

THE THEORY OF HEAT ENGINES

INCHLEY'S
 THEORY OF HEAT ENGINES

EDITED AND REVISED
BY
H. WRIGHT BAKER, D.Sc.
MEMBER OF THE INSTITUTION OF DVECHANICAL ENGINEER鼻 MEMPER OP THE INSTITUTION OF AUTOMOBILE BNGINEERS PROFESSOE OF MECYANICAL ENGINEERING AND DIRECTOR OF THE LABORATORIES IN THE UNIVEREITY AND IN THE COLLEG OP TECHNOLOGY, MANCHESTE

With Diagrams

BRECTAL GOVTMOMENT EANCTION BTRL: :".

LONGMANS, GREEN AND CO LTD

6 \& 7 CLIfFORD STRBET LONDON w I
also at melbourne and cape town

LONGMANS, GREEN AND CO INC
 55 Fifth avenue new york 3

LONGMANS, GREEN AND C! 215 victoria street toronto ORIENT LONGMANS ITD
bombay calcutta madiks

BIBLIOGRarmival ivUas
First Published

New Impressions
September, 1926
Third Edition . . . 1928, Edit P py Dy. A. Morley. 2
New Impressions . August, 1931
May, 1935
October, 1936
Fourth Edition . . . 1938, Edited by
Prof. H. Wright Baker.
Fifth Edition 1942, Edited by
Prof. H. Wright Baker.
New Impression . November, 1942
Sixth Edition - March 1944, Edited by
Prof. H. Wright Baker.
New Impressions . April, 1945
fune, 1945
December, 1947
.7anuary, 1954

PREFACE TO THE SIXTH EDITION

Tur Engineer, drawing his data from many sources, and owing allegiance to many sciences, is frequently compelled to use a multiplicity of units which adds greatly to his work, and, not infrequently, to his confusion. However desirable a single system of units may be, the time has not yet come when workers in different subjects and from many lands are prepared to sacrifice their individual preference, but International agreement has been reached over the selection and recognition of two systems only, the Metric and the British, in which all records should be made.

Whatever may be the advantages or defects of these systems the attempt to combine the two, by the use of the British pound and the degree Centigrade, seems to have been unfortunate in that it has introduced a third system which has not replaced either or both of the parent systems, and has merely added to the general confusion. Though it will probably have a limited currency for a while, in particular in certain schools of Internal Combustion Engine research, it now has no special official standing, either among engineers or in its great stronghold, the University of London. So fades the hope of Ewing. Who knows how much simpler our work might have been had he acted more boldly ?

The opportunity has been taken in this edition to express quantities of heat in British Thermal Units. The student must be prepared to use data expressed in Centigrade degrees and C.H.U. as in many other units, when these serve his purpose, but the conversions to ${ }^{\circ} \mathrm{F}$ and B.Th.U. are simple.

Fig. 153 has again been reproduced in C.H.U. and ${ }^{\circ} \mathrm{C}$., but the Total Heat-entropy diagram for refrigerants has now given place to the Total Heat-pressure diagram expressed in British Units and shown in the Appendix.
H. WRIGHT BAKER.

March, 1944

PREFACE TO THE FOURTH EDITION

Ir has long been felt that a revised edition of William Inchley's "Theory of Heat Engines" was overdue, and the present book is an attempt to make good the defects which time has revealed in the original work.

Much new knowledge has been obtained since 1913, making considerable additions necessary, and to allow for these, without unduly increasing the size of the book, the chapters dealing with the kinematics and dynamics of engines, subjects already claiming whole books to themselves, have been omitted.

Addition alone, however, would not suffice. The emphasis on the chronological order in which developments have taken place, and the resulting sharp cleavages between the different types of engines, have tended to conceal the fundamental unity which underlies the whole subject, and the conceptions of thermodynamics have now been introduced in order to provide a logical basis upon which to build. No rigorous statement of thermodynamics has been attempted, but it is hoped that enough has been said to enable the student of engineering to visualise the mechanism of the processes which he seeks to control.

The classification of text-books as Elementary or Advanced has often given readers of the former an entirely false impression of security which has been rudely shattered when the real deviations from the simpler laws and theories have had to be considered. As such a classification is entirely arbitrary, any permanent separation of the subject on these lines has here been avoided; limits and deviations have been stated in their logical places, and the more difficult sections of the work follow those of a simpler nature. Naturally the student is advised to read the simpler sections first, and a selection of these has been marked with an asterisk for his guidance, but there, as in his wider reading, some discretion must be used. It is hoped that by the time the last paragraphs are read he will find but little which he will subsequently have to modify or unlearn, and that the book has achieved the purpose expressed by its first author of " giving in a complete and concise form the thermodynamical principles of the subject."

In the present edition the writer has brought together from many sources the figures, diagrams, and ideas which experience has shown to be specially helpful. The more important of these sources have been acknowledged in the text and it is hoped that the reader will turn to them for further authoritative guidance, but many remain unrecorded. To the authors, named and unnamed, whose work has gone to the making of this book, and to the colleagues who have helped in many ways, the writer would express his gratitude and offer his sincere thanks.

[^0]
CONTENTS

ciup. PAGR
I THE LAWS OF STATE AND OF THERMO- DYNAMICS
General Statement 1
The Three States of Matter 1
The Laws of Thermodynamics, Gas Laws, etc. 3
Molecular Theory 8
Variations from the Simple Laws 11
II LAWS OF EXPANSION AND COMPRESSION
Work done by a Gas during Expansion 14
General Case of Expansion 19
Formula for Compression 20
Heat Reception or Rejection 20
Effect of \boldsymbol{n} 21
Rate of Heat Reception or Rejection 22
Collection of the Formula 24
III THEORETICAL HEAT ENGINE CYCLES General Statement 27
Graphical Representation of Work done during a "Closed Cycle " of Operations 28
The Three Principal Cycles 30
The Ratios of Compression and Expansion 36
Comparison of Cycles 36
Theoretical Importance of the "Constant Temperature" or " Carnot " Cycle 40
Reversible Processes and Cycles 43
Carnot's Principle 44
Conditions for Maximum Thermal Efficiency 45
Definition of Thermodynamic Temperature Scale 45
IV FACTORS OF STATE. ENTROPY
General Statement 48
Entropy of the Working Fluid, and Hot and Cold Bodies 49
Entropy a Condition of State 49
Other Definitions of Entropy. Section 1. 52
Other Definitions of Entropy. Section 2. 53
Representation of the Carnot Cycle 54
ciap. PACR
IV FACTORS OF STATE. ENTROPY-continued
General Equations for the Change of Entropy of a Perfect Gas when passing from One State to Another 55
Change of Entropy when the Operation takes place according to the General Law pv $v^{n}=$ Constant 58
Work done by an Expanding Gas, with reference to the Temperature Entropy Diagram 59
Clapeyron's Equation 60
v CURVES OF STATE
General Statement 63
The P.V. Diagram 63
The T ϕ or Temperature-Entropy Chart 66
T ϕ Curves for Various Fluids 68
Mollier, or Total Heat-Entropy Chart 68
Total Heat-Temperature and Pressure Diagrams 72
Choice of Diagram 72
VI IRREVERSIBLE PROCESSES
Pressure Equalisation between Vessels of Fixed Size 75
Throttling 75
Heat Transfer by Conduction 80
Friction 81
Fluid Friction 81
VII HOT AIR ENGINES
General Statement 85
Carnot or Constant Temperature Cycle 86
Stirling's Engine. Ericsson's Engine. Joule's Cycle 86
VIII THEORY OF AIR COMPRESSORS AND MOTORS General Statement 93
The Transmission of Power by Compressed Air 93
Methods of Reducing the Losses during Compression and Expansion 97
The Production of Compressed Air. General Statement 97
The Single-Stage Compressor 97
Multi-Stage Compression. General Statement 101
Two-Stage Adiabatic Compressor 102
Three-Stage Adiabatic Compression 104
Air Motors 108
Two-Stage Adiabatic Expansion. Preheating 109
Effect of Clearance 110
Turbo-Blowers and Compressors 112PAGI
IX THE PROPERTIES OF STEAM
Methods of Recording Pressures 118
Equations of State. Steam Tables 118
Generation of Steam at Constant Pressure 119
Steam Tables and the Properties Enumerated therein 120
Adiabatic Equations 125
Steam Diagrams 126
Calculations concerning Changes of State 127
Measurement of the Dryness of Steam 134
Examples on Mixtures of Steam or Steam and Water, etc. 138
Mixtures of Air and Steam 139
XI STEAM ENGINE CYCLES
Cycle using Steam Non-Expansively 147
Carnot Cycle 149
Rankine Clausius Cycle. Efficiency in Terms of p and v 150
The Rankine Cycle as a Reversible Cycle 155
Rankine Clausius Cycle. Efficiency in Terms of T and ϕ 156
The Effect of using Superheated Steam 159
Efficiency of the Rankine Clausius Cycle using the $\mathrm{H} \phi$ Diagram 160
Efficiency of the Rankine Clausius Cycle from Steam Tables 163
Engine in which the Steam is kept Dry and Saturated during Expansion 164
The Regenerative Steam Cycle 165
Note 166
XI THE RECIPROCATING STEAM ENGINE General Statement 168
The Steam Engine Cycle 168
Comparison of Actual and Theoretical Indicator Diagrams 169
Mean Effective Pressure. Diagram Factor 170
The Missing Quantity 173
Cyclic Condensation 173
Application of the Saturation Curve to an Actual Indicator Diagram 175
Application of Actual Indicator Diagram to $\mathrm{T} \boldsymbol{\phi}$ Chart 179
Boulvin's Method of Drawing the Temperature-Entropy Diagram from the Indicator Diagram 180
The Heat Recovery Lines 182
Magnitude of Missing Quantity. Contributing Factors 185
Methods of Increasing Engine Efficiency 186
The Uniflow Engine 186
CHAP. PAGE
XI THE RECIPROCATING STEAM ENGINE-continued
The Steam Jacket 187
The Use of Superheated Steam 189
Compound Expansion 191
Compound Engine without Intermediate Receiver 193
Compound Engine with Intermediate Receiver 194
The Combination of Indicator Diagrams from a Compound Engine 196
Diagram Factor 199
Ratio of Cylinder Volumes for a Compound Engine 199
Governing of the Compound Engine 204
Effect of Throttling the Steam to the High-Pressure Cylinder on the Distribution of Work. Throttle Governing 205
Initial Loads on the High-Pressure and Low-Pressure Pistons 207
The Regenerative Cycie 208
XII FLOW OF STEAM THROUGH ORIFICES AND NOZZLES
General Statement 211
The Velocity of Discharge 212
Weight of Steam Discharged. The Critical Pressure Ratio 214
Calculations of Throat and Exit Areas, assuming no Friction 217
Friction 220
Nozzle Shape and Size 223
Over and Under Expansion 224
Supersaturation 225
Convergent-Divergent Nozzle with Excessive Back-Pressure 226
Theory of the Injector 228
XIII THE STEAM TURBINE. DESIGN OF BLADING, ETC.
General Statement 235
Velocity Triangles for Single-Stage Turbines 236
Diagram for Velocity Compounded Impulse Stage assuming no Friction 243
Diagram for Velocity Compounded Impulse State, given the Value of K 244
Diagram for Velocity Compounded Impulse Stage, given the Blade Lengths 245
Velocity Diagram for Reaction Stage 248
Blade Speed and R.P.M. 249
Diagram Efficiency and Speed Ratio 249
CHAP. PAGB
XIII THE STEAM TURBINE. DESIGN OF BLADING,ETC.-continued
The Section of Turbine Blades 251
Pitch, Width, and Length of Blades 252
Blade Friction 253
Reheat Factor and Turbine Efficiencies 253
The Regenerative Principle 258
The Regenerative Principle applied to the Triple Expansion Engine or to Three Stages of Expansion in a Turbine 261
Application of the Regenerative Principle 263
The Influence of Final Wetness on the Choice of Operating Conditions 263
XIV THE INTERNAL COMBUSTION ENGINE
General Statement 265
The Cycles Considered 266
The Ratio of Compression 273
The Influence of Maximum Permissible Pressure 275
Comparison of Actual and Theoretical Diagrams 277
Determination of the Value of n for the Compression and Expansion Curves 279
Crank Angle and Time-base Diagrams 282
The T ϕ Diagrams 283
Rate of Heat Reception or Rejection during Expansion and Compression 285
Actual and Theoretical Efficiencies. The Effect of Heat Losses 287
Effect of Jacket Water Temperature 290
The Calculation of Cycle Temperatures 291
Suction Temperature for a Gas Engine 291
The Suction Temperature for a Petrol Engine 292
The Calculation of Compression Temperature 294
Calculation of Maximum Temperature 295
Value of n for the Expansion Curve 295
Variations of Specific Heat 295
Effect of a Linear Variation of Specific Heat with Tempera- ture on Formula for Heat Interchange and Adiabatic Expansion 297
Dissociation 299
The Process of Combustion in Air and Petrol Mixtures 301
Turbulence 303
Effect of Residual Gases 304
Application of Knowledge of Flame Phenomena to Cylinder Head Design 304
Effects of Speed and Size 307
Combuation in the Compression Ignition Engine 307
CHAP. PAG
XV MECHANICAL REFRIGERATORS AND REVERSED HEAT ENGINES
General Statement 312
Coefficient of Performance 312
The Reversed Heat Engine as Refrigerator. Cold Air Machines 313
Reversed Heat Engine as a Warming Machine 317
The Use of the Reversed Heat Engine in Evaporation Problems 318
Refrigerators employing a Volatile Liquid 319
Vapour Absorption Machine 319
Ideal Efficiency of Absorption Process 320
Intermittent Refrigeration 321
Continuous Action Absorption Machine 321
Vapour Compression Process 324
Irreversible Temperature Drop unavoidable in Practice 330
Use of the Mollier Chart 333
To find the Dryness Fraction required before Compression to give Maximum Efficiency 335
Wet and Dry Compression 338
Two-Stage Throttling (Stokes' or Voorhees' Cycle) 339
Compound Compression Cycle (Linde, Lightfoot, or Wild- hausen Cycle) 340
Choice of Refrigerants 340
XVI HEAT TRANSFER BY RADIATION, CONDUC- TION AND CONVECTION
Heat Transmission by Radiation 343
Stefan's Law 344
Furnace Phenomena and " Black Body Condition" 345
Application of Radiation Theory 346
Radiation from Flames 346
Conduction of Heat through Solids General Statement 347
Laws of Conduction 347
Flow of Heat through a Thin-Walled Tube 348
Flow of Heat through a Thick-Walled Tube 348
Equivalent Mean Radius of a Thick-Walled Pipe 348
Optimum Thickness of Pipe Lagging 349
General Equation for Conduction. Steady Conditions 350
General Equation for a Periodic Fluctuation of Temperature 351
Dimensions of C and certain Related Values 351
General Solution of Equation (6). Steady Temperature 352
CHAP. PAGE
XVI HEAT TRANSFER BY RADIATION, CONDUC- TION AND CONVECTION-continued
General Solution of Equation (6). Fluctuating Temperature 352
Interpretation of Formula 355
Heat Flow into Surface during Cyclic Fluctuation of Temperature 355
Graphical Estimation of Heat Loss 359
Heat Transfer by Convection The Principle of Dimensional Analysis 362
Formation of Dimensionless Groups for Problems involving Heat Loss by Convection 364
General case of Heat Loss Transfer to or from a Surface 372
Conduction of Heat through Pipes 373
XVII COMBUSTION
General Statement. 380
Combustion Equations 380
The Calorific Value of Fuels 382
Estimation of Calorific Value from Chemical Analysis 385
Calculation of Air required for Complete Combustion of Solid and Liquid Fuels 386
Calculation of the Amount of Air required for the Combus- tion of a Gaseous Fuel 388
Flue and Exhaust Gas Analysis 389
The Examination of Exhaust and Flue Gas Analyses. Solid and Liquid Fuels 391
The Examination of Exhaust and Flue Gas Analyses. Gaseous Fuels 393
Approximate Method of finding Weight of Air supplied per Pound of Coal 396
Yroducer Gas 396
Calculation of the Mean Specific Heat of the Flue Gases leaving a Boiler 403
Boiler Draught 404
Height of Chimney required to produce a Given Draught 405
XVIII THE TESTING OF HEAT ENGINES AND PLANT General Statement. 409
Report on Tabulating the Results of Heat Engine Trials 409
Steam Boiler Trial. 411
Steam Engine Trial 419
Gas Engine Trial 423
CHAP. PAGB
XVIII THE TESTING OF HEAT ENGINES AND PLANT-continued
Oil Engine Trial 430
Gas Producer Trial 433
Steam Turbine Trial 437
Appendices 443
Answres to Examples 447
INDEX 453

SYMBOLS, ETC.

The following are some of the symbols used :

A	The inverse of Joule's Equivalent $=\frac{1}{\mathbf{J}}$.
c_{0}	Specific heat at constant volume, for air $=0.169$
c_{p}	Specific heat at constant pressure, for air $=0.2375$.
E	Internal energy. Alternative to I.
G	$\begin{aligned} \text { The universal gas constant } & =\mathrm{R} \times \text { Molecular weight } \\ & =2779 \mathrm{ft}-\mathrm{lb} \text {. per }{ }^{\circ} \mathrm{C} . \text { per mol. } \\ & =1543.9 \mathrm{ft} . \mathrm{lb} . \text { per }{ }^{\circ} \mathrm{F} . \text { per mol. } \end{aligned}$
H	A quantity of heat, measured in B.Th.U. or C.H.U.
1	Internal energy. Alternative to E when applied to internal energy of evaporation.
J	Joule's Equivalent, or 778 ft .-lb. per B.Th.U. or 1400 ft .-lb. per C.H.U.
K	The bulk modulus of elasticity.
N	Modulus of rigidity.
N.T.P.	Normal temperature and pressure, i.e. 32° F. or $0^{\circ} \mathrm{C}$. and 14.7 lb . per sq. in.
p	Pressure ; generally pounds per square foot.
q	Dryness fraction of wet vapour.
R	The constant in the gas equation $p v=R T$, for air 53.18 ft .-lb. per lb. per $^{\circ} \mathrm{F}$. or $96.0 \mathrm{ft} .-\mathrm{lb}$. per lb. per ${ }^{\circ} \mathrm{C}$.
s	Specific heat of solid or liquid.
S	Entropy. Alternative to ϕ.
S.C.F.	Standard cubic foot, used for the volumetric measurement of gases at N.T.P.
t and T	Temperature ${ }^{\circ} \mathrm{F}$. or ${ }^{\circ} \mathrm{C}$., and ${ }^{\circ} \mathrm{F}$. abs. or ${ }^{\circ} \mathrm{C}$. abs.
v	Volume, usually measured in cubic feet.
0 \%	Specific volume of water.
W	Work done, usually measured in foot-pounds.
α	Coefficient of volumetric thermal expansion, for a gas $=\frac{1}{273} \text { per }^{\circ} \mathrm{C} . \text {, or } \frac{1}{492} \text { per }^{\circ} \mathrm{F} .$
γ	The ratio c_{p} / c_{v}. Value for air 1.401.
¢	See T. Entropy. Alternative to S.

The following values will be found of use :

1 Kg . per sq. $\mathrm{cm} .=14.233 \mathrm{lb}$. per sq. in. $=1$ continental atmosphere.
14.7 lb . per sq. in. $=30 \mathrm{in}$. mercury $=1$ British atmosphere.

1 in. mercury $=0.49 \mathrm{lb}$. per sq. in. $=13.595 \mathrm{in}$. water.
Volume of 1 lb . of air at N.T.P. $=12 \cdot 391 \mathrm{cu} . \mathrm{ft}$.
42.42 B.Th.U. $/ \mathrm{min} .=1$ H.P. 1 H.P. $=0.746 \mathrm{kw} .2545$ B.Th.U. per hour $=1$ H.P.
55.9 B.Th.U. $/ \mathrm{min} .=1 \mathrm{kw}$.

Molecular weight of a gas in grammes occupies 22.41 litres, or in pounds 359 cu. ft. at N.T.P.

NOTE ON THERMAL UNITS

Two thermal units are recognised for engineering by international agreement, the kilocalorie based on the kilogramme and the ${ }^{\circ}$ Centigrade, and the B.Th.U. based on the pound and the ${ }^{\circ}$ Fahrenheit.

The C.H.U., a cross between two systems, has no international standing and is rapidly losing all recognition. As it appears frequently in writings of comparatively recent times, and is still used by some workers in certain branches of internal combustion research it is essential that the student should be conversant with it. The conversion ($1 \mathrm{C} . \mathrm{H} . \mathrm{U} .=1.8 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$.) is probably the simplest of many which he will be called on to make in the course of his reading.

Chapter I

THE LAWS OF STATE AND OF THERMODYNAMICS

-GENERAL STATEMENT

In considering the production of mechanical energy by means of heat engines, the employment of mechanical energy or heat in refrigerators, and generally in the generation or control of heat, the engineer is guided by a number of experimental facts and "laws," some of which were stated in the early days of the physical sciences and are therefore subject to revision in the light of more exact researches. A number of these will now be considered.

-THE THREE STATES OF MATTER

Substances can exist in three states, as solids, liquids, or gases, provided that the conditions of pressure and temperature are suitable and that fundamental changes of the molecular structure do not occur. The phenomena commonly associated with the three states are as follows.

Solid State.-The substance offers resistance to changes of both size and shape, the resistance generally being of an elastic nature during the first stages of distortion. The resistance to change of size is then measured by the bulk modulus of elasticity, K , and the resistance to change of shape by the modulus of rigidity, \mathbf{N}. (For metals K lies between 9×10^{6} and $31 \times 10^{6} \mathrm{lb}$. per sq. in., and $\mathrm{N} \quad$, 4.5×10^{6} and 13.5×10^{6}
The material expands slightly on heating, the coefficient of expansion depending on the material (for iron the coefficient of linear expansion is 0.0000108 per degree F. and the coefficient of volumetric expansion about three times this figure).

The absorption of heat by the material is accompanied by a rise of temperature, the specific heat being the ratio of the heat required to raise a given weight of the material through 1° compared with that required to raise a similar weight of water through the same temperature range, and is therefore independent of the temperature scale used. (The specific heat of iron is of the order of 0.11 , and of ice 0.504 .)

When the melting-point is reached the addition of heat results not in a rise of temperature but in the change of state from the solid to the
liquid. The heat required per pound of the substance to produce complete liquefaction is known as the latent heat of fusion (about 41 B.Th.U. for grey cast iron and 144 B.Th.U. for ice).

Liquid State.-The substance now offers resistance to change of size but not to gradual change of shape. The value of N is therefore zero. (The value of K for water is approximately $3 \times 10^{5} \mathrm{lb}$. per sq. in.)

The addition of heat produces a rise of temperature and a slight expansion, until a temperature called the boiling-point is reached, when a change to the vapour state occurs. This is accompanied by a large absorption of heat, ${ }^{1}$ the latent heat of evaporation, and generally by a large increase of volume, but not by a change of temperature. At the boilingpoint liquid and vapour can exist together. The boiling-point increases with the pressure at which evaporation occurs.

Phenomena associated with the liquid state are the appearance of surface tension at the free surface of the liquid, and a tendency to slow evaporation at temperatures below the boiling-point.
State of Vapour and Gas.-A vapour will fill uniformly the vessel in which it is placed, irrespective of size, and will exercise a uniform pressure in all directions. No resistance is offered to gradual change of shape. The bulk modulus at constant temperature is dependent on, and equal to, the pressure p (measured in pounds per square foot).
[If the gas, originally at pressure p, is subjected to a pressure p_{1}, then by Boyle's law $p_{1} v_{1}=p v$. By definition K is the ratio of increase of stress to increase of strain, or

$$
\begin{aligned}
& \mathrm{K}=\frac{p-p_{1}}{\frac{v_{1}-v}{v_{1}}}=\frac{p-p_{1}}{\frac{p v}{p_{1}}-v / \frac{p v}{p_{1}}}=\frac{p-p_{1}}{\frac{v\left(p-p_{1}\right)}{p_{1}} / \frac{p v}{p_{1}}} \\
&=p .]
\end{aligned}
$$

When the volume of the vapour is changed by compression, and work is done upon it, heat is produced, and the temperature tends to rise proportional to the work done. If the heat is removed at exactly the rate at which it is formed, isothermal compression occurs. If the heat is not removed the temperature will rise, and the work done by the external forces of compression will now not only compress the vapour, but also raise its internal energy. When no heat is removed or received, except as the result of work done, the process is said to be adiabatic.

Two kinds of bulk modulus have now to be considered, the Bulk Moduli of Isothermal and Adiabatic compression.

The addition of heat is accompanied by a rise of temperature and either

[^1]by an increase of pressure at constant volume (when no external work is done), or by an increase of volume at constant pressure (when the work done is the product of p and the change of volume). ${ }^{1}$ In the first case the ratio $\frac{\text { heat received }}{\text { rise of temperature }}$ gives the specific heat at constant volume, in the second the specific heat at constant pressure; the difference between the two values is the equivalent of the external work done in the latter case.
The coefficient of thermal expansion is the same for all gases, and is $1 / 273$ per degree C. or $1 / 492$ per degree F. when referred to the volume at $0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$.
(Strictly speaking, two Bulk Moduli and two specific heats should be considered for all three states, but the changes of volume corresponding to changes of pressure and temperature in the solid and liquid states are so small that for general purposes the values may be taken as coincident.)

As the pressure and temperature are increased at which evaporation occurs, the latent heat of evaporation decreases until the "critical" temperature for the substance is reached. At this temperature the latent heat is zero, the meniscus separating liquid and vapour vanishes, and the two states merge. Below this temperature the substance can be liquefied by the application of pressure alone, but above this liquefaction cannot be produced by pressure, however intense.

A vapour above its critical temperature is said to be a gas. The conditions for a perfect gas are approached more nearly as the temperature is raised above the critical value.

A " perfect gas" is one which satisfies exactly the laws of Boyle and Charles. In what follows gases will be assumed to be perfect unless a statement is made to the contrary.

"THE LAWS OF THERMODYNAMICS. GAS LAWS, ETC.

First Law of Thermodynamics.-This may be stated as follows: Heat and mechanical energy are mutually convertible and "Joule's Equivalent " is the rate of exchange.

If mechanical work is being converted into heat, this can be expressed in the form

$$
\mathrm{W}=\mathrm{JH}
$$

where W is the work done, measured in foot-pounds, H the quantity of heat evolved, measured in British thermal units, and J is Joule's Equivalent and equal to 778 ft .-lb. per B.Th.U. If H is measured in Centrigrade heat units the numerical value of J is 1400 .

As will be seen later, the conversion of mechanical work into heat is a natural process which engineers have difficulty in restraining. The converse, the conversion of heat into work, is only effected with con-

[^2]siderable difficulty, and in practice much wastage of heat occurs in the process. The "efficiency" of conversion is often less than 20 per cent. and seldom more than about 45 per cent. (see Chapter III, et seq.).

Second Law of Thermodynamics.-The simplest statement of this law is : There is no process by which heat may be conveyed from one body to another at a higher temperature without the expenditure of mechanical energy.

Boyle's Law.-If a given mass of gas is compressed at constant temperature the absolute pressure is inversely proportional to the volume. If p and v denote the pressure and volume respectively, then

$$
p \propto 1 / v \text { or } p . v=\text { constant. }
$$

("Absolute" pressures are recorded by such instruments as the mercury barometer, in which the moving element, in this case the mercury column, registers the difference in pressure between the pressure applied and a vacuum. Pressure gauges of the Bourdon type, and others which are subject to atmospheric pressure on one side of the element, record the difference of pressure between atmospheric and that which is applied. To obtain absolute pressures from such "gauge" pressures, a pressure corresponding to the height of the mercury barometer at the time must be added.)

Charles's Law, and the Absolute Zero of Temperature. -If the pressure of a given mass of gas is kept constant, equal increments of temperature will cause similar increments of volume, or $v_{1}=v_{0}(1+\alpha t)$, where v_{1} is the final volume, v_{0} is the initial volume, usually taken at $0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$. for convenience, and t is the increment of temperature. " α " is called the " coefficient of (volumetric) thermal expansion," and, when referred to the volume at $0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$., has the values $1 / 273$ and $1 / 492$ respectively, and is constant for all perfect gases.
If now the temperature is kept constant at its new value and the volume restored by pressure to v_{0}, we have, from Boyle's law

$$
\frac{v_{1}}{v_{0}}=\frac{p_{1}}{p_{0}} \text { or } \frac{v_{0}(1+\alpha t)}{v_{0}}=\frac{p_{1}}{p_{0}}
$$

or $p_{1}=p_{0}(1+\alpha t), \alpha$ having the same value as before.
For example, at any given pressure 492 cu . ft. of gas measured at $32^{\circ} \mathrm{F}$. will occupy $491 \mathrm{cu} . \mathrm{ft}$. at $31^{\circ} \mathrm{F}$., 460 cu . ft. at $0^{\circ} \mathrm{F}$., and will approach zero volume when the temperature approximates to $-460^{\circ} \mathrm{F}$, Similarly, at any given volume the pressure of a gas approximates to zero at $-460^{\circ} \mathrm{F}$. The temperature $-460^{\circ} \mathrm{F}$. or $-273^{\circ} \mathrm{C}$., is called the absolute sero of temperature. (Though the above argument is based on the asoumption that gases remain "perfect," whereas all actual gases change their physical
state at low temperatures, the conception of the absolute zero of temperature receives adequate support from other considerations.)

The temperature of a gas above absolute zero is spoken of as its absolute temperature. If t is a temperature on the Fahrenheit or Centigrade scale the corresponding temperature T on the absolute scale will be $t+460^{\circ} \mathrm{F}$. abs. or $t+273^{\circ} \mathrm{C}$. abs. ${ }^{1}$

It follows that at constant pressure the volume of a gas is proportional to its absolute temperature, i.e. $v \propto \mathrm{~T}$, and at constant volume the pressure is similarly proportioned, i.e. $p \propto$ T.

Example.-The cylinder of an engine, when the piston is at top dead centre, contains gas at a pressure of 80 lb . per sq. in. gauge. Find the temperature to which it must be raised in order that the pressure may be increased to 800 lb . per sq. in. gauge. The initial temperature is $200^{\circ} \mathrm{C}$.

This problem will first be worked out at length to illustrate the last statement.

From the equation $p_{1}=p_{0}(1+\alpha t)$ it will be seen that the pressure of the gas increases by an amount of $\frac{1}{273}$ of its pressure at $0^{\circ} \mathrm{C}$. for every rise of $1^{\circ} \mathrm{C}$.

The pressure at $0^{\circ} \mathrm{C}$. in this case is given by

$$
80+15=p_{0}\left(1+\frac{1}{273} \times 200\right)
$$

or

$$
\begin{align*}
p_{0} & =\frac{95}{1+\frac{200}{273}} \text { lb. per sq. in. abs. } \\
& =95 \times \frac{273}{473}=54.8 \mathrm{lb} . \text { per sq. in. abs. } \tag{1}
\end{align*}
$$

The final rise in temperature t above $0^{\circ} \mathrm{C}$. will be given by

$$
800+15=54 \cdot 8\left(1+\frac{t}{273}\right)
$$

or

$$
\begin{aligned}
\frac{815}{54.8} & =1+\frac{t}{273} \\
t & =13.87 \times 273=3785^{\circ} \mathrm{C} .
\end{aligned}
$$

The final temperature is, then, $3785^{\circ} \mathrm{C}$. or $4058^{\circ} \mathrm{C}$. abs. From (1) it will be seen that, the volume being constant, the pressure is proportional to the absolute temperature, which at once suggests the much shorter solution :

As

$$
\begin{aligned}
p_{2} & =815 \mathrm{lb} \text {. per sq. in. absolute, } \\
p_{1} & =95 \quad " \quad \| \\
\text { 1 L.e. } \frac{v_{1}}{v_{2}} & =\frac{v_{0}\left(1+a t_{1}\right)}{v_{0}\left(1+a t_{2}\right)}=\frac{1+\frac{1}{2} t_{1} t_{1}{ }^{\circ} \mathrm{C}}{1+\frac{1}{2} \pi_{2}{ }^{\circ} \mathrm{C} .}=\frac{273+t_{1}}{273+t_{2}}=\frac{\mathrm{T}_{1}}{T_{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{T}_{1}=200+273=473^{\circ} \mathrm{C} . \text { abs. } \\
& \begin{aligned}
\mathrm{T}_{2}=\mathrm{T}_{1} \times \frac{p_{2}}{p_{1}}=473 \times \frac{815}{95} & =4058^{\circ} \mathrm{C} . \text { abs. } \\
& =3785^{\circ} \mathrm{C} .
\end{aligned}
\end{aligned}
$$

It will be noted that in the above working only ratios of pressures are involved, making it immaterial whether the unit is pounds per square inch or per square foot.

The constant-volume gas thermometer, which measures temperature in terms of the increase of pressure of certain gases when their volumes are kept constant, is used as the primary standard for defining temperatures. Nitrogen, hydrogen, and helium are generally used.

Combination of Laws of Boyle and Charles.-From Boyle's law $p \propto 1 / v$ when $\mathrm{T}=$ constant, and from Charles's law $p \alpha \mathrm{~T}$ when $v=$ constant.

If a given mass of gas changes from the initial conditions of p_{1}, v_{1}, and T_{1} to the final conditions of p_{3}, v_{3}, T_{3}, we can consider the change effected in two stages.
(1) The volume being maintained constant, the whole change of pressure is effected, after which T will have some intermediate value T_{2}, such that

$$
p_{1} / p_{3}=\mathrm{T}_{1} / \mathrm{T}_{2}
$$

(2) The pressure now being constant the change of volume is made, when

$$
v_{1} / v_{3}=\mathrm{T}_{2} / \mathrm{T}_{3}
$$

Multiplying these two equations $p_{1} v_{1} / p_{3} v_{3}=T_{1} / T_{3}$
or

$$
\frac{p_{1} v_{1}}{T_{1}}=\frac{p_{3} v_{3}}{T_{3}}
$$

or $p . v=R T$, where R is a constant depending on whether the Fahrenheit or Centigrade scale is used. ${ }^{1}$

For 1 lb . of dry air the numerical value of the constant R is 53.18 when T is measured on the Fahrenheit scale; it may be obtained as follows :

Consider 1 lb . of air at normal temperature and pressure (N.T.P.) : under these conditions the weight of $1 \mathrm{cu} . \mathrm{ft}$. of air is known to be 0.0807 lb ., hence the volume of 1 lb . is $1 / 0.0807$ or $12.391 \mathrm{cu} . \mathrm{ft}$.

Standard atmospheric pressure is 14.7×144 or 2116 lb . per sq. ft., and the normal temperature is $32^{\circ} \mathrm{F}$. or $492^{\circ} \mathrm{F}$. abs., hence,
as

$$
\begin{aligned}
\mathrm{R} & =\frac{p v}{\mathrm{~T}} \\
\mathrm{R} & =\frac{2116 \times 12.391}{492} \\
& =53.18 \mathrm{ft} . \mathrm{lb} . \text { per } \mathrm{lb} . \text { of air per }{ }^{\circ} \mathrm{F} .
\end{aligned}
$$

${ }^{1} \mathrm{R}$ always refers to unit mass of igas. If v refers to m pounde the conatant chould be taken as mR.

Avogadro's Law.-Equal volumes of all gases, measured at the same temperature and pressure, contain the same number of molecules.

From this statement it follows that the volumes occupied by the molecular weights of all gases will be constant.

For the gramme molecular weight this volume is 22.41 litres, or for the pound molecular weight $359 \mathrm{cu} . \mathrm{ft}$.

Dalton's Law.-The pressure exerted on the walls of the containing vessel by a mixture of gases which do not interact is equal to the sum of the pressures which would be exerted by the gases if they were present separately.
Joule's Law of Internal Energy, and the Specific Heat at Constant Volume.-If a given mass of gas is heated at constant volume, the energy supplied must be converted entirely into the form of internal energy, and give rise to an increase of temperature, the equation being $\delta \mathrm{H}=\mathrm{C}_{v} \delta \mathrm{~T}$, where C_{v} is the " specific heat at constant volume " and $\delta \mathrm{T}$ the increment of temperature.

Joule's Law of Internal Energy states that the internal energy of a given mass of gas is dependent upon its temperature only and is independent of the pressure or volume,
or
$\mathrm{C}_{v} \delta \mathrm{~T}$ is a function of T only, and $\mathrm{C}_{v}=$ constant.
The Specific Heat at Constant Pressure.-If a given quantity of gas is heated in such a way that its pressure remains constant, say in a cylinder closed by a piston the motion of which is resisted by a constant force, external work will be done by the expanding gas in moving the piston. The energy required to produce a rise of temperature from T_{1} to T_{2} will be greater than in the previous case by an amount equal to the heat equivalent to this work, and will be given by

$$
\begin{aligned}
\mathrm{C}_{p}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) & =\mathrm{C}_{v}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+p\left(v_{2}-v_{1}\right) / \mathrm{J} \\
& =\mathrm{C}_{v}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\frac{\mathrm{R}}{\mathrm{~J}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
\end{aligned}
$$

Hence C_{p}, the "Specific Heat at Constant Pressure," is constant, both C_{v} and R being constant. ${ }^{1}$ The ratio of the specific heats C_{p} / C_{v} is denoted by γ. It will be noted that a low value of γ indicates that the gas to which it applies has a relatively large capacity for storing internal energy.

The Meaning of \mathbf{R}, Volumetric Heat.-It will be seen from the above equation that if $\mathrm{T}_{2}-\mathrm{T}_{1}=1^{\circ}$, then

$$
\begin{equation*}
C_{p}=C_{v}+R / J \tag{1}
\end{equation*}
$$

[^3]and \mathbf{R} is then the external work done in foot-pounds by 1 lb . of gas expanding at constant pressure while its temperature is raised 1°; i.e. if the pressure of 1 lb . of air is one atmosphere (or $14.7 \times 144 \mathrm{lb}$. per sq. ft.) and its volume at $32^{\circ} \mathrm{F}$. is known to be 12.391 cu . ft., then, on heating through $1^{\circ} \mathrm{F}$. the volume will be increased by one part in 492 (see p. 4), or by 0.02514 cu . ft., and the work done will be $0.02514 \times 14.7 \times 144 \mathrm{ft} . \mathrm{lb}$. or 53.18 ft .-lb., as before. If the degree Centigrade is used, R is equal to 96 ft . lb .

For hydrogen having a density of 0.00559 lb . per cu . ft. or a specific volume of 175.8 cu . ft., the work done per degree F. is given by

$$
\mathrm{R}=\frac{175 \cdot 8}{460} \times 14.7 \times 144=758 \mathrm{ft} . \mathrm{lb}
$$

Equation (1) may also be written
or

$$
\begin{aligned}
& \frac{C_{p}}{\mathrm{C}_{v}}-1=\mathrm{R} / \mathrm{J} \cdot \frac{1}{\mathrm{C}_{v}} \\
& \gamma-1=\frac{\mathrm{R} / \mathrm{J}}{\mathrm{C}_{v}} \text { or } \mathrm{C}_{v}=\frac{\mathrm{R} / \mathrm{J}}{\gamma-1}
\end{aligned}
$$

For certain purposes it is convenient to consider the "volumetric heat," or the heat required to raise a stated volume of gas through one degree. The volume chosen may be either the "standard cubic foot" (i.e. a quantity occupying $1 \mathrm{cu} . \mathrm{ft}$. at N.T.P.) or the volume occupied by the "pound molecule" or " mol." (i.e. $359 \mathrm{cu} . \mathrm{ft}$.).

Now R is the work done when 1 lb . of gas has its temperature raised 1° at constant pressure. $R \times$ molecular weight will then be the corresponding work done by a quantity equal to the molecular weight in pounds, or, by Avogadro's law, by a quantity occupying $359 \mathrm{cu} . \mathrm{ft}$. at N.T.P. As the coefficient of expansion with temperature of all perfect gases is constant, it follows that $\mathrm{R} \times$ molecular weight is constant, or $\mathrm{R}=\mathrm{G} / m$, where " G " is the " Universal Gas Constant," and m is the pound molecular weight.

The numerical values of G are as follows:
2779 ft -lb. or $1.985 \mathrm{C} . \mathrm{H} . \mathrm{D}$. per degree C per pound molecule or 1543.9 ft .-lb. or 1.985 B .Th.U. per degree F $\} \quad 359 \mathrm{cu} . \mathrm{ft}$. at N.T.P. or 1.985 gramme calories per degree C. per gramme molecule or 22.41 litres at N.T.P.

-MOLECULAR THEORY

Though the above-mentioned "laws" and phenomena have been studied separately over a long period of years, it is now known that they can be related by a single theory. Only a general sketch of the theory is given here, but this is of interest as offering a means of correlation, and
as providing an explanation of the deviations from the original conceptions which are now known to occur.
It is assumed that all substances are composed of small moving particles or molecules which, for the present purpose, can be considered as tiny elastic spheres possessing mass, and therefore exhibiting mutual attraction. It is also assumed that temperature is a manifestation of, and is proportional to, the mean molecular kinetic energy of translation. (A molecule may also possess kinetic energy of rotation, but this is not exhibited as temperature.) ${ }^{1}$

In the solid state these molecules are drawn together by the forces of mutual attraction, but the gravitational bonds are strained by the jostling of the moving molecules against each other. The distances separating the molecules are insufficient to allow an interchange of positions, which are therefore permanently fixed and form a " space lattice."

As the temperature is raised the gravitational bonds will be further strained and the body as a whole will expand slightly. Conversely, a fall in temperature will be accompanied by contraction until finally, at the absolute zero of temperature, the molecules, having lost all their kinetic energy, will be drawn into a closely packed mass. External pressure, by restricting the range of movement of the molecules without reducing their velocities, and thereby increasing the number of molecular impacts of constant intensity, will produce elastic strain.

By supplying energy to the system when at a suitable temperature it is possible so to strain the gravitational bonds that the spaces separating the molecules increase and permit the passage of other molecules. The energy supplied will have been expended in the separation of the molecules and not in increasing their final translational energy or temperature, and will correspond to the " Latent Heat of Fusion."

The substance is now in the liquid state, the molecules being free to move among their fellows throughout the mass of the substance. They are still sufficiently close to each other to possess considerable gravitational adhesion, but the forces acting on any molecule will be in balance provided it is surrounded by other molecules. On reaching a boundary of the liquid the forces, now acting on one side of the molecule only, will tend to draw it again into the body of the liquid, giving the effect known as "surface tension."

Sufficient energy may be supplied to certain molecules to enable them to break the gravitational bonds entirely, as these decrease rapidly in strength with increasing distance and soon reach negligible proportions. These molecules will then escape from the surface and commence frec flight through the space offered by the containing vessel. The breaking of the bonds will absorb energy without causing an increase in the final molecular velocity, giving the phenomena of the " latent heat of evaporation."
These "gaseous" molecules will continue in rectilinear flight until

[^4]their directions are changed by impact with the walls of the vessel or with other molecules. The sum of the impact forces exerted by all the molecules striking a given area of wall at any instant will give the "pressure" exerted by the gas, and, in view of the enormous number of molecules always involved, ${ }^{1}$ and the frequency of the collisions, ${ }^{2}$ the pressure will be exerted uniformly in all directions. A similar pressure (see also p. 12) is exerted throughout the gas by the forces of mutual impact between the particles.

The addition of heat to the gas results in increased molecular energy, part at least of which will be translational and will consequently be manifest as a rise of temperature.

First Law of Thermodynamics.-This law is now only the obvious statement that energy can be transferred from one body to another by elastic impact, the bodies concerned being, say, the moving molecules of a gas and the moving piston in the cylinder in which it is contained.

Second Law of Thermodynamics.-This law follows from the hypothesis that the momenta of all molecules at the same temperature, whatever their mass, are constant. Were this not so then, if two gases having molecules of different masses were raised to the same temperature and then mixed without combination occurring, an interchange of energy would occur, resulting in a rise of temperature of one of the constituents and a fall of temperature of the other, a situation which, for a number of reasons, is impossible.

The second law is then equivalent to the statement that, upon elastic impact, the energy exchange is always from the body with the greater momentum (or temperature) to the body with the less. Energy from an external source may be employed to reverse the positions of the giving and receiving bodies, but only by increasing the energy (and therefore the temperature) of the latter.

Boyle's Law.-If a cylinder fitted with a moving piston contains a constant number of molecules, the pressure upon the walls at any instant is due to bombardment by those molecules which have just reached them at that time. If the temperature, and therefore the velocity of bombardment, is constant, a decrease of volume will cause a proportionate increase in the molecular density, and therefore of the number of molecules approaching any given area of wall at any instant, and the pressure upon the walls will increase accordingly.

Further consideration is given to this law on p. 12.
Charies's Law.-If, with the above apparatus, the piston is stationary, then increasing the temperature will increase the energy of the individual

[^5]molecules and produce increased pressure at each impact. The total pressure on a given area of surface can only be restored to its original value by a reduction of molecular density, that is by moving the piston outwards so that the volume occupied by the molecules is proportional to the temperature.

Avogadro's Law.-This follows from the facts that : (1) as the gases are at the same temperature, the molecular energies must be the same, or $\frac{1}{2} m v^{2}=\frac{1}{2} m^{\prime} v^{\prime 2}$, where m and m^{\prime} are the masses of the molecules of the two gases, and v and v^{\prime} their velocities; (2) as the pressures are equal the total forces of impact on unit area must be equal, or $m n v^{2}$ $=m^{\prime} n^{\prime} v^{\prime 2}$, where n and n^{\prime} are the numbers of molecules of each gas in unit volume.
(N.B.-The momentum of any molecule is the product $m v$, and the number of molecules reaching any portion of the wall in unit time will be proportional to the total number of molecules present and to their velocity. The pressure, which is proportional to the momentum reaching unit area of the wall in unit time, will then be given by $m n v^{2}$.)

Equations (1) and (2) can both be true only if $n=n^{\prime}$.
Dalton's Law.-It has been assumed that in the gaseous state the molecules are so far separated that mutual attractions are negligible. Each molecule will exert pressure on the walls as though the other molecules did not exist, and the total pressures exerted by the molecules of each gas can therefore be considered separately.

Joule's Law of Internal Energy.-As the internal energy of a gas is entirely in the form of molecular kinetic energy, which can be varied only by changes of velocity, that is of temperature, Joule's law follows as a matter of course. (This statement is not vitiated by the fact that the molecules may have rotational as well as translational energy.)

VARIATIONS FROM THE SIMPLE LAWS

Evaporation at Temperatures below the Boiling-Point.-The tendency of a liquid to evaporate at temperatures below the boiling-point is due to the fact that, under the influence of impact the velocity of any individual molecule is constantly changing, though the mean behaviour of the innumerable molecules in the mass is constant. Individual molecules may therefore receive sufficient energy to liberate them from the surface of the liquid, but this can only be done at the expense of the energy of molecules remaining therein. The "latent heat of evaporation" for these molecules is acquired from the molecules still in the liquid state, and the liquid is thereby cooled.

As the velocity of any individual molecule is constantly being changed by impact, the behaviour of a substance as a whole must be related, not
to the square of the translational velocity of any particular molecule, but to the mean square of the velocities of all the molecules.

The Value of " γ. ."-As previously stated, the value of the specific heat at constant pressure exceeds that for the specific heat at constant volume by the amount of external work performed when 1 lb . of the gas is heated through 1° at constant pressure. The ratio of the specific heats is therefore the ratio

$$
\frac{\text { energy absorbed internally }+ \text { energy absorbed externally }}{\text { energy absorbed internally }}
$$

and a low value of γ indicates that, of the total energy absorbed, a comparatively large proportion is absorbed internally.

On heating a gas with a complex molecular structure energy will be absorbed not only in increasing the translational velocity of the whole, which alone gives rise to the phenomena of temperature, but also in increasing the vibratory velocity of the particles making up the molecule. The total energy absorbed will be distributed between all the possible forms of motion, and the more complex the structure the greater will be the energy absorbed internally in increasing non-translational energy. The common gases can therefore be divided into groups according to their molecular structure as follows :

Monatomic gases, such as argon and helium, having a value of γ $=1.67$ approximately,

Diatomic gases, such as $\mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{~N}_{2}$, having a value of $\gamma=1.40$ approximately,

Triatomic gases, such as $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, having a value of $\gamma=1.33$ approximately.

Variations from the Gas Laws.-The molecular theory provides explanations for the known variations from the simple gas laws, which hold, for most gases, over a limited range only.
Consider the equation $p v=$ RT.
In deducing this equation it has been assumed that any gaseous molecule is free to travel throughout the space v, but this can only be so if the volume occupied by the molecules themselves is negligible. If " b " is the total volume of the molecules, the "free space" is not v but ($v-b$). At atmospheric pressure the volume " b " for steam is approximately $\frac{v}{1000}$, and may be taken, for present purposes, as equal to the volume of the water which could be obtained by condensation.

It has also been assumed that the pressure exerted on the walls of the vessel, as recorded by a "pressure gauge," is the same as that in the interior of the gas. This cannot be so as the molecules at the boundaries of the vessel are subject to molecular attraction on one side only, i.e. to a form of "surface tension " however small. (The attraction exerted by
the walls of the vessel can be shown not to affect the problem). The boundary pressure recorded is therefore less than the true internal pressure by an amount equal to this unbalanced molecular attraction. Now the mutual attraction between two bodies is proportional to the product of their masses, or, between two portions of a homogeneous fluid, to the square of the density, which, in turn, is inversely proportional to the square of the specific volume. The true pressure will therefore be equal to the recorded pressure plus a / v^{2}, where a is a constant.
$p v=$ RT should therefore be modified to read $\left(p+a / v^{2}\right)(v-b)=$ RT, a form due to Van der Waals.

It has so far been assumed also that the form of the molecules remains unchanged, but this is known not to be always so. In the case of steam the normal triatomic molecules of superheated steam tend to group themselves together as the temperature approaches that of condensation. There will therefore be a shrinkage or "defect of volume," due to " coaggregation," which is dependent on temperature. Callendar gives the equation for steam, corresponding to the perfect gas equation $p v=$ RT, as $v-b=\mathrm{RT} / \mathrm{P}-\mathrm{C}$, where C , the defect of volume, $=0.4213 \times\left(\frac{373 \cdot 1}{\mathrm{~T}}\right)^{\frac{10}{3}}$ $\mathrm{cu} . \mathrm{ft}$. per lb ., and " b " has the value ascribed to it earlier in this section. Still more accurately the equation is given by

$$
v-b=\frac{\mathrm{RT}}{a \mathrm{P}}-\frac{\mathrm{C}}{1-\mathrm{Z}^{2}}
$$

where Z is a function of P / T, as coaggregation will increase with P and be inversely proportional to T. This last equation covers with great accuracy a very wide range of conditions including the critical.

The Specific Heat of Water.-A somewhat similar allowance is found in the most recent equation for the total heat of water, for which the simple relation $h=\mathrm{S}_{0}\left(\mathrm{~T}-32^{\circ}\right)$ is known not to have a high degree of accuracy. The molecules of water, though retaining the constant ratio of $2: 1$ between the numbers of atoms of hydrogen and oxygen, are known to form large and very openly spaced groups or compound molecules, 1 into the cavities of which the much smaller gaseous molecules can enter and remain " in solution." These latter will retain their latent beat, and the heat of the whole will be given by

$$
h=\mathrm{S}_{0}(\mathrm{~T}-32)+\frac{v \mathrm{~L}}{\mathrm{~V}-v}
$$

the second term indicating that the water contains its own volume v of steam in solution, which now contributes the fraction $\frac{v}{\mathrm{~V}-v}$ of latent heat, where V is the specific volume of steam at the temperature T .
${ }^{1}$ Callendar. Thomas Hawkaley Lecture, Proc.Inst.Mech.E. Nov. 1929. The reduced density of water below $4^{\circ} \mathrm{C}$. is due to a change in the structure of the compound molecule, which then sssumes a more open form.

Chapter II

LAWS OF EXPANSION AND COMPRESSION

-WORK DONE BY A GAS DURING EXPANSION

Isothermal or Constant Temperature Expansion.-The law of the curve of isothermal expansion is derived from the formula $p v=R T$, or, in general, $p v=k$, where k is a constant depending on the temperature and v and R refer to 1 lb . of gas.

Suppose the expansion to take place from the initial state p_{1}, v_{1}, and T to the final state p_{2}, v_{2}, and T.

For a small change in volume δv during which the average pressure is p, the work done is given by

$$
\delta W=p \times \delta v \text { (see Fig. 1) }
$$

Let W denote the work done during the expansion, then, integrating se that $d v$ is $+{ }^{*}$

And since

$$
\begin{aligned}
\mathrm{W} & =\int_{v_{1}}^{v_{2}} p d v . \\
p v & =\mathrm{RT} \\
p & =\frac{\mathrm{RT}}{v} .
\end{aligned}
$$

Therefore
or

$$
\begin{aligned}
& \mathrm{W}=\int_{v_{1}}^{v_{2}} \frac{\mathrm{RT}}{v} d v=\mathrm{RT}\left[\log _{\epsilon} v\right]_{v_{1}}^{v_{2}}=\mathrm{RT} \log _{\epsilon} \frac{v_{2}}{v_{1}} \\
& \mathrm{~W}=p_{1} v_{1} \log _{\epsilon} \frac{v_{2}}{v_{1}} \text { or } \mathrm{RT} \log _{\epsilon} \frac{v_{2}}{v_{1}}
\end{aligned}
$$

which may be written,

$$
\mathrm{W}=p_{1} v_{1} \log _{e} r \text { or } \mathrm{RT} \log _{e} r,
$$

where r is the ratio of expansion, i.e. $\frac{\text { final volume }}{\text { initial volume }}$. The curve $p v=R T$ is a rectangular hyperbola and symmetrical with regard to the axes of p and $v .1$

The work done by the gas during expansion is equal to the work which would be done on the gas during compression, provided that the laws of expansion and compression were the same.
The General Case of Expansion.-In general, a gas will expand according to the law $p v^{n}=$ constant, and a change of temperature will occur. (Isothermal expansion is a special case where $n=1$, and T con-

1 It ahould be noted that only in the case of a perfect gas is a hyperbolic compression necessarily isothermal. See p. 170.
stant, necessitating logarithmic integration.) Let the law of expansion be $p v^{n}=k$, the initial state p_{1}, v_{1}, and T_{1}, and the final state p_{2}, v_{2}, and T_{2}.
Then, as before,

$$
\begin{align*}
\mathrm{W} & =\int_{v_{1}}^{v_{2}} p \cdot d v \\
p & =k / v^{n} \\
\therefore \mathrm{~W} & =\int_{v_{1}}^{v_{2}} \frac{k}{v^{n}} d v \\
& =k\left[\frac{1}{1-n} \cdot v^{1-n}\right]_{v_{1}}^{v_{2}} \\
& =\frac{k}{1-n}\left\{v_{2}^{1-n}-v_{1}^{1-n}\right\} \\
& =\frac{p_{1} v_{1}^{n}}{1-n}\left\{v_{2}^{1-n}-v_{1}^{1-n}\right\} \tag{1}
\end{align*}
$$

and since $p_{1} v_{1}^{n}=p_{2} v_{2}^{n}$, equation (1) becomes

$$
\begin{equation*}
\mathrm{W}=\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1} \tag{2}
\end{equation*}
$$

Fig. 1.

Fig. 2.

Also, for a perfect gas, $p v=\mathrm{RT}$, and (2) may be written

$$
\begin{equation*}
\mathrm{W}=\frac{R \mathrm{~T}_{1}-\mathrm{RT}_{2}}{n-1} \text { or } \frac{\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{n-1} \tag{3}
\end{equation*}
$$

where $T_{1}-T_{2}$ is the change of temperature.
If, in Fig. 2, $a b, c d$, etc., are a series of expansion curves having the same value of " n," and $g h, i j$, etc., are a series of isothermals at temperatures T_{1}, T_{2}, T_{3}, etc., such that $T_{1}-T_{2}=T_{2}-T_{3}=T_{3}-T_{4}$, then the
areas shown shaded, representing the work done during expansions over equal temperature ranges, but from different initial temperatures, are all equal. The figure is not to scale.
The expression for work done may be put in several forms, as follows :
From equation (1)

$$
\begin{align*}
\mathrm{W} & =\frac{p_{1}}{1-n}\left\{v_{1}^{n} \times v_{2}^{1-n}-v_{1}\right\} \\
& =\frac{p_{1} v_{1}}{1-n}\left\{v_{1}^{n-1} \times v_{2}^{1-n}-1\right\} \\
& =\frac{p_{1} v_{1}}{1-n}\left\{\left(\frac{v_{1}}{v_{2}}\right)^{n-1}-1\right\} \\
\mathrm{W} & =\frac{p_{1} v_{1}}{n-1}\left\{1-\left(\frac{v_{1}}{v_{2}}\right)^{n-1}\right\} . \tag{4}
\end{align*}
$$

or
an expression in terms of the volume ratio.
Again,

$$
\begin{align*}
p_{1} v_{1}^{n} & =p_{2} v_{2}^{n} \\
\left(\frac{v_{1}}{v_{2}}\right)^{n} & =\frac{p_{2}}{p_{1}} \tag{5}
\end{align*}
$$

Substituting (5) in (4), we have-

$$
\begin{equation*}
\mathrm{W}=\frac{p_{1} v_{1}}{n-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right\} \tag{6}
\end{equation*}
$$

an expression in terms of the pressure ratio.
Again, since for a perfect gas, $p v=\mathrm{RT}$ or $\frac{p v}{\mathrm{~T}}=\mathrm{R}$

$$
\frac{p_{1} v_{1}}{T_{1}}=\frac{p_{2} v_{2}}{T_{2}}
$$

or

$$
\begin{equation*}
\frac{p_{2} v_{2}}{p_{1} v_{1}}=\frac{T_{2}}{T_{1}} \tag{7}
\end{equation*}
$$

Substituting from (5) in (7) gives

$$
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{n} \times \frac{v_{2}}{v_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{n-1}
$$

and substituting in (4) gives

$$
\mathrm{W}=\frac{p_{1} v_{1}}{n-1}\left(1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)
$$

an expression in terms of the temperature ratio.
Note also that

$$
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{p_{2}}{p_{1}} \times\left(\frac{p_{1}}{p_{2}}\right)^{1 / n}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}
$$

If all pressures are measured in pounds per square foot, and all volumes in cubic feet, the work done as calculated from either (2), (4), or (6) will be in foot-pounds.

The form given by equation (2) is that most generally used.
${ }^{1}$ Example.-One cu. ft. of gas at a pressure of 300 lb . per sq. in. absolute expands to 60 lb . per sq. in. absolute, the law of expansion being $p v^{12}=$ constant. Find the volume at the end of the expansion, and the work done during expansion.

Now

$$
\begin{aligned}
p_{1} v_{1}^{1 \cdot 2} & =p_{2} v_{2}^{1 \cdot 2} \\
v_{2}^{1 \cdot 2} & =\frac{p_{1}}{p_{2}} v_{1}^{1 \cdot 2}=\frac{300}{60} \times 1^{1 \cdot 2}=5 \\
1 \cdot 2 \log v_{2} & =\log 5 \\
v_{2} & =3 \cdot 823 \mathrm{cu} . \mathrm{ft} .
\end{aligned}
$$

from which
Work done

$$
\begin{aligned}
=\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1} & =\frac{144(300 \times 1-60 \times 3.823)}{1 \cdot 2-1} \\
& =50,820 \mathrm{ft} . \mathrm{lb} .
\end{aligned}
$$

The work done might also be found without calculating v_{2} by using equation (6), i.e.-

$$
\begin{aligned}
\mathrm{W} & =\frac{p_{1} v_{1}}{n-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right\} \\
& =\frac{300 \times 144 \times 1}{0 \cdot 2}\left\{1-\left(\frac{1}{5}\right)^{\frac{0 \cdot 2}{1 \cdot 2}}\right\} \\
& =216,000\left\{1-\left(\frac{1}{5}\right)^{\frac{1}{6}}\right\} \\
& =50,820 \mathrm{ft} .-\mathrm{lb} . \text { as before. }
\end{aligned}
$$

Adiabatic Expansion.-When a gas expands without either receiving heat from or rejecting heat to any external body, as in a perfectly insulated cylinder, the work done must be performed at the expense of the internal energy of the gas, which in consequence becomes cooler.

In general

$$
\mathrm{W}=\frac{\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{n-1} \mathrm{ft} . \mathrm{lb} .
$$

Now if the gas changes in temperature from T_{1} to T_{2} its internal energy is diminished by the amount

[^6]by the amount
\[

$$
\begin{gathered}
\mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \text { or, as } \mathrm{C}_{v}=\frac{\mathrm{R} / \mathrm{J}}{\gamma-1}, \\
\frac{\mathrm{R} / \mathrm{J}}{\gamma-1}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)
\end{gathered}
$$
\]

Hence equating the loss of internal energy to the work done, the condition for adiabatic expansion is secured when

$$
\frac{\mathrm{R} / \mathrm{J}}{\gamma-1}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)=\frac{\mathrm{R} / \mathrm{J}}{n-1}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)
$$

that is when $n=\gamma$.
Hence the expansion or compression will be adiabatic when

$$
p v^{\prime} \gamma=\text { constant }
$$

Example.-One lb . of dry air (volume $12.39 \mathrm{cu} . \mathrm{ft}$.) at atmospheric pressure requires compressing to a pressure of 200 lb . per sq. in. abs. What will be the saving if the air is compressed isothermally instead of adiabatically ?
(1) Isothermal compression.-

$$
p_{1} v_{1}=p_{2} v_{2} \quad \therefore v_{2}=\frac{p_{1} v_{1}}{p_{2}}=\frac{14.7 \times 12.39}{200}=0.91 \mathrm{cu} . \mathrm{ft} .
$$

Work done on the gas $=p_{1} v_{1} \log g\left(\frac{v_{1}}{v_{2}}\right)$

$$
\begin{aligned}
& =144 \times 14.7 \times 12.39 \log _{\mathrm{c}} \frac{12.39}{0.91} \\
& =144 \times 14.7 \times 12.39 \log _{e} 13.6 \\
& =2116 \times 12.39 \times 2.607 \\
& =68,320 \mathrm{ft} . \mathrm{lb} .
\end{aligned}
$$

(2) Adiabatic compression.-Using equation (6)

$$
\begin{aligned}
\mathrm{W}=\frac{2116 \times 12.39}{1 \cdot 4-1}\left\{1-13 \cdot 6^{\frac{0.4}{1 \cdot 4}}\right\} & =\frac{2116 \times 12.39}{0.4}\{1-2 \cdot 108\} \\
& =-72,630 \mathrm{ft} .-\mathrm{lb}
\end{aligned}
$$

The negative sign simply means that work is done on the gas. Hence, by compressing isothermally we save $72,630-68,320=4400 \mathrm{ft}$.-lb.

Example.-The temperature of 1 lb . of air is observed to fall from $600^{\circ} \mathrm{F}$. to $300^{\circ} \mathrm{F}$. while it expands adiabatically, doing $39,445 \mathrm{ft}$ - lb . of work. Find C_{v} and C_{p}.
Since the expansion is adiabatic, no heat is supplied to or taken away
from the air during the process. Hence the work done will be equivalent to the loss of internal energy during the expansion, namely
$\mathrm{C}_{0} \times$ (fall in temperature) heat units.
Expressing both quantities in heat units we have

$$
\begin{aligned}
& \mathrm{C}_{v}(600-300)=\frac{39,445}{778} \\
& \mathrm{C}_{v}=\frac{39,445}{778 \times 300}=0.169 \text { B.Th.U. per lb. }
\end{aligned}
$$

Now
hence

$$
\frac{C_{p}}{C_{v}}=1.4 \text { for air (p. 12) }
$$

$$
\mathrm{C}_{p}=0.169 \times 1.4=0.237 \text { B.Th.U. per lb. }
$$

-GENERAL CASE OF EXPANSION OR COMPRESSION

Changes of pressure and volume, however produced, can be reproduced by the use of adiabatic and isothermal processes only ; i.e. the expansion from a to b (see Fig. 3) can be effected in two stages: (1) by adiabatic

Fig. 3a

Volume
Fig. 3.
expansion from a to c over the full temperature range, and (2) from c to b by isothermal expansion.

By increasing the number of stages in the manner shown in Fig. 3a, the area beneath the curve $a b$ can be simulated to any required degree of accuracy.

This method of substitution is often of value when making calculations.

*FORMULE FOR COMPRESSION

The formule for compressions are identical with the corresponding formulæ for expansions. It should be noted, however, that p_{1} refers to the higher pressure, i.e. the final pressure during compression and the initial pressure during expansion. The areas then representing W are then $+{ }^{v e}$ in both cases, though during compression work is done on the gas, and during expansion it is performed by the gas.

"HEAT RECEIVED OR REJEGTED DURING AN EXPANSION OF THE FORM $p v^{n}=$ CONSTANT

If a gas expands according to the law $p v^{n}=$ constant, when n is not equal to γ, the heat received or rejected can be calculated as follows. Let p_{1}, v_{1}, and T_{1} be the initial conditions, and p_{2}, v_{2}, and T_{2} the final conditions.

From the law of the conservation of energy we have
Heat received $=$ work done + increase of internal energy,
or

$$
\begin{equation*}
\mathrm{H}=\frac{\mathrm{W}}{\mathrm{~J}}+\Delta \mathrm{E} \tag{1}
\end{equation*}
$$

But

$$
\begin{aligned}
\Delta \mathrm{E}=\mathrm{C}_{v}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=-\mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) & =-\frac{\mathrm{R} / \mathrm{J}}{\gamma-1}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \\
& =-\frac{p_{1} v_{1}-p_{2} v_{2}}{\mathrm{~J}(\gamma-1\rangle} .
\end{aligned}
$$

Also

$$
\begin{align*}
& \frac{\mathrm{W}}{\mathrm{~J}}=\frac{p_{1} v_{1}-p_{2} v_{2}}{\mathrm{~J}(n-1)} \\
& \mathrm{H}=\frac{p_{1} v_{1}-p_{2} v_{2}}{\mathrm{~J}(n-1)}-\frac{p_{1} v_{1}-p_{2} v_{2}}{\mathrm{~J}(\gamma-1)} \\
&=\left(p_{1} v_{1}-p_{2} v_{2}\right)\left(\frac{1}{n-1}-\frac{1}{\gamma-1}\right) \times \frac{1}{\mathrm{~J}} \\
&=\frac{p_{1} v_{1}-p_{2} v_{2}}{\mathrm{~J}(n-1)} \times \frac{\gamma-n}{\gamma-1} \\
&=\text { heat equivalent of work done } \times \frac{\gamma-n}{\gamma-1} \tag{2}
\end{align*}
$$

Example.-Ten cu. ft. of air at 90 lb . per sq. in. abs. and at $65^{\circ} \mathrm{F}$. are expanded to four times the original volume, the law of expansion being $p v^{125}=$ constant. Given $\mathrm{C}_{v}=130.3 \mathrm{ft} .-\mathrm{lb}$. per lb ., and $\mathrm{C}_{p}=$ $183.4 \mathrm{ft} .-\mathrm{lb}$. per lb. : find-
(1) The temperature of air at the end of expansion.
(2) The work done in ft.-lb.
(3) The amount of heat which must have been given by, or been rejected to, an external source during the cycle.
(1)

$$
\begin{aligned}
& \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{1.25-1}=\left(\frac{1}{4}\right)^{\frac{1}{4}}=\left(\frac{1}{2}\right)^{\frac{1}{2}}=\frac{1}{\sqrt{2}}=0.707 \\
& \therefore \mathrm{~T}_{2}=0.707 \mathrm{~T}_{1}=0.707(65+460) \\
& =0.707 \times 525=371.2^{\circ} \mathrm{F} \text {. absolute } \\
& \therefore t_{2}{ }^{\circ} \mathrm{F} .=371 \cdot 2-460=-88 \cdot 8^{\circ} \mathrm{F} .=\text { temperature of air at the } \\
& \text { end of expansion. }
\end{aligned}
$$

(2) Now $p_{1} v_{1}^{1 \cdot 25}=p_{2} 1_{2}^{1 \cdot 25}$

$$
\begin{aligned}
\therefore p_{2}=p_{1} \times\left(\frac{v_{1}}{v_{2}}\right)^{1 \cdot 25} & =90 \times\left(\frac{1}{4}\right)^{\frac{5}{4}} \\
& =90 \times(0.707)^{5}=15.84 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

\therefore Work done $\mathrm{W}=\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}$

$$
\begin{aligned}
& =144 \cdot \frac{90 \times 10-15.84 \times 40}{0.25} \\
& =576 \times(900-633.6)=576 \times 266.4=153,446 \mathrm{ft} . \mathrm{lb}
\end{aligned}
$$

(3) From equation (2), p. 20, heat given to air $=H=\frac{W}{J} \cdot \frac{\gamma-n}{\gamma-1}$

$$
\begin{aligned}
& =153,446 \times \frac{1 \cdot 4-1.25}{1 \cdot 4-1} \times \frac{1}{778} \\
& =73.9 \text { B.Th.U. } .
\end{aligned}
$$

- EFFECT OF n ON THE SLOPE OF THE EXPANSION OR COMPRESSION CURVE

The slope of the curve is given by $\frac{d p}{d v}$, and since $p v^{n}=k$,

$$
p=\frac{k}{v^{n}}
$$

and

$$
\frac{d p}{d v}=-\frac{k n}{v^{n+1}}=-\frac{n p}{v} .
$$

From this expression we see that as n increases, $\frac{d p}{d v}$ increases also, the effect on the slope of the curve being as shown in Fig. 4.

Fig. 4.

-RATE OF HEAT RECEPTION OR REJECTION ASSUMING CONSTANT SPECIFIC HEATS

Let $d p$ be an indefinitely small change of pressure accompanying an indefinitely small change in volume $d v$. Then $\frac{d p}{d v}$ is the rate of change of pressure with respect to volume.

Also, if $d \mathrm{H}$ be the small quantity of heat given to the gas during the above small changes of pressure and volume, and $d T$ the corresponding small change in temperature, then $\frac{d \mathrm{H}}{d v}$ will represent the rate at which the expanding gas receives heat per unit change in volume.
The required result may be obtained directly from equation (2), p. 20, of last section by differentiation, i.e. for a small change of volume $d v$ the work done is $p . \delta v$
or

$$
\delta \mathrm{H}=\frac{\gamma-n}{\gamma-1} p \delta v / \mathrm{J}
$$

Hence

$$
\begin{equation*}
\frac{d \mathrm{H}}{d v}=\frac{\gamma-n}{\gamma-1} p / \mathrm{J} \tag{1}
\end{equation*}
$$

Now $\frac{d \mathrm{H}}{d v}$ represents the rate of heat reception per unit change in volume, hence the rate of heat reception per second will be given by $\frac{d \mathrm{H}}{d v} \times$ volume swept out by piston in cubic feet per second.
If n is less than γ, the rate of heat reception $\frac{d \mathrm{H}}{d v}$ will be positive; whereas if n is greater than γ, the rate of reception $\frac{d \mathrm{H}}{d v}$ will be negative. Hence, if the expansion curve is less steep than the adiabatic, the gas is receiving heat during the expansion; but if the curve is steeper than the adiabatic, i.e. if n is greater than γ, the gas is losing heat. If the expansion is isothermal ($n=1$) the heat received is equal to the thermal equivalent of the work.

If the gas is compressed isothermally, an amount of heat equal to the work done on the gas must be rejected, and, if the gas is being compressed and n is less than γ, the rate of heat rejection will be positive, i.e. heat must be taken from the gas. If, however, n is greater than γ the rate of heat rejection will be negative, and the gas will be receiving heat during the compression.

Heat may be lost during expansion or compression by heat flow through the walls or ends of the vessel containing the gas, i.e. to the "cooling water " of a petrol engine. The reception of heat during a change of volume may be either through the cylinder walls, as in the case of a " steam-jacketed" cylinder of a steam engine, or by the generation of heat within the cylinder, as in the case of delayed combustion in an "internal combustion engine." An approximate analysis of the heat losses or gains during expansion or compression in an actual engine can readily be made from a study of the "indicator card" (see p. 175).

Example.-If at a point of an expansion curve for air the pressure is 85 lb . per 8 q . in. (gauge) and the value of n is (a) $1 \cdot 28$, (b) $1 \cdot 50$, find the volumetric rate of heat reception or rejection.

Equation (1) gives

$$
\begin{aligned}
\frac{d \mathrm{H}}{d v} & =p / \mathrm{J} \frac{\gamma-n}{\gamma-1} \\
& =\frac{(85+15) \times 144}{778} \times \frac{1 \cdot 4-n}{0.4}
\end{aligned}
$$

In case (a)

$$
\frac{d \mathrm{H}}{d v}=\frac{100 \times 144}{778} \times \frac{0.12}{0.4}=5.56 \text { B.Th.U. per cu. ft. }
$$

In case (b)

$$
\frac{d \mathrm{H}}{d v}=\frac{100 \times 144}{778} \times-\frac{0.1}{0.4}=-4.63 \text { B.Th.U. per cu. ft. }
$$

In the former heat is received, in the latter it is rejected.

If the volume is changing at the rate of $10 \mathrm{cu} . \mathrm{ft}$. per minute the heat interchanges will be at the rate of 55.6 and -46.3 B.Th.U. per minute.

*COLLECTION OF THE FORMUL/E PROVED ABOVE

$$
\begin{equation*}
\mathrm{C}_{v}=\mathrm{C}_{p}-\frac{\mathrm{R}}{\mathrm{~J}}=\frac{\mathrm{R} / \mathrm{J}}{\gamma-1} \tag{1}
\end{equation*}
$$

For isothermal or hyperbolic expansion,

$$
\begin{align*}
& p v=\text { constant } \tag{2}\\
& \mathrm{W}=p_{1} v_{1} \log _{\epsilon} r \tag{3}
\end{align*}
$$

and
For expansion other than isothermal

$$
\begin{align*}
& p v^{n}=\text { constant } \tag{4}\\
& \frac{p_{2}}{p_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{n} \tag{5}\\
& \frac{v_{2}}{v_{1}}=\left(\frac{p_{1}}{p_{2}}\right)^{1 / n} \tag{6}\\
& \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{n-1} \quad \text { or } \quad\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}} \text {. } \tag{7}\\
& \mathrm{W}=\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1} \tag{8}\\
& =\frac{p_{1} v_{1}}{n-1}\left\{1-\left(\frac{v_{1}}{v_{2}}\right)^{n-1}\right\} \tag{9}\\
& =\frac{p_{1} v_{1}}{n-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right\} \tag{10}\\
& =\frac{p_{1} v_{1}}{n-1}\left\{1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right\} \tag{11}\\
& \mathrm{H}=\frac{\text { work done }}{\mathrm{J}} \times \frac{\gamma-n}{\gamma-1} \tag{12}\\
& \frac{d \mathrm{H}}{d v}=p / \mathrm{J} \frac{\gamma-n}{\gamma-1} . \tag{13}
\end{align*}
$$

For adiabatic expansion the value $n=\gamma$ is inserted in equations (4) to (11), and the values of H and $\frac{d \mathrm{H}}{d v}$ are zero (equations (12), (13)).

Example.-If $1 \mathrm{cu} . \mathrm{ft}$. of air, at 100 lb . per sq. in. pressure (abs.), expands adiabatically, find the work done if the volume, pressure, and temperature ratios are successively equal to 2:1.

```
From equation (9)
\[
\begin{aligned}
\mathrm{W} & =\frac{100 \times 144 \times 1}{1 \cdot 4-1}\left\{1-\left(\frac{1}{2}\right)^{0.4}\right\} \\
& =36,000(1-0.7585) \\
& =8780 \mathrm{ft} . \mathrm{lb} .
\end{aligned}
\]
```

From equation (10) $W=36,000\left(1-0.5^{\frac{0.4}{14}}\right)$

$$
=36,000(1-0.767)
$$

$$
=8385 \mathrm{ft} . \mathrm{lb} .
$$

From equation (11) $\mathrm{W}=36,000\left(1-\frac{1}{2}\right)$

$$
=18,000 \mathrm{ft} .-\mathrm{lb}
$$

EXAMPLES ON CHAPTER II

1. Find the volume of 3 lb . of air when at a pressure of 70 lb . per sq. in. abs. and at a temperature of $75^{\circ} \mathrm{F}$. [Take $\mathrm{C}_{\boldsymbol{p}}=183.4 \mathrm{ft} .-\mathrm{lb}$. and $\mathrm{C}_{v}=130 \cdot 2 \mathrm{ft}$. lb .]
2. If 1 lb . of air at $32^{\circ} \mathrm{F}$. has its volume doubled at constant atmospheric pressure, what is its final temperature? How much external work is done during the expansion and how much heat must be supplied during the expansion ? [$\mathrm{C}_{p}=0.2375$ B.Th.U.]
3. A cylinder contains 0.5 cu . ft. of gas at 15 lb . per sq. in. abs. Find the work expended in compressing it to a pressure of 90 lb . per sq. in. abs., the law of compression being $p v^{1.35}=$ constant.
4. The area of an engine piston is 100 sq . in. If the length of cylinder occupied by gas is 18 in . when the pressure is 120 lb . per sq. in. abs., find the work done by the gas in driving the piston through a distance of 2 ft . Take the law of expansion $2: p^{1 \cdot 5}=$ constant.
5. Find the work done by the gas in Question 4, if the gas is kept at constant temperature during the expansion.
6. In a gas engine cylinder 5 cu . ft. of gas and air at 14.7 lb . per sq. in. abs. are compressed into a clearance space of $1 \mathrm{cu} . \mathrm{ft}$. If the compression is adiabatic, (a) what is the pressure at the end of the compression stroke ? and (b) how many foot-pounds of work must be expended in the compression of the charge ? [$\gamma=1.4$.]
7. If 0.1 lb . of gas occupying 0.5 cu . ft . is expanded in a cylinder at a constant pressure of 150 lb . per sq.in. abs. until its volume is $1 \mathrm{cu} . \mathrm{ft}$., and is then expanded adiabatically to $5 \mathrm{cu} . \mathrm{ft}$., find the temperature of the gas, (a) at the end of the constant pressure stage, (b) at the end of the adiabatic expansion, and calculate the heat expended and the work done during each portion of the process. [Take $\mathrm{C}_{\boldsymbol{p}}=198 \mathrm{ft} .-\mathrm{lb}$. per ${ }^{\circ} \mathrm{F}$. and $\mathrm{C}_{v}=144 \mathrm{ft} .-\mathrm{lb}$. per $\left.{ }^{\circ} \mathrm{F}.\right\rfloor^{\circ}$
8. The temperature of the mixture of gas and air in a gas engine at the end of the admission stroke is $90^{\circ} \mathrm{F}$. and the pressure 15 lb . per sq. in. abs. The clearance volume is 4.6 cu . ft ., and the total volume of clearance plus piston displacement is $12 \mathrm{cu} . \mathrm{ft}$. Assuming adiabatic compression $p v^{1 \cdot 4}=$ constant, determine the temperature at the end of the compression stroke.
If the pressure after ignition is 240 lb . per sq. in., find the temperature in the cylinder.
9. In a certain oil engine the piston displacement is 0.395 cu . ft ., the volume of the clearance space 0.210 cu . ft., and the pressure of the charge at the instant compression begins is 13 lb . per sq. in. abs. Find the compression pressure and the temperature reached at the end of the compression stroke if the temperature of the charge at the beginning of compression is $260^{\circ} \mathrm{F}$. Assume the law of compression to be $p \boldsymbol{1}^{1 \cdot 39}=$ constant.
10. If 20 cu . ft. of dry air are compressed adiabatically from 15 lb . per aq. in. abs. and $60^{\circ} \mathrm{F}$. to 225 lb . per sq. in. abs., find the temperature after the compression and the work expended. [Take $\gamma=1$ 14.]
11. If 13 cu . ft. of air at $60^{\circ} \mathrm{F}$. and 200 lb . per sq. in. abs. are expanded to a pressure of 25 lb . per sq. in. absolute, calculate the final volume and the work done during the expansion (a) if the expansion is isothermal, (b) if the expansion is adiabatic.
12. The law of the expansion curve of a gas engine indicator diagram is found to be pe1.57 meconstant. Assuming $\frac{C_{p}}{C_{v}}=1.37$ find the rate of heat reception $\frac{d H}{d v}$. If the law of the compression curve is $p \boldsymbol{e r}^{1 \cdot 25}=$ constant, what is the rate of heat reception during compression? If the piston sweeps at $600 \mathrm{cu} . \mathrm{ft}$. per minute when the pressure on the expansion curve is 150 lb . per sq. in. abs., what is the rate of heat reception per second at this instant ?
13. Air at 15 lb . per sq. in. abs. is drawn into a cylinder and compressed adiabatically to 135 lb . per sq. in. abs., and is then expelled at this pressure into a receiver; its original temperature was $50^{\circ} \mathrm{F}$. In the receiver the compressed air cools to $50^{\circ} \mathrm{F}$., and in order to maintain a uniform pressure in the receiver an equal weight of compressed air is drawn off constantly and expanded isothermally down to 15 lb . per sq. in. abs. Calculate (a) the work spent per cubic foot of air in the compressor; (b) the work done per cubic foot of air in expanding ; (c) the temperature of the air as it enters the receiver.
14. If 1 lb . of air occupying 3 cu . ft. at $15,950 \mathrm{lb}$. per sq. ft ., and absolute temperature 900° F., expands at constant temperature to a volume of $12 \mathrm{cu} . \mathrm{ft}$., find its pressure after expansion, and the heat taken in.
15. If 42.46 cu . ft . of air at 676 lb . per sq. ft . pressure and absolute temperature $539^{\circ} \mathrm{F}$., be compressed isothermally to 10.62 cu . ft., what is its pressure after compression, the work done on it, and the hear removed?

Chapter III

THEORETICAL HEAT ENGINE CYCLES

*GENERAL STATEMENT

The object of a heat engine is to convert heat energy into mechanical energy. For this purpose a "working fluid " at a high temperature and pressure is expanded, generally behind a moving piston in a cylinder, during which process work is done on the flywheel or other parts of the plant at the expense of the energy of the fluid.

As will be seen later, only a portion of the energy of the working flund can be converted into mechanical energy, that which remains unconverted, a residue of the process, having to be discharged to some other body (normally to the air or to cooling or "condensing" water). During this process the working fluid either contracts in volume or suffers a fall of pressure.

During the final operations of the cycle the fluid is restored to its original conditions of pressure, volume, and temperature at the expense of the energy already stored in the flywheel, and by the addition of heat. The cycle is then said to be " closed."

In most practical engines the working fluid undergoes some of the necessary processes during a temporary withdrawal from the cylinder, as is the case with steam engines; in others, i.e. internal combustion engines, it is more convenient to substitute a fresh supply of working fluid at some point in each cycle rather than re-condition the old. Such variations, however, are made for convenience and do not radically affect the main problem. In the steam turbine the energy liberated during expansion is expended in creating a high velocity of the steam itself, the kinetic energy of the steam being subsequently transferred to the turbine rotor and shaft. The replacement of the " moving piston" by " moving steam " causes no fundamental alteration to the problem, however.

Three organs are therefore essential : (1) a "hot body" or source of heat, (2) a "cold body" to which unconverted thermal energy can be discharged, and (3) a "working fluid" which returns at the end of each cycle to ite original condition.

The principal processes of thermodynamic interest through which the working fluid can pass are as follows :
(1) adiabatic expansion and compression ;
(2) heat reception or rejection at constant temperature (isothermal expansion and compression);
(3) heat reception or rejection at constant volume ;
(4) heat reception or rejection at constant pressure.

In practice the processes are usually complex, but the actual conditions will be discussed separately in later chapters

A complete cycle built up from such processes can be represented by a graph plotted with any two of the factors of state as ordinates. Pressure and volume are most commonly chosen, and a graph using these ordinates is known as the " Theoretical Indicator Card."

-GRAPHICAL REPRESENTATION OF WORK DONE DURING A "CLOSED GYCLE" OF OPERATIONS

Let Fig. 5 represent the pressure-volume diagram, having ordinates representing the pressures of the working fluid, and abscisse the volumes.

Fig. 5.
The distance OE represents the initial volume of the working fluid, and EA the initial pressure. When the fluid expands along any curve such as ABC to a volume OF and pressure FC , the area under this curve, EABCF, will represent the work done by the fluid during the expansion. If p is measured in pounds per square foot and v is in cubic feet, the work done will be measured in foot-pounds.

Let compression then take place along the curve CDA, till the working fluid is in its original condition of pressure, volume, and temperature. The work done on the fluid will now be represented by the area EADCF.

The net amount of work done by the fluid is therefore the area ABCD.
For any small change of volume during which the pressure may be considered constant, the work done is equal to $p \delta v$ or $p \times A \times \delta l$, where A is the area of the piston and δl the small distance travelled by it. It should be noted that if p is in pounds per square foot and \mathbf{A} is in square feet, the total pressure on the piston is $p \times \mathrm{Alb}$, and is the same as if p had been in pounds per square inch and A in square inches. For the
work done to be measured in foot-pounds l must be in feet. The net work, represented by area ABCD , is imparted to the piston during the outward, or working, stroke only.

The mean height of the diagram is then $\frac{\text { area in square inches }}{\text { length EF in inches }}$ and the pressure equivalent is the mean height \times pressure per square inch corresponding to one inch on the pressure scale.

This is the pressure per square inch which, acting steadily on the piston throughout the working stroke, would generate the same work as is done by the varying pressure applied through the cycle. This is called the Indicated Mean Effective Pressure or I.M.E.P., and its use obviates any further reference to the indicator diagram when obtaining the Indicated Horse Power, or power developed inside the cylinder. It will be noted that heat losses, as distinct from mechanical losses, will result in reduced indicator pressures and decreased diagram areas, so that the indicated power is that developed after allowance has been made for such losses.
I.M.E.P. \times area of piston in square inches \times length of

The I.H.P. $=\frac{\text { stroke in feet } \times \text { no. of working strokes per minute }}{33,000}$

$$
\text { more easily remembered as } \frac{\text { P.L.A.N. }}{33,000}
$$

(The actual work performed by an engine will be less than this owing to mechanical losses. The Brake Mean Effective Pressure-B.M.E.P.-can be calculated from

$$
\text { B.H.P. }=\frac{\begin{array}{c}
\text { B.M.E.P. } \times \text { area of piston }\left(\mathrm{in.} .^{2}\right) \times \text { stroke }(\mathrm{ft} .) \\
\times \text { no: of working strokes }
\end{array}}{33,000}
$$

and mechanical efficiency $\left.=\frac{\text { B.H.P. }}{\text { I.H.P. }}=\frac{\text { B.M.E.P. }}{\text { I.M.E.P. }}\right)$
The indicated work per cycle can also be expressed as $144 \times$ I.M.E.P. (lb. per sq. in.) \times swept volume (cu. ft.).
Example.-The area of the indicator diagram for a single acting engine is 2 sq . in. The scale of pressure is 100 lb . per sq. in. per in. and the length of the diagram is 2.5 in . The engine cylinder is 6 in . diameter and 12 in. stroke. Find the mean effective pressure and the indicated horse power if the engine runs at 500 r.p.m.

The area of the piston is 282 square inches
and

$$
\begin{gathered}
\text { mean height of diagram }=\frac{2 \mathrm{in} .}{2.5 \mathrm{in} .}=0.8 \mathrm{in} . \\
\text { I.M.E.P. }=0.8 \times 100=80 \mathrm{lb} . \text { per sq. in. } \\
\text { I.H.P. }=\frac{80 \times 282 \times 1 \times 500}{33,000}=34.2 .
\end{gathered}
$$

*THE THREE PRINCIPAL GYCLES

The principal cycles to be considered differ in the conditions under which heat is received and rejected by the working fluid, and are named after these conditions, i.e.-

The constant temperature, or Carnot cycle, so called after Carnot, who conceived it in 1824, the constant volume cycle and the constant pressure cycle.
Other cycles are considered in Chapters VII and XIV.
The Carnot or Constant Temperature Cycle.-Fig. 6 shows the pressure-volume diagram of an engine working on this cycle. Starting at point a, the gas expands isothermally from volume v_{a} to volume v_{b}, while heat is supplied to keep the temperature constant at T_{1}. The supply of heat is then cut off, and the gas expands adiabatically to volume ψ_{c}, the temperature falling to T_{2}. On the return stroke of the piston the gas is compressed isothermally from volume v_{c} to volume v_{d}, heat being removed to keep the temperature constant at T_{2}. The cycle is completed by compressing adiabatically from volume v_{d} and temperature T_{2} to

Fig. 6.
volume v_{a} and temperature T_{1}. A closed cycle is thus obtained, the pressure, volume, and temperature of the gas being the same at the end as at the beginning of the cycle.

To find the point at which Adiabatic Compression must be commenced.The point d must be so chosen that an adiabatic drawn through it will pass through the starting-point a.

During the adiabatic expansion stage from b to c, we have

$$
\mathrm{T}_{1} / \mathrm{T}_{2}=\left(v_{c} / v_{b}\right)^{\gamma-1}
$$

Also during the adiabatic compression stage from d to a, we have

Hence

$$
\begin{aligned}
\mathrm{T}_{1} / \mathrm{T}_{2} & =\left(v_{d} / v_{a}\right)^{\gamma-1} \\
\left(v_{c} / v_{b}\right)^{\gamma-1} & =\left(v_{d} / v_{a}\right)^{\gamma-1} \\
v_{c} / v_{d} & =v_{b} / v_{a}
\end{aligned}
$$

or the ratio of isothermal compression must be the same as the ratio of isothermal expansion.

Efficiency of the Cycle.-Let r denote the ratio of isothermal expansion and compression, then we have :
ab Heat taken in $=\frac{\mathrm{R}}{\mathrm{J}} \mathrm{T}_{1} \log _{\epsilon} r=$ heat equivalent of work done by gas
bc No heat taken in or rejected
$c d$ Heat rejected $=\frac{\mathrm{R}}{\mathrm{J}} \mathrm{T}_{2} \log _{\varepsilon} r$ heat equivalent of work done on gas
da No heat taken in or rejected
Now efficiency $=\frac{\text { heat converted into mechanical work }}{\text { heat supplied }}$

$$
\begin{aligned}
& =\frac{\mathrm{RT}_{1} \log _{\epsilon} r-\mathrm{RT}_{2} \log _{e} r}{\mathrm{RT}_{1} \log _{\epsilon} r} \\
& =\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}, \text { i.e. } \frac{\text { Range of Temperature }}{\text { Initial Temperature }}
\end{aligned}
$$

Example.-If a perfect air engine works on the Carnot cycle between temperature limits of $600^{\circ} \mathrm{F}$. and $60^{\circ} \mathrm{F}$., calculate its efficiency, and the ratio of the adiabatic expansion.

Here

$$
\begin{aligned}
& \mathrm{T}_{1}=600+460=1060^{\circ} \mathrm{F} . \mathrm{abs} . \\
& \mathrm{T}_{2}=60+460=520^{\circ} \mathrm{F} . \mathrm{abs} .
\end{aligned}
$$

\therefore Efficiency $=\frac{540}{1060}=0.509$
Now for adiabatic expansion

$$
\begin{aligned}
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} & =\left(\frac{v_{1}}{v_{2}}\right)^{\gamma-1} \\
\therefore \frac{520}{1060} & =\left(\frac{1}{r}\right)^{0.4} \\
-0.4 \log r & =\log 520-\log 1060 \\
& =2.7160-3.0253 \\
& =-0.3093 \\
\therefore \log r & =\frac{0.3093}{0.4}=0.7732=\log 5.93
\end{aligned}
$$

Example.-A perfect engine working on the Carnot cycle is to develop a constant output, but the maximum temperature is to be varied. Show how the efficiency of the engine varies with the maximum temperature.

As the output of the engine is to remain constant, $\mathrm{T}_{1}-\mathrm{T}_{2}$ must also be constant. If $\mathrm{T}_{1}-\mathrm{T}_{2}$ is, say, $500^{\circ} \mathrm{C}$., then the efficiency will vary with the maximum temperature as follows :

$$
\begin{array}{lll}
\mathrm{T}_{1}=3000^{\circ} \mathrm{C}=3273^{\circ} \mathrm{C} . \text { abs. } & \eta=15 \cdot 3 \text { per cent. } \\
\mathrm{T}_{1}=2000^{\circ} \mathrm{C}=2273^{\circ} \mathrm{C} . \text { abs. } & \eta=22 \cdot 1 \text { per cent. } \\
\mathrm{T}_{1}=1000^{\circ} \mathrm{C}=1273^{\circ} \mathrm{C} . \text { abs. } & \eta=39 \cdot 3 \text { per cent. } \\
\mathrm{T}_{1}=500^{\circ} \mathrm{C}=773^{\circ} \mathrm{C} . \text { abs. } & \eta=64.7 \text { per cent. }
\end{array}
$$

It should be noted that in an actual engine the efficiency will tend to approach the above values more closely as the maximum temperature falls, owing to the corresponding reduction of the amount of heat lost by radiation and conduction. In the first case cited above heat will be discharged from the engine at the very high temperature of $2500^{\circ} \mathrm{C}$., in the last the discharge will be at $0^{\circ} \mathrm{C}$., or slightly below the normal minimum value (about $15^{\circ} \mathrm{C}$.) for practical working.
Example.-In the Carnot cycle shown in Fig. 10 the maximum cylinder volume is 25 cu . ft., the volume before adiabatic compression is $10 \mathrm{cu} . \mathrm{ft}$., the lower temperature $17^{\circ} \mathrm{C}$., and the maximum and minimum pressures 500 and 15 lb . per sq. in. abs. Check the maximum temperature, the mean effective pressure, and the efficiency.

The method of calculation is as follows. The pressure at d is given by

$$
\frac{p_{d}}{p_{c}}=\frac{v_{c}}{v_{d}}=2.5 .
$$

The pressure at a determines the maximum temperature, i.e.-

$$
\frac{\mathrm{T}_{a}}{\mathrm{~T}_{d}}=\left(\frac{p_{a}}{p_{d}}\right)^{\gamma-1 / \gamma} \text { and } \mathrm{T}_{a}=806^{\circ} \mathrm{C} . \text { abs. }
$$

The volume at a is given by

$$
\begin{gathered}
\frac{v_{a}}{v_{d}}=\left(\frac{p_{d}}{p_{a}}\right)^{1 / \gamma}=\frac{1}{\text { ratio of adiabatic compression }} \\
\text { and the work done }=m R \log _{e} r^{\prime}\left(\mathrm{T}_{a}-\mathrm{T}_{d}\right)
\end{gathered}
$$

where r^{\prime} is the ratio of isothermal compression.
The value of $m \mathrm{R}$ in heat units is given by $\frac{53 \cdot 18}{778} \times$ mass of air present, the latter term being obtainable from the fact that at $17^{\circ} \mathrm{C}$. and 15 lb . per sq. in. pressure the volume of the air is 25 cu . ft., and that at N.T.P. $1 \mathrm{cu} . \mathrm{ft}$. weighs 0.0807 lb . The mean effective pressure is then

$$
P_{m}=\frac{\text { work done }}{\text { stroke volume }} \text { lb. per sq. in. }
$$

and the efficiency is given by the expression

$$
\eta=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{806-290}{806}=64 \text { per cent. }
$$

The Constant Temperature Steam Cycle.-A cycle formed by two isothermals and two adiabatics can be applied also to the simple steam engine.

The operations are : (1) evaporation of water in the cylinder at constant temperature and hence at constant pressure ; (2) adiabatic expansion of

Fig. 7.
steam; (3) partial condensation of steam in the cylinder at constant temperature and hence at constant pressure ; (4) adiabatic compression of the steam and water mixture, resulting in the completion of condensation. The cycle is shown in Fig. 7.

The Constant Volume Cycle.-Fig. 8 shows the pressure volume card for this cycle. Starting at point a the working fluid receives heat and increases in temperature and pressure while the volume remains constant. At b the supply of heat is cut off and the fluid then expands adiabatically to c. From c to d heat is removed from the fluid, which falls in temperature and pressure while the volume is constant, and at d adiabatic compression is started which restores the fluid to its original condition at a.

If the temperatures at a, b, c, and d are $\mathrm{T}_{a}, \mathrm{~T}_{b}, \mathrm{~T}_{c}$, and T_{d},
Heat supplied at constant volume $=\mathrm{C}_{v}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)$
Heat rejected at constant volume $=\mathrm{C}_{v}\left(\mathrm{~T}_{c}-\mathrm{T}_{d}\right)$
Heat converted into work $\quad=\mathrm{C}_{v}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)-\mathrm{C}_{v}\left(\mathrm{~T}_{c}-\cdot \mathrm{T}_{d}\right)$

$$
\begin{aligned}
\text { Efficiency } & =\frac{\mathrm{C}_{v}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)-\mathrm{C}_{v}\left(\mathrm{~T}_{c}-\mathrm{T}_{d}\right)}{\mathrm{C}_{v}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)} \\
& =1-\frac{\mathrm{T}_{c}-\mathrm{T}_{d}}{\mathrm{~T}_{b}-\mathrm{T}_{a}} .
\end{aligned}
$$

Now, since expansion and compression are adiabatic and over the same range of volume

$$
\frac{\mathrm{T}_{c}}{\mathrm{~T}_{b}}=\left(\frac{v_{b}}{v_{c}}\right)^{\gamma-1}=\left(\frac{1}{r}\right)^{\gamma-1}=\frac{\mathrm{T}_{d}}{\mathrm{~T}_{a}}
$$

where r is the common value of the ratios of compression and expansion
or

$$
\begin{align*}
\mathrm{T}_{d} & =\frac{\mathrm{T}_{a} \mathrm{~T}_{c}}{\mathrm{~T}_{b}} \\
& \cdot \mathrm{~T}_{c}-\frac{\mathrm{T}_{a} \mathrm{~T}_{c}}{\mathrm{~T}_{b}} \\
& =1-\frac{\mathrm{T}_{b}-\mathrm{T}_{a}}{} \\
= & 1-\frac{\mathrm{T}_{c} \mathrm{~T}_{b}-\mathrm{T}_{c} \mathrm{~T}_{a}}{\mathrm{~T}_{b}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)} \tag{1}\\
& =1-\frac{\mathrm{T}_{c}}{\mathrm{~T}_{b}}=1-\left(\frac{1}{r}\right)^{\gamma-1} .
\end{align*}
$$

From equation (1) $\eta=1-\mathrm{T}_{c} / \mathrm{T}_{b}$. It will be seen, however, that while T_{b} is the maximum temperature, T_{c} is inherently greater than the minimum temperature, which occurs at point d. The efficiency is therefore essentially less than that of the constant temperature cycle, for which the efficiency is given by

$$
1-\frac{\text { minimum temperature }}{\text { maximum temperature }} .
$$

The effect of increasing the Compression Ratio is shown in Fig. 124, and is discussed in Chapter XIV.

The Constant Pressure Cycle.-Fig. 9 shows the pressure-volume card for this cycle. Starting at point a the working fluid expands, at the same time receiving heat to maintain the pressure constant. At b the supply of heat is cut off, and the fluid then expands adiabatically to

Fig. 9.
c. From c to d heat is removed from the fluid, which contracts at constant pressure. At d adiabatic compression commences and restores the fluid to its original condition.

If the temperatures at a, b, c, d are given by $\mathrm{T}_{a}, \mathrm{~T}_{b}, \mathrm{~T}_{c}$, and T_{d},
Heat supplied at constant pressure $=\mathrm{C}_{p}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)$
Heat rejected at constant pressure $=\mathrm{C}_{p}\left(\mathrm{~T}_{c}-\mathrm{T}_{d}\right)$
Heat converted into work $\quad=\mathrm{C}_{p}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)-\mathrm{C}_{p}\left(\mathrm{~T}_{c}-\mathrm{T}_{d}\right)$

$$
\begin{aligned}
\text { and efficiency } & =\frac{\mathrm{C}_{p}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)-\mathrm{C}_{p}\left(\mathrm{~T}_{c}-\mathrm{T}_{d}\right)}{\mathrm{C}_{p}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right)} \\
& =1-\frac{\mathrm{T}_{c}-\mathrm{T}_{d}}{\mathrm{~T}_{b}-\mathrm{T}_{a}} .
\end{aligned}
$$

The expansion and compression curves being adiabatic and over the same range of pressure,

$$
\frac{\mathrm{T}_{c}}{\mathrm{~T}_{b}}=\left(\frac{p_{c}}{p_{b}}\right)^{\frac{\gamma-1}{\gamma}}=\frac{\mathrm{T}_{d}}{\mathrm{~T}_{a}}=\left(\frac{v_{b}}{v_{c}}\right)^{\gamma-1}=\left(\frac{1}{r}\right)^{\gamma-1}
$$

and the equation for efficiency reduces, as in the case of the constant volume cycle, to $1-(1 / r)^{\gamma-1}$, where r is the common ratio of expansion and compression.

-THE RATIOS OF COMPRESSION AND EXPANSION

Though in many engines the ratios of compression and total expansion ${ }^{1}$ are equal, as must be the case when using the normal arrangement of crank and connecting rod, this is not necessarily so, Atkinson's engine and Humphrey's pump being the best known exceptions.

In spite of the emphasis commonly laid on the value of the "Ratio of Compression," it must be noted that the efficiency of an engine is fundamentally dependent on the "ratio of expansion," i.e. on the change of temperature which can be brought about by adiabatic expansion. Where the process of compression is used in an engine it must be considered as akin to the use of a condenser with a steam engine, i.e. as a means of increasing the "ratio of expansion" and not as a device desirable in itself.

*COMPARISON OF CYCLES

In considering the practical values of cycles of operation, it is not sufficient to compare only the theoretical efficiencies. For an engine of given size and speed the output, neglecting friction, etc., will be proportional to the mean effective pressure, while the strength and weight of the parts will have to be proportional to the maximum cylinder pressure.

The following diagrams are of interest as providing a comparison of the above three cycles on a pressure basis. The maximum pressure in each case is 500 lb . per sq. in., and the compression ratios in the two latter are such as are used in practice.

It is at once obvious that the Constant Temperature cycle is impracticable, the ratio of maximum pressure above atmospheric to mean effective pressure being 81, necessitating an extremely large and heavy engine for a given output; while for the other cycles it is 4.6 and 8.9 respectively.

The constant pressure cycle chosen shows to advantage with regard to efficiency when compared with the constant-volume cycle on account of the higher compression ratio normally employed (see p. 269).
It will be noted that as the compression ratio of the constant-volume cycle is increased, the gain in pressure $a b$ due to the reception of heat constantly decreases owing to the limitation imposed on the maximum pressure. As the compression ratio approaches 12.24 the efficiency will rise towards the figure of 64 per cent. shown by the constant pressure cycle, but the heat received, and consequently the output of the engine, will tend to zero.

As will be seen later ($\mathbf{p} .268$) the " toe " $c^{\prime} c d$ of the " constant pressure"

[^7]diagram is omitted in practice, allowing a reduction of cylinder volume of nearly 60 per cent., and an increase of the mean effective pressure to 117 lb . per sq. in. The efficiency is decreased 8 per cent. thereby, as, though the "ratio of compression" remains constant, the "ratio of expansion" is reduced from 12.24:1 to $5: 1$ (see p. 268).

Example.-An engine using pure dry air as a working fluid, operates on the Carnot cycle. The clearance volume is $1 / 13$ of the swept volume, and when the piston is at the outer dead centre the pressure and temperature of the cylinder contents are 15 lb . per sq . in. and $150^{\circ} \mathrm{F}$.

Fig. 10.-Constant Temprrature or "Carnot" Cycle.
Determine the pressure, temperature, and percentage stroke at the principal points on the cycle in order that the highest possible mean effective pressure may be developed. What will then be the efficiency and the mean effective pressure ?

The problem amounts to dividing the stroke volume between the isothermal and adiabatic operations, to give the highest M.E.P., the limiting cases being (1) when the isothermal and (2) when the adiabatic operations occupy the whole stroke volume. In both cases, the M.E.P. will be zero.

In the second case, where the adiabatic through c passes also through a, we have $p 0^{1.4}=15 \times(14)^{1.4} \times 144=600 \times 144$, taking the clearance volume as $1 \mathrm{cu} . \mathrm{ft}$.
And at a where $v_{a}=1$, and $p_{a}=600 \times 144 \mathrm{lb}$. per sq. ft.

$$
\begin{aligned}
& \mathrm{T}_{a}=\mathrm{T}_{c} \frac{p_{a} v_{a}}{p_{c} v_{c}}=\frac{600 \times 144 \times 1}{15 \times 144 \times 14} \times 610=1743^{\circ} \text { abs. }
\end{aligned}
$$

Fig. 11.-Constant Volume Cycle.
The upper limits of temperature and pressure are thus $1743^{\circ} \mathrm{F}$. and 600 lb . per sq. in., and the efficiency will be $\frac{1743-(150+460)}{1743}-65$ per cent., though the output approaches zero.
In the first case, where the isothermal through c passes through a, as $p_{c}=15 \mathrm{lb}$. per sq. in. and $v_{c}=14 \mathrm{cu}$. ft., so that after isothermal compression to $v=1$,

$$
\begin{equation*}
p=210 \mathrm{lb} . \text { per sq. in. } \tag{1}
\end{equation*}
$$

The temperatures of the cycle will be constant, giving an efficiency of zero and no output.

Between these limits there will be some position for a giving a maximum M.E.P.

The work done $=R\left(T_{1}-T_{2}\right) \log _{\epsilon} \frac{v_{c}}{v_{d}}$
or

$$
\begin{aligned}
\mathrm{W} & =\mathrm{RT}_{2}\left\{\left(\frac{v_{d}}{v_{a}}\right)^{n-1}-1\right\} \log _{\epsilon} \frac{v_{c}}{v_{d}} \\
& =\mathrm{RT}_{2}\left\{v_{d}{ }^{n-1}-1\right\} \log _{\epsilon} \frac{14}{v_{d}}, \text { as } v_{a}=1
\end{aligned}
$$

Fig. 12.-Constant Prassurb Cycle.
Maximum pressure $=500 \mathrm{lb}$.

$$
\begin{aligned}
& \text { Mean } \\
& \text { Efficiency }
\end{aligned} \quad=56 \mathrm{lb} .
$$

Ratio of adiabatic expansion and compression $=12 \cdot 25$.
(For cycle $a b c^{\prime} d$ mean pressure $=117 \mathrm{lb}$., efficiency, 56 per cent.)
and $\frac{d \mathrm{~W}}{d\left(v_{d}\right)}=\mathrm{RT}_{2}\left\{(n-1) v_{d}{ }^{n-2}\right\} \log \frac{14}{v_{d}}+\mathrm{RT}_{2}\left\{v_{d}{ }^{n-1}-1\right\} \times \frac{v_{d}}{14} \times \frac{14(-1)}{v_{d}{ }^{2}}$.
For W to be a maximum this must be equated to zero, or

$$
\begin{aligned}
0 & =(n-1) v_{d}{ }^{n-2} \log _{e} \frac{14}{v_{d}}-\left(v_{d}{ }^{n-1}-1\right) \frac{1}{v_{d}} \\
& =0.4 v_{d}-0.6 \log _{e} \frac{14}{v_{d}}-\left(v_{d} 0.4-1\right) \frac{1}{v_{d}} .
\end{aligned}
$$

Multiplying by v_{d}

$$
0=0.4 v_{d} 0.4 \log _{e} \frac{14}{v_{d}}-v_{d} 0.4+1 .
$$

By trial it will be found that the solution is given by $v_{d}=4.5$.
Now d lies on an isothermal through C, for which $p v=210$ from (1), or

$$
p_{d}=\frac{210}{4.5}=46.7 \mathrm{lb} . \text { per sq. in. }
$$

The adiabatic through d to a will then give $p v^{1 \cdot 4}=46 \cdot 7 \times(4 \cdot 5)^{1 \cdot 4}=382$ and at a, when $v_{a}=1, p_{a}=382$.

For the point b we have

$$
\frac{v_{b}}{v_{a}}=\frac{v_{c}}{v_{d}} \text { or } v_{b}=\frac{1 \times 14}{4.5}=3.08
$$

and

$$
p_{b}=\frac{382}{3 \cdot 08}=124 \mathrm{lb} . \text { per sq. in. }
$$

Also

$$
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\left(\frac{v_{d}}{v_{a}}\right)^{n-1} \quad \text { or } \quad \frac{\mathrm{T}_{1}}{610}=(4 \cdot 5)^{0.4}=1.82
$$

and

$$
\mathrm{T}_{1}=1110^{\circ} \mathrm{F} . \mathrm{abs}
$$

$$
\text { Efficiency }=\frac{1110-610}{1110}=45 \text { per cent. }
$$

Work done per pound $=\mathrm{R}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \log _{e} r$

$$
\begin{aligned}
& =53 \cdot 2(1110-610) \log _{\epsilon} \frac{14}{4 \cdot 5} \\
& =30,150 \mathrm{ft} . \mathrm{lb} .
\end{aligned}
$$

The volume per pound at 15 lb . per sq. in. and $150^{\circ} \mathrm{F}$.

$$
=\frac{53.2 \times 610}{15 \times 144}=15.01 \mathrm{cu} . \mathrm{ft} .
$$

The M.E.P. $=\frac{30,150}{\frac{13}{14} \times 15.01 \times 144}=\frac{30,150}{2008}=15 \mathrm{lb}$. per sq. in.
giving a ratio of maximum to mean effective pressure of $\frac{382}{15}=25 \cdot 5: 1$.

-THEORETIGAL IMPORTANCE OF THE "CONSTANT TEMPERATURE" OR "CARNOT" CYCLE

Though this cycle shows an efficiency of only about 65 per cent., it will be shown in a later paragraph that this is the most efficient cycle which can be conceived.

The fact that of 100 heat units supplied only 65 are converted into mechanical energy does not contravene Joule's law. Every foot-pound of mechanical energy developed by the engine causes the complete disappearance of $1 / 778 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. of heat energy. The engine is, however, inherently unable to utilise more than a certain proportion of the heat supplied to it, the remainder being neither converted nor destroyed, but discharged, still unchanged, as heat energy. An illustration, due to Reynolds. will be found of value.

A series of weights, W (Fig. 13), may be raised from ground level a to the level b of a shelf at height h, by either the direct or indirect application of suitable forces. In the first case a light chain C may be attached to

Fig. 13.
one of the weights and a force P, equal to W, applied as shown. By moving the upper end of the chain through a height equal to h the weight will be raised the requisite distance, and the energy supplied will be P. h, and is theoretically equal to the work done, i.e., W.h. The weight is therefore raised with an efficiency of 100 per cent., and the others may be subsequently so raised by the simple expedient of lowering the chain after each raised weight has been detached at the upper level. (If the chain is heavy its weight can be balanced by a simple counterpoise, and the theoretical efficiency will not be affected.)

In the indirect method, the upper end of a vertical heavy chain attached to the first weight can be moved rapidly backwards and forwards, or
with a circular motion, in a horizontal plane. A sinuous motion of the chain will be produced and the weight will be raised. The energy supplied, however, must be greater than W. h, as kinetic energy has been imparted to the links of the chain. After the first weight has been raised and detached it will be necessary to disperse the kinetic energy remaining in the links, a process naturally effected by its conversion into frictional heat between the links, before the lower end can again be attached to a weight on the ground, thus completing a "cycle."
The analogy is clear when it is remembered that in the case of the heat engine energy is supplied indirectly to the piston through the medium of indiscriminately moving and vibrating molecules (the links of the chain). The heat supplied is transferred to the molecules as kinetic energy of translation, and these in turn part with some of their energy to the piston, the gases being cooled as far as possible by the conversion of molecular into mechanical energy. In order to complete the cycle and restore the working fluid to its original condition, the unconverted energy must be removed from the system, by its discharge as heat to some suitable " cold body."

Only if the working fluid could be expanded adiabatically to the zero of absolute temperature could all the heat supplied be converted into work and the efficiency of the engine become 100 per cent. This being utterly impracticable, ${ }^{1}$ heat, as such, must be discharged as a waste product at a temperature T_{2} to some sink of heat. The amount of energy so rejected, i.e. the " incurred waste," will obviously be dependent on the value of T_{2}, the " minimum available temperature," and the importance of keeping T_{2} at as low a value as possible will be seen. This matter will be referred to on pp. 53 and 54.
It is necessary to differentiate between work done during a single operation and that performed during a cycle of operations. If 1 lb . of

Fig. 13a. gas expands adiabatically from T_{1} to T_{2} along the line $a b$ the work done will be

$$
\begin{aligned}
& d a b c=\frac{1}{\gamma-1}\left(p_{a} v_{a}-p_{b} v_{b}\right) \\
&=\mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) .
\end{aligned}
$$

The work done will obviously be greatest when T_{2} has the

[^8]lowest practicable value. So far the conversion of heat into work is satisfactory. The difficulty begins when we wish to repeat the operation, for which purpose the piston must be brought to its original position.

It would obviously be futile to press the piston back from the conditions shown at b without further changes, as the curve $b a$ would be redrawn, and the work done in restoring the piston would exactly equal the work already produced. The pressures on the return stroke must lie below those shown along $b a$, and this can only be effected by removing heat (sic). This heat must be transferred to some body by a process of natural flow, and as T_{2} is the lowest practicable temperature, by definition, the pressures on the return stroke cannot lie below those given by be, the isothermal for T_{2}. The work done on the gas will now be cbed and the corresponding amount of heat must be rejected. (Suppose an attempt were made to return the piston against constant pressure p_{b}, i.e. along $b f$, it is at once obvious that all points on this line fall below T_{2}, and the heat flow during the stroke would have to be at a temperature below the least practicable. The only way to keep the pressure constant and to discharge heat would be to start the return stroke at b^{\prime}, but the work done from a to b^{\prime} would be much less than from a to b.) On the next and succeeding cycles the heat given to the gas from e to a would be $c_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$ and the net work done would be given by the area abe. The conversion per cycle is obviously much less advantageous than that per stroke. The area cbed represents energy necessarily lost-and the corresponding thermal energy is an "incurred waste" discharged as heat. This should obviously only be done after expansion to the minimum available temperature, and the value of T_{b} is of prime importance.

The above cycle is chosen to illustrate a principle, and not as representing ideal conditions. The extension of the principle to "Carnot's" cycle will, it is hoped, be clear.

-REVERSIBLE PROCESSES AND GYCLES

If two bodies in contact are originally at the same temperature, a small rise of temperature of one will cause a flow of heat to the other, while a small fall of temperature will cause flow in the reverse direction. If the necessary variation of temperature can be considered infinitely small the process is said to be reversible. Similarly, under ideal conditions, the operations by which heat and work are mutually convertible are reversible, even though it may not be possible to convert the whole of the heat supply into work. Processes involving friction, loss of heat by radiation, etc., are not reversible.

The cycles so far considered are built up ot such reversible processes,
and are therefore also reversible, i.e. the Carnot cycle "reversed " would take in heat at T_{2}, and, after absorbing mechanical energy, would deliver an increased quantity of heat to the hot body at T_{1}. Referring to Fig. 6, the gas would expand adiabatically from a to d, and isothermally from d to c, doing a total amount of work adcef. It would then be compressed from c to b, and from b to a, absorbing work cbafe. The net work absorbed by the reversed engine would be exactly equal to the net work produced if the engine were running "direct," and the heat interchanges would be exactly equal in magnitude, but opposite with regard to the direction of flow.

'MCARNOT'S PRINCIPLE

The principle that no cycle can be more efficient than the Carnot can be shown as follows.

If two engines working on this cycle, and of equal size, are coupled together mechanically so that one tends to drive the other in a direction opposite to its normal direction of rotation, then it will be found that the power developed by the first is exactly the amount absorbed by the second. ${ }^{1}$ The first will deliver, as waste, to the cold body, a quantity of heat exactly equal to that received by the second during isothermal expansion, and the heat absorbed from the hot body by the first will be exactly replaced by the second. Under ideal conditions the engines would continue to rotate, without producing any net effects.
If now the first engine could be made more efficient, ${ }^{2}$ the two engines would continue to produce and absorb the same mechanical energy, and the heat interchanges with the cold body would still balance, but while

1 The heat interchanges and work done will be as follows :
Direct-acting engine.
Heat received from body at $\mathbf{T}_{\mathbf{1}}$

$$
=\mathrm{R} / \mathrm{J} \mathrm{~T}_{1} \log _{e} r
$$

Heat rejected to body at T_{2}
$=\mathrm{R} / \mathrm{J} \mathrm{T}_{2} \log _{e} r$
Heat equivalent of net work done by engine $\quad=\mathrm{R} / \mathrm{J} \operatorname{loger}^{r}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$

Reversed engine.
Heat received from body at $\mathrm{T}_{\mathbf{2}}$

$$
\begin{equation*}
=\mathrm{R} / \mathrm{J} \mathrm{~T}_{2} \log _{e} r \tag{4}
\end{equation*}
$$

Heat rejected to body at T_{1}

$$
=\mathrm{R} / \mathrm{J} \mathrm{~T}_{1} \log _{e} r
$$

Heat equivalent of net work done on engine $\quad=\mathrm{R} / \mathrm{J} \operatorname{loger}_{\mathrm{e}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$

> Body at T_{1} loses heat
> $\mathrm{R} / \mathrm{J} \mathrm{T}_{1}$ loge r.
> and also gains heat
> $\mathrm{R} / \mathrm{J} \mathrm{T}_{1}$ loge $_{e} r$.

Body at T_{2} gains heat $R / J T_{2}$ loge r.
and also loses heat
R/J T ${ }_{2} \log _{\epsilon} r$. (4)
Net work done $=$ zero (3 and 6)

2 With a direct acting engine of increased efficiency the work shown in item (3) could be obtained with a smaller consumption of heat than $\mathrm{R} / \mathrm{J} \mathrm{T}_{1} \log \mathrm{r} r$, so that item (1) would then read, say, 90 per cent. of $R / J T_{1}$ loge r.

The net work done would still be zero, and the heats received and rejected by the body at T_{2} would be equal, but the body at T_{1} would receive $R / J T_{1} \log _{4} r$ heat units and part with only 90 per cent. of $R / J T_{1} \log r_{1}$ or would have a net gain, per cycle, of 10 per cent. of $R / J T_{1}$ loge r.
the heat delivered to the hot body by the second would be $\mathrm{R} / \mathrm{J} \mathrm{T}_{1} \log _{e} r$, the energy absorbed from that body and used to drive the first would be less than this. The only net effect would be the continuous accumulation of heat in the hot body at temperature T_{1} without the intervention of any external energy. As this is contrary to the Second Law of Thermodynamics, it must be assumed that no engine of this enhanced efficiency is possible. Similarly, any engine with a greater efficiency when reversed than the Carnot is equally impossible.
(Note: The Carnot cycle is not the only perfect cycle, as the Stirling and other regenerative cycles have the same efficiency, assuming perfect regeneration. No cycle has a higher efficiency, however.)

*CONDITIONS FOR MAXIMUM THERMAL EFFICIENCY

These may be summarised as follows :
(1) The engine must take in heat only at the highest possible temperature and reject the residue of heat only at the lowest.
(Although by using superheated steam in a steam engine the upper limit of temperature is raised, yet as the steam has taken in the greater part of its heat at the comparatively low temperature of evaporation, the thermodynamic efficiency is small, i.e. on expanding, the steam will rapidly lose the small portion of its energy represented by the superheat, and will fall in temperature correspondingly, the bulk of its energy being only available at the temperature of condensation.)

Though in practice some temperature difference must exist between the hot body and the working fluid, and between the working fluid and the cold body in order to cause heat transference, the differences must be kept as small as possible.
(2) All free or imperfectly resisted expansion, i.e. throttling, must be avoided.
(3) All loss of heat by radiation and conduction must be prevented.

*DEFINITION OF THERMODYNAMIC TEMPERATURE

 SCALELet $A_{1} B_{1} C_{1} D_{1}, A_{2} B_{2} C_{2} D_{2}$, etc. (Fig. 14), represent a series of isothermal curves T_{1}, T_{2}, T_{3}, etc., such that $T_{1}-T_{2}=T_{2}-T_{3}=T_{3}-T_{4}$ $=\delta \mathrm{T}$. Let these be cut by the adiabatic curves $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}, \mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}$, etc., which are chosen so that

$$
\frac{v_{\mathrm{B}_{1}}}{v_{\mathrm{A}_{1}}}=\frac{v_{\mathrm{C}_{1}}}{v_{\mathrm{B}_{1}}}=\frac{v_{\mathrm{D}_{1}}}{v_{\mathrm{C}_{1}}}=r
$$

Each figure such as $A_{1} B_{1} B_{2} A_{2}$, i.e. a, can be taken as the indicator diagram of an engine working on the Carnot cycle over a range of temperature $\delta \mathbf{T}$.

For the Carnot diagrams a, b, and c, between the same adiabatics, the ratios of isothermal expansion and compression must be equal (see p. 16),
or

$$
\frac{v_{\mathrm{B}_{1}}}{v_{\mathrm{A}_{1}}}=\frac{\varepsilon_{\mathrm{B}_{2}}}{v_{\mathrm{A}_{2}}}=\frac{v_{\mathrm{B}_{3}}}{v_{\mathrm{A}_{3}}}, \text { etc. }=r=\frac{v_{\mathrm{C}_{1}}}{v_{\mathrm{B}_{1}}}=\frac{v_{\mathrm{D}_{1}}}{v_{\mathrm{C}_{1}}}, \text { etc. }
$$

so that r is constant for all of the indicator diagrams shown in the figure.
The work done by the engine working on cycle a is given by

$$
\begin{aligned}
\mathrm{W} & =\mathrm{RT}_{1} \log _{\epsilon} r-\mathrm{RT}_{2} \log _{\epsilon} r \\
& =\mathrm{K}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right), \text { where } \mathrm{K}=\mathrm{R} \log _{e} r \\
& =\mathrm{K} \delta \mathrm{~T}, \text { and this is the same for all the cycles. }
\end{aligned}
$$

Fig. 14.
Each engine working over the range T_{1} to T_{2} will reject an amount of heat $\mathrm{RT}_{2} \log _{6} r$, which will be exactly equal in amount to the heat absorbed by one of the engines working over the range T_{2} to T_{3}, and so on.

