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PREFACE TO THE SECOND EDITION 

During the few years since the first publication of this book, 
considerable progress has been recorded in the art of suspension- 
bridge design and erection. There have been new developments 
in materials, forms, methods, and principles of construction. 
In preparing this second edition, the author has endeavored to 
keep the book abreast of the latest developments in the art, by 
revisions in the body of the text as well as by additions of new 

material. 
Among the portions of the text that have been rewritten or 

amplified are those bearing on the topics of wire cables vs. eye- 
bars, rocker towers, anchorage design, materials used in suspension 
bridges, economic and limiting proportions, comments on the 
deflection theory, formulas for temperature stresses, multiple- 
span bridges, proportioning cable bands, calculation of cable 

diameter, and time records of erection. Such typographical or 
mathematical errors as have been discovered in the original pages 
have been corrected, and some convenient new formulas have 

been added. 
Following the original Appendix on Design Charts for Sus¬ 

pension Bridges, four new Appendices have been added. These, 

the author hopes, will substantially enhance the usefulness of the 
book for study and reference. 

To bring to a focus, in the light of recent progress, the previous 
separate treatments of design theory, construction details, and 
erection methods, there have been added comprehensive illus¬ 
trative accounts of the planning and execution of actual projects, 
from conception of design to completion of construction. For 

this purpose, two representative modern structures have been 
used: Appendix B, on the Florianopolis Bridge, covers the latest 

in 
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developments in the design and erection of eyebar suspension 

bridges, as represented by the largest executed example of that 

type. Appendix C, on the Ohio River Bridge at Portsmouth, 

presents an illustrated account of the details of design and con¬ 

struction of a modern wire-cable suspension bridge of ordinary 

span-length. In both cases, the explanatory descriptions of 

typical and novel features and methods, and the record of prob¬ 

lems met and expedients developed, should be helpful to others 

who may be confronted with like problems in field and office. 

Appendix D, on the Deflection Theory, is perhaps the most 

important contribution to this new edition. It presents the 

“ more exact ” method of computing stresses in suspension 

bridges, to supplement the common, approximate theory devel¬ 

oped in Chapter I. In writing this section on the Deflection 

Theory, the author has aimed at maximum simplicity, concise¬ 

ness, and practical convenience. The treatment is illustrated by 

a numerical example of the application to an actual design, - 

the Mount Hope Bridge. Finally, to supplement the quick 

design charts given m Appendix A based on the Elastic Theory, 

there is presented in Appendix D a new graphic chart by which 

the more exact stresses of the Deflection Theory may be expe¬ 

ditiously evaluated. 

Appendix E presents a Chronological Table of Suspension 

Bridges, intended to facilitate reference and to aid historical 

review of the development of the wire-cable and eyebar types of 

construction. The author wishes to express his indebtedness to 

the many who have contributed data to help make this the most 

complete tabulation of suspension bridges thus far published. 

In conclusion, the author wishes to state that this book has 

been a labor of love, prepared at considerable personal sacrifice, 

in pursuance of the principle that a man should give of his best 

to his profession. In proportion as this work may prove helpful 

to others,—fellow-engineers and students,—the author will feel 

repaid for his effort. 
D. B. Steinman. 

New York City 

October 7, 1928. 



PREFACE TO THE FIRST EDITION 

This book has been planned to supply the needs of practic¬ 
ing engineers who may have problems in estimating, designing 
or constructing suspension bridges, and of students who wish to 
prepare themselves for work in this field. The aim has been to 
produce an up-to-date, practical handbook on the subject, dis¬ 
tinguished by simplicity of treatment and convenience of appli¬ 
cation. 

In the first division, on Stresses in Suspension Bridges, the 
formulas have been corrected to conform to modern practice, 
and reduced to their simplest and most convenient form for 
direct application by the designing engineer. The formulas are 
supplemented by curves for their expeditious solution, and by 
alternative graphical methods for determining stresses. 

The second division, on Types and Details of Construction, 
presents data and illustrations to assist the designing engineer 
in the selection of type of suspension bridge and in the determina¬ 
tion of proportions, specifications, and details for the various 
elements of suspension construction. 

The third division, on Typical Design Computations, gives 
numerical examples of suspension designs of different types 
worked out by methods that have proved most efficient in the 
author’s practice. The designing engineer will find here the 
formulas to be used in each successive step of the design, and 
the practical methods of applying them, with tabulations, graphs 
and short-cuts. 

The fourth division, on Erection of Suspension Bridges, 
describes and illustrates the successive stages in the erection of 
representative structures, from towers to trusses. The opera¬ 
tions of stringing wire cables are presented in detail, with an 
outline of the computations for adjustment and control. 

v 



Vi PREFACE 

Methods of erecting eyebar chains and other types are also de¬ 
scribed and illustrated. 

The Appendix presents a series of design charts, specially 

devised for this book, for the expeditious proportioning of suspen¬ 

sion bridges. These charts give quickly and accurately the 

governing stresses throughout any span, saving the time and 

labor of applying the stress formulas otherwise required. 

The author desires to express his indebtedness to his associate, 

Mr. Holton D. Robinson, for reviewing the manuscript on 

Erection; and to the Department of Plant and Structures of 

New York City for many courtesies extended. 

D. B. Steinman. 

New York City 
August i, 1922. 
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A PRACTICAL TREATISE 
ON 

SUSPENSION BRIDGES 
Their Design, Construction and Erection 

CHAPTER I 

STRESSES IN SUSPENSION BRIDGES 

Section I.—The Cable 

1. Form of the Cable for Any Loading.—If vertical loads 

are applied on a cable suspended between two points, it will 

assume a definite polygonal form determined by the relations 

between the loads (Fig. io). 

The end reactions (Ti and Tz) will be inclined and will have 

horizontal components H. Simple considerations of static 

equilibrium show that H will be the same for both end reactions, 

and will also equal the horizontal component of the tension in 

the cable at any point. H is called the horizontal tension of the 

cable 

Let M' denote the bending moment produced at any point 

of the span by the vertical loads and reactions, calculated as for 

a simple beam. Since H, the horizontal component of the end 

reaction, acts with a lever-arm y, the total moment at any point 

of the cable will be 
M=M'-H-y. <.(i) 

This moment must be equal to zero if the cable is assumed to be 
flexible. Hence, 

M'-H-y, . . (a) 
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and 

y Ml 
H (3) 

Equation (3) gives the ordinates to the cable curve for any 
loading, if the horizontal tension H is known. Since H is con¬ 
stant, the curve is simply the bending moment diagram for the 

applied loads, drawn to the proper scale. The scale for con¬ 

structing this diagram is determined if the ordinate of any point 
of the curve, such as the lowest point, is given. If / is the sag 
of the cable, or ordinate to the lowest point C, and if M» is the 
simple-beam bending moment at the same point, then H is 
determined from Eq. (2) by 

ff-j* .(4) 

To obtain the cable curve graphically, simply draw the 
equilibrium polygon for the applied loads, as indicated in Fig. z 
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(a, b). The pole distance H must be found by trial or computa¬ 
tion so as to make the polygon pass through the three specified 
points, A, B, and C. The tension T at any point of the cable 
is given by the length of the corresponding ray of the pole dia¬ 
gram. H, the horizontal component of all cable tensions, is 
constant. By similar triangles, the figure yields 

T-H-jl-H-Kc*.(5) 

where 0 is the inclination of the cable to the horizontal at any 
point. It should be noted that the tensions T in the successive 
members of the polygon increase toward the points of support 
and attain their maximum values in the first and last members 
of the system. 

If V\ is the vertical component of the left end reaction, the 
vertical shear at any section x of the span will be 

.(6) 
0 

This will also be the vertical component of the cable tension at 
the same point. By similar triangles, 

V= H~= 27-tan 0.(7) 

(This relation is also obtained by differentiating both members 
of Eq. 2). Combining Eqs. (6) and (7), we may write 

Ay 

Ax 

Vx-iP 
0 

H (8) 

If the loads are continuously distributed, the funicular poly¬ 
gon becomes a continuous curve. If w is the load per horizontal 
linear unit at any point having the abscissa x, Eq. (8) becomes 

dy Vx-Jy^x 

dxT B 
(9) 
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from which (by differentiation) we obtain the following as the 
differential equation of the equilibrium curve: 

d2y _ _jv 

dx2 H 
(io) 

For any given law of variation of the continuous load w, 

the integration of Eq. (io) will give the equation of the curve 
assumed by the cable. 

2. The Parabolic Cable.—For a uniform distributed load, 
the bending moment diagram is a parabola. Consequently, by 
Eq. (3), if a cable carries a uniform load (w per horizontal linear 
unit), the resulting equilibrium curve will be a parabola. 

The maximum bending moment in a simple beam would be 

Substituting this value in Eq. (4), the horizontal tension is deter¬ 
mined: 

(») 

To obtain the equation of the curve, integrate Eq. (10). 
With the origin of coordinates at the crown, the integration 
yields 

wx? , x 
yS.(,2) 

Substituting the value of H from Eq. (n), we obtain the equa¬ 
tion of the parabola, 

y (13) 

If the origin of coordinates is taken at one of the supports 
(as A, Fig. 1), the equation becomes, 

.(>4) 

The maximum tension in the cable, occurring at either sup¬ 
port, w31 be 
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or, by Eq. (n), 

riS=^Vl+l6”2’.(*5; 

where » denotes the ratio of the sag / to the span l: 

.(16) 

Equation (15) may also be derived from Eq. (5) by noting that 
the inclination of a parabolic cable at the support is given by, 

tan<h==y==4».(17) 

To find the length of the cable, L, use the general formula, 

L*= 2 [ 2 1 + 
/ J.A 2-1H 

■(%) 1 -dx.(18) 
\dxJ J 

Substituting the value of ~ obtained from Eq. (13), we have, 
dx 

which yields, upon integration, 

£,=-(i+i6»2)M+^-log,[4«+(i + i6»2)H]. . (20) 
2 oft 

This formula gives the exact length of the parabola between 
two ends at equal elevation.* 

For more expeditious solution, when a good table of hyper¬ 
bolic functions is available, Eq. (20) may be written in the form 

L =-g^(2w+sinh 2«'>, .... (20') 

where « is defined by sinh u=4n. 
An approximate formula for the length of curve may be 

obtained by expanding the binomial in feq. (19) and then inte¬ 
grating. This gives, 

E-ICi-fwl2—V»4+ ...)>• • • (21) 
* A convenient form of the exact formula, Eq. (ao), is: 

E-gj | tan *1 sec 4n + log. (tan 4>i + »ec *>)}. 
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where n is defined by Eq. (16). For small values of the sag- 
ratio n, it will be sufficiently accurate to write, 

Z,=/(i+f»2).(22) 

for the length of a parabolic cable in terms of its chord l. 
The following table gives the values of L as computed by 

Eqs. (20) and (21), respectively. 

Sag-Ratio 

L 
Length-Ratio ■* j 

Exact 

(Eq. 20) 
Approximate 

(Eq. 21) 

05 1 00663 1 00663 

075 1 01480 1 01480 

.1 1 02606 1 02603 

125 1 04023 1 04010 

IS 1 05712 1 05676 

175* 1 07652 1 07566 

2 1 09823 1 09643 

3. Unsymmetrical Spans.—If the two ends of a cable span 
are not at the same ele¬ 
vation, the ordinates y 

should be measured ver¬ 
tically from the inclined 
closing chord AB (Fig. 2). 
If that is done, all of the 
principles derived above 
will remain applicable, 
and Eqs. (1) to (14), in¬ 
clusive, may be kept un¬ 
changed. For a load uni¬ 

form along the horizontal, the curve will be a parabola, and its 
equation, referred to the origin A and to the axis AB, will be 
as before, 

y~<£(l-x). 

Fig. 2.—Unsymmetrical Parabolic Cable. 

(14) 
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If it is desired to refer the curve to the horizontal line AD> 

with which the closing chord makes an angle a, the equation 
becomes, 

/=?+*• tan a = *)+:*;• tan a. . . . (23) 

To find the lowest point in the curve, located at V, a little to one 
side of the center, differentiate Eq. (23) and place the result 
equal to zero. Solving for x, we obtain, 

If . / , 
x, = -l iH—--tana 

A 4/ 

To find the exact length of the curve, apply Eq. (20) to the 
segments' VA and VB (Fig. 2), treating each of these segments 
as one-half of a complete parabola, and add the results. 

An extreme case of the unsymmetrical parabolic curve occurs 
in the side-span cables of suspension bridges. Using the nota¬ 
tion shown in Fig. 3, the equation of the curve may be written 
in the same way as Eq. (14), 

yi = ^r(/i-*i).(25) 

A/| 
A /A 

//i \ 

Here, again, yi and /1 are measured vertically from the closing 
chord, and xi and h are 
measured horizontally. 

The true vertex of the 
curve or lowest point, V, 

will generally be found, 
by an equation similar to 
Eq. (24), to be outside 
point D (Fig. 3). The 
exact length of curve will 
be VA - VD, or the differ¬ 
ence between two semi- 
parabolas each of which 
may be calculated by Eq. (20). 

An approximate value of the length may be obtained by 

V L 
i-J 

I-J 
Fig. 3.—Parabolic Cable in Side Span. 



8 STRESSES IN SUSPENSION BRIDGES 

taking the closing chord. AD=li-secai, and adding the para¬ 
bolic curvature correction as in Eq. (22). This will yield 

Li=/Ysecai+-—V .... (26) 
\ 3 sec8 a\) 

where 

.(27) 

The cable tension in the side span acts in the line of the closing 
chord AD (Fig. 3) and is designated by 

Hi = H secai.(28) 

Since the lever arms yi are vertical, they must be multiplied by 
the horizontal component of Hi, or H, to obtain the bending 
moments produced by this force. Hence, as in Eq. (2), we have, 

M’=Hyi, 

and, as in Eq. (11), we obtain, 

rr Will2 

* w 

(29) 

(30) 

In order that the main and side spans may have equal values 
of H, by Eqs. (n) and (30), we have, 

wP Will2 

8/* 8A (3i) 

Hence the necessary relation between the sags is 

fl_Wjh2 

f wP (32) 

The stress at any point in the cable is given by Eq. (5), 
which may be rewritten as 

r«ff(i+tan**)*.(33) 

At the center of the side span, where xithe curve is parallel 
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to the chord, and the inclination is equal to ai; hence, at that 
point 

r=F(!+tan2ai)H.(34) 

At the support, where *1=0, the inclination of the cable is given 
by 

tan 4>i = tan «i +^,.(35) 
n 

and formula (33) yields 

r^Z^i + ^tanai+^J*. . . . (36) 

which is the maximum stress in the cable. 
4. The Catenary.—If the load w is not constant per hori¬ 

zontal unit, but per unit length of the curve, as is the case where 
the load on the cable is due to its own weight, Eq. (10) takes the 
form, 

d2y w-sec# , x 
W-B~.<*7) 

Since tan Eq. (37) may be written, 
ax 

Integrating this equation, taking the origin at the lowest point 
of the curve, we obtain the equation of the cable curve: 

y=~(ea+e~ex-2),.(39) 

where c—^. 
ti 

This is the equation of a catenary; a cable under its own 
weight hangs in a catenary. 

Replacing the exponential terms by hyperbolic functions, 
Eq. (39) may be written, 

y—i(cosh cx— 1).(40) 
c 
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To find the length of the catenary, substitute ^ obtained 
ax 

from Eq. (39) in Eq. (18). This gives 

L-2j^^(ect+e~ex)dx-^(e2 — e *). . . (41) 

Expressed in hyperbolic functions, Eq. (41) may be written, 

L=-sinh—.(42) 
c 2 

Equations (40) and (42) are useful in computations for the 

guide wires employed for the regulation of the strands in cable 

erection. If the length L is known, Eq. (42) may be solved for 

the parameter c, by a method of successive approximations, and 

the ordinates may then be obtained from Eq. (40). For the 

expeditious solution of these equations, good tables of hyperbolic 

functions are required. 

If the integration in’Eq. (41) is performed between the limits 

0 and x, and the value of y substituted from Eq. (39), we obtain, 

L=±x/2cy+ctyi,.(43) 
c 

as a formula for the length from the vertex to any point of the 

curve. Equation (43) may be used for unsymmetrical catenaries. 

The stress at any point in the cable is again given by Eq. (5), 

or, 

T-Bt.<«> 
7V 

Since H«■—., Eq. (44) may be written: 

Substituting the value of ^ derived from Eq. (39), we obtain, 
ax 

T=—(e*+e-a). 
2C 

• • (45) 



THE CABLE 11 

Replacing the exponential by hyperbolic functions, Eq. (45) 

becomes, 

T=H• cosh cx.(46) 

This tension will be a maximum at the ends of the span, where 

*=-, yielding, 
2 

T^H-cosh^.(47) 

Comparing Eqs. (40) and (46), we find, 

T=w(y+?-'j =wy+H .... (48) 

At the span center, where y=o, this gives T=H; and at the 

supports, where y=f, we obtain, 

Ti=wf+H.(49) 

If the sag-ratio H)! is small, all of the formulas for the 

catenary may be replaced, with sufficient accuracy, by the 

formulas for parabolic cables. 

5. Deformations of the Cable.—As a result of elastic elon¬ 

gation, slipping in the saddles, or temperature changes, the 

length of cable between supports may alter by an amount AL; 
as a result of tower deflection or saddle displacement, the span 

may alter by an amount Al. Required to find the resulting 

changes in cable-sag, A/. 

For parabolic cables, the length is given with sufficient 

accuracy by Eq. (21). Partial differentiation of that equation 

with respect to l and/, respectively, yields the two relations: 

A£=tV(i5-4°»2+288»4)-A/, - . . (50) 

AZ.=• (5 — 24M2) • A/. *.(Si) 

From Eqs. (50) and (51), there results, 

Af_15—4Q«2+288w4 

J x6«(s-24»2) 
• • (52) 
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The required center deflections may be calculated by means of 
Eqs. (51) and (52) when AL and Al are known. 

For a change in temperature of t degrees, coefficient of expan¬ 
sion (■), the change in cable-length will be, 

AZ, = w • / • Z,.(53) 

For any loading which produces a horizontal tension H, the 
average stress in the cable will be, very closely, 

and the elastic elongation will be, 

AL = 
L EL 
l 'EA’ (S4) 

where E is the coefficient of elasticity and A is the area of cross- 
section of the cable. 

Another expression *for the elastic elongation is 

al=—Cl—=?L 
EAJo dx EA 

+¥«2). - -(55) 

Foi a small change in the cable-sag A/, the resulting change 
in the horizontal tension is obtained by differentiating Eq. (12): 

AE=-j-Af. .(56) 

From Eqs. (56), (51) and (52), may be found the deformations 
of the cable produced by any small change in the cable stresses. 

SECTION n.—UNSTIFFENED SUSPENSION BRIDGES 

6. Introduction.—The unstiffened suspension bridge is not 
used for important structures The usual form, as indicated in 
Fig. 4, consists of a cable passing over two towers and anchored 
by back-stays to a firm foundation. The roadway is suspended 
from the cable by means of hangers or suspenders. As there is 
no stiffening truss, the cable is free to assume the equilibrium 
curve of the applied loading. 
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7. Stresses in the Cables and Towers.—If built-up chains 
are used, as in the early suspension bridges, the aoss-section 
may be varied in proportion to the stresses under maximum 
loading. In a wire cable, the cross-section is uniform through¬ 
out. 

As the cable and hangers are light in comparison with the 
roadway, the combined weight of the three may be considered 
as uniformly distributed along the horizontal. Let this total 
dead load be w pounds per lineal foot. The cable will then 
assume a parabolic curve; and all of the relations derived for a 
parabolic cable, represented by Eqs. (n) to (22), will apply. 

Fig 4.—Unstiffened Suspension Bridge. 

The maximum dead-load stress in the cable, occurring at the 
towers, is given by Eq. (15): 

T«=^(i+i6n2)*,.(15) 

where n is the ratio of the sag / to the span l. 
Let there be a uniform live load of p pounds per lineal foot. 

The maximum cable stress will evidently occur when the load 
covers the whole span, and will have a value, 

+ .(57) 

* 

Adding the values in Eqs. (15) and (57), we find the total stress 
in the cable at the towers: 

.+.6^)» . . . . (58) 



14 STRESSES IN SUSPENSION BRIDGES 

If ai is the inclination of the backstay to the horizontal 
(Fig. 4), the stress in the backstay will be: 

Tx=H-secai=^i£^.Secai . . (59) 

If cable and backstay have equal inclinations at the tower, 
their stresses, represented by Eqs. (58) and (59), will be equal. 

The vertical reaction of the main cable at the tower is 
(w+p)l/2. If the backstay has the same inclination as the 
cable, it will also have the same vertical reaction; so that the 
total stress in the tower will be, 

T=(w+p) •/. .(60) 

8. Deformations under Central Loading.—Under partial 
loading, the unstiffened cable will be distorted from its initial 

parabolic curve. It is re¬ 
quired to find the deflections 
produced by the change of 
curve, disregarding for the 
present any stretching of the 

_ ....... „ . , cable or any displacement of 
Fig. 5.—Loading for Maximum Vertical ,, , „ 

Deflection. the saddles. 
The maximum vertical de¬ 

flection at the center of the cable will occur when a certain 
central portion of length kl is covered with live load (/>), in 
addition to the dead load (w) covering the whole span (Fig. 5). 
The sag of the distorted cable will be, by Eq. (3), 

/-m+mk{2~k).(6l) 

Equating the expressions for the cable-length corresponding 
to the initial and distorted conditions, respectively, the lengths 
being obtained from the approximate equation (22), and intro¬ 
ducing the symbol q*=p/w, we obtain: 

L~l(i+W)~l+^(z+3qk+3fk*-qkS-2fk*). (62) 
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Solving this equation for H, and substituting in Eq. (61), there 
results: 

/ = 1 + 2qk-qk? (6 v 

/ (i+3qk+3q2k?-qk?-2tfk?)H' ' ' 3 

By differentiating this expression with respect to k, we obtain 
the following condition for a maximum value of/': 

^4(i+2y)?+2jfe3(i-g')g+3^2(x-9)-4^+i=o. . (64) 

Solving this equation for k and substituting the result in Eq. (63), 
we obtain the following values for the maximum crown deflection 

A/«/-/: 

F„, q,t. o * * i i 3 

& = I.O 0.64 0.30 0.28 0.25 0.23 0.21 

A/= O .013 .022 .028 .045 .067 .080/ 

From this tabulation we may obtain the following empirical 
i) I 

values, sufficiently accurate between the limits q=—=- to 4: 

(65) 

L I °-°5 
ife = 0.20H-- 

? 

A/= (o. 007+0.046? -o. 0075?2)/ j 

9. Deformations under Unsymmetrical Loading.—The great¬ 
est distortion of the cable 
from symmetry, repre¬ 
sented by the maximum 
horizontal displacement of 
the low point or vertex, 
will be produced by a 
continuous uniform load 
extending for some dis¬ 
tance kl from the end of 
the span. (Fig. 6.) 

Applying the principle of Eq. (3), the lowest point of the 
dMf 

cable curve is located by the condition —accordingly, 

Fig. 6.—Maximum Horizontal Displacement 
of the Crown. 
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with the notation of Fig. 6, so long as the crown V is to the left 
of the head of the load (E), 

Mf-=™{l-2x)+\pm=o.(66) 
CLOC 2 

Inspection of this equation shows that x will have its maximum 
value when k has its maximum value; that is, when kl=l—x; 

in other words, the greatest lateral displacement occurs when 
the head of the moving load reaches the low point, V. Substi¬ 
tuting this value in Eq. (66), we obtain: 

k 4 
W .IV1 

7?' 
(67) 

Hence the maximum deviation of the crown (V) from the center 
of the span (c), will be (Fig. 6), 

iw lw w2 
1 2 p V p p2' 

(68) 

The total sag of the cable is practically invariable for all 
ordinary values of p/w. Consequently, the uplift of the cable 
at the center of the span will amount to 

Fori- i 

We thus obtain the following values: 

11 4 
--1 = 234 
32 3 

.036 .051 .086 .105 .134 .167 .igil 

.004 .008 .021 .030 .045 .062 .076/ 

w 4 

e= .028 

A/= .003 

10. Deflections Due to Elongation of Cable.—The total 
length of cable, including the backstays (Fig. 4), is, by Eq. (21), 

X+2£i=/(i+|»2—^V»4)+2/i sec 01. . . (70) 

For a change in temperature of t degrees, the total elongation 
of cable will be 

AL™ <i>'<(£-(-2 Li).(71) 



UNSTIFFENED SUSPENSION BRIDGES 17 

For the elongation of the cable due to elastic strain, we may 
write, by Eq. (55), 

AL=+-^«2) + 2/1 • sec2 ox]. . . (72) 

In addition there may be a contribution to AL from yielding of 
the anchorages. 

If the cable is capable of slipping over the fixed saddles, the 
resulting deflection A/ is obtained by substituting the above 
values of AL in Eq. (51). 

If, however, a displacement of the saddles or a movement of 
the tops of the towers will occur before the cable will slip, any 
elongation of the backstays will alter the span (/), but not the 
length (L), of the cable in the main span. In that case, the 
combined effects of temperature and elastic strain will give: 

AL = u/L+J^(i+W), 
and 

A/ = — 2 sec ai (<*th , Eh 2 \ 
SeCai+E^'SeC aiJ 

(73) 

(74) 

Substituting these values of AL and M in Eqs. (51) and (52), 
respectively, we obtain the resulting deflection (A/) of the main 
cable: 

A/= 15 
i6(s»—24M8) 

•A L- 
15—4qw2+288w4 

i6(s»— 24M3) (75) 

If a displacement of the saddles (Al) is accompanied by a 
slipping of the cable, so that the total length of the latter between 
anchorages (Fig. 4) remains unchanged, then the changes in 
length and span of the main cable must satisfy the relation 

AL=Af-cosai. *.(76) 

Substituting these values in Eq. (75), the crown deflection 
becomes, 

. 15-cosai-(i5-4o»8+288w*) ^ 
3 x6(s«-24«s) 

(77) 
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Section m—Stiffened Suspension Bridges 

11. Introduction.—In order to restrict the static distortions 
of the flexible cable discussed in the preceding pages, there is 
introduced a stiffening truss connected to the cable by hangers 
(Figs. 7, 15, 16). The side spans may likewise be suspended 
from the cable (Figs, xo, ii, 18), or they may be independently 
supported; in the latter case the backstays will be straight 
(Figs. 15, 16, 20). The main-span truss may be simply sup¬ 
ported at the towers (Figs, ix, 16), or it may be built continuous 
with the side spans (Figs. 18, 20). A hinge may be introduced 
at the center of the stiffening truss in order to make the struc¬ 
ture statically determinate (Fig. 8), or to reduce the degree of 
indeterminateness. 

Another form of stiffened suspension bridge is the braced- 
chain type. This type does not make use of the straight stiffen¬ 
ing truss suspended from a cable; instead, the suspension system 
itself is made rigid enough to resist distortion, being built in the 
form of an inverted arch (Figs. 21, 22, 23, 24). 

For ease of designation, it will be convenient to adopt a sym¬ 
bolic classification of stiffened suspension bridges, based on the 
number of hinges in the main span of the truss, as tabulated on 
page 19. 

In types 2F and 3F, the side spans are not related to the main 
elements of the structure and may therefore be omitted from con¬ 
sideration. Hence these types are called “single-span bridges.” 

The suspension bridges with straight stiffening trusses will 
be analyzed first. 

12. Assumptions Used.—In the theory that follows, we 
adopt the assumption that the truss is sufficiently stiff to raider 
the deformations of the cable due to moving load practically 
negligible; in other words, we assume, as in all other rigid 
structures, that the lever arms of the applied forces are not 
altered by the deformations of the system. The resulting theory 
is sufficiently accurate for shorter spans and for those having 
comparatively deep stiffening trusses; any errors are on the side 
of safety.' 
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f Continous 

Side span free *0F 

(Fig. 20) 

Side span suspended *05 

, (Fig. 18) 

Onc-hinged 
f Side span free * IF 

l Side span suspended* 15 

Stiffened 

Suspension 

Bridges 

Stiffening truss 

Braced chain 

Two-hinged 

Side span free *2F 

(Fig. 16) 

Side span suspended *25 

, (Fig. n) 

Three-hinged 

Side span free *3F 

(Fig. 8) 
Side span suspended *35 

(Fig. 26) 

' Hingeless =0B 

(Fig. 24) 

One-hinged — 1B 

Two-hinged =2 B 

(Fig. 23) 
Three-hinged—3 B 

(Figs. 2i, 22) 

If the stiffening truss is not very stiff or if the span is long, the 
deflections of truss and cable may be too large to neglect. To 
provide for such cases, there has been developed a more exact 
method of calculation which is known as the Deflection Theory 

because it takes into account the deformations of the system. 
For a presentation of the Deflection Theory and its application, 
the reader is referred to Appendix D of this book. 

The common theory developed in the following pages for the 
analysis of stiffened suspension bridges is known as the Elastic 

Theory because it is deduced from the simple considerations of 
elastic equilibrium of the system. It is based on the following 
five assumptions which are very near the actual conditions (except 
the fourth assumption, from which the variation may be of suffi¬ 
cient amount to require special Consideration as is given by the 
more exact Deflection Theory): 

1. The cable is supposed perfectly flexible, freely assuming 
the form of the Equilibrium polygon of the suspender forces. 

2. The truss is considered a beam, initially straight and 



20 STRESSES IN SUSPENSION BRIDGES 

horizontal, of constant moment of inertia and tied to the cable 
throughout its length. 

3. The dead load of truss and cable is assumed uniform per 
lineal unit, so that the initial curve of the cable is a parabola. 

Fig. 7.—Forces Acting on the Stiffening Truss. 

4. The form and ordinates of the cable curve are assumed to 
remain unaltered upon application of loading. 

5. The dead load is carried wholly by the cable and causes 
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no stress in the stiffening truss. The truss is stressed only by 
live load and by changes of temperature. 

The last assumption is based on erection adjustments, involv¬ 
ing regulation of the hangers and riveting-up of the trusses when 
assumed conditions of dead load and temperature are realized. 

13. Fundamental Relations.—Since the cable in the stiffened 
suspension bridge is assumed to be parabolic, the loads acting 
on it must always be uniform per horizontal unit of length. All 
of the relations established for a uniformly loaded cable (Eqs. (n) 
to (36), inclusive) will apply in this case. 

If the panel points are uniformly spaced (horizontally), the 
suspender forces must be uniform throughout (Fig. 7). These 
suspender forces are loads acting downward on the cable, and 
upward on the stiffening truss. It is the function of the stiffen¬ 
ing truss to take any live load that may be arbitrarily placed 
upon it and distribute it uniformly to the hangers. 

The cable maintains equilibrium between the horizontal ten¬ 
sion H (resisted by the anchorages) and the downward acting 
suspender forces. If these suspender forces per horizontal linear 
unit are denoted by s, they are given by Eq. (ix) as 

.(78) 

The truss (Fig. 7) must remain in equilibrium under the 
arbitrarily applied loads acting downward and the uniformly 
distributed suspender forces acting upward. If we imagine the 
latter forces removed, then the bending moment M' and the 
shear V' at any section of the truss, distant x from the left end, 
may be determined exactly as for an ordinary beam (simple or 
continuous according as the truss rests on two or more supports). 
This moment and shear would be produced if the cable did not 
exist and the entire load were carried b^ the truss alone. If 
—M, represents the bending moment of the suspender forces at 
the section considered, then the total moment in the stiffening 
truss will be 

• (79) 
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Similarly, if —V, represents the shear produced by the suspender 
forces at the same section, the total shear in the stiffening truss 
will be 

V=V'-V,.(80) 

Equations (79) and (80) are the fundamental formulas for 
determining the stresses in any stiffening truss. By these 
formulas, the stresses can be calculated for any given loading 
as soon as the value of H is known. 

The dead load is assumed to be exactly balanced by the 
initial suspender forces, so that it may be omitted from considera¬ 
tion in these equations. 

In calculating Mr and V' from the specified live load, and 
M, and V, from the uniform suspender loading given by Eq. (78), 
the condition of the stiffening truss as simple or continuous must 
be taken into account. 

If the stiffening truss is a simple beam (hinged at the towers), 
by a familiar property, of the funicular polygon, represented by 
Eq. (2), 

M,=H-y,.(81) 

where y is the ordinate to the cable curve measured from the 
straight line joining A' and B', the points of the cable directly 
above the ends of the truss (Fig. 7). Consequently, Eq. (79) 
may be written, 

M-M'—H-y.(82) 

which is identical with equation (1). (In the unstiffened 
suspension bridge, M=0.) 

If <t> is the inclination of the cable at the section considered, 
the shear produced by the hanger forces is given by Eq. (7) as, 

V,=H-ta,n <l>.(83) 

Consequently, Eq. (80) may be written 

V = V'-H-tzn<t>.(84) 

If the two ends of the cable, A' and B', are at unequal elevations 
(Fig. 7), Eq. (84) must be corrected to the form, 

(tan *-tan /i-yY • (84O 
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where a is the inclination of the closing line A'B' below the 
horizontal. 

In Eqs. (82), (84) and (84'), the last term represents the 
relief of bending moment or shear by the cable tension H. 

Representing M' by the ordinates y' of an equilibrium polygon 
or curve, constructed for the applied loading with a pole distance 
=27, Eq. (82) takes the form, 

M=E{y'-y).(85) 

Hence the bending moment at any section of the stiffening 
truss is represented by the vertical intercept between the axis 
of the cable and the equilibrium polygon for the applied loads 
drawn through the points A'B' (Fig. 7). 

If the stiffening truss is continuous over several spans, the 
relations represented by Eqs. (81) to (85), inclusive, must be 
modified to take into account the continuity at the towers. 
The corresponding formulas will be developed in the section on 
continuous stiffening trusses (Section VI). 

14. Influence Lines.—To facilitate the study and determina¬ 
tion of suspension bridge stresses for various loadings, influence 
diagrams are most convenient. 

The base for all influence diagrams is the 27-curve 
or /?-influence line. This is obtained by plotting the equations 
giving the values of B for varying positions of a unit concentra¬ 
tion. In the case of three-hinged suspension bridges, the 27-influ- 
ence line is a triangle (Figs. 8 and 9). In the case of two-hinged 
stiffening trasses, the 27-lines (Figs, ix, 14) are similar to the 
deflection curves of simple beams under uniformly distributed 
load. In the case of continuous stiffening trusses, the 27-line 
(Fig. 18) is similar to the deflection curve of a three-span con¬ 
tinuous beam covered with uniform lo^d in’the suspended 
spans. 

To obtain the influence diagrams for bending moments and 
shears, all that is necessary is to superimpose on the 27-curve, 
as a base, appropriately scaled influence lines for moments and 
shears in straight beams. 
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The general expression for bending moments at any section 
(Eq. 82) may be written in the form, 

1.(86) 

(excepting that in the case of continuous stiffening trusses, y is 
to be replaced by y—ef\ see Eq. 212). For a moving con- 

M' 
centration, — represents the moment influence line of a straight 

beam, simple or continuous as the case may be, constructed 
with the pole distance y. Hence the moment M is proportional 
to the difference between the ordinates of this influence line and 
those of the //-influence line. If the two influence lines are 
superimposed (Figs. 8b, 11b, 11c, 18b), the intercepts between 
them will represent the desired bending moment M. In the 
case of stiffening trusses with hinges at the towers, M' is the 
same as the simple-beam bending moment, and its influence 
line is familiarly obtained as a triangle whose altitude at the 
given section is, 

.(87) 
y i-y 

For a parabolic cable, this reduces (by Eq. 14) to 

ML=L 
y 4/ 

Hence the —■ triangles for all sections will have the same altitude 

(Figs. 8b, 11b). The corresponding altitude for sections in 

* , 
the side spans is — (Fig. 11c). The areas intercepted between 

• 4/1 
\rt 

the 27-line and the —— triangles, multiplied by py, give the maxi- 
y 

mum and minimum bending moments at the given section, X, 

of the stiffening truss. Areas below the 27-line represent posi¬ 
tive moments, and those above represent negative moments 
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(Figs. 8, ii, 18). Where the two superimposed lines intersect, 
we have a point K, which may be called the zero point, since a 
concentration placed at K produces zero bending stress at X. 
K is also called the critical point, since it determines the limit 
of loading for maximum positive or negative moment at X. 
Load to one side of K yields plus bending, and load to the other 
side produces negative bending. 

The shear at any section of the stiffening truss is given by 
Eq. (84), which may be written in the form, 

v~(i^~H)Un*.(89) 

(If the two ends of the cable span are at different elevations, 
tan 4> in this equation is to be replaced by tan <f> — tan a, where 
a is the inclination of the closing chord below the horizontal. 
See Eq. .84'). For any given section X, tan <t>, the slope of the 
cable, is a constant and is given by, 

x-Hj+tan« .... (90) 

The values assumed by the bracketed expression in Eq. (89) for 
different positions of a concentrated load may be represented as 
the difference between the ordinates of the fl-line and those of 
the influence line for the shears V', the latter being reduced 

in the ratio ——. The latter influence line is familiarly obtained 
tan <t> 

by drawing the two parallel lines as and bt (Figs. 9a, 9b, 140), 
their direction being fixed by the end intercepts 

tan <t> =4/ n 

am—bn =--- 
tan <l>—t&na (91) 

The vertices s and t lie on the vertical passing through the given 
section X. The maximum shears produced by a uniformly 
distributed load are determined by the areas included between 
the B and V' influence lines; all areas below the 17-line are to be 
considered positive, and all above negative. These areas must 
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be multiplied by />• tan <fi (or by p[ta.n <f>—tana]) to obtain the 
greatest shear V at the section; and V must be multiplied by the 
secant of inclination to get the greatest stress in the web members 
cut by the section. 

Section IV.—Three-hinged Stiffening Trusses 

15. Analysis.—This is the only type of stiffened suspension 
bridge that is statically determinate (Types 3F, 3S, SB). The 
provision of the stiffening truss with a central hinge furnishes a 
condition which enables H to be directly determined; viz., at 
the section through the hinge the moment M must equal zero. 
Consequently, if the bending moment at the same section of a 
simple beam is denoted by M'o, and if / is the ordinate of the 
corresponding point of the cable, by Eq. (82), 

H= M'o 

I (92) 

Hence the value of B for any loading is equal to the simple- 
beam bending moment at the center hinge divided by the sag /. 
Accordingly, the cable will receive its maximum stress when the 
full span is covered with the live load p. In that case Eq. (92) 
yields 

(93) 

and, comparing this with Eq. (78), we see that 

s=P.(94) 

Hence, under full live load, the conditions are similar to those 
for dead load, the cable carrying all the load, the trusses having 
no stress. The bending moment at any section will be 

Total M—o. (940 

For a single load P at a distance kl from the near end of the 
span, the simple-beam moment at the center hinge will be 

M'o* 
Pkl 

2 
(95) 
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Hence, the value of 27, by Eq. (92), will be 

This value of H will be a maximum ioxk=\, yielding, 

• (96) 

Max. H=—t.(97) 
4/ 

According to Eq. (92), the influence line for 77 will be similar 
to the influence line for bending moment M 0 at the center of a 
simple beam; hence it will be a triangle. It is defined by Eq. 
(96); and its maximum ordinate (at the center of the span) is 
given by Eq. (97) as 1/4/. Figures 8b and 90 show the 17-influence 
line constructed in this manner. 

If the truss is uniformly loaded for a distance kl from one 
end, the value of 77 may be found by integrating Eq. (96) or 
directly from Eq. (92). We thus obtain: 

for k<%,  (98) 

for k>\, H=£trUk-2k2-l). . . . (99) 

For full load (k = i), Eq. (99) gives the maximum value of 77: 

H = gJ’.(IO°) 

which is identical with Eq. (93). Equations (98) to (100), inclu¬ 
sive, may also be obtained directly from the 77-influence line 
(Figs. 8 b and 9a). 

For the half-span loaded, Eqs. (98) and (99) yield, 

16/’ ' ' 

which is one-half of the value for full loacl. 
value in Eq. (78), we find, 

. . . (101) 

Substituting this 

. . . (102) 

One-half of the span is thus subjected to an unbalanced upward 
load, $=■£/>, pear lineal foot, and the other half sustains an equal 
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downward load, p—s=\p. Consequently there will be produced 
positive moments in the loaded half, and equal negative moments 
in the unloaded half, amounting to 

M=\px(t-xj-,.(103) 

and the mavimnm moments for this loading, occurring at the 
quarter points, (x=\l, x—\l), will be, 

M = ±iiPP = ±0.01562pp. . . . (104) 

t— x —) 

Fig. 8.—Three-hinged Stiffening Truss Moment Diagrams. 
(lVpe3F). 

16. Moments in the Stiffening Truss.—The influence dia¬ 
grams for bending moments are constructed, in accordance with 

M' 
Eq. (86), by superimposing the — triangles upon the 17-influence 

triangle. By Eq. (88), the ■— triangles for all sections have the 

same altitude ■— ; and, in the case of the three-hinged stiffening 
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truss, this altitude is identical with that of the F-influence 
triangle. 

The two triangles are shown superimposed in Fig. 86. The 
shaded area between them is the influence diagram for bending 
moment at the section X. 

For x—-, the two triangles would coincide. Hence the 
2 

moment at the center hinge is zero for all conditions of loading, 
which agrees with the condition that the hinge can carry no 
bending. 

For x <-, the two influence triangles intersect at a point K, a 
2 

short distance to the left of the center. K is the zero point or 
critical point. All load to the left of K yields plus bending, and 
all load to the right produces negative bending. 

Since the two superimposed triangles have the same base and 
equal altitudes, the plus and minus intercepted areas will be 
equal. Hence, if the whole span is loaded, the two areas will 
cancel each other, yielding zero moment as required by Eq. (94/)- 

If either of the shaded areas is multiplied by py, it will give 
the maximum value of the bending moment at X. The bending 
moments may also be obtained analytically from Eq. (82), as 
follows: 

If the load covers a length kl from one end of the span, the 
bending moment at any section x<kl, by Eqs. (82), (98) and 
(14), will be, 

M=%pkl{2 — i,k)x—%px?{i — 2k2). . . (105) 

Setting 
dM 
dk 

=0 in this equation, we And that for maximum M, 

(106) 

This equation defines the distance W,to the^crifical point K 
(Fig. 86). For this value of k, Eq. (io5)~gfves the maximum 
value of M for any value of x: 

Max. M = 
##(/ — &)(/— 2X) 

2(31-2X) 
(107) 
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This value may also be obtained from the shaded areas in 

the influence diagram (Fig. 8 b). Setting ^~-—o in the last 
ax 

equation, we find that the absolute maximum M occurs at, 

*=0.234/.(108) 

Substituting this value in Eqs. (107) and (106), we find that the 
absolute maximum value of M is, 

Abs. Max. M = +0.01883/>/2, . . . (109) 

or about fapi2, and that it occurs at *=0.234/, when £=0.395. 
By loading the remainder of the span (0.605/), we obtain the 

maximum negative moment at the same section. This will be 
numerically equal to the maximum positive moment, since their 
summation at any section must give zero according to Eq. (94'). 
Hence the absolute maximum negative moment will be, 

Abs. IVIin. M— — o.oiS8^pl2. . . . (109') 

After the maximum moments at the different sections along 
the span are evaluated from the influence lines, or from Eq. (107), 
they may be plotted in the form of curves, as shown in Fig. 8c. 
For the three-hinged stiffening truss, these maximum moment 
curves are symmetrical about the horizontal axis. They may 
be used as a guide for proportioning the chord sections of the 
stiffening truss. 

17. Shears in the Stiffening Truss.—The shears produced 
in the stiffening truss by any loading are given by Eq. (84); 
but the maximum values at the different sections are most con¬ 
veniently determined with the aid of influence lines (Fig. 9). 

The influence line for H is a triangle, with altitude*^ at 

the center of the span. Upon this is superimposed the influence 
line for shears in a simple beam, reduced in the ratio 1 : tan 0. 
The resulting influence diagram for shear V at a given section 

x<~ is shown in Fig. 9a. There are two zero points or critical 
4 

points: at * and at kl. The portion of the left span between 
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these two points must be loaded to produce maximum positive 
shear at the given section. From the geometry of the figure 
we find the position of the critical point K to be given by, 

k==—~.(no) 

Fig. 9.—Shear Diagrams for Three-hinged Stiffening Truss. 
(Type 3F). 

<°) 

(b) 

CO 

With the load covering the length from x to kl, we find the 
maximum positive shear at x, either from the diagram or from 
Eq. (84), to be given by 

2 
Max. V • • (in) 
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When*=o, or for end-shear, Eq. (no) gives £=5, and Eq. (in) 
yields, 

Abs. Max. V=£-.(112) 
0 

When x-\l} we find i* J, and 

Max. .(113) 
16 

For x> the influence diagram takes the form shown in Fig. 9b. 
There is only one zero point, namely at the section X. Loading 
ail of the span beyond X, we find the maximum positive shear, 
either from the diagram or from Eq. (84), to be given by, 

Max. E=^(3-4j). ■ • • (114) 

This has its greatest value for x-%1, or at the center, where it 
has the value, . 

Max. F-§.(115) 
O 

Writing expressions for the maximum negative shears in the 
same manner, we obtain values identical with Eqs. (in) to 
(115), but with opposite sign. In other words, the plus and 
minus areas in any shear influence diagram are equal; their 
algebraic sum must be zero, since full span loading produces no 
stress in the stiffening truss. (See Eq. 94). 

Figure 9c gives curves showing the variation of maximum 

positive and negative shears from end to end of the span. The 
curves are a guide for the proportioning of the web members of 
the stiffening truss. For the three-hinged truss, these curves 
are symmetrical about the horizontal axis. 

If the two ends of the cable are at unequal elevations, the 
foregoing results for shear (Eqs. (no) to (115), inclusive) must 
be modified on account of the necessary substitution through¬ 
out the analysis of (tan 4>—tan a) for tan <t> as required by 

Eq. M- 
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Section V.—'Two-hinged 
Stiffening Trusses 

18. Determination of the 
Horizontal Tension H.—In 
these bridge systems, the hori¬ 

zontal tension H is statically 

indeterminate. The required 
equation for the determina¬ 
tion of H must therefore 
be deduced from the elas¬ 
tic deformations of the sys¬ 
tem 

Imagine the cable to be 
cut at a section close to one 

of the anchorages. Then 
(with B = o), under the action 
of any loads applied on the 
bridge, the two cut ends would 
separate by some horizontal 
distance A. If a unit hori¬ 
zontal force (H= i) be applied 
between the cut ends, it would 
pull them back toward each 
other a small distance 5. The 
total horizontal tension H re¬ 
quired to bring the two ends 
together again would evi¬ 
dently be the ratio of these 

two imaginary displacements, 
or, 

Hsx\ • (ii6) 

Substituting for A and S 

the general expressions for 
the displacement of a point 
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in an elastic system under the action of given forces, Eq. (116) 

becomes, 

where M'—bending moments (in the stiffening truss) under 

given loads, for H = o. 

m=bending moments (in the stiffening truss) with zero 

loading, for H = i. 
u—direct stresses (in the cable, towers and hangers) 

with zero loading, for H = i. 

/=moments of inertia (of the stiffening truss). 

A = areas of cross-section (of the cable, towers and 

hangers). 

In the denominator of Efl- (I3C7) there are two terms, since the 

system is made up of members, part of which are acted upon by 

bending moments, and part by direct, or axial, stresses. In 

the numerator, there is no axial stress term, since for the con¬ 

dition of loading producing A, the cable tension H- o, and all of 

the axial stresses (in cables, towers and hangers) vanish. 

Equation (1x7) is the most general form of the expression 

for H, and applies to any type of stiffened suspension bridge. 

When there are no loads on the span, the bending moments 

in the two-hinged stiffening truss are, by Eq. (82): 

M-—H-y.(118) 

Hence we have, when H-1, 

m*a—y.(119) 

The stress at any section of the cable is given by Eq. (5), which, 

for J5T«= 1, reduces to, 

ds 
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Substituting Eqs. (119) and (120) in Eq. (117), we obtain the 

following fundamental equation for H for two-hinged stiffening 

trusses (Types 2F and 25) : 

-dx 

ffdx , r ds3 

J £/+J ' EAdx? 

(121) 

The integral in the numerator and the first integral in the 

denominator represent the contributions of the bending of the 

stiffening truss to A and 5 respectively; the integrations extend 

over the full length of the stiffening truss suspended from the 

cable. The second integral in the denominator represents 

the contribution of the cable stretch to the value of 5; the 

integration extends over the full length of cable between 

anchorages. 

In the denominator of Eq. (121), the truss term contributes 

about 95 per cent, and the cable term only about 5 per cent of 

the total. Hence, certain approximations are permissible in 

evaluating the cable term. 

Terms for the towers and hangers have been omitted, as they 

are negligible. (Their contribution to the denominator would 

be only a small decimal of x per cent.) 

The terms in the denominator are independent of the loading 

and will now be evaluated. See Fig. 110 for the notation 

employed. The symbols l, x, y, f, a, I, A have already been 

defined for the main span; and, adding a subscript, we have the 

corresponding symbols h, xi, yi, fi, ai, h, Ai, for the side 

spans. In addition we have, 

l'=span of the cable, center to center of towers, which 

distance may be somewhat greater than the truss 

span l (Fig. 11a); 

horizontal distance from tower to anchorage, which 

distance may be greater than the truss span h (Fig. 

11 a). 

Substituting for y its values from Eqs. (14) and (25), the 
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first integral in the denominator of Eq. (121), extending over 

main and side spans, becomes, 

f>^ = _L Cfdx+2.±- P1y12dx = ±ri+2(&.f&}.\ (I22) J El EIj o ax ' 2 El Jo yiax I sEr2\is Eh)- ^ ' 

The moments of inertia I and I\ are here assumed constant over 

the respective spans. 

I 

Hox/mum tlomenfa 
m k5o4 £jpor> 

Fro. 11.—Moment Diagrams for Two-hinged Stiffening Truss. (Type 2S). 

The second integral in the denominator of Eq. (121), with 

the aid of Eqs. (13) and (23), may be written, 
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The cable sections A and Ai are here considered to be uniform 
in the respective spans. Usually A =Ai. Expanding the 
binomials and integrating, we obtain, with sufficient accuracy, 

<■*>* 

where n and »i are the sag-ratios in main and side spans, respect¬ 
ively: 

»=j, «i=^.(124O 

Setting the values given by (122) and (124) in Eq. (121), 
xEI 

and multiplying through by the formula for H becomes, 

= __JH 
£ M'ydx+i j" Mi'yidx^ 

IT v i> 

f( 1 + 2iru2) |- j-(1 +8n2) 

sec3 «i(i+8»i2) 

(MS)' 

Af2 , 

61 • E • I2 
~ AiP-Ec-l 

where, for abbreviation, 

(126) 

The elastic coefficient Ee=E, unless the cable is made of wire 
ropes. The denominator of Eq. (125), to be used for all suspen¬ 
sion bridges of Type 2S, will henceforth be designated by N. 
It is a constant for any given structure. 

The second term in the numerator represents the contribu¬ 
tion of any loads in the side spans, and will vanish if the side 
spans are built independent of the backstays. In the latter case 

* If the cable section is not constant but varies with the cable stress (as 
in eyebar chains), change 8»* to 8a,* to tyh*, and sec* an to sec* an; 
using At (cable section at crown) instead of A and Ai. 
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the backstays will be straight (Type 2F, Fig. 16), all terms 

containing «x, or v will vanish, and Eq. (125) reduces to 

H = 8 , £ 
S Ec Afl (l+8#)+J?l'T-!ec*“‘ 

(127)* 

where «x is the slope of the backstay. 

19. Values of H for Special Cases of Loading.—In the 

preceding equations, the value of M' depends upon the loading 

in the particular case. Expressing M' as a function of x, using 

the value of y given by Eq. (14), and performing the integration 

as indicated, we find, for a single load P at a distance kl from 

either end of the span, 

^M'ydx*=%Pfl2k{ i — 2k2+k2). . . . (128) 

Hence, by Eq. (125), for a concentration in the main span, the 

value of the horizontal tension will be, 

H-JTnB{i)r’ ■ ■ ■ ■ <IJ9) 
* 

where N denotes the denominator of Eq. (125), and the function 

B(k)=k(i — 2k2+k?), . . . (129') 

and may be obtained directly from Table I or from the graph in 

Fig. 12. The above value of 77 is a maximum when the load P 
is at the middle oi the span; then £=§, and Eq. (129) yields, 

U^a-i-N~nP.<■*” 

Similarly, for a concentration P in either side span, at a 

distance kih from either end, 

H=~-iT*vB{kx)-P, .... (131) 

* If the cable section is not constant but varies with the cable stress (as in 
eyebar chains), change 8n* to ^n2, and sec8 ai to sec2 ai; using A0 (cable 
section at crown) instead oi A and Ai. 
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where B{ki) is the same function as defined by Eq. (129'). 

This value of H is a maximum when the load P is at the middle 

of the side span; then ki =§, and Eq. (131) yields, 

Max. H=-$r- —ir2v-P. . . . (132) 
16 N-n 

By plotting Eqs. (129) and (131) for different values of k 
and ki, we obtain the //-curves or influence lines for H (Figs. 

11, 14). The maximum ordinates of these curves are given by 

Eqs. (130) and (132). 

