f-in. rivets, the smallest size of angle 
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that should be used is the 2\ in. by 2 in. x f in. where the rivets 
pass through the 2^-in. leg. Also the smallest size of flat should 
be 2\ in. x £ in. 

We will now proceed to design?the members of the 55-ft. roof 
truss shown in Fig. 119. 

In this case, assume we require a sturdy construction roof 
truss, and to allow for reversals of stress due to wind pressure, 
the struts will all be made of two angles. The lower tie of the 
truss will also be made of two angles. 

Quite apart from this design we will also calculate suitable 
sizes of the members for a “ light construction ” truss of similar 
span, using the same-stresses. 

Design of Compression Members. Rafters BM and JY 
(Fig. 119 (6) and (d)) have a compressive load of 11-9 tons and 
a length of 7 ft. n in. or 95 in. 

It is a good guide for roof truss rafters to make the ^ about 100. 
K 

In no case should ^ exceed 160. 

Then, 

Safe stress per square inch = 7 — tons. 
L 30 R 

If ^ is to be 100, then 
K 

Safe stress per square inch = 7 — — 
30 

= 7 - 3‘33 = 3-67 tons. 

Actual stress in member = 11-9 tons, so that 

Approximate sectional area required = 
Load 

Safe stress 

H'9 

367 
3*2 sq. in. 

If the rafter is made of two angles, then the sectional area 
of each angle will need to be 

o»2 
— = i-6 sq. in. 

2 
Reference to the table of angle sizes shows that two angles 

3 in. x %\ in. x 5-16 in. thick will give a total gross area of 
2 x 1-62 = 3-24 sq. in. Try this size of member. 

Safe stress per square inch = 7 — tons. 

L is the length of the member = 95 in. 
R is the least radius of gyration of the section. 
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There are two radii of gyration, one about axis XX and one 
about yy. The table of approximate radii gyration given shows 
that RXX = 031D and RYY = 0*21 B. In our case D, the 
depth of the angle leg = 3 in. To connect the rafters to the 
struts and ties, gusset plates are required, and it is convenient 
to have these plates inserted between the two angles as shown 
in the details. For an ordinary construction roof truss these 
gussets can be f in. thick, while for light construction their 
thickness can be reduced to & in. 

The dimension B will amount to in. + z\ + § in. = 5-37 in. 
Then RXX = 0-31!) = 0-31 x 3 = 0*93 in. 

RYY = o-2iB = o-2i x 5 37 = 1-2 in. 

The least radius of gyration is therefore 0-93 in. and this 
must be used in the design. (A little consideration will show 
that if the other radius of 1*2 in. was used in the design, we 
would obtain a larger safe working stress and a larger safe load 
than if 0-93 in. was used, so that we would be putting a greater 
load on the rafter than it could safely bear on axis XX.) 

Safe stress per square inch = 7 — ——- 
30 x 0*93 

= 7 — 3*4 = 3*6 tons. 

Safe load = Safe stress x Sectional area 
= 3-6 tons x 3-24 sq. in. 
— ii*9 tons. 

Actual load = 11*9 tons. 

Therefore this section of two angles 3 in. x 2\ in. x -ft- in., 
with the 3-in. legs vertical, is strong enough and will be adopted. 

In the light construction trade or for temporary construction 
the safe stress per square inch might be taken as 

Assuming a slendering ratio of 150, then the least radius of 

gyration will have to be more than = 0 64 in. A rolled steel 

tee 4 in. x 3 in. x § in., has a least radius of gyration of o*86 in. 
Using the formula given above, the safe stress will be : 

8_?5_ 
30 x o-86 

= 8 — 3'68 = 4-32 tons per square inch. 

M 
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The cross-section area of this tee is 2-5 sq. in., so that 
Safe load = Safe stress x Section area 

= 4*32 x 2*5 = io*8 tons. 

This section would be a little bit on the small side for members 
BM, JY, CN, and HX, but it would be adequate for the rafters 
DQ, GU, ER, and FT. As the vertical loading of 40 lb. per 
square foot is ample to take care of any conditions likely to arise 
and as the maximum stress which would result in members BM and 
JY if the 4 in. x 3 in. x $ in. tee was used would be less than 
6 tons per square inch, this section would probably be used. 

The compressive stress in rafters CN, HX, DQ, ER, and FT 
(Fig. 119 (a)) varies from 97 tons to 11*2 tons, so that theoreti¬ 
cally we could use a smaller size of angle than that just adopted 
for rafter members BM and JY. For practical reasons the 
rafters of a roof truss are made of one continuous length, so that 
in this case two angles 3 in. x 2\ in. x ^ in., will be used for all 
rafters on the sturdy construction truss. Washers or spacers 
should be put in the space between the angle legs at intervals. 
In the light construction truss all the rafter members will be 
made of the 4 in. x 3 in. x § in. tee section. 

Main struts OP and VW (Fig. 119 [a) and (e)) have a com¬ 
pressive stress of 2*6 tons, and are 7 ft. 9 in., or 93 in. long. 
With such a small load it is evident that only a small cross- 
sectional area is required, and in this case it is a question of 
keeping the slenderness ratio below 160 and of the minimum 
practical size of angle that can be used. 

To Prevent Buckling. To prevent buckling out of shape 
it is preferable to use two angles back to back for these main 
struts in ordinary construction. Try the smallest practical size, 
that is, two angles 2\ in. x 2 in. x £ in. with the 2\ in. legs 
back to back. Two such angles have a total area of 2 x 1*06 
= 2-12 sq. in. Then D = 2-5 in., and B = 2 in. + 2 in. + f in. 

= 4*37 in- 
RXx = = 0 31 x 2-5 = 078 in. 
Ryy = 0-21B ~~= 0-21 x 4*37 = o*9i in. 
Least radius of gyration = 078 in. 

Therefore — = = 119, which is permissible. 
R 078 

Safe stress per square inch = 7 — — 

= 7 - 3’97 = 3-03 t°ns. 
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Safe load = Safe stress x Sectional area 
= 3-03 x 2-12 = 6-4 tons. 

Actual load = 26 tons. 

For ordinary construction it is not advisable to reduce this 
size of section. 

For light construction there is no reason why a single angle 
L qq 

should not be used. If ^ is not to exceed 160, then R = ~- 
R 160 

-=0-58 in. The least size of angle which gives a radius of gyration 
larger than this is the 3 in. x 3 in. x £ in., which has a least 
radius of 0*58 in. It has a gross sectional area of 1-44 sq. in. 

93 Safe stress per square inch = 8 

= 8 
30 x 0-58 

5*35 

= 2*65 tons per square inch. 
Safe load = 2 65 x 1-44 = 3 82 tons. 

Actual load = 2*6 tons. 

This 3-in. x 3-in. x £-in. angle can therefore be used. 

Struts MN, XY, QR, and TV are generally known as the 
small struts, and the load they carry is so small that again it is 
a question of limiting the section so that its slenderness ratio 
does not exceed 160. Try the small practical size of angle for 
general construction, that is, the 2\ in. x 2 in. x £ in. Area 
= 106 sq. in. Least radius of gyration of simple angle with 
unequal legs = 0*09 (B + D) = 0-09 x 4-5 = 0*4 in. 

L = 46 

R o*4 

Safe stress per square inch = 7 — ^ 

IT5- 

= 7 ~ 

3 OR 

3° 

= 7 - 3*83 = 3*17 tons. 
Safe load = Safe stress x Sectional area 

= 3-17 tons x i’06 = 3*33 tons. 
Actual load = 1-3 tons. 

In ordinary construction and in light construction this would 
be the minimum practical size to use for these small struts. 

Design of Tension Members. Lower ties, LM and LY, have 
a load of 10*3 tons. In ordinary construction either one or two 
angles can be used. Two angles have the advantage of being 
stiffer, and we will adopt these. In light construction flats will 
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be used. Where the angle connects to the gusset plate there 
will be one rivet hole in each angle. The tie is therefore weakest 
across this section. 

Required net section = — 
Safe stress 

*0*3 
= —r = i*5 sq. in. 

7 
Try two angles 2^ in. x 2 in. x J in. having a total gross 

area of 2 x 1*66 = 2*i sq. in. 
Net section = Gross area of angles — Area of two rivet holes. 

(It should be noted that there is. one rivet hole in each angle.) 
Area of two rivet holes = 2 x Diameter of hole x Thickness of 
angle leg. For f-in. diameter rivets the holes will be ^ in. 
larger, that is, in. diameter. 

Area of two rivet holes = 2 x jf in. x \ in. = 0*4 sq. in. 
Net sectional area = 2-1 — 0*4 = 17 sq. in. 
Required net sectional area = 1*5 sq. in. 
Two angles 2\ in. x 2 in. x l in. will therefore be suitable. 

(In light construction work two flats 3 in. x in. thick could 

be used.) 
Members of LO ana LW are also part of the lower tie, and 

carry a load of 8*8 tons. For practical purposes they will be 
made a continuation of members LM and LY, respectively, and 
will be made of two angles 2\ in. x 2 in. x £ in. (In light 
construction they would be two flats 3 in. x ^ in.) 

Member LS is the horizontal part of the lower tic, and is 
made separate from the ties just considered. It carries a load 
of 5 6 tons. 

Required net section = --- 
Safe stress 

5*6 o = 'L- = o-8 sq. in. 
7 

Two angles 2\ in. x 2 in. x | in., having a net area of 
17 in. could be used if a stiff job is wanted, or one angle 
2\ in. x 2 in. x J in., having a net area of o-86 sq. in., would 
be suitable. (For light construction a 3-in. x f-in. flat would 
be suitable.) 

Diagonal ties RS and ST have a load of 4*9 tons. Try one 
angle 2\ in. x 2 in. x J in. having a net area of o-86 sq. in. 

Net area required = — 
Safe stress 

49 = ~ = 07 sq. in. 
7 
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The size of angle is therefore suitable for ordinary construc¬ 
tion. (For light construction a 3 in. x & in. plat can be 
adopted.) 

Though ties PS and SF have a less load than RS and ST, 
it is practical to make PS and RS of one length of member and 
also SF and ST. In ordinary construction these members will 
be one angle 2\ in. x 2 in. x £ in. (In light construction one 
flat 3 in. x & in. would probably be used.) 

Ties NO, WX, PQ, and UV all have a tension of 1-4 tons. 

Required net section = y = 0'2 sq. in. 

In ordinary construction the smallest practical size of angle 
is the 2} in. x 2 x | in., having an area of o-86 sq. in., and 
this must be adopted. (In light construction, if we use f-in. 
diameter rivets, the least size of flat that can be used is the 

2\ in. x f in.) 
Design of Joints. The design of joints for a roof truss 

follows exactly on the same lines adopted for ordinary riveted 

joints. 
It will be noticed in the details of the truss shown that the 

members are so placed that lines drawn through the centres of 
the rivets meet at one point for each joint. This should always 
be so as far as possible, because the stress diagram we constructed 
assumed that the various members of the truss intersected at 

points. 
We will now design some of the joints necessary for a 

general construction truss, the members for which we have just 

found. 
The forces acting in the members around crown joint (5) are 

shown in Fig. 1x9 (/). We used f-in. diameter rivets for the 
general construction truss and f-in. gussets. 

Members ER and FT are the rafters of the truss and are 
composed of two angles 3 in. x 2f in. x in. One angle passes 
each side of the gusset, so that the rivets which have to pass 
through two angle legs and the gusset will be in double shear. 
From the table given in Chapter 4 of this book, it will be 
found that the double shear value of f-in. rivet is 4-4 tons. 

