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PREFACE 

In this book are reproduced the six public lectures which I 

delivered at the Calcutta University in 1925. The Appendices A and 

B are intended to add to the usefulness of the book as an introduction 

to the theory of elliptic functions and higher transcendentals, and it is 

earnestly hoped that the publication of this book may popularise the 

study of elliptic functions among advanced students of Higher Mathe¬ 

matics. 

I take this opportunity to express my gratitude to my colleague, 

Dr. Bibhutibhusan Uatta, who read all the proof-sheets and whose 

ungrudging help has considerably improved the printing of the book. 

Calcutta, Ganesh Prasad. 
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FIEST LECTURE 

Elliptic Integrals. 

Colleagues, students and other gentlemen ! 

It is a source of great pleasure to me to find in this hall such a 

large gathering of brilliant mathematical scholars. I hope and trust 

that my lectures will inspire some of them with enthusiasm for the 

subject of Elliptic Functions about which, borrowing the words of one 

of the greatest living leaders of mathematical thought, I may say: 

“ Not even a centiiiy has yet elapsed since the elliptic functions were 

fii’st introduced in Mathematics. From that time on the theory has 

increased to such an extent that now-a-days scarcely any other field of 

Mathematics can offer such an abundance of formal results and such a 

wealth of applications to different branches of the exact sciences. 

Moreover, the prophetic divination of Euler has become a reality, the 

discovery of this theory has essentially extended the bounds of mathe¬ 

matical analysis. New fields have been opened for mathematical 

thought and the number of fundamental ideas with which Mathematics 

operates has been vastly increased. A careful analysis of these funda¬ 

mental ideas has formed the point of departure of a great number of 

investigations, the results of which form the peaks of our present day 

knowledge in Mathematics.” 

1, What we call an elliptic function may be briefly defined as the 

inverse function of an indefinite integral of the form 

r 
0 

■where w is '/Af^+Be’ + Oc’+Dc+E, A and Bare not both zero, 

and to) is any rational algebraic function of * and w. The integral 

is now called an elliptic integral, although in the writings of Legendre 

it is designated “ elliptic function.” 



2 THEORY OF BLLIFTIO FUNCTIONS 

2. The early history of elliptic integrals may be said to date from 

1655 when Wallis considered the question of finding the length of an 

arc of an ellipse. The example of Wallis was followed by a number of 

distinguished mathematicians, including Jacob Bernoulli, Johann Ber¬ 

noulli and Count Fagnano, who were led to elliptic integrals in connec¬ 

tion with the rectification of various curves. Fagnano (1682-1766) 

began his investigation in 1714 and his earliest published paper of the 

year 1715 contains a remarkably simple solution of the problem of the 

halving of the quadrant of a lemniscate which I proceed to give to you 

on account of its historical importance. Fagnano was justly proud of 

his solution and left instructions that on his grave a lemniscate should 

be shown inscribed in recognition of his achievement, 

Solution of Fagnano: 

Let {.e*t/*) be the curve and let 0 be the origin 

and A be the other point in which the quadrant cuts the axis of 

The problem is to find a point:T such that 

arc OT=arc AT. 

Let — = y/t+t*, 

Then, if S corresponds to ^=fn, 

arc OS 
— a/-2 J 

dt 

Putting ^we have 
1 + v 

f* dt /•» dv_/■' 

Therefore, if M corresponds to 

we have 

l-m 

1 + m ^ 

arc OSssarc OA—arc OM=aro AM. 

then M and S coincide, and we get the required point T, 



Elliptic int£qbal& 

3. The results of Fagnano’s researches were collected and published 

by him in 1760 in his book entitled “ Produzioni Matematiche.” The 

early history of elliptic integrals ends with 1750, If I were 

asked to give the subsequent history of elliptic integrals and allied' 

transcendentals in six words, I could do no better than 'mention the 

names of L. Euler (1707.1783), A. M. Legendre (1752-1833), N. H. Abel 

(1802-1829), 0. G. J. Jacobi (1804-1851), Riemann (1826-1866) and 

K. T. W. Weierstrass (1815-1897). 

4. Fagnano sent a copy of his book to the Royal Academy of 

Sciences of Berlin which forwarded it to Euler on the 23rd December, 

1751, for consideration and report, Jacobi called that day the birth day 

of elliptic functions. As early as 1698, Johann Bernoulli had noticed 

that 

/(a!)dx±/(y)dy=0 

had as an integral an algebraic relation between a?, y even if 

was a logarithm or an inverse trigonometric function, and he had for¬ 

mulated the question whether that property might hold for other 

transcendentals than the logarithm and the inverse trigonometric 

functions. Fagnano was the first to prove that that property was 

found in at least certain classes of elliptic integrals. For example, 

Fagnano showed that the equation 

- - I 
-i-cx* 

was satisfied by an algebraic relation between r and y. The study of 

Fagnano’s book encouraged Euler to study the subject of elliptic inte¬ 

grals and, on the 27th Jan., 1752, he came out with his first paper on 

the subject, which is on the integral j and relates to Fagnano's 

investigations on the lemnisoate. Next year he gave the general inte¬ 

gral of the difEerential equation 
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(see Nova Comm. Potropolitana, Vol. 6) in the form 

yVl^ +c 
l+c*y* ’ 

6 being a constant, and was thus led to the addition theorem for 

/d6 

Tt r _ r 

then -3? is an algebraic symmetric function, of a and y, namely, 

sa +4?a/1—y* 
l + a}*y^ 

5. In the year 1767, Euler published the complete integral of the 

general equation 

7X + VY 

where + B45* + 0*15* + D.C+E and Y=:Ay* + By* + 0y* + Dy+E. 

• The following method is a modification by Euler of the elegant proce¬ 

dure given by Lagrange in 1768 (Mwc. Taunnensiay Vol, 4). 

Take ^ and y to be functions of a variable then the above equation 

is equivalent to 

— = 'n/X ^=— 
dt 'dt 

Put *+y=j>, x—y=sq ; then 

^=^+^=a VX - a/Y , 
dt dt dt ’ 

^=v'X + a/Y, 
dt 

^=-2?X differentiation) 

a?l+I!=D + C(^+y)+|B(x*+y*)+2A(a*+y»). 



BliLlFTlO INTEOBALS 5 

Now&.|2=X-Y=(*-y) [D+C(a:+j,)+B(** + *j,+j,*) 

+ A(a:+y)(®*+y’)]. 

Therefore (x—y) ^ ^=(*-y)*[iB+A(^+y)J 

i.e., 

Z.C., 

i.e.* 

* d<* dt^ dt » X f) 

_2^_2 <i^#_B+2Ap 
gMi* 9* di 

1L.( =B+2A/> 
qdt \ qdt y 

d ( \dpy_^dv ^d{p*) 
dt \ qdt J dt dt 

i.e., 

C ^^^ ~ constant (say F ) 

2 
/ a/X-a(Y\ _B(a,4.y) + A(.j.+y)*+p. 
\ a;—y / 

6. I propose to proceed to apply the above complete iDteg!r*al to 

determine the addition theorem for the function ^(w), given by 

^oo 
i ds 

Consider 

«=«(«) 

ds ds ^ =0. 

Put A=0, B=4, C=0, D = —y,, E=—^3, in the complete integral 

of the preceding article. Therefore the complete integral of the above 

equation is 



ISSOBX OF BiiLIPTlO FONOTIONS 

-<2w, for t being put Q (u) ; 

CM. 
and similarly =—c2U, fors^ being put H (U); 

we have U+usra constant, say a. 

Thus t8(tt)=s, ^(a—u)=s,, 

Soo 

""I--^ 

^ V 1- - ^^L 
' 4s* is* 

Therefore 

«(«) 

=l/''^^Itt)+lower powers of ®(a) 

Therefore when m=0, <8(«) = oo- 

Hence 9(u) 

and %'(**) 

Therefore, writing (1) in the form 

[4«*(«)--j,«(m)—p,+4«*(o—m)—p,«(a—«)--p. 

4{«(«)+«t»—tt)}{«(«)«(o-M)- ^}—2jf,-2n'(u)9'(a-tt) 
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«.e., 

4 ^1 r<pfa fl't ■) _ 2gf, __2«'(m)«'(o 

( , tt) ') * 

v"“ 

and taking the limit for tt=0, we have 

F=:4«{a). 

' = P 

Therefore 

i( ^.^!L°~y} V - ( m) - g (a-«) = ^. a)> 

Put a=w + v, then we have the addition theorem 

7, Euler obtained the complete integral of the equation 

md r, ndy 
VT^ “ v'izf^4 

and showed that it was expressible as an algebraic function of a*, y and 

an arbitrary constant. Thus Euler gave the fundamental ideas con¬ 

cerning the addition and multiplication of elliptic integrals of the first 

kind. 

8. I propose now to introduce to you the transformation theory. 

One method of solving the equation 

dx 

is to assume beforehand an algebraic relation between x and y and 

determine the coefficients in that relation so that the above equation 

may be satisfied. It is easy to see that a linear relation, leaving the 

trivial case of is impossible. Euler assumed the next relation in 

order of simplicity and put 

(aoj*+26.«+c)y* + 2(a'ic • +2Vx+c^)y+a*^x^+2V* x+<f=0 
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and determined all the constants with the exception of one, which would 

be arbitrary, in order that the equation 

dx , dy 
tx + ty =0 

might be satisfied. This form of the complete integral was used by him 

to deduce the addition theorem : 

■S 

dz 

then the upper limit z is connected with x and y by the algebraic rela¬ 

tion 

* l-h*x*y* 

9. Before mentioning the general transformation problem of 

Jacob), 1 wish to give, on account of their historical importance, the 

transformations of Gauss and Landen, Acccording to Gauss, 

_dr_dy_ 

ifhen -_y 
l+iq*y 

i.p.=p+ V'p'-g*. q^=zp-Vp*-q* 

according to Landen and Lagrange {Phil. Trans. 1771), the transforma¬ 

tion 

_dr_ 

changes 
_^_ 

into 
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where p, =:i (p+g), 

10. Calling 6o+h.»+6,»* + 
... + «,>•* 
••• + 

a transformatioa of the order, Jacobi showed that, by suitably 

choosing the constant coefficients, the transformation changes 

'^A, + Biy + 0,y*+Di2/»+B,y« 

into 
1 _ dx_ 

^ -FBj! + Cx* + D** + Ea* 

where M is a constant. It follows that two transformations of orders 

w and wij are equivalent to a single transformation of order mmand 

that all transformations admit of being made up out of the trans¬ 

formation of the 2nd order and those transformations which correspond 

to prime numbers. Whilst Jacobi restricted himself to the consideration 

of a special type of relation between y and a?, Abel’s transformation 

theory dealt with the solution of the more general case where jc and y 

are connected by any algebraic relation, rational or irrational. 

If 

f_^ 1 f_ y-/cl-y'Kl-i'y*) Mjv'll-. 
dx 

then the relation * between k and I is called a modular equation 

and the relation between M and k is called a multiplicator equation. 

* The transformation problem for linear t'^ansformations was first solved by 

Abel {Crelle*s Journalt Vole. 3 and 4) who gave all the six solations which are 

(1) l-±fc, ±®. +1. 
M - 

(2) 
. O’ 

• y=±l 

II 1+
 

(8)1- 
/ ’ I-yft V ^ 1+ ■y/k l±ms^k 

±l . 1+ A/fc y. y-f l-y/k' T+mVk' 

(4) 1- 
{ 1+Vfc 1-V* l+x-/k 

■n l-^/k ). »=±- TTW' 
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Denoting by u and by the tuodnlfir eqnidiipBBl for the 

transformations of the 3rd, 5th, 7th and 11th orders are respectively 

V*=0, 

tf®—i**t**)*-f5f**e*(t^*—e*)f=:0, 

e*—88tt^e^ —50f*®e* +28<**e* —8ue+M« =0, 

and 

t.'«-e»'tt»(22-32tt«)+44e'®w®+22e«ti(l+4a®)+166e®a* 

+ 132tt^e^ +44w*e®(l—w®)—•l32w®t;®-“166v*w® —22t«®v®(4+w®) 

—4f4e*tt® —tte(32^22ti®)*-f<^ ® =0* 

The multiplicator equation for the transformation of the 5th order is 

(Z~l;O-4(Z-l;®+266)t®(l-.Jt®)(Z-l)+25et®(l-fc«)=;0, 

Z standing for^ 

11, When Legendre took up ip 1786 the consideration of the 

theory of elliptic functions^ Euler’s addition theorem and the trans¬ 

formation theorem of Landen and Lagrange were the two fundamental 

ideas which the theory then contained. After working for nearly 

forty years, Legendre collected his results in his famous book 

Traits des fonetions elliptiques et des int^grales euldriennes ” (Paris, 

2 Vols. and three supplements, 1825-1828^. Writing of Legendre’s 

achievement, in 1852, DIrichlet said, It is the unforgettable* distinc¬ 

tion of Legendre to have recognised in the discoveries of Fagnanoi 

Euler, Landen, and Lagrange the seed of an important branch of 

Analysis and to have built up on these foundations by the work of 

half a lifetime an independent theory which comprehends all integral^ 

in which no other irrationality occurs than a square root and in which 

the variable does not go beyond the fourth power.” 

/ 1** V \* l-¥ /-fc l±uv^k _ 

(6) I-±\^ 1+V^ }> »“± » 2M-±i(l+V-fc )». 

/ 1+v'^V 1-./^ „„ .... 
l-/-r/' ) . 
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12. Legendre first redaees the general elliptic integral to the 

two farms 

■ s djit 

(A + Bt+C4.*)<f(-<!) JU+«») 
dx 

/ (/) being the general polynomial of the fourth degree ; then he gets 

rid ot the odd powers of x from f (x) first by the use of the substitution 

)(•«—»*) 

-^4 being the four roots of /t/)±:0, 

and secondly by the linear substitution 

Next he puts 

and then changes 

iufco the form 

^ sin*^ 
Oi+Dj sin*<^ 

dc 

7f{^) 

\/l—c* sin*</»’ 

leaving aside a constant multiplier. The final result of Legendre is, 

that the most general elliptic integral must reduce to one of the three 

canonical forms: 

/ ~Jr~ f sin!^ . J vl—c* sin*9 J 

^ 
J (l-|“»sin* sin*«^) v^l—»o* sin*^* 

These are called by him the normal integrals of the first, second and 

third kinds and are denoted respectively by F((5, <l>y E(c, <^) and 

II(n, c, ^). Legendre submitted each of the three kinds of integmls 
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to a oarefal iDrestigation and discovered many of its most important 

properties. According to Dirichlet, it was only on account of his re- 

markable perseverance that Legendre made repeated efforts and over¬ 

came difficulties which in the then state of Analysis were almost 

insurmountable. 

13. An elliptic integral which reduces to an integral of rational 

functions is called a pseudo^elUpUe integral and the question of the 

conditions under which such a reduction takes place is of interest. 

This question was considered by Abel {Orelfe^s Journal^ Vol. 1) with 

reference to integrals of the form 

r/(r d. 

JvR(x) * 

where / and R are polynomials in x and he proved that there exist par¬ 

ticular linear functions x—a for which 

/(ag—a)<ic 

is a pseudo-elliptic integral if the continued fraction for v^R(/) is 

periodic and the period shows symmetry.* 

Degenerate forme of the elliptic integral 

_d*_ 

aj—a)(i*—y)(4J J) 

are obtained when two of the quantities a, y, 8 are equal; the integral 

becoming equal in that case to inverse circular or hyperbolic functions. 

* Bxamples. 

(1) 
m* + aiD-¥ ^/Ei 

+0®— v'R 

where R « (x*+axy+ex. 

(2) 

B « 

•4aj + fl dx -log. 9*+ax » 6-f -/R 
/"TiT-- asi+ax + ft-Vn 

(a5* +aa; + 6)*— 

+4log. +ax —6+ a/R 
a5* + a®—*6 — * 

where 



SECOND LECTURE. 