For a uniform load of p pounds per foot, extending a distance 

kl from either end of the main span, we find, by integrating the 

function B(k) in Eq. (129'), 

' ■ ' ■ (l33> 
where the function, 

F(k)=M2-W+ks, .... (133') 

and may be obtained directly from Table I or from the graph in 

Fig. 12. For k-i, F{k) = 1. 

For similar conditions in either side span, we find for a loaded 

length kih, 

H=-±-nif*v.F{ki).pil, . . (134) 

where F(k\) is the same function as defined by Eq. (133'). 
The horizontal component of the cable tension will be a 

maximum when all spans are fully loaded, or when Jfe = i and 

£1 = 1. Hence, by Eqs. (133) and (134), 

Total H = 1 -1- 2irh)pl. . . . (135) 

For a live load covering the central portion, JK, of the main 

span, from any section x=jl to any other section x=kl, the 

application of Eq. (133) yields, 

E = -^—[F{k)-F(j)].pl, . . (136) 

where F(j) and F(k) are the same function as defined by Eq. 
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The graph of F(k) in Fig. 12 shows the proportional increase 
in the value of H as a uniform load comes on and fills the main 
span (or either side span). The difference between the two 

ordinates for any sections, J and K, multiplied by JL(, 
sM 

or by 

C’)’ va*ue H f°r the corresponding partial 

loading JK. 
For opposite loading conditions, that is, load covering both 

side spans and all of the main span with the exception of the 
central portion JK, we find the value of H by subtracting the 
members of Eq. (136) from those of Eq. (135): 

B-Jbnll-m+mi+M'ii'% ' ' (I37) 

20. Moments in the Stiffening Truss.—The bending moment 
at any section (main or side span) is given by Eq. (82), 

M-M'—Hy, M\ —Mi'—Hyi. . . . (138) 

If any'span is free from load, the moments for that span are 
obtained by placing M' (or Mi) equal to zero, giving, 

M=—Hy, Mi-—Hyi, .... (139) 

where H is the cable tension produced by loads in the other 
spans, or by temperature. 

With all three spans loaded, using the value of H given by 
Eq. (135), Eq. (138) yields, for any section in the main span, 

Total M=%px(l—*)J^i-^(i+2tr3®)J, . . (140) 

and, for any section in the side span, 

TotalMi*|^a:i(/i-a:i)J^i-^:(i+2*r3ti)^j . (141) 

The influence diagrams for bending moment are constructed, 
in accordance with Eq. (86), by superimposing the influence 

Mr 
triangle for — on the F-influence curve: The H-curve is 
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TABLE I 

Functions Occurring in Suspension Bridge Formulas 

H 
Influence 

Line 

Critical 
Points 

Minimum Moments 
H for 

Uniform 
Loads 

Shears 

k B(k) cm D(k) F(k) G(k) k 

*(i-2*H-**2 k+k*-k* (2-*-4Jfe2+3*S)(l_jfe)2 !(!-*)«- (!-*)*+! 

0 0 0 2.0 0 0.4 O 

OS .0498 .0524 I.7511 .0062 4404 OS 
.1 .0981 . 1090 I.5O9O .0248 .4816 .IO 

-15 • 1438 . 1691 I.279O °55° .5232 .15 
.2 .1856 .2320 I.0650 .0963 .5648 .20 

.25 .2227 .2969 .8704 •1474 .6062 .25 

3 .2541 •3630 .6962 . 2072 .6472 •30 

•35 .2793 .4296 •5445 .2740 .6874 •35 
•4 . 2976 .4960 .4H7 .3462 .7264 .40 

45 .3088 5614 •3065 .4222 .7640 •45 
•5 •3125 .6250 .2188 0-5 .8000 •50 

•55 .3088 .6861 .1497 .5778 .8340 •55 
.6 .2976 •7440 •0973 .6538 .8636 .60 

.65 .2793 7979 , .0593 .7260 .8946 65 

•7 • 2541 .8470 .0332 .7928 .9208 .70 

•75 .2227 .8906 .0166 .8526 •9438 •75 
.8 .1856 .9280 .0070 •9037 .9632 .80 

.85 .1438 •9584 .0023 •943° .9788 .85 

•9 .0981 .9810 .0005 •9752 • 99°4 .90 

95 .0498 •9951 .0003 ■9938 .9976 •95 
x. 00 0 1.0 O I .O 1.0 1.0 

M' 
plotted with ordinates given by Eqs. (129) and (131); the — 

y 
triangles have a constant height, — in the main span and 

4J 

~r in the side spans. The resulting influence diagrams are 
4/i 
shown in Figs. 11 b and nc. The intercepted areas, multiplied 
by py, give the desired bending moments; areas below the 
27-curve represent positive or maximum moments, and those 
above represent negative or minimum moments. 
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Fig. 13.—Graphs for the Solution of Suspension Bridge Formulas. 
(Supplementary to Fig. ra). 
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For any section in the main span, there is a zero point or 
critical point K (Fig. tib), represented by the intersection of the 
superimposed influence lines. The distance kl to this critical 
point is given by the relation, 

C(*)-*+**-A»-tf-» .-=-.-L. . . (I4a) 
y 4 l-x 

Values of the function C(k) are listed in Table i and plotted in a 
graph in Figs. 12 and 13, to facilitate the solution of Eq. (142) 
for k. 

The maximum negative moment at any section of the main 
span is obtained by loading the length l—kl in that span and 
completely loading both side spans (Fig. 11b). Then, using the 
values of Eqs. (133) and (13s), Eq. (138) yields, 

Min. M=-^^^[D{k)+4ii»v], . . (143) 

where the function, 

D(k) = (2-k-4k2+3k?)(i-k)2, . . (143O 

and is given, for different values of k, by Table I and by the 
graph in Fig. 12 or 13. The value of k or C(k) obtained from 
Eq. (142) is to be used. 

Equation (143) applies to all sections from £=o to x'=—-l. 
4 

For the minimum moments at the sections near the center, from 
x' to l—x', it is necessary to bring on some load also from the left 
end of the span, as there are two critical points, K! and K", for 
these, sections (see dotted diagram, Fig. 11&); so that the 
expression (143) for these moments must be corrected by replac¬ 
ing D(k) by D(k')+D(k"), where k' is the value of k (Eq. 142) 
corresponding to the given section x, and k" is the value of k 
corresponding to the symmetrically located section (l—x). 

The maximum positive moments are given by the relation, 

Max. M » Total M—Min. M.(144) 



TWO-HINGED STIFFENING TRUSSES 45 

Subtracting the values given by Eq. (143) from those given by 
Eq. (140), we obtain, 

Max.M=^*a-*)[i-^|[i-W)]]. • (144') 

The loading corresponding to this moment is indicated in Fig. 
1 ib] only a portion of the main span is loaded, the side spans 
being without load. 

There are no critical points in the side spans. For the great¬ 
est negative moment at any section xi in one of the side spans, 
load the other two spans (Fig. 11c), giving, 

=  (145) 

Loading the span itself produces the greatest positive 
moments, jvhich are obtained by the relation, 

Max. Mi = Total Mi—Min. Mi.(146) 

Subtracting the values given by Eq. (145) from those given by 
Eq. (141), we obtain, 

Max. Mi =~^i--pi.(146') 

The maximum and minimum moments for the various 
sections of a stiffening truss (Type 25), as calculated from 
Eqs. (143), (144), (145) and (146), are plotted in Fig. 11 d, to 
serve as a guide in proportioning the chord members. 

21. Shears in the Stiffening Truss.—With the three spans 
completely loaded, the shear at any section x in the main span 
will be, by Eqs. (84), (90) and (135), 

Total F = |/>(/-2r)J^i-^(x-|-2ir3j))j, . . (147) 

and, in the side spans, 

Total Vi « - 2x1) [1 ~ ^ ' (J+2*^)] • (h8) 

The influence diagram for shear at any section is constructed 
according to Eq. (89), by superimposing on the H-curve (Eqs. 
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129 and 131) the influence lines for ——. The latter will have 
tan 0 

end intercepts = cot 4>, where <f> is the slope of the cable at the 
given section. The resulting influence diagram is shown in 
Fig. 14a. The intercepted areas, multiplied by p-ta.n 4>> give 
the desired vertical shears V. Areas below the 17-curve repre- 

<3/ cJe 1^00rt. 

Fig. 14.—Shear Diagrams for Two-hinged Stiffening Truss. 
(Type aS). 

sent positive or maximum shears, and areas above represent 
negative or minimum shears. 

Loading the main span from the given section X to the end 
of the span, we obtain the maximum positive shears by Eqs. 

(84), (90) a“d 033). 

M" K-‘K-r)![-|(rr) G(r)]' ■ (l«> 
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where the function, 

+ I> (149O 

and is given by Table I and the graph in Fig. 12. 
For the sections near the ends of the span, from x—o to 

4"), ^oa<k mus*- n°t extend to the end of the span 

to produce the maximum positive shears, but must extend only 
to a point K (Fig. 140) whose abscissa x—kl is determined by 
the following equation: 

N l 
C(k)=k+k2-k*=- 

4 ' ■2X 
(150) 

For these sections, the positive shears given by Eq. (149) must 
be increased by an amount, 

Add. . (151) 

where the function, 

G(*)-K I-*)»-(!-*)» + !, .... (151O 

and, like the same fimction in Eq. (149'), is given by Table I 
and the graph in Fig. 12 or 13. 

Formula (150) for the critical section is solved in the same 
manner as Eq. (142) with the aid of Table I or the graph in 
Fig. 12 or 13. 

There are no critical points for shear in the side spans. The 
influence diagram (Fig. 146) shows the conditions of loading. 
For maximum shear at any section xi, the load extends from the 
section to the tower, giving, 

Mai. K,-W(,-S)![1-| (.51) 

where G 0^ is the same fimction as defined “by Eqs. (149') and 
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The maximum negative shears in main and side spans are 
given by the relations, 

Min. V = Total V -Max. V, . . . (153) 
and 

Min. Fx = Total Ti-Max. Fi. . . (153') 

The maximum positive and negative shears for different 
sections of the main and side spans, as given by Eqs. (149), 
(152), (153) and (153')) are plotted for a typical suspension 
bridge, in Fig. 14c, to serve as a guide in proportioning the web 
members. 

22. Temperature Stresses.—The relative horizontal deflec¬ 
tion of one end of the cable due to a temperature change of t 
degrees, with coefficient of expansion <0, is 

• • • (l*> 

Denoting the expression in the brackets by L], the expansion of 
the integrals yields, very closely, 

I,i = /(sec2 a+^«2) + 2/i(sec2 ai+^a^Mi2), . (154O 

and Eq. (154) reduces to 
A = utLi, (iS5) 

Substituting this value for the numerator in Eqs. (116) to (125), 
we obtain, 

Ht=- 
$EI utLt 

P-N-V (i5<5) 

where N denotes the denominator of Eq. (125) and Lt is given 

by Eq. (154O. 
The resulting bending moment at any section of the truss is 

given by, 

.(157) 
and the vertical shear by, 

F(=-F,(tan^-tano), . . (158) 

where ^ is the inclination of the cable at the given section, and 
a is the inclination of the cable chord (Eqs. 84', 90). 

23. Deflections of the Stiffening Truss.—For any specified 
loading, the deflections of the stiffening truss may be computed 
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as the difference between the downward deflections produced by 
the applied loads and the upward deflections produced by the 
suspender forces, the stiffening truss being treated as a simple 
beam (for Types 2F and 25). The suspender forces are equiva¬ 
lent to an upward-acting load, uniformly distributed ova: the 
entire span, and, by Eq. (78), amounting to, 

.(78) 

For a uniform load p covering the main span, the resultant 
effective load acting on the stiffening truss will be, by Eqs. (78) 
and (135), 

.(159) 

and the resulting deflection will be, 

In the general case, the applied loads will produce a deflection 
at a distance x of, 

d'J^£mxix+i£ri{,-*)'ix- ■ ■ (t6,) 

The suspender forces, given by Eq. (78), will produce an upward 
deflection, at a distance x, of, 

d"=jj^x(P—2lx?+x?)£-H. . . . (162) 

It should be noted that this deflection curve (Eq. 162) is similar 
to the 27-influence curve given by Eq. (129). Using the function 
defined by Eq. (129'), Eq. (162) may be written, 

■ • • • wo 

The resulting deflection .of the truss at any^ point will then be 
obtained from Eqs. (161) and (162) as 

i-d'-d".(163) 
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Equation (160), for a full-span load, may be derived directly 
from Eq. (163). 

If merely the half-span is loaded with p per unit length, then 
the deflection at the quarter-point will be, by Eqs. (161) and 
(162), in the loaded half, 

6144 

and, in the unloaded half, 

(3I 51'sn) 

pi* 
EV 

._i_/57. 
6144\ 2 5N JEI 

(164) 

(164') ‘ 

Fig. 15.—Detroit River Bridge (1929). 

(The Ambassador Bridge.) 
(Type 2F.) 

International highway bridge—Span 1850 ft 
Two cables, 19-in dia , heat-treated wire 
Two trusses, 22 ft deep, 59$ ft c to c , silicon steel 

By Eq. (125), N will always be greater than f. Substituting this 
minimum value in Eq. (164) or (164'), we obtain the upward or 
downward deflections at the quarter-points: 

d- 
a 384 

±./LV 
El \2) ' (165) 
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The deflections produced by temperature effects, or by a 

yielding of the anchorages, are given by Eq. (162'), upon sub¬ 
stituting for H the horizontal tension caused by the given 
influence. Substituting the expression from Eq. (156), we obtain, 

d"=B 
A L 

>•»’ ' 
(166) 

where the function defined by Eq. (129') and is given by 

Table I and the graph in Fig. 12. 
24. Straight Backstays (Type 2F).—If the stiffening truss is 

built independent of the cables in the side spans (Figs. 15, 16), 

Fig. 16.—Two-hinged Stiffening Truss with Straight Backstays. 
(Type 2F). 

the backstays will be straight and fi = o. Consequently all terms 

containing /1, yi, ni-~, or will vanish in Eqs. (125) to 
fi J 

(166) inclusive. 
The,side spans will then act as simple beams, unaffected by 

any loads in the other spans; and the main-span and cable 
stresses will be unaffected by any loads in the side spans. 

The denominator of the general expression for H (Eq. 125) 
will then reduce to the denominator of Eq. (127): 

ff=I+J? I r(l+8",)I f'sec> <“»* 
Equations (131), (134). and (145). will vahish. 

* See Footnote to Eq. 127. 
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The maximum value of H will be produced by a uniform 
load p covering the main span, and will be, by Eq. (135), 

Total H = .(168) 
5 N-n 

The bending moment at any section x of the main span will 
then be, by Eq. (140), 

Total M. . . (169) 

The greatest negative bending moment will be, by Eq. (143), 

Min. M— -D(k). . . . (170) 

The greatest positive moment is then given by Eq. (144'). 
or by, 

Max. M—Total M—Min. M. . . . (171) 

In the side spans, there will be no negative moments. The 
greatest positive moments will be, by Eq. (141), 

Max. Mi - Total Mi=%piXi(h — Xi), . . (172) 

exactly as in a simple beam. 
With load covering the entire span, the shears in the main 

span will be, by Eq. (147), 

Total V=$p(l-2x)(i—^J, . . . . (173) 

and, in the side spans, by Eq. (148), 

Total Vi = \pi(li-2Xi).(174) 

The maximum shears in the main span will be given by Eqs. 
(149), (150) and (151). In the side spans, the maximum shears 
will be, by Eq. (152), 

Max. Vi = \pih(i-?£j ,.(175) 

exactly as in a simple beam. 
The total length of cable will be, by Eq. (154), 

+£»2)+2I2 • sec 01, . . (176) 

and the temperature stresses are then given by Eqs. (156), (157) 
and (158). 
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Section VI.—Hingeless Stiffening Trusses 

(Types OF and OS) 

25. Fundamental Relations.—Hingeless stiffening trasses 
(Figs. 17, 18) are continuous at the towers; hence there will 
be bending moments in the trass at the towers. 

The moments and shears at any section in the stiffening truss 
will be the resultants of the values produced by the downward¬ 
acting loads (M' and V') and the upward-acting suspender 

Fig. 17.—Suspension Bridge over the Rhine at Cologne. 
(Type 05). 

Continuous Stiffening Girder. Eyebar Chains. Self-anchored. Rocker Towers. 
Span 60s feet. Erected 191s. 

forces (M, and F,). Equations (78), (79) and (80) will apply; 
but the continuity of the truss must be taken into account in 
calculating the respective moments and shears. 

If Mi and M2 are the bending moments at the towers pro¬ 
duced by the downward loads on the stiffening trass, and if Mo 
is the simple-beam bending moment at any section x, then the 
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resultant bending moment due to the downward loads acting on 
the continuous truss will be, 

M’-Mo+^Mi+yMz, . . . (177) 

in the main span, and, 

M'-Mo+QMua,.(1770 
« 

in the side spans. 
The upward-acting suspender forces will be uniform over 

each span. For any value of H, by Eq. (78), the upward pull 

will befl'f per lineal foot in the main span and H-%^ in the 
r lr 

side spans. Then, by the Theorem of Three Moments for uni¬ 
form load conditions, we find the moments at the towers (for 
symmetrical spans) to be, 

in which the coefficient of / is a constant defined by, 

• 2+2 irv 
e=—-—— , . . . 

3 + 2 tr 

(178) 

(i79) 

where i, r, and v are defined by Eq. (126). 
The simple-beam bending moment produced by the suspender 

forces is given by Eq. (81) as B y. Adding the correction for 
the end moments at the towers (Eq. 178), we obtain the result¬ 
ant suspender moments as, 

M,=H’(y-e-f),.(180) 

for any section in the main span; and, for any section in the side- 
spans, 

.... (x8r) 

where *1 is measured from the free end of the span, and yi is the 
vertical ordinate of the side cable below the connecting chord 
VA' (Fig. 18a). 
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Substituting (177), (177O, (180) and (181) in Eq. (79), we 
have, for bending moments in the main span, (Fig. 19), 

M = M0+l-^M1+-l-M2-H(y-e/), . . (182) 

and, for bending moments in the side span, 

M=M0+j^Mi,2-H (yt • efj. . . (183) 

If any span is without load, Mo for that span will vanish. 
The shears produced by the downward-acting loads will be, 

V'=Vo+M% tMl 
L 

in the main span, and 

V T T . Ml 
Vo+-,~, or 

11 
V' = Vo~, 

h 

(184) 

(185) 

in the side spans. In these equations, Vo denotes the simple- 
beam shears for the given loading. 

The shears produced by the upward-acting suspender forces 
will be 

V,=H(tan <t>—tana).(186) 

in the main span, and 

in the side spans. 
Substituting (184), (185), (186) and (187) in Eq. (80), we 

have, for resultant shears in the main span, 

Fs=Z7^tan fa- ■tan ai -8 (1 

(tan*—tana), . . (188) 

and, for resultant shears in the side spans, 

V=Vo±~^-H-(t3in<t>i-tanai-e£j. . (189) 

If any span is without load, Vo for that span will vanish. 
If the two towers are of equal height, then, in the main span, 
a—o. 
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26. Moments at the Towers (Types OF and OS).—The 
values of the end-moments Mi and M2, used in Eqs. (177) to 
(189), may be determined, for any given loading, by the Theorem 
of Three Moments. 

For a concentration P in the main span, at a distance kl from 
the left tower, we thus obtain, 

(190) 

(191) (3 + 2«0 (i + 2tr) 

The sum of these two end-moments will be, 

Mi+M2= .... (192) 
3 + 2tr 

and the difference will be, 

Mi-M2=-Plk{i-k)^$. . . . (193) 

For a concentration P in the left side span, at a distance kh 
from the outer end, the Theorem of Three Moments yields: 

m2=+pi7 
ir2(k—&) 

(3+air) (1 -t- 2ir) * 

For a uniform load covering the main span, we obtain, 

(i95) 

M\—M2— — 
pi2 

4(3+2 *>)' 

For a uniform load covering the left side span, we obtain, 

(196) 

,f _ piP 2ii*(x+ir) 
l~ 4 (3+2*r)(x+2irY 

ir3 
M2 = +El 

(197) 

(198) 
4 (3+2tr)(i+2tr)' 

For a uniform load covering all three spans, we obtain, 

.(.99) 
4 3+2*»' 

Mi=M2 
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27. The Horizontal Tension H.—The general formula 
(117) for the horizontal tension H is applicable to the continu¬ 
ous stiffening truss (Types OF and 05). 

Equation (118), for bending moments produced by the 
suspender forces, is now replaced by the expressions (180) and 
(181), and Eq. (119) becomes, 

m= -y+ef,.(200) 
for the main span, and 

*»=-yi+y|-e/.(20I) 

for the side spans. 
Substituting these values and integrating over all three spans, 

we obtain, as a substitute for Eq. (122), 

J^dx=^[($-4e+3e?) + 2^W-2ev+el). (202) 

Equations (120), (123), (124) and (124') are retained 
unchanged. Collecting all the values and substituting in Eq. 
(117), we obtain the expression for H in the continuous type of 
suspension bridge (in place of Eq. 125): 

H 

+i0i<-l+m+i.wfsaf 
The denominator of this expression is a constant for a given 

structure, and will henceforth be denoted by N. (If hinges are 
inserted at the towers, the coefficient of continuity e will be 
zero, and Eq. [203] reduces to Eq. [125]). 

28. Values of H for Special Cases of Loading.—In the last 
equation (203), the value of the numerator depends upon the 
loading in any particular case. Expressing M' as a function of x 
(Eq. 177), substituting the value of y given by Eq. (14), and 

f—4c+3C2+2ir{fy? +(? — 2ev) • (203)* 

See Footnote to Eq. (125). 



58 STRESSES IN SUSPENSION BRIDGES 

performing the integration as indicated, we find, for a single 
load P at a distance kl from either end of the main span, 

H-^-mv-wk-wvp, . . . (204) 

where N denotes the denominator of Eq. (203), and the function 
B(k) is defined by Eq. (129') and is given by Table I and Fig. 12. 

Fig. 18.—Moment Diagram for Continuous Stiffening Truss. 

(Type 05). 

Similarly, for a concentration Pi in either side span, at a 
distance kih from the free end, we obtain, 

H=^-B{ki)-l{ki-ki*)]-Pi. . (20 s) 

Plotting Eqs. (204) and (205), we obtain the ^-influence 
line, Fig. 186. 

If the main span is completely loaded, we obtain, by inte¬ 
grating Eq. (204), 

(206) 
N-n\s 4/ 
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If both side spans are completely loaded, we obtain, by 

integrating Eq. (205), 

If the main span is loaded for a distance kl from either tower, 

we obtain, from Eq. (204), 

H = 5lhn[m~5i{3-2k)k2\pl’ • • (2o8) 

where F(k) is defined by Eq. (133O and is given by Table I and 

Fig. 12. 

If either side span is loaded for a distance £1/1 from the free 

end, we obtain, from Eq. (205), 

. (209) 

where F(k 1) is the same function as defined by Eq. (1330- 

In the foregoing equations, N represents the denominator of 

Eq. (203). 

(If the stiffening truss is interrupted at the towers, the factor 

of continuity e = o, and the above formulas reduce to the cor¬ 

responding equations [129] to [135] for the two-hinged stiffening 

truss.) 

29. Moments in the Stiffening Truss.—With all three spans 

loaded, the bending moment at any section of the main span is 

given, very closely, by Eqs. (182) and (199), as, 

Total M=(\p-H-A-ty-{l-x)-e(\pP-H-f), (210) 

and, at any section of the side span distant xi from the free end 

by Eqs. (183) and (199), as, 

Total M(211) 

where e is defined by Eq. (179), and H is given by the combina¬ 

tion of Eqs. (206) and (207). 

The moments for other loadings must be calculated by the 
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general Eqs. (182) and (183), with the values of H given by Eqs. 
(204) to (209), and the values of Mi and M2 given by Eqs. (190) 
to (199). 

Influence lines for moments may be drawn as in the previous 
cases. For moments in the main span, Eq. (182) is written in 
the form, ' 

~M0+Mi~+M2*. 

M=-jzrtf-H •(y~ef)> • (2i2) 

thus giving the bending moments as (y—ef) times the intercepts 
M' 

obtained by superimposing the influence line for upon the 

influence line for H. This construction is indicated in Fig. 186. 
For moments in the side spans, the corresponding influence line 
equation is obtained from Eq. (183): 

For the continuous stiffening truss, the influence line method 
just outlined is not very convenient, as the M' influence line 
(Fig. 18b) is a curve for which there is no simple, direct method 
of plotting. 

A more convenient method is that of the Equilibrium Polygon 
constructed with pole-distance H, corresponding to Eq. (85) 
and Fig. 7. For the continuous stiffening truss, this construc¬ 
tion is modified as follows (Fig. 19): At a distance ef below the 
closing chord A'B', a base line AB is drawn, so that the cable 
ordinates measured from this base line will be (y—ef) and will 
therefore represent M, (Eq. 180). The equilibrium polygon 
A"MB" for any given loads is then constructed upon the same 
base line, with the same pole-distance H; the height A A" 
represents —Mi, the height BB" represents —M2, and the poly¬ 
gon ordinates below A"B" represent Mo] hence, by Eq. (177), 
the ordinates measured below the base line AB represent M'. 
Then, by Eq. (79), the intercept between the cable curve and 
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the superimposed equilibrium polygon, multiplied by E, will give 
the resultant bending moment M at any section. 

For a single concentrated load P, the equilibrium polygon 
A"MB" is a triangle, and the M intercepts can easily be scaled 
or figured. By moving a unit load P to successive panel points, 
we thus obtain a set of influence values of M for all sections. 

The corresponding construction in the side spans is also indi¬ 
cated in Fig. 19. 

30. Temperature Stresses.—The horizontal tension pro¬ 
duced by a rise in temperature of t° is given by, 

n> 
Fig. iq.—Equilibrium Polygon for Continuous Stiffening Truss. 

(Type 05). 

where N is the denominator of Eq. (203), and Lt is given by 
Eq. (154')- 

The resulting moments in the stiffening truss will be given, 
by Eqs. (180) and (181), as, 

M,= -Hr(y-ef),.(215) 

for the main span, and, 

M,-E,(yi.... (216) 

for the side spans. 
The vertical shears are given by Eqs. (186) and (187) as, 

V,= — 27«(tan <t>—tana), .... (217) 
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for the main span, and 

V, = —Hi^tan fa—tan ai —• • • (2I®) 

for the side spans. 
81. Straight Backstays (Type OF).—If the stiffening truss 

in the side spans is built independent of the cable (Fig. 20), the 
backstays will be straight and /i=o. Consequently, all terms 

containing/1, yi, »i=^, or v=^, will vanish in Eqs. (177) to 
h J 

(2x8), inclusive. 
On account of the continuity of the trusses, however, each 

span will be affected by loads in the other spans. 

Fig. 2a—Continuous Stiffening Truss with Straight Backstays. 

(Type OF). 

The denominator of the expression for H, Eq. (203), will 

become, 

where e, the factor of continuity, now has the value, 

2 
e=—.—-. 

3+2 vr 

Equation (183), for bending moments in the side spans, 
will become, 

M=M0+TMi,2+B&-ef, . . . (221) 
h n 

(.219)* 

(220) 

* See Footnote to Eq. (127). 
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and Eq. (189), for shears in the side spans, will become, 

V=V0 .... (222) 
n h 

For a concentration P\ in either side span, Eq. (205) becomes, 

. . (223) 

For a uniform load covering both side spans, Eq. (207) 
becomes, 

H=-^p~pil.(224) 
4 N-n 

For a uniform load in either side span, covering a length 
k\.l\ from the free end, Eq. (209) becomes, 

H=-^n(2-ki*)-ki*-pil,.(225) 

For a uniform load covering all three spans, Eq. (211), for 
the bending moments in the side spans, becomes 

Total M-\pxi(h—xi)—^{\pP—Hj). . (226) 
n 

Equation (216), for temperature moments in the side spans, 
becomes, 

M,= +Hr^,.(227) 
li 

and Eq. (218), for the shears, becomes, 

Vt— +Hfy..(228) 
n 

Section vn.—Braced-chain suspension Bridges 

32. Three-hinged Type (32?).—The three-hinged type of 
braced-chain suspension bridge is statically determinate. The 
suspension system in the main span is simply an inverted three- 
hinged arch. Hie equilibrium polygon for any applied loading 
will always pass through the three hinges. The fl-influence 
line for vertical loads reduces to a triangle whose altitude, if 
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the crown-hinge is at the middle of the span and if the correspond¬ 
ing sag is denoted by /, is, 

. 

The determination of the stresses is made, either analytically 
or graphically, exactly as for a three-hinged arch. 

Figure 21 shows the single-span type, in which the backstays 
are straight (Type 3J3F). If the lower chord is made to coincide 
with the equilibrium polygon for dead load or full live load, the 
stresses in the top chord and the web members will be zero for 
such loading conditions. These members will then be stressed 
only by partial or non-uniform loading. Under partial loading, 

Fig. 21.—Three-hinged Braced Chain with Straight Backstays. 

(Type 3BF). 

the equilibrium polygon will be displaced from coincidence with 
the lower chord: where it passes between the two chords, both 
will be in tension; where it passes below the bottom chord, 
this member will be in tension and the top chord will be in com¬ 
pression. If the curve of the bottom chord is made such that 
the equilibrium polygon will fall near the center of the truss or 
between the two chords under all conditions of loading, the 
stresses in both chords will always be tension. 

Figure 22 shows the three-hinged braced-chain type of suspen¬ 
sion bridge provided with side spans (Type 3BS). The stresses 
in the main span trusses are not affected by the presence of the 
side spans, and are found as outlined above. The stresses in 
the side spans are found as for simple truss spans of the same 
length, excepting that there must be added the stresses due to 
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the top chord acting as a backstay for the main span. This top 
chord receives its greatest compression when the span in ques¬ 
tion is fully loaded, and its greatest tension when the main span 
is fully loaded. 

Temperature stresses and deflection stresses in three-hinged 
structures are generally neglected. 

^_ 

r—
1 

i i 1 1 1
_

 
1 1 l 1 1 1 <s

* 1 1 1 1 I l J
_

 

1 1 1 1 

_
i_

 1 

Fig. 22.—Three-hinged Braced Chain with Side Spans. 
(Type 3BS). 

33. Two-hinged Type (2J3).—This system (Fig. 23) is static¬ 
ally of single indetermination with reference to the external 
forces, so that the elastic deformations must be considered in 
determining the unknown reaction. 

The structure is virtually a series of three inverted two- 

Fig. 23.—Two-hinged Braced Chain with Side Spans 
(Type 2BS). 

hinged arch trusses, having a common horizontal tension H 
resisted by the anchorage. 

The value of H may be determined by the same method as 
was used for writing Eqs. (1x6) and (117). In this case, the 
general equation for H takes the form, 

H 

* 

• • (330) 
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where Z denotes the stresses in the members for any external 
loading when II — o (i.e., when the system is cut at the anchor¬ 
ages) ; u denotes the stresses produced under zero loading when 
H=i; l denotes the lengths of the respective members and A 
their cross-sections. The summations embrace all the members 
in the entire system between anchorages. 

The stress in any member is given by adding to Z the stress 
produced by H, or, 

S=*Z+H-u.(231) 

For a rise in temperature, the elastic elongations 
Zl 

EA 
are replaced 

by thermal elongations u>tl, and Eq. (230) becomes, 

„ _A_ 2u>tul 

2*ea 

(232) 

For uniform temperature rise in all the members, Eq. (232) 
may be written, 

Htr- 
wtL 

yM2/1 
2*ea 

(233) 

where L is the total horizontal length between anchorages. 
Equations (230) to (233) may also be used for the ordinary 

types of suspension bridge with straight stiffening truss (Types 
2F and 25) if the summations are applied to the individual 
members of the stiffening truss and to the segments of the cable 
between hangers. (The hangers and towers may also be 
included.) This will give more accurate results than the ordi¬ 
nary method, as it takes into account the varying moments of 
inertia of the stiffening truss and any variations from parabolic 
form of cable. 

A graphic method of determining H is to find the vertical 
deflections at all the panel points produced by a unit horizontal 
force (H -1) applied at the ends of the system. The resulting 
deflection curve will be the influence line for H. If the ordinates 
of this curve are divided by the constant 6 (the horizontal dis¬ 
placement of the ends of the system produced by the same force 
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H=i), they will give directly the values of H produced by a 
unit vertical load moving over the spans. 

34. Hingeless Type (OB).—This type of suspension bridge 
(Fig. 24) is threefold statically indeterminate, the redundant 
unknowns being the horizontal tension H and the moments at 
the towers. Instead, the stresses in any three members, such as 
the members at the tops of the towers and one at the center of 
the main span, may be chosen as redundants. Let the stresses 
in the three redundant members under any given loading be 
denoted by Xi, X2, X3. When these three members are cut, 
the structure is a simple three-hinged arch; in this condition, 
let Z denote the stresses produced by the external loads, and let 
«i, wu and «3 denote the stresses produced by applying internal 

Fig. 24.—Hingcless Braced Chain Suspension Bridge. 

(Type OB.) 

forces Xi = 1, X2 = i, and X3 = 1. Then, when the three 
redundants are restored, the stress in any member will be, 

S=Z+XiUi-\-X2U2-\-X3ii3. . . . (234) 

The restoration of the redundant members must satisfy the 
three conditions, 

ST'SUil ■sr^Su2l 
2*£z~°’ 

, 'sr'Suzl 
and Z*EA=0’ (23s) 

which, with the aid of Eq. (234), may be written: 

sr^Ztiil 

2*~ea +*2^~ 
sr'Ziiil 
2*~ea 

. v ^Ul«2l 

+Xll4 EA +*2E • (236) 

\r\Zu3l 
2* EA 

, v V* «1«8* 
+x'Xea +*»21r «>2g -• 
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The redundant members are to be included in these summa¬ 
tions. 

The solution of these three simultaneous equations will 
yield the three unknowns X\, X2 and X3, and their sub¬ 
stitution in Eq. (234) will give the stresses throughout the 
structure. 



CHAPTER II 

TYPES AND DETAILS OF CONSTRUCTION 

1. Introduction.—The economic utilization of the materials 

of construction demands that, as far as possible, the predomi¬ 

nating stresses in any structure should be those for .which the 
material is best adapted., The superior economy of steel in 
tension an^ the uncertainties involved in the design of large¬ 
sized compression members point emphatically to the conclusion 
that the material of long-span bridges, for economic designs, 
must be found to the greatest possible extent in tensile stress. 
This requirement is best fulfilled by the suspension-bridge type. 

The superior economy of the suspension type for long-span 
bridges is due fundamentally to the following causes: 

1. The very direct stress-paths from the points of loading to 
the points of support. 

2. The predominance of tensile,stress* 

3. The highly increased ultimate. j:esistance-oLstee] m the 
form of cable wire. 

For heavy railway bridges, the suspension bridge will be 

more economical than any other type for spans exceeding about 
1500 feet. As the live load becomes lighter in proportion to the 
dead load, the suspension bridge becomes increasingly economi¬ 
cal in comparison with other types. For light highway struc¬ 

tures, the suspension type can be used with economic justification 
for spans as low as 400 feet. 

Besides the economic considerations, the suspension bridge 
has many other points of superiority. JTt *is lights aesthetic, 

graceful; iEprpvides a rciadway^atjow rievatiomand it has a low 
center of win^l pressure; fo dispenses with jalsew^pfc^and is 

easily constructed, using materials that are easily transported] 
09 
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there is no danger of failure during erection; and after com¬ 

pletion, it is the safest structure known to bridge engineersT 

The principal carrying member is the cable, and this has a 

vast reserve of strength. In other structures, the failure of a 

single truss member will precipitate a collapse; in a suspension 

Bridge, the rest of the structure will be unaffected. In the old 

Niagara Railway Suspension Bridge (Built 1855)', the chords of 

the stiffening truss were broken (due to overloading) and repaired * 

repeatedly, without interrupting the railroad traffic. 
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There are two main classes of suspension bridges: those with 
suspended stiffening truss (Figs. 25 to 36), and those with over¬ 
head braced-chain construction (Figs. 37 to 41). For purpose of 
reference, there is given here (page 71) a comprehensive system 
of classification of suspension bridges, with mnemonic type 
symbols and outstanding examples. 

2. Various Arrangements of Suspension Spans.—The sim-_ 
plest form of. suspension bridge is a single span (Type 2F or 3F) 

Jiat— -I —or „ 7. . >«-4-_ZZ_*- 

!*_._J&SL_* 

Fig. 26.—Brooklyn Bridge. 

(Type SSD). 

Elevation, Plan, and Cross-section. 

with the cable carried past the towers as diagonal backstays 
(Figs. 27’, 29). If side spans are added (Fig. 28), they are inde¬ 
pendent of the cable and of the main span. The single-span 
suspension bridge may be built either with or without a stiffen¬ 
ing truss (Fig. 27). 

The next form is the bridge having three suspended spans 
(Types 05, 15, 25, 35). In this form, stiffening trusses (or 
girders) are indispensable. Only two towers are required, and 
each side span is about one-half the length of the main span 
(Figs. 10, 17, 25, 30, 33, 35). 

If the main span is provided with a center hinge (in addition 
to end hinges), the three-span structure becomes statically 
determinate (Type 35, Fig. 26). The. side spans are suspended 
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from the cable, but carry their loads as simple beams without 

affecting the stresses in the cable or in the main span; on the 

other hand, any load in the main span or tension in the cable 

will produce relieving stresses in the side spans. 

Multiple-span suspension construction, with more than two 

towers, is not efficient; the great economy of the suspension 

type is lost. As the number of spans increases, the value of the 

cable tension H is proportionately reduced, and more of the 

ioacfis thrown upon the stiffening trusses; the bending moments 

arid the deflections are thus greatly increased. Examples of 

this type are the Lambeth Bridge, London, with three equal 

spans of 280 feet; and the former Seventh St. Bridge, Pittsburgh. 

To secure greater efficiency in multiple-span suspension designs, 

the tops of the towers may be connected together with ties, or 

rigid braced towers may be used. The aim is to minimize the 

tower-top deflections from unequal loading of the spans. 

A suspension bridge of two spans with a single tower would 

not be economical. The tower would have to be twice the 

normal height to give the desired sag-ratio for the cables. 

3. Wire Cables vs. Eyebar Chains.—One of the first ques¬ 

tions to be decided in the design of a suspension bridge is the 

choice between a wire cable and a chain of eyebarg (or flats)_for 

the principal carrying member. The ktter enables the bracing. 

for_ the prevention of deformation under moving load to be 

incorporated in the suspension system; the other ordinarily 

requires a separate stiffening truss for the reduction of these 

deflections. 

The earliest suspension bridges were built with chains. At 

first (1796) forged wrought-iron links were employed; then (1818) 

wrought-iron eyebars were introduced; and later (1828) open- 

hearth steel eyebars came into use. John A. Roebling established 

the use of parallel wire cables (about 1845). Following his time, 

wire cables were used in practically all suspension bridges. (Two 

notaSle exceptions were the Elizabeth Bridge at Budapest, 

Fig. 34, and the Rhine Bridge at Cologne, Fig. 17.) With the 

development of heat-treated eyebars and the adoption of this 

new material for the Florianopolis Bridge (1922-5), the economic' 
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competition between wire cables and eyebars has been reopened. 
Heat-treated eyebars have since been adopted for three suspen¬ 
sion bridges (of 430-foot and 442-foot spans) at Pittsburgh, and 
for two 700-foot spans (of the Florianopolis type) over the Ohio 
River. On the other hand, wire cables have since been adopted 
for the 1500-foot Hudson River span at Poughkeepsie, the 
1850-foot span at Detroit (Fig 15), the Mount Hope Bridge of 
1200-foot span in Rhode Island, the 700-foot and 689-foot spans 
at Portsmouth and Steubenville over the Ohio River, the 
948-foot span at Grand’ Mere, Quebec, and the 3500-foot 
Hudson River span at New York. 

In the competitive bidding on the Hudson River Bridge at 
New York (1927), the wire design won by a margin of $2,000,000, 
indicating that the eyebars cannot compete with wire cables for 
extremely long spans The awards of the contracts on the 
Ohio River bridges at Point Pleasant and St Mary’s indicate 
that high-tension heat-treated eyebars, at present (1928) relative 
prices and working stresses, are more economical than wire cables 
for spans as short as 700 feet It is difficult to predict the relative 
economy of the two materials for span lengths between these 
limits (700 feet and 3500 feet) without further bidding competi¬ 
tions Any conclusions are subject to revision with changes in 
relative working stresses and with fluctuations in unit prices. 

The present accepted practice allows design stresses of 80,000 
to 84,000 pounds j>er square inch in wire cables, and.45,000 to 
50,000 pounds per square inch in high-tension heat-treated 
eyebars. The specified minimum ultimate strengths are 215,000 
for galvanized wire and 105,000 for the eyebars, and the specified 
minimum yield points are 144.000 for the wire and 75,000 for the 
eyebarsj These values indicate that,"for a fair comparison, the 
respective allowable stresses for the two materials should be 
approximately in the ratio of 2 to 1. 

The most recent development in connection with wire cables 
has teen the introduction (in 19287 of heaP-treatedf Bridge wire. 
The heat-treatment raises the minimum yield point"from 144,000 
to 190,000, the ultimate strength from 215,000 to 220,000, and 
the modulus E from 26} million to 30 million pounds per square' 
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inch. The heat-treated wire has already been adopted for the 
Mount Hope and Detroit Bridges. 

Since eyebar chains are ordinarily 2 to 2§ times as heavy as 
the alternative wire cables, the respective unit prices for the two 
materials (delivered and erected) must be approximately in the 
inverse ratio for economic competition. 

Aside from the economic comparison, the principal arguments 
in favor of wire construction are the following: Wire cables are 
self-supporting during erection, and all the problems involved^ 
have been worked out and successfully demonstratedJjL_the 
longest suspension spans.. The method of stringing to equal 
sags automatically secures uniform tensions. With the protec¬ 
tion of wire wrapping, supplemented (in coastal locations) by the 
use of galvanized bridge wire, demonstrated assurance against 
any possibility of corrosion is secured. \^ire cable bridges have 
shown long endurance and high reserve capacity for loadings 
greatly exceeding the original design loads. The smaller weight 
of wire cables makes them the logical material for very long spans. 
In addition, the following points are cited against eyebar construc¬ 
tion: high secondary stresses in the bars, unequal stressing of the 
bars, difficulty of inspection and painting between the eyebar 
heads and in the pin-holes, and untried problems in the erection 
of eyebar chains for very long spans. 

The principal advantages cited in favor of eyebar construction 
are: Where two designs are of equal cost, the heavier bridge is to 
be preferred as giving a more rigid structure. For railway 
bridges, the eyebar construction with its larger cable section and 
consequently greater rigidity is especially advantageous. Pin- 
connected eyebars permit speedier erection, especially in bridges 
which would require large-sized cables. Finally, the eyebar 
construction facilitates the adoption of the Florianopolis type or 
other type in which the cables and the stiffening system are com¬ 
bined in whole or in part. 

In their design for the Sydney Harbor Bridge (1923), Robinson 
and Steinman developed plans and details for combining wire 
cables with a continuous stiffening truss of the Florianopolis 
principle. Thus far, however, there has been no opportunity of 
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demonstrating the feasibility of integrally connecting the stiffen¬ 
ing system to wire cables. 

4. Methods of Vertical Stiffening.—On account of the 
deformations and undulations under moving load, unstiffened 
suspension bridges should not be used for ordinary spans. 

If no stiffening truss is provided, the distortions and oscilla¬ 
tions of the cable may be limited by using a small sag-ratio; 
by making the floor deep and continuous; or by employing a 
latticed railing as a stiffening construction (Figs. 27, 33). 

Another method of stiffening the suspension bridge is by the 
introduction of diagonal stays between the tower and the road¬ 
way (Fig. 26). These, however, have the disadvantage of making 
the stress-action uncertain, and of becoming either overstressed 
or inoperative under changes of temperature; moreover, they 
introduce unbalanced stresses in the towers. 

In recent French construction, diagonal stays are utilized, 
but the redundancy of members is more or less remedied by 

Fig. 29.—Suspension Bridge at Cannes-Ecluse. 

(Type 2FD). 

Over the Yonne River (Prance) Span 760 feet Built 1900 Wire Rope Cables. 
Diagonal Stays 

omitting the suspenders near the towers (Fig. 29). The inde¬ 
terminateness is thus relieved, and the cable stress is reduced. 
This arrangement may be used to advantage in the reconstruc¬ 
tion of weak suspension bridges. 

A different method of vertical stiffening, known as the Ordish- 
Lefeuvre System, dispenses with cable and suspenders; it con¬ 
sists of diagonal stays running from the tops of the towers and 
meeting at a number of points along the span, so as to provide a 
triangular suspension for each point. These diagonal stays aA 
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held straight by hangers from a light catenary cable overhead. 
This system was used for a bridge at Prague (1868) and for the 
Albert Bridge in London (1873). It proved to be uneconomical 
and unsatisfactory. A modified form, known as the Gisclard 
System, was devised for a bridge at Villefranche in 1907 and 
has since been copied for several other spans in France, despite 
its structural and aesthetic drawbacks. 

Practically all modem suspension bridges are stiffened by 
means of a truss construction, either separate (Figs. 25-36) or 
incorporated in the cable system (Figs. 37-41). The different 
types of stiffening trusses and braced-chain designs will be 
discussed in separate sections. 

6. Methods of Lateral Stiffening.—To give the structure 
lateral stiffness against wmd forces, the most effective means is a 
complete syfetem of lateral bracing. If this bracing is in the plane 
of the top or bottom chords of the stiffening truss, these chords 
may act as members of the lateral systems (Figs. 30, 36); 
otherwise, separate wind-chords must be provided (Figs. 38, 

39, 4o). 

The wind bracing just described is sometimes supple¬ 
mented by land-ties or wind-anchors, i.e., ropes connecting 
points on the roadway to the piers (Fig. 38) or to points on 
shore. A horizontal suspension system may thus be formed 
(Fig. 38). 

Another device for securipg lateral stiffness is by building 
the^ cables and suspenders-jo. inclined planes (Figs. 27, 30). 
This “ cradling ” of-the-^cables. however, does not appreciably 
increase the lateral stability of the structure if there i§ but 
one cable on each side. _Jf two or more cables of different 
inclinations are provided on each side (Figs^ 26, 32)^ lateral 
stability is secured, but at the sacrifice of equal division of cable 
stresses. 

Cradled cables, even if they do not prevent lateral deflection, 
will help~tfl bring the resulting oscillations* more quickly "to 
rest—an jmporRmtjdesidefafum in long spans. 

6. Comparison of Different Types of Stiffening Truss.— 

As a result of a comparative estimate of different types of stif- 
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fened suspension bridges, the following relative weights of cable 
and truss (in main span) were obtained: 

Type 

Relative 

Weight 

of Cable 

Relative 

Weight 

of Truss 

Relative 

Combined 

Weight 

05 99 103 102 

15 hi 107 IOQ 

25 100 100 100 

2 F IOI S9 95 
3 F 103 82 

! 
92 

The hingeless type (05) (Fig. 17), gives the most rigid struc¬ 
ture, as a result of the continuity of the stiffening truss over the 
towers. The deflections will be about l less than those of a 
two-hinged stiffening truss of the same dimensions. This 
greater rigidity is secured at an expense of only 2 per cent increase 
in the cost of the structure. 

The one-hinged type (IS) is the least desirable construction. 
It has the highest cable stresses and chord stresses of any type 
of stiffening truss. It will cost more than any other type; and 
the large variation in chord stresses, the abrupt reversals of 
shear, and the lack of rigidity are serious disadvantages. 

The two-hinged types (25 and 2F) are widely used and are 
probably the most efficient types, all things considered. They 
are more economical than the continuous types, and are simpler 
to figure. They are far more rigid than type SF. The hinges 
are located in the towers, where they are least objectionable. 

Comparing types 25 and 2F, we find that leaving the side 
spans free (straight backstays, Type 2F) (Fig. 31) reduces the 
balding moments in the main span. The main-span truss 
weight is thus reduced by about 11 per cent, without sensibly 
affecting the cable weight. For lightness of truss, type 2F is 
exceeded only by the three-hinged suspension bridge. Type 2F 
is also more rigid than type aS. 

Suspending the side spans (Type 25) (Figs. 30,35) makes the 
cable more flexible, thus throwing more load on the stiffening 
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truss. As a result, about n per cent is added to the weight of 
the truss in the main span, and the cable stress is slightly relieved. 
The increase in cost of the main span is generally more than 
offset, however, by the saving in the side spans as a result of 
their suspension. Without any addition to its weight, the cable 
relieves the side spans of their full dead load and nearly all of 
their live load. Type 25 will consequently be more economical 
than 2F or 3F unless the conditions at the site are favorable to 
cheap, independent approach spans (Fig. 31). Another advan¬ 
tage of suspended side spans is the dispensing with falsework for 
their erection (Fig. 50). 

The three-hinged type (3F) is determinate for calculations. 
The addition of the center hinge slightly increases the cable 
stress, but effects a small reduction in weight of stiffening truss. 
This type is little used on account of its lack of rigidity and other 
disadvantages arising from the hinge at mid-span. Inter¬ 
mediate hinges are troublesome and expensive details, partic¬ 
ularly in long spans; besides augmenting the deflections, they 
cause sudden reversals of shear under moving load, and consti¬ 
tute a point of weakness and wear in the structure. There is 
also a large waste of material in the minimum chord sections 
near the hinges which, in many cases, will offset the theoretical 
reduction in the weight of the stiffening truss. Furthermore, a 
center hinge conduces to a serious distortion of the cable from the 
ideal parabolic form, with a resulting overloading of some of the 
hangers. In the case of the Brooklyn Bridge (Fig. 25), the center 
hinge or slip joint has caused excessive bending stresses in the 
cable at that point, and the breaking of the adjacent suspenders; 
120 suspenders near the hinge had to be replaced by larger 
rods. 

7. Types of Braced-Chain Bridges.—A stiffening construc¬ 
tion incorporated in the suspension system may be used instead 
of the straight stiffening truss at roadway level. The former 
construction, as a rule, involves the use of eydbar chains instead 
of wire cables (Figs. 37, 38, 40, 41). 

A braced-chain suspension bridge is virtually an inverted 
arch in which the ends are capable of restricted horizontal move- 
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ments. The stresses are the same as those in an arch, but with 
opposite signs; the principal stress is tension, instead of com¬ 
pression. 

Braced-chain bridges may be classified as to the number of 
hinges (OB, Fig. 41; 2B, Fig. 39; 3B, Fig. 38); or as to outline 
of the suspension system (Parabolic Top Chord, Figs. 37, 39; 
Parabolic Bottom Chord, Fig. 38; Parabolic Center Line, Fig. 40; 
Parallel Chords, Fig. 41). 

If the suspension system has a parabolic top chord and a 
straight bottom chord (Type 2BH; Type 3B UH, Fig. 37) it 
corresponds to a spandrel braced arch. The Lambeth Bridge, 
London, is an example. The top chord, like a cable, carries the 
entire dead load. If the live load is not too great in proportion, 
the top chord will never have its tensile stresses reversed; it 
may then be built as a flexible cable (Lambeth Bridge) or chain 
(Frankfort Bridge, Fig. 37). The bottom chord members suffer 
reversals of stress, hence they must be built as compression 
members. For erection, the diagonals should be omitted until 
all the dead load and one-half the live load are on the structure 
at mean temperature; this procedure will minimize the extreme 
stresses in bottom chord and web members. The advantage of 
making the bottom chord straight is to save hangers and extra 
wind chords. 

To avoid having very long diagonals near the ends of the 
span, the bottom chord may be bent up toward the towers 
(Type 2BF, Fig. 39). This construction has the advantage of 
maximum truss depth near the quarter-points where the bending 
moments are also a maximum. The main part of the lower 
chord remains at the roadway level, thereby saving hangers and 
extra wind chords over that length. 

If the bottom chord is made parabolic, it becomes the principal 
carrying member. This outline is best adapted for three-hinged 
systems (Type 3BL). A notable example is the former Point 
Bridge at Pittsburgh (Fig. 38). In this structure, the top chord 
consists of two straight segments, intersecting the bottom chord 
at ends and center. Since the bottom chord is the equilibrium 
curve for dead load, there are no dead-load stresses in the top 
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chords or in the web members. The top chords must be made 
stiff members, as they are subject to reversals of stress. This 
form of suspension bridge (Type 3 BL) is statically determinate 
and easily figured. It avoids the use of long diagonals required 
in the spandrel braced types (2B V, Fig. 39; 2BH; SBUH, Fig. 
37), but it requires the addition of longitudinal and lateral stiffen¬ 
ing in the roadway. 

Instead of being straight lines (Fig. 38), the two top-chord 
segments may be curved. In a system proposed by Eads, they 
are made convex upward. 

To avoid reversals of stress in the chord members, a form 
known as the Fidler Truss may be used. In this form (Type 
SBC), both chords are concave upward; and the line midway 
between top and bottom chords is made parabolic, so that the 
two chords will have equal tensions under dead load and uni¬ 
form live load. An example of this form is Lindenthal’s Second 
Quebec Design (Fig. 40). The outlines of the chords are obtained 
by superimposing the two equilibrium curves for total dead load 
plus live load covering each half of the span in turn. 

For two-hinged systems (Type 2 BF) a crescent-shaped truss 
may be used. The top and bottom chains meet at common 
supports on the towers, where they are connected to single 
backstays. There are no examples of this type. 