Failure of a joint can also occur by bearing. Bearing value 
of f-in. rivet in f-in. thick gusset = 2-8 tons. (Note that the 
joint will not fail by crushing of the angle legs as there are two 
of these each ^ in. thick, making a total thickness of f in. to 
be crushed.) The joint will be weaker in bearing than in shear, 
as the bearing value is. lower than the shear. 
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Number of rivets required to connect each of members ER 
and FT to gusset plate 

Load 

Bearing strength of i rivet 

= 97 = use 4 rivets. 
2-8 * 

Members RS and ST are single angles f in, thick and the 
rivets are in single shear. Single shear value for f-in. diameter 

rivet = 2*2 tons. 
Bearing value of f-in. rivet in f-in. angle leg = 1-9 tons. .Bear¬ 

ing again is the lower value, and must be used in the design. 
Number of rivets required to connect each of members RD 

and ST to gusset plate 
_ Load 

Bearing strength of 1 rivet 

4 9 tons 

i*9 tons 
= use 3 rivets. 

The complete detail for this joint is shown in Fig. 119 (/). 
When designing these joints the gusset plate itself should be made 
with as few cuts as possible, and if possible should be square 
or rectangular in shape. 

Main Strut Joints (3 and 7). The forces acting in the members 
which converge on joint 3 are shown in Fig. 119 (e). 

Members NO and PQ are single 2f-in. x 2-in. x f-in. angles, 
so that the rivets are in single shear. 

Single shear value of f-in. rivet = 2*2 tons. 
Bearing value of f-in. rivet in f-in. angle = 1*9 tons. 
Bearing governs the design. 
Number of rivets required in each of members NO and PQ 

to connect them to gusset plate 

Load 

Bearing strength of 1 rivet 

i*4 tons 0 
= -- =o*8. 

1-9 tons 

It is not considered good practice in a truss which is of such 
a large span and which is to be a permanent structure to use 
less than two rivets to connect any member to a gusset plate. 
In this case two rivets should be used. (In light construction, 
one rivet can be used.) 

Member OP is formed of two angles 2f in. x 2 in. x f in., 
and the rivets are in double shear. 
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Again bearing will govern the design. 
Number of rivets required 

__ Load 

Bearing strength of 1 rivet 
2-6 . 

= —- = use 2 nvets. 
2-8 

Members CN and DQ are continuous, so that the net load 
coming on the rivets will be the difference between the two 
opposing forces, that is, 11-2 — 10 4 = o-8 ton. Although this 

calls for one rivet it is necessary to make a slightly stiff joint 
between gusset plate and rafter, and to do this five rivets are 
used, as shown in Fig. 119 (e). 

Shoe Joints (1 and 9). The load coming on joint 1 is shown 
in Fig. 119 (d). 

Member BM: This is of two angles 3 in. x 2\ in. x & in., 
and the rivets are in double shear. Bearing again governs the 
design. 

Number of rivets required 

Load 

Bearing strength of 1 rivet 
ii*9 . , 

— —pp = use 4 nvets. 
2-8 

Member LM is made of two angles \ in. thick and the rivets 
are in double shear, from which it follows that bearing governs 
the design. 

Number of rivets required 
__ Load 

Bearing strength of 1 rivet 

10-3 • . 
= —p = use 4 rivets. 

28 

The complete shoe joint is shown in Fig. 119 (d). 
Joints in Lower Tie (11 and 12). It is common practice to 

carry the longitudinal wind bracing (which prevents distortion 
of the building by wind blowing on its ends) from these two 
joints. These bracings are shown in Fig. 119 (g) and (h). 

Member OP is of two angles ^ in. thick, and the rivets being 
in double shear the bearing value governs the design. 

Number of rivets required 

__ Load 

Bearing strength of 1 rivet 

26 . , 
= --- = use 2 rivets. 

2-8 
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Member PS is a single | in. thick angle. Single shear value 

of |-in. diameter rivet == 2-2 tons. Bearing value of f-un rivet 

in J-in. angle = 1-9 tons. Bearing governs. 

Number of rivets required 

Load 

Bearing strength of 1 rivet 

T4 
= — = use 3 nvets. 

1-9 

Member LO has a pull of 8-8 tons. Rivets are in double 

shear, so that bearing value governs the design. 

Number of rivets required 

8-8 tons 

2-8 tons 
= use 3 rivets. 

Member LS. Again bearing governs. 

Number of rivets required 

5^ 
2-8 

= use 2 rivets. 

The complete detail of this joint, complete with wind bracing, 

is shown in Fig. 119 (h). Note that the rivets connecting the 

wind bracing gusset to the main truss are staggered, so that at 

any cross-section the lower tie angles are only weakened by one 
rivet hole. 

The remainder of the joints for the truss are detailed out 

on the drawing. The student should try his hand at checking 

up that the number of rivets shown is correct and he should also 

attempt to design suitable joints for a light construction truss, 

using the members shown in brackets on the drawing. 
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WIND PRESSURE ON ROOFS 

We have dealt with the method of finding the stresses in, 
and suitable sections for, a particular type of roof truss of 55 ft. 
span. In our design we assumed that the truss carried a vertical 
load which took care of the weight of the roof covering, the 
purlins and the truss itself, and also the wind pressure. Although 
this method gives very good results, in general design it is usual 
to design assuming the truss to carry a vertical load due to the 
weight of covering purlins and truss, and in addition a wind 
pressure acting normal or at right angles to the roof rafter. 

Roof trusses may be pitched, flat, arched or domed, depend¬ 
ing on the shape of the building and purpose for which it is 
required. In ordinary house construction, and for small build¬ 
ings, roofs are usually made of timber. In most houses the 
trusses are of the pitched type, with the rafters sloped at 45 deg. 
to the horizontal. By having such a steep pitch it is possible 
to provide more headroom under the truss, and also to build an 
attic in the truss itself. Timber is also very often employed on 
temporary construction. 

In some countries where steel sections are difficult to obtain 
large-span timber trusses are frequently used, but on the whole 
a steel truss is better, because of the greater stress-resisting 
properties and longer life of steel. Sometimes timber is used 
for the compression members of a truss while the tension members 
are made of steel flat bars or round bars. These trusses are 
known as the composite type. Roofs of reinforced concrete are 
sometimes used, and can be sloped, flat, or curved, as desired. 

For sloped roofs the quarter rise truss is commonly used 
when the covering is corrugated sheeting, and the 30 deg. truss 
when covered with slates or tiles. 

Spacing of Trusses. The most economical spacing is the 
one which gives the least amount of material in the columns, 
roof trusses, and purlins. It is not difficult to see that if the 
spacing between adjacent roof trusses is increased each truss 
will carry a larger amount of roof covering, and therefore will 
have to support a bigger load. On the other hand, although 
the members of the roof trusses require bigger members, and 
are therefore heavier, the proportion of the increase is less than 
the increased ground area covered. 

177 
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For instance, consider the roof trusses are 40 ft. span and 
the centre of one truss to the centre of the next is 10 ft., then 

the ground area covered will be 40 x 10 = 400 sq. ft. for each 
truss. If the spacing is increased to 15 ft., the ground area 
covered will be 600 sq. ft., or 50 per cent more. The weight of 
the trusses spaced at 10-ft. centres would probably be about 
11 cwt., and the trusses spaced at 15-ft. centres 12 cwt. It is 
easy to see that so far as the roof trusses are concerned the wider 
the spacing between the trusses the more economical it is. On 
the other hand, we have now to consider the purlins. If the 
spacing between the trusses is increased, the purlins have to 
carry over a bigger span, and. in this case the proportionate 
increase in the weight of the purlins as compared with the ground 
area covered is greater. From this it will be seen that the roof 
truss spacing which is most economical is the one which gives 
the least amount of steel for both roof trusses and the purlins. 
In practice the centres of trusses for spans of between 25 ft. 
and 35 ft. are generally made between 8 ft. and 10 ft. For 
trusses between 35 ft. and 45 ft. span the centres may be 10 ft. 
to 12 ft. and where the span is between 45 ft. and 60 ft. the 
centres are generally between 12 ft. 6 in. and 15 ft. 

In cinema and similar buildings the ceiling is often suspended 
from the roof trusses, and the weight should, of course, be taken 
into account when finding the stresses in the roof truss members. 

Although roof truss with members designed to resist a vertical 
dead load of 40 lb. per square foot of ground area covered would 
be quite strong enough for general conditions, it is usual practice 
to resolve the wind from a horizontal pressure to a normal one. 

Fig. 120 (a) shows a line diagram of a roof truss 55 ft. span. 
The space between every pair of forces is lettered A. B,C, D, etc. 
Before we can find the stresses in the various members it is 
necessary to know the loads the roof must carry. They can 
be split up into : 

(a) Dead loads, consisting of the weight of roof covering, 
weight of purlin, and weight of the roof truss itself. 

The length of each sloping rafter is 31-6 ft., and the distance 
between one roof truss and the next is 12 ft., so that the total 
roof area carried by one roof principle will be 

Total roof area = 2x31-6x12 = 758 sq. ft. 
Still dealing with dead loads only, it is safe to assume that 

the vertical dead load per square foot of roof area, including 
the weight 0^ slates,, boards, purlins and the roof truss itself, 
will be about 18 lb., so that 
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Total dead load on one truss will be 

758 sq. ft. x 18 lb. = 13,650 lb. 

This load is carried by the purlins, which are located at panel 
points of the rafters marked 1, 2, 3, 4, etc. 

The load on panel points, 2, 3, 4, 5, 6, 7, and 8 Will be equal, 
and the load at the supports or shoes will be half the others. 

The vertical dead loads at points 2, 3, 4, 5, 6, 7, and 8 will 

therefore be = 1,705 lb. = 076 tons, while the vertical 
o 

dead load at*points i and 9 will be 0*38 ton. 

Fig. 120. 

(6) Wind Load. In addition to these vertical dead loads we 
have a wind load, which is generally assumed to act horizontally 
and to have a minimum force of 30 lb. per square foot. After 
considering Chapter 16, the student will have little difficulty in 
seeing that if the horizontal pressure is 30 lb., then the normal 
component of this pressure against a rafter inclined at 30 deg., 
will be about 20 lb. per square foot of roof area. 

Wind Pressure. This wind pressure can only act on one 
side of the roof at one time, but since at some time or the other 
it will act at the other side of the roof, the members must be 
designed strong enough to take the maximum stresses which 
result in the bars. Frequently in practice only half the stress 
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diagram is drawn, sufficient to give the stresses in the members 
on the side of the truss where the wind is assumed to be acting. 
The amount of the wind pressure at each panel point is shown 

in Fig. 120 (a), and by the elementary principles of the parallelo¬ 
gram of forces, the vertical load and the normal wind pressure 
are resolved into a third force as shown. This amounts to 
1-56 tons at the intermediate points, 1*15 tons at the apex or 
ridge, and 078 ton at the seat or shoe. 

If the student has any difficulty in realizing the amount of 
area which is supported at each panel point of the roof truss, 
he should refer to Fig. 116 of Chapter 15. 

Reaction to Loads. Having now found the loads on the 
roof principle, we proceed to find the direction and amount of 
the reactions. Reaction means the upward force that each wall 
or column must exert, and this will, of course, be equal to the 
amount of the downward push at the places where the roof truss 
rests on the wall or columns. It is easy to see that if the loads 
are all vertical, the reactions will also be vertical, but since in 
our case some of the loads are inclined, they will try to push 
and bend over the walls or columns (see Fig. 116 (6), Chapter 15). 