The old theory op Elliptic Functions 

13. The old theory of elliptic functions was built up chiefly by 

the labours of Abel and Jacobi and may be easily distinguished from 

the modern theory by the absence of the general ideas, based on the 

theory of functions of a complex variable, which we owe to Liouville, 

Eiemann, Weierstrass and Mittag-Leffler and which are closely inter¬ 

woven in the fabric of the modern theory. But the old theory was 

an absolute departure from Legendre’s ideas and contained as its 

corner stones the study of the inverse function of the elliptic integral 

and the discovery of the double periodicity ofj that function. Both 

these fundamental points were taken up by the rivals, Abel and 

Jacobi, independently of each other. 

14. Abel’s work on the subject dates back to 1823. In a letter, 

which he wrote to his friend Holmboe on the 3rd August, 1823, Abel 

expressed the opinion that the right way to study the elliptic integral 

was to consider the inverse function. His researches on elliptic 

functions appeared mostly in the first five volumes of Grelle^s Journal 

beginning with 1826, and some in Astronomische Nachrichten, The 

most important results were published by Abel in his memoirs 

“ Becberches sur les fonctions elliptiques’’ (Grelle's Journal^ Vols. 2 

and 3,^ 1827 and 1828) and “Precis d’une thforie des fonctions ellipti- 

ques” {Grelle^s Journal^ Vol. 4, 1829). According to Koenigsberger, 

Abel was in possession of the principle of double periodicity as early 

as 1825. 

15. Jacobi’s first paper on the subject of elliptic functions dealt 

with the transformation problem and appeared in Sept., 1827 in the 

Astronomische Nachrichten with the title “ Extraits de deux lettres de 

M, Jacobi de I’Universit^ de Konigsburg a Tediteur.” 

The second paper appeared in the same journal in December, 1827 

and contained the symbols which became current later on, viz.^ am 

sin am cos am VI—jd®, A am == VI —X:*ic®, where 

0 

d<l> _ 

Vl—.J* 8in*<^ 

0 

de_ 
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In 1829, aoon after the death of Abel, Jacobi published bis famous 

book, ** Fundamenta Nova Theoriae Functionum Ellipticalum,’* which 

contains in a very terse form the majority of the most essential results 

of the theory of elliptic functions as known to Jacobi. Jacobi’s subse¬ 

quent researches on the Subject appeared in CrelWs Journal and were 

intended to form a second part of the “ Fundamenta.’’ Jacobi left in 

his lectures a new foundation of the theory of elliptic functions, based 

on hitt Sbeta4unotk>ns. 

16. Although Abel’s resiarohes did not receive in his life-time 

that iq)pr6eiattoD which they deserved, in the very brief period of his 

exiatenea he did work whioh would continue to receive the careful 

attention ol mathematicians for centuries. According to Professor 

Mittag*>l4efflcr« Waierstrass was a great admirer of AbePs work and 

found muoh inspiration from it in his investigations on elHptio and 

Abelian functions. As regards Jacobi, Diriohlet wrote as follows : 

Jacobi’s aoientifio career covered exactly a quarter of a century and 

therefore a much shorter period than the careers of most of the earlier 

mathematicians of the first rank, it was scarcely half the length of 

the time over whioh Euler’s aotivities had stretched, although,'^ith 

Euler, Jacobi had a great resemblance^ not only because of his versati¬ 

lity and productivity but also because he had at every moment at his 

finger’s ends all the mathematicid resources,” 

17. After this historical introduction, I propose to give you first 

the elements of the theory. As 

we have ^=:am n, — ^ = am (— n). 

Thus am (—a) » — am (a), 

and, consequently, 

sin am (^a) = — sin am (a), 

cos am (—a) tsi cos am (a), 

A am (—a) =s A am (a); 

also it follows that sin am (0)±50, cosam (0}sr.l, A am ^0)=1. 
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Further 

t.e., 

Hence 

du 

d<i> 

d am u 

du 

d sin am u 

du 

d cos am u 

d/u 

= VI —fc*gin>aih(u) ss A am u, 

=008 am w. A am «, 

= —sin am u. A am w, 

d A am ^ 
du 

= — sin am w. cos am ti. 

Using the above results, we have the differential equation for 

sin am u :— 

^ +V{(l+fc‘)-2fc*s,*}=0, 

wheie y=:sin am u. 

18. In 1838, Gudermann, a pupil of Jacobi, introduced the symbols 

sn, cn, and dn for sin am, cos am and A am. In what follows, I will use 

the symbols of Gudermann. But before proceeding to give you the 

addition-theorems for sna, cnt* and dnw, I will explain a few ways of 

geometrically representing these functions. 

{a) Take a circle of radius B and centre C, and take a point O 

inside it at a distance 8 from C. Through 0 draw a chord POQ and 

mark on it a point p such that 

Qp-l I being a constant. 

Also let AB be the diameter of the circle through O. 

Then, denoting 

by„, 

where po thi intersection of the loons of p with the diameter through 

0, and the L POA by 2^, we have 

^ OP 4 4 . 2'v^a8 ^=am «, =dna, and *:= ^ . 

(() Draw the elastic curve with the line of tension as the x-axis. 

Then its equation is yp=c^i where p is the radius of curvature at (>r,y) 

and c is a constant, 
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If OA=a, AP=tf, where O is the origin, A the point in which the 

axis of y cuts the curve, and P the point {x\ y); then 

y s i =cn - 

(c) Take the quartic («* 4-y*)(< *+ 

and let S denote the area bounded by the axis of aj, the curve and 

the radius vector making an angle </> with the axis of x. Then, taking 

u for 

2S 

we have 

<^=amte, - =cnw,=snw, ^ =dnw, VI —h*. 
T r r* 

19. In my first lecture, I gave the addition theorem : — 

r* _^_ r* __ 

0 'o' 

+/■ 

then X V(l-—y* ){1 — y — 'C*)(l — 

I^kKc^ 

Hence, denoting the three integrals by w + r, n and v respectively, 

we have 

sn(M + t;) = 

Prom this follow 

cn(tt + t;) = 

dn(w+v) = 

snu. cnr. dnr. + snt;. cnw. dnw. 
1 — ^* sn*n sn*t; 

cnw. cnv—snw, snr. dnw. dnv 
1 —A;*8n*M sn*t7 * 

dnw. dnt?—A;*sn^. snr. cuu, cnt; 
1—^* sn*w sn®v * 

changing v into —v, and, remembering that 8n( —v)=:—sn(v), cn(—r) 

=:cn(t?), dn(—t;)=dn(v), we have 

Bn(f4—1;)=: 
snw cnv dnt?—snv cnu dnw 

1 —A;* sn^wsn'v 

wHh similar results for cn and dn. 
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20. As in the case of the circular functions, a large number 

mulae may be deduced from the results given above. 
For example, 

OT./0.A-. ^snw. cnu. dnu 

8n(tt+v) + sn(M-'^v) 
2sntt. jgnr. dnt? 

1—-/f* 8n*tt 8n*r’ 

/ , X , V 8n*t^ —8n*i? 

1+od(w+p^ cp(m—r)= . 
1 — k* sn*w 8n*r 

l + dn(M4*v) dn(«^i;) = 
dn*t> 

1 —$n*u sn^v* 

8n(w + v) cn(u f v)= 
snu, cnu. dnr jisur, enr. dnu 

1 —A;* 8n*w sn^e ^ 

8n(3u) = 
8nti{ 3—4(1 + ) sn^t^-f 6A;* A:* 8n*u } 

1—6k* sn^u + Ask'(I+ k* ) 8n®w—3/c* sn®^ * 

21* In order to prove that the functions snw, onw, dnw have each 

two periods, we may proceed as follows :— 

(a) ‘Let K stand for 

d<fi 

Vl’^k* sin*^ ’ 

then sn E=l, cn K=0, dnK=Vl —A;*, 

Now by the addition theorem 

/ , X snti. cnv. dnt7 + 8nt;. cnu. dnw i 
sn (w + t;) =-=-pr-5-;-1 

1 —A:* sn^u sn'r 
; 

Therefore, putting v=K, we'have 

/ . irx_^ ontidmi^ ^cnow 1 
8n(ii-fK)=r—,— ; 

^ ' 1—fc* Bti^u dnu 

8 
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Wbflarly 

on(«+K)=-fc' ^ and dn(«+K)=X, 

V standing for v^l—k* . 

and, consequently, 8n(ii+4R)=:8n u. 

t 
Thus it is proved that 4K is a period of sn u ; similarly it can be 

proved that 4E and 2K are respectively periods of on u and dn h. 

(6) Let K' stand for \ : , Now, since 

““f 

becomes 

2L-=C # 
% \ a/I —sin* ^ 

Jo 

On putting sin tan i/r, we have 

cn(tt, I/) 

on(fu, k)s 

and, consequently, 
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Therefore 
1 _ 

8n(« t!, k) ten^K', V) 

CD(tE', fc) 

^ —0 
dn(fK', i) ’ 

Also BD (2t K', A;)=0, cn(2iK', k)=—l, dn(2t K', i)=—1. 

Therefore, applying the addition theorem, we have 

an (u+2i K')=8n 

cn (tt4-2iK') =—cn u, 

dn {u+2i K')==~dn w. 

Thns 2tK! is a period of an u and 4t K' is a period of both cn u and 

dn u. Also 2E4>2iK' is a period of cn u. 

Therefore the following formulae hold, m and n being any integers s 

sn (tt+4mK+2nt £')=sn u, 

cn (u+4mK+2n K+iK')=cn u, 

dn (ti+2mK+4ntK')=dn i*. 

22. The three functions become infinite at every point of the form 

l♦=2mK+(2n+l)»K'; 

the seroB of sn, cn and dn are respectively 

2ntK+2niK', (2m+l)K+2m*K' and (2TO+l)K + (2n+l)iK'* 

23. I proceed now to express sn in terms of the ^-function which I 

introduced to you in my first lecture. We have 

{«'<«»)}■ =4«*(«) 
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and {8n'(a)}* =(l-8n*«)(l-*»sn*«) 

as 11 r*^ ^ d» 

Now put 
. «• 

®“ /tt\ ► 

where a and are two constants to be determined. 

Remembering that —(sn^w) =2sn w on m dn m, 

we have 2sntt cnu dnM= — 7^ . }> 

{IjKO} 

X{«(H)-^}; 

patting V fori —, we have 
CL 

{«'(v)}'=4{tJ(v)-i5-a»}{«(v)-/3-i*a*}{t|(v)-^}. 

Denote the zeros of the right side hy e,, e,, e, so that 

)8+o*=c„ i8+fc»«»*e„ y9«p,. 

Th0Bi|«fti^ A* < 1, «t > «« > 

Had o*sre,--e,, 

Now impose the conditions : 

«i'+fl,4»e»a*D, 
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Thus 8n*( Ve, —«..«) =-£j— 

and, converselj, 

24. A large number of expressions for the elliptic functions were 

obtained by Abel and Jacobi in infinite series and infinite products. 

The following are a few of the most important of these expressions given 
by Jacobi. 

I 00 

2Kx 1 n (1—25*" cos 
Id) Sn - =-=a_.-!?=,?:_ 

n cob2*+3*—*) 

2Kx /~W ^ (l+2g*’cos 2x+q*') 

^ = V -^56 - ’ •■■I 
** n(l-23* — * cos 2^+5*—•) 

«= 1 

«IC« „ ^ (l+2g*-> cos2x + 3‘*-») 
dn==? = v'r-§p- , 

n (1—23**-» cos 2*+3*—») 
n = i 

where q stands for 

(6) Denoting 

•=» n (i-ff*—*)* \ *• / •=* n (i-3“-‘)* 
• IICSl 

where 9(0) is a constant, and 

29^ sins; H (1-23*" cos 2j!+3*-) 

»=X 

by h(®^)^0(O), 

Jaeobi sxprNSsd the sUiptic functions sn cn, dn in terms of 0 and H 
thus:— 

1 H(tt) sn fiss'—=!=-.Jz_2^ 
Vk 0(a) ’ 

d,(.)=w.5^)- 
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In tbe above 

^ =vr 

(c) laoobi’s trigonometric series for the elliptic functions sn, on, dn 
are 

2kK /2Kx\ « 

——) =.?. 
and two similar series ; also 

2^ cos 2.c+2^* cos 4jj—2g* cos 6^ + ... 

sin 2g^sin 3.c+2g^ sin 5.»—2g^ sin Tx+,., 

25. In addition to the above two series which are generally denoted 

by 0(f) and 0|(f), Jacobi introduced two more theta-functions, vtz,^ 

0i(aj)=2g^ cos aj+2g^ cos 3aj+*»* 
and 

ff^(x)=:l+2g cos 24r+2g* 

The lectures of Jacobi on elliptic functions based on the theta-func¬ 

tions were written out by Borchardt in 1838 and mark not only .a great 

progress in the theory of elliptic functions but also prepare the way for 
the development of the theory of Abelian functions in particular and 

multiply-periodic functions in general. 

26. Although the Jacobian elliptic functions sn, cn, dn are being, or 

have been, discarded in favour of the Weierstrassian ^-function, the 

theta-functions still hold the field. According to Poincartf, the simpli¬ 
city of the development of these series, the rapidity of their conver¬ 

gence, the elegance of their properties assure to them a place of impor¬ 

tance and from this place they cannot be dislodged. For the numerical 

circulation of the various other elliptic functions, the theta-funotions 

are very useful. ^ 
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The Modern Theory of Elliptic Functions. 

27. For a clear understanding of to-day’s lecture and the next 

lecture, the following definitions will be useful:— 

(1) If / (z+2Q)=/then/(2) is called a periodic function and 

20 is a period of / {2). 

(2) If all the periods of a function can be represented as positive 

or negative integral multiples of one and the same period 2a), then 

the function is called simply periodic^ and 2a) is called the primitive 

period, 

(3) It a periodic function is not simply periodic and is not a cons¬ 

tant, then it can be shown that it is possible to find two periods 

2a), 2ia\ in an infinite number of ways, such that all the remaining 

periods can be expressed in terms of these by expressions of the form 

2ina)+2na)', m and n being integral ; in this case the function is said to 

be doubly periodic and each system of two periods 2a), 2a)' having the 

aforesaid property is called a primitive pair of periods, 

(4) If be any point, then by a period-parallelogram of a function, 

which has a primitive pair of periods 2a), 2a)', is understood the 

parallelogram of which the vertices are Zq, Zo-f 2a), 2o + 2a)+2a)'and 

ZQ+2(a ] the totality of points given by 2=20+2^cd+2^V, where 

0<t<l^ 0<^'<1, constitute the points of the parallelogram. This 

parallelogram is called the period-parallelogram z^, 

(5) A doubly-periodic function which has no essential singularity 

is called an elliptic function. 

(6) By the order of an elliptic function is understood the number 

of the poles of the function inside a period-parallelogram, each 

pole being taken as many times as its multiplicity for this calcula- 

^OiXK- 

28; The modem theory of elliptic functions may be most easily exa 

pounds by starting from the following fundamental theorems of which 

the was given by Jacobi in 1834 {Crelle's Journal, Vol, 13) and the 

rest hy Liouville in 1847 (see CrelWs Journal, Vol. 88), 

(I) The ratio of the periods in any primitive pair of periods of a 

doubly^periodio function is necessarily non^reaL ' 

(II) An elliptic function which has no pole must be a oonstanU 
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(III) The sum of the residues of an elliptic function with respect to 

the poles, situated in a period-parallelogram, is zero. 

(IV) An elliptic function of order 1 is impossible. 

(V) An elliptic function of order n must have exactly n zeros in 
each period-parallelogram. 