If, therefore, we conceive a series of perfect heat engines each passing on its waste heat to the next below it on the temperature scale, and all developing the same power, then the temperature ranges over which the engines work must be equal.

The divisions of the temperature scale can thus be defined dynamically, and will correspond with those for the gas thermometer using a perfect gas.

It should be noted that we are here defining equal temperature difference.: The indicator diagrams a, d, or g will do equally well for the first engine of the series, and b, e, or h for the second engine. The series of engines may therefore be considered as using the indicator cards g, b, and j equally well as the cards a, b, and c or a, e, and j.

EXAMPLES ON CHAPTER III

1. The temperature limits for a Carnot cycle using air are $780^{\circ} \mathrm{F}$. and $50^{\circ} \mathrm{F}$. Estimate the efficiency and the ratio of adiabatic expansion. Take y as $1 \cdot 4$.
2. Draw to scale a graph showing the variation of the efficiency of the constantvolume cycle with expansion ratio, and estimate the theoretical efficiencies for ratios of $3 \frac{1}{2}: 1,4 \frac{1}{2}: 1,7: 1$, and $16: 1$.
3. Plot a graph showing the variation of compression pressure and compression temperature for the constant volume cycle, and for values of the compression ratio between 2:1 and 20:1, assuming the minimum values of temperature and pressure during the cycle to be $212^{\circ} \mathrm{F}$. and 14.7 lb . per sq. in. (abs.).
4. Check the values shown in Figs. 10, 11, and 12.
5. Plot a graph showing the variation of the efficiency of the constant pressure cycle with expansion ratio. Assume a constant compression ratio of $16: 1$, a constant maximum pressure of 500 lb . per sq. in., and minimum cycle temperatures and pressures of $212^{\circ} \mathrm{F}$. and 14.7 lb . per sq. in. (abs.).

Chapter IV

FACTORS OF STATE. ENTROPY

*GENERAL STATEMENT

It has been seen in a previous section, dealing with the laws of Boyle and Charles, that p, v, and T , for a given quantity of fluid, are not independent variables, but that the state of the fluid can be completely specified in terms of any two of them. It is therefore possible to represent the state of the fluid upon a graph having two ordinates chosen, as may be most convenient for the problem in hand, from p, v, and T. ${ }^{1}$ Combinations of these quantities may also be used as ordinates, provided that only two factors are involved, i.e. the product $p . v$ plotted against p (the product $p . v$ plotted against T is equivalent to plotting T against itself). Other quantities dependent on p, v, and T , such as internal and total energy, can also be employed to advantage.

The graph will be equally determinate if the increments of these quantities relative to some arbitrary zero are plotted instead of the absolute values (i.e. temperatures in degrees C . instead of degrees C . absolute).

One of the most useful combinations is $\delta \mathrm{H} / \mathrm{T}$ plotted against T where $\delta \mathrm{H}$ is an increment of heat received and T is the absolute temperature of reception. (In practice the increment $\delta \mathrm{H}$ of heat content, and not the absolute value, is of interest.) The quantity $\delta \mathrm{H} / \mathrm{T}$ is expressed as $\delta \phi$, where $\delta \phi$ represents the increment of the quantity ϕ corresponding to the small heat reception $\delta \mathrm{H}$, and is called the " change of entropy."

The interest of this quantity to engineers lies largely in the fact that during adiabatic operations $\delta \mathrm{H}=0$, so that $\phi=$ constant. If ϕ is chosen as one of the co-ordinates of the state of a fluid, an adiabatic change will be represented by a line perpendicular to the axis of ϕ.

The following alternative symbols are commonly used :

$$
\mathrm{S}=\phi \quad \mathrm{Q}=\mathrm{H} \text { and } \theta=\mathrm{T}
$$

(It should be noted that though heat and mechanical energy are essentially of the same nature, i.e. heat is molecular kinetic energy, the reception of heat by a gas is not necessarily equivalent to the reception of the same amount of energy from a mechanical source. Though no heat is received or lost by the working fluid during an adiabatic operation, changes of p, v, and T all occur, work is done, and the process is reversible. An operation during which no work is received or lost by the fluid is essentially one carried out at constant volume, as when a fluid flows from a

[^9]container of fixed volume into an initially vacuous space likewise of constant volume, when, for a perfect gas, $\mathrm{T}=$ constant. In this case the process is utterly irreversible.)

The value of $\delta \phi$ is independent of the temperature scale used.

-ENTROPY OF THE WORKING FLUID AND HOT AND COLD BODIES

Though the entropy of a working fluid is as much a condition fal tor as p, v, or T , it is sometimes convenient to relate it to the hot and cold bodies also, i.e. if the working fluid of a perfect engine receives heat from the hot body the former suffers an increase of heat $\delta \mathrm{H}_{1}$ and an increase of entropy $\delta \mathrm{H}_{1} / \mathrm{T}_{1}$, while the hot body loses heat $\delta \mathrm{H}_{1}$ and also entropy $\delta \mathrm{H}_{1} / \mathrm{T}_{1}$. Similarly the working fluid will lose heat $\delta \mathrm{H}_{2}$ to the cold body and the entropy will decrease by the amount $\delta \mathrm{H}_{2} / \mathrm{T}_{2}$. Both these quantities are gained by the cold body.

For the Carnot cycle, which is completely reversible, the heat received from the hot body is $\mathrm{R} / \mathrm{J} \mathrm{T}_{1} \log _{\epsilon} r$, and the interchange of entropy will be $R / J ' \Gamma_{1} \log _{\epsilon} r / T_{1}=R / J \log _{\epsilon} r$. The heat discharged to the cold body is $\mathrm{R} / \mathrm{J} \mathrm{T}_{2} \log _{\epsilon} r$ and the interchange of entropy will be $\mathrm{R} / \mathrm{J} \mathrm{T}_{2} \log _{\epsilon} r / \mathrm{T}_{2}$ $=\mathrm{R} / \mathrm{J} \log _{e} r$.

In this case both the total energy and the entropy of the system remain constant.

For the same amount of work to be performed by a non-reversible cycle an additional quantity of heat, H_{3}, must be received from the hot body and, by the law of the conservation of energy, an exactly similar amount of heat must be rejected to the cold body. The additional loss of entropy by the hot body will be $\mathrm{H}_{3} / \mathrm{T}_{1}$, and the corresponding gain by the cold body will be $\mathrm{H}_{3} / \mathrm{T}_{2}$.
As, however, T_{1} is essentially greater than $T_{2}, H_{3} / T_{1}$ is, of necessity, less than $\mathrm{H}_{3} / \mathrm{T}_{2}$, so that though the total energy of the system remains constant there is an increase of entropy.

The increase of entropy of a system during any operation is then a measure of the wastage incurred, i.e. a measure of the inefficiency of the process compared with the corresponding ideal or reversible process.

The change of entropy of a working fluid during an operation will show its change of state, but at the end of a cycle both entropy and state are restored. The soundness of thermodynamic procedure can only be judged, on a basis of entropy, by considering the changes of entropy of the system as a whole.

*ENTROPY A CONDITION OF STATE

It remains to be shown that the entropy of a body depends solely upon its condition, and is quite independent of the steps by which that condition has been reached.

Consider the working fluid in the Carnot cycle.
or

$$
\begin{gathered}
\text { Heat received }=\delta \mathrm{H}_{1}=\mathrm{R} / \mathrm{J} \mathrm{~T}_{1} \log _{e} r \\
\text { Heat rejected }=\delta \mathrm{H}_{2}=\mathrm{R} / \mathrm{J} \mathrm{~T}_{2} \log _{e} r \\
\qquad \frac{\delta \mathrm{H}_{1}}{\delta \mathrm{H}_{3}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \text { and } \frac{\delta \mathrm{H}_{1}}{\mathrm{~T}_{1}}=\frac{\delta \mathrm{H}_{2}}{\mathrm{~T}_{2}} \\
\frac{\delta \mathrm{H}_{1}}{\mathrm{~T}_{1}}-\frac{\delta \mathrm{H}_{2}}{\mathrm{~T}_{2}}=0
\end{gathered}
$$

(All quantities of heat are essentially positive, the negative sign indicating the rejection as opposed to the positive sign showing the reception of heat.)

Any closed reversible cycle can be built up as a series of Carnot cycles as shown in Fig. 15.

Fig. 15.
For the first of these

$$
\delta \mathrm{H}_{1} / \mathrm{T}_{1}-\delta \mathrm{H}_{2} / \mathrm{T}_{2}=0
$$

for the second

$$
\frac{\delta H_{1}^{\prime}}{T_{1}^{\prime}}-\frac{\delta H_{2}^{\prime}}{T_{2}^{\prime}}=0
$$

or for the whole cycle

$$
\sum \frac{\delta \mathrm{H}_{1}}{\mathrm{~T}_{1}}-\sum \frac{\delta \mathrm{H}_{2}}{\mathrm{~T}_{2}}=0
$$

or

$$
\delta \mathrm{H} / \mathrm{T}=0
$$

This is the " Integral of Clausius."

Consider now the closed cycle ACBC' (Fig. 16). Let the cycle consist of two parts, from A to B through C and the return through C^{\prime}. Then the Integral of Clausius gives

$$
\begin{aligned}
& \int_{A}^{\mathrm{A}} \frac{d \mathrm{H}}{\mathrm{~T}}=\int_{\mathrm{A}}^{\mathrm{B}} \frac{d \mathrm{H}}{\mathrm{~T}}+\int_{\mathrm{B}}^{\mathrm{A}} \frac{d \mathrm{H}}{\mathrm{~T}}=0 \quad . \quad . \quad \cdot \\
& \text { through } \mathbf{C} \text { through } \mathbf{C}^{\prime}
\end{aligned}
$$

Fig. 16.
If the direction of one of these operations is reversed the sign will be reversed, i.e.

$$
\int_{A}^{B} \frac{d H}{T} \text { would become }-\int_{B}^{A} \frac{d H}{T}
$$

giving, from (1)
or

$$
\begin{aligned}
& \int_{A}^{\mathrm{B}} \frac{d \mathrm{H}}{\mathrm{~T}}-\int_{A}^{\mathrm{B}} \frac{d \mathrm{H}}{\mathrm{~T}}=0 \\
& \text { through } \mathrm{C}_{\text {through } \mathrm{C}^{\prime}} \\
& \int_{A}^{\mathrm{B}} \frac{d \mathrm{H}}{\mathrm{~T}}=\int_{A}^{\mathrm{B}} \frac{d \mathrm{H}}{\mathrm{~T}} \\
& \text { through } \mathrm{C}_{\text {through } \mathrm{C}^{\prime}}
\end{aligned}
$$

or the difference in the entropies at the states A and B is dependent only on the states, and is not in any way affected by the manner in which the change of state has been effected. In contrast to this the heat received during the change from A to B through C will differ from that during the change from A to B through C^{\prime} by the heat equivalent of the area ACBC'.

The absolute value of entropy can only be calculated for any state
when the properties of the fluid are deternined down to the absolute zero of temperature. In engineering, however, only changes of entropy are required, and these are taken relative to $0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$.

*OTHER DEFINITIONS OF ENTROPY. SECTION 1

The definition derivable from the previous consideration, " Entropy is that quantity which remains constant during adiabatic operations," though accurate and convenient, is far too vague, and creates no mental picture as do the other conditions of state p, v, and T.

Other definitions have been attempted, but the student is warned that for the most part they apply only to certain ideal processes, and that outside a very limited range, usually unspecified, they are deplorably inaccurate.

One of the simplest partial definitions of entropy, "Entropy is the co-ordinate with temperature of heat," is based upon a reasonable desire to obtain a graphical representation of heat. On the p.v. diagram, or " work " chart, the change of the co-ordinate with P corresponding to the work area $\delta \mathrm{W}$ is obviously $\delta \mathrm{W} / \mathrm{P}=\delta \mathrm{V}$.

Exactly corresponding to this chart is the Heat chart on which changes of heat are represented by areas and one ordinate is temperature. The other ordinate will obviously be $\delta \mathrm{H} / \mathrm{T}=\delta \phi$.

The closed cycle on the p.v. diagram will have an exact counterpart on the T ϕ diagram (Fig. 17), and each point a or b on the one will have

Fig. 17.
a corresponding point on the other. With the $\mathrm{T} \phi$ chart in mind the engineer is able to think in terms of heat without the necessity of expressing it first in terms of work, nor are the two necessarily synonymous, especially when the processes considered are irreversible.

OTHER DEFINITIONS OF ENTROPY. SECTION 2

A serious defect of the above definition must be borne in mind. Let abcd (Fig. 18) represent the heat content of unit mass of a perfect gas at temperature T_{1}. If this gas is now compressed adiabatically till its temperature reaches $\mathrm{T}_{2}=2 \mathrm{~T}_{1}$ the heat

Entropy
Fig. 18. content will become efcd which is twice $a b c d$, and the entropy ef, i.e. the width of the diagram, will remain constant. If the gas is not perfect, but has a specific heat which increases with temperature, the heat content at T_{2} will be greater than twice that at T_{1}. This can only be obtained by representing the new heat content by eghd, i.e. by increasing the entropy by the amount ch.

Obviously, if the entropy is constant during adiabatic operations the areas cannot represent heat except on a variable scale unless the gas is " perfect," and in fact the idea must be discarded in such cases, i.e. when dealing with actual gases at high temperatures.

The conception that areas on the $\mathrm{T} \phi$ chart represent heat arises from an unjustifiable extension of the original definition of entropy given by Clausius, which states that " Increase of entropy in any thermal operation is a measure of the energy degraded in the operation" (see Murray's " Dictionary "). Thermal energy is available for conversion into work when it exists in a body at a temperature T_{1} which is higher than the minimum available temperature T_{2}, and is "degraded" or rendered unavailable for further use when transferred to a body at T_{2}. The total energy of a body is therefore a function of its temperature, which may have any value, whereas the unavailable energy is a function only of T_{2}, the " minimum available temperature," i.e. the total energy of a gas at T_{1} is T_{1} multiplied by the mean specific heat between 0° and T_{1}, which latter changes with changing values of T_{1}. On the other hand, the " degraded " energy is the product of the single temperature T_{2}, and the single value of the mean specific heat from 0° to T_{2}.

Applying this conception it will be seen that "degraded " energy (or energy not used with the maximum possible efficiency) can be represented by an area abcd (Fig. 19) of which T_{2} is one ordinate and $\mathrm{H} / \mathrm{T}_{2}$ is the other, and that increases of "degraded" energy can similarly be represented by befc having the ordinates T_{2} and $\mathrm{H}^{\prime} / \mathrm{T}_{2}$.
Except for ideal operations it is not permissible to consider da is part of a scale of temperatures extending to T_{1}, and to assume that areas such as $a a^{\prime} b^{\prime} b$ represent available energy.

The word "entropy" is derived from the Greek, and means "conversion," i.e. the change of " entropy " during any operation is a measure of the imperfection of the conversion of heat into work.

For further information the student is referred to "Steam Turbines," Stodola, Vol. 1, p. 33 et seq., Vol. 2, p. 1319 et seq.; "Entropy and Probability," Barnes, Engineering, November 12, 1926; and "Anatomy of Science," Lewis.

In what follows it can be taken that, unless a statement is made to the contrary, the working fluid has a constant specific heat, and that all processes are reversible, in which case

Fig. 19. any of the above definitions will be satisfactory.
(The above conception demands that at zero temperature there should be no energy remaining in the body, and that its entropy should then be zero. This implies that ϕ, which is given by $\mathrm{C}_{p} \log _{e} \mathrm{~T}$, and which approaches infinity if C_{p} is constant, must be modified by a corresponding approach to zero of the value of C_{p}. This reduction in the value of C_{ϕ} is an established fact and leads to the Third Law of Thermodynamics (Nernst's)-" The entropy of every solid or liquid body has at absolute zero the value zero "-i.e. there is no "unknown constant" to be added in the integration $\phi=\mathrm{G} \int_{0}^{\mathrm{T}} \frac{\mathrm{C}_{p} d \mathrm{~T}}{\mathrm{~T}}$.)

- REPRESENTATION OF THE GARNOT CYCLE

This cycle is represented by the diagrams of Fig. 20, the closed figures being bounded by two isothermals ($\mathrm{T}=$ constant), and two abiabatics ($\phi=$ constant). The points, A, B, C, D, on the p.v. diagram correspond exactly with the points a, b, c, d on the $\mathrm{T} \phi$ diagram.

The efficiency of the cycle can be calculated at once from the T $\boldsymbol{\phi}$ diagram :

Heat received $=$ aefd \quad Heat rejected $=b e f c$
Heat converted into work $=a b c d$

$$
\text { Efficiency }=\frac{a b c d}{a e f d}=\frac{a b}{a e}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}} .
$$

If H_{1} is the heat received from the hot body in heat units, and W =work done during the cycle in ft . lbs.,

$$
\begin{equation*}
\frac{\mathrm{W}}{\mathrm{~J}}=\mathrm{H}_{1} \cdot \frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}} \tag{1}
\end{equation*}
$$

and the heat discharged to the cold body is $\mathrm{H}_{2}=\mathrm{H}_{1}-\mathrm{W} / \mathrm{J}$

$$
\begin{aligned}
& =\mathrm{H}_{1}\left(\frac{\mathrm{~T}_{1}-\mathrm{T}_{1}+\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right) \\
& =\mathrm{H}_{1} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}
\end{aligned}
$$

or

$$
\frac{\mathrm{H}_{2}}{\mathrm{~T}_{2}}=\frac{\mathrm{H}_{1}}{\mathrm{~T}_{1}}
$$

Fig. 20.
or the gain of entropy of the working fluid during heat reception in a perfect heat engine is equal to the loss of entropy during heat rejection (i.e. there is no degradation of energy when heat is converted into work with the utmost possible efficiency).

If a perfect heat engine works through a temperature range of 1°, then $\overline{\mathrm{J}}=\mathrm{H}_{1} / \mathrm{T}_{1}$ from (1) above, or the gain of entropy of the working fluid during heat reception is equal to the heat equivalent of the work done.

*GENERAL EQUATIONS FOR THE CHANGE OF ENTROPY OF A PERFEGT GAS WHEN PASSING FROM ONE STATE TO ANOTHER

(1) If a pound of a substance is raised in temperature from T_{1} to T_{2}, ${ }^{1}$ the gain of entropy will be $\Sigma \delta \mathrm{H} / \mathrm{T}=\Sigma \mathrm{C} \delta \mathrm{T} / \mathrm{T}$ where C is the specific heat
${ }^{1}$ In considering cycles, T_{1} is usually taken as the higher temperature. In evolving general equations, however, T_{1} is taken as the initial temperature. The gain or loss of entropy during an operation will then become obvious when actual values are subatituted for the temperature symbols from the positive or negative signs reaulting.

$$
\phi_{2}-\phi_{1}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2} \mathrm{C} d \mathrm{~T}} \frac{\mathrm{~T}}{\mathrm{~T}}=\mathrm{C} \log _{e} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} .
$$

If the substance is a gas this must be taken as $\mathrm{C}_{\mathrm{p}} \log \mathrm{T}_{2} / \mathrm{T}_{1}$ or $\mathrm{C}_{v} \log _{\epsilon} \mathrm{T}_{2} / \mathrm{T}_{1}$, according to whether the gas is heated at constant pressure or at constant volume.
(2) To calculate the change of entropy with change of state from the condition $p_{1}, v_{1}, \mathrm{~T}_{1}$ to condition $p_{2}, v_{2}, \mathrm{~T}_{2}$.

Since the energy equation is given by

$$
\mathrm{H}=\mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)+\frac{p}{\mathrm{~J}}\left(v_{2}-v_{1}\right)
$$

we have, for a small change,

$$
\begin{equation*}
\delta \mathrm{H}=\mathrm{C}_{v} \delta \mathrm{~T}+\frac{p \delta v}{\mathrm{~J}} \tag{1}
\end{equation*}
$$

Dividing both sides of the equation by T we have

$$
\frac{\delta \mathrm{H}}{\mathrm{~T}}=\mathrm{C}_{v} \frac{\delta \mathrm{~T}}{\mathrm{~T}}+\frac{p}{\mathrm{JT}} \delta v
$$

or in the limit

$$
\begin{align*}
& \frac{d \mathrm{H}}{\mathrm{~T}}=\mathrm{C}_{v} \cdot \frac{d \mathrm{~T}}{\mathrm{~T}}+\frac{p}{\mathrm{JT}} d v . \tag{2}\\
& p v=\mathrm{RT} \quad \text { or } \quad \frac{p}{\mathrm{~T}}=\frac{\mathrm{R}}{v} \tag{3}
\end{align*}
$$

Substituting (3) in (2) we have

$$
\frac{d \mathrm{H}}{\mathrm{~T}}=\mathrm{C}_{v} \frac{d \mathrm{~T}}{\mathrm{~T}}+\frac{\mathrm{R}}{\mathrm{~J}} \frac{d v}{v}
$$

Integrating we have

$$
\begin{equation*}
\phi_{2}-\phi_{1}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{d \mathrm{H}}{\mathrm{~T}}=\mathrm{C}_{v} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{d \mathrm{~T}}{\mathrm{~T}}+\frac{\mathrm{R}}{\mathrm{~J}} \int_{v_{1}}^{v_{2}} \frac{d v}{v} \tag{4}
\end{equation*}
$$

or gain of entropy $\quad \phi_{2}-\phi_{1}=C_{v} \log _{e} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}+\frac{\mathrm{R}}{\mathrm{J}} \log _{e} \frac{v_{2}}{v_{1}}$
An alternative expression can be obtained by substituting $C_{p}-C_{v}$ for R/J
when

$$
\begin{align*}
& \phi_{2}-\phi_{1}=\mathrm{C}_{v} \log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\left(\mathrm{C}_{p}-\mathrm{C}_{v}\right) \log _{\epsilon} \frac{v_{2}}{v_{1}} \cdot \ldots \tag{5}\\
&=\mathrm{C}_{v}\left(\log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\log _{\epsilon} \frac{v_{2}}{v_{1}}\right)+\mathrm{C}_{p} \log _{\epsilon} \frac{v_{2}}{v_{1}} \\
&=\mathrm{C}_{v} \log _{\epsilon}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \times \frac{v_{1}}{v_{2}}\right)+\mathrm{C}_{p} \log _{\epsilon} \frac{v_{2}}{v_{1}} \cdot \ldots . \tag{6}\\
& \frac{p_{1} v_{1}}{\mathrm{~T}_{1}}=\frac{p_{2} v_{2}}{\mathrm{~T}_{2}}
\end{align*}
$$

Also, since

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \times \frac{v_{1}}{v_{2}} . \tag{7}
\end{equation*}
$$

Substituting (7) in (6) we have

$$
\begin{equation*}
\phi_{2}-\phi_{1}=\mathrm{C}_{v} \log _{\epsilon} \frac{p_{2}}{p_{1}}+\mathrm{C}_{p} \log _{\epsilon} \frac{v_{2}}{v_{1}} . \tag{8}
\end{equation*}
$$

Another expression can be found for the change of entropy as follows :
Substituting $\mathrm{C}_{v}=\mathrm{C}_{p}-\frac{\mathrm{R}}{\mathrm{J}}$ in (4) we have

$$
\begin{align*}
\phi_{2}-\phi_{1} & =\left(\mathrm{C}_{p}-\mathrm{R}\right) \log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\frac{\mathrm{R}}{\mathrm{~J}} \log _{\epsilon} \frac{v_{2}}{v_{1}} \\
& =\mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\frac{\mathrm{R}}{\mathrm{~J}}\left(\log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\log _{\epsilon} \frac{v_{2}}{v_{1}}\right) \\
& =\mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\frac{\mathrm{R}}{\mathrm{~J}} \log _{\epsilon}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \times \frac{v_{1}}{v_{2}}\right) \\
& =\mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\frac{\mathrm{R}}{\mathrm{~J}} \log _{\epsilon} \frac{p_{2}}{p_{1}} \text { from (7) } . \ldots . . \tag{9}
\end{align*}
$$

Hence, in calculating the change of entropy of a perfect gas when passing from the state p_{1}, v_{1}, T, to the state $p_{2}, v_{2}, T T_{2}$, equations (4), (8), or (9) may be used, i.e.

$$
\begin{align*}
\phi_{2}-\phi_{1} & =\mathrm{C}_{v} \log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\frac{\mathrm{R}}{\mathrm{~J}} \log _{\epsilon} \frac{v_{2}}{v_{1}} . \tag{4}\\
& =\mathrm{C}_{v} \log _{\epsilon} \frac{p_{2}}{p_{1}}+\mathrm{C}_{p} \log _{\epsilon} \frac{v_{2}}{v_{1}} . \tag{8}\\
& =\mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\frac{\mathrm{R}}{\mathrm{~J}} \log _{\epsilon} \frac{p_{2}}{p_{1}} . \tag{9}
\end{align*}
$$

If British units are used, $R / J, C_{p}$, and C_{v} should all be expressed either in terms of B.Th.U. or in C.H.U., v_{2} and v_{1} in cubic feet, and p_{2} and p_{1} in pounds per square foot; the change of entropy will then be measured in " units of entropy," and will be independent of the temperature scale used. No name has been officially adopted for the unit of entropy.

Special Cases.-In the case of an isothermal change of state from p_{1} and v_{1} to p_{2} and $v_{2}, \mathrm{~T}_{1}=\mathrm{T}_{2}$, and equation (4) becomes

$$
\begin{equation*}
\phi_{2}-\phi_{1}=\frac{\mathrm{R}}{\mathrm{~J}} \log _{\epsilon} \frac{v_{2}}{v_{1}} \text { or }\left(\mathrm{C}_{p}-\mathrm{C}_{v}\right) \log _{\epsilon} \frac{v_{2}}{v_{1}} \text { or } \frac{\mathrm{R}}{\mathrm{~J}} \log _{\epsilon} \frac{p_{1}}{p_{2}} . \tag{10}
\end{equation*}
$$

If the change takes place at constant volume, $v_{2}=v_{1}$ and (4) becomes

$$
\begin{equation*}
\phi_{2}-\phi_{1}=\mathrm{C}_{v} \log _{e} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} \tag{11}
\end{equation*}
$$

If the change takes place at constant pressure, $p_{2}=p_{1}$ and (8) becomer

$$
\begin{equation*}
\phi_{2}-\phi_{1}=C_{p} \log _{a} \frac{v_{2}}{v_{1}} \tag{12}
\end{equation*}
$$

*CHANGE OF ENTROPY WHEN THE OPERATION TAKES PLAGE ACCORDING TO THE GENERAL LAW $p v^{n}$ =CONSTANT

It has been shown on p . 20 that the heat supplied to or taken from a gas is given by

$$
\delta \mathrm{H}=\frac{\gamma-n}{\gamma-1} \times \frac{\text { work done }}{\mathrm{J}}
$$

Considering a small change in state we may write

$$
\delta \mathrm{H}=\frac{\gamma-n}{\gamma-1} \times \frac{p \delta v}{\mathrm{~J}}
$$

Dividing by T we have

$$
\frac{\delta \mathrm{H}}{\mathrm{~T}}=\frac{\gamma-n}{\gamma-1} \times \frac{p}{\mathrm{JT}} \delta v
$$

or since $\frac{p}{\mathrm{~T}}=\frac{\mathrm{R}}{v}$ from (3) we have in the limit

$$
\frac{d \mathrm{H}}{\mathrm{~T}}=\frac{\gamma-n}{\gamma-1} \times \frac{\mathrm{R}}{\mathrm{~J}} \frac{d v}{v} .
$$

Integrating we have
or

$$
\begin{aligned}
& \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2} d \mathrm{H}}=\frac{\mathrm{R}}{\mathrm{~J}} \cdot \frac{\gamma-n}{\gamma-1} \int_{v_{1}}^{v_{2} d v} \frac{\mathrm{R}}{v} \\
& \phi_{2}-\phi_{1}=\frac{\gamma-n}{\mathrm{~J}} \cdot \frac{\gamma-1}{\gamma-1} \cdot \log _{e} \frac{v_{2}}{v_{1}} .
\end{aligned}
$$

But

$$
\frac{v_{2}}{v_{1}}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{1 / n-1} \text { from p. } 18
$$

$$
\frac{\mathrm{R}}{\bar{J}}=\mathrm{C}_{v}(\gamma-1) \quad \text { from p. } 7 .
$$

hence

$$
\begin{align*}
\phi_{2}-\phi_{1} & =\frac{\mathrm{R}}{\mathrm{~J}} \cdot \frac{\gamma-n}{\gamma-1} \cdot \log _{e}\left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)^{1 / n-1} \\
& =\mathrm{C}_{v}(\gamma-1) \cdot \frac{\gamma-n}{\gamma-1} \cdot \frac{1}{n-1} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \\
& =\mathrm{C}_{v} \cdot \frac{\gamma-n}{n-1} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \cdot \cdot \cdot \tag{13}
\end{align*}
$$

Example.-Find the change in entropy when 1 lb . of air at $32^{\circ} \mathrm{F}$. and atmospheric pressure changes in volume to 2 cu . ft . with a temperature of $540^{\circ} \mathrm{F}$. given $\mathrm{C}_{p}=0.2375$ and $\mathrm{C}_{v}=0.1691$.

Here $p_{1}=14.7 \times 144=2116 \mathrm{lb}$. per sq. ft., and, for 1 lb . of air

$$
\frac{R}{J}=C_{p}-C_{v}=0.2375-0.1691=0.0684 \text { B.Th.U. or } R=53.18 \mathrm{ft} .-\mathrm{lb} .
$$

Hence, as $p_{1} v_{1}=R T_{1}$, and $T_{1}=32+460=492^{\circ} \mathrm{F}$. abs.

$$
v_{1}=\frac{53.18 \times 492}{2116}=12.39 \mathrm{cu} . \mathrm{ft} .
$$

Also it is known that $\mathrm{T}_{2}=540+460=1000^{\circ} \mathrm{F}$. abs. and $\boldsymbol{v}_{2}=2 \mathrm{cu}$. ft. Using equation (4)

$$
\begin{aligned}
\phi_{2}-\phi_{1} & =\mathrm{C}_{v} \log _{e} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}+\frac{\mathrm{R}}{\mathrm{~J}} \log _{\epsilon} \frac{v_{2}}{v_{1}} \\
& =0.1691 \log _{e} \frac{1000}{492}+0.0684 \log _{\epsilon} \frac{2}{12.39} \\
& =0.1196-0.1247=-0.0051 \text { units of entropy. }
\end{aligned}
$$

Alternatively, as $p_{2} v_{2}=\mathrm{RT}_{2}$

$$
p_{2}=\frac{\mathrm{RT}_{2}}{v_{2}}=\frac{53.18 \times 1000}{2}=26,500 \mathrm{lb} . \text { per sq. ft. }
$$

and

$$
\begin{aligned}
\phi_{2}-\phi_{1} & \left.=C_{v} \log _{e} \frac{p_{2}}{p_{1}}+C_{p} \log _{e} \frac{v_{2}}{v_{1}} \quad \text { (equation } 8\right) \\
& =0.1691 \log _{e} \frac{26,590}{2116}+0.2375 \log _{e} \frac{2}{12.39} \\
& =0.4280-0.4331=-0.0051 \text { units. }
\end{aligned}
$$

Or as $\quad \phi_{2}-\phi_{1}=\mathrm{C}_{p} \log _{e} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}-\frac{\mathrm{R}}{\mathrm{J}} \log _{6} \frac{p_{2}}{p_{1}}$ (equation 9)

$$
\begin{aligned}
& =0.2375 \log _{\epsilon} \frac{1000}{493}-0.0684 \log _{\epsilon} \frac{26,590}{2116} \\
& =0.1680-0.1731=-0.0051 \text { units. }
\end{aligned}
$$

The gain of entropy ($\phi_{2}-\phi_{1}$) being negative means that during the change of state the air loses entropy by the amount 0.0051 units.

-WORK DONE BY AN EXPANDING GAS, WITH REFERENCE TO THE TEMPERATURE ENTROPY DIAGRAM

Let T_{1} and T_{2} be the initial and final temperatures, and let $A B$ (Fig. 21) represent the temperature-entropy curve for the expansion. Further, suppose $\delta \mathrm{H}$ is a small quantity of heat supplied at any temperature T , and giving rise to a small change of entropy $\delta \phi$.

Then

$$
\begin{aligned}
\delta \phi & =\frac{\delta \mathrm{H}}{\mathrm{~T}} \\
\mathrm{~T} \delta \phi & =\delta \mathrm{H} \text { or } \delta(\mathrm{T} d \phi)=\delta \mathrm{H} .
\end{aligned}
$$

The area of an elementary strip of the diagram of height T and width
$\delta \phi$ represents the small quantity $\delta \mathrm{H}$ of heat supplied, and the total area under the curve $A B$ is

$$
\int_{\phi_{1}}^{\phi_{2}} \mathrm{~T} d \phi=\mathrm{H}
$$

where H is the total heat supplied during the expansion.
Similarly if the gas is compressed from temperature T_{2} to temperature T_{1}, it will reject an amount of heat equal to the above.
Suppose now the gas undergoes a complete cycle of changes so that

Fig. 21.
its temperature, pressure, and volume are the same at the end as at the beginning of the cycle. The temperature-entropy diagram will then form a closed figure as in the case given in Fig. 17.
Let H_{1} be the amount of heat supplied to the gas, and H_{2} the amount rejected by it during the cycle, then, in order to get the area of the closed figure we must integrate over the whole cycle, and

$$
\int \mathrm{T} d \phi=\mathrm{H}_{1}-\mathrm{H}_{2}
$$

Now $\mathrm{H}_{1}-\mathrm{H}_{2}$ is equal to the heat converted into work, hence we see that the area of the $\mathrm{T} \phi$ diagram represents in B.Th.U. the work done in a closed cycle.
An extension of this relationship leads to Clapeyron's equation.

CLAPEYRON'S EQUATION

This equation connects the latent heat of steam, the increase in volume during evaporation, and the slope of the p. T curve.

If 1 lb . of water at pressure p_{a} is raised in temperature to the boiling-
point T_{b} and then evaporated, after which it is expanded in the dry state to its original temperature and finally condensed, the cycle of operation will be as shown on the PV and T ϕ diagrams in Fig. 22. If the varia-

Fig. 22.
tions of pressure and temperature are small the work done will be given by $\left(v_{s}-v_{v o}\right) \delta p$, where $v_{s}=$ specific volume of steam and $v_{v o}=$ specific volume of water at pressure p_{a}. The corresponding heat interchange will be $\frac{\mathrm{L}}{\mathrm{T}} \delta \mathrm{T}$. In the limit these two correspond exactly, or
or

$$
\begin{gather*}
\left(v_{s}-v_{w}\right) d p=\frac{\mathrm{JL} d \mathrm{~T}}{\mathrm{~T}} \\
\mathrm{~L} / \mathrm{T}=\frac{1}{\mathrm{~J}}\left(v_{s}-v_{w}\right) \frac{d p}{d \mathrm{~T}}=\phi_{s}-\phi_{w} \tag{1}
\end{gather*}
$$

The term $\frac{d p}{d T}$ is the rate of increase of p with saturation temperature. Empirical values for v, L, etc., should be consistent with this equation, which can also be used for the determination of one of the quantities when the remainder are known.

The same reasoning is valid for any reversible change of phase which occurs isothermally at constant pressure ; for instance, it may be used to find the change in the freezing-point of water due to change in pressure. The following example will illustrate this-

It is known that 1 lb . of water at $32^{\circ} \mathrm{F}$. changes in volume from $0.016 \mathrm{cu} . \mathrm{ft}$. to $0.0174 \mathrm{cu} . \mathrm{ft}$. on solidifying, and gives out its latent heat, 144 B.Th.D.

From (1)

$$
\frac{d^{\prime} \Gamma}{d p}=-(\mathrm{V}-w) \frac{\mathrm{T}}{\mathrm{JL}}
$$

where $\mathrm{V}=\mathrm{x}$ volume of 1 lb . of ice in cubic feet at $32^{\circ} \mathrm{F}$., or 492° abs. and $v 0=$ volume of 1 lb . of water in cubic feet at $32^{\circ} \mathrm{F}$., or 492° abs.

$$
\therefore \frac{d \mathrm{~T}}{d p}=-\frac{(0.0174-0.016) 493}{778 \times 144}=-0.0000065
$$

Hence if the pressure is increased from one to two atmospheres, i.e. $d p=2116 \mathrm{lb}$. per sq. ft.

$$
\begin{aligned}
d \mathrm{~T} & =-2116 \times 0.0000065 \\
& =-0.0135^{\circ} \mathrm{F} .
\end{aligned}
$$

i.e. the freezing-point of water changes $0.0135^{\circ} \mathrm{F}$. for every atmosphere change in pressure, so that at a pressure of 11 atmospheres, assuming $\frac{d \mathrm{~T}}{d p}$ to remain constant, the freezing-point would be $31.865^{\circ} \mathrm{F}$.

EXAMPLES ON CHAPTER IV

1. If 1 lb . of gas occupying 3 cu . ft. at 110.7 lb . per sq. in. and $440^{\circ} \mathrm{F}$. expands at constant temperature to a volume of $12 \mathrm{cu} . \mathrm{ft}$., find its gain in entropy.
2. If 42.46 cu . ft. of gas at a pressure of 4.695 lb . per sq. in. and $80^{\circ} \mathrm{F}$. be compressed isothermally to 10.62 cu . ft., what is the loss of entropy ?
3. Ten cu.ft. of gas at $65^{\circ} \mathrm{F}$. and 75 lb . per sq. in. gauge pressure are expanded to four times the original volume according to the law $p \boldsymbol{v}^{1 \cdot 25}=$ constant. If $\mathbf{C}_{\boldsymbol{v}}=130 \cdot 2$ $\mathrm{ft} .-\mathrm{lb}$., and $\gamma=1.4$, find the change of entropy.
4. Calculate the gain of entropy when 1 lb . of water at $60^{\circ} \mathrm{F}$. is converted into steam at $296^{\circ} \mathrm{F}$. and then superheated to $500^{\circ} \mathrm{F}$. (Assume $\mathrm{C}_{p}=0.5$ and $\mathrm{L}=1114$ $-0.71^{\circ} \mathrm{F}$.)
5. Given the following data, estimate the volume of 1 lb . of dry saturated steam at 100 lb . per sq. in. abs., using Clapeyron's equation, p. 62.

p lb. per sq. in. abs.	90	95	103	110
Temperature, ${ }^{\circ}$ F. .	.	320.3	324.1	330.0

Take the latent heat at 100 lb . per sq. in. as 888 B.Th.U.

Chapter V

CURVES OF STATE

${ }^{\circ}$ GENERAL STATEMENT

As indicated in Chapter IV, the states which can be assuried by a substance can be expressed in terms of any two independent variables, selected from a considerable number according to convenience.

The commonest combinations will now be considered, with special reference to steam.

*THE P.V. DIAGRAM

Imagine a cylinder, containing 1 lb . of water, to be fitted with a movable piston, and to stand upon a body of constant temperature so that the cylinder and its contents can be kept at that temperature while the capacity is slowly changed. Let the constant temperature be $212^{\circ} \mathrm{F}$., and let the water be subject to a very high initial pressure, the initial condition point being given by A_{1} (Fig. 23). If the piston is very slowly withdrawn the water will expand elastically while its pressure falls to 14.7 lb . per sq. in. when the state is shown by the point B_{1}. The curve $\mathrm{A}_{1} \mathrm{~B}_{1}$ will be nearly, but not quite, vertical.

If, while the temperature is maintained at $212^{\circ} \mathrm{F}$., the volume is allowed to increase, evaporation will gradually take place at constant pressure along $B_{1} C_{1}$ until completed at C_{1}. Any further increase of volume will be followed by a reduction of pressure along the curve $\mathrm{C}_{1} \mathrm{D}_{1}$, represented approximately by the equation $p v^{n}=$ constant, on which all points to the right of C_{1} represent conditions of superheated vapour.

Similar isothermal curves such as $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$ can be drawn for other temperatures, but it will be noted that as the temperature is increased the points $\mathrm{B}_{1} \mathrm{~B}_{2}$, etc., move slowly upwards and to the right, and the increase of volume during evaporation, $\mathrm{B}_{1} \mathrm{C}_{1}, \mathrm{~B}_{2} \mathrm{C}_{2}$, etc., becomes markedly less.

At the critical temperature of $704^{\circ} \mathrm{F}$. the length BC , corresponding to the process of evaporation, vanishes altogether and is replaced by a point of inflexion X in the isothermal curve, which is shown by E . At still higher temperatures the curves of state rapidly tend to become smooth, as the curve G, the fluid now being far above the critical temperature and in the state of a permanent gas.

The curva $\mathrm{XB}_{2} \mathrm{~B}_{1} \ldots \mathrm{XC}_{2} \mathrm{C}_{1} \ldots$ are known as the liquid and
vapour boundaries. Between them exists a state of partial evaporation, both steam and water existing together. To the left of the curve $\mathrm{A}_{3} \mathrm{XB}_{2} \mathrm{~B}_{1}$ the liquid phase only can exist. In the area bounded by $\mathrm{D}_{3} \mathrm{XC}_{2} \mathrm{C}_{1}$ the state is that of a superheated vapour, and above the curve $\mathrm{A}_{3} \mathrm{XD}_{3}$ the state is that of a "permanent" gas, more or less perfect. (A "permanent " gas is a gas above its critical temperature, so that it cannot be liquefied by pressure alone. A "perfect" gas is one which strictly obeys the laws of Boyle and Charles.)

At the critical point X the discontinuity between the liquid and vapour

Fig. 23.
states finally disappears ; this is the point at which the three values for v in Van der Wall's equation, which is a cubic in v, should coincide.

The extensions of the curve $\mathrm{A}_{1} \mathrm{~B}_{1}$ to B_{s}, and of $\mathrm{D}_{1} \mathrm{C}_{1}$ to C_{s}, will be referred to on p. 225.

It is sometimes convenient to trace other quality lines upon the P.V. diagram.

Constant Dryness Fraction Lines.-If, during evaporation at pressure $\mathrm{P}_{\mathrm{B}_{1}}$ only one-half or one-quarter of the process had been completed, the "dryness fraction" would have been given by 0.5 or 0.25 , and the change of volume would have been 0.5 or 0.25 of $\mathrm{B}_{1} \mathrm{C}_{1}$.

Any line of constant dryness fraction will therefore divide all such lines as BC, Fig. 24, in the same ratio and will be as shown by $\mathrm{X}_{q_{1}}, \mathrm{X} q_{2}$, and $\mathrm{X} q_{3}$.

Lines of Constant Total Heat and of Entropy.-These can be obtained by direct plotting from the steam-tables (see p. 120), and take the courses indicated by the light and chain dotted lines $\mathrm{H}_{1}, \mathrm{H}_{2}$ and ϕ_{1}, ϕ_{2}. In the gas area lines of constant temperature will also be lines of sonstant total heat.

Lines of constant superheat can also be drawn as s, s by adding constant increments of temperature to the right of the vapour boundary,

Fig. 24.
i.e. by making D, D^{\prime}, etc., equal increments of temperature hotter than C, C', etc.

If the condition points of steam performing a closed cycle are traced upon the chart, the area enclosed is the work in foot-pounds which would be performed by a perfect engine using that cycle.

Diagrams of the same nature can be obtained for other working fluids.
In practice, interest is concentrated on certain portions of the diagram only. For steam the area enclosed in the rectangular area marked on Fig. 24 is usually all that is required, while for air, for which the critical temperature and pressure are $-220.7^{\circ} \mathrm{F}$. and 45 atmospheres, or for gas engines the portion required lies entirely towards the top right-hand
corner, far from the vapour boundary and critical temperature. For carbon dioxide, which is used as a refrigerant and for which the critical temperature and pressure are $88^{\circ} \mathrm{F}$. and 74 atmospheres, the area within and close to the liquid and vapour boundaries in the region of the point \mathbf{X} is of interest.

-THE T ϕ OR TEMPERATURE-ENTROPY CHART

The general nature of this chart can best be followed by considering 1 lb . of water which is heated at constant pressure.
Starting at a low temperature at A, Fig. 25, the increase of this factor

Fig. 25.
at constant pressure from T_{A} to T_{B} will be accompanied by an increase of entropy of an amount $C_{p} \log _{e} T_{B} / T_{A}$, and, provided the critical temperature is not approached, C_{p} for water may be taken as unity. At the temperature corresponding to the boiling-point for the given pressure, i.e. at the point B, evaporation will commence, and up to this stage the increased heat content of the water will be given by the area

$$
a \mathrm{AB} b=\mathrm{C}_{p}\left(\mathrm{~T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}\right)=\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}} .
$$

Evaporation will then proceed at constant pressure and temperature, the state point moving meanwhile from B to C , the latter marking the
completion of the process. The gain in entropy will be $\mathrm{L}_{\mathrm{B}} / \mathrm{T}_{\mathrm{B}}$ where L_{B} is the latent heat corresponding to the temperature T_{B}, and the area $b \mathrm{BC} c$ will be L_{B}.

Further heating will cause a rise of temperature and an increase of entropy, following the curve CD, for which

$$
\phi_{\mathrm{D}}-\phi_{\mathrm{C}}=\mathrm{C}_{p} \log _{\mathrm{c}} \frac{\mathrm{~T}_{\mathrm{D}}}{\mathrm{~T}_{\mathrm{C}}}=0.48 \log _{\mathrm{E}} \frac{\mathrm{~T}_{\mathrm{D}}}{\mathrm{~T}_{\mathrm{C}}} \text { approximately }
$$

This curve in the superheated region will therefore be roughly twice as steep as the curve AB.

Curves similar to ABCD can be obtained for a series of higher pressures, but it should be noted that as the critical temperature and pressure are reached the simple equations stated above have to be much modified to allow for the greatly increased compressibility of the water and reduced compressibility of the vapour.

The points BB^{\prime}, etc., and CC^{\prime}, etc., can now be joined to form the liquid and vapour boundaries, meeting at X , as before. The area below T_{C} and to the left of the liquid boundary represents the liquid phase, and below T_{C} and to the right of the vapour boundary will be found the vapour phase. All above T_{C} is the phase of "permanent" gas, and between the boundaries the liquid and vapour phases can co-exist. For water at normal pressures the curves $A B$ virtually coincide with the liquid boundary.

Constant quality lines can be obtained, as before, by joining points representing equal fractional divisions of lines such as BC . They will be as shown by $\mathrm{X} q_{1}, \mathrm{X} q_{2}$, etc.

Constant Volume Lines.- If the volume of 1 lb . of dry steam at temperature T_{B} is, say, 10 cu . ft., then, if during evaporation only 0.1 lb . or 0.2 lb . be evaporated, the corresponding points reached on the diagram would be 0.1 or 0.2 of the distance from B to C (as 0.1 or 0.2 of the latent heat would have been absorbed and the dryness fraction would be given by $0 \cdot 1,0 \cdot 2$, etc.). Constant volume lines can therefore be obtained in the mixed phase area by dividing lines such as BC into equal parts to the number of the cubic feet occupied by 1 lb . of steam at the given pressure. Numbering the points of subdivision $0,1,2,3$, etc., starting from the ends B, B_{1}, etc. upon the liquid boundary, the points with the same numbers can then be joined, and will thus give constant volume lines such as $v v, v^{\prime} v^{\prime}$, etc. By reference to steam tables the lines can be continued into the vapour phase area.

Lines of constant heat, such as I, I, can be determined by calculating, from the figures given in the steam tables, the dryness fraction or the temperature of superheat of steam at different pressures but having some
opecified total heat. The state points so obtained can then be plotted, and, when joined, will give one of the lines desired.

Lines of constant superheat can be obtained in a similar manner and follow the direction shown, s, s.

*T.S. CURVES FOR VARIOUS FLUIDS

Curves for air, carbon dioxide, and steam are shown plotted to scale in Figs. 26, 27, and 28. The two former are taken from "Technical

Fig. 26.
Thermodynamics" by Schüle, and the latter will be found accurately plotted to a large scale in " Steam Tables" by Keenan apd Keyes.

*MOLLIER, OR TOTAL HEAT-ENTROPY CHART ${ }^{1}$

This is probably the chart most commonly used (see Fig. 29). Tracing a line of constant pressure, starting from the point where the total heat is H_{A}, the total heat and entropy will both increase from A to B , at which point evaporation will commence. During evaporation both quantities

[^10]
Curves of State

will increase proportionately, and BC will be a straight line (i.e. the increase of H is $q \mathrm{~L}$, and the increase of ϕ is $q \mathrm{~L} / \mathrm{T}$, T being constant). Beyond C the vapour will become superheated, and the constant pressure curve will be as shown by CD.

The slope at any point on a line of constant pressure will be given by $d \mathrm{H} / d \phi$ which, by definition, is equal to T. If therefore two points, x and y, on a line of constant pressure, are taken close to but on opposite sides of the liquid or vapour boundaries, the temperatures at x and y
will be given by the slopes of the curve at these points. As x and y approach each other the temperatures at these points will tend to the same value, i.e. to T_{B} or T_{C}, so that there will be no sudden change in the slope of the curve ABCD at the points B and C .

Fig. 28.
As before, liquid and vapour boundaries $\mathrm{XB}^{\prime} \mathrm{B}, \mathrm{XC}^{\prime} \mathrm{C}$ can be traced, and lines of constant quality, volume, etc., may be drawn.

It is of interest to note that as the total heat increases but little with increasing pressure, the vapour boundary will only rise very slightly from right to left as the pressure increases.
The portion of the diagram normally used for steam calculations is shown on p. 125.

Fig. 29.

-TOTAL HEAT-TEMPERATURE AND PRESSURE DIAGRAMS

For certain purposes in steam engine calculations this diagram is of considerable value. The portion normally required is shown on p. 126.

*CHOICE OF DIAGRAM

As the diagrams all represent the same transformations of the given fluid the inherent "family resemblance" should be noted. A recollection of the general form of the curves will often be useful even though charts drawn to scale are not consulted.

Many problems, especially those connected with steam and refrigerants, can readily be solved by the use of diagrams of state, and these are available, plotted to an adequately large scale, in the printed form. The choice of the most convenient diagram is a matter of importance.

The P.V. diagram is used for the comparison of actual "indicator diagrams" for reciprocating engines with the corresponding theoretical diagrams. The area of the P.V. card is required for the determination of the indicated horse-power. The properties of the working fluid other than its pressure and volume may be read from the chart, but it will be found that adiabatic and isothermal curves are not easy to distinguish at high and low pressures, and intersect at inconveniently small angles, making accurate reading of the chart difficult. In order to measure work as an area on the diagram the scales of P and V must be uniform, and this results in much local crowding of the lines representing other quantities, and precludes the attainment of uniform proportionate accuracy. In the dry region the lines of constant total heat almost coincide with isothermals, the coincidence becoming more complete as the gas reaches the " perfect" state.

The Th Diagram.-Like the P.V. diagram this is very instructive for theoretical purposes, and on the whole can be read with much greater convenience and accuracy, as isothermals and adiabatics intersect at right angles. Lines of p and v, however, intersect at sharp angles in the dry regions, making accurate reading difficult, and the scales of properties other than T and ϕ (the numerical value of the latter not often being required) are far from uniform.
$H \phi$ Diagram.-This is generally the most convenient of all the diagrams, and can be obtained ready printed on a large scale for steam and refrigerants. The heat drop during adiabatic operations can be read very simply on a uniform open scale. There is no sudden change of direction of the p lines on crossing the liquid or vapour boundaries, and the diagram is therefore comparatively simple to follow. Lines of constant volume are not easy to distinguish from lines of constant pressure, how-
ever, and in the revised diagram based on Callendar's figures the former are printed in red.
For refrigerants the expedient of rotating the axis of ϕ is frequently adopted, as measurements of areas on the diagram are not required, and the diagram is thereby opened out considerably in regions where accurate reading would otherwise be difficult. Such a diagram for CO_{2} is shown on p. 334.
$H \log p$ Diagram.-The use of the value of $\log p$ in place of its simple numerical value has the advantage that equal ratios of expansion, which are of equal importance in practice, are represented by equal intervals. The lines of constant volume are readily shown on the diagram. Adiabatic lines, unlike those on the Mollier diagram, are not straight, but the curvature is slight, and there is no sudden change of direction on crossing the saturation line, as $d \mathrm{H} / d \mathrm{P}=a \mathrm{~V}$ when ϕ is constant.

Example.-The great ease with which many problems can be solved by means of the diagrams may be illustrated by a number of examples, using Fig. 28.
(1) Find the volume of 1 lb . of steam at $200^{\circ} \mathrm{F}$. and dryness fraction 0.3 . [Ans. $10 \mathrm{cu} . \mathrm{ft}$.]
(2) Steam at $500^{\circ} \mathrm{F}$. is expanded adiabatically to $200^{\circ} \mathrm{F}$. If the initial dryness fraction is (a) 1 , (b) 0.75 , (c) 0.55 , (d) 0.2 , find the final dryness fraction. [Ans. (a) 0.77, (b) 0.64, (c) 0.55, (d) 0.37.]

Note that moderately dry steam tends to become wet, while very wet steam tends to become dry.
(3) Steam at $500^{\circ} \mathrm{F}$. and dryness 0.72 is throttled (at constant total heat) to a temperature of $200^{\circ} \mathrm{F}$. Find the final dryness fraction. [Ans. 0.85.]
(4) Steam at 2000 lb . per sq. in. and with 30° superheat is throttled. State the changes in its condition. [Ans. From 2000 lb . to 1000 lb . the superheat is reduced, the steam becoming dry at the latter pressure. At 400 lb . the steam has attained a dryness fraction of 0.98 , but becomes dry again when 230 lb . is reached.

Below 230 lb . per sq. in. the steam rapidly superheats, attaining 50° superheat at 58 lb ., 100° superheat at 15 lb ., and 150° superheat at 4.5 lb .]

These and similar examples should be checked on large-scale Mollier and other diagrams, until the reader is fully conversant with the general arrangement of the curves.

Fig. 153 should also be replotted with the axis of entropy horizontal, instead of inclined at an angle of 72°, in order to note the effect of the obliquity upon the clarity of the diagram.

EXAMPLES ON CHAPTER V

By means of an entropy chart determine :
(a) The dryness fraction after expansion when dry saturated steam at 180 lb . per sq. in. abs. expands isentropically to 15 lb . per sq. in. abs.
(b) The dryness after expansion when steam at $280^{\circ} \mathrm{F}$. and of dryness 0.8 expands isentropically to $110^{\circ} \mathrm{F}$.
(c) Steam at 100 lb . per sq. in. abs. is superheated $200^{\circ} \mathrm{F}$. and then expands isentropically down to 4 lb . per sq. in. abs. Find its dryness after expansion.
(d) What must be the final pressure in (c) in order that the steam may be just dry and saturated after expansion?
(e) Determine the final quality of steam when $50 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. are extracted at constant pressure, the initial condition being given by (1) $p=200 \mathrm{lb}$. per sq. in. abs. and $q=1$; (2) $p=200 \mathrm{lb}$. per sq. in. abs. and superheat is $50^{\circ} \mathrm{F}$. ; (3) $p=200$ lb . per sq. in. and superheat is $100^{\circ} \mathrm{F}$. Also determine the final quality in case (2) when the heat is extracted at constant volume. (Callendar's diagram.)
(f) Determine the final quality when steam at 16 lb . per sq. in. abs. and $q=0.95$ is compressed adiabatically to (1) 40 lb . per sq.in. ; (2) 150 lb . per sq. in.
(g) Find from Callendar's Mollier chart the final condition and the change of total heat when steam at 100 lb . per sq. in. abs. and $q=0.95$ is increased 10 per cent. in volume at constant pressure.
(h) Determine the final quality when steam at 200 lb . per sq. in. and $q=0.98$ is throttled (at constant heat) to (1) 100 lb . per sq.in. ; (2) 50 lb . per sq. in.

Chapter VI

IRREVERSIBLE PROCESSES

Though irreversible processes are theoretically inefficient, their use is unavoidable in practice. A number of cases will now be considered.

PRESSURE EQUALISATION BETWEEN VESSELS OF FIXED SIZE

If a vessel of fixed size containing a gas or vapour is put into communication with a similar vessel in which the pressure is lower, the fluid will distribute itself between the two vessels. No external work whatever will be done, and the process will be one of constant internal energy.

If the fluid is a perfect gas the initial and final condition points will lie on an isothermal, but during the intermediate stages the fluid is not homogeneous, and its state cannot be represented by succeeding points on the isothermal. No heat is received, no work is done, and the area under the isothermal has no significance.

Fig. 30

$$
\text { N.B. }-\mathrm{E}=\mathrm{C}_{v} \times t ; \mathrm{H}=\mathrm{C}_{p} \times t .
$$

For imperfect gases molecular changes, i.e. the reduction of compound molecules, etc., are involved, and a small drop in temperature-the Joule Thompson Cooling Effect-will occur.

In all cases the areas beneath the curves represent work wasted, not useful work done. The curves shown in Fig. 30 are for perfect gases.

THROTTLING

This process is involved in such cases as that of steam escaping through a small orifice into the atmosphere, when its passage is impeded only by the constant atmospheric pressure, or in the "throttling calorimeter," etc.

Let 1 lb . of gas or vapour in cylinder (1) be subject to a constant pressure p_{1}, and be forced through an orifice into cylinder (2) where its entry is resisted by the constant pressure p_{2}.

The total work done on the steam will be given by

$$
p_{1} A_{1} l_{1}-p_{2} A_{2} l_{2}=p_{1} v_{1}-p_{2} v_{2} .
$$

If during the process the internal energy has changed from E_{1} to E_{2}
or

$$
\begin{aligned}
\mathrm{E}_{2} & =\mathrm{E}_{1}+\frac{p_{1} v_{1}-p_{2} v_{2}}{\mathrm{~J}} \\
\mathrm{E}_{2}+\frac{p_{2} v_{2}}{\mathrm{~J}} & =\mathrm{E}_{1}+\frac{p_{1} v_{1}}{\mathrm{~J}}
\end{aligned}
$$

or the Total Energy-also referred to as the Total Heat-is constant.
It should be noted that as throttling is a single process, not a cycle of

Fig. 31

Fig. 32
operations, it will not be represented on the diagrams of state by a closed figure.

Perfect Gas.-The change can be shown for a perfect gas as follows :
Fig. 32 represents the superimposed indicator diagrams for the two cylinders. The displacement of the gas from the first cylinder is shown by $a b$, and the work done on the gas by the area $a b c d$. The pressure in the second cylinder being constant at p_{2} the work done by the gas is given by area efgd.

In this case the Total Energy or Total Heat is given by $\mathrm{C}_{p} \times$ temperature (the internal energy is given by $\mathrm{C}_{\mathrm{v}} \times$ temperature), and as the Total Energy at b must be equal to that at f, it follows that the temperatures must also be equal. Hence as b and f lie on a line of constant temperature, which for a perfect gas is a rectangular hyperbola, the work areas abcd and efgd must be equal, or the work done on the gas is equal to the work done by it.

It should be noted that the area beneath the isothermal curve from b to f does not enter the discussion, and that there is a change of energy to the kinetic form and back again between these points. On the T ϕ chart, as total energy $=\mathrm{C}_{p} \times \mathrm{T}$, the initial and final states will be on a line of constant temperature $b f$, and similarly on the $\mathrm{H} \phi$ chart (see Fig. 33).

Fig. 33
It will be obvious that as there is no gain or loss of work as a whole the area under the curve bf does not represent useful work done, or the equivalent in heat units of work done.

Condensible Vapours and Imperfect Gases.-It should be remembered that the curves representing the changes of state of perfect gases are merely limiting cases of the general curves of state for fluids when the critical pressure and temperature have been greatly exceeded. For steam and other condensible vapours reference must be made to the complete curves of state, Figs. 26, 27, and 28, where the conditions
approximating to those of a perfect gas are indicated in the top right corners.
On the p.v. diagram (Fig. 34) two lines of constant total heat are shown near the vapour boundary. These are generally slightly less steep than the curves of constant quality, showing that the steam, on throttling, tends to become drier, with the absorption of latent heat, except in the region above A where the reverse is the case. Upon reaching the vapour boundary these lines tend to flow into the curves of constant temperature, and distinction becomes more difficult as the extent of superheating increases. A much clearer impression is obtained from the $T \phi$ and $H \phi$ charts, pp. 71 and 125.

Fig. 35
It will be seen from Fig. 28 that except near the critical point steam tends to become drier or more superheated on throttling, and that in all cases there is a fall in temperature during the process. It will be noticed also how far the constant Total Heat lines deviate in general from being lines of constant temperature as required by perfect gases.

Throttling processes will be represented by horizontal lines on Figs. 29 and 55. On the latter figure CD represents the throttling from 200 lb . per sq. in. and .98 dryness to 15 lb . per sq. in., when about 80° of superheat are attained.

On calculating, from the steam tables, the volume occupied by the steam after throttling, it will be found that the product $p_{1} v_{1}$ is generally greater than $p_{2} \nu_{2}$, or the work done by the steam after passing the restriction is less than the work previously performed upon it, i.e.-
if $p_{1}=200 \mathrm{lb}$. per sq. in., $q=1, v_{1}=2 \cdot 288, \mathrm{~T}_{1}=382^{\circ}$ and $p_{1} v_{1}=$ $457.6 \times 144 \mathrm{ft}$.-lb.
$p_{2}=10 \mathrm{lb}$. per sq. in., $v_{2}=45 \cdot 58, \mathrm{~T}_{2}=310^{\circ}$ and $p_{2} v_{2}=455 \cdot 8 \times 144 \mathrm{ft} . \mathrm{lb}$. Exceptions will be found in the region of high pressure marked A, where throttling tends to produce condensation; i.e. throttling from 1000 lb . to 450 lb . causes an increase of $p . v$ of about 10 per cent., whereas throttling from 450 lb . to 10 lb . causes a fall of approximately the same amount.

Fig. 36

To summarise this and the previous process it may be stated that :

The process of pressure equalisation is one of constant internai energy, and no work is involved.

For a perfect gas the total energy (as $p_{1} v_{1}=p_{2} v_{2}$) and the temperature will be constant.
For an imperfect gas or condensible vapour the total energy generally falls and the temperature always falls.
(Curves for $\mathrm{E}=$ constant on the $\mathrm{T} \phi$ chart, as indicated in Fig. 35, are of the same nature as those for H but more steep.)

The throttling process is one of constant Total Energy.
For a perfect gas the internal energy and temperature will also he constant and the net work done will be zero.

For an imperfect gas or condensible vapour the temperature always falls and the net work done, though generally negative, may be positive or zero.
(Note: The values for Total Heat given in the Steam Tables are for dry steam or for steam at a stated superheat, and corrections must be applied for the effect of wetness or for variations of superheat. Similar corrections must be made to the values of \boldsymbol{v}.)

It should be noted that, though both in the process of pressure equalisation between vessels of fixed size and "Throttling," heat flow to or from the apparatus is precluded; in the former case there is no connection to any external source of compressed air, the pressure in one vessel falling while the pressure in the other rises, whereas in the latter process a constant pumping action is maintained in order that there shall be no drop in pressure on the discharging side of the orifice. Where these conditions do not apply, different results will be obtained. For instance, if air is discharged from a reservoir through an orifice into the room, two cases arise : (1) if the pressure in the reservoir is constantly maintained by a compressor the work done in displacing the external air is supplied in the form of power to drive the compressor, and there will be no cooling of the air itself ; (2) if the compressor is disconnected the reservoir will " blow down," the pressure ultimately falling to atmospheric. In this case the work done on the external air can only be performed at the cost of the energy of the original charge in the receiver, and there will be a fall in temperature and a loss of heat.
Similarly, when air maintained at constant pressure and temperature by a compressor is used to charge a receiver, two actions have to be considered, (a) the throttling action on the air as it passes into the gradually filling receiver, during which there is no variation of temperature (except the Joule Thompson cooling effect), and (b) the compression, over the full pressure range, of the air originally in the receiver at the expense of energy supplied to the compressor, and the similar compression of each portion of the charge from the pressure of the receiver at the time of its entry to the full compressor pressure. The rise of temperature of the receiver when it attains full pressure may be of the order of $130^{\circ} \mathrm{F}$., the gain equalling the loss during "blowing down "over the same pressure range. Upon being disconnected and allowed to cool, the pressure will fall and a further charge will be required to bring it up to full pressure. In estimating the air-constant of a receiver care should be taken to measure the temperature and pressure after these have become steady following the charging process. ${ }^{1}$

HEAT TRANSFER BY CONDUCTION

If a quantity of heat Q is conducted between two bodies at temperatures T_{1} and T_{2}, then

[^11]\[

$$
\begin{aligned}
& \text { Loss of entropy of first body }=\frac{Q}{T_{1}} \\
& \text { Gain of entropy of second body }=\frac{Q}{T_{2}}
\end{aligned}
$$
\]

As T_{1} is essentially greater than T_{2} there will be a gain of entropy on the whole
or

$$
\begin{aligned}
\phi_{2}-\phi_{1} & =\mathrm{Q}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) \\
& =\mathrm{Q}\left(\frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{2} \mathrm{~T}_{1}}\right) .
\end{aligned}
$$

As the heat Q has been discharged at T_{2} the net loss of energy is $\left(\phi_{2}-\phi_{1}\right) \mathrm{T}_{2}=\mathrm{Q} \frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}$, which is the whole of the work which could have been performed by an engine working on the Carnot cycle between temperatures T_{1} and T_{2}; or the change of entropy multiplied by the minimum available temperature measures the energy degraded in the operation (see p. 53). Thermodynamically no useful work is performed. In practice, heat transfer by conduction plays a useful part in many operations, as in the transmission of heat through a boiler plate from the flue gases to the water, but $\mathrm{T}_{1}-\mathrm{T}_{2}$ should be kept as small as possible consistent with the transfer of sufficient heat in a given time.

FRICTION

All work expended in friction will reappear as heat in the surrounding bodies.

If Q is the energy expended and T_{2} is the room temperature, the net gain of entropy will be $\mathrm{Q} / \mathrm{T}_{2}{ }^{1}$

FLUID FRICTION

If steam expands in a suitably designed nozzle from p_{1} to p_{2}, the loss of total heat per pound, $\mathrm{H}_{1}-\mathrm{H}_{2}$, should result in an exactly equivalent gain in kinetic energy of the steam itself, and its velocity is calculable, i.e. $\mathrm{J}\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)=\frac{1}{2 g} \mathrm{~V}^{2}$ where V is the velocity of the issuing jet of steam. Referring to Fig. 37, if the initial condition of the steam is given by c its expansion will be along the adiabatic $c d$ to the final pressure p_{2}, and the work performed in the creation of Kinetic Energy is represented by the area ecdf.

[^12]In all practical cases friction occurs between the steam and the nozzle, and between the steam particles themselves. This will result in a reduction of the final velocity below that calculated, and a corresponding increase in the final heat of the steam above its theoretical value. The steam is said to be reheated, and the efficiency of the nozzle is given by

Actual drop in Total Heat
Theoretical drop in Total Heat

With friction the final pressure will still be p_{2}, but the heat content-

Fig. 37
and consequently the volume-of the steam will be increased beyond the values given by point d. If the final volume is given by b, expansion will have been along $c b$. The total area ecbf will be larger than ecdf, even though energy has been wasted in friction.

The useful work done in producing Kinetic Energy will be the equivalent of the actual Total Heat lost. If then through b we draw ba, a line of constant total heat, to cut the adiabatic $c d$ in a, there would be the same total heat drop, and therefore the same useful work done, by expanding adiabatically from c to a, as by imperfect expansion from c to b. In both cases the useful work would be represented by the area $\mathrm{C}=$ ecag.
The lost portion of the useful work which could have been done by adiabatic expansion is then the area B. The total work expended in friction will be $A+B$, which is greater by the area A than the useful worls lost.

The same argument can be followed on the $\mathrm{T} \phi$ diagram (Fig. 38), drawn for superheated steam.

The ideal adiabatic expansion is now given by a line of constant

Fig. 38
entropy $c d$, whereas the actual expansion will be along some line $c a$, the final degree of superheat at a being greater than that at d by reason of the frictional reheating.

On the Mollier chart (Fig. 39) ideal expansion will again be from c to

Fig. 39
d along a line of constant entropy from p_{1} to p_{2}. Actual expansion will occur from c to b, where the degree of superheat is greater than at d. The line ba, of constant total heat, will now be horizontal.

The length $c a$ is the heat usefully employed, $c d$ the heat ideally avail
able, ad is the loss of useful energy, and ca/cd is the efficiency of the nozzle.

The total friction work can only be found by calculating the "ineffective work " shown in previous diagrams by the area A:-
i.e. if the expansion is from 300 lb . and 300° superheat to 40 lb . with a nozzle efficiency of 75 per cent., then, from the diagram

$$
\begin{aligned}
c d & =200 \text { B.Th.U. } \\
c a & =75 \text { per cent. of } 200 \text { B.Th.U. }=150 \text { B.Th.U. } \\
\text { Loss of } \mathrm{KE} & =50 \text { B.Th.U. }
\end{aligned}
$$

Also the volume at d with adiabatic expansion is $10.49 \mathrm{cu} . \mathrm{ft}$.
and " " b " imperfect " $12.13 \mathrm{cu} . \mathrm{ft}$.
The ineffective work is therefore

$$
\frac{40 \times 144 \times(12.13-10.49)}{778} \text { B.Th.U. }=12.1 \text { B.Th.U. }
$$

and the total friction work corresponding to the areas A and B, Figs. 37 and $38,=50+12 \cdot 1=62 \cdot 1$ B.Th.U.

It will be seen that, with the exception of the "total frictional work" which is seldom required, the Mollier diagram gives both the greatest accuracy and the least trouble when solving such problems.

It cannot be too clearly emphasised that, except for ideal operations, areas on the p.v. and T ϕ diagrams do not entirely or necessarily represent useful work done.

Chapter VII

HOT AIR ENGINES

-GENERAL STATEMENT

The Hot Air Engine is a "Prime Mover" in that it derives its energy directly from the heat of combustion of a fuel, which may be solid, liquid, or gaseous. There are two classes : (1) the external combustion engine, in which the working fluid, air, is heated by the combustion of fuel outside the cylinder or vessel in which it is contained, the heat passing through the walls of the container, the method being the same as that by which water in a boiler is heated by an external furnace; (2) the internal combustion engine, in which fuel is mixed with the air inside the cylinder and is burnt there, so that the supply of heat is not required to pass through the metal walls.

As was seen in the case of the Carnot cycle, the output of a heat engine increases as the temperature drop due to the performance of work is increased. In the external combustion engine the maximum temperature is restricted by the necessity of keeping the heating plates below the softening temperature, say 1290° F., or a dull red heat, whereas in the internal combustion engine the walls may be maintained at a temperature of approximately $212^{\circ} \mathrm{F}$. by water cooling while the temperature inside the cylinder may reach 4500°. In this case the working fluid at the end of expansion consists of the products of combustion, and must be replaced by fresh air and fuel after each cycle.

The name "Hot Air Engine" is normally applied to the external combustion group only, the second group being divided into gas, petrol, and oil engines, according to the nature of the fuel used. The first group only will be dealt with in this chapter.
Unlike the steam engine, a "Hot Air Engine" employs a working fluid which does not undergo a cyclic change from the liquid to the vapour state, so that pressure and temperature are independent variables, and high temperatures can be attained at convenient pressures instead of at the very high pressures which necessarily accompany high temperature steam. At the temperatures attained in practice only the simple gas laws have to be considered, and the engine is therefore free from the theoretical and practical complexities which are associated with steam engines, and from the complications met with in the case of the internal combustion engine for which the working lluid, by reason of the much greater
temperatures attained, and the nature of the products of combustion, behaves in a manner far removed from that of a " perfect " gas.

-CARNOT OR CONSTANT TEMPERATURE CYCLE

This cycle, described on p. 30, though of great theoretical interest, has never been employed in an engine owing chiefly to the very high ratio of maximum to mean effective pressure.

It should be noted that, from a theoretical point of view, the adiabatic operations serve the purpose of varying the temperature of the working fluid, between the upper and lower limits T_{1} and T_{2}, without loss or gain of heat, so that condition (1), p. 45, is fulfilled.

-S'TIRLING ENGINE

In 1816 Dr. Stirling invented the "regenerator," which fulfilled the same purpose, of bridging reversibly between the isothermals, as the adiabatic operations of Carnot's cycle, while obviating the enormous piston displacements which the latter would have required.

The "regenerator" consists of a long vessel loosely packed with heat absorbing material, past which the working fluid can be made to flow, first in one direction and then the other. When in operation a uniform temperature gradient is set up in the absorbent material, from T_{1} at one end of the vessel to T_{2} at the other. On passing air at T_{1} through the vessel from the hot to the cold end, heat is gradually lost by the air and temporarily stored in the packing, the final temperature of the air being approximately T_{2}. If the process is reversed the air will emerge at approximately T_{1}, having reclaimed from the packing the amount of heat previously stored, except for such a small amount of heat as, in practice, is lost from the surface of the vessel, and which must be replaced from the hot body. Were it possible to make the above approximate adjustments exact, then each step in the passage through the regenerator, and the passage as a whole, would become theoretically reversible.
The p.v. and T ϕ diagrams for Stirling's cycle are as shown in Fig. 40. The cycle is assumed to be performed by 1 lb . of air.

Stage AB.-Air at T_{1} expands isothermally in the engine cylinder through a ratio r, taking in an amount of heat equivalent to the work done, or to $\mathrm{R} / \mathrm{J} \mathrm{T}_{1} \log _{e} r$. The energy stored up in the flywheel of the engine during this stroke carries the engine through the remainder of the cycle.

Stage BC.-The air passes at constant volume tinrough the regenerator, its temperature falling to T_{2} and the pressure undergoing a corresponding decrease. The amount of heat stored in the regenerator $=\mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$.

Stage CD.-The air is now brought into contact with a cold body at temperature T_{2}, and is compressed isothermally by the engine piston to
its original volume. The amount of heat rejected by the air is equivalent to the work done or to $\mathrm{R} / \mathrm{J} \mathrm{T}_{2} \log _{\mathrm{c}} r$.

Stage DA.-The air is now passed through the regenerator at constant volume in the reverse direction, its temperature rising from T_{2} to T_{1}. The amount of heat taken in from the regenerator $=e \mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$, where e is the efficiency of the regenerator. The deficit of heat owing to imperfections of the regenerator is $\mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)(1-e)$.

Fig. 40
The efficiency of the cycle $=\frac{\text { heat equivalent of work done }}{\text { heat supplied }}$
Now the heat supplied $\quad=R / J T_{1} \log _{e} r+C_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)(1-e)$
and the heat rejected $\quad=\mathrm{R} / \mathrm{J} \mathrm{T}_{2} \log _{e} r+\mathrm{C}_{v}\left(\mathrm{\Gamma}_{1}-\mathrm{T}_{2}\right)(1-e)$
Hence the work done \quad heat supplied-heat rejected

$$
=\mathrm{R} / \mathrm{J}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \log _{e} r
$$

and the efficiency

$$
\begin{equation*}
=\frac{\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \log _{e} r}{\mathrm{RT}_{1} \log _{\epsilon} r+\mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)(1-\varepsilon)} \tag{1}
\end{equation*}
$$

If the regenerator could be made completely efficient, i.e. if $e=1$,

$$
\begin{equation*}
\text { Efficiency of cycle }=\frac{\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \log _{\epsilon} r}{\mathrm{RT}_{1} \log _{\epsilon} r}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}} \tag{2}
\end{equation*}
$$

The actual value of e is between 90 and 95 per cent.
At a Dundee foundry in 1845 a double-acting Stirling engine, having a cylinder 16 in . in diameter and of 4 ft . stroke, and running at 28 r.p.m., gave about 50 I.H.P. with a consumption of 1.7 lb . of coal per I.H.P.
hour. The working temperatures were $t_{1}=650^{\circ} \mathrm{F}$., and $t_{2}=150^{\circ} \mathrm{F}$., and the ideal efficiency was therefore

$$
\frac{650-150}{650+460}=0.45 \text { or } 45 \text { per cent. }
$$

This result was reduced to 0.3 by practical imperfections, and the coal consumption per B.H.P. per hour was about 2.7 lb . After three years' working the engine was abandoned owing to the burning out of the heating surface.
In order to obtain a rapid rate of heat transmission and a large output for a given size of cylinder, the air was initially compressed to a maximum pressure of 240 lb . per sq. in., the mean effective pressure then being $3 \% .7 \mathrm{lb}$. per sq. in.
Example.-A Stirling air engine works between temperatures of $800^{\circ} \mathrm{F}$. and $90^{\circ} \mathrm{F}$., the ratio of isothermal expansion being 2. Calculate the ideal efficiency when (a) the engine is fitted with a perfect regenerator; (b) when efficiency of regenerator is 0.9 . Take $\mathrm{C}_{p}=0.2375$ and $\mathrm{C}_{v}=0.1691$.
Here

$$
\begin{aligned}
& \mathrm{T}_{1}=800+460=1260^{\circ} \mathrm{F} . \text { abs. } \\
& \mathrm{T}_{2}=90+460=550^{\circ} \mathrm{F} . \text { abs. }
\end{aligned}
$$

and

$$
\mathrm{R} / \mathrm{J}=\mathrm{C}_{p}-\mathrm{C}_{v}=0.2375-0.1691=0.0684 \text { B.Th.U. per lb. }
$$

(a) Efficiency $=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{1260-550}{1260}=\frac{710}{1260}=0.563$
(b) Using equation

$$
\begin{aligned}
\text { Efficiency } & =\frac{\mathrm{R} / \mathrm{J}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \log _{e} r}{\mathrm{R} / \mathrm{JT} \mathrm{~T}_{1} \log _{e} r+(1-e) \mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)} \\
& =\frac{0.0684 \times 710 \times 0.6931}{0.0684 \times 1260 \times 0.6931+0.1 \times 0.1691 \times 710} \\
& =\frac{33.67}{59.74+12.00}=\frac{33.67}{71.74}=0.469 .
\end{aligned}
$$

-ERICSSON'S AIR ENGINE WITH REGENERATOR

This engine differed from Stirling's engine in that the passage of air through the regenerator was affected at constant pressure. Fig. 41 shows the $p . v$. diagram.

The T ϕ diagram is shown dotted in Fig. 40, C_{p} being substituted for C_{v} in the formula used when plotting the lines BC and DA.

The calculation of the theoretical efficiency is identical with that for Stirling's engine if $\mathrm{C}_{\boldsymbol{p}}$ be substituted for C_{0} in the term involving the efficiency of the regenerator.

As fitted in the vessel "Ericsson" which plied on the Thames about

1852, the engine consisted of four working cylinders of $14-\mathrm{ft}$. bore and 6 -ft. stroke, each with its own compressor cylinder. The engine speed was 9 r.p.m. and the mean effective pressure 2.12 lb . per sq. in. The maximum pressure was 22 lb . per sq. in.

As will be seen in Chapter XVI, the transmission of heat from furnace gases to air through a metal plate presents many difficulties, and though both the above engines gave reasonable efficiencies they were discarded owing to the burning of the heating surfaces.

Example.-In the " Erics-

Fig. 41 son's" engine the temperature limits were $122^{\circ} \mathrm{F}$. and $414^{\circ} \mathrm{F}$., piston displacement per pound of air $=22 \mathrm{cu}$. ft., ratio of expansion 1.5. Revs. per minute 9. Diameters of cylinders 14 ft ., stroke 6 ft . Calculate: (1) Work done per pound of air per stroke; (2) thermal efficiency of engines (assuming efficiency of regenerator $=0.9$) ; (3) mean effective pressure; (4) indicated horse-power.

$$
\text { Here } \mathrm{T}_{1}=414+460=874^{\circ} \mathrm{F} . \mathrm{abs}
$$

(1) Work done per pound of air per stroke $=\mathrm{R} \log _{\epsilon} r\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$
and as

$$
\mathrm{R}=53 \cdot 2 \mathrm{ft} .-\mathrm{lb} . \text { per } \mathrm{lb} .
$$

$$
\text { Work done }=53.2 \times 0.4055 \times(414-122)
$$

$$
=6300 \mathrm{ft} . \mathrm{lb} \text {., equivalent to } 8 \cdot 1 \mathrm{~B} . \mathrm{Th} . \mathrm{U} \text {. }
$$

(2) Heat supplied $=\mathrm{R} / \mathrm{J} \mathrm{T}_{1} \log _{e} r+(1-e) \mathrm{C}_{\rho}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$

$$
\begin{aligned}
& =\frac{53.2}{778} \times 874 \times 0.4055+0.1 \times 0.2375 \times 292 \\
& =31.18 \mathrm{~B} . \mathrm{Th} . \mathrm{U} .
\end{aligned}
$$

Of the above quantity of heat, notice that the heat wasted owing to imperfection of the regenerator is 6.94 B.Th.U., or the equivalent of 85 per cent. of the work done.

$$
\text { Efficiency }=\frac{8.1}{31.18}=0.26
$$

Note-II the efficiency of the regenerator is unity the engine efficiency is

$$
\frac{8 \cdot 1}{24 \cdot 25}=0.33
$$

(3) Mean effective pressure $=\frac{\text { work done per pound per stroke }}{\text { volume swept through by piston }}$

$$
=\frac{6300}{22}
$$

$$
=286 \mathrm{lb} . \text { per } 8 q . \mathrm{ft} .
$$

$$
=2 \mathrm{lb} . \text { per } \mathrm{sq} . \text { in. (approx.). }
$$

(4) Area of each cylinder $=0.7854 \times 14^{2}=154 \mathrm{sq} . \mathrm{ft}$.
\therefore Joint area of the four pistons $=154 \times 4$
\therefore Work done per minute $=286 \times 154 \times 4 \times 6 \times 9$ ft.-lb.

$$
\begin{aligned}
\therefore \text { Indicated horse-power } & =\frac{286 \times 154 \times 4 \times 6 \times 9}{33,000} \\
& =288 \text { I.H.P. }
\end{aligned}
$$

-JOULE'S AIR ENGINE. THE CONSTANT PRESSURE CYCLE

In 1851 Dr. Joule proposed to use a cycle in which the heat was received and rejected at constant pressure. Though no engine was constructed to use this cycle, the reversed cycle was used extensively in

Fis. 42
refrigeration for a number of years (Chapter XV). Fig. 42 shows a diagrammatic sketch of the engine, and also the $p . v$. and T ϕ diagrams.

Heating and cooling chambers, H and C , are provided, the former maintained at temperature T_{1} by means of a furnace, the latter cooled, usually by water, to T_{2}. A and B are a working or expansion cylinder and a pump cylinder respectively. The chambers are large compared with the cylinders, so that the pressures in H and C are virtually unchanged by a single discharge of air into, or reception of air from, either A or B, or by the heating or cooling of a single charge.

The cycle of operations is as follows :
(1) Air having been heated in H to temperature T_{1} and at pressure p_{1} (point b) passes through valve E into A, where it is allowed to expand adiabatically (from b to c) until the pressure falls to p_{2} and the temperature to T_{c}. The air is then discharged through F into C , where it is cooled at constant pressure to the lowest permissible temperature T_{2}. The p.v. diagram for cylinder A is ebcf.
(2) At the same time a similar weight of air is drawn from C, through G, at pressure p_{2} and temperature T_{2}, into the compressor cylinder, where the pressure is raised to p_{1} and the temperature to T_{a} by adiabatic compres sion. After compression it passes through K into H , where it is heated from T_{s} to T_{1} at constant pressure. The p.v. diagram for cylinder B is fdae.

The net work done during the cycle is ebcf-faae=abcd, measured in foot-pounds on the $p . v$. card, or $a b c d$ in heat units if the $T \phi$ diagram is used.

The efficiency can be calculated as follows :

$$
\begin{align*}
& \text { Heat taken in }=Q_{H}=C_{p}\left(\mathrm{~T}_{b}-\mathrm{T}_{a}\right) \tag{1}\\
& \text { Heat rejected }=\mathrm{Q}_{\mathrm{C}}=\mathrm{C}_{p}\left(\mathrm{~T}_{c}-\mathrm{T}_{d}\right) \tag{2}
\end{align*}
$$

and efficiency

$$
\begin{align*}
& =\frac{\mathrm{Q}_{\mathrm{H}}-\mathrm{Q}_{\mathrm{C}}}{\mathrm{Q}_{\mathrm{H}}} \\
& =1-\frac{\mathrm{Q}_{\mathrm{C}}}{\mathrm{Q}_{\mathrm{H}}}=1-\frac{\mathrm{T}_{c}-\mathrm{T}_{d}}{\mathrm{~T}_{b}-\mathrm{T}_{a}} \tag{3}
\end{align*}
$$

Now, since the adiabatic expansion and compression both take place between the same terminal pressures, the ratios of expansion and compression are equal. Calling this common ratio r we have

Hence

$$
\begin{aligned}
& \frac{\mathrm{T}_{a}}{\mathrm{~T}_{d}}=\frac{\mathrm{T}_{b}}{\mathrm{~T}_{e}}=r^{\gamma-1}(\text { see } \mathrm{p} .16) \\
& \frac{\mathrm{T}_{b}}{\mathrm{~T}_{a}}=\frac{\mathrm{T}_{e}}{\mathrm{~T}_{d}}
\end{aligned}
$$

Subtracting 1 from each side of this equation
or

$$
\begin{equation*}
\frac{\mathrm{T}_{b}-\mathrm{T}_{a}=\frac{\mathrm{T}_{c}-\mathrm{T}_{d}}{\mathrm{~T}_{a}} \mathrm{~T}_{d}}{\text { an }} \tag{4}
\end{equation*}
$$

$$
\frac{T_{c}-T_{d}}{T_{b}-T_{a}}=\frac{T_{d}}{T_{d}}
$$

$$
\begin{aligned}
& =1-\frac{\mathrm{T}_{d}}{\mathrm{~T}_{a}}=1-\frac{\mathrm{T}_{c}}{\mathrm{~T}_{b}} \\
& =\frac{\mathrm{T}_{a}-\mathrm{T}_{d}}{\mathrm{~T}_{a}}=\frac{\mathrm{T}_{b}-\mathrm{T}_{e}}{\mathrm{~T}_{b}} .
\end{aligned}
$$

Now though T_{b} is the maximum temperature $\mathrm{T}_{1}, \mathrm{~T}_{c}$ is necessarily greater than the minimum temperature T_{2}, so that the efficiency is less than the value $\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}$ given by the Carnot cycle.

By using a single cylinder for both expansion and compression, and heating and cooling the air in the cylinder itself, instead of in H and C , the cycle closely resembles that used in certain classes of oil engines (see Chapter XIV).

EXAMPLES ON CHAPTER VII

1. In a Stirling air engine working between temperatures of $700^{\circ} \mathrm{F}$. and $80^{\circ} \mathrm{F}$., the ratio of isothermal expansion is 2 . Calculate the ideal efficiency when (a) the engine is fitted with a perfect regenerator; (b) when the efficiency of the regenerator is 0.9 . Take $C_{p}=0.2375$ and $C_{v}=0.1691$.
2. Compare the efficiencies of: (a) A Stirling engine with perfect regenerator in which the maximum pressure is 140 lb . per sq . in. abs. and minimum pressure 15 lb . per sq. in. abs., and limits of temperature $750^{\circ} \mathrm{F}$. and $70^{\circ} \mathrm{F}$.; and (b) a perfectly reversible steam engine working between the same limits of pressure.
3. If in a Joule air engine the ratio of expansion be 3, calculate the efficiency.
4. What will be the efficiency of the engine in question (1) if no regenerator is fitted?
5. A Stirling engine, with perfect regenerator, works between pressures of 135 lb. per sq. in. abs., and 15 lb . per sq. in. abs., and temperatures $550^{\circ} \mathrm{F}$. and $50^{\circ} \mathrm{F}$. respectively. Calculate the mean effective pressure on the piston.
6. An air engine works on an ideal cycle in which heat is received at constant pressure, and rejected at constant volume. The pressure at the end of the suction stroke is 14 lb . per sq. in. abs., and temperature $40^{\circ} \mathrm{C}$. The ratio of compression is 13 and the ratio of expansion 6.5. If the expansion and compression curves are adiabatic $p \boldsymbol{v}^{1 \cdot 4=\text { constant, find the mean pressure for the cycle and its efficiency. }}$
7. An ideal air engine works on the following cycle : air is taken in at atmospheric pressure 14.7 lb . per sq. in. and at temperature $55^{\circ} \mathrm{F}$., and is then compressed adiabatically so that at the end of the stroke the pressure is 550 lb . per sq. in. abs. Heat is then taken in at constant pressure and the air then expands adiabatically, the ratio of expansion being 5 . The air is exhausted at the end of the expansion stroke, the heat being rejected at constant volume. Estimate the efficiency. (Take $\mathrm{C}_{p}=0.2375$ and $\mathrm{C}_{v}=0.1691$.)
8. An air engine works on an ideal cycle in which heat is received at constant pressure, and rejected at constant volume. The pressure before compression is 14 lb . per sq. in. abs., the ratio of compression $15 \cdot 3: 1$, and the ratio of expansion $7 \cdot 0: 1$. If the law of compression and expansion is $p v^{1 \cdot 4}=$ constant, find the mean pressure of the cycle. If the temperature before compression is $60^{\circ} \mathrm{F}$. eatimate the efficiency, taking $\mathrm{C}_{\phi}=0.2375$ and $\mathrm{C}_{v}=0.1691$.

Chapter VIII

THEORY OF AIR COMPRESSORS AND MOTORS

-GENRRAL STATEMENT

Though air cumpressors and motors are not strictly " heat engines" the theory underlying their action is closely akin to that of the air engine, and for this reason, and because of their great importance either for the transmission of power, or as auxiliaries used in its generation, they are included here.

-THE TRANSMISSION OF POWER BY COMPRESSED AIR

In general, this method of power transmission is employed because of its convenience rather than on account of its efficiency. Three units are involved :
(1) The compressor, by which the pressure of air is raised to, say, 100 lb . per sq. in.
(2) The receiver, or storage reservoir, and the transmission line which may be wholly or in part flexible.
(3) The air motor, which may resemble a small steam engine, using compressed air instead of water vapour under pressure, or may be of simpler form and incorporated in the body of a pneumatic riveter or other hand tool.

If it were possible to compress, transmit, and expand the air isothermally no heat losses would occur, the work done on the air during compression and by the air during expansion would be equal, and the efficiency of the system, neglecting friction losses, would be unity.

Fig. 43 represents the theoretical p.v. diagrams involved.

Fig. 43

Air is drawn into the compressor from d to a, is compressed isothermally from a to b, and completely discharged into the receiver from b to c. The commencement, at
d, of the next outward stroke causes the inlet valve to open. The work done on the air per cycle will be given by the area abcd.

The same figure represents the action in the expansion cylinder, $c b$ being the admission of air at constant pressure, ba its subsequent isothermal expansion, and ad its complete discharge into the atmosphere. The work done by the air per cycle will be the area cbad.

In practice isothermal compression and expansion are not realised, owing to the difficulties of extracting or adding heat at sufficiently great rates to maintain a constant temperature during compression and expansion, air having a very low thermal conductivity (see also film effect, p. 373). Though in some cases precautions are taken to make the operations as nearly isothermal as possible, as will be shown later, they normally approach fairly closely to the adiabatic form. In this case the air becomes

Fig. 44
heated on compression, but owing to the practical necessity of temporary storage or of transmission through considerable lengths of pipe, this heat is lost by radiation and conduction, and the air is at approximately atmospheric temperature once more before entering the motor. If, when utilising the high-pressure air, the motor works non-expansively (as in the case of most hand tools) there will be a sudden fall of temperature and pressure when the exhaust valve opens, and the diagram will be $c b a^{\prime} d$. If expansion is employed the temperature in the cylinder will gradually fall. In either case any moisture present will tend to be deposited, and may even freeze and block the passages or lock the valves of the machine. Certain precautions may hove to be taken to prevent stoppages due to this cause.

Fig. 44 shows the combined $p . v$. diagrams assuming adiabatic compression and expansion. Figure dabc now represents the compressor cycle, the work done on the air being given by the area of dabc instead of dafc, which represents the work which would have been done had the compression been isothermel.

Though the volume of air exhausted to the receiver is given by $b c$, this is reduced, by cooling, to $c f$ by the time the motor cylinder is reached. Expansion will take place from f to e, and the work done will be given by cfed.

The overall efficiency will be given by $\frac{\text { area } c f e d}{\text { area } d a b c}$, and the energy los through non-adabatic working will be given by area fbae.

Now

$$
\frac{v_{f}}{v_{e}}=\left(\frac{p_{e}}{p_{f}}\right)^{1 / n}=\left(\frac{p_{a}}{p_{b}}\right)^{1 / n}=\frac{v_{b}}{v_{a}}
$$

or

$$
\begin{aligned}
& \frac{v_{f}}{v_{b}}=\frac{v_{e}}{v_{a}}=\frac{v_{x}}{v_{y}}=\text { constant. } \\
& \frac{v_{f}}{v_{b}}-\frac{\mathrm{T}_{f}}{\Gamma_{b}^{\prime}}=\frac{\mathrm{T}_{a}}{\mathrm{~T}_{b}}=\left(\frac{p_{a}}{p_{b}}\right)^{n-1}=\left(\frac{1}{r}\right)^{\frac{n-1}{n}}
\end{aligned}
$$

or efficiency

$$
=\frac{c f e d}{d a b c}=\frac{v_{x}}{v_{y}}=\frac{v_{f}}{v_{b}}=\left(\frac{1}{r}\right)^{\frac{\gamma-1}{\gamma}}
$$

where r is the ratio of the maximum to the minimum pressure.
Example.-The rapid decrease of efficiency (i.e. of $\frac{c f e d}{d a b c}$) with increasing pressure ratios can be seen from the following figures:

\%	$\frac{1}{r}$	$\binom{1}{r}^{\frac{\gamma-1}{\gamma}}=\binom{1}{r}^{0.286}$
2	0.5	. . . $0 \cdot 819$
5	0.2	. . . $0 \cdot 631$
10	$0 \cdot 1$. . $0 \cdot 518$
20	0.05	. . . 0.415
50	0.02	. . . $0 \cdot 326$
100	0.01	. . $0 \cdot 268$
200	0.005	. . . 0.220

It will be seen that for the higher ratios some improved form of operation is almost a necessity.
For a simple plant the following may serve as a guide. Compressor efficiency, say, 64 per cent. ; non-expansion motor efficiency, 22 per cent. ; overall efficiency, 14 per cent. The financial loss due to a leakage equivalent to a hole $\frac{1}{16} \mathrm{in}$. diameter is about $£_{24}$ per annum.

Example.-Air at $60^{\circ} \mathrm{F}$. and 15 lb . per sq. in. pressure is drawn into a cylinder and compressed adiabatically to a pressure of 75 lb . above its original pressure, and is then expelled at this pressure into a receiver. In the receiver the compressed air cools down to its original temperature, and, in order to maintain a uniform pressure in the receiver, an equal weight of compressed air is drawn off and expanded isothermally in a working cylinder down to 15 lb . pressure. Calculate (a) the work spent per lb . of air in the compressor; (b) the work done per lb . of air in expanding; (c) the temperature of the air as it enters the receiver.
(a) Now, considering $1 \mathrm{cu} . \mathrm{ft}$. of " free " air at $60^{\circ} \mathrm{F}$.,

$$
\begin{aligned}
p_{1} v_{1}^{1 \cdot 4} & =p_{2} v_{2}^{1 \cdot 4} \\
\therefore\left(\frac{v_{2}}{v_{1}}\right)^{1 \cdot 4} & =\frac{p_{1}}{p_{2}}=\frac{15}{90}
\end{aligned}
$$

$\therefore 1 \cdot 4 \log v_{2}-1 \cdot 4 \log v_{1}=\log 15-\log 90$

$$
\begin{aligned}
\therefore 1 \cdot 4 \log v_{2} & =1 \cdot 1761-1 \cdot 9542=-0.7781 \\
\therefore \log v_{2} & =-\frac{0.7781}{1.4}=-0.5559=\overline{1} \cdot 4441
\end{aligned}
$$

$$
\therefore v_{2}=0.2781 \mathrm{cu} . \mathrm{ft} .
$$

Work done per cycle $=p_{2} v_{2}-p_{1} v_{1}+\frac{p_{2} v_{2}-p_{1} v_{1}}{1 \cdot 4-1}=3 \cdot 5\left(p_{2} v_{2}-p_{1} v_{1}\right)$

$$
\begin{aligned}
& =3.5 \times 144(90 \times 0.2781-15) \\
& =3.5 \times 144(25.029-15) \\
& =3.5 \times 144 \times 10.029=5065 \mathrm{ft} . \mathrm{lb} .
\end{aligned}
$$

Taking the volume of 1 lb . of air at $60^{\circ} \mathrm{F}=13 \mathrm{cu}$. ft., i.e. $12 \cdot 39 \times \frac{52 \mathrm{u}}{492}$ cu. ft., we have-

Work done per pound of air $=5065 \times 13=65,845 \mathrm{ft}$. lb .
(b) Work done per cubic foot in expanding

$$
\begin{aligned}
& =p v \log _{e} r=p v \log _{\epsilon} \frac{90}{15} \\
& =15 \times 144 \times 2 \cdot 303 \times 0.7782 \\
& =3870 \mathrm{ft}-\mathrm{lb} .
\end{aligned}
$$

\therefore Work done per pound $=3870 \times 13=50,310 \mathrm{ft}$. lb .
(c)

$$
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{p^{2}}{p_{1}}\right)^{\frac{1 \cdot 4-1}{14}}=\left(\frac{90}{15}\right)^{\frac{2}{7}}=6^{\frac{2}{7}}
$$

And

$$
\begin{aligned}
\mathrm{T}_{1} & =60+460=520^{\circ} \text { abs. } \\
\therefore \mathrm{T}_{2} & =520 \times 6^{\frac{2}{7}} \\
\log \mathrm{~T}_{2} & =\log 520+\frac{2}{7} \log 6=2.7160+\frac{2}{7} \times 0.7782 \\
& =2.7160+0.2223 \\
\therefore \log \mathrm{~T}_{2} & =2.9383 \\
\therefore \mathrm{~T}_{2} & =867.6^{\circ} \text { abs. }=867 \cdot 6-460=407.6^{\circ} \mathrm{F} .
\end{aligned}
$$

*METHODS OF REDUCING THE LOSSES DURING COMPRESSION AND EXPANSION

It is obvious from Fig. 44 that these losses will be reduced by making the compression and expansions curves $a b, f e$, coincide as closely as possible with the isothermal af.

By fitting a water jacket to the cylinder a slight improvement can be effected, but by injecting a spray of water directly into the cylinder to absorb the heat generated during compression or to supply heat during expansion a marked advantage can be gained. For adiabatic compression the value of n, in the equation $p v^{n}=$ constant, is $1 \cdot 4$, and for isothermal compression the value is $1 \cdot 0$. With spray injection an intermediate value of approximately 1.2 can be obtained, and the compression curve will lie between $a b$ and $a f$. For many purposes the presence of water mixed with the air is objectionable, however. Multi-stage operation will be considered in a separate paragraph.

-THE PRODUCTION OF COMPRESSED AIR. GENERAL STATEMENT

The operations involved in the production of compressed air will now be considered in more detail, and a brief note only will then be given concerning its utilisation, as the theory applying to the two cases is very similar.

It will be assumed, unless otherwise stated, that the actual compression curves are adiabatics, though under certain circumstances an improvement can be made by the use of spray injection. The equations will be affected by the nature of the compression curve only to the extent of the substitution of $n=1 \cdot 2$ or some other suitable value in place of $\gamma=1.4$.

-THE SINGLE-STAGE COMPRESSOR

The p.v. diagram is shown in Fig. 45 for 1 lb . of air. Three processes are involved, as follows :

Suction from D to A, during which the work done by the air $=p_{1} v_{2}$.

Compression from A to B, when the work done on the air $=\frac{p_{2} v_{2}-p_{1} v_{1}}{\gamma-1}$ and the temperature rises to

$$
\begin{equation*}
\mathrm{T}_{2}=\mathrm{T}_{1} \cdot\left(p_{2} / p_{1}\right)^{\frac{\gamma-1}{\gamma}} \tag{1}
\end{equation*}
$$

Exhaust from B to C, while the work done on the air $=p_{2} v_{2}$.

Fig. 45
Hence the total work done per pound of air per cycle during suction, adiabatic compression, and delivery, is given by the expression

$$
\begin{align*}
\mathrm{W}_{n-\gamma} & =\frac{p_{2} v_{2}-p_{1} v_{1}}{\gamma-1}+p_{2} v_{2}-p_{1} v_{1} \\
& =\frac{\gamma}{\gamma-1}\left(p_{2} v_{2}-p_{1} v_{1}\right) \tag{2}
\end{align*}
$$

or γ times the work of compression only

$$
\begin{equation*}
=R \cdot \frac{\gamma}{\gamma-1}\left(T_{2}-T_{1}\right) \text { since } p v=R T \tag{3}
\end{equation*}
$$

Substituting in (3) the value of T_{2} from (1), we have

$$
\begin{equation*}
\mathbf{W}_{n-\gamma}=\mathbf{R} \cdot \frac{\gamma T_{1}}{\gamma-1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}-1}\right] . \cdots \cdots \cdot \tag{4}
\end{equation*}
$$

If, however, the compression is isothermal, the work done is

0

$$
\begin{align*}
& W_{n-1}=p_{1} v_{1} \log _{4} \frac{v_{1}}{v_{2}}+p_{2} v_{2}-p_{1} v_{1}=p_{1} v_{1} \log _{\epsilon} \frac{p_{2}}{p_{1}} \\
&=R T_{1} \log _{6} \frac{p_{2}}{p_{1}} \cdot . \tag{5}
\end{align*}
$$

Treating the isothermal compressor as the ideal case, since it wastes no energy in uselessly heating the air, and calling its efficiency unity, the efficiency of the adiabatic compressor is

$$
\text { Efficiency } \eta_{n=\gamma}=\frac{\mathrm{RT}_{1} \log _{\epsilon} \frac{p_{2}}{p_{1}}}{\mathrm{R} \cdot \mathrm{~T}_{1} \cdot \frac{\gamma}{\gamma-1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right]}
$$

If $r=$ ratio of compression pressures $=\frac{p_{2}}{p_{1}}$, we have

$$
\begin{equation*}
\eta_{n-\gamma}=\frac{\mathrm{RT}_{1} \log _{\epsilon} r}{\mathrm{RT}_{1} \frac{\gamma}{\gamma-1}\left[r^{\left.\frac{\gamma-1}{\gamma}-1\right]}\right.}=\frac{\log _{e} r}{\frac{\gamma}{\gamma-1}\left(r^{\left.\frac{\gamma-1}{\gamma}-1\right)}\right.} \text {. } \tag{6}
\end{equation*}
$$

It is convenient to express equation (3) in a simpler form, which can be done by substituting $\mathrm{C}_{p} / \mathrm{C}_{v}$ for γ and $\mathrm{C}_{\rho}-\mathrm{C}_{v}$ for R / J.

Hence

$$
\begin{aligned}
\frac{\mathrm{W}}{\mathrm{~J}} & =\left(\mathrm{C}_{p}-\mathrm{C}_{v}\right) \frac{\mathrm{C}_{p}}{\mathrm{C}_{v}} / \frac{\mathrm{C}_{p}-\mathrm{C}_{v}}{\mathrm{C}_{v}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =\mathrm{C}_{p}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) .
\end{aligned}
$$

Example. ${ }^{1}-12.39 \mathrm{cu} . \mathrm{ft}$. of air at atmospheric pressure are compressed to a pressure of 200 lb . per sq. in. abs. Find the quantity of heat which must be added to or taken away from the air during the operation: (a) when the compression is isothermal ; (b) when the compression is according to the law $p v^{12}=$ constant.
(a) The work done during isothermal compression is given by the equation

$$
W=p_{1} v_{1} \log _{s} r=p_{2} v_{2} \log _{e} r
$$

Here $p_{1}=14.7 \times 144 \mathrm{lb}$. per sq. ft., and $v_{1}=12.39 \mathrm{cu} . \mathrm{ft}$.
Also

$$
\frac{v_{1}}{v_{2}}=r=\frac{p_{2}}{p_{1}}=\frac{200}{14 \cdot 7}=13 \cdot 6, \text { and } \log _{\epsilon} r=2 \cdot 62 .
$$

Hence $W=14.7 \times 144 \times 12.39 \times 2.62 \mathrm{ft} . \mathrm{lb} .=68,320 \mathrm{ft} .-\mathrm{lb}$.
The work done on the gas during compression is thus equal to 68,320
${ }^{1}$ In deriving the general formula $\mathrm{W}=\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)$, p_{1} was taken as the higher pressure, W then being $+\infty$ and representing work done by the gas. If in compressor problems p_{1} is taken as the linitial or suction pressure the value of W will be -w, indicating that work is done on the ges.
ft.-lb. Hence the heat taken away from the gas during compression is equal to $68,320 \mathrm{ft}$.-lb., or

$$
\frac{68,320}{778}=87.8 \text { B.Th.U. or } \frac{68,320}{1400}=48.4 \text { C.H.U. }
$$

(b) Work done $=\frac{p_{1} v_{1}}{n-1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right\}$

$$
\begin{aligned}
& =\frac{14.7 \times 144 \times 12.39}{1 \cdot 2-1}\left\{1-\left(\frac{200}{14 \cdot 7}\right)^{\frac{1.2-1}{1 \cdot 2}}\right\} \\
& =\frac{2116 \times 12.39}{0.2}\left\{1-(13.6)^{1 / 6}\right\} \\
& =131,086(1-1.545) \\
& =-71,440 \mathrm{ft} . \mathrm{lb} .
\end{aligned}
$$

Hence the work done on the gas during the compression is $71,400 \mathrm{ft}$.-lb.
From equation (12), p. 24, the heat taken away from the gas during the compression is

$$
\begin{aligned}
\mathrm{H} & =\frac{\gamma-n}{\gamma-1} \times \text { work done } \\
& =\frac{1 \cdot 4-1 \cdot 2}{1 \cdot 4-1} \times 71,440 \\
& =\frac{0 \cdot 2}{0.4} \times 71,440 \\
& =35,720 \mathrm{ft} . \mathrm{lb} . \text { or } 45.9 \text { B.Th.U. or } 25.5 \text { C.H.U. }
\end{aligned}
$$

Example.-Calculate the size of the cylinder required for a doubleacting air compressor of thirty-five indicated horse-power working as a simple compressor with spray injection, the law of compression being $p 0^{1 \cdot 2}=$ constant, the ratio of compression being from 15 lb . per sq. in. abs. to 120 lb . per sq. in. abs. Revolutions per minute $=110$, and average piston speed 560 ft . per minute. Neglect clearance.

If p_{1} and p_{2} are the higher and lower pressures respectively,

$$
\text { Work done per pound of air }=p_{1} v_{1}-p_{2} v_{2}+\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}
$$

\therefore Mean effective pressure $=p_{1} \frac{v_{1}}{v_{2}}-p_{2}+\frac{p_{1} \frac{v_{1}}{v_{2}}-p_{2}}{n-1}$.
Also

$$
\begin{align*}
& p_{1} v_{1}^{n}=p_{2} v_{2}^{n} \tag{1}\\
& \therefore \frac{v_{2}}{v_{1}}=\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1}{n}}=\left(\frac{120}{15}\right)^{\frac{1}{1-2}}=8^{\frac{3}{6}}
\end{align*}
$$

$$
\begin{aligned}
\therefore \log \frac{v_{2}}{v_{1}} & =\frac{3}{6} \log 8=\frac{3}{6} \times 0.9031=0.7526 \\
\therefore \frac{v_{2}}{v_{1}} & =5.657
\end{aligned}
$$

Substituting this value of $\frac{v_{2}}{v_{1}}$ in equation (1), we have
Mean effective pressure $=\frac{120}{5 \cdot 657}-15+\frac{\frac{120}{5 \cdot 657}-15}{0 \cdot 2}$

$$
=21 \cdot 21-15+\frac{21 \cdot 21-15}{0.2}=37.26 \mathrm{lb} . \text { per sq. in. }
$$

Let $A=$ area of cylinder in square inches
then

$$
\begin{aligned}
37.26 \times 560 \times \mathrm{A} & =35 \times 33,000 \\
\therefore \mathrm{~A} & =\frac{35 \times 33,000}{37.26 \times 560}=55.37 \text { square inches. } \\
\therefore \text { Diameter } & =\sqrt{55 \cdot 37 \div 0.7854}=8.40 \text { inches. }
\end{aligned}
$$

Since revolutions per minute $=110$, and there are 220 working strokes per minute (the compressor being double-acting), the stroke is

$$
560 \div 220=2.545 \mathrm{ft} .=2 \mathrm{ft} .6 \frac{1}{2} \mathrm{in} .
$$

-MULTI-STAGE COMPRESSION. GENERAL STATEMENT

This method of compression is very commonly employed, especially when the final pressure required is high. Not only is the work of compression much reduced, but there is an additional advantage which will be considered in the paragraph concerning clearance.

Fig. 46 represents the p.v. diagram for a two-stage compressor, and Fig. 47 that for a three-stage machine.

In the former case the machine is fitted with two cylinders, usually operated from the same crankshaft, and having volumes given by V_{1} and V_{2}. In practice the strokes of the pistons are usually equal, so that the areas are in the ratio of V_{1} / V_{2}.

The air is first compressed in the larger cylinder, for which the diagram is shown by FABG, and is then exhausted at pressure p_{2} into an "intercooler" (intermediate receiver and cooler). Here the air is cooled to its original temperature T_{1} by means of cold water, and contracts from volume V_{B} to volume V_{C}. It is now drawn into the smaller cylinder and compressed to its final pressure p_{3}, after which it is discharged into the final receiver. The diagram for the second cylinder is GCDE. The air
now cools to the original temperature T_{1}, shrinking meanwhile to volume $\mathbf{V}_{\mathbf{K}}$, ACK being an isothermal line.

The saving effected by the two-stage machine when compared with a single-stage compressor is shown shaded in Figs. 46 and 47.

Fig. 46
In the three-stage compressor three cylinders and two inter-coolers are used. The diagram for the machine is shown in Fig. 48.

Fig. 47

-TWO-STAGE ADIABATIC COMPRESSOR

The p.v. diagram is shown in Fig. 46. The work done per pound of air per cycle is now
$\mathrm{W}=$ area ABGF+area CDEG

$$
\begin{equation*}
=\mathrm{RT}_{1} \frac{\gamma}{\gamma-1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right]+\mathrm{RT}_{1} \frac{\gamma}{\gamma-1}\left[\left(\frac{p_{3}}{p_{2}}\right)^{\frac{\gamma-1}{\gamma}}-1\right] \ldots . \tag{1a}
\end{equation*}
$$

(Note that $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{1}$)
$=\mathrm{RT}_{1} \frac{\gamma}{\gamma-1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}+\left(\frac{p_{3}}{p_{2}}\right)^{\frac{\gamma-1}{\gamma}}-2\right]$
Differentiating (1) with respect to p_{2}, and equating to zero to find the minimum value, we have, since p_{1} and p_{3} are constants,

$$
\begin{gathered}
\frac{\gamma-1}{\gamma}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma-1}} \times \frac{1}{p_{1}}+\frac{\gamma-1}{\gamma}\left(\frac{p_{3}}{p_{2}}\right)^{\frac{\gamma-1}{\gamma}-1} \times-\frac{p_{3}}{p_{2}^{2}}=0 \\
p_{2}^{-\frac{1}{\gamma}} \frac{p_{1} \frac{1}{\gamma}}{p_{1}}-p_{3}{ }^{1-\frac{1}{\gamma}} p_{2}{ }^{\frac{1}{\gamma}-2}=0
\end{gathered}
$$

Dividing by $p_{2}{ }^{-1 / \gamma}$ we have

$$
\frac{\gamma-1}{\gamma} p_{1} \frac{1-\gamma}{\gamma}=\frac{\gamma-1}{\gamma} p_{3}^{\frac{\gamma-1}{\gamma}} \cdot p_{2}^{2(1-\gamma) / \gamma}
$$

Therefore

$$
\begin{align*}
p_{2}^{2(1-\gamma) \gamma} & =\frac{p_{1} \frac{1-\gamma}{\gamma}}{p_{3} \frac{\gamma-1}{\gamma}}=p_{1} \frac{1-\gamma}{\gamma} p_{3} \frac{1-\gamma}{\gamma} \\
p_{2} & =\sqrt{p_{1} p_{3}}, \tag{2}
\end{align*} \text { or } \frac{p_{2}}{p_{1}}=\frac{p_{3}}{p_{2}} . ~ \$
$$

or
This is the condition for least work, and, when applied to equation (1a), shows that the same amount of work is done in both stages. When this condition is satisfied then

Also since

$$
\begin{equation*}
\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{p_{2}}{p_{1}}=\sqrt{\frac{p_{3}}{p_{1}}} \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
& \frac{\mathrm{T}_{\mathrm{B}}}{\mathrm{~T}_{\mathrm{A}}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}} \\
& \frac{\mathrm{~T}_{\mathrm{D}}}{\mathrm{~T}_{\mathrm{C}}}=\left(\frac{p_{3}}{p_{2}}\right)^{\frac{\gamma-1}{\gamma}}
\end{aligned}
$$

$$
\text { (Note that } T_{c}=T_{1} \text {) }
$$

$$
\begin{equation*}
\frac{T_{B}}{T_{A}}=\frac{T_{D}}{T_{C}} \tag{4}
\end{equation*}
$$

Equation (4) shows that the ratio of the initial and final temperatures during compression is the same for each stage when the work of compression is a minimum.
Substituting from (2) in (1) we have the statement of the minimum work done
or

$$
\begin{equation*}
\mathrm{W}=\mathrm{RT}_{1} \frac{2 \gamma}{\gamma-1}\left[\left(\frac{p_{3}}{p_{1}}\right)^{\frac{\gamma-1}{2 \gamma}-1}\right] \tag{5}
\end{equation*}
$$

In this case $r=\frac{p_{3}}{p_{1}}$, and the efficiency is given by

$$
\begin{equation*}
\eta=\frac{\log _{\epsilon} r}{\frac{2 \gamma}{\gamma-1}\left(r^{\frac{\gamma-1}{2 \gamma}}-1\right)} \tag{6}
\end{equation*}
$$

(Note that for points on the isothermal curve the pressure ratio

$$
\left.\frac{p_{3}}{p_{1}}=\frac{v_{1}}{v_{3}}=r .\right)
$$

-THREE-STAGE ADIABATIC COMPRESSION

The p.v. diagram is shown in Fig. 48.

Fig. 48
The work done per pound of air per cycle is now $\mathrm{W}=$ area $\mathrm{ABKL}+$ area CDHK +area EFGH

$$
\begin{align*}
& =\operatorname{RT}_{1} \frac{\gamma}{\gamma-1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right]+\mathrm{RT}_{1} \frac{\gamma}{\gamma-1}\left[\left(\frac{p_{3}}{p_{2}}\right)^{\frac{\gamma-1}{\gamma}}-1\right] \\
& +\operatorname{RT}_{1} \frac{\gamma}{\gamma-1}\left[\left(\frac{p_{4}}{p_{3}}\right)^{\frac{\gamma-1}{\gamma}-1}\right] \tag{1}\\
& \mathrm{W}=\mathrm{RT}_{1} \cdot \frac{\gamma}{\gamma-1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}+\left(\frac{p_{3}}{p_{2}}\right)^{\frac{\gamma-1}{\gamma}}+\left(\frac{p_{4}}{p_{3}}\right)^{\frac{\gamma-1}{\gamma}}-3\right] . \tag{2}
\end{align*}
$$

or

For the least work done the same conditions will hold as for the twostage process, so that

$$
\frac{p_{2}}{p_{1}}=\frac{p_{3}}{p_{2}}=\frac{p_{4}}{p_{3}}
$$

or, generally, $=\frac{p_{n}}{p_{n-1}}$, where $n=$ number of stages, and the ratio of the temperatures during each stage will be the same.

Hence

$$
\begin{aligned}
& \frac{p_{2}}{p_{1}}=\frac{p_{4}}{p_{3}} \\
& p_{2}=\frac{p_{1} p_{4}}{p_{3}}=\frac{p_{1} p_{4}}{\sqrt{p_{2} p_{4}}}=\frac{p_{1} p_{4} \frac{1}{2}}{p_{2}^{\frac{1}{2}}}
\end{aligned}
$$

Therefore

$$
p_{2}{ }^{3 / 2}=p_{1} \cdot p_{4} \frac{1}{2}
$$

or

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=\left(\frac{p_{4}}{p_{1}}\right)^{1 / 3}=\frac{p_{3}}{p_{2}}=\frac{p_{4}}{p_{3}} \tag{3}
\end{equation*}
$$

Substituting from (3) in (2) we have

$$
\begin{equation*}
\mathrm{W}=\mathrm{RT}_{1} \cdot \frac{3 \gamma}{\gamma-1}\left[\left(\frac{p_{4}}{p_{1}}\right)^{\frac{\gamma-1}{3 \gamma}}-1\right] \tag{4}
\end{equation*}
$$

and the efficiency is $\eta=\frac{\log _{\epsilon} r}{\frac{3 \gamma}{\gamma-1}\left[r^{\frac{\gamma-1}{3 \gamma}}-1\right]}$ where $r=\frac{p_{4}}{p_{1}}$.
The ratio of the volumes of the cylinders will be

$$
\frac{V_{1}}{V_{2}}=\frac{V_{2}}{V_{3}}=\left(\frac{p_{4}}{p_{1}}\right)^{1 / 3} \text { or } \sqrt[3]{\frac{p_{4}}{p_{1}}} .
$$

Example.-An air compressor is required to compress from one to ten atmospheres. Estimate the amount of work which must be expended for each pound of air compressed in each of the following cases. Calculate also the efficiency in each case, the initial temperature being $60^{\circ} \mathrm{F}$.

Case I. Simple compressor with adiabatic compression. See Fig. 45.
Work done per pound of air $=\frac{n}{n-1}\left(p_{2} v_{2}-p_{1} v_{1}\right)$

$$
\begin{gathered}
=\mathrm{RT}_{1} \frac{n}{n-1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}-1\right\} \\
=\frac{53.18 \times 1 \cdot 4 \times 520}{1 \cdot 4-1}\left[\left(\frac{10}{1}\right)^{\frac{1.4-1}{1 \cdot 4}}-1\right] \\
=\frac{53.18 \times 1 \cdot 4 \times 520}{0.4}[1.931-1]=90,260 \mathrm{ft} \mathrm{lb} .
\end{gathered}
$$

The isothermal work would be $R T_{2} \log _{\epsilon} r=R T_{2} \log _{6} 10$.
and $\quad \eta=\frac{\log _{\epsilon} 10}{\frac{1.4}{1.4-1}\left(10^{\frac{14-1}{1 \cdot 4}}-1\right)}=\frac{2.303}{3.5 \times 0.931}=0.706$, or 70.6 per cent.
Case II. Simple compressor with spray injection.
Here $n=1 \cdot 2$.
Work per pound $=\frac{53.18 \times 1.2 \times 520}{0.2}\left[10^{\frac{0.2}{1.2}}-1\right]$

$$
=53.18 \times 520 \times 6 \times 0.466=77,110 \mathrm{ft} .-\mathrm{lb} .
$$

$$
\eta=\frac{\log _{\epsilon} 10}{1.2 \times\left(10^{\frac{0.2}{1.2}}-1\right)}=\frac{2.303}{6 \times 0.466}
$$

$$
=0.823 \text { or } 82.3 \text { per cent. }
$$

Case III. Two-stage adiabatic compression.
By equation (5), p. 103,

$$
\begin{aligned}
\mathrm{W} & =\frac{53.18 \times 520 \times 2 \times 1.4}{1.4-1}\left[\begin{array}{c}
\left.\begin{array}{c}
0.4 \\
10^{2.8}
\end{array}-1\right] \\
\end{array}\right. \\
& =\frac{53.18 \times 521 \times 2.8}{0.4} \times 0.39=75,630 \mathrm{ft} .-\mathrm{ib} .
\end{aligned}
$$

By equation (6), p. 104,

$$
\eta=\frac{\log _{e} 10}{\frac{2.8}{0.4} \times 0.39}=\frac{2.303}{7 \times 0.39}=0.843, \text { or } 84.3 \text { per cent. }
$$

Case IV. Two-stage compression with spray injection.
Again $n=1.2$.

$$
\begin{aligned}
\mathrm{W}=\frac{53.18 \times 520 \times 2.4}{0.2}\left[10^{\frac{0.2}{2.4}}-1\right] & =53.18 \times 520 \times 12 \times 0.212 \\
& =70,470 \mathrm{ft} .-\mathrm{lb}
\end{aligned}
$$

and

$$
\eta=\frac{2.303}{12 \times 0.212}=0.915, \text { or } 91.5 \text { per cent. }
$$

Case V. Three-stage compressor with adiabatic compression. By equation (4), p. 105,

$$
\begin{aligned}
W=\frac{53.18 \times 520 \times 4.2}{0.4}\left[10^{\frac{0.4}{4.2}}-1\right] & =53.18 \times 520 \times 10.5 \times 0.246 \\
& =71,550 \mathrm{ft} . \mathrm{lb} .
\end{aligned}
$$

By equation (5), p. 105,

$$
\eta=\frac{2.303}{10.5 \times 0.246}=0.891, \text { or } 89.1 \text { per cent. }
$$

Case VI. Three-stage compression with spray injection.
As $n=1 \cdot 2$.

$$
\begin{aligned}
\mathrm{W}=\frac{53 \cdot 18 \times 520 \times 3 \cdot 6}{0 \cdot 2}\left[10^{\frac{02}{3}}-1\right] & =53.18 \times 520 \times 18 \times 0.136 \\
& =67,810 \mathrm{ft} . \mathrm{lb}
\end{aligned}
$$

and $\quad \eta=\frac{2.303}{18 \times 0.136}=0.940$, or 94.0 per cent.
Example.-A single-acting tandem two-stage air compressor is to be designed to supply the blast air for a Diesel engine. The compressor is to run at 250 r.p.m., to have a stroke of 6 in ., and to deliver $\frac{1}{2} \mathrm{lb}$. of air per minute at a pressure of 1000 lb . per sq. in. An intercooler is fitted between the stages, and the law of compression may be taken as $p v^{1 \cdot 3}=\mathrm{K}$. Find the most suitable diameters for the low and high-pressure cylinders, and the horse-power absorbed by the compressor, neglecting friction and clearance effects. The suction temperature and pressure are to be $150^{\circ} \mathrm{F}$. and 14 lb . per sq. in.
Referring to Fig. 46, the intermediate pressure $p_{2}=\sqrt{p_{1} p_{3}}=\sqrt{14,000}$ $=118.3 \mathrm{lb}$. per sq. in. The volume of the low-pressure cylinder per pound is

$$
v_{1}=\frac{53.18 \times 610}{14 \times 144}=16.09 \mathrm{cu} . \mathrm{ft} .
$$

The volume to be delivered per stroke is

$$
\frac{0.5}{250} \times 16.09=0.03217 \mathrm{cu} . \mathrm{ft} .
$$

As the stroke is 6 in . the volume swept per stroke
or

$$
\begin{aligned}
& =\frac{\pi d^{2}}{4} \times 6 \mathrm{cu} . \mathrm{in} \\
\frac{\pi d^{2}}{4} \times 6 & =0.03217 \times 12 \times 144
\end{aligned}
$$

Hence low-pressure diameter $=\sqrt{\frac{0.03217 \times 1728 \times 4}{6 \pi}}=3.435 \mathrm{in}$.
For the diameter of the high-pressure cylinder, the air having been cooled to the original temperature,

$$
p_{2} v_{2}=p_{1} v_{1} \quad \text { or } \quad v_{2}=\frac{6 \pi d_{2}^{2}}{4} \text { cu. in. }
$$

therefore

$$
\frac{6 \pi d_{1}^{2}}{4}=\frac{6 \pi d_{2}^{2}}{4} \times \frac{14}{118 \cdot 3}
$$

Hence diameter of high-pressure cylinder $=3 \cdot 435 \sqrt{\frac{14}{118 \cdot 3}}=1 \cdot 182$ in.
If v_{b} is the volume of air delivered from the low-pressure cylinder, work done in low-pressure cycle

$$
\begin{aligned}
& =\frac{n}{n-1}\left(p_{2} v_{b}-p_{1} v_{1}\right) \\
& =\frac{n}{n-1}\left(p_{1} v_{1}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}-1\right] \mathrm{ft} .-\mathrm{lb} .
\end{aligned}
$$

The work done in the low-pressure cylinder per pound is

$$
\begin{aligned}
\mathrm{W} & =\frac{1 \cdot 3}{0.3} \times 14 \times 144 \times 16.09\left[\left(\frac{118 \cdot 3}{14}\right)^{0 \cdot 3 / 1 \cdot 3}-1\right] \\
& =89,550 \mathrm{ft} .-\mathrm{lb} .
\end{aligned}
$$

Hence the work done in both cylinders per $\frac{1}{2} \mathrm{lb}$. of air

$$
\begin{aligned}
& =2 \times \frac{1}{2} \times 89,550 \mathrm{ft} . \mathrm{lb} . \text { per minute } \\
\text { horse-power } & =\frac{89,550}{33,000}=2.713 .
\end{aligned}
$$

and

*AIR MOTORS

For small hand tools the air from the high pressure reservoir is used non-expansively, a process which, though uneconomical, has the advantage of simplicity.

