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PREFACE 

This text is the outgrowth of a course given for over ten years to 
electrical engineering students in their junior year at the Massa¬ 
chusetts Institute of Technology. At present the course is one of 
thirty lectures, and covers a large part of the material of the first 
six chapters. 

While the course follows one in ordinary differential equations, 
no greater knowledge of this subject is assumed in the text than 
that frequently included in a first course in the calculus. 

The first three chapters are concerned with the ordinary differ¬ 
ential equations which arise in the problem of determining the flow 
of current in a network with lumped constants, and such formal 
knowledge of complex numbers and Fourier series as is useful for 
their convenient solution. 

The object of the next three chapters is to give the reader an 
elementary working knowledge of partial derivatives and partial 
differential equations, including their mathematical origin, geo¬ 
metric and physical meaning, and solution for assigned boundary 
values. 

The last two chapters are of a more theoretical nature, contain¬ 
ing demonstrations which justify the earlier calculations with 
power series and Fourier series. The majority of students, owing 
to limitations of time and interest, will be content with the initial 
statement of the results. For the abler students, these chapters 
will both satisfy their immediate curiosity and skepticism, and 
enable them to consult more detailed works on analysis. 

A short bibliography, arranged by chapters, giving some sugges¬ 
tions for further study, will be found at the end of the book. 

In writing this text, I have been helped by mimeographed notes, 
originally written by Professor H. B. Phillips in collaboration with 
the late Professor C. L. E. Moore, and subsequently revised by 
Professor K. L. Wildes. I have also profited by numerous sugges¬ 

tions from colleagues and students. 
Philip Franklin 

Cambridge, Mass. 
January 1, 1933 
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DIFFERENTIAL EQUATIONS 

CHAPTER I 

COMPLEX NUMBERS 

The solution of certain ordinary differential equations which 
arise in electrical circuit theory is materially simplified by the use 
of complex numbers. Furthermore, many problems of mathe¬ 
matical physics, including the determination of lines of flow of 
electricity or magnetic lines of force in a steady, two-dimensional 
field, lead to a partial differential equation which has an intimate 
connection with analytic functions of a complex variable. Accord¬ 
ingly, we devote this chapter to a study of complex quantities. 

1. Real Numbers. The need for complex numbers arises in 
algebra from the impossibility of finding, among the real numbers, 
square roots of negative quantities. As the extension of the con¬ 
cept “ number ” from the real to the complex domain is analogous 
to its previous extensions within the real domain, we briefly re¬ 
capitulate the definitions of fractions and negative numbers. 

The first numbers met with are the positive integers, 1, 2,3, 
used in counting. For applications of numbers to the measure¬ 
ment of length it is convenient to introduce the fractions. When 
directed scales are used, as temperatures above and below zero, 
or distances north and south, we require the negative numbers. 
From the original point of view of counting, neither fractions nor 
negative numbers have any meaning. Having the positive in¬ 
tegers, and the rules for their composition by addition (+) and 
multiplication (X), we may always find a new positive integer x 
from two given positive integers a and b such that 

a + b = x, a) 

ab = x. (2) 

Sometimes, if a > 6, we may find an x such that 

b + x = a. 

1 

(3) 
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We also write this as 

a — b = x, (4) 

defining subtraction ( —) by the equivalence in meaning of these 
equations. Similarly, if a is an integral multiple of £>, we may find 
an x such that 

bx = a, (5) 

or 

Division (-$-) is defined by the equivalence of these equations. 
From the standpoint of abstract mathematics, zero and the nega¬ 
tive numbers are introduced as those symbols satisfying (3) when 
a ^ b. Similarly, the positive fractions are introduced as sym¬ 
bols satisfying (5) when a and b are both positive integers. When 
a is a positive integer, and b is a negative integer, we introduce a 
negative fraction. We do not define fractions with zero denomi¬ 
nators. A consistent set of laws for operating with these negative 
and fractional quantities, including the rule of signs for multipli¬ 
cation, may be set up, as the reader knows. We note that our 
definitions make 

so that any integer may be represented as a fraction. The totality 
of fractions make up the system of rational numbers. Any ra¬ 
tional number may be specified in terms of zero and the positive 
integers by means of a pair of such numbers, in a given order, 
together with a sign. 

Irrational numbers are introduced by limiting processes. For 
example, we may use the unending decimal expressions, as: 

V2 = 1.41421 • • •, 

7r = 3.14159 • • •, 

which define the irrational numbers on the left as limits of the 
rational numbers made up of their digits taken to 1, 2, 3, etc. 
decimal places. We observe that rational numbers give either 
finite or repeating decimals, while irrational numbers give non¬ 
repeating decimals. The rational and irrational numbers together 
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make up the system of real numbers. Any real number may be 
specified by an infinite sequence of digits, each selected from the 
set 0, 1, 2, • • • 9, together with the position of the decimal point 
and the sign. 

In practical applications, we are never able to distinguish be¬ 
tween an irrational number, and a rational approximation to a 
sufficient number of decimal places. In most engineering work 
three or four places suffice and six or seven places are usually ade¬ 
quate for precise scientific applications. Consequently, while the 
distinction between rational and irrational numbers is of great 
theoretical importance, practically we never use irrational num¬ 
bers, but only rational approximations to them. 

Every first degree equation 

ax + b = 0, a 0, (8) 

in the rational number system, has a root. That is, for any two 
rational numbers a ^ 0, and 6, we may find a rational number x 
which satisfies (8). Similarly this equation is always solvable in 
the real number system. The equation: 

x2 = a, (9) 

has roots in the rational number system only for special values of a. 

It has real roots when a is any positive real number, but no real 
root when a is negative. 

2. Complex Numbers. To construct a number system in 
which (9) will always have roots, we begin by defining the imagi¬ 
nary unit1 i as a new type of number whose law of multiplication 
will make 

i2 = -1. (10) 

We then define a complex number as a combination 

a + bi, (11) 

formed from two real numbers, a and b, and the imaginary unit i. 
We often omit terms with zero coefficients. Also, coefficients 
which are unity are not written explicitly. 

Thus we write: 

a + Oi = a, 0 + bi ~ bi, (12) 

1 Electrical engineers frequently use j as the symbol for the imaginary unit, 

to avoid confusion with the symbol for current intensity. 
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as well as 

a + li = a + i} a + (—l)i = a — i. (13) 

In consequence of these conventions, the system of complex 
numbers includes the real number system, as well as the pure 
imaginaries of the form bi) and, in particular, the imaginary unit i 
itself. 

The laws of operation for complex numbers are taken as the 
ordinary laws of algebra for real quantities, with equation (10) 
added. This leads us to define addition by 

(a -f* bi) -f- (c + di) = (cl -f* c) “f* (b -f- d)i. (14) 

In order to have subtraction the inverse of addition, we must 
then define 

(a + bi) — (c + di) = (a — c) + (b — d)i. (15) 

For multiplication we write 

(a + bi) (c + di) = (oc — bd) + (ad + bc)i, (16) 

and for the inverse operation, division, 

a + bi _ ac + bd —ad + be . , . 
c -f- di c2 ~t~ dr c2 ~f- d2 

In our definition of a complex number in terms of two real num¬ 
bers, we assumed that each distinct pair of real numbers gives a 
different complex number. Consequently, if we write 

a + bi = c + di, (18) 

where a, 6, c, d are all real numbers, we must have:2 

a — c and b = d. (19) 

In consequence of (14) every complex number may be looked on 
as the sum of a real number a, and a pure imaginary number bi. 
The equivalence of (18) and (19) is expressed by saying: 

When two complex numbers are equal, their real parts are equal 
and also their imaginary parts are equal. 

In particular, a complex number is zero only if its real and 
imaginary parts are each separately zero. 

2 This is different from the corresponding relation for fractions or decimals, 
since: 

| = | and .2 = .109999 • • - 



EXERCISES 5 

Logically, we should carry out operations on complex numbers 
by using the equations which define these operations. However, 
owing to our familiarity with the rules of ordinary real algebra, 
it is practically simpler to proceed as if i were real, merely remem¬ 
bering that a real and a pure imaginary term never combine, and 
that t2 = — 1. For example, in practice, we divide complex num¬ 
bers by writing: 

a + bi _ (a + bi)(c — di) __ (ac + bd) + ( — ad 4 bc)i ,O0. 
c + di~ (c + di)(c - di) "" c2 + d2 ' 1 j 

EXERCISES I 

1. Given Zi = 1 — 2i, z2 = —2 4 i, zs = —4i, find: 

(a) zL -f zh (b) z3 — zh (c) z2 4 zh (d) z2 - zlf (e) zxz2, (f) zs/z2, (g) zfo, 

(h) z2/zi. 

2. The impedance of an electric circuit element to an impressed sinusoidal 

electromotive force of a particular frequency is conveniently represented by a 

complex quantity, z — r + ix, whose real part, the resistance r, is always posi¬ 

tive, but whose reactance, x, may be positive or negative. See p. 102. The 

formulas for the impedance equivalent to two impedances in series or parallel 

are the same as those for combining resistances to constant electromotive 

forces, if the operations are taken in the complex sense. Namely, for series 

connection, 
z — z\ 4- z2, 

and for parallel connection, 

i-i+l. Z Z1 z2 

Three circuit elements have their impedances to a 60-cycle e.m.f. given by 

Z\ = 7 -f- 650i, z2 = 5 — lOi, z3 = 8 + 3000t. Find the impedances equiva¬ 

lent to: 

(a) z\ and z2 in series, (6) Zi and z2 in parallel, (c) zh z2 and z8 all in series, 

(d) zi, z2 and z3 all in parallel, (e) z\ in series with the combination of z2 and z* 

in parallel, (/) Zi in parallel with the combination of z2 and z8 in series. 

3. Verify that (1 + i)2 — 2i. 

4. Solve the equation z2 — 4z -f 7 =0, and check by a direct calculation 

of the left member for each root. 

5. (a) Prove that every complex number has two complex square roots, by 

finding x and y in terms of a and b such that 

(x 4* iyY - a + hi. 

(b) Show that every quadratic equation has a root, the coefficients being 

any complex numbers with the leading one different from zero. 

6. Solve the equation 

(x + iy) 4 (c -f di) = a 4 hi 

for x and y and compare the result with (15) of the text. 
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7. Solve the equation 

(x + iy){c + di) — a + bi 

for x and y} and compare the result with (17) of the text. 

8. The number z ~ a — bi is called the conjugate of the number z - a + bi. 

Prove: 

(a) 2 + z and zz are both real numbers. 

(b) If 2 + Z\ and zzx are both real, zx = z, or z\ and z2 are both real. 

(c) Prove that the conjugates of zx + z2, 2iz2 and zi/z2 are respectively 

2i + 22, 2i22, 2i/22. 

(d) If P(z) is a polynominal with real coefficients, then the conjugate of 

P(z) is P(z). 

Z — 2 
(e) a 

2+2 

2 ’ 
9. Compute 

1/ 3 i 
5 {2 = 

—1— 
3i 2 + 3 i )• 

and also the real part of Si/(2 — 3i). This illustrates part (e) of the preceding 

problem. 

10. Prove that, if 

(x + iy)(a + bi) = 0, and a + bi 5* 0, 

where x, y} a, b are all real, then x = y — 0. 

11. The absolute value of the complex number z * a + bi is defined by 

|z| = Va2 + b2, 

where the arithmetic, or positive, square root is meant. This definition makes 

the absolute value of a real positive number equal to itself, and of a real nega¬ 

tive number equal to its negative. 

Using the fact that, when A and B are real, 

(A - By > 0, 

prove that 

l*i + Z2I ^ W + N, 
and 

|*1 + 321 ^ |Zl| - M- 

12. By the method of problem 11, show that 

|a| + \b\ 

V2 
^ \z\ g |a| + \b\. 

18. Prove that, if Zi22 = 23, then 

\zi\ • |z2| = |zj|. 

This equation, squared, gives: 

(ai2 + 612)(a22 + 622) =* a32 + 682. 

Noting that, if au 61, a%y bi are integers, then ah &3 will also be integers, show 

from this that the product of two integers, each the sum of two squares, is 
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again the sum of two squares. Illustrate by expressing 

29 29 - (22 + 52) (l2 + 102) 

as the sum of two squares. 

3. Vectors, Polar Form. We often represent the real numbers 
by the points on an indefinite straight line, for example, an axis of 
co-ordinates. Similarly, we may represent complex numbers geo¬ 
metrically. Here we require two dimensions. In an infinite 
plane, we draw two axes at right angles, and by selecting a unit of 
length, obtain a pair of co-ordinates (x, y) for each point in the 
plane. Conversely, there is just one point for each pair of co¬ 
ordinates. By making the complex number a -f hi correspond to 
the point (a, b) we obtain a method of representing complex num¬ 
bers graphically. Instead of considering, Fig. 1, the point P = (a, b) 
as the representation, we may equally well consider the directed 
segment, or vector OP, extending from the origin 0 = (0, 0) to P 
as the representative of the complex number. In this case, any 
parallel segment of the same length and direction is taken as corre¬ 
sponding to the same complex number. 

If two complex numbers are given graphically, their sum or 
difference may be directly obtained by adding or subtracting their 
representative vectors according to the parallelogram law. (See 
Fig. 2.) This follows from equations (14) and (15). 

Before interpreting multiplication and division, it is advisable 
to introduce polar co-ordinates. If r, 6 are the polar co-ordinates 
of (a, b), Fig. 1, defined in the usual way as the length of OP 
(radius r, or absolute value of z, |z|) and the angle which rotates 
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OX into OP (angle or amplitude), measured in the direction which 
takes OX into OF, we have: 

a — r cos 0, 
b = r sin Bf 

and 

(21) 

r = Va2 + b2, 

6 = tan-1 - . 
a 

(22) 

We restrict r to be positive. Hence, in the equations just 
written, we take the positive square root, and then take a value of 
the inverse tangent for which equations (21) are satisfied. Thus 
the angle 6 is determined numerically to within an integral multiple 
of 360°, or 2ir radians. All these values correspond to the same 
position of the radius vector on the diagram. 

In view of equations (21), we may write 

z = a + hi 
= r cos 6 + i r sin 0 
= r(cos 6 + i sin 0). (23) 

We introduce a special notation for this last expression, 

r |0 = r(cos 0 + i sin 6). (24) 

The notation 
r = r | —0 = r(cos 0 — i sin 0) (25) 

is also used. We distinguish them verbally by reading r |0 as r, 

lead angle 0, and r \o as r, lag angle 0. The angle 0 may be expressed 
either in degrees or radians, depending on the units used in the 
trigonometric functions of equations (24) and (25).8 

The transformation from polar to rectangular components of a 
complex vector, or number, is easily accomplished by the use of 
(21) or (22). Or we may make a direct use of the right triangle 
in Fig. 1. For example, by either method we note that: 

a = a [0° dr fc360°, hi = b |90° ± fc360°, 

where k is zero or any positive integer, a > 0 and b > 0. 

3 The notation sin a: is used in two senses. In elementary trigonometry, or 
in computational work, “ sin 1 ” means sin 1° * .0175, while in advanced 

mathematics it means sin 57.3° = .842. In this text, all angles given numeri¬ 

cally are in radians, unless the degree sign (°) is added. We may combine 

angles in degrees and radians, just as we may combine a length of 2 ft. with one 

of 3 in. to get a length of 2.25 ft. or 27 in. Thus, it is occasionally convenient 

to write sin (1 + 2°) to mean sin 1.035 or sin 59.3°. 
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4. Multiplication and Division in Polar Form. We next con¬ 
sider the product of two complex numbers: 

z\ = n |0i = ri(cos 0i + i sin 0i), 

22 = r2 |02 = r2(cos 02 + i sin 02). ^ 

We note that 

(cos 0i + i sin 0i)(cos 02 + i sin 02) 
= (cos 0i cos 02 — sin 0i sin 02) + ^■(sin 0i cos 02 + cos 0i sin 02) 
= cos (0i + 02) ~h i sin (0i + 02). 

After multiplying in nr2, we deduce from this: 

* *2 * (n (0i)(r2 |02) - nr2 |0t + 02, (27) 

This shows that when two 
complex numbers in polar form 
are multiplied together, the radi¬ 
us of the product is the product 
of the radii of the factors, while 
the angle of the product is the 
sum of the angles of the factors. 
If, Fig. 3, A and B are the points 
representing the factors, while C 
represents the product and U 
represents the real unit (1 = 1|0° 
= 1 + Ot), the triangles UOA 
and BOC are similar. For, they 
have an angle of one equal to an 
angle of the other, 

z UOA = 01 

and the sides including the equal angles proportional, 

OC _ Tjn __ n __ OA 
OB ~ r2 ~ 1 " OU ’ 

Consequently, if we start with A and B} Fig. 3, we may obtain 
the product C graphically by drawing in triangle OU A y and then 
constructing a triangle OBC on OB similar to it. When the angles 
involved are not in the first quadrant, we may avoid confusion by 
noting that the triangle OBC may be obtained from OUA by first 
rotating this triangle in the positive direction about 0 until OU 

Fig. 3 

= l BOC, 
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falls on 017' along OB, and then scaling the triangle up or down, 
keeping 0 fixed, until Uf reaches B. 

Since the order of the factors is immaterial, the roles of A and B 
may be interchanged in the construction. The construction shows 
that the length of the product will be changed if we use the same 
vectors OA and OB, but alter the length of the unit vector OU, 
Similarly the direction of the product will be changed if we alter 
the direction of OU. In this respect multiplication differs from 
addition, since the construction for the sum of two vectors made no 
use of the unit vector. In vector analysis, where methods for 
dealing with vectors without employing co-ordinate axes are de¬ 
veloped, the law of addition of vectors is the same as that here used, 
but the laws for multiplication are different from that discussed 
here. 

Since division is the inverse of multiplication, if 

n|0i 
r2 f_2 
-hr = r 10, (28) 

we must have: 

T\ |0i = (r2|02)(r|0) = r2r\02 + 6. (29) 

This shows that: 

n = r2r, and 0\ — d2 + 6 ± £360°. 

Since the solution of these is 

r = -, 0 = 0i - 02 T £360°, 

we obtain the same complex number for all values of the integer k, 

and in particular may take k = 0. That is, 

Zi _ ri\6i ^ n 

z2 r2\d2 r2 (30) 

so that, when two complex numbers in polar form are divided, the 
radius of the quotient is the quotient of the radii, and the angle of 
the quotient is the difference of the angles. 

6. Powers and Roots. By using (27) to multiply a complex 
number by itself n times, we find that, for any positive integral 
value of n: 

(n |0i)n = (31) 
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That the same formula holds for negative powers is seen from: 

1 110 
(n|0i )-* 

(ri|0i)n r^nOji 
= rrn\~ndi 

For a root, or power of the form l/q> where q is an integer, we 
note that, if 

(ri|^)iAi = r\e, 

then, 
ri|0i = (r^)9 = rq\qO. 

Consequently, 

ri = r*, and 0i = qO db fc360°. 

The solution of these equations for r and 9 gives: 

1/fl , n 0iT/c36O° 
r = ril/q and 0 =-- 

Since the radii r and ri are positive, r is the arithmetic gth root 
of n. In the second expression, if we take the plus sign and give q 
consecutive integral values to k, the corresponding q values of 0 
will lead to q distinct complex numbers. Any other value of k 
will lead to a complex number equal to one of the q just referred to, 
since its angle will differ from one of them by an integral multiple 
of 360°. Thus a complex number has exactly q distinct gth roots, 
given by 

(ri|0i)1/(* = 

k = 0, 1, 2, • 

\6i + /c360° 

• • q - 1. 
(32) 

This only differs from (31) in having n replaced by 1/q, and the 
added multiples of 360°, which may be omitted if we only seek one 
#th root, but must be used, with different fc, if we wish all possible 
gth roots. If 9\ is in radians, it is more convenient to write the 
angle as (9X + &2t)/<7, though this is not necessary by the conven¬ 
tion stated in the footnote3 on p. 8. 

By raising both sides of equation (32) to the pth power, and sim¬ 
plifying by (31), where p is a positive or negative integer, we find: 

(ri\9i)p/q = np/g 

k = 0,1, 2, 

(0i + fc360°), 

(33) 
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This will give q distinct values, if the fraction p/q is in its lowest 
terms so that p and q have no common factors. Thus equation 
(31) applies for all rational values of n. When we define irrational 
powers of a complex number, problem 15, p. 20, we shall find that 
these also are given by (31). The result expressed in equation (31) 
is often referred to as De Moivre’s theorem. 

Let us apply the result to the problem of finding the three cube 
roots of —8. We have: 

-8 = 

Hence by (32), 

(8\m°y^ 

k = 0,1, 2; 

and the three cube roots of —8 are: 

2| 60° = 1 + VSi, 

2jl80° = -2, 

2|300° = 1 - V3i. 

We have just seen that the equation 

zn = a + hi 

has n roots, and, in fact, have computed them. In general, in the 
complex number system, every algebraic equation of the nth degree 
with complex numbers as coefficients, which may, in particular, 
be real, has roots. Thus the construction and solution of algebraic 
equations never leads us beyond the complex number system. 

EXERCISES n 

1. Given Z\ — —2 ~f 5i, z2 — —3 — 7i, zs = 2 + 3i, z4 = 4[225°, z6 » 6)45® 

Zt = 3|7r/4, compute algebraically, and check graphically: (a) zi + z%y (b) 

Zl ~ 22, (c) 28 - 22, (d) 23 - Zi, (e) Z4 * Z6, (/) Zb/z6, (ff) Zb • 26, (h) Z6/z4f (l) Z\ + «*, 

(j) (k) Zi -f z6, (Z) 2i • 2*. 

2. Find the two square roots of —1.23 + 3.72i and plot them. 

3. Find the three cube roots of — 3 -f 4i and plot them. 

4. Compute and plot the four fourth roots of i. __ 

5. In transmission line calculations, we require the values of VzF and 

VZ/Y, where Z is the series impedance of the line, and Y is the admittance to 

ground. See problem 4, p. 160. For a certain line, subject to a 60-cycle im¬ 

pressed e.m.f., we have Z - 0.135 -j- 0.63t and Y - 1.43 X 10~» + 4.66X 

— 8 + 0 i = 8|180°. 

ot/, 180° + A:360° 
® 3 
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Compute the values of the two quantities VZF and Vz/Y for this case. 
6. Compute (2 — 2i)10. 
7. The distance from A to B is 6 miles, and AB bears 30° east of north, 

while the line BC is 8 miles long and bears 40° west of north. 
(а) Represent each of these lines as a complex number, taking the unit 

vector OU a line one mile long, due east. Find the sum of these two complex 
numbers, express it in polar co-ordinates, and hence find the length and direc¬ 
tion of A C. 

(б) Solve the problem as stated in (a), when OU is a line 2 miles long in a 
north-easterly direction. 

(c) Compare the geometric representation of the product of the complex 
numbers corresponding to AB and BC in parts (a) and (6). 

8. Describe geometrically the location of (zx + z2)/2 with respect to zx and z2. 
Do the same for (z\ + 2z2)/3. Hence show that (zx + z2 + 23)/3 is the center 
of gravity of the triangle with vertices at zXy z2, z3. 

9. Prove that the points representing the nth roots of any complex number 
are the vertices of a regular polygon of n sides. 

10. Show that when the roots of the quadratic equation 

az2 -}- 6z -f c = 0, 

where a, 6, c, are real, are complex, they may be expressed in polar form as 

y/;h~'5^- 
11. Prove that if o, 6, c are any three real numbers, either (a) the circle with 

i and —6/a -f- ci/a as the extremities of a diameter cuts the real axis (locus of 
points with zero imaginary component) or (6) the circle with 0 and — 2c/6 as 
the extremities of a diameter cuts the line which is the locus of points whose 
real part is equal to — 6/2a. Prove that the points found in (a) are the real 
roots, if any, and the points found in (6) are the complex roots, if any, of the 
quadratic equation 

az2 -f- bz 4* c = 0. 

12. If zi = n|0i, z2 = r2|02, *3 = r3|0s, and z3 = Z\ -f z2, show geometrically 
that 

ri — r2 r3 =s ri -b r2. 

Compare this result with that of problem 11 on p. 6. 
13. Given any two points A and B, neither of which is at O, the origin, prove 

that by a proper choice of the unit point U, the product of the complex num¬ 
bers represented by OA and OB may be made equal to any complex number 
different from zero, but the quotient of the two numbers is independent of the 
choice of U. 

6. Complex Variables, Power Series, Analytic Functions. We 
say that a real variable y is a function of a real variable x for a cer¬ 
tain range of values of x if, for each value of x in this range, there is 
determined one or more values of y. When there is just one y for 
each x, the function is said to be single-valued. 
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The range of a complex variable is usually taken to be two di¬ 
mensional, e.g., if z takes on all values with absolute value (radius) 
less than 2, its range on the vector diagram is the interior of a circle 
of radius 2 drawn about the origin as center. Similarly if the real 
part of z is between 1 and 3, while the coefficient of i in the imag¬ 
inary part is between 2 and 4, the range is the interior of a square. 

Since we have defined addition and multiplication for complex 
numbers, it is at once seen that such equations as 

w = 2 + 5 iZy 

or 
w = 4z2, 

define re as a single-valued function of z for all values of 2. More 
generally, any polynomial in 2 with real or complex coefficients, is a 
single-valued function of z. After the polynomials, it is natural 
to consider expressions obtained from polynomials by limiting 
processes, for example by adding on more and more terms, as: 

A0 + Alz + A2z2 + • • • + Anzn + • • •, (34) 

which is called a power series in z, or 

Ao + Ai(z — C) + Ao(z — C)2 + • • • + An(z — C)n + • • • (35) 

which is a power series in (z — C). Here C and A0> Ah etc., are 
in general all complex numbers. 

For the power series which we shall use in this chapter, the coeffi¬ 
cients will be such that when z, or (z — C) is small enough in abso¬ 
lute value, the series will converge to a finite sum. That is, inside 
some circle of the z plane, with center C, each series defines a func¬ 
tion of This function is said to be analytic at these points, or 
for the values of z corresponding to them. In Chapter VII the 
properties of such power series are discussed in detail, and in par¬ 
ticular, it is proved that they may be multiplied, differentiated, 
and integrated in the same way as the polynomials of which they 
are the limits. It is also shown that any point at which a function 
is analytic may be taken as the center C of a power series which 
converges to the function in some circle with this point as center. 

Of course, the series may not be the simplest way to deal with 
the function practically. Thus, 

1 = 1 , (s-O , (g - O2 , 
1 - z 1 - c ^ (i - c)2 ^ (i - 
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if 
\z - C\ < |1 - C|, C * 1, 

so that the function 1/(1 — z) is analytic at all points except the 
point z — 1. However, for most purposes it would be simpler to 
use the form 1/(1 — z) than any of the series. This example is an 
illustration of the class of analytic functions met in algebra, i.e., 
the class of functions obtained from the complex variable z} and 
complex constants by addition, subtraction, multiplication, divi¬ 
sion, and extraction of roots. These functions are all analytic 
except at points which make a denominator or a quantity whose 
root is taken zero. 

7. Exponential and Trigonometric Functions. We shall now 
define the exponential and trigonometric functions for complex 
values of the variable. For real values of x we have the following 
series4: 

e = 1 + -+ 
^ l! 

X1 

2! 
+ — 
+ 3! 

X6 X7 
sin x = X 

~3i + 5! 7! ' 
z2 . x4 X6 

cos X = 1 
~2! + 4! 6! 

These give one way of calculating the three functions for all real 
values of x. 

The first of these suggests a function of the complex variable z, 
namely: 

e* = i+v.+&+£+- ■ •• o»> 
Although we have written the left member e*, and continue to 
call the function defined by the series the exponential function, it 
is no longer capable of interpretation as a power when z is not real. 

The fundamental property of the exponential function for real 
values is 

e*1 • e** = e*1 + x\ 

To see if this property continues to hold, we multiply the series 

*■-1+*+£! + •• ■+%+■■ ■> 

4 The quantity e = 2.71828 • • • , the base to which natural logarithms are 

taken, is occasionally denoted by e in works on electricity to avoid confusion 

with the symbol for instantaneous electromotive force. 
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by 

and find: 

Zi z2" 
e» = i + * + f! + -' • + ^+- n\ 

e* • e" = 1 + (zi + z2) + (Zl ^)2 + 

since the 7ith term of the product 

, («i + Za)* , + -+ 

n — 1 
*l" , 22Zi 

n! ' 1 !(n - 1)! 
, . . . , z? = (zi + Z2Y 

rl(n — r)! n! nl 

by the binomial theorem. On comparing our product series with 
the defining equation (36), we see that 

e21 • 6** = ^1+22. (37) 

As all the laws of exponents were derived from this relation, they 
hold for complex values of the exponent. For example 

(ez)m = emz. (38) 

When complex values are considered, the exponential and 
trigonometric functions are intimately related. Accordingly, 
before studying the exponential functions further, we define the 
sine and cosine of a complex quantity by means of the series 

sinz - 31 + 5,-71 + 

and 

cosz = 1 - - + J( 
2! ' 4! 6! 

+ 

(39) 

(40) 

The relation between the exponential function and these two 
functions may be found as follows. Replace z in (36) by iz, and 
break up the series into two series: 

*-l + W + ^ + <$ + 

(1_li + f!-) 'M(*_5i + 5i-) 

By comparing this with (39) and (40), we find Euler'fequation: 

eiz = cos z + i sin z. (41) 
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Since (39) contains only odd powers of z, the sine is an odd 
function of z, that is, it reverses sign when the sign of z is changed. 
Similarly from (40), which contains only even powers of z, we see 
that the cosine is an even function of z, being unchanged when the 
sign of z is changed. Applying these facts, and putting — z in 
place of z in (41), we find: 

e~iz = cos z — i sin z. (42) 

The equations (41) and (42) may be solved for the sine and cosine, 
in the form: 

piz   p—iz 

sin 2 =-^—, (43) 

*'* + ( AA\ cos z =-2-• (44) 

This pair of equations may be used to reduce any trigonometric 
identity to an algebraic identity, which may be proved by using 
(37) and (38). For example, the addition theorem: 

sin (A + B) = sin A cos B + cos A sin B 

reduces, in view of (43) and (44) to 

gi(A+B)_ i(A+B) giA _ g—i'A gt'JS ~j- 

2i = 2i 2 
giA _|_ g— iA eiB — q—iB 

H 2 2i 

This is seen to be an identity when we multiply out and apply 
the laws of exponents. Conversely, trigonometric identities may 
be obtained by starting with exponential identities. By these 
methods we may show that all the formulas and identities of the 
trigonometric functions obtained for real numbers continue to 
hold when the arguments are complex. For complex, as for real 
quantities, we define the tangent, cotangent, secant and cosecant 
in terms of the sine and cosine. We note that the relations (43) 
and (44) might have been taken as the definition of sin z and cos z, 
and then the series (39) and (40) could have been deduced from 
them. 

The exponential and trigonometric functions are easily com¬ 
puted for complex values of the argument, if tables giving their 
values for real arguments are available. We begin with the ex- 



18 COMPLEX NUMBERS 

ponential function. We have from (37) and (41) 

ga+iV) — qO . eib 

= ^(cos b + i sin b) 

= e? cos b + ie? sin b. (45) 

In this formula, as in all formulas derived from (39) and (40), 
the argument of the trigonometric functions is to be taken in 
radians. 

Formula (45) gives us a means of writing any number as an 
exponential, since6 

r|0 = r(cos 0 + i sin 6) 

— e]n f (cos 6 + i sin 6) 

= elnr+1*. (46) 

Thus, if the logarithm be defined as the inverse of the exponen¬ 
tial function, we have: 

log, z = In r + i0. (47) 

Since 6 is only determined to within a multiple of 2w, a complex 
number has an infinite number of logarithms. 

From (46) we note that 

r|0 = reid, (48) 

which gives an alternative way of writing complex numbers in 
polar form. This explains why, in sections 4 and 5, we found the 
laws for 6 similar to the laws for exponents. It is occasionally 
convenient to use degrees in the right, as well as in the left member 
of (48), so that we write: 

r|A° = reiA°, 

the right member being defined by this relation, or by the conven¬ 
tion (see footnote 8 on p. 8) that A° means the number At/180. 

The sine, or cosine of a complex number may now be computed 
by using (43) or (44) together with (45). Thus we have 

sin (a + hi) 
gi(a -j-bi)  g—i(a fc+ai _ gb —at 

2 i 2 i 

6 In r means natural logarithm of r, often written loger or in advanced 
mathematical texts simply log r. 
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_ e~b(cos a + i sin a) — ^(cos a — i sin a) 
2 i ~ 

(d + e~b) . , . (d - e~6) /iim 
= -—^-“ sin a + i1-^-~ cos a. (49) 

EXERCISES III 

1. Write each of the following in the form retf, and also in the form re*^0: 

(a) 3 + 5i, (b) 3 - 5i, (c) 5(cos 00° -f i sin 60°) (d) 5|3(P, (e) 4^/4. 

2. Express each of the following in the form a -p bi: 
(a) e*V2, (b) e*v, (c) e*3ir/2, (d) ci2,r, (e) e-8»V. 

3. Express in the form a -f W: 
(a) 3et20°, (6) -2ei>/3, (c) log, (2 + 2i), (d) log, (-1), (e) log, i. 

4. Compute the value of e-02-.03t to three decimal places, (a) by using (45) 
of the text and (b) by a direct use of the series (36) of the text. 

6. Prove that, for z complex: 

(a) sin2 z -f- cos2 z — 1, (b) cos 2z = cos2 z — sin2 2, (c) sin 2z — 2 sin z cos z. 

6. (a) Show that any polynomial in sin x and cos x may be reduced, by means 

of (43) and (44) to a first degree expression in terms of the form ein* and e~««, 

where n is an integer, and then further reduced to a sum of terms each of the 

form a sin nx and b cos nx by means of (41) and (42). (b) Illustrate part 

(a) for sin4 x, sin2 x cos2 x. (c) From the result of part (b) find J* sin4 x dx and 

£ sin2 x cos2 x dx. 

7. If w * sin'1 z is a quantity for which z — sin w, prove that 

sin-1 2 = -r log, (iz db '1 - 22) 

= i log, (dbVl 

8. If tan 2 *-, prove that, for z complex, 
cos 2 

tan 2 = 
etz _ e-iz 

i(eiz -f e~iz) 

2 tan 2 

1 — tan2 2 

9. If tan'1 2 * w means z = tan w, prove that 

. . i i i + z tan ^ = -,°ger_. 

10. (a) If 2 is a complex function of a real variable /, z « x(0 + iy(0» prove 

that 
d2 _ A2 dx .dy 

dt ” Ii-0 Af “ dt +ldt ' 

. . U/C/ 

:dT + l5<" 

(6) Similarly to (a) show that 
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(c) Apply (6) to find a complex function of t whose derivative is e(a+W)<. 

(id) Separate the solution of (c) into real and imaginary components, and so 

find the value of £ eat cos bt dt. 

11. If Ay and a are constants, but t is a variable, which we may think of as 

the time, the complex number 

A\jit -f a — 

is called a rotating vector. 

(a) Justify this terminology by showing that the vector representing this 

number in the complex plane is of constant length, and rotates uniformly with 

frequency co/2tt. 

(b) Prove that the product of any two rotating vectors is a rotating vector 

whose frequency is the sum of the frequencies of the two vectors. 

(c) Prove that the quotient of any two rotating vectors is a rotating vector 

whose frequency is the difference of the frequencies of the two vectors. 

(d) State the special form of (6) and (c) which applies when one of the vec¬ 

tors is of frequency zero, i.e., a constant vector. Similarly the form which 

applies when the two vectors are of the same frequency. 

(e) Show that the sum or difference of two rotating vectors of the same fre¬ 

quency, is a rotating vector of the same frequency, either from the geometric 

interpretation, or by using the identity 

i4ei’M+<*) db (»<+&) = e^t(Aeia — Be#>). 

Note that the sum or difference of two rotating vectors of different frequencies 

is in general not a rotating vector. 

12. Show that each of the three rotating vectors zi — 15|377£ — 45°, 

= 5|377S, z3 = 12|377l -f 30° rotates sixty times per second, and find in the 

form of a rotating (possibly stationary) vector each of the following: 

(a) Zi 4* 22, (b) 22 - 2g, (c) Z\ + 23, [d) Z\ * Zi} (e) 22/2i, (/) 22 * Z3, (ff) Z2/z9. 

13. Noting that Em sin (ut+a) is the imaginary component of the rotating vec¬ 

tor Em\col 4- a, and the real component of the rotating vector Em]^t 4- a — 90°, 

determine the rotating vector 

(a) whose real component is 6 sin (85t — 20°), 

(b) whose imaginary component is 5 sin (63t — 35°), 

(c) whose imaginary component is 7 cos 54t 4- 6 sin 54tt 

(d) whose imaginary component is 3 cos (45< 4- 125°). 

14. Prove that 

cos (a 4- bt) 
(e*4- . (eh — c~b) 
- :r   cos a — l -— -- sin a. 

15. If * em logg zt where 

log* z = In r 4- i(8 db 2for), k integral, 

(a) Prove that, if m is an integer, this leads to just one value for all kt the 

ordinary mth power of z. 

(b) If m is a rational number, in its lowest terms p/q, this leads, for different 

values of fc, to one of the q values of this power as found in section 5. 
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(c) If this is taken as the definition of zm, there are an infinite number of mth 

powers when m is irrational, or complex. 

16. Using the definition given in 12, (c), compute one value of each of the 

following in the form a -f hi. 

(а) 3 A (6) 23(c) (4 - 4i) v/3. W (* + VUi)*, («) (V3 - i)(2+2i>. 

17. (a) Prove that, if z be changed by 27rf, e2 is unchanged. Hence, if k is 

an integer, 
f>zdc.2kv\ = g*. 

(б) For this reason e* is said to be periodic, and to have the periods 2fari. 

Prove that 2nd is, numerically, the smallest period. 

18. (a) Verify that the sum of the geometric progression 

, . . e(*+D** — )«—■<? 2 
eh e2tz + . . • -f- ent* is -t------ 

txz — 1 iz iz 
e2 _ c~2 

(&) From this, and the result obtained when z is replaced by —z, deduce that; 

sin z -f sin 2z -f • • • •+* sin nz = 

- cos 

cos z + cos 22 -f • • *4- cos nz - 
(n+i) .2 

2/Z ~ 8in 2 

19. Prove that, if z — a bi} 

(a) |e*| = (&) |c_z| = e~at 

, \ \eh - e~h\ ^ ^ eb -f e~h 
(c) 1 2 1 - lsm zl = 2— 1 

... ~ e~h\ ^ i . ^ -f 
(<f) J-.r- g COS Z\ ^-^- 

8. Hyperbolic Functions. If we omit the i from the right mem¬ 
bers of equations (43) and (44), or leave out the minus signs in the 
series (39) and (40), we obtain the hyperbolic functions.6 Using 
the customary abbreviations sinh, read hyperbolic sine, and cosh, 
read hyperbolic cosine, we have: 

sinh z = - ^ - > (60) 

u e5 + e~* , \ 
cosh 2 = —g— > (51) 

• For the origin of the name, see problem 3, p. 23. 
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sinh z = z + --j + ^ + jjTj + • * *, (52) 

cosh 2==1+|] + |~j + |t+‘ * * • (&*) 

Either the first two, or the last two, may be taken as definitions, 
and the other two then deduced from them, by means of (36). 
The hyperbolic functions for real values of the argument are tabu¬ 
lated in most collections of mathematical tables. The direct 
functions are easily found from tables of exponential functions, 
but for finding inverse functions, tables of the functions themselves 
are desirable. Analogously to the corresponding trigonometric 
functions, we define tanh (hyperbolic tangent), coth (hyperbolic 
cotangent), sech (hyperbolic secant) and cosech (hyperbolic 
cosecant) by the relations: 

tanh z — 

sech z = 

sinh z 
cosh z9 

1 
cosh z’ 

coth z 
cosh z 
sinh z* 

cosech z = —:—i—. 
sinh 2 

(54) 

The hyperbolic functions enable us to simplify the expression 
for the sine or cosine of a complex number. Thus, from (49), 
combined with (50) and (51) we deduce 

sin (a + bi) = cosh b sin a + i sinh b cos a. (55) 

By comparing (43) and (44) with (50) and (51), we find the fol¬ 
lowing relations between the trigonometric and hyperbolic func¬ 
tions: 

sin iz = i sinh 2, cos iz = cosh 2, ( . 
sinh iz — i sin 2, cosh iz — cos 2. ' * 

From these equations we may deduce relations involving hyper¬ 
bolic functions from those involving trigonometric functions by 
replacing the arguments by i times new arguments. Thus, in (55) 
we may put a = iaf, b = ibf} and find, after making use of (56) : 

i sinh (o' + ib') = cos bf i sinh a' + i2 sin b' cosh o'. 

On dividing this by i} and dropping primes, we have: 

sinh (a + bi) = cos 6 sinh 0 + i sin b cosh a. (57) 
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By this method, we find for hyperbolic functions: 

cosh2 z — sinh2z = 1, (58) 

cosh (A + B) = cosh A cosh B + sinh A sinh B, (59) 

sinh (A + B) = sinh A cosh B + cosh A sinh B> (60) 

from the corresponding formulas for trigonometric functions. 

EXERCISES IV 

1. Prove that 

cos (a -f hi) = cos a cosh 6 — i sin a sinh 6. 

2. Prove that 

cosh (a -f hi) = cosh a cos 6 + i sinh a sin 6, 

(a) By using problem 1 and (56), 

(b) By putting A — a, B = hi in (59), 

(c) By a direct application of (50) and (51), combined with (43) and (44). 

3. In Fig. 4, CD is an arc of the circle .r2 4* y2 ~ 1 with center at the origin 

A. If the shaded sector AC I) has an area equal to uf2, we have BD * sin ^ 

AB = cos u, CD = tan u. For Fig. 5, if CD is an arc of the hyperbola 

x2 — y2 = 1, and the shaded sector is u/2 in area, prove that BD = sinh u, 

AB = cosh «, CD = tanh w. This analogous set of relations of hyperbolic 

functions to a rectangular hyperbola to those of circular functions to the unit 
circle is the origin of the terminology. 

4. If the first formula defines 0, — ^ ^, the Gudermannian of uf gd u, 

prove that: 
sinh u = tan 0, cosh u * sec <j>, 

tanh u — sin 0, coth u = cosec 0, 

sech u = cos <t>, cosech u = cot 0, 

also 
i* *■ In tan (t/4 + 0/2), 0=2 tan”1 — jr/2. 
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6. If u *= 1, compute <t> from the last formula in problem 4, and verify the 

first two relations of that problem for the values taken from the tables. 

6. If sinh*1 z — w means z — sinh w, prove that 

sinh-1 z — log<j (z dt VY -f- z2). 

7. If tanh-1 z — w means z — tanh w, prove that 

tanh*1 z = \ log* • 
Z 1—2 

8. In the calculus we found 

/ 
dx 

T+~x 2 
tan*1 x, 

1 + z 
\ — x 

Using problem 9, p. 19, express the first integral in a form analogous to that 

written for the second one. Then, using problem 7 above, express the second 

integral in a form analogous to that written for the first. 

9. Using problem 7, p. 19 and problem 6 above, express each of the integrals 

and f= In (x -f- Vi -f x2) 
J v 1 + x2 

in another form, similar to that written for the other integral. 

10. Prove that, if z = a + hi, 

|sinh b\ ^ |sin z\ ^ cosh 6, 

|sinh ^ |cos z\ ^ cosh 6, 

|sinh a| ^ |sinh z\ ^ cosh a, 

(sinh a\ ^ |cosh zj ;§ cosh a. 

11. The Bessel function of order n, 

Jn(z) « 
^ (-\)kzn+2k 

^r02n+2 m(n + k)\ , where 01 = 1 in the first term, is one solution 

of the differential equation 

dhu 1 dw 
w ~ 0, 

as will be shown in problem 10, p. 230. 

(a) Assuming this fact, verify that the modified Bessel function of order n, 

In(z) = Jn(iz) is one solution of 

dho 1 dw / 7j?\ 

dz2 z dz \ z2/ 
w 0, 

and that, as thus defined, 

• zn+2k 

nW = kZo2n+2kkUn + *)>' 

(6) Show that, if 

_ y. (-l)M* . _ y, (-l)**2+4* 
Z *T0 2«(2fc!)! ’ £0 22 -M*[(2Jfc + 1) !)*' 



CONFORMAL MAPPING 25 

then 
7o( Viz) = her 2 + i bei z, 

and that this last function is a solution of the differential equation 

dzw 1 dw 

dz2 z dz 
iw = 0. 

(c) Show that, if z is a real quantity, then Jn(z) and In{z) are real, while in 

general IQ(Viz) will be complex, having the real quantities ber z and bei z as 

its real and imaginary components, respectively. 

9. Conformal Mapping. Since all the possible values of a real 
variable may be represented by the points on a line, when we have 
two real variables, one of which depends on another, we may repre¬ 
sent the relation between them graphically by taking two lines, 
one for each of the variables, as the X and Y axes of co-ordinate 
geometry, and indicate that a value y corresponds to a value x by 
plotting the point (r, y). A less convenient, though possible way 
of indicating the correspondence is to merely take the two lines, 
and indicate by some symbol, say the same letter, corresponding 
values. Thus, in this sense the C scale of a slide rule, together 
with the L scale graphically depict the logarithmic function, the 
distance from 1 to, e.g., 3 on the C scale being a constant times the 
logarithm of the distance from 0 to 3 on the L scale, since the first 
is proportional to log 3, and the second to 3. 

For the complex variable, we must use the latter method, since 
a single complex variable has a real and an imaginary component, 
so that the first type of graph for a complex variable would require 
four dimensions. Accordingly we take two planes, one for the 
independent complex variable, usually denoted by z — x + iy, 
and one for the dependent variable, which is a function of z, 
w = u + iv. Here x} y, u and v are all real quantities. The 
functional relation between w and z will determine, at least for 
some region of the z plane, a value of w for every value of z. If a 
sufficient number of corresponding points are marked, a fair notion 
of the relation is given. We may regard this correspondence of 
the points in the z and w planes as giving a map of one plane on 
the other. If we think of the planes as superimposed, we have a 
transformation of the plane into itself, and we sometimes speak of 
the function w = f(z) as a transformation of the plane. 

As a first example, consider the function: 

w - (2 + 2i)z + (—3 - Si). (61) 
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We begin by separating the real and imaginary parts, writing 

u + iv — (2 + 2 i)(x + iy) — 3 — bi 
= 2x — 2?/ — 3 + (2.r + 2y — 5 

By equating real and imaginary parts, we find from this 

u = 2x — 2y — 3, 
v = 2a; + 2y — 5. 

(62) 

These equations, which give u and in terms of a: and y enable 
us to find the image of any given point in the z plane. For example, 
we find as the points corresponding to 

z — x + iy — 0, 2, 2 + 2 i, 2 i, 
w = u + iv = — 3 — 5z, 1 — — 3 + 3f, — 7 — i, 

respectively. These values could, of course, have been obtained 
directly from (61), but if more than one is wanted it is worth while 
carrying out the simplifications which lead to (62) once for all. 

If a curve in the 2 plane is given, we may construct its image 
approximately by taking a sufficient number of points on it, and 
joining their images by a smooth curve. If the equations of the 
transformation are complicated, this is the only practicable method. 
In simple cases, like the present one, we may transform the equa¬ 
tion of the curve, given in the form7 y — f(x), or F(z, y) = 0, by 
finding x and y in terms of u and v. We solve equations (62) as 
simultaneous in x and y, and find: 

* = f+i+ 2, 
u V . 1 

y= ~4 + 4 + 2 

(63) 

From these equations, we see for example that the circle 

x2 + y2 = 1 (64) 

in the z plane, has as its image in the w plane the curve whose 
equation is 

7 We recall that f(x) means any function of x, and F(x,y) any function of 

x and y, that is, any quantity which is determined by the values of the inde¬ 

pendent variables, x in the first case and x and y in the second. The function 

does not need to change with these quantities, though it usually does. Thus 3 

is a function of x> or a function of x and y. When several different functions 

occur in the same problem, we use other letters, as g{x)> H{x, y) for them. 
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(i+i+’H-s+J+s)’- 
This may be simplified to 

u2 + vl + Qu + lOv + 26 = 0, 

or (65) 
(u + 3)2 + (v + 5)2 - 8, 

which shows that it is also a circle. 
As an additional example, we shall find the images of the lines 

through the points previously used, 

s = 0, x = 2, y = 0, y = 2. 

The images are 

w v + 8 = 0, w + = 0, + a + 2 = 0, —u + ^ — 6 = 0, 

Fig. 6 Fig. 7 

respectively. We indicate the points and straight lines in Fig. 6, 
and their images in Fig. 7. 

We have computed the images of both the vertices and the sides. 
Logically, it was unnecessary to calculate the vertices separately, 

since they are located as the intersections of the sides. Practically, 
their values serve to check the computation. In this transforma¬ 
tion, because the equations (63) are of the first degree in u and v, 
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straight lines go into straight lines. This fact would give the sides 
from the vertices. However, for general transformations, straight 
lines do not go over into straight lines, but into curved lines, as we 
shall see in the next illustration. 

If a single curve only were to be transformed, instead of deriving 
(63) from (62), it would be simpler to derive (63) directly by solv¬ 
ing (61) for z in terms of w: 

w + 3 + 5i 
2 + 2 i ’ 

u + iv + 3 + 2 — 2i 
2+2i 2^~2i ’ 

(M+2)+<-M+0- w 
A continuation of the process used for the full lines in Fig. 6, 

shows that the dotted lines are transformed as indicated in Fig. 7, 
The effect of the transformation (61) on the square network is to 
scale it up in the ratio 1 to 2x^2, to rotate it about the origin 
through 45°, and then to slide it parallel to itself, or to translate 
it by the vector OA or —3 — 5i. Further calculation would show 
the same effect on any square network, however fine. Moreover, 
from the nature of the transformation, the points inside a small 
square bounded by four lines of the network in the z plane go over 
into points bounded by the images of these lines. Consequently, 
we suspect that any figure in the z plane is changed into its image 
in the w plane by the combination of scaling up, rotating, and 
translating described above. We verify this conjecture by writing 
(61) in the form 

w = 2y/2 |45^ • r\d_ -3 - 5i 

= 2V2 r\d + 45° —3 — hi. (67) 

This shows that if any point z = r|# be selected, its image w is 
found by scaling up the vector joining it to the origin in the ratio 
2V2, rotating it through 45°, and finally adding the vector — 3 —5i, 
or translating it by this amount. Consequently, any figure formed 
of a collection of points is imaged by the same process. From this 
point of view, we could write down (65) at once as the image of 
(64). For the latter is the equation of a circle of radius one, with 
center at the origin. The scaling up changes the radius to 2V2, 

z = 

x + iy = 
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or V8, the rotation leaves it unchanged, and the translation takes 
the center from (0, 0) to (—3, —5). 

It is not hard to see that the reasoning just used applies to any 
first degree expression in z, and shows that the mapping defined by 
it consists of a combination of scaling up or down, rotation through 
an angle, and a translation. 

As a second example, consider the function 

w (68) 

and let us find out its effect on the lines 

x = 1, 2, 3, • - • 

y = 1, 2, 3, • • • 

of Fig. 6. As we wish to transform lines, we require x and y in 
terms of u and v. We apply the method used to obtain (66). We 
begin by solving (68) for z: 

3w + 12 

or 

x + iy = 3 + 
U + IV 

Q 12 u — 12 iv 
~ + ' tt* + v* 

On equating real and imaginary parts, we obtain from this 

r-3+J^„ 
u~ + v- 

—12?; 
(69) 

y U2 + V2 

These equations show that the images of the lines 

X = 0, X = 1, y = 0, y = 1; 

are the curves: 

3(w2 + v2) + 12 u = 0, 2(u2 + v2) + 12m = 0, 
v = 0, m2 + v2 + 12t> = 0, 

respectively. Similarly we may apply the equations (69) to the 
other lines of Fig. 6, and find as the image of the network of squares 
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there shown, the curvilinear network shown in Fig. 8. The square 
having one vertex at z = 3 has as its image in the w plane an 
infinite region. In fact, the equation (68) shows that, as z ap¬ 
proaches 3, the numerical value of the corresponding w becomes 
infinite. On the other hand, equations (69) show that, as w 

recedes from the origin in any way whatever, as long as its dis¬ 
tance from the origin becomes infinite, the corresponding value 
of z will approach 3. We express this situation briefly by saying 
“the point at infinity” in the w plane is the image of the point 

2 = 3. 
It will be noted that the transformation just discussed takes 

straight lines into curves. As the lines parallel to the x-axis go 
into circles tangent to the w-axis, while lines parallel to the ?/-axis 
go into circles tangent to the jy-axis, the square network is trans¬ 
formed into a network formed of two series of curves, here circles 
(or in two cases the axes themselves), intersecting at right angles. 
Further, if the network were taken very fine, the curvilinear 
meshes would have sides nearly straight, and for any one mesh 
nearly equal. Thus, for a small portion of the plane, the map 
takes squares approximately into squares. This is a characteristic 
property of all maps obtained from analytic functions. It may 
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be made plausible as follows. For a function of a real variable, 
which is differentiable so that its graph has a tangent at every point 
a small portion of the graph may be considered as straight and re* 
placed by a small part of the tangent. This is done whenever we 
interpolate in a mathematical table by using proportional parts. 
But, at a point C where a function of a complex variable is analytic 
it is differentiable.8 For a small region surrounding the point C, 
the transformation will, approximately, have the same effect as 
the first two terms of the Taylor’s series in powers of z — C: 

w = w(C) + w'(C)(z -C) + w"(C) + • • • ’ (?°) 

and these two terms, except when the derivative wf(C), i.e., dw/dz 
evaluated for z = C, is zero, give a linear transformation, which 
takes figures into similar figures, and in particular squares into 
squares. The transformations which preserve shape for small 
figures, and hence preserve angles are said to be conformal, so that 
the mappings obtained from analytic functions in general are 
conformal. Even for fairly simple functions, there may be isolated 
points at which the functions have zero derivatives, or fail to be 
analytic, and consequently at which the preservation of angle 
property breaks down. 

EXERCISES V 

1. Sketch the image in t he w plane of the square in the z plane bounded by 

the lines x -■ 0, x ~ 1, y — 0, y = 1, for each of the following transformations: 

(a) w - 5z -f- 2, (h) w = —2iz + 5, (c) w — —42—0, (d) w = izy 

(c) w = (3 + 402, (/) w = 3iz + 5 + 2i, (g) w = (5 + 50* + 2 + 3i, 

(h) w - (1 + V30* ~ 21, (0 w = 2|40^ * z - 4|125°, 
(j) w = a]A?-z + b\B°_. 

2. (a) Deduce the equations for changing the co-ordinates of a point to 

those of the point when referred to parallel axes through the point xo, yo by 

using the transformation 

w — z — .r0 — iy0. 

(b) Deduce the equations for changing the co-ordinates of a point to those 

of the point when referred to new axes through the same origin making an 

angle a with the old axes by using the transformation 

w = |— a • 2. 

8 In Chapter VII we shall show that, conversely, if a function of a complex 

variable has a continuous derivative in some two-dimensional region containing 

a point C inside it, the function is analytic at C. 
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8. Find the image of the curve 2x2 — 3xy -f 2y2 = 6 under the transforma¬ 

tion w = |45^ • z. 

4. Find the image of the co-ordinate axes for each of the following trans¬ 

formations : 

(a) w 

(e) w 

1 /»\ 2 i 
- * (6) u> * —, 
2 2 

—3 + 5z 

(f) w — 
3z -f- 2f 

5. Sketch the image of the square bounded by the lines x — 10, rr *= 10.1, 

y «= 10, y = 10.1 for each of the transformations of problem 4. 

6. For each of the transformations of problem 4, find which point in the z 

plane has as its image the “point at infinity” in the w plane. What is the 

image in the w plane of the “point at infinity” in the z plane? 

7. Find the equation of the image of the circle x2 4~ y2 ~ 1 under the trans¬ 

formations: 

(a) ?/’ 
1 — z 

2-1-2 z’ 
(b) w = 

z -f i 
2z - 2i ' 

8. (a) If, as in problem 8 on p. 6, we denote the conjugate of w by w> show 

that, if its locus has more than one real point, the equation 

s mw -f S w 4- S w + t =0, 

where 5 and t are real and S inay be complex, always represents a circle, unless 

when it represents a straight line unless 8 = t - 0 as well. Show also 

that, by suitably choosing the constants, this equation may be made to 

represent any given circle or straight line. 

(b) Observing that if w = ,(AD- BC * 0), then w = , 
Cz+D Cz+D 

and using the result of (a), show that imder this transformation all the circles 

and straight lines of the w plane are the transforms of circles or straight lines 

of the z plane. Problems 4 and 7 illustrate this fact. 

(c) Solve the equation given in (b) for z in terms of w. Since it is of the same 

form as the original expression, the result of (b) shows that all the circles and 

straight lines of the z plane transform into circles or straight lines of the w plane. 

9. (a) Using the identity: 

Az + B A 1 

Cz 4- D “ C + C2 / D\ , 
BC - AD\Z +Cj 

show that every transformation of the type 

w 
Az 4- B 

Cz 4- D 1 
AD - BC* 0, 

can be looked upon as a combination of a translation, a rotation and scaling 

up or down, a transformation of the type 1/z, and a second translation, unless 

C « 0, when only the first two transformations need be used. 

(b) Show directly that the transformation w = 1/z takes each equation of 

the form a(x2 4* V2) + bx + cy 4“ d = 0, where the coefficients are all real, 
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into an equation of similar type in u and v, and conversely that an equation of 

this type in u and v is taken into a similar equation in x and y. 

(c) From (a) and (b) prove that every transformation of the type mentioned 

in (a) takes all the straight lines and circles of the z plane into straight lines or 

circles in the w plane, and conversely. 

Az 4- B 
10. (a) If w = — -g, AD — BC ^ 0, and wh w2 are the images under 

this transformation of Zi and z2, deduce the relation: 

w — W\ __ (Cz2 -f D\ z — Z\ 

w — w2 V^i + D/ z — z2 

(6) Show from the property of an angle inscribed in a circular segment, 

that the locus of a point z such that the angle of the complex number 

(z — Zi)/(z — z2)is kor 7r -f k is a circle through the points zy and z2. 

(c) By combining the results of parts (a) and (6), prove that the transforma¬ 

tion of (a) takes all the straight lines and circles of the z plane into straight lines 

or circles of the w plane, and conversely. 

11. Find the image of the line x — 3 under the transformation w = z2. 

12. Using polar co-ordinates in both planes, find the images of the lines 

6 — 0°, 45°, 90°, and 135° as well as the images of the circles r = 1, 2, and 3 

for each of the following transformations: 

(a) w — z2, (b) w = zs, (c)w = Vz, (77) w — zn. 

13. Recalling that the angle of intersection of two curves is defined as the 

angle between their tangents at the point of intersection, and that the trans¬ 

formations here considered take tangent curves into tangent curves, prove 

that, if two curves intersect at the origin in the z plane at an angle Af their 

images in the w plane intersect at an angle 2A, under the transformation of 

12 (a); 3A under that of 12 (b); A/2 \mder that of 12 (c) and nA under that 

of 12 (d). Note that this does not contradict the statements made at the end 

of section 9, since the functions defining the first two transformations have 

a zero derivative at the origin, that defining the third fails to be analytic at the 

origin, since its derivative becomes infinite, and the last function has a zero 

derivative if n is greater than unity, and fails to be analytic if n is less than 

unity. 

14. Find the images of the straight lines through the point C of the z plane 

under the transformations: 

(a) it? = B -h D(z - U)2, (b) w - B A- D(z - Ow. 

16. (a) If, at a point C, the first derivative of a function is zero, but the 

second is not zero, the function may be approximated, near C, by the first two 

non-zero terms of its Taylor’s series in powers of (z — C)\ 
(z _ C)2 

w = w(C) + wf,(C) —— , approximately. 

From this and 14 (a) show that the transformation defined by the function 

doubles angles at the point z = C, w = w(C). 

(b) When the first, second, etc., up the two (n — l)st derivatives are zero, at 
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C, the first two non-zero terms of the Taylor's series are: 

(z — C)n 
w — w(C) -f w(n) (C) —-, approximately. 

From this and 14 (6) show that the transformation defined by the function 

gives angles at the point w — w(C) which are n times the corresponding angles 

at the point z = C. 

10. Fundamental Regions. In most of the cases so far consid¬ 
ered, z occurred to the first degree only, so that there was just one z 
for each w. For more complicated functions there may be several 
different values of z which give the same w. Thus, consider 

w = zn, n a positive integer. (71) 

We introduce polar co-ordinates, putting 

Then 

w — n|0i, z = r|0. 

ri = rnf 0i = nd. 

This shows that the circles r — 1, 2, 3, * • - in the z plane are 
transformed into the circles n = 1, 2W, 3n, ■ • • in the w plane. 

O AB 

Fig. 9 

For n = 3, the first two of each set are shown in Figs. 9 and 10 
respectively. The straight lines 0 = k in the z plane are trans¬ 
formed into the straight lines 0 = nk in the w plane. Thus the 
points of the z plane in the sector between the lines 0 = 0 and 
6 — 360°/n, together with those on the first line, give rise to values 
of w which fill the entire w plane, and give each value just once. 
If we consider z to be restricted to this sector, BOD in Fig. 9, while 
w is unrestricted, there is one z for each w and one w for each z. 
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A region of the z plane which is mapped by a given function into 
the entire w plane, such that each point of the w plane is the image 
of just one point of the region, is called a fundamental region for 
the function. Evidently, for w = zn, the sector between the lines 
6 — a, 6 = a + 360°/n, together with the points on one of these 
lines, gives rise to a fundamental region. Thus, in the present 
example, we may regard the z plane as made up of n fundamental 
regions, and if we map a set of co-ordinate lines in one of them, on 
the entire w plane, we will have at the same time mapped the 
corresponding lines for the other regions. 

If we required the images of the lines x = constant, y ~ constant, 
our problem would be more difficult. We illustrate for the case 
n = 3, so that the transformation is 

w = 23. 

This leads to: 

u + iv = (x + iyY 
= x3 — 3 xy2 + i(3x2y — yz). 

Consequently, 

u = x3 — 3 xy2, v = 3 x2y —j/3. (72) 

By solving the first equation for y, and inserting its value in the 
second equation, we find: 

27xV = (8.r3 + u)2(x3 — u). 

which gives the image of the lines x = constant. For example, 
for x = 1, we have 

27v2 = (8 + u)2{ 1 - u). (73) 

Similarly, by solving the second equation of (72) for x and insert¬ 
ing the result in the first, we have: 

27y*u2 = (v - 8y*)2(v + t/3), 

which gives the image of the lines y — constant. 
Even in this case it might bo simpler to plot the image curves 

directly point by point. For example, when x ~ 1, equations (72) 
become: 

u = 1 - 3y2, v = 3y - y*, 

which give the co-ordinates of the curve (73) expressed parametri¬ 

cally in terms of the variable y. 
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As a problem of different character, we consider the mapping 
defined by the function 

w = sin z. 

We deduce from this equation: 

u + iv — sin (x + iy) 

— sin x cosh y + i cos x sinh y 

by applying equation (55), p. 22. On equating real and imaginary 
components, we find 

a — sin x cosh y, 

v — cos x sinh y. 

From these we may plot the curves which are the images of the 
straight lines x = constant, y = constant, point by point. How¬ 
ever, we may carry out the elimination of x and y respectively, by 
using the relations: 

sin2 x + cos2 x = 1, (75) 

and 

cosh2 y — sinh2 y = 1, (76) 

this last being equation (58), p. 23. From (74) we have: 

u v 
sin x ——r— , cos x = -r-i— , 

cosh y sinh y 

and if these be squared and added, we have in view of (75): 

cosh2 y 1 sinh2 y 

Similarly we may write 

cosh y = t~~~~ , sinh y = —— . 
sin a; y cos x 

square these, subtract, and use (76) to get: 

Equation (77) shows that the lines y = constant go into 
ellipses, except when y = 0. When y — 0, we see from (74) that 
v = 0, and Similarly it follows from equation (78) 
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that the lines x = constant go into hyperbolas, except when 
sin x = 0, or cos x — 0. When sin x — 0, we see from (74) that 
u = 0. When cos x — 0, we see from (74) that v = 0 and u ^ — 1 
or u ^ 1. 