If the top and bottom chains are kept parallel, we have 
either Type 2BP or Type OBP (Fig. 41), according as the truss 
bracing is interrupted or continuous at the tower. Both of these 
types are indeterminate, and may involve some uncertainty of 
stress distribution. Unless the tower and anchorage details are 
properly worked out, there is danger of one of the parallel chains 
becoming overstressed or inoperative. Examples of these types 
are Lindenthal’s Seventh St. Bridge at Pittsburgh (Type 2BP) 
and his Hudson River Bridge design (Type 0BP, Fig. 41). 

An important advantage of the braced-chain system of con¬ 
struction over the straight stiffening truss is the greater flexi¬ 
bility of outline, with the possibility of varying the truss depths 
for maximum efficiency. By having the greatest depth of 
bracing at the quarter points of the span, where the maximum 
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moments occur, the stiffness of the bridge with a given expendi¬ 

ture of material is greatly increased; and by using a shallow 

depth along the middle third of the span, the temperature stresses 

are reduced. 

The braced-chain construction (Types 2BV, 2BH, or 3J5U) 
saves one chord of the truss, as the cable itself forms the upper 

chord. 

Advantages of the suspended stiffening truss (Figs. 25-36) 

are more graceful appearance, dispensing with extra wind chords, 

lower elevation of surfaces exposed to wind, less live-load effect 

on hangers and cables, simpler connections, easier and safer 

erection. 

In addition, the braced-chain and suspended-truss types 

carry with them the respective advantages of eyebars and wire 

cables, unless the practically untried combination of overhead 

bracing with wire cables is adopted. 

8. Economic Proportions for Suspension Bridges.—The 

general ratio of side spans to main span is about j for straight 

backstays, and about i for suspended side spans. Shorter 

ratios tend to make the stresses or sections in the backstays 

greater than in the main cable. The length of side span is also 

controlled by existing shore conditions, such as relative eleva¬ 

tions and suitable anchorage sites. . 

The economic ratio of sag to span of the cable between 

towers is about J if The~backstays are straight and about § if the 

side spans are suspended. (See the author’s book “Suspension 

Bridges and Cantilevers.”) For light highway and foot-bridges, 

the sag-ratio may be made as low as A to A. 

For efficient lateral stiffness the width, center to center of 

outer stiffening trusses or wind chords, should preferably not be 

Iww than about *Vth of "the*span. 

The proper depth of stiffening truss is determined by the 

degree of rigidity desired. Reducing the depth diminishes the 

cost. For a railroad bridge of ordinary span-length, the truss 

depth (at the quarter points) should not be less than about Vxth 

of the span, or the deflection gradients will exceed z per cent, 

(See “Suspension Bridges and Cantilevers.”) For highway 
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bridges, the depth may be made as low as sVth to i^th of the span, 
for spans up to 1000 feet; Virth to Vath of the span, for spans up 
to 2000 feet; vVth to rioth of the span, for spans up to 3000 
feet; and the stiffening trusses may be dispensed with for longer 
spans. The increasing ratio of dead-load to live-load reduces 
the need for extraneous stiffening. 

Suspension spans up to 10,000 feet may be regarded as feasible. 
The bridge under construction (1927-1932) over the Hudson 
River at New York has a span of 3,500 feet, and the proposed 
bridge over the Narrows at New York will have a span exceeding 
4500 feet. 

9. Arrangements of Cross-sections-—The unit of suspension 
bridge design is the vertical suspension system, consisting of a 
vertical (or slightly inclined) plane. 

Since the suspension systems are above the roadway, their 
number is limited; they seldom exceed two (Figs. 27, 30, 32, 
37-41). In wide bridges having a number of roadways* four 
suspension systems may be provided (Figs. 26, 36). 

The main carrying element in each suspension system may be 
a single cable (Figs. 26, 36), two cables side by side (Figs. 27, 32), 
two cables superimposed,, or a group of cables nr wire ropes 
(Figs. 27, 29,30); or it may consist of a single chain of bars (Figs. 
28, 37), two chains simply superimposed (Figs. 33, 34, 39), or 
two chains connected by web members to make a vertical stiff¬ 
ening system (Figs. 38, 40, 41). 

There is generally one stiffening truss for each suspension 
system, and in the same plane; hence, there are ordinarily two 
"(Figs. 30,32,37-41), and at most four stiffening trusses (Fig. 36). 
An exception is the Brooklyn Bridge (Fig. 26), having six stiff¬ 
ening trusses for four cables; this, however, has proved to be an 
unsa tisfactory and inefficient arrangement. 

Between the stiffening trusses are the roadways, generally 
on a single deck (Figs. 27, 30, 33, 34, 37~4o). Sometimes two 
decks are provided, in order to provide the fequired number of 
traffic-ways (Figs. 26,32,36,41). Where two decks are used, the 
railways are best placed below and the vehicular roadways 
above (Fig. 41). In the Williamsburg Bridge (Fig. 32), a 
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transverse truss is employed to carry the inside floorbeam 

reactions to the two outside suspension systems. 

The floorbeams either terminate at their connections to the 

outer suspension systems (Figs. 26, 27, 30, 37-40); or they 

extend beyond as cantilever brackets to carry outside sidewalks 

or roadways (Figs. 32, 36, 41). The latter arrangement saves 

floorbeam weight; reduces width of towers, piers and anchorages; 

and helps in the separation of different traffic-ways. In very 

long spans, the first arrangement (with all roadways inside) 

may be necessary in order to maintain the requisite width between 

trusses for lateral stiffness. 

Where there are four suspension systems, the floorbeams 

may be made continuous for greater stiffness (Fig. 36); or they 

may be provided with hinges to eliminate the indeterminateness. 

10. Materials used in Suspension Bridge;.—The stiffening 

trusses are generally built of structural steel, but silicon steel or 

other alloy steels may be used; and for minor structures, timber 

trusses have been employed. 

The cables are generally made of galvanized steel wires 

having an ultimate strength of 2x5,000 to 230,000 pounds per 

square inch, and an elastic limit as high as 144,000 pounds per 

square inch, or 190,000 in. heat-treated wire. 

The suspenders are generally galvanized steel ropes. These are 

manufactured in diameters ranging from x to 3J inches, and 

have a tested ultimate strength given by 80,000X (diameter)2. 

In smaller bridges (Figs. 29, 30), the cables may be made of 

galvanized steel ropes or rope strands instead of parallel wires. 

The towers are generally built of structural steel (Figs. 30, 31, 

35, 37, 38, 41); although stone (Figs. 25, 27, 29, 33), concrete, 

and timber have been used., 
Cast steel is used for all castings, such as saddles (Figs. 32,33), 

cable bands (Figs. 32, 36), strand shoes (Figs^l, 36), anchorage 

knuckles (Figs^32733), arri-andior Shoes (Figs. 33,37,38J. Sus-,_ 

pender sockets~~(FIgs, 32, 36) jure made by drop-forging and 

machining. 

If eyebar chains are adopted instead of wire cables, special 

steels may advantageously be employed. The chains for the 
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Elizabeth Bridge at Budapest (Fig. 34) were made of open-hearth 

steel with 70,000 ultimate strength. Nickel-steel eyebars with 

100,000 ultimate strength were to be used for Lindenthal’s 

Manhattan Bridge design (1902), and were adopted for the Rhine 

Bridge at Cologne, 1915 (Fig. 17). Since 1922, a more economical 

material has been available, in the form of high-tension heat- 

treated carbon-steel eyebars, with 75,000 elastic limit, 105,000 

ultimate, and 5 per cent elongation. This material received 

its first application in the Florianopolis Bridge in Brazil (1114-foot 

span, 1922-6; Robinson and Steinman, Consulting Engineers), 

and has since been adopted in the 700-foot spans over the Ohio 

River at Point Pleasant (1928) and St. Mary’s (1929). A mild 

grade of the heat-treated eyebars, having 50,000 elastic limit, 

80,000 ultimate and 8 per cent elongation, was adopted for the 

three self-anchored suspension bridges over the Allegheny River 

at Pittsburgh (1926-1928). 

11. Wire Ropes.—Calvanized steel ropes used for suspenders 

and for small bridge cables (Figs. 29, 30), are manufactured in 

diameters ranging from i, to 3) inches. Each rope consists of 

7 strands, each strand containing 7, 19, 37 or 61 wires; the 

wires are twisted into strands, in the opposite direction to the 

twist of the strands into rope, the angle of twist being about 

180. The weight of the rope in pounds per lineal foot is 

1.68X (diameter)2. 

The strength of a twisted wire rope is less than the aggregate 

strength of the individual wires. The spiral wires are stressed 

about 4 or 5 per cent higher than the mean stress per square inch 

in the rope, and the center wire is stressed 15 per cent higher 

than the spiral wires. The tested ultimate strength of galvanized 

steel suspension bridge rope is given by 80,000 X (diameter)2. 

When twisted wire ropes are used for cables, care must be 

observed, when applying the fundamental design formulas, to 

allow for the reduced elastic coefficient (£) of this material; it is 

only about f of the value of E for structural steel. 

The coefficient of elasticity (E) of a single rope strand with an 

angle of twist of 18° is 85 per cent of E for parallel wires, or about 

24,000,000. The coefficient of elasticity (E) of a twisted wire 
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rope composed of 7 or more strands is 85 per cent of E for a 

single strand, or about 20,000,000. 

Twisted wire ropes have a large initial stretch under load, 

on account of the spiral lay of the wires and strands. Conse¬ 

quently, at small loads, te^ts show a high rate of stretch yielding 

a modulus of elasticity (E) as low as 10,000,000. After the 

initial stretch has been taken up (at a unit stress of about 20,000 

pounds per square inch), the rate of elongation is considerably re¬ 

duced, yielding a value of 20,000,000 for the true elastic coefficient 

(E). The lower values of E (10,000,000 to 15,000,000) are to be 

used in estimating the dead-load elongation of the cable (if com¬ 

posed of wire ropes), and the higher value (20,000,000) should 

be used in figuring live-load and temperature stresses. 

On account of the high and variable elongations, including 

the influence of time, suspenders and cables made of wire ropes 

should preferably be provided with screw and nut adjustments to 

regulate their lengths to the assumed deflections and elevations. 

Cables may be built either of twisted wire ropes or of parallel 

wires. For long or heavy spans, parallel wire construction is 

best adapted; for light bridges, the use of twisted wire ropes 

may be more convenient and expeditious. 

In cables formed of twisted wire ropes, the individual ropes 

are limited to 250 to 300 wires each, so as to avoid excessive 

stiffness and difficulty of handling; consequently, large cable 

sections require several such ropes. 

A multi-strand cable may be formed of twisted strands 

surrounding a straight central strand; or of parallel strands 

united at intervals by clamps. Twisted strands ensure a, more 

even division of load, except that the central strand carries a 

little more than its share; but the resulting cable suffers greater 

elongation under load. Moreover, since a twisted-strand cable 

must be erected as a unit, it is limited in weight and section. 

Equal stressing of parallel strands is dependent upon the effi¬ 

ciency of the clamps or bands in gripping theln. An advantage 

of the parallel construction with bolted clamps is the ease of 

correcting overstress in individual strands and of replacing 

damaged strands. Clamping systems have been designed for 
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large groups of parallel ropes, to ensure unit stress action and to 

facilitate renewal of individual ropes; at the same time pre¬ 

serving ample spacing between the ropes to permit inspection 

and protection against rusting. 

A twisted wire cable of patent locked wire has been developed. 

In it the spiral wires have trapezoidal and Z-sections, locking 

together so as to leave practically no voids. The advantages 
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are compactness, smooth outer surface, firm gripping of the 

individual wires, and sealing against the entrance of moisture. 

Cables of this construction, ready to erect, have been made in 

single strands up to 800 tons tensile strength, and in seven 

strands up to 1500 tons. 

The application of twisted ropes on a large scale involves 

problems requiring further study; whereas parallel wire con¬ 

struction has had ample satisfactory demonstration in the 

largest existing suspension bridges. 

12.,Parallel Wire Cables.--Parallel wire cables have the 

advantages of maximum compactness, maximum uniformity of 

stress in all the wires, and the easiest and safest connection of 

the cable to the anchorage. Twisted wire ropes are used for 

shorter spans, up to 600 or 700 feet, to save time in erection. 

Parallel wires are applicable to spans of any length, and will 

cost somewhat less than twisted ropes of the same strength; 

they will not stretch as much as twisted ropes, and will there¬ 

fore keep more of the load off the stiffening truss. The only 

disadvantage of parallel wire cables is that they consume several 

weeks or months in erection. 

A common size of wire for cables is No. 6 (Roebling gauge) 

which is 0.192 inch diameter and weighs 0.0973 Found per foot 

before galvanizing; after galvanizing, the diameter is about 

0.195 iocb) and the weight is practically xV pound per foot. 

The breaking strength of this wire at 220,000 pounds per square 

inch is 6400 pounds; the elastic limit at 150,000 pounds per 

square inch is 4350 pounds; the working stress at 75,000 pounds 

per square inch is 2180 pounds per single wire. Other common 

sizes of wire for cables are No 7 (0.177 inch diameter) and No. 8 

(0.162 inch diameter), recommended for shorter spans. 

About 250 to 550 of these wires are treated as a single strand 

during erection. The cable consists of 7, 19, 37 or 61 of these 

strands. At the anchorages, the strands are looped around 

grooved shoes (Fig. 36) which are pin-connected to the anchorage 

eyebars (Fig. 32). For the rest of their length, the strands are 

compacted and bound to form a cylindrical cable of parallel 

wires. 
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The following table gives data on the wire cables of the 
East River suspension bridges: 

Brooklyn 

(Fig. 25) 

Williamsburg 

(Fig. 31) 

Manhattan 

(Fig. 35) 

Date. l876“l883 l8q8-I903 1903-1909 

Main span. I595 S ft. I6OO ft. 1470 ft. 

Cable-sag. 128 ft. 177 ft. ' 160 ft. 

Total load, p. 1. f. 35,5oo lb. 75,000 lb. 104,000 lb. 
Number of cables. 4 4 4 
Strands per cable. 19 37 37 
Wires per strand. 278 208 256 
Wire diameter. . 180 in. . 192 in. .195 in. 
Total cross-section. 1 533 sq. in. 888 sq. in. 1092 sq. in. 

Cable diameter. 15I in. 181 in. 20} in. 
Size of wrapping wire. .. ■ 135 in. . 148 in. 
Max. stress in cables_ 47,500 lb./sq. in. 50,300 lb./sq. in. 73,000 lb./sq. in. 
Ult. strength of cables.. . 160,000 lb./sq. in. 200,000 lb./sq. in. 210,000 lb./sq. in. 

For security against corrosion, the wire should be galvanized. 
The only drawback is a’reduction of about 7 per cent in the 
strength of the wire per square inch of final gross section (4 per 
cent actual reduction in the strength of the wire, and 3 per cent 
increase in gross section.) 

The splicing of individual wires was formerly effected by 
wrapping the overlapping ends with fine wire. A more efficient 
splice (giving 95 per cent efficiency) is made by mitering the 
ends, threading them and connecting with small sleeve-nuts 
(Figs. 32, 36). Both methods have the disadvantage of disturb¬ 
ing the uniformity of the cable section. To reduce the number 
of such splices, the lengths of the individual wires as manu¬ 
factured have been increased to 3300 feet. In some French 
bridges, the ends of the wires, after beveling, were joined by braz¬ 
ing; but the heat reduces the strength of the wire at the splice. 

Besides using galvanized wires, additional protection is 
secured by providing a tight and continuous wire wrapping 
around the cable. Soft, annealed, galvanized wire of No. 8 or 
No. 9 Roebling gauge is commonly used. The function of this 
wrapping is to exclude moisture, to protect the outer wires, and 
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to hold the entire mass of wires so tightly as to prevent chafing 
and ensure united stress action. 

No record can be found of any rusting of wire cables employ¬ 
ing either or both of the above described methods of protection. 

13. Cradling of the Cables*,—In many older suspension 
bridges, the main span cables do not hang vertically but in 
planes inclined toward one another, the inclination ranging from 
i : 20 to as much as i : 6. The stiffening trusses, however, are 
kept vertical. Even in designs with overhead bracing, the 
suspension systems have been cradled with inclinations ranging 
from i : 20 to i : 16. 

Cradling is employed principally because it is supposed to 
augment the lateral stiffness of the structure; however, the advan¬ 
tage in this respect over vertical cables is but slight. With an in¬ 
clination of i : io, the increased resistance to lateral displacement 
is only i per cent. Moreover, with cradled cables any lateral dis¬ 
placement is accompanied by a tilting of the suspended structure, 
resulting in secondary stresses which are difficult to evaluate. 

Resistance to lateral displacement is more significantly 
improved in proportion as the cable-sag is reduced and as the 
weight of the suspended structure is increased. 

If cradling is adopted, the cables should not be wrapped until 
they are pulled into the final inclined position; otherwise serious 
local stresses will be produced in the cable wires near the saddles. 

If the cables are cradled, the saddle reactions on the towers 
will be correspondingly inclined unless the backstay cables are 
made divergent; the latter arrangement (used in the Williamsburg 
Bridge, Fig. 32) increases the necessary width of the anchorage. 

Cradling will be effective in producing lateral stiffness if two 
cables of different inclination are provided on each side (Figs. 26 
and 32). This arrangement has the disadvantage of throwing 
unequal load on the cables when the wind acts on the structure; 
load is added to the cables inclined in the direction of the wind, 
and those inclined in the opposite direction are relieved of load. 

14. Anchoring of the Cables.—Parallel wire cables are an¬ 
chored bymaking~tlic cnd-of~each strand in the form of a sling. 
With the wrapping omitted at the end of the cable, the free wires 
loop around a half-round, flanged casting called a strand shoe 
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ANCHORAGE 

Fig. 33.—Williamsburg Bridge. 
(Type 2F). 

CABLE BAND AND SUSPENDERS 
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(Fig. 36), and then pass back into the strand. Large cables are 
divided for this purpose into 7, 19 or 37 strands; and such 
cables accordingly have 7, 19, or 37 strand shoes at each end. 
Steel pins pass through these shoes for connection to the anchor¬ 
age eyebars (Fig. 32). 

The strand shoes are grouped into a number of horizontal 
rows (generally 2 or 4), and the anchor chain divides into an 
equal number of branches to effect the connection (Fig. 32). 

About 10 feet forward of the shoe, the two halves of a strand 
are combined into one; and all strands, before leaving the 
masonry, are squeezed into a round cable. 

The shoes have slotted pin-holes which are provided with 
shim-blocks (Fig. 36) to permit regulation of the individual 
strands before combining into a cable. 

Bending the wires around the shoe produces bending stresses 
exceeding the elastic limit; but the resulting stretching of the 
outer fibers redistributes the stress over the cross-section of the 
wire; with properly ductile steel wire, the strength at the loop 
is not materially impaired. 

If the wire is very hard, or if the cable consists of wire ropes, 
a larger radius of curvature must be provided or some other 
form of connection must be used. 

For wire ropes a larger shoe is used, with the end of the rope 
fastening into a socket after bending around the shoe. 

The sling construction is avoided by setting the ends of the 
strands or ropes directly into steel sockets. After inserting the 
rope into the expanding bore of the socket, the wires are pried 
apart and spread with a point tool, and the intervening space 
filled with fusible metal (preferably molten zinc). Such socket 
connections are now made to develop the full strength of the 
rope. The sockets may be designed to bear directly against 
the under side of the anchor girder; or they may be- threaded 
to receive the end of a rod which serves as a continuation of the 
strand. * 

15. Construction of Chains.—Chains may be constructed of 
horizontal flats piled together and spliced at intervals by means 
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of friction clamps with bolted 
flanges. Suspenders are bolted 
to these clamps. This laminated 
construction is subject to high 
secondary stresses from bending. 

Chains may be constructed of 
closed links overlapping around 
connecting pins to which the 
hangers are attached (Fig. 39). 

Chains may consist of eyebars 
or flats bored at their ends to 
receive pins (Figs. 33, 34, 38, 40). 
The pin holes may be bored oval 
or elongated in order to facilitate 
the erection of the eyebars. This 
procedure was adopted in the 
Florianopolis bridge. 

In American practice (Figs. 38, 
40), forged eyebars are used. In 
European practice (Figs. 17, 33, 
34), the eyebars are made by weld¬ 
ing or riveting, or by cutting from 
wide flats. The last is an extrava¬ 
gant procedure. 

Where flats are used, the re¬ 
duction of section by the pin¬ 
holes may be largely made up by 
riveting pin-plates at the ends of 
the bars. 

Chains composed of vertical 
flats riveted together have been 
proposed, but the secondary 
stresses from bending would be 
very high. 

For long spans, the chains 
would have large cross-sections, 
requiring pins of excessive length. 
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This is circumvented by using two chains, either side by side 
or superimposed; in the latter case, if the panels are not too 
short, successive hangers are connected alternately to the upper 
and lower chains (Figs. 33, 34). 

A disadvantage of chain construction is unequal division of 
stress in the individual bars between two pins. This may be 
caused by inaccuracies in length, differences in temperature, 
variations in elastic modulus, bending of the pins, and eccentric 
suspender loading. The unequal stressing of the eyebars is 
frequently apparent on superficial examination or upon com¬ 
paring the ringing pitch under hammer blows. Actual measure¬ 
ments (by comparing deflections under lateral test loads) have 
revealed varying stresses in a single group of eyebars ranging 
from 40 to 200 per cent of the mean stress. 

16. Suspender Connections.—Cable Bands and Sockets.— 
The attachment of the suspenders to the cable is generally made 
by means of cast steel collars called cable bands (Figs. 26, 32, 36). 
The cable band may be an open ring with flanged ends to receive 
a clamping and connecting bolt (Fig. 26). More generally it is 
made in two halves with flanges (Figs. 32, 36). The band must 
grip securely to prevent slipping. The inside of the band should 
be left rough to minimize the tendency to slip on the cable; 
and space should be left between the flanges for taking up any 
looseness of grip, when necessary. A cam-clamping device has 
been proposed for automatically increasing the grip as load is 
applied through the suspender. 

If the hangers are of rigid section, they are bolted to vertical 
flanges cast integral with the cable band for this purpose. 

If rope suspenders are used, the cable band is cast with a 
groove or saddle to receive the rope which passes over it (Figs. 32, 
36). On account of the varying slope of the cable, the grooves 
in the cable bands are at varying angles, requiring a number of 
different patterns. To avoid this, the bearing flange of the 
grooves may be made curved in elevation. 

If the cable is used as a chord of an overhead bracing system, 
the rigid web members connect to the cable bands; and the 
latter must be made long enough, with ample clamping bolts, to 
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develop the friction requisite to takg up the chord increment of 
the web stresses. A tight layer of wire wrapping against the 
ends of the cable bands will add to their security against slipping. 

The frictional grip attainable in a two-piece cable band is 
50 per cent of the aggregate tension in the clamping bolts. If 
made of high-tensile steel of 65,000 elastic limit, the bolts may be 
stressed up to 25,000 pounds per square inch. On this basis 
may be calculated the number of bolts required to resist a given 
component parallel to the cable; a safety factor of 2 should be 
applied to the result. 

If the cable consists of a cluster of wire ropes, soft metal 
fillers should be inserted within the band to improve the grip 
and to exclude moisture. 

The cable band should be designed so as to prevent the admis¬ 
sion of moisture to the cable. The flanges should be designed 
for excluding rain, and the joints all around should be securely 
calked. The band should preferably be undercut at both ends for 
the insertion of the first few turns of the wire wrapping (Fig. 56). 

The free ends of the suspender ropes are secured in sockets 
made of high-grade steel drop-forgings (Figs. 32, 36). The end 
of the rope is inserted into the expanding shell of the socket, the 
ends of the wires are spread apart and the interstices are filled 
with molten metal (preferably zinc) which will not shrink 
appreciably on cooling. This fastening of the end of the rope 
is found, by test, to be unaffected by the ultimate loads causing 
failure of the rope. 

Closed sockets terminate in a closed loop with which other 
links can be engaged. Open sockets terminate in two parallel 
eye-ends to receive a bolt or pin for connection to other struc¬ 
tural parts. Threaded sockets (Figs. 32. 36) are cylindrical and 
are threaded on the outside to receive adjusting and holding 
nuts; these sockets may be passed through truss chords or girder 
flanges, with the nuts bearing up against the lower cover plates 
of these members (Fig. 36). 

Sockets are furnished by the wire rope manufacturers, either 
loose or fastened to the ropes. 

17. Suspension of the Roadway.—The suspenders may con¬ 
sist of wire ropes (Figs. 26-28, 30-32, 36); or of rods, bars or 
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rolled shapes (Figs. 29,33, 34, 38-41). There may be one (F'g. 
26), two (Fig. 30), or four suspenders (Figs. 32,36) at a panel point. 

If the hangers are made of rigid rods (instead of wire ropes), 
bending stresses due to lateral or longitudinal swaying of the 
bridge are avoided by inserting pin connections or links (Figs. 38, 

39> 4o). 
Solid steel rods used for hangers generally have a high slender¬ 

ness ratio and are subject to bending and to vibrations; to 
provide greater stiffness, tubular and built-up sections have been 
substituted (Figs. 34, 38, 41). 

Where there are two or more suspenders at a panel point, 
the possibility of unequal division of load should be taken into 
consideration. Equalizers may be used to advantage (Fig. 32). 

After passing around the cable band, the suspender may 
extend down as two separate ropes (Fig. 36); or the short end 
may be clamped to the main suspender, which then extends 
down as a single rope (Fig. 32). 

The suspenders may connect directly to the floorbeams 
(Figs. 26, 27, 29, 38, 41), or to the top or bottom chord of the 
stiffening truss (Figs. 32, 36). In the latter case, the floorbeams 
frame into the chords or into the posts of the stiffening truss. 

For connection to the floorbeams or chords, the suspenders 
may pass through and bear up against the lower cover plate 
with the aid of washers or special castings (Figs. 26, 32, 36); or 
they may loop around the floorbeams or chords either directly 
(Fig. 27) or with the aid of steel cross-pieces or yokes. 

Connecting the suspenders to the top chord of the stiffening 
truss requires the entire length of the cable to be above the truss; 
this has aesthetic advantages (see Figs. 28, 34, 35), but it adds 
the depth of the truss to the required height of the towers. 
Lowering the cable saves height (Figs. 25-27, 29-33), but 
requires either lengthening of the floorbeams or spreading of the 
trusses or towers. 

Another method of suspending the roadway is to loop the 
suspender rope under a small saddle casting from which there 
extend downward rigid rods terminating in holding nuts (Fig. 32) 
or steel flats bored to receive connecting pins. 



CONSTRUCTION OF STIFFENING TRUSSES 101 

Provision for adjustment of the hangers may be made by 
means of the holding nuts (Figs. 32, 36), or by means of sleeve 
nuts or turn buckles with right and left threads (such as shown 
in Fig. 32). Some engineers prefer to omit provision for adjust¬ 
ment, depending upon careful computation of required length 
before cutting the ropes and attaching the sockets. 

18. Construction of Stiffening Trusses.—The function of 
the stiffening truss is to limit the deformations of the cable and 
to so distribute any concentrated, unsymmetrical, or non- 
uniform loads as to keep the suspender tensions in a constant 
proportion (or equal if the cable is parabolic). In other words, 
the stiffening truss is required to hold the cable (or chain) in its 
initial curve of equilibrium. This will limit the deflections of the 
structure, and will resist the setting up of vertical oscillations. 

The first suspension bridge provided with a stiffening truss 
was the 820-foot railway span at Niagara, built by John A. Roeb- 
ling in 1851-55. The Brooklyn Bridge (Fig. 26), completed in 
1883 by Roebfing’s son, was built with 4 cables and 6 stiffening 
trusses, and, in addition, was provided with diagonal stays. 

Until comparatively recent years, stiffening trusses were 
only roughly figured and were made of constant section. The 
scientific design of suspension bridges dates from about 1898. 

Stiffening trusses are generally built with parallel chords 
(Figs. 25, 30, 32, 35); a small variation in depth is sometimes 
introduced (Fig. 34). To prevent an unsightly and otherwise 
undesirable sag under load, and to counteract the illusion of 
sag, a generous camber is usually provided (Fig. 31). 

The web system may be of the single Warren (Figs. 30, 35) 
double intersection (Fig. 34), or latticed types (Fig. 31). The 
A-truss may also be applied to advantage. Instead of a truss, 
plate girders may be used; the Vierendeel girder or quadrangular 
truss (like the floorbeam in Fig. 41) has also been proposed. 

To make the design statically determinate, a hinge at the 
center of the stiffening truss is necessary (Type’3F or 35, Fig. 26); 
but this construction has many drawbacks. In long spans, 
the angle change at the hinge would be so great as to cause 
serious bending stresses in the cable and overloading of adjacent 



102 DETAILS OF CONSTRUCTION 

suspenders. Moreover, the wind stresses must be transferred 
through the hinge, and the details become more difficult and 
costly. 

Making the truss continuous past the towers (Types OF, 
OS, Fig. 34) yields more effective stiffening: either less material 
is required or the deflections are reduced; furthermore, the 
impact effects of moving loads entering the main span are 
reduced. On the other hand, continuity renders the structure 
indeterminate (in the third degree); inaccuracies in construc¬ 
tion, settlement of supports, and unequal warming of the chords 
will affect the stresses adversely. 

Introducing hinges in the continuous stiffening truss relieves 
the indeterminateness and the accompanying uncertainty of 
stress conditions. In the Williamsburg Bridge (Fig. 31) a hinge 
is placed in each side span, close to the tower; in a prize design 
for the Elizabeth Bridge at Budapest (Fig. 34), two hinges were 
located in the main span; in both cases, the resulting system is 
singly indeterminate. In the usual two-hinged construction 
(Types 2F, 25, Figs. 15, 36), the truss is hinged or interrupted 
at the towers. 

As in other indeterminate structures, all precautions must be 
observed in construction to avoid false erection stresses. If 
the suspenders are adjustable, a definite apportionment of dead 
load between cable and stiffening truss may be secured. The 
stiffening truss may be totally relieved of dead-load stress by 
adjusting it under full dead load and mean temperature to the 
exact form it had when assembled in the shop at the same tem¬ 
perature; or by omitting certain members until full dead load (at 
mean temperature) is on the structure. In any case, the joints 
should not be riveted until the dead load is on and all adjust¬ 
ments are made. 

The stiffening truss may be made of any height, depending 
upon the degree of stiffness desired. With increasing depth, the 
stiffness is naturally augmented; but the cost of the structure is 
thereby increased. In the Williamsburg Bridge (Fig. 31), the 
truss depth was made ifo of the span. Generally a shallower 
truss is preferred, for appearance as well as for economy, (See 
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Fig. 35.) The depth in the vicinity of the quarter-points of the 
span is most effective in controlling the critical deflections. 
Shallow depth at mid-span reduces stresses from temperature 
and from full-span loading. Shallow depth at ends and center, 
where the shears are highest, yields economy in the web members. 
A truss of variable depth, following the graph of maximum 
moments, would be the most efficient. This principle is utilized 
in designs of the Florianopolis type. 

Bearings must be provided at the towers and abutments to 
take the positive reactions of the stiffening truss (even if continu¬ 
ous) ; and these points of the truss must also be anchored down to 
resist the uplift of negative reactions. At the expansion bearings, 
the anchorage must be so designed as to permit free horizontal 
movement; this may be accomplished either by the use of 
pins in slotted guide bearings, or by means of pin-connected 
rocker arms. One bearing of each truss should be fixed against 
horizontal movement, in order to resist longitudinal forces. 
(An exception was the Niagara Railway Suspension Bridge, 
where an automatic wedge device, for dividing the expansion 
equally between the two ends of the span, was provided.) 

19. Braced-Chain Construction.—Overhead stiffening trusses 
may be regarded as inverted arches. A common form is the 
three-hinged truss with horizontal lower chord (Type 3BH, 
Fig. 37), and these are designed similar to spandrel-braced 
arches. The chords and web members are built up of plates 
and angles with riveted panel points. The center hinge is 
designed to transmit the full value of H for dead and live load, 
and the maximum vertical shear from live load. At the towers, 
both chords are supported on expansion plates; the bottom 
chord ends there, but the top chord passes over cast-steel saddles 
and continues toward the anchorage. The top chord is sup¬ 
ported at the top of the towers either on rockers or on rollers 

(Fig. 37)- 
In the three-hinged type (3BH), the center hinge may be 

located either in the upper or in the lower chord. In the former 
case, the upper chord will carry all of the dead load and full- 
span live load; the lower chord and web members will be 
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stressed only by partial loading. Accordingly, the upper 
chord will have a fairly uniform section, while the other members 
will be comparatively light. This arrangement has a disad¬ 
vantage, however, in the necessary break in the floor system 
under the hinge; the stringers must be provided with expansion 
joints, and the wind bracing must be interrupted. 

If the hinge is placed in the lower chord, false members are 
required, for the sake of appearance, to cover the interruption 
in the top chord. Furthermore, there results a large variation 
in the chord stresses: near mid-span, the top chord stresses 
become light and the bottom chord stresses become heavy; 
and the reverse occurs near the towers. 

The hinge may be either of the ordinary pin type or of the 
plate type. In the latter case, the chord section is concentrated 
into wide horizontal plates to connect the two halves of the span; 
and the vertical shears at the point are transmitted by means of 
vertical spring plates. 

The false members in the interrupted chord may be con¬ 
nected with friction bolts in slotted holes, so that the resulting 
friction may act as a brake against oscillations. 

To eliminate bending moments in the stiffening truss at the 
tower, the end member of the lower chord may be suspended 
from the saddle; or it may simply rest on an expansion bearing 
at the tower, with the end vertical omitted from the truss. 
Another arrangement is to make the tower integral with the 
main span truss, the tower being pivoted at the base, and the 
side span having only a hinged connection at the top of the tower. 

The use of a wire cable for the top chord had an illustration 
in the Lambeth Bridge, London; but the details did not con¬ 
stitute an example worth copying. The development of a 
satisfactory detail for the panel point connections is necessary 
before the overhead or integral bracing system can be used in 
conjunction with wire cables. A solution by the use of a cable 
composed of pin-connected wire links (Fig. 39) was proposed by 
Lindenthal in 1899. A detail for the direct connection of web 
members to a continuous parallel wire cable was developed and 
proposed by Robinson and Steinman in their design for the 
Sydney Harbor Bridge in 1923. 
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When the braced-chain (oi braced-cable) system is used, the 

web members should preferably not be connected until full dead 

load and half live load are on the structure at mean temperature. 

There will thus be accomplished a reduction in extreme stresses 

in the web members and lower chords; the maximum tension 

will be equal to the maximum compression in each member, and 

this stress will be only the arithmetic mean of the extreme 

stresses that would be produced without this precaution. How¬ 

ever, if the design specifications prescribe stringent allowances 

for alternating stresses, the reduction in sections by this device 

will not be material. 

The truss depth at the crown (Type 35) should preferably 

be between 0.15 and 0.3 of the sag of the chain. Sufficient 

depth must be provided to take care of the shearing stresses 

and to prevent undue flexibility in the central portion of the 

span; but excessive depth, besides increasing the metal required, 

impairs the desired graceful appearance of the suspension con¬ 

struction. If the hinge is omitted, any increase in crown-depth 

serves to augment the temperature stresses. 

The form of braced-chain construction (Type 2BV) pro¬ 

posed by Lindenthal for his first Quebec design (Fig. 39), and 

for the Manhattan Bridge, has many advantages. The bottom 

chord is bent up toward the towers, so as to obviate the necessity 

for long web members. The requirement of edtra wind chords 

at the ends of the span is not, comparatively, an important 

objection. 

Suspension trusses with bracing above the principal chain 

(Type 3BL) are exemplified in the Point Bridge at Pittsburgh 

Fig* 38)* In this system the stiffening chords are straight, and 

the bottom chord is parabolic. The top chord members have 

to resist both tension and compression. 

A system having many advantages is the Fidler Truss 

(Type 3J3C), exemplified in Lindenthal’s second Quebec design 

(Fig. 40), in a Tiber bridge at Rome, and in the Tower Bridge 

at London. In this system, consisting of two crescent-shaped 

half-arches, both chords are curved, the bottom chord having a 

sharper curvature than the equilibrium curve for full load. 
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The parabolic curve passes midway between the two chords, so 
that they are about equally stressed. With this system it is 
possible to avoid compressive stresses in both chords. 

In the foregoing systems (Types 3BL, ZBC), it should be 
noted that the suspended floor system must be interrupted, or 
else of negligible moment of inertia, under the center hinge. It 
is more important here than in three-hinged arches, on account 
of the greater crown deflections in suspension systems. 

The systems using parallel chains connected with web¬ 
bracing have been little used on account of the difficulties in 
stress analysis. If each chord has its own backstay (Type 0BP), 
the system is threefold statically indeterminate. If the top 
chord is interrupted at the towers (Type 2BP), the indetermi¬ 
nateness is reduced. It would be more effective, in such case, to 
bring the two chords together in crescent form instead of using 
parallel chords. In Lindenthal’s Seventh St. Bridge at Pitts¬ 
burgh and in his first design for the North River Bridge, the bot¬ 
tom chord rested directly on bearings on the top of the towers, 
and the top chord was connected thereto by a double quad¬ 
rangular linkwork equivalent to a hinge; this made the system 
singly indeterminate (aside from the redundancy of web mem¬ 
bers). When parallel chains are used in the side spans, the 
bottom chord may be connected to the anchorage; or both 
chords may be brought together at a common pin for connec¬ 
tion to the anchor chain. 

The latest example of parallel chain construction is Linden- 
thal’s new design for the Hudson River Bridge (Fig. 41). The 
main span is 3240 feet, and the bridge is continuous at the towers 
(Type 0BP). 

20. Wind and Sway Bracing.—To take care of transverse 
wind pressure and lateral forces from moving train loads, and to 
carry these forces to the piers, systems of lateral and sway 
bracing are required. 

A system of wind bracing must be provided in the plane of 
the roadway, since the principal horizontal forces originate 
there. Such bracing system is obtained by inserting diagonals 
between the floorbeams, so as to form a horizontal truss; using 
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for chords either the bottom chords of the main stiffening truss 
(Figs. 26, 30, 32, 36, 37) or else adding extra longitudinals called 
wind chords (Figs. 38-41, 56). 

If the stiffening truss is high enough to afford necessary 
clearances, a bracing system in the plane of the top chord may 
be added, giving a closed cross-section to the structure (Figs. 
26, 32, 36, 43). 

If the roadway is elevated, vertical sway frames of cross¬ 
bracing may be introduced between the trusses (Fig. 26); or the 
floorbeams may be built of deep latticed construction. In such 
case, a single plane of horizontal wind bracing will suffice. 

A novel method of transverse bracing is introduced in the 
design for the Hudson River Bridge (Fig. 41) in the form of 
deep floorbeams (32 feet high) of quadrangular construction 
(Vierendeel Girders); the rectangular openings are used as 
passageways for the railway tracks. 

Bearings must be provided at the towers to take the hori¬ 
zontal reactions of the wind truss without hindering longitudinal 
expansion. Vertical pins bearing in slotted guides may be used 
for this purpose. * 

The cables or chains present so small a surface to the wind 
as to require no wind bracing; or at most they may be con¬ 
nected together by horizontal ties. 

On account of the inherent stable equilibrium of the suspen¬ 
sion system, the wind bracing is to a certain extent relieved of 
its duty. 

Braced-chain systems are provided with a single wind truss 
below the roadway, using either the lower chords of the main 
truss (Type 3BE, Fig. 37) or special wind chords (Types 2BV, 
SBC, etc., Figs. 38, 39, 40, 41). In addition, transverse sway 
frames are located at intervals between the two suspension 
trusses in the planes of verticals or diagonals, so far as clearance 
requirements permit (Fig. 38). In comparison with other types 
of bridges, but little material is needed for this sway bracing 
since, in the first place, the low position of the center of gravity 
makes the suspension truss stable without bracing, and, in the 
second place, there are no top chord compression members (in 
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most of these types) to be braced against buckling. It is essen¬ 
tial, however, to provide properly designed rigid portal and 
sway bracing between the legs of the main towers (Figs. 37, 38). 

A profusion of overhead bracing, besides being structurally 
unnecessary, will impair the graceful appearance sought in 
suspension constructions. 

A center hinge in the stiffening truss introduces complica¬ 
tions in the design of the wind-bracing system. If the hinge is, 
as usual, in the top chord, the wind bracing must follow the two 
central diagonals to make connection at the hinge; these central 
diagonals then act as wind-chord members, and their sections 
must be increased accordingly. If the top chord hinge lies 
above the roadway, the cross-bracing in the two central panels 
connecting with the hinge has to be omitted. This produces a 
point of weakness in the horizontal bracing system, and should 
be avoided in long spans either by omitting the hinge or by 
locating the hinge in the bottom chord. 

Early suspension bridges that were found to have excessive 
lateral deflections and oscillations were stiffened by means of 
wind cables (wire ropes) placed in a horizontal plane under the 
roadway; these ropes were connected to the floorbeams and 
were anchored to the piers, so as to form a horizontal suspension 
system of cable and stiffening truss. To take care of wind in 
both directions, a double system of wind cables must be used, 
and their sag-ratio should be made as large as possible (Fig. 38). 
For greater stiffness, straight auxiliary cables have sometimes 
been added. 

The efficacy of the above-described system of wind cables is 
doubtful, since it is ordinarily impossible to give the ropes 
proper initial tension; consequently they do not commence to 
take stress until the horizontal deflection of the structure exceeds 
a certain amount. For this reason, wind cables have not been 
relied upon for modern designs, but rigid wind trusses have been 
adopted instead, to take care of the wind pressures. 

21. Towers.—For purposes of discussion, the tower may be 
considered as composed of two parts: the substructure or pier; 
and the tower proper, extending above the roadway and sup- 
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porting the cables or chains. The pier does not involve any 
special features differentiating it from ordinary bridge piers. 

The tower must be designed so as not to obstruct the road¬ 
ways. It is therefore composed of a column or tower leg for 
each suspension system (Figs. 30, 35-38). For lateral stability, 
the tower legs are braced together by means of cross-girders and 
cross-bracing (Figs. 30, 35) or by arched portals (Figs. 37, 38). 
The sway and portal bracing are necessary to brace the tower 
columns against buckling, to take care of lateral components 
from cradled cables or chains, and to carry wind stresses down to 
the piers. 

The design of the tower depends upon the material employed. 
This is either masonry (Figs. 25, 27, 29, 33) or, more commonly 
steel (Figs. 15, 17, 28, 30-32, 34-41), and occasionally timber. 
If masonry is used, the tower may consist of shafts springing 
from a common base beneath the roadway and connected together 
at the top with gothic arches (Fig. 25); or, for smaller spans, the 
tower may consist of two separate tapering shafts or obelisks. 

To meet architectural requirements and to express resistance 
to transverse forces, the outline of the tower should taper toward 
the top. This also conforms to structural requirements. 

The tower legs must be designed as columns to withstand 
the vertical reaction of the cables; also as cantilevers to resist 
the unbalanced horizontal tension. The latter will depend upon 
the saddle design (fixed or movable), the temperature and load¬ 
ing conditions, and the difference in inclination of main and 
side-span cable tangents at the saddle. Forces due to wind 
pressure on the cables, towers, and trusses must also be pro¬ 
vided for. 

The application of steel to suspension-bridge towers offers 
many advantages. The lower cost permits a greater height in 
order to secure a more favorable sag-ratio. The thermal expan¬ 
sion of the steel tower balances that of the suspenders, so as to 
eliminate serious temperature stresses which would otherwise 
arise in indeterminate types (2F, 25. OF, 05). 

Steel tower columns (Figs. 15, 17, 30, 36-39) are made up of 
plates and angles to form either open or closed cross-sections; 
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the sides may be either latticed or closed with cover plates. 
The relative dimensions are governed by the usual specifica¬ 
tions for the design of compression members, particularly in 
respect to limiting unsupported widths of web plates. The 
cross-section enlarges toward the base, or outside stiffening 
webs are added; and the base must be anchored to resist the 
horizontal forces (Fig. 37). 

For high towers, the individual legs may be made of braced- 
tower construction, each leg consisting of four columns spread¬ 
ing apart toward the base and connected with lacing or cross¬ 
bracing (Fig. 31). 

Rocker towers, pin-bearing at the base, afford the most 
economical and scientific design for bridges of longer span. 
They eliminate the stresses from unbalanced horizontal forces 
without requiring movable saddle construction. The most 
notable examples actually constructed are the Elizabeth Bridge 
at Budapest (Fig. 34) and the Cologne Bridge (Fig. 17). (See 
also Figs. 15, 28, 39, 40.) 

If rocker towers are adopted, they must be secured against 
overturning during erection. This may be accomplished by 
temporary connections to the adjoining truss structure, by 
wedging or bracing at the base, or by guying the upper portions 
of the tower. 

For foot bridges and bridges of small span, the simplest 
tower construction employs a stiffened plate for each leg, the 
two legs being braced together and carrying steel castings at 
the top to hold the cables. 

If timber is used, each cable support consists of four battered 
posts with framed bracing, the two legs thus formed being con¬ 
nected at the top with cross-bracing. 

22. Saddles and Knuckles.—The cables are generally con¬ 
tinuous over saddles on top of the towers. 

Designs have been made with the main cables terminating 
at the towers, with a special connection at the top of the towers 
'to the backstay cables (e.g., Morison’s North River design). 
The advantages claimed were shorter cable strands to handle in 
erection, elimination of stresses due to bending of the cable 
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over the towers, and the possibility of increasing the section of 
the backstays to permit steeper inclination. The latter advan¬ 
tages, however, can be secured with continuous cables by employ¬ 
ing certain design features. 

If the stress in the backstay, as a result of steeper inclination, 
is much greater than in the main cables, auxiliary strands may 
be incorporated in the backstay to increase its section; and 
provision should be made for the connection of these auxiliary 
strands to the saddle. (An example is the Rondout Bridge at 
Kingston, N. Y., Fig. 56.) 

Cable saddles are generally made of cast steel (Fig. 32). 
They are either bolted to the top of the tower (Fig. 36) or pro¬ 
vided with rollers (Figs. 32, 33, 37). 

Where fixed saddles are used (Fig. 36), the resultant imbal¬ 
anced horizontal forces must be calculated and provided for in 
the design of the tower, unless the tower is made of rocker type 
(Figs. 15, 17,34,39, 40). If the saddles are movable, the eccen¬ 
tricity of the vertical reaction under various loading conditions 
must be provided for. 

The simplest but least satisfactory construction, used in 
some smaller bridges, consists of fixed saddles over which the 
chain or cable is permitted to slide. In early cable bridges, the 
wrapping was discontinued near the towers, and the wires were 
spread out to a flat section to pass over the saddle casting; 
this is objectionable as it gives access to moisture. It is prefer¬ 
able to give the saddle a cross-section conforming to the cable 
section; to reduce wear from the rubbing, the cable may be 
protected by a lead sleeve. On account of the friction, this 
arrangement does not eliminate the unbalanced horizontal pull 
on the top of the tower. On the whole, this construction, or 
any sliding saddle arrangement, is not to be recommended. 

Another saddle arrangement consists of steel pulleys, free to 
rotate, over which the cable passes (Fig. 27). A similar arrange¬ 
ment used with chains consists of a fixed roller nest over which 
curved eyebars slide (Fig. 33); the resulting bending stresses, 
however, are objectionable. 

The best arrangement to permit horizontal movement on 
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top of the tower consists of a roller support for the saddle (Figs. 
32,37). In modern designs, the rollers are of equal height between 
two plane surfaces. The construction comprises a bed plate, a 
nest of rollers connected by distance bars, and the superimposed 
saddle casting. In the saddle rests the cable (Fig. 32) which is 
held from sliding by friction or clamping. Instead of a saddle, 
the movable part may consist of a casting to which the chains 
are pin-connected (Fig. 37). The resultant of the tensions of 
the cables or chains should pass through the middle of the 
roller nest to give an even distribution of stress. The friction 
of the rollers is so small that the obliquity of the resultant 
reaction is negligible. 

Instead of circular rollers, segmental rollers (rockers) may 
be used, so as to furnish a greater diameter and thereby reduce 
friction and roller-bearing stress. Segmental rollers, however, 
must be secured against excessive motion liable to cause over¬ 
turning. 

Rollers (Figs. 32, 33, 37) serve to reduce the bending stresses 
on the towers due to unbalanced horizontal cable pull resulting 
from temperature and special loading conditions. On the other 
hand, they add expense, increase erection complications, give 
trouble in maintenance, and merely substitute eccentric vertical 
loading for unbalanced horizontal pull. On the whole, fixed 
saddles provide a simpler and safer construction. 

Another saddle design consists of a rocker, pin-connected at 
either upper or lower end to the tower and carrying the cable or 
chain at the other end. The rocker-hanger or pendulum type 
has been used only in earlier bridges; the main objection to it is 
the increased height of tower required. . The rocker-post type 
(Fig. 39) has pin-connection to cable or chain at the upper end, 
and has a pin or cylindrical bearing at the lower end. 

Short rocker posts should not be used for long spans; after 
such posts assume an inclined position under temperature varia¬ 
tion, the return to normal position is seriously resisted by the 
necessity of raising the point of cable support through a vertical 
height 

The tower itself may be made to serve as a rocker post for its 



118 DETAILS OF CONSTRUCTION 

full height by providing hinge action at the base. This construc¬ 
tion was used in the Elizabeth Bridge at Budapest, 1903 (Fig. 34); 
in the Rhine Bridge at Cologne, 1915 (Fig. 17); in the Florian- 
opolis Bridge in Brazil, 1925; in the Portsmouth (Ohio) Bridge, 
1927, and three subsequent bridges (1928) over the Ohio River; 
and in three suspension bridges at Pittsburgh (1926-1928). 
Instead of using pins at the lower end (Figs. 39, 40), the hinge- 
action is more efficiently secured by providing the tower leg 
with a segmental base (Fig. 17). In very large bridges, a concave 
nest of rollers may be used. 

Knuckles are provided in the anchorages at all points where 
the backstays or anchor chains alter their direction (Figs. 29, 32, 
33, 36-40, 42). They are similar in function to tower saddles, 
and should be designed to permit any movement due to thermal 
or elastic elongation of the anchor chain. 

Sliding bearings (Figs. 37, 39) are commonly used at knuckle 
joints, and may be considered suitable where the directional 
change is small. In the Rondout Bridge at Kingston, N. Y. 
(Fig. 56), the design consists of vertical pin plates supporting the 
knuckle pin and sliding oh steel plates anchored in the masonry. 

Roller bearings (Figs. 33, 36, 40) give a better design for the 
anchorage knuckles. A cable may be carried in a saddle casting 
resting on rollers (Fig. 36); and chain eyebars may be either 
directly supported on rollers (Fig. 33) or may be pin-connected 
to a casting carried on rollers (Fig. 40). The plane of the 
rollers should be normal to the bisector of the angle of the chain 
or cable. 

Rocker supports (Figs. 32,39,42) are also used for anchorage 
knuckles. The change in direction may be accomplished at 
one main rocker strut (Fig. 42), or may be distributed over a 
large number of small rocker knuckles (Fig. 32). The direction 
of the rocker should preferably coincide with the bisector of the 
angle of the chain or cable. 

23. Anchorages.—The safety of a suspension bridge depends 
upon the security of the anchorages. Consequently, in any 
new design, the anchorages should receive thorough study and 
their construction should be carefully supervised; and, after 
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completion, the condition of the anchorage should receive 
watchful attention. Accessibility for inspection and main¬ 
tenance should be considered in the design. 

In rare cases it is possible to anchor the cables in natural 
rock (Figs. 27, 39,40). The shaft or tunnel which is to contain 
the anchor chain must then be driven to such depth as to reach 
and penetrate rock that is perfectly sound, proof against weather¬ 
ing and of sufficient thickness to afford the necessary anchorage. 

In most cases, the anchorage requires a masonry construction 
which resists the cable pull by friction on its base or by the resist¬ 
ing pressure of the abutting earth (Fig. 34). 

Masonry anchorages may be imbedded below ground level, 
with backstays connecting them to the nearest towers (Fig. 29); 
or they may constitute the end abutments of the side spans 
(Figs. 26, 28, 30, 32-38, 41). The latter arrangement gener¬ 
ally requires bending or curving the line of the cable or chain 
from its initial inclination to a more vertical direction, in order 
to secure the necessary depth of anchor plate without excessive 
length of anchorage (Figs. 32, 33, 36-38, 42). In addition to 
stability against sliding, such anchorage must also be designed 
for stability against tilting or overturning. Furthermore, the 
applied forces must be followed through the masonry and the 
resulting normal and shearing stresses at all sections and joints 
must be provided for. The extreme pressures on the base should 
also be investigated, to make sure that they do not exceed the 
allowable load on the foundation material (Fig. 44). Founda¬ 
tions on piles (Figs. 32, 36) should be avoided, as they give 
insufficient security against displacement of the anchorage; if 
such foundations are unavoidable, an ample proportion of batter 
piles should be provided. 

The anchor chains go through the masonry and are fastened 
at their ends to anchor plates or to reaction girders. In larger 
structures, anchor tunnels may be left in the masonry, affording 
access for inspection of the anchor chains (Figs. 33, 34, 37, 42). 