(Yl) In each period*parallelogram, the sum of the values of z for 

which an elliptic function / (z) is infinite is equal to, or differs by a 

period from, the sum of the values of z for which / (a) is zero. 

(VII) If two elliptic functions / («), (e), having the same periods, 

have, in any peried-paralellogrami the same poles, and further, if in the 

neighbourhood of each of these poles the infinite parts of their develoft* 

ments are the same, then / (z) must be a constant. 

(VIII) If two elliptic functions /(^f), (i^), having the same periods, 

have in any period-parallelogram the same zeros and the same poles 

/ (with the same multiplicities), then must be a constant. 

(IX) Between any two elliptic functions / (2), ^ having the 1 

periods, there exists an algebraic relation 

(*)}=0. 

with constant co-efficients. 

(X) Between any elliptic function / (2?) and its differential co-effi- 

olent/(«), there exists an algebraic relation with constant oo-effioients. 

(XI) Every doubly-periodic function can be expressed rationally in 

terms of a function of the second order, doubly-periodic with the same 

p^ods, and its differential co-efficients. 

29, After the introduction of elliptic functions in Mathematics by 

Abel and Jacobi, Liouville’s discovery of his theorems in the attempt to 

build up a complete theory of doubly-periodic functions starting from 

Jacobi's theorem (quoted above), was, according to Professor Mittag- 

Letter, the first contribution of fundamental importance to the theory 

df elliptic functions. Liouville’s first communication on the subject 

was made in 1844 (see Gomptes Bendus, Vol. 19, p. 1261) but he never pub¬ 

lished a detailed account of his discovery except in the shape of a lecture 

which he delivered in 1847 before Borchardt and Joaohimsthal and which 

wfaa published by Borchardt in 1879 in OrelWs Journal^ Vol. 89. On: 

aotount of the historical importanoe of Liouvilie's theomns, I proceed 

to give the proofs of some of them 

. Proof of Thocrem III. 

Take a period-parallelogram ABOD as indicated in the adjoinbd^ 

figurto \ ) 
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Now by Oanohy’s theorem 

is equal to the sum of the residues of / (z) inside ABGD. But 

(*) dzt f(t)dt+ 1/(.)J*+ l/(«)d*+ 

Now any point z in AB has corresponding to it a point z+2m' in 

OD snob that/(«)=/ (*+2«>') j therefore 

if (z) dz+ if (4d2s0, 

the two integrals being taken in the same sense* 

Similarly 

J. if iz) dz+ if iz) dz=0. 

Therefore the sum of the residues is zero. 

Hence also Theorem IV follows, for there cannot be a single pole of 

multiplicity unity. 

Proof of Theorem F. 

By a well-known theorem in the theory of functions of a complex 

TariablOi 

who*/(s) is a fnnotion haring only non>eBs«ntial singnlMrities within 

0| ^ (*) ^ no singnlarity within 0, and the a’s and b’s are respeotirely 

4 
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the Eeros and poles of / (c) within 0. Now apj>l7 this theorem (to the 

case ^ (s)=l and the elliptic function / (e). Then is itself an 

elliptio function. Hence by theorem Hi 0 being a period* 

parallelogram. Therefore, in 0, the number of the zeros of / («) is equal 

to the number of the poles of /(«). ^ 
Proof of Theorem F/. 

In the general theorem quoted above, put ^(2)=2?; thenjtaking 

0 as a period-parallelogram, it can be easily shown that the ;p9rts of 

the integral due to AB and CD together give 
20) 

- 2?' f 
2iri ) ■ 

d2=2maa)' 

/(«) 

where is an integer. Similarly the parts corresponding to BC 

end DA give 2mjW. Thus the theorem is proved. 

Proofs of Theorems VII and VIIL 

In Theorem VII, since/(a)—<^(2) has no pole, by Theorem (II) it 

must be a constant. ^ 

Similarly in Theorem VIII, '^j^^having no pole must be a constant. 

30. Let us construct the simplest elliptic function with a given 

primitive pair of periods 2a), 2<d'. In each period-parallelogram this 
function must have a single pole of multiplicity 2, and let one of the 

poles be z =0. Then consider the double series: , ^ 

t {2—(2m«+2W)}* (2ma>+2Mu)')* J’ 

where S' indicates that the summation extends to all integral values 

of m, n with the exception of the combination 0, 0, Now, at the outset, 

it is important to note that the double series is absolutely convergent^ 

For, 

_11 
{2—t2m<D4‘2bHr/)}* (2m<*)4'2ttiD')*) 

) .. 
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which fo^ namwieally large values of m and n behaves as ' ' 

2g ; 
(2m<o+2»<i>')* ’ 

' L 

since by Jacobi’s theorem 2m<D+2n<i)' has an ever-increasing modulus 

for nuiaerically large values of m and n. Also it ia a well-known result 

that the double series 

1 
^ 3 

converges absolutely when )3>2, a and h being any complex quantities 

having a non-real ratio to each other. Thus, as in the present case 

j8 is 3, the double series is absolutely convergent; let its sum be 

denoted hj f(z). 

Now 

f(z) = -22^^—, 

m and n having all possible integral valifes. Therefore it is obvious 

that /(2 + 2<o)=/'(2?), because the series tor f(z) will contain the same 

terms when * + 2<tfi8 put for z, the order of the terms being different,: 

and the series being absolutely convergent, change in the order of the 

terms will leave the sum unaltered. Therefore, integrating, /(*r+2a)) 

equals/(2;)+a constant. But f{z) is even, since the series for f{z) and 

/(—i?) are both absolutely convergent and contain the same terms 

arranged in different orders ^ and therefore /(<*))=/(—<*>). Hence 

the constant is zero and /(2? + 2a))=/i^). Similarly /(2-f2<D') 

equals/(2?). Thus f{z) is an elliptic function with the given, primitive, 

pair of periods and a single pole of multiplicity 2 in each period- 

parallelogram. 

No other elliptic function differing from f{z) by other than a 

constant and still having the aforesaid properties, can exist. For, if 

possible, let anothex^ elliptic function be 

z z 

in the neighbourhood'of e=o, where P(e) is a Tpowei^ series containing 

positive powers of z. Then by Liouville’s second theorem the residue 

0 must; be sero. Therefore, applying Theorem VII, we have /(*)—^(*) 

sBOonstant. We will denote /(*) by tS(s) _when the Qopstant term is 

absent from P(«). ’ '. 
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31. The above function was discovered by Weierstrass and is, as 
shown in the preceding article, the simplest elliptic function. It can 
be expanded in powers of e in the following manner,:;— 

In the series (A), 

I_}__ 

^_1_/ 1+_ 
(2tmi)+2na)')* C (2tn<a+2nw') (2ma)+2n(o'j* 

(2m<i)+2nw )*^ ** J (2ma)+2na7)* 

Therefore 

«(*)=^ + S Gr+* -(r+l)*', 
« 

where G, stands for Now, it is clear that G^ will be 
(2m<i)+2iu7)*’ 

xero when r is odd because m and n take all positive and negative 
integral values with the exception of the combination 0,0. Thus 

Gr+i is 0 unless r is even. Therefore 

1 2n —2 
(B) ^5(2)= —^ 

where = (25—1)2^ 

From (B) we have 

2n * 
(2?nci>+2n(*>^) 

t'(«) =-^ +2cftS-f4oae* + . 

Hence 

= ~ —16(5, + positive powers of «j 
s- « 

also 

+3(5,+ positive powers of t* 
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Therefore 4{«(2;)}* + 20ca«(O = -“28c3+ positive 

powers of z. 

Thus the elliptic function equals the finite quantity —28C3 

a;=0, but it cannot be infinite at any point other than z=0 in the period- 

parallelogram with 2;=0 as a vertex. Therefore <^(2:) is finite every¬ 

where in the period-parallelogram and must consequently be a constant. 

Therefore for every value of 2r, 2803. Thus, denoting 20^, by 

and 28C3 by gr,, we have the differential equation for Si(z) : 

(C) 

32, From (C), we deduce a recurrence formula for the co-efficients 

Cl, C3, etc., in the following manner :— 

Differentiating (C), we have 

2 «'«"=12 

t.e., j 

using in the above the expansion (B) for we have 

A 2n — 
^+2.1.c,+4.3.c,** + ,..(2n—2) (2n-3)cn * +... 

r 1 00 1 * 
= -l0c.+6ji + p^ *2n-2 I 

= -10c,+6/1+25Cn ■“ , 

T and 8 having each all the values 2, 3, 4,.to 00. Therefore, equating 

e 2n~4 
the co-efficients ot z , we have 

{(2n—2)(2n--3)—12} =65c,c,, n=4, 5, 6, 
f+ «=»N 

The above can be put in the form 

(D) (n—3) (2n+1)Cj^ =3 [c,Cjj_2 +<^i®n-3 +-+^n-2 

Calculating the c’s with the help of (D) we get 

= c,=l c.c„ f c.’+c,* ] . 
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Thus the c’s can be expressed as rational integral fnnotions of 

and ^3 in the form 

where the a^e are numerical constants and X, fi take all integral Talties 

subject to the condition 2A + 3/a=n. 

33. A function (z) is said to possess an algebraic addition theo- 

rewi, if between +z,), <#> (z^) and (z,) an algebraic relation 

exists with co-efficients independent of and Zj. The exponentiai and 

circular functions possess such addition-theorems, i proceed to in* 

vestigate such a theorem for ^ (z). 

Consider the function (z) % (2) —6, where a and h are 

constants to be determined so that (z^) and (z,) vanish. Thus, 

denoting ^ (*1) and % (z,) by and p, respectively, we have 

(1) o|>,+6=2),', 

(2; a/), + 6=j5j,'; 

i.e., a=Py-P*' , -P^V^' . 
Px-P* P,-Pt 

Now (z) is an elliptic function which has a triple pole at z=0 and 

has no other pole in the period-parallelogram Zq. Therefore, by 

Liouville’s Theorem (V), ^ (z) has three zeros in the above parallelo¬ 

gram and by Liouville’s Theorem (VI) the sum of the zeros of ^ (z) in 

the above parallelogram is zero. Therefore, as z^, are known to be^ 

two of the zeros, the other zero must be — (zi+z,). Therefore, deno¬ 

ting % by Pj and noting that is an odd function, we have 

(3) a2>,+6=*-jp',. 

Thus the equation 

taken with (1), (2) and (3), shows that the algebraic equation 

ifl satisfied bjrpi=si8 (*i)> Pi=^ (*»)>P8**(*x+**)‘ 
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Therefore 

(4) Pi+p»+Ps=-y- 

Hence we have the addition-theorem 

Another form of the addition theorem can be obtained by eliminating 

a and b between the equations 

Pi+Pi+Pii- 
a* 

. . oh 
PiP%'^P%P^^P^Vi ^ ' 

and is 

(Pi+l’j+Ps) (4/,iJ,Ps“9's) = (PiP*+P«Ps+P»P»+^^*- 
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The Modern Theory of Elliptic Functions—{continued). 

34. Just as %(z) is the simplest elliptic function, the simplest 

function of a;, which (1) has the character of an integral function for 

all finite values of and (2) has for its zeros 2;=:0 and all values of of 
the form 2ma>+2na)', is, according to Weierstrass’s factor theorem, 

defined by the infinite product 

where Om,, stands for 2WO)+2n<a'and in 11' all integral values of m, m, 

are to be taken with the exception of the combination 0, 0. It is also 

understood that the real part of ^ is a quantity greater than zero. 

This function is Weierstrass's function. It can be easily proved 

that 

a(0)=l, </ (0)=0, a^(0)^0,<r'"'(0)=0, o-* (0) = -*^^, a* (0)=0, 

Thus 

<r»(0) = -6p„ 

(t(z)=z-^ —2»4., 
^ 240 840 

From the infinite product it is clear that <r (z) is an odd function. 

Expressed in terms of <r (z), 

The function -^{log <r (2)} is called the ^•funotioi^ 
dz 

The expanded form of (is 

+ 1 
O *»• 

+ ) 



THE MOOBftTSf fSBOftt 09 BLtlWW JWWlONS 3^ 

It slKMltA be noted that neither <r (z) nor i (z) ia a ^eriodie lunotion. 

In fact 

)=€<r(#>Xe’’^ ^ 

and i(z+Sl^,.)=C{z)+v> 

where ijz=mr}^+nrjf, (=+1 or —1 according as » is a period 

or not, 

^i=t(^ + 2<t))—^(0), rj2=^i{Z + 2u)')r-i(;^z)^ 

i.e,, ri^=:2i(<s}), =2^ (J). 

35. Although (T and ^ are not periodic functions, each can be used 

to express aAy elliptic function, and the following tkeorenas, (F), (G) 

hold. 

(F) Every elliptic function f{z) admits of being expressed in the 

form 

/(r)— Co-(g—6^)o•(g—5a)...cr(g—5r) 

ct,y...or(^—cr,.) ’ 

where C is a constant, the 5’s form a complete system of the seerbs^ and 

the a’s form a complete system of the poles, of the firnctiott ami 

they are so chosen that 

+6*+ + +<^2 + *** + ^r ; 

thus if the zeros P and the poles a of / (:) are assigned beforehand, we 

have to find points a, 6 homologous with a and /S so that, although 

period, 

E ramples. n\ 2<rr2f—<*>)<3r(z— 
(r(a))cr((i>')(r(a/)tr»^z> * 

where —(D"=€D+a)'. 

(2) 
. -v_<r(2,+«4)or(«,->»,) 

$ 

<t<24 

<r*(z) ■ (3) «'(?) 
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(G) Every elliptic function /(?) admits of being expressed in 

terms of ^ and its differential coefficients in the form 

/(^)=C+2 ) AC(2- a) + AT(2-o)+A"r(*-a) 
a t 

+ ... + A'*"*> («-a)} ’ 

where the summation extends over the different poles (in a period- 

parallelogi’am) of the function ; the coiistants A, A', etc., correspond to 

the fractional part 

_2! A" _ (-1)*-^ 
z—a (2--a)'® (2 —a)* '** 

of the function in the neighbourhood of a, and C is a constant. 

36. I proceed now to consider the expression of any elliptic func¬ 

tion / (z) by means of the ^-function and its differential coefficient. 

Firsts suppose that f (2) is an even function. Let those of its zeros 
which are not periods be 

±61+period, +63period,... 

and let/Xa, etc., be the respective orders of multiplicity, Also let 

H-Uj-hperiod, +0,+period,..,be those of the poles which are not 

periods, and let the respective orders of multiplicity be A,, Xa, etc. 
Then / (2) must be equal to 

... ’ 

where C is a constant. For, denoting the above expression by we 

have f(z)l<l>{z), an elliptic function which, outside the periods, admits of 

neither a zero nor a pole. But a period cannot be both a zero and a pole. 

Therefore f(z)l<l>'z) lacks zeros or poles, and it must, therefore, be a 

constant. By giving a particular value to z, one can choose C so that 
the aforesaid constant is unity. 
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Secondlyy let f{z) be not necessarily even. Then —?) is 

even, and —— is also even; and, consequently, each is 

expressible in terms of the ^-function as in (H). Therefore 

where R and Rj are both rational functions. 

it should be noted that, as ^(Nc) is an even function, it is expressible 

as a rational function of ^(2), N being any integer. 

37. The expression for ^(Ng) in terms of ^(2) can be most easily 

obtained as follows :— 

The poles of ^(N^) are the origin and the (N® — 1) points ^ and 

n having all possible integral values from 0 to N—l, the combination 

0,0 being excluded. If, therefore, we put r:=h or + where h is 

very small, 

«(n^)=«(n;o=+... 