For this function sin z we may take, as a fundamental region in 
the z plane, the part of the plane above the a>axis and between the 
lines x — 0 and x = 2t, together with the boundary points lying 
in the first quadrant. For, as y increases from zero to infinity, the 
ellipses (77) start with the portion of the a>axis between — 1 and 
+ 1, and gradually expand to fill up the plane. On the other hand, 
for any one ellipse, y is constant, and as x increases from 0 to t/2, 
equations (74) show that the point moves in the negative direction 
along this ellipse in the first quadrant around from the y-axis to 
the x-axis. Similarly we see that increasing x to t, 3t/2 and 2t, 
moves the point around the ellipse through the fourth, third and 
second quadrants back to the 
starting point on the positive y- 
axis. In Fig. 11 we have drawn 
the ellipses for y = 1,2 as well as 
those portions of the hyperbolas 
which correspond to the parts of 
the lines x — 1, 2 for which y is 
positive, i.e. in the fundamental 
region described above. The 
image of the square A BCD of 
Fig. 6 is the line AFBCD of 
Fig. 11, the side AB being 
mapped on the line AF together 
with the part folded back on itself FB. F is the representation 
of the point z = t/2, and at this point angles are doubled9 so 
that a straight angle of 180° goes into a re-entrant angle of 360°. 
At all points except F,w — 1 and F',w = — 1, angles are preserved. 
The ellipses and hyperbolas all have their foci at these points, and 
hence cut each other at right angles from the relation of the tangent 
to an ellipse or hyperbola to the focal radii. 

9 As w - sin z, w' = cos z = 0 when z = t/2, while w" ^ 0, so that this 

is in accordance with problem 15, p. 33. 

Fig. 11 



38 COMPLEX NUMBERS 

EXERCISES VI 

1. Find the image of the lines x = 1 and y — 1 under the transformation 
w - Vz, by solving the equation for 2 in terms of w. The images of the lines 
x * constant under this transformation give the lines of flow for an incompres¬ 
sible fluid moving between two perpendicular walls in a steady, irrotational 
manner. 

2. Find the image of the line x — 2 under tho transformation w — by 
the method used in problem 1. The lines x = constant for this transformation 
give the lines of flow of a fluid moving between two walls making an angle of 
60°. 

3. Show that the portion of the 2 plane between the lines y — 0 and y * 2wt 
together with points on the former line, may be taken as a fundamental region 
for the transformation w - e*. Find the images of the lines x = constant, 
y = constant. 

4. If w — 2 + c3, one possible fundamental region is the part of the 2 plane 
between the lines y — — t and y — 71-, together with the points on these lines 
for which x ^ 0. Find the images of these lines, and also the image of the line 
y = 0. Also plot by points the images of the lines x — 1 and y — ir/2. The 
images of the lines y — constant for this transformation give the lines of flow 
of a fluid flowing from a channel bounded by two parallel walls out and back 
around these walls. Or they give equipotential lines between the plates of a 
condenser, near the edge of the plates. 

6. The transformation w =2 + 1/2 takes the part of the 2 plane inside — 
or outside — the circle of radius one with center at the origin, into the entire 
w plane. Taking the outside of the circle as the fundamental region, plot the 
curve in this region whose image under the transformation is the line v = 1: 
The curves in this region whose images are the lines v ~ constant are the lines 
of flow for a fluid flowing past a cylinder. 

6. (a) Plot the curves in the 2 plane whose images under the transformation 
w * i log« 2 are the lines u = constant, v — constant. The curves whose 
images are the lines v — constant give the lines of flow about a rotating cylinder. 

(b) Plot the curve whose image under the transformation w — z -+ l/z + 
i logtf z is the line v « 1. This is one of the lines of flow for a fluid moving past 
a rotating cylinder. 

7. (a) Show that the transformation w *2 + 1/2 may be written 

w — 2 (2 — 1)2 
w+“2 ~ (2 + l)2 * 

(6) Show from (a) that the angle of —- is twice the angle of —-— 
z + 1 w + 2 

Use 

this fact to plot the image of the curve tan angle of ■ * 4. 
Z -j- L 

(c) Plot, by points, the curve in the w plane which is the image of the circle 
(x — .2)2 + (y — .3)2 * 1.53. This curve is an example of the Joukowski 
aerofoil. It is possible to find the stream lines for flow past it by first finding 
them for the circle of which it is the transform as in problem 5, and finding 
their transforms. 
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8. (a) If the point on the surface of the earth with latitude ^ and longitude 

9 is plotted in a plane in accordance with the equations 

ri = tan ^ -f 45°^, 6X = 6, 

n and 9i being polar co-ordinates, we obtain a stereographic map. If we use 
the equations 

x = In tan -f 45°^, 

V = 9, 
we obtain Mercator’s projection of the sphere. Show that if z *= x + iy on 

the Mercator map, and w = 7*1 |0i for the stereographic map, the maps are re¬ 
lated by the transformation 

w — es. 

(b) On the sphere a differential displacement along a meridian is propor¬ 

tional to d<f>, while that along a parallel is proportional to do cos <t>, so that the 

angle A made by a differential element of a curve on the sphere with a meridian 

0 = constant is such that tan A — cos d9/d<f>. Find drx and dOx for the 

stereographic projection, and hence the tangent of the angle made by an ele¬ 

ment with the image of a meridian, a radius vector. Also find dx and dyt and 

hence the tangent of the angle made with the image of a meridian, a parallel 

to the r-axis, for the Mercator projection. The fact that the three angles are 

equal shows that the two types of maps each preserve angles. That one would 

do this if the other did follows from the conformal character of the transforma¬ 

tion W ~ €z. 

9. Find a fundamental region for the transformation w = cos z, and the 

equation of the images of the lines x = constant, y = constant. 

10. Find the image of the square ABCI) of Fig. 6 under the transformation 

w = cosh z. 

11. Plot the images of the lines x — 1, y = 1 when w = sinh z. 

12. Find the curves whose images are the lines u = constant, v = constant, 
z_1 

when vo = log j. The curves whose images are u = constant give the 

lines of force for the magnetic field or the right sections of the cylindrical equi- 

potential surfaces for the electric field due to two parallel wires, carrying 

currents of equal intensity and opposite directions. Or they give the equi- 

potential lines for a conducting plate of material with very great resistance 

connected with the two poles of a battery. 

13. Plot by points the curve whose image is the line u = 1 under the trans¬ 

formation w = log (z — l)(z -f 1). This is one line of force for the magnetic 

field, or right section of one cylindrical equipotential surface for the electric 

field due to two parallel wires carrying equal currents in the same direction 

(returning at infinity), or an equipotential line for a conducting plate of mate¬ 

rial with very great resistance connected with two like poles at the points 1,-1, 

the corresponding unlike poles being connected to the plate at infinity. This 

and the preceding problem illustrate three interpretations of the curves whose 

images are the lines u = constant when w = log [(z — ai)h • • • (2 — a»)*»]. 
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The first two are the magnetic lines of force or right sections of the cylindrical 

equipotential surfaces for the electric field due to a set of parallel wires at the 

points oi, • • -a*, carrying currents of strength hi, • • • kn, the direction being 

given by the signs. If the sum of the k’s is not zero, we must think of a 
return wire at infinity. The other interpretation is the equipotential lines in 

a conducting plate of material with very great resistance, due to contact with 

potentials ku ■ • * kn, at the points <*!,•■• a* respectively. In this case, also 

we must think of an additional contact at infinity if the sum of the k's is 

not zero. 

14. If w = f(z) is a single-valued function of z, i.e., a function such that 

there is just one w for each z, and a fundamental region is selected for zy there 

is just one z in this region for each w. If the z plane may be divided into several 

fundamental regions, the inverse function z - F(w) has, in general, as many 

values as there are fundamental regions. Each set of values for a region gives 

rise to a branch of the function. A value of w is said to be a branch-point of 

the function F(w) if, when w describes a small closed curve about this point, 

and we allow a corresponding value of z to vary continuously, the final value 

belongs to a different branch from the initial value. Since the closed circuit 

corresponds to a change of angle of 360°, while the z path corresponding to it 

must be open and hence correspond to a different change of angle, angles are 

not preserved at a branch-point. Hence no point at which a function has a 

finite derivative different from zero can be a branch-point. In general, at the 

branch-points, the derivative is zero or becomes infinite, which gives a simple 

way to practically locate them. For each of the following functions find those 

finite values of w which are branch-points of the function: 

(a) z = wl, (b) z = wkt (c) z — log w, (d) z — sin”1 w. 

16. In the discussion of problem 14 the r61es of w and z may be inter¬ 
changed. Find those finite values of z which are branch-points of each of the 
following functions: 

(a) w — zi, (b) w = log (z — a), (c) w — cosh"*1 z. 

16. If w = /(z) is a function such that there are several values of w for each 
value of z, in a region containing the point z = C, this point is said to be a 
branch-point of the function if, when z describes a small, closed circuit about 
the point C, and the corresponding value of w varies continuously, the final 
value of w differs from the initial value. We may test a point C by putting 
z « C + rei6> where r is small, letting 6 change from 0 to 360°, and finding the 
effect on w. Show that each of the following functions have branch-points 
at a and b: 

(a) w — V(z — a)(z — b), (6) w = v"z — a + Vz — 6, 

(c) w 
1 

Vz — b 

17. If, when the closed circuit about C of problem 16 is traversed a second 
time, we obtain a third value of w, and so on, there being in all k different 
values before we return to the original value of w, the branch-point is said to be 
of order k. (a) Show that the origin is a branch-point of the third order for 
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the function w — zI, and one of the second order for the inverse function 

z * wi. (b) Find the order of the branch-point a for the function w — 
b -f- (z — a)!, and that of the branch-point b for the inverse function z 

18. For each of the following functions, find possible branch-points by exam¬ 

ining the derivative, as in problem 14, test them by the method of problem 16, 

and find their order as defined in problem 17. 

{<£) w=\J Z~l > w = vz~-a- 

19. Show that a is a branch-point of the third order for the function w ** 

2z 4- (z — a)$. This is not indicated by the derivative, as the inverse func¬ 

tion is not single-valued. 



CHAPTER II 

AVERAGE VALUES AND FOURIER SERIES 

For oscillating quantities, like alternating currents and the elec¬ 
tromotive forces which cause them, it is frequently the average 
effect, rather than the instantaneous effects, which are of interest. 
The average effects find mathematical expression in average and 
root mean square values, which we proceed to discuss. 

As the mathematical expressions for alternating currents as 
functions of the time are periodic functions, we deduce some of the 
properties of such functions and define an expansion in sine and 
cosine terms, the Fourier series, appropriate for them. These 
Fourier series facilitate the calculation of average and root mean 
square values as well as other calculations involving the functions. 
The expansions also have applications to certain problems in 
partial differential equations. 

11. Average Values. If z is a real variable, and y is a function 
of x, the average value of y with respect to jc, for a given interval 
a < x < b is, by definition: 

i rb 
y = average y = ^ ~_~~J V dx- (1) 

For a finite number of values of y, the ordinary meaning of 
average is the sum of the values divided by their number. The 
connection between this meaning, and the definition (1) may be 
seen by dividing the interval from a to b into n equal parts, and 
averaging the corresponding ordinates in the usual sense. We 
have 

_ Vq + Vl + * ‘ * + Vn 

Yn r+i 
which may be written: 

y = G/oAs + 2/1 Aa: + — • + yn-iAx) + ynAx 
n (nAx) + Ax f 

^^ 

by multiplying Ax =-, the distance between two consecutive 

42 



AVERAGE VALUES 43 

ordinates, into numerator and denominator. If we now let n be¬ 
come infinite, we observe that the parenthesis in the numerator is 
an expression for a series of rectangles approximating the area 
bounded by the curve y — fix), the axis of x and the ordinates 

x = a, x = fe, and hence approaches J y dx. But the term in 

the denominator nAx — b — a, and the extra terms in numerator 
and denominator, yn Ax and Ax each approach zero, so that we 
conclude: 

lim Yn = y. 
7l = <» 

Suppose we let the variable x measure time, and the variable y 
be the instantaneous value of some physical quantity at time x. 
If F is any effect of y whose rate of change is proportional to y} we 
will have: 

or dF = ky dx. 

The total effect for the time interval a < x < b will be: 

F - dx. 

If the variable were constant and equal to yQ throughout this 
interval, the effect would be: 

dx = k(b - a)yQ. 

These two effects will be equal if y0 = y, as defined by (1), so 
that the definition of average implies that the average of a variable 
quantity is the constant quantity which, acting in place of it, 
would give the same total effect F. 

Geometrically, the average of y from a to 6 is the height of a 
rectangle of the same width equivalent in area to that bounded by 
the curve, the z-axis and the lines x — a, x — b. This furnishes 
a simple method of remembering (1) and also gives a fairly accurate 
graphical method of estimating averages. From this interpreta¬ 
tion it is clear that the average of a continuous function lies between 
its greatest and least values. For particular functions it may be 
arbitrarily near either value. If we are dealing with a physical 
quantity, rather than a mathematical function, for different 

choices of the independent variable averages may be obtained 
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equal to any value between the greatest and least value of the 
quantity. For example, if the physical quantity changes uni¬ 
formly from 0 to 1 in 100 seconds, and we average with respect to 
a variable which changes from 0 to 0.99 in the first second, and 
from 0.99 to 1.00 in the remaining time, the average will be nearly 
zero. On the other hand, if the independent variable runs from 
0 to 0.01 in the first 99 seconds, and then changes from 0.01 to 1.00 
in the last second, the average will be nearly 1. It is usually clear 
from physical considerations which independent variables give 
averages of practical use. For our purposes, the preferred variable 
will generally be the time. 

We note that the average is unchanged by a change of units in 
the independent variable, x, which is merely a change of scale. 
For, in (1), the unit of x appears both in dx and in b — a, and so 
divides out. However, the average changes in the same way as y 
for a change of scale in the units of the dependent variable, y. 

In evaluating the average of a function defined by separate 
analytic definitions in different parts of the interval, we must break 
up the integral in a corresponding way. As an example, we con¬ 
sider the function defined in the interval 0 < x < 4 by the rela- 
tions: 

y = V3x, 0 ^ x g 1, 

y = 1 < x S 3, 
y - 4V3 ~ V3x, 3<^4. (2) 

The graph of this function is one half of a regular hexagon. 
To find the average for the interval 0 < x < 4, we first compute 

the integral: J-»4 /»1 /»3 /M 

y dx = / ydx+ I ydx+ I y dx 
0 Jo J1 J 3 

= /V3, dx + J3\/3 dx + 3(4 - x) dx 

- V3gr+V3x f ~ vs r 
2 o 

3V3. 

Then the average is: 

- £ydx 3V3 
y 4-0 4 

1.30. 
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12. Root Mean Square Values. To treat effects whose rates 
are not proportional to the first power of the quantities which 
cause them, we require other types of averages.1 In particular, 
let us consider an effect H whose rate of change is proportional to 
y2, so that: 

~ = ky\ or dH = hf dr. 

The total effect for the interval a < x < b will be: 

H — J* ky2 dx. 

If y were constant, equal to y0, the effect would be 

j* ky02 dx = k(b — a)y02. 

These effects will be equal provided that y0 is the root mean 
square value of y for the interval a < x < b, defined by: 

y = r.m.s. (3) 

The root mean square value of a quantity is the square root of 
the average of the square of the quantity, and is the constant to be 
put in place of a variable quantity when calculating effects whose 
rates of change are proportional to the square of the quantity. 
Since a current i (amperes), produced by an electromotive force, 
abbreviated e.m.f., of e (volts) across a resistance R (ohms), gener¬ 
ates heat at a rate dH/dt (cal./sec.) given by: 

dH p2 
= 0.24*2# = 0.24 |, (4) 

the number of calories generated in any time interval h < t < h, 
may be expressed in terms of the root mean square values for that 
interval as: 

H * 0.2^R(h - h) = 0.24 ^(4 - 4). (5) 

Just as for averages, if the analytic definition of a function differs 
in different parts of the interval considered, we must compute the 

1 See problem 18, p. 51 for geometric mean distance. 



AVERAGE VALUES AND FOURIER SERIES 46 

integral for each of these parts separately. Thus, to compute the 
root mean square value of the function defined by (2), for the 
interval 0 < x < 4, we first evaluate the integral: 

pi pi p 3 p 4 

I y2 dx = I y2 dx + I y2 dx + I y2 dx 
J 0 Jo ' J 1 J 3 

= f 3x2 dx + f 3 dx + f 3(4 — x)2 dx 
Jo J1 J 3 

I1 I3 I4 

= x31 + 3x \ — (4— £)8 
|0 |l |3 

= 8. 

We then have for the root mean square value: 

V/f = V2 = 1.41. 

13. An Inequality for Averages. For the particular function 
defined by (2), and the interval considered, we found the root mean 
square value numerically greater than the average value. We 
proceed to prove that this is true in general. 

Let f(x) and g(x) be two functions, each made up of a finite 
number of continuous pieces in the interval a ^ x ^ b. Unless 
the ratio of the two functions is constant for the entire interval, 
for any constant X we shall have: 

IX f(x) + g(x)}2 > 0, (6) 

and consequently for the average of this expression: 

+ g(x)f dx > 0. (7) 

This expands into: 

As the quadratic expression in X which forms the left member 
of this inequality is never zero, when equated to zero it must give 
a quadratic equation with no real roots. Hence its discriminant 
(B2 — 4AC for the equation AX2 + BX + C = 0) must be nega- 
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tive, so that 

< 0. 

After transposing, dividing by 4, and taking the positive square 
root, we have: 

We notice that this becomes an equality if the functions are in 
a constant ratio, which checks with our argument, since in this 
case —g(x)/f(x) is a constant, and when we take this value for X, 
(6) and hence (7) or (8) reduce to equalities. But this is the only 
value of X for which the left member of (8) is zero, so that the 
quadratic equation has equal roots, and its discriminant is zero. 

In view of the definitions (1) and (3), we may express our result 
in the form: The average value of the product of two functions is 
numerically less than the product of their root mean square values 
for the same interval, unless the ratio of the functions is constant 
throughout the interval, in which case we have equality. 

When g{x) = 1 throughout the interval, (9) reduces to 

This establishes the result we set out to prove: The average 
value of a function is numerically less than its root mean square 
value for the same interval, unless the function is constant 
throughout the interval, when we have equality. 

If in the first result we let x be the time, f(x) the instantaneous 
e.m.f., e, and g{x) the instantaneous current, i, we find that the 
average power is numerically less than the product of r.m.s. e by 

r.m.s. i, or 

p < e • i, 

unless the ratio of e to i is constant, that is, the impedance is a pure 

resistance, when we have equality. The ratio p/(e • i) which we 
have just proved to be numerically less than or equal to unity is 
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the power factor, so that this result is consistent with its interpre¬ 
tation as efficiency. 

14. Odd and Even Functions. An even function is one for 
which 

/(-*) = fix). (11) 

Geometrically, an even function is characterized by the property 
that its graph to the left of the F-axis is a mirror image of that to 

the right of the F-axis. Thus Fig. 
12 is the graph of an even function. 
Or we may obt ain the graph to the 
left of the F-axis from that on the 
right by a rotation of 180° about 

_ the F-axis. Even powers of xf and 
x polynomials or power series in x 

containing even powers are illustra¬ 
tions. 

ylQ i2 If we average an even function 
over the interval —a<x<a, we 

get the same result that we obtain for the interval — a < x < 0, 
or for the interval 0 < x < a. For, by putting x = —u,dx~ —du, 
and using (11), we find: 

no no 
I f(x) dx = — / j{u) du. 

U —a J a 

Since interchanging the limits changes the sign of an integral and 
we may use any letter for the variable of integration, we have 
further: 

f/W dz = f f(x) dx. 
t/-a J 0 

Consequently, 

& />) * = 2a [/>> ^ + /> *] 

‘a£/(x)c,r 

‘U?(x)dx’ (12) 

and the three averages are all equal, as stated. This result is also 
evident from the geometric interpretation of an average. 



ODD AND EVEN FUNCTIONS 49 

An odd function is one for which 

/(-*) =-/(«)• (13) 

For any such function the graph to the left of the F-axis may be 
obtained from that to the right of the F-axis by taking two mirror 
images, the first in the F-axis and the second in the Z-axis. Or we 
may obtain either half from the other 
by a single rotation of 180° about an 
axis through the origin perpendicular 
to the ZF plane. One such function 
is shown in Fig. 13. Odd powers of 
rr, and polynomials or power series in x 
containing only odd powers are illus¬ 
trations. 

If we average an odd function over 
the interval — a < x < 0, we get the 
negative of the average for the interval 
0 < x < a, and the average for the in¬ 
terval — a < x < a is zero. For, by putting x = — w, dx = — du, 
and using (13), we find: 

f /Or) dx = f f(u) du. 
J —a J a 

Then, by interchanging the limits, reversing the sign, and taking 
x as the variable of integration, we deduce: 

f /(*) dx = - f f(x) dx. 
J -a Jo 

By dividing both sides of this equation by a, we verify our first 
statement. The second statement follows from: 

i fj(x) dx - ± [f’m dx + />, dx]- 0. (14) 

From (11) and (13) we see that if we multiply several functions 
together, each of which is either odd or even, the product will be an 
odd function if the number of odd functions is odd, and the product 

will be an even function if the number of odd functions is zero or 
an even number. In particular the square of an even function is 
an even function, and the square of an odd function is an even 
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function. Hence for any even function, or any odd function, the 

root mean square value is the same for each of the intervals 

—a < x < 0, 0 < x < a, — a < x < a. 

EXERCISES VII 

1. Find the average value of each of the following functions for the interval 
—2 < x < 2: 

(a) 3, (b) re2, (c) cos |, (d) cosh x = 6 —, (e) 2x, (/) x\ 

(ig) sin ~ , (h) sinh x = -—* 

2. Find the average value of each function of problem 1 for the interval 

0 < x < 2, and also for the interval —2 < x <0. 

3. Which of the functions of problem 1 are even functions, and which of 

them are odd functions? Compare the answers to problems 1 and 2 with the 

results of section 14. 

4. Find the root mean square value of each of the functions of problem 1 

for the interval there given, and deduce the values for the intervals of problem 2. 

5. Find the r.m.s. value of each of the following functions for the interval 

indicated: 

(a) cos t, 0 < t < tt/4, (b) 1//, 2 < t < 5, (c) t\ 0 < t < 5. 

6. Find the r.m.s. value of the function sin t for each of the following inter¬ 

vals: (a) 0 < t < tt/4, (6) 0 < t < tt/2, (c) 0 < t < tt. 

7. Find the average and r.m.s. value of the function sin x cos x for the three 

intervals: (a) 0 < x < t/2, (b) —7r/2 < x < 0, (c) —tt/2 < x < tt/2. Com¬ 

pare your answers with the results of sections 13 and 14. 

8. Find the average and r.m.s. value of a function which is x for 0 < x < 2 

and 4 — x for 2 < x < 4, for the interval 0 < x < 4. Draw the graph. 

9. Find the average and r.m.s. value, over the interval 0 < x < 2^, of a 

function which is cos x for 0 < x < ir/2, and 0 for tt/2 < x < 27r. 

10. Find the average and r.m.s. value of a function which is 2x for 0 < x < 1, 

and 3 — x for 1 < x < 3, over the interval 0 < x < 3. 

11. If a given function F(x) can be written as the sum of an even function 

and an odd function, then 

F(x) = f(x) + g(x), 

and 

F(-z) =f(x) - g(x). 

By solving these equations prove that any function can be written in the way 
indicated. 

12. Illustrate problem 11 by decomposing each of the following functions 
into the sum of an even and an odd function: (a) ex, (b) x8 — 2x2 + 4x — 3, 

(c) xe~*. 

13. Find by inspection the average value over the interval —3 < x < 3 of 
each of the following functions: 

(a) sin3 xy (b) sin 2x cos8 x -f 2, (c) sin 3a; cos2 x — 3. 
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14. Given that 
F(x) « cji(x) + c2/2(x) -f c*fz{x). 

(а) Express the average value of F in terms of the average values of fi, /2> j% 

for the same interval. 

(б) Express the r.m.s. value of F in terms of the r.m.s. values of /1,/2,/a, and 
the averages of their products, taken two at a time. 

16. (a) Express the average of a function y for the interval a < x < c, yac, 

in terms of the average of the same function for the intervals a < x <6, and 

b < x < c, yab and ybc, and the lengths of these intervals. 

(6) Using the result of (a), express the r.m.s. value ~yac in terms of yab, ybc 

and the lengths (b — a) and (c —b). 

16. For a certain distribution of masses along the rc-axis, let m = rn(u) be 

the total amount of mass in the interval 0 < x < u. If the inverse function is 

u(m), show that the average of this function for the interval 0 < m < M, 

where M is the total mass, is the distance of the center of gravity from the 

origin. 

17. For a distribution of masses in a plane, let m — m{u) be the total 

amount of mass inside a circle of radius u about the origin, 0 < x2 -f y2 < u2. 

If the inverse function is u(m), show that the root mean square of this function 

for the interval 0 < m < M, where M is the total mass, is the radius of gyra¬ 

tion of the system of masses, about an axis through the origin perpendicular 

to the plane. 

18. The geometric mean of two quantities is the square root of their 

product, but may also be considered the exponential of the average of the 

logarithms, since 
In q-fln b _____ 

e 2 = V ab. 

This leads us to define the geometric mean of a function as the exponential of 

the average of the logarithm of the function. 

(a) For example, consider a circle of radius a, and a point, P, whose distance 

from the center, 0, is b. By the law of cosines, the distance from the point 

to the extremity of a radius making an angle 0 with OP is: 

op^ 0 — Va2 -f b2 — 2ab cos 6. 

If we regard this as a function of the arc length on the circle, and take the geo¬ 

metric mean, as just defined, over the whole circle, we will have the geometric 

mean distance, D, from the point to the circumference. Since the average is 

unchanged by a change in scale, we may average with respect to 6, and since 

we have to deal with an even function, may average from 0 to 7r. Thus 

In D = i f ~ In (a2 -f b2 — 2ab cos 0) d$. 
TT JO 4 

This integral is a continuous function of a for all values, and except when a =* 6, 
we may differentiate with respect to a under the integral sign, and so find: 

d(ln D) ^ 1 P a — b cos 0 , 
da * ir Jo a2 + b2 — 2ab cos 0 

1 C* r 1 1 a2 — b2 “] 
7T Jo L2a * 2a a2 + b2 - 2ab cos 0 J 
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But: 

a2 + b2 — 2ab cos 6 = (a- + 62) ^sin21 -f cos2 

—2ab^cos21 — sin2 C08,_ -sin2^ 

(a -f 6)2 sin2 ~ -f (a — 6)2 cos2 ~ , 

ro that 

x 1 
a2 b2 — 2ab cos 9 i. 

Q 
sec2-dO 

2 

9 
dd = I (a 4- b)2 tan2 ~ + (a — b)2 

2 
| a2 — fr2| 

tan -[^-a 
Thus we have: 

|a2 - 62| 

dfln D) 1 . 1 a2 - 62 1 
o_ ' o_ i _o rol ^ da 2a 2a \a2 — b2\ a 

according as a is greater or less than b. 

From the original integral for In Z), we see that when a is zero, In D = In 6, 

and since the derivative is zero for a less than b, we have: 

In D = In b, D - by if a < h. 

The integral is continuous, so that when a = t, In D = In b = In a, and by 

integrating 1/a, and using this to determine the constant of integration, we 

find 
In D = In a, D — a, if b < a. 

These results are consistent with the fact that the integral is symmetrical in 

a and b. 
Thus, the geometric mean distance from a point to a circumference is equal 

to its distance from the center, if the point is outside the circle, and equal to 

the radius, if the point is inside the circle, or on the circumference. 

(6) By the geometric mean distance from a curve to a curve, is meant the 

average of the distance from a point on the first curve to a point on the second, 

obtained by taking the geometric mean with respect to one arc length, and then 

the geometric mean of this with respect to the second. Thus 

InD = - f S plnS„'dsds'. 
s S Jo Jo 

When the two curves are circles, deduce from the result of part (a) that this 

geometric mean distance is the radius of the larger circle, if one circle encloses 

the other, or the common radius, if they coincide and the distance between the 
centers, if the circles are outside one another. Note that in the last case, 

the first average has the effect of replacing one circle by its center, a point 

outside the other circle. 
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(c) The geometric mean distance from an area to an area is defined by 

the integrals being here double integrals, taken over the areas indicated. 

When the areas are circles, which are outside one another, by taking as the 

elements of area in each case concentric rings, and noting that from part (£>), 

the geometric mean distance from one such ring to a ring of the other circle is 

the distance between centers, we see that in this case the value of D is the dis¬ 

tance between centers for the twro areas. 

To treat the case of concentric circles, we first note that for a point P inside a 

circle of radius a, at distance b from the center, the geometric mean distance to 

the concentric rings wrhich include the point will be the radius of these rings, 

while to those wrhich do not include the point it will be the distance of the point 

from the center. Thus, if I)b is the geometric mean distance from the point P 

to the entire circular area: 

In Db 
I /;>■ In b • 2 irr dr -f I In r • 2 7rr dr 

= i{ln6-r2C + r2(lnr“2) 11} 

1 1 , fc2 
,na “2 + 2^- 

If now, wre let P range over the area of a concentric circle of radius c, 

In D = 

2ttb db 

TC2 In a — ^ _£l 
4a2 * 

Thus 

D —ac 

where c is the radius of the smaller, and a that of the larger circle. In partic¬ 

ular, the geometric mean distance from a circular area to itself is 

D — ae-i. 

The results of this problem are of use in the calculation of inductance for circu¬ 

lar wires. 

15. Periodic Functions. A function f(x) is said to be periodic, 

of period T, if 
f(x +T)= f(x). (15) 

It follows that, if n is any integer, 

fix + nT)= fix), (16) 

so that any integral multiple of T, nT, is also a period. 
The integral of a periodic function taken over any interval of 
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length T, the smallest period, is the same as that for the interval 
0 < x < T. For, if the interval is that from a to a + T, we may 
put a = nT + b, where n is an integer, positive, zero, or negative, 
and b is a positive number less than T. In Fig. 14, n = 1. We 
then have Jf'a + T /Mn+1 )T r(n+l)T+b 

fix) dx = I f{x) dx + I f(x) dx 
a JnT+b J (n-fl) T 

= f fiu) du + f fin) du, 
Jb Jo 

where in the first integral, x = u + nT, and in the second integral, 
x = u + in + 1 )T, and we have used the relation 

fiu +nT) = fiu + [n+l\T)= fiu), 

which follows from (16). But the last two integrals written may 
be combined into 

or dx. 

Hence we have: 

(17) 

As Fig. 14 shows, our transformations may be interpreted geo¬ 
metrically as a dissection of the area representing the first integral 

into two pieces, which may be rearranged to give an area congruent 
to that which represents the first integral. 

By dividing each side of equation (17) by T, we obtain the re¬ 
sult : The average of a periodic function is the same for all intervals 
of length equal to the smallest period. 

If we use an interval of length equal to any period, nT, we will 
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get the same average. For, let A denote the value of either mem¬ 
ber of (17). Then the integral over any interval of length T is A> 
and the integral over any interval of length nT is nA, so that the 

average for this interval is —— = ~ • 

We shall show that we get nearly this same value if we average 
over any interval which is very large as compared with the smallest 
period. If this large interval is that from a to a + C, we may 
write 

C = NT + 6, 

where N is a large positive integer, and b is a positive number less 
than T. We then have: 

1 
C 

NA + B 
~NT + b’ 

(18) 

where Jna-\-C 

f(x) dx. 
a+NT 

If the function is always positive, B will be less than A} and in 
any case B will be numerically less than T times F, the numerically 
largest value of f(x). 

But we may rewrite (18) as 

Since b/T is less than unity, the denominator is practically 
unity if N is large compared with 1. Similarly the numerator 
differs from A/T by a small quantity when N is large compared 
with F. Thus the fraction differs but little from A/T when N 

is large. 
As an illustration of the ideas just discussed, we note that the 

average value of a sixty-cycle alternating current of maximum 
value Itn for a time interval as large as one hour will differ from the 
average for l/60th of a second, the smallest period by at most Im 
divided by 2 X 105, and even for an interval of about two minutes 
the difference will be less than l/7000th of Im. This explains why, 
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in most applications to alternating currents, we only require aver¬ 
age and root mean square values for intervals of length equal to 
one period, or for the interval from 0 to T7. 

16. Trigonometric Integrals. Alternating currents and e.m.f.'s 
may often be represented with sufficient accuracy by single sine or 
cosine terms. In all cases they may be regarded as made up of 
a sum of such terms. Consequently, the averages of sine terms 
and cosine terms are of frequent occurrence in practice. In cal¬ 
culating the root mean square value of sums of sine and cosine 
terms, we square before taking the average, so that we are here 
concerned with the averages of squares and products of sine and 
cosine terms. For these reasons, it will be worth while for us to 
solve these important special average problems once for all. We 
proceed to deduce a few rules which apply to them. 

We begin with a single sine function, sin (cot + s) where co and 
s are constants, and t is the variable time. The smallest period is 

T = — . (19) 
CO 

We have for the average over the fundamental interval: 

_1 
T /; sin (cot -f s) dt ~ ~~ 

= 0. 

COS (cot + 8) T 

coT |o 

COS (27r + s) — COS 8 
2w 

(20) 

For, by (19) coT may be replaced by 2x, and the two cosine terms 
cancel since the trigonometric functions are all unchanged when 
the angle is altered by 2x. 

A single cosine function, cos (cot + c), may be treated similarly, 
or reduced to the case of the sine by the relation: 

cos (cot + c) = sin ^cot + c + (21) 

Thus we have proved: 
I. The average of a single sine, or of a single cosine term, is 

zero when taken over any complete period. 
Let us next consider the product of two sine functions, 

sin (cot + s) and sin (<oft + s'), whose frequencies <o/2w and «'/2?r 
are commensurable, that is, have a rational ratio. We write this 
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as the ratio of two integers, p and p', with no common factors: 

03 

2tt 03 _ p P p' 
03' a/ p' ’ 03 a)' 
2t 

Hence, if we put 

rp __ 2ttP _ 2trp' 
1 ,, / y 

(22) 

(23) 

T will be a period of each of the sine terms, being p fundamental 
periods (27r/a>) of the first, and p' fundamental periods (2w/03') 
of the second term. In fact T is the smallest common period of 
the two terms. 

Hence T is a period of the product, and its average for this 
period is: 

I CT 
-p J sin (ad + s) sin (03't + s') dt. 

By making use of the trigonometric identity, 

sin A sin B = \ [cos (A — B) — cos (A + B)], 

we may replace the expression for the average by 

\ {flo C0S ^ ~ + 8 ~ S'^ dt 
~~ -p^ cos [(co + 03f)t + s + sr] ettj. (24) 

When neither 03 — 03' nor 03 + 03' is zero, each of the two terms 
in the brace is the average of a cosine term over the interval from 
0 to T. But T is a period for each of these cosine terms, since 

T - 2^(P ~ Vf) = 2tt(p + gQ 
/ 1 t y 

03 — 03 03 -f- 03 

by (23), so that T is (p — p') fundamental periods of the first, and 
(p + p') fundamental periods of the second cosine terms. Hence, 
by principle I above, the value of each of the averages in (24) is 
zero. 

The product of two cosine functions, or of a sine function and a 
cosine function, may be reduced to the product of two sines with 
the same frequencies, by the relation (21), so that we have proved: 
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II. The average of the product of two sines, of two cosines, or 
of a sine and a cosine, of commensurable but numerically unequal 

frequencies, taken over any complete period of the product, is zero. 
Practically, we always reduce negative frequencies to positive 

ones by the relations : 

A sin ( — cot + s) = — A sin (cot — s) 
and 

A cos ( — cot + c) = A cos (cot — c), 

so that the only remaining case which need be treated is that for 
which co — co' is zero. Here, the second average in (24) is zero as 
before, while the first is the average of a constant, 

cos [(w — co')t + s — s' 1 = cos (s — s'), 

which is the constant itself. Thus the average of the product is 
one half of this, and we have: 

1 
T 1 Vi 

p T 

1 sin (cot + s) sin (cot + s') dt = 
' 0 

cos (s - 
. 2 

- s') _ 
(25) 

By making use of (21), we find from this that 

1 
T J 

f cos (cot + c) cos (cot + c') dt ^ 
1 0 

cos (c - 
2 

-c') 
J (26) 

and also that 

i 
T. 

1' sin (cot + s) cos (cot + c) dt = 
sin (s ~ 

2 
■ c) 

} (27) 

since this last average is: 
/ 

-I J' sin (wt + s) sin (ut + c + A dt = 
cos ( s 

2 
I) 

sin (s - - c) _ 
2 

The order of the difference s — s' in (25) is unimportant, since 
cos (s — s') = cos (s' — s). This checks with the fact that there 
is nothing to distinguish 5 from s' in the original product, since 
they are each the phase of one sine factor. Similar remarks 
apply to (26). In (27), however, we must take the order as indi¬ 
cated, the phase of the sine factor minus that of the cosine factor, 
since sin (s — c) — —sin (c — s). 
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We formulate the results for equal frequencies in: 
III. The average of the product of two sines or of two cosines 

of the same frequency taken over any complete period is one half 
the cosine of the difference between the phases of the factors. 
For the product of a sine and a cosine, the average is one half the 
sine of the angle by which the sine term leads the cosine term. 

We notice, in particular, that if we are dealing with sines and 
cosines all in the same phase, which may be made zero by a proper 
choice of the initial time, then the average becomes zero for a sine 
times a cosine term, and is one-half for a sine or cosine term times 
one of the same frequency, that is, the square of such a term. 

As an application of these principles, let us compute the r.m.s. 
value over a period for 

i = 6 cos (cof + 60°) + G sin (cot + 30°) — 2 sin 3 cot. 

The square of i will contain three squares, and three products. 
By the remark just made, the average will be \ for each of the 
squares of trigonometric functions. By principle III the product 
cos (cot + 60°) sin (cot + 30°) will have as its average 

sin (30° - 60°) sin (-30°) _ 1 
2 2 4 ’ 

By principle II, the remaining products will have their averages 
equal to zero, so that the average of i2 is: 

i2 = 62 • i + 62 • \ + 22 - £ - 2 • 6 • 6 • \ 

= 20. 

Hence the r.m.s. value of i is 

i = V20 = 4.47. 

By expanding the terms, we may write the given i in the alterna¬ 
tive form: 

i = 6 cos cot — 2 sin 3 cot, 

where all the terms have zero phase. From this form, by principle 
III and the remarks made in connection with it, we see that the 
average of i2 is: 

i2 = 62 • \ + 22 • * 

= 20, 
which checks the preceding calculation. 
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The second method is frequently the most expeditious way of 
making the calculation, since when the phases are all made zero, 
and we average the square, all the cross product terms have a zero 
average, and we need merely take account of the squared terms, 
for each of which their trigonometric part gives an average of §. 

From the results of section 15, we see that values here found 
for averages over a complete period are approximately equivalent 
to those taken over any long interval. 

EXERCISES VIII 

1. Find the r.in.s. value of each of the following e.m.f.’s, for an interval 

large compared with the period: 

(a) e = 400 cos (120*1 + 50°) - 70 sin (360*1 + 42°), 

(b) e = 100 sin 50*1 + 200 cos 50*1 + 14 sin 150*4 + 10 cos 150*1, 

(c) c = 160 cos 60*1 + 32 cos (180*1 + 72°), 

(d) e = 234 sin (50*1 + 78° 40') + 47 sin (150*1 - 2° 50'), 

(e) e = 15 sin (~ + 75°) + 3 sin (^ - 75°) • 

2. Find the r.m.s. value of each of the following currents, for an interval 

large compared with the period: 

(a) i - 2.56 sin (120x7 + 88° 50') - .187 sin (360irt - 33° 30'), 

(b) i ~ 50 sin 50x7 ~f 100 cos 50x7 -f 7 sin 150x7 -f- 5 cos 150x7, 

(c) i = 1.37 cos (60tH - 31°) + .21 cos (180x7 -f 11°), 

(d) i ~ 2 sin 50x7 + .3 cos 150x7, 

(e) i - 15 sin -f 73° 10'^ -f 3 sin — 80° 40'^ . 

3. The currents of problem 2 arise when the corresponding e.m.f/s of 
problem 1 are impressed on circuits of suitable impedances. Find the average 
power, p = ei, over a complete period, for each of these five cases. 

4. Check formulas (26) and (27) of the text by direct integration. 

6. If 

i — 11 sin (cot -f- CLi) T /a sin (Scot T <23) -J- /& sin (5cu7 -f- ab) -f- • • • , 

e — Ei sin (cot -j- 5i) d- Es sin (3a>7 -j- 63) T Eb sin (5o>7 T* bb) -f* • • •, 

show that, for a complete cycle, the r.m.s. values are: 

i 

e 

v/ 
V 

/.2 + n + n ± • • • 

2 ■ 

Ej2 -f Ez2 -f~ E62 d~ * * * 

2 

and the average power, p = ei, is: 

E\I 1 cos (a\ — hi) -f- EJz cos (as — 5s) d- Ebh cos (ab — b6) -f * • • 
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6. Show that the results of problem 5 are unchanged if all the sines are re¬ 

placed by cosines. 

7. Prove that, if 

i *= Ii cos cot 4 Hi sin cot 4 h cos Scot 4* Hz sin 3cot 4 * • • , 

€ — Hi cos cot 4 Hi sin cot 4 Hz cos 3cot 4 Hz sin Scot *4 • • • , 

then, for any complete cycle, 

i 

■w 

4 Hi2 4 I£ 4" H32 4 
2 

V = 

E\2 4 Hi2 4* Ez2 4 Hz2 4 

E\Ii 4 HiHi 4 Ezh 4 HsHz 4 

8. Let 
— A cos (cot 4 a) ~ A sin 4 a 4 ^ = A cos a cos cot — A sin a sin col, 

= B cos (cot 4 b) — B sin (col + b + 0 = B cos b cos cot — B sin b sin cot. 

Compute the r.m.s. values, using each of the three forms, also the average 

power, using each of the nine combinations. 

9. (a) Calculate the smallest possible period for each of the c.m.f/s of 

problem 1, or the currents of problem 2. 

(6) Show that 1 second is a period for each of the first four parts of problems 

1 and 2, and calculate the number of cycles per second in each case. 

10. Prove that, if either p or p' in equation (22) is an even number, the T 

defined by equation (23) is the smallest period for the product sin (cot 4 *) 

sin (cot 4 s'), but if p and p' are both odd, T/2 is the smallest period of this 

expression. 

11. Prove that the average value of the product of two sines of incommen¬ 

surable frequencies, e.g. sin Sx sin Vbx, taken over a time interval large com¬ 

pared with the reciprocal of the difference of the frequencies, is small, and that 

the average value approaches zero when the interval is increased indefinitely. 

12. (a) Find the average value of sin Sx sin 2V‘2x over the interval 

0 < x < 2.9. 

(6) Find the average for the interval 0 < x < 1000, and compare the result 

with problem 11. 

18. Using the principles of section 16, verify the conclusions of section 13 for 

the special case when f(x) and g(x) are single sine or cosine terms, and the 

interval is a complete period of both of them. 

17. Finite Trigonometric Sums. We have defined a function 
as periodic, of period T, if equation (15) is satisfied. The func¬ 
tions sin x and cos x are each of period 2w, while sin nx and cos nx 
are each of period 2w/n. Consequently, if n is restricted to inte¬ 
gral values, 2t is an integral multiple of a period, and hence also 
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a period, for all these functions. Now consider a sum: 

f(x) = A + Ai cos x + Z?i sin x + A•> cos 2x + B2 sin 2x + 
• • • + An cos Nx + Bn sin Nx. (28) 

Since each term of the sum is unchanged when x changes by 27r, 
the same is true of the sum, and the function just written is periodic 
with 27r as a period. 

If we change the scale on the x-axis in the ratio 2t/T, we shall 
have a function of period T: 

F(x) = A + Ai cos (if) x + Bi sin ^x 

+ A 2 cos 2 x + B2 sin 2 x + • * * 

+ A .v cos N ( a- + BN sin Ar (y ) *. (29) 

Suppose that a function has been constructed in this way, and 
we are given the function, either graphically or otherwise, together 
with the information that no terms have been used in construct¬ 

ing it beyond cos N x and sm N x• We may find t-he 

coefficients by taking the proper averages, as follows. 
We begin by taking the average of each side of (29) over any 

interval of length T, say a < x < a + T. By principle I, of 
section 16, all the terms on the right have a zero average for this 
interval, except the first term. This term is constant, and so has 
its average equal to itself. Thus we have: 

~Ja F(x) dx = A. (30) 

Next, we multiply both members of (29) by cos n 

where n is one of the integers 1,2,- • • N. This gives 

F(x) cosn f y Jx = A cosn l y J x + Ticos I y Jx cosn Iy Jx 

x cos n (+ • • • -f .4„ cos 2n I + Bi sin 

+ Bn sin n 

‘“(t) 

(I) X COS ft 

(I) 
(I) 

+ • • 

X+ ■ 

m 
+-4Arcosiv(y) a; cosn (zO3 

+ Bn sin N (y ) X cos n (y ) x. 
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Now average both sides of this equation over the interval 
a < x < a + T. The first term has a zero average by principle 
I, and the terms corresponding to indices different from n have a 
zero average by principle II of section 16. Finally, by prin¬ 

ciple III the average of cos2 n x is while the average of 

sin n x cos n x zer0j so we have; 

j£+Tf(x) 008 ”(t) x dx = 
A, 

(31) 

In a similar way, we may multiply both members of (29) by 

sin r? GO Xj and average over the interval a < x < a + T. The 

result is: 

7pfa + F(x) sin n (y) xdx = ~. (32) 

From the formulas (30), (31) and (32) we may write: 

l ra+T 
A =— / F(x) dx = average of F(:r), 

An = \§a + Fix) cos n (y) X dx 

= twice the average of F(x) cos n x> 

Bn = + Fix) sin n x dx 

= twice the average of F(x) sin n (33) 

In all of these the averages are to be taken over some interval 
of length T, as indicated. The most convenient interval is 
usually that for a = 0, 0 < x < T, or that for a = — T/2, 
— T/2 < x < T/2. The difference between the expression for 
A and those for A„ is due to the fact that the average of the square 
of a cosine is except when it is the cosine of zero, when the aver¬ 
age is 1. We write the first coefficient A rather than A0 to call 
attention to this fact. 

If the function F(x), the left member of (29), is given graphically, 

we may evaluate the integrals of (33) by graphical, mechanical 
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or numerical methods.2 If F(x) is given analytically, we may 
evaluate the integrals in certain simple cases by the methods of the 
integral calculus. 

For functions built up of trigonometric sums, certain peculiarities 
of the sums lead to properties of the functions, and conversely, if 
the functions have these properties we can draw conclusions about 
the sums from which they were constructed. 

For example, since a constant, and the cosine terms of such a 
series are all even functions, a sum containing no sine terms will 
necessarily produce an even function. Conversely, if the function 
is even, no sine terms can have been used in forming it. For, 
since the function is even, and any sine by itself is odd, the product 
of the function by a sine term will be odd, and if the averages in 
(33) are taken from — T/2 to T/2, they will be zero for all the Bn. 
We note, incidentally, that for an even function, F(x), we may take 
the averages for the constant term, A, and the cosine terms, Aw, 
from 0 to T/2, since the integrands are here even functions, being 
the product of two even functions. 

Similarly, since the sines are all odd functions, a sum built up 
of sines alone will produce an odd function. Conversely, if the 
function is odd, only sine terms can have been used in forming it. 
For, since the function is odd, and any cosine by itself is even, the 
product of the function by a cosine term will be odd, and if the 
averages in (33) are taken from — T/2 to T/2, they will be zero 
for A and all the An. We note that for an odd function, F(x), we 
may take the averages for the sine terms, Bn, from 0 to T/2, since 

2 One possible graphical method of finding an integral is to represent it as 
an area and approximate this area by a sum of rectangles or trapezoids. The 
approximate area may be computed, and the difference between the true and 
approximate areas may be estimated by counting the squares of the graph 
paper included in it. The numerical method consists in reading off a series of 
equally spaced ordinates, y i, ?/2, • * * , and h, the distance between two consecu¬ 
tive ordinates, and taking the area as 

A * h y2 -f • • *4- Vn-1 4- , 

the trapezoidal rule, or as 

A = ~ (yi + 4?/2 4- 22/3 -4- 4^/4 4~ 2^/6 4- * • *4- ^ytm 4* 2/2m4l)> 

Simpson’s rule. In this the number of ordinates must be odd, and the coeffi¬ 
cients are alternately 4 and 2, except the first and last. 
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the integrands are here even, being the product of two odd func¬ 
tions. 

A property of a function of importance in applications to alter¬ 
nating currents is that defined by the equation: 

F(x+!)~ ~F(x)- (34) 

Any function satisfying this relation will necessarily be periodic, 
and of period T, since: 

F(x+ T) = -f(x + ^ = F(x). 

We call such a function an odd-harmonic function. As Fig. 15 
illustrates, the graph of an odd-harmonic function consists of a 

wave, followed by a numerically equal but negative wave. The 
e.m.f.’s generated in practice, and hence the corresponding cur¬ 
rents, have this property. We sometimes refer to the terms of 
the series in (29) as harmonics,3 the constant being the zero th 

harmonic, and the terms An cos n x + Bn sin n x to¬ 

gether making up the nth harmonic. The reason for calling a 
function which satisfies (34) an odd-harmonic function is that such 
a function will arise whenever we build up our series of terms (29), 
using only odd values of n, or odd harmonics. Conversely, if any 
function built up of sine and cosine terms has this property, no 
constant term, or terms with even values of n can have been used 

1 Compare problem 6, p. 202. 
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in forming it. These statements are proved by observing how 

n (^) x anc* s*n U (^) X c*ian£e w^en x *s ^creased by ~ * cos 

We have 

and 

cos 

sm 

[n (y) (x + |)] = cos [» (y) x + »x] 

[n (|) (x + = sin [n (y) x + «r] 

Since both the sine and cosine are unchanged when the angle 
is changed by 2tt, or an even multiple of w, we see that the even 
harmonics are unchanged when x is increased by T/2. However, 
as the sine and cosine change their sign when the angle is changed 
by 7r or an odd multiple of tt, we see that the odd harmonics change 
sign, when x is increased by T/2. Thus the odd harmonics all 
satisfy (34), and hence a sum of odd harmonics also satisfies (34). 
On the other hand, if a function F(x) satisfies (34) and we calculate 
the coefficient of an even harmonic by means of (33), we multiply 
the function by an even harmonic, and the product is a function 
satisfying (34), so that its average is zero, since: 

nr pT/2 rr 
I F(x) dx = / F(x) dx + / F(x) dx, 

Jo Jo J T/2 

and the second integral is 

dUj 

when we put x — u + T/2, dx — du, and make use of (34), so 
that the second integral is the negative of the first integral. 

We shall illustrate the formulas (33), and the last few observa¬ 
tions, by considering the function 

F(x) = cos3 x. 

We assume that it is also known that N ^ 4 for this function. 
We may then put 

cos3 x = A + cos x + Bi sin x + A2 cos 2x + B2 sin 2x 
+ Az cos Sx + Bz sin 3x + A4 cos 4x + BA sin 4x, 

since the period of the function is T = 2w, and 2r/T = 1. 
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It is not necessary to calculate all these coefficients by (33), for 
we have: 

cos (—x) = COS Xy 

and 

COS (x + 7r) = — COS£. 

As cos3 x also satisfies these relations, the function with which 
we are dealing is an even function, and also an odd-harmonic 
function. From the first property, all the coefficients of the sine 
terms are zero, and from the second property, the constant, A, 
and all the coefficients with even subscripts arc zero. Thus our 
expansion simplifies to 

cos3 x = A\ cos x + A3 cos 3.r. 

From (33) we have. 

A\ 

A 3 

!l f cos3 x cos x dxy 
— 7T 

ii 
^
jt

o
 

f cos3 x cos Sx dx. 
— 7T 

0 (eP + e-^V {e** 
cos 3z = {-2-) {- 

3tx g—Hx\ 

2 , 

e"** + 3eiix + 3e2<* + 2 + 3e~2“ + 3e~4ix + e~^ 

~ ~~ 16 

cos 6.r 3 cos Ax 3 cos 2x 1 
~~8 1 8 l" 8 +§' 

As the average of the cosines of multiples of x form — ir to x, 
is zero, we need only use the constant terms, and have: 

A, cos4 x dx 
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and 

At = 
1 
7T 

cos8 x cos 3x dx 
1 
4 * 

Hence we have: 

cos3 x = | cos z + i cos 3#. 

Our computation has illustrated the theory, although it can 
hardly be said to give a practical application of it, since, by the 
method used to derive (35), we have: 

COS'1 x 
^ + £gy 

eiix + + 3e~ix + e-3i* 
8 

cos 3x , 3 cos x 

EXERCISES IX 

1. Which of the following are odd functions, which are even functions, and 

which are odd-harmonic functions? 

(a) F(x) = 5 sin | 4- 2 sin ~ , 

(b) Fix) 
X 

= 5—6 cos g 4* 8 cos 
4x 
IT * 

(c) F{x) = 65 cos 1 lx 4- 5 cos 33x — cos 99x, 

id) Fix) = 5 sin 4x — 4 sin 12x 4- 3 sin 20x, 

(«) Fix) = 0. 

2. Prove that if a function has only even harmonics, when considered to be 

of period T, it may be considered to be of period T/2. 
3. If Fix) — 2x2 — 2x3, 0 ^ x ^ 1, sketch the graph for —3 < x < 3 if: 

(a) F(x) is an even function, and of period 2, 

(b) F(x) is an odd function, and of period 2, 

(c) Fix) is of period 1, 

id) F{x) is an odd-harmonic function, and of period 2. 

4. Show that the expression on the right side of (29) is equivalent to: 

a . • /2irx , \ , , . (2 NtX \ 
A -f oi sm f~y~ 4- «i ) 4- • • • 4- w sm (—^-b mi , 

or to: 

. /2rx . \ . . /2NttX \ 
A 4- oi cos (4- ci 1 + • • • 4“ <w cos f-b cn ) , 
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and express the function: 

2 + 5 sin 4xx -f 6 cos 4xx + 5 sin 8xx + 2 cos 8xx 

in both ways. 

6. Assuming that N is limited as stated, illustrate the use of (33) to deter¬ 

mine the coefficients not known to be zero from other considerations for each 

of the following functions: 

(а) sin2 x, N ^ 2, (6) cos2 xt N ^ 2, (c) sin3 xt N ^ 3. 

6. (a) By taking the proper averages of the expression 

cos (xffl) — A -+■ A\ cos x 4“ Bl sin x, 

determine the values of the coefficients. 

(б) Do the same for: 

sin (x + a) = A 4~ A\ cos x + Bi sin x. 

7. Prove that in finding the coefficients with odd subscripts for an odd-har¬ 

monic function, we may take the averages in (33) from 0 to T/2. 
8. (a) Prove that if a function is both an even function, and an odd-harmonic 

function, in determining the coefficients of the odd cosine terms, we may take 

the averages from 0 to T/4. 

(6) Prove that for a function which is both an odd function, and an odd- 

harmonic function, in determining the coefficients of the odd sine terms, 

we may take the averages from 0 to T/4. 

18. Fourier Series for Arbitrary Periodic Functions. If we 
take any periodic function, F(x)} which has the period T, we may 
calculate constants for it by the formulas found in the preceding 
section for finite trigonometric sums, namely: 

l fa+T 

A = average of F(x) = ^ J F(x) dx, 

An = twice the average of F(x) cos n % 

= J; J + F(x) cos n x dx, 

Bn = twice the average of F{x) sin n * 

= -ffa + F(x) sin n x dx. (36) 

These constants, of which there are generally an infinite number 
different from zero, are called the Fourier coefficients of the func¬ 
tion. Since, when the function was composed of a finite number 
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of trigonometric terms, they had these numbers as coefficients, we 
are led to write down the infinite series of terms: 

A + Aj cos {^f) x + -®1 sin i^f) x + cos 2 x 

+ B2 sin 2 (y) x + ■ ■ ■ + A„ cos n (y) x 

+ Bn sin n (y) x + ' ' ' > (37) 

which is called the Fourier series of the function Fix). 
For example, consider the function of period 12 defined by the 

following equations in the interval — 6 ^ :r ^ 6: 

F{x) = 0, 

Fix) = x + 3, 

Fix) = 3 - x, 

Fix) = 0, 

-3, 

-3 < x g 0, 

0 < x g 3, 

3 < x g 6. (38) 

The graph of this function is shown in Fig. 16. The function 
may be verbally defined as “ three diminished by the numerical 

|Y 

, Z\ 
6 

Fig. 16 

difference between x and the nearest multiple of twelve, if this dif¬ 
ference is less than three, and zero, if the difference is greater than 
three.” 

Since for this function, T — 12, we may put a = —6, and 
compute the averages of (38) from —6 to 6. These averages will 

come out zero for the Bn) since F(x) sin n x an odd func¬ 

tion, owing to the even character of F{x). Moreover, as F{x) and 

hence F(x) cos n x are even functions, the averages for A and 

the An may be taken from 0 to 6. Thus we write: 

An cos n x dx. 
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/*6 /»* 
I F{x) dx — / (3 — x) dx + / 0 • dx — 

J 0 Jo J3 

as is also obvious from the figure. Hence 

(3 - x)2 3 9 
2 0 2' 

1 9 = 3 
6 ’ 4 4 

Again: 

J F(x) cos n x dx = (3 — x) cos dx + ^ 0 • dx 

f 6 . mrx t v 62 n7rxl3 
— sin (3 — x)-« n cos -7T-* , 

Lmr 6 nV2 6 Jo 

nTr , > 
-cos y + 1 

so that 

. 1 36 / nr , A 12 / 
An = q l ~C0S "o~ + 1 ) = ~J~2 l 3 n27r \ 2 / nV2 \ 

■t 
1 — COS 

The cosine term, and hence the parenthesis, assumes different 
values, depending on the remainder of n when divided by 4. Thus: 

n = 1, 5, 9, cos 2 = 0; (1 — 0) = 1; 

n = 2,6, 10, , cos = cos 7r = — 1; (! — [—!]) = 2; 

» = 3, 7, 11, cos^ = 0; (1 — 0) — 1; 

n = 4, 8, 12, • • •, cos — cos 2x = 1; (1 — 1) = 0; 

consequently, 

,12 ,24 ,12 , _ 
^2 * 227T2 7 32^p2> * ’ > 

and the Fourier series for the function (38) is 

b${ 
7TX . 2 2irx . 1 3tx 

COS -g- + cos -g- + gj COS -g- 

, 1 5wx . 
+ 5ic°s-g- + (39) 
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In Chapter VIII we shall prove that the Fourier series for any 
function which, like the function (38), is periodic and in any inter¬ 
val of length one period is made up of a finite number of smooth 
pieces which join together continuously, represents the function 
for all values of x. That is, for any fixed value of x} the series 
converges to the value of the function for the particular x con¬ 
sidered. In Fig, 17 the full curve is the graph of the first three 

terms of (39), while the dotted line is the graph of (38). This 
illustrates how the partial sums of the series approximate the func¬ 
tion. 

If a periodic function is made up of smooth pieces which do not 
join together continuously, the values obtained from the two pieces 
which abut at a point of discontinuity will not agree. For such 
a function, the Fourier series will converge for all values of x. 
The sum of the series will equal the value of the function for any x 
not corresponding to a point of discontinuity, and will equal one- 
half the sum of the two values associated with the point for an x 
corresponding to a point of discontinuity. Giving arbitrary values 
to the function at the points of discontinuity in advance will not 
affect the coefficients of the Fourier series. For these are given 
by integrals, or areas under curves, and are not changed by changes 
in the ordinates at isolated points. In general, we shall regard 
our functions as undefined at the points of discontinuity, although 
the sum of the Fourier series gives a definite value for these points. 

The function of period 16 defined in the interval — 8 < x < 8 
by the equations: 

F(x) = 0, -8 < x < 0, 

F(x) = 4, 0 < x < 4, 

F(x) = 0, 4 < x < 8, (40) 

has discontinuities at the points for x = 0, 4 or any value differing 
from one of these by an integral multiple of 16. Its graph is shown 
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in Fig. 18. We proceed to compute its Fourier coefficients as 
defined by (36). We have: 

A ~ reI'.,F(x)*' An " cmn{j^)dx’ 

[0 8 X 

Fig. 18 

But: 

/*0 /»4 ps 4 

I F(x) dx = / 0 dx + / 4 dx + / 0 dx = 4x =16, 
t/~8 «/-8 «/ 0 J 4 0 

as is also obvious from the figure, so that 

^ _ l® _ i 
A 16 L 

Again, 

J* F(x) cos ~p dx = J 0 dx + J 4 cos dx + ^ 0 dx 

so that: 

32 . ft7rx 4 32 . mr 
= — sin -Q- = — sin -jr- , 

n7T 8 o mr 2 

. 1 32 mr 4 tit 
An = o • — sin -tr- = — sin -pr- 

n 8 utt 2 mr 2 

J F(x) sin T~ dx = J* 0 dx + J' 4 sin dx + £ 0 dx 

32 nxxl4 32/i n7r\ 
=-cos = — I 1 - cos 1, 

mr 8 o nir \ 2 / 

D 1 32/1 rnr 
B””s ;s\1_C05y K( 

1 — cos- 

so that: 
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From these expressions, in which we put n successively equal to 
1, 2, 3, etc., we find for the Fourier series: 

* , 4 / tx 1 Swx , 1 5tx \ 
1 + -(oosT-^C°s -8- + 5cOB-g-) 

, 4/ . 7TX 2 27T2 . 1 . 371-2 . 1 . 5wX \ /y|1v 

+ ;(SmT + 2Sin“F + 3Sin“8' + 5SinT'+- • •} (41) 

The full curve of Fig. 19 is the graph of the sum of the terms of 

(41), up to and including those involving -g—. The dotted curve 

is the graph of the function defined by the sum of the series. 

A and B correspond to the points of discontinuity. Not all re¬ 
arrangements of the terms of a Fourier series will give a convergent 
series, but it is always allowable to group the sine terms together, 
and the cosine terms together into two separate series as is done in 

(41). 

EXERCISES X 
h 

1. Find the Fourier series for a function which is of period 10, is zero in the 

interval — 5 < x < 0, and in the interval 0 < x < 5 is equal to: 

(a) x, (b) x2, (c) 10, (d) sin x, (e) ex. 

2. A function is of period 16, and is defined in the interval —8 < x < 8 by 

the equations: 

F{x) — 0, -8 < x < -4; F(x) = -2, -4 < x < 0; 

F(x) « 1, 0 < x < 4; F{x) = 0, 4 < x < 8. 

Find the Fourier series which represents it. 

3. Find the Fourier series for a function which is of period 40, and in the 

interval —20 < x < 20 is defined by: 

F(x) = -10, -20 < x < 0; Fix) =0, 0 < x < 10, 

Fix) - 20, 10 < x < 20. 

4. In looking up the number whose logarithm is x, we seek, in the tables, a 

number y which is the excess of x over the greatest integer less than x. Draw 



SERIES FOR ARBITRARY FUNCTIONS 75 

the graph of y as a function of x> and find the Fourier series which represents 

this function. 

6. In finding the values of the trigonometric functions of an angle of x 

radians, we make use of the angle of y degrees, in the first quadrant, 0 ^ y ^ 90, 

which, except for sign, has the same trigonometric functions as x. Draw the 

graph of y as a function of x, and find the Fourier series which represents this 
function. 

6. Prove that the numerical value of sin x, |sin x\, is an even function of 

period 7r, and find the Fourier series which represents it. 

7. Find the Fourier series which represents |cos x\. 

8. Find the Fourier series for a function which is of period 6, and in the 

interval — 3 < x < 3 equals z2. 

9. A function is periodic, of period 8. Find the Fourier series which repre¬ 

sents it, if it is defined in the interval 0 < x < 8 by 

Fix) = 5, 0 < x < 2; F(x) = 2, 2 < x < 4; 

F{x) = -5, 4 < x < 6; Fix) = -2, 6 < x < 8. 

10. Find the Fourier series which represents the function of period 2ir, de¬ 

fined in the interval —t < x < t as equal to 

(a) ex, (b) x sin x, (c) x cos x. 

