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PREFACE 

COMMUNICATION CIRCUIT FUNDAMENTALS is the second of 
four books designed for a complete course in radio and communication 
engineering, the first of which, APPLIED MATHEMATICS, contains 
prerequisite material necessary to complete understanding of the text 
presented here. More advanced treatment is planned for the last two 
books of the group, covering the subjects of Communication Networks 
and Audio and Radio Facilities. 

The material of this and other books of the group is a portion of the 
advanced radio and communication engineering course prepared by the 
author for home study. The texts are intended to serve as study funda¬ 
mentals in residence or correspondence courses in which a plan of directed 

study helps the student to learn the subject matter correctly and rapidly. 
However, for those who do not have time to take advantage of available 
courses, these books should prove valuable for reading and reference 
purposes. 

This first edition of COMMUNICATION CIRCUIT FUNDAMEN¬ 
TALS has been preceded by several private editions used in a practical 
home-study course. Its preparation was started in 1934 in an effort to 
meet the needs of radio operators, broadcast technicians, and chief 
engineers who wished to increase their knowledge and equip themselves 
for further responsibility and advancement. The course in which this 
material was presented has been taken by many broadcasting station 
chief engineers and by many college graduates interested in specializing 
in the field of communication engineering. The results of this course of 
study have been very gratifying and serve to indicate the usefulness of 
the text application in technical schools and colleges that offer courses in 
radio and communication engineering. 

The course of study covered in the four books of this group may be 
pursued by students with a high-school education or its equivalent. 
While the first book, APPLIED MATHEMATICS, correlates the 
previous training of the student with the specific calculations necessary in 
such subjects as the requirements of simultaneous equations in mesh 
circuits and quadratic equations in complex circuits, this text covers the 
physics of circuit elements and presents the fundamentals of d-c and a-c 
circuits. The first fifteen chapters are a prerequisite for the advanced 
treatment in the third volume on communication networks, while the 
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entire book (particularly the last five chapters on vacuum tubes) is a 
prerequisite for the material to be presented in the fourth book on audio 

and radio facilities. 

The general approach is to discuss the circuit constants and then to 

use them in a treatment of d-c circuits. The fundamental principles of 
a-c circuits are introduced by a study of magnetism, inductance, and 

capacitance. Ohm’s and Kirchhoff’s laws are applied first in solving 

relatively simple d-c problems while later on in the text the same types of 
circuits are studied with the application of vector notation of a-c circuits. 

The author is indebted to Kenneth Sherman for the preliminary work 

done on Chap. 1 and also to Charles Merchant for assisting in the revision 

and writing of Chaps. 5, 6, 7, 15, and 20. Mr. Merchant has read the 

manuscript and has made many helpful suggestions. The author also 

wishes to thank Calvin Warner and Edith Drake for assistance in preparing 

the final manuscript. Finally, the author wishes to express appreciation 

to his friends and the many students of the Cleveland Institute for their 

assistance and encouragement in the preparation and the correction of 
errors in COMMUNICATION CIRCUIT FUNDAMENTALS. 

The illustrations in this book were made possible by the splendid 

cooperation of the following companies: General Electric Company, 

National Carbon Company, Willard Storage Battery Company, Edison 

Electric Company, Leeds and Northrup Company, and the Weston 

Electrical Instrument Corporation. 

^Carl E. Smith 

Cleveland, Ohio 

November, 1949 
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CHAPTER 1 

MATTER AND ENERGY 

In order to understand electrical systems it is helpful to have some 
knowledge of the composition of matter, especially from the viewpoint 
of the electron theory. This theory can be thought of as a mental picture 
of electricity. The electron theory can be used to analyze electric and 
magnetic circuits and determine in advance how the various components 
will work when they are connected together. 

1.1. Nature of Matter and Energy. The physical world is made up of 
matter and energy. Under certain conditions these two parts can be 
transformed from one to the other. Matter can be defined as anything that 
occupies space and has mass. All matter is found in one of three states: 
solid, liquid, or gas. 

Matter is not a continuous structure but actually consists of innumer¬ 
able particles. By definition, the atom of an element is the smallest particle 
of matter that still retains all the chemical and physical properties of the 
element as it is divided and subdivided. At present, the chemical theory 
of matter is known as the atomic theory. According to this theory, all 
matter is composed of elemental atoms of which there are 96 different 
types. Each of these 96 elements has different chemical and physical 
properties. 

Energy can be defined as that which causes a change in matter. It is the 
ability to do work. Energy is not of material existence, that is, it has no 
mass and does not occupy space. For illustration, the light from the sun, 
the heat from a stove, and the electricity in an electric power line are 
forms of energy. 

1.2. The Atom. According to the atomic theory, atoms are small 
particles of matter made up of various arrangements of protons and elec¬ 
trons. The difference between atoms of different elements must be in the 
arrangement and number of these particles. The electron is the natural 
elementary quantity of negative electricity. It is the smallest unit of 
matter known to science and is found in every element. The proton is 
the natural elementary quantity of positive electricity. It is thought to 
be a positron plus a neutron. The positron has practically the same mass 
as an electron, but the charge is positive. The neutron has practically 
the same mass as the proton but is uncharged. 

One of the most popular concepts of the atom is due to Bohr. He 
1 



2 COMMUNICATION CIRCUIT FUNDAMENTALS 

likened the atom to our solar system, the sun being the nucleus and the 
planets the electrons. The simplest atom, that of the gas hydrogen, 
which is the first in the chemist^s periodic table, is thought to be made 
up of one positive charge or proton, neutralized by one negative charge 
or electron, leaving the atom electrically neutral (see Fig. 1.1). A neutral 
atom can be defined as an atom made up of equal amounts of positive and 
negative electricity. Furthermore, the mass of the proton is 1,846 times 
that of the electron; hence the normal hydrogen atom is 1,847 times 
heavier than the electron. 

Hydrogen 

Two Lithium Atoms, light and heavy 
Hydrogen Atom Helium Atom Lithium Atom Lithium Atom 

(Light nucleus) (Heavy nucleus) 
Atomic wt. 6 Atomic wt. 6 + 

Fio, 1.1. Electronic construction of some simple atoms. 

An atom of a given element whose nucleus is of different mass from 
that of the normal atom is called an isotope. About 1 out of every 5,000 
hydrogen atoms has a nucleus containing a neutron along with a proton. 
The combination is known as a deuteron. This makes heavy-hydrogen 
atoms 3,694 times heavier than the electron. The physical properties 
of isotopes differ very slightly from those of the normal atoms. 

The amount of positive charge on the nucleus of an atom determines the 
number of orbital electrons as well as the chemical and physical properties 
of the element. The number of orbital electrons in a normal atom is 
indicated by the atomic number of the element. The atomic numbers of 
the elements vary from 1 to 96. 

The element with the atomic number 2 is the gas helium. This atom is 
thought to be built up of a center nucleus of two protons and two neutrons 
with two more electrons revolving around the nucleus. The two electrons 
moving around the nucleus are generally called orbital electrons, since 
they revolve in orbits whose center is the nucleus of the atom. It can be 
seen that the nucleus may be made up of both protons and neutrons, 
there being sufficient orbital electrons in each neutral atom to offset the 
nuclear protons. In the case of helium, there are two protons, two neutrons, 
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and two orbital electrons. The general agreement between the atomic and 
electron theories is shown by the extract from the periodic table shown in 
Table 1.1. It will be noted that in general the atomic weight is nearly 
twice the atomic number. Also, the atomic number corresponds to the 
number of orbital electrons. The variations in the atomic weights from 
twice the atomic number are believed to be caused by the presence of two 
or more possible atomic structures, or isotopes, all of which differ slightly 
in nuclear structure but have the same number of orbital electrons that 
are required for a balanced atom. Figure 1.1 shows two possible com¬ 
binations, each with three orbital electrons, one being heavier than the 

Table 1.1 

Name Atomic weight Atomic number Orbital electrons 

Hydrogen. 1.008 1 1 
Helium. 4.003 2 2 
Lithium. 6.940 3 3 
Beryllium. 9.020 4 4 
Boron. 10.820 5 5 
Carbon. 12.011 6 6 
Nitrogen. 14.008 7 7 
Oxygen. 16.000 8 8 

other owing to a more complex nuclear structure. The atomic weight of 
lithium is 6.94 because the lighter lithium atom, having a weight of 6.00, 
occurs much less frequently in nature than the heavier lithium atoms. 

In order to obtain a better picture of the protons and electrons in an 
atom, imagine a circle }4 in. in di¬ 
ameter spaced 100 miles from another 
circle 21 ft in diameter. These circles 
would represent the comparative size 
of the elements in a hydrogen atom, 
the larger circle being the electron, the 
smaller the proton, and the 100 miles 
the relative distance between them as 
the electron revolves around the nu¬ 
cleus. Physically, the radius of the 
electron has been found by Millikan 
to be 1.9 X 10“^® cm, the mass 8,98 X 10“^* g, and the charge 1.59 X 10“^® 
coulomb. Or from another angle consider that in 1 g of hydrogen, there 
are 6.02 X 10^^ atoms of hydrogen. 

For convenience, the nucleus can be considered as a sphere with elec¬ 
trons moving about within concentric shells that are somewhat greater in 
diameter than the nucleus. Consider Fig. 1.2 as a cross section of con¬ 
centric spherical shells. It will be noted that there are 2 electrons in the 

Nucleus 

2 electrons 

8 electrons 

8 electrons 

18 electrons 

18 electrons 

^32 electrons 

^Rest of electrons 
Fiq. 1.2. Electronic shells or orbits in 
an atom. 
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first shell, 8 electrons in the second and third shells, 18 in each the fourth 
and fifth shells, 32 in the sixth; for elements having more than 86 elec¬ 
trons, the remaining electrons go into the seventh shell. In the case of 
hydrogen there is only 1 electron in the first shell instead of 2; if an atom 
has 27 electrons, there will be 9 electrons in the fourth shell instead of 18. 

1.3. Conductors and Insulators. With the concept that matter is 
composed of positive and negative particles or charges of electricity, the 
electrical properties of materials can now be considered. 

In some elements, such as copper, silver, and platinum, some of the 
electrons are rather loosely attached to the positive nucleus in the atom ; 
many electrons are free to move about from atom to atom, or between 
the atoms within the body of the metal. In a neutral state, for each 
“free” electron moving around in the body, there is an atom lacking one 
electron. This atom that is lacking an electron is positively charged. 
In some cases, these free electrons move around between the atoms, which 
of themselves are constantly moving; or they may strike an atom, lodging 
themselves in that atom's structure, and displacing another electron, 
which continues the electron movement or drift. 

This condition of free electrons moving about within the physical limits 
of a body is found to some extent in all elements or compounds. Those 
metals such as silver, copper, and aluminum are known as “good con¬ 
ductors.” They have many free electrons in a given volume of the metal. 
Conversely, those elements and compounds which have but few free 
electrons are known as “poor conductors,” “nonconductors,” or “insu¬ 
lators.” In other words, the only difference between a good conductor 
and an insulator is in the number of free electrons in a given volume. If 
an insulator is heated, so as to increase the velocity of its electrons, some 
of them are often liberated from their orbits. This increases the number 
of free electrons, and may make the insulator become a partial conductor. 
Thus, an element or compound may be a conductor under certain con¬ 
ditions, and an insulator under other conditions. 

1.4. Electric Charges and Lines of Force. Any quantity of electricity 
is known as a charge. If a conductor or insulator has an excess of elec¬ 
trons, it is said to have a negative charge. Similarly, if it has a deficiency 
of electrons, the protons will be in excess and it will have a positive charge. 
This is shown in Fig. 1.3. If two uncharged bodies are suspended by 
strings as shown in Fig. 1.3a, there will be no deflection. If the bodies 
have unlike charges, they will be attracted as shown in Fig. 1.36, while 
if they have like charges they will be repelled, as shown in Fig. 1.3c. In 
Fig. 1.3c the charged bodies each have an excess of electrons, hence are 
repelled. They would also be repelled if they each had a deficiency of 
electrons so that the bodies were both positive. 
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The attraction or repulsion can be explained by studying the electric 
lines of force. There are electric lines of force emanating from the proton 
or positive charge, and if no other charges are present, these lines of force 
extend out to infinity in all directions. The lines of force about an elec¬ 
tron or negative charge in free space are similar, except that the lines of 
force come in from infinity in all directions and terminate on the electron. 
When a positive charge is brought near a negative charge, a number of the 
lines of force from the positive charge terminate on the negative charge 

(a) No charge (b) Unlike charges (c) Like charges repel 
no effect attract 

Fig. 1.3. Lines of force used to represent fields of force. 

as shown in Fig. 1.36. These lines of force act like rubber bands tending 
to pull the charges closer together. Now, if similar charges are brought 
close together as shown in Fig. 1.3c, the electric lines of force repel each 
other and thus react on the charges to push them farther apart. These 
lines of force associated with electrons and protons are used to explain 

many electrical phenomena. 
1.6. Methods of Liberating Electrons from Atoms. Electrons can 

be liberated from atoms in several ways as follows: 
а. Heat, This method is used in modern vacuum tubes. The filament 

or cathode is heated enough to give the electrons sufficient velocity to 
overcome the forces holding them in their atomic orbits. 

б. Friction. Another very common method of removing electrons is by 
friction. When a rod of hard rubber is rubbed with a piece of fur, elec¬ 
trons are removed from the fur and deposited upon the rubber. This 
leaves a positive charge on the fur, which means that there are not so 
many negative charges as there are proton positive charges. The hard 
rubber, on the other hand, has an excess of electrons, which means that the 
proton positive charges ^are all neutralized with electrons and there are 
still some electrons left over. This terminology is used throughout elec¬ 
trical work, a positive point being a point with an insufficient number of 
electrons and a negative point having an excessive number of electrons. 
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Insulating bodies such as rubber and fur will retain their charges for some 
time because electrons find it difficult to move about on an insulator. 

c. Spontaneous Disintegration by Radioactivity, Some elements are so 
unstable that they are continually giving off electrons without any 
external energy being applied. An example of this is the element radium, 
which is continually emitting not only electrons, or beta rays^ as they are 
called, but also alpha rays, which consist of the helium nucleus, and 
gamma rays, which are X rays. This radioactivity or giving off of nuclear 
particles eventually changes the atomic structure of the element. Radium 
is believed to change through many forms, the last or end product being 
the element lead. 

11 electrons 17 electrons 10 electrons 18 electrons 

Sodium 
Unstable atoms Stable “Ions” 

Chlorine Sodium (Pos.) Chlorine (Neg.) 
Fig. 1.4. Common salt atoms. 

d. Ionization, Electrons are also removed from atoms in some cases 
when elements and compounds are dissolved in water or other solvents. 
A very common example of this is the ionization of salt when it is dis¬ 
solved in water. Chemists have proved that the molecules are broken 
up into positively and negatively charged particles called ions. This 
ionization takes place when any acid, base, or salt is dissolved in the 
proper solvent. In the case of common salt (sodium chloride), the elec¬ 
tronic construction of the atoms is believed to be as shown in Fig. 1.4. 
One molecule of salt is believed to have 28 orbital electrons, of which the 
highly active sodium atoms contains 11, the remaining being in the also 
active chlorine atom. Sodium activity is thought to be due to the fact 
that the sodium atom can readily give up an electron, while chlorine is 
active due to its ability to attract an extra electron. When the salt 
molecule is dissolved in water, the sodium loses one electron to the chlorine 
atom, which is then charged negatively and is known as a stable negative 
ion. The sodium atom, being short one electron, has a positive charge and 
is known as a stable positive ion. 

The principle of ionization is used to make a battery. If two different 
plates are properly chosen and inserted in a suitable solution, there results 
a difference in potential between the two plates. Without going into 
detail at this time about batteries, this electrode-to-solution potential is 
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illustrated by the common storage battery, consisting of a lead plate and 
a lead oxide plate in a solution of sulfuric acid. When the battery is fully 
charged, the potential of the positive plate with respect to the solution is 
+2.5, that of the negative plate is —0.1, resulting in a difference of poten¬ 
tial of 2.6 volts. When the battery is discharged, the positive-plate 
potential is +2.05 and the negative-plate potential is +0.25, resulting in 
a potential difference of 1.8 volts. 

e. Voltage, Electrons can be removed from atoms in some cases by 
applying a voltage or difference of potential. It is generally assumed 
that the path of an electron in an atom is circular under normal condi¬ 
tions, as shown in Fig. 1.5a. This electron path or orbit can be distorted 

: ® 0 

(a) Simple Atom 
with undistorted 
orbit 

I 

i) Orbit distorted due ( c) Orbit distortion 
to charge on plates with reversed 

charge 
Fio. 1.5. Electron orbit distortion in an electric field. 

by placing the atom in an electric field, as shown in Figs. 1.55 and c, A 
common example of the strain in an atom due to a potential difference is 
found in the insulation of a capacitor. 

When the voltage between two capacitor plates is increased, or the 
thickness of the insulation is decreased, the stress on the atoms increases; 
that is, the forces on the orbital electrons trying to force them out of their 
orbits are increased. If the potential is increased sufficiently, the elec¬ 
tron is attracted out of the orbit, leaves the atom, and moves to the 
positive plate. At the same time, other electrons are stressed to the point 
where they can leave the orbits in their atoms, and the movement of one 
electron releases enough energy to free electrons in other atoms, resulting 
in the disrupting of the insulator, or in popular terminology, the insulator 
''flashes through,” or “breaks down,” and becomes a conductor. 

1,6. Electric and Magnetic Fields of an Electron. When an electron 
is stationary, the electric lines of force extend radially in all directions as 
shown in Fig. 1.6a. Now if this electron is accelerated, the electric lines 
of force are distorted as shown in Fig. 1.65. The electric lines of force 
must always terminate on the electron, hence they follow the electron in 
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a definite manner. However, this distortion of the electric field creates 
another field known as the magnetic fieldy with magnetic lines of force 
forming circles around the electron as shown in Fig. 1.66. The direction 
of electron motion is along the axis of the circle of the magnetic lines of 
force. As long as the electron accelerates, the number of magnetic lines 
of force will increase. When the electron velocity is constant, the mag¬ 
netic lines of force are constant, and the electric lines of force are dis¬ 
tributed uniformly as shown in Fig. 1.6c. 

(a) At rest 

j-%\ I / 
E \ I , 

\ i' 
\ I / 
\ • / 

(c) Uniform motion 
Fio. 1.6. Electrostatic and electromagnetic fields of an electron. 

According to relativity theory, the stationary electron can be visualized 
as a spherical shell as shown in Fig. 1.6a. This shell can be considered 
to contract in the direction of motion, as shown in Figs. 1.66 and c, by a 
definite ratio depending upon the velocity. According to Einstein’s 
relativity theory, the mass of the electron varies with the velocity accord¬ 
ing to the equation 

where m = mass of the electron, g 
mo = 9 X 10“^® g = rest mass of the electron 

V = electron velocity, cm/sec 
c = 3 X 10^® cm/sec = velocity of light 

From this equation we see that as the velocity increases, the radical term 
becomes smaller and will go to zero if t; = c. This means that the mass 
of the electron increases as the velocity increases and would go to infinity 
if the velocity of the electron were equal to the velocity of light. 

An illustration of fast-moving electrons is found in cathode rays, where 
the electrons have sufficient energy to cause X rays that will penetrate 
through such material things as steel, wood, flesh, and bone with enough 
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energy left to make a chemical effect on a film. Much use is made of this 
in the practical field for inspecting opaque materials. 

Example 1.1. Determine the mass of an electron in a beta ray traveling at 90 per 

cent of the velocity of light. What is the percentage increase in its mass as compared 

to its mass when at rest? 

Solution. Substituting in Eq. (1.1) 

m 
9 X 10-28 

2.7 X lO*® 

3 X 10^« )• 
= 2.066 X 10"*’ g Ans. 

HL^«ioo 
Mq 

2.064 X 10-27 - 9 X 10-2« 

9 X 10-28 
100 = 128.5% increase in mass Ans. 

1.7. Energy of the Electron. Lorentz was first to advance the pro¬ 

posal that an electron might be electromagnetic in nature. He reasoned 
thus: When an electron is caused to be accelerated, the magnetic field 
created by its motion is increased; any magnetic field represents energy; 
expenditure of energy is needed to expand the field because of the charge 
alone. Hence an electrical charge must have some sort of mass, which 
must be related to the energy expended. This approach has been gener¬ 
alized by the relativity theory to show that mass and energy are related by 

U = mc^ (1.2) 

where U = energy, ergs 
m = mass of the electron, g 
c = 3 X 10^® cm/sec = velocity of light 

Example 1.2. Determine the energy of an electron due to its mass alone (a) at 

rest and (6) if its velocity is 90 per cent of the velocity of light. 

Solution, (a) At rest 

= mor2 = (9 X 10-28)(9 X lO*®) = 8.1 X IQ-^ erg Ans 

(6) At 90 per cent of the velocity of light, from Example 1.1, 

U mc^ (2.066 X 10-27) (9 x lO*®) = 1.854 X lO-® erg Ans. 

From the above line of reasoning it is evident that energy and matter 
are closely related. Perhaps they are one and the same thing. If so, 
everything is electricity. The various elements found on the earth are 
just different ways of putting this energy into packages having distinct 
chemical and physical properties. 

Summary 

All matter is composed of electrons and protons, infinitesimal-sized particles that 

are conceived to be part mass, part energy. The atom consists of a central nucleus 

containing protons and neutrons (except for hydrogen, which has only one proton) and 



10 COMMUNICATION CIRCUIT FUNDAMENTALS 

an outer ring or group of orbital electrons. Ninety-six different types of atomic struc¬ 
tures exist, each having different chemical and physical properties. 

Matter can exist in three different states: solid, gaseous, or liquid, depending upon 
conditions of pressure and temperature. 

Neutral atoms have positive protons and negative electrons in equal amounts. 
Atoms that can lose one or more outer electrons easily form substances known as 
“conductors.” Atoms from which electrons are not easily detached are found in 
materials called insulators.” 

Electrons may be removed from atoms by heating, friction, chemical action, or a 
high potential force. 

Conductors and insulators differ in the number of ^^free” electrons they contain. 
A body that has an excess of electrons over the number required for each “neutral” 

atom is said to be charged negaiively. If some of the electrons have been removed 
from the neutral atoms and there are not enough electrons in the body to make all 
atoms neutral, then it is said to be charged 'positively. 

An ion is a charged unit that exists in acids, bases, and salts when dissolved in 
certain solvents. 

If a potential is applied across an insulator, the electrons of the atoms in the insu¬ 
lator are “strained” or distorted in their orbits. Energy is absorbed when the orbit 
is strained and released when it returns to normal. 

WTien excessive potential is applied to an insulator, the strain is so great that 
electrons are released and the insulator passes current and “breaks down.” 

Exercises 

1.1. (a) What properties do all elements have in common? (6) What properties 
do all atoms have in common? 

1.2. How are the orbital electrons in an atom related to the atomic weight of the 
element? 

1.3. WTiat is the difference between a conductor and an insulator? 
1.4. What happens when a substance that is capable of forming ions is immersed 

in a dissolving solution? 
1.6. What is a stable ion? Explain. 
1.6. What happens to an orbital electron of an atom when the atom is placed 

between two oppositely charged plates? 
1.7. Draw a diagram showing the relative positions of the electrons in a copper 

atom, which contains 29 electrons. 
1.8. What determines the chemical and physical properties of an element? 
1.9. What is the mass of an electron having a velocity of 5 X 10^ cm/sec? 

1.10. What is the energy of an electron having a velocity of 5 X 10^ cm/sec? 



CHAPTER 2 

ELECTRICAL QUANTITIES 

In the first chapter the discussion was quite general in regard to the 
nature of matter and energy. Many important topics were discussed 
briefly to give a qualitative background on which a quantitative treat¬ 
ment can now be developed. 

This chapter will deal with some of the fundamental electrical quan¬ 
tities and discuss the elements of an electric circuit, giving particular 
attention at this time to d-c circuits. 

2.1. Electric Charge. The Coulomb. The practical system of elec¬ 
trical units can be based upon the attraction or repulsion of electric 
charges. Coulomb determined experimentally that the force between 
two charges varied (1) directly as the product of the two charges, (2) 
inversely as the square of the distance between the two charges, and (3) 
inversely as the dielectric constant K of the medium between the charges. 
In equation form Coulomb^s law can be written 

p _ 
Kd^ 

(2.1) 

where F = force acting between the two charged bodies, dynes 
Qi = units of charge on first body 
Q2 = units of charge on second body 

d = distance of separation, cm 
K = dielectric constant (K = I for air) 

This equation defines the unit of charge in terms of force, distance, and 
the dielectric constant. Thus, a unit 
charge is that charge which, if placed one 
centimeter from a similar charge in free 
space, is repelled with a force of one 
dyne. This unit of charge is called the 
statcoulomb, the unit of charge in the 
electrostatic or the esu system of 
units. This definition is explained in 
Fig. 2.1. The electric charge may be 
thought of as a physical quantity that 
projects itself into space and thus can by its electric field manifest itself 
throughout space. 

1 dyne 
O 

<i=l cm 
F=1 dyne 

Idyne^Jlesu) (lesu) 
^ (lforair)(lcm)2 

Fio. 2.1. 
coulomb. 

Charges defining a stat- 

11 
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The negative charges in Fig. 2.1 can be expressed in terms of electrons. 
If the free electrons were counted in these charges, it would be found that 
there are 2.0947 X 10* electrons in each charge. That is, 

1 statcoulomb = 2.0947 X 10* electrons (2.2) 

Example 2.1. Charges of +16 and —32 esu, respectively, are 16 cm apart in air. 
What is the force acting on each? 

Solution. Substituting in Eq. (2.1) 

^ ( + 16)(-32) 
(1)(16*) 

—2 dynes (a force of attraction on each charge) Am. 

Example 2.2. Charges of +200 and +150 esu, respectively, are 20 cm apart in a 
medium whose dielectric constant is 2.5. What force acts on each charge? 

Solution. Substituting in Eq. (2.1) 

F « ^ ^ dynes (a force repelling each charge) Am. 

The statcoulomb is an extremely small unit of charge, and for most 
practical work the unit used is the coulomby one coulomb being equal to 
3 X 10* statcoulombs, or 

1 coulomb = 6.289 X 10^* electrons 

2.2. Electric Current. The Ampere. Electric current can be defined 
as the drift of electrons through a conductor. Or to put it differently, 
whenever there is a general flow of electrons past a given point, it is said 
that there is an electron current at that point. In the practical system 
of electrical units, this electron flow can be expressed quantitatively in 

terms of amperes. An ampere of current is defined as the flow of one 
coulomb of charge per second of time. In terms of electrons, when 1 amp 
of current is flowing in a conductor, there is a drift of 6.289 X 10^* elec¬ 
trons past the given point each second. In equation form 

1 amp = 1 coulomb/sec 
= 6.289 X 10^* electrons/sec (2.3) 

This large number of electrons moving past a point in 1 sec can be 
expressed in terms of the average velocity of the electrons in the conductor 
and the number of electrons per unit volume; thus, mathematically, 

i = nve (2.4) 

where i = current density, amp/sq cm 
n = number of electrons/cu cm 
V = average drift velocity of the electrons, cm/sec 

e = 1.59 X 10~^* coulomb/electron 
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If n is considered as the number of electrons in a unit length of conductor, 
the area does not have to be mentioned, providing all these electrons drift 
past the measuring point at the velocity v. 

It is of interest to determine the amount of actual matter carried in an 
electron current. Consider for illustration a generator delivering 4,000 
amp through the conductors connected to a load. What is the weight of 
the electrons passing through such conductors in 1 day? The effective 
mass of an electron is 

m = 8.98 X 10-28 g 

Then the weight of the electrons in 1 amp flowing for 1 sec is 

(Mass of an electron) (number of electrons in 1 amp/sec) 
= (8.98 X 10-28)(6.289 X lO^®) 
= 56.49 X 10-^® = 5.649 X 10“^ g/sec for 1 amp 

Since there are 86,400 sec in 1 day, we have 

Total weight 
= (number of sec) (number of amp/sec) (weight of 1 amp/sec) 

Substituting 
Total weight = (86,400) (4,000) (5.649 X 10^^) 

= 1.95 g of electrons per day Arts. 

This gives an idea as to the weight of the electron itself. 
It must be remembered that when an atom loses an electron, as in the 

case of a conductor with many free electrons, that atom still retains its 
chemical and physical properties, with the additional property of being 
charged positively. When electron current is flowing, the atoms them¬ 
selves do not drift along the wire. The current is due to the electron 
drift, while the atoms themselves form the substance of the conductor. 

When a current is passed through an ionized solution, the situation is 
different, there being no free electrons, but only charged atoms or mole¬ 
cules called ^‘ions.’^ In this case, the atoms or ions themselves travel 
through the solution, giving up their charges to the electrode and deposit¬ 
ing out on that electrode or uniting chemically with other substances in 
the solution. Since the ions are just charged atoms, their mass is rela¬ 
tively high, and their velocity extremely low, in contrast to the velocity 
of the free electrons in a conductor. One obvious proof of the fact that 
the atoms as stable ions actually move through the solution carrying the 
electrons that constitute the electric current is found in electroplating, 
where copper is removed from one electrode and deposited on another. 
This sort of thing does not happen when current is passed through a metal 
conductor. 

The rate at which an electric charge passes a point can be detected and 
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measured with great precision in terms of chemical, magnetic, and thermal 
effects. The ampere is defined in terms of its chemical effects because 
results of this kind can be duplicated in any part of the world within an 
accuracy of 1 part in 10,000. The international ampere is defined as that 

steady current which when passed through 
a silver nitrate solution will deposit silver 
at the rate of 0.001118 gram per second. 
The magnetic effect of the current is 
used in most d-c meters and in some 
a-c meters. Thermal meters are used 
quite widely to measure high-frequency 
alternating currents. 

Conventional current was defined long 
before the electron theory, and un¬ 
fortunately the early experimenters as¬ 
sumed the current to be a drift of pos¬ 
itive charges and hence a flow in the 

opposite direction to electron flow or electron current as defined here. 
To summarize: (1) Conventional current flows from positive to negative 

in an external circuit. (2) Electron current flows from negative to posi¬ 
tive in an external circuit. These facts are diagramed in Fig. 2.2. 

Example 2.3. A No. 12 gauge copper wire carries 20 amp. WTiat is the average 
velocity of electron drift if 1 cu cm contains 8.47 X 10*^ free electrons? 

SohUion, From Table 2.3 on page 28, the current density is 

Positive 
charge 

Conventional 
current 

Negative 
charge 

Fig. 2.2. Fictitious “conventional” 
current and actual “electron” flow 
illustrated. 

amperes _ amperes 
area in sq cm sq in. X 2.54* 

20 
“ 0.005129 X 6.45r6 “ amp/sq cm 

By Eq. (2.4) 

t 604 
” ~ ne~ (8.47 X 10**) xTl-59 X lO"'*) 

■■ 0.00448 cm/sec = average velocity Ans. 

2.3. Classification of Currents. Electric currents can be broadly 
classified as direct currents and as alternating currents. A direct current 
(d-c) can he defined as a current in which the general drift or flow of electrons 
is in one direction. Figures 2.3a, 6, and c show the various types of direct 
current. It will be noted in these illustrations that the current is always 
positive, sometimes zero, but never negative. A battery current is a 
good example of a continuous direct current. If the direct current varies 
regularly, it is called a pulsating direct current. Pulsating direct currents 
are caused by regular variations in the circuit conditions; examples are 
the result of a full-wave rectifier and the ripple output from the filter 
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following the rectifier. Transient direct currents can be produced by 
opening or closing circuits and in general are not repeated regularly. 

An alternating current (a-c) can be defined as a current in which the eleo^ 
irons flow flrst in one direction and then in the other direction. Figures 
2.3d, e, and / show the various types of alternating current. In these 

rectifier) filter output) {sawtooth wave) (square wave) 

(b) Examples of pulsating direct currents (e) Other examples of alternating currents 

(open switch) (close switch) (open switch) (close switch) 

c) Example of transient direct currents (f) Examples of transient alternating cur¬ 
rents 

Fig. 2.3. Cleissification of currents. 

illustrations, the current is alternately positive and negative. The 
simplest and most common of alternating wave forms is the sine wave. 
There are countless other forms of regularly occurring or steady-state 
alternating currents such as that shown in Fig. 2.36. Finally there are the 
transient alternating currents resulting from opening or closing a circuit 

or from some other change in the circuit condition. 
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2.4. Electric Pressure. The Volt. In Fig. 2.2 a negative charge was 
connected to a positive charge by means of a conductor. The deficiency 
of electrons on the positive charge attracts electrons, and the excess of 
electrons on the negative charge repels electrons, with the result that 
electrons flow along the wire until the charges are equalized. This means 
that on a conductor the electrons distribute themselves uniformly so that 
the forces of attraction and repulsion are equalized. In other words, as 
long as the charges are not equalized, the electrons in the conductor are 
under an electric pressure to move in such a direction that the charges 
\nll be equalized. This electric pressure is commonly referred to as 
potential difference and can be defined as follows: A potential difference is 
an electrical condition or difference in electric pressure that causes {or tends 
to cause) electrons to flow. The potential difference between two points is 
measured in volts. When an electron current flows between two points, 
energy is gained or lost depending upon whether the charge is moved to a 
point of higher potential or to a point of lower potential. A volt can be 
defined as the potential difference between two points when one joule^ of 
energy is gained or lost in moving one coulomb of charge between the two 

points, 
2.6. Electromotive Force. Emf. It has already been shown that a 

current will flow in a conductor between charges of unequal potential. If 
as in Fig. 2.2 these charges have only one connection, that is, the wire 
connecting them, the current will flow only for a moment equalizing the 
charges and making the potential difference zero. In order to maintain 
the current in the wire, it is necessary to have a constant potential differ¬ 
ence between the charges. So that this may happen, there must be some 
force that tends to separate the positive and negative electric charges. In 
other words there must be some motive power to maintain the charges 
and cause (or tend to Cause) the current to flow. Such motive power can 
be the chemical or physical changing of energy into electrical form. A 
good example of a generator is a dry cell which by chemical action causes a 
constant emf of 1.5 volts. As another example, mechanical energy can 
be converted into electrical energy by a d-c generator to produce a con¬ 
stant emf. The electromotive force {emf) of a generator can be defined as 
the work done {in volts) by the generator on each coulomb of electricity that 
passes through it. 

In Fig. 2.4, the battery lifts a charge (coulomb) of electricity from zero 
potential at the negative terminal to a positive potential of 1.5 volts 
at the positive terminal by means of the chemical action in the dry cell. 
In doing this, the'battery does 1.5 joules of work on every coulomb of 

1 One joule ■■ 10^ ergs — 10^ dyne-centimeters. 
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electrical charge passing through it. As the coulomb flows from the posi¬ 
tive terminal of the battery to the negative terminal through the external 
conductor, it expends 1 joule of energy in heating the conductor. Thus, 
the potential along the conductor gradually drops from 1.5 volts at the 
positive terminal to 0 volt at the negative terminal. 

(a) Dry cell as source of 
direct-current ernf con¬ 
nected to a conductor 

(b) Graphical represen- (c) 
tation of a battery 
and a conductor 
having resistance 

Fia. 2.4. Chemical source of emf and a conductor to 

Vertical distance 
represents poten¬ 
tial across battery 
and along the re¬ 
sistance 
carry the charges. 

2.6, Chemical Sources of Emf. Batteries. Electric batteries are com¬ 
monly used as a source of steady emf. In batteries chemical energy is 
transformed into electrical energy. In the primary battery the original 
materials are used up, while in the secondary or storage battery the mate¬ 
rials can be used over and over again by recharging. The word ‘ ^ battery ’ ’ 
means a combination of electrochemical cells but is often loosely used to 
refer to a single cell. 

a. Wet Cells. When a conductor is immersed in an electrolyte such as 
a dilute solution of sulfuric acid, the chemical reaction at the surface of 
the conductor creates a potential difference between the conductor and 
the electrolyte. Different conductors create different potentials with 
respect to the electrolyte, some being positive and others negative when 
compared to hydrogen, as shown in Table 2.1. 

For illustration, if a zinc and a copper plate are inserted in a dilute solu¬ 
tion of sulfuric acid, the potential difference between the positive copper 
terminal and the negative zinc terminal will be approximately 

+0.34 - (-0.76) = 1.1 volts 

(see Fig. 2.5a). 
Wet cells of this type have three disadvantages that limit their use. 

First, the cell polarizes in use with a resulting high internal resistance due 
to a layer of hydrogen gas collecting on the copper electrode. Second, the 
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zinc dissolves owing to local action and is soon wasted away. Third, the 
electrolyte evaporates and is easily spilled. 

Example 2.4. If a wet cell is made by using platinum and aluminum plates in a 
dilute solution of sulfuric acid, what will be the emf ? 

SoliUion, From Table 2.1, the emf will be 0.87 — ( — 1.34) =* 2.21 volts. Ans. 

Table 2.1. Electromotive Series 

^ 1 
Metal ! Symbol Potential, volts 

Platinum. Pt 4-0.87 
Silver. Ag 4-0.80 
Copper. Cu -hO.34 

’-3 Hydrogen. H 0.00 

t Lead. Pb -0.13 
s S Nickel. Ni -0.22 

S Iron. Fe -0.43 
Zinc. Zn ! -0.76 

, Aluminum. A1 -1.34 

6. Dry Cells, The common commercial form of the primary battery is 
made up of so-called dry cellSj which are used in portable equipment and 
elsewhere where small amounts of power are needed over short periods of 
time. The term ‘Mry celT^ is a misnomer because moisture is essential 
to the cell's operation; however, the cell is sealed so that the moisture will 
not evaporate and, the cells can be handled in a dry condition. 

The crose-section view of a dry cell in Fig. 2.56 shows a carbon rod 

electrode in the center of a zinc cup, which is the negative electrode. The 
electrolyte is usually ammonium chloride mixed with some porous inert 
material to form a paste just inside the zinc container. Polarization is 
minimized by a mixture of rnangahese dioxide and carbon granules next 
to the positive electrode. 

The larger dry cells are approximately in. in diameter by 6 in. tall. 
When the cell is in good condition, its terminal voltage is 1.5 to 1.6 volts, 
and it will deliver on short circuit about 30 amp. For higher voltage and 
very low currents, a number of smaller cells may be connected in series 

and mounted in a common container. Such a battery is the well-known 
B battery used to supply plate voltage to vacuum tubes. 

c. Standard Cell, As a legal standard of emf, the normal type of 
cadmium standard cell, which is a primary cell, has been adopted by 
international agreement. Its emf is 1.01830 volts at a temperature of 
20®C. The Weston cadmium standard cell is the voltage standard of 
emf most widely used to calibrate electrical meters to a high degree of 
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accuracy. The current drain should never exceed 0.0001 amp in order 
to retain the voltage accuracy. 

d. Lead Storage Batteries. A secondary cell that is widely used is the 
lead-acid cell. Commercial cells of this type consist of several positive 

(a) Wet cell 

* Po^ive femninal 

NegaH>re temiiQ 
[Mu/kig post 

Expand chcmbo- 

Depohriilng mix- 

Zinc can 

''shef ^ _ 

Aspt^ Sahara^ 
paper gasket, a 

Asp^ait sxdmaed 
inadathg wmshv 

Oxrhon di^roeh 

Paste coated pt^O: 
bqeed separator 

(ClipboardJoek^ 

(b) Dry cell 
Fiq. 2,6. Primary cells. 

plates of brown lead peroxide separated from several negative plates of 
gray sponge lead, by rubber, glass-fiber, or wooden separators, and the 
whole assembly is immersed in a dilute solution of sulfuric acid, H2SO4. 
The portable type has a pasted plate construction consisting of a lead- 
and-antimony-alloy grid filled with a lead peroxide paste for the positive 
plate and with a pure spongy lead paste for the negative plate. 

Upon discharging, both sets of plates are partially changed to lead 
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sulfate, PbSO^, and the electrolyte to water, H2O. Upon recharging, the 
cell returns to its original state. The chemical equation can be written 
as follows: 

Discharge 

Pb02 + Pb + 2H2S0« = 2PbS04 + 2H2O 

Charge 

Fig. 2.6. Lead storage cell showing construction details. 

For long and efficient service of the lead storage cell, the following 

points should be obseI^"ed: 
Impure electrolyte is one of the greatest sources of trouble. If impure 

water or acid is added, the plates may be consumed by local action with 
the impurities, or the plates may be dissolved by foreign acids. 

Discharged condition should be avoided since in this state the lead 
sulfate has a tendency to harden, crystallize, and expand, with the result 
that the plates will buckle and the battery life will be materially reduced. 

Presence of either strong or weak electrolyte has disadvantages. A 
strong electrolyte tends to act on the active materials and convert them 
to lead sulfate more rapidly when the cell is in an inactive condition. If 
the electrolyte solution is too weak, the emf will be reduced and the 
internal resistance will be increased. For the correct amount of electro¬ 
lyte, the specific gravity of the charged battery should be from 1.200 to 
1.300, and on 4i8charge it should never fall below 1.170. 
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Overcharging and discharging should be avoided. Overcharging 
causes the electrolyte to boil, thus liberating hydrogen and oxygen, wast¬ 
ing power, and depleting the water in the battery. The rate of charging 

should not be great enough to cause excessive heating or violent chemical 
reaction. Discharging causes excessive lead sulfate, weakens the acid, 
and lowers the terminal voltage. 

The condition of a lead storage cell can be determined by (1) specific 
gravity test, the value depending upon the value when fully charged, and 
(2) voltage when the cell is discharged at a normal rate. 

A hydrometer is used for the first test, and a special low-resistance 
voltmeter can be used for the second type of test. When the cell is fully 
charged, the emf per cell is 2.1 volts and on discharge should never go 
below 1.75 volts. 

Lead storage batteries are widely used in automobiles because of their 
low internal resistance and high emf. The current drain can be quite 
high, of the order of 200 amp, which is enough to run the starting motor in 

an automobile. 
e. Nickel-Iron Storage Batteries. The nickel-iron or Edison storage bat¬ 

tery has an alkaline electrolyte of 21 per cent caustic potash, KOH, in 

pure water, H2O. The positive plate when charged consists of nickel 
hydroxide, Ni(OII)2, held in steel tubes, while the negative plate consists 
of iron oxide, FeO, held in steel pockets. The plates are separated by 
rubber insulators and the assembly is mounted in a nickel-plated steel 
container. 

The condition of discharge can best be determined by measuring the 
terminal voltage, which varies from about 1.4 to 1.0 volts with an average 
of 1.2 volts at normal discharge rates. The specific gravity is not a 
reliable indicator of the state of discharge because the electrolyte acts only 
as a catalytic agent and does not undergo any permanent change during 
charging or discharging. 

As compared to the lead storage battery, the nickel-iron storage 

battery 
1. Is lighter per ampere-hour capacity, 
2. Has higher internal resistance with lower efficiency, 
3. Is more rugged in construction, 
4. Can remain uncharged without injury, 
5. Requires more water because it gasses continuously during charge, 

and evaporates more water, owing to operating at a higher temperature, 
6. Must be insulated because the container is metal, 

7. Has a limited efficient temperature range. 
2.7. Electric Resistance. The Ohm. When a conductor has a large 

number of free electrons and can easily pass a large current, it is said to 



22 COMMUNICATION CIRCUIT FUNDAMENTALS 

have a low resistance. Conversely, in an insulator with relatively few 
electrons, high voltages may cause only a very few electrons to flow 
because of the high resistance of the insulator. 

When electrons drift along a conductor, they bump into atoms, freeing 
other electrons that in turn drift on. These collisions between free elec- 

' Hingt bane/ 
fn, 

Po/e nut 

poh 
cap 

^9acmg washer 
Conneefing roct nut 

\ Negati^ grid 

« Packet insuiator 

\ Negative pocket 
* (Iron oxide 

Filler cap 

Side insukrtor 

Side rod 
ktsutafor 

Suspension boss 

-Valve 
' Positive pole 

^ da fid cap red ^positive" 

- Cell cover (welded 
to container ) 

Stuffing box 
(welded to cover) 

Steel gland ring 

Stuffing box gasket 

Pole insulator 

Pole washer 

Spacing washer 

Split washer 

Connecting rod 

Positive grid 

Grid separator 

Seamless steel rings 

Positive tube 
(Nickel hydrate 
and nickel flake • 

in layers ) 

Steel container 

Cell bottom 
(welded to sides) 

Fia. 2.7. Nickel-iron storage battery showing details. 

irons and atoms tend to retard the movement by friction, which acts as a 
resistance to the flow of electric current. Whenever current flows 
through a resistance, energy is lost in the form of heat. The current 
always flows from the higher to the lower potential as already shown in 
Fig. 2.4. If the potential difference is zero, the current is zero, and if the 
potential difference is reversed, the current must reverse. A resistor can 
be defined as a device in which the Jlow of electric current always produces 
heal and nothing else. 



ELECTRICAL QUANTITIES 23 

The practical unit for measuring resistance is the ohm. A resistance 
is said to have one ohm when an emf of one volt causes a current of one ampere 
to flow. This is a statement of Ohm^s law, which will be studied in more 

detail later. The international ohm has been defined as the resistance at 
0°C of a column of mercury with a uniform cross sectiony 106.3 cm long and 
weighing 14.452 grams. 

2.8. Resistivity. Since resistance is the opposition to electron flow 
caused by the collision of free electrons with the atoms in the conductor, it 

(a) 1 square mil area (b) 1 circular mil area (c) d* circular mils area 
Fig. 2.8. Illustration of circular mils area = d*. (Values taken from Smithsonian 
Physical Tables.) 

is reasonable to believe that if the area of the conductor is increased or the 
length decreased, the resistance will be reduced. The resistance will also 
depend upon the material in the conductor. Expressing this in equation 
form 

ft = ^ (2.5) 

where R = resistance of the conductor, ohms 
I = length of the conductor, cm 

A = area of the conductor, sq cm 

p = resistivity, measured in ohms per centimeter cube 
In other words the resistivity of a conductor is numerically equal to the 
resistance between the opposite faces of a centimeter cube. 

Resistance per Circular Mil-foot. Since it is common engineering prac¬ 
tice to express the length of conductors in feet and the diameter in mils 

(Kooo in.)> the area can be expressed in circular mils. The area of a 
circle is proportional to the diameter squared, so if the area of a circle 
1 mil in diameter is 1 circular mil, then the area of any circle measured in 
circular mils is equal to the square of the diameter in mils (see Fig. 2.8). 
A mil-foot of conductor can be defined as having a length of one foot and a 
cross-section area of one circular mil. With this terminology, Eq. (2.5) 
can be rewritten 

(2.6) 
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where R = resistance of the conductor, ohms 
I = length of the conductor, ft 
d = diameter of the conductor, mils 
p = resistance of conductor, ohms/mil-ft 

p depends upon the conductor material and the temperature of the con¬ 
ductor. Table 2.2 gives the values of the resistivities for a number of 
commonly used materials. 

Table 2.2. Resistivities and Coefficients of Resistance of Conductor 

Materials’^ 

Material 

p, ohms per 

circular mil-foot 

at 20°C 

a, ohms per 

centigrade degrt'e 

at 20°C 

Aluminum. 17 0.0039 

Antimony. 251 0.0036 

Bismuth. 722 0.004 

Brass. 42 0.002 

Constantan (40% Ni, 60% ('u). 295 0.000008 

Copper, annealed. 10.37 0.00393 

Copper, hard-drawn. 10.65 0.00382 

German silver (18% Ni). ! 199 0.0004 

Iron, cast. 54 0.005 

Lead. 132 0.0041 

Magnesium. 28 0.004 

Manganin (84% Cu, 12% Mn, 4% Ni) . 265 0.000006 

Mercury. 577 0.00089 

Molybdenum. 34 0.0034 

Monel metal. 253 0.002 

Nichrome. . 602 0.0004 

Nickel. 47 0.006 

Platinum. 60 0.003 

Silver (99.98% pure). 9.9 0.0038 

Steel, annealed sheet. 66-300 0.0042 

Tin. . . 69 0.0042 

Tungsten. 33 0.0045 

Zinc. 36 0.0037 

* Values taken from Smithsonian Physical Tables. 

Example 2.5. What is the cross-sectional area of a wire 1 mil in diameter? 

SoliUum. The area of a circle is 

A 
4 

Hence when the diameter is 1 mil, the area is 

irV 
A « -j- « 0.7854 sq mils area Ans. 

Example 2.6. What is the diameter of a 144-circular-mil wire? 
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Solution 

= 144 

= 12 mils diameter Ans, 

Example 2.7. What is the resistance of 10 miles of aluminum wire in. in diameter? 

Solution. Taking the value of p from Table 2.2 and substituting in Eq. (2.6) 

R - 
17[10(5,280)1 

“ 1252 
— 57.44 ohms A nn. 

Example 2.8. What length of 2-mil manganin wire will be required for a 25-ohm 

standard resistor? 

Solution. The resistance of 1 ft by Eq. (2.6) is 

then 

R ^ = 66.25 ohms 
22 

25 

"66.25 
(12) = 4.53 in. Ans, 

2.9. Temperature Coefficient of Resistance. The resistance of the 
conductor depends upon the temperature, and it can be expressed as a 
function of the temperature to a very good approximation by the follow¬ 

ing formula: 

Hi “ Uo (lit “h ciit^ (2.7) 

where Rt = resistance at the given temperature t 
ao = resistance at 0°C/ 
ai = first-order temperature increment 
a2 = second-order temperature increment 

t = temperature, °C 
Almost any quantity that is a continuous function of another quantity 
can be represented as a power series in terms of the second quantity. 
The above formula can be regarded as the first three terms of such a 

power series. 
In Fig. 2.9, the solid line is the value of Rt as the temperature of 1 

mil-ft of annealed copper wire varies, ao = 9.554 ohms is the resistance 
at 0°C. ai = 9.554/234.5 = 0.04074 is the slope of the curve at 0°C. 
In other words, the dotted line is tangent to the curve at this point and 
shows that throughout the usual range of operating temperatures, copper 

behaves as though its resistance would be zero at — 234.5°C. Actually 
the curve bends up and approaches zero temperature near — 273^C. By 
selecting another point on the curve, such as absolute zero, the second- 
order constant a2 can be determined by substituting in Eq. (2.7); thus. 

or 
0 = 9.554 + (0.04074) (-273) + a2(-273)2 

aa = 0.0000209 
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This will make the curve approach the solid line in Fig. 2.9. For some 
materials that have a very limited linear section of the resistance-tem« 
perature curve, it is desirable to fit the curve with some higher order 

Fio. 2.9. Resistance-temperature curve for annealed copper wire. 

terms. For 1 mil-ft of copper wire, the resistance to a second-order 
approximation is 

Rt = 9.554 + 0.04074^ + 0.0000209^2 (2.8) 

For most materials the first-order approximation is sufficiently accu¬ 
rate, so that Eq. (2.7) reduces to 

Rt = i2o(l + otot) (2.9) 

where Rt = resistance of conductor at temperature /, ohms 
Rq = resistance of conductor at 0°C, ohms 

ao = ^ = the temperature coefficient at 0°C 
Go 

For annealed copper wire, ao = 0.04074/9.554 = 0.00427, which means 
that a copper wire having 1-ohm resistance at 0°C will have a resistance 

of 1.00427 ohms at 1®C. 
In engineering it is customary to give the resistivity and temperature 

coefficients for 20®C, which is 68®F, an average room temperature. This 
can be done readily' by using the first approximation of Taylor's series 

which for this case can be written 

/?2 = 6i + 62(^2 ~ ^1) (2.10) 
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where R2 = resistance at temperature U, ohms 
bi = resistance at temperature hj ohms 
62 = first-order temperature increment 

Now for the case of 1 mil-ft of annealed copper wire at 20°C, by Eq. 

(2.9) 

= /Jjo = 9.554[1 + 0.00427(20)] = 10.37 ohms 

Now in Eq. (2.10), when R2 = 9.554, t2 = 0, as shown in Fig. 2.9. Mak¬ 
ing these substitutions 

9.554 = 10.37 + 62(0 - 20) 
62 = 0.04074 

which is the slope at 20°C, which is the same as it was at 0®C. Equation 
(2.9) can now be written 

R2 = Ri[^ + «i(^2 ” ^1)] (2.11) 

where R2 = resistance at temperature <2, ohms 
Ri = resistance at temperature hy ohms 

ai = ^ = the temperature coefficient at temperature h 
0i 

For 1 mil-ft of annealed copper wire at 20°C 

Oil 
0.0408 
10.37 

0.00393 

The resistance of 1 mil-ft at some other temperature (2 is then 

R2 = 10.37[1 + 0.00393(^2 - 20)] (2.12) 

The values of Ri = 10.37 and ai = 0.00393 are given in Table 2.2 for 
annealed copper wire. The resistance of any of the other materials at 
some temperature t2 can be found in a similar fashion. It should be noted 
that the temperature coefficient is different for different temperatures, 
being 0.00427 at 0°C and 0.00393 at 20°C; hence one must always use the 
temperature coefficient corresponding to the starting" temperature used. 
Referring to Table 2.2, it will be noted that many of the temperature 
coefficients are about 0.004 for a starting temperature of 20°C. This is a 
convenient figure to remember. 

Example 2.9. A coil of copper wire has a resistance of 100 ohms at 10®C. What 

is its resistance at 80®C? 

Solution. By Eq. (2.11) the resistance at 20®C will be 

100 « Rill + 0.00393(10 - 20)] 

Ri - 0^ - 104.1 ohms at 20“C 
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Then at 80®C Eq. (2.11) gives 

Rz = 104.1[1 + 0.00393(80 - 20)] « 128.6 ohms Ana. 

Example 2.10. The cold (20®C) resistance of a transformer winding measures 

4.35 ohms. The hot resistance measures 5.81 ohms. What is the temperature rise? 

Solution, Assuming that copper wire was used in the winding, Eq. (2.11) gives 

Table 2.3. Copper-wire Table, Standard Annealed Copper 

American Wire Gauge (B & S) 

Gauge 
number 

Diameter, 
mils at 20**C 

Cross section at 20*C 
Ohms per 
1,000 ft at 

20°C I 
(=68“F) { 

Pounds 
per 

1.000 ft 

Feet per 
pound 

Feet per l 
ohm at 20“C 

(=68“F) 

Ohms per pound 
at20T 

(= 68°F) 

Gauge 
num¬ 
ber Circular 

mils Sq in. 

0000 460 0 211.600.0 0.1662 0 04901 640.5 1.561 20,400.0 0.00007652 0000 
000 409 6 167,800.0 0.1318 0 06180 507.9 1.968 16,180.0 0 0001217 000 

00 364.8 133,100.0 0.1045 0 07793 402.8 2.482 12,830.0 0.0001935 00 

0 324.9 105.500 0 0.08289 0 09827 319 5 3.130 10,180.0 0 0003076 0 
1 289.3 83,690.0 0.06573 0 1239 253 3 3.947 8.070 0 0 0004891 1 
2 257.6 66,370.0 0 05213 0 1563 200 9 4.977 6,400:0 0.0007778 2 

3 229 4 52.640 0 0 04134 0 1970 159 3 6.276 5,075 0 0 001237 3 
4 204 3 41,740 0 0 03278 0 2485 126.4 7.914 4,025.0 0.001966 4 
5 181 9 33,100 0 0.02600 0 3133 100.2 9.980 3,192.0 0.003127 5 

6 162 0 26,250 0 0 02062 0 3951 79 46 12 58 2,531 0 0 004972 6 
7 144 3 20,820 0 0 01635 0.4982 63 02 15.87 2,007.0 0.007905 7 
8 128.5 16,510 0 0 01297 0 6282 49 98 20.01 1.592.0 0 01257 8 

9 114 4 13,090 0 0 01028 0 7921 39 63 25 23 1,262 0 0 01999 9 
10 101.9 10,380 0 0 008155 0 9989 31 43 31.82 1,001 0 0 03178 10 
11 90 74 8,234 0 0 006467 1 260 24 92 40.12 794 0 0 05053 11 

12 80 81 6,530 0 0 005129 1 588 19.77 50.59 629 6 0 08035 12 
13 71 96 5.178 0 0 004067 2 003 15 68 63 80 499 3 0.1278 13 
14 64 08 4,107 0 0 003225 2 525 12 43 80.44 396 0 0 2032 14 

15 57 07 3,257 0 0 002558 3.184 9.858 101.4 314.0 0 3230 15 
16 50 82 2,583.0 0 002028 4 016 7 818 127.9 249.0 0 5136 16 
17 45 26 2,048.0 0.001609 5 064 6 200 161.3 197.5 0 8167 17 

i 
18 40 30 1,624 0 0 001276 6 385 4 917 203 4 156.6 1 299 18 
19 35 89 1,288 0 0 001012 8.051 3 899 256 5 124 2 2.065 19 
20 31 96 1,022.0 0.0008023 10 15 3 092 323 4 98 60 3.283 20 

21 28 46 810 1 0.0006363 12 80 2.452 407 8 78 11 5 221 21 
22 25 35 642.4 0.0005046 16.14 1 946 514.2 61 95 8.301 22 
23 22 57 509 5 0.0004002 20.36 1 542 648.4 49.13 13.20 23 

24 20 10 404 0 0.0003173 25 67 1 223 817.7 38 96 20.99 24 
25 17 90 320 4 0.0002517 32 37 0 9699 1,031.0 30.90 33 37 25 
26 15 94 254.1 0.0001996 40.81 0 7692 1,300.0 24.50 53.06 26 

27 14 20 201 5 0.0001583 51 47 0 6100 1,6390 ! 19.43 84.37 27 
28 12.64 159 8 0 0001255 64.90 0.4837 2,067.0 15.41 134 2 28 
29 11.26 1 126 7 0.00009953 81.83 0.3836 2,607.0 12 22 213.3 29 

30 10 03 100 5 0.00007894 103.2 0 3042 3,287.0 9.691 339.2 30 
31 8.928 79.70 0.00006260 130.1 0 2413 4,145.0 7.685 539.3 31 
32 7.950 63.21 ^0.00004964 164.1 0 1913 5,227.0 6.095 857.6 32 

33 7.080 50 13 0.00003937 206.9 0.1517 6,591.0 4.833 1,364.0 33 
34 6.305 39.75 6.00003122 260.9 0.1203 8,310.0 j 3.833 2,168.0 34 
35 5.615 31.52 6.00002476 329.0 0.09542 10,480.0 3.040 3,448.0 35 

36 5.000 25.00 0.00001964 414.8 0 07568 13,210.0 2.411 5,482.0 36 
37 4 453 19 83 0 00001557 523.1 0.06001 16,660.0 1.912 8,717.0 37 
38 3.965 15.72 0.00001235 659.6 0 04759 21,010.0 1.516 13,860.0 38 

39 3.531 12 47 6.000009793 831.8 0.03774 26.500.0 1 202 22,040.0 39 
40 3.145 9.888 0.000007766 1,049.0 0 02993|33,410.0 0.9534 35,040.0 40 
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5.81 = 4.35[1 + 0.00393{<2 - h)] 

<2 — ^1 “ 85.5° = the temperature rise Ana, 

Example 2.11. What is the resistance of 10 ft of No. 40 nichrome resistance wire 

at a temperature of 100°C? 

Solution. From Table 2.3 the diameter is d =« 3.145 mils. Then by Eq. (2.6) and 

Table 2.2, the resistance of 10 ft at 20°C is 

R = 
602(10) 

(3.145)* 
608.6 ohms 

By Eq. (2.11) the resistance at 100°C is 

R = 608.6(1 + 0.0004(100 - 20)] =* 628.1 ohms Ana. 

2.10. Electric Energy. The Joule. The purpose of all electrical 
systems is to transport energy. The power plants generate large amounts 
of electric energy, which is transported over power transmission lines and 
used by the consumer when it is converted into light or heat by resistors 
or into mechanical power by electric motors. Telephone lines carry 
electric energy that corresponds to the acoustic energy received by the 
telephone transmitter and deliver this energy to the telephone receiver, 
where it is again converted into an almost identical form of acoustical 
energy. The radio-broadcast station sends energy through space to a 
distant radio-receiving antenna. Although only a small amount of 
energy is received, it is enough to produce signals in the radio receiver 

that are clearly understood. 
From the definition of the volt, it takes one joule of energy to move one 

coulomb through a potential difference of one volt. The general equation 

is then 

W = QE (2.13) 
where W == energy, joules 

Q = charge, coulombs 
E = potential difference, volts 

This charge Q can be moved through the potential difference E ml sec 
if 1 amp flows, or in 1,000 sec if only 1 ma flows. This relationship of the 
charge with respect to current and time can be stated mathematically as 

Q = It (2.14) 

where Q = charge, coulombs 
I = current, amp 
t = time, sec 

Substituting Q of Eq, (2.14) into Eq. (2.13) gives 

W = Elt (2.15) 

In words, this equation says that energy can be expressed as directly 
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equal to the product of voltage, current, and time. If the voltage and 
current are not steady, the energy can be obtained by integrating over the 
period of time; thus 

W = fEIdt (2.16) 

Electric energy is commonly measured by a watt-hour meter, which 
integrates El over time as indicated by this equation. 

The joule as defined here is an electrical quantity. Actually, the joule 
was first defined as a mechanical quantity, in connection with studies in 
the mechanical equivalent of heat. Heat, however produced, requires the 
expenditure of a certain amount of mechanical energy. If it is produced 
in an electric circuit, it can be regarded as derived from the mechanical 
energy required to turn the dynamo or generator producing the current. 
This shows that an electric circuit is a means of transporting mechanical 
energy. 

Example 2.12. An electric heater operating on a 115-volt line draws 15 amp. 

How many joules of electric energy are converted into heat in 1 hr? 

Solution, By Eq. (2.15) 

W = (115)(15)(60) = 103,500 joules Ans. 

2.11. Electric Power. The Watt. Power can he defined as the time 
rate of expending or storing energy. Power is measured in watts. Power 

in watts is numerically equal to voltage in 
volts multiplied by current in amperes; thus 

P = El (2.17) 

where P = power, watts 
E = voltage, volts 
I = current, amp 

This equation gives the constant power in a 
circuit when both the voltage and current are 
constant. 

In power circuits the watt is too small to 
express conveniently the input to electrical- 
machinery and electric-light loads. For this 
purpose the kilowatt, which is equal to 1,000 
watts, is usually used. In communication 
circuits very small amounts of power are 
used, so that the milliwatt, which is equal to 
Kooo watt, is often used. The size of 
resistors for circuit elements are rated in 

the amount of power they will dissipate as shown in Fig. 2.10. 

A 
100 watts 

f J 10 watts 1 
■4) 5 watts )" 

1 watt 

0.5 watt 
Fig. 2.10. Six sizes of commer¬ 
cial resistors, all of the same re¬ 
sistance value. 
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Example 2.13. At 3 cents a kilowatt-hour, what is the cost to operate a 100-watt 

electric iron 160 hr per month? 

Solution 

100 watts * 0.1 kw 

Electric energy used — Pt 

- (0.1) (160) = 16kwhr 

Cost per month = ($0.03) (16) « $0.48 Ans, 

2.12. Circuit Protection. Sources of energy must be protected against 
overloads that exceed their designed wattage rating. This is usually done 
by heating or magnetic devices. Only the heating types will be treated 

now since magnetism is yet to be 
studied. 

a. Fuses, The most common 
and simplest circuit protector is 
the fuse. The fuse material is 
merely a short length of wire or 
ribbon made of an alloy that has 
a very low melting point. The 
fuse is designed to withstand heat¬ 
ing caused by the rated current, 
but with overload currents the 
power loss gives sufficient heat to 
melt the fuse link. The fuse is 
said to ^‘blow,” and thus opens 
the circuit and protects the equip¬ 
ment. It is important to know 
fuse characteristics, because some 
will withstand two or three times 
their current rating while others 
will blow at slightly over their 
rated value. Fuses for commer¬ 
cial applications are usually de¬ 
signed to have a delay action; this 

is accomplished by making the fuse link of heavy construction except in 
one or two short portions of its length. This structure allows heat to be 
carried away from the small high-resistance portion, delaying the melting 
time, to give the desired delay action (see Fig. 2.11 for typical fuses). 

h. Thermal Circuit Breakers, A thermal circuit breaker is a switch 
that opens the circuit when a current of a limiting value flows for the 
required length of time. This type of circuit breaker is supplanting the 
fuse in many applications because it does not use up materials as the fuse 
does. The circuit breaker is operated by a heater element and bimetallic 

Fio. 2.12. Low-powered thermal circuit 

breaker. 
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Fio. 2.13. Graphical symbols. 



34 COMMUNICATION CIRCUIT FUNDAMENTALS 

Twisted pair Coaxial line Conductors 
in cable 

Shielded 
conductors 

—lD|— 
Shielding Quartz crystal Crystal detector 

or 
oxide rectifier 

Antenna Loop antenna Counterpoise 

Bridging jack Break jack 

Thermocouple 
element 

Ground 

Make jack 

^ =03 =<! 
Key Microphone Telephone receivers Loudspeaker 

(headset) 

h|— —ili|— —©— 
(long line indicates + terminal 
short line Indicates —terminal) 

One cell Battery 
AC AC 

generator ® generator 

DC 
generator 

Fio. 2.13. Graphical symbols. {Continued). 
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Fig. 2.13. Graphical symbols. {Continued), 
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strip or by passing current through the bimetallic strip itself, which 
generates the heat. The heat caused by the current makes the bimetallic 
strip bend, releasing a trip that opens the circuit contactors. Circuit 

breakers of this type are designed to carry the rated load indefinitely and 
can be adjusted to carry 50 per cent overload for about 1 min, 100 per cent 
overload for 20 sec, and a 200 per cent overload for 5 sec. This allows for 
short overloads that will not injure the equipment. A typical thermal 
circuit breaker is shown in Fig. 2.12. 

c. Heat Coils. When the circuits must be fused closely on steady cur¬ 
rents, heat coils are sometimes used by themselves or in conjunction with 
circuit breakers or fuses. The heat coil consists essentially of a coil of 
fine wire wound on a copper tube, in which a pin is soldered with a low- 
melting solder. If the rated current is exceeded, the solder melts, and a 
spring forces the pin against a ground strip, shorting the circuit and pro¬ 
tecting the equipment. Heat coils are quite commonly used in telephone 
central offices to protect the apparatus. 

2.13. Schematic Symbols. The use of schematic symbols simplifies 
the appearance of complicated circuits. By means of a standard set of 
symbols, circuit elements can be presented clearly in a uniform graphical 

sign language. For reference purposes these symbols are presented in 
Fig. 2.13. 

Summary 

Covlomh^s law gives the force between two concentrated electric charges as 

p — 
Kd* 

where F = force, dynes 

Qi and Q2 =» charge on respective bodies, coulombs 

d = distance between charges, cm 

K — dielectric constant (A = 1 for air) 

1 coulomb charge = 6.289 X 10^* electrons charge 

Electric current, the motion of charges, is measured in amperes. 

1 amp =* 1 coulomb/sec =» 6.289 X 10‘* electrons/sec 

Electric current density is measured in amperes per unit area and can be exprc.s.s(‘d 

by 
i = nve 

where i = current density, amp/sq cm 

n free electrons/cu cm 

V ** average electron velocity, cm/sec 

e =* 1.59 X 10~^* coulombs/electron 

The international ampere is equal to a steady current that will deposit 0.001118 g 

of silver per second when passed through a specified silver nitrate solution. 

Electron current flows from negative to positive in an external circuit. 

Conventional current flows from positive to negative in an external circuit. 

Electric currents are either direct or alternating. Direct currents (d-c) always flow 
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in the same direction. Alternating currents (a-c) flow first in one direction and then 

in the other direction. 

Potential difference is an electric difference pressure measured in volts that causes 

(or tends to cause) an electric current to flow. 

The voltage between two points is numerically equal to the joules of energy gained 

or lost in moving 1 coulomb of charge between the two points. One volt is the pres¬ 

sure required to cause 1 amp to flow through 1 ohm. 

Electromotive force (emf) is measured in volts and is the work done by a generator 

on each coulomb charge passing through it. 

Electric batteries are devices to convert chemical energy into electrical energy. 

They consist of a positive and negative plate of unlike conductors in an electrolyte 

that acts chemically upon one of the plates. 

A primary cell uses up the original materials and is thrown away after its useful 

life is accomplished. Dry cells are the common commercial form of the primary cell. 

A storage cell uses up original materials in discharging but replaces them by electro¬ 

lytic action when charging. When the cell is charged, the stored energy is chemical, 

not electrical. The common commercial forms of the storage cell are used in lead 

storage batteries and nickel-iron storage batteries. 

Lead storage batteries consist of lead peroxide positive plates and spongy lead negative 

plates in a dilute solution of sulfuric acid. In discharging, both positive and negative 

plates change to lead sulfate and the electrolyte changes from sulfuric acid to water. 

In charging, the reverse action takes place. 

Nickel-iron storage batteries consist of nickel hydroxide positive plates and iron 

oxide negative plates in a 21 per cent caustic potash solution. In discharging, the 

nickel hydroxide changes to a lower oxide, the iron changes to iron hydroxide, and 

the electrolyte acts as a catalytic agent. 

Resistance to current flow is measured in ohms. Resistance always produces heat 

and nothing else. The international ohm is the resistance of a column of mercury 

of uniform cross section, 106.3 cm long and weighing 14.452 g. 

Resistivity measured in ohm-centimeters is the resistance between parallel faces of a 

centimeter cube, or measured in ohms per mil-foot is the resistance of a conductor 

1 ft long with a cross-section area of 1 circular mil. 

The resistance of a conductor is given by 

where R = conductor resistance, ohm.s 

I =» conductor length, ft 

d = conductor diameter, mils 

p = conductor resistivity at a specified temperature, ohms per mil-ft 

The temperattire coefficient of resistance, at the starting temperature, is the resistance 

change per degree per ohm. 

The effect of temperature on the resistance of a conductor can be computed from 

the formula 

R2 “ ^i[l "b ai{t2 — ^i)l 

where R2 » resistance at final temperature ^2, ohms 

Ri « resistance at starting temperature fi, ohms 

ai “ temperature coefficient at temperature h 

For copper with an initial temperature of 20°C, this equation reduces to 

R2 * Rill + 0.00393«2 - 20)1 
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For most pure metals the temperature coefficient is about 0.004. For alloys it is usually 
less and may become negative. For insulators it is always negative and comparatively 
large. 

Direct-current energy is measured in watt-seconds and can be computed from 

W - EQ, Elt - /E/ dt ipdt 

where W « energy, joules 
E = potential difference, volts 
Q — charge, coulombs 
I = current, amp 
p = instantaneous power, watts 
t = time, sec 

Direct-current power is measured in watts as given by 

P -- El 
where P == power, watts 

E = potential difference, volts 
I = current, amp 

Electric circuits are protected by healing or magnetic devices. 
Fuses are portions of the electric circuit made of low-melting-point alloy that will 

melt and open the circuit on overload currents. 
Thermal circuit breakers are switches actuated by a bimetallic strip that bends when 

heated. 
Heat coils melt solder holding a pin that is forced by a spring to close a circuit. 
Schematic symbols are a form of graphic sign language used to simplify and clarify 

complicated circuits. 
Exercises 

2.1. Two equal negative charges are separated in air by 10 cm. If the force 
between the charges is 0.5 dyne, how many electrons are on each charge? 

2.2. How long will it take 20 amp to deposit 1 g of silver on an electrode in a stand¬ 
ard silver nitrate solution? 

2.3. What is the current in a No. 14 copper conductor when the electron drift is 
0.1 cm/sec? 

2.4. A wet cell produces an emf of 1 volt. WTiat electrodes were probably used? 
2.6. What is the chemical reaction in a lead storage battery on charging and 

discharging? 
2.6. Hard-drawn copper wire has a diameter of 35.89 mils. How many feet will 

be required to make 10 ohms of resistance? 
2.7. A resistance of 100 ohms at room temperature increases to 106 ohms at 40°C\ 

What is the temperature coefficient and of what kind of metal is the resistor probably 
made? 

2.8. A pulse of energy lasting for 1 f»sec is created by 10,000 volts at 2 amp. What 
is the energy in the pulse in joules? 

2.9. What is the maximum current that can be used in a 50-watt, 1,500-ohm 
resistor? 

2.10. How is delay action obtained in fuses? 



CHAPTER 3 

DIRECT-CURRENT CIRCUITS 

The electrical quantities discussed in the last chapter will now be used 
in simple d-c circuits. Series, parallel, and series-parallel circuits will be 
treated in this chapter, leaving the more complicated circuits to be 
treated in the next chapter. 

3.1. Simple Electric Circuit. The simplest form of an electric circuit 
consists of a source of emf, the terminals of which are connected by a 
continuous conducting path through a resistor. A simple closed d-c 

(a) (b) (c) 

(a) Closed circuit (b) Open circuit (c) Short circuit 
Fig. 3.1. Simple electric circuits. 

circuit is illustrated in Fig. 3.1a. In this circuit the source of emf is a 
cell, the terminals of which maintain a constant voltage E of unchanging 
polarity across the resistor R. The voltage E causes the current / to flow 
in the circuit through the closed switch and the resistance R. If the 
switch makes good contact, its resistance can be neglected; however if 
the contact is loose and dirty, the resistance may increase so much at this 
point as to make the circuit inoperative. 

If the switch is opened as shown in Fig. 3.16, the current will stop flow¬ 
ing, and the battery voltage will appear across the contacts of the open 
switch. This is a common method, used intentionally, to interrupt the 
flow of current. When the switch is opened, the current ceases to flow, 
and the energy of the battery can thus be conserved until it is needed. 
On the other hand if the conductor becomes broken, the defect is known 
as an open circuit. 

If the switch is closed and an excessive current flows from the battery 
but does not reach the load resistor, the circuit is said to have a short 
circuit as illustrated in Fig. 3.1c. In this case the current flows through 
the short-circuiting wire S. The short-circuit current is limited by the 
internal resistance of the battery. For example, a good No. 6 dry cell 
will draw about 30 amp on short circuit. Short circuits are seldom 

39 
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intentional, because in most cases they do not serve a useful purpose; 
they are usually the result of a defect in the wiring. For example, if 
the insulation is worn off a twisted pair of wires, they may become 
short-circuited. 

3.2. Ohm’s Law. A German physicist, Georg Ohm, was the first to 
discover the relation between the voltage, current, and resistance in an 

electric circuit. Since voltage and resistance are usually the independent 
values or parameters, the most common form of Ohm^s law can be stated 
as follows: The current flowing in a circuit is directly proportional to the 

voltage across the circuit and inversely proportional to the resistance of the 
circuit. In equation form 

I = I (3.1) 

where I = current, amp 
E — voltage, volts 
R = resistance, ohms 

This law can be stated in two other ways as follows: 
The voltage across a circuit is directly proportional to the current flowing 

in the circuit and to the resistance of the circuit Thus 

E = IR (3.2) 

where the values are as defined in Eq. (3.1). 
Or the resistance of a circuit is directly proportional to the voltage across 

the circuit and inversely proportional to the current flowing in the circuit. 
Hence, mathematically, 

R = j (3.3) 

where the values are as defined in Eq. (3.1). 

(a) Chart (b) / « E/R (c) E = IR (d) /2 = E/I 
Fig. 3.2. Instructional aid chart for Ohm’s law. 

Ohm^s law is one of the simplest and most important laws in all elec¬ 
trical work. A popular way to remember it is to place the letters in a 
circle as shown in Fig. 3.2a. When the quantity desired is covered, the 
other quantities form the right-hand side of the equation as shown in 
Figs. 3.26, c, and d for the three forms of the law. 
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When a load resistance Rl is connected across the terminals of a battery 
as shown in Fig. 3.36, a current / will flow in the circuit. The current I 
flowing through the internal resistance Ri will drop the terminal voltage 

below the internal voltage. For this case, the value of the terminal 
voltage is 

V = E - IRi (3.4) 

where V = terminal voltage, volts 
E = internal voltage, volts ^ 
I = current, amp 

Ri = internal resistance, ohms 
For illustration, when the load resistance Rl is equal to the internal 
resistance 72*, the respective voltage drops w'ill each be equal to one-half 
the internal voltage. Thus, the terminal voltage for this special case 
will be one-half the internal voltage of the battery. 

Now consider what happens if the terminals of the battery are short- 
circuited as shown in Fig. 3.3c. The terminal voltage must go to zero; 
hence the voltage drop in the internal resistance of the battery must equal 
the internal voltage of the battery. Since the internal resistance is 

usually small, the short-circuit current must be quite large in order that 
their product by Ohm^s law will be equal to the internal voltage of the 
battery. 

Example 3.4. A 1.5-volt dry cell draws 30 amp on short circuit. What is its 

internal resistance? 

Solution, By Eq. (3.4) 

V ^ E - IR. 

0 * 1.5 - 30/?< 

1 5 
^ = 0.05 ohm Ans. 

Example 3.5. If the battery of Example 3.4 is connected to a 2-ohm load resist¬ 

ance, what will be the value of the terminal voltage? 

Solution. By Ohm’s law the current in the complete circuit is 

By Eq. (3.4) 

I 
E 1.5 

Ri A' Rl^ 0.05 -h 2 
0.732 amp 

V - E - IRi 

- 1.5 - (0.732) (0.05) 

- 1.5 - 0.0366 - 1.4634 volts Ans. 

3.4. Simple Series Circuits. When pieces of electrical conductor are 
connected end to end to form a closed circuit, they are said to be in series. 
In Fig. 3.1a, the ba'ttery, switch, and resistor are connected in series. 
Figure 3.4 illustrates two resistors in series with a dry cell. A series cir¬ 
cuit may contain any number of pieces of electrical conductor such as 
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resistors. In fact, as will be shown later, a series circuit may also contain 
any number of voltage sources. 

The fundamental law of a series circuit is that all parts of the circuit 
contain the same current. To determine this current, add all the resist¬ 
ances to obtain the total resistance. In equation form, the total resist¬ 
ance is 

R = Ri ”f“ R2 4” Rz 4“ * * * "f” Rn (3.6) 

where R = total series resistance, ohms 

R\, Rif Rz, . . . , Rn = the individual resistors of the series circuit, ohms 
n = number of series resistors 

With the total resistance and the applied voltage, Ohm^s law can be used 
to determine the current. 

(a) Wiring diagram of a series (b) Schematic diagram of 
circuit. a series circuit. 

Fig. 3,4. Two resistors in series with a dry cell. 

Example 3.6. In the series circuit of Fig. 3.4, if ^ = 6.6 volts, JRi = 11 ohms, and 

R2 — 22 ohms, determine the current. 

Solution, By Eq. (3.5) the total series resistance is 

/i = /2i H- /^2 = 11 -f 22 = 33 ohms 

By Ohm’s law as given in Eq. (3.1) 

j E 6.6 ^ A 
/ = ^ = 0.2 amp Ans. 

3.6. Kirchhoff’s Voltage Law. Series circuit problems can also be 
solved by adding the voltage drops across each of the series resistors to 
get the total voltage. In other words, by Kirchhoff’s voltage law, the sum 
of the voltage drops around a series circuit is equal to the applied voltage. In 

equation form 

E = IR1 + IR2 + IRz + • — + IRn (3.6) 

where E = applied series voltage, volts 

I = series current, amp 

Riy R2f Ri, ... y Rn = the individual series resistors, ohms 
n == number of series resistors 

Example 3.7. Solve Example 3.6 by applying Kirchhoff’s voltage law. 

Solution. By Eq. (3.6) the applied series voltage is 

E - //2i 4- IR2 
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Substituting values 

Solving 

6.6 « 11 / 4- 22 / 

- 33/ 

/ - ^ 0.2 amp Ans, 

3.6. Voltages and Resistances in Series. In a series circuit any num¬ 
ber of resistances can be added with the result that the current will be the 
same in each resistor. This is true of any series circuit. It is also true 
of voltage with the exception that the polarity will determine the sign. 
The voltage is said to be higher, or more positive, at the positive end 

Ri R2 
,/V/W^-MAA 

/ * 

— 

WW'——®——vVW-1 
i?4 ® ~ 

Fig. 3.5. Voltages and resistances in series. 

of the battery than at the negative end of the battery. This is spoken 
of as a voltage rise. If all the voltage rises are placed on one side of an 
equation, then all the voltage drops can be placed on the other side of the 
equation, because by Kirchhoff’s voltage law the sum of the voltage rises 
must equal the sum of the voltage drops around the circuit. In equation 
form 

2 (voltage rises) = 2 (voltage drops) (3.7) 

Illustration. In Fig. 3.5 the following values are given: 

Ri = 2.0 ohms, Ei = 10 volts 
R2 — 7.0 ohms, E2 — 24 volts 
Rz = 3.5 ohms, J?3 = 18 volts 

7^4 = 7.5 ohms 

Determine the current I and the voltage drop across R2. 
Solution. The batteries having a rise in voltage in the direction of the 

current arrow will be called positive, while those in the opposite direction 
will be negative. Thus, Ei and E2 are positive, and Ez will be negative. 
Hence the total voltage rise is 

^ E = El -f- E2 — Ez 
= 10 + 24 - 18 = 16 volts 

This voltage is positive and is driving the current I around the series 
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circuit. If this voltage had come out negative, it would mean that the 
current / flows in the direction opposite to that of the arrow in Fig. 3.5. 
This would be indicated by a negative sign before the current. 

The total resistance of the circuit is obtained by adding all the resist¬ 
ances of the circuit; thus 

R = Ri H" R2 "h Rz “h Ra 

= 2 + 7 + 3.5 + 7.5 = 20 ohms 

Now that the total voltage and resistance of the circuit is known, /, 
which is the same at all points in a series circuit, is determined by applying 
Ohm^s law; thus 

I = 
E 

R 20 
0.8 amp Ans. 

The voltage across the resistance R2 can now be found by applying 
another form of Ohm’s law; thus 

IR2 = (0.8) (7) = the voltage drop across Rz 
= 5.6 volts Ans. 

The voltage drop across any of the other resistances in the circuit can 

be found in the same manner. 
The above example illustrates Kirchhoff’s voltage law. In the light 

of this law, the voltage rises around the circuit can be written equal to the 
resistance drops around the circuit. Thus by Eq. (3.7), 

E\ A" R2 — Rs “ IRi “b IR2 “b IRz “b IRa 
= I{Ri + -R2 + ^3 + Ra) 

Substituting 

10 + 24 - 18 = (0.8)(2) -b (0.8)(7) + (0.8)(3.5) + (0.8)(7.5) 

= 0.8(2 + 7 + 3.5 -b 7.5) 

Simplifying 16 = 1.6 + 5.6 + 2.8 + 6 = (0.8) (20) = 16 

which proves the truth of the law in one case. 
With this law the voltage between any two points in a series circuit can 

be determined. For instance, the voltage rise from a to 6 in Fig. 3.5, 

denoted by Eah, can be written 

Eat = -IRa + El - IRi - IR2 

Substituting on the right-hand side 

Eat = -(0.8) (7.5) -b 10 - (0.8) (2) ~ (0.8) (7) 

= -6 + 10 - 1.6 - 5.6 

= —3.2 volts 
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This means that the circuit to the left of points a, b can be replaced by 
—3.2 volts. To check, the voltage in the right-hand part of the circuit 
from 6 to a must be the negative to Eabt that is, +3.2 volts. The voltage 
from 6 to a can be written 

Eba = E2 — Ez — IRz 
= 24 - 18 - (0.8) (3.5) 
= 3.2 volts 

showing that there is a drop of 3.2 volts from a to 5 on the left-hand side 
and a rise of 3.2 volts from 6 to a on the right-hand side; hence, the voltage 
rise is equal to the voltage drop around the circuit. Mathematically 

Eat + Eta = 0 
Substituting —3.2 + 3.2 = 0 

This is another way of writing Kirchhoff’s voltage law, which in other 
words says, the sum of the voltage drops, around a series circuit in a given 
direction, is zero. In this form the law is very useful, because of its ease 
of application. For illustration, in Fig. 3.5 start at point a and go around 
the circuit in the direction of the current arrow 7. There are positive 
voltage drops and negative voltage rises; thus 

IRa — E\ + IRi + IR2 — E2 + Ez + IRz = 0 
Substituting 

(0.8)(7.5) - 10 + (0.8)(2) + (0.8)(87) - 24 + 18 + (0.8)(3.5) = 0 

6 - 10 + 1.6 + 5.6 - 24 + 18 + 2.8 = 0 
34 - 34 = 0 

Check. 

Going around the circuit in the opposite direction, all the signs must be 
changed, but the result will remain unchanged. This may seem simple 

here, but if it is not thoroughly understood, difficulties will arise later. 

(a) Wiring diagram of a parallel cir- (b) Schematic diagram 
cuit parallel circuit 

Fig. 3.6. Two resistors in parallel with a dry cell. 

of 

3.7. Simple Parallel Circuits. When pieces of electrical conductor 
are connected side by side so that the current divides among them, they 

are said to be connected in parallel. Sometimes a parallel connection is 

referred to as a multiple or 8hun,t connection. Figure 3.6 shows two 
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resistors connected in parallel with a dry cell. A parallel circuit may 
contain any number of pieces of electrical conductors such as resistors. 

3.8. Kirchhoff’s Current Law. Parallel circuit problems can also be 
solved by adding the currents flowing in the various branches to get the 
total current. In other words, by Kirchhoff’s current law, the sum of the 
currents flowing up to a point equals the sum of the currents flowing away 

from that point In equation form 

7 = /i + /2 + /s + * * • + 7n (3.8) 

where I — total current flowing up to the common point, amp 
/i, ^2, hy • ‘ • In = the branch currents flowing away from the common 

point, amp 

n = number of branch currents 

Example 3.8. In the parallel circuit of Fig. 3.6, let = 1.5 volts, /2i = 15 ohms, 

and R2 = 60 ohms. Determine the currents flowing in the circuit. 

Solution. Since 1.5 volts is across each branch, Ohm’s law in Eq. (3.1) can be 

used to get 

/i ~ ^ ^ = 0.1 amp Ans. 

=4 = 4k = 0-025 amp Ans. 
R2 60 

Adding the branch currents, the total current by Eq. (3.8) is 

I — h I2 
= 0.1 -f 0.025 = 0.125 amp Ana. 

3.9. Resistances and Conductances in Parallel Circuits. Since the 
voltage is the same across each branch of a parallel circuit, the current 
through each branch can be determined by Ohm’s law. Substituting the 

values of voltage and resistance in the current equation (3.8) 

/ = /i + /2 + /s + * ’ ’ + /n 

results in 

R Rn 

Since the voltage is common to each term, it can be eliminated to get 

JL 

R Ri^ R^ R^^ + 
Rn 

(3.9) 

This equation states that the reciprocal of the equivalent resistance of a 

parallel circuit is equal to the sum of the reciprocals of the resistances of 
the individual branches. This equation can also be written 
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R = 
1 

—+—+—+ 
Ri^ Ri^ 

(3.10) 

where the values are as defined in Eq. (3.9). 
For the simple case of two resistors in parallel, the equivalent resistance 

is equal to the product of the resistance of the individual branches divided 

by the sum of the resistance of the individual branches. To prove this 

or 

1 _ 1 I 1 _R2 “I" Ri 
R ~ W1W2 R^MT 

P _ R1R2 
Ri + R2 

(3.11) 

where R = equivalent resistance in ohms of two parallel resistors, and 
Ri and R2 are the parallel resistors measured in ohms. 

Example 3.9. Determine the equivalent resistance of 600 and 2,400 ohms in 

parallel. 

Solution. By Eq. (3.11) 

(600) (2,400) _ 1,440,000 

" hOO + 2,400 3,000 
~ 480 ohms Ans. 

When more than two resistors are connected in parallel, resort can be 
made to Eq. (3.9) or Eq. (3.10), or the problem can be solved in terms of 
conductances. Conductance is the reciprocal of resistance and is meas¬ 
ured in mhoSf the word ^^ohm^^ spelled backwards. Conductance 
expresses the ability of a circuit to conduct current; hence a circuit with 
high resistance has low conductance, and a circuit with low resistance has 
high conductance. In equation form 

1 mho conductance = -—r-- 
1 ohm resistance 

(3.12) 

Using this terminology and letting (? stand for the conductance, Eq. (3.9) 
can be written 

(j = Gl + + G3 + • • • + (3.13) 

where G = 4; (?i = ^; (t2 = ■^; (?3 = and 
It III -0-2 ^3 U/n 

If Ohm^s law is written in terms of conductances, we have the following 
three forms: 

I = OE (3.14) 

^ = i 
(3.15) 

(3.16) 
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where / = current, amp 
G = conductance, mhos 
E = voltage, volts 

Using conductances in Kirchhoff^s current law gives 

= -^1 + -^2 + /a + * * • + In 
or GE = GiE + G2E + GzE + • • • + GnE (3.17) 

for the total and respective branch currents. 

Example 3.10. Solve Example 3.8 by using conductances. 

Solution 

= 4- = A = 0.06667 mho 
/ti lo 

Gi = h = 4s = 0.01667 mho 
/i?‘2 60 

G -\-G, = 0.06667 + 0.01667 = 0.08334 

By Eq. (3.14) 

J, = EGx - 1.5(0.06667) = 0.1 amp 

/2 EG2 = 1.5(0.01667) - 0.025 amp 

I =: eg 1.5(0.08334) = 0.125 amp 

3.10. Voltages in Parallel. When two or more batteries having the 
same open-circuit terminal voltage are connected in parallel, the terminal 
voltage will not be changed, providing like terminals are connected. For 
a given external load the current drain will be less per battery, and the 
internal resistance drop for the group will be less. Such connections are 
commonly used when a large current is needed at a fairly constant 

voltage. 
If the open-circuit terminal voltages are not the same, there will be 

a circulating current set up in the battery proportional to the difference 

of the open-circuit terminal voltages. Hence, care should be taken to 
connect in parallel only batteries with equal open-circuit terminal 
voltages. 

3.11. Electrical Instruments. Voltage Multipliers, Current Shunts, 
and the Ohmmeter. An electrical instrument is a device for measuring the 
value of an electrical quantity under observation. Instruments such as 

voltmeters and ammeters are often referred to in industry as meters.’’ 
Actually, voltmeters and ammeters are instruments, because they indicate 
the values at the time of observation. 

A voltmeter is an instrument for measuring the voltage between two 
points in an electric circuit, and an ammeter is an instrument for meas¬ 
uring the current through an electric circuit. On the other hand, 
watt-hour meters integrate with respect to time the quantity of electricity 
flowing through a circuit and hence are meters. 

Ane. 

Ans. 

Ans. 
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Instruments and meters are described on following pages. The purpose 
of this discussion is to treat the external electric circuits that are used 
to change the scale readings. 

An ideal electrical instrument would not consume power. Therefore, 
an ideal voltmeter would have infinite resistance, and an ideal ammeter 
would have zero resistance. In actual practice, voltmeters are made with 
very high resistance, while ammeters are made with very low resistance. 