But, using the above, the theorem (G) gives 

i,e. N‘«(N2)=«(2) + 2«(2-^^+C ... (1) 

Consider the neighbourhood of the origin ; then the above gives 

c=-s«( (2) 
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Iqtegrating (1) we have 

N«N*)=«*)+2i:(^-^‘)-C^+C', ... 3) 

whence, considericg the neighbourhood of the origin, we have 

C'=S£(V)- 
Now change z into « + 2<d in (3^, then by the result given a.t the end of 

Art- 34, 

NirN*) + N*v,=C0)+,,,.|-5U(c- 

—C(0 + 2ci)) + O 

=«4+S^(*- ^)+N*,,-C<*+2«)+C'. 

Therefore, expanding both the sides in powers of e and equating 

the coefficients of C must be zero, t.e., ^=0. 

Thus N*«(N2)=«(2) + 2e^z — 

38. Applying the addition theorem, the above becomes 

N»«(N2)=«<2) + 2[| 

(I) 

=s0 and as obvioasly the odd part in the above most be 

absent, the above beeoues 
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and 

S*«(1I»)=«(0+S fi ^ -«(il] (Ij 
L* U I J 

Now it is easily seen that 

«'*(*)+«'*( %i) +«»(^) -i?,] 

«*^)+«(0«(^') +«’ ( V )= } 

X ^ +3«* (%^)- 

Therefore (1) becomes 

N>«(N.)=«(*)+5-7n . ■ 

The mnltiplication theorems for ^ and cr functions are respectively 

N^(N0:=i(*) + 5^(!2-%*) -N(N-l),?, 

and 

uIXZ-lJ x^ -N(N-l)v,^, 

whereis a ooMteDt. 

8 .(3z)=e(^) + {-2««+|</,«* + 10p3«>+ I p.‘«*+ 

+?**+^2 

2 t k N 7 !}■ 

^ 8(2)- 8j 
< n * »■) 

N ; '] 

a- (N*)=N<7(*) 



38 THEORY OF ELLIPTIC FUNCTION^ 

39, Abel’s problem of comple r multiplication with reference to the 

^-function may be thus enunciated/ What particular conditions must 

be satisfied by the function and the number m in order that ^(mz) may 

be expressible as a rational function of ^(2) ? I proceed to answer the 

above question. 

If 2(0, 2(1)' be a primitive pair of periods of then, accord¬ 

ing to a well-known theorem, 

c, 2a(i) , 
2(1)=:--f- 

m m 
2(i}':=z?^—a, bj c and d being all 

mm 

integers. Thus 

m<i)z=zaoi-\-h(i)\ mit) :=zco)-\-d<ji)' ... (1) 

which equations are satisfied if 6=0, c=0, a=cZ, m being integral. If m 

is not integral, then eliminating m between the equations (1) we have 

6(i)'*4-(a—d) (DO)—c()i)*=0. 

Thus if m is not integral the necessary conditions for the represent- 

ability of ^{mz) as a rational function of ^ (z) are (1) that the ratio 

^ must be a root of a quadratic equation with integral coefficients and 

' In his memoir, ‘‘Recherches sur lea fonctions olliptiquos ” {Crelle's Journal^ 

Vols. 2and3, 1827,1828), Abel introduced the noticn of the complex multiplication of 

elliptic functions. Denoting the integral 

0 

tion by a; = <^ (5), Abel gave the first example {Oeuvres^ t. 1, p. 354) of complex 

multiplication, viz.^ 

/- 
(20 

/1-fl 
by 5 and the lemniscato func- 

0i 
l-(l-2i)®* 

He worked out for the sn-function the cases of the multi plica tors 3, a/—6 

{Oeuvresf t. 1, pp. 377*382), The subject of complex multiplication was developed 

subsequently, chiefly by Eronecker (see Monatsherichte der Akademie der Wissens- 

chaften zu Berlin, for 1867 and 1862), Hermite {Oeuvres, t. 2), H. Weber {Lehrhuch 

der Algebra, Bd. 3, 1908) and R. Pneter (For2esunsrcn ueher die singuldren Moduln 

und die Komplexe Multiplikation der elUptischen Funktionen, 1924). 

Among English writers on the subject may be mentioned Cayley, Qreenhill and 

Bussell, who published a number of papers in the Proceedings of the London 

Mathematical Society, Series 1. 
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having imaginary roots, and (2) that m must be of the form a-^-h t, 

where t is that root of the aforesaid equation which has its imaginary 

part positive, a and h being integers. It can be proved without difficulty 

that, if it is known that the condition (1) is satisfied, an infinite num¬ 

ber of complex multiplicators m can be found which must be of the 

form 

I • /Tk y+ixVJj or ' 

where D=:AC —13^, the known equation for t being 

At^+2Bt+C=0, 

and a?, x\ y' are integers. 

Ex. LetT* + l = 0, then D = 1 and m=^y + ix ; x and y being any 

integers. For instance = 

Ex. Let 2t*+2t+2=0; then D=3 and m= 

being any integers. For instance ^(a)r)=(i)^(r), ct> being a cube root of 

unity. 

40. The proof of the statement made in the end of the abo7e article 

is as follows : — 

As the roots are imaginary, AC—B*eD is positive. Therefore, 

without any loss of generality, we may as.^Jiirne that A, C are positive 

and that A, B, C are prime to one another. 

Firsty let A, 2B, C have for their greatest common measure unity. 

Now, for complex multiplication, it is necessary that 

At‘4'2Bt+C=0 

should be equivalent to 

fcr® + (a—ci)T—c = 0. 

Therefore we must have 

fe=A., (a—c^)=2B.r, c=—Caj. 

Let 2y denote a + d, then we have 

a=2/ + Baj, 6=A.c, c=—B.r. 
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Aho tb» determinant n^mcgd^bcasi/^ + Da* ; and 

—B+t VD 
-A- ’ 

m=a4-6T=:y 4-^^ v'D. 

Since A, 2B, C are prime to one another ; in order that a, b, c, d 

may be integers, jc and y must be also integers. 

Secondly^ let A, 2B, 0 have for their greatest common measure 2. 

Then x and y may be hahres of integers y\ 

Thus 

2 2 2 2 

Also the determinant ad—hc=-^-r-; and 
4 

--- 

In this casev A and C are even^ B is odd and Dis of the form 

N being an integer. 

41. Let € (z) and ^(z) be two elliptic functions, the periods of 

which are connected by the relations 

u)y =:ao>j^ <i>j ~c<i>| ■4'dwj. 

where ad—6c = n. 

Their invariants J and J are connected by a modular equation 

F. (J, J)=0, 

and the different values of J furnished by this equation correspond to the 

different ways of determining a, 6, c, d under the condition that ad^hc 

should be n. 

If J is to be equal to J, then it is necessary and sufficient that we 

should have 

€l>» 
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whence 

m denoting a constant. We have, therefore, 

m (tfj =:a Wj +5^),, tnccj =ca)j ; 

and the function ^ {z) admits of complex multiplication. 

The equation 
F. (J, J)=0 

resolves into rational factors, giving respectively the invariants J which 
correspond to the two types of complex multiplication, 

(1) those in which 

n = x* + 

Xy y being integers prime to each other; 

(2) . those in which 

x\ y' being odd.'and prime to each other. 

42. We know that « 

where R and Rj are both rational integral functions. 

Thus, putting :: for N^, we have 

)- “ [<r)j 

or 

E 

E(.^ _ 

where y stands for ^(;j) and x for • It is obvious that the 

roots of the above algebraic equation in x are all given by 

(1) *=«( 

m and w being given all integ^l values, positive and negative. 

6 
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(a) If N is odd, all the possible valaes which (1) oan take are 

obtained from 

*'^^*** * > 
_j N + 1 

m and n taking all the integral values from-^ to-^—, includ¬ 

ing the extreme values. All these values of 

z + O.., . 
N ) 

are different and they are N* in number. 

(6) If N|ia even, all the possible values of (1) are obtained from 

_2 N 
m and*n being given all the integral values from — —-— to^ , both 

A tt 

the extreme values being included. These values of 

are all different and are N* in number. 

Thus the equation Ri(x).y —R(a5)=0 has N* different roots. They 

are all simple roots. For, otherwise, if x were a multiple root, 

then R\(.c)y-R'(^)=0. Thus RR\-R,R'=0, 

independently of z. 

R 
Hence — will be independent of x and consequently y will be a 

constant, independent of z, which is not the case. 

43. Let —2D stand for the operator 

-ii’ 

then the folbwing partial differential equations hold 

D{iog'<7(z)}=s—?,«*. 

... (1) 
... (2» 
... (3> 
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The last equation g^ves 

_aW -12,.^- I ,...|^+Aj..V(.)=0 (K) 

The above equation was used by Weierstrass to obtain the coeffici¬ 

ents in the expansion of <t{z) in powers of z. 

If we put 

<t{z)= 5 a„, . 
■+ 1 

(4m -f 6n -f 1 )1* 

(m, n=0, 1, 2 .oo) 

then the following recurrence formula is obtained from (K) for the 

calculation of the a’g : 

a-, ■.=3(m + l)a,+ j, ..i+Y(» + l)®—4, . + 1 

—T(2w + 3n —l)(4m + 6n—». 

To the coefficient the value 1 is to be attributed, and to any 

coefficient of which one of the two subscripts is negative the value 0 is 

to be given. Weierstrass obtained the expansion of or up to the 35th 

power of 

44. I will conclude my exposition of the modern theory by proving 

the proposition that every elliptic function has an algebraic 

addition-theorem and by stating the converse of the proposition. 

Proof: 

It has been shown in Art. 36 that every elliptic function is expres¬ 

sible rationally in terms of ^ and Therefore 

= ^'(0^+^?,)}* ... (1) 

Putting for brevity 

we havei according to the addition-theorem (E), 

n Pi » P*> P* ) ••• 

where denotes a rational function with coefficients independent of 

§i and 
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DiSerontiating (2) with respect to a,, we have 

+ .W''(-x)=R.(p»,p'i. P., P.'). (3) 
OPi op I 

where fot* is substituted and R, is a rational func¬ 

tion with coeflScients independent of and 

Substituting the expression (2) and (3) in (^1), we have 

«^(*1+‘4)=R.(Pi. P..P,', p'.')- — (^) 

If we combine this equation with the four equations 

«#)(zi)=R(pi, p/), <^(2,)=R(p„ p,'), 

p,'* =4pj»-sr,p,-gf,, p,'*=4p,>-sf,p,-gr,, 

and eliminate the four quantities Pi, Pi\ Pt\ p2) we obtain an algebraic 

equation of the form 

G{<#>(2,+Z,), •K*!). '^(2,)}=0 

in which the coefficients are independent of and z^. 

The converse of the above proposition is the following: Every 

function for which there exists an algebraic addition-theorem must be 

an elliptic function or a limiting case of one, that limiting case being 

the rational, the trigonometric or the exponential function respectively, 

according ae both « and J are infinite, w' is infinite, or w is infinite. 
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Applications of Elliptic Functions 

45, One of the earliest applications of elliptic functions was 

found in the exact solution of the problem of the simple pendulum. 

Starting with the well-known equation of motion 

1--—=—a sin d, 
dt^ ^ 

we have as its first integral 

Aa/cos cos a, 
dt \ I 

which becomes 

sj 1 —sin* ^ si sin* X 

where x is given by 

6 a 
8in^ = sin— sin x, 

a 

Thus 

v?=r n‘_dr, _ 

J 1—8in*^sin* 

whioh, according to the definition of the sn-funotion, leads to 

sin x=8n^ t /y/1 

where k stands for sin 
2 ■ 

0 
Therefore sin*^ szk an 
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and half the period, T, is given in terms of 2 K by 

T />/2_=2K. 

T =2K V—. 
9 

K standing for 

46. The solution of the problem of the spherical pendulum neces* 

sitates the use of the elliptic functions. This fact was known to 

Lagrange and the first treatment of the problem with the help of 

elliptic functions was given by Richelot in Crelle's Journal in 1852. 

Taking the axis of z vertically upwards, we have, from the well- 

known two integrals of the equation of motion, giving respectively the 

area-theorem and the energy-theorem, 

=2g{z,-z)(a^ 

By Descartes* Rule of signs, it is clear that the right-hand side when 

equated to zero gives real roots; in fact two of them, «^andz,, 

satisfy the inequality 

Measuring t from the moment when 2: has the minimum value z j, 

we have 

where <1)1 is the imaginary, and the real, period of the -function. The 

maximum is attained when , The angle tan”^^B^ can be ex¬ 

pressed in terms of Weierstrass’s <ri-function by the equation. 

being measured from its position when t=0 and u^, w. are two con* 

■tante. 
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47. The motion of a rigid body under no forces was discussed by 

Legendre in his “ Traite des fonctions elliptiques,” Vol. I, with the 

use of elliptic integrals. The equations of motion of Euler are 

A^^=(B-C)gr, 

B|=(C-A)pr. 

C*=(A-B)» 

where A, B, C, are the principal moments of inertia and p, g, r, are the 

angular velocities with reference to the principal axes fixed in the body. 

The equations have obviously 

as two integrals, D and p being constants. Eliminating q and r between 

the first equation of Euler and the above two integrals, we have 

where a and 0 are constants connected with A,B, C, D, p. Thus p is an 

elliptic function of t; similarly q and r are elliptic functions of t. 

In fact 

p =» constant X cn(A/), 

g=constant x Bn(X^), 

r=: constant X dn(X^), 

where X as well as the modulus is expressible easily in terms of 

A, B, C, D, /X. 

48. Elliptic functions occur in the solution of a number of famous 

problems of conformal representation ; of these some may be enumerated 

here (a) The inside of the circle in the 5-plane with 5=0 as its centre 
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and radius unity is cx)nformally representated on the outside of a 

square in the u.plane by the formula 

s ' VI +. 
ds, 

1 

and thereby is solved the problem of the determination of the station¬ 

ary state of heat, of the inside plane bounded by the square, with pres¬ 

cribed boundary conditions. 

(6) The inside of an ellipse in the «-plane with the foci 1, and 

vertices u=^ ^a + ih is conformally represented on the inside of a circle 

in thei-plane with the centre 5=0 and radius by the formula, 

/2K . \ 
3=snl—sin ^ u) , 

if the modulus k is determined by the equations 

1 
(c) By means of elliptic integrals of the third kind, which contain 

the elliptic co-ordinates of a point on the ellipsoid, the surface of an 

ellipsoid of three unequal axe.s can be conformally represented on a plane 

so that one half of the ellipsoidal surface, separated by the ellipse going 

through its four circular points, corresponds to the inside of a rectangle 

the vertices of which correspond to the four circular points. 

49, Some problems in electrostatics have been easily solved with the 

help of elliptic functions. For example, taking to be the potential 

and i/r the stream function, 

w + iy 

sn + ^ 

gives the electrical distribution over a pile of parallel strips of width, 

aj*—i^ijthe distance Detween the consecutive strips being ir5, alternate 

strips being at the same potential. The potential of one set of plates is 

K, that of the other is — K, 
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Similarly we can deal with the case of a Bystem of ,2w’plate8‘ftfh:ang- 

ed radially and making equal angles with each other, the alternate 

plates being at the same potential, and the extremities of the plates 

lying on two co-axial right circular cylinders. 

50. The problem of the conduction of heat in a solid ellipsoid of 

three unequal axes a, b, c can be elegantly treated ‘with the help of 

elliptic functions. Let X, /x, v be the parameters of the three confocal 

conicoids through any point (j’, y, z). Also, denote by Cj, e,.. res¬ 

pectively, 

1(6* +c»-2a»), c» +a»-26*X -(«• +6*-2c*), 

and introduce the co-ordinates w, r, w so that 

«(m) = -X+ |.(e«+6* + c*), 

«(v) = -^+|.(a*+6*+c‘), 

«(w)=—«>+ i(o* + 6*+c*), 

Then the operator V * is equivalent to 

_ 1_a *_. _1 6’ 
—^(rp)} 0M» 0t.* 

+_1_^ 
{«(«))—e(M)}{«(«>)—«(p)} dw‘ 

■ Therefore the equation of the stationary state of heat is 

and has for a solution. 

