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ERRATA

Page 19.

For ‘Example 5, read throughout ‘Example 6’.
Page 22.

In last line, for first appearance of ‘=’, read ‘+’.
Page 27.

Line 2.—Before second expression, add * +’.
Line 4.—For first ‘12’ read 120,
Lines 4 and 6.—For 0-:00096 read 0-0096.

Page 30.
Line 12.—For ‘nominator’ read ‘numerator’.
Ae,V'yy v )
vV, \Woso/
Before final paragraph, add: ‘When v is negative (V =V, —v),
A6,V', is not necessarily equal to 4oV’,, but must satisfy the equation
V = V, — v, and therefore the equations
AV = £+ A,V + A’ and V' + AV =V, + 4,V -
+ Acv . . . . . . (A)
Ae,V'y

1

Line 17.—For third fraction read

L can be positive, negative, or zero, according to (A) ;

”

its sign is to be preserved in the equation, giving TR

Page 31.

Line 16.—After ‘is negligible’ read ‘As 4.V’ = 0-4x8

= 0-032v

&nd AcV,l = 0'4 X 2

= 0-008, we get from (A),

Aeyv'y = 0032 — 0-008 = 0024 ; no other value would keep 4.V’
within the limit of 0-0320. We have therefore -221" 1 _ %024 X 100
= 0:249). Vi 10

The constructional error on the voltmeter is therefore
A, V'yy v Acv'y v

+ - 24 0-169

v, ) o ) =0 (5 +04(3)] - 010%

Delete lines 17-22.




2 ERRATA

Page 31—continued.
Line 26.—Delete 029, and substitute 0-16%,
. 0435% ,, . 0:395%

Line 21.—Delete 0-435%, ,, »  0:396%

Page 36.
Sub-heading (c).—For ‘R; R, read ‘R; +R /.

Page 48.
Line 4.—For ‘resistance’ read ‘resistances’.
Line 5.—For ‘R, +R have’ read ‘(R, +R) has’.

Page 49.

Egquation (24a).— , ,
RI 1 RI 1 i r'

’ ’
and substitute 4R ](_'r___)
R, ‘R’ =7
and add at end of equation ‘when r is negative, R, = R, - r,
also A,R’, is not necessarily equal to 4AR';, but must satisfy the

equation R, = R, — 7 and therefore also the equations AR’, ==

+AR; + Ar and R, + AR, = R, + AR, -7 + Ar (B)

-fiRl—'lS'—‘ca.n be positive, negative, or zero, according to (B), its sign is to
1

be preserved in the equation, giving _;I}%_x (See errata for p. 31.)’
z

Page 56.
Line 19.—For a, substitute a’,.

Page 57.

Line 4 —Insert ‘a8’ in front of equation and ‘decreases’ after ‘z’.

At end of line the last term in the numerator reads l%k

Page 75.
Lines 16 and 17.—In the equations delete g and substitute 9.



ERRATA B

Page 76.
Line 19.—Add at end of line,
and ‘4‘;’—1 = "ATe + 2;”7 + ,—A-a—- becavee
A4 e Vi adi+ ds
e=V,, =2V, Ae _ZL"
e v,

* Equation 35 (a).—Right-hand side of equation, numerators of second
and fourth terms. For AV'p read Av'p and for V'p read v'p.

Add after the equation (35a),

aV', _ Ae’ + Av'p . a's + gl_n__ . 4a’
V', e’ vV, ar+ads V', a'y + a'n.
Page 78.
Line 20— For E + i, substitute E =2,
r Ry r R,
Page 82.
Fig. 42 (b).—For right-hand resistance Rk read Rh,.
Page 84.
Line 20.—Delete the word ‘between’.
Page 86.
Line 8.— Deleﬁed—e + v, (& - l) and substitute X-l-gz-l-t
e vV, Va Vo V,
Line 10.— 1, 1t % 4 V1 (Yr=V2) and substitute ~2.2V1,
e Vl Vn Vn Vl

Lane 13 and last line.—

de’ AV, V', -V .
Deleto -~ + V’ll( lV'n %) and substitute

¥,4v,

V’n V’l.

*At bottom of page 86 add footnote :

Asenvl,d—e- ﬂd‘—vi-k—&-dllwilloanoelinlineﬁ.
e V, e V, V,



4 ERRATA

Page 87.
Line 1.—After the equation delete ‘where’ and the whole of line 2, and
substitute ‘when 75 and vg are negative, Ry = R, — 75, Vp =V, — g
then 4,V’, is not necessarily equal to AV’; but must satisfy the
equation Vp =V, — v3 and therefore also satisfy the equations
AV = £A4, V') + Avg
and Vp + AV'y =V, 24, V', - vy + 40’5 (C).
A IV’
V'n
Its sign is to be preserved in the equation for

" can be positive, negative or zero, according to (C).

I'n

n

(See errata to p. 31.)’

Page 87.
Line 13— o4, end of line add 2V1 - %
Vv, e
Line 14.— Delete idef at beginning of equation.
Line 16— 4, beginning of line, for (& - l) substitute L—
Va Va
Line 16.— At end of line, for M substitute L
n n
Page 88.
Line 2.— At beginning, delete A—fand in the last expression take away
e
4V'y (V1 - Vo) and substituteé&— —Y—l
A% Va vV, Va
Line 3'_'Subst;it;ut;e, + for — between terms,.
Page 89.

Lines 16, 17, 18. Equations 39 and 39(a).—

Ae’ . .
Delete —- in each equation.
e
AV 1 V l - V'

Delete also in each equation the factors —1
v, V'a

4,v, V'y
VvV, Vi

and in

their place put ——+



ERRATA 5
Page 95.
End of line 5.—For ‘and’ read ‘inside’.

Page 98.
Last line.—First term of equation 43(a),
for ﬁ read d_’aL
dt dt2
Page 116.

Line 15.—Expression on left of equation, delete J, leaving a,.

Page 121.
Equation (70).—For T substitute .

Page 123.

Line 11.—For ‘t = 0 and wy at t’ read ¢ = ¢ and w, at ¢ = o’

Page 128.
Line 1.—Delete T and substitute 7.

Page 129.

Line 9.—Delete J on left-hand side of equation, also for result 6-83
read 8-34.

Line 10.—Replace 6-83 by 8:34 and change 0-92 sec. to 0-755 sec.

Page 139.

Line 1.—Add dt to each of the terms to be integrated. Right-hand
side of equation reads

L, ¢
7 [ 2% o, [ ©a
de? dt
o (o]
Page 141.

Lines 5 and 6.—Break the line dividing each of the expressions under
2
the square root and add a - sign, giving — —L—OT in each case.
1



6 ERRATA

Page 143.

Line 6.— t
Second integral replace by [, thus giving ! / o di.

Page 153.
Line 15.—For ‘area’ read ‘cross-sectional area’.

Page 158,
Line T.—For v = 17 x 104 read 7 = 0-17 x 10-4,

Page 161.
Line 20.—For ‘resistance’ read ‘resistances’.

Page 163.
Line 7.— For 4By read &-
R R
Page 164.

Fig. 84.—Mark cell as E and resistance as Rh.

Page 168.
Line 18.—For ‘open’ read ‘closed’.

Page 171.
Fig. 90.—Mark left-hand resistance R, and that on the right R,.

Page 189.
Lines 15 and 16.—For (119) read (120).



ELECTRICAL MEASUREMENTS AND THE
CALCULATION OF THE ERRORS INVOLVED

Parr 1

CHAPTER I

ERRORS IN MFKASUREMENTS
(1) Introductory

A MEASUREMENT of any kind is of use only when the limits of the
maximum possible error are known.

The statement that the length of a certain bar is 3 ft. has no signifi-
cance, and does not provide any information as to the usefulness of
the bar, unless the length of the bar is precisely 3 ft. If, however,
the length of the bar is stated to be 3 ft. 4- 0-5 in., or, in other words,
that the length of the bar is definitely between 355 in. and 36-5 in.,
we know that to whatever use the bar may be put it certainly cannot
be used as a footrule; if the length were given as 3ft. 4 & in. we
should know that the bar can be used as a footrule.