Voltmeters are generally made by using resistance in series with a 
sensitive ammeter that will give full-scale deflection for little current. 
The resistance that is placed in series with the ammeter is then chosen to 

(a) (b) 
(a) Voltmeter with multiplier (b) Ammeter with shunt resistance 

resistance 
Fiq. 3.7. Electrical instrument multipliers and shunts. 

permit the full-scale current to flow when the voltage across the instru¬ 

ment is the highest value anticipated. Thus, if we assume that the 
resistance of the meter itself is negligible, this value of resistance will be 
given by the maximum voltage to be measured, divided by the current 
necessary to give full-scale deflection on the meter. If the meter shows 
full-scale deflection for 1-ma current, it will be necessary to place 1,000 
ohms in series with it for each volt to be measured, and such a meter is 
said to have a sensitivity of ‘‘1,000 ohms per volt.^^ Thus, if 100,000 
ohms are placed in series with the meter, 100 volts across the instrument 
will give a full-scale deflection on the meter. 

The internal resistance of d-c electrical instruments varies from the 
order of 100 ohms per volt to the order of 50,000 ohms per volt. In 
communication work, electrical instruments having a sensitivity of 1,000 
ohms per volt are quite common. Such an instrument may be used at 
one time as a voltmeter by using a series or multiplier resistance, and at 
another time as an ammeter by using a parallel or shunt resistance. It 
is therefore desirable to be able to calculate readily the resistance values 
for multipliers and shunts. 
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a. Voltage Multipliers. Consider the electrical instrument in Fig. 
3.7o. The line voltage E is applied to the multiplier resistance Rm in 
series with the internal meter resistance Rv. By Kirchhoff’s voltage law 

E — IvRv + IvRm 

Solving this equation for the multiplier resistance results in the multiplier- 
resistance formula 

R„ = ^- R, (3.18) 
V 

where Rm = series voltage-multiplier resistance, ohms 
E = line voltage for full-scale deflection, volts 

= full-scale meter current, amp 
Rv = internal meter resistance, ohms 

For illustration, it is desired to make a 1-ma meter, having a sensitivity 
of 1,000 ohms per volt, register a full-scale deflection on 500 volts. If 
the instrument has an internal resistance of 100 ohms, the values can be 
substituted in Eq. (3.18) to give 

Rm = 0^^ == 499,900 ohms Ans, 

the resistance value of the external multiplier. 
When measuring high voltages, as in the preceding illustration, the 

external resistance Rm is much larger than the internal resistance Rp. 
For practical purposes, Rv can be neglected to give 

Rr. = Y (3.19) 
J- V 

where the values are as defined in Eq, (3.18). If the illustration problem 
is solved by this approximate formula, 

Rm = ^ 500,000 ohms An$, 

giving an error of 1 in 4,999 or 0.02 per cent. This approximate formula 
can also be stated in terms of the meter sensitivity. Since 1,000 ohms 

is required for each volt, then it will require (1,000) (500) = 500,000 ohms 
for this voltmeter to give a full-scale deflection of 500 volts. 

It is quite common practice to use a series of multiplier resistors with a 
single low-range voltmeter as shown in Fig. 3.8a, thus making it possible 
by means of a switch to select a number of voltage ranges. In selecting 
resistors for the multiplier, care must be taken to secure the required 
accuracy. For a precision job, the resistance should be noninductive 
(see Chap. 7 for discussion of inductive effects), have a low temperature 
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coefficient, and be selected to give the exact resistance value by measure¬ 
ment. Commercial resistors may vary as much as ± 10 per cent, while 
precision resistors are readily available with an accuracy of ± 1 per cent. 

(a) Multirange voltmeter (b) Multirange ammeter 
Fig. 3.8. Multirange electrical instruments. 

6. Current Shunts. In Fig. 3.76, the instrument A is shunted by the 
resistance 22,. The line current divides from point a to point 6, flowing 

through the parallel resistors Ra and 22,. Applying Kirchhoff^s current 
law, 

I ^ la + I. 

or in terms of the shunt current 

Is = I - la (3.20) 

Furthermore, the voltage drops through the parallel branches can be 
equated; thus 

2,22, = laRa 

which in terms of the shunt resistance is written 

R. = jRa (3.21) 

Substituting the value of /, from Eq. (3.20) into Eq. (3.21) results in the 
shunt-resistance formula 

R. = (3.22) 

where R, = shunt current resistance, ohms 
/ = line current for full-scale deflection, amp 

la = full-scale meter current, amp 
Ra = internal meter resistance, ohms 

For illustration, it is desired to make a 1-ma meter, having a sensitivity 
of 1,000 ohms per volt, register a full-scale deflection of 1 amp. If the 
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instrument has an internal resistance of 100 ohms, the values can be 
substituted in Eq. (3.22) to get 

100 = 0.1001 ohm Am. 
l.U — U.lHJl 

the resistance value of the external shunt. 
In the measurement of large currents, the resistance of the instrument is 

usually very high in comparison with the shunt resistance, hence for prac¬ 
tical purposes can be neglected. If la in the denominator of Eq. (3.22) is 

neglected, 

R. = j Ra (3.23) 

where the values are as* defined in Eq. (3.22). Solving for the value of the 
shunt resistance in the preceding illustration by using this approximate 
fortnula results in 

Rs = 100 = 0.1 ohm Ans. 

which is in error by 1 part in 1.001 or 0.1 per cent, which in most cases can 

be neglected. 

Fia. 3.9. Combination volt-milliammeter circuit. (Values are for the theoretical case of 
^ 0 and Ra «.) 

In many cases the instrument is calibrated with the shunt, and the 
scale is made to read directly. In the illustration given the instrument 
should be made to read directly for the value of current flowing in the line. 

A number of shunt resistors can be connected by means of a switching 
arrangement as shown in Fig. 3.86 to make a multirange instrument. It 
will be noted that the shunt resistors are never removed from the circuit in 
this switching scheme. This is an important feature, because if the shunt 
resistors were in the switching circuit, a poor or open contact might injure 
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or ruin the meter due to the large current. In the circuit of Fig. 3.86, an 
open contact will remove the meter from the circuit and the meter indica¬ 
tion will drop to zero. 

Example 3.11. Using a 0- to 1-ma instrument, design a combination voltmeter 

and milliammeter circuit. Determine the approximate values of multiplier resistors 

to make the instrument read a maximum voltage of 10, 50, 100, 600, and 1,000 volts 

and the approximate values of shunts to make the instrument read 10, 50, 100, 500, 

and 1,000 ma. The instrument has an internal resistance of 100 ohms and a sensi¬ 

tivity of 1,000 ohms per volt. What are the exact values of resistance requircjd? 

Solution, The approximate values computed by using Eqs. (3.19) and (3.23) are 

shown in the designed circuit of Fig. 3.9. By using Eq. (3.18), the exact values of 

multiplier resistors are 

Rm 

Rm 

Rrn 

Rfn 

Rm 

10 
0.001 
JtO 
o.obi 

0.001 
_5(W 

0.001 
1000 
0.001 

100 = 9,900 ohms 

100 = 49,900 ohms 

100 = 99,900 ohms 

100 = 499,900 ohms 

100 = 999,900 ohms 

(for the 10-volt scale) 

(for the 50-volt scale) 

(for the 100-volt scale) 

(for the 500-volt scale) 

(for the 1,000-volt scale) 

It will be noted that these values are 100 ohms less than the approximate values given 

in Fig. 3,9. Now the exact values of shunt resistors by Ecj. (3.22) are 

Ri = ” 11.11 ohms (for the 10-ma scale) 

ft. = 100 = 0.2004 ohm (for the 500-ma sralo) 
U.o — U.UUI 

R> = ^ 0.1001 ohm (for the 1,000-ma scale) 

In Fig. 3.9 the values must be added in series to get th(‘ total R, for the 

respective cases. The error due to the approximate formula increase's for the lower 

current scales. 

c. The Ohmmeter. An extremely useful instrument of wide applicabil¬ 
ity is the direct-reading ohmmeter shown in Fig. 3.10. This instrument 

can be used to check for open or short circuits and measure resistance 
values quickly with a fair degree of accuracy. The ohmmeter circuit is 
often combined with a combination voltmeter-milliammeter circuit to 
make a very useful portable circuit tester. 

The ohmmeter circuit consists of an adjustable zero calibrating resist¬ 
ance Re and a battery E connected in series with a d-c instrument. The 



DIRECT-CURRENT CIRCUITS 55 

circuit constants are selected so that the meter can be adjusted to read 
full scale when the test terminals are shorted {R = 0) as shown in Fig. 
3.10a. If the battery voltage changes, the value of the calibrating resistor 

Rc has to be readjusted to make the meter read 0 ohms on short circuit. 
This indicates that the resistance between the two terminals is zero. 
When the terminals are placed across an unknown resistance, as shown 
in Fig. 3.106,.the meter will read its value directly on the ohm scale. For 
zero current through the meter, which corresponds to an open circuit, the 
ohmmeter scale indicates infinity as shown in Fig. 3.10c. Therefore, the 
ohmmeter reads backwards, 0 ohms being at the right-hand end of the 
scale and oo ohms being at the left-hand end of the scale. 

(a) With test leads (b) Connect test leads (c) When test leads are 
shorted adjust Rc across unknown re- open circuited the 
until the meter sistor R and read resistance is x. 
reads zero resistance value on 

the meter 
f’lQ. 3.10. Ohmmeter circuit showing calibration and measurement. 

The accuracy of the ohmmeter measurements is limited by the accuracy 
of the instrument and the ability of the operator to read the position of the 
pointer between the calibrated lines on the scale. The greatest accuracy 
of the instrument occurs when the unknown resistance is equal to the 
internal resistance of the ohmmeter circuit, a condition that results in 
half-scale deflection on the meter. The extreme ends of the scale should 
be avoided because of their low accuracy. To read low values of resist¬ 
ance, the calibrating resistor Rc should have a low value with a correspond¬ 
ing low value of voltage E, while to road large values of resistance 
accurately, the value of Rc and E should be made large. 

Example 3.12. Design an ohmmeter circuit that will operate with maximum 

accuracy at 1,000 ohms and use a 0- to 1-ma meter having an internal resistance of 

100 ohms. 

Solution. In the circuit of Fig. 3.10, the internal resistance must equal an external 

resistance of 1,000 ohms for maximum accuracy; therefore, 

Rc "f" Ra *=* 1,000 

Rc ** 1,000 — 100 « 900 ohms Ans. 

A rheostat of 1,000 ohms will be satisfactory. 



56 COMMUNICATION CIRCUIT FUNDAMENTALS 

The current flowing in the circuit for maximum accuracy will be 0.5 ma; therefore 

the battery voltage should be 

E « 2{Rc -f Ra)I 
= 2(900 -h 100)(0.0005) 
— 0.5 volt Arw. 

Example 3.13. Determine Rc and E in Example 3.12 for a maximum accuracy 

at 100 kilohms. 

Solution 

Rc = 100,000 - Ra ^ 100,000 - 100 = 99,900 Am. 

E = 2{Rc -f Ra)I = 2(99,900 + 100)(0.0005) 
« 50 volts Am. 

3.12. Series-parallel Circuits. We are now ready to solve series- 
parallel circuits, which will involve Ohm’s law and Kirchhoff’s voltage and 
current laws. 

Illustration. Let us consider the series-parallel circuit of Fig. 3.11. In 
this figure we have for illustration the following problem. Given 

E = 12.3 volts = battery voltage 
Ri = 0.2 ohm, j!?2 = 12 ohms 
Ri = 3.2 ohms, Rz = 8 ohms 

Find /i, hj hf Eaby and V, 
Solution, Since R^ and Rz are given, the equivalent resistance is 

Rob = 
R^Rz (8) (12) _ 96 

Rz 4“ Rz 8 + 12 20 
= ht: = 4.8 ohms 

This equivalent resistance Rab is in series with Ri and Ri. 
total resistance is 

-LUmS 

Rt = R\ -[- -f- Rab 
= 3.2 + 0.2 + 4.8 = 8.2 ohms 

Hence, the 

By Ohm’s law the current flowing in the series circuit is 

h 
Ri 

12,3 
8.2 

1.5 Ans. 
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The terminal voltage can now be found by applying Edrchhoff^s voltage 
law; thus 

Rih - E+V = 0 

or transposing V = E — RJi 

= 12.3 - (0.2)(1.5) = 12.3 - 0.3 
= 12.0 volts Ans, 

The voltage V in the equation was expressed as a voltage drop, since 
the sign was positive. If the sign of V had been made negative in this 

equation, the answer would have come out negative, meaning that it is a 
voltage rise. The voltage V is the terminal voltage of the battery under 
the particular load condition given. This voltage, of course, varies as the 
load is varied, owing* to the internal resistance of the battery. 

We must now find the voltage drop across Ri in order to arrive at 
the voltage E,b- This can^be expressed by Kirchhoff’s voltage law; thus 

V = /i/^l + Eab 

or transposing Eab = U — hRi = 12 — (1.5)(3.2) 

= 12 — 4.8 = 7.2 volts Ans. 

This could have been obtained without solving for the terminal voltage V; 

thus 

Factoring out h 

Transposing 
Substituting 

E = hRi + hRi 4" Eab 

E — Ii{Ri 4* Ri) 4" Eab 
Eab = E - h{Ri 4- Ri) 

Eab = 12.3 - 1.5(0.2 4- 3.2) = 12.3 - 1.5(3.4) 
= 12.3 — 5 = 7.2 volts Check. 

We are now in a position to determine h and /a, since we know Eat. 
By Ohm’s law 

and 

/2 = ^ ^ = 0.6 amp Ajis. 

/a = ^ = ^ = 0.9 amp 
Ilz o 

3.13. Voltage Dividers or Potentiometers. Voltage potentiometers 
are devices for varying or adjusting potential. In a simple form, the 
potentiometer may consist of two resistors connected in series across a 
battery as shown in Fig. 3.4. The battery voltage E is divided into two 
parts. One portion of the voltage is across R\ and the other portion is 
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across Rt. If a load is placed across Rt, the series-parallel circuit of 
Fig. 3.12 results. In this potentiometer circuit, Ri and Rt can be con¬ 
tinuously varied to obtain any desired division of the voltage. The sum 

2 3 

Fig. 3.12. Potentiometer circuit con¬ 
nected to load. 

R = Ri + R2 (3.24) 

is the total resistance of the potenti¬ 
ometer. Further analysis reveals that 

and 

E = h 
R2R3 \ 

R2 + RsJ 

R2Rz 
R2 + Rz 

(3.25) 

(3.20) 

These equations can be expressed in ratio form to eliminate the current I\\ 
thus 

j ^^2/^3 

§3 = ' 2 + Hi ■ ^ _7g../?3 

E ] (n R2RZ \ R1R2 + R^Rz + RzR\ 
(3.27) 

Example 3.14. In a radio circuit, a 1-megohm potentiometer is connected across 

10 volts. If a 100-kilohm load resistor is connected as shown in Fig. 3.12, where 

must the potentiometer he set to produce 1 volt across the load? 

Solution, By using Eq. (3.27) 

Ri + R2 ^ 1,000,000 
And in Eq. (3.27) 

1 100,000/?2 
10 RiRi -f 100,000/e2 + 100,000/?! 

Upon substituting R2 = 1,000,000/7? 1, this equation can be reduced to the following 

standard form: 
7?i2 -1- l0/?i - 9,000,000 = 0 

Applying the quadratic formula, the potentiometer must be set so that 

Ri = 2,995 ohms Ans. 

Rt = 1,000,000 - 2,995 - 997,005 ohms Ans, 

3.14. Voltage Bleeders. Voltage dividers or bleeders are often used 
in conjunction with powxr supplies to obtain the correct plate voltage for 
vacuum tubes. This is especially true in radio receivers, wiiere the powder 
dissipated in the bleeder resistance is small. In transmitters it is the usual 
practice to design the power supply so that bleeders are not necessary. 

Let us consider the following practical problem to illustrate how such 

problems are handled. 
lUustratian, A d-c power supply of 300 volts is shown in Fig. 3.13. 

From this power supply it is desired to determine the value of resistances 
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in a bleeder circuit to supply the required operating voltages for a radio 
receiver containing three type 58 tubes, three type 56 tubes, and one type 
59 output tube. The operating voltages of these tubes are available in 
charts and books containing tube data. The data in Table 3.1 on these 
tubes was obtained from such a chart. From this data we can determine 

the total plate current drain when 
the plate voltage is 250 volts. 
The plate current of all the tubes 
used must be added, giving 

7, = (3) (5) + (3) (8.2) 
+ 26 = 65.6 ma 

The screen-grid current drain is 

L = (3)(2) = 6 ma 

The total plate and screen-grid 
current will return to the bleeder 
from the cathodes. Since the 
grids are negative, they will not 
draw current. We then have the 
circuit as shown in Fig. 3.13. We 
still have a parameter to fix arbitrarily, and that is the current /a. The 
logical thing to do is to make this current zero, for it is of no practical value 
other than in stabilizing the circuit voltages if some of the tubes are 
removed. If Iz = 0, then Rz — ^, which is an open circuit. We are now 

ready to determine the values of /?i, 7^2, 7?4, Rh, and R%. 

Table 3.1 

Tul)(; typo 
Plato 

VO It ago 

Soroon 

voltage 

Grid 

voltage 

Plato 

ourront, ma 

Screen 

current, ma 

6P5 c;t/g 250 -13.5 5.0 

6U7(1 250 100 -3 8.2 2.0 

59 250 -28 26 

Sohition, By Kirchhoff’s current law, the current at point e is 

12 “ la I z ~ 6-|-0 = 6 ma 

Similarly that at point / is 

7i = /p + /s = 65.6 + 6 = 71.6 ma 

Since the grid currents 

Jgi ^ Igb Igb 
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we can write by Earchhoff^s current law that the current at d ia 

/p + /# = /4 = 71.6 ma 
and 74 = /b = /e = 71.6 ma 

Now we can solve for the voltages by applying KirchhofT’s voltage law. 
The voltage supply between a and g is Eag = 300 volts. The total bias 
between a and d is Ead = 28 volts. The plate voltage between d and / 
is Edf = 250 volts. Then the voltage E/g across Ri must make up the 
difference 

Eag = Ead + Edf + Efg 

Substituting 300 = 28 + 250 + E/g 
Efg — 22 volts 

Solving for R\ by Ohm’s law gives 

The voltage from e to / is the difference of plate and screen voltage or 
150 volts. Hence 

= S = 25,000 ohms 

Similarly Ri = ^ = 41.9 ohms 

” 71 “ 0.0716 ” 

«• - 77 - 0^6 - “2.^ 

For practical purposes, it is not necessary to make these resistances 
exact. The following commercial resistance values would be entirely 
satisfactory: 

Rx = 300 (instead of 307.3 ohms) Ans. 
R2 = 25,000 ohms Ans. 
Ri = 40 (instead of 41.9 ohms) Ans, 
Ri = 150 (instead of 146.7 ohms) Ans, 
P, = 200 (instead of 202.5 ohms) Ans, 

We have yet to determine the safe power rating of these resistances. 

Pi =. 7isp, = (0.0716)*(307.3) 
= 1.678 watts (use a 2-watt resistor) 

Pj = = (0.002)*(25,000) 
= 1 watt (satisfactory) 
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Pa = Ia^Ra = (0.0716)2(41.9) 
= 0.2148 watt (use 0.5-watt resistor) 

‘ Pe = /s'Ps = (0.0716)2(146.7) 
= 0.752 watt (use 1-watt resistor) 

Pe = /e'Pe = (0.716)2(202.5) 
= 1.038 watts (use 2-watt resistor) 

However, for Pe a 1-watt resistor would be satisfactory, since the rating 
would scarcely be exceeded. 

Each bleeder problem will be different, and in general the thing to do is 
to set down everything that is given and then proceed to apply Ohm^s and 
lurchhoff’s laws to determine the unknown elements. If the student 
thoroughly understands the preceding computation, he should have no 
more difficulty with this type of problem. 

Summary 

Closed circuits are normal circuits having a continuous path for current flow. 

Open circuits are broken circuits that prevent current flow. 

Shorted circuits are circuits in which the current flow is by-passed from its normal 

path. 

Ohm's law states that the current flowing in a circuit is directly proportional to the 

voltage across the circuit and inversely proportional to the resistance of the circuit. 

In word equations 

Amperes =» Volts ~ (amperes)(ohms), Resistance- 
ohms amperes 

In terms of algebraic symbols, 

/ = |, E = IR, R =j 

Terminal voltage is the voltage measured at the output terminals of a voltage source. 

It is equal to the open-circuit voltage minus the internal IR drop. 

In a series circuit 

1. The total resistance is the sum of the individual resistances. 

2. The same current flows in each part of the circuit. 

3. Kirchhoff’s voltage law states that the sum of the voltage drops is equal to the 

applied voltage. Or, between any two points in a circuit, the voltage drop must be 

equal regardless of the path. 

4. The total applied voltage is the sum of the individual voltage sources. 

In a parallel circuit 

1. The total conductance (reciprocal of resistance) is the sum of the parallel branch 

conductances. The total resistance of a parallel circuit is equal to the reciprocal of 

the sum of the reciprocals of the individual resistances. 

2. The same voltage is across each branch. 

3. Kirchhoff’s current law states that the total current flowing up to a point equals 

the sum of the branch currents flowing away from the point. 

4. In a circuit containing similar voltage sources in parallel, the total current in 

the external circuit is the sum of equal contributions from each similar voltage source. 
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• 

Electrical instruments indicate present values of the electrical quantity under 
observation. 

Electrical meters integrate and register the electrical quantity with respect to time. 

Midtirange voltmeters use various large values of series resistance to change the 

range of the scale. 

Multirange ammeters use various small values of parallel resistance to change the 

range of the scale. 

An ohmmeter can be made by connecting a suitable battery and resistance in scries 

with an electrical instrument. 

Series-parallel circuits problems can be solved by applying series circuit rules to 

the series portions and parallel circuit rules to the parallel {X)rtions. 

Voltage division can be achieved by using a potentiometer or bleeder circuit. 

Exercises 

8.1. Given a battery with 32.5 volts having an internal resistance of 0.6 ohm. A 

load is connected that draws 9 amp. Solve for the terminal voltage V and the load 

resistance (see Fig. 3.36). 

3.2. Referring to Fig. 3.6, we have given 

Fig. 3.14. Series-parallel circuit for Exer¬ 
cise 3.3. 

E =* 110 volts 

7^2 = 220 ohms 

/i = 2 amp 

Solve for /, 12, and Ri. 

3.3. In Fig. 3.14, we have given 

R\ = 1.0 ohm 

/?2 = 0.5 ohm 

Rz = 0.25 ohm 

Ri = 0.15 ohm 

E — lb volts 

Find the conductance G2, O3, and G4 of each parallel circuit and the currents /i, /2, 

/a, and li. 
3.4. Given a Weston Model 301, 30-ohm, 0- to 1-ma meter, (a) Determine the 

shunt resistance R, so that this meter 

w'ill operate as a 0- to 5-amp ammeter. 

(6) Determine the multiplying series 

resistance Rm so that this meter will 

operate as a 0- to 50-volt voltmeter. 

3.6. Given the bleeder shown in Fig. 

3.15 with 

a 00 ohms 

P « 4.5 watts 

Ip = 200 ma 

7, = 80 ma 

Fio. 3.16. Bleeder for Exercise 6. 
Find Rif R2f Rz, and h. 



CHAPTER 4 

DIRECT-CURRENT NETWORKS 

Ohm’s and Kirchhoff’s laws will now be applied to networks that are 
more complicated than the circuits of the last chapter. The application 
of equivalent T- and 7r-sections makes it possible to simplify many rather 
difficult problems. In addition, the theory and application of the bridge 
circuit so widely used in making measurements will be given in this 
chapter. 

4.1. Ladder Networks. The ladder network is an extension of the 
series-parallel circuit treated in the last chapter. The series-parallel cir¬ 
cuit in Fig. 3.11 may be considered as a simple two-mesh network. 
Going a step farther, consider the three-mesh ladder network of Fig. 4.1. 
An illustrative problem will be solved to show" the application of Ohm’s 
and Kirchhoff’s law"s. 

c e 

Fig. 4.1. Three-meah ladder network. 

Illustration. With all the resistances and voltages given, it is possible 
to determine the currents flowing in each branch of the circuit. In Fig. 
4.1, we have given 

= 60 ohms, 
i?2 = 600 ohms, 
Rz = 300 ohms. 

Ri = 300 ohms 
iis = 150 ohms 
E = Id volts 

Find /i, hy hy I Ay and h. 
Solution. We must solve for the resistance load of the battery Ej w'hich 

is the resistance looking into the circuit betw'een the points a and c. 
A general inspection of the circuit indicates that resistances Ra and 

are in parallel. This parallel branch is in series wdth Rz. Then i22 is in 
parallel with this series-parallel branch. Finally, 7? i is in series with this 
parallel branch. The problem then becomes one of finding, first, the 
equivalent resistance of a parallel circuit and then adding it to a series 
resistance, and so on. 

63 
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The resistance J?46 of the parallel circuit containing Ri and Rb by 
Eq. (3.11) of the last chapter is 

Rib 
R^Rb 

Ra + Rb 

(150) (300) _ 45,000 
300 + 150 450 

= 100 ohms 

Adding the series resistance Rz gives 

Rhe == Rb "4" R^b — 300 -j- 100 = 400 ohms 

The parallel circuit between h and c has a resistance Rbc, which is 

R be 
RbeR^ 

R2 + Rbe 

(400) (600) _ 240,000 
600 + 400 1,000 

= 240 ohms 

The sum of this resistance Rbc and Ri gives the equivalent resistance 
Racj the load on the battery. 

Rac = Rbc + Ri = 240 + 60 = 300 ohms 

The current h by Ohm’s law is 

h A 

Rac 

15 
300 

= 0.05 amp = 50 ma A ns. 

Note. If volts and ohms are used in the equation of Ohm’s law, the 
current ^vill be in amperes. The preceding equation could have been 
wTitten using millivolts and ohms. Then the answer would be in milli- 
amperes as follows: 

15,000 
300 

= 50 ma 

The student may find this form more convenient for radio engineering 
problems where small currents are in continuous use. In any event it is 
essential that the student keep clearly in mind the system of units being 

used. 
The voltage drop from 6 to c by Kirchhoff’s voltage law gives 

E = IiRi 4" Rbc 

Substituting and solving for Ehc gives 

Ebc^lb - (0.05) (60) = 15 - 3.0 = 12 volts 

By Ohm's law 

= 0.020 amp. = 20 ma Ans. 
H2 oUU 

Using Kirchhoff’s current law at the point b results in 

Ii = I2 A" Iz 
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Substituting and solving for Iz 

/a = /i — /2 == 50 — 20 = 30 ma Arts. 

The voltage drop Ede is found by applying Kirchhoff’s voltage law to the 
circuit chde as follows: 

Ecb = IzRs + Ede 

Substituting and solving 

Ede = Ecb - IzRz = 12 - (0.03) (300) 
= 12 — 9 = 3 volts 

Note that Ecb is a voltage rise, while Ebc as expressed above is a voltage 
drop. In other words, going from b to c, one experiences a drop in voltage, 

while going from c to 6, a rise in voltage is experienced. Applying Ohm's 
law, we find the current 

IA = ^ = 0.01 amp = 10 ma Arts, 
IIA oUU 

The current h can be obtained by applying Kirchhoff's current law. 

/s = /a /4 = 30 — 10 = 20 ma Am, 

Or, applying Ohm’s law, 

h = ^ ^ = 0.02 amp = 20 ma Check, 

To summarize the answer: 

h = 50 ma Ia = 10 ma 
h = 20 ma h = 20 ma 
/a = 30 ma 

This type of problem is not difficult to work, but the work must be 
accurate. If more than three meshes were involved, it would be handled 
in the same manner, by first solving for the equivalent resistance of the 
circuit starting at the far end from the battery and then going back 
through the circuit solving for the various currents. 

The student may inquire as to the practical value of this type of prob¬ 
lem. Ladder-type network attenuators are a good example of the prac¬ 
tical application. 

Illustration, In Fig. 4.2 it is desired to design a resistance network'for 
obtaining multiples of 1 mv, such as 10 mv, 100 mv, and 1,000 mv or 1 
volt. 

If we consider this a purely voltage device, which means that there 
is no current drain across the output terminals, the values of resistance 
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in the network can be any practical value. However, the output load 
will take a little current, so it is well to make the resistance network of 
rather low values of resistance; that is, when looking into the network 
from the output terminals, the internal resistance should have a low value. 
The open-circuit voltage will be correct in any case, but when there is an 
appreciable load applied, the drop in the internal resistance becomes 
appreciable. If this resistance is made small, the drop will be small, and 

1 volt or 100 mv 10 mv 1 mv 

hence the error in using the open-circuit terminal voltage will be less. 
The limiting factor in making this resistance small is the power consump¬ 
tion from the input voltage. If very small resistances are used, large 
currents will be necessary to produce the required IR drops to give the 
correct voltages. 

With these facts in mind, we are ready to design the network. Arbi¬ 
trarily we select i?6 = 9 ohms, because it is low in comparison with output 
loads normally used and will not consume a prohibitive amount of cur¬ 
rent. The current U by Ohm’s law is 

^ millivolts 1 1. 
ie = —r- = K = O.lll ma 

ohms 9 

This current flows through so 

Rh = j = 81 ohms 

It would be desirable to select the value of 724 so that the network will 
have uniform shunt resistors. We have the resistance 724 to select arbi¬ 
trarily. If we keep the above limiting conditions in mind, 10 ohms should 
be a suitable value for this resistance; thus, 

= 10 ma 

Then the current through 723 is 

/a = /4 + /b = 1.0 + 0.111 = 1.111 ma 
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The resistance Rz becomes 

Ri = 
100 - 10 

1.111 
= 81 ohms 

Similarly, we will make R2 = 10 ohms and get 

h = — 10 ma 
Solving for h gives 

/i = /2 + /3 = 10 + 1.111 = 11.111 ma 

R\ can now be found and is 

.fii 
1,000 - 100 

11.111 
= 81 ohms 

This completes the solution of this voltage-multiplying ladder-type 
network. This type of network has valuable applications in a-f and r-f 

attenuators. 
Later on in the course, attenuators will be discussed in more detail, 

considering decibel attenuation and impedance-matching problems 

involved in their design. 
4.2. Equivalent T- and 7r-sections. All linear network problems can 

be handled by the proper application of Ohm’s and Kirchhoff’s laws; how¬ 
ever, in complicated networks this procedure becomes very tedious. By 
applying the theory of eciuivalent T- and 7r-sections, most complicated 
networks can be quickly reduced to a simple network. To make this 
possible, the equations for transforming a tt- to a T-section and vice versa 
will be developed. 

THEOREM I. A three-element T-section can be replaced by an equiva¬ 

lent T-section and vice versa if the relationships given in Fig, 4.3 are main¬ 
tained. 

To prove this theorem, consider the T- and 7r-sections of Fig. 4.3. The 
resistance between the various terminals, as designated by the subscripts, 
can be written for the T- and ir-sections as follows: 

Ru — Ri Rz 

Ri2 = Ri -{~ R2 

R2Z = R2 “b Rz 

RajRb ~b RA 
Ra "b Rb “b Rc 
Rh{Ra "b Rr) 

Ra + Rb + Rc 
Rc{Ra ~b Rb) 

Ra A- RbRc 

(4.1) 

(4.2) 

(4.3) 

Here we have three equations in three unknowns, Ki, R2, and Rz for the 
T-section or Ra, Rh, and Rc for the T-section. By simultaneous equations 
it is possible to find a solution. 
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Let us first solve for the values of resistance in the T-section in terms of 
the ir-section resistances. By adding Eqs. (4.1) and (4.2) 

oi> j_ E> I i> 2RaRh + RhRc + RbRo 2R, + R, + R,^ -+ + R,- 

Now subtracting Eq. (4.3) removes R2 and R^] thus 

op _ ^RaRb + 
Ra-\‘Rb + Rc 

L 2 ri »-'VVV\r-1 

> 
> 

i 
^ < 
i?0< : «.< 

n __ __ 
‘ “ ft. + fli + ft, 

R — RbRc 
* /2a + /fe -f iR<, 

R 

’ Ra+ Rb+R, 
(a) T-section with 

values in 
terms of an 
equivalent 
T-section 

RiRi R2R3 ■+• R3R1 

" W2 
_ RxRi + R2R3 “1~ R3R1 
■ 

__ RiR2 4* RzRz 4~ RiRi 

Wx ’ 
(b) T-section with 

values in 
terms of an 
equivalent 
T-section 

Fig. 4.3, Equivalent T- and T-sections. 

Canceling terms and dividing by 2 gives 

"" Ra + V Rc 

By adding Eqs. (4.2) and (4.3), subtracting Eq. (4.1), canceling terms, 
and dividing by 2 

/fcV «. 
By adding Eqs. (4.1) and (4.3), subtracting Eq. (4.2) and simplifying, 

^ Ra + Rb+ Rc 

These are the required equations for transforming any 7r-section to its 
equivalent T-section. 

The values of resistance in the ir-section in terms of the T-section 
resistances can be obtained from Eqs. (4.4), (4.5), and (4.6) by using the 
following procedure: Multiplying Eqs. (4.4) and (4.5) together gives 

D D __ iRaRbRe){Rb) 
{Ra + Rb + RcY 
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Multiplying Eqs. (4.5) and (4.6) 

It^Rz — 
{RaRbRc) (Re) 

(Ra + + Rc)^ 

Multiplying Eqs. (4.4) and (4.6) 

RzRi — 

Adding these three equations 

RgRbRciRg) 

(Ra +^26 + Re)^ 

P P \ P P \ P P — (^o^*>‘^c)(^o "h Rb Rc) 
iiiii2 "T n2itz “T XV3^1-(R -f- Rb + R y  

RaRbRc 
Ra “h Rb "h Rc ^ ^ 

Dividing Eq. (7.4) by Eq. (v4.5) and turning the equation around results in 

Ri/?2 “h R2R3 “1“ RzRi 
Ra = 

K2 
(4.8) 

Dividing Eq. (4.7) by Eq. (4.6) and turning the equation around gives 

R1R2 "f” R2RZ “f" RzRi 
Rb 

Rz 
(4.9) 

Dividing Eq. (4.7) by Eq. (4.4) and transposing yields 

Rc 
R1R2 4“ R2RZ 4“ RzRi 

Rl 
(4.10) 

Example 4.1. In a Tr-section as shown in Fig. 4.36, let Ra = 300, Rb = 500, and 

Rc = 200. What are the values in the equivalent T-section? 

Solution. In the equivalent T-section, by Eq. (4.4), 

By Eq. (4.5), 

Ri 

R2 

Rz 

RaR, (300) (500) 

Ra "h Rb 4* Rc 300 -h 500 4- 200 

RhRe (500) (200) 

Ra “h + Rc 

4.6), 

300 4- 500 -f 200 

R.Ra (200) (300) 

Ra Rb "'b Rc “ 300 4- 500 4- 200 

= 150 ohms 

= 100 ohms 

= 60 ohms 

4ns. 

4ns. 

4ns. 

Example 4.2. Show that a T-section with Ri = 150 ohms, R2 =» 100 ohms, and 

Ri *■ 60 ohms can be converted to an equivalent x-section. 

Solution. Substituting in Eq. (4.8) 

Ra 
RxRi 4“ R2RZ 4” RiRi __ 

(150)(100) + (100)(60) + (60)(150) ^ Ans. 
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Since the numerator R1R2 -|- R2R9 + RsRi is the same in all three equations, we have 
by Eq. (4.9) 

j, RiR2 “h R2RZ -f- RzRi 30,000 ^ ^ 
Rb = -^= 500 ohms Arw. 

Similarly, by Eq. (4.10), 

/VI 150 

4.3. Simplifjing Complicated Networks. 
THEOREM IL Any complicated resistance network having two input 

and two output terminals can he reduced to an equivalent T- or ir-section, 
a. By Step Procedure. By using Theorem I to change T-sections to 

equivalent 7r-sections and vice versa, it is possible to reduce a complicated 

I'lG, 4.4. Complicated four-terminal network. 

network to a simple T- or 7r-section. In addition to this type of trans¬ 
formation, resistances in series must be added and resistances in parallel 
must be added at various steps in the problem. 

lUustratian. Reduce the four-terminal complicated network of Fig. 4.4 

to an equivalent T- and 7r-section when the values are as follows: 

Ria = 13 ohms Rbc = 20 ohms 
R2b = 8 ohms Rbd = 50 ohms 
Rab = 24 ohms Red = 30 ohms 
Rac = 50 ohms Rha — 30 ohms 

Solution. Step 1. Replace the ^-section between points 6, c, and d 
with its equivalent T-section as shown in Fig. 4.5. By the equations in 
Fig. 4.3 for changing a ir-section to its equivalent T-section, we have 

Rce — 

Substituting and solving. 

RbcRcd 

Rbc + Rbd + Red 

Similarly, 

and 

6 ohms 7? _ (20)(30) ^600.^.^hmg 

n _ RbdRcd _ (50) (30) _ jc 

~ Rbe + Rbd 'VKd ~ 

D _ RbcRbd _ (20) (50) _ ohms 
“ Ru + r^ + rZ " 100 - 

Rde = 
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Step 2. Since the same current flows in at terminal 1 as flows out at 
terminal 2, the same current flows through Ria and R2b- Since these 
resistances are in series, they can be added, giving 

R\a ~ Ria R^b = 13 -f- 8 = 21 ohms 

An inspection of Fig. 4.5 (Step 1) indicates that the same current flows in 
Rbe as flows in Rac] hence RcJ of Step 2 is the sum 

RJ — Rbe + Rac = 10 + 50 = 60 ohms 

Also, for the same reason, Red and Rja can be moved to the other side of 

2 4 2 
STEP 4 STEP 5 

Fio. 4.6. Steps in rodurinK the coin plicated network of Fig. 4.4 to its equivalent T- and 
jT-section. 
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the circuit, giving Ra shown in Step 2. 

Rcz* = Red + Rd4 = 15 + 36 = 51 ohms 

Step 3. The ir-section between a, c, and b of Step 2 can now be replaced 
by the T-section of Step 3. Thus 

RaS = 
Rac Rah 

Rah + Rac + Re> 

Substituting and solving, 

Similarly 

and 

Raf = 

Rfc = 

Rjh — 

(60) (24) 
24 + 60 + 0 

RacRce 

Rah + Rac + Rc 

RabRce 

Rah + Rac' + Rci 

1,440 
90 

^ (60)(6) 
90 

. (24)(6) 
90 

= 16 ohms 

= 4 ohms 

= 1.6 ohms 

Step 4. The resistance Ri of Step 4 is obtained by adding Ru and 
Raf of Step 3. Thus, 

Ri = Ria^ + Raf = 21 + 16 = 37 ohms Ans. 

Similarly 

R2 = Rfc + Rcz' = 4 + 51 = 55 ohms Ans. 

Then Rz = Rfh = 1.6 ohms Ans. 

This is the equivalent T-section that was desired. 
Step 5. The T-section of Step 4 can be changed into the 7r-section 

of Step 5 by applying the conversion equations as follows: 

Ra = 
Substituting and solving, 

R1R2 + R2R3 + RzRi 

R2 

Ra 
(37)(55) + (55)(1.6) + (1.6)(37) 

Similarly 

and 

Rh = 

55 
2,035 + 88 + 59.2 _ 2,182.2 

55 55 

39.68 ohms 

R1R2 + RtRz + RJt] t 2,182.2 

Rz 1.6 
1,364 ohms 

R1R2 + RzRz + RzR\ 2,182.2 

Ri 37 

Ans. 

Arts. 

58.98 ohms Ana. 
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This completes the reduction of the complicated network to the equiva¬ 
lent T- and 7r-sections. 

In actual practice, it is very much more convenient to solve this 
type of problem from open- and short- 
circuit measurements when the meas¬ 
uring equipment is available. This 
type of problem will now be treated. 

b. By Resistance Measurements. 
Consider the complicated network of 
Fig. 4.6. How can it be reduced to 
an equivalent T- or 7r-section? Since 
no T- or 7r-section can be found, 

Fia. 4.6. Lattice resistance network. 

Theorem I can not be applied. Theorem II, however, states that a solu¬ 
tion is possible. To find the answer, let us determine if it is possible to 

(a) Open-circuit measiireinents at 
input terminals 

(b) Open-circuit measurements at 
output terminals 

Rl /?2 ^2 

(c) Short-circuit measurements at (d) Short-circuit measurements at 
input terminals output terminals 

Fia. 4.7. Open- and short-circuit resistance measurements to determine equivalent 
T-section for an unknown four-terminal complicated netw'ork. 

make measurements on the network that can be converted into equiva¬ 
lent T- and 7r-sections. 

If the input and output terminals are available, it is possible to make 
open- and short-circuit measurements at the respective pairs of terminals 
as shown in Fig. 4.7. This results in four equations as follows: 

Rqi = Rl Rz 

Ro2 = + Rz 
(4.11) 
(4.12) 
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Rti = jRi + 

jR,2 = + 

/?2 + R3 

RiRz 
Ri + Rz 

R1R2 H” R2R3 “h RsRi 

R2 “f" Rz 

R1R2 “t” R2RZ “h RzRi 
Ri + Rz 

(4.13) 

(4.14) 

With .these equations it is possible to solve for i?i, 7?2, and 723, the resist¬ 
ances of the equivalent T-section. To do this, multiply Eqs. (4.11) and 
(4.14) together and cancel the Ri + Rz quantity, leaving 

72oi72«2 — R1R2 4” R2RZ 4“ RzRi (4.15) 

Similarly, multiplying Eqs. (4.12) and (4.13) results in 

Ro2Ra\ = R1R2 4“ R2RZ 4“ RzRi (4.16) 

Rewriting Eqs. (4.11) and (4.12) 

Ri - 72oi - 723 (4.17) 

722 = 72o2 - Rz (4.18) 

Now substituting these values in Eq. (4.16) 

Ro2R$i = (72oi “ Rz)(Ro2 ““ Rz) 4" (72o2 “* Rz)Rz 4" Rz{Roi — Rz) 

Expanding and canceling terms 

Solving for Rz 

Hence 

RozRal I © 0
 

II 

Rz^ = 72oi72o2 — 72()2 •Mti 

Rz = \/72o2(72oi — R,i) (4.19) 

in Eqs. (4.17) and (4.18) 

= 72oi — \/72o2(72oi - R.i) (4.20) 

= Rq2 — \/72o2(72oi - R.i) (4.21) 

These last three equations are the desired equations for determining 
the resistance of the equivalent T-section. 

It is sometimes desirable to obtain the equivalent 7r-section as shown in 
Fig. 4.8c. Referring to Eq. (4.16), it is seen that 72o272«i can replace the 

numerator of Eq. (4.8), and by Eq. (4.21), 72o2 — \/Ro2{Roi — 72,i) can 
be used to replace the denominator; thus 

72o272ai_ 

\/72o2(72o1 — Ral) 
(4.22) 

Similarly, Eqs. (4.8) and (4.19) substituted in Eq. (4.9) gives 

72o272,i 
Rb = 

\/72o2(72o1 ~ Ral) 
(4.23) 
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Finally, Eqs. (4.8) and (4.20) substituted in Eq. (4.10) give 

__ _Ro2RsI_ 

RqI Ro2{RoI ~ Rbi) 

It is of interest to note that only three measurements were required to 
determine the equivalent T-section or ir-section. If Rs2 had been meas¬ 
ured instead of the value of 72,2 could be determined by equating 
Eqs. (4.15) and (4.16) to get 

75 

(4.24) 

72oi/2,2 — Ro^Rai (4.25) 

It is therefore possible to determine the equivalent T-section or ir-section 

by using /2oi, /2o2, and 72,2. 

R\ 72j 

Ca) Four-terminal complex Ri = R<s\ — Ri /?02i2«l 

network having input "" " Rt 
terminals 1 and output 
terminals 2. 

Ri = Rot — Rs RotRtti 

- R, 

Ra = \/Ro2(Ro. - R.!)' ^ RozRkI 

” R. 
(b) K(iuivalent T-seotion. (c) Equivalent 7r-section. 

Fig. 4.8. Networks and a.ssociated equations for equivalent T- and 7r-sections of a com¬ 

plicated four-terminal network. 

Example 4.3. Develop an equation for Rz when the Rn resistance measurement 

is absent. 

Solution. From Eq. (4.19) 

Ri = y/ RftiiRnx — Rs\) == '\/R{)iRq2 — Ro2Rti 

Substituting for 72*i from Fkp (4.25) 

R, = yjRoJiot - »»!i.(^^^'‘) 

= \/Ro\{Ro2 — Rni) Ans. 

Example 4.4. Develop an equation for Rh that does not contain 72*i. 

Solution. Substituting the value of Rz from Example 4.3 in the denominator of 

Eq. (4.23), and substituting theValue of 72.o from Eq. (4.25) in the numerator results 
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4,4. Simultaneous Equations Applied to a Two-mesh Circuit. It is 
perhaps well at this point to show how simultaneous equations may be 
applied to a two-mesh circuit. This can be effectively done by working a 
problem. 

Illustration. Two batteries with different internal resistances are con- 
a _nected to a load as shown in Fig. 

4.9, with 

i?3 = 20 ohms JS/i = 20 volts 

R2 == 10 ohms £'2 = 30 volts 
Rz = 20 ohms 

Fiq. 4.9. Two-mesh circuits. Find the currents 7i, /2, and Iz flow¬ 
ing in the three circuits by mesh-circuit theory. 

Solution. First, applying KirchhofFs voltage law to the outside circuit, 
then to the right-hand mesh gives two simultaneous equations. The 
third is obtained by applying KirchhofT^s current law at point a. 

El ^ IzRz ~f“ IiRi 

E2 ~ IzRz 4” I2R2 

/l + /2 = Iz 

Perhaps the easiest way to solve such a set of equations is to substitute 
in all the known values first and then eliminate all but one unknown. 
Solving the problem by this method, let us substitute in Eqs. (4.20) and 
(4.27) as follows: 

20 = 20/3 + 20/1 (4.29) 
30 = 20/3 + 10/2 (4.30) 

If Eq. (4.30) were multiplied by 2, the coefficient of 7i of Eq. (4.29) 
would be the same as the coefficient of 12 in Eq. (4.30). Adding the two 
equations would give a term 207i + 2072, but from Eq. (4.12), this would 
be equal to 2073, and we would have eliminated all but Iz. Performing 
this operation gives 

20 = 2073 + 207i (4.29) 
2 times Eq. (4.30) 60 = 4073 + 2072 (4.31) 
Adding 80 = 6073 + 207i + 2072 (4.32) 
20 times Eq. (4.28) 2073 = 207i + 2072 
Subtracting 80 — 2073 = 6073 
Or 8073 = 80 

73 = 1 amp Ans. 

This value of current can be substituted in Eq (4.29) or Eq. (4.30) to 
obtain one of the other currents. Substituting Iz in Eq. (4.30) 

(4.26) 
(4.27) 
(4.28) 
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30 = 20 + 10/2 

/2 == 1 amp Atis. 

Substituting these values of current in Eq. (4.28) gives 

/i = /a — ^2 = 1 — 1 = 0 amp Arts. 

This shows that battery E\ is supplying no energy to the load. If the 
voltage of E2 were larger, current would actually flow backward through 
battery Ei. The solution of the above equations would result in a nega¬ 
tive current /i, meaning that the current flows in the opposite direction 
to the arrow for h in Fig. (4.9). If the battery voltage Ei were larger 
than 20 volts, it would help supply energy to the load. The same would 
be true if the voltage of E2 were smaller. 

4.6. Edison Circuit. The above type of circuit is of value in many 
electrical engineering problems. For instance, the Edison three-wire 
circuit as shown in Fig. 4.10 is essentially this type of a circuit. When the 
loads Ri and R2 are equal in value and the voltages Ei and E2 are equal, 
no current will flow through the ammeter A in the neutral or center cir¬ 
cuit. This type of circuit is common for supplying power to consumers. 
For example, if Ei and E2 are 110-volt lines, and if Ri and R2 represent 
the load of two consumers, the current in the grounded lead In will be 
zero when each consumer has the 
same power load. This in eflect 
permits the power company to supply 

the load at 220 volts and hence at a 
lower line current. Consequently the 
line resistance losses are less, because 
the current is just half what it would 
be in a single 110-volt line. The line 
power loss in this case is reduced to 
one-fourth of what it would be if both customers were supplied by a single 
110-volt line. This system also furnishes 220 volts to consumers desiring 
the higher voltage. 

4.6. Bridge Circuits. Direct-current resistance bridge circuits are 
widely used in measuring instruments and as integral parts of electrical 
networks. The Wheatstone bridge circuit of Fig. 4.11 and the lattice 
attenuating network of Fig. 4.6 illustrate typical applications of this 
principle. 

A Wheatstone bridge will measure with precision resistance values from a 
fraction of an ohm to many thousands of ohms. To understand how this 
is accomplished, let us study the theory underlying the Wheatstone bridge. 
Referring to the bridge circuit of Fig. 4.11, it will be noted that it is an 

/?2 



80 COMMUNICATION CIRCUIT FUNDAMENTALS 

from the starting point a, iJs and are along the right-hand branch and 
also in the numerator and denominator of the right-hand side of Eq. (4.38). 

A common practice in commercial bridge circuits is to make the ratio 
Ri/Ri equal to unity, a decimal fraction, or a multiple of 10. When this 
ratio is unity, Rz/Ri must also be unity; hence, if R\ is the unknown, it is 
equal to the known value of 723. If R1/R2 = 0.1, then Rz/R\ = 0.1, and 
the values of the unknown R\ are ten times the value of Rz. However, if 
R1/R2 = 10, then 723/724 = 10;hence the unkno^vTl 724 is 0.1 times the value 
of Rz. In this type of bridge, the arms 721 and R2 are called the ratio arms, 
while the arm 723 is known as the rheostat arm. The ratio-arm dial is 
calibrated so that the unknowm resistance value is the product of the 
ratio-arm and rheostat-arm readings; thus. 

Ri — Rz (rheostat arm) (ratio arm) 

A commercial bridge of this type is illustrated in Fig. 4.12. 

(4.39) 

Example 4.5. In the measurement of an unknown resistance, the ratio arm reads 

0.001 and the rheostat arm reads 4,739. What is tlie value of the unknown resistance? 

Solution. By Eq. (4.39), 

724 = (4,739)(0.001) - 4.739 ohms Ans. 

A common laboratory type of Wheatstone bridge, known as the 
slideioire Wheatstone bridge, is shown in Fig. 4.13. In this bridge, the 

a resistances 721 and R2 consist of a 
single piece of resistance wire having 
a uniform cross section. The point b 
is established by a sliding contact, 
which can be moved along the wire 
from a to c until a balance is obtained. 
Since the resistance of a uniform wire 
is proportional to its length, the equa¬ 
tion can be written 

Fig. 4.13. 
circuit. 

Slide-wire Wheatstone bridge 

If scales are marked off along the 
slide-wire, the lengths ab and be can be read directly. 

Example 4.6. A uniform resistance wire 1 meter long is used as the ratio arm of 

a slide-wire bridge. If R% in Fig. 4.13 is 100 ohms, and if a balance is obtained when 

the slider contact is 39 cm from a, what is the value of the unknown resistance? 

Solution. By Eq. (4.40), 

ft. = 100 gi - 156.41 ohms Ann. 
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4.7, Murray-loop Measurements. The bridge-circuit principle can 
be used to determine the distance to a ground or short circuit on a com¬ 
munication line. One method is to use the Murray-loop measuring 
circuit of Fig. 4.14. If I is the length of the wire in miles, and ri and r2 are 
the resistances per mile of wires 1 and 2, respectively, then the resistance 

of the clear wire is iri, and (I — x)r2 is the resistance from the fault to the 
distant office. xr2 is the resistance from the fault to the local office. 
Substituting these values in the fundamental Wheatstone bridge equation, 

^ ^ hi + {I - x)r2 
Ri xr2 

Solving for x 
_ IRiivi + rO 

roiRs + Ri) 
(4.41) 

where x = distance from local office to fault, miles 
I = distance between local and distant office, miles 

ri = resistance per mile of clear wire, ohms 
r2 = resistance per mile of faulty wire, ohms 

/?3 = resistance of bridge arm, ohms 
Ri = resistance of bridge arm, ohms 

For the special case of wires 1 and 2 having the same resistance per 
mile, let r = ri = r2. Then Eq. (4.41) reduces to 

2lRi 
Rs + Ra 

(4.42) 

The distances in Eqs. (4.41) and (4.42) can be expressed in feet if it is more 

convenient. 
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Example 4.7. One wire of a two-wire telephone line is grounded between two 
offices 20,000 ft apart. If a Murray-loop measurement reveals that Rz =» 4,896 and 
Ri — 1,000, how far is the fault from the local office? 

Solution. By Eq. (4,43) 
(2) (20,000) (1,000) 

1,000 -f 4,896 
6,784 ft 

which is the distance from local office to the fault. Ans. 

4.8. Varley-loop Measurements. The Varley loop is another bridge 

circuit used to determine the distance to a fault on a communication line. 

This circuit is more flexible than the Murray loop in that it can be used to 
measure the total resistance of the loop or be used as a Wheatstone bridge 

Fio. 4.15. Varley-loop measuring circuit. 

to measure any resistance. Referring to Fig. 4.15, it will be noted that 

the resistance Ri has been added, along with a different switching arrange¬ 
ment. With the switch in the down position for the Varley-loop condition 

of operation, the resistance must be added to xrt in the fundamental 

Wheatstone bridge equation to get 

^ _ Iri + {I — x)rt 

Ra ~ Rs + xrt 
Solving for x 

_ -4~ ^2) — RzRj 
* “ r2{Ri + Ra) 

(4.43) 

where the terms are defined in Eq. (4.41), except Rt, which is the added 

resistance in the bridge arm as sho^vn in Fig. 4.15. 

Example 4.8. Write the Varley-loop equation for the special condition of both 
the clear and faulty wire having the same resistance. 

SohUionA Let r » ri * r2 in Eq. (4.43); then 

2lR\r — RuRh 
r{Rz -H Ri) 

X Ana. 
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Example 4.9. Write the equation for the unknown when the Varley-loop bridge 
is used as an ordinary Wheatstone bridge. 

Solution, Let Rx be the unknown, then by the fundamental Wheatstone bridge 
equation 

P RjRh . 
Rx =* —5— An». 

Rk 

4.9. The Potentiometer. Another extremely useful application of the 
bridge circuit is the 'potentiometer, which can be used to measure an 

unknown voltage or current to an accuracy of 1 part in 1 million, or better. 

A schematic diagram of a potentiometer is shown in Fig. 4.16. A poten¬ 

tiometer is used in conjunction with a standard cell, which is a form of 

battery that maintains its voltage very constant for many years or under 
widely varying temperatures. The calibrated slide-wire of the instru¬ 

ment is very carefully designed, and calibrated to 1 part in 1 million. To 

use the instrument, the standard cell is first connected to the terminals, 
and the slider set at the point A, which is the point where the calibration of 

the slide-wire exactly equals the voltage of the standard cell, which is 
supplied by the manufacturer. The variable resistance Ri is then 
adjusted to vary the current from the supply battery until the galvanom¬ 
eter reads zero. At this point the instrument is correctly adjusted, and 

the voltage at any point on the slide-wire is very accurately kno\vn. 

To measure an unknown voltage, the standard cell is disconnected, and 
the unknown substituted in its place. When the slider is then adjusted so 

that the galvanometer again reads zero, the unknown voltage equals the 
slider setting exactly. Not only is it possible to measure unknown volt¬ 

ages very exactly in this manner, but the potentiometer has the additional 

advantage that it is equivalent to an infinite-resistance voltmeter. Since 
no current flows from the unknown voltage source when the slider is cor¬ 

rectly adjusted, the effect is the same as though it were being measured by 

a voltmeter of infinite resistance. 
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Summary 

A ladder network consists of a number of series-parallel circuits, which makes the 

final network have the appearance of a ladder. 

A T-section can be replaced by an equivalent ir-section and vice versa by using the 

equations of Fig. 4.3. 

Any complex resistance network with two input and two output terminals can be 

replaced by an equivalent T- or ir-section. 

Resistance values can be moved from one input terminal to the other input ter¬ 

minal, since the same current flows through it. Resistances can be moved, similarly, 

from one output terminal to the other output terminal. 

A lattice resistance network can be converted to an equivalent T- or ir-section by 

using open- and short-circuit measurements. 

Any four-terminal resistance network can be converted to an equivalent T- or 

ir-section by using open- and short-circuit measurements. 

Simultaneous equations can be used to solve for the currents of a network if the 

voltages and resistance values are known. 

An Edison circuit permits the distribution of power more (Efficiently with three 

wires than could be done with two wires. This result is due to doubling the voltage 

and halving the current being transmitted. 

The Wheatstone bridge is the basic type from which other bridges are derived. 

The fundamental WTieatstone bridge equation is RilRi = Ri/R\ for a circuit as 

shown in Fig. 4,11. 

The slide-wire takes the place of R\ and R2 in the slide-wire bridge. 

The Murray and Varley loops are circuit modifications of the Wheatstone bridge. 

Exercises 

4.1, In Fig. 4.1 an ammeter is inserted in series with resistance R^, and a reading 

of 1.5 amp is noted. The resistances of the network are given as follows: 

Ri = 30 ohms Ri = 150 ohms 

R2 = 300 ohms Rb = 75 ohms 

Ri = 150 ohms 

Find the voltages Eea and Ecb. 

4.2. If the output terminals of the network in Fig. 4.2 are connected to a load of 

20 ohms and the switch turned to the 1-mv terminal, what will be the actual voltage 

output? 

4.8. Given the T-section of Fig. 4.3a with i2i = 80 ohms,/?2 = 120 ohms, 7^3 = 100 

ohms, find the equivalent ir-section. 

4.4. Given the x-section of Fig. 4.36 with Ra = 1,600 ohms, Rb = 800 ohms, 

Re ** 2,000 ohms, find the equivalent T-section. 

4.6. Simplify the complex network of Fig. 4.4 by first reducing the x-section 

between terminals abc to an equivalent T-section. 

4.6. In Fig. 4.6 if Ra = 100 ohms, Rh =* 200 ohms, Re = 200 ohms, and Rd « 100 

ohms, determine the equivalent T-section. 

4.7. In Fig. 4.9 the following values are given: 

/2i 20 ohms Ei =* 10 volts 

R2 « 10 ohms Ei = 30 volts 

, Ri ^ 20 ohms 

Determine the currents /i, h, and I». 
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4.8. In Fig. 4.11, if R\ — 640 ohms, == 360 ohms, and Rz + R^ ^ 1,500 ohms, 
what is the value Rz and Ra that will give a zero potential difference between points 

b and d? 
4.9. In Fig. 4.13, if the resistance wire ac is 100 cm long and the slider is 87 cm 

from end a for a balance, what is the resistance of the unknown if Rz = 1,000 ohms? 
4.10. In the Murray-loop measuring circuit of Fig. 4.14, the length of the line is 

not known; however, the loop resistance measures Ri ohms. Derive the equation 
for the distance to the fault. 



CHAPTER 5 

MAGNETIC CIRCUITS AND FIELDS 

It has been known for hundreds of years that pieces of iron and steel, 
under certain conditions, would exert attractive forces on other bits of 
iron and steel in their vicinity. This force was first observed in bits of 
loadstone, a natural magnetic material found in Magnesia, a province 

of Thessaly in Greece. The name magnetism ’’ is derived from the name 

of this locality. Magnetism was first studied scientifically by the English 
physicist Gilbert. Oersted made the fundamental observation of the 
connection between magnetism and an electric curreiit, and Michael 

Faraday discovered how a moving magnet can be made to produce an 
electric current. 

In this chapter we study the relationships between the forces produced 

by magnets on each other, the production of magnetic fields by electric 
currents, and the production of electric currents by moving magnetic 
fields. The various units and terms employed in the study of magnetism 

are introduced and defined. 
6.1, Permanent Magnets. All magnets can be classified as either 

permanent or temporary. When we speak of a “ magnet,’’ we generally 

mean a permanent magnet or, in other words, a magnet that will maintain 
its magnetizing force in the absence of any outside source of energy. 
However, if a piece of soft iron, or annealed steel, is touched to a perma¬ 

nent magnet, it will itself attract pieces of iron for as long as the contact is 
maintained, or as long as it is held very close to the permanent magnet. 
When the latter is removed, however, the soft iron loses practically all its 

magnetism. Therefore it is called a temporary magnet. 

6.2. Magnetic Field about Permanent Magnets. The ability of a 
permanent magnet, such as the horseshoe or bar magnet, to pick up bits of 
iron, is well known. If a bar magnet is placed under a piece of glass cov¬ 
ered \nth iron filings, the filings will arrange themselves in lines as shown 
in Fig. 5.1a. The iron filings line up along the magnetic lines of force 

making up the magnetic field around the magnet. These lines of force are 
said to flow from the north pole to the south pole in the air and back to the 
north pole through the magnet. The north pole of an exploring compass, 

if placed in the magnetic field of a permanent magnet, will point toward 

the south pole as shown in Fig. 5.1a. If a compass needle is suspended 
freely and away from any magnetic field, its north pole always points 

86 
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toward the earth^s geographic North Pole. Now, since the north pole of 
the compass needle always seeks the south pole of another magnet the 
earth's geographic North Pole may be considered to be the south pole of a 
large magnet. That is, the earth itself behaves like a magnet whose north 
and south poles are the geographic South and North Poles of the earth 
respectively. The earth's magnetic poles are near, but are not located 
exactly at, the geographic poles. 

6.3. Magnetic Attraction and Repulsion. If the north pole of one 
magnet is placed near the south pole of another magnet, as shown in Fig. 
.5.1b, the lines of force flow from the north pole to the south pole. These 

(a) Bar niaRnet (b) Opposite poles (c) Like poles 
Fio. 5.1. Magnetic field about pernianent magnets. 

lines of force tend to shorten themselves, like rubber bands, with the result 
that unlike magnetic poles attract each other. Conversely, if like poles 
are placed near each other, as shown in Fig. 5.1c, the lines of force must 
find their way to south poles, and in so doing they scpieeze sideways 

against each other, with the result that like magnetic poles repel each 
other. 

6.4. Theory of Magnetism. In a magnetic circuit, the magnetic flux 
is said to flow' around the magnetic circuit, as an electric current flows 
around an electric circuit, llow'ever, in the magnetic circuit, it appears 
that there is only a distortion in space, while in an electric circuit, 
material particles called electrons" are in actual movement around the 
circuit. Although magnetic flux does not represent the flow' of anything 
material, such as electrons, it can in many cases be treated like electric cur¬ 
rent. They are both vector quantities having magnitude and direction. 

A very important property of magnetic lines of force is that they are 
continuous about a complete magnetic circuit. This fact can be demon¬ 
strated by sawing a bar magnet into a number of pieces, as showm in Fig. 
5.2a. No matter how many pieces are made from the original magnet, 
each individual piece becomes a perfect magnet. It wdll also be noted 
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that every line of force has no end. If this idea is carried further, a 
magnet can be thought of as being made up of many small individual 
magnets. If a piece of iron has no distinct magnetic poles, it is said to be 
unnuigneiized. In this case the small individual magnets can be thought 
of as being arranged in a random fashion as showm in Fig. 5.26. By plac¬ 

ing this piece of iron in a strong mag¬ 
netic field, it is possible to line up the 
individual magnets to make the piece 
of iron magnetized as shoum in Fig. 

5.2c. The piece of iron reaches mag- 

netic saturation when increasing the 

magnetic field further does not in¬ 
crease the magnetic properties of the 
iron. 

6.6. Magnetic Intensity. In dis¬ 
cussing magnetic fields it is necessary 
to state both the strength and the di¬ 
rection of the field. The strength of 
a magnetic field is generally given in 
terms of the effect it would have on a 
unit north pole. A unit magnetic pole 

is defined as a pole that if placed at 

a distance of 1 cm in vacuum from an 

exactly similar pole would repel it with 

a force of 1 dyne. Naturally, it is 
never possible to separate a north pole from its corresponding south pole, 
but the concept of a unit pole free to move by itself is very useful in 
describing magnetic fields. If a unit pole were placed anywhere in a mag¬ 
netic field, it would move along the lines of force from the north poles to 
the south poles of the magnets that produce the magnetic field. 

The strength of the magnetic field or the magnetic field intensity at any 
point in free space is defined as the force in dynes that the magnetic field 

would exert on a unit pole placed at that point This strength is generally 
stated in terms of the number of lines of flux per sq cm at right angles to 
the magnetic field at any point. The number of lines of flux per sq cm 
at any point in the magnetic field is defined as the number of dynes that 

would be exerted on a unit north pole at that point. The unit of magnetic 
intensity in the cgs system of units is the oersted. The flux lines are by 
convention continuous; that is, each line of flux arising in a magnet and 
drawn from the north pole to the south pole of the magnet is assumed to 
continue from the south pole to the north pole within the magnet. Thus, 
there are as many flux lines within the magnet as there are outside the 
magnet. 

f a) Individual magnets in a 
broken bar magnet 

(b) Unmagnetized iron 

(c) Magnetized iron 

Fiq. 5.2. Composition of permanent 
magnets. 
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6.6. Magnetic Flux. The amount of flux flowing around a magnetic 
circuit is measured by the number of lines of force threading through 
the circuit. This is similar to measuring the current in an electric 
circuit by determining the number of amperes flowing in the circuit. 
A maxwell is defined as one line of force. One line of force is not a discrete 
thing but merely a unit of measure. In other words, a magnetic circuit 
may have only a fraction of a line of force flowing around the circuit. 
Lines of force are also useful in describing the shape of the magnetic field 
as well as its intensity. Flux is a vector quantity since it has both 
magnitude and direction. 

6.7. Flux Density. In electric circuits the current density is found 
by dividing the current by the cross-sectional area of the conductor. 
Similarly in magnetic circuits the flux density is found by dividing the 
flux by the cross-sectional area through which the flux flows. The flux 
density or magnetic induction is expressed in lines, or maxwells per sq 
cm or gausses in the cgs system. In equation form 

B = ^ (5.1) 

w'here B == flux density, gausses 
^ = total flux lines passing through the area, maxwells 
A = cross-sectional area normal to the direction of the flux, sq cm. 

6.8. Magnetomotive Force. In an electric circuit, emf forces current 
around the electric circuit, while in the magnetic circuit, mmf forces 
flux through the magnetic circuit. It has been found experimentally that 
the flux established by a coil carrying current and linking a magnetic 
circuit is directly proportional to the current and number of turns in the 
coil. This statement assumes that the coil turns are all in the same direc¬ 
tion for if some turns are wound in the opposite direction, their effect must 
be subtracted. For illustration, if one-half the turns are w'ound in the 
opposite direction, no mmf will be produced. A coil wound in this fash¬ 
ion has no perceptible magnetic field and is said to be noninductively 
wound. Many resistance coils are w'ound in this manner. 

In the electric circuit emf is measured in volts and represented by 
Kj while in the magnetic circuit mmf is measured in gilberts and repre¬ 
sented by SI. The mmf produced by one abampere flowing around one 
turn is 4ir gilberts. In equation form 

= AirNI (5.2) 

where 51 = magnetomotive force (mmf), gilberts 
N = number of turns of wire on the coil 
I = current in coil of wire, abamperes 

If I is expressed in amperes this equation becomes 51 = 0.4^^/. The 
term 4ir enters this equation owing to the geometry in the derivation. 
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The area of a sphere is 4ir times the square of the radius. Starting at 
point a in Fig. 5.3 and moving to point h counterclockwise around the 
conductor, the mmf increases by irl gilberts. FolloAving the circular 
flux line through points c and d and again returning to point a, the mmf 

becomes Airl for one turn, that is, 
once around the conductor. 

If a small circular flux line is 
followed close to the conductor in 
Fig. 5.3 the result obtained will be 
the same as if a large circular flux 
line is followed far away from the 
conductor. This shows that the 
number of gilberts per unit length 
may vary widely. It is conven¬ 
ient, when speaking of magnetic 

Fia. 5.3. Map showing circular flux line and circuits, tO USe the term field in- 
^uipotential radial magnetomotive force ^vhich IS the magnetic po- 

tential drop per unit length and is 
measured in gilberts per centimeter length or oersted. In equation form 

11 = j (5.3) 

where H = field intensity or magnetic force, oersteds 
5 = magnetomotive force, gilberts 
I = length of magnetic circuit, cm 

6.9. Permeability. A given magnetic field intensity will produce 
several thousand more flux lines in soft iron than in the same area in air. 
The ratio of the flux density to field intensity is called 'permeability. 
Permeability is a measure of the ease with which magnetic lines of force can 
be established in a substance. In equation form: 

(5.4) 

where n = permeability of the material 
= 1 for air 

B = flux density in the magnetic material, gausses, or lines/sq cm 
H = field intensity, oersteds 

= lines/sq cm in air 
Permeability of all nonmagnetic materials is 1. The permeability of 
magnetic materials varies widely with the material and with the value 
of field intensity. Cast iron, nickel, and cobalt have a permeability 
of several hundred; that of steel is several thousand; that of soft iron 
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is of the order of 10,000, while that of permalloy may reach the order 
of 100,000. When sheet steel is slightly magnetized, the permeability 
may be of the order of only a few hundred, increase to several thousand 
when moderately magnetized, and as the magnetization is increased, the 
permeability may drop off rapidly. 

Example 5.1. A total flux of 5000 maxwells exists in a permalloy core of 0.25 sq 

cm cross-sectional area. If the field intensity is 2 oersteds, determine the flux density 

and permeability. 

Solution 
By Eq. (5.1) 

5,000 

0.25 
20,000 gausses Ans. 

By Eq. (5.4) 
B 20,000 

** // 2 
10,000 Am. 

6.10. Reluctance. In an electric circuit, resistance opposes the flow 
of current, and in a like manner reluctance in a magnetic circuit opposes 
the establishment of a magnetic field. The reluctance of a magnetic path 
is directly proportional to the length of the path and inversely propor¬ 

tional to the area. Reluctance also depends upon the permeability of 
the material used in the magnetic circuit. In eciuation form, the reluc¬ 
tance of a magnetic path in the cgs system can be written 

(5.5) 

where (Si = reluctance, rel,* or gilberts/maxwcll. 
The term reluctance is usually used ciualitatively rather than quanti¬ 

tatively because the permeability has such wide variations that the solu¬ 
tions of problems arc usually made on a graphical basis. 

Example 5.2. A toroid <«oro of cast iron has a cross-sectional area of 0.8 sq in and 

a moan length of 25 in. If the permeability is 300, determine the reluctance of the 

toroid. 

Solution. By Eq. (5.5) 
m = L = (25) (2.54) 

nA (300) (0.8) (6.45) 

~ 0.0427 rel Ans. 

6.11. Magnetic Field Around Conductors. If iron filings are sprinkled 
on a horizontal cardboard through which a vertical conductor carrying 
current is passed, the iron filings will arrange themselves in concentric 

* At the present time there is no generally accepted name for the unit of reluctance. 

Phrmerly, it was called an oersted but since this term by international agreement 

has been assigned to the unit of magnetizing force //, sec Eq. (5.3), the first three 

letters of the word reluctance, ‘^rcl,^’ will be used in this book to specify the unit of 

reluctance. 
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circles around the conductor as shown in Fig. 5.4a. The north pole 
of an exploring compass laid on the cardboard will point in the direction 
of the magnetic field. The direction of a magnetic field is defined as 
that direction in which a north pole is urged. Now, if two conductors 
carrying current in opposite directions are parallel, the magnetic field will 
be distorted as shown in Fig. 5.46. It will be noted that for the current 
flowing out of the paper, the magnetic field is counterclockwise, while for 
the current flowing into the paper, the magnetic field is clockwise. 

(a) Iron filings and compass 
show presence of circular 

magnetic field about con¬ 

ductor 

(c) Magnetic field 
about a single loop 

of wire 

(b) Magnetic field about two conductors 
carrying current in opposite direc¬ 

tions 

(d) Magnetic field about a coil of wire 

Fio. 5.4. Magnetic field around conductors. 

If a conductor is formed into a loop, the magnetic field will form around 
it as shown in Fig. 5.4c. Now, if a number of turns are formed to make a 
coil, the magnetic field will be increased through the center of the coil. 
The magnetic lines of force circling each loop of the conductor will move 
in opposite directions between each loop of the coil, and consequently will 
cancel each other. The result is as if lines of force circling a loop of con¬ 
ductor at one end of the coil continue through the entire coil and emerge 
from the other end. Since the magnetic lines leave the left-hand end of 
the coil in Fig. 5.4d, it has the properties of the north pole of a permanent 
magnet. The right-hand end of the coil, where the lines of magnetic flux 
enter the coil, has the properties of a south magnetic pole. In other 
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words, the north pole of a permanent magnet would seek the south-pole 
end of the coil. 

6.12. Right-hand Rule. The best way to determine the direction of 
the magnetic field about a conductor, or the direction of current in a 
coil of wire, is by the right-hand rule. If a conductor is grasped in the 
right hand with the thumb pointing in the direction of the current, the 
fingers will point in the direction of the magnetic field. Similarly, if the 
direction of the magnetic field is known, the direction of the current can 

(a) With conductor in right hand (b) With coil in right hand and thumb in 
and thumb in direction of cur- direction of north pole of coil, fingers 
rent, fingers point in direction of point in direction of the current in the 
field. coil. 

Fiq. 5.5. Kight-hand rule for determining direction of current and field. 

be determined. As shown in Fig. 5.5a, if the fingers are placed around 
the conductor in the direction of the magnetic field, then the thumb will 
point in the direction of the current. 

The polarity of a coil of wire can be found if the direction of the current 
in the coil is known. By the right-hand rule, grasp the coil of wire with 
the fingers pointing in the direction of the current in the coil; then the 

thumb will point in the direction of the magnetic field, which is toward 
the north-pole end of the coil. Similarly, if the polarity of the coil of wire 
is known, the direction of current flow' is readily determined by this rule. 

Grasp the coil of w ire by the right hand so that the thumb w ill point in the 
direction of the north pole; then the fingers point in the direction of cur¬ 
rent flow, as shown in Fig. 5.56. 

6.13. Air-core and Iron-core Coils. The magnetic properties of a 
coil depend upon the following factors: 

1. Shape and number of turns on the coil 
2. Amount of current in the coil 
3. Permeability of the core 
When the turns are wound loosely, as shown in Fig. 5.4d, there is 

considerable leakage fltiXy that is, lines of force that do not link all the 
turns in the coil. When the turns are w’^ound closely, most of the flux 
will link the whole coil. If the number of turns is increased, the magnetic 
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field will be increased for the same value of current. This is because each 
turn adds its magnetic flux to the total field of the coil. 

If the current in the coil is increased, the magnetic field about each 
turn is strengthened, which results in the total magnetic flux of the 
coil being made correspondingly greater. If the current in the coil is 
reversed, the polarity of the coil will also be reversed. The magnetic field 
produced by a coil of wire carrying current has a shape similar to that of a 
permanent magnet. The magnetic characteristics of such a coil are 
similar to those of a permanent magnet. 

R 

mmf-<pR mmf=IR 

(a) Magnetomotive force pro¬ 
duced by coil carrying current 
forces flux liries around the 
magnetic circuit. 

(b) Electromotive force 
produced by battery 
forces current around 
the electric circuit. 

Fia. 5.6. Magnetic and electric circuits. 

If a core of soft iron is inserted in the coil of Fig. 5Ad, the permeability 
will be increased, and the magnetic field will be greatly strengthened. 
This is because the iron core is a better conductor of magnetic lines of 
force than is air. The iron part of the magnetic path through the coil is 
quite definite, but the return path through the air outside of the coil is 
quite indefinite. For a given coil current, the magnetic flux can be 
further increased by closing the iron path as shown in Fig. 5.6a. Then 

practically all the lines of force will be confined to the iron core linking the 
coil. 

6.14. Comparison of Magnetic and Electric Circuits. Just as electric 
current is caused to flow in an electric circuit, so can magnetic flux be 
established in a magnetic circuit. Referring to Fig. 5.6, it will be seen 
that in many ways these two circuits are similar. Ohm’s law applies to 

the electric circuit of Fig. 5.66. A similar relationship can be applied to 
the magnetic circuit of Fig. 5.6a. A magnetomotive force (mmf) is 
produced in the magnetic circuit by the current in the coil linking it. 
This mmf produces a magnetic flux 4>, which is retarded by the reluctance 
(R in the magnetic circuit. Most of the reluctance (R is across the air gap, 
because the rest of the magnetic circuit has a high permeability, hence, a 
very low value of opposition to the magnetic flux. 

6*15. Magnetic Circuit Equation. The magnetic flux produced in a 
magnetic circuit is directly proportional to the mmf and inversely pro- 
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portional to the reluctance of the circuit. In equation form 

magnetomotive force 
Magnetic flux = —-—j— - (5.6) 

® reluctance 

By using appropriate symbols, this equation can be written in the three 
familiar forms as follows: 

(R' 
SP = ^>(R, and 

where 4> = total number of lines of force, maxwells 
^ = mmf, gilberts 
(R = reluctance, rcl 

Now, substituting 4> from Eq. (5.7) in Va\. (5.1), 

R = ^ 
^ A (RA 

Now by using Eq. (5.2) and (5.5) we can write 

Since m = 1 for ^^ir 

(5.7) 

(5.8) 

(5.9) 

B = ~ = // for air or nonmagnetic material (5.10) 

Example 5.3. A magnetic circuit having a reluctance of 2.5 is supplied with a 

coil of 1200 turns carrying 0.4 amp. Determine the mmf and magnetic flux. 

Solution. By Eq. (5.2) 

IF = 4irNI = (12.566) (1200) (0.04) = 603 gilberts Ans. 

By Eq. (5.7) 

^ ^ ~ 241.3 maxwells Ans. 
(R 2.5 

6.16. Magnetic Circuit Laws. It is possible to apply laws to magnetic 
circuits that are similar to KirchhofT’s laws in electric circuits. In a 
series magnetic circuit, the algebraic siun of the magnetomotive forces equals 

the sum of the reluctance drops. In equation form 

= 24>(R (5.11) 

where the terms are defined following Eq. (5.7). If branch circuits arc 
being considered, it is well to keep in mind that the difference in magnetic 
potential is the same along any path between two points in a magnetic circuit. 
This is another way of stating the facts given in Eq. (5.11). 

In a parallel magnetic circuit, the sum of the fluxes toward a given junction 
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equals the sum of those leaving the junction. If the algebraic signs are 
taken into consideration, we can restate this law thus: The algebraic sum of 

the fluxes toward a given junction is zero, or in equation form 

2<i> = 0 (5.12) 

Example 5.4. A toroid core of cast iron has a cross-sectional area of 0.8 sq in. and 

a mean length of 25 in. of iron path plus an air gap of in. Assume that the flux 

Fig. 6.7. Magnetic circuit with three branches. 

density is uniform across the air gap. Determine the total flux when 2 amp flow's 

in a 50-turn coil linking the toroid core, which has a permeability of 300. 

Solution. The mmf acting in this series circuit, by Eq. (5.2), is 

^ = (0.4ir)(50)(2) = 1,257 

The reluctance of the air gap, by Eq. (5.5), is 

®Uir,.p = “ 0.0616 rel (in o.g.s. system) 

The total reluctance of the series circuit is the sum of the reluctance in the cast-iron 

core as given in Example 5.2 and the reluctance of the air gap just determined; thus 

Now, by Eq. (5.11) 

or 

(fltouU (fliion core H" t^nir sap 

= 0.0427 -b 0.0616 = 0.1043 rel (in c.g.s. system) 

1,257 =• 0.0427<I» + 0.0616<1> - 0.1043<I» 

= 12,030 maxwells of flux Ana. 

Example 5.5. In the parallel magnetic circuit of Fig. 5.7, the steel has a per¬ 

meability of 1,000. If leg a is wound with a 200-turn coil carrying 1.5 amp, what 

is the value of flux in the three legs? 

Solution. The lengths of legs a and c are each 11 in. The length of leg b is 4 in. 

The areas of legs a and c are each 1 sq in., while the area of leg & is 2 sq in. The 

reluctance of leg c by Eq. (5.5) is 

_ (11)(2.54) 

" (1,000) (1) (6.45) 
0.0043307 rel (in c.g.s. units) 
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By the same formula, the reluctance of the center leg is 

“ 9-9997874 rel (in c.g.s. units) 

The reluctance of paths b and c in parallel is 

= ^ (0.0007874)(0.0043307) 

(Rb -h (Rr 0.0007874 -f “0.0043307 
=* 0.00066624 rel (in c.g.s. units) 

Since leg a has the same reluctance as leg c, the total reluctance at the coil is 

(Rtotai = (Ha + (R‘.c = 0.0043307 + 0.00066624 
* 0.0049969 rel in c.g.s. units 

The magnetomotive force produced by the coil is 

= 0.477 .V/ = (0.477) (200) (1.5) 

= 376.991 gilberts 

Now the flux in leg a is 

“ «£:, = oSSfe = maxwells Ans. 

The reluctance drop in magnetomotive potential in leg a is 

<l>a(Ha = (75,444) (0.0043307) - 326.725 gilberts 

The mmf across legs b and c is then 

= 376.991 - 326.725 - 50.266 gilberts 

and the flux in leg b is 

iTh 50.266 .. . 

= isu “ 0.0007874 = 

The flux in leg r is 

. 5c 50.266 
= ¥c = 0.0043307 = maxwells Ans. 

By Eq. (5.12), the algebraic sum of the fluxes toward the junction is zero; thus 

4>„ - = 0 

or the flux toward the junction equals the fle.x away from the junction; that is, 

4>« = -h 

Substituting values 
75,444 - 63,837 -f 11,607 Ch^ck, 

It will be noted that in the solution of this serie.s-parallel magnetic circuit, a pro¬ 

cedure similar to that employed in solving a series-parallel electric circuit problem 

was used. 

6.17. Magnetic Leakage and Shielding. In electric circuits, the 
current follows the wire because it is a good conductor, and dtx^s not 
flow through the insulation because it is a poor conductor. The con¬ 
ductivity of copper is usually millions of times better than the surrounding 
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insulation. In magnetic circuits, the flux follows the iron paths because 
of its high permeability compared to air or nonmagnetic materials; how¬ 

ever, the permeability is only of the order of thousands of times more than 
that of nonmagnetic materials. It should, therefore, be expected that 
the leakage flux is high in magnetic circuits as compared to leakage cur¬ 

rent in electric circuits. 

Magnetic r :—: i 
flux 

Shielded 
space 

-> — 
lines 

- Iron box 

-> - 
Fig. 5.8. Iron box used as a magnetic shield. 

As pointed out before, magnetic circuit calculations do not have the 
accuracy of electric circuit calculations because of variable permeability. 

The accuracy is still further decreased by the approximations necessary in 
estimating the area and length of the various portions of the magnetic 
path. The area and cross sections of the leakage paths in air are par¬ 

ticularly difficult to calculate because of their varying dimensions. 
In some applications stray magnetic fields may be very bothersome, 

causing unwanted effects in electrical apparatus. In such cases the elec¬ 

trical apparatus can be magnetically shielded by placing it in a soft-iron 
box as sho^^^l in Fig. 5.8. Most of the flux in the magnetic field will stay 
in the metal sides of the box. If this is not sufficient, one iron box can be 
placed within another iron box. Often copper shields are used in con¬ 
junction with magnetic shields to improve the magnetic shielding as well 

as give electrostatic shielding. 
6.18. Magnetic Field Mapping. The accuracy of magnetic circuit 

calculations can be improved if the shape of the magnetic field is known. 
In magnetic circuits having irregular boundaries, the magnetic field can 

be closely approximated by using a graphical method. In plotting a 
magnetic field, it is important to keep the following facts in mind: 

1. Flux lines are everywhere 'perpendicular to equipotential surfaces. 
In the simple case of a conductor carrying current, as shown in Fig. 5.3, 

the circular flux lines are at right angles to the radial equipotential mmf 
surfaces. This reasoning can be readily applied to more complicated cases 

such as the air gap in Fig. 5.9. 
,2. Flux lineSy outside of exciting coilSy are distributed to minimize the 

total reluctance. The flux lines around the air gap of Fig. 5.9, for illus- 
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tration, show the fringing effect, which minimizes the total reluctance. 
The lines a between the pole pieces are spaced uniformly and are of equal 

length because the reluctance is 

constant. Line b at the edge of —j—^^uipotential 
the air gap is slightly longer, and ^ surfaces 

since the reluctance is directly / Flux lines 

proportional to the length of the 
path, the reluctance of this path 
must be slightly greater. Since 

there is a constant mmf potential (yy/y/Zv/^^ 
between the pole pieces, thenum- 
ber of flux lines must decrease. \ j 
This can be seen by referring to I V 

Eq. (5.6) or Eq. (5.7). If ff is ^7^ 
constant and 61 increases^ then ^ . 
must decrease. Now, progressing gap. 
successively to lines c, d, and e, it 
will be noted that as the lines become longer, the flux density decreases 
proportionally. For example, if flux line c is twice as long as a, the reluc¬ 
tance along the path doubles and the flux density drops to one-half. 

3. Flux lines change directions cbruptly ct surfaces between materials of 
different permeabilities. This relationship is given quantitatively by the 

equation 

(5.13) 
tan a2 Ml 

Fia. 5.9. Fringing of flux lines around an air 

(5.13) 

where ai and a2 are the angles the flux lines make with the boundary sur¬ 
face between materials having 

/ permeabilities of mi and m2, respec- 
/ lively, as shown in Fig. 5.10. For 

Air / illustration, flux lines in air at the 
surface of iron are nearly perpen- 

/i2 Iron dicular to the iron because of the 

Fiq. 5.10. Refraction of flux line at surface. J^^ge difference in the permeabil¬ 
ities between air and iron. In 

plotting the flux lines about the air gap in Fig. 5.9, for illustration, they 
can be drawn perpendicular to the surface of the pole pieces. 

Example 5.6. A flux line in iron makes an angle of 1° with the surface. If the 

iron has a permeability of 5,000, what angle in air does the flux line make with the 
surface? 

Solution. Substituting in Eq. (5.13), 

tan r = 87.275° 
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A useful approximation, which is reasonably accurate for short air gaps, 
when determining the area of air gaps, is to add the length of the gap to 
each cross-section dimension. The flux density, if considered to be uni¬ 
form in this larger area, will then take care of the fringing effects. 

Example 5.7. Determine the reluctance of an air gap in an iron core having a 

cross section of 1 by 2 in. and a length of 0.2 in. 

Solution, By Eq. (5.5), 

where =» 1 and the area A, to take care of fringing effects, is 

77 Magnetizing force H 

A « (1 -f 0.2)(2 H- 0.2) = 2.64 sq in. 

Then (R = = 0.0298 rel (in cgs imits) Arw. 
(J.64} (0.45) 

6.19. Hysteresis Loss. Hysteresis is the property a magnetic material 
has of retaining its magnetism. When a piece of iron is placed in a d-c 

magnetic field the flux density will in- 
y c crease due to the molecules in the iron 
0)0 

which have magnetic properties lin- 
ing up with the magnetizing force. 
After most of them have lined up it 
may be said that the iron has become 
saturated; hence the magnetization 
curve is not a straight-line linear 
relation but a curve such as Oa in Fig. 

—-- 5.11. Now if the magnetizing force 
gnetizmg force H removed, the iron will retain some 

of its magnetism due to friction, thus 
preventing the molecules with mag¬ 
netic properties from following freely 
the magnetizing force. Thus, in Fig. 

d 5.11 the curve ah is followed instead 
Fig. 6.11. Magnetization curve and ^yhen the magnetizing force is 
hysteresis loop. i mi • 

removed. Ihis causes a certain 
amount of energy to be lost as frictional heat in the iron. This loss is 
called hysteresis loss. 

If an iron core is magnetized a definite amount, then this magnetism 
is reversed an equal amount in the opposite direction and the curve tracing 
the result will be similar to Oahcd in Fig. 5.11. If the magnetism is again 
reversed the curve will return by way of def to a, thus completing the 
hysteresis loop abcdef to a. Each time this magnetic cycle is completed a 
definite amount of energy is expended. The area of the hysteresis loop is 
proportional to the hysteresis loss. Steinmetz has developed an empirical 

d I 
Fig. 6.11. Magnetization curve and 
hysteresis loop. 
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formula to determine the hysteresis loss when the magnetic material is 
subjected to repeated reversals of magnetism. This fomula can be 
written 

Ph = --- watts (5.14) 

where Ph = hysteresis loss, watts 
Kh = 8i constant depending upon the quality of the iron. For 4.25 

per cent silicon steel this value is 5.35 X lO"'^. 
/ = frequency, cps 

V = volume of solid iron, cu cm 
Bitiax = maximum flux density, gausses 

Example 5.8. A 4.29 per cent silicon steel core has a flux density of 10,000 gausses. 

If the core volume is 66.8 cu cm and the frequency is 60 cps, determine the hysteresis 

loss. 
Solution. By Eq. (5.14) 

^ (5.35)(10-^)(6OK6M)a0.0Q01!) = o.539 watts ^n.,. 

6.20. Eddy Current Loss. When current varies in the primary circuit 
a changing magnetic field causes current to flow in the secondary circuit. 
If shielding or a transformer core are in this primary field, circulating 
currents will be developed and the result is a loss of power kno^^^l as 
eddy current loss. In order to minimize this loss the secondary circuit 
can be opened or, in the case of shielding, the material can be made into 
narrow strips connected only at one end. Similarly, transformer cores 
are laminated and each lamination is insulated from the others. Some¬ 
times this insulation is nothing more than the oxide that forms on the iron. 
But since the voltage in a thin lamination is very small the insulation 

need not be large to produce the desired result. 
The eddy current loss can be determined by the following equation, 

Pe = KeVppBm^^ watts (5.15) 

where = eddy current loss, watts 
Ke = a. constant depending upon the insulation and flux distribu¬ 

tion. For 4.25 per cent silicon steel with good surface insula¬ 
tion this constant is 4.1 X 10“^^. 

V = volume of solid iron, cu cm 
t = thickness of laminations, cm 
/ = frequency, cps 

= maximum flux density, gausses 

Example 5.9. With the silicon steel core described in Example 5.8 determine the 
eddy current loss for laminations having a thickness of 0.0358 cm when the frequency 
is 60 cps. 
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Solution, By Eq. (5.15) 
P, = (4,1) (W-^V (66.8) (0.0368^) (60V (10,000V 

= 0.1265 watts 

6.21. Total Core Loss. The total core loss is the sum of the hysteresis 

and eddy current losses, thus 

+ watts (5.16) 

where Pe = total core loss, watts 
Ph = hysteresis loss, watts 
Pf> = eddy current loss, watts 

Example 5.10. Determine the total core loss for the silicon steel core specified in 

Examples 5.8 and 5.9. 

Solution. By Eq. (5.16) 

Pc — 0.539 4" 0.1265 = 0.6655 watts Ans 

6.22. Skin Effect. Another phenomena of electric currents producing 
loss is found in large conductors and is known as skin effect. Take, for 
instance, a large stranded conductor that is act\uilly made up of a number 
of separate wires. The inductance of the various wires in this conductor 
will be different because the inner wires have more lines of flux linking 
them than have the outer wires. The result is that a greater counter emf 
is found at the center of the conductor. This higher reactance at the 
center causes the current to flow^ at the surface and hence receives the 
name *^skin effect. 