As a rule, each cable or chain is separately anchored; in rare 
cases, the two cables have been connected in the anchorage so as 
to form a loop around a body of masonry or rock. 
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The anchor chains are commonly secured by means of an 
anchor plate which is either a single casting or built up of cast 
sections; the last link is passed through this anchor plate and 
is fastened behind it with a special pin or bolt (Figs. 33, 37, 38). 
The anchor plate is stiffened against bending by means of per¬ 
pendicular webs or ribs (Figs. 33, 38); it must ’have a bearing 
surface large enough to transfer and distribute the pressure to a 
sufficient area and mass of masonry. 

Instead of cast-steel anchor plates, anchor girders built up of 
rolled sections have been used in more recent designs (Figs. 32, 
39, 40, 42). The chains are pin-connected to the webs of these 
girders, and the latter transmit the reaction to grillages or cast¬ 
ings bearing against the masonry. 

Provision for adjustment of backstay length may be made in 
the anchorage, if not elsewhere. Adjustment may be secured 
through the use of wedges in the connection behind the anchor 
plate (Fig. 37); or by means of a threaded connection between 
the strand sockets and round rods passing through the anchor 
plate. 

The anchor plates (Figs. 33,37,38) are designed like any other 
masonry plates. The area is determined by the allowable 
bearing pressure on the concrete or stone, and the section of the 
plate and stiffening ribs are determined by the shearing and 
bending stresses. The holding bolts or wedges must also be 
proportioned for shearing and bending stresses; for greater 
bending strength, the bolts may be made of oval rather than 
circular section. 

A connection of cable to anchor chain is illustrated in 
Fig. 32. 

In small bridges, the cable is often anchored directly, by 
passing the wire slings around anchored bolts or around anchor 
blocks. This method can be used only with parallel wire strands; 
and, if the diameter of the sling is too small, excessive bending 
stresses will arise in the wire. 

At each change in direction of the cable or chain in the 
anchorage, a bearing is required. This may consist of a casting 
with rounded surface over which the cable or chain may slide 
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(Figs. 37, 39), or of a flat plate on which the eyebar heads rest. 
A knuckle casting with bearing for the eyebar pin is preferable 
to one on which the eyebar heads bear. If the change in direction 
of the anchor chain is considerable, roller bearings (Figs. 33, 
36,40) or rockers (Figs. 32, 42) must be provided. 

In general, aside from greater simplicity, a straight anchor 
chain (Figs. 30, 34) is preferable to a curved or bent chain (Figs. 
29, 32> 33> 36-38) 42), as the latter results in greater lengthening of 
the cable from compression or settlement of the masonry. Space 
limitations, however, frequently make this arrangement unavoid¬ 
able. 

If it is desired to leave the anchorage steel accessible, shafts 
or tunnels must be provided in the masonry, large enough for a 
man to pass through (Figs. 27, 29, 33, 34,37,42); a clearance of 
2 to 3 feet is necessary. Near the lower end, the shaft generally 
becomes constricted in order to reduce the required size of the 
anchor plate; consequently the end of the chain is not fully 
accessible to inspection. For the examination of the anchor 
plate and fastenings, vaulted chambers or horizontal passage¬ 
ways (about 3 to 4 feet wide and 5 to 6 feet high) are provided 
behind the anchor plate (Figs. 33, 37, 38, 42). These chambers 
may lead to the sides of the anchorage, where they are sealed by 
doors (Figs. 33. 42), or they may be reached through horizontal 
tunnels (Fig. 27). Inclined shafts (Figs. 27, 33, 37, 42) may be 
roofed with stepped slabs, flat slabs or an arched vault. Rain 
and dirt must be excluded, and the points of emergence of the 
cables or chains should be protected accordingly. 

Instead of leaving open passageways for inspection and 
painting, the opposite course may be adopted and the anchor¬ 
age completely sealed against the entrance of air or water (Figs. 
39, 40, 42). In such designs, the anchorage steel is imbedded 
in concrete, or surrounded with waterproofing material, so as to 
exclude air and moisture and thereby prevent oxidation. The 
shafts receiving the anchor chains or cables are made as narrow 
as possible, and are subsequently filled with concrete, cement 
mortar, asphaltic cement or other waterproofing substance. 

The anchorage may be built of stone masonry or of concrete. 
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The use of reinforced concrete gives maximum flexibility in 
design. 

The forces acting on the anchorage as a whole are the cable 
put. the weight of the masonry and any superimposed reactions, 
and the pressure or resistance of abutting earth. For the study 
of the internal stresses, the outside cable pull is replaced by the 
reactions of the anchor plates and the knuckle castings. By 
graphic composition of these various applied forces, the lines of 
pressure in the masonry are determined. The resultant of all 
the external forces, including the weight of the anchorage, must 
intersect the base within, the limits necessary to prevent uplift 
at the heel (Fig. 44); and the inclination of the resultant from 
the normal must not exceed the angle of friction. If it proves 
impracticable to secure this stability against sliding with a hori¬ 
zontal foundation, the base may be sloped (Fig. 42) or stepped 
to increase the sliding resistance. Stepping the base is not 
effective save on hard foundations. In soft ground, requiring 
piles, the pile caps should be imbedded in masonry; and the 
piles should preferably be battered in the direction of the 
resultant pressure. 

Granite or other stone blocks should preferably be used to 
take the direct pressure of the anchor plate and knuckle cast¬ 
ings (Figs. 32, 33, 37, 42). Extending forward from the anchor 
plate, cut-stone blocks may be laid in arch formation, following 
the curving line of resultant pressure and with joints normal 
thereto. The rest of the anchorage, serving only to provide 
weight, may be built of rubble masonry or brickwork in hori¬ 
zontal courses; or of rubble concrete. 

Special designs of anchorages are frequently necessitated by 
physical conditions and economic limitations. 

Anchorages may be designed as large reinforced-concrete 
boxes filled with rock or compacted sand as an economical 
means of producing mass resistance. Such use of sand-filled 
chambers, to furnish weight while saving cdncrete, has proved 
effective in the anchorages for the suspension bridges at 
Massena, N. Y., Portsmouth, Ohio, and Mount Hope Bay, 
Rhode Island. 
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In the Philadelphia-Camden bridge (Fig. 10), the front 
portion of the anchorage contains an inclined steel rocker bent 
which supports the two cables at the point where they change 
direction for straight-line attachment to the anchor chains in 
the heel of the anchorage. 

In the case of the Portsmouth Bridge over the Ohio River, 
the topography and existing railroad tracks interfered with the 
customary location of the anchorages at the ends of the suspension 
structure; rocker bents were therefore provided to support the 
cables at those points, and the anchorages were placed 150 feet 
away. In the Mount Hope Bridge in Rhode Island, rocker 
cable-bents were similarly used, with the anchorages located 220 
feet away; this resulted in a large saving in cost since it reduced 
the necessary height of the anchorages and permitted them to be 
placed in more favorable locations. 

Where the anchorage can be imbedded in solid rock, a large 
volume of anchorage concrete or masonry is saved. Foundations 
on rock should be stepped or sloped to increase resistance to 
sliding. Where rock foundation is not available, piles (preferably 
battered) may be used to provide bearing and resistance. In 
extreme cases, caissons sunk to rock or hard pan may be used to 
provide the necessary foundation for the anchorage. 

For anchorages on rock foundation, additional security against 
uplift and sliding may be obtained by setting and grouting 
steel rods into the rock under the heel of the anchorage, to serve 
as dowels. This expedient was adopted for the suspension 
bridges at Portsmouth, Ohio, and Grand’Mere, Quebec. On a 
clay foundation, inclined piles might similarly be used as dowels 
under the heel of the anchorage. 

In general, the form and mass distribution of an anchorage 
are governed by the requirement of concentrating the weight 
toward the heel, so as to counteract the overturning moment 
from cable pull. 



CHAPTER m 

TYPICAL DESIGN COMPUTATIONS 

(Note.—All references are to Chapter I, “Stresses in Suspension Bridges”) 

EXAMPLE 1 

Calculations for Two-hinged Suspension Bridge with 
Straight Backstays (Type 2F) 

1. Dimensions.—The following dimensions are given: 

l=Main Span = 5o panels at 22.5 ft. = 1125 ft. (/'=/). 

h-Side Span= 281.25 ft. =-. 
4 

/ = Cable-sag in main span = 112.5 ft. = • 

/1 = Cable-sag in side spans =0. (Straight backstays). 
d=Depth cf Truss = 22.5 ft. 

Mean Chord Sections (gross): 

Top = 94 sq. in. Bottom = 161 sq. in. 

I=Mean Moment of Inertia of stiffening truss in main 
span=94(14.2)2+161 (8.3)2=30,000 in.2 ft.2 (1 truss). 

Width, center to center of trusses or cables =34.5 ft. 

A = Cable Section = 84 sq. in per cable. (A 1=A). 
tan a = Slope of Cable Chord in main span=o. 

tan ai = Slope of Cable Chord in side span =4^ =4»=04. 

2. Stresses in Cable.—Given: * 

Dead Load per cable (including cable) 
• = 2650 lb. per lin, ft. 

125 
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/>'=Live Load per cable = 850 lb. per lin. ft. 
t=Assumed Temperature Variation= ±6o° F. 

(£«/ = 11,720 lb. per sq. in.) 

All values are given per cable. 
For Dead Load, by Eq. (n), the horizontal component of 

cable stress is, 

H=^ ^wl=3730 kips. (1 kip = 1000 lb.) 
Oj O 

For Live Load, by Eq. (167), the denominator of the formula 
for H is, 

n=-5+at*t(i+8m2)• r •sec3 ai 
=|+3(.0283)(i+.08)+6(.0283)|(i.o8)3 = 1.745. 

By Eq. (168), the live-load tension will be, 

p'l 2 
H~sNn = N'P’l= 1-146 ^=I°95 kiPs- 

The total length of cable between anchorages is given by Eq. 

(176): 

Y - (1 +f»2) + 2 • j ■ sec ai = (1+.027) +i(x.o8) = 1.567. 

Then, for temperature, by Eq. (156), 

jy_jEIutL 3(30,000) x.567 

*“ PNl ^ (112.5)2 '1.745 

Adding the values found for H: 

(11,720) = =F75 kips. 

D. L. 3730 kips 
L. L. 1095 
Temp. 75 

we obtain, Total H=4900 kips per cable. 

The maximum tension in the cable is, by Eq. (5), 

Ti^H-secai =H( 1.08) = 5300 kips. 

At 65,000 lb. per sq. in., the cable section required is 5300+65 
*82 sq. in. (Section provided = 84 sq. in.) 
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3. Moments in Stiffening Truss.—Given: 

Live Load=/>= 1600 lb. per lin. ft. per truss. 

(All values given and calculated are per truss.) 
With the main span completely loaded, the bending moment 

at any section x is giVen by Eq. (169): 

Total M = £/>*(/-*)( 1= \px{l—x)(.085). 

In other words, only 8.5 per cent of the full-span live load is 
carried by the truss. Accordingly, at the center, 

pi2 
Total Af=.085-g- = +21,500 ft. kips per truss. 

At other points, the values of M are proportional to the ordinates 
of a parabola. They are obtained as follow i: 

Section Parabolic Coefficient Total M (ft. kips) 

■ 
' 0 4X 0 X 1 « 0 0 

0.1 4X .1 X .9 = 36 + 7.800 

0.2 4X .2 X .8 = .64 +13,800 

0-3 4X .3 X .7 = 84 + 18,100 

0.4 4X .4 X .6 = .96 +20,600 

o.4S 4X .45X -55= -99 + 21,300 

0.5 4X .5 X .5 -1 00 + 21,500 

For maximum and minimum moments, the critical points 
are found by solving Eq. (142): 

C(£) =#•«•-=.1745-. 

The values of the minimum moments are then given by Eq. 
(170): 

Min. M- --D(k)- - • (Total M)-D(k) 

™ — 5-52(Total M) -D(k). 

The tabulations in Table I or the graphs in Fig. 12 are used in 
solving the values of C(k) for k and then finding the correspond- 
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ing values of D(k). The following tabulation shows the succes¬ 
sive steps: 

X 

T 
t 

T 
X 

y 
C{k) k D(k) 

Min. M 
(ft. kips) 

0 0 (2.5°) (•436) (•355) (•53i) 0 

.1 .036 2.78 •48s •392 •437 — 18,800 

.2 .064 3.12 .544 .437 •334 -25,400 

.3 .084 3-57 .623 •497 . 224 — 22,400 

.4 .096 4.17 .728 ■5&4 •TI3 —12,800 

•45 .099 455 .795 .647 .061+ 001 - 7,3oo 
•5 . 100 5.00 .872 .729 .024-b 024 - 5,7oo 

•55 •099 5 55 .970 .876 .001-f.061 ~ 7,3oo 

(By using Fig. 13, Dik) may be found directly from the values of C(k).) 

For all sections between # = — •/ = .436/ and the symmetrical 
4 

point x = .564/, a correction is made in the above table for the 
second critical point, as explained under Eq. (143'). 

To find the maximum* moments, apply Eq. (144): 

Max. M = Total M—Min. M. 

Dividing the maximum and minimum moments by the truss 
depth (d—22.5 ft.), we obtain the respective chord stresses as 
follows: 

Section 

X 

T 
Maximum M 

(ft. kips) 

Chord Stre 

Maximum 

sses (kips) 

Minimum 

0 0 0 0 

O.I 4-26,600 3=ii8o =b 840 

0.2 4-39,200 3=1740 ±1130 

03 4-40,500 3=i8oo rfciooo 

0.4 +33,400 3=1490 ± 570 

0.45 4-28,600 3=1270 4= 320 

0.5 +27,200 3=1210 db 250 
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In this tabulation of the stresses, the upper signs refer to the top 
chord and the lower signs to the bottom chord. Dividing the 
above values by the specified unit stresses in tension and com¬ 
pression, respectively, we obtain the required net and gross 
sections of the chord members. For the bottom chords, these 
sections must be increased to provide for the wind stresses, 
computed as indicated below. In addition, the temperature 
stresses must be taken into consideration. 

The moments produced by temperature variation are given 
by Eq. (157): 

M,= —Ht-y. 

As found above, Z7« = T75 kips for a temperature variation of 
±60 0 F. At the center, 

Mt-±(75 kipsXii2.5 ft.) = ±8450 ft. kips. 

At other sections, the moments are proportional to the parabolic 
ordinates y: 

Section 
Parabolic 

Coefficient 
Mt 

X 
—=o 0 0 
l 

. 1 •36 ±3040 

.2 .64 ±5400 

•3 .84 ±7100 

•4 .96 db8ioo 

•5 1.00 ±8450 

(The upper signs pertain to a rise in temperature, the lower signs to a fall.) 

The resulting stresses are to be combined with the live-load 
stresses previously found, in whatever manner the specifica- 

tions may prescribe. For the sections y=o to 0.4, the tempera¬ 

ture moments amount to less than 25 per cent of the live-load 
Max. M, in which case, according to some specifications, the 
temperature stresses may be ignored. 
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4. Shears in Stiffening Truss.— 

(/> = i6oo lb. per lin. ft., \pl = 900 kips.) 

With the main span fully loaded, the shears at the various 
sections are given by Eq. (173): 

Total V=\p(l-2x) (1 -- hpl(i -y)(.085) = 76.5(1 -y). 

Section ■ Total V 

X 

r° 1 76 kips 

. 1 .8 61 

.2 .6 46 

•3 •4 3i 

.4 .2 IS 

•5 0 0 

The maximum shears are given by Eq. (149): 

Max. J(I-?).G(?)]. 

The values of 

obtained as follows: 

are taken from Table I, and the shears are 

Section BB1 s(r) [] Maximum V 

X 

r° 1 2.29 .400 .084 + 76+219 

.1 .81 1.84 .482 .114 + 83+110 

.2 .64 1.38 •5&5 .220 +131+ 28 

•3 •49 0.92 •647 405 +179 

4 •36 0.46 . 726 .666 +216 

•5 •25 0 .800 1.000 + 225 kips 
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For all sections x<^i—^ = .282/, the loading for maximum 

shear extends from the given section * to a critical point kl 
defined by Eq. (150): 

—=——. 
4 /— 2X 2X 

1~T 

The values C(k) are solved for k with the aid of Fig. 13. 

Section 
2X 

1 T 
C(k) k 

0 1 436 355 
. 1 8 ■545 438 
.2 .6 ■730 .588 

For these sections, a correction is to be added to the values of 
Max. F found above. This additional shear is given by Eq. 

(151): 

Add. F=»-*)2[f(;~f)-G(£)-i]. 

Section k (1-A)1 U1-*) 
N\2 l) 

G{k) n Add. V 

* 

r° 
•355 .416 2.29 .69I • S8S ■+■219 kips 

.1 .316 1.84 •75 5 • 389 +110 

.2 .588 .170 1.38 .858 •18 s 4- 28 

(By using Fig. 13, G(k) may be found directly from the values of C(k).) 

Hie minimum shears are then given by Eq. (153): 

Min. F=Total F-Max. F. 
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— 

Section Total V Maximum V Minimum V. 

X 

r° 

-f-76 kips + 295 kips — 2 iq kips 

.1 +61 +193 — 132 

.2 -f-46 +159 -113 

•3 +179 — 148 

• 4 +15 +216 — 201 

•5 0 + 225 — 225 

The temperature shears are given by Eq. (158): 

Fi=— ff,-(tan </)—tana). 

In this case, tan a=o, and Ht = -F 75 kips. At the ends, 

4 f 
tan 0 = -—= 4^=040, 

l 

and the slope (tan <f>) diminishes uniformly toward the crown. 

Section tan <j> V, 

X 

~r° 

0.40 ±30 kips 

.1 •32 d=24 

.2 .24 ±18 

♦3 . 16 d=i2 

• 4 .08 ± 6 

♦ 5 0 0 

These shears are to be combined with the maximum and mini¬ 

mum live-load shears, as may be required by the specifications. 

6. Wind Stresses in Bottom Chords.— 

(Assumed -wind load=/>=400 lb. per lin. ft.) 

If the lateral bracing is in the plane of the bottom chords, 

these chords act as the chords of a wind truss. The applied 

wind pressure p is partly counteracted by a force of restitution r 
due to the horizontal displacement of the weight of the stiffening 
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truss w. The resulting reduction in the effective horizontal load 

is given with sufficient accuracy by the formula, 

r 

P 

.013 
wl4 

vEI 

1 +013 
wl4 

vEI 

(For the derivation of this formula, see Steinman’s “Suspension 

Bridges and Cantilevers,” D. Van Nostrand Co., 1913, page 76.) 

In this case, w=total dead load (both trusses) = 5300 lb. per lin. 

ft.; v = vertical height from cable chord to center of gravity of 

the dead load = 135 it.; 7=moment of inertia of wind truss= 

|(i6i)x(34.5)2=96,000 in.2ft.2 Substituting these values, we 

obtain, 

r .284 

p~ I + .284-0'22' 

Hence the 'force of restitution r (due to the obliquity of suspen¬ 

sion after horizontal deflection) amounts, in this case, to 22 per 

cent of the applied wind load (p) at the center of the span. 

The force r diminishes to zero at the ends of the span, and the 

equivalent uniform value of r may be taken as f of the mid-span 

value. The resultant horizontal load on the span is, 

p—%r—400—1(88) =327 lb. per lin. ft. 

Treating this value as a uniform load, the bending moment at 

the center is, 

Mu=^— = 51,900 ft. kips. 
O 

Dividing by the truss width 34.5 ft., we obtain the chord stress 

= ±1500 kips at mid-span. The wind stresses at other sections 

will be proportional to parabolic ordinates; being zero at the 

ends of the span. 

The shears in the lateral system may also be calculated for 

the resultant uniform load of 327 lb. per lin. ft. 
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EXAMPLE 2 

Calculations for Two-hinged Suspension Bridge with 
Suspended Side Spans (Type 2S) 

1. Dimensions.—The following dimensions are given: 

l=Main Span = 1080 ft. (/'=/). 

/i=Side Span = 360 ft. r=^=-. 
1 3 

h=Distance, tower to anchorage=400 ft. 

/=Cable-sag in main span = 108 ft. n=—=—. 
I IO 

/i = Cable-sag in side spans =12 ft. — —. v=h-=~ 
h 3° J 9 

d, = Depth of Stiffening Truss = 22.5 ft. 

Mean Chord Section (gross): 
Main Span, Top = 83, Bottom = 137 sq. in. 
Side Spans, Top = 52, Bottom = 52 sq. in. 

I, (Main Span) =83(i4)2+i37(8.5)2 = 26,200 in.2 ft.2 
Ii, (Side Spans) = 2 X 52(11.25)" = 13,100 in.2 ft.2 

I_ 

h 
= 2.0. 

Width, center to center of trusses or cables=42.5 ft. 

A = Cable Section=78 sq. in. per cable. (A 1 =*A). 
tan a = Slope of Cable Chord in Main Span=o. 
tan ai = Slope of Cable Chord in Side Span =4(n—tti) = . 267. 
sec ai = 1.034. 

2. Stresses in Cable.—(All values given per cable). 
Given: 

W"*Dead Load (including cable) = 2385 lb. per lin. ft. 
£'=Live Load=860 lb. per lin. ft. 
/^Temperature Variation-=±60° F. {Eut—11,720 lb. per 

sq. in.). 
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For Dead Load, by Eq. (n), the horizontal component of 
cable stress is, 

H=^——wl=2,220 kips, (i kip=1000 lb.) 
OJ O 

For Live Load, by Eq. (125), the denominator of the ^-equa¬ 
tion is, 

N-i(i + 2inP) y +8»2) • y • sec8 «i (1 +8»i2) 

= 1.626+ .093+ .071 = 1.790. 

By Eq. (135), the horizontal tension produced by live load, 
covering all three spans, will be, 

I 2 
H = —^(1+2 ith)p'l= — ^ (1. oi64)(93o) = 1050 kips. 

The total length of cable between anchorages is given by 

Eq. (154)- ' 

r- (*+ra)+2f (“ w+i s&r) -:1 ■027+•767-1 ■ «*• 
Then, for temperature, by Eq. (156), 

H«= 
3£/«/L_3(ii72o)(2620o)(i . 794) _ _^Q_ 

PNl (io8)2Xi.790 

Adding the values found for H: 

D. L. 3220 kips 
L. L. 1050 
Temp. 80 

we obtain, Total #=4350 kips per cable. 

The maximum tension in the cable is, by Eq. (5), 

Ti=H • sec fa=H(i. 08) = 4700 kips. 

At 60,000 lb. per sq. in., the cable section required is: 

47004-60=78 sq. in. per cable. 
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3. Moments in Stiffening Truss—Main Span.— 

Given: 

Live Load=^> = 1600 lb. per lin. ft. 

(All values given and calculated are per truss.) 
With the three spans completely loaded, the bending moment 

at any section * of the main span is given by Eq. (140): 

Total M=%px{l—;r)£i — ^(i+2*ra®)j =§#c(/—*)[.091J. 

Hence onJy 9.1 per cent of the full live load is carried by the 
stiffening truss. Accordingly, at the center, 

i>l2 
Total M — .091 ~ = +21.200 ft. kips. 

8 

At other points, the values of M are proportional to the ordinates 
of a parabola. They are obtained as follows: 

Section Parabolic Coefficient Total M 

0 II 
H
 i ’*'» 

4X 0 X Is* 0 0 

0.1 4X.1 X .9 - .36 4 7,600 
0.2 4X.2 X .8 - .64 +13,600 

0.3 4X.3 x .7 ® .84 +17,800 

0.4 4X.4 X .6 = .96 +40,400 

o.4S 4X.45X .55- -99 +21,000 

05 4X.5 X .5 =100 +21,200 ft. kips 

For maximum and minimum moments, the critical points 
are found by solving Eq. (142): 

C(*)=2V-»|« 0.179^ 

with the aid of Table I or Fig. 12 or 1.?: 
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X 

1 
y 
l 

X 

y 
C(k) k D(k) 

0 0 (2.So) (•448) (•364) (.508) 

.1 .036 2.78 •498 .402 • 411 

.2 .064 3.12 • SS9 .448 310 

•3 .084 3-57 .640 •512 .202 

•4 .096 4.17 • 747 .603 •095 

•45 .099 455 • 8xS .667 .0$0+ .OOO 

•5 .100 5-oo •895 •755 .016+.016 

•55 .099 5-55 •995 •950 .000+. 050 

The values of D(k), found from Table I or Fig. 13, are recorded 

in the above tabulation. For all sections from x=— l=.447/ 
4 

to * = .553/, there are double values of D(k), as explained under 
Eq. (143'). 

The values of the minimum moments are then given by 

Eq. (143): ' 

Min. M=-[D(k) +4i**v] 

= -4i7»ooo^x -^[Z>(£)+- .033], 

and the maximum moments are then given by Eq. (144): 

Max. M=Total M—Min. M. 

Section 
t(-t) 

[ ] Minimum M Total M Maximum M 

X 

r° 
0 (•54*) 0 0 0 

.1 .09 •444 j — 16,700 + 7,6oo +i4.3«> 

.2 .16 — 22,900 +13,600 +36,500 

3 .21 — 20,600 +17,800" +38400 

•4 .24 — 12,800 +20,400 +33,100 

•45 .248 .083 — 8,600 +21,000 +39,600 

•5 • 25 .065 — 6,800 +21,200 +28,000 ft. kips 
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Dividing the maximum and minimum moments by the truss 
depth (d=22.5), we obtain the respective chord stresses. Adding 
the temperature and wind stresses found as in Example 1 and 
dividing by the specified unit stresses, we obtain the required 
chord sections. 

4. Bending Moments in Side Spans.— 

(p = i6oo lb. per lin. ft. per truss). 

With all three spans completely loaded, the bending moment 
at any section *1 of either side span is given by Eq. (141): 

Total Mi=$pxi(h-xi)£1 —J^(i+2tr8»)^j #i)[.09i]. 

Accordingly, at the center, 

Total Mi = .091 = +2300 ft. kips. 
O 

There are no critical points 4or moments in the side spans. The 
minimum moments are given by Eq. (145): 

Min. Mi = -yi(i• 124)#- 

Accordingly, at the center, 

Min. Mi = — 12(1.124) (1730) = —23,400 ft. kips. 

The maximum moments are given by Eq. (146): 

Max. Mi “Total Mi—Min. Mi. 

Accordingly, at the center, 

Max. Mi = 4-23004-23400= 4-25,700 ft. kips. 

At other sections, the moments are proportional to the ordinates 
of a parabola: 
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Section 
Parabolic 

Coefficient 
Total Mi Minimum Mi Maximum Mi 

Xi 

h*0 
0 O 0 0 

.1 •36 + 800 - 8,400 + 9>*oo 

.2 .64 + ISOO -15,000 +16,500 

•3 .84 + 1900 — 19,600 +21,500 

• 4 .96 + 2200 — 22,400 +24,600 

•5 1 + 2300 -23.400 +25,700 ft. kips 

6. Shears in Stiffening Truss—Main Span.— 

(p —1600 lb. per lin. ft.) 

With the three spans completely loaded, the shear at any 
section x of the main span is given by Eq. (147): 

Total V=%p{l— 2x)£1 — ^(i+2*r3i>)j —\p(l— 2x)[.ogi\. 

The shears will be the same as would be produced by loading the 
span with 9.1 per cent of the actual load, or with .091 pl = 157 kips. 

Total V-tsifl-f). 

Section 
1 X 

2 / 
Total V 

0 i! 
«
 1 0.5 +79 kips 

. 1 0.4 +63 

. 2 o-3 +47 

•3 0.2 +31 

4 0.1 +16 

•S 0 0 

The maximum shears are given by Eq. (149): 

Max. V -- 
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where the values of are taken from Table I or Fig. 12. 

The shears are obtained as follows: (§pl = 864 kips). 

Section 
N\2 l) •0) [] (-O' Maximum V 

X 

l ~° 2.23 .400 .107 I + 92+194 

.1 1.79 .482 .136 .81 + 95+ 96 

.2 i-34 •565 .243 .64 +134+ 22 

•3 0.89 .647 .424 •49 +i79 

4 •45 . 726 673 .36 +210 

■5 0 . 800 1.000 •25 +216 kips 

For all sections, *<^1—^ ~ • 277^> the loading for maximum 

shear extends from the given section * to a critical point kl 
defined by Eq. (150): 

cw-2..rL—^#. 
4 /— 2X 2X 

'~T 

The values C(k) are solved for k and G(k) with the aid of Fig. 13: 

Section 

H 
C(k) k 

0 ES .446 362 

.1 .8 .558 .448 

.2 .6 ■ 744 .600 

For these sections, a correction is to be added to the values of 
Max. V found above. This additional shear is given by Eq. 

(151): 

Add. F=iMi-*)a[|0-*)-C(i)-i]. 
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Section k (X-*)1 
N\2 l) 

G{k) [] Add. V 

1«
 

II 0 .362 .407 2 23 .696 •ss* +194 kips 

.1 .448 .305 1.79 .762 36s + 96 

.2 .600 .160 1.34 .866 160 + 22 

The minimum shears are then given by Eq. (153): 

Min. V=Total 7-Max. V. 

Section Total V Maximum V Minimum V 

X 

r° 
+79 +286 kips — 207 kips 

.1 +63 +191 — 128 

.2 +47 +156 — 109 

•3 +3i + 179 -148 

.4 + 16 4-210 “194 

•5 0 4-216 —216 

6. Shears in Side Spans.— 

(p = 1600 lb. per lin. ft., h = 360 ft.) 

With the three spans completely loaded, the shear at any 
section Xi in the side spans will be, by Eq. (148), 

Total Fi2*1) ^ (i + 2«^)j ==/>/i0-^[.091]. 

Since h=hh these shears will be £ of the corresponding values in 
the main span. 

Section Total Vi 

II 0 4-26 kips 

.1 +21 

.2 +16 

*3 +10 

• 4 + S 
•5 0 
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There are no critical points for shear in the side spans. The 
maximum shear at any section xi is given by Eq. (152): 

Section Mr!) [] (-!)■ Maximum Vi 

*1 

/i=° 
.OI83 .400 •993 I -J-286 kips 

.1 •0147 .482 •993 .8l +232 

.2 .OIIO ■S6S .64 +183 

•3 .0073 .647 •49 +140 

•4 •0037 . 726 1 -997 •36 + 103 

•5 O .800 1.000 25 + 72 

The minimum shears in the side spans are given by Eq. (153'): 

Min. Vi — Total Vi—Max. V\. 

Section Minimum V\ 

Xl 

h 0 
— 260 kips 

.1 — 211 

.2 — 167 

•3 -130 

■4 - 98 

•5 - 72 

7. Temperature Stresses.— 

(S,= =F8o kips). 

The stresses in the main span from temperature variation 
are figured exactly as in Example 1 (Type 2F), using Eqs. (157) 
and (158): 

Mi — -Ht-y, 

F,= — 2F«(tan^—tana). (Here, tana*o). 
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The temperature moments in the side spans are given by the 
formula: 

Mt= -H,yh 

and will therefore be »(= $) times the corresponding main-span 
values. 

Section 
Parabolic 

Coefficient 
Mt 

xx 

h~° 
0 0 

.1 •36 ±350 

.2 .64 ±610 

•3 .84 ±8lO 

4 .96 ±920 

•5 1 ±960 ft. kip? 

The temperature shears in the side spans are given by the 
formula: 

V,= —Ht{tan <)>i —tanai). (Here, tan = . 267.) 

Aft* 

They will be —(-!) times the corresponding main-span values. 

Section tan <j>x — tan a\ V, 

*1 

r° 
4»is=.i33 ±11 kips 

.106 ± 8 
.2 .080 ± 6 

•3 •053 =fc 4 

•4 .027 ± 2 

• 5 0 0 

8. Wind Stresses.—The wind stresses in the bottom chords 
and lateral bracing are calculated exactly as in Example 1 (Type 

2/0- 
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The assumed wind load (=/> = 400 lb. per lin. ft.) is reduced 
by the fractional amount, at span center, 

r 

P 

wl4 
•°I3e£/ 
. wl* 

1+OI3,£/ 

•173 

I+I73 
=0.147. 

(30=4770 lb. per lin. ft.; v=130 ft.; 7= 124,000 in.2 ft.2) 

Since the equivalent uniform value of r is f of the mid-span value, 
the resultant horizontal load on the span is, 

P~\r=400—1(59) = 351 lb. per lin. ft. 

Treating this value as a uniform load, the bending moment at 
the center is, 

Ma=—^~ = ±51,000 ft. kips. 
O 

Dividing by the truss width, 42.5 ft., we obtain the chord 
stress = ±1200 kips at mid-span. The wind stresses at other 
sections will be proportional to parabolic ordinates. 

The end shears in the lateral system will be: 

Vw= 35i* = ±190 kips. 

In the side spans, unless they exceed 1000 feet in length, the 
reduction in effective wind pressure may be neglected. (In 

this example, — would amount to only 1 per cent.) Hence the 
P 

moments and shears are calculated for the full specified wind 
load of 400 lb. per lin. ft., acting on simple spans 360 ft. in length. 

EXAMPLE 3 
Calculations for Towers of Two-hinged Suspension 

Bridge (Type 2S) 

1. Dimensions.—The bridge is the same as in Example 2. 
Each tower consists of two columns of box section, stiffened 

with internal diaphragms, and rigidly tied together with trans¬ 
verse bracing in a vertical plane. Each tower column is 225 feet 
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high and is made of a double box section, 42.5 inches wide. The 
other dimension (d), parallel to the stiffening truss, is 4 feet at 
the top, increasing to 9 feet at the base. The walls are if inches 
thick (made up of f-inch plates and corner angles) and the 
vertical transverse diaphragm is f-inch thick. Splices are 
provided at such intervals as to keep the individual sections 
within specified limitations of length or weight for shipment. 
Horizontal diaphragms are provided at splices and, in general, 
at io-foot intervals. 

The tower columns are battered so as to clear the trusses. 
They are 42.5 feet center to center at the top and 53.5 feet 
center to center at the base. 

2. Movement of Top of Tower.—The towers are assumed 
fixed at the base and the cable saddles immovable with respect 
to the tower. 

The maximum fiber stress in the tower columns will occur 
when the live load covers the main span and the farther side 
span at maximum temperature. Under this condition of load¬ 
ing, the top of the tower will be deflected toward the main 
span, as a result of the following deformations: 

x. The upward deflection (A/i) at the center of the unloaded 
side span. 

2. The elongation of the cable between the anchorage and 
the tower, due to the elastic strain produced by the applied 
loads. 

3. The elongation of the cable due to thermal expansion. 
These deformations are computed as follows: 

(Live Load=p'=860 lb. per lin. ft. H=1040 kips.) 

1. The upward deflection Afi is found by considering the 
unloaded side span as a simple beam subjected to an upward 
loading equal to the live-load suspender tensions (Eq. 78): 

If=770 lb. per lin. it. per truss, 

J 3&4EI1 
>0.428 ft. 
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2. The elastic elongation of the cable in the side span is, by 

Eq. (55), 

^'i=^(I+'V»i2+tan2ai)- - I7S(I *°77) =* l92 ft- 

3. The temperature expansion of the cable in the side span 

is, by Eqs. (53) and (26), 

Ah = uth( sec ai+- ^ = . 156(1.037) =0.162 ft. 
\ 3 sec5 ai/ 

We also have (from Eq. 26): 

— COSai+-Wl2(2 cos3 ai — 3 COS5 ai) =0.064, 
A/13 

ALi 

a/T 

16 ni 

3 sec*5 a 1 
= o.160. 

The deflection of the top of the tower is then given by, 
a 1 A/1 A L1 . * 1 A /1 , r . 

* ~lLt' 4A ( 
Substituting the values just calculated, we obtain the maximum 

tower deflection: 
x 

(.192+. 162) =0.439 ft. 

3. Forces Acting on Tower.—Considering this deflection as 
produced by an unbalanced horizontal force P applied at the 
top of the tower, this force may be calculated, if the sectional 
dimensions of the tower are known, by the formula, 

(H- *-EX 

In the 'present case, we find 2 y A*=1740. Hence, 

P—yo' 
E 

1740' 
: 17,200^0=7550 lb. per column. 

The other loads acting on the tower are the vertical reaction 
(V) at the saddles, and the end-shears (Vi) at the point of sup¬ 
port of the stiffening truss. The saddle reaction is given by the 
formula: 

V *= 2 J5F* tan ^=2 X4340 Xo. 4 = +3470 kips per column. 
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The truss reaction, with all spans loaded and maximum tem¬ 
perature rise, is, 

Fi = (42+32)+(i4+ii) = -|-99 kips per column. 

With one side span unloaded, as assumed above, 

Vi = (45+32) + (x 1 —140) = — 52 kips per column. 

The inaccuracy introduced by neglecting this uplift, Vi, will be 
on the side of safety; therefore the column need be figured only 
for the horizontal load P and the vertical load V. 

At any section x of the tower, the horizontal deflection (y) 
from the initial vertical position of the axis is given with suffi¬ 
cient accuracy by the equation for the elastic curve of the 
cantilever: 

y=yo 

4. Calculation of Stresses.—The resulting extreme fiber 
stresses at any section of the tower will be: 

Combined Stress=—+—-°--—. 
A I I 

The computations may be arranged as follows, the stresses 
being figured for convenience at 25-foot intervals: 

Joint 

No. 

y*-y 

ft. 

d~ 2 

ft. 

A 

sq. in. 

I 

in.2 ft.2 

*2 V Pxc V{yo-y)c Combined 
X 

ft. 
/ A I I Stresses 

Ib./sq. in. 

0 0 0 4.0 280 560 0 12,400 0 mm 
1 25 .068 4.5 295 730 .86 11,800 500 ESI 
2 SO • 134 5-0 310 940 2.66 11,200 900 

3 75 .197 5*5 325 1170 10,700 1200 ESI 
4 100 254 6.0 340 1440 6.94 10,200 1500 wSmi 
5 125 •305 6.5 355 1740 8.98 9,800 1600 13400 

6 150 .348 7.0 370 2080 10.80 9,400 1800 13,200 

7 175 ! 380 75 385 2460 X2.42 9,000 1900 2000 12,900 

8 200 .400 8.0 400 2880 13-88 8,700 1900 1900 12,500 

9 225 .408 

! 

9.0 430 3850 1320 

2-69.54 

8,100 1800 1700 xx,600 
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8. Wind Stresses.—To the above tower stresses produced 
by live load and temperature, must be added the stresses due to 
wind loads. 

The truss wind load of 400 lb. per lin. ft. produces a hori¬ 
zontal reaction at each tower of, 

360-+400—=266 kips. 
2 2 

This acts at Joint No. 4, (*=100). 
The deflection of the stiffening truss under wind load pro¬ 

duces a horizontal reaction at the top of each tower of 40 and 
2 

the wind on the surface of the cables produces an addition to 

this reaction amounting to ; hence the total reaction 

at the tower top = 26 kips. 
The wind acting directly on the tower is assumed at 25 lb. 

per sq. ft. of vertical elevation. This produces, at each joint, an 
equivalent concentrated load of 25 X (25d). 

Joint 

No. 

X 

ft. 

d 

ft. 

Wind 

Load 

kips 

Shear 

kips 

Moment 

ft. kips 

Col¬ 

umn 

Dist. 

ft. 

A 

sq. in. 

Stress 

from 

W. L. 

lb./sq. in. 

Stress 

from 

L. L.+ 

Temp, 

lb./sq. in. 

Total 

Stress 

lb./sq. in. 

0 0 4 26+1 0 ‘ 0 42.5 28 0 0 12,400 ea 
z 25 45 3 - 27 43-5 29S 100 13,000 mm 
2 E2 5 3 - 30 ~ M25 44.5 310 100 13,200 ■Si 
3 75 5-5 3 - 33 - 2,250 46.5 325 100 13,500 13,600 

4 100 6 266+4 - 36 “ 3,i5o 48.5 340 200 13,500 13,700 

5 125 6-5 4 —306 — 10,800 495 355 600 13,400 14,000 

6 150 7 4 —310 -18,550 50.5 370 xooo 13,200 14,200 

7 175 75 5 -314 — 26,400 51.5 385 1300 12,900 14,200 

8 200 8 5 -319 -34,373 525 400 1600 12,500 14,100 

9 225 9 
i 

3 -324 -42,473 53*5 430 1800 11,600 13,400 

The bending moments, divided by the column distance, give the 
column stresses, and these divided by the areas give die unit 
stresses from wind load. 
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The transverse bracing is proportioned to resist the shears 
tabulated above. 

EXAMPLE 4 

Estimates of Cable and Wrapping 

1. Calculation of Cable Wire.—Given a suspension bridge 
in which a cable section of 70 sq. in. is to be provided. To find 
the material required for cables and wrapping. Other data as 
in Example 2. 

The total length of each cable is given by Eq. (154): 

£=/(i+f«2)+2/i(sec ai+- —-—) 
\ 3 sec3 21/ 

= 1080(1.027)+720(1.034+. 003) = 1110+746 = 1856 ft. 

To this must be added 43 ft. of cable at each end, between end of 
truss span and anchorage eyebars (scaled from drawing); hence, 

Total L —1856+86 = 1942 ft. per cable. 

No. 6 galvanized cable wire will be used=0.195 ul diameter = 
.030 sq. in. area. Each cable consists of 7 strands of 336 wires 
each = 2352 wires at .030 sq. in. = 70.5 sq. in. 

Weight of No. <5 galvanized wire=0.1 lb. per ft. 
Total cable wire=2X2352 wires at 1942 ft. = 9,150,000 lin. ft. 
Total weight of cable wire=9,150,000 ft. at 0,1 lb. =915,000 lb. 
2. Calculation of Cable Diameter. — The diameter D of 

a cable, composed of n wires of diameter d, is given by 
D—K-y/ti'd where K is the void constant. In practice, K 
varies between 1.09 and . 1.12, depending on the compacting. 
Using K = 1.11, a cable of 2352 wires of 0.195 diameter will 
have a diameter of 10.5 inches. (Adding the thickness of 
wrapping, the finished cable will be 10.8 inches in diameter.) 

3. Calculation of Wrapping Wire.—The wrapping consists 
of No. 9 galvanized wrapping wire (soft, annealed), weighing 
.06 lb. per ft. Deducting lengths of cable bands, etc., there will 
be 3250 ft. of cable to be wrapped. Since the wrapping wire is 
0.15 in. diameter, it will make 80 turns per lin. ft. The diameter 
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of the cable is 10.5 inches, hence the length of each turn will be 
2.8 ft. 

Length of wrapping wire = 80 turns at 2.8 ft. 
= 224 ft. per lin. ft. of cable. 

Weight of wrapping wire = 224 ft. at .06 lb. 
= 13.44 lb. per lin. ft. of cable. 

Total wrapping wire =3250 ft. of cable at 13.44 lb. 
=44,000 lb. 

4. Estimate of Rope Strand Cables.—Instead of building 
the cable of individual wires, manufactured rope strands may 
be used. In the case at hand, with a factor of safety of 3, there 
would be required sixty-one if-inch strands per cable. These 
galvanized steel ropes weigh 4.34 lb. per ft.; hence the total 
weight in the cables would be, 

2 X1942 ft. X61 strands at 4.34 lb = 1,030,000 lb. 

The diameter of the resulting cable would be 7 X if-in. = 11.4 in., 
plus the wrapping. (If rope strands are used, it should be 
remembered that their modulus of elasticity E is only about 
20,000,000, as compared with 27,000,000 for parallel wire cables.) 

• EXAMPLE 6 

Analysis of Suspension Bridge with Continuous Stiffening Truss 
(Type OS) 

(See Chap. I.. Pages 53 to 63.) 

1. Dimensions.—The following dimensions are given: 

l—Main Span=40 panels at 17' 75" = 705 ft. (/'=/). 

fe—/i=Side Span = 10panels at 17' 7i" = 176.25 ft =j~~j- 

/—Cable sag in Main Span—74.285 ft. (—f-Aj). 
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fi — Cable-sag in Side Spans=4.65 ft. 

d=Depth of Truss= 15/0 at towers, 10/833 at center, 
11/346 at ends. 

Width, center to center of trusses or cables = 27 ft. 

/ = Mean Moment of Inertia in main span= 1642 in.2 ft.2 
(per truss). 

h = Mean Moment of Inertia in side spans = 2278. 

(i-i-o.j.j. 

A = Cable Section in main span = 7 strands of 282 wires at 
0.192 in. diameter = 57.2 sq. in. per cable. 

Ai = Cable Section in side spans=A, + 2 strands of 76 wires 
= 61.6 sq. in. per cable. 

tan a = Slope of Cable Chord in main span= .026. 

tan ai = Slope of Cable Chord in side spans =0.5. 

_ . . 2 + 2 Itv 
e = Coefficient of Contmuity =-— = o. 602 

3+2tr 

2. Stresses in Cables.—(All values per cable). 
For dead load (w = 2850 lb. per lin. ft. per cable), the hori¬ 

zontal tension is given by Eq. (ix): 

wP 
~8f 8 

95 wl - 2380 kips per cable. 

The denominator for other values of H is given by Eq. (203): 

N=$—4C+3C2+2ir(fyP+e2—2ev) 

+AP' T(l+8w^+iff* • y •sec3 ai (1 +8»i2) =0.413. 

With the live load (p - 750 lb. per lin. ft. per cable) covering the 
main span, Eq. (206) gives, 

H=JL(L-£\ • pi60a kips per cable. 
Nn\5 4/ N 
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With the live load (^1 = 750 lb. per lin. ft. per cable) covering 
both side spans, Eq. (207) gives, 

2ir3 h e\ , .0134 , . 

H=N^{rs) 'pll=-n~Pi1=~17 kips- 

The temperature factor is given by Eq. (154'): 

y=(i+1^n2)+2^(sec2 ai+J^«12) = 1.687. 

Substituting this value in Eq. (2x4), we obtain the cable tension 
produced by temperature variation (t — ±6o° F., Ewt = 11,720): 

H,= t43 kips per cable. 

Combining the values for dead load, main-span live load, and 
fall in temperature, we obtain, 

Max. H = 3023 kips per cable. 

In the main span, the maximum slope of the cable is tan 0 
= tan a+4« = 447; sec 0 = 1.096. For this slope, the stress 
in the cable is, by Eq. (5), , 

Max. r= H- sec 0 = 3314 kips. 

At 60,000 lb. per sq. in., the cable section required is 3314-4-60 
= 55.2 sq. in. (The section provided is A =57.2 sq. in.) 

In the side spans, the maximum slope of the cable is tan 01 
= tan c*i+4Wi = .6o5; sec 01 = 1.17. For this slope, the stress 
in the cable is, by Eq. (5), 

Max. Ti = H • sec 0i = 3538 kips. 

At 60,ooq lb. per sq. in., the cable section required is 3538-4-60 
= 58.8 sq. in. (The section provided is ^1 = 61.6 sq. in.) 

3. Influence Line for H.—For a concentration P traversing 
the main span, the values of H are given by Eq. (204): 

H=-±-[B{k)-Uk-k>)\-P. 
iV 

Taking the values of B{k) from Table I or Fig. 12, we obtain 
the following main-span influence ordinates for H: 
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Load Position Ordinate — 

0
 

li 
•4*

 0 

0.1 .3S6 

0.2 •945 

0-3 1.484 

0.4 1.861 

o-S 1.994 

For a concentration Pi traversing either side span, the 
values of H are given by Eq. (205): 

J\ -n\_ 2 J 

where kih is measured from the free end of the span. Substi¬ 
tuting the values of B(k 1), we obtain the following side-span 
influence ordinates for E: 

Load Position 
II 

Ordinate — 

£1 = 0 0 

0.2 — .048 

0.4 — .085 

0.6 — .100 

0.8 1 b
 

0
0

 

1.0 0 

4. Bending Moments in Main Span.—The bending moments 
will be obtained by the method of unit loads applied at succes¬ 
sive panel points, using Eq. (182): 

Jf - —H(y—cf)=M'—H(y—ef). 

In this case, «/=44.7 ft., and the values of (y—ef) are as 
follows: 
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Panel Point 
X 

1 y-ef 

No. 20 0 -44.7 ft. 

16 . 1 — 18 0 

12 . 2 + 2.8 

8 •3 + 17 6 

4 •4 + 26 s 

0 •S + 29.7 

Note.—In this bridge, the panel points were numbered consecutively in both 

directions, starting with No. o at the middle of the span; No. 20 is at the towers, 

and No. 30 at the free ends. 

The value of H is a constant for each load position and is taken 

from the influence table figured above. 

For each load position, the moments M\ and M2 at the towers 

are given by Eqs. (190) and (191): 

Mi = -Pl-k(i-k) 
(3 + 2ir) (i—k) + 2ir 

(s+2tr)(i+2ir) 

= -[55-5-K5i80-£)]-P-£0-£)- 

tut thu„ Vi (3+™)k+2ir 

= -[55-5+5i8£].P-£(i-*). 

The bending moment M' at the section carrying the load is, 

M'=Mo+Mi{i-k)+M2k=Pk{.i-k)l+Mi(i-k)+M2k. 

Using the three above equations, we obtain the following con¬ 

trolling values of M’ for a unit load P = i. 

Load Position Mi at Near Tower M' at Load M2 at Far Tower 

0 0 0 

.1 -47 0 4*20.2 - 9.7 

.2 -75-3 +47 -s -25.5 

•3 -87.9 +73-* -44.3 

4 -88.0 +91 •* —63.1 

•5 -78.7 4-97-6 -78.7 
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These values give the three vertices of the equilibrium triangle; 

and, for each load position, the values of M' for other sections 

may be tabulated by straight-line interpolation. Subtracting 

from each value of M' the corresponding value of H(y—ef), we 

obtain the unit-load bending moments M. A typical tabula¬ 

tion for this computation is as follows: 

Unit Load at Panel Point 12. (4 =o.a). (II=.945) 

Panel Point Mf It(y-ef) M 

No. 20 “"75-3* -42-3 -330 
16 -13.8 -17.0 + 3-2 
12 +47. s* + 2.6 +44-9 
8 +38.4 + 16.7 + 21.7 

4 +29.3 + 25.I + 4 2 

0 + 20.2 + 28.1 - 7 9 

4 + 11 .O + 25.I -14. I 
8 + 1.9 + 16.7 — 14.8 

12 ~ 7-2 + 2.6 ~ 9-8 
16 -16.3 -17.0 + 0.7 

20 “25-5* -423 + l6.8 

With the left side-span completely loaded (unit load at each 

panel point), Eqs. (197), (198) and (207) give: 

M - 2^f3(i+*'r) 
*"1 ’ 4 (3+2*r)(i + 2»r) 

= — •ooi453/>i/2= —41.0 

M2= + — 7 — 7£—r . x = + .ooo6i6piP*= + 17.4. 
4 (3 4- 2ir) (1 + 2»r) 

’f =-°-64S- 

The resulting bending moments in the main span will be, by 

Eq. (182), 

and are obtained by a tabulation similar to the one above. 

The influence values of M obtained in the series of tabula¬ 

tions just described may be summarized as follows (only every 

fourth panel point shown here): 
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Influence Values of M for Unit Loads 

Load Position 

M at Panel Point 

20 i5 12 8 4 0 

Panel point No. 20. 0 0 0 0 0 0 
16. - 29.7 4- 27.1 + 15-8 + 6.7 — 0.1 - 4-6 
12. - 33-0 4- 3-2 4- 44 9 4-21.7 4" 4-2 - 7-9 
8. “ 21.S - 7-5 + 15-4 + 471 4- 17.I - 4.4 

4. ~ 4.8 - 9-7 - 3-6 + 136 4-41-8 4- xo.2 
0. 4- 10.5 - 7-5 - 13-7 — 8.1 4- 9-4 + 38.4 
4. 4- 20.1 - 3-9 - 16.8 - 18.8 - 9-6 4- 10.2 
8. 4~ 22.0 - 0.8 ~ I4.8 — 20.1 - 16.5 - 4 4 
12. 4- 16.8 4“ 0.7 - Q.g — 14.8 - 14.1 ~ 7-9 
16. 4- 7-6 4“ 0.6 ~ 4.1 ~ 6.5 - 6.7 - 4-6 
20. 0 0 O 0 0 0 

Left side span. - 69.3 - 46.4 — 27.2 - 11.9 - 0.4 4- 7-4 
Right side span. — 11.6 — 0.2 4- 7-4 4-11.2 4- 11.1 4- 7-4 

Maximum M. 4*308.1 +108.7 +292.0 4-344 0 +2773 -I-223.7 

Minimum M. -450.7 -163.7 
•* 

1-278.s — 282.3 —186.2 — 129.1 

Max. M is the summation of all positive influence values, and 

Min. M is the summation of all negative influence values. 

These results are multiplied by the panel load (P=—= 13.22 
\ 4-® 

kips) to obtain the bending moments in foot-kips; and the latter 

values are divided by the truss depths at the respective panel 

points to obtain the chord stresses in kips. 

The temperature moments are given by Eq. (215): 

where Ht—^43 kips; the values of (y—ef) have been tabulated 

above. These moments are combined with the live-load 

moments as the specifications may prescribe. 

6. Shears in Main Span.—The shears in the main span are 

given by Eq. (188): 

V - F0+—7^* - # (tan *-tan«) = r-#(tan *-tan«). 
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The method of unit loads will be used. The values of H, M2 

and Mi have been calculated above for different load positions. 

Load Position Vo 
r 

V' 
(to left of load) 

V9 
(to right of load) 

H 

Panel point No. 20... 1.0 0 +1.0 0 0 
16.. ■9 •OS3 4 -953 -.047 .386 
12... .8 .071 + .871 —. 129 •945 
8... •7 .062 + .762 -.238 1.484 
4. .. .6 •035 4 635 -•365 1.861 
0. . •5 0 -f .500 — .500 1.994 

The value of (tan 0 — tan a) decreases uniformly from 4n = .42 

at the left tower (Panel Pt. No. 20) to o at the center (Panel Pt. 