19. Fourier Series, Sine Series, Cosine Series, for Arbitrary 
Functions. For many purposes it is convenient to represent a 
function by a Fourier series, even when the function is not periodic. 
This may be done by the formulas (36) of the last paragraph, pro¬ 
vided we take the averages over the interval a to a + T in which 
we wish to represent the function. For example, suppose we wish 
to represent the function x by a Fourier series, of period 2, in the 
interval a < x < a + 2. We have: 

a+2 rJl a-f-2 

X dx — -r 
4 « 

2 r»+2 /2tt\ , rx si 
An = 2ja xcosn{-2 )xdx = [_— 

= a + 1; 

sin mrx , cos mrx 
n2ir2 _ a 

2 sin mra 
nir 

B„ = + x sin n (y) x dx = “ 
cos nirx sin mrx 

me nV 1 

o+2 

_ 2 cos mea 
mr 

For a = 0, the series is: 

. 2 / . .sin 2tx . sin Ztx . \ 
= l--^sm« + -2—+ —3—+ • • J, 

2 3 
(42) 
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whose graph is shown in Fig. 20. It agrees with the function 
y = x in the interval 0 < x < 2. For any value of a, we have: 

y = a + 1 + ~ (sin r a cos ttx — cos wa sin wx 

Fig. 20 Fig. 21 

whose graph is shown in Fig. 21. It agrees with the function 
y = x in the interval a < x < a + 2. The relation of these series 

may be seen by writing (43) in the form: 

sin 2w (x 
2~ 

+ sin 3ir (x — a) 
3 j 

which shows that its graph is that of (42) moved a units up and 
a units to the right. This takes the part .of the graph y = x for 
0 < x < 2 into the part for a < x < a + 2. 

We may represent a function in the interval 0<£<!T/2by 
a Fourier series of period T involving sine terms only, called a 
sine series. We use formulas analogous to (36) of the preceding 
paragraph for the sine coefficients, taking the averages over the 
interval in question, and put the cosine coefficients and constant 
term equal to zero. For, the Fourier series found in this way will 
represent the odd, periodic function, of period T agreeing with the 
given function in the interval 0 < x < T/2. 

For, example, the sine series of period T = 2p which represents 
the function 1 in the interval 0 < x < p has coefficients: 

— (1 — cos mr), 
mr 

lo 
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and the required series is: 

4 
7r ( 

. 7TX . 
sin — + 

V 

1 
3 

. 3tx . 1 . 5tx , 
sm-b - sm-b 

p 5 p 
(44) 

The function which is odd, of period 2p, and equal to 1 in the 
interval 0 < x < p is an odd-harmonic function, which explains 
why the coefficients of the even terms are zero. 

In a similar way, we may represent a function in the interval 
0<£< T/2 by a Fourier series of period T involving cosine 
terms only, called a cosine series. As before, we use formulas 
analogous to (36) for the cosine coefficients and constant term, 
taking the averages over the interval in question, and put the sine 
coefficients equal to zero. For, the Fourier series found in this 
way will represent the even, periodic function of period T, agreeing 
with the given function in the interval 0 < x < T/2. 

As an example of this, let us find a cosine series of period T = 2p 
which represents the function x in the interval 0 < x < p. We 
have: 

An 

x/ p P 
■ 2 o 2' 

. mrx mcx~]p 
x sm — cos- 
_£,_ 

mr nV2 

V P2 Jo 

n2 7r2 
(cos mr 1), 

and the required series is: 

P 
2 

4 p ( TX . 1 
— I cos-b q72 
7T \ p 32 

3tx , 1 5tx . 
cos-b To cos-b 

p 52 p 

The function which is even, of period 2p, and equal to x in the 
interval 0 < x < p becomes odd harmonic if p/2 is subtracted 
from it, which explains the absence of the even terms. 

EXERCISES XI 

1. Verify that the sine series of period 2p which represents the function x in 

the interval 0 < x < p is: 

tX 

V 
1 . 2irX , 1 . 3ttX . 
- sm — 4- o sin — + 
2 p 3 p 
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2. Using the sine series for 1 given in (44) of the text, and the result of prob¬ 

lem 1, show that the sine series of period 2p which represents the function 

Ax B in the interval 0 < x < p is: 

~{(4J5 + 2pA) sin — — 
2pA . 2irx (4 B -f- 2pA) . 3ttx 

sm--*-sin- 
2 p 3 p 

2pA . 4tx 
sm- 

4 p 

3. Using the cosine series for x given in (45) of the text, show that the 

cosine series of period 2p which represents the function Ax -f- B in the interval 

0 < x < p is: 

ttX . 1 « 
COS-1 ttt cos - 

p 32 

5irX , 
COR — + 

P 

4. Find the sine series of period 4 which represents the function 2x -f 3 in 

the interval 0 < x < 2, 

(a) By direct calculation of the coefficients. 

(b) By using the result of problem 2. 

6. Find the cosine series of period 4 which represents the function 2x -j- 3 

in the interval 0 < x < 2, 

(а) By direct calculation of the coefficients. 

(б) By using the result of problem 3. 

6. If F(x) = x, 0 < .r < 3; and F(x) = 3, 3 < x < 6; 

(а) Expand in a sine series of period 12, 

(б) Expand in a cosine series of period 12. 

7. If F(x) = 0, 0 < x < 3; F(x) = 3, 3 < x < 6; 

(a) Expand in a sine series of period 12, 

(b) Expand in a cosine series of period 12. 

8. (a) Find the sine series, S(x), of period 4 which represents the function 

F(x) - 2x, 0 < x < 1; F(x) = 4 — 2xf 1 < x < 2; 

(b) Find the cosine series, C(x), of period 4 which represents the same func¬ 

tion in the interval 0 < x < 2. 

(c) Show that C(x) — " {2 -f S(2x — l)j , both from an examination of 

the graphs of the functions, and from the series. 

9. (a) Assuming a result, proved in Chapter VIII, that the r.m.s. value of 

a function equals the limit of the r.m.s. value of its Fourier series taken to 

n terms, as n increases indefinitely, prove from the series in problem 1 that: 

= I , 1,1 , 
6 p 22 ^ 32 f * * * * 

(6) As in (a), prove from the expansion (45) of the text, that 

—|—1—j—I—|—L _j_ . . . 
96 l4 ^ 34 ^ 54 74 
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This converges fairly rapidly, so that the first 5 terms will give w correct to 

three decimal places. 

10. (a) Taking r.m.s. values as in (a) of the preceding problem, deduce 

from the expansion (44) of the text that 

7r2 

¥ 12 ^ 32 52 
+ • • *. 

(6) Put x = 0, and x - pi n the expansion (45) of the text, sum the resulting 

series by means of (a) of this problem, and so verify that the series has the same 

value as the function it represents at these points. 

11. (a) If a function is expanded in a sine series S(x) of period 2p which 

represents it in the interval 0 to p, and a cosine series C(x) of period 2p which 

represents it in this same interval, show that ||/S(x) ~f~ C(:r)| is a Fourier series 

for the function which is zero in the interval — p < x <0, and equal to F(x) 

in the interval 0 < x < p. 

(b) Illustrate the result of (a) for the function of problem 1 (a), p. 74. 

(c) Use part («) to find sine and cosine expansions, of period 10, representing 

the functions of parts (b), (c), (d)f (e) of problem 1, p. 74, from the results of 

that problem. 

12. If a function is periodic of period 4p, is odd, and also an odd-harmonic 

function, show that its Fourier coefficients are given by: 

A - An - Bin = o, #2n-H - ^ J*V(x) sin (2n -f 1) x dx. 

Deduce from this a method of representing any function in the interval 

0 < x < T /4 by a sine series of period T> containing only odd harmonic terms. 

13. If a function is periodic of period 4p, is even, and also an odd-harmonic 

function, show that its Fourier coefficients are given by: 

A = A2n = Bn *= 0, Azn+i = ~ J^F(z) cos (2n + 1) x dx. 

Deduce from this a method of representing any function in the interval 

0 < x < T/4 by a cosine series of period Ty containing only odd harmonic 

terms. 

14. (a) Taking T — ±py illustrate the expansions of problems 12 and 13 

for the function F{x) = z, 0 < x < p. 

(b) Similarly for F(x) = 1, 0 < x < pi 



CHAPTER III 

LINEAR DIFFERENTIAL EQUATIONS WITH 
CONSTANT COEFFICIENTS 

This chapter is devoted to methods of solving one, or a system 
of several, ordinary linear differential equations with constant 
coefficients. The determination of the flow of current in an 
electric network1 due to prescribed electromotive forces leads to 
a system of equations of this type, and we emphasize particularly 
the devices best suited to this application. 

20. Linear Equations. An expression is said to be linear in a 
set of variables if it is a sum of terms each of which contains just 
one of these variables raised to the first power as a factor. Thus2 

L(y) = A3 + A* si+ Ai % + Aoy (1) 
is linear in the four variables 

d3y d?y dy 
dx3 ’ dx21 dx 

y, if the coeffi¬ 

cients A0, Ah Ao, A3 do not depend on these variables. These 
coefficients may be functions of x, although in most of the applica¬ 
tions of such expressions we shall make in the following sections 
the coefficients will be constants. 

A linear differential equation is formed by equating a linear 
expression in y and some of its derivatives to a given function of x. 
If the highest derivative which occurs in the linear expression is 
d»y 

, the equation is said to be of the nth order. Thus, if A3 is 

1 Under the assumption that the resistances, inductances and capacities 
are 11 lumped,” i.e. each act at a single place in the network, and are constant. 
See sections 24 and 25; 

2 If y is a known function of x, the three derivatives may be found, so that 
the expression depends on the function y and hence is abbreviated by L(y). 
Thus L(x*) means that 

v — xz — = 3a:2 — = 6x and — = 6 
9 X’ dx ’ dx* and dx> b’ 

and hence 
L(xi) = 6A8 -f* 6A2X 4" 3i4i£a 4~ Aqx*. 

SO 
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not zero, 

A*w +A*w +Aidi +Ao== A{x) (2) 

is a linear differential equation of the third order. 
If an expression, L(y), is linear in y and some of its derivatives, 

and we replace y by the sum of two functions, ux + u2j we obtain 
the sum of the results of replacing y by each of the functions u\, u% 
in turn. That is: 

L(ui + ih) = L(u{) + LO2). (3) 

Similarly, if y is replaced by a constant times a function, cu, the 
result is the constant, c, times the result for the function u, i.e. 

L(cu) - cL(u). (4) 

From these results it follows that if we know n linearly inde¬ 
pendent3 solutions ui, u2j • • • Un of the equation with right member 
zero, 

L(y) = 0, 

and one solution u of the equation 

L(y) = A(x), (5) 

the complete solution of the latter equation will be 

y = C1U1 + C2W2 + • • • + CnUn + U, (6) 

where the Ci, c2, * • • Cn are the n arbitrary constants. For, by the 
principles expressed in (3) and (4), we will have 

L(y) = CiL(ui) + c2L{u2) + • • • + CnL(un) + L(u) 

= A(x)f 

since L(iik) = 0, and L{u) = A(x). Thus (6) gives a solution of 
(5), and as the Uk are linearly independent, it contains n constants 
and so is the complete solution. 

8 Such that no constants alf a2, • • • a» not all zero, can be found for which 

01W1 + + • • • + aniin = 0. For example 2, x, and 3a -f 4 are not linearly 

independent, since 2(2) + 3(x) — l(3x + 4) =0, while 2, x, and ex are linearly 

independent. A method of establishing linear independence is indicated in 

problems 5 and 6, p. 82. It may be noted that 2ci + c%x + csC* contains 

three constants, but 2ci + c2x 4- c2(3x -f- 4) = 2(ci *+• 2c8) + (c* 3ca)x con¬ 

tains really only two constants, (ci + 2c3) and (ca 4- 3c8). 
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The part of the solution of a linear differential equation involving 
the constants is called the complementary function. The term u 
is called a particular integral. The discussion just given shows that 
any function which satisfies the differential equation may be used 
as a particular integral, and that the complementary function, 
which by itself is the complete solution of the corresponding 
equation with right member zero, is formed in a simple way from 
any n linearly independent functions which satisfy the equation 
with right member zero. 

EXERCISES XII 

1. By differentiating and eliminating the constants, find the differential 

equation with right member zero whose solution is: 

(a) Ci + c2£, (b) cxe* -f c2elxy ^(c) Ci sin x + c2 cos x, (d) cxe~x + c2xe~x, 

(e) ci€3x cos 2x 4~ C2C3* sin 2x. 

2. For each part of problem 1, find the differential equation whose comple¬ 

mentary function is the expression there given, and admitting as a particular 

integral the expression given in the corresponding part of this problem. 

(a) x2, (b) 2ex + 3, (c) sin 2;r, (d) ex, (e) 2x 4- 1. 

3. Find the differential equation with right member zero whose solution is: 

(a) cix2 4* c2x3, (b) C\x + c2ex> (c) Ci sin a: + c2ex, (d) cx sin x 4* c2 sin 2a:, 

(e) cLf(x) 4- c2g{x). 
4. Find the differential equation whose complete solution is: 

(a) x2 4- ex 4- C2X4, (b) sin 2a: 4- Ci 4* c2 cos 2a:, (c) 1 4- cxa:2 4- c2x4. 

6. (a) Prove that if ciiUl 4- ol2u2 - 0 (ah a2 constants not both zero), then 

and the determinant 

Ui 

dily 
dx 

du\ . du2 
= 0, 

Ui 

du2 

dx 

Ui diij 

dx 
u2 

duy 

dx 
= 0. 

This shows that if the expression just written is not zero, the two functions are 

linearly independent. 

(b) Similarly, if the condition 

ci\Ui 4- u2Ui 4- * * • 4* OnUn = 0, 

all the derivatives of the functions uk will satisfy equations of this form, and 

the determinant 

Ui U2 . . . un 
dui dv^ dun 

dx dx dx 

duyn duin dun11 
dx*1 dx*1 dxn 
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Thus if the determinant just written is not zero, the n functions are linearly 

independent. 

6. Apply the result of problem 5 (a) to prove that each expression in problem 

1 is made up of a pair of linearly independent functions. 

21. The Complementary Function. The solution of the linear 
differential equation of the first order with constant coefficients 
and right member zero, 

dp 
dx 

- ry = 0, (7) 

is 

y = cerx. (8) 

The solution of a linear differential equation of any order with 
constant coefficients and right member zero may be reduced to the 
solution of first order equations of the same type, by a process of 
factoring the differential operator. We illustrate by some ex¬ 
amples. The equation 

3^ + 2 * 
dx2 dx y = 0 (9) 

suggests the algebraic expression4 

SX2 + 2X — 1 = 3(X - |)(X + 1). (10) 

Since it is immaterial whether we first multiply by a constant, 
and then differentiate, or perform these operations in the reverse 
order, linear differential operators with constant coefficients com¬ 
bine like algebraic expressions.6 Thus the algebraic relation (10) 

4 Since ax2 + bx + c = a(x — rx)(x — r2), where ri and r2 are the roots of 

the quadratic equation ax2 + bx + c — 0, the factors may be found from the 

—2? ^ y/ — 4ac 
quadratic formula, x =-2^-:, if not immediately obvious. For 

equations of higher degree than the second the factors would still be found from 

the roots of an algebraic equation, but this would usually have to be solved by 

some method of trial and error. 

6 This no longer holds if the coefficients are not constant. For example: 

(xX)(X -f- x) = (X + x)(xX) + x*Xt 

(xi)(i + x)'J = xS + *t + xy’ 

(i+x) (xi)y = x2> + (1+x2)%- and 



84 LINEAR DIFFERENTIAL EQUATIONS 

shows that the differential equation (9) is equivalent to 

(1-1X1+0-°' 
where the parentheses indicate that we are to first compute 

(ID 

and then set 

dyi 
dx 

1 
3^ = °. 

Equation (11) shows that the solution of the first order equation 

dy 
dx + y = o, 

namely, cxe~x, is a solution of equation (9). For, when this ex¬ 

pression is subjected to the operator + 1^ , the result is zero, 

and the second operator leaves it zero. Or, in other words, from 
our method of getting this expression, when yx is computed it 
comes out zero, and this obviously satisfies the differential equation 
written for yx. 

But the order of the parentheses in (11) may be changed, just 
as they may be changed in the algebraic expression (10). Conse¬ 
quently, a similar argument shows that the solution of 

dy 1 _ n 
dx 3y °’ 

namely, c^3, is also a solution of equation (9). Thus, by the 
preceding section, 

y — cie~x + (12) 

is the complete solution of (9). 
As a second example, consider 

g + 4g + 6v.„. 0» 
The corresponding algebraic expression is here 

X* + iX + 6 = (X + 2 - W2){X + 2 + tx/S), 



THE COMPLEMENTARY FUNCTION 85 

and the argument previously used would indicate as the solution0 
of (13) 

y = Cl6(-2+i^2)z + <^(-2-1^ (14) 

But, from equation (45) on p. 18, 

e(~2-ftv/2)X _ e-2x cog y/2x + ie~2a? sin V2x, 

and 

e(-2-tv'2)a5 = e~2i cos V2x — ie~2x sin V2x, 

so that this expression may be rewritten as 

y — C\e~2x cos V2x + c2e~2x sin V2x, (15) 

where 

Ci = Ci + C2, C2 — iCi — zC2. 

The value given in (15) will be a real number provided x, ci, 
and C2 are real, so that it is a more useful form of the solution than 
(14) for most purposes. 

We finally consider the example 

S + 6E + 9»-0' <16> 

for which the corresponding algebraic expression is 

X2 + 6X + 9 = (X + 3)2, 

so that the differential equation may be written 

(i+3)(i+3)»~°- <i7> 
The previous argument shows that CiC“3x is one solution, but 
fails to give a second, since the two factors are alike. To find a 
second solution, we note that 

so that if we replace y by c2xe~3* in (17), the result of the first oper¬ 
ator will be to remove the x, and the second will then give zero. 

* Each of these terms is a function, assuming complex values, of the real 
variable x. For the meaning of, and rules for differentiation of such a function, 
see problem 10, p. 19. 
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Thus the solution of (16) is 

y = cie~*x + czxe”**. (18) 

In general, the solution of any linear differential equation with 
constant coefficients and right member zero may be obtained by 
finding the roots of the analogous algebraic equation. A real root, 
r, leads to a term cerx, a pair of conjugate complex roots, a + hi and 
a — bi leads to two terms c^x cos bx and o>eax sin bx, if these are 
simple roots. When the equation has several, say q, roots equal, 
so that there are q equal first or second degree factors, the proper 
number of terms are obtained by multiplying the term, or pair of 
terms for a single factor by 1, x, x?> • * • xq~l. This follows from 
the fact that 

— r^xmerx = mzm~]erx, (19) 

so that, when the operators corresponding to the equal factors are 
applied in succession, each reduces the power of x by unity, until 
the (m + l)st factor gives zero. 

22. The Particular Integral. When the differential equation 
has a right member consisting of one or more exponential terms 
added together, the particular integral is readily found. Consider, 
for example, the equation 

3S+2!-!'-4'"+2e’' (2o) 

To get the first term on the right, we substitute Ae2x for y in the 
left member, and equate the result to the first term: 

12Ae2* + 4Ae,2x - Ae2x = 4e2x, 

which will be true if 

15A = 4. 4=4- 
lo 

Similarly, the second term on the right may be obtained from 
jBe*, and we find B = Thus, finally, from the discussion given 
in section 20, and the solution of (9) found in (12), we may 
write as the complete solution of (20): 

ys=^e2x + ~ex + cie~x + (21) 
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We note that if the exponential occurred in the complementary- 
function, the particular solution would have the form Axe™ if r 
were a simple root, and AxQe™} if r were a root corresponding to q 
equal factors. This follows from (19), and in such a case the actual 
computation is often best made by using (19) and the factored 
form of the differential operator. 

In equations arising from practical problems, we more often 
meet right members formed from sines and cosines than from 
exponential functions. These are most simply treated by regard¬ 
ing them as the real, or imaginary, components of complex expo¬ 
nentials. For example, to solve the equation 

% + it + zy = 3‘m3x’ m 

we consider instead the equation: 

d2Y dY 
~~ + 4 —- + 3F = 3ezix = 3 cos 3x + 3i sin 3x. (23) 

In this equation x is still a real number, but Y is a complex7 
number, say u + iv. The result of substituting Y = u + iv in 
the left member of (23), L(F) is: 

L(Y) = L(u + iv) = L(u) + iL(v). 

Hence, if Y = u + iv solves (23), we must have: 

L(u) — 3 cos 3x, L(v) = 3 sin 3a;, 

and the imaginary component of F, vy is a solution of (22). 
A particular solution of (23) of the form Aezix is found to be 

F = 
3ezix 

-6 + 12i * 
(24) 

But 

3ezix __ 3 (cos 3a; + i sin 3a;) ( — 1 — 2i) 
— 6 + 12i ■“ 6(-1 + 21) ' (-1 - 2i) 

— (—.1 cos 3a; + .2 sin 3a;) ( — .2 cos 3a; — .1 sin 3a;). 

Hence 

v — —.2 cos 3a; — .1 sin 3a; 

7 Compare footnote ®, p. 85. 

(26) 
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is a particular integral of (22), and the complete solution is 

y = — .2 cos 3# — .1 sin 3x + cie~x + c2e~a*:. (26) 

An alternative method of determining v from (24) is to introduce 
the polar form of the complex numbers. We have 

-6 + 12?: = 6V5|180° - tan-1 2 

= 13.4|116° 30', 

so that 

3*3;* 3|3z 

rs+B - i3.4|ii6”30' " ^ 
- .234 cos (3x - 116° 30') +« .224 sin (3i - 116" 30'), 

and 

v = .224 sin (3x - 116° 30'). (27) 

This is in agreement with (25). 
Since a right member of a differential equation which is not a sum 

of sines and cosines may be replaced, over any limited range, by 
a Fourier series, most problems of practical importance come under 
the type just treated. Some indications as to the method for a 
right member which is a polynomial, or the product of a poly¬ 
nomial and an exponential (which may be real or complex) are 
given in problems 7 and 8, p. 89. A general method, theoretically 
applicable to any right hand member is given in section 27. 

EXERCISES XIII 

1. Solve the following differential equations: 

(Py 
<a) 8 -4y=°- (c) g + 9y - 0, 

M> S+5l+8^°- (e) 
d^.-dy _ + 7_+18y 0. 

2. Solve: (a)g=0, (6) g + 4 g + iy - 0, 

<d>g + 6g + 9*'-0’ WS~8S + 16* 

«3-* 
o. 

8. Find the complete solution of each of the following differential equations: 

(o) g + 25y = 13e* + 25e»* (6) g - 6 g + 6y = + &-** 

(c)S + 32 + 4y“5e4*’ wg-25^2^, M0 + 3g-e-«. 
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4. Solve the differential equation 

~~ 4 6 — -f* 10y = 3 cos 4x 4 3 sin 4%, 

obtaining the particular integral by considering the right member (a) as the 

real component of 3|4r plus the imaginary component of 3|4x; (b) as the 

imaginary component of 3^2\4x 4 45°; (c) as the real component of 

3y/2|4x — 45°; (d) as the imaginary component of 3|4x -f 00° 4* 3|4x; (e) as 

the real component of 3|4r -f 3|4r — 90°. 

6. Solve each of the following, obtaining the particular integral from the 

relation of the right member to one or more complex exponential functions. 

(а) S-7S+i0y = 2sin2x- 

(б) jjgj- + 5 ~ + 7y = 5 sin 3x + 4 sin 9x, 

(c) + 2 sf+ 2y = 4 cos ^x ~ 30^’ 

d?y 
(d) -r— + y - 5 cos 2x 4 3 sin 2x 4 2 cos 6r — sin 6r. 

(e) + iy = 5 sin 2x. 

6. Solve: (a) ^ — 0 — 7?/ = 5, noting that 5 = 5e0*; 

«3+83+16'' e2* 4 sin 2x; (e) — 4 3?/ = 4e2* sin 5r, noting 

that the right member is the imaginary component of 4e(2+6*X 

7. (a) Find a particular integral of the equation 

<Py 
dx2 

— 4y ~ 3x2, 

of the form Ax* 4 Bx 4 C. 
(6) Find a particular integral of the equation 

d?y 
dx2 

4 16y « xe2x, 

of the form Aeix 4 Bxe2x = (A 4 Bx)e2x. 
(c) Find a particular integral of the equation 

8 
of the form Az2eto 4 ite’e8* » x2(A 4 Bx)e*x. 

(d) Find a particular integral of the equation 

#y 
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as the imaginary component of the particular integral of 

d2Y g + 10 Y-x**, 

of the form Ae2ix -f- Bxe2ix = (A -f Bx)e2ix. 
8. The parts of problem 7 illustrate that if the right hand member of the 

differential equation contains the product of an exponential and a polynomial 

(which may consist of only one term) the corresponding particular integral 

in general will be a polynomial of the same degree multiplied by the exponential, 

and the coefficients may be found by substitution. When any of the terms of 

the form of the particular integral just mentioned are in the complementary 

function, the form just mentioned must be multiplied by x raised to a power 

equal to the number of terms in the complementary function. 

Prove that this rule will always lead to as many first degree equations to 

determine the unknown coefficients, as there are unknown coefficients to be 

found. 

The exponential may be e°* = 1, as in 6 (a), 6 (b) and 7 (a). Polynomials 

multiplied by trigonometric functions, or by trigonometric and exponential 

functions may be reduced to complex exponentials as in 6 (e), 7 (d). 

9. (a) Find a particular integral of the differential equation 

= 4 
dx2 

using the rule in problem 8. Use this to find a solution of the differential 

equation which is zero when x — 0, and also when x = 2. 

(b) Expand 4 in a Fourier sine series of period 4, and find a particular inte¬ 

gral of the differential equation 

d2y 
dx2 

16 / . 7T3 

T v wn "2 
7rX . 1 37rX . 1 . 5ttX . 

+ 3smT’ + 58ln'2‘ + 

by treating the terms separately. 

(c) Show that the F'ourier sine series for the solution found in (a) is the par¬ 

ticular integral found in (b). 

10. The right member of a differential equation is the odd function of period 

12 defined by 

A (x) = 3x, 0 < x < 3, 

A{x) = 18 — 3xy 3 < x < 6. 

Find the solution of the differential equation 

2 + ^-A(X), 

which is zero when x is zero, for 0 < x < 12. 

(а) By fitting together the solutions for the four intervals 0 < x < 3, 

3<z<6, 6<z<9, 9<x<12. 

(б) By expanding the right member in a Fourier sine series, of period 12. 

23. Systems of Equations. The solution of a system of linear 
differential equations, with constant coefficients, to be solved as 
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simultaneous, may be reduced to the solution of one or more sepa¬ 
rate equations. We shall illustrate this method, as it will enable 
us to anticipate the form of the solution. Practically, we need not 
perform the eliminations but merely substitute expressions of the 
correct form, with unknown coefficients, into the system as given. 

Consider the system of two equations: 

^+2+*+»-*. 

3t+2f+9*+!'- -3e“- (28> 

These may be written in the form 

(25» + 5)* + (! + 1)*-'“' 
< d 

,33 + 9 ')*+0 1 ) y = -2e» 

We eliminate as we would for simultaneous algebraic equations. 

We operate on the first equation with ^2— + 1^, the operator 

on y in the second equation, and on the second equation with 

, the operator on y in the first equation. The result is 

(2 s + 3)(2 i+5)1 + (2 s+1XI + 0:1 - (2 i+'} 

3f + >-■’*. 

3if + 125? + 9* + 25# + 3^ + j,- -8*". 

whose terms in y are identical, so that on subtracting we have the 
equation in x: 

f-4* = 15*“. 

The complementary function of this equation is found from 

X2 - 4 = 0, 
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and the particular solution is found by trying Ae3* in the equation. 

The result is 
x = 3e* + + c2e-2f. (29) 

If y were now found by a similar process, two new constants 
would appear. These would have to be properly related to C\ and 
c2 in order that the value of y combined with that just found for x 
should solve the system. The relations might be found by actually 
substituting the values of x and y in the system. If we substituted 
the value of x given in (29) in one of the equations of the system, 
and solved for y} one new constant would appear. That there are 
no additional constants in the solution for y corresponding to (29) 
may be seen by multiplying the first of equations (28) by 2 and 
subtracting the second. The result is 

i+*+»-«■. 
or 

y = 4e*" *■ 

When the value of x given in (29) is substituted in this, we find: 

y = -8e» - 3cie* + c2e~* (30) 

The process of elimination used to get x from the system (28), 
may be applied to any system of linear equations with constant 
coefficients to get a differential equation satisfied by any one of the 
variables. This will be linear with constant coefficients, and will 
have as a right member terms appearing in the right members of 
the equations of the system, or terms arising from them by differ¬ 
entiation. Hence the solution for each variable will consist of a 
complementary function, composed, in general, of exponential 
functions, and a particular integral. When the equations of the 
original system have right members which are sums of exponentials, 
the particular integral for each of the variables will in general be 
a sum of all the exponentials which occur in any of the equations, 
with suitable numerical coefficients. 

The exceptional cases, which arise when there are multiple 
factors in the expression which gives the complementary function, 
or when some of the exponential terms in the right members are in 
the complementary function seldom occur in practice. Accord- 
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ingly we shall give no detailed discussion of the form in this case, 
although it could be predicted as indicated in problem 2, p. 94. 

If we assume that the form of solution of any given system is 
known to start with, the actual calculation may be somewhat sim¬ 
plified. Let us illustrate this method by the system of equations 
(28). For the complementary function, we try to satisfy the corre¬ 
sponding system with right members zero by 

x = aertf y = be*. 

On substituting these values in (28), with right member omitted, 
we find: 

2 ar + hr + 5a + b = 0, 

3ar + 2 br + 9a + b — 0. 

These equations may each be solved for the 
..a 

ratio ^, giving: 

a _ r + 1 _ 2r + 1 
b ~~ ~ 2r + 5 “ “ 37+9 ' (31) 

From the equality of the last two fractions, 

(r + l)(3r + 9) - (2r + l)(2r + 5) - 0, (32) 

and8 

r - 2, or —2. 

These values, inserted in (31), give 

a 
b 

1. b = —3a, or b = a. 

Hence, if x = Cie2*, the corresponding term in y is —3cxe% and if 
x = the corresponding term in y is e^e~2t. 

For the particular integrals, we put x = Ae®, y = Be* directly 
into the equations (28), retaining in the right members all terms in 
e8*, here all the terms. The result is 

(11A + 4 £)e* = e3', 
(18 A + 7 B)e* = -2e*, 

8 When the number of equations is large, the coefficients are more easily 

eliminated by the method of determinants. Thus, here (32) is equivalent to 

2r + 5, r + 1 

3r + 9, 2r + 1 
(2r + 5)(2r + 1) - (r + l)(3r + 9) - 0. 
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and when is divided out, and the equations solved for A and B, 
we find A — 3, B = — 8. Hence the solution of (28) is 

x = 3eJ + c,e21 -f- c,2e/ 2t, 

y = -8eM - 3cie'-‘ + omr*, 

which agrees with (29) and (30). 

EXERCISES XIV 

1. Solve each of the following systems by both methods: 

(а) § + |-3* + v-* = 

(б) 2J + 4J + 3, + ,^, J + 2f + 2*=0; 

(c) § + 2/ = J + 2* + ■'/ “ 0- 

The parts of this problem illustrate that the number of independent constants 

in the complete solution of a system is at most equal to the sum of the orders 

of the separate equations (here 1 + 1=2), but may be any number less than 

this (as here, 2 in (a), 1 in (b) and 0 in (c)). 

2. Solve ) by the method of elimination: 

(a) 
r dx 
0 -77 

dt + 2W 
+ 0 x + y 

*§1^3 
CO 
+

 

4s 1
^ 

II + 5x + 2y =0 

(b) 
dx 

dt 
■ 2z +* y = 

n dx dy 

U’ dt It 
+- x - - y = 0; 

(e) 
dx 

dt 
— 4# — 2 y 

+
 

■8
1
*

 

II dy _ 
dt 

3 x - V = 0; 

(d) 
. dx 

+4' 
— 7x — Sy 

, dy 
^ dt 

— 5x - ?/ = 0; 

(e) 
dx 

6 dt 

1 i Gz + 2y — 
«*■ §+5 

dy 

dt ~ 
2x - ©

 

II ©
 

These systems illustrate the exceptional cases. If the second method were 

used, for the complementary function in parts (a) and (d), the two equal roots 

in the equation for r, and the fact that the corresponding coefficients were re¬ 

lated, would lead us to expect an exponential multiplied by t in the comple¬ 

mentary function. In parts (6) and (e), although there are two equal values of 

r, the corresponding coefficients in z and y are not related, and no additional 

terms appear in the complementary function. Parts (c), (d) and (e) show that 

the particular integral, for an exponential on the right which appears in the 

complementary function, is an exponential times a polynomial in t of degree 

one greater than the power appearing in a similar term of the com piemen tary 

function. The second method can lead to no error in the particular solution, 

since the process there is self verifying, but it may lead to some of the terms in 

the complementary function being omitted, unless it is carefully used. 
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3. Solve the following systems of equations: 

(а) J_4y = e-<> J+*= 0, ft-2x=0; 

(б) | + 22/-3.-*, dJf + x+3z=0, |-x-2,-0; 

(c) J + 2, + 2z = * § - 2.r + 2 = 0, g + , - 2z = 0. 

4. Solve: (a) ~ — 3x — y = 3e?lt — 2x ~~ 2y — 0; 

,, s d?x { dy n . dx . 0 n 

(6) 5^ + ^~22/==sm^ ^ + *-3?y -°» 

(c) 3p - 4?/ = cos *, ^ + I = o. 

6. Solve each of the following systems: 

dly 

dt? 
d2y 

dt2 

(а) 

(б) 

(c) 

W 

— x — 4?/ =0, 

Sy = 

r°w + x = e?l> 
d'u 9e dx 

dfi 28 dt 

d2x d2y 

dt? ' dt2 
2^ + 0- 

dt ^^dt 

0, 

d?y 

+ 4x = 0; 

+ £ + Oy = 0, 

tPx , d?y , 0dx . Ady r 

dF + W + 8di + 4di + ™x + 4y = 0’ 

(Py 

dt2 
- 5* - 4, = 0, ^ - ix - 5, = 0; 

, . d?X . r/2V _ ffo A dy , a , o A 
« ^ + ^-3^-4^ + 2* + 32/==0’ 

dx dy 

3 dJt+dt 
6# — 3?/ = 0. 

24. The Differential Equation for a Single Electric Circuit. 
Consider an electric current flowing through an element, Fig. 22, 
containing resistance, inductance, and capacity. We arbitrarily 

Fig. 22 

select one direction, say that from A to 5 as the positive direction 
for the element. If q (coulombs) is the quantity of electricity 
which has passed a given point in the element in the positive direc¬ 
tion, at time t (seconds), the current9 i (amperes), where 

i = 
dq 
dt’ 

9 Whenever we use i for the current intensity, and e for the electromotive 

force, we put j — V — 1, and e = 2.71828 • • •, in place of the symbols i and 

e previously used. 
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will be the same at all points of the element, but will in general 
vary with the time. The potential, or electromotive force, abbre¬ 
viated e.m.f., will be different at the points A and B. The total 
drop will be the sum of three drops in e.m.f., cl, e.R, ec (volts), 
where we regard a difference of potential as positive when the 
potential increases as we move in the positive direction. The first 
of the three drops is 

It is proportional to the rate of change of the current and the 
positive constant of proportionality, L (henries) is the inductance 
of the element. The second drop, 

e,R = — Riy 

is proportional to the current itself and the positive constant of 
proportionality, R (ohms) is the resistance of the element. The 
third drop is proportional to the quantity of electricity accumu¬ 
lated since the condensers were discharged, so that 

The reciprocal of the positive constant of proportionality, C 
(farads) is the capacity of the element. 

If the element AB is connected in series with a source of e.m.f., 
ef the total difference of potential between the points A and A9 
will be 

ef = e -f eL + 6r + ec. (33) 

In view of the relations given above, this may also be written 

(34) 

or, in terms of quantity of electricity, g, 

£. 
C 

Finally, if the points A and Af are in contact, so that the current 
through the element AB is caused by the e.m.f. in BA9, the differ¬ 
ence of potential e' will be zero, and from equation (34) 

(35) 
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We may obtain a differential equation for the current from this 
by differentiating each term. The result is: 

L 
dS 
dt2 

o_ ft + L 
^ n dr C 

de 
dt 

(36) 

Of course, when there is no term involving capacity, this differ¬ 
entiation is unnecessary. A differential equation for q would follow 
directly from (35). 

26. The System of Differential Equations for an Electric Net¬ 
work. When electric currents flow through a network of elements 
which form several circuits, the total e.m.f. across each element 
may be expressed in terms of the current through that element, 

the constants for the element, and the sources of e.m.f. in the 
element. The currents in the various elements are related by 
KirchhofFs first law, which states that: 

I. For all the elements which meet at any junction point, the 
algebraic sum of the currents, taken positive when toward the 

point, negative otherwise, is zero. 

The e.m.f.\s in the various elements are related by the second 
law of Kirchhoff, namely: 

II. For all the elements which make up any closed circuit, the 
algebraic sum of all the e.m.f.’s, taken positive when in one 
direction around the circuit, 

e.g. clockwise for a plane 

network, negative other¬ 

wise, is zero. 
We shall illustrate the 

application of these laws to 

the network shown in Fig. 
23. We assign numbers to 

the elements, and arbitrary 
directions to be taken as 
positive indicated by the 

arrows in the figure. If ii 

is the current, and ei the 
source of e.m.f. in the first 
element, reckoned positive when in the direction of the arrow, i.e. 

from B to (7, and this element contains inductance Lh resistance 
Rh and capacity Ci, we have as in (34) for the total difference 
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of potential between the points B and C: 

dit 1 ri 
= €i - U ^ + lUi + ^-Ji *1 & (37) 

We may write five additional equations of this form for the 
remaining five elements. 

By applying the first law to the points A, By Cy we find: 

12 — u — i\ = 0, 
iz — h — ii = 0, (38) 
i\ — i6 — ii = 0. 

By applying the second law to the three fundamental10 circuits 
indicated by the curved arrows in the figure, we find: 

e2 + e\ — e$ — 0, 
ej + eb' - e*' = 0, (39) 
€\ + — eb = 0. 

In the next section we shall show how to obtain the permanent 

state of the currents directly from equations (38) and (39), but we 
shall reduce these equations further, in order to see their real 
nature. 

We first solve equations (38) for the three currents u, ibf u in 
terms of the other three. The result is: 

i\ — izy 
ii = is — i\, (40) 
Zt) %\ ~~~ ly. 

If, now, the six eu in (39) are replaced by their values as given 
by (37) and the analogous equations, and u, ib and ia are eliminated 
by means of (40), there results: 

(L2 + Li + La) ~ + (R2 + i?4 + Ro) z*2 + ^ J* ii dt. 

is dt— La 

= 62 + 64 — 66. (41) 

10 In the sense that the equation for any other circuit in the figure is a 

consequence of the equations for these three. Just as, in writing (38) we 

omitted the equation for the point D} since this would merely be the sum of 

the other equations. 

Li dt RiU CiSu 
dii 
dt 

- Rdi 
_ 1 f. 

C» Jfc 1 
i\dt 
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and two other equations, similar in form. By differentiating these 
equations, we obtain a system of three second order differential 
equations in the currents f2, %. After these are solved for ih ii, ut 
the remaining three currents may be found from (40). 

The process is typical of that for any network. We apply the 
first law to all but one of the points of junction, and solve for as 
many of the currents as we can, in terms of the rest. We then 
apply the second law to a fundamental set of circuits, and eliminate 
the currents for which we solved the first set of equations. The 
result is equivalent to a system of linear differential equations with 
constant coefficients, each of at most the second order, with as 
many equations as there are currents to be determined. 

26. Solution of the Circuit and Network Equations. The differ¬ 
ential equation satisfied by the current, in a circuit containing 
resistance Ry inductance L, and capacity C, caused by an impressed 
e.m.f. c, was found in (36) to be 

dH ! n di , i _ de 
It« + HIt^C~dtm (36) 

The e.m.f. is frequently a single sine term: 

e = Em sin (cat + a). (42) 

In the case of any periodic e.m.f., the equivalent Fourier series 
is a sum (or infinite series) of terms of this form, and the solution 
for the sum will be the sum of the solutions for the separate terms. 
Thus we are led to consider the differential equation: 

L ^5 + R ^ + ~q — uEm cos (cat + a). (43) 

The complementary function is found from the roots of 

LX2 + RX + t = 0, 

or 

1 
LC ’ 

The quantities R, L and C are all positive. Consequently, the 
expression under the radical is either a positive number less than 
/ ft \2 

\2L/ ’zero’or a ne8at*ve number. In the first case we abbreviate 



100 LINEAR DIFFERENTIAL EQUATIONS 

the roots by — ai, —02, since they are both real and negative. 
R 

the second case, we put ^ = a, so that the roots are both —a. 

the third case, we define a as before, and write11 

= b V — 1 = bj, 

In 

In 

so that the complementary function has one of the forms:11 

Ci€~ait + C2€~a2i, 
Ci€~at + C2te~at, 

C\e~at sin hi + bi6~at cos bt. (44) 

The particular integral is found by regarding the equation (43) 
as the real component of the equation:11 

LW> + Rft+^ = uEmtliU+a) = (45) 

A particular solution of (45) is 

cjEmejaej03t __Emejaejo>t_ 

— Leo2 + Rjoj + ^ j + j (l<0 — J 

The real component of this is the imaginary component of the 

fraction which multiplies ~ , or 

Thus (46) is a particular solution of (43), and the complete solu¬ 
tion of (43) is obtained by adding to (46), the appropriate one 
of the complementary functions given in (44). 

In a specific application, the values of ci and c2 could be deter¬ 
mined from the knowledge of two facts about the circuit, e.g. the 
current at some one time, and the charge on the condenser at some 

u See footnote 9, p. 95 for the notation j and «. 
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one time. One condition on Ci and oi would arise when the value 
of the current, and corresponding time were substituted in the 
complete solution. The second condition would arise when the 
current was eliminated, by use of the complete solution, from the 
equation 

L Hi -f- g ^qi + i dt^ = Em sin (cot + a), (47) 

as the terms involving t would cancel out because this is an integral 
of (43). The physical significance of (47) is the same as 

L ^ + Hi -f- ^ dt = Em sin (cot + a), (48) 

which results from putting the value of the e.m.f. of (42) in (35). 
The particular integral given in (46) is a periodic function, while 

the terms of the complementary function given in (44) all approach 
zero when t becomes infinite.12 Hence, theoretically when t is 
very large, and in most practical applications even after a fairly 
short time, the terms of the solution arising from the comple¬ 
mentary function become negligible, and the important part of 
the solution is that given by the particular integral. Thus (44) 
defines the transient current, and (46) gives the permanent, or 
steady-state current, regardless of the values of the constants in 
(44). Since the steady-state current is the only part of interest 
for many applications, it is worth while to introduce certain defini¬ 
tions and abbreviations which simplify its calculation. 

We begin by noting that (46) may be obtained13 from (48), if 
we ignore the terms arising from the constant to. In fact, (48), 
with lower limit omitted, is the imaginary component of 

L ~ + RI + I J‘l dt = = Em^, 

18 Since e~ai 
efi* 1 + at 

; te~«t< 
t 

1 *4* at -f- 
aH2 

13 The expression (46) is a particular solution of (45), and hence actually 

Bolves this equation. It is not a solution of (48) for an arbitrary value of to. 

It may be obtained from (48) in the way indicated, and is the steady-state 

eolution of (48) in the sense that the difference between it and the solution of 

(48) approaches zero when the time becomes infinite. 
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and we find that Af?ul is a solution of this, if 

Thus 

A = 

I = 

Emt* ' 

* + >(*“-3?)’ 

(49) 

and the imaginary component of this is (46). 
We next define the impedance, Z, of an element containing resist¬ 

ance R, inductance L and capacity (7, to a simple harmonic e.m.f. 
of frequency a; as: 

Z = R+j(lM-±\- (50) 

Thus impedance is a complex function of a real variable, the fre¬ 
quency, and for any given frequency reduces to a complex number. 
If, then, we define14 complex current, /, as the complex exponential 
term whose imaginary component is the actual simple harmonic 
steady-state current, and similarly the complex e.m.f., E, as the 
complex exponential term whose imaginary component is the 
actual applied simple harmonic e.m.f., the relation (49) becomes 

/ = f • (51) 

This reduces the determination of the steady-state current in a 
single circuit to a problem in the algebra of complex numbers. 

The methods just given for the single circuit require but slight 
modification when we consider the system of equations for an elec¬ 
tric network. The complementary function may be found as in 
section 23, and will always consist of terms containing as one factor 
an exponential whose exponent is a negative number multiplied 
by the time. Thus these terms will approach zero as the time 
increases indefinitely, and will correspond to transient currents. 

The periodic particular integrals will give the steady-state cur- 

14 Thus the complex current and complex e.m.f. are “rotating vectors” in 

the sense of problem 11, p. 20, and the results are often stated in terms of 

vectors rotating in the (complex) plane. 
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rents. The terms for a particular frequency present in the applied 
e.m.f.’s may be obtained by omitting all terms not of this fre¬ 
quency, and substituting complex exponentials of this frequency 
in the system of differential equations of which the set just men¬ 
tioned is the real part. The introduction of the terms impedance, 
complex current, and complex e.m.f. defined for each element of 
the network, reduces the calculation to the solution of a set of 
algebraic equations. 

For example, if in the network of section 25, there is a term in 
one of the e.m.f. ’s of frequency a>, say 

Emi sin (cct + ai) 

in €i, we define the complex e.m.f., Ei (for a>) as 

Ei = Em ieja'eja3t. 

In the same way we define complex e.m.f.’s for co for each of the 
elements, putting them zero for any element not containing in its 
e.m.f. a term of frequency co. We define the complex currents 
for oj, 7i, 72, etc., as the complex exponentials whose imaginary 
components give the steady-state currents of frequency w. We 
define impedances for the elements by (50), so that, for example, 

Zi = Ri +j (Lico ~ • 

Then it follows from equation (41), and the two similar equations 
that: 

(Z2 + Z\ + Zs)l2 — Z\I$ — ZqIi = E2 + Ei — Eoy 

(Z3 + Zb + Zi)I-i — Z5/1 — Z4/2 = Ez + E& — Eiy 

(Z\ + Ze + Z&)/i — ZqI2 — Z^Iz = E\ + Ee — E$. (52) 

It may be noted that the equations just written may be found 
directly from KirchhofTs laws. Thus from (37), we have 

Ei — E\ — Zi • /1, etc. 

so that (39) becomes: 

2?2 — Z2 * 12 4“ Ei — Z4 • Ii — 7?e ~h Z§ • Id == 0, 

E% — JBa • 7a + Ei — Zb • Is — Ei -f- Z4 • 74 = 0, 

Ei — Ei • h + Ei — Z$ • 7e — E$ 4- Z5 • 7b = 0. (53) 
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Applied to the complex currents, we have in place of (38): 

h - h ~ la * 0, 

h - h - Ii = 0, 
Ii — h — h = 0. (54) 

The set of equations (52) follows when I\y 15 and /6 are elimi¬ 
nated from (53) by means of (54). 

The set (52) may be solved for any of the currents. Thus 

E<> -f- E4 — Eqj Z% -f- Z\ ~f" Zqj — Z4 

Ez + E$ — Ety — Z4 , Zs + Zi + Zi 

E\ + E$ — E$j — Z\ y — Z$ 

Ii «- 
— Zq y Z2 ~f~ Z4 -f" Z0, — Zi 

— Zl y — Z\ y Z3 + Zh + Z\ 

Zl + Z6 + Z*>y — Zfi y —Zl 

If the constants were all given numerically, this could be reduced 
to a complex constant times an exponential in the time, and its 
imaginary component would give the term in ii of frequency co. 

EXERCISES XV 

1. Find the steady-state current in a single circuit containing resistance R, 

inductance L and capacity C if the impressed e.m.f. is (a) e = Em sin cot, 

(b) e = Em cos cot, (c) e = Em cos (cot + a)f (d) e = Em sin cot + Em cos cot. 

2. Find the steady-state current in a single circuit containing a resistance 

of 60 ohms, an inductance of 8 henries, and a capacity of 3 microfarads =» 

3 X 10”* farads, when the impressed e.m.f. is 

e = 100 sin (120*0 + 25 sin (360*-* + 25°) + 3 sin (600*-* - 10°). 

3. Find the transient current when a condenser of capacity 5 microfarads 

= 5 X 10”* farads charged with .004 coulombs is discharged through a circuit 

containing a resistance of 2 ohms and an inductance of 14 henries. 

4. Assuming that, for a given frequency, each of the three elements of the 

network or Fig. 24 contains impedances Z1, etc. and sources of e.m.f. giving rise 

to complex e.m.f.*s Ei, etc., set up the equations which determine the complex 

currents. 

6. Assuming that, for a given frequency, the elements 1 and 2 of the net¬ 

work of Fig. 24 contain impedances Z\ and Z2 and no sources of e.m.f., but the 

element 3 contains a source of e.m.f. giving rise to the complex e.m.f. Et, and 

no impedance solve for h and interpret your result to give the law for finding 

the single impedance equivalent to two impedances in parallel. 

6. Assuming that the elements of the network of Fig. 25 have, for a given 

frequency, impedances Zi, Z2, • • • Z*, and that the element 6 has an impressed 
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e.m.f. of this frequency giving rise to a complex e.m.f. F«, set up the equations 

which determine the complex currents. 

7. (a) If the element 1, in the network of Fig. 24 contains e.m.f. elt resistance 

Riy and inductance L\ — M, the element 2 contains inductance M, and the 

element 3 contains e.m.f, e8, resistance R$ and inductance Lt — M> show that 

the equations for the currents ii and i3 are: 

e, = Riii + L^+ M 

e, = Rti, + Ls~^+ 

These are the equations for two circuits with mutual inductance M, and the 

result shows that the presence of mutual inductances in a network does not 

change the type of the equations. In fact, a network with mutual induc¬ 

tances can always be replaced by one without them, but with some added ele¬ 

ments and changed inductances (in some cases to negative values). 

(6) If, in the equations of part (a) of this problem, 

d * Em sin (cot -f a), 

c3 = Fm Sin (cot + /3), 

find the steady-state solution for ix and i3. 

8. If a mass m — — is vibrating on a straight line, under the influence of an 
0 

external force F, a restitutive force proportional to the displacement, and a 

friction force proportional to the velocity, the equation of motion is 

cPx j dx , j-j 

mdF=~ax~kdi + F- 

(a) By comparison with equation (36) of the text, justify the analogy of 

the effects of inductance, resistance and capacity to those of inertia (mass), fric¬ 

tion, and of a restitutive force. Note that it is rate of change of e.m.f. which 

corresponds to external force. 

(b) If w * 8 lb., g - 32 a «= 5 yp k * 1 , F = 10 sin 41 lb., find 

the steady-state forced oscillations. 

27. Method of Variation of Constants. Whenever we know 
the complementary function for a linear differential equation of 
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any order, with constant or variable coefficients, we may determine 
a particular integral by solving a set of linear algebraic equations, 
and then performing certain integrations. 

We shall illustrate the method for the general third order equa¬ 
tion: 

LW-AS + AS +4.| + 4*-4. (“I 

We assume that the complementary function of this equation is 
known. By section 20 it has the form: 

cm + C2Uz + CZU3y 

where each of the three functions uh u2y u3 is a solution of the differ¬ 
ential equation with right member zero, 

L(ui) = L(u£) = L(us) = 0. (56) 

We now attempt to find a solution of the equation (55) in the form 
of the complementary function, but with the constants, ch c2, c3, 
replaced by variable functions of xy vh v2, v3) so that 

y = vxui + v2U2 + V3U3. (57) 

Since there are three functions, vh v2) v3j we may impose two condi¬ 
tions on them in addition to requiring that (57) be a solution of 
the differential equation (55). We impose as one condition the 
relation: 

dv 1 

dx 
, dv 2 , dv 3 

dx 
u3 = 0, (58) 

and as the second condition: 

dv\ dui dih du2 dvs dus _ q 

dx dx dx dx dx dx 
(59) 

We then have, on differentiating equation (57) 

dy du\ . dun . duz . dvi , dv2 
+ Ms 

dv3 

dx 

In view of the condition (58), this reduces to: 
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Again, on differentiating (60), we have: 

d2u2 , d2uz dvi dui , dv% du2 dv3 duz 
V2 dx2 Vz dx2 dx dx dx dx dx dx 

In view of the conditions (59), this reduces to: 

d2y d2Ui , d2u2 . dhi3 

dx* ~ Vl lx* + Vi lx* + Va dx* 

Finally, we differentiate (61), to obtain: 

d3y d3Ui d3U2 , dsu3 
i? = Vii^ + V2n + V3n 

dv 1 d2Ui dv 2 d2u2 dvs d2u3 
dx dx2 dx dx2 dx dx2 

We have next to impose the condition that the expression (57), 
subject to the added restrictions (58) and (59) should be a solution 
of the differential equation (55). On substituting the expressions 
(57), (60), (61) and (62) in the left member of (55), we find: 

L(y) = ViL(ui) + vtL{ut) + vzL(uz) 

fdv\ dhii dv2 d2u2 
<dx dx2 dx dx2 

dv3 d2u<j\ 
dx dx2) 

But, by (56), the first three terms in the equation just written are 
zero, and (55) will be satisfied if 

(dihd2U\ dv2d2U2 . dv3d2u3\ _ . 
dx dx2 dx dx2 dx dx2) 

(63) 

The equations (58), (59) and (63) give three simultaneous equa¬ 

tions of the first degree in , ~~, — which may be solved for 

these quantities. The variables vh v2, v3 may then be determined 
by integration. If we only wish a particular integral, we need not 
keep the arbitrary constants in these integrals; if we retain the 
constants and substitute in (57), the result is the complete solution 

of the differential equation (55). 
The method applies to equations of any order, there being in 

general (n — 1) conditions imposed, which together with the con¬ 
dition that the differential equation be satisfied determine the n 

derivatives of the variable coefficients. 
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As a more concrete example, let us apply the method to the 
second order equation 

(1 - X2) g + 2x - 2y = 6(1 - x*)\ (64) 

We assume that the complementary function is known to be 

CiX + c2( 1 + x2). 

That this is a solution of the equation with right member zero is 
easily proved by direct substitution. The assumed form of the 
solution is in this case, accordingly, 

y = vix + ^(1 + a:2), (65) 

and the imposed condition, analogous to (58), is 

(66) 

in view of which 

i ■ "■+^ 
(67) 

and 

dJl,*l + 2xp+ 2v,_. 
dx2 dx dx 

(68) 

When the values given in (65), (67) and (68) are substituted in 
the differential equation (64), there results 

(i_I.)(| + 2l|),6a_x.)., (69) 

which is analogous to (63). 
We now solve the equations (66) and (69) as simultaneous equa¬ 

tions in ^• We thus find 
ax ax 

dv i 
dx 

6(1 + x*), ^ = -6®. 

Integration of these expressions gives: 

v\ = 6x + 2x3 + Ci, V2 = — 3x2 4- eg. 



EXERCISES 109 

By inserting these values in (65), the complete solution of the 
differential equation (64) is found to be 

y = 3x2 — xi + Cix + £2(1 + x2). (70) 

An interesting relation between the choice of constants in the 
variable coefficients, and a special set of initial conditions of the 
differential equation is discussed in problem 7, p. 110. The appli¬ 
cation of the method to equations with constant coefficients is 
indicated in problem 9, p. 110 and those which follow. 

EXERCISES XVI 

1. Verify that Ci#2 + C2(l + x) is the complementary function for the differ¬ 

ential equation 

(*> + 2x) g + (-2 - 2x) g + 2y - (rf + 2x)\ 

and from this find the complete solution of the equation. 

2. Find the complementary function of the differential equation 

*3L-y = .i. 
dx2 J ex 4- e~x * 

by the method of section 21, and then find a particular integral by the method 

of variation of constants. 

3. Find values of rn which make xF* a solution of the equation with right 

member zero derived from 

xs8_4i'S+6y=xi*inx> 

and then solve the equation. 

4. Solve the equation 

% + P(x) y = Q(x), 

where P(x) and Q{x) are any functions of x> by the method of variation of con¬ 

stants, noting that the equation with right member zero may be solved by 

separating the variables. 

6. In a linear differential equation of the second order, if one integral u of 

the equation with right member zero is known, and we put y = vu in the equa¬ 

tion, we are led to an equation of the form solved in problem 4 if dv/dx is taken 

as a new variable. Illustrate this method for equation (64) of the text, taking 

u ™ x. 

6. For each of the following equations, verify that the function u satisfies 

the equation with right member zero, and then solve by the method indicated 

in problem 5. 

(a) u » 1, cos x —j 4- sin x ~ = 12; 
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(b) u = 6®*i (1 - 2x) -^ + 4x^ - 4y = 3? - x; 

(c) u - - 1, (1 + 2(1 + *) jg + 2j/ = (1 + *)*• 

7. (a) By considering the equations (57), (60) and (61) of the text, and the 

analogous equations for an nth order equation, prove that the special solution 

of an nth order linear differential equation, which is zero together with all its 

derivatives up to and including the (ft — l)st when x = Xo, may be found by 

choosing the constants in the variable coefficients so that they are all zero for 

x = Xo. 

(b) Show that the solution described in (a) may be written 

Cx dvi 

in the third order case, and in general, 

y 

8. Apply the results of problem 7 to find the solution of equation (64) of the 

text which is zero and has a zero first derivative when x = 2. 

9. (a) The linear differential equation with constant coefficients, 

dhj 

dx8 

dhj dy 

+ ChM + a'Tx+aoy ~ A{X)> 

has the complementary solution 

dcmix -f c2c^2x -f c3e™&, 

provided the equation 

P(m) — am* + a^yn2 + + a0 =» 0, 

has three distinct roots mi, ra2, Show that the complete solution is 

y = v^ma -f -f 

wnere 

= 0, mix 1 jrmx . .n 

l£e +die +d£6 

», P emix + m.p ema + m,,p ema = 0, 
dx dx dx 

(6) Show that, if bif 62, 63 are three constants satisfying the equations: 

bi + b2 + 63 = 0, 

m\b\ -f- T m^bz = 0, 
ai (mi2bi + mfbi -f mz2bz) * 1, 



EXERCISES 111 

the complete solution found in part (a) may be written: 

y *= fcjemn f* e~miZ A(x) dx + b2emu f* e~m2X A(x) dx 
Jzx JXi 

+ bzem* fX e“mw A (x) dx, 
Jx 8 

where x\, x%y x3 give rise to the three arbitrary constants. 

10. If the polynomial 

Pirn) — a3mz -f a2m2 + OiW -f ao 

= a3(m — mi)(m — ^(m — m3), 

and the fraction with this denominator is expanded into partial fractions, 

1 b\ , bi , lh ___ j___ 
Pirn) in — rrii m — m2 1 m ~ m3' 

ia) Verify that 

bi bi 
m — nii rn ^ __ mx m 

_ bi himi bmi2 
m* 

(I) 

and 

1 
P(m) azmz j a-i ai ^ a0 

' a^m ' a3m2 ' a3m3 

a3m3 + 

the omitted terms in each case containing powers of — higher than the third. 

Use these expansions, and the two obtained from the first by changing the sub¬ 

scripts, to expand both sides of equation (I) in descending powers of m, and by 

equating corresponding coefficients, derive the relations: 

0 = b\ -f- bi 4* bzj 

0 = m,ib\ + m2&2 + nitbz, 

— = ???i26i -f- m22fr2 4- m32&3. 
a3 

(b) Since P(mt) *= 0, we have 

lira P<m) 
P{m) - P(mi) 

= lim m«mi w — mi m„mi m - mi 

P(mi +Ami) — Pimi) 
— lim 

Ami = 0 Ami 

when we write m = mi -h Ami, or Ami = m — mi, 

dP(mi) 
dm i 

- rimi), 

by the definition of a derivative. Consequently, 

m — rni 1 
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Use this result, after multiplying both sides of equation (I) by m — mlf and 

taking the limit as m approaches mi, to prove that bi — -577—r. In a similar Jr {Vli) 
way evaluate b2 and b$. 

(c) By identifying the equations of problem 9 (b) with those found in (a) of 

this problem, show that the b 1, b2f 63 of 9 (6) have the values found in (c) of this 

problem, namely 

1 1 , , 1 

11. Let the right member of the differential equation with constant coeffi¬ 

cients of problem 9 be Rerx — A(r). 

(a) Verify that 

emxx fXe-™*A(x) 

Jxi 

a, — [erX — emiX+(r — 
r - mi 

unless r = mi. In this case, it is R(xem'x — ZiCmiX), which is the limit of the 

former expression when r approaches mi. 

(b) By combining problem 9 (6), problem 10 (c) and (a) of this problem, 

show that the complete solution may be written 

mk)P'(mk) 
[erx - <,*»**+(»*- 

Rcrx 3 Ji 

P(r) fcai (r — nik)P'(mk) 

where the second form comes from the expansion (I) of problem 10, with m 

replaced by r. 

12. Apply the result of problem 7 to show that, if we put Xi = x2 = x» => xo 

in the solution written in problem 11 (6), the solution is that which vanishes, 

together with its first and second derivatives at x - x<>. In particular, if 

xo « 0, the solution is: 

Rer* y, Rem k* 

P(r) (r - mk)P'(mk) ‘ 

This is a special case of the Heaviside expansion. A similar formula for an 

nth order equation, with the summation running from 1 to n gives the solution 

whose derivatives vanish up to those of the (n — l)st order. 

13. (a) Consider the set of algebraic equations 

LuXi + LnXi + L\oXi = fiy 

LnXi + ImX2 + L23X8 = fiy (I) 

Lsi^i H~ LziXi -f- Laxs = /s. 

Let us abbreviate by D the determinant of the nine Lst> 

L\iy Lay Lay 

D ** Lily Lay LiZy 

Lily Lliy Lny 
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and by Mst the co-factor of the element Lst in this determinant. Then, if 

Du, = /i, Duj=/2, Dui = /j, (II) 

and 
Xl = AfnWi + ^21^2 + MsiWj, 

#2 = M,iU\ -f- M22U2 -f- Mwiizy (III) 

Xi — MnUi -f~ M21U2, ~f* MiiUi} 

equations (I) will be satisfied. Show that (I) is a consequence of (II) and (III) 
and that the verification requires only multiplications and additions, when the 
equations are written in the form here given. 

(b) If now, the set (I) in part (a) are a system of differential equations with 
constant coefficients, of the sort discussed in section 23,/1,/2,/a will be func¬ 
tions of t, and the Lst will be of the form: 

Lst = aa + bs,~ +Csi~+- • •: 

The determinant D, and the co-factors Mst will also be of this form, so that 
the set of equations (II) become a set of linear differential equations, each in a 
single variable, uk, and the set (III) become a set of formulas for determining 
the xk from the uk by differentiation, multiplication, and addition. The veri¬ 
fication is precisely the same as that for the algebraic case, since linear operators 
with constant coefficients combine under multiplication like algebraic quanti¬ 
ties. 

(c) Suppose that D is an operator of the rdh order, and Mn, M21, Mn are all 
of at most the mth order. Show that if we take, as solutions of (II) those of the 
type mentioned in problem 7, which vanish, together with their derivatives 
up to and including the (n — l)s£, when t = f0 the Ji obtained from them will 
vanish together with its derivatives up to and including the (n — m — l)s£ 
when t = l0. The formula obtained wiien the right members are all exponen¬ 
tials, by applying the result of problem 12 to the equations (II), and substitut¬ 
ing in (III) is known as the generalized Heaviside expansion. 

(d) In general, when the Lst are all of the first order, the Mst are of the second 
order, and D is of the third order. Thus the solution of part (c) is such that 
all the variables vanish when t = t0. Apply this method to find the solution 
of parts (a) and (6) of problem 3, p. 95 which makes all the variables vanish 
when t = 0. 

(e) All the considerations of this problem apply, with slight modification, 
to systems containing any number of equations. Apply the considerations of 
part (c) to solve each of the systems of problem 1, p. 94, taking t - 0 as the 
value for which the uk, and when possible their derivatives, vanish and state 
exactly what conditions the solution for x and y may be expected to satisfy. 



CHAPTER IV 

PARTIAL DERIVATIVES AND PARTIAL 
DIFFERENTIAL EQUATIONS 

When dealing with physical quantities and their dependence on 
more than one independent variable, we encounter relations be¬ 
tween functions and their partial derivatives, that is partial 
differential equations. In this chapter we shall discuss the mathe¬ 
matical origin and nature of the solution of some simple partial 
differential equations. We begin by recalling the definition of an 
ordinary, and of a partial derivative. 

28. Derivatives and Differentials. If y is a function of a single 
variable xy y = /(x), the derivative of y with respect to x is defined 

by 

f'(x) 
ax ajc-o Ax 

Ax ** 0 AX 
(l) 

We may illustrate this definition geometrically, by considering the 
curve which is the graph of the 
equation y = /(x). In Fig. 26, 
the point A has co-ordinates 
(xyy) and B has co-ordinates 
(x + Ax, y + Ay), Here Ax 
is an arbitrary increment in 
x, and Ay the corresponding- 
increment in y. The deriva¬ 
tive dy/dXy the slope of the 
tangent to the curve at A 

may be thought of as the ratio of two differentials, one of which, 
dXy is taken arbitrarily and the other of which is then determined 

by 

dx. 