The reactions, therefore, with the Joading as shown in Fig. 
120 (a), cannot be vertical. Sometimes one of the roof seats is 
put on a sliding plate or on rollers, in which case the reaction at 
that end of the truss will be vertical, and the other shoe will have 
to take all the horizontal push. In general practice it is safe 
to consider that both walls or both columns take a part of the 
horizontal push, and that the direction of the reactions is parallel. 
This has been assumed in the roof truss under consideration, 
and in order to find the amount and direction of the reactions 
we proceed as follows. It is as well to notice that, although 
the lines Rr and J?,are shown in Fig. 120 (a), we do not kno>v at 
present their amount or direction. 

Referring to Fig. 121, start at a convenient point a, and draw 
the load line marked a to k to some suitable scale, ab <vill be 
parallel to the line marked 078 tons at the joint No. 1 in Fig. 1, 
be will be parallel to the line marked 1*56 tons, shown at joint 2. 
Proceed with cdt de, and ef. Note that ef is parallel to the line 
marked 1-15 tons at joint 5. From ft ok the lines are vertical. 
Now join point k with point a, and this line represents the amount 
of and the direction of the two reactions marked Rx and Ra. 

As yet we do not know the amount of each reaction. To 
find these we proceed as follows: 

Choose a point which is marked 0. The position of this 
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point is quite immaterial, but it is generally wise to take it in 
such a position that the lines a-o and k-o form angles between 
30 deg. and 45 deg. to the horizontal. Now join the points ao, 
bo, co, do, etc., and complete the polar diagram shown in Fig. 121^ 

o 

Having done this, draw lines below Fig. 120 (a) projecting 
from the resultants of the loads. That is, extend the lines 
marked V5& tons, 075 ton, etc. Starting at the joint 1, draw 
a line ob in Fig. 120 (6) parallel to bo in Fig. 121 until it strikes 
the projection' from the line marked 156 tons in joint 2. In 
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like manner proceed to draw oc, od, etc., and finally join the 
starting-point with the finishing-point, by a line ol, which is 
marked closing line in Fig. 120 (b). From the pole 0 in the polar 
diagram in Fig 121, draw a line parallel to this closing line until 
it intersects the reaction line at point l. 

By measuring to scale we can find the amount of the two 
reactions. In this case the left-hand reaction Rx is indicated by 
line al and amounts to 5*2 tons. The right-hand reaction marked 
I?, is indicated by the line kl and amounts to 4-3 tons. These 
reactions are now drawn in on Fig. 120 (a) and marked R x and Rt. 

[The method of drawing the stress diagram was fully ex¬ 
plained in Chapter 15, to which the students should refer.] To 
find the stresses in BM and LM, draw a line from b on the load 
line (Fig. 121) parallel to BM in the frame diagram (Fig. 120 (a)). 
From l draw parallel to LM, and where these two lines intersect 
gives the point m. By scaling the lengths of the lines btn and Itn, 
the stresses on the two members BM and LM can be found to be 
10 tons and 9-4 tons, respectively. These stresses are shown in 
the table. As the student proceeds to draw the stress diagram 
he will find difficulty arising when he tries to find the points 
q, r, p, or s. 

In order to get over this difficulty it is assumed that the 
internal members of the roof truss are altered. The member 
marked (1) (2) shown in dotted lines is put into the truss, and 
the members marked PQ and QR are taken out. When this is 
done we draw a line in the stress diagram d-( 1) and the line 
0—(1). Where these lines intersect gives the point (1). From 
e on the load line draw a line parallel to E2, and from point (1) 
draw a dotted line parallel to the substituted member (1) (2), 
and where these two lines intersect gives the point (2). 

At this stage the substituted member can be dispensed with, 
and the two original members in the roof truss can be put back 
into position. The point (2) now becomes point r, and the 
points q, p, and s can be found without difficulty. The stresses 
in all the members of the left-hand half of the truss can now 
be found by scaling from the stress diagram. If the wind was 
blowing from the right-hand side instead of the left side, the 
stresses in the members of the other half of the truss would be 
the same. That is, the stress in JY would be the same as the 
stress in BM. 

Tension or Compression. To find whether a member of 
the roof truss is in tension or compression, proceed on the lines 
laid out in Chapter 15. 
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The sizes of the members can now be found without much 
difficulty by proceeding exactly on the same lines as was shown 
for the complete design given in Chapter 16. The number of 
rivets in each joint can also be found in like manner, and once 

Loads carried by roof-truss per sq,ft of Ground Area Ccnered. 

Slates and Boards.13 lbs 
Purlin s.3 » 
Roof T»uss.4 *• 

Total Vertical Dead Load per 
SQ.FT. OF GROUND AREA COVERED ~ " 20 tBS 

Vertical Wind Pressure per 
SQ FT OF GROUND AREA COVERED ~ - 20 - 

Total Vertical Load per 
5q. Ft. op Qround Area covered - 40 lbs 

Loads at Panel- Points 2,3,4.5,6,7 Atgp 8 

Each point takes % of total load on roof ~I * (55'* i2*n 40 lss) ■ ^300l8S ■ 1-5 tons 

Loads at Shoes 1 and 9 

Each point takes /i Of total load on roof « is x (55* 12V40lbs) •1,650lbs ■ 075Ton. 

Stresses in Members of Roof Truss. 

M E M B e R S Compression 
Tons. 

Tension 
Toms. 

B-M and j-y R after. II *9 

C-N AND H-X M, II. 1 
D -Q AND G-U p 10.4 
E-R AND F-T 9.7 

L-M AND L-Y Lower Tie 10. 3 

1-0 AND L-W • 8. 8 

L-S . ti 5. 6 

M-N AND X-Y 5 TRUT 1.3 
N-0 AND W-X Til ~rrr 
0 - P AND V-W Main Strut 2.6 

P-Q AHD U-V Til_ 1.4 
P-S AHD s -Y 3.4 
Q-R AND T-U Strut 1 .3 
R-S And S-T Tii 4.9 

more the student is advised that, although it may seem easy 
to understand the principles involved when reading about it, 
the best possible way to understand what he is doing is to work 
out for himself several examples. 
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order to keep the size of the various panels small enough, various 
vertical members are put in between the main columns. Look 
at the drawing marked " elevation of building ” and notice that 
along the full length, about half-way up the column, there is 

COLUMN aHAFT. 

a 6-in. by 3-in. joist. Between this horizontal joist and the 
ground line there are various vertical members which are put 
in for door, window, and wall framings. Between the horizontal 
6-in. by 3-in. side girts and the top of the columns, the panels 
would be 13 ft. by 9 ft. if the vertical 6-in. x 3-in. R.S.J. were 
not put in half-way between the columns; this joist reduces 
the size of the panel to 6£ ft. by 9 ft. 

The brick panels in the end walls are also about the same size. 
Figs. 123 and 124 show the details at the base of the columns. 
Between the foundation blocks on which the main columns rest 
there is a concrete beam which serves two purposes. First, it 
is useful as a tie to connect the column foundation blocks to¬ 
gether, a method frequently used where the ground is poor, and 
secondly, it serves as a base on which the 4|-in. walls can be 
built. A steel channel is sometimes run along the top of this 
continuous concrete beam and the wall is built into this. 

ALL WALLS TO BE THICK 

N 
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Light in the lower half of the building is provided by the 
windows, as shown in the elevation, and some light and ventila¬ 
tion is provided in the roof by using windows which swivel round 
a centre pin. These are shown in section AA, Fig. 125 (a). 

The roof covering is corrugated sheets carried on purlins. 
These purlins span over a distance of 13 ft., and are made of 
a rolled steel joist 5 in. deep by 2\ in. wide. 

To prevent the roof twisting and buckling due to wind pres¬ 
sure, diagonal bracings are put in each of the end bays, as shown 
in Fig. 126. These bracings are in the same plane as the rafters 
or the sloping sides of the trusses. 

An enlarged view of the roof truss shoe, where it sits on top 
of the steel columns, is shown in Fig. 127. It will be noticed that 
a steel channel runs the full length of the building between the 

columns, and that the top of the wall is built into this channel, 
which also serves as stiffener between the tops of the steel 
columns. 

The joists which run horizontally round the building split the 
wall height into two lengths of 9 ft. each, and this also serves 
as a stiffener between the columns. 

The Roof. In this particular design the 6 in. by 3 in. side 
girts are connected to the columns by means of plates connected 
to their flanges. Frequently in this type of construction the 
horizontal beams are connected to the columns by means of 
angles bolted to the webs only. 

As the roof trusses are spaced at 13 ft. centres, and the 
purlins are 5 in. deep and 2\ in. wide, round bars called sag 
rods are put in half-way between each pair of roof trusses. These 
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CORRUGATED 
STEEL SHEETING 

can be made about §-in. diameter. They are shown dotted in 
Fig. 126. 

Although in the sketch the doors are shown of wood, there 
is, of course, no reason why they should not be made of steel 
if so desired. If there are any rail tracks to run into the build¬ 
ing, a doorway can easily be made in the two ends of the building, 
and a sliding door fitted. Along the vertical faces of the saw 
tooth, swivelling sash windows 
are shown. These can be made 
of standard wood frames pivoted 
at the centre, or they can be 
made so as to slide horizontally 
one past the other. If ventilation 
only is required, and not so much 
light, louvres could be used, or 
short steel plates could be sub¬ 
stituted in the window frames 
instead of glass. 

The roof covering could be 
of galvanized corrugated sheets 
about 18 gauge, which weigh 
about 2\ cwt. for each 100 sq. ft. 
of area. At the end of the build¬ 
ing, instead of using the standard 
form of roof truss, it will be noticed that the 6 x 3 in. joist columns 
are taken up to the rafters, wnich are made from a 6 x 3 in. 
channel with the two flanges pointing downwards. The wall runs 
up between these two flanges. It will be noticed that only two 
sections of angles are used for the roof trusses, the internal 
members being made from angles 2 in. x 2 in. x £ in. thick. 
The rafters are made from two angles 3 in. x 2\ in. x in. 

GUSSET PLATES FOR 
CONNECTING SIDE-GIRTS 
TO COLUMNS. 

6x3*1 SIDE GIRTS. 

Fig. 127. 



CHAPTER 18 

RETAINING WALLS 

As the name implies, a retaining wall is erected for the purpose 
of retaining, or holding back, either earth or water. Formerly 
most walls were made of the heavy gravity type, whereby the 
weight of the wall itself was used to resist the overturning force 
of the earth behind the wall. 

Where dry stone walls of the type shown in Fig. 128 (a), are 
used, the top two or three layers are frequently laid in lime or 
weak cement mortar. Generally the width of the wall base is 
about one-third of the height. 

Heavy Gravity Wall. A type of heavy gravity wall is 
shown in Fig. 128 (b). This construction may be either in cut 

stone or brick. Trautwine, in his well-known Engineers' Pocket 
Book, gives various proportions for the thickness of such a wall. 
He says that when the backing is deposited loosely, or when it is 
dumped from lorries, the' thickness of the wall, if made of cut 
stone or first-class large-ranged rubble set in mortar, should be 
0-35 of the total vertical height of the wall. If made of brick, 
the thickness at the base should be 0 5 of the total height. 
When backing is consolidated in horizontal layers, the thickness 
of the wall may be somewhat reduced. 

Another type of heavy gravity wall made of solid concrete is 
shown in Fig. 128 (c). As a general rule, the width of the base 
slab for such a wall is generally made about four-tenths of the 

188 



RETAINING WALLS 189 

total height. The front wall is generally slightly battered for 
the sake of appearance, the batter varying between about \ in. 
in 12 and 1$ in. in 12. 