Since the self-inductance causing the counter emf is a direct function 
of the rate of cutting the lines of flux, it will be greater with higher 
frequency. It also becomes greater with larger cross sections, greater 
conductivity, and greater pcnneability of the conductor. 

Table 5.1. Reduction of Quantity in c.o.s. Units to m.k.s. Units 

Quantity Symbol c.g.s. m.k.s. 

Magnetic field intensity. 

Magnetic flux. 

H 

<t> 

H oersted 

<l> maxwell 

11 rl arnpturns/meter 

10 *<t> weber 

Magnetic induction. 

Magnetomotive force. . . 

Permeability. 

B 

3F 

p 

B gauss 

ST Gilbert 

p gauss/oersted 

(R rel or gilbert/max¬ 

well 

10“ weber/meter; 

1^1 JF amp-turn 

4x10“^ p henry/meter 
/10»\ 
1 4“ ) ^ amp-turn/weber Reluctance. . (K 

d 

At radio frequencies, skin effect causes practically all the current to 
flow near the surface. This increases the resistance of the conductor. 
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In some cases of large conductors the current actually flows in the 
opposite direction at the center of the conductor, due to this counter 

emf. In most radio frequency circuits it is desirable to minimize this 
effect by using copper tubing. This loAvers the resistance of many such 
circuits very appreciably. Litz wire is also quite commonly used to 

wind coils where low loss is of paramount importance. This wire is made 
up of insulated strands woven in such a way that the inner strands keep 
coming to the surface at regular intervals. 

Summary 

Magnets are bodies that possess the property of attracting certain substances such 

as iron filings. 

Permanent magnets retain their magnetism indefinitely. 

The direction of a line of force is defined as the direction towards which it will urge 

the north pole of a magnet. 

Lines of force leave the north pole and enter the south pole. 

Lines of force are continuous throughout a magnetic circuit. 

liines of force are vector quantities having both magnitude and direction. 

Unlike poles attract due to the shortening efTect of the lines of force between the 

poles. 

Like poles repel due to the lateral crowding efTect of the lines of force around the 

poles. 

Magnetic saturation is reached when an increase of the field does not increase the 

magnetic properties of the material. 

One maxwell of flux is one line of force. 

One gauss of flux density is one line of force per s(} cm. 

The magnetomotive force produced by one abamp flowing around one turn is 

Air gilberts 

'J — Air XI 

When / is in amperes 

J = O.Itt.V/ 

One oersted of magnetizing force is one gilbert per sq cm. 

Permeability is a measure of the ease with which flux can be established in a sub¬ 

stance 

Reluctance, rel, measured in gilberts per maxwell is the opposition to establishing 

flux in a magnetic circuit 

(R 
uA 

A continuous magnetic field surrounds a conductor or coil of wire carrying current. 
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Right-hand rule: 

1. With a conductor in the right hand, the fingers will point in the direction of the 

field when the thumb points in the direction of current flow. 

2. With a coil in the right hand, the fingers will point in the direction of current 

flow when the thumb points toward the north pole. 

The magnetic properties of a coil depend upon: 

1. Shape and number of turns 

2. Amount of current 

3. Permeability of the core 

The three forms of the magnetic circuit equation are: 

IF ** 4»(5l; and ? 
(H <I> 

Field intensity H in lines per sq cm is numerically equal to the magnetizing force in 

air. 

Reluctance in a series circuit can be added just as resistances are added. 

(R = (Ri 4" (H2 -j- • • • 

Reluctance in parallel circuits can be added just as resistances are added in parallel 

circuits 

J- + J_ -f . . . 
(Ri (H2 

In a magnetic circuit Kirchhoff’s law’s are: 

1. The algebraic sum of the magnetomotive drops around a complete circuit is 

zero. 

2. The algebraic sum of the fluxes toward a given junction is zero. 

All materials conduct magnetic flux. 

Leakage flax can be defined as that flux which does not aid in producing the desired 

effect. 

Magnetic shielding does not insulate the space from magnetic flux but shunts the 

flux around the space. 

Flux lines are everywhere perpendicular to cquipotential surfaces. 

Flux lines outside of exciting coils are distributed so as to minimize the total 

reluctance. 

Flux lines change direction abruptly at surfaces between materials of different 

permeabilities. 

Hysteresis is the property a magnetic material has of retaining its magnetism. 

Hysteresis loop is caused by the friction of molecules in a magnetic substance; thus, 

the magnetic induction does not follow linearly the magnetizing force. 

Hysteresis loss is proportional to area of the hysteresis loop. It is also proportional 

to the frequency, volume of iron, and 1.6 power of the flux density. 

Eddy currents are induced currents from varying current in a primary circuit. 

Eddy current loss in a transformer core is proportional to volume of iron in field, 

square of thickness of laminations, square of frequency, and square of flux density. 

Total core loss is the sum of hysteresis and eddy current loss. 

Exercises 

5,1. Two permanent magnets are placed at right angles as shown in Fig. 5.12. 

Sketch in the magnetic field and indicate the direction of the lines of fotce. 
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Fig. 6.12. Permanent magnets for Exercise Problems. 

6.2. Describe the relationship between current in a straight conductor and the 

magnetic field associated with it. 

5.3. What is the magnetizing force required to produce 100,000 lines of flux in a 

piece of soft-iron core 2 cm in diameter and having a permeability of 1,200? 

6.4. A coil of 75 turns has a current of 2 amp. What is the value of the mmf? 

6.6. A series magnetic circuit consi.st8 of 10 cm of silicon steel and 6 cm of cast 

steel. The silicon steel has q, permeability of 2,800 and a cross-sectional area of 

2.2 sq cms. The cast steel has a permeability of 1,800 and a cross-sectional area of 

1.8 sq cms. The total flux is 20,000 lines. Assuming the two metals make perfect 

contact, what is the value of reluctance and mmf? 

6.6. Solve Exercise 5,5 to w'hich an air gap of is added to the silicon-steel 

path and fringing is neglected. What are the results if fringing is not neglected? 

6.7. In the parallel magnetic circuit of Fig. 5.13, the annealed sheet steel has a 

permeability of 2,000. If a = 32 in., 6—8 in., and c = 24 in., what will be the 

reluctance and flux in each branch if the coil produces 200 ampere turns of mmf? 

(Neglect leakage flux.) 

2 in^ 2 in^ 

Fig. 6.13. Magnetic circuit with throe branches. 

6.8. How long an air gap should be cut in branch 6 of Exercise 5.7 to make the flux 

in branch a produce 100 kilolines? What will be the flux in paths 6 and c for this 

condition? (Neglect leakage and fringing.) 

6.9. Determine the air-gap dimensions in Exercise 5.8 if fringing at the air gap is 

taken into account. 

6.10. In a sample of cast iron having a permeability of 200, a flux line makes an 

angle of 85° with the surface in air. At what angle does the flux line approach the 

surface in the cast iron? 



CHAPTER 6 

GENERATOR AND MOTOR ACTION 

6.1. Induced Current—A Coil and a Moving Magnet. Oersted’s dis¬ 
covery that an electric current flowing through a conductor generated a 
magnetic field showed that there was a relationship between electricity 
and magnetism. Many years passed, however, before anyone discovered 

how a magnet could be used to produce an electric current. Michael 
Faraday was the first to show that if a magnet is moved in the vicinity of a 
conductor, a voltage viiW be generated in the conductor. His experiments 
can be duplicated very easily by connecting a sensitive galvanometer to a 
coil of wire and suddenly thrusting a bar magnet into the coil; the needle 
of the galvanometer will be seen to deflect. As soon as the magnet 
comes to rest, however, the deflection will disappear, showing that it is 

essential that the magnet be in motion before a voltage can be set up. 
Sudden withdrawal of the bar magnet from the coil will also cause a 
deflection in the meter but in the opposite direction to that shown when 
the magnet w^as thrust into the coil. 

If a current is made to flow through the coil in the same direction as that 
indicated by the galvanometer when the magnet is thrust into the coil, 

and the magnetic field around the coil explored by means of a small 
compass, it will be found that the end of the coil into wiiich the bar 
magnet is thrust becomes of the same polarity as the end of the bar 

magnet that is thrust into iU To take a concrete example, if the north 
pole of the bar magnet is thrust into the coil, the end of the coil that 
receives the north pole of the bar magnet also becomes a north pole. In 
other words, the coil pushes the bar magnet aw^ay as it tries to enter. 
Once the bar magnet is inside the coil, however, and then it is suddenly 
removed, the galvanometer deflects in the other direction, showing that 
when the magnet is being removed from the coil, the end from wdiich the 
magnet emerges becomes the south pole. These, and many other 

phenomena, are examples of Lenz’s law, one of the most useful laws in all 
magnetic theory. 

6.2. Lenz’s Law. Lenz’s law may be stateJd as follows: 
1. An induced current always opposes the action that produces it. This 

same law can be stated in terms of the magnetic field as in (2). 

2. Whenever a change is made in the flux linking a circuity a voltage is 
induced or generated in the circuit that tends to oppose the change, 

106 
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If a current is permitted to flow in a circuit moving in a magnetic field, 
it will oppose the mechanical force by motor action, producing the motion. 
This law will be clarified by the discussion that follows. 

6.3. Induced Voltage in a Coil. Further experiments show that neither 
a moving coil nor a moving magnet is always necessary to induce a volt¬ 
age in a conductor. A voltage is induced in a conductor when the flux 
linkage varies, without movement 
of the conductor or the medium. 
For example, a voltage e is in¬ 
duced in the secondary winding S 
of a transformer when the flux 
linkage varies. The flux linkage 
varies according to the current / 
in the primary winding P. It will 
be noted that neither the conduc¬ 
tor, which is the secondary wind¬ 
ing, nor the medium, which is the transformer core, has any movement, yet 
the flux linkages can be varied to induce a voltage in the secondary wind¬ 
ing of the transformer. 

If the number of turns in the coil in the transformer experiment is 
doubled, it will be found that the deflection shown by the galvanometer 
when the magnet is thrust into the coil will also be doubled. Or if the 
strength of the bar magnet is doubled, while keeping the number of turns 
in the coil constant, the deflection will also change. This shows that the 
voltage induced in a conductor is proportional to the rate of change of 
flux linkages. Careful measurements repeated many times show that 
when the flux linking a single turn of conductor is changing at the rate of 
10* maxwells per sec, an emf of 1 volt will be generated in the conductor. 
It is not necessary that this change be steady. The voltage at any instant 
will be proportional to the rate of change of flux linkages. Thus, in general, 

Fig. 6.1. Induced voltage e in the secondary 
winding S of a transformer due to changing 

the flux linkage 

e = -N ^ X 10-* 
(it 

(0.1) 

where e = induced voltage, volts 
N — numl>er of turns 

<I> = flux linkage, maxwells 
t = time, sec 

The negative sign results from the fact that the induced voltage tends to 
oppose the change in flux linkage. 

One weher is defined as that change in flux linkage per sec which will 
induce 1 volt in a single turn of conductor; thus 

. 

di 
c = -N' (fl.2) 
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where is the fliix linkage in webers and the other terms are as defined in 
Eq. (6.1). 

6.4. Induced Voltage in a Straight Conductor. When a conductor is 
moved across a magnetic field, as shown in Fig. 6.2, a voltage is generated. 
The amount of voltage generated is proportional to the rate of cutting of 
the lines of force, or flux linkages. This is the basic principle of the electric 

(a) Pictorial view of a moving conductor gen¬ 
erating a voltage. 

1 2 3 

Moving. 
.-.conductor •••• 

•Outward 
flux'-; ■:.•••• 

• . * "• ’• • • 
• * * • • •■ 

' *'*•.*•* 

l6 5 —► i 4 

(b'* Geometrical view to develop 
formula for generated voltage. 

Fio. 6.2. Voltage e is generated when the conductor cuts to the right across the magnetic 
field. 

generator, which is a machine for converting mechanical energy into elec¬ 
trical energy. In some cases the magnetic field is moved while the con¬ 
ductor is held stationary. In either case, a voltage is generated in the 
circuit that has the flux linkage varying. 

Consider the diagram of Fig. 6.26, which represents a fixed conductor 
1-3-4-6 lying in a uniform magnetic field having a flux density of B. If 
the moving conductor 2-5 has a length I and is moving to the right at a 
velocity v, the voltage e generated is 

6 = -Blv (6.3) 

where e = generated voltage, volts 
B = flux density, webers/sq m 

I = length of conductor, meters 
V = velocity of conductor, meters/sec 

The negative sign appears because the generated voltage tends to oppose 
the change in flux linkage. It will also be noted that the terms B, Z, and v 
are vector quantities and must be perpendicular to one another in Eq. 
(6.3). This equation is a restricted application of the more general 
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equation as found in Eqs. (6.1) and (6.2). By reference to Fig. 6.2i> it can 
be seen that the portion of the two conductors 1-2-3 and 6-5-4 bounded 
by 2-3-4-5 constitutes a loop through which the flux linkages are changing, 
because of the movement of the conductor 2-5 to the right through the 
field. Hence a voltage will be generated in the loop. However, since 
the only thing that is moving is the conductor 2-5, this voltage can be 
thought of as being generated entirely by the motion of this conductor 
through the field, and this concept results in Eq. (6.3). 

(a) Field about a 
conductor 
carrying cur¬ 
rent into 
plane of the 
paper 

(b) A uniform 
magnetic 
field 

(c) Field about 
a conductor 
carrying cur¬ 
rent in a uni¬ 
form mag¬ 
netic field 

(d) Field about 
two conductors 
carrying cur¬ 
rent in opposite 
directions in a 
uniform mag¬ 
netic field 

Fig. 6.3. Distortion of a uniform magnetic field with the magnetic field of a conductor 
carrying current. 

When the output terminals of an electric generator are open-circuited as 
shown in Fig. 6.2, there is no current in the conductor; hence, the magnetic 
field about the conductor, due to its current, is zero. Under these cir¬ 
cumstances, the conductor docs not distort the magnetic field, and 
no energy is required to move it across the magnetic field. When a short- 
circuited loop of wire is moved through a magnetic field, a voltage is 
induced in the wire, and as a result of this voltage, current will flow 
around the loop. This current flowing around the loop sets up its own 
magnetic field, which is always in such a direction as to oppose the 
magnetic field producing the current in the loop. To visualize this, refer 
to Fig. 6.3. In Fig. 6.3a we have the undistorted magnetic field about a 

conductor carrying current. If this conductor is placed in the uniform 
magnetic field of Fig. 6.36, the distorted magnetic field of Fig. 6.3c results. 
The lines of force are concentrated on the right-hand side of the conductor, 
and acting like rubber bands, they tend to push the conductor to the left. 
However, if the conductor is forced to move to the right, the generated 
voltage tends to cause the current to flow into the plane of the paper as 

indicated. 
The direction of the generated voltage in a conductor is in the direction of 
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the thumb when the conductor is grasped in the right hand and the con¬ 
ductor is moved across the magnetic field in a direction so that the fingers 

point in the direction of the flux wrapping around the conductor. In Fig. 
6.3c, for example, if the thumb points into the plane of the paper, the 
fingers of the right hand will wrap around the conductor in the same 
direction as the flux lines wrap around the conductor. 

If a loop of conductor is placed between two magnetic poles, as shown in 
Fig. 6.3d, and rotated clockwise, the upper part of the turn will carry 
current into the plane of the paper and the lower portion will carry cur¬ 

rent out of the plane of the paper. The magnetic lines of force will 
stretch around the conductor in such a way as to oppose this motion. 
This fact is further illustrated in Fig. 6.4, where the complete turn of 

conductor is shown in perspective. In the position shown in Fig. 6.4(a), 
the loop, if rotated at a uniform rate, will be cutting flux at the maximum 
rate; hence the maximum voltage and current will be generated in the 
loop. A quarter turn farther, as shown in Fig. 6.4(6), the sides of the loop 
will be moving parallel to the flux lines, hence cutting no flux and gen¬ 
erating no voltage or current. As the coil is rotated to the position 
shown in Fig. 6.4(c), the voltage and current in the loop will again reach 
a maximum but in the opposite direction through the loop. As the posi¬ 
tion shown in Fig. 6.4(d) is approached, the generated voltage and current 
again reduce to zero, after which they will reverse direction for the first 
half of the second revolution. 

If two collector rings are connected to the loop, as shown in Fig. 6.5a, 
alternating current will be delivered to the output terminals, because for 
every half revolution, the current in the loop reverses direction. How¬ 
ever if the loop is conneeted to a commutator, as shown in Fig. 6.56, the 

connections to the output terminals reverse every time the voltage and 
current generated in the loop reduce to zero. Since both the current in 
the loop, and the connections to the output terminals, reverse every half 
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cycle, the output voltage and current will always be in the same direction; 
hence we have a d-c generator, 

6.6. Tj^pes of D-c Generators. According to the method of excita¬ 
tion, generators may be classified in two general types, namely, (a) 
separately excited, or (b) self-excited. The field of a separately excited 
generator may be a permanent magnet or a field coil receiving current 
from a storage battery or another generator. Such generators are used 
when the field must be independent of the terminal voltage or the terminal 
voltage must be controlled easily, both in magnitude and polarity. 

(a) Slip rings deliver alternating cur¬ 

rent 

(b) Commutator deliv^ers direct 

current 

Fiu. 6.5. vVlternuting or direct current generated from a revolving loop. 

The field of self-excited generators is supplied from the armature of the 
generator itself. Depending on how the field coil is connected to the 
armature, a generator is said to be series-wound, shunt-wound, or com¬ 
pound-wound. As the names imply, in a series-wound generator the field 
coil is connected in series with the armature and the output terminals, and 
in a shunl-woiuul generator, the field coil is connected in parallel with 

the armature and the output terminals. In a compound-wound gen¬ 
erator the field coil is connected so that part of it is in series with the 
armature and load, and part of it is in parallel with the armature and load. 
The characteristics of these types may be summarized as follows: 

1. In the series-wound type, as shown in Fig. 6.Ga, all the armature cur¬ 
rent flows through a few field turns. This type produces a terminal volt¬ 
age and line current that increase as the external load resistance is 
decreased from an open-circuit condition. 

2. In the shunt-wound type, as shown in Fig. 6.G6, the field of many 
turns is connected in parallel with the armature. Only a small portion 
of the armature current goes through the field winding. The terminal 
voltage is essentially constant, decreasing slightly with load increases. 

3. In the compound-wound generators, as shown in Fig. G.Gc, the field 
consists of both a shunt and a series winding. When the series winding 
is such that the terminal voltage is constant with changes in load, it is said 
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to be flat-compounded. If the terminal voltage increases with load, 
it is said to be overcompounded. 

(a) Series (b) Shunt (c) Coinpoiind 

Fig. 6.6. Typies of d-c self-excited generators or motors. 

6.6. Motor Action. Lenz’s law applies to both generators and motors. 
If a current is caused to flow through a conductor in a uniform magnetic 
field, the field is distorted by an increase in the flux density on one side 
and a decrease on the opposite side. Since the magnetic lines act like 
rubber bands, they tend to straighten out and, as shown in Fig. 6.3c, 
will force the conductor to the left. The magnitude of the force is 
directly proportional to the current in the conductor, the length of the 
conductor, and the strength of the magnetic field. In equation form 

F = BlI (6.4) 
where F = force, newtons 

B = flux density^ webers/sq meter 
I = length of conductor perpendicular to the magnetic field, 

meters 
I = current, amp 

A coil of wire carrying citirent in a magnetic field tends to turn about 
an axis perpendicular to the magnetic field. In Figs. 6.3d and 6.7, the 
single turn of wire will tend to turn counterclockwise until its plane is 
perpendicular to the magnetic field. At this point the turning moment 
about the axis is zero; however, if the coil is moved beyond this position 
and the direction of the current is reversed, it will continue to rotate 
180®. If the current is reversed at correct intervals, the turning moment 
is always in the same direction. This is accomplished in d-c motors by 
using commutators. 

The magnitude of the turning torque on the coil can be calculated if 
all the conditions are known. When the plahe of the coil makes an angle 
$ with the direction of the magnetic field, as shown in Fig. 6.7, the coil 
will tend to turn counterclockwise. This is for the condition that the 
field is upward and the current is into the plane of the paper for the upper 
conductor and out of the plane of the paper for the lower conductor. 
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The force on the upper conductor to the left, by Eq. (6.4), is F, and the 
force to the right on the lower conductor is also F. The component of 

(a) End view (b) Perspective view 

Fig. 6.7. A turn of conductor carrying current and lying in a magnetic field is acted upon 
by a torque, proportional to the cosine of the angle 6, the length of conductor, the flux den¬ 
sity, the current, and the length of the lever arm r. 

force at right angles to the line joining the conductor to the axis is F cos 6. 

Substituting in Eq. (6.4) gives 

F cos 6 = BlI cos 6 (6.5) 

Since torque is force multiplied by the lever arm r and since there are two 
conductors of length I involved, we can write 

T = 2rBlI cos B (6.6) 

where T = torque, newton-meters 
r = length of lever arm, cm 

and the other quantities are defined following Eq. (6.4). This equation 
gives maximum torque when 0 is 0 or 180®, which means that the plane 
of the coil is parallel to the magnetic field; that is, the coil must be in a 

vertical position as in Fig. 6.7. If the coil is in a horizontal position, 
B = 90® and the torque becomes zero, since the forces are acting in the 
plane of the coil, leaving no component to turn the coil. 

6.7. Types of D-c Motors. As with d-c generators, there are three 
ways of connecting the field and armature of a motor, namely, 

A. Series motors, connected as shown in Fig. 6.6a, and having the fol¬ 

lowing characteristics: 
1. Decreases speed with increased load 
2. Large starting torque 
3. High speed at no load (racing) 

B. Shunt motors, connected as shown in Fig. 6.65, and having the fol¬ 
lowing characteristics: 
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1. Nearly a constant speed 
2. Low starting torque 
3. Speed controlled by controlling field current 

C. Compound motors, connected as shown in Fig. 6.6c, and having the 
following characteristics: 

1. If connected differentially so that the series winding bucks the 
shunt winding, the motor will have 

а. Shunt characteristics 
б. Nearly a constant speed 
c. Very low starting torque 

2. If connected cumulatively so that the series winding aids the 
shunt winding, the motor will have 

a. Series characteristics 
b. Large starting torque 
c. Speed decreases with load increases 
d. Relatively high speed at no load (no racing) 

The direction of rotation of a motor, regardless of the type, can be 
reversed by reversing the connections of cither th(^ armature or the field 
winding, but not both. Reversing the direction of the armature current 
or the magnetic field reverses the direction of the force causing the arma¬ 
ture to rotate in the opposite direction. If both the armature current 
and the magnetic field are reversed, the force vector does not change direc¬ 
tion; hence the direction of rotation will remain unchanged. 

6.8. Djmamotors and Motor Generator Sets. In radio and com¬ 
munication applications, it is often necessary to convert to another value 
or kind of current or voltage. A common way of doing this is to use a 
motor to drive a generator that will deliver the required output. This 
can be accomplished also by'placing two windings on one armature, one 
acting as a motor and the other acting as a generator. In this way, for 
example, a low-voltage storage battery can be used to drive the motor, 
while the generator is wound to deliver a high voltage. Armatures that 
are to deliver a high voltage at low current are wound with many turns 
of fine wire, while armatures that are to deliver high current at low voltage 
are wound with relatively few turns of large wire. Such dynamotors are 
commonly used for radio sets in automobiles and airplanes. In other 
applications it may be necessary to convert alternating current to direct 
current, or vice versa. This can be accomplished by connecting one 
set of windings to slip rings and the other set of windings to a commutator. 
Since it is rather difficiilt to vary the generated voltage output of a 
dynamotor, the motor generator, which has separate armatures and 
fields, can be used to advantage for this purpose. 

6.9. Electrical Instruments. Many electrical indicating instruments 
depend upon motor action to move a magnetic material or a conductor 
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carrying current in a magnetic field. Since instrumentation is so impor¬ 
tant in electrical circuits, a few of the typical types will be discussed at 
this time. 

a. The D^Arsonval InstrumenL This type of instrument is the most 
popular today for use in d-c measurements. It is also widely used in 
conjunction with thermocouples, copper oxide rectifiers, and vacuum 
tubes to measure alternating currents. 

(a) Cut showiriK moving coil, hair (b) Cut showing uniform airgap within 

springs, terminals, and pointer. which tlie moving coil turns and 
moves the pointer across the uni¬ 
formly graduated scale. 

Fio. 6.8. Sketch of D’Arsonval-type indicating instrument. 

It depends for its operation on the current passing through a coil 
free to rotate in a uniform magnetic field. The position of the coil is 
indicated by an attached pointer, as shown in Fig. 6.8a, which passes over 
a scale as shown in Fig. 6.86. The rotation of the coil is limited by the 
tension of the two hair springs, which obey Hooke’s law; thus the deflec¬ 
tion is proportional to the current in the coil. The hair springs, as shown 
in Fig. 6.8a, also serve as electrical connections from the meter terminals 
to the coil of fine wire. 

The coil is usually wound over a cylindrical core of soft iron, which 
serves to increase the magnetic field and make the flux density uniform 
across the air gap (see Fig. 6.86). The torque on the coil is then propor¬ 
tional to the flux density in the air gap and to the current in the moving 
coil. The scale under the pointer can be graduated linearly to read 
directly the magnitude of current in the coil. The moving coil-and- 
pointer assembly is usually attached to a supporting shaft pivoted on 
jewels, which serve as bearings in addition to being insulators to isolate 
the terminal connections. 

The movement of the coil must be damped if the pointer is to come 
quickly to rest on the correct reading. This can be accomplished by 
winding the coil on an aluminum frame as shown in Fig. 6.9. This light 
aluminum frame in addition to being a coil support, is a closed turn of 
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conductor. When the aluminum frame moves in the magnetic field, it 
cuts lines of force, which by Lenz^s law produces a current in the loop that 
opposes the motion. This causes the pointer to move more slowly and 
stop at the final resting position quickly. Without this damping effect. 

Fiq. 6.9, Construction of a D’Arsonval-tyi;>e indicating instrument. (Weston.) 

the pointer would overshoot the final reading and swing back and forth 

until the friction of the air and bearings dissipated the energy. 
b. The Electrodynamic Instrument. If the permanent magnetic field 

is replaced by field coils connected in series with the moving coil, the result 
is an electrodynamic instrument, as shown in Fig. 6.10. Since a reversal 
of current reverses both fields, the torque will remain in the same direc- 

Fixed coil 

Terminals 

[smsmsmsmy 
Fixed coil 
(b) Electrical connections 

Fio. 6.10. The electrodynamic-type indicating instrument. 

tion. Therefore, this type of instrument will operate on alternating 
current as well as on direct current. This is in contrast to the D’Arsonval 
instrument, which operates only on direct current. If alternating current 
were applied to the D'Arsonval instrument, the pointer would be forced 
first in one direction and then in the other, with the result that it would 

not deflect at all. 
The magnetic field produced by both the fixed and moving coils is 
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proportional to the current. Since the torque applied to the pointer is 
proportional to the product of the two fields, the deflection will be pro¬ 
portional to the current squared. The scale is therefore crowded at the 
lower end and expanded at the upper end. Furthermore, it will not be 

Fkj. 6.11. A cut-away view .showing details of construction of an electrodynamic-type 

indicating instrument. 

an exact squared scale, because the torque varies also with the position 

of the moving coil. 
l^ecause of the relatively w’eak magnetic fields, the electrodynamic 

instrument is usually shielded with laminated iron to prevent errors due 
to stray fields (see Fig. 6.11). The weak fields also decrease the sensitiv¬ 
ity of this type of instrument as 
compared to the D’Arsonval type 
which uses a strong permanent 
magnetic field. 

c. Moving-iron Instruments. 
Thus far we have considered only 
the moving-coil type of indicating 
instruments. The current pass¬ 
ing through a fixed coil can be 
used to attract magnetic material. 
If the magnetic material is con¬ 
nected to a pointer and restrained by a control spring, an indicating 
instrument results. Such an arrangement is shown in Fig. 6.12, where 
the magnetic vanes of soft iron are connected to the shaft carrying 
the pointer and control spring. There are of course numerous other 
ways to accomplish this result. In the example given here in Fig. 6.12, 
current in the field coil produces a magnetic field, which causes the mag- 

Pointer 

Fig. 6.12. Cut of moving-iron, vane-type 

instrument. 
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netic vanes to rotate the shaft and tend to line up with the magnetic field. 
The deflection is then a function of the current in the field coil. This 
type of instrument is less sensitive than the D^Arsonval type but has the 
advantage of operating on either direct or alternating current. 

Since the electrodynamic and moving-iron instruments do not have a 
permanent magnetic field, damping must be accomplished by other means 

Fig. 6.13. Phantom view of a moving iron instrument. 

than the closed loop attached to the rotating shaft. A common and 
practical way to accomplish damping in a-c instruments is to attach an 
aluminum air vane to the rotating shaft. If this aluminum air vane is 
confined to a tight-fitting enclosure, it can be made to operate as a 
‘‘dashpof’ with effective results. 

Load 

6.10. Relays. A relay is an electromagnetic device used in general to 
operate a switch. It is usually a compact sensitive magnetic device used 
to close or open contactors in another circuit. In many cases it controls 
the action of large or remote equipment. A very simple relay circuit is 
shown in Fig. 6.14. When the key is closed, the relay battery causes 
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current to flow through the relay coil, producing an electromagnetic field 
in the core; this field attracts the armature, closing the relay contacts and 
completing the circuit that connects the load battery to the load. 

Such a relay is said to be a “normally open'^ or “n-o'^ relay. It is 
also possible for the contacts to be arranged so that a current flowing 
through the relay coil will open the relay contacts, rather than close them; 
this type of relay is known as a “normally closed” or “n-c” relay. 

The value of current required to move the armature from its normal 
position is called the operating current for a given relay, and the value to 
which the current must drop in 
order to release the armature from 
its operating position is called the 
release current. Both these values 
can be varied over extremely wide 
limits by varying the number of 
turns in the coil, the tension of the 
spring on the armature, the weight 
of the armature, the distance 

through which the armature travels, 
and the positioning of the device, 
where the influence of gravity is 
utilized. The amount of current required to operate a relay is taken as a 
measure of the sensitivity of the relay, and this value may vary from a few 
microamperes for some types to hundreds of amperes for others. 

Relays are among the most useful instruments known, because of the 
wide variety of the tasks they can perform. They can be made to open 
or close almost any desired number of contacts simultaneously or in a 
desired sequence. Types of relays are availal)le that will introduce a 
time delay between the receipt of a signal and the performance of their 
function. Other types are made that will not operate until a predeter¬ 
mined number of impulses has been received. Yet another type, which 
is known as a polarized relay, will perform one operation when current 
flows through the coil in one direction, and another operation when the 
current flow is reversed. With the exception of the latter, which requires 
direct current for its functioning, all relays can be made to operate on 
cither direct or alternating current, as desired, by the proper design. 

One very useful form of relay is the circuit breakery shown in Fig. 6.15. 
In this relay the contacts that are operated by the armature are in series 
with the relay coil itself. When the current through the coil exceeds a 
certain value, the relay operates, opening the circuit. Either mechanical 
or electrical means are provided for holding the contacts open until they 
are reset by the operator. In the relay shown, this function is performed 

Holding 
coil 

Protected 
circuit 1 Reset 

switch 

Holding 
coil 

supply 

Fig. G.15. Circuit breaker. 
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electrically by means of the auxiliary winding, which is called a holding 
coil. After the relay operates, the holding coil maintains the armature 
in its operated position until the ‘‘reset” switch is opened. 

Circuit breakers are used extensively in radio transmitters to prevent 
damage to large tubes from excessive current flow. If, for example, the 
bias source for the final amplifier in a transmitter became inoperative, 
very high currents would flow in the plate circuit. By placing a circuit 
breaker in series with this circuit and the power supply, excessive currents 
are prevented from flowing for more than a fraction of a second, and no 
irreparable damage will be done to the tubes. 

It is obviously not practical in a chapter of this scope to discuss all the 
various types of relays in detail, but a few words may be devoted to one 

form of relay that is of particular 
interest here, since it furnishes an 
excellent illustration of the prac¬ 
tical application of Lenz^s law. 
This is the slug-type time-delay re¬ 
lay shown in Fig. 6.16. In addi¬ 
tion to the regular current wind¬ 
ing, the core of this relay carries a 
heavy copper slug, which forms a 
single turn of very low resistance 
around the core. When current is 
suddenly passed through the oper¬ 

ating coil, it generates a suddenly increasing magnetic field in the core. 
This changing flux links the single turn formed by the heavy slug, generat¬ 
ing a voltage around the loop and causing a current to flow. This cur¬ 
rent will itself generate a magnetic field, and by Lenz's law, the direction 
of this field must be such as to oppose any change in the field producing it. 

Since the generating field is increasing, the direction of the induced 
field must be such as to prevent it from increasing. By making the resist¬ 
ance of the single turn formed by the slug very low, and by positioning the 
slug on the core in such a manner that practically all the generating flux 
links this single turn, the counter field set up by the slug can be made so 
large that the net flux in the core changes from zero only very slowly. 
Consequently, an appreciable interval must elapse between the time a 
current is applied to the operating coil and the time the net flux through 
the core is large enough to operate the armature. Delays up to several 
seconds can be effected by this means. 

Summary 

Len^s law: (1) An induced current always opposes the action that produces it. 
(2) Whenever a change is made in the flux linking a circuit, a voltage is induced or 
generated in the circuit that tends to oppose the change. 
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When the flux linking a coil changes, a voltage is induced in the coil that is given by 

e X 10-* 

where e induced voltage, volts 

N = number of turns 

^ = flux linkage, maxwells 

t = time, sec 
One weher equals the change in flux linkage per second that will induce 1 volt in a 

single turn of conductor. 

When a conductor cuts across a magnetic field, a voltage is generated in the con¬ 

ductor that is given by 
e = —Blv 

where e = generated voltage, volts 

B = flux density, .\vebers/sq meter 

I — length of conductor, meters 

V = velocity of conductor, meters/sec 

Generator rule: The direction of the generated voltage in a conductor is in the direc¬ 

tion of the thumb when the conductor is grasped in the right hand and the conductor 

is moved across the magnetic field in a direction so that the fingers point in the 

direction of the flux wrapping around the conductor. 

A separately excited d-c generator is one in which the field coils are supplied from 

an external source. 

A self-excited d-c generator is one in which the generator supplies the current for 

its own field coils. 

A series-wound generator or motor is one in which the armature windings and field 

windings are connected in series. 

A shunt-wound d-c generator or motor is one in which the armature winding and 

field winding arc in parallel. 

A coin pound-wound d-c motor or generator is one in which the field winding consists 

of both a shunt and a series winding. 

When a conductor carrying a current lies in a magnetic field, a force is exerted on 

the conductor that is given by 

F = BlI 

where F = force, newtons 

B = flux density, webers/sq meter 

I =* length of conductor perpendicular to the magnetic field, meters 

/ == current, amp 

Dynamotors and motor generators are devices for transforming alternating current 

to direct current, or vice versa. In a dynamotor the motor and generator coils are 

wound on a common armature, while in a motor generator the motor and generator 

coils are wound on separate armatures, but on the same shaft. 

A D'Arsonval-meter movement consists of a spring-suspended coil lying in the 

magnetic field of a permanent magnet. A pointer is attached to the coil, and current 

flowing through the coil causes the coil to move. 

An electrodynamic-meter movement consists of two coils, spring-mounted at an 

angle with respect to each other and connected in series. Current flowing through 

the coils causes the angle between them to change. 

A moving-iron-meter movement consists of magnetic vanes, spring-mounted at an 

angle to a field coil and bearing a pointer. Current flowing through the field coil 

causes the vanes to move. 
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A relay is an electromagnetic device consisting, in essence, of a coil that attracts 

an armature when current flows through the coil. The movement of the armature 

is usually made to close or open a switch. 

A circuit breaker is a relay that opens a circuit when the current through the relay 

coil exceeds a certain value. 

Exercises 

6.1. An open-circuited coil of 100 turns lies in a magnetic field. If the flux thread¬ 

ing the coil is changing at the rate of 1,000 maxwells/soc, what voltage will appear 

across the terminals of the coil? 

6.2. Is it necessary for a conductor to move relative to a magnetics field in order to 

generate a voltage? 

6.3. A conductor 1 cm in length moves through a uniform magnetic field of density 

1 weber/sq meter, at a velocity of 10 meters/sec. What voltage is generated in the 

conductor if it cuts the flux lines at right angles? 

6.4. Define (a) series-wound generator; (b) shunt-wound generator. 

6.6. What is the difference between a dynamotor and a motor generator? 

6.6. What is the purpose of the cylindrical iron core between the pole pieces in a 

D’Arsonval-meter movement? 

6.7. Why is the coil of a D^Arsonval-meter movement wound on a conducting 

frame? 

6.8. Name at least three types of electrical instruments that are \i8ed for measuring 

alternating current. 

6.9. How would you specify the sensitivity of a relay? 

6.10. WTiat is a circuit breaker? 



CHAPTER 7 

INDUCTANCE 

In Chaps. 5 and 6 the voltage induced in a coil lying in a magnetic field 
was discussed, and it was shown that this voltage was a function of the 
rate at which the field was changing. Lenz^s law was also developed; it 
states that the induced voltage is always 
of such a nature that currents flowing 

as a result of this voltage will oppose 
any change in the magnetic field pro¬ 
ducing them, or will oppose the motion 

of the field and the coil relative to each 
other. This law follows from the basic 
law of the conservation of energy. 

No attempt was made, however, to 
apply this rule to the case where the 
inducing magnetic field was due to a 
current flowing through the coil itself. The phenomena that occur in this 
situation are a result of the property of a coil that is known as inductance^ 
which will he the subject of this chapter. 

7.1. Coils Carrying Changing Currents. Consider the situation shown 
in Fig. 7.1. A current i enters the coil at terminal a and leaves at terminal 
h. This current sets up a magnetic field around the coil. For the 
moment, let us assume that the wire of which the coil is wound has zero 
resistance; in other words, the current i is determined by means external 
to the coil itself. 

Under these conditions, if the current i is steady, there will be no volt¬ 
age difference between the points a and 6, since there is no resistance 
present to cause a voltage drop. A magnetic field exists around the coil, 
but since the current producing it does not change, the field does not 
change, and the system is in equilibrium. 

Now consider the situation in Fig. 7.2, which is identical with that of 
Fig. 7.1 except that the current i is increasing. Since the current is 
increasing, the number of flux lines issuing from the coil must also be 
increasing. When a changing magnetic field exists, Lenz^s law applies, 
and hence a voltage that opposes the change will l)e generated arcoss the 
coil. Since the magnetic field is proportional to the current through the 
coil, this is equivalent to saying that a voltage will be generated that 

123 

Fig. 7.1. Coil carrying a steady 
circuit. 
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opposes any change in the current. Since the current is flowing from 
terminal a to terminal b through the coil, and since the current is increas¬ 
ing, it follows that a voltage will be generated by the coil that opposes 
the increase by sending current through the coil in the opposite direction, 
in other words, from b to a. Therefore, the generated voltage will be 
such that terminal b becomes negative^ and terminal a becomes 'positive^ 
and this voltage wiW remain constant as long as i increases at a steady rate. 

Now consider Fig. 7.3, where again a current i flows through the coil, 
except that this current is now decreasing. Because the magnetic field 
is changing, a voltage that opposes this change will again be generated. 

Fio, 7.2. Coil carrying an increasing current. 

Since the current is now decreasing, however, the polarity of the voltage 
generated will be such as to increase the flow of current through the coil, 
or in other words the polarity will be the opposite of that in Fig. 7.2. 
If the current i decreases at a constant rate, the generated voltage will 
remain constant. 

7.2. Inertia in an Electric Circuit. The effects described in Section 7.1 
are exactly analogous to the behavior of a mass m moving at a constant 
acceleration. In order to accelerate the mass, it is necessary to apply a 
force to it, and an exactly equal and opposite force will be produced by 
the mass on the object accelerating it. The velocity of the mass will 
increase at a constant rate as long as the applied force remains constant. 

If for the word ‘^mass’^ we substitute ‘‘coil,^^ for ‘^velocity’^ we sub¬ 
stitute ‘^current,” and for ‘‘force^’ we substitute “voltage,’^ statements 
about masses and coils become interchangeable. This means that if we 
apply a constant voltage to a coil that has no resistance, the current 
through the coil will increase at a constant rate as long as the voltage is 
maintained. Or, to state the facts another way, if the current through 
a coil changes at a constant rate, a constant voltage will be generated 
across it. 

Just as it is impossible to change the velocity of any mass, however 
smAll, from one value to another instantaneously^ so it is impossible to 
change the current through a coil, no matter how small, from one value 
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to another instantaneously. The more quickly the velocity of a given 
mass is changed from one value to another, the greater the force must be 

that effects the change. Similarly for a coil, if the current through it 
must change rapidly from one value to another, a commensurately high 
voltage must be applied to effect the change. 

e (generated 

Fig. 7.3. Ooil carrying a decreasing current. 

If a mass is moving at a constant velocity and is then brought to a 
sudden stop, a large force Avill be exerted on the obstacle that stops it. 
Analogously, if a coil carrying a steady current has the current suddenly 
stopped, or interrupted, a high voltage will be generated across the 
terminals of the coil. This is the principle of operation of the ignition 
coil of an automobile. A switch, or inierruptery applies the storage- 
battery voltage, generally 6 volts, across a coil that has a small spark gap, 
or spark plug^ across its terminals. The circuit is held closed long enough 
for the current through the coil to build up to a fairly high value. The 
interrupter is then suddenly opened, and the voltage that is generated in 
the coil, by the sudden interruption of the current through it, is so great 
that a spark jumps across the spark-plug terminals, igniting the gasoline- 
air mixture in the cylinders. 

7.3. Self-inductance. The property of a coil that causes it to behave 
as though it had electrical mass is called its self-inductancey or, more usu¬ 
ally, simply its inductance. The unit of inductance is the henryy named 
in honor of Joseph Henry, a scientist who did much important work in 
magnetism. 

A coil has an inductance of one henry when a current through the coil 
changing at the rate of one ampere per second generates a constant emf of 
one volt across its terminals. 

Example 7.1. What voltage will be generated across the terminals of a coil having 

an inductance of 8 henrys w hen the current through the coil is changing at a steady 

rate of 3 amp/sec? 

Solution. The voltage across the coil is proportional to its inductance and to the 

rate of change of the current through it. Therefore, the generated voltage is given by 

e ■« (8) (3) « 24 volts Ans. 
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It is not necessary that the current through the coil change at a steady 
rate. The generated voltage is always proportional to the instantaneous 

rate of change of the current through the coil. Using the notation of the 
calculus, the instantaneous rate of change of the current with respect to 
time can be written as di/di. The formula for the induced voltage devel¬ 
oped across a coil at any instant can therefore be written 

where e = instantaneous generated voltage, volts 
L = inductance, henrys 

di/di = rate of change of current through the coil, amp/sec 
The minus sign in this equation is used because the induced voltage 
opposes the current change. 

If e is constant, this equation can be integrated to derive an expression 
for the current through an inductance that has a constant voltage applied 
to its terminals. Rewriting Eq. (7.1), we have 

di — — ^dt 

Integrating 

» = - j < + *, (7.2) 

Equation (7.2) shows that the current through an inductance increases 
linearly with time, is proportional to the applied voltage, and is inversely 
proportional to the inductance. The integration constant is lo the value 
of current at time t = 0. 

Example 7.2. What current will be flowing at the end of 3 sec through a coil of 

1 henry to which a constant voltage of 6 volts is applied at ( — 0? 

Solution 

(6J(3) 

1 
—18 amp Am. 

Example 7.3. What is the rate cf change of current through the coil in the pre¬ 

ceding problem? 

Solution. The rate of change of the current will be constant and will be given by 

di 

dt 

e 

L 

6 
1 

—6 amp/sec Ana. 

Because the voltage across a coil is proportional to the derivative of 
the current through it, a coil is referred to in some applications as a 
differentiating circuit. 

Figure 7.4 shows two curves. Figure 7.4a is the current flowing 
through a certain coil as a function of time, and Fig. 7.46 shows the 
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voltage developed across the coil by the changing current. The height 
of the curve in Fig. 7.46, for any value of equals the slope of the curve 
of Fig. 7.4a for the same value of L 
solves the equation e = —Ldildty 
where i is given by Fig. 7.4a. 

7.4. The Henry, Millihenry, 
and Microhenry. The henry is 
too large a unit of inductance for 
many applications. For conven¬ 
ience, two other smaller units of 
inductance are often used, the 
millihenry and the microhenry. 
The millihenry is equal to Hooo 
henry (0.001 henry) and is com¬ 
monly abbreviated as mh. The 
microhenry is equal to 1/1,000,000 
henry (0.000001 henry) and is 
abbreviated as yh. 

7.6. Air-core and Iron-core In¬ 
ductors. It was shown in Eq. 
(6.1) of the preceding chapter that 
when a changing flux links a cir¬ 
cuit, a voltage is generated that is 
given by 

6 = —i 

In other words, Fig. 7.46 graphically 

Current through coil 

Fiq. 7.4. Current through and voltage 

across a coil. 

Tt ^ 

where e = instantaneous generated emf, volts 
N = number of turns linked by flux 

<1> = number of flux lines 
This equation obviously applies to the voltage generated by the self¬ 
inductance of a coil carrying a changing current. This has been shown 
to be 

e = (7.4) 

Therefore, we can equate these two expressions, and then have 

X 10-0 
dt dt 

(7.5) 

or 

L = AT X 10-« 
di 

which defines L in terms of flux linkages. 

(7.6) 
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If the permeability of the path traversed by the flux lines is constant, 
then d^/di will be constant, and will equal Since the permeability 
of air is constant, the inductance of an atr-^ore coil (z.e., a coil that con¬ 
tains no iron or similar material) will be independent of the current 
through the coil. For an air-core coil, the inductance will be given by 

L = iV ? X 10-* (7.7) 
X 

If the coil is wound around a core of iron, or some other ferromagnetic 
material, however, the number of flux lines produced in the iron will be a 
complicated function of the current producing the flux. Whenever the 

permeability of the core is a variable, 
Eq. (7.6) must be used to calculate L. 

7.6. Mutual Inductance. The 
Transformer. A voltage will be gen¬ 
erated in a coil that is linked by a 
changing flux, regardless of the 
source of this flux. Thus, in Fig. 
7.5, some of the flux produced by a 
current ii flowing in coil 1 also links 
the turns of coil 2. \{ i\ changes, 

causing this flux to change, the flux threading coil 2 will also change, and 
consequently a voltage will appear across terminals c and d of coil 2. 
We can therefore write 

(7.8) 

Fig. 7.5 
tance. 

Coils having mutual induc- 

The constant of proportionality, Af, in this equation, is called the coef¬ 
ficient of mutual inductancej or simply the mutual inductance, and is 
defined as follows: 

If a current through one coil, changing at a steady rate of one ampere 
per second, induces a constant voltage of one volt in another coil, then the 
two coils are said to have a mutual inductance of one henry. 

It should be noted that no matter what the individual inductance of the 
coils is, the mutual inductance is the same for both. Thus, if two coils 
have a mutual inductance of M henrys, then a current changing at the 
rate of n amperes per second in either coil will produce an emf of nM volts 
in the other coil. 

Example 7.4. Two coils have a mutual inductance of 10 mh. If the current 

through one coil is changing at the rate of 5 ma/sec, what voltage will be generated in 

the other coil? 
Solution 

e - -(0.01)(0.005) - -0.00005 volt Ane, 

Two coils with mutual inductance constitute what is known as a 
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transformer. The coil that carries the inducing current is called the 
primary^ and the other coil is called the secondary. Transformers may 
take many forms. For r-f work, the primary and secondary may each 
consist of a few turns of wire spaced an inch or so apart in air, while for 
a-f work, they may each consist of thousands of turns of wire wound on a 
common iron core. When the secondary contains more turns than the 
primary, the result is said to be a step-up transformer, and if the secondary 
contains fewer turns than the primary, it is said to be a step-down trans¬ 
former. Transformers find wide use in a-c work, since, if properly 
designed, they are one of the most efficient devices known. Further¬ 
more, they have extremely useful impedance-transforming properties 
which will be discussed in detail 
farther on in the sections on a-c 
theory. 

7.7. Switching in an Inductive 
Circuit. A circuit containing in¬ 
ductance is said to be inductive, and 
the effects obtained by suddenly 
applying or removing emfs in in¬ 
ductive circuits are of great interest and importance. Consider the situ¬ 
ation shown in Fig. 7.6. 

Here an emf of E volts can suddenly be applied to a circuit consisting 
of a resistor R and an inductance L in series. Obviously, from what has 
been said before, it can be expected that the current / that flows will 
change with time. It would be natural to expect that it would start at a 
very low value and gradually increase with time, because of the inertia¬ 
like behavior of the inductance. 

Since the circuit of Fig, 7.6 is a simple series circuit, two facts may be 
stated at once: (1) the current through any one element (that is, the 
battery, resistor, or inductance) at any given instant must equal the 
current through any other element; (2) the sum of the voltage drops 
across the resistor and inductance must at all times equal the applied 
emf E, These are Kirchhoff’s laws, and they apply universally to any 
series circuit. 

Let the current i be the current flowing in the circuit at time t. Then 
the voltage drop across R will be Cr = Ri at time t. The voltage drop 
across L will be independent of the value of i, however, and will dep)end 
only on the rate at which i is changing at time t. In other words the 
current i varying in the coil causes the change of flux linkages which 
produces an emf to be set up in the coil having a value 

Fig. 7.6. Inductive circuit. 

Cl = L 
dt 

(7.9) 
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This emf of self-induction opposes the change of current in the coil. In 
other words this emf of self-induction opposes the increase of current 
when the switch of Fig. 7.6 is closed. 

When the switch of Fig. 7.6 is closed the current builds up slowly. 
For this condition we have the battery potential, the resistance drop, and 
the emf of self-inductance. Since the two latter are opposed to the 
battery potential we can write 

E-Ri-Lj^ = 0 (7.10) 

which is the differential equation for this circuit. This equation can be 
re-arranged to give 

L di 
= dt (7.11) 

In this form the variables are said to be separated^ that is, all terms con¬ 
taining i and di are on the left hand side and the dt term is on the right 
hand side. Each side can now be integrated separately, giving 

f Ldi _ f 

J t: - Hi J 
— ^ ln(^ — Ri) = / + constant of integration (7.12) 

To determine the constant of integration consider the instant of time 
t = 0 when the switch is closed. At this instant the current through the 
inductance must be zero, since an infinite voltage would have to exist 
across L to make the current through it jump instantaneously to some 
value greater than zero. Therefore, set t = 0 and i = 0 in Eq. (7.12) 
and solve for the constant of integration, thus 

Constant of integration = — -jz In E 
it 

Substituting this value in Eq. (7.12) results in 

- 4 ME - Ri) = t-%\nE 
H rC 

(7.13) 

M^)-‘ 
- f) - - f (7.14) 

Now if In X = y. it follows that x = e"; hence, Eq. (7.14) can be rewritten, 

1 — — = 

^ E 

f = I (1 - (7.1.5) 
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where i = instantaneous current, amp 
E = emf, volts 
R = resistance, ohms 
L = inductance, henrys 
t = time, sec 

This equation gives the instantaneous value of current in Fig. 7.6 at any 
time t after the switch is closed. Since / is always a positive quantity, 
the term • decreases as t in¬ 
creases, going from a maximum 
value of 1 when / = 0 to a value of 
zero when t becomes infinite. The 
maximum value of i. will therefore be 
reached when the time becomes in¬ 
finite, or in other words t increases 
continually as t increases,'and i ap¬ 
proaches but never reaches the lim¬ 
iting value E/R. This value is, of 
course, the steady value that I would 
achieve instantaneously if L were not in the circuit. A curve showing i 
as a function of t is shown in Fig. 7.7. 

The dotted line tangent to the curve at the origin shows the current 
that would have flowed through L as a function of time if R had not been 
present, and the dotted line parallel to the t~ax\s shows the current that 
would have flowed through R if L had not been present. 

The current i will rise more slowly for greater values of L. To describe 
the rate at which the current through an inductance and resistor in series 
rises, the terra time constent is used. The time constant T is defined as 
that value of t for which the exponent of c in Eq. (7.15) becomes equal 
to —1. Since this exponent equals { — Rt/L)^ T is given by 

Fio. 7.7. Current transient caused by 
closing switch in Fig. 7.6. 

or 

When t — T, i becomes 

(7.16) 

(7.17) 

In other words, the time constant of an inductive circuit is the time 
required for the current to rise to 63.2 per cent of its final value after a 
d-c voltage is applied. 
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Substituting T for L/R in Eq. (7.15) gives another useful form of this 
equation 

/ = I (1 _ (7.18) 

Example 7.5. In Fig. 7.6, let E — 5 volts, 7? = 10 ohms, and L *= 2 henrys. 

What current will flow in the circuit 0.5 sec after the switch is thrown? 

Solution 

i - ?fo(l - 

= Mil - 0.082) = M(0.918) 
= 0.459 amp 

Example 7.6. WTiat is the time constant in Example 7.5? 

Solution 

2 
10 

0.2 sec 

Ans. 

Ans. 

In other words, the current will reach 63.2 per cent of its final value 0.2 sec after 

the switch is thrown. 

Fig. 7.8. Inductors in series. ^ 

generate a voltage L\{di/dt) across 
Liidildf) across the terminals of L2. 
terminals a and h will then be 

7.8. Inductors in Series. A prob¬ 
lem that often arises is to find the 
equivalent inductance of two induc¬ 
tors connected in series. This result 
can be found very easily by a con¬ 
sideration of Fig. 7.8. 

Let the current i flow through Li 
and L2, and at a given instant let i be 
increasing at the rate of dijdi amp 
per sec. This changing current will 
the terminals of Li, and a voltage 
The total induced voltage between 

E = 
j. di 

dt 

-(L. + l4’ (7.19) 

This is the same voltage that would be generated across an inductance 
of Li -f L2 henrys if a current changing at the same rate flowed through 
it. We have, therefore: the equivalent inductance of two or more inductances 
in series that have no mutual inductance equals the sum of the individual 
inductances. If the equivalent inductance be called L, then 

L " Li + L2 + La + • • * (7.20) 
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Example 7.7. Inductances of 1, 2, and 5 henrys are connected in series. What is 

the total inductance? 
Solution 

L — 1 + 2 -f 5 henrys = 8 henrys Ans. 

7.9. Inductors in Parallel. The equivalent inductance of two induc¬ 

tors in parallel can be determined by 
a consideration of Fig. 7.9. From 
Eq. (7.2) the current i\ through Li 
will induce a voltage e\ such that 

i 

eit 
(7.21) LJ 

Fig. 7.9. Inductors in parallel. where t is the time in seconds after 
the voltage E is applied. The current through Li will be given similarly by 

ii = (7.22) 

Now, since the induced voltage opposes the applied voltage we can write 

E = -ei= -ei (7.23) 

And then the total current flowing from the battery E will be 

t = ii + ii 

e\t eit 
~ ~ Tx Ti 

,Et 
Li Li 

Et 
=-- (7.24) 

(1/A.) + (1/A..) 

'Phis is the current that would flow through an inductance of 

1 

1/(1/A,)+ (1/A.) 

henrys. We see, therefore, that inductances in parallel behave like 
resistors in parallel. Hence, the equivalent inductance A of two or more 
inductances in parallel, and having no mutual effects is given by 

1_ 
L 

= — + — + — + Li Li~ Li~ 
(7.24o) 

where A = total inductance of parallel circuit, henrys 

Li, Li, Li, etc. = inductance of branch in parallel circuit, henrys 
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Example 7.8. Inductances of 1, 2, and 5 henrys are connected in parallel, 

is the equivalent inductance of the combination? 

SoliUian. By Eq. (7.25) 

Therefore 0.588 henrys 

What 

Ans, 

7.10. Inductance Calculations. The inductance of a given coil may 
be computed, using certain formulas that have been worked out, if the 
dimensions of the coil are knoAvm. Only air-core coils will be considered 
here. As already pointed out, the introduction of iron or other ferro¬ 
magnetic material in the circuit involves many computational difficulties, 
which are properly the domain of the specialist. With air-core coils, 
however, the computations are relatively simple, and of considerable 
interest. 

Three cases will be considered: (1) the single-layer solenoid; (2) the 
single-layer spiral; and (3) the multilayer solenoid. 

7.11. Self-inductance of Single-layer Solenoids. The universal induc¬ 

tance formula is 
L = an'^F (7.25) 

where L = inductance 
a = radius of coil 
n == number of turns 
F = constant depending upon the physical dimensions of the coil 

If the value of F is plotted from the Lorenz formula^ for a single-layer 
solenoid, the curv'e looks to be hyperbolic in nature and can be practically 
duplicated if 

F = 
106 

+ 9 
(7.2()) 

Substituting this value of F in Eq. (7.25) gives 

L - 
9a -b 106 

Mh (7.27) 

where L = inductance, ^ih (microhenries) 
n = number of turns 
a == radius of coil, in. 
6 = length of the winding, in. 

Figure 7.10 illustrates these dimensions applied to a single-layer solenoid. 
For good coil design the dimensions of the coil should be kept within 

' This formula is one of the most exact in its field. See E. B. Rosa and P\ W 

Grover, Bur. Standards Bull., Vol. 8, p. 119, 1912. 
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certain limits. The most inductance can be obtained for a given amount 
of wire when the ratio of the radius to coil length is approximately 
ajh = 1.25; however, this is not at all critical. This ratio should be kept 
within the following practical 
limits: 

% = 0.75 to 2.5 
0 

_L._ Perhaps the easiest way to ob¬ 
tain a given inductance value from 
Eq. (7.27) is to use the trial-and- 
error method. That is, select 
reasonable values of ,a, 6, and n; 
substitute them in Eq. (7.27), and 
solve for the inductance L. ^ If the value is too small, increase n or a. If 
n is increased by adding turns, usually h will increase accordingly. Simi¬ 
larly, if L is too large, use smaller values of a or n. 

Fig. 7.10. Single-layer solenoid. 

Example 7.9. A loading coil is needed to load a short antenna. It is desired to 

design a good coil having an inductance of 20 ^h from copper tubing having a diam¬ 

eter of 0.25 in. To conserve copper tubing, let the first trial coil have the ratio of 

a/b = 1.25. The tubing should have a spacing between turn centers of approxi¬ 

mately twice its own diameter. 

Solution. First Trial. I^et 

a — b in., h — A in,, n == 7 turns 

Substituting in Kq. (7.27) 

(5)2(7)2 _ (25)(49) _ 1,225 

^ (9) (5) -f (r0)(4) 45 + 40 85 

= 14.42 ^J^h (too low) 

Second Trial. liCt 
a = 0 in., 6=5 in., n = 9 turns 

Substituting in Kq. (7.27) 
j ^ (6)^(9)* ^ (36)(81) ^ 2,^ 

(9) (6) + (10) (5) 54 + 50 104 

= 28.05 ^h (too high) 

Third Trial. Ivct 

a = 5.5 in., 6 = 4.5 in., n = 8 turns 

Substituting in Eq. (7.27) 
. _ (5.5)*(8)* _ (30.25)(64) _ 1,935 

(9)(5:5) + ■(lb)(4.5) 49.5 + 45 94.5 

= 20.46 Axh Approximate Ans. 

If 6, the length of the coil, is increased slightly, the inductance can be made exact. 

To do this, solve Eq. (7.27) for 6 as follows: Multiply both sides by the denominator. 

Thus, multiplying both sides by 9a + 106 gives 

9aL + 106L = o*n* 
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Subtracting 9aL from both sides gives 

106L = o*n* — 9oL 

Dividing both sides by lOL gives 

h * -- = length, in. (7.28) 

By substituting in Eq. (7.28) the desired value of inductance, L = 20, and the 

values of a and n used in the third trial above, the length of the coil (/r in.) can be 

determined. 

. ^ (5.5)»(8)^ - (9)(5.5)(20) 

(10) (20) 

_ (30.25) (64) - (49.5) (20) _ 1,935 - 990 

200 200 

= ^^5^00 - 4.725 in. 

This is the length of the coil to give the correct inductance. 

Checking, 

j _ (5.5)*(8)2 _ (30.25)(64) _ 1,935 

(9)(5.5) -f (10)(4.725) 49.5 -f 47.25 96.75 

= 20 /Lih Exact Ans. 

The spacing between turn centers is 

^ b 4.725 . .. . 

n 8 

The following ecpiation can be used to determine the length of copper tuV)ing neces¬ 

sary to construct the coil: 

I *Zwa7i « e\f\\ 

where h = length of conductor in coil, ft 

T = 3.1416 

a = radius of coil, in. 

n = number of turns in coil 

Substituting 

^ ^ (2)(3.1416)(5.5)(8) ^ ^3 ft 
12 

The coil specifications can now be made as follows: 

le — 23 ft of 0.25-in.-diameter copper tubing 

a = 5.5 in .-radius cf ceil 

b — 4.725 in.-length cf ceil 

n =» 8 turns 

S =0.59 in.-spacing between turn centers 

L 20 /zh-inductance 

When it is not necessary to obtain an exact value of inductance, the 
spacing S should be left in some dimension easy to measure. Equation 
(7.27) can be depended on only for an accuracy within about 2 per cent. 
The final and best way to obtain a good value of inductance is by measure- 
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ment. Equations as given in this chapter, however, predict quite closely 
the high-frequency inductance of coils of various shapes. In fact, the 
inductance can be calculated as closely as the coil 
can reasonably be constructed from the specifica¬ 

tions. 
7.12. Self-inductance of Single-layer Spirals. 

Equation (7.27) can be used to determine the induct¬ 
ance of a spiral if c, the radial thickness of the wind¬ 
ing, is substituted for b. Thus 

i ^ 

L = fih (7.30) 

Fig. 7.11. 
spiral. 

Single-layer 

9a + lOc 

where L = inductance, /uh (microhenrys) 
n = number of turns 
a = mean radius of spiral, in. 
c = radial depth of spiral, in. 

Figure 7.11 illustrates how these dimensions are applied to a single-layer 
spiral. 

Example 7.10. It is desired to construct a spiral inductance of 15 which is to 

be used as the primary of an r-f transformer to couple the output of a 1-kw trans¬ 

mitter to the antenna. 

Solution, If copper tubing is used to make the spiral, the spacing between 

turn centers should be approximately in. Starting the spiral at a radius of 3 in., 

a trial calculation can be made as follows: 

S = in. == 0.625 in. = spacing between turn centers 

n = 7 turns 
c * n*S = (7) (0.625) = 4.375 in. 

a = ? + 3 = + 3 = 6.1875 in. 

Substituting in Eq. (7.30) 

j (5.1875)*(7)* _ (26.9)(49) __ 1,318 

(9)(5.1875) -f (10)(4.375) 46.69 + 43.75 “ 90.44 

= 14.57 /ih inductance 

'fhis value is very close. If 8 turns are used, the inductance L 19.44 /xh. Inter¬ 

polating for the inductance gives 

1 turn X turns 

X turns 

19.44 - 14.57 15 - 14.57 

15 - 14.57 0.43 

19.44 - 14.57 4.97 
= 0.0865 

This means that for 15 /uh inductance 

n *= 7.0865 turns 

This example shows that for practical purposes, 7 turns is close enough. The 

accuracy of both Eqs. (7.27) and (7.20) may be less than 2 per cent if too few turns 

are used, or when the spacing between turns is too great. 
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7.13. Self-inductance of Multilayer Coils. When the dimensions of a 
multilayer coil are as shown in Fig. 7.12, the inductance is 

L = 
0.8a»n» 

6a + 96 + 10c 
iih (7.31) 

where L = inductance, nh 
a = mean radius, in. 
b = width of coil, in. 
c = radial depth of coil, in. 
n = number of turns in the coil 

The accuracy of this equation is within 1 per cent when the three terms 
in the denominator are approximately equal. 

Example 7.11. Find the inductance of a multilayer 

coil wound with No. 22 dec copper magnet wire on a 

spool having dimensions 

a = 1.5 in. 

6 = 1 in. 

c — 0.9 in. 

Solution. From a wire table we find that this wire 

can be wound at the rate of 30 turns per in. Then 

the number of turns per layer will he 305 = 30, 

and the number of layers will bo 30c = 27. The num> 

her of turns is then n = (30) (27) = 810, the total 

number of turns in the coil. Substituting in Eq. (7.31) 

gives 

L = 
(0.8)(1.5)*(810)2 

(6)(1.5) + (9)(£) + (10)(0.9) 

(0.8)(2.25)(656,100) 

9+9 + 9 

_ 1,1^L0(X) ^ 43 75Q inductance 

L =* 43.75 mh inductance Ans. 

This result should be accurate within 1 per cent since the terms in the denominator 

are equal. 

Summary 

Inductance is an electrical quantity that is analogous to mass. 

If a changing current flows through an inductance, a voltage will be generated that 

opposes the change. 

The unit of inductance is the henry, which is defined as the inductance that will 

generate a voltage of 1 volt across its terminals when the current through it is changing 

at the rate of 1 amp/sec. 

The voltage generated or induced across an inductance is given by 

e — 
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where e = generated or induced emf, volts 

L = inductance, henrys 

di 
■J2 = rate of change of current, amp/sec 
at 

If a steady voltage is applied to an inductance, a current will start to flow through 

it that is given by 

• _ 
^ “ L 

where i = instantaneous current, amp 

E = applied emf, volts 

t = time after emf is applied, sec 

L = inductance, henrys 

When a current changing at the rate of di/dt amperes per second generates or 

induces a voltage of —Mdi/dt volts in another coil, the two coils are said to be coupled 

by a mutual inductance of M henrys. 

If an-emf E is applied at time t = 0 to a circuit consisting of R ohms and L henrys 

in series, the current will be given by 

/ = I (1 - e-*'/!-) 

The time constant of an inductive circuit is the time required for the current to rise 

to 63.2 per cent of its final value after a constant voltage is applied. 

For inductors in series, the equivalent inductance is given by 

L = Li 4“ 4" d" • • • 

For inductors in parallel with no mutual effects, the equivalent inductance is given 

hy 

L= 1 +1 + 1+ ... 
L In In ^ 

'Phe inductance of a single-layer solenoid is given by 

j _ a*n* 
^ “ §0 4- 106 

where L = inductance, /xh 

n = number of turns 

a =» radius of coil, in. 

h — length of winding, in. 

The inductance of a single-layer spiral is given by 

_ a*n* 
^ * 9a 4- 10c 

where L « inductance, juh 

n ** number of turns 

a =» mean radius of coil, in. 

c * radial depth of spiral, in. 
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The inductance of a multilayer solenoid is given by 

, 0.8a*n* 
6a + 96 -f 10c 

where L = inductance, tdi 
n = number of turns 
a * mean radius, in. 
6 = width of coil, in. 
c — radial depth of coil, in. 

Exercises 

7.1. In an inductive circuit, what is the relationship between the voltage generatc*d 
and the current that generates it? State in words. 

7.2. Inductance is analogous to what mechanical quantity? 
7.3. What is the unit of self-inductance? 
7.4. WTiat is the formula relating inductance, changing current, and generated 

voltage? 
7.5. What is mutual inductance? 
7.6. What is meant by the ^Hime constantof an inductive circuit? 
7.7. If an emf of 10 volts is applied at time t = 0 to a circuit consisting of 1 ohm 

and 1 henry in series, what current will flow in the circuit at the end of 1 sec? 
7.8. What is the equivalent inductance of two coils, each of 5 honrys inductance, 

in series? 
7.9. Give the formula for the inductance of a single-layer solenoid. 

7.10. What is the inductance of a spiral of 10 turns when the mean radius of the 
spiral is 2 in. and the radial depth of the spiral is 2 in.? 



CHAPTER 8 

ELECTROSTATIC CAPACITY 

8.1. Capacitors and Dielectrics. A capacitor consists of two con¬ 
ductors separated by an insulating medium, which is called the dielectric. 
Capacitors may take many forms. For example, a very common form 
of capacitor, known as the paper capacitor, consists of two pieces of tin 

foil separated by a piece of waxed paper. For use in r-f circuits, capaci¬ 
tors are often made up of pieces of tin foil separated by very thin slabs of 
mica. Capacitors for use in high-voltage circuits are often manufactured 
with oil as the dielectric. X)r, when a-c voltages of high frequency are 
to be used, the dielectric is sometimes a vacuum. 

Variable capacitors are generally made with air as the dielectric, and 
the capacity is varied by moving two metal plates, or two sets of metal 

plates, with respect to one another. 
Whatever its form, however, the function of a capacitor is to store 

electric charge. When a voltage is supplied across the plates of a capacitor, 
electric charge is stored on the plates and will remain there until the 
capacitor is discharged, cither through leakage due to poor resistance of 
the dielectric, or by completion of an external circuit between the plates 
of the capacitor. The storage of charge in a capacitor is analogous to 
the storage of potential energy in a mechanical circuit. This topic will 
be discussed in the next section, 

8.2. Elasticity in Electric Circuits. A capacitor in an electric circuit 
is in many respects comparable to a spring or compliance in a mechanical 
system. The mechanical analogy for a capacitor in series with a resist¬ 
ance will follow. 

If a voltage E is applied to a circuit containing a capacitor C in series 
with a resistance 72, as shown in Fig. 8.1a, a current i will flow, as shown 
in Fig. 8.16, when the switch 1 is closed at time ^i. The initial current 
that will flow the instant the switch is closed will be i = E/R, This 
current then gradually decreases and becomes zero. When the switch 
is first closed, the circuit acts as though the capacitor was not in the 
circuit, and the current instantly rises to a value depending on the resist¬ 
ance of the circuit. The current causes charges to build up on the plates 
of the capacitor, until it finally becomes fully charged and the voltage 
is equal to the battery voltage. The voltage across the capacitor plates 
is shown by the dotted line in Fig. 8.16. WTien the voltage across the 

141 
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capacitor plates becomes equal to the battery voltage, the capacitor is 
fully charged and no more charging current will flow through the resistor. 

Now, open switch 1 and close switch 2 at time Uy as shown in Fig. 8.1. 
The voltage across the capacitor will cause the current to flow through 
the resistance R in the reverse direction. The first instant this current 
will be i = Ec/Ry and as before it will gradually decrease to zero when 
the capacitor has completely lost its charge. The voltage across the 

Fiq. 8.1. Current in an electric network containing a capacity in series with a resistance. 

capacitor will gradually decrease to a zero value as shown by the dotted 
line in Fig. 8.15. In the second case, the current will flow in the opposite 
direction, as shown in Fig. 8.16 by the negative values. 

This circuit in the mechanical system can be represented by a spring 
fixed at one end, as shown in Fig. 8.2a, and tied to a body of zero mass. 
If the force F is applied at time hy the velocity v at the first instant will 
be limited only by the frictional resistance /?, but gradually the spring will 
become compressed more and offer more opposing force. This will cause 
the velocity v to decrease gradually to zero as shown in Fig. 8.26. When 
the movement stops, the for«e offered by the spring will be exactly eejual 
to the applied force F, Next, at time <2 remove the force F, Since the 
spring contains energy owing to its compressed shape, it will expand, and 
the weightless body will move rapidly at first and then gradually slow 
down and stop as shown in the graph of Fig. 8.26. It will be noted that 
the graph of the velocity v of the free end of the spring shown in Fig. 8.26 
is of exactly the same shape as the graph of the current i in the series 
circuit shown in Fig. 8.16. The capacitor C of Fig. 8.1a becomes charged 
when a voltage E is applied just as a spring S becomes compressed when 
a force F is applied. In the case of the capacitor, the electronic orbits 
are displaced (as shown in Chap. 1, Matter and Energy) when a voltage 
is applied across the plates of the capacitor. Likewise, when a spring is 
compressed, a distortion takes place within the atoms of the metal. 

It may be well at this point to mention the fact that if the voltage El 
across the inductance L of Fig. 7.6 were plotted, it would be similar to 
the current i shown in Fig. 8.16. This means that when the switch of 



ELliCTKOSTATIC CAPACITY 143 

Fig. 7.6 is closed, the battery voltage E is instantly applied across the 
inductance. As the current begins to flow in the inductance, a counter 
emf set up across the coil decreases until finally the voltage drop across 
the coil is zero, if it contains no resistance. Similarly, when the switch 
is opened, the collapsing magnetic field causes a high voltage at first 
in the opposite direction, and it gradually dies down to zero again when 
all the energy of the magnetic field is expended. 

Fig. 8.2. Velocity r of a mechanical system containing a spring and a frictional resistance. 

The above example shows that an inductance and a capacitor have 

exactly opposite characteristics. That is, the current flowing through an 
inductance is similar to the voltage across the capacitor, and the voltage 
across an inductance is similar to the displacement current flowing 
through a capacitor. This is a very important relationship and will be 
used later in a-c circuit theory. 

8.3. The Electrostatic Field. When the capacitor C of Fig. 8.1a is 
charged, the insulating medium, known as a dielectric, is in a state of 
stress. For convenience, it is customary to represent the force causing 
the stress by lines drawn from the positively charged body to the nega¬ 
tively charged body. These lines are drawn parallel to the acting force 
and have arrow s on the lines pointing in the direction a small positive 
charge would tend to move if placed at the point in question. Figure 8.3 
shows the electrostatic lines of force between two spheres with opposite 
charges. These spheres will experience a force of attraction in this case 
(unlike charges attract, w^hile like charges repel). This force F wdll 
depend upon the sizes of the charges and the distance of separation and, 
according to Coulomb's law, can be written 

F 
Q1Q2 (8.p 

where F = force acting between the two charged bodies, dynes 
Qi and == charge on the respective bodies, statcoulombs 

d = distance of separation, cm 
This equation is true for air or a vacuum. 
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8.4. Dielectric Constant. In the preceding case, the number of lines 
of force per unit area is called the field intensity. If some other insulating 

material is used, such as insulating oil, the lines of force are more easily 
formed. In other words, the number of lines of force per unit area, 
kno^\^l as the flux density, would increase. Since various insulating 
mediums have different insulating properties, the term dielectric constant 
is introduced to tell quantitatively how much the lines of force will be 
increased. The dielectric constant is defined by the following equation: 

K - (8,2) 
field intensity 

It will be noted that the dielectric constant K plays the same role with a 
dielectric as the permeability /i plays with a magnetic material. 

Fio. 8.3. Electrostatic field between two unlike charges. 

Coulomb’s law for an insulating medium of dielectric constant K can 
be written 

^ Q1Q2 

Kd^ 
(8.3) 

where K is the dielectric constant and the other symbols are the same as 
in Eq. (8.1). Tables of dielectric constants are given in handbooks. 

8.6. Electrostatic Potential. If a charge is moved in opposition to an 
electrostatic force, work is done, and energy is stored in the charge. This 

energy is in the form of potential energy, just as potential energy is 
stored in a book (mass) if it is raised from the floor to the top of a table. 
The book on the table is said to have a certain potential energy due to its 
position on the table. Similarly, an electric charge will have a certain 
potential energy due to its position in an electrostatic field. The potential 
difference {or voltage) between two points in an electrostatic jield is defined 
as equal to the work required to move a unit positive charge from one point 
to the other. Usually, in practice, the change in electrostatic field poten¬ 
tial is expressed in volts per inch, which means that it will take a certain 
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voltage to move a coulomb charge of electricity one inch. In much 
scientific work, the field gradient is measured in volts per centimeter. 

8.6. Equipotential Surfaces. A charge can be moved at right angles 
to the electrostatic lines of force without doing work or changing its 
electrostatic potential. For instance, in Fig. 8.4 a charge can be moved 
along the vertical line between the two charges without doing work (or 
changing its potential). Similarly, no work will be done on a charge if it 
is moved around one of the other equipotential lines. However, if a 

Fio, 8.4. Equipotential surfaces between two unlike charges. 

charge of appreciable size is brought into this field, it will itself distort 
these equipotential surfaces. 

When a voltage is connected across a resistor in series with a capacitor 
a current will start to flow in the circuit as though the capacitor is not in 
the circuit. Actually, electrons build up a charge on the capacitor plates 
that develop a voltage across the capacitor and the current in the circuit 
decreases exponentially from a maximum to a zero value. The current 
in this circuit is known as a charging or displacement current because it is 

the current required to displace electrons on the capacitor plates and 
develop a voltage across the capacitor plates. No electrons or current 
passes through the capacitor; hence, a continuous current can not exist in 
a perfect capacitor. However, if the capacitor has an imperfect dielectric^ 
a continuous current usually known as a leakage current will also exist. 

8.7. Charging a Capacitor through a Resistor. If a current of i 
amperes flows for t seconds to charge a capacitor, the charge q in coulombs 
on the capacitor is 

q = it coulombs (8.4) 
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Solving this equation for i gives 

i — j anip (8.4a) 

This equation gives the value of a steady charging current i for t seconds. 
Usually this is not the case. A more general statement of the charging 
current at any instant is given by the rate of change of charge with respect 
to time. If it is desired to know the current at some particular instant, it 
can be found by plotting a curve of the charge on the capacitor, as 
ordinate, against time, as abscissa. Such a curve is shown in Fig. 8.5; 
the charge q is plotted as a function of the time t. The current i at any 

Time t in seconds 
Fig. 8.6. Charge q and current t as a function of time f in a series circuit containing resist¬ 
ance and capacitance. 

instant is equal to the slope of this curve. For instance, at i' it is desired 
to find the value of the current t. Draw a line tangent to the curve at 
this point, as shown in Fig. 8.5. The slope of this line is 

or 

tan 6 = 
opp 
adj 

i = tan d = 
opp 
adj 

0.8 amp 

the charging current at time t'. A curve of the charging current i is 
plotted in Fig. 8.5, and at this instant it is 0.8 amp. 

Generally, this type of problem is stated 

i 
dt 

(8.5) 

which says that the current i is equal at every instant to the slope of the 
curve of the charge q i5lotted as a function of the time t. Instead of 
drawing a tangent and making a large triangle to find the current, an 
infinitesimally small triangle is drawn, which is made up of an opposite 
side dq and adjacent side dt^ as shown in Fig. 8.6. In calculus, the charg¬ 
ing current i could be called the derivative of the charge with respect to 
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the time, which means the slope of the curve shown in Fig. 8.6 and stated 
in Eq. (8.5). Calculus in this case is a convenient way of expressing the 

slope of the curve. 
8.8. Dielectric Strength. When the electrostatic field intensity is 

increased to a certain point, the strain produced in the dielectric becomes 
too great and the substance breaks down.’’ At this point the electrons 
are forced out of their orbits, which means that a current flows through 
the dielectric. The dielectric 
strength is measured by the volts 
required to cause a unit thickness 
of the material to fail. The di¬ 
electric strength of a piaterial de¬ 
pends upon its chemical nature 
and the thickness of the pieces of 
material. The dielectric strength 
of a material usually decreases as 
the temperature increases, be¬ 
cause the electrons have more en¬ 

ergy, owing to the heat, and consequently can jump their orbits with a 
lower field intensity. Since power loss in a dielectric is proportional to fre¬ 
quency, more heat is developed at high frequencies and the dielectric 
strength is decreased. This is an important point to remember in r-f 
^^ork. 

8.9. Corona. When the electrostatic charge density on a conductor 
becomes too great, the dielectric breaks down. Since the electrostatic 
charge density is greater at sharp points on the surface of the conductor, 
the dielectric will break down first at these points. The breakdown known 

as the corona effect is manifest visually by an electrostatic glow or lumi¬ 
nous discharge and audibly l)y a hissing sound. 

Corona becomes manifest at a critical voltage, which depends upon 
atmospheric conditions when the dielectric is air. Corona losses increase 
very rapidly with voltage increases beyond the critical voltage, until the 
disruptive critical voltage is reached. At this point the voltage gradient 
(volts per inch) reaches a maximum, which for air is about 75,000 volts/in. 

8.10. Electrostatic Capacity. When one volt ap{)lied across the 
terminals of a capacitor causes a charge of one coulomb on each side, the 
capacity is said to be one farad. Mathematically, 

q = Ce coulombs (8.6) 

where q = instantaneous charge, coulombs 
C = capacity, farads 
€ = instantaneous voltage, volts 

Fia. 8.6. Charge as a function of time. 
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Since the farad is such a large unit, the microfarad is used in ordinary- 
work, and the micromicrofarad is used at radio frequencies. 

8.H. Capacity of a Parallel-plate Capacitor. The capacity of a 
capacitor having parallel plates is 

22bKA 
d 

(8.7) 

where C = capacity, fiyS. 
K = dielectric constant (/ir = 1 for air) 
A = area of plates, sq in. 
d = separation of the plates, mils (Kooo in.) 

This equation neglects the edge effects, because of the assumption that 
the plates are very close together. 

When more than 2 plates are used 

C = 
225KA(n - 1) 

d 
MMf (8.8) 

where n is the number of plates in the capacitor. 

Example 8.1. Determine the capacity of a 23-plate air capacitor made of plates 

with an area of 2.25 sq in. and a spacing of 31.82 mils. 

Solution. Using Eq. (8.8) 
^ ^ (225)(1)(2.25)(22) 

“31.82 

=* 350 Ans. 

8.12. Capacity of a Transmission Line. The capacity of two long 
parallel wires is given by the following ecpiation: 

C = 
0,01941/C 

log 
D - r 

(8.9) 

where C = capacity, pf/mile 
K = dielectric constant (/C = 1 for air) 
D = distance between conductor centers 
r = radius of conductor 

D and r must be in the same units. Since they form a ratio, it does not 
matter what unite are used. 

Example 8.2. Find the capacity of 55 miles of No. 4 copper wire spaced 18 in. 

apart. 

Solution. From wire tables we find that No. 4 wire has a radius of 0.10215 in. 

(0.01941)(55) 

log 
18 - 0.10215 

(0.01941) (55) 

log 175.3 

2.2438 

0.10215 

0.4758 Ans. 
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8.13. Capacity of Capacitors in Parallel. When capacities are con¬ 
nected side by side, the resultant capacity is the sum of the individual 
capacities; for example, 

C = Ci + C, + C» (8.10) 

This is shown in Fig. 8.7a and is explained by the fact that the same 
potential is across each capacity, and the total charge is the sum of the 

+0||-Q ||+Q||-Q 

+ 
Q, • Q2 — 

+ Cj C2 C3 

mmm ^ - — — t, 
Cl C2 1 C3 ^ 

(a) Parallel connection (b) Series connection 

Fig. 8.7. Capacitors in parallel (left) and in series (right). 

charges on the various capacitors. The total charge Q can be written 
by use of Eq. (8.6) as follows: 

Q = Qi + Q2 + Qs 
where Qi = Cic 

Q2 = C2C 
Qs = C3C 

Hence, Q == Cie + C^e + C^e 

= (Cl + C2 + C^)e = Ce 

where C = Ci + C2 + C3 as given in Ecp (8.10). 
8.14. Capacity of Capacitors in Series. When a voltage E is applied 

across a scries of capacitors, equal and opposite charges will be induced 
on each pair of plates connected together. The total voltage across the 
capacitors will then be the sum of the voltages across the various capaci¬ 
tors. Applying Eq. (8.6), the total voltage will be 

6 
Q\ . Q2 . Qs 
Cl C2 Cs 

But Q = Qi = Q2 = Qs, as explained here. Hence 

e = Q 
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The equivalent capacity C is then 

or 

C 

1 
C 

1 

± + _L + i. 
Cl ^ C2 ^ c, 

J_ -I- JL 4- J. 
Cl ^ C2 C3 

(8.11) 

If more than three capacities are in series, they are added in the same 
way that the three were added in Eq. (8.11). 

If only two capacities are connected in series, 

C 

Or by solving for C, this can be written 

C = 
C1C2 

Cl + C2 
(8.12) 

which says that the capacity of two capacitors connected in series is equal 
to the product of their capacities divided by their sum. 

Example 8.3. Three capacitors, having capacities of 200, 500, and 1,000 MMf» are 

connected in series. What is the equivalent capacity? 

1^ 
C 

Solution 

200 ^ 500 ^ 1,000 

Reducing to a common denominator 

1: _ 5 -f 2 -f 1 _ 8 

C 1,000" 1,000 

C — 125 txfxi = the equivalent capacity Ans. 

8.15. Energy in an Electrostatic and an Electromagnetic Field. The 
electrostatic energy stored in a capacitor is given by 

W = (8.13) 
where W = energy, joules 

C = capacity, farads 
V == voltage, volts 

This equation states that the energy IT in a capacitor varies directly as 
the capacity C of the capacitor and the square of the voltage V across it. 

Since Q = CF, Eq. (8.13) can be written 

W = HQV (8.14) 

The electromagnetic energy stored in an inductance coil takes on a 
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similar form as follows: 
W = (8.15) 

where W = energy, joules 
L = inductance, henrys 
I = current, amp 

This equation states that the energy W stored in an inductance coil 
varies directly with the inductance L of the coil and the square of the 
current I flowing through it. 

If a perfect capacitor C is charged with a voltage F, it will have an 
energy of W given by Eq. (8.13). Now, if this capacitor is connected 
across a perfect inductance L, the voltage across the capacitor will cause 

a current to flow in the inductance. As this process goes on, the energy 
of the electrostatic field is decreasing and the energy of the electromag¬ 
netic field is increasing, untih the voltage across the capacitor becomes 
zero. At this instant, the current in the inductance has reached a maxi¬ 
mum, and all the energy stored in the capacitor as electrostatic energy has 
been transferred to the magnetic field of the inductance coil in the form 

of electromagnetic energy. Equations (8.13) and (8.15) are equal in 
this case, so that 

y2Lr^ = Hcv^ (8.16) 

Solving this equation for I gives 

which shows that the current / that will flow in the inductance will 
be large if V and C are large. The current / will continue to flow even 

after the voltage of the capacitor has become zero, because of the inertia 
effect of the inductance. As it continues to flow, the capacitor will 
become charged in the opposite direction until the maximum voltage V 
is reached in the opposite direction. The current will then be zero again, 
and all the energy of the magnetic field Avill be in the electrostatic field. 
The voltage V across the capacitor can be determined from Eq. (8.16). 
It is 

This equation shows that the voltage across the capacitor will be very 
high if the capacity C is low while the current I and inductance L are 

large. This may result in dangerously high values of voltage across the 

capacitor. 
The preceding electrical circuit is shown in Fig. 8.8a, and its mechani¬ 

cal analog\ie in Fig. 8.8h. It is easy to see that if the weight is pulled 
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down, the spring is stretched, storing up potential energy, This is 
similar to the charged capacitor. When the weight is released, the force 
exerted by the spring will cause the weight to gain velocity, giving it 
kinetic energy. At some point, the force exerted by the spring will be 
zero, and its velocity, which corresponds to current in the other case, 
A\dll be a maximum. All the potential energy that was in the spring due 

(a) Electric system (b) Mechanical system 

Fig. 8.8. Equivalent oscillating electric and mechanical systems. 

to its stretched position is now in the moving weight as kinetic energy. 
So in an oscillating mechanical system^ the maximum potential energy is 
equal to the maximum kinetic energy^ while in an oscillating electric system, 
the maximum electrostatic energy is equal to the maximum electromagnetic 
energy. 

8.16. Damping. In any practical electric circuit or mechanical sys¬ 
tem, there will be resistance or dampingy as it is sometimes called. This 
will cause a part of the energy to be dissipated on each oscillation, and 
eventually the system will come to rest when all the energy has been 
dissipated in the resistance .of the circuit. This dissipated energy will 
appear in the form of heat in either case. 

This type of oscillation is known as/rce oscillation, because no energy 
is supplied to the system after it is set into oscillation. If energy is 
supplied, forced oscillations result. 

Summary 

Electrical capacity is analogous to a mechanical spring in that it stores and releases 

energy. The rate of charge and discharge of a capacitor varies exponentially with 

respect to time. When the capacitor is first connected in a circuit, a heavy charging 

current flows, with a resulting high drop across the resistance in the circuit. As the 

capacitor becomes charged, the current decreases, and more of the charging potential 

appears across the plates of the capacitor. 

An electrostatic field is set up between the unlike charges on opposite plates of a 

capacitor. A force F will then act between the two bodies. Its magnitude can be 

determined as follows: 

QiQ* 
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where F = force acting between the two bodies, dynes 

Q « charge on the two bodies, coulombs 

d ** distance of separation, cm 

K ^ dielectric constant of the medium between the two plates 

A vacuum has a dielectric constant of 1. Solid dielectrics having greater values 

will weaken the field between the plates and increase the capacity. The dielectric 

constant of air is practically equal to 1. 

An equipotential surface lies at right angles to the electrostatic lines of force and 

is a surface along which a charge may be moved without doing work or having work 

done on it. The volt is the measure of the amount of work required to move a charge 

from one equipotential surface to another in the direction of the lines of force. 

A displacement current is the changing of an electric field with respect to time and 

can take place in a vacuum, or a solid dielectric where the electrons are not free to 

move as in a conductor; but can be displaced in their orbits in the individual atoms. 

The current in a capacitor is equal to the rate of change of charge with respect to 

time, or i = dQ/dt. When the charge on a capacitor is zero, then a large current 

flows, and when the capacitor is fully charged, the current is zero, with the possible 

exception of a small leakage current through the dielectric. 

Dielectric strength is measured in the volts required to break down a unit thickness 

of the dielectric. Thus, for any dielectric, the breakdown voltage that will puncture 

it is a function of the chemical composition and thickness of the material. The unit 

of capacity is the farad, which is equal to the capacity of a body that has a potential 

of 1 volt when holding a charge on its plates of 1 coulomb. 

c = I or Q ‘‘CE 
Pj 

where Q = charge, coulombs 

C — capacity, farads 

E = potential difference, volts 

As the farad is tex) large to work with in practice, the units microfarad (/xf), one 

one millionth of a farad, and micromicrofarad (^Mf). one million-millionth of a farad, 

are customarily used in radio and communications work. 

The capacity of a parallel-plate capacitor may be determined from the following 

formula: 

^ _ 22dKA 
C = —j— 

where C = capacity, ptxi 

K = dielectric constant 

A = area of single plate, sq in. 

d =» separation of plates, mils Hooo 

If n interleaved plates are used, this becomes 

C » 
225A A (n - 1) 

d 

The capacity between long parallel wires is 

C 
0.01941 
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where C « capacity, /xl/niile 

K =* dielectric constant 

D 3= distance between conductor centers 

r = radius of conductor 

D and r must be in the same units. 

If capacitors Ci, C>, and C3 are connected in parallel, the total capacity C is 

C = Cl -f C2 + Ca 

If they are connected in series, the total capacity is 

^ _ 1 1 _ 1 . 1 . 1 

^ 1 4. 1 4. 1 ^ C, Cs c, 

C, Cj c, 

For two capacities in series, this is 

^ _ C1C2 

t'l -f 62 

The energy W stored in a capacitor of size C charged to voltage V is 

W = joules 

When a capacitor and inductance are connected in parallel, energy will be trans¬ 

ferred back and forth between the electrostatic field of the capacitor and the electro¬ 

magnetic field of the inductor. 