114 
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If, in particular, we take dx = Ax = AD in Fig. 26, DC, the incre¬ 
ment of y when we move along the tangent line will represent dy 
while DB, the increment of y when we move along the curve will 
represent Ay. 

If z is a function of several variables, and we hold all the varia¬ 
bles except x fixed, z becomes a function of the single variable x. 
Accordingly we may carry out the process indicated in (1). The 

result is the partial derivative of z with respect to x, written , 

or zx. Thus when z = /(z, y) is a function of the two variables 
x and y} 

fx — %x 
iim & + Arg> y) ~ /fa y) 

dx 1**0 Az 
(2) 

The partial derivative of z with respect to y, — is defined 
dy 

similarly. 
We may define each of these partial derivatives as the quotient 

of two differentials by taking an arbitrary dx and then, inde¬ 
pendently, an arbitrary dy and writing 

d*z = (I)dx’ dyZ = (%)dy- 

These partial differentials will generally be quite different. Thus, 
while the partial derivatives of a function may be written as quo¬ 
tients, or fractions, the numerators of these fractions will not be 
the same for different partial derivatives. The curved delta nota¬ 
tion is used for partial derivatives to remind one of this point. 
For example, while 

dz dy 
dy dx _ 1 

& 
dx 

we have: 

— 

dy dx _ dyZ 

dxZ 9 
dx 

in general not equal to one. 
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29. Total Differentials. The partial differentials dxz and dyZ 
by themselves are of relatively little use, but the total differential, 

dz = dxz + dyZy (3) 

obtained from them is of great importance. From the definition 
of dxZ and dyZ, we have: 

*-1^+1* <4> 

We may interpret this equation geometrically by considering the 
surface in space whose equation is 2 = f(x, y). In Fig. 27, 

c 

AB'BB" is a small portion of this surface, and AC'CC" is a por¬ 
tion of the plane1 tangent to the surface at A. The point A has 
co-ordinates (xo, 2/0, zo). The point B' is obtained by giving x the 
increment Ax, the point B" by giving y the increment Ay, and the 
point B by giving these increments to x and y, in each case remain¬ 
ing in the surface. The points C', C", C are the corresponding 
points in the tangent plane. Since the straight line AC' is the 
intersection of the plane tangent to the surface at A, and the plane 
y «= y0 through A, while the curve AB' is the intersection of the 
surface with the plane y = y0, the line AC' is tangent1 to the curve 

1 For a smooth surface, the tangent lines at any point A to all the plane 
curves on the surface drawn through the point A lie in a plane called the plane 
tangent to the surface at A. See problem 6, p. 128. 
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AB' at A. If we refer to the axes O'X' and O'Z' in the plane 
y = 2/0, the equation of the curve AB' is z — f(x, y0), and the 

dz 
slope of the tangent to it at the point A is — . The subscript 

indicates that after the derivative is computed, x and y are to be 
replaced by x0 and y0. It follows from this that 

D’C' = 
dz 
dx 

AD' = p 
) dx 

dx — dxZ. 

By applying similar considerations to the plane x = x0, we find 
that 

D"C" = ~ 
dy 

AD" = P, 
!o dy 

dy = dyZ. 

But, since AC'CC" is a parallelogram, 

DC = DE + EC 
= D'C' + 

— -j- dyZ 

= dz. 

Thus the total differential as defined by (3), or (4) is the increment 
experienced by the ordinate in the tangent plane, when x and y 
are given their increments. 

We see from the figure2 that when ADf and AD" are small, the 
ratio of BC to DB is small, and the ratio of DB to DC is nearly 
one. That is, in general, 

A? 
lim -r-= 1, if dx = Ax, dy = Ay in dz. (5) 

Ax, Ay 0 dz 

This property enables us to use the expression for the total differ¬ 
ential given in (4) to change from the partial derivatives with re¬ 

spect to one set of variables, to those with respect to new variables 

related to them. 
30. Change of Variables. Suppose that x and y are functions 

of a single variable t. Then z = f(x, y) becomes a function of t, 
and we have: 

Az _ Az dz Az fdz Ax . dz Ayl 

At ~~ dz At * dz Ldx A2 ^ dy At\y 

* Or as in problem 8, p. 121. 
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by (4), where we take dx — Ax, and dy = Ay. When At ap¬ 
proaches zero, so do Ax and Ay, so that we may apply (5), and from 

lim 
A z 
At 

lim ~ 
dz Ax , dz Ay 
— lim — + — lim 
dx Ai—O A£ dy At-o A£ ]■ 

deduce 

dz _ dz dx dz dy 
dt dx dt dy dt 

(6) 

If, instead of being functions of a single variable t, x and y were 
each themselves functions of two other variables, s and t, we could 
proceed as before, keeping s constant during the process, and ob¬ 
tain the partial derivative of z with respect to t as: 

dz _ dz dx dz_ dy . . 
dt ~ dx dt dy dt ' W 

In this equation, when differentiating with respect to x> y is held 
constant, when differentiating with respect to y, x is held constant, 
and when differentiating with respect to t, s is held constant. In 
case any confusion on this point is likely to occur, we indicate the 
variables held fast by subscripts, writing the equation (7) as 

dz 
dt 

dz dx 
dx ydt 

, dz dy_ 
^ dy xdt 5 (8) 

For example, if u were a function of T, the temperature of a gas, 
and p the pressure, so that u = u(T, p), by means of the relation 
between the temperature, pressure and volume of a gas, F(T, p, v) 
= 0 or T = T(pj v)y we could eliminate T and regard u as a func¬ 
tion of p and v. The application of (8) to this case gives: 

du\ _ du dT du 

t dp 

&p 
dv P ~ df p dv T dv 

du du dT 
1 4- 
L + dp 

dp 
dp V ~dT\ pdp rdp 

When p is constant, p does not change, so that 

dp 
dv Ip 

= 0, 
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so that the relations simplify to 

and 

du du dT 
dv p ~ dT t dv 

du i du dT 
dp 

1^0 
1 _
»

 pdp 

Note that, if the subscripts were omitted in the second equation, 
we should have the same symbol, in the same equation with two 
meanings! 

Let us apply the formulas just developed to transform the partial 
derivatives with respect to x and y into combinations of those with 
respect to u and v where 

u = ax + by, v = cx + dy. (8) 

We have from equation (7) 

dz __ dz du dz dv 
dx du dx dl) dx 

dz dz 
(9) 

For the second derivative, we have: 

dx2 dx\dx) du\dx) dx dv\dx/dx’ 

and, on making use of the expression (9), this reduces to 

d2z 
dx2 

= a (a 
d^z_ 
du2 

-j- c d2z 
du dv 

a 
d2z d2z\ 

dvdu + C dv7 ’ 

= a 
, d2z d2z 
2 -t—, + 2ac -r—T- 

du2 du dv 
+ c2 —• 

dv2 (10) 

The reader will recall that the order of differentiation3 is immate¬ 
rial, which justifies our putting 

d2z = . 
du dv dv du 

By a calculation similar to those just made, we find also 

dz 

dy 
+ d 

dz 
dv 

f (id 

* See problem 11, p. 123. 
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and 
dh = 

dy2 
dh 

b*~ + 2bdfj~ + d* 
du~ du dv 

dxdy= abU*+(ad + bc) 

dv2 
d2z 

du dv dv2 

As a second illustration, consider the relations 

x = sin (2w + 3i>) + iq 
2/ = w2 + 3i>2, 

(12) 

(13) 

and let us determine the partial derivatives of u and v with respect 
to x and y. Theoretically, this could be done by solving the equa¬ 
tions (13) for u and v in terms of x and y, and then differentiating 
partially. Practically, it is simpler to use (7), which tells us that: 

i __ dg __ dx du dx dv 
dx du dx dv dx1 

0 = ^ — 4-cty —. 

dx du dx ' dv dx 

On replacing the derivatives of x and y by their values as computed 
from (13), these equations become 

1 = ^ [2 cos (2m + 3v) + 1] + ~3 cos (2m + 3»), 

n dun , dv a 
0 = — 2u + t- 6t>, 

dx dx 

These may be solved to give: 

du _ _v_ 
dx (2v — u) cos (2u + 3?;) + v ’ 

dv _ _—u_ 
dx (Qv — 3u) cos (2u + Zv) + 3v 

(14) 

The derivatives of u and v with respect to y may be calculated in 
a similar manner, from 

and shown to be: 
du 
dy 
dv 
dy 

= n §y 
dy u’ dy 1, 

_—cos (2m + 3f)_ 
(4i> — 2m) cos (2m + 3v) + 2v ’ 

2 cos (2m + 3v) + 1 
(12t> — 6m) cos (2m + 3v) + 6v 

(16) 
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EXERCISES XVH 

1. If x - u2, y = iu -f (a) Compute the partial derivatives of z and y 
with respect to u and v. (b) Hence find the partial derivatives of u and v with 
respect to x and y by the method used in the text to derive (14). (c) Check 
these values by solving the equations given for u and v in terms of x and y, and 
differentiating directly. 

2. For the transformation to polar co-ordinates, x =* r cos 0, y — r sin 0, 
carry out parts (a), (6) and (c) as for problem 1, where r, 6 take the place of u 

and v. 

3. If f(x, y) is a function of x, y and hence of the u, ;>of problem 1, compute 
(a)df/du and df/dv in terms of df/dx and df/dy, (b) the second derivatives of / 
with respect to u and v in terms of the first and second derivatives of / with 
respect to x and y. 

4. Using the results of problem 2, show that, on transforming to polar co¬ 
ordinates, we have: 

dx2 ' dy2 dr2 ' r dr r2 dff1 

5. Prove that, if u is a function of x and y, and z is a function of u, z * f(u), 

dz __ dz du _ f/( . du 

dx du dx J dx 

6. (a) Prove that, if u is a function of x and y, and z is a function of u and xt 

dz _ dz du 

dx y du xdx 
4* 

y dx u 

where, as in the text, the subscripts indicate the variables held fast. 
(b) Illustrate the relation in (a) for v = x2 + 3xy, z — 3x -f* 2uy and check 

by direct differentiation after replacing u by its value. 
7. (a) If u and v are functions of x and y, and u = /(r), show that 

du dv 

dx dx 

du dv 

dy dy 

(b) Verify that the hypothesis of (a) is satisfied for 

u = sin (2x -by2), v — 4x3 -f 4 xy2 -f y4, 

and also verify the conclusion directly. 
8. The law of the mean for a function of a single variable, y =*f(x)f whose 

graph is a smooth curve, states that 

fix2) - fix 1) * iXi - xi)/'(x8), 

for some value xt between X\ and x2\ xi < x* < x2. 

(a) Show that this expresses the geometrical fact that on any arc of a smooth 
plane curve, there is always some intermediate point at which the tangent is 
parallel to the chord. 

du dv __ du dv 

dx dy dy dx 
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(b) Apply the law of the mean to prove, for a function of more than one 
variable, there is an x8, x\ < x3 < x3, for which: 

f(x2, y) -fixi, y) = (x2 - xjfxixa, y), 

where 

= ir 

(c) Assuming that the partial derivatives of the function z = f(x,y) are con¬ 
tinuous, i.e., that 

lim fx(x,y) =fx(xo,yo) and lim fy(x, y) = fy(xo,yo), 
X — XO, X^XO, 

W°yo y-2/0 

and the result of (b)y complete the proof of (5) sketched in the following: 

Az = fix -f Ax, y + Ay) - /(x, y) 

= f(x + Ax, y + Ay) - /(x, y + Ay) + fix, y + Ay) - /(x, y) 

= Axfxixh y -f Ay) -f Ay /y(x, 2/3). 

Hence, if As2 — Ax2 + Ay2, 

fs = ^fx(X*'y + Ay)+tefy<X’ y,)’ 

= ~ + ^7 [/*(*>, y + Ay) - fx(x, ?/)J 

+ ff \jy(x< y*> ~ fy(x’ J/)] > 

on taking the limit as Ax and Ay, and hence As approach zero, 

Az dz 
lim = urn — , 

Ax = 0 As Ax=0 As 
Ay=0 Ay=* 0 

and, unless the common value is zero, 

Az 

Az As . 
11m — = Inn — = 1. 

Ax=odz Ax=-0^± 
Ay=0 Ay=0 

(d) Extend the proof of (c) to a function of more than two variables, 
z = f(xj, x2,. . . xn) where in this case: 

, dz , dz , , dz , 
= WidXl + dXi + ■ • • + Wn dXn’ 

dz dz 
and derive from this formulas for -77 and analogous to (6) and (7) of the 

dt oy 1 

text, namely: 

dz _ dz_ dxi , dz_ dx2 , dz dxn 

dt dxi dt ' dx>2 dt dxn dt 9 

dz _ _9z dxi , bz_ 8x2 dz_ dxn # 
dyi ~ dxi dyi + dx2 %i ' ^ dxn dyx 

and 
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9- (a) If x, y, and z are connected by the equations: 

fix, y, 2) = 0, and y) = 0, 

dz 
and y is eliminated, z becomes a function of x. Find , in terms of the 

partial derivatives of / and </>. Hint: Use the relations/* dx -\-fydy + fzdz = 0, 
and </>* dx -f 4>y dy = 0, and eliminate dy. 

dz 
(b) lff(x, y, z) — 0 determines z as a function of x and y, find gj , either 

by the method of (a), or the result of (a) when <j>{x, y) — 0 is y — y0 = 0. 
10. If x, y, ut and v are connected by the equations fix, yt ut v) = 0 and 

gix, y, Uy v) = 0, we may think of x and y as functions of u and v, or u and v as 
dx dii 

functions of x and y. Find the values of -r- , and ?r-, by the method of problem 9. 
OH ox 

11. Using some of the results and definitions of problem 8, complete the 
following sketch of a proof that, when all the partial derivatives/*, fy and fxy are 
continuous, fXy = /y*. Put 

Fix, y) = f(x + Ax, y) - f(x, y). 

Then 

fix + Ax, y 4- A?/) - fix, y -f Ay) - fix + Ax, y) + fix, y) 
= Fix, y -f- Ay) - Fix, y) 

= Ay Fyix, 2/3) = Ay [ fyix + Ax, yf) - fy(x, 2/3)] 
= Ay Axfxyixh yz). 

Then put 

Gix, y) = fix, y -f Ay) - fix, y), 

and show that the same expression equals 

Gix + Ax, y) - Gix, y) = Ax Ayfyxixi, yi). 

Thus/*y(xs, ?/») = fyxix*, yi), and on taking the limit as Ax and Ay approach 
zero, fxyix, y) = /y*(x, y). 

12. (a) If M(x, y) dx + Nix,y)dy is the total differential of a function 
fix, y), it is said to be exact. By identifying the expression with the total 
differential of fix, y), and using the result of problem 11, show that for an exact 
expression, it is always true that 

dM = dN 
dy dx 

(b) Complete the proof sketched that if the condition of (a) holds, the expres¬ 

sion M dx + N dy is exact. Put u(x,y)= j*M dx, the integration being car- 

ried out with y fixed; Then if fix, y) = u(x, y) + viy), ^ = M. Thus we 

will have M dx + N dy = df if 
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or 

v'(y) = N 
_0 
dy f Mdx, 

But v(y) can be found to satisfy this provided the right member is a function 
of y only, i.e., has a partial derivative with respect to x which is zero, or 

m 
dx 

i r 
dx dy J J Mdx = 0, 

which is the condition given, in view of the result of problem 11, if the conti¬ 
nuity requirements of that problem are met. 

13. liC is a curve given by x — x(t), y = y(t), joining the points Xi = x{t\)} 
2/i = y(ti) and x* ~ x(t2), 2/2 = y{k)} the equation: 

J* M(x, y) dx 4- N(x, y) dy = Jf*^M[x{t\ y(t)]x'{t) + N[x(t), y(t)]y'(t)} dt 

defines the meaning of the left member, called a line integral, (a) Show that, 
if M dx -f N dy is the exact differential of f(x, y), the value of the integral is 

f[x(t2),y(t2)] -flxitjyyiti)]. 

(b) Show that if we traverse the curve in the opposite direction, the line 
integral changes sign. 

(c) Suppose we have two curves joining the points Pi = (xh y{) and 
P’l ~ (X2,2/2), and in the region included by these curves the functions M and 

N have continuous first partial derivatives, such that —■ = We may 

draw a continuous series of curves joining the two points between the first and 
the second curve. Along each of these curves we may find a function/(r, y)f 
by problem 12, and hence find f(xif y2) corresponding to a given f(xi,yi) the 
same for all the curves. Since f(x2l 2/2) can not vary from curve to curve for 
the continuous series, it must be the same for the first and last curve. Show 
from this, and (6) that the line integral of a differential M dx 4* iV dy is zero 
about any closed curve, such that M and N have continuous first partial deriv¬ 

atives and throughout the region bounded by the curve. 

(d) Illustrate (c) for the closed curve x = cos t, y = sin t, h 
and the differential 

(2x 4- Sy) dx 4" (2y 4- 3x) dyi 

Why does the result not apply to the differential 

-V . x 

0, U * 27t, 

x2 4- y2 
dx 4- 

x2 + : 
,dy 

for the same pathr 
14. If X(x, y) and Y(xf y) are the components of force acting on a particle at 

any point (xy y) of the plane, a plane force field is defined. The work done by 

the field on the particle in any motion is the line integral Cxdx+Ydy. 
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If the amount of work done is the same for any two paths, joining the same 

end points, the field is said to be conservative. If = -gj, and suitable 

continuity requirements are met, (a) Show that the field is conservative. 

(b) Show that a function U(x, y), called a force potential, can be found such 

that 

au y dU 
dx> dy' 

«- T x / \ j / % i i f , du dv du dv 
15. Let u(x9 y) and v(z, y) be two functions, and suppose ~ -- — ~ ~ = 0. 

ox oy ay ox 
du 

Let x vary, but y be so chosen that u(x, y) = ci. Show that if 5^ 0, under 

these conditions, ™ = 0, so that v is constant if u is constant, i.e., there is a 

du du 
functional relation between u and v. If -r- = 0, but -r- ^ 0, we could inter- 

dy dx ' 
change the r61es of x and y} while if both were zero under the usual condition 

of continuous derivatives, this would be true either at isolated points or 

throughout a region. In the latter case u would be constant, and hence a 

function of v. 

31. Equation of the Tangent Plane, and a Related Partial 
Differential Equation. The equation of the tangent plane to a 
surface at a given point is readily obtained from Fig. 27. For, 
the tangent plane to the surface 

2 = f(x, y) (16) 

at the point 

A = (x0,2/o, zo) 

on the surface, passes through the points 

C' = fx0 + Ax, 2/0, Zo + jo 

2/o + Ay, z0 + • 

But the equation 

Z-x0 = (x-xo)||o+(y-2/0)||o (17) 

is evidently satisfied when, in it, (x, y, z) are replaced by any one 
of the three sets of co-ordinates just written. Since equation (17) 
is of the first degree in x, y, and z it is the equation of a plane, and 
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since it is satisfied by the co-ordinates of A, C' and C", the plane 
passes through these three points, and accordingly is the tangent 
plane to the surface at A. 

Suppose we have an assigned direction at each point of space. 
Let the direction at the point (x, y, z) be that parallel to the line 
joining the origin and the point 

x = A(x, y, z), y = B(x, y, z), z = C(x, y, z). 

We shall refer to this last line, or any line segment equal and parallel 
to it as the vector with components A, B, C. Similarly we shall 
refer to the direction as the direction A, By C. If we have a sur¬ 
face (16) such that the tangent plane to it at any point P0 = 

(x0,2/o, z0) on the surface is parallel to the direction for that point, 
i.e., A0, Bo, Co, where 

A0 = A(xo, 2/0, z0), B0 = B(x0,2/0, z0), C0 = C(x0,2/o, z0), 

we will have: 

Co = A0 
dz_ 

dx 
+ Boj- 

0 dy 

For, the point 

Q = (xo + Aq, 2/0 + Bo, Zo + Co), 

(18) 

is such that the segment P0Q is a vector with components A0, B0, 
Co. Hence Q is a point on the line through PQ, parallel to the 

direction A0, B0, Co, and the tangent plane will be parallel to this 
direction if it contains the point Q, and hence the segment PoQ. 
But, since the result of replacing x, y, z in equation (17) by the 

co-ordinates of Q is (18), we see that if the tangent plane is parallel 
to the direction A0, B0, Co, then (18) will hold. The same argu¬ 
ment shows that, conversely, if (18) holds the tangent plane is 
parallel to the direction Aq, B0, Co. 

As the equation (18) does not contain x, y, or z, but only x0,2/0, Zo, 
we may drop all subscripts, and write 

A(x, y, z) || + B(x, 1/, 2) ^ = C(x, y, z). (19) 

This is a partial differential equation since it expresses a relation 
between x, y, z and the partial derivatives of z with respect to 
x and y. The discussion just given shows that we may expect 
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it to be satisfied by those equations which represent surfaces such 
that at each point of the surface, the tangent plane is parallel to 
the corresponding direction A, B, C. 

EXERCISES XVIII 

1. Find the equation of the tangent plane to the surface z = Va2 — x2 — y2> 
at the point on it with x = xo, y = yo, and in particular the equation when 

a 
Xo — 2/0 — 2 ’ 

2. (a) If the equation of a surface is given in the form U(x, y, z) = 0, show 
that 

dz __ __ Ux dz _ Uy 
dx lh' by" Uz 

(b) Hence show that the equation of the tangent plane at the point Xo, ^o, zo 

may be written: 

Ux0(x - Xo) + Uy0(y — y0) + U+(z - 20) = 0. 

(c) Interpret the partial differential equation 

A(x, y, z) Ux + B(x, 7jy z) Uy -f C(x, y, z)Uz =0 

geometrically. 
3. Show that all the results of problem 2 are unchanged if the original 

equation is C/(x, yy z) = k, where A: is a constant. 
4. Write the equation of the sphere whose upper half is the surface of prob¬ 

lem 1 in the form 

x2 + 2/2 + z2 = a2, 

and solve problem 1 by applying the results of problem 2 to this form. 
6. By considering the geometric meaning of the equation, show that the 

solutions of: 
dz 

(a) = 0 represent surfaces whose tangent planes contain parallels to the 

x-axis, i.e., cylindrical surfaces with elements parallel to the x-axis. 

(b) a -F b = 0 represent cylindrical surfaces with elements parallel to 

the direction a, 6, 0. 

(c) a -f b ~ = c represent cylindrical surfaces with elements parallel to 

the direction a, b} c. 

(<d) x ~ -f- y = z represent surfaces whose tangent planes contain the vec¬ 

tor joining the origin to the point of contact, i.e., conical surfaces with vertex at 
the origin. 

dz dz 
(e) y gj — x * 0 represent surfaces of revolution, with the z-axis as axis 

of revolution. 
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6. (a) If x(t), y(t), z(t) are the equations of a curve in space, and the tan¬ 

gent line is defined as the limiting position of a secant, show that the direction 

of the tangent at any point is the direction x'(t), y'(t)f z'(t). 

(b) If the curve in (a) lies on the surface F(x, y> z) — 0, we have 

F[x{t), V(t), z{t)] = 0, identically in t. Assuming that F(x, y, z) has continuous 

partial derivatives, apply the result of problem 8 (d), p. 122, to prove: 

0=^ = Fxx' + Fyy' + F#'. 

(c) From (a) and (6), show that if F(x0, yo, Zo) = 0, the equation 

F^(x - Xo) + Fyo(y - y0) + F*(z - Zo) = 0, 

represents a plane through (xo, yo, zQ) containing all the straight lines tangent 

at {.To, yo, zo) to curves on the surface drawn through this point. 

7. Derive equation (17) of the text from problem 6 (c), by putting 

F(x, y,z)=z- fix, y). 

8. Prove that the orthogonal projection of the direction FXo, Fyo, Fzq of 

problem 6 (c) on each of the co-ordinate planes is perpendicular to the intersec¬ 

tion of the tangent plane with that co-ordinate plane. Hence, by the methods 

of descriptive or elementary solid geometry, show that the direction FXo, Fyot F^ 

is perpendicular to the tangent plane. 

32. Formation of Partial Differential Equations by the Elimina¬ 
tion of Arbitrary Functions. If we differentiate an equation 

involving two variables, x and ?/, and n arbitrary constants, n 
times, the constants may be eliminated. The result is an ordinary 
differential equation which is satisfied by the original relation for 
all values of the constants. In general it will be of the nth order, 
and the original relation will be its complete solution. 

If we have a single relation containing more than two variables, 
e.g. V and z, we may differentiate partially, thinking of z as a 
function of x and y. In this way we obtain relations from which 
we may eliminate arbitrary functions which occur in the original 
relation. 

We begin with an equation with one arbitrary function: 

z = f(2x - 3 y) + 4x -f 6y. 
j/ 

We find from this, where as usual/'(u) denotes^ : 

g=2f(2x-3z/)+4 

~ = —3/'(2x - 3y) + 6. 

(20) 
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We have now three equations, and two quantities connected with 
the function to be eliminated, namely /(2x — 3y) and/'(2x — 3y). 
Accordingly we need not differentiate further. We eliminate 
f(2x — 3y) by omitting the first equation, and on eliminating 
/'(2x — 3y) from the other two equations, find: 

3? +2 jr = 241 ox oy 
(21) 

As a second illustration, consider 

z = f{x2 + y2 + z2). (22) 

In differentiating this, we must remember that z is a function of 
x and y. We find: 

2x + 2zg), 

|+ *|). 
We eliminate /'(x2 + y~ + z-) from these equations, obtaining 

(23) 

We may proceed similarly with any equation involving a single 
function. If we solve for this function, the equation takes the 

form: 
U(x, y, z) = f[V(x, y, z)). (24) 

Here f is the arbitrary function to be eliminated, while U and V 
are functions of x, y} z known for any particular example. Thus, 
if {7 = 2, V = x2 + iy2 + z2, the equation (24) reduces to (22). 
On differentiating the equation (24), and using the subscript 

notation for the partial derivatives, we have: 

t4+</.!-/w(n+n!). 
t4+E/.g-/'O0(F,+ Vig). 

When the elimination of f(V) is carried out, there results: 

(U,Vy - UyVz)fz + {Ux\\ - t/,F,)g = UyVx - UxVy. (25) 
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We may interpret these results geometrically. We have two 
families of surfaces, obtained by putting U equal to a series of con* 
stants, or V equal to a series of constants. A particular function 
/ in (24) pairs up these constants, and hence two surfaces, one from 
each family. We conclude from this that the surface (24) is 
generated by curves of intersection of some U surface with some V 

surface, as follows. Let P0 = (xq, y0, z0) be a point on the surface 
(24). Define /co and k0f by 

U(xo, y0, zo) = k0f V(x0, y0, zQ) = kf. 

Then, since P0 is on the surface (24), we have: 

k0 = f(k o'). 

Consequently, for any point (x, y} z) on both the surfaces 

U(x, y, z) = /c0, V(x, y> z) = ko} (26) 

equation (24) is satisfied. Hence it contains all the points on these 
two surfaces, i.e., their entire curve of intersection. If the direc¬ 
tion A, B} C is the direction of the tangent to this curve of inter¬ 
section at any point, it will lie in the tangent plane to either surface 
and hence by problem 2, p. 127, we will have: 

AUX + BUy + CUM = 0, AVX + BVy + CVz = 0. (27) 

By solving these equations for the ratios A/C, B/C, we find: 

A _ B _ C 
U%Vy ~ UyVt UXVS - UZVX UyVX - UXVy ^ 

This shows that the solutions of (25) represent surfaces whose 
tangent planes contain the directions A, ByC, as was to be expected 
from our interpretation of (24). We may summarize the situation 
by noting that: 

1. Through each point of space we have a particular U surface, 
a particular V surface and a particular curve of intersection. 

2. The tangent to the curve of intersection at the point is the 
intersection of the tangent planes to the U and V surfaces at the 
point. 

3. The partial differential equation (25) expresses the fact that 
its solution represents a surface tangent to the curve of inter¬ 

section. 
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4. The equation (24) represents a surface built up from curves 
of intersection. 

As illustrations, we note that for (20), the U and V surfaces 
are families of parallel planes, given by: 

z — 4x — 6y — ky 2x — 3y = k'. 

Thus the surfaces here coincide with their tangent planes. The 
curves of intersection coincide with their tangent lines, and are the 
lines in the direction 3, 2, 24 which are the coefficients of (21). 
Again, for (22), the U surfaces are the planes 

z = k, 

parallel to the XY plane, while the V surfaces are the spheres 

x2 + y2 + z2 = k/, 

with center at the origin. The curves of intersection are circles 
parallel to the XY plane, with centers on the 2-axis, which explains 
why equation (23) is that of problem 5(e), p. 127, whose solutions 
are surfaces of revolution. 

As an example of elimination leading to an equation of higher 
order than the first, consider 

2 = f(y ~ Sx) + g(y - 2x) + e2z+3«, (29) 

which contains two arbitrary functions. On taking first deriva¬ 
tives, we find: 

= -3f(y - 3x) - 2g'(y - 2x) + 2e>*+3», 

g = f'(y - 3x) + ff'(y - 2x) + 3e**+3*; (30) 

while the second derivatives are: 

9f"(y - 3x) + 4g"(y - 2x) + 4e^, 

-3f"(y - 3x) - 2g"(y - 2x) + 6e^+3^, 

f"(y - 3x) + g"(y - 2x) + 9e2*+3>'. (31) 

We have altogether six equations, and six quantities, namely the 
two functions and the four derivatives. Consequently, we would 

SLi 
dx2 

dh 
dx dy 

dh 

dy2 
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not expect to be able to eliminate them at this stage. However, 
the functions only occur in the first equation, (29), so that if this 
is left out, we have five equations in four quantities, and may elimi¬ 
nate them by omitting the two equations (30), solving two of the 
equations (31) for the two second derivatives, and inserting their 
values in the third of equations (31). The result is: 

d2z d2z 
dx2 dx dy 

+ 6 ^ = 88e2*+3". 
dy- 

(32) 

In any case where 2 is given as a sum of n arbitrary functions of 
x and y} plus a known function of x and y, the nth derivatives of 
these functions will only occur in the partial derivatives of the nth 
order. Accordingly, we have merely to differentiate n times in 
all possible ways, and omit all except the n + 1 equations which 
give the nth partial derivatives. The n, nth ordinary derivatives 
of the arbitrary functions may then be eliminated from these last. 
The result will be an equation of essentially the type here found, 
a homogeneous linear partial differential equation of the nth order, 
with non-zero right member. 

If the functions enter in a more complicated way, it will be neces¬ 
sary to differentiate more times, and there may be several different 
equations of lowest order, as in problem 7, p. 133. 

EXERCISES XIX 

1. Eliminate the arbitrary function from 

(a) z * f(3x 4- 4y) -f 8y, (b) 2 = f(3x -f 4 y) - 6x, (c) z = f{z -f 6x) -f 8y. 
(d) Interpret geometrically, and explain why the result is the same for parts 

(a), (6) and (c). 

2. Eliminate the arbitrary function in each case. Also interpret geometri¬ 

cally, and compare with problem 5, p. 127. 

(a) z = f(y)9 (W Z = f(bx - ay), (c) az = cx +f(bx - ay), (d) z m %f(y/x)9 
(e) z = f(x2 + 2/2). 

3. Eliminate the two arbitrary functions in each case. 

(a) z - f(y) 4- g(x) 4- (b) z => f(y) + xg(y) 4* x2, 
(c) z = j(4x 4- by) 4- gi^x - 3y), (d) z = f(x) 4- g(3x + by) 4- 4^. 

4. Eliminate the arbitrary function from 

2 = e*yf(x - y). 

5. Find the partial differential equation whose complete solution is 

z = fix - vt) 4- gix 4- vt) 

where v is a constant, and / and g are arbitrary functions. 
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6. Prove that the arbitrary functions may be eliminated from z = f(x) • g(y) 

to give the differential equation of the second order z - ~ • 
dx dy ox dy 

7. (a) From z ~ xg(y) + yf(x),~the arbitrary functions can not be elimi¬ 

nated to give a second order equation. Show that the function satisfies both 

of the following third order equations: 

dpz _ d% , d3z _ d2z 

y dx2 by dx2 an X dx dy2 by2 

Thus the given relation can not be the complete solution of any single partial 

differential equation, but is the complete solution of the system formed of the 

two equations just written. This may be seen from the result of part (6) of 

this problem. 

(b) Eliminate the three functions from z — yf(x) -f- xg(y) + h(y)9 and thus 

show that this is the complete solution of the first of the partial differential 

equations written in part (a). Similarly the complete solution of the second 

equation is z = yf(x) 4* xg(y) -\- k(x). 

33. Partial Differential Equations Solvable by Direct Inte¬ 
gration. If a partial differential equation contains just one partial 
derivative and does not contain the dependent variable except in 
this derivative, it may be solved by successive integration. Since 
in partial differentiation, we hold some of the variables constant, 
in the integration which is the reverse process we also regard these 
variables as constant. Consequently, in place of the customary 
“ constants ” of integration, we must use arbitrary functions of 
the variables held fast. 

For example, the equation 

^ = 6x + y + 12xY (33) 

gives on successive integration with respect to x: 

rJ2Z 

^5 = 3 x* + xy + 4 x3y2 + f(y), 

|' = *3 + ^ + zy + *S(y) + giy), 

‘-j + ^ + ^ + xif(v) + tgW+m. 

Here all the integrations are with respect to x, so that y is treated 
as constant during each integration, and the arbitrary constant is 
put equal to a function of y. We may simplify the result slightly, 
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by putting — k(y)f which makes 

* = ? + ? + ^ + x*k(y) + xg(y) + h(y). (34) 

As a second example, consider 

d2z 
dx dy 

= 12x sin (3xy). (35) 

If we integrate with respect to yy we find: 

dz 
dx 

= —4 cos (3xy) +f(x), 

and we may integrate this with respect to x to give: 

z — 
— 4 sin (3xy) 

% 
+ j>> dx + 

Thus, if we put 

dx — h(x), 

a new arbitrary function, we have as the solution of (35) : 

2 = - + h{x) + g(y). (36) 

If we have a system of several equations of this type, we may 
solve the first, and then find the restrictions on the arbitrary func¬ 
tions by substituting the solution in the other equations. If any 
inconsistent conditions arise, the system has no solution. For 
example, if we have 

dh 
dx2 

= 0, d*z 
dy 

. -0, (37) 

holding simultaneously, we find by integrating the first equation 
twice with respect to xy 

2 = xf(y) + g(y), 

and on substituting this result in the second equation, 

xf’iy) + g"(y) = 0. 
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Since this must be true for all values of x and y, we must have 

r(y) = 0 = 0 and ^"(2/) = 0 = 0' 

two ordinary differential equations whose solutions are 

f(y) = W + b, g(y) = cy + d, 

respectively, so that the solution of the system is 

2 = axy + bx + cy + d. (38) 

Note that the solution of the system (37) involves no arbitrary 
functions, but only arbitrary constants. If the second equation 

d*Z 
had been — = x2> the system would not have had any solution. 

EXERCISES XX 

1. Solve the following differential equations: 

<a>£-°- ®|=0' «£-*• 

(/) v = 2 +-• 
dx y 

2. Integrate each of the following equations: 

d2z 

dz 

fa xy, (e) 
fa 
dx 

(a) 

(d) 
d*u 

dx dt «’ w - - < = o, (J) 
d3u 

dx2 dt 
sin (2j: 4* 30. 

8. (a) Show that the 8}\stem of equations: 

£-2*+3* £-8*-fly. 

2z 

has as its solution z = x2 + 3^2/ 

(6) Show that the system 

fa 

dx 

has no solution. 

4. Show that the solution of the system of equations 

faz 

3 y2 + c. 

_ o dz 

~3V’ % = 

= 4e,x-y 
dx2 ’ dx dy 

- —2e2x~y, 
dy2 

= e2x~y, 

is z = e2*”? 4 ax -f by ■+* c. 

6. Solve the following equations by introducing new7 variables suggested by 

the second form in which they are written: 

dz d(ln z) 



136 PARTIAL DERIVATIVES 

(b) 2 = 2x — 2y or = 4z — 4?/, 

, , dz d(e~z) 
(c) $ = V* or -gj- = -2/. 

6. Solve the equation 

2~ - 180V -0, 

by putting ^ = p, and regarding 

y'% ~2p ~182/4x2 = 0 

as an ordinary differential equation in p and p, in which x is constant. 

7. (a) Show that the solution of the system: 

n du dv du dv 

Pv ~ dy ’ Pu ~ dy ’ Qv ~ dx ’ Qu ~ dx ’ 

satisfies 

W + = 0 and 9(“L+.ifL - 0, 
dx dy 

so that u1 + v2 is constant. This suggests that we put 

u — c sin z, v = c cos z, 

where c is constant, and z is a new function of x and y. 

(b) Show that the expressions just written will solve all four equations of the 

system if 

— = Q Hi = p 
dx dy 

so that z = Qx -f Py -f a, and the solution of the system is given by 

u = c sin (Qx + Py + a), v = c cos (Qa: Py -f a). 

8. Show that the system 

| = M(x)2/), | = * (*, 2/), 

has no solution unless ~ ^ , and that in this case the solution is 
ay ox 

= r 'V M dx + N dy c. 
Jxo,yn 

Compare problems 12, 13, pp. 123-4. 

5) (a) Up-% 
dy dz 

du dw , * dv du , . ___ = b) and - - - = c, where a, 6, c 

are constants, hold simultaneously, show that the solutions may be written: /x df 
■^dx + cx + g(y, z), 

W m fX‘V{% dx + [fSkdx ] dy] + f I dy~ bx + ay + h <«), 
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where/, g and h are arbitrary functions of three, two, and one variable as indi¬ 

cated and the integrals are to be taken with only those quantities indicated in 

the limits treated as variable. 

(6) If the right members are replaced by three functions of x, y, and zt 

namely A{x, y, z), B(x> y} z), C(x, y, z), show that there are no solutions unless 

dA 0B dC 
dx dy dz 

= 0, 

and in this case the solutions may be found by a method similar to that indi¬ 

cated in (a). 

34. First Order Equations, Linear in the Derivatives. A par¬ 
tial differential equation of the first order, i.e., containing no deriva- 

dz dz 
tives other than — and > and linear in these derivatives, is 

dx dy 
necessarily of the type 

A % + B I = C, (39) 

whose interpretation was given in section 31. The solution of any 
such equation may be reduced to the solution of a system of ordi¬ 
nary differential equations by a reversal of the process used in 
section 32 to derive (25) from (24). In fact, the discussion there 
given shows that the solution is built up of surfaces made up of 
curves tangent to the directions A, B, C. The system of ordinary 
differential equations of these curves is 

dx __ dy __dz 
(40) 

and if we find two first integrals of this system, in the form 

U(x, y} z) = clf V(x, yy z) = c2, (41) 

they will represent two families of surfaces through the directions 

A, B, C. Hence 
U{:x, y} z) = f[V(x, yy z)) (42) 

or either of the equivalent forms 

V = g(U), h(Uy V) = 0, (43) 

for any particular choice of the function represents a surface 
formed of curves of intersection of the surfaces (41). Conse¬ 
quently its tangent plane at any point contains the direction 
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A, By C for that point, and accordingly (42) gives the solution of 

(39). 
Independently of geometric arguments, this last fact may be 

checked by a direct calculation. For, to say that (41) is a pair 
of first integrals of (40), means that the corresponding differential 
relations, 

Ux dx + Uy dy + Uz dz = 0, Vx dx + Vy dy + Vs dz = 0 

are satisfied in virtue of (40), i.e. 

AUX + BUy + CUZ = 0, AVX + BVy + CVS = 0. 

As these equations are identical with (27), vve may deduce from 
them (28), which shows that (39) is essentially (25), the equation 
obtained by eliminating the arbitrary function from (24), or (42). 

As a first illustration of the method, let us take 

3 ? + 2 7T = 24' (44) dx dy 

For this equation, the system (40) becomes 

dx _ dy _ dz 
3 2 _ 24 

From the first two equations, we have 

2 dx = 3 dyy 2x — 3y ~ Ci, 

while from the last two, we have 

dz = 12 dyy z — \2y = C\. 

On identifying these with (41), we have by (42), as the solution 
of (44): 

z-l2y = F(2x - 3y). (45) 

As this may be written 

2 = F(2x - 3y) - 2{2x - 3y) + 4x + 6y} 

it becomes identical with (20) if F(u) = f(u) + 2u. Thus we have 
here reversed the process of deriving (21) from (20). 

As another illustration of the method, we shall solve 

(46) 
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for which the system (40) is4 

dx dy dz , . 
x Sx-2y 0 ' ' 

It follows that 

dz = 0, z = ci, 

and 

(3a: — 2t/) dx — x dy, x2y — a;3 = c2, 

where the last differential equation may be solved either as a 
linear equation, or as a homogeneous equation.6 

Thus the solution of (46) may be written: 

2 = f(xhj — x3). 

As a slightly more complicated example, consider 

<48> 

For this case, the system of ordinary differential equations is 

dx __ dy _ dz 

2 y —3x I2x — 6 y 
(49) 

The first pair of equations may be solved at once, and gives 

— 3a; dx = 2y dy, 3a;2 + 2z/2 = c2. 

This equation may be used to eliminate the variable y from (49). 

In fact, we have 

V 2 Co — 6x2 

a c 
4 When none of the denominators are zero, the relation ^ j implies ad = be. 

When either b or d is zero, we use the second equation to define the meaning 
of the first. Thus, if d is known to be zero, either b or c is zero. In (47), since 
3x — 2y is not identically zero, it follows that dz = 0. 

6 ~~ -|- - y — 3 admits the integrating factor efx dx = e2 ln * =* x2, and the 
ax x 

integral of x2 dy + 2xy dx = 3x2 is x2s/ = x3 + c?; or after putting y = rx, the 

equation becomes (3 — 2v) dx = v dx + x dv, or — 3 — = - , from which 
X V ~ 1 

V 
—3 In x + In Ci = In (v — 1), or C2X~3 = - — 1- 
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and by means of this the relation 

y dz = (6a — 3 y) dx, 

obtained from the first and third members of (49), may be reduced 
to the form: 

12a dx 

dz = V2c2 - 6x2 ~ 3 dX} 

which integrates into 

z — —2V2&z — 6a2 — 3a + ci. 

To find the solution from our integrals, we may either eliminate c% 
from the equation just written by using 

C2 = 3a2 + 2 y\ 

and then eliminate the constants by an assumed arbitrary relation 

ci = /(ft), 

or regard the solution as given by these last three equations, all 
holding simultaneously. The result, in either case, may be re¬ 
duced to the form 

z = -42/ — 3a +/(3a2 + 2 y2) (50) 

A quicker, but less straightforward process of finding the second 
integral depends on the algebraic principle that, if several fractions 
are equal, any linear combination of the numerators divided by 
the same combination of the denominators yields an equal fraction.6 
On applying this principle to (49), with multipliers 3, 4, and 1, we 

find: 

dx _ dy _ dz __ 3 (dx) + 4 (dy) + 1 (dz) 
2y ~ 12a - 6y ~ 3(2y) + 4(-3a) + l(12a - 6y) 

_ 3 dx + 4 dy + dz 
0 

• In symbols, for three fractions, if ~ = 4 > then each of these 
CIOC 

(jh 4- 

* / i7~~;—7 • For, putting each of the three fractions equal to k, we 
pa+ qb + tc * 

have a = ka', b = W> c = kcr and hence pa + qb + rc = k(paf 4- qb' + rc'). 
This establishes the relation, including the case in which some of the denomi¬ 
nators are zero in view of footnote 4 on p. 139. In this argument all the 
quantities may be constants or variables. 
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That is 

3 dx + 4 dy + dz = 0, 

which is an exact differential and leads to 

3# + 4 y + z = Ci. 

This is essentially the same as the second integral found above, 
and when combined with the first integral gives (50). This 
method is only applicable when we can find by inspection a set of 
factors, in general functions of x> y, z but here the constants 3, 4, 1, 
and such that the corresponding linear combination of the denomi¬ 
nators is zero, while that of the numerators is an exact differential 
expression. 

EXERCISES XXI 

1. Solve the differential equations: 

(a) 

(d) ax 

dz dz 

dx dy 

dz 

= 0, (b) x 
dz 

dx 

dz 
o, 

, , dz . dz 

(c) 0, 
, j dz 

dx dy 
= 0, (e)ay^+bx | = 0. 

2. Solve the differential equations of problem 5, p. 127 by the method of 
section 34. 

3. Prove that each of the functions U and V of (41) when set equal to zero 
gives a solution of equation (39). Conversely, show that if two particular 
solutions of (39) are known, they may be used in place of the U and V of (41), 
and hence may be used to find the solution (42). 

4. (a) Prove that if z — U(x, y) is any particular solution of the differential 
dz dz 

equation A(x, y) ^ -f B(x, y) — 0, where, as indicated, the first two coeffi¬ 

cients are functions of x and y only, and the third is zero, the general solution 
may be written z — f(U). (b) Illustrate for the equations of problem 1. 

6. Either by applying the result of 4 (a), or otherwise, verify that the solu¬ 

tion of a + b ~ 0, may be written z — f(bx — ay). 

6. (a) Prove that if z = V(xt y) is a particular solution of the differential 
dz dz 

equation A(x, y) -f B(x, y) = C(x, y)t where as indicated the coeffi¬ 

cients are functions of x and y only, and z = U(x, y) is a particular solution 
of the corresponding equation with right member zero, as in problem 4 (a), the 
general solution may be written z — f(U) + V. (b) Show that, if the right 
member is a sum of several functions, as Ci (x, ij) + (x, y), and the particu¬ 
lar solutions obtained by considering them separately are z ~ V\(xiy)i 

z a- Vi (x, y), then z — VY + V% is a particular solution corresponding to the 
sum, and hence the general solution may be written z =/(C7) 4- Vi + V%. 
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7. (a) Find values of the constants p and q which make z ** px 4* qy a 

particular solution of the equation 

^ dz , _ dz „ 

% + 7%“0- 

(6) Find a function of x alone, -Y(x), such that z = X{x) is a particular 

solution of the equation 

5 ^5- + 7 — = 15**. 
dx dy 

(c) Find a function of y alone, Y(y), such that z = F(y) is a particular 

solution of the equation 

dz dz + 7„ = 422A 
dx 

(d) By using parts (a), (b) and (c) of this problem, and applying the result 

of problem 6, find the general solution of the equation 

5^ + 7^ = 15*! + 42j/2. 
dx dy 

8. Solve the differential equation 

3 % + 5 ^ = 9x + lOy + 4e**, 
ox oy 

by the method indicated in problem 7. 

9. Solve the differential equations: 

(a) ax 4- by |^ = 2ax + 37>y. (ft) ay + = 3bz + 4ay. 

10. Solve the differential equations: 

(a) cos y + sin x ~ =2 cos y, (6) 2x ^ + (x -f 3y) ~ =* x3 + 2r*. 

11. Solve: (a) ~ •+* w1 = az, (d) e? ~ -f — e*. 
dx dy dx dy 

12. Solve the equation a ~ ~ = ax -f by -f c by the method indicated 

in problem 7, and also by the general method. 

13. Solve the equation ax ~ + &y ^ = axz -f &yz + cz by the general 

method. Why is the method of problem 7 not applicable in this case? 

14. Solve: (a) x2|^ + 2/2 == 2:2 > 
n\ dz dz (6) yz-+xz-=xy. 

35. Linear Homogeneous Equations with Constant Coefficients. 
An equation such as 
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each of whose terms contains the independent variable just once, 
either itself or in a derivative, is said to be linear. The left member 
of such an expression, L(z), is accordingly linear in z and its partial 
derivatives in the sense of section 20, and has the same character¬ 
istic property as ordinary linear differential expressions, namely: 

L(ciZi + C2Z2) = CiLOO + r2L(z2). (52) 

Any properties of ordinary linear differential equations which were 
derived from (52) also hold for linear partial differential equations. 
Thus, if as in (51) the right member of the equation is zero, and 
z = zu z ~ z2 are particular solutions, then z = z\ + z2 will also 
be a solution. Again, if the right member is not zero, and z — z0 

is a particular solution, the sum z = z0 + zh where z = zx is the 
general solution of the equation with right member zero, will be a 
solution and in fact the general solution. 

When, as in (51), z itself is absent and all the derivatives are of 
the same order, the equation is said to be homogeneous. For 
simplicity, we restrict ourselves to this case, and also require the 
coefficients to be constants. The solutions of equations of this 
type may be reduced to the solution of first order equations by a 
process of factoring the differential operator, analogous to that 
used in section 21. Thus equation (51) suggests the algebraic 
expression: 

8X2 + 2X - 15 = (2X + 3)(4X - 5). (53) 

Since it is immaterial whether we first multiply by a constant7 and 
then differentiate partially, or perform these operations in the 
reverse order, partial differential operators with constant coeffi¬ 
cients combine like algebraic quantities. Thus (53) shows that 
equation (51) is equivalent to: 

By problem 5, p. 141, the solution of the equation 

= 0 

is z = Zi = f(5x + 4 y). 

7 Compare the statement in footnote 5, p. 83 and problem 8, p. 147. 
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This is a solution of (54), since on applying the first operator 
we get zero, and the second operator leaves it zero. But, as the 
factors of (53) could be written in reverse order, we see similarly 
that the solution of 

(2s+3I)2=2 i+3i-°- 
or 

2 = 22 = Q$x - 2y) 

is also a solution of (54). 
Consequently, 

2 = f(5x + 4y) + g(3x - 2y) (55) 

is a solution of (54), or (51). We suspect it to be the general solu¬ 
tion, since it contains two arbitrary functions, and in section 32 
we found that the elimination of two functions from expressions 
similar to (55), gave equations similar to (51). 

We may verify that it actually is the general solution by effecting 
the transformation of variables 

u = 5x + 4 y, v = 3x — 2 y (56) 

suggested by the form of our tentative solution, (55). For this 
transformation, we have, analogous to (10) and (12), 

g..2Sg.+m#* to 
dx2 du2 du dv dv2 

d2z = on OUl 4- 9 — - fi — 
dx dy du2 du dv dv2, 

d*z _ ift d2z d2z 
dy2 du2 du dv dv2 

In consequence of this, 

s£ + 2Vt- dx2 dx dy 
15?,. 484 

dy2 

dh 
du dv ’ 

and in terms of u and v, equation (51) is 

d2z 
du dv 

= 0, 

(57) 
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which may be solved by successive integration, as described in 
section 33. The solution is 

2 = f(u) + g(v), 

which checks with (55) when u and v are replaced by tneir values 
in terms of x and y given in (56). 

If, instead of (51), we were required to solve 

o** | 2 ^ 
dx2 dx dy 

15 == 96j, dy2 
(58) 

we should need a particular solution, in addition to the solution 
of the equation with right member zero. As the right member, 
96x, involves x only, we seek a particular solution z = X(x), 
which involves x alone. This will satisfy (58), provided: 

8 
d2X 
dx2 

= 96x, 
d2X 

or 
dx2 

I2x. 

A particular8 solution of this ordinary differential equation is 

X(x) = 2x?j 

so that 
z = zQ = 2xz 

is a particular solution of (58). As the equation with right 
member zero is (51), whose solution has been found to be (55), it 
follows that the general solution of equation (58) is: 

z = 2x* + /(5x + 4y) + g(3x - 2y). (59) 

Equation (58) might also have been solved by the transforma¬ 
tion (56). For, this gives (57), and hence reduces equation (58) 

to the form 

484 
d2z 

du dv 
= YY (w + 2v). 

The solution of this equation is found by successive integration 

to be 

2 = 2 (M ) + /(w) + 0W, 

which checks with (59), in view of (56). 

• Corresponding to taking the constants of integration zero in X *= 2x8 + 
CiX + c*. Any other choice would do as well. 
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To illustrate the procedure when the algebraic expression has 
multiple factors, we consider the equation 

dh dh 
dxi dx dy 

+ 9 
Oh 

dy2 
0. (60) 

This may be written 

+ 3 
dy) \dx 

+ 3 
dy j 

0. 

As the two first order operators are the same, we apparently get 
but one solution, 

z = zi = /(3s - y). 

However, a second solution is 

z — z2 — xg(3x - y), 

since if this is operated on with 

dx ^ dy 7 

when the operator acts on g(3x — y) it gives zero, and when 
it acts on x, it gives a constant. Thus the result of applying the 
operator once is a constant times g(3x — y). If, now, the operator 
is applied a second time, we get zero, so that z = z2 is a solution 
of (60). This leads us to guess as the general solution of (60), 

2 = f(3x - y) + xg(3x - y). (61) 

This may be verified by effecting the transformation of variables 

u = Xj v = 3 x — y. 

When the order of the derivatives is greater than the second, more 

than two factors may be equal. The procedure here is indicated 
in problem 10, p. 148. 

EXERCISES XXH 

1. Solve the differential equations: 

. d2* d*z &z n ... 
(®) a,, t 8 x.a 0, (6) 

(c) 

0*2 
dx2 

&*z 
4aJ + 7 

-^- + 13 — 
dx dy dy2 

&z &*z 

Wdy^6W2 
C$2 

12, (d) 16 g -24 

= 0, 

dx dy dy2 
> 0. 
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2. (a) Show that the general solution of the equation 

&U d2U 
dx2 dy2 

0 

is U » /( x+ iy) + 9(v ~ iy)- 
(b) Let w(z) = w(x, y) + iv(x, y), as in section 9, where w is an analytic 

function of z = x -f iy. Show that, if we take f(x + iy) — £tr(x -f iy) and 

g(x — iy) — \w(x — iy), the solution of part (a) reduces to U = u(x, y). 

Similarly, if we take/(x 4- iy) = — £iu?(x -+* iy), and g(x — iy) =* \iw(x — iy), 
the solution of part (a) reduces to U —v(x,y), where w(z) is conjugate to to(z). 

3. Apply the process of problem 2 (6) to find two particular solutions of the 

differential equation of problem 2 (a), from each of the following analytic func¬ 

tions, and verify by direct differentiation. 

(a) ez — ex cos y 4- iex sin y, (b) z2 = x2 — y2 -f- 2ixy, 

(c) log z = i In (x2 + y2) 4-1 tan"1 y/x, 

(id) sin z = sin x cosh y + i cos x sinh y. 

4. Show that the general solution of the wave equation 

. d2z d2z 
v2 

dx2 dt2 
0, 

is z - }{x -f vt) 4- g(x — vt). 

5. Solve the differential equation 

&z __ d*z 

dx2 dy2 
-^4=2+3x + Zy -x\ 

(a) by the tentative method, (b) by transforming to new variables. 

6. Solve the equation 

d*z 

dx2 
_ 2 d5-z dh_ 

Ox dy dy2 
= 5e9y + sin x. 

7. Show that the 83rstem of equations: 

du „ D dv ~ du 
Pv = ^’ = 

implies 

dy’ 

, dr 
da: 

—— 
dr 
da: ’ 

it. 
dy 0, and 

OX r°- 
so that we must have w = /(Qx 4- Py) and r = g(Qx 4- Py). Determine the 

form of f and g by substituting back in the original equations. Compare 

problem 7, p. 136. 

8. Verify that 

only give the same result if z = fix 4- y). 

9. (a) Show that if p and q are constants, and h is an arbitrary function 

z « (px 4” gy) H3x — y) is a solution of equation (60) of the text, by consider¬ 

ing the effect of the operator d/dx 4- 3 d/dy on the two factors. 
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(6) Noting that 

(px + qy) h(3x - y) = —g(3o: - y) h(3x - r/) + (p + Sq)x h(3x - y), 

show that the solution of part (a) is included in the general solution (61) of the 

text, and express f(u) and g(u) in terms of h(u). Illustrate for h(u) = u2. 
10. (a) Show that the equation 

(a£ + 6i)"z = 0 
is satisfied by xkf{ay — bx) for k = 0, 1, • • • n — 1. These give n distinct 

solutions, unless a ■= 0, in which case we may use ykf(ay — bx). 

36. Particular Solutions. The solution of a physical problem 

can not contain any constants or functions which may be given 
arbitrary values. When some of the conditions in the mathe¬ 
matical formulation of the problem take the form of differential 
equations, there are always enough auxiliary relations at hand to 
determine the arbitrary elements in the solution of these differ¬ 
ential equations. When dealing with ordinary differential equa¬ 
tions, where arbitrary constants appear, we usually obtain the 
specific solution by first finding the general solution including the 
arbitrary constants, and then determining these constants from 
the initial conditions, or boundary values. For partial differential 
equations, where arbitrary functions appear, the analogous process 
is rarely applicable, and the general solution is of little help in 
finding the particular solution desired. We may often succeed by 
first finding particular solutions of the partial differential equation 
which satisfy the boundary conditions, or some of them, and suit¬ 
ably combining these particular solutions to give the solution of 
the physical problem. Solutions which break up into a product 
of functions, each of which involves only one of the variables, are 
useful in this connection. We proceed to explain a method of 
obtaining such particular solutions for certain simple types of 
equations. 

We begin with the equation 

b2z b2z 
dx2 + by2 

(62) 

and seek a solution of the form 

2 = X(x) • Y(y), or z = X ■ Y. (63) 



PARTICULAR SOLUTIONS 149 

We frequently omit the independent variables, and write X and 
F for X(x), Y(y), as the notation reminds us that X is a function 
of x alone, and F is a function of F alone. We also use the primed 
notation for derivatives, so that 

AY rl^Y 

*'-*'<*>-f. *" = *"(*)= 
with similar relations for F. With this notation, we have on 
differentiating (63): 

dz 

dx 

dz 
dy 

* X' • F, 

= X . F', 

dh 
dx2 

d2z 

= X" • F, 

dy: 
7, = X • F". 

On inserting these values in (62), we have as a condition that z be 
a solution of the partial differential equation: 

X" • F + X • F" = 0. 

We may separate the variables in this equation, and write it 

X" 
X 

(64) 

This separation of the variables is not always possible; our method 
only applies to equations capable of such separation. 

We now observe that the left member of (64) does not involve y, 
and hence can not change when y changes. Similarly the right 
member does not involve #, and hence can not change when x 
changes. As the two members are equal, their common value 
can not change when either variable changes and hence must be 
a constant, k. Thus we may write 

two ordinary differential equations to determine X and F. In 
the ordinary notation, we may write the first 

d2X 
dx2 

- kX = 0, 

whose solution is found by the method of section 21 to be 
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X = cie'r* + o&~Vkx, if k > 0, 

X =* c3 sin \T^kx + c4 cos V —fcr, if k < 0, 

X ~ Cf>x + c6, if 7b = 0. 

Similarly, we may solve the equation for F, and find from 

d2Y 
W + kY = "’ 

that 

F = ci sin V—ky + c8 cos V—ky, if k > 0, 

F — + cioe~^v, if k < 0, 

F = cny + C12, if 7b = 0. 

(65) 

(66) 

The solutions of (62) required are found by combining (65) and 
(66) with (63). We simplify the notation by putting 

\rk = a, if k > 0 

y/ — k = by if k < 0. 

We then have, as the particular solutions sought: 

z = (ci^ + c2c"fl;c)(c7 sin ay + c8 cos ay), 

z = (c3 sin + c4 cos + Ci0e*"6y), 

2 = (c6x + Cg) (cny + Ci2). (67) 

Each of these solutions apparently contains four constants c, but 
really contains only three independent ones, since one of them 
may be divided out. For example, in the first form, if C\ A 0, we 
may write 

z ~ (cie™ + c2e'~ax)(c7 sin ay + c8 cos ay) 

= (e®* + — er0*) (cic7 sin ay + CiCs cos ay) 
Cl 

— (e®* + c2/e~<w)(c7' sin a?/ + c8' cos ay). 

The advantage of not replacing one of the constants c by unity is 
that we do not exclude the possibility of any of them being zero. 

Since the equation (62) is linear, the sum of any number of solu¬ 
tions is again a solution. Thus if we take any number of solutions 
of one or more of the forms given in (67), obtained by giving 
different values to a, b and the constants c, their sum will be a 
solution of (62). We may even take an infinite number of terms, 



PARTICULAR SOLUTIONS 151 

provided the series converges in such a way that it may be differen¬ 
tiated termwise. 

Let us next consider the simpler equation 

2*| <68> 
This will have a solution of the form (63), 

2 = X • 7, 

provided 

2xXf • 7 - 3yX- Y' = 0. 

The variables may be separated, by writing the equation 

o x' q Y' 
2x y = y > 

and the reasoning used for (64) shows that each member is a 
constant, k. That is, 

Y' V/ 
2x -y = fc, 3^/ y = A. 

The first equation, in other notation, is 

2 x^--kX 
ax 

0, 

which leads to 

^ = lnZ-gln* + c„ 

Similarly the second equation may be written 

3*f - w - 0, 

and solved in the form: 

Y = eV/3- 

Thus the solution of (68) of the form sought is 

2 - X • Y « ecxe^Y/z 

or 

2 * CZ34^2*, (80) 
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where we nave simplified the writing by putting ecief* equal to a 
new constant c, and k ~ &a to avoid fractions. 

To appreciate the generality of solutions built up of particular 
solutions, let us note that the general solution of (68) may be found 
by the method of section 34 to be 

z = /Or3!/2). 

If f(u) is an analytic function, it may be expanded in a Maclaurin 
series, 

f(u) = Aq + Aiu + A2u2 + • • • + Anun + • • •, 

and 

2 = Aq + Aixzy2 + A2(x*y2)2 + • • • + An(x*y2)n + 

which is a series of terms of the form (69), with a taking on integral 
values. 

We conclude our discussion with an application to a more com¬ 
plicated equation, namely: 

d2u 
dx2 

d2u 0, du 
u -tttt + 26 — + cu, 

dt2 dt 
(70) 

where a, 6, c are given real constants. Here a is a real9 function of 
x and t, so that we put for the particular solution: 

u = X(x) • T(t) = X - T. (71) 

When we calculate the derivatives, we find that (70) will be satis¬ 

fied provided 

X" • T = aX • Tn + 2bX T + cX T. 

In separating the variables, the term cX • T could be put on 
either side. If we leave it where it is, we have as the separated 
form: 

X" _aT"+2bT' + cT 
X T 

As before, each side must be a constant, k, and the ordinary differ¬ 
ential equations for X and T are 

X" 7 aT" + 2bT' + cT 7 

9 When u is complex, the constant k in (72) may be complex, and the discus¬ 
sion here given of (72) requires modification. Compare problem 4, p. 160. 
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The first equation has been found to have the solutions given in 
(65). The second equation in ordinary notation is 

d2T dT 
aW + 2hI + tc-k)T = *. 

Thus the roots of the quadratic algebraic equation associated with 
it are 

-6 db VV — ac + afc (72) 
a ’ 

which are real and different, conjugate imaginary, or real and 
equal, according as 

62 — ac + ak > , < , or =0. (73) 

We abbreviate the roots in these three cases by 

p, g; s + tv, s — iv; r, r 

respectively. The corresponding solutions for T may then be 
written: 

T = c-ie* + cse?, 
T = c^e?1 sin vt + Cicos vt, (74) 
T = cue* + Ci2^. 

In general, the value of k for which 

ak = ac — b2 

is not zero, so that one of the cases (73) will be satisfied by values 
of k which are positive, as well as by values which are negative and 
the value zero. For the other two cases (73), the sign of k will be 
fixed, and hence the type of solution for X given by (65) which 
goes with it is determined. Thus there are in general five types of 
solution. As an example, suppose a = 1, 6 = 2, c = 12, and let 
us find the form of solution for certain values of k. Here (72) 

reduces to 
8 -f” k. 

As typical values of k we take — 1, 0, 4, 8, 17, and find for the 
corresponding solutions, from (71), (65) and (74): 

u = (cs sin x + Ci cos x)(c9e-2t sin 32 + Citf"21 cos 32), 

u = (c& + CeXcoe*”2* sin 2V2t + Cioe-2* cos 2x^22), 
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u * (cie2x + c2e-2x)(c9e-2t sin 21 + Cioe~2t cos 20, 

u = (cie2^x + C2e~2vr2x)(cne~2t + Ci2te~~2t)} 

u *= + c2e~^x){c^ + c$e~5t). 

EXERCISES XXin 

1. Show that the particular solutions of the equation 

d*u , 0 du 

of the special form u ■= X(x)-T(t) are of one of the three forms: 

U = (Cle«* + ae-ax)eaV/hl, 

u = (e3 sin bx + ci cos bx)e~w^h', 

u = c6x 4“ CB. 