In the same way the statement that a condenser has a capacity of
1 uF is devoid of significance, but if the capacity were given as 1 uF
4+ 5%, that is, 1 uF -4 0-05 uF, we would know that this condenser
can be used in such electrical applications where a capacity of 0-95 uF
will do just as well as a capacity of 1-05 uF, but will not do as a
laboratory standard. To use this condenser as a laboratory standard
we would have to be sure that its capacity is definitely known to be
1 uF 4 0-1% or even 1ulF +001% ; the importance of knowing
the limits within which a certain value lies is, therefore, evident.

The calculation of the error or limits is more a matter of common
sense than of strict mathematical exactitude, simply because the
elements on which the calculations are based are known only approxi-
mately. What, however, we need to know is the maximum possible
value of the error or limit, so as to be sure that the magnitude measured
is without doubt contained within the specified limits.

(2) The Maximum Possible Error
If y is the exact value of the magnitude measured, an experiment
might by chance give this exact value. Unfortunately, the experi-
menter would never know it. If, then, the value given by the experi-
ment be y’, the error will be y — y’ = + dy. Sy can be positive or
9
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negative, because y’ can be smaller or greater than the real value y.
If y' is smaller than y, y — ¥’ = - 8y and the error is positive ; if
y' is greater than y, y — y' = — Jy, then the error is negative.

We never know the exact value of y or 8y, but to make certain
that the value of the magnitude measured lies within certain limits is
to make sure that the error dy is definitely smaller than the maximum
possible value of the error Ay, so that we can be sure that y' — Ay
<y<y + dy.

Ay is the maximum possible error.

(3) The Relative Error

The maximum possible error Ay does not provide any information
as to the quality of the measurement. What provides this information
. . . Ay
is the relative maximum error —=.

Example 1. Two e.m.f.s, one of 500 volts, the other of 10 volts,
were measured, and the error in each case was + 1 volt. Which is
the better measurement?

Ay = 4+ 1 volt in each case, yet the 500-volt measurement is
evidently far better in quality than the 10-volt measurement ; the
relative errors are respectxvely

Ay _ :[: orj;02%and y_:!: or;i:lO%
)

The smaller Ay 1s, the better the measurement, and in order to
diminish Ay the experimenter should :

(a) Have a good knowledge of the methods of measurements used

(b) Choose the most suitable method, or even improve the method

(¢) Be familiar with the equipment used, and choose the most
suitable

(d) Work in the best possible conditions

(e) Eliminate as far as possible all conditions tending to increcase
the error

(f) Understand and know how the error is calculated.

(4) Classitication of Errors

The errors occurring in electrical measurements may be broadly
divided into two main classes.

(a) The Systematic Errors. These are the errors inherent in the
equipment and the method used. They are also dependent on some
of the conditions under which the experiment is conducted ; conditions
which are known, and the influence of which can be eliminated,
minimised or calculated.

(b) The Accidental Errors. These are due to conditions over which
we have only partial control or no control at all, such as noise or
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smoke in the laboratory, vibration of the building, physical conditions
of the experimenter (such as fatigue, faulty and incompetent manipu-
lation due to lack of knowledge or practice, etc.).

(6) The Systematic Errors
These errors can be subdivided into :

(a) TaE ConsTRUCTIONAL ERROR. This error arises because the
equipment used can be guaranteed only within certain limits. For
instance, a resistance may be guaranteed to 4 0-19, or + 0-019%, so
that when these guarantees apply to, say, resistances of 1000 £, their

true values are between 1000 4- 019, ; that is, 1000 + % % 1000
0-1

= 1001 2 and 1000 — jor X 1000 = 999 2 or 1000 + 0-01%;
that is, 1000 + %O—Jx 1000 = 10001 2 and 1000 — 22 x 1000

= 999-9 Q. If these resistances are used in a d.c. measurement and
at the temperatures for which the guarantee of 4 0-19, or 4 0-019,
holds, the constructional errors are as calculated. If, however, we use
them for a.c., particularly at higher frequencies, their resistances will
change, owing to skin effect, and the guarantee will not hold. The
resistances will also have a certain amount of self-inductance and dis-
tributed capacity, and the values of these have to be known in order
to calculate their effect on the measurement. All information should
be provided by the manufacturer of these resistances, whose indica-
tions and figures have to be considered in the calculation of the error.

With multi-dial resistance boxes, the limits of error may be different
for different dials; for instance, the constructional error for a five-
dial resistance box is given by the manufacturers thus :

First dial of 10 X 0-1 2 guaranteed to + 0-19,

Second ,, ,,10 x 1R " » £ 0-1%

Third ,, ,,10 x 1002 ” » 0029,
Fourth ,, ,, 10 x 100 2 ' » &£ 0:01%,
Fifth ,, ,, 10 x 1000 Q2 " » == 0:01%,

When using this box, the error has to be calculated accordingly.
Some resistances have their limits indicated in two forms, such as
“1:8%, or 0-01 £, whichever is the greater ”’ ; here only the greater
value of the two has to be taken as the constructional error.
Say we have such a guarantee, applicable to a resistance of 1 R,
variable in steps of 0-01 ; if this resistance is partly in circuit,
say 0-5 Q, the error is 4- 0-01 2, and not +0-5 X % = 40.0075 2;

the relative error is therefore - (:—)%! = 40.02 or + 2%, ; if this
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resistance is totally in the circuit, then the error is not 4 0-01 £ but
+1x %656 = -} 0.015 2, and the relative error is +4 (—)—10—1—5= +0-015
or 4 1-6%,. Note that if 0.01 2 (that is, if one step only of this resist-
ance were used) the error would be + 0-01 £ or 100%,. It stands to
reason, therefore, that this resistance can be used only when an
appreciable part of it is in circuit.

The effects of frequency, self-inductance, and distributed capacity
should also be given by the manufacturer, either by a formula, graph
or phase angle, from which the constructional error can be calculated.

Inductances, mutual inductances, and capacities, have their con-
structional error indicated in a similar way, and the same applies to
tuning-forks, wavemeters, generators, instruments, ete.

With indicating instruments such as voltmeters, ammeters, etc., the
constructional error is generally not uniform over all the scale, but
is usually greatest in the first quarter or the first third of it. The
manufacturer may therefore indicate the error as, say, + 19, in the
first third of the scale, and + 059, in the rest, or in any other manner.
For instance, a manufacturer indicates the constructional error in a
voltmeter, of 150 scale divisions corresponding to 150 volts, as 4 0-49,
of the maximum reading in the first third of the scale and 4 0-89%,
of the reading in the rest ; then at any reading in the first third of

the scale the error will be: -+ IQO% X 150 = + 0-6 V., and the rela-
tive error can be enormous at small readings. After the first third of

the scale, say at 100V., the error will be Adey = i(ﬁ X 100 =

100
+08V.

In some cases, especially in guarantee certificates, the constructional
error may be indicated by significant figures, a significant figure being
a digit which is thought to be nearer to the true value than is any
other digit.

An inductance may be expressed as 125500 mH or 1-255 X 10° mH,
which means that the true value is between 125400 mH and 125600 mH.

The limits expressed as a percentage are here -+ 100 x 100 =

125500

4+ 0-0797 = 4 0-08 9%,. The first four digits, 1255, are the signifi-
cant figures, and the inductance is given to four significant figures.
Again, when a resistance is given as 12222 Q, or to five significant
figures, it means that its value lies between 12221 Q and 12223 Q.
Zeroes are significant figures only when other digits precede them in
the number ; thus 00125 has three significant figures and not five.
The more significant figures, the greater the accuracy of the measure-
ment.
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In whatever manner the constructional error is given, it is best con-
verted into a percentage for the calculation of the maximum possible
erTor.

The constructional error can in some cases be eliminated or reduced.