Then as 

w^\Ln^\cv\ / = FiJ| 

As the current flows from inductance to capacitor and back again, electrical oscil¬ 

lations result. These oscillations would continue indefinitely were it not for the 

resistance of the circuit, which damps the oscillations until all the energy has been 

dissipated and the oscillations cease. 

Exercises 

8.1. What happens in a capacitor when it is charged? Explain. 

8.2. State Coulomb’s law in your own words. 

8.3. Define and explain “electrostatic potential.” 

8.4. What will be the charge on a capacitor if 0.001 amp flows for 10 sec? 

8.6. Explain your concept of a displacement current. What kind of currents flow 

in a leaky capacitor? 

8.6. Under normal conditions, what voltage is necessary to break down a fi-in. 

air gap? 

8.7. What causes corona? How does it manifest itself? 

8.8. A twisted pair of No. 18 wires has a separation of % in. between centers. 

The rubber covering has a dielectric constant of 7. What is the capacity between 

wires per mile? Number 1^ wire has a diameter of 40.3 mils. 



CHAPTER 9 

SINUSOroAL ALTERNATING CURRENTS 

9.1, Simple Alternator. To obtain an alternating current or voltage, 
a coil of wire can be rotated at a constant angular velocity in a uniform 
magnetic field. For the sake of simplicity, consider one turn of wire, as 
shown in Fig. 9.1, rotating in a uniform magnetic field. According to 
the theory presented in Chap. 6, the voltage across the slip rings, through 
which the current is collected by means of brushes, can at any instant 
be written, by Eq. (6.1), 

g ==-77 10“^ volts (9.1) 
at 

where e is the instantaneous voltage in 
volts, and d^/dt is the rate of change 
of flux through the loop. It will be re¬ 
called that in Chap. 6 this equation dealt 
with a wire moving at right angles to a 
magnetic field. If this wire were not 
moved at the same velocity all the time, or if the flux did not have a uni¬ 
form density, this voltage would vary. In such a case, the voltage will 
depend on the rate of cutting flux, and hence will be the tangent to a curve 
of flux linking the circuit plotted against time. Referring to Fig. 9.2, for 
position d we have 

Fig. 9.1. Simple a-r generator. 

_ a 
dt b 

(9.2) 

For N turns in the coil, Eq. (9.1) is written 

e -iV^10-« 
dt 

volts (9.3) 

The negative sign is used because the force exerted on the wire by the 
magnetic field is opposite to the force causing the coil to turn. 

In order to develop the equation for a sinusoidal voltage, consider the 
turn of wire in the magnetic field of Fig. 9.1. When the coil is in the 
vertical position, it will link the maximum amount of flux This is 
shown for 0 = 0® in Fig. 9.26. If the coil is rotated through an angle B 
to a new position, as shown in Fig. 9.2a, the coil will link fewer lines of 
force, and this value is represented by the ordinate a in Fig. 9.26 with the 

165 



156 COMMUNICATION CIRCUIT FUNDAMENTALS 

angle 6 as the abscissa. When the coil is in a horizontal position, it will 
link no flux, and the ordinate will be zero, as indicated in Fig. 9.26 for 
90°. To continue the rotation of the coil will cause flux to pass through 
the coil in the opposite direction. This is illustrated in Fig. 9.26 by 
drawing the curve below the axis (giving negative values). When the 
coil is again vertical, it will link lines of force, represented by 0 = 180° 
in the figure. Continuing the rotation, the flux will decrease to zero 
again when the coil is horizontal {d = 270°) and then link flux in the 

(a) Coil in field (,b) Instantaneous flux curve 

Fio. 9.2. Diagram and graph for various positions of an armature coil in a uniform mag¬ 
netic field, showing flux for various angles of rotation. 

original direction as the rotation is continued to the original vertical 
position. The coil has turned completely around, or moved one cycky 
and is ready for the next similar cycle. 

The curve in Fig. 9.26 is a cosine curvey and mathematically the flux 4> 
can be written as a cosine function of fl; thus. 

* ^ = cos d (9.4) 

To check this, let ^ = 0°; then the loop of wire will be in a vertical posi¬ 
tion and will link <l>m flux. Looking in a table, cos 0° = 1, and the flux 
is then ^ = (4>„»)(1), which shows that the equation is correct for this 
one particular case. When B = 90°, cos 90° = 0, and no flux is linked, 
which again checks the curve of Fig. 9.26. 

The next consideration is to obtain the slope of this curve at each point; 
this can be done by substituting of Eq. (9.4) in Eq. (9.3), giving 

N d{^m cos B) 
(10^ (9.5) 

For ^ = 0°, a line drawn tangent to the curve is horizontal and parallel 
^ the x-axis. Hence the slope is zero. Take another point B as shown 
in Fig. 9.26, and draw a line tangent to the curve and extended to the 
x-axis forming the triangle with sides a and 6. It is important to note 
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that the line slopes down when going to the right, making the slope 
negative. In Eq. (9.5) 

or 

d{^m COS B) cc a while di oc. — b 
d(^m cos B) _ a 

dt ~~ —b 
(9.6) 

The sign oc means proportional to. If calculus were used, an infinitesi¬ 
mally small triangle would be made at the point on the curve correspond¬ 
ing to 0, and this very small triangle would be exactly similar to the 
large triangle having sides a and b. Since the slope in each case is the 
same, Eq. (9.6) is justified. Consider B = 90°; the slope is a maximum 

Fig. 9,3. Graphical representation of a sine curve. 

negative value at this point. That is, a/ — b has the largest negative 
value that will be reached. Going on to ^ = 180°, the slope becomes 
zero, and then for larger values of B, it becomes positive, reaching a maxi¬ 
mum positive slope at 270° and then decreasing gradually to zero again 
at 360°. A plot of the negative of this curve is shown in Fig. 9.36 and 
is known as a sine curve. The maximum instantaneous voltage e^ of this 
curve occurs when the loop of wire is in a horizontal position (coil links 
zero flux). In this position, one side is moving down across the magnetic 
field at right angles to it, and the other side of the loop is moving up at 
right angles to the field. In this position, the rate of change of flux 
linkage is a maximum. The magnitude of this maximum instantaneous 
voltage Cm will depend directly upon the angular velocity w, the maximum 
flux linked by the coil, and the number of turns in the coil. With this 
information, Eq. (9.5) for one turn can be written 

e . _ «) (9.7) 

The negative sign in front of sin B is due to the negative slope obtained 
from Fig. 9.26. The angle B can be written as an angular velocity « 
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multiplied by the time t] thus 
6 = (jiit 

With this substitution, Eq. (9.7) for 6 can be written 

e 

And for N turns in the coil 

e 

10» 
sin o)t 

10« 
sin 0)1 

(9.8) 

(9.9) 

(9.10) 

where e = instantaneous voltage, volts 
N = number of turns in coil 

= maximum flux linkage of the coil 
£0 = angular velocity of the coil, radians/sec 
t = time, sec 

The maximum voltage developed in the coil can now be written as the 
coefficient of sin ojt; thus 

10* 
(9.11) 

Making this substitution in Eq. (9.10) gives 

e — Em sin (9.12) 

If this sinusoidal alternating voltage is placed across a pure resistance, 
an instantaneous current i will flow that is proportional to this voltage 
at all times according to Ohm’s law, and hence can be written 

i sin o)t = Im sin ojt (9.13) 

Example 9.1. A 100-turn coil rotates at a uniform velocity of 377 radians per sec 

in a uniform magnetic field and has a maximum flux linkage of 10® linos of force. If 

the voltage is zero at time t = 0, what is the instantaneous voltage when t = 0.001 

sec? If the resistance of the circuit is 100 ohms, write the equation of the instan¬ 

taneous current. 

Solviion. Substituting in Kq. (9.10) 

e = sin ((377)(0.001)] = 377 sin (0.377) 

- 377 sin (21.6°) = (377)(0.368) - 138.7 volts Ant. 

Substituting in (9.13) ^ 

,■ « sin (3771) - 3.77 sin (3771) amp Ant. 

9.2. Vectors Applied to Alternating Quantities. In order to be able 
to work a-c problems easily by Ohm’s and Kirchhoff’s laws, vectors are 
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introduced. In the author's book, “Applied Mathematics," Chap. 6, 
Vector Addition, space vectors only were considered. A space vector is 

used to represent quantities that are fixed in magnitude and direction. 
Such quantities as a steady force, a steady magnetic field, or a steady 
electrostatic field may be represented by a space vector. 

To handle alternating quantities, revolving vectors are brought into 
play. A revolving vector has a constant magnitude and revolves about 
one end at a constant angular velocity. Sometimes it is called a time 
vector because it changes position with changes in time. Figure 9.3a 
illustrates eight positions of a revolving vector. The length of the 
ordinate from the free end of the vector to the o^-axis represents the instan¬ 

taneous values. These ordinates are marked in Fig. 9.3& for the eight 
positions of the revolving vector shown in Fig. 9.3a. The vector revolves 
counterclockwise. 

Take, for example, position 1 of Fig. 9.3a. The instantaneous voltage 
e is found from the following equation: 

e — Em sin d 

where Em = the hypotenuse of the triangle 
e = the opposite side of the triangle 

0 = the angle Em makes with the a*-axis 
Since 6 = w/, this equation is the same as Eq. (9.12), which is true for 

any position of Em^ 
It is very easy to plot a sine curve by projecting the free end of the 

vector on the y-axis. These projections represent the instantaneous 
values of voltage. If the angle 6 is marked off along the x-axis, these 

projections can be extended until they intersect the proper ordinate, 
which will locate a point on the curve. For instance, position 1 of Fig. 
9.3a is projected to position 1 of Fig. 9.36. The dotted line shows this 
projection. Similarly, position 2 is projected from Fig. 9.3a to Fig. 9.36, 
and so on, until the complete curve has been determined. To obtain a 
smooth sine curve, it is usually desirable to plot more than 8 points; 12 or 

16 points would be preferable. 
If the curve is plotted for a vector starting to rotate from a vertical 

position, as shown in Fig. 9.4, instead of from a horizontal position as 
shown in Fig. 9.3, the result will be a cosine curve instead of a sine curve. 
It will be noted that e is measured from the positive ?/-axis (vertical line) 
in Fig. 9.4a for a cosine curve, while it was measured from the positive 
a:-axis (horizontal line) in Fig. 9.3a for a sine cufve. The equation for 

the cosine curve is 

e ^ Em cos 6 — Em cos o)t (9.14) 
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where e = instantaneous voltage, volts 
Em = maximum voltage, volts 

« = angular velocity, radians/sec 
t = time, sec 
$ zsz o)t — the angle Em makes with the reference axis (y-axis) 

The only difference between Figs. 9.3 and 9.4 is that the curve is 
shifted 90°. Equation (9.12) can be made into Eq. (9.14), if 90° is 

added to o)t] thus 

e — Em sin (cat + 90) = Em cos cat (9.15) 

Usually the positive a:-axis is used as a reference line. Then, to write the 

equation for a cosine curve, 90° must be added to start the curve when 
the vector Em is in a vertical position. 

Equation (9.15) is the result of the following mathematical identity: 

cos W = sin (cat + 90°) (9.16) 

For instance, let ^ = 0 in this equation; then the cosine of 0° is 1, and the 
sine of 0 + 90 is also 1. If other values of cat are substituted in this equa¬ 
tion, it will be found to hold true for all values. In general, the angle 
will not be 90°, hence can be represented by some other angle </>; thus 

e = Em sin (cat + 0) (9-17) 

where <!> is the phase angle. The phase angle 0 is used, which means 
that the vector is displaced by an angle 0 counterclockwise from the 
reference line (positive x-axis). 

9.3. Addition of Altetnating Quantities. Consider the sum of two 
alternating voltages, as shown in Fig. 9.5, where in general 

Cl = Em\ sin (cat + 0i) 
€2 = Em2 sin (cat + 02) and 

(9.18) 
(9.19) 
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The total sum can be written 

*4“ C2 -- Emi sin {o)t + <^i) + Eni2 sin + <^2) (9.20) 
or et = Emt sin {mi + (9.21) 

where Emt = the vector sum of Emi and Em2 

= the total maximum instantaneous voltage 
and <t>t = the phase angle Emt makes with the reference axis, as shown 

in Fig. 9.5a 

By applying vector addition (see Chap. 6 of ^‘Applied Mathematics 
the magnitude of the total maximum voltage is found to be 

Emt 

= y/{Em\ cos <f)\ 4“ Em2 cos <t>2)^ + {Emi sin <t>i + Em2 sin 02)^ (9.22) 

and the phase angle it makes with the reference axis can be obtained by 

solving the following equation for <t>t: 

tan <t>t = 
Em\ sin 01 + Em2 sin </)2 

Emi cos 01 + Em2 cos 02 
(9.23) 

Figure 9.5 shows how instantaneous voltages Ci, 62, and Ct, which are 
continuously changing with respect to each other, can be represented by 
the vectors Emu Em2y and Emtj which are stationary with respect to each 
other. In other \vords, Emu ^m2f and Emt revolve together in a counter¬ 
clockwise direction at an angular velocity w, as spokes in a wheel revolve 
around their axle. The solution of a-c problems is materially simplified 
by using these revolving vectors. These vectors are perfectly general in 
their nature; hence they can represent voltage, current, resistance, 
reactance, and impedance vectors. In fact, any revolving vector can 
be treated by this analysis. When adding vectors representing voltage 
or current, care should always be taken that the voltages and currents 
are of the same frequency. If the frequencies are the same, the vectors 
maintain the same relationship with each other throughout the cycle. 
If the frequencies are different, the vector diagram must be drawn for 

a given instant of time. 
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Example 9.2. Two 100-volt (maximum) generators are connected in series. If 

the maximum voltage of the second generator is 90® ahead of that of the first one, 

determine the instantaneous voltage of their sum with reference to the first-generator 

voltage. 

Solution. By Eq. (9.18) the first-generator voltage can be written 

ei = 100 sin (oit -f 0®) = 100 sin cot 

Similarly, by Eq. (9.19) the second-generator voltage can be written 

€2 = 100 sin (cot 4- 90°) = 100 cos cot 

et = ei €2 = 100 sin cot -j- 100 cos cot 
By Eq. (9.20) 

But by Eq. (9.22) 

E^t - 

And by Eq. (9.23) 

VKTookd + (100)(0)]‘ +laoo)(0) + (lo6)(i)]« 

vT0O» 4- ldb> = 141.4 

t..n = (100)(0) + (100)(1) ^ 1 
“ (iod)(i) + (ioo)(6") I 

or <!>, = 45° 

And the resulting total instantaneous voltage by Eq. (9.21) is 

et = 141.4 sin (cot + 45°) Ans. 

V-axis' 

9.4. Average and Effective Values of Voltage and Current. The 
average value of voltage or current 
in an a-c circuit is taken as the 
average value of the ordinate over 
a half cycle. Obviously, the 
average value of an entire cycle 
of alternating voltage or current 
equals zero, which is the reason 
that the average is taken over a 
half cycle in this definition. The 
average ordinate can be deter¬ 
mined by dividing the area above 
the x-axis under the curve by the 

length of the half cycle. This is shown in Fig. 9.6 and can be written in 
the form of an equation as follows: 

Fig. 9.6. Graph of half-cycle showing aver¬ 
age ordinate. 

E.. = 

area under a half cycle of instantaneous (uirrents _ 

4 

area under a half cycle of instantaneous voltages 

(9.24) 

(9.25) 

where T is the length of the half cycle as shown in Fig. 9.6. If im or Cm, 
the maximum value, is unity, as shown in Fig. 9.6, /»v or will have a 
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value of 0.637 when the wave is a sine wave. In general, this can be 
written 

ItLv = 0.637tm (9.26) 

where /.v = average current over a half cycle of instantaneous currents 
and im = maximum instantaneous current 

Likewise E^y = 0.6376^1 (9.27) 

where E^y = average voltage over a half cycle of instantaneous voltages 
Cm = maximum instantaneous voltage 

The most important fact to know about an electric circuit, however, is 

not the average current or voltage passing through the circuit. A 
knowledge of the average values of these quantities may give a very 
distorted picture of what is taking place. The characteristic of a circuit 
that gives us much more information is the power developed in the circuit. 
The power developed by current flowing through a resistor is given at 

any instant by 

p = 

If the current is sinusoidal the instantaneous value is expressed by 

i = Im sin 2Trft 

where Im is the maximum value of the current during 1 cycle, then the 
instantaneous value of the power dissipated in a resistance will be given by 

p = Rlm^ sin^ 2irft (9.28) 

and the total energy supplied to the resistor in the interval of time 

^ = <2 — L is 

w = V dt (9.29) 

The average power, P is the average rate at which energy is supplied 

over the prescribed period of time t = (2 — tu The average power is 
determined by dividing the total energy supplied in the period of time 
t by the time. In equation form this is expressed 

where i T, the period of time from time t\ to time (2- Applying this 
equation to determine the average power dissipated in the resistor sub¬ 

stitute Eq. (9.28) in Eq. (9.30) and solve, thus, 



164 COMMUNICATION CIRCUIT FUNDAMENTALS 

1 P 
RI„^sm^2irftdt 

Ri i 
= ^ jo sin^2.r//d(2^/0 

2irfT 

^ RIJ 
2irfT 

^ Rlm^ 

2 

2TrfT sin At ft 
4 

2TfT sin Arfr 
2 4 

(9.31) 

because as shown in Fig 9.6 the period of time T is for one complete 
power cycle and therefore the sine term must equal zero. 

The power in an a-c circuit is defined as equal to aVerage power 
and the value of the direct current that would produce the same average 
power is called the effective value of the current 1. The power that would 
be developed by a current 7 in a resistor R will, of course, be given by, 

P = im (9.32) 

where P = average power, watts 
I = effective current, amp 
R == effective resistance, ohms 

This equation is true in an a-c circuit as well as in a d-c circuit. How¬ 
ever, in an a-c circuit the current 
will be continuously varying. 
The current will sometimes be 
considerably higher than the ef¬ 
fective value, other times zero, and 
every half cycle it will change its 
direction. The effective value as 
determined here takes account of 
these variations, and since heating 
is not a function of the direction of 
current flow, the average power 
can be expressed in terms of the 

effective current as given or in terms of the effective voltage as devel¬ 
oped below. 

From Ohm's law 7 = or 7* = E^/R^ which, if substituted in 
Eq. (9.32), gives 

j/*axis 

squared values as ordinates. 



SINUSOIDAL ALTERNATING CURRENTS 165 

where P = average power, watts 
E — effective voltage, volts 
R = effective resistance, ohms 

Comparing Eq. (9.31) and Eq. (9.32) it is apparent that /mV2 = /* as 
shown in Fig. 9.7. Taking the square root of both sides of this equation 
results in 

/ = ^ = 0.707/„ (9.33a) 

A similar derivation for the voltage gives 

E = ~ = 0.707E„ 
V2 

(9.34) 

The ratio of the maximum value to the effective value is known as the 
crest or peak factor. For a sine wave it is 

bn = ^ 1_ 
/ E 0.707 

1.414 (9.35) 

It is interesting to note that the square root of 2 gives the same value, 

\/2 = 1.414. This factor becomes important in cases where the wave 
is not sinusoidal. For instance, in neon-sign lighting it is desirable to 
have a very high crest factor (which means that there are high voltage 
maximums) that will ionize the gas. 

The form factor is defined as the ratio of the effective value to the 
average value and for a sine wave is 

^ ^ = 0.707 
/.V 0.637 

(9.36) 

It will be noted that no subscripts are used with effective values. This 
is because the effective values are most common. Practically all measur¬ 
ing instruments are calibrated in effective values. 

The effective value of current or voltage can be determined from the 
rms (which means root-mean-square) value of the wave. The rms value 
of a sine wave is 0.707 times the maximum value, which of course coin¬ 
cides with the effective value. If the wave is nonsinusoidal then its 
rms value can be determined by taking the square root of the sum of the 
squares of the current or voltage values over one complete period. 

Example 9.3. If the average a-c voltage developed across a 200-ohm resistance 
is 90 volts, determine the average power consumed by the resistance. 

Solution, By Eq. (9.33) the effective voltage is 

E - l.lli5;.v - (1.11)(90) - 100 
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By Eq. (9.35) the average power is 

„ E* 100‘ „ ,, . 

9.6. High-frequency A-c Meters. Two types of high-frequency a-c 
meters are in use. Both meters depend upon a heating effect to measure 
the current flowing. One meter is known as a hot-wire ammeter and is 
shown in Fig. 9.8. The other type is the thermocouple ammeter and is 

shown in Fig. 9.9. 

(a) Zero current (b) Maximum current 

Fio. 9.8. Hot-wire ammeter. 

(a) Contact type (b) Heater tyx)0 

Fio. 9.9. Thermocouple meters. 

9.6. Hot-wire Ammeter. The hot-wire ammeter depends upon the 
expansion of a heated wire when current is passed through the wire. 
Figure 9.8a illustrates the position of the wire between terminals 1 and 2 
of the meter when no-current is flowing. Now if a current is passed 
through the wire between terminals 1 and 2, the wire will become elon¬ 

gated. The spring will keep the wire taut and in doing so will rotate 
the small drum carrying the pointer, as shown in Fig. 9.86. 

The stretching of the wire depends upon the heating effect of the current^ 



SINUSOIDAL ALTERNATING CURRENTS 167 

which means that the movement is proportional to the square of the current 
If the scale is marked uniformly, the meter is known as a current-squared 
meter. 

The hot-wire ammeter has been replaced in most uses by the thermo¬ 
couple meter. The defects of the hot wire ammeter are 

1. Large temperature error 
2. Lack of perfect resilience in the heated expansion wire 
3. Low overload capacity 

4. Unsuitability for low-current ranges 
5. Too large inductance for high frequencies 
9.7. Thermocouple Meter. The thermocouple meter, which does not 

have these defects, depends for its operation upon the fact that a voltage 
will be generated if two dissimilar metals are in contact and heated, as 
shown in Fig. 9.9a. Usually copper and constantan are used, or if a 
very sensitive meter is desired, bismuth and antimony can be used as the 
two dissimilar metals. The voltage generated will be a d-c voltage; hence 
it does not depend upon the direction of current flow in the heater element. 

A d-c microammeter or galvanometer can be used to detect the current 
flow. As in the hot-wire ammeter, the deflection of the thermocouple 
meter is proportional to the heating effect, and hence proportional to the 
square of the effective current being measured. Some thermoelements 
are placed in a vacuum to increase their speed and sensitivity and 
reduce the temperature errors. At the higher frequencies, objectionable 
coupling between the circuits is removed, at the expense of speed and 
sensitivity, by heating the thermal junction through a small bead of glass 

as illustrated in Fig. 9.96. 

Example 9.4. A current-squared galvanometer thermocouple meter is graduated 

in 100 evenly spaced divisions. The full-scale reading of the meter is 120 ma. Deter¬ 

mine the current for a scale reading of 83 divisions. WTiat will the scale reading be 

if the current is reduced to 75 per cent of the 83-<hvision current? 

Solution. Using proportion and the fact that the scale reading is proportional to 

the square of the current 

For this example 

100 __ scale divisions _ scale divisions 

120* current squared /* 

/* 
(120)*(83) 

100 
- 11,952 

Hence the current for a scale reading of 83 divisions is 

I - V^1T^2 =* 109.3 ma Ana. 

If the current is reduced to 75 per cent of this value, the now current w ill be 

/' - (0.75) (109,3) « 82 ma, 
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and the corresponding scale reading will be 

a I . (100)/'* (100)(82)» . 
Scale divisions =» - ^« 46.7 Ans. 

9.8. Audio-frequency Contact Rectifier Meter. The most efficient 
low-current a-c meter is a contact rectifier used in conjunction with a d-c 
meter. The most common type employs a copper oxide disk rectifier. 

In order to increase the sensitivity, 
commercial instruments contain a 
full-wave rectifier made of four cop¬ 
per oxide rectifiers connected in the 
form of a bridge, as shown in Fig. 
9.10. This type of meter has less 
accuracy than the thermocouple 

meter but has the advantage of not 
being sluggish. Owing to the large 
input capacity, this type of meter is 

limited to the a-f range. The prin¬ 
cipal disadvantage, however, is its inaccuracy due to variation of rectify¬ 
ing properties with time and temperature. The full-scale accuracy is 
limited to about 5 per cent as compared to 2 per cent, which is the usual 
accuracy of thermocouple meters. 

The contact rectifier has a high resistance and hence is a good volt¬ 
meter. Voltmeters with a full-scale range of 0.5 volt and a resistance of 
2,500 ohms are common. This type of meter is widely used as a db or 
vu meter across program or audio circuits. 

Summary 

The voltage c induced in a coil of wire rotating in a uniform magnetic field is 

directly proportional to the number of turns in the coil and to the time rate at which 

the number of flux lines linking the coil is changing. As an equation, this is 

Fio. 9.10. Bridge circuit for a copper ox¬ 
ide meter. 

e 10-* 

The relationship between the maximum flux and the flux 4> linking the coil at 

any angle B is given by the expression 

cos B 

It is now necessary to find the rate of change of cos B with respect to time, and 

from differential calculus the differential of the cosine equals the sine. In other 

words, the rate of change of a cosine curve at any instant is equal to the sine of the 

angle at that instant. Thus, a sine wave is displaced 90® from a cosine curve, as in 

Fig. 9.11. When curve a is zero, its rate of change is maximum, and the sine curve h 

is 1. When the curve is maximum, its instantaneous rate of change is zero. 
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The induced voltage is then proportional to the angular velocity at which the coil 

is rotating (this gives time rate of change) multiplied by the sine of the angle at any 

instant. This voltage is then 

e 
(10'^) 

(sin (Jit) 

where e =* instantaneous voltage, volts 

N =* number of turns 

<!>,„ = maximum flux linkage of coil 

t — time from zero or starting 

point, sec 

The maximum voltage Em is then 

lOH 

and the voltage at any instant is 

e — Em sin 

If this voltage is impressed across a resistance /?, then the current I at any instant is 

i =* Im sin Oil 

The instantaneous voltage may be represented by a vector of length proportional 

to the maximum voltage and rotating around the origin at the same angular velocity w. 

Then the voltage at any instant is the projection of the vector on the y-axis, or 

e — Em sin B 

If two or more voltages are impress(*d on the same circuit, with their vectors rotating 

at the same velocity w but having different phase angles so that 

Cl = Emi sin (wf -f- <t>i) 

C2 = Emi sin (cot + ft>2) 

then the total maximum voltage when / = 0 is 

Emt \/\Emi COS 4>i -f- Emi COS <^2)* H" {Emi sin if>i -h Emi sin ^2)* 

and the total voltage in the circuit at any instant is 

where tan <t>t *= 

c< = Emt sin (wl -h 

Em\ sin 4- sjn_^ 
Emi cos -h Emi cos <t>2 

Average value of an alternating current or voltage is equal to the area under the 

half-cycle curve of instantaneous values divided by the length of the half cycle. For 

sinusoidal variation this is 

0.637 (maximum value) 

Effective value of voltage or current is equal to the square root of the average of the 

squares of the instantaneous values over a half cycle. For sine or cosine wave, it is 

0.707 times the maximum height of the wave, or for current and voltage 

E - 0.707Em; I “ 0.707/« 

As heat or f)ower is proportional to the square of the current, the effective figure 
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is equivalent to the same value of direct current and is the most widely used value of 

an alternating current or voltage. v 
High-frequency a-c meters operate on the heating effect of current. The hot-wire 

ammeter has a wire that expands w’hen heated by a current and the elongation is con¬ 
verted into the angular rotation of a needle. This type is relatively inaccurate and 

is not widely used. 
The thermocouple meter measures the current generated at the junction of two dis¬ 

similar metals when they are heated. This direct current is read on a d-c milli- 
ammeter whose scale is calibrated in terms of the current through the thermocouple 

necessary to produce that current. 
These meters have a scale marked off according to the current squared, as the heat 

increases by the square of the current in the wire. 
For audio frequency purposes, a copper oxide rectifier can be used to rectify the 

alternating current and a d-c movement reads the value of rectified current. 

Exercises 

9.1. Explain how' the flux in a magnetic field must be cut to produce a sinusoidal 

voltage. 
9.2. What is a phase angle? How is it used? 
9.3. (a) Plot a cosine curve of instantaneous values of flux over a complete cycle; 

when the maximum flux linking the circuit is 1.1 X 10’° lines, (h) What flux links 
the circuit at 40®, 70®, 270®, and 350®? 

9.4. (a) If the angular velocity is w = 377 and there are 50 turns of wire \i8ed in 
the field of Exercise 9.3, determine the maximum voltage that will be generated in 
the coil, (b) What will be the effective voltage generated? (r) Write the equation 

of the instantaneous voltage, (d) What will be the instantaneous voltage when 
time t = 2 sec? 

9.6. Define: crest factor, peak factor, effective value, average value, maximum value, 
and form factor. 

9.6. What will be the maximVmi current in an a-c circuit that will produce the same 
heating effect as 4 amp in a d-c circuit? Give your reavsons. What is the average 

value of alternating current flov^ng? 

9.7. If a circuit has 15 ohms effective resistance and the maximum sinusoidal 
voltage across the resistance is 81 volts, what is the power in watts dissipated in the 
resistance? 

9.8. If a squared-current meter registers 2.7 scale divisions and the current is 
tripled, what will the meter register? 

9.9. If 
Cl 120 sin (at 

Cj *=s 150 cos <at 

plot each curve and the curve of their sum ci, over a complete cycle. What is the 
phase angle of C(? 



CHAPTER 10 

EFFECTIVE RESISTANCE, INDUCTIVE AND CAPACITIVE 
REACTANCE 

In Chaps. 6 and 8 of this book, a study was made of self-inductance and 
electrostatic capacity. The effect of opening and closing a switch in a 
circuit containing a constant voltage was treated for the case of a pure 

resistance, a resistance in series with an inductance, and a resistance in 
series with a capacity. These cases are inadequate for a thorough treat¬ 
ment of a-c (alternating-current) circuit theory; hence a more general 
treatment of alternating voltages applied to circuits containing resistance, 
inductance, and capacity will be given in this chapter. 

In Chap. 6 it was shown that a conductor carrying current is surrounded 

by an electromagnetic field. It will be recalled that each electron is a 

negative charge with electrostatic lines of force terminating on it. If this 
electron is set in motion, these electrostatic lines of force have to move 
along with the electron, and as this occurs, a magnetic field is created. 
In other words, a moving electron represents a current, and a current 
always has an electromagnetic field associated with it. Therefore, we 
can roughly say that an electromagnetic field is the result of an electrostatic 

field in motion. 
As was pointed out in Chap. 8, the total energy in the electromagnetic 

and electrostatic fields of an oscillator consisting of a pure inductance 
connected in series with a pure capacity is constant but sinusoidally 
changing from one field to the other. Also, the current through the 
coil and the voltage across the capacitor vary sinusoidally. Since there 

is no source for supplying energy in this system, an a-c generator, which 
can supply energy, will be used in this chapter. However, in the case of 
a pure inductance or a pure capacity load, the a-c generator will merely 
supply energy sinusoidally for the electromagnetic or electrostatic field. 
For one half cycle it will put energy into the field, and for the next half 
cycle it will remove all this energy from the field. Energy can be absorbed 

from the generator only by a resistance load. 
In this chapter Ohm’s law will be extended to cover the voltage-current 

relationship existing in a-c circuits. 
10.1. Effective Resistance. When an alternating voltage is applied 

to a circuit, several effects are noticed that are different from the effects 
produced by applying a d-c (direct-current) voltage to the circuit. 

171 
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Since the current will be continuously varying, the electromagnetic field 
will be continuously expanding and collapsing. If the electromagnetic 
field links other circuits or conducting material, secondary currents will 
be established, resulting in eddy-current losses^ and if the materials are 
magnetic in nature, hysteresis losses will also be present. Also, the current 
density will not be uniform over the cross section of wire, owing to skin 
effect. For one or more of these reasons the effective resistance of a con¬ 
ductor to alternating current is greater than its ohmic resistance to direct 
current. The effective or apparent resistance of a circuit is determined 
by the amount of power that will be dissipated when an alternating cur¬ 
rent is passed through the circuit. The square of the effective current 
multiplied by the effective resistance gives the true average rate at which 
heat energy is dissipated. 

The effective resistance of a circuit can be defined by the equation 

where R = effective resistance, ohms 
P = average dissipated power, watts 
/ = effective current, amp 
E = effective voltage, volts 

This equation says that the effective resistance of an a-c circuit can 
be found by measuring the total average power dissipated as heat divided 
by the square of the effective current flowing, or the square of the effective 
voltage divided by the total average dissipated power. The resistance 
R in all a-c formulas is to be understood as effective resistance as defined 
above. 

t 

10.2, Alternating-current and Voltage Wave Form in a Pure Resist¬ 
ance. Using the equations of instantaneous voltage and current devel¬ 
oped in Chap. 9, we have, from Eqs. (9.12) and (9.13), 

e = Ent sin o)t (10.2) 
i = /m sin Q)t (10.3) 

According to Ohm’s law, the instantaneous voltage e will produce an 
instantaneous current i through a pure effective resistance R\ thus 

e = Ri (10.4) 
Substituting for t, 

e = Rim sin tat 

Substituting for e, 

Em sin <at = Rim sin (at 

Dividing both sides by sin (at, this equation becomes 

Em = Rim (10.5) 
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This equation says that the maximum instantaneous voltage is equal 
to the effective resistance multiplied by the maximum instantaneous 
current. This equation of Ohm^s law written in effective values is 

E RI (10.6) 

The current is said to be in phase with the voltage because they pass 
through zero and maximum values at the same time. Consider an a-c 
generator connected to a pure resistance as shown in Fig. 10.1a. When 

e—E^s\r\wt 

I E 
-p=ei-EI-EI cos 2(ot 

Effective Equations of instantaneous values 
values 

Fio. 10.1. Alternating-current circuit containing a pure resistance. 

the instantaneous voltage c is in the direction of the arrow (pointing up 
from the negative to the positive), an instantaneous current i will flow 
clockwise around the circuit, as indicated, through the resistance R, 
Since the voltage determines the magnitude of the current (resistance 
fixed), it is convenient to represent the current and voltage vectors (see 
the vector diagram of Em and Im in Fig. 10.16). Usually the effective 
values are represented in a vector diagram as shown above in this figure. 
The current and voltage being in phase means that they lie along the same 
straight line. If the maximum vector values are rotated, they will trace 
out the instantaneous values of current and voltages as shown in Fig. 
10.1c. The equations for these curves are given in Fig. 10.1c. 

Example 10.1. A load resistance carries 5 amp with 10 volts of direct current 

applied, and only 4 amp with 10 volts of alternating current applied. Determine 

(a) the resistance of the load in each case, (b) the average power dissipated by the 

load in each case. 

Solution, (a) By Ohm's law the d-c ohmic resistance is 

- 2 ohms 
o 

Ans. 
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Similarly, the a-c effective resistance is 

« "7 -T 
2.5 ohms 

(6) By solving Eq. (10.1), the average d-c power consumed by the resistance load 

is found to bo 

p ^ PR ^ (5)*(2) = 50 watts Am. 

10* 
or ^ -5- =* -?r = watts Check 

It L 

Similarly, the average a-c power consumed by the resistance load is 

p = ^ (4*)(2.5) = 40 watts 
10* 

P = -7T- = = 40 watts 
xt 2.0 

Check 

10.3. Alternating-current and Voltage Wave Form iff a Pure Induct¬ 
ance. The rate at which current changes in an inductance determines 
the voltage induced across the inductance. To derive this relationship, 
we have, from Eq. (6.1) 

Wd) 
6 = —iV -77 10-® volts 

at 
(10.7) 

the instantaneous voltage across a coil of N turns when the rate of change 

of flux linkage in the coil is d^/dt. 
From the definition of inductance as given in Eq. (7.6) 

L = N 10“^ henrys (10.8) 

Multiplying both sides of*Eq. (10.7) by dt gives 

e dt = — f/4>10~* 

and multiplying both sides of Eq. (10,9) by di gives 

-Ldi = -iVrf^l0-« 

Since things equal to the same thing are equal to each other 

e dt — —L di 
di 

or 6=-L~ (10.9) 

This equation states that the instantaneous voltage e induced across 
an inductance L can be determined by multiplying the slope of the curve 

of instantaneous current plotted against time by the inductance of the 
circuit. To illustrate this equation, consider an alternator generating 
a sinusoidal voltage connected to a pure inductance, as shown in Fig. 
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10.2a. Now, referring to Fig. 10.2c, it will be noted that the slope of the 
instantaneous current curve i is a maximum at 0°. Then the instantane¬ 
ous voltage e must be a maximum at this instant, as shown in the figure. 
When the current i reaches a maximum, the slope is zero, and hence 
di/dt is zero, and e from Eq. (10.9) must be zero. This occurs at 90® and 
is shown to be true in the figure. Continuing this reasoning process, 
any point on the instantaneous-voltage curve can be determined from the 
slope of the instantaneous-current curve and the value of inductance L 
in the circuit. 

E=+jXj 
Effective 
values 

c=f^sin (a/t+90®) 
=Em cos a/t 

i=Im sin wt 
p=ei=EI s\n2a>t 

Equations of instantaneous values 

(a) Circuit (b) Maximum values (c) Graph of in.stantaneous values 
vector diagrams 

Fig. 10,2. Alternating-current circuit containing a pure inductance. 

In order to trace out the instantaneous values of Fig. 10.2c, it is con¬ 
venient to use rotating vectors Em and Im as shown in Fig. 10.26. These 
vectors rotate in a counterclockwise direction; hence, the current is said 
to lag the voltage in a pure inductive circuit by 90°. Usually the effective 
values are represented in a vector diagram as shown in Fig. 10.26. The 
equation of the instantaneous values of voltage and current are given 
in Fig. 10.2c. The instantaneous currents form a sine curve, while the 
instantaneous voltages form a cosine curve. 

Example 10.2. If the current in a 10-henry inductance changes, at a particular 

instant, at the rate of 50 amp/sec, what is the instantaneous voltage induced across 

the inductance at that instant? 

Solution, By Eq. (10.9) 

e - - -(10)(50) - -SOOvolta Ans. 
at 

10.4. Derivation of Inductive Reactance. In the circuit of Fig. 10.2a 

the voltage drops around the circuit can be written. 

(10.10) 
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This expression should not be confused with Eq. (10.9) which expresses 
the induced voltage in the inductance L. If the induced voltnge was 

expressed ex. then Eq. (10.10) would read 

e + eL = 0 

Now let us derive an expression for the inductive reactance by sub¬ 
stituting for the instantaneous values in Eq. (10.10). These values are 

given in Fig. 10.2c, thus 

Em cos (jjt = L (Im sin ojt) 

Performing the differentiation 

Em cos <ji)t = LImO) cos O)/ 
Therefore Em = /mtoL 

Converting from maximum to effective values and replacing ojL by 2t/L 

gives 

J? = 2x/L/ (10.11) 

where E = effective voltage, volts 
2t = 6.2832 radians in a circle of 360® 
/ = frequency, cycles/sec 
L = inductance, henrys 
I = effective current, amp 

A second look at this equation reveals that it is very much like Ohm’s 

law, especially if we define inductive reactance as 

Xl = 2TfL (10.12) 

With this substitution Eq. (10.11) becomes 

E = XlI (10.13) 

where E = effective voltage, volts 

Xl = inductive reactance, ohms 
/ = effective current, amp 

Equation (10.12) reveals that the inductive reactance is directly pro¬ 
portional to the frequency and the inductance of the circuit. This 
means that the ohms of inductive reactance will increase as the frequency 
or inductance increases. Equation (10.12) is many times expressed 

Xl = (10.14) 

where w = 2ir/ is the angular velocity in radians/sec. 
A circle contains 2t radians, so if the frequency / is 1 cycle per sec, the 

angular velocity will be 2r radians per sec, or the rotating vector will 
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complete 1 revolution every second. If the frequency / = 60, then the 
revolving vector will complete 60 revolutions every second or 377 radians 
per sec. 

Equation (10.13) is true for magnitude only. If the phase relationship 
is taken into account, the operator j must be placed in front ol Xl] thus, 
in vector notation 

E = JXlI (vector equation) (10.15) 

Usually the dots over the vectors E and I are omitted when it is under¬ 
stood that all quantities in the analysis are vector quantities. Referring 
to the vector diagram of effective values in Fig. 10.26, Eq. (10.15) written 
in polar form is 

• g/90^ = (Xj,/90^)(//0^) (10.16) 

This equation says that tho effective-current vector I along the positive 
.r-axis multiplied by the inductive reactance Xl along the positive 2/-axis 
gives the effective-voltage vector E along the positive y-axis. The 
product of the magnitudes of Xl and I gives the magnitude of E, and the 
sum of their phase angles gives the phase angle of E. 

Sometimes // is written along the left-hand margin, indicating that 
the phase angle of all vectors are taken with reference to /, which has a 
zero phase angle. Thus, when it is understood that this is a vector 
equation with I as the reference vector, it is written simply 

ll E ^ jXJ (10.17) 

Example 10.3. In a 2-honry choke coil there is an alternating current of 200 ma 

that has an angular velocity of 628.3 raclians/sec. Determine («) the reactance of 

the choke coil, (6) the voltage developed across the choke coil, and (c) the frequency 

of the current. 

Solution, (a) By Eq. (10.14) 

Xl - «/v = (628.3)(2) = 1,256.6 ohms Ans. 

(6) By Eq. (10.13) 

E = Xd = (1,256.6)(0.2) = 251.3 volts Ans. 

(r) By the definition of w following Eq. (10.14) 

^ ^ cycles/sec Ans. 

10.6. Alternating-current and Voltage Wave Form in a Pure Capacity. 
The rate at which the voltage changes across a capacitor determines the 
charging current. Using the equation developed in Chap. 8, the instan¬ 

taneous current is by Eq. (8.5) 

(10.18) 
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But from Eq. (8.6), the charge is equal to the capacity multiplied by 
the voltage; thus 

q = Ce (10.19) 

Substituting this value of q in Eq. (10.18) gives 

. d(Ce) 
* " dt 

Since C is a constant, it can be factored out from the derivative, giving 
the same answer; hence 

f = C (10.20) 
at 

where i = instantaneous charging current, amp - 
C = capacity, farads 

dc 
^ = change in voltage across the capacitor in time dt 

It will be noted that this equation is very similar to Eq. (10.10). The 
instantaneous voltage and current have been interchanged, and the 

\e 
Effective 
values 

e=^Eni sin {(vt-90^) 

= —Ern cos cot 

i-Im sinevt 

p = ci = —El sin 2wt 

Equations of instantaneous values 

Fig. 10.3. Alternating-current circuit containing a pure capacity. 

capacity C replaces the inductance L. In this equation the instantaneous 
charging current i flowing into the capacitor is determined by multiplying 
the capacity of the capacitor by the slope of the curve of instantaneous 

voltage e plotted against time L This is shown in Fig. 10.3. The 
alternator, which generates a sinusoidal voltage, is connected to a 
capacity C as shown in Fig. 10.3a. Now, referring to Fig. 10.3c, it will 
be noted that the slope of the instantaneous-voltage curve is zero at 0®; 
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hence the instantaneous current i must be zero at this instant, as shown 
in the figure. When the instantaneous voltage C reaches the x-axis at 
90®, its slope is a maximum, which, multiplied by the capacity C in the 
circuit, will give a maximum instantaneous current i. This reasoning 
process can be carried on to more points, and the result will be as shown 

in Fig. 10.3c. 
In order to trace out these curves, consider the revolving vectors Em 

and Im shown in Fig. 10.36. When Im is along the positive x-axis, Em 
will lie along the negative 2/-axis, or 90® behind Im- Usually it is said that 
the current leads the voltage in a pure capacitive circuit by 90®. Ordinarily, 
effective values are used in vector diagrams, in order that the results 
will also be in effective values. Such a diagram is shown in Fig. 10.36. 
It does not matter how the vectors are placed on the paper in solving a 
problem, but they must be drawn \vith the correct angle between them. 
In the above case, this angle is 90®. Sometimes it is desirable to indicate 
the reference vector along the left-hand margin as illustrated in Eq. 
(10.17). 

The curves traced in Figs. 10.2c and 10.3c are correct after the alter¬ 
nator has been running a few cycles. After the switch connecting the 
alternator to the inductance or capacity is closed, the electromagnetic 
field must be established in one case, and the electrostatic field must be 
established in the other case, before a steady sine wave results. It will, 
in general, take a few cycles before the current and voltage are as shown 
in these figures. When the switch is first closed, a transient current or 
voltage is established, and when it dies away after a few cycles, a steady- 
state condition will be reached. The above diagrams show only the 
steady-state condition. The figures in Chaps. 6 and 8 show transients. 

Example 10.4. If a capacitor has a charging current of 2 nia, at a particular 

instant, what is the rate at which the instantaneous voltage across the capacitor is 

increasing? 
Solution, By Eq. (10.20) 

de i ^ 0.002 

dt^’c 1.0 X 10-» 

= 2,000 volts/sec Ans. 

10.6. Derivation of Capacitive Reactance. The capacitive reactance 
can be derived by substituting for the instantaneous values in Eq. (10.20) 
and performing the differentiation; thus 

Im sin (j^t = C { — Em cos cat) 

= CEmca sin cat 

Im = Em(^C or 
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Converting maximum to effective values and replacing coC by 2irfC gives 

I = 2irfCE (10.21) 

where I = effective current, amp 
2t = 6.2832 radians in a circle of 360® 
/ = frequency, cycles/sec 
C = capacity, farads 
E = effective voltage, volts 

This equation can be made to look like the Ohm^s law equation if the 
capacitive reactance is defined as 

Y --i- 
2irfC 

Substituting this value in Eq. (10.21) gives 

E = Xcl 

(10.22) 

(10.23) 

where E = effective voltage, volts 
Xc = capacitive reactance, ohms 

/ = effective current, amp 
Equation (10.22) indicates that the capacitive reactance varies 

inversely with the frequency and the capacity of the circuit. This 
means that the ohms of .capacitive reactance will decrease as the fre¬ 
quency or capacity is increased. This is opposite to the effect of an 
inductive reactance. Equation (10.22) may be written in another con¬ 
venient form 

(10.24) 

where w = 2irf is the angufar velocity in radians per second. 
Equation (10.23) is true for magnitude only. If the phase relationship 

is taken into account, the operator —j must be placed in front of Xc] 
thus in vector notation 

a E= —jXcl (vector equation) (10.25) 

Referring to Fig. 10.36, the vector diagram of effective values written in 
polar form is 

g/-9Q® = Xc/-90®//0® (10.26) 

This equation shows that the effective-current vector along the positive 
x-axis multiplied by the capacitive-reactance vector along the negative 
y-axis gives the effective-voltage vector along the negative 7/-axis. 

With it understood that this is a vector equation, it can be written 
with the current vector / a^ a reference, in the following form: 

ll E ^ -jXcI (10.27) 
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Example 10.5. A 0.003-Mf capacitor is connected to a 100-volt generator, which 

has a frequency of 1 me. Determine (a) the capacitive reactance, (6) the effective 

current, and (c) the angular velocity. 

Solution, (a) By Eq. (10.22) 

^ 1 1 
27r/C (6.2832)(10)^0.003 X 10-*«) 

= 53.05 ohms-eapacitive reactance Ans, 

(b) By Eq. (10.21) 

/ = 2^fCE = (6.2832)(10)« X (0.003 X 10"®)(100) 

= 1.885 amp-effective current Ans. 

(c) By the definition of w following Eq. (10.24) 

cj = 2it/ = (6.2832) (10)*^ radians/sec Ans. 

Summary 

If alternating current is appKed to a circuit, power is dissipated by the effective 

resistance of the circuit. This resistance loss is due to eddy-current losses^ hysteresis 

losses, and the higher resistance of the conductor to alternating current due to skin 

effects. If these losses are lumped 

present can be given by 

where R — the effective resistance 

P = the power dissipated 

I = the effective current 

The alternating current and voltage in a pure resistance are always in phase and 

the dissipated power P is equal to PR or E*fR. 
In a pure inductance, the induced voltage is proportional to the rate of change of 

flux produced by a changing current in the inductance. When the rate of change of 

current is zero, the voltage is zero, and when the rate of change of current is maxi¬ 

mum, the voltage is maximum. However, the value of the current is zero when its 

rate of change is maximum, and the current is maximum when its rate of change 

is zero. Therefore, the voltage and current in the inductance are 90° out of phase, 

with the current lagging the voltage. 

The relationship between instantaneous voltage e and the maximum voltage E^ is 

e ^ Etn sin (U -h 90°) — E,n cos u>t 

and the instantaneous current i and maximum current /« are related by 

i = In sin cof 

The term 2'nfL is represented by Xl in the e^quation E =* XlI and called the induc¬ 

tive reactance of the circuit. It is similar to the resistance term in Ohm’s law, but 

instead of E/I, now Xl ^ E/I, where Xl = As this reactance causes the 

current to lag the applied voltage by 90°, the equation E — JXlI^ written in complex 

notation, indicates this phase shift. 

The voltage across the plates of a capacitor is proportional to the charge stored in 

the capacitor multiplied by the charging current. A phenomenon like that in the 

inductance occurs. When the current is maximum, the charge stored in the capacitor 

together, the apparent resistance R that they 



182 COMMUNICATION CIRCUIT FUNDAMENTALS 

is zero, and the voltage is zero; when the current is zero, the stored charge is maximum 

and therefore the voltage is maximum. The current at any instant is equal to the 

rate of change with respect to time or i = dq/dt. As g = Cc, then i — C de/di^ and 

e =* C/t dt. 

In a pure capacitance where this effect is present, the current leads the voltage by 

90°. The mathematical expressions for voltage and current are 

e = Em sin — 90°) = Em cos o)t 

and i = Im sin mi 

The ratio of E over I is equal to Xj^njC = XjmC == Xc, the capacitive reactance. 

To show the 90° phase difference, this is written in complex notation as 

E = -jXcI 

Exercises 

10.1. Describe your concept of an electrostatic field and an electromagnetic field. 

How are they related? 

10.2. How is the vector diagram drawn for a circuit containing a pure resistance? 

If / == 10 amp and E = 100 volts, what is the effective resistance? Draw a vector 

diagram. 

10.3. How is the vector diagram drawn for a circuit containing a pure inductance? 

If 7 — 75 ma and E = 350 volts in a circuit containing a pure inductance, what is 

its reactance? Draw a vector diagram. 

10.4. How is the vector diagram drawn for a circuit containing a pure capacity? 

If 7 = 20 ma and E — 90 volts in a circuit containing a pure capacity, what is its 

resistance? Draw a vector diagram. 

10.6. (a) Write the equation of L in terms of Xl and /. (6) Write the equation of 

C in terms of Xc and /. 

10.6. (a) If the angular velocity is 5,000 radians/sec to make Xl = 250 ohms, 

what is the inductance? (h) If the capacity is 4.5 /uf and the reactance is 900 ohms, 

what is the angular velocity? What is the frequency? 

10.7. If an instantaneous voltage e = 18 volts at an instant when di/di = 140 

amp/sec what is the inductance value? 

10.8. If the instantaneous charging current i = 9 ma when de/dt = 77 volts/sec., 

what is the capacity value? 

10.9. (a) L = 39 henrys; / = 60 cycles. Find Xl. (b) L = XS fih; Xl - 1,400 

ohms. Find/, (c) Xl = 20,000 ohms; / = 100 kc. P^ind L. 

10.10. (a) C - 39 M/if; / = 20 Me. Find Xc. (b) C = 1.80 A»f; Xc = 700 ohms. 

Find /. (c) / =» 1,370 kc; Xc = 290 ohms. Find C. 



CHAPTER 11 

ALTERNATING-CURRENT IMPEDANCE AND POWER 

11.1. Alternating-current Power in a Pure Resistance. Before taking 
various combinations of the elements, consider the a-c power in pure 
elements. First, consider a pure resistance as illustrated in Fig. 11.1. 

e=Em slna;t 
i~Im sin (Vi 

p—ci =EI—El cos 2 (V t 

Fig. 11.1. Alternating-current power in a pure resistance. 

The instantaneous power is always equal to the product of the corresponding 
instantaneous values of voltage and current. Mathematically this can be 
written 

p = ei (11.1) 

where p = instantaneous power, watts 
e = instantaneous voltage, volts 
i = instantaneous current, amp 

For a sine-wave alternating voltage and current, we can repeat the 
equations developed in Chap. 9 [see Eqs. (9.12) and (9.13)] 

e — Em sin (vt (11.2) 
t =/m sin (11.3) 

Substituting these sine-wave values in Eq. (11.1) gives 

p = Emim sin 2 0)t 
183 

(11.4) 
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From trigonometric identities, which can be found in ^‘Applied Mathe¬ 
matics’’^ 

sin 2 oyt 
1 — cos 2(i)t 

2 

Substituting this identity in Eq. (11.4) yields 

Emim Emim ^ . 
p = —2-^ 

(11.5) 

(11.6) 

where p = instantaneous power, watts 
Em = maximum instantaneous voltage, volts 
Im = maximum instantaneous current, amp 

0) = 27r/ = the angular velocity, radians/sec 
/ = frequency, cycles/sec 

t = time, sec 
Referring to Fig. 11.1c, we see that the first term of Eq. (11.6) is 

Emlm/^y tho distanco from the x-axis up to the axis of the power wave. 
The second term in Eq. (11.6) is the equation of the power wave about 

its own axis (negative cosine curve). It should be noted in Fig. 11.1c 
that the power wave goes through 2 complete cycles while the voltage 
and the current waves complete only 1 cycle. The 2 in cos 2(o< of 
Eq. (11.6) is responsible for this double-frequency effect of the power 

wave. 
Equation (11.1) is perfectly general for any instantaneous-voltage and 

-current wave form. Equations (11.4) and (11.6) are equivalent ecpia- 
tions for sinusoidal voltage and current in a pure resistance, but it is 
easier to analyze Eq. (11.6) to see just what is happening. 

Example 11.1. In accordance with the preceding analysis, determine the instan¬ 

taneous power in terms of maximum values when wt = 0®. 

Solution, Solving Eq. (11.1) for =0®, 

II 11 3
 

N
 

O
 

II o
 

Ans. 
Solving Eq. (11.4) for u)i = 0®, 

p = Emim sin* tat = EmlmiSI)^ = 0 Check 

Solving Eq. (11.6) for u)t = 0®, 

Emim hmlm n . 

p = 2 — 2 

0 1 11 o
 

Chech 

In the solution of Eq. (11.6) in Example 11.1 the first term is the dis¬ 
tance from the x-axis up to the power-wave axis, and the second term 

'Carl E, Smith, Applied Mathematics, McGraw-Hill, 1945, pp. 305-306. 
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gives points with respect to the power-wave axis. To illustrate, at time 
i = 0 in Eq. (11.6) the first term is the distance from the x-axis up to the 

power-wave axis and the second term is the distance from the power-wave 
axis back down to the x-axis and hence the result is zero. 

Example 11.2. Solve Example 11.1 when <at = 90®. 

Solution. Solving Eq. (11.1) for cat = 90®, 

p ei Emim Ans. 

which is the maximum instantaneous power. 

Substituting cot = 90® in Eq. (11.4) yields 

p = EmIm sin^ (90®) - E„,K(iy = En,I^ Check 

Substituting ot = 90° in Eq. (11.6) also yields 

P = cos (2) (90°) = £„/„ Check 

In the solution of Eq. (11.6) in Example 11.2 the first term gives the 
distance from the rc-axis up to the axis of the power wave, and the 

second term is the distance on up to the point of maximum instan¬ 
taneous power. An inspection of Fig. 11.1c will reveal this graphically. 

Example 11.3. Solve Example 11.1 when mt = 270®. 

Solution. Solving Eq. (11.1) for = 270®, 

p — ei ~ ( Efn)(^ /m) “ Emim Ans. 

Substituting cot = 270® in Eq. (11.4) gives 

p = Emim sin* (270°) = Emlm{-\y = ErJm Check 

Substituting 6)/ = 270® in Eq. (11.6) gives 

P = cos (2) (270°) 

But cos (2) (270°) = cos 540° = cos (360 + 180) = cos 180° = -1 

Note: Trigonometric functions repeat their values every 360®. 

Substituting this result in the above equation gives 

p = (_1) = Check 

The average dissipated power is the area under the curve of instantaneous 
power p divided by the abscissa. This gives the average ordinate, which 
equals the average dissipated power. 

The area under the instantaneous-power curve is shaded in Fig. 11.1c. 
For instance, take the abscissa from u)t = 0° to w/ = 180°, which is a 
complete cycle for p. This portion of the curve of instantaneous power 
is redrawn in Fig. 11.2. The shaded area above the axis of the power 
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wave will exactly fill the area below this line; hence the average dissipated 
power in a pure resistance load is 

p = (for a pure resistance) (11.7) 

where P = average dissipated power, watts 
Im = maximum instantaneous current, amp 
Em = maximum instantaneous voltage, volts 

This is the distance from the a:-axis up to the axis of the power wave. 
Comparing with Eq. (11.6), it is seen that the average dissipated power is 

(a) Instantaneous power wave over a (b) Average of instantaneous power 
power cycle wave over a cycle 

Fig. 11.2. Averaging the instantaneous power in a resistive circuit. 

equal to the first term. The second term averages zero over a complete 
cycle. 

Figure 11.2a shows the actual distribution of instantaneous power over 
a full cycle of power or a half cycle of voltage or current. The shaded 

area marked 2 will exactly fill* the vacant area marked 1 if the section is 
rotated 180°. Similarly the shaded area marked 4 will exactly fill the 
vacant area marked 6 if it is rotated 180°. Figure 11.26 shows the result 
of having all the shaded area below the axis of the power wave. The 
average ordinate equals the average dissipated power as given in Eq. 
(11.7). 

Since effective values of voltage and current are more common, the 
following substitutions can be made in Eq. (11.7): 

Em = lAUE = y/2E (11.8) 

Im = lAUI = V2I (11.9) 
giving P—^EI (for a pure resistance) (11.10) 

where P = average dissipated power, watts 
E = effective voltage, volts 
/ ~ effective current, amp 
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Example 11.4. A 60-cycle alternating current of 6 amp flows in a 200-ohm load 

resistor. Determine the average dissipated power, the maximum instantaneous 

power, and the frequency of the instantaneous-power wave. 

Solution. By Ohm’s law 

E = IR ^ (6) (200) = 1,200 volts 

By Eq. (11.10) the average dissipated power is 

P ^ El = (1,200) (6) = 7.2 kw Am. 

The maximum instantaneous power is 

Pm = E„I„ = \/2 E V2 / = 2fi/ 

= 2(7.2) = 14.4 kw Am. 

Owing to the factor 2 in cos 2to/, the frequency of the power wave is 

2/ = (2) (60) = 120 cycles/sec 

11.2. Alternating-current Power in a Pure Reactance. 
inductance the current lags the voltage by 90°. From Fig. 
write 

e = Em cos (11.11) 
i = Im sin o)t (11.3) 

Substituting these values in Eq. (11.1) gives 

p = et = Emim sin cos cot (11.12) 

Substituting the trigonometric identity 

. . sin 2ot ... 
sin o)t cos cot = —2— (11.13) 

in Eq. (11.12) gives 

V = (11.14) 

This is the equation of the instantaneous-power curve shown graphically 
in Fig. 11.3c. It will be noted that the axis of the power wave coincides 
with the x-axis. The shaded area above the x-axis represents the power 
flowing into the inductive reactance and exactly equals the shaded area 
below the x-axis, which represents poAver flowing away from the inductive 
reactance back to the generator. This means that the average dissipated 
power is zero, because the distance from the x-axis of the instantaneous- 
power wave is zero and the positive power pulses above the axis exactly 
cancel the negative power pulses below the axis Again it will be noted 
that the instantaneous-power wave is double the frequency of the voltage 

or current wave. 
In a pure capacity the current leads the voltage by 90°, and from 

Ans. 

In a pure 
10.2 we can 
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Fig. 10.3 we can write 
e= —Em cos o>t (11.15) 

i — Im sin <at (11.3) 

Using the identity of Eq. (11.13) and substituting these values in 

Eq. (11.1) yields 

p=-^=sin2w< (11.16) 
iU 

Owing to the negative sign, this instantaneous-power curve is 180° out 
of phase with the one in Eq. (11.14). These equations can be used to 
explain how the instantaneous power can oscillate from the electrostatic 
field of a capacitor to the electromagnetic field of an inductance when 

(a) Circuit (b) Maximum values fc) Graph of instantaneous values 
vector diagra#):i3 

Fio. 11.3. Alternating-current power in a pure inductive reactance. 

they are connected in series to make an oscillator. If either an inductance 
or capacity is connected to a generator, it will absorb power for a half 
power cycle and feed it back to the generator during the next half cycle. 

11,3, Alternating-current Power in a Circuit Containing a Pure 
Resistance in Series with a Pure Inductance. We will first consider the 
case of an inductance in series with a resistance. Such a circuit is shown 
in Fig. 11.4. It will be recalled that the current lags the voltage by 90° 
in a pure inductance and is in phase with the voltage in a pure resistance. 
Then in any circuit containing both inductance and resistance, the current 
will lag the voltage at some angle between 0 and 90°. The angle by 
which the current lags the voltage is known as the phase angle <l>. If the 
inductive reactance (Xl ^ 27r/L by Eq. (10.13)) is large, owing to either 
a high frequency or a large inductance and if the effective resistance R 
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of the circuit is small, the phase angle <l> will be large and approach 90° 
as this ratio Xl/R —> (approaches infinity). However, if Xl is small 
and R is large, the phase angle will be small, and as the ratio Xl/R 0, 
the phase angle <t> will approach 0°. In order to determine the phase 
angle </>, it is very convenient to use vector algebra and to draw an 
impedance triangle or vector diagram as shown in Fig. 11.4a. It has 
already been shown that the voltage across a pure inductance leads the 
current through the inductance by 90°. In the case of a current through 

R 

Impedance 
triangle 

Effective 
voltages 

e=Erti sin 

i=Im sinda^ 
p=ei-EI cos 0 

—E'/ cos (+0) 

Equations of instantaneous values 

(a) Circuit (b) Maximum value (c) Graph of instantaneous value 
vector diagrams 

Fig. 11.4. Alternating-current circuit containing resistance and inductance. 

an inductance and resistance in series, this will still be true. By Kirch- 
hoff’s law, the current around the circuit must be the same at all points 
at any instant, and the sum of the voltage drops across the elements of 
the circuit must at any instant equal the supply voltage. By the use of 

vector algebra, this situation can be visualized graphically in a very 
simple manner. The impedance of the resistance and inductance in 
series may be represented as shown in the small triangle at the left in 
Fig. 11.4, and the voltage relationships may be represented as shown in 
the larger triangle. If X l and R are known, the phase angle 0 can be 
determined by the following equation: 

0 = tan~^ ^ 
n 

(11.17) 
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where 0 = phase angle 
tan”^ = arc tangent (the angle whose tangent is) 

Xl = inductive reactance, ohms 
R = effective resistance, ohms 

Equation (11.17) is used to find the phase angle 0 when Xl and R are 
known. It can be written in other forms when other quantities are 
given; thus 

tan 0 = Xl 

R 
Xl = R tan 0 

Xl 
R = 

tan 0 

(11.18) 

(11.19) 

(11.20) 

Example 11.5. Find the inductive reactance of a load circuit containing 25 ohms 
effective resistance and having a phase angle of 60°. 

Solution, Using Eq. (11.19) 

Xl = (25) (tan 60°) 
= (25)(1.732) = 43.3 ohms = inductive reactance Am. 

The voltage drop across the resistance R is 

Er = IR (11.21) 

and the voltage drop across the inductive reactance Xl is 

El = IXl (11.22) 

Both Eqs. (11,21) and (11.22) are in the form of Ohm^s law. That is, 
a voltage drop is given as the product of the current by a resistance or 
reactance element. One form of Ohm's law is 

In one sense, this may be taken as defining resistance as the quotient of 
voltage by current. In circuits where the voltage and current are not 
in phase, it is natural to define some quantity that will be like resistance 
in that it will be defined by the quotient of voltage by current. In a-c 
circuits, the quantity thus defined is known as impedance. In terms of 
vector voltages, currents, and impedances, we may write at once 

E ^ iz (11.23) 

where E = effective vector voltage, volts 
I = effective vector current, amp 
^ = impedance vector, ohms 

This important vector equation is the generalized form of Ohm^s law. It 
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is perfectly general in that the impedance can be resistive or can have 
either an inductive- or capacitive-reactance component. The effective- 
voltage vector diagram for the above inductive circuit is shown in 
Fig. 11.4&. 

When dealing with vector quantities exclusively, the dot above the 
letter is usually omitted. Wlien most of the quantities in the equation 
have magnitude only, a dot may be placed over the vector quantities to 
distinguish them from quantities having magnitude only. WTien most 
of the quantities are vector quantities, it is less work to omit the dot above 
vector quantities and place bars on both sides of the quantities having 
magnitudes only. With this latter scheme, the magnitude of Z is written 

|Z1. 

Example 11.6. If 2 arnp of alternating current flows in the load impedance of 

Example 11.5, determine the voltage by the application of Kirchhoff’s law. 

SoliUion. Substituting in Eq. (11.21), 

Ek ^ IR = (2) (25) — 50 volts across resistance 

Substituting in Eq. (11.22), 

El = IXl = (2) (43.3) = 86.6 volts across the inductance 

But since Xl is a pure inductance, the voltage El across it leads the voltage across Er 

by 90°; hence when we write the vector equation of the voltage drops around the 

circuit, a j operator must be placed in front of El; thus with / as a reference 

[I E ^ Er -f-jEl - //e + jIXl 
= 50 + i86.6 = 100/60° Am. 

The magnitude of the impedance vector Z is the length of the hypote¬ 
nuse of the impedance triangle; hence for an inductive load 

Z = VR^ + Xl^ (11.24) 

Or the impedance vector in rectangular form may be written 

Z = R +jXL (11.25) 

and in polar form this equation becomes 

^ !tan-i ^ (11.26) 

This is in the notation developed in Chap. 7 of ‘‘Applied Mathematics.^’ 

Example 11.7. Determine the load impedance vector of Example 11.5, and with 

2 amp flowing, determine the voltage by the application of Ohm’s law. 

Solution. Substituting in Eq. (11.25), the load impedance vector in rectangular 

form is 

Z ^ R + JXl ^ 25 + i43.3 Am, 
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In polar form, by Eq. (11.26), the load impedance vector is ZY / ilQ Q 

tan-1 « V(25)* + (43.3)* / tan"' 

— 50/60° Ans. 

By Ohm’s law as given in Eq. (11.23) 

// £: = iz ^ (2/0°) (50^°) = 100/60° Ans. 

This checks the solution of Example 11.6. 

If the maximum voltage and maximum current are used, the revolution 
of the triangle will generate the instantaneous values as illustrated in 
Figs. 11.46 and c. It will be noted that the current lags the voltage by 
some phase angle <^, which is less than 90°. This phase angle is repre¬ 
sented in the graph of instantaneous values by the distance between the 
time the voltage crosses the x-axis (voltage curve dotted) and the time 
the current crosses the x-axis. The student should make a careful study 
of these curves and obtain a clear picture of what is happening. The 
equation of the instantaneous voltage is 

e = Em sin (o)t + 0) (11.27) 

and the equation of the instantaneous current is 

i = Im sin o)t (11.3) 

Substituting for e and i from Eqs. (11.27) and (11.3) in Eq. (11.1) gives 

p = Emlm sin o)t sin (a>< + <f>) (11.23) 

Substituting a = + </> and 6 = the above ecjuation bec^omes 

p = Emlm sin a sin 6 (11.29) 

From a trigonometric identity*, 

cos (a — 6) — cos (a + 6) 
sin a sin 6 = (11.30) 

which substituted in the above equation gives 

p = cos (a — 6) — —cos (a -f 6) (11.31) 

But a — b = 4> and a -f 6 = 2o3t + <t>, which, if substituted in the above 
equation, gives 

V = cos it> - cos (2co< + <#.) (11.32) 

where p = instantaneous power, watts 
Em = maximum instantaneous voltage, volts 
Im = maximum instantaneous current, amp 

<!> = phase angle between rotating vectors Em and Im 
2o)t = angular velocity, radians/sec 
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Just as in Eq. (11.6), the first term of Eq. (11.32) gives the distance from 
the x-axis up to the axis of the instantaneous-power wave, as shown 
graphically for an inductive circuit in Fig. 11.4c. The second term of 
Eq. (11.32) is the equation of the power wave about its own axis. Again 
it will be noted that the power wave completes two cycles while the 
voltage and current complete only one. That is the reason that the 
number 2 appears in cos (2co^ + </>) of Eq. (11.32). 

For a pure resistance load, the phase angle between Em and Im is zero; 
hence, substituting this value in Eq. (11.32) makes cos </> = 1 and 
reduces cos (2a>^ + <t>) to cos 2o3t, If these values are substituted in 
Eq. (11.32), the result is Eq. (11.6). 

For a pure inductance, <f) = 90°. Substituting this in Eq. (11.32) 
makes cos 90° = 0, and the first term goes to zero. 

cos + 90°) = — sin 2co^, 

which reduces Eq. (11.32) to Eq. (11.14). Now, for a pure capacity, 
<t> = 90°. Then cos ( — 90°) = 0, and again the first term of Eq. (11.32) 
vanishes. Cos {2oit — 90°) = sin 2oity which substituted in Eq. (11.32) 
yields Eq. (11.16). 

So far, phase angles of 0°, +90°, and —90° have been tried in Eq. 
(11.32) with results that check with other equations. All other loads 
must have phase angles between +90° for a pure inductance and —90° 
for a pure capacity. 

Example 11.8. An inductive load of 86.6 ohms resistance and 50 ohms reactance 

is connected to a 1,000-cycle generator delivering an effective voltage of 10 volts. 

Determine the maximum and minimum instantaneous power absorbed by the load. 

What are corresponding values of co<? 

Solution. By Eq. (11.26) the impedance is 

/f -1 
Z = vcse.e)* + (50)* / 86.6 = 100/30° 

The effective current by Ohm’s law given in Eq. (11.23) is 

li 

Then 

i E ^ 

"" Z 100/30^ 
= 0.1 / —30° amp 

Emim V2 (10) \ /2 (0.1) 

2 ^ 

Eq. (11.32) becomes a maximum when cos (2u>t -f 0) = —1. Substituting these 

values in Eq. (11.32) gives 

Pmax “ (l)(cos 30®) — (1)( —1) = 0.866 + 1 = 1.866 watts Ans. 

Eq. (11.32) becomes a minimum when cos (2wi + 0) 1, giving 

Pmin ■* 0.866 — (1)(1) “ —0.134 watts 

which is the power that is fed back to the generator. 

Ans, 
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Note: The negative sign means the power is flowing in the opposite direction to 

that assumed. 

For maximum instantaneous power 

cos (2o3t 4>) ** —1 
cos + 30°) =* -1 

This means that 
2oit -f 30° = 180° 

or 2co/ = 180° - 30° = 150° 

and (Jit = 75° Ans, 

For minimum instantaneous power 

cos {2oit + (t>) “ +1 
cos (2<j>t + 30°) = -fl 

To meet this condition, 

2u3t + 30° = 0° 

or 2cit =* -30° 

and oit = —15° Ans. 

Since a sine wave averages zero over a complete cycle, the average of 
the instantaneous-power wave about its axis will be zero, and the average 
dissipated power is simply the first term of Eq. (11.32); thus 

P = E^cos4> (11.33) 

By substituting values from Eqs. (11.8) and (11.9), a more useful form 
is obtained; thus 

P El cos (t> (11.34) 

where P = average dissipated power, watts 
E = effective voltage, volts 
I = effective current, apnp 
0 = phase angle between E and /, degrees 

It will be noted that the curves of Fig. 11.4c are different from those 
of Fig. 11.1c, and it is not quite so easy to see from the figure that the 
average power is represented by the distance from the x-axis to the axis 
of the power wave. However, this can be illustrated by considering one 
complete power cycle (it does not matter which one). For convenience, 
take one complete cycle from Fig. 11.4c, starting at the point where the 
instantaneous-power curve crosses its own axis. Such a portion of the 
instantaneous-power curve is redrawn in Fig. 11.5a with the area between 
the instantaneous-power curve and the x-axis shaded. The shaded area 
above the x-axis represents positive power and the shaded area below 
the x-axis is negative power. During the negative-power portion of the 
cycle, the load is actually delivering energy rather than absorbing it. 
If the positive half-cycle area marked 2 and 1 is rotated 180®, it will 
exactly fill the area marked 4 and 5. The positive area marked 2 will 
fill the empty area marked 4, and the positive area marked 1 will cancel 
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the negative area marked 5. The result will be the shaded positive area 
of Fig. 11.56, which clearly shows that the average ordinate representing 
the average dissipated power is the distance from the x-axis up to the 
axis of the power wave. 

(a) Instantaneous power wave over a (b) Average of instantaneous power 
power cycle wave over a cycle 

Fig. 11.5. Averaging the instantaneous power in an inductive circuit. 

The average power may also be written 

P = PR (11.35) 

where P = average dissipated power, watts 
I = effective current, amp 
R = effective resistance, ohms 

Referring to the effective-voltage vector diagrams of Fig. 11.46, it is 
seen that 

Eh = IR (11.36) 

which substituted in Eq. (11.35) gives 

P = IEh (11.37) 

But Er is the adjacent side of a right triangle. In terms of the hypote¬ 
nuse of this triangle. 

Eh = E cos </) (11.38) 

which substituted in Eq. (11.37) gives 

P = El cos <t> (11.39) 

which is Eq. (11.34) developed by an entirely different method. 

Example 11.9. Determine the average power dissipated in the inductive load of 
Example 11.8 and check the results by a different method. 

Solution. Substituting in Eq. (11.34), 

P « E/ cos = (10)(0.1) cos 30® 

- (1)(0.866) - 0.866 watt Ans. 
Substituting in Eq. (11.35) 

P PR ^ (0.1)*(86.6) - 0.866 watt Check 
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The term cos </> is usually spoken of as the power factor of the circuit or 
load. The angle 4> is in this case sometimes spoken of as the power- 
factor angle. 

In the case of a pure resistance, the average power is simply the product 
of Ely since the voltage and current are in phase. This means that 
cos 0 = 1, or the power factor is unity for a pure resistance. Sometimes 
the product El is spoken of as the apparent power and is used in rating 
electrical machinery for two reasons: 

1. Eddy currents and hysteresis losses are a function of the magnetic 
flux and hence the voltage generated. 

2. Resistance losses in the winding are a function of the current that 

flows. 
Since both factors cause a temperature rise^ which is the primary basis of 
rating a machine, apparent power must be used rather than real power. 
Ratings of large machinery are usually given in kva, which means kilo¬ 
volt-amperes apparent power, instead of kw, which means kilowatts real 
power. 

The real power P divided by the apparent power El gives the power 
factory which is merely another form of Eq. (11.34). 

^ = cos <t> (11.40) 

This is another way of defining the power factor. 
The in-phase component of the voltage Eny multiplied by the current, 

gives the real power. Sometimes the out-of-phase voltage El, multiplied 
by the current, is desired. It is called the reactive power. In terms of Ey 
the reactive voltage El can be written (see the effective-voltage triangle 
in Fig. 11.46) • 

tlL = E sin <l> (11.41) 

Then the reactive power can be written 

Reactive power = IEl = El sin <f> (11.42) 

Sin <l> is sometimes called the reactive factor. By using the following 
trigonometric identity: 

sin^ <t> + cos^ 0 = 1 (11.43) 

the reactive factor can be written in terms of the power factor; thus, 
transposing, 

sin* 0 = 1 — cos* 0 

and extracting the square ^root of both sides, 

Reactive factor = sin 0 = Vl “ cos* 0 (11.44) 
or 

Reactive factor = \/l — (power factor)* (11.45) 
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Example 11.10. Determine the reactive power and reactive factor for the inductive 

load of Example 11.8. 

Solution. By Eq. (11.42) the 

By ICq. (11.45) the 

Reactive power = El sin <t> = (10) (0.1) (sin 30®) 

= (1)(0.5) = 0.5 wat 

Reactive factor = vl — (power factor)® 

= Vl - (0.866)2 = 0.5 

Reactive factor = sin <f> = sin 30° = 0.5 

Ans. 

Ans. 

Check 

11.4. Alternating-current Power in a Circuit Containing a Pure 
Resistance in Series with a Pure Capacity. Such a circuit can be dia¬ 
gramed as in Fig. 11.6a. The next case to be considered is a circuit 
consisting of a capacitor in series with a resistor. 

Impedance 
triangle 

i 

(a) Circuit 

Effective 
voltages 

e-Ejfi sin 

i=Im sina;t 
p=ei=EI cos (/> 

-El cos (2cot-<p) 

Equations of instantaneous values 

(b) Maximum voltages (c) Graph of instantaneous values 

vector diagrams 

Fig. 11.6. Alternating-current circuit containing resistance and capacity. 

In the case of a circuit containing a pure capacity, the current will lead 
the voltage by 90°, or the voltage is said to lag the current by 90°. If 
resistance is in series with the capacity, the current will lead the voltage 
at some phase angle between 0 and 90° depending upon the values of 
resistance and reactance. If the resistance is small and the capacitive 
reactance large, the phase angle will approach 90°, but if the resistance 
is large and the capacitive reactance small, the phase angle will be 
nearly 0°. 

To obtain a quantitative idea about the phase angle and impedance of 
a capacitive circuit, it is convenient to use the impedance triangle or 
vector diagram as shown in Fig. 11.6a. It will be recalled [see Eq. 
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(10.23)] that the capacitive reactance Xc = l/27r/C is proportional to 
the reciprocal of the frequency / and capacity C, With Xc and R known, 
the phase angle 0 can be determined by Eq. (11.17) if Xc is used instead 
of XL. Thus 

4> = tan-> ^ (11 46) 

The magnitude of the impedance vector Z of this circuit is the hypotenuse 
of the right triangle; hence the magnitude is 

Z = y/R^ + Xc‘^ (11.47) 

which is similar to Eq. (11.24). One difference in the impedance triangle 
must be noted: the vector Xc is down instead of up; hence in rectangular 
form, the reactance vector is written with a negative sign 

Z = /? - /Xc (11.48) 

and in polar form, this equation is written with a negative phase angle 

Z = ! - tan-i ^ (11.49) 

It will be noted that the negative sign in thcvse equations is due to the 
negative angle the voltage makes with the current. 

Referring now to the voltage triangles of Fig. 11.06, it will be noted 

that the voltage vector is in the same direction as the imy)edance vector, 
and the current vector is in the same direction as the resistance vector. 
The voltage Ec across the reactance Xc is in the same direction as the 

reactance vector —/Xc of the impedance triangle. 
If the maximum-voltage triangle starts to rotate counterclockwise 

when the current vector lies along the positive x-axis, it will generate the 
instantaneous values, as shown in Fig. 11.6c. The equations of these 

curves are 

e — Em sin (w^ — 0) (11.50) 
i = Im sin o)t (11.3) 

It will be noted that 4> is negative, owing to the fact that voltage lags, 
while in Eq. (11.27) it was positive because the voltage led the current 
by this phase angle. Th§ current was started from the same position 
along the positive z-axis and may be considered as the reference vector^ 
meaning the vector from which the phase angle is measured. 

The equation for the instantaneous power is Eq. (11.32), if negative 
values of 0 are used, or if the equation is written like Eq. (11.50) with 
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— <t>j we have 

V = ^2^"^ cos <t) — —cos (2co^ — </>) (11.51) 

Since cos { — <!>)— cos <l>j the first term is unchanged. 
The average dissipated power is the first term of this equation, since 

the second term averages zero over a complete cycle. Hence, as was 
developed for an inductive load, 

P = El cos <i> (11.34) 

Referring to the effective-voltage vector diagram of Fig. 11.06, the 
effective voltage across the capacitive reactance is 

Ec ^ IXc = E <i> (11.52) 

The reactive power can q6w be written 

Reactive power = IEc = El sin </> (11.53) 

and the reactive factor is sin <^, as it was in the case of an inductive load 
[see Eejs. (11.44) and (11.45)]. 

Example 11.11. A 2 mI capacitor is connected in series with a 1,000-ohm resist¬ 

ance and connected to a 25-volt 60-cycle generator. Determine the capacitive 

reactance of the capacitor, the impedance of the capacitive load, the power factor, 

and the reactive power. Write the oqiiation of the instantaneous power. 

Solution. The capacitive reactance is 

^ 2ir~fC ^ (672832)(60K2 X 10“^) "" 

By Eqs. (11.48) and (11.49) 

Z = H - jXc = 1,000 - jl,326 = 1,662/-52°59^ Ans. 

Power factor = cos 52°59' = 0.602 Ans. 

By Ohm’s law, as given in Eq. (11.23), 

E 25/0® 

J - T:mM2-w - 0 »15MZ5?29' 

Then the reactive power by Eq. (11.53) is 

Reactive power = El sin <f> — (25) (0.01504) (sin 52®59') 

= (0.376)(0.7985) = 0.3002 watt Ans. 

The instantaneous-power equation by Eq. (11.51) is 

p = cos <t> — —cos (2cot — 4>) 

= 0.2262 - 0.376 cos (764^ - 52®59') Ans. 

11.6. Power Diagram. It is possible to draw a power diagram by 
referring to the impedance and voltage triangles as shown in Fig. 11.7. 
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The average power absorbed can be determined from several equivalent formulas: 

P = />« = El cos « = 
ti 

The apparent power is obtained as the product of voltage and current, but is not 

the actual power in the circuit. The product El sin </> is called the reactive power 

and is not useful power. 

When a pure capacitance is connected in series with a resistance, the same relation¬ 

ships hold as with a resistance in series with an inductance. The only difference in 

this case is that the reactance is negative, and the current leads the voltage. The 

mathematical relationships are identical except for the minus sign in front of the 

reactance term. 

Exercises 

11.1. Define average power, phase angle, power factor, real power, apparent power, 

and reactive factor, 

11.2. How is a-c machinery rated? lOxplain why. 

11.3. Given a resistance load where o) = 5,000 radians/sec, E = 250 juv, R = 500 

ohms, (a) write the equations of the instantaneous voltage, current, and power. 

(b) What is the frequency of the power wave? 

11.4. In Exercise 11.3, (a) determine the impedance, phase angle, and reactive 

factor. (6) Determine the effective current and draw a voltage vector diagram to 

scale, (c) Determine the real power in watts. 

11.6. Does the load of Exercise 11.3 ever feed energy back into the line? Explain 

why? 

11.6. If a quarter-wave antenna has an effective radiation resistance of 36.7 ohms, 

what will 1)0 the effective and maximum voltage and current when it is radiating 

50 kw? 

11.7. A load draws 0.6 amp when 100-volt, 60-cycle alternating current is applied. 

If the load has an inductance of 100 mh, (a) what is its resistance? (6) What is 

the power factor of the load? 

11.8. In Exercise 11.7 draw the impedance triangle of the load to scale. Super¬ 

impose upon it the voltage vectors of the circuit. What is the voltage across the 

inductance and across the resistance? 

11.9. The effective voltage across a 25-ohm resistor is 10 volts. If this resistor is 

in series with an 8-/if capacitor in a 60-cycle a-c circuit, what is the voltage across 

the capacitor and across the two elements in series? 

11.10. (a) What is the impedance of the load of Exercise 11.9? (b) What is the 

apparent power, power factor, and reactive factor of this circuit? 



CHAPTER 12 

ALTERNATING-CURRENT SERIES CIRCUITS 

When two parts of a circuit are so connected that the same current 
flows through each part they are said to be in series. In the last chapter, 
series circuits containing resistance and inductance in series and resist¬ 
ance and capacity in series were treated. In general, the voltage drops 
across the various elements are not equal nor will they be in phase. In 
this chapter, the phenomena of series resonance in a-c series circuits con¬ 
taining more than two elements will be treated. 

12.1. Series Resonance Phenomena. Consider the series circuit 
illustrated in Fig. 12.1. The impedance vector of the series circuit can 
now be written 

Z = R+j{XL - Xc) (12.1) 

where Z = impedance vector, ohms 
R = resistance, ohms 

Xl = 2irfL = inductive reactance, ohms 

Xc = 2^ ” capacitive reactance, ohms 

This is the equation of the vector impedance in rectangular form. In 
this type of equation, it is convenient to think of all magnitude quantities 
(quantities without the dot) as lying along the positive x-axis. When 
such a quantity is multiplied, by the j operator, it is rotated counter¬ 
clockwise 90® and lies along the positive 2/-axis. 

If Eq. (11.1) is changed to polar form, it can be written 

Z = Z/^ (12.2) 

where Z = impedance vector, ohms 

Z = -s//2V+ (Xl — Xc)^ = the magnitude of the impedance 
vector, ohms 

<t> = ^ tan' 
,, (X^ - Xc) _ 

R 
= the phase angle of the impedance 

vector 

Example 12.1. Given a serfes circuit, as shown in Fig. 12.1, with 

L = 2 mh 

= 40 ohms 

C ^2 4 

E ^ \Q volts 

202 
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(b) Series circuit Er = Er 

Fiq. 12.1. Sine-wave voltage imposed on a simple series circuit containing inductance, 

resistance, and capacity. 

Determine 7j in rectangular and polar form when the frequency / = 1,592 cycles/sec 

What are the voltages across the various elements? Draw a vector diagram to scale. 

Solution. Solving for the inductive reactance 

Xij — 2wfL = wL 

- 27r(l,592)(0.002) = (10,000)(0.002) 

= 20 ohms — inductive reactance 

The capacitive reactance is 

X. = -L- =i- 
^ 2TrfC u)C 

1 ^ w_ 

10,000C (10,000) (2) 

= 50 ohms = capacitive reactance 

From Eq. (12.1) the impedance in rectangular form can be written 

Z = 40 -f i(20 - 50) = 40 - j30 Ans. 

Changing this to the polar form by Eq. (12.2) gives 

Z =» v/40* + 30« ^tan-‘ — 

» 50/tan-» (-0.75) 

= 50/^36°5^ Ans. 

Sometimes it is desirable to change from polar to rectangular form. To do this, 

use the following equation, which has been given before.* 

* Smith, Carl E., ^‘Applied Mathematics,” 1st ed., McGraw-Hill, New York, 

1945, p. 94. 
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i ^ Z (cos 4> + j sin </>) 

Substituting Z « (50) (0.8 — jO.6) 

= 40 - i30 

Note: The sine of a negative angle up to 180® is negative. Hence 

Check 

sin (-36®52') = -0.6 

Since the same current flows through each element, this current can be used to 

determine the voltages across the various elements. This current can be determined 

from the most general form of Ohm’s law; thus 

E _ 10/^ 

~ 50/-36^^ 

If the vector current / is to lie along the x-axis, the angle that E makes with this 

axis must be the same as the angle that Z makes with the axis. This can be visualized 

from the vector diagram of this problem shown in Fig. 12.2. Then the preceding 

equation can be written 
10/-36®52' 

II / = —y _35052/ 0-2/0^ amp (in polar form) 

or / = 0.2 4- jO amp (in rectangular form) 

The voltage drop across the inductive reactance is 

II 61, = IUXl) = (0.2/r)(20/+^) 
= 4/490® (in polar form) 

= 0 4 i4 (in rectangular form) Ans. 

which means that the voltage across the inductance leads the current by 90®. 

The voltage drop across the capacitive reactance is 

// Ec = I{-jXc) = (0.2/0®) (50/-90 

= 10/—90° (in polar form) 

= 0 — jlO (in rectangular form) Ans. 

which means that the voltage across the capacity lags the current by 90®. 

The voltage drop across the resistance is 

II 6k = IR = (0.2/0^) (40/0°) 

” polar form) 

= 8 4 jO (in rectangular form) Ans. 

which means that this voltage is in phase with the current. 

The vector diagram is given in Fig. 12.2. Ans. 

If the frequency of the circuit in Example 12.1 were increased, the 
inductive reactance would increase, and the capacitive reactance would 
decrease until finally the/"would be equal, and the resulting reactance of 
the circuit would be zero. This is known as series resonance. Equa¬ 
tion (12.1) would then be reduced to 

Z — R [Eq. (12.1) for series resonance] (12.3) 
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The frequency at series resonance can easily be determined from the 
fact that 

Xl = Xc (for series resonance) (12.4) 

Substituting the reactance values. 

O
 

11 (12.5) 

Solving for 

(12.6) 

where fr = resonant frequency 
27r = 6.2832 
L = inductance, henrys 
C = capacity, farads 

R—AO ohms 

Impedance Vectors Voltage and Current Vectors 

(a) (b) 
Fiq. 12.2. Vector diagrams for solution of Example 12.1. 

Example 12.2. Find the frequency at series resonance in Example 12.1. Solve 

for the series-resonant current and the voltages across the various elements and 

draw a vector diagram to scale. 
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Solution, Substituting in Eq. (12.6) gives 

f a, _- V -- 
6.2832 V (0.002) (2 X lO"*) 

= 2,515 cycles/sec — the resonant frequency Ana. 

At the resonant frequency, the inductive reactance is 

Xl » 2rrfrL = (6.2832)(2,515)(2 X lO"*) « 316.1 ohms 

And the capacitive reactance is 

“ (6:2^)(2,515)(2 X 10-«) ” ' 

It will be noted that these values are equal and will check in Kq. (12.4) or (12.5). 

The current flowing is 

. E 10/0'* 
// / =0.25/q:amp . 

= 0.25 -f jO amp Ana. 

The voltage drop across the inductive reactance is 

/I El = IUXl) = (0.25)(i316.1) = >79.05 ohms 

- 79.05/^° ohms Ana. 

The voltage drop across the capacitive reactance is 

/I 6c = t{-iXc) = (0,25)(-i316.1) = -j79.05ohin8 

== 79.05/j;;;^90° ohms Ana. 

The voltage drop across the resistance is 

// 6r = iR = (0.25)(40) = 10/0° volts Ans. 

The vector voltage E across all the elements in scries is simply 

6 = 6r A- El + Ec = M + i79.05 - j79.05 = 10 + jO 
• = 10/0° Ana. 

The circuit and vector diagram drawn to scale is shown in Fig. 12.3. Ans. 

Example 12.2 illustrates that the voltage across some of the elements 
in a series circuit can be considerably higher than the total voltage across 
all the elements in series. In this example, the voltage across the coil is 
79.05 volts but is 180° out of phase with the 79.05 volts across the 
capacitor; hence they completely cancel each other, leaving a 10-volt 
drop across the resistance, which is also the voltage drop across all three 
elements in series. 

12.2. Loci of Impedance and Admittance Vectors of a Series Circuit. 
If the frequency is continuously increased in a series circuit from a value 
below resonance to a value above resonance, the terminal point of the 
impedance vector 

[see Eq. (12.1)] (12.7) 
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will trace out a straight line perpendicular to the x-axis, as shown in 
Jig. 12.4a. By selecting the correct frequency, any point on this line 
can be obtained, or by selecting a point on the line, the frequency can 

jEiJ== + jcuLI- j 79.05 
volts 

7=0.25/0° =0.25t-i0 
^ amperes 

“ E r'^JE I “~jEc 

= 10 +j 79.05-i79.05 

= 10+j0 =10/01 volts 

- 4— 

Fiq. 12.3. Circuit and voltage vector diagram of the series circuit of Example 12.2 in 

series resonance. 