No. o) and to —4n= — .42 at the right tower (Panel Pt. No. 20). 

Substituting these values in the above formula for V, an 

influence table for shears is constructed, similar to the preceding 

influence table for moments. (Only every fourth panel point 

shown here):. 

Influence Values of V for Unit Loads 

Load Position 

V at Panel Point 

20 l6 12 8 4 0 

Panel point No. 20. -hi .00 O O 0 0 0 

16. + .79 - .18 ~ -IS — . 11 — .08 - 05 
12. + -47 + 55 ~ .37 - .29 — . 21 - 13 
8. 4 -H 4 .26 + -39 - -49 ~ .36 ~ .24 

4. ~ .15 4 .01 4 .16 4 .32 - .52 - .37 
0. “ .34 - .17 0 4 .16 + -33 db .50 

4. “ -42 — . 26 — . n 4 .05 4 .21 4 .37 
8. - -39 — . 26 - .14 — .01 4 .11 4 .24 
12. - .27 - .19 — .11 “ 03 4 .05 4 .13 
16. — .12 - .08 - .05 — .02 4 .02 4 .05 

20...,. 0 0 0 0 0 0 

Left side span. 4 -35 -h .30 4 .24 4 .19 4 .13 4 .08 

Right side span. 4- .19 4 .14 4 - 08 4 .03 - 03 - .08 

Maximum V. +756 +576 +4-07 +3.58 +4.17 +4-4* 
Minimum V. -6.68 -4-34 -3.*2 -300 -3.90 -4.4* 
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Max. V is the summation of all positive influence values, and 

Min. V is the summation of all negative influence values. These 

40 
results are multiplied by the panel load ^P- 

to obtain the vertical shears in kips. 

The temperature shears are given by Eq. (217): 

V,= —Ht(tan <t>—tana). 

13.22 kips^ 
J 

The shears are then multiplied by the respective secants of 

inclination, to obtain the stresses in the web members of the 

stiffening truss. 

6. Bending Moments in Side Spans.—The bending moments 

in the side spans are obtained by the method of unit loads, using 

Eq.(x83): 

M=Mo+j^M1-H(yi-^ef^=M'-Hy'. 

For loads in the main span, Mo=o, and the values of Mi and M2 

are the same as calculated above. For the far side span com¬ 

pletely loaded, M0=o, and the value of Mi is the same as the 

value of M2 calculated ab'ove. For unit loads (P-1) in the 

given side span, the moment Mi is given by Eq. (194): 

and 

M _ pi***(1 +ir)(ki-ki9) 
1 (3+2ir)(i+2ir) 

Mo=Pli(ki~ki2). 

i6.4P(ki-ki3), 

The values of H will be the same as calculated above. Accord¬ 

ingly, we have the following values for a unit load (P = i) tra¬ 

versing the side span. 

Load Position h Mr H 

Panel point No. 20. 

22. 

24. 
26. 

28. 

30. 

1.0 

.8 

.6 

• 4 
.2 

0 

0 

+24-4 
+38 -5 
+40.1 

+27.6 

0 

0 
— .078 

! -.100 

-.085 
— .048 

0 

_l 
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The values of y'=yi—--ef are as follows: 
h 

Panel Point: 20 22 24 26 38 30 

Xl 

r 10 
.8 .6 •4 .2 0 

/=- 44.7 -32.8 — 22.4 -134 — 6.0 0 

Substituting the various values in the equation: 

we obtain the following influence table for side-span moments 

(only every second panel point shown here): 

Influence Values of M for Unit Loads 

M at Panel Point 

Load Position 

20 21 22 24 26 28 30 

Panel point No. 20 0 0 0 O 0 0 0 

22. - 8.2 4- 6.9 4* 21.9 4* 16.6 4- 11.2 4- 5-7 0 

24 — 10.8 4- 1.1 +12.8 + 36.3 + 24.3 4* 12.2 0 

26. “ 9-3 — 1.2 + 6.9 4- 23.0 + 39 0 + 19-5 0 

28. - 5-3 — 1.2 4- 3.0 4* 11.1 + 19-3 + 27.3 0 

30. 0 0 0 0 0 O 0 

Maximum M. 0 4- 23 4* 88 +173 +187 4-126 0 

Minimum M. - 69 - S 0 0 0 O 0 

Far side span. S — 10 “ 7 S — 2 0 0 

Main span. 5eB +231 + 167 4- 4 0 

QB -363 “352 SB “154 0 

Total Maximum M, +308 +254 +254 +249 4“2I2 4-130 0 

Total Minimum M. -451 -378 -3S9 -320 “254 "“*54 0 

The above results are to be multiplied by the panel load 

(P=—»— = 13.22 kips) to obtain the maximum and mini* 
\ 40 10 / 
mum bending moments in the side span. 
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The temperature moments are calculated by Eq. (216): 

where Ht — T47 kips. 

7. Shears in Side Spans.—The left side-span shears are 

calculated by Eq. (189): 

V = (Vo+j^j -Jj(taa ^-tan - V'-K H. 

At the tower (Panel Point 20), K = —4W1—-p- = — . 105— . 254 
li 

— ~ -359J and the value of K diminishes uniformly to K— +4»i 

—/- = +. 105— . 254= — . 149 at the free end (Panel Point 30). 
li 

Substituting in the above formula the known values of H, 

Mi and K, we obtain the following table of influence ordinates 

for side-span shears (only every second panel point shown here): 

Influence Values of V for Unit Loads 

Load Position 

* 
V at Panel Point 

20 22 24 26 28 30 

Panel point No. 20. 0 O 0 0 0 O 

22. - .86 - -85 + IS + .16 4- .16 + .16 

24. - .67 - .67 - .66 + -34 4- .35 4* -35 
26. - .46 - -46 - .45 “ 45 + ss 4* .56 
28. - .24 - -S3 ~ .23 - 23 - 23 + .78 
30. 0 0 0 0 0 4-1.00 

Maximum V. 0 -f"0. 2 +1.8 +3-3 +4* 2 
Minimum V. -5° -4.0 jgU — 1.1 -0.3 0 

Far side span. —0.1 — O. I PP —0.1 O 0 

Main span. +5*4 +3.8 +2.4 +1.2 +0.4 0 

-0.9 -1.3 ~i.8 -2.5 -3.6 -51 

> 
Total Maximum V. Bfl EB +3.2 +3-o + 3.6 +4-2 
Total Minimum V. 1 EH -4.2 -3-7 -3.9 -51 
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The temperature shears are given by Eq. (218): 

The shears are then multiplied by the respective secants of 

inclination, to obtain the stresses in the web members. 

V,- -Hr ( tan <t> 1—tan ai 

EXAMPLE 6 

Design of Anchorage 

1. Stability against Sliding.—The outline of a design for a 

reinforced concrete anchorage is shown in Fig. 44. 

The principal forces acting are the cable pull, and the weight 

of the anchorage (including any superimposed loads). In the 

case at hand, the cable pull=H- sec 0 = 7800 kips. The weight 

of the anchorage and the superimposed loads is 30,000 kips. 

This weight is represented in the diagram as a vertical force 

drawn through the center of gravity of the anchorage and applied 

loads. By a parallelogram of forces, the total resultant is found, 

amounting to 29,000 kips. Tf its inclination from the vertical is 

less than the angle of friction, the anchorage is safe against 

failure by sliding. 

2. Stability against Tilting.—The resultant is prolonged to 

intersection with the plane of the base, and its vertical com¬ 

ponent (V — 28,000 kips) is considered as an eccentric load 

applied at the point of intersection. The toe and heel pres¬ 

sures are given by, 

P = 
Vec 
I ’ 

where A is the area of the base (sq. ft.), I is its moment of inertia 

about the neutral axis (ft.4), e is the distance (ft.) of the resultant 

V from the neutral axis, and c is the distance (ft.) from the 

neutral axis to the respective extreme fiber. We thus obtain, 

for the case at hand, a toe pressure of 10.6 kips per sq. ft. and a 

heel pressure of 1.8 kips per sq. ft. The allowable foundation 

pressure was 6 tons per sq. ft., so the anchorage figures safe 

against settlement or overturning. 



CHAPTER IV 

ERECTION OF SUSPENSION BRIDGES 

1. Introduction.—The erection of suspension bridges is 
comparatively simple, and is free from dangers attending other 
types of long span construction. 

The normal order of erection is: substructure, towers and 
anchorages, footbridges, cables, suspenders, stiffening truss and 
floor system, roadways, cable wrapping. 

The cables are the only members requiring specialized knowl¬ 
edge for their erection. The other elements of the bridge, for 
the most part, are erected in accordance with the usual field 

methods for the corresponding elements of other structures. 

2. Erection of the Towers.—The erection of the towers may 
proceed simultaneously with the construction of the anchorages. 

In the case of the Manhattan Bridge, the tower (Fig. 45) con¬ 
sists of four columns supported on cast-steel pedestals resting 
on base plates set directly on the masonry pier. The sections 

of the pedestals (weighing up to 40 tons) were delivered by light¬ 
ers and lifted by their derricks to the pier-tops; they were rolled 

into position on cast-steel balls placed on the bed plate, and then 
jacked up to release the balls. 

The tower columns were erected by the use of ingenious 

derrick platforms (one for each pair of columns) adapted to 
travel vertically up the tower as the erection proceeded (Fig. 45). 
Each platform (21 feet by 34 feet) projected out from the face 
of the tower on the shore side and was supported by two bracket- 
struts below. The tipping moment was resisted by two pairs of 
rollers or wheels, one at each column, engaging vertical edges 

of the projecting middle portion of the column, the upper wheel 
being on the river side and the lower wheel on the shore side. 
The vertical support was furnished by hooks engaging the pro- 

168 
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jecting gusset plates of the bracing system. A stiff-leg derrick 

with 45-foot steel boom was mounted at the middle of the inner 

side of the platform, being braced back to the outer comers of 

the platform. With this derrick the sections of the tower 

(weighing up to 62 tons) were lifted from the top of the pier and 

set in place, the material having been transferred from scows to 

the pier by floating derricks. When a full section had been 

added to the tower, blocks were fastened to the top and falls 

Fig. 45.—Manhattan Bridge. Erection of Towers. 

(See Fig. 3S, page 97). 

attached to the derrick platform by which it then lifted itself to 

the next level. 

For purposes of handling and erection, each column was 

divided by transverse and longitudinal field splice joints into 

sections of convenient size. The transverse joints were 12 feet 

to 27^ feet apart, and were staggered to break joint. Where the 

three longitudinal sections changed to two, shim plates were 

used to level off. The riveting of the field splices (with i-inch 

rivets) was kept several sections back of the erection work in 
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order to give opportunity for the transverse joints to come to 

full bearing. 

Each tower column was finished with a cap section (52 tons) 

upon which was set the saddle (15 tons). 

In addition to the two traveling derricks, the following 

equipment was required for the erection of each tower: two 

hoisting engines on the pier; one stiff-leg derrick (io-tons, 

6o-foot boom) on the pier between the tower legs, used in the 

assembly of the traveling derricks; two large storage scows 

moored to the pier, supplying the respective traveling derricks; 

a power plant on shore with two 50-H.P. horizontal boilers, a 

steam turbine blower for forced draft, and an air compressor; 

30 pneumatic riveting hammers; 6 pneumatic forges. 

The force at each tower consisted of a hundred men, including 

six riveting gangs. Riveting scaffolds were erected around the 

tower for field riveting, and were provided with stairs and 

safety railings. The erection record was 2000 tons of steel at 

one tower in sixteen working days. 

Figure 46 shows the completed tower, 282 feet high above 

the masonry, and weighing 12,500,000 pounds. 

For the Manhattan tower of the Williamsburg Bridge, 

a stationary derrick on the approach falsework was used to erect 

the steel up to roadway level; the erection was then completed 

by two stiff-leg derricks mounted on a timber tower built up on 

the cross-girder between the two tower legs. (The completed 

tower is shown in Fig. 57.) 

For smaller bridges, the towers may be erected by gin-pole 

or by stationary derrick alongside. For the suspension bridge 

at Kingston, N. Y. (H. D. Robinson, Chief Engineer), a guyed 

derrick with 95-foot steel boom was set up on a square timber 

tower 80 feet high, for the erection of each steel tower; the same 

derricks later erected the adjoining panels of the stiffening truss 

(Fig- 56). 
3. Stringing the Footbridge Cables.—The first step in cable 

erection consists in establishing a connection between the two 

banks. Various methods have been used since prehistoric times, 

when the first thread was fastened to an arrow and shot across 



166 ERECTION OF SUSPENSION BRIDGES 

from bank to bank. In building the Niagara bridge, a kite was 

used to take the first string across the gorge; at other places, a 

light rope is drawn across with a rowboat. 

In the erection of the Brooklyn Bridge, a f-inch wire rope 

was first laid across the East River by means of a tugboat and 

scow, and then raised to position. With another line taken 

over in the same manner, an endless rope was made, and this 

was used for hauling over the remaining traveler ropes and an 

Fig. 46.—Manhattan Bridge. Erection of Footbridges. 

auxiliary if-inch carrier rope; the latter served to carry the load 

of the footbridge cables and cradle cables (2! and 2f inches 

diameter) when these were hauled across the river. 

For the Manhattan Bridge, sixteen if-inch wire ropes were 

swung between the towers in four groups of four (Fig. 46). One 

group (to make a single footbridge cable) was taken across at a 

time. The four reels were mounted on a scow brought along¬ 

side one of the towers, A. The end of each rope was unreeled 

and hauled up over a temporary cast-iron roller saddle mounted 



ERECTION OF FOOTBRIDGES 167 

on top of the tower, and thence carried back to the anchorage A, 
where it was made fast. Then the scow was towed across the 

river, laying the ropes along the bottom, to the opposite tower B. 
The remainder of each rope was then unreeled and coiled on the 

deck of the scow. Then, while all river traffic was stopped for a 

few minutes, the free end of each rope was hauled up by a line 

to the top of Tower B, over a roller saddle and thence to the 

Anchorage B; the middle of the rope, or bight, rose out of the 

water during this operation, and came up to the desired position. 

After being made fast at the Anchorage B, the ropes were socketed 

and drawn up to the precise deflection desired, as determined by 

levels. Each group of four ropes then formed a temporary 

cable for the support of the footbridges (Fig. 46). 

The footbridge ropes for the Williamsburg Bridge were strung 

in the same manner as for the Manhattan Bridge, except that 

three were laid, instead of four, at each trip of the flatboat 

across the river. 

4. Erection of Footbridges.—The next step is the construc¬ 

tion, for each cable, of a footbridge or working platform which 

permits the wires to be observed and regulated throughout their 

length and greatly facilitates the entire work on the cables. 

For the Manhattan Bridge (Fig. 46), traveling cages, hanging 

from the footbridge cables as a track, were used by the men 

placing the double cantilever floorbeams. These floorbeams, 

35$ feet long and spaced 21 feet apart, were supported on the 

footbridge cables in pairs, and were secured to the upper side of 

these cables by U-bolt clamps. Upon the outer portions of the 

floorbeams were dapped the stringers, three lines on each side, 

and on these were spiked the floorboards, spaced i| inches 

apart in the clear. In this manner, four platforms were con¬ 

structed, 8 feet wide, placed concentric with the main cables 

and 30 inches (clear) below them. The platforms were provided 

with wire-rope handrails. Passage from one platform to another 

was provided only at the towers and anchorages, and at mid¬ 

span. Each platform carried nine small towers called “ hauling 

towers” (Fig. 47), about 250 feet apart, to support the sheaves 

of the carrying and hauling ropes used for placing the strand 
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wires. The platforms were braced and guyed underneath by 

backstays from each tower, and by inverted storm cables con¬ 

nected to them at intervals of 54 feet. The entire construction 

was of light wooden plank (maximum size 3X12) and all con¬ 

nections were thoroughly bolted with washer bearings. All 

woodwork had been previously cut to length, framed, bored and 

marked, and hoisted to the tops of the towers. The floorbeams 

were slipped down on the cables toward the center of the span 

i 

Fig. 47.—Manhattan Bridge. Footbridges and Sheave Towers. 

and toward the anchorages, set by the men in the traveling 

cages, and maintained in position by the stringers dapped to 

them. Then the sheave towers and handrails were erected on 

the platforms, practically completing the falsework (Fig. 47). 

The temporary platforms for the Williamsburg Bridge are 

shown in Fig. 57. Two footbridges were used, 67 feet center to 

center, connected by transverse bridges every 160 feet. 

For the Brooklyn Bridge, Fig. 25, the timber staging con¬ 

sisted of one longitudinal footbridge and five transverse plat- 
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forms, called “ cradles,” from which the wires were handled and 

regulated during cable-spinning. 

6. Parallel Wire Cables.—Smaller spans have been built 

with ready-made parallel wire cables, served with wire wrapping 

at short intervals; but the individual wires in such cables lack 

freedom to adjust themselves to the necessary curvature of 

suspension, so that objectionable stress conditions arise. For 

these reasons it has become general practice to use the method, 

introduced by Roebling, of spinning the desired number of 

parallel wires in place and then combining them into a cable. 

The cable is pressed into cylindrical form and wound with 

continuous wire wrapping. This wrapping, together with the 

tight cable bands to which the suspenders are attached, serves 

to create enough friction pressure between the wires to ensure 

united stress action. 

Guide wires are used as a means of adjusting the individual 

wires to equal length. Slight differences in length, if distributed 

over the entire span, will be immaterial. To avoid the excess in 

length of the longer wires from accumulating at a single point, 

the wire wrapping should be started at a considerable number 

of points distributed along the cable; and a large cable should 

first be bound into smaller temporary strands by serving with 

wire at intervals. 

The length of the guide wire must be accurately computed, 

so that the resulting cable shall have the desired sag (assumed 

in the design) after the bridge is completed. Length corrections 

must be made for any cradling of the cables, variation from mean 

temperature, the curve of the cable saddle, and the elastic 

elongation due to the suspended load. 

6. Initial Erection Adjustments.—Special computations have 

to be made for the location of the guide wires, for setting the 

saddles on top of the towers, and for the length of the strand legs. 

When the desired final position of the cable, under full dead 

load, is known, its length is carefully computed, including the 

main span parabola between points of tangency at the saddles, 

the short curved portions in the saddles, and the side-span 

parabolas or tangents from point of tangency at the saddle to 
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the center of shoe pin at the anchorage. Applying corrections 

for elastic elongation (due to suspended load) and for difference 

of temperature from the assumed mean, the length of unloaded 

cable is determined. This gives the length of the guide wire 

between the same points. 

Assuming no slipping of the strands in the saddles, the 

initial position of the saddles is computed so as to balance 

tensions (or values of y) between the main and side span cate¬ 

naries. This gives the distance the saddles must be set back 

(toward shore) from their final position on the tops of the towers. 

Since the strands will be spun about 2 feet above their final 

position in the tower saddles, the initial position of the strand 

shoes will be a short distance forward of their final position. 

This distance is carefully computed and gives the required 

length of the “ strand legs” (Fig. 48). The distance may also be 

determined or checked by actual trial with the guide wire. 

Taking into consideration the previously calculated and cor¬ 

rected total length of cable between strand shoes, the initial 

raised position of the strands above the tower saddles, and the 

length of strand legs shifting the initial position of the strand 

shoes, the ordinates of the initial catenaries in main and side 

spans are carefully computed. These ordinates are used for 

setting the guide wires with the aid of level and transit stationed 

at towers and anchorages. 

For the Cumberland River footbridge (540-foot span, see page 

184), the saddles on the two towers were set back about 5 inches 

toward shore from center of tower. This distance was figured 

from backstay elongation and tower shortening due to dead load 

plus one-half live load, so that the center of the tower would 

bisect the movement of the shoe (on rollers) for live load at 

mean temperature. Allowing for displacement of saddles and 

cable stretch, the no-load cable-sag was made 38$ feet in order that 

the sag in final position under full live load should be 45 feet. 

In the case of the Brooklyn Bridge, the strands were spun 

about 57 feet above their final position at mid-span, the purpose, 

as stated, being to avoid interference with regulation and to 

increase the tension as an initial strength-test of the individual 
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wires. In consequence, the strand leg had to be designed so as 

to hold the shoe 12 feet behind the anchor pin. After the strand 

was finished, the shoes were let forward into their final places 

and, at the same time, the strand was lowered from the rollers 

on top of the saddle into the saddle, which double operation 

caused the vertex to sink into correct position as previously 

calculated. 

For the Williamsburg Bridge, the strands were spun 15 feet 

above their final position, requiring the shoes to be initially set 

back of the anchor pin, as in the Brooklyn Bridge. 

For the Manhattan and Kingston Bridges (H. D. Robinson, 

Engineer-in-charge), the strands were spun parallel to (and 

slightly above) their final position. In these cases, the strand 

leg held the shoe a short distance in front of the anchor pin; 

and the shoe had to be pulled back that distance when the 

strands were lowered into the saddle (Fig. 49). 

In the case of the Kingston Bridge (705-foot span, Fig. 56), 

instead of setting the saddles back on the towers, the tops of the 

towers were tipped back toward the shore a distance of 6 inches, 

by means of temporary backstays, the anchor bolts at the toe 

being loosened § inch to permit the tilting. The cables were 

erected with the towers and the attached saddles in this position. 

As the steelwork in the main span was erected, the backstays 

gradually elongated until the towers returned to their final 

vertical position. 

The initial erection adjustments for the Brooklyn, Williams¬ 

burg, Manhattan and Kingston Bridges are summarized and 

compared in the following table: 

Initial Position or Cable Strands 

(With Reference to Final Position) 

Height 

Above 

Crown 

Height 

Above 

Saddle 

Distance 
Saddle 

Set Back 

Distance 

Shoe 

Set Forward 

Brooklyn. 57 ft. 2.1 ft. 0.1 ft. —12 ft. 
Williamsburg. IS 2 2-75 ~ 3 
Manhattan. 2 2 0 + 1.83 
Kingston. 1.2 * 1.25 O.K 4- 0.26 
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7. Spinning of Cables.—The operation of cable-spinning 

requires an endless wire rope or “ traveling rope” (Fig. 48) sus¬ 

pended across the river and driven back and forth by machinery 

Fig. 48 —Strand Shoes and Traveling Sheaves Ready for Cable Spinning 

(Manhattan Bridge.) 

for the purpose of drawing the individual wires for the cable 

from one anchorage to the other. There is also suspended a 

“guide wire” which is established by computations and regu- 
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lated by instrumental observations so as to give the desired 
deflection of the cable wires. 

Large reels, upon which the wires are wound, are placed at 

the ends of the bridge alongside the anchor chains (Fig. 48). The 

free end of a wire is fastened around a grooved casting of horse¬ 

shoe outline called a “shoe” (Fig. 48), and the loop or bight, 

thus formed is hung around a light grooved wheel (Fig. 48) which 

is fastened to the traveling rope. The traveling rope with its 

attached wheel, moving toward the other end of the bridge, 

thus draws two parts of the wire simultaneously across from 

one anchorage to the other; one of these parts, having its end 

fixed to the shoe, is called the “standing wire”; while the other, 

having its end on the reel, is called the “running wire” and 

moves forward with twice the speed of the traveling rope. 

Arriving at thte other end, the wire loop is taken off the wheel 

and laid around the shoe at that end. The two parts of the 

wire are then adjusted so as to be accurately parallel to the guide 

wire, the operation of adjustment being controlled by signals 

from men stationed along the footbridge. The wire is then 

temporarily secured around the shoe, and a new loop hung on 

the traveling wheel for its second trip. After two or three 

hundred wires have thus been drawn across the river and accu¬ 

rately set, they are tied together at intervals to form a cable 

strand. 
For the Manhattan Bridge, the wires (drawn in 3000-foot 

lengths) were spliced to make a continuous length of 80,000 

feet (4 tons) wound on a wooden reel (Fig. 48). These reels 

were 48 inches in diameter (at bottom of groove) and 26 inches 

long, and were provided with brake drums. On each anchorage 

were set eight reel stands, each with a capacity of four reels. 

The equipment used for cable-spinning consisted of an end¬ 

less f-inch steel traveling rope passing around a 6-foot hori¬ 

zontal sheave at each anchorage; machinery for operating the 

endless rope; devices for removing and adjusting the wires and 

strands; apparatus for compacting and wrapping the cables; 

hoisting machinery and power plant. 

Attached to the endless rope (“traveling rope”) at two 
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equidistant points, were deeply-grooved 4-foot carrier sheaves 

(“traveling wheels”) in goose-neck frames (Fig. 48). These 

frames were held securely in a vertical plane, and were designed 

with clearance to ride over the supporting sheaves. 

The “strand shoe” was held 22 inches in front of final posi¬ 

tion by a special steel construction called a “strand leg” (Fig. 48) 

attached to the pin between two anchorage eyebars. 

The bight of wire was placed around the traveling wheel and 

Fig. 49.—Manhattan Bridge. Anchoring a Completed Strand. 

pulled across. As each part of the wire became dead, it was 

taken by an automatic Buffalo grip at the tower and, with a 

4-part handtackle of manila rope, adjusted to the guide wire. 

It required about seven minutes for a trip across from anchorage 

to anchorage (3223 feet). Only ten field splices were required 

to a strand (256 wires). After the strand was completed, the 

wires were compacted with curved-jaw tongs and fastened (or 

“seized”) with a few turns of wire, every 10 feet. Then, with a 

“strand-bridle” attached to a 35-ton hydraulic jack (Fig. 49), 
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the shoe was pulled toward the shore, releasing the strand leg 

and the eyebar pin. The strand shoe was then revolved 90° 

to a vertical position (Fig. 49), and pulled back to position on 

the eyebar pin. 

The strand was then lifted from the temporary sheaves in 

which it was laid at the anchorages and the towers, and lowered 

into the permanent saddles; a 20-ton chain hoist and steel 

“balance beam” were used for this operation. The strand was 

then adjusted to the exact deflection desired, by means of shims 

in the strand shoe. 

After the seven center strands were completed, they were 

bunched together with powerful squeezers to make a cylinder 

about gl inches in diameter, secured with wire “seizings” at 

intervals. Then the remaining strands were completed, and 

compacted in two successive layers around the core, the inter¬ 

stices being filled with petrolatum. A hydraulic compacting 

machine was used for this squeezing, and temporary clamps 

applied. 

Then the cable was coated with red-lead paste, and the 

permanent cable bands and suspenders were attached. 

After the stiffening trusses and floor were suspended, the 

spaces between the cable bands were covered with wire wrap¬ 

ping. 

The spinning of these cables took six days for a strand (256 

wires); but four strands in each cable were strung simultaneously. 

The four cables (each consisting of thirty-seven strands or 9472 

wires) were completed in four months. The work of compres¬ 

sing and binding the cables and attaching the suspender clamps 

and ropes took two or three months more, but the erection of the 

suspended trusses proceeded at the same time. 

As soon as the strands were completed, the footbridges were 

hung to the main cables to be later used for the work of cable 

wrapping. The temporary footbridge cables were cut up for 

use as suspenders. 

For the Williamsburg Bridge (Fig. 57), the wire was supplied 

on 7-foot wooden reels carrying 90,000 feet (9000 pounds) per 

reel. An engine on the New York side operated the driving 



176 ERECTION OF SUSPENSION BRIDGES 

wheels around which two endless ropes passed. Two carrier 

sheaves on each endless rope traveled back and forth, carrying 

two bights across (for two strands) on the forward trip, and two 

bights (for two adjacent strands) on the return trip. In this 

manner each endless rope was laying four strands at the rate of 

fifty wires in each strand in ten hours. 

Eight reels of wire were required for each strand. When the 

end of a coil was reached, it was held in a vise and connected to a 

wire from a fresh reel, by screwing up a sleeve nut over the screw- 

threaded ends (which were formed by a special machine to roll 

the threads). 

As the wire was laid, it was adjusted to conform to the 

catenary of the guide wire, in order to secure uniform tension 

in the wires of the finished cable. 

The carrier wheels moved 400 feet per minute. There were 

three men at each anchorage to handle the reels, make splices, 

adjust the wire and take the bights off and on the carrier wheels. 

As the carrier wheel passed each tower, three men on the top of 

the tower clamped handtackle to the wire and pulled up until 

the wire was adjusted exactly parallel to the guide wire, as 

signaled by men distributed along the footbridge (three men on 

each side span and seven men on the main span). These men 

clamped the wire to the strand after adjustment. After the 

standing wire was adjusted, the running wire was regulated in 

the same manner, but in the reverse order. A total of twenty- 

five men were thus required to handle the wire as it was laid. 

As soon as the strand was completed, the shoe was drawn 

clear of its support by a 25-ton ratchet jack anchored to the 

masonry. Then the shoe was twisted by hand with a long bar 

and thus revolved 90° into a vertical plane and allowed to slip 

back towards the tower, thus lowering the strand in the middle 

of the main span. The shoe was then permanently connected 

to the end pin of the anchor-chain eyebars. Shims back of the 

pin in the slotted pin-hole of the strand shoe provided adjust¬ 

ment for the strand length; each f-inch shim corresponded to a 

vertical movement of about 1 inch at mid-span. 

When the inner strands were completed, their ties were 
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removed and they were made into one strand to avoid trouble 

in handling them after they were surrounded by the remaining 

strands. 

8. Compacting the Cables.—Each cable consists of 3, 7, 19 

or 37 strands, depending upon its size, and these have to be 

compacted to make a cylindrical cable. 

For the Manhattan Bridge, the temporary seizings around 

the strands were removed and the cable was compacted by 

hydraulic squeezers. Sixteen duplicate squeezers were used, 

each consisting of a hinged collar with a hydraulic jack of 6-inch 

stroke opposite the hinge. A hydraulic hand-pressure pump 

was used to produce a pressure of 5000 pounds per square inch 

or a total force of 43,000 pounds on the squeezer piston. Seizing 

(12 turns of No. 8 wire) was applied close to the squeezer, which 

was then moved 2 feet forward to repeat the operation. With 

two men operating each squeezer, the four cables were com¬ 

pacted in a few weeks. 

9. Placing Cable Bands and Suspenders.—After the cables 

are compacted (with wire seizing at short intervals to hold them), 

the cable bands are placed at the panel points. 

For the Manhattan Bridge, the cable bands (Fig. 55) con¬ 

sist of split cast-steel sleeves, 3 feet long, with ten if-inch bolts 

through the longitudinal flanges. The upper half has two 

semicircular grooves, 12 inches apart, for holding the suspender 

ropes. The bolts were screwed up tight by means of socket 

wrenches with 4-foot handles, operated by two or three men 

each. 
The if-inch suspender ropes, made by cutting up the tem¬ 

porary footbridge cables, were fitted with cast-steel sockets 

SJ inches in diameter by 17 inches long. These sockets were 

threaded on the outside to receive a cast-steel nut 5J inches 

thick. The ends of the rope were served; and the wires beyond 

the serving were spread, cleaned in dilute add, washed in water 

and dried with a painter’s torch. The end of the, rope was then 

passed through the socket (which had been carefully deaned of 

sand and scale), the wires were spread to fill the covered portion, 

and melted spelter (heated to a very thin consistency) was 
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poured in, filling all the interstices. Some of the finished ropes 

were tested, and showed an ultimate strength of 287,000 to 

290,000 pounds, with the rope breaking 4 to 8 feet from the 

socket, there was no sign of injury at the socket, thread or 

nut. 

The suspenders were then placed in position around the 

cable bands, with their lower ends ready to engage the bottom 

chords of the stiffening trusses (Fig 50). 

Fig 50—Manhattan Bridge. Erection of Lower Chords and Floor System. 

10. Erection of Trusses and Floor System.—The suspension 

from the cables permits the steelwork to be erected without 

falsework. In planning the program of erection there must be 

considered the method of connection to the suspenders, clear¬ 

ances for travelers, and the reach of the booms. In addition, 

the scheme should aim to balance the dead-load distribution 

along the span, so as to minimize the distortion of the cables 

during erection. 

In the Manhattan Bridge, the truss is supported at each 
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panel point by four parts of if-inch steel rope suspenders (Fig. 50) 

with their bights engaging the main cables and having, at the 

lower end, nut bearings on horizontal plates across the bottom 

flanges of the lower chord. 

All members were shipped separately, the chord members in 

two-panel-length pieces weighing 26,000 to 30,000 pounds each. 

The erection proceeded at four points simultaneously, work¬ 

ing in both directions from each tower (Fig. 50). Traveler der- 

Fig. 51.—Manhattan Bridge. Erection of Verticals. 

ricks of 25-ton capacity were used, with 34-foot mast and 50-foot 

boom (covering two panels in advance) and provided with bull- 

wheel. At each point of erection there were two of these large 

derricks, also one jinnywink derrick with 30-foot boom and 

7-ton capacity. In addition to these twelve movable derricks, 

there were four stationary steel-boom derricks ty the towers. 

Starting at the towers, the lower chords and floor system 

were assembled two panels in advance of the travelers, making 

temporary connections to the suspenders, until the anchorages 
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and mid-span were reached. Then the travelers returned to the 
towers to commence their second trip. 

The material was hoisted by the tower derricks and loaded 
on service cars which delivered it to the traveler derricks The 
service cars ran on the permanent track between the inner and 
outer trusses, the cars were hauled away from the tower by 
cables operated by hoisting engines on the tower, and returned 
empty, by gravity, on the grade furnished by the camber 

Fig 52 —Manhattan Bndge Erection of Diagonals 

On the first trip, the lower chords, lower deck and verticals 
were erected (Fig. 51); on the second trip, the truss diagonals 
were erected (Figs 52, 53), and on the return (Fig 54), the upper 
deck and transverse bracing were put up, thus completing the 
structure. 

On the first trip, temporary suspender connections were made 
to the lower chord at alternate panel points so as to miss the 
upper chord splices. After the return of the travelers, permanent 
conn^cHnn and adjustment of the suspenders at the other points 
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were made. The temporary suspender connections were removed 
before the top chords were erected, and were connected again 
(permanently) after the top chords were in place. 

A force of three hundred men was employed on this work, 
and their record was 300 tons of steel erected in a day. There 
were about 1,000,000 field rivets in the three spans. The bridge 
was formally opened ten months after the floor hanging com¬ 
menced. 

Where the side spans are not suspended from the cables, 

Fig. 53,—Manhattan Bndge, View before Erection of Top Chords. 

falsework is generally required. In the Kingston Suspension 
Bridge, Fig. 56, the side spans (although suspended) were 
erected on light falsework, as time was thereby saved. 

The first few panels of the main span are generally erected 
by the stationary derricks at the tower, as far as their booms 
can reach. Additional panels may be erected by drifting or 
outhauling from the cable; or by the use of “runners,” that is, 
block and falls suspended from the advance cable band and 
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operated by the hoisting engine at the tower. At Kingston, the 
latter method was adopted, dispensing with the use of travelers 
for the mam portion of the span. 

11. Final Erection Adjustments.—The equilibrium polygon 
is computed for the dead load acting on the cable, and levels 
taken at a number of points on the cable should check these 
ordinates. The elevations and camber of the roadway are also 

Fig. 54.—Manhattan Bridge. Erection of Top Chords. 

checked with levels and corrected, where necessary, by adjusting 
the lengths of the suspenders. 

In completing the stiffening truss, the closing chord members 
should be inserted after all the dead load is on the structure, the 
connecting holes at one end being drilled in the held. 

If the closure of the stiffening truss has to be made before 
full dead load is on the structure, or at other than mean tempera¬ 
ture, the vertical deflections are computed for these variations 
from assumed normal conditions and the suspenders adjusted 
accordingly, before connecting the dosing members. 
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In adjusting the suspenders, the center hanger is shortened 
or lengthened the calculated amount, and the other hangers are 
corrected by amounts varying as the ordinates to a parabola. 

If the trusses are assembled on the ground before erection, 
the exact camber ordinates can be measured and reproduced (by 
suspender adjustment), so as to secure zero stress under full 
dead load at mean temperature. 

An ideal method of checking the final adjustments is by 
means of an extensometer, which should check zero stresses 
throughout the stiffening truss when normal conditions are 
attained, or calculated stresses for any variation from assumed 
normal conditions. 

Instead of adjusting to zero stress for full dead load, it would 
be more scientific and somewhat more economical to adjust for 
zero stress at dead load plus one-half live load. 

12. Cable Wrapping.—Close wire wrapping has proved to be 
the most effective protection for cables. 

For the Manhattan Bridge, No. 9 galvanized soft-steel wire 
(0.148-inch diameter) was used. This was rapidly wound 
around the cable by a very simple and ingenious self-propelling 
machine operated by an electric motor. This machine, designed 
by H. D. Robinson, is illustrated in Fig. 55. 

In advance of the machine, the temporary seizings are care¬ 
fully removed and the cable painted with a stiff coat of red- 
lead paste. The end of the wrapping wire is fastened in a hole 
in the groove at the end of the cable band. The machine, carry¬ 
ing the wire on two bobbins or spools, travels around the cable 
and applies the wire under a constant tension. The machine 
presses the wire against the preceding coil and at the same time 
pushes itself along. The rate is about 18 feet per hour. 

The machine weighs 1000 pounds and is operated by a 
if-H.P. motor at a speed of 13 R.P.M. It is handled by a force 
of six men. 

(The small hand-operated device, which was superseded by 
the motor-driven machine, is seen at the extreme right in 
Fig. 55. It was used to complete the wrapping close to the 
cable bands.) 
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For the Williamsburg Bridge, wire wrapping was not used; 
instead, the cables were covered with a preservative coating of 
oil and graphite, then wrapped spirally with three layers of 
waterproof duck, and finally enclosed in a thin steel-plate shell 
made in two semi-cylindrical portions with overlapping joints 
and locked fastenings. This protection has proved inadequate 
to keep out moisture and prevent rust, and it has recently (1917— 
1921) been replaced by wire wrapping applied with Robinson’s 
machine. 

Pig. 55.—Manhattan Bridge. Cable Wrapping Machine. 

18. Erection of Wire Rope Cables.—The individual wire 
ropes composing a cable of this type may be towed across the 
river in the same manner as the temporary footbridge ropes of a 
parallel wire cable; or they may be strung across by means of a 
single working cable stretched from tower to tower. 

The latter method was used for a footbridge of 540-foot span 
built ip 1919 over the Cumberland River by the American Bridge 
Co. Each cable consisted of seven ropes of if-inch diameter. 
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A working cable of i-inch wire rope was first stretched across 
between the towers for each of the main cables The main 
ropes were unwound from the reels back of one tower. One 
end of a rope was lifted to the top of the tower and hauled 
across the river to the top of the opposite tower, the rope being 
supported from the i-inch working cable by blocks attached at 
intervals of about 60 feet, thus preventing too much sag. The 

Fig 56 —Erection of Rondout Creek Bridge at Kingston, N Y , 1921 
Type 05 

Span 70s feet 

rope was then lowered to approximately correct position, and 
the sockets attached to the tower shoes The remaining ropes 
were then stretched in the same manner, and all were then 
adjusted by nuts at the ends until they touched a level straight¬ 
edge held on the fixed line of sag determined by a transit in the 
tower. The cable clamps and suspenders were then placed by 
men on a movable working platform hung from the cables, 
beginning in the center and working toward each end. A 
“boatswain chair” was used to carry out men, materials and 
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tools. The floor system was also erected by men on the work¬ 
ing platform, in this case working from both ends toward the 
center. The platform was then removed, and the trusses were 
erected from the ends toward the center by workmen on the 
floor system, using the two working cables (shifted to the center 
of the bridge) as a trolley cable* for transporting the truss sec¬ 
tions to position. When the top lateral bracing, railings, and 
wood floor were added, the structure was completed. A total 

Fig. 57.—Footbridges for Erection of Williamsburg Bridge. 

(See Fig 31, page 88) 

of 205 tons of structural steel and 45 tons of cables were thus 
erected in a period of twelve weeks. 

14. Erection of Eyebar Chain Bridges.—Chain suspension 
bridges have, as a rule, been erected upon falsework. 

The falsework used for the erection of the Elizabeth Bridge 
at Budapest (1902, Span 951 feet) is shown in Fig. 58. The 
falsework consisted of huge scaffoldings built on piles and 
protected from floating ice by ice breakers. Four openings of 
160 feet were left for vessels; these openings were spanned by 
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temporary timber bridges floated into place on pontoons. After 
the falsework was completed, the main chains were erected in 
twelve weeks. The falsework was then taken down and the 
steelwork completed. 

At a crossing like the East River or the Hudson River, the 
use of such falsework would be out of the question. A com¬ 
parison of the cumbersome construction employed for the Eliza¬ 
beth Bridge (Fig. 58) with the comparatively insignificant 
scaffolding required for the Williamsburg Bridge (Fig. 57), is 
an argument for wire cable vs. eyebar bridges. 

Fig. 58.—Falsework for the Elizabeth Bridge (Eyebar Chains). 

(See Fig 34. page 95) 

A different scheme, eliminating heavy falsework, was used 
for the Clifton Bridge (1864, Span 702 feet). Under each set of 
three chains, a suspension footbridge was constructed, using 
wire ropes. Above this staging, another rope was suspended 
to carry the trolley frames for transporting the links. The 
chains were commenced simultaneously at the two .anchor plates, 
the lowest of the three chains being put in first. Commencing 
at the anchorage, there were inserted the whole number of links, 
namely 12, then n, 10, 9, 8, and so on until the chain was 
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diminished to i link; then the chain was continued with i and 
2 links, alternately, until the two halves met at mid-span. The 
suspended footbridge was strong enough to carry the weight of 
this chain (consisting of i and 2 links, alternately) until the 
center connection was made; the chain was then made to take 
its own weight by removing the blocking under it. The next 
operation was to add the remaining links of the chain on the 
pins already in place. The process was repeated for the upper 
chains, and then the roadway was suspended. 

The Cologne Suspension Bridge (1915, Span 605 feet, 
Fig. 17), was the first large bridge to be built hingeless. (The 
Kingston Bridge, 1921, was the second.) It is of the self- 
anchored type, the stiffening girder taking up the horizontal 
tension; and the towers are hinged at the base. Nickel steel 
was used for the chains, the eyebars being of the European type, 
that is, of flat plates (36 to 59 inches wide) bored for 12-inch 
pin-holes near the ends. The erection of the chains and stiffen¬ 
ing girders proceeded simultaneously on special staging, and 
was so conducted that the girders were completed first. The 
girders were made three-hinged during erection and then changed 
to hingeless by riveting on splice plates. 

The procedure was as follows: Falsework was built for the 
side spans and a traveler was assembled at each end. The side- 
span girders and deck were erected on the falsework, and the 
staging built up (on the girders) for the land chains, the traveler 
moving forward from the anchorage to the tower during this 
operation. The traveler then moved out on cantilever false¬ 
work spans in the main opening, erecting the stiffening girders 
and the staging for the chains from the tower to mid-span. 
The erection of the chains followed closely upon the erection of 
the girders. When the stiffening girders were completed and 
the suspension chains connected to the ends (with 24-inch pins), 
every third hanger was coupled up. The staging carrying the 
chains was then removed, and the remaining hangers were con¬ 
nected and adjusted by means of their turnbuckles to bring the 
pin points in the chains into their correct positions. The splices 
in the webs and flanges of the stiffening girders at the 
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three hinge-points were then riveted up, thus completing the 
erection. 

For Lindenthal’s Quebec Design (1910, Span 1758 feet, Fig. 
40), the following scheme of erection was proposed: The side 
spans were to be erected on steel falsework—first the floor system, 
then the eyebars and pins of the lower chord chain, then the 
verticals and upper chain eyebars, leaving the pins projecting 
out to receive the diagonals and remaining eyebars after the 
main span chains were erected and self-supporting. The 
towers were to be riveted up in place and temporarily anchored 
to the steel staging which, in turn, was to be anchored to the 
abutment. The first sets of eyebars (one and two alternating 
per panel) of the chains of the middle span were to be erected 
from temporary wire rope cables, each consisting of forty steel 
wire ropes of 2^-inch diameter. Then the remaining eyebars 
and gusset plates were to be pushed on to the pins until the 
chains were completed. Thereafter the verticals and diagonals 
were slipped in place, and the suspenders and floor system of the 
middle span erected. 

16. Time Required for Erection.—The time schedule for the 
Manhattan Bridge (1470-foot span, Fig. 35) was as follows: 

First substructure contracts let. 1901 

Pier foundations commenced. May, 1901 

Work commenced on final (revised) design. March, 1904 

Steel towers commenced. July, 1907 

Steel towers completed (12,500 tons). July, 1908 

Temporary cables strung. June 15-20, 1908 

Footbridges constructed. July 7-13, 1908 

Spinning of main cables commenced (4 cables)... Aug. 10, 1908 

Last wire strung (37,888 wires). Dec. 10, 1908 

Erection of suspended steel commenced. Feb. 23, 1909 

Erection of suspended steel completed (24,000 tons) J une 1, 1909 

Approaches completed and bridge formally opened. Dec. 31, 1909 

The steel erection, amounting to 42,000 tons of steel between 
anchorages and including towers, cables, trusses, and decks, was 
accomplished in two and a half years. 

The Kingston Suspension Bridge (705-foot span, Fig. 56) 
was completed in one year (1920-1921). 



190 ERECTION OF SUSPENSION BRIDGES 

The bridge contains 1430 tons of structural steel and 300 
tons of cables. 

The 400-foot-span suspension bridge at Massena, New York, 
(Fig. 30; H. D. Robinson, Consulting Engineer), containing 400 
tons of steel, was erected complete in six months. 

Progress in the art is recorded by the following comparative 
time-records for the cable construction on various large suspen¬ 
sion bridges: 

Brooklyn 
Williams¬ 

burg 
Manhattan 

Bear 

Mountain 
Phila¬ 

delphia 

Number of cables. 4 4 4 2 2 

Cable diameter. IS*" i8f" 2of" i8i" 30" 
Wires per cable. 5296 7696 9472 7252 18,666' 
Wire diameter. 0. r8o" 0.192" .0195" 0.195" 0.195" 
Total wire (tons).... 

Construction of foot- 
35oo 4Soo 6300 1900 6500 

walks (months).... 

Spinning of cables 

10 7 4 it 3i 

(months). 

Maximum tons wire 

21 7 4 5 

spun in a day. igi 75 130 76 100 

There have also been improvements in the erection of the 
structural steel of suspension bridges. In the case of the Ohio 
River Bridge at Portsmouth, Ohio (Robinson and Steinman, 
Consulting Engineers, 1927), the entire stiffening trusses and floor 
system of the 700-foot main span and 350-foot side spans were 
erected in a little over two weeks. 
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DESIGN CHARTS FOR SUSPENSION BRIDGES 

Introduction.—To expedite the proportioning or checking of 
suspension bridges, the author has devised the three charts which 
are presented in this Appendix. These charts give directly the 
maximum and minimum moments and shears in the stiffen¬ 
ing truss, throughout the main and side spans. The charts 
are constructed for the usual form of construction, parabolic 
cable with two-hinged stiffening truss; and they cover both 
types: 

Type 2F—Free Side Spans (Straight Backstays). 
Type 2S—Suspended Side Spans (Curved Backstays). 
To use the charts, it is simply necessary to calculate N, 

which is a constant for any given structure. This constant N 
is defined by Eq. (125) or (167), Chapter I; the formulas for N 
are also reproduced on the charts. In these formulas: 

7=moment of inertia of the truss, main span; 
7x=moment of inertia of the truss, side span; 
A =area of cable section, main span- 

A1=area of cable section, side span; 
E—coefficient of elasticity for truss; 
Ee=coefficient of elasticity for cable; 
/ = cable sag, main span; 

/i =cable sag, side span; 
/=main span of cable (c. to c. of towers); 
r=main span of truss (c. to c. of bearings); 
ft =>side span of truss (c. to c. of bearings); 
la—side span of cable (tower to anchorage); 

ai=inclination of cable chord in side span. 
191 
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The value of N is usually about 1.70 for the case of free side 
spans (Type 2F), and about 1.80 for the case of suspended side 
spans (Type 25). 

For the case of suspended side spans (Type 25) it is also 
necessary to figure the ratio-product ir^v, where 

. I 
t= 

h’ 

This ratio-product is also a constant for any given structure. 
(It is equal to zero when the backstays are straight, Type 2F. 

For Type 25 we may usually assume i — i, and v=r2, so that 
ir*v=r5, approximately.) 

With the values of the two constants N and ii^v known, the 
maximum and minimum moments and shears for all points in 
main and side 3pans may be read directly from the charts, thus 
dispensing with the usual laborious computations. 

Chart I.—Bending Moments in Main Span.—This chart gives 
the governing bending moments throughout the main span. The 
upper curves (for different values of N) give the maximum bending 
moments, and the lower curves (for different values of N) give the 
minimum bending moments. No correction is required except for 
minimum moments in the case of suspended side spans (Type 
25). The corrections for this case are given by the parabolic 

for different values of — j. 

These corrections, like the minimum moments, are negative in 
sign, and the two should therefore be added arithmetically. 
(These corrections represent the effect of load covering both 
side spans.) 

The values of Total M (for full loading of all spans) may be 
obtained, if desired, by arithmetically subtracting the corrected 
Min. M from Max. M. Total M for load covering the main 
span alone may be obtained by subtracting the uncorrected 
Min. M from Max. M. The resulting valuer in either case, 
would be represented by parabolas above the axis. 

Chart n.—Shears in Main Span.—This chart gives the gov¬ 
erning shears throughout the main span. The upper curves (for 
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different values of N) give the maximum shears, and the lower 
curves (for different values of N) give the minimum shears. No 
correction is required except for minimum shears in the case of 
suspended side spans (Type 25). The corrections for this 
case are given by the straight lines plotted below the axis 

for different values of — J. These corrections are of the 

same algebraic sign as the minimum shears, and the two should 
therefore be added arithmetically. (These corrections represent 
the effect of load covering both side spans.) 

On this chart, the plus sign indicates a shear upward on the 
outer side and downward on the inner side of a section; the 
minus sign indicates a shear in the opposite direction. 

The values of Total V (for full loading of all spans) may be 
obtained, if desited, by arithmetically subtracting the corrected 
Min. V from Max. V. Total V for load covering the main span 
alone may be obtained by subtracting the uncorrected Min. V 
from Max. V. The resulting values, in either case, would be 
represented by radiating straight lines above the axis. 

Chart in.—Moments and Shears in Side Spans.—This chart 
gives the governing stresses throughout a side span. 

In the left-hand diagram, the upper parabolic curves (for 

different values of 
N 

give the maximum bending moments. 

(These curves represent the effect of load covering the given 
side span.) The lower parabolic curves (for different values of 

S*Ve mini11111111 bending moments. (These curves 

represent the effect of load covering the two other spans.) 
The values of Total M (for load covering all three spans) may 
be obtained, if desired, by arithmetically subtracting Min. M 
from Max. M. The resulting values would be represented by 
flat parabolas above the axis. 

In the right-hand diagram, the upper curves (for different 
• O V 

values of give the maximum shears. (These curves 

represent the effect of load covering the given side-span.) The 
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lower curves (for different values of 
i +ir3?A 

N ) 
give the minimum 

shears. (These curves represent the effect of load covering the 
two other spans.) The values of Total V (for load covering all 
three spans) may be obtained, if desired, by arithmetically 
subtracting Min. V from Max. V. The resulting values would 
be represented by radiating straight lines above the axis. 

In this diagram, the plus sign indicates a shear upward on 
the outer side and downward on the inner side of a section; 
the minus sign indicates a shear in the opposite direction. 

Chart III can also be used for a side span not suspended from 
the backstays (Type 2F), or for any independent simple span. 
The maximum bending moments produced by uniform load are 
given by the top curve in the left-hand diagram; the minimum 
bending moments are zero. The maximum shears produced by 
uniform load are given by the top curve in the right-hand dia¬ 
gram; the minimum shears are given by the dotted continuation 
curve in the same diagram. 

In constructing the graphs for the side spans in Chart III, it 
has been assumed for simplicity that v/r2 = i. This ratio is 
generally between i.oo and 1.04, but in extreme cases may be as 
high as 1.10. If v/r2 is greater than 1.00, the values of Min. 
M and Min. V given by the chart should be multiplied by this 
ratio. 

Where locomotive loadings with axle-concentrations are 
specified, the equivalent uniform loads are to be used for p in 
these charts. 
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APPENDIX B 

THE FLORIANOPOLIS BRIDGE 

1. Introduction.-—The Florianopolis Suspension Bridge, com¬ 

pleted 1926, with a main span of 1113 ft. 9 in., is the longest span 

bridge in South America and the longest eyebar suspension span 

in the world. The bridge was constructed for the Brazilian 

state of Santa Catharina, and spans the waters of a strait of the 

Atlantic Ocean. It was built to carry a highway, electric railway, 
and water-supply main to Florianopolis, the island capital of 

that state. 

The structure is of interest to bridge engineers as the first 
executed example of a new form of suspension stiffening con¬ 

struction, whereby greatly increased rigidity and economy of 

material are secured simultaneously. The distinctive feature of 
this construction is the utilization of the cable to replace a part 

of the top chord of the stiffening truss, and the consequent 

change from the conventional parallel-chord truss to a stiffening 

truss of more effective outline. 

Another departure from customary practice is the use of 

rocker towers, yielding advantages in economy of material. The 
Florianopolis Bridge is the first large suspension bridge in the 

Americas to be built with rocker towers. 