(6) TmE READING ERROR. The accuracy with which a scale reading,
such as that of an ammeter, voltmeter, etc., can be made depends
on the distance between consecutive divisions, on the thickness of the
pointer, and on whether the instrument is provided with a mirror.
Only instruments with mirrors and knife-edge pointers ought to be
used in a laboratory.

Consider fig. 1.

L

Fig. 1

The pointer reads more than 11-25; that is certain, but whether
it is 11-27 or 11-3 or 11:37 is doubtful. The uncertainty in reading is
about 0-1 or + g of a division. Here the reading error is expressed
as part of a division. The reading error of course depends on the
instrument; in some cases it may be 4 ¢ of a division, in others
much more.

The reading error is not confined to indicating instruments, but
exists also wherever a scale has to be read against some indicator ;
it will therefore exist in the reading of continuously variable mutual
inductances, continuously variable condensers and resistances, wave-
meters, frequency meters, etc. In the more expensive laboratory
equipment the scale is provided with a vernier and magnifying glass
in order t6 diminish the reading error.

When reading a galvanometer deflection on a scale, the reading
error depends on the thickness of the line image, which is generally
$ mm.~ The movement of this line image by } mm. is all that can
really be distinguished, so that the reading error is here fairly great.
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But the greatest error occurs when reading the deflection of a ballistic
galvanometer. Here there is not only the thickness of the line to take
into account, but also the difficulty of locating the position of the
line whilst the galvanometer attains its greatest deflection. The error
will depend very much on the care of the experimenter.

In instruments or any other apparatus provided with a uniform
scale, that is, a scale having the same distance between consecutive
divisions throughout, the relative error varies inversely with the
indication of the instrument.

Say that we can distinguix-xhl of a division, and let each division
a

correspond to b units of the measured magnitude, then the relative
error on the first division will be —I;, on the second division —2—b£, and
a a
on the z division L —-l-
xab za
Example 2. A variable condenser has a uniform scale 0 to 100.
The thickness of the reading index is such that 4-d; of a division can be
distinguished. What is the percentage reading error at the fourth and
last divisions?

(@) at the fourth division:

dry 1 o Ary 100 .
= = —_— v - — 2.00 .
y 4% 10 i40 2 y t0 ~ FE%%
(b) at the last division:
A!‘ ?/ 1 l Ar y
= = = +4-0-1%,.
Y + 100 x 10 + 1000° % Y :t 1000 +01%

Example 3. Voltages are measured by an instrument having a
scale 0 to 100. In one measurement the instrument shows 5, in the
other 90; what is the relative reading error in each case if 4 # of a
division can be distinguished ?

Adry 1 1 Ary 100
= —-; 100 == == 20 .
(@) ileB :‘:50 Y :t5><10 +2%
Ary 1 1 Ary_
b = = 4+ —; 100 —= 0-119
©) 10 x 90 + 900 Y :’: =+ o

It follows that an instrument provided with a direct rea.ding scale
is unreliable at the beginning of the scale, greatly so, since the
calibration error usually is much greater in this part of the scale.

The answer to the question, from which part of the scale should
the reading be taken, depends on the precision desired in the measure-
ment. The error at the beginning of the scale is much greater in
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instruments with a scale which follows more or less a square law,

because if we can distinguish1 of a division at division z of such an
a
instrument, we can distinguish only — at division g
a

There are, however, scales where the distance between consecutive
divisions is greatest at the beginning or in the middle of the scale.
The question then arises : in which part of the scale is the reading
error smallest?

Let z be the variable distance in mm. between consecutive divisions
on the scale, and let the distance which can be distinguished be ¢ mm. ;
¢ will be a constant for a given scale and pointer thickness ; the relative

reading error will be variable with z and equal to % if one division

z
corresponds to b units of the magnitude measured, then at division =
the magnitude measured is bx and the relative error is

E-b—:~b:t:=c-l-.
2z 2

This error will be the smaller as the greater is the product zz. For
minimum error the instrument has therefore to be read at those points
of the scale where zx is greatest.

Example 4. In a certain instrument the distance between two
consecutive divisions on the scale is :

2 mm. at 20 divisions 3 mm. at 80 divisions
3 mm. ,, 40 ,, 2mm. ,, 90 ,,

4 mm. ,, 50 ,, 156 mm. ,, 100 ,,

4 mm. ,, 70

Where should the scale be read in order that the reading error shall
be minimum ?

From the products zx
2x20= 40 3 X 80=240
3 X 40 =120 2 X 90=180
4 x 50 = 200 1:6 x 100 = 150.
4 X 70 = 280

The minimum reading error is around division 70.

If, when reading an instrument over all its scale, that part of the
scale is reached where the reading error is too great for the accuracy
desired, either the sensitivity of the instrument or the instrument
itself should be changed, so as to pass again into that part of the
scale where the reading error is within the limits allowed.

v~ Example 5. A current is read on an ammeter of 100 scale divisions,
where ¢ of a division can be distinguished; the scale is uniform.
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At what division should the ammeter (or its sensitivity) be changed if
the maximum relative reading error is not to exceed 4- 0-6%?
1004y _100_ 5. 100

= 20 divisions.

y 0z ’ 10x0-5

(¢) THE DETERMINATION ERROR. This is the error due to any
uncertainty in the final adjustment of the apparatus used for measure-
ment. For instance, when measuring an inductance against a capacity
on an a.c. bridge, it is found, in the final adjustment, that a variation
of, say, 4 0-0001 uF in the capacity does not produce any change
of sound in the headphone used as a detector. Owing to this un-
certainty there will be an error in the calculation of the measured
inductance ; this is the determination error.

(d) Tee Error INHERENT IN THE METHOD UsED. This error is
due to certain approximations inherent in the method used. The
error can usually either be minimised or calculated.

(¢) THE ErRRrORS DUE T0 CONDITIONS IN WHICH EXPERIMENTS ARE
CONDUCTED.

(i) Temperature changes which will affect resistances, frequency in
tuning forks and generators, e.m.f.s in standard cells, indication of
instruments, etc. This error can be eliminated by proper correction
factors and information supplied by manufacturers.

(ii) Change of pressure affecting frequency standards such as tuning
forks. Corrections can be applied according to manufacturer’s
indication.

(iii) Thermal e.m.f.s produced by a heated contact between two
different metals. This can be avoided by a judicious disposition of the
equipment, by keeping a uniform temperature in the space where the
experiment is conducted and by avoiding overheating of components.

(iv) Resistance of plugs, switches and connecting wires. This
resistance can be eliminated in certain experiments, in others it can
be minimised or calculated.

(v) Capacity and inductance of plugs, contacts, wires, mutual
inductance and inter-capacity between the different parts composing
the experimental circuit. The effect of these can be minimised by a
judicious disposition or eliminated by a suitable circuit.

(vi) Ageing of equipment. The calibration error given by the
manufacturer has to-be periodically checked, as it is in time found
to vary.

(vii) Effect of external fields. This effect can be eliminated by
suitable screening, by reversal of current, or by a suitable method of
measurement, dependent on the experiment conducted.

(viii) False readings due to eddy currents in screens and additional

capacities due to screens. These can be calculated if details of the
equipment are known.
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(ix) Residual tension in the suspension of instruments, and
mechanical defects causing friction between mobile and immobile
parts of instruments. These can be avoided by suitable maintenance
and inspection.

In cases of residual tension, the difficulty ca.n be overcome by
interpolation.

(8) Accidental Errors

Over these we have very little or no control at all. Some causes of
accidental errors, such as bad insulation, variation of the e.m.f. of
supply, bad contacts, accidental overheating of resistances and induct-
ances, can be minimised, or even completely eliminated, by adequate
inspection. Other sources of error, such as noise and smoke, by
co-operation and order in the laboratory ; whilst many other causes
of accidental errors, such as vibrations of the building, currents of
air, operator’s fatigue and false technique, are more or less beyond our
control.



CHAPTER 1I
CALCULATION OF ERRORS

(1) Calculation of Accidental Errors

As the accidental errors are governed by chance, they are subject
to the laws of probability.

