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CHAPTER 1 

THE CLASSICAL APPROACH 

Hydrodynamics deals with the motion of fluids, hydrostatics with 
fluids at rest. Fluids are usually divided into gases and liquids, although 
a good deal of the theory of fluids is applicable to both. For our purposes, 
the chief distinctions to be made are in density and compressibility. 
From the smaller density and greater compressibility of a gas arises its 
ability to fill the volume of any vessel in which it may be placed, whereas 
a small quantity of liquid in a large vessel presents a free surface from 
which it may evaporate into the space above and at which forces—^surface 
tensions—are apparent. At the “critical point** of a fluid these distinc¬ 
tions are confounded and the liquid becomes vapour without a sudden 
change in properties. Both types of fluid show resistance to motion in 
which a further property, viscosity, comes into play. If parts of the 
fluid are interconnected, elastic forces may operate when one part is 
moved relative to another, though this only occurs in liquids. 

In the motion of fluids, then, the subject of this book, the physical 
properties of matter in the fluid state which will have to be considered 
are: density, compressibility in bulk, surface tension, viscosity, and 
shear elasticity. 

The actual motion of portions of the fluid results from differences of 
pressure or of density. The fluid tends to run down a gradient of pressure 
and from a place where the fluid is compressed to one where it is rarefied 
until equilibrium is restored. Continuous movement ensues when 
unbalanced pressure differences are continually maintained by external 
forces. 

The Ideal Raid 
Since it would be difl&cult to construct equations involving simul¬ 

taneously all the factors we have just enumerated and the solution of 
them when constructed virtually impossible, the fluid is simplified in 
“classical theory’* as follows: 

1. The fluid retains the same density throughout. 
2. The fluid is incompressible. 
(These conditions are not synonymous, though they have the same 

effect. In the molecular picture of the processes of locally heating or 
of mechanically compressing a fluid, the former is supposed to increase 
the molecular kinetic energy, the latter to bring the particles closer 
together. A “hot spot*’ diffuses outwards, a compression travels out 
as a sound wave.) 

1 



2 THE 0LA8SI0AL APPROACH 

3. The fluid is inelastic. 
4. The fluid has no free surface. 

These restrictions leave the fluid with mass (or inertia) and viscosity, 
but further simplification of the mathematics ensues if we suppose the 
fluid frictionless. 

The Equations of Motion of the Ideal Fluid 

The equations are constructed from the statement of Newton’s Second 
Law of Motion, i.e. that the total force acting on a particle is the product 
of its mass and acceleration. 

If X, y, z are the rectilinear co-ordinates of a small cube of the material 
(density />) of volume Sv, x/y/z the 
components of its acceleration and 
X, Y, Z of force on unit mass, let 
Jfp, Yp, Zp be the components of the 
external force acting normally on 
the three surfaces of area hS due to the 
differences of pressure (Fig. 1). Set¬ 
ting aside the frictional forces for the 
moment, we have these conditions of 
equilibrium: 

pxhv^Xpiv•^^XphS 

py8t;=Yp8v+Yp8S V . (1) 
ZpSv-j- ZjfbS J 

Yp, Zp we shall insert the pressure gradients in the 

Fig. 1. Forces on fluid element. 

In place of , 
corresponding directions, i.e. 

Xp.85= 

Yp.8S= 

dp 
.8v 

dx 

dp 
Z,.BS^l.hv 

(2) 

For, in an ideal fluid, the pressure acts equally in all directions in the 
interior and at right angles to any surface presented to it. Then 
Xp, Yp, Zp are each derived from p, the mean hydrostatic pressure at the 
point in the fluid circumscribed by the cube. 

Substituting in (1) we get 
dp 

dx 
plx^pX- 

py=^pY- J>P 
dy (3) 
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These equations are not suited to direct application since the quantities 
X, y, ^ appear in them at once as dependent and independent variables. 
There are two ways of adapting them to suit experimental observation. 
We can ask ourselves, “At a given point, what fluid occupies the element 
of space subsequently?** or, “Where does a given particle find itself as 
time goes on? ** The first attitude corresponds to that of a fixed observer, 
the second to that of an observer who moves with the general velocity 
of the medium. 

Mathematically, the first question can be put thus: “What function 
of X, y, z, and t are the velocity components U{=x), F(=y), W(=i:)?*’ 
We proceed to retain x, y, z as independent variables but eliminate their 
dependent aspects to obtain 

which with (3) resolve into the Eulerianf equations: 
dp 

dU dU dU dx , dU dy dU dz ^ ^ 
= ~ — -4- — 4- — -^4_etc* 

dt dt ' dx ' dt~ dy ' dt~ dz ' dt’ 
(3a) 

dp 

(4) 

Now let us introduce the frictional forces, 
of viscosity, tj, as the force per 
unit area of two parallel laminae 
of fluid unit distance apart, 
measured across the direction of 
flow. Thus, if U and U+hU 
(Fig. 2) are the velocities (in the 
direction of x) at two planes Sy 
apart, the force per unit area 

Cr ±- 
30y- 
A ^ 

p* dz 

We define the coeflScient 

Fig. 2. Action of fluid friction. 

on the fluid in either plane is r),dVldy^ i.e. the product of the coefficient 
of viscosity and the velocity gradient perpendicular to the direction of 
flow. If Ay By and C are such laminae, each of area S, A exerts a force 
on B equal to ’—’q.dVjdy.S\ C exerts a force on B equal to ri{dUldy-{- 

d*Vldy^.Sy)Sy so that the net force on B is 

where Sm is the mass of fluid between A and B, The factor ly/p, written v, 

which we shall often require, is called the kinematic (coeflflcient of) 

• The rate of change in any property of the fluid such as U, written can be 
divided into a local change, dU/dt, which the projperty suffers when the place of observa¬ 
tion remains fixed and the eonveclivc change, i.e. the remaining three terms, which 
U experiences as one alters the place of observation, 

t Acad. Berlin (1755). 



4 THE CLASSICAL APPROACH 

viscosity. (It should be noted that it is here assumed that 17 is constant 
for a given fluid, invariable with dVIdy, but later in the book we shall 
meet systems in which the two are interdependent.) 

In the general case, the total viscous force on an element of mass m 
due to the component U will be 

d^U d^U d^U 

) 
written shortly ymSJ^V, This force must be added to those on the 
right-hand side of the equations we have already derived; in particular, 
(4) become 

dU 

dt 

er 
dt 

aw 
at 

=J'-J|+-VF (5) 

equations ascribed to Navier* and Stokes, f 
The second form of our question {vide supra) can be translated thus: 

*‘What functions of time and place are those co-ordinates—let them be 
a, b, c—^which characterise a given particle?” To answer this, we get 
rid of X, y, z as independent variables but retain them where dependent 
and arrive at the Lagrangiant form of the equations of motion: 

att'^paa 

ab^pdb 

dc^pdc 

. (6) 

The form due to Euler is, however, more generally used. 
With the force equations, such as (5), we combine the equations of 

continuity which express that the quantity of fluid entering a volume 
element in a certain time must equal that which leaves it plus or minus 
any accumulation or reduction of mass in the space. In the Eulerian 
form, 

dp dp^ (dV ^ dV ,dW\ 

or, aince we have supposed that p is constant, 

=0 

^ 0F ^ 
dx'^ dy' dz 

=0 

• Mtn. Aeai. Bd. (ParU) (1822). 
t Mtm. Acad, ^BcrUa) (1781). 

(7) 

t Cam6. Tram., 8, 287 (1848). 
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To equations such as (5) and (7) must be added others characterising 
the conditions of the fluid at its boundaries (usually solid). These express, 
for instance, that the normal component of the velocity must vanish at a 
solid boundary, or be the same on each side of any point in the boundary 
between two fluids; and that the tangential component must vanish at 
the boundary formed by a stationary solid, or be continuous on each side 
of a fluid interface or free surface. The second of these conditions is 
sometimes expressed in the dictum: “no slip at the boundary.*’ There 
results from it a gradient of velocity going outwards from the boundary 
into the mainstream and so a force on unit area of the boundary, made 
manifest as a drag or resistance offered by the boundary to the motion. 

Nevertheless, the Navier-Stokes equations have up to the present 
defied solution in their complete form and other means have to be adopted 
for tackling the problem of resistance in a fluid having both inertia and 
viscosity. 

Before describing these we shall consider two simplifications of the 
equations which lead to solutions whose application is strictly limited to 
ideal fluids but which have a limited application to special types of flow 
of real fluids. 

These ideal types are: 
(1) fluids without viscosity, having only mass (or inertia), 
(2) fluids having negligible inertia, only viscosity. 

Steady Potential Flow 
If we omit the viscosity terms from equations (5) and also suppose 

that all velocities are steady, we are left with a fluid which can move in 
two ways, irrotational or rotational. The second boundary condition is 
no longer relevant, but the first still holds. 

The circulation round a closed path from A back to A is defined as the 
integral round the path of the product of the velocity component along 
the path at any point and an element of the path at the same location, 
reckoned at any epoch of time: 

The simplest instance of circulation in a fluid is that of a vortex. If 
O is the angular velocity of the particles in the vortex and a track is 
described round the core of a radius r, 

Kelvin showed that in a frictionless fluid the circulation round a closed 
path remains constant for all time. 

Stream tubes or lines represent imaginary canals in the fluid along 
which a particle started from one end moves continually to the other, as 
though so constrained like a train in a tunnel. 
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The line integral of the circulation over the path between two points 
is constant whatever the form of the path and is known as the velocity 
potentials The potential difference between two points A and B is 
^^^sasJ^U.ds. If we measure potential from an arbitrary “level” in 
the fluid we can call this a surface of zero potential and 

A plane which passes through all points in the field of flow having the 
same potential is called an equipotential surface. From the fact that the 
fluid when it moves takes the line of least resistance we may infer that 
the stream tubes cut the equipotential surfaces at right angles. (In the 
same way, a field of force, gravitational, magnetic, or electrical, may be 
delineated as a series of equipotential surfaces intersected by stream tubes. 
The contour map of a countryside is such a field represented in two dimen¬ 
sions where the lines of equal height are equipotential lines reckoned from 
sea-level as zero and the directions in which streams run are lines of 
force.) 

A solid boundary itself forms one side of a stream tube or cylinder; 
since fluid cannot move across the boundary no tube can intersect 
it; and the equipotential surfaces terminate on the solid boundary as 
perpendiculars to it. 

The dififcrence of potential along a portion of a stream-line of length 
8s is USs or l/=(i^/ds. Thus the velocity is given by the gradient of 
the potential: 

I7=grad. <f>.(8) 

From Kelvin’s theorem it follows that a frictionless fluid started from 
rest cannot grow vortices or, if it is in motion with vortices in it, cannot 
rid itself of them. Such a fluid started from rest must have a potential 
field, but we do not by that imply that all the stream tubes must be 
straight. Curvature of the stream tubes per se does not set at naught 
the Kelvin theorem. 

If we agree to describe our equipotential field so that each line is one 
step removed from the next and label them—^in potential units—0,1, 2, 3, 
etc., then wherever the tubes are constricted and crowded together, the 
velocity is higher than the mean; where they are wide and distended, on 
the contrary, the velocity must be below the average. Our definition 
of a stream tube and the condition of incompressibility in the fluid 
necessitate this. (The same thing is true of a field of force. Where the 
contour lines on a map are close together the terrain is steep and water 
runs off in this vicinity with a large acceleration. So, too, on a magnetic 
map the fot^pe of attraction or repulsion on a pole is large at a place where 
the lines of force are close together.) 
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Given a potential function ^ we can resolve its gradients in the three 
directions x, y, z, and take 

dz (9) 

(10) 

dx' dy’ 

with the equation of continuity (7), to get: 

the so-called Laplace equation. 
From equations (3a) we derive an important theorem, writing 

^-dx^^dx+ u\^^.dx+ ^dy+^.dzj 

=—.dx+UdU, etc. 
ot 

so that, when at a certain place the pattern of flow is fixed, i.e. U, F, W 
are constant in time: 

b„4,, 
where £ is a potential for the inertia forces, such that 

Y_ dE ^ Y_ BE ^ „_ BE 

When the flow is steady B<f>IBt—0 and the mean velocity is €/. This 
gives us, on integration, D. Bernoulli’s* theorem: 

^ ^ 7> . IS constant 
Z p (11) 

This applies with a distinguishing value for the constant along each and 
every tube of flow, but in the absence of vorticity the constant is the 
same for all tubes. In hydrodynamics E often characterises a mass of 
fluid lifted or lowered under gravity through a height A, and the theorem 
then becomes 

JP , p. 
ir+^A-f ~ IS constant.(11a) 
Z p 

When all the motion is on a horizontal plane, it simplifies still further to 

IP p 
—+~ is constant.(11b) 
z p 

Applying (lib) to the tube which marches with a solid lamina placed 
in the field, the pressure exerted on the body is small when the tube is 
narrow and the speed high, and vice versa. 

* Hydrodynamica (1788). 



8 THE CLASSICAL APPROACH 

In place of tke velocity potential or alongside it, we may employ, if we 
please, the stream function. If we join two points A and £ by a curved 
segment of length ds^ making an angle a with the stream velocity at that 
place, the stream function is so defined that 

CB 
ipB—I ^ sin a,ds 

J A 

In moving along a stream tube from ^ to a remains zero or is constant 
along a stream tube. Otherwise, if 17 be resolved along the three co¬ 
ordinate axes into 17, 7, IT, making with the normal to ds angles whose 
cosines (the “direction cosines'*) are I, m, n, 

^=^(lU+mV+nW)ds.(12) 

If we take axes at each point on the tube directed along and perpen¬ 
dicular to the tangent and if is the radius of curvature and a a portion 
of the tube, the two components of acceleration are t^/fx and dUjdt or 
UdUlds, We can then form equations on the model of (3): 

Ti ^ 0r, 
(12a) 

where T and N represent the tangential and normal components of force 
on unit mass. 

These are called the “intrinsic equations" and from them when a 
potential applies to T and N we can derive Bernoulli's theorem. For then 

dJE 
ds' dr^ 

and an integration of the first of the equations (12a) gives (11). 

Examples of Potential Flow 
We shall, for simplicity, take our examples from two-dimensional 

motion; that is, motion which takes place in a thin plane or in which the 
cross-sections of fiow taken by a plane at various values of z are identical, 
A map of the field will then consist of a set of equipotential lines and stream¬ 
lines, Since dtft is the total variation of a function of two independent 
variables, x and y, 

or V 

then with V=d<^ldx and V 

VV“0; W=0; 

dy’ dx . 

■d^jdy (of. (9)), we obtain the three equations: 

(13) 

d<l> dijt dip_ 
dx'dx dy'dy~ (14) 
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(A) Poixit source or sink. Imagine liquid to well up from an under- 
groimd spring through a hole on to a horizontal surface. The stream¬ 
lines over the surface will be straight, radiating from the hole, and the 
equipotential lines concentric circles. In polar co-ordinates, 
—-^^/0r=C/r. (Interchange 0 and (f> in these expressions and you have 
the whirlpool.) In hydrodynamical parlance this is a “source.** Set 
0^/^r=+C/r and you have the “sink,** a hole into which the liquid drains 
from the plate. C is known as the strength of the source or sink. 

/ / \ \ 

(c) (d) 
Pig. 3. Potential flow; (a) source and sink, (6) uniform stream, (c) stationary cylinder, 

{d) rotating cylinder in stream. 

A source and sink of the same strength near together form a “dipole** 
and have a potential held, 

<f>=C log 

where this value applies to a point distant and rj from source and sink 
respectively (Fig. 3a). 

(B) Parallel flow. Steady streaming of fluid in the direction of x with 
velocity V will have a field 

the two sets forming a pattern of checkers (Fig. 3b). 

(C) Flow past a cylinder. The axis of the cylinder is the z co-ordinate 
and is placed in an erstwhile uniform stream U. We obtain a close 
approximation to the flow round the cylinder by superposing the systems 

D.B.F.—2 
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A and as a dipole plus a uniform streaming. Transformed into polar 
oo-ordinates this becomes, 

^==j7^f+“j cos 6; sin $ 

i.e. log-4+I/a: 

If the source and sink are in line with the stream and fairly distent, the 
combination gives the flow round an obstacle like a boat Wl; as they 
are brought near together and their strength increased so that the flow 
they induce is large compared to J7, the pattern changes to that for a 
circular cylinder (Fig. 3c). 

Many problems in a fluid without viscosity can be approached by a 
suitable choice of sources and 
sinks. 

D’Alembert’s Paradox 

It should be noted that the 
two sides of the cylinder in 
Fig. 3c themselves form part of 
a divided stream-line which 
strikes it at the bow (or “front 
stagnation point”) and leaves 
it at the stem (or “rear stag¬ 
nation point”). The flow is 
identical at the two ends of 
every diameter, being zero at 

Fig. 4. Electrical analogue of potential field, Stagnation points and 
a maximum at the ends of 

the equator. By Bernoulli’s theorem, the forces inward at the two ends 
of each diameter cancel out in pairs, so that the cylinder experiences 
no net force or resistance. This consequence of the neglect of viscous 
forces was first pointed out by d’Alembert. 

Magnus Effect 
If the flow is, however, unsymmetrical with respect to the x axis we can 

simulate it by adding a circulation in the form of concentric stream lines 
to the patterns we have drawn already. Thus a clockwise circulation 
added to the pattern of the circular cylinder has the effect of increasing 
the general flow on the positive side of y and decreasing it on the negative 
side (Fig, 3d). This makes the pressure on the cylinder, due to the 
stream-line which bathes it, less above than that just below and the 
obstacle experiences a cross-force (Magnus* effect). 

*Af>hand. Berlin, Akad, Sd, (1851). 
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We have already remarked on the analogy between hydrodynamic 
fields of flow and magnetic or electrostatic fields of force. The equi- 
potential lines in a two-dimensional electrostatic field may be mapped on 
a model field made in silver foil or in a shallow trough of acidulated water. 
This forms two arms of a Wheatstone bridge, the other pair, the ratio 
arms, being made of a uniform wire (Fig. 4). The fall of potential takes 
place through plane and wire in parallel and is provided by a battery. 
The galvanometer is connected at one end to a point on the wire, while a 
wander-plug at the other end is used to search for points in the field 
exhibiting the same potential as the connection to the wire, shown by 
absence of deflection of the galvanometer needle. Such places are joined 
by a line, the potential divider moved to a new place on the wire, and the 
process repeated. Boundaries to the field of flow or of force and obstacles 
in it are simulated by slips of ebonite of appropriate shape. Thus the 
field of Fig. 3c is exhibited in facsimile by the electric field over a metal 
foil between thick strips with a circular hole cut out of the foil. 

Viscosity large compared with Inertia 

If in equations (5) we neglect the inertia forces in comparison with the 
viscous ones and assume steady flow, we obtain equations in the form 
discussed by Stokes, i.e. 

- (15) 

which in the two-dimensional case—last equation of (15) omitted—can 
be combined into a single derivative of a stream function, as 

A simple example of such a flow can be envisaged where a very viscous 
liquid runs over a horizontal plate extending in the direction of the x axis 
in such a fashion that the velocity over a plane at any level is uniform 
but varies, due to viscosity, from plane to plane over the plate. Equations 
(15) then reduce to 

dx ^ 
(15a) 

Equations of this type occur in the theory of the lubrication of roller 
bearings. 

Two other instances of this solely viscous flow to which we must refer 
later are (A) flow in a narrow tube; (B) flow between concentric rotating 
cylinders. 
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(A) The force due to the pressure gradient on a cylinder of liquid of 
radius r (measured from the axis) of a circular tube and 8x in length is 

ox 

and the frictional force round its outer periphery is 

—27rr8xrj 
dU 
dr 

By equating these we get the velocity gradient across the direction of flow, 

dU  r d'p 
dr 2t] * dx 

(16) 

increasing from zero at the axis to a maximum at the wall of the tube. 
Integrating we find the velocity to be proportional to a*—r*—on inserting 
the condition that it must vanish at the wall r=a—so that it increases in 
parabolic form to the centre of the tube. As Poiseuille* showed experi¬ 
mentally and as we may deduce by a second integration, the overall outflow 
from the tube per second is proportional to the fourth power of the radius, 

■na^ d'p 
817 ‘ dx 

(17) 

(B) Consider an annulus of liquid Sr thick at a radius r from the common 
axis of the two cylinders (of supposedly unit height). If the angular 
velocity of the inner periphery of the annulus is o) and that of the outer 

.Sr, 8(oyr) or (<o-fr.0ai/0r)8r is the difference in peripheral 
velocity and the velocity gradient causing shear is rdw/dr. 

The moment about the axis of the viscous force on the annulus is 
therefore ^Tnp^.dwjdr per unit length. The value of this, reckoned from 
a, the radius of the inner and usually stationary cylinder—being so retained 
against the twist of a spring or suspending thread—out to any radius r, is 

If A O 

when r is set equal to 6, the radius of the outer (hollow) cylinder, rotated 
at a constant angular speed Q. 

After eliminating M from these equations to get co at any radius r in 
terms of a, 6, and O, we derive the velocity gradient in the form: 

(19) 

This type of flow was first studied by Couette.f A similar solution 
applies to Searle’st apparatus, in which the inner cylinder is rotated and 
the outer held still against the twist of its axis. 

* OompUi JUnduB, 11, 12 (1840). 
t Proc. Cmb. Pha. Sac., 16, 600 (1912). 

t Ann. cMm. phy9., 21, 433 (1890). 
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Plots of the velocity across the interspace are shown in a later figure 
(Fig. 77), and on p. 58 the stability of this type of motion is discussed. 

Force on an Immersed Obstacle in a very Viscous Fluid 
Using equations of the type (15), Stokes* worked out the stream tubes 

for the case of a sphere immersed in a viscous fluid, while neglecting the 
inertia, as 

sin^ d.(20) 

These differ from the corresponding ones for potential in inviscid flow in the 
vicinity of the solid where there is not a gradient of velocity to zero at 
the surface. In consequence of this, a force is exerted on the solid being 
the integral round the surface of the force per unit area 'q(dUjdr)^„af 
the gradient dUldr being measured along a normal to the surface at each 
point, so that U stands for the component perpendicular to this normal 
(cf. p. 29). 

This force is called “skin-friction'’ and is a special case of the general 
hydrodynamic resistance, or drag, F. 

Stokes showed that in this case 

F=^^nay]lJ.(21) 

a being the radius of the sphere and U the undisturbed velocity upstream. 
Oseenf makes an approximation to the flow past a sphere when the 

inertia is not entirely negligible by writing U-f J7 for the component velocity 
parallel to the main stream and ignoring terms of the second order in 
r/, F, W, The equations then take the form: 

U 
dv__ I dp 

p dx 

I dp 

dx 

ox 
1 dp 
idz 

(22) 

together with the usual continuity equation (7). This makes at the 
surface of the sphere 17=—LT, F=1F=0. It agrees with (20) except in 
the distant wake where the flow pattern differs considerably from that 
near the front stagnation point. 

Hele-Shaw’s Realisation of Potential Flow with a Viscous Fluid 
If a liquid flows between horizontal parallel plates a very small distance 

apart, the effect of viscous traction is manifest in a vertical plane and 
prevents the usual action of inertia in a free flow, i.e. the formation of 

* Carnb, Trans,, 8 (1843). 'fArkiv.f, Math,, 6, 29 (1910). 
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vortices (of. Chap. 11), while leaving the motion in the a;, y plane practically 
undistorted potential flow. Equations (5) in fact reduce to 

d^U_dp _dp dp_^ 

8z 
provided we assume IF=0 and neglect the variation of U and V with 
X and y in comparison of their variations with z. Also the condition of 
no slip on the plates requires that 

where Uq and Vq are the velocities in the centre of the stratum, 26 thick. 

Then 
fe* 6* ’ dz^'^ 6« 

.nd„ l-iF.; |=JF,. 

So that Uq and Vq are components of a potential flow. 

Dye 

t 

Fig. 6. Hele>Shaw apparatus for study of potential fields. 

Hele-Shaw* set models of obstacles as thin discs in the space between 
two glass plates 26 apart, and by dyed filaments let in to a parallel stream 
of water between the plates exhibited the potential flow round a number of 
cylindrical sections in two dimensions, such as the cylinder shown in a 
plan view of the apparatus in Fig. 5. 

The Measurement of Velocity and Pressure in a Stream 
(A) Vane anemometers. When the space occupied by the apparatus is 

not an objection, anemometers of the rotating vane type may be employed. 
This is virtually a small windmill with a counter which can be graduated 
to read the total quantity of air which passes through. 

(B) Pitot tube. If a solid body such as that shown in Fig. 3 be pierced 
near the front stagnation point and an internal tube be led to a manometer 
on which one can read the pressure at this point and compare it with 

* Tfxiiw. Jn^. i^of^ Arch., 40, 145 (1808). 
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that in the absence of flow the velocity TJ well upstream can be measured 

from this pressure excess, for by Bernoulli’s principle, 

A cylinder or sphere such as we have pictured for our “pitot head” 

would usually be considered to occupy too much space—^in a wind tunnel, 

for example—and the form which a pitot-static combination takes is 
usually that shown in Fig. 6a, with the dynamic head pointing upstream 

and the holes for the static measurement facing broadside-on. The 

pressure differences to be measured may amount to a few millimetres of 

water, so that a sensitive tilting gauge must be used to measure it with 

accuracy. 

When it is desired to measure the flow close to a solid boundary, 
“disappearing pitot tubes” of the type used by Stanton et al* can be 

(b) 

Fig. 6. (a) Pitot, (6) Venturi tubes. 

made in which one side of the tube projects as a cowling from the solid 

into the fluid. 
(C) Venturi tube. The same theorem may be applied to another 

apparatus for measuring velocity, i.e. that in which the flow is forced 

though a constriction and in so doing is accelerated. Thus, in Fig. 6b, 

where the stream of area Sj and velocity Ui passes through a throat of 
area S2 at speed the pressure at the latter place must be less by 

In the use m—^the mass-flow per second—^is often the quantity estimated 

from a pressure gauge at the constriction. 
(D) Hot-wke anemometer. This device, the most often used of all for 

point-to-point measurements of wind or liquid velocity, depends on the 

♦ Proc. Roy. 80c., A97, 422 (1920). 
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cooling experienced by a thin platinum or nickel wire resulting in a change 
in its electrical resistance. It can also be used to measure fluctuating 
flow and turbulence. The theory of the use of this instrument is described 
later under the heading of convection (p. 79). 

(E) Local pressure gauge. None of these instruments reads the pressure 
at a point in the flow, though, of course, if the local trend of pressure with 
velocity is known the former can be derived. For the direct measurement 
of pressure in a local region on the surface of a solid (the case one is 
generally most interested in), it is possible to drill holes connected to 
manometers or to insert a small electrical condenser, one plate of which is 
fixed in the interior of the obstacle while the other floats with the outer 
surface and is held flush with it by a spring. Changes in the electrical 
capacitance of the apparatus with pressure are recorded on a cathode-ray 
oscillograph, connected in a suitable circuit. 



CHAPTER 2 

FLUIDS OF SMALL VISCOSITY 

We have already mentioned the approximation of Oseen which brings 

us out of the impasse of d’Alembert, viz. that a body should have no 

resistance. Another approximation is due to Prandtl, who observed that, 
with the exception of two regions, the potential pattern of flow round a 

cylinder is close to reality even when the speed is considerable. 
Prandtl* remarked that the viscosity of air is a small quantity, and its 

effect noteworthy only where the change of velocity from layer to layer is 

very great. He therefore proposed to neglect viscosity except in a thin 

layer at the fluid-solid surface. Within this “boxmdary layer” the tan¬ 
gential velocity rises in a very small distance from 0 at the boundary to 
the mean velocity of the body of the fluid. Within this layer, stream-line 

motion should take place even when the motion outside is unsteady. 
For example, we may imagine the motion outside the boundary layer 

to be simple harmonic with respect to time, and due to aerial waves; or 

to vary from time to time in an incoherent way about an average value in 

the fashion denoted “turbulent.” In order to calculate the thickness of 
this layer, Prandtl takes a new co-ordinate C, normal to the surface in 
place of y, such that 5=0 at the surface and 5=oo at the outer edge of the 

boundary layer. He writes down the equations of motion introducing the 
viscous term rj^.dUld^ representing the shearing force between adjacent 
strata of the layer where rji is a greatly increased viscosity coefficient 

consequent on the greatly reduced scale of 5. In the steady state wherein 

dUldt=0f it appears that the thickness of the boundary layer depends on 
\/(r}llpU), where U is the average velocity in the main fluid, p is the density, 

and I is the length, in the direction of the motion, of the surface on which the 

fluid has rubbed. On inserting the dimensions it will be seen that the 
above expression is of the dimension of a length, and that the thickness 
of the boundary layer increases progressively with the square root of the 

length of the boundary. It is therefore cumulative. 

The tangential force of the fluid in the boundary layer integrated round 
the surface amounts to the “skin-friction” upon it. Measurements of 

skin-friction will be described later. 

Formation of the Wake 

We shall continue to cite the circular cylinder as the simplest shape 

in this connection, though the conclusions will be in general applicable 
to all obstacles. The ideal motion depicted in Fig. 3 differs from reality 

* Proe, M<Uh. Congress {Heidelberg) (1904). 
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in a further respect. Save at indefinitely slow velocities the liquid would 
not hug the stern of the cylinder in the manner shown by the stream lines, 
but would cut off part of the comer in the manner shown below (Fig. 7); 
leaving the cylinder at A, A\ and resuming parallel motion at -B. The 
fluid of the shaded area ABA* is “ dead water,” since it is not carried along 
by the stream, and the surfaces represented in section by the lines, AB, 
A'B are “ surfaces of discontinuity ” to which Helmholtz* ascribed the drag 
resistance of the cylinder. Owing to the shearing effect of the stream on 
this dead wake, the fluid in it is set in rotation in the form of two eddies 
(Figs. 7 and 8, Plate I). That the fluid leaves the solid at A^ A* may be 
ascribed to the intense rates of shear in the boundary layer. 