V=F[u) P v) F(tv) 

where F(fi) satisfidathe equation of Lame, vtz., 

■ ±:{A«(s) + B}F, 

7 
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A and B being constants. 

Siniilarlj the equation of the non>stationary state of heat, viz.. 

v*v= 1 av 
^ 0f 

has for a solution V=F(m) F(v) 

where A is any negative arbitrary constant and F(5) satisfies the 

differential equation 

|^={A(«^)* + B««+C}F, 

B and C being constants. 

51. I proceed now to explain some applications of elliptic functions 

to Pure Mathematics, taking up first the theory of equations of the 

fifth degree, discussing it at some length and contenting myself later 

with brief expositions of the applications to curves of the third and 

higher degrees. I will conclude with a treatment of the problem of 

the polygon of Poncelet. 

As is well-known, Abel proved in 1826 that the roots of an equation 

of the fi fth degree cannot in general be derived from its co-eflBcients by 

using radicals alone. But in the year 1858 both Hermite and Kronec- 

ker found the solution of the general quintic by the use of elliptic func¬ 

tions. I propose to state clearly what Hermite did, leaving aside the 

treatment of Kronecker for want of time. 

{%) The general equation of the fifth degree can be reduced to the 

form 
.r—A=0, 

by a substitution of which the co-efficients are determined by the use of 

no other irrationalities than square and cube roots. This result is due 

to the Swedish mathematician, Bring, who gave it in 1786. Now, 

just as the general cubic, reduced to the form 

a;* —3x+2a=0, 

can be solved by representing the co-efficient a as sin-a, the roots being 

2. a o • a-l-27r o • a-4-47r 
sin^^, 2 sin——, 2 sin-Tg— , 

the equation A=0 can be solved by expressing A in terms of 

elliptic functions* 
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(it) If k be the modulus of the elliptic integral 

dj! 
Vfl — — k*X*) 

and I the modulus of the integral 

dy 
M 

pU-i 

which results from a transformation of the nth order 

+ + • • • •+a.a!* 

bo + bii(+ . . . . + 6,a" 

where n is an odd prime ; then u = and are connected by an 

equation of the (n + l)th degree called the modular equation. For ti=5, 

the equation is, as stated in the first lecture, 

w® —t;® -f + 4 uv(\ — =0. 

If u be expressed in terms of qse as follows : 

u= V2q\ ^3^ 
,2m® + m 

[=<#> (">)]> 

(m= — oc... oo) 

we obtain‘the (n+l) values of n, which satisfy the modular equation, 

on inserting, in the place of in the above formula, in order 

" — JL _L, 
q-W, 98", ags",.. a qs*^ 

2iri 

where ar=e Thus, knowing ?/, we can obtain q and thereby the values 

of V. 

(m) If and w=<^(a)), then the six roots of the equation in 
V are 



THBOBY OF aBLLIPTIO FUNOTIOMS' ' 1 52 ; 

Now construct the equation whoee roots «re .‘' . 

*(<o), 4>(a>+16>,4>(<u+2.l6), 4>(a>+3.16), *(<o+4.16), 

where $(<0) stands for 

Then the equation will be 

5twf (l-«8)ay_2o ^/5^ + 

Comparing this with the Bring form of the general qiiintic, 

.c® —x — AssO, 

we have, on putting 

y=2 v^5®. w. VI — ?4* .r, 

A= ^ 
V5» ’ 

which is a biquadratic in k. 

{tv) To conclude, from A we obtain k and therefore q and a>. Thus 

y is obtained in terms of <f) and finally ,t: ; the five values of .k are 

^ ^>(a)) _1 

_^ ^>(<0+2.16) 1 <^(ci>4-3.16) 

^>.5? .’>(a>)^^(<o) ’ ~V2^ ■ • 

^ ^fca + 4.16) 
v^2*.5* 

In the abovA^ W = (^')* » equal to 1. 

52. The comparison of different expressions of one and the same 

transcendental by means of theta-series has given many theorems 

about the representation of integers by quadratic forms. For example, 
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Jacobi^ proved' Fermat^B theorem, that every integer admits of being 

expressed as the sum of four squares. If the integer be 4wd-l < 

'where n is an odd integer, then Jacobi proved that the number 

of different ways of expressing it as the sum of four squares is exactly 

equal to the sum of the factors of n. 

53. The homogeneous co-ordinates ‘<’3 ^^7 curve of the 

nth degree,and of deficiency unity admit of being expressed in terms 

of a-fproduots in the form 

n n n 
= n (r(M —: n —0^2^ ) : 11 

fc — 1 fc—1 

of equal sums = also in terms of the 

^-function as in 

R.ra=c.+Ci,o 

where R is a proportionality-factor, the c’s are constants and i takes 

the values 1, 2, 3. 

In particular, if we take the tiuangle of reference to have a point of 

inflexion as one of its vertices and the opposite side as the harmonic 

pol^r of that vertex, then by suitably choosing the other two sides, we 

get the equation of the cubic in the forms 

and to the first equation corresponds the parametric representation 

Rxi=8n*u, Raja=8n tt, Rcg = sn tc dn u and to the second the represen¬ 

tation 

R/j=:l, R.rj=«(w), R (.r3)=e'00- 

The use of elliptic functions helps greatly the study of the cubic 

curve, as bas been shewn by many investigators including Halphen 

and Harnack. . 

If .r, + iy=8n <w+fu), then the curves 

w=const, c=const, 
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form a system of bicircular quartics (see Sielvek’s paper in (irelle^s 

Journal^ Vols. 54 and 69) ; similarly the relation 

gives a system of Cartesian ovals (see Greenhill’s paper in Proc, LM.S.^ 

Vol. 17, 1st series). 

54. An interesting geometrical application of elliptic functions is 

to the problem of the polygon of Poncelet, vi:,^ the problem of the 

determination, if possible, of a polygon which is at the same time 

inscribed in a conic and circumscribed to another conic. Poncelet 

showed that if, for two given conics and a given number as the number 

of the sides of the polygon, one polygon exists then there exists 

an infinite number. For the case when the conics are circles the 

problem was solved by Jacobi by means of the function am in 1828, 

(See CrelWs Journal^ Vol. 3). The general case has been treated by 

Wirtingerand Loria. 

55. I proceed to give Jacobi’s solution on account of its historical 

importance:— 

(a) Let the two given circles have centres C, c and radii R, r, 

respectively, the circle c being inside the circle C. Also let a denote 

the distance Cc. Then if, from any point A on the circle C, a tangent 

is drawn to the circle c it will cut the circle C again in A'; in the 

same manner the tangent drawn from A' will cut the circle C again in 

A^, etc. Thus A A'A" A'"... will be a part of a polygon, or an unclosed 

polygon, which is inscribed in C and circumscribed round c. 

Join c and C and let c C cut the circle C again in P. Then, denoting 

^ AGP by 2</), L A'CP by 2</>', L A"CP by 2(^", etc., we have 

R cos (<#)'—<^) + a cos 

R cos cos (</>"-4'<^) =r, 

Rcos +a cos (<^'"+(/»") = r, 

Hence 

(R + a) cos cos <^ + (R--a) sin ^ sin 

(R + a) cos cos a) sin <^" sin 

(R+a) cos cos <^"+(R—a) sin sin <A"=r, 



APPLICATIONS OF ELLIPTIC FUNCTIONS 55 

Subtracting each of these equations from the following, we have 

cos ^"-con ± 
sin </>"— sin </> R + a 

cos ^"'-008 0' 

sin sin <f>' R + a 

Now, from the addition theorems for the functions, sn, cn, it is 

easily seen that the above equations are satisfied, if 

</>=am(M), <^'=am(w + 0> <^"=am(w + 2f),..., 

where 5—^ =dn 
R + u 

the modulus k being given by 

h% — 
(R + a)2-r" ‘ 

(6) If the polygon of 7i sides covers the circumference i times 

before becoming closed so that 

then 
n (1) 

where K, as usual denotes 

1 — /c* sin® \ff 

0 

This equation is the necessary condition which must hold between 

R, r, a in order that a polygon of n sides may be inscribed in the circle 

C and circumscribed round the circle c. 

56. The condition, in order that a polygon of n sides may be 

inscribed in a conic S and be circumscribed round another conic S', is 
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easily expressible* as follows in terms of the.roots of the 

equation obtained by equating the discriminant of + S' to 0:— 

(t) If the roots be all positive and in descending order of magnitude, 

then the condition is 

cn* , mod. a/ |i-4* ■ 
« ' Ci-C« U 

(ti) If one of the roots be negative, say and then for 

an even n the condition is 

if n is odd, then the condition fails* 

(m) If the roots of the discriminating cubic are proportional to 

1, re‘* , r e"*® 

then the required condition is 

2dn« 
n 

1 + cn 
4K 

, mod. cos \ tan -I r sin 6 

1 + r cos 6 ’ 

* See the paper of Rogers in Proc. L. M. 5., Series 1, Vol. 16, 



SIXTH LECTURE 

Abelian Integrals and Abelian Functions. 

57, I propose to introduce you in tliis lecture to certain entities 

more transcendental than the elliptic integrals and elliptic functions. 

These higher transcendentals, as I may call them, came into existence 

in 1825* when Abel succeeded in generalizing Euler’s addition-theorem, 

VIZ.— 

If « -,,=/■ de 
where is a polynomial of the 4th degree in 

.<7, then 2/j can be always determined as an algebraic function of ofj 

and .r, so that 

* The f?eneralization of Euler’s theorem was piven by Abel in his paper “Sur la 

ooinparison des fonctions transcendantes” which, although written in 1825, appeared 

after his death. The hyperelliptic case was published in GtelWs Journal^ Vol. 3, in 

the paper *’Remarqnes sur quelques propri^t^s gdn^rales d’une sorte de fonctions 

transcendantes” in 1828. The complete investigation of Abel on this subject is given 

in the memoir, ‘‘Sur une propriete gdnerale d’uue olasse tr^s etendue de fonctions 

transcendantes”, which, although presented to the Academy of Sciences of Paris in 

1826, was published by it in its memoirs as late as 1841, Although the importance of 

Abel’s generalization was recognized by the mathematical world some years after 

Abel found it, Abel himself was fully conscious of the importance, as the following 

remarks from his memoir show . “The transcendental functions considered by 

mathematicians up to now have been very few in number. The theory of transcen¬ 

dental functions reduces almost to the theory of circular, logarithmic and exponential 

functions which are at the base all one. It is only in the last few years that other 

fuDotioiis have began to be considered. Among them, the elliptic transcendentals, 

whose remarkable and elegant properties have been developed by M. Legendre, 

occupy the first rank. The author has considered, in the memoir which he has 

the honour to present to the Academy, a very extensive class of functions, viz, all 

thoie of which the derivative can bo expressed by means of algebraic equations of 

which all the co-efficients are rational functions of one and the same variable, and be 

has found for those functions properties analogous to those of logarithmic and elliptic 

funotions”. An appreciation of AbePs generalization for the hyperelliptic case was 

published by Jacobi in his paper, “Oousideratioues generales de transcendentibus 

Abelienis”, in Crelle's Journal, Vol. 9. Legendre called the theorem of Abel ‘mouu- 

mentnm aere perennius.” Euler, Lagrange and other previous writers had failed to 

generalise Euler’s theorem. 
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For example, if ^(ir) denote /' 
(A + A^x) 

dfy where ^ is a poly» 

nomial of the fifth or sixth degree and the A’s are constants, then, 

according to Abel’s generalization, it is always possible to find two quan¬ 

tities yj and y, as algebraic functions of so that 

And, generally, if ^(jj) denote 

/ (^0 +A,a;4-A,a;*-f ..>4- 
o 'v/ 

where (x) is a polynomial of the 2mth or (2m—l)th degree, it is 

always possible to find (m—1) quantities yi, y2,...ym-i as algebraic 

functions of the m given quantities jt*,.../.,, so that 

The quantities y are the roots of an algebraic equation of the 

(m—l)th degree, in which each co-efficient is rationally expressible in 

terms of a?i, 

58. The generalization of Euler’s theorem is called AheVs theorem 

and may be enunciated as follows : — 

Let y be the algebraic function of x given by an equation of the form 

y"+aiy*‘^+ajy*"*-f...+a^=0, 

where aj, Uj,.,,, a, are polynomials in r, and the left side of the 

equation is incapable of resolution into factors of the same rational 

form ; also let S (>’, y) be any rational function of .« and y. Then the 

sum of any number of similar integrals 

jU{x,y)d f -f J R(.r,y)c/.t*-f ...+J^{x,y)d * , 

with arbitrary lower limits, is expressible by rational functions of 

logarithms of such rational functions, with the 

addition of the sum of a certain number, n, of integrals 

►(*1 

B (.r, y)d .f — 
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trhdfeixi are valued of a?, determinable from Vm Rs the 

roots of an algebraic equation whose co-efficients are rational functions 

of ^*^1, and are the corresponding values of y, of 

which any one, say 5^, is determinable as a rational function of Zi and 

59. The integrals, considered in the preceding article are called 

Abelian integrals ; the special cases of these which we considered in Art. 

57 are called hyperelliptic integrals. 

Abelian integrals are of three kinds. If R(.c, y) has only the 

branch-points as poles then the integral can always remain finite and 

we have the integral of the first kind. If R (a?, y) has the point (.ro, y^) 

as a pole of higher order than the first, whose residue is zero, then 

the integral becomes infinite in (.i’q, y^) as an algebraic function and is 

called an Abelian integral of the second kind. Finally, if R has a point 

C^o) Vq) a pole of the first order, then the integral becomes infinite in 

this point as the logarithm of an algebraic function and is called an 

integral of the third kind. 

Hyperelliptic integrals are also of three kinds. The hyperelliptic 

integral 

is said to be of the first kind if it does not become infinite at any point ; 

of the second kind if it becomes infinite only as an algebraic function ; 

and of the third kind if it becomes infinite only as a logarithm. 

A hyperelliptic integral is said to be of the (m—order if the 

degree of is the (27?i—l)th or 2mth. 

60. (1) With every Abelian integral are associated at least an even 

number, (say 2p) of constants, called the periodicity-moduli of the in¬ 

tegral ; they possess the property that the difference of any two values 

which the integral can have is equal to the sum of integral multiples of 

its moduli. 

(2) The integrals of the first two kinds have only the aforesaid 2p 

moduli ; those of the third kind have in addition others which depend 

on the points of logarithmic infinities, i.e.y if one goes round one of these 

points then the value of the integral increases by 27ri multiplied by an 

integral multiple of the residue corresponding to the point. 

(3) The supi of the residues of every integral of the third kind is 

sero. 
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(4) Every Abelian integral admits of being formed by a linear 

combination of integrals of the three kinds. 

(5) There exist 'p Abelian integrals of the first kind which are 

linearly independent of one another, if the Riemann’s surface used is 

irresolvable and of the genus p. 

(6) If the algebraic equation, whose root is is resolvable into A; 

factors, then there are p—A;+l linearly independent Abelian inte¬ 

grals. 

(7) The periodicity-moduli of an integral of the first kind cannot 

be all real or all imaginary. 

61. The problem of the reduction of hyperelliptic integrals to 

elliptic integrals first engaged the attention of Legendre, who, in the 

third part of his ** TraitJJ des fonctions elliptiques,’’ shows how 

dx 

can be expressed as the sum of two elliptic integrals of the first kind 

whose amplitude is the same and whose moduli are complementary to 

each other. 

In Crelle*8 Journal^ Vol. 8,1832, Jacobi generalized the above result 

of Legendre and showed that 

id.c 

^ x(l--x){l--kXz){l + kx){l 4-X«) 

0 

can also be expressed as the sum of two elliptic integrals of the first 

kind whose amplitude is the same but whose moduli are not always 

complementary to each other ; if k and X are suitably chosen, the modu¬ 

li may be arbitrary. 