Dealing for the moment with accidental errors alone, suppose a
series of measurements be made, yielding the values: y,, ¥3, Y3 ¥4
. « . Yn. The accidental error on y, is, say, 4 y,, and this error can be
positive or negative ; the accidental error on y, is Ay, and 4y,
can be positive or negative, and equal to, or greater or smaller than,
A y, ; the same applies to the errors Ay, Ay, A yn,onyy ys . . -
Yn.

It is clear that when n tends towards infinity, the number of positive
errors of any magnitude will be equal to the number of negative errors
of any magnitude ; in other words, the average accidental error 4, y
tends towards zero when the number, n, of experiments made tends
towards infinity.

The true value of the magnitude measured is therefore

y=3/1+y2+?ia+ <. ?/n; N> 0O

When » is not infinity, we get a probable value of the magnitude
=y1+yz+ya+---yn (1)

n

In practice, the number of experiments, except in cases of very
special importance, is very small. The best procedure is to make a
small number of measurements, the number depending upon the time
available, reject the results which are obviously wrong (the ones
which are much smaller or much greater than the average), and
calculate the most probable value according to formula (1).

Example 6. Several measurements of a capacity gave the following
results : (1) 1151 uF (2) 1162 uF (3) 1151 uF (4) 1:1625 uF
(6) 1152 uF (6) 1-26 uF (7) 101 uF (8) 1:174 uF (9) 1-163 uF
(10) 1-3 uF (11) 1- 181 uF (12) 1:152 uF.

The values of 6, 7, 8 and 10 are obviously wrong ; the most probable
value is

=1-151 4 1-1562 4 1-151 4 1-1525 + 1162 4- 1-163 4 1-151 4 1-152
8

= 1-161§ uF . . . . . . . ©
18

measured yp

4
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Another method, which, however, requires a certain amount of
skill, is to attach an importance coefficient to each measurement. The
importance coefficient can be 0, 1, 2 or 3. When & result is obviously
wrong, it has the coefficient 0 ; an average good measurement has the
coefficient 1; a very good measurement, such as is achieved in very
favourable circumstances, has the coefficient 2; and an excellent
measuremernit, in which the experimenter has particular confidence,
has the cocfficient 3. The probable value of the magnitude measured
is the sum of all the products of the values found by their coefficients
divided by the sum of all the coefficients.

Example 7. Assuming that in the measurements of example‘ we
attach the coefficient 1 to results 1, 2, 3, 5 and 9, the coefficient 2 to
results 11 and 12, and the coefficient 3 to result 4. The results 6, 7, 8
and 10, béing obviously wrong, get the coefficient 0. The most
probable value is ' .

_ Ix1151 4-1x1-152 4~ 1x1-151 4 1x1:152 4- 1x1-153 +
1 -+ 1 + 1 + 1 + 1 +
2x1:151 + 2x1-152 + 3x1-1525 — 115187 4F. . L ®

2 + 2 + 3

However, the result as given by (2) and (3) is still doubtful; what
we require are the limits within which the magnitude tested certainly
lies. The procedure is therefore to make several measurements,
rejecting the obviously wrong results and accepting as limits the
extreme good values. Thus the capacity will be taken as between
C=1-151 uF and C=1-153 uF.

The systematic errors are next calculated and the result given as:
Magnitude measured = 3’ + Ay. If the systematic error in example&
is 4 1%, the capacity will have a value between C=1-151 + 1%, and
C=1:153 + 19, or C=1-1518 + 1-087%, ; + 0-0879, is the accidental
error; 4 1'0879%, is the maximum error.

The accidental error ought to be much smaller than in example 6, it
should generally be negligible. In the examples given in this book the
accidental error will be neglected.

Yo

(2) Calculation of Systematic Errors

The maximum possible error is most easily calculated by means of
the logarithmic differential.

The Logarithmic Differential. The logarithmic differential of a
function y is the ratio of its differential dy over the function y, or d?y

Note that the logarithmic differential is the relative increment
of the function y.
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The Logarithmic Differential of a Sum.
Lety=u+v+2
dy _d(u+v+42) du  dv  dz

Y= v v Ty ty
which can be written
dy ude  vdv  zdz,
Y yw Ty Ty

that is, the relative increment, dj’, equals the sum of the products

formed by multiplying the relative increments of the terms of the
function by the ratio of each term to the function.

The Logarithmic Differential of a Product.

Let y = uv.z
d__g_/zd(u.v.z)=z‘v(du)+uz(dv)+uv(dz) _
Yy Y Y Y Y
w du | uwv dv | ww da du v | dz
Yy u y v y z u v | oz

The relative increment of the function equals the sum of the
relative increments of the terms.

Similarly, if y = ’.‘Lﬁ the d: du dv  dz dw dq
The Logarithmic Dzﬂerentml of a Sum of Products.
Let y = u.v + wz

gg: d(uv+wz) duv) d (wz) _wdv vdu  wdz  zdw _

y Y Y + Y y + Yy + Y + y
uv dv | vau du wz.dz zwdw
y v y uw oy y w
he Logarithmic Differential of a Power.
Let y = un
dy _d (") _n @ du _ naad du _ n.du
y oy y Yy u u t
The Logarithmic Differential of a Root.
Lety = Vi
1 Yoo ~
dy _dw™) _ @™ naa™ e 1 du
y y y y v onou

A



CALCULATION OF ERRORS 21

The practical calculation of the maximum possible error rests on the
assumption that, as the errors are small, we can apply to them the same
calculations as are applied to differentials.

(8) The Logarithmic Differential and the Systematic Relative Error

In electrical measurements it very seldom happens that a measured
magnitude is determined directly. Generally it is determined by a
relation to other magnitudes ; for instance, a voltage can be determined
by measuring a current and a resistance, a capacity can be determined
by measuring an inductance and a resistance, etc.

The measured magnitude can therefore be expressed as

y=f(uvz2...) N

The quantities u, v, z, . . . are measured, and y is calculated from (4).
But when measuring %, v, 2, . . . we commit errors, therefore the
values we find are : ', v',2’, . . . so that by using (4) we get

y=f@, v, 2,...).

The logarithmic differential of (4) is
ii_g!_y(u,v,z, L)

Y Y

and as ' —u=4 Adu, vV  —v=4+ A, ¥ —2=4+ A7, and
4u', 4, A2, are very small, we can write :

4y _Af @, v',2 ...)
Y Y
—4# is the maximum relative error on y’, expressed by the same formula
as the logarithmic differential of (4).

(8)

Ezample 8. In determining a voltage V across & resistance R in
which a current I is flowing, I and R are measured. The voltage is
given by

V=IR . . .« ... .e
The logarithmic differential of (6) is
av dl  dR
vVoITR

As we make errors when measuring I and R, we get the values I’
and R’. We have, therefore, V' = I""R’ (I’ and R’ are measured
several times 80 as to be sure of all the digits in the numbers expressing
their magnitude).
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The systematic relative error on V' is
4V AT | AR’

\'A I R’

A T’ is the error on the measurement of I'. This error is the sum
of the constructional error AcI' on the ammeter and the reading
error 4:1'; AU + 4,1 = AT.

A R’ is the constructional error on the resistance R’.

Let AT’ = +1%, A: 7 = +1%, AR = +01%;

then 9, AV’ =.t100—4‘-7‘f—' = 4+ (141401) = + 21%.

Care has to be taken, when changing from the logarithmic differential
(formula (4) to formula (5)), to change all negative signs between terms
to positive signs, because the sign of the error is unknown.

Example 9. A current I is measured by means of a voltmeter
connected across a resistance R ; V and R are measured or known.

We have I = %
dl dV dR

The logarithmic differential is — = — — ——.
1 \Y R

Changing the logarithmic differential into the error formula, we
A" AV’ AR’

must write : — = —— 4 ——
I \'A * R’
simply because the sign of the error 4 R’ is not known.