The configuration of the two vortices with the two branches of the 
stream reuniting persists only for comparatively low velocities. As the 
speed increases, the vortices extend their bounds and eventually break 
away to pass downstream. Other vortices grow and follow them, so that 
there is a regular procession of vortices down the stream, forming a 
“vortex street,” and the wake extends indefinitely. These were first 
noticed by Mallock,t and photographed by B^.nard,f as dimples on the 

Fig. 7. Development of wake. 

surface of water into which a twig dipped; they may also be seen in air 
if the obstacle is smeared with a smoke-producing chemical (Fig. 10). 

It will be necessary to discuss the stability of such a vortex street. The 
ideal vortex consists of a core of fluid rotating with constant angular 
velocity, surrounded by fluid in which there is no rotational velocity. 
In practice there is no discontinuity in linear velocity at the edge of the 
vortex, but the motion tails off rather sharply and continuously to the 
average velocity of the stream. The “stren^h” of the vortex is defined 
as twice the product of the angular velocity w and the cross-section. 
Consider, first, a single isolated vortex of radius and of strength K. Then 

27rr^u)=^Ky from r=0 to f=fo 

and 01=0, from r=rQ to r=c3o 

Now the linear velocity at a point in the vortex, say, at r=a, will be given 
by a<»}=^Kaj7mr^\ thus at the circumference the linear velocity is 
X/2trJ/fQ normal to the radius. In order that the linear velocity may be 

* Bet. Berlin* Akad* 8ci, (1868). f Proc. Rov, Soc* A 79, 262 (1907). 
X CompUs RenduSy 147, 970 0®08). 
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continuous at the circumference we must have also at a point outside 
distant b from the centre, the velocity normal to the radius due to the 
vortex equal to r^cjIh^Kj^rr Ajh. Now when a number of vortices 
exist in a fluid, it is permissible, in order to find the resultant motion at a 
point due to the system, to superpose vectorially the velocities due to the 
separate vortices. In particular, if the point in question is the centre 
of one of the vortices, we can obtain the motion of this one vortex due to 
all the others. Thus if there are two equal single vortices, one clockwise 
and one anti-clockwise, distant h apart, each imparts to the other a velocity 
KI27rb in the direction at right angles to the line joining them, and they 
both move with this velocity, preserving the same relative orientation. 

Vortices in Parallel Rows 

From the hydrodynamical point of view the case of prime interest is 
that in which we have an “ avenue ” of vortices at equal distances apart. 
Let the vortices in each row be distant I apart, the distance between 

-1 

Fig, 9. Vortex street. 

the two rows be h, and the amount of **stagger’^ of one row upon the other 
be a (Fig. 9). 

The velocity imparted to the vortex in a direction across the avenue 
by any other vortex in the upper row is 

K cos d _ K(a+jl) 

j being any integer and 6 the angle between the line joining the vortices 
and Now the induced velocities due to those in the same row 
mutually cancel, but those due to the upper row, resolved in the same 
direction, add up to: 

T7-?-i « I (^-°) I 
“27r\[o*+A*]"''[(o4-i)*+A*] [(I-a)*-|-A*]’^ 

(a+2l) (2I-a) | 
[(a+2I)*+A*] [(l-2o)*+A»]r ‘ ' 

This will be equal to zero only in two cases: 

(1) a=0. The first term of the series is zero, and the alternate positive 
and negative terms become equal in pairs, and so cancel. 

(2) a=2/2. Then the first term cancels with the third, the second 
with the fourth, etc. 
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If these two cases be imagined pictorially, the first corresponds to 
vortices opposite to each other in each stream. As far as the corresponding 
motion produced on any vortex by the rest is concerned, the effects of 
all those on either side cancel in pairs, leaving only that due to the opposite 
vortex, and the component of this across the stream is nil, since the 
velocity produced by this one is entirely in the downstream direction. 
In the second case, any single vortex is equidistant from the two ^'th 
vortices in the other row, counting from the vortex in question. In order, 
then, that the two series of vortices may remain in parallel rows, every 
vortex in one row must be oriented symmetrically with respect to the 
series in the opposite row. Note that although there is then no motion 
of the vortices across the rows, each and every is actuated with the same 
velocity along the rows, given by: 

sin 0 

^Kh Y 1 
271 Z 

in the “alternate” arrangement, and of: 

rr_Kh Y 1 
^"’27rZ;_«(r+/T2) 

in the “opposite” arrangement. The system therefore remains in equili¬ 
brium, moving with velocity U=KI2\/(2)l in the direction of the rows, 
and with no cross-component (cf. Fig. 10, Plate !).♦ 

Experiment shows that the main production of vortices occurs behind 
the body, each vortex being formed and then detached to move down the 
stream after the others in procession at a velocity 0*23 of that of the relative 
velocity of main stream and cylinder. As long as all have the same initial 
strength (as we should expect if the velocity of the stream and the position 
of the cylinder are imchanged), this procession of vortex pairs can remain 
in equilibrium and move down the stream only if the vortices occupy 
one or other of the two orientations discussed above; therefore they must 
be detached periodically from the rear of the cylinder, either in pairs 
(case 1) or alternately (case 2) from each side. Now although these two 
possible systems are both equilibrium positions, they are not both stable 
arrangements. 

The calculation of the relative stability of these two equilibrium systems 
proceeds on the usual lines. One supposes a small displacement fo given 
to one of the vortices in the row due to some accidental disturbance, and 
calculates the net effect on the velocity of this vortex due to all 
the others; the solution of the equation for dS/dt maybe written 
The calculation is too abstruse to be given here, but the result shows for 

♦First shown by Kirmin and Rubach, Phya. Zeita., 13, 49 (1912); hence the 
term **K&rinin vortex street.” 
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the opposed position, a always positive, any accidental displacement 
growing with time, system unstable; for the alternate position, a negative, 
accidental displacements damped out, system stable. Furthermore, in 
the second case, maximum stability occurs when a has its greatest 
(negative) value; this occurs when A/{=0-28; A/d==l*21; RjUd^hT. 

The procession of alternate vortices behind the obstacle imposes a 
periodic cross-force tending to make it vibrate across the stream. The 
first scientific investigation of the phenomenon was made by Strouhal.* 
He stretched a wire between the ends of two rods, and an axle parapel 
to the wire passed through the mid-points of these rods, so that the rotation 
of the axle whirled the wire through the air round the circumference of a 
circle, and in a direction at right angles to its length, i.e. the wire described 
the curved surface of a cylinder. Not only the fundamental of the wire, 
but harmonics also would respond at appropriate speeds. The connection 
between the diameter d of the wire, frequency of the tone n, and velocity 
of the wire through the air TJ was: 

^=a constant 
lid 

This parameter is now known as the Strouhal number. In modem 
times these motions are investigated by stretching a wire across the wind 
stream aspirated along a glass-sided wind-tunnel. The vibration of the 
wire is observed through a telescope, its frequency being established by 
illuminating it stroboscopically at such a rate that it appears to be 
stationary. The speed of the draught is calculated from the readings of a 
pitot-static combination in the tunnel (Eichardsonf). 

The modern results establish the constancy of Vjnd at a value of 5 for 
a cylindrical body, except for small values of U or of d. This is noticeable 
when thin wires (of less than 0*02 cm.) are used; then the “constant** 
soars up to 8 or more. The lateral extent of the wake depends on the 
shape of the body, and therefore h alters with the shape, and this affects 
the value of this constant for bodies of different shape. 

Effect of Viscosity on Fluid Vibrations 
Experiments made in connection with oscillating wires, or with pendulums 

in liquids of (kinematic) viscosities varying from 0*01 to 0*5 c.g.s. units, 
show little or no effect of viscosity on the quantity tZ/nd, the tones of a 
wire being produced at practically the same stream velocity in every case. 
Apparently, then, viscosity does not appreciably change the rate of 
formation of the B6nard-Kdrmdn vortices. Viscosity has, however, a 
very important influence on the initiation of the vortex system. There 
is a minimum velocity below which no vortices, and therefore no tones, 
are produced. When this critical velocity is exceeded, the stream-lines 

t JProc. Phys. 8oc„ 36, 163 (1924). ♦ Ann. d. Phyaik, 6. 216 (187S). 
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can no longer hug the stern, stagnation points appear on the sides, and 
vorticity in the wake. 

This critical velocity then depends on the viscosity and density of the 
fluid and the width and form of the body, especially of the stern. The 
two former effects we unite under the coefficient of kinematic viscosity 

the latter pair under a single linear dimension 1. 

Principle of Dynamical Similarity 
The exact form of the dependence of such phenomena on viscosity may 

be deduced from the method of dimensions. To give a simple illustration 
of the application of the method: first we will suppose that, as experiment 
shows, the frequency of the tone depends only on the velocity of the 
stream and the diameter of the body, so we write w=/(Z7, d). Now n 
represents vibrations per unit time, and is of the reciprocal dimensions 
of time V represents distance travelled in unit time, and its 
dimensions are (LjT). d represents a length (L). 

It is necessary that the right-hand side of the equation should have the 
same dimensions as n, otherwise the equation would depend on the system 
of units used, e.g. if it were true for metric units it would cease to be valid 
on changing to English units, therefore f(U, d) must be of dimension 
(l/T). If we assume that this function can be written out in powers of 
U and d, say its dimensions are L^jT^.L^, In order that this may 
equal l/f we must have a;=l, y=—1. Therefore the relation connecting 
17, n, and d is n=0l7/d, or C7/nd=const., C being a non-dimensional 
factor. 

It is to be noted that this formula does not necessarily apply when some 
quantity other than ?7, n, or d is changed—the viscosity of the fluid, for 
example, or the shape of the tail of the body, a thing we have not taken 
into account—these things are latent with others in our non-dimensional 
factor C. 

Now let us introduce the viscosity in its common form 77, density p, 
and write n=UH^7)^p^ (the dimensions of 77 are MjLTy of p are MjL^)\ 
proceeding as before, and equating powers 

of M; c=—d 
of 1j I 0==(i-|-6“|“2c 
of T; —1=—a—c 

whence a=l-—c, 6=—c—1 

so that putting v^rjlp. There are not 
enough equations to determine c and this may be given any value, or we 
may write this in the general form: 

where C' now is a non-dimensional constant not involving viscosity. 
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The form of the function f{Udlv) could be found from results in fluids 
of different viscosity. Our results indicate that it is (Udjv)^, or independent 
of viscosity over practically the whole range investigated, but that the 
periodic shedding of vortices to which n is due starts at a definite value 
of Udiv. 

The evidence for the last statement is as follows. With a string tuned 
to a definite pitch n, it is generally possible to get a vibration when UInd 
is 5. As the tension in the string is released, n and U for this tone fall, 
until at a definite value of n no tone is produced at the appropriate value 
of U. The inference is that the motion has become steady—vortices 
have ceased to be produced. The values of Udjv when the tones failed 
to be heard were collected by the author and found to cluster round the 
value 30 for a cylinder and 60 for a rubber cord of streamlined section. 

Here, for a moment, we must leave the discussion of wakes to go back 
to an earlier observation. In a classical research, Osborne Reynolds 
allowed water to flow along a horizontal glass pipe into which he introduced 
axially at the entrance a filament of ink from a siphon (cf. his original 
drawing, Fig. 11). When the mean velocity in the pipe was sufiftciently 
low he found that the ink remained as a thread throughout the tube, 
indicating stream-line flow, but when a critical velocity was reached the 
ink began to chum up at some point in the tube and to mix with the water, 
indicating eddying flow. This change occurred always at the same value 
of the parameter Ud/v—about 2,000, where U was the mean velocity of 
the water and d the diameter of the pipe. (He varied v by altering the 
temperature of the water.) This parameter, which we have already met 
in discussing the alternate vortices in a wake, is now known as Reynolds 
number. 

• Phil Trans., 174, 936 (1883). 
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Hydrodjnwsdc Resistance or Drag 

The formation of a wake with rotating masses of fluid involves a transfer 
of energy, eventually into heat, and this dissipation occurs at the expense 
of the work done in moving the obstacle through the fluid, i.e. against the 
resisting force (J) or drag of the body. This eddy-making resistance is 
over and above the skin-friction companion to drag in the boundary 
layer already instanced. Treating this case dimensionally, let us put 

In dimensional terms, this becomes: 

but is not adequate to determine all the four exponents. So we appeal 
to the results of experiment and say: 

(A) At sufficiently low speeds, FccV—^this makes t;=l, w?=l, z—l— 
and eventually derive Stokes’ formula 

FccUdrj 
but, of course, with the unexpressed constant not determined. 

(B) At sufficiently high speeds, FccU^. This makes w=2y a;=2, 
y=l, z=0 and gives us Newton’s formula: 

FocpVH^ 

This formula can be deduced in Newton’s own way, for \pTJ^ represents 
the kinetic energy of unit volume impinging on unit area. The energy 
which impinges on an area 8 normal to the flow while the fluid moves 
forward unit distance is therefore \pU^.8 and this represents the work 
done on the body, numerically equal to F. Newton so derived for the 
resistance of a disc or hemisphere, neglecting effects in the wake, the value 

or 

A back pressure in the wake reduces the experimental value below this. 
It is customary, anyhow, to express drag in the form 

F^Cr^(\pV^)S 
where 8 is the surface presented by the body and is generally reckoned as 
its projected area perpendicular to the flow, e.g. nd^/i for a sphere. Cd 
is the drag coefficient and is a constant for the shape at a particular 
Reynolds number. 

The drag on a cylinder per unit length in the stage of the periodic vortex 
detachment can be approximately deduced starting from the premise 
that the component of the impulse in any direction necessary to generate 
£rom rest the field of a straight vortex of strength K is pKh per unit 
length, where h is the width of the field. If vortices are set up at a fre¬ 
quency n per second, the total impulse per second is 

npKh=^. xO-2 X1-7 X l-21(ipI7*d) 
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using the numerical values for these parameters given on previous pages. 
This gives a value of 0*82 for the drag coefficient of the cylinder against a 
mean experimental value of 0*90. 

The drag coefficient for a cylinder at various values of Reynolds 
number Re (plotted logarithmically) is shown on Fig. 12 (continuous line). 
The large values attributed to low Re3moldB numbers derive from the 
fact that in this region the drag is really proportional to V and not to 

as we have assumed in our manner of exhibiting the coefficient. 
At very low Re<l, White* has shown that the drag of a cylinder no longer 
depends on the density of the fluid, but very much on the nature and 
position of the outer boimdaries of the fluid medium. On the same graph 
we have exhibited (broken line) the variations of the reciprocal of Strou^l 
number to exemplify, in accordance with the conclusions of the preceding 

Fig. 12. Drag coefficient and Strouhal number for circular cylinder. 

paragraph, its intimate connection with the drag, at least over the range 
40<flc<3xl0«. 

The changes in at high Re are connected with changes in the wake 
and the flow round the body, which we must now discuss in some detail. 

Form of the Wake and its Relation to ConditioDS in the Boundary Layer 

The tracks of the vortices in the wake as they move downstream can 
be followed by using a hot wire as detector. As they pass over the wire 
alternate heating and cooling ensues, which after amplification may be 
made to excite a vibration galvanometer tuned to the Strouhal frequency 
7i, or to produce the same tone in a loudspeaker. The maximum response 
of the detecting apparatus occurs when it is so placed as to be struck by 

* Proc. Roy. Soc., A186, 472 (1946). 

n.R.F.—3 



26 FLUIDS OF SHALL VISCOSITY 

the cores of the vortices. Fig. 13 (after Tyler*) shows the vortex street 
behind a circular cylinder traced by hot-^rire detectors in this way, the 
vortices at first approaching and then opening out slightly as they recede. 

The longitudinal spacing of the eddies can be discovered by using two 
hot wires in tandem, each connected to one of the primaries of a split- 
transformer and noting the current induced in the secondary coil. Fig. 14 
(also from Tyler*) shows the result on the induced current of keeping one 
wire fixed just behind the cylinder “on one side of the street” and moving 

Fig. 13. Longitudinal traverse of a vortex “street.*’ 

the other gradually downstream. During this movement the primary 
currents march in and out of step, resulting in the peaks and troughs 
in the secondary current seen in Fig. 14. The decay in successive peaks 
represents, of course, the dissipation of the eddies by friction. The same 
effect is seen in a series of traverses perpendicular to the stream, for the 
sides of the street become less distinct from the central portion further 
back and eventually the peaks are levelled out. 

Piercyf has shown that the pitot tube is capable of indicating the width 

Cf a vortex street if the static pressure variations are ignored and the 
total dynamic head measured from point to point across the wake. Where- 
ever, on traversing the pitot tube across a stream, it remains sensibly 
constant, it can be inferred that there is no vorticity in this region. 

Conditions in the wake are really due to changes in the regime of flow 
alongside the cylinder, i.e. in the boundary layer. This layer was 
originally pictur^ by Prandtl as a laminar skin round the solid even when 

• pm. Mag., 11, S48 (1931). t Roy. Aero. Roc. (1923). 
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the stream further out was turbulent. If U is the mean velocity outside 
the skin of thickness we can speak of Uljp as the local Reynolds number 
of the boundary layer. But eventually a local Re may be reached at 
which the shearing forces in the boimdary layer are so great that it, too, 
becomes turbulent. This transition is, however, influenced by other 

Fig. 15. Development of flow and related drag coefficient {reproduced by permission 
of the University of Pennsylvania), 

factors, such as the intensity of turbulence in the free stream (vide infra), 
the pressure gradient round the surface and its roughness. For a bluff 
body, the transition is associated with but is not usually identical with 
the breakaway point at which the main stream leaves the cylinder, 
accompanied by a reversal of direction of flow near the surface to pass 
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downstream enclosing a wake. Between 2?e=5,000 and /te=15,000 (values 
for the whole cylinder) the layer increases in thickness generally, 
rises until the point of transition reaches the point of secession, when it 
remains constant for a while (Fig. 12). At values of Re near 10* transition 
to turbulence is definite; it delays separation to points further astern, 
the wake contracts and the drag is less than if the boundary layer separates 
while still laminar (cf. Fig. 12 again). Periodicity in the wake has now 
vanished: the wake is merely incoherently turbulent. Just below 
transition the flow in the boundary layer is very sensitive. If the forepart 

Fig. 16. Distribution of pressure and skin friction round a circular cylinder. 

of . the obstacle be roughened or even if a thin wire be wrapped round it, 
transition occurs and the reristance can be lowered. Fig. 15 (after 
Dryden^) shows the main changes in the flow which occur as is increased. 
The extent of the turbulent region can in each case be traced by the pitot 
defect as already mentioned. The Reynolds number corresponding to 
each regime is given beneath each dcetchv To the right of B is shown the 
form bf "the breakaway occurring at the zone S, where we see the reversed 

^' ♦ Univ, of Ptnniyhoania Biceni, Co^f, (IMl). 
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flow from the wake vortices meeting the main flow where it separates. 
To the right of C is given a traverse of total head deficit across the section 
AA\ with the co-ordinate Y expressed as a fraction of D, the diameter of the 
obstacle; the head rises steeply through the region affected by the vortex 
near A' to its value in the open stream. At Z), we have the change in the 
configuration of the turbulent wake at iZe==10^, which causes the reduction 
in Cj) aforesaid. The width of the eddying wake grows at different rates 
downstream as the offset shows in terms of XjD^ X being distance down*- 
stream. At E there is transition to turbulence in the boundary layer at 
the point of separation of the fluid and at F transition in the boundary 
layer before separation. 

The steepness of the velocity gradient in the boimdary layer is paralleled 
by the value of the normal pressure. In the case of the circular cylinder, 
this pressure can be measured by a hole drilled in the surface, connected 
to a manometer, with the hole rotated to various azimuths in turn. 
Fig. 16 shows results obtained in this way for a circular cylinder at various 
Reynolds numbers compared with the classical values in potential flow. 
The latter is shown by dotted line and actually falls to —3 at 90®. The 
‘^pressure defect**—expressed as a ratio to —^falls from 1 at latitude 
0® (front stagnation point) to zero at about 45® and reaches a negative 
maximum at 70®, thereafter subsiding to a nearly constant negative 
value, dependent on the value of JBc, i.e. on the amount of vorticity in 
the wake. 

When the boundary layer remains laminar the skin-friction may be 
calculated from such readings of the normal pressure. This is shown as 
a chain line on Fig. 16 for the forward portion of the cylinder. In this 
region it agrees fairly well with the approximate calculations of Thom,* 
of Green,! and of Falkner and Skan.^ The former author has also shown 
that up to iZe=10* the skin-frictional drag coefficient is well represented 
by the expression 4/\/i2s. Measurements of the velocity round a circular 
cylinder have been made by the author§ using hot-wire anemometers 
{vide infra, p. 79). From plots of velocity along normals to the cylinder, 
contour lines of equal velocity—expressed in ratio to the undisturbed 
stream—^may be constructed. Fig. 17 shows a typical set at i?6=500, on 
which the separation and wake can be clearly seen. 

Transition to turbulence occurs nearer to the cylinder as the speed 
increases. A more intimate study of this phenomenon is gained by 
observing the fluctuations in the current through a hot wire, exhibited on 
a string galvanometer or cathode-ray oscillograph (cf. p. 80). Fig. 18 
gives contours of equal velocity amplitude in the boundary layer of a 
cylinder at Re=2 x 10^ (Piercy and Richardson||). 

f/Wd., 1313 (1930). 
§/6id., 1368(1931). 

*A.R.C„ R. and jfcf.. 1176 (1928). 
t Ibid,, 1314 (1930). 
II Phil, Mag,, 6, 6 (1928). 
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The flow along a flat plate edge-on to the wind has been exjdored by 
Hansen* using pitot tubes and by van der Hegge Zijnenf using hot-wire 
anemometers. The former measurements are in good agreement with 

Fig. 18. Contours of velocity amplitude round a cylinder in a stream. 

boundary layer theory, as Fig. 19 shows, except near the leading edge. 
(In this figure the symbols refer to different values of x from the leading 
edge.) Big. 20 shows the contours of velocity as measured by Piercy and 
RichardsonJ for the flow round an aerofoil at flc=2 X10^. The flow over 

Fig. 19. Vslocities (in non-dimensional form) along flat plate in a stream. 

X O 4- • V A 
8 12 23 33 43 cm. 

the lower flat surface corresponds to that of the flat plate, but breakaway 
ensues over the upper surface before the fluid reaches the trailing edge. 

* E. /. Ange, Math, u. Mech., B, 185 (1028). t B, and M,, 1224 (1928). 
t Proc, Ini, Congress App, Mech,^ 113 (1924). 



Local Reynolds Number 

Fig. 21. Distribution of and boundary layer thiokness along plate. 

is reached when it jumps up to fall again steadily through the turbulent 
layer. Fig. 21 shows how Cjj varies along the underside of the aerofoil, 
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together with 8, the thickness of the boundary layer. The point of 
transition is a little indefinite, fluctuating about a local Re of lO’ within 
the region delineated by the two vertical lines. The actual value of Re 
at which the jump occurs depends on the amount of turbulence initially 
present in the wind-tunnel and the vagaries of the point of transition must 
be due to casual variations in the eddy content of the stream near the plate. 

Boundary Layers in Pipes 
The progressive growth in thickness of the boundary layer of a pipe 

from the entry may be followed also by the use of pitot tubes or hot 

Fig. 22, Ultramicroscope apparatus of Fage. 

wires. In another method due to Fage and Townend* the actual motion 
of suspended particles in the stream of air in a glass-walled pipe is observed 
by a microscope of which the objective is given a short passage with or 
across the stream. Those “mites” which lie in the focal plane and have 
the same velocity as the objective will then appear stationary in the 
eye-piece. In this way, Fage plotted the velocity distribution in the 
three co-ordinate planes near the wall of the pipe. 

Fage’s apparatus is shown in Fig* 22. The microscope objective A 
turns with the brass disc B at constant speed about the pivot C. Below 

♦ Proc, Roy. Soc., A136, 656 (1932). 
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is the miniature pipe in which the flow is taking place, looked at by the 
observer through a glass window let into its upper wall immediately 
beneath the microscope. 

Knowing the mean speed Uq in the pipe of effective depth m or its value 
at the place of observation P, it is possible to calculate the root-mean- 
square deviations, u, v, w in the three co-ordinate directions with and 
across the general drift and to express these in ratio to the mean speed 
(Fig. 23). It will be noticed that all these fluctuations increase as the wall 
is approached, due presumably to the sharp shearing in its vicinity. 

Fig. 23. Results in channel; variation of w, v, w with distance from wall (a»radius 
of pipe; hydraulic mean depth). 

The Boundary Layer of Botating Cylinders 
If to the potential flow round a cylinder of radius a in a stream of 

velocity JJ we impose a circulation, we derive a cross-force from the 
asymmetry of the flow (cf. Pig. 3d). The resulting potential 
^=P(f4-a*/f) 008 tf+cPtf, where o is the ratio of peripheral velocity 
to P. This circulation may be produced by rotating the cylinder about 
its axis in virtue of the viscous traction exerted through the boundary 
layer. The potential theory demands that the circulation shall be constant 
%t all distances so that an isolated cylinder (not in a stream) should induce 
a tangential velocity P at a radial distance r such that Pr is constant. 
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In fact, the velocity falls off more rapidly than this, especially in the 
boundary layer close to the surface of the cylinder, but reaches this 
condition at several diameters distant from the surface. 

In two-dimensional laminar motion about the axis of the cylinder, if 
we consider unit depth of fluid parallel to the axis, the rate of shear at a 
radius r, where the angular velocity is a),isr. dcjjdr, and therefore the force 
due to friction is yjr.dldr (Ujr) per unit area (cf. p. 12). Hence the work 
done in a circumferential displacement I 

. 
The quantity in brackets is the difference of velocity between two annuli 
at unit distance apart. 

Rayleigh* pointed out that in rotational motion of this type there will 
be a difference of centrifugal force at different annuli, which has to be 
reckoned with in examining the stability of the system. This difference 
for two annuli at unit distance apart will be 

_pVl_^ VJdU^V\ 
r+l ■ r r) 

approximately, per unit volume. In a displacement I the mean difference 
of centrifugal force will be J/2 times this (in virtue of the unit breadth 
and depth of the volume in question), and therefore the work done against 
centrifugal force will be 

(24) and (25) together give the energy in the fluid annulus. We may 
use the principle of minimum energy, enunciated by Kelvin and James 
Thomson, to find the velocity distribution round the cylinder. Assuming 
U = UQ{rla)^y where Uq is the velocity at the surface of the cylinder of radius 
a, we then have 

Kf 
a minimum if (n-f-l)r"“^(7;-f pr”“^) is a minimum. 

This quantity is in fact 0 if n==—1. The potential distribution of 
velocity, V=^U^ajrf therefore satisfies this case. 

Centrifugal force may, however, cause mixing of the fluid in neigh¬ 
bouring annuli, especially in the boundary layer of the cylinder, where 
IPjr is high. If this happens the equation for the frictional energy will 
no longer be (24), but will be that derived from the shearing stress in 
turbulent motion. 

Osborne Reynoldsf evaluated this stress as puv where u and v are the 
deviations from the steady velocities in rectangular directions induced 

• Proc. Roy. 8oc., A93, 148 (1916). t Phil Trans., A186. 123 (1896>. 
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by the turbulent motion. Further, the disturbance of velocity v along a 
radius will be proportional to the tangential deviation u producing it. 

The work done for a displacement 
I is accordingly proportional to 

For the factor of proportionality 
we may select some quantity 
which will be a function of Rey¬ 
nolds number f{Re), 

Taking now (25) with (26), we 
have to choose the velocity 
distribution so that 
(dU , U\ 

Pig. 24. Stability in velocity gradient near 
rotating cylinder. 

r'^f{Re)\dr + 
IS a minimum. 

Substituting U= ■ UQ{rja)*^ as before, we obtain 

(27) 

(28) 

This is 0 if n= —1 or 
In this case it seems natural to take TJ^a/v for the appropriate Reynolds 

number and write, to a first 
approximation, 

f(Re)- 

The value of Re at which 
this second solution coincides 
with the first (0 on Fig. 24) will 
be the critical value for this type 
of flow. More exactly, there 
will be a critical velocity for 
each annulus, and the Re in 
question will be the appropriate 
value of Vriv for the given 
annulus of fluid, rotating with 
a velocity 17 at a distance r from 

the axis.* Loif 
The authorf made some <5 ( v / 

measurements of velocity round Fig. 26. Stability in velocity gradient near 

two isolated rotating cylinders, rotating cylinder. 

J and 1 inch diameter respectively. Results showed no fixed value of 
the exponent n for a given cylinder rotated at a given speed; n is, as 

* Phil Mag., 11, 1216 (1931). ^ A.R.O., R. and M., 1368 (1931). 
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indicated, a function of the local Reynolds number of the annulus in 
question, not of the cylinder itself. The experimental values of n are 
plotted in log form against Re in Fig. 25 for comparison with the 
theoretical ones of Fig. 24. (The symbols refer to different rotational 
speeds and cylinders.) 

In the same way, when a rotating cylinder is placed in an erstwhile 
uniform stream, the full theoretical lift given by application of Bemoulli’6 
principle (cf. p. 7) is not attained in practice owing to viscous dissipation. 
Fig. 26 shows some measured lift and drag coeflScients for various values 
of the ratio c (peripheral velocity U/undisturbed stream velocity 17). 
The theoretical lift is pUK=pU{iraV)^^plPx27TaU per unit length, 
so on this basis the lift coefficient should equal ttc. 

It is also worthy of note that falls at first as the cylinder is rotated. 
This may be linked with changes in the wake, where the alternate vortices 

08 

0-6 
Cjy 

0-4 

0-2 

0 

Fig. 26. Lift and drag of rotating cylinder in a stream. 

are no longer equal in strength though their combined vorticity is less 
than with no rotation (cf. Fig. 27, where the contours are of equal velocity 
amplitude, with Fig. 18). The difference in positive and negative vorticity 
is retrieved in the circulation round the cylinder. 