Locus of Impedance Vector; Locus of Admittance Vector 

(a) Impedance vectors (b) Admittance vectors 
Fio. 12.4. Loci of impedance and admittance vectors of a series circuit as the frequency is 
varied above and below the resonant frequency. 

be determined. If the reactance X is the ordinate value on the line, the 
reactance term of Eqs. (12.1) and (12.7) is the same value; hence 

X = Xt- Xc = 27r/L - ^ (12.8) 

Reducing this equation to the general quadratic-equation form by multi¬ 
plying through by //27rL and rearranging terms gives 

f 2-^ f-1  

*' 27rL*' 4ir*LC 
(12.9) 
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Solving this equation for the frequency by the quadratic formula and 
rearranging the equation results in 

where / = frequency, cycles/sec 
X = total reactance of the series circuit (use + if inductive; use 

— if capacitive) 
L == inductance, henrys 
C = capacity, farads 

The reciprocal of the impedance is called the admittance; thus 

F = 
Z 

(12.11) 

where Y = admittance vector, mhos 
Z = impedance vector, ohms 

The preceding statement and Eq. (12.11) are a definition of admittance. 

The admittance vector Y for corresponding impedance vectors will trace 
out a circle as shown in Fig. 12.46. It will be noted that Zi, for a fre¬ 

quency / < /r (/ less than the resonant frequency /r), is below the x-axis 
while Y1 is above the x-axis. The reason for this can easily be shown in 
polar coordinates as follows: 

but 

= Zi/~<^ 

-i— = y -i- 
Zxj — (t> ’ / -<> 

Y^/_± 

The admittance vector is obtained by taking the reciprocal of the magni¬ 
tude of the impedance vector and using the phase angle of the impedance 
vector with the opposite sign. 

Example 12.3. An a-c series-resonant circuit has a resistance, inductive reactance, 

and capacitive reactance of equal magnitude of 22 ohms. If the frequency is reduced 

to 41.1 per cent of its value at resonance, determine the resultant impedance at the 

new frequency. 

Solution. Multiplying the frequency of Eq. (12.7) by 0.411 to get the new fre¬ 

quency and substituting the values as given above yields 

Z -22+i(22)(0.411) 

« ^2 -f i9.042 - i53.528 

- 22 - i44.486 « 49.63/-65*^41^ Ans. 

12.3. Reactance Curves of a Series Circuit. The total reactance X 
of a series circuit can be obtained from Eq. (12.8). To illustrate this 
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curve graphically, the inductive reactance Xl can be plotted as a function 
of the frequency /. Since Xi is directly proportional to /, the result will 
be a straight line sloping up and to the right as shown in Fig. 12.5a. 
Now if the capacitive reactance Xc is plotted as a function of the fre¬ 
quency/, it will be found that Xc is inversely proportional to/, resulting 
in the curve shown in Fig. 12.56. These curves can be added alge¬ 
braically as in Eq. (12.8) or graphically, as shown in Fig. 12.5c. It will 
be noted that when X = 0, Xl = Xc, which gives series resonance and 

(a) Inductive (b) Capacitive (c) Total 
reactance reactance reactance 

Fig. 12.5. Reactance curves for a series circuit (variable/). 

means that the distance to the inductive-reactance curve above the 
x-axis is ecjual to the distance from the x-axis to the capacitive-reactance 
curve below the j-axis. 

In a vector diagram, as shown in Fig. 12.4a, the distance above and 
l^elow the x-axis to these curves would be represented by vectors parallel 
to the positive y-axis and negative y-axis. For instance, frequencies 
below the resonant frequency result in a small Xl and a large Xc, giving 
a resulting X that is a capacitive reactance. At resonance, they become 
equal, and for frequencies above resonance, the resulting X will be an 
inductive reactance. 

Reactance curves are very useful in the study of complex circuits. 
Much useful information can be obtained from such curves without 
solving for the exact quantities in the circuit. These curves are especially 
useful in filter circuit theory to be taken up later. 

Example 12.4. Determine the frequency for the series circuit of Example 12.1 

when the total reactance is A = 10 ohms inductive. What is the value of the 

impedance, admittance, and current? 

Solution. Substituting in Eq. (12.10) 

/- 10 \i (4)(2 X jofg: 1 
•' (12.566)(2 X 10-») L ^ \ ^ (10*)(2 X lO"*) J 

- 397.9(1 ± ViT) - (397.9) (7.403) 
— 2,946 cycles/sec Ans. 



210 COMMUNICATION CIRCUIT FUNDAMENTALS 

NoU: The -f- sign is used; otherwise the frequency would come out negative, which 

has no practical meaning. 

Checking this answer by substituting in Eq. (12.8) gives 

K - 2x0,946)0 X 10-) - ;,a,M6)0 X 10-) ' 

= 10 ohms = total inductive reactance Check 

The impedance by Eq. (12.1) is 

Z = 40 -f-j(37.01 — 27.01) *= 40 jlO (rectangular form) 

« 41.23/14°2^ (polar form) Ans. 

The admittance by Eq. (12.11) is 

f = 41 23/14°2' “ 0-02425,^-1^ (polar form) 

= (0.02425)(0.9702 - jO.2425) = 0.02353 - i0.00588 (rectangular form) Am. 

By Ohm^s law the current is 

/6 / = ? = = 10/0°(0.02425/-14°2') 
z ■ 

- 0.2425/^j4®2' « 0.2353 - i0.0588 Arw. 

12.4. Resonance Curves for Series Circuits. If the admittance Y of 
a series circuit is plotted as a function of frequency /, a resonance curve 
results. Substituting Eq. (12.1) into Eq. (12.11) gives the vector 

admittance 
1 

R +j(XL - Xc) 
(12.12) 

Since only the absolute magnitude is plotted, we can write 

VR^ + VR^ + {Xl- XcY 

or if the values of Xt and Xc are substituted, 

Y = 

(12.13) 

(12.14) 

An inspection of Ohm’s law shows that the current of a series circuit is 
proportional to Y and hence gives a resonance curve; thus 

I 
E 
Z 

= EY = 

j_Y 
2irfC/ 

(12.15) 
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where / = effective current, amp 
E = effective voltage, volts 
Z = impedance magnitude, ohms 
Y = admittance magnitude, mhos 
R = resistance, ohms 

X = Xl-"Xc = the total reactance, ohms 
/ = frequency, cycles/sec 
L = inductance, henrys 

C = capacity, farads 
Equations (12.14) and (12.15) are in convenient form for plotting reso¬ 
nance curves. Near resonance, however, the total reactance X has a 
small value, resultiug from taking the difference between two large num¬ 
bers. To obtain an accuracy of better than 1 per cent in this region, 
six-place logarithms should ordinarily be used. 

In ordinary resonant eucuits containing a coil and capacitor, prac¬ 
tically all the resistance is in the coil. It is convenient to use the ratio 
of the inductive reactance to the resistance; this ratio is called the Q of 

the circuit, defined mathematically as 

The Q of a series circuit can be used to determine most of its charac¬ 
teristics. At resonance, the current I = E/R, and Xl == Xc] hence the 
voltage across the inductance is 

El. = IXl = ^ = EQ (12.17) 

and similarly, the voltage across the capacitor is 

Ec = IXc = ~ = EQ (12.18) 

These equations show that there is a resonant rise of Q times the applied 
voltage across each reactance element at resonance. 

Perhaps the most convenient way to specify the sharpness of resonance 
is in terms of Q. Another factor, known as the 'percentage of frequency 
discrimination, can be defined in terms of Q and is the best single factor 
to indicate this sharpness of resonance. This factor with other points 
on the resonance curve w ill now^ be treated. 

The slope of the reactance curve Xl, as shown in Fig. 12.6a, is a con¬ 
stant at all frequencies because the curve is a straight line. The slope of 
Xl can be obtained by forming a triangle as shown in Fig. 12.6a and 
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taking the ratio of the opposite to the adjacent side; thus 

Slope of Xl = ~ = 2irL (12.19) 
J2 — Jl 

The slope of the reactance curve Xc as shown in Fig. 12.6a is not a 
constant; hence a small triangle must be made at the point of interest to 
determine the slope at that point. Since we are interested in the slope 
at fry select fi below fr and /2 above fr to form a triangle as shown in 

(a) Reactance curves 

Fio. 12.6. 

(b) Resonance curve 

Reactance and resonance curves of a series circuit. 

Fig. 12.6a. The slope of Xc at the resonant frequency fr can then be 
written as the ratio of the opposite to the adjacent side; thus 

Slope of Xc = 
( 2^/20') ( 27r/ic) _ 

/z ~ fi 2irfif2d 
(12.20) 

Since /i, f^, and fr are approximately equal, fr can be written as the 
geometric mean of fi and f^; thus 

/r* = /1/2 (12.21) 

Substituting this in Eq. (12.20) gives 

Slope of Xc = 2^^ (12.22) 

Since at resonance the reactances are equal, 

1 
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If this equation is divided by it is seen that the slopes of Xl and Xc, 
as given in Eqs. (12.19) and (12.22), are equal at this frequency; thus 

27rL 
1 

2Tfr^C 
(12.23) 

The slope of the total-reactance curve X is then the sum of these two 
curves of equal slope, giving 

Slope of X = 4irL (12.24) 

Now if /i is taken as the lower frequency at which the resonant power 
is reduced to half, and /a is the upper frequency at which the resonant 
power is reduced to half, then 

R = X (at/land/a) (12.25) 

and the slope of X as shown in Fig. 12.6a is 

Slope of X = 4irL = (12.26) 
j2 — ji h "" U 

Combining this ecjuation with Eq. (12.16), the frequency discrimination is 

_ h -fi_ li _ 1 /. /. 2TfrL Q (12.27) 

where A/ = /2 — /i the band uidth of the circuit 

/2 = upper frequency of half resonant power 
/i = lower frecpiency of half resonant power 
fr = resonant frequency 
It = resistance of complete series circuit including the generator 
L = inductance of the series circuit 
Q = Q oi coil 

100 
Hence —tt ~ freciuency discrimination (12.28) 

y 
From this equation two points can easily be obtained on the resonance 

curve. The resonant frequency fr is approximately midway between 

f\ and /2; hence with Eq. (12.27) 

f = =/,-/,=/,-/, = A (12.29) 

Then ~ 4 

and ^ (^2.31) 

These last two equations are very useful in plotting resonance curves, as 
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shown in Fig. 12.65. They show that when the frequency deviates by 
1/2Q from the resonant frequency, the power is reduced to 50 per cent 
of the resonant power, the current to 70.7 per cent of the resonant cur¬ 
rent, and the current is 45® out of phase with the applied voltage. 

Another useful set of points is/a and/4, as shown in Fig. 12.65, where 

U=fr-^ (12.32) 

/4 = /r + ^ (12.33) 

For this deviation of l/Q from the resonant frequency of /r, the power is 
reduced to 20 per cent of the resonant power, the current to 44.7 per cent 
of the resonant current, and the current is 63.5® out of phase with the 
applied voltage. 

The shape of the resonance curve, as shown in Fig. 12.65, can be 
approximately determined by these five points, which arc given as func¬ 
tions of Q. If a more detailed resonance curve is desired, other points 

1000 2000 3000 4000 
Frequency in cycles per second 

Fio. 12.7. Resonance curves for a series circuit containing different resistances. 

can be added by the use of Eq. (12.14) or (12.15). Figure 12.7 shows 
several resonance curves, indicating how the resistance of a circuit affects 
the sharpness of the curve. The discrimination of the circuit against 
frequencies near the resonant frequency is increased very much as the 
resistance is made small. 

The process of varying the frequency to produce resonance is called 
tuning the circuit. Usually it is desired to tune a circuit at a fixed fre¬ 
quency, so it is accomplished by varying either L or C or both. Curves 
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similar to those in Fig. 12.7 will be obtained with L or C plotted along 
the a:-axis instead of /. 

Example 12.5. If the resistance of Example 12.1 is changed to 0.5 ohm and the 
voltage to 1 volt, determine the Q of the circuit at resonance (generator resist¬ 
ance = zero), the voltage across the capacitor at resonance, the frequency discrimi¬ 
nation. Determine five points, with their associated phase angles, to find the approxi¬ 
mate resonant curve of the current. 

Solution. By Eq. (12.16) and the results from Example 12.2, 

^ 2-rrfrL (6.2832)(2,515)(2 X 10-») 
-05"^- 

By Eq. (12.18) 

Ec =QE = (63.25)(1) = 63.25 voIIb 

By E<|. (12.27), the frequency diacrimination ia 

- a - 

Ans. 

Ans. 

Ans. 

By Eqs. (12.6), (12.30), (12.31), (12.32), and (12.33), the frequencies for the five 
points on the resonance curve are found to occur at (with four-place accuracy) 

Ans. 

2,495 Ans. 

2,535 Ans. 

2,475 Ans. 

2,555 Ans. 

The rurronts, taken with respect to the generator voltage, are 

/E /, = 1 = gL = 2/0>mp (at /,) Ans. 

ii = (0.707) (2) 7+45'’ = 1.4147+4.5° (at /i) Ans. 

= (0.707) (2) 7-45° = 1.414/-4^° (at fi) Ans. 

1, = (0.447)(2)7+63.5° = 0.8947+63.5° (at ft) Ans. 

/< = (0.447) (2) 7-63.5° = 0.8947 -63.5° (at ft) Ans. 

12.6. Optimum L/C Ratio. The product of L and C is used to deter- 

mine the resonant frequency ^ but it does not fix the individual values of 
L and C. For example, the inductance can be doubled and the capacity 
halved without altering the resonant frequency or the product LC, but 
the ratio L/C will be four times as large. These curves are draAvn in 
Fig. 12.8 for Example 12.1 (jcoL, —j/wC, X) and also for the case of twice 
this inductance and half this capacity (jwL', —j/ooC', X'). 

Selectivity is a measure of the ability of a circuit to tune to a particular 
wavelength to the exclusion of others. This can be measured by the 
slope of the reactance curves X and X' in Fig. 12.8. It will be noted that 

fr = 2,515 
/ 9 K1K_2y5\b _ 
Ji (2) (63.25) 

/2 = 2,515 + 19.87 

fz 2,515 

f, = 2,515 + 39.75 



216 COMMUNICATION CIRCUIT FUNDAMENTALS 

the curve X' has a larger slope (is steeper) than curve X as they pass 
through the resonant frequency. This means that the selectivity 
increases as the Q of the coil increases, and if it were not for the inherent 
resistance in a series circuit, there would be no limit to the extent to 
which a circuit's selectivity could be increased. As the L/C ratio is 
increased, the capacity C becomes smaller, and if the ratio is increased 
too far, every slight change in capacity will detune the circuit. Usually 

the mechanical design of variable 
capacitors determines the capacity 
range and hence the L/C ratio. 

Inductance-coil design usually 

fixes the Q of the coil, and if the 
resistance of the circuit joints is 
kept low, they will vary only 
slightly in comparison with the 
coil resistance. With a given 
value of Q, the selectivity will in¬ 
crease as L is made larger. The 
minimum capacity obtainable will 
be the limiting factor as to how 
large one can make this inductance 
and still tune the circuit to reso¬ 
nance at the desired frequency. 
This minimum capacity includes 
the distributed capacity of the coil 

plus the minimum capacity of the tuning capacitor. For instance, in the 
design of a tuned input circuit to a vacuum tube, the capacity of the leads 
and the grid-to-cathode capacity of the vacuum tube must be added to the 
minimum capacity of the tuning capacitor. 

Example 12.6. If the minimum capacity across the input coil to a vacuum tube 

in a broadcast receiver is approximately 45 nni, determine the inductance and the 

capacity range of a capacitor necessary to tune across the broadcast band from 550 

to 1,600 kc. 

Solution. By Eq. (12.5) at 1,600 kc 

[(6.2832)(1.6 X 10®)]*(45 X 10-i») 

“ 4^60 “ 

Now at 550 kc the capacity by Eq. (12.5) is 

P_1_ 
[(6.2832)(0.55 X 10«)]*(235 X lO"®) “ 2,802 

* 357 mmI maximum capacity 

LC=L'C ^constant 
L/C = 1000 
L7C'= 4000 

Fig. 12.8. Reactance curves showing change 

in L/C ratio. 

Ans, 
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Example 12.7. Since 350-mmI capacitors are usually used to tune across the broad¬ 

cast band, determine the minimum capacity and inductance necessary to use with 

the capacitor. 

Solution. From Example 12.6, the ratio of C.nax/Cmin = = 7.84, which 
means that the new minimum capacity will be 

350 
Cmin = = 44.6 nni = minimum capacity Ana. 

The new value of inductance by Eq. (12.5) is 

[(6.2832)(0.55 X 10«)12(350 X lO"'*) 

= 239.5 fxh Ans. 

For a broadcast receiver, it is not desirable to make the circuits too 
selective, for in doing so the required frequency band will be distorted. 
Even though, with careful design, the minimum capacity could be reduced 
considerably below 44.6 /xMf with a resulting gain in selectivity, it may 
not be desirable if the receiver is to be used for broadcast reception. 

12.6. Solution of Several Impedance Elements in Series. Many times 
it is desirable to find the total impedance of a series circuit containing 
several known elements. This can best be illustrated by the solution 
of some practical problems. 

Example 12.8. Given a load with an impedance of Zi = 7?i -f jXi = 70.7 + j70.7 

ohms, in scries with an impedance of Z2 = /^2 + iA2 — 6 + j8 ohms. If 110-volt 

alternating current is applied, determine the current flowing and the voltage across 

the load. Draw a voltage vector diagram. 

Solution. The total impedance is obtained by adding Zi and Z2 in rectangular 

form. (Note: Vectors are added in rectangular form and multiplied in polar form.) 

Z, =. 70.7 +i70.7 

Z2 6 + i 8 

Z = 76.7 + j78.7 =* total impedance 

Changing this to polar form for use in Ohm’s law gives 

Z = v/(76.7)‘ + (78.7)»y/tan-> 

=» 109.8/45°44' 

Taking the voltage as the reference vector, the current is 

, 110/0° 
' -1 iw/w - i “>p 

which is the current flowing in the series circuit. 

The voltage drop across the load is 

61 - IZx * (1.002/0°)(100/45°) 

- 100.2/45^ volts Ans. 
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This example shows that the voltages across the various impedances 
add vectorially to give the resulting total voltage across the series circuit. 
This is a statement of Kirchhoff’s voltage law for an a-c circuit. In other 
words, the vectorial voltages around a series circuit form a closed polygon. 

(a) Circuit diagram (b) Voltage vector diagram 

Fig. 12.9. Impedances in series. 

In the preceding example, this polygon is a triangle made up of sides 
Ey Eij and E^- The voltages around this circuit can be divided up into 
the voltages across the various elements, such as IH\, jlXi, jlX2y 
and IZy forming a five-sided polygon as shown in Fig. 12.9. 

Summary 

Series resonance occurs in an a-c circuit when the inductiv'e reactance is equal to 

the capacitive reactance. Whe^i this condition exists, the total impedance is a 

minimum and the current is a maximum. The frequency at which series resonance 

occurs is given by the relation fr = (l/27r) \/\/IjC^ In a series-resonant circuit the 

voltages appearing across the inductance and across the capacitance can exceed th(i 

total applied voltage. 

The sharpness of resonance in a series resonant circuit depends upon the Q of the 

circuit. Q is defined as the ratio of inductive reactance to the resistance 

{Q = 2TrfL/R) and is very nearly a constant, since both the inductive reactance 

and the resistance increase almost linearly with frequency. The sharpness of 

resonance, or the selectivity, of a resonant or tuned circuit depends also on the 

L/C ratio. 

The Q of a series-resonant circuit can be determined from the resonance curve. On 

either side of resonance the power will be one-half the resonant power (the current 

will be 0.707 times the current at resonance) at frequencies /i and whose values 

depend on the Q of the circuit. They are related by the expressions /i « /r — (Jr/2Q) 
and ft ^ fr + (fr/2Q). The difference /z — /i = A/ is often called the band width 

of the circuit and is equivalent to A/ =* (l/Q)/r. At frequencies ft and f^ where the 

power is reduced to 20 per cent of the resonant power (the current will be 44.7 per 

cent of the current at resonance) the width of the resonance curve is twice the band 
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width. These frequencies are related to the Q of the circuit by the expressions ft = 
St - (fr/Q) and 

/. »/r+§ 
Therefore, knowing merely the Q and the resonant frequency of a series-resonant 

circuit, it is possible to obtain five points of the resonance curve: Jm at /r, 0.707/ m at/i 

and /n, 0.447/„t at /a and /a. 

Exercises 

12.1. What one factor determines the characteristics of a series circuit? How do 

the resonance curves vary when this factor is changed? P]xplain. 

12.2. A circuit is made up of an inductance of 300 /xh, a resistance of 10 ohms, 

and a capacity of 300 What is the resonant frequency/r^ What is the 

impedance at this frequency? What is the phase relation of the voltage and the 

current? 

12.3. When the power factor of the series circuit of Exercise 12.2 is 0.4462, what 

is the frequency? (Give two.) 

12.4. If 250 volts is applied across the circuit of Exercise 12.2, what current will 

flow at resonance? When the power factor is 0.707? What voltage would be read 

across the inductance? The capacity? 

12.6. Plot the resonance curves on graph paper for the series circuit of Exercise 12.2. 

12.6. Plot the resonance curves for a circuit containing 600 /jh inductance and 

150 /x/xf capacity on the graph paper with the curves of Exercise 12.5. Have the 

two circuits the same resonant frequency? Why? 

12.7. Explain the difference between LC product and L/C ratio and how they are 

used in the design of a resonant circuit. 

12.8. Is it possible for the voltage to be higher across a piece of apparatus in a 

series circuit than the generator voltage across the series circuit? Why? Explain 

in detail. 

12.9. A series circuit consists of throe impedances 

Zi = 100/+60° 

Zi = 757-30° 

Z, = 50 - >50 

connected across a generator of 500 volts, (a) Determine the total impedance of the 

circuit and draw a vector diagram to scale, (h) Calculate what current will flow, and 

give its phase relation to the applied voltage, (c) What will a voltmeter read if con¬ 

nected across Zi, Z2, and Zs? 



CHAPTER 13 

ALTERNATING-CURRENT PARALLEL CIRCUITS 

When two parts of a circuit are so connected that the same voltage is 
across both parts, they are said to be in parallel. Parallel circuits con¬ 
taining resistance only were discussed in Chaps. 3 and 4. In this chapter, 
capacity and inductance in parallel will be treated, with a discussion of 
the effect of resistance in series with them. 

13.1. Parallel Resonance or Antiresonance Phenomena. The term 
antiresonant is used in connection with parallel circuits, because the line 
current reaches a minimum instead of a maximum as in the case of a series 
circuit at resonance. A parallel circuit is sometimes called a tank circuit 
because it acts like a tank, storing large circulating currents. 

(a) Circuit (b) (c) 
Current vector diagrams 

Fig. 13.1. Sine-wave voltage impressed on a parallel antiresonant circuit. 

Consider the parallel antiresonant circuit of Fig. 13.1. This circuit 
consists of a capacitor and coil in parallel across a line. The resistance 
of the coil is lumped in R, and its inductance is lumped in L. In the 
inductive branch, the current will lag the voltage by nearly —90° depend¬ 
ing upon the amount of resistance in the coil. This is shown in Fig. 13.16. 
If only the inductive branch were to be considered, II would normally be 
drawn along the positive x-axis, and then & would be at some positive 
angle, nearly +90°. However, since there is another parallel branch, 
the voltage E across this branch is taken as a reference vector and placed 
along the positive x-axis. Since the loss in capacitors is very small, it is 

220 
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considered zero in this case; then the capacitive current i c flowing through 
the capacitor leads the voltage across the parallel circuit by +90°. The 
currents II and Ic flow away from the point a, so the total current t 
flowing in the line must equal the sum of these currents, since Kirchhoff's 
current law must hold at this point. The current / in Fig. 13.1?) is the 

vector sum of Jl and Ic (it is the diagonal of a parallelogram made up of 
sides /l and Ic). If the capacitive current /c is moved parallel to itself 
to the other side of the parallelogram, the result will be a closed triangle. 
{Note: A vector can be moved without changing its value as long as its 
magnitude and direction are not altered,) The resulting triangle is shown 
in Fig. 13.1c. The equation for the currents at this junction is 

/E I = iL ic (13.1) 

where / = total vector lipe current flowing to point a 
I\ = vector current flowing through the inductive branch away 

from point a 
ic — vector current flowing through the capacitive branch away 

from point a 
Since the admittance Y is proportional to the current /, the admittance 

vectors for this parallel antiresonant circuit can be written 

Y ^ Yl- Yc (13.2) 

where Y = total admittance vector of the parallel branch 
Yl — admittance vector of the inductive branch 
Fc = admittance vector of the capacitive branch 

In terms of impedance vectors, this eciuation can be written 

or 

where F = 4^ 
Z 

J. 

z 
1 , 1 _ Zc + Zl 

Zl Zc ZlZc 

z = 

Z lZc 

Zl + Zc 

(13.3) 

(13.4) 

= 4- 

Zl 

yc = -^ 
'Ic 

If this equation is applied to the parallel antiresonant circuit of 
Fig. 13.1a, the impedances of the parallel branches, if written in rectangu¬ 

lar form, are 
Zl = /2+jXl 

Zc ^ ^jXc 

(13.5) 
(13.6) 
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Substituting these values in Eq. (13.4), and remembering that j 

= —1^ and — = — (~1) = 1, results in 

^ _ (/2 + jXL)(-jXc) __ X.Xc - jRXc .. 
^ R+jXL-jXc ~'R+j{XL-Xc) ^ 

This is a vector equation of the impedance Z but is not in a very con¬ 
venient form, since both numerator and denominator are in rectangular 
form, that is, they both contain a resistive and reactive component. This 
equation can be rationalized by multiplying both numerator and denomi¬ 
nator by the conjugate of the denominator.^ This will remove the j 

term from the denominator, and the impedance can then be written in 
true rectangular form with a resistive and reactive component. 

The conjugate of a complex number or vector is a vector of equal magnitude 
but of opposite phase angle. Hence when a number and its conjugate 

are multiplied together, the phase angles add to give zero. For example, 
let 

c = a + jb = cf<j> (13.8) 

then the conjugate of c is 
a — jb — c/ — 4> (13.9) 

And the product in rectangular form is 

(a + jb){a — jb) = + jab — jab — j^b = a‘^ + b^ (13.10) 

Or the product in polar form is 

c/0c/-<^ = cV0 - <t> = c2/0° = a2 + b‘^ (13.11) 

Since multiplying both numerator and denominator by the same thing 
does not change the value of the fraction, the conjugate of the denomina¬ 
tor of Eq. (13.7) can be multiplied by both numerator and denominator 
as follows: 

Z = 
r XlXc - jRXc 1 \R-jiXc - Xc)] 
iR+jiXL- Xc)] [r - - - Xc)\ 

Performing the indicated multiplication gives 

RXlXc - jR^Xc - j(XL - Xc)XlXc + jHX, - Xc)RXc 
R^ + j{XL - Xc) - j{XL - Xc) - jKXL - Xc)^ 

Expanding in the numerator and canceling terms in the denominator. 

^ _ RX,Xc - jR^Xc - jXr.^Xc+jX,Xc^ + j^X.XcR ~ j^Xc^R 
« T10 I / v ir \ o /e* + {Xl - Xcy 

' Carl E. Smith, Applied Mathematics^ 1st ed., McGraw-Hill, New York, 1945, 

p. 98. 
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Canceling terms in the numerator, 

RXc^ - jR^Xc - jXi}Xc + oXlXc^ 
^ R^ + (Xl - XcY 

It will be noted that j appears in only three of the four terms in the 
numerator; hence, the fraction can be written as the sum of two fractions 

RXc^ , , - R^Xc) 
■ R^ + (Xl - XcY R^+{Xl- Xcr ^ ^ 

This is the rectangular form for the general and exact equation of the 
impedance of a parallel circuit containing resistance and inductance in 

one branch and a pure capacity in the other branch. 

Example 13.1. A parallel circuit as shown in Fig. 13.1a has 

Xl r= 50 ohms inductive reactance 

Xc = 75 ohms capacitive reactance 

H = 5 ohms resistance of the coil 

Determine the impedance of the parallel circuit in polar and rectangular form. 

Solution. Using Eq. (13.7) 

^ __ XlXc - iRXc ^ (50) (75) - j(5)(75) 

^ “ /e 4- j(XL - Xc) 5 + ;(50 - 75) 

3,750 - i375 _ 3,769/-5-43- 

“ 5 - j25 25.49/-78-4U 

= 147.8/72-^' ohms (in polar form) 

= 147.8(0.29293 -f- i0.95613) 

= 43.3 + il41.3 ohms (in rectangular form) 

Substituting in P]q. (13.12) 

r> _ _ (5)(75)2 . (50)(75)2 - (50)2(75) - (5)2(75) 

52 + (50 -’75)* 5* + "(60 - 75)* 

28,125 . 281,250 - 187,500 - 1,875 

650 + 650 

= 43.3 + il41.3 = 147.8/72°58' .Ins. 

Example 13.1 shows that h'.qs. (13.7) and (13.12) give exactly the same 
results. In Eq. (13.7), the denominator and numerator have to be 
changed from rectangular form to polar form in order to perform the 
division, and the answer then first appears in polar form, while Eq. (13.12 
has been changed into rectangular form to begin with, hence the answer 
appears in rectangular form first. It then can be changed to polar form 

if necessary. 
13.2. Resistance and Reactance Curves of a Parallel Antiresonant 

Circuit. Equation (13.12) is useful to obtain the antiresonant resistance 
and reactance curves of a parallel circuit containing resistance only in 

Ans, 

Ans. 
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the inductive branch. The first term gives the resistance component, 
and the second term gives the reactance component. These curves have 
been plotted in Fig. 13.2 for two values of resistance in the inductive 
branch. It will be noted that both resistance and reactance curves are 
sharper for the lower value of resistance. If this resistance were made 
zero, the resistance curve would go to positive infinity at antiresonance, 

Frequency in kilocycles 
Fig. 13.2. Resistance and reactance curves of a parallel antiresonarit circuit plotted as a 

function of frequency, with two values of resistance in the inductive branch. 

and the reactance curve would jump from positive infinity to negative 
infinity at this same point. 

13.3. Loci of Impedance and Admittance Vectors of a Parallel Anti¬ 
resonant Circuit. The impedance of a parallel circuit is the vector sum 
of the resistance and reactance components as given in Eq. (13.12). 
Three such vectors have been plotted in Fig. 13.3. The terminus of the 
impedance vector traces out almost a circle as the frequency is increased 
and passes through antiresonance. The impedance vector Z\ is for 
997,500 cycles per sec. The impedance vector traces the second quadrant 
of the circle as the frequency is varied from 0 to 997,500. The first quad¬ 
rant is traced as the frequency is varied from 997,500 to 1,000,000 (from 
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Z\ to Z2). Z2 is the impedance value at the antiresonant frequency. 
The fourth quadrant is traced as the frequency varies from 1,000,000 to 
1,002,500 (from Z2 to Z3), and the third quadrant is traced as the fre¬ 
quency increases from 1,002,500 to negative infinity. From this it is 
seen that half the circle is traced, while the frequency varies from 997,500 
to 1,002,500 or from vector Zi to vector Z3. Since the terminus of the 
impedance vector traces almost a circle, its reciprocal, or the admittance 
of a parallel circuit, will trace almost a straight line. This is opposite to 
the effect in a series circuit as shown in Fig. 12.4. 

The impedance curves have practically the same shape as the resistance 
curves, as will be seen if the resistance curves of Fig. 13.2 are compared 
with the impedance curves of Fig. 
13.8. The impedance curves for 
the L/C ratio are plotted for 5 and 
20 ohms and are the vector sums 
of the resistance and reactance 
curves of Fig. 13.2. The resist¬ 
ance curves are just slightly 
sharper than the impedance 
curves, owing to the added effect 
of the reactance in the circuit. 

Z2= 

Rz-^jO 

Fig. 13.3. Locus of impedance vectors in a 
parallel circuit as the frequency passes 
through antiresonance (almost a circle). 

At antiresonance, the reactance is zero; hence the peaks of the resistance 
and impedance curves are equal. 

13.4. Definition of Conductance and Susceptance Vectors. In 
parallel circuits it is easier to add admittances than to add the reciprocals 
of impedances, just as in the case of pure resistive circuits it is easier to 
add conductances than to add the reciprocals of resistances. When the 
parallel circuits contain both resistance and reactance, it becomes con¬ 
venient to define the in-phase component of the admittance as the con¬ 
ductance and the out-of-phase component as the susceptance. 

In general, consider the reciprocal of the vector c as given in Eq. (13.8), 
and then rationalize the fraction by multiplying both numerator and 
denominator by the conjugate of the denominator; thus 

i = (_L_^ (^ ~ ^ ~ 
c \a + jhj \a — jb/ a^ + 6* 

_ a ^ ^ 

~ a^TT^ ~ ^ + 6* 
(13.13) 

If 6 is an impedance vector, then its reciprocal is called an admittance 

vector, and the real and imaginary portions of this vector as defined in 
Eq. (13.13) are called the conductance and susceptance, respectively, of 
the admittance vector. 



226 COMMUNICATION CIRCUIT FUNDAMENTALS 

The vector t and its reciprocal are shown in Fig. 13.4. It will be noted 
that the vector c ^ a + jb lies above the reference axis by an angle <^, 

and the reciprocal lies below this 
axis by the same angle measured 
as — 0. 

The admittance of the inductive 
branch of the parallel circuit 
shown in Fig. 13.1a can be written 
as the reciprocal of the impedance 
and then rationalized as was done 
in Eq. (13.13) to obtain 

Fl = 4- = 1 R 

Fig. 13.4. Reciprocal of a complex number 
in rectangular or polar form. 

-J- 

Zl /e + jx, 
Xi 

+ Xj,^ 

==G-jBL (13.14) 

where 

and 

G = 

Bl = 

R 

+ Xi^ 

Xt 

R^ + Xi* 

= conductance, mhos 

= susceptance, mhos 

(13.15) 

(13.16) 

The last two equations can be taken as the definitions of conductance and 
susceptance, respectively, in terms of the resistance and reactance of the 
circuit. Similarly, the resistance and reactance of a circuit can be defined 
in terms of the conductance and susceptance of the circuit; thus 

where 

and 

J_ 

Yl 

1 G 
+ 3- 

B,. 

G - JBl + Bl^ G^ + B,,^ 

^ = resistance, ohms 

= R+jXr 

R = 

X,, = 

(?» + Bl^ 

Bt 

G^ + Bl^ 
= reactance, ohms 

(13.17) 

(13.18) 

(13.19) 

Example 13.2. Solve Example 13.1 by the application of conductance iind sua- 

ceptance vectors. 

SoltUion. By Eqs. (13.15) and (13.16) the conductance and susceptance of the 

inductive branch are 

® =• 0.00198.mho 

Rl » “ 0.01980 mho 
o* -h oU* 

The admittance of this branch is then, by Eq. (13.14), 

ti - JBl - 0.00198 - j0.0198 
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Since the resistance of the capacitive branch is zero, Eqs. (13.14) and (13.15) reduce to 

G = 0 

and Be = — 0.01333 mho 
Ac 7o 

The admittance of this branch is then 

Kc = 0 + jBc = i0.01333 mho 

Now by Eq. (13.2) the total admittance is 

Y = Yl Yc == G - jBl + jBc = 0.00198 - jO.OlOS + j0.01333 

= 0.00198 - j0.00647 = 0.006766/ -72^' 

And the corresponding impedance is 

Z'= 4- = -^- = 147.8/72°58' 
Y 0.006766/-72°58' 

" = 43.3 + jl41.3 Am. 

It will be noted that this method gives the same answer as that obtained in Example 

13.1. 

13.6. Susceptance Curves of a Parallel Circuit. Consider the theo¬ 

retical case of a parallel circuit lacking resistance in either branch. Then 
the susceptance is the reciprocal of the reactance. For instance, the 
susceptance Be of the capacitive branch is 

-rk-h-^c 
and the susceptance Bl of the inductive branch is 

(a) Capacitive suscep- (h) Inductivo suscep- (c) Total susceptance 
tance tance 

Fio. 13.5. Susceptance curves of a parallel antiresonant circuit. 

Figure 13.5a shows how the susceptance of a capacitor varies with fre¬ 
quency; Fig. 13.56 shows how the susceptance of an inductance varies 
with frequency, and Fig. 13.5c shows how the two curves can be added to 
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obtain the total susceptance of a parallel circuit. It will be noted that 
these curves are exactly similar to the reactance curves of a series circuit 
as showTi in the last chapter. 

The negative reciprocal of the total-susceptance curve is a total-reactance 

curve. The total-susceptance curve B of Fig. 13.5c is redrawn in Fig. 

13.6a, and its reciprocal is shown in Fig. 13.66. An explanation of this 

(a) Total susceptance (b) Total reactance 

Fig. 13.6. Susceptance and reactance curves for a parallel antiresonant circuit containing 
no resistance. 

reciprocal relation can be obtained from Eqs. (13.20) and (13.21). In 
terms of total susceptance and reactance, these equations are 

= ~Jx JY (13.22) 

For example, take a point on the susceptance curve B of Fig. 13.6a 
below the x-axis. If —is large and the frequency is low, its reciprocal 
will be a small positive quantity as shown in the total reactance curve of 
Fig. 13.66. Zero reactance corresponds to an infinite negative suscept¬ 
ance. As the frequency increases to the antiresonant frequency /r, the 
susceptance B becomes a small negative number, and its negative recipro¬ 
cal will be a large positive number, until at zero susceptance it becomes 
an infinite positive reactance. As the susceptance becomes positive after 
passing through zero (as it crosses the x-axis), its reciprocal jumps from 
positive infinity to negative infinity and then becomes a smaller negative 
reactance as the frequency is increased and the susceptance becomes a 
larger positive quantity. 

The reactance curves of Fig. 13.66 are for* pure reactive elements in 
parallel. In actual practice, there is always some resistance, and the 

result is that these reactance curves change into the form shown in Fig. 
13.2. They do not go to infinity but reach, as will be shown later, a 
maximum at a fractional deviation of 1/2Q of the resonant frequency. 
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13.6. Optimum L/C Ratio. An inspection of the susceptance curves 
of a parallel circuit shows how the susceptance of a parallel circuit depends 
upon the L/C ratio. Figure 13.7 shows the susceptance curves for a 
parallel circuit for two values of the L/C ratio. In each case, the LC 
product is kept the same. 

The curves in Fig. 13.7 are susceptance curves; therefore parallel-cir¬ 
cuit selectivity is increased by increasing the slope of the curve. The 

magnitude of this improvement in selectivity is shown in Fig. 13.8. For 
a parallel circuit with 5 ohms resistance, the circuit impedance at reso¬ 
nance is increased from 50,000 to 200,000 ohms by multiplying the L/C 
ratio by 4. This means that the slope of the sides of the antiresonance 
curve is much more for the case of the higher L/C ratio. 

The Q of the circuit tells, more than any other one factor, the merit of 

the circuit. To illustrate this important point, an example has been 
solved for two L/C ratios and two values of resistance in the inductive 
branch for each case and have been plotted in Fig. 13.8. These curves 
clearly show that the sharpness of the antiresonant impedance curves is 
decreased when the L/C ratio is decreased. The impedance of the circuit 
at resonance is proportional to the L/C ratio. 

Even though the resistance of the parallel antiresonant circuit will 
increase when the inductance is increased, owing to the increased number 
of turns, the resistance increases only directly as the number of turns. 
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while inductance increases as the square of the number of turns. Hence, 
the Q of the circuit will be improved if the L/C ratio is increased. As in 
the case of the series circuit, usually the mechanical design of the variable 
capacitor will determine the capacity range and hence the L/C ratio. 

Fig. 13.8. Impedance of a parallel antiresonant circuit for two values of resistance in the 

inductive branch and for two L/C ratios. 

If more selectivity is desired, resort must be made to decreasing the coil 
resistance by improved coil design; by this means, the Q of the circuit 
will be increased. 

13.7. Approximate Equations of Impedance of a Parallel Antiresonant 
Circuit, a. Resistance in Inductance Branch. If the resistance of the 
coil is low, the condition for aUtiresonance is that the inductive reactance 
is equal to the capacitive reactance, that is, Xl = Xc. This is the same 
condition as that for resonance in a series circuit containing L and C. 
Making this substitution in Eq. (13.7) gives 

Z = 
XlXc - jRXc 

H 
(13.23) 

Since R is very small in comparison with Xc, the second term in the 
numerator can be neglected in comparison with the product XlXc, and 
the approximate equation can be written 

^ ^ = XtQ = ^ = XcQ (13.24) 

Substituting Xi = 2ir/L and = ^ir/C in the above equation gives 

^ ^ XlXc ^ 2t/L _ L 
R R^kJC RC 

(13.25) 
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Equations (13.24) and (13.25) are extremely important practical equa¬ 
tions for the condition of parallel antiresonance where the resistance R 

is relatively small in comparison with the inductive reactance. These 
equations should be memorized. 

Example 13.3. Given a parallel antiresonant circuit with the following constants: 

C = 169 MMf, / = 1,000 kc 
L = 150 Mh, Q = 100 

Determine the impedance from the various approximate equations. 

Solution 
Xl = 2x/L 

= (6.2832)(10«)(150 X 10-«) 

= 942 ohms 

Xl 942 
R 

Xc = 

Q 100 
= 9.42 ohms 

1 

^ ^ XlXc 

27r/C (6.2832)(10«)( 169 X lO'^*) 

= 942 ohms 

^42)m2) 
“9.42 R 

= 94,200 ohms 

. Xl^ (942)2 .. _ , 
~R ^ 94,200 ohms 

= XlQ 

. 
(942) (100) - 94,200 ohms 

- XcQ = (942) (100) = 94,200 ohms 

^ L _ 150 X 10-« 
RC (9.42) (169 X lO'^^) 

= 94,200 ohms 

Ans. 

A ns. 

Ans. 

Ans. 

Ans. 

Ans. 

b. Resistance in Both Parallel 

Branches. If both branches of 
the parallel antiresonant circuit 
contain resistance as shown in 
Fig. 13.9, the approximate equa¬ 

tions (13.24) and (13.25) can be 
written with 

Rt = RL + Rc (13.26) 

Thus the approximate equation 

for the impedance is 
Fig. 13.9. Resistance in both branches of a 

parallel antiresonant circuit. 

z = 
XuXe Xz,’ ^ ^ Xc’ 

Rl "i" Rc Rl "h Rc 

L 

C(Rl + Rc) 

= XiQ, = 
Rl. + Rc 

= XcQi 

Qi = 
Xl 

Rl "I" Rc Rl "f" Rc 
where 

(13.27) 

(13.28) 
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This approximate equation is accurate only when TZl + is small in 

comparison with Xl and Xc. 

13.8. Approximate Resonance Curves of a Parallel Antiresonant 
Circuit. A careful examination of Eq. (13.4) reveals that the numerator 
ZlZc is approximately a constant if the Q is reasonably high, and that 
the denominator + Zeis the series impedance of the circuit; hence the 
impedance curves of a parallel circuit will have almost exactly the same 

shape as the admittance curves of a series circuit. 
At antiresonance, the voltage across the parallel circuit can, by Ohm’s 

law and Eq. (13.24), be written 

Er = IZ — = IXlQ — IRQ^ (at antiresonance) (13.29) 
ti 

The current in the inductance branch at antiresonance is 

Il = 4- = IQ (13.30) 

Since Xl = Xc, the current in the capacitive branch is also 

Ic = 4 = IQ (13.31) A c 

These equations show a resonant rise of Q times the applied line current. 
Equations (13.30) and (13,31) are for a parallel circuit, as Eqs. (12.17) 
and (12.18) are for a series circuit. 

Five points on the resonance curves of a parallel circuit can be obtained 
from Eqs. (12.6), (12.30), (12.31), (12.32), and (12.33). In Fig. 12.6, 
the reactance curves are replaced by susceptance curves, and the reso¬ 
nance curves of a parallel circuit are curves of the voltage or impedance 
instead of current or admittance as in a series circuit. The line voltage 
leads the line current for all frequencies below antiresonance, just as the 
line current leads the line voltage for all frequencies below resonance in 
a series circuit. Similarly, above antiresonance the line voltage lags 
the line current in an antiresonant circuit, while the line current lags the 
line voltage in a series-resonant circuit. 

Example 13.4. A parallel circuit with resistance only in the inductive branch has 

the following constants: 

L *■ 159 Mh, R ^ b ohms 

C - 159 mmI, / = 10 ma 

Determine the Q of the parallel circuit at antiresonance, the inductive and capacitive 

branch currents at antiresonance, the frequency discrimination, and five points, with 

their associated phase angles, to give the approximate resonant curve of the voltage. 
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Solution 

fr 
2t VLC 6.2832 \/(159 X 10-«)(159 X 10-«) 
1,000,000 cycles/sec 

^ _ a)L _ (6.2832 X 10«)(159 X 10-«) _ 
^ --- = jOO 

Ic IQ = (0.01) (200) = 2 amp 

h -/i _ 1 _ 1 

fr Q 200 
- 0.005 

=* 0.5 % — frequency discrimination 

fi = 1,000,000 - = 997,500 cycles/sec 

/2 = 1,000,000 + 2,500 = 1,002,500 cycles/sec 

1,000,000 /, = 1,000,000 
200 

= 995,000 cycles/sec 

fi = 1,000,000 + 5,000 = 1,005,000 cycles/sec 

Ana. 

Ana. 

Ana. 

Ana. 

Ana. 

Ana. 

Ana. 

Ana. 

The voltages corresponding to these frequencies, taken with respect to the resonant 

line current, are 

LL Er = IRQ^ = (0.01)(5)(200»)/^ = 2000/0^ volts 

El = (2,000) (0.707)/+45° = l,414/+45^ (at/,) 

^2 = (2,000) (0.707)/-45° = 1,414^-452 

E, = (2,000) (0.447)/+63.5° = 894/+63.5° (at/a) 
E, = (2,000)(0.447)/-63.5° = 894/-63.5° (at/.) 

Ana. 

Ana. 

Ana. 

Ana. 

Ana. 

A striking parallel will be noted between this example and Example 
12.4. In this example the line current I was held constant, while in the 
series circuit the generator voltage was held constant. 

13.9. Special Case for R = ■\^L/C in Both Branches of a Parallel 
Antiresonant Circuit. If in Fig. 13.9 the resistances in both branches 
are made equal, say, let R = Rl = Rc, then the impedance of the 
parallel circuit can be written 

Zu = R+ jXL (13.32) 
Zc^ R - jXc (13.33) 

Substituting these values in Eq. (13.4) gives 

A (fi + jXr.)(R - jXc) 
^ 2R+ jXt. - jXc 

fi2 + XlXc + jR(XL - Xc) 
2R+ j{XL - Xc) 

(13.34) 

When fi = y/L/C, we obtain an interesting result from Eq. (13.34). 

Substituting for the product 

XlXo = 
2HL _L _ 

2rfC ~ C 
(13.35) 
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in Eq. (13.34) gives 

^ + jRjXL Xc) _ p _ ^ 
^ ~ 2ff + jiXi. - Xc) ^ \C 

This equation shows that the equivalent impedance of the parallel 
combination is independent of frequency for all frequencies; hence the cir¬ 
cuit is antiresonant at all frequencies, and the voltage is at all times in 
phase with the current. Such a circuit is of value to match the surge 
impedance of communication lines, which have a surge impedance of 

y/hJC. Since this type of load impedance stays constant as the fre¬ 
quency is varied, it finds practical applications in wide-band television 
video circuits. Owing to the large amount of resistance, however, the 
circuits are usually rather low in efficiency. 

13.10. Comparisons of Series and Parallel Circuits. J. At resonance 

the impedances of both series and parallel circuits are resistive. 
2. At resonance the series circuit offers a minimum impedance, while 

the parallel circuit offers a maximum impedance. 
3. At resonance the impedance of a series circuit is increased by adding 

resistance, wffiile the impedance of a parallel circuit is decreased w hen a 
small resistance is increased slightly in one or both of the parallel branches. 

4. At frequencies below^ resonance, a series circuit has a capacitive 
reactance, wffiile a parallel circuit has an inductive reactance. 

5. At frequencies below resonance, the current in a series circuit will 
lead the voltage, wffiile the current in the line feeding a parallel circuit 
will lag the voltage. 

6. At frequencies above resonance, a series circuit has an inductive 
reactance, while a parallel cii:cuit has a capacitive reactance. 

7. At frequencies above resonance, the current in a series circuit w ill 
lag the voltage, while the current in the line feeding a parallel circuit w ill 
lead the voltage. 

8. The resonance curves of a series circuit are made sharper by decreas¬ 
ing the resistance of the circuit. 

9. The antiresonance curves of a parallel circuit are made sharper by 
decreasing the resistance of the circuit. 

10. The slope of the total-reactance curve in a series circuit is increased 
when the L/C ratio is increased. 

11. The slope of the total-susceptance curve in a parallel circuit is 
increased when the L/C ratio is decreased. 

Xote: These comparisons are for resonance in a series circuit and anti¬ 
resonance in a parallel circuit. 

Series- and parallel-resonance phenomena are perhaps the most funda¬ 

mental of all ideas in the analysis of a-c networks. 



ALTERNATING-CURRENT PARALLEL CIRCUITS 235 

Summary 

To understand the performance of parallel-resonant circuits, the student will find 

a comparison with series-resonant circuits is useful. Consider at the same time the 
impedance for both series and parallel circuits. 

Z, == R — Xc) 

A _ RXc^ . (XlXc^ - Xl^Xc - R'^Xc) 

R^ 4- (Xl - XcY /e^ -f {Xl - Xc)^ 

At resonance, the series circuit has an impedance — ft, which is usually low. 

At resonance, the parallel circuit has an impedance 

^ ft* -I- {Xl - XcY 

which for reasonably high Q circuits reduces to 

z, '= ^ = ^ = QXc 

resulting in a high impedance. This can also be written Zp = L/CR by substituting 

0)L{\ /(ajC) for (cj/y)* = XL^. 

From the preceding relationships, it is evident that at resonance, both the series 

and parallel circuits have impedances that are resistive. (This is true for parallel 

resonance only when the Q is high or when resonance is taken as the condition for 

unity power factor.) 

It is also quite obvious that at resonance the series circuit will have a minimum 

impedance, while the parallel circuit will have a maximum impedance (again only 

if Q is large). 

The two equations for the impedance readily show the effect of added resistance 

on the impedance at resonance. In the series circuit, the impedance Z«, at the reso¬ 

nant frequency, is directly proportional to (actually equal to) the resistance, and 

increasing the circuit resistance will increase the impedance and reduce the current 

at resonance. In the parallel circuit the impedance Zp at resonance is inversely 

proportional to the resistance, and increasing the resistance will reduce the impedance 

and increase the current at resonance. 

At frequencies below resonance, the inductive reactance Xl is less than the capaci¬ 

tive reactance Xc. Therefore, in the series circuit, at frequencies below the resonant 

frequency, the total net reactance is capacitive, being merely the difference between 

the two reactances. In the parallel circuit, since the inductive reactance is lower, 

the current through this branch will be greater and the line current will be increased, 

with the inductive component greater than the capacitive component. Hence, at 

frequencies below resonance, the line current will be inductive and the reactance 

will be inductive for the parallel circuit. 

From the previous statements, it is evident that below resonance the current in the 

series circuit will lead the voltage, since the reactance is capacitive. It is also obvious 

that for the parallel circuit, the current will lag the voltage at frequencies below the 

resonant frequency since the reactance is inductive. 

At frequencies above resonance, the opposite conditions will exist in both types 

of circuits to those existing below resonance. 

In both series- and parallel-resonant circuits, increasing the L/C ratio and increasing 

the Q increases the selectivity. 
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P&rallel resonance or antiresonance occurs when the line current reaches a minimum, 

when the power factor is unity, or when the inductive reactance is equal to the 

capacitive reactance. 

The presence of appreciable resistance in the branches of a parallel-resonant circuit 

affects the frequency of resonance as well as the selectivity. 

The impedance at resonance of a parallel-resonant circuit is equal to Q times the 

inductive reactance. Hence, parallel resonance results in a resonant rise of impedance 

of Q times that of either the inductance or capacitance. 

Exercises 

13.1. How does the Q of a parallel circuit affect the reactance, resistance, and 

impedance curv^es? 

13.2. Given a tank circuit with 

L = 75 Mh 

C = 338 

ft = 10 ohms 

Determine (a) the antiresonance frequency, (b) the maximum inductive and capacitive 

reactance, and (c) the frequency that will give maximum inductive and capacitive 

reactance. 

13.3. Find the approximate impedance of the parallel circuit of Exercise 13.2 at 

antiresonance. If the resistance ft *= 5 ohms, what will be the approximate imped¬ 

ance of the circuit to a signal of 1 Me? 

13.4. If an inductance of 150 /ih is available, determine the capacity nccos.sary to 

tune it to 1 Me to make a wave trap. If the inductance has 10 ohms, w ill it be a 

better wave trap at this frequency than the circuit of Exercise 13.2? 

13.6. Explain w'hy and how a meter in the line to a parallel circuit can be u.sed to 

determine antiresonance. 

13.6. When is a parallel circuit resistive, inductive, and capacitive? Explain why 

these conditions are true. 

13.7. If L = 1.25 mh and C = 2.5 /^f, determine the resistance that will be nece.s- 

sary in each parallel branch to make the circuit resistive at all frequencies. What will 

he the impedance of this circuit? 

13.8. Explain the value of susceptance curves in detail. How does the total 

susceptance var>^ as the frequency passes through antire.sonance? 

13.9. How' does the current in the line and two branches of a parallel circuit vary 

as the frequency passes through antiresonance? Illustrate with a v(*ctor diagram. 

13.10. Draw a vector diagram for Ic and ti of Exerci.se 13.7 when the fre(|uency 

fi ** 1,643 cycles/sec, ft » 2,850 cycles/sec, and fj « 4,934 cycles/sec. Do the 

terminal points of these current vectors traverse a circle? Use the line voltage as 

the reference vector. From the vector diagrams, explain why the impedance is 

always pure resistance. 



CHAPTER 14 

SERIES-PARALLEL ALTERNATING-CURRENT CIRCUITS 

In the last two chapters, series and parallel circuits have been treated. 
Series circuits are resonant at one frequency, while parallel circuits are 
antiresonant at one frequency. A circuit may have both resonant and 
antiresonant properties. Such circuits must have more than one mesh 
to have more than, one of these properties. Furthermore, owing to the 
positive slope of the reactance curves in both series and parallel circuits, 
the number of resonant frequencies cannot differ from the number of 
antiresonant frequencies By more than one, because the curve must cross 
the x-axis for resonance and go to positive infinity for antiresonance before 
it can jump to negative infinity and again cross the x-axis for resonance. 
However, if resistance is present in the circuits, the antiresonance curves 
will not go to positive infinity and negative infinity but will reach a 
maximum on either side of antiresonance, as was discussed in the last 
chapter. 

14.1, Series-parallel A-c Circuits. One of the most common his¬ 
torical applications of series, parallel, and series-parallel circuits is the 
wave trapy which utilizes the principle of resonance and antiresonance in 
the elimination of undesired signals. The following treatment of wave 
traps is only qualitative, showing roughly how one signal may be dis¬ 
criminated against another signal. 

The tank circuit of Fig. 14.1a, when tuned to the undesired frequency, 
offers a very high impedance; hence most of the undesired voltage drop 
will be across the parallel antiresonant circuit and very little of the 

undesired signal voltage will be across the receiver input terminals. The 
series circuit of Fig. 14.16, when tuned to the undesired frequency, will 
offer zero impedance to ground, hence will be shorted out, with the result 
that none of the undesired signal voltage will be across the receiver input 
terminals. 

The tank circuit of Fig, 14.1c, when tuned to the desired frequency, 
will offer a high impedance with the result that most of the voltage will 
be across the parallel antiresonant circuit, hence across the receiver input 

terminals. 
The series circuit of Fig. 14, Id, when tuned to the desired frequency, 

will offer minimum impedance, and hence will carry maximum current, 
which will cause maximum voltages across either the inductance or the 

287 
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capacity. The receiver is connected across the capacity to utilize this 
desired voltage. 

The series-parallel circuit of Fig. 14.le has two adjustments. The 
upper capacitor across the inductance is tuned to make this circuit anti¬ 
resonant to the undesired signal; hence it will have a high impedance, 

(d) * (e) 

Fig. 14.1. Some typical aeries parallel, and series-parallel wave trap circuits. 

and most of the voltage drop will be across this element. The capacitor 

below is tuned to give series resonance with the coil for the desired fre¬ 
quency. This will cause a high current of the desired frequency to flow, 
and hence a high voltage across the lower capacitor, which is fed to the 
receiver. 

14.2. Reactance Sketch for a Series-parallel Circuit. Already react¬ 
ance sketches have been made for series and parallel circuits alone. A 
series-parallel circuit with the reactance sketch is shown in Fig. 14.2a. 
Remembering that susceptance curves must be used to add the effect of 
elements in parallel, it may be seen in Fig. 14. 26 how the susceptance of 

the capacitor, Bch is added to the susceptance of the inductance, Rli, to 
obtain their sum Si. Changing the total susceptance Si of the parallel 
circuit to Xi, the negative reciprocal is taken, giving the X\ reactance 



SEH1E8-PAHALLEL ALTERNATING-CURRENT CIRCUITS 239 

curve of Fig. 14.2c. The total reactance Xi of the parallel circuit can 
now be added to the reactance Xc2 of the capacitor that is in series. 
Figure 14.2c/ shows the graphical addition of Xi and Xc2- The total 
reactance, which is dotted in Fig. 14.2ci, is drawn solid in Fig. 14.2c. 
The curve of Fig. 14.2c is the total-reactance curve of the series-parallel 
circuit of Fig. 14.2a. illustrating how the reactance varies as the frequency 
is varied. 

Fm. 14.2. Ueaotanro sketch for a series-parallel circuit. 

Analyzing the total reactance curve of Fig. 14.2c, it will be noted that 
the reactance of the series-parallel circuit is negative at low frequencies. 

In this region, from zero frequency to the series-resonant frequency /i, 
the reactance of capacitor C2 predominates, giving a capacitive reactance. 
Finally, at/i, the capacitor C2 becomes series resonant with inductance 
Ij\ and capacitor Ci in panUlel, and the resulting reactance is zero. From 
fi to /2, the circuit has inductive reactance varying from zero to infinity 
(assuming no resistance present in the circuit). At frequency/2, capacitor 
Cl becomes resonant vaih inductance Li, giving an antiresonant effect 
for the series-parallel circuit. As the frequency is increased from/2 to oc, 
the circuit is again capacitive, owing to the capacitor Ci. The reactance 
decreases from — 00 and approaches zero as the frequency is increased 
more and more. Summarizing, the effect of capacitor C2 predominates 
from zero frequency to /r, the effect of inductance L\ predominates from 
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that the total-reactance curve will have two antiresonant frequencies and 
a resonant frequency between them. The case with fi^ — can be 
considered as a special case or as an exception to the general rule. 
Usually the antiresonant frequencies of the various circuits are labeled 
and carried through the analysis only when the circuit is to be solved 
quantitatively. 

It is of passing interest to point out that the reactance curves in Fig. 
14.36 will have a larger slope than the reactance curves of either parallel 
circuit taken alone. This scheme is sometimes used to increase the 
selectivity of a circuit. 

14.4. Reactance Sketch of a Complex Circuit. Complex circuits are 
handled in exactly the same way that series, parallel, and series-parallel 
circuits are handled, the only difference being that more steps must be 
taken before arriving at the final total-reactance sketch. Figure 14.4 
shows the steps involved iii solving a more complicated structure. Using 
the reasoning of the last paragraphs, the student should be able to follow 
the curves of Fig. 14.4 through the various steps to the final total-react¬ 
ance sketch for the complete circuit. 

Note that the reactance sketch of Fig. 14.4/ is the same as Fig. 14.26, 
which applies to the wave trap of Fig. 14.16. This means that a capacitor 
in parallel with a series combination of a capacitor and an inductance 
will give the same total attenuation characteristics as a capacitor in 
series with a parallel combination of an inductance and a capacitor. Of 
course, the values must be determined so that the desired results will be 
obtained. The parallel circuit between c and d of Fig. 14.4a would func¬ 
tion in a wave trap in such a way that if the antenna and ground and the 
input terminals to the set were connected across the whole circuit, the 
sc'ries combination of Li and Ci should be tuned to the undesired fre- 
(piency so as to short it to ground, while the desired frequency would give 
antiresonance, and hence a high voltage across the combination. In this 
case, the undesired signal is eliminated by series resonance, and the 
(lesireil signal obtained from antiresonance—^just opposite to the results 
obtained in Fig. 14.16. However, if the receiver were connected across 
the series-parallel circuit of Fig, 14.16, then the parallel tuning capacitor 
would be tuned to the desired signal, and the series capacitor tuned to 
the undesired signal. Changing the connections in this manner permits 
the rejection of an undesired frequency either below or above the desired 
frequency. 

14.6. Quantitative Solution of A-c Circuits. The solution of a-c 
circuits is accomplished in the same way that d-c circuits are solved, 
with the exception that vectors (complex quantities) are used instead of 
scalars (real (piantities). This means that the general form of Ohm^s and 
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(m) (n) 

Fio. 14.4. Reactance sketch of a complex circuit. 

Kirchhoff^s laws must be applied. These important laws can be stated 
as follows: * 

Ohm's Law, The vector voltage across an impedance is equal to the 
product of the vector current and the impedance; thus 

i = it (14.1) 
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In general the impedance Z of Ohm’s law will contain various combina¬ 
tions of inductance, capacity, and resistance. This will determine the 
phase relationship and magnitude of E when t is given. 

Kirchhoff's Voltage Law, The vector voltage across a circuit is equal 
to the sum of the voltage drops around the circuit; thus 

E = /iZi + I2Z2 + /2Z3 + • • • (14.2) 

Two alternate ways of stating this law are (1) the sum of the vector 
voltages around a circuit is zero, or (2) the sum of the vector voltages 
around a circuit forms a closed polygon. 

Kirchhoff^s Current Law, The vector current flowing up to a junction 
equals the sum of the vector currents flowing away from the junction; 

thus 
/ = /i + /2 + /3+ • • * (14.3) 

Two alternate ways of stating this law are (1) the sum of the vector cur¬ 
rents flowing up to a junction is zero, or (2) the sum of the vector currents 
flowing up to a junction forms a closed polygon. 

Ohm’s law of Eq. (14.1) was utilized in Eq. (14.2) to express the volt¬ 
age drops across the various elements. The voltage across Z\ is I\Z\ 
where 7i is the current flowing through Z\, Similarly, the voltage across 

Z2 is 72-^2 where I2 is the current flowing through Z2. If there is no 
current junction between Zi and Z2, then 7i = 72, and the impedances 
Z\ and Z2 can be added vectorially to simplify the equation. In a like 
manner, the current through the other impedances will be the same if 
there are no current junctions between them. For simplicity, only three 
impedance elements were given. The (+•••) at the end of the equa¬ 
tion means that more voltages can be added if there are more than three 
impedances in the circuit. 

The voltage E on the left-hand side of Eq. (14.2) is a voltage rise, while 
the voltages on the right-hand side are voltage drops. If there is more 
than one voltage rise in the circuit, they can be added to E on the left- 
hand side of the equation. This equation can be simplified by expressing 
all the voltage rises as negative voltage drops and simply adding them to 
the actual voltage drops. Then the sum of the voltage drops, which 
includes the negative voltage rises, is zero. This is accomplished mathe¬ 
matically by simply shifting all the terms of Eq. (14.2) to the left-hand 
side of the equation and multiplying through by —1. 

Kirchhoff’s current law expressed in Eq. (14.3) shows only one current 
i flowing up to the junction and any number of currents flowing away 
from the junction. If there were more currents flowing up to the junc¬ 
tion, they should be added to / on the left-hand side of the equation. 
This equation can be simplified by placing all the currents on the left- 
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hand side; then their sum is zero. The current /i, for example, flowing 
away from the point is then expressed as — 11 flowing up to the point. 

A complete understanding of these important a-c laws can best be 
achieved by solving a variety of problems in which they are applicable. 

14.6. Solution of Series-parallel Circuits Containing Pure Reactance 
Elements. The quantitative solution of a-c circuits is materially 
simplified if the circuit contains pure reactance elements, just as the 
analysis is simplified for pure resistive elements. The reason for this 
is that the reactance vectors lie along the i/-axis just as the resistance 
vectors lie along the x-axis. This eliminates the work incidental to chang¬ 
ing complex quantities from rectangular to polar form, and vice versa. 
All the reactance quantities can be expressed in rectangular form and 
left in that form throughout the solution. 

Example 14.1. Referring to Fig. 14.2a, determine the equivalent impedance Zeq 
when 

Li = 60 C2 = 200 fi/if 
Cl - 50 M/if, / = 796 kc 

Solution 

2rf - (6.2832) (796,000) = 5 X 10« 
i2ir/Li = j(5 X 10«)(60 X 10-«) = ;300 ohms 

1 _ • 1 
j2x/Ci “ (5 X 10«)(50 X 10-“) 

10® 
—i ^ = —i4,000 ohms 

1 _ • 1 
j2x/Cj (5 X 10»)(200 X 10-‘») 

10® = -;i,ooo 

Zu = 

Zci *=“ 

Zct =* 

The equivalent impedance of the combination is the sum of the st'ries impedance 
and the impedance of the parallel combination; thus 

Substituting 

Zci + 
^Cl^Ll 

Zl\ “h ^ci 
(14.4) 

1,000 H- 
(-j4,000)U300) 
j300 - i4,000 

-il,000 -f i324.324 

-ii,000 -f 
1,200,000 

-j3,700 
—j675.676 ohms * capacitive reactance Ane, 

The total-reactance curve of Fig. 14.2e shows that 796 kc is between zero frequency 
and /i, because the reactance is capacitive and the effect of C2 predominates. 

Example 14.2. Determine f\ and J2 as shown in Fig. 14.2c for Example 14.1. 
SolxUion. At frequency /i, the equivalent impedance of the series-parallel circuit 

is zero; hence £q. (14.4) can be written 

Z«Q *■ Zci + 
Zc\Zl\ 

Zl\ 4* Zci 
- 0 (14.6) 
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This equation can be written 

ZiiZc2 4" Zc\Zc2 + ZciZly =* 0 (14.6) 

In this equation /i is the only unknown. The various impedances can be written 

Zli =* j2irfiU « i(6.28)(60 X 10-«)/i - j/i(377 X 10-«) 

Zci 

Zci 

1 
j2irf,C, 

1 

IQi* 

j2ir/iCj (6:28) (200) /id,256.64) 

Then the desired products become 

Z.,Zc, - W.(377 X 10-.)| ] - 0.3 X 10. 

/,(6.28)(50) /,(314.159) 

10" _ -jlO" 

r -iio" 1 r -jio" 1 2.532 X 10" 
L/i(314.159)J L/.(1.256.64)J /.* 

3.,Zc, - W,(377-x 10-)| - 1.2 X IC 

Eq. (14.6) can now l)o written 

Solving 

('hecking 

(0.3 X 10*) - ” + (1.2 X 10*) = 0 

O ROO 

f^2 X 10i» = 1.688 X 101* 
1.5 

fi = 1.298 X 10« (for series resonance) Ans, 

coi =* 2irfi = (6.28)(1.298 X 10») = 8.16 X 10» 
Zli = +ici)Li = "f j(8.16)(60) = +i489.6 ohms 

= -•'■(81^50) = -i2,450 ohms 

Zc2 = 
1 _ 

-fjojC: = “J 
10« 

(8.16) (200) 
= --j613 ohms 

Hence 

ZiaZcx _ (+i489.6)(-i2,450) 1,200,000 , ^ 

zh + Zc\ +j489.6 - j2,450' -jl,960 ~ 

^C2 + = —/613 + /613 = 0 Check 

Solving for frequency /j, the parallel circuit must be antiresoiiant, and for this 
condition 

Zli -f ^ci * 0 (14.7) 
As before 

and 

Zli - j2wf j.x = jM377 X lO"*) 

1_ -iio» 
Zci 

Substituting in Eq. (14.7), 
jMiCi /2(314.159) 

+*(317 X 10+) - 0 

Transposing and multiplying through by 314.159/2 gives 

3,184 X 10« 
fi* « 

377 X 10-* 
8.45 X 10‘* 
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Extracting the square root, 

Checking, 

fz =* 2,908 kc (for antiresonance) 

Zli - 4-j(6.28)(2.908 X 10«)(60 X lO"®) = 4-jl,096 ohms 

7 _ 1 _ _ 
4-i(6.28) (2.908 X 10«)(50 X lO-^^) 4-j9i3 ^ 

Hence Zli + Zci — -fj1,096 — j1,096 = 0 

Ans. 

Check 

It will be noted that in the preceding solutions polar coordinates were 
not used. When dealing with pure reactance elements, there is no 
advantage in using the polar form because all quantities would be 

+i = +90° or = —90° if the 
notation were changed from rec*- 
tangular form to polar form. 

14.7. Solution of Series-paral¬ 
lel Circuits Containing Resistance 
and Reactance. The quantita¬ 
tive solution of series-parallel 
circuits containing both resistance 
and reactance necessitates the use 
of the general form of Ohm^s and 
Kirchhoff^s laws. This means 

that the impedances are complex quantities and are conveniently added or 
subtracted in rectangular form, while for multiplication or division the 
polar form is more suitable. 

Example 14.3. In Fig. 14.5 let 

Fig. 14.0. A series-parallel circuit containing 

both resistance and reactance. 

/ = 796 kc, 

Ri — 5(T ohms, 

E2 = 80 ohms, 

Rz = 50 ohms. 

Cl =* 3,155 

C2 = 3,333 txni 
Li = 30 juh 

Lz = 17.32 /xh 

Determine the equivalent impedance. 

Solution. Solving for the angular velocity 

CO « 2x/ « (6.28) (796 X 10=*) =* 5 X 10« 

The values of the reactance elements are 

X . 1 1 
■Acl 

ioCi “ (5 X 10«)(3,155 X io-») 
X n * J_ 1 

iaCz 10«) (3,333 10-**) 

Xu * u>Li = (5 X 10«)(30 X 10 -.) - 
Xu = «/>2 - (5 X 10«) (17.32 X 10-«) 

=» 63.4 ohms 

» 60 ohms 

150 ohms 

» 86.6 ohms 

The impedance elements can now be written in rectangular and polar form as 

follows: 
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Zi = Ri +j(.XLi - Xci) » 50 + j86.6 - 100/60° 

Ri- jXct = 80 - i60 * 100/-36°52' 

Z, >= Rz+ JXlz = 50 + j86.6 = 100/60° 

The impedance of the parallel circuit is 

Z^Z^ _ (100/-36°52')(100/-|-60°) 

“ Zi + Zz ~ 80 - /60 + 50 -I- J86.6 

10,000/27°08' _ 10,000/27°08' 

“ 130 -I- ]2^ “ 152.7/11°34' 

= 75.4/15°34' = 75.4(0.9633 + jO.2684) 

= 72.6 -I- i20.33 

The equivalent impedance of the series-parallel circuit can be written 

Zea = Z, -1- Zp = Z, + 27^3 (14.8) 

Substituting in this equation yields 

= 50 4- i86.6 + 72.6 -f j20.23 
= 122.6 +il06.83 = 162.7/41 W Am. 

This equivalent impedance made up of a resistance and reactance component could 

be connected in series to replace the series-parallel circuit of Fig. 14.5 at 796 kc. If 

the frequency is changed, the equivalent impedance also changes. 

Equation (14.8) is a general equation that can be used in any series- 
parallel circuit. More complicated series-parallel networks are solved 
by the same procedure but involve more steps. 

Some networks cannot be easily simplified by the methods given. In 
such cases equivalent 7- and ^r-networks are of great value. This will 
be treated in the next chapter. 

Summary 

Combinations of series-resonant and parallel-resonant circuits can be used to 

obtain frequency-discrimination performance needed in wave traps, filters, and 

equalizers. 

In complex series-parallel circuits, the necessarily i>ositive slope of the reactance 

curve requires that resonant and antiresonant frequencies alternate. Thus, a resonant 

frequency m\ist always occur between tw'o antiresonant frequencies and an anti¬ 

resonant frequency between two resonant frequencies. 

The reactance curve of two parallel-resonant circuits in series and tuned to the 

same frequency will have a steeper slope than the curve of only one circuit. The 

same is true for two series-resonant circuits in parallel. This is a very useful charac* 

teristic in the design of filters. 

Exercises 

14.1. What is a wave trap? Explain its action. 

14.2. Draw three wave-trap circuits and their reactance sketches. 
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14.3. Draw the reactance sketch of the circuit in Fig. 14.6. How many resonant 

points may be present? How many antiresonant points? 

Fig. 14.6. Serie.s-parallel circuit. 

14.4. Considering the reactance elements of Fig. 14.6 to he pure and of the following 

values, determine the equivalent reactance of the network: 

Xci = 50 ohms, Xli — 100 ohms 

Xc2 - 40 ohms, Xl2 — 20 ohms 

Xcs ~ 60 ohms, Xlz — 50 ohms 

Xc4 = 70 ohms 

14.6. Determine the equivalent impedance of ¥ig. 14.5 when 

/ = 1,592 k3, Cl = 3,155 M/if 

/2i = 50 ohms, C2 = 3,333 fifii 

R2 = SO ohms, Li = 30 ^h 

/Ja = 50 ohms. La * 17.32 ^h 



CHAPTER 15 

NETWORK THEOREMS 

In dealing with complicated electrical networks, the fundamental prob¬ 
lem that is encountered over and over again is that of finding the current 
that will flow in one branch of the circuit when a voltage is impressed in 
another branch. There are many ways of approaching this problem, 
some of which have already been considered. The solution in the general 
case, while not difficult, is sometimes extremely complicated. For this 
reason a number of theorems have been developed, the application of 
which can materially reduce the amount of labor involved and often 
enable a solution to be reached in a relatively short time. 

Over and above this practical application of these theorems, they are 
often useful in theoretical work by enabling a general network to be 
handled easily, no matter what its complexity. 

There is an absolutely general method of solving all network problems 
through the use of determinants, but it is of a somewhat advanced nature 
and will not be considered here. For the same reason, complete and 
general proofs of the theorems will not be given, but examples will be 
provided that should give some idea to the student of how the proof in the 
general case would proceed. 

16,1. The Superposition Theorem, Implicit in all the work that has 
been done with networks up to this point is the superposition theorem, 
which states, in essence, that causes and effects in a network composed 
of linear elements are independent and additive. 

Superposition Theorem, If a voltage E\ in series with branch Ai in a 
network causes a current h to flow through branch B\ of the network, and if 
a voltage E2 in branch A 2 {which may be identical with Ai) of the network 
causes a current 12 to flow through branch Bi of the network, then if voltage 
El in branch Ai and voltage E2 in branch A2 operates simultaneously, the 
current that will flow through branch B\ will equal Ii + /2. 

The condition necessary in order that the superposition theorem should 
apply is that all the elements in the network, in general, should be linear, 
or ohmic.” In other words, each element in the network must obey 
Ohm^s law. An ohmic, or linear, element is one whose resistance or 
impedance is independent of the current through it, or the voltage across 
it. If the elements of a network are not linear, the superposition theorem 
will not, in general, hold true. 

249 
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The usefulness of the superposition theorem lies in the fact that if a 
network is given that contains a number of voltage sources, the current 
that will flow in any branch of the network as a result of these various 
emfs can be found by solving for the current in this branch due to each 
of the separate emfs, and then adding all the currents thus found to find 
the resultant current. In carrying through a solution by means of the 
superposition theorem, all generators but the one under consideration 
are short-circuited, if of zero internal impedance, or are replaced by their 
internal impedance if this differs from zero. 

Fio. 15.1. Circuit.s illustrating the superposition theorem. 

Example 15.1. Find the current / that will flow through in Fig. 15.1, under 

the simultaneous influence of Ei and E^, Both generators are of zero internal 

impedance. 

Solution, I can be found by first solving for the current I\ that will flow through 

Zs when E<> is short-circuited, then solving for the current 12 that will flow through 

Z3 when E\ is short-circuited, and adding h and I2 to find the total current that will 

flow through Z3 when both generators are operating. 

The current that will flow through Z3 owing to Ex when E^ is short-circuited is 

given by 

/■— E iZ 2 
~ Z1Z2 + z,z, + Z,Z, ' ' 

The current 12, due to J^2, that will flow through Z3 when Ex is short-<*ircuited is 

given by 

I2 

E2Z1 

Z1Z2 + ZxZ7T~^z (15.2) 

Therefore, the total current / that will flow through Z3 when Ex and E2 are impressed 

on the network simultaneously as indicated will be given by the sum of Ix and /2,or 

I = 
ExZ2 4- E2ZJX 

Z1Z2 4- TZ2Z3 
Am. (15.3) 

The expressions for h and li given in Eqs. (15.1) and (15.2) can be found by the 

methods of the previous chapter. 

As long as the elementSrof a network obey Ohm^s law, the superposition 
theorem applies in an absolutely general manner. Not only may the 
voltage sources be of different magnitudes and placed at different points 
in the network, but they may be of different frequency and phase, and 
the superposition theorem will still apply. 
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16.2. Equivalent Networks. A concept of great utility in the solution 
and investigation of networks is the idea of equivalence. This concept 

has been used many times in the preceding material in this book but has 
not been dealt with explicitly. ^Two networks are said to be equivalent 
with respect to one or more sets of terminals if either can be substituted 
for the other without affecting the voltages, currents, and impedances 
that they present to these terminals. Equivalent networks have been 
dealt with extensively in previous chapters where the equivalence of T- 
and TT-sections under certain conditions has been demonstrated. A 
T-section, for example, will be equivalent to a 7r-section as far as its input 
and output terminals are concerned, if it can be substituted for the ir-sec- 
tion in a network without causing any change in the voltages and currents 
at these terminals. 

This is not to say that 4, T-section is the only possible equivalent of a 
given TT-section. In general, there will be an infinite number of sections 
equivalent to a given section with respect to any pair, or number of pairs, 
of terminals. That this is true can be seen very quickly by considering 
that any single impedance in a network can always be replaced by two 
other impedances in parallel or in series, whose total impedance equals 
the original impedance of the element. Thus, there is no limit to the 
number of networks that can be derived from a given network and still 
be exactly equivalent as far as behavior with respect to any given pair 
of terminals is concerned. 

16.3. Equivalent Voltage and Current Sources. Since actual physical 
sources of electrical energy have internal impedance, the terminal voltage 
is a function of the terminal current, and conversely, the terminal current 
is a function of the terminal voltage. In some cases it is advantageous 
to treat a physical source as a voltage source, while in other cases it is 
better to convert it to an equivalent current source. In general, the 
voltage source is best suited to the application of Kirchhoff's voltage law 
for equating the voltage drops around a closed circuit, while the current 
source simplifies solutions involving the application of Kirchhoff^s current 
law to equate the currents at a junction. 

A voltage source can be represented, as shown in Fig. 15.2a, by a 
constant-voltage generator E in series with an internal impedance Z. 
By the application of Kirchhoff’s voltage law, the terminal voltage is 
given by 

Vt = E - Zh (15.4) 

where Vt = terminal voltage of source (function of /«) 
li = terminal current of source (function of FO 
E = internal voltage of source (independent of Vt and It) 
Z = internal impedance of voltage source 
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A current source can be represented, as shown in Fig. 15.26, by a 
constant-current generator I in parallel with an internal admittance Y, 

By the application of Kirchhoff’s 
current law, the terminal current 
is 

It^I - YVt (15.5) 

where 7 = internal current of 
source (independent of 

It and Vt) 
Y = internal admittance of 

current source and the 
other values are as de- 
iined in Eq. (15.4). 

The equivalence between these 
two circuits can be shown by the 
following conversion relations: 

E ^ IZ (15.6) 
I = EY (15.7) 

ZY = 1 (15.8) 

Fio. 15.2. Equivalent voltage and current Solving Eq. (15.4) for It and 
sources. substituting from the conversion 

relations results in Eq. (15.5) as follows: 

/. = I - - KF, (15.9) 

Similarly, solving Eq. (15.5) for Vt and substituting from the conver¬ 
sion relations results in Eq. (15.4). 

Vt (15.10) 

It is important to note that the efficiencies, and hence power losses in 
the generators, of equivalent voltage and current sources are the same 
only when the load impedance is matched to the generator impedance to 
give 50 per cent efficiency. A voltage source is ideal for open-circuit 
operation because the efficiency is 100 per cent. The current source is 
not suited for open-circuit operation because the efficiency is 0 per cent. 
Conversely, a current source is ideal for short-circuit operation because 
the efficiency is 100 per cent. The voltage source is not suited for short- 
circuit operation because the efficiency is 0 per cent. In general, voltage 
sources are more efficient when connected to high-impedance loads, and 
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current sources are more efficient when connected to low-impedance 
loads. It may be dangerous to short-circuit an efficient voltage source 
because of the low internal impedance and the resulting high terminal 
current. Likewise, it may be dangerous to open-circuit an efficient cur¬ 
rent source because of the low internal admittance and the resulting high 
terminal voltage. The internal impedance of E in the voltage source is 
zero, while the internal admittance of I in the current source is zero. 

Example 15.2. Show that the network of Fig. 15.36 is equivalent to the network 

of Fig. 15.3a for the constants given. Determine the currents li and 12 in Fig. 15.3a 

and the voltages V12 and Vn in Fig, 15.36 by the application of Kirchhoff’s voltage 

and current laws. 

Fio. 15.3. Equivalent voltage and current sources connected to equivalent T- and tt- 
sections. 

Solution. By the application of Eq. (15.8), for this simple case of pure resistances 

instead of complex impedances, and pure conductances instead of complex admit¬ 

tances, the equivalent generator admittances are 

Gni = 7^ = — = 10 mhos 
Ilgl 0.1 

Similarly, by Eq. (15.7) the equivalent generator currents are 

Igi « EgiGgi « (2)(10) = 20 amp 

Igi = Eg/jgt = (4)(5) = 20 amp 

The equivalent ir-section conductances can be secured by first converting the T-section 

to a TT-section and then taking the reciprocal of the resistances thus 

\ _ Ri 20 
Ra R1R2 -f RiRz + RzRi “ (10)(20) -h (20)(5) + (5)(10) 

- 0.0571 mho 

Wh " RiRt + Rifti + R,Ri “ 350 “ 
__Rj_ _ _10 

Re R1R2 “b RiRt 4“ RiRi 350 

Ga =* 

Gb ■■ 

G, 0.0286 mho 



254 COMMUNICATION CIRCUIT FUNDAMENTALS 

In Fig. 15.3a, the joint or branch node currents at junction or node 5 by Kirchhoff’s 

current law are 

I\ — I2 *4-/3 

The loop voltages around the two meshes by Kirehhoff’s voltage law are 

liRui 4- hRi 4- hRz = 

4“ I2R2 — I3R3 = —Ru2 

Substituting for /a from the equation of branch currents at node 5, these loop-voltage 

equations can be written 

I l(Rgl 4" /?! Ri) — /•>/?3 = hgl 

— IiRi 4" l2{Ru2 4“ R2 4" Ri) — —Ro'i 

Substituting for the values of resistance and voltage in these loop voltage equations 

gives 

15.1/1 - 5/2 = 2 
-5/1 -f 25.2/2 = -4 

The solution of these simultaneous equations by determinants results in 

= 

I2 = 

1 4^
 

ND
 

-5 

25.2 

I 15.1 -5 

-5 25.2 

30.4 

355.5 
0.0855 

115.1 

1-5 __ -4' 

115.1 — 
1-5 25.2' 

50.4 - 20 

380.5 - 25 

Ana. 

^00.4 + 10 
380.5 - 25 

— 50 4 
= 555.5 '2 a.np Arui. 

Now, in the network of Fig, 15.36, the loop voltage around the terminals, by Kirch- 

hoff^s voltage law, can be written 

Vu = Fm + F43 

The branch currents at nodes 1 and 4, by Kirchhoff’s current law, are 

Vi-figi + Vi^a + V i^Gh = I ol 
V 4jGa2 + V 4iGe — V uGh — I u2 

Substituting for F14 from the loop-voltage equation, these node-current equations 

can be written 

VXtipQl Ga Gb) — V4zGb = Igl 

— ^i/xb + V4z(Gg2 A- Gc A- Gh) /(,2 

Substituting for the values cf conductance and current in these node-current 

equations gives 

10.0714Fi2 - O.OI43F43 « 20 
-0.0143F,2 + 5.0429F43 - 20 
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The solution of these equations by determinants results in 

20 
20 

-0.0143 

6.0429 100.858 + 0.286 
10.0714 -0.01431 50.789 - 0.0002 

-0.0143 

101.144 

5.0429 

50.789 
1.99 volts 

110.0714 20| 

1-0.0143 20 201.428 -f 0.286 

|10,0714 -0.01431 j 50.789 - 0.0002 
1-0.0143 5.0429 
201.714 

50.789 
3.97 volts 

It is worth noting that the. solution of the 7r-section with current sources 
is as easy as the solution of the T-scction with voltage sources. Much 
similarity will be observed in the two solutions. The node-current equa¬ 
tions of one network resemble the loop-voltage equations of the other 
network, and vice versa. 

16.4. Thevenin’s Theorem. Another network theorem of wide gen¬ 
eral usefulness is Th^veniii^s theorem. By means of this theorem, any 
network, no matter how complicated, containing any number of genera¬ 
tors, can, as far as its output terminals are concerned, be replaced by a 
single generator in series with a single impedance. It is not even neces¬ 
sary that the elements of the circuit be linear. In this respect, at least, 
Th^venin’s theorem is even more general than the superposition theorem. 

Th6venin*s Theorem, With respect to a given pair of terminals^ any net¬ 
work containing any number of generators can be replaced by a single 
generator in series with a single impedance connected across the given 
terminals. The voltage of the generator is given by the open-circuit voltage 
that would be measured across the terminals in the absence of a load, and the 
impedance is given by the impedance that is seen lookiny back into the ter¬ 
minals when all generators are replaced by their mternal impedances. 

Example 15.3. What current / will flow through Za in the unbalanced bridge 

circuit of Fig. 15.4? 

Solution. The solution of this problem by ordinary methods is rather tedious, 

but by Thevenin’s theorem it becomes extremely simple. According to this theorem, 

the network, as far as the terminals a ami b are concerned, can be replaced by a single 

generator E' in series with a single impedance Z' connected across a and 6, as shown 

in Fig. 15.46. 

To find the voltage E' of the equivalent circuit, the network is redrawn as in 

Fig. 15.4c. The voltage E' will be given by the voltage that would exist between 

the points a and 6 if Zt, were removed. This voltage can be found in a number of 

ways, but possibly the easiest way is to consider that the point c is grounded and 

then find E' as the difference between the voltages at the points a and 6 above ground. 
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Zi and Zi, and Z» and Z4 constitute two voltage dividers connected across E, and 

the voltages Ei and E2 at points a and h are consequently given quite simply by 

E, 

E2 

EZ2 

Zi +Z2 

EZ, 

Zi -f- Z4 

(15.11) 

(15.12) 

W will be the difference between these two voltages. It makes no difference 

which voltage is subtracted from the other. If a choice is made that results in a 

negative current in the answer, it will simply mean that the current that will flow 

through Z5 will be opposite to the assumed direction. We will assume that Ei 

is larger than Eo, or in other words, that the current through Zs will flow from a to h, 

E' will therefore be given by 

E' El — E2 

Z4 

Z» -}- Z -y 
(15.13) 

To find the impedance Z' in Fig. 15.45, the generator E in Fig. 15.4c [or 15.4al is 

replaced by a short circuit, and the impedance looking into terminals a and b is 

computed [Fig. 15.4d]. This figure can be redrawn as in Fig. 15.4e, as can be seen 

very easily. From Fig. 15.4c, the impedance that will be seen looking back into 

terminals a and b is given immediately as Zi in parallel with Z2, plus Za in parallel 

with Z4, or 

(15.14) Z' = 
Zi -j- Z2 Zi -j- Z4 

The current I that will flow through impedance Zi in Fig. 15.45 is given by 

Z' + Zs 
(1.5.15) 

All that is necessary is to substitute the values of E' and Z', which have just been 

found, in Eq. (15.15), and the solution is immediate. 

I * 

F (-^1— ~ ' 
yzi + Z2 z, -h Z4/ 

Z1Z2 , ZzZ\ 
Zi -|“ Z2 ' Za -}- Z4 

E[Z2(Za + Z4) - Z4(Zi + Z2)] 

ZiZ2(Z, -f Z4) + ZaZ4(Zi -h Zi) -f- Zi(Zi -f Z2)(Za -h Z4) 
_EjZ^Zz - Z1Z4)_ 
ZiZiZi 4“ Z1Z2Z4 4" Z1Z1Z4 4" Z2Z1Z4 4" Z\Z%Z\t 4" Z1Z4Z1 4" ZiZiZi 4" Z2Z4Z6 

Ans. (15.16) 

In the event that the network contains a number of generators, the 
voltage E' will be given as the sum of the various open-circuit voltages 
across the output terminals, each of which i6 found by considering each 
of the generators of the^network separately. The impedance Z' will, of 
course, be the same no matter how many generators are in the network. 
Another form of Th^venin^s theorem, is as follows: 

16.6. Norton’s Theorem. Another theorem, which is in reality 
another form of Th^venin’s theorem, is as follows: 
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NortorCs Theorem, With respect to any pair of output terminals, any 
network containing any number of generators and impedances can he 
replaced by a single constant-current generator in parallel with a single 
impedance connected across the given output terminals. The current pro¬ 
duced by the generator is given by the current that would flow between the 
output terminals if they were short-circuited, and the impedance is given by 
the impedance that is seen looking back into the output terminals when all 
generators in the circuit are replaced by their internal impedances. 

L-vww—^ 

I I-WWV^ 

L-VWW^-J 
(e) 

a 

b 

Fig. 15.4, Circuits to illustrate Th6venin’s theorem. 

A constant-current generator is a generator that will deliver a constant 
current irrespective of the load that is connected across its terminals, and 
it should be carefully distinguished from a constant-voltage generator, 
which produces a constant voltage at its terminals irrespective of the 
load that is connected across them. In reality, of course, no generator 
is ever actually a constant-current generator, any more than any generator 
is ever a constant-voltage generator, but the concepts of constant-current 
and constant-voltage generators are extremel}^ useful in many applica¬ 
tions. Certain vacuum tubes such as pentodes and photocells, for 
instance, behave like constant-current generators over very wide ranges, 
and in dealing with these tubes, under most conditions it is permissible 
to consider them as generators that will deliver a certain current to a 
load, independent of the magnitude of the load. 