The change of the signs between terms has to be introduced only
after all calculations and simplifications in formula (4) have been
made ; the non-observance of this rule may lead to grave mistakes,
as can be seen from the following example.

Example 10. A magnitude y is calculated from the formula

z 4w

y=w-—: after w, z and v have been measured.
We h&ve%:%b—{-d(:is) _d(:rv”)_—:
%D+z‘—i:v+z(—i:v~zd—zv+z‘ﬁ’v= ) ’ - (0
gt e
N .
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dw n 2w dv 20 dz
w (22— v (2 —0?) 2z
All simplifications having been made, we can write the error formula :
Ay' Aw’ 22/’ Av’ 220’ A2’
— = 7 ney T T TonE ey o 8
y T W TEE— e v @0 = ®)
Suppose now that by mistake the change of signs from minus to plus
was done immediately after (7), we then have :

4y _ Aw Az’ Av' Az’ Ay
yr +Z’+’U +Z,+’U,+Z'—1)’+Z’—'D’—
Aw’ + [(z V) + (2 +v )] AV =)+ @ )]
w' (') — (v')? ()2 — (v')?
Aw’ 22" Az’ Av'22’
T P L v e g Gl
Aw’ 222" Az’ 22'v Av'

+

v Tl 7 TR 08 v

which is quite different from (8).

The procedure in calculating the maximum possible error is there-
fore as follows :

(1) Measure the values u, v, z, . . . of the relationy = f (u, v, 2, .. .).

(2) Calculate the logarithmic differential iy d [f (w2, MERER) )]

Y
(3) Simplify the logarithmic differential to a point where no ambi-
guity can arise.
(4) Write the relative error, changing all the minus signs between
terms to positive signs
4y Af (w',0',2',...)

’ ’

Y Y




CHAPTER III

MEASUREMENT OF D.C. RESISTANCE

MEASUREMENT OF MEDIUM RESISTANCES

(1) Measurement of Resistance by Voltmeter and Ammeter
A current passing through an unknown resistance R is measured
by an ammeter reading I, a voltmeter connected across the resistance
R reads V volts, and from the formula
R= —?[7— we calculate R.

Two different connections are possible : fig. 2, (a) and (b).

20f e SO

v v
—F- oF
(a) (d)
Fig. 2

Let R, and Ry be respectively the resistances of the ammeter and
the voltmeter. Using diagram (a), we have

The current in the resistance R is I — 4, therefore
Rvi ) V

I—§)R=iRy=V; R= .
I—i I—3

By assuming that R = —‘—;—, the error due to the method (see 5d,

A\ Vi

p- 16) is

v - -, but R (I — 1) =V, therefore
I—7 I TI(d~—%)

Vi__Vik_ViR_V R
II—s) IV IRwv I Ry
24
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The smaller R is, compared with Ry, the smaller the error due to the
method ; a voltmeter of very high resistance ought therefore to be
used, or (which amounts to the same thing) the current I ought to
be much greater than the voltmeter current <.

The error -‘Ii . I% due to the method used can be calculated if we
v

know Ry, or it can be neglected if 5— is small enough not to affect

v
appreciably the maximum relative error.

S \4 R VR
Th 1 f R n by R=—(1+-—) b — i
e value o is given by I ( + Rv) ecause ir. is
positive.

Calculation of the Systematic Error.

\% R
From R = —I—(l + -I—{—v—) we get

R R

14+ == =

w_owv a UR) v oa UE)
RV I | R V I Rv+R

R Rv
4V _dl  [RvdR —RdRv]_ dV_dl A Ry(RvdR—RdRv)_
vV I R2y vV 1 (Rv+R)R3y

Rv+ R
Ry

v _dl  _dR ___RdRv __
V I Rv+R (Rv+R)Ry
v _d, R _dR R @_v.dR[l,_ R |-
V I @®Bv+R)R (Rv+R)Ry (Rv+ R4

dV _dl _ RdRy

—_— e ——

A I (Rv+R)Rv

writing [1 ———-R——] —a;

(Rv + R)
KAy 4Ry
R alV I (®Bv+R) Ry

The maximum relative error is
_1 [ AV’ I R’ AR'v]
II (Rr v+ R’ ) R’y

(9)



26 ELECTRICAL MEASUREMENTS

AV’ is the constructional plus reading error due to the voltmeter.
AT’ is the constructional plus reading error due to the ammeter.
AR’y is the constructional error in the knowledge of R'y.

’

(9) gives the exact calculation of the relative error %—1—?—, but when

-I% is very small, the relative error will be

v AR’ _ AV | AU
RI VI II
Example 11. A resistance R is to be measured, the connections
being those of fig. 2 (a). The ammeter of 100 scale divisions, and
uniform scale, shows 10 amps on division 100. The voltmeter of 150
scale divisions, and uniform scale, shows 120 volts on division 120.
The resistance of the voltmeter is 100 ohms per volt. The scales of
the ammeter and voltmeter are such that 4- {5 of a division can be
distinguished. The constructional error of the ammeter is 4 0-5%,
after the first third of the scale ; the constructional error of the volt-
meter is + 0-4%, after the first third of the scale. The resistance of
the voltmeter is known to within 4- 0-19,. Calculate the value of R,
and the systematic relative error.
The voltmeter reading error is

8V = fmm = o AV % = kL = 0083,

10 x 120 + 1200

The total systematic error on the voltmeter is
+ (0-083 + 04) = 04839, = 4, V' 4+ 4.V.

The ammeter reading error is

100
o AT = p——  — 4 019,
Yo Ar "t,10>< 100 +01%

The total systematic error on the ammeter is

% Al + % Acl’ = £ (01 + 0-5) = + 069,
The erroneous value of the measured resistance is

R=y_120_po
I 10
The total resistance of the voltmeter is
150 x 100 = 15000 Q, so that
R’ — 12
R'vy+ R’ 15000 4 12

= 0-0008 (negligible).
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The percentage error on the measured resistance is therefore

AR/ AV’ AT
o =A00( -+ 1)

100 - =H00(S— + =)= + (0-483 +06) = + 1083%.

The error due to the method is
V' R 12% 12

L A0S 0,00006 Q. 7+ 6696
T R'v 10x1500 [

The value of the tested resistance ought therefore to be given as
R = 12 + 0700096 £ 4 1-083%,.
Consider diagram, fig. 2 (b).
V—-R.I_V
I

Here we have (Ra + R) I =V ; R=——--I—-—_—_

By taking the value as R = %, the error due to the method is

— Ra.

\% \%

—f — RA o T = — RA.
The error is negative, and equal to the ammeter resistance; the
method is therefore suitable when R, is much smaller than R.
Calculation of the constructional and reading error :

\4 V-R, 1

AsR=—I——RA= , we have

dR _ d(V—R,) dI av d(Ry) dI

R V_RJI 1 V—_—Rd V—_RI 1
AV Rl IdR, dI _

V_RI V—RJI V—_RJI 1
vV qv RJ  dI IR, dR., dI

e —— o ——— e e —

V—-RJI V V—RJI I V—-RJ Ri I
The maximum relative error is

AR’ \'%4 a4v’ R, AT
R’ = v = R,AII - V' + vV = RI‘II X _f:_ +
'R’y AR, ar
vV = R'AI' X R,A + T

If R, is small, so that R,I can be neglected compared with V, the
error will be
4R’ AV AT
= + .
R’ \A I
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Accidental errors most likely to occur in this measurement (fig. 2
(@) and () ) are owing to

(a) Overheating the resistance. Care has to be taken to keep the
temperature constant and normal.

(b) Variation of current between the reading of the ammeter and
voltmeter.

As is obvious, the voltmeter and ammeter method of measuring
resistance is rather a poor one, the reason being that two instruments,
both direct reading, have to be used, introducing two reading and two
constructional errors.

(2) The Voltmeter Comparison Method

The resistance R to be measured is connected in series, with a
standard resistance Ry and rheostat Rh, to a source E (fig. 3). A
voltmeter of resistance R, is first connected across R, when it reads V,
and then connected across Rq, when it reads V.