The front face of the wall shown in Fig. 128 (d) is made with a 
definite grade or slope towards the ground. This form of con¬ 
struction is obviously very strong to resist overturning. Usually 
the slope or batter of such a wall is made not more than about 
1 in 8, otherwise there is a danger of rainwater settling into 
the joists of the front face. A batter of 1 in 8 would, of course, 
mean that if the wall is 8 ft. high above the ground level, the 
top of the wall would be 1 ft. farther back than the base. 

Many contractors are quite accustomed to building these 
various types of mass or gravity retaining walls, and know the 
thicknesses and proportions either by such rule-of-thumb methods 
as have just been given, or very often as a result of experience 
or by means of the practised eye. 

In recent times there has been a distinct tendency towards 
building retaining walls in reinforced concrete. Considerably 
less material is used with this type of construction, as will easily 
be seen by looking at Fig. 129 (a). In this type of construction 
the weight of the earth itself rests on the bottom slab or footing, 
and this tends to prevent the wall overturning. 

Before such a wall can be designed, it is necessary to know 
the pressure which is bearing against the wall tending to cause 
overturning. This overturning force depends upon the class of 
earth behind the wall, whether the ground is likely to become 
water-logged, and whether there is vibration through the ground 
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caused by, say, traffic on a road or railway. We will show later 
on how to calculate the actual force pushing against a wall, but 
for the time being it will suffice if we get a thorough grasp of 
the various methods by which a retaining wall is likely to fail. 

The type shown in Fig. 129 (a) is known as a cantilever wall, 
because the vertical side acts like a cantilever. It can be con¬ 
sidered as fixed at the base, and the top of the wall as free, so 
that if we consider part of the wall 1 ft. long, the vertical face 
will really be a beam 1 ft. wide. This beam carries a weight 
which is the pressure of the earth behind the wall, and this 
pressure tends to bend the vertical face of the wall, so that if 
it is not properly designed, the wall may fail, as shown in 
Fig. 129 (6). 

The base slab or footing may also fail at either of the two 
points shown in Fig. 129 (c) and (d), and in order to obviate this 
steel rods are put into the wall. 

It is a well-known fact that concrete is very strong in com¬ 
pression and very weak in tension. It will be remembered that 
when dealing with reinforced concrete beams, steel bars are put 
in to resist the tensile or pulling forces, and in precisely the same 
way steel bars are put into reinforced concrete walls where there 
are tensile stresses, so that ttye concrete is really used to resist 
compression forces and steel is used to resist the tensile forces. 
A typical method of reinforcing and strengthening a cantilever 
type of wall is shown in Fig. 129 (a). 

Reinforced Concrete. Another type of reinforced concrete 
wall is shown in Fig. 130 (a). This type is called a buttress wall, 
and is much used where walls are more than about 15 ft. high. 
The buttresses, or ribs, are generally spaced between 9-ft. and 
12-ft. centres. The idea of these buttresses, or ribs, is to stiffen 
the wall by causing it to act as a slab which is supported along 
three of its edges. The vertical wall between two ribs is sup¬ 
ported along three of the four edges, the two vertical edges being 
tied to the ribs by the buttresses. The bottom edge is tied to 
the footing slab, and only the top edge is more or less free. 
Sometimes a slab is run between the buttresses along the top 
edge of the vertical slab, in order to stiffen this edge. It will 
be noticed that if a wall of this type failed, it would probably 
do so by the vertical slab breaking down the middle and opening 
out, and the student should clearly see the difference between 
this type of wall and the cantilever wall shown in Fig. 129 (a). 

In the buttress type of wall, the front or vertical slab can 
be considered as series of beams, each supported at both ends 
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by the buttresses, and loaded uniformly by the earth pressing 
behind the vertical slab. Although the various beams can be 
considered as uniformly loaded, this does not, of course, mean 
that the bottom 12 in. of the vertical carries the same pressure 
as the top 12 in. Obviously this is not so, as there is hardly 
any pressure against the vertical slab along the top, but there 
is a very considerable pressure against the vertical slab lower 
down near to the base ; as a matter of fact, the pressure is 
continually increasing from the minimum at the top of the wall 
to a maximum at the base slab. 

If a retaining wall is vertical and has to hold back water 
pressure, the water will press equally in all directions, and can 
be considered as acting normal, or at right angles, to the surface 
of the wall. In this case the pressure on the wall face would 
be directly proportional to the depth of the wall. 

Water Pressure. One cubic foot of water weighs about 
62^ lb. At the surface of the water there will be no pressure, 
and at a given depth A below surface the pressure would be 
62\ x h. The centre of this pressure would be at one-third the 
height of the water, and the total amount of the pressure would 
be 0*5 x 62*5 x A2. This is generally written as 

p = W x A2 
2 

Where W is the weight of water per cubic foot 
A is the depth of the water from the surface. 
P is the total pressure against 1 ft. length of wall. 
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Question i. A dam wail is 20 ft. high. What is the pressure at 
the base of the wall and what is the total overturning pressure, and where 
does it act ? 

Answer. The pressure on a square foot any depth from the top of 
the water will be w x h. 

In this case h is the height of the wall, assuming the dam to 
be full, that is, 20 ft., w is the weight of 1 cu. ft. of water, say, 
62J lb. The pressure of the water at the top of the wall will 
be nil, since h is nil. The pressure at the base of the wall will 

be 62-5 x 20 = 1,250 lb. The pressure half-way up the wall 
will be 62*5 x 10 = 625 lb. 

It is easy to see that the pressure depends directly on the 
depth of the water. Therefore the pressure can be represented 
by a triangle in which the depth of the water is h, the pressure 
at the surface of the water nil, and gradually increasing all the 
way down until a pressure of w x h is reached at the base of 
the wall. 

The total amount of pressure on the wall is the sum total 
of all the varying pressures and will be the*area of the pressure 
triangle. This area is base x half height, or 

h 
wh x which can be written as huh*. 

2 

In the case we are considering the total pressure against the 
wall will be \ x 62-5 x 20 x 20 = 12,500 lb. This is the total 
pressure of 1 ft. length of wall 20 ft. high. The pressure of 
water acts at right angles to or normal to the face of the wall, 
so that if the wall is vertical the pressure acts horizontally, and 
the centre of pressure below the surface of the fluid is \h, or, 
as it is generally considered, $ the height of the wall from the 
base, that is, at 

— = 6 ft. 8 in. 
3 

In the case of a wall, which is to hold back ground, the con¬ 
ditions are quite different, for the ground does not act as a fluid. 
Consider some newly excavated ground, which has a face nearly 
vertical, as shown in Fig. 131 (a). If this ground were left 
exposed .to the weather, sooner or later the ground would break 
away and take up a slope something like that shown in Fig. 131 (6). 

This slope would remain more or less permanent, and the 
angle or inclination would depend upon the class of earth; for 
instance, if it were hard chalk, the face would probably remain 
pretty nearly vertical, but if it were moist vegetable earth, or 
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Fig. 131. 

sand, the final slope would be very much flatter. This final 
slope is known as the natural slope, and the angle which this 
makes to a horizontal line is called the angle of repose. What 
the angle of repose is for various materials can only be found 
by actual experiment, or after having had considerable experience, 
but in general the following table will give a good idea of what 
could be expected. 

Angle of Repose 
Class of Earth. in Degrees. 

Sand 
Dry vegetable earth 
Moist vegetable earth 
Gravel with sand . 
Clean gravel . 

25 to 35 
3° to 35 
40 to 45 
25 to 30 
40 to 50 

Although the natural slope of the ground is the final slope 
the ground would take after weathering, it must not be thought 
a weight of earth made up of a triangle ABC actually pushes 
against the wall. This point deserves some thought. If we 
consider ground which is weathered to its natural slope, and 
we filled on this ground a wedge of earth such as shown in ABC, 
all this earth would not slide down the surface marked BC. 
What would probably happen is that about half the earth, such 
as is shown by the shaded triangle ADC (Fig. 131 (c)), would try 
to slide down the face DC, and it is this amount of earth which 
the retaining wall has to hold back. The line DC is shown as the 
line of rupture, and this line is generally made so as to cut in 
half the angle between the natural slope of the ground and the 
vertical face of the wall. There are many different theories as 
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to how much pressure is exercised against a wall; the particular 
one we have just considered is called the “ wedge ” theory. 

Thrust against Wall. It can be said that the thrust or push 
against the wall when the earth is level behind the wall takes 
place when the line of rupture is such that the angle 

ACD = £ (90 deg. - <f). 

Now the weight of a wedge of ground ACD can be found as 
follows: 

W — \ x w x H2 x tan angle 
where w = Weight of 1 cub. ft. of earth 

H is the height AC 
W is the weight of a wedge ACD 1 ft. in length. The 

angle by the line of rupture is | (90° — </>) 

The maximum horizontal thrust produced by the shape ADC 
will be equal to the weight of this prism x tangent of the angle a, 
from which we get maximum thrust against the wall due to the 
weight of earth will be : 

T = IwH* tan2 

This can be rewritten in another form : 

T = 
2 i + sin <f> 

This is the form used by Rankine for finding the thrust tend¬ 
ing to push over a wall which has a straight face, and where the 
ground is level. 

Question 2. A retaining wall with a vertical face 20 ft. high has 
to hold back vegetable earth. The ground is level and the natural slope 
is such that the angle of repose is 30 deg. Find the maximum horizontal 
thrust tending to overturn the wall. Where does this overturning pressure 
act ? 

Answer. 

Thrust = \wH* tan2 

where w is the weight of 1 cu. ft. of earth, say 90 lb. 
H is the height of wall = 20 ft. 

4 — angle of repose = 30° 

T = j x 90 x 20 x 20 x tan2 (^°~— 3°) 

18,000 x tan1 30°. 
The tan of 30° = 0*3774. 

T j8(ooo x 0*5774 * °*5774 ■» 6,000 lb. 
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This is the total pressure on 1 ft. length of wall 20 ft. high. This 
pressure acts at a distance of from Base = 6 ft. 8 in., and its direction 
is horizontal. 

Question 3. We shall now check up to see if the Rankine formula 
gives the same results for the question 2., 

The sin of 30° 

T = \wH% 
1 — sin <j> 

1 + sin <f> 

- i 
1 

X 00 X *20 X 20- 
* I 

— sin 30° 

4- sin 300* 

= 0-5 

T = 18,000 

= 18,000 x 

= 18,000 x } = 6,000 lb. 



CHAPTER 19 

REINFORCED CONCRETE WALL 

About 150 years ago Coulomb developed a theory that the 

pressure trying to overturn a retaining wall was caused by a 
wedge of earth. This wedge, as we showed in the previous 
chapter, is very much less than the wedge formed with one side 
the face of the wall and the other side the natural slope of the 
ground ; as a matter of fact, it can be shown that the maximum 
thrust against a wall which has a vertical face and where the 

surface of the ground is horizontal and level with the top of the 
wall, occurs when the wedge is considered as having an inclined 
side which bisects the angle between the wall face and the natural- 
slope of the ground. The sloping line of the wedge is known as 
the line of rupture. 

Let us try and form a clear picture of the wedge force which 
is causing a horizontal thrust against the wall. Looking at 

Fig. 132 (a), we can see that if the retaining wall was removed, 
some of the ground would immediately slip down. We also 
know that there is friction between the various surfaces, and that 
this friction is equal to a normal pressure multiplied by some 
constant which is known as the coefficient of friction. 