Example 15.4. Solve the network of Example 15.2 by means of Norton’s theorem. 

Solution. According to Norton’s theorem, the network of Fig. 15.4a can be 



258 COMMUNICATION CIRCUIT FUNDAMENTALS 

replaced, so far as terminals a and b are concerned^ by the network of Fig. 16.5. The 

impedance Z' in this figure is the same as that which was found in Example 15.2 and 

is given by 

fjt _ ZiZn . ZzZi 
(15.17) 

The current of the constant-current generator, V^ will be given by the current that 

^ a would flow between the terminals a and b 

^ k ^ * when these are short-circuited. This can 

he found very easily from Kq. (15.15) by 

J setting Z5 equal to zero, or in other words 

'■-f (15.18) 

Referring to Fig. 15.5, the current I flow- 

Y_ through Z' and Z5 in parallel will 

^ generate • 

Fio. 16.6. Circuit to illustrate Norton’s » voltii(?(> A’" across the cotiibination, 
which is given by 

pff _ // (15.19) 

Then the current Izh that will flow' through Z5 under tlu‘ influence of the voltage E" 

will be given by 

Izi = ry,-~y (19.20) 
/> "T >05 

Since I' is given by Eq. (15.18) as 

'■=f 
Eq. (15.20) can be rewritten as 

-(f) .7- 

Z' + Zi 
(15.21) 

which is seen to be identical with Eq. (15.15) of the preceding example. 

16.6. Reciprocity Theorem. Another theorem of considerable interest 
and utility is the reciprocity theorem^ which is as follows: 

Reciprocity Theorem. If a voltage E in a branch A of a network causes a 
current I to flow in another branch B of the network^ then if the same voltage 
E is introduced in the branch B of the network, the same current I will flow 

in branch A. 
The validity of the reciprocity theorem derives from certain sym¬ 

metrical relationships that hold in any network composed of linear ele¬ 
ments, that is, in any network for which the superposition theorem holds. 
This theorem can be proved very easily by taking advantage of the fact 
that any network can be reduced to an equivalent T-section with respect 
to any two pairs of terminals. 
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Referring to Fig. 15.6a, the network in question can be considered to 
have been replaced by the T-section Z1Z2Z3, as far as the terminal pairs 
1 and 2 and 3 and 4 are concerned. The current 11 that will flow through 

(a) ‘ 

Fig. 15.6. 

(b) 

Circuits to illustrate the reciprocity theorem. 

the ammeter A when the generator is producing a voltage E at the ter¬ 

minals 1 and 2 is given by 

/i 
_BZs_ 
A\Zt2 ’4” A\/jz "b Zi<2,Ziz 

(15.22) 

If now the generator and ammeter are interchanged, as in Fig. 15.65, 
without otherwise changing the network, the current 12 that will flow 
through the ammeter .1 will be given by 

12 
/j\/j2 "h /j\/j^ “h >^2^3 

(15.23) 

which is seen to be identical with Eq. (15.22), and which therefore proves 
the theorem. 

The reciprocity theorem has many important uses in other applications 
besides electrical network theory. It can be shown to hold in any situa¬ 
tion where the elements obey Ohm^s law, that is, where the superposition 
theorem applies. Thus, for example, in the transmission and reception 
of radio signals where two antennas, one transmitting and the other 
receiving, have a certain relationship, this same relationship can, by the 
reciprocity theorem, be shown to hold when their functions are reversed, 
that is, when the transmitting antenna becomes a receiving antenna, and 
vice versa. The same relationship holds in acoustics, and the reciprocity 
principle is widely used in the absolute calibration of microphones and 
loud-speakers. A microphone that is picking up a signal from a loud¬ 
speaker can itself be connected as a loud-speaker, and the loud-speaker 
be made to serve as a microphone. The resulting measurements can be 

used to get a reading of the absolute level of each. 
16.7. Maximum-power-transfer Theorems. There is a well-known 

theorem, which the student encounters early in the study of d-c electric- 
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ity, to the effect that a generator will deliver the maximum power to a 
load when the resistance of the load equals the internal resistance of the 
generator. This theorem is illustrated in Fig. 15.7, which shows the 
power delivered to a variable load by a d-c voltage generator of 1 ohm 
internal resistance. 

This theorem has several counterparts in a-c theory, two of which will 
now be discussed. 

An a-c generator will deliver the maximum power to a load when the imped¬ 
ance of the load is the conjugate of 
the internal impedance of the gen¬ 
erator. 

Note specifically in this theo¬ 
rem that it is the power that is de¬ 
livered to the receiving impedance 
which is a maximum, and not 
merely the volt-ampere product. 
Power can be absorbed only by a 
resistance, as was previously 
shown in Chap. 10 (page 171). 
No matter what the current 
through a pure reactive element 
may be, the total power drawn 
over a complete cycle is zero. A 
reactive element will draw power 

over a portion of a cycle, but the 
power is stored and returned to the 

generator over the remainder of the cycle. Thus, if the receiving imped¬ 
ance in the theorem is given by 

Zr = Rr+ jXr (15.24) 

and the current through this impedance equals /, then the power Pr 
absorbed by, or delivered to, Zr will be given by 

Pr = WRr (15.25) 

irrespective of the value of Xr, 
Let the impedance Z, of the generator be given by 

Z. = R.+jX, (15.26) 

Then for any value of /2r, the condition that will make the current / 
around the circuit a maximum is that 

Fig. 15.7. Generator with internal rcHistance 

Rg delivering power to the load resistance Rl 
as it is varied. 

Xr = -X. (15.27) 
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It is easy to see that this is true, since when this relationship holds, the 
circuit is in series resonance. Hence, if Rr is fixed, the maximum power 
that will be delivered to the receiving impedance will be given when 
Eq. (15.27) holds. But when this equation is true, the reactive com¬ 
ponents of the load and the generator can be neglected, since they 
neutralize each other, and the same current flows as if they were both 
zero. Hence it is only necessary to find the value of Rr that would draw 
the maximum power from the generator if it had an internal impedance 
equal to R, alone. This, of course, is given immediately by 

Rr = Rs (15.28) 

since if reactances are omitted, the laws for a-c circuits are the same as 
the laws for d-c circuits. Hence we can write at once that the condition 
that a complex impedance Rr + jXr will draw maximum power from an 
a-c generator of complex internal impedance — jX, is that 

Rr + jXr equals conjugate of R, — jX, (15.29) 

In other words, maximum power will be delivered by an a-c generator 
when the load impedance is the conjugate of the generator impedance. 

Example 14.5. An a-c generator delivers 10 volts rms and has an internal imped¬ 

ance of 50 -f- jlO ohms. What is the maximum power that can be delivered by this 

generator? 

Solution. By the theorem just given, the maximum power will be delivered to a 

load of 50 — jlO ohms. Under these conditions the total current around the circuit 

will be given by 

/ = —--^- 
50 + jlO -f 50 - jlO 

= ^^100 = 6.1 amp rms 

The total power delivered to the load, which is the maximum power that the gener¬ 

ator can deliver, will bo given by 

(0.1)*(50) ~ 0.5 watts Ans. 

It may often happen that both the generator and load impedances are 
fixed. Under such conditions it will, of course, be impossible to deliver 
the maximum power to the load. It may, however, be permissible to 
insert a transformer between the load and the generator. An ideal trans¬ 
former will vary the magnitude of the load as seen from the transformer 
terminals, but will not vary its phase angle, that is, the proportion of 
resistance to reactance in the load. It is often a matter of importance 

to find the value of impedance that will draw the maximum amount of 
power from the generator under the condition that the ratio of resistance 
to reactance is given, but that the absolute magnitude of the impedance 
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can be varied. Under these conditions it can be shown that the following 
theorem holds: 

If the ratio of the resistance to the reactance of a given impedance is con- 
stanty but if the absolute magnitude of the impedance can varyy then the 
impedance mil draw the maximum power from a generator when its absolute 

value equals the absolute value of the impedance of the generator. 
Let 

Zg = Rg -]r jXg = Rg(l + jm) (15.30) 

and Zr = Rr jXr = Rr(^ + jn) (15.31) 

Then 

/= ® 
R,{1 + jm) + Rr{l + jn) 

(15.32) 

and |/|2 = 
{Rg -f- Rr)“ "h {RgUi -L Rrfi)"^ 

(15.33) 

and p = l/hp = ^ 
^ ^ {R. + Rr)'^ + {R.m + Rm)^ 

E2 

{R8~\~ fir)“ I {Rgm + Rr7l)^ 
Jir 

(15.34) 

Since is a constant, it follows that if Pr is to be a maximum, the denom¬ 
inator in Eq. (15.34) must be a minimum. Let this denominator eciual y. 
Then 

y = 
(R^ + Rr^ , {Rsm + Rrn)'^ 

Rr 
+ 

Rr 

= -j^ + 2Rg + d—^-h 2Rgmn + RrU^ (15.35) 

By the calculus, if y has a minimum, dy/dRr must eciual zero at this 
minimum. Differentiating Eq. (15.35) and setting it equal to zero, 
remembering that /^,, m, and n are constant, we have 

dy 
dRr 

Rg^^m^ 

Rr^ 
+ n* = 0 

or 
Rg’^ Rg-^m^ 

Rr^'^ Rr^ 
1 + n* 

or Rg^(l + m2) = RrHl + n^) (15.36) 

In other words, the condition that the power delivered to the load should 
be a maximum is that the absolute values of the generator and load imped¬ 
ances should be equal. 
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Summary 

Superposition Theorem. If a voltage Ei in series with branch yli in a network 

causes a current 1\ to flow through branch Bx of the network, and if a voltage E2 in 

branch A 2 (which may be identical with Ax) of the network causes a current 12 to 

flow through branch Bx of the network, then if voltage Ex in branch Ax and voltage E2 

in branch A2 operate simultaneously, the current that will flow through branch Bx 

will equal Ix + h. 

Th^veniri’s Theorem. With respect to a given pair of terminals, any network 

containing any number of gcmcrators can be replaced by a single generator in series 

with a single impedance connected across the given terminals. The voltage of the 

generator is given by the open-circuit voltage that would be measured across the 

terminals in the a})sence of a load, and the impedance is giv(;n by the impedance that 

is seen looking back into the terminals when all generators are replaced by their 

internal impedances. 

Norton's Theorem. With respect to any pair of output terminals, any network 

containing any number of generators and impedances can be replaced by a single, 

constant-current generator in parallel with a single impedance connected across the 

given output terminals. The current produced by the generator is equal to the 

current that would flow betweiai the output terminals if they were short-(*ircuited, 

and the internal imp(‘dancc of the equivalent geiu'rator is given by th(* impedance 

that is seen looking back into the output terminals when all generators in the circuit 

are replaced by their internal imp(‘dances. 

Reciprocity Theorem. If a voltage E in a branch A of a network causes a current I 

to flow in anotluT branch B of the network, then if the same voltage E is introduced 

in the branch B of the network, the same current I will flow in branch A. 

Maximum-pou'cr-transfer Theorem, a. An a-<‘. generator will deliver the maximum 

power to a load when the impedance of the load is the conjugate of the internal 

impedance of the generator. 

h. If the ratio of the resistance to the reactance of a given impedance is constant, 

but the absolute magnitude of the impedance can vary, then the impedance will draw 

the maximum i)ower from a generator when its absolute value equals the absolute 

valiK' of the impedance of the generator. 

Exercises 

15.1. Find I in Fig. 15.8 by means of Th(''venin’s theorem. Draw the equivalent 

circuit. 

10 10 

16.2. Find I in Fig. 15.8 by means of Norton’s theorem. Draw the equivalent 

circuit. 
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16.3. I'ind 7 in Fig. 15.9 by means of Th6venin’s theorem. 

10 10 10 10 

Fig. 15.9. Circuit for Exercise 15.3. Fig. 15.10. Circuit for Exercise 15.4. 

16.4. Find 7 in Fig. 15.10 by means of the superposition theorem. 

16.5. Find the current through the galvanometer G (of 1,000 ohms internal resist¬ 

ance) in Fig. 15.11 by means of Th^venin’s theorem. Draw the equivalent circuit. 

16.6. What is the maximum power that can be delivered to a load by a 1-kv gener¬ 

ator of 10 -|-jO.8 ohms internal impedance? 

16.7. Into what load will the generator of Exercise 15.6 deliver the maximum 

power ? 

16.8. If the generator of Exercise 15.6 is to be matched to a load whose phase 

angle is +45°, what should this load be to absorb the maximum power? 

16.9. If a generator and ammeter are connected as shown in Fig. 15.12, and a 

current of 10 amp flows through the ammeter, what current will flow through the 

ammeter when it is interchanged with the generator? 

l 
10 amps 

Fio. 15.12. Circuit for Exercise 15.9. 

16.10. Under what circumstances does the superposition theorem apply to a 

network? 



CHAPTER 16 

THERMIONIC EMISSION 

All the circuit elements so far considered, with the exception of genera¬ 
tors, have been “passive’^ elements. By a passive element is meant one 
that contributes no power to a circuit, and that requires no external 
sources of power for its operation. Resistors, capacitors, and inductances 
are typical passive circuit elements. 

There is another large and important class of circuit elements that are 
classified as nonpassive, or active, elements. These may or may not 
contribute power to a circuit, but all require external sources of power 
for their operation. The most important of these, from the standpoint 
of the communications engineer, are the various forms of electron tubes, 
which comprise the subject of this and the succeeding chapters of this 
book. Considered purely as a circuit element, an electron tube is a device 
through which a current is made to pass, whose resistance can be made to 
vary by the application of external potentials to a control element in the 
tube. The great value of such a circuit element lies in the fact that little 
or no power need be consumed in the control circuit, while at the same 
time there is no limit to the power that can be controlled by the tube. 

Only the basic physics of electron-tube behavior can be discussed here. 
The applications of electron tubes constitute a broad field in themselves, 
and will be considered in greater detail in another volume of this series. 

16.1. Introduction. The primary duty of any electron tube is to 
produce, control, and collect a stream of electrons. Since electrons are 
all exactly alike, it does not matter from what source they are obtained. 
The principal sources of electrons result from 

1. Thermal emission (thermionic devices) 
2. Electrostatic fields (discharge tubes) 
3. Secondary emission (electron multiplier tubes) 
4. Photoelectric effect (photoelectric cells) 
5. Spontaneous disintegration (radioactive substances) 

This chapter will be devoted to a study of thermionic emission because 
the majority of electron tubes depend upon thermal agitation in a hot 
cathode for their supply of electrons. First, however, a brief historical 
sketch will be given, followed by a quantitative treatment of electron 
current and voltage. 

16.2. Edison Effect. Thomas A. Edison in 1883 discovered, while 
endeavoring to produce a better carbon-filament lamp, that connecting 

265 
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a plate from the inside of the tube to the positive terminal of the filament 
caused a weak current to flow to the plate but that no current flowed 
when the plate was connected to the negative end of the filament. This 
phenomenon has since been called the Edison effect and is perhaps the 
real starting point of the thermionic tube. As we now know, the elec¬ 
trons emitted from the hot filament were attracted to the plate when it 
was connected to the positive end of the filament. This flow of electrons 
constitutes an electron current. When the connection was made to the 
negative terminal, the electrons were repelled; hence no electron current 
flow was observed. 

16.3. Electron Current. An electron in motion is the smallest natural 
element of an electric current. It takes 6.285 X 10^* electrons passing 
a point every second to constitute 1 amp of current. A given current 
may be composed of relatively few electrons moving rapidly or many 
electrons drifting along slowly. An electron with a charge e moving at 
a velocity v is equivalent to a current of magnitude eVj and if there are n 
electrons, the current measured in electrons per second is 

i = nev (16.1) 

where i = current, amp 
n = number of free electrons per centimeter length of conductor 
e = 1.591 X 10”^^ coulomb = charge on 1 electron 
V = average velocity of electrons, cm/sec 

This equation can be considered as giving the current along a conductor. 
Since n is the number of free electrons in the conductor per unit length, 
the area does not have to be mentioned. The spacc-currcni density in an 
electron tube, for example, can be expressed by Eq. (16.1) if the terms 
are defined as follows: 

i = current density, amp/sq cm 
n = electron density, free electrons/cu cm 
e = 1.591 X 10“^® coulomb = charge on 1 electron 
V = average velocity of electron drift, cm/sec 

Exaynple 16.1. A No. 14 gauge copper wire carries a 20-amp current. If the 
area of the conductor is 2.081 sq mm, determine the average velocity of electron 
drift. Assume 1 free electron per atom, which amounts to 8.47 X 10^'^ free electrons 
per cubic centimeter of copper. 

Solution. The current density is 

amperes 10 
sq cm area 0.02081 

— 480.5 amp/sq cm 

By Eq. (16.1) the average electron drift velocity is only 

V 
480.5 

(8.47 X 10»*)(1.591 X 
=* 3.565 X 10“* cm/sec Am. 
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16.4. Electron Voltage. If electrons in free space are acted on by a 
constant force, as shown in Fig. 16.1, they will gain velocity, owing to a 
constant acceleration, according to Newton’s second law of motion. 

F = ma (16.2) 

where F = force of attraction, dynes 
m = mass, g 
a = acceleration, cm/sec^ 

V — Vo 
(16.3) 

a = ~ (16.4) 

where v — final velocity, cm/sec 
Vq = initial velocity, cm/sec 

V = s/tSLversige velocity, cm/sec 
s = distance traveled, cm 
t — time, sec 

The increase in velocity will increase the spacing between electrons, and 

-> cms- 

Force on 
electron 

F= ^ dynes 

Battery potential 

Fig. 16.1. An electron in 

(1= a constant 

t; = at a straight line 

s = 0.5 at^ a parabola 
V = yt average velocity 

uniform electrostatic 6eld. 

hence will decrease the number of electrons per unit volume, if the current, 
as given in Eq. (16.1), is to remain constant. The voltage gradient 
(voltage drop per unit length), however, will increase as the electron 
velocity increases. The term electron-volt, commonly used to express 
this electron energy, is defined as the energy gained by an electron when 
accelerated in free space through a difference of potential of one volt. The 
energy necessary to excite or ionize atoms is commonly expressed in 
terms of electron-volts. 
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The potential energy gained by an electron if it is moved from the 
positive to the negative plate, as shown in Fig. 16.1, is 

Potential energy = eE (16.5) 

where the potential energy is that of 1 electron, in ergs, and 
e = 1.591 X 10”^® abcoulomb = charge on the electron 

= (coulombs) (0.1) 
E = potential between the two plates, abvolts 

= (volts) (10^) 
Now if the electron is allowed to start from rest at the negative plate, it 
will gain kinetic energy, owing to its velocity, as given by 

Kinetic energy = (16.6) 

where the kinetic energy is that of 1 electron, in ergs, and 
w = 9 X 10"^® g = mass of 1 electron 

V = velocity of electron, cm/sec 
But the potential energy of the electron at the negative plate is exactly 
equal to its kinetic energy at the positive plate; hence Eqs. (16.5) and 
(16.6) can be equated to get 

eE = 0,omv'^ (16.7) 

The force on the electron can also be written in terms of the potential 
energy and the distance; thus 

eE 
(16.8) 

This equation can be derived from the preceding equations. 

Example 16.2. An electron starting from rest at the cathode is acted on by 1 volt 

applied to a plate 0.5 cm from the cathode. Determine the acceleration of the 

electron, and its velocity and energy when it strikes the plate. How long does it 

take to make the transit, and what is the value of the force causing it to move? 

Solution. By Eq. (16.5) the energy of the electron is 

Potential energy ^ eE ^ (1.591 X 10-2<*)(10«) = 1.591 X IQ-i* org An^. 

(This is the ergs of energy in 1 electron-volt.) Knowing tlie mass, we have from 

Eq. (16.7) 
1.591 X 10'^* = (0.5) (9 X 10-**)!;* 

V = 5.946 X 10^ cm/sec Ans. 

5.946 X 10^ 

1.609 X 10* cm/mile 

By Eq. (16.4) the time of transit is 

= 369.6 miles/sec 

V 

(2) (0.5) 

5.946 X 10^ 
1.682 X 10-« sec Ana. 

By Eq. (16.3) the acceleration is 

V 5.946 X 10^ 

t “ 1.682 X 10-» 
a 3.535 X 10^* cm/sec* Ans. 
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Finally, by Eq. (16.2) 

F ma {9 X 10-*«)(3.535 X 10^'^) = 3.182 X 10-» dyne Ans. 

Or by Eq. (16.8) 

8 

1.591 X 10"i* 

0.5 
= 3.182 X 10-12 dyne Check 

16.6. Thermionic Emission. At absolute zero (273° below 0°C), 
atomic and electronic motion is supposed to cease. It is, therefore, the 
lowest possible temperature. Temperatures measured from this point, 
as zero, are known as absolute temperatures. As the temperature of a 
solid increases, the activity of the electrons and atoms increases to cause 
expansion of the solid. Therefore, the spacing between the atoms and 
electrons is increased, which reduces the forces of attraction holding the 
solid in shape. As the temperature is increased, the forces of attraction 
will be overcome, and the Solid Avill change into a liquid. If the atoms 
and electrons have sufficient energy, they will break down the surface 
tension and change into a vapor. 

The evaporation of electrons from the surface of a hot solid is known as 
thermionic emission. This can be accomplished without changing the 
solid into a liquid if a metal containing hea\^ atoms and having a high 
melting point is used. If the temperature of the solid is high enough, the 
velocities acquired by some of these free electrons are sufficient to project 
them outside the sphere of attraction of the solid. To do this, the kinetic 
energy of the free electron must exceed the work necessary for an electron 
to overcome the surface tension of the solid. 

The energy lost by a unit charge when passing through the surface of a 
substance is known as the work function. The work function has different 
values for different metals. It varies roughly from 10“^^ to 10”^^ erg or 
from 0.625 to 6.25 electron-volts. One might assume that the metal 
with the lowest work function would be the best emitter, but since the 
emitting surface must possess certain mechanical features, such as 
mechanical strength at the operating temperature, this is not necessarily 
true. 

16.6. Pure-tungsten Emitters. Since tungsten has the highest melting 
point of all metals, 3350°K (absolute temperature), and is composed of 
atoms 184 times heavier than the simple hydrogen atom, it is well suited 
for thermionic emission. Furthermore, it can be subjected to the 
extremely high temperatures that are necessary for proper evacuation 
of the tubes. Since tungsten is very brittle, it must be worked while 
hot into a fibrous condition so that it can be formed into the proper shape 
for use in filaments. 

Tungsten emitters are particularly desirable for high-power operation 
where durability under exacting conditions is important. Tungsten 
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filaments, if allowed to burn without plate voltage, have the property of 
absorbing the gas in the tube, thus preventing gas ionization, which 
cannot be tolerated in high-power operation. Tungsten filaments have 
a high power consumption and a comparatively short life owing to the 

high operating temperatures required to give good emission. 

Example 16.3. If a hydrogen atom is 1,847 times heavier than an eleetron, how 

much hea\ner is a tungsten atom than an eleetron? 

Solution. The weight of a tungsten atom is (1,875)(184) = 343,848 times heavier 

than the weight of an eleetron. A ns. 

16.7. Thoriated-tungsten Emitters. Impurities in metals may cause 
marked changes in the work function. These impurities usually collect 
at the surface and form an atomic film over the surfa(*e. If the atomic 
film is electropositive, as an oxygen film is, the work function is increased; 
however, if the atomic film is electronegative, like that of thorium, the 
work function is decreased. Langmuir and Rogers discovered that a 
small amount of thorium in tungsten materially increased the emission. 
Thoriated-tungsten emitters are now made by dissolving a small amount 
of thorium oxide and carbon in a tungsten emitter. After evacuation in 
a tube, the emitter is activated hy flashing at a high temperature to reduce 
some of the thorium oxide to pure thorium. The emitter is then aged by 
operating for some time at a relatively high temperature to permit the 
pure thorium to work its way to the surfa(‘e to form a layer one atom 
thick. If the emitter is operated at the proper temperature, the atomic^ 
layer of pure thorium is replenished from within the emitter as rapidly 
as evaporation takes place at the surface. If the temperature is too 
high, the thorium will boil out of the emitter to reduce the supply of pure 
thorium. If the operating temperature is too low, the atomic surfac^e 
layer will evaporate without being replenished. The pure thorium can 
be brought to the surface by operating the tube for a while above operat¬ 
ing temperature. From this we can conclude that it is best to operate 
such emitters as specified by the manufacturer. 

An emitter depleted of pure thorium atoms on the surface will have 
very low emission. Such tubes can usually be rejuvenated several times 
by flashing the tube and aging it, just as the emitter is prepared when 
manufactured. In this process, thorium oxide in the cathode is reduced 
to pure thorium, and certain impurities such as gas atoms may be driven 
out of the cathode. During the aging process, the temperature can be 
reduced to normal several times to check the emission current. If the 
emission does not come up to normal, the thorium is nearly exhausted, 
which indicates the end of useful tube life. 

For medium- and low-power work, thoriated tungsten tubes can be 
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sufficiently well evacuated for excellent operation. The filament-type 
tube can be made with a very small diameter filament to permit low power 
consumption, and has a lon^ life due to the low operating temperature. 

16.8. Carbonized Thorium-tungsten Emitters. Carbonization of a 
thoriatcd-tungsten emitter protects it against positive-ion bombardment, 

reduces thorium evaporation by approximately 85 per cent, and permits 
the use of higher operating temperatures. The carbonization is accom¬ 
plished by operating the thoriated-tungsten emitter in an atmosphere of 
some hydrocarbon, the molecules of which combine with the tungsten to 
form a surface of brittle tungsten carbide. These emitters are replacing 
many of the i)ure-tungsten emitters for more efficient highpower operation. 

16.9. Oxide-coated Emitters. Oxide-coated emitters are usually 
made by coating a nickel alloy with barium and strontium carbonates. 
During the process of evacuation, the emitter is heated above operating 
temperature to oxidize the carbonates. Then at normal emitter operat¬ 
ing temperature, anode voltage is applied, until normal emission current 
is reached, which seems to draw the ])ure metallic barium and strontium 
to the surface of the oxide coating. During normal operating conditions, 
the evaporated outer layer is replenished by diffusion of pure metals 
from the interior of the oxide coating. 

Oxide-coated emitters give high electron emission at very low tempera¬ 
tures with comparatively long life. It is difficult to maintain a good 
va(uium in this type of tube l>ecause of the porous nature of the coating, 
which holds gas. The emission is reduced in the presence of gas owing 
to oxidation of the active matcu’ial or coating of this material by positive- 
ion bombardment. The emitting surface can also he destroyed by hot 
spots where the emission is high; owing to the high current at these spots, 
the temperature increases sufficiently to remove the coating. Since hot 
spots are most likely to occur at high voltages, these emitters are most 
widely used in small high-vacuum tubes. The power consumption is 
slightly more than that necessary for the thoriated-tungsten emitter. 

16.10. Getters. For vacuum tubes containing emitters other than 
])ure tungsten, getters are usually used to remove the residual gas in the 
tube. Getters are made of active chemical substances, such as mag¬ 
nesium, which have the property of combining with the gases when they 
are vaporized. In glass tubes, the getter is placed in a small cup inside 
the tube and flashed after the tube has been evacuated. The released 
vapors will combine with the gases released from an oxide-coated emitter, 
the electrodes, and the glass wall of the tube. In the metal tubes, the 
shell is connected to the base pin through a helical coil that is coated 
with the getter. After the tube has been evacuated, a current passing 
through the coil vaporizes the getter to take up the residual gases. 
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16.11. Filamentary and Indirectly Heated Cathodes. Thermionic 
emitters can be divided into two filamentary and indirectly heated. 
The earliest vacuum tubes contained only filamentary emitters, Avhich 
were heated by passing current through them. The advent of a-c sets 
led to the development of indirectly heated emitters. 

The filamentary-type emitter, if heated with direct current, has an 
IR drop from one end to the other equal to the filament voltage. This 
difference in potential with respect to the plate (or grid) makes the space 
current vary along the filament, which in turn makes the filament current 
and temperature vary along the total length of the filament. Since the 
space current increases the electron floAV at the negative end, the tempera¬ 
ture will be increased to cause more emission. Furthermore, the emitted 
electrons cause additional heating at the surface \vith the result that hot 
spots may develop owing to the excessive temperature. The varying 
filament-to-plate potential rounds off the knee of the space-charge satura¬ 
tion curves as shown in the next chapter. 

Large transmitters using direct current for the filaments usually have 
a filament-current reversing switch, so that the polarity can be reversed 
from day to day to cause both ends of the filament to carry this additional 
current for equal periods of time. This greatly prolongs the useful life 
of the tube. 

Usually alternating current is not applied to filamentary-type emitters, 
because of the variation in voltage and temperature along the filament. 
This results in a variation of emission current, which introduces a hum 
component into the space current of the tube that is, in most cases, 
objectionable. 

The indirectly heated emitters or cathodes have a uniform potential 
and temperature with electrical isolation from the heater element. This 
permits the use of alternating current in the heater and the operation of 
the cathode at some other potential. Most indirectly heated cathodes, 
as used in receivers, are oxide coated because of the low operating tem¬ 
perature and the sluggishness of the oxide coating in responding to the 
varying heater temperature when alternating current is used. Indirectly 
heated emitters are more sluggish than filamentary emitters because of 
the time necessary for the heat transfer from the heater to the cathode. 
Emission from the heater must be shielded from the plate and is kept 
from the cathode by operating the cathode iit a negative potential with 
respect to the heater. - 

Summary 

Electrons are emitted from the surface of many materials when the temperature 

is sufficiently high. This phenomenon is known as thermionic emission. 

The energy lost by a unit charge when passing through the surface of a substance 

is known as the work function. 
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The energy gained by an electron when accelerated in free space through a potential 

of 1 volt is called 1 electron-volt. 

Tungsten has the highest melting point of any metal, 3350°K. It is widely used 

for the filaments of electron tubes, particularly in high-power tubes. 

Thoriated-tungsten filaments are made by dissolving a small amount of thorium 

oxide and carbon in a tungsten emitter. Thoriated-tungsten filaments emit many 

more electrons than a pure-tungsten filament for the same operating power, but 

cannot be operated at as high a temperature. 

An oxide-coated filament is usually made by coating a nickel alloy with barium 

and strontium carbonates. An oxide-coated emitter is much more efficient than 

either a tungsten or a thoriated-tungsten filament, but must be operated at a much 

lower temperature. 

A getter is a chemical substance that unites with the residual gas in an electron 

tube after the tube ha^ been pumped and sealed. 

A filamentary-type emitter is one in which electrons are emitted directly from the 

wire that carries the heating current. 

An indirectly heated emitter is one in which there is no direct connection between 

the wires that carry the heating current and the emitting surface. 

Exercises 

16.1. What is the Edison effect? 

16.2. How many electrons flow through the filament of a 100-watt incandescent 

lamp in 1 yr if the applied voltage is 100 volts? If the filament weighs 0.02 g, how 

long must the current flow to make the combined mass of the electrons ecpial to 

the weight of the filament? (One common year = 365 days.) 

16.3. If 250 volts is applied to the anode of an electron tube, which is spaced 0 3 cm 

from the cathode, determine the force exerted on a free electron if the field is uniform 

(assuming large parallel plates for the cathode and anode). If the electron starts 

from rest at the cathode, what is its velocity when it reaches the plate, and how 

long does it take to get there? 

16.4. How many electrons per centimeter would it take in Exercise 16.3 to make 

an average current flow of 1 amp? (Assume no reaction between the electrons 

themselves.) 

16.5. Define the work function of a metal. How does it affect the thermonic 

emission? 

16.6. Why is it important to operate emitters as specified by the manufacturer? 

16.7. What kind of tubes can be rejuvenated? How is rejuvenation accomplished? 

16.8. Explain the construction, merits, and use of a p\ire-tungsten emitter. 

16.9. Explain the construction, merits, and use of a carbonized thoriated-tungsten 

emitter. 

16.10. Give three reasons for the occurrence of hot spots on the negative end of a 

filamentary-type emitter. 



CHAPTER 17 

THE DIODE TUBE 

In Chaps. 1 and 2 we studied some of the properties of an electron, 
while in Chap. 16 we treated thermionic emission as a method of prodiu*- 
ing a supply of electrons. We are now ready to study the action of the 
electrons after they are emitted and the means by which they can he 

collected by a plate. 
The two-element tube commonly known as a diode consists essentially 

of a cathode and an anode. Because of the shapes of tlu' (‘l(‘ctrodes, th(^ 
cathode is commonly called the filament and the anode the plate. Th(^ 
cathode is usually hot, having a low affinity for electrons, and the anode 
cold, having a positive voltage with respect to the cathode. The two 

elements are mounted in an evacuated vessel. 
The diode tube is valuable because of its unilateral conductivity. 

This means that the electron stream can flow only in one direction, from 
the cathode to the anode. There are a numl^er of devi(‘es that have this 
property—the crystal detector, copper oxide rectifier, selenium rectifier, 
mercury rectifier, Tungar rectifier, gas-filled tube re(‘tifi(;rs, and the diode 
or kenotron rectifiers. The diode or kenotron that operates as a ther¬ 
mionic valve will be treated in this chapter. 

17,1. Cathode Emission. The universally adopted eciuation for the 

cathode emission is a revision of an equation originally pro])osed by 
Richardson. The total electron emission current per unit area is givcm 
by the equation^ 

Is = (17.1) 

where Is = total electron emission current, amp/s(i cm 
A = 60.2, a constant for all pure metals 

= 3 for thoriated tungsten 
= 10^2 for barium-strontium oxides 

T = absolute temperature, 
€ = 2.71828 = .the Napierian base of natural logarithms 

^ The symbols used are those adopted by the Institute of Radio Kn^iruMTs in ho far 

as they apply. See “Standards on Electronics,” definitions of terms, Hvmbols, 1038 

(reprinted 1943) and “Standards on Electronics, Methods of Testing Vacuum Tubes,” 

1938 (reprinted 1943). See Appendix. 
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bo = ^ = a constant depending upon the work necessary to move 
K 

an electron from the inside to the outside of the emitter 
= work function measured in electron-volts 

K = 8.63 X 10“^ = Ihjltzmann^s constant, volts/°K 
This equation of the total emission or saturation current is a function of 
the temperature only; therefore, it is assumed that all electrons emitted 
are drawn away by an intense electric field. Under these conditions the 
emission current Is of Eq. (17.1) when plotted against the temperature T 

of the emitter will give a curve as shown in Fig. 17.1. 

Example 17.1. If the work function of pure tungsten is 4..52 elertron-volts, deter¬ 

mine the total omission current in amperes from a filament having 0.2 sq cm area 

and operating at a temperature of 2r)00°K. 

Solution. In Eq. (17.1) 

-5o = 
</)o _ —4..52 
~K ~ 10-5 

-52,400 

Substituting in Eq. 17.1 
Is = (fi0.2)(2,()(K))2(2.71S28)-52.4o()/2.f.(.o 

4 07 V 10® 
= (4.07 X 10)M2.71828)-”« = (5-547-^^, 

= 0.()22 ;imp/sq cm 

The total emission is then 
(0.2)(0.022) = 0.1244 amp Ans. 

17.2. Space Charge. The curve of Fig. 17.1 is made on the assump¬ 
tion that all the electrons are drawn away from the emitter and that hence 
there is no s})ace charge. If an emitter is placed in an evacuated vessel. 

Position of Position of 
emitter free plate 

So 
o 

Q. 

T 

PiQ. 17.1. Kmi.ssioii ciirrcMit I iis a function Fio. 17.2. Potential distribution about 
of temperature T {Ep = oo). a cathode with a free plate. 

the electrons emitted will form a negative spaee eharge around the emitter. 
This negative space charge causes emitted electrons to slow down as they 
travel from the emitter; hence the space charge composed of these elec¬ 
trons will continue to exist, giving a potential distribution as shown in 

Fig. 17.2. 
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This curve shows th^t the potential becomes more negative as the 
distance from the filament is increased, until the electron space charge 
becomes uniform, giving a constant negative potential. If a free plate 

Position of Position of is present in the evacuated vessel, it 
emitter connected plate will assume this negative potential as 

Fig. 17.3, Potential distribution be¬ 
tween a cathode and plate which is con¬ 
nected to the cathode. 

shown in the figure. This is called 
the Edison effect mentioned on page 

265. 
If the plate is connected to the 

emitter, it will stay at the same poten¬ 
tial with the negative space charge 
existing between the emitter and plate. 
The potential distribution for this 
case is shown in Fig. 17.3. 

17.3. Child’s Voltage Law. Con¬ 
sider the case of two large parallel 

plates in an evacuated vessel, one the cathode and the other the anode. 
With a positive voltage on the anode and a cold cathode^ the potential 
distribution will be uniform, giving a straight line as shown in Fig. 17.4. 

Position of Position of Position of Position of 
cold cathode plate hot cathode plate 

Fig. 17.4. Potential distribution l^etween a Fig. 17.5. Potential distribution between 
cold cathode and plate. a hot cathode and plate for variou.s plate 

voltages when the initial electron velocity is 
zero: 

Now if the cathode emits electrons from its surface with zero initial 

velocity^ the potential distribution for a positive plate will be as shown in 
Fig. 17.5. Potential distributions have been plotted for several anode 
voltages. If corresponding plate currents are plotted for these voltages, 
the curve of Fig. 17.6 will result. The equation of this curve was first 
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derived by Child and for parallel plates is 

, A (2.34 X 10-^) 
lb = -tt;- (17.2) 

where /& = plate or anode current, amp 
A = area of the plate, sq cm 
Eh = plate or anode voltage, volts 
S = spacing between the cathode and anode, cm 

The above equation for the diode current is quite accurate in actual 
practice if the voltage between the 
anode and cathode is large in com¬ 
parison with the voltage drop 
along the emitter and the initial 
velocities of emission. The plate 
voltage must be well below satura¬ 
tion, as described on page 274, 
and the number of electrons 
emitted from the cathode must be 
large. 

T? ; I'ro rvi. • Fio. 17.6. Characteristic curve of a diode for 
Example 17.2. Detcrmme the plate voltaaes, 

current in amperes in a tube having a 

plate area of 1 f?q ern and spaced 0.5 cm from the cathode, with a voltage of 100 volts. 

Solution. Substituting in Eq. (17.2) 

^ (1)(2.34 X 10-«)(100)^^ 

“ (0.5) 2 

= (9.36 X 10-«)(100)).> = 9.36 X lO"’ amp Ans. 

An electrode assembly consisting of two parallel plates in many cases 
is not practical. The usual procedure is to make the electrodes in the 
form of coaxial cylinders. For this case, Langmuir has developed the 
following equation: 

h 
/(14.08 X 10-^) 

(17.3) 

where h — plate or anode current, amp 
I = length of the cylinders, cm 

Eh = plate voltage, volts 
r = radius of the plate, cm 

= 1, which gives an accuracy within a few per cent when the 
ratio of the diameter of the anode to the diameter of the 
cathode is greater than 100 

In this equation it should be noted that the current depends upon the 
first power of the radius; hence the spacing can be increased to reduce 
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electrode capacities without reducing the plate current as rapidly as in 
the case of Eq. (17.2) for parallel electrodes. This is a valuable considera¬ 
tion in the design of vacuum tubes for high-frequency use. 

Example 17.3. Determine the plate current in a diode having a plate voltage of 

400 volts applied to the concentric plate 2 cm in diameter and 3 cm in length. Assume 

the cathode to be a very small cylinder at the center. 
Solution. Substituting in Eq. (17.3) gives 

_ (3)(14.68 X 10-«)(400)"-- 

(1)(T) 3.52.5 ma Am. 

Cathode Anode 

Fig. 17.7, Potential distribution lx*tween I lo. 17.8. Ei, — h, charaeteri.stie curve 
a hot cathode and an anode showing the for a diode. 

effect of .space charge for various anode 
voltage.s when the initial electron velocity 
is not zero. 

If the effect of initial velocities is introduced, the curves of Fig. 17.5 are 
changed to those of Fig. 17.7. In this case, there is a space charge near 
the emitter for the lower anode voltages. As the plate voltage is increased, 
the space charge is diminished, because the electrons are drawn to the 
plate more rapidly, until the crest (point of maximum negative potential) 
reaches the surface of the emitter. For this voltage all electrons leaving 
the emitter will travel to the plate. If the voltage is still further increased, 
the current will not increase proportionally because free electrons are not 
available. Figure 1T.8 shows this saturation effect for the higher plate 
voltages. 

17.4. Temperature and Space-charge Saturation. Since both tem¬ 
perature of the emitter and plate voltage determine the plate current, a 
graph showing the relationship among these three variables will be three- 
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dimensional, or, in other words, will be a surface instead of a curve. 
Figure 17.9 shows such a surface. The various curves are obtained from 
intersections of the surface with planes perpendicular to one axis. For 
instance, the curve of Fig. 17.8 is obtained by the intersection of a plane 
perpendicular to the temperature axis. When the temperature is held 
constant, the plate current is limited by space-charge saturation^ some¬ 
times called voltage saturation, as the plate voltage is increased. When 
the plate voltage is held constant, the plate current is limited by tem- 

Fio. 17.9. Curreiit-teniperature-voltagc characteristic surface of a diode. 

pcraturv saturatiofiy as the emitter temperature is increased. The 
points on the rounded edge of the intersection are limited by both types 
of saturation. 

17.6. Direct-current Resistance of a Diode. In practice the tempera¬ 
ture of the emitter is ht'ld constant. The operation of the diode plate 
current will then be a function of only the plate voltage. The operating 
characteristic will then be of the type shown in Fig. 17.8. This charac¬ 
teristic curve is redrawn in Fig. 17.10 with the curves of the d-c and a-c 
resistance. 

The resistance of a diode to direct current can be determined from 
Ohm’s law in the form 
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Plate voltage, 

Fig. 17,10. D-c and a-c resistance of an anode. 

where Eh = plate voltage, volts 
h = plate current, amp 
Th = d-c resistance, ohms 

Example 17.4. Determine the d-e resistance from the characteristic curve of 

Fig. 17.10 when the plate voltage is 15 volts. 

Solution. For Et, = 15 volts, It, = 0.0025 amp and from Eq. (17.4) 

The d-c resistance is the reciprocal of the slope of the dotted line in 
Fig. 17.10. This is the method used to determine the points on the d-c 
resistance curve of Fig. 17.10. 

17.6. Alternating-current Resistance of a Diode. The a-c resistance 
of a diode, sometimes called the dynamic plate resistance^ is the reciprocal 
of the slope of the eh-ii characteristic at the point in question. In general, 
the a-c resistance is quite different from the d-c resistance, usually having 
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a smaller value in the operating portion of the curve as shown by the 
curve in Fig. 17.10. 

The a-c or dynamic resistance can be determined from 

Tr, = 
AEfc 

Ah 
(17.5) 

where AEb 

Ah 

a small change in plate voltage at the desired point on the 
characteristic 
the corresponding change in the plate current 
the a-c or dynamic plate resistance 

Example 17.5. Determine the a-c resistance for the characteristic curve of Fig. 

17.10 when the plate voltage is Eh = 15 volts. 

Solution. For Eh = 15 volts, h = 0.0025 amp. Draw a tangent to the curve 

at this point. This tangent intersects the x-axis at 7.5 volts making a triangle such 

that AEh = 15 — 7.5 = 7.5 volts and A/* = 0.0025 — 0 = 0.0025 amp. Then 

7.5 

6.0025 
3,000 ohms Ans. 

It will be recalled that this large triangle gives the same results as a small triangle. 

'Equation (10.5) is sometimes written in differential form as follows 

dei, 
Tn = 

din 
(17.0) 

which means that de^ and dih form the sides of an infinitesimally small 
triangle with an infinitesimally small section of the curve as the hypote¬ 
nuse; hence the result is the same as if a line is drawn tangent to the curv^e 
and a large triangle formed to determine the slope. Small letters €h and 

ih are used to represent instantaneous values because the operating point 
is continually shifting. 

When other variables are present, such as temperature in this case, the 
correct way to express the a-c or dynamic plate resistance is 

rp = 
deh 

dib 
(17.7) 

where dCb and called 'partial of Cb and partial of ibj mean that any other 
variables, such as temperature in this case, are held constant during this 
measurement of rp, the plate resistance. 

The plate conductance of a diode is the reciprocal of the dynamic plate 
resistance, hence 

1 dib 
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where dih = the infinitesimal change in plate current corresponding to 
dCft, the infinitesimal change in plate voltage 

Tp = the dynamic plate resistance 
gp = the dynamic plate conductance 

The dynamic plate conductance of a diode according to this equation 
is the slope of the c?,-4 characteristic curve at the operating point, while 
the static or d-c plate conductance is the reciprocal of the d-c plate 

resistance. 

Fig. 17.11. Determination of the a-c plate-current wave form graphically from the diode 
characteristic when a sinusoidal a-c voltage is applied to the plate. 

17.7. Graphical Representation of Input and Output of a Diode. Since 
the eb-is characteristic curve is not a straight line^ the resistance does not 
stay constant, and Ohm's law cannot be applied over the complete range. 
Such a device is commonly called a nonlinear impedance, and may be very 
useful in certain applications, but in other applications it ofTc^rs limitations 
that must be carefully considered. 

17.8. Sinusoidal A-c Voltage Input. If a sinusoidal a-c voltage is 
applied to a diode whose impedance is a pure resistance, the resulting cur¬ 
rent can be easily obtained graphically by the use of the Ch-ib characteristic 
curve as shown in Fig. 10.11. The wave form of the voltage input is 
plotted along the negative ij-axm. For this curve the ordinate is the time 
axis. The plate current is then drawn with the x-axis as its time axis. 
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In Fig. 17.11, point 1 on the voltage wave form is projected up to the eirih 

characteristic curve and then across to point 1 on the plate-current pulse. 

This means that when the instantaneous plate voltage is at 1 on the 
voltage wave, the corresponding instantaneous plate current is at 1 on 
the current pulse. Similarly points 2, 3, and 4 can be projected from the 
voltage wave to the current pulse. It will be noted that when the plate 
voltage is negative (to the left of the ?/-axis), no current flows. This 

Fio. 17.12. Graphically detorniining tho wave form of the alternating plate current, ip, 
from the diotle characteri.stic when an alternating sinusoidal voltage is applied to the plate 
in series with a positive d-c component of voltage. 

merely means that el(M*trons will flow from the cathode to the plate when 
the plate is positive, but not from the plate to the cathode when the plate 
is negative. With a-c voltage applied to the plate, current flows only 
during the time when the ]date is positive. Such tubes are therefore 

useful as rectiflers to convert alternating current to direct current for 
supplying plate, grid, and screen voltages to other vacuum tubes. 

17.9. Sinusoidal A-c Component Plus a D-c Component of the Input 
Voltage. If the d-c. component of the voltage is applied in series with 
the a-c component of the voltage on the plate of a diode, the axis of the 
a-c component of the voltage wave will be shifted to the right of the 
negative //-axis if the d-c component of the voltage is positive and to the 
left if it is negative. If the voltage is negative, the pulses of plate cur¬ 

rent will be made smaller until they completely disappear when the d-c 
component of the voltage is equal to Ehmj the maximum value of the a-c 
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component of the voltage. When the d-c component of the voltage is 
positive, the pulses of plate current will become larger until the d-c 
component of the voltage equals Ehm. Beyond this point, the plate cur¬ 
rent will flow at all times. The d-c voltage can then be used to select the 
most desirable operating point on the Eb-h characteristic. Figure 17.12 
shows graphically how an a-c component of the voltage superimposed on 
a d-c component of the voltage causes the plate current to vary. The 
plate-current curve is obtained by projecting corresponding points from 
the voltage wave up to the Eb-h characteristic and across to the plate- 
current curve. This is the same procedure that was used above where 
it was explained in detail. 

It will be noted that the plate-current wave form is not symmetrical 
about its axis; the half cycles above the axis are larger than the half cycles 
below the axis. This is due to the fact that the Eb-h characteristic is 
not a straight line, giving a nonlinear impedance. This nonlinearity is 
sometimes used in detectors of radio circuits. 

Summary 

A diode tube consists of an electron emitter, or cathode, and a collecting plate, or 

anode. Current will flow through a diode only when the anode is at a positive 

potential with respect to the cathode. 

The total electron emission current from the cathode of a diode tube is given by 

Richardson’s equation 

Is - 
where Is = 

A = 

T = 

€ = 

ho = 

00 = 

K = 

When the anode is not sufficiently positive to collect all the electrons emitted by 

the cathode, the excess electrons form a cloud around the cathode, which is known 

as a space charge. 

The plate current for a diode in which the cathode and anode arc parallel plates 

of infinite extent, and in which a space charge exists, is given by Child’s law 

, A (2.34 X 
Ib 02 

current, amp/sq cm 

60.2, a constant for all pure metals 

3 for thoriated tungsten 

for barium-strontium oxides 

absolute temperature, °K 

2.71828 (the Napierian base of natural logarithms) 

^ — a constant depending upon the work necessary to move an elec¬ 

tron from the inside to the outside of the emittc^r 

work function, electron-volts 

8.63 X 10“^ = Boltzmann’s constant, volts/°K or °C 

where h = plate or anode current, amp 

A = area of the plate, sq cm 

Eb « plate or anode voltage, volts 

S = spacing between the cathode and anode, cm 
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The plate current for a diode in which the anode and cathode consist of infinitely 

long coaxial cylinders, and in which space charge exists, is given by Langmuir’s law 

^ ^(14.68 X lO-^)Ebn 

where h — plate or anode current, amp 

I — length of the cylinders, cm 

Ep = plate voltage, volts 

r = radius of the plate, cm 

— I, which gives an accuracy within a few per cent when the ratio of the 

diameter of the anode to the diameter of the cathode is greater than 100 

An electron tube that is operated under conditions such that the anode collects 

all the electrons produced by the emitter is said to be temperature limited. 

An electron tube operated with the anode at a potential lower than that necessary 

to collect all the electrons emitted by the cathode is said to be space charge limited. 

The d-c plate resistance of a diode is given by 

E, 
rb == 

ib 

where Eb = plate voltage, volts 

h = plate current, amp 

Tb = d-c resistance, ohms 

The a-c or dynamic plate resistance of a diode is given by 

AEf, 

where AEb = a small change in plate voltage at the desired point on the characteristic, 

volts 

Alb = the corresponding change in the plate current, amp 

rp = the a-c or dynamic plate resistance, ohms 

This equation can be written in differential form as 

dch 

dib 

When other variables such as temperature are present, the a-c plate resistance 

is written as 

dib 

where deb and dibj called partial of eb and partial of 4, mean that any other variables, 

such as temperature in this case, are held constant during this measurement of rp, the 

plate resistance. 

The plate conductance of a diode is the reciprocal of the dynamic plate resistance. 

Exercises 

17.1. What is unilateral conductivity? Name several devices that have this 

property. 

17.2. A thoriated-tungsten filament has an area of 0.175 sq cm. Determine the 

emission current if the temperature is 1600°K and the work function is 2.63 electron- 

volts. 
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17.3. How is the space charge distributed when the anode is connected to the 

cathode? 

17.4. How does the plate current depend upon the plate voltage? Who was the 

first to develop this relation? What are the assiiiiiptions? 

17.6. Determine the plate current when the plate is a cylinder 2 cm long and 1.5 cm 

in diameter and the plate voltage is 200 volts. Assume the cathode to be a v(^ry 

small cylinder. 

17.6. How does the crest or maximum point of space charge shift when the plate 

voltage is increased ? 

17.7. Why is it convenient to view a diode’s characteristic in three dinuaisions? 

17.8. Why is the d-c resistance of a diode different from the a-c resistance? Explain. 

17.9. Two points on an Eb — h characteristic are 

Ebi = 200 volts Ebi — 220 volts 

hi = 65 ma, 7^2 = 68 ma 

Determine the d-c resistance for both points. 

17.10. Determine the a-c resistance for the points of Exercise 17.0, assuming a 

straight line between the two points. 



CHAPTER 18 

THE TRIODE TUBE 

Thus far we have studied the electron, methods of producing a supply 
of electrons, and the effect of introducing a plate to collect the electrons. 
This chapter will be devoted to a study of the effects brought about by 
introducing a third element known as a grid to control the streams of 
electrons between the cathode and anode. Such a three-element tube is 
known as a triode, 

18.1. Historical Sketch. Before 1907 the only vacuum tubes in 
existence were tAvo-electrode tubes, or diodes, which could be used only 
as power rectifiers or as^the so-called Fleming valve detectors. In 1907, 
Lee De Forest made the remarkable discovery that by inserting a third 
electrode between the filament and plate, consisting of small wires forming 
a mesh or grid, the flow of electrons between the filament and plate 
could be readily controlled. This greatly extended the use of vacuum 
tubes for applications such as a-f and r-f amplifiers, detectors, and 
oscillators. 

Van der Bijl was one of the first to give the three-electrode tube a 
thorough theoretical mathematical treatment. Most subsequent treat¬ 
ments have been based upon this work. 

18.2. Grid Control of Electron Stream. The primary purpose of the 
grid is to control the flow of plate current by inserting a charge between 
the cathode and anode. This should be done with a minimum mechanical 
obstruction to electron flow and without absorbing any electrons. The 
first requirement is fulfilled by making the grid with as much free space 
as possible, and the second requirement is met by operating the grid at a 
negative potential with respect to the cathode so it will not collect 
electrons. 

The potential of the grid determines the resultant electrostatic field 
between the cathode and the anode. Figure 18.1 shows the field due to 
various grid potentials. The complete electrostatic field is secured by 
superimposing the space-charge field of the electrons on the fields caused 
by the electrodes. 

Figure 18.1a shows how a positive grid assists the anode in creating a 
field that will move large numbers of electrons from the cathode to the 
anode. If the grid is made too positive, the electrons will flow to the 
grid and actually reduce the anode current. Figure 18.16 shows that 
the anode will attract some electrons even if the grid has no attraction, 

287 
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being at the same potential as the cathode. Figure 18.1c corresponds to 
the case of a diode; the free grid collects just enough electrons to establish 
the potential of the space charge, hence the effect of the grid on the field 

Fig. 18.1. Electrostatic field in a triode. 

is nil. This condition is very unstable and should not be used in practice. 
In Fig. 18. Id the grid is made so negative that it forces electrons back 
toward the cathode and reduces the number reaching the anode. 

18.3. Potential Distribution in a Triode. When the electrostatic 
fields due to the electrodes and space charge are superimposed, the poten¬ 

tial distribution can be represented 
as shown in Fig. 18.2. 

When the grid is positive, the neg¬ 
ative space charge (represented by 
the portion of the potential line be¬ 
low the zero-potential axis) is very 
small and very close to the cathode. 
This means that most of the electrons 
are drawn away from the cathode, 
some going to the grid and the rest to 

0 = positive grid c = free grid the anode. With the grid at cathode 
6=zero grid d = negative grid potential, there is a negative space 

Fig. 18.2. Potential distribution in a charge between the Cathode and grid. 

The electrons that pass through the 
grid are attracted to the plate. If the grid is free, it will assume a 
negative charge, resulting in the same curve as that of the diode, which 
is shown in Fig. 17.7. This is a very unstable condition of operation, as 
the grid may collect an excessive negative charge and block the plate 
current. By making the grid more negative, the negative space-charge 
effect is increased to reduce the number of electrons passing the grid and 
going to the anode. 

If it were not for the electron space charge, all the potential lines of 
Fig. 17.2 would be straight lines. The negative charge of the electrons 
between the electrodes makes all these curves bend downward. 

From this analysis, the effect of the grid can be briefly stated as follows : 
1. Positive grid: Decreases the space charge. Increases anode current. 

Increases grid current. Decreases anode-cathode resistance. 
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2. Free grid: No effect—same as a diode. (Very unstable in practice, 
may block plate current.) 

3. Negative grid: Increases the space charge. Decreases anode cur¬ 
rent. Increases anode-cathode resistance. 

The anode-cathode resistance, usually called the plate resistance, is 
determined in the same way as illustrated in the last chapter for a diode. 
The grid voltage is held constant for this measurement. 

18.4. Static Characteristic Curves of a Triode. There are three inde¬ 
pendent variables in a triode, namely, the plate, grid, and filament volt¬ 
ages. In most applications, the filament voltage is held constant at a 
value that will give the required supply of electrons from the cathode. 

There are also three dependent variables: plate, grid, and filament 
currents. Since the filament voltage is usually held constant, the fila¬ 
ment current will also be a constant. This leaves four important 
parameters, two of which, are independent (£'c, E}), and two of which are 
dependent (Zb, /c). Normally, the triode is operated to reduce the grid- 
current effects, if not to eliminate them entirely, by keeping the grid 
negative. 

The most important static characteristics are the transfer, plate, and 
constant-current characteristics, indicated by the solid curves in Figs. 18.3, 
18.5, and 18.6 respectively. The transfer characteristics, sometimes 
called the Ec-h {grid-voltage-plate-current) curves, are secured by measur¬ 
ing the plate current for various values of grid voltage while the plate 
voltage is held constant. A family of such curves for various values of 
plate voltage is shown by the solid curves in Fig. 18.3. The plate char¬ 
acteristics, sometimes referred to as the Eb-h {plate-voltagc-plate-current) 

curves, are secured by measuring the plate current for various values of 
plate voltage while the grid voltage is held constant. A family of such 
curves for various values of grid voltages is shown by the solid curves of 
Fig. 18.5. The constant-current characteristics, sometimes referred to 
as the Eb~Ec {plate-voltage-grid-voltage) curves, can be secured by measuring 
the grid voltage for various values of plate voltage when the plate current 
is held constant. A family of such curves for various values of plate 
current is shown in Fig. 18.6. It will be noted that these important 
families of static characteristic curves involve two independent variables 
and one dependent variable (J?6, Ecy h)* Knowing the value of any two 
of these variables, it is possible to determine the other one. In other 
words, the three families of solid curves shown in Figs. 18.3, 18.5, and 
18.6 are plots of the same information in three different forms to increase 
its usefulness. 

These static characteristic curves give the true instantaneous values of 
the relation between the three variable, Eij E^ and /&, except for very 
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Fig. 18.3. Transfer characteristic curves of a triode. 

/6=47.5 

I I 
Ec=-2Q Ec^-7 

Fig. 18.4. Expanded portion of characteristic curves from Fig. 18.3. 
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high frequencies above 100 Me, where the transit time of the electrons 
in the tube must be given due consideration. This means that graphical 
methods based on the static characteristics readily give exact solutions to 
many practical problems. The transfer characteristics, or Eb-h curves, 
for example, are valuable for determining the shape of the plate-current 
or h wave form resulting from a given grid-voltage on Ec wave form 
when the plate voltage Eb is a constant. The most useful characteristic 

is the plate characteristic or Eb-h curves. These are the most com¬ 
monly published static characteristic curves, because even with a reactive 
load, the locus of Eb-h values gives a straight lino, and because certain 
areas of this diagram are proportional to the power supplied and expended 
in the plate circuit. The constant-current characteristics, or Eb-Ec 
curves, have been found to be very useful in simplifying the analysis of 
class C amplifiers. 

If the grid is to be operated with positive grid voltages, it is important 
to have the grid, grid-transfer, and constant-grid-current characteristics, 
as shown by the dashed curves in Figs. 18.3, 18.5, and 18.6, respectively. 
The grid characteristics, or Ec-h curves, dashed in Fig. 18.3, show how 
the grid current ig varies as a function of the grid voltage Ec, when the 
plate voltage Eb is held constant. The grid-transfer characteristics, or 
Eb-h curves, dashed in Fig. 18.5, show how the grid current h varies as 
a function of the plate voltage Eb, when the grid voltage Ec is held con¬ 
stant. Finally, the constant-grid-current characteristics, or Eb-Ec curves. 
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dashed in Fig. 18.6, show how the grid voltage Ec varies as a function of 
the plate voltage Eh, when the grid current le is held constant. It should 
be noted that these families of dashed curves involve two independent 
variables and one dependent variable (Ec, Eh, Ec). The information has 
been presented in three different forms to increase its usefulness. Just 
as with the other characteristic curves, graphical methods can be used 
with these curves to arrive readily at exact solutions. Mathematical 
solutions are not easy because of the complexity of the equations. 

Fig. 18.6. Constant current characteristic curves of a triode. 

18.6. Triode Constants. The solution of vacuum-tube problems is 
in most cases simplified by the use of three derived factors that depend 
upon the physical construction and upon the electrode voltages and cur¬ 
rents. These three factors, termed the amplification factor p (Greek 
letter mu)^ the dynamic plate resistance and the mutual conductance Qm, 
make possible the solution of many problems without resort to the static 
characteristics. 

18.6. Amplification Factor p. Theoretically the amplification factor 
can be made to depend entirely upon the geometry of the tube, but 
actually it varies somewhat with electrode voltages. Hence it can be 
defined as the ratio of the change in plate voltage^ dEh, to the change in grid 
voltage, dEc, that causes the change in Eh, when all other parameters, such as 
plate current ip, are held constant This definition, incidentally, is valid 
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for other tubes than the triode. Mathematically, this definition can be 
written 

(ih = constant) 

where /x == amplification factor (always positive) 
dEh — incremental change in plate voltage, volts 
dEc = incremental change in grid voltage, volts 

Another way of writing this equation, which has the same meaning, is 
by means of partial differentials; thus 

(18.1a) 

Graphically, the amplification factor /a can be determined from Fig. 18.3 
by holding the plate current constant and measuring the change in plate 
voltage corresponding to a given change in grid voltage. Similarly, this 
value can be determined from Figs. 18.5 and 18.6. The amplification 
factor is very useful in calculating the voltage gain that can be expected 
from a given vacuum tube. It should be noted that dEi/dEc must be 
negative since /x is always positive. 

Example 18.1, Graphically determine the amplification factor m for the type 10 

triode by means of Figs. 18.3, 18.5, and 18.6. 

Solution. Referring to Fig. 18.3 for ip = 20 ma, the approximate values are 

dEb = Eb\ — Ebz = 300 — 200 == 100 volts 

and the corresponding change in grid voltage is 

dEc = Eel — Ec2 ~ —28 — ( — 15) = —13 volts 

Therefore, by Eq. (18.1) the amplification factor m is 

Ans, 

Referring to Fig. 18.5 for ip — 20 ma, let us approximate by writing 

dEc = Eel - Ec2 = -20 - (-30) = +10 volts 

and the corresponding change in plate voltage is 

dEb — Ebi — Ebz — 237 — 314 = —77 volts 

Then by Eq. (18.1) the amplification factor ^ is 

Ans. 

Referring to Fig. 18.6 for ip = 20 ma, 

dEh = Eb\ — Ebz = 200 — 300 = —100 volts 

Then the corresponding change in grid voltage is 

dEc = -15 - (-28) - 13 volts 

and M - — “-“ 7.69 volts Ans. 
(tilde aO 
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Or if we had taken 

dEc = En - Ec2 = -20 - (-30) = +10 volts 

the corresponding change in plate voltage would be 

dEh = Ebi — Eb2 = 237 — 314 = —77 volts 

and ^ = 7.7 Check 
dEc 10 

18.7. Dynamic Plate Resistance Like the amplification factor, 
the dynamic plate resistance, commonly referred to simply as the plate 
resistance^ depends upon the geometry of the tube. The plate resistance 
to alternating current may be quite different from the d-c plate resistance, 
just as in the case of a diode, which was explained in the last chapter. 

The dynamic plate resistance refers to incremental changes in the plate 
voltage and current and can be defined as the ratio of change in plate 
voltagej dEby to the change in plate current, dh, that caiises the change in Eb, 
when all other parameters, such as grid voltages, are held constant. This 
definition is, of course, valid for all vacuum tubes. Mathematically, 
this definition can be written 

dP 
Tp = -jT ifio = constant) (18.2) 

CLlh 

where = dynamic plate resistance, ohms 
dEb = incremental change in plate voltage, volts 
dib = incremental plate current, amp 

The plate resistance can be determined graphically from Figs. 18.3, 
18.5, and 18.6 by holding the grid voltage constant for the determination. 

The plate resistance can also be expressed by partial differentials; thus, 

no o ^ n = (18.2a) 

Example 18.2. Determine the plate resistance of a type 10 triode when the grid 
voltage Ec = —20 volts. 

Solution. From Fig. 18.3 we have a change of 

dih — Ibi — Iht = 31.5 — 14 = 17.5 ma 

when the plate voltage varies by 

dEh = Eh\ — Eb2 = 300 — 200 = 100 volts 

Then by Eq. (18.2) we can write 

100 
0.0175 

= 5,710 ohms Ans. 

18.8. Mutual Conductance gm. The mutual conductance of a vacuum 
tube is the ratio of a small change in plate current, dhy to the small change 
in grid voltage, dEc, that causes the change in h, when the other param- 
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eters, such as the plate voltage are held constant. Mathematically 
this definition can be written 

9m = ^ (cft = constant) (18.3) 

where Qm = mutual conductance, mhos 
dib = incremental change in plate current, amp 

dEr. = incremental change in grid voltage, volts 
The mutual conductance expressed in terms of partial differentials 

becomes 

(18.3a) 

Now let us investigate the relationship between /x, rp, and Qm. First, 
let us permit a small positive change in grid voltage with the plate volt¬ 
age remaining constant; thus from Eq. (18.3), 

dib Qm dEc 

which means that the plate current changes a small positive amount. 
This fact can be verified by referring to Fig. 18.3. Since a small positive 
change in Ec causes a small positive change in h then gm must be a posi¬ 
tive quantity. 

Example 18.3. Determine the mutual conductance of a Type 10 triode from 
Fig. 18.3 when the plate voltage is held at 300 volts. 

Solution. Referring to Fig, 18.3, 

dih = Ihi — Ib2 = 30 — (20) = 10 ma 
when dEr = En - Ec2 = -21 - (-28.5) = 7.5 volts 

Then, by Eq. (18.3) 

1,333 /iinho 

Using values of m »nd rp determined above, Eq. (18.6) gives 

Qm = — — = 1,346 Minho Check 
Tp O, • lU 

For approximate graphical solutions, this is a reasonably accurate check. 

Referring to Fig. 18.3 consider Eq. (18.1). For a constant plate cur¬ 
rent of h = 30 ma let the plate voltage change from Eb = 300 volts 
to Eb = 200 volts as shown in Fig. 18.4. This decrease in plate volt¬ 
age for constant plate current results in an increase of grid voltage from 
Ec = —20 volts to Cg = —7.0 volts. If the incremental quantities 
dEb and dEc of Eq. (18.1) are made large for illustration purposes this 
equation can be used to determine the amplification factor from the 
preceding data, thus, 

300 - 200 
^ -20-(-7.0) 
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Next, hold the grid voltage constant at Ee = —7.0 and increase the plate 
voltage from Et, = 200 volts to E^ = 300 volts. Referring to Fig. 18.4 it 
is seen that the plate current increases from h — 30 ma to h = 47.5 ma. 
Now, if the incremental quantities of Eq. (18.2) are made large and the 
above values substituted, the plate resistance is determined to be 

Tv 
200 - 300 

0.030 - 0.0475 
5,710 ohms 

Finally, hold the plate voltage constant at Eh = 300 volts and decrease 
the plate current from Ib = 47.5 ma to h = 30 ma. In a similar fashion 
by Eq. (18.3) the mutual conductance is computed to be 

ffm 
0.0475 - 0.03 
-7.5 - (-20) 

= 1,400 /imho 

With the triangle of Fig. 18.4 in mind, multiply Vp by Qm as given in 
Eq. (18.2) and Eq. (18.3). This multiplication gives, 

— V 

dh^dE,~ \^iic) {ib — constant) 

In the first term on the right hand side of this equation the current 
increases a small amount and in the second term it returns to its original 
value, therefore, for constant plate current these terms cancel leaving 
— dEb/dEe which, by Eq. (18.1), is the definition of ji. The primary 
purpose of this discussion is to illustrate the necessity of the negative 
sign in Eq. (18.1) and to show that the correct solution of Eqs. (18.1), 
(18.2) and (18.3) can be expressed in the following very useful forms 

(18.4) 

(18.5) 

(18.6) 

These equations show that if any two of the constants are known, the 
other can be readily calculated. 

In terms of partial differential equations the relationship between /x, 
Tp and Qm can be determined rigorously by letting the grid and plate 
voltages change small amounts and write down the corresponding change 
in plate current, thus 

I, = 

M TpQrn 

dib 

Wc 
and Tp 

__ dEb 
we can rewrite the preceding equation Since g, 
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h = Qm dEc H— dEh 
Tv 

If the change in plate current is held to zero this equation can be solved for 

gmrp = constant) = M 

This relationship is exact for all tubes and any combination of electrode 
potentials. 

18.9. Simplified Equivalent Circuit of a Triode. The triode constants 
can be used to an advantage in reducing a triode circuit to a simplified 
equivalent circuit. To simplify the analysis, let the grid remain negative 

(c) (d) 

Fig. 18.7. Simplified equivalent circuits of a triode with a resistance load. 

at all times; thus it will consume no power but will be able to control con¬ 
siderable power in the plate circuit. Furthermore, if the triode constants 
are to be used, it will be necessary to operate on the straight-line portion 
of the transfer characteristics shown in Fig. 18.3. 

One of the fundamental theorems known as the equivalent-circuit 
theorem can be used to replace the varying plate resistance, which is 
difficult to treat mathematically, by a constant resistance and a varying 
emf. The theorem, applied to this problem, says that small changes in 
plate current h can he calculated by assuming that the voltage —yEc acts 
in series with a constant plate resistance Vp. 

By using the superposition theorem, the total instantaneous plate cur¬ 
rent 4, as given in Fig. 18.76, is equal to the sum of the d-c component of 
plate current, /&, as given in Fig. 18.7c, plus the a-c component of plate 
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current, ip, as given in Fig. 18.7d; thus 

ih = A + ip (18.7) 

where % = total instantaneous plate current 
h = d-c component of plate current 
ip = instantaneous a-c component of plate current 

This current relationship is also illustrated in Fig. 18.8. 
The total instantaneous grid voltage by reference to Fig. 18.7a and 

Fig. 18.8 is 
Cc = Ec Cg 

= Ec + Egn, sin (at (18.8) 

where Cc = total instantaneous grid voltage 
Ec — d-c component of grid bias voltage 
eg = Egm sin (18.9) 

= instantaneous a-c component of grid voltage 
Egm = maximum value of a-c component of grid voltage 

CO = 27r/ = angular velocity, radians/sec 
t = time, sec 

Applying Kirchhoff’s voltage law to the equivalent d-c plate circuit of 
Fig. 18.7c gives, 

Ib'^p — ^J'Ec — Eb “h IbRL = 0 (18.10) 

Solving this equation for the d-c component of plate current, 

T _ -hi^Ec -b E^ 
Tp Rl 

(18.11) 

It should be noted that Ec is normally a negative voltage, otherwise it 
would be expressed with a plus sign in Eq. (18.10). 

Now applying Kirchhoff^s voltage law to the ecjuivalent a-c plate cir¬ 
cuit of Fig. 18.7d gives. 

(18.12) 

(18.13) 

An inspection of this equation and Fig, 18.8 reveals that if the a-c com¬ 
ponent of the grid voltage eg increases (becomes less negative in the grid 
circuit) the a-c component of the plate current increases. 

By substituting Eq. (18.11) and Eq. (18.13) in Eq. (18.7) the total 
instantaneous plate current is 
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The total instantaneous plate voltage by reference to Fig. 18.7a and 

Fig. 18.8 is 
et = E,- uR, (18.15) 

Substituting 4 in Eq. (18.15) with the value given in Eq. 

_ EbTp — ^xEcRl_ fiRh 

^ Tp Rl rp + Rl ^ 

ElTp — IJlEcRl fxRLEgrn • , 
— - Sin o)t 

Tp + Rl Tp + Rl 

(18.14) results in, 

(18.16) 

(18.17) 

Solxdion: 
eg — Ec + Egm sin oit = — 20 + 14.14 sin o>t 

ep = 
EbRp flEcliL IJiEqmRL 

Rp Rl Rp + Rl 
— 240 — 75.4 sin u)t 

sin o)t 

^Ec + Eb , ^^E^ 
—“h = T,—-1- Rp “h Rl 

-yiEg 

Rp + Rl 

-^Rl 

sin (at =16-1- 7.54 sin cat 
Rp -|- Rl 

= —5.33 ma 

= —5.33 = useful amplification 
Rp + Rl 

Fig. 18.8. Current and voltage relations in a triode operating into a resistance load. 
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The instantaneous a-c component of the output voltage is, 

6p = —ipRh (18.18) 

Substituting for tp from Eq. (18.13) and for Cg from Eq. (18.9) gives 

= sin (18.19) 
r-p + Kl 

the instantaneous a-c component of the output voltage expressed in 
terms of the input voltage and pertinent constants of the vacuum tube 

circuit. 
18.10. Important Vacuum Tube Equations. Perhaps the most impor¬ 

tant equation of vacuum tube engineering is the a-c component of the 
plate current written in terms of effective values. Eq. (18.13) becomes, 

h (18-20) 

where Ip = effective value of a-c component of the plate current 
Eg = effective value of a c component of input grid voltage 

By the application of Ohm^s law, the output voltage across the load is, 

Er. = -I^L = (18.21) 
Tp -j- tlL 

== effective value of a-c component of output load voltage 

Perhaps the most generally useful design equation of vacuum tube 
engineering can be secured by rewriting Eq. (18.21) thus, 

__ El _ —fiRL 

Eg Tp Rl 
= useful amplification 

(18.22) 

The negative sign in this equation, besides being mathematically correct, 
is a helpful reminder of the 180® phase shift in the triode. 

Example 18.4. A Type 10 triode circuit has the following values given: 

== 8, Ec = —20 volts 
Qm = 1,600 /xmho, Egm = 14.14 volts 
Up = 5,000 ohms, Eb = 400 volts 
Rl =* 10,000 ohms 

Draw a diagram illustrating the idealized Ec — h curves with a graphical repre¬ 
sentation of the instantaneous ^rid and plate voltages and instantaneous plate current. 
Write the mathematical equations for the instantaneous grid and plate voltages and 
instantaneous plate current. Determine the value of effective plate current and 
useful amplification. 

Solution. The diagram and solution are given in Fig. 18.8. Ana. 
Example 18.5. Determine the power consumed by the load resistance Rf. of 

Example 18.4. 
Solution. By Joule^s law the a-c power is 

Pac « Ip^Rl « (-0.00533)*(10,000) Ana. 
* 0.284 watt Ana. 
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and the d-c power is 
Pdc - L^Rl = (-0.016)«(10,000) 

= 2.56 watts 

and the total power consumed is 

Pt = Pac -h Pdc = 0.284 + 2.56 
— 2.844 watts 

Ans. 

Arts. 

Summary 

The advent of the triode with its control grid makes this type of vacuum tube a 

control impedance that has revolutionized the radio and communication industry. 

Its usefulness comes from the fact that relatively large amounts of plate current and 

power can be controlled with very small variations of grid voltage and practically 

no expenditure of power in the control circuit. 

From the static characteristic curves the true instantaneous values can be deter¬ 

mined by graphical methods to give exact solutions, except for frequencies so high 

that the electron transit time has to be considered. 

For most practic^al calculations the triode constants can be used to simplify the 

mathematics materially. By utilizing the equivalent-circuit theorem and the super¬ 

position theorem, equations of the instantaneous grid and electron plate voltages 

and plate current can be expressed in the form of an equation. 

Also, the effective plate current as a function of the effective grid voltage and the 

useful amplification are readily expressed in equation form. 

As shown in Fig. 18.8, it should be emphasized that 

1. ec and ii, rise and fall together, hence are in phase. 

2. Ch falls when ii, rises, hence Cb and ib are 180® out of phase. 

3. eb falls when ec rises, hence eb and Cc are 180® out of phase when the triode is 

operated into a resistance load. The negative signs take care mathematically of the 

phase shifts, but are often omitted for the sake of simplicity. The term 4 in this 

chapter expresses the total current as it flows from anode to cathode and thence 

through the plate supply and load resistance back to the anode. Therefore, % is 

the conventional direction of current flow. 

A triode tube contains, in addition to an anode and a cathode, a third element 

calhal the control grid. This (*ontrol grid is located between the cathode and anode, 

and can be us('d to control the plate current without appreciable power being con¬ 

sumed in the grid circuit. 

The amplification factor /u is given by 

dEb 

** ~ (IE. 
wliere yu = amplification factor 

dEb — incremental change in plate voltage, volts 

dEc = incremental change in grid voltage, volts 

The dynamic plate resistance Vp is given by 

dEb 

dh 
where Vp = dynamic plate resistance, ohms 

dEb incremental change in plate voltage, volts 

dib — incremental electron plate current, amp 

The mutual conductance Qm is given by 

{ib — constant) 

{ec =* constant) 

{eb = constant) 
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where = mutual conductance, mhos 

dlh = incremental change in electron plate current, amp 

dEc = incremental change in grid voltage, volts 

Exercises 

18.1. Define a triodc. How does the grid voltage affect the plate resistance? 

18.2. Referring to the Ec — h curves for Eh = 25 volts in I'ig. 18.3, state the 

reason for the curvature at the lower and upper ends of the curve. 

18.3. Of what value are the characteristic curves involving grid current? How 

does the grid resistance vary with grid voltage? 

18.4. When arc the static characteristics in error? What can be used to approxi¬ 

mate the characteristics involving plate current? 

18.6. Graphically determine, from Fig. 18.3, the amplification factor ^ between 

Eh = 25 and 50 volts for 4 = 20 ma. Determine the plate resistance for th(^s(5 

plate voltages when Cc = +10 volts. From these values determine the mutual 

conductance. 

18.6. A power-amplifier triode (2A3) connected as shown in Fig. 18.7a has the 

following facts given: 

fi = 4.2, Ee = -“45 volts 

Tp = 800 ohms, Eb — 400 volts 

Rl — 2,500 ohms, Eg = 30 volts 

Determine the mutual conductance and give the mathematical equations for the 

idealized Ec — h curves with and without the load resistance. 

18.7. Give the mathematical ecpiations for the instantaneous grid and plate voltages 

for Exercise 18.6. 

18.8. Write the mathematical equation for the total instantaneous plate current 

for Exercise 18.6. 

18.9. Determine the effective plate current and useful amplification for the power- 

amplifier triode of Exercise 18.6. 

18.10. Give the a-c, d-c, and the total power consumed in the plate and load resist¬ 

ance of the tube circuit of Exercise 18.6. If the tube could be operated into a perfect 

transformer of the same impedance, how much could the plate voltage be lowered 

to give the same results and wliat would be the saving in plate-circuit power? 



CHAPTER 19 

MULTIELEMENT TUBES 

The addition of more than one grid to a vacuum tube gives many 

desirable characteristics. Since the fundamental purpose of the vacuum 

tube is to generate, control, and collect a stream of electrons, the action 

should be entirely unilateral. Owing to electrode capacity effects, the 

triode, unless externally neutralized, has some bilateral properties. The 

tetrodey which has a screen grid between the control grid and plate, was 

introduced to shield the control grid from the plate electrostatically. 

As a result of the secondary emission of electrons from the plate of a 

tetrode and the collection of these electrons by the screen grid, consider¬ 

able power is lost. The pentodCy having a suppressor grid between the 

screen grid and plate, was introduced to control the secondary emission of 

electrons from the plate. Then, because there is considerable harmonic 

distortion in the pentode, the beam-power pentode was introduced. It 

has the efficiency and sensitivity of a pentode and the low distortion of a 

triode. In this tube the electrons are forced to pursue definite paths by 

proper focusing. 

The present trend in tube design is to make specialty types. These 

tubes are either of the multielectrodc type intended to give optimum 

performance in particular applications or of the multiunit type, which 

combines the functions of several tubes in a single envelope. The 

primary justification for these tubes seems to be space and economy 

considerations. 

Then there are a multitude of special tubes such as the electron-ray 

tubes, gas tubes, cathode-ray tubes. X-ray tubes, and secondary-emission 

tubes. A detailed treatment of these tubes is beyond the scope of this 

chapter. 

This chapter will be devoted to a treatment of the more important types 

of tetrodes, pentodes, and beam-power tubes, with only a brief treatment 

of the specialty types of tubes. 

19.1. The Tetrode with Screen Grid. A triode plate serves two func¬ 

tions: (1) to affect the field in the tube, and (2) to collect electrons. In 

a tetrode the field is controlled by the screen grid. This leaves to the 

plate only one function, that of collecting electrons. 

Since the elements in a vacuum tube are metallic conductors insulated 

from each other, there exist interclectrode capacities due to the electro- 
303 
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static fields between the electrodes. These capacities are bilateral in 
nature and exist regardless of the electron action in the vacuum space. 
This destroys the desired unilateral properties between certain electrodes 
in the vacuum tube. It is possible by external neutralizing circuits to 
balance out this effect, but it is usually more desirable to minimize the 
effect by electrostatic shielding within the tube. In the tetrode, the 
shielding takes the form of a screen grid mounted between the control 
grid and the plate. In practice, the control-grid-to-plate capacity is 
reduced to the order of 10 /u/if to 0.01 fii or less by the screen grid. 

The screen grid, in addition to its desirable shielding properties, is 
operated at a positive potential, thus supplying an electrostatic force 
pulling electrons from the cathode to the plate. The cathode and con¬ 
trol grid perform the same functions as in the triode. The screen grid 
supplies the accelerating potential for the electrons but does not collect 
very many of them, owing to the comparatively large space between 

grid wires. This means that the variations in plate voltage have very 
little effect on the plate current, resulting in a high plate resistance. 
Mathematically, this is readily seen by inspection of Eep (18.2a) developed 
in the last chapter for the plate resistance. For a multielement tube it 
can be written, in partial-differential form. 

where Vp = dynamic plate resistance, ohms 
dEb = incremental change in plate voltage corresponding to dh 
dih = incremental change in electron plate current when all other 

parameters are held constant 

The control-grid voltage of the tetrode is just as effective in varying the 
plate current as in the triode; hence the mutual conductance remains 
essentially unchanged. For the multielement tube it can be written 
[see Eq. (18.3a)] 

^ dE^i 

where g^i = mutual conductance of grid 1, mhos 
dib = incremental change in electron plate current corresponding 

to dEci 
dEei = incremental change in grid-1 voltage when all other param¬ 

eters are" held constant 
The mutual-conductance effect of other grids can be secured by changing 
the numerical subscripts in this equation. The subscript refers to the 
number of the grid counting from the cathode to the plate. 
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By definition of the amplification factor [see Eq. (18.1a)], its value 
for a multielement tube is 

Ml 
dEh 
dEci 

(19.3) 

where mi = amplification factor of grid 1 
d Eh = incremental variation in plate voltage corresponding to dEc\ 
dEc\ = incremental variation in grid-1 voltage when all other param¬ 

eters are held constant 
Here also, the amplification effect of the other grids can be secured by 
changing to the proper subscript. From this analysis it follows that a 
screen-grid tube can be designed to have the same mutual conductance 
as an equivalent triode, but it will have a very much higher plate resist¬ 
ance and amplification factor. By proper design it is possible also to 
make the mutual conductance high. The low control-grid-to-platc 
capacity makes it possible to realize the high amplification with good 

stability; hence the tetrode is especially desirable for voltage and power 
amplification. 

The most serious limitation of the tetrode is the generation of secondary 
electrons at the plate caused by the accelerated electrons passing through 
the screen grid and striking the plate. When the plate voltage is lower 
than the screen-grid voltage, these secondary electrons splashed out of the 

plate are attracted back to the screen grid. If the secondary emission of 
electrons from the plate exceeds the number of primary electrons striking 

the plate, the external plate current will be decreased, giving a negative 
resistance characteristic due to the negative plate-current effect. Advan¬ 
tage is taken of this effect, for example, in the dynatron oscillator. Where 
the effect is undesiral^le, the pentode tube can be used to permit wider 

variations in plate current and plate voltage. 

Example 19.1, Write down the plate resistance, mutual conductance, and amplifi¬ 
cation factor for the space-charge tetrode illustrated in Fig. 19.16. 

Solution 

dEh 

dh 

_ dJb 

dEh 

It will be noted that the only change as compared to Eqs. (19.1), (19.2), and (19.3) is 
in the subscript. 

19.2. Tetrode Static Plate Characteristics. A family of static plate 
characteristics is plotted for a typical tetrode in Fig. 19.2. The solid 

Ans, 

Ans. 

A ns 
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Plate voltage, Eb, in volts 
Fig. 19.2. Plate characteristic curves of a tetrode. 

curves give the plate current, and the dashed curves give the screen cur¬ 
rent. The sum of the screen-grid current and plate current is practically 
a constant, as will be noted for the case shown w^hen the control-grid 
voltage is zero {ic2 + ihj for Cci =0). As the plate voltage is raised from 
zero, electrons passing through the screen are collected by the plate, 
giving a sharp rise in electron plate current. The velocity of the elec¬ 
trons striking the plate increases rapidly with plate voltage, and when 
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Ch in this case is about 25 volts, the electron velocity is sufficiently high 
to produce appreciable secondary emission. These secondary electrons 
are drawn to the screen, causing the electron plate current to drop off 
rapidly until the plate voltage has reached approximately 75 volts. 
Secondary-emission electron current rapidly drops above 75 volts plate 
voltage, until above approximately 200 volts the electron plate current 
becomes practically independent of plate voltage. For stable operation, 
this tube should be operated at plate voltages above 150 volts. 

Example 19.2. Determine the plate resistance of the Type 865 tetrode by using 
the curves of Fig. 19.2, for e.ci = —10 volts and plate voltages between 300 and 
700 volts. 

Solution. Referring to Fig. 19.2 and approximating Eq. (19.1), we get 

_ dEu ^ 600 - 300 300 

dl,, 6.0125 - 0.01125 0;00125 

= 200,000 ohms = plate resistance Ans. 

Example 19.3. If the plate %'oltage of the Type 865 tetrode of Example 19.2 is 
held constant at 600 volts and the bias is varied from 0 to —10 volts, determine the 
mutual eonduc'tance and ampliheation factor. 

Solution. Substituting in Eq. (19.2), the approximate solution for the mutual 
conductance is 

dh ^ 0.0185 - 0.0125 _ 0.0065 
a/iV. ■ 0 - lb 10 

= 650 Aiinho Ans. 

And the amplification factor is [see Eq. (18.4)] 

Hi == Tj^grni = (200,000) (650 X 10“«) = 130 Ans. 

19.3. Tetrode with Space-charge Grid. The negative space charge 
around the cathode can be neutralized by connecting the inner grid, that 
is, grid 1, to a small positive voltage; thus the electrons emitted by the 
cathode are readily controlled by grid 2. Grid 1 operating under this 
condition is known as the space-charge grid. 

The advantages of the space-charge tetrode in comparison to the 
triode are 

1. Lower plate-voltage operation 
2. Higher mutual conductance 
3. Lower plate resistance 

The disadvantages as compared to the triode are 
1. Relatively high space-charge grid current 
2. Excessive curvature of the characteristic curves, which makes the 

output nonlinear 
Since pentodes have superior properties, the space-charge tetrode is 
seldom used. 

19.4. The Pentode with Suppressor Grid. For most applications the 
unstable portion of the tetrode characteristics, caused by secondary- 
emission electron current flowing from the plate to the screen grid, is 
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undesirable. The suppression of the secondary electron current can be 
accomplished by adding another grid between the screen grid and plate 
and connecting it to the cathode, as shown in Fig. 19.3a. This suppressor 

(e) (f) 

Fig. 19.3. Typical pentode tube connections. 

grid creates a low potential field that very few of the secondary-emission 
electrons from the plate are able to penetrate. The screen grid is usually 
raised to a higher positive potential in the pentode in order to give the 
electrons from the cathode sufficient velocity to penetrate the field of 
the suppressor grid and reach the plate. 
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The shielding of the plate from the cathode is better than in the tetrode, 
with the result of a still higher plate resistance and amplification factor 
along with average values of mutual conductance. These tube constants 
have the same significance in a pentode or tetrode as in the prototype 
triode when the tubes are used as amplifiers. There are two general 
classifications of pentode amplifier tubes. The power-output pentode is 
designed to give high power output with low values of grid driving volt¬ 
age while the voltage-amplifier pentode is designed to give high voltage 

Ft<j. 19.4. Static plate characteristic curves of a typical pentode Type OCO, 6J7, or 57. 
Screen grid voltage Eri = 100 volts; suppres.sor grid voltage Era = 0 volts. 

amplification at moderate values of plate voltage. The pentode in this 
respect is superior to the tetrode because the plate-voltage swing can be 
made much larger; in fact, the plate voltage may drop considerably 
below the screen voltage without serious loss in signal-gain capabilities. 

19.6. Pentode Static Plate Characteristics. The static plate-charac¬ 
teristic curves of a typical voltage-amplifier pentode are shown in Fig. 
19.4. The suppressor-grid action is made evident by the absence of the 
negative slopes of the plate-current curves. It is becoming more appar¬ 
ent that ideal static plate characteristics for an amplifier would be 
straight, parallel, and ecpiidistant for all values of plate voltages. The 
bending of the characteristic at low voltages is the result of nonuniformity 
of the field in the plane of the suppressor grid. This is even more notice¬ 
able in poAver-output pentodes. 

19.6. The Pentode with Other Connections. So far, the pentodes 
treated have had the suppressor-grid-screen-grid connection shown in 
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Fig. 19.3a. An obvious connection, as shown in Fig. 19.36, is to use the 
first grid as a space-charge grid with the second grid as a control grid and 
the third grid as the screen grid. This makes a screen-grid tetrode with 
the addition of a space-charge grid, which permits the use of lower plate 
voltages. To go one step farther, a suppressor grid could be added to 
the tube in Fig. 19.36, which would give a six-element tube with each 
element performing a definite function. 

(c) (d) 

Fiq. 19.5. Circuit construction and characteristics of a beam power pentode. 

Figures 19.3c and d show how the electrodes of a pentode can be com¬ 
bined to give either a medium- or high-jit triodo connection. A screen- 
grid or space-charge tetrode connection can be secured from a pentode if 
the electrodes are connected as shown in Figs. 19.3c and /. This by no 
means limits the number of connections of a pentode, some of which may 
have definite advantages for special applications. 

19.7. Beam-power Pentode. The limitation in power-output pentodes 
is primarily due to third-harmonic distortion caused by the curvature of 
the plate characteristics at low plate voltages. At low plate voltages, the 
suppressor grid becomes so effective that it turns many primary electrons 
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back to the screen before they reach the plate. This is especially true 
along electron paths that intersect the suppressor-grid wires. This 
means that ideal results cannot be achieved by a mechanical suppressor- 
grid structure but can be achieved if there is sufficient electron density 
between the screen grid and plate to make the potential curves bend down¬ 
ward, as shown in Fig. 19.5d. The beam-power pentode developed by 
Schade meets these requirements. 

1m(1. Static characteristic curves of a typical beam power pentode. 

The beam-power pentode is designed to meet the following require¬ 

ments : 
1. Sufficient electron density between the screen grid and plate to give 

a crest (or zero-gradient) point as shown in Fig. 19.5rf, which acts like a 
suppressor grid, forcing secondary electrons back to the plate 

2. Uniform electron density between the screen grid and plate 
3. Proper location of crest between the screen grid and plate 
4. Low screen-grid current 

These rec|uirements are met as follows: 
1. Sufficient electron density is secured by the special contour design 

of the cathode, grids, and plate as shown in Fig. 19.56. 
2. Uniform electron density is obtained by confining the electrons to 

beams by the beam-focusing plates; this makes the suppressing field 
continuous and much more complete. 