In his paper, “ Sur un exemple de redaction d’ integrales abelienes 

aux fonctions elliptiques ” (Ann. Soo. Scient, Bruxelles, 1876; Oeuvres, 

t. 3, pp. 249-261), Hermite gave another example of a redaction simi 

lar to Jacobi’s. It is this : If 

a;c=4s*—3a?, —a) =2?® —6, 

8»«(z®--a)(8?®~6az+6), 
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then we have 

__ f zdz _ ^ r • 
S ^ J ^ (2ax —6)(a5® — a) ’ J S 2 J Vy* 

Koenigsberger has, iu his paper, ** Reduktion ultraelliptischer 

Integrale auf elliptische(Crelle's Journal, Yo\. 6*7, 1867) considered 

still more general cases and finds that there is a possibility of reduc¬ 

tion in the case of^’a hyperelliptic integral, if the polynomial of the 
sixth degree under the radical sign, when equated to 0, furnishes three 

pair-points of an involution. 

In addition to the integrals 

dz 

2® 4-^2* 

Iz I ___ 

*+bz*+o * J '^'^ + at* + bz*+V' 

which are obviously reducible to elliptic integrals by the substitution 

z» =«, the two integrals 

- + b){z* +pz* + q) 
f__ 

’J -/(2»+rt* + 6)(r*+p*’+q') ’ 

where 

g=46+ ^p. 

reduce to elliptic integrals by the substitutions 

^ az^—Sbz^ 

respectively (see Bulletin de la Sociiti Mathematique de France, t, XII). 

Examples: 

are reducible to elliptic integrals when a and ^ have the same sign. 

62, It was again Legendre who first gave examples of the reduc¬ 

tion of Abelian integrals other than hyperelliptic integrals to elliptic 

integrals* Roethig has considered these carefully in his paper, “ TJeber 

- 

-■y and 
V o+y**+j82* 

zdz 

o+yj*+;8j« 
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einige Gattnogen elliptisoher Integrale ” (Orelle's Jmrrtdl\ Vtfl. 66]j. 

He shows (a) that 

• 

Sf(t)dc_ 
■*' » 

(a+aia5+a,a;* -f 

wherein j{jet) is a rational tunction and m is any integer of the form 

3nHhi or 3yr+2, can always be reduced to elliptic integrals witli the 

mddnltis ~ V 2±VS , And (P) thAt the ihtfegral of th# form 
A 

f(x)dx 

wherein m is of the form 4n+l or 4n-4-3, admits of being reduced to 

elliptic integrals with the modulus V4* • 

Briot and Bouquet have considered in their book, “ Th^orie des fonc- 

tions elliptiqnes,** the question of the reduction of an Abelian into^al, 

whose irrationality is given by a binomial equation, on the supposition 

that the upper limit of the integral is everywhere a single-valued ftinc- 

tion, and shown that only nine integrals have the property of reduc- 

ion; they are 

r_d«_ r_^_ 

J A/(aj—a)*(«—6)* j V(a;—a)*(aj—c)* 

5dj^ L__ 

a>^(a5—^ (a!!—c) 

c dx r dx _ 

C djB P _> 

's/ (*—a)»(«-h)‘C»-'e)' 
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• _ 
This question has been investigated algo by Koenigsberger, Krazer, 

Weierstrass and 9iany others. 

The following question has not yet.been fully answeired : 

What are the cases in which for a given Abelian integral 

j y)'i'! 

there exists an algebraic substitution which changes this integral into 

a new Abelian integral with a smaller number of periodicity-moduli ? 

It can be shown that when the 2p periodicity-moduli of the given 

integral reduce to two distinct moduli, the integral can be reduced to 

an elliptic integral by a rational substitution. 

63. Denoting by jp, g, H polynomials in Abel considered the 

following problem : “To find all the differentials of the form , 

where ^ and R are polynomials in .r, of which the integrals can be ex¬ 

pressed in the form 

log 
p4-q\/R 

)» 

The complete solution of this problem was given by Abel as 

follows : 

“When it is possible to find R corresponding to a given poly¬ 

nomial, such that 

/* « I u~h 'v/R J 7Rr=‘°*-bvif 

then the continued fraction for V'R is periodic and of the form 

A/R=sr+ 
1 

2^-f- 

1 Ji_1_1_^ 1 

2/ii •+•... 2/Aj H- 2jll+ 2r4- 

and, conversely, when the continued fraction of a given v'R has this 

form then it is always possible to find a polynomial ^ for which 

y -f* V^R 
y— 'TST 
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The fanotion y is given by 

«=:rH—^-^ ^ JL. 
2/t+ 2;i,+ 2/t,+ 2jit+ 2r’ 

Abel also proved the following theorem : Whenever an integral of 

the form . where % and R are polynomials in x. is expressible by 

logarithms, one can always express the]integral in the form 

/^=A p-h9 ^R 
p—qv'R 

where A is a constant, and p and q are polynomials in <r. 

The question of the redaction of certain kinds of Abelian integrals 

to logarithms does not offer much difficulty. The following examples’^ 

may be regarded as illustrations ; 

(1) /-n^=^=- -g log i(-e— '^** — 1 ) (' -O'/.t* —1 ) 

X (a—a* \/a8’—1 )“ I , 

a being an imaginary cube root of unity. 

(2) i log Vx*—p) p)“ 
^ * —px “ 

\ 

X(x’ a’X «-/,)“ I . 

g log I (.e—ju) (r —a \''r* —p 

• J. Dolbnia, **Sar les integralea p«endo>elliptiqti6l qui dependent d'nne raoioe 

cubiqne d*an poljrnome da troisieme degr^*' (BulUtin des Sciences Maihematiques. 

1893). 
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(4) J- djc 

i?n = - 

—h){x—c) 

2u) 

is expressible as a logarithm ; if 

m 
is a commensurable part of a period of where 

64. Soon after the publication of AbeFs theorem, Jacobi placed 
before himself the problem of introducing into Analysis the inverse- 

function of a hyperelliptic integral in the same manner as the elliptic 

functions had been introduced as inverse functions of elliptic integrals. 

But in his attempt to solve this problem, Jacobi had to face this serious 

difficulty : as the hyperelliptic integral possesses four or more periods, 
its inverse function must necessarily possess the same number of periods, 

but such an inverse function cannot be single-valued as a single-valued 

function cannot have more than two periods. This difficulty was over¬ 
come by Jacobi by his realizing that the inverse function, if considered 
as a function of ^ variables, may be single-valued and still have 2p in¬ 

dependent periods. 

The more general case of Abelian integrals, other than hyperellip¬ 

tic integrals, was not attempted for inversion before 1844 when Hermite 
wrote his memoir, “ Sur la the'orie des transcendantes a diffe'rentielles 

algebriques” {Comptes BenduSy tylS). 

05. (a) L proceed first to give in the words of Weierstrass* the 

definition of a particular case of an Abelian function, viz., a hyperelliptic 

function :— 

The theorem of Abel on hyperelliptic integrals forms the founda¬ 

tion for the theory of a new class of analytical functions, which may for 

that reason be suitably called Abelian functions, and which may be 

defined as follows. 

LetR(r) denote Ao(<—aiX-t: —«.)••• ^ integral 

function of x of the (2p + l)th degree, in which it is assumed that of the 

quantities a^, a,,... 
2p+l 

no two are equal although they otherwise 

# “Theorie der Abelschen Fnuctionen,* (CreUe*8 Journal, Bd. 52, 1856, pp. 286 

and 286). 

9 



66 THBOBY OP BLIilPTIO FUNOTIONB 

may take any real or imaginary values. Further, let ... 

be p unrestrictedly variable quantities and between these and an 

equal number of quantities ,r ^dependent on them let the follow¬ 

ing differential equations hold : 

du +JL P(a?,) dig, . dxp 
/ 2*^1—2 .Tj —VB(,r,) 2 arp—aj V'R(a',), 

du + I d'p 
* 2 VR(u;i) 2 iTa—a, >/R(.r,) *’* 2 p—v'R(,rp) * 

du = PUi) ___I _^:?js_^ 
P 2 acj —Up v'R(^^) 2 ,T5|—ap v'R(a?^) 

+JL ^ 
2 sc}--Up VR ) * 

where P (*) stands for (a*—ai)(-<’—a,)...(x—) and it is understood 

that take the values if the quantities Wj, 

« all vanish. Then a;,, are to be considered as the roots of an p nip 

equation of the form 

a'' + P,ar-‘ +P,a!‘^* +...Pp =0, 

where Pj, P,,.,.Pp denote single-valued analytical functions of Wj... 

; whilst a second integral function of x of the Cp —l)th degree 

+ ...+Q, . 

whose co-eflBcients are also such functions of gives respec¬ 

tively the values 

VEix,) 

when X is put equal to *i, 

After this, every expression, formed rationajlly and symmetrically out 

of »„ and Via(*x), v'ECarp, is to be looked upon 
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as a single-valued function of . In particular, however, it 

follows that the product 

(Uy —•••(U,.), 

where r denotes any one of the integers 1, 2,...2p-f 1, is the square of 

such a one. Accordingly, if one considers the quantities 

VAi <l> (a j, a/A, <t> (a,),... ^(®2p+l) 

as functions of Ml, i ‘Al*) standing for {x—x^Xas—x^). 

(a?—j being constants ; then, out of those quan¬ 

tities, cannot only the co-efficients of the equation whose roots are ai^, 

be formed easily but they (the quantities) are also marked, 

like the elliptic functions sin am Uy cos am u, A am w, to which 

they are reduced for p=l, and to which they are altogether 

analogous, by such a huge number of remarkable a nd fruit¬ 

ful properties that one is justified in giving them and a number of 

others, connected with then,, by preference the name ‘ Abelian. Juno* 

ttons ’ and is encouraged to make them the chief subject of consider¬ 

ation.” 

The general Abelian function may be defined as follows : 

Let Wj, u^y • Up denote linearly independent Abelian integrals of the 

first kind and let 

Ufsi [ du,, {h=l,2,...p); 

and further let i’,,) denote any rational and symmetric func¬ 

tion of Xj, Then the function S considered as expressed by 

means of the quantities U * is called an Abelian function of the argu¬ 

ments U* and is denoted by the symbol 

AZ(U„ 

66. The general Abelian function may also be defined as fol¬ 

lows :— 

A single-valued function /(v^, of p variables v,,.., 

which has everywhere in the finite domain the character of a rational 

function, is called an Abelian function, if it is 2p-ply periodic, af.e., 
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if th^re exist p linearly and integrally independent system of quan¬ 

tities 

(1) (A;=:l, 2,...2p) 

so that 

The p quantities (o^, <*>§a!.•.<*>#* are said to constitute a system of 

periods of the function /(e^, 

If Wj, are integers and 

(2) a)*=nia)*i+n,u)jkj4'...+^»ap<«iAai.) (A; = l, 2,...2)) 

then it also 

/(«^l+“») «»+«»». —V, + «>,)=/(Wj, 

The quantity <0* is, therefore, also a period of^*,...1^,) or 

briefly f{v). 

An Abelian function has, therefore, infinitely many periods. But 

quantities <0*,, admit of being so chosen that every period is represent¬ 

able in the form (2) with integral n’s. Such a system of periods 

is called primitive. 

All Abelian functions which have the quantities ci>*,i as periods are 

said to form a class, 

67. The following are the principal properties of the Abelian 

functions: 

O) The differential oo-e£Bcient of an Abelian function is an Abelian 

function of the same class. 

(2) Corresponding to each Abelian function/j(r) one cUn deter¬ 

mine p—1 functions /a(v), of the same class, such that 

their functional determinant is not zero identically. The equations 

have then, if the ^’s are not specially chosen, only a finite number of 

incongruent solutions; this number, which may be denoted by m, is 

independent of the choice of the s*s provided that they are not sin¬ 

gular. 

(8) If j[v) be any new function of the same class as the functions 

satisfies an algebraic equation of degrees, 

whose co-efficients are rational functions of fx{v)^ 
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(4j If the aforesaid equation of the mth degree is irreducible, then 

all the functions of the class admit of being expressed rationally by 

the p + 1 functions/i(v),/,(v),.../p(v). 

(5) Every Abelian function admits of being represented as the 

quotient of two integral transcendental functions. 

(6) An Abelian function is never an integral transcendental func¬ 

tion. I 

(7) Every Abelian function possesses an algebraic addition-theo¬ 

rem. 

(8; Every Abelian function admits of being expressed rationally 

by means of suitable Abelian functions, particularly by means of 

an Abelian ‘ function and its p differential co-efficients of the first 

order. 

(9) Between an Abelian function and its p differential co-efficients 

of the first order, there exists an algebraic relation. 

68. I proceed now to give you an idea of the explicit representa¬ 

tion of an Abelian function in terms of its arguments, by taking the 

very special case of a liyperelliptic function. 

(a) Lot 8 denote 

v'C.c-cJtc—c,)(a;—c,)(*—c,)(a!—c.) 

and let 

L 

s}swi==j ; w^{jr, s) 

Then every hyperelliptic integral of the first kind can be expressed 

in terms of w^ and hy combining them linearly with constant co¬ 

efficients. Let the periodicity-moduli of Wj be denoted by A^ A, * 

and those of by Bi*, B2*- Then 
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f« j fOi 2 *«» 2 
d«,=^A,„ j dwt=-^Bti, j d»,=-—A,, 

Cx «. c. 

«• 

Further, let 

tti 5= I ) , where I A 1 stands for the determinant 
® A I,* 

«i=aii ^4=®ti «^i+ai4W| ; 

TiA=aij Bi*+a, J B,*=t* I =aiJkB, i 

IA n A1 g 

(6) Let dJ'Nt,) 
9x9% 

Uii u,, viz., 

ir>0f 
(»)s 

denote the theta^function of two variables 

2 (2m2—{2m2—/i»)(2m*—?i,)+ r,,(2m4—fc,)*] 

xcosOm.m,, 

where jj, jr,, Ai, A, are integers, 

- A,)+"•(«, - Ifir, )(2otj - A,), 

and the summation extends to all integral values of m, and m, from 

— oo to oo. 

Then the hjperelliptic function a* can be expressed as an algebraio 

function of quotients of theta-functions, e.gr., 

(a—Ci)*(*—c,)V(»-c,)*(*-c.)* 

where H, O* ^ product of factors of the form 

(c^-c,)(y -«,) 

if p takes all the values from 1 to 6, excepting ja and /, 
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69. The applications of the transcendentals, discussed by me in 

to-day’s lecture, are varied and many ; but, for want of time, I shall 

content myself with giving only two applications, one to Dynamies and 

the other to Differential Geometry. 

(a) Consider a particle constrained to move on the ellipse 

I =1 

! 

with the axis of .c vertical. Then the principle of vis viva gives 

(A—a;), 
and, consequently, 

e V2g s 

where s denotes 

/\/j! +* ) (A-u:)(2-a:) ) 

Therefore the time occupied by the particle in moving from aj=0 is 

e s ’ 

a hyperClliptic integral of the second kind ; since, for large values of «, 

I 

^ A ^ B C 

8 V.C (Vx)* 

and, therefore, the integral behaves at a’ = oo as v'a?, an algebraic 

function. j 

(6) Weierstrass^ has shown that the rectangular co-ordinates of 

the point on a geodesic line on an ellipsoid of three unequal axes can be 

expressed by means of hyperelliptic functions and that the length of 

the line is expressible as a hj perelliptic integral of the second kind. 

^ Ueber die geodaetisohe Linien auf detn dreiazigen Ellipsoid*' Monaisbericht d^r 

Koenigli^en der B$rUnt 1S61)- 
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APPENDIX A. 