For larger machines the air can be expanded in a single stage, either adiabatically or with a coefficient $n=1.2$ approximately if a water spray is used, the purpose in this case being to warm the air during expansion. The diagram for single stage expansion is shown in Fig. 49. The loss of work owing to non-isothermal expansion is shown shaded.

Here the work done per pound $=W=\frac{\gamma}{\gamma-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)$.

$$
\begin{equation*}
=\frac{\gamma}{\gamma-1} \cdot \mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) . \tag{1}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}} \cdot \cdot \cdot \tag{3}\\
& \mathrm{~W}=\mathrm{RT}_{1} \frac{\gamma}{\gamma-1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right]
\end{align*}
$$

Hence,

Theory of Air Compressors and Motors

The work done during isothermal expansion would be

$$
\begin{equation*}
\mathrm{W}=\mathrm{RT}_{1} \log _{\epsilon} \frac{p_{1}}{p_{2}} \tag{5}
\end{equation*}
$$

so that the efficiency of the simple adiabatic motor is

$$
\begin{equation*}
\eta=\frac{\frac{\gamma}{\gamma-1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right]}{\log _{\epsilon} \frac{p_{1}}{p_{2}}} \tag{6}
\end{equation*}
$$

Volume
Fig. 49

TWO-STAGE ADIABATIC EXPANSION. PREHEATING

The p.v. diagram is shown in Fig. 50. Multi-stage expansion may also be employed, the formulæ being deduced as for the compressor.

Both from a thermodynamic and a practical point of view, a better method than that considered above is to preheat the air to some temperature T_{1} so that at the end of expansion the temperature has fallen approximately to atmospheric. Intermediate heating is then carried out to this initial temperature. The p.v. diagram is as shown in Fig. 50, but T_{1} is now above atmospheric temperature, which is only attained at the end of each expansion, i.e. as the isothermal $\mathrm{T}_{\mathbf{2}}$.

The work done will be given by

$$
\mathrm{W}_{1}+\mathrm{W}_{2}=\mathrm{RT}_{1} \frac{2 \gamma}{\gamma-1}\left[1-\left(\frac{p_{3}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right]
$$

and is therefore dependent on T_{1}, but the efficiency, as compared with a single-stage isothermal motor working at the temperature of preheat T_{1}, will be the same as in the previous case, and will be independent of this temperature.
The principle employed is very similar to that used in two-stage com-

pression, but in this case heat is supplied to the intermediate receiver to restore the temperature to T_{1}.

The condition for maximum output again occurs when $p_{2}=\sqrt{p_{1} p_{3}}$, i.e. when the same work is done in both stages, and the efficiency is given by

$$
\begin{equation*}
\eta=\frac{\log _{\epsilon} r}{\frac{\gamma}{\gamma-1}\left[1-\left(\frac{1}{r}\right)^{\frac{\gamma-1}{2 \gamma}}\right]} \text { where } r=\frac{p_{1}}{p_{3}} . . \tag{1}
\end{equation*}
$$

*EFFECT OF CLEARANGE

The clearance in the compressor cylinder should be as small as possible since its effect is to reduce the output. This is illustrated in Fig. 51.

The discharge of air from the compressor cylinder commences at b, but, instead of continuing to k, is completed only as far as the point c, the volume $c k$ representing the clearance necessarily left between the piston and cylinder head to prevent mechanical contact with the head or valves. On the following outstroke of the piston the pressure will not at once fall
to atmospheric pressure, as the residual gas will expand, nearly adiabatically, along the curve $c d$, and the suction valve will not open to admit a fresh charge till the point d is reached. The effective portion of the volume swept by the piston will then be $\left(v_{a}-v_{d}\right)$ instead of $\left(v_{a}-v_{c}\right)$.

The Volumetric Efficiency of an air compressor may be defined as the ratio of the volume of air at atmospheric temperature and pressure actually drawn in per stroke when compared with the volume swept by the piston. In the case contemplated in Fig. 51 this would be

Fig. 51 the ratio of $\left(v_{a}-v_{d}\right)$ to $\left(v_{a}-v_{c}\right)$.

As an extreme illustration, and assuming isothermal expansion for simplicity, if the clearance volume $c k$ is $\frac{1}{10}$ of the swept volume and the maximum pressure is 10 atmospheres, d will coincide with a, and no charge will be drawn in.

The reduction of volumetric efficiency, whether caused by the clearance space or by restriction to flow provided by valves or passages, involves a corresponding increase in the number of strokes required for a given output, and hence of the energy wasted in mechanical friction and windage.

A great advantage of the multi-stage compressor using the same piston stroke for all cylinders is that the clearance volume of the high-pressure (or small volume) cylinders can be made extremely small.

Example.-In a single-acting, single-stage compressor of 6 -in. bore and 6 -in. stroke, running at $100 \mathrm{r} . \mathrm{p} . \mathrm{m}$., the clearance volume is onefiftieth of the swept volume. Find the weight of air delivered by the compressor per minute against a pressure of 20 atmospheres, and the horse-power required, neglecting mechanical losses. Assume the suction temperature and pressure to be $65^{\circ} \mathrm{F}$. and 14.7 lb . per sq. in., and that compression and expansion take place according to the law $p v^{1 \cdot 2}=\mathrm{K}$.

If the figures $4,3,2$, and 1 refer to points on the indicator diagram corresponding to the beginning and end of expansion of the residual charge, and the beginning and end of compression, then

$$
\text { Volume swept }=v_{a}-v_{c}=\frac{\pi \times(0.5)^{2}}{4} \times 0.5=0.09818 \mathrm{cu} . \mathrm{ft} .
$$

and the clearance volume $=v_{c}=\frac{0.09818}{50}=0.001963 \mathrm{cu} . \mathrm{ft}$.
Hence $v_{a}=0.09818+0.0019636=0.10014 \mathrm{cu} . \mathrm{ft}$.

The residual charge will expand from v_{c} to v_{d}, where

$$
p_{c} v_{c}^{1 \cdot 2}=p_{d} v_{d}^{1 \cdot 2}
$$

and

$$
v_{d}=\left(\frac{p_{c}}{p_{d}}\right)^{1 / 1 \cdot 2} \times v_{c}=20^{1 / 1 \cdot 2} \times 0.001963=0.02383 \mathrm{cu} . \mathrm{ft} .
$$

The volume of air aspirated per stroke when measured at suction temperature and pressure is

$$
0.10014-0.02383=0.07631 \mathrm{cu} . \mathrm{ft} .
$$

At 14.7 lb . per sq. in. and $65^{\circ} \mathrm{F}$., as $p v=\mathrm{RT}$, the volume of 1 lb of air is

$$
v=\frac{53.2 \times 525}{14.7 \times 144}=13.195 \mathrm{cu} . \mathrm{ft} .
$$

and the weight of air per minute $=\frac{7.631}{13.195}=0.5783 \mathrm{lb}$. per min.
The horse-power required is obtained as follows:
Work per stroke $=\frac{n}{n-1}\left\{\left(p_{b} v_{b}-p_{a} v_{a}\right)-\left(p_{c} v_{c}-p_{d} v_{d}\right)\right\}$ ft.-lb.
or

$$
\mathrm{W}=\frac{1 \cdot 2}{0.2} \times 144 \times 14.7\left[\left(20 v_{b}-v_{a}\right)-\left(20 v_{c}-v_{d}\right)\right]
$$

Now

$$
p_{b} v_{b}^{1 \cdot 2}=\dot{p}_{a} i_{a}^{112}
$$

or

$$
\begin{aligned}
& \frac{v_{a}}{v_{b}}=\left(\frac{p_{b}}{p_{a}}\right)^{1 / 1 \cdot 2}=\left(\frac{p_{c}}{p_{d}}\right)^{1 / 1 \cdot 2}=\frac{v_{d}}{v_{c}} \\
& v_{b}=v_{a}\left(\frac{v_{c}}{v_{d}}\right)=\frac{0.001963}{0.02383} \times 0.10014=0.00825 \mathrm{cu} . \mathrm{ft} .
\end{aligned}
$$

Hence work per stroke $=6 \times 144 \times 14 \cdot 7[(20 \times 0.00825-0 \cdot 10014)$

$$
=628.7 \mathrm{ft} .-\mathrm{lb} .
$$

The horse-power required, neglecting friction, is then

$$
\frac{628.7 \times 100}{33,000}=1.905
$$

TURBO BLOWERS AND COMPRESSORS

Where large quantities of air are required at low pressures, as for forced-draught furnaces, or at pressures not exceeding about 120 lb . per sq. in., turbo blowers or centrifugal compressors can be used with advantage. Their design and use is dealt with in "Turbo Blowers and Compressors " by Kearton, and in numerous papers, but certain thermodynamic considerations will be given here.

Fig. 52 shows a section through a large compressor. Owing to the rapid rotation of the rotor A, the air, which enters the machine by an annular passage surrounding the shaft, will be thrown outwards between the rotor blades a, and will leave the periphery with increased pressure and at a high velocity. The air then passes into the outer portion of the casing or volute chamber B, where as much of the kinetic energy as possible is converted into the equivalent pressure energy. Guide vanes b are sometimes provided for the control of the direction of flow. Of the total pressure rise up to 75 per cent. is attained in the rotor, the remainder representing the gain in the volute chamber. The air may be led through a number of compressor units or " stages," arranged in series, to obtain a cumulative pressure effect.

Fig. 52
Axial flow compressors with impellors of the "air-screw" type can also be employed for certain purposes.

Owing to the very high velocities attained by the air (peripheral speeds for rotors vary from 600 ft . per second to 1000 ft . per second in special cases) the rate of pressure rise is extremely rapid and there are heavy frictional losses due to surface effects and to eddy formation, both of which cause the generation of heat. The air will tend therefore to rise in temperature even more than would be the case were compression adiabatic, and the value of n may be between 1.57 and 1.69 for a single stage of compression. For a multi-stage machine with intercoolers the value for the whole machine may be about $1 \cdot 15$. Where high pressures are required ten or more stages, with intercoolers, may be provided.

In the case of the reciprocating compressor the theoretical p.v. diagram is used merely to illustrate the problems which are then solved mathe-
matically, but with turbo compressors graphical methods of calculation may be convenient. For this purpose the p.v. diagram is not suitable owing to the very small angles at which the adiabatic and isothermal curves intersect, and the T ϕ diagram is preferable.
$T \phi$ Diagram for Air.-It will be seen by reference to Fig. 35 and the equations on p . 57, that the portion of the diagram now of interest consists of a series of similar constant pressure lines p_{1}, p_{2}, p_{3}, for which

$$
\phi_{b}-\phi_{a}=\mathrm{C}_{p} \log _{a} \frac{\mathrm{~T}_{b}}{\mathrm{~T}_{a}}
$$

One such curve having been plotted, a template can be made and used for drawing the other curves by merely sliding it parallel to the axis of ϕ. The distance separating two pressure curves p_{1} and p_{2} at any given temperature is given by $a c=-\frac{\mathrm{R}}{\mathrm{J}} \log _{\epsilon} \frac{p_{2}}{p_{1}}$ (Fig. 53 and equation (10), p. 57).

If 1 lb . of air is compressed adiabatically from pressure p_{1} and absolute temperature T_{1} to pressure p_{2}, the initial and final condition points will

Fig. 53 be given by c and b on a line of constant entropy. No heat is received from or rejected to any external body during compression, nor is heat generated by internal friction, and the final temperature will be T_{2}.

By the equation on p. 99, the total work done on the air per pound during suction, compression, and delivery is given by $\frac{\mathrm{W}}{\mathrm{J}}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$, i.e. the energy required to raise the temperature of the air from T_{1} to T_{2} at constant pressure. This latter quantity is equal to the area ecfg, or, as the pressure curves are all similar, the work done in adiabatic compression from c to b is equal to the area dabce.
(It should be noted that for this portion of the diagram of state the total heat of the gas is given by C_{p}. T, so that by multiplying the vertical ordinate by C_{p} we obtain the Mollier diagram.)

Isothermal compression to pr̦essure \boldsymbol{p}_{2} and T_{1} changes the state point from c to a, and the work done is then the area dace, which also represents the heat removed during compression, so that the excess energy required for adiabatic compression is then the area abc.

Owing to the short time required for compression, the heat losses
during this process will be small or negligible, but surface friction, and shock and eddy losses due to imperfect guidance of air in the blades (see also steam turbine losses), will usually cause the air to leave the stage of

the compressor at a higher temperature and consequently with a greater specific volume than had the compression been purely adiabatic. In this case the final condition point will be given by a point such as h (Fig. 54). The total work done in excess of that required for adiabatic
compression will now be the area under the curve $b h$, or $e b h k$, and the " adiabatic efficiency" will be area under $a b$ area under $a h=\frac{d a b e}{d a h k}$. This is usually of the order of 70 per cent. The total work done in excess of that required for adiabatic compression is $e b h k$ on the $T \phi$ diagram, or $C_{p}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)$. This is made up of two components, internal and external energy. To represent the former a line of constant volume $h b^{\prime}$ can be plotted through h according to the equation $\phi_{h}-\phi_{b}{ }^{\prime}=\mathrm{C}_{v} \log _{e} \mathrm{~T}_{3} / \mathrm{T}_{2}, b^{\prime}$ being on the line of constant temperature T_{2} through b. The gain of internal energy in excess of that acquired during adiabatic compression will then be the area under $b^{\prime} h$, or

$$
\begin{equation*}
e^{\prime} b^{\prime} h k=\mathrm{C}_{v}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \tag{1}
\end{equation*}
$$

The remaining area ebhb'e' must therefore represent the increase of external energy. Referring now to the p.v. diagram the excess work done during the discharge of the gas is

$$
\begin{equation*}
b_{1} b h h_{1}=p_{2}\left(v_{3}-v_{2}\right) \tag{2}
\end{equation*}
$$

But

$$
v_{3}=v_{2} \frac{\mathrm{~T}_{3}}{\mathrm{~T}_{2}} \quad \text { or } \quad v_{3}-v_{2}=v_{2} \frac{\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)}{\mathrm{T}_{2}}
$$

or excess work done during discharge $=b_{1} b h h_{1}=R\left(T_{3}-T_{2}\right)$.
Somewhat similar cases are considered in the chapter on Irreversible Processes.

Where compression is effected in a number of stages each similar to the above, the air should be cooled at constant pressure after each stage along the curve $h b$, if possible as far as the initial temperature point a. If this is done the condition curve for the compressor as a whole will lie to the left of the adiabatic line $c b$.

For large compressors the pressure rise per stage is of the order of 6 lb . per sq. in., giving about sixteen stages for a rise of pressure of 100 lb . Capacities of $45,000 \mathrm{cu} . \mathrm{ft}$. of free air per minute can be dealt with at this pressure in a single machine, while $85,000 \mathrm{cu} . \mathrm{ft}$. per minute have been compressed up to 30 lb . per sq. in.

EXAMPLES ON CHAPTER VIII

[^13]
Theory of Air Compressors and Motors

3. An engine is supplied with compressed air at 90 lb . per sq. in. abs. and at $65^{\circ} \mathrm{F}$. The air is expanded, according to the law $p v^{1 \cdot 3}=$ constant, down to 15 lb . abs., and then exhausted at that pressure. Determine the pounds of air that will be used per hour per I.H.P., and calculate the temperature of the air at the end of expansion. Neglect losses due to clearance, etc.
4. An ideal air compressor works between pressures of one and twelve atmospheres, with adiabatic compression, the initial temperature being $17^{\circ} \mathrm{C}$. Estimate the amount of work which must be expended per pound of air compressed in the following cases :
(a) Single-stage compression.
(b) Two-stage compression.
(c) Three-stage compression.

In (b) and (c) how much heat must be extracted in the intercoolers per pound of air compressed ? ($\mathrm{C}_{p}=0.2375$.)
5. Solve Problem 4, if by spray injection the law of the compression curves is $p \boldsymbol{v}^{1 \cdot 2}=$ constant.
6. Calculate the size of cylinder required for a double-acting air compressor of 50 I.H.P., working as a simple compressor, at 120 r.p.m., the law of compression being $p v^{1 \cdot 2}=$ constant and the ratio of compression pressures being from 15 lb . per sq. in. abs. to 150 lb . abs. Take an average piston speed of 600 ft . per minute.
7. A single-acting, three-stage compressor is to be designed to deliver $1 \nmid \mathrm{lb}$. of air per minute at a pressure of 900 lb . per sq. in. abs. when running at $200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. An efficient intercooler is fitted in which the air is cooled to suction temperature after compression in the low-pressure and intermediate stages. Assuming that the cylinder sizes are arranged to give maximum efficiency, the suction temperature and pressure being $100^{\circ} \mathrm{F}$. and 14 lb . per sq. in. abs. respectively, and the mechanical efficiency is 85 per cent., calculate the horse-power required to drive the compressor, and the swept volume of the three cylinders. The law of compression may be taken as $\mathrm{PV}^{1 \cdot 2}=\mathrm{K}$, and clearance effects may be neglected.
8. A single-acting, single-stage compressor is required to deliver 0.5 lb . of air per minute at a pressure of 200 lb . per sq. in. abs. The bore and stroke of the compressor are 6 in . and 5 in . respectively, and the clearance volume is 3 per cent. of the swept volume. Assuming that the temperature and pressure at the end of the suction stroke are $85^{\circ} \mathrm{F}$. and 14 lb . per sq. in. abs., calculate the speed at which the compressor must be run, and the horse-power required. The law of expansion and compression may be taken as $\mathrm{PV}^{1 \cdot 2}=\mathrm{K}$, and the mechanical efficiency as 90 per cent.

Chapter IX

THE PROPERTIES OF STEAM AND OF MIXTURES OF STEAM AND AIR

-METHOD OF RECORDING PRESSURES

Steam pressures may be recorded either as " absolute" pressures or as pressures in excess of or less than atmospheric pressure, the latter being designated "gauge" pressures and varying slightly with the barometric height.

Gauge pressures are recorded by all instruments in which the operating element is subject to steam pressure on one side and atmospheric pressure on the other, i.e. Bourdon type gauges, or mercury columns subject to atmospheric pressure at one end. Absolute pressures can only be recorded by instruments not subject to atmospheric pressure, i.e. a Bourdon pressure gauge if the case were evacuated, or by a mercury barometer subject at the lower end to the pressure to be measured. For the purposes of calculation absolute pressures are almost invariably required.

If the atmospheric pressure on a given day is 14.3 lb . per sq. in. abs. (14.70 lb . per sq. in. $=30 \mathrm{in}$. of mercury), and the gauge pressure of steam is 100 lb . per sq. in., the absolute pressure is 114.3 lb . per sq. in.

If the "vacuum" in a condenser is 27 in . of mercury on a day when the barometer stands at 29 in ., the absolute pressure is equivalent to 2 in . of mercury. The vacuum corrected to the "standard" atmospheric pressure of 30 in . of mercury is $30 \mathrm{in} .-2 \mathrm{in} .=28 \mathrm{in}$. of mercury.

For theoretical calculations involving symbols only pressures will usually be considered as expressed in pounds per square foot. For calculations involving actual figures, pounds per square inch absolute will be quoted unless otherwise stated.

-EQUATION OF STATE. STEAM TABLES

Many equations have been evolved to express the relationships between the various properties of steam, and have proved of immense value in the preparation of the Steam Tables in which these properties are tabulated, especially in interpolating between values empirically established. As will be seen from the nature of the curves of state already reproduced (Fig. 28, etc.) it is not to be expected that equations having a wide range
of application will be of a simple form, and care must be taken in their use not to exceed the range to which they adequately apply.

For most purposes direct reference will be made to the Stearn Tables and diagrams ${ }^{1}$ which are available in very convenient form. For details concerning the methods of preparation of the tables reference should be made to the original sources indicated in the references given below and to Professor Callendar's "Properties of Steam" (1920) and his papers before the Royal Society (1928) and the Institution of Mechanical Engineers (1929, etc.).

*GENERATION OF STEAM AT CONSTANT PRESSURE

This is the process employed in a boiler in normal operation, when the "feed water" is pumped into the boiler at the ame (gravametric) rate at which the steam is generated and withdrawn. A number of processes are or may be involved :
(1) Feeding the Boiler.-This involves forcing the feed water into the boiler against the boiler pressure. If p_{b} and p_{h} are the pressures of boiler and hot well (or supply of feed water), and v_{w} the specific volume of the feed water, assumed constant, the work done will be

$$
\frac{\left(p_{b}-p_{h}\right) v_{w}}{J} \text { B.Th.U. }
$$

In most cases this amounts only to a small fraction of 1 B.Th.U. per pound.
(2) Raising the Temperature of the Water from the temperature of the feed $t_{h}{ }^{\circ} \mathrm{F}$. to the boiling-point, t° F.-The value of t will depend upon the pressure (which remains constant throughout) to which the water is subjected. If the specific heat of water be assumed constant and equal to unity the sensible head added will be

$$
t-t_{h} \text { B.Th.U. per pound. }
$$

(The specific heat of water is not quite constant, being about 1.01 at 32° F., falling to 0.99 at about $100^{\circ} \mathrm{F}$., and then gradually rioing to 1.01 at $300^{\circ} \mathrm{F}$. and 1.03 at $600^{\circ} \mathrm{F}$. For approximate calculations the value of unity may be used, but for greater accuracy the values shown in the Steam Tables should be applied.)
(3) Evaporating.-If the application of heat be continued steam will be formed at constant temperature $t^{\circ} \mathrm{F}$. until the water has evaporated.

During the process of ateam generation the steam and water are in

[^14]thermal equilibrium, the steam is said to be "saturated," and t is the "temperature of saturation" corresponding to pressure p. If the steam contains water-particles in suspension, as is always the case in a simple boiler due to the bursting of the steam bubbles at the free surface of the water, it is said to be "wet," the "dryness fraction" being given by $\frac{\text { weight of actual steam }}{\text { total weight of steam and water }}$. This is denoted by q.
When the water has been completely evaporated q will be unity and the steam is said to be " dry saturated."
(4) Superheating.-If more heat be added to dry saturated steam after removing it from contact with water its temperature will rise to, say, $t_{1}{ }^{\circ} \mathrm{F}$. The quantity of heat so added will be approximately equal to $\mathrm{C}_{p}\left(t_{1}-t\right)$ B.Th.U., where C_{p} is the mean specific heat of the steam at constant pressure for the given range of temperature, and has the approximate value of $0 \cdot 48$, but this varies widely and is a function of both pressure and temperature. ${ }^{1}$ Such steam is said to be "superheated," and to have $t_{1}-t$ degrees of superheat. Highly superheated steam approaches the condition of a perfect gas.
The heat added in stages (2) and (4) is said to be "sensible," in that its reception is marked by a rise of temperature which can be recognised (by the incautious) by the sense of touch. The heat added in stage (3) causes no rise of temperature, and, using the ancient phraseology, is said to be " latent."

*STEAM TABLES AND THE PROPERTIES ENUMERATED THEREIN

The numerical values of the properties of steam and water which are likely to be required will be found set out in convenient form in tables of the properties of steam. In these either the Fahrenheit or Centigrade degree and heat unit are used. The heat contents of water and steam are taken, for convenience, as the contents in excess of that of water at $32^{\circ} \mathrm{F}$., the entropy being similarly calculated.

The following are quantities usually enumerated :
(1) Pressure p in pounds per square inch absolute or, for low pressures, in inches of mercury.
(2) Temperature $t,^{\circ} \mathrm{F}$.
(3) Specific volume v, in cubic feet per pound, for both liquid and vapour.
(4) Density or $1 / v$ in pounds per cubic foot.
(5) Heat (or enthalpy) of the liquid, which is the heat required to raise 1 lb . of water from $32^{\circ} \mathrm{F}$. and at atmospheric pressure to temperature t and pressure p. Allowances for variations of specific heat have been made in computing the tables. According to this definition the heat
${ }^{1}$ See "Steam Turbine Theory and Practice," Kearton, p. 22.
of the liquid includes both the heat supplied to raise the temperature, and the heat equivalent to work done in raising the pressure of the water. (Callendar, " Properties of Steam," pp. 24-30.) ${ }^{1}$
(6) Latent heat (or enthalpy) of evaporation. This is the heat required to completely convert 1 lb . of water at t° to dry saturated steam at the same temperature and at constant pressure. If q is the "dryness fraction" of the steam the latent heat content will be $q \mathrm{~L}$. An approximate value of L applicable over a limited range is given by $\mathrm{L}=1114-0.7 t$ B.Th.U., from which it will be seen that L decreases as t increases.
(7) Total heat (or enthalpy) of the saturated vapour H. ${ }^{2}$ This is the heat required to convert 1 lb . of water at $32^{\circ} \mathrm{F}$. and atmospheric pressure to dry saturated steam at temperature t and the corresponding pressure, or $\mathrm{H}=h+\mathrm{L}$. H is given approximately by $\mathrm{H}=1082+0.3 \mathrm{~T}$ B.Th.U., showing that H increases with T .
(8) Internal energy of evaporation I. During the evaporation of steam at constant pressure external work is done owing to the increase in volume from v_{w}, the volume of the water, to v, the volume of the sicam or $\mathrm{W}=\mathrm{A} .144 p\left(v-v_{v}\right)$.

The increase of internal (or molecular) energy during evaporation will therefore be given by $\mathrm{I}=\mathrm{L}-\frac{144}{\mathrm{~J}} p\left(v-v_{w}\right)$.
(9) Internal energy of steam E. This is the increase of internal energy during the production of steam from water at 32° and atmospheric pressure, during which the external work $\frac{144}{\mathrm{~J}} p v$ is performed, or $\mathrm{E}=\mathrm{H}-\frac{144}{\mathrm{~J}} p . v$. For steam of dryness fraction q,

$$
\mathrm{E}=h+q \mathrm{~L}-\frac{q \mathrm{P}}{\mathrm{~J}}\left(v-v_{w}\right) .
$$

(10) Entropy of water, ϕ (sometimes S, n, or θ). This has been obtained by an integration of the form

$$
\phi=\int_{32^{\circ}}^{1} \frac{c}{\mathrm{~T}} d t \text {, variation of the specific heat } c \text { being allowed. }
$$

(11) Entropy of evaporation, given by L/T.
(12) Entropy of steam, given by the sum of the last two quantities.
(13) Entropy of superheated steam-also indicated by n-given by the entropy of saturated steam plus the increase of entropy due to super-

[^15]heating, allowing for the variation of the specific heat at constant pressure of superheated steam.
(The subscripts f, g, and $f g$, used by some authors, refer to conditions on the liquid boundary, the vapour boundary, and to the process of evaporation, i.e. h_{f} is the liquid heat, $h_{f_{g}}$ the latent heat, and h_{g} the total heat.)

Example.-Calculate the total heat of evaporation, and the internal energy of 1 lb . of saturated steam at a pressure of 100 lb . per sq. in. abs., (a) when the steam is dry, and (b) when the dryness fraction of the steam is 0.8 . Given temperature of saturation $328^{\circ} \mathrm{F}$., the specific volume of dry saturated steam at this pressure and temperature $4.229 \mathrm{cu} . \mathrm{ft}$., and the value of the latent heat as 888.6 B.Th.U.
(a) Total heat $\mathrm{H}=h+\mathrm{L}$

$$
\begin{aligned}
& =(328-32)+888 \cdot 6 \\
& =1184.6 \text { B.Th.U. (from Tables, 1187.2) }
\end{aligned}
$$

$$
\text { External work done } \mathrm{E}=\frac{\mathrm{P}}{\mathrm{~J}}\left(v-v_{w}\right) .
$$

Here $P=144 \times 100 \mathrm{lb}$. per sq. ft., and the volume of 1 lb . of water $\left(\mathrm{V}_{w}\right)$ is 0.016 cu . ft., hence

$$
\begin{aligned}
\mathrm{E} & =\frac{144 \times 100}{778}(4.229-0.016) \\
& =\frac{144 \times 100}{778} \times 4.213 \\
& =77.9 \text { B.Th.U. }
\end{aligned}
$$

\therefore Internal energy $\mathrm{I}=\mathrm{H}-\mathrm{E}$

$$
\begin{aligned}
& =1184.6-77.9 \\
& =1106.7 \mathrm{~B} . \mathrm{Th} . \mathrm{U} . \text { (from Tables, } 1104.0 \mathrm{~B} . \mathrm{Th} \text { D.) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathrm{H} & =h+q \mathrm{~L} \\
& =(328-32)+0.8 \times 888.6 \\
& =296+710.8 \\
& =1006.8 \text { B.Th. } \mathrm{O} .
\end{aligned}
$$

External work done $\mathrm{E}=\frac{\mathrm{Pq}}{\mathrm{J}}\left(v-v_{w}\right)$

$$
\begin{aligned}
& =\frac{144 \times 100 \times 0.8}{778} \times 4.213 \\
& =62.3 \mathrm{~B} . \mathrm{Th} . \mathrm{U} . \\
\text { Internal energy } \mathrm{I} & =\mathrm{H}-\mathrm{E} \\
& =1006.8-62.3 \\
& =944.5 \mathrm{~B} . \mathrm{Th} . \mathrm{U} .
\end{aligned}
$$

Example.-Calculate from first principles the entropy of 1 lb . of water
and 1 lb . of steam at the following temperatures : $110^{\circ} \mathrm{F} ., 212^{\circ} \mathrm{F}$., $280^{\circ} \mathrm{F}$., $320^{\circ} \mathrm{F}$., and $366^{\circ} \mathrm{F}$., assuming L to be given by the equation 1114-0.7 T ${ }^{\circ}$ F.

At $110^{\circ} \mathrm{F}$., the absolute temperature is $110+460=570^{\circ} \mathrm{F}$.

$$
\begin{aligned}
\therefore \phi_{w} & =\log _{\epsilon} \frac{570}{49}=2.3026 \log _{10} \frac{57}{46} \frac{0}{2} \\
& =2.3026 \times 0.0638 \times 0.1469
\end{aligned}
$$

Similarly we find

$$
\begin{aligned}
& \text { at } 212^{\circ} \text { F. } \phi_{w 0}=2.3026 \log _{10} \frac{672}{492}=2.3026 \times 0.1352=0.3113 \\
& \text {, } 280^{\circ} \text { F. } \phi_{w}=2.3026 \log _{10} \frac{740}{492}=2.3026 \times 0.1788=0.4117 \\
& \text {, } 320^{\circ} \text { F. } \phi_{w v}=2.3026 \log _{10} \frac{780}{49}=2.3026 \times 0.1999=0.4606 \\
& \text { " } 366^{\circ} \text { F. } \phi_{\text {vo }}=2.3026 \log _{10} \frac{826}{492}=2.3026 \times 0.2242=0.5163
\end{aligned}
$$

Now, gain of entropy during evaporation $=\frac{\mathrm{L}}{\mathrm{T}}$, hence we have

$$
\begin{array}{ll}
L_{110}=1114-0.7 \times 110=1114-77=1037 & \therefore \frac{\mathrm{~L}}{\mathrm{~T}}=\frac{1037}{571}=1.8161 \\
\mathrm{~L}_{212}=1114-0.7 \times 212=1114-148=966 & \therefore \frac{\mathrm{~L}}{\mathrm{~T}}=\frac{966}{673}=1.4353 \\
\mathrm{~L}_{280}=1114-0.7 \times 280=1114-196=918 & \therefore \frac{\mathrm{~L}}{\mathrm{~T}}=\frac{918}{744}=1.2338 \\
\mathrm{~L}_{320}=1114-0.7 \times 320=1114-224=890 & \therefore \frac{\mathrm{~L}}{\mathrm{~T}}=\frac{890}{781}=1.1382 \\
\mathrm{~L}_{366}=1114-0.7 \times 366=1114-256=858 & \therefore \frac{\mathrm{~L}}{\mathrm{~T}}=\frac{858}{826}=1.0384
\end{array}
$$

Hence we have

$$
\begin{aligned}
& \text { at } 110^{\circ} \text { F. } \phi_{s}=0.1469+1.8161=2.0230 \\
& \text {, } 212^{\circ} \text { F. } \phi_{s}=0.3113+1.4353=1.7466 \\
& \text { " } 280^{\circ} \text { F. } \phi_{s}=0.4117+1 \cdot 2338=1.6455 \\
& \text { " } 320^{\circ} \text { F. } \phi_{s}=0.4606+1.1382=1.5988 \\
& \text {, } 366^{\circ} \text { F. } \phi_{s}=0.5163+1.0384=1.5447
\end{aligned}
$$

The values of L, ϕ_{w} and ϕ_{g} given by Keenan and Keyes are as follows :

	L	$\phi_{w_{0}}=\mathrm{S}_{w v}$	$\phi_{s}=\mathrm{S}_{g}$
$\mathrm{~T}=110^{\circ} \mathrm{F}$.	1031.7	0.1471	1.9577
$\mathrm{~T}=212^{\circ} \mathrm{F}$.	970.3	0.3120	1.7566
$\mathrm{~T}=280^{\circ} \mathrm{F}$.	924.7	0.4096	1.6597
$\mathrm{~T}=320^{\circ} \mathrm{F}$.	894.9	0.4637	1.6115
$\mathrm{~T}=366^{\circ} \mathrm{F}$.	857.1	0.5235	1.5165

Example.-In a test of a condensing plant the following data were obtained :
(a) Steam condensed per hour, 1552 lb .
(b) Temperature of exhaust vapour entering condenser, $105^{\circ} \mathrm{F}$.
(c) Circulating water per minute, 476 lb .
(d) Temperature of circulating water as it enters the condenser, $60^{\circ} \mathrm{F}$.
(e) Temperature of circulating water as it leaves the condenser, $90^{\circ} \mathrm{F}$.
(f) Temperature of air pump discharge, $95^{\circ} \mathrm{F}$.
Calculate the dryness fraction of the exhaust steam as it enters the condenser.
Latent heat at $105^{\circ} \mathrm{F} .=1034.3$ B.Th. D .
Heat lost by the steam per minute

$$
=\frac{1552}{60}\{(105-95)+q(1034 \cdot 3 \text { B.Th.U. })\}
$$

Heat gained by the circulating water per minute $=476(90-60)$ B.Th.U.
Assuming no loss of heat, the heat lost by the steam will be equal to the heat gained by the water, hence
and

$$
258 \cdot 6+q \cdot 26730=476(90-60)
$$

Example.-Steam at 110 lb . per sq. in. abs., and containing 12 per cent. moisture, is expanded to five times its initial volume. The pressure is then found to be 22.5 lb . per sq. in.

Find the final quality, final total heat per pound, and the final internal energy.

At 110 lb . per sq. in. the specific volume is $4.047 \mathrm{cu} . \mathrm{ft}$.
The volume when $q=0.88$ is therefore 0.88×4.047, and the final volume per pound $=5 \times 0.88 \times 4.047 \mathrm{cu} . \mathrm{ft}$.

$$
=17.81 \mathrm{cu} . \mathrm{ft} .
$$

At 22.5 lb . per 8 sq . in. the specific volume is $17.995 \mathrm{cu} . \mathrm{ft}$.
The final quality will therefore be $\frac{17.81}{17.995}=99$ per cent.
The final total heat $=q \mathrm{~L}+h$

$$
=0 \cdot 99(955 \cdot 9)+202 \cdot 5=1148 \cdot 8 \text { B.Th. U. per lb. }
$$

and the final internal energy

$$
\begin{aligned}
& =q \mathrm{~L}+h-\frac{\mathrm{P}\left(q v-v_{w}\right)}{\mathrm{J}} \\
& =1148.8-\frac{22.5 \times 144(0.99 \times 17.99-0.016)}{778} \\
& =1074.0 \text { B.Th.U. per lb. }
\end{aligned}
$$

(Note, the final internal energy is not $q \times$ the specific internal energy at 22.5 lb .)

-ADIABATIC EQUATIONS

The adiabatic equations for a gas, in terms of the ratio of the specific heats, no longer hold for a condensing vapour or one nearing that state. For steam the following equations may be used.
(1) $\frac{\mathrm{P}}{\mathrm{T}^{13 / 3}}=$ constant, and (2) $\mathrm{P}(v-b)^{1 \cdot 3}=$ constant, where b is the volume of 1 lb . of water at the pressure and temperature of evaporation.

For many practical purposes the equation $\mathrm{PV}^{1 \cdot 3}=$ constant can be applied over a wide range of superheat with a high degree of accuracy (Callendar, I.M.E., 1929 ; Proc. Royal Soc., 1928). For steam which is initially "dry" the equation $\mathrm{PV}^{1 \cdot 13}=$ constant is usually used. (These values can easily be deduced by plotting the values of $\log p$ and $\log v$ from the Mollier chart when n will be the slope of the approximately straight line obtained.)

Fig. 55

*STEAM DIAGRAMS

The most useful charts for the solution of practical problems are the Total Heat-Entropy or Mollier diagram, and the Total Heat-Pressure and Temperature diagram. Large scale prints of both of these are avail-

able, and are outlined in Figs. 55 and 56. The T ϕ diagram is given in Fig. 28, and is supplied, on a large scale, with Keenan and Keyes's book. Only portions of the complete diagrams are given, as indicated on
p. 65, but these will usually be found to cover an adequate range of conditions.

A scale frequently included on the $\mathrm{H} \phi$ diagram is of convenience in the design of steam nozzles. This shows the relation between any given number of B.Th.U. and the velocity which would be attained by 1 lb . of steam were this heat energy entirely converted into kinetic energy.

If V is the velocity attained then

$$
x \text { B.Th.U. }=x .778 \mathrm{ft} .-\mathrm{lb} .=\frac{1}{2} \mathrm{lb} . \text { mass } \mathrm{V}^{2}
$$

or

$$
\mathrm{V}=2 \times 32.2 \times 778 x \mathrm{ft} \text { per second. }
$$

The use of the diagrams is indicated in subsequent sections.
Example.-Solve the following problems by use of the T ϕ and H.p. diagrams.
(a) A supply of steam is drawn through a reducing valve from a steam pipe conveying steam at 150 lb . per sq. in. abs. and of quality 0.95 . At what pressure should the reducing valve be set to discharge dry saturated steam? (15 lb. per sq. in. abs.)
(b) Steam at 260 lb . per sq. in. abs. and of 90° superheat, is expanded adiabatically to 11 lb . per sq. in. abs. What are the final quality and the ratio of expansion ? ($q=0.87$; $r=14.65$.)

*CALCULATIONS CONCERNING CHANGES OF STATE

(1) Calculation of the Dryness of Steam after Isentropic or Adiabatic Expansion.-Suppose the steam to be initially dry and

Fig. 57
saturated at temperature T_{1}, its condition being represented by the point d_{1} in the temperature-entropy diagram, Fig. 57. During expansion to T_{2} there is no reception or rejection of heat, the difference between the initial and final internal energies being equal to the work done during the expansion. The expansion curve on the entropy diagram will be represented by the straight vertical line $d_{1} d_{2}$, the point d_{2} representing the condition of the steam at the temperature T_{2} after expansion.

The dryness fraction after expansion will therefore be

$$
q_{2}=\frac{b_{2} d_{2}}{b_{2} e_{2}}
$$

Then as $\phi d_{1}=\phi d_{2}, a_{1} b_{1}+b_{1} d_{1}=a_{2} b_{2}-b_{2} d_{2}$, or, using the symbols given on p. 443

$$
\phi_{w v} \text { at } t_{1}+\phi_{\epsilon} \text { at } t_{1}=\phi_{w} \text { at } t_{2}+q_{2} \phi_{\epsilon} \text { at } t_{2} \text {. }
$$

With the exception of q_{2} these values may be obtained at once from the steam tables.
(In the absence of tables an approximate result may be obtained by taking $\phi_{w}=\log _{\epsilon} \frac{\mathrm{T} \text { abs. }}{492}$.

$$
\mathrm{L}=1114-0.7 t^{\circ} \mathrm{F}
$$

and

$$
\left.\phi_{t}=\mathrm{L} / \mathrm{T}^{\circ} \mathrm{F} . \text { abs. }\right)
$$

For steam originally superheated to $t_{s}{ }^{1}$

$$
\phi f_{1}=\phi f_{2} \text { or } a_{1} b_{1}+b_{1} d_{1}+d_{1} g_{1}=a_{2} b_{3}+b_{2} e_{2}+e_{2} g_{2}
$$

or

$$
\phi_{w} \text { at } t_{1}+\phi_{c} \text { at } \mathrm{T}_{1}+\phi \text { superheat, }
$$

i.e. the entropy of superheated steam at $t_{2} 1$ and pressure corresponding to $=$ that of saturation at \boldsymbol{t}_{1}

$$
\begin{gathered}
\phi_{w v} \text { at } t_{2}+q_{2} \phi_{e} \text { at } t_{2}, \text { or } \\
\phi_{e} \text { at } t_{2}, \text { or }
\end{gathered}
$$ entropy of superheated steam with x° of superheat at a pressure corresponding to the saturation pressure at t_{2}.

The only unknown quantity is either q_{2} or x.
If $q_{2}<1$ the steam will finally be wet, if $q=1$ it will be just dry (see line $e_{1} e_{2}$). If q is greater than unity the steam will be superheated and the third alternative, involving x, must be used. If tables of the entropy of steam with different degrees of superheat are not available an approximate value may be obtained from $\phi_{s}=\phi_{w}$ at $\mathrm{T}_{2}+\frac{1114-0.7 t^{\circ} \mathrm{F} .}{\mathrm{T}^{\circ} \mathrm{F} . \mathrm{abs} .}+0.48$ $\log _{e} \frac{T_{2}{ }^{1}}{T_{2}}$, allowing $T_{2}{ }^{1}$ to be calculated.

The dryness fraction can be scaled at once from the $\mathrm{T} \phi$ or $\mathrm{H} \phi$ diagrams should these be available to a şufficiently large scale. The line $A B$ in Figs. 55 and 56 shows the adiabatic expansion of steam from 200 lb . per sq. in. and 100° superheat to 10 lb . per sq. in. The final dryness fraction is 0.882 .

Example.-Determine the dryness fraction after adiabatic expansion : (1) of steam originally dry and at $366^{\circ} \mathrm{F}$. and finally at $225^{\circ} \mathrm{F}$. (The original pressure is 165 lb . per sq. in. abs.) The original entropy $=\phi_{w}+\phi_{e}=\phi_{\mathrm{H}}=1.5691$. See p. 443.
Final entropy $=\phi_{w}+q_{2} \phi_{c}$.
From the saturation tables, if $t_{2}=225^{\circ}$ F. $p=19 \mathrm{lb}$. per sq. in. abs., and $\phi_{w}+q_{2} \phi_{e}=0.3316+q_{2} 1.4057$ which now equals 1.5691
or

$$
q_{2}=\frac{1.5691-0.3316}{1.4057} \text { or } 0.881 .
$$

(2) of steam originally at 300 lb . per sq. in. abs. and $600^{\circ} \mathrm{F}$. and finally at 200 lb . per sq. in. abs. (The saturation temperature at 300 lb . is $417.3^{\circ} \mathrm{F}$. and the initial superheat is $183^{\circ} \mathrm{F}$.)
From tables for superheated steam $\phi_{1}=1.6268$ and the entropy of saturated steam (ϕ_{H}) at $200 \mathrm{lb} .=1.5538$.

The final condition is therefore one of superheat. Reference to the superheat tables show that if $\phi=1.6268$ at 200 lb . pressure the final temperature is $505^{\circ} \mathrm{F}$., whereas the saturation temperature at 200 lb . is $382^{\circ} \mathrm{F}$. The final condition is therefore one of 123° superheat.

The above values should be checked (for practice) using the log formula and also using the $\mathrm{H} \phi$ and H.p. diagrams. The \log formula should not be used for extreme cases, or in any case if tables or reliable diagrams are available.
(2) Calculation of Dryness Fraction after Throttling or "Wire Drawing."-As is shown on p. 76 this process is essentially one in which the total heat remains constant. There are two cases to be considered. In the first, the steam after throttling may be either wet or dry saturated; in the second case the steam may be initially nearly dry or superheated-it will then be superheated after throttling.
First Case, in which the Steam is not Superheated after Throttling.This value can be read at once from the $\mathrm{T} \phi, \mathrm{H} \phi$ or H.p. diagrams, if available. Alternatively, using tables, we have initial total heat $=h_{1}+q_{1} \mathrm{~L}_{1}$ $=h_{2}+q_{2} \mathrm{~L}_{2}$. Knowing the initial conditions and the final presoure (or temperature) these quantities, except q_{2}, can be written down at once, leaving a simple equation in q_{2}.
If diagrams and tables are not available the following less accurate methods can be used.

As the heat content remains constant

$$
\begin{align*}
\mathrm{T}_{2}-492+q_{2} \mathrm{~L}_{2} & =\mathrm{T}_{1}-492+q_{1} \mathrm{~L}_{1} \\
q_{2} & =\frac{\mathrm{T}_{1}-\mathrm{T}_{2}+q_{1} \mathrm{~L}_{1}}{\mathrm{~L}_{2}} \cdot \cdots \cdot \tag{1}
\end{align*}
$$

($\mathrm{T}_{2}-492$ is the liquid heat, assuming C_{p} for water is unity, i.e. the heat required to raise 1 lb . of water from $492^{\circ} \mathrm{F}$. abs. (or $32^{\circ} \mathrm{F}$.) to temperature $\mathrm{T}_{\mathbf{2}} . \mathrm{L}$ may be taken as $1114-0.7 t^{\circ} \mathrm{F}$.)

Fig. 58.
The gain of entropy, if required, may be obtained as follows :

$$
\begin{aligned}
e d & =f d-f e=f d-(f n+b c) \\
& =\frac{q_{2} \mathrm{~L}_{2}}{\mathrm{~T}_{2}}-\left(\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)
\end{aligned}
$$

or substituting the value of q_{2} from (1)

$$
\begin{align*}
e d & =\frac{\mathrm{L}_{2}}{\mathrm{~T}_{2}}\left(\frac{\mathrm{~T}_{1}-\mathrm{T}_{2}+q_{1} \mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right)-\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}-\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \\
& =\frac{\mathrm{T}_{1}-\mathrm{T}_{2}+q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{2}}-\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}-\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \\
& =\left(\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{2}}\right)\left(1+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} . \tag{2}
\end{align*}
$$

Alternative Method of calculating Gain of Entropy.-The above result may be obtained by a more direct method as follows :

Reckoning all heat quantities from the absolute zero of temperature we have

Total heat per pound before throttling =area ofbch
Total heat per pound after throttling $=$ area of $d k$
\therefore area ofbch $=$ area of $d k$
and since the area ofeh is common, it follows that area $f b c e=$ area $e d h k$
Now the area fbce represents the work done per pound of steam in the Rankine cycle (see p. 150), namely
or

$$
\begin{gathered}
\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{6} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \text { B.Th.U. } \\
\therefore \text { area } e d k h=e d \times \mathrm{T}_{2}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{6} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \\
\quad e d=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{2}}\left(1+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\log _{6} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \text { as above. }
\end{gathered}
$$

Second Case, when the Steam is Dry Saturated before Throttling.Here again the problem can be solved immediately from the diagrams. Alternatively, if tables of the properties of superheated steam are available, the total heat H_{1} at the initial temperature and pressure can be found at once and a search made along the columns representing various degrees of superheat and on the line corresponding to pressure p_{2} for a total heat figure equal to H_{1}. The final temperature or degree of superheat will be found at the head of the column containing this value of H_{1}, or can be obtained by interpolation. If superheat tables are not available the final total heat can be taken as $h_{2}+\mathrm{L}_{2}+0.48 \log _{e} \frac{\mathrm{~T}_{d}}{\mathrm{~T}_{m}}$, where T_{d} is the only unknown.

Less accurarely the gain of entropy can be found as follows:
The condition of the steam at pressure p_{1} and temperature T_{1} before throttling is represented by the point c on the saturated steam line, Fig. 59. After throttling down to a pressure p_{2} the condition of the steam is represented by the point d on this constant pressure line and in the superheated region of the tempera-ture-entropy diagram.

The length $g m$ represents the gain in entropy and may be found as follows :
Entropy at pressure p_{1} reckoned from water at T_{2}

$$
\begin{aligned}
=f g & =f n+b c \\
& =\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}
\end{aligned}
$$

Fig. 59

Entropy at pressure p_{2} reckoned from water at $\mathbf{T}_{\mathbf{2}}$

$$
\begin{aligned}
\Rightarrow f m & =f e+e m \\
& =\frac{L_{2}}{T_{2}}+0.48 \log _{a} \frac{T_{2}^{\prime}}{T_{2}}
\end{aligned}
$$

where $T_{2}{ }^{\prime}$ is the final temperature of the superheated steam after throttling.
\therefore gain of entropy $=g m=f m-f g$

$$
\begin{equation*}
=\frac{L_{2}}{T_{2}}+0.48 \log _{\epsilon} \frac{\mathrm{T}_{2}^{\prime}}{\mathrm{T}_{2}}-\log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}-\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}} \tag{2}
\end{equation*}
$$

Now the total heat after throttling is equal to the total heat before throttling, i.e.

$$
\begin{equation*}
\mathrm{H}_{2}+0.48\left(\mathrm{~T}_{2}{ }^{\prime}-\mathrm{T}_{2}\right)=\mathrm{T}_{1}-492+\mathrm{L}_{1} \tag{3}
\end{equation*}
$$

where H_{2} denotes the total heat per pound of dry saturated steam at pressure p_{2}, obtainable from steam tables, or in their absence from

$$
\mathrm{H}_{2}=\mathrm{T}_{2}-492+\mathrm{L}_{2}
$$

From equation (3) the final temperature of the steam can be calculated and the substitution of its value in (2) gives the gain of entropy.

It should be noticed that reckoning the total heat from the absolute zero of temperature,

Total heat per pound before throttling=area ofbch
Total heat per pound after throttling =area ofedk
and since the area ofgh is common it follows that

$$
\text { area } f b c g=\text { area } g e d k h .
$$

Example.-Boiler steam of dryness 0.97 and at 340 lb . per sq. in. abs. ($t=429^{\circ}$ F.) is wire-drawn to 200 lb . per sq. in. abs. $\left(t=382^{\circ}\right.$ F.). Find the final dryness fraction.

At $340 \mathrm{lb} . h=406.66$ and $\mathrm{L}=797 \cdot 1$, or total heat at dryness 0.97 is $406 \cdot 6+0.97 \times 797.1=1179.7$ B.Th.U.

At $200 \mathrm{lb} . h=355.36$ and $\mathrm{L}=843.0$.
As the total heat remains constant during throttling

$$
1179 \cdot 7=355 \cdot 36-q .843 \cdot 0
$$

or the dryness fraction after throttling is given by

$$
q=\frac{824 \cdot 0}{843 \cdot 0}=0.978
$$

It should be noted that at pressures as low as 300 lb . per sq. in. there are appreciable differences between the values obtained from the Keenan and Keyes, Marks and Davies, and Callendar Tables, and the reader is recommended to compare the saturation curves shown on the Mollier charts published with them. In the above question the divergence leads to a discrepancy of nearly 1 per cent. in the dryness fraction.

The question can be solved most rapidly by means of the Mollier chart.

Example.-Find the gain of entropy when dry steam at a pressure of 210 lb . per sq. in. abs. is wire-drawn ${ }^{1}$ to a pressure of 30 lb . per sq. in. abs.

The temperature after throttling is given by

$$
\mathrm{H}_{2}+0 \cdot 48\left(\mathrm{~T}_{2}^{\prime}-\mathrm{T}_{2}\right)=\mathrm{T}_{1}-492+\mathrm{L}_{1}
$$

Substituting the values of $\mathrm{H}_{2}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ and L_{1} from steam tables

$$
1163.9+0.48 \mathrm{~T}_{2}{ }^{\prime}-0.48 \times 710.3=846-492+839.6
$$

from which

$$
\mathrm{T}_{2}{ }^{\prime}=770^{\circ} \mathrm{F} . \mathrm{abs}
$$

The gain of entropy is then given by
or

$$
\begin{aligned}
& \frac{\mathrm{L}_{2}}{\mathrm{~T}_{2}}+0.48 \log _{e} \frac{\mathrm{~T}_{2}{ }^{\prime}}{\mathrm{T}_{2}}-\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}-\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}} \\
& \begin{aligned}
\frac{945 \cdot 1}{710 \cdot 3} & +0.48 \log _{e} \frac{770}{710 \cdot 3}-\log _{e} \frac{846}{710 \cdot 3}-\frac{839 \cdot 6}{846} \\
& =1.3305+0.0388-0.1749-0.9924 \\
& =0.202
\end{aligned}
\end{aligned}
$$

Example.-Dry saturated steam is wire-drawn from a pressure of 140 lb . per sq. in. abs. down to atmospheric pressure (14.7 lb . per $8 q . \mathrm{in}$. abs.). The temperature is then found to be $304 \cdot 8^{\circ} \mathrm{F}$.

Find the mean specific heat of steam at atmospheric pressure between $212^{\circ} \mathrm{F}$. and $304.8^{\circ} \mathrm{F}$.

Total heat per pound of dry steam at 140 lb . per sq. in. $=1192.2$ B.Th.U.
Total heat per pound of dry steam at 14.7 lb. per $8 q . \mathrm{in} .=1150.4$ B.Th.U.
Hence, as during wire-drawing the total heat remains unchanged, there is available for superheating the atmospheric steam
1192.2-1150.4 B.Th.U.=41.8 B.Th.U.

If s is the specific heat required, then

$$
\begin{aligned}
41 \cdot 8 & =s(304 \cdot 8-212) \\
s & =\frac{41 \cdot 8}{92 \cdot 8}=0.45 \text { B.Th.U. per lb. }
\end{aligned}
$$

The dryness or degree of superheat of steam after throttling can be read at once from the diagrams, especially from those having H as an ordinate. In Figs. 55 and 56 the line CD represents the throttling of steam of dryness fraction 0.98 at 200 lb . per sq. in. to a pressure of 15 lb . per sq. in. It will be seen that the final condition is 80° superheat. The fall of temperature, obtained from the steam tables or from Fig. 56, is from $381 \cdot 9^{\circ} \mathrm{F}$ to $273 \cdot 2^{\circ} \mathrm{F}$.

- MEASUREMENT OF THE DRYNESS OF STEAM

There are several methods in use for determining the dryness fraction of steam, some of which are more accurate than others. The greatest difficulty experienced, in all cases, is that of obtaining a representative sample of the steam to be tested.

Method 1. Tank Calorimeter.-The simplest method is to blow the steam into a known weight of water, and to measure the rise in temperature produced and the weight of the condensate. Then by equating the heat lost by the steam to the heat gained by the water the dryness fraction can be calculated.

Let $v=$ weight of steam condensed in pounds.
$q=$ dryness fraction of the steam.
$\mathrm{W}=$ weight of water in pounds.
$t_{1}=$ initial temperature of the water in ${ }^{\circ} \mathrm{F}$.
$t_{2}=$ final temperature of the water in ${ }^{\circ} \mathrm{F}$.
$\mathrm{W}^{\prime}=$ weight of vessel containing the water in pounds.
$s=$ specific heat of the material of which the vessel is made.
Then heat lost by steam $=r v\left(q \mathrm{~L}+t_{s}-t_{2}\right)$ B.Th.U.
(where $t_{s}^{\circ} \mathrm{F}$. is the temperature of the steam under test)
and heat gained by vessel and water $=\left(\mathrm{W}+s \mathrm{~W}^{\prime}\right)\left(t_{2}-t_{1}\right)$ B.Th.U.
Equating these two quantities we have

$$
\begin{equation*}
v\left(q \mathrm{~L}+t_{s}-t_{2}\right)=\left(\mathrm{W}+s \mathrm{~W}^{\prime}\right)\left(t_{2}-t_{1}\right) \cdot \tag{1}
\end{equation*}
$$

an equation from which q may be calculated.
The above theory assumes that the specific heat of water is constant and equal to unity, which of course is not quite true. For all practical purposes, however, the error involved is negligible, particularly in view of the uncertainty with regard to the sample of steam taken. If instead of t, t_{1}, and t_{2} in (1) we write h, h_{1}, and h_{2}, the sensible heats at these temperatures, we have

$$
\begin{equation*}
w\left(q \mathrm{~L}+h-h_{2}\right)=\mathrm{W}\left(h_{2}-h_{1}\right)+s \mathrm{~W}^{\prime}\left(t_{2}-t_{1}\right) \quad . \quad . \tag{2}
\end{equation*}
$$

an equation which is accurate.
Example.-Steam at 85 lb . per sq. in. abs. is blown into a tank containing 200 lb . of water at a temperature of $60^{\circ} \mathrm{F}$. The final increase of water in the tank amounts to 10 lb ., and the final temperature is $110^{\circ} \mathrm{F}$. What was the initial quality of the steam ?
For steam at 85 lb . per sq. in. $\mathrm{L}=897.1$ and $h=286.3$
For water at $110^{\circ} \mathrm{F} . \quad h=77.94$
For water at $60^{\circ} \mathbf{F}$.
$h=28.08$

Hence

$$
10(q \times 897 \cdot 1+286 \cdot 3-77 \cdot 94)=W(77 \cdot 94-28 \cdot 08)
$$

$$
8971 q+2083 \cdot 6=200 \times 49.86
$$

and

$$
q=\frac{7898 \cdot 4}{8971}=88.0 \text { per cent. }
$$

Had the tank weighed 50 lb . and been made of steel having a specific heat of 0.117 , then
and

$$
\begin{aligned}
8971 q+2083 \cdot 6 & =(200+5 \cdot 85) \times 49.86 \\
q & =91 \cdot 3 \text { per cent. }
\end{aligned}
$$

Method 2. Condensing Calorimeter.-This method is similar to the above, but the steam and water are not allowed to come into contact. The steam under test flows through a pipe (or series of tubes) around which water is circulated. The inlet and outlet temperatures of the water are measured, together with the weight of water flowing through the instrument in any convenient time, and the weight of steam condensed in the same time. By equating the heat lost by the steam and the heat gained by the water the dryness fraction of the steam may be ralculated.
Let $w=$ weight of steam condensed in pounds per minute.
$t^{\prime}=$ temperature of condensed steam in ${ }^{\circ} \mathrm{F}$.
$W=$ weight of cooling water in pounds per minute.
$t=$ temperature of the steam in ${ }^{\circ} \mathrm{F}$. and L its latent heat as supplied.
$t_{1}=$ inlet temperature of cooling water in ${ }^{\circ} \mathrm{F}$.
$t_{2}=$ outlet temperature of cooling water in ${ }^{\circ} \mathrm{F}$.
Then, the heat lost by the steam $=w\left(q \mathrm{~L}+h-h^{\prime}\right)$ B.Th.U.
and \quad heat gained by the water $=\mathrm{W}\left(h_{2}-h_{1}\right)$ B.Th.U.

$$
\begin{equation*}
\therefore w\left(q \mathrm{~L}+h-h^{\prime}\right)=\mathrm{W}\left(h_{2}-h_{1}\right) . \tag{1}
\end{equation*}
$$

or, neglecting the variation in the specific heat of water,

$$
\begin{equation*}
v\left(q \mathrm{~L}+t-t^{\prime}\right)=\mathrm{W}\left(t_{2}-t_{1}\right) \quad . \quad . \quad . \quad . \quad . \tag{2}
\end{equation*}
$$

As the process is continuous no change occurs in the temperature of the containing vessels, so that no allowance for this has to be made.

The temperature of the outer vessel should be kept low to minimise radiation losses.

Method 3. Separating Calorimeter.-When steam is very wet, a rough estimate of the dryness fraction can be made by passing the steam through a vessel designed to produce a rapid rotary motion during which the heavy water particles are thrown out of suspension by centrifugal force, the water being collected and weighed. The steam is subsequently condensed and weighed.
and $\mathrm{W}=$ weight of water thrown out of suspension the initial weight of steam $=W,+W$

$$
\text { and dryness fraction }=\frac{W_{s}}{W_{s}+W}
$$

The separation is frequently very imperfect, especially if the wates particles are small. It may be a valuable adjunct to a throttling calorimeter, however.

Method 4. Throttling Calorimeter. On p. 65 it has been shown that except at very high pressures steam becomes drier after

Fig. 60 throttling, and, in certain cases, superheated. This principle is utilised in the throttling calorimeter, which enables the dryness of steam to be conveniently, accurately, and continuously measured.
Fig. 60 shows the arrangement. The pipe B is screwed into the main steam pipe A, and steam, admitted through the valve C , expands through a small hole into the calorimeter D , a thermometer gives the temperature T_{3} of the steam after the expansion, while the manometer F gives the pressure (above atmospheric). It will be seer that if the steam in the main pipe is nearly dry, it will become slightly superheated after expansion, the degree of the superheating being obtained by subtracting the temperature of saturation corresponding to pressure p_{2} from that recorded by thermometer E .

Let $t_{3}=$ reading of thermometer E .
$t_{2}=$ temperature of saturation corresponding to pressure p_{2} after expansion (obtained from steam tables).
$h_{1}=$ sensible heat at pressure p_{1} before expansion.
$\mathrm{L}_{1}=$ latent heat of steam at pressure \boldsymbol{p}_{1}.
Then, if $q=$ dryness fraction required,

$$
\begin{equation*}
h_{1}+q \mathrm{~L}_{1}=\mathrm{H}_{2}+0.48\left(t_{3}-t_{2}\right) \tag{1}
\end{equation*}
$$

It will be found that steam with a dryness fraction less than about 0.95 cannot be superheated by throttling to atmospheric pressure, and unless this is achieved the instrument gives no indication as to quality.

For steam of a higher dryness fraction, such as is delivered by any good modern boiler, the instrument is very reliable, and is almost universally used. For very wet steam it may be combined with a separating calorimeter.

Example.-The following data were obtained from a test with a combined throttling and separating calorimeter: Water collected in separating calorimeter 4.5 lb ., steam condensed after leaving throttling calorimeter 45.5 lb . Steam pressure in main steam pipe 150.3 lb . per sq. in. gauge, barometer 30 in ., temperature of steam in throttling calorimeter $290^{\circ} \mathrm{F}$., reading of manometer $+4 \mathrm{in} . \mathrm{Hg}$, estimate the dryness of the steam in the main steam pipe.

Separating Calorimeter.-The moisture extracted from 50 lb . of steam is 4.5 lb .; the remaining 45.5 lb . of steam which has thereby been partially dried is then passed through the throttling calorimeter.

Throttling Calorimeter.-

Absolute pressure of the steam admitted=gauge pressure + atmospheric pressure

$$
=150 \cdot 3+14 \cdot 7
$$

$$
=165 \mathrm{lb} . \text { per sq. in. }
$$

Absolute pressure in calorimeter $=4+30=34 \mathrm{in}$. of mercury
$=34 \times 0.49$
$=16.7 \mathrm{lb}$. per sq. in.
From steam tables we find-

$$
\text { at } 165 \mathrm{lb} . \text { abs., } h_{1}=338.2, \mathrm{~L}_{1}=856 \cdot 8
$$

at 16.7 lb . abs., $\mathrm{H}_{2}=1152.7, t_{2}=218.5^{\circ} \mathrm{F}$., where t_{2} is the temperature of saturation.
Hence assuming the specific heat of steam to be 0.48 ,

$$
\begin{aligned}
h_{1}+q \mathrm{~L}_{1} & =\mathrm{H}_{2}+0.48\left(t_{3}-t_{2}\right) \\
338 \cdot 2+q \times 856 \cdot 8 & =1152.7+0.48(290-218 \cdot 5) \\
& =1152 \cdot 7+34 \cdot 3 \\
& =1187 \cdot 0 \\
856 \cdot 8 q & =1187-338.2 \\
q & =\frac{848 \cdot 8}{856.8} \\
& =0.990
\end{aligned}
$$

or, in each pound of steam passing through the throttling calorimeter there is 0.01 lb . of water, hence in 45.5 lb . there will be $45.5 \times 0.01=0.455 \mathrm{lb}$. of water.
\therefore total water in the 50 lb . of steam $=4 \cdot 5+0.455=4.955 \mathrm{lb}$.
and

$$
\text { dryness fraction }=\frac{50-4.955}{50}=0.900 \text { or } 90 \text { per cent. }
$$

EXAMPLES ON MIXTURES OF STEAM OR STEAM AND WATER, ETG.
Example.-Ten lb. of steam at 100 lb . per sq. in. abs. pressure and 0.8 dry is mixed with 90 lb . of water at $40^{\circ} \mathrm{F}$. Find the temperature of the resulting mixture. What would be the temperature had the steam been superheated 10° ?

If $t^{\circ} \mathrm{F}$. is the resultant temperature then
(a) Heat lost by steam
$=10 \times 0.8 \times$ latent heat per pound $+10 \times$ sensible heat per pound $=10 \times 0.8 \times 888+10[327 \cdot 8-t]=[10,382-10 t]$ B.Th.U.
Heat taken up by water $=90(t-40)$ B.Th.U.

$$
=90 t-3600 .
$$

Equating these values $10,382-10 t=90 t-3600$
or $\quad t=139 \cdot 8^{\circ}$
(b) Heat lost by steam $=10\left[\right.$ Total heat above $\left.32^{\circ}-(t-32)\right]$ B.Th.U.

$$
=10[1192-(t-32)] \text { B.Th.U. }
$$

or
$90 t-3600=11,920-10 t$
or $\quad t=158 \cdot 4^{\circ} \mathrm{F}$.
Example.-A vessel of $4 \mathrm{cu} . \mathrm{ft}$. capacity is full of steam at 20 lb . per sq. in. pressure absolute and dryness fraction 0.8 . It is coupled to a pipe delivering steam at 200 lb . per sq. in. and of dryness 0.9 . Find the weight of steam admitted, and the final dryness fraction.

The fundamental fact is:
Internal energy of steam in vessel

+ Total heat of steam entering $=$ internal energy of mixture
at 20 lb . per sq. in. Internal energy of evaporation $=885.8$ B.Th.U.

Liquid heat	$=196.1 \mathrm{~cm}$
Specific volume	
	$=20.08 \mathrm{cu}$.

and at 200 lb. " " Internal energy of evaporation $=759.4$ B.Th.U.

Latent heat	$=843 \cdot 2 \quad "$	
Liquid heat		$=354.9$
Specific volume		$=2.29 \mathrm{cu} . \mathrm{ft}$.

The volume occupied by steam 0.8 dry at 20 lb . is 16.06 cu . ft. or weight of steam originally present $=\frac{4}{16.06}=0.249 \mathrm{lb}$.

If W lb . of steam enters, then
Final dryness fraction $q=\frac{\text { Volume of steam present }}{\text { Specific volume of the dry steam }}$

$$
=\frac{4}{(W+0.249) 2 \cdot 29}
$$

From the initial statement

$$
\begin{array}{rlrl}
& 0.249(0.8 \times 885.9+196.1)+W(0.9 \times 843.2+354.9) \\
& & =(W+0.249)\left\{\frac{4}{(W+0.249) \times 2.29} \times 759.4+354.9\right\}
\end{array}
$$

MIXTURES OF AIR AND STEAM

The knowledge of the greatest weight of water vapour which can exist as vapour with a given weight of dry air under given conditions of temperature and pressure is often required in boiler and internal combustion engine trials, ventilating problems, etc.

The calculations depend on two laws first discovered by Dalton, i.e.-
(1) The pressure exerted by, and the quantity of, the vapour required to saturate a given space (i.e. exists as saturated steam) at any given temperature, are the same whether the space is filled by a gas or is a vacuum.
(2) The pressure exerted by a mixture of a gas and a vapour, of two vapours, or of two gases, is the sum of the pressures which each would exert if it occupied the same space alone, assuming the constituents do not interact.

Suppose we have a volume of $\mathrm{V} \mathrm{cu} . \mathrm{ft}$. of a mixture of air and water vapour, in which the quantity of vapour is the greatest that can exist, i.e. the air is saturated with vapour, or in other words the vapour exists as saturated steam. Let P be the absolute pressure in inches Hg , and t the temperature in ${ }^{\circ}$ F. From law (1) above, the pressure exerted by the vapour is the same as if no air were present. From steam tables we find that for temperature t the pressure of saturated steam is, say, p_{s}, and its density in pounds per cubic foot is, say, ρ_{s}. Then in the mixture we shall have V cu . ft. of steam at temperature t, pressure p_{s}, and density ρ_{s}. The total weight of this steam is evidently $\mathrm{V} \times \rho_{s}$. Also from law (2), since the pressure of the vapour is p_{s}, the pressure of the air must be $\mathrm{P}-p_{s}$. Its volume is V and temperature t.

Now weight of $1 \mathrm{cu} . \mathrm{ft}$ air at N.T.P. $=0.0807 \mathrm{lb}$.

$$
" \quad \# \quad \mathrm{~V} \quad \# \quad \# \quad=0.0807 \mathrm{~V} \mathrm{lb} .
$$

weight of $\mathrm{V} \mathrm{cu} . \mathrm{ft}$. air at pressure $\left(\mathrm{P}-p_{s}\right)$ and temperature t

$$
=\frac{\mathrm{P}-p_{s}}{29.9} \times \frac{492}{460+t} \times 0.0807 \mathrm{~V}
$$

and the weight of $V \mathrm{cu}$. ft. of the vapour was seen to be $\mathrm{V} \rho_{\mathrm{s}} \mathrm{lb}$.
Therefore weight of vapour which can exist with 1 lb . dry air under the given conditions

$$
\begin{gathered}
=w=\frac{V \rho_{s}}{0.0807 \times \frac{492}{460+t} \times \frac{\mathrm{P}-p_{s}}{29.9} \times \mathrm{V}} \\
w=0.754 \frac{\rho_{s}(460+t)}{\mathrm{P}-\rho_{s}} \quad\left(\text { i.e. } \frac{29.9}{492 \times 0.0807}=0.754\right)
\end{gathered}
$$

140
Example.The Theory of Heat Engines

Then

$$
\mathrm{P}=29.9^{\prime \prime} \mathrm{Hg} . \quad t=120^{\circ} \mathrm{F} .
$$

$$
\begin{aligned}
p_{s} & =3.438^{\prime \prime} \mathrm{Hg} . \quad \rho_{s}=0.004924 \\
w & =\frac{0.754 \times 0.004924 \times 580}{26.462} \\
& =0.0813 \mathrm{lb} .
\end{aligned}
$$

Example.-In a condenser of $40 \mathrm{cu} . \mathrm{ft}$. capacity the vacuum was 26.5 in . of mercury whilst the temperature was $112^{\circ} \mathrm{F}$. If the barometric pressure was $29.7^{\prime \prime} \mathrm{Hg}$, what was the weight of air present in the condenser?

The actual pressure inside the condenser $=29.7-26 \cdot 5=3 \cdot 2^{\prime \prime} \mathrm{Hg}$. At $112^{\circ} \mathrm{F}$. the partial pressure of saturated steam $=2.74^{\prime \prime} \mathrm{Hg}$ and the partial pressure of air is therefore $0.46^{\prime \prime} \mathrm{Hg}$.
(1 lb . per sq. in. $=2 \cdot 036^{\prime \prime} \mathrm{Hg}$)
For air $\mathrm{PV}=\mathrm{RT}$, where $\mathrm{R}=53.2 \mathrm{ft} .-\mathrm{lb}$. per lb .
Hence the specific volume under the conditions attained in the condenser is

$$
\frac{53.2(112+460) \times 2.036}{0.46 \times 144}=935.2 \mathrm{cu} . \mathrm{ft} .
$$

and the weight of air in the condenser is $\frac{40}{935}=0.04278 \mathrm{lb}$.

If we wish to know the maximum weight of vapour which can exist with the volume of air which would occupy 1 cu . ft . if $d r y$ and at $29.9^{\prime \prime} \mathrm{Hg}$, we proceed as follows :

We have seen that $\mathrm{V}_{\mathrm{s}} \mathrm{lb}$. of vapour can exist with V cu . ft . of air at pressure $\mathrm{P}-p_{s}$ and temperature T. The volume this air would occupy at $29.9^{\prime \prime} \mathrm{Hg}$

$$
=\mathrm{V} \times \frac{\mathrm{P}-p_{s}}{29 \cdot 9}
$$

Therefore for a volume of air which would occupy 1 cu . ft. if dry, at 29.9 in . there corresponds a weight of vapour

Tberefore

$$
w^{\prime}=\frac{29 \cdot 9 p_{s}}{\mathrm{P}-p_{s}}
$$

Example.-P $=29.9^{\prime \prime} \quad t=120^{\circ}$
Then

$$
\begin{aligned}
& p_{s}=3.438 \mathrm{in} . \text { Hg. } \quad \rho_{s}=0.0049 \\
& w^{\prime}=\frac{29.9 \times 0.0049}{26.462}=0.0057
\end{aligned}
$$

Fig. 61 shows values of v^{\prime} for various temperatures and for $P=29.9^{\prime \prime}$. The value of v^{\prime} varies as $\mathrm{P}-p_{s}$, the air pressure.

Dew Point.-Suppose that a weight v_{2} of vapour is associated with 1 lb . of dry air, the mixture having a temperature T and pressure P .
If w_{2} is less than w, i.e. $0.754 \frac{\rho_{s}(460+T)}{P-p_{s}}$, then the air is not saturated with vapour, and the vapour exists as superheated steam. If, however,

Weight of water (lb.) carried by the air which would occupy 1 cu . ft . if dry and at 29.9 in . mercury pressure.

Actual air pressure $=$ barometric pressure-vapour pressure p_{A} at temperature t_{A}.

Actual weight carried per cubic foot $=$ weight from curve $\times \frac{29.9}{p_{A}}$.
Fig. 61
the temperature falls, a point is reached at which $w_{2}=w$, and at this temperature w_{2} is the maximum quantity of vapour which can exist as vapour with the air. Any further diminution of temperature (for the same pressure) will result in some of the vapour condensing. This temperature is called the dero point, and it is the temperature which satisfies the equation

$$
w_{2}=0.754 \frac{\rho_{s}(460+T)}{P-p_{1}}
$$

Example.-In a boiler trial it is found that the weight of dry flue gas per minute $=20 \mathrm{lb}$. and the weight of vapour formed by combustion per minute $=1 \mathrm{lb}$. Pressure in flue $=29.9 \mathrm{in}$.

Then $v_{2}=1 / 20=0.05 \mathrm{lb}$. per lb. dry gas.
It will be found from the steam tables that for $\mathrm{T}=105^{\circ} \mathrm{F}$. the values of ρ_{s} and p_{s} satisfy the above equation; therefore 105° is the dew point, and if the gases are cooled below this temperature, vapour will condense. This may happen locally if the feed water in the economiser tubes is cold. (N.B. This temperature may be read off directly from the curves of Fig. 170.)

Humidity.-Water vapour is always present in the atmosphere in varying amounts. Usually the quantity of water present is less than that which would be required to saturate the air at the ordinary temperature, and a knowledge of the actual quantity of water present is often required, e.g. in producer trials. The ratio of the weight of vapour actually present in a given volume to the weight which would be present in the same volume if the air were saturated at the same temperature is known as the humidity or, more accurately, the relative humidity of the air, and is expressed as a percentage. When the humidity is less than 100 per cent. the vapour present is superheated, and will therefore obey Boyle's Law so long as the state of saturation is not passed.

If, at temperature t, v is the weight of vapour actually associated with the air in $1 \mathrm{cu} . \mathrm{ft}$. of mixture, and p is its vapour pressure, and w_{s} is the weight which would saturate $1 \mathrm{cu} . \mathrm{ft}$. (with or without the presence of air), both w_{s} and the corresponding saturation pressure p_{s} being obtained from steam tables.
Then $\frac{w}{w_{s}}=\frac{p}{p_{s}}$, or the relative humidity, is equal to the ratio of the actual to the saturation pressure at the given temperature.
Now imagine the $1 \mathrm{cu} . \mathrm{ft}$. of the mixture cooled down to the dewpoint t_{0} at constant pressure. The volume in which the air molecules (and simultaneously, of course, the water molecules) are free to move will be reduced to $\frac{460+t_{0}}{460+t} \mathrm{cu} . \mathrm{ft}$., and the weight of vapour which would saturate this volume would be $w_{0} \times \frac{460+t_{0}}{460+t}$ where v_{0} is the weight which would saturate $1 \mathrm{cu} . \mathrm{ft}$. at t_{0}, a value at once obtained from the steam tables when t_{0} is known.

As no vapour has been lost or gained during the cooling process, this must be the same as the weight originally present in 1 cu . ft . of mixture, or the relative humidity at $t=$ moisture present per cu. ft.

$$
=\frac{w_{0}}{w_{s}}\left(\frac{460+t_{0}}{460+t}\right)^{v_{s}}
$$

To determine this we therefore require to know the dew point. This can be obtained by means of a hygrometer, the commonest form of which is the wet and dry bulb thermometer, for which Glaisher's tables have been drawn up giving the dew point and also the relative humidity for various readings of the wet and dry bulbs. (The dew-point temperatures have been determined experimentally by comparison with an absolute hygrometer such as Daniell's.) Glaisher's figures are plotted in Fig. 62.1

Example.-Dry bulb 60°. Wet bulb 55°.
Then

$$
t_{0}=50 \cdot 6 \text { from Glaisher's tables }
$$

and

$$
\left.\begin{array}{rl}
v_{0} & =0.000608 \\
w_{s} & =0.000828
\end{array}\right\} \text { from steam tables. }
$$

Relative humidity at

$$
t=\frac{510 \cdot 6}{520} \times \frac{0.00060}{0 \cdot 000828}=71 \text { per cent. }
$$

which is the figure also given in Glaisher's charts. Therefore the actual weight of vapour present in 1 cu . ft . of the unsaturated air at $60^{\circ} \mathrm{F}$.

$$
=v_{s} \times \frac{71}{100}=0.000588 \mathrm{lb} .
$$

The pressure exerted by this vapour will be

$$
\frac{71}{100} \times p_{s}=\frac{71}{100} \times 0.522^{\prime \prime} \mathrm{Hg}=0.371^{\prime \prime} \mathrm{Hg}
$$

If the atmospheric pressure is, say, $29.5^{\prime \prime} \mathrm{Hg}$, the pressure of the dry air will be $29 \cdot 5-0 \cdot 371=29 \cdot 129^{\prime \prime} \mathrm{Hg}$.
The weight of $1 \mathrm{cu} . \mathrm{ft}$. of this dry air will be

$$
\frac{29.129}{29.9} \times 0.0807=0.0785 \mathrm{lb}
$$

Therefore for each 1 lb . of dry air there will be

$$
\frac{0.000588}{0.0785} \mathrm{lb} . \text { vapour }=0.0075 \mathrm{lb} . \text { vapour, }
$$

and for each 1 lb . of air and vapour there will be

$$
\frac{0.0075}{1.0075} \mathrm{lb} . \text { vapour. }
$$

Fig. 62

EXAMPLES ON CHAPTER IX

1. Calculate the work done when 1 lb . of steam expands adiabatically from 80 lb . per sq. in. abs. to 15 lb . per sq. in. abs., (a) when the steam is originally dry saturated, and (b) when the dryness fraction is originally 0.9.
2. Steam 30 per cent. wet at 100 lb . per sq. in. abs. expands adiabatically to 20 lb . per sq. in. abs. Find its wetness after expansion. If the expansion can be represented by $p e^{n}=$ constant, find n.
3. A steam engine works non-expansively, the initial pressure being 120 lb . per sq. in. abs., and the exhaust pressure 5 lb . per sq. in. abs. ($t=162.3^{\circ} \mathrm{F}$.). Estimate the work done per pound of steam and the efficiency of the engine by calculation, and from a temperature-entropy chart, (a) when the steam is initially dry saturated, and (b) when the initial dryness fraction is 0.8 . [Given, volume of 1 lb . of dry saturated steam at 120 lb . abs. $=3.726 \mathrm{cu} . \mathrm{ft}$., and temperature $=341^{\circ} \mathrm{F}$.]
4. In an engine cylinder the clearance volume is $2 \mathrm{cu} . \mathrm{ft}$. The boiler pressure is 100 lb . per sq. in. abs. and the pressure in the cylinder at the instant ateam is admitted is 15 lb . per sq. in. abs. The dryness fraction of the boiler steam is 0.9 and that of the steam shut in the clearance 0.95 . Find the amount of ateam admitted, and the dryness fraction, when the pressure in the clearance reaches 100 lb . abs. Neglect all losses and assume the cylinder to be a non-conductor of heat. Given-

The Properties of Steam

Pressure	h	L	Specific Volume
100 15	298.3 181.0	888 969.7	4.429 26.27

5. Boiler steam of dryness fraction 0.97 and at a pressure of 340 lb . per sq. in. abs. ($t=429^{\circ} \mathrm{F}$.) is wire-drawn to 200 lb . per sq. in. $\left(t=382^{\circ} \mathrm{F}\right.$.) abs. Calculate the dryness fraction on the engine side of the reducing valve.
6. Steam at a pressure of 315 lb . per sq. in. abs. and 0.95 dry is wire-drawn to 265 lb . per sq. in. abs. Find the final dryness fraction. If the steam is initially dry saturated, find the final condition.
7. In a test on a condensing plant the following results were obtained : (a) steam condensed per hour 2100 lb .; (b) temperature of exhaust steam entering the condenser $126^{\circ} \mathrm{F}$. ; (c) weight of circulating water used per minute 510 lb .; (d) temperature of circulating water as it enters and leaves the condenser $55^{\circ} \mathrm{F}$. and $90^{\circ} \mathrm{F}$. respectively; (e) temperature of the air pump discharge $95^{\circ} \mathrm{F}$. Calculate the dryness fraction of the exhaust steam as it enters the condenser.
8. In a test with a throttling calorimeter the following data were obtained : Pressure in main steam pipe 153 lb . per sq. in. abs. ($t=360 \mathrm{~F}$. and $\mathrm{L}=862$); temperature after wire-drawing $240^{\circ} \mathrm{F}$.; pressure after wire-drawing 17.19 lb . per sq. in. abs. $\left(t=220^{\circ} \mathrm{F} ., \mathrm{H}=1153\right)$. Estimate the dryness of the steam in the main steam pipe. Assume the specific heat, $\mathrm{C}_{p}=0.5$.
9. The following data were obtained in a test with a combined throttling and separating calorimeter : Water from separator 1.5 lb ., steam condensed after wiredrawing 32 lb . Steam temperature before wire-drawing 340° F., after wiredrawing $225^{\circ} \mathrm{F}$. ; pressure after wire-drawing 15 lb . per sq. in. abs. ($t=213$, $\mathrm{H}=1150.7$). Estimate the dryness of the steam. Assume specific heat, $\mathrm{C}_{p}=0.5$.
10. The pressure in a steam main is 103 lb . per sq. in. (gauge). A combined separating and throttling calorimeter is used to determine the dryness fraction. The observations recorded are : Water drawn from separator 1.5 lb .; weight of steam condensed after wire-drawing 32 lb .; temperature in the calorimeter after throttling $225^{\circ} \mathrm{F}$.; pressure in the calorimeter 15 lb . per sq. in. Find the quality of the steam in the main.
11. Using steam tables, calculate the dryness fraction of steam from the following observations taken from a throttling calorimeter: Pressure in main steam pipe 80.3 lb . per sq. in. gauge ; temperature of steam in calorimeter $260^{\circ} \mathrm{F}$.; manometer reading 3 in . of mercury ; barometer reading 29 in .
12. A cylindrical vessel of 8 cu .ft. capacity is connected to a steam pipe supplying 90 per cent. dry steam at 45 lb . per sq. in. abs. pressure. If the vessel initially contains steam at 15 lb . per sq . in. abs. and of quality 85 per cent. dry, calculate the weight of steam which will be admitted when the valve to the steam pipe is opened, and the final quality of steam in the vessel.
13. In a steam boiler 9.5 lb . of steam are generated per pound of coal burnt. The boiler pressure is 155.3 lb . per sq. in. gauge and the temperature of the feed water $90^{\circ} \mathrm{F}$. If the dryness fraction of the steam is 0.98 , and the calorific value of the coal is $14,500 \mathrm{~B}$.Th.U. per lb., calculate the efficiency of the boiler.
14. Steam at a pressure of 150 lb . per sq. in. abs. is superheated $60^{\circ} \mathrm{F}$. and then expands isentropically. At what pressure will the steam become dry and saturated?
15. Steam at 200 lb . per sq. in. abs. ($t=382^{\circ} \mathrm{F}$.) is superheated $100^{\circ} \mathrm{F}$. It is then passed through a reducing valve and has its pressure reduced to 15 lb . per sq. in. abs. $\left(t=213^{\circ} \mathrm{F}\right.$.). Determine the temperature and condition of the steam after wire-drawing and calculate, without using steam tables, the change of entropy. Take the average specific heat as 0.5 .
16. Steam passing to an engine has a pressure of 150 lb . per sq. in. abs. ($t=358^{\circ} \mathrm{F}$) and a temperature of $600^{\circ} \mathrm{F}$. when in the main steam pipe. Before entering the engine it is throttled down to 100 lb . per sq. in. abs. ($t=328^{\circ} \mathrm{F}$.), and is then expanded adiabatically down to 25 lb . per sq. in. abs. ($t=240^{\circ} \mathrm{F}$.). Determine, without using steam tables, the temperature and condition of the steam before and after expansion.
17. Steam at a temperature of $330^{\circ} \mathrm{F}$. and of dryness 0.9 is wire-drawn to $190^{\circ} \mathrm{F}$. Calculate the gain of entropy.
18. Steam at a pressure of 220 lb . per sq. in. abs. ($t=390^{\circ}$ F.) and of dryness 0.97 is wire-drawn to a pressure of 13 lb . per sq. in. abs. Determine the condition of the steam after throttling and the gain of entropy. Given

p	$t^{\circ} \mathrm{F}$.	L
220 13	390 205.9	836.2 974.2

19. Solve Problem 18 if the steam is initially dry and saturated at 220 lb . abs.
$2 n$ Solve Problemo 14 to 19 inclusive by means of a total heat-entropy (Mollier) diagram.

Chapter X

STEAM ENGINE CYCLES

*CYCLE USING STEAM NON-EXPANSIVELY

This cycle is approximately that used in the Newcomen engine. The p.v. and T ϕ diagrams are shown in Fig. 63.

Assume 1 lb . of water at pressure p_{2} and temperature T_{2} to be pumped into a boiler where the pressure is maintained at the value p_{1}. This

Fig. 63.
water is now heated to temperature T_{1}, the boiling temperature corresponding to p_{1}. The further addition of heat causes evaporation at constant pressure along the line $a b$, until dryness is reached at b. Heat is now withdrawn from the steam, which condenses at constant volume along the line $b c$ until a dryness fraction q_{c} is attained at pressure p_{2}. Finally condensation is completed at constant pressure along the curve cd. Referring to the p.v. chart the work done by the steam in the cylinder is $a^{\prime} b c d^{\prime}$, and that done by the pump is $d^{\prime} d a a^{\prime}$. If the very slight compressibility of water is neglected $d a$ becomes a line of constant volume $\nabla_{\text {no }}$.

Assuming the specific heat of water is 1 , then the heat received by the water $=T_{1}-T_{2}$ B.Th.U. and \quad the work performed by the pump $=\left(p_{1}-p_{2}\right) v_{w} / J$ B.Th.U.

The total energy supplied to the water

$$
\begin{aligned}
& =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)+\frac{\left(p_{1}-p_{2}\right)}{\mathrm{J}} v_{\mathrm{w}} \\
& =h_{1}-h_{2}
\end{aligned}
$$

Heat received during evaporation $=L_{1}$

$$
\text { The total work done }=a^{\prime} b c d^{\prime}-d^{\prime} d a a^{\prime}
$$

$$
\begin{aligned}
& =\left(v_{s}-v_{w}\right)\left(p_{1}-p_{2}\right) \mathrm{ft} . \mathrm{lb} . \\
\text { Efficiency } & =\frac{\left(v_{s}-v_{v}\right)\left(p_{1}-p_{2}\right)}{\mathrm{J}\left(\mathrm{~L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)+\left(p_{1}-p_{2}\right) v_{w}} \\
& =\frac{\left(v_{s}-v_{w}\right)\left(p_{1}-p_{2}\right)}{\mathrm{J}\left(\mathrm{H}_{1}-h_{2}\right)},
\end{aligned}
$$

and
as H and h take into account the variations of specific heat and volume of water.

On the T ϕ chart, except in the region of very high temperatures and pressures, the curve representing the heating of water from T_{2} to T_{1} at constant pressure may be taken as coincident with the liquid boundary (p. 67). (Contrast this case with that of heating liquid CO_{2} at constant pressure, Fig. 153.) The curve $b c$ is one of constant volume, the volume being that occupied by 1 lb . of dry steam at pressure p_{1}.
If \boldsymbol{v}_{2} is the specific volume of steam at p_{2}, then the dryness fraction at point c will be given by $c d / d g=\frac{\boldsymbol{v}_{2}}{v_{2}}$.

The diagram for any particular case can be readily set off on Fig. 28, and the dryness fraction read.

The efficiency is of the order of 5 per cent., and the cycle is only used in engines of small power where considerations of simplicity may outweigh those of efficiency.

Example.-A steam engine using saturated steam works non-expansively, the initial pressure being 100 lb . per sq. in. abs. ($t=327.6^{\circ}$ F.) and the final pressure 15 lb . per sq. in. abs. ($t=213^{\circ}$ F.). Estimate its theoretical efficiency, given that the specific volume of steam at 100 lb . is $4.34 \mathrm{cu} . \mathrm{ft}$., and the volume of 1 lb . of water is $0.016 \mathrm{cu} . \mathrm{ft}$.

Now,

$$
\begin{aligned}
\text { Efficiency } & =\frac{\text { work done }}{\text { heat energy absorbed }} \\
& =\frac{\left(p_{1}-p_{2}\right)\left(v_{s}-v_{v}\right)}{\mathrm{J}\left(\mathrm{H}_{1}-h_{2}\right)}
\end{aligned}
$$

From the tables
and

$$
\mathrm{H}_{1}=1186.3 \text { B.Th. } \mathrm{U} .
$$

$$
h_{2}=181 \text { B.Th.U. }
$$

$$
\therefore \text { efficiency }=\frac{144(100-15)(4.34-0.016)}{778 \times(1186.3-181)}
$$

$$
-\frac{144 \times 85 \times 4.324}{778 \times 1005}=0.068 \text { or } 6.8 \text { per cent. }
$$

N.B. Note that the Carnot efficiency working between the same limits of temperature would be-

$$
\frac{327 \cdot 6-213}{327 \cdot 6+460}=\frac{114 \cdot 6}{787 \cdot 6}=0 \cdot 145 \text { or } 14.5 \text { per cent. }
$$

*CARNOT CYCLE

As shown on p. 30, the diagram for this "ideal" cycle is bounded by two isothermals and two adiabatics, the isothermals in the case of saturated or wet steam being also lines of constant pressure.

Fig. 64.
The p.0. and $\mathrm{T} \phi$ diagrams are shown in Fig. 64. The operations are as follows :
(1) Water of specific volume v_{w} is evaporated to dryness along $a b$, when its volume is v_{s}.
(2) The steam is expanded adiabatically along $b c$, its dryness fraction at c being given by ce/fe.
(3) The steam is partially condensed at temperature T_{2} along $c d$.
(4) Condensation is completed by adiabatic compression, the point d where compression commences being selected so that full condensation is attained at the point a.
N.B. Adiabatic compression of fairly dry steam increases the dryness, while similar compression of very wet steam tends to produce complete condensation.

The efficiency, as shown by the T ϕ diagram, will be given, as before, by

$$
\frac{a b c d}{a b h g}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

The work done during the cycle will be $\mathrm{JL}_{1}\left(\frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{2}}\right)$ ft.-lb., L_{1} being the only beat supplied during the cycle.

The efficiency of a perfect engine using this cycle, and with a lower temperature limit of $520^{\circ} \mathrm{F}$. abs., or $60^{\circ} \mathrm{F}$., is shown below for a number of initial pressures.

Absolute pressure pounds per square inch	Temperature $\mathbf{T}_{\mathbf{1}}$	Efficiency $\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
40	728.17	0.284
100	788.63	0.339
200	846.64	0.381
300	87850	0.407

Pressures of 400 lb . per sq. in. are now common, and steam has been generated at much higher pressures (Munzinger, I.Mech.E., 1936), but only under very exceptional circumstances can theoretical efficiencies be expected which are much in excess of those shown. It should be noted that the attainment of high initial temperatures by the use of superheated steam is not as advantageous as might be expected, as all the heat has not been taken in, nor is it all available, at the highest temperature of superheat.

The lower limit of T_{2} is set by the temperature of the available condensing water and is about $60^{\circ} \mathrm{F}$., the minimum value obviously being the freezing-point, $32^{\circ} \mathrm{F}$.
From a thermodynamic point of view much the most serious loss of efficiency is inherent in the boiler, where a very large irreversible drop of temperature occurs between the furnace gases and the steam generated. It is because of this loss that the internal combustion engine appears in such a favourable light.
The compression of very wet steam to dryness is actually impracticable owing to the separation of the water preventing the theoretical heat interchanges.

-RANKINE CLAUSIUS CYCLE. EFFICIENCY IN TERMS OF p AND v

${ }^{-}$The disadvantage of the Carnot cycle is that condensation within the cylinder would be an extremely slow process, involving a large drop of semperature of the material of the cylinder itself, and a correspondingly great absorption of heat at the commencement of evaporation. To obviate these difficulties the steam is either exhausted at constant pressure into a condenser of large capacity where compression cannot be carried out, or discharged to the atmosphere in the case of non-condensing engines. Evaporation is always effected in a separate boiler, which is assumed to be fed from the condenser, i.e. the "hot well" discharge is returned to the boiler. In non-condensing engines heat quantities are calculated with reference to the temperature of the boiler feed-water.

The Rankine cycle, in which final compression is not used, is an attempt to attain a practical approximation to the Carnot. Its efficiency will fall below that of the Carnot solely because the reversible adiabatic compression is replaced by an irreversible process by which heat is absorbed in the boiler at T_{1} to increase the feed-water temperature over a range from T_{2} to T_{1}. Otherwise the cycles are identical. It is therefore as close an approximation to the ideal as can be obtained using a separate condenser and feed heating in the boiler. See also p. 165.

The indicator diagram of an engine working on this cycle (assuming no clearance) is shown in Fig. 65. $a^{\prime} b$ represents the admission of the high-

Figs. 65 and 65A
pressure boiler steam, b is the point of cut-off, $b c$ is the expansion line (adiabatic), and $c d^{\prime}$ the exhaust to the condenser.
Let $\quad p_{1}=$ initial pressure in pounds per square foot at a
$p_{2}=$ final or exhaust pressure at c and d
$v_{1}=$ initial volume (at b) before expansion
$v_{2}=$ the volume after expansion
Then the work done per pound during admission $=p_{1} v_{1}$
and the work done per pound during expansion $=\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1} . \quad!$
Work done on the steam during exhaust $=p_{2} v_{2}$. (3)
Work done by the feed pump $=\left(p_{1}-p_{2}\right) v_{w} \sqrt{ }$. (4)
Heat supplied $=\left(\mathrm{H}_{1}-h_{2}\right)$
Hence the net work done per pound of steam

$$
\begin{align*}
& =\underline{p}_{1} v_{1}+\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}-p_{2} v_{2}-\left(p_{1}-p_{2}\right) v_{w} \\
& =\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)-\left(p_{1}-p_{2}\right) v_{w}, \ldots \tag{6}
\end{align*}
$$

152 The Theory of Heat Engincs
and the efficiency $=\frac{\text { net amount of work done }}{\text { heat supplied }}$

$$
\begin{equation*}
=\frac{\frac{n}{n-1}\left(\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}\right)-\left(p_{1}-p_{2}\right) v_{w}}{J\left(H_{1}-h_{2}\right)} \cdot \cdot \cdot \cdot \tag{7}
\end{equation*}
$$

This is also considered by a different method on p. 156.
The work done in the cylinder $=p_{1} v_{1}+\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}-p_{2} v_{2}$

$$
=\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)
$$

For many purposes the work done by the pump, $\left(p_{1}-p_{2}\right) v_{v}$, can be neglected, being of the order of 0.1 per cent. of the total energy supplied.

The above reasoning is for complete expansion, i.e. the steam expands until its pressure is the same as that of the condenser.

Incomplete expansion is also illustrated in Fig. 65A, the expansion being stopped at some point e. This results in a loss of work represented by the toe of the diagram shown shaded.
In this case, if p_{2} is the pressure after expansion to e and p_{3} is the pressure in the condenser, the efficiency becomes

$$
\begin{equation*}
=\frac{p_{1} v_{1}+\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}-p_{3} v_{2}-\left(p_{1}-p_{3}\right) v_{w}}{J\left(H_{1}-h_{2}\right)} . \tag{8}
\end{equation*}
$$

Example.-If a steam engine works between 100 and 15 lb . per sq. in. abs., as in Example on p. 148, but with complete adiabatic expansion, i.e. on the Rankine cycle, estimate its efficiency, the clearance being neglected.

The law of expansion is $p \boldsymbol{v}^{1 \cdot 135}=$ constant.
In this case Efficiency $=\frac{\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} r v_{1}\right)-\left(p_{1}-p_{2}\right) v_{m}}{\mathrm{~J}\left(\mathrm{H}_{1}-h_{2}\right)}$
To find the ratio of expansion r
Since $\quad p_{1} v_{1}{ }^{1.135}=p_{2} v_{2}{ }^{1.135}$
$\therefore \frac{p_{1}}{p_{2}}=\left(\frac{v_{2}}{v_{1}}\right)^{1.135}=r^{1.135}$
$\cdot 1.135 \log r=\log 100-\log 15=2 \cdot 000-1 \cdot 1761=0.8239$

$$
\therefore \log r=\frac{0.8239}{1.135}=0.7259
$$

$$
\therefore f=5 \cdot 32
$$

\therefore efficiency

$$
\begin{aligned}
& =\frac{\frac{1.135}{0.135}(100 \times 144 \times 4.34-15 \times 144 \times 5.32 \times 4.34)-(100-15) 144 \times 0.016}{778(1186.3-181)} \\
& =\frac{104,690}{778 \times 1005}=0.135 \text { or } 13.5 \text { per cent. }
\end{aligned}
$$

The above result may be checked by the expression for the Rankine efficiency in terms of heat units given on p. 157, i.e.-

$$
\text { efficiency }=\frac{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{L_{1}}{T_{1}}\right)-\mathrm{T}_{2} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}}{\mathrm{~L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}}
$$

Here

$$
\begin{aligned}
\mathrm{L}_{1} & =888 \cdot 0 \mathrm{~B} . \mathrm{Th} . \mathrm{U} . \\
\mathrm{T}_{1} & =327 \cdot 8+460=787 \cdot 8^{\circ} \mathrm{F} . \text { abs. } \\
\mathrm{T}_{2} & =213+460=673^{\circ} \mathrm{F} . \text { abs. } \\
\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2} & =888+114 \cdot 8=1003
\end{aligned}
$$

Substituting these values

$$
\begin{aligned}
\text { efficiency } & =\frac{114.8\left(1+\frac{888}{788.8}\right)-674 \times 2.303 \times \log _{10} \frac{787.8}{673}}{1003} \\
& =\frac{137.8}{1003}=0.137 \text { or } 13.7 \text { per cent. }
\end{aligned}
$$

The most rapid method of solution is by means of the Mollier diagram, as shown on p. 160.

Example.-In a Stirling's engine, fitted with a perfect regenerator, the maximum pressure is 140 lb . per sq. in. abs. and the minimum 15 lb . per sq. in. abs., the upper and lower temperatures being $650^{\circ} \mathrm{F}$. and $60^{\circ} \mathrm{F}$. A perfectly reversible steam engine is supplied with dry saturated steam and works between the same limits of pressure. Compare their efficiencies, and if the piston speed and stroke be the same in each engine, compare the diameters of the cylinders for equal power.

Given temperature of saturation at 140 lb . abs. $=352^{\circ} \mathrm{F}$., and at 15 lb . abs. $=213^{\circ} \mathrm{F}$., and specific volume at 15 lb . abs. $=25 \cdot 85$.
Stirling engine-

$$
\text { Efficiency }=\frac{650-60}{650+460}=\frac{590}{1110}=0.531 \text { or } 53.1 \text { per cent. }
$$

Steam engine-As the engine is "perfectly reversible"
Efficiency $=\frac{352 \cdot 8-213}{352 \cdot 8+460}=\frac{139 \cdot 8}{812 \cdot 8}=0.171$ or 17.1 per cent.
Since the piaton speeds and strokes are the same, the ratio of the areas
of the cylinders will be inversely as the ratio of the mean effective pressures for equal power.

To find the mean effective pressures $\left(\mathrm{P}_{\mathrm{m}}\right)$.
Stirling engine: $\mathrm{T}_{1}=1110^{\circ} ; \mathrm{T}_{2}=520^{\circ} \mathrm{F}$. abs.
Let A, B, C, D indicate the points on the indicator diagram before and after isothermal expansion and before and after compression.

Then $p_{b}=p_{c} \times \frac{1110}{520}=15 \times \frac{1110}{520}=31.98$ (say 32 lb . per sq. in.)
Now $p_{a} v_{a}=p_{b} v_{b}$

$$
\begin{aligned}
& \therefore \frac{v_{b}}{v_{a}}=r=\frac{p_{a}}{p_{b}}=\frac{140}{32}=4.37 \\
& \begin{aligned}
\therefore p_{m} & =\frac{\text { area of diagram }}{\text { length of diagram }}=\frac{p_{a} v_{a} \log _{\epsilon} r-p_{b} v_{b} \log _{e} r}{v_{b}-v_{a}} \\
& =\frac{140 v_{a} \log _{e} r-15 \times 4.37 v_{a} \log _{\epsilon} r}{v_{b}-v_{a}}=\frac{v_{a}(140-15 \times 4.37) \log _{e} 4.37}{4.37 v_{b}-v_{a}} \\
\therefore p_{m} & =\frac{140-65.55}{3.37} \times 2.303 \times 0.6405 \\
& =\frac{74.45 \times 2.303 \times 0.6405}{3.37}=\frac{109.818}{3.37}=32.58 \mathrm{lb} . \text { per sq. in. } .
\end{aligned}
\end{aligned}
$$

Steam engine : $\mathrm{T}_{1}=813.8^{\circ} ; \mathrm{T}_{2}=674^{\circ}$.
Let $q_{2}=$ dryness fraction after expansion.
Then length of diagram for 1 lb . of steam $=25.85 \times q_{2}$.
To find q_{2}.-For adiabatic expansion we have the equation

$$
\begin{aligned}
& q_{2}=\frac{\mathrm{T}_{2}}{\mathrm{~L}_{2}}\left(\frac{\mathrm{~L}_{1}}{\mathrm{~T}_{1}}+\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right) \\
& \mathrm{L}_{1}=1114-0.7 \times 352 \cdot 8=1114-246.96=867.04 \text { B.Th.U. } \\
& \mathrm{L}_{2}=1114-0.7 \times 213=1114-149.1=964.9 \text { B.Th.U. } \\
& \therefore q_{2}=\frac{674}{964 \cdot 9}\left(\frac{867 \cdot 04}{813 \cdot 8}+2.303 \times \log _{10} \frac{813.8}{674}\right) \\
&=\frac{674}{964 \cdot 9}\left\{\frac{867.04}{813.8}+2.303(2.9105-2.8287)\right\} \\
&=\frac{674}{964 \cdot 9}(1.065+0.188)=\frac{674 \times 1.253}{964.9}=0.866 .
\end{aligned}
$$

(q_{2} may also be found directly from the $\mathrm{T} \phi$ and Mollier diagrams.)
\therefore neglecting the volume of the water, the volume after expansion is $25.85 \times 0.866=22.38 \mathrm{cu} . \mathrm{ft}$.

Work done $=$ area of $\mathrm{T} \phi$ diagram. This is a rectangle of height (813.8-674) ${ }^{\circ}$
and $\quad \mathrm{W} \frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}$ or $\frac{867 \cdot 04}{813.8}$ units of entropy in width
or

$$
=778(813 \cdot 8-674) \times \frac{867 \cdot 04}{813 \cdot 8} \mathrm{ft} .-\mathrm{lb}
$$

$$
\therefore p_{m}=\frac{778 \times 139.8 \times \frac{867.04}{813.8}}{22.38 \times 144} \mathrm{lb} . \text { per sq. in. }
$$

$$
=\frac{778 \times 139.8 \times 1.065}{22.38 \times 144}=35.96 \mathrm{lb} . \text { per sq. in. }
$$

Hence

$$
\begin{array}{r}
\frac{\text { area of Stirling }}{\text { area of steam }}=\frac{35.96}{32.58}=\frac{1 \cdot 104}{1} \\
\therefore \frac{\text { diameter of Stirling }}{\text { diameter of steam }}=\sqrt{1 \cdot 104}=\frac{1.05}{1}
\end{array}
$$

THE RANKINE CYCLE AS A REVERSIBLE CYCLE

The efficiency of the Rankine cycle will fall below that of the Carnot cycle solely because the reversible adiabatic compression of the latter is replaced by a process in which heat is taken in, to heat the water, over a range of temperature varying from T_{2} to T_{1}, otherwise the cycles are identical. The Rankine cycle therefore represents the ideal performance of an engine using a separate condenser.

The work done during the cycle, and the efficiency of operation, can be calculated on this basis :
The engine takes in the greater part of its heat at the upper temperature limit T_{1}, but some is taken in between T_{2} and T_{1}. The cycle may be made reversible if the feed water takes up its heat in an infinite number of instalments at temperatures ranging from T_{2} to T_{1} from a series of bodies having the same range of temperature. In each little instalment the expression

$$
\frac{\mathrm{T}-\mathrm{T}_{2}}{\mathrm{~T}}
$$

represents the efficiency of the possible transformation into work of the small quantity of heat, say δQ, which is taken in by the working substance at any particular temperature T. The amount of heat converted into work for each instalment is therefore

$$
\frac{\delta Q\left(T-T_{2}\right)}{T}
$$

and the total quantity of heat converted into work will be

$$
\begin{equation*}
\sum \frac{\delta Q\left(T-T_{2}\right)}{T} \tag{1}
\end{equation*}
$$

During this stage of the cycle the whole heat taken in is sensible from T_{2} to T_{1}, and equals $h_{1}-h_{2}$. The total heat taken in per pound of working substance is the sensible heat plus the latent heat L_{1} at temperature T_{1}.

Then the total work done per pound, expressed in heat units, is-

$$
\begin{align*}
\mathrm{W} & =\int_{\mathrm{T}_{2}}^{\mathrm{T}_{1}} d \mathrm{Q} \frac{\left(\mathrm{~T}-\mathrm{T}_{2}\right)}{\mathrm{T}}+\mathrm{L}_{1} \frac{\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{1}} \\
& =\int_{\mathrm{T}_{2}}^{\mathrm{T}_{1}} d \mathrm{Q}-\mathrm{T}_{2} \int_{h_{2}}^{h_{1} d Q} \frac{d \mathrm{~T}}{\mathrm{~T}}+\mathrm{L}_{1} \frac{\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{1}} \tag{1}
\end{align*}
$$

Assuming the specific heat of water to be constant and equal to unity, in which case $d \mathrm{Q}=d \mathrm{~T}$,

$$
\begin{align*}
& \mathrm{W}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)-\mathrm{T}_{2} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}+\mathrm{L}_{1} \frac{\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{1}} \\
& \mathrm{~W}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{L_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\boldsymbol{R}_{2}} \text { heat units per lb. . } \tag{2}
\end{align*}
$$

Now total heat supplied

$$
\begin{align*}
& =\mathrm{H}_{1}-h_{2}=\mathrm{L}_{1}+h_{1}-h_{2}=\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2} \text { approximately } \\
& \therefore \text { efficiency }=\frac{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{6} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}}{\mathrm{~L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}} . \tag{3}
\end{align*}
$$

If the steam be initially wet, and of dryness fraction q_{1}, the work done per pound becomes

$$
\begin{align*}
& \mathrm{W}=\mathrm{T}_{1}-\mathrm{T}_{2}-\mathrm{T}_{2} \log _{6} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+q_{1} \mathrm{~L}_{1} \frac{\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{1}} . . . \tag{4}\\
& \mathrm{W}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \text { heat units . . } \tag{5}
\end{align*}
$$

*RANKINE CLAUSIUS CYCLE. EFFICIENCY IN TERMS OF T AND ϕ

Commencing with 1 lb . of water at temperature T_{2}, represented by the point a on the diagram (Fig. 66), the water is heated to T_{1} at constant pressure along the line $a b$, the gain of entropy being

$$
f g=C_{p} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \quad\left(\mathrm{C}_{p}\right. \text { for water being assumed unity) }
$$

The water at temperature T_{1} is now turned into steam at T_{1} along the line $b c$, the gain of entropy $b c$ or $g k$ being $\frac{L_{1}}{T_{1}}$, where L_{1} is the latent heat
at temperature T_{1}. The steam then expands adiabatically along $c d$, down to the original temperature T_{2}, when condensation follows along da to the original condition of water at temperature T_{2}. The heat equivalent

Fig. 66.
to work done during the cycle is represented by the area $a b c d$ and the total amount of heat supplied is represented by the area fabck.

The efficiency of the cycle is therefore

$$
\frac{\text { Heat converted into work }}{\text { Heat supplied }}=\frac{\text { area } a b c d}{\text { area } f a b c k}
$$

The area $a b c d=$ area $f a b g$-area $f a l g+$ area $l b c d$

$$
=\mathrm{C}_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)-\mathrm{T}_{2} \times \log _{6} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}} \times\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)
$$

and taking $\mathrm{C}_{p}=1$

$$
\begin{equation*}
=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{6} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \cdot . . . \tag{1}
\end{equation*}
$$

2 result already obtained.
The area $f a b c k=$ area $f a b g+$ area $g b c k$

$$
\begin{align*}
& =\mathrm{T}_{1}-\mathrm{T}_{2}+\mathrm{T}_{1} \times \frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}} \\
& =\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2} \tag{2}
\end{align*}
$$

The efficiency is therefore

$$
\begin{equation*}
\frac{\left(T_{1}-T_{2}\right)\left(1+\frac{L_{1}}{T_{1}}\right)-T_{2} \log _{\epsilon} \frac{T_{1}}{T_{2}}}{L_{1}+T_{2}-T_{2_{6}}} \tag{3}
\end{equation*}
$$

which may also be written

$$
\begin{equation*}
\left.1-\frac{\mathrm{T}_{2}\left(\frac{\mathrm{~L}_{1}}{\mathrm{~T}_{1}}+\log _{\epsilon} \mathrm{T}_{1}\right.}{\mathrm{T}_{2}}\right) \tag{3A}
\end{equation*}
$$

If the steam is initially wet, having dryness fraction $\frac{b m}{b c}$, the adiabatic expansion will take place along $m n$, and the work done per pound of steam will be represented by the area abmn and the total amount of heat supplied will be represented by the area fabmh.

The area $a b m n=$ area $f a b g-$ area $f a l g+$ area $l b m n$

$$
\begin{align*}
& =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)-\mathrm{T}_{2} \times \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \\
& =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{q_{1} L_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \cdot . . \tag{4}
\end{align*}
$$

The area $f a b m h=$ area $f a b g+$ area $g b m h$

$$
\begin{align*}
& =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)+\mathrm{T}_{1} \times \frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}} \\
& =q_{1} \mathrm{~L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2} . \tag{5}
\end{align*}
$$

The efficiency is therefore

$$
\begin{equation*}
\frac{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}}{q_{1} \mathrm{~L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}} \tag{6}
\end{equation*}
$$

It will be seen from the diagram (Fig. 66) that the engine working on the Rankine-Clausius cycle does more work per pound of steam than the Carnot engine, the excess being represented by the area abl. To do this greater amount of work, however, the engine has to take in a proportionately larger quantity of heat represented by the area falg, and is therefore less efficient, which fact has already been shown on p. 155.

If the line for dry saturated steam ce be drawn, the dryness fraction of the steam at any point of the expansion can be found as on p. 67, the dryness fraction at the end of the expansion being $\frac{a d}{a i}$. With the engine working on Carnot's cycle the final stage of operations is adiabatic compression from T_{2} to T_{1}. This is represented in Fig. 66 by the line $l b$, and it is obvious that the compression must be commenced when the steam has a dryness fraction $\frac{a l}{a e}$.
to intersect the line of final pressure (2 lb .) in b, and $\mathrm{H}_{p 2}$ is read as before.

$$
\text { Then the work done }=H_{p_{1}}-H_{p_{2}}
$$

and the total heat supplied above $\mathrm{T}_{2}=\mathrm{H}_{p_{1}}-h_{2}$
The efficiency is given by $\frac{\mathrm{H}_{p_{1}}-H_{p_{2}}}{\mathrm{H}_{p_{1}}-h_{2}}$
The final dryness fraction will be seen to be 0.815 .
Example.-A steam engine using dry saturated steam at a pressure of 100 lb . per sq. in. abs. works under the following conditions: (1) with complete adiabatic expansion to a pressure of 5 lb . per sq. in., (2) with adiabatic expansion to 5 lb . per sq. in. and exhaust at 2 lb . per sq. in., (3) with complete adiabatic expansion to 2 lb . per sq. in., (4) with complete adiabatic expansion to atmospheric pressare.

Determine the work done and the efficiency in each case, using the Mollier chart, and compare the mean effective pressures.

The salient values are

$$
\begin{array}{llll}
p_{1}=100 & \mathrm{H}_{1}=1191 \cdot 8 & & \\
p_{2}=5 & \mathrm{H}_{2}=984 \cdot 0 & h_{2}=130 \cdot 1 & v_{2}=63 \mathrm{cu} . \mathrm{ft} . \\
p_{3}=2 & \mathrm{H}_{3}=933 & h_{3}=94 \cdot 0 &
\end{array}
$$

(1) Work done $=1191 \cdot 8-984 \cdot 0=207 \cdot 8$ B.Th.U.

$$
\begin{aligned}
\text { Efficiency } & =\frac{207.8}{1191 \cdot 8-130 \cdot 1}=19.58 \text { per cent. } \\
\text { M.E.P. } & =\frac{\text { work }(\mathrm{ft} . \mathrm{lb} .)}{\text { vol. }\left(\mathrm{ft} .{ }^{3}\right)} \times 144=\frac{207.8 \times 778}{63 \times 144}=17.8 \mathrm{lb} . \text { persq.in. }
\end{aligned}
$$

(2)

$$
\begin{aligned}
\text { Work done } & =207 \cdot 8+\frac{144\left(p_{3}-p_{2}\right) 63}{778}=207 \cdot 8 \times \frac{144 \times 3 \times 63}{778} \\
& =242 \cdot 8 \text { B.Th.U. } \\
\text { Heat received } & =1191 \cdot 8-94 \cdot 0 \text { B.Th.U. }
\end{aligned}
$$

$$
\begin{aligned}
\text { Efficiency } & =\frac{242.8}{1097.8}=22.12 \text { per cent. } \\
\text { M.E.P. } & =\frac{242 \cdot 8 \times 778}{63 \times 144}=208 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

(3) Work done $=1191.8-933=258.8$ B.Th.U.

$$
\begin{aligned}
\text { Efficiency } & =\frac{258 \cdot 8}{1097 \cdot 8}=23.58 \text { per cent. } \\
\text { M.E.P. } & =\frac{258 \cdot 8}{150} \times \frac{778}{144}=9.30 \mathrm{lb} . \text { per sq. in. } .
\end{aligned}
$$

In the latter case the final volume per pound is $150 \mathrm{cu} . \mathrm{ft}$. as against $63 \mathrm{cu} . \mathrm{ft}$. in the former.
(4) For adiabatic expansion to atmospheric pressure, followed by exhaust at that pressure, the work done, efficiency, and final volume are 139.8 B.Th.U., 13.98 per cent., and $26 \mathrm{cu} . \mathrm{ft}$., and the M.E.P. $=29.1 \mathrm{lb}$. per sq. in.

Example.-The high-pressure cylinder of a steam engine receives dry steam at 200 lb . per sq. in. abs. and $80^{\circ} \mathrm{F}$. superheat, admission occurring during 25 per cent. of the stroke. If the pressure at release is 36 lb . per sq. in. while the final back pressure is 34 lb . per sq. in., find the cylinder feed per I.H.P. per hour and the heat received or rejected during expansion per pound of cylinder feed.

At 200 lb . per sq. in. and 80° superheat, $v_{1}=2.61 \mathrm{cu} . \mathrm{ft}$. and H_{1} $=1246.5$ B.Th.U.

At 36 lb . per sq. in., $v_{2}=4 \times 2.61=10.44 \mathrm{cu}$. ft., while the specific volume is 11.58
or

$$
q_{2}=\frac{10 \cdot 44}{11.58}=90 \cdot 15 \text { per cent. }
$$

To find the value of n

$$
\begin{aligned}
\left(\frac{v_{2}}{v_{1}}\right)^{n} & =\frac{p_{1}}{p_{2}} \\
n\left(\log v_{2}-\log v_{1}\right) & =\log p_{1}-\log p_{2} \\
n(1.0187-0.4166) & =2.3010-1.5563 \\
n & =\frac{0.7447}{0.6021}=1.237
\end{aligned}
$$

or

Work per pound of cylinder feed

$$
\begin{aligned}
& =\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)+\left(p_{2}-p_{3}\right) v_{2} \\
& =\frac{1 \cdot 237}{0.237}(200 \times 2.61-36 \times 10.44) \times 144+2 \times 10.44 \times 144 \mathrm{ft} . \mathrm{lb} . \\
& =109,850+3007=112,860 \mathrm{ft} . \mathrm{lb} .
\end{aligned}
$$

The cylinder feed per I.H.P. hour is $\frac{33,000 \times 60}{112,860}=17.55 \mathrm{lb}$.,
and
Heat to or from steam during expansion $=H_{J}$
where $H_{J}=\frac{1}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right) \frac{\mathrm{I}}{\mathrm{J}}-\mathrm{H}_{1}+\mathrm{H}_{2}$

$$
=\frac{109,850}{778}-1246.5+0.9015 \times 937.7+229.6=-30.7 \text { B.Th.J. }
$$

or the loss of heat $=30.7 \mathrm{~B}$. Th.U. per pound of cylinder feed.
Example.-Compare the efficiencies of Rankine cycles working with steam at $500^{\circ} \mathrm{F}$. and a back pressure of 2 lb . per sq. in. when (1) the steam is superheated 120° and (2) when the steam is dry saturated.