2. Find the particular solutions of the form z = X(x)*Y(y) for each of 

the equations: 

, s dz dz ... dz 

(a) =0’ (6) xd5 
dz dz dz 

vdi=*' (c) = 0’ 

(d) ey — 4. - o (e) — 4- — = az (/*) ?/2 — -f x8 — = 0 W e? e dy u, icj ^ -h dy a., V) y ^ ti^ u. 

3. Use the method of section 36 to find particular solutions of the following 

equations: 

^S-AsS = °- »>** 
322 o 922 n c^-1 322 4. S2322 n 

= °. w ^ + A2^ = °- 

4. (a) Show that the equation 

_ pd2* 10 fts , 4r 
dx2 dy2 dy ’ 

admits five types of particular solution. 

(6) Show that the equation 

admits only three types of particular solution. 

6. Show that the particular solutions of the equation 

9&u . du . d2?/ A 

rV + raF + ^=0’ 
which factor into two functions, each of one variable, are 

u — (cir« 4- C2r~a)(c7 sin ad + c8 cos a0), 

w = (c8 sin [6 In r] 4- c4 cos [6 In r])(c9e^ + 

tt =* (ci In r + c6) (cn6 4- cu). 
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6. Show that the differential equation 

&u 1 &u 

dr2 r2 dd2 
i 1 du . 2 

4* - 3- + a lu 
r or 

has particular solutions of the form: 

u — [ciJn(cvr) + c2Yn{ar)] (c8 sin n$ -f cA cos nB), 

where Jn(x) and Yn(x) are two independent solutions of the ordinary differen¬ 

tial equation: 

<PX 1 dX 

dx2 x dx 
» 0. 

This is called Bessel’s equation. See problem 10, p. 230, for Jn{x). 

7. Show that the differential equation 

&*(ar) d 

r~dr*~ + 5i 
= 0, 

has particular solutions of the form: 

u = (c\rn ~f c2r~n~x)[ciPn{z) + cAQn(z)]t 

where Pn{z) and Qn(z) are two independent solutions of the ordinary differential 

equation: 

a-^~-^ + n(n + l)Z = 0. 

This is known as Legendre’s equation. See problem 11, p. 231 for Pn(z). 



CHAPTER V 

THE PHYSICAL MEANING OF CERTAIN PARTIAL 
DIFFERENTIAL EQUATIONS 

In this chapter we shall discuss some of the partial differential 

equations which have their origin in engineering or physical 

problems. We shall outline the derivation of the equations from 

physical principles, explaining the significance of the quantities 

which occur in the equations, and stating the physical laws of 

which the equations are the mathematical interpretation. 

37. Flow of Electricity in a Cable. Consider a long, insulated 

cable carrying an electric current. The circuit is schematically 

represented in Fig. 28, where .4 B is the cable, and the current flows 

through A B, then through the load L, returning through the 

ground CD to the element DA containing S, the source of e.m.f. 

causing the current to flow. The arrow indicates the direction 

considered as positive in measuring current and difference of poten¬ 

tial, as in section 24. Since we are not justified in considering the 

insulation as perfect for a long line, we must regard the current as 

varying with the position of the point considered on the line, as 

well as with the time, t (seconds). The electromotive force will 

also vary with position as well as with the time. Accordingly if e 

(volts) is the e.m.f., and i (amperes) the current, at a point x (units 

of length, e.g. miles) from one end of the cable, as A, we will have: 

e — e(x, t), i = i(x, t). 

Let the series resistance of the cable per unit of length be R 

(ohms/mile), and the inductance per unit of length be L (henries/ 

mile). The loss of current due to imperfection of the insulation 
156 
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is governed by the capacitance to ground per unit of length C 
(farads/mile) and the conductance to ground per unit of length G 
(mhos/mile or 1/ohm mile). While e and i change continuously 
with x, we may compute their rates of change by considering the 
action in a segment of the cable of length Ax, as EF in Fig. 28, and 
then letting Ax approach zero for the limiting relation. 

For the segment of the cable of length Ax} considered at any 
time t, the drop in e.m.f., — Ae is equal to that due to the resistance 
of the segment considered plus that due to its inductance. The 
resistance of the segment is R Ax} which causes a drop in e.m.f. 
R Axiy while the inductance of the segment is L Ax} which causes a 

drop in e.m.f. L Ax ~, so that we may write 
at 

— Ae = 72 Axi + L Ax (1) 

Here x' and x" represent intermediate points of the segment at 

which we evaluate i and While the equation (1) would only be 

true for a random choice of x' and x" if the current were constant 
throughout the segment EF} the equation will be correct if the 

proper average values of i and ~ are used, that is, if the inter¬ 

mediate points xf and x" are properly selected. If, now, we divide 
both sides of equation (1) by Ax, and let Ax approach zero, since 

x' and x" both lie between x and x + Axy they will approach xf and 
we will have in the limit: 

de • , T di 
-rx-,h + Lsi■ ® 

This is our first relation connecting i, x and t. 
The change in current for the segment of length Ax must be 

found from its action as a condenser. We recall, p. 96, that for 
the e.m.f. across a condenser 

Accordingly, the drop in current for the segment of length Ax, due 
de 

to its capacity to ground, C Ax, is C Ax —. Similarly the drop in 
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current due to its leakage G Ax is G Axe. Hence we may write 

— At G Axe (3) 

Here x"' and £iv indicate the points at which we evaluate e 
de 

and —, and the equation is correct if these points are properly 
at 

selected. We note that the action of the segment as a condenser 
is equivalent to two elements in parallel with it, one containing 
capacity C Ax, small to the first order, and the other containing 

resistance -r~— , large to the first order. Thus the effect of either 
G Ax 

on the e.m.f. is small to the second order, which explains why we 
did not have to consider them in setting up (1). When we divide 
both sides of (3) by Ax, and take the limit as Ax approaches zero, 
we find: 

CH 
dx 

Ge + C 
de 
dt ’ (4) 

which is our second relation connecting v, i, x and t. 
The two equations (2) and (4), together, determine v and i in 

terms of x and l. AVe may eliminate i from these equations by 
differentiating the equation (2) with respect to j, and eliminating 
dt d^Z 
— by means of (4) as it stands, and -—— 
dx dx dt 

by means of the equation 

The re¬ obtained from (4) by differentiation with respect to t 
suiting equation is: 

d^p d^P de 
~ LC — + (RC + LG) + RGc, 

at- at dx2 
(5) 

which is a relation e must satisfy. A similar process may be used 
to eliminate e and its derivatives from (2) and (4), and leads to 
the equation: 

g-Lcg + (*(7 + £G)g+BGi, (6) 

which is a relation i must satisfy. 
The equations (5) and (6) are identical except for the difference 

in meaning of the dependent variable. They are of the same type 
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as equation (70), p. 152, for which we determined some particular 

solutions. 
If e is determined as the solution of (5) for given boundary or 

initial conditions, it is not necessary to solve (6) for z, since i may be 
found from (4) to within a function of t, and this function will be 
determined by (2) to within a constant, in general. Similar remarks 
apply when the r61es of e and i are interchanged. The equations 
(2), (4), (5) and (6) are sometimes known as the telephone equa¬ 
tions, since they are used in discussing telephonic transmission. 

In many applications to telegraph signaling, the leakage is small, 
and the term for the effect of inductance is negligible, so that we 
may put G = L = 0, and the equations take the simplified form: 

y 

di _ ~ de 
dx ~ ° di ' 

dx2 
d'H 
dx2 

(7) 

These are known as the telegraph equations. If e is determined 
from the third equation and the additional conditions, i is definitely 
determined from the first. On the other hand, if i is determined 
from the fourth equation, the first two equations merely determine 
e to within an arbitrary constant, which must be found from the 

additional conditions. 
For high frequencies, the terms in the time derivatives are large, 

and some qualitative properties of the solution may be found by 
neglecting the terms for the effect of leakage and resistance in 
comparison with them. On putting G = R =* 0, the equations 

become: 
de __ j di 

~ dx ~ L,dti 

di __ „ de 
dx~L dt} 

d2e 

dx2 
dH 7 r dH 
dx2 = at2 ’ 

(8) 
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These are known as the radio equations. Here if either quantity 
is found from the last two equations and the additional conditions, 
the first two only determine the remaining quantity to within an 
arbitrary constant. 

EXERCISES XXIV 

1. Show that the general solution of the radio equations (8) may be written 

‘ - >(’ - vfe)■ Vz {’ + vffi)1' 
by finding the general solution of the third equation, and then determining i 

from the first two. The additive constant which apparently comes in may be 

omitted since if the same constant be added to the function /, and subtracted 

from the function g, the value of e is unchanged, while that of i is changed by a 

related constant. These solutions may be interpreted as a combination of two 

waves, one moving to the left, and the other to the right, each with velocity 

1 ^ 
vTc’ 

2. The so-called “ distortionless line ” is one for which the relation W = 

RC holds, (a) Show that in this case the transformation of variables 

_kt • ■ —- if i , R G 
e a* etc , t = tie 1, where k ~ j = ^, 

reduces the equations (2), (4), (5), (6) to the form (8). 

(6) Using part (a), and the result of problem 1, find the general solution for 

the distortionless line. Interpret it as a combination of waves which preserve 

their shape, but die down exponentially. 

3. Prove that, if we make the transformation of variables e = i — 

equations (2) and (4) will become two new equations of essentially the same 

form. In particular, if k = R/Ly the term corresponding to Ri in the new 

equations will be missing, while if k = G/C, the term corresponding to Ge in 

the new equations will be missing. 

4. If we are dealing with a transmission line, and the impressed e.m.f. is a 

single sine term, after the steady state has been reached, the current and e.m.f. 

will involve t through a factor of this same frequency. Thus we may write 

e = Em(x) sin M -f «(r) ], 

t = I mix) sin M + 0(s)]. 

We now proceed as in section 26, regarding these as the imaginary components 

of 
E = F(x) ci*1, I = 

where the complex functions F(x) and H(x) are defined by 

Fix) = Em(x)eMx)y H(x) = Jmix)eMD, 
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and E and / satisfy 

dE 

dx 
RI + L 

a/ 
dt : 

dl 

dx 
= GE 4- C 

dE 
dt 

(а) Show that these last equations will be satisfied provided that F (x) and 

H(x) satisfy: 

-Ff - (R + jcoL) H, -H' = (G + icoC)F. 

(б) If we define the impedance £ and admittance to ground Y by the 
equations 

Z = fl+jwL, r »G+j«C, 

and eliminate //, the result is 

F" = Z - YF. 

From this, and the other equations, show that the required values of E and / 

may be written: 

A = K^VzYx+j^t -I- x+M, 

and 

I = + Ktt-^ZYz+joi J, 

where the coefficients Ah and X2 are suitable complex constants. 

(c) Put Vz? = p + jq, = P«* A', = Aja, K2 - Pc'6 in the 

result of part (6), and by finding the imaginary components, show that 

e = AePx sin (qx + <*>t -f* o) + Be-P* sin (— qx cot + b), 

and 

i « — Pudsin (gx + + a 4- 0) + PPe~£* sin (— gx -f cot -f & + 0). 

5. Show that, if the value of e = ^m(x) sin M 4- «W] is given for two 

different values of x, all the constants in the solution of problem 4 (c) will be 

determined. In particular, show that if e — 0, when x = xi, and e =* Aw(0) 
sin M + «(0)] when x = 0, the solution for e is 

e = Djsinh p(x — Xi) sin (w£ + 0) cos g(x — x\) 

4- cosh p(x — X\) cos (cot 4- 0) sin q(x — Xi)}, 

where 

D Emi0) 
Vsinh* pxi 4- sin2 gxi * 

£ = a(0) — tan-1 (tan qx\ coth pxi). 

In this case the solution for i is given by 

i = —PDjcosh p(x — Xi) sin (cot 4- 0 4" 0) cos #(x — Xi) 

4- sinh p(x — x0 cos (cot 4-/3 4- 0) sin </(x — Xi)J. 

6. Show that, when P = (7 = 0, the particular solutions found in problems 
4 and 5 are special cases of the general solution of the radio equations found in 
problem 1. 
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7.*Show that, when LG — RC the particular solutions of problems 4 and 5 

are special cases of the general solution for the distortionless line found in 

problem 2. 

38. One Dimensional Heat Flow. Let us consider a long, thin 
rod surrounded, except at the ends with material impervious to 
heat. Unless all the points of the rod are at the same temperature, 
heat will flow along the rod. If the rod is homogeneous, and of the 
same cross section throughout, we may schematically regard the 
rod as a line, since the temperature of all the points of any one 
cross section will be sensibly the same. 

When heat is flowing uniformly, it is found from experiment 
that the amount of heat flowing past any portion of the rod is 
proportional to the difference of temperature of the end points of 
the portion, to the area of the cross section and to the time of flow, 
and inversely proportional to the length of the portion considered. 
In symbols, 

AU = KA(U2 - UQ At 

X2 — Xi 
(9) 

the notation being as follows: z(cm.) is the distance along the rod 
measured from some fixed point, U(°C.) is the temperature at any 
point, i.e., cross section, and the subscripts 1 and 2 refer to the end 
points of the portion considered. A//(cal.) is the amount of heat 
flowing in the positive direction in time A/(sec.). A (cm.2) is the (cal \ 

-J is a physical constant 
cm. sec. o. y 

for the material, the specific conductivity. From the way in 
which temperature is defined, heat flows from a higher to a lower 

temperature, e.g., if x2 > xi, and U2 > U\, the flow will be in the 
negative x direction. Thus the minus sign is necessary to keep K 
positive when the differences are written as in (9). We have 
given the units in the C.G.S. system. In the English system we 

should have K as 
/ B.T.U. \ 
Vft.sec.°F.J' 

For non-uniform flow, for a small 

portion of the rod, x to x + Ax, as in Fig. 29, and a small time 
interval the flow is approximately uniform, so that we are led 
to assume the limiting form of 
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-X--KA£> <10> 

as the exact law for the rate of flow past any section, when the flow 
varies both with the time and the distance along the rod. 

Fig. 29 

We recall a second law concerning heat. When a homogeneous 

substance of density D and volume V (cm.8) and hence of 

mass DV (gm.) has its temperature raised AU (°C.), the amount 
of heat absorbed AH (cal.) is porportional to the mass and to the 
increase in temperature, so that 

AH = cDVAU, (11) 

where c is a physical constant for the material, the spe¬ 

cific heat. On dividing both terms of this equation by Aty and 
taking the limit for At approaching zero, we have the corresponding 
law for rates: 

dl-cDvdI- <12> 
Let us now consider any variable flow of heat along the rod. We 

consider the piece of length Ax shown in Fig. 29. The rate of 
flow into this segment across the section at x is, by (10) 

~KAf . dx * 

and similarly the rate of flow out of the segment at x + Ax is 

-K*m ■ 

Since the sides of the rod are insulated, the total rate of flow into 
the segment is 

— = KA 
at KA dx Jcc-f-Ax dx 



164 PHYSICAL MEANING 

But, by (12) this rate may also be expressed as 

dH 
dt 

c DA Ax 
dU 
dt (14) 

where we have replaced V by A Ax, another expression for the 
volume of the piece of the rod. As the points of our segment are 
not all at the same temperature, (14) will only apply when an 
appropriate average rate of change of temperature is used. This is 
accounted for by taking x' a proper value of x between x and 
x + Ax. On equating the two expressions for the rate of gain of 
heat given in (13) and (14), and dividing through by KA Ax, we find: 

dU _dUj 
cD dU _ dx ar+Ajr dX X 

K dt x' Ax 

On taking the limits of both sides as Ax approaches zero,1 we find: 

cD dU __ d2U 
K dt dx2 * 

Here all the derivatives are evaluated at x, since x + Ax, and hence 
cD 

x' approaches x, so that we need no subscripts. We replace •— by 

a new constant h2 

sional heat flow as: 

and write the equation for one dimen- 

dU = d2U 
dt dx2 ’ 

(15) 

By a similar analysis (p. 178) when we have flow in three dimen¬ 
sions, the equation is found to be 

dU _ d2U d2U d2U 
dt dx2 + dy2 + dz2 ’ (16) 

Consequently, in particular, if we have steady flow in which the 
temperature does not vary with the time, we have: 

dW &U &U 
dx2 + dy2 + dz2 a 

1 Compare equation (2), p. 115, with/(x, y) replaced by F(x, t) 

(17) 

dU. 
dx 
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EXERCISES XXV 

1. Using (9), compute the heat loss per day through 200 square meters of 

brick wall (K = .0020), if the wall is 30 cm. thick, the inner face is at 20° C. 

and the outer face at 0° C. If the heat of combustion of coal is 7000 cal./gin., 

and the efficiency of the furnace is 60%, how much coal must be consumed 

daily to compensate for this loss? Note that if a differential equation is used, 

its solution under the condition of the problem is one of the laws from which 

we derived the differential equation. 

2. A refrigerator with walls 8 cm. thick has as its outside dimensions 108 cm. 

by 108 cm. by 58 cm. The temperature inside the box is 10° C., and that out¬ 

side the box is 25° C., while K — .0002 is an average value for the walls of the 

box. Assuming that there is uniform flow, and neglecting the effects at the 

edges and corners, i.e., regarding the heat gain as that for a single wall equal in 

area to the surface half way between the inner and outer surfaces, of a box 100 

cm. by 100 cm. by 50 cm., find the heat gain per day. If ice is used, find the 

number of kilograms required per day, recalling that a gram of ice, in melting, 

absorbs 80 calories and the specific heat of water is 1, and assuming that the 

water from the ice is at 5° C. when it leaves the box. If a mechanical refriger¬ 

ating unit is used which pumps 50% as much heat outside the refrigerator as 

the same electrical energy would generate in a heating coil, in accordance with 

the law given in equation (4), p. 45, find the number of kilowatt hours used per 

day. 

3. Carry out the analysis of the text for flow in a rod for which c, Dt K and 

A though constant for each cross section, vary with x, and derive the equation 

for this case: 

4. If a long hollow cylindrical pipe has its inner and outer surfaces each kept 

at temperatures constant for the surface, though varying with the time, the 

heat will flow along the radii, and the temperature for any cylindrical surface, 

concentric with the outer surface of the pipe, will be constant. For a homo¬ 

geneous pipe, c, D and K are constant, while A — 2-krL, r being the radius and 

L the length of pipe considered. For this case derive the equation 

(a) 
1 d_ 
r dr 

either from first principles, or the result of problem 3. 

of flow across any concentric cylindrical section is 

(W 
m 
dt 

KZirrL^, 
dr 

Also show that the rate 

and hence, when the inner and outer surfaces have their temperatures fixed, 

so that the flow is steady, this quantity is constant. 

6. For a homogeneous spherical shell, whose outer and inner surfaces are 

each kept at a temperature constant for the surface, though varying with the 

time, we have radial flow. For this case derive the equation 

(a) r1 dr l dr J ’ 
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for the temperature, and 

(b) 
m 
dt 

K4irr2 
dU 
dr 1 

for the flow across any concentric spherical surface. 

6. A steam pipe 30 cm. in diameter is insulated by a layer of concrete 

(K — .0025) 10 cm. thick. If the outer surface is at 25° C., and the inner one 

at 155° G\, compute the heat loss in calories per day for 40 meters of pipe. 

Hint: Use problem 4 (b) to obtain an ordinary differential equation in U and r. 

7. A hollow lead sphere whose inner and outer diameters are 2 cm. and 8 cm., 

respectively is heated electrically by a resistance coil of 10 ohms placed inside. 

At what rate must heat be supplied to keep the inner surface at a temperature 

15° C. higher than that of the outside, if K is .0827 for lead? Recalling the 

law given in equation (4), p. 45, compute the e.m.f. necessary to maintain the 

given temperature difference. Hint: Use problem 5 (h) to obtain an ordinary 

differential equation in U and r. 

8. A wire of resistance .1 ohm per centimeter length is embedded along the 

axis of a cylindrical cement tube of radii .05 and 1.0 cm. respectively. An 

electric current of 5 amperes is found to keep a steady difference of temperature 

of 124° C. between the inner and outer surfaces of the tube. What is K for 

cement? See problems 4 (6), 6 and 7. 

9. A spherical shell for which K = .0025 of inner radius 24 cm. and outer 

radius 26 cm. has its inner surface 40° C. higher than its outer one. Compute 

the rate in calories per second at which heat must be supplied: (a) By using 

problem 5 (b) to obtain an ordinary differential equation in U and r. (b) By 

considering the loss as equal to that for a single wall equal in area to the mid¬ 

surface of the shell, a sphere of radius 25 cm. 

10. A long cylindrical shell of material for which K = .003 of inner radius 

50 cm. and outer radius 52 cm. has its inner surface 50° C. higher than its outer 

one. Compute the rate in calories per second, per meter length of the shell, 

(a) by using problem 4 (6) to obtain an ordinary differential equation and (6) by 

considering the loss as equal to that for a single wall equal in area to the mid- 

Burface of the shell, a cylinder of radius 51 cm. 

Fig. 30 

39. Steady, Irrotational Mo¬ 
tion of an Incompressible Fluid 
in Two Dimensions. Consider 
a layer of fluid, moving between 
two planes distant h (ft.) apart, 
in such a way that every particle 
moves in a plane parallel to the 
bounding planes, and the mo¬ 
tion is the same in each of 
these parallel planes. We may 

then restrict our attention to any one plane, and use x and y co¬ 
ordinates in this plane, as in Fig. 30. 
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We consider the motion to be caused by external forces, propor¬ 
tional to the mass considered, like the force of gravitation, and the 

internal pressure. Let the fluid have density D ^ 

pressure at any point on a surface perpendicular to the xy plane be 

p > and let the forces, per unit mass, have components X 

and Y • Thus X and Y are the components of the accelerar 

tion that would be caused by the external forces, for a unit mass. 

Let u and v (i) be the components of the velocity. These 

quantities D, p, X, F, u and v will in general all be functions of x, y 
(ft.) and t (sec.), the time. 

Now consider a small rectangle, with sides parallel to the axes 
of length Ax and Ay respectively. The volume of fluid on this 

rectangle is h Ax Ay, and its mass is — h Ax Ay. The external force 

XD 
on this mass in the x direction is —— h Ax Ay. The pressure on 

the face AB is ph Ay, where p is evaluated at a suitable point in the 
face, and similarly that on CD is —ph At/, where p is evaluated at 
a suitable point in that face. These are the only forces in the x 
direction, so that on expressing that mass times acceleration equals 
force, we have 

h Ax Ay = [”^5 h Ax At/1 
L g * dt JxV' L g JX", V" 

+ [ph ^2/]^ ~ [ph AjyJ 

In this equation, xf, yf and x", y" must be properly selected inter- 

mediate points, to give the correct average value of (z>^^ and 

(XD), which actually vary throughout the rectangle. If yf" and 
Ay 

yw are each taken as y + , the error will be of higher order 

than the terms written, and we shall use these values in obtaining 
the limiting relations. If we divide both sides of the equation just 

written by 1 , and then take the limit as Ax and Ay 
L g Jx, v 
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each approach zero, the result is: 

du _ „ _ g dp 
(It “ D dx 

The last term results from the fact that 

V (x + Aar, y + - p(x, y + 
lim -LL-1- 
dx-o A.r 

f) dpi 

dxi, u+ f. 
by equation (2), p. 115. 

In an entirely similar manner, we find the equation 

dv = F _ 9_§£' 
dt D dy 

(18) 

(19) 

In computing the time derivatives of the velocities in the left mem¬ 
bers of (18) and (19), we must compute u and v for a particular 
particle, and follow this particle in its motion. Since, in this mo¬ 
tion, the time rate of change of x and y are, respectively u and vf 
by definition, we have2 

du &u . du du 
It = dxU + &yV + ~dt ’ 
dv dv , dv , dv 
dt dx dy dt 

(20) 

A third equation involving our variables results from the conser¬ 
vation of matter. The rate at which fluid enters the face AB is 

[Duh Ay]x, v', and the rate at which fluid enters the face CD is 

[ — Duh Ay]x+*x, y"- Similar expressions hold for the other two 
faces. Thus the total rate for the rectangle is: 

- h Ax Ay 
\Du\x+&x, y" [Du\x, y’ , \Dv\x", y-f~Ay_ \Dv\x', 

Ax + J 
Ay 

This rate may also be measured from the change in density, as 

dD 7 a A 

lthAxAy- 

2 By (7) p. 118 extended to three variables, or problem 8 (d), p. 122, we have 

37 33 17 4- 17 4-Here z is a function of x> y and t, and the deriva- 
dt dx dt dy dt at 

tives and are computed on the same basis that made x and y functions of t, 

in computing ~, in this case the assumption that we move with the particle. 
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If we equate these two expressions for the rate at which fluid is 
entering the volume over the rectangle, divide by h Ax Ay, and let 
Ax and Ay approach zero we find: 

dD = _ (3 (Du) _ W 
dt dx dy } ^ 

where we have taken y' = y" - y + x‘ = x" = x + ^, which 

does not affect the limiting relation. 
If the relation between p and D were known, e.g., for a perfect 

gas, by Boyle’s law p = kD/ one of these quantities could be elimi¬ 
nated, and equations (18) and (19), simplified by (20), together 
with (21) would give three equations for the determination of the 
three functions p or D, u and v. 

Let us simplify the situation by considering an incompressible 
fluid, so that D is constant, in steady motion, so that none of the 
quantities depend on the time, and the partial time derivatives are 
all zero. We also assume that the external force field is conserva¬ 
tive, so that, by problem 14, p. 124, we may write 

^ dU Y=dU 
dx ’ Y dy * 

(22) 

Then, using (20) and (22), and omitting the t partial derivatives, 
we may write (18) and (19) in the form: 

du du __ dU g dp 
U dx V dy dx D dx 9 

dv dv __ dll g dp 
U dx V dy dy D dy 

(23) 

For this case, equation (21) takes the form: 

du dv _ 
dx + fry ~ U* 

(24) 

The quantity 
1 (dv du\ 
\di ty)’ 

(25) 

is called the rotation of the fluid.8 In the case of steady motion 
of an incompressible fluid under conservative forces, i.e., when equa- 

* See problem 3, p. 171 for the physical interpretation of this quantity, and 
problem 4, p. 171 for a proof of the statement which follows. 
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tions (23) and (24) hold, the rotation is constant along each stream 
line. The stream lines are the curves whose tangent direction at 
any point is the same as the velocity of the fluid at the point, and 
for steady motion they coincide with the paths of the individual 
particles. In consequence of this, if the rotation is constant along 
any curve crossing all the stream lines, it will be constant every¬ 
where in the region considered. In particular, if it is zero along 
any such curve, it will be zero everywhere, and the motion is said 
to be irrotational. In this case, we have 

dv __ du 
dx dy 1 

(26) 

so that, by problem 12, p. 123, 

u dx v dy 

is the exact differential of a function 0, and 

_ d(j> d(p 
dx 9 dy 

(27) 

This function 0 is called the velocity potential. It follows from 
equation (24) that the velocity potential 0 satisfies the equation 

dx2 dy2 (28) 

In problem 2, p. 147 it was shown that this equation may be satis¬ 
fied by taking for 0 the real (or imaginary) component of any analy¬ 
tic function of the complex variable z = x + iy. 

EXERCISES XXVI 

1. Show that, when the motion is irrotational, so that (26) holds, equations 
(23) are equivalent to: 

d fu2 + v2 gp 
dx\ 2 ^ D 
d /u2 + v2 gp 
dy\ 2 + D 

- f/) = 0, 

- t/) - 0, 

and from these deduce the integral 

tt2 + , QV _ rj 
2 ' D U 

c. 

2. If 4>(x, y) is the velocity potential, satisfying equations (27), show that 
the curves y) * constant intersect the stream lines at right angles. From 
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this fact, and the discussion of section 9, show that, if the analytic function 

w(z) (f>(x, y) + ?/), the curves ^(x, y) = constant are the stream lines 
for the motion. 

3. Consider the rectangle with sides Ax and Ay of Fig. 31. The co-ordinates 
of its vertices A, D, C, B are, respectively: 

x, i/; x -f Ax, ?/; x + Ax, y 4* Ay; x, y -f At/. 

After an interval A£, its vertices are at the points whose co-ordinates are 

x -f m A£, 2/ -f v At; x 4- Ax + (u + &xu)At, y + (v + Axv)At; 

x + Ax + (w + Axu + Ayu)Al, y 4~ Ay 4~ (v 4- A*?; -f- Ayv)At; 

i + + Ayw)Ah 2/ 4- At/ 4- (a + Ay*;) A*. 

Find the angle between the old and new positions of the sides AD and AB, and 

the quotient of these angles by At. Show that the limiting values, or angular 

velocities of these sides are, respectively, ™ and — ~ , so that the average 

, ., . 1 /dv du\ 
of these is == ( --r- I • 

2 \dx dyj 
4. We may eliminate p from equations (23) by differentiating the first with 

respect to y, the second with respect to x, and subtracting. Show that, in 
view of (24) and (25), the resulting relation may be written 

, du> _ 

di + v Sy ~ 

Since, as in (20), when we move along a stream line, 

dw 
dt 

dw do) 

= diu + Wjv’ 

with no partial derivative with respect to the time since we have steady mo¬ 

tion, the equation just written expresses the fact that w does not change for 

motion along a stream line, i.e., is constant. 
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6. Show that equations (23) and (24) may be satisfied by taking u =* — ay, 
Da2 

v = ax, p = —— (a:2 + y2), if U = 0. In this case the velocities are like those 
Zg 

of a rigid body rotating with angular velocity a. Calculate the rotation, and 
show that it is equal to a at all points. 

6. When there is no external force acting, we may take U equal to zero, and 
the integral of problem 1 is 

a2 -f Vs , gp _ 

2 + D 

Show that, if w(z) = w{x + iy) — 4>{x, y) 4* h£(z, y) as in problem 2, this 

integral may be written 
D dw 2 cD 

V = - 
2 g dz 9 ' 

7. If the function w(z) of problem 6 is a log* z, and the pressure is zero at 

infinity, find the pressure as a function of x and y. 

8. Compute the pressure when the function of problem 6 is (a) w — zl/2, 

(b) w — zV3, (c) w — z + ez, (d) w — z + l/«, (e) w = z -f 1/z -f i log* z. 

For the type of fluid motion in each case, compare problems 1, 2, 4, 5, 6, p. 38. 

40. Vibration Problems. Consider a tightly stretched string, 
vibrating in a horizontal plane.4 Let its weight per unit of length 

be , and let it be subjected to a tension, T (lbs.). Let 

x (ft.) be the co-ordinate along the equilibrium position of the 
string, the x-axis in Fig. 32, and let y (ft.) be the distance from a 

Fia. 32 

point on the string to its corresponding equilibrium position. As 
we are only considering small vibrations, we may neglect the mo¬ 
tion parallel to the x-axis, caused by the new position not being a 
straight line, and consider the mass of the segment of the string 

AB as equal to that of CD, namely ~ Ax. Thus, for the segment, 

the product of mass times acceleration parallel to the y-axis is: 

g it- 

4 The plane need not be horizontal, if the tension is so great compared with 
the weight that the effect of gravity is negligible. 
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The forces on the segment are due to the tension at the ends. 
These are along the tangent to the curve giving the position of the 

dy 
string, whose inclination to the x-axis has a tangent As this 

inclination is small, we may neglect the difference between the sine 
dy 

and the tangent, and regard the sine as —■. Then the y compo- 
ox 

nents of tension at A and B are, respectively, 

and T 
dy 
dx i+Ax 

so that the resultant force parallel to the y-axis is: 

T (dy\ _ dy I \ 
\dx Ijc+Az dx |x) 

(30) 

Since the y components of force and of mass times acceleration 
are equal, we may equate (29) and (30). If we divide through by 
Axy and take the limit as Ax approaches zero, x + Ax, and the inter¬ 
mediate point x' will both approach x, and we have in the limit: 

D d^y _ j, <Py 
g dt2 dx2 9 

(31) 

(dy\2 
This is the equation for a vibrating string, when (— 1 is small 

compared with unity, since our various approximations amount 

to a replacement of the factor y/l + , 

slope angle, by unity in certain places. 

the cosine of the 

EXERCISES XXVII 

1. Show that the general solution of equation (31) may be written 

!/= / (* + y^) +17 (* - y/rr')’ 
and interpret this as two wave motions, travelling in opposite directions, with 

velocity 

2. When the string is fixed at both ends, the fundamental vibration is given 

by the solution 
• irx . Tg tvt 
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where a (ft.) is the length of the string. Verify that this is a solution of the 

equation (31). Show that the frequency is “ s/9 , so that the pitch of the 

fundamental note for the string of a musical instrument is proportional to the 

square root of the tension, and inversely as the length and the square root of 

the density. 

3. Show that, if the density and tension vary with the position along the 

string, the equation is 

D(x) dHj 
-!!>>£]■ g dp 

4. Consider a vibrating, stretched membrane such as a drumhead, sub¬ 

ject to a tension T m assumed to be the same in all directions, and at 

all points of the membrane. Let D m be the weight per unit area. By 

considering the forces and accelerations on a small rectangle of the membrane, 

parallel to the 2-axis, drawn perpendicular to the equilibrium position of the 

membrane, deduce the equation: 

2f. 
\d^2 d?y2/ g dt2 

6. When a long, elastic rod is vibrating longitudinally6 we have to deal with 

6 An entirely different type of equation results from transverse vibrations. 

d^ij 
Here, for equilibrium under small deflections, the equation is El ~ - Mt 

where E m is the modulus of elasticity in force per unit area per percentage 

extension, I (ft.4) is the moment of inertia of the area of cross section about 

a horizontal transverse axis through the center of gravity, and M is the bending 

moment about a horizontal transverse axis in the* section x due to the load 

beyond x. When the load per unit length is F fir). 
M = JT(m x) F(u) duy 

dM 
dx 

— j* F(u) du, 
dm 
dx2 

F(x), 

(Jiy 
so that the equation in terms of the load is El — F(x). For small vibra¬ 

tions, the effect of angular acceleration is negligible, and the equation is ob¬ 

tained from the static one by deducting from the load per unit length that part 

which overcomes mass times acceleration per unit length, or —■, where 

(lbs.\ ^ 
) is weight per unit volume, and A (ft.2) is area of cross section. 

Thus the equation is 

El 
d*y 
dx4 

F(x) _ M *v 
( > g dP ' 

or the corresponding equation without the term F(x), for deviations from the 

equilibrium position. 
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the displacement u (ft.) of an element originally at distance x (ft.) from one end 

of the rod. If D am is the weight per unit volume, A (ft.2) is the area of 

cross section of the rod, the mass times acceleration for a small segment is 

DA d*u 
-Ax -x— • The forces on the segment are the elastic forces on the cross 

g ot2 X' 

sections which bound it. But, the force on any cross section is EA ~ , 
ox x 

where E am is the modulus of elasticity in force per unit area per per- 

3u 
centage of extension, and gj is the percentage extension at the point. This 

is the force in the positive x direction on the part to the left of the section 

since the derivative is positive when the rod is under tension. By equating 

the forces to the mass times the acceleration, and taking the limit, deduce the 

equation 
p d2u __ 1) (Pu 

dx* g dt2 

41. Heat Flow in Space, Curvilinear Co-ordinates. For prob¬ 
lems in three space, it is often desirable to introduce other types of 
co-ordinates than the Cartesian co-ordinates y, z based on three 
sets of parallel planes. We may use any three systems of surfaces 

a(xf yy z) = Ci, 0(j, y, z) = c2, y(x, yf z) = c3, (32) 

such that, in the part of space in which we are interested, just one 
surface of each type passes through each point, and three surfaces, 
one of each type, intersect in just one point in the part of space in 
question. 

In the usual applications, we take a triply orthogonal system of 
surfaces, that is, surfaces such than any surface of one of the families 
cuts those surfaces of the other two families which intersect it at 
right angles. In that case, if several surfaces are drawn for each 
family corresponding to values of the constants which differ by 
small amounts, the portion of space under consideration will be 
divided into a network of small “ curvilinear cubes/’ similar to the 
“ curvilinear square ” networks for the plane found in section 9. 

A typical such “ curvilinear cube ” is shown in Fig. 33. It is 
bounded by the surfaces ci = a, a + Aa, c2 = 0, 0 + A0, c3 = 7, 

7 + A7, so that the curvilinear co-ordinates of A are (a, 0, 7) 

and of E are (a + Aa, 0 + A0, 7 + A7). To the first order the 
edges of this cube will be hi Aa, h2 A0 and h A7 where hi(a, y), 
fh(a, p, y), ht(a, P, y) are three functions of position. These funo- 
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tions, which give the relation between differentials of distance, and 
differentials of the curvilinear co-ordinates could be changed with¬ 
out changing the three families of surfaces, by replacing the func¬ 

tions of (32) by constants times 
these functions, or in fact replacing 
each by any function of itself. 

Let us now apply the argument 
of section 38 to derive the equation 
governing the flow of heat in three 
dimensions, when we use orthog¬ 
onal, curvilinear co-ordinates. We 
assume that the temperature £7(a, 
ft, y, t) is a function of the three co¬ 
ordinates of position and of the 
time, and shall compute the rate of 
flow of heat into the cube in terms 

of the temperature. We may compute the flow into the cube 
through the face ACGD, by equation (10), and will only make 
an error of higher order than the terms written, if we regard 
the area of the face as the same as that of a rectangle with sides 
h2 Aft and h3 Ay, and calculate the rate of change of temperature, 

AB Ay 
as well as h2 and h3 for the values a, ft' = 13 + , 7' = y + • 

Thus the rate is 

-K(hh3ApAy~^) 
\ h\ da Ja> p't y' 

™ . 1 #U . - AU 
The term r~ is the limit of -L- — 

hi da hi Aa 
or the rate of change of 

temperature with respect to distance perpendicular to the surface, 
required in the equation (10). Similarly, the rate of flow out 
through the opposite face BFEH is: 

-K(hA 3 A0 Ay ~ 
hi da Ja+y 

to within a term of higher order than that written. Thus the rate 
of gain of heat due to these two faces may be written: 

K A a Aft Ay 

Vh2hz dU“ 
L hi da _ a+Aa, y* 

~fhh3 dU- 
. hi da _ y' 

Aa 
(33) 
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where we have inserted the factor Aa in both numerator and de¬ 
nominator. 

In a similar manner, we may find two analogous expressions for 
the rate of gain of heat due to the other two pairs of opposite faces, 
namely 

K A a A/3 A7 

and 

K A a A/3 Ay 

(34) 

(35) 

But we may also measure the rate of gain of heat for the cube 
by (12). Since the volume is, to within a term of higher order than 
that written, equivalent to that of a rectangular parallelopiped 

with edges hx A a, A2 A/3 and A3 A7, we have for the rate of gain, by (12) 

cD • (36) 
L dt J«" ?" 

If, now, we equate (36) to the sum of (33), (34) and (35), divide 
through by K A a A/3 Ay, and take the limit as Aa, A/3, and A7 all 
approach zero, we find: 

cD 
K 

A1A2A3 

dU 
dt 

d (A2A3 dU\ d /hji\ dU\ j9_ /AiA2 dU\ , . 
<9a\ hi da) d(3 \ h2 <9/3 / #7 \ A3 dy) 

If we divide through by AiA2A3, and replace by A2, the equa¬ 

tion takes the form: 

i,2 dU  1 f d /A2A3 dU\ d /fhhi 3U\ d /AiA2 dt/\1 
dt h\h2hz Ida \ hi da) d/3 \ A2 dfi ) dy \ A3 dy)) 

(38) 

In order to apply this equation to any particular system, we 
must know the functions hi, A2, A3 for the particular system of co¬ 
ordinates used. They can usually be seen from geometrical con¬ 
siderations in the simpler cases, and may always be found analyti¬ 
cally from the formula for arc length. For, in orthogonal curvili¬ 
near co-ordinates, the expression for the differential of arc length 

takes the form 

ds2 = A12 do? + A22 djS2 + A32 dy2. (39) 
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This may be verified from Fig. 33, since the distance As is that 
between the point A with co-ordinates a, fi, y, and the point E, 
with co-ordinates a + Aa, fi + Aft, y + Ay, which is to the order 
considered the diagonal of a rectangular parallelopiped with edges 
hi Aa, h?, Aft, hz Ay. 

For ordinary rectangular co-ordinates, we have hi = 1, h2 — 1, 
hz = 1, either from a glance at Fig. 34, or from the relation 

ds2 — dx2 + dy2 + dz2. (40) 

Thus, for this case, the equation (38) reduces to: 

dU _ d2U d2U d2U 
h dt dx2 + dy2 dz2 * 

(41) 

Cylindrical co-ordinates in space are formed by using plane polar 
co-ordinates, r, 6 in place of x and y, and retaining z. The arc 

element is here 

ds2 = dr2 + r2 dd2 + dz2, (42) 

and either from this or Fig. 35 we have hx = 1, h2 = r, h3 
Thus the equation (38) becomes: 

dU 1 d ( dU\ 1 a2c/ d2U 
dt ~ r dr\ W) + r2 dd2 + dz2 

dU _ d*U , 1 dU 1 d2U d2U 
dt r dr r2 dd2 + dz2 

- 1. 

(43) 

(44) 

A system of spherical co-ordinates (Fig. 36) is formed by a radial 
co-ordinate r giving the distance from the origin, an angular co¬ 
ordinate of longitude 6, as for cylindrical co-ordinates, and a co¬ 
ordinate of co-latitude (i.e. measured down from the pole) <j>. The 
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surfaces r = ch 6 = c2, 0 = c3 are accordingly spheres, planes and 
cones respectively. The arc element is here 

ds2 = dr2 + r2 sin2 0 dd2 + r2 d02, (45) 

so that for spherical co-ordinates we have hi — 1, h*> = r sin 0, 
hz = r. The equation (38), for spherical co-ordinates, is accord¬ 
ingly: 

h2 
dU 
dt 

= L±(r2*E\ 
r2 dr \ dr J + d2U 1 

r2 sin2 0 dd2 r2 sin 0 d0 
(sin^H),(46) 

or 

h,dU _d2U 2 d[7 1 d2(7 1 d2[7 cot 0 at/ 
* d* dr2 r dr r2 sin2 0 dt?2 r2 d02 + r2 d0 ' (47' 

EXERCISES XXVin 

1. Show analytically that if x = r cos y = r sin 0, 2 = z, the formula for 

ds2 given in (40) becomes that of (42). 

2. Show that if x = r sin <f> cos 0, y = r sin 0 sin 0, z — r cos 0, then equa¬ 

tion (45) is a consequence of (40). 

3. By regarding one dimensional flow of heat as a special case of three dimen¬ 

sional flow, with the temperature unchanged by changes in two of the co¬ 

ordinates, 

(a) Deduce equation (15) from equation (41), 

(b) Deduce equation (a), problem 4 p. 165 from equation (43), 

(c) Deduce equation (a), problem 5, p. 165 from equation (46). 

4. Extend the argument used to obtain (21) for the two dimensional flow 

of a liquid, to establish the 11 equation of continuity,” 

d(Lhi) , 8(Dv) d(Dw) dD 
dx + by + dz + dt ' 
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for three dimensional flow, where u, v, w are the components of velocity parallel 
to xy y, z respectively. 

5. The motion of a fluid in three dimensions is irrotational when a function 
<f> can be found such that 

d<f> 
dx 

= u, 
d<£ d<f> 
dy = f;’ aF 

This function <t> is called the velocity potential. Show that, for the irrota- 
tional motion of an incompressible fluid (D constant) the velocity potential 
satisfies Laplace’s equation: 

ay ay ay 
dx2 dy2 dz2 

6. Since the left member of the condition of problem 5 is essentially the right 
member of (41) of the text, the form for cylindrical or spherical co-ordinates 

follows at once from equations (43) and (46). Use this fact to show that 
__ ^ 

*-*ln <✓(*-*)»+ (»-*)*, and + = 

are each solutions of Laplace’s equation: 

d2<f> , a^0 , d20 _ 
dx2 dy2 dz2 * 

except for those values of x which make them infinite. Take the origin of the 

spherical co-ordinates at Xo, yo, Zq. 

7. A particle of unit mass at (x, z) is attracted to a particle of mass m at 
Xqj 2/0, «o by a gravitational force with components: 

_ km(x0 - x) v _ k?n(y0 - y) ? _ km(zo - z) 
R* R* R* 

where 

R = V(x - x0)2 -f (y - z/o)2 -f (2 - 20)2, 

in accordance with the inverse square law. Show that these components may 
be derived from a potential, as in problem 14, p. 124, 

Y _dU v dU „ _dU 
~ dx ’ dyf 6 ~ dz' 

if 

The result of problem 6 shows that this gravitational potential for a single 
particle satisfies Laplace’s equation except at the particle. By a limiting argu¬ 
ment which starts with this fact, it is shown that the gravitational potential 
giving rise to the forces of attraction for any distribution of matter satisfy 
Laplace’s equation at points where there is no matter. Owing to the fact that 
the inverse square law holds for the attraction and repulsions of electric charges 
and magnetic poles, a similar result holds for the potentials for the forces in an 
electrostatic, or magnetostatic field. 
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8. Let *i, 52,5s be the components of electric current in a three dimensional 
medium, and p the charge density at any point. Using the fact that the cur¬ 
rent may be interpreted as density of charge times velocity, and that charge is 
conserved, deduce the equation; 

051 , 052 . 0s3 dp 



CHAPTER VI 

SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

SATISFYING GIVEN BOUNDARY VALUES 

In the preceding chapter we have discussed the partial differ¬ 

ential equations which arise in certain physical situations. Here 

we shall consider some specific problems in which, in addition to 
the partial differential equation, there are enough boundary values 

or initial conditions to completely determine the solution. 

42. The Steady-state Temperature of a Plate, Two Dimen¬ 

sional Potential Functions. Suppose a thin plane plate of uniform 

thickness and of the same material throughout has its faces insu¬ 

lated, and its edges kept at prescribed temperatures. These may 

differ from point to point, but do not change with the time. It is 

clear from physical considerations that the temperatures at the 

interior points of the plate will approach determinate values, and 

if the temperatures had these values to begin with, they would be 

maintained under the conditions stated. 

If these steady-state temperatures are given by a function 

U(x, y), this function must satisfy equation (17), p. 164, or 

d'U d*U 
dx2 + dy* U’ (1) 

since the function does not contain z. Thus from a mathematical 

point of view, the problem amounts to finding a function U(x, y) 

which satisfies (1) inside the region of the xy plane corresponding 

to the plate, and takes pre-assigned values on the boundary. 

The problem of finding a potential function in a two dimensional 

region which takes on given boundary values has the same mathe¬ 

matical formulation, whether we are dealing with the potential for 

the forces in an electrostatic field, the potential for the forces in a 

magnetostatic field, the potential for the forces in a gravitational 

field, or the potential for the velocities in irrotational, steady fluid 

motion.1 Consequently, if the mathematical problem is solved 

1 Compare problem 7, p. 180 and equation (28), p. 170. 

182 
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analytically for a particular region and a given set of boundary 
values, the solution is applicable to a physical problem of each type. 
Also, if the value of the solution at a particular point were deter¬ 
mined experimentally for any one of these physical problems, it 
would lead to an approximate numerical value for each of the 
others. 

43. The Potential Function for a Long Rectangle. Suppose the 
region is a rectangle, A BCD, with the sides AD and BC so long 
compared with A B and CD that we may consider them infinite 
without sensibly disturbing the 
solution of the problem for the 
points in the actual finite rectangle. 
Let the prescribed boundary values 
be 0° for AD, DC and BC and 50° 
along AB, and assume AB = 20 cm. 

The method used to solve this 
problem does not depend on the 
temperat ure along A B being con¬ 
stant, but would apply if this 
temperature were any function of 
the distance along AB. The suc¬ 
cess of the method does depend on 
the given temperatures being zero 
on the other three sides of the 

Kia. 37 

rectangle. The modification of the method to give the solution 
for a rectangle, not necessarily elongated, with the values on all 
four sides arbitrary functions of the distances, is indicated in 
problem 4, p. 187. 

The boundary values given do not join smoothly together, since 
if we approach A along DA, the values are zero, while if we ap¬ 
proach A along BA they are 50. There are two reasons for con¬ 
sidering values of this type. In the first place, we may regard the 
given boundary conditions as a simple approximation to the prob¬ 
lem in which the temperatures along AB are 50° C. with the excep¬ 
tions of two small portions at the ends, say 10~'6 cm. each, and 
change continuously from 50 to 0 in each of these small portions. 
A second justification for considering discontinuous boundary 
conditions is the type of auxiliary problems which arise when the 
method of problem 4, p. 187 is applied. This reduces the problem 
for a rectangle with temperatures given arbitrarily, and different 
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from zero on all four sides to that of four problems, in each of which 
the temperature is zero on three of the sides, and the given values 
on the fourth side. Thus, even when the original problem has 
boundary values which join up smoothly, these auxiliary problems 
may have values which do not join up smoothly. 

We take AB and AD as axes of x and y respectively, as indi¬ 
cated in Fig. 37. Then the conditions for the boundary may be 
written: 

U(0, y) - 0; U(20, y) = 0; U(x, <x>) = 0; U(z, 0) - 50. (2) 

Since the problem has only one solution, if we can find, by guess¬ 
work or otherwise, an expression satisfying equation (1), and the 
conditions (2), it will necessarily be the solution required. We 
build up such an expression by noting in the first place that equa¬ 
tion (1) is linear, so that the sum of any number of particular 
solutions of this equation, each multiplied by any constant, will 
also be a solution of the equation. Again, as the first three of the 
conditions (2) require the function to be zero, they will also hold 
for the combination of solutions just mentioned, if they hold for the 
separate solutions, since a sum of zeros, each multiplied by a con¬ 
stant is still zero. Thus we begin by finding terms satisfying the 
equation (1), and also the first three conditions (2). Finally, we 
shall satisfy the last condition by a suitable infinite series of such 
terms. 

As a basis for forming particular solutions of (1), we recall the 
solutions of the form X(x) • Y(y) of equation (62), p. 148 given 
in (67) p. 150. They are 

U = (ci#* + C2e~ax)(ci sin ay + c8 cos ay), 
U = (cz sin bx + c4 cos bx)(c9eby + Ci0e~by), 
U = (cbx + cfl)(ci# + cn), (3) 

with the present notation. Since all of these satisfy (1), we next 
try to specialize the constants in one of the three forms in such a 
way that the first three conditions of (2) will be met. Since the 
third condition requires U to be zero when y is infinite, regardless 
of the value of x, we are led to try the second expression, with b 

positive and c9 = 0. The first condition that U be zero when x 
is zero regardless of the value of y is met by taking c4 = 0. Thus 
the expression reduces to 

c3Cio sin bxe~by, 
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and the second condition, that U be zero when x = 20, regardless 
of the value of y may be met by taking b properly, namely so that 

sin 20 b *= 0. 

This requires that 

20 b = nw, b = , 

where n is an integer, and positive since b is positive* We now 
write A„ for the value of c3c10 selected to go with a particular n, 
and have 

mry 
—*  hlir'T, 

Ane 20 sin « = 1, 2, 3, • • • (4) 

as a set of terms, each of which satisfies the equation (1) and the 
first three conditions (2). 

The same will be true of a sum, or infinite series2 of such terms, 
and to solve our problem we have merely to determine the coeffi¬ 
cients of a series: 

00 -22 nirX 
U(x, 2/) = D A„e 20 sin ^, (5) 

71-1 M 

so that the fourth condition (2) will be satisfied. This requires 
that 

50 = U(x, 0) = £ An sin ~ • (6) 
71= 1 *0 

Accordingly the A„ are the coefficients of the expansion of 50 in a 
Fourier sine series of period 40, i.e., the Bn of section 19. From 
equation (44), p. 77 or problem 2, p. 78 we find that 

An , n odd and An = 0, n even, 

so that 

T1, \ 200^, 1 - (-1)" 
U(x, y) = — 5:-^-e 20 

7r n= 1 
sin 

nirx 
2CT5 (7) 

2 On p. 278 it is proved that the series for U(x, y) of (5) with the An Fourier 

constants for any piecewise smooth function, satisfies the differential equation 

(1) for all values of x, y, corresponding to points inside the rectangle, and takes 

on the correct boundary values at all points where these values are continuous. 
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or, written out, 

U(x, y) 

+ le 

5iry 
20 

_?V _r 1 3ir y 
20 oj — p 20 

Mn20 + 3 

. 5-7TX . \ 

8111 ~20 + ■ ■ 7 • 

sin 
3 ttx 

~20 

This gives the solution of the problem. The series may be used 
for practical computation when y is not too small compared with 
20, since the first few terms will then give a good approximation. 
For example, when x = 10, y = 10, we find: 

w(10, 10) = 
e - 

3 

Sir 
2 

200 
(.2079 - .0030 + .0001 - • • •) 

= 13.1. 

We note that if the given temperature for the side AB had been 
a less simple function of x than the constant value 50 for this case, 
its Fourier series could have been obtained by the methods de¬ 
scribed in section 19. If it were given as one or more terms of a 
Fourier sine series of the appropriate period, we could solve the 
problem directly. For example, if we wished to have U(x, 0) = 

7TX TTX 
100 sin 2Q+50 sin in place of the last condition (2), the other 

conditions remaining unchanged, we should again use (5), and 
have: 

100 sin + 50 sin = U(x, 0) = £ An sin T~ , 

so that all the An are zero except A i and A&, and these are 100 and 
50, respectively. The solution for this case is accordingly: 

iry 5iry r 

U(x, y) = 100 e 20 sin ^ + 50 e 20 sin • (8) 

EXERCISES XXIX 

1. A long rectangular plate has its surfaces insulated, and the two long sides, 

as well as one of the short sides maintained at 0° C. Find an expression 

U{xy y) for the temperature in the steady state if 

(a) The other short side, y = 0, is kept at 40° C. and is 30 cm. long; 

(b) U(xf 0) = &c, and the short side is 6 cm. long; 
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(c) U(xt 0) = 2x — 4, and the short side is 4 cm. long; 

(d) U(x, 0) = 10, 0 < x < 4, U(x, 0) =0, 4 < x < 8 and the short side 

is 8 cm. long; 

(e) U(x, 0) = 2 sin 7rx/10 and the short side is 10 cm. long; 

(f) U(x> 0) = 5 sin 7rx/3 4* 3 sin ttx/£ and the short side is 12 cm. long. 

2. A long rectangular plate of width a cm. with insulated surfaces has its 

temperature 0° C. on both of the long sides and one of the short sides, so that 

U{0, y) = 0, U(a, y) = 0, U(x, oo) = 0. Show that 

(a) If U(xf 0) = c, the steady-state temperature is 

U(x, y) = 
4cy 1 - (- 1)» - 

» (i c 
7r n= l 2a 

mry 

a Sill 
ri7rj: 

a 

(6) If f7(a:, 0) = px, the steady-state temperature is 

U(x, y) 2ap v (~ Dn 
=-x-* --e a 

3. A rectangular plate is bounded by the lines x = 0, x — a, y = 0, y = a'. 
Its surfaces are insulated, and the temperatures along the edges are given by 

U(0, y) = 0, U(a, y) = 0, UU, a') = 0, U(x, 0) = 100° C. 

(a) By suitably restricting the constants in the second expression in (3) of 

the text, deduce the particular solution which satisfies the first three conditions: 

JlirvY nir{y~a’)~\ 
An Sill —- e a — c a , 

or 

O A ■ ri7rX ■ l 2 An sin-si till 
a 

niciy — a') 
a 

(b) Using a series of such solutions, show that 

[ 1 — (— 1 )n] sin- sinh - 

U(x, y) 
100 z 

7T n = l 2n sinh - 

4. The method used in problem 3 enables us to find a potential function 

which is zero on three sides of a rectangle, and equals any given function of the 

distance on the fourth side. Show that the potential function whose boundary 

values are 

U(09y) =/i(2/), U(a,y)=My), U{x, 0) = /,(*), U(x, a') = /4(x), 

may be found by adding together four potential functions, 

U(:r, y) = Ufa y) + Ufa y) + Ufa y) + Ufa, y), 

given by the respective boundary conditions: 

Ufa y) = My), Ui(a, y) = 0, Ufa, 0) = 0, 

UA0, y) = 0, Ufa, y) = My), Ufa, 0) = 0, 

IM0, y) = 0, 17,(a, y) * 0, f/8(x, 0) = /,(*), 

U4(0, y) = 0, Ufa, y) = 0, U4(z, 0) = 0, 

Ui(x, a') = 0; 

t/2(z, a') = 0; 

U3(x, a') = 0; 

Ufa a') -/,(*). 
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6. A circular plate of radius 10 cm. has its surfaces insulated, and one half 
of its circumference kept at 0° C. and the other half at 100° C. Using the sug¬ 
gestions which follow, find the temperature U(r, 9) as a function of the polar 
co-ordinates r, 9 in the steady state. Note that by (44) p. 178, the differential 
equation is 

&U 1. dU 11 &U 
dr2 r dr r2 dO2 * 

one of whose particular solutions was found in problem 5, p. 154 to be 
(cir® + c2r~a) (C7 sin aJ9 -f c8 cos aO). To avoid infinite values at the origin, we 
take Ci — 0, and a positive. The fact that 0 is an angular co-ordinate only 
determined to within multiples of 2 leads to the condition U(r, 6 + 2ir) = 
U(r, 6), which is satisfied b}' taking a = n, an integer. Thus the series 
assumed for the solution is 

U(r, 0) — A + A ir cos 9 -f Bir sin 6 -j- A2r2 cos 29 -f- B2r2 sin 26 -f- • • 

6. Show' that when the values of a potential function on the boundary of a 
circle of radius It are given by 

u(R,e) 
the steady-state temperature at an interior point is found by the method out¬ 
lined in the preceding problem to be 

U(r9 6) - ~ Q + 2* (j^ cos n(9 - t) J f(t) dt. 

44. Variable Flow of Heat in a Rod with ends kept at Temper¬ 
ature Zero. The temperatures in a homogeneous rod, in which 
heat flows parallel to the axis of the rod, satisfy the equation 

d2U M dU 
w=hdi’ (9) 

as was shown in section 38. If we consider a rod of finite length, 
whose sides are insulated, with a given initial distribution of tem¬ 
peratures, and suddenly change the temperature of the end points 
to 0° C., and keep them at this temperature,3 the temperature of 
any section of the rod will be determined by these conditions for 
all later times. 

For example, let the rod be 10 cm. long, of material for which 
h2 = .6, and assume that the temperature was initially 2x, where 
x (cm.) is measured from one end of the rod. Then we have the 
initial condition: 

U{x} 0) = 2xf (10) 

3 The modification for other fixed temperatures is indicated in the next sec¬ 
tion, and in problem 11, p. 196 a method applicable to variable end tempera¬ 
tures is sketched. 
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and since the ends are kept at temperature zero, we have the 
boundary conditions: 

[7(0, t) = 0, £7(10, t) = 0. (11) 

The physical interpretation indicates that there is just one func¬ 
tion determined by the conditions (10), (11) and the differential 
equation (9). Consequently, if we can build up by tentative 
means an expression which satisfies all these conditions, it will be 
the desired solution. 

We begin by recalling the particular solutions of (9) found in 
problem 1, p. 154, namely 

aH 

U = (cieax + , 
_ — 

U — (c3 sin bx + C4 cos bx)e h2 , 

U = cbx + c6. (12) 

The conditions (11) may be met by taking the second expression, 
with c4 = 0, and such a value of b that 

sin 105 = 0. 

It follows from this that: 

105 = 727T, 5 = j~ , 

where n is an integer, which may be considered to be positive.4 
Thus, on replacing 5 by its value just found, and writing A„ in 
place of c3 for the coefficient for a particular choice of n, we have: 

An sin^pe 100A‘, » = 1,2,3, • • • (13) 

as a set of terms, each of which satisfies the differential equation 
(9), as well as the conditions (11). The same will be true of a sum 
or infinite series6 of such terms and hence we have merely to deter¬ 
mine the coefficients of such an infinite series, 

00 _ n%r*L 

V(x,t) = XAnSinf « (14) 
n« 1 1U 

4 Nothing is gained by taking both positive and negative values, since 

An sm -Jg- -f A-n sin —= (An - A_n) sin * 

8 Compare footnote 2 on p. 185, and p. 278. 
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to satisfy the remaining condition, (10). That is: 

2x = U(x, 0) = f) sin ~ , 
n~l iU 

and the An are the coefficients of the expansion of 2x in a Fourier 
sine series of period 20. From the result of problem 1, p. 77 or 
problem 2, p. 78, the value of An is found to be 

An 
(-])"+! 40 

mr 

Thus the solution of the problem is obtained by putting these 
values in (14), and putting h2 = .6. The result is 

T7t 40- (-l)”*1 
U (x, t) = — 2* --sin 

7T n—\ H 

mrx - 
Toe 

60 

or, written out 

(15) 

40 [sin .hex - g sin ,2rx - ~ sin .3*x - . .} 
ir\ 1 6 2 C + 3 e j* 

This series converges very rapidly, owing to the exponential terms, 
and except for small values of t (less than 4 seconds) the first two 
terms give a good numerical approximation to the value of U(xf t). 

45. Variable Flow of Heat in a Rod with ends kept at any Con¬ 
stant Temperatures. If the ends of the rod considered in the pre¬ 
ceding section were suddenly changed to temperatures different 
from zero, and kept at these temperatures, the method previously 
used would not be directly applicable, since a particular solution 
with the correct non-zero values at the ends would no longer have 
these values if it were multiplied by a constant, or added to a 
second such solution. However, the procedure may be modified 
to suit the present situation, as we shall now show. 

As a specific example, let us consider a rod 4 cm. in length, of 
material for which h2 = 5. Let one end of the rod be kept at 20° C., 
and the other at 60° C. until temperatures indistinguishable from 
those of the steady state are reached. At some time thereafter, let 
us suddenly lower the temperature of the cooler end to 10°, and raise 
that of the warmer end to 70°, and from then on maintain these 
temperatures. Thus the boundary conditions are here: 

[7(0, t) = 10, [7(4, t) = 70, (16) 
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and the initial condition is 

U(z, 0) = lOx + 20, (17) 

the steady-state temperature for the end values 20 and 60. It 
may be found by recalling from the discussion of section 38 that, 
in the steady state, the temperature gradient is constant, so that 

U2 ~ Ui = U - 20 = 60 - 20 
X2 X\ x — 0 4 — O’ ^ 

or 

U — 20 = lOx, U = lOx + 20. 

Thus we have to satisfy the differential equation (9), subject to 
the conditions (16) and (17). To transform this problem into one 
of the type treated in the preceding section, we put 

U = Us+ Utj (19) 

where Us is a solution of the differential equation, involving x 
only, satisfying the given boundary conditions (16). We may put 
Us = ax + b, since this satisfies the differential equation, being 
essentially the third expression in (12), and determine the constants 
to satisfy the end conditions, (16). These give: 

a . 0 + b = 10, a • 4 + b = 70, 

from which 

so that6 

b = 10, 

Us = 15z + 10. (20) 

Since, from (19), 

UT=U -US=U -\5x- 10, (21) 

it is the difference of two solutions of the differential equation (9), 
which is linear in U9 and so is again a solution. For the boundary 

6 Physically, the process amounts to determining the steady-state temper¬ 

atures for the permanent end temperatures, Us, and subtracting it off to leave 

Ut, the transient part of the solution. Thus, analogously to (18), we might 

have determined Us from: 
Us - 10 

x - 0 

70 - 10 

4 -0 ’ 
Us — 10 = 15s. 
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conditions/ we have from (21) and (16): 

UT(0, t) = {7(0, 0 - 10 = 10 - 10 = 0, 
UT(4,0 = {7(4,0 - 15 X 4 - 10 * 70 - 70 ■ 0. (22) 

For the initial condition, we have from (21) and (17): 

UT(z, 0) = U(x, 0) - 15x - 10 = lOx + 20 - 15a: - 10 
= -5x + 10. (23) 

Hence the problem of determining the function TJt{x, 0 which 
satisfies the equation (9), the boundary conditions (22), and the 
initial conditions (23) is of exactly the same type as that solved in 
the preceding section, and we may put 

00 tlbrH 

UT(x,t) = £ AnS(24) 

which satisfies the differential equation (9), and the conditions 
(22), and determine the coefficients to satisfy the condition (23). 
This last condition requires that 

— 5a; + 10 = Ut(x, 0) = 2* A„ sin • 

By using the result of problem 2, p. 78, we find that 

40 
An — 0, n odd, and An = — , n even. 

7lTT 

Accordingly we put n = 2m, h? = 5, and have for Ut(x, t): 

UT(x, t) 
20 v 1 . 
— L - sin 

7r m=l m 
mirx 
~2~ 

e 20 • (25) 

From (19), (20) and (25) the solution of the original problem is: 

U(x, t) Ibx + 10 + — f) - 
. mwx _ v*™ 

, sin -75- e 20 . (20) 
7rm-1 m2 

Written out, this is 

15x + 10 + — 
7T 

1 . 7ro: 
sm — _ 
_20 

1 e 

. 2wx 
*m~T 

2 
e 

4 r*t 

20 

7 The details are merely a check on our work, since Us was formed in such a 
way that the boundary values of Ut would be zero. However, to obtain the 
new initial condition, (23), we must carry out the subtraction. 
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. 37rx 
Sin —pr~ _ 9 vH 

+ -JT-'“ +•••!• 

We note that, when £ is very large, the exponential terms of the 
series are small, so that, when t becomes infinite, the solution re¬ 
duces to the first two terms. This is in agreement with the remark 
in footnote 6, p. 191, that (20) is the steady-state solution for the 
given terminal conditions. 