Manipulation of the Boundary Layer 

From what has been written, it is evident that the drag of a bluff¬ 
shaped body depends on the strength and width of its eddying wake, 
which in turn depends on the point of separation and so on the transition 
to turbulence in the erstwhile laminar boundary layer. In fact, the drag 
coefficient of a smooth sphere as determined in different wind-tunnels is 
used as a measure of the amount of turbulence therein. 

It is also evident that a reduction of the drag of a bluff obstacle can be 
effected if the width of the band of vorticity can be reduced. 
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Some of the earliest and most successful attempts at control in the 
boundary layer aimed at the inhibition of breakaway by pushing or pulling 
the fluid round the bluff portions of the obstacle. They all try to reduce 
the eddy-making resistance and leave the profile drag almost unchanged 

Schrenck* used a sphere 1 foot in diameter, mounted in a wind-channel, 
and having ring-shaped slots contrived in the rear half, from which air 
was exhausted by way of a hoflow tube of the force balance through a pump 
to the outside air. Smoke mixed with the air showed the extent of the 
turbulent wake. The reduction in drag coefficient is shown in the following 
table. 

Reynolds number ... . 2x10* 3 x 10* 4 x 10‘ 
Dr^ coefficient without suction 0-40 015 012 

„ „ with suction . 0 09 0*08 0*12 

7 

Fig. 27. Contours of velocity round rotating cylinder in a stream. 

Besides a diminution of vorticity in the wake due to the restriction 
imposed on the expansion of the boundary layer, a suction device also 
changes the general distribution of pressure round the model, since it acts 
as a sink whose effects are experienced both fore and aft of the orifice, 
^hat is why the location of the slit, though relatively unimportant from 
the aspect of the prevention of turbulence in the boundary layer itself, 
does ihodify the reduction in drag which one would anticipate. 

Other investigators have tried to increase the circulation and inhibit 
a breakaway by pumping air out of holes contrived in the fore part of 
the model and directed towards the tail. Reid and Bamberf studied a 

MolorlufUchijraH., 17, 386 (1926); Luftfahrtfarschung, 12, 11 (1935). 
t N.A.aA^ Tech. NoUlSfo. 286. 
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number of such devices experimentally, but came to the conclusion that 

suction is more economical than compression for drag reduction. 
Abbott* constructed what he called an internal circulation wing not 

requiring the use of a pump in which air was taken into the hollow interior 

through a slit near the front stagnation point and released through a 

number of narrow slits on the upper side beyond the section of maximum 
thickness. The useful range of lift/drag was so increased, but the 

maximum lift was reduced as compared with an untouched model of the 

same size and shape. Indeed, it is probably impossible to increase the 
maximum lift without supplying additional Idnetic energy to the air from 

a pump, or external booster of circulation. 

In more recent developments, suction is applied over an area of the 

wing, through a cluster of slots or holes, where adverse pressure gradients 
may be expected. It has also been found that when a body is moving 

through the air at speeds approaching the velocity of sound, suction may 

be usefully employed to delay the rise in drag which occurs at such speeds 
(cf. Chap. 3). 

/ 

Periodic Boundary Layers 

As a stage between laminar and turbulent boundary layers of particular 

importance for explaining how the transition comes about, we must study 

the effect on a steady stream of imposing on it a simple harmonic motion. 

There are various ways of doing this: a solid boundary may be given a 

to-and-fro motion as a whole as the fluid streams steadily past it; or a 
vibrating element of it may give a local oscillation to the boundary layer; 

or, finally, the solid walls may be still but of a wavy surface, whereby the 

fluid in the layer is forced into sinusoidal motion as it passes nearby. 

On a larger scale the boundary layer of a flag flapping in the wind produces 
the same kind of disturbance. 

When alternating flow is taking place through an orifice, as at the mouth 

of an acoustic resonator, the velocity amphtude rises from the edge of the 

orifice to a peak and thereafter falls gradually to a mean towards the centre. 
This “annular effect” is similar to the skin effect shown by alternating 

electric currents in a conductor, and is still shown when a direct current 

(in the electric or hydrodynamic sense) is superposed on the alternating 
flow (Richardsonf). 

To demonstrate this we must transform the Navier-Stokes equations 

into cylindrical co-ordinates. They become, for a circular tube stretching 

along the axis of x: 

dV „ 1, (d^U , 1 dU\ 

* N.A.C.A., Tech. Note No. 371. 
t Proe. Pkyt. Soe., 40, 206 (1928); cf. Sexl, Zeite.S. Phyt., 61, 349 (1930). 
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Setting the applied force in S.H.M. form as 

we obtain 

p dx 

d*V \dV »«„,c _ 
dH+r dr-7^+.=° 

the solution of which is 

cuL •'ovv— 

(29) 

(30) 

With low-frequency pulsation the arguments of the Bessel functions can 

be replaced by series up to their second terms, and 

Oil 

of which the real part is 

1- 

l+(ico/4v)a‘ 

8“ 
cos Cjt 

4v 
.(a*—r*) cos wt (31) 

If, on the other hand, these arguments are large, the second term in the 
bracket of (30) can be neglected except for those particles in a boundary 
layer close to the wall of the tube (where r->a). Then the real part is 

TJ f sm wt 
iO 

Within the boundary layer we replace a—r with J (vide supra) and obtain 

C/=-sin sin . . (32) 
w <o 

showing that damped waves travel out from the wall with velocity \/(2/a>v) 

and damping coefficient \/(co/2f). Fig. 28 shows a plot of the velocity 

amplitude across a tube in alternating flow at various frequencies, n, 
induced by acoustic means. U reaches a maximum amplitude where 
\/(a>/2v)=2*28/(. On either side of this critical distance the amplitude 

falls; to zero at the wall and to the “ mainstream ” value 0/ co at a moderate 
distance out. 

The experimental method which this line of thought suggests is to 
impose on a steady stream an S.H.M. of small amplitude and moderate 

frequency and to examine the transformation of the flow by this superposed 
fluctuation to see how closely it approximates in properties to a naturally 
turbulent stream, particularly in respect of (1) rise and decay of the 

fluctuations and (2) development of characteristic distribution of velocity 
across the stream. The devices which have been employed to produce 
the desired S.H.M. in the course of the fluid comprise: (1) tangential 
oscillation of part of a smooth wall over which the fluid passes; (2) passage 
of the fluid over a rigid corrugated solid boundary; (3) passage over a 
flexible boundary. The latter may take the form of a pennant, or the 
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fluid may be forced out of a linear orifice to impinge on a wedge so that the 
jet is set in sinusoidal oscillation between fluid boundaries, as in the familiar 
method of producing edge tones. 

Most illuminating from the point of view of the architecture of turbulence 

are the experiments of the first type, in which a pipe has a loose section 
interposed between the entrance cone and the main portion of the pipe, 
which is connected at its other end to an aspirator. The loose section is 

mounted on the end of a long connecting-rod to a crank with adjustable 
throw on the axle of an electric motor. Air is first aspirated through the 
pipe at a speed just below the critical value and the gradient of velocity 
explored at various sections of the pipe downstream from the mobile 

portion. This is next set in operation and the velocity traverses redeter¬ 

mined. Whereas the former profile was parabolic, it has now gone over 

into the steeper logarithmic type characteristic of turbulent flow, which 
can in fact be reproduced in the imtouched flow in the pipe by making 
the entry more abrupt, or copied at a larger scale by increasing the speed 
of aspiration above the critical, cf. Fig. 29 (Richardson and Tyler’*'). 

It may be objected that this artificial turbulence does not correspond 
with nature in that the pulsatance oi is not monochromatic in real 
turbulence but is more like a band spectrum, embracing a range of 
frequencies requiring a Fourier series in the solution {vide infra). To 

* Phya. Zeits., 32. 609 (1931). • ' 

D.K.r.—4 
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the extent that such partial vibrations may in practice have different 
damping coefficients so that the spectrum changes en marchani, our idealised 
picture of turbulent flow requires modification; but it is certainly a fact 
that natural turbulence shows velocity profiles and distribution of intensity 
of fluctuation precisely similar to those in our developed flow. Thus 
Fage and Townend* in their ultra-microscopic investigation of turbulent 
flow in pipes have found peaks in the fluctuations near the walls like those 
shown here in Fig. 28 (cf. Fig. 23). Also, measurements of the correlation 
between fluctuations at different points as the stream progresses seem to 
indicate that their spectrum changes quite slowly, so that although one 
would expect the high-frequency partials to be more rapidly damped than 
the low-frequency ones, the difference cannot, in practice, be very great. 

Valensif has suggested, though in a rather specialised case, that a 
parameter which we prefer to write as a product of Reynolds and 

Fig. 29. Conyersion of laminar into turbulent profile by periodic oscillations. 

Strouhal numbers, i.e. UdlvXndjU, may represent better than the 
Rejmolds number alone the different regimes of flow, especially if we regard 
the development of turbulence as due to the onset of oscillations in an 
erstwhile steady flow. 

As a further test of the applicability of these concepts to turbulence, 
various aerodynamic models, e.g. a cylinder and a streamlined strut, 
were placed in a wind-tunnel with the speed insufficient to produce 
turbulence in the boundary layer of the model, and the whole surface 
(in the case of the cylinder) or a small vibrating element near the nose 
(in the case of the strut) given a small oscillation at various frequencies 
from 6 to 60 cycles per second. The flow round the cylinder was then 
plotted with and without the oscillatory motion, as contours, and in the 
latter case the field was found to approximate to what one could obtain 

* Loe. eii., p. 33. t OampUs Rendui, 224, 446, 632, 893 (1947). 
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in one-way motion by increasing the speed of the wind past the model 
above the critical. 

Since these experiments were done, Tollmien* and Schlichtingf have 
examined this synthetic turbulence theoretically and found, for the case 
of the flat plate, in what gamut of frequency the superposed S.H.M. should 
lie in order that the amplitude of the disturbance should grow along the 
plate. (This depends on certain assumptions with regard to the profile 
of velocity at the surface of the plate and so on the pressure gradient; 
actually the distribution of p. 30 was taken as starting-point.) For a 
given Reynolds number, both low and high frequencies should be damped, 
intermediate ones amplified. Schubauer and SkramstadJ have recently 
made similar experiments on plates to those of Richardson and Tyler for 
pipes and cylinders, using a wind-tunnel carefully protected against 

Fig. 30. Regime of stable oscillations in flow along a flat plate. 

inherent turbulence, and have confirmed in a general manner these critical 
regions of frequency as provocators of turbulence (cf. Fig. 30, where the 
parameter wvjU is plotted against Reynolds number). 

Another type of periodic boundary layer is associated with a bodily 
to-and-fro motion of a solid relative to the fluid which surrounds it. Such 
occurs when an obstacle like a cylinder is stationary in a pipe in which 
to-and-fro motion of the air particles due to the passage of sound waves 
is set up. This case has been studied experimentally by Andrade§ and 
theoretically by Schlichting,|| who starts from equation (23) and puts in 
the appropriate boundary conditions. Four vortices circulating in four 
quadrants about the obstacle are set up in the fluid (Fig. 31) where the 
white dot represents the mean position of a sphere oscillating on the axis. 

♦ Proc. IfU, CongrMB App, Mech,, Stockholm^ 106 (1930). 
t^./. ange, McUh, u. Mech,, 13, 170 (1933). t J. Aero, Set, (1947). 
f Proc. Soy. See., A184, 446 (1931). || Phya. Zeita,, 88, 327 (1932). 
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On a larger scale, the phenomenon is observed when stationary sound 
waves are set up in a tube. In this oase the relative periodic motion has 
different amplitudes at different places, being a maximum opposite an 
antinode and nil at a node. Rayleigh’*' calculated the shape of the stream¬ 
lines for the circulations set up between node and antinode and Andrade,t 
by photography of smoke particles, has verified that they do take place in 
close accordance with theory and as shown in Fig. 32. Compare in the 

Direction of Vtbrafion 

Fig. 31. Vortices round sphere in alternating 
current of air. 

same figure the stream-lines 
in the two half-circuits due 
to theory (left) and experi¬ 
ment (right). 

We have hinted at the 
head of this section that a 
flow with periodic boundary 
layer is the genesis of more 
complete turbulence; that, 
in fact, turbulence arises as 
a wave motion in the fluid 
which eventually becomes 
incoherent when the turbu¬ 
lence is fully developed. In 
a pipe at quite high Rey¬ 
nolds numbers this origin 

of the turbulent flow may still be traced in the velocity profile, which, as 
Fage has shown, using the apparatus described on p. 33, exhibits a peak 
near the wall very similar to that of the direct plus alternating flow. 

Statistical Aspects of Turbulence 

When w, v, w represent the fluctuations in velocity—^in the three co¬ 
ordinate directions-—characteristic of turbulence, Osborne Reynolds 

WaU of Tube 

yfx/s of Tube 
Fig. 32. Circulations of solid particles in stationary sound waves in air. 

expressed the shearing stresses for parallel flow at speed V in the x-direction 
thus: _ 

/Miv; .... (33) 
where the bar inchoates that the mean temporal value of the product is 
to be taken. These formulae indicate that the turbulent flow at a point 

♦ Phn. Trans., 176,1 (1883). t Ibid., 280, 413 (1932). 
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is conceived in terms of the magnitude of the components of velocity- 
fluctuation and the correlation between them. From this point of view 
one regards turbulence in the same fashion that Brownian motion and 
diifusion are regarded in molecular physics. 

The shearing forces in turbulent motion can also be written in terms of a 
new coefficient of viscosity appropriate to the type of flow called “eddy 
viscosity/’ written v* or replacing v and rj respectively in laminar flow, 
so that we write 

dy~ 
y=P^ -i~=A 

dU 

dy 
(34) 

in a form similar to that for laminar flow. The coefficient which is 
less often found, has the name aiLStausch, due to W. Schmidt. 

The dimensions of v* are of the product of a velocity and a length. It 
seems appropriate to take v for the velocity in question, since it is the 
component at right angles to the general flow which is responsible for the 
diffusion of fluctuations, and a length Z, like the mean free path in molecular 
physics, defined in this wise that particles coming into a given x-plane 
of flow from mean distances above or below it are supposed to carry 
their momentum into it without loss, just as in molecular motion they 
would carry temperature or density. Having reached the plane they 
should lose their identity and add the property they carry to the general 
stock of this stratum. Prandtl* called Z the “mixing-length” and it is 
related to eddy viscosity by the relation 

Returning to (34) we note that v is proportional to the mean velocity 
difference between fluid masses, i.e. to l\dUjdy\, We take the correlation 
coefficient between this quantity and v to be unity, i.e. completely linked, 
and so obtain, with Prandtl: 

r=pP 
dy dy 

(35) 

It may be noted in passing that the form of these equations expresses 
the law of variation of resistance (of which t must be a measure) and mean 

U, Thus (34) suggests that, provided v is constant, tocZ7, while (35) 
suggests, if Z is to be constant, roc U^, as we find for obstacles in a stream. 
There are, however, many cases in which, though this Newtonian law 
applies, yet Z varies from place to place and with Z7. 

The spreading of a turbulent jet as it emerges from a slit into still air 
is a good instance of the application of the mixing-length concept. 
Z proves to be proportional to x, the distance along the axis of the jet 
measured from the orifice. In two-dimensional motion, the Equation is, in 

* Z./. ange Math, u. Mech„ 6. 137 (1925). 
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V 

terms of shearing stress and ultimately of mixing length, by (23) and (35): 

<^y)f 
If l=KX, Uy^ocTT^f^ and the boundary layer parameter, 

Tollmien* solved the equations with the edge conditions 17=0, 
dUjdy=^0, and obtained a distribution of U with C in agreement with 
experiment. The quantity of fluid passing through a cross-section of the 

jet is found to increase as V®, the increment being aspirated by the jet 

from its surroimdings. 
Taylort had put forward, some years before Prandtl, another transport 

theory of turbulence in which “vorticity*' was the property conveyed. 

In two-dimensional motion this leads to an equation similar to (34), but 
to different quantities for the momentum communicated to unit volume 

in unit time. This is pvLd^U/dy^ according to Taylor, p.dldy(vl.dUjdy) 

according to Prandtl. There is also a difference in heat transport into 
the stream (cf. Chap. 4) for which the corresponding temperature distribu¬ 
tion is 4he one theory and 
on the other. Page and Falknerf have measured the velocity distribution 

in a wake and find better agreement with the vorticity transport theory. 
Hall and Hi8lop§ have measured both velocity and temperature across 
the wake of a heated body of revolution. Their results, according to 

Goldstein’sll analysis, fit the momentum transport theory as well as a 
modified form of the vorticity transport theory indifferently except at 
the edges, where there is intimate mixing of the wake with the cold stream. 

It must be admitted that in many applications of turbulence the difference 
between the two distributions, on the rival theories, is beyond the limits 
of accuracy of the measuring technique. 

In flow along a flat plate, we can write (35) as 

]■ (36) 
1 d£ 
p dx dy[_ \ dy ' dy 

There is experimental justification for the assumption that in fully 

developed turbulence the local velocity gradient and the viscosity have 
no influence on the shape of the flow; then I can depend on y only, the 
perpendicular distance from the wall. With this assumption l=^Ky, (35) 

becomes: 

. 
remembering that when r is positive so must be dUldy. 

Integrating (37) for constant r: 

17=^ log, y+constant.(38) 

* Z.f. ange. Math, u, Mech,, 6, 408 (1926). t Trana.^ A216, 1 (1916). 
t Proc. Ray, 8oe„ A1S6, 702 (1932). § Proc, Camb. Phil, 8oc„ 34, 346 (1938). 
\\Ibid„ 84, 361 (1038). 
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This relation, due to von Kdrmdn,* i.e. that the mean velocity at any 
level is proportional to the logarithm of its distance from the wall in 

turbulent flow, is adequately satisfied by the experiments, though it must 
be admitted that power laws, Uccy^ (with n=ij, J), can also fit the 

results with as good grace. 
By assuming that the shear stress across the section of a circular pipe 

of radius a varies with distance r from the wall according to the relation 

r=TQrlaf Nikuradset has calculated I from his own plots of U against r 

across a smooth-walled pipe, applying (36). These are shown in Fig. 33, 
from which it is apparent that the relationship of I to y (=za—r) falls 

Fig. 33. Variation in mixing-length with distance from wall. 

away from simple proportionality (with /c=0-4) towards the centre of the 

pipe. 
With rough walls similar conditions apply in fully developed turbulence, 

but y must be reckoned from an arbitrary zero, depending on the scale 

and type of roughness. 

Conditions of similitude demand that in comparing flow over rough 
surfaces the surfaces be geometrically similar. Experimenters usually 

attempt to control roughness by sticking uniform grains of sand to the 

walls or by giving the latter a waviness of specified amplitude and wave¬ 

length in the direction of flow, but the imdulations, as we have seen, may 
produce special effects in the transition regime. Both types of model 

♦ Pfoc. Int. Congress App, Mech,, Stockholm, 86 (1930). 
t Verb, deut. Ing, Forschungshefi, 356, 21 (1932). 



48 FLUIDS OF SMALL VISCOSITY 

roughness are in any case artificial and do not correspond either to the 
surface of the ground or to a roughly finished casting. Perhaps the most 
expressive parameters in which to characterise the roughness are the 
mean height of the protuberances h and the mean path A between 
humps which the fluid encounters, expressed in relation to the distance x 

along the plate or radius a of the pipe respectively. Of these, the former 
is more significant, especially if it can be expressed as a fraction of boundary 
layer thickness S. Unless the rugosities are of the type to provoke a 
periodic boundary layer they will be ineffective in the sub-critical region, 
but after turbulence has supervened, wherever A>0*88 the resistance is 
found to depend no longer on Re but closely on A/a, in the case of the pipe. 

In some experiments by the author on rough plates it was decided to 
idealise the roughness into a sinusoidal boundary having an “amplitude’’ 
equal to half the “wavelength.” These were constructed of a series of 

Fig. 34. Velocity gradients along “rough” plate; A=1 cm. 

X O + • V A 
4 8 12 23 33 43 cm. 

equi-spaced wires set transversely to the stream, soldered on a plate. 
Wax was then run on to the plate, and when it had set it was gouged out 
of the interspaces to the set template. The three constructed had 
A=0*5,1,1*6 cm. respectively, and troughs of depth 4A. The plates were 
mounted in mid-stream, in a region of (originally) uniform velocity. 
The velocities in the neighbourhood of the smooth and the two roughest 
plates are shown on Figs. 19, 34, 35. To conform with the Blasius theory 
of skin-friction (cf. p. 30), the velocities are plotted against the parameter 

On Figs. 34 and 35, y is measured from the top of the 
undulations, which is admittedly an uncertain zero, but the distribution 
of velocity does show a steeper gradient at this position than does the 
smooth plate, which gradient does in some measure serve as a criterion of 
the roughness. The gradients for the three rough plates were in the 
ratio 4 : 5 : 6, as nearly as could be estimated^ The pbserved distribution^ 
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satisfy, except very close to the boundary, that postulated by Frandtl, i.e. 

U=a log ($+6), 

where a and b are constants dependent on the roughness, so that the 
gradient 

8U a 

Turbulence can also be described in terms of the distribution of amplitude 
and frequency in what is often called the “spectrum’* of the fluctuations. 
As regards the first of these factors it is usual to express the results in 
terms of u/?7, v/?7, and wjU and to call this the scale of turbulence. If 
the three values are equal the turbulence is “isotropic.” 

Fig. 36, Velocity gradients “along” rough plate; A==1'6 cm. 

Turbulent mixing may be considered as a problem in the diffusion of a 
quantity c (momentum or vorticity) and governed by Fick’s law 

0c_ ,d^c 
dy^ 

(39) 

where v takes the place of the coefficient of diffusion in molecular diffusion. 
Equation (39) may be applied in a number of boundary conditions 
pertaining to the shape of the source of diffusion and the manner of its 
maintenance. Thus if the source of diffusion covers a line perpendicular 
to the flow at mean speed U and with a constant value of v'—no dissipation 
of energy into heat— 

2y/(7Tv'ty 

c^^ being the maintained “concentration” at y=0; or writing F* for 2vt: 

c 
■s/{2nY»f 

“V . (40) 

Y* represents the mean square of the vertical distance diffused from the 
horizontal plane through the source. 
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The form of this equation is that of the Gaussian error-function and 
gives the distribution of momentum (or other property) about the 
maximum value at any co-ordinate. The spectrum of turbulent fre¬ 
quencies is similarly distributed about the maximum frequency. 

The general principle of diffusion measurements requires the introduction 
into the fluid of some material or energy whose subsequent distribution 
can be determined by the analysis of instrumental records. If energy 
be introduced it may take the form of (a) an inexorable oscillation of fixed 
frequency and amplitude, or (b) a constant supply of heat. If mass 
transport is to be studied the source may take the form of (c) colour or 
(d) a solid such as smoke, dust, or silt. 

Method (a) has been already mentioned (p. 40.) Experiments of class 
(b), in which heat is introduced along a line-source transverse to the 
channel, have been described by Schubauer* and some others by Simmons 
are cited by Taylor.| The temperature across various downstream sections 
may be measured by a thermocouple and hence the rate of diffusion of 
heat calculated, although Schubauer determined three points only on 
each traverse, viz. that of maximum temperature and those where the 
temperature was half the maximum. The diffusion so observed is, of 
course, the combined effect of turbulence-transport and heat-conduction 
(as in most cases of forced convection). In the same category belong the 
experiments of Townend,t who traced the diffusion of isolated masses 
of heated air (**hot spots”) by the methods of scMieren photography. 

In the author’s§ use of method (c) a dye such as potassium permanganate 
is let into a water channel along a horizontal line perpendicular to the 
direction of flow. The dye dissolves and is diffused downstream by the 
intermingling of the fluid passing the “source” with neighbouring strata, 
and the time-average of the colour-density at any level (x, y) is measured 
by a horizontal beam of light traversing the channel and falling upon a 
photo-electric cell. At first the dye was introduced by siphoning a 
concentrated solution through a narrow tube, mounted transversely to 
the stream and pierced at the after edge with a number of small holes. 
It was found that the tube tended to induce turbulence in its wake. 
Further, any velocity relative to the main stream which the jets might 
have on emergence was a disturbing factor. Latterly a thin phosphor- 
bronze strip was stretched tightly across the stream and this, painted with 
a soluble gum and the finely powdered solid dye, acted as the line source. 
Several seconds elapsed before the gum was dissolved off and the dye 
began to colour the stream, so that the fitting of the source in position was 
not accompanied by a vivid overall coloration of the stream such as 
resulted when the powder was directly applied to the strip. 

• Rep. N.A.O.A., 524 (1935). t Proc. Roy. Soc., A161, 421 (1935). 
t Proc. Roy. 8oe., A145, 180 (1934). | Proc. Phy$. Soc., 49, 484 (1937). 
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A water channel with a 2 h.p. circulating pump was available, which 
permitted speeds of 20 cm. per second, corresponding to a EeTnolds 
number of 60,000. The difficulty now was that the water reintroduced 
upstream into the channel was contaminated by the dye and tinted before 
it reached the grating. This was overcome by making the water slightly 
acid and bubbling sulphur dioxide into the pump intake, to reduce” 
the permanganate at the correct rate so that the water was returned 
colourless to the channel. An auxiliary fixed beam of light was sent 
athwart the channel to another photo-electric cell upstream of the model, 
and the out-of-balance current between the two photo-electric cells read 
on a Wheatstone bridge in which the cells formed one pair of ratio arms. 

Fig. 36. Diffusion of turbulence along ‘‘rough” plate; A=1 cm. 

With this compensating device it did not matter if the reduction of the 
permanganate was not quite complete on the return of the water to the 
channel. It should be ^ded that the channel was given sufficient slope 
to produce “uniform flow” as estimated by traversing a hot-wire 
anemometer across the experimental section. 

The distribution of the dye in any vertical plane will be given by (40) 
and T* by the negative slope of the graph of against log o. This method 
was applied to the plates aforementioned with the source stretched along 
the leading edge (Fig. 36). Measurements of the concentration of the dye 
in various planes perpendicular to the plate and distances (») from the 
leading edge were made, but before being plotted as log c : curves, a 
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correction had to be made for the gradient of V near the surface of the 
plate. In consequence of this velocity gradient the diffusion appeaiB 
more rapid at first as the dye leaves the plate. In actual fact, the con¬ 
centrations recorded at small values of y represent a proportionately 
higher value of t than those for larger y at the same value of x. It will 
appear that the scattering velocity v in the direction perpendicular to the 
plate is nearly constant, whereas the “drift velocity** parallel to the plate 
increases outwards, and the average velocity 

had to be determined for each value of x, y. Hence the time taken for 
particles of dye to reach a given co-ordinate (x, y) was calculated, using 

Fig. 37. Growth of turbulence along plates. 

the curves of Figs. 34, 35, and integrating the necessary areas under the 
curves. 

With the introduction of this correction factor the log c : y^ lines become 
nearly straight (Fig. 36), although there is still a tendency for the diffusion 
velocity to increase in the first few millimetres from the plate as well as 
with time. The former increase may be accounted for by an hypothesis 
that the vortices originate from a level slightly above the level of the plate 

or of the crests on it. The latter increase is brought out by the F* ; x 
curves (Fig. 37) which indicate that vorticity is added to the stream by 
its passage over the plate, particularly by the rough plates, for which a 

rapid increae^ of slope of the : x line occurs as the stem is approached. 
This rate is roughly proportional to A. The short, smooth plate shows a 
less rapid growth, with the usual dissipation occurring beyond the stern 
(decreasing slope). The importance of the parameter ( can be shown in 
these diffusion measurements as well as in relation to velocity gradients, 
for it is possible to reduce all the measurements for a given plate to a 
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single curve by plotting them against J"**. In Fig. 38 this has been done 
for the smooth plate. 

Correlatioiis in Turbulent Motion 

G. I. Taylor* introduced the idea of “ diffusion by continuous movement ” 
in which the process is not limited to finite steps—“mixing lengths”— 
or to finite intervals of time. This concept involves the idea of a correla¬ 
tion between the position, momentum, or other physical property of a 
particle at a place A and that which it has when it gets to B, or between 
the simultaneous values of the property which two particles at A and B 

Fig. 38. Growth of turbulence along plate. 

possess. Thus, if momentum is the property in question, the coefficient 
of correlation is defined as: 

Ua .Un 
(41) 

when A and B are two points on the x axis, or when they are pn the y axis 
and observations of u^, are made at the the same instant. When 
A and B are close together R is nearly unity but tends to zero (no relation¬ 
ship) when they are taken far apart. 

We can usefully picture this in terms of the sizes of the eddies which 
drift with the stream, like puffs of smoke in the atmosphere. If the 
stations A and B happen to lie closer together than the diameter of the 
eddies on the average, we shall expect a close relationship between the 
events at the two stations, just as if they were on opposite sides of a 
stationary vortex; contrariwise, when the eddies are small compared to 
the distance AB, 

• Pfoe. Roy. Soe., A151, 420 (1035). 
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If in vertical diffusion across a horizontal current a particle reaches a 
level y in a time t, 7=* and 

Jo 

the suffix denoting a particular instant of time. If the time in the integral 
is divided into n intervals, the contribution of the jth interval, at the 
beginning and end of which t; has values v, and respectively, to the 
average is 

n ^ n 

by (41), setting and equal to \/v*. R represents, then, 
the correlation between values of v at the beginning and end of the jth 

interval or, if f is this interval and R^ is the correlation in v, over the 
time //n. 

If i2f==0 for all times longer than 

|^y*=con8tantxi?J‘ 

J?{<if+confitant .... (42) 

This may be compared with the corresponding equations of mixing length 
theories if 

When t is small. 

so that near the source 

Rf==l and r*=t;V 

If there is dissipation of turbulent energy this will be shown by the form 
of the departure from completely linked correlation as the time goes on 
or distance increases. (Such dissipation is often shown first as a breaking 
up of large into small vortices.) A length A can be defined by the equation 

A curve of Ry against y wiQ, by this reasoning, be a parabola in the 
absence of dissipation; otherwise A is the intercept on the axis of y of a 
parabola drawn to touch the curve at the vertex (cf. Kg. 41). 
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Measurement of Correlation in Turbulence 
In the method adopted by the author*** the fluctuations at any point in 

a fluid are measured by letting a dye into the fluid from a capillary tube a 
little upstream from the observation station, at which a fine beam of light 
passes athwart the stream to fall on a photo-electric cell. Fluctuations 
in magnitude or direction of the stream at the station will cause changes in 
the local concentration of the dye, and these, in turn, will cause variations 
in the light falling on the cell and so in the photo-electric current. The 
experiments to be described were carried out in a water channel 6 ft. 
long and 10 in. wide, and the maximum depth of water was 1 ft. 