In the first case the pressure is 200 lb . per sq. in., in the second it is 684 lb . per sq. in.
and the total heats of the supply steam are 1274 and 1227 B.Th.U.

"	after expansion are	945		844	
	The work done is	329		383	

The efficiencies are

$$
\frac{329}{1274-94} \text { and } \frac{383}{1227-94} \text { or } 29 \text { per cent. and } 33 \text { per cent. }
$$

showing that the cycle using superheated steam is less efficient than the cycle using saturated steam at the same temperature.

- EFFICIENGY OF THE RANKINE CLAUSIUS CYCLE FROM STEAM TABLES

When the $\mathrm{H} \phi$ diagram is not available on a sufficiently large scale the calculation may readily be made from the tables.

If the steam is initially wet, the heat supplied

$$
\begin{equation*}
=h_{1}+q_{1} \mathrm{~L}_{1} \tag{1}
\end{equation*}
$$

and heat after expansion $\quad=h_{2}+q_{2} \mathrm{~L}_{2}$

$$
\begin{align*}
& =h_{2}+\text { area } \operatorname{lnh} h+\text { falg (see Fig. 66) } \\
& =h_{2}+\mathrm{T}_{2} \cdot q_{1}(b c)+f a l g \\
& =h_{2}+\mathrm{T}_{2} q_{1}\left(\phi_{c}-\phi_{b}\right)+\left(\phi_{w_{1}}-\phi_{w_{2}}\right) \mathrm{T}_{2} \\
& =h_{2}+\mathrm{T}_{2} q_{1}\left(\phi_{s_{1}}-\phi_{w_{1}}\right)+\left(\phi_{w_{1}}-\phi_{w_{2}}\right) \mathrm{T}_{2} \tag{2}
\end{align*}
$$

where $\phi_{s_{1}}$ is the entropy of steam at $\mathrm{T}_{1}, \phi_{w_{1}}$ that of water at T_{1}, and $\phi_{w_{2}}$ that of water at T_{2}.

This statement, though apparently complicated, is simple to evaluate in practice, as all the quantities required are given in the tables.
and

$$
\begin{aligned}
\text { Work done } & =(1)-(2) \\
\text { efficiency } & =\frac{(1)-(2)}{(1)-h_{2}}
\end{aligned}
$$

If the steam is initially superheated and if tables giving the total heat and entropy for different values of superheat are available, the total heat in the supply steam n is obtained directly, and that of the steam after expansion can be found as soon as q_{2} is known. The final dryness of the steam is given by

$$
\frac{a e}{a f}=\frac{a e}{\phi_{s_{2}}-\phi_{v v_{2}}} \text { (Fig. 67) }
$$

But the entropy at $e=$ entropy at d

$$
q_{2}=\frac{\phi_{x_{3}}-\phi_{w_{2}}}{\phi_{12}-\phi_{w_{2}}}
$$

where w refers to water and s to steam, and the suffixes 1,2 , and 3 to the conditions at temperatures 1,2 , and 3 .

All these quantities are obtainable directly or by interpolation from the tables.
Then as before

$$
\begin{aligned}
\text { Work done } & =\text { change of total heat } \times \mathrm{J} \\
& =\mathrm{J}\left\{\text { total heat } h_{3} \text { of superheated steam }-\left(h_{2}+q_{2} \mathrm{~L}_{2}\right)\right\} \\
\text { and efficiency } & =\frac{\text { work done }}{\mathrm{J}\left\{\text { total heat of superheated steam }-h_{2}\right\}}
\end{aligned}
$$

*ENGINE IN WHICH THE STEAM IS KEPT DRY AND SATURATED DURING EXPANSION

This is partly secured in practice by applying a steam jacket to the engine cylinder. The expansion curve, now the saturation curve, follows the approximate law $p v^{16}=$ constant. Fig. 69 shows the theoretical

Fig. 69.
indicator diagram from which it will be seen that the work done during admission

$$
\begin{equation*}
=\operatorname{area} \mathrm{ABEF}=p_{1} v_{1} \tag{1}
\end{equation*}
$$

The work done during expansion from v_{1} to \boldsymbol{v}_{2}

$$
\begin{equation*}
=\text { area } \mathrm{BCDE}=\frac{p_{1} v_{1}-p_{2} v_{2}}{\frac{16}{15}-1}=15\left(p_{1} v_{1}-p_{2} v_{2}\right) . \tag{2}
\end{equation*}
$$

Work expended during exhaust

$$
\begin{equation*}
=\text { area } G C D F=p_{2} v_{2} \tag{3}
\end{equation*}
$$

\therefore net amount of work done by the steam

$$
\begin{align*}
& =p_{1} v_{1}+15\left(p_{1} v_{1}-p_{2} v_{2}\right)-p_{2} v_{2} \\
& =15\left(p_{1} v_{1}-p_{2} v_{2}\right) \cdot . \tag{4}
\end{align*}
$$

Again-

$$
\begin{align*}
& \text { Heat received from the boiler }=\mathrm{H}_{1}-h_{2} \tag{5}\\
& \text { Heat rejected to the condenser }=\mathrm{H}_{2}-h_{2} \tag{6}
\end{align*}
$$

Let $H_{j}=$ heat supplied by the steam jacket.
Then heat received-heat rejected=work done, or
or

$$
\begin{align*}
& \mathrm{J}\left(\mathrm{H}_{1}-\mathrm{H}_{2}+\mathrm{H}_{j}\right)=15\left(p_{1} v_{1}-p_{2} v_{2}\right) \\
& \mathrm{H}_{j}=\frac{15\left(p_{1} v_{1}-p_{2} v_{2}\right)}{\mathrm{J}}-\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right) \tag{7}
\end{align*}
$$

and the efficiency is

$$
\begin{equation*}
\frac{15\left(p_{1} v_{1}-p_{2} v_{2}\right)}{J\left(H_{1}-h_{2}+H_{j}\right)} \tag{8}
\end{equation*}
$$

The value of $n=\frac{16}{15}$ can be checked by the method shown on p. 279, using values of v given in the steam tables.

THE REGENERATIVE STEAM CYCLE

It has been shown that the Rankine cycle has a lower efficiency than the Carnot, as the liquid heat between T_{2} and T_{1} is not available at the higher temperature. The liquid heat concerned is shown by area eabf in Fig. 70.

Let $c d$ be drawn parallel to $b a$ so that $g d c h=e a b f$. If, instead of expanding adiabatically along $c l$, the steam is constrained to expand along $c d$ by the withdrawal of heat during expansion, then the heat so withdrawn (gdch) will be exactly that required to heat the water from T_{2} to T_{1}. If heat, represented by the elementary strip $x y$, be removed while the steam falls over the element of temperature $\delta \mathrm{T}$, it can be used to

Fig. 70. supply the quantity, represented by the elementary strip $x^{\prime} y^{\prime}$, which is exactly enough to heat the water over the range $\delta \mathrm{T}$. Heat is therefore removed from the steam and imparted to the water without a fall in temperature, and we have a perfect regenerative process corresponding to that employed in the Stirling air engine. (Only note $a b$ and $c d$ are not lines of constant volume.)

The efficiency of the cycle will thus be that of a perfectly reversible cycle and will be given by

$$
\frac{T_{1}-T_{2}^{\prime}}{T_{1}}
$$

That the efficiency will be improved can be seen from the fact that if the small amount of heat measured by the area $x y$ were retained in the cylinder during further expansion, only the portion from x to the level of $d l$ could be converted into mechanical work and the rest would be irretrievably rejected. In the regenerative process, however, the heat which normally would be supplied to heat the boiler feed is reduced to zero. The output of the engine is slightly reduced but the efficiency is increased.

The process of withdrawing heat is normally effected by drawing off or " bleeding" small quantities of steam to heat the feed-water heater.

This matter will be referred to on p. 258.

- NOTE

The cycles so far considered concern the conditions of the steam and not the mechanism by which it is caused to do work. They are therefore applicable alike to the Reciprocating Engine, in which the steam presses directly on a piston which drives the crank and flywheel, or to the Steam Turbine, in which the steam first converts its heat energy into kinetic energy of the steam itself, prior to conversion into mechanical work at the turbine shaft.

EXAMPLES ON CHAPTER X

1. Steam at 260 lb . per sq.in. abs. and of 90° superheat is expanded adiabatically to 11 lb . per sq. in. abs. during the performance of a Rankine cycle. What is the net work done per pound during the cycle, and what is the efficiency of the cycle reckoned from exhaust temperature?
2. Calculate the work done when 1 lb . of steam expands adiabatically from 150 lb . per sq. in. abs. to 16 lb . per sq. in. abs., (a) when the steam is initially dry saturated, (b) when the initial dryness is 0.8 .
3. Estimate the work done per cubic foot of steam in the following cases :
(a) When there is no clearance and no compression.
(b) When the clearance is 0.5 cu . ft . and with no compression.
(c) When the clearance is $0.5 \mathrm{cu} . \mathrm{ft}$. and the compression pressure 50 lb . per sq. in. abs.
(d) When the clearance is $0.5 \mathrm{cu} . \mathrm{ft}$. and the compression equal to the initial steam pressure.

In each case assume an initial steam pressure of 100 lb . per sq. in. abs., cut-off at $\frac{1}{4}$ stroke, hyperbolic expansion, and a back pressure of 25 lb . per sq. in.
4. An engine using dry saturated steam works on the Rankine cycle between temperature limits of $350^{\circ} \mathrm{F}$. and $140^{\circ} \mathrm{F}$. Estimate the work done per pound of steam and the efficiency of the cycle.
5. Solve Problem 4 if the initial dryness fraction of the steam is 0.85 .
6. A steam engine requires 300 B.Th.U. per minute per horse-power when working between temperature limits of $390^{\circ} \mathrm{F}$. and $110^{\circ} \mathrm{F}$. What is the ratio of its thermal efficiency to that of an ideal engine working between the same temperature limits (a) on the Rankine cycle, (b) on the Carnot cycle?
7. Estimate the pounds of steam required per hour per horse-power by an engine working on the Rankine cycle between temperatures of $330^{\circ} \mathrm{F}$. and $210^{\circ} \mathrm{F}$.
8. Superheated steam at 180 lb . per sq. in. abs. $\left(t=373^{\circ}\right.$ F.), and temperature $520^{\circ} \mathrm{F}$., expands adiabstically down to a pressure of 6 lb . per sq.in. abs. $\left(t=170^{\circ} \mathrm{F}\right.$).

Assuming that the Rankine cycle is followed by this steam, determine the weight of steam required per hour per horse-power, and the dryness of the steam after sxpansion ($\mathrm{C}_{p}=0.5$).
9. An engine is supplied with superheated steam at 120 lb . per sq. in. abs. ($t=341^{\circ} \mathrm{F}$.) and exhausts at 4 lb . abs. ($t=155^{\circ} \mathrm{F}$.). Taking the mean specific heat of the steam as $0 \cdot 5$, find the superheat which must be given to the steam at the higher pressure in order that after adiabatic expansion to the lower pressure it may be just dry and saturated. An engine works on the Rankine cycle with that degree of superheat and between the above pressures. Find its thermal efficiency and the work done per pound of steam.
10. In a Stirling engine fitted with a perfect regenerator, the maximum pressure is 135 lb . per sq. in . abs. and the minimum 15 lb . per sq. in. abs., the upper and lower temperatures being $600^{\circ} \mathrm{F}$. and $80^{\circ} \mathrm{F}$. A perfectly reversible steam engine uses dry saturated steam between the same limits of pressure : compare their efficiencies. If the piston speed and stroke be the same in each engine, compare the diameters of the cylinders for equal power. [Given, temperature of steam at 135 lb . abs. $=350^{\circ} \mathrm{F}$., and at 15 lb . abs. $=213^{\circ} \mathrm{F}$., and specifio volume at 15 lb . abs. $=26.27 \mathrm{cu} . \mathrm{ft}$.]
11. An engine is fitted with steam jackets so that the steam remains dry and saturated throughout the expansion. If the initial temperature is $400^{\circ} \mathrm{F}$. and the final back-pressure temperature is $110^{\circ} \mathrm{F}$., calculate the heat supplied by the jackets per pound of working steam and the efficiency of the engine.
12. Estimate the weight of steam required per hour per horse-power by an engine working between temperature limits of $200^{\circ} \mathrm{C}$. and $60^{\circ} \mathrm{C}$., (a) on the Rankine cycle, (b) when by the use of steam jackets the steam remains dry and saturated throughout the expansion.
13. In a compound steam engine the admission pressure to the high-pressure cylinder is 170 lb . per sq. in. abs. ($\mathrm{L}=855 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. and $t=368.5^{\circ} \mathrm{F}$.), and the exhaust pressure in the low-pressure cylinder is 2 lb . abs. $\left(t=126^{\circ} \mathrm{F}\right.$.). The back pressure of the high-pressure cylinder and the admission pressure to the lowpressure cylinder is 50 lb . abs. $\left(=281^{\circ} \mathrm{F}\right.$.). The feed water is heated in two stages : in the first stage, steam for feed heating is taken from the low-pressure steam chest, and in the second stage boiler steam is used. Assuming complete adiabatic expansion and no heat loss, estimate the efficiency of the engine, and the gain due to feed heating.
14. If in Problem 13 the temperature of the feed water leaving the feed heater was $200^{\circ} \mathrm{F}$., feed heating being obtained by the first stage only, estimate the efficiency of the engine.
15. In a condensing engine the back pressure is 2.5 lb . per sq. in. abs., the release pressure 6 lb . per sq. in. abs., the boiler pressure 80 lb . per sq. in. abs., and the steam is 80 per cent. dry at release.

If the steam is expanded (1) according to the law $p v^{1 \cdot 13}=k$, (2) with constant dryness (3) hyperbolically, find the dryness at cut-off, the work done per pound, the heat rejected, the efficiency of the cycle, the heat received up to cut-off, and the heat received during expansion. Assume the condensate is fed back to the boiler.

Chapter XI

IHE RECIPROCATING STEAM ENGINE

-GENERAL STATEMENT

Only those engines which use steam expansively will be considered in this chapter. Certain paragraphs will apply to non-expansion engines also, but such engines are employed only in very small sizes and under circumstances which make thermodynamic efficiency a matter of secondary importance.

As the thermal efficiency of an engine depends on the ratio of expansion employed, which in turn is dependent on the minimum pressure available, engines may be roughly classified under three headings : (1) Atmospheric engines which discharge directly into the air (the normal steam locomotive is typical). (2) Condensing engines in which a very low final pressure is obtained by condensing the steam with cold water. (3) Backpressure engines which discharge their steam into plant requiring lowpressure steam, such as evaporating pans, etc., the dead steam from the engine becoming the live steam for some form of process work. In this chapter condensing engines will in general be considered.

-THE STEAM ENGINE CYCLE

Fig. 71 shows the theoretical p.v. and T $\boldsymbol{T} \phi$ diagrams for this cycle. AB represents the admission of the steam, at full boiler pressure p_{1}, up to the point of cut-off B. BC represents the curve of adiabatic expansion to the back pressure p_{b}, and CD the exhaust stroke at that pressure. BR

Fig. 71.
shows the curve of expansion of dry steam, so that the dryness fraction of the steam at any pressure P_{g} is given by GM/GN.

The equation for BR on the p.v. diagram is given to a fair degree of accuracy by $p v^{16 / 15}=$ constant.

Fig. 72 shows a typical diagram taken from an actual engine plotted to scale with the theoretical diagram for steam having the same initial qualities.

*COMPARISON OF ACTUAL AND THEORETIGAL IND1GATOR DIAGRAMS

A certain number of obvious differences will be noted.
(1) Though it is theoretically desirable to expand the steam in the cylinder to the lowest possible pressure, a limit is imposed in practice by the very large volume occupied by low-pressure steam. This would

Fig. 72.
necessitate a cylinder so large that frictional losses would be excessive. By stopping expansion in the cylinder and opening the exhaust port at some point E, a rapid drop in pressure occurs, resulting in the loss of the "toe" ECF of the diagram, Fig. 71, but also reducing by a large amount the cylinder volume required.

If r, the cut-off ratio, is given by the ratio of $\mathrm{AB} / \mathrm{DF}$ (i.e. the volume displaced by the piston during admission/the total volume displaced), the work done, in the cylinder, is
or

$$
\begin{aligned}
& p_{1} v_{1}+\frac{p_{1} v_{1}-p_{2} r v_{1}}{n-1}-p_{b} r v_{1}(\mathrm{p} .152) \\
& p_{1} v_{1}+\frac{p_{1} v_{1}-p_{2} v_{2}}{n-1}-p_{b} v_{2}
\end{aligned}
$$

(2) For mechanical reasons the cylinder volume can never be reduced to zero, a small "clearance volume" (oa, Fig. 72) having to be allowed both to prevent contact between the piston and cylinder head, and because the valves cannot be built flush with the inner surface of the cylinder. The clearance volume will vary with the size of cylinder and the type of valves employed. A clearance space is actually desirable for other reasons.
(3) The admission pressure must be lower than the boiler pressure in order to cause an adequate flow of steam towards the cylinder and through the inlet ports. The necessary allowance depends upon the length and size of pipe employed, the type of valve, and the speed of the engine. It should not in any case exceed 10 per cent. of the boiler pressure. Such throttling will tend to reheat the steam, and in testing the performance of an engine the quality of the steam should be measured as close to the steam-chest as possible. Owing to restrictions imposed by the port areas the admission line will always drop towards B as the piston gains speed from the top dead centre.
(4) Owing to restrictions at the exhaust ports, etc., the pressure during exhaust will be some 2 or 3 lb . per sq. in. higher than the pressure in the condenser (or the atmosphere if exhaust is into the air).
(5) As the inlet valve cannot close instantaneously, the "cut-off" at B will not be sharp, the rounding depending on the type of valve and valve gear employed.
(6) From E to F a considerable quantity of steam has to leave the cylinder, requiring an appreciable time. It is necessary therefore to open the exhaust valve before the end of the outward stroke, the fall in pressure being as shown by ECF (Fig. 72). Similarly, the admission valve is opened slightly before the end of the stroke.
(7) Owing to the necessity of providing " clearance space" at the end of the return stroke, the exhaust valve is closed at some point H. To fail to do so would result in having a pocket of cold low-pressure steam at the end of the stroke with which the hot boiler steam would mix, and while the pressure in the clearance space was rising to full admission pressure considerable throttling would occur with resulting waste of energy.
By closing the exhaust valve at H the steam remaining in the cylinder is compressed along the curve HJ. This reduces the throttling when the inlet valve opens, and also reduces initial condensation. Compression is in some cases effected up to full admission pressure. It also serves the purpose of "cushioning" or bringing the moving parts gradually to rest at the top dead centre, and so tending to prevent reversal of loading on the connecting rod bearings.

-MEAN EFFECTIVE PRESSURE. DIAGRAM FACTOR

For reasons stated on p. 174, the actual expansion curve for steam in a reciprocating engine approaches that given by the hyperbolic equation $p v=$ constant. Under these circumstances, if $r=v_{2} / v_{1}$ and no cushioning is used, the work done per cycle is given by

$$
\mathrm{W}=144\left(p_{1} v_{1}+p_{1} v_{1} \log _{e} r-p_{b} v_{2}\right) \mathrm{ft} . \mathrm{lb} .
$$

and the mean effective pressure-or the mean pressure acting on the piston during the working stroke-by

$$
p_{m}=\frac{p_{1} v_{1}+p_{1} v_{1} \log _{e} r-p_{b} v_{2}}{v_{2}}=\frac{p_{1} v_{1}}{v_{2}}\left(1+\log _{6} r\right)-p_{b}
$$

$$
=\frac{p_{1}}{r}\left(1+\log _{\epsilon} r\right)-p_{b}
$$

an expression which is simply evaluated in any particular case.

In practice the actual mean effective pressure is always less than this, and can be expressed by

$$
p_{m}=e\left\{\frac{p_{1}}{r}\left(1+\log _{e} r\right)-p_{b}\right\}
$$

where e is called the "diagram factor," and is less than $1 .{ }^{1}$
If $\mathrm{L}=$ length of stroke in feet, $\mathrm{A}=$ piston area in square inches, and $\mathrm{N}=$ number of working strokes per minute, then the

$$
\text { Indicated Horse-power }=\frac{p_{m} \text { LAN }}{33,000}
$$

(Note: if $n=$ number of revolutions per minute of the engine, then $\mathrm{N}=n$ for a single-acting engine, and $\mathrm{N}=2 n$ for a double-acting engine.)

The "diagram factor" depends on the type of engine, the ratio of expansion, and speed, and whether jacketing or superheating are employed. The normal range is from about 0.63 to 0.86 , being higher for the more perfect engines. ${ }^{2}$

Example.-The diameter of a steam-engine cylinder is 6 in . and the stroke 12 in . If the initial pressure is 100 lb . per sq . in. abs. and cut-off is $\frac{1}{4}$ stroke, find the mean effective pressure, neglecting clearance, the back pressure being 3 lb . per sq. in. abs.

If the clearance is $\frac{1}{10}$ of the piston displacement, find the theoretical mean effective pressure and the I.H.P. if there are 400 working strokes

[^16]per minute (i.e. the engine is double-acting and runs at 200 r.p.m.). Assume hyperbolic expansion.

If the initial and final pressures and volumes are given by $p_{1}, v_{1}, p_{2}, \boldsymbol{v}_{2}$
Work done $=p_{1} v_{1}\left(1+\log _{6} \frac{v_{2}}{v_{1}}\right)-3 v_{2}$
and

$$
\begin{aligned}
p_{m} & =\frac{100}{4}\left(1+\log _{\epsilon} 4\right)-3 \\
& =25(1+1.3862)-3 \\
& =25 \times 2.3862-3=59.65-3=56.65 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

The actual ratio $r=\frac{1+0 \cdot 1}{0 \cdot 25+0 \cdot 1}=\frac{1 \cdot 1}{0 \cdot 35}=3 \cdot 14$
therefore

$$
\begin{aligned}
p_{m} & =\frac{100}{4}\left\{1+(1+0 \cdot 1 \times 4) \log _{\varepsilon} 3 \cdot 14\right\}-3 \\
& =\frac{100}{4}(1+1 \cdot 60)-3=\frac{100 \times 2 \cdot 6}{3 \cdot 14}-3 \\
& =65-3 \\
& =62 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

Therefore I.H.P. $=\frac{62 \times 1 \times(0.7854 \times 36) \times 400}{33,000}=21.4$
Example.-Find the diameter of the steam-engine cylinder needed to develop 100 I.H.P. when the piston speed is 600 ft . per minute, initial steam pressure 150 lb . per sq. in. abs., back pressure 15 lb . per sq. in. abs., cut-off $\frac{1}{\frac{1}{3}}$ of stroke, clearance volume 8 per cent. of piston displacement, and the effect of early release, compression, etc., reduces the actual mear effective pressure to 90 per cent. of the theoretical.

Assuming hyperbolic expansion $W=p_{1} v_{1}+p_{1} v_{1} \log _{e} r-p_{b} v_{2}$
and

$$
p_{m}=\frac{p_{1}}{r}\left\{1+(1+c r) \log _{c} \frac{1+c}{\frac{1}{r}+c}\right\}-p_{b}
$$

where

$$
r=5, c=0.08
$$

$$
\begin{aligned}
\therefore p_{m} & =\frac{150}{5}\left\{1+(1+0.08 \times 5) \log _{\epsilon} \frac{1.08}{\frac{1}{3}+0.08}\right\}-15 \\
& =30 \times 2.89-15=87-15=72 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

Let $A=$ area of cylinder required
then $600 \times 72 \times \frac{2}{10} \times \mathrm{A}=100 \times 33,000$

$$
\therefore A=\frac{100 \times 33,000}{54 \times 72 \times 10}=84.9 \mathrm{sq} . \mathrm{in} .
$$

$$
\therefore \text { diameter }=\sqrt{\frac{84 \cdot 9}{0.7854}}=10 \cdot 4, \text { say } 10 \frac{1}{2} \mathrm{in} .
$$

-THE MISSING QUANTITY

By far the most serious discrepancy between actual and theoretical indicator cards is due to the fact that there appears to be a marked difference between the weight of actual steam in the cylinder during expansion and the quantity theoretically present. This difference is called the " missing quantity," and is considered in the sections which follow.

- CYCLIC CONDENSATION

No actual cylinder walls are made of non-conducting materials. Even provided that no appreciable loss of heat occurs from the outside of the cylinder, which may be suitably lagged or steam-jacketed, and that it has reached a stable mean temperature, the material of the cylinder itself will undergo cyclic temperature changes. During the later stages of expansion and throughout the exhaust stroke the walls will be in contact with steam of low pressure and temperature, and will be cooled thereby. The incoming steam will, in part, condense on the chilled walls, which will begin to rise in temperature, and at some point during expansion the steam, now rapidly cooling, will fall to the temperature of the walls and will subsequently receive heat from them. The heat so received by the steam will be taken in at too late a position in the stroke to be of much value so far as its conversion into work is concerned. It is usually assumed that the steam still remaining in the cylinder when the exhaust valve closes is dry.

Actual measurements of the cyclic fluctuations of temperature of cylinder walls, the mathematical considerations of Chapter XVI, and the "blanketing" effect of stationary films stated on p. 373, show that the actual rise and fall of the temperature of the cylinder material, even at the working surface, is very much less than that of the working steam, and that such fluctuations of temperature are confined to the neighbourhood of the working surfaces only and do not penetrate effectively into the material. The amount of cyclic condensation and re-evaporation so caused must therefore be small.

Example.-If an engine is supplied with 18 lb . of dry cylinder feed per minute at a pressure of 200 lb . per sq. in. abs., the back pressure is 15 lb . and the missing quantity is 30 per cent., find the weight of cast iron which, fluctuating in temperature over the full range of steam temperatures, would account for the condensation of the missing quantity.

At 200 lb . per sq. in. $\mathrm{H}=1198.1$ and $t=381.9^{\circ} \mathrm{F}$.
At 15 lb . per sq. in. $h=181.0$ and $t_{1}=213^{\circ} \mathrm{F}$.
Heat loss by steam during condensation $=1017 \cdot 1 \mathrm{~B}$.Th.U. per lb.
Taking the specific heat of cast iron as 0.130 , then the weight of cast iron required would be given by

$$
W \times 0.130 \times 168.9=1017.1 \times 18 \times \frac{30}{100}
$$

As the inner surface fluctuation of the cylinder walls is known to be of the order of only some $10^{\circ} \mathrm{F}$., and the mean fluctuation of temperature of the cylinder block cannot exceed about $1^{\circ} \mathrm{F}$., the actual weight of the block to account for the missing quantity by condensation would be at least 168.9 times the above or about 20 tons, a totally absurd quantity.

The effect of initial condensation during admission, and subsequent re-evaporation during expansion and exhaust, is to depress the initial stages of the expansion curve and raise the final pressures.

Assuming dry boiler steam the adiabatic curve is given approximately by $p v^{1 \cdot 135}=$ constant, the curve of dry saturation by $p v^{1 \frac{6}{5}}=$ constant, while the actual curve for steam which is partially condensed during admission and becomes drier during expansion lies between this curve and the hyperbolic curve $p v=$ constant.

Example.-The high-pressure cylinder of a double-acting engine running at $100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. has an effective area of 39 sq . in. and a stroke of 24 in ., and the clearance volume is 7 per cent. of the stroke volume. During a trial the cylinder feed was 18 lb . per minute. The indicator diagram showed that cut-off and release occurred at 30 and 90 per cent. of the outstroke while compression commenced at 70 per cent. of the return stroke, the indicated pressures at cut-off, release, and the end of compression being 205,78 , and 44 lb . per sq. in. abs.

Find the quality of the steam at cut-off and release.

$$
\text { The swept volume }=\frac{39}{144} \times 2=0.5416 \mathrm{cu} . \mathrm{ft} .
$$

and

$$
\text { the clearance volume }=\frac{7}{100} \times 0.5416=0.0379 \mathrm{cu} . \mathrm{ft} .
$$

Total volume at cut-off $=0.1625+0.0379=0.2004 \mathrm{cu} . \mathrm{ft}$.
Total volume at release $=0.4874+0.0379=0.5253 \mathrm{cu} . \mathrm{ft}$.
Total volume after compression $=0.1625+0.0379=0.2004 \mathrm{cu} . \mathrm{ft}$.
The cylinder feed per stroke $=\frac{18}{200}=0.090 \mathrm{lb}$.
The specific volume at 44 lb . per sq. in. $=9.59 \mathrm{cu} . \mathrm{ft}$.
Hence the weight of the cushion steam assumed to be dry $=\frac{0.2004}{9.59}=0.0209$ lb. per stroke.

At cut-off-
Weight of steam present $=0.090+0.0209=0.1109 \mathrm{lb}$.
The specific volume at 205 lb . per sq . $\mathrm{in} .=2.24 \mathrm{cu}$. ft.
The actual volume at 205 lb . per sq. in. $=0.2004 \mathrm{cu} . \mathrm{ft}$.
and

$$
\text { quality at cut-off }=\frac{0.2004}{0.1109 \times 2.24}=80.67 \text { per cent. }
$$

At release-

$$
\text { Weight of steam present }=0.1109 \mathrm{lb} \text {. }
$$

The specific volume at 78 lb . per sq . in. $=5.6 \mathrm{cu} . \mathrm{ft}$.

$$
\text { The actual volume }=0.5253 \mathrm{cu} . \mathrm{ft} .
$$

and

$$
\text { the quality at release }=\frac{0.5253}{0.1109 \times 5.6}=84.59 \text { per cent. }
$$

-APPLICATION OF THE SATURATION CURVE TO AN ACTUAL INDICATOR DIAGRAM

This curve represents the expansion line which might be attained in a steam-engine cylinder if the whole contents of the cylinder were present throughout the stroke as dry saturated steam.

Fig. 74 shows an indicator card to which have been added the axes of zero pressure and volume. The former is drawn at a distance below the

Fig. 74.
atmospheric line equal to the equivalent of the barometric height when the card was taken, and OA represents the clearance volume measured to the same scale on which AB represents the volume swept by the piston. The clearance volume can be obtained by direct measurement, or by estimation from the drawings of the cylinder, or an approximation can be obtained from the card itself (see p. 281).

The total steam present in the cylinder during expansion should be (1) the weight of steam passing through the engine per stroke, called the cylinder feed, and (2) the weight of steam contained in the clearance space before admission, called the cushion steam.

The cylinder feed is determined experimentally, say by running the engine for an hour, and condensing and weighing the exhaust steam; or by measuring the water supplied to the boiler and making allowance for any gain or loss of water in the boiler, as recorded by the water gauge, during the time of the trial. From the measured steam consumption
and the number of strokes made, the cylinder feed in pounds per stroke is easily calculated.

The weight of cushion steam is found from the indicator diagram as follows :

Any convenient point such as C, Fig. 74, is selected on the compression curve and the pressure p_{1}, in pounds per square inch absolute, and the indicated volume v_{1} in cubic feet, are measured. If V_{1} denotes the specific volume, in cubic feet, of 1 lb . of dry saturated steam at pressure p_{1}, then, assuming the cushion steam to be dry and saturated at point C ,

$$
\text { weight of cushion steam }=w=\frac{v_{1}}{V_{1}} \mathrm{lb} .
$$

Let $\mathrm{W}=$ measured cylinder feed in pounds per stroke.
Then, assuming no leakage past the valves or piston, the total weight of steam present in the cylinder during expansion will be $v o+W \mathrm{lb}$.

The saturation curve is obtained by plotting on the indicator diagram

Fig. 75.
with the help of steam tables, a curve for $w+\mathrm{W} \mathrm{lb}$. of steam as shown by SS.

Conversely the saturation curve can be plotted for 1 lb . of steam, and the indicator card redrawn with the volumes multiplied in the ratio of

$$
\frac{1}{w+W}
$$

A further alternative, which is useful in cases where multiple expansion is used, and where the cushion steam per cylinder, and, possibly, the feed per cylinder are not the same, is to plot the curves for 1 lb . of cylinder feed. This involves modification of the diagram as follows. Let C , Fig. 75, represent the point of closing of the exhaust valve. Then, assuming the cushion steam to be dry saturated at this point, its weight w can be found, and the curve CD^{\prime} drawn to represent the compression
of $v \mathrm{lb}$. of steam which remain dry and saturated (the assumption of dry saturation involves only slight errors). At any pressure $p^{\prime \prime}$ the volume occupied by the cushion steam will then be $a b$, and the volume occupied by $w+\mathrm{W} \mathrm{lb}$. will be $a b^{\prime}$. If $a^{\prime} b^{\prime}(=a b)$ is now subtracted as shown, the length $a a^{\prime}$ will be the volume occupied by Wlb . of steam. The curve $A^{\prime} B^{\prime}$ can be drawn by measurements made at a number of different pressures. As the whole of the work done during a cycle is performed by the cylinder feed, it is conventional to add to the left side of the diagram amounts equal to those removed from the right. The diagram will then be as shown by $\mathrm{D}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, and will have its original area. If no leakage of cushion steam or other irregularity occurs, and if compression is carried out to the full feed-pressure, the curve $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$ should lie along the pressure axis.

The curve $\mathrm{D}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ can now be scaled to represent 1 lb . instead of W lb . of cylinder feed, and the saturation curve SS for 1 lb . of steam can be added to this scale.

Then at any pressure P during expansion the dryness fraction will be given by $\mathrm{PQ} / \mathrm{PR}$.

The dryness fraction may also be expressed as

$$
\frac{\text { indicated weight of steam assumed dry }}{\text { total weight present in the cylinder }}
$$

$$
=\frac{\text { indicated volume at pressure } p(\mathrm{cu} . \mathrm{ft} .) \times \text { density }(\mathrm{lb} . \text { per cu. ft.) at } p}{\text { weight of cushion steam }(w \mathrm{lb} .)+\text { weight of cylinder feed (W lb.) }}
$$

It will be found in practice that the indicated weight of steam after cut-off is less than the measured steam consumption plus cushion steam; the difference is known as the missing quantity and is represented on the above diagram by the length QR. Owing to re-evaporation during expansion the missing quantity is almost always less at release than cut-off.

It must be noted that only during expansion, between points A and B, is the full weight of steam present in the cylinder, and it is only over this portion of the curve that the "dryness fraction" can be obtained. This method of obtaining the dryness fraction can also be rendered inapplicable by leakage from the cylinder.

Example.-A calibrated indicator diagram is shown in Fig. 76. The measured steam consumption was 1344 lb . per hour at a speed of 200 r.p.m. The engine is double-acting and the card shown is an average diagram from both sides of the piston. Estimate the dryness fractions and missing quantities at cut-off and release, and deduce the interchange of heat per pound of steam between the steam and cylinder walls.

From the figure it is seen that at the point C on the compression curve when the pressure is 20 lb . per sq. in. abs., the indicated volume is $0.098 \mathrm{cu} . \mathrm{ft}$. From steam tables the volume of 1 lb . of dry saturated steam at this pressure is $20 \mathrm{cu} . \mathrm{ft}$.

Hence weight of cushion steam $=\frac{0.098}{20}=0.0049 \mathrm{lb}$.
Cylinder feed per stroke $=\frac{1344}{200 \times 2 \times 60}=0.056 \mathrm{lb}$.
\therefore Total weight of steam present during expansion $=0.0049+0.056$

$$
=0.0609 \mathrm{lb} .
$$

At cut-off (point A) the pressure is 76 lb . abs., the indicated volume is $0.166 \mathrm{cu} . \mathrm{ft}$., and the specific volume (from steam tables) $5.74 \mathrm{cu} . \mathrm{ft}$.

Fig. 76.
per lb. If, therefore, the steam were dry and saturated its volume at cut-off would be

$$
5.74 \times 0.0609=0.349 \mathrm{cu} . \mathrm{ft} .
$$

Hence dryness fraction at cut-off $=\frac{0.166}{0.349}=0.475$ or 47.5 per cent.
Indicated weight at cut-off $=\frac{0.166}{5.74}=0.0289 \mathrm{lb}$.

$$
\begin{aligned}
\therefore \text { missing quantity } & =0.0609-0.0289 \\
& =0.032 \mathrm{lb} . \text { per stroke } \\
& =0.032 \times 2 \times 200 \times 60 \\
& =768 \mathrm{lb} . \text { per hour }
\end{aligned}
$$

At release (point B) the preseure is 30 lb . abs., the indicated volume
$0.575 \mathrm{cu} . \mathrm{ft}$., and the specific volume (from steam tables) $13.7 \mathrm{cu} . \mathrm{ft}$. per lb. The indicated weight at release will therefore be

$$
\frac{0.575}{13.7}=0.042 \mathrm{lb}
$$

Hence dryness fraction at release $=\frac{0.042}{0.0609}=0.690$ or 69 per cent.
Missing quantity at release $=0.0609-0.0420$

$$
\begin{aligned}
& =0.0189 \mathrm{lb} . \text { per stroke } \\
& =0.0189 \times 2 \times 200 \times 60 \\
& =453 \mathrm{lb} . \text { per hour }
\end{aligned}
$$

From the diagram the mean pressure during expansion from \mathbf{A} to \mathbf{B} is 36 lb . per sq. in., hence the work done by 0.0609 lb . of steam is
Mean pressure (pounds per square foot) \times change in volume (cubic feet).

$$
\begin{aligned}
& =36 \times 144(0.575-0 \cdot 166) \\
& =2128 \mathrm{ft} .-\mathrm{lb} .
\end{aligned}
$$

\therefore work done per pound ot steam $=\frac{2128}{0.0609 \times 778}=44.9$ B.Th.U.
At cut-off the pressure is 76 lb . abs. ($\mathrm{L}=903, t=308^{\circ} \mathrm{F}$.).
\therefore heat per pound at cut-off $=308-32+0.475 \times 903$

$$
\begin{aligned}
& =276+429 \\
& =705 \mathrm{~B} . \mathrm{Th} . \mathrm{U} .
\end{aligned}
$$

At release the pressure is 30 lb . abs. ($\mathrm{L}=945, t=250^{\circ} \mathrm{F}$.).
\therefore heat per pound at release $=250-32+0.690 \times 945$

$$
=218+652
$$

=870 в.Тһ.U.

Let $\mathrm{H}_{j}=$ heat received per pound from the cylinder walls hetween cut-off and release, then assuming no heat losses

$$
\begin{aligned}
705+\mathrm{H}_{j} & =870+44.9=914.9 \\
\therefore \mathrm{H}_{j} & =914.9-705 \\
& =209.9 \mathrm{~B} . \mathrm{Th} . \mathrm{D} .
\end{aligned}
$$

-APPLICATION OF ACTUAL INDICATOR DIAGRAM TO T ϕ CHART

On account of the greater relative obliquity of expansion curves on the T ϕ chart compared with those on the P.V. diagram, the former gives a much clearer impression of the actual occurrences in the cylinder.

Referring to the case considered in the last example, the preesures and
volumes occupied by the steam at a number of points round the cycle are measured. As the standard $\mathrm{T} \phi$ diagram is drawn (Fig. 28) for 1 lb . of steam, the volumes taken from the indicator diagram are multiplied by $\frac{1}{w+W}$ to give the volume occupied were the cylinder contents during expansion equal to 1 lb . (Should the leakage be known, correction for this should be made. See Proc.I.Mech.E., 1905, p. 239.)
The temperature-entropy diagram is most conveniently drawn by laying a piece of tracing paper over the $\mathrm{T} \phi$ chart and plotting the points directly

Fig. 77. on it. Thus, the position on the chart corresponding to point 1 is the intersection of the constant-pressure line for 82 lb . per sq. in., with the constant volume line for 0.90 cu. ft., and similarly for all the other points. The complete temperature-entropy diagram, corresponding to the indicator diagram shown in Fig. 76, is thus drawn, and is as shown in Fig. 77.

When the temperature-entropy diagram is drawn in this, or any other way, the expansion line clearly shows the nature of the interchange of heat between the steam and the cylinder walls. Referring to Fig. 77 it will be seen that throughout the expansion from A to B there is a gain of entropy, and therefore the cylinder walls are supplying heat to the steam, and as re-evaporation continues, the dryness fraction of the steam increases as shown.

*BOULVIN'S METHOD OF DRAWING THE TEMPERATUREENTROPY DIAGRAM FROM THE INDICATOR DIAGRAM ${ }^{1}$

The axes of pressure temperature, volume and entropy are drawn as in Fig. 78, a scale of volumes, in cubic feet for 1 lb . of steam, is set off, its length being made to represent at least the volume of 1 lb . of steam at the lowest pressure on the indicator diagram. Scales of temperature and of pressure are set off ; then by the aid of steam tables the temperaturepressure curve for saturated steam is plotted as shown.

1 This method emphasises the fundamental relationship between the pu and T ϕ diagrame; it would not be used in practice.

In the pressure volume quadrant the saturation curve for 1 lb . of steam is drawn, using steam tables. On the actual indicator diagram the saturation curve for the weight of steam presen: during expansion is drawn by the method already explained on p. 175 and it is then transferred to the $p v$ quadrant, so that its relationship to the saturation curve already drawn therein is the same as its relationship to its own saturation curve, i.e. the volumes are adjusted to correspond to 1 lb . of steam.

Fig. 78.
In the $\mathrm{T} \phi$ quadrant the steam and water lines of the temperatureentropy diagram are drawn for 1 lb . of steam by the method on p .66 , or these lines are transferred directly from a temperature-entropy chart.
Any convenient point A on the saturation curve is taken and the line AB perpendicular to the pressure axis is drawn, the position of B now giving the corresponding temperature of saturation. A line of this constant temperature BF cuts the entropy lines in D and F . D is projected vertically to cut the axis of entropy in G, and FH to cut the constant
volume line from A in H . HG is joined ; from J a constant volume line is drawn to cut HG in L , and from L a line of constant entropy is drawn to cut DF in K . Then K is a point on the $\mathrm{T} \phi$ diagram required. This process is repeated for different points on the indicator diagram, and in this manner the indicator diagram is transferred to the temperatureentropy chart.

THE HEAT RECOVERY LINES

Fig. 79 shows a diagram obtained by Mr. Bryan Donkin and reproduced in "the Theta Phi Diagram" (Golding, Technical Pub. Co., Ltd.).

If adiabatic expansion had occurred from the point of cut-off B the diagram would have followed the line BF^{\prime}. Two alternatives, allowing for condensation, are represented by the lines Br and BR .
(1) The Priming Water Heat-recovery Line Br.-This assumes that the condensation, as derived from the dryness fraction $\mathrm{AB} / \mathrm{AC}$, had occurred prior to the entry of the steam into the cylinder, and that the " missing quantity " had therefore entered the cylinder as hot water at temperature T_{1}. During expansion down to temperature T_{2} an amount of heat, given by $(1-q) \phi\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$, would be available for the re-evaporation of moisture in the cylinder. Now the heat so available in 1 lb . of water is given by the area ADE and the corresponding entropy by ED. If F then divides ED in the ratio in which B divides AC, the gain in entropy available from the priming water would be FD. If $\mathrm{F}^{\prime} \boldsymbol{r}$ is then made equal to FD , the expansion curve should lie along Br .
(2) The Condensation Water Heat-recovery Line BR.-This line assumes that the full quantity of dry steam has entered the cylinder and that the " missing quantity " has condensed there prior to cut-off at B , also that the heat is recovered from the walls, etc., later in the stroke. If the weight of water present at cut-off be multiplied by the latent heat of steam at T_{1} and the product divided by the mean absolute temperature of the cycle, the result will be the amount of entropy which would be added to that possessed by the stream present at cut-off if all the heat of condensation were returned by the walls.

If from r is set off

$$
r \mathrm{R}=\frac{(1-q) \mathrm{L}_{1}}{\frac{\mathrm{~T}_{1}+\mathrm{T}_{2}}{2}}
$$

and if B and R are joined, then the theoretical expansion will follow the line $B R$.

The relation of the actual expansion curve to the curves $\mathrm{BF}^{\prime}, \mathrm{Br}$, and BR is instructive. If no external heat is received from the jackets the expansion curve should lie between the Br and BR lines. Its actual
relation provides a useful clue to the processes occurring in the cylinder. The diagram shown is for a steam-jacketed cylinder.

Example.-Dry steam is admitted to an engine cylinder at 84 lb . per sq. in. abs. ($t=315^{\circ}$ F., $\mathrm{L}=898$ B.Th.U., specific volume $=5 \cdot 22 \mathrm{cu} . \mathrm{ft}$.) and the condensation during admission is 25 per cent. of the whole steam

supply. During expansion one-half of the heat absorbed by the cylinder walls during admission is returned to the steam at a uniform rate as the temperature falls. If the expansion be complete and the back pressure be 8 lb . per sq. in. abs. ($t=183^{\circ} \mathrm{F} ., \mathrm{L}=988$ B.Th.U., $v=47.3 \mathrm{cu} . \mathrm{ft}$) , find the dryness fraction at the end of expanaion. Also, assuming the
exhaust steam homogeneous in quality, find its dryness fraction. Neglect clearance, heat losses due to radiation and conduction, and assume the specific heat of water to be constant and equal to unity.

From steam tables we find the following :

Pressure	$\underset{\mathrm{F} .}{\mathrm{Temperature},}$	Latent heat	Specific volume	Entropy	
				Water	Evaporation
84 8	315 183	898 988	${ }_{47 \cdot 3}^{5 \cdot 22}$	0.4579 0.2673	$\begin{aligned} & 1 \cdot 1581 \\ & 1 \cdot 5380 \end{aligned}$

Since the condensation during admission is 25 per cent., it follows that the dryness fraction of the steam at cut-off is 0.75 .

The heat absorbed per pound of steam by the cylinder walls during admission is

$$
\frac{898}{4}=224.5 \text { B.Th. U. }
$$

the heat returned during expansion while the temperature falls $132^{\circ} \mathrm{F}$.

$$
=\frac{224.5}{2}=112.25 \mathrm{~B} . \mathrm{Th} . \mathrm{U} .
$$

$$
\begin{aligned}
\therefore \text { rate of heat return } & =\frac{112.25}{132} \\
& =0.85 \mathrm{~B} . \mathrm{Th} . \mathrm{J} . \text { per }{ }^{\circ} \mathrm{F} . \text { fall in temperature } \\
\therefore \delta \mathrm{H} & =0.85 \delta \mathrm{~T} \\
\frac{\delta \mathrm{H}}{\mathrm{~T}} & =\delta \phi=0.85 \frac{\delta \mathrm{~T}}{\mathrm{~T}}
\end{aligned}
$$

Hence total gain of entropy during expansion

$$
\begin{aligned}
& =\int_{643}^{775} 0.85 \frac{d \mathrm{~T}}{\mathrm{~T}} \\
& =0.85 \log _{e} \frac{775}{843} \\
& =0.85 \times 0.187=0.1589 \text { units of entropy }
\end{aligned}
$$

Had expansion been adiabatic the initial and final entropies would have been equal. If A represents the condition point on the $\mathrm{T} \phi$ diagram on the liquid boundary at $183^{\circ} \mathrm{F}$., the initial entropy above that at A will be given by $(0.4579-0.2673)+(0.75 \times 1.581)$, and the final entropy, owing to the regain of heat, will be greater than this by the amount 0.1589 units,

$$
0.1906+0.8596+0.1589=1.2091 \text { units. }
$$

Hence dryness after expansion $=\frac{1.2091}{1.538}$
$=0.786$ or 78.6 per cent.
During exhaust the cylinder walls must return the remainder of the absorbed heat to the steam, namely, $112 \cdot 25$ B.Th.U. Hence the further rise in entropy during exhaust will be

$$
\frac{112.25}{643}=0.1745 \text { units }
$$

and the dryness fraction at the end of exhaust will be

$$
\begin{aligned}
& =\frac{1.2091+0.1745}{1.538} \\
& =0.90 \text { or } 90 \text { per cent. }
\end{aligned}
$$

*MAGNITUDE OF MISSING QUANTITY. CONTRIBUTING FACTORS

The " missing quantity" is seldom less than 15 per cent. and may be very much greater under adverse conditions. Under these circumstances, and in view of the fact that the fluctuation of even the inner surface of the cylinder walls is only of the order of $10^{\circ} \mathrm{F}$. (Callendar and Nicholson, Proc.I.C.E., vol. cxxxi, 1898) the cyclic condensation theory is quite inadequate to provide a full explanation of the loss.

A possible source of loss is leakage past the piston and valves, which will cause the weight of fluid in the cylinder during the expansion to be constantly decreasing, so that the determination of dryness fraction by the method on p. 175 will be inaccurate.

With the older types of slide valve appreciable leakage may be brought about in the following way. By the movement of the valve fairly large areas of cool metal are continually being exposed to the live steam, which will partially condense upon them. On the return movement the valve will tend to ride over the film of moisture, which will pass, as a lubricant, beneath the valve face and at once enter the exhaust passages. Here, under the influence of the low pressure, the film will evaporate, and in doing so will cool the metal upon which it has been deposited. It will be seen then that the leakage thus accounted for is a leakage of water, and not of steam, the actual weight of water passing a given leakage path being twenty to fifty times greater than the corresponding weight of dry steam which could be passed.

The amount of valve leakage will obviously depend upon the type of valve employed, and separate inlet and exhaust valves would appear to have an advantage over the slide valve in this respect. In support of the above theory it appears that leakage is reduced by using superheated
steam or jacketing the cylinder, by the use of ample lubricating oil, and ample valve overlap, all of which tend to reduce condensation. Speed appears to have a similar effect, and would certainly reduce the cyclic condensation.
An adequate explanation for the missing quantity under modern conditions does not appear to be available. ${ }^{1}$

*METHODS OF INCREASING ENGINE EFFICIENCY

A number of methods of increasing the efficiency of actual engines are available, some of which have effects far greater than would at first appear to be probable. Most of these achieve their object largely by reducing cylinder condensation. They will be considered in subsequent paragraphs.

-THE UNIFLOW ENGINE

The employment of separate inlet and exhaust valves in place of the common slide valve will tend not only to prevent direct leakage from the steam chest to the exhaust, but will considerably reduce the cyclic fluctuations of valve-metal temperature and so decrease cyclic condensation. A further improvement is to place the valves at opposite ends of the piston stroke, as is done in the case of the Uniflow engine shown diagrammatically in Fig. 80. The cylinder is double-acting and has

Fig. 80.
mechanically operated inlet valves A, A, at the extreme ends. The exhaust ports are placed centrally and are uncovered by the piston at the ends of its strokes. It will be seen that there is no scour of low-temperature steam against the hot ends of the cylinder at any point of the cycle, and that the metal near the exhaust ports is never subjected to a high temperature. An appreciable increase in economy is effected as a result of decreased condensation.

[^17]In such an engine the commencement of compression is of necessity very early (say 1.5 lb . per sq. in. abs.) while the clearance space \mathbf{A} is kept to $1 \frac{1}{2}$ or 2 per cent. of the stroke volume. Should failure of the vacuum then occur very high pressures would result and special relief valves have to be provided to prevent damage in these circumstances.
The p.v. diagram for one end of the cylinder is shown in Fig. 81.1

Fig. 81.

*THE STEAM JACKET

Initial condensation of the steam can be largely reduced by passing live steam through a jacket surrounding the cylinder, and as heat will flow into the cylinder during the expansion and exhaust strokes the dryness of the steam will be further increased during these stages.

The area of the p.v. diagram for 1 lb . of cylinder feed will be increased, but it must be remembered that the total steam consumption of the engine will now include the steam condensed in the jackets. In many cases the application of a steam-jacket materially improves the performance of an engine, and this is specially marked with engines of low efficiency. With high-efficiency and compound engines the effect of the jacket upon the efficiency is usually not marked.

The total heat supplied by the jackets can be deduced in practice by calculating the heat lost by an amount of live steam equal in weight to the water discharged from the jacket drain.

The heat supplied during expansion may be found approximately from the indicator diagram as follows (see Fig. 82).
${ }^{1}$ See also Papers by H. Pilling, Mancheater Assn. of Engincers, 1920, and F. W. Perry, Proc.I.Mech.E., July, 1920.

Work done during expansion $=\frac{1}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right) \times \frac{1}{\mathrm{~J}}$ heat units.
Heat in steam at $\mathrm{B}=h_{1}+q_{1} \mathrm{~L}_{1} \times$ total weight of steam present at B $=\left(h_{1}+q_{1} \mathrm{~L}_{1}\right) \mathrm{W}$.
Heat in steam at $\mathrm{C}=h_{2}+q_{2} \mathrm{~L}_{2} \times \mathrm{W}$, assuming no leakage.
Then, if $\mathrm{H}_{\mathrm{J}}=$ heat from jacket during expansion
or

$$
\begin{aligned}
\mathrm{H}_{\mathrm{J}}+\mathrm{W}\left(h_{1}+q_{1} \mathrm{~L}_{1}\right) & =\frac{1}{(n-1) \mathrm{J}}\left(p_{1} v_{1}-p_{2} v_{2}\right)+\mathrm{W}\left(h_{2}+q_{2} \mathrm{~L}_{2}\right) \\
\mathrm{H}_{\mathrm{J}} & =\frac{1}{(n-1) \mathrm{J}}\left(p_{1} v_{1}-p_{2} v_{2}\right)+h_{2}+q_{2} \mathrm{~L}_{2}-h_{1}-q_{1} \mathrm{~L}_{1}
\end{aligned}
$$

From the diagram the weight of cushion steam can be estimated, and this, added to the measured cylinder feed per stroke will give the total

Fig. 82. weight of cylinder contents during expansion, and the dryness fractions q_{1} and q_{2} can be obtained. The diagram also gives the pressures p_{1} and p_{2} and the volumes v_{1} and v_{2}, and from these the value of the exponent n can be found. H_{J} may now be calculated, using the above data. ${ }^{1}$
Example.-The high-pressure cylinder of a jacketed steam engine is supplied with steam at 200 lb . per sq. in. abs. and 98 per cent. dry. Cutoff occurs at 25 per cent. of the stroke, the indicated pressure at release is 44 lb . per sq. in. abs., and the exhaust back pressure is 41 lb . per sq. in. abs. Find the net work done per pound of cylinder feed, the heat received from the jackets during expansion per pound of cylinder feed, and the efficiency reckoned from the exhaust temperature. Neglect clearance effects.

At 200 lb . per sq. in. specific volume $=2.29 \mathrm{cu}$. ft., and actual volume per pound $=0.98 \times 2.29=2.44 \mathrm{cu} . \mathrm{ft}$.

At release $v_{2}=4 v_{1}=8.977 \mathrm{cu} . \mathrm{ft}$., and as the specific volume is $9.59 \mathrm{cu} . \mathrm{ft}$. the quality at release $=\frac{8.97}{9.59}=93.61$ per cent.

To find the value of n during expansion

$$
p_{1} v_{1}^{n}=p_{2} v_{2}^{n} \quad \text { or } n=\frac{\log p_{1} / p_{2}}{\log v_{2} / v_{1}}=\frac{\log 200 / 44}{\log 4}=1.092
$$

[^18]The net work done is $\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)+\left(p_{2}-p_{3}\right) v_{2}$

$$
\begin{aligned}
& =\frac{1.092}{0.092}(200 \times 1-44 \times 4) \times 144 \times 2.442+3 \times 144 \times 8.977 \mathrm{ft} .-\mathrm{lb} \\
& =95,920 \mathrm{ft} .-\mathrm{lb} . \text { per } \mathrm{lb}
\end{aligned}
$$

The heat from the jackets during expansion per pound of cylinder steam

$$
\begin{aligned}
\mathrm{H}_{\mathrm{J}} & =\frac{1}{\mathrm{~J}(n-1)}\left(p_{1} v_{1}-p_{2} v_{2}\right)+\left(q_{2} \mathrm{~L}_{2}+h_{2}\right)-\left(q_{1} \mathrm{~L}_{1}-h_{2}\right) \\
& =\frac{92,040}{778}-(0.98 \times 843 \cdot 2+354 \cdot 9)+(0.9361 \times 929 \cdot 2+240) \\
& =118 \cdot 3-1181+870+242 \\
& =49 \cdot 3 \text { B.Th. } \mathrm{U} . \text { per lb. of cylinder feed. }
\end{aligned}
$$

The efficiency, calculated from the temperature of exhaust, when the liquid heat is 237.6 B.Th. U. per lb .

$$
=\frac{95,920}{778 \times(1181-238+49 \cdot 3)}=\frac{95,920}{778 \times 992 \cdot 3}=12.43 \text { per cent. }
$$

Note that the heat supplied in the jackets must be debited to the engine. If the cylinder is jacketed with live steam the steam consumed in the jackets will be $\frac{49 \cdot 3}{943}=5 \cdot 2$ per cent. of that consumed in the cylinder or roughly 5 per cent. of the total consumption.

-THE USE OF SUPERHEATED STEAM

The use of superheated steam serves a double purpose. In the first case it enables steam to be used at a high temperature without the necessity of providing for the very high pressures which would be involved if saturated steam at that temperature were used. The thermodynamic efficiency can thus be improved while retaining moderate pressures, but the gain accounted for in this way does not exceed about 2 per cent. (from, say, 26 to 28 per cent.), the superheat being available only as the temperature falls below the maximum.

By far the most marked effect is produced by the reduction or elimination of condensation, with its accompanying leakage loss, as the whole of the superheat of the entering steam must be removed before condensation can commence.

The steam at release will also be much drier, and the greatly reduced amount of condensate on the walls, which will evaporate during the
exhaust stroke at the expense of the heat of the exposed surfaces, will result in considerably higher cylinder temperatures and, probably, in superheated cushion steam at the commencement of the cycle. It should be noted also that the heat transfer from steam to metal is much reduced if the surface is dry.

It is to be expected from the above remarks that when a sufficient

Fig. 83.-Non-jacketed Quick-revolution Triple-expansion Condensing Engines, using Superheated.
degree of superheat is employed to prevent cylinder condensation, the gain due to still further superheating will be small. That this is so seems to be borne out by tests reported by R. T. Smith in the First Report of the Steam Engine Research Committee, ${ }^{1}$ from which the following particulars are taken.

Fig. 83 shows the effect of varying degrees of superheat on the steam consumption per kilowatt hour of seven engines, each coupled to

[^19]dynamo, the output ranging from 220 to 1500 kw . They were all nonjacheted condensing engines, and were all tested at full load, one of them $\left(\mathrm{F}_{2}\right)$ being also tested at three-quarter load. The interesting result is, that if all the curves are produced sufficiently far, they will be found to meet very nearly in one point, namely 400° of superheat, showing that if one could only use enough superheat all engines of this type, of whatever size, would be about equally efficient. From a large number of experiments on the engine marked A in Fig. 83, a series of curves have been drawn as in Fig. 84, giving the pounds of steam per B.H.P. hour passing through the engine at all loads up to full load with saturated steam, and also for 50° to $350^{\circ} \mathrm{F}$. superheat. These curves get flatter as the superheat increases, showing that, when sufficient superheat is used, an engine of this type tends to become equally efficient at all loads.

The following details relate to Fig. 83.

Set	Kw. output of generator coupled to engine	Load at test	Stop valve steam pressure. Pounds per square inch	Vacuum at engine. Inches of mercury
A	208	Full	155	26
8	220	"	175	25
C	308	"	190	25
D	362	"	162	$25 \cdot 8$
E	500	"	150	26
F_{1}	700		190	27
F_{2}	580	3	192	27
G	1456	Full	183	26

In view of the fact that the effect of jackets and superheated steam is largely to prevent condensation, it follows that the full advantage of each expedient will not be realised when both are employed together.

> For further particulars on the use of superheated steam the reader is referred to the following papers : Institution of Marine Engineers, "Marine Engines and Superheated Steam,", by Mr. A. F. White, in the Marine Engineer and Naval Architect, Dec. 1909 Institution of Naval Architects, "Superheaters in Marine Boilern," by Mr. Harold E. Yarrow, read March 28, 1912, and reproduced in Engineering of April 5,1912 . Proc.Inst.C.E., vol. cxviii, " Superheated Steam Engine Trials," by Professor W. Ripper.

-COMPOUND EXPANSION

In order to take full advantage of the high boiler pressures and the high condenser vacua available in modern practice a large ratio of expansion must be used. If the expansion is carried out successively in two or more cylinders in series, each passing on its exhaust to the next, a number of advantages may be gained, as follows :
(1) The high-pressure steam is admitted to the high-pressure cylindes

Fig. 84.-Non-jackrted Quick-rivolution Triple-expansion Enoing.
The percontage figures indicate the increase in pounds of water per B.H.P.-hour over full load consumption.
only, which, as it does not deal with the later stages of expansion, is of small size, and can be made of adequate strength without undue weight. The large low-pressure cylinder and piston (and also the intermediatepressure cylinders and pistons if used), are never subjected to full boiler pressure, and can therefore be of much lighter construction than would be the case were the whole expansion carried out in one cylinder, as in the case of a simple engine.
(2) The action of the high-pressure steam on entering the cylinder is largely affected by the condition and quantity of the cushion steam in the clearance space between the piston and cylinder head. This action can be most readily controlled if the clearance space is small, and this in turn can be most easily arranged if the high-pressure cylinder is of small diameter.
(3) As the total pressure drop is divided between two or more cylinders the pressure causing leakage past pistons and valves is correspondingly reduced.
(4) As the total temperature range of the steam is distributed over two or more cylinders the cyclic fluctuations of metal temperature, and hence cyclic condensation, are reduced, thus carrying one stage further the advantageous action of the Uniflow engine.
(5) The steam condensed on the high-pressure cylinder walls is largely evaporated during the exhaust stroke, and augments the supply of "live" steam to subsequent cylinders, i.e. the steam expanding in the lowpressure cylinder is drier at a given pressure than would be the case if the expansion occurred in a single cylinder.
(6) Owing to the permissible lightening of the reciprocating parts, engine vibration and friction are reduced.
(7) The use of two, three, or four cylinders enables great improvements to be made with regard to engine balance and turning moment, and a heavy fly-wheel, which is always accompanied by large bearing losses, is not required.
(8) Feed-water heating by " bled " steam may be effected (see pp. 165 and 208).

Compound expansion is normally carried out using two, three, or four cylinders in series, i.e. a high-pressure and a low-pressure cylinder, with one or two intermediate cylinders if desired. The terms "compound," " triple expansion," and " quadruple expansion" are applied. The cylinders may be arranged side by side or in tandem, though more than two cylinders in line is not usual.

-COMPOUND ENGINE WITHOUT INTERMEDIATE RECEIVER

In this type of engine the high-pressure cylinder exhausts directly into the low-pressure cylinder, which is always in direct communication with the exhaust port of the former and has no separate inlet valve and conee-
quently no "cut-off." For convenience a "tandem" arrangement is assumed.

The theoretical diagrams for the two cylinders, assuming no clearance, are as shown in Fig. 85. ab shows admission in the high-pressure cylinder, b being the point of cut-off, and $b c$ shows the first stage of expansion. During the movement of both pistons to the right, the lowpressure cylinder is exhausting along $g h$. At c the high-pressure exhaust valve opens, and communication is at once established with the lowpressure cylinder. As the pistons now move towards the left the steam occupies both the reducing volume in the high-pressure cylinder and the expanding volume in the low-pressure cylinder, the exhaust and expansion curves being shown respectively by $c d$ and $e f$. At any instant the total volume is given by $p q+r s$, and the combined diagram for the two cylinders will be as shown by $a^{\prime} b^{\prime} f g h$, which is exactly equivalent to the diagram

Fig. 85.
had the steam been admitted into and expanded in the low-pressure cylinder only. ${ }^{1}$ If x is the point of intersection of $c^{\prime} d^{\prime}$ and ef, the area exd' is duplicated on the superimposed diagram, so that the areas exd d^{\prime} and $f c^{\prime} x$ must be equal.

The disadvantage of this arrangement is that the high-pressure cylinder is subject to the full range of pressure and temperatare down to the point of release in the low-pressure cylinder, and condensation in this cylinder may be expected to be high. The engine must also be arranged either with cranks in line (or one crank with cylinders in tandem), or at 180°, giving a very irregular turning moment.

-COMPOUND ENGINE WITH INTERMEDIATE RECEIVER

By providing a " receiver" or storage capacity between the cylinders it is possible to put the cranks at any desired angle, as the exhaust steam
1 The "mean effective pressure referred to the low-pressure cylinder" is given by the area ha'b'fg divided by \boldsymbol{v}_{2}.
from the high-pressure cylinder can, in whole or in part, be stored until it is required by the low-pressure cylinder. This is now provided with separate admission valves and has its own cut-off. The theoretical diagram, Fig. 86, is as shown on the assumption that the receiver is of very large capacity. $a b, b c$, and $c d$ represent admission, expansion, and exhaust in the high-pressure cylinder, and during the latter the steam is discharged at constant pressure into the receiver. ef, $f g, g h j$, represent admission, expansion, and exhaust from the low-pressure cylinder, and, assuming that no pressure loss occurs owing to the intermediate storage process, the pressure along ef will equal the pressure along $c d$, and volume ef will equal $c d$. Owing to the storage of the steam the strokes $c d$ and ef do not need to occur simultaneously, and the cranks may be placed at any angle desired.

The combined diagram is $a^{\prime} b^{\prime} f g h j$, and is, as before, the same as if the whole expansion had occurred in the low-pressure cylinder.

Fig. 86.
It will be noted that, in addition to better turning moment, etc., the initial condensation will be considerably reduced, compared with the previous arrangement, as the high-pressure cylinder is never subjected to low pressures and temperatures.

Fig. 87 shows the corresponding diagrams for an engine fitted with a small receiver only, a tandem arrangement of cylinders being assumed for convenience. Here the first stage $c c^{\prime}$ of the high-pressure exhaust will show a falling pressure as steam is removed from the receiver by the low-pressure cylinder. At f (corresponding to c^{\prime}) cut-off occurs in the low-pressure cylinder, and the high-pressure exhaust pressure will rise, shown by $c^{\prime} d$, as the total volume of receiver and high-pressure cylinder decreases.

- It will be seen that the combined diagrams overlap in part but leave a corresponding area unaccounted for. The point of cut-off in the lowpressure cylinder must be chosen so that the initial and final pressures in the receiver-corresponding to pressures at c and d-will be equal.

For other crank or cylinder arrangements the diagram becomes more complicated.
In general the high-pressure exhaust port, low-pressure valve chest, and the intermediate piping, provide all the storage capacity required. Also, in addition to the usual alterations required to be made to the theoretical diagram owing to clearance spaces, non-instantaneous closing

of valves, etc., it is necessary to allow a small pressure drop between the high-pressure and low-pressure cylinders in order to ensure sufficiently rapid movement of the steam. The actual high-pressure exhaust and low-pressure admission curves obtained with an indicator will be found to differ considerably from the theoretical curves $c c^{\prime} d$ and $e f$.

*THE COMBINATION OF INDICATOR DIAGRAMS FROM A COMPOUND ENGINE

The indicator diagrams for a large horizontal compound engine developing 1415 I.H.P. are shown in Fig. 88. In order to trace the action of the steam in the engine as a whole these diagrams must be combined.

Fig. 88.

Average indicator diagrams must first be constructed representing the mean diagrams for both ends of the high-pressure and low-pressure cylinders, as shown by Fig. 89. The saturation curves $\mathrm{S}^{\prime} \mathrm{S}^{\prime}$ are then

Fig. 89.
drawn one on each diagram by the method already explained on p. 175, and the clearance volume is also shown.

Next a convenient distance AB, Fig. 90, is set off to represent the

Fig. 90.
displacement of the low-pressure piston (i.e. area of cylinder \times stroke), and OA to represent to the same scale the clearance volume; then choosing a convenient scale of pressures the mean diagram from the lowpressure cylinder is replotted together with its saturation curve $\mathrm{S}^{\prime} \mathrm{S}^{\prime}$. Next, to the same scale of volumes, CD is set off to represent the clearance volume of the high-pressure cylinder, and DE the stroke volume of that cylinder; and the mean diagram from the high-pressure cylinder is replotted together with its saturation curve SS.

In the combined diagram drawn in Fig. 90 the saturation curves SS and $S^{\prime} S^{\prime}$ do not form one continuous curve as the total weight of steam present in the high-pressure cylinder during expansion is not the same

Fig. 91.
as that in the low-pressure cylinder, the difference being due to unequal weights of cushion steam in the two cylinders. As a rule the weight of cushion steam is less in the low-pressure than in the high-pressure cylinder, and this causes the saturation curve of the former to fall inside that for the latter.

The diagram is clarified considerably if the effect of cushion steam is eliminated from each part of the diagram by the method given on p. 176 when the diagrams are corrected to represent the expansion of $\mathbf{W ~ l b}$ (or 1 lb .) of cylinder feed. Fig. 91 shows such a combined diagram for a three-cylinder compound engine. For other such diagrams, see Proc.I.Mech.E., 1927, vols. 1 and 2.

-DIAGRAM FACTOR

The following table ${ }^{1}$ gives the diagram factor K for a number of different classes of engine for which the initial pressure (p), ratio of expansion (r), clearance volume expressed in terms of stroke volume (c), mean piston speed (s), and mechanical efficiency (η) are also shown. Both c and r are referred to the low-pressure cylinder volume in the case of compound engines.

Type of engine	p	r	c	s	η	K
A. Horizontal engines- (1) Simple (slide-valve) -						
Non-condensing -	100	2	0.12	500	85	0.80
Condensing . .	80	4	$0 \cdot 10$	500	85	0.75
(2) Compound condensing						
(Corliss or drop-valve) .	165	12	0.05 0.05	600	90	0.70 0.65
Ditto, with superheat .	165	12	0.05	600	90	0.65
(3) Unifiow condensing-(Drop-valve)	165	10-20	0.03	750	88	0.76
Ditto, with superheat	165	10-20	0.03	750	88	0.71
B. Vertical engines-						
(4) Simple condensing .	100	3	-	600	88	0.76
(5) Compound condensing with superheat .	165	12	-	750	90	0.60
(6) Triple expansion condensing with superheat (7) Marine condensing-						
	220	16	-	750	92	0.55
Compound . ${ }^{\text {a }}$	-	8	-	-	二	0.70 0.625
Triple-expansion	-	12	-	-	-	0.625

-RATIO OF CYLINDER VOLUMES FOR A COMPOUND ENGINE

For many purposes it is desirable to distribute the total work equally between the two cylinders. In this case if the overall ratio of expansion is given, the requisite volume of the low-pressure cylinder can be calculated on the assumption that this cylinder alone is used. The ideal hypothetical diagram will then be as shown by abef, Fig. 92.

If $d c$ represents the boundary between the high-pressure and lowpressure diagrams,

area $a b c d=d c e f$

Fig. 92.

[^20]or
\[

$$
\begin{align*}
\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right) & =\frac{n}{n-1}\left(p_{2} v_{2}-p_{3} v_{3}\right) \\
p_{1} v_{1}+p_{3} v_{3} & =2 p_{2} v_{2} \tag{1}
\end{align*}
$$.
\]

Now $v_{3}=v_{1}\left(p_{1} / p_{3}\right)^{1 / n} \quad$ and $\quad v_{2}=v_{1}\left(p_{1} / p_{2}\right)^{1 / n}$ and substituting in (1)

$$
p_{1} v_{1}+p_{3} v_{1}\left(p_{1} / p_{3}\right)^{1 / n}=2 p_{2} v_{1}\left(p_{1} / p_{2}\right)^{1 / n}
$$

and

$$
p_{1}+p_{3}\left(p_{1} / p_{3}\right)^{1 / n}=2 p_{2}\left(p_{1} / p_{2}\right)^{1 / n}
$$

or

$$
\begin{equation*}
p_{1}+p_{1}^{1 / n} p_{3}^{1-1 / n}=2 p_{1}^{1 / n} p_{2}^{1-1 / n} \tag{2}
\end{equation*}
$$

or

$$
p_{1}^{1-1 / n}+p_{3}^{1-1 / n}=2 p_{2}^{1-1 / n}
$$

from which the value of p_{2} can be calculated.
Alternatively p_{2} and p_{3} may be expressed in terms of p_{1}, in which case
and

$$
p_{1} v_{1}+p_{1}\left(v_{1} / v_{3}\right)^{n} v_{3}=2 p_{1}\left(v_{1} / v_{2}\right)^{n} v_{2}
$$

or

$$
v_{1}+v_{1}^{n} v_{3}^{1-n}=2 v_{1}^{n} v_{2}^{1-n}
$$

$$
v_{1}^{1-n}+v_{3}^{1-n}=2 v_{2}^{1-n}
$$

$$
v_{2}=\frac{\sqrt[1-n]{v_{1}^{1-n}+v_{3}^{1-n}}}{2}
$$

For hyperbolic expansion
or

$$
\begin{aligned}
p_{1} v_{1} \log _{6} v_{2} / v_{1} & =p_{2} v_{2} \log _{e} v_{3} / v_{2} \\
v_{2} / v_{1} & =v_{3} / v_{2} \\
v_{2}^{2}=v_{1} v_{3} \quad \text { or } \quad p_{2}^{2} & =p_{1} p_{3}
\end{aligned}
$$

and
If $v_{3} / v_{1}=R$, the total ratio of expansion, and $v_{3} / v_{2}=r$, the ratio of the two cylinder volumes, then the cut-off in the high-pressure cylinder must occur at the fraction of the stroke given by R / r.

The volume ratio calculated above may be varied to suit known conditions or when a closer approximation to the indicator cards is available.
Example.-In a two-cylinder compound engine, the admission pressure to the high-pressure cylinder is 105 lb . abs., cut-off 0.6 stroke. The release pressure in the low-pressure cylinder is 12 lb . abs. and the condenser pressure 3 lb . abs. If the initial loads on the pistons are equal and the curve of expansion is $p v^{1 \cdot 2}=$ constant, estimate the cylinder volume ratio, the mean pressure in the receiver, the point of cut-off in the low-pressure cylinder, and the ratio of the work done in the two cylinders.
Let $\mathrm{R}=$ total ratio of expansion, then, assuming a continuous expansion curve and a volume at cut-off of $1 \mathrm{cu} . \mathrm{ft}$.

$$
105 \times 1=12 \times \mathrm{R}^{1 \cdot 2}
$$

from which $R=6.095$

\therefore cylinder ratio $=6.095 \times 0.6=3.657$

Let $x=$ mean receiver pressure in pounds per square inch absolute. For equal initial loads,

$$
\begin{aligned}
105-x & =3.657(x-3) \\
x & =24.9 \mathrm{lb} . \mathrm{abs} .
\end{aligned}
$$

Let $r=$ ratio of expansion in low-pressure cylinder, then

$$
24.9 \times 1=12 \times r^{1 \cdot 2}
$$

$$
\text { from which } r=1.838
$$

\therefore cut-off in low-pressure cylinder $=\frac{1}{1.838}=0.544$ of the stroke.
If $p_{2}=$ the absolute release pressure in high-pressure cylinder

$$
105 \times 1=p_{2} \times\left(\frac{1}{0 \cdot 6}\right)^{1 \cdot 2}
$$

from which $p_{2}=56.87 \mathrm{lb}$. per sq. in. abs.
It should be noticed that there is a drop in pressure between the highpressure release and the mean receiver pressure of amount 56.87-24.9 $=31.97 \mathrm{lb}$. per sq. in.

To find the Distribution of Work between the Cylinders.-The mean effective pressure in the high-pressure cylinder is

$$
\begin{aligned}
& \frac{105 \times 1+\frac{105 \times 1-56.87 \times \frac{1}{0.6}}{1.2-1}}{\frac{1}{0.6}}-24.9 \\
& =\frac{105+51}{1.66}-24.9 \\
& =68.8 \mathrm{lb} . \text { per sq. } \mathrm{in} .
\end{aligned}
$$

The mean effective pressure in the low-pressure cylinder is

$$
\begin{aligned}
& \quad \frac{24.9 \times 1+\frac{24.9 \times 1-12 \times 1.838}{1.2-1}}{1.838}-3 \\
& = \\
& =\frac{24.9+14.2}{1.838}-3 \\
& \quad=18.25 \mathrm{lb} . \text { per sq. in. } \\
& \frac{\text { work done in high-pressure cylinder }}{\text { work done in low-pressure cylinder }}=\frac{68.8}{3.657 \times 18.25}=1.03
\end{aligned}
$$

Hence,

In this example, the approximately equal distribution of work and the pressure release and the receiver.
Example.-Determine the cylinder diameters of a horizontal compound steam engine to develop 600 I.H.P. under the following conditions : Pressure in steam chest 155 lb . per sq. in. abs., vacuum 26 in ., number of expansions 12 , diagram factor $0 \cdot 82$, piston speed 650 ft . per minute, cut-off in high-pressure cylinder $\frac{1}{3}$ stroke. Determine also the point of cut-off in the low-pressure cylinder, and compare the work done in the two cylinders when the initial loads are approximately equal.

The cylinder ratio will be $\mathrm{L}=\frac{\mathrm{R}}{r}=\frac{12}{3}=4$.
Hence if A_{2} and A_{1} denote the areas (in square inches) of the lowpressure and high-pressure cylinders respectively,

$$
\frac{A_{2}}{A_{1}}=4, \text { the strokes being made equal }
$$

Referred to the low-pressure cylinder

$$
\begin{aligned}
P_{m} & =0.82\left\{\frac{155}{12}\left(1+\log _{\epsilon} 12\right)-2\right\} \\
& =0.82\left\{\frac{155}{12} \times 3.48-2\right\} \\
& =0.82 \times 43=35.3 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{A_{2} \times 35 \cdot 3 \times 650}{33,000} & =600 \\
A_{2} & =\frac{600 \times 33,000}{35 \cdot 3 \times 650} \\
& =861 \mathrm{sq} . \mathrm{in} . \\
d_{2} & =\sqrt{\frac{861}{0.7854}}=33 \mathrm{in} .
\end{aligned}
$$

or
Since $\mathrm{A}_{2}=4 \mathrm{~A}_{1}$, it follows that $d_{2}=2 d_{1}$, hence the diameter of the high-pressure cylinder will be 16.5 in.

Let $\quad x=$ mean receiver pressure in pounds per square inch absolute.
Then 155-x=4(x-2)
and $\quad x=32.6 \mathrm{lb}$. per sq. in.
if r is the number of expansions in the low-pressure cylinder,

$$
\begin{aligned}
32.6 \times 1 & =\frac{155}{12} \times r \\
r & =2.5
\end{aligned}
$$

\therefore cut-off in low-pressure is $\frac{1}{2.5}$ or 0.4 of the stroke.

The mean effective pressure in the high-pressure cylinder will be-

$$
\begin{aligned}
& 0.82\left\{\frac{155}{3}\left(1+\log _{6} 3\right)-32.6\right\} \\
= & 0.82\left\{\frac{153}{3} \times 2.097-32.6\right\} \\
= & 0.82 \times 75.7 \\
= & 62 \mathrm{lb} . \text { per } \mathrm{sq} . \mathrm{in} .
\end{aligned}
$$

The mean effective pressure in the low-pressure cylinder will be-

$$
\begin{aligned}
& 0.82\left\{\frac{32 \cdot 6}{2 \cdot 5}\left(1+\log _{e} 2.5\right)-4\right\} \\
= & 0.82\left\{\frac{32 \cdot 6}{2 \cdot 5} \times 1.915\right\} \\
= & 0.82 \times 21 \\
= & 17.3 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

Hence,

$$
\frac{\text { work done in high-pressure cylinder }}{\text { work done in low-pressure cylinder }}=\frac{62}{4 \times 17 \cdot 3}=\frac{1}{1 \cdot 11}
$$

Example.-Estimate the diameters of the cylinders required for a quadruple expansion marine engine to develop 12,000 I.H.P. with a piston speed of 960 ft . per minute. Pressure in steam chest 210 lb . per sq. in. gauge, condenser pressure $26^{\prime \prime} \mathrm{Hg}$, number of expansions 14. Assume a ratio of iow-pressure to high-pressure cylinder volumes of 9 , and a diagram factor 0.65 . Find also the point of cut-off in the highpressure cylinder.

The mean effective pressure referred to the low-pressure cylinder will be

$$
\begin{aligned}
\boldsymbol{p}_{m} & =0.65\left\{\frac{21}{14}\left(1+\log _{\epsilon} 14\right)-2\right\} \\
& =0.65\left\{\frac{2.25}{14} \times 3.639-2\right\} \\
& =0.65\{58.5-2\} \\
& =0.65 \times 56.5 \\
& =36.7 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

Hence, if A be the area of the low-pressure cylinder,

$$
\begin{aligned}
\mathrm{A} \times 36.7 \times 960 & =12,000 \times 33,000 \\
\mathrm{~A} & =\frac{12,000 \times 33,000}{36.7 \times 960} \\
& =11,240 \mathrm{sq} . \mathrm{in} . \\
\therefore d & =\sqrt{\frac{11,240}{0.7854}}=119.6 \mathrm{in} .
\end{aligned}
$$

and diameter of high-pressure cylinder

$$
-\frac{119 \cdot 6}{3}=39.5 \mathrm{io}
$$

Taking a ratio of cylinder volumes of

$$
1: 2 \cdot 1: 4 \cdot 4: 9
$$

Diameter of first intermediate cylinder $=39.5 \times \sqrt{2 \cdot 1}=58$ in.

$$
\text { second } \quad " \quad=39.5 \times \sqrt{4.4}=83 \text { in. }
$$

The cut-off in the high-pressure cylinder will be-
$\frac{\text { ratio of low-pressure to high-pressure volumes }}{\text { total number of expansions }}=\frac{9}{14}$ of the stroke

-GOVERNING OF THE COMPOUND ENGINE

'Two types of governing are available, and depend respectively for their actions on variations of the cut-off in the high-pressure cylinder, and on throttling. Their effects may be seen from the hypothetical combined diagrams shown in Figs. 93-95.

Fig. 93.
Cut-ofi Governing.-In Fig. 93 abcd, dcefg represent the highpressure and low-pressure diagrams on the assumption of an equal distribution of work. The total work done will depend on the total weight of steam passing through the engine. By making the cut-off in the high-pressure cylinder later or earlier the expansion curve will be changed from $b c e$ to $b^{\prime} c^{\prime} e^{\prime}$ or $b^{\prime \prime} c^{\prime \prime} e^{\prime \prime}$, and the total work done will be given by the areas under these curves. The distribution of work between the cylinders will be altered, however. The cut-off ratio in the lowpressure cylinder remaining constant at $g x / g f$, the separation line $d c$ between the two diagrams will change to $d^{\prime} c^{\prime}$ or $d^{\prime \prime} c^{\prime \prime}$. A later cut-off in the high-pressure cylinder will raise the pressure in the receiver between the cylinders from p_{2} to $p_{2}{ }^{\prime}$, and will throw an increasing proportion of the total load (now augmented) on to the low-pressure
cylinder. An earlier cut-off will have the opposite effect, and when running light the work done in the low-pressure cylinder may become negligible.

Varying the cut-off in the low-pressure cylinder will not affect the total amount of steam passing through the engine, or the total work

done. As shown in Fig. 94, if the low-pressure cut-off is made earlier, at c^{\prime} instead of c, the intermediate pressure will be increased from p_{2} to $p_{2}{ }^{\prime}$, and an amount of work represented by $d^{\prime} c^{\prime} c d$ will be transferred from the high-pressure to the low-pressure cylinder. A later lowpressure cut-off will decrease the load on that cylinder.

Fig. 95.
${ }^{\bullet}$ Effect of Throttling the Steam to the High-Pressure Cylinder on the Distribution of Work. Throttle Governing.-Consider the combined indicator diagrams shown in Fig. 95, in which abcd represente the work done in the high-pressure cylinder and dcefg the work done
in the low-pressure cylinder. Suppose that in order to meet a reduced load on the engine the steam is throttled down to the pressure $p_{1}{ }^{\prime}$, the cut-off in each cylinder remaining unaltered. Then $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ will represent the high-pressure diagram and $d^{\prime} c^{\prime} e^{\prime} f g$ the low-pressure diagram; the work done in the high-pressure cylinder will be much less than before, but the work done in the low-pressure cylinder will be little altered.

If, therefore, the engine is governed by throttling the power developed in the low-pressure cylinder will remain nearly constant, and when running on light load the power developed in the high-pressure cylinder may be very small. This is the converse to what happens with cut-off governing acting on the high-pressure cylinder.

That the steam consumption of an engine governed by throttling is almost a linear function of the Indicated Horse-Power can be seen at

Fig. 96.
once from the Mollier chart, Fig. 96. Let the boiler pressure be given by p_{1}, and the full load initial condition point by a. If the expansion is adiabatic, the final condition will be given by point b. If the steam, in response to a decreased load, is now throttled to c the subsequent expansion will be to d on the constant volume line through b. Similarly throttling to e will be followed by expansion to f. The back pressure p_{b}, and stroke volume v_{2} being constant, the term $p_{b} \nu_{2}$, representing the work done on the exhaust stroke, will be constant for all loads.

Now for all points in the mixed phase region, i.e. to the left of the saturation curve, lines of constant volume are straight, and except in very extreme cases the final condition points will lie in this area. It will be seen then that as throttling proceeds from a towards g^{\prime} the work done per pound of steam, and consequently the steam consumption per I.H.P., will decrease in a linear manner, a fact which, demonstrated by Willans by other methods, is known as the Willans' Straight Line Law.

-INITIAL LOADS ON THE HIGH-PRESSURE AND LOWPRESSURE PISTONS

The net load on a piston is the difference between the total forces exerted by the steam on its two sides. Thus on the high-pressure piston the initial load will be (neglecting the area of the piston rod), Area of high-pressure piston \times (initial steam pressure-receiver pressure) and on the low-pressure piston

Area of low-pressure piston \times (receiver pressure-back pressure).
It will frequently happen that if equal distribution of work is allowed between the cylinders, the initial loads will be unequal, and vice versa. The ratio of cylinder volumes should be so chosen that both the work done in the two cylinders and the initial loads on the pistons are approximately equal.

Suppose the initial steam pressure in the high-pressure cylinder is 100 lb . per sq. in. abs., the total number of expansions 10 , the back pressure 4 lb . per sq. in. abs., and the ratio of cylinder volumes 3 .
Let x be the receiver pressure in pounds per square inch absolute. Then, since the area of the low-pressure cylinder will be three times that of the high-pressure cylinder for equal strokes, for equal initial loads we have
$100-p_{r}=3\left(p_{r}-4\right)$, where p_{r} is the receiver pressure therefore $p_{r}=28 \mathrm{lb}$. per sq. in. abs.
Assuming complete hyperbolic expansion, the ratio of expansion in the high-pressure cylinder will be

$$
\frac{100}{28}=3.57
$$

and in the low-pressure cylinder it will be 3 , giving a pressure at exhaust opening of $28 \div 3=9.33 \mathrm{lb}$. per sq. in. and a total ratio of expansion of $3.57 \times 3=10.7$.
The mean effective pressure in the high-pressure cylinder will be

$$
\begin{gathered}
\frac{100}{3 \cdot 57}\left(1+\log _{e} 3 \cdot 57\right)-28 . \text { See p. } 171 \\
\quad=28(1+1 \cdot 27)-28 \\
\\
=35 \cdot 36 \mathrm{lb} . \text { per sq. in. }
\end{gathered}
$$

The mean effective pressure in the low-pressure cylinder will be

$$
\begin{aligned}
& 28\left(1+\log _{e} 3\right)-4 \\
= & 9.33(1+1.097)-4 \\
= & 15.59 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

Hence, the ratio
$\frac{\text { work done in high-pressure cylinder }}{\text { work done in low-preasure cylinder }}=\frac{35.36}{3 \times 15.59}=\frac{1}{1.32}$

THE REGENERATIVE CYCLE

The regenerative cycle, which can be applied to compound engines, is considered in detail on pp. 258, 259, 260.

An example will illustrate a simple case.
Example.-In a compound steam engine, the admission pressure to the high-pressure cylinder is 150 lb . per sq. in. abs., and the exhaust pressure in the low-pressure cylinder is 4 lb . per sq. in. abs. The back pressure in the high-pressure cylinder and the admission pressure of the low-pressure cylinder are 45 lb . abs. Steam for feed heating is drawn from the low-pressure steam chest. Assuming complete adiabatic expansion and no heat losses, estimate the efficiency of the engine, and the gain due to feed heating.

From steam tables it is found that-

$$
\begin{aligned}
& \text { at } 150 \mathrm{lb} . \text { abs. } \mathrm{L}_{1}=863 \text { and } \mathrm{T}_{1}=358+460=818^{\circ} \mathrm{F} \text {. abs. } \\
& \Rightarrow 45 \Rightarrow \\
& " 4
\end{aligned} \quad \mathrm{~T}_{3}=274+460=734^{\circ} \mathrm{F} \text {. abs. }
$$

From (3), p. 259, $w=\frac{1-\frac{613}{734}}{\log _{\varepsilon} \frac{8818}{734}+\frac{863}{818}}=\frac{1-0.8351}{0 \cdot 1084+1 \cdot 0550}$

$$
w=\frac{0.1649}{1 \cdot 1634}=0.1417 \mathrm{lb} .
$$

and from (5)

$$
\begin{aligned}
\eta & =1-\frac{613\left(\log _{e} \frac{818}{81}+\frac{86}{818}\right)}{1.1417(863+818-734)} \\
& =1-\frac{613(0.2885+1.0550)}{1.1417 \times 947} \\
& =1-0.761 \\
& =0.239 \text { or } 23.9 \text { per cent. }
\end{aligned}
$$

Without feed heating, and working on the Rankine cycle between temperature limits T_{1} and T_{2}, the efficiency will be by (6),

$$
\begin{aligned}
& 1-\frac{613\left(\log _{e} \frac{618}{613}+\frac{863}{818}\right)}{863+818-613} \\
= & 1-0.772 \\
= & 0.228 \text { or } 22.8 \text { per cent. }
\end{aligned}
$$

The increased efficiency due to feed heating is therefore 23.9-22.8 $=1.1$ per cent., or the percentage saving is $100 \times \frac{1.1}{22.8}$

EXAMPLES ON CHAPTER XI

1. Measurements from an indicator diagram taken on a steam engine show that at a certain instant the volume of the steam is 1.95 cu . ft . and the pressure 70 lb . per sq. in. abs. If the actual weight of steam in the cylinder is 0.5 lb ., estimate the dryness of the steam at that instant.
2. The diameter of a steam engine cylinder is 40 in ., and of the piston rod 5 in ., and the stroke is 5 ft . The mean effective pressure on the head end of the piston is 40 lb . per sq. in., and on the crank end 42 lb . per sq. in. If the speed of the engine is 120 r.p.m., what is the indicated horse-power?
3. A locomotive has two double-acting cylinders, the admission pressure is 150 lb . per sq. in. abs., and th.e exhaust pressure 18 lb . per sq. in. abs. The cylinder diameters are 17 in ., stroke 26 in ., and the diameter of the driving wheels 6 ft . Find the tractive effort and the indicated horse-power when running at 40 miles an hour, the cut-off being 0.4 . Allow a diagram factor of 0.9 and a mechanical efficiency of 80 per cent.
-4. The following particulars are obtained from an indicator diagram taken from the high-pressure cylinder of a compound steam engine fitted with Corliss valves :

Cut-off $\frac{1}{3}$ stroke; at a point on the compression curve the pressure was 59 lb . abs., and indicated volume $4 \mathrm{cu} . \mathrm{ft}$.

Pressure at a point on expansion curve just after cut-off was 155 lb . abs., and indicated volume $7 \cdot 2 \mathrm{cu} . \mathrm{ft}$.
Pressure at $\frac{1}{2}$ stroke on expansion curve $=112 \mathrm{lb}$. abs.
Pressure at release $=62 \mathrm{lb}$. abs., and indicated volume $=17.5 \mathrm{cu} . \mathrm{ft}$.
The diameter of the cylinder is 28 in . and stroke 4 ft ., the clearance volume being 7 per cent. of the stroke volume and the cylinder feed 2.58 lb . per stroke with 150 working strokes per minute. Estimate the dryness fraction and missing quantity in pounds per hour (a) at cut-off, (b) at $\frac{1}{2}$ stroke, (c) at release.
5. Dry steam is admitted to an engine cylinder at 60 lb . per sq. in. abs., and the condensation during admission is 20 per cent. of the whole steam supply. During expansion three-quarters of the heat absorbed by the cylinder walls during admission is returned to the steam at a uniform rate as the temperature falls. If the expansion be complete and the back pressure be 4 lb . per sq. in. abs., find the dryness fraction at the end of expansion. Neglect clearance and all heat losses.
6. A steam engine cylinder is $33 \frac{1}{8}$ in. diameter and the piston has a stroke of 3 ft .3 in . The engine develops 600 I.H.P. at 100 r.p.m. Assuming a diagram factor of 0.82 what is the ratio of expansion if the initial steam pressure is 155 lb . per sq. in. abs. and the back pressure 2 lb . per sq. in. abs. ?
7. The main engines of a vessel are supplied with steam at 200 lb . abs. ($t=382^{\circ} \mathrm{F}$.) and use 17 lb . of steam per I.H.P. per hour, the temperature of the condenser water being $120^{\circ} \mathrm{F}$. An auxiliary engine supplied with steam from the same boiler and exhausting into the atmosphere uses 25 lb . of steam per I.H.P. per hour. The main engines develop 6000 I.H.P. and the auxiliary engine 120 I.H.P. Find the actual efficiency (a) of the main engines alone, (b) of the whole plant when the auxiliary engine discharges into the hot well of the main engines.
8. The diameter of a steam-engine cylinder is 10 in . and the stroke 1 ft . If the initial pressure is 100 lb . per sq. in. abs. and cut-off is at $\frac{1}{2}$ stroke, find the theoretical mean effective pressure, neglecting clearance, the back pressure being 4 lb . abs.

If the clearance is 0.125 of the piston displacement find the probable I.H.P. if the engine runs at $250 \mathrm{r} . \mathrm{p} . \mathrm{m}$. [Assume a diagram factor of 0.85 .]
9. Find the diameter of a steam-engine cylinder required to develop 80 I.H.P. with a piston speed of 650 ft . per minute. The initial ateam pressure is 120 lb . per sq. in. abs., back pressure 2 lb . abs., cut-off $\frac{1}{3}$ stroke, clearance volume 7 per cent. of the pioton diaplacement. Ascume a diagram factor of 0.9.
10. A double-acting single-cylinder engine of cylinder diameter 14 in . and stroke 24 in., runs at 120 r.p.m. and develops 90 I.H.P. The initial steam pressure is 90 lb . per sq. in. abs. and the back pressure 18 lb . abs. Taking a diagram factor of 0.8 , find the ratio of expansion.
11. In a two-cylinder compound engine, the admission pressure to the highpressure cylinder is 80 lb . per sq . in. abs., cut-off 0.5 stroke. The release pressure in the low-pressure cylinder is 8 lb . per sq. in. abs. and the condenser pressure 2 lb . abs. Assuming hyperbolic expansion and equal initial loads on the pistons, estimate the ratio of cylinder volumes, the mean pressure in the receiver, the point of cut-off in the low-pressure cylinder, and the ratio of the work done in the two cylinders.
12. Solve Question 11 if, instead of hyperbolic expansion, the law of expansion is $\mathrm{pel} 1 \cdot 15 \mathrm{~m}=$ constant.
13. Determine the cylinder diameters of a horizontal zompound steam engine to develop 500 I.H.P. under the following conditions: Pressure in steam chest 140 lb . per sq. in. abs., vacuum 26 in., number of expansions 10, diagram factor 0.80 , piston speed 600 ft . per minute, cut-off in high-pressure cylinder 0.35 stroke. Determine also the point of cut-off in the low-pressure cylinder and compare the work done in the two cylinders when the initial loads are equal.
14. In a two-cylinder compound engine the ratio of cylinder volumes is 5 and the total number of expansions is 10 . The initial steam pressure is 100 lb . per sq. in. abs. and the back pressure 4 lb . per sq. in. abs. Assuming continuous hyperbolic expansion and equal distribution of work between the two cylinders, compare the initial loads on the pistons.
15. A triple expansion engine is required to develop 5000 I.H.P. at 90 r.p.m. under the following conditions : Pressure in high-pressure steam chest 200 lb . per sq. in. abs., cut-off in high-pressure cylinder 0.7 stroke, average piston speed 720 ft . per minute, vacuum 28 in . Using a cylinder ratio of 1:3:7.5 and a diagram factor 0.6 ?, determine the dimensions of the cylinders.
16. If the initral loads on the pistons are equal estimate the mean receiver pressures for the engine in Question 15.

Chapter XII

FLOW OF STEAM THROUGH ORIFICES AND NOZZLES

*GENERAL STATEMENT

When steam flows through an orifice from a zone of high pressure to a zone of low pressure a portion of its heat energy is converted into the kinetic form in the issuing stream, i.e. the steam performs work upon itself instead of upon the piston of an engine. If friction is negligible three steps are inherent in the process.
(1) Driving of steam into the high-pressure zone. The work done on the steam is $p_{1} v_{1}$, and a similar volume of steam is forced through the orifice to make room for the fresh charge.
(2) Expansion of the steam in the immediate neighbourhood of the orifice while the pressure changes from p_{1} to p_{2}, the work done being

$$
\frac{1}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)
$$

(3) Displacement of steam from the low-pressure zone by an equal volume discharged from the orifice, the latter expending work to the amount $p_{2} \nu_{2}$.
The net work done in creating kinetic energy of the steam is therefore

$$
p_{1} v_{1}+\frac{1}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)-p_{2} v_{2}=\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)
$$

which is exactly equivalent to that done during the Rankine cycle.
In the design of orifices and nozzles the principal factors to be considered are :
(1) The actual velocity of discharge ;
(2) The minimum area required to pass a given amount of steam per second;
(3) The area of exit, if differing from the above;
(4) The general shape of the nozzle.

Example.-Dry saturated steam expands from an initial pressure of 200 lb . per sq. in. abs. down to a condenser pressure of 1 lb . per sq. in. abs. Find the maximum amount of work possible per pound of steam. With the same initial pressure, what would be the pressure after complete
expansion in order that the work done may be half as much as the previous case ?

$$
\text { Work done }=\frac{n}{n-1} \cdot p_{1} v_{1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right\}
$$

From steam tables we find $v_{1}=2.29 \mathrm{cu}$. ft., and taking $n=1.135$

$$
\begin{aligned}
\text { work done } & =\frac{1 \cdot 135}{0.135} \times 200 \times 144 \times 2.29\left\{1-\left(\frac{1}{200}\right)^{\frac{0.135}{1 \cdot 133}}\right\} \\
& =554,600\{1-0.5326\} \\
& =554,600 \times 0.4674 \\
& =259,200 \mathrm{ft} .-\mathrm{lb}
\end{aligned}
$$

Let p be the pressure after expansion in the second case, then

$$
\begin{gathered}
\frac{1 \cdot 135}{0 \cdot 135} \times 200 \times 144 \times 2.29\left\{1-\left(\frac{p}{p_{1}}\right)^{\frac{0.135}{1 \cdot 135}}\right\}=\frac{259,200}{2} \\
554,600\left\{1-\left(\frac{p}{p_{1}}\right)^{\frac{0.135}{1 \cdot 135}}\right\}=129,600 \\
1-\left(\frac{p}{p_{1}}\right)^{\frac{0 \cdot 135}{1 \cdot 135}}=\frac{129,600}{554,600}=0.2336 \\
\therefore \frac{p}{p_{1}}=(0.7664)^{\frac{1}{0 \cdot 1355}}=0.1067 \\
\therefore p=200 \times 0.1067 \\
=21.34 \mathrm{lb} . \text { per sq. in. abs. }
\end{gathered}
$$

The latter case is approximately that of a non-condensing engine discharging to the atmosphere, the former that of a steam turbine working in conjunction with a good condenser. The enormous gain due to the use of the low-pressure energy of the steam will be noted.

A reciprocating engine working over the full pressure range would have to be heavily compounded in order to prevent an excessive loss due to cyclic condensation and leakage.

*THE VELOCITY OF DISCHARGE

Velocity in terms of Pressure.-The gain of kinetic energy is equal to the work done, or, assuming the velocity of approach to be negligible,
or

$$
\begin{align*}
& \frac{\mathrm{V}^{2}}{2 g}=\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)=\frac{n}{n-1} p_{1} v_{1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right\} \\
& \left.\mathrm{V}=\sqrt{2 g \frac{n}{n-1} p_{1} v_{1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right.}\right\} \tag{1}
\end{align*}
$$

If p is measured in pounds per sq. ft . and v in cu . ft ., V will be in ft . per second.

Velocity in terms of Heat Content.-As the work done is equal to the change of heat content

$$
\frac{\mathrm{V}^{2}}{2 g \mathrm{~J}}=h_{1}+q_{1} \mathrm{~L}_{1}-\left(h_{2}+q_{2} \mathrm{~L}_{2}\right)
$$

But as the expansion is adiabatic

$$
\begin{gather*}
q_{2}=\frac{\mathrm{T}_{2}}{\mathrm{~L}_{2}}\left(\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}+\log _{\mathrm{a}} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right) \text { (see also p. 128). } \tag{2a}\\
\frac{\mathrm{V}^{2}}{2 g \mathrm{~J}}=h_{1}-h_{2}+q_{1} \mathrm{~L}_{1}-\mathrm{T}_{2}\left(\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}+\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)
\end{gather*}
$$

or
If $h_{1}-h_{2}$ can be taken as equal to ($\mathrm{T}_{1}-\mathrm{T}_{2}$)
or

$$
\begin{align*}
\frac{\mathrm{V}^{2}}{2 g \mathrm{~J}} & =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \text { (see equation (4), p. 158) } \\
\mathrm{V} & =\sqrt{2 g \mathrm{~J}\left\{\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right\}} . \tag{2}
\end{align*}
$$

The method of calculation using the Mollier chart (p. 217) is greatly to be preferred.

Example.-Dry steam expands through a nozzle from a pressure of 200 lb . down to 140 lb . per sq. in. abs.

Assuming the flow to be frictionless and adiabatic, estimate the velocity of the steam jet.
(1) Equating the kinetic energy to the change of total heat

Kinetic energy $\frac{\mathrm{V}^{2}}{2 g \mathrm{~J}}=\left(h_{1}+\mathrm{L}_{1}\right)-\left(h_{2}+q_{2} \mathrm{~L}_{2}\right)$ and q_{2} will be found to be 0.974

$$
\begin{aligned}
& =(1205 \cdot 4)-(324 \cdot 8+0.974 \times 873.5) \\
& =1205 \cdot 4-1175 \cdot 8 \\
& =29.6 \text { B.Th.U. }
\end{aligned}
$$

$$
\text { therefore } V=\sqrt{64.4 \times 778 \times 29 \cdot 6}
$$

$$
=1215 \mathrm{ft} . \text { per second. }
$$

(2) Equating the kinetic energy to the area of the $\mathrm{T} \phi$ diagram
or

$$
\begin{aligned}
\frac{\mathrm{V}^{2}}{2 g \mathrm{~J}} & =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(1+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \log _{6} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}} \\
& =(842-813)\left(1+\frac{843}{842}\right)-813 \log _{e} \frac{842}{813} \\
& =29 \times 2-28.45 \\
& =29.55 \text { B.Th. } \mathrm{O} .
\end{aligned}
$$

which agrees very closely with the value obtained above. The former value, based on steam tables, is more accurate than the latter hypothetical one.
(3) Equating the kinetic energy to the area of the p.v. diagram for the Rankine cycle,

$$
\begin{aligned}
\mathrm{V} & =\sqrt{64 \cdot 4 \times \frac{1 \cdot 135}{1 \cdot 135-1} \cdot 200 \times 144 \times 2 \cdot 29\left\{1-\left(\frac{140}{200}\right)^{0 \cdot 135 / 1 \cdot 135}\right\}} \\
& =\sqrt{64 \cdot 4 \times \frac{1 \cdot 135}{0.135} \times 28,800 \times 2.29(1-0.960)} \\
& =1207 \mathrm{ft.} \text { per second. }
\end{aligned}
$$

(4) By means of the Mollier diagram the values required by method (1) can be read directly and V found to be 1200 ft . per second. If a velocityheat drop scale is provided the value of V can be scaled at once.

It will, of course, be realised that the four methods employed above are essentially the same, and differ only in the form in which the central facts are presented.

-WEIGHT OF STEAM DISCHARGED. THE CRITICAL PRESSURE RATIO

If \mathbf{A} is the minimum area of the steam-jet, i.e. the area of the orifice if this is suitably bell-mouthed on the high-pressure side to maintain contact with the steam, and v_{1} and v_{2} are the volumes occupied by the steam at pressures p_{1} and p_{2}, then

$$
\mathrm{W}=\frac{\mathrm{AV}}{v_{2}}
$$

But

$$
v_{2}=v_{1}\left(\frac{p_{1}}{p_{2}}\right)^{1 / n}
$$

or

$$
\begin{align*}
\mathrm{W} & \left.=\frac{\mathrm{A}}{v_{1}\left(\frac{p_{1}}{p_{2}}\right)^{1 / n}} \sqrt{2 g \frac{n}{n-1} p_{1} v_{1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right.}\right\} \\
& \left.=\mathrm{A} \sqrt{2 g \frac{n}{n-1} \cdot \frac{p_{1}}{v_{1}}\left\{\frac{p_{2}}{p_{1}}\right.}-\left(\frac{p_{2}}{p_{1}}\right)^{1+\frac{1}{n}}\right\} \tag{3}
\end{align*} .
$$

This expression will have a maximum value when $\left(\frac{p_{2}}{p_{1}}\right)^{2 / n}-\left(\frac{p_{2}}{p_{1}}\right)^{1+\frac{1}{n}}$ is a maximum
or when

$$
\frac{2}{n}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{2-n}{n}}=\left(1+\frac{1}{n}\right)\left(\frac{p_{2}}{p_{1}}\right)^{1 / n} \text { by differentiation }
$$

or when

$$
\frac{2}{n}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1-n}{n}}=1+\frac{1}{n}
$$

or

$$
\begin{align*}
\frac{p_{2}}{p_{1}} & =\left\{\frac{n+1}{n} \times \frac{n}{2}\right\}^{\frac{n}{1-n}} \\
& =\left\{\frac{2}{n+1}\right\}^{\frac{n}{n-1}} \tag{4}
\end{align*}
$$

The value of $\frac{p_{2}}{p_{1}}$ from equation (4) varies with the coefficient n in the equation $p v^{n}=$ constant and has the following approximate values :
For superheated steam (also for supersaturated steam)

$$
n=1.30 \quad \text { and } \quad p_{2}=0.546 p_{1}
$$

For steam initially dry

$$
n=1.135 \text { and } p_{2}=0.578 p_{1}
$$

For very wet steam

$$
n=1 \cdot 113 \text { and } p_{2}=0.582 p_{1}
$$

For approximate calculations the critical ratio can be taken as 0.58 for steam initially dry, in which case $V_{\text {max. }}=5.85 \sqrt{p_{1} v_{1}}$ or $70.2 \sqrt{p_{1} v_{1}}$ if p_{1} is measured in pounds per square foot and pounds per square inch respectively.

For air $n=1.40$ and $p_{2}=0.527 p_{1}$.
No such critical pressure ratio is found in practice in the case of liquids, but its existence for highly expansible media can be explained in the

Fig. 97:
following manner. Assuming an initial pressure of, say, 100 lb . and various values of p_{2}, the values of the final volume occupied by the steam and also its velocity can be obtained. This is most easily done by the use of the Mollier chart, p. 125. The area of cross-section of a steam jet having these values of volume and velocity can be calculated by dividing the former by the latter. If values of p_{2} and area are then plotted, as in Fig. 97, it will be seen that as p_{2} decreases the velocity increases at first more rapidly than the volume, and the area of the jet will decrease. When p_{2} is approximately 58 lb . a minimum area is required, but for lower values the volume will tend to increase more rapidly than the velocity and the steam will "choke" the orifice.

A more important explanation can be visualised as follows. If a sudden small impulse is given to the steam at the orifice a local pressure wave is initiated, which travels from the orifice with the velocity of sound in the low-pressure steam. No other speed of travel is possible for this wave. So long as p_{2} is greater than $0.58 p_{1}$, the jet of steam follows the pressure wave at a lower velocity, and is therefore always discharging into a zone behind the wave where the pressure is \boldsymbol{p}_{2}. At the critical pressure ratio the velocity of the steam reaches that of sound and the jet travels with the pressure wave ; any attempt to increase the jet velocity results merely in increasing the intensity of the pressure wave, which now acts, as far as the steam jet is concerned, as a relatively immovable obstruction barring more rapid progress.

It may be easier to think of a wave of low pressure p_{2} travelling towards the orifice along the jet which is moving away from it. When the jet moves away from the orifice with the velocity of sound the low-pressure wave becomes stationary in space and cannot proceed towards the orifice to relieve the local pressure there.

A zone of high pressure is therefore built up at the orifice after the acoustic velocity is reached, and the pressure drop across the orifice itself becomes $p_{1}-0.58 p_{1}$ approximately, whatever the value of p_{2} may be. As the pressure wave travels away from the orifice in all directions the steam following in its wake will endeavour to do likewise, flow will become disorderly instead of having a single velocity component axial with the nozzle, and the energy will be dispersed.
If this dispersal is prevented, by confining the steam between walls which diverge only sufficiently to allow for the rapidly increasing volume, the column of steam so confined at any instant will be subjected to pressures of $0.58 p_{1}$ and p_{2} at its two ends and will be driven forward as an expanding projectile at a speed dependent only on the values of p_{1} and p_{2}. If the nozzle is suitably designed the jet will emerge at a pressure p_{2} and with a velocity which, except for slight divergence, will be axial with the nozzle and will be greater than the velocity of sound.

Orifices or nozzles for vapours and gases can therefore be divided into two categories: (1) convergent, for use when $p_{2}>$ about $0.58 p_{1}$; (2) convergent-divergent, for use when $p_{2}<$ about $0.58 p_{1}$. In both cases the convergent portions are usually similar, the edge of the orifice being rounded so that the steam flows easily to the smallest section without sudden changes of direction or the formation of eddies. The length of the approach side of the orifice should be short, to reduce surface friction, and normally about $\frac{1}{8} \mathrm{in}$. will be found adequate. It should be remembered that convergence of the walls of a passage tends to stabilise flow $s 0$ that changes of area may then be rapid, but that divergence has the opposite effect, necessitating gradual increases

*CALCULATIONS OF THROAT AND EXIT AREAS, ASSUMING NO FRICTION

When the initial and final pressures and the initial quality of steam are known the nozzle areas required are readily calculated for the discharge of 1 lb ., and may subsequently be modified for other quantities of steam.
(1) When the Final Pressure=or>the Critical.-From equation (2), p. 213, the velocity of discharge can be calculated, and the final volume

Fig. 98.
of the steam can be obtained from the steam tables and using equation (2a), or the equivalent equation for use with steam which remains superheated. The area of the throat for a discharge of 1 lb . of steam per second is then given by $\frac{\text { final volume }}{\text { final velocity }}$, the areas being in square feet.

The use of a large scale Mollier chart greatly facilitates the work as follows.

The initial condition point is found at a, and a line of constant entropy is drawn from a to cut the line of pressure p_{2} in b.
$\mathrm{H}_{a}-\mathrm{H}_{b}$ now gives the heat which is converted into kinetic energy. If the Marks and Davis diagram is used the velocity equivalent to $\mathrm{H}_{1}-\mathrm{H}_{2}$ can be read from the conversion scale which is attached, otherwise it may be obtained from the equation
or

$$
\begin{aligned}
& \frac{\mathrm{V}^{2}}{2 g}=\mathrm{J}\left(\mathrm{H}_{a}-\mathrm{H}_{b}\right) \\
& \mathrm{V}=\sqrt{2 g \mathrm{~J}\left(\mathrm{H}_{a}-\mathrm{H}_{b}\right)}
\end{aligned}
$$

The position of b determines the final quality of the steam. The final volume may be obtained either from the steam tables, or read direct from the chart if constant-volume lines have been traced (see Callendar's T ϕ chart).

The volume divided by the velocity will now give the required area in square feet.
(2) When the Final Pressure is less than the Critical.-In this case two areas will be required, the first being the area at the throat where the pressure has the critical value, the second being the final exit area. For the first of these the point b is chosen so that p_{2} / p_{1} has the critical value, and the adiabatic is then extended to the final pressure line at c. The final velocity is then derived from the heat drop $\mathrm{H}_{a}-\mathrm{H}_{c}$ and the final volume from the known quality at c. The exit area of the nozzle will be given by the quotient $\frac{\text { exit volume }}{\text { exit velocity }}$. The throat area is obtained, as before, from values at a and b.

The areas so calculated are for a discharge of 1 lb . of steam per second, and should be modified proportionately if a quantity other than this is to be employed.

If a simple nozzle is to be used it is customary to round the entrance

Fig. 99. edge leading to the throat for a length of about $\frac{1}{8}$ in., and to make the remainder of the nozzle of such a length that the included angle is about 12°. (See Fig. 99 ; see also p. 221).
(In estimating the velocities of the jet by means of the conversion scale shown in Fig. 98, care should be taken to obtain the final velocity from $\mathrm{H}_{a}-\mathrm{H}_{c}$. If the final velocity is taken as the velocity equivalent to $\mathrm{H}_{a}-\mathrm{H}_{b}+$ the velocity equivalent of $\mathrm{H}_{b}-\mathrm{H}_{c}$, the contracted portion of the velocity scale will be used twice, and serious errors will result.)

Example.-Dry steam at a preseure of 200 lb . per sq. in. is to expand to 5 lb . per sq. in. abs. Determine the principal dimensions of the nozzle if the discharge is to be 60 lb . per minute.

Flow of Steam Through Orifices and Nozzles

Here $n=1 \cdot 135$, and at the throat

$$
\frac{p_{2}}{p_{1}}=\left\{\frac{2}{n+1}\right\}^{n / n-1}
$$

At the Throat.-
From equation (3)

$$
\begin{align*}
\mathrm{W} & =\mathrm{A}_{t} \sqrt{2 g \frac{n}{n-1} \frac{p_{1}}{v_{1}}\left\{0.577^{\frac{2}{1 \cdot 133}}-0.577^{\frac{2.135}{135}}\right\}} \\
& =\mathrm{A}_{t} \sqrt{2 g \frac{n}{n-1} \frac{p_{1}}{v_{1}}\{0.0235\}} \\
& =\mathrm{A}_{2} \sqrt{543 \frac{p_{1}}{v_{1}}\{0.0235\}} \\
& =3.60 \mathrm{~A}_{t} \sqrt{\frac{p_{1}}{v_{1}}}, \text { where } p_{1} \text { is in lb. per sq. ft. . } \tag{1}\\
& =43.2 \mathrm{~A}_{t} \sqrt{\frac{\bar{P}_{1}}{v_{1}}}, \text { where } \mathrm{P}_{1} \text { is in lb. per sq. in. }
\end{align*}
$$

At Exit.-

$$
\left.\mathrm{W}=\mathrm{A}_{e} \sqrt{64.4 \times \frac{1.135}{0.135} \frac{p_{1}}{v_{1}}\left\{\left(\frac{p_{3}}{p_{1}}\right)^{2 / n}-\left(\frac{p_{3}}{p_{1}}\right)^{1+1 / n}\right.}\right\}
$$

or
or

$$
\begin{aligned}
& \frac{\mathrm{A}_{e_{e}}}{\mathrm{~A}_{t}}=\frac{3.60}{\sqrt{v^{\prime} 64.4 \times \frac{1.135}{0.135} \times\left\{\left(\frac{p_{3}}{p_{1}}\right)^{2 / n}-\left(\frac{p_{3}}{p_{1}}\right)^{1+1 / n}\right\}}} \\
& =\frac{0.155}{\sqrt{\left(\frac{p_{3}}{p_{1}}\right)^{2 / n}-\left(\frac{p_{3}}{p_{1}}\right)^{1+1 / n}}} \\
& \frac{0.1155}{\mathrm{~A}_{e}}=\frac{\sqrt{\mathrm{A}_{t}}}{\sqrt{\left(\frac{5}{200}\right)^{2 / 1 \cdot 135}-\left(\frac{5}{200}\right)^{2 \cdot 133 / 1 \cdot 135}}} \\
& =6.81 \\
& \mathrm{~A}_{t}=2.417 \mathrm{sq} . \mathrm{in} .
\end{aligned}
$$

Alternative Solution.-From the Mollier diagram the heat drop is found to be 253 B.Th.U., the velocity at discharge to be 3560 ft . per second, and the dryness fraction 0.815 . From steam tables the volume of 1 lb . of dry steam at 5 lb . abs. is 73.33 cu . ft., hence the volume per pound of steam as discharged is (neglecting the volume of the water)$0.815 \times 73.33 \mathrm{cu} \mathrm{ft}$.

$$
\begin{aligned}
3560 \mathrm{~A}_{2} & =0.815 \times 73.33 \\
\mathbf{A}_{2} & =\frac{0.815 \times 73.33}{3560} \\
& =0.01678 \text { sq. ft. or } 2.416 \mathrm{sq.} . \mathrm{in} .
\end{aligned}
$$

FRICTION

The condition and area of the nozzle surface, the velocity and quality of the steam, etc., all contribute to a loss of kinetic energy which may be covered, for convenience, by the general term " frictional loss." For very short convergent nozzles the loss may in some cases be negligible, but for divergent nozzles of appreciable length the losses will vary from 4 to 15 per cent., i.e. the efficiency will be between 96 and 85 per cent. These losses of kinetic energy will cause the steam at exit to have a higher dryness fraction-or degree of superheat-than would otherwise be the case, the increased heat content being known as the " reheat."

Fig. 100.
The design of a nozzle will obviously be affected by its probable efficiency, and the calculations outlined in the last section will require to be modified as follows :

In Fig. $100 a b$ represents the adiabatic expansion of steam from the condition point a on the pressure line p_{1}, to the pressure p_{3}. If $a c$ is made such that $a c / a b=$ the nozzle efficiency, then $c b$ will represent the reheat, and $\mathrm{H}_{a}-\mathrm{H}_{c}$ the heat equivalent of the kinetic energy actually generated.
Now the final condition point must also lie on the line p_{3}, i.e. at d, the
point of intersection of the lines H_{6} and p_{3}, and the final area must be calculated from the volume corresponding to the condition at d and the velocity equivalent to $\mathrm{H}_{a}-\mathrm{H}_{c}$.

If $p_{3}<0.58 p_{1}$ the adiabatic throat drop would be given by $a e$, where e is on $a b$ and also on the line $p_{2}=0.58 p_{1}$. If the efficiency η_{t} of the converging portion of the nozzle is known, then if $\frac{a e^{\prime}}{a e}=\eta_{t}$, and the condition of the steam at the throat will be given by the point f on the pressure line p_{2} and for which $\mathrm{H}_{f}=\mathrm{H}_{s}^{\prime}$. The condition curve for the steam will then be afd.

The following approximate values of the friction loss may serve as a guide:

Loss to throat 2-3 per cent.

That the friction loss is largely a surface effect can be seen if dry saturated steam is expanded in a glass nozzle. The steam near the centre of the jet will become cloudy owing to the presence of tiny droplets formed as the steam expands, while the steam near the sides will remain clear, the reheat preventing condensation.
The length of the nozzle is reached as a compromise between a long nozzle with very slow divergence, giving an almost cylindrical jet at the expense of heavy frictional losses, and a short one with a rapid divergence and low friction loss but with a markedly divergent jet in which the outermost streams are not at a favourable angle for efficient utilisation in turbine blading. A very rapid divergence also tends to make the jet leave the sides of the nozzle and set up return-flow currents along the walls greatly increasing the total losses. Though inclusive angles of 20° are occasionally used, 8° to 12° are more normal.

Example.-An impulse turbine of the de Laval type is to develop 250 H.P. with a probable consumption of 15.5 lb . of steam per H.P. hour, the initial pressure being 180 lb . and the exhaust 2 lb . per sq. in. abs. Taking the diameter at the throat of each nozzle as $\frac{1}{4}$ inch, find the number of nozzles required. Assuming that 12 per cent. of the heat drop is lost in the diverging part of the nozzle, find the diameter at the exit of the nozzle and the quality of the steam, which is to be fully expanded as it leaves the nozzle.