BC is the natural slope of the ground, and the amount of 
friction between this surface of the solid ground and the under¬ 
side of the surface BC on the wedge, would be just sufficient to 
prevent the wedge ABC from sliding forward in one solid mass, 
and therefore, provided the wedge-shaped ground ABC did not 
break up, there would be no horizontal thrust on the wall at 
all. What would happen in practice is that the first movement 
of ground after the wall has been removed would be that a slip 
would take place along what is known as a line of rupture and 
it can be proved the maximum horizontal thrust on the wall 
occurs when this line of rupture bisects, or divides equally in 
two, the angle formed between the back of the wall and the 
natural slope of the ground. 

Horizontal Thrust. We can now find graphically the 
amount of horizontal thrust and the overturning moment which 
results from this horizontal thrust. Consider the back of the 
wall to be vertical, and the ground surface horizontal, and level 
with the top of the wall. Fig. 132 (a) represents these conditions, 
and the angle of slope in this case is assumed to be 30 deg. The 

196 
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line BO shows the plane of rupture, and the wedge of earth is 
ABO. This wedge tries to slide vertically downwards through 
its centre of gravity G. 

Draw a line ED through G, representing to scale the weight 
of a prism of earth formed by the triangle ABO, and 1 ft. in 
length. Where this vertical strikes the line OB, draw a line 
DH normal, or at right angles to OB. (If the surface OB was 
perfectly smooth and without friction, the reaction would be 
normal or at right angles to line BO, that is, in the direction of 
the line DH. As there is friction, the reaction acts along the 
line FD, which is drawn so that the angle FDH is the same as 
the angle of repose of the natural ground.) Draw a line DF, 
and from E draw a horizontal line to find the point F. FE 

measured to the same scale as the vertical line ED will give the 
horizontal component or thrust which tries to overturn the wall. 
This force acts at a distance of from the top of base. 

The weight of the wedge ABO 1 ft. long is easily found. 
Since the line BO bisects the angle 90 — ^ at B, it follows that 
the angle ABO must be half 90 — <f>. The area of the triangle 
ABO is easily seen to be 

Length AO x Length AB 
2 

Since the surface of the ground is horizontal, the angle at 
A is 90 deg., and the length AO will be the tangent of the angle 
at B multiplied by the length AB, but the length AB =h, the 
height of the wall, and the angle at B = J (90 — <f>). 
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We can now find the weight of the prism formed by a wedge 
of earth ABO, which is i ft. long (consider I ft. run of wall). 

Area of prism — ~ X (h tan — 
2 \ 2 

= tan 22^1* 
2 2 

Volume of a prism i ft. long will be area A OB x i, and the 
weight of the prism will be volume x w (w being the weight of 

i cub. ft. of earth). 

This equals x tan §5-'t. 
2 2 

This is the weight which is represented in the drawing by 
the line ED. Now the line EF represents the horizontal thrust, 
and the length of line EF can1 easily be found by multiplying 

length ED by the tangent of the angle at D. This angle is —--, 
2 

from which we see that 

EF = ED x tan 
2 

but ED — x tan 
2 2 

.'. EF 

EF 

x tan 

x tan4 

X tan 
90 - 4 

This can be written as 

T = \wh2 tan2 ^45 — ^ 

where T — the maximum thrust on the wall with a vertical face, 
and with the ground horizontal and level with the 
top of the wall 

w is the weight of 1 cu. ft. of earth 
h is the weight of the wall in feet 
<f> is the angle of repose, or the angle formed by the natural 

slope of the ground. 
For this particular case, Rankine by quite different methods 

arrives at exactly the same result, but the Rankine formula is 
generally written in another form— 

T = \wh**- 
— sin <f> 

sin 4 
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The value --sjn i 
i *4” sin <j> 

is the trigonometrical reduction of tan2 

The thrust or pressure acts normal or at right angles to the 
back of the wall, and at a^ height of \h below the surface, or \h 

up from the base. 
The student should be careful to remember that the formula 

which has just been given applies only where the ground is 
horizontal and at a level with the top of the retaining wall. 

Design of Retaining Wall. Having now found the formula 
which gives the thrust or force tending to overturn a wall, we 
shall proceed to show you its use by making a complete design 
of a cantilever type of retaining wall. 

Problem. Design a reinforced concrete retaining wall of the canti¬ 
lever type for the following conditions : Wall, 14 ft. high ; angle of repose, 
30 deg. ; weight of earth, 120 lb. per cubic foot; ground horizontal and 
level with the top of wall. 

Answer. Generally the base, or foot, is made about half the height 
of the wall, and the toe, or footing in front of the wall, is usually less 
than the heel, or part of the footing behind the wall. We can therefore 
start with rough overall dimensions as shown in Fig. 132 (a). We showed 
in the previous chapter that the vertical part of the wall acts like a canti¬ 
lever, and if the previous Chapters dealing with bending moments on 
beams have been followed, there will be no difficulty in appreciating this 
point. 

There are two mam forces to be considered. One is the horizontal 
thrust trying to push the wall over (see Fig. 133 (b) ), while the other is 
the downward weight of the wall itself and the weight of the earth which 
rests on the heel of the wall (see Figs. 132 (6) and 133 (a) ). By taking 
moments about the lower corner of the toe, we can find the centre of 
gravity of the vertical loads (refer Chapter 7). 

The weight of the reinforced concrete wall will be taken at 150 lb. 
a cubic foot, and the weight of earth is given in the problem as 120 lb. a 
cubic foot. Reference to Fig. 133 (a) will show that the centre of gravity 
of all the downward loads acts at a distance of 4 ft. from the toe of the 
wall. This force or load is what keeps the wall from overturning. In 
like manner, the horizontal thrust against the wall produces a moment 
which, of course, is a force acting at a distance, and this moment tries 
to overturn the wall. In our case the overturning moment amounts to 
the thrust x distance of centre of pressure above base. 

Thrust — \wh2 
1 — sin <t> 
1 -f sin <f> 

and the distance at which this acts is - +t 
3 

where t is the thickness of base slab, 
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- , /, f — sin (f>\ (h \ 
Overturning moment = l £whl—-—r—j) x \ + U 

\ i sin '3 ' 

h = 14 ft. 
/ = 1*5 ft. 

a; = 120 lb. a cubic foot 
sin ^ = sin 30 deg. = 0-5. 

^ , /i 120 o-5\ /14 , \ 
Overturning moment = x — x 14* x —J x 4- 15)• 

Overturning moment = 3,920 x 616 
= 24,190 ft.-lb. 
= 290,100 in.-lb. 

The moment of the downward forces preventing this overturning 
amount to— 

Total downward load x Distance of CG from toe 

= 11,310 lb. x 4 ft. 
= 45,240 ft.-lb. « 542,900 in.-lb. 

These figures show that the wall will not overturn. Graphically the 
resultant of the downward forces and the horizontal thrust is shown in 
Fig. 133 (c), and this resultant intersects the base slope at a distance of 
2 ft. from the toe. 

Design of Vertical Wall.—Consider 1 ft. run of wall, and then imagine 
the wall to be a cantilever beam 1 ft. wide, 14 ft. long, and loaded in 
the manner shown in Fig. 134. The load varies from nothing at the top 
of the wall, which is the free end of the beam, to a maximum at the base 
of the wall, which is the point of the support. The total area of this 
pressure 

W 
diagram will be h x —, and this must 
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equal the total thrust on the 
wall, which is— 

Thrust 

Thrust 

i sin ^ 

J x 120 x 141 x 

LOAD VARIES FROM 560 LBS. PER 
FT. RUN AT SUPPORT TO ZERO AT 
TOP OF WALL 

Thrust = 60 x 196 x i 
Thrust « 3,92p lb. 

W 
3,920 lb. = h x — 

h is 14 ft. 

W 3,920 
— =»- = 280 lb. 
2 14 

W « 560 lb. 

The bending moment at the 
foot of the wall can now easily 
be found by taking the total 
area of the pressure diagram, 
which amounts to the total 
horizontal thrust, or 3,920 lb. 
Since the load is not uniformly 
distributed, it can be con¬ 
sidered it will act through the 
centre of gravity of this pres¬ 
sure, which is \h from the base, 
and the total bending moment 
will be— 

C.OFG. OF 
PRESSURE 
ON WALI_ 

ff ■3,920 IBS. 

r 27.440 INCH-LBS. 

BENDING MOMENT 

DIAGRAM 

THIS FACE IS IN TENSION SO THAT 
STEEL BARS ARE REQUIRED NEAR * 
THIS FACE TO TAKE THESE STRESSES 

BM 
219,500 

1nch-1W- 

BENDING / 
MOMENT / 
27,440 IN.LBS. 

BENDING 
MOMENT 
2I9.5CO IN.LBf 

Fig. 134. 

3,920 lb.- x \h — 3,920 x 

This equals 3,920 x ~ x 12 
3 

219,500 in.-lb. 

It is easy to see that the bending moment on the beam will get less 
the farther away we get from the point of support, and therefore we shall 
require to use less steel. 

Bending Mtoment. Consider the bending moment a half¬ 
way up the wall, that is, at a height of 7 ft. above the base slab. 
Here the triangle of pressure or load will vary from nothing at 
the free end to 280 lb. at the section we are considering. The 
total thrust, therefore, on the top 7 ft. of the wall will be— 

7 ft. x = 980 lb. 

n 
This will act at a distance of - = 2% ft., from which it is 

3 
easy to see that the bending moment at section xx will be 

980 lb. x - X 12 == 27,440 in. lb. 
3 o 
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Steel Reinforcement Required.—In Chapter 13 we showed 
that if the. steel had a safe stress of 16,000 lb. a square inch, 
and the concrete a safe stress of 600 lb. a square inch, the resist¬ 
ance strength of the concrete would be the same as the resistance 
strength of the steel, if the amount of steel used was 

0-00675 x B x d 

where B is the breadth of the beam 
d is the effective depth of the beam. 

It has been shown in Chapter 13 that the resisting moment, 
if the area of steel is 0-00675 x B x d, amounts to— 

RM — 95 x B x d1. 

In this case we are considering 12 in. run of wall, and this 
is the breadth of the beam. We can therefore find the effective 
depth as follows: 

RM must be equal to, or greater than, the B.M. 

RM = 95 x B x d2 
If RM = B.M., we get— 

= 
B.M. 

95 x B 

d = 

d = 

J. 
V: 

B.M. 

95 x B 
219,500 

95 x 12 

= V194. Say 14 in. 

Area of steel = 0*00675 x 12 x 14 
= 1*13 sq. in. 

A bar $ in. diameter has an area of o*6 sq. in. Therefore 
two bars | in. diameter will be sufficient to give the required 
area of steel, and we shall use for the reinforcing at the base 
of the wall $ in. diameter bars spaced at 6-in. centres. (See 

Fig. I45-) 
Half-way up the wall the bending moment has been shown 

to be 27,440 in.-lbs. The thickness of the wall at this position 
would be 12J in., and the effective depth of the beam, which is 
the distance from the front of the wall and the centre of the 
steel would be io£ in. Obviously there is no point at all in 
carrying all the steel to the top of the wall, and very often half 
the bars are stopped half-way up the wall. 

In the case of walls 20 ft. or more in height, three changes 
of steel area may be made, but for walls 14 ft. high, perhaps 
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two changes would be 
sufficient. Cutting out 
half the steel will mean 
that every alternate bar 
will be cut off so that the 
bars will now be spaced 
at 12-in. centres instead 
of 6-in. centres. The fol¬ 
lowing check will show 
how this affects the 
strength of the wall: Re¬ 
member that we really 
have a beam which is 
12 in. wide, the effective 
depth is 10\ in., and the 
amount of steel reinforc¬ 
ing is one | in. diameter 
bar, which has an area of 
o-6 sq. in. Position of 
the neutral axis can be 
found by the formula 

n = V2pm + (pm)2 — pm 

where m is the modular ratio = 15 

p is the ratio of steel to concrete 
n is ratio between distance of neutral axis from front wall 

to effective depth 

These terms were explained in Chapter 13. 