3. Proper location of the crest is the result of sufficient spacing between 
the screen grid and plate wdth the proper adjustment of the beam angle. 
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4. Low screen grid current and more uniform beam sheets result from 
placing the screen wires in the electronic shadow of the control grid, as 
shown in Fig. 19.5c. 

Using a large cathode surface, with the advantages of low grid and 
plate operating temperatures, gives a tube of small size for its power¬ 
handling capacity. The output-voltage operating range is increased to 
make the power sensitivity (\/PZ/Ef,) greater than that for any other 
type of receiving tube. 

Plate voltage. Ei^. m volts 

Fig. 19.7. Comparison of typical tube characteristics. 

19.8. Beam-power-pentode Static Plate Characteristics. The static 
plate-characteristic curves of a typical beam-power pentode are given in 
Fig. 19.G. The general shape of the curves is similar to that for pentodes 
with a suppressor grid, with the exception that the linear portion extends 

to lower values of plate voltage and drops very abruptly. 
19.9. Comparison of Static Plate Characteristics. In Fig. 19.7, a 

comparison of typical tube characteristics shows several important steps 
in the advancement of the art. The triode has a low plate resistance and 
amplification factor along with bilateral properties. By adding a screen, 
the plate resistance and amplification factor were made high, but over an 
appreciable low-voltage range the tube is unstable. By adding the 
suppressor grid, the plate resistance is made even higher, owing to the 
added shielding, and the tube is stable over the complete range. The 
operating range (linear portion of curve) of the pentode can be increased 
by removing the physical suppressor grid .and replacing it by a virtual 
grid. 

19.10. Variable-Ac Pentode. The point at which the plate current 
becomes zero is known as the cutoff point. For linear characteristic 
curves, the bias for cutoff is 
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e. = - (19.4) 

where Cc — total instantaneous grid voltage, volts 
= total instantaneous plate voltage, volts 
— amplification factor 

The use of a nonuniform control-grid structure, as shown in Fig. 19.8a, will 
cause the /i to vary along the structure in such a way that the plate cur¬ 
rent is cut off where the grid mesh has close spacing and is not cut off as 

quickly where the grid mesh has wider spacing. This results in a gradual 
curvature in the Ec-h characteristic, as shown in Fig. 19.86. 

Many applications have been found for this type of tube characteristic. 
One of the most widely used applications is in the automatic volume con¬ 
trol (avc) of modern radio receivers. Owing to the low curvature of the 
characteristics of this tube, weak signals are amplified on the steep portion 
of the curve (low bias), while strong signals are amplified on the portion 
of the curve having a small slope. 

Cross talk is minimized by the use of the variable-/! tube. Since the 
change in slope is so gradual, a strong modulated carrier SAvinging the grid 
will have little modulating effect upon the desired signal, Avhich is being 
amplified. It is the change in the slope of the curve that gives the non¬ 
linear characteristic needed for applications such as modulation. Since 
the change in the slope of the variable-/! tube is so gradual, the cross¬ 
modulation effects are minimized. 

19.11. Pentagrid-mixer Amplifier. The pentagrid-mixer amplifier, 
as shown in Fig. 19.9a, contains five grids, in addition to the cathode and 
plate. This tube is designed with two separate control grids shielded 
from each other, which permits each control grid to act independently on 
the electron stream. One common application of this tube is in super¬ 
heterodyne receivers to mix the local-oscillator frequency Avith the incom¬ 
ing signal to produce an intermediate frequency in the output. In this 
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application, the incoming r-f signal is fed into grid 1, which has a vari- 
able-M characteristic suited for a-v-c bias control. The local-oscillator 
voltage is applied to grid 3, which has a relatively large m and a sharp 
cutoff. Grid 3 is electrostatically shielded from the other elements in 
the tube by grids 2 and 4, which are connected internally and also act 

as a screen grid to accelerate the electron stream. Grid 5 acts as a sup¬ 
pression grid to make the output plate characteristics like those of a 
pentode. The output circuit in this application is tuned to the inter¬ 
mediate frequency, which is either the difference or the sum of the input 

6L7 6A8 

Fig. 19.9, Typical pentagrid, or heptode, tube connections. 

frequencies. The inherent design of this tube makes it useful in a number 
of applications, such as in high-gain r-f or intermediate-frequency pentode 
amplifiers, and compressor or expander amplifiers. 

19.12. Pentagrid Converter. The pentagrid converter, as shown in 
Fig. 19.96, contains five grids in addition to the cathode and plate. 
This tube is designed to perform simultaneously the functions of an oscil¬ 
lator and a mixer tube like that used in superheterodyne receivers. In 
this application, grids 1 and 2, along with the cathode, are connected to 
an external circuit, as shown in Fig. 19.96, to act as a triode oscillator. 
The grid of the triode oscillator is grid 1, and the plate is grid 2. Since 
the plate of the oscillator is in the form of a grid, an electron stream passes 
on through, owing to the field set up by the screen grids 3 and 5. These 
grids, which are connected internally, also act as a shield for grid 4. The 
r-f signal voltage is applied to grid 4 to modulate the electron stream, 
which is already modulated by the oscillator, thus producing a difference 

or sum frequency, which is removed from the plate circuit as the inter¬ 
mediate frequency. 
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The pentagrid converter has the merit of simplicity in acting as an 
oscillator and mixer, but since the shielding is not complete, its operation 
is not very satisfactory at the higher frequencies. For high-frequency 
operation, the trend is to use a separate oscillator and a pentagrid mixer. 

19.13. Multiunit Tubes. Multiunit tubes combine in one envelope 
more than one distinct set of tube elements. The number of such com¬ 
binations that can be devised is almost unlimited. Typical examples 
are the diode-pentode, the triode-pcntode, and the diode-triode-pentode. 
For push-pull circuits, duplex-diode, twin-triode or twin-pentode tubes 
are very (common. Another form of multiunit tube is the coupled triode, 
which contains two triodes, one of which is a voltage amplifier directly 
coupled with an output power amplifier, all within the same envelope. 

In the design of equipment where economy and space are at a premium, 
one should refer to the tube manufacturer’s vacuum-tube manual for 
possible useful combinations, having the proper ratings. 

19.14. Equivalent A-c Plate Circuits. The equivalent a-c plate circuit 
for a triode, as developed in the last chapter, is knoAvn as a constant- 
voltage-generator type of network. Owing to the high values of amplifi¬ 
cation factor and plate resistance in most multielement tubes, it is simpler 
to use the constant-current-generator type of equivalent circuit shown in 
Fig. 19.106. To show that these circuits give the same results, the a-c 
plate current as given in the last chapter [compare Eq. (18.13)] and 
shown in Fig. 19.10a, is 

7 = 

^ + Rl 
(19.5) 

Multiplying both sides by Rl gives the voltage across /?l as 

t pR L 
Tp + Rl 

(19.6) 

Since g = gmTpy we can substitute for m in E(p (19.6) and get 

(19.7) 

An inspection of this ecjuation and Fig. 19.106 reveals that the current 
flowing through the parallel-circuit resistance must be 

f = gmeg (19.8) 

where i — current flowing from parallel circuit as shown in Fig. 19.106 
(instantaneous value of a-c current) 

gm = mutual conductance 
eg — a-c grid voltage (instantaneous value of voltage) 
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If there is more than one grid in the tube, the one causing the current 
flowing to the parallel circuit can be designated by subscripts to g„^ and 
Cy. If more than one grid is causing plate current, then the superposition 
theorem can be applied to secure the total resulting alternating current 
in the plate circuit. 

Fig. 19.10. AlternatiiiK-curront o(iuivalent plate circuits. 

Referring to Fig. 19.106 the a-c current i flowing in the parallel circuit 
produces an a-c load voltage cl, thus 

ei = 
. 1 pFi Ij 

Tp + Rl 
(19.9) 

where Cl — instantaneous a-c component of load voltage, volts 
i = instantaneous a-c component of parallel circuit current, amp 

If effective values are used instead of instantaneous values, Eq. (19.9) 
can be written 

El 
rpRL 

Vp + Rl 
(19.10) 

Example 19.4. A pentode having a plate resistance of 0.6 megohm and a mutual 
conductance of 1,500 /unihos is connected to a load resistance' of 0.5 megohm. Deter¬ 

mine the effective value of current flowing to and the effective voltage across the 

equivalent parallel circuit when the effective grid voltage is 0.2 volts. 

Solution. By placing effective values in Eq. (19.8), we get 

i ~ QmEg 
and from the problem 

/ = (1,500 X 10-«)(0.2) 

= 0.03 ma Ans. 

The voltage across the load will be 

El = / 
/ TvRl \ 

\rp + Hl) 

= (0.0003) 
(0.6 X 10«)(0.5 X 10») 1 

(0.6 X 10») + (0.5 X 10«)J 
= 8.182 volts Ans. 

Summary 

A tetrode is a four-element tube similar to a triode, except that an additional 

grid is introduced between the control grid and the anode. This additional grid. 
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which is known as the screen gridy is operated at a positive potential with respect to 

the cathode, and serves as an electrostatic shield between the anode and the control 

grid. 

Both the dynamic plate resistance Vp and the amplification factor /i of a tetrode 

arc much higher than the corresponding values for a triodc. The mutual conductance 

Qm is about the same. 

The pentode is a five-element tube similar to a tetrode, except that an additional 

grid is inserted between the screen grid and the anode. The function of this addi¬ 

tional grid, which is known as the suppressor gridy is to prevent secondary emission 

from the anode. 

A beam-power pentode is a pentode in which, instead of using an actual suppressor 

grid between the screen grid and the anode, a virtual suppressor grid is formed by 

causing a space charge to exist in this region. 

A variable-/! pentode is a pentode in whi(‘h the amplification factor is a function 

of the control-grid voltage. 

A pentagrid-mixer amplifier contains five grids in addition to the cathode and 

plate. This tube is designed with two separate control gritls shielded from each 

other, which permits each control grid to act independently on the electron stream. 

Exercises 

19.1. List the principal types of amplifier tube derived as the art progressed, with 

their contributions. 

19.2. Explain wdiy the mutual conductance of a tetrode or pentode is essentially 

the same as for a triode. 

19.3. Why does a space-charge tetrode have a sharp cutoff of plate current? 

19.4. What is the primary difference between the static*, plate characteristics of a 

pentode as compared to those of a tetrode? What would be the shape of ideal static 

plate characteristics? 

19.6. Suggest a possible use of the various elements in a hexode tube used as an 

amplifier. What would be some of its general characteristics? 

19.6. What limits the power output of pentodes? TTow does the beam-power 

pentode remedy the defect found in pentodes containing a physical suppressor grid? 

19.7. Define in equation form ‘‘power sensitivity.” How is the screen current 

of a beam-power pentode made low? 

19.8. Can Eq. (19.4) be used for a variable-/! pentode? 

19.9. List four useful applications of the pentagrid-mixer amplifier. 

19.10. What is the justification for multiunit tubes? 



CHAPTER 20 

CATHODE-RAY TUBES 

Cathode-ray tubes are designed for a purpose totally different from 
that of the tubes previously discussed. In the cathode-ray tube, a beam 
of electrons is produced by a so-called electron gun, and this beam of 
electrons strikes a phosphorescent screen on the inner surface of one end 
of the tube, where it is visible as a glowing spot. This spot can be made 
to move about on the phosphorescent screen by deflecting the electron 
beam through either magnetic or electrostatic potentials. Because the 
electron beam is virtually weightless, it can be made to follow the applied 
potentials even though these vary at the rate of millions of cycles per 

second. A cathode-ray tube is therefore a form of oscillograph, since it 
can be made to draw a picture of an electrical wave that is applied to it. 

Besides their use in oscillographs, cathode-ray tubes perform many 
other important functions. They are the heart of television receivers 
and radar equipment. They are used for modulation monitors in radio 
transmitters, and in apparatus for checking the accuracy of carrier fre¬ 
quencies. In addition to these common uses, many special applications 
too numerous to list here also employ cathode-ray tubes. 

20.1. The Electron Gun. The construction of a typical cathode-ray 
tube is shown in Fig. 20.1. The elements •//, K, G, Ai, and A 2 constitute 
the electron gun, the purpose of which is to produce a sharply defined 
stream of high-speed electrons, which, in the absence of applied forces, 
would strike the phosphorescent screen S in the center and be visible as 
a small glowing spot there. The action of the electron gun is as follows: 

318 
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The heater H supplies heat to the oxide-coated cathode K, which serves 
as a source for the electrons of the beam. Coaxial with the cathode and 
separated from it by a short distance is a metal cylinder pierced by a small 
hole. This cylinder is called the grid because its action is analogous with 
the action of the control grid in an ordinary vacuum tube, since the poten¬ 
tial at which it is maintained with respect to the cathode controls the 
number of electrons that can pass through the center hole. This grid 
is customarily maintained at some potential negative with respect to 
the cathode, and the more negative it is made, the fewer electrons can pass. 

The anode Ai is maintained at a positive potential with respect to the 
cathode and attracts the electrons that escape through the hole in the 
grid. is a metal cylinder with several plates, or baffles, which are also 
pierced with holes in line with the hole in the grid. Many of the electrons 
that escape from the cathode through the grid are collected by the anode 
A1, but some of the electrons pass directly through the holes in the baffles. 

In the absence of the second anode A2, no electrical gradient would 
exist beyond the anode Ai, and the electrons that had passed entirely 
through AI would, in the absence of A 2, continue on indefinitely until 
stopped by the interposition of some physical body such as the screen S. 
This beam would, however, have a tendency to diverge, owing to the 
mutual repulsion of the elements of the electron beam, and in order to 
get a well-defined spot on the screen, the second anode A 2 is used. By 
applying the proper voltage between anodes Ai and A 2, the electron beam 
can be made to give a very small, very intense spot on the screen S. 
The more positive the grid G is made with respect to the cathode K, the 
greater the number of electrons that will pass through the grid, and con¬ 
sequently, the brighter will be the spot on the screen. 

Since electrons are negatively charged particles, the screen would very 
quickly acquire a negative charge of such an intensity that it would repel 
the electron beam if means were not provided to remove this charge. 
This is accomplished by taking advantage of the secondary-emission 
characteristic of the screen coating. The electrons striking the screen 
have a very high velocity, and for every electron that strikes the screen, 
one or two electrons are knocked loose from the screen material by 
secondary emission. The direction of these electrons as they leave the 
screen is back into the tube, and the walls of the tube right up to the 
screen are coated with a conductive material such as Aquadag. This 
conductive coating is connected to the second anode A2 and collects the 
electrons that are emitted from the screen and carries them off just as 
though they had been collected by the second anode in the first place 
instead of passing through it. The fact that the inner coating of the 
tube is at the same potential as the second anode causes no difficulty in 
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the electric-field distribution of the electron gun, since the conductive 
coating is distributed over the entire inner surface of the tube between 

the second anode and the screen, and is symmetrical with respect to the 
central axis of the gun. 

20.2. Deflection Methods. As was previously stated, two methods 
are used to deflect the electron beam from its central position on the 
screen. The more common of these is the electrostatic deflection method, 

which consists in setting up an electrostatic field whose gradient is per¬ 
pendicular to the normal direction of the electron beam. If a pair of 

_L 

Fig. 20.2. Electrostatic deflection method. 

metal plates is located on each side of the central axis of the tube and 
connected to the second anode, as shown in Fig. 20.2, and if a voltage 
source is connected between the plates, the electron beam—since it con¬ 
sists of negatively charged particles—will be repelled by the negative 
plate and attracted to the positive plate, and will consequently be 
deflected from its normal central position and will strike the screen in a 
new spot. 

In cathode-ray tubes that employ electrostatic deflection, the plates 
are normally not made parallel, since such positioning would limit the 
angle through which the electron beam could be made to move. If too 
great a voltage were applied between the deflecting plates, the beam would 
strike the edge of the deflection plate closest to the screen, and all the 
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electrons in the beam would be collected by this plate, since it is at the 
same potential as the second anode. If the deflection plates are spaced 
further apart to permit a greater angle of deviation of the beam without 
its striking the plates, the voltage that it is necessary to apply between 
the plates to secure a given deflection of the beam will increase. 

Since, naturally, it is desirable to obtain the greatest motion of the 
beam for the smallest applied deflection voltage, another scheme is 
employed that permits a much wider angle of deviation without at the 
same time greatly decreasing the deflection sensitivity of the tube. This 

consists in the use of deflection plates that are inclined at an angle with 
the beam, as shown in Fig. 20.2b. With such plates it is possible to 
obtain as great an angle of deflection as desired without at the same time 
impairing the deflection sensitivity of the tube. 

The use of only one pair of deflection plates will permit the spot on the 
screen to be moved in one direction only, that is, in a line perpendicular 
to the plane of the plates. By employing two sets of deflecting plates 
at right angles to each other, as shown in Fig. 20.1, it is possible to move 

the spot to any point on the screen by applying the proper voltages to 
both sets of plates simultaneously. One set of platens movers the spot up 
and down on the screen; these are called the vcrtical-dcjlcction plates. 

The other set of plates moves the spot back and forth across the screen; 

these are called the horizontaUdejlection plates. 

The other method of deflection, which is widely used in television, con¬ 
sists in the use of a magnetic field at right angles to the direction of the 
electron beam. This field is applied by means of a pair of deflecting coils, 
as sho^v^l in Fig. 20.3a. The coils are located outside the tube, as dis¬ 
tinguished from the electrostatic-deflection plates previously considered, 
which are almost invariably incorporated into the tube structure. Cur¬ 
rent flowing through the deflection coils produces a magnetic field, as 
shown in Fig. 20.36, and the electron beam, by virtue of the velocity of 
the particles that compose it, is bent as it passes through the field. 

It (;an be shown that, using electrostatic deflection as shown in Fig. 20.2, 
the deflection D that will be realized for a given deflecting voltage Ed will 

be given by 

D = 
I'lEd 
2dEa 

(20.1) 

where D = deflection on screen, cm 
V = length of beam from center of deflecting plates to screen, cm 
I = length of deflecting plates in direction of beam, cm 
d = distance between deflecting plates, cm 

Ed = deflecting voltage between plates, volts 
Ea = beam voltage, volts 
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The name deflection sensitivity is given to the ratio of D/Ed, and this ratio 
is generally designated by S. Using this notation, Eq. (20.1) then 

becomes 

^ = 2S; 
S is therefore proportional to the length of the deflection plates and the 
distance from the deflection plates to the screen, and inversely propor¬ 
tional to the distance between the deflection plates and the potential on 

the accelerating anode. 
This equation was derived under the assumption that the electrostatic 

field between the deflection plates is perpendicular to the plates at all 

points and does not extend beyond them. This, of course, is not actually 
the case, since there will be a curved fringing field existing beyond the 
ends of the plates, as shown in Fig. 20.2a. This fringing field makes the 
effective length of the deflection plates somewhat longer than the actual 
length; moreover the effective length will be a function of d, the distance 
between the plates. This result might have been expected, since it is 
fairly clear that the farther apart the deflection plates are, the farther 
will the fringing field extend. For plates separated by only an infinitesi¬ 
mal distance, there is virtually no fringing field. As a matter of fact, it 
can be shown that very correct results can be achieved using Eq. (20.2), 
if for I we substitute V' where 

r = l + d (20.3) 

Instead of rating cathode-ray tubes by their deflection sensitivity, they 
are often rated by their dejfection factor^ which is the reciprocal of the 
sensitivity. This is generally denoted by G, and from Eq. (20.2) this is 
given immediately as 

G = g = volt/cm (20.4) 

and the terms are defined as in Eq. (20.1). 
The occurrence of Ea in these equations indicates that in order to main¬ 

tain the sensitivity or the deflection factor of a cathode-ray tube con¬ 
stant, it is necessary to supply an accurately maintained voltage to the 
accelerating anode A 2, if accurate measurements are to be obtained with 
the tube. 

A somewhat different expression for the sensitivity is obtained when 
magnetic deflection is used. In this case the sensitivity is given in terms 
of centimeters per gauss instead of centimeters per volt, as in the case of 

electrostatic deflection. The magnetic field intensity in gausses is gen¬ 
erally designated by B, and using this notation, the deflection sensitivity 
of a cathode-ray tube using magnetic deflection is given by 
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D ^ Ve 

^ v'2m X 10» 
cm/gauss (20.5) 

where D = deflection, cm 
B = magnetic field intensity, gausses 
V = length of deflection plates, cm 
I = distance from deflection plates to screen, cm 
e = charge of electron, coulombs 

m = mass of electron, g 
Ea = accelerating voltage, volts 

(a) Uso of coils for magnetic deflection. 

(b) Path of an electron in a magnetic field (magnetic field into paper). 

Fig. 20.3. Magnetic field deflection method. 

Several dilYerences will be noted immediately between P]qs. (20.5) and 
(20.2). Equation (20.5) contains the term e/m^ which is the ratio of 
charge to mass of an electron. This factor does not enter in Eq. (20.2). 
The other outstanding difference is the fact that the deflection sensitivity 
for magnetic deflection varies inversely as the square root of Ea, whereas 
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using electrostatic deflection, the sensitivity varies inversely as Ea. This 

is a decided advantage in favor of magnetic deflection, since it means that 

the sensitivity will show considerably smaller variations with changes in 

the accelerating-anode potential than in the case of electrostatic deflection. 

The magnetic field deflection method is shown in Fig. 20.3. 

20.3. Screen Materials. The material that is used in the screen 

determines the color of the spot generated by the impact of the beam 

electrons, the intensity of the spot, and the length of time it will glow 

after the beam electrons cease to strike, or in other words, the persistence. 

Screens of several different compositions are employed, depending on the 

use to which the tube is to be put. The most common material for 

screens is zinc orthosilicate, which in its natural form is called willemite. 

When a beam of electrons strikes a screen composed of this material, the 

color of the spot is a yellowish green, which corresponds to the color to 

which the human eye is the most sensitive. This material exhibits some 

degree of phosphorescence, which makes it unsuitable for use in applica¬ 

tions where rapidly changing patterns are to be viewed on the screen. 

To secure a screen with very short persistence, calcium tungstate and 

cadmium tungstate are used. These materials exhibit practically no 

phosphorescence or afterglow. These screens give a blue or violet spot, 

to which the eye is rather insensitive, but which makes them excellent 

for photographic purposes. 

Zinc sulfide and zinc cadmium sulfide give screens a very long persist¬ 

ence. Such screens are useful for studying very rapid transients, which 

themselves persist for only a fraction of a second, but which can be seen 

on such a long-persistence screen for a number of seconds afterwards. 

These screens give a blue or blue-white spot. 

20.4. Sweep Action in Cathode-ray Tubes. One of the chief uses of 

the cathode-ray tube is in the cathode-ray oscilloscope, a device that 

produces a visual representation of the wave form of an electrical voltage 

applied to one pair of the deflecting plates of the tube. If the wave form, 

amplitude, and frecpiency of this applied voltage are constant, it is 

possible to produce a stationary picture of it on the screen of the tube, by 

the application of the proper sweep voltage to the other pair of deflecting 

plates. 

Suppose that a sinusoidal voltage were applied to the vertical-deflection 

plates only, no voltage being applied to the horizontal plates. The spot 

would move up and down on the screen of the tube (Fig. 20.46), its deflec¬ 

tion from the center at* any instant being proportional to the instantane¬ 

ous value of the applied voltage. Owing to the persistence of the screen 

material, and the persistence of vision of the observer, the latter would 

see a stationary vertical line on the screen. 
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If, however, the spot were drawn steadily across the screen from left to 

right at the same time that the signal was being applied (Figure 20.4a), 

the spot would trace out a path on the screen that would be an exact 

picture of the wave form of the sigi 

drawn steadily from left to right for 

applied signal, exactly one cycle of 

the signal would be traced out. If 

this process were repeated over and 

over, the observer would see an ap¬ 

parently stationary picture of the 

signal wave form on the screen of the 

tube, as a result of persistence of 

vision. In order to miss no part of 

the cycle, the spot must be brought 

back to its starting point each time 

very quickly as shown in Fig. 

20.4c. 

The foregoing recpiirements for a 

sweep voltage are met by the saiv- 

toothcd voltage shown in Fig. 20.55. 

The maximum value of this voltage, 

Eoj must be sufficient to deflect the 

spot as far to the right of center as 

desired, and the minimum value 

— Eo must likewise deflect the spot 

to the left of center. Starting from 

the value —Eoj which deflects the 

spot to the extreme left of the screen, 

the sweep voltage increases steadily 

until the value Eo is attained. At 

abruptly to —Eoy returning the spot 

lal. If, furthermore, the spot were 

a time just equal to the period of the 

(a) Signal voltage 

(b) Sweep voltage 

Fig. 20.5. Signal and sweep voltage in a 
cathode ray tube. 

this point the sweep voltage drops 

to the left in a very short time. 

The path of the spot from the extreme right to the original starting 
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point is called the return trace. Many cathode-ray oscilloscopes incor¬ 

porate circuits that supply a negative pulse to the grid of the cathode-ray 

tube during the time of each return trace, thus cutting off the electron 

beam and thereby rendering the return trace invisible. 

Summary 

In the cathode-ray tube a beam of electrons is produced by an electron gun, and 

this beam of electrons strikes a phosphorescent screen on the inner surface on one 

end of the tube, where it is visible as a glowing spot. This spot can he made to move 

about on the phosphorescent screen by deflecting the electron beam through either 

magnetic or electrostatic potentials. 
Using electrostatic-deflection methods, the deflection D that will be realized for a 

given deflecting voltage Ed will be given by 

D = 
VlEd 
2dEa 

where D = deflection, cm 

r — effective length of deflecting plates, cm 

I = actual length of deflecting plates, cm 

Ed = deflecting voltage, volts 

d = distance between deflecting plates, cm 

Ea = accelerating voltage, volts 

The ratio D/Ed is called the deflection sensitimiy, and is generally designated by S. 

The reciprocal of the deflection sensitivity is called the deflection factor^ and is 

generally denoted by G, 

Wlien magnetic deflection is used, the deflection sensitivity of a cathode-ray tube 

is given by 

D ^ VI I e 

B ^/Ea ^2m X 10» 

where D 

B 

V 

I 
e 

m 

Ea 

deflection, cm 

magnetic held intensity, gausses 

length of deflection plates, cm 

distance from deflection plates to screen, cm 

charge of electron, coulombs 

mass of electron, g 

accelerating voltage, volts 

Exercises 

20.1. 'WTiat is the function of the electron gun in a cathode-ray tube? 

20.2. How is the electron beam made visible in a cathode-ray tube? 

20.3. How is the intensity of the electron beam varied? 

20.4. What measures are taken to prevent the accumulation of charges on the 

walls of a cathode-ray tube? 

20.5. What is meant by “deflection sensitivity^’? “Deflection factor”? 

20.6. What advantage does magnetic deflection have over electrostatic deflection? 

20.7. In a certain cathode-ray tube employing electrostatic deflection, Ea = 1,000 

volts, Z = 3 cm, V — 15 cm, and d == 1 cm. What is the deflection sensitivity? 

20.8. Solve Exercise 20.7 using the expression for the corrected length V given in 

Eq. (20.3). 

20.9. What wave form is used for a sweep voltage? 

20.10. What is meant by the “return trace”? 
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1. GREEK ALPHABET 

Letters 

Name Pronunciation Equivalent 

Capital Small 

A oc Alpha arfa a 

B /3 Beta be'ta or ba'ta b 

r y Gamm^ gAm'a g 
A 5 Delta - d6Pta d 

E c Epsilon 6p'sl-l6n e (short) 

Z r Zeta ze'ta or za'ta z 

TI V Eta e'ta or a'ta e (long) 

0 e Theta the'ta or tha'ta th 

I 1 Iota I-5'ta i 

K K Kappa kAp'a k, c 

A X Lambda lAm'da 1 

M M Mu mu, moo, or mii m 

N V Nu nu or nil n 

H Xi zi or kse X 

0 0 Omicron 6m'I-kr6n or 6-mI'kr5n 0 (short) 

II TT Pi pi or p6 P 
P P Rho ro r 

r <r Sigma slg'ma s 

T T Tau t6 or tou t 

T U Upsilon up'sl-l5n u, y 
<t> Phi fi or fe ph 

X X Chi kl, ke, or k6 kh, ch 

Psi ps6 or si ps 

OJ Omega A-me'ga 

6-mCg'a, or 6'm6-ga 

0 (long) 

&t, ftte, operii; 

nSt, m6, pin, pine; 

nftt, 6rb, nOte, fooJ, iip, iQte, mcnO; 

K-oh, in German ach. 

327 
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2. MATHEMATICAL SYMBOLS AND ABBREVIATIONS 

Symbol Name Uses 

1, 2, 3, 4, 5, 

6, 7, 8, 9, 0 Arabic numerals The numerals used in mathematics 

00 Infinity A quantity larger than any number 

Decimal point A period used to point off numbers 

+ Plus Addition, positive 

— Minus Subtraction, negative 

± Plus or minus Addition or subtraction 

T Minus or plus Subtraction or addition 

X Multiply by Multiplication 

a • b a is multiplied by b Multiplication 

(2- l)(3-4) 21 multiplied by 3*4 Quantity multiplication 

Divided by Division 

a/b a is divided by b Division (fraction form), ©r per 
a 

b 
a is divided by b Division (fraction or ratio form) 

a:b a is to 6 Ratio form of division 

= Equal to Equality in equation form 

Identical to Identity in equation form 

= Approximately 

equal to 

Approximate equality in equations 

(sometimes used for approaches) 

Not equal to Inequality in equation form 

< Less than Inequality in equation form 

> Greater than Inequality in equation form 

Equal or less than Equality or inequality in equation form 

Equal or greater 

than 

Equality or incciuality in equation form 

oc Proportional to Proportionality used in equation form 

Proportional to Proportionality used in equation form 

Approaches To express that a quantity approa(;hes 

in equation form 

Perpendicular Geometry 

11 Parallel to, or in 

parallel with 

Geometry, or parallel electrical circuits 

/ Positive angle sign Geometry, vector quantities 

/ Negative angle sign Geometry, vector quantities 

A Triangle Geometry 

O Circle Geometry 

Therefore Geometry 

# Number When placed before figures 

% Per cent Placed after number expressing per cent 

Continued To indicate the continuation of a number 

or scries 
TT Pi TT = 3.1416 • • • radians, the circumfer¬ 

ence of a circle divided by its diameter 
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Symbol Name Uses 

e Epsilon € = 2.71828 • • • , the base of natural 

logarithms 
3! or [3 Factorial To express the fact that a number is 

multiplied by all smaller numbers, thus 

3!=[3=3X2X1=6 

2: Summation To add a series of terms 
n 
V Summation from 0 To add a series of terms from 0 to rt 
4 
0 

to n 

( ) Parentheses A sign placed at both ends of a grouping 

[ ) Brackets A sign placed at both ends of a grouping 

! 1 Braces A sign placed at both ends of a grouping 
— Vinculum A line placed over a grouping 

V Radical Extract the root of a number 

Radical and vin- Extract the square root of a quantity 

culum or number 

->yZ or 3 is tiie root of the Expressing the root to be extracted, or 

quantity A is the power to which it must be raised 

A* 2 is the exponent Expressing the power to which a quan- 

of the quantity A tity is to be raised 

1^11 A has a magnitude To express only the magnitude of a 

only quantity 

A or A or A A is a vector To express a quantity that has both 

magnitude and direction 

A A is a vector When the magnitude is expressed |A|, 

the A can be used to express a vector 

quantity 

Ax X is a subscript To identify the quantity A, as, for 

example, lying along the x-axis 

j Operator j To express quantities in the direction 

of the y-axis. (In pure mathematics, i 

is used for this operator and is called 

an imaginary number.) 
o Degree sign To express angles in degrees 

Minute sign To express angles in minutes 
n Second sign To express angles in seconds 

|a 6j Determinate sign To express the solution of simultaneous 

jr a\ equations 

Ax Increment of x 8mall changes, in calculus 

(ix Differential of x Differential, in calculus 

(lx Partial differential Partial differential, in calculus 

of X 

V Del Differential operator, in differential cal¬ 

culus 
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Symbol Name Uses 

/ Integral Integral calculus 

Integral between Integration between limits 

Jb the limits of a and h 

F(x) orf(x) Function of x Algebra or calculus 

Jn(x) Bessel function of Higher mathematics—Frequency modu- 

the first kind of 

order n 

lation 

Kn(x) Bessel function of 

second kind of 

order n 

Higher mathematics 

r Gamma function Higher mathematics 

Abb re via- 
Name Uses 

tion 

In, log Logarithm Express the natural and common loga¬ 

rithm of a (|uantity, respectively 

log or logio Logarithm to base This is the common base and is usually 

10 written log 

In or log« Logarithm to base e This is the natural base and is usually 

expressed In (sometimes called “Napier¬ 

ian^^) 

colog Cologarithm The logarithm of the reciprocal of a 

number 

antilog Antilogarithm To express a number in terms of its 

logarithm (the reverse operation of 

taking the logarithm of a number) 

sin Sine of Circular trigonometry 

sin“^ Arc whose sine is Antisine of, inverse of sine (circ.ular 

trigonometry) 

sinh Hyperbolic sine of Hyperbolic trigonometry 

sinh“^ Inverse hyperbolic 

sine of 

Hyperbolic trigonometry 

cos Cosine of Circular trigonometry 

cos”^ Arc whose cosine is Anticosine of, inverse cosine of (circular 

trigonometry) 

cosh Hyperbolic cosine of Hyperbolic trigonometry 

cosh”i Inverse hyperbolic 

cosine of Hyperbolic trigonometry 

tan Tangent of Circular trigonometry 
tan~i Arc whose tangent Antitangent of, inverse of tangent (circu¬ 

is lar trigonometry) 

tanh Hyperbolic tangent 

of Hyperbolic trigonometry 
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Abbrevia¬ 

tion 
Name Uses 

tanh“^ Inverse hyperbolic 

tangent of Hyperbolic trigonometry 

cot Cotangent of Circular trigonometry 

cot“^ Arc whose tangent Anticotangent of, inverse of cotangent 

is (circular trigonometry) 

coth Hyperbolic cotan¬ 

gent of 

Hyperbolic trigonometry 

coth“^ Inverse hyperbolic 

cotangent of Hyperbolic trigonometry 

CSC Cosecant of , Circular trigonometry 

csc~^ Arc whose cosecant Anticosccaiit of, inverse of cosecant 

is (circular trigonometry) 

csch Hyperbolic cosecant 

of Hyperbolic trigonometry 

csch”^ Inverse hyperbolic 

cosecant of Hyperbolic trigonometry 

sec Secant of Circular trigonometry 

sec-^ Arc whose secant is Antisecant of, inverse of secant (circular 

trigonometry) 

sech Hyperbolic secant of Hyperbolic trigonometry 

sech“^ Inverse hyperbolic 

secant of Hyperbolic trigonometry 

vers Versed sine vers = 1 —- cos /3 (circidar trigonom¬ 

etry) 

covers Coversed sine covers = 1 — sin ^ (circular trigonom¬ 

etry) 

hyp hypotenuse Trigonometry 

opp opposite side Trigonometry 

adj adjacent side T rigonometry 

L.C.D. least common de¬ 

nominator 

Algebra 

3. ENGINEERING SYMBOLS AND ABBREVIATIONS 

a. Greek alphabet symbols: 
ct Angles, attenuation factor, radiation 

Angles, wave length constant, radiation 

r Complex Hertzian vector 

y Angles, propagation constant, conductivity, radiation, Euler^s constant 

A Increments, variation 

5 Decrement, density 

6 Base natural logarithms, very small quantity, inductivity, permit¬ 

tivity 

17 Efficiency, elliptic coordinate 
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0 Angles, temperature 
$ Angles, elevation angle, time constant, phase displacement 

K Boltzmann’s constant, dielectric constant 

A, X Wave length of electric waves 

fA Amplification factor, permeability, prefix micro 

V Frequency of radiation 

^ Elliptic coordinate 

n Hertz vector 

tt Circumference of a circle divided by its diameter 

p Resistivity, specific resistivity, charge density 

S Summation 

<r Conductivity 

r angles, tangent vector, surface density' 

^ Scalar velocity potential, magnetic flux 

4> Angles, flux, power factor angle, true azimuth, electric potential 

X Magnetic susceptibilities 

^ Angles, phase difference, scalar function 

n Resistance in ohms 

w Resistance in ohms, angular velocity 

b. English alphabet symbols: 
A Area, current electromagnetic vector potential 

a Dimensions, amperes 

B Susceptance, magnetic inductance, magnetic flux density 

b Susceptance 

C Capacity, centigrade 

c Constant, velocity of light 

D Electric displacement, electrostatic flux density 

d Distance, diameter 

E Effective voltage, emf, electric field intensity 

e Instantaneous voltage 

F Force, electrostatic field intensity 

/ Frequency, force, farad 

G Conductance measured in mho 

g Conductance, acceleration due to gravity, gram 

H Magnetic field intensity 

h Height, Plank’s constant, henry 

I Effective current 

i Instantaneous current 

J Poynting’s vector, current density vector, intensity of magnetization 

j Operator 

K Constant, dielectric constant, stacking factor 

k Susceptibility, prefix ^^kilo-” 

L Self inductance 

I Length 

M Mutual inductance, meters, induced polarization, prefix “mega-” 

m Mass, prefix “milli-” 

N Number of conductors or turns, Avogadro’s number 

n Number, velocity of rotation 
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O Origin of coordinate system 

o Origin of coordinate system 

P Power 

p Sound pressure, instantaneous power 

Q Quantity of electricity, ratio of reactance to resistance 

q Electric charge 

R Resistance, reluctance 

r Resistance, radius 

S Sensitivity, surface area 

fi Transconductancc 

T Absolute temperature, periodic time, absolute temperature, tension 

t Time 

U Energy 

u Particle velocity 

V Voltage, volume, reluctivity 

i; Velocity 

W Energy 

w Watts 

X Coordinates, reactance 

X Coordinates, reactance 

Y Coordinates, admittance 

y Coordinates, admittance 

Z Coordinates, impinlance 

z Coordinates, impedance 

c. Quantitative electrical abbreviations: 

Capacitance 

/u/if Micromicrofarad (one-millionth of a millionth part of 

a farad) 

Mf Microfarad (one-millionth of a farad) Note: In some 

cases, mfd or mf are used instead of ^f to indicate 

one millionth of a farad. It is always safe to 

assume that mfd or mf means microfarad and not 

millifarads. 

f Farad Note; The letter f is rarely used alone. It is 

preferable to spell the word out when it is used. 

Current 

^ta 

ma 

a or amp 

Frequency 

cps 

kc 

Me 

Inductance 

Mb 

mh 

h 

Microampere (one-millionth of an ampere) 

Milliampere (one-thousandth of an ampere) 

Ampere 

Cycles per second 

Kilocycles per second 

Megacycles per second 

Microhenry (one-millionth of a henry) 

Millihenry (one-thousandth of a henry) 

Henry 
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Power 

flW 

mw 

w 

kw 

Mw 

kva 

kwhr 

Resistance 

n 
kQ 

M^2 

Voltage 

MV 

mv 

V 

kv 

d. Circiiit Symbols: 

Admittance 

Microwatt (one-millionth of a watt) 

Milliwatt (one-thousandth of a watt) 

Watt 

Kilowatt (one thousand watts) 

Megawatt (one million watts) 

Kilovolt ampere—apparent power 

Kilowatt hour 

Ohms Note: In some cases co is used to express ohms. 

Kilohm (one thousand ohms) 

Megohm (one million ohms) Note: In some cases Meg 

is used to express megohms. 

Microvolt (one-millionth of a volt) 

Millivolt (one-thousandth of a volt) 

Volt 

Kilovolt (one thousand volts) 

Y Admittance in mhos 

B Susceptance in mhos 

Be Capacitive susceptance in mhos 

Bl Inductive susceptance in mhos 

Constants 

G Conductance in mhos 

C Capacitance in farads 

L Inductance in henrys 

M Mutual inductance in henrys 

R Resistance in ohms 

G Conductance in mhos 

Current 

1 Effective (or rms) current in amperes 

Im Maximum (or peak) current in amperes^ 

lav Average current in amperes^ 

i Instantaneous current in amperes 

Impedance 

Z Impedance in ohms 

X Reactance in ohms 

Xc Capacitive reactance in ohms 

Xl Inductive reactance in ohms 

R Resistance in ohms 

Miscellaneous 

Ant Antenna 

Gnd Ground 

Mod Modulator 

Spkr Loud speaker 

See footnotes on next page. 
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Filament power supply 

Plate power supply 

Grid-bias power supply 

Filament 

Cathode 

Heater 

Grid 

Screen grid 

Plate 

Effective (or rrris) voltage in volts 

Maximum (or peak) voltage in volts^ 

Average voltage in volts^ 

Instantaneous voltage in volts 

Alternating current 

Direct current 

Audio frequency 

Intermediate frequency 

Radio frequency 

Tuned radio frequency 

Beat frequency 

Beat-fre(\uency oscillator 

Low-frecpiency (30 to 300 kc band) 

Medium-frequency (300 to 3,000 kc band) 

High-frequency (3,000 kc to 30 Me band) 

Very-high-frequency (30 to 300 Me band) 

Ultra-high-frequency (300 to 3,000 Me band) 

Continuous wave 

Interrupted continuous wave 

Amplitude modulation 

Frequency modulation 

^ In some cases the subscript ^^max’^ is used to indicate maximum or 

ptiak current or voltage. For example, when the subscript ^^min^^ is used 

to indicate minimum current or voltage, the subscript **max’^ will probably 

be used for maximum current or voltage. 

2 In some cases the subscript ‘‘avg'' is used to express average current or 

voltage. 

3 The abbreviations as given here are used as nouns. When they are 

used as adjectives, it is common practice to use a hyphen, thus 

ac Alternating current (noun) 

a-c alternating-current (adjective) 
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pm Phase modulation 

ptm Pulse time modulation 

emf Electromotive force in volts 

mmf Magnetomotive force in gilberts 

avc Automatic volume control 

davc Delayed automatic volume control 

mopa Master-oscillator power-amplifier 

/. Measurement abbreviations: 
Metric prefixes 

M Micro- (one-millionth) 

m Milli- (one-thousandth) 

c Centi- (one-hundredth) 

d Deci- (one-tenth) 

Uni- (one) Note: This prefix is usually omitted. 

dk Deka- (ten) 

h Hekto- (one hundred) 

k Kilo- (one thousand) 

M Mega- (one million) 

Metric measure 

mm Millimeter (one-thousandth of a meter) 

cm Centimeter (one-hundredth of a meter) 

km Kilometer (one thousand meters) 

sq cm Square centimeter or cm^ 

sq cm Square meter or m^ 

sq km Square kilometer or km® 

cu cm Cubic meter or m® 

cgs Centimetcr-gram-se(iond system of units 

mks Mcter-kilogram-sec.ond system of units 

English measure 

in. Inch 

ft Foot 

yd Yard 

mile Mile Note: This unit is always spelled out. 

sq in Square inch 

sq ft Square foot 

cu in Cubic inch 

cu ft Cubic foot 

sec Second 

min Minute 

hr Hour 

yr Year 

lb Pound 

rps Revolutions per second 

rpm Revolutions per minute 

mph Miles per hour 

g Miscellaneous abbreviations: 
A.W.G. or B.&S. American wire gauge or Brown and Sharpe wire 

gauge. Note; These gauges are commonly used 

for copper, aluminum, and resistance wire. 
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db Decibel 

deg Degree 

diam Diameter 

dec Double cotton covered 

dsc Double silk covered 

ec Enamel covered 

mlt Mean length of turn 

p., pp. Page, pages 

rms Root mean square 

rss Root sum square 

temp Temperature 

vol Volume 

vs. Versus 

wt Weight 

4. CONVERSION TABLE 

\ \ Multiply 

\ number 

\by\ of 

obtain 

till units^ 

micro- 

micro 

units 

/jt units 

micro 

units 

m units 

milli 

units 

units 

k units 

kilo 

units 

M units 

mega 

units 
i 

fxfx units 

micromicro 

units 1 106 109 1012 1016 1018 

fx units 

micro units io-« 1 10* 106 109 

! 

1012 

m units 

milli units 10-9 10-3 1 103 106 109 

units 10-12 10-6 10-3 1 103 106 

k units 

kilo units 10-16 10-9 10-6 10-3 1 103 

M units 

mega units 10-18 10-12 10-* 10-6 10-3 1 
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6. LOGARITHMS OF NUMBERS FROM 1 TO 100 

n log n n log n n log n n log n n log n 

1 0.000000 21 1.322219 41 1.612784 61 1.785330 81 1.908485 

2 0.301030 22 1.342423 42 1.623249 62 1.792392 82 1.913814 

3 0.477121 23 1.361728 43 1.633468 63 1.799341 83 1.919078 

4 0.602060 24 1.380211 44 1.643453 64 1.806180 84 1.924279 

5 0.698970 25 1.397940 45 1.653213 65 1.812913 85 1.929419 

6 0.778151 26 1.414973 46 1.662758 66 1.819544 86 1.934498 

7 0.845098 27 1.431364 47 1.672098 67 1.826075 87 1.939519 

8 0.903090 28 1.447158 48 1.681241 68 1.832509 88 1.944483 

9 0.954243 29 1.462398 49 1.690196 69 1.838849 89 1.949390 

10 1.000000 30 1.477121 50 1.698970 70 1.845098 90 1.954243 

11 1.041393 31 1.491362 51 1.707570 71 1.851258 91 1.959041 

12 1.079181 32 1.505150 52 1.716003 72 1.857332 92 1.963788 

13 1.113943 33 1.518514 53 1.724276 73 1.863323 93 1.968483 
14 1.146128 34 1.531479 54 1.732394 74 1.869232 94 1.973128 

15 1.176091 35 1.544068 55 1.740363 75 1.875061 95 1.977724 

16 1.204120 36 1.556303 56 1.748188 76 1.880814 96 1.982271 
17 1.230449 37 1.568202 57 1.755875 77 1.886491 97 1.986772 

18 1.255273 38 1.579784 58 1.763428 78 1.892095 98 1.991226 

19 1.278754 39 1.591065 59 1.770852 79 1.897627 99 1.995635 
20 1.301030 40 1.602060 60 1.778151 80 1.903090 100 2.000000 

6. BRIEF TABLE OF TRIGONOMETRIC FUNCTIONS 

Degrees Sine Cosine Tangent Cotangent 

0 0.0000 1.0000 0.0000 00 

10 0.1736 0.9848 0.1763 5.6713 
20 0.3420 0.9397 0.3640 2.7475 
30 0.5000 0.8660 0.5774 1.7321 
40 0.6428 0.7660 0.8391 1.1918 

50 0.7660 0.6428 1.1918 0.8391 
60 0.8660 0.5000 1.7321 0.5774 
70 0.9397 0.3420 2.7475 0.3640 
80 0.9848 0.1736 5.6713 0.1763 
90 1.0000 0.0000 CO 0.0000 
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7. TABLE OF NATURAL LOGARITHMS* 

These four pages give the natural logarithms 

of numbers between o.i and lo, correct to four 

places. Moving the decimal point n places to 

the right in the number, i.e., multiplying the 

number by lo”, requires the addition of n times 

2.3026 to the logarithm* values are given in the 

accompanying tables. Since the numbers in the 

first two pages are less than i, the logarithms 

are all negative and should be preceded by a 

minus sign. The base is e = 2.71828. 

log« X = loge 10 logio X = 2.3026 logic X 
logic X = logic e logo X =» 0.4343 logo X 

n (n2.3026) n (0.6974-3) 

I 2.3026 0.6974-3 
2 4.6052 0.3948-S 
3 6.9078 0.0922-7 
4 9.2103 0.7897-10 

S ' II .5129 0.4871-12 
6 13.8155 0.1845-14 

7 ; 16.1181 0.8819-17 
8 1 18.4207 0.5793-19 

1 20.7233 0.2767-21 

Number 0 I 2 3 4 5 6 7 8 9 Avg. diff. 

. 10 2.3026 2926 2828 2730 2634 2538 2443 2349 2256 2164 95 

. 11 .2073 1982 1893 1804 1716 1628 1542 1456 1371 1286 87 

.12 .1203 1120 1037 0950 0875 0794 07X5 0636 0557 0479 80 

.13 .0402 0326 0250 0174 0099 0025 
9951 9878 0805 973.^ 74 

.14 I.9661 9590 9519 9449 9379 9310 9241 9173 9105 9038 69 

• IS I.8971 8905 8839 8773 8708 8643 8579 8515 8452 8389 6S 
. 16 8326 8264 8202 8140 8079 8018 7958 7898 7838 7779 61 

.17 7720 7661 7603 7545 7487 7430 7373 7316 7260 7204 57 

.18 7148 7093 7037 6983 6928 6874 6820 6766 6713 6660 54 

.19 6O07 6555 6503 1 6451 6399 6348 6296 6246 6195 6145 

.20 I.6094 6045 5995 5945 5896 5847 5799 '5750 5702 5654 49 

.21 5606 5559 5512 54<>5 5418 5371 5325 5279 5233 5187 47 

.22 5141 5096 5051 5006 4961 4917 4872 4828 4784 4740 44 

.23 4697 4653 4610 4567 4524 4482 4439 4397 4355 4313 43 

.24 4271 4230 4188 4147 4106 4065 4024 3984 3943 3903 41 

.25 I.3863 3823 3783 3744 3704 3665 3626 3587 3548 3509 39 

. 26 3471 3432 3394 3356 3318 3280 3243 3205 3168 3130 38 

.27 3093 3056 3020 2983 2946 2910 2874 2837 2801 2765 36 

.28 2730 2694 2658 2623 2588 2553 2518 2483 2448 2413 35 

.29 2379 2344 2310 2276 2242 2208 2I74| 2140 2107 2073 34 

• 30 1.2040 2006 1973 1940 1907 1874 1842 1809 1777 1744 33 
.31 1712 1680 1648 1616 1584 1552 1520 1489 1457 1426 32 

.32 1394 1363 1332 1301 1270 1239 1209 1178 1147 1117 31 

.33 1087 105O 1026 0996 09O6 0936 0906 0877 0847 0818 30 

.34 0788 0759^ 0729 0700 0671 0642 0613 0584 0556 0527 29 

.35 I.0498 0470 0441 0413 0385 0356 0328 0300 0272 0244 28 

.36 0217 0189 0161 0134 0106 0079 0051 0024 
9997 9970 27 

.37 0.9943 9916 9889 9862 ”9835 9808 9782 9755 9729 9702 27 

.38 9676 9650 9623 9597 9571 9545 9519 9493 9467 9442 26 

.39 9416 9390 9365 9339 9314 9289 9263 9238 9213 9188 25 

.40 0.9163 9138 9113 9088 9063 9039 9014 8989 8965 8940 25 

.41 8916 8892 8867 8843 8819 8795 8771 8747 8723 8699 24 

.42 8675 8651 8627 8604 8580 8557 8533 8510 8486 8463 23 

.43 8440 8416 8393 8370 8347 8324 8301 8278 8255 8233 23 

.44 8210 8187 8164 8142 8119 8097 8074 8052 8030 8007 22 

.45 0.7985 7963 7941 7919 7897 7875 7853 7831 7809 ' 7787 22 

.46 7765 7744 7722 7700 7679 7657 7636 7614 7593 7572 21 

•47 7550 7529 7.908 7487 7465 7444 7423 7402 7381 7361 21 

.48 7340 7319 7298 7277 7257 7236 7215 7195 7174 7154 20 

.49 7133 7113 7093 7072 7052 7032 7012 6992 6972 6951 20 

* This page and the following are from Allen’s "Six-Placo Tables,” published 

by the McGraw-Hill Book Company, Inc., New York. 
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Number 0 I 2 3 4 S 6 7 8 9 Avg. diff. 

• SO 0.6931 6911 6892 6872 6852 6832 6812 6792 6773 6753 20 

.51 6733 6714 6694 6675 6655 6636 6616 6.597 6.578 6559 19 

.52 6539 6520 6501 6482 6463 6444 6425 6406 6387 6368 19 

.53 6349 6330 6311 6292 6274 6255 6236 6218 6199 6180 18 

.54 6162 6143 6125 6106 6088 6070 6051 6033 6015 5997 18 

.55 0.5978 5960 5942 5924 5906 5888 5870 5852 5834 5816 18 

.56 5798 5780 5703 5745 5727 5709 5692 5674 .5656 5639 18 

.57 5621 5604 5586 5569 5551 5534 5516 5499 5482 5465 17 

.58 5447 5430 5413 5396 5379 5361 5344 5327 5310 5293 17 

.59 5276 5259 5243 5226 5209 SI92 5175 5158 5142 S125 17 

.60 0.S108 5092 5075 5058 SO42 5025 5009 ^92 4976 4959 16 

.61 4943 4927 4910 4894 4878 48O1 4845 4829 4813 4796 16 

.62 4780 4764 4748 4732 4716 4700 4684 4668 4652 4636 16 

.63 4620 4604 4589 4573 4557 4541 4526 4510 4494 4479 16 

.64 4463 4447 4432 4416 4401 438s 4370 4354 4339 4323 IS 

.65 0.4308 4292 4277 4262 4246 4231 4216 4201 4186 4170 IS 

.66 4155 4140 412s 4110 4095 4080 406s 4050 4035 4020 IS 

.67 400s 3990 3975 3960 3945 3930 3916 3901 3886 3871 IS 

.68 3857 3842 3827 3813 3798 3783 3769 3754 3740 372.5 IS 

.69 3711 3696 3682 3667 3653 3638 3624 3610 3595 3581 14 

.70 0.3567 3552 3538 3524 3510 3496 3481 3467 3453 3439 14 

.71 3425 3411 3397 3383 3369 3355 3341 3327 3313 3299 14 

.72 328s 3271 32S7 3243 3230 3216 3202 3188 317s 3161 14 

.73 3147 3133 3120 3106 3092 3079 306s 3052 3038 3025 13 
-74 3011 2998 2984 2971 2957 2944 2930 2917 2904 2890 13 

.75 0.2877 2863 2850 2837 2824 2810 2797 2784 2771 2758 13 

.76 2744 2731 2718 270s 2692 2679 2666 2653 2640 2627 13 

.77 2614 2601 2588 2575 2562 2549 2536 2523 2510 2497 :3 

.78 2485 2472 2459 2446 2433 2421 2408 2395 2383 2370 13 

.79 2357 2345 2332 2319 2307 2294 2282 2269 2256 2244 12 

.80 0.2231 2219 2206 2194 2182 2169I 2157 2144 2132 2120 12 

.81 2107 2095 2083 2070 2058 2046 2033 2021 2009 1997 12 

.83 198s 1972 i960 1948 1936 1924 1912 1900 1888 1875 12 

.83 1863 1851 1839 1827 i8iSj 1803 1791 1779 1767 1755 12 

.84 1744 1732 1720 1708 1696 1684 1672 1661 1649 1637 12 

.8s 0.162s 1613 1602 1590 1578 1567 1555 1543 1532 1520 12 

.86 1508 1497 1485 1473 1462 1450 1439 1427 1416 1404 12 

.87 1393 1381 1370 1358 1347 1335 1324 1312 1301 1290 11 

.88 1278 1267 1256 1244 1233 1222 1210 1199 1188 1177 II 

.89 1166 1154 1143 1132 1120 1109 1098 1087 1076 106s 1 I 

.90 O.IOS4 1043 1031 1020 1009 0998 0987 0976 0965 0954 II 

.91 0943 0932 0921 0910 0899 0888 0877 0866 0856 0845 1 I 

.92 0834 0823 0812 0801 0790 0780 0769 0758 0747 0736 I I 

.93 0726 0715 0704 060; 0683 0672 0661 0651 0O40 0O29 II 

.94 0619 0608 0598 0587 0576 0566 0555 0545 0534 0523 11 

• 95 0.0S13 0502 0492 0481 0471 0460 0450 0440 0429 0419 10 
.96 0408 0398 0387 0377 0367 0356 0346 0336 032s 0315 10 
.97 030s 0294 0284 0274 0263 0253 0243 0233 0222 0212 10 
.98 0202 0192 0182 0171 0161 0151 0141 0131 0121 OIII 10 
.99 0101 0090 0080 0070 0060 0050 0040 0030 

0
 

N
 

0
 

0
 0010 10 
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Number 0 1 2 3 4 5 6 7 8 9 Avg. diff. 

1 .0 0.0000 0100 0198 0296 0392 0488 0583 0677 0770 0862 95 
1.1 0953 1044 1133 1222 1310 1398 1484 1570 1655 1740 87 
1.3 1823 1906 1989 2070 2151 2231 2311 2390 2469 2546 80 

I 3 2624 2700 2776 2852 2927 3001 307s 3148 3221 3293 74 
1.4 3365 3436 3507 3577 3646 3716 3784 3853 3920 3988 69 

i.S 0.4055 4121 4187 4253 4318 4383 4447 4511 4574 4637 6S 
1.6 4700 4762 4824 4886 4947 5008 5068 5128 5188 5247 61 

1.7 5306 5365 5423 5481 5539 5596 5653 5710 5766 5822 57 
1.8 5878 5933 5988 6043 6098 6152 6206 6259 6313 6366 54 
1.9 6419 6471 6523 6575 6627 6678 6729 6780 6831 6881 SI 

3.0 0.6931 6981 7031 7080 7129 7178 7227 7275 7324 7372 49 
2.1 7419 7467 7514 7561 7608 7655 7701 7747 7793 7839 47 
2.2 788S 7930 7975 8020 8065 8109 8154 8198 8242 8286 44 
2.3 8329 8372 8416 8459 8502 8544 8587 8629 8671 8713 43 
2.4 8755 8796 8838 8879 8920 8961 9002 9042 9083 9123 41 

2.5 0.9163 9203 9243 9282 9322 9361 0400 9439 9478 9517 39 
2 .6 9555 9594 9632 9O70 9708 9746 9783 9821 9858 989s 38 

2.7 0.9933 9969 0006 0043 0080 0116 0152 0188 0225 0260 36 

2.8 I.0296 0332 0367 0403 0438 0473 0508 0543 0578 0613 35 
2.9 0647 0682 0716 0750 0784 o8i8 0852 0886 0919 0953 34 

3.0 I.0986 1019 1053 1086 1119 iiSi ii8a 1217 1249 1282 33 
3.1 1314 1346 1378 1410 1442 1474 1506 1537 1569 1600 32 

3.2 1632 1663 1694 1725 1756 1787 1817 1848 1878 1909 31 

3-3 1939 1969 2000 2030 2060 2090 2H9 2149 2179 2208 30 

3.4 2238 2267 2296 2326 2355 2384 2413 2442 2470 2499 29 

3.5 1.2528 2556 2585 2613 2641 2669 2698 2726 2754 2782 28 

3.6 2809 2837 2865 2892 2920 2947 2975 3002 3029 3056 27 

3.7 3083 3110 3137 3164 3191 3218 3244 3271 3297 3324 27 

3.8 3350 3376 3403 3429 3455 3481 3507 3533 3558 3584 26 

3.9 3610 3635 3661 3686 3712 3737 3762 3788 3813 3838 25 

4.0 1.3863 3888 3913 3938 3962' 3987 4012 4036 4061 4085 25 

4.1 4110 4134 4159 4183 4207 4231 4255 4279 4303 4327 34 

4.2 4351 4375 4398 4422 4446, 4469 4493 4516 4540 4563 23 

4-3 4586 4609 4633 4656 4679 4702 4725 4748 4770 4793 23 

4.4 4816 4839 4861 4884 4907 4929 4951 4974 4996 5019 22 

4.5 I.5041 5063 5085 S107 5129 5151 5173 5195 5217 5239 22 

4.6 5261 5282 5304 5326 5347 5369 5390 5412 5433 5454 21 

4.7 5476 5497 5518 5539 5500 5581 5602 5623 5644 5665 21 

4.8 5686 5707 5728 5748; 5769 5790 5810 5831 5851 5872 20 

4.9 5892 5913 5933 5953 5974 5994 6014 6034 6054 6074 20 

5.0 I.6094 6114 6134 6154 6174 6194 6214 6233 6253 6273 20 

5.1 6292 6312 6332 6351 6371 6390 6d09 6429 6448 6a67 19 

5.2 6487 6506 6525 6544 6563 6582 6601 6620 6639 6658 19 

5.3 6677 6696 6715 6734 6752 6771 6790 6808 6827 6845 18 

54 6864 6882 6901 6919 6938 6956 6974 6993 7011 7029 18 

5.5 1.7047 7066 7084 7102 7120 7138 7156 7174 7192 7210 18 

5.6 7228 7246 72C3 7281 7299 7317 7334 7352 7370 7387 18 

5.7 740s 7422 7440 7457 7475 7492 7509 7527 7544 7561 17 
5.8 7579 7596 7613 7630 7647 7664 7681 7699 7710 7733 17 

59 7750 7766 7783 7800 7817 7834 7851 7867 7884 7901 17 

' This and following pago taken from Marks’ “Mechanical Engineers’ Hand¬ 

book,” published by the McGraw-Hill Book Company, Inc., New York. 
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Number 0 I 2 3 4 5 6 7 8 0 Avg. diff. 

6.0 1.7918 7934 7951 7967 7984 8001 8017 8034 8050 8066 16 

6.1 8083 8099 8n6 8132 8148 8165 8181 8197 8213 18229 16 

6.2 824s 8262 8278 8294 8310 8326 8342 8358 8374 8390 16 

6.3 8405 8421 8437 8453 8469 8485 8500 8516 8532 8547 16 

6.4 8563 8579 8594 8610 8625 8641 8656 8672 8687 8703 IS 

6.S 1.8718 8733 8749 8764 8779 8795 8810 8825 8840 8856 15 
6.6 8871 8886 8901 8910 8931 8946 8961 8976 8991 9006 15 

6.7 9021 9036 9051 9066 9081 9095 9110 9125 9140 9155 15 
6.8 9169 9184 9199 9213 9228 9242 9257 9272 9286 9301 15 
6.9 9315 9330 9344 9359 9373 9387 9402 9416 9430 9445 14 

7.0 1.9459 9473 9488 9502 9516 9530 9544 9559 9573 9587 14 

7.1 9601 961s 9629 9643 9657 9671 9685 9699 9713 9727 14 
7.2 9741 9755 9769 9782 9796 9810 9824 9838 9851 9865 14 

7-3 I.9879 9892 9906 9920 9933 9947 9961 9974 9988 
0001 13 

7.4 2.0015 0028 0042 0055 0069 0082 0096 0109 0122 0136 13 

7.5 2.0149 0162 0176 0189 0202 0215 0229 0242 0255 0268 13 
7.6 0281 0295 0308 0321 0334 0347 0360 0373 0386 0399 13 

7.7 0412 0425 0438 0451 0464 0477 0490 0503 0516 0528 13 
7.8 0S41 0554 0567 0580 0592 0605 0618 0631 0643 0656 13 
7.9 0669 0681 0694 0707 0719 0732 0744 0757 0769 0782 12 

8.0 2.0794 0807 0819 0832 0844 0857 0869 0882 0894 0906 12 

8.1 0919 0931 0943 0956 0968 0980 0992 1005 1017 1029 12 

8.2 1041 1054 1066 1078 1090 1102 1114 1126 1138 1150 12 

8.3 1163 1175 1187 1199 1211 1223 123s 1247 1258 1270 12 

8.4 1282 1294 1306 1318 1330 1342 1353 1365 1377 1389 12 

8.5 2.1401 1412 1424 1436 1448 1459 1471 1483 1494 IS06 12 

8.6 1518 1529 1541 1552 1564 1576 1587 1599 1610 1622 12 

8.7 1633 1645 1656 1668 1679 1691 1702 1713 1725 1736 II 
8.8 1748 1759 1770 1782 1793 1804 1815 1827 1838 1849 II 

8.9 1861 1872 1883 1894 1905 1917 1928 1939 1950 1961 II 

9.0 2.1972 1983 1994 2006 2017 2028 2039 2050 2061 2072 ir 

9.1 2083 2094 2105 2116 2127 2138 2148 2159 2170 2181 II 
9.2 2192 2203 2214 2225 2235 2246 2257 2268 2279 2289 ii 

93 2300 2311 2322 2332 2343 2354 2364 2375 2386 2396 II 

9-4 2407 2418 2428 2439 2450 2460 2471 2481 2492 2502 II 

95 2.2513 2523 2534 2544 2555 2565 2576 2586 2597 2607 10 

9.6 2618 2628 2638 2649 2659 2670 2680 2690 2701 2711 10 

9.7 2721 2732 2742 2752 2762 2773 2783 2793 2803 2814 10 
9.8 2824 2834 2844 2854 286s 2875 2885 2895 290s 2915 10 

9.9 292s 2935 2946 2956 29O6 2976 2986 2996 3006 3016 10 

10.0 2.3026 
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8. TABLE OF EXPONENTIAL AND HYPERBOLIC FUNCTIONS IN 
TERMS OF NEPERS* 

X sinh X cosh X tanh X 

.00 I.0000 1.0000 0.0000 1.0000 0.0000 

.01 .0101 0.9900 .0100 .0001 .0100 

.02 .0202 .9802 .0200 .0002 .0200 

.03 .0305 .9704 1 .0300 .0005 .0300 

.04 .0408 .9608 .0400 .0008 .0400 

.05 .0513 .9512 .0500 .0013 .0500 

.06 .0618 .9418 .0600 .0018 .0599 

.07 .0725 .9324 .0701 , .0025 .0699 

.08 .0833 .9231 .0801 .0032 .0798 

.09 I .0942 .9139 .0901 .0041 .0898 

. 10 1.1052 0.9048 0.1002 1.0050 0.0997 

. 11 .1163 .8958 ,1102 .0061 . 1096 

.12 .1275 .8869 .1203 .0072 .1194 

.13 .1388 1 .8781 .1304 .0085 .1293 

.14 .1503 .8694 .1405 .0098 .1391 

.IS .1618 .8607 .1506 .0113 .1489 

. 16 .1735 .8521 .1607 .0128 .1587 

.17 .1853 • 8437 .1708 .0145 .1684 

.18 .1972 ' .8353 .1810 .0162 .1781 

.19 .2092 .8270 .1911 .0181 .1878 

.20 1.2214 0.8187 0.2013 I.0201 0.1974 

.21 .2337 .8106 .2115 .0221 .2070 

.22 . 2461 .8025 .2218 .0243 .2165 

.23 .2580 . 7945 .2320 .0266 .2260 

.24 .2712 .7866 .2423 .0289 .2355 

.25 .2840 .7788 .2526 .0314 .2449 

.26 . 29O9 .7711 .2629 .0340 .2543 

.27 .3100 . 7634 .2733 .0367 .2636 

.28 .3231 .7558 .2837 .0395 .2729 

.29 .33^>4 .7483 .2941 .0423 .2821 

.30 I.3499 0.7408 0.304s 1.0453 0.2913 

.31 .3634 .7334 .3150 .0484 .3004 

.32 .3771 .7261 .3255 .0516 .3095 

.33 .3910 .7189 .3360 .0549 .3185 

.34 .4049 .7118 .3466 .0584 .3275 

.35 .4191 .7047 .3572 .0619 .3364 

.36 .4333 .6977 .3678 .0655 • 3452 

•37 .4477 .6907 .3785 .0692 .3540 

.38 .4623 .0839 .3892 .0731 .3627 

.39 .4770 .6771 .4000 .0770 .3714 

.40 I.4918 0.6703 0.4108 I.o8r I 0.3800 

.41 .5068 .6637 .4216 .0852 .3885 

.42 • 5220 .6570 .4325 .0895 .3969 

.43 .5373 .6505 .4434 .0939 .4053 

.44 .5527 .6440 .4543 .0984 .4136 

• 45 .5683 .6376 .4653 .1030 .4219 

.46 .5841 .6313 .4764 .1077 • 4301 

.47 . 6000 .6250 .4875 .1125 .4382 

.48 .6161 .6188 .4986 .1174 .4462 

.49 .6323 .6126 .5098 .1225 .4542 

.50 I.6487 0.6065 0.5211 1.1276 0.4621 

• SI .6653 .6005 .5324 .1329 .4700 

• 52 .6820 .5945 .5438 .1383 .4777 

.53 .6989 .5886 .5552 .1438 .4854 

.54 .7160 .5827 .5666 .1494 .4930 

♦From Allen’s “Six-Place Tables," publLsbed by the McGraw-Hill Book Company, 

Inc., New York. 



344 COMMUNICATION CIRCUIT FUNDAMENTALS 

X e» sinh X cosh X tanh X 

.55 .7333 .5769 .5782 .1551 .5005 

.56 .7507 .5712 .5897 .1609 .5080 

.57 .7683 .5655 .6014 .1669 .5154 

.58 .7860 .5599 .6131 .1730 .5227 

.59 .8040 • 5543 .6248 .1792 .5299 

.60 1.8221 0.5488 0.6367 1.1855 0.5370 

.61 .8404 .5434 .6485 .1919 .5441 

.62 .8589 .5379 .6605 .1984 .5511 

.63 .8776 .5326 .6725 .2051 .5581 

.64 .8965 .5273 .6846 .2119 .5649 

.6S .9155 .5220 .6967 .2188 • 5717 

.66 .9348 .5169 .7090 .2258 .5784 

.67 .9542 • 5117 .7213 .2330 .5850 

.68 • 9739 .5066 .7336 .2402 .5915 

.69 .9937 .5016 .7461 .2476 .5980 

.70 2.0138 0,4966 0.7586 I.2552 0.6044 

.71 .0340 .4916 .7712 .2628 .6107 

.72 .0544 .4868 .7838 .2706 .6169 

.73 .0751 ,4819 .7966 .2785 .6231 

.74 .0959 .4771 .8094 .2865 .6291 

.75 .1170 .4724 .8223 .294T .6352 

.76 .1383 .4677 .8353 .3030 .6411 

.77 .1598 .4630 .8484 .3114 .6469 

.78 .1815 .4584 .8615 .3199 .6527 

.79 .2034 .4538 .8748 .3286 .6584 

.80 2.2255 0.4493 o.888r 1.3374 0.6640 

.81 .2479 .4449 .9015 .3464 .6696 

.82 .2705 .4404 .9150 .3555 .6751 

.83 .2933 .4360 .9286 .3647 .680s 

.84 .3164 .4317 
1 

.9423 .3740 .6858 

.85 .3396 .4274 .9561 .3835 .6911 

.86 .3632 .4232 .9700 .3932 .6963 

.87 .3869 .4190 .9840 .4029 .7014 
,88 .4109 .4148 .9981 .4128 .7064 
.89 .4351 .4107 1.0122 .4229 .7114 

.90 3.4596 0.4066 1.0265 I.4331 0.7163 

.91 .4843 .4025 .0409 .4434 .7211 

.92 .5093 .3985 .0554 .4539 .7259 

.93 .5345 .3946 .0700 .4645 .7306 

.94 .5600 .3906 .0847 • 4753 .7352 

.95 .5857 .3867 .0995 .4862 .7398 

.96 .6117 .3829 .1144 .4973 .7443 

.97 .6379 .3791 .1294 .5085 .7487 

.98 .6645 .3753 .1446 .5199 .7531 

.99 .6912 .3716 .1598 .5314 .7574 

1.00 2.7183 0.3679 1.1752 1.5431 0.7616 
.05 .8577 .3499 .2539 .6038 .7818 
.10 3.0042 .3329 .3356 .6685 .8005 
.IS .1582 .3166 .4208 .7374 .8178 
.20 .3201 .3012 .5095 .8107 .8337 

.25 .4903 .2865 .6019 .8884 .8d83 

.30 .6693 .2725 .6984 .9709 .8617 
35 .8574 .2592 .7991 2.0583 .8741 

.40 4.0552 .2466 .9043 .1509 .8854 
45 .2631 .2346 2.0143 .2488 .8957 
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X e* «-» sinh X cosh X tanh X 

1.50 4.4817 0.2231 2.1293 2.3524 0.9052 
.55 .7115 .2122 .2496 .4619 .9138 
.60 .9530 .2019 .3756 .5775 .9217 
.65 5.2070 . 1920 .5075 .6995 .9289 
.70 .4739 .1827 .6456 .8283 .9354 

.75 .7546 .1738 .7904 .9642 .9414 

.80 6.0496 .1653 .9422 3.1075 .9468 

.85 .3598 .1572 3.1013 .2585 .9518 

.90 .6859 .1496 .2682 .4177 .9562 

.95 7.0287 .1423 .4432 .5855 .9603 

2.00 7.3891 O.I3S3 3.6269 3.7622 0.9640 

.05 .7679 .1287 .8196 .9483 .9674 

. 10 8.1662 .1225 4.0219 4.1443 .9705 

.15 .5848 .1165 .2343 .3507 .9732 

.20 9.02s .1108 • 457 .568 .9757 

.25 .488 .1054 .691 .797 .9780 

.30 .974 .1003 .937 5.037 .9801 

.35 10.480 .0954 5.195 .290 .9820 

,40 II .023 .0907 .466 .557 .9837 

.5 12.182 .0821 6.050 6.132 .9866 

.6 13.464- .0743 .695 .769 .9890 

.7 14.880 .0672 7.406 7.473 .9910 

.8 16.44s .0608 8.192 8.253 .9926 

.9 18.174 .0550 9.060 9.115 .9940 

3.0 20.086 .0498 10.018 10.068 .9951 
22.198 .0450 11.076 11.121 .9959 

.2 24.533 .0408 12.246 12.287 .9967 

.3 27.113 .0369 13.538 13.575 .9973 

.4 29.964 .0334 14.96s 14.999 .9978 

5 33.IIS .0302 16.543 16.573 .9982 

.6 36.598 .0273 18.28s 18.313 .9985 

.7 40.447 .0247 20.211 20.236 .9988 

,8 44.701 1 .0224 22.339 22.362 .9900 
.9 49.402 .0202 24.691 24.711 .9992 

4.0 54.60 .0183 27.29 27.31 .999 

4.1 60.34 .0166 30.16 30.18 .999 
4.2 66,69 .0150 33.34 33.35 1 .000 

4-3 73.70 .0136 36.84 36.86 1 .000 

4.4 81.45 .0123 40.72 40.73 1.000 

4.5 90.02 .0111 45.00 45.01 I .000 
4.6 99.48 .0101 49.74 49.75 I .000 
4.7 109.95 .0091 54.97 54.98 1.000 

4.8 121.51 .0082 60.75 60.76 I .000 
4.9 134.29 .0074 67.14 67.1s r .000 

5.0 148.41 .0067 74.20 74.21 1.000 

6.0 403.4 .0025 201.7 1.000 

7.0 1096.6 .00091 548.3 1.000 

8.0 2981.0 .00034 1490.5 1.000 

9.0 8103.1 .00012 40SI.S 1.000 

10.0 22026.5 .00004s 11013.2 1.000 

In the compilation of this table, extensive use was made of Kennelly’s Tables 
of Complex Hyperbolic and Circular Functions. 
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9. TABLE OF EXPONENTIAL AND HYPERBOLIC 
IN TERMS OF DECIBELS 

FUNCTIONS 

Nepers h 
1 
k 

A;2 
- 1 

~2k 

k^ -f 1 
2k 

k^ - 1 
k^ + 1 

k - 1 
k + 1 

a €‘* sinh a cosh a tanh a tanh ^ 

0.005757 1.00577 0.99426 i.01158l0.005756 11.00002 0.005756 0.002878 
0.011513 1.01158 0.98855 1.02330 0.011513 1.00007|0.011512 0.005756 

0.2 0.023024 1.02329 0.97724 1.04713 0.023028 1.00027 0.023022 0.011512 
0.3 0.034539 1.03514 0.96605 1.07152 0.034546 1.00060 0.034525 0.017268 
0.4 0.046052 1.04713 0.95499 1.09648 0.046067 1.00106jo.046019 0.023022 

0.5 0.057565 1.05925 0.94406 1.12202 0.057597 1.00166!0.057502 0.028774 
0.6 0.069078 1.07152 0.93325 1.148150.069131 1.002380.068968 0.034525 
0.7 0.080591 1.08393 0.92257 1.174900.080679 1.00325 0.0804180.040274 
0.8 0.092103 1.096480.91201 1.202270.092236 1.00425 0.091846 0.046019 
0.9 0.103626 1.10917 0.90157 1.23027 0.103797 1.00538 0.103249 0.051763 

1.0 0.115131.12202 0.891251.25893 0.115391.00664 0.11463 0.057502 
1.1 0.12664 1.135010.881051.28825 0.126971.00803 0.12597 0.063237 
1.2 0.138161.14815 0.870961.31826 0.138601.00956 0.137280.068968 
1.3 0.149671.16145 0.860991.34896 0.150231.01122 0.149560.074695 
1.4 0.161181.174900.85114 1.38038 0.161881.01301 0.15979 0.080418 

1.5 0.172691.188500.841391.41254 0.173561.01495 0.17100 0.086132 
1.6 0.18421 1.20227 0.831761.44544 0.18.525 1.01701 0.18215 0.091846 
1.7 0.19572 1.216180.82224 1.47911 0.19697 1.01922 0.193260.097.551 
1.8 0.207231.230270.812831.51356 0.20872 1.02155 0.20432 0.103249 
1.9 0.218761.24452 0.803531.54882 0.220501.02402 0.21532 0.108939 

2.0 0.230261.258930.794331.58489 0.232301.02662 0.22627 0.11463 
2.2 0.253281.28825 0.776251.65959 0.25600 1.03225 0.24800 0.12597 
2.4 0.27631 1.31826 0 758581.73780 0.27984 1.03841 0.26948 0.13728 
2.5 0.287821.33352 0.749891.77828 0.29181 1.04171 0.28013 0.14293 
2.6 0.29934 1.348960.74131 1.81970 0.303831.04514 0.29071 0.14856 

2.8 0.322361.380380.72444 1.90546 0.327981.05241 0.31164 0.15980 
3.0 0.345391.41254 0.707951.99526 0.352301.06024 0.33228 0.17100 
3.2 0.36841 1.44544 0.69183 2.08930 0.37681 1.06864 0.35261 0.18215 
3.4 0.391441.479110.676082.18776 0.40151 1.07759 0.37260 0.19326 
3.5 0.402951.496230.66834 2.23870 0.413941.08229 0.38246 0.19879 

0.414471.513560.66069 2.29086 0.42645 1.08714 0.39226 0.20432 
0.437491.54882 0.64565 2.39884 0.451571.09722 0.41156 0.21532 
0.460521.584890.63096 2.51188 0.476971.10793 0.43051 0.22627 
0.518081.67880 0.59566|2.81837 0.541581.13724 0.47622 0.25340 
0.57565 1.77828lo.56234'3.16228 0.607981.17032 0.51950 0.28013 
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Nepers 

a 

k 

€« 

1 
k 

€”« 

k^ 
- 1 TFTT ■ jfc -1 

^k 

sinh a 

2k 

cosh a 

A;» + 1 

taiih a 

k + 1 

tanh ^ 

5.5 0.63321 1.88365 0.53088 3.5481 0.67637 1.20726 0.56026 0.30643 

6.0 0.69078 1.99526 0.50119 3.9811 0.74705 1.24823 0.59848 0.33228 

6.5 0.74834 2.11349 0.47315 4.4668 0.82016 1.29331 0.63415 0.35764 

7.0 0.80591 2.23872 0.44668 5.0119 0.89603 1.34272 0.66732 0.38246 
7.5 0.86347 2.37137 0.42170 5.6234 0.97483 1.39652 0.69804 0.40677 

8.0 0.92103 2.5119 0.39811 6.3096 1.05689 1.45500 0.7*639 0.43051 

8.5 0.97860 2.6607 0.37584 7.0795 1.14246 1.51830 0.75246 0.45366 

9.0 1.03616 2.8184 0.35481 7.9433 1.23178 1.58659 0.77637 0.47622 

9.5 1.09373 2.9854 0.33497 8.9125 1.32520 1.66016 0.79823 0.49817 

10.0 1.15129 3.1623 0.31623 10.0000 1.42302 1.73924 0.81818 0.51950 

10.5 1.20886 3.3497 0.29854 11.220 1.52551 1.82404 0.83633 0.54020 

11.0 1.26642 3.54810.28184 12.589 1.63313 1.91497 0.85282 0.56026 

11.5 1.32399 3.7,584 0.26607 14.125 1.74609 2.01216 0.86777 0.57969 

12.0 1.38155 3.9811 0.25119 15.849 1.86494 2.11612 0.88130 0.59848 

12.5 1.43912 4.2170 0.23714 17.783 1.98992 2.22706 0.89352 0.61664 

13.0 1.49668 4.4668 0.22387 19.953 2.12154 2.34542 0.90455 0.63416 

13.5 1.55425 4.7315 0.21135 22.387 2.26007 2.47142 0.91448 0.65105 

14.0 1.61181 5.0119 0.19953 25.119 2.40617 2.60570 0.92343 0.66733 

14.5 1.66937 5.3088 0.18836 28.184 2.56028 2.74864 0.93147 0.68298 

15.0 1.72694 5.6234 0.17783 31.623 1 2.72282 2.90065 0.93869 0.69804 

15.5 1.78450 5.9566 0.16788 35.481 2.89435 3.06223 0.94517 0.71250 

16.0 1.84207 6.3096 0.15849 39.811 3.07555 3.23404 0.95099 0.72639 

16.5 1.89963 6.6834 0.14962 44.668 3.26690 3.41653 0.95621 0.73970 

17.0 1.95720 7.0795 0.14125 50.119 3.46910 3.61035 0.96088 0.75246 

17.5 2.01476 7.4989 0.13335 56.234 3.68281 3.81616 0.96506 0.76468 

18.0 2.07233 7.9433 0.12589 63.096 3.90870 4.03460 0.96880 0.77637 

18.5 2.12989 8.4139 0.11885 70.795 4.14760 4.26645 0.97214 0.78755 

19.0 2.18746 8.9125 0.11220 79,433 4.40017 4.51237 0.97514 0.79823 

19.5 2.24502 9.4406 0.10593 89.125 4.66734 4.77327 0.97781 0.80844 

20.0 2.30259 10.0000 0.10000 100.000 4.95000 5.05000 0.98020 0.81818 

21.0 2.41771 11.2202 8912.5* 125.893 5.56554 5.65467 0.98424 0.83634 

22.0 2.53284 12.5893 7943.3* 158.490 6.25506 6.33450 0.98746 0.85282 

23.0 2.64797 14.1254 7079.5* 199.527 7.02761 7.09841 0.99003 0.86777 

24.0 2.76310 15.8489 '6309.6* 251.188 7.89293 7.95602 0.99207 0.88130 

25.0 2.87823 j 17.7828 5623.4* 316.228 8.86324 8.91947 0.99370 1 0.89352 

* Multiply by 10“*. 
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Nepers 

a 

k 

€« 

1 
k 

k^ 

^2a 

- 1 
2k 

sinh a 

"FTT 
2k 

cosh a 

1 A2 - 1 ^ 
\ k^ + l 

tanh a 

k - i 
k +1 

tanh ^ 

26.0 2.99336 19.953 5011.9* 398.11 9.951 10.001 0.99499 0.90455 
27.0 3.10849 22.387 4466.8* 501.19 11.171 11.216 0.99602 0.91448 
28.0 3.22362 25.119 3981.1* 630.96 12.540 12.579 0.99684 0.92343 
29.0 3.33875 28.184 3548.1* 794.33 14.074 14.110 0.99749 0.93147 
30.0 3.45388 31.623 3162.3* 1000.00 15.795 15.827 0.99800 0.93869 

31.0 3.56901 35.481 2818.4* 1258.9 17.726 17.754 0.99841 0.94518 
32.0 3.68414 39.811 2511.9* 1584.9 19.893 19.918 0.99874 0.95099 
33.0 3.79927 44.668 2238.7* 1995.3 22.324 22.346 0.99900 0.95621 
34.0 3.91439 50.119 1995.3* 2511.9 25.049 25.069 0.99920 0.96088 
35.0 4.02952 56.234 1778.3* 3162.3 28.108 28.126 0.99937 0.96506 

36.0 4.14465 63.096 1584.9* 3981.1 31.540 31.556 0.99950 0.96880 
37.0 I 4.25978 70.795,1412.5* 5011.9 35.390 35.404 0.99960 0.97214 
38.0 4.37491 79.433 1258.9* 6309.6 39.710 39.723 0.99968 0.9751.3 
39.0 ; 4.49004 89.125, 1122.0* 7943.3 44.557 44.568 0.99975 0.97781 
40.0 . 4.60517 100.000 1000.0* 10000.0 49.995 50.005 0.99980 0.98020 

41.0 4.72030 112.20 891.25* 12589. 56.095 56.104 0.99984 0.98233 
42.0 4,83543 125.89 794.33* 15849. 62.944 62.956 0.99987 0.98424 
43.0 4.95056 141.25 707.95* 19953. 70.627 70.634 0.99990 0.98594 
44.0 5,06569 158.49[630.96* 25119. 79.242 79.248 0.99992 0.98746 
45.0 5.18081 177.83 562.34* 31623. 88.911 88.916 0.99994 0.98887 

46.0 5.29595 199.53 501.19* 39811. 99.77 99.76 0.99995 0.99003 
47.0 5.41107 223.87 446.68* 50119. 111.94 111.94 0.99996 0.99111 
48.0 j 5.52620 251.19 398.11* 63096. 125.59 125.60 0.99997 0.99207 
49.0 5.64133 281.84 354,81* 79433. 140.92 140.92 0.99997 0.99293 
50.0 5.75646 316.23 316.23* 100000. 158.11 158.11 0.99998 0.99370 

55.0 6.33211 562.3 177.83* 3.162t 281.17 281.17 0.99999 0.99645 
60.0 6.90776 1000.0 100.00* lO.OOOf 500.00 500.00 0.99999 0.99800 
65.0 7.48340 1778.3 56.23* 31.623t 889.14 889.14 0.99999 0.99888 
70.0 8.05905 3162.3 31.62* lOO.OOOt 1581.13 1581.13 1.00000 0.99937 
75.0 8.63469 5623.4 17.78* 316,2281 2811.71 2811.71 1.00000 0.99964 

80.0 9.21034 10000. 10.000* 1000. t 0.5000t 0.5000t 1.00000 0.99980 
85.0 9.78599 17783. 5.623* 3162. t 0.88911 0.88911 1.00000 0.99989 
90.0 10.36163 31623. 3.162* 10000. t 1.58111 1.5811t 1.00000 0.99994 
95.010.93728 56234. 1.778* 31623. t 2.8117t 2.8117t 1.00000 0.99996 

100.0111.51293 100000. 1.000* 100000. t 5.00001 5.0000t 1.00000 0.99998 

* Multiply by 10“‘. 

t Multiply by 10+*. 
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10. ELECTRON TUBE SYMBOLS 

Letter symbols: 

j Gonoral (convention for any electrode) 
/ Filament 
h Heater 
k Cathode 
g Grid 
p Plate or anode 
s Metal shell, or other self-shielding envelope 
d Deflecting, reflecting or repelling electrode (electrostatic type) 

Cn Instantan(‘Ous total grid voltage 
Instantaneous total plate voltage 

?r Instantaneous total grid current 
ifj Instantaneous total plate current 

Ec No signal d-c value of grid voltage 
Eb No signal d-c value of plate voltage 
Ic No signal d-c valium of grid current 
h No signal d-c value of plate current 

Ecs With signal d-(; value of grid voltage 
With signal d-c value of plate voltage 

IcK With signal d-c value of grid current 
Iuh With signal d-c value of plate current 

Cf, Instantaneous value of varying component of grid voltage 
Cp Instantaneous value of varying component of plate voltage 

Ey lOffective value of varying component of grid voltage 
Ep Effective value of varying component of plate voltage 
ly Effective vahie of varying component of grid current 
Ip Effective value of varying component of jdate current 

Eym Maximum vahie of varying component of grid voltage 
Epm Maximum value of varying component of plate voltage 
lym Maximum value of varying component of grid voltage 
I pm Maximum value of varying component of plate voltage 
Ef Filament or heat(‘r terminal voltage? (effective value) 
If Filament or heater current (effective value) 
/« Total electron emission 
Qj C/onductance of electrode y 
I'i Resistance of electrode j 

(jp Plate conductance 
fp Plate resistance 
gy Grid conductance 
Tg Grid r(?sistance 

gik Transconductance from electrode k to electrode j 

gm (= gpy) grid-plate transconductance (mutual conductance), effect. 
in plate circuit to change on control grid. 

gn {^gpy^ plate-grid transconductancc (inverse mutual conductance), 
effect in grid circuit to change on plate 

p. Amplification factor 
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M factor of an electron tube, relative effect of change on electrode 
to change on electrode (condition of other electrodes 

to be specified) ^ 
Cgp Grid-plate capacitance 
Cgk Grid-cathode capacitance 
Cpk Plate-cathode capacitance 
Cgh Grid-heater capacitance 
Cph Plate-heater capacitance 

Cg Grid capacitance 
Cp Plate capacitance 
Ck Cathode capacitance 

Einv Peak (or crest) inverse voltage 
Efyrd Peak (or crest) forward voltage 

td Deionization time 
th Tube heating time 
tk Cathode heating time 

Pg Grid dissipation power 
Pp Anode dissipation power 
Pi Input power 
Po Output power 

Ecc Grid supply voltage 
Ebb Plate supply voltage 
Eff Filament or heater supply voltage 

h. Currents and Voltages! 