It was, of course, necessary to establish a relation between the colour- 
density of the diffusing dye and the photo-electric current in the cell when 
it was illuminated by a horizontal beam of light interrupted by the colour. 
The voltage at which the photo-electric cell gave a linear response to 
intensity of illumination was first found by trial, then a small portion of 
the channel was sealed off to form a tank into which solutions of known 
concentration of the dye were introduced in turn, and the response of the 
cell to light passing through the solution was measured. It was found 
that, over the normal range of colour-density in the subsequent experi¬ 
ments, a linear relation existed between the concentration and the current- 
defect, i.e. the difference between the reading of the galvanometer with 
clear wat-er and that with the dye in solution. The clear water reading 
was maintained constant during the experiments by adjusting the width 
of the beam whenever necessary. By an arrangement of gears and rails 
the photo-electric cell and its associated beam of light could be traversed 
in the jr, y plane through the water without losing their orientation. 

In adapting the optical method to the measurement of correlations in 
the turbulence in the channel one proceeds as follows. A thin glass tube 
lets in dye from an orifice pointing downstream at the points, and at the 
same point a pencil of light crosses the channel horizontally to one of a 
pair of matched photo-electric cells. A similar arrangement suffices for a 
point B with the second photo-cell, except that the whole of this duplicate 
device can be racked up and down without alteration of the relative 
positions of lamp, orifice, and photo-cell. Thus while is a fixed station 
in the channel, B can lie at any height above or at a place on the same 
horizontal level further down the stream. The two photo-cells were con¬ 
nected with two variable high resistances, a rectifier connected to a 
galvanometer and a high-tension battery to form a Wheatstone bridge 
(Fig. 39b), the idea being that as long as the march of events occurred at 
B in step with those at A no current would pass through the rectifier, 
but as the correlation between fluctuations at A and B became less, an 
increasing, but of course alternating, current woul^d pass through the 
rectifier, and in consequence the mean deflection of the galvanometer would 

• Proc. PAy«. Noc., 49, 488 (1937). 
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increase. To indicate the relation between this deflection and the correla¬ 
tion, and in some measure to act as a calibration of the optical apparatus, 
it was removed from the channel and the light beams arranged to pass 
near the circumference of a disc which could be rotated at speed. The 
circumference of the disc was out in the shape of an epicycloid with two 
cusps. When the two beams and cells were mounted at opposite ends of 
a diameter while the disc was revolved, the light on each cell varied in 
simple harmonic fashion but in phase, so that no current was recorded 
on the galvanometer. One cell being fixed, the other, with its consort 
beam, was moved slowly round the circumference of the disc, the deflection 
of the galvanometer increasing as the light fluctuations got out of step 
until at a phase difference of tt (corresponding to an angular separation of 
the cells equal to 7r/2) the deflection reached a maximum, to fall again as 
the cells approached each other round the circumference. If one sub¬ 
stitutes in the expression (41) for the correlation coefficients two S.H.Ms. 

Film Circuit 
in camera For correlations 

(a) (6) 
Fig. 39. Apparatus and circuit for measuring correlations in turbulence. 

of equal amplitude and frequency but phase difference 8, the expression 
^educes to cos 8. Approximate proportionality between galvanometer 
deflection and the cosine of the phase difference is indicated by the calibra¬ 
tion results (Fig. 40). Accordingly it was assumed that when the device 
was applied to a stream in the manner inchoated, the deflection of the 
rectifier-galvanometer would measure the correlation coefficient directly, 
with the help of this calibration curve. 

The two correlations, one across the stream and one downstream, with 
one beam at a fixed station 9 in. behind a |-in. grating, are shown by the 
continuous lines in Fig. 41. As Q. I. Taylor indicates froiQ theoretical 
considerations, the correlation with x falls off more slowly than that with y, 
though the type of correlation here measured is not quite the same as 
that envisaged by Taylor, since the measurements are concerned with the 
relative phase as well as the magnitude of the fluctuations. 

Another type of correlation can be investigated by comparing the 
oscillation at station A with that at B on the same level further 
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downstream, after allowing sufficient time to elapse for the general current 
to carry a pulsation at A down to J5. A length of photographic film must 
then intervene between the records of the respective fluctuations. The 
two beams of light after passing perpendicularly across the stream were 
inclined by smalhangled prisms until focused side by side on the film in 
continuous movement through a camera at a known speed. (A single 
wide beam was used when x was less than 2 cm.) The dye caused oscilla¬ 
tions in the intensity of the light, revealed as variations in the blackness 
of the film on development. The film was then passed again through the 
light beams and cells, one for each half of the film connected in the circuit 
of Fig. 39, but the pick-up for B was proportionately lower down the£lm 
than for A—somewhat after the fashion in which the light and sound 
tracks are picked up from a talking film—so that the galvanometer 
deflection measured the correlation between A and B after the proper 
time interval had elapsed. This correlation is shown by the dotted line 

cos 6 cc(cm,) 

Fig. 40. Calibration curve Fig. 41. Correlations in turbulence 
for correlations. induced by grating. 

on Fig. 41. In the absence of dissipation a disturbance would be conveyed 
with unchanged amplitude down the channel, but in fact the correlation 
gradually departs from unity as time goes on. 

The more usual, and probably more accurate, method of measuring 
correlations involves the use of two hot wires and is described on 
p. 83. 

These correlation coefficients are; as we have observed, closely related to 
the mean diameters of the vortices which often are the cause of the fluctua¬ 
tions. On p. 26 and in Figs. 13, 14 we have seen how the correlation 
between the currents in two hot wires in a wake can be used to measure 
the inter-spacing of vortices. The same arrangement can be used in 
more generally turbulent regimes for measuring mean eddy diameter. 
As one wire is moved from the other, first the amplitude of the induced 
currents in the secondary of the transformer will decrease and then increase 
again if there is any preferred distance in the flow pattern corresponding 

D.B.F.—6 
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to a prevalent vortex spacing or core, width, but if the fluctuations are 
quite incoherent no such preferred distance will be found (cf. Chap. 4). 

Stability of Flow 
We have already referred to instability in a boundary layer as a common 

genesis of turbulence. Consider the case of two concentric cylinders 
enclosing a layer of fluid. When the outer cylinder rotates faster than 
the inner one, the distribution of centrifugal forces is such as to stabilise 
the motion of the fluid, but if the inner one is rotating faster, the opposite 
is the case. The ratio of the critical speeds in the two cases is about 
6 to 1. 6.1. Taylor* has predicted and confirmed by experiment that when 
laminar flow breaks down, the interspace divides into compartments in 
which ring-shaped vortices are set up. These vortices embrace the inner 
cylinder and rotate about their ring-shaped cores like the vortex rings 

Qli 
y 

Fig. 42. Stability in flow between coaxial cylinders; radii 3*66 and 4*036 cm. 

formed by tobacco smoke. It is true that this is not exactly turbulence 
as we generally understand it, since the pattern is regular and stationary, 
but it is yet another intermediate stage of a periodic nature between 
stream-line and turbulent motion. The importance of Taylor’s theoretical 
investigation lies in the fact that it is one of the very few problems to 
which the complete Navier-Stokes equations have been applied with 
beautiful experimental confirmation. Fig. 42 shows the theoretical and 
experimental regions of stability and instability for various values of 
jQj and these being the angular velocities of the inner and outer 
cylinders respectively. 

Curvature of the boundary has, then, a marked influence on stability. 
So, too, with flow in a channel has the relative curvature of the walls, i.e 
whether the channel is convergent or divergent, the former favouring 

* Phil. Tram., A223, 280 (1923). 
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stability, the latter opposing it. A more important factor is the pressure 
gradient, an accelerating gradient delaying transition, pushing the critical 
value of Reynolds number in the boundary layer to higher values. 

The final factor in stability to which we shall refer is a density gradient. 
If there is a thin layer of fluid between two horizontal flat plates and the 
upper plate is hotter than the lower, very little motion of the fluid will 
take place since the warmer layers are at the top, but if the lower is the 
hotter, unstable thermal currents supervene which also divide up the 

Fig. 43. Benard cells in fluid stratum having a density gradient. 

space into regular cell-like vortices. Inside these rotary motion takes 
place in the form of miniature convection currents. B6nard* first 
demonstrated them in a film of collodion between two glass plates close 
together, but the same phenomenon is believed to be the origin on a huge 
scale of the cellular clouds which sometimes divide up the sky into a 
pattern of chequers. Fig. 43 shows B^nard’s vortices in plan and in 
section. 

* Ann. de chim. et phys., 33, 62 (1901). 
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Atmospheric Turbulence 
These considerations apply with special significance to the atmosphere 

and the way in which turbulence on a large scale may originate in it. 
Similar remarks apply to the oceans. 

Values of the eddy-viscosity v' can be determined from the distribution 
of momentum (i.e. wind speed or water speed) with height, or, in the 
ocean, of salinity with height. G. I. Taylor* deduced the following values 
of V for the atmosphere: 

(a) over sea, Newfoundland banks, 3x10* cm.* per sec. 
(b) over grassland, Salisbury Plain, 5 X10* cm.* per sec. 
(c) over cities, Paris, 10* cm.* per sec. (These were determined on 

the Eiffel Tower, being greater for the lower 100 m. than the 
upper 100 m., i.e. 15 and 11x10* respectively.) 

These values can be compared to the product of the component of velocity 
fluctuation perpendicular to the drift of the eddies in the atmosphere and 
the mean radius of the eddies. 

Sheppardt floated a large circular plate in a pool of oil set in the middle 
of a concrete platform and allowed the wind to pui^h it by shearing action, 
so deflecting a balance arm to which the plate was connected. At a wind 
speed of 4 m. per sec. the drag coefficient was 2x10”* and the factor 
K of (37), p. 46, about 0*45. The mixing length I is in fact proportional to 
height up to 1 m, above ground level, but then increases more rapidly. 
K also decreases as the atmospheric stability increases, i.e. as the lapse 
rate of temperature in the lower stratum becomes greater {vide infra). 

In L. F. Richardson’sJ theory of instability of a medium with a density 
gradient, the work done in raising a particle to a height h is equated to 
ipgPh^, where j3=l//> | dp/rfA |. If a expresses the gradient of U with h, 
the work done by the frictional stresses is | ra | per second (cf. p. 45). 
If these turbulent stresses are to maintain the motion, the work they do 
must exceed that done against gravity. Then 

\ra\>lpgplf^).(43) 

Identifying h with the vertical drift (Y of equation (42)) in horizontal flow 
at speed 17, we can write 

.(«) 

and from the momentum transported: 

T=pt?ld.(45) 

so that for maintenance of turbulence, L. F. Richardson’s number ofljgP 
must be greater than 1; per contra, if this parameter is less than 1, the 

♦ Rep. du Con. TnUm. powr V Exploration de la mer, 76, 36 (1931). 
t Proc. Roy. Soc., A188, 268 (1947). t FAtl. Trane., A97, 364 (1920). 



ATMOSPHERIC TURBULENCE 61 

flow is non-turbulent or stable. Taylor has further calculated that for 
the stability of an inviscid fluid with a uniform and small density gradient 
in uniform shear, the parameter must be less than 4. 

[The parameter can also be expressed in terms of the gradient of tem¬ 
perature with height (“lapse rate”) for 

Q? _ 
glp.dpjdh gfd.{ddldh-^\ddldh)Q} 

where (dOIdh)^ is the “adiabatic lapse rate” such that air moving from 
lower to upper levels finds itself in temperature equilibrium with its new 
surroundings after the loss of temperature that it undergoes due to internal 
expansion, so that no exchange of heat takes place.] 

The critical value is found in practice to depend on the Reynolds 
number of the motion, and since mixing between layers of different 
density is involved it is possible that a third parameter—Froude number, 

Reciprocal of L.F, Richardson Number 
Fig. 44. Atmospheric stability criteria. 

cf. Chap. 5—must be reckoned with. Fig. 44 (after Paeschke*) shows, 
by dots, the values of Re at which atmospheric instability has been 
observed to set in. Turbulence may be set up at any value of density 
gradient, but when the Richardson number is less than 4 it occurs more 
readily, i.e. at lower Reynolds numbers. 

Experimental results on a large scale are wanting for the atmosphere, 
but hydrographic measurements of ocean currents and salinity examined 
by Jacobsent show that turbulence can subsist in the ocean with a^lgP 
as small as 0*008. On the other hand, Sverdrup,f who has examined data 
over a wider field, thinks that the momentum transport theory is adequate 
to explain the observed facts, having regard to the difficulty in collecting 
and assessing the data. 

♦ Beit, 2. Phys. d, Atmos., 24, 163 (1937). 
t Oeofysk, Pub., No. 7 (1936). 

t Beit. z. Oeophys., 16, 404 (1927). 
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Wind Structure 
It is found that the mean wind varies with height according to a rule 

Vcch^^ though this seems uncertain in its application near the ground. 
The principal variations of j are caused by temperature gradients and the 
“roughness” of the ground, being smaller over broken terrain. Expieri- 
ments suggest for j a mean value of 0*17 up to 30 m. 

Both u and v increase with mean speed and approach equality at heights, 
but in the first 2 m., v increases more rapidly than w decreases. Even 
at low wind speeds near the ground gustiness as expressed by the means 

ti, V, and w may be considerable when the sun’s radiation seta up con¬ 
vection currents. Some meteorologists maintain that ujV increases with 
U at first, but becomes constant when the latter reaches 6 m. per sec. 
This type of turbulence may be distinguished from simple momentum 
transport by the fact that it occurs in “quanta,” isolated bursts of short 
duration, of the order of a second or so, separated by longer calm periods. 
The gustiness as the wind rises may halt round its old value and suddenly 
jump to a new threshold when V passes through a critical velocity. 
A similar effect is noticed in rivers. When there is both thermal and 
d3mamic diffusion, that effect predominates which has the greater value 
of V, 

All indications suggest that the atmosphere is turbulent even when the 
stratification would encourage stability, except within fairly thick vegeta¬ 
tion cover, where aerial movement is hindered and v approaches the 
molecular value. The periodicity of the fluctuations is much lower than 
in the artificial turbulence of pipes and tunnels, indicating much bigger 
vortices. The “equilibrium time” over which casual variations in 
velocity average zero is of the order of minutes. 



CHAPTER 3 

THE FLOW OP COMPRESSIBLE FLUIDS 

» ldV^dVdW\ 

When we are dealing with compressible fluids it is no longer a matter 
of indifference whether we speak of the volume or the mass of an element. 

The equation of continuity has to be modified to allow for density 
changes, thus: 

dp___JdU_^dV . dW\ 

dy 

The Bernoulli equation has also to be modified. The general equation 
for the change of density of a gas between two states 1 and 2 is, in an 
adiabatic change (i.e. no heat exchange with the surroundings): 

y being the ratio of specific heats at constant pressure Cp and constant 
volume Cy for then, as is shown in textbooks of thermodynamics, 

Pi^IPiV 
Vi \/>2/ 

if the adiabatic change is frictionless and so reversible. So 

.... (47) 

an equation which has wide application to the flow of gases. 
[Here a is the adiabatic velocity of sound: 

n^Jf- V 
a*=,~=y- 

dp p 
(48)] 

When friction enters, the adiabatic relation is only approximately fulfilled 
due to the irreversible heat exit. In terms of the values of the correspond¬ 

ing quantities when the fluid is at rest (indicated by zero suflixes), 

■ 2 V 
y^l f72-|y/y-i 

P^Po 

(49) 

The final equation shows that as the velocity U of the fluid increases it 

reaches a limit aoVr2/(y“~l)] wherever 
C/==a, The velocity of the fluid at such a point is then equal to the local 

03 
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velocity of sound. Velocities between this value and the upper limit are 

known as supersonic. 
The motion of a body through a compressible gas at low speeds can 

nevertheless be described without reference to compressibility, for local 

compressions and rarefactions which may be produced are not intense 

and are reversible, but at high speeds precipitate and irreversible changes 

of density are produced, particularly in the neighbourhood of sharp points 

and corners. From such places shock waves travel out into the medium. 
The setting up of what are effectively sound waves involves an additional 

“wave resistance** as the process transports momentum from the neigh¬ 
bourhood of the obstacle to a distance and converts kinetic energy into 
heat. Bodies, such as meteors, travelling through the air at high speeds 

may experience a large temperature rise from this and the ordinary 

frictional resistance in spite of the loss of heat they suffer from being 
bathed in a cold atmosphere. 

To characterise a potential flow in a compressible medium, we write 

for the three component velocities. 

t7+w=f7+ 
d<ft 

^* 
w= 

dz 

where u, v, w are small compared to I/, as in Oseen’s approximation 
(cf. p. 13), but U may be comparable with o. The potential then approxi¬ 
mately satisfies the equation 

dx^ 

or 
\ dz^ 

=0 . (50) 

This reduces to the ordinary potential flow if we substitute for 
xl\/(l — U*la^) in the regime where U<a. In this way the equation of 

compressible potential flow can be “linearised** into a type of incom¬ 

pressible flow. It is also possible to linearise it into an ordinary sound 
wave equation {vide infra). The original equations arc, of course, relevant 

to a medium in which both steady motion and wave-making are taking 

place. [As a matter of general interest, the reader may care to note that 

the linearisation process in (50) involves two velocities in the same way 
as in the relativity equations, wherein the so-called Fitzgerald trans¬ 

formation embodies a particle velocity and the velocity of light in vacuo 
in the same fashion; the latter, however, is a ne plus uUra, whereas the 
velocity of sound is not.] 

The solution of (50) for two-dimensional flow is 

^=^i(x-ay)-f^g(a;-fay) .... (51) 

where a represents the transformation ® is supposed 

constant all over the field. The lines x—ay and a;-fay—constant are 
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envelopes to the wave fronts and make an angle 2j3 together where 

j3=cot“‘^a. 
This transformation means that we can start with the ordinary low- 

speed potential field and contract the stream-lines in the direction of flow 

in the ratio 1 : \/(l — U^la^) to get the flow round the same model in the 
transonic range, provided the obstacle is so slender that the components 

Vy w which it sets up are small compared to the forward speed U. Practical 

bodies for high-speed flow are, in fact, of this shape. 
6. 1. Taylor* originated an ingenious method for solving cases of com¬ 

pressible flow past such bodies by an adaptation of the electrostatic tank 

which we have already described in relation to incompressible flow (p. 11). 

Instead of uniform depth of electrolyte the bottom is fashioned to make 
the depth vary in a predetermined way. If E is the potential and H 

the flux, 

\ dE . \dE H 

where /, g are the components of electric current density and a is the 

specific resistance of the electrolyte of depth ^ at a given place. By 

comparing these with the equations for u and v it is evident that we can 

determine the distribution of 0 from that of Ey if t is made proportional 

to p and a model of the obstacle is made in insulating material. 
(Alternatively, the model may be formed in conducting material, 

E identified with 0 and t made inversely proportional to p. The bottom 

is moulded by trial, starting with constant depth, and in each step taking 
the E distribution of the previous one as a guide to the depth formation 
for the next.) 

The shock waves spreading from the nose and tail of a bullet were first 

photographed by Machf in virtue of the fact that the compression of the 
air along their envelopes is sufficient to cast an optical shadow on the 

plate (cf. Fig. 45, Plate I), p is called the Mach angle and Uja the 

Mach number, M, 

The latter is an additional parameter which, together with Reynolds 
number, must be reckoned with in delineating variations of body resistance. 

As the speed of the body approaches that of sound locally, the pressure 

gradient along the surface is altered and so is the point of breakaway 
which regulates the wake. It is also evident that the surface of the 

obstacle must be aerodynamically clean, i.e. free from protuberances, 

if its resistance at sonic and supersonic speeds is not to be excessive. 
Fig. 46 shows how the drag coefficients of cylinders and spheres vary in 
this region (ignoring the effect of Reynolds number, which is, however, 

yet significant) and Fig. 47 the distribution of pressure round a circular 

cylinder at various Mach numbers (cf. Fig. 16, p. 28). 

* (with C. F. Sharman) Proc, Roy, Soc.y A121, 194 (1928). 
t Wien. Ber.y 98, 1310 (1889). 
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In von Kdrmdn’s* acoustic analogy he considers the length 

x/\/(l—D^/®*) as a time co-ordinate in the history of a two-dimensional 
flow taking place as a result of the output of a line of oscillators spaced 

along the projection of the plan form of the model, located with its axis 
parallel to the x axis, on to the y, z plane. Each oscillator is supposed to 

give out a pulse of sound whose intensity distribution in time replaces the 
thickness distribution in space of the corresponding section of the model. 

The pulse is then analysed by the Fourier method and from the analysis 

the drag of the model emerges as the energy transmitted to infinity by 

all the oscillators during the lifetime of their activity. On this theory, 
it should be possible to reduce drag in the supersonic regime by suitable 

interference—in the acoustic sense—between the oscillators. This could 

hO 
I 

OS 

0-4 

oz 

0 
0 

Fig. 46. Drag coefficients at supersonic speeds. 

be, and is in fact, accomplished by sweeping back the model section from 

its central point—^like the pair of wings of some birds—so that, in the 
acoustic analogy, the representative oscillators start and finish their 
emission progressively later than the one which stands for the central 

section. 

The linearisation process—whether performed on a purely hydro- 
dynamic or on an acoustic basis—is only valid for small motions relative 

to the main flow. If the known variation of the velocity of sound with 
temperature and displacement amplitude are taken into account, together 
with the possibility of local speeds not small compared to the main stream 

or the sound velocity, the equations—such as (50)—are no longer linear. 

♦ ^cro. 14, 373 (1947). 
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The few Mach cones which cover the whole field in the simpler flow are 
replaced by many local Mach cones corresponding each to the local velocity 

of sound and having an axis parallel to the local U and amplitude propor¬ 

tional to the local Uja. 

Shock Waves 
When the fluid passes through a shock front its speed is suddenly 

reduced while its pressure and temperature are as suddenly increased. 
These quantities are connected by the equations of continuity and by an 

“equation of state,” viz. an expression relating pressure, volume, and 

Fig. 47. Pressure distribution round cylinder at supersonic speeds. 

temperature. Continuity says that the ratio Uje of velocity to specific 
volume must remain the same, also 

eSp=USU 
while for the energy balance: 

Cyd-\-pe-{-^ =constant 

From these three expressions, Hugoniot’*' derived a law connecting the 
specific volumes and pressures before and after the shock: 

(y-i)Pi+(y+i)i>s 

•J. £coU. Poly., 67-69 (1887-9). 
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which has a maximum value of {y+l)Hy—l) for the most intense shocks 
whereas in a truly adiabatic change there is no such limit. 

When a projectile of the usual shape—cone or ogive for head and 
cylinder for body—is travelling at high speed, these shock waves spread 
from the vertex in such a fashion that the fluid behind them flows parallel 

to the diverging sides. Where the sides diverge less or become parallel 

a progressive expansion takes place while the fluid “turns the corner**— 
like a squad of soldiers changing front—until it takes on a new direction 

parallel to the slant sides of the projectile. When the projectile is 

travelling at a high Mach number, a conical shock wave originates at the 
vertex, followed by other waves from roughnesses along the slant sides of the 

head, whose sections are curves leading into the main wave front. Along 

the cone the local velocity is greater than that of sound. When the 
“parallel body’* is reached these cease and an expansion occurs with 
change of front until the tail is reached. There a new dilatation follows 

with turbulence in the wake. At lower values of M, but still greater than 1, 

the velocity along the conical body is less than that of sound; only the first 
(conical) shock wave is apparent. At values of M approaching unity 

the point of divergence of the main shock wave moves ahead of the vertex 

and at the same time its projection becomes curved. 

At speeds approaching that of sound the breakaway and transition 
points are affected. Fig. 47 shows how the transition represented by the 

pressure trough gradually disappears as M increases. In consequence of 

this, distributions such as those shown will depend in part on Reynolds 
number as well as on Mach number. Ackeret* has been able to alter the 
Re, keeping M nearly constant, by having flexible walls to the tunnel 

in which the experiments were done. As we shall see in the next section, 
to retain parallel flow in a supersonic tunnel as the speed is varied requires 
that the form of the tunnel walls must be altered. 

Work is now being done on the effect of Mach number on separation 

and eddy-making resistance, as well as on skin-friction. The latter may 
be purely a temperature effect, the conduction of the heat produced by the 

shock into the boundary layer raising its kinematic viscosity. 

In the usual boundary layer theory, one assumes that the flow outside 
influences its development and growth, but that there is no reaction by 
the layer on the main stream, unless or until separation from the surface 

occurs. Flow near sonic speeds is, on the contrary, extremely sensitive 

to changes in cross-section, for example in a nozzle, which seems to indicate 
that change in the thickness of the boundary layer can influence the main 

flow. 

Shock waves cannot penetrate to the wall through the layer owing to 

the comparatively low velocity that must subsist therein, but to the extent 

that such waves do penetrate they must set up a steep pressure gradient 

♦ Proc, TrU. Congress, App. Mech.» Paria (1946). 
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in the outer part of the layer. This may cause separation and, as already 
remarked, certainly reacts on the shock wave in the main flow. In 
laminar boundary layers the wave is reflected at the limit of penetration 
as though at a free surface, instead of at the fixed surface of the wall. 
Just like sound waves reflected at the ends of pipes, a compression is 

reflected as an expansion at a free surface instead of as a compression, as 
happens at a fixed surface and would be the case if the shock wave reached 
the wall. (Such reflections are visible at the confines of a free jet, cf 

Fig. 51.) The reflected expansions appear in shadow photographs of the 

shock waves as a fan-shaped system radiating from the reflection )evel. 
When the boundary layer is already turbulent where the incident wave 
meets it an intense compression shock is observed, the shock being 

approximately normal to the wall. 

Fage and Sargent* have found a critical angle of incidence for the wave 
in this phenomenon, below which regular reflection does not ensue. At 

an incidence greater than the critical angle, the regular reflection occurs, 

as stated, at a level out from the wall, while a third wave extends from this 
point of bifurcation and the wall itself. The two fields of flow which 

extend downstream from these two wave-fronts have different velocities 

and are separated by vortex sheets. It is in this respect that supersonic 
flow along the surface of a solid body with its boundary layer becomes 
more complex than that in the free jet pictured in Fig. 51, Plate I. 

It is a consequence of the equation (51) that along the wave envelope 

ay—constant an additional velocity is directed normally to these lines 
and remains constant alongside each one so that all the stream lines are 
parallel to each other in the first approximation. The pressure Sp to 

the same approximation is given by pUu (where p is the undisturbed 
density) and is thus proportional to u. The resultant of u and v is normal 

to the wave envelope and of U—u and v is tangential to the surface ol 
the body, so that if V makes an angle € with the surface 

{U—u) tan €=~u cot ^ 

Approximately u^ — Ue tan p and 

. 

This gives the pressure coefficient 2€/a at a point on the surface in terms of 

the local angle of attack c. In two-dimensional flow, pressure effects and 
the transfer of momentum are only appreciable in two strips, bounded by 
parallel planes whose inclinations to the direction of flow are equal to p. 

Compressions and rarefactions are propagated with undiminished intensity 
along the Mach lines, if the present assumptions are valid, and the formula 
(53) may be deduced by calculating the action and reaction of the fluid 
passing through any surface. The total drag of a cylindrical body can 

* Proc. Roy, Soc., A190, 1 (1947). 
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then be calculated by integration. It will be noted that the solution fails 
for Af=l, while for supersonic speeds it makes the drag coefficient fall 

if at the same time € does not change much, which is the case for slender 
pointed cylinders bmt not for bluff obstacles. Fig. 46 shows the drag 
coefficient for various shapes and its variation with Mach number. 

The increase of pressure, p, at the stagnation point over the stream 

value po may be predicted, for along the stream tube which strikes it, 
combining (47) and (49) 

• • •] 
provided [(y—1)/2]JI/*<1. This makes p increase rapidly as M increases 
(cf. Fig. 47). 

Supersonic Jets 
The other aspect of supersonic flow to which both theoretical and 

Internai pressure 

Fig. 48. Variation of area of jet Fig. 49. Variation of outflow from reser- 
with Mach number. voir with pressure excess. 

practical attention has been given is concerned with the flow through 

nozzles and tubes and into the atmosphere from a reservoir under pressure. 
As long as compressibility has no part in the process, the outflow from a 
nozzle will depend solely on its area and the pressure difference between 

the two sides of it. Moreover, the velocity in an expanding or contracting 

tube will be inversely as the mean velocity through the section at any 
place. But if the density of the medium is a function of the pressure and 

both these diminish as V increases, the cross-section of the jet {S) must 

ultimately rise as V increases in the supersonic range. Thus, if Q is the 

outflow per second 
Q dp 

^'p^VdU . . (54) 

putting dU=—dplpU (Bernoulli) and dpjdp^a^, where a is the velocity 
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of sound in the gas. dSjdV is negative when U<a, reaches a minimum at 

I7=a, and is positive when U>a (Fig. 48). 

If the process is adiabatic, then as the ratio of the pressure inside to 
that on the outside increases, the outflow first rises, then reaches a 
maximum, when the efilux velocity reaches the local velocity of sound, 

and falls again to zero when the internal pressure is infinite. In a diatomic 

gas the critical pressure ratio for maximum outflow occurs when the 
internal is about double the external pressure (Fig. 49). 