EXERCISES XXX 

1. The ends A and B of a rod 50 cm. long have their temperatures kept at 

0° and 100° C. respectively until the temperatures are indistinguishable from 

those for the steady state. At some time after this, there is a sudden change 

in the end temperatures. Find the temperature of any point in the rod, 

U(x, t), as a function of x (cm.), the distance from one end A, and t (sec.) the 

time elapsed after the sudden change for each of the following cases. 

(а) The temperature of B is suddenly reduced to 0° C., and kept so, while 

that of A is kept at 0° C.; 

(б) The temperature of B is kept at 100° C., while that of A is suddenly in¬ 

creased to 100° C., and maintained at this point; 

Cc) The temperature of B is suddenly reduced to 50° C., and kept at this 

point, while that of A is kept at 0° C.; 

(d) The temperature of A is suddenly raised to 25° C. while that of B is 

suddenly reduced to 75° C., and then these temperatures are maintained; 

(e) The temperature of A is suddenly raised to 50° C., while that of B is 

suddenly raised to 150° C., and then these temperatures are maintained. 

2. If the rod of problem I (a) is of silver, for which h2 — .576, compute the 

temperature of the midpoint of the rod 2 minutes after the change in temper¬ 

ature. 

3. Compute the temperature of a point 5 cm. from the end A, 3 hours after 

the sudden change for the rod of problem 1 (6), and also for that of problem 1 

(e), if the rod is of glass, for which h2 — 175.0. 

4. Show that the temperature of the midpoint of the rod of problem 1 (d) 
does not change with the time, and does not depend on the value of h2. Com¬ 

pute it. 

6. Find the temperature of a point 12.5 cm. from the end A of the rod of 

problem 1 (d), 5 minutes after the sudden change 

(а) If the rod is of silver, for which h2 =* .576; 

(б) If the rod is of wrought iron, for which h2 = 5.78; 

(c) If the rod is of glass, for which h2 = 175.0. 

6. (a) A wrought iron rod 80 cm. long has one half its length at 0° C., and 
the other half at 50° C. If the sides are suddenly insulated, the temperature 

of the hot end reduced to 0° C., and thereafter the two ends kept at 0° C., find 
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the temperature of the rod, U(x, t) as a function of the distance from the end 

originally at 0°, and the time after the sudden change. 

(6) Assuming h2 = 5.78, compute the temperature for a point 20 cm. from 

the end originally at 0° C., 12 minutes after the change. 

7. The ends of a rod 60 cm. long have their temperatures kept at 0° C. and 

180° C. until the steady state is approximated. The ends are then suddenly 

insulated, so that thereafter no heat flows at the ends, and hence by (10) on 

p. 163, 

~ = 0, x = 0 and “ - 0, x ~ 60. 
dx Ox 

(a) Show that for any integral value of n, 

a, nWt , 11 ttX — —- 
A n COS C 3600W » 

60 

is a particular solution of the differential equation which satisfies the end con¬ 

ditions. 

(b) Using a series of such solutions, find an expression for U(x, t)} which for 

t = 0 gives the initial distribution of temperatures and hence represents the 

temperature of a point in the rod at distance x from the cooler end, t seconds 

after the sudden change in conditions. 

8. A rod 40 cm. long lias its midpoint raised to 100° C. while the ends are at 

0° C., until each half approximates the steady state. The source of heat is 

then removed from the midpoint, and this is insulated. Find the temperature 

U(xt t). 

9. (a) A rod 20 cm. long has its ends kept at 0° and 100° C. respectively 

until the steady state is reached. The end at 0° is kept at this temperature, 

0U 
while the other end is suddenly insulated so that, as in problem 7, -r—- = 0 

there. Using particular solutions of the form 

. (2 n + l)irx - 
An sin -jjj- c 

(2n+l)*rU 

ioooh* > 

find the temperature as a function of x and t. See problem 12, p. 79 for this 

type of expansion in odd harmonic terms. 

(6) From physical considerations, deduce the relation of this problem to 
problem 8, and verify by comparing the two results. 

10. The parts of this problem outline a method of finding the temperature 

of a rod of length a, initially at 0° C. throughout, and having the end z ** 0 
kept at 0° C., and the end x = a held at temperature f{t), at time t. 

(a) Show that, if fit) is constant, 

m - L 

the solution of the problem will be 

Ui{xf t) 

f . nirx 
X 2 * (-l)»sm— _5Me 

= - + ~ 2- -- e am . 
a 7r w=*x n 
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(ft) Thus the function 

V(x, t) — Ui(x, t), when t > 0, 

V(x, t) = 0, when i ^ 0, 

gives the temperature of a rod zero throughout before t = 0, and having the 

end x = a at temperature 1 after this time. The two definitions join together, 

except for x = a, when t — 0. Show that, if the interval 0 to t be divided into 

N equal parts At — t/ N, and we put 

to — 0, h = At, t2 = 2At, U = 3At, • • * tN = NAt, 

if the function fit) is constant in each interval, 

0 < t ^ t\t fi < t S t2, • • • < t ^ttf, 

the solution of the problem may be written 

Ui(x, t) 
N 
Z f(ln) 

n— 1 

— V(x, ^ T f — ^»-i) 
At 

At, 

since this satisfies the differential equation, and takes the proper values at the 

point x = a for all values of t except the values tu l2, • • • where there are 

sudden changes. 

(c) The solution U2{x, t) of (b) suggests that, iif(t) is a continuous function, 

and we approximate it by a function constant in N intervals, the approxima¬ 

tion will be better as we increase N, and the actual solution will be the limit 

of Ui(x, t) for n infinite, namely: 

JT, JN Cl r/ dV(x, t — u) J 
U(x,t)= I f(u) ---du. 

In this integral the derivative is not defined for u = t, since V(x, t) has no par¬ 

tial t derivative when t — 0, but the integral may be calculated without using 

this isolated value. The direct justification of the derivation is difficult, but 

it is possible to verify that the integral does solve the problem. That it satisfies 

the differential equation follows from the fact that V(x, t) satisfies the equation, 

by differentiating under the integral sign. U(x, 0) is obviously zero, since the 

limits are then both zero. Again, U(0, t) is zero, since the integrand is zero, 

and it may be shown that 

lim U(x, t) — 17(0, t). 
x=0 

To investigate lim U(x, t), we note that for a value xi near a, and an interval 
x=a 

t + e to t — € with midpoint at t, the contribution to the integral outside this t 

interval will be small, and if the t interval is small, the factor/(w) will be nearly 

f(t). Thus the integral will be nearly 

m JT^* dV<x>'l ~Ai du -m [F(*„«) - vixu -«)] 

or since F(a, e) — V(a, — e) is nearly 1 when e is small, and x\ is near o, the 

value of the integral is nearly/(f). This discussion is in no sense a proof, but 

is merely intended to give some idea of the nature of the proof. 
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11. Show that the temperature of a rod of length a initially at temperature 
f(x)j whose ends are kept at temperatures gi(t) and g2(t) may be expressed as 
the sum of three functions, 

U(xyt) = Uo(Xyt) 4- Ui(x,t) -f U2(x,t), 

each of which satisfies equation (9), and whose respective boundary conditions 
are 

Uo(0, t) = 0, Uo(a, t) = 0, Uo(x, 0) = /(*); 

Ui(0, t) = gi(t), Ui(a, t) = 0, Ui(x, 0) = 0; 

u2(0, t) = 0, U2(a, <) = g2(t), U2(x, 0) = 0. 

The determination of U0(x, t) has been discussed in the text, while U\{x, t) 

and U2(x, t) may be found by the method sketched in problem 10. 

46. The Telegraph Equations. We have seen, equations (7), 
p. 159, that when current is flowing in a long line, and the influence 
of all factors except resistance and capacitance to ground is neg¬ 
lected, the equations satisfied by the voltage and current are 

dc . di ~ de 
— = Rt, — — = u— . 
dx dx dt 

(27) 

The equation obtained by eliminating the current is 

dx2 dt 
(28) 

As this equation is identical in form with equation (9), for one di¬ 
mensional heat flow, the methods given in the two preceding sec¬ 

tions may be applied to it. 
As an example, suppose one end of a line 100 miles long is kept 

at 2 volts as compared with 6 volts for the other extremity, until 
a steady state is reached. The first end is then grounded, so that 

its potential is suddenly reduced to 0 volts, while the other end has 

its potential maintained. Let R = .12 ohms per mile and C = 2 
microfarads per mile. Then C = 2 X 10"6 farads per mile, and 
in equation (28) the coefficient RC = 2.4 X 10~7. 

The steady-state solution of the differential equation (28) is a 
first degree expression in xf and by a process analogous to that used 
to obtain (17) or (20), we find the initial condition 

e(*,0) = 2+|r> (29) 

the steady-state solution equal to 2 when x is 0, and equal to 6 
when x = 100. 



THE TELEGRAPH EQUATIONS 197 

The permanent end conditions require that 

e(0, <) = 0, e(100, 0 = 6. (30) 

Thus the problem is to find a solution of the differential equation 
(28), which also satisfies (29) and (30). We solve this problem by 
writing 

e = es + er, (31) 

where es is the steady-state solution for the permanent end condi¬ 
tions, (30), so that 

<* = §• (32) 

The conditions to be satisfied by the transient part of the solution, 

3x 
er = e_ 50’ 

in addition to the differential equation, are then 

eT(0, 0 = 0, er(100, 0 = 0, (33) 

from (30), and 

er(s, 0) = 2 + 25-5o=2~5(j' 

By analogy with (13), we write 
nHH 

A„sin~t i001^, (35) 

as particular solutions of (28) which satisfy the boundary condi¬ 

tions (33), and put 

erix, t) = ±An sin e" • (36) 

The initial condition (34) will be met, provided that 

o x / a\ ^ A nirx 
2 50 ~ €T^X) “ n?iSm 100 * 

From problem 2, p. 78, we have 

, mrx 
a sm 7nn 

^ x 4 a 100 
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bo that 
. H7TX 

4 jb. Sin TOO - nVt - 
eT(x, t) = - £ -— e VM,RC • (37) 

7T = l Tl 

From (31), (32), (37) and the fact that RC = 2.4 X 10~7, we have, 
finally 

e(x,t) + ~ t -sin^r^- (38) 
50 7T rf=I n 100 

The current may be found from the first of equations (27), which 
may be written 

. 1 0e__1_ de_ 

1 ~ ~Tidi~ ~ .12 dx‘ 

From this and (38), we obtain: 

1{X’t] = ~2~z^0Smt -0024' (39) 

This series converges for t > 0, because of the presence of the 
exponential terms. For t = 0, the series oscillates. This inde¬ 
termination of i for t = 0 is due to the discontinuity in our condi¬ 
tions. 

EXERCISES XXXI 

1. The length of an ocean cable is 3142 — 10007r miles. The resistance is 

3 ohms per mile, and the capacitance to ground is \ microfarad per mile, or 

J X 10-8 farads per mile. Find the e.m.f., c(x, t) and the current, i(x, t) at 

any point as a function of the distance from one end, x (miles), and the time 

t (seconds) after the two ends are grounded, if initially the e.m.f. was 

(a) e(x, 0) = Ei sin + Eb sin ; 

Ex 
(b) e(x, 0) = i the steady-state condition due to one end being 

grounded, and the other at the constant e.rn.f. E. 

2. A cable is a miles long. Initially the line is uncharged, so that e{x, 0) =0. 

If, at t = 0 the end x =■= a is connected to a constant e.m.f. E, find e(x, t) and 

hence i(x, t). In particular, show that the current at the receiving end, x = 0, 

is given by 

_ 9irH 

e a?RC - e a*RC -f c a*RC - • • . 

3. Using the data of problem 1, and the result of problem 2, show that the 
current received i second after a signal is sent is less than .0004 of the maximum 
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value,* but has risen to 30%, 73%, and 90% of the maximum at the end of 

1, 2 and 3 seconds respectively. 

4. Using problem 2, show that for a line 100 miles long, with resistance 170 

ohms per mile and capacitance to ground .07 microfarads per mile, or 7 X 10~8 

farads per mile, the current received is over 96% of the maximum at the end 
of of a second. 

47. The Wave Equation. In section 40 we derived the equation 
satisfied by the small displacements of a tightly stretched, vibrat¬ 
ing string. If we write 5 = VTg/D, the equation is 

dx2 s2 dt2 
(40) 

By problem 1, p. 173, s is the velocity of propagation of the wave 
motion along the string. For the units of section 40, s was in 
ft./sec., while x and y were in ft. If we convert s to cm./sec., we 
may measure x and y in cm. 

As a specific example, consider a string 100 cm. in length, with 
fixed end points, so that 

y(0, 0 = 0 and 2/(100, t) = 0. (41) 

If the string is initially displaced in a sinusoidal arch, of height 
2 cm., 

y(x, 0) = 2 sin (42) 

and if it is at rest in this position, we also have: 

f = 0> for* = 0- (43) 

To find the displacement at any other time, we must find the func¬ 
tion y(x, t) which satisfies the differential equation (40), takes on 
the boundary values (41), and also satisfies the initial conditions 
(42) and (43). 

We begin by writing down the particular solutions of equation 
(40) found by the method of section 36. They are: 

y = (Cl<** + + W“^), 

y = (c3 sin bx + c4 cos bx)(cQ sin bst + ci0 cos b&t), (44) 

y ~ (c&x + ce)(cu$ + Cn). 
* See footnote*, p. 210. 
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The conditions (41) will be met by taking the second form, with 
c4 = 0, and a value of 6 such that 

sin 1006 = 0, 

which requires that 

1006 = ft7r, b — ~~ 9 

where n may be taken as a positive integer.8 The condition (43) 
will be met if we take = 0. Thus, on writing An as the value of 
C3C10 that goes with a particular ny we have 

An sin 
71ttX mrst 
Too cos Too ’ (45) 

as a term satisfying the differential equation (40), as well as the 
additional conditions (41) and (43). To satisfy the remaining 
condition, (42), we take an infinite series of such terms, and write 

y{pcy C) jL,^An sin ^qq eos -^qq * (40) 

The condition (42) requires that 

2™i00=!'<1'0) 100 

Since the left member is, as it stands, a Fourier series of the re¬ 
quired form with all the coefficients zero except A\} which is 2, 
we have from (46) without further calculation: 

y{x, t) = 2 sin — cos ~ • (47) 

Owing to the simple form of our conditions, this result could have 
been found by inspection from a comparison of the conditions with 

(44). However, the method is applicable even when the initial 
conditions are not so specialized. 

EXERCISES XXXII 

1. A tightly stretched string of length a cm. is drawn aside at its midpoint 
a distance p cm., so that its initial position is given by 

y(x,0)-2j2, 

• See footnote 4, p. 189. 
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y(x, 0) = 2p - ~ g x g a. 
(1 & 

It is initially at rest, so that 

£ = 0, 

and is suddenly released from this position. If its end points are kept fixed 

throughout, so that y(0, 0 = 2/(a, t) — 0, find an expression for y(x, £). 

2. Find 2/(2, <) for the string of problem 1 if the remaining conditions are 

unchanged, but the initial position, instead of being the one there given is: 

(o) y(xf 0) = p sin where n is any integer; 

(6) y(x, 0) = p sin3 ^; 

(c) y(xf 0) = apx — px2. 

3, If the string is of length a, and fixed at the end points, but not at rest 

when t = 0, we will have initial conditions of the form: 

2/(0, t) = y(a, t) = 0, 

y(x, 0) =/(*), 

= g(x) when t = 0. 

Show that in this case 

^ . nirX ( . nirst . 7lTTSt\ 
> sin-I An sin-f- Bn cos-1 

n?i a \ a a / 

where the Bn are the coefficients of the expansion of f(x) in a sine series, so that 

fix) = £ Bn i 

and the An are related to the coefficients of the expansion of g{x) in a sine series, 

so that 

, x A mrs A . ntrX 
gw = 2- — An sm — . 

4. Apply the result of problem 3 to find the displacement y(x, t) of a tightly 

stretched string of length a, if the ends are fixed, y(0, t) — y(a, t) = 0, and the 

string is initially in the equilibrium position, y(x, 0) = 0, but for t = 0 the 

velocities, dy/dt are given by: 

dy(x, 0) . mrx 
p sm -j-, n bemg an integer; 

/r\ dy(%i 0) . „ 7TX 

dyjx, 0) apx — px1. 
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6. Show that, if y(x, 0) has the value given in one of the parte of problem 2, 

and dy(x, 0)/dt the value given in this, or some other, part of problem 4, the 

end points being fixed, the solution of the problem may be found by adding the 

results for the two separate cases. 

6. If the displacement of the point xQ of the string be found for problem 3, 

we have: 

y(x0, t) = ]£ sin 
n-1 0 

mrst 

a 
-f- Bn cos 

The terms involving An and Bn together determine the nth overtone, or nth 

harmonic. If x0/a is irrational and the displacement of the point x0 is any 

given periodic function of the time, of period 2a/s, show how to find an initial 

velocity and displacement that will give rise to it. What types of initial con¬ 

ditions will make this function odd, even, or odd-harmonic? 

48. The Radio Equations. In section 37, we saw that for cer¬ 
tain high frequency circuits, the equations governing the current 
and voltage could be roughly approximated by 

de_ di di _ ~de 
dx~ LdV ~dx~Let 

(48) 

As the equation obtained from these by eliminating i, namely 

dxi 
LC 

dt2 ’ 
(49) 

is of the same type as equation (40), it may be treated in a similar 
manner to that used in the preceding section. 

For example, suppose the e.m.f. of a line 200 miles long was ini¬ 

tially given by 

e(x, 0) = E sin ~ , (50) 

and the initial current were constant, 

i(x, 0) = 7o. (51) 

These values imply nothing about the partial derivatives with 
respect to t, for t = 0, but do determine the partial derivatives 
with respect to x when t = 0, namely: 

de(x, 0) _ 7rE ttx dz(x, 0) __ 
dx ~ 200 C0S 200’ ~dx ' 

If, as we shall assume, the initial state was the result of a physical 
situation determined by equations (48), the second equation shows 
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that 
de{xy 0) 

dt 
(52) 

Suppose further that, at t = 0, the ends of the line were suddenly 
grounded. Then we have as additional boundary conditions: 

e(0, 0 = 0, e(200, t) = 0. (53) 

The equation (49), together with the conditions (50), (52) and 
(53) completely determine e(x, t). By a process entirely analogous 
to that used to obtain (47) in the last section, we find that 

To find the current, i(x} t) we must use both of the equations 
(48). The first gives: 

di __ 1 de _ E7r tx 7rt 

dt~ ~L6x~ ~ 200L C0S 200 C0S 20OVLC ’ 
(55) 

while from the second we find: 

di _ ~ de _ EC .7tx . 7rt 

e~x - Lai - 200VTC Sm 200 sm 200\/LC 
(56) 

The result of integrating equation (55) with respect to t is: 

i(l-t>-~ £Vzcos KB “n +m 

where f(x) is an arbitrary function of x. This value will only sat¬ 

isfy equation (56) if f(x) is a constant, and from equation (51), its 
value is 70. Thus the solution for i is: 

«x, o - - E y/f cos ~ sin + I,. (57) 

EXERCISES XXXm 

1. Neglecting R and Gf find the current i(x, t) and the e.m.f. e(x, t) in a line 
o miles long, t seconds after the ends were suddenly grounded, if initially 

i(x, 0) = 7o, so that —- = 0, 

and (a) e(x, 0) * Ei sin ~ + E? sin ; (b) e(x, 0) => the steady-etate 

condition due to one end being grounded, and the other at potential E. 
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2. A line of length a is initially uncharged, so that i(x, 0) = 0, e(x, 0) = 0, 

—~—- =0. At i — 0, one end x = a is suddenly connected with a constant 
cit 

potential E while the other end is grounded. Neglecting R and G, find e(x, /) 

and hence i(x, t). Hint: Put e = es -f- ex, where e$ is the steady-state solu¬ 

tion for the permanent end conditions, as in section 45. 

3. A fine of length a is initially uncharged, so that i(xy 0) = 0, e{xy 0) =* 0, 

de(x 0) 
——- = 0. At t — 0, one end x = 0 is suddenly connected with a constant 

at 
potential E, while the other end x — a is left open, so that i(a, t) = 0 and 

hence = — L — = 0. Neglecting R and Gf find e(xf t) and hence 
ox ot 

i(x, t). Here it is necessary to put e = es -f er, as in problem 2, and in finding 

€T to use particular solutions of the type 

An sin 
(2 n + 1)ttx (2 n + 1 )irt 

2a V LC 

and a series expansion of the type described in problem 12, p. 79. Compare 

problem 9 (a), p. 194. 

4. A line is 50 miles long, and has resistance R = .12 ohms per mile, 

inductance L = 2 X 10~3 henries per mile, leakage G = J X 10~8 mhos per 

mile, capacity to ground C — 1.2 X 10“8 farads per mile, (a) Show that 

i = ]&.(wow* e 3000/oe 00004* are possible steady-state values for the line. 

(6) If the initial values, i(x, 0) and e(x, 0) are those given in (a), so that 

de(x 0) 
— ■= 0, and the ends are suddenly grounded, find the e.m.f. e(x, t) for the 

(jt 
line. For the particular solutions of equation (5) on p. 158, see equation (70) 

on p. 152. 

6. If the line of problem 4 is initially uncharged, so that e(r, 0) = i(x, 0) 

= — 0, and at t = 0 the end x — 50 has a constant e.m.f., 
dtdt 

E, suddenly impressed on it and the other end is grounded, find e(xf t). Hint: 

Put e = es + #T, where es is the steady-state solution for the permanent end 

conditions, i.e., the solution of the form -f which takes on 

the proper end values, so that in this case 

P e-00004* - °0004* _ E sinh .00004z 
es “ a cm - e~-'m sinh .002 ' 

49. Problems solved by using the General Solution. Some¬ 
times a problem involving the solution of a partial differential 
equation determined by given boundary or initial conditions may 
be solved by specializing the arbitrary functions which appear in 

the general solution. 
As a first example, consider the equation of the vibrating string 

discussed in section 47, namely 

d2y _ _1 
dx2 ~7W 

(58) 
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Let the end points be fixed, so that if the length is a, 

y{0, 0 = 0, y(a, t) = 0. 

Let the string be initially at rest, so that 

dy(*> 0) = 0 
dt ’ 

(59) 

(60) 

and let the initial position be given, 

y{x, 0) = F{x). (61) 

It is to be noted that in (59) t may have any value, but as the 
only values of x corresponding to points on the string are such that 
0 < x < a, in (60) and (61) x must be restricted to these values. 
Thus F(x) is only defined for these values. 

We have determined the solution of (58) which satisfies condi¬ 
tions of the above form in section 47, by using Fourier series. We 
may also determine the solution as follows. The general solution 
of (58) has been found in problem 4, p. 147 to be 

2/Or, 0 = /(z + st) + g(x - si). (62) 

The condition (59), applied to this, shows that 

fist) + gi~st) = 0, fia + st) + gia - st) = 0. 

If we put —st — u, the first of these equations may be written: 

giu) = ~/(~u), (63) 

and this may be used to eliminate g from the second equation. 

The result is 

fia + st) - fi — a + st) = 0. 

By putting — a + st = u, we may write this as 

fiu + 2a) = fiu). (64) 

The equations (63) and (64) hold for all values of u. The first 
defines g in terms of /, and the second shows that / is periodic, of 

period 2a. 
In view of (63), we may write (62) as 

2/Or, t) = fix + st) - fi-x + st). (65) 
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Let us next apply the conditions (60) and (61), which only hold 
for 0 < x < a to this last relation. They give the conditions: 

sf'(x) — sf'(-x) =0, 0 < x < a, 

f(x) - f(-x) = Fix), 0 < x < a. 

The first of these may be integrated, giving 

fix) +/(—x) = c, 0 < x < a. 

As the value of y(x, t) in (65) is obtained by subtracting two values 
of the function /, this value will not be changed if / is modified by 
an additive constant. By a proper choice of this constant, we may 
make c = 0 in the last equation, since if c is not zero, we need 
merely subtract c/2 from /. Thus the last condition may be taken 

as 
/(*) +/(-*) - 0, or f(x) - -f{-x), (66) 

and this may be used to reduce the preceding condition to 

2f(x) = Fix), or f(x) = \F(x), 0 < x < a. (67) 

We need not restrict the value of x in (66), since by (64) / is of 
period 2a, and by (66) for 0 < x < a, it is odd in the first period, 
and hence it is odd throughout. 

The equations (64), (66) and (67) show that if G(u) is an odd, 
periodic function of period 2a which agrees with F(u) for 0 < u < a, 
f will be and by (65) the solution of our problem will be: 

y(x, t) = i{(?(x + si) + G(x — st)\. (68) 

The equation (49) for the e.m.f. of a line when resistance and 
leakage are neglected, or 

dfe 

dx2 

dh 
hCd¥' 

(69) 

may be treated similarly. If both ends of the line are grounded, 
we have two conditions analogous to (59). If the ends are kept 
at constant potential Ea and Ea, we solve by subtracting off the 
particular solution of (69) for the steady state, and put: 

e = es + er, es = E0 + -^2? f (70) 
a 

so that 

er(0, t) = 0, eT(a, t) = 0. (71) 
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For example, if the line were originally uncharged, 

e(x, 0) = 0, = 0, i(x, 0) = 0, (72) 

and at t = 0 the end x = a were raised to a potential E, while the 
other end x = 0 were left at 0 potential, we should have 

e(x, 0 = v + «*(*> l)> ™ u 

and er would satisfy the differential equation (69), the boundary 
conditions (71), and the initial conditions: 

eT(x, 0) = ~ V’ -er^, °- = 0. (74) 

By comparing these conditions with those which led to (68), we 

see that 

«(*, o -! {«(*++G(r - vfe) j> <75> 
where G{u) is an odd, periodic function of period 2a which agrees 

with —Eu/a for 0 < u < a, i.e., a periodic function of period 2a 
which agrees with —Eu/a for —a<u<a. 

EXERCISES XXXIV 

1. Derive equations (47) and (54) by the method of section 49. 

2. Solve problems 1 and 2, p. 200-01 by using the general solution. 

3. Find e(x, t) in problem 1, p. 203 by using the general solution. 

4. If the initial velocity of a vibrating string of length a with fixed end points 

is given by 
dy(x, 0) 

dt 
//(*), 

and the string is initially in the equilibrium position, 

y(xf 0) = 0, 

show that 
1 /V-M 

y(xf 0 = o- I K(u) du, 
ZS Jx—&t 

where K(u) is an odd, periodic function of period 2a, agreeing with H(u) for 
0 <u < a. 

6. Use the result in problem 4, to solve problem 4, p. 201. 

6. By using the results of problem 5 on p. 202, and problem 4 above, show 

that if the end points of the string are fixed, the initial position y(xf 0) = F(x) 

and the initial velocity —* H(x), 0 < z < a, the solution may be 
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written: 

y{x, t) = ^ du + + 8t) + @(x ~ ^)l» 

where, as in (68) of the text and problem 4 above, G(u) and K(u) are odd peri¬ 

odic functions of period 2a, agreeing with F(u) and H(u) respectively for 

0 < u < a. 

7. The e.m.f. for a line of length a satisfies the initial conditions e(x} 0) = F(x), 

dc(x 0) 
—~— = H(x)f 0 < x < a. Neglecting R and G> and using the general 

solution, find e(x, t)> t seconds after the sudden change if 

(а) both ends are suddenly grounded at t = 0; 

(б) the end x — 0 is grounded, and the end x = a is connected to a constant 

potential F; 

(c) the end x — 0 is grounded, and the end x = a is left open —^ = 0, 

as in problem 3, p. 204. 

8. Solve problem 7 if we take account of R and Gy but the values are such 

that the line is distortionless, LG = RC. See problem 2, p. 160. 

60. Closed form for the Fourier Series Solutions. The general 
solution of the equation 

d2U dHJ 
dx2 

(76) 

has been found in problem 2, p. 147 to be 

U = f(x + iy) + g(x - iy). (77) 

While it is difficult to find directly two functions / and g to give 
required boundary values, like those treated in section 43, we may 
sometimes work back from the Fourier series solution to the func¬ 

tions / and g, and so simplify the solution. 
For example, in problem 2, p. 187 the solution of (76) which 

reduced to zero on both long sides and one of the short sides of a 
long rectangle a cm. wide, and was c on the other short side was 
found to be 

U(xf y) 
4c f, 1 - (-l)n - 
7r „»i 2n 6 

nwy 

<* sin 
titx 

a 
(78) 

By (45), p. 18, we have: 

Tri(x+iy)'m\n 

e ° = e 
nicy intrx 

a * a nwx 
a 

. . . nirx\ - 
+ t sin-) e 

a ) 

nry 

a • 
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Consequently, if we put 
i(s-Hy) 

e ° = Z, 

the summation in (78) is the imaginary component of 

Z* 76 
S(Z) =Z + ^ + j+ • • •. 

(79) 

To sum this series, we differentiate, and find 

S'(Z) = 1 + Z2 + z* + • • 

a geometric progression with sum 

1 - 1 l 1 
1 - Z- 2(1 - Z) + 2(1 + Z) ’ 

Thus, 

S(Z) = f* S'(Z) dZ = ~ log. j-±|* (80) 

A comparison of this last result with (77) and (79) shows that if 
we put 

/(«) 
ic, 1 + e a 

-~,0&-s; 

1 - e ° 

7riu 

g(u) = f(si) 
1 — e ° 

in equation (77), it will give the solution (78). In fact, since the 
variables in / and g in (77) are conjugate complex quantities, as 
defined in problem 8, p. 6, the values of / and g when (81) are used 
will be conjugate, and U will be twice the real component of /, or 
owing to the factor — i, and the \ in (80), 4c/tt times the imaginary 
component of (80). 

By using equations (45) and (47), p. 18, we may reduce the solu¬ 
tion (78) to the form 

U(x, y) = 
2c 

tan- 

try 
ttX —~ 

sin — e 
a 

11 VX a 1 + cos — e ° 
a 

~ vv 7TX - ~~ 
sin — e 

a 

1 7rX a 1 — cos — e a 
a 

(82) 

+ tan 1 
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We may readily check directly that this satisfies the given bound¬ 
ary conditions. For example for y = 0, the two quantities whose 
inverse tangents are taken are reciprocal, so the inverse tangents 
give complementary angles, and the value of U is 2c/t • t/2 *= c. 

EXERCISES XXXV 

1. Find the functions in (77) which give the series solution of problem 2 (6), 

p. 187, and hence show that the series there given is equivalent to 

U(x, y) = tan-1 
7r 

. 7rX - 
sin — e 

a 

1 + cos — c 
a 

2. Show that the solution of problem G, p. 188 is the real component of 

!/:[!+££>«. 
where z = re*&, Z — ReBy summing the geometric progression, reduce the 

expression to the form 

if 
ion 

-if 

and hence reduce the solution of the problem to the form 

_R2 - r2_ 

v R2 — 2 Rr cos (t — 0) -j- r% 
m at. 

This expression for a solution of the steady-state temperature, or potential 

function, in terms of prescribed boundary values on the circumference of a circle 

is known as Poisson’s integral. 

* The identity 
_ _0£i 25t2 

1 - 2(«-* - €-* + €-**-) = 2r/!(e'4' -f e" 4t -f 4t +•..) 

from the theory of theta functions is useful here. 



CHAPTER VII 

ANALYTIC FUNCTIONS 

This chapter is devoted to a discussion of the elementary proper¬ 
ties of analytic functions of a complex variable. We begin by re¬ 
calling certain definitions, fundamental in the calculus, and extend¬ 
ing them so as to apply to complex variables. 

51. Limits. Let at be a real variable, whose value is determined 
for an infinite number of values of the quantity t, which we may 
consider successively. The quantity t may change abruptly, for 
example, taking on in succession the values 

1, 2, 3, • - • 

or 

tV> thr? * ’ * • 

Or it may vary continuously, like the time variable in physical 
problems, for example, changing steadily from 0 to 1, or increasing 
indefinitely from 0 through all positive real values. We thus have 
an isolated, or continuous, succession of values of the variable at. 

We say that: 
The real variable at approaches a finite limit A, if, beyond a 

certain point in its succession of values, the numerical value of the 
difference at and A becomes, and stays, smaller than any fixed 
positive quantity. 

If the variable at be represented geometrically by a variable 
point at on a representative scale, the definition requires that, as 

the point takes on its succession of positions, the distance from it 
to the fixed point A ultimately becomes and remains as small as 
we please. This suggests the alternative procedure of first stating 

that: 
The positive real variable pt approaches zero as a limit if, be¬ 

yond a certain value in its succession of values, it becomes and 
stays smaller than any fixed positive quantity; and then stating 
that: 

211 
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The real variable at approaches a limit A, if the numerical value 
of the difference between at and A, \at — A\, approaches zero as 
a limit. 

From two real variables, at and bt} we may form a complex 
variable, at = a* + ibt. If at is approaching A as a limit, and bt 
is approaching B as a limit, we say that the complex variable at is 
approaching A — A + iB as a limit. 

Let us consider the representation in the complex plane. The 
distance from the variable point at to the fixed point A, |a* — A\, 
is the hypothenuse of a right triangle whose sides are at — A and 
bt — B. If these two sides are each approaching zero, so is the 
hypothenuse, and conversely if the hypothenuse is approaching 
zero, so are each of the sides. Thus we have the equivalent defini¬ 
tion : 

The complex variable at approaches a finite limit A if the absolute 
value of the difference between at and A approaches zero as a 

limit. 
It is clear from geometric considerations that the absolute value 

of the variable approaches the absolute value of the limit, and, 
except when the limit is zero, a suitable determination of the angle 
of the variable approaches one value of the angle of the limit. 

62. Steadily Increasing Real Variables. We shall frequently 
make use of the principle that: 

If a real variable is constantly increasing, but always less than a 
fixed quantity, it must approach a finite limit. 

To see this, consider the variable point on the number scale, 
and mark all the integral points between its initial position and 
the bounding fixed quantity. A certain number of these, from the 
left on, will ultimately be passed or reached by the variable, while 
the rest will not be. Thus, from a certain value on, the variable 
point is located in a particular unit. Divide this unit into tenths, 
and by the same reasoning we see that ultimately the variable will 
be in a particular tenth. Continuing in this way, we find a succes¬ 

sion of intervals of width l/10n. The readings of the left-hand 
boundary points of these intervals give an infinite decimal, which 
is the limit of the variable since the difference between this infinite 
decimal and the variable is ultimately less than 1/10^, for any 
fixed N. 

The argument applies if the variable is sometimes stationary, so 
long as it never decreases. 
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A similar result applies to variables which are steadily decreasing, 
since these may be thought of as a constant, minus a steadily 
increasing variable. 

If a variable steadily increases, but does not remain less than any 
fixed quantity, so that it ultimately exceeds every fixed quantity, 
it is said to become infinite. We write in this case 

lim at — go . (1) 

Even if we regard oo as a number subject to some of the arithmetic 
operations, the definition of approach to a limit does not apply. 
In fact, since at is finite, if we assigned any value to |oo — at|, it 
would be oo, which does not approach zero. Many writers reserve 

the term limit for finite limit, and write (1), but read it “ at becomes 
infinite.” If at is complex, and its absolute value becomes infinite, 
we again write (1). In all cases, (1) is equivalent to 

lim 1 /at = 0. 

63. Function, Continuity. We say that y is a function of x, 
for a certain range of value of x, if for each x in this range, one or 
more values of y are determined. This definition is applicable to 
the case where x and y are real, and also to the case when either 
or both are complex. We are usually concerned with the case 
where there is just one value of x for each y, in which case we have 

a single valued function. 
We say that y - fix) is a continuous function of x, at x = x0, 

if, whenever x approaches x0) fix) approaches a limit, and this 

limit is fixo). 
We say that a function is continuous throughout a range, which 

is usually an interval for one real variable, and a two dimensional 
region for a complex variable, if it is continuous for all points of 

the range. 
The definitions of function and continuity require only slight 

modification to apply to the case of more than one independent 

variable x. For example, z —fix, y) is a continuous function of 
x and y, at x = xo, y = yo, if whenever x approaches x0 and y 

approaches y0, fix, y) approaches/(zo, 2/o). 
64. Series. An unending sum of real or complex constants, 

U\ + • • • (2) 
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or, as it is often abbreviated, 

t Un, (3) 
n=* 1 

is called an infinite series. For any finite number of terms, we 
may form the sum in the usual way, and thus define the partial 
sums, 

Si = U1, 
$2 = Ui + U2, 

(4) 
n 

Sn « Z Uk = Ui + U2 + Us + • * * + Un- 
k~l 

The values of sh t = 1, 2, 3, • • * define a variable which may 
approach a limit S, in accordance with the definition given in sec¬ 
tion 51. If this is the case, so that 

lim st — S, t — 1, 2, 3, • • • (5) 
t=* OO 

we say that the series (2), or (3) is convergent, and has the sum S. 
We indicate this by writing: 

S = £ Un = Ui + U2 + Us + • * • , (6) 
n» 1 

which is to be thought of as an abbreviation for (4) and (5). 
We note that when a series converges, the individual terms must 

approach zero. In fact: 

lim un = lim (sn — i) 
= lim sn — lim (7) 
= S - S = 0. 

Consequently, there is an upper bound to all the terms, since from 
a certain term on, the terms will be numerically less than any fixed 
positive quantity, say 1. Suppose this is true after N terms. 
Any positive number bigger in absolute value than 1 and each of 
these N terms is numerically bigger than any term of the series. 

If the variable $t does not approach a finite limit, the series 
is divergent. It is evident that the series obtained from a given 
series by changing a finite number of its terms, is convergent or 
not according as the original series was convergent or not. 
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55. Absolute Convergence. We shall now prove that if an 
infinite series of complex terms has each term less in absolute 
value than the corresponding term of a convergent series of posi¬ 
tive real numbers, the first series converges, and the absolute 
value of its sum, is less than the sum of the second. 

Let the series of complex terms be 

Ul + U2 + Uz + • • •, (8) 

and the series of positive terms be 

T = Mi + M2 + Mz + • • •, (9) 

so that 

M ^ Mh \u%\ ^ M2} • •, \un\ g Mni • • •. (10) 

We separate un into its real and imaginary components, and put 

Un = dn + ibn = an' - an" + ib„ - ibn'(11) 

where when an is positive, 

an = an'f an" - 0, 

but when an is negative, 

0^ = 0, an" = - On, 

Similarly bn' is bn or 0, and bn" is 0 or — bny according as bn is positive 
or negative. Thus each of the quantities anbn\ bn" is positive 
or zero, and if we write the sum to n terms 

Sf. = Sn - Sn" + iU — itn", (12) 

each of the four variables sn', sn", tn', tn" will be steadily increasing 
in the sense of section 52. But, from (10), and the fact that the 
absolute value of a sum is less than or equal to the sum of the abso¬ 
lute values, we have each of these variables always less than 

n 

2 IUk\ and hence less than the corresponding partial sum of (9), 
l 

and hence less than T. Thus, by section 52, each of the four 
quantities on the right of (12) approaches a limit, so that the left 
member sn approaches a limit S and the series (8) converges. 

Moreover, since 

^ £ |u»| S £ Mn, (13) 
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on taking the limits we find: 

S ^ T, (14) 

If the series of positive terms, obtained from a series of complex 
terms by taking the absolute value of each of its terms, converges, 
the original series is said to be absolutely convergent. In this case, 
we may take Mn = \un\ in the above discussion, and we see that if 
a series is absolutely convergent, it is convergent, and the absolute 
value of its sum is less than or equal to the sum of the series of 
absolute values. 

The inequality (13) shows that any series (8), related to a con¬ 
vergent series (9) by (10), is absolutely convergent. 

66. Operations on Series. By using the fact that, if a variable 
approaches zero, any constant times this also approaches zero, and 
the sum or difference of two variables each of which approaches 
zero is a new variable approaching zero, where the variables are 
\S — a*| for two convergent series, we see that: 

The result of multiplying each term of a convergent series by a 
constant is a convergent series, whose sum is the constant times 
the sum of the original series. 

If two convergent series be added together, or subtracted, term 
by term, the result is a convergent series whose sum is the sum or 
difference of the sums of the original series. 

For some convergent series, rearrangements of the terms may 
yield divergent series, or convergent series with different sums.1 
For an absolutely convergent series, however, any rearrangement 
of the terms such that no terms are added or omitted yields a 
convergent series with the same sum. 

To prove this, let sn' be the partial sum to n terms of the re¬ 
arranged series, and s# be the first partial sum of the original series 
which includes all the terms in sn', while sm is the last partial sum 
all of whose terms are included in s„. Since no terms are added or 
omitted, we have M and N both becoming infinite when n becomes 
infinite. Let 4 be the partial sum to n terms of the series obtained 
from the original series by taking absolute values. Then we have 
sir — Sn with fewer terms than s# — smj and each of these last equal 
in absolute value to a term in t# — tu, so that 

\$N — Sn | ^ — tn\m 

1 See problem 12, p. 219. 
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But, from the absolute convergence, when n and hence N and M 
become infinite, t# and Im each approach the same limit, T, so 
that the right member approaches zero, and sn' must approach the 
same limit as sn. 

The result just proved may be applied to the multiplication of 
absolutely convergent series. Let their terms be un and un, their 
sums be S and S} and their partial sums sn and sn, while T and T 
are the sums, and tn and t„ are the partial sums of the series obtained 
from them by taking absolute values. Then since 

lim sn = S, lim s„ = S, 

we have: 

lim snsn = SS, (15) 

and the series whose partial sum is snsn converges. This is a partic¬ 
ular set of partial sums, with a particular arrangement, of the series; 

Unix + uiu2 ~b U2U1 + U2U2 4~ * * • (16) 

obtained by multiplying each term of one of the series by each 
term of the second. 

The series (16) converges absolutely, since on taking absolute 

values of the terms, we have a series of positive terms whose partial 
sums are all less than certain partial sums tntn, and hence less than 
TT. Thus, as these partial sums steadily increase, bj^ section 52, 
they approach a limit. Since (16) converges absolutely, and for 
one rearrangement gives certain partial sums which approach the 
product SS, by (15), any rearrangement of (16) which adds or 
omits no terms will give the correct product. 

One arrangement which is frequently convenient is to take first 
all those terms whose subscripts add up to 2, then 3, then 4 etc., 
namely: 

U\U\ U\U% -{- Unix 4~ u\Us -f~ U2U2 ~b Usiii + • • • (17) 

EXERCISES XXXVI 

1. Prove that lim 1/n = 0, and lim 1/2* = 0, where n - 1, 2, 3, • • • and 
in each case find out a value of N, such that when n is greater than N the vari¬ 
able is within .001 of its limit. 

2. Prove that 
.. 0 - 1 0 ... t - 4 1 
tml t — 1 tz — 64 48 
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3. Show that lim (r|0)n, as n 1, 2, 3, • • • , (a) = 0, if r < 1; (6) = oo, if 
r > 1; (c) =*1, if r *= 1, 0 = 0 or 2kir) but (d) no limit is approached if r « 1, 
0 ^ 0 or 

4. Prove that, as n = 1, 2, 3, • • • 

||„,2,+a+it4-3„>-2 Si. 

5. Using the result of problem 3, show that, as n — 1, 2, 3, • • • , 
1 — cn 1 

lim j— - , where c is a complex constant, (a) = |if |c| <1; (6) ** oo, 

if |c| > 1; but (c) the quantity approaches no limit if \c\ = 1, c ^ 1. 
6. Prove that, if lim an — A, the series with 

oo 

Ui = fli, M3 — a2 — fli, * • ■ , &n- i 

converges, and has the sum A. 
7. By combining the results of problem 6 and 5 (a), show that, if |c| < 1, 

the geometrical progression 

1 + c + cl + * • •+(?» + • • • 

converges, and has the sum 1/(1 — c). 
8. (a) Prove that 

lim --- = 1; 
n=oo n 

(b) Using problem 6, and part (a) of this problem, show that the series 

1 _J-1-?—(-?-1_ . . .+_ 
l-2^2-3^3-4^ 7i(n - 1) + * 

converges, and has the sum unity. 
9. We illustrate a method of comparing a series with an integral, as applied 

to the series 

— -j—i—f—L -f. 
1p T 2* 3* 

+ -F • • • , v any real number, 

in the following parts of this problem. 

1 
(a) Show that 

r+i JL 

xi 
1 

a dx ^ . , 
xP nP (n -J- 1)£ 

(b) By summing inequalities of the type given in part (a), deduce that 

r+1-U<£ i<i+ 
Jl xv nP Jl xv } 

(c) From the result of (6), show that the series converges if p > 1, and di¬ 
verges if p ^ 1. 

10. For the case p « 1, the inequality of 9 (b) becomes 

r+iid*<£i<i+ ru, 
Jl x “jS Jl x ’ 
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or, writing sn for the sum of the first N terms of the series 

1 _l_ I I _j_ 

1^2 ^3 ^ ‘ + n + 
In (N -f 1) < sn < 1 -f In N. 

Show from this that, although the partial sums ultimately become infinite, 

they do not exceed 1000 until N exceeds em > 10433, a number considerably 

greater than the estimated number of electrons in all the bodies of the solar 
system! 

11. Noting that the odd partial sums of the series 

i-i + I_+ _J_L + _J_ 
2 ' 3 T 2m - 1 2n ^ 2n + 1 

may be written in either of the forms 

1-(H)-(H) (I_ 
\2n 2 n + lj‘ 

(»-J)+a-i)+---+(*Hn-s) + 
1 

2n + 1’ 

(a) Show from the first form that the odd sums steadily decrease, and from 

the second that they are always greater than zero, so that by section 52 they 

approach a limit. 

(b) Combine part (a) with the fact that the separate terms of the series 

approach zero to show that the even sums, s2n = s2n-i — l/2n, approach the 

same limit, so that the series converges. 

12. By problems 9 or 10 the partial sums of the series 

1+1 + 1 + •• • 

become infinite. Consequently, the partial sums of the series 

^ ^ d* g • • • , 

which are just half as big, also become infinite, and so do those of the series 

1 + 4 + 4 + • • * , 

which are greater than those of the second series. No matter how many terms 

are removed from the beginning of these series, the remaining series will have 

partial sums which become infinite. 

These facts enable us to find a rearrangement of the terms of the convergent, 

but not absolutely convergent, series of problem 11, having any given number, 

say one, as limit. For, we have merely to start with enough positive terms to 

get a sum greater than or equal to one, then enough negative terms to get a 
sum less than or equal to one, and so one, each time beginning with the first 

term not already used, the first few terms being: 

,I,i 
+ 3 + 5 

1,1,1 
'4+7 + 9' 
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Show that, by making the partial sums approximate an indefinitely increasing 

variable, like 2n, we may find a rearrangement which gives a series diverging 

to infinity. 

13. (a) If P(n) is a polynomial, of degree pf whose leading term has a numer¬ 

ical value ani>, prove that 

lim 
n=> oo 

anP __ 1 

IPMI ~ 

(b) From part (a), and the definition of limit, show that for sufficiently 

large n, n > Ni, 

1 

2 anp 
< 

1 

Pin) 

(c) From part (5), and problem 9, and section 55, show that the series 

_L + _J_ + JL + . . . + -i_ + . . . 
P(l) T P(2) T P(3) x T P(») t 

is absolutely convergent, if p ^ 2. 

(d) Use the same method to show that if the general term of a series is the 

quotient of two polynomials, with that in the numerator of degree at least two 

less than that in the denominator, the series is absolutely convergent. 

14. If the terms of an infinite series, are such that 

lim 
n = co - c, and C < 1, 

show that the series is absolutely convergent, by taking as the comparison 

series of section 55, 

A(1 + c -f-c2 + c3 + * • • ) 

and starting with the (Ar -f- l)st term of the given series, where 

C < c < 1, A - |utf+i| 

and N is so large that, for n greater than N, the ratio differs from its 
\Un-i\ 

limit, C by less than c — C. 

57. Uniformity. Consider a variable function, defined 
over some range of the variable x for an infinite succession of values 
of t. As in section 51, t may either vary continuously or change 
abruptly. An example of the latter situation is obtained by con¬ 
sidering the partial sum to n terms of a series, each of whose terms 
is a function of x} 

Sn(x) = Ui(x) + U2(x) + - ■ • + Unix). (18) 

The variable x may be real, in which case we shall be concerned 
with an interval, or the variable may be complex, in which case the 
range will be a two dimensional region. 
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Suppose, for each value of x considered, as x0, the succession of 
constants, /<(x0) approaches a limit, Fix0), in the sense defined in 
section 51. Thus, for this value of x, x = x0, and any fixed small 
positive quantity, say 77, when we go sufficiently far out in the 
succession, say t beyond TVt xo, the numerical value of the difference 
between F(x0) and ft(x0) will be less than the fixed small quantity, 
or 

\ft(xo) - F(x0)| < V, beyond i = TVtXc. (19) 

As the notation indicates, if we take a smaller quantity 77, or a 
different x0, we may have to go further out in the succession, and 
take a new TViX0. If, when the small positive quantity is fixed, 
it is possible to find some point in the succession, i.e., a Tv, which 
will serve for all values of x in the range considered, we say that 
ft(x) approaches F(x) uniformly in x, for the range considered. 

In particular, if the function is the partial sum of an infinite 
series of functions, as the sn(x) of (18), and sn(x) approaches S(x) 
uniformly in x, for any given range, we say that the series converges, 
to the sum S(x)} uniformly in x, for the given range. 

68. Continuous Limiting Function. Suppose that each of the 
functions /,(x) is continuous at x = x0, as defined in section 53, 
so that 

lim ft(x) = ft(x0). (20) 
X«“X0 

for each value of t. Then, if x is inside a range in which /,(x) con¬ 
verges uniformly in x to F(x), F(x) is continuous at x0. For, by 
the uniformity, there is some point in the succession, Tvy such that 

thereafter, for any value of x, Xi, in the range, the values of ft{x) 
and F{x) are arbitrarily near together, i.e. 

\ft'(xi) - ^(xi)| < 77, t' beyond t = Tn. (21) 

In particular, if we consider x0, 

\ftixo) - F(x0)| < 77, t' beyond t = Tv. (22) 

But, for any fixed t' beyond Tv,f< '(x) is continuous, so that (20) 
holds, and in particular for all Xi in the range, sufficiently close to 
Xq we will have 

l/«'(Zl) - ff(xo)| < v- (23) 
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With this choice of t', and any such xh equations (21), (22) and 
(23) all hold, and hence, 

IF(xt) ~ Ffa)l < 3*. (24) 

Since y is an arbitrarily small fixed positive quantity, so is 3y, and 
(24) shows that when x\ is sufficiently close to x0, F(xi) is arbitrarily 
close to F(xo), i.e. 

lim F(x) = F(x0), (25) 
X=Xo 

so that F(x) is continuous at x0. 
In particular, if each of the terms in an infinite series is a func¬ 

tion of x, continuous at x0, the same is true of the sum of any finite 
number. Thus, if in (18) the un(x) are all continuous at x0, s„(x) 
will be continuous at x0. Hence, by the result just proved, if the 
series converges to S(x) uniformly, S(x) will be continuous at x0. 

69. A Test for Uniform Convergence. The following theorem 
gives a useful test for uniform convergence. If for some range of 
Xj each term of the series of functions 

Ui(x) + u2{x) + uz(x) + • * • (26) 

is numerically less than the corresponding term of the convergent 
series of positive constants. 

T = Mi + M2 + Af3 + • • •, (27) 

so that 

M*) | g Mn) (28) 

then the series of functions (26) converges uniformly in x for this 
range. The series is absolutely convergent for all such values 

of x. 
For any fixed value of x in the range, x0f the series (26) converges 

by the theorem of section 55. Let its sum be S(x), and its partial 
sum to N terms be sThen we have 

S(x) - sN(x) = lim [sn(x) - sN(x)] 
o 

= lim [«iv+i(a;) + uN+2(x) + • • • + un(x)] (29) 
n*»x 

= uN+i(x) + uN+t(x) + uN+3(x) + ■ ■ ■. 

By similar reasoning, if tn is the partial sum to N terms of the series 

(27) we have: 

T — ts = Mji+i + -1/.V+2 + Mff+i + • • •. (30) 



EXERCISES 223 

Since the infinite series on the right of (29) is term for term numeri¬ 
cally less than that on the right of (30), by the theorem of section 
55, its sum is numerically less, and hence 

|S(x) - Stf(z)| g \T - <*1, (31) 

for all values of x in the range. Thus we may make the left mem¬ 
ber numerically small, for all x) by selecting an N which makes the 
right member small, and we have uniform convergence. 

The absolute convergence follows from the remark at the end of 
Section 55. 

EXERCISES XXXVII 

1. Using the test of section 59, with 

1 -f a + a2 -f • • • 

fts the series of positive constants, show that the series 

1 + x + *2 + ** + * • 
converges uniformly in x, for the range defined by any fixed a, 

a < 1, and |x| < a. 

(2) (a) Show that the difference between the sum of the series in problem 1, 
xn+l 

and the partial sum to n terms is ------ , which is numerically less than 

a«+i 
--- , and prove the uniform convergence directly from this. 

0b) By considering the behavior of the expression in part (a) for values of 

x near 1, show that while the series converges for all values of x such that 

|x| < 1, it does not converge uniformly in x for this range. 

3. Noting that the nth term of the series 

+ ; + ■ 
(1 + x)(l + 2x) 1 (1 + 2x)(l + 3.r) ' (1 -f 3x)U -f 4x) 

1 1 

+ 

may be written 
1 -f" TW' I 4* (n 4" l)*r 

, show that for 0 < \x\ < 1, the par¬ 

tial sum to n terms of the series is 
1 1 

1 4- x 1 4- (n 4- l)x 
, so that the sum 

1 
•. Hence show that, if S (x) be the sum of the series, of the series is v . 

1 4- £ 
$(0) = 0, but lim S(x) — 1. It follows from the theorem of section 59, that 

2=*0 

the series can not converge uniformly in x in any region containing the origin. 

Verify this by a direct examination of the difference between S(x) and sn(x) for 

values of x near zero. 
4. Show that, for all values of x, the partial sum to n terms of the series 
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is 1 — and discuss the non-uniformity of the convergence for a 

region including the origin, along the lines indicated in problem 3. 

q -f btx2 
6. If F(x) = lim and ft(x) - ■ - > show that we have non-uniform 

£*= oo 1 i *x 

convergence in any region including the origin, and that F(0) - a, but F(x) = &, 

x 0. Thus F(x) is not continuous for x = 0, if b a, but is continuous if 

b = a. 

6. If the nth term of a series of functions, unW is defined to be 1 for values 

of x such that n is the biggest integer less than or equal to 1/M, and otherwise 

zero, show that the series converges for all values of x, having a sum 1 when 

x 0, and \x\ < 1, and a sum 0, when x is zero. The convergence is non- 

uniform in any region including the origin. 

7. Using the fact that the integral of a real function over an interval is 

numerically at most the product of the length of the interval times the greatest 

numerical value of the integrand, prove that if ft(x) converges to F(x) uni¬ 

formly in x, for the range a ^ x ^ 6, then f ft(x) dx converges to f F(x) dx, 
Ja Ja 

for all values of x in the given range. Applied to series, this show's that a uni¬ 

formly convergent series of real functions may be integrated termwise, and the 

new series is uniformly convergent. 

8. Except for x = 0, the limit, F(x), of the function ft(x) = 

as t = oo, is 0, so that f F(x) dx = 0. However, lim f ft{x) dx - 
Jo /na QO JO 

liin tan'”11 — ir/2. Thus, by problem 7 the convergence can not be uniform. 
<*» OO 

Show this directly. 

9. If ft(x) — t sin tx, when 0 < x < ir/t, but ft{x) — 0, wThen ir/t < x < t, 

show that lim ft(x)-F(x) = 0, and f F(x) dx = 0, while lim f ft(x) dx = 2. 
t= 00 Jo 00 J0 

Discuss the non-uniformity as suggested in problem 8. 

60. Power Series. In section 6 we defined a power series in the 
complex variable z — (7, as a series of the form 

A0 + A1(z -C) + A2(z - cy + A3(z - cy + • • •, (32) 

in which C and the coefficients A0, A i, A2y etc. are complex con¬ 
stants. When C = 0, we have the power series in z, 

Aq + A\Z + A2z2 + A$zz * * •. (33) 

To save writing, we shall for the most part discuss this last form. 
Most of the results may be carried over to the more general form, 
by taking z — C as a new variable, which amounts to moving the 

origin to the point C 
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We first prove that, if the series (33) is convergent for any 
value z = zi 0, it converges uniformly in z for the range \z\ g r, 

where r is any positive number less than |zi|. It is also absolutely 
convergent for these values of z. For, by the remark at the end 
of section 54, since the series converges for z = zi, there will be 
some number, say B, numerically larger than all the terms of the 
series, so that 

\Anzin| < B. (34) 

It follows from this that, for all values of z such that 

if 

\z\ Sr < |zi|, 

and 

then c < 1, 

\AnZn\ = | < Bcn. 

(35) 

Thus for these values of z, the series (33) is term by term numeri¬ 
cally less than the series of positive terms 

B + Be + Be2 + Be3 + • • 

This last series is a geometric progression with ratio less than one, 

and therefore converges. Thus, by the test for uniform conver¬ 
gence in section 59, the series (33) converges uniformly in z for the 
range given by (35), that is, the region consisting of all the points 
inside and on the boundary of a circle of radius r with center at the 
origin, and is absolutely convergent for these values. 

We shall refer to such a circle as a circle of uniform convergence, 

and the result just proved shows that, if a power series for any 
value of z besides z = 0, there are such circles. 

Since the powers of z are all continuous functions, by section 58 
we see that the sum of a power series, f(z), is a continuous function 
of z at all points inside and on any circle of uniform convergence. 

61. Operations on Power Series. If we have two power series, 

f(z) = Aq + A\Z + A2Z2 + A3Z3 + * * • 

g(z) = B0 + B\Z + B2Z2 + B&z + • • •, 
(36) 



226 ANALYTIC FUNCTIONS 

it follows from section 56 that 

f(z) + q(z) — (A0 + Bq) + (-4i + B\)z + (A2 + Bz)z2 + • • • 
(37) 

and 

f(z) • g{z) — AqB$ + {AqBi + AiB0)z + 

(A0B2 + A.B. + A2BG)z2+ • • 1 ; 

for values of z in any circle with center at the origin, or radius 
r < \zi\9 where z\ is any value of z for which both the series of (36) 
converge. 

By repeated application of (38), we may find the series for the 
successive powers of a given series. For example, the powers of 
a function given by a series with first term zero, 

h(z) = Ciz + C2Z2 + C323 + • • • (39) 

are 

h2 « Ci2*2 + 2CiC2*3 + (C22 + 2ClCz)z^ + • • •, 

h3 - Ci3z3 + 3Ci2C2zi + (3Ci2C3 + ZCiCf)# + • • *, (40) 

These suggest a method of finding a power series for a function 
of a function of this type. Thus, from 

f(h) = Aq 4* A\h + A2h2 + AzW + • • •, (41) 

(39) and (40), we find the series 

A0 + (AtCi)z + (AlC2 + A2Cx2)z2 + 

(AiCz + 2A2CiC2 + A*Cx*)z* + • • •. (42) 

To prove that, for sufficiently small z, this series actually con¬ 
verges to f[h(z)], we first consider the case in which all the coeffi¬ 
cients Ci, Ct, • • • as well as A0, Ah A2j • • • are positive or zero, 
and a positive value of z such that the series 41 converges for the 
corresponding positive value of h. Then, since the sums of the 
series (40) and (41) are greater than any of their partial sums, 
which increase with the number of terms, for any two integers 
M and N, M > N the difference between the sum of (41), and the 
sum to M terms of (42) will be less than the difference between the 

sum of (41), and its sum to N terms, plus the difference between 
the sum, and sum to M terms for each of the series for the first 
N powers of h, multiplied by the corresponding coefficient Ax, 
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A2, • • • An. However, for any N large enough to make the first 
difference small, there are larger numbers M such that the other N 
differences, multiplied by the coefficients and added together, are 
small. Thus when M becomes infinite, the sum of (42) to M 
terms approaches the sum of (41) for the case considered. 

For the general case, we apply the argument just given to the 
numerical values, and find the differences for this case numerically 
less than those for the numerical values. Thus, at least for values 
of z such that the sum 

\C\\ \z\ + \C2\ \z\2 + |Ca| |z|3 + • * * (43) 

converges to a value hi for which 

\A0\ + |-4i|Ai + |^2|^i2 -f- \Az\hiz -f- • • • (44) 

converges, the series (42) converges to f[h{z)]. 
We next consider the problem of expressing the quotient of two 

power series in a power series as an application of these processes. 
We first note that if A0 0, 

for values of z such that \z\ < \AQ\, by problem 7, p. 218. 
By replacing z in this series by 

h(z) = — Aiz — A2z2 — A3z3 — • • •, (46) 

we obtain a power series for 1 /f(z)f where f(z) is the power series 
of (36). Then, by applying (38), to this series and g(z), we obtain 
a power series which converges to the quotient g(z)/f(z) for suffi¬ 
ciently small values of z 

EXERCISES XXXVm 

1. (a) Prove that the series 

r2 r3 

1 +r+2!+3i + ' ‘ ' 

converges for all real values of r, by comparing the terms after the iVth with a 

geometric progression with ratio rj N, where N is any integer greater than r. 

(6) From the result of part (a), prove that the series for e*, sin z, cos z, sinh z, 

cosh z converge for all complex values of z, and hence that any circle with center 

at the origin is a circle of uniform convergence for these series. 
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2. (a) By comparing the terms after the Nth, where N is so large that 
I wi — N I 

“ < c < 1, with a geometric progression, prove that the series 
\N + 1 

- , , m(m — 1) _ , m(m — 1) (m — 2) . 
1 + nur + -.— o'— r2 4-1 6-r3 + 

1 • 2 1-2-3 

converges for all real values of m, and all real values of r, numerically less than 1. 

(6) Use part (a) to prove that the series 

/(z, m) *= 1 4~ wz + 
m(m — 1) „ , m(m — 1) (m — 2) 
-—-zl -f-—- 2! 3! 

z3 4- 

for any one real value of m, is uniformly convergent in z, in any circle with 

center at the origin, and radius less than 1. 

(c) Prove that, for any one value of z, and |m| < M, the series converges 

uniformly in nt. 

3. (a) Prove that the function of problem 2 (b), defined for z less than unity, 

satisfies the relation (1 ~f z) f(z, m) — f(z, m 4- 1). 

(6) From part (a), and the fact that/(z, 1) = 1 4- z, prove that when m is 

a positive integer, zero, or a negative integer, /(z, m) — (1 4* z)m- 

4. (a) Prove that, by problem 3 (6), 

/(z, m) • f(z, n) = /(z, m 4- n) 

for integral values of m and ?t, and hence the coefficients must be related as 

required by (38), and the relation is true, for all real values of m and n. Verify 

for the first few coefficients. 

(b) From part (a), deduce that f(z, m) = (1 4“ z)m for all rational values of m. 

(c) From problem 2 (c), prove that for a fixed z,/(z, m) is a continuous func¬ 

tion of m, and hence by part (6) of this problem equals (1 4- z)m for irrational 

values of m, as these powers are ordinarily defined. 

6. A power series in z may be written as a power series in z — C, by writing 

z = (z — C) 4- Cy and using this to express the powers of z as polynomials in 

(z — C). Noting that, if |C| < r, and |(z — C)| < r — |(7|, then |(z — C)| 4- 

|(7| < r, show that if the original series converges for Zi, and |zi| = r, the new 

series converges for |z — C\ < r, and has the same sum as the original series. 

The coefficients of the new series are themselves infinite series, which must 

first be shown to converge. 

62. Derivatives. If y = f{x) is a real function of the real vari¬ 
able xf and 

lim 
h= o 

f(x + h) - f(x) 
h /'(*), (47) 

regardless of how h approaches zero through real values, we define 
f'(x) as the derivative of y with respect to x, dy/dx. 