The weight discharged per second from each nozzle will be (p. 219)

$$
\begin{aligned}
& \mathrm{W}=43.2 \mathrm{~A} \sqrt{\frac{\mathrm{P}_{1}}{v_{1}}} \\
& \mathrm{~W}=\frac{43.2}{144} \times \frac{\pi}{4} \times\left(\frac{1}{4}\right)^{2} \sqrt{\frac{180}{2.53}}=0.1213 \mathrm{lb} .
\end{aligned}
$$

Total steam required per second $=\frac{250 \times 15.5}{60 \times 60}=1.076 \mathrm{lb}$.

$$
\text { Number of nozzles }=\frac{1 \cdot 076}{0 \cdot 1213}=8 \cdot 8, \text { say } 9 \text { nozzles }
$$

If the expansion were frictionless and adiabatic from 180 lb . to 2 lb . abs., the kinetic energy of the jet at exit from the nozzle would be

$$
\frac{\mathrm{V}^{2}}{2 g}=\frac{n}{n-1} \cdot p_{1} v_{1}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right\}
$$

Since 12 per cent. of this heat drop is unconverted, the kinetic energy will be 88 per cent. of the above, namely-

$$
\begin{aligned}
\frac{\mathrm{V}_{2}}{2 g} & =0.88 \times \frac{1 \cdot 13}{0.13} \times 144 \times 180 \times 2.53\left\{1-\left(\frac{2}{180}\right)^{\frac{0.13}{1 \cdot 13}}\right\} \\
& =202,700 \mathrm{ft} .-\mathrm{lb} ., \text { or } 260 \text { B.Th.U. }
\end{aligned}
$$

and the velocity

$$
\mathrm{V}=\sqrt{64 \cdot 4 \times 202,700}=3610 \mathrm{ft} \text {. per second }
$$

From steam tables we find the total heat of dry saturated steam at 180 lb . abs. is 1196.4 B.Th.U.
Hence the total heat per pound after expansion to 2 lb . abs. is

$$
h_{2}+q_{2} \mathrm{~L}_{2}=1196 \cdot 4-260=936 \cdot 4
$$

Substituting for h_{2} and L_{2} from steam tables

$$
\begin{aligned}
94+q_{2} \times 1021 & =936.4 \\
q_{2} & =0.825 \\
\text { Volume per pound } & =0.825 \times 173.5 \mathrm{cu} . \mathrm{ft} . \\
\therefore \text { area of nozzle at exit } & =\frac{0.1213 \times 0.825 \times 173.5}{3610} \\
& =0.00481 \mathrm{sq.} \mathrm{ft} . \\
& =0.693 \mathrm{sq} . \mathrm{in} .
\end{aligned}
$$

\therefore diameter of nozzle at exit $=\sqrt{\frac{0.693}{0.7854}}=0.939 \mathrm{in}$.
Alternative Method.-By means of the Mollier chart the following figures may be obtained, referring to 1 lb . of steam (see also Fig. 100).

$$
\begin{aligned}
& \mathrm{H}_{a}=1203.2 \mathrm{~B} . \mathrm{Th} . \mathrm{U} . \\
& \mathrm{H}_{e}=1157.0 \mathrm{~B} . \mathrm{Th} . \mathrm{U} ., \text { where } p_{e}=0.58 p_{1}=104 \mathrm{lb} . \text { per sq. in., and the } \\
& \text { corresponding velocity is } 1500 \mathrm{ft} \text {. per sec. } \\
& \boldsymbol{q}_{e}=96.1 \text { per cent. } \\
& v_{a}=4.20 \mathrm{cu} . \mathrm{ft} . \\
& \mathrm{H}_{b}=906.0 \mathrm{~B} . \mathrm{Th} . \mathrm{D} .
\end{aligned}
$$

$\mathrm{H}_{c}=941.6 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$., where $\mathrm{H}_{a}-\mathrm{H}_{c}=0.88\left(\mathrm{H}_{a}-\mathrm{H}_{b}\right)$, and the corresponding velocity is 3612 ft . per sec.
$q_{d}=83.1$ per cent.
$v_{d}=143 \mathrm{cu} . \mathrm{ft}$.
The area per pound per second at throat $=\frac{4 \cdot 20}{1500} \times 144=0.403 \mathrm{sq} . \mathrm{in}$.

$$
" \quad " \quad \text { exit }=\frac{143}{3612} \times 144=5.71 \mathrm{sq} . \mathrm{in} .
$$

As the area of one nozzle is 0.0491 sq . in. at the throat, the number of nozzles is

$$
\frac{0.403 \times 1.076}{0.0491}=8.8, \text { say } 9
$$

The exit area per nozzle $=\frac{5.71 \times 1.076}{9}=0.884 \mathrm{sq} . \mathrm{in}$.
and exit diameter $=0.942$ in.
For other frictional coefficients or distributions the necessary modifications will be obvious.

NOZZLE SHAPE AND SIZE

A number of additional matters have to be taken into consideration in designing the nozzles for steam turbines. The straight conical nozzle has the advantage that it may be produced with a high degree of accuracy and finish by a simple rimering process. A jet of rectangular section would fill more satisfactorily the passages between the rotor blades, but accuracy and finish are not easy to attain and the surface area, which is largely responsible for friction, is large. With such nozzles it is customary to keep the radial width constant (see Fig. 101), the full divergence being allowed on

Fig. 101. the other transverse dimension. There is therefore no tendency of the issuing jet to diverge beyond the top and bottom of the rotor blades.

The maximum diameter or radial height of the nozzles is determined by the height of the blades. At the high-pressure end of the turbine this is of the order of 1.5 to 2 per cent. of the mean blade-ring diameter, but increases at the low-pressure end to 8 to 12 per cent., and occasionally up to $\mathbf{2 5}$ per cent. This factor determines whether the requiste nozzle area should be provided by a few nozzles of large diameter, or a large number with smaller dimensions, and also the manner in which the nozzle is made.

The angle of inclination of the nozzle to the plane of rotation of the turbine blades should be kept as small as possible, but it will usually be found that an angle of less than 20° is not practicable, though occasionally values of about 12° are found at the high-pressure stage.

Owing to this obliquity, and the desirability of guiding the steam as far as possible towards the blades, the nozzle is not cut off at right angles to its axis, but is carried forward on the trailing edge. If this is done by extending the cone, Fig. 101, the steam will be over-expanded on that side. On the other hand, if a cylindrical extension is employed compression shock will occur at the point A, Fig. 102, where the outer stream-

Fig. 102.
lines impinge on the extended wall. This figure shows the lines of constant pressure for the nozzle and the tip of one blade. It will be seen that the high pressure located at A will tend to cause deflection of the jet away from that point, and the angle made by the issuing jet with the plane of rotation of the blades will be greater than a, Fig. 101. Angles of deviation as high as 9° and 51° on the two sides of the jet have been measured by Stodola. A cylindrical extension, as shown by b, Fig. 102, is used in the de Laval turbine.

-OVER AND UNDER EXPANSION

It will be seen from preceding and following sections that many uncertainties exist as to correctness of the calculated areas. Both too large and too small an area at exit will cause a reduction of the final velocity, but it has been shown that the losses caused by under-expansion are markedly less than those for over-expansion, and, while the latter are entirely irrecoverable, the former may, at least in part, be made good in the blading. It is probable that a 10 per cent. under-expansion causes a loss of velocity of about 0.3 per cent. only, and this reduction of area is frequently allowed.

SUPERSATURATION

It would normally be expected that the actual discharge from a nozzle would be slightly less than that given by theory, but careful experiments show that the converse is often true, the actual discharge through a simple orifice of steam which is initially dry being from 2 to 5 per cent. in excess of the theoretical amount. An examination of the conditions affecting the quality of the steam is therefore desirable.

It has so far been assumed that equilibrium between the liquid and vapour phases of steam isestablished instantaneously when conditions given by the saturation curve are reached. At least three conditions are involved.
(1) Condensation is normally started round any tiny nuclei which may be present, usually tiny dust particles which are always present in commercial steam in sufficient quantities. In the absence of such particles condensation is considerably delayed, and the temperature of the steam continues to fall, the condition being then known as supersaturated. When a certain degree of supersaturation has been reached it appears that the presence of foreign particles is no longer necessary, and that equilibrium can then be attained completely and virtually instantaneously. As much as $70-90^{\circ} \mathrm{F}$. supercooling may occur, though it is extremely doubtful whether such an intense degree of supercooling is ever attained in practice due to shortage of nuclei. The lowest probable limit of supersaturation is given by a line running nearly parallel to the saturation curve on the $\mathrm{H} \phi$ chart (see Fig. 55) and known as the Wilson line.
(2) A certain time interval is necessary in which the molecules may collect to form droplets. The passage of steam through a short convergent nozzle is of the order of one ten-thousandth of a second, which may be quite inadequate.
(3) Though steam and a flat surface of water are in equilibrium at the same temperature this is not the case when the water forms a drop. If O, Fig. 103, is a molecule forming part of the water surface $a a$, it will be under the influence of a surface-tension effect due to the fact that all the molecular forces acting upon it do so from below. If r is the maximum radius of effective molecular attraction then all the molecules influencing O will lie within the hemisphere $b b$ drawn from O with r as radius. If O is part of a drop, however, the molecules must lie also within the surface coc of the drop, and the molecules acting upon O will be reduced in number as the space represented by the

Fig. 103. shaded area in Fig. 103 is no longer a portion of the liquid. This effect becomes more marked as the drops decrease in size, and is considerable at the start of condensation when the droplets are of the order of $1 / 10,000$ inch in diameter.
(As a drop is reduced in size by evaporation, and finally is completely evaporated, the potential energy represented by the surface tension must be dissipated, and will be distributed among the escaping steam molecules which will therefore have imparted to them a velocity greater than that represented by their initial temperature. The temperature of evaporation of a minute drop, and conversely its temperature of formation, will therefore be less than might at first be expected.)

The relative importance of the above three factors is in doubt, and also the amount of supersaturation which is likely to occur in any particular case. It is probable that the highly turbulent motion set up at the throat of a convergent-divergent nozzle greatly accelerates the attainment of equilibrium and that supersaturation is not likely to be found in the divergent portion. If, however, the condition point at the throat falls between the saturation curve and the Wilson line the steam should be treated as a supercooled vapour. Its general behaviour will be akin to that of superheated steam and its volume should be calculated from the equation $p v^{1 \cdot 3}=$ constant. When necessary the total heat may be obtained from the equation

$$
\mathrm{H}_{3}=\frac{p(v-0.0123)}{1.2464}+835.2 \quad \text { (Goudie, p. 227) }
$$

The lines of constant pressure on the Mollier diagram can now be extended from the superheat region across the saturation line as far as the Wilson curve. Below the Wilson curve the diagram will remain unchanged and at the curve the lines of constant pressure will be broken. A diagram including lines of supersaturation is supplied with Goudie's " Steam Turbines."
Immediately after equilibrium has been reached the relation between pressure and volume will be given by $p v^{1 \cdot 13}=$ constant.

CONVERGENT-DIVERGENT NOZZLE WITH EXCESSIVE BACK-PRESSURE

If a convergent-divergent nozzle is designed for a given back-pressure p_{2}, the pressure distribution along the nozzle will be as indicated by the smooth line in Fig. 104.

If a higher back-pressure is used the discharge from the nozzle will decrease, but will not be proportionate to the back-pressure. The action of the nozzle will now approach that of the Venturi meter, the pressure at the throat tending to be less than that at exit, and as the pressure drop between the nozzle entrance and the throat governs the rate of discharge this will remain larger than might be expected. Pressure curves for such conditions are as shown by the curves of Fig. 104, and will be distorted by the presence of stationary waves as soon as the acoustic velocity is exceeded.

Under such circumstances the jet tends to leave the walls after the throat, and eddies are set up which greatly increase the friction losses and cause considerable reheating of the steam.

In large steam accumulators such nozzles-or diffusers-may be

Fig. 104.
incorporated in the pipe-lines by which the steam is withdrawn. Normally the total pressure drop over the nozzle will be very small, as shown by the upper curve of Fig. 104, the divergence allowing for a considerable regain of pressure energy after the throat. Should the pipe-line on the
auscharge side of the nozzle be broken the back-pressure will at once fall to atmospheric pressure- p_{2}-and the rate of discharge of the accumulator will be automatically limited to the maximum discharge at the throat. A simple orifice would restrict the maximum flow in a similar manner, but as there could be no regain of pressure energy the total drop of pressure during normal working would be excessive.

THEORY OF THE INJECTOR

The action of an injector will be discussed with reference to Fig. 105. The steam used for working the injector expands through a conical

Fig. 105.
nozzle, issuing therefrom with a high velocity, and, coming into contact with cold water flowing in from the feed tank E , is condensed in the convergent combining tube or cone B. The resulting jet of water enters the divergent delivery tube or cone \mathbf{C}, and at its smallest cross-section is moving with its maximum velocity. The kinetic energy of the jet of water is then converted into pressure energy in its passage along the delivery tube, its pressure increasing as its velocity decreases, until on leaving the tube the pressure is greater than the boiler pressure and the water enters the boiler. An outlet is provided at D through which any excess of water may overflow when starting.

It is to be noted that though the heat energy removed from the boiler is at once restored to it in the condensed steam and hot water boiler feed, the potential energy removed (boiler pressure \times vol. of steam) is many
times greater than the potential energy restored (boiler pressure \times vol. of condensate and boiler feed). The injector will only operate in virtue of the large decrease in volume as the steam condenses.

Let V be the velocity of the steam jet in feet per second, p_{1} the initial steam pressure, and p_{2} the pressure in the jet just outside the steam nozzle where contact occurs between the steam and the entering water. Then V may be calculated by any of the methods given above. If the condition for maximum discharge can be assumed then

$$
\mathrm{V}=70 \cdot 2 \sqrt{\mathrm{P}_{1} v_{1}}
$$

where P_{1} is in pounds per square inch.
Weight of Water per Pound of Steam.-Let W be the number of pounds of water drawn from the feed tank per pound of steam, h the head of water in feet on the injector, p the boiler pressure in pounds per square foot, and H the height, in feet, of the boiler feed check valve above the delivery cone of the injector. Then neglecting losses the least velocity of the jet $\mathrm{V}_{\boldsymbol{j}}$ entering the delivery cone will be given by

$$
\begin{equation*}
\frac{\mathrm{V}_{j}{ }^{2}}{2 g}=\frac{p}{62 \cdot 4}+\mathrm{H} \tag{1}
\end{equation*}
$$

$\frac{p}{62 \cdot 4}$ being the height in feet of a water column equivalent to the boiler pressure (as $1 \mathrm{cu} . \mathrm{ft}$. of water weighs 62.4 lb .).
In actual practice p in (1) should be taken about 20 per cent. greater than the absolute boiler pressure to ensure that the injector works properly.

The velocity with which the water will flow into the injector under the head of h feet will be $\sqrt{2 g h}$
the momentum of W lb . of this water will be $\frac{\mathrm{W}}{g} \sqrt{2 g h}$
the momentum of 1 lb . of steam moving with velocity V will be $\frac{\mathrm{V}}{\boldsymbol{g}}$ and the momentum of the resulting jet $\frac{(\mathrm{W}+1) \mathrm{V}_{j}}{g}$

Hence, equating the momenta before and after combination we have
or

$$
\begin{align*}
\frac{(\mathrm{W}+1) \mathrm{V}_{j}}{g} & =\frac{\mathrm{V}}{g}+\frac{\mathrm{W}}{g} \sqrt{2 g h} \\
\mathrm{~V}_{j} & =\frac{\mathrm{V}}{\mathrm{~W}+1}+\frac{\mathrm{W}}{\mathrm{~W}+1} \cdot \sqrt{2 g h} \tag{2}
\end{align*}
$$

If the water is not supplied under pressure to the injector but the feed
tank is h feet below the injector, as is the case of injectors of the lifting type, equation (2) becomes

$$
\begin{equation*}
\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}}{\mathrm{~W}+1}-\frac{\mathrm{W}}{\mathrm{~W}+1} \sqrt{2 g h} \tag{2~A}
\end{equation*}
$$

In most cases the term $\frac{\mathrm{W}}{\mathrm{W}+1} \sqrt{2 g h}$ is so small that it may be neglected.
By substituting in (2) the value of V already found, the value of W may be estimated.

Estimation of the Feed Temperature.-Let t be the temperature of the water in the feed tank and t_{3} the temperature of the delivery from the injector, i.e. the feed temperature to the boiler. Then per pound of steam used

Kinetic energy of the jet $=\frac{(W+1)}{2 g} \cdot \frac{\mathrm{~V}_{3}{ }^{2}}{\mathrm{~J}}$ in heat units.
The heat gained by Wlb . of water $=\mathrm{W}\left(t_{3}-t\right)$
and the heat lost by 1 lb . of steam $=q_{1} \mathrm{~L}_{1}+\left(t_{1}-t_{3}\right)$
equating the heat lost by the steam to the heat gained by the water, we get

$$
\begin{equation*}
q_{1} \mathrm{~L}_{1}+\left(t_{1}-t_{3}\right)=\mathrm{W}\left(t_{3}-t\right)+\frac{(\mathrm{W}+1)}{2 g} \cdot \frac{\mathrm{~V}_{3}^{2}}{\mathrm{~J}} \tag{3}
\end{equation*}
$$

from which t_{3} may be estimated.
The kinetic energy of the jet is usually so small in comparison with the other items in (3) that for practical purposes it may be neglected.
Area of Steam Nozzle.-The dryness fraction, q_{2}, of the steam at pressure p_{2} (or $0.58 p_{1}$) is found from a temperature-entropy diagram, or by calculation from

$$
q_{2}=\frac{\mathrm{T}_{2}}{\mathrm{~L}_{2}}\left(\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}+\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)
$$

Let $w \mathrm{lb}$. be the weight of steam used per second and v_{2} the specific volume at pressure p_{2}, then, neglecting the volume of the water it contains, its volume will be

$$
\begin{align*}
& v \times q_{2} v_{2} \\
& \text { and the area of the steam nozzle }=\frac{w \times q_{2} v_{2}}{\mathrm{~V}} . \tag{4}
\end{align*}
$$

Area of Water-discharge Orifice.-The quantity of watrer drawn from the feed tank per second will be $w \times W \mathrm{lb}$., or

$$
\frac{2 v . \mathrm{W}}{62 \cdot 4} \mathrm{cu} . \mathrm{ft} .
$$

hence,
area of the discharge end of the combining nozzle $=\frac{w \cdot \mathrm{~W}+w}{62 \cdot 4 \mathrm{~V}}$.

Example.-Calculate the area of the orifices of a live steam injector to take 1000 gallons of water per hour from a feed tank to a boiler, the absolute steam pressure being 165 lb . per sq. in. The steam supplied to the injector may be assumed dry, the pressure at the throat of the steam orifice 0.6 of the boiler pressure, and the temperature of the water in the feed or suction tank $60^{\circ} \mathrm{F}$.

The pressure in the steam jet $=0.6 \times 165=99 \mathrm{lb}$. abs.
From steam tables we find-

\boldsymbol{p}	\boldsymbol{t}	\boldsymbol{v}	L	H	T
165 99	366 327	2.753 4.47	856.8 886.6	1195.0 1156.2	826 787

From

$$
\begin{aligned}
\mathrm{V} & =\sqrt{64 \cdot 4 \times 778\left\{(826-787)\left(1+\frac{856 \cdot 8}{826}\right)-787 \log _{e} \frac{826}{787}\right\}} \\
& =1420 \mathrm{ft} . \text { per second } \quad \text { equation (2), p. } 229
\end{aligned}
$$

The dryness fraction $q_{2}=\frac{787}{886 \cdot 6}\left(\frac{856 \cdot 8}{826}+\log _{6} \frac{826}{787}\right)$

$$
=0.963 \quad \text { equation }(2 a), \text { p. } 230
$$

(Note: Both V and q_{2} could be obtained directly from a Mollier Diagram.)

From (1), p. 229, we have, neglecting H

$$
\frac{V_{j}{ }^{2}}{64 \cdot 4}=\frac{1 \cdot 2 \times 165 \times 144}{62 \cdot 4}
$$

from which $\mathrm{V}_{j}=171 \mathrm{ft}$. per second
Neglecting the second term on the right-hand side of (2), i.e. if h is small

$$
\begin{aligned}
171 & =\frac{1420}{W+1} \\
W & =\frac{1420-171}{171}=7.30 \mathrm{lb}
\end{aligned}
$$

The feed water drawn from the feed tank per hour is $10,000 \mathrm{lb}$. $=\frac{10,000}{3600} \mathrm{lb}$. per second, hence the weight of steam used per second is

$$
\frac{10,000}{3600 \times 7 \cdot 30} \mathrm{lb} .
$$

and by (4), p. 230, the area of the steam nozzle will be

$$
\begin{aligned}
& \frac{10,000}{3600 \times 7.30} \times \frac{0.963 \times 4.47}{1420} \\
= & 0.00115 \mathrm{sq} . \mathrm{ft} . \\
= & 0.00115 \times 144=0.166 \mathrm{sq} . \mathrm{in} .
\end{aligned}
$$

The discharge from the injector will be

$$
\begin{aligned}
& 10,000+\frac{10,000}{7 \cdot 3} \\
= & 11,700 \mathrm{lb} . \\
= & \frac{11,700}{3600} \mathrm{lb} . \text { per second }
\end{aligned}
$$

and by (5), p. 230, the area of the water discharge orifice will be

$$
\begin{aligned}
& \frac{11,700}{3600 \times 62.4 \times 171} \\
= & 0.000304 \text { sq. } \mathrm{ft} . \\
= & 0.0438 \text { sq. in. }
\end{aligned}
$$

The feed temperature will be

$$
856 \cdot 8+\left(366-t_{3}\right)=7 \cdot 30\left(t_{3}-60\right)+\frac{8 \cdot 30}{64 \cdot 4} \cdot \frac{171 \times 171}{778}, \text { or } t_{3}=199^{\circ} \mathrm{F}
$$

$$
\frac{\text { Volume of steam removed from boiler }}{\text { Volume of water replaced }}=\frac{110}{1} \text { approx. }
$$

Example.-Calculate the diameter of the orifices for an injector to deliver 1200 gallons of water per hour into a boiler containing steam at 60 lb . per sq. in. abs. The steam supplied to the injector may be assumed dry, the pressure in the steam orifice 0.6 of the absolute boiler pressure, the temperature of water in the suction tank $100^{\circ} \mathrm{F}$., and the temperature of the feed water $180^{\circ} \mathrm{F}$.
Taking the necessary data from steam tables we have

$$
\begin{aligned}
\mathrm{V} & =\sqrt{64 \cdot 4 \times 778\left\{(753-721)\left(1+\frac{914 \cdot 9}{753}\right)-721 \log _{\mathrm{c}} \frac{753}{721}\right\}} \\
& =1400 \mathrm{ft.} \text { per second }
\end{aligned}
$$

The dryness fraction $q_{2}=\frac{721}{937 \cdot 7}\left(\frac{914 \cdot 9}{753}+\log _{\epsilon} \frac{753}{721}\right)$

$$
=0.970
$$

The feed temperature is here given as $180^{\circ} \mathrm{F}$., the weight of water per pound of steam may therefore be estimated as follows :-
From (3), and neglecting the kinetic energy of the issuing jet,

$$
914 \cdot 9+293-180=W(180-100)
$$

$$
\mathrm{W}=12.84 \mathrm{lb} .
$$

Flow of Steam Through Orifices and Nozzles
The velocity of the jet, neglecting the second term on the right-hand side of (2), is

$$
\mathrm{V}_{j}=\frac{1400}{13.84}=101 \mathrm{ft} . \text { per second }
$$

If the weight of water drawn from the suction feed tank is assumed to be $12,000 \mathrm{lb}$. per hour, the weight of steam used per second will be

$$
\frac{12,000}{12 \cdot 84 \times 3600} \mathrm{lb} .
$$

and by (4) the area of the steam orifice will be

$$
\begin{aligned}
& \frac{12,000}{12.84 \times 3600} \times \frac{0.970 \times 11.58}{1400} \times 144 \\
& \quad=0.295 \text { sq. in. }
\end{aligned}
$$

hence the diameter $=\sqrt{\frac{0.295}{0.7854}}=0.613 \mathrm{in}$.
The discharge from the injector per hour will be

$$
\begin{aligned}
& 12,000+\frac{12,000}{12 \cdot 84} \\
= & 12,934 \mathrm{lb} . \\
= & \frac{12,934}{3600} \mathrm{lb} . \text { per second }
\end{aligned}
$$

and by (5) the area of the water discharge orifice will be

$$
\begin{array}{r}
\frac{12,934}{3600 \times 62.4 \times 101} \times 144 \\
=0.0821 \mathrm{sq} . \mathrm{in} .
\end{array}
$$

hence the diameter $=\sqrt{\frac{0.0821}{0.7854}}=0.323 \mathrm{in}$.
The above design is based upon the feed water temperature, and a check upon the pressure of the feed water is necessary. The pressure of the water at the feed check valve will be from (1),

$$
\begin{aligned}
\frac{101 \times 101}{64.4} & =\frac{p \times 144}{62.4} \\
p & =\frac{101 \times 101 \times 62.4}{144 \times 64.4}=68.6 \mathrm{lb} . \text { per sq. in. abs. }
\end{aligned}
$$

Since the absolute boiler pressure is 60 lb . per sq. in. it is evident that the injector will work against this pressure.

EXAMPLES ON CHAPTER XII

1. Boiler steam of dryness fraction 0.98 and pressure 150 lb . per sq. in. abs. expands through a nozzle down to a pressure of 100 lb . abs. Assuming the flow to be frictionless and adiabatic, estimate the velocity and dryness fraction of the steam jet.
2. Dry steam at a pressure of 180 lb . per sq. in. abs. expands through a properly designed nozzle down to a pressure of 3 lb . abs. Determine the areas of the throat and discharge end of the nozzle to discharge 3000 lb . per hour, and state the dryness fraction at these places on the assumption that the flow is frictionless and adiabatic.
3. Superheated steam at a pressure of 200 lb . abs. and with $100^{\circ} \mathrm{F}$. superheat (volume per pound $=2.68 \mathrm{cu}$. ft.) expands through a nozzle down to 15 lb . abs. Determine the principal dimensions of the nozzle to discharge 3600 lb . per hour, and state the condition of the steam in the throat and at the discharge end. Assume frictionless and adiabatic flow.
4. An exhaust steam injector is to be used for feeding a locomotive boiler in which the steam pressure is 200 lb . abs. If the pressure of the exhaust steam for working the injector is 17 lb . abs. and its dryness fraction is 0.85 , estimate the weight of water that can be pumped per pound of steam, the area of the steam and water discharge orifices, and the feed temperature, if the weight of water taken from the feed tank is $10,000 \mathrm{lb}$. per hour at a temperature of $50^{\circ} \mathrm{F}$.
5. A simple impulse turbine is fitted with convergent-divergent nozzles having throat diameters of $\frac{1}{4} \mathrm{in}$. Calculate the other dimensions if the initial pressure is 150 lb . per sq. in. abs., superheat $180^{\circ} \mathrm{F}$., and the exhaust pressure 2 lb . per sq. in. abs.

If the machine is to develop 200 B.H.P. on an estimated consumption of 16 lb . per B.H.P. hour, find the number of nozzles required. The probable efficiency is 0.84 .
6. At a certain stage of a pressure compounded impulse turbine dry steam at a pressure of 100 lb . per sq. in. abs. enters the nozzle with a velocity of 300 ft . per second.

The pressure in the wheel chamber is 68 lb . per sq. in. abs. Calculate the total exit area of the arc of nozzle required to pass 13.9 lb . per second, assuming a nozzle efficiency of 0.9 .

Chapter XIII

THE STEAM TURBINE. DESIGN OF BLADING, ETC.

-GENERAL STATEMENT

In the reciprocating steam engine the transformation of energy is effected by the action of a static pressure upon the piston, the dynamic pressure being negligible. In the turbine a double transformation occurs, the heat energy being first converted into kinetic energy which is subsequently transformed into mechanical work on the rotor blades. The pressure upon the rotating parts is due almost solely to the change of momentum of the steam in its passage through the blade or nozzle channels. Except in the pure reaction turbine two elements are required, the nozzle, in which the first transformation takes place, and which may be either stationary or rotating, and the blading, in which the second conversion occurs. The functions of nozzle and blade may be shared.

Any section of a turbine in which the complete conversion takes place is known as a " stage."

Turbines may be classed as follows :
(1) Impulse, in which the nozzles are fixed, and which resemble the hydraulic Pelton wheel in general principles.
(2) Pure reaction, in which the nozzles rotate, and of which "Barker's mill " is the prototype. This type is not used in practice.
(3) Reaction, where the first phase of conversion occurs equally in both fixed and rotary nozzles, the blading sharing the nozzle function.
(4) Combination, where certain stages-always the high-pressure stages-are of the impulse type, and the remainder of the reaction.

In addition to the above general classifications, many sub-divisions are recognised, two of which are as follows :
(a) Pressure Compounded-in which the total pressure drop is distributed over a number of stages placed in series. In each stage the velocity of the jet produced is much less than would otherwise be the case, and the peripheral velocity of the wheel, which is a function of the velocity of the jets, is thus kept within convenient limits.
(b) Velocity Compounded-in which the full conversion of the kinetic anergy of the jets into work done upon the rotor in made in several stept
so that the peripheral velocity of the moving blades is reduced. Fig. 106 shows a section of the nozzles and blading of a turbine having two pressure stages, each with three stages of velocity compounding. It will be seen that the velocity of the steam leaving the nozzles is gradually reduced as work is done upon the three sets of moving blades; fixed

Fig. 106.
blades are usel, to redirect the steam into successive rows of blades upon the rotor.

In the Ljungström turbine the stationary blades are replaced by rings of moving blades, the two rotors moving in opposite directions at comparatively low speeds. The flow of the steam in this case is radial, the more usual axial direction not being practical for this arrangement where more than two rows of blades are concerned.

-VELOCITY TRIANGLES FOR SINGLE-STAGE TURBINES

The object of the turbine blading is to convert as much as possible of the kinetic energy of the steam into work upon the rotor. The final velocity of the steam should therefore be as low as possible, and parallel to the axis of the turbine (except, of course, for radial-flow machines).

Fig. 110.

DIAGRAM FOR VELOCITY COMPOUNDED IMPULSE STAGE, GIVEN THE BLADE LENGTHS

Owing to the uncertainty existing concerning the values of K it may be equally satisfactory to assume the height ratio. For the two-velocity stage this varies between $2 \cdot 5$ and 3 . Taking the former value and
referring to the inset of Fig. 109, the relative lengths of the blades will be as follows :

$$
{ }_{1} l_{i}:{ }_{1} l_{0}:{ }_{2} l_{i}:{ }_{2} l_{0}=1: 1 \cdot 5: 2 \cdot 0: 2 \cdot 5={ }_{2} \mathrm{Y}_{0}:{ }_{2} \mathrm{Y}_{i}:{ }_{1} \mathrm{Y}_{0}:{ }_{1} \mathrm{Y}_{i}
$$

Referring to Fig. 111 the first velocity triangle BCE can now be drawn for the entrance to the first stage, and this will determine the value AE of the initial axial velocity ${ }_{1} \mathrm{Y}_{i}$. Taking AE as 2.5 units the dotted lines parallel to $A D$ may now be drawn at distances from AD of $2 \cdot 0,1 \cdot 5$, and 1 unit. The apices $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ of the velocity triangles must now lie on these lines, i.e. the point F is fixed by the point of intersection with the line 2 units from AD of a line drawn through B at an angle of inclination of ${ }_{1} \theta_{0}$ degrees, and similarly for the other points.

The values of the remaining velocities, and consequently of the velocity ratios, are therefore fixed if the height ratios and exit angles are known,

Fig. 111.
or, conversely, the exit angles could be determined given the velocities, or velocity ratios, and the height ratio.
Example.-A stage of a Curtis turbine has a wheel with two moving rings. The jet angle is 20°, and the exit angles of the blades are, first moving ring 22°, fixed blades 24°, second moving ring 35°. The blade speed is 455 ft . per second, the height ratio $2 \cdot 2$, and the speed ratio $0 \cdot 2$.

Find the work done on the blading per pound of steam, and the H.P. expended. Find also the entrance angles of the blades, the velocity coefficients, and the total axial thrust.

The velocity diagram can be drawn as in Fig. 109 from the following data :

$$
\mathrm{BC}=445, \text { and }{ }_{1} \alpha_{i}^{\prime}=20^{\circ}, \text { and }{ }_{1} v_{a_{i}}=\frac{455}{0 \cdot 2}=2275
$$

These determine the first inlet triangle, from which ${ }_{1} y_{i}=778,{ }_{1} v_{r_{j}}=1860$, and ${ }_{1} \theta_{i}=25^{\circ}$.

For the outlet triangle we have $\mathrm{BC}=445,{ }_{1} \theta_{c}=22^{\circ}$
and

$$
{ }_{1} y_{0}=778 \times \frac{1}{\text { height ratio for blade }} \text {. }
$$

The overall height ratio being $2 \cdot 2: 1$, distributed over two moving and one fixed blades, the height ratios for the blades, allowing for a linear increase, are given by

$$
{ }_{1} l_{i}:{ }_{1} l_{0},{ }_{1} l_{0}:{ }_{2} l_{i} \text {, and }{ }_{2} l_{i}:{ }_{2} l_{0} \text { (see Fig. 109) }
$$

or

$$
1: 1 \cdot 4,1 \cdot 4: 1 \cdot 8, \text { and } 1 \cdot 8: 2 \cdot 2
$$

Hence,

$$
{ }_{1} y_{0}=778 \times \frac{1}{1 \cdot 4}=555
$$

The following values are obtained from this triangle :

$$
{ }_{1} v_{r_{0}}=1480, v_{a_{0}}=1070,{ }_{1} \alpha_{0}=31^{\circ} .
$$

The height ratio of the fixed blades gives ${ }_{2} y_{3}=432$, and as ${ }_{2} \theta_{0}=24^{\circ}$ and BC is known, the second inlet triangle, and subsequently the second outlet triangle, can be obtained giving the following values

$$
{ }_{2} v_{a_{i}}=1060,{ }_{2} v_{r_{i}}=672,{ }_{2} \theta_{i}=40^{\circ}
$$

and, as $\quad{ }_{2} y_{0}=354,{ }_{2} v_{r_{0}}=615,{ }_{2} v_{a_{0}}=358$, and ${ }_{2} \alpha_{0}=83^{\circ}$,
${ }_{1} v_{w w}$ will be found to be 3058 ft . per second and ${ }_{2} v_{w v}=1020 \mathrm{ft}$. per second.
From these figures the required values are rapidly obtained, i.e.

$$
\begin{aligned}
\mathrm{E}_{b} & =\frac{u}{g}\left(v_{1} v_{w}+{ }_{2} v_{w}\right) \\
& =\frac{455 \times 4078}{32 \cdot 2}=57,600 \mathrm{ft} . \mathrm{lb} . \text { per pound, or } 74 \cdot 1 \text { B.Th.U. per lb. }
\end{aligned}
$$

The horse-power is then $\frac{E_{b}}{550}=\frac{57,600}{550}=105$ per pound of steam per second.

The thrust on each ring being $\frac{1}{g}\left(y_{i}-y_{0}\right)$
we have the total thrust $=\frac{1}{32 \cdot 2}\{(778-555)-(432-354)\}$
$=9.35 \mathrm{lb}$. per pound of steam per sec.
The velocity coefficients for the first and second moving rings are

$$
\begin{aligned}
& \mathrm{K}_{1}=\frac{1 v_{r_{0}}}{1 v_{r_{i}}}=\frac{1480}{1860}=0.796 \\
& \mathrm{~K}_{2}=\frac{615}{672}=0.915
\end{aligned}
$$

Considering the rings entirely separately the velocity coefficients should probably be of the order of 0.8 and 0.76 respectively, and it would appear that to obtain the abnormally high value of 0.915 the steam would have to be considerably restricted volumetrically in its passage through the

248

The Theory of Heat Engines
[Chap. XIII
fixed and second row of blades, tending to give a reaction effect with the conversion of an unanticipated pressure drop across the blades intc velocity energy.

-VELOCITY DIAGRAM FOR REACTION STAGE

In a reaction stage there is an increase of relative velocity between entrance and exit, due to the pressure drop in the blade channels. The fixed and moving rings have identical blades, and the heat drop is equally divided between the fixed and moving rings. It is conventional to make

Fig. 112.
the blade length constant for each step of the rotor, in which case $Y_{i}=Y_{\text {. }}$ and as $\alpha_{i}=\theta_{0}$ the inlet and outlet triangles will be identical

The velocity of whirl V_{w} will be given by $\mathrm{V}_{w}={ }_{2} \mathrm{~V}_{a_{i}} \cos \theta_{\sim u}$
and

$$
\begin{align*}
\mathrm{E}_{b} & =\frac{u}{g}\left(2 \mathrm{~V}_{a_{i}} \cos \theta-u\right) \\
& =\frac{u^{2}}{g}\left(\frac{2 \cos \theta}{\rho}-1\right) \quad \text { (see Fig. 112) } \tag{1}
\end{align*}
$$

The constant entrance angle for each ring is given by

$$
\begin{align*}
\tan \theta_{i} & =\frac{\mathrm{V}_{a_{i}} \sin \theta}{\mathrm{~V}_{a_{i}} \cos \theta-u} \\
& =\frac{\sin \theta}{\cos \theta-\rho} . \tag{2}
\end{align*}
$$

The simplicity of the equations for this type of blading enable the necessary particulars to be obtained more readily by direct than by graphical calculation.

The dynamic axial load upon the blading is theoretically zero, as $\mathrm{Y}_{i}=\mathrm{Y}_{\boldsymbol{o}}$, and in practice is less than 2 per cent. of the total thrust. This latter is due almost entirely to the static difference of pressure at the two ends of the rotor. If A is the annular area between the rotor and drums, the thrust due to a difference of pressure of $p_{1}-p_{0}$ at the ends of one step of the rotor will be $\left(p_{i}-p_{o}\right)$ A. As the pressure drop is divided approximately equally between the fixed and moving blades, the thrust upon the rotor will be $\frac{1}{2}\left(p_{i}-p_{0}\right)$ A. This is usually balanced by steam pressure applied to a dummy piston secured to the rotor shaft, or by a thrust block.
In the reaction turbine the pressure drop is distributed over a large number of stages arranged along the "drum" and a corresponding gradual increase of specific volume of the stream occurs, necessitating an increase in the area of the blade channels measured perpendicular to the axis of the machine. This is normally obtained by increasing the lengths of successive groups of blades, and by " stepping up " the drum diameter towards the low-pressure end, as, by the latter, the necessary area can be provided without undue increase of blade length. The increased drum diameter also increases the torque due to the steam pressure. The total work done on the blading, and the total axial thrust, must be obtained by adding the effects obtained separately for each group of blades and for each " step" of the drum.

- BLADE SPEED AND R.P.M.

The maximum peripheral velocity of the rotor is determined by the strength of the disc or drum material. For mild steel the velocity is of the order of 380 ft . per second, and for nickel steel about 424 ft . per second. The speed of rotation varies with the size of the unit and the nature of the final drive. For electrical generation in large units and with direct drive 1500 r.p.m. is normal, with 3000 r.p.m. for plants of $12,000 \mathrm{kw}$. or under. For geared turbines speeds of $4000-8000$ r.p.m. are employed.

DIAGRAM EFFIGIENCY AND SPEED RATIO

The diagram efficiency is the ratio between the work theoretically done on a blade ring and the kinetic energy of the jet, and can be derived directly from the velocity diagram.

250

The diagram efficiency is then given by

$$
\eta_{d}=\frac{\mathrm{E}_{b}}{\frac{V_{i}{ }^{2}}{2 g}}
$$

For the simple impulse stage $\eta_{d}=\frac{2 u V_{w}}{\mathrm{~V}_{a_{i}}{ }^{2}}$ equation (3), p. 239
For a velocity compounded impulse stage $\eta_{d}=\frac{2 u}{\mathrm{~V}_{a_{i}}{ }^{2}} \Sigma \mathrm{~V}_{w} \quad$ p. 244 and for the reaction stage $\eta_{d}=\frac{2 u^{2}}{\bar{V}_{a_{i}}{ }^{2}}\left(\frac{2 \cos \theta}{\rho}-1\right) \quad$ equation (1), p. 248 For a constant steam velocity $\mathrm{V}_{\mathrm{a}_{i}}$ and given blade angles, there is in each case a value of ρ which will give maximum values for both work done and diagram factor.

The work done in the impulse stage, by equation (4), p. 239,

$$
\mathrm{E}_{b}=\frac{u^{2} \mathrm{C}}{g}\left(\frac{\cos \alpha_{i}}{\rho}-1\right)
$$

and since $\quad \frac{u}{\mathrm{~V}_{a_{i}}}=\rho$

$$
\begin{aligned}
\mathrm{E}_{b} & =\frac{\mathrm{V}_{\mathrm{a}_{i}{ }^{2} \rho^{2} \mathrm{C}}^{g}\left(\frac{\cos \alpha_{i}}{\rho}-1\right)}{} \\
& =\frac{\mathrm{V}_{\mathrm{a}_{i}^{2}}{ }^{2} \cos \alpha_{i} \mathrm{C}}{g}-\frac{\mathrm{V}_{\mathrm{a}_{i}^{2} \rho^{2} \mathrm{C}}^{g}}{g}
\end{aligned}
$$

For E_{b} to have a maximum value $\frac{d E_{b}}{d \rho}=0$
or

$$
\cos \alpha_{i}-2 \rho=0
$$

and

$$
\begin{aligned}
& \rho=\frac{1}{2} \cos \alpha_{i} \\
& u=\frac{1}{2} V_{a_{i}} \cos \alpha_{i}
\end{aligned}
$$

The normal value of α_{i} is 20°, in which case

$$
\cos \alpha_{i}=0.94 \text { and } u=\frac{0.94}{2} \cdot \mathrm{~V}_{a_{i}}=0.47 \mathrm{~V}_{a_{i}}
$$

In the case of the reaction stage

$$
\mathrm{F}_{-}-\begin{gathered}
2 \mathrm{~V}_{a_{i}}{ }^{2} \rho \cos \theta \\
g
\end{gathered}-\frac{\mathrm{V}_{a_{i}}{ }^{2} \rho^{2}}{g} \text { from equation (1), p. } 248
$$

$$
\frac{d \mathrm{E}_{b}}{d \rho}=0 \text { when } 2 \cos \theta-2 \rho=0
$$

or $\quad \rho=\cos \theta$
For $\alpha_{i}=20^{\circ} \quad u=V_{a_{i}} \cos \theta=0.94 \mathrm{~V} \alpha_{i}$, and $V_{a_{0}}$ will be perpendicular to a.

The following values may be taken in practice :
Simple Impulse, $\rho=0.47$.
Velocity Compounded Impulse, two, three, and four moving rings, $0.235,0.156$, and 0.117 .

Reaction 0.94.

It should be noted that if the above values are exceeded, that is, if the turbine is " overspeeded," the jet will exert a pressure on the back of the blades and tend thereby to reduce the torque. " Underspeeding" will be less detrimental, as though the speed of the wheel will be reduced, the pressure upon the blades will be increased.

THE SECTION OF TURBINE BLADES

Fig. 113, A, shows the normal section of blades for an impulse turbine, θ_{i} and θ_{0} being the inlet and outlet angles determined with reference to the velocity triangle. The inner face of the blade is cut to a radius r determined after the overall width v of the blade has been fixed, the same centre of curvature being used to describe the back of the adjacent blade. A channel of constant radial width is the result.

Two modifications are recommended to allow for practical difficulties : The entering edge of the bucket may be strengthened by increasing the angle θ_{i} of the inner curve by a small amount δ, Fig. 113, B, which may have the value of about 3°, this being found less detrimental than decreasing the ex-
 terior angle by the same amount (which would have a similar effect to overapeeding).

The outlet edge may be extended, as shown in B. This has the double effect of stiffening the blades and improving the highly important guidance of the steam leaving the blade. It will be seen from these figures that the steam does not fill the channels between the blades in a uniform manner, but is compressed by centrifugal and inertia forces towards a point X on the outside of the curve of the stream and towards the leaving edge. A zone of low pressure and high turbulence is thus left against the back of the blades, and the stream will expand as it moves from \mathbf{X} towards the outlet of the blade, causing the final mean jet angle to be appreciably less than the designed value θ_{0}. The parallel extension allows to some extent for the guidance of the steam after re-expansion has taken place.

Curved sheet-metal buckets, as shown at C, are also extensively used. Though allowing considerable expansion of the steam passage along the blade centre-line, the performance, at least at low pressures, does not appear to be inferior to that of section A.

PITCH, WIDTH, AND LENGTH OF BLADES

The number of blades to be provided in any ring should be just sufficient to give adequate guidance to the steam. Blades in excess of this number merely increase the total friction owing to the increased surface provided. It would appear that the pitch should not be less than $\frac{3}{8} \mathrm{in}$. or more than 1 in ., and that a value equal to the radius of the face of the blade is suitable in many cases.

The width of the blading is usually determined by convention, three factors having to be considered, i.e. the rigidity of the blade, and the provision of a suitable radius of curvature of the face with adequate but not excessive surface area. In the Parsons turbine, with a very large number of reaction stages, the axial width and the pitch vary from about 0.24 in . width and 0.165 in . pitch at the high pressure end, to 0.39 in . width and 0.24 in . pitch about the centre, and to 1 in . width and $0.55-$ 0.63 in. pitch for the low-pressure stages. In the normal impulse wheel the width varies from a minimum of 0.6 in . to 1.0 in . for blades about 10 in . long, and to 1.2 in . or 1.4 in . for very long blades up to 24 in . in length. The ratio of length to axial width is usually about 15.

The length of the blade is determined by a number of factors. These include the ratio of blade length to mean blade ring diameter, as if this is too large the pitch of the blades will vary excessively between the roots and tips, resulting in either too small a pitch with excessive friction at the roots or too wide a spacing with unsatisfactory guidance at the tips. The rigidity and strength of the blade to resist centrifugal and dynamic stresses and vibration are of primary importance.

The minimum length of blade for impulse turbines should not be less than $\frac{3}{8} \mathrm{in}$., and is usually from 1.5 to 2 per cent. of the mean ring diameter.

In the Parsons turbine this value should not be less than 3 per cent. in order that leakage over the tips of the blades may not be excessive.

In the Parsons turbine full peripheral admission is necessary from the first stage onward and should be attained in the impulse turbine at as early a stage as is practicable in order that the dynamic loading of the blades may be steady, impulsive loading tending to cause vibration.

For more complete discussions of blade dimensions, etc., the reader is referred to Goudie's "Steam Turbines," and Stodola's "Steam and Gas Turbines."

BLADE FRICTION

The term Friction as applied to blading is a general term covering a large number of factors, as is the case of nozzle friction. These include :
(1) Shock at entry owing to the necessary thickness of the blades.
(2) Shock of the entering steam upon dead steam carried round in the blade channels, especially if full peripheral admission is not employed.
(3) Surface friction proper, which is markedly greater with wet than with superheated steam.
(4) Centrifugal compression and subsequent re-expansion owing to the curvature of the blade faces.
(5) Centrifugal compression away from the axis of the machine and secondary circulation set up thereby in the blade channels.
(6) Inefficient guidance, attributable to several sources.
(7) Disturbances carried over from the nozzle.

The overall coefficient is not known with accuracy, but for a normal impulse turbine the stage coefficient may vary from 38 per cent. at the high-pressure end of the machine to 30 per cent. towards the outlet.

REHEAT FACTOR AND TURBINE EFFIGIENGIES

In the single-stage turbine the overall efficiency is not of a high order, chiefly because the friction in the blading reduces the efficiency of conversion of the kinetic energy to a figure of the order of 70 per cent. The heat generated by friction is discharged in the exhaust steam.

In the multi-stage turbine friction loss in the first stage represents a total loss to that stage only, as the friction heat is passed on in the live steam used in the second and subsequent stages, and is partly converted into work there. The multistage turbine is therefore one of the group of machines in which

Fig. 114. the overall efficiency may be greater than the efficiencies of the parts.
'This effect is illustrated for a three-stage turbine in Fig. 114. Assuming
adiabatic frictionless expansion, the $\mathrm{T} \phi$ diagrams for the three stages will be represented by abcd, dcef, and fegh. If friction is present, however, the steam will leave the stages with larger heat contents and higher dryness fractions than are indicated by points c, e, and g, the new condition points being c^{\prime} and e^{\prime} and g^{\prime}, and the new condition curve $b c^{\prime} e^{\prime} g^{\prime}$. It will, of course, be remembered that the increase in the areas of the two state diagrams does not correspond to an increase in effective work done; the reverse is in fact the case as friction renders the action irreversible.

Fig. 115.
The total heat to be distributed between the stages is represented by $a b g^{\prime} h$, instead of $a b g h$, the ratio between the two, $\frac{a b g^{\prime} h}{a h-L}$, being known as the Reheat Factor, and $a b g^{\prime} h$ as the "cumulative heat."

The effect of reheat is illustrated for this turbine on the Mollier diagram shown in Fig. 115.
Let η_{s} be the efficiency of each stage, or Stage Efficiency and $R=$ the reheat factor for the turbine, the initial and final pressures being p_{1} and p_{4}.
$\mathrm{H}_{a}-\mathrm{H}_{b}$ is the adiabatic heat drop, and the cumulative heat will be $\mathrm{R}\left(\mathrm{H}_{a}-\mathrm{H}_{b}\right)$, where R has a value of the order of 1.04 .
The heat drop per stage (assumed uniform) will be $\frac{R\left(H_{a}-H_{b}\right)}{3}=h_{s}$.

From the initial condition point a the distance $a c=h_{s}$ is measured, and $\frac{u d}{a c}$ is made equal to η_{v}. The final condition point for the first stage must then lie on the line of pressure through c and the line of constant heat through d, i.e. at e.
The initial condition point for the second stage is now e, from which $e f=h_{s}$ and eg $=e f . \eta_{s}$ are measured, leading to the condition point h, which gives the properties of steam entering the third stage. Making $h j=h_{s}$ and $\frac{h k}{h j}=\eta_{s}$, the construction leads to the final condition point $/$ of the steam leaving the turbine.

The reheat factor allows for the divergence of the constant pressure lines on the $\mathrm{H} \phi$ chart, as if these were parallel the above construction could only be applied were $\mathrm{R}=1$.

The internal efficiency η_{i}, i.e. the efficiency compared with an adiabatic operation, is then given by $\frac{a e^{\prime}}{a b}$.

It will be seen that the success of the above construction depends on the proper selection of the values of R and η_{s}, which are not independent variables. The relation between the value of R and the efficiencies is obtained as follows :

$$
\text { Internal efficiency } \begin{aligned}
\eta_{i} & =\frac{a e^{\prime}}{a b} \\
& =\frac{\text { actual heat drop }}{\text { adiabatic heat drop }} \\
& =\frac{\Sigma h_{s}^{\prime}}{\mathrm{H}_{a}}
\end{aligned}
$$

where h_{s}^{\prime} and H_{a} are the actual heat drop per stage and the total adiabatic heat drop

$$
\begin{aligned}
& =\frac{\eta_{s} \Sigma h \text { cumulative }}{H_{a}} \\
& =\frac{\eta_{s} \mathrm{R} \cdot \mathrm{H}_{a}}{\mathrm{H}_{a}} \\
\eta_{i} & =\mathrm{R} \cdot \eta_{s}
\end{aligned}
$$

or
Experimental values of η_{s} are found to vary with the speed-ratio, and are normally shown plotted on a base of the theoretical value of the speed ratio ρ_{t}, which is given by $\frac{u}{\mathrm{~V}_{0}^{\prime \prime}}$, where V_{0}^{\prime} is the theoretical velocity at exit from the nozzle. A series of curves plotted in this manner are shown in Fig. 116, for three, two and one velocity stages, the latter being the right-hand curve.

That the efficiency of the turbine is dependent on the velocity ratio and not upon the individual values of the velocities can be shown as follows :

$$
\eta_{i}=\frac{\text { heat equivalent of work done }}{\text { energy available }}
$$

Fig. 116.
Taking the value of E_{b} from equation (3), p. 239, and writing energy available as $\mathrm{V}_{a_{i}}{ }^{2} / 2 g$, where $\mathrm{V}_{a_{i}}$ is the theoretical velocity of discharge from the nozzle

$$
\begin{aligned}
\eta_{i} & =\frac{\frac{u}{g}\left(\mathrm{~V}_{a_{i}} \cos \alpha_{i}-u\right)\left(1+\frac{\mathrm{K} \cos \theta_{o}}{\cos \theta_{i}}\right)}{\mathrm{V}_{a_{i}}^{2} / 2 g \mathrm{~K}^{2}} \\
& =\frac{u}{\mathrm{~V}_{a_{i}}} \cdot 2 \mathrm{~K}^{2}\left(\cos \alpha_{i}-\frac{u}{\mathrm{~V}_{a_{i}}}\right)\left(1+\frac{\mathrm{K} \cos \theta_{o}}{\cos \theta_{i}}\right)
\end{aligned}
$$

an expression in which the velocities appear only in the ratio $\frac{u}{V_{0}}$.

Example.-A four-stage velocity compounded turbine is to work between the limits of 185 lb . per sq. in. abs. at $200^{\circ} \mathrm{F}$. superheat, and 0.75 lb . per sq. in. abs. Find from the Mollier diagram the probable values of the initial stage pressures and the qualities of the steam, assuming that the average stage efficiency is 0.67 .

In this case the stage efficiency and reheat factor are inter-related, but insufficient information is given to determine R. The method of procedure is therefore to assume a reasonable value of R, and proceed if necessary by a series of approximations. The probable value of R in this case will be about 1.04.

Referring to Fig. 115, the position of a may be marked on the Mollier chart (i.e. 185 lb . per sq. in. and 200° superheat), and also the point b, on an adiabatic through a, and on the line $p=0.75 \mathrm{lb}$. per sq . in.
Then $\mathrm{H}_{a}-\mathrm{H}_{b}$ will be found to be 392 B.Th.U.
The cumulative heat will then be $\mathrm{H}_{c}=1.04 \times 392=407.68$ B.Th.U. per lb . and the average heat drop per stage is $\frac{407.68}{4}=101.92$ B.Th.U. per lb., say $102 \cdot 0$ B.Th.U. per lb.
The net heat drop per stage is then $h_{t}=0.67 \times 102=68.34$. Referring again to Fig. 115, $a c=102$, giving the lower pressure of the first stage as 63 lb . per sq. in.

Also $a d=68.34$, and e will be on the total heat line through d and the constant pressure line for 63 lb . per sq. in.
The quality at e will be found to be $123^{\circ} \mathrm{F}$. superheat.
Continuing the process for the three remaining stages, the following values will be obtained :

Stage	1	2	3	4	Exhaust
Pressure Quality .	200° F. s.	123° F. s.	50° F. s.	$q=0.984$	0.75 lb. per sq. in. abs.

It will be seen that as construction proceeds progressively down the diagram from a, an excessive stage heat drop, the effect of the selection of too high a value of R, will result in l being found on a pressure line below that specified as the exhaust pressure, and the construction will have to be recommenced with a lower value.

In the above case the total heats in the inlet and exhaust steam are 1315 and 1042 B.Th.U. per lb., and the internal efficiency will be

$$
\frac{1315-1042}{392}=\frac{273}{392}=0.696
$$

THE REGENERATIVE PRINCIPLE

For practical reasons the perfect regenerative cycle discussed on p. 208 is never attained in practice, and a close approximation to it is only attempted in the steam turbine.

The modified cycle applied to a compound engine or two-stage ${ }^{1}$ turbine is shown in the $\mathrm{T} \phi$ diagram, Fig. 117. abcd represents the diagram for the high-pressure cylinder, $c d$ showing the exhaust into the intermediate receiver. Here a portion of steam represented by the change in volume from c to e is removed to heat the feed-water, the remainder going through the cycle defg in the low-pressure cylinder.

It must be remembered that this diagram is built upon the basis of 1 lb . of steam, and that the amount of steam passing through the two

Fig. 117.
cylinders is different. The diagram thus modified, as by the change in volume $c e$ which is effected by withdrawal of steam and not by condensation, must therefore be taken as representing heat quantities and not the actual conditions of the steam at the various points, i.e. if 1 lb . of steam passes through the high-pressure cylinder and $v \mathrm{lb}$. of steam are extracted from the receirer, the heat lost by the receiver will be the area $c e^{\prime} c^{\prime}$ ', but the remaining steam will still have the quality given by the point c, not by the point e.

The calculations of work done and of efficiency are most conveniently performed if $1+w \mathrm{lb}$. are assumed to be supplied to the high-pressure
: "Stage" may here have a diffetent meaning from that given on p. 235. The sages may consist of the high-pressure and low-pressure sections of a turbine.
cylinder, and $w \mathrm{lb}$. is extracted at T_{2}, leaving 1 lb . to pass through the low-pressure cylinder. The quantities involved are readily found without reference to the diagram, Fig. 117, to avoid the complexities stated above. Let R be the heat removed from $\mathrm{volb}_{\mathrm{lb}}$. of extracted steam and passed to the 1 lb . of feed-water initially at T_{3}, which results from the final condensation process. To the feed thus raised to temperature T_{2} is now added $\approx \mathrm{lb}$. of water at $\mathrm{T}_{\mathbf{2}}$ condensed in the feed heater, leaving $1+w \mathrm{lb}$. to pass on to the boiler.

The heat received from outside the system is that required to change $1+w \mathrm{lb}$. of water at T_{2} to steam at T_{1}, and the heat rejected from the system is the latent heat in 1 lb . of steam at temperature T_{3} and of a dryness fraction obtained by adiabatic expansion from T_{1}.
Thus $\frac{\text { work done }}{J}=$ heat supplied-heat rejected
and

$$
\begin{equation*}
\eta=\frac{\text { work done } \times \frac{1}{\mathrm{~J}}}{\text { heat supplied }} \tag{1}
\end{equation*}
$$

Now work done $=\mathrm{W}=(1+w)\left(\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)-q_{3} \mathrm{~L}_{3}$ B.Th.U.
the value of q_{3} being given by

$$
\begin{equation*}
\frac{q_{3} L_{3}}{T_{3}}=\log _{6} \frac{T_{1}}{T_{3}}+\frac{L_{1}}{T_{1}} . \tag{2}
\end{equation*}
$$

Also for $w \mathrm{lb}$. performing a closed cycle between T_{1} and T_{2} and giving $u p$ the heat R during condensation at T_{2},

$$
w \log _{4} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+w \frac{\mathrm{~L}_{1}}{\mathrm{~T}_{1}}-\frac{\mathrm{R}}{\mathrm{~T}_{2}}=0
$$

i.e. the entropy of the closed cycle is constant,
or

$$
w=\frac{\mathrm{R} / \mathrm{T}_{2}}{\log _{6} \mathrm{~T}_{1} / \mathrm{T}_{2}+\mathrm{L}_{1} / \mathrm{T}_{1}}
$$

But

$$
\mathrm{R}=\mathrm{T}_{2}-\mathrm{T}_{3}
$$

or

$$
\begin{equation*}
w=\frac{1-T_{3} / T_{2}}{\log _{e} T_{1} / T_{2}+L_{1} / T_{1}} \cdot . . . \tag{3}
\end{equation*}
$$

Substituting the value of q_{3} from (2) in the equation (1) and deducing the efficiency

$$
\begin{align*}
\eta & =\frac{(1+w)\left(\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)-\mathrm{T}_{3}\left(\log _{e} \mathrm{~T}_{1} / \mathrm{T}_{3}+\mathrm{L}_{1} / \mathrm{T}_{1}\right)}{(1+w)\left(\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)} \\
& =1-\frac{1}{1+w} \cdot \frac{\mathrm{~T}_{3}\left(\log _{6} \mathrm{~T}_{1} / \mathrm{T}_{3}+\mathrm{L}_{1} / \mathrm{T}_{1}\right)}{\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}} \cdot \cdot \cdot \cdot \tag{4}
\end{align*}
$$

where w is given by equation (3).

If steam tables are available equation (4) can be solved with greater ease and accuracy if written in the form
where

$$
\begin{align*}
& \eta=1-\frac{\mathrm{T}_{3}\left(\phi_{t_{1}}-\phi_{w_{3}}\right)}{(1-+w)\left(\mathrm{H}_{1}-h_{2}\right)} \cdot \tag{5}\\
& v=\frac{\frac{h_{2}-h_{3}}{\mathrm{~T}_{2}}}{\phi_{s_{1}}-\phi_{w_{2}}}
\end{align*}
$$

The corresponding formula for the Rankine cycle is

$$
\eta=1-\frac{\mathrm{T}_{3}\left(\phi_{s_{1}}-\phi_{w_{3}}\right)}{\mathrm{H}_{1}-h_{3}}
$$

The actual efficiency will be slightly less as the feed cannot be heated in practice quite to T_{2}.

Example.-A steam turbine works between pressures of 200 lb . pet sq. in. abs. and 2 lb . per sq. in. 2bs., and steam is bled off at 58 lb . per sq. in. abs. for feed heating. Calculate the efficiency of the cycle and compare it with that of the Dankine cycle.

Using the values nbtained from the steam tables

$$
\begin{align*}
\frac{\text { work done }}{\mathrm{J}} & =\text { heat supplied-heat rejected } \\
& =(1+w)\left(\mathrm{L}_{1}+h_{1}-h_{2}\right)-q_{3} \mathrm{~L}_{3} \tag{1}
\end{align*}
$$

q_{3} being the final quality after adiabatic expansion, and is found, from the Mollier diagram, to be 0.786
or

$$
\frac{\mathrm{W}}{\mathrm{~J}}=(1+w)(843 \cdot 2+354 \cdot 9-259 \cdot 8)-0.786 \times 1021
$$

or $\quad \frac{\mathrm{W}}{\mathrm{J}}=(1+w)(938.3)-803$
Now

$$
\frac{\mathrm{R}}{\mathrm{~J}}=h_{2}-h_{3}=259 \cdot 8-94 \cdot 0
$$

The entropy gained by the feed, reckoned above T_{2}, is then

$$
\begin{align*}
& \frac{259.8-94.0}{290 \cdot 5+460}=0.221 \tag{2}\\
& \mathrm{~T}_{2}=290 \cdot 5+460^{\circ} \mathrm{F} . \text { abs. }
\end{align*}
$$

where
The loss of entropy from $w \mathrm{lb}$. of steam during the discharge of heat in the closed cycle from T_{1} to T_{2} is

$$
\begin{aligned}
& w\left(\phi_{h_{1}}+\phi_{L_{1}}-\phi_{k_{t}}\right) \\
& w(05437+1.0019-0.4242)=0.221 \text { from (2) }
\end{aligned}
$$

$$
\text { or } \quad w=0.197 \mathrm{lb} \text {. }
$$

Substituting this value in (1) and also the values $L_{1}=843 \cdot 2, h_{1}=354.9$, $\boldsymbol{H}_{\mathbf{2}}=\mathbf{2 5 9 . 8}$

$$
\eta==\frac{\text { work done } / \mathrm{J}}{\text { heat received }}=\frac{1 \cdot 197 \times 938 \cdot 3-803}{1 \cdot 197(843 \cdot 2+354 \cdot 9-259 \cdot 8)}=34 \cdot 1 \text { per cent }
$$

The corresponding Rankine $\eta=\frac{1198 \cdot 1-897}{1198 \cdot 1-94 \cdot 2}$

$$
\text { where } \mathrm{H}_{1}=1198 \cdot 1
$$

$$
\begin{aligned}
q_{3} L_{3} & =897 \\
h_{3} & =94 \cdot 2
\end{aligned}
$$

$$
=27.2 \text { per cent }
$$

THE REGENERATIVE PRINGIPLE APPLIED TO THE TRIPLE EXPANSION ENGINE OR TO THREE STAGES OF EXPANSION IN A TURBINE
The ideal cycle for this principle is shown on the temperature-entropy diagram (Fig. 118). $b l$ is the curve of perfect regeneration, $b c$ expansion

Fig. 118.
in the high-pressure cylinder, ef expansion in the interrediate cylinder, and $h j$ the expansion in the low-pressure cylinder. The gross amount of heat supplied is represented by the area $k^{\prime} k a b c^{\prime}$, and since an amount of heat represented by the area $j^{\prime} h f e c c^{\prime}$ is returned to the feed, the net amount of heat supplied is shown by the area $k^{\prime} k a b c e f h j^{\prime}$. The work done is represented by the shaded area, and the efficiency is

$$
\eta=\frac{\text { area } k a b c e f h j}{\text { area } k^{\prime} k a b c e f h j^{\prime}}
$$

The caution given in the last section regarding the use of the diagram is relevant in this case aleo.

Let $w_{1}=$ weight of steam taken from the first receiver, between the high-pressure and intermediate cylinders, and T_{2} its temperature.
$\mathrm{R}_{1}=$ heat supplied by v_{1} to the feed.
$w_{2}=$ weight of steam taken from the second receiver between the intermediate and low-pressure cylinders, and T_{3} its temperature.
$\mathrm{R}_{2}=$ heat supplied by v_{2} to the feed.
As before, work donem heat supplied-heat rejected

$$
\begin{array}{r}
=\left(1+w_{1}+w_{2}\right)\left(\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)-\text { heat discharged to condenser } \\
=\left(1+v_{1}+w_{2}\right)\left(\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)-q_{4} \mathrm{~L}_{4} \cdot \text {. (1 } \\
\frac{q_{4} \mathrm{~L}_{4}}{\mathrm{~T}_{4}}=\log _{4} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{4}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}} \text {. (2 } \tag{2}
\end{array}
$$

and
For $w_{1} \mathrm{lb}$. of steam working between T_{1} and T_{2} and giving up the heat R_{1} during complete condensation at temperature T_{2}

$$
\begin{equation*}
v_{1} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+w_{1} \frac{\mathrm{~L}_{1}}{\mathrm{~T}_{1}}-\frac{\mathrm{R}_{1}}{\mathrm{~T}_{2}}=0 \tag{3}
\end{equation*}
$$

and for $w_{2} \mathrm{lb}$. of steam working between T_{1} and T_{3} and giving up the heat $\mathrm{R}_{\mathbf{2}}$ during condensation at temperature T_{3}

$$
\begin{equation*}
w_{2} \log _{a} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{3}}+w_{2} \frac{\mathrm{~L}_{1}}{\mathrm{~T}_{1}}-\frac{\mathrm{R}_{2}}{\mathrm{~T}_{3}}=0 . \tag{4}
\end{equation*}
$$

But $\mathrm{R}_{\mathbf{2}}=\mathrm{T}_{\mathbf{3}}-\mathrm{T}_{4}$
or

$$
\begin{equation*}
v_{2}=\frac{1-\frac{T_{4}}{T_{3}}}{\log _{4} \frac{T_{1}}{T_{3}}+\frac{L_{1}}{T_{1}}} \text { from (4) } \tag{5}
\end{equation*}
$$

and as

$$
\begin{align*}
& \mathrm{R}_{1}=\left(1+w_{2}\right)\left(\mathrm{T}_{2}-\mathrm{T}_{3}\right) \\
& w_{1}=\frac{\left(1+w_{2}\right)\left(1-\frac{\mathrm{T}_{3}}{\mathrm{~T}_{2}}\right)}{\log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{3}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}} \text { from (3) } \tag{6}
\end{align*}
$$

Substituting the value of q_{4} from (2) in the equation for efficiency

$$
\begin{align*}
& \eta=\frac{\left(1+w_{1}+w_{2}\right)\left(\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)-q_{4} \mathrm{~L}_{4}}{\left(1+w_{1}+w_{2}\right)\left(\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)} \\
& \eta=1-\frac{\mathrm{T}_{4}\left(\log _{4} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{4}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}\right)}{\left(1+w_{1}+w_{2}\right)\left(\mathrm{L}_{1}+\mathrm{T}_{1}-\mathrm{T}_{2}\right)} . \tag{7}
\end{align*}
$$

where the values of v_{1} and v_{2} are given by equations (6) and (5).

If steam tables are available

and

$$
\begin{aligned}
& v_{2}=\frac{h_{3}-h_{4}}{\mathrm{~T}_{3}\left(\phi_{s_{1}}-\phi_{w_{3}}\right)} \text { from (5) } \\
& w_{1}=\frac{\left(1+v_{2}\right)\left(h_{2}-h_{3}\right)}{\mathrm{T}_{2}\left(\phi_{t_{1}}-\phi_{w_{3}}\right)} \text { from (6) }
\end{aligned}
$$

and the equation (7) for efficiency, becomes

$$
\eta=1-\frac{\mathrm{T}_{4}\left(\phi_{s_{1}}-\phi_{w_{4}}\right)}{\left(1+w_{1}+w_{2}\right)\left(\mathrm{H}_{1}-h_{2}\right)}
$$

The modification required if the steam is not initially dry will be obvious.

APPLICATION OF THE REGENERATIVE PRINCIPLE

It will be seen that, theoretically, regenerative feed heating is most attractive when steam is bled off between each two stages of the turbine, provided that it does not greatly exceed the saturation temperature. As the number of feed heaters increases, however, the gain in efficiency due to each addition falls rapidly (in a given case the first heater increased the basic efficiency by 5.2 per cent., while the fifth heater only contributed 0.4 per cent.). This diminishing return, added to the greatly increased mechanical complexity and cost of the plant, restricts the number of heaters commonly in use, even for the largest plant, to about five.

Regenerative feed heating obviates the use of the "economiser" inserted in the flue to extract the heat from the waste gases and transfer it to the feed-water, and an alternative use for the low temperature heat is found in the preheating of the air on the way to the furnace, thus making a larger proportion of the heat of combustion available at a higher temperature.

THE INFLUENCE OF FINAL WETNESS ON THE CHOICE OF OPERATING CONDITIONS

The choice of operating conditions will represent a compromise between many conflicting factors. Obviously the basic efficiency of 15 per cent. associated with the use of dry saturated steam at a low pressure (150) lbs. and exhausted to atmosphere, can be greatly increased by raising the initial pressure and temperature and employing a highvacuum condenser. Assuring adiabatic expansion, and referring to Fig. 28, p. 70, it will be noted that both these steps involve an increase in the wetness of the steam in the low pressure stage, the final dryness fraction being of the order of 80 per cent. The presence of an excessive quantity of moisture is highly detrimental owing to the increased friction losses and the erosion which accompany it, and it is desirable that a moisture content of from 7 to 10 per cent. should not be exceeded. A low turbine efficiency will assist in the attainment of comparatively dry low presure steam, but the net result is clearly undesirable.

The use of superheated steam will obviously be beneficial not only on account of the increased final dryness but also because of the inherently greater thermal efficiency when compared with dry steam at the same pressure. A further step can also be made by expanding the superheated steam till approximate dryness is reached and then resuperheating to reduce condensation in the final stage of expansion. The resuperheating may be effected either by furnace gases or by live steam.

It is interesting to trace from Fig. 28 the diagrams for the following cases representing actual past or present power station practice.

Initial pressure, lb. per sq. in.	150	160	200	350	600	1350	615	1230	1900
Initial temperature ${ }^{\circ} \mathrm{F}$.	DS $366^{\circ} \mathrm{F}$.	DS 371	$600^{\circ} \mathrm{F}$.	700	850	950	725	825	830
Resuperheated from pressure of lb . per sq. in.							140	360	190
Resuperheat temperature ${ }^{\circ} \mathrm{F}$. .							725	825	810
Final pressure, in. vac.	atmos.	26	28	$29 \cdot 1$	$29 \cdot 1$	$29 \cdot 1$	29.0	29.0	28.5
Basic efficiency, per cent.	$15 \cdot 1$	26.7	31.2	38.9	44.0	48.9	$43 \cdot 4$	47.7	47.7
				(1)	(2)	(3)	(4)	(5)	(6)

The reader is referred to "Tendencies in Steam Turbine Development " and "Forty Years Development of Power Station Plant," by Guy and Pearce (Proc. I.Mech.E.).
(1) 2 stages regenerative feed heating
(2) 5 stages ditto;
(3) 6 stages ditto; (4) 5 stages ditto ; (5) 6 stages ditto; (6) 5 stages ditto.

EXAMPLES ON CHAPTER XIII

1. The steam chest pressure in a De Laval turbine is 140 lb . per sq. in. abs., and the exhaust pressure 3 lb . per sq. in. abs., the steam being initially dry and saturated. The peripheral speed of the blades is 1200 ft . per second, and the nozzles are inclined 20° to the direction of motion of the blades. Estimate the angle of the blades, the work done on the blades per second per pound of steam, the absolute velocity of the steam at discharge from the blades and the efficiency of the blades. Neglect frictional losses and assume adiabatic flow.
2. In the turbine given in Example 1 find the blade angles, work done per pound of steam per second, the speed of the blades, and the efficiency if the efficiency is to be the greatest possible. Neglect all losses.
3. Steam of initial pressure 140 lb . per sq. in. abs. and with $160^{\circ} \mathrm{F}$. of superheat is supplied to a De Laval turbine with exhaust pressure of 3 lb . per sq . in. abs.; the nozzles are inclined 20° to the direction of motion of the blades and the peripheral speed of the blades is 1200 ft . per second. Estimate the angle of the blades, the efficiency of the blades, and the horse-power developed if the steam consumption is 1800 lb . per hotur.
4. Solve Example 1, if the effect of friction is such that the relative velocity of the steam at exit from the blades is 0.9 of the velocity at inlet (i e, a velocity coefficient of 0.9).

Chapter XIV

THE INTERNAL COMBUSTION ENGINE

-GENERAL STATEMENT

(For a complete discussion of many of the more involved matrers treated in this chapter the reader is referred to "The Internal Combustion Engine," Pye, Oxford, and the Empire Motor Fuels Committee Report, Proc.I.Aut.E., vol. xviii, pt. 1.)

In Chapter III are described a number of thermodynamic cycles for use with a perfect gas as working fluid, and in Chapter VII the employment of certain of these cycles in actual engines is considered on the assumption that the working fluid is air. Though the theoretical efficiency of these engines was good their failure in service could be attributed mainly to the following facts. The maximum temperature of the cycle was, of necessity, less than the safe working temperature of the heating surfaces, the specific heat and density of the working fluid were low, the rate of internal diffusion of heat through the gas was small, and the presence of two stationary gas films ${ }^{1}$ on the sides of the heating surfaces made the rate of transference of heat very slow. The engines were therec fore of slow speed and great size considering their power, and were generally abandoned after the burning and collapse of the walls of their heating chambers.

By the intimate mixture of the requisite amount of fuel with the air, and its combustion within the cylinder, very high temperatures can be attained and the rate of heating is made independent of internal diffusion. The blanketing of the cylinder walls by the stationary gas films protects them from heat to such an extent that a simple system of air or water cooling keeps them adequately cool and prevents destruction of lubricating oil, while at the same time greatly reducing the heat losses from the working fluid. Many of the faults attendant upon external combustion thus prove the salvation of the internal combustion engine.

The combustion of the fuel within the cylinder naturally raises certain complications. The working fluid is now no longer air, which closely obeys the simple gas laws, but a mixture of gases resulting from combustion and having properties which are often far from "perfect," and which undergoes a change of specific volume during combustion. The final change of pressuse or volume theoretically brought about by cooling the working fluid is achieved by exhausting the charge, more or less completely, to the atmosphere, and substituting in its place a fresh cool charge of air and fuel. This exhausting and recharging of the cylinder
following every expansion stroke necessitates a pumping action which can be performed either in the working cylinder, by the addition of two pumping strokes per cycle, making a complete cycle of four strokes, or in a separate cylinder or in the crank-case beneath the working piston, in which case only two strokes of the working piston are required to complete the cycle. These cycles are known as "four-stroke" and "two-stroke" cycles respectively.

A number of cycles have been employed at different times during the development of the internal combustion engine, and several have either been discarded or have had very limited use. Full descriptions of these early cycles are given in many works on I.C. engines, and to these the student is referred for details. Only the constant volume, constant pressure and compound (or "compression ignition "-abbreviated to C.I.) cycles will be considered here. Both historically and for practical purposes a further subdivision has been made into gas engines, oil engines, Diesel and compression ignition engines (sometimes called semi-Diesel), the last two invariably using oil fuel ; but it should be noted that the distinctions are dependent on the nature of the fuel used and the method of its employment, and that the cycles themselves can and should be considered together. In the following sections the four-stroke cycle is considered unless the contrary is stated, the evacuation of the working cylinder and its recharge being performed by two additional strokes of the working piston itself.

-THE CYCLES CONSIDERED

The three cycles to be considered are as follows :
(1) Constant Volume Cycle.-This cycle, shown in Fig. 40,

Fig. 119. Chapter III, with the addition of the pumping strokes of exhaust de and suction ed, both at nearly atmospheric pressure, see Fig. 119, forms the "Otto" cycle upon which, until recently, the vast majority of engines have operated. The cycle is used for "gas" and "petrol" engines.

As the pumping strokes do not involve heat interchanges and are assumed to be at atmospheric pressure, the formula for the efficiency will currespond to that given in Chapter III, and is

$$
\eta=1-(1 / r)^{y-1}
$$

Exampla.-A four-stroke petrol engine has a compression ratio of $5: 1$,
the suction pressure and temperature are 14 lb . per sq. in. abs. and $250^{\circ} \mathrm{F}$. respectively, and the maximum temperature is $4400^{\circ} \mathrm{F}$. If the equations of the compression and expansion currves are $p v^{1 \cdot 35}=\mathrm{K}$ and $p v^{1 \cdot 28}=\mathrm{K}$, calculate the indicated M.E.P. What is the efficiency of a perfect engine working on the corresponding air cycle ?

Here $p_{d}=14 \mathrm{lb}$. per sq. in. and $\mathrm{T}_{\boldsymbol{d}}=250+460=710^{\circ} \mathrm{F}$.
For the compression stroke $p_{a}=p_{d}\left(\frac{v_{d}}{v_{a}}\right)^{n}=14 \times(5)^{1.35}$

$$
=14 \times 8.78=123 \mathrm{lb} . \text { per sq. in. }
$$

and

$$
\mathrm{T}_{a}=\mathrm{T}_{\frac{p_{a}}{} v_{a}}^{p_{d} v_{d}}=710 \times 8.78 \times \frac{1}{5}=1247^{\circ} \text { F. abs. }
$$

For the combustion process $\mathrm{T}_{b}=4860^{\circ} \mathrm{F}$. abs.
and

$$
\frac{p_{b}}{\mathrm{~T}_{b}}=\frac{p_{a}}{\mathrm{~T}_{a}} \text { or } p_{b}=p_{a} \frac{\mathrm{~T}_{b}}{\mathrm{~T}_{a}}=123 \times \frac{4860}{1247}=479 \mathrm{l} . \mathrm{b} . \text { per sq. in. }
$$

For the expansion process

$$
p_{c}=p_{b}\left(\frac{v_{b}}{v_{c}}\right)^{1.28}=p_{b}\left(\frac{1}{51.28}\right)=\frac{p_{b}}{7.839}=61.1 \mathrm{lb} . \text { per sq. in. }
$$

I.M.E.P. $=144\left\{\frac{p_{b} v_{b}-p_{c} v_{c}}{0.28}-\frac{p_{a} v_{a}-p_{d} v_{d}}{0.35}\right\} \frac{1}{v_{c}-v_{b}}$ lb. per sq. ft.

$$
\begin{aligned}
& =144\left\{\frac{v_{b}}{0.28}(479-5 \times 61.1)-\frac{v_{b}}{0.35}(123-14 \times 5)\right\} \frac{1}{4 v_{b}} \mathrm{lb} . \text { per sq.ft. } \\
& =117 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

Theoretical $\eta=1-\left(\frac{1}{r}\right)^{\nu-1}$

$$
\begin{aligned}
& =1-\left(\frac{1}{5}\right)^{0.408} \quad \text { i.e. } \gamma=1.408 \\
& =48.1 \text { per cent. }
\end{aligned}
$$

Example.-A petrol engine uses 0.6 lb . of fuel per B.H.P. per hour, the calorific value of the fuel being $19,000 \mathrm{~B}$. Th.U. per lb . The compression ratio is $5: 1$. Find the efficiency of the engine relative to the corresponding air cycle.

Heat equivalent of 0.6 lb . of fuel $=0.6 \times 19,000 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$.
and \quad heat supply per minute $=\frac{0.6 \times 19,000}{60}$ B.Th.U.
But 1 H.P. $=42 \cdot 42$ B.Th.U. per minute
and efficiency of engine $=\frac{42.42 \times 60}{0.6 \times 19,000}=22.33$ per cent.

The air cycle efficiency $=1-\left(\frac{1}{5}\right)^{1.4-1}=1-(0.2)^{0.4}=1-0.5252$
$=47.47$
The relative efficiency is $\frac{22.33}{47.47}$ or 47.02 per cent.
(2) The Constant Pressure Cycle.-This cycle, when used in practice, is modified not only by the addition of pumping strokes, but by the omission of the " toe" of the diagram, thus making the heating-andexpansion stroke equal in length to the compression stroke.

That some loss of theoretical efficiency is incurred by this omission can be seen at once from Fig. 120 when it is remembered that the determining factor is the "ratio of expansion." If the diagram shown is divided up by a number of additional adiabatic lines, the small diagrams

Fig. 120.

Fig. 121.
obtained, such as A and B, will all represent possible constant pressure cycles from which the "toes" have been removed. It will be seen that though in cycle A the expansion ratio is given by $\frac{o a^{\prime}}{0 b^{\prime \prime}}$, or roughly $10: 1$, the cycle B has an expansion ratio of only $\frac{o a^{\prime}}{o c^{\prime}}$, or roughly $3: 1$. The efficiency of the whole cycle will be a mean of the values for the separate elementary cycles of which it can be considered as composed, and will therefore be appreciably less than the value were the expansion ratio to remain $\frac{o a^{\prime}}{o b^{\prime}}$.

The cycle in this form, and when the fuel is sprayed into the cylinder by means of an air blast, is associated with the name of Diesel. In this case air only is drawn into the cylinder from f to a and compressed from a to b. The fuel, which always takes the form of a heavy oil, though powdered fuels have been suggested, is first admitted at the point b in
the form of a fine spray, the particles of which at once ignite on coming into contact with the air already greatly heated by compression. Injection of the fuel is continued for the portion of the stroke shown by $b c$, the point c being known as the "cut-off," after which more or less adiabatic expansion occurs. Injection and atomisation of the fuel is brought about by a blast of air at a pressure considerably in excess of that of compression.

Formula for the Efficiency of the Diesel Cycle.-Referring to Fig. 121
and

$$
\begin{align*}
\text { Heat received } & =\mathrm{C}_{p}\left(\mathrm{~T}_{c}-\mathrm{T}_{b}\right) \\
\text { heat rejected } & =\mathrm{C}_{v}\left(\mathrm{~T}_{d}-\mathrm{T}_{a}\right) \\
\eta & =1-\frac{\mathrm{C}_{v}\left(\mathrm{~T}_{d}-\mathrm{T}_{a}\right)}{\mathrm{C}_{p}\left(\mathrm{~T}_{c}-\mathrm{T}_{b}\right)} \cdot \cdots \cdot \tag{1}
\end{align*}
$$

Expressing the temperatures in terms of T_{a}

$$
\begin{aligned}
& \mathrm{T}_{b}=\mathrm{T}_{a} \gamma{ }^{\gamma-1}, \text { where } r \text { is the compression ratio } \frac{o a^{\prime}}{o b^{\prime}} \\
& \begin{aligned}
\mathrm{T}_{c}=\mathrm{T}_{b} \times \frac{\mathrm{V}_{c}}{\mathrm{~V}_{b}}=\mathrm{T}_{b} \times \beta \text {, where } \beta=\frac{\mathrm{V}_{c}}{\mathrm{~V}_{b}} \\
=\beta \mathrm{T}_{a} \gamma^{\gamma-1}
\end{aligned} \\
& \mathrm{~T}_{d}=\mathrm{T}_{c}\left(\frac{\mathrm{~V}_{c}}{\mathrm{~V}_{d}}\right)^{\gamma-1}=\beta \mathrm{T}_{a^{\prime}}{ }^{\gamma-1}\left(\frac{\beta}{r}\right)^{\gamma-1}
\end{aligned}
$$

Substituting these values in (1)

$$
\begin{aligned}
\eta & =1-\frac{C_{v}\left\{\beta r^{\gamma-1}\left(\frac{\beta}{r}\right)^{\gamma-1}-1\right\}}{C_{p}\left(\beta r^{\gamma-1}-r^{\gamma-1}\right)} \\
& =1-\left(\frac{1}{1}\right)^{\gamma-1} \frac{\beta^{\gamma}-1}{\gamma(\beta-1)}
\end{aligned}
$$

It will be seen that the efficiency is dependent both on the compression ratio and on the value of β. For a given compression ratio, the higher the temperature at C after combustion, the greater will be the value of β, and as this is of necessity greater than unity, the efficiency will decrease as the maximum temperature increases.
Example.-In a Diesel engine the compression ratio is $14: 1$, and the equation of the expansion and compression curves may be taken as $p v^{1.30}=\mathrm{K}$. Combustion occurs during 12 per cent. of the working stroke, and the suction temperature and pressure are $200^{\circ} \mathrm{F}$. and 14 lb . per sq. in. respectively. Calculate the maximum temperature and pressure attained, the pressure at release, and the M.E.P.

Referring to Fig. 121
For the compression stroke $p_{b} v_{b}{ }^{n}=p_{a} v_{a}{ }^{n}$
or

$$
\begin{aligned}
& p_{b}=p_{a}\left(\frac{v_{a}}{v_{b}}\right)^{n} \\
&=14 \times(14)^{1 \cdot 3}=14 \times 30.89 \\
&=432 \mathrm{lb} . \text { per sq. is. } \\
& \mathrm{T}_{b}=\frac{p_{b} v_{b}}{p_{a} v_{a}} \mathrm{~T}_{a}=\frac{432 \cdot 5}{14} \times \frac{1}{14} \times 660 \\
&=1456^{\circ} \mathrm{F} . \text { abs. }=996^{\circ} \mathrm{F} .
\end{aligned}
$$

and
(N.B. A solid object at a temperature of $1000^{\circ} \mathrm{F}$. or $600^{\circ} \mathrm{C}$. is just visibly " red hot" when seen in the dark.)
The maximum temperature $\mathrm{T}_{c}=\mathrm{T}_{b} \times \frac{\boldsymbol{v}_{c}}{v_{b}}=1456 \times 2.56=3728^{\circ} \mathrm{F}$. abs.

$$
=3268^{\circ} \mathrm{F}
$$

The release pressure is given by $p_{c} v_{c}{ }^{n}=p_{d} v_{d}{ }^{n}$
or

$$
p_{c}=p_{d}\left(\frac{v_{d}}{v_{c}}\right)^{n}
$$

$$
=p_{d}\left(\frac{14}{2 \cdot 56}\right)^{1 \cdot 3}=9 \cdot 105 p_{d}
$$

or

$$
p_{d}=\frac{432 \cdot 5}{9 \cdot 105}=47 \cdot 5
$$

Then I.M.E.P. $=\frac{\frac{1}{n-1}\left\{\left(p_{c} v_{c}-p_{d} v_{d}\right)-\left(p_{b} v_{b}-p_{a} v_{a}\right)\right\}+p_{b}\left(v_{c}-v_{b}\right)}{v_{a}-v_{b}}$

$$
=\frac{\frac{1}{0.3}\{(432.5 \times 2.56-47.5 \times 14)-(432.5 \times 1-14 \times 14)\}+432.5 \times 1.56}{13}
$$

$=104.5 \mathrm{lb}$ per sq. in.
The η is given by $1-\left(\frac{1}{r}\right)^{\gamma-n} \frac{\beta^{\gamma}-1}{\gamma(\beta-1)}$, where $\beta=\frac{v_{c}}{v_{0}}$
Here if $v_{b}=1, v_{c}=1+\frac{12}{100} \times 13=1+1 \cdot 56=2.56$
or
Hence

$$
\begin{aligned}
& \beta=2.56 \\
& \eta=1-\left(\frac{1}{14}\right)^{0.3} \times\left(\frac{2.561 \cdot 4-1}{1.4 \times 1.56}\right) \\
& =1-0.348 \times \frac{2.728}{2.18} \\
& =1-0.348 \times 1.25 \\
& =1-0.435 \\
& =56.5 \text { per cent. }
\end{aligned}
$$

The item 1.19 represents a "correction factor" applied to the efficiency of the ideal constant pressure cycle (i.e. with "toe").
(3) The Composite or "Compression Ignition" Cycle.-This is a combination of the above two cycles. Air is drawn into the cylinder along the suction stroke fa, Fig. 122, and compressed from a to b, the compression ratio being of the order of $12: 1$, and the final temperature sufficient to cause ignition of the fuel oil. This is injected into the cylinder between the points b and d by some form of mechanical pump. The early stages of combustion occur at constant volume from b to c, hut the later stages are prolonged until the piston has moved a short distance from top dead centre, giving a line of nearly constant pressure on the card up to the point d.

This cycle has the advantage of " auto ignition," as in the case of the Diesel, but without the complexities attendant on the use of compressed

Fig. 122.

Fig. 123.
air, while, by the use of a lower compression ratio a constant volume effect abce'-with corresponding improvement of the efficiency-can be attained without excessively high maximum pressures. It has been found moreover that, at high speeds of revolution, the combustion of the fuel is such that, even in the constant pressure cycle, a considerable portion of the combustion (which is far from instantaneous) does in fact occur at almost constant volume, and the diagram exhibits a peak at dead centre with no well-marked constant pressure phase. These matters will be considered in more detail in later sections.

Formula for the Efficiency of the Composite Cycle.-In this cycle the heat is received in two stages, from b to c at constant volume, and from c to d at constant pressure (see Fig. 123). The rejection of heat is at constant volume.

Hence \quad heat received $=\mathrm{C}_{v}\left(\mathrm{~T}_{c}-\mathrm{T}_{b}\right)+\mathrm{C}_{p}\left(\mathrm{~T}_{d}-\mathrm{T}_{\Delta}\right)$

The exhaust and suction strokes are assumed to be at atmospheric pressure and do not affect the calculation.

Then

$$
\begin{equation*}
\eta=1-\frac{\mathrm{C}_{v}\left(\mathrm{~T}_{e}-\mathrm{T}_{a}\right)}{\mathrm{C}_{v}\left(\mathrm{~T}_{c}-\mathrm{T}_{b}\right)+\mathrm{C}_{p}\left(\mathrm{~T}_{d}-\mathrm{T}_{c}\right)} . \tag{1}
\end{equation*}
$$

Expressing all temperatures in terms of $\mathrm{T}_{\boldsymbol{a}}$

If

$$
\begin{aligned}
& \mathrm{T}_{b}=\mathrm{T}_{a} r^{\gamma-1}, \text { where } r=\frac{\mathrm{V}_{a}}{\mathrm{~V}_{b}} \\
& \frac{p_{c}}{p_{b}}=\alpha=\frac{\mathrm{T}_{c}}{\mathrm{~T}_{b}} \\
& \mathrm{~T}_{c}=\mathrm{T}_{b} \cdot \alpha=\alpha \mathrm{T}_{a} r^{\gamma-1}
\end{aligned}
$$

Also

$$
\begin{aligned}
\mathrm{T}_{d} & =\mathrm{T}_{c} \beta, \text { where } \frac{\mathrm{V}_{d}}{\mathrm{~V}_{c}}=\beta \\
& =\alpha \beta \mathrm{T}_{a}{ }^{\gamma} \gamma-1
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{T}_{e}=\mathrm{T}_{d}\left(\frac{\mathrm{~V}_{d}}{\mathrm{~V}_{\mathrm{e}}}\right)^{\gamma-1} & =\mathrm{T}_{d}\left(\frac{\beta}{r}\right)^{\gamma-1} \\
& =\mathrm{T}_{a}\left(\frac{\beta}{r}\right)^{\gamma-1} \alpha \beta r^{\gamma-1}
\end{aligned}
$$

Substituting these values in (1)

$$
\begin{aligned}
\eta & =1-\frac{\mathrm{C}_{v}\left\{\left(\frac{\beta}{r}\right)^{\gamma-1} \alpha \beta r^{\gamma-1}-1\right\}}{\mathrm{C}_{v}\left(\alpha r^{\gamma-1}-r^{\gamma-1}\right)+\mathrm{C}_{p}\left(\alpha \beta r^{\gamma-1}-\alpha r^{\gamma-1}\right)} \\
& =1-\frac{\mathrm{C}_{v}\left(\alpha \beta^{\gamma}-1\right)}{r^{\gamma-1}\left\{\mathrm{C}_{v}(\alpha-1)+\alpha \mathrm{C}_{p}(\beta-1)\right\}} \\
& =1-\left(\frac{1}{r}\right)^{\gamma-1} \frac{\alpha \beta^{\gamma}-1}{(\alpha-1)+\alpha \gamma(\beta-1)}
\end{aligned}
$$

If $\alpha=1$ this formula is identical with that for the Diesel cycle. The values of $\alpha=p_{c} / p_{b}$ and $\beta=\mathrm{V}_{d} / \mathrm{V}_{c}$ can be determined approximately in any given case from the indicator diagram if such is available. It should be remembered, however, that as combustion continues for some time after the closing of the fuel value, the point d cannot be predetermined accurately from the valve setting, and is not clearly defined in any case.

Example.-A compression ignition engine with a compression ratio of $11: 1$ has suction pressures and temperatures of 14 lb . per sq. in. and $200^{\circ} \mathrm{F}$.

At light load the diagram is virtually that of the constant volume cycle, and the maximum pressure is 800 lb . per sq. in.

If the fuel supply is increased by 100 per cent. and the injection is timed so that there is no increase of maximum pressure, calculate the
"correction factor" to be applied in the value of the efficiency of the corresponding constant volume cycle, and the theoretical efficiency. Take C_{v} as 0.1691 and $\mathrm{C}_{\boldsymbol{p}}$ as 0.2375 .

For the compression stroke $p_{b} v_{b}^{n}=p_{a} v_{a}^{n}$
or

$$
\begin{aligned}
P_{b} & =14 \times\left(\frac{11}{1}\right)^{1.4} \\
& =400 \mathrm{lb} . \text { per sq. in. }
\end{aligned}
$$

Also

$$
\begin{aligned}
\frac{p_{b} v_{b}}{\mathrm{~T}_{b}}=\frac{p_{a} v_{a}}{\mathrm{~T}_{a}} \text { or } \mathrm{T}_{b}=\mathrm{T}_{a} \times \frac{400 \times 1}{14 \times 11} & =660 \times 2.06 \\
& =1360^{\circ} \mathrm{F} . \mathrm{abs} .
\end{aligned}
$$

After combustion at constant volume $\mathrm{T}_{e}=\mathrm{T}_{b} \times \frac{800}{400}$

$$
=2720^{\circ} \mathrm{F} . \mathrm{abs}
$$

and the heat received $=\mathrm{C}_{v}\left(\mathrm{~T}_{c}-\mathrm{T}_{b}\right)$

$$
=0 \cdot 1691(2720-1360)=223 \text { B.Th.U. per lb. of air. }
$$

With increased fuel supply the extra heat to be added per pound of air.

$$
=223 \text { B.Th.U. }
$$

or

$$
\mathrm{C}_{p}\left(\mathrm{~T}_{d}-\mathrm{T}_{c}\right)=350
$$

or
and
Also

$$
\begin{aligned}
0.2375\left(\mathrm{~T}_{d}-2720\right) & =223 \\
\mathrm{~T}_{d} & =3660^{\circ} \mathrm{F} . \mathrm{abs} \\
\frac{v_{d}}{v_{c}} & =\frac{4913}{3440}=1 \cdot 427=\beta \\
\alpha & =\frac{p_{c}}{p_{b}}=\frac{800}{318}=2.51
\end{aligned}
$$

and as

$$
\begin{aligned}
\eta=1-\left(\frac{1}{11}\right)^{0.3} \times \frac{2.51 \times(1.427)^{1.3}-1}{1.51+2.51 \times 1.3 \times 0.427} & =1-(0.487) \times 1.026 \\
& =50 \text { per cent. }
\end{aligned}
$$

Air cycle efficiency $=51 \cdot 3$ per cent., the " correction factor " being 1.026.

*THE RATIO OF COMPRESSION

It will be seen from Chapter III that the efficiency of the cycles under consideration is dependent upon the ratio of expansion (or of compression if the two are equal), and not upon the maximum temperature. The latter, however, is relevant as the output of a given engine is the product of the efficiency and the amount of heat received, the latter being a function of the maximum temperature. Though an engine of high compression ratio and low maximum temperature would have a high theoretical efficiency, the output would be small.

Fig. 124 shows the theoretical or "air cycle" efficiency plotted to a base of compression and expansion ratio. The very rapid rise of efficiency at the smaller ratios will be noted, and the much more gradual increase at the higher values.

In practice two factors limit the maximum permissible value of the compression ratio. In the first case the maximum pressure attained in the cylinder has to be considered in connection with the strength and weight of the engine parts, it being noted that at the higher compression ratios the maximum compression pressure increases at an extremely rapid rate, as shown in Fig. 125.

Fig. 124.
The second factor is provided by the nature of the fuel and the method of its use. If the mixing of fuel and air is effected prior to compression, it is essential to insure that spontaneous ignition does not occur during that process, even though the presence of hot exhaust valves, etc., are taken into account. ${ }^{1}$ In the " gas" engine, where a mixture with air of producer or coal gas is employed, the compression ratio is limited to about $7: 1$, and in the " petrol" engine to about the same value, except in the case of engines running at extremely high speeds when the initial and final compression pressures and temperatures are below the normal owing to the poor "breathing capacity" at such speeds. The nature of the "gas " or " petrol" also effects the permissible ratio of compression, "doped" petrols permitting rather higher ratios. In the Diesel and compression ignition engines, in which air only is compressed, ratios of

12-16:1 and 10-12:1 are used respectively, but owing to the lower efficiency of constant pressure combustion the effective ratios of expansion are distinctly less. The Diesel cycle at normal full load and with a compression ratio of $16: 1$ has an efficiency approximately equal to that of a constant-volume cycle with a compression ratio of $9: 1$

Fig. 125.

THE INFLUENGE OF MAXIMUM PERMISSIBLE PRESSURE

This factor is one of great importance when considering the nature of the cycle to be employed, and the efficiency which may be obtainable in practice. It will be obvious from Fig. 125 that at the higher ratios of compression a slight increase in efficiency can only be obtained at the cost of an altogether disproportionate increase in the maximum compression pressure, and a corresponding increase in the weight of many of the components of the engine and in the mechanical losses.

Fig. 126 shows two diagrams drawn on the assumption that the cylinder pressure must not exceed 1000 lb per sq. in. $a^{\prime} b^{\prime} c^{\prime} d$ is a constant volume cycle with a compression ratio of $10: 1$, the compression pressure at a^{\prime} is 366 lb . per sq. in., and heat is added at constant volume from a^{\prime} to b^{\prime} until the maximum permissible pressure is reached at b^{\prime}. abcd is a cycle with a compression ratio of slightly over $20: 1$. As the compression pressure alone now reaches 1000 lb . it is obvious that heat can only be added at constant pressure, and the figure has been drawn on the assumption that the same amount of heat is added in both cycles. For inter-
mediate compression ratios, rising from $10: 1$ to $20: 1$, the amount of heat which could be added at constant volume would steadily diminish, the increasing remainder being added at constant pressure.

Were successively higher compression ratios than $10: 1$ to be used for the constant volume cycle the permissible heat reception would decrease rapidly, until at the ratio of $20: 1$ no heat whatever could be received.

At lower ratios than $10: 1$ the heat reception could be augmented but the efficiency would decrease.

The following table, taken from "The Internal Combustion Engine," by Pye, gives the values calculated for a range of composite cycles on the suppositions stated above, i.e. a maximum pressure of 1000 lb . per sq. in., and a constant heat input.

Ratio of compression	Compression		$\begin{gathered} \alpha= \\ P_{\text {max }} . \end{gathered}$	$\mathrm{T}_{\mathrm{c}}{ }^{*}$	T ${ }^{*}$	$\beta=\frac{T_{d}}{T_{c}}$	Efficiencies		r / β
	Temp. ${ }^{\circ} \mathrm{C}$.	Pressure	$\frac{P_{\text {max }}}{}$				Composite	Const. vol. ${ }^{1}$	
10	933	366	2.735	2550	2550	1	0.60	060	10.00
12	1000	470	2.13	2130	2479	$1 \cdot 165$	0.623	0.628	$10 \cdot 30$
15	1093	645	1.55	1694	2422	1.434	0.640	0.658	10.45
18	1175	830	1.205	1415	2402	1.70	0.648	$0 \cdot 683$	$10 \cdot 58$
20	1223	962	1.04	1272	2396	1.88	0.651	0.695	10.63

1 With unrestricted maximum pressures.

- See Fig. 122.

The efficiencies are plotted in Fig. 126. It will be seen that when the maximum pressure is limited the efficiency rises very little for compression ratios above about 15 , as can be anticipated from the last column where the value of r / β indicates that the ratio of expansion is almost constant.

When the properties of the actual working fluid in an engine are taken into account, Pye has shown that with a ratio of 15 and a maximum pressure of 915 the theoretical efficiency is 0.508 . With unlimited maximum pressure the corresponding maximum efficiency, assuming the constant volume cycle to be used, is 0.55 . The increase of 4.2 per cent. in the efficiency is only obtained, however, by an increase of maximum pressure from 915 lb . to 1850 lb . per sq. in.

The effect of the dilution of the incoming charge by the burnt gases remaining in the compression space at the end of the exhaust stroke, which becomes increasingly serious at low compression ratios, is considered on pp. 291 and 304.

COMPARISON OF ACTUAL AND THEORETICAL DIAGRAMS

In general form the actual and theoretical indicator diagrams for the internal combustion cycles do not differ greatly for engines of slow speed. At high speeds a close comparison becomes almost impossible, first, because of the difficulty of obtaining accurate records of extremely rapid pressure changes with an instrument sufficiently robust to withstand accidental detonation pressures, and second, because of the difficulty of phasing the instrument with the engine. The pencil indicator becomes useless at speeds above a few hundred revolutions per minute; optical indicators, though capable of recording at higher speeds, are not free from inertia effects, and, unless built with the piston face or diaphragm flush with the cylinder wall, are subject to serious surges of pressure and other disturbances set up in the connecting passages and chambers; while the electrical indicator employing the cathode-ray tube is not fully developed.

Considerable variations are also found between the records of succeeding cycles, ${ }^{1}$ probably due to slight changes in the metering of the fuel and to other more subtle causes. Indicators of the "Farnborough" type are available which give average pressures over a large number of cycles, but the details of performance are lost during the averaging process.

When allowances have been made for experimental inaccuracies, the following deviations from the theoretical pressure volume card are normally found.
(1) The pressure in the cylinder during the suction stroke is slightly less than atmospheric, the depression depending on the speed of the engine, the size and number of inlet valves, the valve timing, and the general layout of the induction system.

The temperature at the end of the suction stroke will, however, be considerably higher than that of the atmosphere, partly owing to the heat received from the hot valves and passages, but chiefly due to the admixture with the fresh charge of a considerable quantity of the products of the previous combustion which remain in the combustion space. For a petrol engine having a compression ratio of $7: 1$ the normal temperature before compression is of the order of $212^{\circ} \mathrm{F}$.; for a ratio of $5: 1$ the temperature will rise, owing to the larger quantity of residual gas, to about $248^{\circ} \mathrm{F}$., and will be rather lower than $212^{\circ} \mathrm{F}$. for values of compression ratio greater than 7:1. These figures allow for cooling by evaporation of the petrol before the closing of the inlet valve, amounting to some $38^{\circ} \mathrm{F}$. For benzole the corresponding figure is about $47^{\circ} \mathrm{F}$., and for alcohol about $155^{\circ} \mathrm{F}$.

The weight of charge induced will thus be less than the theoretical amount, and its volume when reduced to atmospheric temperature and pressure and divided by the piston displacement, is known as the " volumetric efficiency," and is a measure of the " breathing capacity " of the engine. By taking full advantage of the inertia effects in the induction and exhaust pipes it is possible to increase this value appreciably. The volumetric efficiency is always obtained by direct measurement of the charge. (See also Pye, p. 117.)
(2) The compression curve is slightly below the adiabatic, owing to the loss of heat to the cylinder walls and piston, especially during the later stages of the stroke.

On the other hand, if, owing to the high speed of the engine, combustion has to be initiated appreciably before inner dead centre, a slight additional pressure rise may occur as that position is approached.
(3) The maximum temperatures (and in the case of the constant volume cycle the maximum pressures) attained will always fall considerably below the theoretical values owing, as will be shown later, to changes in the specific heat of the working fluid and to "dissociation."

[^21]A "rounding off" of the peak pressures is normally present, and the cut-off in the Diesel and compression ignition cycles is usually ill-defined.
(4) The expansion curve normally exhibits the strange anomaly of lying above the adiabatic, in spite of the heat losses which take place to the cylinder walls and to the piston. This has been attributable to " after burning " or delay in the completion of combustion, to the slow burning of weaker portions of the mixture or of gases in proximity to the cool walls, etc., but changes of specific heat and "reassociation" to be discussed later, p. 299, probably provide the explanation. It will usually be found that the value of n changes considerably during the expansion stroke.
(5) The opening of the exhaust valve in advance of the bottom dead centre, in order to lower the cylinder pressure adequately before the exhaust stroke, results in a rounding of the toe of the diagram. The pressure during this stroke is on the whole somewhat above atmospheric pressure, though surges in the exhaust system may cause marked fluctuation of pressure both above and below atmospheric. ${ }^{1}$

The " negative loop" formed by the suction and exhaust curves represents the work done in charging and discharging the cylinder. The area of this loop should be subtracted from the area of the remainder of the diagram when calculating the indicated horse-power.

DETERMINATION OF THE VALUE OF n FOR THE COMPRESSION AND EXPANSION CURVES

Two methods are available, for use when the clearance volume is and is not known.
(1) When the clearance volume is known or can be obtained either by direct measurement, or from the dravings of the engine.

As the expansion and compression curves follow laws of the nature $p v^{n}=$ constant, $\log p+n \log v=$ constant, which is the equation of a straight line. From the actual curves the values of p (absolute) and v (including clearance volume) are scaled off at a number of points, and the values of $\log p$ and $\log v$ are plotted on rectangular co-ordinates as shown in Fig. 127.

The slope of the line, given by $\tan \theta$ or $a c / b c$, will be the value of n.

It should be noted that the change of the values of p from pounds per square foot absolute to pounds per square inch absolute, or the substitution of lengths scaled from the p.o. diagram in place of the equivalent

Fig. 127.

[^22]pressures or volumes, will not affect the slope of the curve, and much work may be saved by the use of the simpler measurements.
(2) Approximate method of finding the clcarance volume and the index n from the indicator diagram.

Let Fig. 128 represent the expansion or compression curve. Take

Fig. 128.
any two points 1 and 3, and choose an intermediate point 2 such that $p_{2}=\sqrt{p_{1} p_{3}}$, or the pressure at 2 is the geometric mean of the pressures at 1 and 3 .

If $c=$ clearance (to be found), and v_{1}, v_{2}, and v_{3} the volumes measured from the inner dead centre,

Then, since

$$
\begin{align*}
& p_{2}=\sqrt{p_{1} p_{3}} \\
\therefore & \frac{p_{2}}{p_{1}}=\frac{p_{3}}{p_{2}}=\text { constant }=k \text { say } \tag{1}
\end{align*}
$$

if v is the indicated stroke volume, at any instant, then
The law of curve is $p(v+c)^{n}=$ constant $=b$ say

$$
\begin{equation*}
\therefore p^{\frac{1}{n}(v+c)=b^{n}} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
v=-c+b^{n} p^{-\frac{1}{n}} \tag{3}
\end{equation*}
$$

Nriting $m=\frac{1}{n}$ for convenience, the volumes at points 1,2 , and 3 are-

$$
\begin{align*}
& v_{1}=-c+b^{m} p_{1}-m \tag{4}\\
& v_{2}=-c+b^{m} p_{2}-m \tag{5}\\
& v_{3}=-c+b^{m} p_{3}-m \tag{6}
\end{align*}
$$

From (5) and (6) we have

$$
\begin{equation*}
v_{3}-v_{2}=b^{m}\left(p_{3}-m-p_{2}-m\right) \tag{7}
\end{equation*}
$$

From (4) and (5) we have

$$
\begin{equation*}
v_{2}-v_{1}=b^{m}\left(p_{2}^{-m}-p_{1}^{-m}\right) \tag{8}
\end{equation*}
$$

Hence from (7) and (8)

$$
\begin{equation*}
\frac{v_{3}-v_{2}}{v_{2}-v_{1}}=\frac{p_{3}{ }^{-m}-p_{2}-m}{p_{2}^{-m}-p_{1}^{-m}} . \tag{9}
\end{equation*}
$$

But by (1)

$$
\begin{aligned}
& p_{3}=k p_{2} \\
& p_{2}=k p_{1}
\end{aligned}
$$

and
\therefore Substituting these values of p_{3} and p_{2} in (9) we have-

$$
\begin{align*}
\frac{v_{3}-v_{2}}{v_{2}-v_{1}} & =\frac{k^{-m} p_{2}^{-m}-p_{2}^{-m}}{k^{-m} p_{1}^{-m}-p_{1}^{-m}} \\
& =\frac{p_{2}^{-m}}{p_{1}^{-m}}\left\{\frac{k^{-m}-1}{k^{-m}-1}\right\} \\
& =\left(\frac{p_{2}}{p_{1}}\right)^{-m}=\left(\frac{p_{1}}{p_{2}}\right)^{m}=k^{\frac{1}{n}} . \\
\therefore \frac{v_{3}-v_{2}}{v_{2}-v_{1}} & =k^{\frac{1}{n}} \cdot \cdot \cdot \cdot \cdot \tag{10}
\end{align*}
$$

Taking logs we have
or

$$
\log \frac{v_{3}-v_{2}}{v_{2}-v_{1}}=\frac{1}{n} \log k
$$

$$
\begin{equation*}
n=\frac{\log k}{\log \frac{v_{3}-v_{2}}{v_{2}-v_{1}}} \tag{11}
\end{equation*}
$$

Equation (11) gives n in terms of $k=\frac{p_{2}}{p_{1}}=\frac{p_{3}}{p_{2}}$ and v_{3}, v_{2}, and v_{1}, all of which are known.

To find the Clearance.-Plotting v vertically and p^{-1} horizontally, then by equation (3) the intercept on the axis of y will give the clearance c as shown in Fig. 129, equation (3) being the equation to a straight line. The method of determining the clearance volume by filling with a measured quantity of liquid is very greatly to be preferred as being fir more accurate than the above method, especially if \boldsymbol{n} is liable to vary.

Fig. 129.

CRANK ANGLE AND TIME-BASE DIAGRAMS

Owing to the very great difficulties of obtaining, at all but slow rates of revolution, an accurate record of pressure phased exactly with an accurate reproduction of the piston displacement, little use is made of the indicator card merely to study the I.H.P., however useful that might be. It is unfortunate that, as the piston is virtually stationary during most of the process of combustion, the p.v. card gives little information relating to combustion phenomena. By setting the indicator driving. gear 90 angular degrees out of phase with the engine crank the dead centre of the engine is made to occur at the centre of the card, and a diagram of the form shown in Fig. 130 is obtained. Here pressure rise

Fig. ${ }^{130}$.
due to combustion starts at point a, well before T.D.C., in order that the peak pressure b shall occur early in the expansion stroke. This latter is represented by bcd, the exhaust stroke by def, suction by $f g f^{\prime}$, and compression from f^{\prime} to T.D.C.
The diagram is of considerable interest as it enables the process of combustion to be studied with considerable exactness, but the horizontal scale is variable and the difficulties of accurate phasing remain.
Diagrams both simpler to obtain, and of greater accuracy, can be produced either on a crank-angle base (see the Farnborough indicator) or on a time base, the latter being very simply applicable to indicators of the cathode-ray type.

Fig. 131 shows a diagram on a crank-angle base, the letters indicating

Fig. 131.
points corresponding to those on Fig. 130. This form of diagram enables the whole cycle to be studied with the full accuracy warranted by the pressure recording, and is of very great value. The time-base card is exactly similar to the above provided that the engine runs with no appreciable cyclic variation of speed. Various methods are available by which the exact points of ignition, top dead centre, valve openings, etc., can be recorded automatically on the card.

THE T ϕ DIAGRAM

The theoretical T ϕ diagrams for the three cycles considered will be built from lines of constant volume, pressure, and entropy, and are shown diagrammatically in Fig. 132.

Fig 132.
Here da represents the gain in temperature during adiabatic compression from the suction temperature at the point d.

From both a and d are drawn lines of constant volume $a b, d f$, and of constant pressure ae and $d f^{\prime}$. The theoretical equations for these curves are

$$
\text { (1) } \phi_{2}-\phi_{1}=C_{v} \log _{e} \frac{T_{1}}{T_{2}}
$$

where $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$ is the ratio of the absolute temperatures, and (2) $\phi_{2}-\phi_{1}=C_{p} \log _{e} \frac{T_{1}}{T_{2}}$.

It will be remembered, from p. 114, that all lines of constant volume are similar except for a displacement parallel to the axis of entropy, the same applying to lines of constant pressure.

Adiabatic expansion will be represented by lines parallel to the axis of T.

The constant volume cycle will be given by $a b$ (heat reception a: constant volume), bc (adiabatic expansion), $c d$ (exhaust or cooling at constant volume), and da (adiabatic compression).

The full constant pressure cycle with constant pressure exhaust will be given by the figure $a e^{\prime} d$, and the Diesel cycle, with constant volume exhaust, by aefd. These two cycles have been drawn, for convenience, with the same maximum temperature.
The composite or C.I. diagram, similarly limited, will show heat

Fig. 133.
reception at constant volume from a to g, and at constant pressure from g to h, the whole cycle being shown by aghjd.

These diagrams have all been drawn for a common compression ratio, i.e. for a common rise of temperature da during compression. This condition is unlikely to be met in practice, as shown on p. 275, but the necessary adjustments, which would add considerably to the complexity of the figure, are not difficult to apply.

The discrepancies between the theoretical and actual p.v. diagrams will be reflected in the corresponding $T \phi$ diagrams, the most noticeable deviations being with regard to the maximum temperatures.

Fig. 133 from Golding's " Theta-Phi (i.e. T ϕ) Diagram " shows p.v. and T ϕ diagrams for a gas engine, the lettering on the two figures indicating
corresponding points. On the $\mathrm{T} \phi$ diagram the heat loss during compression is given by the area under the curve AB. The curves of constant volume through B and A are extended to P and Q, where T_{p} is the final temperature after combustion, as calculated from the known calorific value of the fuel and weights of fuel and air, and assuming the working fluid to be a perfect gas which, as shown later, is very far from being true.

The T ϕ diagram has little practical application for several reasons :-
(1) It implies a knowledge of the temperatures throughout the cycle, though these are not usually known or accurately calculable.
(2) The working fluid is not air, but either a mixture of a number of gases resulting from combustion or, during compression, of air or air mixed with various combustible gases or vapours. The actual mixtures used change not only with changes of fuel, but also with operating conditions.
(3) The mixture forming the working fluid is far from being a perfect gas, and normally has a specific heat which rises rapidly with temperature. The simple equations (1) and (2) on p. 283 do not then apply and the corresponding accurate expressions are cumbersome. Moreover, as the specific heat varies, the areas on the diagram are not numerically proportional on a uniform scale to the corresponding temperature changes.

The comparatively extreme simplicity of the problems presented by the use of steam will be obvious.

${ }^{\bullet}$ RATE OF HEAT RECEPTION OR REJECTION DURING EXPANSION AND COMPRESSION

If the laws of expansion and compression can be determined from an indicator card, as shown above, and if the specific heats of the working fluid are known, the volumetric rate of heat reception or rejection per cubic foot or per second can be estimated, as indicated on p. 22, from the equation $\frac{d \mathrm{H}}{d v}=p \frac{\gamma-n}{\gamma-1}$.

Normally, $n<\gamma$ for compression, indicating heat loss, and $n>\gamma$ during expansion, indicating that though heat is being lost to the jackets it is being more than replaced owing to factors not yet discussed (see p. 299).

Example.-The cylinder of a gas engine is $9 \frac{1}{2}-\mathrm{in}$. bore, 19 -in. stroke, and clearance volume $272 \mathrm{cu} . \mathrm{in}$. The barometric pressure is 15 lb . per sq . in. The temperature at the beginning of compression is $180^{\circ} \mathrm{F}$., $C_{p}=0.24, C_{v}=0.17$, and the law of expansion curve is $p \nabla^{1 \cdot 292}=$ constant.
The pressure at a point A early in the expansion stroke is 475 lb . gauge, the displacement volume being $0.023 \mathrm{cu} . \mathrm{ft}$., and at the opening of the exhaust, B, the pressure is 50 lb . gauge and the displacement volume $0.719 \mathrm{cu} . \mathrm{ft}$.
Calculate (a) the temperatures at the above points, (b) the heat given
to or taken from the gases between them, and (c) the rate of heat reception between them.
(a) The clearance volume $=272 \mathrm{cu}$. in. or $\frac{272}{1728}=0.157 \mathrm{cu} . \mathrm{ft}$.

The piston displacement $=\frac{0.7854 \times(9.5)^{2}}{144} \times \frac{19}{12}=0.779 \mathrm{cu} . \mathrm{ft}$. and the volume at the beginning of compression

$$
=0.157+0.779=0.936 \mathrm{cu} . \mathrm{ft} .=v
$$

At this point $\quad p=15 \mathrm{lb}$. per sq. in. and $\mathrm{T}=180+460^{\circ}$.
At A $\quad p_{a}=475+15=490 \mathrm{lb}$. per sq. in. abs.
and $\quad v_{a}=0.157+0.023=0.180 \mathrm{cu}$. ft.
At B $\quad p_{b}=50+15=65 \mathrm{lb}$. per sq. in. abs.
and $\quad v_{b}=0.157+0.719=0.876 \mathrm{cu} . \mathrm{ft}$.
As

$$
\frac{p v}{\mathrm{~T}}=\frac{p_{a} v_{a}}{\mathrm{~T}_{a}}
$$

$$
\frac{15 \times 144 \times 0.936}{180+460}=\frac{490 \times 144 \times 0.18}{T_{s}}
$$

Therefore

$$
\mathrm{T}_{a}=\frac{490 \times 0.18 \times 640}{15 \times 0.936}=4026^{\circ} \mathrm{abs} .=3565^{\circ} \mathrm{F} .
$$

Also as

$$
\frac{15 \times 0.936}{640}=\frac{65 \times 0.876}{T_{b}}
$$

Therefore $\quad \mathrm{T}_{\mathbf{b}}=\frac{640 \times 65 \times 0.876}{15 \times 0.936}=2599^{\circ}$ abs. $=2138^{\circ} \mathrm{F}$.
The calculated temperature (maximum) at $\mathrm{A}=3565^{\circ} \mathrm{F}$.
(b) The heat added is $\mathrm{H}=\frac{\text { work done }}{\mathrm{J}} \times \frac{\gamma-n}{\gamma-1}$

In this example $\quad \gamma=\frac{C_{p}}{C_{v}}=\frac{0.24}{0.17}=1.41$
and work done from A to $B=\frac{p_{a} v_{a}-p_{b} v_{b}}{n-1}$ ft. lb .

$$
\begin{aligned}
& =\frac{490 \times 0.18-65 \times 0.876}{1.292-1} \times 144 \\
& =\frac{88.20-56.94}{0.292} \times 144=\frac{31.26 \times 144}{0.292} \\
& =15,430 \mathrm{ft} . \mathrm{lb} . \\
& =\frac{15,430}{778}=19.85 \mathrm{B.Th} . \mathrm{U} .
\end{aligned}
$$

Therefore heat added during expansion $=19.85 \times \frac{1.41-1.292}{0.292}$

$$
=+19.85 \times \frac{0.118}{0.292}=7.75 \text { B.Th.U. }
$$

(c) Rate of heat reception $\frac{d \mathrm{H}}{d v}=p \times \frac{1.41-1.292}{0.41}=0.268 p / \mathrm{J}$ B.Th.U., where p is in pounds per square foot.

ACTUAL AND THEORETICAL EFFICIENCIES. THE EFFECT OF HEAT LOSSES

If the performance of an actual engine in first-class order is determined for different compression ratios, it will be found that the efficiency calculated on the I.H.P. follows very closely the form of the curve given by $\eta=1-\left(\frac{1}{r}\right)^{\gamma-1}$, but that for all ratios the actual efficiency is approximately 70 per cent. of that for the theoretical "air cycle." Several major factors may influence the discrepancy, and the more obvious of these will now be considered.

In any actual engine a considerable loss of heat takes place from the working fluid by transference through the cylinder walls. This loss is incurred solely because it is impracticable to use walls of a non-conducting material, and, in theory at least, is preventable. Such preventable losses differ fundamentally from the exhaust loss which plays, at least in large measure, a fundamental part in any cycle working with a minimum temperature above the absolute zero or with a restricted cylinder capacity.

In low-compression engines, in which large areas of cylinder wall are exposed to the heated gases, the heat lost to the jacket water may considerably exceed in amount the heat equivalent of the B.H.P. In high efficiency engines with compact combustion chambers the jacket lose may vary from about 60 to 90 per cent. of the B.H.P. A close analysis of this loss is desirable to determine what increase in B.H.P. might result from the partial or total suppression of " jacket" losses. It should be remembered in this connection that the theoretical efficiency of an engine is dependent on the compression ratio and not upon the maxinsum temperature, so that by retaining a high compression ratio and successively lowering the temperature of combustion the theoretical efficiency could be maintained (though the output of the engine would fall), and the hêat losses would simultaneously be reduced and might reach almost negligible proportions. Such an engine has in fact been produced, ${ }^{1}$ though the difficulties of attaining low-temperature combustion are considerable.

[^23]The heat-balance produced as the result of a bench test normally takes the form

Heat supplied $=$ I.H.P. + jacket loss + exhaust and radiation (by differ ence), or
$=$ B.H.P. + friction + jacket loss + exhaust and radiation (by difference) (i.e. "exhaust and radiation" are obtained by subtracting the I.H.P. and jacket loss from the heat supplied).
This analysis is in many ways very unsatisfactory, for, though the heat supplied (i.e. weight of fuel consumed \times calorific value) can be obtained with a considerable degree of accuracy the other items are open to doubt for the following reasons.
I.H.P.-Even at slow speeds the indication of I.C. engines is far from satisfactory, the minimum error likely to be met being of the order of 5 per cent., and the maximum, at high speeds, very much greater.
B.H.P.-This can be obtained with considerable accuracy by using an electric or hydraulic dynamometer.

Friction.-This cannot be obtained satisfactorily as the difference of I.H.P. and B.H.P. owing to the probable errors in the I.H.P., a 5 per cent. error in the latter resulting in an error of about five times that amount in the friction, which is about one-fifth of the I.H.P.

It may be considered, with moderate accuracy, as the power required to motor the engine at full speed and when hot. It should be remembered, however, that the piston will then be lubricated with fresh oil which has not been subjected to the heat of combustion, and the friction will therefore be considerably less than normal. To offset this, however, the pumping losses will generally be excessive when motoring, owing to the absence of the scavenging effect often automatically produced by the surge of high-pressure gases through the exhaust system.

An approximation to radiation and friction losses may also be obtained by subtracting the (measured) exhaust and jacket losses from the heat supplied in a zero load trial at full speed and jacket temperature.