The bridge is of further interest to engineers as the first appli¬ 
cation of an important new structural material. Instead of wire 

for the cables, eyebars are used; and these are made of the newly 

developed, high-tension, heat-treated carbon steel, having a 

yield point exceeding 75,000 lb. per sq. in., and intended to be 

used with a working stress of 50,000 lb. per sq. in. The bid price 

for this type reduced the total cost to the lowest estimated cost 

with wire cables. 

Originally the suspension type, of conventional design, was 

adopted for this bridge in economic competition with cantilever 
199 
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designs. Subsequent modifications yielded further economies in 

favor of the suspension type. 

In the foundation work for the main piers, novel construction 

methods were devised to overcome unusual difficulties. The 

concrete anchorages are of special design, U-form in plan, for 

maximum efficiency. One anchorage is founded on rock, the 

other on piles. 

Finally, an entirely new method was developed for the erection 

of the eyebar cable and suspension span stiffening trusses, using 

an overhead trolley, thus eliminating wooden falsework and 

working platforms. 

2. New Type of Stiffening Truss.—The form of stiffening 

construction adopted for the Florianopolis Bridge is an innova¬ 

tion. A comparison (Fig. B2) of the adopted design with the 

conventional layout which it superseded shows the distinctive 

characteristics of the new type. 

In the central portion of the conventional form of suspension 

construction, the cable, sustaining the dominant tensile stress, 

closely follows the upper chord of the stiffening truss, which has 

compression for its governing stress. Such juxtaposition of two 

principal members carrying opposing stresses represents a waste 

of material or, rather, a neglected opportunity for economizing. 

By combining the two opposing structural elements, one member 

is made to take the place of two; the result is a subtraction of 

stresses instead of an addition of sections. This effects a partial 

neutralization of the maximum tension in the middle portion of 

the cable, and the omission of a corresponding portion of the 

upper chord of the truss. 

This utilization of the cable as the upper chord of the stiffen¬ 

ing truss should preferably be limited to the central half of the 

span. To extend this construction to the ends of the span would 

not be economical, because the saving of the top chord in the 

outer quarters would be offset by the increase in the length of 

the web members in a region where the stiffening truss has its 

maximum shears. Moreover, beyond the quarter-points there 

would be an addition instead of a subtraction of stresses, since 

the condition of loading that produces maximum tension in those 
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top chords is one that produces nearly maximum tension in the 

cable. 

Another neglected opportunity for increasing economy and 

efficiency in the conventional form of suspension construction is 

in the use of parallel-chord stiffening trusses. For maximum 

economy the truss should have a profile conforming to the 

variation of maximum bending moments along the span, a prin¬ 

ciple that is recognized in designing other structures, as simple 

trusses, cantilevers, continuous trusses, and arches. Since the 

economic depth at any section is a function of the governing 

bending moment, a truss should have its greatest depth at the 

points of greatest bending moment, and should be made shallow 

where the bending moments are comparatively small. 

In a suspension-bridge stiffening truss, the greatest bending 

moments occur near the quarter-points of the span; consequently, 

the economic profile of a stiffening truss is one having maximum 

depth near the quarter-points and minimum depth at mid-span 

and at the ends. This conclusion is strengthened by the fact that 

the shears in a stiffening truss are a minimum near the quarter- 

points and attain maximum values at the middle and ends of the 

span. Thus, a truss profile with maximum depth near the 

quarter-points also gives economy in web members since it pro¬ 

vides the shallowest depth in the regions where the web stresses 

are greatest. Such a profile yields the additional advantage of 

greater uniformity of required chord sections throughout the 

span, as a wide range of variation usually involves a waste of 

material in those chord members requiring minimum sections. 

Another consideration governing truss depth is that of effi¬ 

ciency in reducing deflections. The most serious deflection of a 

stiffening truss, as measured by the resulting deflection gradients, 

is produced under the condition of live load covering approxi¬ 

mately one-half the span. Half-span loading produces a down¬ 

ward deflection of the loaded segment and a smaller upward 

deflection of the unloaded segment, with a maximum deflection 

gradient at the loaded end. The magnitude of this deformation 

depends on the truss depth at and near the quarter-points. 

Calculations show that to limit the deflection gradient to i per 
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cent, a truss depth of about A of the span is required. A 

parallel-chord stiffening truss of such depth (as illustrated by the 

Williamsburg Bridge, New York) would render the structure 

unsightly. To secure the requisite stiffness without resorting 

to a stiffening truss of clumsy proportions, it is necessary to 

depart from the parallel-chord type and to adopt an outline 

providing the extreme depth only where it is needed, namely, in 

the vicinity of the quarter-points of the span. 

From the foregoing considerations, the two logical means for 

improving conventional suspension design for increased economy 

and efficiency are: 

x. Utilization of the cable to replace a portion of the top 

chord of the stiffening truss (preferably limited to the 

middle hah of the span). 

2. Variation of the truss profile to give maximum depth 

near the quarter-points of the span. 

Fortunately, compliance with the first of these requirements 

automatically helps with the second. The result is the form of 

suspension construction adopted for the Florianopolis Bridge. 

3. The Revision of Design.—The bridge had already been 

designed along conventional lines, when the decision to substitute 

eyebar cables for wire cables prompted consideration of the 

revised truss design and facilitated its application. In the 

parallel-chord design, the stiffening truss was 25 ft. deep through¬ 

out; the revised layout, utilizing part of the chain as the top 

chord, provides a truss with depth varying from 22.5 to 42.5 ft. 

In the first plans for the new design, the upper chord in the 

outer quarters of the span was made curved so as to produce an 

effect of symmetry about the quarter-points. Straight chords 

were substituted, however, at the decision of the purchaser, in 

order to minimize fabrication costs. Minimum cost was the out¬ 

standing requirement governing the entire design. The question 

of relative appearance of straight and curved chords in the outer 

quarters of the span is a matter of individual preference. 

Although the revision from the conventional design was 

prompted and facilitated by the adoption of eyebar cables for 

the principal suspension elements, the new form of stiffening 
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construction can also be used in conjunction with wire cables. 

Approved details of the necessary connections between truss 

members and wire cables have been developed by Robinson and 

Steinman for designs of this type. 

4. Economy of the Adopted Design.—Comparative cost 

estimates of the two designs shown in Fig. B2 demonstrate a 

material saving in favor of the adopted design. In addition 

to the major elements of economy inherent in the salient features 

of the new form of construction, a number of incidental savings 

arise from the change in design: 

1. Saving the material represented by the middle half of the 

top chord of each stiffening truss. 

2. A general saving in the remaining chord material resulting 

from the use of an economic truss profile conforming to the varia¬ 

tion of bending moments along the span; and, in particular, a 

material reduction in the maximum chord sections near the 

quarter-points. 

3. A saving in details and in minimum sections resulting from 

the greater uniformity of required chord sections throughout 

the span. 

4. A saving in web material on account of the reduced truss 

depth in the regions of maximum shear. 

5. The omission, in the middle half of the span, of the sub¬ 

verticals previously required to shorten the compression chord 

members, now replaced by tension members. 

6. The omission of the intermediate top laterals previously 

required to stay these shortened compression chord members in a 

horizontal plane. 

7. As a result of these savings, a reduction of about one-third 

in the total weight of the stiffening truss, and a consequent 

further saving in all parts affected by the dead load of the truss. 

8. A saving in cable sections resulting from the reduced 

dead load of the truss and from the consequent reduced dead 

load of the cable. 

9. The omission of the suspenders in the middle half of the 

span and a reduction in length of the remaining suspenders. 

10. A combined saving in the towers resulting in part from 
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the reduction (6.5 ft. in the case of the Florianopolis Bridge) in 

the total height in consequence of the reduced distance between 

the cable and lower chord at the center. 

11. A material saving in the anchorages resulting from the 

reduced dead load of the truss and cable and the reduced eleva¬ 

tion of the back-stays. 

In the case of the Florianopolis Bridge, much of this economy 

was not capitalized but was turned back into the structure in the 

form of a general reduction of unit stresses to provide a greater 

margin of safety for future load increases. Thus, the design stress 

for the stiffening truss was lowered from 20,000 to 18,500 lb. per 

sq. in. (actually 14,500 lb. as calculated by the exact method); 

and the unit stress in the cable was reduced from 50,000 to 

46,500 lb. per sq. in. 

Designs have been proposed, in the past, in which the cable 

would be utilized as the top chord of an overhead bracing system. 

G. Lindenthal advocated, for the Manhattan Bridge and for the 

Quebec Bridge, eyebar cable designs with bracing systems having 

the maximum depth near the quarter-points of the span. (See 

Fig. 39, page 107.) In those designs, however, the stiffening 

system would have to leave the roadway level to follow the line 

of the cable in the outer quarters of the span. 

The design of the Florianopolis Bridge secures the desired 

advantages while retaining a stiffening truss at the roadway 

level from tower to tower. The use of an overhead trussing 

system (departing from the roadway level) would necessitate 

separate wind chords for lateral stiffening. 

5. Gain in Rigidity.—Although the governing consideration 

in the change of design was that of economy, the change yielded 

greatly increased rigidity (300 per cent) as an incidental advan¬ 

tage. 
According to the deflection graphs calculated for the adopted 

design, the maximum deflection under full-span loading is only 

1.88 ft., or rfornd of the span; and the maximum deflection under 

half-span loading is only 1.36 ft., or -g-^rth of the span, with uplift 

in the unloaded half practically eliminated. The actual deflec¬ 

tions will be about 30 per cent less than these calculated values, 
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since the deflection calculations were based on the elastic, or 

“ approximate,” method and since no allowance was made for 

the stiffening effect of details. These deflections are approxi¬ 

mately one-fourth of the corresponding values for the previous 

(conventional) design. As the Florianopolis Bridge is designed 

to carry a railway as its principal element of live load, this reduc¬ 

tion of the governing deflections is of practical significance. 

An increase in rigidity of about 35 per cent may be attributed 

to the substitution of eyebars for wire cables; the remaining 

265 per cent increase is the direct consequence of the new form 

of stiffening construction. 

The following elements of the new design contribute to this 

increase in rigidity: 

1. The revised truss profile is more efficient in resisting 

deflections, since it provides a greater average depth, with maxi¬ 

mum depth in the regions of greatest bending moment. 

2. The depth at the quarter-points has been made nearly 

twice as great as in the previous design, and the stiffness in the 

vicinity of the quarter-points is the principal factor in determin¬ 

ing the rigidity of a suspension bridge under the critical condition 

of half-span loading. 

3. The functioning of the full section of the cable as the top 

chord of the stiffening truss in the middle half of the span greatly 

increases the moment of inertia in that part of the span. 

4. The fact that the live load introduces tension in the middle 

half of the top chord (by virtue of its forming part of the cable) 

further reduces mid-span deflections. 

As a result of these various factors, the change of design 

yields greater stiffness with less material in the structure. In 

approximate figures, the design is four times as rigid with only 

two-thirds as much material in the stiffening truss. Thus, 

greater efficiency has been secured through a more scientific design 

of the suspension stiffening system. 

In addition to the marked increase in vertical rigidity yielded 

by the new design, the lateral stiffness is improved by the large 

cable sections functioning as wind chords in the middle half of 

the span; and ideal longitudinal rigidity is secured by the direct 
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connection of the truss to the cables. Longitudinal or braking 

forces are carried directly into the cable. 

The net result of the change in design as applied to the 

Florianopolis Bridge is a reduction in cost (through actual saving 

in material), an increase in safety and longevity (through lowered 

unit stresses), and an increase in efficiency (as measured by resist¬ 

ance to deflections). 

6. Heat-Treated Eyebars.—In the Florianopolis Bridge a 

new material, in the form of high-tension, heat-treated, carbon- 

steel eyebars, found its first application. This material, intended 

to be used with a working stress of 50,000 lb. per sq. in., was 

developed through experimental research by the American Bridge 

Company. It is furnished under guaranty of minimum elastic 

limit of 75,000 and minimum ultimate strength of 105,000 lb. per 

sq. in., and minimum elongation of 5 per cent in 18 ft. 

Heat treatment of steel has been known and used for some 

time, but it is only since 19x5 that its application has been made 

to structural steel bridges. Carbon steel is the material used, 

but the amount of carbon is higher than in the ordinary structural 

grade with an ultimate strength of 55,000 to 65,000 lb. per sq. in. 

After the steel is manufactured and rolled in the eyebar sizes, 

the eyebars are upset in the usual manner, except that for the 

Florianopolis Bridge the heads were made £ in. thicker than the 

body of the bar. The bars are then placed in the heat-treating 

or annealing furnaces and subjected to temperatures necessary 

to produce elastic limits and ultimate strengths of the desired 

amounts. After quenching, the bars are reheated and then 

cooled slowly. Each bar is treated separately. 

7. Use of Rocker Towers.—The Florianopolis Bridge is the 

first large American suspension bridge built with rocker towers. 

The only large bridges previously built with this feature are the 

Elizabeth Bridge at Budapest, Hungary (1903), and the bridge 

over the Rhine at Cologne, Cermany (1915). 

The rocker type offers the most economical and scientific 

design for suspension bridge towers. It eliminates the bending 

stresses from imbalanced cable pull, thereby yielding a saving in 

tower material, and it obviates the difficulties of the necessary 
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erection operation of pulling back the tops of the towers prior to 
stringing the cables. 

In the case of the Florianopolis Bridge, the change was made 

from fixed bases after comparative estimates showed a net 

saving of about 20 per cent in the weight of the towers in favor 

of the rocker type. There is a substantial reduction in the main 

sections by the elimination of the bending stresses. Another 

important advantage is the elimination of the bending stress 

from the piers, permitting their size and reinforcement to be 

reduced. 

8. Details of the Tower Design.—As shown in Fig. B3, the 

towers are approximately 230 ft. high. The legs are battered, 

from a top width of 33 ft. 6 in. to a width of 55 ft. 6 in. at the 

base. The width at the top corresponds to the spacing, center 

to center, of trusses, the cables hanging in vertical planes. This 

form of tower design, introduced into suspension bridge con¬ 

struction by H. D. Robinson, has for its chief advantage the 

facility of running the truss and roadway construction through 

the tower portal without interference from the tower legs; an 

additional advantage is the increased transverse stability, of 

particular importance for narrow bridges. 

The two legs of the Florianopolis tower design are braced 

together with rigid diagonal and transverse bracing members, 

the latter including a transverse distributing girder at the tower 

top, a transverse reaction girder supporting the stiffening truss 

and approach truss bearings, and a transverse portal girder 

immediately above the stiffening truss portal. 

The reaction girder has a box section and supports the roller 

expansion bearings of the approach span and the pin-connected 

rocker supports of the main-span stiffening truss. These rockers 

take care of the vertical reactions (both positive and negative) 

while permitting the necessary longitudinal expansion move¬ 

ments. 

Each tower leg or column is made up of a double-box section 

(Fig. B3), having a maximum longitudinal width of 8 ft. and a 

constant transverse width of 3 ft. 6i in. The 8-ft. width tapers 

to 4 ft. 6 in. at the top, and to 5 ft. o in. at the base. Transverse 
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stiffening diaphragms are provided at intervals, two in each 

column section. 

The tower is designed for a maximum horizontal component 

of 3,860,000 lb. in each cable, resulting in a maximum vertical 

reaction of 3,790,000 lb. per column; this is supplemented by 

the vertical reactions of the stiffening truss (240,000 lb.) and 

approach span (300,000 lb.), which reactions, however, affect 

only the lower sections of the tower. In addition, the tower top 

is subjected to a maximum lateral pull of 75,000 lb. per tower 

from wind forces transmitted through the cables; and, at the 

lower level, the tower receives the lateral reactions (190,000 lb.) 

from the trusses. All these forces are taken into account in 

proportioning the tower columns and the transverse bracing. 

Unbalanced cable pull at the top of the towers, which would 

otherwise materially affect the column sections, is eliminated by 

the rocker feature. 

The tower column has a maximum cross-section of 370 sq. in., 

tapering to a minimum of 285.5 sq- in. at the top and 297.5 SQ- “• 

at the base. This variation in cross-section (and in moment of 

inertia), similar to that provided in derrick booms, is calculated 

to take care of the varying flexural stress produced by the long- 

column action. 

The rocker base details are shown in Fig. B3. The pedestal or 

base casting, which rests on the concrete piers, is finished to a 

plane top surface, 27 by 45 in. The rocker casting, which is 

affixed to the column base, is finished on its lower or bearing 

surface to a radius of 12 ft. The line of contact is 45 in. long. 

For security against any possibility of creeping displacement, 

four screw dowels, 3 in. in diameter, are provided (Fig. B3). The 

rocking of the upper casting on the lower was tested in the shop 

with the dowels temporarily in place. In the bottom face of the 

pedestal casting are two full-length diagonal lugs which engage 

corresponding grooves in the masonry to prevent any possible 

sliding of the casting. The maximum vertical reaction on each 

rocker bearing is 2420 tons. Details of the saddle casting are 
also shown in Fig. B3. 

9. Design and Construction of the Anchorages.—The H»«ign 
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of the Island anchorage is shown in Fig. B4. Both anchorages 

are U-form in plan, for maximum efficiency. 

The east anchorage (Fig. B4) is on rode. The anchor cables 

and reaction girders are embedded in concrete in two stepped 

trenches excavated in the solid rock; the sides of these trenches 

were given a negative batter to increase the vertical resistance. 

On this construction is superimposed the buttressed concrete 

anchorage structure. 

The west anchorage is on lower ground on the mainland. 

The excavation did not reveal rock as antidpated, and a pile 
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foundation had to be used; about 25 per cent of the piles (located 

under the forward portion of the anchorage) are battered in the 

direction of the resultant pressure. 

Each anchor cable, consisting of heat-treated eyebars, divides 

into two branches for connection to the anchor girders (Fig. B4). 

Each anchor girder, 16 ft. long, consists of five built-up girders 

reinforced with pin-plates and connected together by tie-plates. 

At the Y-point of each anchor chain, a built-up pin seat was 

provided to hold the pin in accurate position during the placing 

of the concrete around the anchor girder and the connecting 

eyebars; these temporary pin seats were burned off after the 

girders and the lower eyebars were securely concreted. Above 

these points, the anchor cables were boxed in during the com¬ 

pletion of the concreting in order to prevent adhesion of the con¬ 

crete before full dead-load strain was in the cables. When the 

anchorage erection was completed, the boxing was removed; 

the tunnels were left around each anchor cable until the steel 

superstructure was erected and the full dead-load stress was in 

the cables. Then the eyebars were covered with a protective 

coating of minwax and the tuhnels filled with concrete. 

10. Construction of the Main Piers.—The four main piers 

of the Florianopolis Bridge are cylindrical concrete shafts, 16 ft. 

in diameter, with coping 17 ft. in diameter. The base of each 

pier is 30 ft. square. The unusually small size of the pier 

shafts was made possible by the adoption of rocker towers, 

eliminating the pier bending stresses due to tower flexure. A 

separate pier cylinder is provided under each tower leg. 

Construction was commenced in the spring of 1923. 

An open square cofferdam of steel sheet piles was driven for 

each of the four main pier foundations. The rock lay at depths 

from 30 to 60 ft. below water. 

The entire substructure work, including the concrete piers 

and anchorages, was completed in June, 1924. 

11. Cross-section of the Bridge.—The Florianopolis Bridge 

was specified to carry a 28-ft. roadway, a meter-gauge electric 

railway, a 24-in. water main, and a 9-ft. sidewalk. The arrange¬ 

ment of cross-section finally adopted is shown in Fig. B5. The 
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sidewalk is carried on an outsiae bracket along the north truss; 

and the water main is located just inside the south truss, to help 

equalize the loads. The railway track is near the middle of the 

roadway, the trackway being covered with planking to provide 

a continuous surface. This planking is so detailed as to facilitate 

fitting the steel rails whenever the railway connections are com¬ 

pleted. 
On account of the inherent stability of the suspension con¬ 

struction, sway-bracing is unnecessary. Adequate systems of 

lateral bracing have been provided. 

12. Design Loads.—The dead load used in the design of the 

main span totaled 4370 lb. per lin. ft. 

The live load was taken at 2000 lb. per lin. ft., plus 10 per 

cent for impact, or a total of 2200 lb. per lin. ft., for the design 

of the stiffening trusses. For the design of the cables, which 

require full-span loading (and extreme temperature) for maxi¬ 

mum stress, the live load was taken at 1850 lb. per lin. ft. 

The floor was proportioned for the concentrated moving loads. 
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13. Stresses by Method of Elastic Weights.—The stresses 

in the main span of the Florianopolis Bridge were first calculated 

by the method of “ elastic weights.” 

The first step is to calculate the stresses, u, produced in all 

the members of the unloaded structure by H = i. For each 

truss member, that stress is given by in which r equals the 

lever arm of the member about its center of moments, and y 
equals the vertical ordinate representing the respective effective 

lever arm of H. 
The ordinate y is always measured along the vertical through 

the center of moments, and it is always measured from the 

closing chord of the cable. For the cable chord members, y is 

measured to the actual center of moments; for all other chord 

members, y is measured to the point of the chain directly above 

the actual center of moments; for the diagonals, y is measured 

from the closing chord of the cable to the prolongation of the 

cable member above the diagonal. 

The strains, As, producible by the stresses, «, in the individual 
%IS 

members are given by As= -=-7, in which s and A are the length 

and gross section of the member. 

The next step is to calculate, for each truss member, the 

elastic weight, w, given by, 

As us ys 
W= r ~ EAr ~ EAr2' 

Each of these weights w is considered as applied at the 

center of moments of the respective member, except that, in the 

case of a diagonal, the elastic weight, w, is resolved into two 

parallel opposing components, P and Q, applied at the respective 

ends of the diagonal: 

P ** — q—\ and Q — p—\ 

in which p and q, differing by the panel length, a, are the respec¬ 

tive distances of P and Q from w. 
These elastic weights, w, for the chord members, and the 
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component elastic weights, P and Q, for the diagonals, are 

combined and treated as applied simultaneously on the span. 

The resulting moment diagram or equilibrium polygon is the 

“ elastic curve.” It is the influence line for H, if all ordinates 

are divided by a constant N, given by N = 2(wA$), in which 

the summation extends over all members of the structure that 

are affected by H, including anchorage steel, towers, back-stays, 

cables, suspenders, and truss members. 

On the elastic curve, or F-curve, constructed as described, 

the simple-span straight-line influence diagrams for the various 

truss members (drawn to corresponding scale) are superimposed, 

and the intercepted areas are the required influence areas for the 

respective members. 

14. Stresses by the Deflection Theory.—Following the cal¬ 

culation of the stiffening truss stresses by the Method of Elastic 

Weights, a re-calculation was made by the “ More Exact ” 

Method, or Deflection Theory. The methods of analysis that 

do not make correction for the deformed configuration of the 

suspension system are only approximate; the resulting values 

of the stresses are too high, satisfying safety but not economy. 

The application of the Deflection Theory to the Florianopolis 

Bridge yielded a material reduction in the values of the stresses 

previously calculated by the less exact method. Thus, for the 

quarter-points of the span, the Deflection Theory showed a maxi¬ 

mum bending moment of 24,367,000 ft. lb. (with load extending 

from one end over 0.450 of the span), as compared with a bend¬ 

ing moment of 30,300,000 ft. lb. obtained by the approximate 

method—a reduction of 20 per cent. For the middle or half¬ 

point of the span, the corresponding moments were 16,929,000 

ft. lb. (with load covering the middle 0.460 of the span), as com¬ 

pared with 26,800,000 ft. lb. obtained by the approximate 

method, a reduction of 37 per cent. 

In more flexible suspension spans, greater reductions of cal¬ 

culated stress are found by application of the “ more exact ” 

method. In the Philadelphia-Camden Bridge, these were 34 

and 38 per cent, respectively. In the Mount Hope Bridge, the 

reductions were 50 and 35 per cent, respectively. 
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The final values of the maximum stresses in the Florianop- 

olis stiffening truss, by the “more exact” theory, are about 

14,500 lb. per sq. in. for the assumed loading. Since a work¬ 

ing stress of 18,500 lb., or even 20,000 lb., is amply safe for 

stiffening truss members, the Florianopolis Bridge has a capac¬ 

ity for concentrated loads considerably in excess of that 

specified. 

15. Design of Eyebars and Pins.—The suspension span was 

designed so that the entire dead load was carried by the eyebar 

cables. This dead load was not uniform either along the cable 

or along the horizontal so that the pins connecting the eyebars 

lay neither in a catenary nor in a parabola. The position of the 

eyebar cable in space was an equilibrium polygon passing through 

three fixed points, the top of each tower and a point at the center 

of the span having a sag of 120 ft. 

Each panel-length of the cable consists of 4 similar eyebars 

of 12-in. depth and of width varying from 2 to iff in. 

For connecting the 12-in. eyebars of the cables, pins 11^ in. 

in diameter were used; consequently, with eyebar heads the 

same thickness as the body df the bar, the bearing pressure on 

these pins would have exceeded the working tension in the eye- 

bars. To reduce this high unit bearing pressure the heads were 

made i in. thicker than the remainder of the bars. To resist 

the high unit stress, the pins were made of special heat-treated 

steel with a yield point ranging between 60,000 and 65,000 lb. 

per sq. in., and a tensile strength ranging between 100,000 and 

105,000 lb. per sq. in. A few of the pins are of chrome-nickel 

steel having the same range of strength. 

To facilitate the entry of the pins during erection, a novel 

detail in the form of oval pin-holes was developed. The hole is 

made somewhat elongated axially and enlarged on the inside, to 

provide more clearance for the insertion of the pin or for slipping 

the bar over the pin, while retaining a dose fit in the segment in 

contact. The outer or bearing semidrde exceeds the diameter 

of the pin by only 0.005 fa*) while the inner semidrde is bored 

to the diameter of the pin plus -fa in., and the two centers are 

separated | in. along the axis of the eyebar. The unusually 
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dose fit thus secured along the bearing surface reduces the 

secondary stresses in the eyebar head. 

16. Method of Erecting Cables.—To make the erection of 

the eyebars as simple and cheap as possible, it was dedded to 

hang them by hand-operated chain hoists which in turn were 

suspended from flexible ropes; then, after all the eyebars and 

pins were placed and supported by the ropes, to swing the eye- 

bar cables by playing out the chain hoists. 

To save as much erection material as possible, flexible hoist¬ 

ing ropes i in. in diameter were used, so that after having served 

their purpose in the erection of the two eyebar cables they could 

be cut up and used for ordinary hoisting rope. The grade 

selected had an approximate ultimate strength of 90,000 lb. per 

rope; a factor of safety of three was used for erection. At 

32,000 lb. per rope, twenty-four i-in. ropes were required. 

During the erection of the eyebars, the main tower columns 

were locked into the 185-ft. approach spans. To insure that the 

horizontal components of the stresses in the erection rope would 

be taken entirely by the anchorages, temporary I-beam grillages 

were provided, bearing on rollers which in turn rested on top of 

the column castings. 

It was necessary to ascertain either the modulus of elasticity 

of the ropes or their elongation under a stress of 32,000 lb. per 

rope. The lengths of the erection ropes, under full load, had 

then to be shortened by the amount of this elongation so that 

when they supported all the eyebars, the sag at the center would 

not exceed 115 ft. (Ordinarily, the rope used for suspension 

bridge cables, consisting of 6 strands with a wire center, has a 

modulus of elasticity of from 12,000,000 to 20,000,000, depending 

upon the lay of the rope and the stress it carries. Ordinary 

flexible hoisting rope, consisting of 6 strands with a hemp center, 

has a modulus of elasticity of from 5,000,000 to 10,000,000.) 

The method adopted for the erection of the eyebars was to 

attach them and their pins to the lower ends of the hand-operated 

chain hoists, the upper ends of which were held by clamps around 

the ropes. The load at each panel point was 19,000 lb., so that 

hoists with capacities of 20,000 lb. were selected. When all 
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bars were suspended, the chain hoists could be played out and 

the eyebars lowered from a sag of 115 ft. until they were carrying 

their own weight under a sag of 116 ft. As the loads on the 

hoists were released, the erection ropes were relieved of their 

stress, and shortened to a length corresponding to their own 

weight (but not to their original length because of the permanent 

set they had acquired). The sag meanwhile decreased from 

115 ft. until it reached an amount dependent on the new length 

of the ropes. This decrease had to be determined by advance 

tests in order to provide the proper amount of chain for the opera¬ 

tion of the chain hoists. The greatest vertical movement was 

of course at the center of the span, the amount decreasing toward 

the towers at which points there was none. The center of the 

ropes was 6 ft. above the center of the main pins on top of the 

towers. The chain hoists were originally set so that the eyebar 

pins would be a uniform distance of 6 ft. below the ropes when 

the eyebars were first lifted into position. 

As this method of erection of eyebars was a new departure in 

bridge construction, it was decided to make a series of advance 

tests on the actual ropes used.’ 

The ropes were to be used twice in the field during the erec¬ 

tion of the bars. They were first to be put up over the north 

columns. Supporting its own weight, each rope would be stressed 

to about 3000 lb. The eyebars for the north cable were then to 

be supported from the ropes, the average stress per rope under 

this condition being about 30,000 lb. The north cable would 

then be swung and the ropes again would support their own 

weight only, under a stress of 3000 lb. per rope. Next the ropes 

were to be.transferred to the tops of the south columns and the 

operation repeated. 

To approximate erection conditions as far as possible, each of 

the test pieces was stressed twice to an amount exceeding 30,000 lb. 

Readings of the elongations at each increment were plotted, 

malting it possible to compute the moduli of elasticity for any 

stresses. From these moduli could be determined the proper 

lengths for the ropes and the movements that would take place 

during the erection of the cables. 
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From the tests, the average modulus of elasticity of the ropes 

was found to be 8,000,000 when stressed the first time to 28,000 

lb., and 8,300,000 when stressed the first time to 32,000 lb.; 

and practically the same values of E were found for the second 

stressing to the same loads. 

17. Erection of Ropes, Trolleys, Clamps and Chain Hoists.— 

The steel towers were erected by February 1, 1925. The beam 

grillages, temporary rollers, and rope shoes were then placed on 

top of the two north columns. All the eyebars from the anchor¬ 

ages up to the viaduct floor level had been placed previously, 

and the temporary eyebars and the rope girders on the north 

side of the bridge were erected during the first week of February. 

A continuous 1-in. rope was then run across the main channel, 

lifted to the top of each tower, and placed on the top transverse 

tower strut adjacent to the north eyebar shoes. 

Twelve of the twenty-four reels containing the erection ropes 

had been transferred from the Continent to the Island Side and, 

on February 10, 1925, everything was ready for the placing of the 

pilot rope. The free end of this pilot rope was unwound from 

its reel on the Continent Side and lifted to the floor level of the 

viaduct. It was then fastened to the continuous 1-in. rope, 

hauled up to the top of the tower, across the strait, and over the 

top of the Island tower, using the hoisting engine on the Island 

viaduct. The two ends were then wound one and one-half 

times around the rope girders and clamped into position. 

The centers of the rope shoes had been placed 25 ft. back 

from the center of the eyebar shoes on the tops of the main 

columns in accordance with the calculations. The pilot rope 

was then lifted into the grooves on the rope shoes. An observa¬ 

tion showed the sag to be between 86 and 87 ft., or within 1 ft. of 

the calculated distance. During the next three days the remain¬ 

ing twenty-three erection ropes were placed in a similar manner 

and fastened to the rope girders so that the sags were the same as 

the sag of the pilot rope. The rope ends were fastened together 

in pairs, the free end of one rope after one and one-half complete 

turns around the rope girder being clamped to its adjacent 

neighbor by six rope clamps. 
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After the main-span and back-stay trolleys had been placed 

in position on the ropes, the main-span trolley was moved across 

from the Island to the Continent Side, placing the clamps which 

bound the twenty-four ropes into one cable unit. These clamps 

were placed at variable distances along the erection ropes in 

such positions that the chain hoists would hang approximately 

vertical when all the eyebars were supported by the ropes. 

After the twenty-six clamps were in position, the main-span 

trolley moved back to the Island side attaching the twenty-six 

Harrington chain hoists to the clamps. These two operations 

took about a week. In the meantime, the back-stay trolleys 

had been placing the clamps on the Continent and Island back¬ 

stay portions of the erection ropes, starting at the top of the 

towers and working down toward the rope girders. 

18, Erection of the Eyebar Cables.—By February 23 all the 

clamps and chain hoists were in place and everything was ready 

for the erection of the eyebars. To eliminate the driving of 

pins up in the air, the two inner eyebars of alternate panels were 

assembled in the yard and the two pins inserted in the holes. 

In this manner all pins except those at the tops of the tower 

columns were inserted in the material yard. 

The eyebars were loaded on a lighter which was towed out to 

position under the ropes and anchored. The main-span trolley 

moved to a position over the lighter, picked up the two inner 

eyebars with pins for Panel 24-26, Island Side, raised them up 

into position at the proper chain hoists where they were fastened 

to the lower ends of the chain hoists approximately 6 ft. below 

the erection ropes. The trolley then lifted the eyebars, 24-26, 

Continent Side, into position. Fig. B6 shows the trolley lifting 

the second pair of eyebars, the first pair having already been 

attached to the chain hoists. 

At the start the eyebars were grouped toward the center of 

the span. The object was to put as much weight as possible on 

the central part of the main-span erection ropes so as to bring 

the rope shoes from 2 \ ft. back of the center of the columns to a 

position over the center of the columns as quickly as possible. 

By the time twenty-six eyebars had been supported on the erec- 
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tion ropes, the rope shoes had moved from a position 2^ ft. away 

from the column center to i ft. from the column center. It was 

then felt safe to commence the erection of the eyebars on the two 

back-stays. 

When all the eyebars had been placed, the temporary rope 

shoes had moved from the original position of 2 ft. 6 in. back of 

the saddle-casting to a position practically over the center of 

the saddle. The entire erection of the 156 bars took two weeks. 

Fig. B6.—Trolley Lifting Pair of Eyebars, Florianopolis Bridge. 

By March 7, all the eyebars were erected, the entire eyebar 

cable hanging from the erection ropes. The day being clear 

and calm, it was decided to swing the eyebar cable that afternoon. 

The actual sag at that time when the erection ropes carried all 

the eyebars was 113 instead of 115 ft., the difference being partly 

due to not placing the gusset-plates and hangers as was originally 

contemplated when the calculations were made. The eyebars 

had been slipped over the pins without difficulty, due to the 

elongated pin-holes and also to the use of short pilot nuts on 

each pin. * ., 

Men took positions on the eyebars at the chain hoists and at 

2:30 p.m. the signal was given for the men to slacken off the 

chain hoists; in a few minutes the normal 6-ft. gap between the 
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erection ropes and eyebars began to increase. Some of the men 

operated the chain hoists faster than others and to keep the 

eyebar cable in a smooth curve it was necessary to have them 

wait until the slower ones could catch up. By 3 :is all the chain 

hoists were slack, showing that the eyebar cable was swinging 

free of the ropes under its own weight and the erection ropes 

were carrying their own weight under a sag of between 99 and 

100 ft. instead of the calculated sag of 99 ft. The entire opera¬ 

tion of swinging took 45 min. and was a complete success. 

As the next operation, the main-span trolley, starting from 

the Continent tower, moved across the ropes removing the 

chain hoists and clamps and placing the rope hangers and 

steel hangers. In the meantime the back-stay trolleys were 

removing the clamps and eyebar supports from the back-stay 

parts of the ropes. These operations took about a week. The 

main-span and back-stay trolleys were taken down and the 

twenty-four ropes were moved from the north columns to the 

top struts of the towers. 

The rope shoes, rollers, and I-beam grillages were transferred 

to the tops of the south columns, and the rope girders and 

temporary eyebars were transferred to the south sides of the 

viaducts. The rope ends were then fastened to the rope girders 

in a manner similar to that used for the north cable, and the 

ropes were lifted into the grooves on the rope shoes on top of the 

tower columns. The three trolleys were then re-erected on the 

ropes and the rope clamps and chain hoists placed. These 

several operations took about two weeks. 

On March 26, erection of the south eyebar cable was com¬ 

menced. The method used here was the same as that used 

for the north cable and the entire 156 eyebars were placed 

in one week, just one-half the time that it took for the north 

cable. 

By April 2 all the eyebars were hanging from the erection 

ropes. At 3:30 p.m. the signal was given for the men at the 

hoists to slacken off; by 4:00 p.m. all the hoists were loose and 

the south eyebar cable was self-supporting. Clamps and chain 

hoists were then removed; rope hangers and steel hangers were 
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erected; and the three rope trolleys were taken down. These 

operations took about four days. 

19. Erection of Trusses.—The first two truss panels at each 

end of the bridge were erected by jinniwinks standing on the 

viaducts, the remainder of the main span being erected by the 

overhead trolley method. 

Two erection ropes were lifted from the rope shoe and placed 

on supports on top of the transverse struts adjacent to the cast- 

steel shoes, and a small trolley was mounted to run on these ropes. 

Fig. B7 —Erection of Stiffening Truss, Florianopolis Bridge. 

The south bottom chords were the first truss members erected 

by the overhead method. These were placed starting from the 

Continent and working toward the Island. When the Continent 

half of the bottom chords was suspended from the hangers the 

weight distorted the eyebar cable. As the remainder of the 

south bottom chord was placed the eyebar cable gradually came 

back to its symmetrical form (Fig. B7); and when the last section 

of bottom chord was placed there was a gap of about 6 in., due 

to the camber being high under the partial dead load. The 

south truss diagonals were then erected, using the same trolley. 

The bottom chords were erected in 14 hours and the diagonals 

in an equal period. 
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Another trolley was then erected on two more of the erection 

ropes placed adjacent to the cast-steel shoes on the north columns 

and the north bottom chords and diagonals were erected in a 

similar manner. The bottom chords of this truss were placed 

in io hours and the diagonals also in io hours. 

The north and south top chords were then erected, first on 

the Continent Side and then on the Island Side. This operation 

took about 18 hours. Erection of the floor-beams, stringers, 

and bottom laterals then took place, followed by the top laterals, 

top struts, and portals. The total time consumed in the main- 

span erection was 45 working days for the erection of about 1000 

members. 

20. Placing Temporary Counterweight and Drilling Holes 

in Web Members.—When all the steel was erected the total dead 

load was only 3000 lb. per lin. ft., so that the sag had not reached 

120 ft. Under this condition it was impossible to connect the 

web members and top chords because the fabricated lengths of 

these members were based on the geometric lengths they would 

occupy under a sag of 120 ft. 

The delivery date of the floor lumber was uncertain so that 

some temporary load had to be placed upon the main span to 

bring the eyebar cable to the correct dead-load position, in order 

that the holes in the blank gusset-plates could be drilled and the 

diagonals outside Panel Points 16 could be connected under zero 

stress. As there was considerable sand on the beach along the 

Continent shore it was decided to make use of this material. A 

sand load equivalent to 1400 lb. per lin. ft. of bridge was placed 

on the steel floor system, and this brought the diagonals from 

Points o to 16 at each end of the bridge to such position that con¬ 

nections could be made with practically no drifting. The 1728 

holes in the bottom-chord gusset-plates between Points 16 were 

then drilled and the diagonals connected under this condition. 

One of the erectors set a record by drilling 240 holes (in $-in. 

material) in 1 day of 8 working hours. 

21. Riveting and Painting.—There were more than 50,000 

field rivets to be driven on the main span and this work was com¬ 

pleted during July, 1925. The temporary sand counterweight 
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was then removed and the structure given two poats of field 
paint. 

The last contingent of the erection organization arrived in 

the United States on August 31, so that a few days less than 

fourteen months elapsed from the time that the first section of 

field forces left the country until the last section returned; the 

actual time of field erection of main span and viaducts was just 

about one year. 

22. Total Weights, Quantities, and Costs.—The weight of 

steel in the Florianopolis Bridge, including the approaches, is 

approximately 4400 tons, made up as follows: 
Tons 

Cables: Eyebars and pins. 780 

Main Span: Trusses and bracing. 840 

Floor system. 420 

Main Towers: Columns and bracing. 830 

Castings. 90 

Anchorages: Eyebars and girders. no 

Approaches: Spans (including floor and bracing). 960 

Towers and bracing. 290 

Miscellaneous: Railings, etc. 80 

Total. 4400 

The total quantity of concrete in the anchorages and piers is 

approximately 14,500 cu. yd., made up as follows: 

Cu. Yd. 

Island anchorage. 3,500 

Continent anchorage. 6,000 

Piers and abutments. 5,1000 

Total.14*50° 

The total cost of the Florianopolis Bridge, including the con¬ 

tractor’s profit, as represented by the amount of the general 

contract, was upward of $1,400,000. (The exact amount is 

difficult to state on account of the fluctuating value of the 
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Brazilian currency at the time.) Of this total amount, the cost 

of the superstructure, as represented by the amount of that 

sub-contract, was approximately one-half. 

23. Conclusions.—The successful design, fabrication, trans¬ 

portation, and erection of the Florianopolis Bridge has demon¬ 

strated the fact that suspension bridges with eyebar cables are 

practicable and that falsework of the ordinary kind, or, on the 

other hand, elaborate staging to support the eyebars during 

erection, is unnecessary. 

A particularly gratifying feature of the bridge from an engi¬ 

neering standpoint was the manner in which the actual move¬ 

ments both of the erection ropes and of the permanent steel 

towers and main span agreed with the designed movements. 

It was possible from the calculations to predict the movements’or 

positions under various conditions of erection with a very small 

error. 

The placing of the wooden floor was done by the general 

contractors, Byington and Sundstrom, and completed during 

March, 1926. The official opening of the bridge took place on 

May 3, 1926. 

The entire field operations covering a period of one year from 

August 1,1924 to August 1,1925, were successfully accomplished, 

6000 miles from home, without the loss of a single human life. 

Furthermore, the actual cost of the entire steel superstructure 

was within the estimate. The Florianopolis type of suspension 

bridge, therefore, has shown itself to be a practical, a safe, and 

an economical type of structure. 

The economic advantage of the Florianopolis type of suspen¬ 

sion bridge has received commercial recognition and confirma¬ 

tion in the proposal and adoption of this form of construction in 

two successive bidding competitions. These are the 700-ft. 

spans over the Ohio River at Point Pleasant, W. Va., and St. 

Marys, W. Va., respectively. In each case, the Florianopolis 

type was proposed by the American Bridge Company as an 

alternative bid, at a price sufficiently below the tenders on the 

conventional suspension designs to win the respective competi¬ 

tions. The bids showed that, for a span length of 700 ft. and for 
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the relative unit stresses specified, heat-treated eyebars are 

more economical than wire cables at present prices; and that 

the combination of the eyebars with the Florianopolis type offers 

a further saving in the cost of the structure. 

For further particulars relating to the design and construction 

of this bridge, the reader is referred to the paper “ The Eyebar 

Cable Suspension Bridge at Florianopolis, Brazil ” by D. B. 

Steinman and Wm. G. Grove, in the Transactions of the American 

Society of Civil Engineers (Vol. 92, p. 266, 1928). 
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THE OHIO RIVER SUSPENSION BRIDGE AT 

PORTSMOUTH 

1. Introduction.—The “ General U. S. Grant Bridge ” 

(Fig. Ci) between Portsmouth, Ohio, and Fullerton, Ky., com¬ 
pleted 1927, is of interest because of a number of unusual features. 

Fig Ci —General U S Grant Bridge (1927) over Ohio River 
at Portsmouth, Ohio 

Span 700 ft 2 Wire Cables Rocker Towers 
Continuous Trusses 14 ft Deep Spaced 31 i ft 

Designed by Robinson and Stemman Consulting Engineers 

In general design, it departs from conventional practice in the 
use of a continuous stiffening truss, rocker towers, rocker bents 
for supporting the cables, and sand-filled anchorages. In details, 
it embodies novel features in the expansion connections, in the 
adoption of forged cable bands, in the splicing of stringers for 
continuity, and in the railing design. In construction, the 

method of spinning and placing the cables and the method of 
erecting the stiffening trusses were unusual. 

228 
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The modem period of suspension bridge construction in 

Ohio River territory commences with the adoption of this type 

for the Portsmouth bridge. Following two decades of almost 

exclusive adherence to the cantilever, the pendulum has swung 

back to the suspension type and practically all of the new Ohio 

River spans begun or projected since 1927 are designed as suspen¬ 

sion bridges. Some of these are patterned after the Portsmouth 

bridge. (In the case of the Point Pleasant and St. Marys 

bridges, a departure was introduced by the adoption of the 

Florianopolis type employing eyebar chains, following the 

receipt of an alternative proposal for such design in the bidding; 

these will therefore be the second and third suspension bridges 

to be built of this type and to employ high-strength heat-treated 

eyebars, the Florianopolis Bridge being the first.) 

2. Competition of Types.—The Portsmouth bridge was 

undertaken as a toll bridge project, and the official design was a 

cantilever bridge with a main span of 700 ft. The Dravo Con¬ 

tracting Company, which was interested in the bridge both as 

part owner and as prospective contractors, retained Robinson and 

Steinman to prepare an alternative design of the suspension 

type for the purpose of bidding. Three bids were received on 

the cantilever design, but the bid on the suspension design was 

10 per cent under the lowest bid for the cantilever. The suspen¬ 

sion design was accordingly adopted. 

In this instance, the suspension type was handicapped by 

unfavorable local conditions. The topography and the existing 

railroad tracks interfered with the customary location of the 

anchorages at the ends of the suspension structure, without a 

material increase in the length of the main structure. The 

problem was solved partly by lengthening the side spans from 

275 ft. to 350 ft., and partly by placing the anchorages 150 ft. 

away from the ends of the side spans. This necessitated length¬ 

ening the cables and carrying them an idle distance of 150 ft. at 

each end, and providing cable-supporting bents that would 

otherwise have been unnecessary. 

Despite these handicaps there remained sufficient inherent 

economy in the suspension design to make it successful in the 
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competition. This result has served 

to correct an impression that the sus¬ 

pension type cannot compete with the 

cantilever for spans as small as 700 ft. 

Where local conditions especially un¬ 

favorable to the economy of the sus¬ 

pension type do not obtain, it can 

compete with the cantilever for much 

smaller spans. Comparative estimates 

in fact show the suspension type to 

be economical for spans as small as 

400 ft. 

3. Principal Dimensions. — As 

built, the Portsmouth bridge (Fig. C2) 

has a main span of 700 ft. and two 

side spans of 350 ft. each. The main 

cable sag is 70 ft. or 1:10 of the span; 

the side-span sag was made 17.65 ft. 

in order to equilibrate the cable under 

full dead load. The stiffening truss 

was made 14 ft. deep, or 1:50 of the 

span length, determined by the degree 

of rigidity desired. 

To provide a clear roadway of 28 

ft. the spacing of the trusses was made 

31 \ ft. (See Fig. C3.) The cables 

are hung in the truss planes. The 

width of the towers increases from 

this saddle spacing at the top to 40 ft. 

gl in. at the base, corresponding to an 

adopted batter of \ in. per foot for 

the tower legs. This form of tower, 

with main legs battered, was intro¬ 

duced into suspension bridge practice 

by H. D. Robinson, having been rec¬ 

ommended by him in 1911 for the 
proposed Rhine bridge at Cologne and 
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first applied by him in 1919 in the design of the Rondout Bridge 

at Kingston, N. Y., completed 1922, the object being to provide 

clearance for roadway and stiffening truss without interference 

Fig. C3.—Portsmouth Bridge. Cross-section of Suspended Spans. 
(Design provides for future widening of roadway to 28 ft. and future sidewalk on outside 

brackets.) 

by the tower columns, incidentally securing the advantage of 

increased transverse stability. 

4. Continuous Stiffening Truss.—The Portsmouth bridge is 

the second American suspension bridge built with a continuous 

stiffening truss; the first application was made in the design of 

the Rondout Bridge. The continuous truss was adopted because 

it offers greater efficiency than the conventional two-hinged type. 

This increased efficiency may be in the form of superior economy, 

or superior rigidity, or both, depending upon the proportions 

adopted. Comparative designs show that the continuous type 

is more rigid for the same total quantity of steel, and more 

economical for the same specified degree of rigidity. It offers 

incidental advantages in greater efficiency of the continuous 

lateral truss, in improved and simplified supporting details at 

the towers, and in reduced variation between minimum and 

maximum sections. 

In the Portsmouth stiffening truss, the variation of chord 

sections is from a minimum of 24.3 sq. in. (at the Lo end of the 

side spans, and near the $-th points of the main span) to a maxi¬ 

mum of 33.8 sq. in. (at the towers and at mid-span). Only two 
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intermediate sectional areas were required. All chord sections 

were made up of two 15-in. channels (34, 40, 45, or 50-lb.) with 

top cover plate 12 X I in. Instead of bottom lacing, 9 X S in. 

batten plates at 3-ft. spacing were used. All diagonals are made 

up of two 10-in. 20-lb. channels, tied together with batten plates, 

except in the panels adjoining the tower, where 12-in. 25-lb. 

channels were necessary. 

5. Rocker Towers.—The Portsmouth bridge is one of the 

first suspension bridges to be built in the United States with 

towers of the rocker type. (The Florianopolis Bridge, also 

designed by Robinson and Steinman, was an earlier application 

of rocker suspension towers.) This type was adopted because 

it is believed to be the most scientific and most economical. It 

yields a substantial saving in main material of the tower (by 

eliminating the bending stresses caused by tower deflections), in 

the pedestals at the base, and in substructure; and it minimizes 

the difficulty and expense of pulling the towers back toward the 

shores during the erection of the cables. The main pier shafts, 

only 8 ft. in diameter under coping, could not have served for 

towers of the fixed-base type. 

The Portsmouth towers (Fig. C4), like those of the Flori¬ 

anopolis Bridge, rock on line bearings (33 in. long) between upper 

and lower steel castings. The upper casting, secured to the 

tower leg, has its bottom face finished to a convex surface of 

10-ft. radius. The lower casting, secured to the masonry, has 

its top finished to a plane surface. This line bearing has to 

carry a reaction of 1000 tons per tower leg. Flanges hold the 

castings in proper relative position, and the lower casting has 

diagonal ribs set in grooves in the pier concrete for security 

against displacement, supplementing the anchor bolts. 

To hold the towers during erection, the batten plates at the 

base of each column were extended and formed into wing- 

brackets; under these, small steel struts were wedged up on the 

pier masonry, while each bracket was tied to the pier by three 

2$ in. hog-rods. After the cables were in place the towers were 

freed at the base by burning off the temporary extensions of the 

base batten plates. 
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Each tower leg is made up of two closed box sections, tied 

together at intervals with batten or splice plates. This section 

is exceptionally efficient, yielding a radius of gyration of 23 in. 

Manholes and ladders are provided to give access to the interior 

of the columns; and the section is stiffened with interior dia¬ 

phragm bracing at suitable intervals. 

The basic unit stress of 18,000 lb. per sq. in., reduced by 

column formula and increased 25 per cent for inclusion of wind 

stress, yields a permissible unit stress of 17,700 lb. per sq. in. 

for the tower columns. The actual stress (11,700 from load, 

1000 from wind and 4600 from portal flexure) is 17,300 lb. per 

sq. in. 

At each end of the suspension structure (see Fig. C2) is a 

rocker bent to support the cables at the point where they bend 

downward on their way to the anchorage 150 ft. away. 

In addition to sustaining the cable reactions, the rocker bent 

has to support the reversible end-reactions of the continuous 

stiffening truss, and the end-reactions of the 90-ft. approach 

girder span. Rocking action is necessitated by the thermal and 

elastic elongation of the cables between anchorage and top of 

bent. The difference of cable tension on either side, correspond¬ 

ing to the difference of cable inclination, necessitates provision 

for fixing the cables against sliding in their saddles at the top of 

the bent. The rocking of the tower, combined with the expan¬ 

sion of the main structure and of the approach span, necessitated 

sliding or rocking details for the respective end bearings. 

The legs of the rocker bent are vertical, about 32 ft. high; 

they rest on pier bases and carry cable saddles at their tops. 

To permit the end of the stiffening truss to pass through the 

column, the cover plates are interrupted; sliding pin bearings 

transfer the truss reaction directly into the column. The 

approach girders are seated on a transverse truss connecting 

the two columns below the bridge deck. 

6. Design of Cables.—For the cables of the Portsmouth 

bridge, bright wire was adopted instead of the more customary 

galvanized wire, on account of the faith of the designing engineers 

in the adequacy of the protection afforded by modem cable 
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wrapping. The bright wire yields advantages of lower cost 

and greater strength. The cables of the Williamsburg Bridge, 

made of bright wire, are in an excellent state of preservation. 

When Roebling’s Niagara railway suspension bridge was taken 

down (after a half-century of severe service under increasing 

locomotive loading), the bright wire composing the cables was 

found free from rust. Except possibly for coastal locations 

exposed to salt air, the author would unhesitatingly recommend 

the use of ungalvanized wire for bridge cables; with the proviso, 

of course, that the outside of the cables be suitably protected 

with tight wire wrapping. 

When the design was prepared, the conventional method of 

spinning-in-the-air was contemplated for the Portsmouth cables 

(though later another method of construction was adopted). 