Similarly, if w = f(z) is a complex function of the complex vari¬ 
able Zy and 

lim **.-M =m, (48) 
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regardless of how h approaches zero through complex values, we 
define /'(z) as the derivative of w with respect to z, dw/dz. 

We shall now prove that, if f(z) is given by a power series, for all 
values of z inside a circle of uniform convergence, there is a deriva¬ 
tive as defined by (48), and it may be expressed as a power series 
by differentiating each term by the familiar rule for real functions. 

Let the series 

f(z) — Aq + A\Z + Aiz2 + AzZ2 + * * • , (49) 

be convergent for z = Z\, and therefore absolutely convergent for 
any value numerically less than this. 

Let \z\ = r, at the point where we are investigating the deriva¬ 
tive, so that r < |zi|. We take p any positive number such that 

r + p < \zi\. Then 

Mo| + l^i|r + \A2\r2 + jAsJr* + * • • 

and 

\A0\ + |-4i|(r + p) + \A2\(r + p)2 + \As\(r + pY + • • • 

each converge, in consequence of the absolute convergence of (49). 
Hence the series obtained by subtracting these termwise, and 
dividing by p will converge. Its general term is 

\A„\ 
(r + p)n 

V 
-1 4- n{n ~ U rn 

^ 1-2 
-p + )• (50) 

The second form shows that it is positive, and decreases if p is re¬ 
placed by any smaller number. 

Now let h be any complex number numerically less than p, and 
form the series for the difference quotient 

fc + h) - /(*) 
h 

which has the general term 

. (z + h)n - zB 
1. AH(nz»-* + -(yr2--} z”~*h (51) 

Since the numerical value of this is less than that found from the 
second form by taking the numerical values of the terms separately, 
it is less than the term (50), which came from a convergent series 
of positive terms. Hence, by the test of section 59, the series with 
terms given by (51) converges uniformly in h, for |A| < p. Thus, 



230 ANALYTIC FUNCTIONS 

by section 58, it converges to a continuous function of hy and the 
difference quotient approaches a limit, for h = 0, given by putting 
h = 0 in the separate terms, so that, finally: 

f'(z) — A i + 2A*z + 3Aaz2 + 4A4Z3 ■+-•••. (52) 

On p. 14, we defined an analytic function of a complex variable 
as a function with a power series representation. Thus the result 
just proved shows that, if a function is analytic at a point, it has a 
derivative at the point, and the derived function is analytic at the 
point. The process may be repeated, so that there are derivatives 
of all orders. 

EXERCISES XXXIX 

1. Prove that if f(z) — Ao -f A\Z + A2z2 + Asz3 -f • • • , then Ao =■/(0), 

A\ =/'(0), A2 = f"(0)/2ly etc. This shows that if two power series in z 

represent the same function, they must have the same coefficients. 

2. Show that the series obtained for the quotient of two power series in sec¬ 

tion 61 must agree with that found by the usual long division process. 

3. Find dw/dz if w = 1/(1 — z), and \z\ < 1, both by a direct application 

of the definition, and by using the power series. 

4. Find dw/dz if w — (1 \z\ < 1, by two methods, as in problem 3. 

6. Show that, for complex functions of complex variables, 

dw dw ds 

dz ds dz' 
6. Show that the rules for differentiating products, quotients, and integral 

powers are the same for complex functions as for reals. Thus rational func¬ 

tions may be differentiated without recourse to the series. 

7. Use the series to prove that the rules for differentiating e*, sin 2, cos zt 

sinh z and cosh z are the same as those for the corresponding real functions. 

8. Prove that, if/(z) is expanded in powers of z — C, 

Kz) = £0 + Bi(t ~ C) + B2(z - O* + Bz(z -(?)* + •••, 
by the method of problem 5, p. 228, or otherwise, then 

Bo = f(C), Bi = /'(C), Bo = etc. 

9. If the solution to a differential equation be assumed in the form of a 

power series, and the coefficients are determined so that the equation is satisfied, 

show that if the series giving the solution converges for z =* zlf it represente a 

solution of the equation for \z\ < \zx\. Use this method to solve the equations 

= <»£+«-* 
10. Prove that Bessel’s function of order w, 

= With 01 * 1 fa the term> 
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is a solution of the differential equation + \ ~ 

11. Prove that Legendre’s polynomial of order n, n an integer, 

Pn(z) = T (—1)£ -_ 
*~0 2»)fc!(w - k)\(n - 2k)l 

is a solution of the differential equation 

zn~^k, with 0! * 1 in the first term, 

(1 - z2) 
(PlV 

dz2 
2z ^ + n(n -f 1 )w » 0. 

(lz 

12. Prove that the hypergeometric function 

F(a 6* c* z) = 1 4- z 4- - 2ji, , , 
K ’ ’ ’ } ^1 c ^ 1 • 2 • c(c + 1) ^ 

is a solution of the differential equation 

2(1 - z) ^ + lc - (a + b + 1)2] ^-abw - 0. 
dz1 dz 

63. Integrals. For real variables, the indefinite integral of a 
function, f(x), 

/ fix) dx = Fix) (53) 

is defined as a function whose derivative F'(x) = f(x). The 
definite integral, 

fix) dx = lim £ /(**) Axh (54) /. max l AxkI = 0 1 

where Xk is some point in the interval of lepgth |Ax^[, and the n 
intervals just fill up the interval from a to b. 

These two definitions are related by the fundamental theorem 
of the integral calculus, which states that 

s. Six) dx = Fib) - F(a). (55) 

For complex variables, the definition of the indefinite integral 
carries over without change. In fact, if 

then 

fit) = zlo + Ai z + A#* + 

Fit) -= A-x + A* + y *2 + Y ** + 

(56) 

(67) 
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where A_i is any complex constant, is a function having/(z) as its 
derivative for any z sucli that |z| < |zi |, where Zi is a point at which 
(56) converges. For, since the terms of (57) are numerically less 
than those of the series obtained by multiplying the series (56) by 
z, and this last series converges absolutely for any z2 such that 
|z2| < (z11, the series (57) converges uniformly for |z| < |z2|, and 
hence, by the result of section 62, it has the series (56) as its deriva¬ 
tive for all |z| < |z2) < |zi|, i.e. since z2 may be arbitrarily close to 
Zi, for all |z| < \zi\. 

The definition of a definite integral must be modified when the 
variable is complex. For, when x is real, there is only one set of 
values if can pass through in going from a to b. A complex vari¬ 
able, on the other hand, can vary continuously between two points 
in the complex plane along any curve joining them. Let, then, C 
be a curve starting at A and ending at B, two complex values. 
Then the definite integral of /(z) along C is defined by 

f /0) dz = lim Z f(zk) Azk, (58) 
%)C max|A2£|=0 tc—l 

where the curved arc AB is divided into n parts, z* being any point 
on the ith part, and A Zk being the difference obtained by subtract¬ 
ing the complex number giving the first end point from that giving 

the second end point of the fcth part. 
To study this further, we break up the functions into their real 

and imaginary components, writing z = x + iy, and 

/(z) = u{x, y) + iv(x, y), and Az = Ax + iAy. (59) 

Also we may express x and y in terms of a single parameter t for 
the curve C, so that: 

* = x{t), y = y(t). (60) 

The sum in (58) may then be written 

n 

z C«* + m)(Ax* + i Ayk), 
A; *1 

or 
n n n n 
Z uk Axk - Z % Ay* + i Z uk Ay* + i Z vt Ax*, 
A-=l fc»l k-1 k«*l 

where Axk and Ayu are the differences for two consecutive values 
of tk9 and Uk and vh are evaluated for values of x and y for some 
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value of t intermediate between these. When max \Az\ approaches 
zero, so do Ax and Ay, and the sums approach integrals. When the 
curve C is smooth, or at any rate made up of a number of smooth 
pieces, the limit of each of the sums may be written as an integral 
in t, giving 

f ux'(t) dt — f vy'(t) dt + i f uy'(t) dt + i f vx'(i) dt. 
U to 4J to tyt i/to 

Thus, using the notation of line integrals, defined in problem 13, 
p. 124, we have: 

dz — (?/ dy + v dx). (61) 

The evaluation is t hus reduced to two integrals in a real parameter 
t, the first of which is 

f 2y(t))x'(t) - v[x(t), y(i)]y'(i)\ dt. 
J to 

The parameter may be x, unless t he curve C has a part consisting 
of a straight line segment parallel to the ;y-axis. In particular, 
when the limits are both real, and the path is the segment of the 
real axis joining them, the integral (61) reduces to 

f(x)dx= £u(x, 0) dx + •X' v(x, 0) dx. 

This is the special type we have used in simplifying the evaluation 
of real integrals in Chapter III. 

We note that if the curve for which a complex integral is taken 
is traversed in the reverse direction, we shall have the same ordi¬ 
nary integrals, but with limits interchanged, so that the value of 
the integral will be the negative of its original value. 

64. Integral of a Polynomial. Let us apply the definition (61) 
to the evaluation of the definite integral 

fc*ndz, (62) 

where n is a positive integer. Since it will appear later that the 
value only depends on the initial point, zn and final point Zi of the 
path C, we shall not specify the path beyond this. 
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We note that the two integrands on the right in (61) are the real 
and imaginary components of 

f{z) dz = (u + iv)(dx + i dy), (63) 

which gives a simple way of remembering or calculating them. 
Let us introduce polar co-ordinates. Then 

z — r\d = r cos 0 + ir sin 0, 

f(z) ~ zn — f*\n$ — rn cos nO + trn sin nd. 

For the total differential of zy we have 

dz = dr cos 0 + i dr sin 0 — r sin 0 d6 + ir cos 0 dO, 

= dr\9_ + r . 

It follows from these results that 

zn dz = r”Jn0 dr|0_ + r dd 0 + 

= rn dr\(n + 1)0 + rn41 dd\(n + 1)0 + 

Thus the integral (62) is equal to 

J rn dr cos (n + 1)0 — rn+1 dd sin (n + 1)0 

+ i J* rn dr sin (n + 1)0 + rn+1 dO cos (n + 1)0. 

But each of these integrands is an exact expression, being the 
total differentials of 

r”4-1 cos (n + 1)0 
n + 1 

and 
rnfI sin (n -f 1)0 

71+1 

respectively. Hence, by problem 13, p. 124, the line integrals may 
be calculated by using these expressions and the value of r and 0 
at z0 and z\. Since we have 

r”*1 cos (n + 1)0 ,rn41 sin (n + 1)0 _ zn+l 
n+ 1 1 n+1 7i+l* 
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it follows that, for any path going from z0 to zi, 

x zn dz = 
Zin+l — 2qw+1 

n + 1 
(64) 

so that the rule for evaluating the definite integral of an integral 
power of a real variable applies equally well to such a power of a 
complex variable. 

From the original definition of a complex integral as the limit of 
a sum, (58), it follows that if the integrand is multiplied by any 
complex constant, the only effect will be to multiply the integral 
by the same constant. Also, the integral of a sum will be the sum 
of the integrals. 

Thus, from (64) it follows that the definite integral of any poly¬ 
nomial in z depends only on the end points of the path of integra¬ 
tion, and may be found by the same procedure used for real poly¬ 
nomials. 

66. Integral of a Series. We may derive a bound for the numer¬ 
ical value of a complex integral from (58). For, since Azk has as 
absolute value the length of the chord joining two points of sub¬ 
division of the path C, if f(z) is in absolute value less than or equal 
to M for all points of the path, it follows that 

Z /(z*)AzJ 
IA«1 

S X |/(zt)A?*| 
1 

|Az*| 
1 

• L, 

where L is the length of the path, since the sum of the chords is less 
than the sum of the arcs themselves. Hence, on taking the limit, 
we have 

^ M • L. (65) 

Now consider a succession of functions, approaching a 
limit function f(z), uniformly in z along a curve C. To compare 
the integral of the function with that of the limit, we note that 

IX [/(*) — /<(*)] dz S M, • L, 

where Mt may be taken as the greatest value of |/(z) — ft(z) j on 
the curve C, and L is the length of C. Since the limit /(z) is ap- 
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proached uniformly, Mt approaches zero, and hence Mt • L, since 
L is fixed. Thus the left member also approaches zero, and 

lim Jcft(z) dz = fcm dz. (66) 

In particular, the function ft(z) may be the partial sum of an 
infinite series, in which case the result shows that a series of func¬ 
tions which converges uniformly in z for a region including the 
path of integration, may be integrated termwise along this path. 

Since a power series converges uniformly in z in any circle of 
radius r, less than zh where zi is a point at which it converges, it 
follows that we may integrate termwise along any path entirely 
inside such a circle. Since the partial sums are here polynomials 
in z, they may be integrated by the elementary rule, as shown in 
section 64. 

Comparing this result with the indefinite integral as defined by 
(56) and (57), we see that, for any path entirely inside a circle of 
uniform convergence, the integral of a power series depends only 
on the end points, and is given by the formula, analogous to (55), 

fZlm dz = F(Zi) - F(zo). 
Zii 

In particular, for any closed path entirely inside a circle of uni¬ 
form convergence, Zi = z(), and the integral is zero. 

EXERCISES XL 

1. Evaluate the in z dz, (a) where C is any path joining 0 and 

1 -f i, by using the indefinite integral; (b) where C is the path x =* l2, y — tz, 

t varying from 0 to 1, by using the line integrals. 

2. Evaluate the line integrals which give J z2 dz over the path x = Si, 

y = St, and also over the path x — St, y = St2, t varying from 0 to 1 in each 

case. Check by using the indefinite integral. 

3. Evaluate the integral of ez over the path x — 2, y = t, where t varies 

from —1 to 1, and check by using the indefinite integral, and problem 7, p. 230. 

4. Prove that if the origin is not on the path the argument by which (64) 

was derived applies equally well if n is any negative integer, different from — 1, 

and hence find the integral of z-2 over any path joining — 1 and 1 which does not 
go through the origin. 

5. Prove that 

x >z* dz 

ZX z 
(In r + id) = log* Zt - log* Zi, 
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provided that the origin is not on the path, and the angle of log* Zj> is obtained 

from that of log* z\ by continuous variation along the path. 

6. By taking a new origin at a, any complex number, and applying problems 

4 and 5, show that if the path C is a circle of radius R and center at a, traversed 

in the positive direction, 

x dz 

z — a 
27riy 

Sc 
dz 

C (z — a)n 
= o, n > 1. 

66. Cauchy-Riemann Differential Equations. In section 62 it 
was proved that if z is any point inside a circle of convergence of a 
power series for/(z), 

lim 
h —0 

f(z + h) - f(z) 
h = m (67) 

regardless of how h approached zero through complex values. 
This puts certain restrictions on the real and imaginary compo¬ 

nents of f(z). To investigate them, we put 

z = x + iy, h — Az = Ax + /A y, 
and 

f(z) = /(x + iy) = u(x, ?/) + ivfo y), 

/(z + h) — /(z) = A/ = Au + i At;. 

With this notation, (67) becomes 

,. A?/ + i At> 
hm -—■■ . A- 

a*. Ay-o Ax + i Ay 
(68) 

In particular, we may let Az approach zero through real values, 
in which case, Ay = 0, and Az = Ax. The equation (68) then 
shows that: 

du .do . 
(69) 

Similarly, we may let Ax — 0, and Az = iAy. 

find from (68) 

• ^u i ^y 
* + dy 

= /'(2). 

In this case we 

(70) 

Since the right members of (69) and (70) are equal, so are the 
left members, and on equating real and imaginary components, we 

obtain 
du _ dy do _ du' 

dx dyy dx dy 

These are known as the Cauchy-Riemann equations. 
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As/'(z) is again a power series, it has a derivative /"(z), and on 
using/'(z) in place of f(z) in (69), we find 

d2u .d2v 
dxi + tdx* 

■fit). (72) 

If we apply this process to (70), we find 

.d2v 

lW2 
^=r(2). dy2 

(73) 

As the real and imaginary components of these expressions must 
agree, we have 

d2U _ __ 6% d^V __ _ d2V 

dx2 dy21 dx2 dy2 

Thus both w and satisfy Laplace’s equation, 

dx2 + dy2 U* 
(74) 

This last fact is the basis of many of the applications of analytic 
functions of a complex variable to physical problems which lead 
to Laplace’s equation. 

EXERCISES XLI 

1. By using the equations (71), find out which of the following expressions 

are surely not analytic functions of z = x -f iy. 

(a) x2 — y2 — 1 -fi 2z 4* 2ixy + 2iy, 

(b) x2 H- y2 + y + 2x -f 2ixy -f 2iy, 
(c) (a + bi)(x -f- c -f di) + (—6 + ai)(y -f e + /t), 

(d) cos a: + te-? sin x. 

2. Prove that in each part of problem 1 where the equations (71) are satis¬ 

fied, the expression is equal to the analytic function obtained by replacing y by 

zero, and x by z. 

3. (a) If z is expressed in terms of r and 0, apply the argument of the text 

to derive the two expressions for the derivative: 

/'(*) = (^ + *§;) (cos9 -iBine), 

and 

/'(z) = _ _ + 1 _ j (tan 0 + i cos 0); 

(b) From part (a), derive the equations 

du 1 dv dv 1 du 
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4. Express zn in polar co-ordinates, and by means of problem 3 (a), show 

that its derivative is ?izn~l. 

6. By using equations (69), prove that the rules for differentiating e*, sin z, 

cos z, sinh z and cosh z are the same as those for the corresponding real func¬ 

tions. 

6. Verify that the equations (71) are satisfied for each of the functions of 
problem 5. 

67. Cauchy’s Integral Theorem. This theorem states that, if 
C is the complete boundary of a region R, such that the single¬ 
valued function f(z) is analytic at all points in R and on C, 

f f{z) dz = 0. (75) 
Jc 

When R lies entirely inside a circle of convergence of a single 
power series representation, the theorem reduces to a result men¬ 
tioned in section 65. For the general case, we recall a result of 
problem 13, p. 124, to the effect that the line integral of M dx + 
N dy is zero about any closed curve, such that at all points on the 
curve and in the region bounded by it, 

dM _ dN 
dy dx 9 

(76) 

and these partial derivatives are continuous at these points. 
But, by (61), the left member of (75) is expressible in terms of 

two line integrals, 

dy) + if (u dy + v dx), (77) 

and the argument of the last section shows that the partial deriva¬ 
tives of u and v are continuous, by (69) and (70), since f'(z) is con¬ 
tinuous, and satisfy (71), which may be written 

du _ __ dv du __ dv 
dy dx7 dx dy’ 

(78) 

at all points where f(z) is analytic. But as the condition (76), 
applied to the two integrands of (77), is precisely the condition 
(78), Cauchy’s theorem is proved for the case in which the region 
R is bounded by a single closed curve. In this case R is said to 

be simply connected. 
When the region R is multiply-connected, so that its complete 

boundary consists of several closed curves, like that of Fig. 38, it 
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may be divided into a number of simply connected pieces, like 
jRi and R2 by the “ cuts ” AB and CD. The curves bounding 
Ri and R2, together make up the boundary of the original region 
together with AB and CD taken twice in opposite directions. 
Thus, since the integral is zero for the boundary of Hi and R2 taken 
separately, and the integral over A B is the negative2 of that over 

B 

BA, the integral is zero for the boundary of the original region. 
It is to be noted that the two curves are traversed in opposite 
directions, the general rule being to take such a direction that the 
bounded region is always on the same side, in this case the left, as 
we go round. 

EXERCISES XLII 

1. Prove that, if the multiply-connected region R is bounded by two closed 

curves, Ci and C2, and f(z) is analytic in the region R as well as on Ci and C2, 

then 

J^/0) dz = fcJ(z) dz, 

if we traverse both curves in the same direction. 

2. Using problem 1, show that the result of problem 6, p. 237 is unchanged 

if the circle be replaced by any closed curve which does not cut itself, and has 

the origin inside the region bounded by it. 

3. Using problems 1 and 2, show that, if f(z) is analytic at all points of a 

simply connected region Rf its boundary C, except the point a in R, and for 

0 < \z — a\ < \zi — o|, 

/(z) = + ■ • • + ~a + A0 + A i(z - a) + A2(z — a)2 + • • •, 

2 The condition that f(z) is single-valued insures that the same values are 
used on the two sides of AB and CD. 



EXERCISES 241 

then 

^/(z) dz = 2tt?;A_i, 

where the integral is taken about C in the positive direction. 

4. The coefficient A_i in the expansion of problem 3 is called the residue of 
the function /(z) at the point a. (a) Prove that, if f(z) and g(z) are two poly¬ 

nomials with g(z) divisible by z — o, but not by (z — a)2, then the residue of 

f(z)/g(z) at a is f(a)/g'(a). Compare problem 10 (6), p. 111. 

(b) Prove that, if a function is analytic at all points of a simply connected 

region R and its boundary C except a finite number of points in 72, the integral 

of the function, taken about C in the positive direction, is 2tri times the sum of 

the residues at these points. 

(c) Apply the results of (a) and (b) to find the integral of 4/(z2 — 4) taken 

positively around a circle of radius 3, with center at the origin. 

6. Let f(z) /g(z) be a rational function in its lowest terms. Let the equation 

g{z) = 0 have no real roots, and the degree of /(z) be at most 2 less than the 

degree of g(z). Let the roots of g{z) with positive imaginary component, i.e. 

in the upper half plane, be «i, a2, • • • ak, and draw a semicircle with center at 

the origin of radius 72, so large that all these roots are inside the semicircle, 

(a) If S denotes the semicircle traversed negatively, show from problem 4 that 

S R fgF) ^ Js ’gfi) ^Z ” ^7rt* (sum res^ues at points a); 

the first integral being taken along the real axis. 

> /(z) 
(6) Since z2 

g(z) 
approaches a finite limit when |z| becomes infinite, when R 

is large enough we must have 80 that, by (65), the integral over S 

in (a) is less than K/R? • wR, which approaches zero when R becomes infinite. 

From this and (a) deduce that 

6. Evaluate 

/oc 

-c 

s: 
f(z) 
-fidz — 2iri (sum of residues at points a). 

1 
dx by using problem 5(6), and check by elemen- 

f — qo X2 -f- 1 

tary methods. 
7. Use the method of residues of problem 5 (b) to evaluate 

(a) 

(c) 

f- 
1 

oo x4 4- 1 
dXy 

dx 

oo (x2 -f a)2 + 62 ’ 

(6) 

id) 

x2 

-ao X* 4- 1 
dx, 

dx 

-oo (x2 + a2)(x2 + V) * 

8. (a) Prove that, if a polynomial of the nth degree f(z) is divisible by 

(z — a.)P, but not by (z — a)P+l, the residue of/'(z)//(z) at a is p. 

(6) From (o) and problem 4 (6), prove that 

i 
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is always an integer, or zero, and gives the number of roots of f(z) taking ac¬ 

count of their multiplicity in the region bounded by C, provided no root lies 

on C. 

(c) Since m ~ has a numerator of degree at most n — 2, and denomi- 
z 

nator or degree ft, we may show by the reasoning of problem 5 (6), that, if C 

is a circle of radius R with center at the origin, 

lim 
R—oo 

dz = 0. 

Show from this that 

lim 
R — oo X f'(z) 

C f(z) 
dz = lim I -dz - 2irin. 

72 = 00 J Z 

That is, by (b), when the circle is large enough it will contain n roots, so that 

every algebraic equation of the nth degree has n roots in the complex plane. 

68. Taylor’s Series. We may derive some information about 
the size of the circle of convergence of the power series about any 
point in a region throughout which the function is analytic, by the 
use of the Cauchy integral theorem. We first notice that if the 

function f(z) is analytic at all points of the region R, it has a con¬ 
tinuous derivative throughout this region. Let a be any point in 
the region R and C a fixed circle with center a and radius r, lying 
entirely in the region as in Fig. 39. Select z, any fixed point inside 

C, and let Ci be a variable circle with center z and radius tt, with r3 
so small that C\ lies entirely inside of C. Then, in the region be¬ 
tween C and Ci the function f(t)/(t — z) considered as a function of 

t, has a continuous derivative, by problem 6, p. 230, since it is the 

quotient of two functions, each of which has a continuous deriva¬ 
tive 
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Consequently, by the reasoning of the last two sections, its 
integral about the curves C and C1, taken in opposite directions 
and added together, is zero. Or, taking them in the same direc¬ 
tion, say the positive one, which reverses a sign, we have: 

/72U- fP-dt- fM-*+ ft®-™* (79) 
Jd-Z JCrt-Z Jc,t ~ Z Jc, t-Z 

By problem 6, p. 237, the first integral is 2iri f(z). Again, by ap¬ 
plying (65) to the second integral, we find that it is numerically at 
most 

WLlMI 2rr, = \f(t) ~m\2rr. 

But, since f(z) is continuous, this last expression approaches zero 
when t approaches z, that is, when rx approaches zero. Con¬ 
sequently, if we let rx approach zero, the last integral in (79) 
approaches zero, and the equation becomes 

XfZ(80) 

Let us next expand l/(t — z) in powers of z — a. We have 

t — z = t — a — (z — a) = (t — a) ^1 — ~~ 

z - a . (z - a)2 . 
so that 

t — z t — a L 

(z - a)"-1 

(t - a)”-1 

t — a (t — a)2 

(z — a)n 

since 

* =! + « + «*+••• + Mn_1 + U 1 — u 1 — u 

(81) 

We may express the integrand in (80) in a series in powers of z — a 
by multiplying each term in (81) by /(<). The difference between 
the sum of the series to the term in (z —a)"-1 and the integrand in 
(80) will be 

(z - a)*f(t) 

«-»)“(>- r^s)’ 
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whose numerical value, 

(z - a\n f(t) max (\z - g|\w 
\t — a) t — z |^i — z\ \ r ) 

where max |/(0| is the biggest value on C, and h is the point on C 
nearest to z. If z is inside any circle C' with center a and radius 
less than r, say r — d, the last quantity is at most 

max |/(01 ^ _ dj. 

which approaches zero when n becomes infinite. Thus, inside any 
circle C\ i.e., any circle with center a lying entirely in R, the 
infinite geometric series 

m = m , m 
t — z t — a ' (t — a)2 (*~a)+(T3^(z-«)’+• • • 

converges uniformly to its sum on the left. Hence, it may be in¬ 
tegrated termwise to give a series, which when divided by 2'W, con¬ 
verges to f(z) by (80). Indicating the coefficients, which are inde¬ 
pendent of z, by our usual notation, we obtain finally a series 

f(z) = Ao + Ai(z — a) + A2(z — a)2 + Az(z — a)3 + • • •, (82) 

where 

An = 2ri fc (t — a)n+1 dL ^ 

This proves that, if a function is analytic at all points of a region 
72, the power series expansion about any point in R will converge 
uniformly in any circle with this point as center, lying entirely in R. 

The argument of section 62 shows that the function f(z) given 
by the series (82) has derivatives of all orders, which may be found 
by termwise differentiation, at all points inside a circle of uniform 
convergence, and in particular at z = a. This shows that 

/(a) = Ao, /'(a) = Ah /"(a) = 2A2, • • -fW(a) - n\ An, (84) 

so that the series (82) has the same form as the Taylor's series de¬ 
fined in the calculus. Thus the above result shows that the Tay¬ 
lor's series of a function about any real or complex point a, will 
converge to the function for all values inside any circle, with center 
a, provided that the function is analytic at all the points inside 
this circle. 
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EXERCISES XLin 

1. Show that the formula (83) still holds if the curve C is any closed curve, 

with the point a in its interior, lying entirely in R. 

2. Show that if f(z) is analytic at all points of a region R, C is any closed 

curve lying entirely in R, and a any point inside C, then 

f(a) = f ----- ■ dt and f(»)(a) 
2m J c t — a J 

2iL f ,-,M_ dt 
2mJc {t - a)*+1 

The first of these is known as Cauchy's integral formula. 

3. Taking the curve of problem 2 as a circle of radius r, with center at a, and 

using (65), show that 

where M is the maximum value of |/(/)| on the circle. 

4. Find the radius of the largest circle inside which the convergence of the 

Taylor's series is guaranteed by the theorem of section 68, about the origin, 

about the point 2 and about the point —2i, for each of the following functions: 

(a) 
1 

1 + «’ 
(b) 

1 

1 + 22' 
(c) 

1 
z2 + 6z 4- 10 • 

69. Alternative Definitions of Analytic Functions. We have 
defined a single-valued function as analytic at a point, provided 
this point is inside a circle of convergence of some power series 
representation of the function. We have seen that in this case 
the Taylor's series about this point will represent the function, at 
least for all values inside any circle inside the region in which the 
function is analytic. Thus the definition 

I. A function is analytic in a region, if each point of the region 
is inside a circle of convergence of some power series representa¬ 
tion of the function, may be replaced by 

II. A function is analytic in a region, if the function may be 
expanded in a Taylor’s series about each point of the region. 

Another possible definition is 
III. A function is analytic in a region, if the function has a 

derivative at each point of the region, which is continuous at the 

point. 
That the functions defined by I, are included in III follows from 

section 62. On the other hand, if a function satisfies III, the 
argument of section 68, which merely depended on the function/(0 
having a continuous derivative, shows that the function satisfies 
II. Thus III is equivalent to the other definitions. 
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We may use the property established in section 67 as the basis 
for a fourth definition, namely 

IV. A function is analytic in a region, if it is continuous in this 
region and its integral over any closed curve lying entirely inside 
it, is zero. 

It follows from sections 60, and 67 that the functions defined by 
I are included in IV. To prove the converse, let/(z) be a function 
satisfying IV, in the region R, and define a new function 

F(z)= f'mdt, (85) 
t/20 

wrhere z0 is a fixed point, and z a variable point in /?, and the inte¬ 
gral is taken over a path entirely in R. Just what path is taken is 
immaterial, since the difference for two paths is the same as the 
sum for the first from z0 to z, and the second from z to z0. But this 
is the integral of the function over a closed path in Ry which is zero. 
Thus (85) defines a single-valued function. 

Let us next compute F(z + Az), taking the path from z0 to z used 
in (85), together with the straight line segment joining z and z + Az, 
which will lie in the region R when |Az| is small enough. Then: 

f*z-\-Az f*t 

F(z + Az) - F(z) = / f(t) dt - / fit) 
zo %Jzo 

f*z-\- Az 

= J fit) dt. 

Combining the identity, 

/Z+AZ 

fiz) dt = f(z)Az, 

dt 

(86) 

with (86), we may deduce that 

F(z + Az) — F{z) 
Az 

IJ^im -fiz))dz+fiz). (87) 

The first term on the right, by (65) is numerically at most 

|^| max |/(0 - fiz)| • \Az\ = max |/(0 - /(z)|, 

which approaches zero when Az approaches zero since f(z) is con¬ 
tinuous in R. Thus, by taking the limit of (87) when Az approaches 
zero, we find: 
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F'(z) = lim 
A!=0 

Fjz + Az) - F(z) 
Az f(z) (88) 

Thus F(z) has a derivative, f(z) which is continuous in R, so that 
F(z) is analytic in the sense of III, which is equivalent to the other 
definitions. But, in section 62, we showed that the derivative of 
an analytic function was analytic, so that f(z) is analytic in the 
sense of I. 

Another possible definition is 
V. If a function has real and imaginary components u and v, 

f(z) = u + ivy which have continuous first partial derivatives at 
all points of a region, satisfying the Cauchy-Riemann equations: 

dll __ dv_ dv _ du 

dx dy1 dx dy} ^ 

then the function is analytic in the region. 
For, by section 66, V includes all functions satisfying I, and the 

reasoning of section 67 shows that IV includes all functions satis¬ 
fying V. 

We conclude with a somewhat more general property, which 
leads to a method of showing that a function is analytic. 

VI. The limit of any succession of analytic functions which 
approach the limiting function uniformly in a region, is an analytic 
function in the region. 

This follows from the fact that owing to the uniformity, the inte¬ 
gral of the limit is the limit of the integral, by (66), and the limit 
is continuous by section 58. Thus, as each approximating func¬ 
tion satisfies IV, so does the limiting function. 

The approximating functions may be the partial sums of a series. 
The power series of I is a special case of this. 

Since all of the definitions given are equivalent, any one might 
be used as the fundamental definition. In particular, many 
authors base a systematic treatment on the definitions III or V. 

EXERCISES XLIV 

1. If w is an analytic function of «, for s in Rlf and s is an analytic function 
of 2, for z in R2 taking on only values in R\ for z in R2, then w is an analytic 
function of z in R2. Prove this by using problem 5, p. 230, and definition III. 
Also by using problem 5, p. 228, section 61 and definition I. 

2. In section 61, using definition I, it was shown that the sum, difference, 

and product of two functions analytic at a point was analytic at the point. 
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A similar result held for the quotient if the denominator was not zero at the 

point. Prove these results on the basis of definition III. 

3. Prove that, if z — g{w) is the inverse function to w =* /(z), then 

dz _ , 1 _1_ 

dw 9 w f'(z) f'[g(w)Y 

if f'(z) 0, and z — g{w) has no derivative iff'(z) = 0, so that if f(z) is analytic 

in some region containing z0, g(w) is analytic in some region containing the 

corresponding value of w, w0 in the first case, but not in the second. 

4. From problem 3, and the definition of a branch-point given in problem 

14, p. 40, show that a function is not analytic at a branch-point. Use this fact 

to determine in what circles the Taylor’s series for the function w - vz -f- 1, 

about the origin, will converge. 

6. Show that the quotient of two analytic functions has no finite derivative 

at a point where the numerator is not zero, but the denominator is zero, and 

use this fact to determine in what circles the Taylor’s series for the function 

w = sec z, about the origin, will converge. 

6. Use definition V to show that, if u(xf y) satisfies Laplace’s equation, (74), 

then 

fix + iy)~u+i - Yy dx + £ dy’ 

where a, b is any fixed point, and x, y is any variable point in a simply con¬ 

nected region in which u satisfies (74), and the line integral is taken over a path 

lying entirely in this region, defines an analytic function in the region. Illus¬ 

trate if u ~ x2 — y2. 

7. Write down the formula analogous to that in problem 6, which determines 

an analytic function when v is given, and illustrate when v *= 2x. 

8. Prove that each of the following series defines a function which is analytic 

in any finite region. 
% ea Z e3 z 

(o) 1 + ri + 2l + 3! + ' ' ■ 

(6)sin*+8i^ + “|f£ + ... 

9. (a) Prove that the series 

m - 
1 4- 2 , 1 + 2 + *2 , 1 + 2 4- + 2* 
1*2' 2*3 ' 3-4 

defines a function which is analytic inside a circle with radius one and center 

at the origin. 

(b) Using the fact that 

JtL 1 1 1 1 

*?nAlF+T) =£nk-k + l=n’ 

show that the power series for the function of part (a) is: 

f^) = i+*+!+?+•••» 



CHAPTER VIII 

CONVERGENCE OF FOURIER SERIES 

In this chapter we shall establish certain results on Fourier series, 

as defined in section 18. In particular, we shall prove the theorem 
on convergence, stated in that section. 

70. Statement of the Theorem. If f(x) is a periodic function, 

of period T, the Fourier series for f(x) is defined as the series 

A + £ |An cos sin n{^jx , (1) 

where 
A = average of f(x), 

An - twice the average of f(x) cos (2) 

Bn = twice the average of f(x) sin n^-'jx, 

each average being taken over an interval of length T, By section 
15, it is immaterial which interval we take. 

Since the function fix) is of period T7, it is determined for all 

values of x when its values for any interval of length equal to the 

period T} say that from 0 to T, are known. We shall restrict our 

attention for the present to functions which are piecewise smooth, 

that is, functions made up in the interval from 0 to T of a finite 

number of pieces, each of which has a continuous derivative. 

More precisely, let the interval from 0 to T be broken up into k 

intervals: 

P0 to Piy Pi to P2) P2 to PZy • • • 

Ps-1 to Ps, • • * Pk-1 to Pky 

where 

P0 = 0, Pk = T and P0 < Pi < * * * <Pk-1 < P*. 

Then we assume it is possible to so select the number hy and the 

values P„ that there are k functions, <fe(x), such that 

fix) = Pj-i <C x < P5, $ = 1, 2, 3, • * • ky 
249 



250 CONVERGENCE OF FOURIER SERIES 

and each function 4>s(x) has a continuous derivative at all points 
of the sth interval, including the end points: 

The graph of one such function is shown in Fig. 40. It illus¬ 
trates the fact that in each interval, the graph has a continuously 
turning tangent, which is never vertical. 

For the values Ps, the functions and <t>5+\(x) need not be 
equal, and f(x) need not be equal to either of them. The value of 
fix) itself at these points has no relation to the Fourier series, since 
the ordinates PS} k in number, can not affect the averages in (2) 
which determine the coefficients. In fact, these averages may be 
computed from the integrals for each interval, with f(x) replaced 
by the appropriate 4>s(x), 

We notice that if x approaches a value P„ through smaller values, 
f(x) approaches (f>s(Ps), while if x approaches Ps through greater 
values, fix) approaches 4>s+i(Ps). We indicate this by writing 

fiPs + ) - f(Ps ~ ) = *(P,). (3) 

For a value of x not equal to one of the P„ i.e. inside one of the 
intervals, the value approached is the same on both sides, and 
equals the value of the function at the point. We indicate this 
by writing 

/(* + )-/(*-)-/(*), x*Ps. (4) 

In accordance with section 53, the function is continuous at all 
points for which (4) is satisfied, and discontinuous at those points 
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Pa for which it is not satisfied. Thus, the function whose graph 
is given in Fig. 40, is discontinuous at P0, P2y Pz and Pa} but con¬ 
tinuous at all other points, including Pi, between 0 and T. 

We now wish to prove that 
If /(x) is a piecewise smooth, periodic function, its Fourier 

series converges for all values of x. The sum of the series equals 
/(x), if f{x) is continuous at x, and equals §[/(x + ) +/(x — )] if 
/(x) is discontinuous at x. 

Since the proof consists in a number of results, the reader is 
advised to go over the next five sections hastily, to get the main 
trend of the argument, before studying them in detail. 

71. A Change of Scale. When Ty the period of the function is 
equal to 2t, the Fourier series (1) is simply 

oo 

A + £ (An cos nx + Bn sin nx). (5) 
n=* 1 

We may reduce the general case to this by changing the scale on 
the x-axis, replacing the original unit by a new one 2ir/T times the 
old unit. 

This is effected analytically by introducing a new variable 

TT 2tt 
X = y x> (6) 

which takes the piecewise smooth function/(x), of period T into a 
new function F(X) = f(TX/2tt), of period 2x. For any par¬ 
ticular value of x, the values of F(X)f F(X+) and F(X-) 
for the corresponding X are equal, respectively, to those of 
/(x), /(x+) and /(x —). Moreover, the sum of the series is un¬ 
changed, since the multiples of 2tv/ Tx in the first series are equal 
to the multiples of X in the new series, and the coefficients, be¬ 
ing averages, are unchanged by a change of scale in the indepen¬ 
dent variable. 

We imagine the change of scale made, but revert to the earlier 
notation, so that from now on we regard /(x) as a piecewise smooth 
function of period 2ir, and the Fourier series is (5). 

72. The Partial Sums. The partial sum of the series (5) to N 
terms is: 

N 

Sn = A + ]£ (An cos nx + Bn sin nx). 
n» 1 

(7) 
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We may write the coefficients as 

1 S*T+X 

An = - / fit) cos nt dt, 
7T */— n—f-ac 

1 r*r +£ 
Bn = - / /(/) sin ett. 

7T »/—*-4-# 

(8) 

We have used / for the variable of integration to avoid confusion 
with the fixed x for which we are considering the sum of the series, 
and have taken the interval over which we average, which may be 
any interval of length 2ir, as that from — 7r + £ to 7r + £ to simplify 

a later reduction. 
Since x is constant, we may take terms in x inside the integral 

sign, and write the general term of (7): 

A„ cos nx + Bn sin nx 

— - I fit) (cos nx cos nt + sin nx sin nt) dt 
7T %) —TT+I 

= - I fit) cos n(t — x) dt. 
7T J -*■-}-* 

Thus we have: 

i /»ir+x ri n i 
Sn = - / U + Z cos n(< - x) /(<) 

7T J — L" »»1 J 

We now change to a new variable of integration, 

t = x + u, dt = du, 

and have 

»Sw = ~f + £ cos nuj/(a; + u) du 

1 /’T 
= - / s«/(x + u) du, 

v J -r 

dt. 

(9) 

if the trigonometric sum sn is defined by 

N 

sn — i + £ cos nu. (10) 

73. The Trigonometric Sum. We may find a simpler expres¬ 
sion for sn by multiplying both sides of (10) by 2 sin m/2. We have: 
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ti U ^ U 
2 sin h = sin o + Z) 2 cos nu sin ~ 

l & n=l * 

= sin ~ + Z) [sin (n + %)u 
* n« 1 

N 

sin (n — J)w], 

since this agrees with the above form when the terms in brackets 
are expanded by the addition theorem for the sine. But, when 
this last expression is written out: 

. u , . 3u . u . . 5u .3u . 
sin ^ + sin -y ~ sin ^ + sm y - sin y + • • • 

+ sin (N + $)u — sin (N — \)u} 

all the terms except the one before the last appear twice, with oppo¬ 
site signs, and so cancel out. Thus we have: 

and1 

We note that 

2 sin ^ $n = sin (N + §)u, 

Sn 
_ sin (N + \)u 

2sin| 
(ID 

f 8s du = ~i (12) 

as may be seen from (10), since the integral is zero for all the cosine 
terms. 

74. Transformation of the Limit. The theorem stated at the 
end of section 70, for the function of period 2w, will be established 
if we show that 

M/(z+) +f(x-)] = lim - f sNf(x + u) du. (13) 
QO 7T J -t 

For, by (9) the right member is the limit of the partial sum to N 
terms, or the sum of the series as defined in section 54. At points 
of discontinuity, the left member has the stated form, and at points 
of continuity, where (4) is satisfied, it reduces to f(x). 

Again (13) will follow as a consequence of the two equations 

£/(#+) = lim - f f(x + u)sNdu, (14) 
iV*=<» 7T *y 0 

^his result is in agreement with problem 18 (6), p. 21. 



254 CONVERGENCE OF FOURIER SERIES 

and 

§/(x—) = lim - C f(x + u)sff du. (15) 
^■=00 7T tZ-T 

We need only prove the first of these, since the second may be 
proved by entirely similar reasoning.2 

To further transform (14), we notice that, from (12) 

M(x+) =~ f f(x+)sNdu, (16) 
TTj 0 

since f(x+) is constant during the integration. Taking the limit 
as N becomes infinite, we deduce 

$/(£+) = lim - f f(x+)srtdu. (17) 

This last equation shows that (14) is equivalent to 

1 r* i r* 
lim - / f(x+)sNdu — lim - / f(z + u)sjydu, 

jV=a> 7T J o N=* ao 7T t/ 0 

which will follow if the difference of the two expressions whose 
limits are taken approaches zero, or 

lim ~ f [f(x + u) - f(x+)]sNdu = 0. (18) 
Ar = oo 7T 0 

The factor t may be omitted, since the right member is 
zero, and we may replace by its value as given in (11) to 

obtain: 

lim f[/(x+ ,)-/(*+) 1 ^ 
Jo 2 sin - 

as a relation from which the theorem will follow. 

* Or, the second may be looked on as a consequence of the first, since if the 
first is true for the function F(y) = /(2x — y), then 

F(x 4- u) = /(2x — [x + «]) = fix — u), and F(x+) » /(x—). 
Also 

4* u)sn du = J f(x — u)sn du = ^ f(x 4~ u)sn du, 

on replacing u by —u, and recalling that sn is an even function. Thus (14) 
applied to F(x) gives (15) applied to f{x). 
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76. Proof of the Limit. To prove the relation (19), we shall 
break up the interval of integration into m + 1 intervals, namely 
those from 

0 to p0, Po to ph pi to p2, • • * Ps-i to pSy • • • 

Pm-1 to pm = 7T, 

where pi, p2, * • • pw-i are so chosen that the function /(x + u)f 
regarded as a function of u) is smooth in the interval 0 to pi, and 
each of the intervals mentioned above, and p0 is a value less than 
7r/2 between 0 and px to be specified presently. It will be noticed 
that with the exception of p0, and possibly of 0 and pm, the ps here 
used correspond to some of the Ps of section 70, with different sub¬ 
scripts. 

For the first interval, the integral in (19) may be written 

Jo 
fix + u) - fjx + ) 

u 

u 

—— * sin (N + %)u • du} (20) 
sin | 

by inserting the factor u in numerator and denominator. 
Each of the three factors of the integrand of (20) lies between 

definite bounds, which we proceed to calculate. 
For the first factor we have: 

fix + u) - f(x+) 
u 

= If (201 < A (21) 

since for any smooth function3 there is a value X, between x and 
x + u for which the tangent to the graph is parallel to the chord 
joining the points with these z-co-ordinates. Since the tangent to 
each smooth piece of our graph turns continuously and is never 
vertical, there is some maximum value Ds for each piece which 
the slope never exceeds numerically. We may pick D from the 
function as any number bigger than the k numbers Ds, for the k 
smooth pieces of our function. 

To estimate the size of the second factor, we note that since p0 
is less than 7r/2, u/2 is less than 7r/4. Thus, since the arc is less 
than the tangent in the first quadrant, 

* Compare problem 8, p. 121. 
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u 
< tan s 

2 2 

sin 

u 
cos 2 

and since the cosine decreases as the arc increases, 

4 

In consequence of (22) and (23): 

V 7T 
cos 2 > COS 7 

4 

2 
V 

sin 
2 

< 
cos ^ 

< 2. 

(22) 

(23) 

(24) 

Finally, the third factor of the intergrand, being a sine, is numer¬ 
ically less than unity. 

Combining this fact with (21) and (24), we have the integrand 
of 70, in (20) less than 2D, so that 

|/o| < Po2D. (25) 

This may be made small, say less than a given small positive 
quantity, 77, by taking 

Po<^- (26) 

The integrals for the remaining intervals, 

r CVs f(X + u) “ /(# + ) • /\T I i\ J Is = / --77^--sin (N + $)uduf 
*J *3-1 2 sin g 

* = 1,2, 

(27) 

m, 

may be treated by integrating by parts. In fact, integrating the 
factor sin (N + \)u and taking the other factor as the one differ¬ 
entiated, we find: 

Is = - 
f(x + u) - f(x+) cos (N + J)m 

u N + % 
\*s 

2 sin 
+ 

f'(x + jf) 

2 sin | 

[/(* + «) -/(*+)] cos | 

A • 1U 4 sin2 g 

cos (iV + j.. 

-■»■+j 

(28) 
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It must be remembered that all these operations are with respect 
to u, x being held constant. To estimate the size of this, we note 
that if F is numerically larger than the biggest numerical value 
assumed by the function in any of the k smooth pieces, we shall 
have: 

If(x + u) -/(*+) I <2F. (29) 

Again, if D is larger numerically than the slope of any of the smooth 
pieces at any point, as in (21), then 

|f'(x + u)\ CD. (30) 

Moreover, since u lies between p0 and tv for each of the intervals 
of integration in (27), u/2 lies between p0/2 and w/2, i.e. in the 
first quadrant, so that 

sm; 
• V o 

sm 2 
1 < 1 

. u ~ . Po 
sin x sin “ 

2 2 

(31) 

From (28), the fact that a cosine is at most unity, and the inequali¬ 
ties (29), (30) and (31), we may conclude that: 

I4i < 
i 2 F v 

—— + (Ps ~ Ps-l) 
■ V o 

sin 2 

1) 

2 sin Vo 
+ ■ 

2 sin2 22 
A / 

(32) 

As the quantity inside the braces is independent of N, the sum 
of all the m integrals Is will be numerically less than some expres¬ 
sion independent of N (although depending on 77 through p0 by 
(26)) divided by N + Consequently, by taking N sufficiently 
large, say bigger than N1, the sum can be made small, say less 

than rj. 
Thus, for any given 77 and any xy we may first select p0 to satisfy 

(26) and the condition that the function be smooth between x and 
p0, and then N1 as just described. Then for all N > Nh we shall 
have: 

|/| = \Iq + I\ + h + • * * + Im\ < 2t7, 

where I is the integral of (19). But as 77 and hence 277 is arbitrarily 
small, this is precisely the meaning of the statement that the inte¬ 
gral I approaches zero, as defined in section 51. 

Since the discussion of sections 71 through 74 showed that the 
theorem of section 70 would follow as a consequence of (19), which 
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we have just proved, we have finally established the theorem in 
question. 

76. Uniformity of the Convergence. As the sines and cosines in 
(1), or (5) are continuous functions of xf the sum of the series will 
be a continuous function in any interval in which the series con¬ 
verges uniformly. Thus the series can not converge uniformly for 
an interval as large as a period of f(x), if f{x) has any points of dis¬ 
continuity. The proof would lead us to expect this, since the 
number of terms Nx which we must take to be sure that the partial 
sum is near the limit, or that the integral (19) is near zero, is deter¬ 
mined by the m relations (32). These show that the smaller we 
take p0f the larger the term in the braces will be, owing to the 
sin (po/2) in the denominator, and hence the larger Ni must be 
to make the bounds for the integrals small. But, as p0 is always 
between x and the nearest point of discontinuity, to the right for 
the integral discussed, and to the left for the corresponding one 
derived from (15), we shall have to take a larger Ni the nearer x 
is to a point of discontinuity. 

However, if the function consists of a single smooth piece, since 
there are no points ps except px = pm = 7r, the quantity p0 may be 
selected for all values of x as a value less than 7r/2 which satisfies 
(26), and then Ni determined so that in this case we have uniform 
convergence. 

This result still holds, even if there is a discontinuity in the 
derivative, like the point Pi in Fig. 40, provided the function is 
continuous. For, suppose the interval from u — 0 to u = p0 is 
allowed to contain one such point u = q, and let us attempt to 
estimate a bound for 

f(x + u) - f(x+) 
u 

As the function is smooth in each of the intervals 0 to q, and q to 
po, we have for these intervals, as in (21), 

I fix + u) - f(x + q) 
u — q 

which may be written: 

\f(x + u) - f(x + q)\ < D(u 

< D, 
\f(x + g) - fix+) 

<D, 

if u is in the second interval, so that u — q is positive, 
these last, we deduce 

?), \fix + q) -/(*+)| < Dq, 

By adding 
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or 
I/O + u) - ZO+)l < Du, 

f(x + 'll) - /Q + ) 
u 

<D, (33) 

for u in the second interval. But this holds for u in the first inter¬ 
val, by the argument for (21), so that (33) may be used in place of 
(21), and the argument completed as before. We may extend this 
to include a finite number of such points. This proves that: 

If a piecewise smooth, periodic function is continuous for all 
values of x, its Fourier series converges uniformly in x for all 
values of x. 

Note that a periodic function defined as equal to a continuous 
function g(x) in an interval of length T, say 0 g x ^ T, will only 
be a continuous periodic function if g(0) = g(T). 

77. Functions Smooth near One Value. We shall now prove 
that, if a periodic function F(x) is smooth in some interval con¬ 
taining xq, and may be approximated to any degree by a piecewise 
smooth function, uniformly for all x, then the Fourier series for it 

converges for x = x0, to F(xo). 
Let the function be F(x), smooth in the interval z0 — h to Xq + h. 

By section 71 we may assume it of period 2ir. Let/(x) be of the 
same period, equal to F(x) in this interval and those differing by 
2n7r, and otherwise equal to a piecewise smooth approximating 
function. Then, for all x: 

IF{X) - f{x)\ <7?. (34) 

But, by (13) and (11) the partial sum to N terms of the series for 
F(x) and f(x), at x0, will differ by 

1 
7r 

sin (N + \)u du. 

2 sin | 
(35) 

But, for u between —h and h, the difference in the numerator is 
zero, while for other values between — t and ir, we have 

. u . h 
8in 2 > sm 2 

(36) 

and (34), so that the expression in (35) is numerically at most 

TT 

n 
. h 

sm 2 

(37) 
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But, as/Or) is periodic and piecewise smooth, by the theorem of 
section 70, for N > Ni, the difference between the sum to N 
terms for f(x) and f(x0) = F(xo) can be made small, say less than 
rj. Thus, by combining this with (37), we see that for N > Ni, 
the sum to N terms of the series for F(x) will differ from F(x0) by 
less than 

1 + i \ 
sin v 

v, 

which can be made arbitrarily small, by taking r\ small. This 
proves the theorem. 

EXERCISES XLV 

1. If the function of period 2tt which equals x for — ir < x < t, is expanded 

in a Fourier series, apply the analysis of the text to find an Nit such that, for 
x - tt/2, the sum of the series to more than NL terms will differ from x by less 

than .1. 

2. Prove that the Fourier series for a piecewise smooth function converges 

uniformly in any interval, provided that the function is continuous at all 

points of the interval, including the two end points. 

3. If a function of period 2tt becomes infinite at one, or a finite number of 

points, in such a way that J \}[x)\dx is finite, the coefficients of the Fourier 

series will all be finite. In this case each of these points may be enclosed in an 

interval so small that the integral of |/(x) | over these intervals is arbitrarily 

small. Show that, if the function is piecewise smooth except for these points 

at which it becomes infinite, they may be enclosed in intervals in such a way 

that the contribution to (19) from them is small, if f(x+) is finite, and hence 

show that for such a function the theorem of section 70 applies to all values of x 
for which f(x-p) + /(£—) is finite. Periodic functions, equal to In \x\ or |x|“* 

between —tt and ir are illustrations. Their Fourier series will converge to 

them, except for x — 0. 

4. If a function fails to have a derivative at the point xy but is piecewise 
smooth in any interval not containing xy and in some interval containing x 

satisfies an inequality of the form 

I/O + u) —/0+)l < Dvr, r > 0, 

show that the integral (20) is in this case subject to 

|/o| < fP°2Du'~1 du ^ ^Dp<f' 
Jo r 

and that the argument of section 75 may be carried out, using this in place of 
(25). A periodic function equal to xi from —tt to ?r is an example; Its Fourier 
series will converge to it for all values of x. 
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5. By taking a suitable inscribed polygon, which is piecewise smooth, a 

piecewise continuous function may be approximated uniformly to any degree. 

Combine this fact with the argument in section 77, and the results of problems 

3, and 4 to show that if a periodic function is piecewise continuous, except for 

a finite number of points where it becomes infinite in the way described in 

problem 3, its Fourier series converges to it for any value of x, such that near 
this value: 

I f(x + u) - f{x) I < Dur, r > 0. 

Note that, if f(x) has a derivative at xf the above condition holds with r = 1. 

This result covers nearly all Fourier series met in practical applications. 

78. Rearrangement of the Terms. If the Fourier series for a 
function is absolutely convergent, we may rearrange the terms in 
any way that does not add or omit any, without disturbing the 
sum, by section 56. An example is the function of period 27r, 
equal to x2 from — 7r to 7r, for which the series is 

“ — ~ cos x + ^ cos 2a; — ~ cos 3x + • • •. (38) 

This is seen to be absolutely convergent, by the test of section 55, 
and problem 9, p. 218. 

While we have shown that the Fourier series for a piccewdse 
smooth function always converges, in general it will not converge 
absolutely, so that a random rearrangement of the terms will make 
the series diverge, or converge to a different sum. An example is 
the function of period 2ir, equal to x from — ir to 7r, for which the 
series is 

2 2 2 2 
j sin x — ^ sin 2x + ^ sin Sx — ^ sin 4.r + • ■ •. (39) 

This series is only absolutely convergent for x = 0, or n, since 
for other values of xf the series contains terms numerically near 
(sin x)/ft fairly regularly distributed, and the series of numerical 
values diverges like 

+ l+lc + l + 2& + f+3*+ ’ ' 

For the series obtained from a piecewise smooth function, the 
sine terms will converge by themselves, and the cosine terms will 

f(x) _ f( — x) 
converge by themselves. For these are the series for ———- 
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and———- , the odd and even function equal to f(x) in half 
z 

a period. Since the sum of these two functions is/(x), by section 
56, we see that we may always sum the sine and cosine terms 
separately, and then add the results. 

Similarly, if 

f(x) = + c2/2(x) + • • • + c.kfk(x), (40) 

where all the functions are piecewise smooth, the coefficients for 
f(x) will be the corresponding combination of the coefficients for 
the other functions, and we may sum the series either in the usual 
way, or by summing those terms which correspond to each of the 
component functions separately. 

79. Integration of Fourier Series. In problem 7, p. 224, we 
saw that a uniformly convergent series could be integrated term- 
wise. We shall now show that, regardless of the non-uniformity, 
we may always integrate the Fourier series of a piecewise smooth 
function termwise. Let the series for f(x) be 

A + £ | -4„ cos n(^jx + B„ sin «(y^J- (41) 

By integrating termwise from a to x, we obtain the series 

which we should expect to converge to j* f(x) dx. 

To prove this, we investigate the Fourier series for the function 

g(x) = j* f(u) du — Ax. (43) 

This function is of period Ty since ; 

px+t 

g(x + T) - g{x) = j f(u) du — AT - 0, (44) 
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since A, the constant term in the series for f(x), may be found from 

As g(x) is defined in terms of an integral, it is continuous for all 
values of x, and is piecewise smooth, since/(x) was. We note that, 
interior to any piece where/(x) is smooth, 

fAx) = /(x) - A. (45) 

From the character of g(x), its Fourier series will converge to it 
for all x, so that : 

where 

g(x) = A' + £ ^A„' cos n(^jx + B„' sin (46) 

A' = g(x) dx, A„' = y<Ju (j(x) cos n(~\x dx, 

Bn =J*f0 0(x) sin n(~^jx dx. 

We may transform these last integrals by integrating by parts, and 
we need not divide up the interval at points where g'(x) is discon¬ 
tinuous, since g{x) is everywhere continuous.4 We find as the 
result: 

, , g(x) . /2tt\ \t 1 rT . /2tt\ „ N , 
A■ - ^rs‘” "(t)1 I. “ ™J.sm nwig w *> 
D , g(x) /2t\ \r , 1 CT /2tt\ „ , , ^48' 

B‘ - -lsrC0S”(rH +™j, '** n\f)x> 
The integrated part vanishes, since g(x) as well as the sines and 
cosines appearing therein are of period T. Thus the values for 0 
and T are the same, and cancel out when subtracted. For the 
integrals, we replace g'(x) by its value as given in (45), and note 

4 If u and v have continuous derivatives in the intervals a to b, and b to c, 

udv — f u dv -f- f udv — uv\ — f v du -f- uv I — fC v du 
a Ja Jb la Ja I b Jb 

\c Cc |b— = uv — I v du + uv\ , 
la Ja I&+ 

and the last term is zero if u and v are continuous at 6, so we need not take 
account of b in the integration by parts. 
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that the terms in A may be omitted, since the average of a sine or 
a cosine over a period is zero. Thus the expressions reduce to: 

A-'~ 

Bn 

"(I) 
B" ~ hJl003 "(f dx ~ ' 

n\T) 

These equations enable us to write in place of (46): 

. (2w\ 
sm ttlyJx 

g(x) = A' + t, 
-Bn cos n(y)z + An sin 

2?r 

~T 

(49) 

(50) 

This converges for all values, so that in particular when x = a, 
we have: 

g(a) = A' + £ 
- Bn cos «(y)« + A„ sin «(vp)« 

2t 

~T 

(51) 

By subtracting the two convergent series (50) and (51) term by 
term, and comparing with (42), we see that the series part of (42) 
is g(x) ~ g(a). But, on evaluating these functions by means of 
(43), we find for the expression (42): 

A(pc — a) + g{x) — g(a) = A{x — a) + J f(u) du — Ax + ^4a 

= Jj(u) du, (52) 

as we expected. 
This proves that if we integrate the Fourier series for a piece- 

wise smooth, periodic function, omitting the constants of integra¬ 
tion, so as to obtain a multiple of x plus a new Fourier series, this 
expression converges to the indefinite integral of the original 
function. 

80. Differentiation of Fourier Series. If a periodic function, 
g(x), is the integral of a piecewise smooth function, f(x), so that 
for all values of x 
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g{x) = jj{u) du, (53) 

then for values of x inside an interval in which f(x) is smooth, 

/(*) - *'(*), 

so that f{x) is also periodic. From the result of the preceding 
section, it follows that the Fourier series obtained from that for 
f(x) by termwise integration only differs from that for g{x) by a 
constant. Consequently if the Fourier series for g{x) be differ¬ 
entiated termwise, it will converge for all values, and equal the 
derivative of g(x) for values of x inside an interval in which this 
derivative is smooth. 

The process of termwise differentiation is not applicable, in 
general, to Fourier series for functions which can not be obtained 
by integrating other functions. Since integrals are always contin¬ 
uous functions of their upper limits, this excludes functions with 
discontinuities. 

To illustrate some of the possibilities, consider the function of 
period 2 which equals x2 for — w < x < w: 

7r2 4 4 4 
g{x) = g- — p cos x + 22 cos 2x — ^ cos 3x + • • * . (54) 

Since this is the integral of the function of period 2 which equals 2x 
for — 7r < x < 7r, it may be differentiated termwise to give: 

4 4 4 
f(x) ~ j sin x — ^ sin 2x + ^ sin 3x — • • • , (55) 

which converges for all values, and equals the derivative of f(x) 
except for x an integral multiple of tt. 

However, since f(x) has points of discontinuity, we should not 
expect the series obtained from (55) by termwise differentiation to 
represent its derivative. In fact, the series is 

4 cos x — 4 cos 2x + 4 cos 3x — 4 cos 4x + • * *. (56) 

This series diverges for all values of x, since it always contains an 
infinite number of terms numerically greater than 2. Note that 
the derivative of f(x) is 2, except for x a multiple of tt, and this has 
a Fourier series consisting of the constant term only. However, 
f(x) is not the integral of this function from a to £ if this interval 
includes a multiple of tt. 
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81. Least Square Error. We have seen that for piecewise 
smooth functions, the Fourier series converges, though not, in 
general, uniformly. Thus from the mere convergence, we could 
deduce nothing about the relation of averages, or root mean square 
values for the function, and the partial sums of the series. 

There is another sense in which the Fourier series converges, of 
importance for averaging processes, which we proceed to discuss 
in this and the next three sections. 

Consider a piecewise continuous periodic function, f(x), of period 
T. Let us try to approximate this function by a sum having the 
same form as the partial sum of a Fourier series, 

Ttf — a + cos n 
'2tt\ 7 . (2w\ ' 
Yjr + bn sin Jx (57) 

in such a way that the root mean square value of the error: 

fix) - Tn (58) 

will be as small as possible. We shall call any sum T# a trigono¬ 
metric sum of order N and period T. If the root mean square 
error is R, then R will be least when R2 is least. But 

R2 = ±f [/(*) - Ttfdx 

-iJrK—£[* cos ni^jx+b„ sin "(y)1]} 
„ <«» 

dXy 

by (57), and by expanding the square we find 

fo {[/(z)]2-2/(z) (a + cos n(^)x+b„ si 

+ (a + J an cos ni^jx + b„ sin "(y^J) } c 

We recall that the Fourier coefficients of f(x) are given by: 

A = ~?fo ^ dx’ An = f fo ^ C0S n(ff)x dx< 
Bn = l1 f0 ^ sin niff)x dx- 

(61) 

We also note that the cross product terms from the last square in 
(60) may be omitted, since their average is zero, while the average 
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values of sin2 n(2-w/T)x and of cos2 ti(2t/T)x will each be by 
section 16. Using these facts, we may simplify (60) to: 

W = i f[/(*)P dx -2aA -£ (anA„ + bnBn) 
1 Jo n-1 

+ 
N (n 2 h 2\ 

(62) 

By adding and subtracting the quantities which complete the 
square, this may be replaced by: 

i rT N r(a — a 
U{x)f dx+{a-AY+ Z ( + 

i i/0 71=1 L ^ '] 

(63) 

Since the coefficients of the trigonometric sum, a, any bny only appear 
in terms which are squares, with positive coefficients, R2 will be 
least when these squares are zero. That is, when 

a = A, an = Any bn = Bny n = 1, 2, 3, • • • Ny (64) 

in which case the trigonometric sum of order N, T^y is simply the 
partial sum of the Fourier series to N terms. This proves the 
theorem: 

Of all trigonometric sums of given order N and the same period 
approximating a piecewise continuous periodic function, the root 
mean square value of the error is least when the trigonometric 

sum is composed of the first N terms of the Fourier series for the 
function. 

82. A Particular Approximation. For any piecewise continuous 
periodic function, there are trigonometric sums for which the root 
mean square error, Ry is less than any fixed, small positive quan¬ 
tity m. 