Exhaust Loss.-An approximation to this heat loss can be made by estimating, from the indicator card, the temperature at the instant of the opening of the exhaust valve, and assuming the specific heat of the gases. The method is generally unsatisfactory, however, and an exhaust gas calorimeter should be used wherever possible. A thermometer placed in the exhaust pipe is almost valueless for this purpose owing to the irregularity of the flow of the gas, and probable radiation or conduction lpsses. The exhaust loss obtained "by difference" will include the calorific value of any fuel only partially burnt, a case very frequently met in petrol engine work (see p. 300).
facket Loss.-Though the heat rejected in the jacket water is easy to determine by direct measurement, the quantity so measured includes a
considerable portion of the heat generated by piston friction, which, as it has already figured under friction, is therefore counted twice. The jacket loss nearly always includes heat lost by the exhaust gases as they leave the cylinder, the exhaust bend being normally enclosed in the same jacket as the cylinder. A separate exhaust-bend jacket has been employed on occasion. ${ }^{1}$

The importance of the remaining loss depends upon the way in which the heat transfer has been distributed throughout the cycle.

Using the best methods available it is possible to draw up a fairly accurate heat balance in which all the items have been obtained by, or as the result of, direct measurement. Such a balance, for a petrol engine with $5: 1$ compression ratio, is as follows :
I.H.P., i.e. B.H.P.+friction, 32 per cent. Jacket loss, 28 per cent. Exhaust and radiation, 40 per cent.

The second item includes :
Heat lost by radiation, conduction, and convection during combustion (a), during expansion (b), after opening of the exhaust valve and during the exhaust stroke (c), at exhaust bend (d), due to engine friction (e).
Considering these items separately we have the following facts :
(a) The temperature will be high-say $4200^{\circ} \mathrm{F}$. to $4500^{\circ} \mathrm{F}$., and turbulence will be intense, giving large losses. Any heat saved before expansion commences could be converted into work with a theoretical efficiency given by $1-\left(\frac{1}{r}\right)^{\gamma-1}$, or 40 per cent. approximately.
(b) The importance of this loss is dependent on the manner of its distribution throughout the stroke. At first the temperatures will be high but the exposed wall areas will be small, and later on the position will be reversed, though the final temperature will be higher than might be anticipated, about $3000^{\circ} \mathrm{F}$., owing to dissociation and later recombination of the gaseous mixture (see p. 299). The probable efficiency of conversion is not greater than 20 per cent.
(c) and (d) Temperatures will be low but exposed areas large. The loss at the exhaust bend, owing to the high rate of scour, may be as high as 50 per cent. of all jacket losses. The working stroke being over, none of the heat could be conserved and utilised.
(e) Friction losses are non-recoverable and probably form an appreciable portion of jacket losses.

[^24]Referring to the heat balance quoted above, we then have the following probable values :

	Probable proportion of heat supply, per cent.	Possible efficiency of conversion, per cent.	Possible conversion to I.H.P. Per- centage of heat supply

The maximum possible increase of I.H.P., were the " jacket" losses to be entirely suppressed, would then be from 32 to 35.8 per cent., or 12 per cent. This neglects the fact that the suppression of jacket losses would be accompanied by higher temperatures and higher "dissociation " losses, bringing the gain of I.H.P. to not more than 10 per cent.

EFFECT OF JAGKET WATER TEMPERATURE

It would appear that jacket losses could be reduced by increasing the temperature of the jacket and so reducing radiation and conduction losses.
Taking $70^{\circ} \mathrm{F}$. and $300^{\circ} \mathrm{F}$. as extreme values for the temperature of the cooling medium, the maximum temperature difference between this and the heated gases would be of the order of $3600-70^{\circ} \mathrm{F}$., and the minimum about $3600-300^{\circ} \mathrm{F}$., a variation of about 4 per cent. Taking the gain of I.H.P. due to the total suppression of jacket loss as 6 per cent., then the extreme variation of temperature can only be expected to give a direct saving of the order of 6 per cent. of 10 per cent., or 0.6 per cent. of the I.H.P.

Three secondary effects will be produced, however.
(1) Effect on Volumetric Efficiency. The charge, on its entry into the cylinder, and before the inlet valve is closed, comes into contact with the heated walls and expands, thereby reducing the volumetric efficiency. Taking the rise of temperature of the charge due to this cause to be $54^{\circ} \mathrm{F}$. with well-cooled walls, and $80^{\circ} \mathrm{F}$. with hot walls, and assuming the mean temperature of the charge in the latter case to be $240^{\circ} \mathrm{F}$. ($700^{\circ} \mathrm{F}$. abs.), the hotter walls will correspond with a change of volume of $\frac{700-676}{676} \times 100$ per cent., or 3.6 per cent., and the change in volumetric efficiency will be a decrease of this amount.
(2) An increase in temperature of the cylinder walls will produce a
corresponding decrease in the viscosity of the lubricating oil and an appreciable reduction of piston friction. The resulting increase of I.H.P. may be about 5 per cent., but is largely dependent on the type of piston.
(3) Dissociation will be slightly increased at higher jacket and cycle temperatures.

The net effect of raising the jacket temperature is largely determined by item No. 2, and normally shows a gain of I.H.P.

THE CALCULATION OF CYCLE TEMPERATURES

The calculation of the temperatures attained during the cycle is dependent primarily on the temperature of the charge before the commencement of compression. This in turn is determined by the temperature of the air, the temperature and relative quantity of the gaseous fuel, if used, the temperature and relative quantity of the residual gases remaining in the combustion chamber at the end of the exhaust stroke, and the possible cooling effect brought about by the evaporation of volatile fuel. The simplest case is that of the gas engine, as the third item does not then apply.

SUCTION TEMPERATURE FOR A GAS ENGINE

Let the suffixes a, g, and r refer to air, gas, and residuals, and let the symbols p, v, and T refer to the actual measurements of pressure, volume, and temperature (absolute). Let ρ indicate density (pounds for cubic foot) at n.t.p., and P_{o}, V_{0}, and T_{0} the pressure, volume, and temperature of the mixture when reduced to n.t.p., i.e. $P_{0}=14.7 \times 144 \mathrm{lb}$. per cu . ft., and $\mathrm{T}_{o}=273^{\circ} \mathrm{C}$. abs.

The volume of air measured at p_{a} and T_{a} is then v_{a}, and when reduced to n.t.p. $=v_{a} \frac{p_{a}}{\mathrm{~T}_{a}} \times \frac{\mathrm{T}_{o}}{\mathrm{P}_{o}}$. Similar values may be obtained for the other constituents of the mixture.

The total volume at n.t.p. is given by
where

$$
\begin{aligned}
& \mathrm{V}_{0}=\frac{\mathrm{T}_{o}}{\mathrm{P}_{o}}\left(\frac{p_{a}}{\mathrm{~T}_{a}} v_{a}+\frac{p_{g}}{\mathrm{~T}_{z}} v_{g}+\frac{p_{r}}{\mathrm{~T}_{r}} \varepsilon_{r}\right) \\
& \frac{\mathrm{T}_{o}}{\mathrm{P}_{o}}=0.1288
\end{aligned}
$$

The mass of the cylinder contents will be

$$
\mathbf{W}_{0}=0.1288\left(\frac{p_{a}}{\mathrm{~T}_{g}} v_{a} \rho_{q}+\frac{p_{g}}{\mathrm{~T}_{z}} v_{g} \rho_{q}+\frac{p_{r}}{\mathrm{~T}_{r}} v_{r} \rho_{r}\right)
$$

'The specific volume of the charge will be

$$
v_{s p}=\frac{V_{0}}{W_{0}}
$$

and the value of R for the mixture will be

$$
\mathrm{R}_{m}=\frac{\mathrm{P}_{0} \mathrm{~V}_{s p .}}{T_{0}}=7.77 \mathrm{~V}_{s p .} \mathrm{ft} .-\mathrm{lb} . \text { per lb. per degree }
$$

The absolute suction temperature will then be given by $\mathrm{T}_{s}=\frac{\text { pressure at end of suction stroke } \times \text { total cylinder volume per pound }}{\mathrm{R}_{\boldsymbol{m}}}$

The suction pressure will be almost atmospheric unless the air supply has been throttled for governing purposes. The temperature T_{r} has been measured for a gas engine by Callendar, using a special thermometer arranged for periodic immersion. The temperature recorded by him for a slow-speed gas engine was $832^{\circ} \mathrm{F}$. An approximate value can be obtained from the readings of an exhaust gas calorimeter.

When the suction temperature has been estimated the remaining cycle temperatures can be obtained approximately when the following facts are known :
(1) the value of \boldsymbol{n} for the compression stroke, normally about 1.37 ;
(2) the pressures before and after combustion ;
(3) the value of n for the expansion stroke.

All these values may be obtained from the indicator card if one of sufficient accuracy can be obtained.

THE SUCTION TEMPERATURE FOR A PETROL ENGINE

The estimation of the suction temperature for a petrol engine is more complicated than that for a gas engine both on account of the nature of the fuel, and the very severe conditions of temperature and heat flow normally encountered.

The exhaust temperature with normal petrol mixtures will be about $1560^{\circ} \mathrm{F}$.
The fuel being a liquid which-with the exception of alcohol-is completely evaporated before the closing of the inlet valve, will absorb the necessary latent heat of evaporation either from the charge of air, or from the heated ports, valves, and walls of the cylinder. Assuming the former case the drop in temperature of the air can be determined readily from a knowledge of the mixture strength and the latent heat of evaporation of the fuel.

The mixture strength is usually determined experimentally as follows : The petrol, of known specific gravity, is measured volumetrically, or by a flow meter, on its way to the engine, while the air at known temperature and pressure is measured either with a gasometer, a meter, or more
conveniently by an "air box" (the latter being a box of large capacity from which the air is drawn on its way to the engine, and which is fitted with a calibrated orifice for the admission of air, the pressure drop across the orifice determining the rate of flow). ${ }^{1}$ From these measurements the air-fuel ratio by weight may be determined.

The normal air-petrol mixture giving theoretically complete combustion according to the simple chemical formula is about $14 \cdot 5: 1$ by weight, while maximum power demands a somewhat richer mixture of about $12: 1$. The latent heat of normal petrol is about 135 B.Th.U. per lb., for benzene about 171 B.Th.U. per lb., and for alcohol about 405 B.Th.U. per lb .

The fall in temperature of the air due to evaporation will then be given by

$$
\frac{\text { Latent heat of fuel per pound }}{\text { air : fuel ratio }} \times \frac{1}{0.2413 \text { B.Th.U. per lb. }}
$$

where $0.2413 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. per lb . is the specific heat of air.
The resulting temperature drop of the air charge will then be about $38^{\circ} \mathrm{F}$. for normal petrol, $47^{\circ} \mathrm{F}$. for benzol, and about $155^{\circ} \mathrm{F}$. for alcohol, for which slightly stronger mixtures are required.

Unfortunately, the problem is complicated by an unmeasured but considerable flow of heat from the hot valves, etc., during aspiration, which brings the temperature of the charge to a considerably higher value than anticipated. An estimate of the temperature of the charge immediately before the closing of the inlet valve, and before admixture with the residuals (including the effect of fuel evaporation), can be made on the assumption that the specific heats of the charge and residuals are equal. Under these circumstances there will be no change of volume of the whole during mixing, and the charge and residuals can be considered as still occupying, after mixture, volumes equal to the stroke volume and clearance volume respectively.

If T_{1} is the temperature of the air as measured, usually about $60^{\circ} \mathrm{F}$. or $520^{\circ} \mathrm{F}$. abs., then the temperature of the air after aspiration but before mixing will be given by T_{2}, where $\mathrm{T}_{1} / \mathrm{T}_{2}=$ volumetric efficiency. The volumetric efficiency is normally between 82 and 92 per cent., giving a temperature before mixing of between $170^{\circ} \mathrm{F}$. and $115^{\circ} \mathrm{F}$. in the cases given. The value of $140^{\circ} \mathrm{F}$. will be sufficiently close for general use. The supposition of the equality of specific heats is not correct, but it will be found that if an allowance is made for variations-the volumetric heat of the charge being about 20.5 ft . -lb . and for the residuals about $23.5 \mathrm{ft} .-\mathrm{lb}$. per standard cubic foot-the estimated suction temperature before mixture will only be lowered by about 7° F. (N.B. For the purposes of calculation Dr. Pye compares the volume which would be occupied by the charge at n.t.p. with the stroke volume; his values for volumetric

[^25]efficiency are therefore appreciably lower than those based on the actual air temperature.)
The final temperature attained after mixing, and at the end of the suction stroke, can then be obtained as follows :
Taking the previous values of C_{v} per standard cubic foot, i.e. the mean value for residuals up to $1550^{\circ} \mathrm{F}$. as about 23.5 ft .-lb., and the mean value for charge up to $212^{\circ} \mathrm{F}$. as about 20.5 ft .-lb., and assuming the pressures to be atmospheric, we have :
\[

$$
\begin{aligned}
& \text { Volume of charge at n.t.p. }=v_{c} \times \frac{T_{o}}{\mathrm{~T}_{c}} \\
& \text { Volume of residuals at n.t.p. }=v_{r} \times \frac{\mathrm{T}_{o}}{\mathrm{~T}_{r}}
\end{aligned}
$$
\]

where v_{c} and T_{c}, v_{r} and T_{r} are the measured volumes and temperatures of the charge and residuals.
As the heat received by the charge=the heat lost by residuals, we have

$$
v_{c} \frac{\mathrm{~T}_{o}}{\mathrm{~T}_{c}}\left(\mathrm{~T}_{s}-\mathrm{T}_{f}\right) 20.5=v_{r} \mathrm{~T}_{o} \mathrm{~T}_{r}\left(\mathrm{~T}_{r}-\mathrm{T}_{s}\right) 23.5
$$

giving the temperature T_{8} of the mixture.
The value of $\mathrm{T}_{\text {s }}$ will obviously be affected by the ratio of v_{c} to $v_{\text {, }}$ i.e. by the compression ratio.

The following approximate values are representative:

$$
\begin{aligned}
\text { Compression ratio } 4: 1 \ldots \mathrm{~T}_{3} & =280^{\circ} \mathrm{F} . \\
5: 1 \ldots . & =250^{\circ} \mathrm{F} \\
6: 1 \ldots & =232^{\mathrm{F}} . \\
7: 1 \ldots & =215^{\circ} \mathrm{F} .
\end{aligned}
$$

These figures neglect the fact that the temperature of the residuals after expansion will be lower when the higher compression ratios are used. It should be noted also that in the case of alcohol, which has a very high latent heat, evaporation is not completed before the inlet valve closes and the cycle temperatures are all reduced as a consequence.

THE CALCULATION OF COMPRESSION TEMPERATURE

For the perfect air cycle the temperature after compression may be calculated from the suction temperature on the assumption that the law of compression is $p v^{144}=$ constant. In engines compressing a charge of air and gas the specific heats will not normally depart far from those for air alone, the gases concerned being largely diatomic. In the case of the petrol engine the vapour consists largely of heavy compound hydrocarbon molecules, and the resulting value for γ will be approximately 1.34 .
This value will be affected by three variables : (1) the strength of the
mixture, and the consequent relative proportion of complex to diatomic molecules; (2) the speed of the engine, and consequently the time during which heat losses may occur ; and (3) the degree of turbulence in the cylinder, which will affect the relative rate of movement of the gases over the exposed metal surfaces. Taking these factors into account a value of 1.33 will normally be found reliable. For gas engines the value of 1.37 may be taken, and for high-speed engines compressing air only the value will be about 1.33 for small cylinders and 1.35 for large.

CALCULATION OF MAXIMUM TEMPERATURE

A very rough approximation to the value of the maximum temperature can be found by equating the calorific value of the known weight of fuel to the product of the rise in temperature of the products of combustion, their weight, and their mean specific heat.

A number of additional factors should be noted.
(1) If the mixture is over-rich in fuel, as is usually the case in petrol engines, the whole of the fuel supply cannot be adequately burnt, leading to the formation of appreciable quantities of carbon monoxide, with a consequent loss of heat.
(2) The specific heat of the products of combustion increases rapidly with temperature so that a mean value must be taken.
(3) The effect of " dissociation," to be considered on p. 299, may be very marked, and may result in a lowering of the maximum temperature by about $540^{\circ} \mathrm{F}$.

A closer approximation may be made by considering the rise of pressure due to combustion, if this value can be obtained from an indicator card.

VALUE OF \boldsymbol{n} FOR THE EXPANSION GURVE

The process of expansion is, in practice, complicated by a number of factors, including heat loss-which involves questions of speed and turbulence-specific heat variations, and the effects of previous "dissociation " and of reassociation. For a petrol engine the value of $n=1.258$ for " correct " mixtures and $n=1.296$ for mixtures 20 per cent. " weak " may generally be used.

VARIATIONS OF SPECIFIC HEAT

It has been noted in previous articles that in the case of an actual engine the efficiency and the maximum temperatures attained fall appreciably below those anticipated from the application of the simple gas laws. One factor, which accounts in part for the above discrepancies, is the known variation with temperature of the specific heat of the gases forming the working fluid.

The nature of this variation is shown in the following table of volu-
metric heats, where the mean values of $\mathrm{C}_{\boldsymbol{p}}$ over certain stated ranges of temperature are shown in foot-pounds per standard cubic foot. (To convert to. B.Th.U. per mol. divide by $2 \cdot 16$.)

| $212^{\circ} \mathrm{F}$. up to | $1000^{\circ} \mathrm{F}$. | $2000^{\circ} \mathrm{F}$. | $3000^{\circ} \mathrm{F}$. | $4000^{\circ} \mathrm{F}$. | $5000^{\circ} \mathrm{F}$. | Increase,
 per cent. |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |

The extreme variations shown are expressed in the final column as percentages of the first values, from which it will be seen that the variations are far from being negligible.
Example.-Find the fractional change of efficiency of the constant volume cycle, assuming $\gamma=1.40$ and $r=5.96$, corresponding to 21 per cent. increase in $\mathrm{C}_{\mathbf{6}}$.

$$
\text { Efficiency }=\mathrm{E}=1-\left(\frac{1}{r}\right)^{\gamma-1} \text {, where } \gamma=\frac{\mathrm{C}_{p}}{\mathrm{C}_{v}}
$$

Now since

$$
C_{p}-C_{v}=R
$$

$$
\gamma-1=\frac{R}{C_{v}}
$$

$$
\therefore \mathrm{E}=1-\left(\frac{1}{r}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{v}}} \text {, or } 1-\mathrm{E}=\left(\frac{1}{r}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{v}}} \text {, or } \frac{1}{1-\mathrm{E}}=(r)^{\frac{\mathrm{R}}{\mathrm{C}_{v}}}
$$

Differentiating with respect to C_{v}, we have

$$
\begin{align*}
-\frac{1}{1-\mathrm{E}} \cdot \frac{d \mathrm{E}}{d \mathrm{C}_{v}} & =\frac{\mathrm{R}}{\mathrm{C}_{v}^{2}} \cdot \log _{\epsilon} r \\
\therefore \frac{d \mathrm{E}}{d \mathrm{C}_{v}} & =-\frac{\mathrm{R}(1-\mathrm{E})}{\mathrm{C}_{v}{ }^{2}} \cdot \log _{\sigma} r . \tag{1}\\
1-\mathrm{E} & =\left(\frac{1}{r}\right)^{\mathrm{R}} \\
\frac{d \mathrm{E}}{\mathrm{C}_{v}} & =-\frac{\mathrm{R}}{\mathrm{C}_{v}{ }^{2}} \cdot\left(\frac{1}{r}\right)^{\frac{\mathrm{R}}{C_{v}}} \cdot \log _{\epsilon} r . \tag{2}
\end{align*}
$$

Or since
(1) may also be written

$$
\begin{equation*}
d \mathrm{E}=-\frac{d \mathrm{C}_{v}}{\mathrm{C}_{v}{ }^{2}}\left\{\mathrm{R}(1-\mathrm{E}) \cdot \log _{e} r\right\} \tag{3}
\end{equation*}
$$

i.e. $\frac{d E}{E}=-\frac{d C_{v}}{C_{v}}\left\{\frac{R}{C_{v}} \cdot \frac{1-E}{E} \log _{e} r\right\}=-\frac{d C_{v}}{C_{v}}\left\{(\gamma-1) \frac{1-\mathrm{E}}{\mathrm{E}} \log _{e} r\right\}$

In this case efficiency $\mathrm{E}=1-\left(\frac{1}{5.96}\right)^{0.4}=0.499$

$$
\begin{aligned}
\therefore \frac{d \mathrm{E}}{\mathrm{E}} & =-\frac{1}{100}\left\{0.4 \times \frac{1-0.499}{0.499} \times 2.303 \log _{10} 5.96\right\} \\
& =-\frac{1}{100}\left\{\frac{0.4 \times 0.501}{0.499} \times 2.303 \times 0.7752\right\} \\
& =-\frac{1}{100}\{0.717\} \\
& =-0.717 \text { per cent. }
\end{aligned}
$$

i.e. the efficiency would decrease 0.717 per cent. as the result of C_{0} increasing 1 per cent.

EFFECT OF A LINEAR VARIATION OF SPECIFIC HEAT WITH TEMPERATURE ON FORMULE FOR HEAT INTERCHANGE AND ADIABATIC EXPANSION

The formula $\mathrm{J} \frac{d \mathrm{H}}{d v}=\frac{\gamma-n}{\gamma-1} p$ has already been proved for constant specific heat.
If
Then as

$$
\begin{aligned}
\mathrm{C}_{p} & =\alpha+\mathrm{ST} . \\
\mathrm{C}_{p}-\mathrm{C}_{v} & =\text { constant } \\
\mathrm{C}_{v} & =\beta+\mathrm{ST} \\
\mathrm{R} & =\mathrm{J} \cdot(\alpha-\beta)
\end{aligned}
$$

and
If

$$
\alpha / \beta=c
$$

Then as

$$
\begin{align*}
& \delta \mathrm{H}=\mathrm{C}_{v} \delta \mathrm{~T}+\frac{p \delta v}{\mathrm{~J}} \\
& \mathrm{~J} \frac{\delta \mathrm{H}}{\delta v}=\mathrm{JC} v \mathrm{C} \tag{1}\\
& \frac{\delta \mathrm{~T}}{\delta v}+p
\end{align*}
$$

But as $p v=\mathrm{RT}$, or $\mathrm{T}=1 / \mathrm{R} \times(p v)$, and $\mathrm{R}=\mathrm{J}(\alpha-\beta)$

$$
\begin{equation*}
\frac{\delta \mathrm{T}}{\delta v}=\frac{1}{\mathrm{~J}(\alpha-\beta)}\left(p+v \frac{\delta p}{d v}\right) \tag{2}
\end{equation*}
$$

Substituting in (1)

$$
\begin{align*}
\mathrm{J} \frac{\delta \mathrm{H}}{\delta v} & =\frac{\beta+\mathrm{ST}}{\alpha-\beta}\left(p+v \frac{\delta p}{\delta v}\right)+p \\
& =p\left(1+\frac{\beta+\mathrm{ST}}{\alpha-\beta}\right)+v \frac{\delta p}{\delta v} \cdot \frac{\beta+\mathrm{ST}}{\alpha-\beta} \\
& =\frac{1}{\alpha-\beta}\left\{\alpha p+\mathrm{ST} p+\beta v \frac{\delta p}{\delta v}+\mathrm{ST} v \frac{\delta p}{\delta v}\right\} . \tag{3}
\end{align*}
$$

Multiplying outside the bracket by β and dividing inside by the same quantity,

$$
\begin{equation*}
\mathrm{J} \frac{\delta \mathrm{H}}{d v}=\frac{1}{c-1}\left\{c p+v \frac{\delta p}{\delta v}\right\}+\frac{\mathrm{ST}}{\alpha-\beta}\left\{p+v \frac{\delta p}{\delta v}\right\} . \tag{4}
\end{equation*}
$$

But as $p v^{n}=\mathrm{K}$

$$
v \frac{\delta p}{\delta v}=-n p
$$

or

$$
\mathrm{J} \frac{\delta \mathrm{II}}{\delta v}=\frac{c-n}{c-1} p+\frac{\mathrm{ST}}{\alpha-\beta}\{p-n p\}=\left\{\frac{c-n}{c-1}-\frac{n-1}{\alpha-\beta} \mathrm{ST}\right\} p
$$

or $\frac{\delta \mathrm{H}}{\delta v} \propto p$ when $\mathrm{T}=$ constant, and is a linear function of T when $p=$ constant.

The formula for adiabatic expansion is derived from equation (3)
or

$$
\alpha p+\mathrm{ST} p+\beta v \frac{\delta p}{\delta v}+\mathrm{ST} v \frac{\delta p}{\delta v}=0
$$

or, collecting terms in $\frac{\delta p}{\delta v}$ and dividing by ($\beta+\mathrm{ST}$)
or

$$
\begin{aligned}
& v \frac{\delta p}{\delta v}+\frac{\alpha+\mathrm{ST}}{\beta+\mathrm{ST}} p=0 \\
& \frac{\delta p}{p}+\frac{\alpha+\mathrm{ST}}{\beta+\mathrm{ST}} \frac{\delta v}{v}=0
\end{aligned}
$$

or, dividing by $\beta+\mathrm{ST}$,

$$
\begin{equation*}
\beta \frac{\delta p}{p}+\alpha \frac{\delta v}{v}+\mathrm{ST}\left(\frac{\delta p}{p}+\frac{\delta v}{v}\right)=0 . \tag{5}
\end{equation*}
$$

But as $p v=\mathrm{RT}$ we have, by differentiation with respect to T
or

$$
\frac{p}{\mathrm{~T}} \frac{\delta v}{\delta \mathrm{~T}}+\frac{v(\delta p / \delta \mathrm{T} \cdot \mathrm{~T}-p)}{\mathrm{T}^{2}}=0
$$

$$
\frac{p}{\mathrm{~T}} \frac{\delta v}{\delta \mathrm{~T}}+\frac{v}{\mathrm{~T}} \frac{\delta p}{\delta \mathrm{~T}}-\frac{v p}{\mathrm{~T}^{2}}=0
$$

$$
\frac{\delta v}{v}+\frac{\delta p}{p}=\frac{\delta T}{T}
$$

Substituting in (5)
or

$$
\beta \log p+\alpha \log v+\mathrm{ST}=\mathrm{constant}
$$

or

$$
\beta \frac{\delta p}{p}+\alpha \frac{\delta v}{v}+\mathrm{ST}^{\delta \mathrm{T}} \frac{\mathrm{~T}}{\mathrm{~T}}=0
$$

$$
p^{\beta} v_{v} e^{S T}=\text { constant. }
$$

It will be seen by reference to articles by S. Lees (Engineering, Jan., 1915) and W. J. Walker (Phil. Mag., Sept., 1917) that the application of the
equation tor even a simple linear variation of specific heat to equations for the various cycles becomes an extremely cumbersome process. More complex laws do, in fact, hold for the gases forming the working fluid, especially for the triatomic gases, and it becomes desirable to work from curves of internal energy and temperature and by indirect methods rather than by an extension of the methods already considered.

DISSOCIATION

The phenomena of "dissociation" is of primary importance in all problems concerning the temperatures and efficiencies of high duty internal combustion engines.

It appears that at high temperatures the bonds which bind simple molecules together to form complex molecules become strained to such an extent that a certain proportion of the molecules, depending on the temperature, actually disrupt, and molecules of the original form will then be found existing side by side with the products of decomposition of similar molecules. In other words, the molecules tend to "dissociate." The process is the reverse of combination by combustion, during which heat is liberated, and is accompanied by an absorption of heat proportional to the amount of dissociation effected. Heat is, of course, an extremely powerful agent for the bringing about of decomposition.

The molecules with which we are chiefly concerned are $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}. In these cases the equations for dissociation, i.e. $2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}_{2}+\mathrm{O}_{2}$ and $2 \mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}+\mathrm{O}_{2}$, show a change in volume during the process, 2 volumes of gas occupying 3 volumes after decomposition. It will be obvious, therefore, that the effect of high pressure, which naturally opposes any increase in volume, will be to retard dissociation.

The following table shows the percentage of the original gas which dissociates at various temperatures and pressures :

	"	54		,		
$\mathrm{H}_{2} \mathrm{O}$, 2700		04		", $2700^{\circ} \mathrm{F}$.		
, $5400{ }^{\circ} \mathrm{F}$.	"	284	"	", $5400{ }^{\circ} \mathrm{F}$.		3.33

The dissociated molecules will only remain in this condition so long as the temperature remains high, and as this falls, as during adiabatic expansion, they will again reunite to form molecules of the original type, with the corresponding liberation of heat. This completion of the combustion process, accurring in an actual engine, will only be achieved at a comparatively late stage of the expansion stroke, and too late for the heat to be utilised to full advantage. The whole process will explain in large measure the drop in maximum temperature (as much as $540^{\circ} \mathrm{F}$. can be attributed to this cause) and the raising of the expansion curve above the adiabatic.

In the case of $\mathrm{H}_{2} \mathrm{O}$ at any given temperature equilibrium is attained between the dissociated and parent molecules when the partial pressure of the oxygen in the $\mathrm{H}_{2} \mathrm{O}$ molecules is balanced by the partial pressure of the oxygen in the atmosphere surrounding them. This latter partial pressure may be due either to the oxygen formed by dissociation of the $\mathrm{H}_{2} \mathrm{O}$, or to oxygen formed in any other way. It will be obvious therefore that dissociation can be very largely prevented by surrounding the $\mathrm{H}_{2} \mathrm{O}$ molecules with an atmosphere already rich in oxygen. The same statement applies in the case of carbon dioxide.

An extremely interesting fact now emerges. As both $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}

Fig. 134.
liberate O_{2} upon dissociation, then, in a mixture of these gases the O_{2} liberated by one will tend to prevent the decomposition of the other-i.e. the dissociation of such a mixture is different from the dissociation of the components considered separately. In the same way, as carbon monoxide may be formed in the cylinder of an engine either as the result of dissociation, or as the direct result of supplying an excess of fuel, the use of an over-rich mixture will tend to suppress dissociation and to cause the full calorific value to be obtained from such fuel as is burnt. The result is the well-known phenomena that a petrol engine is deficient in power at the "correct" mixture, when dissociation is unimpeded, but that the
power rises slightly as the mixture becomes richer in fuel and is maintained constant over a very wide range of over-rich mixtures.
It must not be supposed that the intentional production of CO to prevent its unintentional formation is an efficient proceeding, however useful it may be in maintaining maximum power over a wide range, generally an inefficiently controlled wide range, of mixture strengths. This is shown by the lower curve of Fig. 134 giving the petrol consumption in terms of pints per B.H.P. hour, the corresponding B.H.P. curve, and an indication of the form the latter curve would take were there no dissociation.

THE PROCESS OF COMBUSTION IN AIR AND PETROL MIXTURES

In order to understand some of the phenomena occurring in a petrol engine the complex process of combustion must be further understood. In what follows a stagnant charge will be assumed.

After the activation of a minute quantity of the combustible mixture in the immediate neighbourhood of the sparking-plug points, two wellmarked phases of combustion can be traced.
(1) The tiny nucleus of flame endeavours to grow as an expanding ball of fire, gaining heat during the process from the combustion of the gases which previously were just outside it. At the same time heat is lost, largely by radiation, and the continued existence of the flame is dependent upon the balance of heat being in its favour. If the flame is not quenched at an early stage the increasing volume : surface ratio gives increasing stability.
(2) The "delay" period of approximate heat equilibrium having passed, the ball of flame proceeds to grow with increasing rapidity, retaining its form as far as may be permitted by the walls of the containing vessel.

At the flame front intense heat is generated, causing a local rise of pressure of considerable magnitude, and waves of high pressure are set up which travel away from their points of origin and through the unburnt mixture with the speed of sound, and, on reaching the walls of the containing vessel, are reflected and re-reflected until their energy is absorbed, this being accompanied by a general steady rise of pressure and temperature upon which subsequent pressure waves superimpose their transient effects. The unburnt gases are thus compressed, nearly adiabatically, by the burning charge.
This compression of the unburnt charge has a secondary effect, as the gases beyond the flame front are brought nearer to their temperature of combustion, and the speed of travel of the flame is thus increased in a cumulative manner. The flame, now firmly established, proceeds to grow with great rapidity until, under circumstances favourable to the given mixture, the flame front is travelling with the velocity of sound.

The "explosion" is then said to have become a " detonation," and as the flame is travelling as fast as the pressure waves to which it gives rise, the local pressure has no means of release and therefore builds up to a very high value. Such a detonation wave, arriving at a boundary wall, produces a hammer blow, and is accompanied by the same sharp, metallic "pink" which would accompany a blow by a steel hammer. If the wall is of insufficient strength to withstand the blow it is usually shattered into many fragments. It must be remembered that these intense local pressures can be produced even in the case of "explosions" nominally at atmospheric pressure. The heat liberated and the general pressure produced in the containing vessel after a detonation are the same as if the combustion had been comparatively slow, but the local and transient effects may be entirely different. The usefulness of a fuel for employment in a high duty internal combustion engine is primarily determined by its tendency to detonate.

It appears that at low initial pressures the detonation wave is produced only after the flame has travelled a certain distance. In the case of methane and oxygen at atmospheric temperature and pressure this may be as small as $2 \frac{1}{2} \mathrm{in}$., and for electrolytic gas 12 in . For the mixtures normally found in I.C. engines the distance is appreciably greater.

One factor of great importance in this connection is the presence in the cylinder head of local hot zones, produced by the presence of exhaust valve heads, overheated sparking plugs, etc. The effect of hot-spots may be such that the arrival of a pressure wave in advance of the flame front, as is the case with normal comparatively slow combustion, may bring the explosive mixture in such localities to a temperature above that required for ignition, and detonation may be initiated in the locality though the flame front is still some way off.
"Detonation" must not be confused with pre-ignition. Detonation follows ignition with regard to time. Pre-ignition is the ignition of a charge before the time arranged, and may be initiated during the compression stroke by the presence of an overheated sparking plug, or particle of glowing carbon. The flame spreads in the normal way, but the first, or delay, phase of ignition may have passed well before the end of the compression stroke. The compression of the now vigorously burning gases gives rise to very high temperatures and pressures which rapidly aggravate the overheating of the offending hot-spots, and tend to bring the engine quickly to a standstill. The abnormal pressures cause heavy strains on the engine parts and the violent treatment to which they are subjected gives rise to the well-known "knock," a sound very different from the metallic ring or "pink" caused by detonation.

Detonation has a tendency to remove carbonaceous deposits in the cylinder head, and in a mild form is not seriously detrimental, but if severe or long continued will cause overheating of plug-points, etc., and lead to pre-ignition.

TURBULENCE

Superimposed upon the effects described above are those due to turbulence, that is to the movements, orderly or indiscriminate, produced in the gases either by the charging of the cylinder (induction turbulence) or by the motion of the piston (compression turbulence). They have the primary effect of breaking up the flame in its early stages and distributing the fragments through the combustible mixture, thus initiating the spread of flame from many centres. Were turbulence not present in the cylinder of an I.C. engine combustion would be so slow that none but the lowest rates of revolution would be possible, as is seen in Fig. 135, showing a normal explosion and one of an exactly similar mixture but with turbulence reduced to a minimum. As the effect of urbulence in a normal engine is adequate at low speeds and is nearly

Fig. 135.
proportional to the rate of revolution, it follows that the speed of combustion will not prohibit the attainment of high engine speeds. By the suitable design of the induction port and cylinder head the turbulence may be increased to any extent required. It is generally desirable, in the case of a well-designed high-duty petrol engine, to provide such turbulence as will give a rate of pressure rise of $20-30 \mathrm{lb}$. per sq. in. per degree of crank angle, a sharper rise giving " rough " running owing to springing of the engine parts.
A high degree of turbulence has a number of secondary effects, the most important of which is the reduction of the tendency of a fuel to detonate, owing to the more adequate distribution throughout the whole body of the charge of the heat derived from heated valve heads, etc. Heat losses to the walls and piston head will be appreciably increased, but the effect of the former is to some extent counteracted by the relatively small wall area normally exposed in cylinders using a higb degree of turbulence.

EFFECT OF RESIDUAL GASES

The possible effects of varying either the quality or the quantity of the residual gases remaining in the combustion space at the end of the compression stroke must be borne in mind when considering the effects which may be anticipated from scavenging, supercharging, etc., if applied to a high-duty petrol engine.

It has been shown on p. 292 that the temperature at the end of the suction stroke is affected by the admixture of hot residual gases with the fresh charge of air and fuel, and that the lower the compression ratio the larger this effect will be. A second effect, however, is that as the ratio of compression is decreased the specific heat of the mixture is increased owing to the increasing numbers of molecules of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ present, these having high specific heats. An increase of 1 per cent. by weight in the quantity of the residual exhaust gases may lower the final flame temperature owing to this cause by as much as $35^{\circ}-45^{\circ} \mathrm{F}$., or an amount equal to that produced by a variation in compression ratio from 5:1 to $4: 1$. A reduction of the amount of exhaust dilution, or the removal of residuals altogether, by scavenging, will, under given circumstances, greatly increase the tendency to detonation, and the addition of cooled exhaust gas through the carburettor has been used by Ricardo to suppress detonation.

These facts have a great importance only in engines for high duty, in which the fuel is always utilised as near to its detonation point as is practicable. They illustrate the importance of considering all the factors involved in the complex processes of combustion.

APPLICATION OF KNOWLEDGE OF FLAME PHENOMENA TO CYLINDER HEAD DESIGN

By the application of a knowledge of flame phenomena it has become possible to produce combustion of a type most fitted for a particular purpose, and considerable improvements in efficiency and very great increases of specific output have been obtained. The three primary conditions to be observed are :
(1) A minimum distance of flame travel ;
(2) A suitable degree of turbulence ;
(3) Absence of hot-spots, especially in pockets where the gas tends to stagnate.
Fig. 136 shows the old-fashioned T-head cylinder, which provides about the worst possible conditions, i.e. maximum distance of flame travel, low turbulence, and a hot exhaust valve head in a "pocket." Additional disadvantages are the bad flow of the gases past the valve heads, inadequate cooling of the valve seats on the cylinder side, and the very large surface : volume ratio, giving excessive heat losses.

The worst position for the sparking plug is above the inlet valve at A , as the compression of the unburnt charge near the exhaust valve by the burning of the charge near A is extremely likely to initiate detonation. By placing the plug at B a considerable improvement is effected as compression of the unburnt charge is then in the neighbourhood of the cool inlet valve. The presence of uncooled valve caps often makes matters worse.

Fig. 136.
The highest useful compression ratio for normal petrol with this type of head is about $3 \cdot 6: 1$.
By placing both valves on one side of the cylinder the L head is obtained, which is a considerable improvement on the former owing to the shortening of the maximum flame path. The maximum compression ratio is about 4.5 .

In the hemispherical head, Fig. 137, a very compact arrangement is

Fig. 137.

Fig. 138.
obtained, with a minimum distance for flame travel, an entire absence of pockets, and a form well arranged to maintain induction swirl as long as possible. The small surface : volume ratio will be noted. A sleeve valve engine is shown. A similar arrangement but with overhead valves is frequently used.

In the Ricardo head, Fig. 138, a very compact form of chamber is
obtained while retaining the side-valve arrangement. The very small clearance between the piston and a portion of the head is such that detonation is precluded in this region owing to the large cooling effect provided. In this design a high degree of turbulence is produced by the movement of the piston just before its highest position is reached.
It has been found that even with a robust engine having an exceptionally well supported crankshaft, etc., turbulence must not be increased beyond that which will give a rate of pressure rise of about 30 lb . per sq. in. per legree of crank angle. If the pressure is gradually applied at first, till all spring of the parts is taken up, a much greater rate of rise may be used

Fig. 139.

Fig. 140.
subsequently. The "shock-absorber" head shown in Fig. 139 has resulted.

About 15 per cent. of the total charge is compressed into a shallow pocket, in which turbulence rapidly dies down, and where ignition is initiated. The early stages of combustion are therefore gradual, the time required from the passing of the spark to the instant when the flame reaches the edge of the pocket being about 30 crank angle degrees. During the last stage of this slow combustion the flame front leaves the pocket and is ejected into the deep portion of the combustion head in which induction and compression turbulence have been well maintained. The combustion of the remaining 85 per cent. of the charge requires only about $8^{\circ}-12^{\circ}$ of crank angle, giving a final rate of pressure-rise of 45 lb. per sq. in. per degree without " roughness."

The sleeve-valve engine, Fig. 140, presents many attractive features. Among these are the compactness of the combustion chamber with a minimum flame-travel distance and an entire absence of hot-spots. The
degree of turbulence is controllable over a very wide range by means of vanes set in the induction passages. The compression ratio for normal speeds of running may be between $5 \cdot 4: 1$ and $6: 1$.

EFFECTS OF SPEED AND SIZE

One effect of increasing engine speed is to lower the volumetric efficiency owing to the restriction offered by the valve passages, etc. The suction pressure, and consequently the cycle temperatures, will be reduced thereby, resulting in a decreased tendency to detonation, while the increased turbulence will have the same effect. An increase in speed from 1200 to 1600 r.p.m. may increase the highest useful compression ratio from, say, $4 \cdot 5: 1$ to $5: 1$.

Exceptionally high speeds, such as are attained by racing machines, permit of much higher ratios.

The size of cylinder used has a direct effect on the permissible compression ratio owing to the variations produced in the maximum distance to be traversed by the flame. The following values indicate the compression ratios which may be used with similar sleeve-valve cylinders of different dimensions :

Bore $2 \frac{3}{4} \mathrm{in}$.	$7 \cdot 9: 1$		
$3 \frac{1}{2} \mathrm{in}$.	$7 \cdot 3: 1$
$5 \frac{1}{2} \mathrm{in}$.	$6 \cdot 2: 1$
$8 \frac{1}{2} \mathrm{in}$.	$5 \cdot 4: 1$

COMBUSTION IN THE COMPRESSION IGNITION ENGINE

The process of combustion in these engines is more complex than in engines using a gaseous mixture. The main problem is that of bringing the oil fuel into intimate contact with the air required for its complete combustion, remembering that much of the combustion takes place from the surface of the fuel particles before their complete vaporisation, so that a high relative speed must be maintained in order to sweep away the products of combustion.

With air injection a very highly atomised spray may be obtained, the injection air also considerably increasing the state of turbulence in the engine. For all except slow speeds, however, a mechanically operated injection pump is used.
The normal combustion process can be considered as consisting of three phases, as shown in Fig. 141.
(1) The " delay" period during which ignition is initiated by the combustion of the finest droplets in the first portion of fuel to enter the cylinder. Combustion spreads very slowly at first, though more rapidly than in the petrol engine owing to the higher compression temperatures employed
(2) The general and largely uncontrolled spread of the flame, aided oy turbulence.

These two stages are generally effected during the early stages of injection, and before the bulk of the fuel has entered the cylinder.
(3) The temperature throughout the combustion chamber having been greatly increased during stages (1) and (2), the remainder of the fuel burns as it passes the nozzle, the succeeding temperature and pressure rises being under direct mechanical control, and very largely determined by the relative velocity of the air and fuel particles.
As the duration of phase (1) is approximately constant with regard to time, and is therefore independent of engine speed, while the injection pump is directly driven by the engine and therefore gives a rate of dis-

Fig. 141.
charge dependent on engine speed, it follows that as engine speeds increase the proportion of the total fuel entering the cylinder during the " delay " period increases, thus emphasising stage (2) and increasing the maximum pressure, the cycle tending to approach the "constant volume " cycle. It may be desirable to decrease the speed of injection at first to maintain adequate control of the maximum pressure.

A compression ratio of about $12: 1$ is the minimum which will give reliable auto-ignition in all circumstances.

It should be noted that in the petrol engine, where all the fuel is present throughout the process of combustion, it is desirable to use a fuel with a high auto-ignition temperature to reduce the tendency to pre-ignition and detonation. In the C.I. engine a low auto-ignition temperature is desirable in order to reduce the "delay" period, and give as full control as possible of the second phase of ignition. A petrol may therefore be
" doped " to decrease the tendency to detonate, but a fuel oil to produce exactly the opposite effect.

Fig. 142 shows some of the many types of combustion chamber employed.

A. In this type a comparatively low degree of turbulence is used, intimate mixture of the air and fuel being obtained by driving the fuel particles at high velocity into the charge of air,

B is a representative of the reverse process. Here a high degree of
induction swirl is produced, generally by means of a sleeve-valve with suitably inclined ports, and is greatly intensified by the compression of the whirling charge into the " pot" of smaller diameter than the cylinder. A second form of turbulence is finally superimposed upon the first as the piston reaches top dead centre and displaces the air from beneath the outer ring of the cylinder head. The fuel is injected as a single jet down one side of the combustion chamber, so that the air swirl brings the air to and removes the products of combustion from the fuel.

C represents the " pre-combustion chamber" design. Here a part of the air charge enters the small central pre-combustion chamber through a "pepper-pot" with a large number of small holes, and meets the atomised fuel. The first two phases of combustion develop in this chamber, but during the second the remaining fuel and highly-heated air are driven violently through the pepper-pot by the pressure set up by combustion and pass into the combustion chamber, to mix with the bulk of the air charge. The velocity of ejection is greatly in excess of any which can be produced by mechanical means.

The throttling of the gas flow by the pepper-pot is a serious disadvantage, and also the tendency of the fuel to " crack " and form carbonaceous deposits in the chamber.

D represents quite a different arrangement. Here practically all the air is compressed through a narrow neck into a small chamber which may be either in the cylinder head as shown, or in the piston crown. The injection of fuel into the chamber, where turbulence is very intense, is commenced rather slowly, so that phases (1) and (2) are well advanced before more than a small amount of fuel has been injected. The downward movement of the piston then causes an intense rush of air and burning fuel through the narrow neck resuling in very intimate mixing. The larger portion of the combustion, or phase (3), occurs outside the chamber, as is indicated by the fact that the latter does not overheat.

EXAMPLES ON CHAPTER XIV

1. A gas engine works on the ideal Otto cycle. The clearance volume is $272 \mathrm{cu} . \mathrm{in}$., the cylinder is 9.5 in . diameter, and the stroke 19 in . At the end of the suction stroke the pressure is 13 lb . per sq. in. abs., and the temperature of the charge is $100^{\circ} \mathrm{C}$. Estimate the ideal "air standard" efficiency, and the temperature and pressure at the end of the compression stroke ($\gamma=1 \cdot 4$).
2. Calculate (a) the ideal efficiency of a gas engine working on the Otto cycle when the compression pressure is 135 lb . per sq. in. above atmospheric, and (b) of an engine working on the same cycle with a compression pressure of 65 lb . per sq. in. above atmospheric. Assume the pressure during the suction stroke to be 14 lb . per sq. in. abs. in each case, and the expansion and compression to be adiabatic with $\gamma=1 \cdot 38$.
3. A compression ignition engine has a compression ratio of 15 to 1 , and at the beginning of compression the pressure is 13.2 lh . per square inch, and the temperature $85^{\circ} \mathrm{C}$. The fuel injection is auch that there is a pressure rise at constant
volume until the pressure is 750 lb . per square inch, and heat addition continues to give constant pressure for 5 per cent. of the expansion stroke.

Calculate the temperature at:-
(a) The end of compression.
(b) The end of constant volume pressure rise.
(c) The end of the constant pressure heat addition.
(d) The point of exhaust valve opening at 0.85 down the working stroke

Assume that the index of compression is 1.37 and of expansion 1.28.
4. In an engine working on the Otto cycle the following temperatures were measured : Suction $210^{\circ} \mathrm{F}$., at end of compression $590^{\circ} \mathrm{F}$., maximum $2093^{\circ} \mathrm{F}$., at end of expansion $1594^{\circ} \mathrm{F}$. Estimate the compression ratio and the ideal efficiency. Assume the law of compression is $p v^{1 \cdot 445}=$ constant.
5. The following figures are taken from the expansion curve of a 100 B.H.P. gas engine indicator diagram, the engine having a clearance volume of 0.6035 $\mathrm{cu} . \mathrm{ft}$., and piston displacement $3 \cdot 1528 \mathrm{cu} . \mathrm{ft}$., the volume \boldsymbol{v} representing the total volume of the gases :

\boldsymbol{v} (cu.ft.)	0.6035	0.7610	0.9188	1.234	1.549	1.865	2-180	$2 \cdot 495$	$2 \cdot 810$	$3 \cdot 126$	3.441
plb. per sq.in.abs.	400	279	229	155	121	92	72	60	50	42	35

Estimate the law of the expansion curve.
6. A petrol engine working at a compression ratio of 4.5 to 1 shows an indicated maximum pressure of 450 lb . per sq. in. abs. If the equations of the compressiop and expansion curves are $\mathrm{PV}^{1 \cdot 35}=\mathrm{K}$ and $\mathrm{PV}^{1 \cdot 28}=\mathrm{K}$ respectively, calculate the M.E.P. and the temperature at the end of the expansion stroke. Assume the suction temperature and pressure to be $200^{\circ} \mathrm{F}$. and 14.5 lb . per sq. in. abs. What would be the efficiency of a perfect engine using the corresponding standard aircycle at the same compression ratio.
7. A supercharged four-stroke single cylinder petrol engine has a compression ratio of 4.5 to 1 . The temperature and pressure at the end of the suction stroke are $250^{\circ} \mathrm{F}$. and 28 lb . per sq. in. abs. respectively. Assuming that the maximum temperature is $2200^{\circ} \mathrm{C}$., that the law of expansion and compression is PV $1 \cdot 28=\mathrm{K}$, and that combustion occurs entirely at constant volume, calculate the indicated M.E.P., and the pressure at the end of the exhaust stroke.

If the engine uses 0.625 lb . of benzole (calorific value $18,600 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. per lb .) per B.H.P. per hour, what is its thermal efficiency relative to that of a perfect air engine at the same compression ratio ?
8. A four-cylinder four-stroke petrol engine is to be designed to develop 55 I.H.P. at a speed of 3000 r.p.m. The bore and stroke are to be identical, the compression ratio is to be 5.5 to 1 , and the law of compression and expansion may be taken as $\mathrm{PV}^{1 \cdot 28}=\mathrm{K}$. Assuming the suction temperature and pressure to be $100^{\circ} \mathrm{C}$. and 14 lb . per sq. in. abs. respectively, and that on ignition the cylinder pressure rises instantaneously to 3.5 times the compression pressure, calculate the diameter of the cylinders.

What would be the efficiency of a perfect engine employing the corresponding ideal air-cycle ?

Chapter XV

MECHANICAL REFRIGERATORS AND REVERSED HEAT ENGINES

GENERAL STATEMENT

Refrigeration is the process by which heat is removed from a body in order to reduce its temperature below that of its surroundings. This removal cannot be carried out by the simple process of conduction as the heat concerned must be transferred from a low-temperature body to another at a higher temperature, a process which, according to the Second Law of Thermodynamics, can only be effected by the expenditure of energy from an external source.

The process involves four stages and the use of a " refrigerant " which may be either (1) a gas, or (2) a volatile liquid. The stages are as follows :
(1) The refrigerant is cooled to a temperature suitably below the temperature of its surroundings, either by causing it to expand and so convert some of its thermal energy into mechanical work (refrigerants of groups (1) and (2)), or by throttling (refrigerants of group (2) only).
(2) Heat is transferred by conduction from the body to be cooled to the refrigerant.
(3) The temperature of the refrigerant is raised by compression, external mechanical energy being absorbed.
(4) Heat is transferred from the refrigerant by conduction to a body at the upper temperature-normally a supply of cold water.

The process is usually-but not always-continuous.
In the case of plants in which the chilling process has to be effective over a large area, it is often convenient to substitute two sub-stages for stage (2), the heat from the body to be cooled being first transferred to a brine solution (having a low freezing-point) which may then be pumped a considerable distance to a compact and centrally placed refrigerator unit, where the heat is transferred to the refrigerant and finally discharged.

COEFFICIENT OF PERFORMANCE

A refrigerator can be considered as a " heat pump " in which mechanical work is used to extract heat from a body having a low temperature.

The ratio $\frac{\text { heat extracted }}{\text { heat equivalent of work done }}$ is known as the "coefficient of performance," and corresponds to the "efficiency" of a heat engine, but, while the latter has a value essentially less than unity, the former, as will be shown, may exceed this value.

THE REVERSED HEAT ENGINE AS REFRIGERATOR. COLD AIR MACHINES

The " hot air" engines considered in Chapter VII can be employed as cold-air refrigerators if their cycles are reversed.

Reversed Carnot Cycle.-This being the simplest of the ideally perfect cycles is of considerable theoretical interest, though its employment in practice is precluded by exactly those factors which prevent its use in the non-reversed condition.

Fig. 143 shows the p.v. and $T \phi$ diagrams of this cycle, T_{1} being the

Fig. 143.
temperature of the sink of heat-or cooling water-and T_{2} the temperature of the refrigerator cold chamber. Starting at point a the air is cooled by adiabatic expansion to T_{2}, which is reached at point d. The air is then expanded isothermally in contact with the body to be cooled, doing work and taking in an equivalent amount of heat at temperature T_{2}. From c to b the temperature of the air is raised by adiabatic compression to the temperature T_{1} of the cooling water in contact with which it is then compressed isothermally, the mechanical energy absorbed in this latter process being discharged as heat to the water.

The coefficient of performance is best found from the $\mathrm{T} \phi$ diagram. The heat received from the cold body is given by area cdef, and the work done by adcb.

The coefficient of performance is then

$$
\frac{c d e f}{a d c b}=\frac{\mathrm{T}_{2} \cdot d c}{\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) d c}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \begin{aligned}
& \text { (note that the tempera- } \\
& \text { tures are " absolute "). }
\end{aligned}
$$

This increases as the range of temperature $\mathrm{T}_{1}-\mathrm{T}_{2}$ decreases, and may exceed unity. It should be noted in this connection that the mechanical work done on the refrigerant is required merely to raise the temperature factor of the heat energy which already exists in any quantity and without value in the refrigerator cold chamber. In the theoretical case when $\mathrm{T}_{1}-\mathrm{T}_{2}=0$, or $\mathrm{T}_{1}=\mathrm{T}_{2}$, the coefficient of performance becomes infinite, which is merely the equivalent of the theoretical statement that heat can flow in any quantity from one body to another at the same temperature, without necessitating the use of external energy. The heat discharged to the hot body (i.e. the cooling or condensing water at the temperature of its supply) is available by means of, and not as the equivalent of, the mechanical work done.

Example.-Find the least horse-power required by a perfect reversed heat engine that will make 900 lb . of ice per hour at $27^{\circ} \mathrm{F}$. from water at $70^{\circ} \mathrm{F}$. Take the latent heat of ice as 142 B .Th.U. per lb . and the specific heat as 0.5 .

$$
\text { Coefficient of performance }=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}=\frac{460+27}{70-27}=\frac{487}{43}=11.33 .
$$

Heat extracted from 1 lb . of water at $70^{\circ} \mathrm{F}$. to produce 1 lb . of ice at $27^{\circ} \mathrm{F}$. will be

$$
\begin{gathered}
\quad(70-32)+142+0 \cdot 5(32-27) \\
=38+142+2 \cdot 5=182 \cdot 5 \mathrm{~B} . \mathrm{Th} . \mathrm{U} .
\end{gathered}
$$

Hence the least horse-power will be

$$
\frac{182.5 \times 900}{2545 \times 11.33}=5.7 \text { (i.e. } 2545 \text { B.Th.U./hr. }=1 \text { H.P.). }
$$

Reversed Stirling Cycle.-This cycle was employed in the Kırk refrigerator, and overcame the difficulties presented by the huge cylinder volumes necessitated by the Carnot cycle.

The efficiency, by reference to p. 87, will be found to be

$$
\frac{\mathrm{RT}_{2} \log _{e} r-(1-e) \mathrm{C}_{v}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{R}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \log _{e} r}
$$

Assuming a regenerator efficiency of unity this expression becomes

$$
\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}
$$

Reversed Joule Cycle.-Though theoretically less interesting than the reversed Carnot cycle, the reversed Joule cycle, used in the BellColeman and Haslam and Hall refrigerators, was responsible for much of the pioneer work in the frozen-meat trade.

Mechanical Refrigerators and Reversed Heat Engines

In this cycle the pressures in the cooler and cold chamber are constant. The cycle is as follows (see Fig. 144) :
(1) Air at the minimum temperature available in the cooler A is drawn into cylinder C and expanded to the pressure of the cold chamber R into which it is then exhausted. Upon entering the latter the temperature is considerably below the temperature in the chamber. The cycle in the expansion cylinder is shown on the p.v. diagram by eadf.
(2) The air receives heat at constant pressure from the cold chamber and rises in temperature to T_{2}, the process being shown by $d c$.
(3) The air is then removed by the compressor E and its pressure raised by adiabatic compression to the pressure of the cooler, the temperature, however, being then greater than the minimum temperature of the latter. Compression follows the curve $c b$.

Fig. 144.
(4) The air is finally exhausted into the cooler and cooled at constant pressure to its original condition along curve ba.
By reference to the method of calculation used on p .90 it will be found that the coefficient of performance is given by $\frac{\mathrm{T}_{d}}{\mathrm{~T}_{a}-\mathrm{T}_{d}}$, which is essentially lower than the value $\frac{T_{2}}{T_{1}-T_{2}}$ for the Carnot cycle as T_{d} is essentially less than T_{2}.
Owing to the practical necessity of using a wide temperature range to secure reasonably rapid transference of heat the actual coefficient of performance was only of the order of $\frac{1}{2}$ to $\frac{3}{4}$.

In this machine considerable difficulties were experienced owing to the formation of snow which, produced by the freezing of moisture drawn in from the cold chamber, blocked the air ducts, etc. This was overcome to a large extent by expanding the air in two stages, the first reducing the
temperature to about $35^{\circ} \mathrm{F}$., when nearly all the moisture condensed and could be drained away before the final expansion to temperatures below the freezing-point. A similar effect was also produced by employing a heat interchanger in which the compressed air from the cooler A parts with heat to the air coming from the cold chamber R. The air on its way to the expansion cylinder is thus cooled to a low temperature and deposits most of its moisture in the heat interchanger which can be drained.

Example.-If the compression pressure of a reversed Joule heat engine be 45 lb . per sq. in. gauge and the suction pressure 15 lb . per sq. in. abs., find the lowest temperature produced in the engine, the air being cooled at the highest temperature by circulating water at the temperature of the atmosphere, which is $60^{\circ} \mathrm{F}$.

The maximum temperature $\mathrm{T}_{a}=460+60=520^{\circ} \mathrm{F}$. abs., and T_{d} is the lowest temperature.

Now

$$
\begin{aligned}
\frac{\mathrm{T}_{a}}{\mathrm{~T}_{d}} & =\left(\frac{p_{a}}{p_{d}}\right)^{\frac{\gamma-1}{\gamma}} \\
& =\left(\frac{45+15}{15}\right)^{\frac{1.4-1}{14}} \\
& =4^{7} \\
\therefore \mathrm{~T}_{d} & =\frac{520}{2} \\
& \mathrm{~T}_{d}
\end{aligned}=350^{\circ} \text { abs. or } 350-460=-110^{\circ} \mathrm{F} .
$$

If the temperature of the refrigerating chamber is $0^{\circ} \mathrm{F}=460^{\circ} \mathrm{F}$. abs.
or

$$
\begin{aligned}
& \frac{v_{c}}{v_{d}}=\frac{460}{350}=1.312=\frac{v_{b}}{v_{a}}=\frac{\mathrm{T}_{b}}{520} \\
& \mathrm{~T}_{b}=683^{\circ} \mathrm{F} . \text { abs. or } 223^{\circ} \mathrm{F} .
\end{aligned}
$$

The coefficient of performance is therefore

$$
\frac{350^{\circ}}{520-350}=\frac{350}{170}=2.05
$$

The corresponding Carnot coefficient would be

$$
\underset{520-460}{460}=\frac{460}{60}=7.67
$$

the overall temperature range being much less than with the Joule machine, though the cylinder capacity would be much greater.

REVERSED HEAT ENGINE AS A WARMING MACHINE

A machine of the Bell-Coleman type may be used for this purpose, as was first pointed out by Lord Kelvin in 1852. The machine would take in air from the atmosphere, expand it down to a lower temperature and pressure and then allow its temperature to rise again by contact with the external air. After this the air would be compressed once more to atmospheric pressure, its temperature being thereby raised, preparatory to being delivered into the room to be warmed.

Let $\mathrm{H}_{2}=$ heat taken from the atmosphere at temperature T_{2},
$\mathrm{H}_{1}=$ heat delivered to the room at temperature T_{1},
$\mathrm{W}=$ work expended in heat units.
Then

$$
\begin{equation*}
\frac{\mathrm{H}_{1}}{\mathrm{~W}}=\frac{\mathrm{H}_{1}}{\mathrm{H}_{1}-\mathrm{H}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \cdot \cdots \cdot \tag{1}
\end{equation*}
$$

When the range of temperature $\mathrm{T}_{1}-\mathrm{T}_{2}$ is small, H_{1} may be many times greater than W , i.e. a large amount of heat may be raised through a small range of temperature with little expenditure of mechanical work.

In the case of one large auditorium refrigerating plant which has been installed for the purpose of cooling the air during the summer, is reversed during the winter and is used as a warming machine.

Example.-An oil engine uses 0.5 lb . of oil per B.H.P. per hour, the calorific value of the oil being $20,000 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. per lb . If it drives a reversed heat engine which takes in air at $40^{\circ} \mathrm{F}$. and delivers it at $55^{\circ} \mathrm{F}$., how much heat will be given to the air per B.H.P. hour if the reversed heat engine works at 80 per cent. of the ideal efficiency ?

The ratio of heat to work is given by

$$
\begin{aligned}
& \mathrm{H}_{1}=\mathrm{W} \cdot \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \times \frac{80}{100} \\
& \mathrm{~W}=1 \text { B.H.P. hour }=2545 \text { B.Th. } \mathrm{U} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathrm{H}_{1} & =2545 \times \frac{460+55}{55-40} \times 0.8 \\
& =69,900 \text { B.Th.U. }
\end{aligned}
$$

The heat which would be available were the oil burnt in a lamp would be $10,000 \mathrm{~B}$. Th.U., or about one-seventh of the above value. In addition, the heat discharged in the jacket water and in the exhaust of the engine could be used directly for heating purposes.
The heat supplied to the engine is $\frac{10,000}{60}$ B.Th.U. per minute per B.H.P. giving an efficiency of $\frac{42 \cdot 42}{10,000} \times 60$ or $25 \cdot 4$ per cent.

The remaining heat, or 7460 B.Th.U. per hour per B.H.P., is available directly for heating purposes, bringing the total to 77,360 B.Th.U. per H.P. hour.

THE USE OF THE REVERSED HEAT ENGINE IN EVAPORATION PROBLEMS

An interesting example of the reversed heat engine is found in connection with certain evaporation problems. Diagram 1, Fig. 145, illustrates a simple evaporator heated by live steam. The solution to be concentrated enters at A, and the steam formed by evaporation leaves at B, approximately 1 lb . of steam being evaporated from the solution for every pound of live steam supplied.

The dead steam has nearly the same heat content per pound as the live steam, and differs from it in quality only to the extent that its temperature and pressure of condensation are slightly lower.

Fig. 145.
An alternative arrangement is shown in diagram 2 where the steam formed by evaporation is compressed, approximately adiabatically, till its temperature of condensation is sufficiently above the temperature of evaporation of the solution to allow a reasonable rate of heat transfer. A centrifugal compressor is used. The steam is then returned to the apparatus as live steam where it effects a further concentration of the solution.

It will be seen that the mechanical energy supplied to the compressor serves three purposes : (1) To make good the difference in heat content between the solution supplied at A and the condensate leaving the drain; (2) to supply a suitable temperature difference between the "live" steam and the solution ; (3) to replace heat lost by radiation, etc.
By suitable design the temperature difference required for a reasonable ate of heat transfer may be made very small, and figures as low as $5 \frac{1}{2}^{\circ}$ to $18^{\circ} \mathrm{F}$. are quoted, with a temperature difference between A and the
drain of $9^{\circ} \mathrm{F}$. These figures apply to the "falling film" type of evaporator fitted with a heat interchanger as shown in (3). The liquid to be evaporated is pumped to the top of the nest of tubes and traverses the heating surfaces in a downward direction as a thin clinging film. ${ }^{1}$
(An alternative is the " multiple effect ${ }^{2}$ " apparatus where two or more simple evaporators are arranged in series, passing on steam from one to the next, the temperature difference required being provided by a progressive lowering of the pressures in the stages.)

REFRIGERATORS EMPLOYING A VOLATILE LIQUID

General Statement.-For many years dentists and surgeons have used the method of " freezing" to produce local anæsthesia. A few drops of ether are placed on the part to be treated and its rapid evaporation, at the expense of the heat of that part, produces the numbing required. The same basic idea applies to vapour refrigerators employing a volatile liquid, but facilities have to be provided for the recovery of the refrigerant.

Two types of machine are distinguishable, and depend for their action on processes of absorption and compression respectively.

VAPOUR ABSORPTION MACHINES

In these machines the vapour produced by the evaporation of the refrigerant in the cold chamber passes over into a vessel containing some material in which it is absorbed, and which, by the removal of the vapour as it is formed, maintains a constant low pressure, facilitating further evaporation. The refrigerant is subsequently liberated in the vapour state by the direct application of heat, and at such a pressure that condensation can be effected at the temperature of the air or by cold water.

The coefficient of performance is given by

> heat absorbed during evaporation

heat required to liberate refrigerant from absorbent

The quantity of heat stated in the denominator is dependent on the process employed.

If ammonia is used as the refrigerant its vapour may be dissolved in water, and this process can be considered as taking place in two stages :
(1) The liquefaction of the ammonia, accompanied by the liberation of its latent heat ;
(2) Mixing of the liquids, again accompanied by liberation of heat (as is the case when water and sulphuric acid are mixed).
The heat liberated during the first stage is approximately 5030 cals.

[^26]per gro.-molecule, and in the second stage 3400 cals. per gm.-molecule. During the subsequent recovery of ammonia vapour the processes will be reversed.

Assuming the latent heat of ammonia to remain constant over the range of temperature employed, the coefficient of performance will be approximately

$$
\frac{5030}{5030+3400}=0.6
$$

If ammonia vapour be dissolved in a powdered absorbent which thereby becomes liquid (as is the case of anhydrous sulphocyanide of ammonium) the stages of absorption are:
(1) Liquefaction of the ammonia accompanied by the liberation of the latent heat of evaporation.
(2) Liquefaction of the absorbent accompanied by the absorption of its latent heat of fusion.
(3) Mixing of the liquids, generally with liberation of heat.

The heat involved in stage (3) is usually not great, and stages (1) and (2) are complementary.

The coefficient of performance is then
latent heat of evaporation of ammonia
latent heat of evaporation of ammonia-latent heat of fusion of absorbent +heat of mixing
This may be appreciably greater than unity.

IDEAL EFFICIENCY OF ABSORPTION PROCESS

These processes may be considered as employing heat (sic) from a high-temperature source to elevate heat from a low-temperature source, the total heat being discharged at an intermediate temperature. If the high, intermediate, and low temperatures are T_{1}, T_{2}, and T_{3}, then if Q_{1} heat units are taken in at T_{1}, the work which could be done by the Carnot cycle over the range T_{1} to T_{2} will be

$$
\mathrm{Q}_{1} \frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

This work, applied to a reversed Carnot cycle working over the range $\mathbf{T}_{\mathbf{2}}$ to T_{3}, could extract Q_{3} units of heat from the cold body such that

$$
Q_{3}=\text { work done } \times \frac{T_{3}}{T_{2}-T_{3}}=Q_{1}\left(\frac{T_{1}-T_{2}}{T_{1}}\right) \times\left(\frac{T_{3}}{T_{2}-T_{3}}\right)
$$

No process could give a higher ratio of Q_{3} to Q_{1} than

$$
\frac{T_{3}\left(T_{1}-T_{2}\right)}{T_{1}\left(T_{2}-T_{3}\right)}
$$

Example.-Heat from a gas flame at a temperature of $1000^{\circ} \mathrm{C}$. is used in a perfect absorption machine, the refrigerating chamber being at $0^{\circ} \mathrm{C}$. and the temperature of heat discharge $20^{\circ} \mathrm{C}$. Find the coefficient of performance.

In this case

$$
\begin{aligned}
& \mathrm{T}_{1}=1000+273=1273^{\circ} \mathrm{C} . \text { abs. } \\
& \mathrm{T}_{2}=20+273=293^{\circ} \mathrm{C} . \text { abs. } \\
& \mathrm{T}_{3}=0^{\circ} \mathrm{C} .=273^{\circ} \mathrm{C} . \text { abs. }
\end{aligned}
$$

The coefficient of performance will be given by

$$
\frac{\mathrm{T}_{3}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{1}\left(\mathrm{~T}_{2}-\mathrm{T}_{3}\right)}=\frac{273 \times 980}{1273 \times 20}=8.9
$$

INTERMITTENT REFRIGERATION

The absorption machine, for very small capacities, may take the form of two small metal vessels connected by a short length of pipe, and containing liquid ammonia and a powdered absorbent respectively. The ammonia end is inserted into the cold chamber from which heat is gradually taken up, causing the liquid to evaporate. The ammonia vapour formed passes over to, and dissolves in, the absorbent, heat being liberated and dispersed to the air.

After evaporation is complete the apparatus is removed and the vessel containing the absorbent is heated. Ammonia vapour at a moderately high pressure is liberated and passes over into the vessel first occupied, where it condenses under the action of high pressure and room tempenature. The cycle may now be repeated.

For small domestic refrigerators the element is generally removed, heated, and replaced once each day.

CONTINUOUS ACTION ABSORPTION MACHINE

The adoption of a continuous cycle of operations involves separating the plant into two sections, the "low side" in which evaporation is induced by a steadily maintained low pressure, and a "high side" in which reclamation of the refrigerant in a liquid state is attained under the influence of high pressure and heat.

The refrigerant most generally used is ammonia, with water as the solvent. Fig. 146 shows a general arrangement of the plant.

Low-pressure liquid ammonia ${ }^{1}$ and a small quantity of ammonia vapour enter the refrigerating chamber B from A, and sufficient heat is

[^27]received to cause the complete evaporation of the liquid. The vapour passes into the chamber C where it comes into contact with cool water, in which it dissolves, with the liberation of heat. The concentrated solution is drawn from C by the pump D and discharged into the separator G . Here, by the addition of heat, ammonia vapour is liberated and passes to the condenser H , the high-pressure liquid ammonia collecting at J . Between J and A a throttle valve is situated and is regulated to maintain the necessary pressure difference between the " high " and " low" sides.

Fig. 146.
During the throttling process a certain amount of evaporation occurs (see Fig. 29), but this is unavoidable.

It remains only to remove from the bottom of the separator the hot water from which the ammonia has been liberated, reduce its pressure by means of the throttle valve F , and, after cooling it, return it to the absorber to receive a fresh charge of ammonia. The heat which has to be removed is transferred in the heat interchanger E to the strong cool solution which is on its way to the separator.

It should be noted that the high and low pressures refer essentially only to the pressures of the ammonia, and that the pressure exerted by the ammonia is dependent upon temperature alone and would be quite

Mechanical Refrigerators and Reversed Heat Engines
unaffected by any admixture with inert gases (Dalton's Law of Partial Pressures). An ingenious application of this fact will be found in the "Electrolux " refrigerator shown in Fig. 147.

Here again strong solution of ammonia is heated in the separator G, from which ammonia vapour at the " high " pressure passes to condenser H. The liquid ammonia passes round the trap K and enters the refrigeration chamber B , where it enters an atmosphere of inert hydrogen under a pressure very little lower than that maintained on the high-pressure side, the partial pressure of the ammonia completing the equilibrium on the two sides of the trap K. The liquid ammonia, in effect subjected to

Fig. 147.
a low pressure equal to the " high " pressure minus the partial pressure of the hydrogen, now evaporates, and takes up its latent heat from the cold chamber.

The heavy mixture of ammonia vapour and hydrogen falls in the refrigerating vessel B and passes by means of the lower tube into the absorber C , where it meets water coming from G which has been cooled in the interchanger E . The ammonia is absorbed, the strong solution passing through E on its way to the separator G, while the hydrogen rises and passes back into \mathbf{B}.

As the total pressures on the "high" and " low" pressure sides are equal, the pressure against which the liquid has to be forced in order that
it may enter G is only that due to the difference in level of the liquids in \mathbf{G} and \mathbf{C}. The requisite pumping action may be produced by applying a sinall amount of heat from the heating element L to the coil D containing the strong solution. Bubbles of vapour are liberated, reducing the total density of the rising column of liquid on the principle of the " air-lift" pump, and setting up a natural circulation in the system. A cooler M is provided prior to the condenser H , in which the small quantity of water vapour which is liberated along with the ammonia is condensed and returned to the separator.

It will be seen that, even after complete inversion of the whole apparatus, the hydrogen will be rapidly transferred to B and C when heat is applied at L . Apart from the pipes for the inlet and outlet of cooling water, the apparatus is hermetically sealed after being charged, and there are no moving parts whatever.

VAPOUR COMPRESSION PROCESS

In these machines the rise of temperature necessary to cause condensation of the evaporated refrigerant is supplied in the form of work during adiabatic compression.

Fig. 148 shows the general arrangement of the plant and also the

Fig. 148.
p.o. diagram for the cycle. Refrigerant, which enters the refrigerating chamber D from C as a liquid at low pressure, is evaporated along ec, and absorbs its latent heat of evaporation at temperature T_{2}. The vapour is then removed by the pump A, which raises the temperature and pressure by adiabatic compression (curve $c b$) and forces it into the condenser \mathbf{B}_{1} where the latent heat at T_{1} is removed. The liquid gravitates to C , which consists of either a small expansion cylinder or (almost invariably in practice) a throttle valve, and here the pressure is reduced either by adiabatic expansion or by throttling to such a value that evaporation can subsequently occur at temperature $\mathbf{T}_{\mathbf{2}}$.

During expansion or throttling a small amount of evaporation will take place. In the former case the curve of adiabatic expansion ad will be followed, and work will be done and can be used to help in the driving of the compressor. In the latter case a curve ae of constant total heat will be followed, but the area aed does not represent useful work, as the process is completely irreversible.

If the refrigerant is evaporated to dryness at the point c then the proportion of the latent heat which is usefully collected from the refrigerating chamber will be $\frac{d c}{v_{c}}$ and $\frac{e c}{v_{c}}$ for the two processes. The vapour formed in expansion or throttling will pass through the refrigerating chamber as an inert substance. It is customary for evaporation to be incomplete at c, in which case, if q_{c} is the final dryness fraction, the loss of heatabsorbing capacity will be

$$
\frac{v_{d} \text { or } v_{c}}{v_{c}} \times q_{c} \mathrm{~L}_{2}
$$

Гhe $\mathrm{T} \phi$ diagrams for the two processes are given in Fig. 149.
(1) Compression to the dry saturation point, and pressure reduction by expansion cylinder.-The figure will be bounded by two lines of constant temperature, T_{1} during condensation and T_{2} during evaporation, and by lines of adiabatic compression $c b$ and expansion ad. It is assumed for the moment that the vapour is just sufficiently wet at c to be completely dried by compression.

The heat received from the cold chamber is that required to evaporate 1 lb . of refrigerant in the condition given by point d to the condition given by c, and this is the

Fig. 149. area dcmn.

The heat rejected to the condenser is the latent heat $\mathrm{L}_{1}=a b m n$;
The mechanical work done $=a b m n-d c m n=a b c d$; and
The coefficient of performance $=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}$.
This agrees with the coefficient for the reversed Carnot cycle, and has a constant value for all positions of c provided the vapour is not superheated after compression. In this case the work area will be $a b b^{\prime} c^{\prime} d$, which shows a greater rate of increase than the area $d^{\prime} m^{\prime} n$ representing the heat received from the cold chamber.

Example.-An ammonia compression refrigerating machine has to do on amount of refrigeration equal to the production of 25 tons of ice at
32° F. per 24 hours. If the temperature limits in the compressor are $75^{\circ} \mathrm{F}$. and $-5^{\circ} \mathrm{F}$., calculate the horse-power of the compressor on the assumption that the cycle is a perfect one. The initial temperature of the water may be taken as $32^{\circ} \mathrm{F}$.
The coefficient of performance of a perfect machine $=\frac{T_{2}}{T_{1}-T_{2}}$

$$
=\frac{455}{80}=5.687
$$

Taking the latent heat of ice as $142 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. per lb ., the heat to be extracted per minute $=\frac{25 \times 2240 \times 142}{24 \times 60}=5560$ B.Th.U.

Now

$$
\frac{\mathrm{H}}{\mathrm{~W}}=5.687
$$

\therefore work done per minute, $\mathrm{W}=\frac{5560}{5 \cdot 687} \times 778 \mathrm{ft} . \mathrm{lb}$.
and horse-power $=\frac{5560 \times 778}{5.687 \times 33,000}=22.4$ H.P.
Note.-An actual machine will have a coefficient of performance of from 60 to 70 per cent. of the ideal. Hence the B.H.P. of the engine driving the above compression would have to be about $\frac{22 \cdot 4}{0 \cdot 6}=37$ B.H.P.
(2) Compression to the dry saturation point, and pressure reduction by throttling.-The throttling process is represented by the line of constant total heat ae.

The total heat before throttling, reckoned from liquid at T_{2}, is represented by rsan, and after throttling by rseo.

The area sdnr is common to both these areas, so that

$$
\operatorname{sad}=n d e o
$$

But if $\mathrm{C}_{p}=$ specific heat of liquid refrigerant, then r san $=\mathrm{C}_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$
Hence

$$
\mathrm{C}_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)=\operatorname{se} \times \mathrm{T}_{2}
$$

or

$$
s e=\frac{C_{p}\left(T_{1}-T_{2}\right)}{T_{2}}
$$

The heat discharged to the condenser $=a b m n$ and the heat received during evaporation $=$ ecmo Hence the work done $=a b c d+n d e o$

$$
=a b c d+s a d=s a b c
$$

The coefficient of performance $=\frac{e c m o}{s a b c}$

But ecmo $=\mathrm{T}_{2} \times e c$

$$
\begin{align*}
& =\mathrm{T}_{2}(s d+d c-s e) \\
& =\mathrm{T}_{2}\left(\mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}-\frac{\mathrm{C}_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{T}_{2}}\right) \tag{1}
\end{align*}
$$

and $\quad s a b c=r s a b m-r s c m$

$$
\begin{align*}
& =(r s a n+n a b m)-r s c m \\
& =\mathrm{C}_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}} \times \mathrm{T}_{1}-\mathrm{T}_{2}\left(\mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}\right) \\
& =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(\mathrm{C}_{p}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \cdot \cdot \cdot \tag{2}
\end{align*}
$$

$=$ the work done in the Rankine cycle;
and coefficient of performance, from (1) and (2), is

$$
\begin{aligned}
& \mathrm{C}_{p} \mathrm{~T}_{2} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}} \mathrm{~T}_{2}-\mathrm{C}_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \\
& \left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(\mathrm{C}_{p}+\frac{L_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}
\end{aligned}
$$

The same line of argument can be followed if the vapour is superheated after compression.

Example.-In an ammonia compression refrigerating machine the temperature in the refrigerator is $14^{\circ} \mathrm{F}$., and after compression $86^{\circ} \mathrm{F}$. In the cooler the vapour is condensed at $86^{\circ} \mathrm{F}$. and then passes through an expansion valve into the refrigerator. Estimate the coefficient of performance when the vapour at the end of compression is, (a) just dry and saturated, (b) 90 per cent. dry. Take the latent heat of ammonia at $86^{\circ} \mathrm{F}$. as 490.5 B .Th.U. per lb . and the specific heat of the liquid as $1 \cdot 12$.
(a) Heat extracted from refrigerating chamber per pound
here

$$
=\mathrm{C}_{p} \mathrm{~T}_{2} \log _{8} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}} \cdot \mathrm{~T}_{2}-\mathrm{C}_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)
$$

$$
\begin{aligned}
& \mathrm{T}_{1}=86+460=546^{\circ} \mathrm{abs} \\
& \mathrm{~T}_{2}=14+460=474^{\circ} \mathrm{abs} \\
& \mathrm{~L}_{1}=490 \cdot 5
\end{aligned}
$$

\therefore heat extracted $=1.12 \times 474 \times \log _{\varepsilon} \frac{546}{474}+\frac{490.5 \times 474}{546}-1 \cdot 12(546-474)$

$$
\begin{aligned}
& =75.08+425.65-80.64 \\
& =420.09 \text { B.Th.U. }
\end{aligned}
$$

Work done $=\left(T_{1}-T_{2}\right)\left(C_{p}+\frac{L_{1}}{T_{1}}\right)-T_{2} \cdot C_{p} \log _{\epsilon} \frac{T_{1}}{T_{2}}$

$$
\begin{aligned}
& =(546-474)\left(1 \cdot 12+\frac{490 \cdot 5}{546}\right)-474 \times 1 \cdot 12 \log _{c} \frac{546}{474} \\
& =72 \times 2.02-75.08 \\
& =70.36 \text { B.Th.U. } \\
& \therefore \text { coefficient of performance }=\frac{420.09}{70.36}=5.97
\end{aligned}
$$

(b) Heat extracted $=\mathrm{C}_{p} \mathrm{~T}_{2} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}} \cdot \mathrm{~T}_{2}-\mathrm{C}_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$

$$
\begin{aligned}
& =75.08+0.9 \times 425.65-80.64 \\
& =377.52 \text { B.Th. } .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Work done }=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(\mathrm{C}_{p}+\frac{q_{1} \mathrm{~L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \cdot \mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \\
&=72(1.12+0.81)-75.08 \\
&=63.88 \mathrm{~B} . \mathrm{Th} . \mathrm{U} . \\
& \therefore \text { coefficient of performance }=\frac{377.52}{63.88}=5.90
\end{aligned}
$$

Example.-Solve the last problem when an expansion cylinder is used instead of an expansion valve.
(a) Heat abstracted $=\frac{\mathrm{L}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{490.5 \times 474}{546}=425.65 \mathrm{~B} . \mathrm{Th} . \mathrm{D}$.

Work done $=\frac{L_{1}}{\mathrm{~T}_{1}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)=\frac{490.5 \times 72}{546}=64.69$ B.Th.U.
Coefficient of performance $=\frac{425 \cdot 65}{64 \cdot 69}=6.58$
(b) Heat extracted $=0.9 \times 425.65=383.08$ B.Th.U. work done $=0.9 \times 64.69=58.22$ B.Th.U.
coefficient of performance $=\frac{383 \cdot 08}{58 \cdot 22}=6 \cdot 58$.
Note.-The coefficient of performance in this case is simply $\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}$ and there is no necessity to work out separately the heat extracted and the work done.
Example.-Consider the machine taken in the last examples, but let the vapour be just dry and saturated when compression begins. Estimate the coefficient of performance. (Take $c_{p_{v}}=0.508$ and $\mathrm{L}_{2}=577 \cdot 4 \mathrm{~B}$.Th. U. per lb., where $c_{p_{0}}$ is the specific heat of the vapour.)

Mechanical Refrigerators and Reversed Heat Engines
The temperature after compression $\left(\mathrm{T}_{3}\right)$ is given by

$$
c_{p v} \log _{\epsilon} \frac{\mathrm{T}_{3}}{\mathrm{~T}_{1}}=\frac{\mathrm{L}_{2}}{\mathrm{~T}_{2}}-c_{p} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}-\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}
$$

where T_{2} is the temperature of evaporation and T_{1} the temperature of condensation.

$$
\begin{aligned}
0.508 \times \log _{6} \frac{\mathrm{~T}_{3}}{546} & =\frac{577.4}{474}-1 \cdot 12 \times \log _{e} \frac{546}{474}-\frac{490 \cdot 5}{546} \\
0.508 \times 2.303 \log _{10} \frac{\mathrm{~T}_{3}}{546} & =\frac{577.4}{474}-1.12 \times 2.303 \log _{10} \frac{546}{474}-\frac{490.5}{546} \\
1.17 \log _{10} \frac{\mathrm{~T}_{3}}{546} & =1.218-0.158-0.898 \\
& =0.162
\end{aligned}
$$

$$
\therefore \log _{10} \mathrm{~T}_{3}-\log _{10} 546=\frac{0 \cdot 162}{1 \cdot 17}=0.1384
$$

$$
\text { from which } \mathrm{T}_{3}=750 \cdot 9^{\circ} \text { abs. }
$$

With expansion valve-

$$
\begin{aligned}
\text { heat extracted } & =\mathrm{L}_{2}-c_{p}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \\
& =577.4-1 \cdot 12 \times 72 \\
& =496.76 \mathrm{~B} . \mathrm{Th} . \mathrm{U} .
\end{aligned}
$$

and work done

$$
\begin{aligned}
& =\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)\left(c_{p}+\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}\right)-\mathrm{T}_{2} \cdot c_{p} \log _{e} \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}+c_{p_{v}}\left(\mathrm{~T}_{3}-\mathrm{T}_{1}-\mathrm{T}_{2} \log _{e} \frac{\mathrm{~T}_{3}}{\mathrm{~T}_{1}}\right) \\
& =70 \cdot 36+0 \cdot 508\left(750 \cdot 9-546-474 \log _{e} \frac{750 \cdot 9}{546}\right) \\
& =70 \cdot 36+27.33 \\
& =97.69 \text { B.Th.U. }
\end{aligned}
$$

$$
\therefore \text { coefficient of performance }=\frac{496.76}{97.69}=5.08
$$

With expansion cylinder-

$$
\begin{aligned}
\text { heat extracted } & =\frac{\mathrm{L}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}+\mathrm{T}_{2} \cdot c_{p_{v}} \log _{\epsilon} \frac{\mathrm{T}_{3}}{\mathrm{~T}_{1}} \\
& =\frac{490.5 \times 474}{546}+474 \times 0.508 \log _{9} \frac{750.9}{546} \\
& =425.65+76.76 \\
& =502.41 \mathrm{~B} . \mathrm{Th} . \mathrm{O} .
\end{aligned}
$$

work done-

$$
\begin{aligned}
& =\frac{\mathrm{L}_{1}}{\mathrm{~T}_{1}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)+c_{p_{v}}\left(\mathrm{~T}_{3}-\mathrm{T}_{1}\right)-\mathrm{T}_{2} \cdot c_{p_{v}} \log _{\varepsilon} \frac{\mathrm{T}_{3}}{\mathrm{~T}_{1}} \\
& =\frac{490.5 \times 72}{546}+0.508(780.9-546)-474 \times 0.508 \log _{4} \frac{750.9}{546} \\
& =64.69+27.33 \\
& =92.02 \text { B.Th.U. } \\
& \quad \therefore \text { coefficient of performance }=\frac{502.41}{92.02}=5.45
\end{aligned}
$$

For convenience in comparison the results obtained in the above examples are tabulated below.

	State at end of compression	Heat abstracted B.Th.U. per lb .	Work done B.Th.U. per lb.	Coefficient of performance
Expansion valve	Dry and saturated	420.09	70.36	5.97
"	90 per cent. dry ${ }^{\text {Superheated to }} 750.9^{\circ} \mathrm{abs}$.	377.52 496.76	$63 \cdot 88$ $\mathbf{9 7 . 6 9}$	5.90 5.08
"	Superheated to $750.9^{\circ} \mathrm{abs}$.			
Expansion cylinder	Dry and saturated	425.65	64.69	6.58
"	${ }^{90}$ per cent. dry ${ }^{\text {Superheated to }} 750 \cdot 9^{\circ} \mathrm{abs}$.	383.08 502.41	58.22 92.02	6.58 5.45

It will be seen that the coefficient of performance is greatest in the first case when the refrigerating agent used is dry and saturated at the end of compression. The effect of allowing superheating to take place during compression increases the amount of refrigeration at the expense of a greatly increased amount of work done in driving the compressor, the result being a reduced coefficient of performance. The heat of compression also raises the temperature of the compressor walls, and on the entrance of the next charge of cold vapour, heat is absorbed by the vapour and it expands. The result is that a smaller charge is taken in and there is less refrigeration per cycle, although, as shown in the table, the refrigeration per pound is greater (see also p .335).

IRREVERSIBLE TEMPERATURE DROP UNAVOIDABLE IN PRACTICE 1

In order that the requisite quantities of heat may be transferred to or from the refrigerant in a reasonable time it is necessary that appreciable temperature differences should exist between it and the receiver or source

1 In this and the two succeeding paragraphs use has been made of the older charts in ${ }^{\circ}$ C. The Total Heat-Pressure chart in Fahrenheit units is now used, and a note concerning this is given in the appendix.
of heat. Especially is this so for refrigerants other than air which have to be kept, often under pressure, in sealed vessels through the walls of which the heat must be transferred. If a chilled brine circuit is employed to transfer to the refrigerant heat collected over a large area, two allowances of temperature differences must be made, (1) between the cold chamber and the brine, (2) between the brine and the refrigerant.

It will be seen from the equation

$$
\text { Coefficient of performance }=\frac{T_{2}}{T_{1}-T_{2}}
$$

that the total temperature range should be kept as small as possible consistent with reasonable speed of operation. The temperature allowance for each heat transference is a matter for experience and compromise, but $4^{\circ} \mathrm{C}$. to $6^{\circ} \mathrm{C}$. are commonly allowed.

Fig. 150.
If it is required to produce ice at $0^{\circ} \mathrm{C}$., the minimum temperature of the condensing water being $15^{\circ} \mathrm{C}$. and brine circulation being used, the net range of temperature of the refrigerant is then not 15°, but of the order of $\left(15+6^{\circ}\right)-\left(0-4^{\circ}-4^{\circ}\right)=29^{\circ}$, an increase which appreciably affects the coefficient of performance.

The result of this increase of temperature range is indicated on the $\mathrm{T} \phi$ diagram, Fig. 150, where an allowance of 6° is made for the temperature drop between ammonia vapour and condensing water, and 4° between the cold chamber and evaporating ammonia. aecb shows the simple diagram without allowances, but when these are made the compression must be extended from b to b^{\prime} in the superheat zone, and condensation is completed at a^{\prime}. $a^{\prime} f^{\prime}$ is the new curve of throttling, and it will be seen that the dryness fraction at f^{\prime} is markedly greater than at e.

The heat received from the cold chamber per pound of refrigerant
circulated is now the area under $f^{\prime} c^{\prime}$ (instead of $e c$) and the work done is $a^{\prime} f^{\prime} c^{\prime} b^{\prime}+a^{\prime} f^{\prime} o^{\prime} n^{\prime}$ (instead of aecb+aeon). The loss of efficiency is obvious.

By the addition of a small cooling coil between the condenser and throttle valve, and served by fresh cooling water, it is possible to reduce the temperature of the liquid refngerant almost to T_{1}, as the liquid heat

Fig. 151.
is only a small portion of the total heat, and the rate of heat transfer where two liquids are involved is greater than when one of the liquids is replaced by a condensing vapour.

The three cases are shown in Fig. 151 for a refrigerator using carbon

Fig. 152.
dioxide. For this refrigerant the critical temperature is only $31.3^{\circ} \mathrm{C}$., and the deviation between the constant-pressure lines and the liquid boundary in this region is marked. Constant-pressure cooling and condensing will now be along the line $b^{\prime} b_{1} a^{\prime} a^{\prime \prime}$, not along $b^{\prime} b_{1} a^{\prime} a$.
(1) $a e c b a$ is the ideal cycle ;
(2) $a^{\prime} f^{\prime} c^{\prime} b^{\prime} b_{1} a^{\prime}$ is the cycle with temperature drop allowance; and
(3) $a^{\prime \prime} f^{\prime \prime} c^{\prime} b^{\prime} b_{1} a^{\prime} a^{\prime \prime}$ is the cycle with cooling of the liquid refrigerant to T_{1}. (Note the line of constant total heat is broken at the liquid boundary.)
Fig. 152 shows similar curves for CO_{2} when the heat of the vapour is extracted at and above the critical temperature, the cycle in other respects being similar to (2) above.

The resulting decrease in refrigerating effect and great increase of power consumed will be obvious. (N.B. The work done is the area of the closed figure+the area under the throttling curve $a_{1}{ }^{\prime \prime} f^{\prime}$ or $a^{\prime \prime} f^{\prime \prime}$.) See Example, p. 327.

USE OF THE MOLLIER CHART

On account of the ease with which throttling (at constant total heat) and adiabatic compression can be represented on the Mollier chart, and the fact that quantities of heat can be scaled directly upon it, this chart is of great value. By the use of oblique co-ordinates the scales can be made conveniently open, and a high degree of accuracy can be obtained, while lines of constant pressure are continuous curves and so are easy to trace.

In Fig. 153 a diagram for carbon dioxide is shown upon this chart. It has been assumed that condensation will take place at $27^{\circ} . \mathrm{C}$. and evaporation at $-8^{\circ} \mathrm{C}$.

Tracing the curves for these temperatures from the right-hand top corner of the diagram to their point of contact with the vapour boundary, it will be found that they correspond to condensation and vaporisation pressures of 950 lb . and 400 lb . per sq. in. respectively. A piece of tracing paper laid over the diagram enables these pressure lines to be marked.

Assuming (see next section) that the vapour is drawn from the cold chamber when the dryness fraction is 0.85 , the point c^{\prime} can at once be found, and compression will be along a line $c^{\prime} b^{\prime}$ (oblique) of constant entropy which will cut the line of $p=950 \mathrm{lb}$. at the point b^{\prime}, the vapour then having a temperature of 34° or 7° of superheat.

The removal of superheat, condensation, and cooling of the liquid to, say, $15^{\circ} \mathrm{C}$. follow the line of constant pressure $p=950$, and are shown by $b^{\prime} b_{1}, b_{1} a^{\prime}, a^{\prime} a^{\prime \prime}$. Throttling is effected along the horizontal line $a^{\prime \prime} f^{\prime \prime}$.

The salient quantities involved in the cycle are then obtained as follows :
(1) Heat equivalent of work done per pound during compression

$$
=\mathrm{H}_{b}^{\prime}-\mathrm{H}_{c}^{\prime} \text {. }
$$

$\left\{\begin{array}{llll}\text { Superheat removed per pound } & =\mathrm{H}_{b}{ }^{\prime}-\mathrm{H}_{b_{1}} \\ \text { Latent heat } & " & " & =\mathrm{H}_{b_{1}}-\mathrm{H}_{a}^{\prime} \\ \text { Liquid heat } & \prime \prime & " & =\mathrm{H}_{a}{ }^{\prime}-\mathrm{H}_{n}{ }^{\prime \prime}\end{array}\right.$
(2) Total heat to cooling and condensing water $=\mathrm{H}_{b}{ }^{\prime}-\mathrm{H}_{a}{ }^{\prime \prime}$.
(3) Heat removed from cold chamber per pound $=\mathrm{H}_{c}{ }^{\prime}-\mathrm{H}_{f}{ }^{\prime \prime}$.

From (3) and a knowledge of the total heat to be removed per hour, the number of pounds of CO_{2} to be circulated per minute can be obtained. Let this be n. From (1) and the value of n, the power required to drive the compressor can be found.

From n, the dryness fraction at c^{\prime}, and the specific volume at 400 lb . per sq. in. pressure (from tables), the volume swept by the compressor

Fig. 153.
cylinder per hour can be calculated. If the revolutions per minute of the compressor are assumed the corresponding cubic capacity of the cylinder can be obtained.

From (2) and n, and the permissible rise in temperature of the "condensing " water, the quantity of water required per hour can be calculated. The direction of circulation of cooling water is important, the coldest water boing required for cooling the liquid while an appreciably higher temperature will be effective in reducing the superheat. If there is no
liquid cooling the throttling action will be along $a^{\prime} f^{\prime}$ instead of $a^{\prime \prime} f^{\prime \prime}$; no alteration will be made to the amount of power consumed, but the effective work done will be reduced in the ratio of $f^{\prime} c^{\prime} \mid f^{\prime \prime} c^{\prime}$.

TO FIND THE DRYNESS FRACTION REQUIRED BEFORE COMPRESSION TO GIVE MAXIMUM EFFICIENCY

The diagram can be set off on the Mollier chart as before, except that the position of the compression line $c^{\prime} b^{\prime}$ is unknown.

Referring to Fig. 154, from f draw a tangent to the line of maximum

Fig. 154.
pressure, touching it at b. Draw $b c$, a line of constant entropy. Then the position of c gives the requisite dryness fraction.

The proof of this construction is as follows :
The heat to be added per pound during compression along $c b$ is $c^{\prime} b^{\prime}$.
The heat extracted during evaporation along $f c$ is $f^{\prime} c^{\prime}$.
The coefficient of performance is therefore $\frac{f^{\prime} c^{\prime}}{c^{\prime} b^{\prime}}$.
Take any points h and d on the evaporation line and on opposite sides of c, and through them draw lines of constant entropy to cut $f b$ produced in g and e. Then as the triangles $f h g$, $f c b$, and $f d e$ are similar,

$$
\frac{f^{\prime} c^{\prime}}{c^{\prime} b^{\prime}}=\frac{f^{\prime} h^{\prime}}{h^{\prime} g^{\prime}}=\frac{f^{\prime} d^{\prime}}{d^{\prime} e^{\prime}}
$$

But hg and de must both be extended to meet the line of constant pressure condensation, or the coefficient of performance $\frac{f^{\prime} c^{\prime}}{c^{\prime} b^{\prime}}>\frac{f^{\prime} h^{\prime}}{h^{\prime} g^{\prime} \text { extended }}$ and also $>\frac{f^{\prime} d^{\prime}}{d^{\prime} e^{\prime} \text { extended }}$.
The tangent point b therefore determines the condition for maximum efficiency.
Example.-In an ammonia refrigerator evaporation occurs at $14^{\circ} \mathrm{F}$. and condensation at $86^{\circ} \mathrm{F}$. Find the coefficient of performance if the vapour is (1) dry, (2) 90 per cent. dry before compression, (3) as (2), but using an expansion cylinder.
Case 1. $\left\{\begin{array}{l}\mathrm{T}_{1}=86^{\circ} \mathrm{F}=30 \cdot 5^{\circ} \mathrm{C} . \\ \mathrm{T}_{2}=14^{\circ} \mathrm{F}=-10^{\circ} \mathrm{C} .\end{array}\right.$

Case 2. Dryness before compression $=0.9$
Heat before evaporation $=34$ C.H.U./lb. $\quad q=0.15$
Heat after evaporation $\quad=270 \quad " \quad q=0.6$
Heat after compression $\quad=310.5$, $\quad q=1$
Coefficient of performance $=\frac{270-34}{310 \cdot 5-270}=\frac{236}{40 \cdot 5}$

$$
=5 \cdot 83
$$

This coincides very closely with the maximum coefficient obtained by the tangent construction, see p. 337.

Case 3. $\left\{\begin{array}{l}\text { Dryness before compression }=0.9 \\ \text { Expansion cylinder used. }\end{array}\right.$
Heat before evaporation $=30.0$
Heat after evaporation $\quad=270$
Heat after compression $\quad=310.5$
Coefficient of performance $=\frac{270-30}{310.5-270}=\frac{240}{40 \cdot 5}$

$$
=5.93
$$

Example.-Solve the refrigeration problem stated above, using carbon
dioxide as the refrigerant. Find also the coefficient of performance if the liquid, after condensation, is cooled to $15^{\circ} \mathrm{C}$.

$$
\text { As before }\left\{\begin{array}{l}
\mathrm{T}_{1}=30 \cdot 5^{\circ} \mathrm{C} \\
\mathrm{~T}_{2}=-10 \cdot 0^{\circ} \mathrm{C}
\end{array}\right.
$$

Case 1. Heat before evaporation $=27.4$ C.H.U./lb. $q=0.53$
Heat after evaporation $\quad=57.0 \quad, \quad q=1$
Heat after compression $=67.2$ ", Temp. $68^{\circ} \mathrm{C}$.
Coefficient of performance $=\frac{57 \cdot 0-27 \cdot 4}{67 \cdot 2-57 \cdot 0}=\frac{29 \cdot 6}{10 \cdot 2}=2 \cdot 90$
Case 2. Dryness before compression $=0.9$
Heat before evaporation $=27.4$ C.H.U./lb.
Heat after evaporation $=51.0$,
Heat after compression $=59.2$, Temp. $69^{\circ} \mathrm{C}$.
Coefficient of performance $=\frac{51 \cdot 0-27 \cdot 4}{59 \cdot 2-51 \cdot 0}=\frac{23 \cdot 6}{8 \cdot 2}=2.88$
Note that the tangent construction shows a maximum efficiency when the maximum temperature is about 78°.

Case 3. As Case 2, with expansion cylinder.
Heat before evaporation $=23.6$ C.H.U./lb.
Heat after evaporation $=51.0$,
Heat after compression $=59.2$ "
Coefficient of performance $=\frac{51 \cdot 0-23 \cdot 6}{59 \cdot 2-51 \cdot 0}=\frac{27 \cdot 4}{8 \cdot 2}=3 \cdot 34$
Case 4. As Case 2, but with liquid cooling to $15^{\circ} \mathrm{C}$.
Heat before evaporation $=9.5$ C.H.U./lb.
Heat after evaporation $=51.0$ "
Heat after compression $=59.2$ "
Coefficient of performance $=\frac{41 \cdot 5}{8 \cdot 2}=5.06$
Example.-Ice at $-10^{\circ} \mathrm{C}$. is to be made from water at $15^{\circ} \mathrm{C}$. A carbon dioxide refrigerator with brine circulation is to be used. The maximum temperature of the cooling water is $20^{\circ} \mathrm{C}$.

Calculate the probable coefficient of performance, the compressor I.H.P., and the quantity of cooling water, if 10 tons of ice are required per 24 hours.

Heat to be extracted per minute

$$
\begin{aligned}
& =\frac{10 \times 2240}{24 \times 60} \text { (liquid heat }+ \text { latent heat }+ \text { heat from ice) } \\
& =15.5(1 \times 15+80+0.502 \times 10) \text { C.H.U. }
\end{aligned}
$$

(Specific heat of water $=1$. Specific heat of ice $=0 \cdot 502$. Latent heat of ice $=80.0$ C.H.U. per lb.)

Heat to be extracted $=15 \cdot 5(100)=1550$ C.H.U. per minute.
Allowing $4^{\circ} \mathrm{C}$. heat drop across the brine piping walls, and $6^{\circ} \mathrm{C}$. across the walls of the condenser, we have: minimum temperature of refrigerant $=-10-4-4=-18^{\circ} \mathrm{C}$.

Temperature of condensation $=20+6=26^{\circ} \mathrm{C}$.
The cycle is now set out on the chart, using the tangent method to find the condition for optimum performance.

Heat before evaporation $\quad=13 \cdot 3$ C.H.U. per lb .
Heat after evaporation

$$
=50.2 \quad \text { " }
$$

Heat after compression $\quad=60.0$ ",
Heat after removal of superheat $=48.0$ C.H.U. per lb.
Heat after removal of latent heat $=21.9$
Heat after removal of liquid heat $=13.3$
$" \Rightarrow\}^{46.7}$

Coefficient of performance $\quad=\frac{50 \cdot 2-13 \cdot 3}{60-50 \cdot 2}=\frac{36 \cdot 9}{9 \cdot 8}=3.77$
Circulation of refrigerant required per minute $=\frac{1550}{36.9}=42 \mathrm{lb}$.
Compressor power required $=\frac{42 \times 9.8}{23.53}=17.45$ H.P.
Cooling water required-allowing for a temperature rise of $5^{\circ} \mathrm{C}$., i.e. from 15° to $20^{\circ} \mathrm{C}$.-

$$
=\frac{46.7}{5} \times 42=392 \mathrm{lb} . \text { per minute }
$$

The actual compressor power will require to be increased by an amount depending on the efficiency of the compressor and its driving mechanism. No allowance has been made for heat leakage.

WET AND DRY COMPRESSION

If compression is completed before dryness is reached it is said to be "wet"; if dryness or superheating are attained the compression is " dry."

In the former case the refrigerant never reaches a temperature above that of condensation, the cylinder remains comparatively cool, and the volumetric efficiency should therefore be high. On the other hand any liquid remaining in the clearance space of the cylinder after compression will seriously reduce the volumetric efficiency by evaporating during the early portion of the suction stroke, in addition to which lubrication and corrosion troubles are likely to arise.

Mechanical Refrigerators and Reversed Heat Engines

Excessive superheating, by increasing the temperature of the cylinder, will reduce the volumetric efficiency, and will also cause a reduction of performance by increasing the range of temperature over which the machine is expected to work.

TWO-STAGE THROTTLING (STOKES OR VOORHEES CYCLE)

During the throttling process a certain amount of evaporation occurs (see the line of constant dryness fraction through f^{\prime}, Fig. 153), the vapour so formed passing through the refrigerating chamber without taking up heat, occupying valuable space in the compressor, and requiring to be compressed over the whole pressure range. The difficulties presented are only serious in the case of carbon dioxide.

In the Stokes or Voorhees cycle, illustrated in Fig. 155, throttling is

Fig. 155.
carried out in two stages, roughly from 1200 to 450 lb ., and from 450 to 250 lb. per sq. in. Though the total amount of vapour formed during throttling is unchanged the major portion is liberated during the first and largest pressure drop, and is separated from the liquid in a vessel placed between the two throttle valves.

At the end of the suction stroke, when the cylinder contains very little more vapour than that actually formed during useful evaporation in the cold chamber, the piston uncovers a central ring of ports and allows the separated vapour to enter as a supercharge, the total amount of vapour being thus accommodated without further increase of the volumetric capacity of the cylinder.
As in this process the full cubic capacity of the compressor is occupied, at the low pressure, by vapour which has been formed almost entirely by useful evaporation in the cold chamber, the refrigerating effect for a given size of compressor is considerably higher than would otherwise be the case. The B.H.P. required is increased by an amount corre-
sponding to the area between the compression curves, but as the vapour formed during the first stage of throttling is compressed over part of the total range of pressure instead of the whole, the increase in horse-power is at a less rate than the increase in refrigerating capacity, and the coefficient of performance is improved.

COMPOUND COMPRESSION CYCLE. (LINDE, LIGHTFOOT, OR WILDHAUSEN CYCLE)

In the cycle last considered the irreversible process of throttling the vapour between the separator and cylinder still remains. By compressing the vapour from the refrigerator in two stages (i.e. 250 lb . to 450 lb ., and 450 lb . to 1200 lb ., to correspond with the case shown in Fig. 155) the vapour from the separator can be added to the vapour discharged at 450 lb . from the low-pressure cylinder, without appreciable pressure drop and prior to the final compression. The coefficient of performance will increase owing to the elimination of the irreversible process.

It should be noted that in both of the last-mentioned cycles the mass of refrigerant circulating through the various parts of the plant is not constant, as, though the condenser and first throttle deal with all, the second throttle and cold chamber only receive part of the whole. The cycles cannot therefore be represented simply on the $\mathrm{H} \phi$ or other charts, which deal only with a constant quantity of 1 lb . The quality of the refrigerant at each stage can be found from the chart, but the quantities of heat involved can only be determined after the quantity of refrigerant at each stage has been determined. The complete calculation needs considerable care both with regard to quantities and to the effects obtained on mixing two quantities of refrigerant which may differ in pressure, temperature, and dryness.

GHOICE OF REFRIGERANTS

A large number of refrigerants are available for various uses. A choice has to be made after considering a number of factors, amongst the most obvious being the freezing-point, the liquid and latent heats over the working range, the maximum pressures likely to be attained, and the specific volume at low temperatures. Other factors are the action, if any, on metals, packing materials, etc., both separately and in combination with moisture, and the liability, in case of accident or leakage, to cause damage to surrounding apparatus or goods, to form an explosive mixture, or to give rise to risks of asphyxiation or other danger to attendants, etc. Much of the data concerning refrigerants is still incomplete.
The commonest refrigerants are as follows:

	Pressure lb. per sq. in.		Latent heat		Specific heat liquid	Specific volume at $32^{\circ} \mathrm{F}$.	Volume $\mathrm{cu} . \mathrm{ft}$. per min. per ton $86^{\circ} \mathrm{F}$.	Coefficient of performance about-5° to $86^{\circ} \mathrm{F}$.	$\begin{gathered} \text { Critical } \\ \text { tempera- } \\ \text { ture. } \\ { }^{\text {of F. }} \end{gathered}$	Efficiency relative to ideal cy cle
	$32^{\circ} \mathrm{F}$.	$68^{\circ} \mathrm{F}$.	$32^{\circ} \mathrm{F}$.	$68^{\circ} \mathrm{F}$.						
Ammonis, NH_{3}.	61.8	125	535	572	1.02	4.71	344	4.85	271	0.845
CO_{2}.	525	864	102	62	098	0160	098	256	88.2	0447
SO_{2}.	22.5	47.6	162	147.5	$0 \cdot 40$	$3 \cdot 54$	$9 \cdot 24$	4.74	308	0.825
$\mathrm{H}_{2} \mathrm{O}$.	0.09	0.53	1092	1067	1.0	3333	1972	$4 \cdot 10$	694	0.715
$\mathrm{CCl}_{2} \mathrm{~F}_{2}{ }^{1}$.	45.06	82.3	37.0	345	0212	0908	583	4.72	214	0.823
Methyl chloride,	36.7	71.0	969	91.7	0375	269	609	467	496	0817

${ }^{1}$ Dichlorodifluoromethane or "Freon " F12, a normally non-toxic refrigerent largely used for air-conditioning.

Ammonia has a powerful action on brass and copper, is slightly explosive, and extremely poisonous, but any leakage at once becomes obvious owing to the very pungent smell. The coefficient of performance is high, and the plant works at moderate pressure.

Carbon Dioxide is used owing to the absence of smell, deleterious action in general, and the risk of combustion, and the almost complete absence of toxic effects even in high concentrations. The plant is small but works at high pressures, and is used chiefly on board ships and in confined spaces. The critical temperature may be exceeded in the tropics.

Sulphur Dioxide.-Works at a low pressure, is poisonous, and has a deleterious action on certain metals and packings in the presence of moisture.

Water can only be used for ehilling purposes above $32^{\circ} \mathrm{F}$. Its enormous specific volume at low pressures makes it imperative to use a steam jetpump or rotary compressor for compression purposes.

Details of these and other refrigerants may be found-among other places-in the Refrigerating Data Book, Am. Soc. of Refrigerating Engineers.

True-to-scale charts of $\mathrm{NH}_{3}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{CCl}_{2} \mathrm{~F}_{2}$, and $\mathrm{CH}_{3} \mathrm{Cl}$ are available from the Institution of Mechanical Engineers at a price of 1s. 6d. each.

EXAMPLES ON CHAPTER XV

1. By means of a reversed perfect heat engine, ice at $32^{\circ} \mathrm{F}$. is to be made from water at $67^{\circ} \mathrm{F}$., the temperature of the brine or freezing mixture being $12^{\circ} \mathrm{F}$. How many pounds of ice at $32^{\circ} \mathrm{F}$. can be made per I.H.P. hour ? (Latent heat of ice 142 B.Th.U. per lb.)
2. If the compression pressure in a Bell-Coleman refrigerating machine is 60 lb per sq. in. gauge and the suction pressure 15 lb . abs., find the lowest temperature produced in the machine if the air after compression is cooled to $60^{\circ} \mathrm{F}$. What is the coefficient of performance, and how much ice can be made from and at $32^{\circ} \mathrm{F}$. per I.H.P. hour?
3. Find the least horse-power of a perfect reversed heat engine that will make 1200 lb . of ice per hour at $25^{\circ} \mathrm{F}$. from water at $60^{\circ} \mathrm{F}$. (Take specific heat of ice as 0.5 and latent heat $142 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. per lb.)
4. In an ammonia refrigerating machine the temperature in the refrigerator is $15^{\circ} \mathrm{F}$. and after compression $90^{\circ} \mathrm{F}$. In the cooler the vapour is condensed at $90^{\circ} \mathrm{F}$. and then passes through an expansion valve. Calculate the coefficient of performance when the vapour at the end of adiabatic compression is (a) just dry and saturated; (b) 85 per cent. dry. Take the specific heat of liquid ammonia as $1 \cdot 1$, and the latent heat of vaporisation as $566-0.8 t^{\circ} \mathrm{F}$.
5. Solve Problem 4 when an expansion cylinder is used instead of an expansion valve.
6. If in Problem 4 the ammonia is just dry and saturated at the beginning of compression, estimate the coefficient of performance (a) when an expansion valve is used, and (b) when an expansion cylinder is used. (Assume $\mathrm{C}_{p}=0 \cdot 508$.)
7. A vapour compression machine has to produce 50 tons of ice at $28^{\circ} \mathrm{F}$. per day of 24 hours from water at $50^{\circ} \mathrm{F}$. If the temperature limits in the compressor are $80^{\circ} \mathrm{F}$. and $10^{\circ} \mathrm{F}$., calculate the horse-power of the compressor on the assumption that the cycle is a perfect one.
8. Work out the problem stated in the example on p. 337, if ammonia ia the sefrigerant.

Chapter XVI

HEAT TRANSFERENCE BY RADIATION, CONDUCTION, AND CONVECTION

*HEAT TRANSMISSION BY RADIATION

The transmission of energy by radiation between bodies at different temperatures plays a far greater part in many engineering processes than is usually supposed.

The radiation of light and heat from a body at a high temperature is a matter of common experience. If a suitable prism is placed in a beam of light coming from such a body refraction occurs, light of short wavelength being deflected through a greater angle than that of long wavelength.

If a Bolometer (an instrument for absorbing and measuring radiant energy) is traversed across the emergent ray, it will be possible to

Fig. 156.
measure the radiant energy corresponding to the various wave-lengths. This will be found to extend continuously not only over the visible range, but over a very much wider range from the very short ultra-violet waves to the long-wave heat rays. It will be seen therefore that the heated body is radiating energy, only a small part of which gives the effect of light, though all of it partakes of the same nature. Radiant heat, like light, can be reflected, refracted, transmitted, absorbed, and polarised.

A Black Body, which is closely approximated to by a block of metal coated with " lamp-black," is one which absorbs all radiations falling upon it, and is entirely opaque and non-reflecting to all wave-lengths. The rise of temperature of such a body when exposed to energy radiation can be used, under suitable conditions, for measuring the intensity of the radiant energy.

*STEFAN'S LAW

Fig. 157 shows the intensity of the radiations from such a body for a wide range of wave-lengths. The total radiant energy, shown by the

Fig. 157. areas under the curves, varies as the fourth power of the absolute temperature, i.e. the total energy emitted in unit time from unit area of a black body at absolute temperature $\mathrm{T}^{\circ} \mathrm{F}$. is given by $\sigma \mathrm{T}^{4}$, where σ is Stefan's constant and has the value 17.3×10^{-10}, i.e.

$$
\mathrm{H}=17.3 \times 10^{-10^{\top} \mathrm{T}^{4}} \frac{\text { B.Th. } \mathrm{U} .}{\text { sq. ft. per hour }}
$$

Where two black bodies at temperatures T_{1} and T_{2} radiate to each other, the energy radiated by the first will be proportional to $\mathrm{T}_{1}{ }^{4}$, and that by the second to $\mathrm{T}_{2}{ }^{4}$. The radiant energy passing from one to the other will therefore be proportional to ($\mathrm{T}_{1}{ }^{4}-\mathrm{T}_{2}{ }^{4}$). The second term is frequently negligible when compared with the first.
The temperature of a heated " black body" can be estimated with considerable accuracy by measuring either the total radiation, by means of a total-radiation pyrometer, or the intensity of radiation in the visible range, by means of a pyroscope. (The design and action of such instruments will be found in "Heat Transmission by Radiation, Convection and Conduction," Royds; "The Dictionary of Applied Physics," Vol. 1, or books on heat.)
For bodies other than perfectly "black" bodies the emissivity will
vary with the nature of the body, its temperature, and the portion of the wave-band in which measurements are made. A body which approaches but does not achieve " blackness" is said to be "grey."

Taking the emission of a black body as 1 , the following are the approximate relative emissivities of representative substances:

	Heat waves	Light waves
Lamp black	0.94	0.98
Non-metallic paint, independent of colour	0.90-0.95	
Brick, various -	0.45-0.60	0.72
Copper, oxidised black	0.78	
Aluminium paint -	0.40-0.69	
Nıckel polished -	0.06	0.04
Aluminium polished -	0.05	
Silver	0.01	0.11

For a vertical black surface in air with surroundings at $60^{\circ} F$., the radiation loss, as expressed as a percentage of the total loss by radiation, conduction, and convection, is approximately as follows :
At $100^{\circ} \mathrm{F} . \quad 57$ per cent.

-FURNACE PHENOMENA AND "BLAGK BODY CONDITION "

As a black body has no capacity to transmit or reflect radiant waves the radiations proceeding from it when heated must come from the body itself, whatever its surroundings may be.

If a number of different materials are put with a black body in a heated muffle furnace and allowed to attain the furnace temperature, it will be found, on inspection through a small aperture, that the radiations from all the materials are identical, both qualitatively and quantitatively, with those from the black body, and can therefore be used to determine the temperature. The objects are said to be "under black body conditions."

The rays proceeding from the black body can only come from that body itself, and in this case the furnace walls merely prevent cooling by radiation. Burnished silver will reflect a large percentage of the rays falling on it from the walls of the furnace; its own power of emission must in consequence be very poor. Clear glass will transmit light waves from the back of the furnace, and in consequence will be found, on being
rapidly removed from the furnace and examined in the dark, to have only a very poor luminosity of its own. Green glass, which will absorb the red rays from the back of the furnace, will be found to have a bright red glow when seen in the dark, while, conversely, heated red glass will be found to shine green.

It follows therefore that for all wave-lengths of radiant energy, opaque bodies with high reflective powers have correspondingly low powers of emission, and are of considerable value when used to coat bodies from which heat losses have to be prevented.

*APPLICATION OF RADIATION THEORY

The black body conditions which are almost perfectly provided by tempering furnaces, etc., are of great value as providing radiations which can be used for measuring the temperatures required for heat-treatment. The back of the head of an exhaust valve in a high-speed petrol engine, when viewed through a small hole in the exhaust pipe close to the engine, is sufficiently " black" to enable a close estimate of its temperature to be made by means of a pyroscope while the engine is running.
In modern boiler and furnace design considerable use is made of "arches" or curved reflecting surfaces of special firebrick, to concentrate the heat radiations on to selected portions of the heating surface or on to the cooler portions of the grate.

In the case of a heated fluid transmitted through a pipe it will usually be found that the walls of the pipe are appreciably cooler than the fluid itself. A thermometer inserted into the pipe will then receive heat by transmission and conduction from the fluid, but will also lose considerable energy by radiation to the walls. It is therefore highly important, when accurate readings are required, to shield the thermometer bulb, and this may be done by placing a couple of small cylinders or a spiral roll of tin-foil to surround it without touching. Failure to do so may cause errors amounting in some cases to over $180^{\circ} \mathrm{F}$.

RADIATION FROM FLAMES

As the gaseous molecules forming a flame are relatively widely spaced, few of the radiant beams emanating from any given molecule will be obstructed in their course by other molecules. Radiations will therefore proceed from the body of the flame, not from its exposed surfaces only as is the case of solids.

The radiation in any given direction will increase with increasing flame thickness measured in that direction until the radiations from the farther molecules are seriously obstructed by the increasing number of molecules in front of them. This stage is normally reached with a flame thickness of about 4 ft .

The radiation actually proceeds from the burnt gases, in general from $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} molecules, and will be independent of the nature of the uncombined gases, except for the small effect of obstruction and absorption which varies for different gases.

A luminous flame, containing very small highly heated particles of solid carbon, may radiate more than twice as much energy as a similar flame in which these are not present.

CONDUCTION OF HEAT THROUGH SOLIDS

*GENERAL STATEMENT

The process by which heat is transferred through a solid body appears to depend upon the presence of "free" electrons, that is, of certain electrons which are associated with the molecules of the material as a whole but not with any particular molecule. These free electrons also provide the means whereby electricity is conducted. It follows that materials which are conductors of heat will also be conductors of electricity, and insulating bodies, which have no such electrons, will conduct neither.

-LAWS OF CONDUCTION

If two opposite faces of a rectangular block of uniform material are maintained at different temperatures heat will flow from the hotter to the colder side.

The heat transferred will be proportional to (1) the area A of the block measured transversely to the direction of flow, (2) $1 / x$, where x is the distance between the isothermal faces considered, (3) the time t during which the flow occurs, (4) the temperature difference θ between the planes, and (5) the conductivity K of the material.

K is defined as the heat conducted through a cube of unit face in unit time when a temperature difference of 1° is maintained between opposite faces. Its value will be the same whether the heat and temperature are measured in C.H.U. and ${ }^{\circ} \mathrm{C}$. or B.Th.U. and ${ }^{\circ} \mathrm{F}$.

Hence

$$
\begin{equation*}
\mathrm{H}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right) t}{x} \cdot \cdot \cdot \cdot \cdot \tag{1}
\end{equation*}
$$

Or, for a small element of material

$$
\begin{equation*}
\mathrm{H}=-\mathrm{K} \frac{\delta \theta}{\delta x} \delta \mathrm{~A} \delta t \tag{1a}
\end{equation*}
$$

If θ_{1}, the temperature of the hotter face, is maintained constant, the temperature θ_{2} of the second face will decrease with increasing values of x, making $\frac{\delta \theta}{\delta x}$ essentially negative. The additional negative sign is then
employed so that heat quantities are positive when flowing in the direction g iving increasing values of x.