. o*6 o*6 
p =- = —- = 0:005 

12 x 10*5 106 

n = V2 x 0-005 x 15 + (0-005 x 15)2 — 0-005 x 15 

n — 0-320 

where a is ratio of lever arm to effective depth of beam. 
The strength of the concrete to resist bending— 

Mc = J/cxnx ja(Bd%) 
fc = 600 lb. 

Me = J x 600 x 0-32 x 0-89 x (12 x 10-5*) 
Me = 113,000 in.-lb. 
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Strength of the steel— 

M,-P x /, x 
= 0-005 x 16,000 x 0-89 x 12 x 10-5* 

Mt = 94,200 in.-lb. 

The lesser of these two figures determines the strength of 

the wall. 
Since we have proved that the bending moment at this point 

is only 27,440 in.-lb., the wall will be amply strong if J-in. bars 
spaced at 12-in. centres are used from half-way up the wall to 
the top of the wall. 

Design of Base Slab. Fig. 136 (a) shows the upward pressure 
which the ground must exert because of the vertical component 
of the resultant. This vertical component is 11,310 lb., as 
shown in Fig. 133 (c), and acts at a distance of 2 ft. from the front 
edge of the wall. 

The vertical loading and the downward pressure which results 
therefrom is shown in Fig. 136 (b). The total net pressure on the 

GROUND 
HORIZONTAL 

(Cb) 

vertical 
component 
OF 
RESULTANT 
PRESSURE 
alt, 310 LBS. 

T 
3770 IBS. 
PER SQ.FT. 

ITT* 

ti/ako lb$ 

I I t g* m m 0 
R 1 Li£i® 

WEIGHT OF 
WALL ON 1 SQ.FT. 
OF SLAB 
= APPROX. 150x14 
= 2080 LBS 

/# 
tjs 

/ft 

w 
tt fK <9 
. * 

/ C £ Cb) 

SO 

I. 
EARTH ON 
WALL FOOT 

- 7SS0 
4-5 

= 1680 LBS /SQ FT. 

* 2300 LBSj/ 

^ PER SQ.FT. 
* - 150x1-5 

= 225 LBS. 

DOWNWARD 

1900 
1 lbsjsq 

OOWNWARO PRESSURE 
DISTRIBUTION FROM 
EARTH AND WALL 

UPWARD 

BENDING MOMENT 
AT 00 = 184,200 

* IN. LBS. 

DISTRIBUTION OF UPWARD 
PRESSURE FROM GROUND 

V. 

net pressure 

?lab°°T 0F *550 L^S- 
SLAB persq.ftJL/ 

ThiSI diagrams the load 
distribution ON babe OF wall To cind bending moment 

- AT 00 Take moments TO RiQhT of 00, THEM-—- 

BMoo * (iBOOkix40 t (JjS2x 3-5* ?^l) = <84.20C !nch-,SS 

i9oo lbs! 
-U or 1 

Fig. 136. 
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base slab is the difference between the downward pressure of the 

wall and the earth and the upward pressure of the ground beneath 

the wall. The critical point is at section 00 in Fig. 136 (c), and 

the calculations shown on the .drawing prove that the bending 

moment at this section is 184,200 in.-lb. 

Two Cases. There are now cases open to us. We can either, 

assume an economical percentage of steel and design for a thick¬ 

ness of concrete in exactly the same way as we found the required 

thickness of the vertical wall, or we can assume a thickness of 

concrete and find the required amount of steel to resist the 

bending moment. We shall assume the concrete footing to be 

1 ft. 6 in. thick. It will be near enough to assume that the 

effective lever arm or distance between centres of gravity of the 

steel area and the concrete area are seven-eighths of the effective 

depth of the beam. The effective depth is the distance from 

the face of the concrete to the centre of steel, so that if the steel 

is placed 2 in. below the top face of the concrete slab, the effective 

depth of the beam will be 16 in. The effective lever arm would 

be approximately seven-eighths of this, or 14 in. 

Let A equal the area of steel required in 1 ft. of length. 

tm. „ B.M. 184,000 0 „ 
Then A =-7- =--= 0-825. 

14 x 16,000 14 x 16,000 

A f-in. diameter bar has an area of 0-44 sq. in., and a |-in. 

diameter bar an area of o-6 sq. in. You can therefore use either 

f-in. bars spaced at'6-in. centres, or f-in. bars spaced at 8-in. 

centres. Since the vertical bars are spaced at 6-in. centres, we 

shall use f-in. bars at the same spacing for the base slab. The 

bars can be arranged as shown in Fig. 135. 



CHAPTER 20 

FOUNDATIONS AND FOOTINGS 

We shall now consider various kinds of building foundations 
and footings. For footings under brick walls, as shown in 
Fig. 137 (a), the concrete bed should be at least 4^ in. wider than 
the footing of the wall on each side and generally not less than 
9 in. thick. For heavy buildings, if there is any doubt as to the 
reliability of the sub-soil, trial holes should be dug and the under¬ 
lying strata examined. 

Where buildings are of a timber construction and in ground 
which is water-logged, the footing is sometimes made of the type 
shown in Fig. 137 (b). This sort of ground is frequently met 
alongside rivers and canals. 

6x8*5tu Beam 

Timber Footing for 

USE OH WATERlOfrG 
Ground 

Fig. 137 (1a and b). 

Where the ground is soft to a great depth, a wide trench 
filled with concrete is sometimes used to distribute the weight 
of wall over the sufficiently large area. Frequently it is necessary 
to drive wooden piles into the ground to increase the load-carrying 
capacity of the concrete footing. In soft ground, the supporting 
power of the wood pile depends more on the skin friction than 
anything else. If the ground is patchy and has alternative soft 
and hard layers, it may be necessary to put a cast iron point 
on to the end of the piles as shown in Fig. 138. To prevent the 
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Load wo Tons. head of the pile spreading when 
it is being driven, a steel ring is 
sometimes used. 

As an alternative to the type 
of timber footing shown in Fig. 
137 (t), two layers of little planks 
are sometimes used for carrying 
walls in soft ground. 

In buildings where the steel 
columns carry heavy loads and 
where the ground is too soft to 
carry the necessary weight, a 

foundation block of plain concrete carried on heavy square or 
round wooden piles, are made with pointed ends as shown in 
Fig. 139. The concrete in this case is unreinforced. In modern 
practice concrete piles are frequently used instead of timber. 
In order to spead the load over a sufficiently large area to prevent 
the footing sinking into the ground, foundations of the types 
shown in Figs. 140 and 141 are sometimes used. It will be seen 
that, in the steel column itself, there is a heavy steel slab and 
immediately under this a set of rough steel beams which are in 
turn carried on a lower set of small beams. Gas pipes are often 
used as separators. Each layer of beams is called a tier so that 
the grillage which is shown is known as two-tier grillage. 

We now draw attention to the foundations shown in Fig. 142 (a). 
This type has been frequently used where there is heavy frost 
or where there is good ground at some feet below the surface. 
A square concrete block of sufficient area to keep the bearing 
pressure within reason¬ 
able limits is used as a 
base, and on this a 
plain concrete or ma¬ 
sonry board is built on 
which the steel column 
is carried. Two very 
common types of foun- 
dations for steel 
columns are shown in 
Figs. 142 (b) and 142 (c). 
In recent years the re¬ 
inforced concrete has 
come very much into 
the picture on building 

Load paom 
Column >40Toni 

5t«l Slab BftwrfN 
Column Ba9C AND 

TOP OP ftftlLLAtf 

flfAM*. 

Trpi of JSTticl Beam Grillage 

Footing under Heavy Loads 

Fig. 141. 
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construction work. In Fig. 143 (a) we see the footing with a 
Sloping top, and in Fig. 143 (b) a similar kind of footing with 
a flat top. For practical reasons the flat top is preferred. Steel 
bars running both ways are placed under the concrete to prevent 
failure which might otherwise take place, as shown in Fig. 144. 
Sometimes the plain concrete footings of the type shown in 
Fig. 145 are used ; here the foundation block is stepped in order 
to save concrete. Fig. 146 shows timber footing. 

(ou) 

. Stiil Column. i * \ 
, r 4 *, 
(b) 

' ! 
. < 

Plain 
*CCTJc«ETe 
" OR 
Masonry. 

ms MjJll BKMEU 
HUBS 

Sti tL 
Column 

V*4V 

CoNCAftf 
Foundation 

4-0' Dti* 

Fig. 142. 

Concrete Mix. Concrete is a mixture of cement, sand and 
aggregate. The most common mix is i: 2 :4. This has already 
been explained. The practical builder will not be very long in 
finding that this mix of concrete is not watertight. Concrete 
roofs are frequently a source of trouble unless they are made 
watertight either by some form of asphalt or other special water¬ 
proofing compound. In some cases trouble has been overcome 
by heating the flat concrete surface and applying hot paraffin 
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wax. The melted wax settles into the concrete and makes the 
roof watertight. There are quite a number of proprietary articles 
to be applied as a varnish which are used to make concrete 
watertight.' Sometimes it is desirable to have a large mass, as 
in the case of the concrete foundation blocks in which case weaker 
mix than 1: 2 :4 is satisfactorily used. In other cases it is desir¬ 
able that columns and floor beams should be as small as possible, 
in which case a richer mix can be used. A mix of 1:1}: 3 is 
much stronger than a 1:2:4 m^x and Is almost watertight. 

Chains. There is a rhyme easy to remember which gives 
within very reasonable limits the safe lifting capacity of chains. 
It runs like this: 

“ Doubling the square of the chain in eighths gives a safe 
load in hundredweights.” 

Suppose we wish to find the safe load which an iron chain 
made of round bar § in. thick will safely lift. We proceed as 
follows. First find the number of eighths in the chain metal. 
In this case it is obviously three. To square it, we multiply 
this three by itself, so that three times three = 9. We then 
double this nine and find eighteen, which is the safe load the 
chain will lift in hundredweights. By similar reasoning, the safe 
lifting capacity of a chain made from £-in. iron would be the 
number of eighths, in this case it is four, four times four = 16. 
This doubled gives thirty-two, which is the safe lifting capacity 
of chain. If the chain is in a particularly good condition and 
the load to be lifted a dead load, it is safe to say that the chain 
can be used to lift one-quarter more than the amount which 
results from the above simple rule. IfK on the other hand, the 
chain has not been annealed for some time, and if the crane driver 
is likely to lift the load with a shock, then the safe lifting capacity 
of the chain should be taken as about one-quarter less than the 
figure which results from the rule given above. 

Wood Posts. Although steel has very largely superseded 
timber in this country, 'there is still a good deal of timber used 
on chemical plants, where acid would corrode steel. In the 
United States, Scandinavia, and South America wood construc¬ 
tion is still used on a very large scale. 

Wood is not so reliable as steel, and its strength depends on 
the kind of wood, quality, and dryness. Unseasoned timber is 
much weaker than dry timber (timber is called dry when it has 
not more than about 15 per cent of moisture. Unseasoned wood 
frequently contains 40 to 50 per cent of moisture). 

As the strength of wood varies within very wide limits, it 
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is useless to attempt the same closeness in design as can be done 

in steel construction. 

Radius of Gyration. The approximate radius of gyration 

for various sections is shown inv'Fig. 147. 
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Fig. 147. 