We may show this as follows. We first surround each of the 
values of x for which the function is discontinuous by an interval 
of length rj. We then replace the graph of the function inside these 
intervals 7 by a single chord, and in the other intervals, where 
the function is continuous, we replace it by a series of chords, such 
that the function never differs by more than rj from them. The 
process is illustrated in Fig. 41. Then, if f(x) is the original func- 
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tion, and g(x) the function whose graph is the broken line made up 
of the chords, we have: 

I/O) - g(x)\ ^ V, in (65) 

Also, if F is the largest numerical value of f(x) assumed in any of 
the continuous pieces, the ordinates of the polygonal line are also 
numerically at most this value, and we have: 

\m - g(x) I ^ 2F, in I. (66) 

In any one period interval, as from 0 to T> the combined length 
of the intervals /' is at most T> while if there are k points of dis¬ 
continuity, the combined length of the intervals I is at most 2krj. 

We now observe that the function g(x) is periodic, piecewise 
smooth, and everywhere continuous. Therefore by the theorem 
proved in section 76, its Fourier series converges uniformly. Thus, 
by taking Ni sufficiently large, we may make 

\g(x) - 7V,| < v, (67) 

for all x, where 7V, is the partial sum to -Vi terms of the Fourier 
series for g(x), that is,’a trigonometric sum of order TVi, of period T. 

For the error made by replacing/(a;) by 7V, we have, in view of 
(65), (66) and (67): 

|/(x) - 7V, | < 2t?, in 

|/(z) ~ TV,| < 2F + v, in /• 

Thus, when we integrate the square of this, we have at most 

V • T 

(68) 
(69) 
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as the contribution from the intervals and at most 

(2F + v)2 • 2/cr) 

as the contribution from the intervals /. 
This shows that for R2, the square of the integral divided by Tt 

we have: 
R2 < 4i?2 + (2F -f y))2 • 2krj. (70) 

If we take rj less than unity, we have 

R2 < [4 + 2k(2F + 1 )2]v. (71) 

Since k and F are determined hyf(x), the factor which is multiplied 
by rj in this expression is fixed, and we may make R2 less than rji2 
by taking rj small enough. The Tni found as above is then a 
trigonometric sum approximating f(x) with root mean square error 
less than rji. 

83. Convergence in the Mean. When an infinite series of func¬ 
tions, which may or may not converge, is related to a given func¬ 
tion in such a way that the root mean square error made by replac¬ 
ing the function by the Nth partial sum of the series, or its square: 

R* = ±f*[f(x) - sNfdx, (72) 

approaches zero as N becomes infinite, we say that the partial 
sum snf or the series converges in the mean to the function for the 
interval 0 < x < T. Since the integrand in (72) is a square, it is 
positive, and the same result holds for any other interval inside this 
one. 

If the function is periodic and piecewise continuous, and the 
series is its Fourier series, we have from (63) and (64): 

rr = [/(*)]* dx- a>- £ (73) 

The form of this shows that as we increase N, R2 either decreases 
or stays the same, since we subtract more squared terms on the 
right. But in section 81 we saw that there were trigonometric 
sums of order Ni which made R2 less than rji2, while in section 80 
we saw that R2 for the partial sum of the Fourier series is smaller 
than that for any other sum of the same order. 

Thus, for N greater than Ni in (73), R2 is less than rji2, and 
since i?i2 is arbitrarily small, it follows that as N increases indefi- 
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nitely, the limit of R2 is zero. In accordance with the definition 
just given, this proves: 

The Fourier series for a piecewise continuous, periodic function 
converges in the mean to this function, for any interval. 

84. Averages of Series, Convergent in the Mean. If sn con¬ 
verges in the mean to a function f(x), and Sn converges in the mean 
to a function F(x), for the same interval, all the functions being 
piecewise continuous, then when n becomes infinite the average 
of the product snS„ approaches as a limit the average of the prod- 
uct of the functions, f(x) F(x) taken over this interval, 
we wTish to prove: 

That is, 

lirn average snS„ — average /F, (74) 

or 

lim average (fF — snSn) = 0. 
flSBOO 

(75) 

We may write: 

fF - S„s„ = f(F - Sn) + Sn(f - Sn). (76) 

Now recall the result of section 13, that the average of a product 
is numerically at most the product of the root mean square values 
of the factors. This shows that 

|average f(F — Sn) | ^ r.m.s./ • r.m.s. (F — Sn), (77) 

and also 

(average Sn(f - sn)| g r.m.s. S» • r.m.s. (/ - *,). (78) 
But 

Sn2 = [F — (F ~~ Sn)]2, 0 ^[F+(F- s*)]2 

so that, by addition, 

Sn2 g 2F* + 2(F - Sn)2. 

Consequently, for the averages, 

average S»2 ^ 2 average F2 + 2 average (F — Sn)2, 

which is equivalent to 

(r.m.s. Sn)2 ^ 2(r.m.s. F)2 + 2(r.m.s. [F - Sn])2. (79) 

If we indicate r.m.s. values of / and F by f and Fy and the r.m.s. 

errors F — Sn and / — sn by R and r respectively, we may combine 
equations (76), (77), (78) and (79) to give: 

(average (JF - snSn)\ gJ-R + r\/2?* + 2R?. (80) 
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Since sn and Sn converge in the mean to / and F respectively, 
when n becomes infinite, r and R approach zero, so that the right 
member of (80) approaches zero. Hence the left does also, which 

establishes (75). 
Several special cases of this result are of interest. For example, 

we may put F = /, and Sn = sn in (74), and take the square root 
of both sides, which proves that 

When sn converges in the mean to /(x), the root mean square 
value of sn approaches the root mean square value of/(x). 

For Fourier series this follows directly from the fact that the left 
and hence the right member of (73) approached zero. 

Again, we may put Sn = F, in which case we find: 
The average of the product of s„ by a function F approaches the 

average of / times F, provided sn converges in the mean to /. 
Thus the average of Ff may be calculated termwise from the 

series for /. For the Fourier series, if F is the constant 1, or any 
of the sines and cosines, this is in accord with the definition of the 
Fourier coefficients. 

86. Multiplication of Fourier Series. If two trigonometric sums 
of the same period of order N, T# and tx are given, they may be 
multiplied and their product expressed as a new trigonometric sum 
of order 2 N> by means of the relations 

2 sin px sin qx — cos (p — q)x — cos (p + q)x, 

2 cos px cos qx = cos (p — q)x + cos (;p + q)x, (81) 

2 sin px cos qx = sin (p — q)x + sin (p + q)x. 

The transformation is often most conveniently performed by means 
of equations (43) and (44), p. 17 before multiplication, and then 
these or equation (41), p. 16. 

We shall now prove that if T# and are the iVth partial sums 
of the Fourier series for F(x) and /(x), respectively, then the mth 
Fourier sine or cosine coefficient of the trigonometric sum T^tjf 
approaches the corresponding coefficient of F(x)/(x), when N be¬ 

comes infinite. 
For, since Tn converges in the mean to F, and 

~ J (cos mxF — cos nixTu)2 dx ^ ~ j* (F — T^)2dx 

it follows that cos m,xT$ converges in the mean to cos mxF. As 
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we also have converges in the mean to /, by the theorem at the 
beginning of section 84, i.e. (74), 

lim average cos ruxT^tN = average cos mxFf. (82) 

This is the result to be proved, since when m — 0, each side is the 
constant term, and when m — 2mr/ T, each side is one half the 
nth cosine coefficient. The result for the sine coefficients is proved 
in precisely the same way. 

When one of the series is a finite sum, this result may be used 
practically to find the series for the product. As an example, from 

sin x sin 2x , sin 3x 
~1 2 1 3 ‘ 

we may deduce, on multiplying by sin x, 

x sin x 
cos x 
~2~ 

2 cos 2x 2 cos 3a: 
1-3 + 2 • 4 

2 cos 4a: 

86. Division of a Finite Trigonometric Sum by a Sum of the 
First Order. The quotient of a finite trigonometric sum by an 
expression of the form A + B sin x + C cos x} where we take the 
period as 2ir to simplify the writing, may sometimes be conven¬ 
iently expressed in a Fourier series as follows. By the method of 
the last section, the series may be obtained from that for 

_D_ = D'_ 
A + B sin x + C cos x 1 + C" cos (x — a) 

If this is never infinite, C' will be less than 1, and we can find a real 
number b such that 

-26 ^ r, 
1 + 62 

We take the value of b numerically less than unity. 
We may change Df by multiplying all the terms by a constant, 

and to simplify what follows shall assume 

We also put a = 0, since the series for other a may be obtained 
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from that found by replacing x by x + a. Thus the problem is 
reduced to the expansion of 

1 - ¥ 
1 -f ¥ — 2b cos xy 

¥ < 1. (83) 

For this we have 

1 - ¥ 
1 + ¥ — bcix — be~*x -1 + 1 

1 — he-**’ 

as may be verified by adding the fractions on the right. 
We may then divide out to get: 

-1 + (1 + beix + ¥c2ix + ¥e3ix + • • ■) 

+ (1 + be-ix + ¥e~2ix + ¥erzix + • • • ), 

as these geometric progressions converge to the fractions when x 
is real, since in that case: 

\beix\ = |6| < 1. 

If we now add the series termwise, the result is 

1 + 2b cos x + 2¥ cos 2x + 2¥ cos 3x + • • *, (84) 

which is the desired series. 
If the divisor were a trigonometric sum of the Nth order, it 

could be factored into N real factors, each of the first order, so 
that the series could theoretically be found by multiplying together 
N series, each obtained from (84). However, as these are infinite 
series, the details become too complicated to be practical. 

Similar considerations apply to the division of an infinite Fourier 
series by a trigonometric sum of the first order. 

EXERCISES XLVI 

1. From the relation 

7r . , sin 3x , sin 5x . sin 7x , 
_ = ginx +_ + . • •’ 

valid for 0 < x < tt, derive by successive integration the series 

ttx . ir3 , cos 3a; , cos 5x , cos 7x , -T+- = coax+~¥-+-^-+-w- + - . 

TTX2 7r*x 

8 ' 8 
. sin 3a; . sin 5x . sin 7x , 

sm x + —0— + -nr” + - *r“ + 33 53 73 

and 
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2. From the series, valid for 0 < x < w; 

x . 7r sin 2x . sin 4x . sin 6x . 

_ 2 4 = 2 4 6 ^ 

derive by successive integration the series: 

cos 2x . cos 4x , cos 6x 

4 4 +24 22 
• 4- 

42 62 + 

and 
x3 7rx2 t ir*x _ sin 2x , sin 4x , sin fix , 
______ + + 43 ■■ + 03 + 

3. Assuming that sin ax is expanded in a sine series, 

sin ax = B\ sin x ~f B2 sin 2x + • • • + Bn sin nx + • 

Derive by integration the series: 

cos ax sin air Bi , B 2 0 , 
cos x + TT- cos 2x 4- 1 2 

and 

sin ax sin air B\ . . B2 . 
—-— x « -- sm x + sm 2x 4- 

a* a2w l2 22 

, Bn , 
H-cos nx 4- 

n 

R 
H-r sin nx 4- • • •« 

By combining the last relation with 

f sin x sin 2x 

T" 2 -c + sin 3x 

3 )■ 
and comparing with the original expression, determine the Bn and thus show 
that: 

2 sin air / sin x 2 sin 2x . 3 sin 3x \ 

8m“ = “IT- + » = *-)• 
and 

sin qtt ( J 

T \2i 

2a sin aw ( \ , cos x 

12a* + l2 - a2 

cos 2x cos 3x 
' os 

22 32 - a2 

4. By an argument similar to that used in problem 3, show that 

2 sinh aw 

)■ 

. , 2 sinh aw / sin x 2 sin 2x , 3 sin 3x \ sinhax = -), 
and 

cosh ax — 
2a sinh aw (± 

\2a2 

cos x cos 2x 

{2a* l2 4- a2 22 4- a: 

5. By using equation (12), and the relation 

sin (A 4- \)u 

cos 3x 

' 32 + o* 
4- )• 

sn = ’ 

2 sin: 
= J sin Aa cot 2 + 4 008 Nuf 

prove that 

- r sin Aw cot ^ da = 1, 
TT Jo 2 

and deduce from this by integrating by parts 

- r Bm % 
wjo 2 

COS Nu du — — Tr • 
N 
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By problem 3, p. 260, we may expand In j sin - j in a Fourier series, and the re¬ 

sult just found shows that 

In sin^ = A 
cos x cos 2x cos 3x 

~1~ ~2 3 

As this is valid for all values of x except multiples of 2*-, we may put (tt — x) 

in place of x, and so find 

,1 a; I A . cos x cos 2x . cos 3x 
n Jcos 21 = ^ H j-2 3-• 

Finally, we may determine the constant A by replacing x by 2x, and noting 

that 

In |sin x\ = In 2 + In sin ] + In 
x 

cos- 

so that 

A = In 2 -j- 2A, and A = —In 2. 

6. Using the expansions found in problem 5, deduce 

i * x o/cos 
hi tan 2 = _ t T 

)■ 

In tan 7) du f: 
m In tan -1 du 

x . cos 3x . cos 5x . 

-+ ~ + ~ +• ' ' 

/sin x sin 3x sin 5x 

\-ir + ~W~ + + 

']A,_i/o"[r,nitaniH 

)■ 

dv 

_0/cosx , cos 3x t cos 5x , 
- J^-jr 1 + 53 ) 

7. If P and Q are any real numbers, we have 

(P + Q)2 g (P + 0)2 + (P - 0)2 g 2P2 4- 202. 

Deduce from this that., if /„, gn and F are any three real functions, defined for 

any interval, we have over this interval: 

[r.m.s. (F - g„)f 2[r.m.s. (F -/»)]* + 2[r.m.s. (/„ - g„)p. 

This shows that, if two variable functions /* and gn are such that, as n becomes 

infinite, r.m.s. (/» — gn) approaches zero, then if /« converges in the mean to 

F, gn also converges in the mean to F. 

8. Let the function F(x) be periodic of period T, and piecewise continuous 

except for a finite number of points in each period interval at which it becomes 

infinite, but in such a way that J F(x)2 dx is finite. Show that if we sur¬ 

round the exceptional points by small intervals, and form the function G(x) 

equal to F(x) outside these intervals, and to zero inside these intervals, we may 

make r.m.s. (F — G) less than any fixed positive quantity, rj, by making the 

intervals small enough. Using this fact, and the inequality of problem 7, 

modify the argument of section 82 so as to prove that the Fourier series for 

F(x) converges in the mean to this function for any interval. The functions 

in problem 5 are of this character. 
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87. Abel’s Theorem. In the applications of Fourier series in 
Chapter VI, we frequently found the solution of our problem in 
the form of a Fourier series with certain exponential damping 
factors multiplied into the terms. For any fixed value of the vari¬ 
able {t or y) these factors were positive, and, except for the value 
zero, decreased as we went out in the series. To discuss such 
damped series, we shall need the following theorem: 

If ai, a2; as, • • • are a steadily decreasing set of positive num¬ 
bers, and we multiply them into the terms of a convergent series 

s = U\ + U2 + Us + • * • , (85) 

to form a new series 

a\U\ + a2n2 4~ U31/3 + * * •, (86) 

this second series converges. 
Since the series (85) converges, when n is sufficiently large, say 

greater than N, the partial sums to n terms, sn, will all be within 
unity of their limit, and therefore less than \s\ + 1. Thus any 

number T, bigger than this last number, and also numerically 
larger than the first N partial sums, will be numerically larger 
than all the partial sums. We may now state an additional part 
of the theorem: 

If T is any number numerically larger than all the partial sums 
sn, the sum of the series (86) is less than axT. 

To prove the theorem, we begin by noting that from the defini¬ 
tion of the partial sum to k terms, Si = U\ and 

k k —1 

Sk - sk-i = «» - T.Uft = Uk, k > 1. 
n ■» 1 n = 1 

We may use these relations to write the partial sum to n terms, Sn, 
for the series (86) in terms of the sn, namely: 

Sn = awi + a2w2 + asUs + • • • + anun 
~ aisi + a2(s2 — Si) + 03(^3 ~ So) + • * * + an(sn — s*-i). (87) 

By transposing one term, and regrouping, we find from this 

Sn ~ UnSn = «l(Ui — a2) + 52(a2 — as) + • * * + Sff_i(<2*_i — 0^). 

(88) 

If we regard the right member of (88) as the sum to n — 1 terms 
of an infinite series, whose nth term is sn(an — a*+i), this series 



SERIES OF DAMPED HARMONICS 277 

converges absolutely. For, as the an steadily decrease when n 

increases, (a* — a*+1) is positive or zero, so that 

|s„(a„ - a»+j)| < T(an - 0,+j). (89) 

Thus the series whose terms are |s„(an — an+1)|, is a series of positive 
terms, and its partial sum to n — 1 terms is less than 

T(ai — (1%) + T(a2 — a,?) + T(a% — a4) + * • • + T(aw_ 1 — an) 
= Ta! - Fa* < TW (90) 

Hence, since its partial sums are all less than a fixed number, by 
section 52, the series with terms \sn(an — an+1)| converges, so that 
the series with terms sn(an — an+1) converges absolutely. 

This shows that the right member of (88) approaches a limit as 
n becomes infinite, and since the an are positive and steadily de¬ 
creasing, by section 52, they approach a limit a, while s„ approaches 
the limit s. Thus ansn approaches a limit, as, and so Sn must 
approach a limit, S. This proves the first part of the theorem, 
and the series (86) converges to the sum S. 

For the second part, we take the limit of both sides of (88), after 
making use of (89) and (90), to obtain: 

|S — as| < Tai — Ta. 

But since |s| < T, this implies: 

S < Tax — Ta + a\s\ < Tah (91) 

which proves the second part of the theorem. 

88. Series of Damped Harmonics. Consider a series of con¬ 
tinuous functions like (5) p. 185, or (14) p. 189, or in general 

£ un{x)an(y), (92) 
n«“l 

where the functions On(y) are all unity for y = 0, decrease as y 
increases, and for any fixed y > 0, for sufficiently large n, form 
a set of positive quantities decreasing to zero as n increases in¬ 
definitely. 

Then, if the series un(x) converges for a certain range, by the 
first result of section 87, the series (92) converges for all values of 
y, and x in this range. Thus it defines a function, U(x, y). 

Let us now fix x = Xof and denote by Sn the partial sum to n 
terms of the series: 
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S = U(x0, y) = £ un(x0)an(y). (93) 
n-l 

Then, since the series with general term w*(x0) converges, we may 
find an AT such that the difference between its sum, and partial 
sum to n terms is numerically less than any fixed small positive 
quantity, rj, provided n ^ Ar. That is, if s is the sum, and sn the 
partial sum to n terms, 

|s ~ *n\ < v, and |s - sN+m\ < rjy m > 0. (94) 

It follows from this that 

Z UN+n{Xi)) 
n=l 

= “ $n\ < (95) 

If we select the N just mentioned so large that, for n > N, the 
On(y) are positive and decreasing and a#+i(y) < 1 for any fixed y) 
we may apply the second result of section 87 to the series: 

00 

S — Sn = Z UN+n(Xt))aN+n(y), (96) 
n-l 

and, as we may use 2rj in place of the T of (91), we find: 

IS — Sn| < 2riaN+i(y) < 2rj, y > 0, (97) 

since a#+i(y) < 1. This also holds for y = 0, by (94) since the 
left member is then |s — Thus, in the interval 0 ^ y ^ y0) 
by taking a sufficiently large N, we may make \S — &v| less than 
any fixed 2t?, for all y. Thus, by section 57, the series (93) con¬ 
verges uniformly in y, and therefore by section 58 represents a 
continuous function of y in this interval. Hence in particular: 

lim U(x0yy) = U(x0, 0). (98) 
l/“0 

If xq is interior to an interval, x0 — h < x < x0 + h, in which 
the series with general term un{x) converges uniformly in xy we may 
determine the N used in the above so that (94) and hence (97) 
holds for this whole interval. Thus the series (93) here converges 
uniformly in x and yy for x0 — h < x < x0 + hy and 0 < y < y0) 
so that by section 58 the sum is a continuous function of x and y, 
and in particular: 

lim U(xy y) = U(x0y 0). (99) 
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In the case of (5) p. 185 and (14) p. 189, where the Un{x) are the 
terms of the Fourier series for a piecewise smooth function, for 

values inside an interval in which the function is continuous, we 
may apply (99) to show that the correct boundary values are taken 
on. At a value for which the function is discontinuous, (98) shows 
that, for a special approach, the boundary value taken on by 
U(x, y) is the sum of the Fourier series, i.e., the average of the two 
limits approached by the function. 

We shall only discuss differentiation in detail for the specific 
series: 

V(x,y) = £] An sin knxe~kny, (100) 
n= 1 

as the reasoning is similar for most of the other series used in 
Chapter VI. If we differentiate the general term of this one or 
more times with respect to either of the variables, we shall have a 
power of k times a power of n times the sine or cosine of knx: 

dr kpnpA n j ^ J knxe~kny. (101) 

While this series may diverge for y = 0, as long as all the A„ are 
numerically less than some fixed positive quantity F, the series 
just written will converge for any y > 0. We note that, by (73), 
we may take \/2 r.m.s. f(x) as F, if the An are the Fourier coeffi¬ 
cients for a piecewise continuous function. To prove the state¬ 
ment about convergence, consider the series for y ^ h. Then, for 
such values, the terms of the series are numerically at most 

kpnpFe~knh. (102) 

But, the ratio of the nth to the (n — l)st term is 

kpnpFe~ktlh _ 1 _kh 

Mn - 1 )*Fer*t—l» (i - ’ 

As n becomes infinite, this approaches the limit 

e~kh < 1, 

since k and h are positive. Thus, by problem 14 on p. 220, the 

series with general term (102) converges. 
Consequently, by section 59, the series with general term (101) 

converges uniformly for all x and y h. Thus by problem 7, 
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p. 224 the series may be integrated termwise with respect to either 

variable, any number of times. By carrying out the integrations 

which lead us back to the series (100), we see that the series (101) 

converges to that pth derivative which, applied to the terms of 

(100) gives the terms of (101). 

Since h is any positive quantity, it follows that, for any positive 

value of y, any derivative of U(x, y) may be obtained by differ¬ 

entiating the series (100) termwise. Thus U(x, y) will satisfy any 

linear partial differential equation with constant coefficients, 

satisfied by its terms separately, for y greater than zero. 
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ANSWERS 

EXERCISES I (Page 5) 

1. (a) 1 - 61, (6) -1 - 21, (c) -2 - 3t', (d) -3 + 31, (e) 51, (/) -.8 + 

1.61, (g) -8 - 41, (/t) -.8 - .61. 

2. (o) 12 + 6401, (6) 5.16 - 10.lt, (c) 20 + 36401, (d) 5.18 - 10.lt, (e) 13.3 

+ 6371, (/) 5.8 + 5681. 

4. 2 ± \/3i. 

e. M , + i,-+ i 
9. -9/13. 

13. 48* + 25* or 15* + 52*. 

EXERCISES II (Page 12) 

1. (a) -5 - 21, (6) 1 + 12i, (c) 5 + lOi, (d) 4 - 21, (e) -24, (/) -21, 

(0) 18, (h) -.75, (1) -4.83 + 2.171, (j) .847 + 1.261, (k) 6.36 - 3.181, (l) 12.7 

+ 29.71. 

2. 1.16 + 1.611, -1.16 - 1.611. 
3. 1.26 + 1.151, -1.63 + .5201, .364 - 1.671. 
4. .924 + .3831, -.383 + .9241, -.924 - .3831, .383 - .9241. 

6. VzF = 1.73 X 10-* 183°52' = 1.85 X 10~‘ + 1.72 X 10-*i, Vz/Y = 

372 |—5°57' = 370 - 38.51. 

6. -327681. 
7. (a) 11.6 mi., 10°47' West of North. 

EXERCISES in (Page 19) 

1. (a) 5.83e<'-<»» = 5.83«,5»0*', (b) 5.83e-<>.«"> = 5.83<r-,M’*', (c) 5e‘'°« = 
5etM°, (d) 5ei lu = 5ei30°, (e) 4e‘-78s = eUt\ 

2. (a) 1, (b) -1, (c) 1, (d) 1. 
3. (a) 2.82 + 1.031, (b) -1 - 1.731, (c) 1.04 + (.785 ± 2fctr)i, (d) (1±2fc)W, 

(e) (.5 ± 2k)ri. 
4. 1.020 - .03061. 
6. (6) 1/8 (cob 4* — 4 cos 2* + 3), 1/8 ( — cos 4x + 1), (c) 1/32 (sin 4* — 

8 sin 2x + \2x) + C, 1/32 (-sin 4x + 4x) + C. 
10. (c) e<a+W'</(n 5t‘)| (rf) got (0 cos bt + b sin bt)/(a2 + 6*). 

12. (a) 18.8 13771 - 34°10', (6) 8.113771 + 228°, (c) 22.5 j 3771 - 12°20', 

(d) 7517541 - 45°, (e) .333145_°, (/) 60[7541 + 30°, (g) .4171 -30°. 

13. (a) 6 [851-110°, (6) 5|631-35°, (c) 9.23 |f541 + 49°25', (d) 31451+ 215°. 

16. (a) 4.72, (6) -.487 + .8731, (c) 4.18 - 19.61, (d) .269 + .2241, (e) 10.7 
+ 3.781. 

283 
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EXERCISES IV (Page 23) 
6. 49°36/. 

EXERCISES V (Page 31) 

2. (a) u * x — Xo, v = y — y0> (6) u = x cos a + y sin a, v = —x sin a 4- 

y cos a. 

3. 7u* + v* * 12. 

4. (a) u = 0, v = 0, (b) v = 0, u = 0, (c) u = 5, v — 0, (d) 5u2 -f- 
u = 0, (a) 6u2 4- 6t£ 4- u = 1, = 0, (/) v = 0, u2 + 0* — 1* 

6. (a) 0, 0, (6) 0, 0, (c) 0, 5, (d) -.8, .2i, (e) .75, -.5, (/) -2», -1. 

7. (a) u = 0, (6) u = 0. 

11. i* 4- 36u = 324. 

12. (a) 0 = 0, 90°, 180°, 270°; r = 1, 4, 9, (6) 0 = 0, 135°, 270°, 45°; r = 

1, 8, 27, (c) 0 = 0, 22°30', 45°, 67°30'; r = 1, 1.41, 1.73, (d) 0=0, n45°, n90°, 
nl35°; r = 1, 2«, 3". 

14. Slope angle A into 2A for (a) and nA for (b). 

EXERCISES VI (Page 38) 

1. it1 — v2 = 1, 2ui> == 1. 
2. m* — 3uv* — 2. 
3. u2 -f p* * c2X, v = u tan y. 
4. y = r, X ^ -1; 2/ = o. 
9. 0 < x 5* v\ (u/cosh t/)2 -f (tz/sinh y)2 = 1, (u/cos x)2 = (y/sin x)2 = 1. 

10. Area in 1st and 2nd quadrants bounded by (w/3.76)2 *f (r/3.63)* = 1, 
left branch of (u/.416)2 — (v/*909)2 = 1, and v - 0. The image of A = (0, 0) 
is (1,0). 

11. (u/1.17)2 + (»/1.54)f = 1, — (u/.540)2 + (t;/.841)2 = 1. 
12. (x - l)2 4- y* = e»[(x 4- l)a 4- 2/2], x2 4* y* - 1 = 2y cot vi 
13. e2 = (x2 + y* - l)2 4- 4xy. 
14. (a) 0, (b) 0, (c) 0, (d) 1, -1. 
15. (a) 0, (6) a, (c) 1, -1. 

17. (6) fourth, third. 
18. (a) a, 6, second, (6) a, second. 

EXERCISES VII (Page 50) 

1. (a) 3, (6) 4/3, (c) .841, (d) 1.82, (a) 0, (/) 0, (g) 0, (A) 0. 
2. (a) 3, (6) 4/3, (c) .841, (d) 1.82, (e) 2, -2, (/) 2, -2, (g) .460, -.460, 

(h) 1.38, —1.38. 
4. (a) 3, (b) 1.79, (c) .853, (d) 1.98, (a) 2.31, (/) 3.02, (?) .521, (h) 1.71. 
5. (a) .905, (6) .316, (c) 11.2. 
6. (a) .425, (5) .707, (c) .707. 
7. (a) .319, .354, (b) -.319, .354, (c) 0, .354. 
8. 1,1.15. 
9. .159, .354. 

10. 1, 1.15. 
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14. (o) F — Ci/i 4 c^fa 4 Csfti (b) F2 ~ Ci*/i* 4 c*2/^ 4 ca2/i2 4 2c*c*/^fj 4 

2csCi/a/i 4* 2ciCs/]/2. 

15. 2/flc * [(6 - a)jytf& 4 (c - 5)yfc]/(c - a), jto2 = [(5 - <*)}/«&* +(c - &)yk*]/ 
(c - a). 

EXERCISES VIII (Page 60) 

1. (a) 286, (b) 159, (c) 115, (d) 169, (e) 10.8. 

2. (a) 1.82, (5) 79, (c) .98, (d) 1.43, (c) 10.8. 

3. (a) 323, (5) 12,600, (c) 95.5, (d) 45.6, (e) 117: 

8. .707A, .7075, 1/2 A5 cos (a - 5). 

9. 1/60, 1/25, 1/30, 1/25, 60, (b) 60, 25, 30, 25. 

12. (a) .507, (b) .0028. 

EXERCISES IX (Page 68) 

1. odd (a), (d), (/); even (6), (c), (/); odd harmonic (a), (c), (d), (f)i 

4. 2 + 7.82 sin (4ttx 4 50°10') 4* 5.38 sin (8*-x 4 21°50'), 2 4 7.82 cos 

(4irx - 39°50') -f 5.38 cos (8irx - 68°10'). 

6. (a) 1/2 — 1/2 cos 2x, (6) 1/2 4 1/2 cos 2x, (c) 3/4 sin x — 1/4 sin 3x. 

6. (a) cos a cos x — sin a sin x, (5) sin a cos x 4 cos a sin x. 

EXERCISES X (Page 74) 

lira 

T 
* / X 5 , ^ f5[(-l)* -1] nrrx , 5( — l)n+1 . nirx] 
1. (o) 7 4- i- —v-T-* cos -7- 4-  -BinV , 

4 “j I n27r2 5 mr 5 ) 

OK 00 

wf + I 
° w«l 

n2 7r 

50( —l)n tittx 
—— cos T~ nV 5 

4 [ 
~25( — l)n+1 50[(-l)« - 1] 

nV3 J8inTr 

/X «B — 1 , 
(c) ir- + 

f5[( — l)ne* — 1) nwx 

52 4 n2?r2 C0S 5 

2. 

£{- 
»=i 1 

, nir[(--l)w"He6 4 1] - mrx\t 

+ 52 + nV Sln ~5~ f 

1 . ^ f 1 . nir tlirX 3 /, n?r\ . nirxl 
t4 L-sin — cos H-(1 - cos — 1 sm -3-}. 
4 | nir 2 8 n-TT V 2 / 8 J 

„ ^ f 20 . nx nirx 10 /, 0 . 0 mr\ . wtx) 
£{_^8mTCO8l0 +-(1 -3co8n, + 2co8TjHinwJ. 

4. - — E — sin 2nxx. 9 nir a-11 
oo 

5.45-2; 360 

\ (2n - 1)*t* 

4 

cos (4n — 2)x. 

2 00 

it ^ ir(4n* - 1) 
cos 2nx. 



286 ANSWERS 

tf 2 A ^ 4( —l)n+1 0 
7. - + ~~SA o-7\ C0S 

*“ 7r(4n2 - 1) 

0 0 , ^36 -1« mrx 
8. 3 + i, ■-■-■■ cos — • 

w„i 4 

Z, 6 . titc nirx 7[( —l)n+1 + 1] . nirx] 
^ — sin -Tj- cos z -f —----—-J sin — l. 
\titt 2 4 nir 4 J 

n«* 1 

10. (a) 
2tt 

rT , ^ (-DV-O/ 
- +„?, ,(!+«») (G08nX - nWD "*>< 

,,, . 1 2( —l)n . . 
(6) 1 - g «os * + 2- w2 , 2w «» (« + 1)*. 

, , 1 . , ^ ( — l)n+1(2n + 1) . . , ,, 
(c) - ^ sin x + £ -^T2~-- sm (n + l)x. 

EXERCISES XI (Page 77) 

. «6 + 14(~l)w+1 . nirx 
4 v -— sin -75- • 

«.i »"■ 2 

65 5^(2n-l)* 
16 (2n — l)irx 
-COS V-rr-• 

a , N 5, f 12 . nw 6 
6. (a) V } -r~9 sin -75-cos nir 

[nV2 2 nir 

9 , ^ 12 / nr 
(6) i + SiS^T-1;' 

}. nira: 
sin_6” ’ 

•» / \ Vs 8 / nir \ . 7. (a) V — I cos -75-cos nir I sin 
n* XU7r\ 2 / 

nirx 

6 ’ 

^ 6 nir nirx 

{b) 2-„?^8,,iTco8T- 

. , , 16 nir . nirx 

8-(a) 

(6) 1 -g(2n—)VC0B (2«-lVx. 

,, , , ^ 8p( —l)n+1 . (2» - Dirrc 
14' (a) ?,^(2n~-~iy»Sm-2«- 

4y>( —l)w+1 00 r, 
L 

2p 

8p 
7r(2n - 1) ir2{2n - l)2 

cos 
(2n — l)irx 

2p ; 

(b) £ 4 . (2n - 1)ttx 4( —l)n+1 (2n - 
' Sm-» ~ - . ST--“T\— cos - 

|Ti (2» - 1)» 2p ’ (2n - l)x 2? 

l)xx 
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EXERCISES XII (Page 82) 

1. (a) y" - 0, (6) y" - 32/' + 22/ - 0, (c) 2/" + y - 0, (d) y" + 2y' + y 

- 0, (c) 2/" - 4- 132/ = 0. 

2. (a) y" = 2, (6) 2/" - 3i/' -f 2// = 6, (c) ?/" -f 2/ = -3 sin 2x, (d) y" -f 

2y* -f y = 4c* (e) 2/" - 6?/' 4~ 13|/ = 26x 4- 1. 

3. (a) x2?/" - 4^2/' 4- 6?/ =*= 0, (6) (x - 1)2/" — xy' 4- y = 0, (c) (1 - cot x) 

y" — 2y' 4* (1 4- cot x)?/ = 0, (d) (cot x — 2 cot 2x)?/" — 32/' 4- (4 cot x — 2 

cot 2x)2/ - 0, («) (fflf - 2/7)2/" 4- Cfa" - gf")y' 4- (TV - 07')</ - 0. 

4. (a) x?/" — 3t/' = —4x, (6) sin 2x y" — 2 cos 2x ?/' — — 4, (c) x2?/" — 5x*/' 

4- 82/ = 8. 

EXERCISES XIII (Page 88) 

1. (a) y = cie2x 4- c2e~JZ, (6) 2/ = cie2z 4- c2e4X1 (c) y = Ci cos 3x 4- c2 sin 3x, 
(d) 2/ *= (ci cos 1.32x 4- c2 sin 1.32x)c“2-6Z, (e) 2/ = (ci cos 2.45x 4- c% sin 2.45x) 
r3'w. 

2. (a) 2/ = c, 4- C2Z, (W 2/ = (ci 4- c2x)e~2z, (c) y = ci 4- cjx 4- CfX1, 

(d) y = (ci 4- c2x) cos 1.73x 4- fc3 4- w) sin 1.73x, (e) 2/ = (ci 4- Cax)e2z 4- 

(c8 4- 6*4x)e~2x. 

3. (a) 1/ = .5e* 4- .5e8z 4- ci cos 5x 4- c2 sin 5x, (6) ?/ = .05e~8z 4- ciez 4- 

(c2 4- .25x)6'5z, (c) y = .156e4z 4- (ci cos 1.32x 4~ c2 sin l,32x)e~1-6z, (d) 2/ * 
Cie~6Z 4- (ci + .lx)c6z, (e) 2/ = ci 4~ (c2 - x/3)e~3z 

4. 2/ = —.147 cos 4x 4- *88 sin 4x 4- (ci cos x 4- c2 sin x)e~iz or y — .172 sin 

(4x — 59°) 4- Ae~*x sin (x 4* a). 

6. (a) y = .131 sin (2x 4- 66°50') 4- cic2z 4- c2ebx> (b) y - .33 sin (3x — 

97°35') 4- .040 sin (9x — 148°40') 4- (ci cos .866x 4* c2 sin .866x)e~2*8z, (c) y = 

1.79 sin (x — 3°30') 4~ fecosx 4- C2sinx)e-Z, (d)y — —1.67 cos 2x — sin2x — 

.571 cos 6x 4- -286 sin 6x 4- c1 cos x 4- c2 sin x, (e) t/ = (ci — 1.25x) cos 2x 4- 

Ca sin 2x. 

6. (a) y = —.714 4- cie7z 4- c2e~x, (b) y - .67x3 4- Ci 4- Cax 4- c«x*, (c) 2/ = 

(.139x2 4- cix 4- Ci)ezx + (c3 4- c4x)e~3Z, (d) 2/ * .156e2z 4* (Ci 4- c*x - .312x») 

sin 2x 4“ (ca 4“ C4X) cos 2x, (e) 2/ — Ci6“sz 4- .566e2Z sin (5x — 45°). 

7. (a) —.75X2 - .375, (6) (-.01 4- .05x)e2z, (c) .167x8e8z, (d) -.111 cos2x 

4-.167x sin 2x. 

9. y = 2x3 — 4x 
yt -64 . (2n-l)irx. 
“j irs(2n — !)•Sm 2 

10. (a) y = 1.5x + .lhe~'lx - .75, 0 < x < 3, y - (.75 - 1.5e»)e-** - 1.5s 

+ 9.75,3 < x < 9, y = (.75 - 1.5e* + 1.5e**)e-»* + 1.5x - 18.75, 9 < * < 12. 

(6) y 
- ( 

■£- 
n«l 

-l)»432{(2n- l)x 
cos (2n — 1)ttx 

■]- 12 sin 
(2n - 1)7 

6 
(2n - 1)M144 4- (2n - 1)V] 

3. 
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EXERCISES XIV (Page 94) 

1; (a) x = .2e2* 4 Cie* 4 c^-3*, i/ =* .4c2* 4 Cie* — 3^6“®*, (6) x =*= —,57 c4* 
4 cie^-®71, y = .43c44 4 cie*674, (c) £ = — .5c24, y = 2^. 

2. (a) a; = Ci<r* -f c2Ze-4, ?/ = (ci -f* 7c2)e~t 4 c2te~ty (b) x = Cie”"4, 2/ » c2e“*, 
(c) x = deP - ie* y = 4 (2 4 c2)e^ - Ze2*, (cZ) a; = Cie24 + c2te* - .25t2e**, 
0 * (-Cl - 2c2 - l)c24 4 (-C2 4 D/e24 4 .25/V4, (e) x = Cie24 4 .312/e24, 
y ** c2eP - ,062/e24. 

3. (a) x * .143c“4 4 2cie-j« 4 |4c2 cos 1.73/ 4 4c* sin 1.73/R y « -.286<r4 
- cie“** 4 [(c2 4 1.73c*) cos 1.73/ 4 (-1.73c2 4 c.) sin 1.73/Je4, 2 - -.286<r‘ 
-2cie“* 4- [(2c2 - 3.46c*) cos 1.73/ 4 (3.46c2 4 2c*) sin 1.73Z]e*, (6) * = ,5c31 
46ci 4 5c2 cos t 4 5c3 sin /, y = — .2c34 — 3ci 4 (—3c2 — c3) cos / 4 (c% — 3c*) 
sin Z, z — .033e34 — 2c1 4 (—2c2 4 c3) cos / 4 (—c2 — 2c*) sin Z, (c) x = .2e* 4 
[(c2 4 5.57c*) cos 2.78/ 4 (—5.57c2 4 c*) sin 2.78Z]e~64, y » (.2 — ci)e* 4 
[4c2 cos 2.78/ 4 4c3 sin 2.78/Jer-64, 2 = (.2 4 Ci)e* 4 [4c2 cos 2.78/ 4 4c* sin 2.78/] 
e~.« 

4. (a) x = 2.25c54 4 ^e4 4 C2C44, y = 1.5eu — 2eie* 4 ctf**, (6) x - .081 cos/ 
— .487 sin / 4 cie-8444 4 c2c“ y = —.135 cos / — .189 sin / 4 .615cie*8444 4 
.135c2c“ M3/, (c) x = —.106 cos 3/ 4 (2ci cos / 4 2c2 sin/)e4 4 (2c* cos / 4 2c4 
sin Z)c-4, ?/ = —.012 cos 3/ 4 (c2 cos / — Ci sin Zje4 4 (— cos / 4 c* sin Z)e~4. 

6. (a) x = .lc84 4 cie-8184 4 c2c~-8iw, ?/ = .02c34 — .3cie*8144 — .3c2c~8184, (b) x 
- cxe* 4 c2e~24 4 [c* cos .866/ 4 c4 sin .866/je-*64 4 [2c® cos 1.73/ 4 2c« sin 1.73Z] 

c4, y = — 4cic4 — c2c-24 4 [(2c3 — 3.46c4) cos .866/ 4 (3.46c* 4 2c4) sin .866/] 
e~M 4 [(c* 4 1.73c*) cos 1.73/ 4 (-1.73c6 4 c*) sin 1.73/] e4, (c) x = cie"*-334 4 
\c% cos / 4 c* sin t]e~2t} y = — 25cie-2-S3* 4 [(3c2 4 4c*) cos / 4 (—4c2 4 3c*) 
sin Z]e~tt, (d) x = c^34 4 c2e~84 4 c* cos / 4 c4 sin /, y = Cie84 4 c2e~* — c* cob / 
— c4sin/f (e) x = 2cie? 4 cae24, t/ = —3ci# 4 

EXERCISES XV (Page 104) 

2. i - .0457 sin (120tt/ - 88°25') 4 .0028 sin (360*/ - 64°35') 4 .0002 sin 
(600*/ - 99°45'). 

3. / - -2.5 X 10~*e~mu sin 119.4/. 

4. 7i 4 A 4 /j - 0, ZJy — Zili = E\ — E%y Z2I2 — Z$I^ = E% — E*. 

5. 7* - ft(Zi 4 Z2)/(ZlZ2). 

6. 7i 4 72 — 7® — 0, 7® 4 7* 4 74 = 0, —7i — 72 4 7® = 0, I\Zi — I%Z% =» 0, 
7aX2 4 7®X® — 7*2/* 4 7*Zc = E«, 7*Z* — 7*Z4 = 0. 

7. (6) <1 = P/Q sin (wf 4 « 4 p - ?), where Pjp » P*^m 4 (LtEm - 
MFn^ujj and Q | g = M2uP 4 R1R9 — LiLsw* 4 (LiRt 4 L%R\)<aji 

8. (6) x = 1.32 sin (4/ - 76°); 

EXERCISES XVI (Page 109) 

1. y « x4 4 4x* 4 C1X2 4 c2(l 4 x). 

2. y - — ,25(e* 4 e“*) In (e* 4 6"*) 4 (ci 4 .25x)e» 4 (c* - .25x)c“*. 

3. y « —xl sin x 4 CiX* 4 CaX*j 
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4. uy = I uQ{x) dx ■+■ c, where In u = I P(x) dx. 
Jxo Jxi 

6. (a) ?y = —12 cos x -f cx 4- c2 sin x, (b) y = x2/4 -f 1/8 + Cie** + cax, 
(c) y = (x4 4* 4x3 -f 3x2)/G + cx(x* - 1) + c2(x + 1). 

8. 2/ — 12 — 28x + 15x2 - x4. 

13. (da) X - 1/7e~l - l/3e~2t -f 1/21 (4 cos y/\31 + 2 y/3 sin y/5t)&, y = - 
2/76“* + l/6e“* + 1/42 (5 cos yS* ~ \/Ssin y/3t)J, z =.-2/7<r‘ + l/3e-* + 
1/21 ( — cos \/3t 4* 3 \/3 sin y/3t)e?, (db) x = .5c3* — 2 + 1.5 cos t — .5 sin t, 
2/ = — .2c3* + 1 — .8 cos £ *6 sin t, z = .033c3* 4~ *667 — .7 cos t — .1 sin tf 
(ea) x * .2c2* - .25c* 4- .OSe"8*, z/ = .4c2* - .25e* - .15e-« x = dx/dt = y « 0 
for t = 0, (et) x = -4/7e" - 2/21<r*/3, y = 3/7e* - 2/21e~»/z, no condi¬ 
tions, (ec) x « — .5<r*2r, ?/ = 2e^, no conditions. 

EXERCISES XVII (Page 121) 

1. (a) x* = 2u, xv = 0, z/« = 4, z/p = 5, (6) ux = l/(2u), uy = 0, ?;x = — 

2/(5u), vy - 1/5, (c) u ~ \fx, v = z//5 — 4 \/x/5. 

2. (a) Xf — cos 0, xe = — r sin 0, yr = sin 0, ?/p = r cos 0, (6) rx = cos 0, ry = 

sin0, 0X = ( —sin0)/r, 0y — (cos0)/r, (c) r = Vx2 4- 2/2, 0 = tan~l (?//x). 

3. (a)/® = 2w/x 4 4/y,/r = 5/y, (6) /w® = 4u2/xx 4- 16?i/Xy 4" lG/yy 4- 2/#, /wp 

— 10n/xy 4" 20fyy, fvv = 25fyy. 

9. (a) 
dz 

dx 
4>xfy ~~ <t>yfx % dz __ /x 

0^/3 ’ ^ dx fz ’ 

10. (a) 
dx 

du 
/ttffy ~ fyQu du 

/*{7y ~ /y£7* ' dx 

/sffi? ~ /p0x . 
fuQv ~ 

EXERCISES XVIII (Page 127) 

1. z Va2 — x02 — ?/o2 4- xx0 4- 2/2/o = a2, a/2* 4~ x 4* 2/ = 2o. 

4. zz0 4- xx0 4- yyo = a2. 

EXERCISES XIX (Page 132) 

1. 4zx -3Zy ~ -24. 

2. (a) Zx = 0, (6) azx 4* dzy = 0, (r.) azx 4 6zy = c, (d) xz* 4* t/zy « z, 
(e) yzx - xzy = 0. 

3. (a) Zxy = 2e22?, (6) ZXX = 2, (c) 15Zxx — 2Zxy — Szyy = 0, (d) 5zXy — 3zyy =* 
-24. 

4. Zx -f 2y = az. 

6. v2**® — zu * 0. 

EXERCISES XX (Page 135) 

1. (a) z mf(y), (b) z -/(*), (c) * « x8/3 4-/(2/), W) « * x*y/2 4-/(2/), 
(e) * - *V(2y) +/(y), (/) « * 2x 4- x2/(2v) +/(»). 

2. (o) z * 1/2 x® In y 4- 6xy 4- fix) 4- g(y), (b) z - x8|//3 - x«/2 + x/(y) 4* 
^(2/)» (c) * - «V3 4- xy«/3 4-/(«) + g(v)t (d) u =* xe* 4* ^4/4 4-/(«) 4- 00), 
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(e) u - xH/2 4 xty2 +/(*) 4 y(0, (/) m « 1/12 cos (2s 4 3f) +/(*) + g(t) 
4 xh(t). 

5. (a) z « eW/tfiy), (6) z* « 2a:3 - 4a:?/ 4/(y), (c) z * -In |/(y) - xt/]. 
6. z =* 3x*y4 4 2/*/(x) + (7(2/). 

EXERCISES XXI (Page 141) 

1. (a) z = /(x 4 y), (6) z = f(xy), (c) z = /(x2 - y2), (d) z * /(*fy“a), 
(a) z » /(6x2 - ay2). 

2. (a) z * /(y), (6) z =/(6x - ay), (c) az = cx + f(bx - ay), (d) z = 
xf(y/x), (e) z - /(x2 4 y2). 

7. z * x3 4 2y3 -f-/(7x — 5y). 

8. z = 3x2/2 + y2 + 4e3*/9 4/(5® - 3y). 

9. (a) z « 2x 4 3y 4/(zV“a)> (6) z = 4x 4 3y 4 /(6x2 - ay2). 

10. (a) z = 2x *f/(cosx 4- siny), (6) z = ^ ~ ' 

11. (a) z - e*V(y “ ®), (6) x - y - c*-* 4 e*-* = /(«* - e*). 

12. z = cx/a + x2/2 4- y2/2 4/(6x — ay). 

13. z - xc'aex+*'f(xby-a). 

14. (a) 1/z - 1/x * /(1/y - 1/x), (6) z2 - x2 = /(y2 - x2). 

EXERCISES XXII (Page 146) 

1. (a) z * /(2x 4- y) 4- fir(4x 4 y), (6) z = /(x) -f y(13x - y), (c) z *= 1.5x3 
+ f(x - y) 4- y(3x - 4y), (d) z = /(3x 4 4y) 4 xg(3x 4- 4y). 

6. z = x2 4 z*/2 — 5y*/6 - x4/12 4 f(x 4 y) 4 g(x — y). 

6. z = 5e®V36 — sin x 4- /(x 4- y) 4- zy(z 4- y). 

7. u ** c sin (Qx 4- Py 4 a), v =» c cos (Qx -f Py 4* a); 

9. (6)/(u) = —quh(u) = -qu*,g(u) = (p 4* 3y)6(u) = (p 4 3g)ua; 

10. (6) z =/(x 4 y) 4 0(®) 4 y6(x) 4 y2k(x) 4 p(y) 4 xq{y) 4 x*r{y). 

EXERCISES XXIII (Page 164) 

2. (a) z « <&*<?*, (6) z * cxV, (c) z * (d) z * (e) z * 
(/) z - ce^e-40^. 

8. (a) z * (cie°** 4 cae^®**) (C7e®* 4 cse-®*), z = (c8 cos 66x 4 c4 sin bhx)(c9 cos 
6< 4 Cjosm 6£), z * (c* 4 c*x)(cu 4 cut), (6) z * (ci 4 c^v)e2ax, z ® (ci 4 c*y), 
(c) z * (cie®** 4 c2e'Mhx)(c7 cos a/ 4 c8 sin at), z — (c3 cos 66x 4 C4 sin 66x) 
(cte* 4 Cioe"6*), z ® (c3 4 C6x)(cn 4 Ci^)- 

EXERCISES XXIV (Page 160) 

*'- Vr [' (* - vfe) -»(*+ vfe)]' 
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EXERCISES XXV (Page 165) 

1. 2.3 X 10s cal./day, 55 kg./day. 

2. 1.3 X 106 cal./day, 15.3 kg./day, 3 kwh./day; 

6. 1.38 X 10® cal./day. 

7. 23.7 cal./sec., 31.4 volts. 

8. .0023. 

9. (a) 392 cal./sec., (b) 393 cal./sec. 

10. 2404 cal./sec. 

EXERCISES XXVI (Page 170) 

7. p * — 

8. (a) ^ 

Z)a2 
2g(x* 4- if) 

D 

M*2 + y2)l/2 
D 

> (W Poo ~ 
2D 

9 g(x* + y2)1/* ’ 
D(2& - 

(c) Po'+ ^ (3 - 2e* cos ?/ - e2*), (d) + ‘ 2g(x 

(«) Poo + 
D( — 2x2y — 2y3 4* x2 — 3y2 — 2?/ — 1) 

2y(x2 -f y2)2 

1. (a) Z 

EXERCISES XXIX (Page 186) 

1C0 8in (2n - l)*x 
,1(2n-l)x 30 

^ 96(— l)n+1 . riTX (6) £ -—-sin-^ e # 

8 . tittx 

wry 

6 ~ ^ 
—mry 

(c) Z —sin 
n=«l 

... ’•r-i 20 f 1 ?l7r\ 
(d) 5^(s^81 

(«) 2 ein ^ e 10 , 

717TX “ 
8mTe 

-TV -TV 
(/) 6 ein e 3 + 3 sin — e 4 . 

6. 50 + Z 
200 

„-i (2n - 1) 

(r \2n~i 

To) sin (2” ~ 1)e- 

EXERCISES XXX (Page 198) 

1. (a) Z 200(~1)"+1 sin^ 
«-i ** fin 50 

<*) 100-Z^sin^e^ 

2^-1) 

+W~ ’ 
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.2/ 
, , , 100(-1)»+1 . UTX -55555 

(c) x+£.'zr.sm^oe > 
00 rn -n*rH 

(d) 26+x-Z^sin^f e«*“\ 
»-lnir 

(e) "+fc-s A-h(H5te-=wa« 
2. 27.9°. 

3. 74.9°, 42.7°. 

4. 50°. 

6. (a) 37.5°, (6) 30.5°, (c) 25°. 

6. (a) X) — fcos — — cos n?r) sin^~ e 6400**> (5) 5.1°. 
„Tl nir \ 2 / »U 

7. ft) 90 -T* - 720 CQg (2n ~~ llgf c 3600A* . 
W „ri(2n~ 1)M008 60 * 

o ^ * 800( — l)n+1 . (2n - 1)tx 
8 ftnd 9' S(2n-ljMSm- 40—6 1600 * 

EXERCISES XXXI (Page 198) 

1j (a) e = E,sin^Q £-< + Essin ^ £-*“, 

Ei x . Ei x 
* 3000 008 1000 * 600 008 200 * ’ 

2E{ — \)n+1 . nx 
(6) C°S ~ nr.-Slni000^’ 

. ^ 2#(-l)» nz nl/ 
1 3000ir 0081000*" ’ 

_mUrU 

Ex . ■£* 2E(—l)n . nirx iRC 
2. e » — +£ —~—- sin — « 8 RC , 

a n* a 

, E , ^ 2E(-l)»+i nrx 
* - -te+Z—5-^-cos —.«»<?. 

EXERCISES XXXU (Page 200) 

~i (2« - 1)V a a 

0 , x . n?rx nrs$ 
2. (a) © sin — cos — > 

a a 
/x\ P /o • T«f . 3irX 3irst\ 
(b) ~ I 3 sin — cos-sin— cos — 1» 
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M , \ pa . mrx . nirst 
4; (a) -£—- Bin — sin-, 

nw8 a a 
/r\ 7XI /- . ttx . irs£ 3ira? . 3tts£\ 
(6) I 9 sin — sm-sm — sm — I» 

12 t8 \ a a a a / 

, \ Spa3 . (2n — l)7rx . (2n — l)xs$ 
(c) V rr-r-lT.-. ■ sm  --— sin  --— • 

„«i (2n — 1)4tt4s a a 

EXERCISES XXXHI (Page 203) 

* / \ T7i • wX *i - t, 7irX 7irt li (a) e * Ei sin — cos-7== •+• E7 sm — cos 7=, 
« o Vic « a vTc 

* = /o — 1 WB - B1U-7= ■ 

vi\, O aVlC 

^2J?(~l)n+1 . 717TX ri7T< 
(0) e — 7- —~--—sin — cos-7=, 

„-i o a n/LC 

' tx . „ 7ttx . 7vt \ Ei cos — sm 7= -f -07 cos — sm 1, 
“ a VLC a a Vie/ 

i *= Io -+■ 
m 

2E( — l)n TlirX . 7lirt 
—--cos-sm-7=3* 1 
l n7r a a V LC 

Jfcc . ^,22£( — l)n . mrX mrt 
2. e =■-h L-sm — cos —7==, 

a n-l nir a a vTc 

2E(— l)n mrx . md 
—--^—cos — sm-7==. 1 

l nir & a V LC 

w r» 4i£ . (2n — 1)ttx (2n — l)irf 

*• * * E F5' V '""W 

V (2n - 
4J£ (2ra — l)7rz . (2n — 1 )irt 
-77- COS --7;--- SID --7==- * 
- 1)t 2a 2a Vic 

4. (6) If /V = -jj?- X 108 — 851, 

^ 6000mr/o[l — (—l)n«-0M] . nir® _.oa/30.3 . „ . , „ \ 
e “fl?j nV+T^TcF* Sln"50”* ” + 

6. With as in 4(6) above, e — 
E sinh .00004® 

einh.002 

,5, 2Enr(-l)n . nir® _.OB/30.3 . , . . \ 
+5^i+TxiF>anlo e ( Ar8mW + c°8^); 

EXERCISES XXXIV (Page 207) 

2. 2/(3, I) * l/2[G(x 4- st) + G(x - «*)], where 

(1) G(u) » (— l)m —, if u * ma 4- v, m integral and |t>| 5* % f 

(2a) G(u) =«* p sin , (26) G(u) = p sin8 ~ * 

(2c) fc(r(u) - (-l)ro (apt; - pv2), if u = ma + v, m integral, O^r^o, 
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8. e(x, t) = 1/2 [(?(x + </vTc) + G(x - t/vTc)], where 

(lo) G(u) = Ei Bin— + Er sin , 
a a 

(16) G(u) 
Ev 

, if u = 2ma + v, m integral, |t>| < o; 

1 i*x4~8t 
5. y{xt t) » =- I 2£(u) du, where 

<45 Jx—8t 

(4a) 2C(u) = p sin (46) AT(u) *= p sin8 — , 
a a 

(4c) i^(u) = (— l)w (apt; — pv2), if u = ma + f, m integral, 0 ^ t; ^ a. 

7. Put0 =^J^^K(«)d« + l/2[o(x+ii,)- c(x--±)], 

where K(u) and G{u) are odd, periodic functions. Then 

(а) e{x} t) = <£, <7(u) and i£(u) of period 2a agreeing with F(u) and H(u) 
respectively for 0 < u < a, 

(б) e(x, t) * ^ -f- (7(u) and i£(u) of period 2a agreeing with jV(u) — ~ J 

and H (u) respectively for 0 < u < a, 

(c) t{x, 0 = <f>, G(u) and AT(u) odd harmonic of period 4a, agreeing with 

F(u) and H(u) respectively for 0 < u < a. 

R G 
8. Put k * ^ = g,, and ^ as in 7 above. Then 

(а) e(x, J) = G(u) and K(u) of period 2a agreeing with F(u) and 

lH(u) -f kF(u)] respectively for 0 < u < a, 

(б) e(x, t) * -f e_w0, G(u) and A/u) of period 2a agreeing with 

m - 

sinh VRGa 

sinh VRGu rul 

?aj 
and [H(u) + &A(u)J respectively for 0 < u < a, 

sinh VRGc 
(c) e(x, t) = G(u) and K(u) odd harmonic of period 4a agreeing with 

F(u) and [H(u) + kF(u)] respectively for 0 < u < a. 

EXERCISES XXXVI (Page 217) 

1. N*Z 1000, N £ 10. 

EXERCISES XXXIX (Page 280) 

8. (1 - *)-* = £ 
n*l 

4. 1/2(1 + *)-»'» = 1-2 
1-3-5- (2n - 1) 

(—2)n+1n! 

9.(a)c(l+±^, (b) ci(l + i^) + Ci± 
( — l)n+1Z™*1 

(2n — 1)! ’ 

(c) c + <H + c*2* + (1/3 + c4)*8 -f (c/6 + c*)*4 + • • • i 
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EXERCISES XL (Page 236) 

1: i. 
2. -18 + 181. 

3. 2te* sin 1 * 12.01. 

4. -2/3. 

EXERCISES XLI (Page 238) 

2. (a) + 2z - 1, (c) (a + W)(* + c — / + [d + e){), (d) e* 

EXERCISES XLII (Page 240) 

4. (c) 0. 

6. IT. 

7. (a) -H-/V2, (6) *73, (c) »/Vi2(a» + ft2)(a + VaM^P). 
(d) */(ab[a + 6]). 

EXERCISES XLm (Page 245) 

4. (a) 1, 3, VI, (6) 1, VI, 1, (c) 1, 1, 1, (d) VlO, V26, vlo. 

EXERCISES XLIV (Page 247) 

4. |z| < 1. 

5. |z| < ir/2. 

6. z2 — 2abi. 

„ fx, v dv , dv , . , n. . 
7. I -K-dx — dy + iv, 2iz -f 26. 

Ja,b dy dx 

EXERCISES XLV (Page 260) 

1. Equation (32) gives N\ * 166,000, but inspection of the series shows 

that any Ni > 20 will suffice. 
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A 

Abel’s theorem, 276 

Absolute convergence, 215 

Absolute value, 6, 7 

Analytic function, 14, 211, 245 

Average, 42 

product of two sines, 56 

B 

Bessel’s function, 24, 155, 230 

Branch-point, 40 

C 

Cauchy-Riemann equations, 237 

Cauchy’s integral formula, 245 

Cauchy’s integral theorem, 239 

Circle of uniform convergence, 225 

Closed form of solution, 208 

Complementary function, 82 

Complex current, 102 

Complex e.m.f., 102 

Complex number, 3 

Conformal mapping, 25 

Conjugate complex number, 6 

Continuity, 122, 213 

Convergence in the mean, 269, 275 

Convergent series, 214 

Cosine series, 77 

Curvilinear co-ordinates, 175 

D 

De Moivre’s theorem, 12 

Derivatives of complex functions, 228 

Differentials, 114 

Distortionless line, 160, 208 

Divergent series, 214 
297 

E 

e,«, 15, 95 

Electric circuit, 95, 99 

Electric flow in a long line, 156, 196, 

202, 206 

Electric network, 97, 102 

Elimination of functions, 128 

Euler’s equation, 16 

Even function, 48, 64 

Exact differential, 123 

Exponential function, 15 

F 

Fluid motion, 166 

Force potential, 125, 180, 182 

Fourier coefficients, 69 

Fourier series, 70, 75, 249 

for piecewise continuous functions, 

261, 266, 270, 275 

for piecewise smooth functions, 

249, 251, 259 
Function, 13, 213 

Fundamental region, 34 

G 

Geometric mean distance, 51 

Gravitational potential, 180, 182 

Gudermannian, 23 

H 

Harmonic, 65, 202 

Heat flow, 162, 176, 182 

in a rod, 188 

Heaviside expansion, 112, 113 

Hyperbolic functions, 21 

Hypergeometric function, 231 
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I 

i, 3, 95 
Imaginary component, 20, 87 

Imaginary unit, 3 

Impedance, 5, 102, 161 
Inequality for averages, 46 

Infinite series, 214 

Infinity, 30, 213 

Integrals of complex functions, 231 

Integration of Fourier series, 262 

Integration of uniformly convergent 

series, 235 

Inverse hyperbolic functions, 24 

Inverse trigonometric functions, 19 

J 

j, 3, 95 
Joukowsky aerofoil, 38 

K 

Kirchhoff’s laws, 97 

L 

Laplace’s equation, 180, 182, 238 

Law of the mean, 121 

Least square error for trigonometric 

sums, 267 

Legendre’s polynomials, 155, 231 

Limits, 211 

Linear, 80, 143 

Linearly independent functions, 81, 

82 

Linear ordinary differential equa¬ 

tions, 80, 105 

Linear partial differential equations, 

137, 142 

Line integral, 124 

In, 18 

Logarithm, 18 

M 

Mercator’s projection, 39 

O 

Odd function, 49, 64 

Odd harmonic function, 05 

Odd harmonic series, 79 

Operations on Fourier series, 261, 271 

Operations on power series, 225 

Operations on series, 216 

Ordinary differential equations, lin¬ 

ear, 80, 105 

P 

Partial derivative, 115 

Partial differential, 115 

Partial differential equations, linear, 

137, 142 

Particular integral, 82 

Particular solutions, 148 

Period, 53 

Periodic function, 53 

Piecewise continuous, 261, 266, 270, 

275 

Piecewise smooth, 249, 251, 259 

Poisson’s integral, 210 

Polar co-ordinates, 7 

in space, 178 

Potential for a circle, 188, 210 

Potential for a rectangle, 183, 208 

Power series, 14, 224 

Powers of complex numbers, 10, 20 

R 

Radio equations, 160, 202, 200 

Real number, 1 

Residue, 241 

r.m.s., 45 

Root mean square, 45 

Roots of an algebraic equation, 12,242 

Rotating vector, 20 

Rotation, 169 

S 

Series, 213 

Sine series, 76 

Smooth, 249 
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Steady-state current, 101 

Steady-state solution, 191, 197 

Steady-state temperature, 164, 182 

Stereographic projection, 39 

Systems of differential equations, 90, 

134 

T 

Tangent plane, 125 
Taylor's series, 31, 242 

Telegraph equations, 159, 196 

Telephone equations, 159 

Total differential, 116 

Transformation of the plane, 25 

Transient current, 101 

Transient solution, 191, 197 

Trigonometric functions, 15 

Trigonometric series, 69, 75, 249 

Trigonometric sum, 62, 266 

Triply orthogonal system, 175 

U 

Uniform approach to a limit, 221 

Uniformly convergent Fourier series, 

258 

Uniformly convergent series, 221 

V 

Variation of constants, 105 

Vector, 7, 126 

rotating, 20 

Velocity potential, 170, 180, 182 

Vibrating string, 172, 199, 204 

W 

Wave equation, 173, 199, 204 
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