To get the “ cleanest” flow through a nozzle the speed should be brought 

by contraction of the section up to the speed of sound at a throat, after 
which the section should gradually widen out to let the pressure down 
gently from the critical to the atmospheric value without the flow either 

leaving the walls or trying to force 

them outwards, otherwise energy 
is used up in producing shock 

waves. Such a tube is called, 

after the inventor, a Laval nozzle. 
Fig. 50 shows the section of a 
Laval nozzle with the variation of 

Q with distance down the throat 

(x). If the pressure within the jet 
where it debouches into the atmos¬ 

phere is not equal to that in the 
open air it becomes criss-crossed 

with stationary shock waves in Q 

which the impulse loss is expended 

(see Fig. 51, Plate I, where a super¬ 
sonic jet has been silhouetted as ^ 

it was let directly without expan- ^ i i j 
« . • • . i 1 Laval nozzle and pressure variation 

Sion of its section into the atmos- therein. 

phere). 
It will be noted that the two conditions of equality of speed to that of 

sound in the throat and of internal jet pressure to atmospheric when the 

jet reaches free space mean that a fresh shape of Laval nozzle is needed 

for each pressure ratio, also that the final velocity of the jet when 
“straightened” will, neglecting frictional loss, be given by the upper 

curve of Fig. 48. Thus, to construct a miniature wind tunnel, Stanton* 

used a Laval nozzle of the appropriate shape for a given Mach number 
at the correct pressure ratio and placed model sections in a cylindrical 

continuation of the expansion tube. To vary Mach number without 

altering Reynolds number, Ackerett uses a nozzle of plastic material which 
can be moulded into the correct shape for each change of local sound 

speed [vide supra). 

♦ Proc. Roy. Soc., Alll, 306 (1926). f loc. cU. 



CHAPTER 4 

FLUIDS WITH A TEMPERATURE GRADIENT 

Temperature Field round Hot Body 
A close analogy exists between the processes by which momentum and 

heat are transferred from a solid bodyHo the fluid through which it is 

moving, so that, for example, the drag and the heat-loss expressed in 

dimensional terms can both be plotted as functions of Reynolds number. 

More precisely, the heat-loss has to be plotted against the product 

Udjvxcvlk, but as the latter quantity—in which c is the thermal capacity 

of unit volume and k the conductivity—is a constant for diatomic gases, 

there are many practical instances in which it may be dismissed from the 

argument. The principal distinction is to be found in the absence of a 

sharp corner in the heat-loss curve at the critical Reynolds number such 

as we have in the drag. This is due to the fact that whereas the formation 

of eddies involves an abnormal dissipation of motional energy, the heat 

energy involved is less affected, as the eddies simply swirl the already 

heated portions of fluid round the stem of the obstacle. 

Hermann* has derived functions for the temperature and velocity 

gradients round a cylinder in natural convection, i.e. in absence of forced 

draught, and compared his calculations with the measurements of 

Jodlbauer.f For forced convection, the corresponding solution was first 

obtained by PohlhausenJ for the thin plate parallel to the stream. Later, 
Piercy and Winny gave solutions for both plate and cylinder, to which 

further reference will be made. 

In each case the temperature function is plotted as the ratio of the value 

at a perpendicular distance to that 6q at the surface against a non- 
dimensional distance, and the curves take the same form for natural and 

forced convection (provided the plate has its flat surface vertical and the 

cylinder its axis horizontal). This is to be expected since natural con¬ 
vection may be regarded as a limiting case of forced convection at low 

fluid velocities, entailed by differences in density of the fluid adjacent to 

the hot body. In natural convection, however, the dimensionless distance 

is expressed in terms of Grashof’s number, where g is the 

acceleration of gravity and p the coefficient of expansion of the fluid. In 

forced convection, on the other hand, the distance parameter is a function 

of P6clet*s number, P^Udcjk, where c is the thermal capacity per unit 

volume and k the thermal conductivity of the fluid. 

• V.D./. Farschungsh,, 879 (1936). t Jbid„ 4, 157 (1933). 
I ZeiU.f, ange. Math. u. Mech., 1,115 (1921). 
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In comparing an experimental distribution—points on Fig. 53, from 
the author’s’*' measurements—with theory, one is faced with the difficulty 

that (? or P is not a constant through the boundary layer, nor is the 
temperature at x=0 in the fluid necessarily that of the solid. It is usual 
to select the P6clet number corresponding to the mean temperature at 

each point in the field and to extrapolate the temperature readings to 
find Sq at x=0 and to call this the body temperature. Bearing in mind 
these approximations, the agreement between the experimental points 

Fig. 53. Temperature and velocity boundary layers of a cylinder. 

and theory is fair up to moderate values of x. At larger values of x the 
temperature measured by thermocouples does not fall as rapidly as theory 

would have it. This may be due to radiation from the cylinder to the 

thermometer. This effect will be—^in proportion to the convection— 

greater at greater distances and therefore a larger ** correction.” 
At least up to x=2, the general shape of the curve is followed by all 

experimental results, and at this value of x a common value of 0*2 for 

♦ Phil Mag., 23, 681 (1937). 
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djdQ is reached. If we define the thickness of the boundary layer 8 to 
conform to this value of the distance parameter, we get the values in the 

table below. Change in the regime of flow should then be expected at a 

critical value of d/8 for a given surface temperature. From the experi¬ 
mental results of the author we find a mean critical 8/d of 0*125 as the 

following table shows: 

j 
Critioal 
_A__ d ^0 t- 

u 1 a m ’ 

6.5 mm. 450° C. 70 cm. per sec. 0-93 mm. 014 
»» 580° C. 90 „ „ „ 0-97 „ 015 

13 mm. 450° C. 40 cm. per sec. 1-7 mm. 013 
>» 650° C. 55 ,, ,, ,, 1-85 „ 014 

26 mm. 650° C. 40 cm. per sec. 31 mm. 012 

Piercy and Winny’s solutions for the relative heat-loss along the contour 

of the cylinder and the thin 

plate parallel to the stream 

are given in Fig. 54. Just as 
Blasius worked out the velo¬ 
city distribution in flow along 

a flat plate with an augment¬ 
ing boundary layer (cf. p. 30), 

so Pohlhausoa* derived the 

corresponding temperature 

distribution. 
The equation to be solved, 

neglecting friction, is 

dd yddjc d^e 
dx dy c dy^ 

with the boundary conditions: 

Oq at y=0; d=0 at y=oo 

The equation can be satisfied where ^ is a function of \/(Uvlx).y only 

and, for a specified value of cvjk, gives a unique distribution of temperature 
in terms of this parameter. 

Instability of Fluid Heated from Below 

When a fluid layer has a gradient of density decreasing as one goes 

vertically upwards it is stable, but if the gradient is directed contrariwise 
the heavier fluid tends to take the place of the lighter. Rayleighf showed 

♦ Z./. an^6. Math. u. Mech., 1, 115 (1921). t PhU. Mag., 32, 629 (1916). 

Fig. 64. Heat flow along contour of flat plate 
and circular cylinder. 
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that the criterion in the case of a stratum of height h with extreme 
difference of density hp is 

8p 277rV 

p ^ \gh^ 

for stability. When the gradient is engendered by a temperature difference 

hd, Jeffreys* finds 

e 
In fact, Chandraf found, using layers of liquid up to 1 cm. deep, that 

Jeffreys’ criterion held only down to A=6 mm. Thinner strata had a 
nearly constant hOjOvk of order unity. Two different typcvS of instability 
characterise the two regions. The deeper layers resolve into rows of 

little cells of polygonal shape—the ‘‘cellular vortices” of B4nard, cf. p. 59 

and Fig. 43—whereas the shallower layers tend to break up into strips 
of continuously ascending material from top to bottom and back of the 

full depth. 

Another type of instability accompanying differences in density occurs 
when one layer streams over the other or when a jet passes into stationary 

fluid (cf. Chap. 5). 

Heat Loss from Hot Body 

This problem may first be treated dimensionally, again separating the 

two cases of free and forced convection. Some ‘'form factor” involving 

the shape of a body of revolution or of a cylinder transverse to the stream 
or the height of a thin plate or length of a pipe parallel to the stream must 

intervene. In the case of the cylinder the parameter is HdjkdQ, wherein 

H is the heat-loss per unit length and k the thermal conductivity of the 
medium. DavisJ collected results in gases and added some of his own 

in liquids and showed that, for a given shape and disposition of solid, all 

heat-losses expressed in this dimensionless parameter could be reduced to 

a single curve when plotted against the Grashof number for free convection 
or against the reciprocal of the Peclet number (equivalent in diatomic 

gases to Reynolds number, as aforesaid) for forced convection. 

Potential Convection of Cylinder 

Bous8ine8q§ and KingH have tackled this problem, which is of con¬ 

siderable importance in relation to hot-wire anemometry. Considering 

an incompressible fluid in two dimensions, the temperature equation is: 

(56a) 

Here k is the thermal diffusivity, i.e. the conductivity divided by the 

• Proc. Koy. Soe., A118,196 (1928). t Proc. Roy. Soe., A164, 231 (1938). 
t Phil. Mag., 40, 692 (1920); 41, 899 (1921). ^Comptet Rendwi, 183, 267 (1901). 
II Phil. Tram., A214, 373 (1914). 
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thermal capacity per unit volume of fluid, kjc. This equation can be 
expressed in terms of a velocity potential ()> and stream function ifty as: 

If we assume with Boussinesq that the equipotential lines are also 

iso thermals, the second term only on the right remains, leading to solutions 

of the type: 

.^53) 

otherwise more complex solutions involving Bessel functions crop up. 

In practice such a thermal potential flow is modified by a temperature 

boundary layer, in the same way that a velocity potential flow, without 

the temperature gradient, is modified. In this temperature boundary 
layer the Peclet number replaces the Reynolds number. When, as in the 

most important practical applications, these coincide, the two layers have 

the same thickness—though this does not mean the same thickness as 

when the body is cold, since the mean viscosity in the layer will depend 

on its temperature—and the heat is transported by the same mechanism 

as is momentum. The field of temperature defect is then the same as the 

field of velocity round the solid. Furthermore, the diffusion of heat into 
the fluid from the cylinder may be used to study the diffusion of momentum, 

in turbulence problems (cf. p. 49) or either may be modelled as an actual 

experiment in diffusion, e.g. of smoke or a dye from the surface of the 
obstacle into the stream. 

Boussinesq* eventually derived the following formula for the heat-loss 

per unit temperature excess: 

King’sf formula is similar but with an additional constant. The parabolic 
relationship between H and U does in fact break down at low velocities, 
moreover the parabola does not pass through the point H—0, U—0; 
King’s additive term takes care of this. For low velocities when the 
natural convection current of the wire becomes important he has another 
form of equation. King’s two formulae are: 

H=[k+2\^('jTkcUa)]. 6 (highspeed) . (60) 

in which b~k^^~^lcU. The change-over velocity depends on the orienta¬ 

tion of the wire, being lower for a horizontal than for a vertical cylinder. 

Thomas} quotes the following values for the mean natural convection 

* Comptea RenduSy 133, 257 (1901). t Pkil. Trans, Roy, Soc,, A214, 373 (1914) 
t Proc, Phys. 8oc,y 32, 291 (1920). 
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current Uq from a wire 0*0784 mm. diameter extending horizontally across 
a vertical tube 2 cm. wide. 

fl. 135 191 246 j 315 420 535 

V, 3*1 40 6*4 70 9-1 i 12-2 15-9 

677° C. 

cm. per sec. 

The *‘Dust-free Space** 

The dust-free space surrounding a heated cylinder in a dusty or misty 

atmosphere, discovered by Tyndall,♦ has recently been quantitatively 

examined by Miyakef and by WatsonJ. Whatever the ultimate origin 
of the phenomenon—and rival theories will be found in the papers just 

cited—^it is obvious from the published photographs that the configuration 

of the dust-free space conforms to the temperature (or velocity) boundary 
layer. That being so, it may be of interest to compare measurements of 
the boundary layer with those of the dust-free space. As the measure¬ 

ments made by Miyake and Watson concern natural convection we will 

select the results of Jodlbauer-Hermann for the comparison. 
The dimensionless boundary layer thickness S/d in natural convection 

is inversely proportional to i.e* exact 

value of the exponent n in the assumed proportionality, voc^, will depend 
on the range of temperature concerned, but taking n=l as an attempt to 

cover a moderate range, we shall get Now Watson used two 

rods 4*6 and 9 mm, diameter respectively, together with a wire 0*001 in. 
diameter. The measured values of 8 (dust-free layer) agree moderately 
well with the relation For instance, the thinner rod and wire 

(ratio of diameters 18 : 1) have dust-free spaces of relative thickness 

1*9 : 1 at 220° C. The agreement is not so good in the temperature 
variation; instead of an exponent J, Watson would put while Miyake 

prefers 0*7. Apart from discrepancy between the experimental results of 

the two observers the disagreement with theory may be in part imputed 
to our assumption of a constant v throughout the boundary layer. 

Evaporatkm from a Liquid Surface 

The problem of evaporation from a liquid surface into an air stream is 

likewise closely related to the subjects under discussion. In place of the 

P&let number, or its reciprocal, the parameter UdjD, where D is the vapour 

dififusivity, must be introduced. Pasquill§ has carried out experiments of 
this nature, exposing filter-papers soaked in liquid in a wind-tunnel so that 

the air glided over their suiface, and measuring the loss of weight in a 

known time. At a given wind speed the rate of evaporation E per unit 
difference of vapour pressure (saturation pi—atmospheric Pq) multiplied 

♦ Proc, Roy. Jrtst., 6, 3 (1870). t -Rep. Aero. Inst. Tokyo^ 10, 85 (1935). 
t Trar^s. Farad. Soc., 32, 1073 (1936). § Proc. Roy. 8oc., A182, 75 (1943). 
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by the absolute temperature 0 and divided by the molecular weight M 
was found to be proportional to a power of D, thus: 

E0 

M(Pi-Po) 
Pasquill’s experiments, which were performed with a number of organic 
liquids, of which the chief was bromobenzene, and water, gave 

approximately, as appropriate to the '‘one-seventh power law” (cf. p. 47) 

of velocity distribution over the plate. Presumably n will vary with the 
velocity profile. Heat transfer measurements from hot plates are in 

agreement with the same power law and value of n. The exponent of 
U in heat transfer to a turbulent stream is 0*8. 

Hot-wire Anemometer 

If a wire be heated by a constant electric current i and its electric 
resistance R allowed to vary in a measured manner in a steady wind, we 

may write H^i^RjJ calories (J=mechanical equivalent of heat), while 

the resistance is related to the temperature in accordance with the formula 
/2=I?o(l+ad). (/2=hot resistance, i?o=cold resistance, a=a coefficient 
for the material.) Combining these with (60) to cover the more generally 

likely case, we have 

/j and nil constants for a particular wire, while the other factors relate 

to the circumambient fluid. 
The hot-wire anemometer usually takes the form of a short length of 

platinum or nickel wire about 1/1000 in. in diameter supported on a fork 

and heated by a current of about 1/10 ampere. It is more commonly 
employed in gases, but may also be used in liquids. The greater density 

and specific heat of the latter makes the instrument less sensitive for a 

given temperature excess. The electrical resistance is usually measured 
on a sensitive Wheatstone bridge or potentiometer. 

Fig. 55 shows calibration curves for a wire in various fluids, the velocity 

being plotted quadratically. The value of ^/{kc) for the four media are 

respectively: water 0*039, syrup 0*025, paraffin 0*0128, air 0*00011. 
The calibration was effected by whirling the wire on an arm through the 

medium in a circle of which the length of the wire formed part of the radius. 

When using the hot wire in close proximity to a solid wall or model in a 
wind-tunnel, a correction to its reading is necessary by virtue of the fact 

that heat is conducted to the boundary as well as carried away by con¬ 
vection. This is more important at small fluid velocities. In fact, when 
the fluid is still, the wire indicates an apparent velocity in virtue of this 
conducted heat. When the wire is near a plane conductor, this cooling 

is readily calculated by the method of images following an established 
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method of calculation of the electrical capacitance of a cylinder near a 
plate, but the theory becomes difficult when the boundary layer of the 

plate is in motion, embracing as it does both the thermodynamics and 

the hydrodynamics of a fluid of small viscosity, but Piercy and the author* 

have established the correction in air by whirling a vertical platinum 
wire at known speeds round a circle of slightly larger radius than a fixed 

metal cylinder and measuring the loss of heat. Results are shown in 
Fig. 56, from which it is apparent that the heat loss by conduction and 
consequently any correction to the apparent velocities indicated by the 

hot wire in a stream become negligible beyond a limiting distance 

(indicated by the chain line) from the plate. This limit comes closer to 
the wall as the local speed in which the wire finds itself goes up, because 
the conduction draught is blown further downstream before it strikes the 

Fig. 55. Calibration curves of hot-wire anemometor. 

cylinder and the heat loss by condicction depends inversely on the path 

length that the heat has to flow between the hot and the cold solid. It 

should be noted that Zijnen’s results for the flow along a flat plate (p. 31) 

were all over-corrected, as he only determined the curve for f7==0 and 
used this to correct all his readings at each and every speed. 

Hot-wire Anemometry in Unsteady Flow 

When a heated cylinder is subjected to S.H.M. at all but very low 

frequencies, the ^‘thermal inertia*’ prevents it following the change of 

velocity relative to the fluid with exactitude. If its electrical resistance 
is measured on an instrument capable of following the fluctuations such 
as the cathode-ray oscillograph it is found that the resistance of the wire 

* A,R.C.O., R, and 1/.. No. 1224 (1928). 
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consists effectively of two parts, i.e. a steady drop plus an alternating 
variation of twice the frequency of the motion but of smaller amplitude. 
(The octave of the frequency of oscillation arises because the wire is unable 

to distinguish between motion to left and right, so that its resistance falls 
twice in each period of the S.H.M.) 

Writing (60) in the simpler form, for steady conditions, 

.(61) 

During the attainment of equilibrium there is another term in ddjd 

Radius of wire 

Fig. 56. Correction to hot-wire anemometer for proximity of w^ll. 

which intervenes. Making the same substitution of electrical resistance 

for temperature, we have 

/IqU /VqQ, 

where/^thermal capacity of wire in joules per degree, 

resistance, we can combine (61) and (62) to get 

/ _i^R,(R,~R) 

. .. . (62) 

Setting final 

R^a 

that is, 

Ri Rq 
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where A is a temporal factor which represents the thermal inertia of the 

hot wire. 

A: 

The amplitude of the velocity indication of the anemometer is reduced 

from the true (very low frequency value) in the reciprocal ratio of 

\/(l+A*ti>*) in a draught of frequency cu/27r. The phase of its response is 
also delayed by the angle tan“^(Ato). The table which follows shows 

(after Dry den and Kuethe***) these two factors. 

f(^i ^o) (63) 

Frequency 
Relative Amplitude 

TO True Value j Phase Lag 

1 0-995 6° 
6 0-884 ! 1 28° 

10 0-687 i 47° 
20 0-402 1 60° 
60 0-186 1 79° 
75 0-125 ! 83° 

100 0-094 , 85° 
200 0-043 89° 
500 i 0-018 90° 

1000 i 0-008 90° 

Faced with the consequences of this thermal inertia, one can adopt 

various remedies. One could calibrate the wire as an anemometer under 
the same conditions that one intends to apply it by oscillating it on a 
tuning-fork to obtain data like those given in the above table and make 

corrections accordingly (Richardsonf), or one can disembarrass oneself 

of a correcting term by introducing a compensating circuit consisting of 
a resistance and inductance which in effect adds on a further phase lag 

to the value just calculated to bring the lag full circle and into phase 

again (Dryden and KuetheJ). Under such circumstances the thermal 

inertia disappears, though it may not be possible to effect the compensa¬ 
tion for all frequencies. 

Amplifiers may be introduced into anemometer circuits which will 
transform the shape of the calibration curve, such as the parabola which 

is usually obtained between resistance and velocity (cf. equation (60)), 

into any shape desired, in particular into a straight line. This may be 

done by feeding the potential difference across the hot wire into the grid 
of a variable-mu valve—^first done by Luneau§— as shown in Fig. 57. 

A further stage may then be added in which the electrical impedance 

of a resistance and inductance in the anode circuit necessary to compensate 

for the frequency characteristic of the wire is introduced. Such a doubly 

• N.A,C.A. Rep., 320 (1929). t Proc. Roy. 8oc., A112, 622 (1926). 
X loe. cit. i AeronatUique, 15, 232 (1933). 
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compensated anemometer should give a response proportional to the 
amplitude of a velocity fluctuation (for instance in turbulent flow) 
independently of the frequency of the latter, but at the loss of a certain 

sensitivity (Fig. 58). The way in which the electrical filter evens out the 

frequency response is illustrated in 
Fig. 59 (after Wattendorf and 

Kuethe*). 
The hot-wire, even when compen¬ 

sated for frequency, still requires 
correction on the lines indicated on 

Fig. 56 when used to measure fluctu¬ 
ating flow in the boundary layer of 
a solid wall or obstacle. For instance, 

this has been done in constructing the 
velocity-amplitude curves of Fig. 28. 

Measurement of Correlation CoeflOi- 
cients 

If two hot wires are placed at two 
points in a stream, either along the 
X or the y or the z axis, and the 
fluctuating potentials across them 

Fig. 67. Hot-wire anemometer with 
linear response. 

applied to the two pairs of plates of a cathode-ray oscillograph, the horizontal 

and vertical deflections of the electron beam can represent the magni 

tude and relative phase of the simultaneous velocity fluctuations at the 
two locations. When the correlation coefficient 12=1, so that the two 
oscillations are in phase, the electron spot traces a straight line on the 

screen. Changes in relative amplitude and phase corresponding to R less 

Fig. 68. Circuit for frequency correction of hot-wire anemometer. 

than 1 will cause the spot to trace out an ellipse whose minor and major 

axes are in the ratio '\/[(l--R)l{l+R)\ so that complete incoherence results 
in a circle. Prandtl and Reichardtf devised and tested this method and 

♦ Physics, 5, 133 (1934). t Naturwissenschaflen, 26, 404 (1938). 
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it was subsequently used to study correlations in the flow behind grids 
in a wind-tunnel. In the latter case, where the fluctuations of turbulence 
are not the ellipse does not remain still, as it would in periodic 

flow, but a photograph taken with a time exposure gives a picture which 
corresponds to the average phase and relative amplitude over the time of 
exposure, so that R can be still inferred from the rather hazy outline of 
the figure which results. The method is only suitable when the value 
of R does not fall far below unity, i.e. for locations of the wires not far apart. 

In another method used by G. I. Taylor,’*' the two wires are arranged in 
separate Wheatstone bridges, so that in steady motion there is no current 
in the galvanometer arms. Out-of-balance currents in these arms due 
to fluctuations are amplified and compensated for frequency (vide supra). 

These currents give severally \/(^i*) V(^2*)» when they are fed to 
the two coils of an electrodynamometer a deflection of one coil relative 

to the other results of 
value proportional to the 
products of the current in 

the coils, i.e. to UiU^^ 
Hence R is calculated (cf. 
p. 53). 

Alternatively, a fraction 
of the first galvano¬ 

meter branch current may 

be tapped off on a potenti¬ 
ometer, and $2 from the 
second, led to the same 
amplifier and the mean 

square of the output read 
on a thermo-milliam- 

meter. (This method is also due to Taylor.) The deflection of the 
instrument is proportional to 

The minimum deflection Sj with £2 Axed corresponds to a value of £1 

such that the deflection itself is a measure of 

Fig. 59. Response of frequency-corrected hot-wire. 

^ r_ U1U2 2u^uo^'l ~ 

If £2 is now made zero, one can get a deflection Sj proportional to £iUj2. 
Finally, 

Oj 

Proe. floy. Soe., A167, 637 (1936). 
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Cionvection at Supersonic Speeds 

Santon* has carried out measurements of the heat supply necessary to 

maintain a platinum or nickel wire at dull-red heat when placed in a 

miniature supersonic wind-tunnel of the Laval nozzle type (Fig. 50). 

In accordance with (60) the heat dissipated from the wire is roughly 
proportional to \/C7 at subsonic speeds, although the coefficient connecting 

the two varies somewhat in conformity with the change in drag, such as 

we have already remarked in forced convection (p. 72). On this point 

compare the subsonic portion of the curve shown in Fig. 60 with the 

variation in the opposite sense of drag with Mach number for the cylinder 

(Fig. 46). This former curve of heat dissipation H against \/(pC//Pq), 

Fig. 60. Hoat-loss from hot wire at supersonic speeds. 

after rising until a Mach number of 0-8 is reached, falls thereafter at super¬ 

sonic speeds. Whereas the rise is probably to be correlated with the increase 
of drag, the succeeding fall is probably due to heat derived from the 

friction and shock wave production, so that a smaller debit has to be made 
up from the electric battery. An extension of this work to higher Mach 
numbers is desirable, but difficult on account of the liability to breakage 

of the wires. We8ke,t who has repeated these results, found tungsten 

the best metal to use. 

The heat of friction referred to above is dependent on the quantity 
^(y—1).M*, which we have met in the relations (49) of the preceding 

chapter. This, expressed in ratio to the fractional excess of temperature 

of the body over the fluid—SOjOy where 8^ is the temperature excess— 
is sometimes called the Joule-Kelvin parameter. The heat of friction 

♦ Comptes RtnduSy 196, 625 (1933). t NA.C,A.y Tech, Note No. 880 (1943). 
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produces in the boundary layer a further reduction in over and above 
that due to the heat transferred from the solid (p. 68). Von Edrmdn sets 
out the following empirical formula for the drag coefficient due to skin* 
friction in the laminar layer: 

U^V(«e)(l+V‘«i* 
A being a constant varying with M of value 4/5 approximately. 



CHAPTER 5 

UQUID HAVING A FREE SURFACE 

If a liquid presents an interface between two phases in the form either 

of a free surface with air or its own vapour or of an interface with another 

liquid of less density, phenomena can occur at the surface which are 

associated with an extension or contraction of its area or with a rising or 

falling of parts of it. Such changes in superficial area involve the 

“surface tension,” measured as the force per unit length in the surface 

(7 and the acceleration of gravity g. 

Waves on a Free Surface 

First we shall ignore the effect of surface tension and viscosity and 

think of the waves which can be set up in the free surface between a liquid 

Fig. 61. Stream-lines of surface waves on deep water. 

and a gas by the relative motion of the two phases such as occurs on a 

stretch of water under the action of the wind. 

It is a matter for observation that in the simplest form of wave that 

may be set up, the individual particles in the surface trace out circles 

(cf. Fig. 61, which also shows the stream lines). From the point of view 

of an observer travelling with the waves at velocity c, the flow is steady 

and Bernoulli’s theorem can be applied to it. If a particle describes a 

circle of radius r with frequency n its velocity round the circle is 27rrn, 

so that to the observer its horizontal speed in a crest is 

and Uj—c+^Tirn in a trough. As the surface remains at atmospheric 

pressure, Bernoulli gives Vwhence 

since the wavelength 

.(65) 
n 

The wave velocity thus varies with the wavelength, unlike ordinary 

sound waves, and if there are mixed wavelengths present “dispersion” 

87 
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ensues. Although such waves will interfere at any instant there will be 
a series of equispaced peaks, or maxima, among the crests, whose rate 
of movement, though uniform, is not the same as that of any individual 
set of waves in the group. This rate of movement is known as the “ group 
velocity.** 

Thus, if there are two superposed sets of waves of frequency n and n' 
with wavelengths A and A' respectively, their resultant is 

(nt—^)+ sin 27r 

—2A sin 7T(n+n'^—A+A'x) cos7r(n—n'i+A—A'x) 

At any instant the peaks are to be found at such that the cosine is 

1, i.e. where 
(n—n')tj^=(A— A')xi 

■^1 

The velocity with which these thread the system, the group velocity. 

•*'1 r»— n—n 

"a-A' 
(66) 

In a manifold system of many frequencies distributed about a mean n^, 

.<«’> 

by (64) and (65). 
Such ‘‘gravity waves’* can also be set up at an interface between two 

liquids or between strata of the same liquid or gas at different densities, 
e.g. between fresh and salt water. Such waves often break down into 

instability and cause turbulent mixing. 
Kelvin* showed that when two fluids of densities p and p are moving 

one over the other with relative velocity 17, waves travel with velocity 
relative to the mean velocity of the two fluids, given by 

P—P 9^_PP__ 
p+p'in (p+py 

Solutions involving the frequency of the surface oscillation are, however, 

imaginary if 

9j<P^P^^V- 
2m pp 

meaning that the interface is unstable when the wavelength is such as to 
make the expression on the left less than the square of the relative 
velocity. In practice these considerations will be modified by viscosity 

in three main directions: 

(1) There will be velocity gradients across the interface, at which 
the two fluids will have a common velocity; 

• Phil. Mag., 42,374 (1871). The proof is given in Lamb’s Hydrodynamics, §§ 223, 
268. 
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(2) the shearing forces across the boundary will cause its breakdown 
and some mixing of the two fluids; 

(3) viscosity will damp waves and other disturbances. Surface 
tension, if any, between the two layers will further inhibit the insta¬ 
bility of the surface. 

When the relative velocity of the two liquids becomes too great to 
sustain stable waves, turbulent mixing ensues, the tops of the waves being 
broken off as at the free surface of the sea. During this regime, the fast- 
moving liquid pumps the slower one into its domain. This process is 
very important for the production of emulsions and of cyclones in the 
atmosphere on a large scale (cf. p. 75). Keubgan* has studied the theory 
of the mixing of two fluid currents having a relative velocity U with the 
formation of laminar boundary layers, whose thickness proves to be 
capable of expression in terms of a Blasius parameter \/(2kc/I7) for each 
medium. A ‘ ‘ mixture parameter * * 
plp.'\/{vlv) is also found to be 
significant. 