*FLOW OF HEAT THROUGH A THIN-WALLED TUBE

This case will be illustrated by an example.
A boiler fire-tube 2 in . outside diameter and 0.1 in . thick transmits 6000 B.Th.U. per sq. ft. per hour. If $\mathrm{K}=0.01 \mathrm{~B}$.Th.U. for a cube of 1 ft . side per ${ }^{\circ} \mathrm{F}$. per second, calculate the temperature difference between the inner and outer faces.
From equation (1) $\mathrm{H}_{1}=6000=0.01 \times \frac{\theta_{1}-\theta_{2}}{0.1 / 12} \times 1 \times 3600$ in ${ }^{\circ} \mathrm{F}$.
or

$$
\theta_{1}-\theta_{2}=1 \cdot 4^{\circ} \mathrm{F}
$$

FLOW OF HEAT THROUGH A THICK-WALLED TUBE

For the conditions given in Example 1 find $\theta_{1}-\theta_{2}$ assuming the thickness is not small compared with the

Fig. 158
θ_{a} radius. The cross-section of metal through which the heat is transmitted increases as the heat flows outwards. Consider the tube made up of a number of elementary concentric cylinders of thickness or and length l. The total heat flowing through all these cylinders is the same, and is given by

$$
\mathrm{H}=\mathrm{K} \cdot 2 \pi r l \frac{\delta \theta}{\delta r}
$$

But

$$
\begin{align*}
\theta_{2}-\theta_{1}=\int_{r_{1}}^{r_{2}} \delta \theta & =-\frac{\mathrm{H}}{\mathrm{~K} \cdot 2 \pi l} \int_{r_{1}}^{r_{2}} \frac{\partial r}{r} \\
& =-\frac{\mathrm{H}}{\mathrm{~K} \cdot 2 \pi l} \log _{\mathrm{c}} \frac{r_{2}}{r_{1}} \tag{1}
\end{align*}
$$

If the stated heat flow H_{1} is measured in terms of the inner surface then:

$$
\begin{align*}
& \mathrm{H}_{1}=\frac{\mathrm{H}}{2 \pi r_{1} l} \text { and } \theta_{1}-\theta_{2}=\frac{\mathrm{H}_{1} r_{1}}{\mathrm{~K}} \log _{e} \frac{r_{2}}{r_{1}} \text {. } \tag{2}\\
& =1.32^{\circ} \mathrm{F} \text {. }
\end{align*}
$$

-EQUIVALENT MEAN RADIUS OF A THICK-WALLED PIPE

When dealing with thick-walled pipes calculations may sometimes be simplified by finding the equivalent mean radius \boldsymbol{r}_{m} of a corresponding thin-walled pipe.

For such a pipe $\mathrm{H}=\frac{\mathrm{K} \cdot 2 \pi r_{m}\left(\theta_{2}-\theta_{1}\right)}{r_{2}-r_{1}}$ per unit length
whereas for the actual pipe (thick-walled) $H=\frac{2 \pi K\left(\theta_{2}-\theta_{1}\right)}{\log _{e} r_{2} / r_{1}}$ from (1) above.
Equating these we have $r_{m}=\frac{r_{2}-r_{1}}{2.303 \log _{10} r_{2} / r_{1}}$
r_{m} being the " logarithmic mean radius."
Example.-Find the equivalent thickness of a layer of insulating material 2 in. thick surrounding a pipe 2 in . in diameter.

Here $r_{2}=3 \mathrm{in}$., $r_{1}=1 \mathrm{in}$.
and

$$
r_{m}=\frac{2}{2.303 \log _{10} 3}=1.84 \mathrm{in} .
$$

OPTIMUM THICKNESS OF PIPE LAGGING

If Fig. 158 represents the lagging round a steam pipe of radius r_{1}, and θ_{a} is the temperature of the surrounding air, the heat passing through the lagging will be as given in equation (2), and this must equal the heat lost from the surface. If E is the emissivity (by radiation, convection, and conduction) of the surface per square foot per degree in unit time, then

$$
\begin{align*}
\mathrm{H}_{1} 2 \pi r_{1} l & =\mathrm{E}\left(\theta_{2}-\theta_{a}\right) 2 \pi r_{2} l \\
\mathrm{H}_{1} & =\mathrm{E}\left(\theta_{2}-\theta_{a}\right) r_{2} / r_{1} \\
\theta_{2} & =\frac{\mathrm{H}_{1} r_{1}}{E r_{2}}+\theta_{a} \tag{3}
\end{align*}
$$

or
or
Substituting this value in (2)

$$
\begin{equation*}
\mathrm{H}_{1}=\frac{\theta_{1}-\theta_{a}}{r_{1}\left\{\frac{1}{\mathrm{E} r_{2}}+\frac{1}{\mathrm{~K}} \log _{\mathrm{a}} \frac{r_{2}}{r_{1}}\right\}} \tag{4}
\end{equation*}
$$

It will be seen from the figure that as r_{2} increases the areas of successive layers of lagging increase, so that less resistance is offered by each succeeding layer of thickness δ r. Moreover, the external area from which the heat is finally lost also increases.

Differentiating the denominator of equation (4) with respect to $\boldsymbol{r}_{\mathbf{2}}$ and equating to zero gives the relation $r_{2}=\mathrm{K} / \mathrm{E}$, and, its substitution in the second differential giving a positive expression, this is the condition for a minimum value of the denominator, and a maximum for the heat loss. For asbestos the critical radius is normally very small-a fraction of an inch only-especially when radiation losses are high. As r_{2} is increased beyond this value the heat losses diminish continuously, but
the saving of heat must be considered with reference to the cost of the lagging.

Fig. 159.

GENERAL EQUATION FOR CON-

 DUCTION. STEADY CONDITIONSConsider a uniform bar heated at the end $x=0$ and losing heat from the surface (see Fig. 159). Let θ be the difference in temperature between the bar, at section A, and its surroundings. The heat flow at A in unit time is
$\mathrm{H}_{x}=-\mathrm{KA} \frac{\delta \theta}{\delta x} \quad$ • \quad • • •
$\begin{aligned} \mathrm{H}_{x+\delta x} & =\frac{-\mathrm{KA} \delta\left(\theta+\frac{\delta \theta}{\delta x} \delta x\right)}{\delta x} \\ & =-\mathrm{KA}\left(\frac{\delta \theta}{\delta x}+\frac{\delta^{2} \theta}{\delta x^{2}} \delta x\right) \cdot \text {. } \cdot \text {. }\end{aligned}$
The difference in heat flow at the two sections, in the limit when δx is small, must be equal the loss of heat from the surface, and will be

$$
\mathrm{H}_{x+\delta x}-\mathrm{H}_{x}=-\mathrm{KA} \frac{\delta^{2} \theta}{\delta x^{2}} d x=-\mathrm{E} p \theta d x
$$

where E is the emissivity of the surface (i.e. $E=$ heat loss per unit area in unit time, for 1° difference of temperature between surface and surroundings). $\frac{d \theta}{d x}$ is essentially negative.

Hence

$$
\mathrm{KA} \frac{\delta^{2} \theta}{\delta x^{2}}=\mathrm{E} p \theta
$$

$$
\begin{equation*}
\frac{\delta^{2} \theta}{\delta x^{2}}=u^{2} \theta, \text { where } u^{2}=\frac{\mathrm{E} p}{\mathrm{KA}} \quad . \quad . \tag{3}
\end{equation*}
$$

The solution to this, easily checked by reverse calculation, is of the nature $\theta=a \epsilon^{u x}+b \epsilon^{-u x}$, where a and b are constants

Substituting the limiting values

$$
\begin{array}{ll}
\theta=0 \text { when } x=\infty & (0=a \cdot \infty+0) \tag{4}\\
\theta=\theta_{0} \text { when } x=0 & \left(b \epsilon^{u \cdot \cdot}=\theta_{0}\right) \\
a=0 \text { and } b=\theta_{0} & \\
\theta=\theta_{0} e^{-u x},
\end{array}
$$

then
or
showing that the temperature along the bar decreases logarithmically.

GENERAL EQUATION FOR A PERIODIC FLUCTUATION OF TEMPERATURE

This equation is required for the solution of such problems as the heat flow through the walls of an engine cylinder which are subject to small cyclic variations of temperature corresponding with the fluctuations of the temperature of the working-fluid.

Two conditions should be noted, (1) as the cross-section of the "bar" increases the problem approaches that of heat flow through a sheet, and the " edge" area from which heat can be dissipated becomes relatively unimportant. When two opposite edges of the sheet are folded together, thus forming a cylinder, loss from the edges becomes zero and the fitting of covers effectively prevents loss from the ends of the " barrel." The problem is then equivalent to that applying either to a sheet of infinite area, or to a bar having no emissivity from the sides. (2) Heat flow will be alternatively towards and away from each section of the material, and heat flow past any section will produce a temporary storage of heat (with consequent rise of temperature) in the section beyond it.

If $S=$ specific heat of bar, and ρ its density, also if $t=$ time from some fixed moment, and H the heat flow in unit time, then

$$
\begin{equation*}
\left(\mathrm{H}_{x}-\mathrm{H}_{x+\delta x}\right) \delta t=(\mathrm{E} p \theta \delta x) \delta t+\mathrm{A} \rho \mathrm{~S} \delta x \delta \theta \tag{5}
\end{equation*}
$$

and if $\mathrm{E}=0$ we have, as before,
and

$$
\begin{align*}
\mathrm{KA} \frac{d^{2} \theta}{d x^{2}}= & \mathrm{A} \rho \mathrm{~S} \frac{d \theta}{d t} \text { or } \mathrm{K} \frac{d^{2} \theta}{d x^{2}}=\rho \mathrm{S} \frac{d \theta}{d t} \\
& \mathrm{C}^{d^{2} \theta} \frac{d \theta}{d x^{2}}=\frac{d \theta}{d t} \quad . \quad . \tag{6}
\end{align*}
$$

where $\mathrm{C}=\frac{\mathrm{K}}{\rho \mathrm{S}}$ and is called the "diffusivity." C measures the ratio of the capacities of the material to transmit and to store heat.

DIMENSIONS OF C AND CERTAIN RELATED VALUES

If $\mathrm{M}, \mathrm{H}, \mathrm{L}, \theta$, and T represent units of mass, heat, length, temperature, and time, then K will have the dimensional form

$$
\frac{\mathrm{HL}}{\mathrm{~L}^{2} \theta \mathrm{~T}}=\frac{\mathrm{H}}{\mathrm{~L} \theta \mathrm{~T}}
$$

ρ will be given by $\frac{M}{L^{3}}$, and S by $\frac{H}{M \theta}$
or as $C=\frac{K}{\rho S}$ its dimensions will be

$$
\frac{H}{L \theta T} \times \frac{L^{3}}{M} \times \frac{M \theta}{H}=\frac{L^{2}}{T}
$$

or geometrically similar bodies of the same material will undergo the same temperature changes in times proportional to the square of their linear dimensions.

The approximate properties of certain common materials are given below :

	Conductivity B.Th.U. per sq. ft. per second per ${ }^{\circ} \mathrm{F}$. per ft. thickness	Specific heat	Density lb. per $\mathrm{cu} . \mathrm{ft}$.	C.
Aluminium .	0.024	0.222	160	0.00075
Copper . . .	0.048	0.093	557	0.000928
Bronze -	0.0048	-	-	-
Cast iron	0.0077	$0 \cdot 12$	440	0.000146
Tin .	0.01	0.055	455	0.00040
Asbestos - . .	0.000032	-	150	-
Powdered coal, felt, etc. .	0.000007	-	-	-
Ebonite Fats, oils, etc. dabout	0.000026	-	-	-

GENERAL SOLUTION OF EQUATION (6). STEADY TEMPERATURE

Here $\frac{d \theta}{d T}=0$, and by double integration of (6) $\theta=A+B x, A$ and B being constants.

Now when $x=0, \theta=\theta_{o}$, and when $x=l, \theta=\theta_{l}$.
Hence $A=\theta_{\rho}$ and $B=\frac{\theta_{l}-\theta_{0}}{l}$
The temperature at any point x along the bar (with no emissivity) is then given by

$$
\begin{equation*}
\theta_{z}=\theta_{0}+\frac{\theta_{l}-\theta_{0}}{l} x \tag{7}
\end{equation*}
$$

GENERAL SOLUTION OF EQUATION (6). FLUCTUATING TEMPERATURE

Let the variation of temperature take a simple harmonic form, so that the temperature at the end $x=0$ is given by $(\phi+a \sin \omega \mathrm{~T}), \phi$ being the mean temperature above the surroundings, and the second term showing the periodic fluctuation above and below the mean. The maximum range of temperature at the end $x=0$ will then be $2 a$. If emissivity can be neglected the only term of interest is

Two conditions now offer themselves for the solution of the general equation

$$
\begin{equation*}
\mathrm{C} d^{2} \theta / d x^{2}=d \theta / d \mathrm{~T} \tag{6}
\end{equation*}
$$

(1) Should the rise and fall of temperature occur simultaneously at all parts of the bar, the temperature at any point of the bar would be a function of depth and time only, suggesting the solution $\theta=\mathrm{X} \sin \omega \mathrm{T}$, where X is a function of x only.

Substituting in (6) $\omega \mathrm{X} \cos \omega \mathrm{T}=\mathrm{C} \frac{d^{2} \mathrm{X}}{d x^{2}} \sin \omega \mathrm{~T}$
or

$$
\frac{d^{2} \mathrm{X}}{d x^{2}}=\frac{\omega}{\mathrm{C}} \mathrm{X} \cot \omega^{\prime} \mathrm{T}
$$

Hence X would be a function of \boldsymbol{x} and T , which is inadmissible.
(2) It would appear that there may be a progressive time lag along the bar owing to the fact that each section will have to store up heat as its temperature rises preparatory to transmitting heat to the next section.

A possible modification will then be
$\theta=\mathrm{X} \sin (\omega \mathrm{T}+p x), p x$ representing a phase lag depending on x.
Substituting in (6) we have

$$
\begin{array}{r}
\omega \mathrm{X} \cos (\omega \mathrm{~T}+p x)=\mathrm{C}\left[\frac{d^{2} \mathrm{X}}{d x^{2}} \sin (\omega \mathrm{~T}+p x)+2 p \frac{d \mathrm{X}}{d x} \cos (\omega \mathrm{~T}+p x)\right. \\
\\
\left.\quad-p^{2} \mathrm{X} \sin (\omega \mathrm{~T}+p x)\right]
\end{array}
$$

or by rearrangement

$$
\mathrm{C}\left[\sin (\omega \mathrm{~T}+p x)\left\{\frac{d^{2} \mathrm{X}}{d x^{2}}-p^{2} \mathrm{X}\right\}\right]+\cos (\omega \mathrm{T}+p x)\left\{2 p \mathrm{C} \frac{d \mathrm{X}}{d x}-\omega \mathrm{X}\right\}=0
$$

This will be true for all values of \boldsymbol{x} and T if
and

$$
\begin{align*}
\frac{d^{2} \mathrm{X}}{d x^{2}}-p^{2} \mathrm{X} & =0 \tag{10}\\
2 p \mathrm{C} \frac{d \mathrm{X}}{d x}-\omega \mathrm{X} & =0 . \tag{11}
\end{align*}
$$

In both of these cases X is a function of x only.
Ihe form of (11), when modified to $\frac{d \mathrm{X}}{d x}=\frac{\omega}{2 p \mathrm{C}} \mathrm{X}$, suggests a solution of the form $X=e^{*}$

$$
\text { (in which case } \frac{d \mathrm{X}}{d x}=e^{x}=\mathrm{X} \text {) }
$$

$$
\begin{equation*}
\mathrm{X}=\mathrm{A} e^{\frac{\omega}{2 \mathrm{P} \mathrm{C}^{n}}} \tag{12}
\end{equation*}
$$

we have

$$
\begin{aligned}
\frac{d \mathrm{X}}{d x} & =\mathrm{A} \frac{\omega}{2 p \mathrm{C}}{ }^{\frac{\omega}{2 \mathrm{e}} \mathrm{C}^{x}} \\
& =\frac{\omega}{2 p \mathrm{C}} \mathrm{X}, \text { satisfying equation (11) }
\end{aligned}
$$

From (12) when $x=0, \mathrm{X}=\mathrm{A}$
or from (9)

$$
\theta=\mathrm{A} \sin (\omega \mathrm{~T}+p x)
$$

But the maximum temperature variation at the heated end of the ba is given by a, when $x=0$ and $\sin \omega T=1$
or

$$
\begin{equation*}
\mathrm{X}=a e^{\frac{\omega x}{2 p \mathrm{C}}} \tag{13}
\end{equation*}
$$

Substituting this value in equation (10)
or

$$
\begin{gathered}
\frac{a \omega^{2}}{4 p^{2} \mathrm{C}^{2}} e^{\frac{\omega x}{2 p \mathrm{C}}}-p^{2} a e^{\frac{\omega x}{2 p \mathrm{C}}}=0 \\
p^{2}= \pm \frac{\omega}{2 \mathrm{C}}
\end{gathered}
$$

For real values of p the negative sign is inadmissible and

$$
\begin{aligned}
p^{2} & =\frac{\omega}{2 \mathrm{C}} \\
p & = \pm \sqrt{\frac{\omega}{2 \mathrm{C}}}
\end{aligned}
$$

Substituting in (13) $X=a e^{ \pm \sqrt{\frac{\omega}{2 \mathrm{C}^{*}}}}$
But when x is large θ must obviously fall to zero, so that the + sign is inadmissible.

Hence

$$
\mathrm{X}=a e^{-\sqrt{\stackrel{\omega}{\omega}}}{ }_{2 \mathrm{C}^{*}}
$$

and

$$
\theta=a e^{-\sqrt{\frac{\omega}{2 \mathrm{C}} \cdot x}} \sin \left(\omega \mathrm{~T}--\sqrt{\frac{\omega}{2 \mathrm{C}}} x\right)
$$

If

$$
\begin{align*}
& \alpha=\sqrt{\frac{\omega}{2 \mathrm{C}}}=\sqrt{\frac{\omega \rho \mathrm{S}}{2 \mathrm{~K}}} \\
& \theta=a e^{-\alpha x} \sin (\omega \mathrm{~T}-\alpha x) \\
& \theta=a e^{-\alpha x} \sin (2 \pi n \mathrm{~T}-\alpha x) . \tag{14}\\
& \\
& \text { (1) (2) }
\end{align*}
$$

or
where n is the number of cycles in unit time.

INTERPRETATION OF FORMULA

(1) The maximum temperature fluctuation at the face of the bar is $\pm a$ (factor 1, equation (14)).
(2) The maximum temperature fluctuation at any other point of the bar varies with the depth and is given by $\pm a \epsilon^{-\alpha x}$ (factors 1 and 2).
(3) For all values of x the period of a complete cycle of temperatures is constant and $=\frac{2 \pi}{\omega}$ or $\frac{1}{n}$, where n is the number of cycles in unit time (factors 3 and 4).
(4) The phase lag varies with the depth, and $=\alpha x$, where $\alpha=\sqrt{\frac{\omega}{2 \mathrm{C}}}$.
(5) As $\sin \omega \mathrm{T}=\sin (\omega \mathrm{T}-2 \pi)$, the temperature lags a complete cycle and is in phase with the surface temperature when $\alpha x=2 \pi$ or $x=\frac{2 \pi}{\alpha}$.
When $x=\pi / \alpha$ the two temperature variations are exactly out of phase.
(6) From (5) the length of the heat wave is $x=2 \pi / \alpha$, and, substituting in (2) above, the fluctuation of temperature will be seen to decrease in the ratio of $1: e^{-2 \pi}=1 / 536$ for each wave-length of penetration. But as $\alpha \infty \sqrt{\omega}$ the wave-length is least for rapid fluctuations, so that the temperature variations at a given depth will decrease most rapidly with short period cycles.
(7) The velocity of propagation of the heat wave is $\frac{\omega}{2 \pi} \times$ wave-length

$$
=\frac{\omega}{2 \pi} \times \frac{2 \pi}{\alpha}=\sqrt{2 \mathrm{C} \omega}
$$

The velocity of propagation will be a maximum for short period cycles, though the effective penetration will be least.

HEAT FLOW INTO SURFACE DURING CYCLIC FLUCTUATION OF TEMPERATURE

If H is the rate of heat flow at any instant per unit of surface area, measured in B.Th.U. per second, then $\mathrm{H}=-\mathrm{K} \frac{d \theta}{d x}$, where $\frac{d \theta}{d x}$ is the temperature gradient at the surface (equation (1a), p. 347).

But $\quad d \theta / d x=\frac{d}{d x}\left[a e^{-\alpha x} \sin (\omega \mathrm{~T}-\alpha x)\right]$

$$
\begin{aligned}
& =-\alpha a e^{-\alpha x} \sin (\omega \mathrm{~T}-\alpha x)-\alpha a e^{-\alpha x} \cdot \cos (\omega \mathrm{~T}-\alpha x) \\
& =-\alpha a e^{-\alpha x}\{\sin (\omega \mathrm{~T}-\alpha x)+\cos (\omega \mathrm{T}-\alpha x)\}
\end{aligned}
$$

At the surface, when $x=0$

$$
\begin{equation*}
\mathrm{H}=-\mathrm{K} \frac{d \theta}{d x}=\mathrm{K} \alpha a(\sin \omega \mathrm{~T}+\cos \omega \mathrm{T}) . . \tag{15}
\end{equation*}
$$

$$
\mathrm{H}=0 \text { when }\left(\sin \omega \mathrm{T}+\cos \omega^{\prime} \mathrm{T}\right)=0
$$

or when $\quad \omega T=-\pi / 4$ and $3 \pi / 4$
Between these intervals the heat flow in time δT will be
or

$$
\begin{align*}
& -\mathrm{K} \frac{d \theta}{d x} \delta \mathrm{~T} \\
& -\mathrm{K} \frac{d \theta}{d x} \frac{\delta\left(\omega^{\mathrm{T}}\right)}{\omega} \tag{16}
\end{align*}
$$

The heat flow per unit area per cycle, from (15) and (16), will be

$$
\begin{aligned}
\mathrm{H}_{\mathrm{C}} & =\int_{-\pi / 4}^{3 \pi / 4} \mathrm{~K} \alpha a(\sin \omega \mathrm{~T}+\cos \omega \mathrm{T}) \frac{\delta \omega \mathrm{T}}{\omega} \\
& =\frac{\mathrm{K} \alpha a}{\omega}[-\cos \omega \mathrm{T}+\sin \omega \mathrm{T}]_{-\pi / 4}^{3 \pi / 4} \\
& =\frac{\mathrm{K} \alpha a}{\omega}\left[\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{ } 2}\right)-\left(-\frac{1}{\sqrt{ } 2}-\frac{1}{\sqrt{ } 2}\right)\right] \\
& =2 \sqrt{2} \frac{\mathrm{~K} \alpha a}{\omega}, \text { where } \alpha=\sqrt{\frac{\omega \rho \mathrm{S}}{2 \mathrm{~K}}}
\end{aligned}
$$

For cast iron $K=0.0077, \rho=440$, and $S=0.12$.
Hence

$$
\alpha=58.6 \sqrt{\omega}
$$

and

$$
\begin{aligned}
\mathrm{H} & =2 \sqrt{2} \times 0.0077 \times 58.6 \frac{a}{\sqrt{\omega}}=\frac{1 \cdot 27 a}{\sqrt{\omega}} \\
& =\frac{0.51}{\sqrt{n}} \text { if } n \text { is the number of cycles per second. }
\end{aligned}
$$

Example.-If the surface fluctuation of a cast-iron cylinder is $\pm 10^{\circ} \mathrm{C}$. and the number of cycles per second is 1 , find the fluctuation at a depth of $\frac{1}{2} \mathrm{in}$., the wave-length, and the heat flow into the surface.

Here

$$
x=\frac{1}{2} \mathrm{in} .=0.0417 \mathrm{ft} .
$$

$$
\alpha=\sqrt{\frac{\omega}{2 C}}=58.6 \sqrt{\omega}=58.6 \sqrt{2 \pi} \text { radians per second }
$$

Hence

$$
\begin{aligned}
\theta & = \pm 10 e^{-58.6 v^{\prime 2 \pi} \times 0.0417} \\
& = \pm 10 \frac{1}{\epsilon^{684}} \\
& = \pm 10 \times \frac{1}{920}=0.0186^{\circ}
\end{aligned}
$$

Wave-length $=\frac{2 \pi}{\alpha}=\frac{2 \pi}{146.7} \mathrm{ft}=\frac{2 \pi \times 12}{146.7}=0.513 \mathrm{in}$.
Heat flow per cycle $=\frac{0.51}{\sqrt{n}}=0.51$ B.Th.U.
Equation for Three-dimensional Heat Flow.-Consider a small rectangular block of material having sides of length $\delta x, \delta y$, and $\delta \boldsymbol{z}$, and. let θ be the temperature at its centre. The temperatures of the two faces $a b d c$, efgh perpendicular to the axis of x will then be

$$
\theta+\frac{1}{2} \frac{\delta \theta}{\delta x} \delta x \text { and } \theta-\frac{1}{2} \frac{\delta \theta}{\delta x} \delta x
$$

where $\frac{\delta \theta}{\delta x}$ is the temperature

Fig. 160. gradient parallel to the axis of \boldsymbol{x}.

From equation (2), p. 350, the heat flow at the two faces will be
and

$$
\begin{aligned}
& -\mathrm{K} \delta y \delta z \frac{\delta}{\delta x}\left(\theta+\frac{1}{2} \frac{\delta \theta}{\delta x} \delta x\right)=-\mathrm{K} \delta y \delta z\left(\frac{\delta \theta}{\delta x}+\frac{\delta^{2} \theta}{\delta x^{2}} \delta x\right) \\
& -\mathrm{K} \delta y \delta z \frac{\delta}{\delta x}\left(\theta-\frac{\delta}{2} \frac{\delta \theta}{\delta x} \delta x\right)=-\mathrm{K} \delta y \delta z\left(\frac{\delta \theta}{\delta x}-\frac{\delta^{2} \theta}{\delta x^{2}} \delta x\right)
\end{aligned}
$$

The difference between these two quantities will be the heat accumulated in the block in virtue of the temperature fluctuation in the direction \mathbf{X}
and is

$$
\mathrm{K} \frac{\delta^{2} \theta}{\delta x^{2}} \delta x \delta y \delta z
$$

The total heat accumulated per second, in virtue of the temperature gradients in the direction of all three axes will be

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{K} \frac{\delta^{2} \theta}{\delta x^{2}} \delta x \delta y \delta z+\mathrm{K} \frac{\delta^{2} \theta}{\delta y^{2}} \delta x \delta y \delta z+\mathrm{K} \frac{\delta^{2} \theta}{\delta z^{2}} \delta x \delta y \delta z \\
&=\text { rise of temp. per sec. } \times \text { mass } \times \text { sp. heat }=\frac{\delta \theta}{\delta \mathrm{T}} \rho s \delta x \delta \delta \delta z
\end{aligned} \\
& \text { or } \mathrm{K}\left(\frac{\delta^{2} \theta}{\delta x^{2}}+\frac{\delta^{2} \theta}{\delta y^{2}}+\frac{\delta^{2} \theta}{\delta z^{2}}\right)=\rho s \frac{\delta \theta}{\delta \mathrm{~T}}
\end{aligned}
$$

For steady flow in three dimensions $\frac{\delta \theta}{d \mathrm{~T}}=0$

$$
\frac{d^{2} \theta}{d x^{2}}+\frac{d^{2} \theta}{d y^{2}}+\frac{d^{2} \theta}{d x^{2}}=0
$$

The general solution to the equation is of the form
or

$$
\begin{align*}
& \theta=\alpha-\beta\left(x^{2}+y^{2}-2 z^{2}\right) \\
& \theta=\alpha-\beta\left(r^{2}-2 z^{2}\right) . \tag{1}
\end{align*}
$$

if the material takes the form of a cylinder of radius r, Fig. 161.

Fig. 161.
When $\mathrm{Z}=0$ and $\frac{d \theta}{d \mathrm{Z}}=0$, we have the condition for zero flow into the Lower face.
If heat now flows into the upper face it will do so in the direction of Z decreasing, or $h=\mathrm{K} \frac{d \theta}{d \mathrm{Z}}$ (note sign).
At the upper face $\frac{d \theta}{d Z}=4 \beta \mathrm{t}$ from (1), where $Z=t$, the thickness of the cylinder
or

$$
h=\mathrm{K} \cdot 4 \beta t \text { and } \beta=\frac{h}{4 \mathrm{~K} t}
$$

Then from (1)

$$
\theta=\alpha-\frac{h}{4 \mathrm{~K} t}\left(r^{2}-2 t^{2}\right)
$$

At the centre of the upper face $\theta_{0}=\alpha-\frac{h}{4 \mathrm{~K} t} \cdot\left(-2 t^{2}\right)$
or

$$
\begin{gather*}
=\alpha+\frac{h t}{2 \mathrm{~K}} \\
\alpha=\theta_{0}-\frac{h t}{2 \mathrm{~K}} \tag{2}
\end{gather*}
$$

In general then

$$
\theta=\theta_{0}-\frac{h t}{2 \mathrm{~K}}-\frac{h}{4 \mathrm{~K} t}\left(r^{2}-2 z^{2}\right)
$$

and

$$
\begin{aligned}
\theta_{0}-\theta & =\frac{h}{2 \mathrm{~K}}\left[t+\frac{r^{2}-2 z^{2}}{2 t}\right] \\
& =\frac{h}{4 \mathrm{~K} t}\left[2 t^{2}+r^{2}-2 z^{2}\right] .
\end{aligned}
$$

The following temperature gradients will then exist in the cylinder (see Fig. 162) :

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}=\frac{h t}{2 \mathrm{~K}} \\
& \mathrm{~T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{C}}=\frac{h r^{2}}{4 t \mathrm{~K}} \\
& \mathrm{~T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{D}}=\frac{h}{4 t \mathrm{~K}}\left(t^{2}+2 r^{2}\right)
\end{aligned}
$$

Also the surface temperature gradients, $\frac{d \theta}{d t}$, are zero for face DBD and $4 t=$ constant from (1) for the upper face, giving zero heat flow into the former and uniform heat flow into the latter.

These conditions hold closely for the cylindrical head of a piston, which receives heat over the working face and distributes it to the walls. Except for high speed I.C. engines which lose a considerable amount of heat from the lower face of the piston to the oil spray and

Fig. 162. air in the crank case, the heat loss on the lower face DBD is generally negligible. ${ }^{1}$
Example.-If the temperatures at the centre and edge of a cast-iron piston crown having a diameter of 6 in . and a thickness of 1 in ., are 230° and $550^{\circ} \mathrm{C}$., find the rate of heat flow.

$$
\begin{aligned}
& \text { Here } \mathrm{T}_{\text {centre }}-\mathrm{T}_{\text {odge }}=220^{\circ} \mathrm{C}
\end{aligned} \begin{aligned}
\text { or } & =\frac{h \times 9}{144 \times 1 \times 0.0077} \\
h & =\frac{220 \times 12 \times 0.0077}{9} \\
& =2.26 \text { C.H.D. per sq. ft.-sec. }
\end{aligned}
$$

GRAPHICAL ESTIMATION OF HEAT LOSS

In the case of two-dimensional flow in a body of any shape with given boundary conditions a graphical method of procedure is often convenient.

This is based on two assumptions : (1) that heat flow is of necessity perpendicular to isothermal planes; (2) that if lines of heat flow and isothermals are drawn for any case to such a scale that one of the figures formed by their intersection is a square, all the figures will approximate to squares, i.e. if ABCD is a block of uniform material through which heat is flowing from the uniformly heated face AB to a similarly heated

[^28]face DC, the isothermals will be as shown by $a a, b b, c c$, Fig. 163, and the lines of heat flow by $11,22,33$, etc. If the scales to which the figure is drawn are chosen so that a to $b=1$ to 2

Fig. 163. then all the figures formed, in the limit when $a b$ is very small, will be squares also.

The following case is taken from the Proc. Fifth International Congress on Refrigeration, 1929.

To obtain an estimate of the increase in leakage of heat through a $12-\mathrm{in}$. thickness of insulation applied against the side of a ship due to a series of metal ribs projecting 8 in . into the insulation and spaced 27 in . apart.
In Fig. 164, AB represents the inner surface of the insulation extending half-way from one rib to the next. CD is the side of the ship and DE is the rib in contact with it.

Fig. 164.
Here AB and CDE are the extreme isothermal surfaces, and five other isothermals have been inserted between them in a manner which seems suitable, remembering that as the insulation is continuous beyond the limits AC and BE the isothermals will be perpendicular to these lines. Lines of heat flow are drawn by eye to intersect these at right angles, and
to complete squares. (It is probable that the isothermals first drawn will be found to make the latter operation unsatisfactory, but a little experience will soon show how successive adjustments may be made to give a reliable solution.) It will be found that there are 9.3 heat flow bands between A and B .

Had there been no rib the isothermal and heat flow lines would all be straight, and the number of isothermal bands in AC being six, the number in $A B$ would have been $6 \times \frac{27 / 2}{12}=6.7$. The presence of the rib will therefore have increased the heat flow from 6.7 to 9.3 or about 40 per cent.

The application of this method to a piston head of irregular shape will be found in Proc.I.Mech.E., 1934-5, vol. 29, p. 312.

HEAT TRANSFER BY CONVECTION

Convection is the process by which heat is transmitted from a surface to a liquid or gas, radiation being neglected. It is therefore due to (1) the natural internal diffusion in the fluid, which is dependent on the temperature, and (2) the mass movement of the fluid, dependent on its velocity v and density ρ.

Convection is said to be " natural" when the movement is due to differences of density of the fluid, brought about by variations of temperature, and " forced " when the motion is due to outside forces compared with which the natural convection forces are negligible.

Reynolds expressed the heat transfer per unit area in unit time as

$$
\mathrm{H}=\alpha t+\beta \rho v . t,
$$

where α and β are constants, α usually being small. This can also be expressed as

$$
\mathrm{H}=\left(\alpha+\beta \frac{m}{a}\right) t,
$$

where m is the mass flowing in unit time, and a is the area of cross-section of the stream or $m=a v \rho$.

It is obvious that two other factors must be considered: (1) the " hydraulic mean depth" of the fluid, or

area of cross-section of stream

length of contact surface perpendicular to flow

as this will determine the proportion of molecules in contact with the surface at any time, (2) the nature of flow, whether streamline or turbulent.

The experimental consideration of conductivity is extremely complicated. The fluid motion is often turbulent, or turbulent in part, and the heat transfer depends on many factors, such as the density, specific heat, conductivity and viscosity of the fluid, and the size, shape, and temperature of the surface. Experimental determination is further
complicated as radiation cannot usually be eliminated, and a suitable allowance has to be calculated from the most reliable data available and subtracted from the gross value of the heat transfer.

Were the engineer confronted with problems related to perfect water and ideal gases and working conditions only it might be practicable to adopt the normal experimental technique, of changing one variable at a time, to a wide range of conditions and so obtain an accumulation of data from which suitable values might be selected. When the problems are extended, however, to cover a full range of industrial liquids, vapours and gases, many having properties which are greatly affected by temperature, the requisite data, even were it obtained, would be of a bulk quite impossible to handle. Many investigators have endeavoured to simplify the problem by expressing their results in empirical formulx, but it must be remembered that it is dangerous to apply these to conditions outside the experimental range used in their construction, and, in so far as they are not based on rational ideas, the equations suggested for one range will frequently be found to be at variance with those for another.

Sufficient data has been collected concerning certain standard shapes, such as cylinders and tubes, flat plates and spheres, to permit its correlation, by a process now to be described, in such a way that rational deductions can be made concerning a wide range of practical problems.

THE PRINCIPLE OF DIMENSIONAL ANALYSIS

As has been suggested above, the heat flow from, say, a heated flat surface to a liquid in contact with it is dependent upon a large number of variables. These may be expressed in "fundamental " units, such as mass, length and time, or units derived from them in the manner that velocity is derived from the units of length and time. In general, the number of "fundamental units" is considerably smaller than the total number of fundamental and derived units involved in a convection problem, and it may be possible, by expressing the latter in terms of the former, to reduce to a reasonable number the total units involved. It will be seen shortly that the eight factors which may affect the heat transfer from bodies of a given shape can be expressed in terms of four fundamental variables only.

The selection of the "fundamental" units to be used is largely a matter of convenience and convention. Length and time are obvious choices ; temperature, though related to velocity, may most conveniently be considered as a separate unit, and heat can be similarly treated in problems where the conversion of heat into work, or vice versa, is not involved.
In the following table the factors mentioned above are set out in terma of four "fundamental " units: length, time, temperature and heat. It
will be noted that a factor which is independent of a "fundamental " unit has zero dimensions in that unit.

Fundamental $\stackrel{\text { or }}{\text { derived }}$	Factor	Symbol	Dimensions in terms of			
			Length, L	$\underset{T}{T i m e}$	$\underset{\theta}{\text { Temp., }}$	Heat, h
F	Linear size -	l	1	0	0	0
F	Temperature difference between surface and fluid .	θ	0	0	1	0
D	Velocity of fluid . .	V	1	-1	0	0
D	Thermal conductivity of flund	K	-1	-1	-1	1
D	Specific heat per unit volume of fluid	c	-3	0	-1	1
D	Kinematic viscosity . .	$\boldsymbol{\gamma}$		-1	0	0
D	Coefficient of thermal expansion	a	0	,	-1	0
D	Acceleration of gravity .	g	1	-2	0	0

" Diffusivity" (p. 351) given by $\frac{K}{\rho c}$ has the dimensions $\frac{\mathbf{L}^{2}}{\mathbf{T}}$.
Viscosity is measured in terms of the tangential shearing stress which

Fig. 1644.
must be applied to opposite faces of a unit cube of fluid when one face moves parallel to the other with unit velocity or $f \alpha \frac{\delta \mathrm{~V}}{\delta y}=\mu \frac{\delta \mathrm{V}}{\delta y}$, where μ is the coefficient of viscosity.
The "fundamental" units of μ are then given by $\mu=f \frac{\delta y}{\overline{\delta V}}$ or μ is in terms of

$$
\frac{M L}{T^{2} L^{2}} \times \frac{L T}{L} \text { or } \frac{M}{L T}
$$

Though, under similar conditions of motion, the stresses in fluids are proportional to their viscosities, the effects of the viscosities in the alteration of motion are proportional to the ratio of the stresses to the fluid inertias, or the "Kinematic Viscosity" $\gamma=\mu / \rho$ (where ρ is the fluid density) and is given dimensionally by

$$
\frac{M}{\mathrm{LT}} \times \frac{\mathrm{L}^{3}}{\mathrm{M}} \text { or } \frac{\mathrm{L}^{2}}{\mathrm{~T}}
$$

In arranging the above factors in a rational equation certain facts must be borne in mind. An equation expressing a physical fact cannot be upset by changing the magnitudes of the fundamental units used, so that its terms must all have the same dimensions. "Natural phenomenon go their way, independent of the man-made units used to measure them." If one term can be made dimensionless by multiplying it by any factor, then the other terms can be made dimensionless by the same process. Such an equation can thus be expressed entirely in terms of groups ot factors arranged so that each group is dimensionless. These groups of variables, numerically fewer than the individual variables, become in fact the true variables in the problem, and they can be used as the ordinates in the construction of the graphs required to express the results of experiments. Experimental results which can be expressed in terms of the same groups (" similarity " or dimensionless groups) can be plotted together and can be united by a common curve.
\boldsymbol{n}, independent variables, which can be expressed in terms of \boldsymbol{m}, fundamental units, can be arranged in ($n-m$) independent dimensionless groups, so that four dimensionless groups can now replace the eight independent variables tabulated, with obvious advantage. Other advantages will be noted later.

FORMATION OF DIMENSIONLESS GROUPS FOR PROBLEMS INVOLVING HEAT LOSS BY CONVECTION

Considerable care must be exercised in selecting the variables which will be effective in any given case-the success of dimensional analysis depends on the correct prediction-and the factors already enumerated are satisfactory for the present purpose. One modification is, in general, applicable, and is justified as follows :

The heat lost by natural convection is carried away in the currents of fluid which rise from the heated surface as the result of the greater buoyancy of the fluid when its temperature is raised, and it is this increased buoyancy which brings in as a factor, the coefficient of thermal expansion. The density of a fluid will decrease, with rising temperature, proportionate to its coefficient of expansion a, and the forces causing circulation in the fluid will be proportionate to (decrease in density) $\times g$. It is only in this respect that the gravitational constant is likely to affect the problem. i.e. in the form of the product ag.

If thermal expansion of the fluid were on a sufficiently large scale to effect seriously the stream-lines and eddy-shapes in the fluid the factor a would also have to be considered separately, but the local temperature
changes are normally such that the distortion of the stream forms can be neglected.

The heat lost from a surface by convection per unit area and per unit time can then be written as a function of the variables

$$
\begin{gathered}
l, \theta, \mathrm{~V}, \mathrm{~K}, c, \gamma, \text { and } a g \\
\mathrm{H} \alpha, l^{x}, \theta^{y}, \mathrm{~V}^{z}, \mathrm{~K}^{p}, c^{\ell}, \gamma^{r}(a g)^{s}
\end{gathered}
$$

But H is obviously of the dimensional form $\frac{h}{\mathrm{~L}^{2} \mathrm{~T}}$, having in $h 1$ dimension, in length -2 dimensions, in time -1 dimension and zero dimension in temperature. As the equation must be dimensionally consistent, it follows that these must be provided by the product of the factors on the right side of the equation.

As an example, by reference to the table it will be seen that units of length are involved in $l, \mathrm{~V}, \mathrm{~K}, c, \gamma$ and $(a g)$ and by equating indices, we therefore have

In length	$-2=x+z-p-3 q+2 r+s$.	.	.	(1)	
Similarly, in time	$-1=-z-p$	$-r-2 s$

These four equations between seven variables enable four variables to be expressed in terms of the remaining three, say, z, r and s.

Equation (2) then gives $p=1-z-r-2 s$
(4) gives

$$
\begin{align*}
& q=1-p \tag{5}\\
& =z+r+2 s \tag{6}\\
& y=p+q+s \\
& =1+s \tag{7}\\
& \text { (1) } " x=-2-z+p+3 q-2 r-s \\
& =-1+3 s+z \tag{8}
\end{align*}
$$

(3) "

Thus, with the product of the factors already expressed in terms of z, r and s, i.e. $\mathrm{V}^{z} \gamma^{\gamma}(a g)^{s}$, which can be tabulated as must be considered

$$
\begin{aligned}
\mathrm{K}^{p} & =\mathrm{K}^{1-2 s-r-s} \text { from equation (5) } \\
& =(\mathrm{K})^{1}\left(\frac{1}{\mathrm{~K}^{2}}\right)^{s}\left(\frac{1}{\mathrm{~K}}\right)^{r}\left(\frac{1}{\mathrm{~K}}\right)^{z}
\end{aligned}
$$

and $c^{4}=c^{*+r+2 s}$ from equation (6)
also $\theta^{y}=\theta^{1+s}$ from equation (7)
and $l^{x}=l^{-1+3 s+z}$ from equation (8)

Indices			
1	r	s	z
	γ	$(a g)$	V
K	$\frac{1}{\mathrm{~K}}$	$\frac{1}{\mathrm{~K}^{2}}$	$\frac{1}{\mathrm{~K}}$
	c	c^{2}	c
θ		θ	
1		l^{3}	l

But H is a function of the product of all these terms, which can now be collected in terms of indices.
i.e.

$$
\begin{gathered}
\mathrm{H} \alpha\left(\frac{\mathrm{~K} \theta}{l}\right)^{1}\left(\frac{c \gamma}{\mathrm{~K}}\right)^{\prime}\left(\frac{a^{a} \theta l^{3} c^{2}}{\mathrm{~K}^{2}}\right)^{s}\left(\frac{\mathrm{~V} c l}{\mathrm{~K}}\right)^{2} \\
\frac{\mathrm{H} l}{\mathrm{~K} \theta}=\left(\frac{c \gamma}{\mathrm{~K}}\right)^{r}\left(\frac{a g \theta l l^{2} c^{2}}{\mathrm{~K}^{2}}\right)^{s}\left(\frac{\mathrm{~V} c l}{\mathrm{~K}}\right)^{2}
\end{gathered}
$$

Now H is given dimensionally by $\frac{h}{\mathrm{~L}^{2} \mathrm{~T}}$
and $\frac{l}{\mathrm{~K} \theta}$ is similarly given by $(\mathrm{L})\left(\frac{\mathrm{LT} \theta}{h}\right)\left(\frac{1}{\theta}\right)$ or $\frac{\mathrm{L}^{2} \mathrm{~T}}{h}$
Hence $\frac{\mathrm{Hl}}{\mathrm{K} \theta}$ is dimensionless and correspondingly the expressions $\left(\frac{c \gamma}{\mathrm{~K}}\right)$, $\left(\frac{a g \theta l^{3} c^{2}}{\mathrm{~K}^{2}}\right)$ and $\frac{\mathrm{V} c l}{\mathrm{~K}}$ are also dimensionless, and are, in fact, the real variables in the equation expressing the phenomenon which occur when heat is transferred by convection. In the same way that the results of experiments on a permanent gas can be expressed in terms of the factors p and v the results of experiments on conductivity can be expressed in terms of the four dimensionless " similarity " groups shown, as will be seen.
The factors have now been reduced from the eight originally specified, to the four " similarity" groups just obtained, but in practice a further reduction can be effected :-
for natural convection the velocity across the surface is usually negligible so that the term $\frac{\mathrm{V} c l}{\mathrm{~K}}$ vanishes.
for forced convection buoyancy factors are usually negligible or the term $\frac{a g \theta l^{3} c^{2}}{\mathrm{~K}^{2}}$ vanishes.
for gases the term $\frac{c \gamma}{\mathrm{~K}}$ varies only slightly for a wide range of gases and temperatures and may usually be taken as constant.
The following are the important similarity groups therefore
For Natural Convection of gases $\frac{\mathrm{Hl}}{\mathrm{K} \theta}$ and $\frac{a g \theta l^{3} c^{2}}{\mathrm{~K}^{2}}$
For Forced Convection of gases $\frac{\mathrm{H} l}{\mathrm{~K} \theta}$ and $\frac{\mathrm{V} c l}{\mathrm{~K}}$
For Natural Convection of liquids $\frac{\mathrm{Hl}}{\overline{\mathrm{K} \theta} \theta}, \frac{a g \theta l^{2} c^{2}}{\mathrm{~K}^{2}}$ and $\frac{\gamma}{\mathrm{K}}$ which latter can
conveniently be considered as $\frac{\mathrm{H} l}{\mathrm{~K} \theta}$ and the quotient $\frac{a g \theta l^{3} c}{\mathrm{~K} \gamma}$
For Forced Convection of liquids $\frac{\mathrm{H} l}{\mathrm{~K} \theta}, \frac{c \gamma}{\mathrm{~K}}$ and $\frac{\mathrm{V} c l}{\mathrm{~K}}$ which are conveniently grouped as $\frac{\mathrm{H} l}{\mathrm{~K} \theta} \cdot\left(\frac{c \gamma}{\mathrm{~K}}\right)^{\downarrow}$ and $\frac{\mathrm{V} c l}{\mathrm{~K}} \cdot{ }^{1}$
An additional advantage derived from the fact that the similarity groups are dimensionless is that the same groups will have the same value what-

Fig. 164b.
ever consistent system of units is used for measuring the several components, a fact which may appreciably reduce the arithmetical calculations involved when data is obtained from different sources.
It must be realised that the process of dimensional analysis is merely a mathematical method of analysing experimental results according to certain hypotheses. If the initial selection of variables is incorrect or inadequate, or the assumptions made subsequently are not justified or the experimental facts insufficient, the results of its application are bound to be wrong.

We should now be in a position to correlate in a single graph the resulte z "Calculation of Heat Transmission." p. 179.
of experiments made over a wide range of conditions, and to deduce from the curve the values required.

The problem of heat loss by convection has been studied in considerable detail for a very limited number of shapes, but long cylinders and flat surfaces have been used by many experimenters. The value of dimensional analysis will be illustrated by the cases of heat loss by natural convection from a horizontal cylinder to fluids in general and to gases in particular, but for a full statement of the problem reference should be made elsewhere.

Fig. 164c.
In Fig. 164b are shown the detailed results of experiments on the heat losses from cylinders immersed in liquids as diverse as alcohol and glycerine at temperature differences up to $100^{\circ} \mathrm{F}$., the superimposed curve being that obtained for the heat losses from cylinders to gases. The former varied from fine wires to pipes 10 in . in diameter, and the respective temperature differences having maximum values of $2000^{\circ} \mathrm{F}$. and 700° F. Logarithm plotting has been employed to enable the full experimental range to be shown conveniently, and this tends to emphasize the agreement reached, but even so this will be seen to be of a very satisfactory order.

The curve for gases alone is shown in Fig. 164c, the abscissa in this case
taking the simpler form $\frac{a g \theta l^{3} c^{2}}{\mathrm{~K}^{\mathbf{2}}}$ applicable to gases only.
In the calculations prior to the plotting of experimental results those properties of the gases which vary with temperature are assumed to have the values applicable at the mean temperature between the surface and the body of the gas, except in the case of a which is taken at the temperature of the latter.

Fig. 164d.
For values of the diameter of a pipe in air in excess of about 6 in. the slope of the curve is virtually constant and equal to $1 / 3$, giving
or

$$
\begin{aligned}
& \log \frac{\mathrm{H} d}{\overline{\mathrm{~K} \theta}}=\frac{1}{3} \log \frac{a g \theta d^{3} c^{2}}{\mathrm{~K}^{2}} \\
& \frac{\mathrm{H} d}{3 \mathrm{~K}}\left(\frac{a g \theta d^{3} c^{2}}{\mathrm{~K}^{2}}\right)^{1 / 3}=\mathrm{const} .
\end{aligned}
$$

If a, θ, c and K are constant, $\mathrm{H} d$ will then be proportional to $\theta^{1 / 3} d$ or the heat loss per unit area will be independent of the pipe diameter.

As the diameter decreases below this value the slope changes rapidly until with very small diameters the rate of heat loss per unit area may have increased some 50 times or more. In these circumstances the losses by radiation will tend to become relatively unimportant. It is for this reason that the fine wire thermocouple will record a more nearly
correct temperature for a gas in which it is immersed than a thermometer of larger diameter.

The curve also confirms the results of more direct experiments that the rate of heat loss varies very nearly as the 5/4ths power of the temperature difference.

Fig. 164D has been plotted from values taken from Fig. 164c substituting suitable values for K and $\frac{a g c^{2}}{\mathrm{~K}^{2}}$ and on the assumption that $h=c \theta^{5 / 4}$. It will be seen that for cylinders above about 6 in. diameter $h=0.35 \theta^{5 / 4}$ B.Th.U'. per sq. ft. hr.

Fig. 164e gives the correlated experimental results for the heat transfer

Fig. 16if.
by natural convection from vertical planes and cylinders to air, the upper portion of the curve corresponding to conditions for which the heat loss per unit area is independent of size, i.e. for a height of about 12 in . The value $\mathrm{H}=0 \cdot 32 \theta^{5 / 4}$ is probably the most suitable for large bodies.

The following examples illustrate the uses of these curves.
Example 1.-To find the rate at which a horizontal wire 0.01 diameter at $500^{\circ} \mathrm{F}$. loses heat by natural convection to air at $70^{\circ} \mathrm{F}$.
Here $\quad 0.01 \mathrm{in} .=0.000833 \mathrm{ft}$. and $\log 0.000833=\overline{4} .92$ or -3.08 .

From Fig. $164 \mathrm{D} \frac{\mathrm{H}}{\theta^{5 / 4}}=4 \cdot 1$ B.Th.U. per sq. ft. per hr.
or $\mathrm{H}=4 \cdot 1 \times 430^{5 / 4}$ B.Th.U. per sq. ft. per hr. or 8040 B.Th.U. per sq. ft . per hr.

If the wire is replaced by a cylinder 6 in . in diameter the value of H will be 980 B.Th.U. per sq. ft. per hr.

Example 2.-To find the rate at which a vertical rectangular plate 12 in . wide, 3 in . high, insulated on one side and with a surface temperature of $250^{\circ} \mathrm{F}$. loses heat by convection in carbon dioxide at $50^{\circ} \mathrm{F}$.

The mean temperature between the plate and gas is $\frac{250+50}{2}=150^{\circ} \mathrm{F}$. and at this value $\mathrm{agc}^{2} / \mathrm{K}^{2}$ will be found to be 3.6×10^{6}.

Hence

$$
\frac{a g \theta c^{2} l^{3}}{\mathrm{~K}^{2}}=3.6 \times 10^{6} \times(250-50) \times(0.25)^{3}
$$

$$
\log \frac{a g \theta c^{2} l^{3}}{\mathrm{~K}^{2}}=6 \cdot 56+2 \cdot 30-1 \cdot 80=7 \cdot 05
$$

From Fig. 164E $\log \frac{\mathrm{H} l}{\mathrm{~K} \theta}$ will have the corresponding value of 1.65 and $\frac{\mathrm{Hl}}{\mathrm{K} \theta}=44.7$.

H will then be given by $44.7 \times 1.01 \times 10^{-2} \times 200=90.3 \mathrm{~B}$.Th.U per 8 gq . ft . per hr.

$$
\left(1.01 \times 10^{-2}=\mathrm{K} \text { for } \mathrm{CO}_{2} \text { at } 150^{\circ} \mathrm{F} .\right)
$$

or for the rectangle $22.6 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. per hr .
The problems of Forced Convection in gases, and of Natural and Forced Convection in liquids can be treated in a similar manner. For a full statement of the matter, large scale reproductions of the necessary diagrams, tables of the properties of fluids, etc., the reader is referred to "The Calculation of Heat Transmission," Fishenden and Saunders, published by H.M. Stationery Office, from which the curves shown have been taken. See also " Progress in Heat Transfer," Lander, Proceedings I.Mech.E., 1942.

In dealing with heat loss by convection the nature of the flow of fluid in proximity to the surface is of considerable importance. If the flow is stream-line heat transmission, as suggested by Reynolds, can only occur by diffusion through the liquid, whereas turbulence will promote the removal of the heat-bearing fluid from the plate and its replacement by unheated liquid. The rate of heat transmission will be found to vary in the same manner as the resistance to motion during the transition from stream-line to turbulent motion. The criterion for turbulent flow is that the "Reynolds Number," one of the similarity groups for fluid flow, and having the value $\mathrm{V} / / \gamma$ should be in excess of 2000 (for air and water in a
$1-\mathrm{in}$. pipe the values of V are roughly 4 ft . and 0.3 ft . per sec., but for forced convection this condition is seldom unsatisfied).

The heat lost by natural convection from a surface to a boiling liquid varies greatly with the shape of the surface, rate of boiling, etc. A steam bubble in contact with the surface will retard the flow of heat, but the buoyancy of the bubble when detached will produce a beneficial stirring action. The rate of heat lost from a condensing vapour to a cool surface may, however, greatly exceed that from a non-condensing gas, owing apparently to the freedom with which the vapour molecules can merge in the condensate, and to the fact that the coefficient of conduction from a liquid to a surface may be from 500 to 1000 times greater than in the case of a gas.

The importance of the freedom to move of the heated fluid is illustrated by the fact that the heat lost per square foot from a horizontal surface facing upwards is generally 30 per cent. higher than for a corresponding vertical surface, and for a horizontal surface facing downwards about 35 per cent. less, whereas radiation downwards from a ceiling, even allowing for normal draughts is only about 30 per cent. of that from a normal downward facing surface. In the case of vertical surfaces the natural-convection currents are confined in practice to within less than an inch of the surface, so that the effect of other vertical surfaces at a greater distance than this is generally negligible.

For forced convection from cylinders to air flowing at right angles to the axis of the cylinder H will, in general, be found to vary as $\mathrm{V}^{\boldsymbol{n}}$ where n varies from 0.5 for small wires to 0.7 for large cylinders, and as $\frac{1}{d^{1-n}}$, where d is the diameter of the cylinder. For flat surfaces the coefficient of V may be taken as 0.8 .
For forced convection from surfaces to liquids flowing parallel to them the relation is given approximately by

$$
\frac{\mathrm{H} d}{\mathrm{~K} \theta}\left(\frac{c \gamma}{\mathrm{~K}}\right)^{0.5}=0.03\left(\frac{\mathrm{~V} c d}{\mathrm{~K}}\right)^{0.8}
$$

the coefficients of V and d being 0.8 and 0.2 , as in the previous case.

GENERAL CASE OF HEAT LOSS TRANSFER TO OR FROM A SURFACE

In general, heat will be transferred both by radiation and conduction, and it is necessary to estimate the transference by each process separately and to add the results. The receptivity $\left(=\frac{1}{\text { emissivity }}\right)$ and emissivity of the metal surfaces may thus play an important part, the total heat transmission being effected as much as 75 per cent. and $16-30$ per cent. for gases and liquids respectively by this factor.

Of the total temperature drop from water to air across a metal plate some 2 per cent. will represent the drop across the virtually stagnant layer of water in contact with the metal, 1 per cent. will be the portion due to metallic resistance, and 97 per cent. will represent the drop across the stationary air film. The thickness of these films and correspondingly the distribution of temperature will be considerably affected by the degrees of turbulence in the bodies of the fluids. For transference across a plate from water to water the corresponding proportions will be approximately 48.5 per cent., 3 per cent., and 48.5 per cent.

Approximate values of total heat transfer expressed in $\frac{\text { B.Th. } \mathrm{O} \text {. }}{\mathrm{ft} . \mathrm{h}^{2} \mathrm{hr} .}{ }^{\circ} \mathrm{F}$. ${ }^{\text {are }}$ as follows :
From a vertical plate to boiling water at $212^{\circ} \mathrm{F}$. : stirred, 1400 ; not stirred, 450-1000.
From a condensing vapour through a pipe submerged in water, 40-45.
Through a double tube condenser, velocity of water flow 3 ft . per second, 100-120.
From a brine cooling pipe, 35-40.
From a brine pipe in air, 2-2.5.
Air cooler with fan, 6-7.
A full consideration of the problems will be found in "Calculation of Heat Transmission," H.M. Stationery Office. The following general deductions appear to be provisionally established :

Forced Convection.-(1) The heat loss from a hot surface is proportional to the temperature difference between the surface and the tranquil fluid.
(2) For streamline flow the loss is a function of velocity and linear dimensions.
(3) For turbulent flow in pipes the heat loss is proportional to the velocity.

Natural Convection.-(1) The heat loss from a hot surface is proportional to $T^{5 / 4}$.
(2) The heat loss is proportional to $p^{0.45}$, where p is the pressure of the gas.
(3) For bodies over 40 cm . in linear dimensions the scale effect is unimportant, and the heat loss per unit area is approximately

$$
3.33 \mathrm{~T}^{5 / 4} \frac{\text { B.Th.U. }}{\mathrm{ft.}^{20} \mathrm{~F} . \mathrm{hr} .}
$$

CONDUCTION OF HEAT THROUGH PIPES

Heat interchangers can be classified as follows :
(1) Parallel flow, where the fluids flow in the same direction over the separating wall.
(2) Counter-flow, where the directions are opposite.
(3) Evaporators or condensers, where one fluid remains at a constant temperature while changing its state.
(4) Mixed flow, where one of the fluids takes an irregular direction with respect to the other.
In order to calculate the heat interchanged it is necessary to calculate the mean temperature difference between the fluids.

Parallel Flow Cooler.-Consider an interchanger of length L, Fig. 165, in which $W_{a} \mathrm{lb}$. of air per hour are cooled by $W \mathrm{lb}$. of water.

Fig. 165.
Let C_{p} and 1 be the specific heats of air and water, and K the coefficient of heat transmission in B.Th.U. per foot length of pipe per hour per ${ }^{\circ} \mathrm{F}$.

Then

$$
K\left(T_{a}-T\right) \delta L=W_{a} C_{p} \delta T_{a}=W \delta T
$$

or

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{W}_{a} \mathrm{C}_{p}}{\mathrm{~K}} \int_{\mathrm{T}_{a_{2}}}^{\mathrm{T}_{a_{1}}} \frac{d \mathrm{~T}_{a}}{\mathrm{~T}_{a}-\mathrm{T}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{W}}{\mathrm{~K}} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{d \mathrm{~T}}{\mathrm{~T}_{a}-\mathrm{T}} \tag{2}
\end{equation*}
$$

and after any interval of time

$$
\begin{gather*}
\mathrm{W}_{a} \mathrm{C}_{p}\left(\mathrm{~T}_{a_{1}}-\mathrm{T}_{a}\right)=\mathrm{W}\left(\mathrm{~T}-\mathrm{T}_{1}\right) \\
\mathrm{T}_{a}=\mathrm{T}_{a_{1}}+\frac{\mathrm{T}_{1}-\mathrm{T}}{\mathrm{~W}_{\bullet} \mathrm{C}_{\rho}} \mathrm{W} \tag{3}
\end{gather*}
$$

Substituting from (3) in (2)

$$
\begin{aligned}
\mathrm{L} & =\frac{\mathrm{W}}{\mathrm{~K}} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{d t}{\mathrm{~T}_{a_{1}}+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}\left(\mathrm{~T}_{1}-\mathrm{T}\right)-\mathrm{T}} \\
& =\frac{\mathrm{W}}{\mathrm{~K}} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{d t}{\left(\mathrm{~T}_{a_{1}}+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}} \mathrm{~T}_{1}\right)-\mathrm{T}\left(1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}\right)}
\end{aligned}
$$

This is of the form

$$
\begin{gathered}
\frac{\mathrm{W}}{\mathrm{~K}} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{d t}{a-b t}=-\frac{\mathrm{W}}{\mathrm{~K} b}\left[\log _{\epsilon}(a-b t)\right]_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \\
\mathrm{~L}=\frac{\mathrm{W}}{\mathrm{~K}}\left(\frac{1}{1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}}\right) \log _{\mathrm{p}}\left[\mathrm{~T}_{a_{1}}+\frac{\mathrm{W}}{\mathrm{~W}_{a}} \frac{\mathrm{C}}{\mathrm{C}_{p}}-\left(1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}\right) \mathrm{T}\right]_{\mathrm{T}_{2}}^{\mathrm{T}_{1}}
\end{gathered}
$$

or
the limits being reversed to change the sign of the integral.

$$
\begin{align*}
\therefore \mathrm{L}=\frac{\mathrm{W}}{\mathrm{~K}}\left(\frac{1}{1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}}\right) \log _{a} & {\left[\frac{\mathrm{~T}_{a_{1}}+\frac{\mathrm{WT}_{1}}{\mathrm{~W}_{a} \mathrm{C}_{p}}-\left(1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}\right) \mathrm{T}_{1}}{\mathrm{~T}_{a_{2}}+\frac{\mathrm{WT}_{2}}{\mathrm{~W}_{a} \mathrm{C}_{p}}-\left(1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}\right) \mathrm{T}_{2}}\right] } \\
& =\frac{\mathrm{W}\left(\frac{1}{\mathrm{~K}}\left(\frac{\mathrm{~W}}{1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}}\right) \log _{e} \frac{\mathrm{~T}_{a_{1}}-\mathrm{T}_{1}}{\mathrm{~T}_{a_{2}}-\mathrm{T}_{2}} . .\right.}{} . \tag{4}
\end{align*}
$$

Now for the whole transfer
$\mathrm{LKT}_{m}=\mathrm{W}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$, where T_{m} is the mean temperature difference Substituting the value of L from (5) in (4)

$$
\mathrm{T}_{m}=\frac{\left(\mathrm{T}_{2}-\mathrm{T}_{1},\left(\mathrm{~W}+\mathrm{W}_{a} \mathrm{C}_{p}\right)\right.}{\mathrm{W}_{a} \mathrm{C}_{p} \log _{\epsilon} \frac{\mathrm{T}_{a_{1}}-\mathrm{T}_{1}}{\mathrm{~T}_{a_{2}}-\mathrm{T}_{2}}}
$$

But, for the whole transfer also, $\mathrm{W}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\mathrm{W}_{a} \mathrm{C}_{p}\left(\mathrm{~T}_{a_{1}}-\mathrm{T}_{a_{2}}\right)$
ar

$$
\mathrm{W}_{a} \mathrm{C}_{p}=\mathrm{W} \frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{a_{1}}-\mathrm{T}_{a_{2}}}
$$

and substituting the value of $W_{a} C_{p}$ in (6)

$$
\mathrm{T}_{m}=\frac{\mathrm{W}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)\left(1+\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{a_{1}}-\mathrm{T}_{a_{2}}}\right)}{\frac{\mathrm{W}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\left(\mathrm{T}_{a_{1}}-\mathrm{T}_{a_{2}}\right)} \log _{e} \frac{\mathrm{~T}_{a_{1}}-\mathrm{T}_{1}}{\mathrm{~T}_{a_{2}}-\mathrm{T}_{2}}}
$$

$$
=\frac{\mathrm{T}_{a_{1}}-\mathrm{T}_{a_{2}}+\mathrm{T}_{2}-\mathrm{T}_{1}}{\log _{e} \frac{\mathrm{~T}_{a_{1}}-\mathrm{T}_{1}}{\mathrm{~T}_{a_{2}}-\mathrm{T}_{2}}}
$$

$$
=\frac{\text { Initial temperature difference }- \text { final temperature difference }}{2.30 \times \log _{10}\left(\frac{\text { Initial temperature difference }}{\text { Final temperature difference }}\right)}
$$

Counter Flow Cooler.-As before
or

$$
\begin{align*}
& \mathrm{K}\left(\mathrm{~T}_{a}-\mathrm{T}\right) \delta \mathrm{L}=\mathrm{W}_{a} \mathrm{C}_{p} \delta \mathrm{~T}_{a}=\mathrm{W} \delta \mathrm{~T} \\
& \mathrm{~L}=\frac{\mathrm{W}_{a} \mathrm{C}_{p}}{\mathrm{~K}} \int_{\mathrm{T}_{a_{1}}}^{\mathrm{T}_{a_{2}}} \frac{d \mathrm{~T}_{a}}{\mathrm{~T}_{a}-\mathrm{T}} . \tag{1}\\
& \mathrm{L}=\frac{\mathrm{W}}{\mathrm{~K}} \int_{\mathrm{T}_{2}}^{\mathrm{T}_{1}} \frac{d t}{\mathrm{~T}_{a}-\mathrm{T}} . \quad . \tag{2}
\end{align*}
$$

(Note change of limits as the direction of flow of water is opposite to that of L increasing.)

$$
\begin{equation*}
\text { Also } \mathrm{W}_{a} \mathrm{C}_{p}\left(\mathrm{~T}_{a_{1}}-\mathrm{T}_{a}\right)=\mathrm{W}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \text { or } \mathrm{T}_{a}=\mathrm{T}_{a_{1}}+\left(\frac{\mathrm{T}_{2}-\mathrm{T}}{\mathrm{~W}_{a} \mathrm{C}_{p}}\right) \mathrm{W} . \tag{3}
\end{equation*}
$$

Substituting the value of T_{a} from (3) in (2)

$$
\mathrm{L}=\frac{\mathrm{W}}{\mathrm{~K}} \int_{\mathrm{T}_{2}}^{\mathrm{T}_{1}} \frac{d t}{\mathrm{~T}_{a_{1}}+\left(\frac{\mathrm{T}_{2}-\mathrm{T}}{\mathrm{~W}_{\mathrm{a}} \mathrm{C}_{p}}\right) \mathrm{W}-\mathrm{T}}
$$

or

$$
\begin{aligned}
\mathrm{L} & =\frac{\mathrm{W}}{\mathrm{~K}} \int_{\mathrm{T}_{2}}^{\mathrm{T}_{1}} \frac{d t}{\mathrm{~W}_{a} \mathrm{C}_{p} \mathrm{~T}_{a_{1}}-\mathrm{T}_{2} \mathrm{~W}} \mathrm{~W}_{a} \mathrm{C}_{p} \\
& =\frac{\mathrm{W}}{\mathrm{~K}\left(1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{~W}_{p} \mathrm{~W}_{p}}\right) \mathrm{T}} \log _{a}\left[\mathrm{~T}_{a_{1}}+\frac{\mathrm{T}_{2} \mathrm{~W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}-\left(1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}\right) \mathrm{T}\right]_{\mathrm{T}_{1}}^{\mathrm{T}_{2}}
\end{aligned}
$$

the limits being reversed as $\delta \mathrm{T}$ is essentially negative.
Hence

$$
\mathrm{L}=\frac{\mathrm{W}}{\mathrm{~K}}\left(1+\frac{\mathrm{W}}{\mathrm{~W}_{a} \mathrm{C}_{p}}\right) \log _{e} \frac{\mathrm{~T}_{a_{1}}-\mathrm{T}_{2}}{\mathrm{~T}_{a_{2}}-\mathrm{T}_{1}}
$$

As $T_{a_{1}}-T_{2}$ and $T_{a_{2}}-T_{1}$ are the initial and final temperature differences, this equation is identical with equation (4) in the last case and the equation for T_{m} is exactly as before.
(N.B. The initial temperature difference is the temperature difference at the end of the cooler from which L is measured, i.e. the initial difference in space, not time.)

Fig. 166.
Example.-If water ranging from 15° to $25^{\circ} \mathrm{C}$. in temperature is tc be used to cool a gas from $100^{\circ} \mathrm{C}$. to $30^{\circ} \mathrm{C}$., compare the lengths of similar parallel and counter-flow coolers which might be used.

For the parallel-flow cooler

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m}} & =\frac{(100-15)-(30-25)}{2 \cdot 30 \log _{10} \frac{100-15}{30-25}} \\
& -\frac{85-5}{2 \cdot 30 \log _{10} \frac{85}{5}}-\frac{80}{2 \cdot 30 \log _{10} 17}=2 \cdot 30 \times 1 \cdot 230 \\
& =28 \cdot 3^{\circ} \mathrm{C}
\end{aligned}
$$

For the counter-flow cooler

$$
\begin{aligned}
\mathrm{T}_{m}=\frac{(100-25)-(30-15)}{2 \cdot 30 \log _{10} \frac{100-25}{30-15}} & =\frac{75-15}{2.30 \log _{10} \frac{75}{15}} \\
& -\frac{60}{2.30 \times 0.698}=37.4^{\circ} \mathrm{C} .
\end{aligned}
$$

The counter-flow cooler will therefore be $\frac{28 \cdot 3}{37 \cdot 4}$ or 76 per cent. of the length of the parallel-flow cooler.

The weight of water to be circulated will be given by

$$
\text { weight of gas to be cooled } \times \frac{\mathrm{sp} \text {. heat water }}{\text { sp. heat gas }}
$$

If P is the perimeter of the cooling pipes, L the length, and K a suitable conductivity factor-say 2.5 heat units/ft. ${ }^{2} \mathrm{hr}$. per degree,
Then $\mathrm{P} \times \mathrm{L} \times \mathrm{K} \times \mathrm{T}_{m}=$ weight of gas per hour \times specific heat of gas λ temperature range of gas
or $\quad L=\frac{\text { heat to be extracted per hour }}{\text { P.K. } \mathrm{T}_{\boldsymbol{m}}}$ feet
Condenser or Evaporator.-Here

$$
\mathrm{W} \delta \mathrm{~T}=\mathrm{K} \delta \mathrm{~L}(\mathrm{~T},-\mathrm{T})
$$

$$
\frac{\delta \mathrm{T}}{\mathrm{~T}-\mathrm{T}}=\frac{\mathrm{K} \delta \mathrm{~L}}{\mathrm{~W}}
$$

or

$$
\mathrm{L}=\frac{\mathrm{W}}{\mathrm{~K}} \log _{e} \frac{\mathrm{~T}_{s}-\mathrm{T}_{2}}{\mathrm{~T}_{s}-\mathrm{T}_{1}}
$$

For the whole heat transfer $\mathrm{LKT}_{m}=\mathrm{W}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
or

$$
\mathrm{T}_{m}=\frac{\mathrm{W}}{\mathrm{~K}} \frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\frac{\mathrm{~W}}{\mathrm{~K}} \log _{e} \frac{\mathrm{~T}_{s}-\mathrm{T}_{2}}{\mathrm{~T}_{s}-\mathrm{T}_{1}}}
$$

Adding and subtracting T_{s} and changing signs throughout

$$
\mathrm{T}_{m}=\frac{-\mathrm{T}_{2}+\mathrm{T}_{s}+\mathrm{T}_{1}-\mathrm{T}_{4}}{-\log _{6} \frac{\mathrm{~T}_{3}-\mathrm{T}_{2}}{\mathrm{~T}_{5}-\mathrm{T}_{1}}}
$$

or $\mathrm{T}_{m}=\frac{\text { Initial temperature difference-final temperature difference }}{2.30 \log _{10} \frac{\text { Initial temperature difference }}{\text { Final temperature difference }}}$

Fig. 167.

Mixed Flow Coolers.-Where the flow is quite indiscriminate the value of the mean temperature difference will be

$$
\mathrm{T}_{m}=\left(\frac{\mathrm{T}_{a_{1}}+\mathrm{T}_{a_{2}}}{2}\right)-\left(\frac{\mathrm{T}_{1}+\mathrm{T}_{2}}{2}\right)
$$

In cases where the flow is partly directional the method of estimating T_{m} will have to be determined by the circumstances.

EXAMPLES ON CHAPTER XVI

1. In order to determine the amount of heat lost by radiation from a metal surface, a cast-iron bar of square section $4 \mathrm{in} . \times 4 \mathrm{in}$. was heated at one end. When a steady condition was attained the temperatures were read from thermometers placed at different distances along the bar. Obtain a formula by means of which the amount of heat radiated per square foot per degree difference of temperature between the temperature of the bar and atmosphere can be calculated. Determine the actual amount of radiation from the figures given below :

Distance from end in inches	0	6	12	21	30	41
Temperature $\left({ }^{\circ}\right.$ F.) $\cdot . \quad$.	235	171	131.5	97.9	80.5	69.2

Conductivity of cast iron, 5.4 B.Th.U. per sq. ft. per minute per ${ }^{\circ}$ F. per inch thick. Temperature of atmosphere, $59 \cdot 5^{\circ} \mathrm{F}$.
2. In a surface condenser with 6000 sq . ft . of cooling surface it was found that $58,000 \mathrm{lb}$. of steam were condensed per hour. The average temperature of the steam was $132^{\circ} \mathrm{F}$., and of the circulating water $80^{\circ} \mathrm{F}$. The tubes were of brass 0.05 in. thick and of such a conductivity that 25 B.Th.U. could pass per minute through a plate 1 sq . ft . in area 1 in . thick, per degree difference in temperature between the two surfaces. Calculate the temperatures of the metal on the steam and water sides of the tubes. Assume that when steam is in contact with a metal surface the rate of condensation is $0.74(\mathrm{~T}-t) \mathrm{B} . \mathrm{Th} . \mathrm{U}$. per sq. ft. per second, where T is the temperature of the steam and t the temperature of the metal, and latent heat at $132^{\circ} \mathrm{F} .=1020$ B.Th.U. per lb.
3. If the surface fluctuation of an aluminium plate is $\pm 10^{\circ} \mathrm{C}$. and the number of cycles per second is 60 , find the length of the heat wave, and the heat flow per cycle into the surface.
4. An aluminium piston 6 in . in diameter and with a uniform crown thickness of $\frac{3}{4}$ in. receives heat at the rate of 2.5 C.H.U. per sq. ft. per second. If the temperature at the lower edge of the under surface is $220^{\circ} \mathrm{C}$., find the temperatures at the centres of the two faces.
5. Show that a $3-\mathrm{in}$. diameter steam pipe covered with lagging $1 \frac{1}{2}$ in. thick will loose approximately $\frac{5}{3}$ of the heat lost by a similar pipe encased in lagging of square external section and measuring 6 in. along the sides.

Chapter XVII

COMBUSTION

-GENERAL STATEMENT

The heat which is the motive power of all heat engines is obtained, except in certain very exceptional cases, from the combustion of some form of fuel, which may be solid, liquid, or gaseous, and which, entering into chemical combination with the oxygen of the air, liberates heat during the process.

It should be noted that the oxygen has exactly the same importance as the fuel, and when either is exhausted the process of combustion stops. It has been seen in the case of the petrol engine that it is sometimes desirable to use an "over-rich" mixture, and that the heat produced reaches its limit when the oxygen supply is exhausted. It is as important to obtain an adequate supply of oxygen and to distribute it correctly as it is to obtain a suitable supply and distribution of fuel, even though the former can be obtained for nothing while the latter is costly.
Though a too lavish supply of fuel is expensive an excessive liberality with regard to air may be equally wasteful, as it must be remembered that the desirable element, oxygen, is accompanied by approximately three times its own weight of nitrogen. This nitrogen, which is almost completely inactive, is drawn into the combustion zone, where it occupies valuable room, is heated owing to the activity of the oxygen and fuel, and is finally discharged with its cargo of precious heat, having served no useful purpose except possibly that of preventing too great a rise of temperature during combustion.

*COMBUSTION EQUATIONS

The combustible constituents in all normal fuels, whether solid, liquid, or gaseous, are carbon, hydrogen, sulphur, and compounds of carbon, hydrogen, and oxygen. As the fumes resulting from the combustion of sulphur are deleterious to metals, etc., especially in the presence of moisture, fuels are usually as free from this element as possible, and the traces present contribute very little to the total calorific value.

Table I shows the atomic and molecular weights of the commoner substances which have to be considered in connection with combustion problems. The reader is warned concerning the common, and often
convenient, practice of substituting the chemical symbol of a substance in place of the name, i.e. H refers to one atom of hydrogen, which can only exist in the combined state and the symbol therefore should not be applied to indicate hydrogen gas. H_{2} refers to one molecule of free hydrogen or two atoms of hydrogen combined. Only when loosely used can H_{2} indicate hydrogen in general.

Table I

	Atom		Molecule	
	Symbol	Atomic weight	Symbol	Molecular weight
Hydrogen	H	1	H_{2}	2
Oxygen	O	16	O_{2}	32
Nitrogen Carbon	${ }_{\mathrm{N}}$	14	${ }_{\text {N }}$	28
Carbon	c	12	C	12
Sulphur	S	32		32
Water . .		-	$\mathrm{H}_{2} \mathrm{O}$	18
Carbon monoxide . .		-	CO	28
Carbon dioxide .		-	CO_{2}	44
Sulphur dioxide .			SO_{2}	64
Marsh gas (methane)		-	CH_{4}	16
Ethylene		-	$\mathrm{C}_{2} \mathrm{H}_{4}$	28

The complete combustion of carbon can be expressed by

$$
\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2}
$$

indicating that one molecule of carbon combines with one molecule of oxygen to give one molecule of carbon dioxide. This can be converted to show the relative weights of the reacting substances by multiplying by the molecular weights,
i.e. 12 lb . carbon +32 lb . oxygen $=44 \mathrm{lb}$. carbon dioxide,
and as there is no change of mass the equation must be numerically consistent.

As the molecular weight of a gas in pounds occupies 359 cu . ft. at N.T.P. the equation may be written

12 lb . carbon +359 S.C.F. oxygen $=359$ S.C.F. carbon dioxide.
Neglecting the volume of the carbon there will be no shrinkage on combustion.

On the other hand the equation

$$
2 \mathrm{CO}+\mathrm{O}_{2}=2 \mathrm{CO}_{2}
$$

shows that 2 volumes of carbon dioxide +1 volume oxygen become

2 volumes of CO_{2}, in which case the shrinkage is one-third of the total original volume or half the volume of carbon monoxide.

In the case of the combustion of hydrogen
2 volumes of hydrogen +1 volume of oxygen $=2$ volumes of steam,
showing a shrinkage of one-third, but if the steam condenses the volume occupied by the resulting water will be negligible and the shrinkage will De almost complete.

The following are the equations most frequently employed :
Carbon

$$
\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2}
$$

$$
\text { Carbon (incomplete combustion) . } 2 \mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO}
$$

$$
\text { Sulphur } \mathrm{S}+\mathrm{O}_{2}=\mathrm{SO}_{2}
$$

$$
\text { Hydrogen } 2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\text { Carbon monoxide } 2 \mathrm{CO}^{2}+\mathrm{O}_{2}=2 \mathrm{CO}_{2}
$$

$$
\text { Methane } \mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\text { Ethylene } \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

- THE CALORIFIC VALUE OF FUELS

Wherever possible the calorific value of a fuel, whether solid, liquid, or gaseous, should be obtained from the results of a direct test in a suitable " bomb" or gas calorimeter. In this case a sample of the fuel at room temperature is burnt with either air or oxygen, and the products of combustion are cooled to the original temperature. This ensures (1) that any moisture originally contained in the fuel will be condensed and will return to its original state, the heat required to evaporate it during the high temperature stages of combustion being restored to the calorimeter before the completion of the test ; and (2) that the latent heat of moisture formed by combustion will be deposited in the calorimeter. The test should therefore give an accurate measurement of the total heat liberated by combustion, and the value obtained is known as the Higher Calorific Value.

It is advisable in many cases to base calculations of performance or efficiency upon this higher calorific value. When used in determining the heat balance of an engine, for instance, the higher calorific value represents the total assets, and must be balanced against the power generated, the frictional losses, and the sum of all the heat losses in the exhaust, by radiation, etc., the final statement being complete.

While it is desirable to charge to the account of an engine or boiler all the heat which it should, in reason, be expected to utilise, it may not be fair to charge it with the losses which are necessarily incurred when an unsuitable fuel is used. For instance, if a fuel contains sulphur the fumes will be moderately inactive while in the gaseous form, but will produce an extremely corrosive acid when absorbed in moisture, and it is therefore necessary to discharge the products of combustion at a temperature
above the dew-point, thus causing the loss of the heat in the steam formed by combustion. A similar corrosive action is produced by nitrous fumes in an internal combustion engine, these being absorbed in the moisture deposited on the walls when starting from cold. Also, it may not be desirable to charge to the discredit of a boiler the latent heat, necessarily discharged to the atmosphere, which is formed by the combustion of wet fuel. The above are rather defects of the fuel than of the plant.

Under such circumstances the Lower Calorific Value may be used, this being the higher calorific value minus the heat content of the vapour discharged.

As the efficiency of a unit is higher when calculated on the lower calorific value than when the higher calorific value is used, great care must be taken to state clearly which quantity has been employed.
The desire to give full credit to the performance of some part of the plant must not be allowed to conceal the fact that all losses have to be paid for, and must therefore be charged to some account, and if it is arguable that a given fuel is not suitable for use in a given engine or boiler it may equally well be considered, for other purposes, that the engine or boiler are not suitable for the fuel. There are two distinct points of view, and care is required not to confuse them.

A somewhat similar difficulty arises in the case of volatile liquid fuels such as petrol. When tested in a calorimeter some of the heat of combustion is absorbed in the evaporation process, the total heat recorded being the heat of combustion minus the latent heat. When such a fuel (other than alcohol, see p. 292) is supplied to an engine, however, it is safe to assume that evaporation takes place partly in the carburettor and induction pipe, and partly at the cost of the otherwise wasted heat in the inlet port and valve, and is in any case complete before the closing of the latter. The latent heat is not, in fact, supplied directly at the expense of the heat of combustion, so that the heat available in the cylinder is in reality the calorific value (i.e. the heat of combustion minus the latent heat) plus the latent heat, or the total heat of combustion.

A difficulty in determining the lower calorific value is that of deciding the amount of heat to be deducted from the higher calorific value. Were the steam to be discharged at atmospheric pressure, the heat lost per pound of water vapour would be the latent heat, or 970 B.Th.U. per lb., and this value is used by some authorities. On the other hand, if the potential energy of the steam is taken into account, the Total Heat or 1122 B.Th.U. per lb. should be allowed, while Schüle uses a value of 1080 B.Th.U. per lb., or approximately the total heat of steam at room temperature, and the Heat Engine Trials Report ${ }^{1}$ adopts the figure of 1055 B.Th.U. Actually the steam exerts only a partial pressure in the

[^29] Clowes, 1927.
exhaust, and is almost certainly present as a superheated vapour, the heat content of which will vary with each trial. In order to avoid additional measurements and elaborate calculations it is conventional to use one or other of the above figures in all cases-there appears to be no regularity with regard to the choice-but it will be found that the extreme error involved affects the ultimate result by an amount very seldom exceeding 1 per cent., which is not excessive when compared with other experimental errors.

In order to avoid confusion the "Heat Engine Trials Report" of the Institution of Civil Engineers recommends that the higher calorific value should always be used. Such a recommendation tends towards simplicity and clarity, and may be very desirable in general practice. The other view-point is, however, of interest. ${ }^{1}$
(For further details, see p. 409, also Pye, p. 53.)
When gaseous fuels are used it is convenient to express the calorific value in B.Th.U. per standard cubic foot of gas, or per standard cubic foot of the combustible mixture. Table II gives the approximate calorific values of a number of fuels or fuel constituents.

Table II

Fuel	Higher calorific value, B.Th.U.		Lower calorific value, B.Th.U.	
	per lb.	per standard cu. ft.	per lb.	$\begin{gathered} \text { per } \\ \text { standard } \\ \text { cu. } \mathrm{ft} . \end{gathered}$
Carbon, burnt to carbon dioxide	14,540		14,5402	
Carbon, burnt to carbon monoxide	4,372		4,3722	
Sulphur -	4,000		4,0002	
Hydrogen . . .	61,520	345	51,800	288
Carbon monoxide	4,391	342	4,3912	3422
Methane (CH_{4}) -	23,830	1,062	21,430	954
Ethylene ($\mathrm{C}_{2} \mathrm{H}_{4}$) . . - . .	21,420	1,674	19,900	1,561
Town gas Blast furnace gas		504		+ 450
Paraffin			18,890	
Petrol			18,920	
Alcohol .			11,480	
Diesel oil	20,400		19,200	
Nixons Navigation coal	15,400		15,010	
Welsh steam coal	14,490			
Anthracite	15,200			
Coke	13,600			

[^30]The very high calorific value of hydrogen on a weight basis should be noted, and also the small amount of heat liberated when carbon is burnt to carbon monoxide instead of carbon dioxide.

*ESTIMATION OF CALORIFIC VALUE FROM CHEMICAL ANALYSIS. PROXIMATE ANALYSIS

The calorific value of a solid or liquid fuel may be obtained approximately from a chemical analysis of a dried sample. The analysis usually obtained gives the weights in 1 lb . of dry sample of carbon, hydrogen, sulphur, nitrogen, ash, and oxygen. Of these elements only the first three contribute to the calorific value, while the contribution of the third is usually negligible.
Now when 1 lb . of carbon is completely burnt to carbon dioxide $14,540 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. are liberated, and when 1 lb . of hydrogen is completely burnt to water 61,520 B.Th.U. are liberated. In the latter case, if the 9 lb . of water vapour which are formed are not allowed to condense, the heat liberated will be 51,800 B.Th.U. approximately.

If, therefore, 1 lb . of fuel contains 0.86 lb . carbon and 0.04 lb . hydrogen, the higher calorific value will be $0.86 \times 14,540+0.04 \times 61,520=14,960$ B.Th.U., and the lower calorific value will be $0.86 \times 14,540+0.04 \times$ $51,800=14,570$ B.Th.U.

If the fuel contains oxygen it is assumed that this is already in combination with the hydrogen present, so that, as oxygen combines with one-eighth of its weight of hydrogen, the amount of free hydrogen will be

$$
\text { Weight of hydrogen }-\frac{\text { weight of oxygen }}{8}
$$

Had the analysis been $\mathrm{C}=0.80, \mathrm{H}_{2}=0.04$ and $\mathrm{O}_{2}=0.16$ the higher calorific value would be taken as $0.80 \times 14,540+\left(0.04-\frac{0.16}{8}\right) \times 61,520=12,860$ B.Th.U.

The process is not of great accuracy for two reasons : (1) It assumes that the carbon and hydrogen exist in the fuel in the free state whereas in reality they are chemically combined. The assumption is specially unsatisfactory in the case of oil fuels which contain highly complex compounds of these elements. (2) The oxygen is not obtained by direct mueasurement, but by difference, i.e. by subtracting the weights of carbon, hydrogen, sulphur, nitrogen, and ash from the original weight of the coal. The figure for oxygen therefore contains all the errors of the whole analysis. The calorific value obtained by the above method is usually too low when compared with the results of calorimetric tests.

The calorific value for a gaseous fuel may be obtained in a similar manner, but as the analysis is by volume and the constituents are directly and accurately measured by selective absorption the heat values of the constituents must be reckoned in B.Th.U. per cubic foot. In case the figures required are not available it is useful to remember that the pound
molecular weight of a gas occupies 359 standard cubic feet, so that 1 lb . occupies $\frac{359}{\text { molecular weight }}$ S.C.F. The analysis is both simpler and more satisfactory than that for a solid fuel.

*CALCULATION OF AIR REQUIRED FOR COMPLETE COMBUSTION OF SOLID AND LIQUID FUELS

For perfect combustion the amount of air which should theoretically be supplied is that quantity which contains just enough oxygen for the complete combustion of the constituents of the fuel, it being assumed that these exist independently, an assumption obviously not fully justified in the case of solid fuels as the carbon, hydrogen, oxygen, and sulphur are already combined to some extent.

The composition of air may be taken as follows :
By weight-oxygen, 23 per cent.; nitrogen, 77 per cent.
By volume ", 21 per cent.; " 79 per cent.
Owing to the simplicity of the essential processes, and the ease with which formulæ may be misapplied, the calculations contained in this and succeeding paragraphs will be based on actual examples and not on symbolic values.
To calculate the Amount of Air required for the Complete Combustion of Welsh Steam Coal.
Let the analysis by weight be as follows :
Carbon, 83.8 per cent.; hydrogen, 4.8 per cent.; nitrogen, 1.0 per cent. ; sulphur, 1.4 per cent. ; ash, 4.9 per cent.; oxygen (by difference), $4 \cdot 1$ fer cent.

To burn the Carbon.
The formula is $\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2}$
or 12 lb. carbon +32 lb . oxygen $=44 \mathrm{lb}$. carbon dioxide ;
or 0.838 lb . carbon will require $0.838 \times \frac{32}{12}$ or 2.23 lb . oxygen,
and will produce $0.838 \times \frac{44}{12}$ or 3.072 lb . carbon dioxide . . . (1)
To burn the Hydrogen.
'The formula is $2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}$
or 4 lb . hydrogen +32 lb . oxygen $=36 \mathrm{lb}$. water.
It is assumed, however, that the oxygen is already combined with the hydrogen, so that the free hydrogen is $\left(0.048-\frac{0.041}{8}\right)=0.043 \mathrm{lb}$. (see p. 385)
0.043 lb . free hydrogen will then require $0.043 \times \frac{32}{4}$ or 0.344 lb . oxygen, and will produce $0.043 \times \frac{36}{4}$ or 0.387 lb . of steam or water . .
To burn the Sulphur.
$\mathrm{S}+\mathrm{O}_{2}=\mathrm{SO}_{2}$
or 32 lb . sulphur +32 lb . oxygen $=64 \mathrm{lb}$. sulphur dioxide,
or 0.014 lb . sulphur will require 0.014 lb . oxygen and will produce 0.028 lb . sulphur dioxide

The nitrogen and ash are incombustible.
The total oxygen required per pound of fuel is then
$2.23+0.344+0.014=2.588 \mathrm{lb}$., which will be contained in
$2.588 \times \frac{100}{23}$ or 10.23 lb . air.
The air supply per pound of fuel is therefore 10.23 lb .
Analysis of the Products of Combustion in the above Example.
The products of combustion will then consist of
3.072 lb . carbon dioxide, from (1)
0.387 lb . steam, from (2)
0.028 lb . sulphur dioxide, from (3)
0.010 lb . nitrogen, from the fuel
$\frac{77}{100} \times 10.23$ or 7.878 lb . nitrogen, from the air
0.49 lb . ash, from the fuel.

At room temperature the steam will condense, and will absorb the sulphur dioxide so that the gaseous products will consist of 3.072 lb . carbon dioxide
7.888 lb . nitrogen 10.960 lb . total weight and the analysis of the gaseous product by weight will be 28.0 per cent. carbon dioxide and 72.0 per cent. nitrogen.

The proportions by volume will be $\frac{28}{44}=0.636$ parts carbon dioxide

$$
\begin{aligned}
& \text { and } \frac{72}{28}=2.57 \text { parts nitrogen } \\
& \text { Total . . } \overline{3.21} \text { parts }
\end{aligned}
$$

and the analysis by volume will be 19.8 per cent. carbon dioxide 80.2 per cent. nitrogen

*TO CALCULATE THE AMOUNT OF AIR REQUIRED FOR THE COMBUSTION OF A GASEOUS FUEL

The analysis of a gaseous fuel is always stated in terms of volume. Let the analysis of the fuel be

Hydrogen	46	per cent.		
Methane	37.5	$"$
Carbon monoxide	7.5	$"$		
Nitrogen	4.5	$"$	
Water vapour	2.0	$"$	
Ethylene	2.5	$"$

Dealing with the constituents separately we have-
Hydrogen: $2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}$
or $2 \mathrm{cu} . \mathrm{ft}$. hydrogen $+1 \mathrm{cu} . \mathrm{ft}$. oxygen $=2 \mathrm{cu}$. ft . water vapour,
and 0.46 cu . ft . hydrogen will require 0.23 cu . ft . oxygen to give 0.46 cu . ft. water vapour.

Methane: $\mathrm{CH}_{4}+2 \mathrm{O}_{2}=\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
or $1 \mathrm{cu} . \mathrm{ft}$. methane $+2 \mathrm{cu} . \mathrm{ft}$. oxygen $=1 \mathrm{cu} . \mathrm{ft}$. carbon dioxide $+2 \mathrm{cu} . \mathrm{ft}$. water vapour,
or 0.375 cu . ft. methane +0.75 cu . ft. oxygen $=0.375 \mathrm{cu}$. ft. carbon dioxide +0.75 cu . ft. water vapour.

Carbon Monoxide : $2 \mathrm{CO}+\mathrm{O}_{2}=2 \mathrm{CO}_{2}$
or $2 \mathrm{cu} . \mathrm{ft}$. carbon monoxide $+1 \mathrm{cu} . \mathrm{ft}$. oxygen $=2 \mathrm{cu} . \mathrm{ft}$. carbon dioxide, or 0.075 cu . ft. carbon monoxide +0.0375 ft . oxygen $=0.075 \mathrm{cu} . \mathrm{ft}$. carbon dioxide.

Ethylene: $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
or 1 cu . ft. ethylene +3 cu . ft. oxygen $=2 \mathrm{cu}$. ft. carbon dioxide $+2 \mathrm{cu} . \mathrm{ft}$. water vapour,
or 0.025 cu . ft. ethylene +0.075 cu . ft. oxygen $=0.05 \mathrm{cu}$. ft. carbon dioxide $+0.05 \mathrm{cu} . \mathrm{ft}$. water vapour,
or 1 cu . ft. of fuel gas will require
$0.23+0.75+0.0375+0.075=1.0925 \mathrm{cu} . \mathrm{ft}$. oxygen
or $1.0925 \times \frac{100}{21}=5.202 \mathrm{cu} . \mathrm{ft}$. air
Note.-If there is any oxygen in the fuel gas this should be deducted from the total oxygen required: The oxygen in a gaseous fuel is obtained by direct analysis and not by difference.

The products of combustion will be-
Carbon dioxide $=0.375+0.075+0.05=0.500 \mathrm{cu} . \mathrm{ft}$.
Water vapour $=0.46+0.75+0.05+0.020=1.28 \mathrm{cu} . \mathrm{ft}$.
Nitrogen $\quad=0.045+5.202 \times \frac{79}{100}=4.155 \mathrm{cu} . \mathrm{ft}$.

$$
=\overline{5.935} \mathrm{cu} . \mathrm{ft} . \text { total }
$$

$\left.\begin{array}{rl}\left.\text { The analysis will be carbon dioxide } \begin{array}{rl}\frac{0.500}{5.935} \times 100 & =8.4 \text { per cent. } \\ \text { Water vapour } & =21.6 \quad \# \\ \text { Nitrogen } & =70.0 \quad \#\end{array}\right\}, ~ \text { ", }\end{array}\right\}$
If the vapour is allowed to condense the total volume will be $4.655 \mathrm{cu} . \mathrm{ft}$., and the analysis of the dry gas will be carbon dioxide 10.7 per cent., nitrogen 89.3 per cent.

The volume of the mixture of gas and air before combustion will be $5 \cdot 202+1=6 \cdot 202 \mathrm{cu} . \mathrm{ft}$., i.e. the sum of the volumes of air (from 1) and gas, and the contraction after combustion will be-
for the wet gas $6 \cdot 202-5.935=0.267 \mathrm{cu}$. ft. or 4.5 per cent.
and for the dry gas $6.202-4.655=1.547$ or 24.9 per cent.
Note.-The percentages of CO_{2} shown in this and the previous analysis are maximum values, as any dilution of the products of combustion, either by the use of excess air or excess fuel, will decrease the values given.

-FLUE AND EXHAUST GAS ANALYSIS

In order to find whether the combustion of a fuel is satisfactory it is usual to analyse a sample of the products of combustion. This is performed at room temperature so that the water vapour has almost entirely condensed, and in doing so has absorbed the sulphurous fumes.

The analysis is made by volume, the following being the reagents normally used : ${ }^{1}$
(1) For carbon dioxide determination, caustic potash solution.
(2) For oxygen determination, either alkaline pyrogallol solution or yellow phosphorus.
(3) For carbon monoxide, ammoniacal cuprous chloride solution.

It is essential that the absorptions be carried out in the above order, as cuprous chloride reacts readily with both carbon monoxide and oxygen. Care must be taken to ensure that the sample analysed is representative, and is not contaminated, or diluted by the leakage of air, before the analysis is made.

[^31]The records of such an analysis are given below.

	Vol. c.c.	Difference	Per cent.
Original volume, measured at atmospheric pressure and temperature . Volume after reaction with potash Volume after reaction with phosphorus or pyrogallol Volume after reaction with cuprous chloride	100	-	-
	88	12	$12\left(\mathrm{CO}_{2}\right)^{1}$
	$80 \cdot 5$	$7 \cdot 5$	$7.5\left(\mathrm{O}_{2}\right)$
	$80 \cdot 2$	0.3	$0.3(\mathrm{CO})$
	Nitrogen by difference		$80.2\left(\mathrm{~N}_{2}\right)$

${ }^{1}$ For convenience the symbols are used qualitatively.
Typical analyses of flue gases obtained from the combustion of coal are as follows:

Gas	Per cent. by volume		
	(1)	(2)	(3)
CO_{2}	15.3	9.0	4.0
CO	0	10.3	5.0
O_{2}	4.1	0.6	11.7
$\mathrm{~N}_{2}$	80.6	80.1	79.3

Analysis (1) shows no carbon monoxide and a good percentage of CO_{2}.
The combustion is good, with only a very moderate excess of air.
Analysis (2) shows a very high carbon monoxide value and very little excess oxygen. The air supply is obviously quite inadequate.

Analysis (3) shows a high carbon monoxide value coupled with much excess oxygen. The combustion zone appears to have been starved of air, but there would also seem to have been considerable air leakage, either through the fire bars, due to very bad stoking, or into the flues.

It must be remembered that the interpretation of an analysis of the products of combustion cannot be made without a knowledge of the analysis of the fuel, a good analysis for one type of fuel being a bad analysis for another. The physical state of the fuel must also be considered. A very intimate mixture with air is possible for a gaseous fuel, so that almost perfect combustion can be achieved. With coal burnt on an ordinary grate, however, the interstices between the lumps are of such a size that some air must pass without coming into close contact with the fuel, and an attempt to reduce the excess air below a certain value whe
merely result in incomplete combustion. The firing of pulverised fuel or of a spray of heavy oil will also require excess air owing to the impossibility of a perfect distribution of the fuel throughout the air. On the other hand, a petrol engine will only develop full power when dissociation is suppressed by the direct formation of carbon monoxide.

*THE EXAMINATION OF EXHAUST AND FLUE GAS ANALYSES. SOLID AND LIQUID FUELS

To find the Air actually supplied per Pound of Coal.
This is calculated by comparing the carbon content of the coal with that of the flue gases.

Let the (dry) analyses be

Coal, 0.84 lb . carbon 0.056 lb . hydrogen 0.05 lb . ash (per pound of coal)

Exhaust gas, $\mathrm{CO}_{2} 10.5$ per cent.
CO 0.5 per cent. $\mathrm{O}_{2} 8.0$ per cent.
$\mathrm{N}_{2} 81 \cdot 0$ per cent. (by volume)

The weight of carbon per pound of dry flue gas can be calculated as follows : First, the flue gas analysis must be converted to an analysis by weight.

	Analysis by volume	Relative weight
	per cent.	
CO_{2}	10.5	$10.5 \times 44=462$
CO_{2}	0.5	$0.5 \times 28=14$
O_{2}	8.0	$8 \times 32=256$
$\mathrm{~N}_{2}$	81.0	$81 \times 28=2268$
Total	100	3000

Hence in 3000 lb . of dry gas there are

$$
\begin{equation*}
\frac{12}{44} \times 462+\frac{12}{28} \times 14=132 \mathrm{lb} . \text { of carbon } . . \tag{1}
\end{equation*}
$$

or the weight of dry gas containing 0.84 lb . carbon (supplied by 1 lb . of coal)

$$
=3000 \times \frac{0.84}{132}=19.09 \mathrm{lb} .
$$

In addition to the dry gas the hydrogen in the coal will give

$$
9 \times 0.056=0.504 \mathrm{lb} . \text { steam, }
$$

and the total products of combustion per pound of coal will be

$$
19.09+0.504 \mathrm{lb} .=19.59 \mathrm{lb}
$$

These will come from (1) the air supply, (2) the coal, excluding the ash, or the air supply per pound of coal $=19.59-(1-0.05)=18.64 \mathrm{lb}$.

To find the air theoretically required.

The oxygen required to burn $0.056 \mathrm{lb} . \mathrm{H}_{2}$ (from 1 lb . coal)

$$
=0.056 \times 8=0.448 \mathrm{lb} .
$$

The oxygen required to burn 0.84 lb . $\mathrm{C}=\frac{32}{12} \times 0.84=2.24 \mathrm{lb}$.

$$
\text { Total } 2 \cdot 69 \mathrm{lb} .
$$

and weight of air required per pound of coal $=11.69 \mathrm{lb}$.
The excess air supplied per pound of coal is therefore

$$
18.64-11 \cdot 69=6.95 \mathrm{lb} \text {., or } 59 \text { per cent. }
$$

To find the heat loss through the formation of carbon monoxide.
In 3000 lb . of dry gas there are 14 lb . of carbon monoxide containing $\frac{12}{28} \times 14=6 \mathrm{lb}$. carbon, the total carbon content being 132 lb . from (1).

Or, from 1 lb . of coal having a carbon content of 0.84 lb ., $\frac{6}{132} \times 0.84$ or 0.038 lb . of carbon are burnt to form CO.

The calorific value of carbon is as follows (see p. 384) :
When burnt to carbon dioxide 14,540 B.Th.U. per lb.

$$
" \quad " \text { monoxide 4,372 " } "
$$

or loss per pound on burning to carbon monoxide $=10,168$, and for the combustion in question the loss will be

$$
0.038 \times 10,168=386.3 \text { B.Th.U. per lb. }
$$

If the calorific value of the coal is $15,450 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. per lb ., the loss amounts to 2.5 per cent.

The density of the dry exhaust gas can readily be found from the Table, p. 391.

If the gases shown in the second column had been entirely hydrogen the figure corresponding to the Relative Weights in column 3 would have been $100 \times 2=200$.
The density of the gas relative to hydrogen is therefore $\frac{3000}{200}$, and as the density of hydrogen is 0.0056 lb . per cu. ft. at N.T.P. (i.e. the molecular weight in pounds occupies $359 \mathrm{cu} . \mathrm{fr}$.), the density of the dry gas will be $\frac{3000}{200} \times 0.0056=0.0840 \mathrm{lb}$. per cu. ft.

-THE EXAMINATION OF EXHAUST AND FLUE GAS ANALYSES. GASEOUS FUELS

The examination is most conveniently carried out on the lines indicated above, as the changes in volume due to combustion do not then enter the calculation.

Let the analysis of the exhaust gas be $\mathrm{CO}_{2}=6.77$ per cent., $\mathrm{O}_{2}=$ 8.81 per cent., $\mathrm{N}_{2}=84.42$ per cent., and the analysis of the fuel gas be as shown in column 2 of Table III, both analyses being by volume. First, it is necessary to find the weight of carbon per pound of gaseous fuel.

Table III

	Analysis by volume	Relative werghts	Relative weight of carbon	Relative weight of moisture
(1) CH_{4}	19.2	$16 \times 19 \cdot 2=307 \cdot 2$	12×19.2	$4 \times 19.2 \times 9$
(2) $\mathrm{C}_{2} \mathrm{H}_{4}$	$2 \cdot 2$	$28 \times 2 \cdot 2=61 \cdot 6$	24×2.2	$4 \times 2.2 \times 9$
(3) H_{2}	$39 \cdot 3$	$2 \times 39.3=78.6$		$2 \times 39.3 \times 9$
(4) CO	17.0	$28 \times 17 \cdot 0=476$	12×17.0	
(5) CO_{2}	$5 \cdot 2$	$44 \times 5.2=228.8$	$12 \times 5 \cdot 2$	
(6) O_{2}	1.2	$32 \times 1.2=38.4$		
(7) N_{2}	15.9	$28 \times 15 \cdot 9=445 \cdot 2$		
		Total . $1635 \cdot 8 \mathrm{lb}$.	549.6 lb .	$1477 \cdot 8 \mathrm{lb}$.

Column 3, showing the relative weights, is obtained by multiplying the relative volumes by the molecular weights, column 4 by multiplying the relative weights by the proportion of the weight of carbon to the total weight of the constituent (i.e. in the first line $\frac{12}{16}$ of the weight of CH_{4} is carbon or $12 \times 19.2 \mathrm{lb}$.$) . The fifth column is nine times the weight of$ the hydrogen (i.e. in the first line $\frac{4}{16}$ of 307.2×9).

From columns 3 and 4 the weight of carbon per pound of gas is

$$
\begin{equation*}
\frac{549 \cdot 6}{1635 \cdot 8}=0.3358 \mathrm{lb} . \tag{1}
\end{equation*}
$$

and from columns 5 and 3 the weight of vapour per pound of gas is

$$
\begin{equation*}
\frac{1477 \cdot 8}{1635 \cdot 8}=0.903 \mathrm{lb} \tag{2}
\end{equation*}
$$

The density of the supply gas will be

$$
\begin{equation*}
\frac{0.0056}{200} \times 1635.8=0.0458 \mathrm{lb} . \text { per cu. ft. } \tag{3}
\end{equation*}
$$

Statement (1) above gives the same information as is given by the gravimetric analysis of a solid fuel, and the argument now follows the previous lines.

From the exhaust gas analysis :

	Volumetric analysis	Relative weights
CO_{2}	6.77	$84 \times 677=298$ O_{2} $\mathrm{~N}_{2}$
	84.81	$32 \times 8.81=281.9$
		$28 \times 84.42=2361$

Hence in 2940.9 lb . of dry gas there are $\frac{12}{44} \times 298 \mathrm{lb}$. carbon, or the weight of carbon per pound of dry gas

$$
\begin{equation*}
=\frac{\frac{12}{44} \times 289}{2940.9}=0.02763 \mathrm{lb} . \tag{4}
\end{equation*}
$$

and weight of dry exhaust gas per pound of supply gas

$$
=\frac{0.3358}{0.02763}=12.15 \mathrm{lb} . \text { from (1) and (4) }
$$

Hence the total products of combustion per pound of supply gas

$$
=12 \cdot 15+0.903=13.05 \mathrm{lb} . \text { from (1) and (2) }
$$

Hence the air supplied per pound of gas

$$
\begin{equation*}
=13.05-1=12.05 \mathrm{lb} \tag{5}
\end{equation*}
$$

and the air supply per cubic foot of supply gas

$$
\begin{array}{r}
=12.05 \times 0.0458= \tag{6}\\
\text { (from (5) and (3)) }
\end{array}
$$

Or, as 1 lb . of air at N.T.P. occupies $12.36 \mathrm{cu} . \mathrm{ft}$., the volume of air per cubic foot of gas

$$
\begin{equation*}
=0.5520 \times 12.36=6.821 \mathrm{cu} . \mathrm{ft} . \tag{7}
\end{equation*}
$$

The Tkeoretical Supply of Air.
This can be obtained, by weight, as follows :
The oxygen required for 1635.8 lb .

$$
\begin{align*}
& =\frac{64}{16} \times 307 \cdot 2+\frac{96}{28} \times 61 \cdot 6+8\left\{78 \cdot 6-\frac{38 \cdot 41}{8}\right\}+\frac{16}{28} \times 476=2302 \mathrm{lb} \tag{8}\\
& \begin{array}{lll}
\text { (1) Table III } & \text { (2) } & \text { (3) \& (6) }
\end{array}
\end{align*}
$$

 1 lb . of supply gas therefore requires $\frac{2302}{1635.8}=1.408 \mathrm{lb}$. oxygen from (8),
and the air supply per pound of gas $=\frac{100}{23} \times 1.408=6.11 \mathrm{lb}$., or volume of air per cubic foot of gas

$$
=\frac{12.36 \times 6.11}{1 / 0.0458}=3.46 \mathrm{cu} . \mathrm{ft} . \text {, from (} 3 \text {) }
$$

The excess air supplied is therefore $\frac{6 \cdot 821-3.46}{3.46} \times 100=97$ per cent.
(The above analyses actually apply to a gas engine running fairly light, with a " Hit and Miss " Governor.)

The Theoretical Exhaust Gas Analysis for Complete Combustion.

1635.8 lb . of gas will give

$$
\begin{aligned}
& \frac{44}{16} \times 307 \cdot 2+\frac{88}{28} \times 61 \cdot 6+\frac{44}{28} \times 476+228 \cdot 8=2015 \cdot 8 \mathrm{lb} \cdot \mathrm{CO}_{2} \\
& \begin{array}{lll}
\text { (1) Table III } & \text { (2) } & \text { (4) }
\end{array}
\end{aligned}
$$

The nitrogen content will be that originally in the gas, i.e. $445 \cdot 2 \mathrm{lb}$. (7) plus the nitrogen in the air supply or $\frac{77}{23} \times 2302=8152 \cdot 2 \mathrm{lb}$.
(from equation (8))
The analysis of the dry sample will then be as follows:
$\left.\begin{array}{ccccc} & & \begin{array}{c}\text { Analysis } \\ \text { by welght. }\end{array} & \begin{array}{c}\text { Relative } \\ \text { volume. }\end{array} & \begin{array}{c}\text { Per cent. } \\ \text { volume. }\end{array} \\ \mathrm{CO}_{2} & \text { - } & \text {. } & 2015 \cdot 8 & \frac{2015 \cdot 8}{44}=45 \cdot 8\end{array}\right) 13 \cdot 59$.

These will be the maximum figures for nitrogen and carbon dioxide content in the exhaust gases obtained from the given fuel gas.

-APPROXIMATE METHOD OF FINDING WEIGHT OF AIR SUPPLIED PER POUND OF COAL

In many cases the gases leaving a boiler are used to heat the feed-water, in which case the heat lost by the gases will equal the heat gained by the water, if other losses can be neglected.

If
$\mathrm{W}_{\mathrm{F}}=$ weight of feed water passing per hour,
$\mathrm{W}_{\mathrm{G}}=$ the unknown weight of the flue gas per hour,
$\mathrm{T}_{\mathrm{F}_{1}}$ and $\mathrm{T}_{\mathrm{F}_{2}}=$ the initial and final temperatures of the feed,
and $\mathrm{T}_{\mathrm{G}_{1}}$ and $\mathrm{T}_{\mathrm{G}_{2}}=$ the initial and final temperatures of the gas,
and S is the specific heat of the flue gas (about 0.237 B.Th.U. per lb .),
Then $W_{F}\left(T_{F_{2}}-T_{F_{1}}\right)=W_{G} \times 0.237\left(T_{G_{1}}-T_{G_{2}}\right)$
or

$$
\mathrm{W}_{\mathbf{G}}=\frac{\mathrm{W}_{\mathrm{F}}\left(\mathrm{~T}_{\mathrm{F}_{2}}-\mathrm{T}_{\mathrm{F}_{1}}\right)}{0.237\left(\mathrm{~T}_{\mathrm{G}_{1}}-\mathrm{T}_{\mathrm{G}_{2}}\right)}
$$

If the consumption of coal per hour is W_{C}
Then the weight of air per hour = weight of flue gas per hour $-\left(\mathrm{W}_{\mathbf{C}}\right.$-ash $)$ or weight of air per pound of coal

$$
=\left[\frac{\frac{\mathrm{W}_{\mathrm{F}}\left(\mathrm{~T}_{\mathrm{F}_{2}}-\mathrm{T}_{\mathrm{F}_{1}}\right)}{0 \cdot 237\left(\mathrm{~T}_{\mathrm{G}_{1}}-\mathrm{T}_{\mathrm{G}_{2}}\right)}-\mathrm{W}_{\mathrm{C}}+\mathrm{ash}}{\mathrm{~W}_{\mathbf{C}}}\right] \mathrm{lb} .
$$

PRODUCER GAS

For some purposes the direct combustion of a solid fuel is undesirable and the production from it of a combustible gas may be advisable, even if at the cost of a certain initial loss. Such a gas may be distributed conveniently from a central station for use in a number of places where its combustion is simply controlled, or it may be found that a greater overall efficiency is obtainable from an internal combustion engine and gas producer than from a coal-fired boiler and steam engine.
In its simplest form the process consists of the production of carbon monoxide from coal or other carbonatious fuel by combustion with a very limited air supply, according to the formula

$$
\begin{equation*}
2 \mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO} \tag{1}
\end{equation*}
$$

In this process $4372 \mathrm{~B} . \mathrm{Th}$. U . are liberated per pound of carbon whereas $14,540 \mathrm{~B}$. Th.U. are liberated during complete combustion. The calorific value of the gas per pound of carbon will thus be $14,540-4372$ or 10,168 B.Th. U., giving a possible efficiency of $\frac{10,168}{14,540}$, or 70 per cent., the remaining 30 per cent. being discharged as heat in the gas. As the resulting gas will be a mixture of carbon monoxide and the nitrogen of
the air used during the reaction, the calorific value will be low, and of the order of $110-125$ B.Th.U. per standard cubic foot.

The temperature for the reaction is high-about 2500° F.-and is liable to give trouble owing to the formation of clinker. In order to reduce the tendency to clinker, to reduce the heat losses and to increase the efficiency by the utilisation of some of the otherwise waste heat, steam may be generated and injected along with the air. In this case two reactions are possible, as follows :

If the temperature exceeds about $1830^{\circ} \mathrm{F}$.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{O}+\mathrm{C}=\mathrm{H}_{2}+\mathrm{CO} . \tag{2}
\end{equation*}
$$

and if the temperature is less than about $1100^{\circ} \mathrm{F}$.

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O}+\mathrm{C}=2 \mathrm{H}_{2}+\mathrm{CO}_{2} \tag{3}
\end{equation*}
$$

Both reactions absorb heat, thus lowering the temperature, and the gas is enriched both by the presence of hydrogen and the reduction in the amount of total nitrogen. The absorption of heat in the reactions amounts to 4300 and 2820 B.Th.U. per lb. of carbon respectively.

For a given weight of carbon the first of these reactions (i.e. equation (2)) shows the production of one volume of hydrogen and one volume of carbon monoxide having calorific values of 345 and 342 B.Th.U. per cu. ft., or a mean of 343.5 B .Th.U. per cu. ft. ; and for the same weight of carbon the second reaction (equation (3)) shows two volumes of hydrogen and one of carbon dioxide, the mixture having a calorific value of $\frac{2 \times 345}{3}=229$ B.Th. U . per $\mathrm{cu} . \mathrm{ft}$. It is obvious therefore that the first reaction is preferable to the second, both on the grounds of the reduction of heat wastage and the quality of the gas produced.

Case I. Dry Air only admitted.-Two reactions are involved in this process, the formulæ being
and

$$
\begin{aligned}
\mathrm{C}+\mathrm{O}_{2} & =\mathrm{CO}_{2} \\
\mathrm{CO}_{2}+\mathrm{C} & =2 \mathrm{CO}
\end{aligned}
$$

The first reaction takes place at the grate-level of the producer, the resulting carbon dioxide being subsequently reduced according to the second equation in its passage through the fuel bed, provided the temperature is maintained above about $1560^{\circ} \mathrm{F}$. Above $2200^{\circ} \mathrm{F}$. the reduction is virtually complete, while below $900^{\circ} \mathrm{F}$. the reaction is reversed.

The complete reaction is expressed by

$$
\begin{equation*}
2 \mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO} \tag{4}
\end{equation*}
$$

As already indicated, the calorific value of the gas amounts to 70 per cent. of the heat value of the carbon, the remaining 30 per cent. being lost by

The volume of gas produced per pound of carbon is obtained as follows:

From equation (4), 24 lb . carbon require 359 cu . ft. oxygen to form $2 \times 359 \mathrm{cu}$. ft. CO.

The final gas mixture will therefore consist of $2 \times 359=718 \mathrm{cu} . \mathrm{ft}$. CO
and

$$
\begin{aligned}
& \frac{79}{21} \times 359= \\
& \text { Total } \quad \overline{2350} \mathrm{cu} . \mathrm{ft.} \mathrm{~N}_{2} \\
& 2068 \mathrm{cu} . \mathrm{ft} .
\end{aligned}
$$

or

$$
\frac{2068}{24}=86 \cdot 1 \mathrm{cu} . \mathrm{ft} . \text { per lb. of carbon }
$$

The analysis will be CO, $34 \cdot 7$ per cent.

$$
N_{2}, 65 \cdot 3 \quad \text {, }
$$

and the calorific value per S.C.F. will be $\frac{34.7}{100} \times 342=118.7$ B.Th.U.
Case II.-If the reaction is such that the reactions given by equations (1) and (3) occur together, i.e. at temperatures below about $1100^{\circ} \mathrm{F}$.,

Then considering first the reaction

$$
\mathrm{C}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{CO}_{2}+2 \mathrm{H}_{2}
$$

the heat liberated by the complete combustion of 12 lb . carbon is

$$
12 \times 14,540=174,500 \text { B.Th.U. }
$$

and the heat required to evaporate 36 lb . of water

$$
=36 \times 1120^{1}=40,320 \mathrm{~B} . \mathrm{Th} . \mathrm{U} .
$$

So that the net heat liberated per 12 lb . of carbon consumed

$$
=174,500-40,320=134,200 \text { B.Th.U. }
$$

Also the heat in 4 lb . hydrogen

$$
\begin{aligned}
& =4 \times 61,520=246,000 \text { B.Th.U. (higher calorific value) } \\
& =4 \times 51,800=207,200 \text { B.Th.U. (lower calorific value) }
\end{aligned}
$$

It is therefore obvious that as the heating value of the gas is 207,200 B.Th.U. and the available heat is only 134,180 B.Th.U., a total of $207,200-134,200=73,000$ B.Th.U., or $\frac{73,000}{12}=6180$ B.Th.U. per lb. of carbon must be supplied in order to maintain the reaction.

[^32]Considering now the reaction

$$
2 \mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO}
$$

1 lb . of carbon burning to carbon monoxide produces 4372 B.Th.U.
Thus each pound of carbon taking part in this reaction will allow $\frac{4372}{6180}=0.706 \mathrm{lb}$. carbon to take part in the former ;
i.e. for each 2 lb . of carbon acting according to equation

$$
2 \mathrm{C}+\mathrm{C}_{2}=2 \mathrm{CO}
$$

1.412 lb . of carbon can take part in equation

$$
\mathrm{C}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{CO}_{2}+2 \mathrm{H}_{2}
$$

The relevant factors are set out in Table I on p. 400. It will be noted that in the last line and column the lower calorific value of hydrogen is taken. Were the higher value chosen it would indicate that the total heat produced by the final combustion of the gas could be retained and utilised in the producer itself, i.e. the steam from combustion could be utilised to replace the water shown in the second column. In practice this is never done. The discrepancy in the final heat values shown is due to uncertainty with regard to calorific values, but amounts in this case to only about $\frac{1}{10}$ per cent.
The efficiency of the process $=\frac{538,500}{594,600}=90 \cdot 5$ per cent.
The composition of the gas by volume is $\mathrm{CO}_{2}=506 \cdot 8 \mathrm{cu} . \mathrm{ft}$.or $14 \cdot 1$ per cent.