Expansions o/ <r(«) and ^(2) in powers of z, 

1. As stated in the fourth lecture,* Weierstrass obtained the 

expansion of <r(2) up to 2**; the co-efficients * are given below in 

tabular form ;— t 

0 »+ 1 m n am, « m n a.,, „ 

B 0 +1 2®» ‘ 0 4 + 1506600 

1 0 
i 

••• 3 2 + 20019960 

B -3 6 0 + 1416981 

a® 2 -9 
2®’ 2 3 +162100440 

B 
-18 

I.-. 
' 6 1 -41843142 

2 -54 
1 

1 4 + 796330440 

... 0 + 69 4 2 ; -376375410 

7 ^EB -388946691 
2 1 + 513 

. 

4 
1 

+ 321 0 5 + 2388991320 

... 1 2 1 + 4968 ... 8 3 -9465715080 

6 1 -6519779667 

1 ^89 2 4 -144^6218720 
0 3 + 14904 

5 2 -210469286736 
... 3 1 + 33688 

8 0 + 25514678881 

2 2 + 257580 fl| ■ ... 
‘1 

0 +160839 B ■ 5 -1289959784640 

1 4 8 -4582619446320 

1 3 + 602200 1 7 1 -485174610648 

4 1 -1-2808046 

• See Art. 43, pp. 42-43. 
I See H. A* Schwarz : ** Formein und LebraStze zum Gebraucbe der eliiptia. 

cben Functionen, nacb Vorleaungen und Aufzeicbnungen des tterru K. Weieratraes 

(GSttingen, 1883 ; 2Dd edition, Betlin, 1393), p. f, 
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2. In the tliird lecture, the recurrence formula for the coefficients 

in|tbe expansion 

«(--)= 4+i c. *2n-2 

has been Lfiven. 

By usinii' I his formula, Mr. Siibodh Chandra Mifcra has obtained the 

expansion of ^{.:) up to thus obtaining nine more terms of the 

expansion than had been obtained by any previous writer.* The 

values of the various coefficients from c„ up to ^ are given below ;— 

^ - y, . - St' 
’ ’ 2“.7’ * 2‘.35’ 

. - ^{Ji9n 
’ 2\ 5.7.11 

+ Ho' \ 4 
2o.3.bo 2‘.7“ J ’ ’ 2».3.5‘.7.11’ 

Ot + ] 
2“.3.5M3 ^2^7M1.13 v 

‘^^9i9t 4. 9» 
2»,5».7.11.13 2*.7M3 S' 

— J- ( _-f 
2^3.5M:117 2\5.7.11M3J7 s 

_If__^_L23g,g,’‘_) 
23 (2»,3.5‘ Jl.i3.17.19 2’.6.7Ml.13.17.19 5 ’ 

. _1 ( _I 
‘>‘~26l 2^.3^•5M3^^7 2V7M1M3M7.19 

^ 1 
2».7M3M9 j’ 

* See Mitra’s paper: “On the expansione.of the Weierstrassian and Jacobian 

elliptic futctions in.powers ot the argument ” (liuihiin of the Caloutta Mathematical 

Societv,yk>\. n, 1026, pp. 159-172). 

10 



THEORY OF BLUPTIO FUNCTIONS 

c -1 f 729i;/g, I43lg-.»g,» 
' *“27 \2*>.5*.7.11.13.17.19.23^2».7M1M3.17.19.23 J ’ 

c -1? g/ +_ 13647g*g,« 
“ 29( 2‘*.3.5M3».17 2“.5».7.11*.13M7.19.23 

j._6^71y,y,*_7 
2».5«.7».11.13M7.19.23 5’ 

, - 1 S 104003iy,«g, _ 
** 31 (2‘*.3*.6«.7.11.13M7.19.23 

39970lg.»g,« g> ) 
2*.3.5V7M1*.13M7.19;23 2».5.7M3M9) ’ 

_ 1 ( 2453^/ I006029gr,*g',* 
** 33(2‘*.3>.5».13M7*.29 '*’2’'.5*.7M1.13*.17».19.23.29 

8l050l7y.»g.* 
2‘®.6*.7*.11.13M7M9.23.29 

e - ^ ) 49871g/y._ 
” 35? 2“.3*.5M3M7.19.23.29.31 

240263^,‘<7,* 
2**.3.5«.7.11M3M7.19.23.29.31. 

. 3693g,8r,»_) 

2>*.5.7M3M7.19.23.29.3l S’ 

_1S 427g,* 30458088737^/^,* 
•“37(2”.3».5».13».17*.29'^2“.“3*.5*.7.11*.13*.17».19'*:23.29.31. 

. 122378650673(7/5,* 435,* } 
■^2»*.6*.7*.11* 13*.17*.19* 23.29.31 ■^2»*.7*.13*.19*.31 j’ 
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S 5562883^ 

® 39 (2' ^ .3».5«.7.1L13.17M9.23.29.31 

429852433(//^,» 

■^2'®.3.5».7M1M3,17M9.23.29.31 

28712941^, 

2^ V5\7M1M7M9.23.29.31 

3. In a communication* to the Academy of Sciences of Berlin in 

1882, Weierstrass states, as already given in Schwarz’s “ Forraeln und 

Lehrsaetze,” the values of the coefficients up to those for 2*®. In a 

paper,} communicated to the Society of Sciences of Goettingen, Hauss- 

ner attempted to express these coefficients independently as deter¬ 

minants. 

4. With reference to the function ^(3), attempts were made by a 

number of writers, including Hurwitz aud Herglotz X to find a general 

expression for r ^ by using which the values of the c’s for all values of 

N can be written down, 

Hurwitz confines his investigation to the special case in which 

is zero and (/, =4, aud finds that 

1 2*"E 

where the E’s are certain numbers analogous to Bernoulli’s numbers. 

Hurwitz fails to give a simple expression for E, from which all the 

E’s can be easily calculated. But he shows that E„ is of the form 

0.4+5 P 
f 

* “ Zur Theoria dar elliptiiohen Functional! ” (5ft»ttn(/^bcricHte d,k.Pr€Uss, 

Akadetnie d, Wissenschaften zu Berlin, 1882, p. 251) 

t “ Ueber die Zahlencooffloienten in den Weierstrass’schen, (f-Reihen.” (Nach^ 

riehten der A. OeselUchaJi d. Wissenschaften zu Goettingen, 1894). 

t Hurwitz, Gcett, Naohfioht$n, 1897. pp. 273-275 ; Herglotz, Leipzigtr B§rUhU 

19ta, pp. 269-289. 
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where G» is an undetermined odd integei*, p 4*6,notes a prince'number of 

the form 4^•+l, is thoroddj s^u^'e pi ; the two; squares in Which p 

can be broken so that 

a is to be taken witii such a si^u that the congruence 

a®6 + l (mod. 4) 

■ r f , ^ 
holds, andTlastly the summatioh for p extends to only those prime.s for 

which is a divisor of 4)/. 



' , APPfl^ND&X B ' _ . 
( 

Tiii:TA Fr\( iioN^ oy onf or mork variables. 

1, In view of the fact that Jacobi built up a theory ol elliptic 

functions, based on tlie foui* theta functions, defined'in Art. 25 of my 

second lecture', it is desirable to introduce three functions, 

0*3(~), anologous to the function cr(z\ defined in the fourth lecture, 

that the ^-function may be expressed in terms of the theta functions, 

and consequently also tfie functions, sn^ cn und dn may be expressed as 

in Art 24 of my second lecture. 

(cf) The four Weier.sfrassian sigma functiom. fn j^rt. 34 of the 

fourth lecture, the Weierstrassian sigma function was defined as 

and in Art. S5 was given the relation 

Now let <r^(z)y (T^iz) stand respectively for 

(1) 

ar^nj — z) — z) o'(w'—«) 

<r(u}) ’ 

Then, since 

(1) gives 

7 ^ t ^(z) ) 

because, as stated on p. 33, 

o-fc + n,,,, ,)= €]&(§):xe 

so that 

' ; (1, , j J' w I, ' ., ,• , 
or(a + w) = —<r(f—w) X « 

.1 >- 
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Similarly, it can be proved that 

(6) Expression of the theta functions in terms of the sigma functions. 

It can be easily proved that every integral function f {z) of 2 with the 

penod o) admits of being expanded in a convergent power series of 

the form 

Now, consider the function 

f(z)me ^ 

It is obviously an integral function as <r(e) is an integral funotion ; 

further 

/(s:+2«)s—<r(a)e 2«* 

=a(a)e 2» z=f(z) ... (2) 

Thus f{z) is an integral function with the period 2a>. Therefore, 

according to the aforesaid theorem, 

/(,;= i A.«*- ... *8) 

where 

wiM 

u=e^. 

But, in the same manner as (2) has been proved, it can be proved 

that 
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Hence, using (3), we have 

where g=:e " . 

Therefore, comparing the co-efficiente, 

A.+i =—g*'A., 

(_!)" + ! g-(” + 4)* A.^,= (-l)" A, 

Thus (—1)" g A, is a constant, say t C. 

Therefore 

But 

f(z)=iC 5 

t 5 (-1^ 

where 

Thus it is proved that 

C^j(t7)c:o'(z)c 

where the constant C is-eaeily seen to be ■ 
e^\0) 

Thus it is established that 

sin TTV—7* sin Sirv + q * sin Sttv — 

— 17,2* 

2(» 

where 2=:2(i)t7, 

•In the notation of Jacobi, used in Art. 35, this will be Sj (iro). Similarly 

for Sj, Sj, Sq. 
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Similarly, it can be proved that 

d,(t>)SE2 5 ?(’‘ + i)‘cos(2» + l)Tt;=«,(0)e , 

oo 
tf,(t>)sl + 2 5 g"' cos 2nvr=d,(0)« ^ £^3(2), 

00 -’Ll!' 

tf„(i;) = l+2 2 (-1)” g"’ cos 2n7rv=e„(0)c a,(z). 

(c) Expressions for iht %-function in terms of the iheta functions. 

Using the above formulae and those given in the end of (a), wt 

have 

1 <^.'(0) 
2a)" ^,(0) 

^,(v) 
e,{v) 

_ 1 e:'(0) o,(v) 

2<,. • ^,(0) 0,(v)' 

2a) 
d.'(0) 

«'o(0) 

eAv)_ 

OAv) ■ 

2e Mutual relations betiveen the theta functions Tlie following rela¬ 

tions between the theta functions are easily deduced fi*om the defini¬ 

tions : — 

(I) ^T(« + i)=^jO)> ^i(«^ + i)=^.(*’)>^i(c + v) = —^.(r), 

^s(i’+i)=^o(0- 

(II) ^,(t) + l)=^o(0. Pi(»' + 1) = —+ 

d,(r+l)=e»,(v), 

(III) ^.(f+-50=*g *e-*”do(t)), 
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(IV) e,{v), 0Av+r) = -q-^e-^'’^ 0»(«), 

tf,(v+T)=«9“^e“^®” 6t(v), ^s(«+t)= flj(v). 

(V) e„(«+i+iT)=?-ie-®l| e,(v), 6),(„+|+^T)=g-ie-®’* 0,(t>), 

^.(v+i+|T)-t,-*e-*««o(«),0,(i; + | + iT)=ig-*e-®'‘>,(t-), 

(VI) <?o(v+l + T) = -9“^e-2®«^(v),tf, (v+1+t)=3-V2'''<?,(i,), 

0,(v+l+T) = -9"^e-2®’'' e^v^, 0,(v + l+T)=q-^ 0,(v). 

(VII) 9o(v+m+nr)=z( - 1)’ «“"* 

d,(v+w+nT)=( —1)”*'*’” g“” g-2neT» 

<?.(v+m + nr) = (-l) ”* g""’ e-2"®'‘^0.(r), 

^,(t-+m + WT)=g-"’ e-2"®»‘>,(t,) ; 

m and h being any integers. 

3. The zeroes of the theta functions^ It is obvious frorn the expression 

for 0^ (v) in terms of a- (z) that the zeroes of the two are the same. 

But <T {z) vanishes, wh^n 

= =2m(i) + 2wcD' , 

m and n being any integers from — oo to ' oo. 

Therefore 0^ {v) vanishes when 

2 tut) =2m(i> + 2wu>', 

r=:i?i + WT. 

The zeroes of the other theta functions are obtained by using the 

above result and the relations given in the preceding article. 

For example, ^ 

therefore vanishes when v=m-l-»T, ^.e., tf»(v) vanishes when 

v=m+nT+i. 
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The zeroes of the various theta funotions are given in tabular form 

as follows : 

PanctioD 

1 m + nT 

» « m + nr + J 

s 
T 

m + nr + J + ^ 

m + nr + — 
2 

4. Infinite prodti^ts for tlie theia functions. Consider first 0^{y). Its 

zeroes are given by 

“* = —3“* . -9"’ . , 

«’ =—9 I '-q* , . 

Therefore, by Weierstrass’s factor-theorem, 

P(v)®n + 
1 

is an integral‘function of having the same zeroes as 0^ (v). 

Also it is obvious from the above definition of P (u) that 

P(t;.fl) = F(v),P(f;.fT)=g->w-*P(i;). 

But, from the relations (II) and (IV) of Art. 2, it is clear that (v) 

behaves in the same manner. Therefore —— is a doubly periodic 
F(t;) 

function of v with the periods 1 and t but has no pole. Therefore it 

must be constant, say C- Thus it is proved that 

^,(t;)=0. n d + g*-' w*)(I+g*-‘ ti-*) 
1 

oo 
=0. n cos 2irt)+5*—*). 

I 
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Consider According to (I) of Art, 2, 

0o{v)=^e,iv + \)=:CU 
1 

=Cni(l-2g^"-* cog 27rt;+g*"-*). 
1 

Similarly, 

1 

«2C. gr*co8 TTV n (1 + 25** cos 2w+q*'') ; 
1 

0,(v)=Cq^ )n 

=:2Cg^8in 7rrn(l —23* " cos 27rt) + g*'*). 
1 

These results agree with those given under (6) on page 22. 

5. Expressions for the quantities e,, Cj, K terms of the null 

values of the theta functions, (a) I will first prove that 

6’ ^ (o) r=7r^^ {o)0j^{o)0oi^) (A) 

and then deduce that 

Ve,—Cj =:^do*(o), Vei—e, =^0,*(o), c* 

Proof of (A) 

From (c) of Art. 1, 

/^Tci—^- 1 0,(v) 
0,{v) 

(1) 

Now expanding by Maclaurin’s theorem and remembering that 
0*(.o) 

it is an even function, we get 

0,(v^ _1 . V* 
\(o) ~ ^ 0i(o) • 2! 
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Similarlj, 

^'x(o) ' 3! ^ 

Substituting these values in (1), we have 

v'^(2<di?)—Cl 
1 

2wv 0^(o) 3 

Squaring both the sides and noting that the expansion of ^(2a)t?) does 

not contain any term independent of n, we have by equating the constant 

terms 

^ 4u,‘ (3 ^,(0) d,{o) J 

Similarly 

^9 

«9 

But 

Therefore 

4(0* 

O.-'tO) ) 
3 0.\O) <?,(0) 3 ’ 

10, "'(0> _ K\o) 1 
. 3 O.'(O) 0„(0) S' 

"e 1 + 

. o,"(0) . :o„''(0) 
0,(0) 0,(0) ^ 0o(0) 

Now each 0 satisfies 

6*0(v) __A- 8*&<v) 
01)“ 8»0t 
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Thereforoi putting v=0 in the above and ttsing the result in (2), 

we have 

7m 

_ I a 

0,(0) Qr 0„(O) 

whence, by integrating both the sides, 

e/(O)=ce,(O)0,(O)^o(O), 

c being a constant. 

By making the substitution v =0 io the series for the tf’s and 

JL 
comparing the co-efficients of we have c=7r. 