We have V = RI across R
V, = Rsl across Rg
V_R, v
V, Rs’ v,
This calculation assumes that the voltmeter resistance Ry is infinite,
which is of course not true, unless an electrostatic voltmeter is used.

A R 1 R, B
]
. []
v !
v |
J
L s |

Fig. 3
In reality, when the voltmeter is connected across R, the total resist-
ance between A and B in fig. 3 is
R Rv
R + Ry
and when the voltmeter is across Rg, the resistance between A and B is
Rs Ry
Rs + Rv

+ Rg;

+ R



MEASUREMENT OF D.C. RESISTANCE 29

The current I has therefore changed ; however, as Ry is much
greater than R or R, the error introduced by the difference in the
total resistance of the circuit of fig. 3 is negligible.

We have also to take into account the voltmeter current. When
the instrument is across R, we have

R Ry .
RI = Rvt = I, =V; (I,=14+7).
vt R + Ry 1 (I, + 1)
When the instrument is across Rg
. RsRv
R = Ryi; = ————— - I, =V, ; therefore
* 'TRe+Re 1!

V _RRv(Rs+Rv) _R(Rs+Rv)
V, RBv(R+Rv) Re(R+Rv)

(Re+Rv) V,

As V and V, are measured on the same voltmeter, we can write

V=V1:E'v

according to whether V is greater or smaller than V, ; therefore
R=R5(R+Rv)xvliv
(Rs + Rv) v,

Calculation of the Systematic Error. The logarithmic differential of
(10) is

(10)

11_}_3______d_R§+d(R+Rv)_d(R.+Rv)_ﬂ1+d(Vliv)
R Ry R + Rv Rs + Ry \A Vy+v
=@_.+ dR + dRv _ dRsy  dRy ._.i%_l.
Re R+Rv R+Rvy Rs+Rv Rg+Rv V,
av dv
Vl;[;viVliv
_ @By, R R Ry dRv__ Ry dRy_

"R R+Ry R R+Rv Ry Rg+Rv R,
Rv dRv dV, V, dv, v dv

Rgr‘i-ererj Vl (Vlztv) Vl:tvlivv

_dR R 4R _Ry dRy__ R dRy
Rs R+Rv R R+Rv Rv Rg+ Rv Rg
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Ry dRv  dV, (_ 1+ v, ) v dv
Rs + Rv Ry V. Vi+v Vitovow
_dRs R dR Rv dRv  Rg dRs
R¢« R+RvR R+ Rv Ry Rs + Rv Ry
Rv dRv dll ( Fo ) v @_
Rs + Rv Ry V, ‘W, 4vw Vidow

As Ry is usually much greater than R or R, (10a) can be written

(10a)

i&=d_R_s+ﬂ_1( :F”) v dv (10b)
R Ry V. ‘W4 Vitovow
. . av, dv . ae s
If it were certain that — = —, or that the voltmeter indication
1 v
is absolutely proportional to its deflection, then (10b) would become
dR _ dRs d_Vl( v v )=d_R9 (10¢)
R Rg Vy, VWV 4w Vidov Rs

It is safest, however, to use (10b).

The advantage of the method is obvious, but whilst the construc-
tional error on the voltmeter is either reduced or entirely eliminated ;.
(according to (10b) or (10c) ) owing to V, appearing in the nemmeator
and denominator of (10), the reading errors remain. Even if v = O,
that is, V; =V, we only know this within the limits of the reading
error ; the maximum relative error is therefore either

AR/’ AR’y | AV’ 4.V’ o

RI = R'Is + VI + Vll r

AR AR's | AV, o v’ A’ 4.V,
R° R + v, (+ V'l:l:v) Vitov o + v,
4:V'

+5

The accidental error most likely to occur in this method, apart from
overheating the resistances, is the variation of the current I, owing
to the falling of the e.m.f. of the source E. If this is suspected, the
best procedure is to take onec reading Vg, across R, then the reading
V, across Rg, and then another reading Vi, across R. Assuming the
voltage variation of E to be linear during the time of these measure-
ments, we shall have for the values of V and R

V — V],l'; Vn,
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R = Rs (VBI + VB!) .
2V,
Ezxample 12. Suppose, in fig. 3, R =102 + 0-01%, V = 8 volts,
V, = 10 volts. The voltmeter resistance is 1000 £2 per volt, and its
scale of 120 divisions, corresponding to 12 volts, is uniform, the con-
structional error on the voltmeter is + 0-49, in the region where the

readings are taken, and the reading error is 4-g;, or } of a division.
Calculate the value of R and its limits.

The erroneous valueof Ris R =1 X -§- = 0-8 Q.

The total resistance of the voltmeter is 1000 X 12 = 12000 £2.
The resistance of the part AB of the circuit of fig. 3 is

08 x 12000

0-8 4+ 12000

when the voltmeter is across R, and

1 x 12000
1 4+ 12000

when the voltmeter is across Rs. The difference between the two
resistances is therefore 0-0029,, and the variation of the current I due to
this change in resistance is negligible.

The constructional error of the voltmeter is

a4V’ ! ! 4 2 2
\:'a l (+V'lv:l: v’> + v f:}: v v’v =104 (§) +04 (§)
= 402%; (v=—2)

because even if there is a doubt as to whether the sign of dv is the

same as that of dV, we may assume that the magnitude of dv equals
that of dV if 4,V = 4.V,.

+ 1 = 1799945 Q

+ 0-8 = 1-799925 2

100

The reading error on Vis 9%, 4, V' = 4+ = 4 0-125%,. ~
10 x 80
. . , 100
The reading error on V,i8 %, 4, V'; = 4+ ——— = + 0-1Y%,.
10 x 100

The maximum relative error on R is therefore
% AR’ = 4 (001 4 0-1256 + 0-1 4 0-2) = + 0-435%,.
The value of R is therefore given as R = 0-8 Q2 4 0-4359%,.
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(3) The Wheatstone Bridge

- By the Wheatstone bridge we mean an arrangement of four arms
and two diagonals, as shown in fig. 4.

AB, BC, CD, and DA are the bridge arms, BD is the galvanometer
diagonal, and AC is the battery diagonal. G is the galvanometer, E the
battery of suitable e.m.f.; the bridge arms are made up of resistances
R,, Ry, Ry, and R,. The resistances R; and R, are the ratio arms ;

the ratio li‘ can be l, —l-, —1- ; theoretically, the inverse ratios -1-(—), -1—?-0

R, 1’ 10’ 100

could be used, but, as will be seen later, the accuracy of the measure-
_ment would be insufficient.

The ratio -g-—lbeing set, R, is varied until the galvanometer deflection
.

is zero. The bridge is then said to be balanced.

Let the currents in the arms and diagonals of the bridge be as shown
in fig. 4, at balance, the current in the galvanometer diagonal being
Zero, ¢, = ty, 44 = 14, also the p.d. across arm BC equals the p.d.
across arm CD, and the p.d. across arm AB equals the p.d. across
arm AD.

Ryt, =R 4;; Ryiy,=R,1¢,

Rlil = R‘i‘; R‘il = R’i‘; we can Wl‘ite:
_B‘LIR’.
R

RIR.ili‘=R‘in1i‘; RIR.=R‘R1; Rx=
- 4
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At balance the conditions prevailing in the galvanometer diagonal
are independent of the e.m.f current and resistance in the battery
diagonal ; also, the conditions in the battery diagonal are independent
of the resistance, e.m.f.,, and current in the galvanometer diagonal.

(a) BRIDGE SENSITIVITY .
As, when balanced R; R,
= R, R,, it is evident
that Ry and R, cannot be
the two greatest or the
two smallest resistances, but
must be one of the greater
and one of the smaller re-
sistances, the same is true
of R, and R, ; the only two
possible arrangements of the
bridge are therefore as in
fig. 5(a) and (b).