Effect of Surface Tension: Ripples 

Suppose a section of the free ^ 
surface to be bent by the passage 
of the wave into the form shown 

in Fig. 62. The surface has been 
stretched from its original shape, 
where it lay along the axis of x, C 
and as a result forces per unit Fi| 

length a act as indicated and these 
together with that of gravity tend to restore the status quo. Taking 
y=^A sin 27r.x/A to represent the form of the wave, the restoring force 

due to surface tension on unit length of the wave-front and of unit width 
(perpendicular to the plane of the paper) is 

replacing the sines of the angles by the slopes of the curve at corresponding 
points, i.e. supposing displacements and therefore slopes small. Mean¬ 
while the restoring force due to gravity is the weight of the liquid in the 

section enclosed by the two vertical lines, i.e. gphx. 
Thus the effect of surface tension is an addition to ^ in (64) of an amount 

in^a/X^p and the formula for velocity under both actions is 

Examination of this formula shows that a is only of import when A is 

small, that as A increases the velocity at first falls but afterwards rises, 

* Rep. Nat. Bureau Stand,, 32, 303 (1944). 

D.R.F.—7 
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the minimum occurring (as may be verified by differentiation) when 
A=\/(47r*a/5rp). For water, the critical A is 1*7 cm. and the corresponding 

value of c is 23 cm. per sec. 

Waves on Liquid of Finite Depth 

In this case the particles at the surface execute ellipses (Fig. 63) com¬ 
pounded of a vertical motion, A sin and a horizontal motion, 
B cos 27mt. The wave may be represented as 

where C is the elevation at x above normal level. Applying Bernoulli 
to the surface layer, the bed being at depth A, we get 

for if the observer travels with the wave and U is the horizontal velocity 

^—A cos 277^ 

^J^^7T177777V7TTT7T777777777Tf7^77777^^T777777j^^7T7777777777T7T777777^T777T7T^7J7i 

Fig. 63. Particle motions in waves in shallow liquid. 

of surface particles as seen by him, C/({+A)=c5. 
pared to A, we must have 

c=V'(S'*) • • 
or with surface tension. 

When J is small com- 

.... (69) 

Particles at the bed can, in the absence of friction, have the same 
horizontal velocity in their orbit as those standing over them, which is 

, cos 277 

but the vertical displacement and velocity amplitude must fall steadily 
from the surface value ^ zero at the bed, so that at a height y above 

the bed 

£= ̂ 27771.4 sin 277 
n 

A particle at this elevation executes an ellipse of which the semi-axes, 
vertical and horizontal, are respectively yAjh and XAj^rrh, In deriving 
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(69) the vertical motion was neglected, which is justified only if the surface 
amplitude is small. 

In terms of a velocity potential, the equation of motion is 

av 
dt^~ ^dy~ 

for, as the pressure over the surface must be atmospheric, Bernoulli's 

equation for the surface is while the vertical component of 
particle velocity must equal the velocity of the surface itself there, i,e. 

(71) 

dt L%J 

We assume, then, that (jy^E cos(27rxjX) multiplied by a time function 

(S.H.M.). Substituting in (71) we find that E must be a hyperbolic function 

of the type cosh (27r/A)(y+^), bearing in mind that dcfyjdy must be zero at 
the bed y=—h. 

By applying Bernoulli in the form 

V 
p dt -gy 

we can derive the pressure amplitude in the wave system at y as 

2^|+8inh tanh (72) 

when the wave amplitude at the surface is 1. The pressure amplitude 

therefore decreases to pg sech 27rA/A at the bed in place of the static value 
pgh to which it tends as the wavelength gets very long. 

The quantity in the bracket of equation (72) is plotted for various 

values of A/A against y/A on Fig. 64. 

Instruments for delineating wave-height and “swell" employ a measure¬ 
ment of the varying pressure on the sea-bed. Since it is necessary that 
the instrument when lowered to the bed shall reach equilibrium as to its 

internal pressure with the mean hydrostatic pressure there, the principle 
of the equalisation chamber is employed. This consists of a large vessel 
into which the sea can leak at its base, the upper end being coupled 

pneumatically by a pipe to the interior of the instrument. The latter 

may take the form of a capsule of about 1 litre capacity covered with a 
flexible membrane exposed to the sea. If the connection between the 

capsule and the equalisation chamber and between the latter and the sea 

have a high hydraulic resistance, then when a quick change of sea pressure 

occurs, the membrane will communicate it to the capsule before the main 
chamber has time to respond and a difference of air pressure will be set 

up between the capsule and main chamber which can be recorded and 
related to the rate of change of the pressure in the sea. At the same time 
slow changes of hydrostatic pressure such as are caused by the tidal ebb 

and flow will not affect the instrument, as there will be time for equalisation 

to take place via the leak. (A similar principle is employed on aircraft 
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instruments which record ‘‘rate of climb” by the rate of change of local 
atmospheric pressure.) 

Fig. 65 is a diagram of the sea pressure recording instrument devised 

by the author.* The ‘‘capsule” c has a rubber membrane r stretched across 

a flange above it, and the difference across the leak I between the air pressure 
inside it and the larger chamber below (which is connected to a separate 
and still larger “equalisation pot”) is recorded by a syphon bellows b 

such as are used on certain types of microbarograph. Such sensitivity 

is essential because the pressure differences to be measured normally 
amount to a few centimetres of water only. As the bellows breathe, 

a tag on the lower end moves in front of the focus of a beam of light from 

the pea-lamp on the left and so 
varies the amount of light falling 
on the photo-electric cell p on 

the right, the current from 

which, recorded on shore, is an 
indication of the position of the 

tag. This is related by a pre¬ 

vious calibration to the pressure 
difference. The “leak” or “re¬ 

sistance” consists of 3 cm. of 

0*5 mm. inside diameter copper 

tube. 
The recorded pressure differ¬ 

ence under a system of surface 

waves of given amplitude is not, 
even after a correction has been 

made when necessary for the 
^0 ' 01 0-2 03 o>4 reduction of pressure that the 

^ leak may involve, equal to that 

amplitude in feet of water, as 
Fig. 64. Pressure amplitudes beneath waves. 

true for very long waves like the tides, ignoring for the moment the effect 

of the leak. Ordinary water waves and “swell” produce a smaller effect 

than their amplitude would indicate, because of the “interference” 

produced by neighbouring crests and troughs; in fact at depths of a few 
fathoms this effect of phase interference, which increases as the wave¬ 

length of the surface waves decreases, completely wipes out the pressure 

amplitudes due to the little waves, but gives a record of the longer motions 
which characterise swell. The significant quantity is A/A, as Fig. 64 shows. 

Wave-making Drag of Floating Bodies 
Everyone will have noticed that the passage of a boat over calm water 

sets up diverging wave fronts from prow and stern which are similar in 

♦ Phil Mag., 37, 26 (1946). 
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appearance to a section through a system of shock waves from a projectile 

(Fig. 45). Like the latter, these surface waves involve a wave-making 
resistance experienced by the boat which overrides the skin-friction along 

the hull and, often, the eddy-making dissipation in the wake. Besides 

Reynolds number as a criterion, the drag must also be concerned with 
some parameter involving since the liquid is raised against gravity in 
the crests and lowered in the troughs. With the speed and the linear 

dimension of the craft as companions we can only construct such a 

parameter in the form U^lgd, which is known as the Froude number (Fr) 
of the flow after the pioneer experimenter on the drag of model ships. 

Over the range of speeds for which the drag is proportional to and 

nearly independent of Re (cf. Fig. 12) we may write 

If the drag be measured on a model and at full scale at corresponding 

speeds to make U^/d the same for each, we can measure Co on the model 

and transfer it to full scale. It is usually the force that is required to 
tow the model along the surface of water in a canal or basin that is 
measured. The coefiicient for skin-friction alone, per unit area of wetted 

surface, was estimated by Froude’*' from the force needed to tow thin 

plates at the same speed edgewise through the water. 

Impact on a Liquid Surface 
When a solid body strikes a water surface it experiences a diminution 

of velocity which may be regarded as a consequence of the conservation of 

* Trans. Inst. Nav. Arch., 17 (1877). 
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momentum, if the body is supposed to pick up and take with it a certain 
quantity of the liquid known as the “added” or “virtual” mass. For 
the sphere this added mass is the volume of liquid in the space §7ra^, i.e. 

half the volume of the sphere. (For proof of this, cf. Lamb, Hydro¬ 

dynamics, §92). Von Karman* supposed that the same increment could 
be applied to any solid having axial symmetry, even the sphere itself, 

if one set the added mass equal to the volume of liquid in a hemisphere 

based on the wetted perimeter at each instant. 

Theoretical Aspects of Impact on Liquids 

There are two aspects from which one can regard the impact, both based 
on the idea of the “added mass” of liquid which the body sets in motion. 
On the older theory, it is supposed that when a body of mass M enters a 

liquid there is a sudden reduction of its velocity, which is ascribed to an 

apparent addition to its mass by the mass of liquid (m) set instantaneously 
in motion. Thus if Vq is the velocity just before impact, just after: 

.(72a) 

Theoretical values of m are known for three shapes (cf. Lamb, Hydro¬ 
dynamics, §§ 108, 92, and 71), the disc [(8/3)c^J, the sphere [(2/3)7rc^], and the 

plate of infinite aspect ratio (rrc^ per unit length), where 2o is the width. 

It will be noted that this conception makes the impact force infinite. 
In von Karman’s* adaptation of the “added mass” idea, it is assumed 

that m gradually increases during immersion, and is at any instant equal 

to the mass of liquid contained in a hemisphere or hemi-cylinder erected 

on the wetted perimeter. Knowing how the latter depends on the depth 
of immersion and the instantaneous rate of immersion (V), one can calculate 

the force : time curve for the impact in the form of djdt{mY) against t. 

Calculation of Impact Forces 

If an axially symmetrical body hits a liquid at a speed Vo> the force at 
any subsequent instant 

F=-M 
8V_d 

8t ~dt 

where h is the depth of immersion and c the radius of the wetted perimeter. 

Example 1. Sphere h~a —\/{a^—c^)^ dhldc^^rj\/(a^-~c'^); 

whence 

or (with (72a)) 

F^-'^F+27rcV{a‘-c‘).Vp- 

F 2'nc\/(a^ ~c^) 

The maximum value of this when M is large compared to m occurs when c==a/\/2 
and is then ttc*. 

♦ N.A,C,A., Tech, Note No. 32 (1930). 
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Example 2. Cone of semi-angle y; dhldc==cot y: 

F _27rc*.tan y 

pFo* 

The maximum value of this occurs when m—\M and is then 0*86 tan y.c*. 

It will be noticed that this theory would still make the impact force of 
a disc infinite, since it takes no account of the sideways escape of liquid 
to form a splash. Wagner* modified the theory in this respect and applied 

it to obtuse-angled prisms, such as the hull of a seaplane. The theory 
probably breaks down at the limit of very acute angles, since the “displace¬ 
ment” of liquid by the volume of the immersed segment is then comparable 

with the added mass of the liquid set in motion. 

Krepsf introduced the resistance experienced by the body during 

Fig. 00. F<»roo of impact of sphere on water. 

immersion. The equation of motion then becomes, neglecting buoyancy, 

surface tension, and compressibility: 

--I (m V)+Mg-c,Uc}){^^p 

When the velocity of impact is small the last term is unimportant, but 

the gravity term is not; per contra when the velocity is very large. In the 

latter the case, measured decelerations will deviate more from the theo¬ 

retical as Co is greater, i.e. for blunt-nosed projectiles. 
Values of the impact force as the body strikes the surface can be derived 

from cinematograph films of the entry in terms of the instantaneous values 

of the deceleration. These compare favourably, within the accuracy of 

the measurement, with von Karman’s theory. Fig. 66 shows F/pFo* 

plotted against h for a sphere of mass 12,000 gm. dropped on water from 
1 meter (RichardsonJ). 

♦ Z.J. ange. Math. v. Mech., 12, 193 (1932), f Te^^h. Mem. 1046 (1943). 
X Proc. Phys. Soc., 61, 362 (1948). 
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Cavity Formation on Impact 

As the body penetrates the liquid it leaves an air cavity behind it, the 
lines which form the boundary of the cavity leaving the body (tangentially 

if it is a sphere) to make a cone of angle about 18° (cf. Fig. 67, Plate II). 
In the cavity stage a sphere has a drag coefficient equal to 0-33, less than 
that of the fully submerged sphere at moderate Reynolds numbers owing 

to the absence of turbulent wake, but more than at low Re (stream-line 

flow) owing to the absence of back pressure. 
The shape of the cavity suggests that as the ball cleaves the liquid it 

imparts momentum to it in such a way that the velocity of the water 

outwards is initially a constant fraction of that of the projectile. As 

the walls of the cavity move out, at the same time the hydrostatic force 
gives the water an acceleration inwards until the cavity closes up at a 

waist and then breaks up into a mass of small bubbles. 

Resistance in Cavity 

If a sufficiently high frequency of photography is used it is possible to 

plot the displacement : time curve of the projectile after it has formed a 

cavity and so calculate its resistance in motion. At high entry speeds 
the frictional resistance is the paramount force causing deceleration. 

If M is the mass of the projectile, d its diameter, V its speed, p the density 

of the liquid: 
dV 1 d^ 

.(73) 

where C/, is a drag coefficient which relates the frictional force to the 
projected area of the projectile and the pressure at its front stagnation 

point in the conventional fashion. 

This may be written, when p is the specific gravity of the solid in terms 
of the liquid and s the path traced by the sphere : 

When the speed and deceleration are such that the effect of gravity can 
be neglected, we have for the drag coefficient 

c„=3-05^p' logi, 

Fq being the entry speed to water, V that after path 5. 

Since (73) can be written (at sufficient speeds to make the weight 
negligible) 

dV 

dt 
.d-CF* 

where C is a constant for a given solid and liquid, it is evident that this 
type of motion can be scaled on a basis of proportionality between accelera¬ 

tion ^Vjdt and F*/d, i.e, on a Froude parameter. This implies a geometric 
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scaling of cavity shapes. Hydrostatic forces will scale on the same basis, 

but, strictly speaking, the density of the vapour filling the cavity should 
change in proportion, though as it plays a small part in the flow pattern 
this is an academic point. Departure from a Froude scaling will occur 

after the cavity has closed and the speed is reduced, for then gravitational 

forces become important and with reduced Re, Cj^ is no longer constant 
for a particular shape. The scaling still applies even when the projectile 

enters at supersonic speeds—for the liquid; only it is preceded by shock 

waves in the liquid (McMillen*). 

Cavitation 

True cavitation is a phenomenon which occurs when the pressure on 

parts of a projectile travelling at high speed through a liquid is reduced 

so low that a vacuum (or at any rate a region saturated only with the 

vapour of the liquid) is formed. Again, in terms of Bernoulli’s theorem, 

in motion when gravity can be ignored 

d(t> 

cavitation will ensue where p is reduced to the vapour pressure. In 
unsteady motion d<f>ldt can be large and cavitation take place without 

much increase of [/. Those shapes of body causing the largest accelera¬ 

tions in the fluid—namely at sharp corners—will cavitate at the lowest 

mean speeds of propulsion. When is the pressure in the undisturbed 

flow, the factor {p~P(^!{\pV'^)—K is called the cavitation number; the 

smaller K is, the more likely is a cavity to form.f 
Although evidence of cavitation first appears near sharp shoulders of 

the body it does not necessarily occur at the solid boundary itself, but 

often a little way out in the cores of incipient vortices. Zones of local 

separation also develop minute eddies in the boundary layer in which 
cavitation can occur. As K decreases, the rate of evaporation increases, 

and a cavity once started will grow till it envelops all but the fore portion 

of the obstacle. The impact cavities which we described in the preceding 

section must be considered from their shape to correspond to iiC=0 in 

spite of tlie presence of air in the cavity. 

On a convex surface such as that of a sphere, cavitation may ensue 
where the pressure drops to a minimum and afterwards recovers (cf. 

Fig. 16), at first in a fine-grained structure resembling soapsuds in 

appearance. For a given shape when fully submerged, fully developed 

cavitation and separation in the boundary layer occur at about the same 
place, although on the sphere, as we have noted, the pressure in a wind- 

tunnel reaches the static value at latitude 45®, whereas the lines of flow at 

♦ Phys. Rev., 68, 108 (1945). 
t Tho iiHual Hymboi is a, but K is used bore to avoid confusion witl\ the symbol 

for 8urfa(‘c tension, 
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K~0 leave the body at latitude 65° (cf. Fig. 16 and Fig. 67). Cavitation 

is, in fact, first apparent a little downstream of the place of minimum 
pressure on a body. 

The stream lines for a sphere in a stationary cavity, i.e. one in which 

the walls remain steady and do not, as in practice, collapse, were derived 

by Bauer* by combining a source with a uniform streaming in the direction 

of motion and removing the portion of the field in the wake. The surface 

of discontinuity formed by cutting out this portion of the field has to 

conform to the wetted portion of the solid and, further back, to the cavity 
wall. It is unable properly to fulfil both conditions since its shape is 

really a paraboloid, but a rough approximation may be made to the 

flow by this means. If the flow is made to leave tangentially at 65°, it 
does not quite fit at the front stagnation point (Fig. 68). Bauer adjusted 

the potential pattern so that the fluid left the sphere at an azimuth, 

Fig. 68. Derivation of cavity form by potential functions. 

reckoned from the front stagnation point, of 50°, whereas in practice this 
angle is nearer 65°. 

The potential and stream functions are: 

<f>—U{r cos ^-f-a^/r) 

U(\r^ sin^ d—2(i^ sin* ^/2) 

The line i/r—0, which has to be fitted to the sphere, is given by cos ^/2=a/r 

and touches only at the front stagnation point. To make this stream-line 
touch at 50° we require cos 0j2—h\ajr (cf. Fig. 68). Bauer found by 

integration of the pressure over the cap, c/)=0-15 instead of the experi¬ 

mental 0*3. Taylor obtains a better fit by using a suitable distribution 

of sources in place of the single one, and so derives C/^=0*27 for a wetted 

cap extending from 

Observations of this phenomenon and of the drag associated with it are 

made in a cavitation tunnel. This is a “circus” filled with water from 
which as much air as possible has been removed by pumping into a partial 

♦ Ann. d. Physik, 82, 1614 (1927). 
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vacuum which overlies the return half of the circuit. By means of piezo¬ 

electric pressure gauges over the surface of a model it is possible to measure 
the pressure distribution during cavitation. The total drag can also be 

measured on a force balance. 

Fig. 69 shows the variation of drag coefficient with cavitation number 
for a cylinder with hemispherical head and streamlined tail, its axis being 

parallel to the stream. (The Reynolds number is of order 10®.) The 

value for K=0 cannot be derived from the experiments on this model, 

since the tunnel has not a sufficient maximum speed, but the value of 
Cj) for a sphere at impact on water, in the cavity stage, has been inserted 

at K=0 and the curve extrapolated (dotted) to this value to show that it 

fits in quite well, as we have already suggested (p. 97). The reader will 
appreciate that at this stage of fully developed cavitation the shape of 

the tail in the bubble has no influence on the drag, so that we may treat 

this model in the cavitation tunnel as though it were just a sphere. Drag 

Fig. (59. \'ariation of drag coeHieiont with cavitation number. 

ill the cavity stage is in fact nearly all profile drag, there being no wake in 

the accepted sense. 

Break-up of Liquid Jete 

When a jet of liquid issues from a nozzle into the atmosphere, the jet 

eventually breaks up into drops under the action of disturbances of its 
equilibrium figure. The jet is observed to break up at a point which can 
be determined accurately as long as the pressure behind the nozzle remains 

constant. 

In the main there are two types of break-up. In the first the interplay 
of inertia and surface tension results in the jet becoming varicose. 

Rayleigh* examined the conditions under which axial-symmetrical 

oscillations set up near the nozzle might increase in amplitude. In an 
inviscid jet he showed that a disturbance having a wavelength 4*4 times 

♦ iVoc. London Math. Soc., 10, 4 (1879). 
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the diameter of the jet should grow fastest and eventually break up the 
jet into drops (Fig. 70, Plate II), He subsequently modified his theory 
to take account of the viscosity of the liquid, which naturally reduces the 

rate of growth of the optimum disturbance, whose wavelength in relation 
to the diameter of the jet remains unchanged. 

In the second type of disturbance, the jet becomes sinuous and the 

resistance of the air to the passage of the humps becomes of more 

importance than surface tension (Fig. 71, Plate II). 
Since the air resistance to this type of motion increases rapidly with 

speed, break-up will occur at a faster rate as the speed of efflux is increased, 

whereas the varicose form of disturbance has a rate of growth independent 

of the speed of efflux. When a liquid jet enters the air, both types of 
disturbance are equally possible, but at low speeds the varicose form will 

break up the jet first. Since the growth coefficient of the ‘‘optimum” 
wavelength is constant, the continuous length of the jet will be proportional 
to the speed, as Smith and Moss* showed, but at a critical speed the 

sinuous disturbance will grow at the same rate as the varicose; thereafter 

sinuosities will break up the jet first and the length will decrease with 
increasing speed. 

Taking the first type of disturbance, in which surface tension pre¬ 

dominates, the length L of the continuous portion of the vertical jet may 

depend on the diameter of the nozzle, Z); the density of the liquid, p\ 
its interfacial tension with the medium, gas or liquid, which surrounds 

it, <t; and on the velocity, V. Let 

Equating exponents of length, mass, and time, we find 

jr ... (74) 

But experiment shows that L is directly proportional to V for a given 
jet (cf. Fig. 72), so set n—l and 

X constant.(75) 

On the other hand, as we have suggested, at higher velocities the sinuous 

type of disturbance may be expected to predominate and for this we shall 

take the Reynolds number YLIv as pertinent, i.e. L inversely as Y, That 
this is so is shown by the experimental results of Smith and Moss, and 

others (see the curve for rubber solution, Fig. 72). The critical velocity 

at which the jet length is a maximum involves, then, both surface tension 

and viscosity, and separates a straight section and a hyperbolic portion of 
the length : velocity characteristic. The straight portions of the curves 

for all jets from circular nozzles can be made to coincide [as (75) indicates] 

if LjD be plotted against Y\/(pD/g). This has been done for ‘‘thin” (i.e. 
not very viscous) liquids on Fig. 72. 

♦ Proc. Roy. Soc., A93, 373 (1917). 







FORMATFON OF DROPS 101 

Agreement is also found with the same formula when the liquid debouches 

into a reservoir of another liquid with which it does not mix. The only 
departure from (75), as far as the straight sections of the curves go, occurs 
when the jet is of mercury or a very viscous material like rubber solution 

or glycerine. Large viscosity delays the break-up and produces longer 
jets than in moderately viscous liquids, other things being equal. 

If a liquid jet enters a reservoir of a liquid with which it forms no 

interface or if a gas jet enters a gas, the interfacial tension between gases 
being negligible, only the sinuous disturbance is possible and the relation 
between length to the breaking-up point and speed of efflux is hyperbolic 

Fig. 72. Variation of jet length with velocity of efflux (in non-dimensional form). 

throughout. This is the genesis of the “sensitive jet” or “sensitive 

flame.” 

Formation of Drops 

We have omitted to mention a stage of the L : V characteristic curve 
for a jet which precedes the straight portion. This is a region of such 
slow efflux that the jet bulges into incipient drops as soon as it leaves the 
nozzle; as though the surface film formed a bag hanging from the nozzle 

which filled up with liquid and then became detached, or at any rate 
was linked by a narrow neck to the next “bag” to be filled. This stage 
is more notably developed when the jet is allowed to trickle on to a plate 
at a short distance from the nozzle. If the distance between nozzle and 
plate is carefully adjusted, remarkable bulges appear on the surface, giving 
it a corrugated appearance. Where the stream is bounded by a surface 

of curvatures fj and a pressure excess equal to o’(l/ri-fl/^2) built 
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up on the inside of the boundary. Under these circumstances Bernoulli’s 
equation takes the form 

pgh -f ^ ^ ) -1 l^p T"2^::constant 
\^i hi 

At any level below the nozzle, a balance must ensue between V (or Qlira^) 

and ti and fg, the outflow Q remaining nearly constant. A family of 

curves may be drawn for any initial values of the curvature of the surface 

and the radius a of cross-section. Curves constructed in this way agree 
quite well with experimentally observed shapes. 

As a jet in the varicose state has its amplitude of disturbance con¬ 

tinually growing, break-up occurs where the jet is nicked oif by the growth 
of the varicosity. The drops into which the jet is then broken are often 
elUpsoidal, but oscillate in form about the spherical shape into which they 

at length settle down. The time period of this oscillation can be shown 

(by dimensional means) to be proportional to \/(pa^/a). 
Such drops are nearly constant in size as they leave the jet and about 

twice the size of the nozzle, in contradistinction to the pieces into which 

the jet is flung by the growing sinuosities in the “atomisation” stage. 
These are irregular, but are found to group themselves round a mean 

diameter, as shown in a research by Herrington and the author,* who 

squirted jets vertically down both into air and other (non-miscible) 

liquids. In the former case the mean drop size was estimated by letting 
the drops disperse on to sheets of filter-paper, a previous experiment with 

single drops having shown how the stain size varied with drop diameter. 

When one liquid dispersed into another, the mean drop size was derived 
from measured photographs. 

In this, the atomisation region, the mean drop size is independent of 

the nozzle but decreases as the speed of efflux goes up. Constructing the 
parameter for the drop in the form Vdjv—where v is the kinematic viscosity 

of the liquid forming the jet—and plotting it against v/vq, the relative 

viscosities of the two media, one obtains a relationship which, for jets in 

air, is approximately (Fd/V)^“5(X). 

Fall of Drops 

The rates of free fall of drops of water have been determined by Laws 
photographically, the size being found at the end of their path. 

Lenardf and LawsJ determined the rate of free fall of water drops, 

collecting them for size as above (except that Laws preferred to let them 

fall on to flour and to weigh the pellets of dough so formed). The larger 
drops, of course, experience a drag involving the formation of an eddying 

wake, whereas the finer ones have a velocity conditioned by Stokes’ law. 
The data are shown in a table and on Fig. 73. 

♦ Proc. Phys, Soc., 69, 1 (1947). t Zeits., 39, 249 (1904). 
{ Trans. Amer. Oeophys. Unions 3 (1941). 
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d (mm.) . . 010 0-20 0-30 0-40 0-50 0*60 0-70 0-80 

V (m. per see.) 

Stokes . 0*33 1-32 2-95 5‘3 8*2 11*8 160 21*2 

Actual . 0-33 M5 1 75 22 2-8 34 40 4-6 

d (mm.) 1*0 1-75 3-0 40 50 60 8*0 100 

V (m. per sec.) 

Actual . 4-7 59 8-2 8-8 9-3 9-3 Unstable 

When the drops are fine and have a considerable distance to fall their 

radius diminishes due to evaporation. 
At the same time that it is falling the drop loses mass by evaporation. 

Actually a balance ensues 
between the diffusion of 

molecules from the drop 
into the vapour surround¬ 
ing it and those which 

condense into the drop. If 
the boundary layer of mole¬ 
cules is not swept away by 

convection this is purely a 
problem in diffusion for 
which Langmuir* has de¬ 
rived the formula 

da AttM . 1) 

~dt ~ pRT r 
where .s* —surface of drop, 

A/—molecular weight, 

gas constant, D—diffusion coefficient, T-^absolute temperature, p—density 
of licjuid, and p its saturation vapour pressure. Inserting the appropriate 

values for water we find the following values for the rate of evaporation, dsjdt. 

Fig. 73. of fri^e fall of water drops. 

'J'i'JMeEKATCP.lC 

0^ C. 
10" (\ 

20" (\ 

piT 

27 5 

35 

41 

ds'df 

cm." per sec. 

1- 4x10-^ 
2- 5 X 10-* 

4-5 X 10^* 

(.4ii experimental value for water at 15° C. is 3xl0~^ cm.- jier sec.) 

It is evident that over the range of terminal velocity for which Stokes’ 

law holds, every drop suffers a constant deceleration (due to evaporation) 
whatever its size, while its temperature remains constant. Thus for small 
raindrops at 10° C. this deceleration is 3 cm. per sec.^. 

* Hev., 12. 368 (1918). 
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Langmuir’s equation does not contain any term covering convective 
evaporation, i.e. no term involving the speed of the drop through the 
atmosphere into which it is evaporating. The rate of evaporation is in 
fact a function of Reynolds number. This has been proved experimentally 
by Frbssling,’*' who held water drops on glass threads in a small wind 
tunnel and measured the rate of decrease of mass at various wind speeds. 

He found that the right-hand side of Langmuir’s equation must be 
multiplied by 

for water at 20^^ C. 

0-276y7?e 

yp/vT 

Armed with these data we can trace the change in size and speed of 
fall of a drop as it falls at any constant temperature. The dotted curves 
on Fig. 74 show the relationship between terminal velocity and surface 

* Beit. z. Oeophyaik, 52, 170 (1938). 
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(or r*) for a given rate of evaporation (dsidt). These are deduced by 
reversing the drop’s path and assuming it starts from nothing at ground 
level and has its surface increased with height by a constant amount for 

every 10 seconds of its life (cf. time scales at top of figure). This gives us 
the right-hand dotted curve, but owing to convectional evaporation the 
life-time of a droplet is reduced, in other words, we must correct this 

curve by calculating values of Reynolds number at various epochs—these 

are shown alongside the curve—and moving each 10 seconds point to the 
left so that, for instance, an increment of surface 2x10“^ cm.^ takes 
place in l0l(l-{-0-l'\/Re) seconds instead of in 10 seconds just. The 

corrected velocity : surface curve is the left-hand dotted one. 
Starting from ground-level it is then possible to calculate by steps the 

height at which a drop will have a given surface (or size) if its life history 

is reversed. These heights are marked (in metres) alongside the corrected 
curve. Height : surface curves can then be plotted. Several of these 
are shown on the figure (as full lines) for three values of dsjdt. If a drop 
possesses a definite size on hitting the ground instead of being evanescent, 

as we have assumed, it is only necessary, in order to apply the graphs, to 
assume the ground to be raised to meet it by the corresponding amount. 
Thus, if dsjdt^S X10“^ cm.^ per sec. and the drop is J mm. diameter on 

hitting the ground (i.e. remnant surface 20x10"^ sq. cm.), “ground-level” 
must be pushed up 50 m., or else 50 m. subtracted from all heights on the 
scale to the right of the figure. 