Thus the result (A) is established* 

(6) Since ^(a))=ei, putting in 

V^\2ii)v)—Cj = 
1 e,\0) 0o(v) 

2u> OoiO)' 

we have 

v'c,-e,= 1_ I0.'(O) 
2(0 0„(O) 

Mi) 
Mi) 

_ J_ 0f(O) 0^) 
” 2(0 0o(O) • 0,(0) ’ 

by (I) of Art 2. 

Thus Vci-e, ss-^0,*(O), by (A). 

Bimilarly, 

-i; M(0), ^/e.-e, = -^0.*(O). 

(c) As proved in Art. 23 of the second lecture, 
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k being 

Therefore, using the results in the end of (6), wo hare 

0.*(0) 

Also 

(f!) Since 

8n(K)=l, 

it follows from 

8n(*) 

that 

<*) —Cj^K, 

».e., K=^«%(0). 

Similarly, 

K'=u,'t -a, = J ire* (0) . 

(a) Hence 

and, consequently, 

.K' 
r=-,- 

-»K' q=e g. 

6. Expressiona for the an, cn, dn functiona in terma of the theta 

functiona. 

i gx'(O) go(t>) 

2<d ^o^O) ^i(») ’ 

Prom 
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we have, by using the expression for 8n( e,*) given in Art. 23 of 

the second lecture, 

sn(['/ei —ej*)= Vej—e,. 2o>. £oM <>»(«) 
MO)' fio(v)’ 

z.e., ,„(2K.)=^ . 

by using (A) and the expression for h given in (c) of Art. 5. 

Also 

cn(V'cj—Cjz) 

Therefore, substituting the expressions from (c) of Art. 2, we have 

cn (v'e^--e32)= , 
' ^ e^{v) * 

_ AM. 
^ ’ ®o(v) 

Similarly, 

dn(2Kt,)=A/v44^ • 
^o(v) 

7. Determination of q for given h ; Hermite's functions, 

(a) From the results 

.v/r-AM) ^fc'=A(2L ^,(0) ’ ^,(0) ’ 
are obtained, by the inversion of the series, respectively 

0-1 ifc.+i i.^JLk<'+ IS+6257 

and 

,=lf+a ■ 

I standing for 1-Vk' 

It ' 
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The Jatter secies is so rapidly convergent that, if | Z | ^ , tte error 

in taking the first two or three terms is numerically less than 

orl I'K 
TO 50 

It should be noticed that, although for a ^iyeo i or Jc\ there are an 

infinite number of values for 9, one value is obtained by means of the 

series given above ; the other values are deduced by the linear trans¬ 
formation of tbeta functions. 

(h) Let 

f^=-' 

be denoted by then and , considered as functions of are res¬ 

pectively Hermite’s functions and if/ (t). 

The following results relating to ^ and \f/ are obvious : 

* 

iir 

(< + !)=« 
-KO' 

It can be also proved that <f> ^ ^ admit of 

being expressed simply in terms of ‘/'(O ; d being 
integers subject to the condition 

ad—fic = l. 

8. Ja^hV8 fundamental tlyeorem. If 

u;'=^ f—2), 
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then 

Froof: 

0,(,,) = 2 gnMog9 + 2nir*i 

= «*°8 9 5 e 

(2n \ • log q+7ra;i j /log q. 

Similarly, 

Ou 
e,(.o)=e^9 S e’ 

Therefoi’e 

( log g + irr» ^ /log ( 

d,{w)0,ij)e^(y)ei(z) = {e _+ X* -f y* + «*)/log q 
} 

XS 2 2 5 
n n' n' 

XS 2 5 5 e 
n n' n" n' 

T/log q 

wberQ 

S= (*^log 9 + w«y+ logg + XTri ^ + (-^ log q + y^i^ 

+ log q + zni ^ 

and 

T= log ^ + (---^-- log 

+ ,y- log q+yn y + 2" g+*’« ) 

w, n', n", w'" being integers all independent of one another and taking 

all the values from—oo to oo. 

12 
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As the factors of ^ log j in S are all even numbers and its factors in 

T are all odd numbers, it follows that 

+x’ +v‘ + «!*)/log 9} X §' 

where 

H= log g+umj + log g + *ini ^ log q+yiri^ 

+ 9 + *’" )* > 

the sign denoting that the summation is to extend to all possible 

integers a, 6, c, d, which are together even or together odd. 

Now it is not difficult to see that 9 remains unaltered if 

H= log q+w'tri y + log q+ I'lri ^ 

+ q + y'-^i y + logig + j'ir* y, 
where 

a'2=^(a + ^*4-c+d), 6'=^a + 6—r—d), 

c'=| {a---h^c—d), d'=:|(a — 6—c + d) ; 

foi* 

«?'* + *'* 4* + +2*, 

and a', b\ c\ d! run through all the possible systems of four even or 

four odd integers just as a, 6, c, d, do. 

Therefore 

»:t**i*'* + v'*+*'* + «o?l/log gy jg'jH/log q 

which equals 

9, (u/)0.(»' )9,(y')9,iz'). W)9, (y'ltf ,(*'). 
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9, Addition theorems for the theta functiom. There are altogether 

256 addition theorems which can be all deduced from the fundamental 

theorem. By giving special values to the variables, 36 formulas can be 

deduced for 

(o,)8«0,1, 2, 3). 

Of these the following may be mentioned, Cq, Cj, Ca standing ^o(^)» 

^a(0), 0a(O) respectively :— 

(VIII) 

=e,\v)e,Hv,)-e,*(v)e,*iv,) 

(IX) )-<?,’(«)«,‘(wi) 

Putting »i=0, we have 

(X) c,* eo‘(t;)=Co«fl.*(o)+c,*<?,*(u). 

(XI) c.* 0,‘(t>)=c, eo^{v)-c,*0,^iv), 

(XII) c,>0,»(v)=c,*0.*(»)-co’«,*(w) 

(XIII) c,»0,*(«)=«o*^o’(«)+c,>0.*(v). 

Hence, patting »=0, we have 

(XIV) c,*=Co'‘+c,*. 

(XV) Co'+c.«+o,*=2(6,*c,*+Oo*c.*-Co*c.*) 

(XVI) (co»+c,» + <!,'')»=2(co‘»+c,>» + c.**) 

=4(c,»<;,»+Oo*c»*+Co’<5»*) 

10. Theta functions of p variahles. (o) By the theta function of p 

variables Wj, and the given parameters o* / =o, * is understood 

the function 

(1) 

Os=x(«)+8 2^ 

where 
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x(n) standing for the quadratic form 

5 / =(aiiWj* +2aigti-jn, + ... ,n/) 
k I G\ 

of the p variables and the summation 5 extending over all 
ni, n,...n, 

integral values of n^, nj,...np from — oo to oo taken independently of 

one another. 

The tP(p + 1) constants, a’s, which are arbitrary except for certain 

conditions for the convergence of the series (1), are called the moduli 

OT parameters of ^(ui, frequently denoted for brevity by 6(v)* 

If a\i denote the imaginary part of a*/, then the series (1) is 

convergent for all finite values of the p variables if, and only if, the 

quadratic form 
*1 = 1 

n^nia\i is definite and positive; hence the 

conditions, referred to above, for the a’s. When these conditions are 

satisfied, the series is absolutely convergent and 6{v) represents a 

function which is always finite and continuous for all finite values of 

the variables. 

(j3) The function 6(v) has the following properties : 

(^) It is an integral and transcendental function of the variables 

(u) 6{vi,.,r 

(m) 6{vy+a^i, t;a+a,,,..„i;, + tt^/)=0(z;)e 

(.■„) « . 
6«** OVk 0 a* f 0r*6t^i 

The second and third equations may be combined in the statement 

that for integral values of /I’s and gr’s, 

+0)i, r, +0),,..., ’rix(g)-2ir»§g[,o, ^ 

p 
where <d* + 5 ^ia*i. 

I *=i 

By means of the first three properties the function is determined 

having a factor dependent on the a’s ; by the first four properties, it is 

determined having a factor independent even of the a’s. 
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The 2p systems of f quantities, 

1,0, ... 0, «!! a.l - ... 

0,1, ... 0, 

0, 0, ...1, .. dpp^ 

are each called a connected penod system or briefly a period of the theta 

function. 

11. Characteristics ] general theta function, (a) If Cj, Cj, ... c,, are 

any p quantities, then real quantities h^, ... ...g^ can be 

always so determined uniquely that 

^ giO'kf 

The system so determined is denoted by 

—
1

 

_
1 

or briefly f 1 
L Aj, Aj, ... hp -J L A J 

and is called the period characteristic of the given quantities c*. 

(P)^ The general theta function is denoted by 

er 
r 929 ••• 9p n r ^ "I 

^99 ... Vj.) or briefly 0 \ (r) 
^ ^1. ... Ap J L A J 

and is equal to 

where 

^(v,+Oi, Vj+Cs,...v, + c,)e"*^, 

^=X{9) + ^ 5 gki^k + hO- 

The system is called the characteristic of this theta function. 
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(y) The general theta fanction has the following properties s— 

(0 It is an integral transcendental fanction of v,, v,, ... v,. 

(ut) ^ ^ +aii, u.+ajn v, + a,t) 

— in(flj * + 2t)fc + 2fcfc) 

(tv) 4mi 
Q6 a*ti 

0 * 0 W»* ’ 
86 _ 

0a», 0«ii 0wi' 

The second and third equations may be combined in the statement 

that 

6 j(v+w)=e"'*'6 

where, with integral ^'’s and h'^Sy 

+ 2 9' I ki 

1/^ standing for 

—x(9^')—2 2 5r'ftVA+2 2 (ykgk—'hkg\)^ 

By the first three properties, the function is determined having a 

factor dependent upon the parameters a* ^ ; by the first four properties 

it is determined having a factor independent of the a^s. 

(8) To each characteristic there corresponds a theta function. The 

characteristic is called even or odd according as the corresponding 

function is even or odd. 

The characteristic J even or odd according as the sum 

is even or odd. 

By the sum of two or more characteristics is understood that charac¬ 

teristic whose elements are congruent (mod. 2) with the sums of 

homologous elements in each of the given characteristics. 

The theta function defined in Art. 10 corresponds to the character¬ 

istic 0 ; so that fir=aO, A=0. 
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The number of even theta functions is 2'"' (2^-f 1) and the number 

of odd theta functions is 2'”' (2** —1). 

Thus for p=l there are three even and one odd theta functions; 

they are ^[S] (v), tf[?] ®[J] (v)f ^[}] (v) corresponding respectively 

to the functions &o (^)» (^) 

For j9=2 there are lO even and 6 odd theta functions ; they are 

all odd* 

• The firit few terms of some of these may be given here : 

Vo, 0-1 
a (t?)*l+P cos 2ir Dj+Q cos 2ir v, + ... , 
ho.oJ 
rao -] 

0 1 (tj)=*l—P cos 2ir + Q C0S,2ir c, + ... , 
Ll,0 -J 

• r ”| (v) = 2v^P sin irt),+2Q\''F sin (irr j + 2irt?5) 

•■‘"(•-S;.-.)!* - + e 

where P-»'* « «»• 
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12. Klein's sigma functions for p=:2. Let 

<r(v,,ti,)=_ e{vi,v,)e-x, (1) 

where 

1/10^ 10 \0 ^ \ 

the sum extending over the 10 even theta functions, 0 denoting the 

value of 0(^1, that of and On^, that of jL 
a Vf^ o o V 

all forvj=v, =0, and C being a constant which equals in the case of 

an even theta function its value d for Vj =^2 =0 and in the case of an odd 

theta function or — ^2» PuFa being suitable constants. The 
Pi Vt 

functions cr were introduced by Kleint and are called Klein’s hyper ellip¬ 

tic sigma functions for p=2. They are 16 in number, 10 even and 6 odd. 

These functions possess this advantage over the theta functions 

that, for any linear transformation of periods, one sigma function simply 

changes into another, w’hereas for the same transformation a theta 

function changes into another theta function multiplied by an exponen¬ 

tial factor. The sigma functions of Klein are generalizations of the 

four sigma functions of Weierstrass for the case of a single 

variable. The functions erfv,) have been expanded in powers of 

and Vj. 

13. Representation of an Abelian function by means of theta or sigma 

functions. 

In Art. 68 of the sixth lecture T gave the representation of a 

hyper-elliptic function by means of the theta functions of two 

variables, w^, w^, where 

and 5 = ■>^(.1—C,)(x —cj(a—C,)(* ———C,). 

t In lectarefl delivered at the University of Gottingen from Summer 1887 to 

Summer 1880. 
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Generally, every single-valued function of p variables and 2 p periods 

having no essential singularity in the finite domain can be expressed 

rationally by means of suitably chosen theta functions. 

For example, if 

d(v,—e,, V, —e,) 

be denoted by e), then the expression 

-i-—>-i-— e ‘=>1 ^2) 

is an Abelian function of the variables ; the constants 

A', A*,...A'' , C\ being subject only to the condition that 

none of the theta functions in (2) identically vanishes for every point 

it, the p’s being constants and f being given by 

J dvt=v», (t=l, 2,.,.p). 

The most general function of the co-ordinates of .« admits of being 

expressed in terms of v , v,,...v„ in the form (2). 

IH 



APPENDIX C. 

Notes, additions and corrections. 

Page 1. The quotation is from Dr. Einar Hille’s translation in the 

Annals of Mathematics, VoL 21, of Mittag-Leffler's book, “ En 

Metod att Komma I Analytisk besittning af de Elliptiska 

Funktionerna ” (Helsingfors, 1876). 

Page 2. The problem of dividing the quadrant of a lemniscate 

into n equal parts engaged the attention of many eminent 

mathematicians after Pagnano. Gauss and Abel proved that 

the division of the lemniscate by means of ruler and compass 

is always possible when such a division of the circle is 

possible. Thus, if n is equal to , where each p is a 

distinct prime of the form 2*^+1, I and t being integers, the 

quadrant of the lemniscate can be divided by ruler and com¬ 

pass into n equal parts. See AbePs “ Oeuvres,” t. 1, p. 361. 

Page 10. Line 12. For standing ” read standing.” 

Page 12. Lines 6 and 7. For the words “An elliptic... a jD^ewdo- 

elUptic integral ” read An elliptic integral which is expres¬ 

sible either as the logarithm of an algebraic function of tbu 

variable or as such a logarithm plus another algebraic func¬ 

tion of the variable is called a pseudo-elliptic integral. 

Page 13. The first article should be numbered 13A and not 13, 

Page 22. In the first line of Art. 25, substitute the word “frequent¬ 

ly for “ generally.” The Greek letter theta, in one form 

or another, is used to denote theta functions. The form 0 

used here is almost invariably found in French and Italian 

publications. For more information on theta functions, see 

Appendix B. 

Page 32. Line ' 13. For '‘9 s " read “ n Uh' 

Page 38. Line 8. F(yt' “ cu>' ” read “ CW.” 

Page 54. Line 1. For “ Sielvek ” read “ Siebeck. 

Page 54. Line 2. For “ 54 ” read “ 57.” 

Page 57. Line 15 of the foot-note— 

For " began ’’ read begun ” 
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Page 58. Line 11. For ‘‘♦(y,)+^(‘^s)” 

Page 78. Line 7. For " (-—* read “ y." 

Page 82. First column of the table. For “ 1 ” read “ 

Do. For “ 2 ” read “ 

Do. For “ 3 ” read “ 0,” 

Page 83. Line 9. For “ 22 ” read “ 21.” 

Page 90, Line 4. For “ <0, • ” read “ w*.” 

Page 91. Theorem (XI). For “ c, ” read “ c,‘.” 

Page 95, Line 2 of the foot-note. For “ Q cos 2irt>j ” read “ Q cos 2ffV,. 

Page 96. Line 6. For “0 v ” read “ 8» 
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