Eccentric Loading on Pier, A pier is loaded as shown in 
Fig. 148. It is 4 ft. high. Find the intensities of stress on 

Hf: 

w 
IM 

Moment of Inertia 

BxDxDxD 
12 

•li£2, 

'oi 24" T Bmii 

Tension here. 
UphTt\ 

78/teJ< 

'! ' * 
Max. Pressure at A 

W Wxe 
^ Compress 

iw L^l! ton BxD^ BxOxD 
€ 

4 Till 234/bs. 

T 

mI f distance Vfrom Centre Line 
C is not more than Q there is no up¬ 

lift on face mCI * 

Fig. 148. 

the faces of the pier nearest and farthest away from the load. 
What is the maximum eccentricity of load if no tension is to 
occur in pillar. 

Stress - " ± g y * >■ 
A I 

T t . , B X D* 12 X 24* q * a I for a rectangle =-= -— = 13,820 in.4- 

A — B x D = 12 x 24 = 288 sq. in. 
y — 12 in. 
e = 8 in. 
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Then stress - ± 10x2,240x8 xm 
288 13,820 

= 78 ± 156 = + 234 or - 78. 

Tension on side furthest from load . . 78 lbs. 
Compression on side nearest load 234 lbs. 

If no tension is to occur, then 

W W x e x v 
Stress —-r- — .-=—— = 0 

A I 

78 
= 78 — XQ'5« = 0, from which e = —— = 4 in. 19*5 

Therefore maximum eccentricity for no tension to occur — 4 in. 



CHAPTER 21 

WOOD AND CAST-IRON COLUMNS. 

WELDING 

.Cast-Iron Columns. There is so much variation in the 
compressive strength of different cast irons that it is almost 
impossible to get a formula for the safe stress -per square inch 
which can be considered accurate. 

In many practical cases the end-fixing of cast-iron columns 
can be considered as being something between (one end fixed 
and one hinged) and (both ends fixed). 

Any of the following formulas are accurate enough for cast- 
iron columns design in ordinary circumstances: 

(i) Safe stress per square inch = 9,000 — . . . New 

York. 

(2) Safe stress per square inch = 10,000 

(3) Safe stress per square inch = - 

Rankine-Gordon. 

boL 
~7T 

Chicago. 

1 + 
LV 

5,000 \R 

(4) Safe stress per square inch = 5-5- 
20 K 

where L is length of column in inches. 
R is least radius of gyration in inches. 

London. 

Round hollow columns are the most common form of columns, 
but square and I section are also used because of the difficulty 
of making connections to round columns. The I section has 
also some advantage' over either hollow round or hollow square 
because no core is required and brickwork can be built up to 
it in the same manner as is done with steel columns. The length 
of a cast-iron column should not exceed 15 times the least side, 
although sometimes 20- times the diameter is allowed. The 

ratio of ^ should not exceed 70 ; with hollow round or hollow 

square columns great care is necessary-to see that the thickness 
of metal does not vary owing to the movement of the core. 

Calculate the safe load- which can be carried by a round 
cast-iron column 10 in. outside diameter, 5 in. inside diameter 
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12 ft. long. The radius of gyration will not vary whichever 
formula is used, nor will the area of the section. 

n 10 + 8 D =-!— = o in. 
2 ' 

For Round Hollow Columns. Appioximate radius of gyration 
= 0-35D 
= o-35 in. x 9 in. = 3-15 in. 

D is mean diam. = hole + thickness of metal. 

Gyration = ^ „ . -r, j- t r' ,• /Moment of inertia Correct Radius of Gyration = l -—-. 

Moment of Inertia for Hollow Cylinder 

n(D* — d*) _ 22 io4 — 84 _ 22 

64 7 X 64 7 
(10 x 10 x 10 x 10) — (8 x 8 x 8 x 8) 

_ 22 x 10,000 - 4,096 = 22 x 5,904 = 4.059 = 2gq in 4 

7 64 7 64 14 

A ti(D2 — d2) 22 io2 — 82 22 36 q 
Area =%£- = — X -= — x — = 28*2 sq. in. 

4 7 4 7 4 

Radius of gyration = = \J^\ == ^10 2 “ 3*2 *n* 

L 12 x 12 

By formula (1). Safe stress per square inch = 9,000 — 

40 x (12 x 12) 
= 0,000 — --v-- 

3*2 

5.760 
= 9,000 — —— 

3*2 

= 9,000 — 1,800 
= 7,200 lb. = 3-21 tons per square inch. 

By formula (2). Safe stress per square inch = 10,000-^ 

60 x (12 x 12) 
= 10,000 —---i 

3*2 
8,640 

= 10,000 — 
3*2 

= 10,000 — 2,700 

= 7,300 lb. = 3*26 tons per square inch. 
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= 5'5 
12 X 12 

20 X 3'2 

= 5'5 — 2-25 = 3 25 tons per square inch. 

Safe load = Safe stress per square inch = Area. 
Safe load = by formula (1) = 3-21 x 28-2 = 90 tons. 
Safe load = by formula (2) = 3-26 x 28-2 = 91 tons. 
Safe load = by formula (3) = 3-56 x 28-2 = 100 tons. 
Safe load = by formula (4) = 3-25 x 28-2 = 91 tons. 

- 7i(C’ + <*•>- iv'e* + * 

Welding. An alternative method of uniting plates and 
pieces of metal together instead of using rivets-is by welding. 
If two pieces of wrought iron or mild steel are heated together 
to a white heat and hammered or pressed together, they become 
permanently united by fusion, and this process is called welding. 

The oldest form is that done by blacksmiths over an anvil. 
Two bars of wrought iron are easily welded together, but the 
join so made, although reliable, is not as strong as the original 
material, so that if the parts were put in a testing machine and 
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pulled apart until they break, it is probable that the pieces would 
fail at the weld itself. 

Thermit Welding. Thermit is the trade name for the mixture 
of aluminium and oxide. When ignited, the powder fuses at 
a very high temperature—probably somewhere in the region of 
3,000° centigrade. The process is sometimes described as a cast¬ 
ing process as special crucible methods are necessary. The parts 
which are to be united are placed in a mould with a crucible 
which contains the thermit over the mould. Once the thermit 
is ignited the metal runs into the mould at such a high tem¬ 
perature that it melts the parent metal of the two parts which 

VEE AND STRAIGHT 

Fig. 149. 

are to be united and a solid mass is formed which takes ihe 
shape of the mould. Heavy bridge bearings, repairs to ships’ 
parts and repairs to tram rails and train rails have all been 
successfully done by the thermit welding. 

Gas Welding. By mixing oxygen and acetylene or oxygen 
and hydrogen, or oxygen and coal gas, and igniting them under 
pressure, a very hot flame can be made. The compressed gases 
are usually stored in cylinders and usually the proportion is 
about 1*7 parts of oxygen to 1 part of acetylene. Various valves 
and gauges are provided so that the correct pressure can be 
adjusted and usually the oxygen is compressed to about 120 
atmospheres, which has the very high pressure of 1,800 lb. per 
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square inch (Fig. 150). The gases from both cylinders are con¬ 
nected to a nozzle and the flame is played on to the surface of 
the parts to be welded. The heat from the flame melts the 
parent metal and additional metal is laid on by melting rods 
in the flame. 

Around engineering shops and shipyards oxy-acetylene is 
much used, both for welding parts together and also for cutting 
up plates and for cutting out special shapes of material. 

Welding of Cast Iron. It is generally considered that cast 
iron is not weldable, and it is true that it cannot be welded by 

SAFETY VALVE. 

the same methods as the blacksmith uses for welding two wrought- 
iron rods together. Nevertheless there is no doubt that cast iron 
can be very satisfactorily welded together by using bronze for 
the electrode. Cast iron which has been clean cracked and where 
there is no very large stress, has been successfully welded by 
using oxy-acetylene and cast-iron electrodes. If this method is 
to be successful it is necessary that the melted metal at the 
crack shall be continuously scraped away by the cast-iron elec¬ 
trode. As the method is not much used, it need not be further 
described. Most of the difficulties met when welding cast iron 
can be overcome by using suitable bronze rods for welding. The 
great advantage of using bronze is that it has a relatively low 
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melting point, and the bronze itself being very ductile forms a 
sort of shock absorber. 

A further good point is that the bronze itself has a higher 
tensile strength value than cast iron, so that a'good bronze weld 
can be made on quite heavy cast-iron parts which are subject 
to considerable stress. 

Before the actual welding is commenced, the parts to be 
welded together should be cleaned, and any' rust, scale or'grease 
carefully removed. The parts to be welded should then be 
bevelled off so as to form an angle of approximately 70° in the 
vee. Bronze metal from a bronze electrode will flow into a smaller 
vee than the metal from a steel electrode. Before the actual 
welding takes place the parts to be joined should be heated to 
a dull red heat by means of a blow-lamp. A good flux should 
always be used and the surfaces will flux before the actual welded 
material has run into the vee. If the metal is heated too much 
the metal from the bronze rods will form into balls and run off. 
Like every other sort of welding, practice is necessary to get 
good results. 

It is possible to weld cast iron by using electric arc welding 
and nickel or monel metal electrode. When this is done it is 

1 

better to have the electric current with reverse polarity. That 
is to say, that the part to be welded should have negative current 
from the generator and the electrode itself should have positive 
current. In heavy welding repairs it is quite a common practice 
to screw steel studs into the mass of the cast iron and leave the 
ends projecting so that a better hold is made between the parent 
metal and the welded metal forming the vee. 

Resistance Welding. In the case of gas welding using ojcy- 
acetylene or electric arc welding, there is no actual pressure 
applied. The welding is done by adding molten metal to the 
surfaces to be joined. 

Resistance welding is done by passing a low voltage electric 
current through the metal; a welding heat is created and the 
joint is made good by pressure or forging action—special machines 
are used for this purpose. Resistance welding can be either spot, 
butt, or along a seam. 

The size of the weld zone in spot welding depends on the 
intensity of the current, the time the current is applied and the 
mechanical pressure applied to the plates through the electrodes. 
Some of the advantages which spot welding has are that the 
use of rivets is not necessary, working costs are low, there is no 
drilling or punching of holes and the parts are quickly assembled. 
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For continuous weld along the seams of thin sheets can be 
economically and quickly done by these special machines using 
resistance welding. 

Electric Arc Welding. This is by far the most common 
method of welding used in connection with railway bridges, 
buildings or steel drums. During the past twenty years enormous 
advance has been made in the technique of welding, and to-day 
it is used on submarines, fighting tanks, boiler drums under heavy 
steam pressure, and all kinds of structural steelwork. The 
principle is simple. An electrode is a metal conductor which 
when heated to melting-point deposits metal on to other surfaces 
which have been brought to a molten state. The electric 
generator has one connection made to the parent material and 

the other connection is made to the electrode. By this means 
an electric arc is formed and temperatures are generated 
sufficiently high to melt the parent material—that is to say, the 
material which is really the two parts to be moulded 
together. 

The electrodes are sometimes made of bare steel wire ; some¬ 
times they are coated. Plates to be joined are generally specially 
shaped as shown in the sketch. When the join is made along 
the end of a plate it is called the End Weld, and when it is made 
along the side, it is called a Side Weld. Fig. 151 shows a welded 
roof truss, and it is interesting to compare this with the riveted 
one of about the same span. 
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Strength of Timber Posts. Many complicated formulae 
for finding the safe stress in a timber post are available, but 
there is a very simple one which gives very satisfactory results. 
It is adopted by the American Railway Engineering Association. 

where p is the maximum allowable stress in lb. per square inch 
S is the maximum allowable compression parallel to the 

grain for short blocks in lb. per square inch (see table 
below) 

L is the length of column in inches 
d is the (least) side of the column section. 