Suppose R; and R, be
the two smallest, and R, and
R, the two greatest resist-
ances. The question then
arises : which of the two
arrangements, (@) or (b), is
the more sensitive ; that is,
which of the two circuits
will produce a greater cur-
rent, di, in the galvanometer
for a very small unbalance
such that R; R, very nearly
equals R, R,?

As, at balance, the con-
ditions in one diagonal are Rs
independent of the resist-
ance of the other diagonal, Fig. 5(b)
we may assume that this
will also be very nearly true for a very small unbalance such as wil
produce a current di in the galvanometer in fig. 5(a), and a
current di, in fig. 5(b). The resistance, measured between B and
D in (a), is therefore very nearly the same whether the resistance
of the battery diagonal is Ry or infinity ; the resistance measured
between B and D is therefore (when the galvanometer is discon-
nected)

E

1 Further details will be found in Vaschy: Electricité e¢ Magnétisme (Baudry
%tf fh% Paris), and Bedeau: Cours de Mesures Electriques (S.F.E., E.8.E., Paris,
ol. V).

[
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po BitR)Bx+Ry) _(Ri+Ry)(Ret+ Ry
R,+R,+ Rx + R, K
where K = R, + R; + Ry + R,.
Suppose the p.d. between the points B and D in fig. 5(a) produced
by the slight unbalance be Vy,, and let the resistance of the galvano-
meter diagonal be Rg; then, according to Thevenin’s theorem, the

Vsp
P+ Ry
As Vg = Ry X i; — Ry X 44and (R; + Rx) i; = (Ry + R ) ¢4 (if
di is very small), we can write : (R; + Ry) ¢, = (Ry + Ryp) (I — 2,),
because I = 1, + 1,, therefore
=1 Rt R o Rat Ry
K K

current di is di =

and
di — _I_ x [(R4 + Ry) Ry — (R; + Ry) Rd]
X P+ Ry
the greater I, the greater di.
The conditions in the battery diagonal are at a small unbalance,
also very nearly independent of the resistance in the galvanometer
diagonal ; when calculating the resistance between points A and C

(fig. 5(a)), with battery diagonal disconnected, we may assume Rg to
be infinity ; the resistance between A and Cis

p._ (B + Ry) (R, + Ry)
1= K )

l % (RlRa—RxR‘)
K P + R,

the currents are therefore
_ E | & — E(R;R; — RxR))
P+ Ry’ K (P + Ryg) (Py + Ra)

Considering fig. 5(b), it is evident that the resistance measured
between A and C with galvanometer disconnected is

P, = Ry + Rx) (Ry + Ry)
K
and the resistance between D and B battery diagonal disconnected is

p_ (BitR) Ry +Re)
K

The currents are therefore
E diy = E (R, Rx —.Rl R,)
K (P, 4 Rg) (P 4 Rp)

Il=
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If di is greater than di,, then (a) is more sensitive than (b); di will
be greater than diy, if

K (P -+ Ryg) (Py + Rg) < K (P + Rg) (P + Ry)
or
(P + Rg) (Py + Ry) < (P; + Rg) (P + Ry)

PP, +PR;+P,Rg+RgRy <P, P+ Ry P, +PRg+ Ry Rg
PRy + P, Rg <P, Ry +-Rg P
PR;+P, R — P, R, — R P <O

(Rg —Rg) (P —P;) <O; as Rg is always greater than Ry
R; — Ry is negative, therefore (P — P;) is positive, if
(Rg — Rg) (P —P,) < O; (P — P,) being positive.

(Ry + Ry (Bx + Ry) _ (Ry + Ry) (Ry + Ry)
K K

Ry + Ry (BRy + Ry) > (Ry + Ry) (Ry + Ry).

This is evidently true if R, and Rx are the two smallest resistances.
Diagram (a) indicates, therefore, the more sensitive arrangement.

It follows that the galvanometer ought to be connected to the points
where the two greatest and the two smallest resistances meet.

(b) DerinITION OF BRIDGE SENSITIVITY. The bridge sensitivity is
given by
di

or the increase of the galvanometer current divided by the ratio of
the small change dR, (producing dz) to R,.

S=R, & di
dRy

As, at balance, we have R; R, = R; R,, a change in R, will
unbalance the bridge so that

R, (Ry + dRy) z Rx R;; R; R, + R, dR, z Rx R,.
In order to restore balance, we can change Ry or R,. Then changiﬁg
Rx by de, we have
R; + R, dR, = (Rx + dRx) Ry = Rx R, + R, dRy,
but, as Rl R; = RxR,, we have R, dRy = R dRx.
By _Bx g By 0B

R, R, R, dRy
so that
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g—: = 3—1—1:1; and % = (%f
In a similar way we can prove that
dRx_ dR,_dR, dR,
Rx R, R, R,
which means that the sensitivity of the bridge is unaltered whichever
arm is varied for balance.

(c) Errect oF RaTiOo R; R, (RAaTIO ARMS VALUE) ON THE BRIDGE
SENSITIVITY. Suppose there is a small unbalance dRy in Ry ; in order
to restore balance we add dR, to R,, so that

(Rx + de) R4 = Rx (Rz + dRz)

Rx 4 dRy — R, Bat Ry,
R4

R R
as Ry = 1?1 R,, we have dRx = ITI dR,.

4 4

For a small unbalance dRy, the greater —Ii} the smaller dR, needed

4
to restore balance, and as

_di

R dR,

the greater I—t—l’ the greater the sensitivity ; but the greater the value
4

S

2

of B’—‘, the smaller the number of significant figures in the number
4

giving Rx. For a given R,, therefore (this applies to all measurements),

the greater the sensitivity, the smaller the accuracy.

(d) InTERPOLATION. In order to determine Ry from Ry = E’Rz,
it is better to find a value of R, by interpolation instead of by the‘zero
reading of the galvanometer. The reasons for this arc as follows :

(i) It is difficult to see whether the galvanometer is exactly at zero.

(if) The galvanometer can have a permanent small deflection (that
is, a zero error), after having been deflected for a considerable time.

Let there be two values, Ry, and Ry,, of Ry, such that Ry, produces
a small deflection a, to the right and R,, a small deflection a, to the
left. We know then that Ry is contained between

g R,, and R, Ry,.
R, R

4
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Consider fig. 6. We will assume that R,; and Ry, are proportional to
the deflections a, and a, (which is true enough if a; and a, are small).

-

»'9.

DEFLECTION

RESISTANCE

e

Fig. 6

uy Fa, oy R =Ry oy

From fig. 6. tan 0 = = ;
Rys — Ry Ry — Ry Rop — Ry g + 0y

Ry — Ry = (Rgy — Ryy) X —21—; writing
ay + ag
R,; — R, = p we have

Ry=Ry +o—— . . . . . . 1y
ay -+ ay R
The value of R, from (11) is used in the formula Ry = =2 x R,,
a
R a
so that Rx = = (Ry; + 0 X L)
. R4(“*‘ a,—}—ag)

(e) PracTicAL MaNipuLATION. The arrangement of the bridge is
shown in fig. 7.
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E is the battery ; Sh a variable resistance shunt ; k;, k,, k; are
switch-keys.

If the resistance to be measured is unknown, we start off with E =
1v. to 2v., and the galvanometer shunted by a suitably small resistance ;

B—-‘is at first made equal to 1, R, is then varied till a rough balance

is obtained ; after that, the resistance of the shunt is increased or

even k, opened (E can also be increased to about 4v.), -Iilis decreased,
4
and R, increased as far as possible. The smaller Ry and the greater

R,, the greater the accuracy of the measurement. ‘

When interpolating, R,y, R,, should be such that the deflections a;,
and a, are not too small, say 10 to 15 mm., otherwise the reading
error would be too great.

Switch k, should always be closed first, because if the resistances
R}, Ry, Ry, R, are inductive, the galvanometer may deflect violently
even at balance, owing to the different rates of increasec of the currents
in the arms of the bridge.

Care must be taken not to overheat the bridge arms ; the current
should never exceed that indicated by the manufacturer, and even then
switch %k, should remain closed only for the time necessary for the
measurement.