When it is necessary to distinguish between components of current and 
voltage encountered in electron tube circuits the symbols can be used as 
illustrated for the plate currents in an electron tube. 

tihc 
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11. CURVES AND TABLES OF SINE AND COSINE INTEGRALS 
a. Sine and cosine integral curves: 
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b. Sine and cosine integral tables: 

X Si(x) Ci(x) EW Ei(-x) 

0.00 +0.000000 — 00 — 00 — 00 
0.01 +0.010000 -4.0280 -4.0179 - 4.0379 
0.02 +0.019999 -3.3349 -3.3147 -3.3547 
0.03 +0.029998 -2.9296 -2.8991 -2.9591 
0.04 +0.039996 -2.6421 -2.6013 -2.6813 

0.05 +0.04999 -2.4191 -2.3679 -2.4679 
0.06 +0.05999 -2.2371 -2.1753 - 2.2953 
0.07 +0.06998 -2.0833 -2.0108 -2.1508 
0.08 +0.07997 -1.9501 -1.8669 - 2.0269 
0.09 +0.08996 -1.8328 -1.7387 -1.9187 

0.10 +0.09994 -1.7279 -1.6228 - 1.8229 
0.11 +0.10993 -1.6331 -1.5170 - 1.7371 
0.12 +0.11990 - 1.5466 -1.4193 - 1.6595 
0.13 +0.12988 -1.4672 - 1.3287 - 1.5889 
0.14 +0.13985 -1.3938 - 1.2438 -1.5241 

0.15 +0.14981 -1.3255 -1.1641 - 1.4645 
0.16 +0.15977 -1.2618 - 1.0887 - 1.4092 
0.17 +0.16973 -1.2020 -1.0172 - 1 3578 
0.18 +0.1797 -1.1457 -0,9491 - 1.3098 
0.19 +0.1896 -1.0925 -0.8841 - 1.2649 ■ 

0.20 +0.1996 -1.0422 -0.8218 - 1.2227 
0.21 +0.2095 -0.9944 -0.7619 - 1.1829 
0.22 +0.2194 -0.9490 -0.7042 - 1.1454 
0 23 +0.2293 -0.9057 -0.0485 -1.1099 
0.24 +0.2392 -0.8643 -0.5947 -1.0762 

.0.25 +0.2491 -0.8247 -0.5425 - 1.0443 
0.26 +0.2590 -0.78G7 -0.4919 -1.0139 
0.27 +0.2689 -0.7503 -0.4427 -0.9849 
0.28 +0.2788 -0.7153 -0.3949 -0.9573 
0.29 +0.2886 -0.6816 -0.3482 -0.9309 

0.30 +0.2985 -0.6492 -0.3027 -0.9057 
0.31 +0.3083 -0.6179 -0.2582 -0.8815 
0.32 +0.3182 -0.5877 -0.2147 -0.8583 
0.33 +0.3280 -0.5585 -0.17210 -0.8361 
0.34 +0.3378 -0.5304 -0.13036 -0.8147 

0.35 +0.3476 -0.5031 -0.08943 -0.7942 
0.36 +0.3574 -0.4767 -0.04926 -0.7745 
0.37 +0.3672 -0.4511 -0.00979 -0.7554 
0.38 +0.3770 -0.4263 + 0.02901 -0.7371 
0.39 +0.3867 -0.4022 + 0.06718 -0.7194 

0.40 +0.3965 -0.3788 +0.10477 -0.7024 
0.41 . +0.4062 -0.3561 +0.14179 -0.6859 
0.42 +0.4159 -0.3341 +0.17828 -0.6700 
0.43 +0.4256 -0.3126 +0.2143 -0.6546 
0.44 +0.4353 -0.2918 + 0.2498 -0.6397 

0.45 +0.4450 -0.2715 +0.2849 -0.6253 
0.46 +0.4546 -0.2517 " +0.3195 -0.6114 
0.47 +0.4643 -0.2325 +0.3537 -0.5979 
0.48 +0.4739 -0.2138 +0.3876 -0.5848 

0.49 +0.4835 -0.1956 +0.4211 -0.5721 
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X 8i(x) Ci(x) El(x) Ei(-x) 

0.50 +0.4931 -0.17778 + 0.4.542 -0..5.598 
0.51 +0.5027 -0.16045 +0.4870 -0.5478 
0.52 + 0.5123 -0.14355 + 0.5195 -0.5362 
0.53 + 0.5218 -0.12707 +0.5517 -0.5250 
0.54 +0.5313 -0.11099 + 0.5836 -0.5140 

0.55 + 0.5408 -0.09.530 -10.61.53 -0..5034 
0.56 + 0 5503 -0.07999 +0.6467 -0.4930 
0.57 + 0.5.598 -0.06.504 +0.6778 -0.4830 

0.58 + 0..5693 -0.0.5044 +0.7087 -0.4732 

0.59 + 0.5787 -0.03619 + 0.7394 -0.4636 

0.60 +0.5881 -0.02227 +0.7099 -0.4544 
0.61 + 0 ,5975 -0.0*^8675 +0.8002 -0.44.54 

0.62 + 0 6069 +0.0-4606 + 0.8.302 - 0.4366 

0.63 + 0 6163 + 0 01758 + 0.8601 -0.4280 

0.64 +0.62.56 +0.03026 + 0.8898 -0.4197 

0.65 + 0.6.349 + 0.04265 + 0.9194 -0.4115 

0.66 + 0.6442 + 0.0.5476 +0 9488 -0 4036 

0.67 + 0 6535 +0 066.59 + 0.97S0 - 0, .3959 

0 68 + 0 6628 -1 0 07816 + 1 .0071 -0 3883 

0 69 +0.6720 +0.08946 + 1.0361 -0.3810 

0 70 + 0 6812 + 0.10051 + 1.0649 -0 .3738 

0 71 + 0 6904 + 0.11132 + 1.0936 -0 3668 

0 72 +0 6996 + 0.12188 + 1.1222 -0.3.599 

0.73 + 0.7087 + 0.13220 + 1.1507 - 0.3.532 

0.74 + 0.7179 +0.142,30 + 1.1791 -0.3467 

0 75 +0.7270 +0.1.5216 + 1 2073 -0.3403 

0.76 +0.7.360 +0.16181 + 1 23.55 -0.3341 

0.77 + 0.7451 + 0.17124 + 1 2636 -0.3280 

0 78 +0 7.541 + 0 1805 -1-1 2916 -0.3221 

0.79 +0.7631 +0.1895 + 1.3195 -0.3163 

0 80 + 0.7721 +0.198.3 + 1.3474 -0 3106 

0 81 +0.7811 + 0.2069 + 1 37.52 -0.30.50 

0 82 + 0 7900 + 0.2153 + 1.4029 -0 2996 

0.83 +0.7989 + 0 2235 -i-1.4306 -0 2943 

0.84 +0.8078 +0.2316 + 1.4582 -0.2891 

0.85 +0.8166 +0.2394 + 1.4857 - 0.2840 

0.86 +0.82.54 + 0.2471 + 1.5132 -0.2790 

0.87 +0.8,342 + 0.2546 +1.5407 -0.2742 

0.88 + 0.8430 +0.2619 + 1.,5681 -0.2694 

0.89 +0.8518 +0.2691 + 1.5955 -0.2647 

0.90 +0.8605 +0.2701 + 1.6228 - 0.2602 

0.91 +0.8692 +0.2829 + 1.6501 -0.2.5.57 

0.92 +0.8778 +0.2896 + 1.6774 -0.2513 

0.93 +0.8865 +0.2961 +1.7047 -0.2470 

0.94 + 0.8951 +0.3024 + 1.7319 -0.2429 

0.95 +0.9036 +0.3086 + 1.7591 -0.2387 

0.96 + 0.9122 +0.3147 + 1.7864 -0.2347 

0.97 +0.9207 +0.3206 + 1.8136 -0.2308 

0.98 +0.9292 +0.3263 + 1.8407 -0.2269 

0.99 +0.9377 +0.3319 + 1.8679 -0.2231 

1.00 -1-0 9461 +0.3374 + 1 8951 -0.2194 
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X Si(x) Fi(x) Ei(-x) 

1.0 +0.9461 +0.3374 + 1.8951 -0.2194 

1.1 + 1.0287 +0.3849 +2.1674 -0.1860 
1.2 +1.1080 +0.4205 + 2.4421 -0. 1584 
1.3 + 1.1840 +0.4457 + 2.7214 -0.1355 

1.4 + 1.2562 +0.4620 +3.0072 -0.1162 

1.5 + 1.3247 +0.4704 +3.3013 -0.1000 

1.6 + 1.3892 +0.4717 + 3.6053 -0.08631 
1.7 + 1.4496 +0.4670 +3.9210 -0.07465 

1.8 + 1.5058 +0.4568 + 4.2499 -0.06471 
1.9 + 1.5578 +0.4419 +4.5937 -0.05620 

2.0 + 1.60.54 +0.4230 +4.9542 - 0.04890 

2.1 + 1.6487 +0.4005 + 5.3332 -0.04261 
2.2 + 1.6876 +0.3751 + 5.7326 -0.03719 

2.3 + 1.7222 +0.3472 +6.1544 -0.03250 
2.4 + 1.7525 +0.3173 + 6.6007 -0.02844 
2.5 + 1.7785 +0.2859 +7.0738 -0.02491 

2.6 + 1.8004 +0.2533 + 7.5761 * -0.02185 
2.7 + 1.8182 +0.2201 +8.1103 -0.01918 
2.8 + 1.8321 +0.1865 + 8.6793 -0.01686 
2.9 + 1.8422 + 0.1529 + 9 2860 -0 01482 
3.0 + 1.8487 + 0.1196 + 9 9338 -0.01304’ 

3.1 + 1.8517 +0.08699 + 10.6263 -0.01149 
3.2 + 1.8514 +0.05526 + 11 3673 -0.01013 
3.3 + 1.8481 +0.02468 + 12 1610 -0 0-8939 
3.4 + 1.8419 -0.004518 + 13.0121 -0.027890 
3.5 + 1.8331 -0.03213 + 13.9254 - 0.026970 

3.6 + 1.8219 -0.05797 + 14 9063 -0.026160 
3.7 +1.8086 -0.08190 + 15 9606 -0.025448 
3.8 + 1.7934 -0. 1038 + 17.0948 - 0.024 8 20 
3.9 + 1.7765 -0.1235 + 18.3157 -0.024267 
4.0 + 1.7582 -0.1410 + 19.6309 -0.023779 

4.1 + 1.7387 -0.1562 + 21.0485 -0.023349 
4.2 + 1.7184 -0.1690 + 22 5774 -0.022969 
4.3 + 1.6973 , -0.1795 + 24 2274 -0.022633 
4.4 + 1.6758 ' -0.1877 + 26.0090 -0.022336 
4.5 + 1.6541 -0.1935 + 27.9337 -0.022073 

4.6 + 1.6325 -0.1970 + 30.0141 -0.021841 
4.7 + 1.6110 -0.1984 +32.2639 -0.02 1635 
4.8 +1.5900 -0.1976 + 34.6979 -0.021453 
4.9 + 1.5696 -0.1948 +37.3325 -0.021291 
5.0 +1.5499 -0.1900 + 40. 1853 -0.021148 

6 + 1.4247 -0.06806 + 85.9898 -0.023601 
7 + 1.4546 +0.07670 + 191.505 -0. on 155 
8 +1.5742 +0.1224 + 440.380 -0.0^3767 
9 + 1.6650 +0.05535 + 1037.88 -0. on 245 

10 +1.6583 -0.04546 + 2492.23 -o.oni57 

11 + 1.5783 -0.08956 + 6071.41 -0.0*1400 
12 + 1.5050 -0.04978 ’ +14959.5 -0.0*4751 
13 +1.4994 +0.02676 + 37197.7 -0.0*1622 
14 +1.5562 +0.06940 +93192.5 -0.075566 
15 + 1.6182 +0.04628 +23495.0 -0.071918 
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X Si(x) Ci(x) X SiW Ci(x) 

20 4-1.5482 4-0.04442 140 4-1.5722 4-0.007011 
25 4-1.5315 -0.00085 150 4-1.5002 -0.004800 
30 4-1.5068 - 0.03303 100 4-1.5769 + 0.001409 
35 4-1.5909 -0,01148 170 4-1.5653 4-0.002010 
40 4-1.5870 4-0.01902 180 4-1.5741 -0.004432 

45 4-1.5587 4-0.01803 190 4-1.5704 4-0.005250 
50 4-1.5516 -0.00503 200 4-1.5684 -0.004378 
55 4-1.5707 -0.01817 300 4-1.5709 -0.003332 
60 4-1.5867 -0.00481 400 4-1.5721 -0.002124 
65 4-1.5775 4-0.01285 500 4-1.5726 -0.0009320 

70 4-1.5616 4-0.01092 600 4-1.5725 4-0.0000764 

75 4-1.5.586 - 0.00533 700 4-1.5720 +0 0007788 
80 4-1.5723 -0.01240 800 4-1.5714 + 0.001118 
85 4-1 5824 -0.001935 900 4-1.5707 4-0.001109 
90 4-1.5757 4-0.009986 10« 4-1.5702 +0.000826 

95 4-1.5630 4-0.007110 10* 4-1.5709 -0.0000306 

100 4-1.5022 -0.005H9 10» 4-1.5708 +0.0000004 
110 4-1.5799 -0.000320 10« 4-1.6708 -0.0000004 

120 4-1.5040 4-0.004781 10’ 4-1.5708 +0.0 

130 4-1.5737 -0.007132 oo Hr 0.0 

X 

TT 

Max. . 
Min. 

X 

TT 

Max. . 
Tv/r- (Si Min. 

0.5 -f0.472 00 1 +0.281 14 
1.5 -0.198 41 2 -0.152 64 
2.5 +0.123 77 3 +0.103 96 
3.5 -0.089 564 4 -0.078 635 
4.5 +0.070 065 5 +0.063 168 
5.5 -0.057 501 6 -0.052 762 
6.5 +0.048 742 7 +0.045 289 
7.5 -0.042 292 8 -0.039 665 
8 5 +0.037 345 9 +0.035 280 
9.5 -0.033 433 10 -0.031 767 

10.5 +0.030 260 11 +0.028 889 
11.5 -0.027 637 12 -0.026 489 
12.5 +0.025 432 13 +0.024 456 
13.5 -0.023 552 14 -0.022 713 
14.5 +0.021 931 15 +0.021 201 
15.5 -0.020 519 
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12. FACTORIALS OF NUMBERS FROM 1 TO 20 AND THEIR 
RECIPROCALS 

71 n! or [n 1 
n 

1 1 1. 

2 2 5. 10-1 
3 6 1.6666 6667 10-1 
4 2.4 10 4.1666 6667 10-2 
5 1.2 10* 8.3333 3333 10-* 

6 7.2 10* 1.3888 8889 10-" 
7 5.04 10* 1.9841 2698 10-" 
8 4.032 10" 2.4857 0718 10-* 
9 3.6288 10* 2.7557, 3192 io-« 

10 3.6288 10« 2.7557 3192* 10-7 

11 3.9916 8 107 2.5052 1084 10-* 
12 4.7900 16 10* 2.0876 7570 10-9 
13 6.2270 208 10* 1.6059 0438 10-10 

14 8.7178 2912 10i« 1.1470 7456 10-11 
15 1.3076 7437 101* 7.6471 6373 .10-13 

IG 2.0922 7899 101* 4.7794 7733 10-1" 
17 3.5568 7428 101" 1 2.8114 5725 10-1* 
18 G.4023 7371 IQi* 1.5619 2069 10-16 

19 1.2164 5100 1017 8.2206 3525 10-1* 
20 2.4329 0201 IQi* 4.1103 1761 10-19 

13. USEFUL CONSTANTS 

(1) « - 2.71828183 

(2) i = 0.36787944 

(3) log « = 0.43429448 
(4) log log « = 9.63778431 - 10 
(5) JT = 3.14159265 

(6) - = 0.31830989 
TT 

(7) ttJ = 9.86960440 
(8) Vtt = 1.77245385 

(9) logr = 0.49714987 
(10) InTT = 1.14472989 
(11) log2 = 0.30103032 
(12) log 3 = 0.47712125 
(13) In 2 = 0.69314718 
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(14) 
(15) 
(16) 

(17) 

(18) 

In 3 - 1.09861229 
In 10 = 2.30258509 

7 - 0.57721566 
== lOulcr’s constant 

Ndb decibels 
nepers 

= 8.635S8964 

= 0.11512925 
Ndu decibels 

(19) 1 radian = = 57°17'44.8" 
TT 

= 57f29577951 

(20) I"" = = 0.01745329 radians 
loO 

(21) V2 = 1.41421356 
(22) V3 = 1.73205081 

14. ALGEBRAIC FORMULAS 

a. Miscellaneous Formulas: 
(1) (1 “1-5 == b CL 
(2) (a + 5) + ^ = a + (5 -t- r) 
(3) a -f- ^ + d, if a = 6 and c 

(4) ah = ha 

(5) {ah)c. — a (hr) 
(6) a(h c) = ah ac 

(7) ac = h(i, if a = 6 and c — d 

(8) a + (-6) - a - 6 
(9) a — (—h) = a -f 5 

(10) 0 • a = 0 

(12) 00 . a = 00 

(1.3) = CC 

(14) 0 • 00 = indeterminate 

(15) H = indeterminate 

d 

(16) — = indeterminate 
00 

(17) a{—h) = —ah 

(18) (—a)(—6) = ah 

(19) -{a -h -{■ c) = -a+6-c 

(20) ^ 
ac 

Ic 

(21) = 
a 

-h 

a -\-Jh 
c 

a 

b 
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(23) “--, 

(24) I 

fl ~ 6 

c 
ad + be 

hd 

ad 
be 

(27) (a^)(a^) = 

(28) (a”*)” = a”*" 

(29) (abc)”^ — 

(32) ao = 1 
n _ 

(33) = y/a^ 

(34) o-“ = -4 

(35) (a + h){a -f 6) = + 2ab + b^ 

(36) (a + b){a - b) = - b^^ 

(37) (a - b){a - 6) = - 2ab + b^ 

(38) (a + 6) (c — (f) = ac be — ad — bd 

(39) Factorial number n! = [n = l- 2- 3 • • • (n — l)n 

b. Simultaneous equations: 

1. The solution of the two simultaneous equations 

by determinants is 

oix -f biy = Cl 

azx H- b^y = C2 

X = 

Cl 6i 

C2 ^2 

ai 6i 

02 62 

y = 

ai Cl 

02 C2 

oi b\ 
02 5j 

2. The solution of three simultaneous equations 

axx + b\y -f ci^ = di 

a2X + b2y + C22 = d2 

a^x + bzy + CzZ = da 
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by determinants is 
d. 61 Cl 

d. hz Cz 

hz 

ai ~bi~ Cl 

az 62 Cz 

az bz Cz 

ai d. Cl 

a2 dz Cz 

dz C3 

ai 61 Cl 

(I2 62 C2 

az bz Cz 

ai 61 di 

az bz do 

a-i hz Ah 
bi Cl 

02 hz C2 

a 3 bz C3 

c. Quadratic equations: 
For the quadratic equation 

ax^ + + c = 0 

the solution by the quadratic formula is 

— 6 + — 4ac 
X = --^- 

2a 

If the discriminant 6^ — 4ac is positive, zero, or negative, the roots are 
accordingly real and unequal, real and equal, or unequal and complex 
numbers. 
d. Binomial theorem (a being a positive integer): 

(a ± t)” = o” ± na" 
n(n — 1) + n(n - l)(n - 2) -353 + 

e. Trapezoidal rule: [k=n-l 

+’/»)+ ^ 2/t 

k = l -* 
where A — area 

Ax = width of strips 
yk — height of Ath strip 
n = number of strips 

/. Simpson’s rule: 
*-"5-1 

A = ^ r (t/o + 2/n) + 4 V y(2fc-l) -f 2 V ^2/;! 

where the letters have the same meaning as given above in the trapezoidal 
rule. 
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16. LOGARITHMIC FORMULAS 

(1) In = natural logarithm to base e 

(2) log = common logarithm to base 10 
(3) log 1 = 0 In 1 = 0 
(4) log 10 = 1 In € = 1 
(5) log ab = log a + log b In g6 = In a -f In 6 
(6) log n log a In a” — n In a 

i 1 - 1 

(7) log ^ - log a In = - In a 
' n n 

(8) If y = log X If 1/ = In X 
10*' == X <*' = X 

(9) log X = log € In X = 0.4343 In x 
(10) In X = In 10 log x = 2.3026 log x 

(11) The characteristic of a number is the whole number part of the common 
logarithm and is the exponent of 10 when the number is written in 
scientific notation. 

(12) The mantissa of a number is the decimal part of the common logarithi.i 
found in the tables. 

(13) Example of characteristic and mantissa 

log (3.1623)102 = 2.500 

where 2 = the characteristic, from exponent of 10 
0.5 = the mantissa, from logarithm tables 

Thus 316.23 = 10^ ^ 

16. COMPLEX QUANTITIES 

(1) i == V-l or = —1 

(2) a + jb = \/a2 a j sin a) 
- = C/a 

where C == -v/a^ -|- 6* 

, 6 sin a 
tan a = - = - 

a cos a 

(3) (a +jb) + (c +jd) = (a + c) + jib + d) 

(4) (a +jb) - (c +jd) = {a - c) + jib - d) 

(5) (a -V jb)ic jd) = iac - bd) -f y(5c + ad) 

(6) (a + j6)(c — jd) = iac + bd) jibe — ad) 

(7\ ® 4“ c — jd _ac-{-bd .be — ad 
c -f jd c -j- jd c — jd 6*2 + d2 ^ d"^ 

™ ^ - S - S I ^ E ™ •“ " J.»n <• - « 

where C — + b^] tan a = 

E = \/c2 -f d2; tan /3 — • 

(9) If a + = c jd 
then a — c 
and b d 
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17. TRIGONOMETRIC CHARTS AND FORMULAS 

a. Chart of fraction values for trigonometric functions: 

Degrees | Sine Cosine Tangent Cotangent 
0 1 0 00 

30 H yVs 
1 

Vs 
Va 

45 yW2 HV2 1 1 

60 yi Vs 
1 

Vs 
1 

1 
0 00 0 

120 VTi -'A - Vs _ 1 

Vs 
135 }2 V2 -1 

V ^ 

-1 

150 
_ 1 

V5 
- 

180 0 , -1 0 CO 

b. Chart for reducing angles: 

Angle Sine C/Osine Tangent Cotangent 

± « ± sin a + cos a + tan Of ± cot a 

90° ± a + cos a T sin a T ctn Of T tan a 

180° ± + sin a — cos a ± tan a ± cot a 

270° ± a — cos a + sin ct + ctn Of + tan a 

S60° ± « ± sin (X -f" cos Of ± tan a ± cot a 

Algebraic signs and graphs of trigonometric functions in the various quadrants. 
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d. Trigonometric formulas: 

(1) sin a = “ =* cos /S 

(2) cos a = ^ =* sin 

(3) tan a = ^ = cot /3 

,.. ^ sin a cos /3 
(4) tan a = - = ^—- 

cos a sin /3 
fia. _ ^-ia 

(5) sin a = -2j- 

-f 
(6) cos a =* -2- 

£ia — f-ia 
(7) tan a = -j 1^. 

(8) sin (—a) = — sin a 

(9) cos (—a) = cos a ^ 

(10) tan (—a) = — tan a. 

(11) sin i ~ ^ 

(12) cos ^ " 

(13) tan 

(14) sin (t ± a) = T sin a 

(15) cos (tt ± a) = — cos ct 

Right triangle for use with 
trigonometric formulas. 

(16) tan (tt ± a) = -f tai 

(17) sin ^ (1 — cos a) 

(18) cos I = (1 + cos a) 

+ cot a 

A « ^ — cos a sill a 
(19) tan K = -:-= ,- 

2 sin a 1 -f cos a 

(20) sin 2a = 2 sin a cos a 

(21) cos 2a == 1 — 2 sin^ a = 2 cos* a — 1 

(22) tan 2« = 

(23) sin 3a = 3 sin a — 4 sin® a 

(24) cos 3a = 4 cos® a — 3 cos a 

(25) sin* a =-2- (25) sin* a = 

(28) sin® a = 

/o«^ 2 1 + cos 2a 
(26) cos* a = - ~—~2 

(27) sin* a + cos* a = 1 

(28) sin® a =--— 

, 3 cos a 4- cos 3a 
(29) cos® a = --^- 

(30) sin (a 4- )3) = sin a cos P 4- cos a sin /3 

(31) sin (a — /3) = sin a cos 3 — cos a sin ^ 

(32) cos (a 4- /3) = cos a cos — sin a sin /3 

(33) cos (a — /3) — cos a cos jS 4- sin a sin /3 

,o,x . / , tan a 4- tan (i 
(34) tan (a 4- /3) = .-r-. 

/o.N a - tan /3 
' ^ 14“ tan a tan /3 
(36) sin (a 4“ /3) 4- sin (a — /3) =2 sin a cos /8 

(37) sin (a 4“ /3) — sin (a -- /3) —2 cos a sin /3 

(38) cos (a 4“ i3) 4- cos (a — /3) = 2 cos a cos /3 

(39) cos (a — /3) — cos (a 4" /3) =" 2 sin a cos /3 

(34) tan (a 4- /3) = 

(35) tan (a — /3) = 
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18. EXPONENTIAL AND HYPERBOLIC FORMULAS 

a. Exponential formulas: 
(1) - cos + y sin 
(2) = cos /3 — j sin /3 

(3) = cosh a + sinh a 

(4) = cosh a. — sinh a 

(5) = c" cos /3 + sin /3 

= (cosh ct cos ^ + sinh a cos /3) 

+ jXcosh a sin ff) + sinh a sin 

b. Relation between hyperbolic and circular functions: 
(1) sinh j/3 = j sin /3 

(2) cosh j/3 = cos /3 

(3) sin = j sinh /3 

(4) cos j/3 = cosh /3 

c. Hyperbolic functions: 

(1) sinh /3 = -2- 

(2) cosh ^ ^- 

(3) tanh 3 = ^ 

(4) sinh ( —/3) = — sinh ^ 

(5) cosh (—/3) = cosh /3 

(6) cosh^ /3 — sinh^ /3 = 1 

(7) sinh (a + /3) == sinh a cosh /3 + cosh a sinh 0 

(8) sinh (a — = sinh a cosh — cosh a sinh /3 

(9) cosh (a -f- d) = cosh a cosh ^ -j- sinh a sinh (3 

d. Circular and hyperbolic functions of complex quantities: 
(1) sinh (a ± j0) — sinh a cosh^/? ± cosh a sinli 

= sinh oc cos ^ ± j cosh a sin (3 

— yjsinh^ a. + sin^ ^ /'t tan~^ 
* /_ 

(2) cosh {a ± j^) — cosh ot cosh j/3 ± sinh a sinh j!3 

= cosh a cos /3 + J sinh a sin ^ 

= binh^ a -h cos^ /3/ ± tan~^ (^an |3 tanh a) 

(S') sin (a ± j^) = sin a cos ± cos a sin 

— sin a cosh ^ ± j cos a sinh |3 

== \/sin2 a -f sinh^ / ± tan“i 
/_tan or 

(4) cos (« ± j^) — cos a cos T sin a sin 

== cos a cosh ^ T y sin « sinh /3 

= \/cos* a 4“ sinh* tan~^ (tanh /3 tan a) 
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19. STANDARD ELEMENTARY CALCULUS FORMULAS.—(Contmuedj 

Derivative 

dx 

Function 

y 

Integral 

Jy dx 

a COS ax sin ax — - cos ax + C 
a 

— sin X cos X sin X + C 

—a sin ax cos ax - sir ax + C 
a 

sec^ X tan X — In cos X C 

a sec 2 ax tan ax — - In cos ax + C 
a 

cosh X sinh X cosh X + C 

a cosh ax sinh ax - cosh ax -{■ C 
a 

sinh X cosh X sinh X + C 

a sinh x cosh ax " sinh ax + C 
a 

sech* X tanh X In cosh X C 

— Hn cosh ax -f C 
a a sech^ ax tanh ax 

20. OTHER USEFUL INTEGRALS 

j dx = ^ €“*(aX — 1) 

j sin {wt \p) dt = 

I COS {ojt xp) dt = 

, [a sin (cot \p) — ca cos (wt -}- \p)] 

j [of COS {<*)t “1“ xp) “1“ CO sin {cot i^)] 

Site) . 

Cite) -1 

•'•W - k lo 

^ sin X 

X 

* cos X 

CO X 

2t 

dx 

dx 

1 /*2ir 
cos (x sin d) do = -^ / cos {x cos B) dO 

^TT Jo 

1 f- 

j r2r 
= / sin {x sin 6) dd 

2ir Jo 

2ir Jo 27r Jo 
1 r *■ 

dn(x) — - I COS (nB — X sin B) dB 
T Jo 

= - / sin (nB — x sin B) dB 
TT Jo 

at 1 P d) flff 
V Jo 

' dB 

=-r TT Jo 

-I' TT Jo 

COS (x cos B) dB 

’ dB 
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21. SERIES 

a. Exponential: 

(l)‘* = l+*+§+§+- 

(2) a* = 1 -f X log a + 
(x log ay (x log g)^ 

b. Trigonometric: 
/m3 /»*7 

(1) = ... 

^4 ^6 
(2) cos = 1 - j2 + f| - H + • • • 

(3) tan a: = a: + g- + 35 + ^ + • • • 

c. Hyperbolic: 

(1) siuhx = ®+ |+|'+|+--- 

(2) cosh * = 1 +1+1+1+ ••• 

, , a;^ , 2x‘ 17x’ 
(3) tanh ^=*-3+-i5-'^+--* 

d. Logarithmic; 

In (1 + x) = X - K + K a:’ ~ + • * 

e. Sine and cosine integral: 

SiW . /, 

Ci(x) = 

sm X j X" , x^ 
— dx = X - ^ + _^ - 

r * cos X 
dx 

/. Bessel’s: 

(1) ./o(x) = 1 — -f- 22.42 ““ 2* • 42 ♦ 6* 

(2) r / \ fi I 
2«ln L 2(2n + 2) 2 • 4(2n -h 2)(2n + 4) 

A® « 
(-1)* (0 

2 • 4 • 6(2n + 2)(2n -f 4)(2n + 6) 

n+»* 
(n an integer) 

g. Binomial: 

(1 ±x)-> = l ±nx+"^|-Ux»±^fr-[)("-"-)x3+ ■ . . 

h. Power: 

fix) = tt„ -f- -f* tfax* 4- (XsX® -!-••• 
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i. Maclaurin’s: 

/(x) -/(o) +a^'(o) +|/"(o) +|/"'(o) 4- • • • 

j\ Taylor’s: 

(1) fix) - /(a) + (X - a)/'(a) + + • 

(2) fix + A) = fix) + A/'(x) + ^/''(x) + g/"'(x) + • • • 

k, Fourier’s: 

(1) f(x) == ^ -f- sin X + i42 cos 2x + Ai cos 3x + • • • 

+ Bi cos X A- B2 cos 2x Bi cos 3x * 
n = « 

= -h ^ (An COS nx + Bn sin nx) 
n = 1 

1 
where Ao = - / /(a:) dx 

TT Jo 
1 /•2ir 

An = - fix) cos nxox 
TT Jo 

1 
Bn = - I fix) sin nxox 

TT Jo 

(2) /(x) = .Uo 4- Afi sin 4- ^1/2 sin (a>/ + 1A2) + • • • 
n = « 

= ^ Mn sin 4- ^n) 
n “0 

where n = 0 
1 r2x 

Jo 
and for n = 1, 2, 3, • • • 

Mn/l. = - P'/(x)€-'""<ix 
*- IT Jo 

* 22. WAVEFORMS 

a. Square sine wave: 
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b. Square cosine wave: 
AE 

■ B B ■ TT 

■ B g ■ -S 

■ B n ■ 
1 

\ 1 
_ )_ 1 r t Itt X 1 

0 2 
_] 

4 
gam 

"
8

 

8 
B 

10 

y = - Z • sin (2n — l)x 

n=» 1 

1 0.1 r 
- cos X — j: COS + -r COS OX 
T L ^ 

c. Sawtooth sine wave: 

SET . 1 • O . 1 • r 1 = sin ^ g sin 3x -H ^ sin ox — • • • J 

d. Sawtooth cosine wave: 

SE \\ 
COS (2n — l)x 

n-l 

^ j^cos X 4* ^ COS 3x + ^ COS 5x -i- • • • J 
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k. Rectangular pulse wave: 
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n. Fractional cosine pulse wave: 

—■■■fflai ■■■Msa 
■■■■■■■ 

fc=oir 

0 2 I 4 I 6 I 8 10 
Harmonics 

E r 
—, -r sin kir — kv cos kir -f "" sin kw cos kir) cos a? 
7r(l — cos kw) L 

. fsin (n + l)A:7r . sin (n — l)kir 2 sin nkir cos kx] 1 
4-7 \-^—r—r-^- ^-   f cos nx 

t» + l n - 1 n I J 

E r 
-t:;-r-T sin kv — kiT COS irk + (kw — sin kw cos kw) cos x 
7r(l — cos kw) I , 

+ sin ^kw 4- sin kw — sin 2A;7r cos kw^ cos 2x 

4" sin 4kw 4- ^ sin 2A;ir — | sin 3fcir cos Ajtt^ cos 3a; 4“ • • • J 





INDEX 

A 

Acoustics, 259 

Admittance, 206-208 

circuits, 206, 221, 224 

generators, 252 

vectors, 206 

7\ir gap, 96, 99, 100, 115 

Alternating current {see ('urrent, alter¬ 

nating) 

Aluminum, instruments, 115, 116, 118 

Ampere, 12, 14, 36, 40, 61 

abarnpere, 89 

Amplification factor /u. 292, 293, 301, 305 

variable, 312, 317 

Amplifier, beam-pow('r pentode, 310 

historical, 287 

tetrode, 307 

triode, 287 

useful amplification of, 300 

Anode, cathode-ray tube, 318-322 

cathode resistance, 288, 289 

diode tube, 274 

multielement tubes, 303 

pentode tube, 317 

tetrode tube, 316 

triode tube, 287 

Antiresonant, parallel circuit, 220-236 

series-parallel circuit, 237-248 

Apparent power, 196, 200, 201 

Armature, direction of rotation, 114 

generator. 111, 121 

motor, 113, 121 

relay, 119, 120, 122 

Atom, 1-10 

Atomic number, 2, 3 

Atomic theory, 1 

Atomic weight, 3 

B 

Barium-strontium oxides, 271, 273, 274, 

284 

Battery, 17-21 

internal voltage of, 41 

ohmrneter, 54, 62 

parallel, 49, 76 

relay, 118 

series, 44 

voltage, 39, 41 

Bleeder, 58, 59, 62 

Bohr, Niels, 1 

Boltzmann’s constant, 275, 284 

Branch currents, 47 

Bridge, 77-84 

circuits, 77, 78 

commercial, 79 

Murray-loop, 81, 82, 84 

ratio arm, 80 

rectifier, 168 

slide wire, 80, 84 

Varley-loop, 82-84 

Wheatstone, 77-84 

C 

Cadmium tungstate, 324 

Calcium tungstate, 324 

Capacitive reactance, 179-181 

Capacitor, 7, 141-154 

alternating current, 177 

charging current, 178 

circuit, 197 

tuning, 216 

wave traps, 238 

Capacity, circuit, 178 

grid-to-cathode, 216 

load, 171 

parallel circuit, 220 

power, 187 

resistance, 197 

series circuit, 202 

wave form in a pure, 177 

Carbon in vacuum tube emitters, 270, 

273 

Catalytic agent, 21, 37 
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Cathode, 270, 272 

diode, 274-286 

emission, 274, 284 

multielement tubes, 303-317 

triode, 287-302 

voltage, 277 

Cathode-ray, 8 

oscilloscope, 324 

tubes, 318-326 

Cells, dry, 16-19, 39 

wet, 17, 18 

Charge, 4, 5, 11, 12 

battery, 20 

capacitor, 141-147 

space, 275, 278 

Chemical energy, 17 

Child’s voltage law, 276-278 

Chlorine atom, 6 

Circuit breaker, 119, 120 

Circuits, alternating current, 171, 202 - 

248 

capacitive reactance of, 177, 181, 197 

impedance of, 188 

inductive reactance of, 174, 175 

parallel, 220-236 

resistance of, 172 

series, 202-219 

series-parallel, 237-248 

breaker, 32 

bridge, 77-83 

capacitor, 141, 149 

cathode-ray tube, 325 

closed, 41, 42, 251 

complex, 241 

control of, 265 

current shunt of, 265 

d-c plate, 298 

diode, 282 

Edison, 77 

elements of, 30 

equivalent plate, 297, 315 

inductive, 129, 132, 133 

magnetic, 89 

open, 39, 41, 73 

passive elements in, 265 

pentode, 308, 310 

potentiometer, 57 

protection, 32 

series-parallel, 56, 57, 63, 84 
short, 39, 41, 73 

tank, 220, 237 

Circuits, tetrode, 306 

thermocouple meter, 167 

triode, 297 

two-mesh, 76 

Circular mil-foot, 23 

Cobalt, permeability of, 90 

Coil, 92 

alternator, 155-158 

cathode-ray tube, 323 

energy in, 151 

generator, 106 

inductance, 123-140, 216 

air-core, 93, 127, 134-140 

iron-core, 93, 127 

mutual, 128 

self, 125, 134-140 

instrument, 115,* 116, 121 

motor, 106 

Q, 211, 213 

relay, 119, 120, 122 

Commutator, 110, 111 

Conductance, 47, 48 

diode tube, 281 

mutual multielement tube, 304 

mutual triode tube, 295 

total parallel, 61 

vector, 225 

Conductor, 4 

capacitor, 141 

circuit, 39 

coil, 136 

current, 12, 22, 106 

damping, 115 

electrical, 42 

electrons, 16, 266 

force, 113 

magnetic field, 90-93, 109, 112 

parallel, 47 

resistance in a, 23, 25, 37 

resistivities of a, 24 

series, 42 

shielding, 97 

skin effect in a, 102 

voltage in a, 106-108 

Copper, resistance-temperature curve, 26 

slug-type relay, 120 

wire, 25, 28 

Corona effect, 147 

Cosine, curve of, 156, 160, 169 

Coulomb, 11, 143, 144 

charge on electron, 266 
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Current, 12-15 

alternating, 15, 155-170 

capacity, 177-182 

equivalent plate circuits, 315 

impedance of, 183-201 

power of, 183-201 

rectifier, 283 

relay, 119 
resistance of, 172-174, 294 

sinusoidal, 155, 158 

types of, 15 

vacuum tubes, 272 

anode, 277, 285 

armature, 114 

average, 162-166 

branch node, 254 

capacitor, 141, 145, 146, 180 

cathode emission, 274 

circulation of, 220 

classification of, 14 

coil, 123 

conventional, 14 

(Test factor, 165 

definition of, 12 

density, 12, 266 

d'e term illation, 63 

direct, 14, 15 

bridge, 77 

circuits, 39 

classification of, 15 

continuous, 15 

definition of, 14 

ilynamotor, 114 

generator, 111 

instruments, 115-121 

motors, 113 

networks, 63 

pulsating, 14 

relays, 119 

transi(‘nt, 15 

displacement, 146 

eddy, 101, 172, 196 

effectives, 162, 171 

electron, 12 

equivalent source, 251-255 

field, 114, 171 

form factor, 165 

generator, constant, 257 

induced, 106 ^ 

inductor, 129, 176 

ion, 13 

Current, Kirchhoff’s law, 47-49, 61 
leakage, 98 

Ohm’s law, 40 

operating, 119 

rating of fuse, 32 

rectified, 168 

relay, 119 

series circuit, 43 

shunts, 49, 52 

skin effe(^ts on, 102 

superposition theorem, 249, 250 

thermionic, 265 

vector, 177 

D 

D’Arsonval instrument, 115-117 
Deflecting plates, 320-326 

Deflection factor, 322 

Deflection sensitivity, 321, 322 

Deflection voltage, 321 

De Forest, Lee, 287 

Delay aedion, 32 

Detectors, 274, 287 

Deuteron, 2 

Dielectric Constant, 11, 141-154 

Diode tube, 274-286 

multiunit, 315 

Direct current (see Current, direct) 

Displacenuuit current, 146 

Dry c(‘ll, 16-19, 39 

Dynamotors, 114 

Dynes, 11, 12, 88, 143 

E 

Eddy current, 101, 172, 196 

Edison, Thomas A., 265 

circuit, 77 

effect, 265, 266, 276 

storage battery, 21, 22 

Einstein’s relativity theory, 8 

Electrical instruments (.s‘cc Tnstrum 

electrical) 

Ele(‘4rode, 13, 17, 18 

capacities of, 278, 303 

diode tube, 274 

multielement tube, 304 

triodo tube, 287 

voltage, 292 

FUectrolyte, 17, 18 
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Electrolyte, storage battery, 20, 21 

Electromagnetic, 9 

energy, 151 

field, 151, 171, 172 

relay, 118 

Electromotive force, 16, 39, 89 

counter, 102 

dry cell, 18 

induced, 107 

mutual, 128 

self, 125 

series, 18 
standard cell, 18 

storage battery, 20, 21 

superposition, 250 

wet cell, 17 

Electron, 1 

beam, 318-321 

beating, 272 

charge, 16, 145 

current, 12-14, 266 

density, 266, 311 

flow, 15, 287 

displacement current, 145 

drift, 13, 14 

electric field, 7, 8 
electromagnetic nature, 9 

emission, 269, 274, 283 

secondary, 303, 305 

emitter, 274 

energy, 9 

free, 4, 12, 13, 14, 21, 22, 23, 278 

gun, 318-320 

liberating, 5 

mass, 8 

orbital, 3 

primary, 310 

ray-tube, 303 

tube, 265 

velocity, 8 

voltage, 267 

weight, 13 

Electroplating, 13 

Electrostatic capacity, 147 

deflection, 320-326 

energy, 150, 151 

field, 143, 265, 287, 288 

capacitor, 188 

lines of force, 143, 145, 171 

potential, 144, 145, 318 

units, 11, 12 

Elements, 265 

capacitive, 141 

inductive, 123 

resistive, 21 

Emission, thermionic, 265-286 

Energy, 1-10, 108, 150-152, 163, 194, 251 

capacitor, 150 

conservation of, 123 

electric, 30 

kinetic, 152, 268 

magnetic field, 143 

oscillating, 152 

potential, 141, 268 

Equipotential surfaces, 08, 145 

Equivalence {see Networks) 

F 

Farad, definition of, 147 

units, 148 

Faraday, Michael, 86, 106 

Ferromagnetic material, 128, 134 

Fields, magnetic, 86-105 

intensity, 88 

cathode-ray tubes, 323 

dielectric constant, 144 

oersted, defined, 88, 103 

units of, 102 

Fleming valve detectors, 287 

Flux (see Magnetic flux) 

Force, charge, 11 

electrostatic, 144, 145 

generator, 155 

magnetic lines, 92, 93, 116 

mechanical, 107 
motor action, 112-114 

Form factor, 165 

Frequency, antiresonance, 224-228 

Friction, 5, 22 

Fuses, types of, 31, 32 

O 

Galvanometer, 78, 83, 106, 167 

Gas, 1 

tubes, 303 

Gausses, definition of, 89 

units of, 102 

Generator, 106-120 

alternating-current. 111 

constant-voltage, 251, 257 
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Generator, current, 30, 37 

direct-current. 111 

equivalent, 251 

loads, adjustment to, 171, 173, 175, 178 

maximum power of, 260 

motors, 113, 114 

winding of. 111, 112 

Getters, 271 

Gilbert, William, 89 

definition of unit, 103 

Graphic methods, 291 

Graphic symbols, 33-35 

Grid, 287-302 

cathode-ray tube, characteristics of, 290 

control of electrons stream by, 287, 

303, 304, 316 

effect of, 288 

mesh, 313 

potential of, 287 

screen, 303-305, 311, 312, 319 

pentode, 307, 308 

tetrode, 303-306 

space charge, 307, 310 

suppressor, 303, 307, 308, 311, 317 

triode tube, 287 

variable-/i pentode, 312 

voltage, 287, 298 

H 

Heat, 5 
circuit protection from, 32 

coil, 36 

energy, 29, 30 

resistor, 22, 29 

Heavy-hydrogen atom, 2 

Helium, 2, 6 

Henry, Joseph, 125 

unit of inductance, 127 

mutual inductance, 128 

High-frequency a-c meters, 166 

Hooke’s law, 115 

Hot-wire ammeter, 166, 167 

Hydrogen, 2, 17, 21 

Hydrometer, 21 

Hysteresis, 109-102, 172, 196 

I 

Impedance, 183-201 
control of (triode tube), 300 

Impedance, definition of in a-c circuits, 
190 

equivalent, 234, 251, 252 

load, 234, 260 

maximum power, 259-262 

nonlinear, 282 

Norton’s theorem, 257 

parallel circuit, 221, 223, 224, 231, 233, 
235, 236 

polar form, 222, 223 

reciprocal, 208 

rectangular form, 203, 223 

series circuit, 206, 217 

series-parallel circuit, 246 

surge, 234 

Thevenin’s theorem, 255 

transformer, 128, 129 

triangle, 189 

vector, 190, 191, 203 

Induced current, 106 

Induced voltage, coil, 107, 123, 128 

conductor, 108 

Inductance, 123-138 

a-c circuit, 174 

air core, 127 

calculations of, 134 

in multilayer coils, 138 

in single-layer solenoid, 134 

in single-layer spiral, 137 

energy of, 151 

iron core, 127 

mutual, 128 

parallel, 133 

phase angle, 193 

pure, 174 

reactance of, 175 

self, 102, 125-128 

series, 132 

Inductive circuit, 129 

Inductors, 123-138 

air core, 93, 127, 134-138 

iron core, 93-105, 127 

in parallel, 133 

in scries, 132 

Inertia in an electric circuit, 124, 151 

In phase, 173, 200, 235 

Input terminals, network, 73 

receiver, 237 

wave trap, 241 
Instruments, 49-56, 114-118 

ammeter, 49, 52 
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Instruments, ammeter, hot wire, 166 

multi-range, 51 

shunt, 50, 52 

thermocouple, 166, 167 

D’Arsonval, 115-117 

electrodynamic, 116-118 

fuse, 31 

moving-iron vane-type, 117 

ohmmeter, 54 

voltmeter, 49, 51 

multiplier, 51 

watt-hour meter, 49 

Insulator, 4, 7 

storage battery, 21 

Ionization, 6, 13 

Iron, oxide, 21 

core coils, 93 

eddy current loss, 101 

filings, 91, 92 

hysteresis loss, 100 

magnet, 86, 115 

permeability of, 90 

vane-type instrument, moving, 117 

Isotope, 2, 3 

J 

Joule, 16, 17 

definition of, 29, 30 

K 

Kilowatt, definition of, 30 

hour, 32 

KirchhofT, current law, 47-49 

vectors, 189, 221, 243, 252 

flux law, 96 

magnetomotive drop law, 95 

series circuit laws, 129 

voltage law, 43-^7 

vectors law, 159, 189, 218, 243, 251 

I. 

Ladder network, 63-67 

Lamination, 101, 117 

Langmuir equation, 277 

Lattice, attenuating network, 77 

resistance network, 73 

L/C ratio, 229 

T^ad, in storage batteries, 19-21 

Lenz^s laws, 106, 112, 123 

Lines of force, 4, 5, 8, 86-100 

Litz wire, 103 

Loadstone, 86 

Lorentz, Hendrik A., 9 

formula, 134 

M 

Magnet, types of, 86, 106 

Magnetic, attraction, 87 

circuit, 86-103 

generator action, 106—120 

laws governing, 95, 96 

motor action, 106-120 

parallel, 96 

reluctance in, 91 

right-hand rule, 93 

deflection, 322 

field, 7, 8, 86-102 

alternating-current, 155 

around conductors, 91-93, 106 

in cathode-ray tubes, 321 

changing, 123 

distortion of, 109 

earth’s, 87 

energy of an electron, 9 

force on a conductor, 108, 113 

instruments based on, 114-118 

intensity of, 88, 102 

mapping of, 98-100 

of permanent magnets, 86 

flux, density of, 89, 144 

gauss defined, 89 

leakage of, 93, 98 

lines of, 88, 99 
flux linkage, 107-109 

a-c generator, 155 

coil, 174 

cosine in relation to, 156 

Lenz’s law, 106 

maxwell defined, 89, 107 

self-inductance of, 127 

skin effect, 102 

t;me delay relay, 120 

* weber defined, 107 

induction, 102 

leakage, 97 

lines of force, 8, 86 

pole, 87, 88, 92, 110 

potential drop, 90 
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Magnetic, shielding, 97, 98 

Magnetism, 86, 106 

Magnetomotive force, 89, 94, 95, 102 

Mass, 9, 13 

electron, 267, 278 

inductance, 124 

Matter, 1-10 

Maximum-power transfer theorem, 259- 

263 

Maxw(‘ll, definition of, 89 

Meters (see Instruments) 

Motor, 106-120 

action of, 106, 112 

compound, 114 

d-c types of, 113 

generator sets, 114 

Moving-iron instrument, 117, 118 

Multielement tubes, 303-317 

Multiunit tubes, 315 

Murray-loop measurements, 81, 82, 84 

Mutual conductance, equivalent a-c plate 

circuit, 315, 316 

pentode, 309 

tetrode, 304, 305, 307 

triode, 202, 296 

Mutual inductance, 128, 129 

N 

Networks, direct-current, 63-83 

PMison, 77 

equivah'iit, 251—255 

ladder, 63-67 

lattice, 73 

simplification of complicated, 70 

theorems, 249-262 

equivalent current sources, 251 

equivalent networks, 251 

equivalent voltage sources, 251 

maximum power transfer, 259-262 

Norton’s, 256-258 

reciprocity, 258, 259 

superposition, 249, 250, 297 

Th6venin’s, 255, 256 

three terminal, 67 

T-section, 63 

equivalent tt, 67-70, 251, 253-255 

two-mesh, 76, 77 

Neutron, 1, 2 

Newtons, 112, 113 

Newton’s second law of motion, 267 

Nickel, permeability of, 90 
in storage batteries, 21 

Norton’s theorem, 256-258 

Null method, 78 

O 

Oersted, Hans C., 86, 106 

unit of measure, 88, 102 

Ohm, George, 40 

unit of measure, 21-23 

Ohm meter, 49, 54-56 

Ohm’s law, 40, 41, 176, 180, 190, 242, 249 

a-c circuits, application of, 171-182 

Oscillation, 152 

Oscillator, 188, 305, 314 

Oscillograph, cathode ray, 318 

Oscilloscope, 324 

Output terminals, 73, 256, 257 

Oxide-coated emitters, 270, 271, 319 

P 

Parallel, circuits, 47-49 

antiresonant, 221-234 

inductors, 133 

voltages, 49 

Peak factor, 165 

Pentagrid, converter, 314, 315 

mixer amplifier, 313 

Pentode, 303, 307-313 

beam power, 310-312 

multiunit tubes, 315 

Permeability, 90, 91, 102 

in core coils, 93, 94 

Phase angle, 188, 197, 198 

conjugate, 222 

impedance matching, 261 

inductive circuits, 188, 200 

series circuit, 202, 208 

Phosphorescent screen, 318, 326 

Plate, capacitor, 141-145 

cathode-ray, 318-320 

characteristics of static, 312 

beam power pentode, 311, 312 

diode, 277 

pentode, 309 

tetrode, 306 

triode, 289, 291, 292 

current, diode, 276-284 

pentode, 307-309 

beam jx)wer, 310, 311 
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Plate, current, tetrode, 304-307 

triode, 289-301 

deflection, 320 

equivalent a-c plate circuit, 315 

pulse, 283 

storage battery, 19-21 

vacuum tube, 268 

voltage, B battery, 18 

instantaneous, 299, 313 

saturation, 279 

Positron, meaning of, 1 

Potential, difference, 16, 17, 22, 29 

distribution of, 275, 308, 310, 311 

energy, 152, 268 

filament-to-plate, 272 

magnetic, 326 

Potentiometers, 57, 58, 83 

Power, 30 

alternating current, 183-201 

amplification, 305 

average dissipated, 163, 164, 172, 185- 

187, 194, 195 

control tube, 287 

cycle, 164 

definition of, 39 

distribution circuit, 77 

factor, 196, 200 

maximum power transfer theorems, 

259-263 

output pentode, 309 

reactive, 200 

resonant, 213 

sensitivity, 312 

triangle, 200 

Primary battery, 17-19 

Proton, meaning of, 1-3 

Q 

Q of the circuit, 229 

Quantities, electrical, 11-38 

R 

Radioactivity, 6 

Reactance, capacitive, 179-181 

comparison of series and parallel cir¬ 

cuits, 234 

curve, of parallel circuit, 223-225 

of series circuit, 208-210, 212, 213 

sketch of, 238-242 

Reactance, inductive, 175-177 

parallel circuit, 220-234 

power, 187, 188 

of series circuit, 209-219 

of series-parallel, 237-248 

vector, 161 

Reciprocity theorem, 258, 259 

Rectifier, 14, 15, 168 

Relativity theory, 8, 9 

Relay, 118-120 

circuit breaker, 119 

slug type time-delay, 120 

Reluctance, 91, 102 

definition of, 91 

of parallel circuit, 96 

of series circuit, 95 

Resistance, 22, 23 

bleeder, 58 

in capacitive circuit, 197 

in circuits, 39 

definition of, 22, 23 

of diode, 279-282 

dynamic plate, of tubes, 280, 281, 292, 

294, 296, 304 

effective, 171-173, 190 

impedance triangle, 200 

inductive circuit, 189, 190, 195 

internal, 41 

internal meter, 50-52, 55 

linear, 249 

methods of measuring, 54-56, 73, 77-84 

multiplier, 49—54 

networks, 63-85 

bridge, 77-83 

Ohm’s law, 40 

in parallel circuits, 47-49 

in parallel antin'sonant circuits, 220, 

223, 224, 230-233 

potentiometer, 57, 58, 83 

pure, 183-187 

in series, 42-47 

in series and parallel circuits, com¬ 

parisons of, 234 

in series-parallel, 56, 57 

in series-parallel circuits, 246 

shunts, 49-54 

skin effect, 102 

temperature coefficient of, 25-29 

of tetrode tube, 304 

of triode tube, 289 

equivalent plate circuit, 297 
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Resistivity, 23-25 

Resistors, for capacitor charging, 145 

definition of, 22 

fuses, 30 

for measuring circuits, 55 

multiplier, 51 

shunt, 52 

voltage bleeder, 58 

voltage divider, 57 

Resonance, comparison of series and 

parallel circuits, 234 

curv(‘, of parallel antiresonant circuit, 

232 

of series circuit, 210-215 

Richardson’s equation for cathode emis¬ 
sion, 274, 284 

Right-hand rule, 03 

S 

Saw-tooth voltage, 325 

Schematic symbols, 33-35 

Screen grid {see Grid, screen) 

Selectivity, 215-218, 220 

definition of, 215 

Self-inductance, 102, 125-128 

Series, capacitors, 150 

circuits, 30-47, 202-210 

comparison with parallel circuits, 234 

parallel circuits, 56, 57, 238-247 

reluctance, 05, 07 

resonance, 142, 202 

simple, 42, 43, 120 

Taylor’s, 26 

wound generators. 111 

wound motors, 113 

Shunt, external meter, 52-54 

resistance, 50, 53 

wound generator. 111, 112 

wound motor, 112, 113 

Sine curve, 157, 161, 160 

Sinusoidal alternating current, 15, 155- 

170 

Skin effect, 102, 172 

Slug-type time-delay relay, 120 

Space-charge, diode tube saturation, 275,‘ 

270 

field, 287, 288 

tetrode grid, 307, 310 

Specific gravity, 20, 21 

Standard cell, 18, 83 

Statcoulomb, 11, 12, 143 

Static plate characteristic curves {see 

Plate, characteristics of static) 

Steel, permeability of, 90 

Steinmetz, Charles Proteus, 100 

Storage battery, 7, 19-21 

Sulfuric acid, 7, 17, 19 

Superposition theorem, 249, 250, 207 

Susceptance, curve of parallel circuit, 

227-229, 238, 240 

curve of series circuit, 242 

reciprocal, 228, 238 

vector, definition of, 225 

Sweep voltage, 324, 325 

Switch, 39 

relay, 118-120 
thermal circuit breaker, 32 

Symbols, graphic, 33-35 

T 

Tank circuit, 220, 237 

Temperature, absolute, 269 

coefficient of resistance, 25-27 

saturation, 279 

Terminal voltage, 41, 42, 40, 251 

Thermal circuit breaker, 32 

Thermionic emission, 265-284 

Thermionic tube, 266 

Thermocouple instrument, 14, 115, 166, 

167 
Thevenin’s theorem, 255, 256 

Thorium, 271 

Time constant, 131 

Torque, 112-117 

Transformers, 107, 128, 129, 261 

T-seclion {see Networks) 

Tungsten, 265-284 

V 

Vacuum tube, amplification factor m, 

202-294 

cathode-ray, 318-326 

constant current generator, 257 

diode tube, 274-284 

important equations, 300 

multielement, 303-317 

multiunit, 315 

pentode, 309, 319 

beam power, 310-312 

variable 312, 313 
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Vacuum tube, plate resistance, 294, 301 

secondary emission, 303 

Schade beam power, 311 

tetrode, 303-309, 316, 317 

triode, 287-302 

Variable /u pentode, 312, 313, 317 

Varley-loop measurements, 82-84 

Vectors, admittance, 206 

parallel circuit, 221, 224, 226 

series circuit, 206-210 

alternating current, 241, 244 

conductance, 225 

conjugate, 222 

current, 173, 175 

diagram, 191 

equation, 180 

impedance, 108, 200 

parallel circuit, 221, 224, 226 

series circuit, 202, 207 

phase angle, 160, 161 

projection, 169 

reference, 179, 198 

revolving, 159, 176, 177, 179 

space, 159 

susceptance, 225 

time, 159 

voltage, 173, 175 

Velocity, angular, 155, 157, 158, 160, 161, 

176, 180 

conductors in a magnetic field, 108 

electrons, average, 12-14, 266 

cathode-ray tube, 319, 321 

pentode tube, 308 

secondary emission of, 307 

zero initial, 276 

kinetic energy equation, 268 

of light, 8, 9 

of mass, 124, 125, 142, 152 

Volt, definition of, 16, 18, 144 

electron, 267 

Voltage, alternating, 155-170 

amplifier pentode, 309 

anode (plate), 277, 278 

bleeders, 57-61 

capacitor, 142, 149, 150 

critical, corona, 147 

diode, 283, 284 

dividers, 57-61 

drops, 44, 237 

Voltage, dynamotor, 114 

equivalent, 252 

generated, 106, 109, 110, 114, 124-127 

constant, 257 

induced, 107-111, 176 

instantaneous, 155, 173-175, 183 

Kirchhoff’s voltage law, 44, 78, 251 

liberating electrons, 7 

loop, 254, 255 

method of measuring, 83 

multiplier, 49-52 

Ohm’s law, 40 

in parallel, 49 

potentiometer, 57, 58, 83 

rises, 44 

saw-tooth, 325 

signal, 237 

sweep. 324, 325 

terminal, 41, 42, 49, 251 

vector, 190 

Voltmeters, 49-54, 83 

battery testing, 21 

rectifier type, 168 

W 

Watt, definition of, 30 

Watt-hour meter, 30, 49 

Wave, form of, cathode-ray tube, 324, 

325 

Webers, 107, 108 

Weston cadmium standard cell, 18 

Wet cell, 17, 18 

Wheatstone resistance bridge, 77-84 

Wire, coil of, 155, 196 

polarity of, 93 

copper, 28 

inductance coil, 123 

short circuit, 39, 40 

skin effect, 102 

transmission line capacity, 148 

Work function, 269 

Z 

Zinc, in batteries, 18, 19 

cadmium sulfide, 324 

orthosilicate, 324 

sulfide, 324 



ANSWERS TO EXERCISES 

Chapter 1 

1.1. (a) All elements have in common the property of being able to exist in thr(‘e 

states; solid, liquid, and gas. Anothin- property all elements have in common 

is their ability to combine with other elements to form compounds. (6) All 

atoms are alike in that they are composed of positive protons and negative 

electrons. 

1.2. Orbital electrons revolve about the nucleus of the atom. They are related to 

the atomic weight in that the number of orbital electrons is approximately 

twice the atomic weight. There is some variation in the atomic weight owing 

to the ociuirrence of isotopes. 

1.3. A good conductor hasbnany free electrons in a given volume, while an insulator 

has very few free electrons in the same volume. 

1.4. When a substance capable of forming ions is immersed in a dissolving solution, 

it will divide into positive and negative urns. 

1.6. A stable ion results when an ion of an active element attracts or releases an 

electron, thereby becoming electrically charged but losing its ability to combine 

activ(*ly with other elements. Because of its inactive qualities in this charged 

condition, it is called a “stable” ion. 

1.6. Wh(‘n an atom having an orbital electron is placed between two oppositely 

charg(‘d plates, the path of the electron will be distorted, the electron being 

attracted toward the positive plate and the positive nucleus being attracted 

toward the n(‘gative plate. 

1.7. The relative' positions of the electrons in a copper atom are as shown in this 

illustration. 

1.8. The chemical and piiysical properties of an element are determined by the 

amount of positive charge on the nucleus, weight of nucleus, and number of 

orbital electrons. 

1.9. m = 9.1 X 10-2« g. 
1.10. U = 8.19 X 10'^ erg. 

Chapter 2 

2.1. 4.445 X 10^® electrons. 

2.2. 44.72 sec. 

2.8. 28.06 amp. 

385 
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2.4. 

2.6. 

2.6. 
2.7. 

2.8. 
2.9. 

2.10. 

3.1. 

3.2. 

3.3. 

3.4. 

3.6. 

Using platinum (+0.87) and lead (—0.13) will give a difference of potential of 

1 volt. 
Charging 

PbOa + Pb + 2H2SO4 == 2PbS04 + 2H2O 

Discharging 

I - 040 ft. 

a I - 0.003. The metal is likely to be platinum. 

\V = 0.02 joules. 

I — 0.1825 amp. 

Delay action in fuses is obtained by making very short thin strips of fuse 

material adjacent to large areas that will absorb the heat away for a short time 

and delay the blowing of the fuse. 

Chapter 3 

R, = 3.0111 ohms, F = 27.1 volts. 

I = 2.5 amp. 

I2 = 0.5 amp. 

Ri = 55 ohms. 

h = 69.514 amp. 

12 = 10.972 amp. 

13 = 21.944 amp. 

74 = 36.573 amp. 

G2 — 2 mhos. 

(ra = 4 mhos. 

Gi = 6.666 . . . mhos. 

(a) R, = 0.006001 ohm; (6) /?« = 49,970 ohms. 

II = 0.38 amp — 380 ma. 

Ri — 184.21 ohms or 26.57 watts. Use 30 watts. 

R2 = 500 ohms or 16.2 watts. Use 20 watts. 

Rt = 450 ohms or 4.5 watts. Use 5 watts. 

Chapter 4 

4.1. Ecb = 450 volts; Eca =*'562.5 volts. 

4.2. Re^i — 90 ohms; Egh = 0.69 mv actual output voltage. 

A^ole: An error in the first part of this problem may causi* a large error in the final 

answer. 

4.3. Ra = 246.66 . , . ohms; Rt, = 296 ohms; Rc — 370 ohms. 

4.4. Ri = 290.909 . . . ohms; 7^2 = 363.636 . . . ohms;/^ = 727.272 . . . ohms. 

4.6. Ri — S7 ohms; R2 = 55 ohms; Rz = 1.6 ohms. 

4.6. Ri = 722 = 50 ohms; Rz = 100 ohms. 

100 
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4.7. /i = —0.375 amp; 12 = 1.25 amp; /« - 0.875 amp. 

4.8. Rz = 960 ohms, Rx = 540 ohms. 

4.9. Rz = 149.24 ohms. 

A in Y” •— RjRi 4.1U. A - 

Chapter 5 

6.1. 

Sketch of magnetic field and''direction of lines of force around two permanent magnets. 

6.2. The magnetic field about a straight conductor carrying current in free space is 

in the form of concentric circles about the conductor. The magnetic field is 

in the same direction as the fingers when the conductor is clasped by the right 

hand and the thumb points in the direction of current flow. 

6.3. H = 26.5 oerst(;ds. 

6.4. F = 188.5 gilberts. 

6.6. Tftotai = 0.003475 rel in cgs units; F — 69.5 gilberts. 

6.6. /^totai = 0.1478 r(4 in cgs units; F = 2,955.0 gilberts. With air gap correction. 

for fringing, /t*total = 0.1263 rel in cgs units; F = 2,526 gilberts. 

6.7. Ra = 0.001575 rel in cgs units; 4>a — 134,400 maxwells. 

Rb = 0.0003937 rel in cgs units; <I>f, — 100,800 maxwells. 

Rc = 0,001181 rel in cgs units; <l>f == 33,600 maxwells. 
6.8. I = 0.0124 in. = length of air gap (neglecting fringing); 4>i, — 20,543 maxwells; 

«i>c = 79,457 maxwells. 

6.9. / = 0.0484 in. = hmgth of air gap (accounting for fringing). 

6.10. airon = 3°16' = angle the flux line makes with the surface in the cast iron. 

Chapter 6 

6.1. 0.01 volt. 

6.2. No. 

6.3. 0.1 volt. 

6.4. (a) In a series-wound generator, the armature and field windings are in series. 

(6) In a shunt-wound generator, the armature and field windings are in parallel. 

6.6. In a dynarnotor the motor and generator windings are on the same armature, 

while in a motor generator these windings are on separate armatures. 

6.6. This core serves to concentrate the magnetic field of the pole pieces and makes 

it uniform. 

6.7. Winding the coil on a conducting frame damps the mov^ement. 

6.8. Dynamometer, moving-iron or moving-vane type of meter, thermocouple type 

of meter, and rectifier type of meter. 

6.9. By the amount of current required to operate it. 
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6.10. A circuit breaker is a device for opening a circuit when the current in the circuit 

exceeds a certain value. 

Chapter 7 

7.1. 

7.2. 
7.3. 

7.4. 

In an inductive circuit, the generated voltage always opposes any (!hangf‘ 

the current through the circuit. 

Inductance is analogous to mass. 

The unit of self-inductance is the henry. 

ill 

7.6. When flux lines generated in one coil cut the turns of another coil, the two ari' 

said to be “coupled by mutual inductance.” 

7.6. The time constant of an inductive circuit is the time required for the current to 

rise 63:2 per cent of its final value after a voltage is applied. It equals L/R. 

7.7. 6.32 amp. 

7.8. 10 henrys. 

7.9. L = 

7.10. L = 

9a + 106 

(4)(10Q) 

18 4- 20 
= 10.5 Mh 

Chapter 8 

8.1. When a capacitor is charged, the plates assume opposite potentials. Static 

lines of force start at the positive and terminate on the negative plate. Since 

any electrostatic field contains energy, the capacitor is said to have a charge of 

q coulombs, which depends directly upon th(‘ capacity of the capacitor C and 

the applied voltage E; that is, Q = CE. Physically the dich'ctric in th(‘ capaci¬ 

tor experiences stresses due to the electrostatic fiedd. The atoms of the dielec¬ 

tric are distorted so that the electron orbits art; shifted toward the positive 

plate. The amount of this ela.sticity in the atoms of the dielectric* det(;rmines 

the dielectric constant* of the material. 

8.2. The force between two charg(;d bodies depends directly upon the product of 

the charges on the bodies and inversely upon tin; square of the distanct* b(‘twe(*n 

them and the dielectric constant of the medium. This is known as “ Coulomb’s 

law.” 

8.3. The electrostatic potential between two points can be defined as the work 

required to move a unit positive charge from one point to the othcT. Tf the 

charge is moved in opposition to the^electrostatic force, the charge obtains 

potential energy. The field intensity through which the charge is moved may 

be expressed in volts per inch. 

8.4. Q = 0.01 coulomb. 

8.6. When a voltage is applied to a capacitor, a current will flow. This current will 

consist of a charging current, which builds up a charge on the capacitor 

plates and establishes the electrostatic field, displacing the electronic orbits in 

the dielectric, and a leakage current, which will continue to flow owing to the 

imperfectness of the dielectric. The charging current can be only a variable 

current during charge and ceases to flow wh(;n the capacitor is fully charged. 

8.6. Normally it will take 450,000 volts to break down a 6-in. air gap. 

8.7. Corona is caused by high voltages, usually at sharp corners of the conductor, 

where a discharge takes place, and may appear visibly as a glow and audibly as 
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a hiss. Corona effects represent a power loss, hence, should be avoided by 

making large smooth curves in conductors and avoiding sharp corners on high- 

voltage electrical equipment. 

8.8. 0.1897 M//rnile. 

Chapter 9 

9.1. If a loop of conductor is rotated at a uniform angular velocity in a uniform 

magnetic field, the flux linkage through the loop of conductor will form a 

sinusoidal curve if plotted against time as shown in Fig. 9.2. The voltage 

induced in the conductor will be proportional to the negative slope of the flux 

curve; hence the voltage induced in the conductor making a sinusoidal flux 

linkage as shown in Fig. 9.2 will be like the sinusoidal induced-voltage curve 

shown in Fig. 9.3. 

9.2. Phase angle is the angle between two rotating (maximum) vectors, which may 

be current and voltage vectors. It is usually expressed as an angle but can be 

expressed as the time between positive maximum values. It is valuable in 

explaining and calculating a-c circuits. 

9.3. (a) This curve is similar to that shown in Fig. 9.4. Its equation is 

4> = 1.1 X 10i« cos d 

{h) - 8.43 X 10^ at 40°, 3.76 X 10« at 70°, 0 at 270°, 1.083 X lO'^ ^t 350°. 

9.4. (a) Em = 2.073 X 10® = maximum voltage. 

(6) E = 1.466 X 10® == effective voltage. 

(c) e = 2.073 X 10® sin cjt = instantaneous voltage. 

(d) Since / = 60 cycles/sec, the instantaneous voltage at the end of 2 sec will 

be zero. 

9.6. Crest factor is the ratio of the maximum value to the effective value, and the 

peak factor is the same as crest factor. Effective value — root mean square, 

which means the square root of the sum of the squares. Average value is the 

average of the instantaneous values over a half cycle. Maximum val^ is the 

largest instantaneous value during a cycle. Form factor is the ratio of imective 

valu(i to average value. 

9.6. Im — 5,66 amp = maximum a-c current; I = 4.0 amp effective a-c current. 

4.0 effective amp in an a-c circuit will cause the same? heating as 4.0 d-c amp; 

hence the maximum value of alternating current is (1.414)(4) = 5.66 amp. 

The average value of alternating current is 

/av = (0.637) (5.66) = 3.605 amp 

9.7. 218.5 watts. 

9.8. 24.3 scale divisions. 

9.9. Curves are similar to those of Fig. 9.5 of this chapter. Emi and Em2 are not 

equal. The phase angle Emt makes with Emi is 51°21'. 

Chapter 10 

10.1. Pflcctrons are negative charges of electricity having electrostatic lines of force 

terminating on them. If the electron is set into motion, the electrostatic lines 

of force move along with the electron, creating an electromagnetic field. 
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10.2. 72 = 10 ohms effective resistance. Such a vector diagram is shown in Fig. 
10.15. 

10.3. Xl = 4,666.6 ohms inductive reactance. Such a vector diagram is shown in 
Fig. 10.25. 

10.4. Xc = 4,500 ohms capacitive reactance. See Fig. 10.35 for vector diagram of a 
pure capacitive reactance. 

10.6. (a) L = 

(6) C = 

2./ 
2»/Xc 

10.6. (a) L = 50 mh. 
(fc) (a — 246.9 radians/sec; / = 39.3 cycles/scc. 

10.7. 128.6 mh. 

10.8. 116.8 yl capacity. 

10.9. (a) Xl =- 14,700 ohms. 
(5) / = 12.38 Me. 
(c) L = 31.8 mh. 

10.10. (a) Xc - 204.1 ohms. 
(5) / = 126.3 cycles/sec. 
(c) C = 400.5 M/xf. 

Chapter 11 

11.1. Average power can be defined as the area under the instantaneous-power curve 
divided by the time, usually plotted as the abscissa. This gives the avt'rage 
ordinate. Phase angley usually expre.ssed by <>, is the angle between the volt¬ 
age and current vectors. Power factor is the ratio of the real power, of a pure 
sine wave, divided by the apparent power and can be expressed by cos </>. 
Real power is equal to the in-phase component of voltage multiplied by the 
current. Apparent power is equal to the product of the voltage and the current, 
regardless of their phas^ relationship. Reactive factor is the ratio of the reactive 
power to the apparent power and can be expressed by sin <i>. 

11.2. Alternating-current machinery is rated on the basis of apparent power because 
eddy currents and hysteresis losses arc a function of the magnetic flux, and 
hence the voltage generated and the resistance or copper loss in the winding 
is a function of the current that flows. Ratings are based upon temperature 
rise; hence, apparent power, which is the product of the voltage and the current 
regardless of phase angle, is the best measure of this loss in the machinery. 

11.8. (a) 6 250 \/2 sin ot 

V2 
sm (ot 

353.5 sin ujt 

0.707 sin utt 

p = 125 — 125 cos 2o)t fifAW 
(5) 27rf = 2(5,000) for the power wave 
or / =a 1,592 cycles/scc. 

yy 

11.4. (a) Z « 500 ohms. 
Phase angle 0 = 0®. 
Reactive factor » 0. 
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(6) 1 = 0.5 = effective current 

E 

(c) 

IZ ^ IR — 250 iiY ^ effective voltage 

P « 125 /z/i*w = real power 

maximum voltage vector 
(100 fiv/in.) 

11.6. The load of Exercise 11.3 never feeds energy back into the line, because the 

load is resistive and the product of El is never negative, a necessary condition 

to feed energy back into the line. 

11.6. E = 1,355 volts effective. 

Em = 1,916 volts maximum. 

I = 36.9 amp effective. 

Im = 52.2 amp maximum. 

11.7. (a) R = 162.3 ohms. 

(h) cos <t> = 0.974 = the load power factor. 

11.8. The scales are 

2 ohms = 1 mm, E = 100 

1 volt = 1 mm 

El = 22.62 = the voltage across the inductance. 

Er == 97.4 = the voltage across the resistance. 

-^ 
P = 162.3 i:/j=97.4 

Vector diagram of impedance and voltage. 

11.9. Ec = 132.6 = the capacitor voltage. 
E = 132.9 = the voltage across the two elements in series. 

11.10. Z = 332.6 ohms = impedance. 

F = El = (132.9) (0.4) = 53.2 watts = apparent power, 

cos <f> — 0.0752 = the power factor, 

sin </> * 0.9972 = the reactive factor. 

Chapter 12 

12.1. The factor Q = u>L/R determines the characteristics of a series circuit. If Q 
is increased, the resonance curves increase in height and sharpness because the 

resistance decreases and hence the current is not limited so much at resonance. 

12.2. fr = 530.5 kc. 

Z = 10 ohms impedance. 

= 0°. (The voltage and current are in phase.) 

12.3. 536 kc and 525 kc. 

12.4. Ir = 25 amp current at resonance. 

/ * 17.68 amp when cos <t> = 0.707. 

El = 17,769 or 17,591 volts. 

Ec » 17.591 or 17,769 volts. 
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500 510 520 530 540 550 560 
Frequency in kilocycles 

12.6. The two circuits sho^vn in the illustration havci the same resonant frequency 

because the LC product is the same in either case. It will be noted that th(^ 

curves are not identical, since the Q is not the same in the two cases even 

though the resistances of the circuits are identical. 

12.7. The LC product determines the resonant frequency, and the L/C ratio deter¬ 

mines the selectivity of the circuit, which is limited by mechanical design and 

the Q of the circuit. 
12.8. Yes, because there can be positive and negative reactances, which cancel each 

other when viewed frqm the input terminals. Howev(‘r, current flowing 

through these elements fnust develop voltages across them proportional to tlu^ 

value of their respective reactances. Exercise 12.4 shows how high voltages 

can be developed across such a circuit. 

12.9. Zi = 100/4-60^ = 100(cos 60° + j sin 60°) 

-= 100(0.50 -f- ;0.866) = 50 + i86.6 

Z2 = 75/-30° = 75(cos 30° - j sin 30°) 

- 75(0.866 - ;0.50) = 64.95 - jS7.5 

Zz = 70.7/-45° = 50 - i50 

(а) Zt ^ Zi Z2 + Zz = 164.95/-Ur = 164.95 - ^0.9 ohms - total im¬ 

pedance of the circuit. See illustration on the next page. 

E 500/0° . . , . , 
(б) / =» 7; “ ; ";a/ = 3.031/4-19 amp the current with its phase 

Z lo4.95/"“19 - 

relation to the applied voltage. 
(c) \Ei\ =» /|Zil =* 303.1 volts across Zi 

lEzl =» 71^2! - 227.4 volts across Z2 

\EJi = I\zJi - 214.3 volts across Z» 
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Vector diagram for Exercise 12.0. 

Chapter 13 

13.1. The reactance curves become less sharp as the of a parallel circuit decreases. 

The same is true of the resistance and impedance curves. Figures 13.2 and 

13.8 illustrate this poir^t. 

13.2. (a) /r = 1.0 Me. 

(b) 47.15 and 

= 10,600 == the difference between actual and resonant frequency. 

Then Xl == 466.8 and A'c = 466.2. These are the maximum inductive and 

capacitive reactance's. 

(c) U = 089,400 

fc = 1,010,600 

13.3. Z 
RC 

22,190 ohms. 

Z — 44,380 ohms when R = 5 ohms. 

13.4. C = 168.8 M/xf- 
Yes, because the Q is higher. 

13.6. A meter can be used in the line to a parallel circuit to determine antiresonance 

by obtaining a minimum reading. When antiresonance occurs, the parallel 

circuit looks like a very large impedance; hence minimum current will flow 

through the meter. 

13.6. At antiresonance a parallel circuit is resistive. For lower frequencies, the 

circuit is inductive, and for higher frequencies it is capacitive. At anti¬ 

resonance Xl = Xcy and the circuit becomes resistive because the effects of 

these two elements in parallel cancel. Below resonance Xc is greater than 

Xl and hence the circuit looks inductive, or like the lower valued reactance; 

above resonance, Xc is smallest and hence the circuit looks capacitive. 

13.7. R =» 's/LIC = 22.36 ohms in each branch. 
Z = 22.36 ohms. 

13.8. Susceptance curves offer a convenient method of adding the effect of impedance 

elements connected in parallel. Complex circuits can be analyzed qualitatively 

by the use of this tool to determine the number of resonant and antircsonant 

frequencies. The total susceptance changes from negative to positive as the 

freqiumcy is increased through antirosonance. 
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13.9. See illustration. At antiresonance the capacitive current is equal to the 

inductive current. Below antiresonance the inductive current becomes larger, 

and above antiresonance the capacitive current becomes larger. 

At antiresonanco 

\ 
\ 
\ 
\ 
\ 

Above antiresonance 

13.10. Drawing current vectors in milliamperes for 1 volt to a scale of 1 ma = 1 mm, 

we have the vector diagrams shown in the illustration. The terminal points 

of these vectors traverse a circle. The sum of the currents Ic and h is /r, 

which is always in phase with Et\ hence the circuit has unity power factor and 

always looks like a pure resistance. 

/i =» 1643 
II « 38.7/ -30*> 

Ic = 22.38/-1-60® 

It = 44.7/0® 

II = 31.63/-45® 

Ic = 31.63/-f-45® 

It = 44.7/0® 

h = 4934 
II = 22.38/-60® 

Ir = 38.7/-b30® 

Ir = 44.7/0® 

Chapter 14 

14.1. A wave trap is a combination of inductance and capacity arranged to utilize 

the principle of resonance to eliminate undesired signals. The wave trap is 

arranged to offer a high impedance to the undesired signal and a low impedance 
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to the desired signal. This can be accomplished in either series circuits, 
parallel circuits, or combinations of these circuits. 

14.2. See the illustration. 

14.3. This circuit has three resonant points and two antiresoiiant points, as shown 

in the diagram. 

14.4. X ~ 16 ohms capacitive reactance. 

14.6. Z = 129 -|-j276 ohms impedance. 
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16.1. See illustration. 

Chapter 16 

5 10 

16.2. See illustration. 

16.3. H5 amp. 
16.4. ^5 amp. 

16.6. See illustration. 

3000 

rAAAAr 

0.00008 V 0 
1000 

(^2x10*® amp 

16.6. 50 k\v. 

16.7. 10 — yo.8 ohms. 

16.8. 7.09 -f j7.09 ohms. 

16.9. 10 amp. 

16.10. The circuit elements must be linear. 

Chapter 16 

16.1. The Edison effect is the phenomenon of a weak current flowing to a plate inside 

an evacuated tube when the plate is connected to the positive end of the 

filament. 

P 100 
16.2. ^ ^ “ 1 amp * 6.285 X 10** electrons/sec 

=» 1.982 X 10** electrons/yr. 
Weight of electrons in 1 yr = 0.1784 g. 

= 0.1121 yr or (365)(0.1121) = 40.88 days. 
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16.3. F « 1.327 X 10-« dynes. 

V == 9.405 X 10* cm/sec = 5,840 miles/sec. 

t = 6.38 X 10-1* sec. 

16.4. ^ ^ — 4.702 X 10* cm/sec. 

n = 8.4 X 10** electrons/cm. 

16.6. The work function of a metal is the energy lost by a unit charge when passing 

through the surface of the metal. Thermionic emission increases as the work 

function decreases. 

16.6. For example, if the thoriated-tungsten emitter is operated above temperature, 

the evaporation of pure thorium will be excessive and will shorten the tube life; 

if this (emitter is operated below temperature, the emission will decrease owing 

to the fact that the evaporated atomic layer is not replenished rapidly enough 

from the supply of pure thorium within the emitter. If the tube is operated 

properly, the evaporation of the atomic surface will be replenished by pure 

thorium from within the emitter without excessive evaporation. 

' 16.7. Thoriated-tungsten emitters can be rejuvenated hy flashing at a high tempera¬ 

ture to reduce mor(‘ thorium oxide to pure thorium and by aging at a high 

temperature to permit a supply of pure thorium to form an atomic layer at the 

surface. 

16.8. Pure-tungsten emitters are constructed by working the tungsten at a high 

temperature into a fil)rous condition so that it can be formed into the proper 

shape for the filament. The filament has such a high melting point and is 

mad('. of such heavy atoms that very good emission properties are obtained 

in spite of the relatively large work function of the metal. The power con¬ 

sumption for tungsten filaments is quite large, owing to the large size and high 

operating temperature of the filament. The high operating temperature causes 

considerable atomic evaporation, which definitely shortens the filament life 

before it burns out. Since tungsten has such a high melting point, high evacua¬ 

tion at high temperatun' is practical. Furthermore, tungsten has an affinity 

for gas and thus maintains a high vacuum, which is essential in high-power 

tubes operating at high voltages. Tungsten-filament tubes find most use in 

the field of high-power vacuum tubes. 

16.9. Carbonized thoriated-tungsten emitters are made by operating a thoriated- 

tungsten emitter in an atmosphere of hydrocarbon to form a surface layer of 

tungsten carbide. This treatment reduces atomic thorium evaporation to 

15 per cent of the original value and permits higher operating temperatures. 

This type of emitter has the advantage of high emission and high operating 

temperature; thus it competes with pure-tungsten-filament tubes for high- 

power operation. 

16.10. Owing to the unequal potential along the filament, the greatest amount of 

emission takes place at the negative end, because the filament-to-plate voltage 

is greatest at this end. Since all the space current flows in at the negative 

terminal (or effectively increases the current at the negative end in comparison 

to the positive end by that amount), the temperature of the negative end of 

the filament will be increased to increase the emission at this end. The 

increased emission at the negative end will increase the filament temperature 

as a result of the energy liberated when electrons overcome the work function 

at the surface of the filament. 
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Chapter 17 

17.1. Unilateral conductivity is a low resistance in one direction of current flow 

and infinite resistance when current tries to flow in the opposite direction. 

Crystal rectifiers and vacuum tubes are good examples of devices having low 

resistance in one direction and very high resistance in the other direction. 

17.2. The total emission current is Is = (0.175) (40.5) = 7.09 ma. 

17.3. The emission of electrons causes a negative charge between the plate and 

cathode when the plate is connected to the cathode. This is shown in Fig. 

17.26. 

17.4. The plate current varies as the % power of the plate voltage in all types of 

tubes. Child first developed this relation. It is assumed that the electrons 

leave the cathode at zero initial velocity. 

17.6. h - 110.7 ma. 
17.6. When the plate voltage is increased, more electrons drift to the plate to 

diminish the negative space charge. The remaining space-charge crest is 

smaller and moved closer to the cathode. 

17.7. Since diode emission depends upon cathode temperature and plate voltage, the 

three variables can be represented in three dimensions. To se(5 the complete? 

picture, it is convenient to view the diode’s characteristics as shown in Fig. 17.9. 

17.8. The d-c resistance will be equal to the a-c resistance only when the tangent to 

the curve passes through the origin. This is a special case that occ\irs at only 

one point on the curve (at approximately Eh = 22.5 in Fig. 17.10). The d-(; 

resistance is different from the a-c resistance because in general the slope of 

the curve does not pass through the origin. 

17.9. rbi — 3,077 ohms. 

rb2 = 3,235 ohms. 
17.10. rp — 6,667 ohms. . 

Chapter 18 

18.1. A triode is an evacuated enclosure containing a cathode, grid, and anode. For 

a free grid the plate resistance is the same as for a diode. If the grid is made 

more positive, the plate resistance decreases, and if the grid is made more 

negative, the plate resistance increases. 

18.2. The lower curvature is due to space-charge effect resulting from a large supply 

of electrons being emitted from the cathode with initial velocities. The upper 

curvature is due to plate voltage saturation, resulting from a lack of electrons 

available for the plate. 

18.3. The three families of grid characteristic curves are valuable for graphical solu¬ 

tion of problems involving positive-grid operation. It is considerably more 

difficult to approximate these curves mathematically because of their complex 

nature. The grid resistance is infinite for a negative grid and decreases as the 

grid is made more positive. 

18.4. The static characteristics are in error at high frequencies when electron transit 

time is appreciable. The tube constants fi, Rp, and gm can be used in mathe¬ 

matical expressions to approximate characteristics involving plate current. 

18.6. From Fig. 18.3 and Eq. (18.1) we can write 

dEh Ehi — Eh2 50 — 25 ^ > 

“ ” dEc Eel - Ec% ” 10 - 20 “ " 
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From Fig. 18.5 and Eq. (18.2), when Ec = +10, we can write 

dE,. Ei,i - Ei.i _ 25-50 

dh l,.i - I,.2 0.01 - 0.02 
2,500 ohms 

From p]q. (18.6) 

18.6. By P>q. (18.6) Qm = 5,250 /junho 

By P^q. (18.10) for no load resistance 

4000/), - 2lEc - 2000 = 0 

and for a load resistance 

16,500/fe - 21J5:. - 2000 = 0 

18.7. By P^q. (18.8) the instantaneous grid voltage is 

€c = —45 + 42.4 sin cjt 

By pjq. (18.17) the instantaneous plate voltage is 

_ (400)(800) - (4.2)(-45)(2,500) (4.2)(42.4)(2,500) ., 

800 + 2,500 800 + 2,500 

320,000 + 472,600 445,000 . , 

^ 3,300 3,300 

— 240 — 135 sin u)t 

18.8. By i:q. (18.14) 

. ^ (4.2)(-45) + 400 , (4.2)(42.4) . 

800 + 2,500 800 + 2,500 

211 , 177 . , 

3,300 3;300 

= 63.9 + 53.9 sin ut (in miliiamperes) 

18.«. By Eq. (18.20) 

^ (4.2)(30) 

” 800 + 2,500 

By Eq. (18.22) 

-(4.2) (2,500) 

800 + 2,500 
-3.18 

38.2 ma 

useful amplification 

18.10. = /pVp + /p>Kl = (0.0382)®(800) + (0.0382)2(2,500) 

= 1.17 + 3.65 = 4.82 watts 

Pic = h^rp + h^RL = (63.6)2(800) + (63.6)»(2,500) =niw 

= 3.24 + 10.11 = 13.35 watts 

The plate voltage could be lowered from 400 to 240 volts to give the sam 

results, and the d-c plate jwwer saved would be 10.11 watts. 
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Chapter 19 

19.1. Prototype amplifier =* triode. 

The derived types of amplifier with their contributions are; 

Tetrode. Shields input from output to make the tube truly unilateral as 

well as increase its sensitivity. 

Pentode. The suppressor grid controls secondary emission to increase th(^ 

efficiency and plate-voltage swing. 

Beam-power pentode. Replaces the suppr ssor grid with a virtual suppres¬ 

sor grid and concentrates the electrons to beams to increase still further 

the efficiency and plate-voltage swing. 

19.2. Since the mutual conductance is the incremental change of ('lectron plate cur¬ 

rent divided by a corresponding incremental change in grid voltage, we would 

expect no essential difference of mutual conductance in the triode, b^trode, and 

pentode because the effect of the control grid on the electron plate current is 

essentially the same in these tubes. 

19.3. In a space-charge tetrode, the first grid is operated at a positive potential to 

eliminate the space charge, which ordinarily would prevent th(i plate currtmt 

from having a sharp cutoff. 

19.4. The primary difference between the static plate characteristics of a pc'ntode as 

compared to those of a tetrode is that in the pentode, secondary (‘mission from 

the plate is eliminated to make the tube stable over the whoki range of plate 

voltages. This increases the useful operating range of plate voltage. The 

shape of ideal static plate characteristics would be straight parallel eipiidistant 

lines for all values of plate voltage. 

19.6. A hexode tube containing four grids could be used as follows: 

Grid 1. Space-charge grid, small positive voltage 

Grid 2. Control grid, small negative voltage 

Grid 3. Screen grid, large positive voltage 

Grid 4. Suppressor grid, connected to cathode 

This type of tube should have a lower plato n‘sistance than the piuitode and 

a sharper cutoff of plate current. 

19.6. The power output of pentodes is limited primarily by the curvature* of the 

plate characteristics at low plate voltages. The beam-power pentode with its 

virtual suppressor grid does not reject any primary electrons in this region so 

long as the minimum potential in this region exceeds zero. The transition 

from the region of the static plate characteristics where the plate currcuit is 

substantially independent of plate voltage and wh(.‘re the plate current is 

primarily a function of the plato voltage is very abnipt and tak(‘s place* at a 

very low plate voltage. The variable-/u action of a physical suppressor grid 

is eliminated by using the virtual grid of a beam-power pentode. 

Voutput a-c ^wer 

input a-c voltage 

The screen-grid cujrrent in a beam-power pentode is made low by placing the 

screen wires physically in the electron shadow of the control-grid wires; thus 

very few electrons find their way to the screen to form screen-grid current. 

Equation (19.4) is for a coii8tant-/i tube; hence it cannot be used for a variable-/* 

pentode. 

19.7. Power sensitivity 

19.8. 
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19.9. Several useful applications of the pentagrid-mixer amplifier are; (1) as high-gain 
pentode amplifier, (2) as compressor amplifier, (3) as expander amplifier, and 
(4) for mixing two signals. 

19.10. The justification of multifunction tubes is to simplify circuits, reduce costs, and 
save space. 

Chapter 20 

20.1. The electron gun supplies a beam of high-speed electrons. 
20.2. The electron beam becomes visible when it strikes the phosphorescent screen. 
20.3. The intensity of the beam is varied by varying the potential of the grid or the 

potential of the accelerating anode. 
20.4. By coating the inner walls of the tube with a conducting coating and connecting 

this coating to the second anode, charges are prevented from accumulating on 

the walls of the tube. 
20.6. The deflt^ction sensitivity is the distance the spot moves for a given deflection 

voltage; it is generally given in centimeters per volt. The deflection factor is 
the reciprocal of the deflection sensitivity, and is generally given in volts per 

centimeter. 
20.6. The deflection sensitivity is not so dependent on accurately maintained anode 

voltages when magnetic deflection is employed as it is when electrostatic 

deflection is employed. 

20.7. Deflection sensitivity = 0.0225 cm/volt. 
20.8. Deflection sensitivity = 0.03 cm/volt. 
20.9. A saw-toothed wave form is generally used for a sweep voltage. 

20.10. The return trace is the path of the electron spot across the screen from its end 

point back to its starting point. 
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