In order to avoid difficulty in the air-stringing arising from the 

stiffness of the wires in so short a span, such as was encountered 

in the cable stringing for the 705-ft. span of the Rondout Bridge, 

it was decided tp adopt smaller wire, No. 8 of 0.162-in. diameter, 

in place of the usual No. 6 wire of 0.192-in. diameter. Three 

strands, each containing 486 wires, made up the required 30 sq. in. 

per cable. Each strand terminates in strand-shoes which are 

pin-connected to the anchorage eyebars. After the three strands 

were squeezed together (this was done by three-plunger hydraulic 

squeezing machines, Fig. C5, devised by H. D. Robinson) the 

cable had a diameter of 7! in. under the wrapping wire. The 

cables were wrapped with No. 9 soft annealed double-galvanized 

steel wrapping wire, by an electrically operated cable-wrapping 

machine, also the invention of Dr. Robinson. 

The wire for the Portsmouth cables was specified to have a 

minimum yield point of 140,000 and a minimum ultimate strength 

of 220,000 lb. per sq. in.; the tested strength averaged over 

230,000 lb. per sq. in. The adopted working stress was 70,000 lb. 

per sq. in. for the initial condition of the bridge (22-ft. roadway 

and inside sidewalk), and 80,000 for the possible future condition 

of the bridge (28-ft. roadway and outside sidewalk). In this 

connection, the author wishes to record his conviction that 

suspension bridge designers have been too conservative in the 
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past in fixing wire cable working stresses, in comparison with 

working values permitted for other materials, and that stresses 

as high as 100,000 lb. per sq. in. or even higher may safely be 

used for this unexcelled bridge material. 

Fig. C5.—Three-plunger Cable Squeezer. 
Actuated by Hand-operated Hydraulic Pump. 

The maximum horizontal tension per cable, for the ultimate 

bridge loading is 2,158,000 lb. (1,530,000 dead load, 548,000 

live load, and 80,000 lb. temperature), and the maximum inclined 

tension 2,380,000 lb., which is slightly under 80,000 lb. per sq. in. 

The suspender at each panel point consists of two parts of 
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ii-in. diameter double-galvanized steel bridge cable, stranded 

6 by 7, with a steel wire rope center. This suspender rope weighs 

approximately 2.57 lb. per lin. ft., and has a guaranteed minimum 

breaking strength of 62 tons. The calculated maximum panel 

concentration (including impact) is 79,400 lb., so that a factor 

of safety exceeding 3 is provided by these suspenders. 

Departing from conventional precedent, the suspenders of 

the Portsmouth bridge were made non-adjustable. It was 

deemed preferable to depend upon scientific pre-calculation of 

correct suspender lengths and careful measurement in cutting 

and socketing, than to place reliance upon variations of field 

adjustment. Non-adjustable suspenders are a protection against 

future accidental or misguided disturbances from correct adjust¬ 

ment. 

The attachment of the suspender ropes is made by means of 

their button sockets bearing under angle lugs riveted to the 

truss posts near their tops. 

7. Design of Anchorages.—The outstanding novel feature 

in the Portsmouth anchorages (Fig. C6) is their design as large 

reinforced-concrete boxes filled with compacted sand as an 

economical means of producing mass resistance; this use of 

sand-filled chambers yields a material saving of concrete. The 

only previous application of such a feature was in the suspension 

bridge at Massena, N. Y., 400-ft. span, designed and built by 

H. D. Robinson in 1910. 

The south or Kentucky anchorage, which also serves as end 

abutment, is founded on hard blue shale; this was stepped off, 

with top slopes of 1 to 6, to increase the resistance to cable pull; 

in addition, about two hundred £-in. rods, 12 ft. long, were driven 

into the rock at 45 degrees under the heel of the anchorage, to 

serve as dowels for greater security. The anchorage weight 

comprises 3800 tons of concrete and 1600 tons of sand; the latter 

contribution represents a saving of 800 cu. yd. of concrete. 

The Ohio anchorage, similar in general principle of design 

but differing slightly in shape for local reasons, has' caisson and 

pile foundations as rock did not occur near the surface. Three 

caissons were sunk by open dredging; one under each comer of 
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the toe through 45 ft. of clay to hardpan, and one under the full 

length of the heel through 27 ft. of clay to a bed of sand and 

Fio. C6.—Anchorage Construction. Portsmouth Bridge. 
South Anchorage Foundations on Soft Rock. 

North Anchorage Foundations on Concrete Piles and Caissons. 

gravel In the T-shaped area between these caissons, 67 rein- 

forced-concrete piles were driven, on an average batter of 1 in. 

per foot 
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8. Roadway Design.—The Portsmouth bridge is designed 

and proportioned for an ultimate three-lane roadway, 28 ft. 

wide between curbs, and a future. 6-ft. sidewalk on outside 

brackets. Pending the development of increased traffic demands, 

a part of the roadway space is utilized for an inside sidewalk, 

6i ft. wide. (See Fig. C3.) 

The roadway floor is of asphalt on a laminated redwood base. 

The redwood planking, set on edge across the stringers, is alter¬ 

nately 5i and 5! in. high, so as to yield a more effective bond 

with the asphalt wearing coat; the latter is of rock asphalt 

mastic and has a minimum thickness of 2! in. above the higher 

planks. 

This floor construction of asphalt on redwood base is lighter 

(though not cheaper) than a reinforced-concrete floor, resulting 

in a saving of material in the supporting structure. It was 

adopted for the suspension design of the Portsmouth bridge in 

the bidding competition because the same floor construction was 

proposed in the official cantilever design. If a concrete floor had 

been adopted for both competing designs, the suspension design 

would have enjoyed an easier victory; for the suspension type 

is less affected in cost by dead load than any other bridge type. 

(The stiffening truss sections are not increased, but actually 

somewhat reduced, by an augmentation of the design dead load.) 

9. Loads and Stresses.—The floor system of the Portsmouth 

bridge was designed for a maximum load of a 20-ton truck at 

any point, or for a normal load of three 15-ton trucks abreast. 

Impact of 37i per cent was added in proportioning the stringers, 

and of 30 per cent in proportioning the floorbeams. 

For the design of the stiffening trusses, cables, towers and 

anchorages, the assumed live load was a uniform load of 1400 lb. 

per lineal foot of bridge plus a superimposed concentrated load of 

42,000 lb. at any point. The uniform load represents three 

lanes of motor vehicles averaging 50 lb. per sq. ft., and the con¬ 

centration represents the excess weight of three 15-ton trucks 

abreast at any point in this stream of traffic. 

The estimated dead load (per cable) used in the stress cal¬ 

culations for the final condition of the structure (with 28-ft. 
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roadway and outside sidewalk) was 1748 lb. per lin. ft. (flooring 

and sidewalk 674 lb., floor steel and railings 551 lb., trusses and 

bracing 387 lb., cables and suspenders 136 lb.). These figures 

are for the east cable; the dead loads for the west cable are 

somewhat less in consequence of the unsymmetrical cross-section 

of the bridge. 

The design loading also included a moving wind load of 30 lb. 

per sq. ft. on if times the vertical projection of the structure, 

and a temperature variation of ±60 deg. F. 

10. Unit Stresses.—The structural steel used is medium 

carbon steel of minimum elastic limit 36,000 lb. per sq. in. and 

ultimate strength 60,000 to 70,000. A basic unit stress of 

18,000 lb. per sq. in., reduced for compression, was adopted for 

the towers, floor system and approach spans, and 24,000 for the 

stiffening truss (with column reduction and a limiting value of 

21,000 for compression). The higher basic stress for the stiffen¬ 

ing truss is justified by the fact that the truss is not essential for 

the safety of the structure against collapse. 

In accordance with the usual practice, it was specified that 

the basic unit stresses for proportioning the towers and stiffening 

trusses may be increased 25 per cent when wind and temperature 

stresses are included, provided the required section is not thereby 

reduced. Accordingly, the maximum total unit stress in the 

stiffening truss (for contingent future maximum loading) is 

30,000 lb. per sq. in. This leaves a safety margin of 6000 lb. 

per sq. in. below the minimum elastic limit of the steel used. 

11. Some Special Details.—The continuity of the stiffening 

truss and its support against reversible vertical and lateral 

reactions on the rocking towers and cable-bents gave rise to 

special problems in devising efficient bearing connections; these 

connections had to take care of the reversible reactions while 

permitting the necessary relative longitudinal movements due 

to combined span expansion and tower rocking. The connec¬ 

tion detail adopted consisted of sliding pins, rotating in annular 

bushings in one of the members to be connected and sliding 

between bronze bearings in the other member. 

For the connection of the truss to the towers, the pins turn 
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in the truss gusset and slide in a casting attached to the tower 

girder. Each pin is 6 in. square for a length of u in., to slide 

between top and bottom phosphor bronze bushings in a rec¬ 

tangular slot in a steel casting bolted to the reaction girder of the 

tower; the ends of the pin are turned to 6-in. diameter, to turn 

in phosphor bronze annular bushings set in annealed steel 

castings bolted to the projecting truss gussets at Z.20. The 

effective length of the slot is 14! in., providing amply for com¬ 

bined truss expansion and tower movement. 

To take care of the lateral wind reaction at the main tower, a 

thrust bracket is built up from the tower cross-girder, to engage 

the faces of two built-up brackets on the underside of the floor- 

beam. The central thrust bracket has its two bearing sides faced 

with 1-in. steel plates, planed to smooth finish; the two engaging 

thrust brackets have their bearing ends faced with 2-in. steel 

plates, planed to convex cylindrical surface. This detail per¬ 

mits relative longitudinal movement of truss and tower, while 

providing effective line-bearing for taking the lateral wind reac¬ 

tions from the continuous bottom lateral truss system into the 

main towers. 

The cable bands are of novel design, developed for ease of 

fabrication and economy. While the upper or suspender-saddle 

portion is an annealed steel casting, the lower half is a steel plate, 

ioXfXn in., hot-pressed to the desired contour; this pressed 

steel plate is less expensive than the usual casting detail. Two 

12-in. U-bolts, going around under this curved plate, pass up 

through the cast cable band top. The suspender groove in the 

top casting is flared at the sides, to permit all the cable band 

castings to be built with a single pattern. Small keeper plates, 

2X| in., are tap-bolted over the side suspender grooves, after 

the rope is in place, as a safeguard against accidental displace¬ 

ment of the suspender. 

Departing from conventional practice, the stringers are 

spliced together with top tie-plates over the floorbeams. The 

resulting effect of partial continuity increases the efficiency of 

the stringers and relieves the connection of certain objectionable 

secondary stresses. 
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A wire fencing design was adopted for the railings of the 

Portsmouth bridge. Top and bottom rails of 2^-in. galvanized 

pipe, spaced 37 in., are U-bolted (with spacing blocks) to the 

truss posts and diagonals; between these pipe rails are mounted 

panels of woven fabric of No. 6 galvanized wire, 2-in. mesh; 

these panels are two per truss panel, and are framed with if-in. 

galvanized channels for stiffening and attachment. This design, 

while comparatively light and inexpensive, has an advantage of 

superior resilience in comparison with conventional bridge 

railings. 

12. Construction of the Cables.—The cables of the Ports¬ 

mouth bridge were not constructed by the conventional method 

of stringing-in-the-air with the aid of temporary footbridges, 

but by stringing the individual strands on the ground. Complete 

sets of erection drawings were prepared by Robinson and Stein- 

man for the two methods of cable construction; the contractor 

selected the ground-stringing method. Since, for small cables, 

the footbridge method involves a high plant cost per pound of 

cable material, the ground-stringing method may be more 

economical under favorable conditions. But the principal 

advantage offered by the ground-stringing method is the possi¬ 

bility of constructing the cable strands before the towers and 

anchorages are completed, thereby saving time in the completion 

of the bridge. At Portsmouth, the cable strands were completed 

on the ground before the steel towers were ready to receive them. 

The method of ground-stringing, revived for the Portsmouth 

bridge, was the prevailing practice for the Ohio River bridges 

built by Laub and his school about a generation ago; whence it 

is sometimes called “ the Ohio River method.” One objection 

to it is the lack of conformation of the strand, as built, to the 

curvature over the saddles; this tends to produce an excess of 

tension in the upper wires of the strand. To meet this objection, 

Robinson and Steinman introduced into the strand-stringing 

plan means for producing pre-calculated initial bends or curva¬ 

ture in the strand corresponding to the computed difference of 

length between the top and bottom wires; for this purpose, the 

strands during stringing were inclined downwards for a distance 
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near each end to the temporary anchorages of the strand 

shoes. 

For the stringing of the strands, an existing railroad siding 

on the Kentucky shore was extended to provide the necessary 

length of 1800 ft. A gasoline track-car was used, running back 

and fourth on this track, to lay the wires in a sheet-metal lined 

V-trough on either side. The track-car carried the 26-in. coils 

of wire on swifts, which were controlled when necessary by 

hand-operated brakes; thence inclined guides guided the wire 

to the troughs. Below the level of the track, at either end of the 

1800-ft. length, an anchorage of concrete and steel rails was 

provided to hold the strand shoes at pre-calculated elevation, 

inclination and distance. The individual wires were stretched, 

in adjustment around the strand shoes, to a spring-balance pull 

pre-calculated for varying temperatures. Two strands (486 

wires each) were strung simultaneously; temporary wire seiz¬ 

ings were placed at short intervals around each completed strand. 

When the two strands were completed, they were shifted to one 

side along the track; and the operation was repeated for the 

second and third pairs of strands. 

After the six strands were completed, and the towers were 

ready to receive them, they were taken individually across the 

river and raised to position. Each strand was guided around a 

quarter-turn to the shore, and pulled across the river on barges; 

the strand shoes at the two ends were secured to their permanent 

anchorages, and the strands were then hoisted up to their position 

in the tower saddles by means of lines from gallows frames 

mounted on the tower tops. 

The use of footbridges was completely dispensed with. 

Erection cages suspended from trolleys running on the cables 

were employed for the operations of squeezing the cables and 

placing the cable bands and suspenders. 

13. Spiraling of Strand.—In the ground-stringing of the 

strands a mishap occurred which was temporarily upsetting but 

which was corrected without serious consequences. When the 

ground-stringing of the first pair of strands was completed, one 

of these strands was released from its temporary anchorage at 
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one end by prying the strand shoe from its fastening; immedi¬ 

ately upon this sudden release of tension, the end of the strand, 

for a length of about 50 ft., sprang into a spiral coil, the attached 

strand shoe turning over and over on the ground with the twist¬ 

ing of the strand. Somehow, it appears, the wires had worked 

around in the strand into a condition where their individual 

tendencies to coil produced a similar summation effect for their 

aggregate. 

For the moment it appeared that the strand would have to 

be given up as lost. Various measures were considered, including 

salvaging the wire by unstringing the first pair of strands, and 

mechanically or heat-straightening all wire before continuing 

with the ground-stringing procedure. It was finally decided to 

make an attempt to unspiral the coiled strand, and this was 

successfully accomplished with far less difficulty than was antici¬ 

pated and without any injury to wires or strand. With a few 

precautions, including the use of a snub-line to keep the strand 

under tension and the use of a “ monkey-tail ” to keep the 

strand shoe from turning overv it was found possible to handle 

the strands without a recurrence of the spiraling. The remain¬ 

ing four strands were strung in the same manner as the first 

pair, without resorting to the use of straightened wire; and all 

six strands were subsequently erected without loss or too serious 

trouble in handling in spite of their lively nature. 

Thus the mishap fortunately had no serious consequences. 

The author has since learned that similar curling up of strands 

occurred during the cable stringing for one of the Ohio River 

bridges of a generation ago, and that in that instance one or two 

strands actually had to be given up as a complete loss. Had that 

incident been reported in the published accounts, the near-recur- 

rence at Portsmouth could have been anticipated and avoided. 

The safest precaution in the future, when the ground-stringing 

method is adopted, is to use wire that is either mechanically or 

heat-straightened so that all tendency to coil may be avoided. 

Unstraightened wire was purchased for the Portsmouth bridge 

before the substitution of ground-stringing for air-stringing was 

contemplated. 
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14. Erection of Trusses.—The stiffening trusses were shop- 

riveted and shipped in units of two panels each. These units 

were raised from the barges by means of a derrick boat, and 

were connected directly to the suspenders ready to receive them 

(Fig. C7). When all of the truss units were thus suspended, they 

were pinned and bolted together, ready for final field riveting. 

Fig. C7.—Method of Erection of Trusses. Portsmouth Bridge. 
Hanging First Sections of Stiffening Trusses in Main Span. 

This method of truss erection proved rapid and cheap. The 

entire stiffening trusses and floor system were erected in a little 

more than two weeks. 

To facilitate the field connections between the truss units, 

the gusset plate on the inside of the truss was shop-riveted to 

one truss unit, and the gusset plate oh the outside of the truss 

was shop-riveted to the other truss unit. The top and bottom 

splice plates were similarly* handled. In this. manner, the 

necessity of entering connections was avoided. 
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THE DEFLECTION THEORY 

1. Introduction.—The common or approximate theory for 

the stress analysis of stiffened suspension bridges, presented in 

Chapter I of this book, is known as the Elastic Theory. A more 

exact method of analysis, which takes into account the deformed 

configuration of the structure, is known as the Deflection Theory. 

The values of the bending moments and shears yielded by 

the Elastic Theory are too high, satisfying safety but not 

economy. The method is expeditious and therefore convenient 

for preliminary designs and estimates. It is generally sufficiently 

accurate for short spans and for designs having deep rigid stiffen¬ 

ing systems that limit the deflections to small amounts. 

In designs with long spans,.shallow trusses, or high dead load, 

the results of the approximate method become too wasteful, and 

the Deflection Theory should therefore be applied. (As a time¬ 

saving device, the stresses may be found by the more expeditious 

Elastic Theory and then corrected by proper coefficients repre¬ 

senting the reduction by the more exact theory.) 

2. History of the Deflection Theory.—The Deflection 

Theory or “ More Exact Theory ” for the analysis of stiffened 

suspension bridges was originated by J. Melan and was first 

published by him in 1888 in the second edition of his classic work 

“ Theorie der eisemen Bogenbriicken und der H&ngebriicken.” 

It was republished in 1906 in his third edition, which was trans¬ 

lated in 1909 by D. B. Steinman and published in the latter’s 

English translation “ Theory of Arches and Suspension Bridges ” 

in 1913. In Professor Melan’s fourth edition, published in 1925, 

the Deflection Theory appears again, in amplified form. All of 

the basic formulas were developed by Professor Melan and were 

included in his original presentation. 

246 
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The first application of the Deflection Theory in practice was 

in the computations of the Manhattan Bridge by L. S. Moisseiff 

and in the checking of the stresses by F. E. Tumeaure in 1909. 

This work included the amplification of the working formulas 

for application to suspended side spans. A similar amplifica¬ 

tion of the theory for bridges with suspended side spans was 

made independently by D. B. Steinman in 1909. 

The Deflection Theory was subsequently applied in the 

design computations of the Philadelphia-Camden Bridge, the 

Florianopolis Bridge, the Mount Hope Bridge, the Grand* Mere 

Bridge, and other suspension structures. The utilization of the 

theory became more common with the growing realization of the 

amount of the resultant saving, especially in longer spans and 

shallower trusses. 

A different form of the Deflection Theory, using converging 

trigonometric series and involving a refinement over the usual 

form, was published in 1928 by S. Timoshenko. The refinement 

consists in eliminating the assumption of uniform suspender 

loading in the derivation of the //-equation. The resulting 

difference in the value of H is found, however, to be small and 

practically negligible. 

In the course of the professional practice of Robinson and Stein¬ 

man, as successive bridge designs were calculated by the Deflec¬ 

tion Theory, data were gradually accumulated on the percentages 

of reduction from the corresponding stresses by the approximate 

theory for different lengths and proportions of spans. These 

data soon indicated that there was some law of relationship 

between the amount of reduction and the flexibility of the span. 

The plotted records were used to indicate the reduction percent¬ 

ages for use in approximate estimates and preliminary designs 

on new bridge projects. In 1927 the author suggested to A. H. 

Baker, as a thesis problem, the development, from the office data 

and from further computations, of graphs that would give the 

correction percentages closely-as functions of the span constants. 

After a year of computations and comparisons, Mr. Baker 

developed the graphs reproduced in Fig. D5 and described in the 

accompanying text. These graphs afford a short-cut method 
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for figuring the “ more exact ” stresses, with little error, directly 

from the results of the more expeditious Elastic Theory. 

3. Fundamental Assumptions of the Deflection Theory.— 

The Deflection Theory for the analysis of stiffened suspension 

bridges is based on the following assumptions: 

1. The initial curve of the cable is a parabola. (In practice, 

the greatest ordinate deviation from a true parabola is seldom 

as large as \ per cent.) 

2. The initial dead load (w) is carried by the cable (producing 

the initial horizontal tension Hw) without causing stress in the 

stiffening truss. 

Unlike the Elastic Theory, however, the Deflection Theory 

does not assume that the ordinates of the cable curve remain 

unaltered upon application of loading. In other words, the 

alteration of the lever arms of the cable forces is taken into 

account. This change in cable ordinates or lever arms makes 

the initial cable tension Hw significant. 

The theory that follows is applicable to two-hinged suspension 

bridges either with or without suspended side spans. It is not 

applicable, without modification, to suspension bridges having 

continuous (hingeless) stiffening trusses. 

4. Fundamental Equations of the Deflection Theory.—If the 

deflections of the span are neglected, the general expression for 

the bending moment at any point of the span is given by the 

basic formula of the Elastic Theory (Eq. 82, page 22): 

M=M'-Hy, 

where M' denotes the simple-span bending moment and Hy 

represents the relieving moment due to the cable tension. 

In consequence of the deflections ij, the bending moments are 

relieved by an additional amount (H„+H)ii and the expression 

for M becomes: 

M=M'-Hy-(HW+H)r,.(1) 

This is the basic equation of the Deflection Theory. 

Neglecting the elongation of the suspenders, the truss at any 

point will have the same deflection ij as the cable at that point. 
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By the common theory of flexure applied to the truss, 

(Py _ _M_ 
dx2 El' 

Substituting Eq. (i), and introducing the symbol 

we obtain: 

,2 _HW+H 

c —IT’ 

d2ri_ 2 C2 

dx2 C n H„+H 
(.M'-Hy). 

(*) 

The solution of this differential equation yields the general 

formula for deflections or equation of the deflection curve: 

v= 
H 

H„+B 
Ciecx+C2e~cx+ (K-y _5M 

\H y ) c2\H IV. 
(3) 

where p is the uniform applied loading producing M' and H. 

(The terms in the last parentheses are the second derivatives of 

the terms in the preceding parentheses. The student may 

verify Eq. (3) by differentiating it twice and substituting back 

in the preceding equation.) 

Substituting Eq. (3) in Eq. (1), the general formula for M or 

equation of the M-curve is obtained: 

Jf—|-|)]. ... (4) 

From Eq. (4) we observe that the moment M is not simply 

proportional to the load p that produces it. Eq. (1) also shows 

that the value of M is affected by the dead-load stress H„ in the 

cable before the application of the live load. In the Deflection 

Theory, influence lines cannot be used. Stresses producible by a 

combination of loadings cannot be found by adding algebraically 

the respective stresses producible by the component loadings. 

The general formula for shears V or equation pf the F-curve 

is obtained by differentiating Eq. (4), which gives: 

... (5) 
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The constants of integration C1 and Ci in the foregoing 

equations for r\, M, and V appear also in the general equation 

(Eq. 6) for H. They are determined for a given structure from 

the conditions of loading, as illustrated in Art. 6. Values of Ci 

and C2 for special cases of loading are tabulated in Art. 9. 

Differentiating Eq. (5), we obtain an expression for the live- 

load per unit of length actually carried by the stiffening truss: 

p-(si -so) - = —~=Hc2{Ciecx+C2e~cx] 

where So and $i are the initial and final values, respectively, of 

the suspender loading per unit length of the span at any point x. 

This equation shows that the suspender loading is no longer 

constant, as in the Elastic Theory, but becomes a variable in the 

Deflection Theory. 

6. Derivation of the Basic Equation for H.—The horizontal 

cable tension II due to live load, temperature change, and sup¬ 

plementary dead load (following the condition represented by 

the initial tension IIw), may be evaluated as follows: 

The total virtual work (Wi) done in the vertical displace¬ 

ments r) of the suspender loads (si) plus the cable weight (g) 

must equal the total virtual work (W2) done by the cable 

tension (Ha+H) in stretching the cable. These work quanti¬ 

ties Wi and W2 are expressed as the integrated products of the 

forces and their respective displacements, as follows, using the 

symbol 2 to denote the summation of similar expressions for all 

the spans: 

W1 = 2 J^(s 1+g) r)dx=?££(Hw+H) f0i)dx (approximately); 

f] 
- (Hu+H)^L •L,+(H„+H)utLt; 

where 

U0 ds* U0 ds2 
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In these expressions, A denotes the cable section at any point 
and Ao denotes the cable section at mid-span. 

For a parabolic wire cable, having uniform A, we may write 

with sufficient accuracy: 

L, = Sf(sec3 a+8«2), Lt = 2l (sec2 a+-yM2^ 

where n — j, and a is the inclination of the closing chord in any 

span. 

Similarly, for a parabolic eyebar cable, assuming A varying 

ds 
with the slope secant —, we may write with sufficient accuracy: 

L, = 2/^sec2 a-t-yW2^, Lt = 2l(sec a+^M2^. 

Equating the expressions given above for Wi and W2, we 

obtain the work equation: 

Substituting the expression for j? from Eq. (3), the work equation 

may be written: 

SA" fo[cl<r+C.e-'-+(^-y 

1-
 

00*1^ 
1 1 

c2l2( 

“8/V 
EIutLt\. 

~H~) 

Solving for H, we obtain the basic 17-equation: 

"'l 
0 

| dx—rc2EIwtLt 

2 K 
J 
(‘(Cie^+Cie-^dx+Sfl— 
0 YC 

, 2 IL. E 

+rc'aTE 

• (6) 

where E is the modulus of elasticity of the truss material and E, 

that of the cable; and r is the parameter of the cable parabola 

defined by: 

r 
Is 

8f 
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The summations 2 in Eq. (6) embrace the corresponding 

expressions for all the spans. The coefficient K occurring in the 

summations denotes the ratio of for any span to^ of the main 

span; hence K = i for the main span; also Ari = i for the side 

spans if they have the same ^ as the main span. (Generally the 

ratio A'j for suspended side spans is between i.oo and 1.05, 

representing the ratio of side-span weight to main-span weight 

per unit of length. For “ unloaded ” or “ straight ” backstays, 

K\ =0 and all side-span terms vanish.) In any case: 

A = 1, and AV 
in1 r 1 

It should be noted that two approximations are involved in 

the foregoing derivation of the //-equation (Eq. 6). In writing 

the transformed expression for IV1, it is assumed that the 

suspender and cable loading (si+g) is uniformly distributed 

over the span; this is contrary to the actual condition as demon¬ 

strated in Art. 4. (In the’Deflection Theory formulas pre¬ 

sented by Timoshenko, this assumption is avoided; the effect 

on the resulting stresses is, however, found to be practically 

negligible.) The second approximation consists in writing the 

original cable sag f instead of the augmented cable sag (f+v) 

in the expression for W\. This affects only the terms containing 

L, and L, in the //-formula (Eq. 6), and the effect of this approxi¬ 

mation on the value of H does not, in extreme cases, exceed 1 per 

cent. 

6. Evaluation of the Integration Constants.—The constants 

of integration Ci and C2, appearing in the basic Equations (3), 

(4)) (5), and (6), must be determined for each different condition 

of loading. For each segment of the span having a constant 

value of p and of /, there is a pair of values for Ci and C2. 

In the treatment that follows it will be assumed, as is usually 

done for the sake of simplicity, that the moment of inertia I 

(or h) is constant throughout the length of any span under 

consideration, although it may have different respective values 
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for the three different spans. The error of ignoring the varia¬ 

tion of I within a span is found to be practically negligible and 

on the side of safety. (For greater accuracy, instead of the 

average value of / for any span, the value of the equivalent 

uniform I should preferably be used in the computations; this 

equivalent uniform / may be determined by figuring equal 

deflections under governing loadings.) 

In this article, the integration constants are evaluated for 

three general cases, covering the division of a span into one, two, 

and three differently loaded segments, respectively. From the 

general formulas thus derived, special formulas may be written 

for a large variety of loading conditions, including all of the 

loading conditions that arise in the usual design computations 

(Cases I to VIII, Art. 9). 

One Loading Segment.—For the case of the main span fully 

loaded with a uniform applied load p, and assuming constant 

moment of inertia /, the quantities C\ and C2 are obtained from 

the two known conditions that for x=o and x-i in Eq. (4), 

Af=0. Substituting these values and solving the resulting two 

independent equations, we find: 

C1 = - 

c2(i+ecl) 

c2=cv* 
(H) (7) 

For a side span fully loaded, identical expressions are similarly 

obtained, except that c, l, and r are replaced by ci, h, and n. 

(These values are recorded in Case V, Art. 9, and, for p=o, in 

Case VI.) 

Two Loading Segments.—For the case of partial loading of 

the main span (Case I, Art. 9), with a uniform load p per unit 

length extending a distance k from the left end of the span, the 

constants Ci and C2 for the loaded segment (k) and the constants 

C3 and Ci for the unloaded segment (m =■/—£) are obtained 

from the four known conditions that the moment and shear at 

the right end B of the loaded segment must be equal respectively 

to those at the left end B of the unloaded segment, and that 

M=0 at each end of the span. Substituting these relations in 
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Eqs. (4) and (5), and solving the resulting four independent 
equations, we find: 

f _ P (ecm+e~cm—2e~cl) 1 
(ed-e-d) r7(7+?j 

C =P?ll (eCk+e~ck-2) 1 
3 2 He2 (ed—e~d) rc2(i+ed) 

C4-Cze2d—— 
rc1 

The values of the integration constants given by Eqs. (8) for the 

loaded segment are recorded in Case I, Art. 9. 

To calculate the deflection, moment or shear at any point in 

the loaded segment of the span, the foregoing values of Ci and 

C2 must be substituted in Eqs. (3), (4), or (5), respectively. To 

calculate the corresponding values in the unloaded segment, the 

values of C3 and C4 replace the general constants Cj and C2 in 

the same basic equations; and, since the segment is unloaded, 

the value of p is taken as zero in Eq. (3) or (4), though not in 

Tqs. (9). 

As a check upon the foregoing formulas, Eqs. (8) for the loaded 

segment may be reduced, by substituting m—o, to Eqs. (7) for 

the span fully loaded. 

Upon substituting for c, l, and r in Eqs. (8) and (9), the cor¬ 

responding side-span quantities a, h, and ri, the same expres¬ 

sions also apply to the case of partial loading of the side spans. 

Eqs. (8) thus yield the constants for Cases VII and VIII, Art. 9. 

For a span fully unloaded, the constants may be obtained by 

substituting />«=o in either Eqs. (7) or (8), or k=0 in Eqs. (9). 

This yields the constants recorded in Case VI, Art. 9. 

Three Loading Segments.—For other loading conditions, the 

integration constants are determined by a procedure similar to 

that followed in the cases represented by Eqs. (7), (8) and (9). 

If a span is divided into three segments (k+m+z=*l) having 

different uniform loads j, p, and q, respectively, the three cor- 

. . (8) 

• (9) 
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responding pairs of integration constants are obtained from the 
six known conditions that M and V at the right end of the first 
segment must be equal to M and V at the left end of the second 
segment, that the same two equalities also hold at the junction 
of the second and third segments, and that M=o at each end 
of the span. Upon substituting these relations in Eqs. (4) and 
(5), the solution of the resulting six independent equations yields 
the following values of the three pairs of integration constants: 

C* rc2( 1+«**)"*" 
1 [(j p)[ee(f~k)+e~e(t~k)]+(p—q)(ea+e~a)—2je~‘,+2q 

2 Hc2\ (ecl-e~cl) 
(10) 

C3 = 

1 ((£ 

_l_+ 
rc2(i +ed) 

—/>)(g**+g~**)g~**+(£—g)(cCT+g~CT) — ye~a+2q 

2HC2 (ed-e-d) 

C4-Ca-~i[(j-p)(e‘k+e-‘k)-2j]-±. 

(«) 

rc2( i + ed)^~ 

1 ((j-p)(eck+e-ck)e-d+(p -q)[e-cz+e-c{2‘-*)}-2je-cl+2q 

2 He2 ied-e~d) 

;)• 

(12) 

The pair of integration constants given by Eqs. (it) for the 
middle segment (*»), when the uniform loads (j and q) in the 
adjoining segments are made zero, are recorded in Case'III, 
Art. 9. The pair of integration constants given by Eqs. (11) 
for the middle segment tn, when the uniform load in that segment 
is made zero and the adjoining segments (k and s!) are loaded 
with p, are recorded in Case IV, Art. 9. As a check: for k=*o, 

the constants of Case III reduce to those of Case I; and, for 
k*=o, the constants of Case TV reduce to those of Case II. 
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The three-segment loading condition represented by Eqs. (io) 
to (12) may be regarded as a general case from which the integra¬ 
tion constants for the more usual loading conditions may be 
evaluated by simple substitution. Thus, Eqs. (7) may be 
written: 

From Eqs. (10), by substituting 
k—l, m—o, z=o, p — o, 7=0, j=p] 

from Eqs. (11), by substituting 
k=o, m—l, z—o, j=0, q =o; 

or from Eqs. (12), by substituting 
k—o, m=o, z—l, 7=0, p=o, q—p. 

Eqs. (8) may be written: 
^rom Eqs. (10), by substituting 

z—o, p—o, q-o, j=p; 

or from Eqs. (ii), by substituting 
k=o, m=k, z=m, 7=0, q=o. 

And Eqs. (9) may be written: 
From Eqs. (u), by substituting 

z=o, p=o, q=o, J=p; 

or from Eqs. (12), by substituting 
k=o, m=k, z=m, j-o, q=o. 

In Art. 9 are tabulated, with their respective loading diagrams, 
the working formulas for eight cases of loading that require to be 
considered in actual design computations. The integration 
constants there recorded for those eight loading conditions may 
be written from the more general Eqs. (10) to (12) by simple 
substitution, as follows: 

Case I.—From Eqs. (10), substituting 
Z—o, P = o, q=o,j*=p; 

or from Eqs. (ix), substituting 
k=o, m=k, z-m, 7=0, y’=o. 

Case II.—From Eqs. (10), substituting 
z—o, 7=o, o; 

or from Eqs. (11), substituting 
k=*o, #»=k, z^m, 7=0, p**o, q*=p. 
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Case HI.—From Eqs. (n), substituting 
y = o, q=o. 

Case IV.—From Eqs. (n), substituting 
p=o, j=p, q=p. 

Case V.—From Eqs. (10), substituting 
k=l, m=o, 2 = 0, p=o, q=o, j=p; lh cu n; 

or from Eqs. (n), substituting 

tn-l, k=o, z=o, 7=0, q=o; lh a, n. 

Case VI.—From Eqs. (io), substituting 

k=l, m=o, 2=0, j = p = q=o; h, ci, n; 

or from Eqs. (12), substituting 

z=l, k=o, m=o, j-p=q=o; h, Ci, rj. 

Case VII.—From Eqs. (10), substituting 

z=o, p=o, q=o, j=p; cu h, n. 

Case VIII.—From Eqs. (11), substituting 

k=o, z=k, q=o, j=o; cu lu n. 

The expressions for the constants C for side-span conditions 
(Cases V to VIII) are identical with those for corresponding 
main-span conditions, except that the side-span dimensions 
replace the main-span dimensions, and c\ (calculated from Ii) 
replaces c. With the same simple changes in notation, Eqs. (3), 
(4) , and (5) for 11, M, and V, respectively, are also applicable to 
the side spans. 

It should be noted that unsymmetrically loaded spans are not 
reversible left to right without altering the values of the integra¬ 
tion constants (unless the origin of * is also reversed). That 
is because the integration constants occur in Eqs. (3), (4), and 
(5) , in which * is assumed measured from the left end of the span 
and which represent the unsymmetrical curves of 4, M, and V, 

respectively. It is for this reason, for instance, that the values 
of the integration constants given by Eqs. (9) fdr a right-hand 
unloaded segment cannot be applied to Case II (Art. 9) repre¬ 
senting a left-hand unloaded segment. Eqs. (9) would properly 
be applicable to the unloaded segments of Cases -I, VII, and 
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VIII; they would also be applicable to Case II if * were measured 
from the other end of the span. 

It may also be noted that (in non-continuous stiffening 
trusses, to which this analysis is confined) the values of the 
integration constants C, for any loading condition in a span, 
are unaffected by the loading conditions in the other spans. 

7. Derivation of Working Formulas for H.—The basic 
equation for H, Eq. (6), may be simplified? for any particular 
loading condition, by substituting detailed expressions for the 
terms that depend on the loading, transferring some of the terms 
containing H, and re-solving for H. 

For the case of partial loading, with a uniform load p 

covering the left segment k of the main span (Case I, 
Art. 9), the simplification of the general equation for H is as 
follows: 

For this loading condition, the summation term in the 
numerator of Eq. (6) takes the following form upon substituting 
the respective expressions for M and integrating for the two 
segments of the span: 

' ' (l3) 

If the side spans have no load, the corresponding side-span terms 
are zero. 

The integration summation term in the denominator of Eq. 
(6) may be written in the form: 

- 2#J^Cie^+Cze-**) dx = - JJc^+Cze^dx 

-£(C3ecx+C4e-cx)dx-2KifjiBiee'x+B2e-ClX)dx. 

Substituting for the main-span constants Ci, C2, C3, C4, the 
values given by Eqs. (8) and (9), and for the side-span constants 
Bi and B2 values similar to those given by Eqs. (7) except that 
P is zero for the unloaded side spans, the foregoing summation 
reduces, upon integration, to the form: 
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- Stffi(Cieex+C2e-ex)dx= 

37 ci-~—!4[2-e“~e~d-«**-e-ck+ecm+e~em]+-(ed+e~‘l- 2) 

■ AKi (^-i) f x 

+nCl3 (e^1+1).U4J 

Substituting the expressions given by Eqs. (13) and (14) for 

the summations in Eq. (6), and solving for H, we finally obtain: 

[2 -ea~e~d-eck-e-ck±ecm+e^n]-rc2EIcotL, 
11 = 

D (IS) 

where D, the denominator of the ^-formula, is given by: 

D = 2K 
I2 (e«-i) 

\rcA (ed->ri) 
Hfl -±] 

rc2\ 
L , IE. 
+rCAoXL- 

(16) 

Eq. (15) for II applies only to the special loading condition 

of uniform load p covering the segment k of the main span from 

either end, with no loading in the side spans, and with rise in 

temperature. 

Eq. (16) for the denominator D is found, however, to remain 

unchanged for all other loading conditions; it contains no terms 

involving the load intensity p, the load length k, nor the temp¬ 

erature change t. Eq. (16) is therefore the expression for the 

denominator of the //-formula for any condition of loading. It 
should be noted, however, that D is not a constant; although 

the expression for D remains unchanged, it contains the variable 

c which depends upon H, and therefore the value of D varies 

with the loading. 

The last term in Eq. (15), representing temperature effect, 

has the minus sign for a rise in temperature above normal, and 

must be reversed in sign (to plus) for a drop in temperature 

below normal. In other words, H is diminished by a rise in 

temperature and augmented by a drop in temperature. 

The values of D are dependent upon B, because of the quan¬ 

tities c (and ci for the side spans) that appear in Eq. (16). The 
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calculations for a given structure are facilitated by calculating 

in advance the values of D for varying values of H, and tabulat¬ 

ing or plotting the results for reference in the subsequent com¬ 

putations. (See Fig. D2.) 

The formula for H for any loading or combination of load¬ 

ings may be written in the general form: 

where the expression for the denominator D as given by Eq. (16) 

is the same for all loadings, but the expression for the numerator 

N varies with the loading condition. 

From the expression for N in Eq. (15), the ^-expressions for 

the various loading conditions represented by Cases 1 to VIII 

(Art. 9) are easily written. 

For partial loading of the main span from either end, the 

expression for N is given by the numerator in Eq. (15). This 

yields the value of H in Case I. 

For partial loading of either side span from either end, the 

same express'on from Eq. (15) may be used for N after substi¬ 

tuting the side-span terms A'i, h, and Ci. This yields the value 

of Ain Case VII. 

For full loading of the main span, substitute l for k and o 

for m in the IV-expression given by Eq. (15) for partial loading. 

Omitting the temperature term, this yields: 

N=DH- I 

c*{ed+i)’ 
(18) 

for the main span fully loaded. 

Similarly substituting h for k and o for m in the V-expression 

of Case VII for partial loading of the side span, we obtain the 

V-expression of Case V for full loading of the side span. The 

same expression for N in Case V is also obtained by substitut¬ 

ing the side-span terms Ki, h, and c\ in Eq. (18) for full loading 

in the main span. 

By adding the respective iV-expressions for the main span and 

a side span fully loaded (Eq. 18 and Case V), we obtain the 

A-expression for the two spans loaded as given in Case VI. 



THE DEFLECTION THEORY 261 

Doubling the side-span terms in this iV-expression of Case VI, 

we obtain the following expression for the condition of full 

loading of all three spans: 

2p(ecl—i) \K\p(ec'ly— i) , . 

c3 (ec,+i) ci3 (e^'+i) " 
for the three spans fully loaded. 

Subtracting from N of Eq. (18) for the main span fully 

loaded the iV-expressions given by Eq. (15) for partial loading 

from each end, we obtain N for the case of partial loading of a 

segment near the middle of the span. This is given in Case III. 

Subtracting from N for all three spans loaded (Eq. 19) the 

^-expression for the loading of a segment of any span (Cases I, 

III, or VII), we obtain N for the complementary case of the 

segment unloaded with the remainder of the structure fully 

loaded. This gives the expressions used in Cases II, IV and VIII. 

(Note that the eight Cases in Art. 9 are tabulated in comple¬ 

mentary pairs.) 

For the effect of a rise or fall in temperature, the value of N 

is expressed by the last term in Eq. (15), namely 

N=D-Ht~ =Frc2EIo>tL..(20) 

Adding this term (with the proper sign) to the live-load terms 

for the foregoing loading conditions, all of the expressions for II 

in Cases I to VIII, inclusive, of Art. 9 are obtained. 

The methods used above for deducing all other working 

formulas for H from the expression given by Eq. (15) for one 

loading condition have consisted of the simple processes of 

substitution, addition and subtraction. We have made use of 

the convenient fact that the expression for H (though not its 

value) is additive for combinations of loadings. 

It is also of interest to note that unsymmetrically loaded 

spans are reversible (left to right) without affecting the value of 

H (whereas the integration constants C are altered by such 

reversal). That is because the directional variable x does not 

occur in the working formulas for H. 
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8. Loading Conditions for Maximum Moments and Shears.— 
A study of the fundamental Eq. (i) of the Deflection Theory 

will indicate the selection of loading conditions for maximum 

and minimum moments at any point. 

For maximum positive moment at any point, it is apparent 

from Eq. (i) that the loading must be such as to make M as 

large as possible while keeping H small. Hence a length of 

span embracing the given point must be covered with live load, 

with no load on the rest of the structure; and maximum tempera¬ 

ture must be assumed in order to reduce the value of H. (These 

conditions govern in Cases I, III, and V, Art. 9.) 

For maximum negative moment at any point, the reverse 

conditions must be satisfied. Hence a length of span embracing 

the given point must be unloaded, and the rest of the structure 

covered with live load at minimum temperature. (These con¬ 

ditions govern in Cases II, IV, and VI, Art. 9.) 

The foregoing load placements for maximum and minimum 

values of M are also indicated by the moment influence diagrams 

represented in Fig. n, page 36. 

The shear at any point is given by the general expression 

(Eq. 84, page 22): 

V = V'—H tan <f>. 

From this equation it is apparent that V' must be large and H 

small for maximum positive shear, and the reverse for maximum 

negative shear at any point. Hence similar loading conditions 

govern for shears as for moments, except that the partial loading 

stops at the given section where the maximum shear is sought. 

(See also the shear influence diagrams represented in Fig. 14, 

page 46.) The loading conditions thus indicated for maximum 

positive shears are covered by Cases I, III, V, and VII (Art. 9); 

and those for maximum negative shears by Cases II, IV, VI, 

and VIII. 

The load-lengths for maximum positive and negative moments 

(and for shears in the outer parts of the main span) have to be 

found by trial in the Deflection Theory. The load-lengths 

determined by the Elastic Theory may be used as a guide for 
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the trial values to be substituted in the more exact theory. 

Generally three trial values of the load-length suffice to deter¬ 

mine the maximum value of the function sought. 

9. Values of H and C for Special Cases of Loading.—For 

the various loading conditions that are useful in design, formulas 

for H with the corresponding values of Ci and C2 have been 

worked out (as outlined in Arts. 6 and 7) and are tabulated below. 

Eight cases are given, covering all loading conditions of practical 

importance; they are presented in complementary pairs. The 

odd numbered cases (with highest temperature) are for maximum 

positive moments, shears, or deflections; the even numbered 

cases (with lowest temperature) are for maximum negative 

moments, shears, or deflections. The first four cases are for 

main-span moments, shears, and deflections; the last four cases 

are for side-span moments, shears, and deflections. 



264 APPENDIX D 

Case I.—Main Span, partially loaded from left end. 

Side Spans, unloaded. 

Temperature, highest. 

For: Maximum positive moments (and downward deflections) in main span from 

left end to near center. 
Maximum positive shears in main span at left end and (with span reversed) 

near center. 

Case II.—Main Span, partially loaded from right end. 

Side Spans, fully loaded. 

Temperature, lowest. 

For: Maximum negative moments (and upward deflections) in main span from left 

end to near center. 

Maximum negative shears in main span at left end and (with span reversed) 

near center. 
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Case HI.—Main Span, partially loaded near center. 

Side Spans, unloaded. 

Temperature, highest. 

For: Maximum positive moments (and downward deflections) in main span near 

center. 
Maximum positive shears in main span from left end to near center. 

h- 

CASE m 

- 

/n Sef/ne/rt &- C / 

C, 

Case IV.—Main Span, paifcially loaded from each end. 

Side Spans, fully loaded. 

Temperature, lowest. 

For: Maximum negative moments (and upward deflections) in main span near 

center. 
Maximum negative shears in main span from left end to near center. 

CASE TV 

H*. ..- ..- .. 

3-C: 
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Case V,—One Side Span, fully loaded. 
Main Span and other Side Span, unloaded. 

Temperature, highest. 

For: Maximum positive moments (and downward deflections) in the (loaded) 

side span. 
Maximum positive shear at left end of (loaded) side span. 

/n Segment <4-3: 

Cg mC,eCf/t 

Case VI.—Main Span and one Side Span, fully loaded. 

Other Side Span, unloaded. 

Temperature, lowest. 
For: Maximum negative moments (and upward deflections) in the (unloaded) 

side span. 
Maximum negative shear at left end of (unloaded) side span. 

/» Smgment 4-3: 
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Case VII.—Left Side Span, partially loaded from tower end. 

Main Span and Right Side Span, unloaded. 

Temperature, highest. 

For: Maximum positive shears in the left side span. 

CASE VII 

Mm 

h Segment &.C ; 

*'-e“4G-p 

Case VIII.—Left Side Span, partially loaded from anchorage end. 

Main Span and Right Side Span, fully loaded. 
Temperature, lowest. 

For: Maximum negative shears in the left side span. 

CASEVIII 

rf * —* • . 1 ....—.... — i 

o 
/nfejm&nt A-3 • 
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10. Maximum Deflections.—The maximum deflection at 

the center of the main span is generally produced by full load 

covering the span, with the side spans unloaded, at highest 

temperature. This loading condition is represented by Case I 

with k=l, or by Case III with m=l. The respective values of 

Ci and C2 reduce in either case to those given by Eqs. (7) for 

main span fully loaded. 

Substituting the special values of Ci, C2, x, M', and y, the 

general deflection formula Eq. (3) reduces to: 

as the expression for the maximum mid-span deflection. For Ci, 

use the value given by Eq. (7). For H, use the value for main 

span fully loaded at highest temperature, namely (by Eq. 18): 

(ea+i)' 
-rc2EIc*lLt 

. (22) 

For maximum deflection’at the center of the side span, use 

the values of H, Ci and C2 given by Case V in the general deflec¬ 

tion formula Eq. (3). The expression for the maximum deflec¬ 

tion will be the same as Eq. (21) with the side-span terms sub¬ 

stituted. 

In bridges with very shallow stiffening trusses, a portion of 

the main span at each end may have to be unloaded in order to 

obtain maximum deflection at mid-span. Under such condition, 

loading Case III (Art. 9) must be applied, and the central loaded 

length m must be found by trial to yield the maximum value of v- 

11. Effect of Temperature Variation with No Load on Spans. 
—Upon substituting p^o, the various formulas previously given 

for H (Eqs. 6, 15, and Cases I to VIII) reduce to Eq. (20), or 

„ _-.rc2EIutLt 
= ^-k-• (23) 

Eqs. (7) for the integration constants reduce to: 
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The general formula for moments (Eq. 4) reduces to: 

Mt-Hl(c1e‘*+C2e-a'+±S). . . (25) 

The moment at mid-span (^x=~j wiU then be: 

Max. .(26) 

The temperature deflection at mid-span will be, by Eq. (21), 

Max-,-jd+»[2C‘e*-/+^]- • • ■ (27> 

The corresponding expressions for either side span may be 

written by simply substituting the subscript terms c 1, h, fi, n 

for c, /,/, r, in the foregoing Eqs. (24) to (27). 

12. Typical Computations by the Deflection Theory.—The 

following outline of the design calculations for the Mount Hope 

Bridge will serve to illustrate the application of the Deflection 

Theory. 

The Mount Hope Bridge is a two-hinged suspension bridge 

with suspended side spans. The main span is 1200 ft. center to 

center of towers, with two side spans 504 ft. long. The layout 

of the structure is shown in Fig. Di. 

General Data—Calculation of Constants.—The following di¬ 

mensional constants are given: 

Main Span: / = 62 panels = 1188.33, / = 118.795, n — .099968 

Side Span: h — 26 panels = 498.33, fi — 20.891, ni == .041922 

sec ai — 1.042362 r — ri — 1485.9 Ki * 1.00 A = 73.92 in.* 

The following loading constants are given (all values per 

cable): 

Dead load: w =* 2650 lb./ft. Live load: p * 750 lb./ft. 

_ wl* * 
Hv> - — * 3940 kips. 

Temperature: / *=fc 6o° F., E = 29,000,000, w * .0000065 

E(d 11,310 lb. per sq. in. 
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By the approximate formulas in Art. 5, 

Lt = 2996 ft. La = 3133 ft. 

(By exact integration, Z,,=3i38). 

The truss constants are as follows: 

Main Span: I = 4259 in.2 ft.!; El = 123,511,000 ft.2 kips 

Side Span: h — 4152 *n-a ft.2; Eh = 120,408,000 ft.2 kips. 

Calculation of Values of D.—The values of D, the denominator 

of the formulas for H, were calculated by Eq. (16) for different 

values of H from —100 to +1200, varying by intervals of 100. 

For these computations, systematic tabular arrangements are 

used, covering the step-by-step numerical operations. In 

condensed form, the principal tabulated values are: 

H (kips) c Cl 
crt ecil\ D 

— 100 .005576 005647 754 16.68 90,590 

0 .005648 .005720 822 17.30 91,256 
200 .005790 .005864 973 18.58 92,540 
400 .005928 .006004 1146 19.92 93,765 

600 .006063 .006140 1346 21-33 94,937 
800 .006195 .006274 1574 22.80 96,062 

1000 .006324 .006405 1836 24.34 97,144 
1200 .006451 .006534 2134 25-94 98,187 

For convenience of reference and interpolation, the values 

of D are plotted in a graph, Fig. D2. 

Values of H for Advancing Uniform Load.—The values of H, 

Ci and C2, for different lengths of a continuous advancing uni¬ 

form load (/>«= 750) on the main span, with no load on the side 

spans and at highest temperature (f = -f 60° F.), are calculated 

by the formulas of Case I, Art. 9, using an appropriate tabular 

form of computation. The ’ successive load-leilgths vary by 

0.1 of the span. Trial values of H are assumed and the opera¬ 

tions are repeated once or twice until the resulting values of H 

check the assumed values. The values of D are taken from the 
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ZJ-Graph, Fig. D2. The principal values and results, in abbre¬ 

viated form, are: 

Load 

k/l 

Trial 

H 

D 

(From Fig. D2) 

Calculated 

H 
Ci c2 

0 - 74 90,760 - 74-o — .0278 - 21.47 

0.2 +17 97,360 + 16.9 +1793 +1177 
0.4 +245 9(1,830 +245.0 + 2.820 + 67.66 

0.6 +519 94,51° +518.6 + 0.262 + 21.12 

0.8 +741 95,73° + 741-4 + .0287 + 8.944 

1.0 +829 96,23° +828.8 + .0037 + 6.004 

9 
1 

¥ ¥ ¥ 
Gy 
V ¥ ¥ 

Fig. D2.—Graph for Determination of D. 

(Mount Hope Bridge.) 

For convenient reference and interpolation, these calculated 

values of H for advancing uniform load (at highest tempera- 
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ture) are plotted in a graph (Fig. D3) with the load-lengths as 

abscissas. 

Positive Moments in Main Span.—The maximum positive 
• x 

moments for the points =0.1, 0.2, 0.3, 0.4, are calculated by 
t 

Eq. (4) for the load condition of Case I, Art. 9. For each section 

x, M was computed for three or four different trial load-lengths 

S Q O <3 Q <3 <3 O O C3 ^ 

Fig. D3.—Graph for II for Advancing Uniform Load on Main Span. 