Values of S for Timber 

Spruce, deal, Norway pine ..... 800 lb. 
Good oak or pitch pine ..... 1,100 lb. 
Good Douglas fir . 1,100 lb. 

The formula given above applies only to columns with both 
ends flat. 

Example.—Design a square spruce column to carry a load 
of 45,000 lb. (20 tons) for a 12-ft. length. 

Try a 8 in. x 8 in. 

t, 8«.(i - 
_ 800/1 - 

\ 60 x 8/ 

= 800(1 — 0 3) = 800 x 07 — 560 lb. per square inch allow¬ 
able. 

P 45,000 45,000 ,, . , , , 
— = —& = — = 703 lb. per square inch actual. 
A o X 8 64 

Therefore an 8 in. x 8 in. column is not strong enough. 
Try a 9 in. x 9 in. 

. o / 12 X I2\ p = 8oo( I - 2-) 
\ 6o x 9/ 

= 8oo(i — 0-267) = 800 x 0733 = 586 lb. per square inch 
allowable. 

^ ~ = = 555 lb. per square inch actual. 

A 9 in. x 9 in. column is suitable. 
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Actually the safe strength is dependent on: 
(1) Whether wood is sound, free from knots, shakes and 

cracks. 
(2) Whether wood is to be exposed to water, sea, acids, heat. 
(3) Whether wood is dry or wet (seasoned). Dry is less than 

15% moisture. 
(4) Class of wood. 
(5) Condition of end-fixing, and whether load is live or dead. 

(6) Slenderness ratio j. 

L is the length or height of post in inches, and d is least side. 

Where ^ is more than 10, the following table gives good 

average values : 

L 
Safe Stress in lb. per square inch. 

d 
Spruce, Norway Pine and Fir. Pitch Pine and Oak. 

10 
lb. per square inch. 

650 
lb. per square inch. 

850 
12 620 800 

*5 | 580 750 
20 510 650 

25 420 570 
30 350 500 

Many authorities limit -3- to not more than 30. 

Example. What size of pitch pine post would be required 
to carry a load of 7,400 lb. ; the length of the post is 134 in. ? 

Assuming 4 in. x 4 in. post: 
One formula gives: 

Safe working stress = 1,000 — 

Safe working stress = 1,000' — 

= 1,000 — (15 x 34) = 1,000 — 510 = 490 lb. per square inch. 
Area of 4 in. x 4 in. = 16 sq. in. 
Safe load = Safe stress x Area = 490 x 16 = 7,840 lb. 

If the ~ is not to exceed 30 the least side would have to be 
d 

= 4$ inches, so that the post would be 4$ in. or 5 in. square. 
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By formula (page 221) assuming 4 in. x 4 in. post: 

Safe working stress = r.ooo^i — = 1,000^1 — ^ 

= 1,000(1 — 0-558) = i.ooo — 558 = 442 lb. per square inch. 

Area of 4 in. x 4 in. = 16 sq. in. 

Safe load = Safe stress x Area = 442 x 16 = 7,072 lb- 

For rough reinforced concrete beam design it is suffi¬ 
ciently correct to use the following approximations : 

n — | roughly ; a — \ roughly 
Mt =/» x A xj x d ; Mc = \ x fe x b x d* 

. M , _6 xM 

i xd x A ’ JC b xd* 

Steel ratio p — - — ■ = 4x4 
b x d 16 /, 

Area of steel 
M 

x d xf. 

b x d* = 
6 x M 

fc 

For ft 16,000 and fc 600 . . . M = 95 x b x d*. 
For /, 16,000 and fe 650 . . . M — 107 x b x d* 
For ft 20,000 and fc 750 . . . Af = 120 x b x d*. 

b = Breadth of beam in inches 
d = Depth to steel in inches 

M = Bending moment, inch-lb. 
f3 = Stress in steel, lb. per square inch 
fe — Stress in concrete, lb. per square inch 
A = Area of steel 

1 = Lever arm 
n = Top to neutral axis 

E. 30,000,000 
« = rr = —--- = 15 

Ee 2,000,000 

Et — Modulus of elasticity for steel 
Ee = Modulus of elasticity for concrete. 

Flitched Beams. Beams made of two flitches of timber 
with a sfeel plate between them and securely bolted together 
will carry the loads shown in Table I. 
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TABLE I 

Section. No. and Size 
Safe Load evenly distributed on spans of: 

of Timbers. 

1 
zo ft. 12 ft. 14 ft. 16 ft. 

2 timbers, with one 
steel flitch in 
centre of beam 
plate, J in. thick 
in all cases 

I 
2— 7 in. x 3 in. 
2— 9 in. x 3 in. 
2—11 in. x 3 in. 
2—12 in. x 6 in. 

70 cwt. 
120 „ 
170 ,» 
310 ,, 

60 cwt. 
90 „ 

140 ,, 
250 „ 

50 cwt. 

85 .. 
120 ,, 
210 „ 

70 cwt. 
no „ 
190 „ 

Beams made of three flitches of timber with two steel plates 
will carry the loads shown in Table II. 

TABLE II 

Section. j No. and Size 
of Timbers. 

Safe Load evenly distributed on spans of: 

10 ft. 12 ft. x6 ft. 20 ft. 

3 timbers, and 2 
steel plates. Steel 
plates J in. thick. 

3— 9 in. x 4 in. 
3—12 in. x 4 in. 
3—12 in. x 6 in. 
3—14 in. X4 in. 

220 cwt. 
400 ., 
52° .. 
550 .. 

190 cwt. 
340 .. i 
400 ,, 
480 ,, 

150 cwt. 
250 „ 
320 ,, 
350 » 

no cwt. 
200 ,, 
250 
300 „ 

Weights of Materials (Approximate) 

Materia. 

Weight, 
lb. per 

cubic foot. 

British oak. • • • • 35 
Pitch pine . .... 45 

Spruce . .... 30 

Larch • • • • 35 
Elm ... .... 40 

Ash ... . .... 45 

Concrete . 120 to 140 
Brickwork . 120 tO I40 
Steel . . . . . . 49O 

Wrought iron . O
 

00 

Weight, 
lb. per 

Material. cubic foot. 

Cast iron.450 

Lead.710 

Copper.540 

Dry clay.65 
Clay and gravel . . . . 100 

Moist earth, packed . . . 100 

Sandstone.140 

Granite.165 

Marble ... ... 170 

Slate.160 
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J\. ggregate, 132, 209 
Allowable stresses (see Stresses), 21 
Angle of repose, 193 
Area of cross section, 8, 112, 167 
Axis, neutral, 84 

B ases for columns, 52 
„ for columns, maximum 

permissible loads, 53 
Beam, cantilever, 80 

„ concrete, 133 
„ steel, 87, 97, 142 
,, timber, 97 

Beams, flitched, 224 
Bearing capacity, safe, 52 

„ strength, 33, 56 
Bending moments, 69, 70, 80, 81, 

99, 114, 141, 201 
Bolts, 1 
Bond, stress, 133 
Bow's notation, 157 
Butt joints, 32, 42, 45 

(-> antilever beam, 80, 100 
Cast iron, 214, 218 
Centre of gravity, 61, 82 
Centroid (centre of gravity), 60, 61, 

62, 82 
Chains, 211 
Cleats, 145, 146, 147 
Column, load on, 54 
Columns (cast iron), 215, 216, 217 

„ (wood), 211 
Compression, 7 
Concrete mixes, 209 

„ posts, 139 
„ reinforced, 132 
„ strength of, 132, 137, 223 
„ stretches, 134 

Control load, 132 
Cover straps, tearing strength, 49 
Cylindrical tanks, 58 

D esign of roof truss, 165 

ILarth pressure, 53 
Eccentric loads, 212, 213 
Elastic properties, 75 
Elasticity, modulus of, 17, 133 
Elongation, 8, 13, 15, 134 

J'actor of safety, 17, 88 
Failure by crushing, 34 

„ of riveted joints, 30 
Fibre, stress, 87, 93, 97 
Flange plates, length of, 115 
Flexure (see Bending moments) 
Flitched beams, 224 
Footings, 53, 206 
Foundations, 206, 209, 210 

(jTirders, bending moment, 114 
„ plate, 89, 140 
,, span of, 109 

Graphical methods, nr 
Grillage steel beam, 208 

„ two tier, 208 
Gyration, radius of, 213 

H beam, 3, 87 
Hooke's law, 12 

Inertia, moment of, 166 

Joints, design of, 55, 173 
„ riveted, 44, 55 
,» types of, 29, 35, 45 

225 



226 INDEX 

X ^ap joint, 29 
Limit of proportionality, 15 
Lines of stress, 24, 27 
Loads, dead, 146 

„ live, 146 
„ reaction to, 180 
„ safe, 47 

IN/l asonry and concrete, 52 
Modular ratio, 133 f 
Modulus of elasticity, 17, 18 
Moment of inertia, 166 

„ resisting 85, 89, 98, 136, 
142, 202 

Moments and reactions, 69 
„ bending, 70, 80, 99, 114, 

141 

^j^Jeutral axis of beams, 63, 65, 

67, 85. 95* 134* 137 

Oak beams, 16 

Plate girders, 89, 113, 140 
Pressure, water, 191 
Proportionality limit, 15 
Punching stress, 210 
Purlins, 145 

jR^adius of gyration, 166, 169 
Rankine formula, 194 
Reinforced concrete beams, 132, 

137, 141, 223 
Repose, angle of, 193 
Resisting moment, 85, 89, 96, 136, 

142, 202 
Retaining walls, 188, 199, 203 
Riveted joints, 5, 35, 45, 55 

„ „ failure of, 30 

Rivets, 2 
„ pitch of, 43 
„ shear and bearing values, 

4L 43 
Rolled steel sections, 3, 57, 85, 133 
Roof, the, 186 

„ covering, weight of, 148, 153 
,, pitch or slope, 150 
„ trusses, 114 
„ „ design of, 165, 221 
„ ,, loads on, 146, 156 
,, „ steel, 148, 221 
,, „ stresses in, 155, 159, 

161, 183 
,, wind pressure on, 177 

Section modulus (see Resisting 
moment), 93 

Site riveting, 28 
Stirrups, 142 
Strain, 9 
Strength of materials, table of, 16 
Stress, 5, 137 

,, compressive, 7 
,, safe working, 17, 167 
,, shear, 8, 118, 120 
„ strain, simple, 36 
,, 'tensile, 8, 86 
,, torsion or twisting, 9 
„ ultimate tensile, 33 
„ working, 37 

Stresses, breaking and safe, 33, 137, 
169, 222 

„ in members of roof truss, 
161 

„ normal and shear, 24 
„ on oblique planes, 21 

Struts, 161, 167 

TTanks, cylindrical, 58 
Tensile strength, 15, 48 
Tension flange, area of, ill 

„ test, 12, 13, 15 
Timber posts, 221 
Trusses, roof, 114 

„ spacing of, 177 
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U ltimate stress defined, 15 
„ ,, values, 16 

w all, buttress, 190 
,, cantilever, 190 
,, heavy gravity, 188 
„ reinforced concrete, 190, 

196 
,, thrust against, 194 
,, vertical, 200 

Walls, retaining, 188 
Water pressure, 191 
Watertight concrete, 211 

Web stiffeners, 111 
Weights of materials, 224 
Welding, 216 

„ electric arc, 220 
„ gas, 217 
.. resistance, 219 
„ thermit, 217 

Wind pressure, 151, 152, 153, 179 
Wood beams, 92, 96, 97, 121, 224 

,, posts, 211 
Working stresses (see Stress work- 

ing), 37 

ield point, 14 
Young's modulus, 17 
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