The author* made some measurements on the fall of water drops in an 
enclosed tower nearly 50 m. high. Drops were allowed to fall from a fine 
burette and their “ initial size” was measured by photography 10 cm. below 
the mouth of the burette. Their time of fall to the bottom of the tower, 

where they were caught on blotting-paper, was measured by chronometer. 
The water was dyed so that from the size of the stain—after a preliminary 
calibration—the “final size” of the drop could be deduced. Drops of a 

saturated solution of zinc chloride were also used. The reduction of size 
with height confirmed that deduced theoretically above. 

Limiting Drop Size in Free Fall 

It was postulated at the commencement of this section that disruption 
of the jet at high speeds is controlled by viscous and inertia forces. At 
lower speeds the varicose disturbance would be the dominant cause of 

break-up, while an intermediate type of break-up, in which the jet followed 
a sinuous motion, also occurs. We should therefore expect the relationship 
deduced from the above-mentioned experiments to cease to apply at low 

velocities. The varicosities then break the jet up into ovoid lumps which 
eventually resolve into drops comparable with the jet diameter and there¬ 
fore with the nozzle diameter. Below the limiting velocity, the drops 

* Proc. Durham Phil. Soc., 10, 394 (1946). 

D.R.F.—8 
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from narrow jets become, for a given liquid, uniform in size, so that the 

scatter of drop size disappears. With fine nozzles (1 mm. diameter) the 
constant drop size reached at low velocities is roughly twice the nozzle 

diameter, with all but the very viscous liquids. This is in agreement with 

some figures obtained from an examination of photographs of varicose 
jets included in a paper by Tyler.* 

Nozzle Drop Jet 
1 Ratio Liquid Diameter ! Diameter d Diameter B 

(mm.) (arbitrary units) d/B 

Water . 
i !0*05 ; 22 ! 10 2-2 

10-45 j 1 20 1 10 2*0 

Aniline ... 
tO-45 ! 19 i 8 2*3 

i0-60 10 7 2*3 

Mercury 0-30 36 1 20 1*8 

1 j 1 Mean 2* 1 

When jets issue from large nozzles at low speed, the drops are not found 

to be uniformly twice the diameter of the nozzle. This is because large 

drops falling through the air are unstable, dividing up into smaller units 

to an extent dependent on the path of fall and therefore on the distance 

of the collecting apparatus from the nozzle. 
A drop of liquid in motion through another fluid differs in its behaviour 

from a solid sphere in that it may (a) be deformed, (b) have a circulation 
set up within itself by the shearing effect of the relative motion of the two 
fluids. These effects upset the stability of the drop, causing it to oscillate 

about the spherical shape and eventually to burst into fragments or at 

least into smaller drops. 
Before bursting, the effects of deformation and circulation become 

apparent as an increase in the resistance, compared to that of a rigid 

sphere of the same diameter (cf. Fig. 73). Bond and Newtonf investigated 
this effect and showed that the parameter relevant to these changes was 
{p—p)d^gl<iy where p and p' are the densities of drop (or bubble) and 

medium respectively. The value of this “Bond number’^ (B) was of the 

order unity when the rate of fall began to change. Such a value of B 

applied to air bubbles rising slowly in liquids; for liquid drops in a liquid 

medium it was higher—up to 5 in some cases. (The value .6=1 for 

water drops has been indicated on Fig. 73.) A few experiments 
(unpublished) have been done by Davies on the size of drops which will 

break up in the last 10 ft. of their fall when released from heights of 

30 to 40 ft. It appears that deformation ensues when B exceeds 0*4 
and circulation within the drop becomes effective when 5=1*5. As 

these results are rather meagre and refer to small heights, it was thought 

* Phil Mag., 16, 604 (1933). t Ibid., 6, 704 (1928). 
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desirable to make use of a tower of greater height (125 ft.) in the interior 

of which the drops were let loose. The drops were formed by aspirating 
some of the liquid up a graduated glass tube of between 1 and 4 mm. 
diameter and launching it by suddenly reversing the pressure applied to it. 

In this way drops up to 1 cm. diameter can be produced entire, although, 

since they are not initially spherical, a certain amoimt of oscillation 
about the equilibrium form occurs before they settle down. In falling 

they are watched through a telescope at the top of the tower and the 
height at which they break up, if that occurs, is calculated roughly by 

timing from release. 

As the drops fell, they acquired an oscillation of figure which grew in 

amplitude until, if not stopped by the filter-paper at the bottom of the 
tower, they broke either into two or three pieces or else into a remaining 
drop of moderate size surrounded by a chaplet of tiny drops. The 

diameter of each drop was measured by its initial volume and checked by 

the diameter of the stain it produced. It was not possible to reproduce 

conditions exactly. Drops of the same size and liquid did not always 

break up at the same place in their fall, nor, if near the critical size, did 

both necessarily burst before reaching the bottom. 

By plotting against lOOa/p^, that value of d (in millimetres) was 

noted which best represented the criiical size; hence the critical Bond 

number was deduced. 

Liquid 
pg from 125 ft. from 50 ft. 

1 (mm.) (mm.) 

Dirty water . 50 : 50 7 10 95 10 19 
Distilled water . 7-3 100 10 14 100 10 14 
Carbon tetrachloride 1-6 13 3-6 8 28 5 18 
Tetrabromethane 1-55 i 16 4 10 25 5 16 
Methyl salicylate 2-7 i 42 6-5 16 50 7 19 
Ditto (thickened) . 2-9 72 ; 8-5 25 j 80 9 28 
Glycerine-f 20 per 1 

1 

cent, water 5-5 1 78 1 ^ 14 100 10 18 

The mean values of B ^or “thin” liquids are 17 and 12 for 50 and 125 ft. 

respectively. The fact that a larger drop remains entire at the smaller 
height can be ascribed to the shorter time over which the disrupting 

forces can operate. The viscous liquid—thickened methyl salicylate— 

shows exceptionally high values of the critical B. This indicates a superior 
resistance to the tendency of shearing forces to produce circulation and is 

paralleled by Bond and Newton's observations of viscous oil drops in 
water. 

To summarise this part of the work on drops; at low velocities a change 

in the type of break-up may limit the mean size of drop attainable from a 
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jet and in such a case the mean size will no longer be independent of the 
diameter of the nozzle In addition, the maximum drop size will in any 
type of break-up be limited by the size of the largest drop which can remain 
unbroken under the circumstances, even at high velocities and particularly 
with large nozzles. 



CHAPTER 6 

FLUIDS SHOWING ANOMALOUS VISCOSITY: SUSPENSIONS 

So far we have dealt with fluids which are homogeneous in the sense that 
the fluid is only present in one phase and has no adulterant in the form of 

discrete particles or specks of other matter or of another phase of its own 

matter present in it. When such specks do exist, especially when they 

are solid grains dispersed through the continuous fluid phase, the speckled 
system is called a suspension. Although the material forming the con¬ 

tinuous phase must be fluid, the suspended material may be solid, liquid, 

or gas. Such disperse systems may be further classified as “sols” or 
“ gels.” In a sol there is no connecting link between the dispersed particles 

as a whole, although individual pairs may coalesce or single ones be 

subdivided on collision. In a gel there is a structure which binds the 
whole mass together as by a framework which envelops the continuous 

phase. 

We shall in this chapter consider those systems of the first class which 

have no rigidity (i.e, flexural elasticity), though they may show com¬ 
pressibility (i.e. bulk elasticity). Whereas sols flow in the general sense 

that they are unable to resist indefinitely the application of an external 

force, they do not behave in the same way as homogeneous fluids. 
Gencrically they are called “non-Newtonian,” or said to possess 

“anomalous viscosity,” Their flow properties also depend on the relative 

concentration of the suspended particles, their shape, and size. 

Mechanical Analysis 

One of the most important processes to which the physicist submits 

a suspension is that by which he determines the relative numbers of 
particles falling within certain size limits. This, for instance, is a factor 

in determining that elusive quality of the soil which the farmer calls 

“tilth”; in the ceramic industry it serves to differentiate those clays 
which are suitable for making such diverse products as face-powder and 

paper. An analysis of this type applied to wind-borne dust and river- 

borne silt of cities may enable the origins of possible pollution to be traced, 

while to the geologist it forms a basis of the science of pedology. 
Now to describe the method by which a mechanical analysis of a sol 

is usually made. The particles are allowed to settle under gravity in a 

tall cylinder and it is assumed that they do so under Stokes* law, i.e. 

that they shortly attain a terminal velocity proportional to the square of 
their diameters. If, now, a “sample** is taken at a depth h after a time t 
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from the commencement of sedimentation, the “weight”—using the word 
in no literal sense—of the sample will be proportional to the number of 
particles in the suspension having velocities <.hjiy i.e. to Znd^y where the 

summation extends from particles so small as to,remain permanently in 

suspension up to those having the given terminal velocity. If the 
sampling is continuous, the curve so obtained is a summation curve 

(Fig. 75—continuous line), whose slope plotted against d (Fig. 75—dotted 

line) gives the required size : frequency curve. The two curves are related 
in the same way as the summation and distribution curves of statistics, 
and in simple types the second curve bears a close resemblance to the 

normal error curve of Gauss. 

Many methods have been devised to do the necessary sampling. 
Pipette or hydrometer insertions at intervals give the curve step by step. 

In the apparatus devised by the author,* the assessment of the relative 

numbers of particles at different depths is done continuously by a narrow 
beam of light which passes athwart the tank containing the liquid at a 

given height and falls on a photo-electric cell connected to a galvanometer. 
The extent to which the photo-electric current differs from that recorded 
when no particles are in the way of the beam is a measure of the “ weight” 

—in the statistical sense—of the solid at the place and instant in question. 

Before the results obtained can be interpreted it is of course necessary to 
have a relation between grain size and light absorption. This calibration 
is carried out by using particles all of the same known size in the liquid 

and then repeating the measurements with other sizes and concentrations. 

The record of current against time at a fixed depth while the solid settles 
in an actual suspension of mixed particles proves in fact to be an actual 

* Proc, Phya. Soc., 65, 48 (1943). 
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Bummation curve like that shown in Fig. 75. A similar shaped curve 
may be derived by working with constant time and variable depth. In 
this case it is necessary to take a silhouette of the whole settling tank 
and to analyse the negative for blackness by passing it gradually through 
a narrow beam of light falling on the photo-electric cell. The advantage 

Fig. 76. Hot-wire coaxial cylinder viscometer. 

of the photo-electric method is that the analysis takes place continuously 
and not by steps and that no interference with sedimentation is involved 
by dipping in pipettes or hydrometers to take samples. 

Now we return to a discussion of the flow of suspensions. The measure¬ 
ment of the point-to-point velocity in flow may be made in two ways, 
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by means of a hot-wire or visually. We have earlier discussed the possi¬ 
bilities of using the cooling of a thin hot-wire in pure liquids as a measure 
of velocity. In suspensions this is more difficult owing to the tendency 

of the solid particles to clog the wire. Nevertheless, the feat may be 

accomplished, and Fig. 76 shows a Couette viscometer with a means of 
traversing a heated nickel wire across the space between the two cylinders. 

It will be noted that the fork passes through bushes in the outer (rotating) 

cylinder, electrical connections to it being made through two annular 

pools of mercury in the pulley below which an electric motor turns. 
Results from this apparatus, due to Tyler and the author,* will be presented 

in the succeeding figure. 
Pichot and Dupinf have photographed, under time exposure, the motion 

of the particles suspended in a liquid passing along a glass tube and from 

the length of streaks on the photographic plate have deduced the velocity 

gradient. The success of the method lies in obtaining a thin pencil of 

brilliant light and in using the light scattered by the solid phase to affect 

the plate rather than the transmitted light. Lawrencef fed a dye into 

the central portion of the tube containing ammonium oleate solutions, 
known to show anomalous flow. By means of a two-way cock, clear and 

dyed liquid was let alternately into the tube. The head of the dye 

portion on entering the tube had a plane face, but after progressing a little 

way it took up a distorted form which represented the velocity gradient. 
In a homogeneous fluid the heads would have become parabolas, but in 

the colloids deviations from this shape were observed. 
[Though it is not connected directly with the subject under discussion 

at the moment, this is a suitable occasion to refer to a method of studying 
shearing stresses in liquids, using a suspension, which is known as a 

“ polarised light flume. 

A suspension of bentonite (0*2 per cent.) in water is used, and a beam of 

light polarised in a plane parallel to the principal direction of flow sent 

athwart it. The analyser is a polaroid “crossed” with reference to the 

polariser so that normally no light gets through. In the main fluid 
stream remote from any boundaries, the needle-like particles of the solid 

are arranged promiscuously, but when sheared near a solid boundary 

will be set into alignment with the local direction of flow. This will 

rotate the plane of polarisation at this spot and let light through. 

Thus the bright parts of the field of view represent regions of shear relative 

to the principal direction of flow in the flume.] 

Velocity Gradient in Suspensions 

A number of suspensions of rice starch in paraffin were prepared and 
tested in the concentric cylinder apparatus. Fig. 77 shows results in an 

♦ Proc, Phys. Soc., 46, 142 (1933). t Comptes Hendus, 192, 1079 (1931 )v 
t Proc, Roy. Soc., A144» (1^36)^ 
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11 per cent, concentration at several rates of rotation of the outer cylinder, 
together with one (broken line) for pure paraffin. In consequence of the 
variation of t; with velocity gradient [cf. (19), p. 12] these lines have a 

marked curvature compared with that of the homogeneous liquid, pure 

paraffin. If the moment on the inner cylinder is measured this is no 
longer in linear relationship to the speed of rotation of the outer one, as 

Fig. 77. Velocity gradients of suspension in coaxial cylinder viscometer. 

it should be in Newtonian flow [cf. (18), p. 12], but shows a diminishing 

viscosity as the rate of shear increases (Fig. 78). This torque is propor¬ 
tional to the velocity gradient at the inner cylinder, or MI(r^doj/dr) is a 

(relative) measure of the viscosity. One can derive the corresponding 
values of velocity gradient and shearing moment, M, from Figs. 77 and 
78 to get proportional values of rj such as those on Fig. 79, where one can 

^ee how rj diminishes with increasing velocity gradient, or rate of shear. 
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Fig. 78. Variation of torque on inner cylinder with speed of outer in suspensions 
of starch. 

The values of torque for the 54-6 per cent, sol have been divided by 20, in order to 
exhibit it on the same graph as the others. The “solvent” is a mixture of carbon 
tetrachloride and paraffin. 

Fig. 79. Variation of viscosity of suspension with velocity gradient; the horisontal 
line being that of the pure solvent. 
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At sufficiently high values of the latter, in fact, the viscosity comes down 
to that of the continuous phase of liquid. 

In a viscometer in which the overall effect and not the point-to-point 

velocity gradient is measured, it is usual to equate the ratio of shear stress 
at the walls to the mean rate of flow and to call this the “apparent 
viscosity’* whose value will change for a given suspension from one 
instrument to another. The true viscosity in such an apparatus, of course, 
varies from one stratum of fluid to the next. It is possible, working back¬ 
wards, to assume some simple law connecting the true viscosity with the 

Fig. 80. Variation of viscosity of suspension with concentration. 

velocity gradient, e.g. to take log inversely proportional to dUjdr as 
Fig. 78 suggests, and to see how this fits the observed relation between 

shear stress and outflow in the viscometer concerned. 
Fig. 80 shows the variation with concentration of rfjrjQ for the rice 

starch suspensions—as derived from curves like those of Fig. 77 with 78— 
for selected values of the velocity gradient (numbers attached to curves). 
This variation of viscosity with concentration has been a subject of 
theoretical interest to a number of workers, beginning with Einstein.’*' 

♦ ^7171. d. Physik, 19, 289 (1906). 
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They concur in a formula of the type: 

ris=r){\+kce).(76) 

in which 17, is the viscosity of the suspension, 77 of the pure liquid, c the 

mass concentration of the solid, e its specific volume, k is 2*5 for spherical 
particles, according to Einstein, but is subject to the subtraction of a 

function of the ratio of length to breadth in ellipsoidal or needle-like 

particles. It will be noted that the theory takes no account of variation 
of viscosity with velocity gradient; indeed, (76) can only be tested in the 

light of data such as those of Fig. 80, of which all that can be said is that, 

up to a concentration of 30 per cent., the increase of viscosity with con¬ 

centration is linear, as (76) would make it, but that k must also be a 

function of the rate of shear. 

Very few experiments have been done on the effect of size of particle 

on viscosity, though it is generally agreed that this factor becomes 
important when the concentration is large. Sakurada* showed that, for 

the same concentration, needle-like particles made a suspension less 

viscous than one of spheres, but neither he nor other workers have 
centrifuged a suspension to get uniform grain size before making flow 

experiments. The consensus of data, such as they are, indicates little 

influence of particle size and shape on anomalous viscosity until the paste 
stage is reached, when the liquid’^ is so thick that some of the features 
of solid friction supervene. 

If smaller particles of submicroscopic size are dispersed among the larger 

ones they appear to lubricate the matrix. This is of importance in the 
yielding of quicksands to pressure. If a quicksand is dried and the fine 
particles removed it becomes in fact firm and bearing when water is 

added to it to the original concentration. A similar phenomenon of 

practical importance in the drilling of bore-holes for oil is the conferment 
of lower frictional resistance between drill and soil by the use of colloidal 

“drilling muds.’* 

When a suspension of solid particles has a high concentration relative 

to the continuous phase, as in a paste, a moulding clay, and the like, it 

exhibits another property, that of “plasticity,” the ability to withstand 

to a certain degree the application of forces tending to make it flow. 

The substance then ceases to be fluid in the strict sense of the word, but 

since flow does take place slowly after a critical stress has been exceeded, 

it is advisable to say something of such systems here. 

The critical stress below which no motion takes place is often known 

as the “yield value,” and suspensions which, after a critical stress has 

been exceeded, flow at a rate proportional to the excess rate of shear are 
called, after their discoverer, “Bingham bodies.” (It must be noted that 

such bodies should not be called “Newtonian above the yield value” 

* KoU. Zeiis., 64. 196 (1933). 
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since, although the graph of flow against rate of shear is a straight line 
(Fig. 81), it does not pass through the origin and the coefficient of viscosity 
as defined (p. 3) is not a constant.) 

More often, this graph is not a straight line but bends over towards a 
limiting viscosity at high rates of shear, just like less concentrated sus¬ 
pensions. With some it may even increase, so-called dilatant materials.” 

Plug Flow 

When a substance ex¬ 
hibits a yield value, we 
can, following Bucking¬ 
ham,**' write the equation 
of flow in a capillary tube 

as 

(cf. (16), p. 12) 

where S is the actual stress 
and Sq the critical stress 

below which no flow takes 
place. At a given value of 

Fig. 81. Characteristic curves of true fluid and 
Bingham body. 

dpjdx a gradient of velocity will only be found where T>2Sll(dpldx), the 
central portion inside this moving en bloc (Fig. 82). The sheath outside 

may be regarded as a lubricant between this central plug and the wall 
of the tube. Scott-Blair and Crowtherf showed that such plug flow was 
common to clay and soil pastes of sufficient concentration. 

ra) ch) 
Fig. 82. Velocity distribution in a tube; (a) normal flow, (b) plug flow. 

Emulsions 
Another class of dispersed system which shows interesting behaviour 

under stress is that of emulsions, in which both continuous and discrete 
phases are liquid. The authorJ made some measurements on the behaviour 
of these systems when subjected to shear in a concentric cylinder apparatus, 

♦ J. Amer. Soc. Testing MateriaU, 1154 (1931). Cfiem., 33, 321 (1029). 
t Roll, Zeits., 65, 32 (1933). 
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using water and benzene as the two components. By adding a little sodium 
oleate to the water and shaking it up with the benzene the latter appears 
in the emulsified form, whereas if magnesium oleate be added to the 

benzene and shaken up with water it is the latter which is dispersed in 
drops. Fig. 83 shows how the torque communicated to the inner cylinder 
depends on the concentration in both types of emulsion, the speed of the 

outer cylinder remaining the same. Evidently the viscosity increases 
rapidly with the concentration of the disperse phase, although the water- 
in-benzene emulsion breaks up when the water predominates in quantity 
over the other constituent. The trend of the other curve (benzene-in- 

Fig. 83. Variation of viscosity of emulsion with concentration; circles : benzene in 
water; crosses: water in benzene. 

water) recalls that of the starch suspensions (cf. Fig. 80) and suggests 
an exponential relation between apparent viscosity and concentration. 
In fact, if one plots the logarithm of 17/17^—where 17 is the viscosity of the 

emulsion and that of the “solvent*'—against concentration one obtains 

a straight line (Fig. 84). Broughton and Squires* have found that the 
viscosity of emulsions decreases as the rate of shear increases, their data 
following a curve like that of Fig. 78. 

If an increase of pressure Bp acts on a substance of volume v to reduce 
it by Bv, the compressibility is defined as Bv/vA/Bp, This is a constant 
for a given material as long as elastic laws are obeyed. In the same 

* J. Phy8. Chem,, 42. 263 (1938). 
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way we can think of an increase of the space occupied by the disperse 

phase by an amount 8c as reducing the average separation of the discrete 
globules by the fraction Sl/l, so that —SZ/Ll/8c=y where x is a sort of 

“interphasal” compressibility, whose value depends on the relative 

compressibility of the two phases or, in colloquial terms, on the over¬ 

crowding of the disperse phase which is resisted by the continuous phase. 
When flow takes place we can think of the continuous medium having to 

move between obstacles of average separation I and in doing so being 

subject to a viscous resistance denoted by the coefficient rj. If over¬ 
crowding reduces the separation of the impedimenta to Z—8Z, the viscous 

Fig. 84. Variation of viscosity of emulsion with concentration. 

resistance must increase in the proportion of rj to 17+817. Therefore 

dr) dl , 
fXy.dc 

17 I '■ 

The solution of this equation is rj—rjge^^, or in logarithmic form, 

log ('*|/’?o)=7C. 
This formula, tested against the results of the author and those of other 

workers, who measured the apparent viscosities of such emulsions as 

albumen and blood, gives good agreement with theory, having regard to 
the fact that most of the available data refer to apparent viscosity, derived 
from torque measurements in concentric cylinder viscometers. The 
suspensions satisfy a similar law if one regards in their case y as a function 
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of the rate of shear and not a constant for the two phases involved; but 
the work needs repeating with regard to uniformity of drop size in the 

emulsion. 

G. I. Taylor* has studied the flow of emulsions from the point of view 

of stability and has obtained an expression for the upper limit to the size 
of drop which can subsist while the fluid is being sheared. The conserva¬ 

tive force is the interfacial tension between phases while the disruptive 

force is the pressure difference between the inside and the outside 
of the drop caused by the viscous forces; both of these depend on the 
radius of the drop. He has also carried out some illuminating experi¬ 

ments in which a drop of oil was poised in syrup, filling the space between 

four rollers rotating in such directions that the originally spherical drop 
was pulled out into an ellipsoid and finally burst under the action of the 

excessive shear. 

The apparent viscosities of foams, or froths, in which gas bubbles are 
dispersed in a continuous liquid phase, have been investigated by Sibree.f 

Though it is much more difficult to “hold” a foam while making measure¬ 

ments of its viscosity, the characteristics which it shows in flow are in 

general the same as those peculiar to emulsions. 
TaylorJ has modified the Einstein equation for variation of viscosity 

with concentration in an emulsion by allowing for the deformation of the 

droplets. Such deformation will be limited, however, by the Bond number 

of the motion (cf. p. 106) and in most practical emulsions the drops are 
so small that when the emulsion is sheared they act as rigid spheres. 

Suspensions in Turbulent Fluids 

All these experiments on suspensions that we have described so far 

refer to conditions of laminar flow. Now we must animadvert on their 

behaviour in turbulent flow. It was first suggested by W. Ostwald§ that 
the critical Reynolds number for a suspension was lower than that for tlie 

pure liquid concerned, and this was verified experimentally by Andrade 

and Lewis,II who found, using a transparent concentric cylinder viscometer, 
that turbulence set in when a sol was in the apparatus at about three- 

quarters of the peripheral speed of the outer cylinder required for turbulence 

in pure water, the flow being made visible by submerged aluminium 
particles. 

A study of the behaviour of suspensions in fully developed turbulence 

is important in connection with the flow of rivers loaded with silt and of 

sand in sand-storms. Emulsions are also manufactured commercially 
by letting strata of two liquids flow together through a flume in turbulent 

motion so that mixing occurs and one becomes dispersed in the other. 

• Proc,. Eoy. 8oc„ 138, 41 (1932). t Trans Farad. Soc., 30, 325 (1934). 
% Proc. R(yy. Soc., 146, 501 (1934). § KoU. Zeits., 36, 99 (1925). 
il Roll Zeiis., 38, 261 (1926). 
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Hurst* first showed that if a suspension of sand were placed in a jar of 

water and the whole stirred into turbulence, each size grade distributed 
itself in the jar according to an exponential law of increasing concentration 

with depth. In an actual stream, whether a river or a small model canal, 
the equilibrium at a level ?/, where the silt density is maintained at a mean 
value c by the motion, may be formulated thus: 

.(") 
where B is the velocity of free fall of the particles (cf. p. 24) and A is 

the austausch coefficient (p. 45). The austauch coefficient, or eddy viscosity 

can be determined from the concentration gradient at any level, dc/dy, 
and as p' is also equal to P | dUldy\, by (35) and (36), a comparison of con* 
centration with the velocity gradient will enable one to determine the 

variation of mixing length across any section of the canal. 

The author tested the equation (77), repeating Hurst’s own measure¬ 
ments but using the optical method (p. 50) for estimating values of c 

at different levels i/ in a glass-sided vessel holding 3 litres of water and a 

1 per cent, suspension of sand. Six small propellers interspersed with 
baffles (on one side of the jar only) stirred up the suspension in turbulent 
motion; a narrow beam of light traversed the other side of the vessel at 

varioiis heights, and the light fell on a photo-electric cell; the illumination 
being measured in terms of the current through the latter. If n—the 
number of grains intervening, /q—the light intensity after traversing pure 

water, /—the intensity after passing through the suspension 

noc log y 

if the ordinary laws of light absorption are obeyed, 
exponential law is obeyed 

log 
B 

Ay 

Further, if Hurst’s 

On Fig. 85 the results of these experiments are plotted, in the form 
log njn against /?, for different (average) grain sizes. The fact that nearly 

straight lines are obtained confirms the assumption that the light absorbed 

is, with sufficient accuracy for these experiments, proportional to n. The 
linearity fails at great depths, intimating departure from one or both of 
the above laws. That it is more likely the second than the first which 

fails may be judged from the reasoning developed later, pointing to 
abnormal concentrations near the bed. A decrease of specific gravity 
naturally diminishes B/A (cf. the lines for the fuller’s earth). 

The authorf then set out to study the transport of a sediment formed 
of, as nearly as possible, spherical grains of uniform size and specific 

♦ Proc, Hoy. Soc., A124, 196 (1929). 

t Phil, Mag., 17. 769 (1934); Proc, Roy. Soc., 162, 683 (1937). 

D.R.F.—9 
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gravity, forming tlie loosely compacted bed of a channel in which flow of 
water in either laminar or turbulent flow could take place. Thus, in a 
given experiment, the velocity gradient at the bed was the principal 

variable. This was measured by a hot-wire anemometer, while the silt 

density was measured optically by the method already described (p. 50). 
The experiments took place in a glass-sided channel of section 18 in. 

square and working section 8 ft. long. The first material employed for 

the sediment was fuller’s earth of specific gravity 1’6 and mean particle 
diameter 0*05 mm. It was necessary to choose a fine, light material of 
this nature if measurements of erosion and silt transport under stream-line 

{mm') 

Tig. 85. Distribution of silt density with depth. 

conditions of flow in a water channel were to be observed. Fig. 86 shows 
the velocity gradients over the bed at three (average) speeds. At the 

lowest (circles) no appreciable erosion took place; at the medium speed 

(St. Andrew’s crosses) transport of the silt was beginning, though the water 
flow was still laminar; at the highest speed (Latin crosses) general 

turbulence had intervened and the bed was being rapidly carried away. 

The velocity gradient in a suspension is usually steeper at a boundary in a 
suspension than in a homogeneous liquid (cf. p. 113). The anomalous 

viscosity of systems such as these undoubtedly adds another difficulty to 

the testing of any theory of erosion. 
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In an actual river the grains are lifted near the bottom by the Magnus 
effect (p. 10) since they lie in a region where, owing to the gradient in the 
boundary layer, the velocity on their undersides is less than on top. The 

smaller ones are then held permanently in suspension by the turbulent 

.§ 

so 

I 

motion, but the larger ones fall back after rising above the zone in which 
the velocity gradient is paramount, till they are lifted up again. The 

path of the grains in this “saltation zone’’ is cycloidal, that of a succession 
of jumps. Similar effects occur in the lee of a sand-dune, but of course 

Fig. 87. Velocity, silt density, and austausch in silt-loaded channel. 

for a given degree of turbulence the sand grains do not rise so high, size 
for size. 

Fig. 87 shows, for sieved sand falling in the grade 0-25-0-3 mm., the 
distribution of velocity JJ, concentration of sand c, and the values oi A iB 
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from equation (77) with height above the bed of the glass-sided water 
channel. In each case, after a small and nearly constant value through 
the mobile portion of the bed, the austausch reaches a constant value a 
few centimetres above the bed. Multiplying by the appropriate value of 
B and dividing by the velocity gradient we obtain the value of l^. The 
mixing length I is plotted against y on a logarithmic scale in Fig. 88. 

Within the boundary layer, the following relations are approximately held: 

t/oc log (y+1); cccy-'^\ Accy, lacy 

In the open stream, velocity and mixing length are fully established, and 

if the silt concentration is not too great, the system behaves like a true 
liquid. The relations here are: 

TJ, A, I constant; | log c | acy 

though the steady value of I varies with the grain size, according to the 
figure. This may indicate a 
diminution in the scale of 
turbulence when larger par¬ 
ticles are carried, but it must 
be borne in mind that the 
value assigned to I in this 

region depends on that of B. 