$\mathrm{CO}=718$	$"$	$20 \cdot 0$	$"$
$\mathrm{H}_{2}=1014$	$"$	$28 \cdot 2$	$"$
$\mathrm{~N}_{2}=1348$	$"$	$37 \cdot 6$	$"$

Total 3587
The calorific value of the gas

$$
=\frac{538,500}{2066+506 \cdot 8+1 \mathrm{G} 1^{4}}=\frac{538,500}{3580 \cdot 8}=150 \cdot 4 \text { B.Th.U. per S.C.F. }
$$

The weight of air required per pound of carbon $=\frac{139}{40.94}=3.395 \mathrm{lb}$.
The weight of woater per pound of carbon $\quad=\frac{50.83}{40.94}=1.242 \mathrm{lb}$.
and The volume of gas per pound of carbon $\quad=\frac{3580.8}{40.94}=87 \cdot 1$ S.C.F.
'ABLE 1

	Carbon	Water	Oxygen and Nitrogen	Carbon Monoxide and Nitrogen	Carbon Dioxide	Hydrogen
Equation 2 $2 \mathrm{lb} . \mathrm{C}$ Equation 3 1.412 lb . C	$\begin{gathered} 2 \mathrm{C} \\ 1.412 \mathrm{C} \end{gathered}$	+2.824 $\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} \text { and } \stackrel{+\mathrm{O}_{2}}{\text { Nitrogen }} & = \\ & = \end{aligned}$	$\begin{gathered} 2 \mathrm{CO} \\ \text { and Nitrogen } \end{gathered}$	$1 \cdot 412\left(\mathrm{CO}_{2}\right)$	+2.824 (H_{2})
Weights in lb .	$\begin{gathered} 24+ \\ 1.412 \times 12 \end{gathered}$ $40.94 \text { (C) }$	$\begin{gathered} 2.82 \overline{4} \times 18 \\ =\underset{\sim}{\left(\mathrm{H}_{2} \mathrm{O}\right)} \end{gathered}$	$\begin{gathered} 32 \mathrm{O}_{2}+ \\ 77 \\ 33 \times 32 \text { or } \\ 107\left(\mathrm{~N}_{2}\right) \\ = \\ 139 \text { (mixture) } \end{gathered}$	$\begin{gathered} 56(\mathrm{CO}) \\ +107\left(\mathrm{~N}_{2}\right) \\ = \\ 163 \text { (mixture) } \end{gathered}$	1.412×44 $62 \cdot 1 \overline{3}\left(\mathrm{CO}_{2}\right)$	$\begin{gathered} 2.824 \times 2 \\ = \\ 5.65\left(\mathrm{H}_{2}\right) \end{gathered}$
Volumes in cub. ft.	-	-	$\begin{gathered} 359\left(\mathrm{O}_{2}\right)+ \\ \frac{79}{21} \times 359 \text { or } \\ 1348\left(\mathrm{~N}_{2}\right) \\ \underline{1709 \text { (mixture) })}= \end{gathered}$	$\begin{gathered} 2 \times 359(\mathrm{CO})+ \\ 1348\left(\mathrm{~N}_{2}\right) \\ = \\ \underline{2066(\text { mixture })} \end{gathered}$	$\begin{gathered} 1.412 \times 359 \\ = \\ 506.8\left(\mathrm{CO}_{2}\right) \end{gathered}$	$\begin{gathered} 2 \times 824 \times 359 \\ = \\ 1014\left(\mathrm{H}_{2}\right) \end{gathered}$
Heat, B.Th.U.	$\begin{gathered} 40 \cdot 94 \times 14,540 \\ = \\ 594,600 \end{gathered}$	$\begin{gathered} -50 \cdot 83 \times 1120 \\ = \\ -56,920 \end{gathered}$	-	$\begin{gathered} 56 \times 4391 \\ = \\ 245,800 \end{gathered}$	-	$\begin{gathered} 5 \cdot 65 \times 51,800 \\ =, \\ 292,700 \end{gathered}$

Combustion
401
'ABLE

	Carbon	Water	Oxygen and Nitrogen	Carbon Monoxide and Nitrogen	Hydrogen
Equation 1 $2 \mathrm{lb} . \mathrm{C}$ Equation 2 1.453 lb . C	$\begin{gathered} 2 \mathrm{C} \\ 1.453 \mathrm{C} \end{gathered}$	$1.453 \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} \mathrm{O}_{2} \\ \text { (+Nitrogen) } \end{gathered}$	$\begin{gathered} =2 \mathrm{CO} \\ (+ \text { Nitrogen }) \\ 1.453 \mathrm{CO} \end{gathered}$	1.453 Hz
Weights, lb.	$\begin{gathered} 12 \times 3.453 \\ = \\ 41 \cdot 45(\mathrm{C}) \end{gathered}$	$\begin{gathered} 18 \times 1 \cdot 453 \\ = \\ 26 \cdot 14\left(\mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$	$\begin{gathered} 32\left(\mathrm{O}_{2}\right)+ \\ 107\left(\mathrm{~N}_{2}\right)= \\ 139(\text { mixture }) \end{gathered}$	$\begin{gathered} 107\left(\mathrm{~N}_{2}\right)+ \\ 3.453 \times 28=96 \cdot 7(\mathrm{CO}) \\ \text { or } 203 \cdot 7 \text { (mixture) } \end{gathered}$	$\begin{gathered} 1 \cdot 453 \times 2 \\ = \\ 2.906\left(\mathrm{H}_{2}\right) \end{gathered}$
Volume, cub. ft.	-	-	$\begin{gathered} 359\left(\mathrm{O}_{2}\right)+ \\ 1350\left(\mathrm{~N}_{2}\right) \\ 1709 \text { (mixture) } \end{gathered}$	$\begin{gathered} 3.453 \times 359= \\ 1239(\mathrm{CO})+ \\ 1350\left(\mathrm{~N}_{2}\right) \\ 2589(\text { mixture }) \end{gathered}$	$\begin{gathered} 1.453 \times 359 \\ = \\ 521.8\left(\mathrm{H}_{2}\right) \end{gathered}$
Heat, B.Th.U.	$\begin{gathered} 41 \cdot 45 \times 14,540 \\ = \\ 602,500 \end{gathered}$	$\begin{gathered} -26 \cdot 14 \times 1120 \\ = \\ -29,280 \end{gathered}$		$\begin{gathered} 96.7 \times 4391 \\ = \\ 424,700 \end{gathered}$	$\begin{gathered} 2 \cdot 906 \times 51,800 \\ = \\ 150,600 \end{gathered}$

Case III.-If the temperature is above about $1100^{\circ} \mathrm{F}$. the reactions follow equations (1) and (2), i.e.

$$
\begin{equation*}
2 \mathrm{C}+\mathrm{O}_{2}=2 \mathrm{CO} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{C}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}+\mathrm{H}_{2} . \tag{2}
\end{equation*}
$$

Proceeding as before, from equation (2) we have

$$
\begin{aligned}
12 \mathrm{lb} . \mathrm{C}+18 \mathrm{lb} . \mathrm{H}_{2} \mathrm{O} & =28 \mathrm{lb} . \mathrm{CO}+2 \mathrm{lb} . \mathrm{H}_{2} \\
& =359 \mathrm{cu} . \mathrm{ft} . \mathrm{CO}+359 \mathrm{cu} . \mathrm{ft} . \mathrm{H}_{2}
\end{aligned}
$$

The heat liberated by the carbon is $12 \times 14,540=174,500$ B.Th.U. and the heat absorbed by evaporation $=18 \times 1120=20,160$ or the total heat liberated is

$$
=154,300 \quad \text { " }
$$

Meanwhile the calorific value of the gas is

$$
28 \times 4391+2 \times 51,800=226,500 \text { B.Th.U. }
$$

or the heat to be supplied to maintain the reaction

$$
=\frac{226,500-154,300}{12}=6020 \mathrm{lb} . \text { per } \mathrm{lb} . \text { carbon. }
$$

But 1 lb . of carbon burning according to equation (1) produces 4372 B.Th.U. or for each 2 lb . of carbon burning in this way sufficient heat is produced to allow $\frac{2 \times 4372}{6020}=1.453 \mathrm{lb}$. to react according to equation (2).

The relative factors are set out in Table II, p. 401. The efficiency $=\frac{575,300}{602,500}=95 \cdot 4$ per cent.

The composition of the gas is $\mathrm{CO}=1239 \mathrm{cu}$. ft. or 39.9 per cent. by volume $\mathrm{H}_{2}=521.8$, $\quad 16.8$
$\mathrm{N}_{2}=1350 \quad$ " $43 \cdot 4 \quad " \quad$ "

Total 3110
"
The calorific value $=\frac{575,300}{3110}=185 \cdot 0$ B.Th.. per S.C.F .
The weight of air per pound of carbon $=\frac{139}{41.45}=3.35 \mathrm{lb}$.
The weight of water per pound of carbon $=\frac{26 \cdot 14}{41 \cdot 45}=0.631 \mathrm{lb}$.
The volume of gas per pound of coal $\quad=\frac{3110}{41 \cdot 45}=75 \cdot 0$ S.C.F.
This shows the highest efficiency of the three cases considered.

"CALCULATION OF THE MEAN SPECIFIC HEAT OF THE FLUE GASES LEAVING A BOILER

The calculation requires the analysis of the fuel as well as of the flue gases, as the latter is of the dry gases only, whereas the gases leaving the boiler contain steam. The method will be best illustrated by means of a numerical example. Taking the following analyses :

Analysis of Fuel by Weight

C	8730	per cent.		
H	0.78
Ash		
Other matters	8.27	$"$		

Analysis of Dry Flue Gases by Volume

The first step in the calculation is to convert the analysis of the dry flue gases by volume (the gases are always analysed by volume) into the analysis by weight. By multiplying each of the volume proportions by the corresponding molecular weight, adding the products so obtained, and then dividing each separate product by the sum of all the products, the proportion by weight of each gas present may be obtained.

Therefore in 1 lb . of dry flue gases there are

$$
\begin{aligned}
0.145 & \times \frac{12}{44}+0.0005 \times \frac{12}{28} \mathrm{lb} . \text { of carbon } \\
& =0.0395+0.0002 \mathrm{lb} . \text { of carbon } \\
& =0.0397 \mathrm{lb} . \text { of carbon }
\end{aligned}
$$

Hence the weight of dry flue gases per pound of dry fuel will be

$$
\frac{0.873}{0.039}=22.0 \mathrm{lb} .
$$

But the 0.0078 lb . of hydrogen in the fuel produces $0.0078 \times 9=$ 0.070 lb . of steam, hence the actual weight of each constituent in the flue gases is as shown in column 3 below.

Constituent	Weight in pounds per pound of dry fuel burned	Weight in pounds of each constituent in 1 lb of flue gases
CO_{2}	$22.0 \times 0.145=3.190$	$\frac{3.190}{22.07}=0.1445$ CO
O_{2}	$22.0 \times 0.0005=0.011$	$\frac{0.011}{22.07}=0.0005$
$\mathrm{~N}_{2}$	$22.0 \times 0.1055=2.321$	$\frac{2.321}{22.07}=0.1052$
$\mathrm{H}_{2} \mathrm{O}$	$22.0 \times 0.749=16.478$	$\frac{16.478}{22.07}=0.7467$
	$\boxed{0.070}$	$\overline{22.07}=0.0031$

The specific heats at constant pressure of the above gases may be taken as :

$$
\begin{aligned}
& \mathrm{CO}_{2}=0.216 \\
& \mathrm{CO}=0.245 \\
& \mathrm{O}_{2}=0.218 \\
& \mathrm{~N}_{2}=0.244 \\
& \mathrm{H}_{2} \mathrm{O}=0.480
\end{aligned}
$$

Hence the mean specific heat of the flue gases is : $(0.1445 \times 0.216)+(0.0005 \times 0.245)+(0.1052 \times 0.218)$

$$
+(0.7467 \times 0.244)+(0.0031 \times 0.48)=0.238
$$

*BOILER DRAUGHT

It is necessary to maintain a difference of pressure above and below the firegrate in order to supply the quantity of air required for combustion. This difference of pressure is known as the draught, and may be produced either by means of
(a) A chimney (natural draught);
(b) Steam jets (induced or forced draught);
(c) Fans, which may either draw the gases from the flues (induced draught) or blow air under pressure into the ash-pit, or a closed boilerroom from which the air supply is drawn (forced draught).

The theoretical velocity of the gases produced by a draught or difference of pressure above and below the firegrate is given by the equation
where l is the height in feet of a column of air which could be supported by the given pressure difference.
Let h be the draught in inches of water.
Then, since a head of 1 in . of water is equivalent to a pressure of 5.198 lb . per sq. ft., and 1 cu . ft. of air at N.T.P. weighs 0.0807 lb .

$$
\begin{align*}
l & =\frac{5 \cdot 198 h}{0.0807} \\
\text { and } v^{2} & =2 \times 32.2 \times \frac{5 \cdot 198 h}{0.0807} \\
v^{2} & =4148 h \\
v & =\sqrt{4148 h} \text { ft. per second } \tag{1}
\end{align*}
$$

The actual velocity of the gases will be less than that given by (1) because of the frictional resistance offered to their passage along the flues.

-HEIGHT OF CHIMNEY REQUIRED TO PRODUCE A GIVEN DRAUGHT

Let $h=$ required draught in inches of water,
$\mathrm{H}=$ height of chimney above the firegrate in feet,
$\mathrm{T}_{1}=$ absolute temperature inside the chimney (assumed constant),
$\mathrm{T}_{2}=$ absolute temperature outside the chimney (assumed constant),
$n=$ number of pounds of air supplied per pound of fuel burned,
$\mathrm{A}=$ cross-sectional area of chimney in square feet,
then the difference between the weight of a column of external air equivalent in volume to the interior of the chimney, and the weight of the same volume of the gases which are in the chimney, is equal to the draught pressure, i.e.
Weight of $\mathrm{A} \times \mathrm{H} \mathbf{c u} . \mathrm{ft}$. of external air-weight of $\mathrm{A} \times \mathrm{H} \mathbf{c u} . \mathrm{ft}$. of gases in chimney $=5.198 \mathrm{~h} \times \mathrm{A}$

$$
\begin{align*}
&\left(\frac{\mathrm{A} \times \mathrm{H} \times 0.0807 \times 492}{\mathrm{~T}_{2}}\right)-\left(\mathrm{A} \times \mathrm{H} \times \frac{n+1}{n} \times \frac{0.0807 \times 492}{\mathrm{~T}_{1}}\right)=5.198 h \times \mathrm{A} \\
& \mathrm{H} \times 0.0807 \times 492\left(\frac{1}{\mathrm{~T}_{2}}-\frac{n+1}{n} \cdot \frac{1}{\mathrm{~T}_{1}}\right)=5.198 h \\
& \mathrm{H}=\frac{5.198 h}{0.0807 \times 492} \times \frac{n \mathrm{~T}_{1} \mathrm{~T}_{2}}{n \mathrm{~T}_{1}-(n+1) \mathrm{T}_{2}} \\
& \mathrm{H}=0.13 h \times \frac{n \mathrm{~T}_{1}}{n \mathrm{~T}_{1}-(n+1) \mathrm{T}_{2}} \quad . \tag{2}
\end{align*}
$$

In the above theory the variation in the density due to the slightly reduced pressure inside the chimney is neglected. If in addition we
neglect the increased density due to the products of combustion, and assume the contents of the chimney to consist of air at atmospheric pressure
and

$$
\begin{align*}
& \mathrm{H}=0.13 h \times \frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \quad . \quad . \quad . \quad . \tag{3}\\
& h=\frac{\mathrm{H}}{0.13}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) \quad . \quad . \quad . \quad . \quad . \tag{4}
\end{align*}
$$

In actual practice the effect of the frictional resistance offered to the passage of the air through the firebars, fire, flues, and chimney is to reduce the draught h below the value obtained from equation (4); also, the temperature of the gases inside the chimney is diminishing for every foot of its height. In other words, the height of chimney required to produce a given draught is greater than that given by equation (3).

EXAMPLES ON CHAPTER XVII

1. The analysis by weight of a certain coal is C 80 per cent., $\mathrm{H}_{2} 5$ per cent., S 0.5 per cent. : estimate the theoretical quantity of air required for the complete combustion of 1 lb . of the coal. If 20 lb . of air are supplied per pound of coal and the combustion is complete, estimate the analysis of the flue gases by weight.
2. A producer gas has the following analysis by volume : $\mathrm{H}_{2} 18.73$ per cent., CO 25.07 per cent., $\mathrm{CO}_{2} 5 \cdot 2$ per cent., $\mathrm{N}_{2} 51$ per cent. Estimate the minimum quantity of air required for the complete combustion of $1 \mathrm{cu} . \mathrm{ft}$. of the gas, the percentage contraction in volume after combustion, and the composition of the products of combustion.
3. The analysis (by weight) of the fuel used in a boiler trial was $\mathbf{C} 88$ per cent., $\mathrm{H}_{2} 3.6$ per cent., $\mathrm{O}_{2} 4.8$ per cent., ash 3.6 per cent., and the volumetric analysis of the dry flue gases was $\mathrm{CO}_{2} 10.9$ per cent., CO 1.0 per cent., $\mathrm{O}_{2} 7.1$ per cent., $\mathbf{N}_{\mathbf{2}} 81$ per cent. Estimate the mean specific heat of the flue gases, and the quantity of heat carried away by the flue gases per pound of fuel burned if the temperature of the gases is $550^{\circ} \mathrm{F}$., and of the air in boiler house $50^{\circ} \mathrm{F}$.
4. The flue gas analysis by volume in a boiler trial was $\mathrm{CO}_{2} 10.5$ per cent., CO 1 per cent., $\mathrm{O}_{2} 8$ per cent., $\mathrm{N}_{2} 80.5$ per cent., and the coal analysis as burned was C 82 per cent., $\mathrm{H}_{2} 4 \cdot 2$ per cent., $\mathrm{O}_{2} 4.8$ per cent., other matters 9 per cent. Calculate the following items in the heat bulance per pound of coal, the temperature of the flue gases being $600^{\circ} \mathrm{F}$. and the temperature of the air supply $60^{\circ} \mathrm{F}$.:
(a) Heat carried away by products of combustion, average specific heat 0.24 .
(b) Heat carried away by excess air, average specific heat 0.238 .
(c) Heat lost by incomplete combustion.
5. In a boiler trial the fuel analysis, dry coal as burned, was C 85 per cent., $-\mathrm{H}_{2} 4$ per cent., $\mathrm{O}_{2} 7$ per cent., ash, etc., 4 per cent., and the flue gas analysis by weight was $\mathrm{CO}_{2} 11$ per cent., CO 1.5 per cent., $\mathrm{O}_{2} 7 \cdot 1$ per cent., $\mathrm{N}_{2} 80.4$ per cent. The temperature of the flue gases leaving the boiler was $600^{\circ} \mathrm{F}$., and the boiler house temperature was $70^{\circ} \mathrm{F}$. Estimate per pound of coal-
(a) The proportion of carbon burned to CO and the heat lost through this imperfect combustion, expressing the latter as a percentage of the available heat in the fuel.
(b) The heat carried away in the flue gases per pound of conl burned, the mean specific heat of the flue gasees being taken as 0.24 .
6. In a boiler trial the fuel analysis of the dry coal as burned wat $\mathrm{C}=83$ par cent., $\mathrm{H}_{2}=4$ per cent., $\mathrm{O}_{2}=8$ per cent., ash, etc. $=5$ per cent.; the volumetric analyuin of the flue gases was $\mathrm{CO}_{2}=10$ per cent., $\mathrm{CO}=1 \cdot 7$ per dent., $\mathrm{O}_{2}=8 \cdot 1$ per
cent., $N_{2}=80.2$ per cent. The temperature of the flue gases was $600^{\circ} \mathrm{F}$. and of the boiler house $80^{\circ} \mathrm{F}$. Find-
(1) The proportion of C burned to CO, and the heat lost through imperfect combustion, expressing the latter as a percentage of the heat in the fuel.
(2) The heat carried away in the flue gases per pound of fuel burned, the average specific heat being taken as 0.24 .
7. In a trial of a boiler fitted with an economiser the following volumetric analyses of the gases entering and leaving the economiser were made:

	Leaving	Entering
CO_{2}	7.9 per ceat.	8.3 per cent.
CO	nil "	nil ",
$\mathrm{O}_{2} \cdot . \quad$.	11.5 ",	11.4 "
$\mathrm{N}_{2} \cdot$ - . -	80.6 ",	80.3 ",

The temperatures of the flue gases on entering and leaving the economiser were $350^{\circ} \mathrm{C}$. and $180^{\circ} \mathrm{C}$. respectively. Temperatures of water on entering and leaving economiser were $15^{\circ} \mathrm{C}$. and $115^{\circ} \mathrm{C}$. Weight of feed water per hour $10,000 \mathrm{lb}$., weight of coal used per hour 1060 lb . Carbon in 1 lb . of coal 0.8 lb . Assuming the average specific heat of the gases to be $0 \cdot 25$, estimate per pound of coal burned--
(a) The air leakage into the economiser.
(b) The heat lost by the gases in passing through the economiser.
(c) The heat gained by the feed water.
8. Estimate the minimum height of chimney required to produce a draft of $\frac{\mathrm{t}}{} \mathrm{in}$. of water if 24 lb . of air are supplied per pound of fuel burned, the mean temperature of the gases inside the chimney being $600^{\circ} \mathrm{F}$. and the temperature of the external air $80^{\circ} \mathrm{F}$.
9. A sample of coal gas has the following analysis by volume. $\mathrm{H}_{2} 46$ per cent., marsh gas $\mathrm{CH}_{4} 39.5$ per cent., olefiant gas $\mathrm{C}_{2} \mathrm{H}_{4} 2.53$ per cent., tetrylene $\mathrm{C}_{4} \mathrm{H}_{8}$ 1.27 per cent., CO 7.5 per cent., $\mathrm{N}_{2} 0.5$ per cent., water vapour $\mathrm{H}_{2} \mathrm{O} 2$ per cent. Calculate
(a) The volume of air required for the complete combustion of $1 \mathrm{cu} . \mathrm{ft}$. of the gas.
(b) The higher calorific value in B.Th.U. per cubic foot.
(c) The lower calorific value in B.Th.U. per cubic foot.

Assume the calorific values of the above constituents the same as given in the table on p. 384. $\quad\left(\mathrm{C}_{4} \mathrm{H}_{8}\right.$ Higher Value $=3060$.)
10. The gas used in a gas engine trial was tested in a Junker calorimeter and the following results were obtained :

Gas burned in calorimeter $2 \cdot 13 \mathrm{cu} . \mathrm{ft}$.
Pressure of gas supplied $2 \cdot 1 \mathrm{in}$. of water
Barometer
29.92 in . of mercury

Temperature of gas $53^{\circ} \mathrm{F}$ (11.7 C .)
Weight of water heated by gas 50.3 lb .
Temperature of water at inlet $47.6^{\circ} \mathrm{F} .\left(8.7^{\circ} \mathrm{C}\right.$.)
Temperature of water at outlet $72 \cdot 4^{\circ} \mathrm{F}$. ($22 \cdot 4^{\circ} \mathrm{C}$.)
Steam condensed during test 0.116 lb .
Determine the higher and lower calorific values per cubic foot at $60^{\circ} \mathrm{F}$. and 30° of mercury pressure (sp. gt. mercury 13.6).
11. A sample of oil contains 86 per cent. by weight of carbon and 14 per cent. of hydrogen. Estimate the minimum quantity of air required for the complete combustion of 1 lb .
12. The analysis of a sample of \qquad steam coal by weight is C 87.8 per cent., $\mathrm{H}_{2} 4.10$ per cent., the remainder being ash. etc. If 18 lb . of uir are supplied per pound of coal and the combustion is complete, eatimate the, composition of the products by weight.
13. The volumetric analysis of a sample of coal gas is as follows: $\mathrm{CH}_{4}=39 \cdot 5$ per cent., $\mathrm{CO}=7.5$ per cent., $\mathrm{N}_{2}=5$ per cent., water vapour 2 per cent. When gas of this quality was used in a gas engine the exhaust gas analysis gave 10 per cent. by volume of O_{2}. Estimate the quantity of air used per cubic foot of gas , and the contraction in volume after combustion.
14. The analysis of a certain oil fuel used in a boiler trial was $C 86$ per cent., $\mathrm{H}_{2} 14$ per cent., and the volumetric analysis of the flue gases was $\mathrm{CO}_{2}=9.4$ per cent., $\mathrm{CO}=1$ per cent., $\mathrm{O}_{2}=10 \cdot 1$ per cent., $\mathrm{N}_{2}=79 \cdot 5$ per cent. Estimate, per pound of fuel burnt, the heat carried away by the products of combustion, and by the excess air, the temperature of the flue gases being $600^{\circ} \mathrm{F}$., and of the air supply $60^{\circ} \mathrm{F}$.
15. In a trial of a Lancashire boiler with economiser the following results were obtained :

Volumetric analyses of the flue gases on entering and leaving the economiser-

	Entering	Leaving
CO_{2}	8.3 per cent.	6.2 per cent.
CO	$0 \cdot 4$ "	$0 \cdot 3$ "
O	$11 \cdot 2$ $80 \cdot 1$	13.7 ",
N	$80 \cdot 1$ "	79.8 "
Total .	$100 \cdot 0$	$100 \cdot 0$

Temperatures of the flue gases on entering and leaving the economiser, $642^{\circ} \mathrm{F}$ and $335^{\circ} \mathrm{F}$.

Temperatures of feed water on entering and leaving the economiser, $134^{\circ} \mathrm{F}$. and $234^{\circ} \mathrm{F}$.

Weight of feed water per hour, 7370 lb .
Weight of coal stoked per hour, 1000 lb .
Per pound of dry fuel stoked the carbon burned was 0.735 lb ., and the weight of the flue gases, including moisture, entering the economiser was found to be 21.5 lb .

The average specific heat of the gases may be taken as $\mathbf{0 . 2 5}$.
Calculate, per pound of fuel stoked-
(a) The air leakage into the economiser.
(b) The heat lost by the gases in passing through the economiser.
(c) The heat gained by the feed water.
16. The flue gases from a boiler pass around the tubes of an economiser. The temperature of the gases entering the economiser is $315^{\circ} \mathrm{C}$., and on leaving it $149^{\circ} \mathrm{C}$. The amount of feed water passing through the tubes is 90 lb . per minute ; the temperature of the water entering the economiser is $38^{\circ} \mathrm{C}$., and on leaving $115^{\circ} \mathrm{C}$.

If the boiler evaporates 10 lb . of water per pound of coal, find approximately the weight of air supplied per pound of coal burned. Assume that the specific heat of the gases is 0.25 .
17. A sample of oil used in an oil engine trial was tested in a Mahier-Cook bomb calorimeter and the following results were obtained :
Weight of oil taken $=1.090$ grams.
Total weight of water, including water equivalent of calorimeter, 2800 grama.
Corrected rise of temperature of the water $=4 \cdot 26^{\circ} \mathrm{C}$.
Determine the higher calorific value of the oil.
18. The volumetric analysis of a producer gas supplied to an engine is CO_{2} 7.66 per cent., CO 20.27 per cent., $\mathrm{H}_{2} 20.19$ per cent., $\mathrm{CH}_{4} 2.778$ per cent., N_{2} $47 \cdot 1$ per cent. The exhaust gases contained 10 per cent. of oxygen by volume. Estimate the quantity of air actually supplied per cubic foot of gas and the contraction in volume in the engine cylinder due to combuation.

Chapter XVIII

THE TESTING OF HEAT ENGINES AND PLANT

*GENERAL STATEMENT

The tests carried out on heat engines, etc., can be classified as either Industrial or Scientific.

Industrial Tests.-Under this heading come most of the tests carried out by manufacturers during the development of plant, the tests on the plant before delivery, and those carried out by the purchaser after its installation. In the latter cases it is usual to make only such measurements as are required for the determination of the efficiency, output, and performance, including such items as consumption of lubricating oil. The method of measurement should be as direct as possible, the apparatus simple and robust, and the whole test should be such that it can be carried out in a reasonable time by a competent engineer with a minimum of highly trained assistance.

Heat and other losses are usually only measured when these serve as a check on the principal items required.

Scientific Tests.-These tests may include the whole plant, or be confined to specific portions only, and are required for the elucidation of certain problems, the accumulation of information of value to designers and others, and for the checking of theories.

The information required is almost invariably of a much higher order of accuracy than that provided by the industrial test ; time and cost are of secondary importance, and the apparatus required may become, of necessity, extremely elaborate, and may require great manipulative and technical skill on the part of the operator and his assistants. In such tests the measurement and analysis of losses may become matters of primary concern.

In all cases it is of the utmost importance that the engineer in charge should have a sound knowledge of the problems and difficulties to be faced, and of the qualities and accuracies of his apparatus, and the recalibration of all measuring instruments should receive special attention.

-REPORT ON TABULATING THE RESULTS OF HEAT ENGINE TRIALS

In 1927, a Committee of the Institution of Civil Engineers presented a Report (Wm. Clowes \& Sons, 5s.) on the Tabulation of the Resulta
of Heat Engine Trials. In this Report detailed recommendations are made concerning the carrying out and recording of tests, the procedure suggested leading, in many cases, towards simplicity and clarity. In particular, it is recommended that the heat interchanges should be stated as input and output quantities instead of, as formerly, as the difference of two values stated with reference to a given datum, and that the higher calorific value alone should be used.
For scientific purposes a standard code is usually quite inadequate, and the special point of view of the investigator may make it undesirable to adopt the methods of calculation indicated above.

The reader is referred to the Report for details concerning industrial tests. In the following sections are given the results of tests on various types of plant, and notes on the method of calculation. The reader is advised to re-calculate one or more of these tests according to the recom. mendations in the above report, in order to contrast the methods used.
OBSERVATIONS.

I. BOILER

Date...

[^33]
The Testing of Heat Engines and Plant

Explanation of Items in above Report

Table 1.

Higher calorific value, obtained by direct measurement in a bomb calorimeter (see p. 382).

Lower calorific value $=$ higher calorific value- 1055 (weight of moisture $+9 \times$ weight of hydrogen) (see p. 385).

Carbon value $=\frac{\text { Calorific value of fuel }}{\text { Calorific value of carbon }}$. This can be taken as either the higher or lower calorific value. The calorific value of carbon is 14,540.
Table 3. Gain of Water in Boiler per minute.
This is estimated from the rise or fall of water in the gauge-glass during the trial, and the area of the drum at water level.

Item 4 is item 1 -item 2.

Table 7.

Weight of dry flue gas per pound fuel (see p. 391).
Density of dry flue gas per pound fuel (see p. 392).
Specific heat of dry flue gas per pound fuel (see p. 403).
Where greater accuracy is required the variation of specific heat with temperature should be considered. This will be found to amount to an increase of about 4 per cent. of the value at normal temperature for each rise of $100^{\circ} \mathrm{F}$.
Where many trials with one fuel are involved a series of curves as shown in Fig. 168 may be plotted, giving the variation of specific heat with temperature and carbon-dioxide content for a coal containing $4 \% \mathrm{H}_{2}$. The essential figures may be found in the Dictionary of Applied Physics, Dugald Clerk's "Gas Engines," etc. Such a table is suitable for one fuel only on account of the shrinkage produced by the combustion of the hydrogen.

Weight of vapour per pound of fuel $=9 \times$ weight of hydrogen + moisture.
Weight of air supplied per pound of fuel=weight of dry gas per pound fuel+weight of vapour per pound fuel-(1-weight of ash per pound fuel) (see p. 391).

Weight of air required for complete combustion (see p. 392).

Table 8.

The temperature of the air is taken as base, and heat quantities are calculated in B.Th.U. per pound of fuel as fired, i.e. not dried.
Heat passing through boiler heating surface $=$ weight of water pumped per pound of fuel \times liquid heat from T_{6} to $\mathrm{T}_{\mathrm{B}}+$ weight of water evaporated per pound of fuel \times latent heat at $\mathbf{P}_{\mathbf{B}}$.

Heat passing through superheater heating surface=weight of water evaporated per pound of fuel \times heat per lb . of steam as superheat.

Heat in dry flue gas $=$ weight of gas $\times\left(\mathrm{T}_{\mathbf{8}}-\mathrm{T}_{\mathrm{A}}\right) \times$ specific heat of gas.

Heat in vapour in flue gas=weight of vapour \times total heat per pound at T_{8}.

Heat lost by imperfect combustion, i.e. by the formation of CO (see p. 392).
If an estimate can be made of the weight of unburnt carbon in the ash an additional loss is incurred equal to the estimated weight of carbon in the ash per pound of fuel $\times 14,540 \mathrm{~B}$.Th.U.

Table 9. Economiser.

The specific heats of the gases for the particular ranges of temperature should be taken where accuracy is required.

Fig. 168.
(1) Heat received in dry gas $=$ weight of gas \times mean specific heat from T_{9} to $\mathrm{T}_{\mathrm{A}} \times\left(\mathrm{T}_{9}-\mathrm{T}_{\mathrm{A}}\right)$.
(2) Heat received in vapour $=$ weight of vapour \times total heat per pound at ${ }^{T}{ }^{\prime}$.
(3) Heat passing through economiser heating surface $=$ feed water pumped $\times\left(\mathrm{T}_{6}-\mathrm{T}_{5}\right)$.
(4) Heat leaving economiser in dry gas $=$ weight of gas \times specific heat of gas $\times\left(\mathrm{T}_{10}-\mathrm{T}_{\mathrm{A}}\right)$.
(5) Heat leaving economiser in vapour=weight of vapour \times total heat at T_{10} from T_{A}.

Table 10. Corrected Evaporation.

Where the level of water in the boiler is different at the beginning and end of the trial, the heat passing through the heating surface does not represent the heat expended in evaporating the water. For instance, if there is a gain of water in the boiler part of the heat supplied has been utilised in heating up this excess from T_{6} to T_{5} but not evaporating it.

The corrected evaporation is the weight of steam which would have been produced by the same heat passing through the surfaces if the level of the water had remained constant, and
$=\frac{\text { Total heat passing through heating surface of boiler per pound fuel }}{\text { Heat per pound steam from } \mathrm{T}_{6} \text { to temperature of boiler }}$
This value will be taken for the remainder of the evaporation calculations.
Equivalent Evaporation from and at 212°.-The purpose of this item is to provide a common basis for comparison of the performances of boilers working under different conditions. It is the evaporation which would be obtained if the feed water were supplied at $212^{\circ} \mathrm{F}$. and converted into steam at $212^{\circ} \mathrm{F}$., and
$=\frac{\text { Corrected evaporation per } \mathrm{lb} \text {. fuel } \times \text { heat per } \mathrm{lb} \text {. steam from } \mathrm{T}_{6} \text { to } \mathrm{T}_{\mathrm{B}}}{\text { Latent heat of steam at } 212^{\circ}(=966)}$
Equivalent evaporation per pound of carbon value is obtained by dividing the above by the carbon value per pound of fuel. This item provides a basis for comparison of boilers using different qualities of fuel.
Water evaporated per square foot of heating surface per hour

$=$ Corrected evaporation per pound of fuel \times fuel per hour
 Area of boiler heating surface

Allowance for Auxiliaries.-When the auxiliaries are supplied with power from external sources, an allowance must be made in the efficiency and evaporation figures. It is required to determine the evaporation qvailable for power supply if the power for these auxiliaries were taken from the boiler itself.
(1) The most convenient method from the standpoint of a scientific test is to assume that if the auxiliaries were steam-driven, they would have a thermal efficiency of 5 per cent., ${ }^{1}$ so that the heat which would be supplied to them

$$
=\mathrm{H}_{a}=20 \times \text { heat equivalent of power, in B.Th.U. }
$$

and amount of steam used

$$
=\mathrm{W}_{a}=\frac{\mathrm{H}_{a}}{\text { Heat given to each pound of steam in boiler }}
$$

[^34]In calculating the corrected evaporation per pound of fuel allowing for auxiliaries, W_{a} must be deducted from weight of water evaporated per pound of fuel in obtaining the heat passing through the boiler heating surface. This new value is then used in obtaining similar results for equivalent evaporation from and at $212^{\circ} \mathrm{F}$.
(2) For a purely commercial test where the cost of running is the important factor, the cost of (say) auxiliary electrical power could be obtained, and also that of the steam evaporated, and the relative value calculated.
Thus, if 1 lb . of steam costs, say, 0.02 d . and the cost per minute of electrical power is $0.05 d$., then the equivalent quantity of steam used per minute in auxiliaries $=0 \cdot 05 / 0 \cdot 02=2 \frac{1}{2} \mathrm{lb}$. This must be subtracted from evaporated weight to give net evaporation.

Thermal Efficiency.

Boiler and Superheater.-These cannot be separated when the superheater is not independently fired, as it is not known how much of the heat of the fuel goes through the boiler heating surface and how much goes to the superheater.

Efficiency

Heat passing through boiler and superheater surface per pound of fuel Heat in 1 lb . of fuel (higher or lower calorific values)

Allowance for auxiliaries-deduct H_{a} from numerator.
Economiser efficiency=the ratio of the heat actually passing through the surface to the heat which could be obtained from the flue gas by cooling it down to the temperature of the air, but without condensing the vapour.

Heat passing through surface $\mathrm{H}_{5}=$ feed water pumped $\times\left(\mathrm{T}_{6}-\mathrm{T}_{5}\right)$.
Heat in gas $H_{G}=$ weight of dry gas \times specific heat $\times\left(T_{G}-T_{A}\right)+$ weight of vapour \times (total heat at T_{9} from T_{A}-total heat at T_{10} from T_{A} (at atmospheric pressure)).

Then economiser efficiency $=\frac{\mathbf{H}_{\mathbf{S}}}{\mathbf{H}_{\mathbf{G}}}$

Efficiency of Combined Plant.

Efficiency
$=\frac{\text { Heat passing through boiler, superheater and economiser surfaces }}{\text { Heat in } 1 \mathrm{lb} \text {. of fuel (higher or lower calorific values) }}$
Allowance for auxiliaries as in boiler and superheater.
Remarks.-In the particular trial for which the figures are given the durations of the trial and of the preparatory period were much too short to obtain fully satisfactory results.

*STEAM ENGINE TRIALS

In conjunction with the boiler trial just considered a trial was conducted on a Corliss Tandem Compound Engine fitted with a condenser for which the air pump was driven from the common piston rod. A prony brake vas used to absorb the power.
The following are the relevant data :

The Testing of Heat Engines and Plant
Conditions of Trial.-Saturated Steam. Steam in all Jackets. 3 Full Load.

Date... OBSERVATIONS.
 OBSERVATIONS.

II. ENGINE

lb. per min.	Condensing Water.	Hot Well.	Feed Water Heater.
Gein of Water in Boiler $\pm+1.15$	Quantity per min. 1090 lb .	Quantity per min. 25.88 lb .	Jacket Steam Condensed per
$\begin{array}{ll}\text { Steam taken from Boiler : } & 28.02 \\ \text { Hot Well discharge }\end{array}$	Initial Temp. . $66.6^{\circ} \mathrm{F}$	Quantily per min. 25.88 lb .	
Cylinder Feed (a) . . . 26.53	Final Temp. . $88.1^{\text {² }}$		
Jacket Steam (b) . ${ }^{\text {d }}$ (0.73			Feed water pumped per min. 29.17 lb .
$\left.\begin{array}{l}\text { Engine leakage collected (c) } \\ \text { Other leakages (difference) }\end{array}\right\} \mathbf{1 . 3}$	Head 21.5 ft .	Air pump M.E.P. $\quad 1.7 \mathrm{lb}$. per sq. in.	Final " \quad " $\quad 55.7^{\circ} \mathrm{F}$.

Steam Pressures.	Gauge	Abs.	Steam Temperatures.			H.P.	L.P.	
			At Stop Valve ${ }^{\text {d }}$.	$385.8^{\circ} \mathrm{F}$.	Cut off, Percentage of Stroke	23	$33 \cdot 3$	
At ${ }_{\text {Stop }}$ Valve P_{E}." H.P. Steam Chest	195	209.5	(Superheat at S.V.) $\cdot{ }^{\circ}-{ }^{\circ} \mathrm{F}$.		Max. Indicated Pressure	23.4	33	
	193.5	208	Saturated Steam at $p_{\mathrm{B}}, \mathrm{T}_{\mathrm{B}}$	$3858^{\circ} \mathrm{F}$.	lb. sq. in. abs.	189.8 26.4	$\left.\begin{array}{r}30.0 \\ -11.0\end{array}\right\}$ gauge	
"L.P. " "	$25 \cdot 3$ 24.6 in.	39.8	At H.P. Steam Chest ${ }^{\text {At }}$ -	$\begin{aligned} & 385 \cdot 2^{\circ} \mathrm{F} \\ & 260^{\circ} \mathrm{F} \\ & 134 \cdot 3^{\circ} \mathrm{F} \end{aligned}$	M.E.P. Front ". . lb. sq. in.	26.4 78.9	$\begin{gathered} -11.0\} \text { gauge } \\ 25.6 \end{gathered}$	
Condenser Vacuum	24.6 in. 24.95 in		At L.P. ${ }^{\text {In }}$ "Pipe"		M"̈ Back . . . ${ }^{\text {M }}$	79.8	26.1	
Abs. Press. in Condsr. 2.47 lb . sq.in.			ust Pipe		M.E.P. Average . . "	79-3	25.8	
					Revolutions per min. Brake Load (net)		$\begin{gathered} 99.4 \\ 523.8 \mathrm{lb} . \end{gathered}$	
DEDUCTIONS.				Total Heat per lb. Steam at 'T'z from $32^{\circ} \mathrm{F}$. . . 1165 B.Th.U.				
Air Pump H.P. Eatimated Circulating Pump $\dot{\mathbf{H}} . \mathbf{P}$. 0.45 Ratio of Condensing Water to Steam Condensed . . . $42 \cdot 1$								

420

Condenser Vacuum.-In order to eliminate the effect of fluctuations in barometer it is usual to give the condenser vacuum corrected to a $30-\mathrm{in}$. barometer.

This is equal to 30 inches-actual barometer reading-observed vacuum).

The condenser vacuum really means the difference of pressure between the interior of the condenser and the outside atmosphere expressed in inches of mercury. The absolute pressure in the condenser (inches of mercury) =actual barometer reading-observed condenser vacuum.

This can be converted to pounds per square inch by multiplying by 0.49. Care must be taken to distinguish between the above quantities.

Net Brake Load.-This is the actual load against which the engine is working. The zero load of the brake is the load when no weights are on the hanger.

Net Load $=$ Actual Load + Zero Load-Spring Balance Reading.
Air Pump H.P.-This can only be obtained when separately driven. If the drive is electric this $=\frac{\text { volts } \times \text { amps }}{746}$.

Circulating Pump H.P.-It is part of the duty of the engine to circulate its own condensing water. If this is done separately the power used must be determined, and debited, along with the power used in a separately driven air pump, against gross B.H.P., to obtain net B.H.P.

Where the flow is under gravity, equivalent power may be estimated as follows :

Work done per minute on water $=\mathrm{W}_{\boldsymbol{c}} \times$ head at condenser in feet. Assuming a pump efficiency of 0.4 ,
H.P. supplied to pump $\frac{W_{c} \times \text { head in feet }}{0.4 \times 33,000}$.

Steam Consumption.-If the leakage is not collected, the steam consumption must be taken as the Hot Well discharge plus the Condensed Jacket Steam. Any leakage collected at the engine must be added to this.

The equivalent consumption at 1100 B.Th.U. per lb . is used for purposes of comparison of engines using steam at different temperatures and pressures, and

$$
=\frac{\text { Heat in steam per minute (} \mathrm{T}_{c} \text { as base) }}{1100}
$$

The figure 1100 was suggested by the Institution of Civil Engineers because it is the amount of heat per pound of steam in the case of a condensing engine with an admission pressure of 160 lb . per sq. in., and a back pressure of 2 lb . per sq. in., both absolute, these being usual pressures for such condensing engines.

$$
\begin{aligned}
\text { Power.-I.H.P. } & =\frac{2 \text { P.L.A.N. }}{33,000} \text { where } \begin{aligned}
& \text { P }=\text { M.E.P. (mean) } \\
& \mathrm{L}=\text { stroke (feet) } \\
& \mathrm{A}=\text { mean area of piston (sq. in.) } \\
& \mathrm{N}=\text { R.P.M. }
\end{aligned} \\
\text { B.H.P. } & =\frac{\text { Moment applied } \times \text { angle turned through per minute }}{33,000} \\
& =\frac{\text { Net brake load } \times \text { brake rad. } \times 2 \pi n}{33,000}
\end{aligned}
$$

Net useful B.H.P. $=$ Gross B.H.P. - H.P. in air pump (if separate)H.P. in circulating water (if separate).

Heat Balance ($32^{\circ} \mathrm{F}$. as base). All quantities per minute
Heat Received.-In cylinder $=$ hot well discharge \times total heat per pound of steam at T_{E}.
In jackets $=$ jacket steam condensed \times total heat per pound of steam at $\mathrm{T}_{\mathbf{E}}$.
Heat Discharged.-In H.P. $=$ H.P. $\times \frac{33,000}{778}$.
In condensing water $=$ weight of condensing water per minute \times rise in temperature.
In heating feed water $=$ feed water pumped \times rise in temperature $=$ $\mathrm{F}_{1}\left(\mathrm{~T}_{4}-\mathrm{T}_{3}\right)$.

In condensed jacket steam $=$ weight of jacket steam condensed \times $\left(\mathrm{T}_{\mathrm{J}}-32^{\circ}\right)$.
In hot well $=$ hot well discharge per minute $\times\left(\mathrm{T}_{\mathrm{H}}-32^{\circ}\right)$.
Epficiencies ($\mathrm{T}_{\mathbf{C}}$ as base)
Thermal efficiency on $\left\{\begin{array}{l}\text { I.H.P. } \\ \text { B.H.P. }\end{array}=\frac{\text { Heat equivalent of }\left\{\begin{array}{l}\text { I.H.P. } \\ \text { B.H.P. }\end{array}\right.}{\text { Total heat received per minute }}\right.$
Efficiency of Carnot Cycle $=\frac{\mathrm{T}_{\mathbf{E}}^{\prime}-\mathrm{T}_{\mathbf{C}}}{\mathrm{T}_{\mathbf{E}}^{\prime}}$, where temperatures are absolute.
Efficiency of Rankine Cycle, generally from the Mollier diagram (see p. 160).

Efficiency of perfectly jacketed engine (dry steam cycle) (see p. 164), and readily obtained from the Mollier diagram.

Combined Plant

Net B.H.P. $=$ Measured B.H.P.-(air pump H.P. + condenser H.P. + feed pump H.P. + fan H.P.).

Combined thermal efficiency on net B.H.P.
$=\frac{\text { Heat equivalent of net B.H.P. per minute }}{\text { Heat supplied in fuel per minute }}$

Power.

Duration of Trial, $70 \mathrm{~min} . \quad$ Barometer, 29.77 in. Mercury $=14.58 \mathrm{lb} . / \mathrm{sq} . \mathrm{in}$.
Fuel. Description.-Town Gas.

Deacription of Plant. -Gas Engine.

Gas Engine.
Description of Plant. Coaditions of Trial. Duration of Trial, 70 min.\quad Barometer, 29.77 in. Mercury $=14.58 \mathrm{lb} . / \mathrm{sq} . \mathrm{in}$.

Fuel Consumption.	Per I.H.P.	Per B.H.P.	Air Supply.					
Volume of gas per hour Cost per hour B.Th.U./min. (lower cal. value)	20.8 $0.87 d$. 143.3	$\begin{gathered} 30 \\ 1 \cdot 26 d . \\ 206 \cdot 3 \end{gathered}$	Volume of air supplied per cu. ft. gas in power stroke Volume of air theoretically required per cu. ft . gas Volume of excess air supplied per cu. ft. gas . Excess air supplied (as \% of air theoretically required)					
Eftelencies. Ratio of Compression.		4.93 to 1.		On Higher Value		On Lower Value		
		I.H.P.		B.H.P.	I.H.P.	B.H.P.		
Theoretical Efficiency of Perfect Air Engine on Otto Cycle .			46.8\%	Thermal Efficiency Relative Efficiency	26.3 56.2	$18 \cdot 3$ 39.1	29.6 63.3	$\begin{array}{r} 20 \cdot 6 \\ 44.0 \end{array}$

With the engine under consideration two unusual testing appliances are in use : (1) a device for taking samples of the exhaust gases during power strokes only, and (2) a "wet" exhaust gas calorimeter. As already indicated (p . 288) the use of a thermometer in a pocket near the exhaust port is almost valueless except for crude comparative work on a particular engine. Where possible the use of a dry, rather than a wet, calorimeter is to be preferred as being both simpler and more accurate.

The details of the trial are considered in the following notes.
Exhaust Gas Analysis.-This gas engine is governed by the " hit and miss " method, so that instead of a power stroke occurring every two revolutions (as would be the case with governing by varying the quality or quantity of the mixture) the number of power strokes, or explosions, will be less than half the number of revolutions, depending on the load, and separate counters are fitted. From certain cycles therefore, in which no charge of gas has been admitted, the exhaust will consist of air and a trace of residual gases only. If a sample of the exhaust gas is drawn continuously from the exhaust pipe during a trial, it will not represent the true products of combustion, but will be a mixture of the latter with a certain quantity of air. It will not therefore be possible to calculate from the analysis of this gas the quantity of air actually supplied for the purpose of combustion. Hence a sample of the true products of combustion (i.e. eliminating the idle cycles) is required, and to enable this to be obtained a special valve is fitted in the exhaust pipe which is opened by a mechanism only after a power stroke has taken place.

Two samples of exhaust gas are thus collected : (a) an average sample of all the exhaust gas (i.e. including the idle strokes). The analysis of this sample will be required in calculations of the heat discharged in the exhaust; (b) a sample of the true products of combustion, the analysis of which will be required in the calculation of the air supplied for combustion.

Exhaust Calorimeter.-The temperature of the gases leaving the engine cylinder is reduced by injecting water. The quantity of water supplied is measured by a venturi meter. The water comes into intimate contact with the hot gases, and a portion of the water is converted into vapour, saturating them and much reducing the temperature. From a knowledge of the final temperature of the exhaust gas, the weight of water carried over as vapour can be calculated. Owing to the rush of the exhaust gases through the calorimeter, a certain quantity of water is also probably carried away as water in the form of minute droplets. The remainder of the water collects in the bottom of the calorimeter and is syphoned over into a measuring tank.

Quantity of water supplied per minute (1) $=$ Quantity collected per minute (2)+Quantity passing over as water per minute (3) +Quantity passing over as vapour per minute (4)-Water vapour produced by combustion per minute (5).

All these are known except (3) which can therefore be deduced.
These quantities will be considered under "Deductions."
The following are the relevant details :
Cylinder diameter, 11 in.
Stroke, 19.04 in.
Clearance volume, $460 \cdot 4 \mathrm{cu}$. in.
Radius of brake arm, 2.92 ft .
Power.-The indicated horse-power, with this form of governing, must be calculated from the number of explosions per minute, not from half the number of revolutions.

In this case

$$
\text { I.H.P. }=\frac{\mathrm{P} \cdot l \cdot \mathrm{~A} \cdot \boldsymbol{n}}{33,000}
$$

where $P=$ M.E.P., $l=$ stroke in feet, $A=$ area of piston in square inches, and n is the number of explosions.

Volume of Supply Gas at N.T.P.-The calorific value of gas is given in B.Th.U. per cubic foot at N.T.P. $\left(32^{\circ}\right.$ F., with the barometer at 30 in .

Fig. 169.
Hg). It is therefore necessary to calculate the volume of gas that would have been supplied to the engine under these conditions. The preware of gas in the main is measured by a water gauge.

If $p=$ actual pressure of gas (in. Hg)=atmospheric pressure (ins. Hg) + gauge pressure of gas (in. Hg).
$t=$ temperature of gas ${ }^{\circ} \mathrm{F}$.
volume of gas at N.T.P. $=$ volume of gas as shown by meter

$$
\times \frac{p}{30} \times \frac{492}{460} \times t
$$

Density of supply gas and of dry exhaust gas (see p. 392).
Weight of dry exhaust gas per minute (see p. 393).
Weight of vapour formed by combustion per minute (see p. 393).
Specific Heat.-This will vary with the temperature and the amount of CO_{2} present, as shown on pp. 295, 403.

Except where unusually accurate values are required, the diagram, Fig. 169, may be used, the horizontal ordinate being $\% \mathrm{CO}_{2}$ and the oblique lines specific heat, or the specific heat at N.T.P. may be calculated, as shown on p. 403, and increased by 4 per cent. per $100^{\circ} \mathrm{F}$. temperature rise.

Weight of water vapour to saturate 1 lb . of dry air at exhaust temperature.

This may be read direct from Fig. 170. See also p. 144.
Heat Balance.-In order to avoid the necessity of taking into account the sensible heat of supply gas, the heat balance is worked out to the temperature of the air as base.

Heat received in supply gas per minute=volume of supply gas at N.T.P. per minute \times higher calorific value.

Heat discharged in I.H.P. and B.H.P. calculated as in Steam Engine Trial.

Heat discharged in friction is the difference between heat discharged in I.H.P. and B.H.P.

Heat discharged in jacket water $=$ weight of jacket water per minute X rise in temperature.
Heat Discharged in Exhaust.-In cooling water=weight of cooling water collected \times rise in temperature.

In dry exhaust gas $=$ weight of dry exhaust gas per minute \times specific heat \times (temperature of exhaust-temperature of air).

In water vapour in exhaust gas=weight of vapour required to saturate 1 lb . at temperature of exhaust gas \times weight of dry exhaust gas per minute \times total heat of saturated steam at temperature of exhaust above temperature of air.

In water (liquid) carried over by exhaust gas=weight of water carried over per minute \times (temperature of exhaust gas-temperature of air).

The Theory of Heat Engines [Chap. XVIII

Air Supply.-For these calculations the analysis of the true products of combustion are required (see p. 425).

$$
\text { Thermal efficiency }=\frac{\text { Heat discharged per minute in H.P. }}{\text { Heat supplied per minute in gas }}
$$

Theoretical efficiency of perfect air engine on Otto cycle

$$
=1-\left(\frac{1}{r}\right)^{\gamma-1}
$$

where
$\boldsymbol{r}=$ compression ratio
$y=1.40$

Duration of Trial, 70 min . \quad Barometer, 29.59 in . Mercury $=14.5 \mathrm{lb}$. per sq. in.
Fuel. Description.-

Weight of Dry Exhaust gas per lb. fuel 36.3 lb . 뮹
+in
亡inin in

Dhte...en..
$=-2$

$$
\begin{aligned}
& \text { OBSERVATIONS. } \\
& \text { Description of Plant. } \text { Single Cylinder Vertical Diesel Engine. } \\
& \text { Conditions of Trial.- Full Load. }
\end{aligned}
$$

-•
-••

$$
\begin{gathered}
\text { DEDUCTIONS. } \\
\text { Powet 1.H.P. : } \\
\text { Mechanical Eficiency } \\
\end{gathered}
$$

$$
\begin{aligned}
& \text { Analysis by weight : }
\end{aligned}
$$

-OIL ENGINE TRIAL.
The Testing of Heat Engines and Plant

Oil Engine Trial.-The following are the relevant details of the single cylinder Diesel engine tested :

Cylinder diameter 12 in .
Stroke 184 in.
Clearance volume (per cent. cylinder volume) 6.55 per cent. Radius of brake weight and spring balance . $\quad 3.78 \mathrm{ft}$.

Exhaust Gas Analysis.-As the action of the governor is to vary the quantity of fuel injected at the end of each compression stroke, an average sample drawn continuously from the exhaust pipe can be used to calculate both the heat discharged in the exhaust, and the air supplied for combustion. The procedure is therefore simpler than in the case of the gas engine. It should be noted that the Diesel or C.I. engine is capable of giving satisfactory combustion whatever the amount of excess air, as only the air in the immediate neighbourhood of the droplets of fuel is concerned. In the case of the gas engine, in which the whole of the air and fuel are intimately and uniformly mixed before combustion, a large excess of air reduces the speed of combustion and may even make ignition inpossible. In engines which attain complete mixture before combustion, it is therefore necessary to govern either by reducing the supplies of both fuel and air, or by the introduction of idling strokes during which no fuel is admitted.
Heat Balance. Heat Discharged in Exhaust.-This engine normally employs a " dry" exhaust gas calorimeter, the gases and cooling water being kept separate, thus greatly simplifying the calculations, and increasing their accuracy.

The heat discharged in the cooling water refers to the weight of water supplied to this calorimeter x the rise of temperature of the water.
*GAS PRODUCER TRIAL.

deductions.

(Balance :-Per lb. fued	Air Ten	ture.	Discharged.		
	B.Th.U.	\%		B.Th.U.	\%
Received.			(Calorific Value (Higher)	10,580	${ }^{71 \cdot 3}$
In Fuel (Higher Value)	14,800	998	In gas $\left\{\begin{array}{l}\text { Sensible heat . . . }\end{array}\right.$	-7	,
In Vaporiser water	-	-	In Scrubber water	1,381	9.3
In Vapour in air	29	0.2	In radiation, etc.	2,875	19.4
	14,829	100		14,829	100
Thermal Efficie	f Producer	n Lower	Value)	69.7\%	

Deductions

Weight of gas produced per pound of fuel (see p. 392) . . . (1)
Density of gas (see p. 392) (2)
Volume of gas produced per pound of fuel at N.T.P. $=(1) \div(2) \quad$ (3)
Weight of water vapour in air supply.-From the readings of the wet and dry bulb thermometers, and from Glaisher's Tables, which are given in a concise form in Fig. 144, the humidity of the air is found. Let this be h per cent. Then weight of vapour present in $1 \mathrm{cu} . \mathrm{ft}$. of the air

$$
=S \times \frac{h}{100}
$$

where $S=$ weight of $1 \mathrm{cu} . \mathrm{ft}$. of saturated steam at temperature of air.
Weight of vapour in air per lb . fuel=weight of vapour in $1 \mathrm{cu} . \mathrm{ft} . \times$ volume of air by meter per lb . fuel.

Weight of vapour formed from the constituents of the fuel per pound of fuel. This is $9 \times$ weight of hydrogen + moisture $=9 \times 0.03+0.04=0.31$.

Weight of vapour which would be produced on combustion of the gas per pourd of fuel.-This is obtained from the analysis of the gas as follows :

or weight of water vapour $=\frac{339 \cdot 1}{2495} \mathrm{lb}$. per lb . gas
or

$$
\begin{equation*}
\frac{339.1}{2495} \times 5.92=0.805 \mathrm{lb} . \text { from }(1) \tag{5}
\end{equation*}
$$

Weight of water decomposed in generator per pound of fuel=weight from gas-(weight from air+weight from fuel) $=0.805-(0.0279+0.31)-$ $=0.467$.
Heat Balance.-This will be worked out per pound of fuel as supplied, taking the temperature of the air as base.

Heat supplied in fuel=higher calorific value.
Heat supplied in vapour in air = weight of vapour in air per pound of fuel \times latent heat at temperature of air.

Heat supplied in water to generator=weight of water per pound of fuel \times temperature of water-temperature of air.

Heat discharged in gas=volume of dry gas at N.T.P. per pound fuel \times higher calorific value.

Heat discharged in scrubber water=weight of scrubber water per pound of fuel \times (final temperature of water-initial temperature of water).

Thermal Efficiency of Producer.-This is the ratio of the potential heat produced in the gas to that supplied in the fuel. For this it is usual to take lower calorific values.
Efficiency
Volume of gas per pound of fuel \times lower calorific value per cubic foot
I ower calorific value of fuel per pound
Description of Plant. - Seven-stage Impulse Turbine.
Conditions of Trial.-Superheated Steam. Two-thirds Full Load.
Duration, 70 mins. Barometer, $29.37 \mathrm{in} . \mathrm{Hg}=14.39 \mathrm{lb}$./sq. in.

DEDUCTIONS. Air Pump power Estimated Circulating Pump power		P.	K.W.						
		. 02	0.76 0.56						
Ratio of Condensing Water to Steam condensed 36									
Power.Measured B.H.P.Net useful B.H.P. : $\quad . \quad 63.8$		Steam Consumption. Measured Consumption per hour Equiv. Consumption at 1100 B.Th.U., per hour Heat used per minute from Tc			Per net B.H P.	Per net K.W.			
		23.72 25.3 464	$35 \cdot 8$ 38.2 700						
Heat Balance (per min., from $32^{\circ} \mathrm{F}$.)					B.Th.U.	\%			
Received :- In Steam .	B.Th.U				\%			2,792	$8 \cdot 8$
	31.600	-			207 23,800	8.8 75.3			
					1,581 3,220	$5 \cdot 0$ 10.2			
	31,600	100			31,600	100			

Lemetencles (T_{c} as base).	Vacuum.
Mechanical Efficiency $93-1$ Turbine Efficiency	
Overall Thermal Efficiency (on Net B.H.P.) $\quad . \quad . \quad 9.1$	Pressure corresponding to Condenser Temperature 2.49 in . Hg Pressure observed in Condenser $1.21 \mathrm{lb} . / \mathrm{sq} . \mathrm{in}$. (abs.) $=2.47 \mathrm{in} . \mathrm{Hg}$
Eficiency of Rankine Cycle between 'Tg' and 'Te Efficiency relative to Rankine Cycle (on Net B.H.P.)	Pressure of Air in Condenser \% Vacuum on 30 in. Barometer

Turbine Trial.-This is the test of a small seven-stage impulse turbine driving a swinging-field electrical dynamometer, the B.H.P. being determined from the net brake load, the brake arm radius, and the revolutions per minute. The aim pump is separately driven.

Most of the heat calculations are the same as for the engine trial.
Pozver.-Net useful B.H.P. $=$ measured B.H.P.-air pump H.P.condenser H.P.
H.P. given to oil $=$ heat given to oil $\times \frac{778}{33,000}=W_{0}\left(T_{4}-T_{3}\right) \times \frac{778}{33,000}$
provided that temperature of oil itself is the same at beginning and end of trial. This should be secured by regulating the quantity of the cooling water. Otherwise, if there is a difference of temperature, the quantity of heat given to oil $=$ weight of oil \times specific heat \times rise in temperature.
Equivalent I.H.P. $=$ measured B.H.P. + H.P. given to oil.
Efficiencies. ($\mathrm{T}_{\mathbf{c}}$ as base.)

$$
\text { Mechanical efficiency }=\frac{\text { Measured B.H.P. }}{\text { Equivalent I.H.P. }}
$$

Turbine Efficiency.-The heat actually used in turbine $=\mathrm{H}_{6}$ when
$\mathrm{H}_{6}=$ heat received-heat discharged in condenser and hot well.

$$
\text { Turbine efficiency }=\frac{\text { Measured B.H.P. }}{\mathrm{H}_{6}}
$$

Overall thermal efficiency on B.H.P. $=\frac{\text { Heat in net B.H.P. }}{\left.\text { Heat received (from } T_{C}\right)}$
Notr.-It is again emphasized that the figures given in the above tables are to illustrate the method of calculation only, the duration of the trials having been too short to permit a high degree of accuracy to be obtained in certain of the measurements.

EXAMPLES ON CHAPTER XVIII

1. In a boiler trial 3600 lb . of coal were consumed in 24 hours. The weight of water evaporated was $28,800 \mathrm{lb}$., mean steam pressure by gauge 95 lb . The coal contained 3 per cent. of moisture and 3.9 per cent. of ash by analysis. Determine the efficiency of the boiler and the equivalent evaporation from and at $212^{\circ} E$., (1) per pound of dry coal, (2) per pound of combustible. Feed temperature $95^{\circ} \mathrm{F}$., total heat of 1 lb . of steam at 110 lb . per sq. in. abs. $=1184 \mathrm{~B}$.Th.U., calorific value of 1 lb . of the $d r y$ coal $13,000 \mathrm{~B} . T \mathrm{Th} . \mathrm{U}$.
2. The following data were obtained during a boiler trial :

Draw up a heat account for this boiler.
3. In a trial of a jacketed engine the steam chest pressure was 145 lb . per sq. in. abs., the cylinder feed was 29 lb . per minute, and the jacket feed was 3.2 lb . per minute, the feed and jacket steam being 5 per cent. wet. The circulating water was 550 lb . per minute, inlet temperature $55^{\circ} \mathrm{F}$., outlet temperature $104 \cdot 3^{\circ} \mathrm{F}$. The feed temperature was 125° F., and the I.H.P. 110. Draw up a heat balance and find also the thermal efficiency.
4. The following data were obtained from a trial on a steam engine :

Air pump discharge per hour 6417 lb .
Weight of steam used in jackets per hour 1079 lb .
Temperature of jacket drainage $352^{\circ} \mathrm{F}$.
Pressure of steam at boiler side of stop valve (pounds per square inch absolute)
Moisture in steam at boiler side of stop valve (dry saturated) nil
Temperature of exhaust steam $119^{\circ} \mathrm{F}$.
Indicated horse-power $494 \cdot 3$
Circulating water per hour $87,300 \mathrm{lb}$.
Inlet temperature of circulating water $33.2^{\circ} \mathrm{F}$.
Outlet " \quad " \quad. $91.6^{\circ} \mathrm{F}$.
Draw up a heat account for this engine and in addition calculate-
(a) Steam consumption per I.H.P. hour.
(b) Thermal efficiency of the engine.
(c) Heat theoretically required per minute per I.H.P. by an engine working on the Rankine cycle between the above temperatures.
(d) Efficiency ratio or coefficient of performance.
5. The following data were obtained from trials run on three different boilers A, B, and C, the same coal of calorific value 14,000 B.Th.U. per pound being used in each trial. Calculate for each boiler, (a) the equivalent evaporation per pound of coal from and at $212^{\circ} \mathrm{F}$., (b) the efficiency of the boiler.

	A	B	C
Steam pressure (pounds per square inch absolute)	140	180	160
Temperature of saturation, ${ }^{\circ} \mathrm{F}$. .	$353 \cdot 1$	$373 \cdot 1$	363.6
Feed temperature, ${ }^{\circ} \mathrm{F}$. - .	50	65	100
Dryness of steam, per cent. - . $\bullet^{\text {c }}$ -	98	98.5	50
Temperature of superheated steam, ${ }^{\circ} \mathrm{F}$. . . .		-	500
Water evaporated per pourd of coal under working conditions	$9 \cdot 2$	8.8	$8 \cdot 5$

For boiler C take the specific heat of steam to be 0.5 .
6. Draw up an approximate heat balance from the following particulars obtained
from a trial on a Diesel oil engine :

7. The following particulars were obtained during a trial on a 25 B.H.P. Campbell gas engine :
Duration of trial, one hour ; total revolutions of engine $=13,602$; total number of explosions, 4620 ; net load on brake, 277 lb .; mean effective pressure on piston, 106 lb. per sq. in. ; gas consumption as registered by meter, $455.5 \mathrm{cu} . \mathrm{ft}$. ; lower calorific value $=592$ B.Th.U. per cu.ft. at N.T.P.; pressure of gas, 771 mm . ; temperature of gas passing through meter, $15^{\circ} \mathrm{C}$. ; diameter of cylinder, $9 \frac{1}{2} \mathrm{in}$. ; stroke, 19 in. ; effective circumference of brake, 12.8 ft . Work out (a) the indicated horse-power; (b) brake horse-power; (c) mechanical efficiency; (d) thermal efficiency ; (e) overall efficiency.
8. In a test with the above engine working on suction gas the following data were obtained :

Duration of trial, 6 hours ; average speed of engine, 224 r.p.m ; average explosions per minute, 96.2 ; mean effective pressure, 75.4 lb . per sq. in.; effective load on brake, 252 lb .; coal consumption, $20 \cdot 3 \mathrm{lb}$. per hour ; calorific value of coal (lower value), 15,020 B.Th.U. per lb . Work out (a) I.H.P.; (b) mechanical efficiency; (c) overall efficiency; (d) thermal efficiency of producer.
9. The following particulars were obtained from a trial of a four-stroke cycle oil engine :

Duration of trial, 40 minutes ; oil used, 12.80 lb . ; total revolutions, 8142 ; jacket water, 738 lb . ; rise of temperature of jacket water, $74^{\circ} \mathrm{F}$.; mean effective pressure in cylinder, 96 lb . per sq. in.; torque due to brake load, $786 \mathrm{lb} .-\mathrm{ft}$. ; lower calorific value of oil, 17,000 B.Th.U. per lb. ; area of piston, 113 sq . in. ; stroke, $18 \frac{1}{2}$ in.

Find (a) the indicated and brake horse-powers ; (b) the oil used per I.H.P. and per B.H.P. per hour; (c) the heat converted into indicated work per minute ; (d) the heat rejected in the jacket water per minute ; (e) the heat lost in friction, exhaust gases, etc., per minute.
10. The following particulars were obtained from trials of a four-stroke cycle oil engine: Cylinder diameter, 12 in.; stroke, 181 in .; diameter of brake wheel, 9 ft . $0 \frac{3}{4} \mathrm{in}$. Draw to a base of B.H.P., curves showing mechanical efficiency and oil used per B.H.P. hour.

Average revolutions per minute	199	202	203	204	204	205
Brake load (pounds) . . .	225	195	156	113	60	0
Mean effective pressure (pounds per square inch)	107	97	87	74	60	929
Oil per hour	$20 \cdot 7$	$16 \cdot 3$	$13 \cdot 5$	10.7	10.0	9.5

11. The following data were obtained during a trial of a gas engine : Duration of trial, one hour.

Total revolutions of engine	13,600
Total number of explosions	6,240 350 lb .
Net load on brake	350 lb .
Mean effective pressure on piston	110 lb. per sq. in.
Gas consumption as registered by meter	$625 \mathrm{cu} . \mathrm{ft}$.
Lower calorific value of gas at N.T.P.	550 B.Th.U. per cu. ft.
Preasure of gas passing meter	
Temperature of gas passing meter	17

Diameter of cylinder, $9 \frac{1}{3} \mathrm{in}$; stroke, 19 in ; effective circumference of brake wheel, 12.8 ft .; clearance volume, 272 cu . in. Estimate: (a) indicated horsepower ; (b) brake horse-power; (c) mechanical efficiency ; (d) thermal efficiency (on I.H.P.); (e) overall efficiency; (f) efficiency ratio referred to the "Air Standard "cycle engine.
12. The following data were obtained from a gas engine trial: Brake horsepower, 20.9 ; gas consumption per hour, $331 \mathrm{cu} . \mathrm{ft}$. at N.T.P.; lower calorific value of gas, 561 B.Th.U. per cu. ft. at N.T.P. ; higher calorific value, 622 B.Th.U. per cu. ft. at N.T.P.; volumetric analysis of the gas, per cent., $\mathrm{CH}_{4} 33.73$, $\mathrm{C}_{2} \mathrm{H}_{4} 4.74, \mathrm{H}_{2} 41 \cdot 29, \mathrm{CO} 7 \cdot 13, \mathrm{~N}_{2} 10 \cdot 22, \mathrm{CO}_{2} 2 \cdot 62, \mathrm{O}_{2} \mathbf{0 . 2 7}$. Temperature of air in engine-room, $48.4^{\circ} \mathrm{F}$.; difference between wet and dry bulb thermameters, $3^{\circ} \mathrm{F}$.; volume of air supplied per hour measured by anemometer, $3209 \mathrm{cu} . \mathrm{ft}$.; atmospheric pressure, 14.58 lb . per aq. in.

Estimate :

(a) Overall efficiency of the engine.
(b) Heat carried into engine by the air supply per hour.
(c) Heat carried into engine by the gas supply per hour.
13. The analysis by weight of a sample of crude petroleum used in an oil engine gives C 85 per cent., $\mathrm{H}_{2} 13.5$ per cent., incombustible matter 1.5 per cent. The volumetric analysis of the exhaust gases gives $\mathrm{CO}_{2} 7$ per cent., $\mathrm{O}_{2} 11^{\circ} 3$ per cent., and $\mathrm{N}_{2} 81.7$ per cent. The engine uses 0.333 lb . of oil per I.H.P. hour, and 14.8 lb . of water per I.H.P. per hour pass through the jacket. The rise in temperature of the jacket water is $52^{\circ} \mathrm{C}$. The temperature of the air at the end of suction is $30^{\circ} \mathrm{C}$., and the temperature of the exhaust is $384^{\circ} \mathrm{C}$. The lower calorific value of the oil is $10,720 \mathrm{C} . \mathrm{H} . \mathrm{U}$. per lb ., and the specific heat of the exhaust gases 0.25 .

From the above data draw up a heat balance for the engine.

APPENDICES

I. PROPERTIES OF SATURATED STEAM

Calculated from Professor H. L. Callendar's "Characteristic Equations," and compiled from the "Callendar Steam Tables," published by Mr. Edward Arnold, by whose permission they are reproduced.

Preasurelb. $/ \mathrm{in} \mathbf{B}^{3}$ abn. p	Tempe$\stackrel{ }{\text { rature }}$:	Sp. vol. v	Heat in R.Th.U.			Entropy.		
			$\underset{h}{\text { Sentible }}$	Latent L	${ }_{\text {Total }}^{\mathbf{H}}$	$\begin{aligned} & \text { Water } \\ & \phi_{\infty} \end{aligned}$	$\begin{aligned} & \text { Evaporam } \\ & \text { tion } \phi_{0} \end{aligned}$	Total
0.1	34.86	$2940 \cdot 0$	2.86	1068.19	1071.05	0.0057	$2 \cdot 1605$	$2 \cdot 1662$
0.2	53.04	1524.0	21.01	$1058 \cdot 65$	1079.66	0.0417	2.0651	$2 \cdot 1068$
$0 \cdot 3$	64.38	$1038 \cdot 0$	32.30	$1052 \cdot 69$	$1084 \cdot 99$	0.0635	2.0092	$2 \cdot 0727$
0.4	72.79	$790 \cdot 7$	$40 \cdot 69$	1048.26	1088.95	0.0794	1.9688	2.0482
0.5	79.54	$640 \cdot 5$	47.42	1044.70	$1092 \cdot 12$	0.0922	1.9377	2.0299
0.6	$85 \cdot 17$	$539 \cdot 1$	53.03	1041.71	1094.74	$0 \cdot 1025$	1.9123	2.0148
0.7	90.05	$466 \cdot 2$	57.89	$1039 \cdot 10$	1096.99	0.1113	1.8905	$2 \cdot 0018$
0.8	94.36	$411 \cdot 1$	62.19	$1036 \cdot 80$	1098.99	0.1191	1.8715	1.9906
0.9	98.30	367.9	66.09	1034.75	$1100 \cdot 84$	$0 \cdot 1262$	1.8548	1.9810
1.0	101.74	$333 \cdot 1$	69.54	1032.89	$1102 \cdot 43$	0.1323	1.8401	1.9724
1.2	107.91	$280 \cdot 6$	75.71	1029.56	1105.27	0.1432	1.8143	1.9575
1.4	113.25	242.7	81.06	$1026 \cdot 68$	1107.74	0.1526	1.7923	1.9449
$1 \cdot 6$	117.98	214.0	85.77	$1024 \cdot 13$	1109.90	0.1607	1.7732	1.9339
1.8	122.23	191.6	90.03	1021.82	1111.85	$0 \cdot 1683$	1.7562	1.9245
$2 \cdot 0$	126.08	173.5	93.89	1019.72	1113.61	$0 \cdot 1747$	1.7412	1.9159
$2 \cdot 2$	129.64	158.7	97.43	1017.77	$1115 \cdot 20$	0.1807	1.7273	1.9080
2.4	132.92	146.4	$100 \cdot 68$	1015.97	$1116 \cdot 65$	0.1863	1.7148	1.9011
2.6	135.94	135.6	103.72	1014.33	1118.05	0.1914	1.7033	1.8947
2.8	138.82	126.5	106.58	1012.77	1119.35	$0 \cdot 1962$	1.6926	1.8888
$3 \cdot 0$	141.50	118.6	109.27	1011.29	$1120 \cdot 56$	0.2007	1.6826	1.8833
3.2	144.04	111.6	111.80	1009.89	1121.69	0.2049	1.6732	1.8781
3.4	$146 \cdot 44$	105.4	114.21	1008.56	1122.77	0.2089	1.6642	1.8731
3.6	148.73	99.93	116.50	$1007 \cdot 28$	1123.78	$0 \cdot 2127$	1.6558	1.8685
3.8	150.92	$95 \cdot 00$	118.70	$1006 \cdot 07$	1124.77	0.2162	1.6479	1.8641
$4 \cdot 0$	153.01	$90 \cdot 54$	120.79	1004.90	1125.69	0.2197	1.6043	1.8600
$4 \cdot 5$	157.83	81.11	$125 \cdot 63$	$1002 \cdot 18$	1127.81	0.2275	1.6230	1.8505
$5 \cdot 0$	162.28	73.44	$130 \cdot 07$	999.68	1129.75	0.2346	1.6075	1.8421
5.5	$166 \cdot 32$	67.19	$134 \cdot 13$	997.38	1131.51	0.2411	1.5935	1.8346
6.0	170.09	61.91	137.90	995.25	$1133 \cdot 15$	0.2472	1.5805 1.5685	1.8277
$6 \cdot 5$	$173 \cdot 60$	57.44	141.41	993.26	1134.67	0.2528	1.5685 1.5574	1.8213
7.0	176.88	53.59	144.70	$991 \cdot 37$		0.2579 0.2628	1.5574 1.5472	
7.5	179.98	50.24	$147 \cdot 80$	989.58 987	1137.38 1138.63	0.2628 0.2673	1.5472 1.5376	1.8100 1.8049
8.0	182.91	47.30	150.76	987.87 986.27	1138.63 1139.82	0.2673 0.2716	1.5376 1.5285	1.8049 1.8001
$8 \cdot 5$	$185 \cdot 68$	44.69	153.55	$986 \cdot 27$ 984.74	1139.82 1140.94	0.2716 0.2757	1.5285 1.5199	1.8001 1.7956
9.0	188.31	$42 \cdot 36$	156.20 158.71	984.74 983.28	$1140 \cdot 94$ 1141.99	0.2757 0.2797	1.5199 1.5118	1.7956 1.7915
9.5 10.0	190.84	40.27	158.71	$983 \cdot 28$ 981.90	1141.99 1143.02	0.2797 0.2833	1.5118 1.5041	1.7915 1.7874
10.0	193.25	38.39	$161 \cdot 12$	981.90	1143.02	0.2833	1.5041	1.7874

Properties of Saturated Steam-continued.

Pressure abs. ρ	Tempe-rature $\stackrel{0}{\text { rature }}$ t		Heat in B.Th.U.			Entropy.		
			$\underset{h}{\text { Sensible }}$	$\underset{\mathrm{L}}{\text { Latent }}$	${ }_{\text {Toral }}^{\mathbf{H}}$	Water ϕ_{w}	Evaporation ϕ_{e}	$\stackrel{\text { Total }}{\boldsymbol{\phi}}$
11.0	197.78	$35 \cdot 11$	165.69	979.20	1144.89	0.2903	1.4896	1.7799
12	201.99	32.37	169.94	$976 \cdot 70$	$1146 \cdot 64$	0.2967	1.4764	1.7731
13	$205 \cdot 92$	30.03	$173 \cdot 88$	974.36	$1148 \cdot 24$	$0 \cdot 3027$	1.4642	1.7669
14	209.59	28.02	177.59	$972 \cdot 21$	1149.80	0.3081	1.4530	1.7611
15	213.05	26.27	181.05	$970 \cdot 11$	1151-16	0.3134	1.4423	1.7557
16	216.34	24.73	$184 \cdot 40$	968.08	1152.48	0.3184	1.4322	1.7506
17	219.46	$23 \cdot 37$	187.55	$966 \cdot 17$	1153.72	0.3230	1.4228	1.7458
18	222.42	22.16	$190 \cdot 53$	964.35	$1154 \cdot 88$	0.3274	1.4140	1.7414
19	225.24	21.06	193.38	962.62	1156.00	0.3316	$1 \cdot 4057$	1.7373
20	227.97	20.08	196.11	960.97	1157.08	0.3356	1.3977	1.7333
22	233.08	18.37	$201 \cdot 30$	957.76	1159.06	0.3430	1.3828	1.7258
24	237.81	16.93	$206 \cdot 11$	954.77	$1160 \cdot 88$	0.3499	1.3690	1.7189
26	$242 \cdot 24$	15.71	$210 \cdot 56$	951.97	1162.53	0.3563	$1 \cdot 3563$	1.7126
28	246.40	14.66	214.78	949.36	$1164 \cdot 14$	0.3622	$1 \cdot 3447$	1.7069
30	$250 \cdot 30$	13.74	218.76	$946 \cdot 82$	1165.58	0.3679	1.3337	1.7016
32	254.03	12.94	222.53	944.41	1166.94	0.3732	$1 \cdot 3234$	1.6966
34	257.56	12.22	226.13	$942 \cdot 11$	1168.24	0.3782	$1 \cdot 3137$	1.6919
36	260.91	11.59	229.53	939.91	1169.44	0.3830	$1 \cdot 3044$	1.6874
38	$264 \cdot 13$	11.02	232.81	$937 \cdot 80$	$1170 \cdot 61$	0.3874	1.2957	1.6831
40	$267 \cdot 21$	10.50	235.94	935.77	1171.71	0.3918	$1 \cdot 2874$	1.6792
42	$270 \cdot 16$	10.03	238.99	933.77	1172.76	0.3959	$1 \cdot 2795$	1.6754
44	$273 \cdot 00$	$9 \cdot 603$	241.90	931.84	1173.74	0.3999	1.2720	1.6719
46	275.74	9.212	$244 \cdot 70$	930.00	1174.70	0.4037	$1 \cdot 2648$	$1 \cdot 6685$
48	278.38	8.853	247.41	928.21	$1175 \cdot 62$	0.4073	1.2578	$1 \cdot 6651$
50	$280 \cdot 94$	$8 \cdot 520$	250.00	926.48	1176.48	0.4109	1.2511	1.6620
52	283.41	8.213	252.55	924.80	1177.35	0.4142	1.2447	1.6589
54	$285 \cdot 82$	7.928	255.00	$923 \cdot 15$	$1178 \cdot 15$	0.4176	1.2385	1.6561
56	$288 \cdot 16$	7.663	257.40	921.51	1178.91	0.4208	1.2325	1.6533
58	290.42	$7 \cdot 415$	259.74	919.93	1179.67	0.4239	1.2267	1.6506
60	292.61	$7 \cdot 184$	262.00	918.39	$1180 \cdot 39$	0.4269	1.2210	1.6479
62	294.76	6.966	$264 \cdot 20$	916.88	1181.08	0.4298	$1 \cdot 2155$	1.6453
64	296.85	6.761	$266 \cdot 36$	915.43	1181.79	0.4327	1.2102	1.6429
66	298.88	6.571	278.42	914.02	1182.44	0.4354	1.2051	1.6405
68	$300 \cdot 88$	6.388	270.47	912.60	1183.07	0.4381	1.2001	1.6382
70	302.83	6.218	272.49	911.21	1183.70	0.4407	$1 \cdot 1952$	1.6359
72	$304 \cdot 72$	6.056	274.43	909.86	1184.29	0.4433	$1 \cdot 1904$	1.6337
74	$306 \cdot 60$	5.902	$276 \cdot 37$	908.53	1184.90	0.4458	1-1857	1.6315
76	308.40	5.757	$278 \cdot 24$	$907 \cdot 22$	1185.46	0.4482	1.1812	$1.629+$
78	$310 \cdot 19$	$5 \cdot 618$	$280 \cdot 11$	905.92	1186.03	0.4506	$1 \cdot 1769$	1.6275
80	311.93	5.487	281.90	904.66	$1186 \cdot 56$	0.4530	$1 \cdot 1726$	1.6256
82	313.65	5.362	283.66	903.42	1187.08	0.4553	1.1684	1.6237
84	$315 \cdot 32$	$5 \cdot 241$	285.40	902.19	1187.59	0.4575	$1 \cdot 1643$	1.6218
86	316.98	$5 \cdot 127$	$287 \cdot 12$	900.99	$1188 \cdot 11$	0.4597	$1 \cdot 1603$	1.6200
88	318.60	$5 \cdot 018$	288.80	899.80	$1188 \cdot 60$	0.4619	$1 \cdot 1564$	1.6183
90	$320 \cdot 16$	4.913	290.43	898.63	1189.06	$0 \cdot 4640$	$1 \cdot 1525$	1.6165
92	321.73	4.813	292-05	897.48	1189.53	0.4661	$1 \cdot 1487$	1.6148
94	323.28	4.717	293.67	896.33	1190.00	0.4681	1.1450	1.6131
96	324.79	$4 \cdot 624$	295.24	895.19	$1190 \cdot 43$	0.4701	1.1414	1.6115
98	326.26	$4 \cdot 535$	296.77	894.09	$1190 \cdot 86$	0.4720	1.1378	1.6098
100	327.70	$4 \cdot 451$	298.27	893.01	1191.28	0.4739	1.1343	1.6082
105	331.25	$4 \cdot 251$	301.98	890.31	1192.29	$0 \cdot 4786$	$1 \cdot 1258$	1.6044

Appendix
Propertifs of Saturated Steam-continued.

$\begin{gathered} \text { Preasure } \\ \text { lb./in. }{ }^{2} \\ \text { abe. } \end{gathered}$$p$	Tempe$\stackrel{\text { rature }}{\circ}$ t		Heat in B.Th.U.			Entropy.		
			$\underset{h}{\text { Sensible }}$	$\begin{aligned} & \text { Latent } \\ & \mathbf{L} \end{aligned}$	$\underset{\mathrm{H}}{\text { Total }}$	$\begin{aligned} & \text { Water } \\ & \phi_{\boldsymbol{w}} \end{aligned}$	Evapora-	$\stackrel{\text { Total }}{\phi}$
110	$334 \cdot 67$	4.070	305.55	887.72	1193.27	0.4831	$1 \cdot 1176$	1.6007
115	337.96	3.903	309.00	885.19	1194.19	0.4874	$1 \cdot 1098$	1.5972
120	341.15	3.751	312.34	882.72	1195.06	0.4915	$1 \cdot 1023$	1.5938
125	$344 \cdot 25$	$3 \cdot 609$	$315 \cdot 60$	880.31	1195.91	0.4955	1.0951	1.5906
130	347-23	3.479	318.72	877.97	1196.69	0.4994	1.0882	1.5876
135	350.13	$3 \cdot 358$	321.79	875.70	1197.49	$0 \cdot 5032$	1.0815	1.5847
140	352.96	3.245	324.76	$873 \cdot 48$	1198.24	$0 \cdot 5068$	1.0750	$1 \cdot 5818$
145	355.69	$3 \cdot 140$	$327 \cdot 66$	$871 \cdot 32$	1198.98	$0 \cdot 5103$	1.0687	1.5790
150	358.36	3.041	$330 \cdot 46$	869.22	1199.68	0.5138	1.0627	1.5765
155	$360 \cdot 95$	2.949	333.22	867-13	$1200 \cdot 35$	0.5172	1.0568	1.5740
160	363.48	2.862	$335 \cdot 89$	$865 \cdot 10$	$1200 \cdot 99$	0.5204	1.0511	1.5715
165	365.97	2.781	338.51	$863 \cdot 10$	1201.61	0.5236	1.0455	1.5691
170	368.39	2.703	$341 \cdot 10$	$861 \cdot 12$	$1202 \cdot 22$	0.5266	1.0400	1.5666
175	$370 \cdot 74$	2.631	343.61	859.18	1202.79	0.5296	1.0347	$1 \cdot 5643$
180	373.06	2.562	$346 \cdot 08$	$857 \cdot 27$	1203.35	0.5326	1.0294	1.5620
185	$375 \cdot 33$	2.496	348.51	855.38	1203.89	0.5355	1.0243	1.5598
190	$377 \cdot 55$	2.435	350.90	853.54	1204.44	0.5383	1.0194	1.5577
195	379.72	2.376	$353 \cdot 22$	851.72	1204.94	0.5411	1.0147	1.5558
200	381.83	$2 \cdot 320$	355.48	849.96	$1205 \cdot 44$	0.5437	1.0101	1.5538
210	385.98	2.216	359.87	846.47	$1206 \cdot 36$	0.5490	1.0012	1.5502
220	389.97	$2 \cdot 120$	364-18	843.08	$1207 \cdot 26$	$0 \cdot 5540$	0.9925	1.5465
230	393.84	2.034	368.35	839.79	1208.14	0.5588	0.9841	1.5429
240	397.56	1.954	372.38	836.57	1208.95	0.5635	0.9760	1.5395
250	401.18	1.880	376.31	833.42	$1209 \cdot 73$	0.5680	0.9682	1.5362
260	$404 \cdot 67$	1.811	$380 \cdot 11$	$830 \cdot 36$	$1210 \cdot 47$	0.5724	0.9608	1.5332
270	408.08	1.748	$383 \cdot 81$	827.37	1211.18	0.5767	0.9536	1.5303
280	411.39	1.689	$387 \cdot 42$	824.43	1211.85	0.5808	0.9466	1.5274
290	414.63	1.634	390.95	821.55	$1212 \cdot 50$	0.5848	0.9398	1.5246
300	417.78	1.583	394.40	818.73	$1213 \cdot 13$	0.5887	0.9332	1.5219
310	$420 \cdot 84$	1.534	397.76	815.96	1213.72	0.5924	0.9268	$1 \cdot 5192$
320	$423 \cdot 82$	1.489	401.08	813.24	1214.32	$0 \cdot 5961$	0.9206	1.5167
330	426.74	1.446	404.31	$810 \cdot 57$	1214.88	0.5997	0.9145	1.5142
340	429.60	1.406	407.44	807.97	1215.41	0.6023	0.9086	1.5109
350	432.41	1.368	$410 \cdot 55$	805.39	1215.94	0.6067	0.9029	1.5096
400	$445 \cdot 55$	1.206	$425 \cdot 19$	$793 \cdot 13$	$1218 \cdot 32$	0.6228	0.8763	1.4991
450	457.55	1.079	438.67	781.68	$1220 \cdot 35$	0.6374	0.8523	1.4897
500	468.63	0.977	$451 \cdot 19$	770.96	$1222 \cdot 15$	0.6508	$0 \cdot 8306$	1.4814

II. PRESSURE-TOTAL HEAT CHART

In setting out a refrigeration cycle upon the chart for the refrigerant employed, a line of constant entropy serves to indicate the compression process, and actual values of entropy are not required. It is thus desirable to reserve the two axes of co-ordinates for quantities for which numerical values are of importance-generally p and H .

On the $p \mathrm{H}$ chart lines of constant entropy are smooth curves, but the curvative presents no difficulties.

This chart for carbon dioxide is shown below, the units being pounds per sq. inch B.Th.U. and ${ }^{\circ} \mathrm{F}$. For refrigerants having high critical

temperatures the diagrams normally empioyed resemble the lower part only of the carbon dioxide diagram, and the central portion, corresponding approximately to the section on the CO_{2} chart lying between the total heat lines of 220 and $260 \mathrm{~B} . \mathrm{Th} . \mathrm{U}$. is either omitted or reproduced to a much reduced horizontal scale in order that the working section may be reproduced on a conveniently large scale without the chart becoming unduly long.

The refrigerator cycle indicated by letters in the figure is that shown in Fig. 153, p. 334, the same letters being used to mark corresponding condition points in both.

ANSWERS

Chapter II

1. $8.47 \mathrm{cu} . \mathrm{ft}$.
2. $1824 \mathrm{ft} .-\mathrm{lb}$.
3. $524^{\circ} \mathrm{F}$. $26,170 \mathrm{ft} .-\mathrm{lb}$; 116.86 B. Th. U.
4. (a) 139.9 lb . per sq. in. ; (b) $23,900 \mathrm{ft} . \mathrm{lb}$.
5. (a) $3540^{\circ} \mathrm{F}$.; heat expended $=39,600 \mathrm{ft}$. lb .; work done $=10,800 \mathrm{ft} .-\mathrm{lb}$.
(b) $1728^{\circ} \mathrm{F}$.; work done $=$ loss of internal energy $=26,093 \mathrm{ft}$.-lb.
6. $347^{\circ} \mathrm{F}$.; $2913^{\circ} \mathrm{F}$.
7. 667° F.; $126,170 \mathrm{ft}-1 \mathrm{lb}$.
8. (a) $104 \mathrm{cu} . \mathrm{ft} . ; 778,500 \mathrm{ft} .-\mathrm{lb} . ;$ (b) $57.4 \mathrm{cu} . \mathrm{ft} . ; 419,400 \mathrm{ft}$.-lb.
9. $-0.54 p ;+0.32 p ;-150$ B.Th.U. per second.
10. (a) 6600 ft .-lb.; (b) $4750 \mathrm{ft} .-\mathrm{lb}$. ; (c) $495^{\circ} \mathrm{F}$.
11. 27.7 lb . per 8 q . in. ; $85-23 \mathrm{B.Th.U}$.
12. 2704 lb . per sq. ft. ; $39,720 \mathrm{ft} .-1 \mathrm{~b}$. ; 51 -05 B.Th.U.

Chapter III

1. $0.588 ; 9.2: 1$.
2. See Fig. 122.

Chapter IV

1. 0.0947 units.
2. 1.693 units.
3. 0.0947 units. 3.0 .0348 units.
4. 4.33 cu . ft.

Chapter V

(a) 0.860 .
(b) 0.688
(c) 0.912.
(d) 23 lb . per sq. in. abe
(e) $q=0.941 ; q=0.976 ; 13^{\circ} s ; q=0.979$. (f) $q=1 ; s=213^{\circ} \mathrm{F}$.
(g) $25^{\circ} s ; 60^{\prime}$ B.Th.U. $\quad(h) q=0.997 ; s=23^{\circ} \mathrm{F}$.

Chapter VII

Chaptre Vill

1. $49 \cdot 2$ per cent.
2. $63 \cdot 6$.
3. $48.3 \mathrm{lb} . ;-113^{\circ} \mathrm{F}$.
4. (a) $100,655 \mathrm{ft} .-\mathrm{lb}$. ; (b) $83,410 \mathrm{ft} .-\mathrm{lb}$. ; (c) $78,050 \mathrm{ft}$.-lb., in first cooler 18.28 C.H.U., in second cooler $18 \cdot 28$ C.H.U.
5. (a) $85,690 \mathrm{ft} .-1 \mathrm{~b} . ;$ (b) $76,840 \mathrm{ft} .-\mathrm{lb}$. ; (c) $74,166 \mathrm{ft} .-\mathrm{lb}$., in first and aecond coolers, $10 \cdot 2$ C.H.U.
6. 9.12 in. diameter, 2 ft .6 in . stroke.
7. 6.16 HIP . ; $0.0923 \mathrm{cu} . \mathrm{ft}$; $0.0242 \mathrm{cu} . \mathrm{ft}$; $0.00636 \mathrm{cu} . \mathrm{ft}$.
8. 116 r.p.m. ; 1.634 H.P.

Chapter IX

1. (a) 108.5 B.Th.U. ; (b) 98.3 B.Th.U.
2. Dryness fraction $0.666 ; n=1 \cdot 10$.
3. (a) 79.02 B.Th.U.: 7.5 per cent. : (b) 63.15 B.Th.U.; 7.1 per cemt.
4. 0.420 lb ; 0.900 . 5. 0.977 . 6. (1) $q=0.956$; (2) 2.98° superheat.
5. $0.467 . \quad$ 8. 0968 . \quad 9. 0920 . 10. 91.9 per cent.
6. 0.987 . 12. 0.62 lb ; 87 fer cent. 13. 74.05 per cent.
7. 90 lb. per sq. in. abs.
8. Temperature $=414^{\circ} \mathrm{F}$., superheat $201^{\circ} \mathrm{F}$.; gain of entropy 0.276 units.
9. Before expansion temperature $=588^{\circ} \mathrm{F}$., superheat $=260^{\circ} \mathrm{F}$. Aftes expansion, temperature $=286^{\circ} \mathrm{F}$., superheat $=46^{\circ} \mathrm{F}$. 17. $0 \cdot 237$ units.
10. Temperature $=247.9^{\circ} \mathrm{F}$., superheat $=42^{\circ} \mathrm{F}$.; 0.2952 units.
11. Temperature $=298 \cdot 1^{\circ} \mathrm{F}$., superheat $=92.2^{\circ} \mathrm{F}$.; 0.30 units.

Chapter X

1. 242 B.Th.U. ; $\eta=22 \cdot 15$ per cent.
2. $121 \cdot 2$ B.Th.U.
3. (a) $19,958 \mathrm{ft} .-\mathrm{lb}$. ; (b) $17,260 \mathrm{ft} .-\mathrm{lb}$.
(c) $18,150 \mathrm{ft} . \mathrm{lb}$. ; (d) $19,150 \mathrm{ft} .-\mathrm{lb}$.
4. $255 \cdot 3$ B.Th.U. ; $23 \cdot 6$ per cent. 5. $221 \cdot 5$ B.Th.U.; $23 \cdot 3$ per cent.
5. (a) 0.483 ; (b) 0.428 . 7. 17.63 lb . 8. 9.92 lb ; 0.874 .
6. $596^{\circ} \mathrm{F} . ; 26.2$ per cent. ; 357.48 B.Th.U.
7. Stirling, 49.0 per cent. ; steam, 16.9 per cent.

$$
\frac{\text { Diameter of Stirling }}{\text { Diameter of steam }}=\frac{1 \cdot 11}{1}
$$

11. 300.9 B.Th.U. ; 0.272 .
12. (a) 8.82 lb .; (b) 9.6 lb . (including jacket steam).
13. 27.6 per cent.; without feed heating, 26.4 per cent.
14.

per cent. ; w					14. 26.8 per cent.
				Heat received	received during
at cut-off	Work	rejected,	η	to cut-off	expansion,
per cent. B.Th.U./lb. B.Th.U./lb. per cent. B.Th.U./lb. B.Th.U./lb.					
88.79	$190 \cdot 2$	832.2	$20 \cdot 03$	$991 \cdot 5$	$20 \cdot 9$
80	188.2	$832 \cdot 2$	18.4	$900 \cdot 5$	$119 \cdot 2$
68	$174 \cdot 6$	$832 \cdot 2$	17.35	792.5	$214 \cdot 3$

Chapter XI

1. 63 per cent.
2. $1858 \cdot 5$.
3. 7310 lb ; I.H.P. $=974$.
4. (a) $0.807,5310$; (b) $0.804,5400$; (c) $0.826,4770$. 5. 0.841 . 6. 12.
5. (a) 13.50 per cent.; (b) 13.74 per cent. 8. $80 \cdot 65 \mathrm{lb}$. per sq. in.; $85 \cdot 1$.
6. $8.12 \mathrm{in} . \quad 10.2 \cdot 60 \quad 11.5 ; 15 \mathrm{lb}$. per sq. in. abs. ; $\frac{8}{15} ; \frac{\mathrm{H} . \mathrm{P} .}{\mathrm{L} . \mathrm{P} .}=\frac{1}{1 \cdot 04}$.
7. 3.702 ; 18.58 lb . per sq. in. abs. ; 0.480 ; $\frac{\text { H.P. }}{\text { L.P. }}=\frac{1}{1.02}$.
8. L.P. $=31.42 \mathrm{in}$. ; H.P. $=16.8 \mathrm{in}$. ; 0.428 stroke ; $\frac{\text { H.P. }}{\text { L.P. }}=\frac{1}{1.2299^{\circ}}$.
9. Equal.
10. 31.6 in., 54.6 in., $86 \cdot 5$ in., stroke 4 ft .
11. 64.3 lb . per sq. in. ; 19.09 lb . per sq. in.

Chaptrr XII

1. 1260 ft . per second ; 0.951 .
2. Area of throat 0.329 sq . in., $q=0.96$; area of discharge end 3.069 sq. in., $q=0.802$.
3. Area of throat 0.367 sq . in., of discharge end 1.066 sq . in. Condition of steam, in throat superheat $=24^{\circ} \mathrm{F}$., at discharge end $q=0.90$.
4 . 5.8 lb .; steam orifice 1.7 sq . in.; discharge orifice 0.0397 sq . in. ; feer temperature $192^{\circ} \mathrm{F}$.
4. Exit diameter 0.88 in , length, 3 in .; for a 12° cone angle, number of mozzlem 9 .
5. 10.03 eq . in.

Chaptar XIII

1. 29.5°; $162,660 \mathrm{ft} .-\mathrm{lb} . ; 1575 \mathrm{ft}$. per second ; 0.860 .
2. 36° (nearly) ; $177,690 \mathrm{ft} .-\mathrm{lb}$. ; 1690 ft . per second ; 0.883 .
3. 28.8°; 0.789 ; 159.3 H.P.
4. 29.5°; $154,540 \mathrm{ft} .-\mathrm{lb} . ; 1345 \mathrm{ft}$. per second ; 0.860 .

Chapter XIV

1. 51 per cent. ; $488^{\circ} \mathrm{C}$.; 157.9 lb . per sq. in. abs.
2. (a) 48 per cent.; $38 \cdot 1$ per cent.
3. (a) $702^{\circ} \mathrm{C}$.; (b) $1084^{\circ} \mathrm{C}$.; (c) $2034^{\circ} \mathrm{C}$.; (d) $1036^{\circ} \mathrm{C}$.
4. $2.741: 1 ; 36.2$ per cent.
5. 120.7 ; $2530^{\circ} \mathrm{F}$. ; 45.83 per cent.
6. 210 lb . per sq. in. ; $115 \cdot 2 \mathrm{lb}$. per sq. in. Relative efficiency, 46.8 per cent.
7. $3 \cdot 66$; $50 \cdot 1$ per cent.

Chaptrr XV

4. (a) 5.74 ; (b) 5.66.
6. (a) 5.38 ; (b) 5.9 .
6. (a) 7.44 ; (b) 5.9 .
8. Coefficient of performance, 5.46 ; refrigerant per min. $=6.17 \mathrm{lb}$; compressor power, $12 \cdot 1$ H.P.; cooling water, 366 lb . per min.

Chapter XVI

2. On steam side $128.3^{\circ} \mathrm{F}$., on water side $127.98^{\circ} \mathrm{F}$.
3. 0.151 m .
4. Upper $273^{\circ} \mathrm{C}$. lower $270^{\circ} \mathrm{C}$.

Chapter XVII

1. 11.04 lb .; $\mathrm{CO}_{2} 14.06, \mathrm{H}_{2} \mathrm{O} 2.15, \mathrm{~N}_{2} 73.87, \mathrm{O}_{2} 9.92$ per cent.
2. 1.0424 cu. ft.; $10 \cdot 6$ per cent.; $\mathrm{CO}_{2} 16 \cdot 60, \mathrm{H}_{2} \mathrm{O} 10 \cdot 21, \mathrm{~N}_{2} 73 \cdot 19$ per cent.
3. 0.2417 ; 2292 B.Th.U.
4. (a) 1535 B.Th.U.; (b) 830 B.Th.U. ; (c) 723 B.Th.U.
5. (a) 17.5 per cent. ; 1502 B.Th.U. $=10.77$ per cent. ; (b) 3020 B.Th.U,
6. 8.9 per cent. ; 2271 B.Th.U.
7. (a) 1.28 lb ; (b) 1039 C.H.U.; (c) 943 C.H.U. 8. 93.5 ft.
8. (a) $5.76 \mathrm{cu} . \mathrm{ft}$. ; (b) 687.9 ; (c) 621.3.
9. 576.4 ; 524.7 B.Th.U. per cu. ft. $\quad 11.14 .84 \mathrm{lb}$.
10. $\mathrm{CO}_{2} 17$ per cent.; steam 1.95 per cent.; $\quad \mathrm{N}_{2} 73.30$ per cent.; $\mathrm{O}_{2} 7.77$ per cent.
11. $9.12 \mathrm{cu} . \mathrm{ft}$; 10.9 per cent. 14. 2202 B.Th.U., 651 B.Th.U.
12. 6.84 lb. ; 1650 B.Th.U.; 737 B.Th.U. \quad 16. 17.5 lb .
13. 10,943 calories per gram, or 19,697 B.Th.U. per lb.
14. $2.915 \mathrm{cu} . \mathrm{ft}$. $0.845 \mathrm{cu} . \mathrm{ft}$.

Chapter XVIII

1. 71.0 per cent. ; (1) 9.52 lb . ; (2) 9.93 .
2.

	B.Th.U.	Per cent.
Total heat value of 1 lb . of dried fuel	14,000	$100 \cdot 00$
Heat transferred to water (thermal efficiency)	9,955	71.11
Heat carried away by products of combustion	1,603	11.46
Heat carried away by excess air . . .	860	6.24
Heat lost in evaporating and superheating moisture in the fuel	25	0.02
Heat lost by incomplete combustion	749	5.45
Heat lost by unburnt carbon in ashes	32	0.03
Unaccounted for .	776	$5 \cdot 69$
Total	14,000	$100 \cdot 00$

3.

	B.Th.U.	Per cent.
Gross heat supply entering engine per minute	37,480	$100 \cdot 00$
Heat equivalent of I.H.P. . .	4,665	12.44
Heat leaving engine in jacket drain .	1,037	2.76
Heat leaving engine in exhaust steam . .	29,812	79.54
Unaccounted for	1,966	$5 \cdot 26$
Total	37,480	$100 \cdot 00$

Thermal efficiency $=13 \cdot 52$ per cent.
4.

	B.Th.U.	Per cent.
Gross heat supply entering engine per minute	148,880	$100 \cdot 00$
Heat equivalent of I.H.P. Heat leaving engine in jacket drain Heat leaving engine in exhaust steam Unaccounted for	20,962	14.07
	5,760	3.87
	93,838	63.03
	28,320	19.03
Total	148,880	100.00

(a) 15.16 lb. ; (b) 15.19 per cent. ; (c) 163 B.Th.U. ; (d) 0.584.
B.
(a) 10.98
B
C
(b) 75.81
10.45
$72 \cdot 17$
10.48 tb .
$72 \cdot 32$ per cent.
6.

7. (a) 28.2 ; (b) 24.37 ; (c) 86.4 per cent. ; (d) 27.68 per cent.; (e) 23.92.
8. (a) 25.1 ; (b) 21.9 ; (c) 18.2 per cent. ; (d) 20.9 per cent.
9. (a) I.H.P. $=50.9$, B.H.P. $=30.45$; (b) $0.37 \mathrm{lb} ., 0.63 \mathrm{lb}$.; (c) 2158 B.Th.U.; (d) 1365 B.Th.U.; (e) 1917 B.Th.U.
11. (a) 390 ; (b) 30.76 ; (c) 78.8 per cent.; (d) 30.0 per cent.; (e) 23.8 pet cent.; (f) 0.59.
12. (a) 28.6 per cent ; (b) by steam 970 B.Th.U., by dry air 1501 B.Th.U.: total $=2471$ B.Th.U.; (c) 99 B Th.U.
13.

	C.H.U.	Pet cent.
Heat in 1 lb . of oil	10,720	$100 \cdot 00$
Heat converted into work (thermal efficiency).	4,242	39.57
Heat rejected to cooling water	2,309	21.54
Heat rejected to exhaust . .	2,743	25.58
Unaccounted for . .	1.426	13.31
Total	10,720	100.00

INDEX

Air, composition of, 386
-, curve of state for, 68

- engines, 85 et seq.
-, moisture to saturate. See Steam and air mixtures, also, 428
Ammonia, 321, 341
Analysis of flue and exhaust gas, 389 et seq.
Atomic weight, 381
Auxiliaries, allowance for, 416
Avogadro, law of, 7, 11

Bell-Coleman refrigerator, 314
Black body condition, 345
Blading, design of, 235 et seq.
Blanketing, 265
Blower turbo, 112 et seq.
Body, black, 344
-, grey, 345
Boiler draught, 404

- test, 411

Boiling-point, 2
Boyle, law of, 4, 6, 10
Brine, circulation of, 312, 331
$C=\frac{K}{\rho S}, 351$
Callendar, 13, 73, 119, 443
Calorific value, 382 et seq.
Calorimeter, steam, 134 et seq.
-, exhaust gas, 288, 425, 432
Carbon dioxide, curve of state for, 69 , 334

- -, properties of, 341 et seq.

Carnot, principle of, 44
-, cycle of. See Cycles.
Charles law of, 4, 6, 10
Charts, of state, general, 63 et seq.
-, -, choice of, 72

- for $\mathrm{CO}_{2}, 334$
- for steam, 70, 71, 125, 126
-, Glaisher's, 144
-, psychometric, 144
Chimney, height of, 405
Clapeyron, equation of, 60
Clausius, integral of, 50
Clearance, 110, 279
Conggregation, 13
Coefficient of expansion, 1,3

Combustion, 380 et seq.
-, process of, in 1.C. engines, 301 et seq.
Compression, adiabatic, 2
-, formula for, 20

- ignition engines, 271, 307
-, isothermal, 2
-ratio, 36, 273, 305, 307, 308
-, wet and dry, 338
Compressors, air, 93 et seq.
Condensation, cyclic, 173 et seq.
Conduction, heat transfer by, 80, 347 et seq.
Conductivity, table of, 352
Convection, 361 et seq.
Coolers, 374 et seq.
Co-ordinates, oblique, 72, 334
Curves of state. See Charts.
Cushion, steam, 170, 175
Cycles, Bell-Coleman, 314
-, Carnot, 29, 30, 33, 40, 54, 86, 149
-, closed, 27, 28
-, comparison of, 36, 276
-, composite, 271
-, compression-ignition, 271, 307
-, constant pressure, 35, 39, 268
-, - temperature. See Carnot cycle, also, 33
-, - volume, 33, 266
-, Diesel, 268
-, dry steam, 164
-, Ericsson, 88
-, Joule, 90, 314
-, Kirk, 314
-, Lightfoot, Linde, 340
-, non ceversible, 49
-, Ottu, 266
-, Rankine-Clausius, 150, 156, 160
-, regenerative. See Stirling and Ericsson cycles, also, 165, 208, 261
-, reversed, 44, 312 et seq.
一, steam, 33, 147 et seq., 164, 165, 261
-, Stırling, 45, 86, 314
-, Stokes, Vorhees, 339
-, Wilohausen, 340
Cylinder-head design, 304

Dalton, law of, 7, 11, also 139, 323
Density, table of, 352
Detonation, 302, 309

Dew－point， 141
Diagram efficiency， 249
－factor，170， 199
Diagrams of state．See Charts．
－－，choice of， 72
Diesel cycle， 268
Diffuser， 227
Diffusivity， 351
Dissociation， 299
Draught， 404
Dryness fraction，65，129， 134 et seq．
——，optimum， 335

Efficiency，condition for maximum， 46
－，internal， 255
－，stage， 254
Elasticity， 1 et seq．
Electrolux， 323
Emissivity， 345 et seq．
Engines，gas，I．C．oil and petrol，85， and Chaps．XIV and XVIII
－，steam，Chaps．XI and XVIII
－，一，compound， 193 et seq．
－，－，unifow， 186
－，一，warming， 317
Entropy， 48 et seq．
Ericsson engine， 88
Evaporation below boiling－point， 11
－，latent heat of，2， 9 et seq．
－corrected， 416
－equivalent， 416
Evaporators， 318
Expansion，adiabatic，2， 14 et seq．
－，coefficient of thermal， $1,3,4$
－，compound，109， 193
－，isothermal， 2,14 et seq．
－，over－and under－， 224
－，ratio of，38， 268

Flame，propagation of， 301
－，radiation from， 346
Freon， 341
Friction，81，115，220，227，253， 288
Fusion，latent heat of，2， 9

Gamma，values of， 12
Gas，constant，the universal， 8
－laws，4， 12
－，perfect，3， 64
－，permanent， 64
－，producer，396， 433
Glaiaher＇s tables， 143
Governing，steam engine， 204
－，I．C．engines， 432

Haslam and Hall refrigefator， 314
Heat，conduction of， 347 at sag．

Heat，cumulative， 254
－Engine Trials Report，383， 384
－losses， 75 et seq．，287， 359
－reception during expansion，20， 22
－recovery lines， 182

- ，radiation of， 343
- ，specific，table of， 352
－，－，calculation of，403，415， 426
一，－，variation of，53， 295
－，total， 76
－，transference of， 343 et seq．
－，volumetric， 7
Humidity， 142

Indicator diagram，169，196，277， 282
Injector， 228
Irreversibility，75， 116
Jacket，steam，164， 187
－，water，97， 287 et seq．
Joule，cycle of，90， 314
－，equivalent of， 3
－，law of，7， 11
Joule－Thompson effect， 73
K \｛ Velocity ratio， 237
Coefficient of conductivity， 347
Kirk refrigerator， 314

Lagging，349， 360
Latent heat of fusion，2， 9
－－evaporation，2， 9
Laws of thermodynamics，10，54．See also Avogadro，Boyle，Charles， Conduction，Dalton，Joule，Nernst， Reynault，Stefan，Willans．
Leakage of heat，185．See also Heat lusses
Lightfoot cycle， 340
Linde cycle， 340

Matter，states of， 1 el seq．
Mean effective pressure，29， 170
Meaning of R ，volumetric hest， 7
Melting－point， 1
Missing quantity， 177
Mol， 8
Molecular theory， 8
－weight， 381
Mollier chart，68，71，125，334
Motor，air， 93 et seq．
n， 21
－，value of，for air， 97
一，－，一 gteam，125，174， 215
$\rightarrow-$ I．C．enginea， 279,295
Negativo loop， 279

Nernst, law of, 54
Nozzle, steam, 211 et seq.

Orifice, flow through, 211 et seq. Otto cycle, 266

Performance, coefficient of, 313
Pink, 302
Pound-molecule, 8
Preheating for air motor, 109
Preignition, 302
Pressure, absolute, 4
Pressure Equalisation of, 75, 79
-, maximum permissible, 275
-, mean effective, 29, 170

- ratio, critical, 214

Priming, 182
Process, irreversible, 75 et seq.
—, reversible, 43

Quantity, missing, 173

R, 6, 7
Radiation, 343
Rankine-Clausius cycle, 150, 155, 160
Refrigerants, choice of, 341
Regenerative cycle, 208, 261
Regenerator, 86, 88, 165, 261
Reheat factor, 253, 291
Residual gases in I.C. engine, 304
Reynault, law of, 7
Reynolds, 41, 361
Ricardo, 287, 305
Roughness in I.C. engine, 306

Specific heat, 1, 3, 7, 53, 295, 352, 403 et seq.
Speed ratio, 237, 249
State, factors of, 48 et seg.
-, curves of, 63 et seq.
-, see also Curves.

Steam and air mixtures, 139, 428

- cushion, 170, 175
- cycles, 33, 147, 165, 261
-, mixtures of, with air, 118
一, properties of, 118 et seq., 443
-, superheated, 46, 159, 189
- tables, 68, 120, 443

Stefan, law of, 344
Stirling cycle, 86
Stokes cycle, 339
Supersaturation, 64, 225

Temperature, critical, 3, 64, 332
-, cyclic fluctuation of, 173, 351
-, scale of, thermodynamic, 45

- suction, 278, 291

Tests of engines, etc., 408 et seq.
Thermodynamics, laws of, 4, 10, 54
Throttling, 75, 79, 129, 136, 325
Turbine, 166, 437, and Chaps. XII and XIII
Turbo blower, 112, 318
Turbulence, 303

Uniflow engine, 186
Van der Waals, 13, 64
Vapour to sarurate air, 428. See also Steam and air mixtures.
Variables, independent, of state, 48
Velocity, peripheral, 113
-ratio, 237
Volume, defect of, 13

- occupied by mol. wt. of gas, 7

Volumetric heat, 7
Vorhees cycle, 339

Water, specific heat of, 13, 119, 443
Wildhausen cycle, 340
Willans, law of, 206
Wilson line, 225
Wiredrawing. See Throttling.

HRESCR[BLD) AS A
Not to be insued withuut $1^{\text {mermission }}$

[^0]: Enginkering Dspartment, H. WRIGHT BAKER.
 Tees Victoria Univirgity of Manchester, Soptember, 1938.

[^1]: ${ }^{1}$ See critical temperature, p. 3.
 (Note: Work is done when a force moves its point of applicution or when an expanding gas has its change of volume resisted. A force which doem not move its point of application and a gas, whatever its preasure, which doee not expand, does no work.)

[^2]: 4 The onse when seither p not 0 remain constant in comaidered oa p. 6 .

[^3]: 1 "In a gas the specific heat at constant pressure is independent of the pressure," is the "third" gas law, due to Regnault, the laws of Boyle and Charles are the first and second.

[^4]: ${ }^{1}$ As the mase of a molecule is constant its ability to dispose of its kinetic energy to another molecule with a given motion will depend on its velocity, in the aame way that its ability to dispose of its heat is dependent on its temperature.

[^5]: 1 Approximately 3.03×10^{23} in 1 litre of hydrogen at N.T.P.
 The velocity of travel is of the order of 1 mile per second.

[^6]: 1 In solving numerical problems, the reader is warned against the habit of merely inserting numerical values in a symbolic formula which is either extracted complete from a text-book or quoted from memory. That way lies disaster. Wherever possible a start should be made from "first principles."

 It must be assumed that the numerical examples worked in this book are to be taken in conjunction with the proofs of the equations given in the text, and with any statementa of limitations which may apply.

[^7]: 1 Total expansion is here used to differentiate between the changes of volume due to the total outward movement of the pioton ($v_{c}-v_{a}$) (Fig. 9) and that portion occupied by adiabatic expansion ($e_{c}-v_{b}$).

[^8]: ${ }^{2}$ A weight possesses an absolute potential energy due to its attraction towards the centre of the earth, but the only portion of this which can be utilised is that liberated while falling from a height on to the earth's surface. More could be liberated if a well were dug into which the weight could be allowed to fall, but the proposition is obviously unsound. It would be similarly possible to produce a sink of heat below T_{2} by the employment of a refrigerator, but the latter would have to restore the waste heat to T_{2} before it could be discharged, in the same way that soil from the well could only be discharged at ground-level.

[^9]: 1 In the case of a wet or saturated vapour, p, v and T are not independent variables, and the gas laws do not hold.

[^10]: ${ }^{1}$ An excellent Mollier chart is published by Arnold at 5s., and a less claborate one is in course of preparation by the I.Mech.E. and the Board of Education.

[^11]: ${ }^{1}$ Engineering, June 6th and 20th. 1941.

[^12]: 1 In this and the previous case the working fluid or conducting medium remain unchanged and the change of ϕ cannot be expressed in terms of the state of either.

[^13]: 1. In a simple compressed air installation the compressor draws in air from the atmosphere, and compresses it adiabatically to twelve atmospheres. The temperature of the atmosphere is $60^{\circ} \mathrm{F}$. In the mains the air is cooled at constant pressure to its original temperature, and is then delivered to the motor, where, after cut-off, it expands adiabatically to atmospheric pressure. Estimate the efficiency.
 2. Estimate the B.H.P. of the engine required to drive an air compressor that takes in 260 cu . ft . of air per minute at $60^{\circ} \mathrm{F}$. and at atmospheric pressure, and compresses it adiabatically in one stage to ten atmospheres. Assume the mechanical efficiency of the compressor to be 86 per cent. and neglect all losses due to clearance, etc.
[^14]: 1 "Enlarged Steam Tables," Callendar; "Thermo-dynamic Properties of Steam," Keenan and Keyes, pub. John Wiley, 1936. The Centigrade Heat Unit (C.H.U.) is no longer officially recognised by engineers.

[^15]: ${ }^{1}$ Enthalpy is defined as the sum of the internal energy and the heat equivalent of the product of the pressure and volume. The enthalpy of water is thus the internal energy in the water plus the work done by the feed pump on the assumption that the initial pressure is zero.

 2 The term Total Heat and the symbol H apply to steam whatever its state of dryness or superheat, and not only, as here, to steam in the dry saturated condition.

[^16]: ${ }^{1}$ It must be stressed that the term Diagram Factor applies to an entirely arbitrary but very convenient and specific comparison between an actual diagram and a diagram bounded by five lines as follows : (1) a line of constant pressure equal to that measured on the boiler side of the engine stop valve ; (2) a hyperbolic expansion curve through the specific volume point corresponding to the above; (3) constant volume release at v_{2}, the total cylinder volume including clearance ; (4) constant pressure exhaust at condenser or other back pressure measured close to but not in the engine, and (5) zero volume. The hypothetical diagram showe no clearance volume effect.
 ${ }^{2}$ For original discussion, see Mellanby, Proc.I.Mech.E., 1905 ; and C. H. Innes, Practical Engineer, June 17, 1892

[^17]: ${ }^{1}$ See also First Report of Steam Engine Research Committee, Proc.I.Mech.E., 1905; Lobley in The Engineer, Feb. 9, 1912; "Effect of Steam Jacketing of a Compound Engine," Proc.I.Mech.E., 1905; Mellanby, "Surface Condenation in Steam Cylinders," Dec. 21, 1911.

[^18]: ${ }^{1}$ See also the following papers: Institution of Mechanical Engineers, Proceedings. Steam-Jacket Research Committee's Reports : First Report, 1889, p. 703 ; Second Report, 1892, p. 418 ; Third Report, 1894 , p. 535. SteamEngine Research Committee's First Report, 1905, p. 171. "Effects of SteamJacketing upon the Efficiency of a Horizontal Compound Steam Engine," by Professor A. L. Mellanby, 1905, p. 519. "The Triple Expansion Engine and Engine Trials at the Whitworth Engineering Laboratory, Owens Colloge, Manchester," by Professor O. Reynolds. Proc. Inst. C.E., vol. xcix, p. 152.

[^19]: ${ }^{1}$ Proc.I.M.ch.E., 1905, p. 300.

[^20]: 1 Petrie, " Modern Pructice in Heat Enginen."

[^21]: 1 "Notea on the Dalby Watmon form of Optical Indicator," Baker Praci_Mech_IE, 1923.

[^22]: 1 With a suitable exhaust system and valve timing the negative pressure may be used to effect an appreciable scavenging and recharging effect which may be supplemented by the use of pressure surges in the induction pipe.

[^23]: ${ }_{1}$ Ricardo, Autamobile Enginear, Sept., 1922.

[^24]: ${ }^{1}$ See Gibson, Procoedings I.Mech.E., 1915.

[^25]: 1 Watson, Proc.I.Mech.E., 1912.

[^26]: 1 For further details reference can be made to "Evaporating Apparatua," Hausbrand and Heastie, pub. Benn.

[^27]: 1 The difference between liquid ammonia and "ammoniacal liquor " or solution of ammonia in water should be noted. The former is a colourless liquid exerting a vapour pressure of about 100 lb . per sq. in. at room temperature, and is highly dangerous unless skilfully handled; the latter in its commonest form is "household ammonia."
 11

[^28]: 1 Appendix to "Piston Temperature in a Sleeve Valve Oil Engine," Imet.Mech.E., Sept. 1937.

[^29]: 1 "Report on the Trbulation of Heat Engine Trials Reports." Pub. William

[^30]: ${ }^{1}$ For descriptions of calorimeters, details of fuel analysis, etc., see "Fuel, Gaseous, Liquid, and Solid," Coste and Andrews. Pub. Griffin.

 2 Dry fuels not containing hydrogen have one calorific value only. All wot fuels or fuels containing hydrogen have two values on account of the final moisture content.

[^31]: 1 "Fuel, Gaseous, Liquid and Solid," Conte and Andrews.

[^32]: ${ }^{1} 1120=$ total heat of steam at 14.7 lb ., from $62^{\circ} \mathrm{F}$.

[^33]: run under test conditions for 1 hour before the tri Committee of the I.C.E. recommend that, after warming up, a boiler should be ure stability, and that the duration of the trial should be such that the coal plant should then be run for one more hour under the than 25 lb . per in. of thickness of the fire, with a minimum of 4 hours. The
 wials the varying thickness of the fire may introduce serious errors owing to the difficulty of estimating the thickness of the coal bed.

[^34]: 1 The figure of 17 per cent. recommended by the Engine Trials Reports Committee is a comprornise over an snormous range of possibilities, and its use is unjustified in this case.