(Mount Hope Bridge.) 

k, until the maximum value of M for the section was determined. 

The value of H for each load-length is taken from the //-graph, 

Fig. D3. The tabulation of governing values, in condensed form, 

is as follows: 

Section: x/l. 0.1 0.2 mm 0.4 

Load: k/l (assumed).. •325 •375 • 43° •55° 
H (from Fig. D3). IS© 213 312 450 

c (by Eq. 2). .00575 .00580 .00587 .00596 

ea. 933 983 1067 ii93 
Ci (by formula, Case I) 8.16 3-94 i-5o 0.46 

Cj (by formula, Case 1) 122.5 8l.O 48.8 275 
ecx. 1.98 396 §.I0 17.01 

Max. M (by Eq. 4)... +7901 +10391 -i-10026 

1 

+8315 

Different values of k were tried for each section; the above 

values of k gave the maximum results for M. 
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Maximum M at Mid-Span.—The load condition producing 

maximum positive moment at mid-span is given by Case IIIy 

Art. 9, with a uniform load of length m symmetrical about the 

center line of the main span, no loads in the side spans, and 

highest temperature (/= +6o° F.). Different trial values of m 

are used until the maximum value of M is determined. For 

each value of M, successive trial values of H are assumed until 

the calculated value of II checks the trial value. The final 

values, in condensed form, are: 

m (assumed). .350 

k » z.325 

H (assumed trial value). 395 kips 

c (by Eq. 2).005924 

ecl. 1141.5 
. 9.856 

D (by Fig. D2). 93,739 
H (by formula, Case III). 395.5 

Ci (by formula, Case III). o. 2189 

C2 (by formula, Case III). 249.9 

x/l (for mid-span). 0.5 

ecx. *. 33 786 
P (live load per cable). 750 

Max. M (by Eq. 4). +7954 ft. kips 

In the other trials, w = .375 yielded Af = 7898, and w = -340 

yielded M = 7953. Hence the value for m — .^ 50 was recorded 

as the maximum. (A closer value of m for maximum M is 

estimated by graphic interpolation.) 

Maximum Positive Moments in Side Span.—The load condi¬ 

tion producing maximum positive moments in the side span is 

given by Case V, Art. 9, with this side span fully loaded and 

other spans unloaded at highest temperature. Two or three 

successive trial values of H are assumed until the calculated 

value checks the assumed value. The final values, in condensed 

form, for maximum M at the center of the side span, are: 

H (trial value). —36.5 
d (by Eq. 2)...005694 
. 17.071 

D (by Fig. D2). 91,024 
H (by formula, Case V). —36.'/ 
Ci (by formula, Case V).. —36.222 
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C% (by formula, Case V). —618.36 
x/h (for mid-span). 0.5 

eClX. 4-I3I7 
M (by Eq. 4)... +12,967 ft. kips 

Maximum Negative Moments.—For computing the maximum 

negative moments in the main span, the load conditions and 

formulas of Cases II and IV are employed. Different load-lengths 

are tried until the greatest value of — M is found for each section. 

Successive trial values of H are used until the calculated H checks 

the assumed H. 

Case VI is used, with successive trial values of H, for calcu¬ 

lating the maximum negative moments in the side spans. 

The procedures are similar to those for positive moments, 

and the corresponding tabulations are not repeated here. 

Maximum Shears.—For calculating maximum shears, the 

loading conditions and formulas of the following Cases are used: 

Positive V in Main Span.Cases I and III 

Negative V in Main Span.Cases II and IV 

Positive V in Side Span.Cases V and VII 

Negative V in Side Span.Cases VI and VIII 

The values of H, Ci and C2 are computed by the same method of 

tabulation as for moments; the load-lengths, however, except 

in Cases I and III, are definite in figuring shears and need not be 

determined by trial. From the values of H, Ci and C2, the 

shears are given by Eq. (5). 

Comparison of Results with Approximate Theory.—To indi¬ 

cate the saving in truss sections resulting from the use of the 

more exact theory, the maximum positive bending moments as 

calculated for the Mount Hope Bridge by the Elastic and Deflec¬ 

tion Theories respectively have been plotted in Fig. D4. The 

comparative moment curves are drawn for both main span and 

side span; and below those curves, the percentage differences 

(figured as a reduction correction from the approximate values) 

are also plotted. It will be observed that the reductions range 

from 35 to 50 per cent, with an average value of about 45 per 

cent, in the spans of this structure. 
This comparison (Fig. D4) indicates that the application of 
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the Deflection Theory to the design of the Mount Hope Bridge 

has resulted in a saving of approximately 45 per cent of the 

steel weight of the stiffening trusses. 

Fig D4 —Comparison of Maximum Bending Moments by Elastic and Deflection 

Theories 

Mount Hope Bridge 
Higher Moment Graph for Elastic Theory 
Lower Moment Graph for Deflection Theory. 
Percentage Reductions Plotted below the Moment Graphs 

13. Charts for Deflection Theory Stresses.—In Appendix A 

of this book, the author has presented graphic charts giving 

directly the maximum and minimum moments and shears 

throughout the main and side spans of suspension bridges as 

figured by the Elastic Theory. If those charts are supplemented 

by graphs giving directly the percentage corrections from the 

Elastic Theory to the Deflection Theory, the combination will 

be adapted to the expeditious estimating of the more exact 

stresses in suspension bridges. 

Occasions frequently arise in practice requiring an expeditious 

estimate of stresses and sections without going into the tedious 
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computations of the Deflection Theory. For such purposes, as 

in preliminary designs and estimates, it is time-saving to figure 

the stresses by the approximate theory (or to take them from the 

charts of Appendix A) and then to apply simple percentage 

corrections that will reduce the stresses to those of the more 

exact theory. 

A study of the basic formula (Eq. i), representing the point 

of departure of the Deflection Theory from the Elastic Theory, 

indicates that the resulting stress-reductions will depend prin¬ 

cipally on the magnitude of the dead load and on the flexibility 

of the structure, since Hw and rj are the new terms entering the 

theory. The stress reductions by the Deflection Theory will 

increase with the deflections and with Hw, and will therefore 

increase with the span length (/) and with the dead load (w), 

while decreasing with the truss stiffness (El) and with the cable 

sag (f). (The effect of varying stiffness in a single structure was 

illustrated in the case of the Florianopolis Bridge, where the 

reduction of moments by the Deflection Theory was 37 per cent 

at mid-span, where the truss was shallow, and only 20 per cent 

at the quarter-points where the truss was deep.) 

A single expression combining the foregoing factors, which is 

found to have significance in Deflection Theory analysis, is: 

This function S, for convenience of reference, is called the 

stiffness-factor. The records of past design calculations and the 

results of new comparisons show that this factor S governs the 

percentage relation between the results of the two theories. 

Curves giving the percentage corrections for varying values 

of the stiffness factor S are presented in Fig. D5.* The values of 

5 are plotted as abscissas, and the ordinates are the corrections 

C representing the percentage ratio of stresses by the Deflection 

Theory to those by the Elastic Theory. The upper graphs are 

* These curves were prepared by A. H. Baker while a student in the Graduate 

School at Rensselaer Polytechnic Institute in 1928, as the completion of studies 

commenced under the author’s guidance in the office of Robinson and Steinman. 
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Fig. Ds.—Chart for Estimating Deflection Theory Stresses from the 
Stresses Determined by the Elastic Theory. 
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for maximum moments and shears in the main span and the 

lower graphs are for maximum moments and shears in the side 

spans. For the side-span corrections, the stiffness factor S is 

figured from the side-span dimensions, h and h. 

To illustrate the use of the correction curves, they are applied 

as follows to the case of the Mount Hope Bridge (Fig. Di). The 

stiffness factors are, by Eq. (28): 

s-iJiL=_L_ hisisn&s, 
1188.3 V 3940 

„ _jt /El, _ 1 /i2o,4o8,ooq 

1 498.3 \ 3940 

0.149 

=0-351- 

For S=0.149, the upper chart yields C=o.45 for main-span 

moments, and C=0.63 for main-span shears, representing reduc¬ 

tions of 55 per cent and 37 per cent, respectively, from the main- 

span moments and shears given by the approximate theory. 

For Si =0.351, the lower chart yields C=o-5i for side-span 

moments, and C=o.6o for side-span shears, representing reduc¬ 

tions of 49 and 40 per cent, respectively, from the side-span 

moments and shears given by the approximate theory. 

A comparison of the foregoing factors given by the chart 

with those determined for the Mount Hope Bridge by actual 

computations (for live load, without temperature) is as follows: 

The maximum bending moment at the quarter-points of the 

main span as calculated by the Deflection Theory is 9094 ft. kips, 

and by the Elastic Theory 19,189, yielding a ratio C=o.47. 

The chart yields, for main-span moments, C=0.453; adding the 

small supplementary corrections described below, for h/l=0.42 

and for w/p=$.53, the chart factor becomes C=o.46, slightly 

less than the calculated ratio. 

The computed maximum shear at the end of the main span 

is 90.47 kips by the Deflection Theory and 140.8, kips by the 

Elastic Theory, yielding a ratio C=o.64. The chart yields, for 

main-span shears, C=o.63, which becomes C =*0.64 upon adding 

the small supplementary corrections, thus checking the calcu¬ 

lated ratio. 
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The computed maximum bending moment at the center of 

the side span is 12,022 ft. kips by the Deflection Theory and 

22,986 by the Elastic Theory, yielding a ratio C=o.S2. The 

chart yields, for side-span moments, C=0.51, which becomes 

C=o.52 upon adding the small supplementary corrections, thus 

checking the calculated ratio. 

The computed maximum end-shear in the side spans is 

112.45 kips by the Deflection Theory and 184.5 kips by the 

Elastic Theory, yielding a ratio C=o.6i. The chart yields 

C=o.6o, which becomes C=0.61 upon adding the small sup¬ 

plementary corrections, thus checking the calculated ratio. 

The comparisons represented by Fig. D4 for the Mount Hope 

Bridge cannot be checked directly by the graphs of Fig. D5, since 

the former include temperature stresses and the latter do not. 

As a further numerical illustration of the use of the correction 

charts, they are applied as follows to the case of the Grand’ Mere 

Bridge in Quebec (Span 948.5 ft.; straight backstays; Robinson 

and Steinman, Consulting Engineers): The stiffness factor is: 

1 129,000X2150 

948.5V 1430 
0.22. 

For 5=0.22, the upper chart yields C=64.5 per cent for main- 

span moments. (Actual computation of the moments by the 

Deflection and Elastic Theories yields a ratio of C=64.8 per 

cent, which is almost identical with the value given by the 

graph.) This indicates a reduction of 35.5 per cent (or 35.2 per 

cent as actually computed) in the maximum moments by using 

the Deflection Theory. For maximum shears, the upper chart 

yields C=76.5 per cent, indicating a reduction of 23.5 per cent 

by using the Deflection Theory. 

The correction curves given in Fig. D5 are for live-load stresses 

only. The values of temperature moments and shears can be 

determined quite easily by the Deflection Theory (Art. xx), 

and may be added to the live-load stresses with very little error 

(less than 1 per cent for ordinary conditions). 

The correction graphs for the main span were computed for 

maximum positive moments at the quarter-points and maximum 
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positive shears at the ends of the span. The graphs for the side 

span were computed for maximum positive moments at the 

center and maximum positive shears at the ends of the span. 

For other points along the main or side span, the values of C 
vary somewhat (see Fig. D4); but the corrections given by the 

graphs will generally be very near the average for the entire span. 

The calculation of the curves was based on the following 

assumed proportions: side span one-half the main span, sag- 

ratio one-tenth, moment of inertia of stiffening truss constant 

throughout main span and throughout side spans, cable design 

stress 80,000 lb. per sq. in., modulus of elasticity 29,000,000 for 

both cable and stiffening truss, and a dead-load live-load ratio 

of three. For other proportions, free backstays, etc., small 

supplementary corrections come into play. These have not 

been incorporated in Fig. D5, in order to preserve simplicity and 

since the combination of the supplementary corrections rarely 

amounts to more than one or two per cent and does not amount 

to more than five per cent in extreme cases. 
The amounts of the supplementary corrections may be 

estimated by interpolation from the following determinations: 

For the case of free side spans, increase C by 2i per cent of its 

value. 
For sag-ratio = .12 (or .08) instead of .10, decrease (or increase) 

C by 2 per cent of its value. 
For cable stress = 120,000 (or 40,000) instead of 80,000, 

increase (or decrease) C by i per cent of its value. 

For I/I\ =0.75 instead of 1.00, increase C by 1* per cent of 

its value. 
For l\/l=0.25 instead of 0.50, increase C by 2 per cent of its 

value. 
For load-ratio w/p=*= 5 instead of 3, add 1 per cent to C; for 

w/p — 2, subtract 1 per cent from C; for w/p = i%, subtract 

2 per cent from C. * 

The reciprocal of the stiffness factor S may be termed the 

flexibility factor. Its value is given by: 

(29) 
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Roughly, the percentage reductions from the approximate 

theory are proportional to this flexibility factor Accordingly, 

the magnitude of the reductions increases with the span-length l 
and the dead load w, while diminishing with the stiffness El 
and the sag/. 

This confirms the observation that the error of the approxi¬ 

mate method becomes increasingly significant with long spans, 

heavy dead load, and shallow trusses, to which may be added 

flat cable sag. The greatest influence (according to Eq. 29) is 

that of the span length, and this fact indicates the especial 

importance of using the Deflection Theory in long-span designs. 
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CHRONOLOGICAL TABLE OF SUSPENSION BRIDGES 

Introduction.—The following table of suspension bridges is 

presented to furnish a condensed historical review of the progress 
in the art, also to facilitate reference to particular structures. 

The tabulated record indicates the outstanding longevity of 
bridges of the suspension type, with the exception of a few early 
structures that were bui t in apparent ignorance of engineering 
principles. The table lists over a half-dozen suspension bridges 

that have passed the century mark, over a score that have 
remained in use more than 75 years, and some three-score that 

have carried their traffic more than 50 years. This record is 
unequaled by any other type of bridge structure in iron or steel. 

The early bridges, as recorded in the table, were almost 

exclusively of chain construction. Subsequently the art of 
building wire cables was developed, and the more modem struc¬ 
tures are predominantly of the cable type. 

In order to facilitate reference in the table, the more inter¬ 
esting or important structures are listed in heavy type. 

Appreciating the difficulty of making such tabulation com¬ 

plete and accurate from available records, the author will 

welcome communications from readers who have information 
to amplify or correct this table for revision in any subsequent 
edition. 

283 
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CHRONOLOGICAL TABLE OF SUSPENSION BRIDGES 

Com¬ 

pletion 

Date 

Bridge Location 
Span, 

Feet 
Type 

Hi 
■ 

Age, 

i9*9, 
Years 

1741 River Tees England 70 Chain 61 

178s Lahn Weilburg, Germany 98 Chain 
1796 Uniontown Pennsylvania 72 Chain 

1803 Wynch Tees R., England Chain 

1807 Potomac R. Washington, D. C. 130 Chain 

1809 Schuylkill Palls Philadelphia 1 S3 Chain 2 

1809 Newburyport Massachusetts 244 Chain 100 

1811 Northampton Pennsylvania 100 Chain 

1815 Allentown Pennsylvania 230 Chain 14 

1816 Schuylkill Falls Philadelphia 408 Cable 1 

1816 Galashiel England 112 Cable 

1817 King’s Meadow Tees R., England no Cable 

1818 Dryburg Abbey Tweed, England 260 Chain 

1819 Tweed Berwick, England 449 Chain IZO 

1823 Fosse Geneva, Switzerland 132 Cable 

1823 Bourbon Is. France 132 Chain 

1824 Fontanka St. Petersburg 120 Chain 82 

1824 Strassnitz Germany 98 Chain 76 

1824 Footbridge NUrnberg, Germany 112 Chain 105 
1824 Nienburg Germany ■ Chain 1 

1824 Tain-Tournon RhAne, France ■ Chain 105 

1825 Irwell Manchester 138 Chain 6 

1825 Sophia Vienna 232 Chain 47 
1826 Menai Bangor, Wales 580 Chain 103 

1826 Conway North Wales 327 Chain 103 

1826 Egyptian St. Petersburg 180 Chain 79 
1826 Invalides Seine, Paris 558 Chain 2 

1827 Newburyport Massachusetts 160 Chain 

1827 Hammersmith London 400 Chain 60 

1827 Eger Saaz, Bohemia 210 Chain 69 

1827 Arcole Seine, Paris 131 Chain 27 

1828 Beaucaire RhAne, France 394 Cable 101 

1828 Dordogne Argentat, France 344 Cable 

i8>8 Karl Vienna 312 Chain 48 

1828 Rudolfs Vienna no Chain 62 

1828 SaAne Lyon, France 335 Cable 60 

1828 RhAne Valence, France 384 Cable 

1829 Regnitz Bamberg, Germany 211 Chain 60 

1829 Montrose Scotland 432 Chain 100 

1829 Invalides Seine, Paris 230 Chain 24 
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CHRONOLOGICAL TABLE OF SUSPENSION BRIDGES—Continued 

Com¬ 

pletion 

Date 

Bridge Location 
Span, 

Feet 
Type 

Life, 

Years 

Age, 

1929, 

Years 

1829 Serrieres Rh6ne, France 332 Cable 

1830 River Tees England 281 Chain 11 

1830 Schikaneder Vienna 8S Chain 60 

1831 Garonne Langon, France 262 Chain 

1832 Bercy Seine, Paris I48 Chain 32 
1832 Bry-sur-Marne France 250 Cable 39 
1833 Louis Philip Seine, Paris 231 Cable 27 

1834 Freiburg (Saane) Switzerland 870 Cable 90 

1835 Garonne Areole, France Chain 

1836 Ellbogen Eger, Bohemia 222 Chain 93 
1836 Roche Bernard Vilaine, France 650 Cable 30 

1837 Lions’ Bridge Berlin 57 Cable 

1837 Damiette Seine, Paris Cable 11 

1837 Constantine Seine, Paris 328 Cable 38 
1838 Maine Angers, France 344 Cable 12 

1839 Caille Annecy, France 63S Cable 44 
1839 Weser Hamlin, Germany 312 50 

1839 Dordogne Cubftic, France 360 Cable 44 
1840 Railway Bridge Sa6ne R., France 137 Cable 4 
1840 Gotteron Freiburg, Switzerland 746 Cable 89 

1840 Jaromer Elbe R., Bohemia Chain 49 
1840 Lezardrieux Trieux, France 500 Cable 84 
1841 Charente Rochefort, France 295 Cable 

1842 Moldau Prague 435 Chain 57 
1842 Schuylkill R. Philadelphia 358 Cable 32 
1842 City Bridge Seine, Paris 207 Cable 19 
184a Douro Oporto, Portugal 557 Cable 44 

1843 Maas Seraing, Belgium 345 Chain 86 

1844 Podebrady Elbe R., Bohemia 330 Chain 85 

1844 Mtyheim Ruhr, Germany 320 Chain 63 

184s Lancz Budapest 663 Chain 84 

184s Hungerford London 676 Chain IS 
1845 Karl Franz Graz, Austria 214 Chain 

1845 Neckar Mannheim, Germany 282 Chain 46 

184s St. Pierre Toulouse, France 295 Cable 

184s Aqueduct Allegheny R., Pittsburgh 162 Cable 16 

1846 Strakonice Elbe R., Bohemia 137 Chain 

1846 Garonne Verdun, France 500 Cable 83 
1847 Footbridge Niagara R. 770 Cable 7 
1847 St. Christophe Lorient, France 604 Cable 82 
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CHRONOLOGICAL TABLE OF SUSPENSION BRIDGES—Continued 

Com¬ 

pletion 

Date 
Bridge Location 

Span, 

Feet 
Type 

Life, 

Years 

Age, 
1929, 

Years 

1847 Smithfield St. Pittsburgh 188 Cable 35 
1848 Guyandot West Virginia 450 Cable 
1848 Wheeling West Virginia zozo Cable 81 
1848 Franz Vienna 274 Chain 81 
1849 Napoleon Lyon, France 80 

1849 Midi Lyon, France 398 Cable 80 

1850 Ostrawitza Ostrau, Bohemia 216 Chain 36 
1850 Fairmont West Virginia Cable 40 

1850 Niagara Lewiston, N. Y. 1040 Cable 11 

1852 Elk River Charleston, W. Va. 478 Cable 52 
1852 St. John New Brunswick 628 Cable 63 

1853 Fonda Tribes Hill, N. Y. 556 Cable 76 

x8S3 Welikaja Ostrow, Poland Chain 76 

1853 Dnieper Kief, Ukraine 440 Chain 76 

1854 Aare Switzerland 330 Chain 75 

1854 Railway Bridge Niagara R. 8az Cable 43 

*855 Morgantown West Virginia 608 Cable 53 

i8S5 Tetsclien Elbe R., Bohemia 373 Chain 74 

1855 Minneapolis Mississippi R. 620 Cable 20 

1857 Victoria Chelsea, London 333 Chain 72 

*857 Allegheny R. Pittsburgh 344 Cable 

1857 Aare Berne, Switzerland 200 Chain 
i 

72 

i860 Railway Bridge Vienna 255 Chain 34 
i860 Port Gibson Mississippi 150 Chain 68 

1862 Aubum-Coloma California 258 Cable 67 

1863 Lambeth London 280 Cable 66 

1864 Clifton Bristol, England 702 Chain 59 
1864 Aspem Vienna 200 Chain 59 
1864 Weser Porta, Germany 200 Chain, 65 

1867 OhioR. Cincinnati, Ohio 1057 Cable1 62 

x868 Franz Joseph Moldau, Prague ! 482 Chain 6x 

1869 Footbridge Moldau, Prague 315 Chain 60 

1869 Frankfort Germany 262 Chain 53 
1869 Passau Germany i 246 Cable 60 

1869 Clifton Niagara Falls za68 Cable 39 j 

1870 Waco Texas 470 Cable 59 

1870 Singapore Straits Settlements 900 Chain 59 
1870 Connecticut R. Turners Falls, Mass. 452 Cable 59 

1870 Equinunk Lordville, N. Y. 345 Chain 59 

1871 Warren Pennsylvania 470 Cable 48 



288 APPENDIX E 

CHRONOLOGICAL TABLE OF SUSPENSION BRIDGES—Continued 

Com¬ 

pletion 

Date 

Bridge Location 
Span, 

Feet 
Type 

Life, 

Years 

Age, 

!929i 
Years 

1872 Gotha Germany 160 Chain 57 
1873 Albert London 400 Chain 56 
1873 Augarten Vienna 202 Chain 56 
187s Aare Brugg, Switzerland 169 Cable 54 
1877 Oil City, Pa. Allegheny R. 500 Cable 5*2 
1877 Point Pittsburgh 800 Chain 50 
1877 Minneapolis Mississippi R. 67s Cable 13 
1877 Inverness Scotland i73 Cable 52 
1879 St. Ilpize France 232 Cable 50 
1883 Brooklyn New York 1595 Cable 46 
1884 Lamothe Brioude, France 377 Cable 45 
1884 Elk River Charleston, W. Va. 273 Cable 42 

1884 Seventh St. Pittsburgh 330 Chain 42 
1884 Windsor Locks Connecticut R. 500 Cable 45 
1888 Avignon France 282 Cable 4i 
1888 Sa6ne R. Lyon, France 261 Cable 4i 
1888 Canyon Ecuador 27S Cable 4i 
1889 Richmond Indiana * ISO Cable 40 
1889 Hammersmith London Chain AO 

1889 Tiber Rome Chain AO 

1889 Valley Junction Whitewater R. 498 Cable 40 
1890 Grand Ave. St. Louis 400 Chain 39 
1890 Kellams Hawkins, N. Y. 380 Cable 39 
1891 Voulte Ardfcche, France 590 Cable 38 
1891 North Sydney Australia Soo Cable 38 

1893 Loschwitz Germany 481 Chain 36 
1893 Est River Reunion Is. 475 Cable 36 
1894 Cauca R. Colombia, S. A. 940 Cable 35 
1894 Mill Creek Park Youngstown, Ohio 90 Chain 35 
1895 Tower * London 302 Chain 34 
1896 E. Liverpool, Ohio Ohio R. 70S Cable 33 
1896 Rochester, Pa. Ohio R. 800 Cable 33 
2898 Langenargen Germany 236 Cable 31 
1898 Lackawaxen Minisink, N. Y. 135 Cable 31 
1899 Lewiston Niagara R. 800 Cable 30 

1899 MUhlentor Lttbeck, Germany 147 Chain 30 
X900 Miampimi Mexico 1030 Cable 29 
2900 Easton, Pa Lehigh R. 279 Cable 29 
1900 Cannes Ecluse France 760 Cable 29 
1901 Ararnon France 902 Cable 28 
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CHRONOLOGICAL TABLE OF SUSPENSION BRIDGES—Continued 

Com¬ 

pletion 

Date 

Bridge Location 
Span, 

Feet 
Type 

Life, 

Years 

Age, 
19*9, 

Years 

1902 Vemaison France 764 Cable 27 

I9<>3 Elizabeth Budapest 95* Chain 26 

1903 Caperton West Virginia 5io Cable 26 

1903 Williamsburg New York 1600 Cable 26 

1904 Ticonic Waterville, Me. 400 Cable 25 
1904 Bonhomme Blavet R., France 525 Cable 25 
1904 Steubenville, Ohio Ohio R. 700 Cable 25 
1904 Bolivia I31 CuM* 25 

1905 Tuscumbia Osage R., Missouri 627 Cable 24 

1905 E. Liverpool, Ohio Ohio R. 750 Cable 24 

1905 Cowlitz R. Kelso, Wash. 300 Cable 18 

1905 Borsig Berlin 167 Chain 24 
1906 Villefranche France 512 Cable 23 
1908 Jalapa Mexico 184 Cable 21 

IOOQ Costa Rica, C. A. 208 Cable 20 

1909 Panama Canal Empire, C. Z. 600 Cable 

1909 Newburyport Massachusetts 244 Cable 20 

1909 Manhattan New York 1470 Cable 20 

1910 Breslau Germany 415 Chain 19 
I9IO Massena New York 400 Cable 19 
I9II j Inn R. Brail, Switzerland 550 Cable l8 

I9II Linn Creek Osage R., Missouri 525 Cable 18 

JOT J Guatemala, C. A. 180 Cable l6 

1913 Brilliant British Columbia 33i Cable l6 

1914 98th Meridian Byers, Texas 568 Cable 15 

I9i5 Cologne Rhine R. 605 Chain *4 

1915 Muskingum R. Dresden, Ohio 450 Chain 14 

1915 | Wenatchee R. Chiwaukum, Wash. 190 Cable *4 
19x6 Parkersburg West Virginia 775 Cable *3 
1916 Colombia, S. A. 390 Cable *3 
1916 Colombia, S. A. 66 Cable 13 

1917 Terrall Ringold, Texas 450 Cable 12 

1917 Rio Chiriqui Panama 410 Cable 12 

19x8 Chile 328 Cable II 

1919 Beebee, Wash. Columbia River 632* Cable xo 

1919 
1919 

Manawatu R. New Zealand Cable 10 

Cumberland R. Nashville, Tenn. 540 Cable xo 

1919 

1920 

Hansen Twin Falls, Idaho Cable to 

Jamaica, W. I. 280 Cable 9 

1920 Colombia, S. A. 339 Cable 9 
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CHRONOLOGICAL TABLE OF SUSPENSION BRIDGES—Continued 

Com¬ 
pletion 

Date 

Bridge Location u Type 
Life, 

Years 
Age, 
1929, 

JQ3I Peru 137 8 

Venezuela 210 Cable 8 

1921 Bridgeport Oklahoma 6oo Cable 8 

1922 Rondout Kingston, N. Y. 705 Cable 7 
1922 Alum Creek llAltimbus. Ohio ‘ Cable 7 

1922 Ada-Kanawa Oklahoma 400 Cable 7 
TQ22 Colombia, S. A. 230 Cable 6 

1923 Hamm-Lipp Canal Westphalia 181 Chain 6 

IQ 24 Lezardrieux Trieux, France 367 Cable 5 

1924 Bear Mountain Hudson River 1632 Cable 5 
TQ24 Ecuador 210 Cable 5 

1924 Nocona Red River, Texas 700 Cable 5 
1924 Panama 25c Cable 5 

I9*S Railway & Highway Costa Rica, C. A. 250 Cable 4 

1925 Railway & Highway Costa Rica, C. A. i$° Cable 4 

*9*5 Luzancy Marne, France 180 Chain 4 
X926 Florianopolis Brazil * 1114 Chain 3 

1926 Philadelphia Delaware R. 1750 Cable 3 

X926 Seventh St. Pittsburgh 442 Chain 3 

1926 Colombia, S. A. 623 Cable 3 

1926 Colombia, S. A. 156 Cable 3 

1927 Venezuela 180 Cable 2 

1927 Bryan-Fannin Bonham, Texas 400 Cable 2 

1927 Airline St. Jo, Texas 700 Cable 2 

1927 Georgia-Florida Donaldsonville, Ga. 600 Cable 2 

1927 Colombia, S. A. 4i7 Cable 2 

1927 Vaux-sous-Laon Aisne, France ns Chain 2 

1927 Mediacanoa Colombia, S. A. 380 Cable 2 

1927 Portsmouth, Ohio OhioR. 700 Cable 2 

1927 Humboldthafen Berlin 3i5 Chain 2 

1927 Ninth St. Pittsburgh 430 Chain 2 

1927 Mont jean Loire, France 302 Cable 2 

1927 Girard-Amodin Alfortville, Paris Cable 2 

Z928 Point Pleasant, Ohio OhioR. 700 Chain X 

1928 Steubenville, Ohio Ohio R. 689 Cable X 

1928 Sowells Bluff Durant, Oklahoma 500 Cable X 

X928 Sumida River Tokyo. Tat>an Chain X 

Z928 Panama 38O Cable I 

X928 Roma Rio Grande, Texas 630 Cable X 

X928 Hidalgo Rio Grande, Texas 350 Cable 
. 

X 
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CHRONOLOGICAL TABLE OF SUSPENSION BRIDGES—Concluded 

Com¬ 
pletion 
Date 

Bridge Location 
Span, 
Feet 

Type 
Life, 
Years 

Age, 

19*9, 
Years 

1928 Zapata Rio Grande, Texas Cable 1 

1928 Mercedes Rio Grande, Texas Cable 1 

1928 Des Arc White River, Arkansas 650 Cable 1 
1928 Anacaro Colombia, S. A. 4i7 Cable r 

1928 Sixth St. Pittsburgh 430 Chain 1 
1929 St. Marys, Ohio Ohio R. 700 Chain 
1929 Bernardo Arango Colombia, S. A. 623 Cable 

1929 Mount Hope Rhode Island 1200 Cable 

1929 Detroit U. S. and Canada X85O Cable 

1939 Grand* Mere Quebec 948 Cable 

X93o Mid-Hudson Poughkeepsie, N. Y. 1500 Cable 

1932 Hudson River New York 3500 Cable 

a Narrows N. Y. Harbor 4500 Cable 

a Proposed. 
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A 

Adjustments, 101-103, 121, 169, 170, 

371, 176, 182,183, 208 

Advantages, 69, 70, 75b, 78, 79, 82, 226 

Albert bridge, 77, 288 

Allegheny River bridges, 86, 287, 288, 

290, 291 

Alloy steels, 50*, 84, 86, 216, 284* 

Anchor chains, 92*, 120-122, 94*, 211*, 

212 

— girders, 121, 211* 

— plates, 94*, 121 

Anchorages, 84,89,92*, 94*, 104*, 106*, 

107*, 109*, 118,119*, 120-124, 
161*, 162, 200, 210, 211*, 212, 

228, 229, 237, 238* 

Anchorage shafts, 122 

— stresses, 123, 161*, 162, 211* 

— tunnels, 122 
Anchoring cables, 91, 92*, 93, 121 

— strands, 174* 

Arrangements of cross-sections, 72*, 

73* 83,84,92*, 99*, in*, 

213*, 231* 

— of spans, 72, 74 
Assumptions for design, 18-21, 248 
Attachments, 96, 98, 100, 237 

B 
Backstays, 50*, 51*, 62*, 64*, 72, 78, 

88* 198* 

Balance beam, 175 

Bearings, 103, 234, 240, 241 

Bear Mountain bridge, 190, 290 

Bending Moments (see Moments) 

Bolts, 98 

Braced cable construction, 96, 98, 105, 
204 

Braced-chain bridges, 79-82,103,108 
-hingeless type, 67* 

-three-hinged type, 63, 64*, 65* 

-two-hinged type, 65*, 66 

Braced-chain construction, 64*, 65*, 

67*, 79, 103, 106*, 107*, 109*, 
hi*, 200, 205 

Bracing, 77, 9r» *IO> 112, 113 
Brooklyn bridge, 70*, 71, 72*, 79, 83, 

90, 101,168,170,171,190, 288 

Budapest bridges, 74, 86, 94*, 95*, 118, 

207, 286, 289 

C 
Cable bands, 84, 92*, 96, 98, 99*, 177, 

241 

— bents, 124, 228*, 229, 230*, 234, 240 

— connections, 105,121 

— construction, 242 

— curve, 1, 2*, 4, 6* 7*, 9, 248 

— deflections, 16,17 

— deformations, n, 12,14*, 15*, 17 

— diameter, 90,149,150, 235, 284* 

— elongation, 16, 17 

— erection, 243 
— estimates, 149 

— in side span, 7* 

— length, 5, 6, 8,10, 52, 251 
— sag, 8 

— spinning, 172*, *73,190, 243 

— squeezing, 177, 235, 236* 

— stresses, 3-5, 8, 9, n, 13, 126, 134, 

152, 236 
— tension, 3,4,10 

293 
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Cable, unsymmetrical, 6*, 7, 20* 

— vs. eyebars, 74-76, 79, 226, 227, 284* 

— weight, 149,150 

— wire, 50*, 75a, 84, 89, 234, 235 

— wrapping, 90, 91,149, 150, 169,183, 
184* 

Cables, 84,87,89,90,190,234,251,284* 

Cannes-Ecluse bridge, 76*, 288 

Cast steel, 86 

Castings, 84, 86, 209*, 210, 225, 241 

Catenary, 9,10 

Center hinge, 72, 79, 101, 103, 104*, 

105,113 
Central loading, 14* 

Chain construction, 74, 75*, 75b, 79,93, 

94*, 95*, 96, 103, 106*, 107*, 
109*, in*, 187*, 285 

Charts for moments, 192*, 196*, 247, 

276, 278* 

— for shears, 193,194*, 196*, 247, 276, 

278* 

Chord stresses, 128 

Chronological table, 283 
Cincinnati bridge, 71, 287 

Clamping, 87 

Clark’s bridge, 94*, 286 

Classes, 71, 72, 78-81 

Classification, 19, 71, 72 

Clifton bridges, 187, 287 

Closed sockets, 98 

Coefficient of elasticity, 86, 87,150, 217, 

219 

-friction, 98 

Cologne bridge, 53*, 74, 86, ll$> n8, 
207, 230, 289 

-erection, 188 

Common theoiy, 19, 206, 214, 215, 246, 

248, 275, 278* 
Compacting cables, 177, 235, 236* 

Comparison of types, 75a, 77, 78, 79,96 

-cost, 75a, 199, 226, 227, 229 

-theories, 248, 275, 276*, 278* 

Connections, 96, 98, zoo, 105,121, 204, 

237 
Constants of integration, 250, 252, 263- 

267 

Continuous type (see Hingeless type) 
Conway bridge, 285 

Cost comparisons, 75a, 199, 226, 227, 

229, 239 

Costs, 225 

Cradles, 169 

Cradling of cables, 77, 91 

Crescent type, 81 

Cross-sections, 72*, 73*, 83,84,92*, 99*, 

106*, hi*, 134*, 212, 213*, 
231* 

Cumberland R. bridge, 170, 184, 185, 

289 

Curve of cable, 1, 2*, 4, 6*, 7*, 9, 251 

D 
Danube bridges, 94*, 95*, 187*, 207, 289 

Deflection theory, 19, 205, 206, 215, 246, 

248, 275, 278* 

Deflections of cable, 16, 17 

— of truss, 49-51, 205, 206, 249, 263, 
268, 269 

Deformations of cable, 11, 12, 14*, 15*, 

17 

Delaware River bridge, 33*, 124, 190, 

215, 247, 290 

Depth of truss, 82, 83, 102, 103, 108, 

198*, 203, 230, 284* 

Design assumptions, 18-21, 248 

— charts, 191-197 

— computations, 125,134,144,149,162 

Details, 73*, 92*, 94*, 106*, 107*, 109*, 

134*, 208, 209*, 210, 212, 216, 

232, 233*, 234, 240-242 

Detroit bridge, 50*, 75a, 75b, 291 

Diagonal stays, 70*, 72*, 76* 

Diameter of cable, 90, 149, 150, 235, 

284* 
Displacement of crown, 15* 

— of saddle, 17 

Douro River bridge, 286 

Durability, 283 

E 

Eads’ type, 81 

East River bridges, 70*, 71, 72*, 79, 86, 

88*, 90,92*, 97*, 99*, xox, 108, 

119*, 170, 190, 235, 247, «88, 

289 



INDEX 295 

Economic design, 81, 200, 202, 203, 204, 

207, 208, 231, 232, 237 

— proportions, 82, 83, 102, 202, 203 

Elastic coefficient, 86, 87, 150, 217, 219 

— curve, 215 

— theory, 19, 206, 214, 246, 248, 275, 
278* 

— weights, 214 

Elizabeth bridge, 71, 74, 86, 95*, 115, 
118, 207, 289 

-erection, 186, 187* 

Elongation of cable, 16, 17 

Equalizers, 100 
Equilibrium polygon, 2*, 20*, 61* 

Erection, 163, 164*, 166*, 168*, 172*, 

174*, 178*, 179*, 180*, 181*, 

182*, 184*, 185*, 186*, 187*, 

190, 217, 221*, 223* 

— adjustments, 169-171, 182, 183, 208 

— calculations, 169-171, 183 

— equipment, 165, 173, 175-177, i79> 

183 
— force, 165,176, 177, 181, 183 

— of cables, 172*, 173, 190, 243 

— of foot bridges, 166*, 167 

— of towers, 163, 164*, 232, 233* 

— of trusses, 178*, 179*, 180*, 181*, 

182*, 223*, 224, 245* 

— records, 165, 175, 177, 181, 186, 189, 

190, 219-225, 245 

Estimates, 149, 150, 225 

Exact theory, 19, 205, 206, 215, 246, 

248, 275, 278* 

Eyebar bridges, 74, 75*, 75a, 75*>, 79, 

94*, 95*, 96, 106*, 109*, hi*, 
187*, 198*, 199, 226, 227, 290 

— chain erection, 186, 187*, 188, 189, 

200, 217-223 

— construction, 74, 75*, 75a, 75b, 79, 

84, 85, 216, 251 
Eyebars, advantages, 75b, 79, 226, 227 

F 
Falsework, 186*, 187* 

Fidler truss, 81, 108, 109* 

Flexibility factor, 281 
Floor beams, 84, 92* 
Floor system, 178*, 213*, 341 

Florianopolis bridge, 74, 86, 118, 134*, 

198*, 199, 201*, 209*, 221*, 
223*, 290 

— type, 75a, 102, 198*, 199, 200, 201*, 
203, 204, 207, 226, 229 

Footbridge cables, 165, 166*, 167 

— erection, 166*, 167, 190 

Footbridges, 166*, 168*, 186* 

Forces acting on tower, 146, 147, 210 

-on truss, 20* 

Form of cable, 1, 2*, 4, 6*, 7*, 9 

Foundations, 124, 211*, 212, 237, 238'' 

Frankfort bridge, 80, 104*, 287 
French construction, 76*, 77 

Freiburg bridges, 73*, 286 

Friction, 98 

Functions in formulas, 39*, 42, 43 

G 

Galvanizing, 89, 90, 234 

Gisclard system, 77 

Gotha foot bridge, 119*, 288 

Gotteron bridge, 286 

Grand Ave. bridge, 71, 288 
Grand' Mere bridge, 75a, 124, 247, 280 

291 

Graphs for formulas, 39*, 43*, 247, 27b' 

Guide wires, 169, 170 

H 

H-curves, 23, 28*, 31*, 36*, 46*, 58*, 

152, 153, 215, 273* 

Hammersmith bridge, 285 

Hangers, 96, 100 

Hauling towers, 167, 168* 
Heat-treated eyebars, 75a, 86,198*, 199, 

207 

-wire, 50*, 75a 

Hingeless type, 53*, 54, 55> 58*, 61*, 67, 
102, hi*, 150, 228*, 231, 248 

-horizontal tension, 57-59 

-influence lines, 58* 

-moments, 59, 60, 61 

-moments at towers, 56 

-shears, 55 

-temperature stresses, 61 

Hinges, 79» 103, 105,113 
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Horizontal displacement, 15* 

Horizontal tension, 4, 8, 10, 63, 66, 126, 

134, 152, 215, 250, 258, 263, 

271, 273* 
-from temperature, 48, 268 

-hingeless type, 57-59 

-two-hinged type, 26, 27,33~35, 37, 

38, 273* 
Hudson River bridges, {Frontispiece)*, 

75a, 81,83, no, hi*, 115,190, 

284*, 291 

I 
Influence lines, 23, 24, 25, 28*, 31*, 36*, 

46*, 58*, 152, iS3, 215, 249 

Inspection, 118, 120, 122 

Integration constants, 250, 252, 263-267 

K 
Karl bridge, 285 
Kingston bridge, 71, 116, 118, 231, 290 

-erection, 165, 171, 181, 185*, 189 

Knuckles, 84, 92*, 117, 118, 122 

L 

Lambeth bridge, 80, 105, 287 

Lancz bridge, 94*, 286 

Lateral bracing, 77, 82, 91 

Length of cable, 5, 6, 8, 10, 52 

Life of bridges, 283 

Limiting spans, 83, 230, 291 

Loading, 134*, 213*, 262, 269 

Loads, 90, 213, 239 

— on tower, 146, 147, 210, 232 

Locked wire cables, 88 

London bridges, 77, 80, 105, 285, 288 

M 

Main span stresses, 136, 139, 153, 156, 

192*, 193, 194*, 264-265, 273, 

274, 278 
Maintenance, 120,122 

Manhattan bridge, 71, 86, 90, 97*, 99*, 

108, 119*, 190, 247, 289 

-erection, 163,164*, 166*, 167,171, 

172* 173, 174* 177, 178*, 
179*, 180*, 181*, 182*, 184* 

Masonry, 114,120,123 

Massena bridge, 85*, 123, 190, 289 

Materials, 84, 86, 216, 284* 
Maximum moments, 28*, 29, 30, 36* 

— shears, 31*, 32, 46* 

Menai bridge, 285 

Method of Elastic Weights, 214, 215 

Miampimi bridge, 288 

Mid-Hudson bridge, 75a, 291 

Modulus of elasticity, 86, 87, 150, 217, 

219 

Moment charts, 192*, 196* 

— diagrams, 28*, 36*, 58* 

— of inertia, 253, 281 

Moments, 20*, 21, 22, 24, 28*, 36*, 58* 

— in stiffening truss, 127,129, 136, 139, 

153-156, 158, 215, 249, 262, 

269, 273-276*, 279 

Mount Hope bridge, 75a, 75b, 123, 124, 

215, 247, 269, 270*, 276, 279, 
290 

Movement of saddles, 17, 145, 14b 

— of towers, 145, 146 

Miilheim bridge, 286 

Multiple spans, 74 

N 

Narrows bridge, 291 

Newburyport bridge, 285 

Niagara bridges, 101,103, 235, 287, 288 

Nickel steel, 86, 284* 

North River bridge, {Frontispiece)*, 75a, 

no, hi*, 115 

Notation, 1, 34, 35, 37, 42, 48, 1h 125, 

134, 150, *5h 214, 248- 
252, 259, 264-267, 277, 282 

—, 2*, 6*, 7*, 13*, 20*, 36*, 61*, 264*, 

267* 

Numerical examples, 125,134,144,149, 

162, 269, 279, 280 

0 

Ohio River bridges, 71,75a, 86,118,123, 
124,190, 226, 228*, 229, 230*, 

231*, 238*, 245*, 287-290 

Open sockets, 98 

Oporto bridge, 286 

Ordish system, 76, 77 
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P 

Parabolic bottom chord, 80, 106* 
— cable, 4, 6*, 7*, 251 

— center line, 80, 109* 

— coefficients, 127 

— top chord, 80,104*, 107 * 

Parallel wire cables, 87, 89, 169 

Parkersburg bridge, 289 

Patent cables, 88 

Philadelphia-Camden bridge, 33*, 124, 

190, 215, 247, 290 

Physical properties, 75a, 86, 87 

Piers, 208, 212 

Pins, 216 

Pittsburgh bridges, 71, 74, 75a, 80, 81, 

86, 106*, 108, no, 118, 288, 

290 

Plant, 165, 173, 175, 176, 179 

Point bridge, 71, 80, 106*, 108, 288 

Point Pleasant bridge, 75a, 86, 226, 229, 

290 

Portsmouth bridge, 75a, 123, 124, iqo, 

228*, 230*, 231*, 233*, 238*, 

245*, 290 

Poughkeepsie bridge, 75a, 291 

Prague bridge, 77, 287 

Proportions, 82, 83, 102, 103, 108, 230, 

281 

Protection of cables, 90, 91, 235 

Pulleys, 116 

Q 
Quantities, 22s 

Quebec designs, 71, 81, 107*, 108, 109*, 

189 

R 

Railway bridges, 198*, 199, 287 

Reaction girders, 120, 208 

Reactions, 161*, 162, 210 

Relief of wind load, 133, 144 

Resultants, 161*, 162, 211* 

Rhine bridge, 53*, 74, 86, n8, 207, 230, 

289 

Rigidity, 205, 206, 231 

Roadways, 83, 98, 99*, 239 

Rochester bridge, 288 

Rocker towers, 53*, 95*, 107*, 109*, 

115, 117, 118, 198*, 199, 207, 

209*, 210, 228*, 232, 233* 
Rockers, 117, 118, 210 

Roebling, 74, 169 

Rollers, 116-118 

Rondout bridge (see Kingston bridge) 

Rope strand cables, 84, 85*, 150 

Ruhr bridge, 286 

Runners, 181 

Rusting of cables, 91, 235 

S 

Saddle movement, 17,145, 146 

Saddles, 84, 92*, 94*, 104*, 109*, 115, 

116, 209* 

Safety, 70, 118, 226 

Sag of cable, 8 

Sag ratio, 5, 11, 76, 82, 230, 281 

Section sheet, 134* 

Seizing, 174, 175 

Seventh St. bridges, 71, 74, 81, no, 

288, 290 

Shafts, 122 

Shear charts, 194*, 196* 
— diagrams, 31*, 46* 

Shears, 3, 20*, 22, 25 

— in stiffening truss, 130, 131, 139-142, 

156-158, 160, 249, 262, 279 

Sheave towers, 168* 

Siamese Railways, bridge for, 75* 

Side span cable, 7* 

— stresses, 138,141,158,160,195,196*, 

266-267, 274, 278 

Side spans, 72, 78 

Silicon steel, 50* 

Sizes of wire, 89, 190, 235 

Sliding, 162 

Sockets, 84, 92*, 93, 96, 98, 99*, 177, 

178 

Span arrangements, 72, 74 

— limits, 83, 230, 291 

— ratio, 82 

Spandrel braced types, 80, 81, 104*, 

107* 

Specifications, 75a, 84,86, 207, 235, 239, 

240 

Splicing wires, 90, 92*, 99* 
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Spinning cables, 172*, 173, 190, 242 

Squeezing cables, 177, 235, 236* 

St. Louis bridge, 71, 288 

St. Marys bridge, 75a, 86, 226, 229, 290 

Stability, 162 

Steel towers, 114, 284* 

Steubenville bridges, 71, 75a, 289, 290 

Stiffened suspension bridges, 18, 201* 

Stiffening, 72*, 76*, 77, 78, 82 

— trusses, 83, 101, 202 

-stresses, 20*, 127, 130, 136, 138, 

139, 141, 153, 1S6, 158, 160, 
215, 240 

Stiffness factor, 277 

Straight backstays, 50*, 51*, 62*, 64/ 

88*, 125, 198* 

— bottom chord, 80,104* 

Strand bridle, 174* 

— legs, 170 

— shoes, 84, 92*, 93, 99*, 172*, 174 

Strands, 89, 90, 93, 243 

Strength, 84-86, 90, 235 

Stress sheet, 134* 

Stresses in anchorage, 123, 161*, 162, 

211* * 

— in cables, 3-5, 8, 9, n, 13, 75a> I26> 

134, 13S, iSi, I52> 236 
— in chords, 128 

— in towers, 14, 147, 148, 234, 240 

— in truss, 20*, 127,130, 136, 138, 139, 

141, 153; 158, 160, 215, 
240 

Suspender connections, 96, 100, 237 

— erection, 177,178* 

— forces, 20*, 21, 27 

Suspenders, 84, 86, 92*, 99*, 100, 177, 

178, 237 
Suspension details, 73*, 99* 

Sway bracing, no, 112, 113 

Sydney Harbor bridge, 75b 

T 
Table I (functions), 42 

Table of suspension bridges, 283 

Tain bridge, 285 

Temperature stresses, 48, 61, 126, 129, 
132,142,143, 259* 2^8, 280 

Tension in cable, 3/4* 10 

Three-hinged type, 26, 27, 28*, 64*, 65*, 
106* 

-influence lines, 28*, 31 

-moments, 28*, 29, 30 

-shears, 30, 31*, 32 

Tiber bridge, 108, 288 

Tilting, 162 

Time required, erection, 181, 186, 189, 

190, 219-225, 245 

Tower bridge, 108, 288 

Tower calculations, 144 

— erection, 163, 164*, 232, 233* 

— loads, 146, 147, 210, 232 
— movement, 145, 146, 221 

— stresses, 14, 147, 148, 207, 210, 234, 

240 

Towers, 84, 85*, 99*, 104*, 106*, 109*, 

113-115, 117, 118, 134*, 144, 

164*, 198*, 199, 207, 208, 209*, 

210, 228*, 230, 232, 233*, 284* 

Traveling rope, 172*, 173 

— sheaves, 172*, 174 

— wheels, 172*, 174 

Truss depth, 82, 83, 102, 103, 108, 203, 

230, 284* 

— erection, 178*, 179*, 180*, 181*, 

182*, 190, 245* 

Tunnels, 122 

Tweed bridge, 285 

Two-hinged type, 33* 36*, 46*, 50*, 

Si*, 65*, 134* 
-deflections, 49-51 
-horizontal tension, 33-38, 40, 51, 

52 
-influence lines, 36*, 46* 

-moments, 36*, 41, 44, 45, 52 

-shears, 45, 4$*, 47, 52 
-temperature stresses, 48 

Type OB, 67*, 80 

— OBF, 81, no, in* 

— OF, 62*, 102 

Type OFF, 95* 

— 05, 53*, 58*, 61*, 78,102, 150, 228* 

-15, 78 
— 2B, 65*, 80 

— 2BF, 81 

— 2BHf So, 81, 82 

-—2BP, 81, no 
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Type 2J5S, 65* 

— 2BVt 81, 82,112 

— 2BVS, 107*, 108 

— 2F, 50*, 51*, 75*) 78, 79» 102, 125, 
191, 197, 281 

— 2FD, 76* 

-2FE, 75* 

— 25) 33*) 36*, 46*, 78) 79, 85*, 97*, 
99*, 102, 134*, 191, 284* 

-3B, 64*, 65*, 80 

— 3BC, 81 

— 3BCS, iog*) no, 112 
— 3BFt 64* 

— 3 Bff, 103, 104, 112 

— 3BL, 81 

— 3BLF, 106*, 108, no 

— 3BS, 65* 
— SBU, 82 

— 3BUH, 80, 81 

— 3F, 28*, 31*, 78, 79, 101 

— 3SD, 70*, 72* 
Types of suspension bridges, 18, 19, 71, 

72, 74, 77-82, 200, 283 

U 

Unit stresses, 75a, 9°, 134*, 205, 207, 
216, 234, 235, 236, 240, 281 

Unstiffened suspension bridges, 12, 13*, 

14*, 15*, 73*, 76, 94 
Unsymmetrical cable, 6*, 7*, 20* 

— loading, 15* 

Uplift, 120,123 

V 
Vertical deflection, 14*, 205 

Vienna bridges, 285 
Vierendeel girder, 101, in*, 112 
Villefranche bridge, 77, 289 

W 
Web systems, 101 

Weights, 225 
Width of bridge, 82, 84, 230 
Wheeling bridge, 287 

Williamsburg bridge, 71, 83, 88*, 90,91, 

92*, 102, 190, 235, 289 
-erection, 165, 168, 171, 175, 184, 

186* 

Wind bracing, 77, no, 112, 113, 213 

— cables, 106*, 113 

— chords, 77, 112, 205 * 
— loads, 133 

— stresses, 132, 133, 144, 148 

Wire caMes, advantages, 75b 
Wire for cables, 50*, 75a, 84,89,90, 234, 

235 
Wire rope bridges, 76*, 85* 

-cables, 184, 185 

— link bridges, 107* 
Wire ropes, 84, 85-89, 93, 217-219 

— splice, 90, 92*, 99* 

— wrapping, 90, 235 

Wrapping, 90, 91, 149) 150, 235 
— machine, 183,184*, 235 

Y 

Youngstown bridge, 71, 288 
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