Formation of Sand-dunes and 
Sand Ripples 

Bagnold* has made exten¬ 
sive studios of the transport 
of sand by the wind, both in 

a wind-tunnel and in the 
desert. In ,the model the 
facts observed are similar at 

the same Re to those already 
described in water, allowance 

being made for the difference in relative density of solid and liquid. 
Rolling is of course more common than saltation, but grains up to 0*2 
mm. may be carried permanently in suspension by the prevailing 
winds, and these in calm weather are mostly found on the tops of the 
dunes. Larger ones can only progress by rolling and jumping, and where 

they “land” can start other grains off in saltation. The whole assembly 
of particles loads the air and impedes its flow within the saltation zone to a 
much greater extent than in a river, as is shown by the estimated values 
of the drag coefficient in the two cases. Above this zone the velocity 
rises logarithmically, as if within it the mobile sand constituted a rough 
surface (cf. p. 47). The characteristic ripples in the sand correspond to 

Fig. 88. Variation of mixing-longth and height 
over silt bed. 

♦ Proc, Roy. Soc., A167, 594 (1936). 
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the mean length of a jump, so that their length diminishes as the mean 
grain size d increases. 

Under water the ripples in the sand, which are left high and dry when 

the tide recedes (Fig. 89, Plate II), are more often produced by a laminar 
to-and-fro motion of the water relative to its bed—another form of periodic 
boundary layer (cf. p. 39). Bagnold* has found in this case that the ripple 
pitch (or wavelength) increases at first with the amplitude of the water 

motion up to a limit at which it remains constant and proportional to d. 
If, as in his experiments, the floor of the channel is oscillated, the particle 
velocity at any height ^ is given by (32), p. 40, which reduces to the first 

term at large values of \/{ojl2r).^y showing that, in view of the small 
value of V in water, the damped motion does not extend far from the bed 
and most of the water moves en bloc relative to it. Within this sheared 

layer, however, the velocity gradient has amplitude Coj^ by (32). 
Taylor, in an appendix to BagnokTs paper, expresses the rate of shear 

0f//% in a parameter and then equates the resistance 

of the particle to the buoyancy: 

This gives/(r) in terms of p—plp.gd^/v. The undetermined function, 

according to the experimental evidence, is proportional to the | power 
of the latter quantity. 

Substituting for \dUldy\^, we then derive 

(DOC 
p~p 

„ P 

The critical value of cu to start grains moving was actually found to vary 

inversely as the f instead of the f power of C, 
Landsberg and Rileyf have since made similar measurements in the 

wind over sand-dunes. They suggest that one could measure the strength 

and frequency of gusts from simultaneous wind speed and sand sampling 

over the dunes. From their results they also worked out as a 
‘‘ scale of turbulence ” at various heights and found it practically independent 
of elevation but proportional to the mean U at a standard reference height. 

Fundamental Aspects of Erosion 

Erosion is a problem of considerable complexity which cannot readily 

be expressed in terms of known physical laws. Up to the present it has 
lain mainly in the sphere of the engineer, who has evolved a number of 
empirical laws for predicting its magnitude. It is evident by the disagree¬ 
ment not merely in coefficients but even in the functions on which the 
erosion is made to depend that these rules are designed only to fit the 
conditions which fall within the experience of particular engineers and 

* Proc, Boy. 8oc„ A187, 187 (1946). t Univ. Iowa BvU., 342 (1942). 
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have no universal application. Before further progress can be made one 
must attempt to reduce the problem to its simplest proportions. Pioneer 
fundamental research in the subject was carried out by Gilbert,*** while 

more recently Hjulstromf in Sweden and the authorJ in this country 

have independently carried out laboratory and field experiments in which 
the variable quantities have been reduced to a minimum. The factors 

which then remain can be grouped under two headings: first, those which 

concern the eroding stream—whether it is in steady motion or turbulent, 
and in particular the value of the gradient of stream velocity at the 

surface of the soil; second, the nature of the soil bed—the size, shape, and 

density of the grains and whether they are closely or loosely compacted. 
In field experiments all these factors intervene in a fashion which does 

not allow of the separation of their respective contributions. It is desirable, 

as a basis for establishing the laws of erosion, to make experiments first 
in artificial channels, as described in the preceding section. If, then, one 
plots the height against the logarithm of the silt concentration, one obtains 

a line which is almost straight (except near the bed) whose slope can be 

taken as a measure of the erosion coeflBcient (cf. Fig. 85). For a given 

velocity gradient, provided the stream is sufficiently turbulent to afford 
adequate mixing, this coefficient is found to be inversely as the grain size, 

bearing out theory in this respect. 

Similar considerations apply in natural streams, where the bed, of 
course, is not homogeneous. Samples taken out of a river in flood 

at various depths and analysed in respect of size-frequency give a series 

of curves whose mean slope for each size follows the same distribution. 
The only exception, occasionally reported by hydraulic engineers who 

measure in terms of surface velocity and slope of bed, is that ‘‘colloidar’ 

particles are less easily eroded than somewhat larger ones, so that in a 
mixed bed there is maximum rate of erosion occurring for a diameter 
round about 0*1 mm. This anomaly is usually attributed to the superior 

cohesion which clay sludge possesses. The exception, however, disap¬ 

pears if one reckons the erosion in terms of the velocity gradient. It is 
well known that the distribution of velocity across a stream carrying 

finely divided or colloidal material is not the same as that in homogeneous 

fluids or in those in which large crumbs of sparsely distributed soil are 
in suspension (p. 113). 

Probably the most important factor in loosening the bed prior to actual 

erosion is the extent to which it allows permeation by the fluid. When 

water passes over the soil a certain amount of chemical action may take 
place, particularly when the surface soil is a limestone formation; but 

whether this occurs or not, once the water is able to break up the soil 

into smaller crumbs or to encompass those which already existed before 
its passage, it can exert pressure to move the formerly coherent grains, 

♦ U.S. Geol. Survey, Paper 86 (1914). f Bull, Oeol. InsL Upsala, 26, 221 (1936). 
% Loc. cit., p. 121. 
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which then become potential silt. Sometimes an actual lifting force may 

be exerted; that is to say, the line of action of the pressure may be inclined 
upwards instead of along the bed. This happens notably when a grain 

is lying a little higher than its fellows on the bed and its foundations are 

partially or completely undermined by the fluid. The local velocity at 

the top of the grain is then greater than that beneath, so that the force 

towards the underside may exceed the total of gravity and the downward 

force on the top. Such a state of affairs often occurs where a pebble is 
resting on a sandy bottom and may lift it momentarily into the body of 
the stream. As soon, however, as it has risen above the boundary layer 

of fluid in which the major part of the gradient of velocity is found, the 
lift is lost and it sinks back. This accounts for the series of long hops by 
which the heavier particles follow the stream and the ultimate formation 

of ridges or dunes (cf. p. 124), but this process does not, in the writer’s 

observation, contribute markedly to the silt load of the stream itself, 
which is a function merely of the degree of turbulence, velocity gradient, 

and grain size. Penetration of the soil by the eroding fluid can, never¬ 

theless, change the distribution of velocity near the bed—in fact, at a 
sandy bottom the gradient of velocity may show a point of inflexion 
separating the domain of quasi-fluid motion above and quasi-solid motion 

below—and in this way react on the silt load carried in suspension. 

Emulsions in Turbulent Flow 
As suspensions in turbulent flow have more technical importance than 

ones in which the motion remains laminar, so with emulsions. These are, 

in fact, made commercially first as coarse dispersions by the atomisation of 
jets, as described in the preceding chapter, and then in a further process 

these are broken down under the action of turbulence. In the latter 
process the chance of coalescence has to be considered, although this can 

be discouraged by the addition of an emulsifying agent (like soft soap) to 
the continuous phase. Clay* has examined the behaviour of originally 

coarse emulsions in a turbulent field, both in a transparent channel at 

Re approximately lO*’’ and in a coaxial cylinder apparatus like that of 
Andrade and Lewis in the super-critical stage. Photographs disclosed the 

following features: (a) nearly all drops were spherical, the actual division 

or recombination process rarely being caught by the camera; (b) a number 

of droplets seemed to be in contact without coalescence, especially small 

ones clinging to a larger like an offspring to its mother; (c) at this Re 

the size-frequency curves have their maxima at 10 microns (diameter). 

Homogeneity of the emulsions was promoted by high volume concentration 
of the dispersed phase and high Reynolds number, but the difficulty in 

securing a homogeneous emulsion is that factors which promote bursting 
also promote coalescence by bringing droplets more often in contact, so 
that there is a limit to the smallest mean particle size attainable. 

* Proc, Roy, Acad., Amsterdam, 43, 862, 979 (1940). 



CHAPTER 7 

ELASTIC LIQUIDS 

Sol-gel Transformation 
Certain types of liquid whicli exliibit anomalous viscosity like sols also 

show elasticity in virtue of a structure which knits the disperse phase 

together in a framework filled with cells of the continuous liquid. These 
are known generically as “gels” and often derive from or become converted 
into sols by a change of temperature, by agitation, or by chemical action 
in the process called peptisation. A foam where the cells are filled with 

Fig. 90. Velocity gradients during setting of gel. 

gas may also be elastic. Two types of elasticity may be shown, bulk 
elasticity (really a form of compressibility) or flexural elasticity 
(“rigidity”); these involve resistance to change of size or of shape 
respectively. 

The sol -gel transformation may be illustrated by making up a solution 
of leaf gelatine or glue in warm water to a concentration of about 1 per 
cent. If a horizontal suspended disc be set in motion in it and the 
velocities of flow which it induces when so doing be plotted at different 
epochs during cooling, curves like those of Fig. 90 result.* In normal 
viscous flow without radial motion these would be straight lines. Actually 
the initial one is nearly so, but as time goes on anomalous viscosity sets 

♦ Trans. Farad. 8oc.t 29, 494 (1933). 
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in, shown by the increasing curvature of the gradients; at the same time 
the increased extent to which the sol is being dragged with the disc, 
exemplified by the general reduction of the gradients, tells us that the 

average viscosity is increasing while the sol sets to a gel. Just before 

complete gelation the observations had to be given up, for lumps of the 
jelly would cling as more or less rigid masses to the disc until, after a 

few more revolutions, they would relax. 

Another feature of the gelation process, viz. the acquirement of elasticity, 
may be illustrated on the same apparatus if the disc is uncoupled from the 

motor and given an impetus to turn it. In the first stages of the sol-gel 

transformation the motion of the disc is dead-beat and it comes slowly to 

rest. As the viscosity grows, the time to come to rest decreases, but the 
inception of gelation is signalled by a swinging to and fro of the disc before 

it reaches ecpiilibrium. This stage marks the development of elasticity 

in the substance. 
When a liquid has this interwoven structure—whether in a micro- 

cosmic form and visible under moderate magnification as in glues and 

jellies, or whether due to the form of the molecules as in rubber solution— 

it exhibits rigidity, so that if a small shear is applied to it, it deforms to a 

certain extent, but on release of the stress recovers. The recovery in the 

case of elastic fluids is usually partial only, complete recovery being a 

property of an elastic solidy and although some concentrated gels like a 
stiff culinary jelly show complete recovery, they can scarcely be said to 

flow in the usual sense. If too large a stress is applied, the structure may 

break down, the liquid becoming a sol and losing its rigidity. Sometimes 
this transformation is permanent or it may only be temporary, the gel 

re-forming when the stress is removed. This last is a case of “ thixotropy,’^ 

vide infra. 

The Relaxation Theory of Viscosity 

Maxwell* supposed that every fluid possesses a certain amount of 

elasticity. If the coefficient of elasticity be multiplied by a time factor 
there results another coefficient having the dimensions of viscosity. On 

this view the application of shearing stress to a substance produces a 

strain of value dependent on the elasticity (J^) and this strain disappears 

at a certain rate determined by a characteristic time (r) called “time of 
relaxation.” The product of these quantities has the dimensions of viscosity. 

Thus in a normal oil both E and t are small, but in an oil paint r is con¬ 

siderable, while E remains small, conferring anomalous viscosity and 
rigidity. If, on the other hand, t is small and E is large we have the gel, 

which can have the same viscosity as the sol, although it behaves so 

differently, if the product of E and r is the same for each. From this 
aspect, the increase of viscosity in a sol at high concentrations and low 

* Phil Mag.y 36, 133 (1868). 



130 ELASTIC LIQUIDS 

rates of shear is to be ascribed to a rise in relaxation time. This again, 

following Hatschek,* we may attribute to electrical adsorption of the 
liquid by the particles of the pigment, which lose some of this protective 

sheath as the velocity gradient increases. This view is borne out to a 

certain extent by the observations of Eirich, Bunzl, and Margaretha,t 
who found no anomaly in the flow of a suspension of electrically neutral 

particles—spores of the puff-ball lycoperdon—dispersed in a mixture of 

paraflSn and tetrachlorethane. 

The velocity gradient in a gel may be regarded as made up of two 

parts, one due to the force acting on unit area and expressed as FjTj; 

the other in phase with the rate of change of force acting on unit area and 
expressed as (dFjdt)lE. (On the nature of E we shall say more presently.) 
The difference between the two contributory terms is well brought out 

when the gel is subject to simple harmonic displacement of the type 
already illustrated (p. 125). If the force is expressed in the form 

where co is the pulsatance of the forcing, the velocity gradient 

becomes: 

“ if-d+i-)/ • . ■ (’8) 

The velocity gradient has then two components, one in phase with the 

applied force and one at tan“^(cuT) to it and varying with the frequency. 
In the case we are picturing, the force would be a shear, and the strain a 
change of shape. 

On the other hand, one may think, as PhilipoffJ does, of an alternating 

compression and distension of the material whose size is thereby changed. 
If, then, the displacement of the centre of mass of the system is S=se^^^ 

the equation of motion is 

at T 

while F executes S.H.M. with an amplitude 

EwS 

The quantity in the denominator may be regarded as the viscous 

impedance which the system offers; the fluid acts as though it had a 
complex viscosity of value: 

Vo (79) 
‘ V(1+^^). 

At low frequencies the viscosity is 7)q simply, but as the frequency of the 
compressive force increases, the viscosity falls (especially in the neigh¬ 

bourhood of cei=T"^). Philipoff tried this expression on gels, but 

established better agreement of the experiments with an exponent | 

♦ KoU. Zeit8., 9, 280 (1912). t ^oU. Zeits., 74, 277 (1936). 
t Phys, Zeits., 36, 886 (1934). 
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of COT in the denominator of (79). r was about 0-01 second for a 10 per 
cent. gel. 

Here are some other specimen values of relaxation time: pitch, at 

30° C. (130 seconds); sulphur melt at 120° C. (3 seconds); hexane 7 

parts and methanol 3 parts at 30° C. (0*7 second); 4 per cent, viscose 

(0*004 second). 
It should be pointed out that r is not necessarily a constant for each 

material; it may vary with stress amplitude and is certainly changed by 

breakdown of structure. 
Schofield and Scott-Blair* have shown that Maxwell’s ideas can be 

applied satisfactorily to flour dough, and although this material is to be 

classed as a plastic solid rather than a fluid, their conclusions are instructive 
in our present topic. They find that owing to a lag in recovery from 

elastic strains a factor dejdt must be subtracted from the elastic term in 

the equation of motion, expressed in this case as dejdt, where e is the 
fractional elongation of a baton of dough under a stretching force P per 

unit cross-sectional area. Thus 

de(ldJP_d€\ P 

dt dt dt /'^ 7) 

This term, representing the ‘'elastic after-effect,*’ is large after abrupt 

strains, but otherwise small during the application of a stress. 
Maxwell’s equations have also biological importance in connection with 

the stretching of muscle, which is a substance showing elastic and viscous 

behaviour, complicated by “recovery,” staleness, and other factors 
involving chemical reactions not shown by dead matter. 

Elastic Liquids under Shear 

Since viscosity is really a result of submitting a fluid to shear, a better 

picture of the relaxation of a gel is to be obtained by submitting the 

liquid to an alternating shear, as the author did in the experiments during 

the sol- gel transformation described at the beginning of this chapter. 
These have since been extendedf to study the behaviour of a settled gel 

in a cylindrical vessel which is given simple harmonic motion about a 

central vertical axis so that an alternating torque is applied to the liquid. 

Beside the viscosity, elasticity in the guise of the modulus of rigidity 

comes into play, the latter being defined as the ratio of shear stress to 

shear strain, apparent as the development of velocity gradient. 

Two cases will be considered. 

Case A, The liquid, in the form of a column extending along the y axis, 

is given an oscillatory torque over the face y—0. If N is the 

appropriate modulus of shear (rigidity), rj the coefficient of viscosity, and 

Proc. Roy. Soc., A141, 72 (1933). t Phil May., 36, 473 (1946). 
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p the density, the equation of motion for an annulus 8r wide and 8y thick 
at radius r and depth y is: 

d^e_N d^,v 
dt^ p 'dy^ pd^y.dt ^ dy^ ^d^y.dt 

and the solution for waves travelling up and down the column: 

^_(^g(a+t/30[g(a+i/3)(v-0_g-(a+»)8)(i/-0jgip< 

(80) 

(81) 

Fig, 91. Amplitudes in visco-olastic fluid; axial case. 

when a rigid barrier prevents movement at y~l. The amplitude at any 
level y in terms of that at the base is given by: 

^1/^=26>o2[cosh {2oi(y-l)}-cos {2^(y-~l)}] . . (82) 

Substituting (81) in (80) we find 

(oL^—Pc^)(c^-\-v^p^)—~p^€?; 2ajS(c^+v^p^) =—vp^ 

or =p^ 
" \/(c^-\-v^p^)—c^ 
__ 2(c4+^j > 

_,^.rv(«*+vV)4 
i5*=F 

L 2{g*‘-\-v^P'^) 

(f- 

[If v~0y a=0, /3=p/c; if c=0, (x=p=\/{p/2v).] 

The function O/Oq is plotted on Fig. 91 for 1=24:, )3=27t/24, and values 
of a equal to 0, 0*1 j8, 0*25^, 0*5j3. The first case gives the usual stationary 
wave distribution of amplitude. The others show pseudo-nodes whose 
position begins to deviate from the first and at which the minimum 
amplitude gets greater with a/j8. 
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Case B, The sides of the column are given an oscillatory torque—the 
same throughout the column—and waves are propagated radially. The 
equation of motion is now: 

or 
d^e_ 3 d^d \ 

dfi ^ \0r^ r dr j \dr^ .dt r dr .dtj 
(83) 

If we substitute 6=(f>e^^\ <f) being a function of r alone, 

dr^'r dr~^ 

or 
d^4> 

dr^'^ ̂
|^+(“-W=o . (84) 

The solution of this may be obtained in terms of Bessel functions of complex 
argument* as </>—[«/i^(a—^)9)]/[r(a—^^)]. The function Jj^(a—is 

plotted on Fig. 92 for values corresponding to those of Fig. 1. Those 
for a—0 and p are available in the tables of the Bessel and the ber and bei 
functions; the others have been calculated as series from the formula,* 

/«= <» 
J^(QC-\-ip)~ E J .J 

ni = 0 

* Soe, for example, McLachlan’s Bessel Functions for Engineers; Iamb’s Hydro- 
dynamics^ §367. 
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In the experiments about to be described, it is the modulus of the 
linear displacement amplitude at each radial distance in the liquid which 

is actually measured. The angular amplitude at the same place is Or, 

Thus the curves of Fig. 92 give the theoretical distribution of amplitude 
through the liquid, measuring from the centre outwards when p/c==l. 

The purely elastic fluid therefore shows nodal circles at the appropriate 

resonant frequencies of oscillation. A liquid having elasticity and viscosity 

exhibits pseudo-nodes and antinodes as in case A. When the liquid has 
an overwhelming viscosity, the amplitude at any radial distance falls off 
steadily from the edge towards the centre, there are no pseudo-nodal 

circles, but this does not mean to say that the liquid moves en bloc as 

there is a progressive phase change with radial distance so that different 
parts of the fluid may be moving in opposition of phase. 

In the experiments a metal bowl 22 cm. diameter with upright sides 

10 cm. deep formed the container of the liquids, which were: diesel oil, 
cellulose acetate in acetone sols, and gelatine in water sols of small con¬ 

centration (up to 6 per cent.). The container was mounted on a table 

which, through connecting rods to an electric motor, could be oscillated 
through various small angles and at constant frequency. In order to 
simulate the condition A a fixed ring was held just inside the container 

so that disturbances could not be propagated inwards from the moving 
walls, only upwards from the base. To simulate condition B a guard 
disc was fixed just above the base of the vessel. It will be noted that 

neither of these experiments corresponds exactly to the two-dimensional 

motion assumed in the analysis. In the first case the guard ring causes 
a diminution of amplitude in its vicinity, but it was noticed that the 
angular amplitude was constant over the main portion of the surface 

where the measurements were made. In the second type of experiment 
the guard disc imposed an overall zero amplitude at the base, but did 
not affect measurements made in the vicinity of the free surface. It did 

not, in fact, prevent a distribution closely resembling that of Fig. 92 in 

the body of the liquid being set up, the disturbing effect being confined to 
a centimetre above the guard disc. These regions were avoided in placing 
the anemometer about to be described. 

As the introduction of recording devices having bulk and inertia was 

undesirable, it was decided to use a hot-wire anemometer. A nickel 
wire 1 mil. diameter and 1 cm. long was soldered to a fork formed of two 

steel needles which could be located at any position in the liquid, being 

mounted as it was on a micrometer for traverse either along a radius of 

the tank (the wire itself being vertical) or parallel to the axis of the tank 
(the wire then lying along a radius) for the B and A cases respectively. 

An alternative method of studying the elastic constants of the liquid is 

to measure the pseudo-wavelength by employing two hot wires at a distance 
along a radius {B) or vertically over each other (A) and recording the phase 

difference between the oscillations in potential (at double the applied 
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frequency) across them. For this purpose, tappings from each wire were 
led to the X and Y pairs of plates of a cathode-ray oscillograph and the 
relative positions of the wires adjusted until an easily recognisable 
Lissajous figure—straight-line or ellipse—was drawn by the electron spot 
on the screen. 

Fig. 93. Amplitudes in Diesel oil. 

As the thermal lag of the hot wire varies with frequency (cf. p. 82) it 
was necessary to calibrate the indications of the hot-wire recorder over a 
range of frequency and amplitude covering that to be used in the experi¬ 

ments. This was done for each liquid by mounting the hot-wire fork on 
the connecting rod of a reciprocating motor which carried it to and fro 

in simple harmonic motion in the liquid. The measured potentials are 
nearly proportional to the square roots of the amplitudes. 

Experimental plots of displacement amplitude and of places in and out 
of phase are given in Figs. 93, 94, 95 for diesel oil having no elasticity, for 
cellulose acetate in acetone with viscous and elastic properties of the same 
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order of magnitude, and for gelatine solutions in which the elastic structure 
overrides the viscosity. 

On comparing these with Figs. 91 and 92, we observe a general agree¬ 
ment in the shape of the curves. Some discrepancy may be ascribed to 
experimental inaccuracy, but a major difficulty in all work with sols and 
gels is that the effective viscosity varies with the rate of shear. Since it 
is impossible to maintain the rate of shear constant throughout the fluid 
we should expect such variations, the deduced value of the coefficient of 
viscosity being greater when the amplitude and frequency are small. On 
the other hand, a greater consistency in the deduced values of the elastic 
moduli with frequency and amplitude are apparent, though another 
difficulty arises herein since continued agitation of a gel tends to break 
down the structure to which the elasticity is due. These physical 

0 2 6 8 10 Item. 
Radial distance 

Fig. 96. Amplitudes in gelatine solution. 

considerations must limit the accuracy and consistency attainable in 
any work on fluids exhibiting either anomalous viscosity or structural 
elasticity. 

To calculate the physical properties of the fluid from an overall com¬ 
parison of theoretical and experimental curves would be a laborious task. 
They may, however, be derived by an inspection of the amplitudes at 
judicious points. If the system exhibits resonance and is not highly 
viscous, the elastic constants may be obtained from a knowledge of the 
natural frequencies in either the axial or radial modes. When to the 
elasticity a moderate amount of damping is added, quasi-resonances can 
be set up and the amplitudes at the quasi-nodes measured and compared 
with the corresponding ones read off Fig. 91 or 92. In the axial case the 
nodal amplitude can be readily obtained from equation (82), since this 
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expression has minimum values of 2 sinh oL{y—l) (providing a is not too 
large) at the nodes. 

When the liquid is merely viscous, the logarithm of the amplitude may 

be plotted against distance and the approximate value of log^Q sinh ct{y—l) 

used to deduce the value of a. The liquid of large viscosity and small 
elasticity presents the greatest diflSculty to attempts to separate its elastic 

and viscous constants, since the nodes become ill-defined and are con¬ 

siderably displaced from the positions they would occupy in purely elastic 
systems. The shortest road to their elucidation in such a case is probably 

to plot a set of curves such as those of Fig. 91 or 92 for a number of values 

of a, expressed as multiples of p, and to compare the theoretical and 

practical distributions of amplitude, noting in particular the values at 
the best approximations to resonance, i.e. segmental delineation, that one 

can attain. 

Relaxation by Suddenly Applied Shear 

An earlier method of studying relaxation, due to Schwedoff,* can be 

carried out with simple apparatus, though it does not bring out the 

important effect of the frequency of the applied shear. A simple Couette 
coaxial-cylinder apparatus (p. 112) is filled with the liquid. The motor 

intended for rotating the outer cylinder is clamped and the torsion head 

at the top of the wire supporting the inner cylinder quickly twisted 

through an angle (f>. If the liquid is simply viscous, the cylinder will 
follow until it reaches the same deflection and no twist remains in the 

wire. If a gel is placed inside, the inner cylinder will only partially take 

out the twist on the wire through angle leaving a torque remaining on 
the wire of cB~c((f)—6), The rigidity can be measured as 

c/62-aV 

47r\ )d 

which is of the same form as (40). In fact, the inner cylinder does not stay 

in one position with relaxing liquids, but gradually takes out the twist, 

or most of it. The equation giving the relaxation is 

S=Soe^^lr.(85) 

where Sq is the value of the strain from which it begins to relax and S is 

the residual strain at time t. The equation contains r, which can be 

calculated from an experimentally obtained curve. 
Fig. 96 shows such measurements made by Hatschek and Janef in a 

benzo-purpurin gel (3 per cent.). The departure from the exponential 

curve shows, among other possibilities, that r varies with S, 

Elastic Liquids in Capillary Tubes 

MerringtonJ has exemplified the behaviour of these liquids—actually 
he used rubber solutions—in a remarkable way by forcing them under 

* J. de. Physique, 8, 341 (1889). t Koll. Zeits,, 39, 300 (1926). 
t Proc. Durham Phil, Soc., 10, 486 (1948). 
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pressure through capillary tubes. In entering the tube from a reservoir 
they are evidently distorted laterally and recover from this by swelling out 

again on leaving the tube or a little later (Fig. 97, Plate II), depending on 

the time of relaxation. From the shape of the recovery section, similar 
deductions could be made about r to that which we derived in the last 
section in equation (85). Weissenburg* has pointed out that this lateral 

compression and recovery implies that with this liquid in this type of shear, 

the viscous forces have components perpendicular to the axis of the tube 
and not, as with a normal liquid, directed exactly parallel to the direction 

of flow. 

Thixotropy 

If a gel is shaken vigorously it will often turn to a sol and reset when the 

agitation is removed. Evidently, the structure which confers elasticity 

has been temporarily broken down. This gel-sol-gel transformation 
induced by mechanical vibration was called by Freundlich “thixotropy.’’ 

Time (seconds) 

Fig. 96. Relaxation of bonzo-purpurin sol. 

Green and Ruth Weltmannf have pointed out that those substances which 
will respond to movement in this way always show a hysteresis loop in 

their rate-of-shear : flow curves. The product of these factors (represented 

by the area of the loop expressed in the proper units) equals the work 
done in disrupting the structure. Most pigment suspensions such as 
paints and printing inks show thixotropy, but “indifferent” suspensions 

such as tiny glass spheres in oil do not. Prycc-JonesJ has made a special 

study of this pecuharity and has shown the importance of the time factor 
in the phenomenon. He uses a concentric cylinder apparatus, stirring the 

gel and making measurements of viscosity—as far as possible at com¬ 

parable rates of shear—at various epochs up to ^ hour after the agitation 

has ceased. Using titanium oxide as solid phase and various oils as 
liquid, he found that the degree of thixotropy, represented by the variation 

in viscosity with time after agitation, was much affected by the com¬ 

position of the oil. Changes as small as 1 per cent, in the free acid content 

* Aatiire, 169, 160 (1947). ^Ind. Eng. Chem., 16, 20 (1943). 
t J. Oil and Colour Chem. Assoc., 296 (1936). 
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of the liquid medium can change a free-flowing paint into a highly 
thixotropic system, the solid content remaining the same. 

This problem is a very important one for the paint and colour manu¬ 

facturer, who needs a system that is thixotropic, so that it can be stirred 
and applied as a sol to a surface where it will settle down as a gel and not 
continue to run. Whether a system of given concentration will act as 

sol or as gel often depends on the dispersing power of the liquid medium; 
if this is high, a sol results. In other words, the colloidal environment of 
the particle plays a big part in the behaviour of these elasto-viscous 
materials. 

ENVOI 

At this point I must take leave of those readers who have borne with 
me so far. It will be apparent that in the last two chapters I have 
trespassed on ground usually reserved for the rheologists, and in fact to 
go further in this direction would involve a discussion of the plastic and 

elastic properties of solid bodies. I should like, in conclusion, to commend 
to the reader two works to which I am myself indebted for inspiration and 
references, particularly in my first two chapters, i.e. Lamb’s Hydro¬ 
dynamics for the classical work and Modern Developments in Fluid 
Dynamics (edited by Goldstein) for the modern aspects. Books on 
viscometry, such as those of Hatschek, Barr, and Herrington, will also be 
found to contain much useful information on the instrumental side. 
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