It is not always possible to arrange the bridge arms for maximum
sensitivity because of the overloading of the bridge arms. Suppose
we have (fig. 8) R, = 10, R, = 1000, R, = 1500, and Ry = 15, the
battery voltage being 2 volts ; the arms of the bridge should carry
only 0-005 amps maximum.

In fig. 8, the current in the arms R, and Ry will equal (neglecting

the battery resistance)

— = 0:08 amps. As this cannot be per-

+ 15
mitted, the bridge should be arranged, as in fig. 9, where the current
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2
IOOOTT(.) ; the arms of the bridge will now be

safe, but the sensitivity will be diminished.

in R, and R, will be

(f) CALCULATION OF THE SYSTEMATIC ERROR.
We have
R
By=-2(Ry +0 x —2 )=y R,.
X R4( 21 Q a, n az) R4 2
Let us first calculate the error on R,.

dRy = dRyy |- dg (—2—) 4 o (Gt e dey @ oy 4 duy) =

ay + a5 (a3 + a,)?
a (day) ay + (day) ap — (day) ay — (da,)u
dR,, + dp X L 4 Ll S
2 e al + az Q (al + a2)2

a (day) ay — (day) a,
dR,, + do % LIS .
* ¢ ay + a, (ay + a,)?

As day = da, = da, say, we can write :

dRy = dRy, + dp X 4 da (ag — ‘11).
a; + a, (ay + ay)?

The error is therefore

, ' s Ad (o' + a’y)
AR 5, + A ___aL__;_ i b S A
. g‘l'l‘l—a'a (a'y 4+ a’y)?

AR 5, - Ao’ LI Aa

’ ’

a'y oy a'yta’y

If the resistances used are known to have the same error throughout,
then

—A—If'ﬂ == —479— =m,say; AR’y = R',;m; dp’ = ¢'m.
R’y e
Therefore

’ Aal
AR’y = (R gym) 4 (¢'m) — 21— | o'
2= (R"gm) + (o )a’1+a'2 e @t a,

m (R'n + e X “_(Ll"—) + 0 ___Ag__

a'y+a'y a'y + a'y
a
as Ry 4 o l_ =R,
a; + a,
Ada’

AR’Q = mR,z "l‘ Q'

'}
a’y+a'y
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and the relative error on R, is

ARy oy & Ao ARy @ Al

R, Ry a'y+ay R’a Ry a4+ 0a,

The relative error on Ry is then

AR ,.;=AR 1+AR +AR 21 + o (4a) a,ndasAR 21___AI,{ 2
R'x Rln R, R, "a(a’ 1 4a’y) R, R’y
AIIVxZ +AR'4.*ARz+Q ,Aa'l‘

R'x R, R, 2 R, a1+az

AR/ ’
L AR 4 4R, = are the constructional errors ;
Ry Ry R,

e

’

- - — is the determination error.
R, o'y +a'y
AR’y . ! . .
If R 21 i3 not equal to A,Q , then the relative cerror on R, is
21 0

AR', ARy, +Ag’ a'y [ Aa’_
R’ R’ Ry ay+a , Ryaytd,
and the relative error on Ry is
Ay ARy AR Ay A
R'x R, R,

3

- Example 13. In a measurement with a Wheatstone
. R,
ratio — was
"4

R, = 1499 Q gave a deflection oy =

@, ¢ da
{/2 ‘R’,2 a'l—i—a'z R’Z a'1+a’2

s bridge the
10

10 mm. to

the right, R,, = 1500 Q gave a deflection a, = 11 mm. to the left.
The constructional error on the bridge arms is 4 ;355 4= § of a

millimeter can be distinguished on the galvanomecter scale

. Calculate

the value of Ry and the limits of the error, assuming the resistances

boxes to have the same error throughout.
The determination error is

0-25
! Ad 1 X 100 + 2

100 x £ X - X ==

Ry, d'y4ay 1499 10 -+ 11
0-125 x 100
—_— = 4 0-008229,.
1499 x 21 + /o
The value of Ry is
Riy= o x (1499 4 1 X —— )= 1499476 _ 1 4.00476 0.
1000 10 411 100
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The maximum possible percentage error on Ry is

ARIx AR 1 AR Iy AR Aa' 100
X 100 = —
R'x ( TR, TR, +R’ o ta ,) 500
100
— -+ 0-00822 = -+ 0-6082¢
+ 500 + Yo

(9) THE ERROR DUE TO THE RESISTANCE OF THE CONNECTING
Wires, CoNTACTS, AND PLUGS. Let the resistance of the plugs, con-
tacts, and connecting wires in the arms R; Rx R, and R, be 7, 7y, 7,
and r, respectively ; at balance we have

R,+mn

(Rx—{—rx):R X(R2+r2)=R1R2+er2+R2"l+’17’z_

P Ry+ry

We accept that Ry = i% X Ry, but the result will nevertheless be
a

correct if
Ry -+ rx—Rx=31 Re +Rims+Rory 11y ___]i_’l R,,
Ry + 14 R,
that is
rx=1{1R2+er2+R2rl 47, _1{_1 X R,

Ry+r, R,

As R, R, very nearly equals R R, and — 172 jg very small,
Ry + 7, R, a7y

we can write

S— 2+___R r Eer R,

R, + 7'4 Ry + 74 ! R, " R,

When condition (12) is realised (provided r, is small enough), the
error due to the plug, contacts, and connecting wires resistance is zero.
It would, however, be tedious, if not impossible, to comply with
condition (12) in order to have reasonable accuracy when measuring
small resistances ; the Wheatstone bridge is therefore not used for
measuring resistances below 1 or 2 ohms, and even then, the error

introduced by the plug, contacts, and wire resistance may be con-
siderable.

. . (12)
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MEASUREMENT OF SMALL RESISTANCES

(4) The Kelvin Bridge

The arrangement is as shown in fig. 10.

i

Fig. 10

Ry is the resistance to be measured ; Ry a standard resistance ;
Ry, Ry, Ryand R standard resistances constituting the bridge proper ;
G is a galvanometer.

The battery E supplies a current I, measured by an ammeter, in
series with a regulating rheostat Rh. The currents are as shown in
fig. 10, and I is very much greater than 7, or 7,.

Rx and Rs are four terminal resistances; the contacts a,a, b,b
are taken from those points on Ry and Ry where the equipotential
surfaces of the electric field are cntirely uniform (fig. 11).

Wy
Wy
'“|||
Zid

Fig. 11

If Ry is not a four-terminal resistance, contact is made by winding
a clean, thin, bare copper wire at from 1 to 2 cm. from the ends of Ry
and then soldering the wire ; the resistance measured will, of course,
be that between the two soldered contacts.

The currents taken from the contacts a,a, b,b ought to be very small
compared to the current I, otherwise the equipotential surfaces at
a,a, b,b will be disturbed.
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The bridge does not eliminate the contact and connecting-wire
resistances from the measurement ; it only greatly minimises their
effect by putting them in series with much greater resistances R,.
R, Rjzand Ry,

The bridge is balanced when no current flows in the galvanometer ;

then 7, flows in R, as well as in R,, and 7, in R, and in R;; we also
have

Rl 1:1 = Rx I + R4 iz . . . . . . (13)
Ryiy=ReI+Ryi, . . . . . . (14

Now consider loop R4 Rj 2, 2 i the resistance of the link between
R, and R, so we have

Ry + Ry) 1, == .(I — 1)z
Ry + Ry +2) 1, = (I2);
therefore
2
X —
Ry+Ry;+2

(13) and (14) can therefore be written

iy = I

(15) By iy = (R + ——2 )

Ry + Ry +2
R;2
16) R, ¢; = (R ——2— ) I, dividing (15) by (16
(16) R, 4, <B+R4+R3+Z) g (15) by (16)
R, R,z . R,z
— =Ry +——"——+ R + ————.
R,  R,+Ry+z = Ry+R,+z
Therefore
R, R,z R, R;2
Ry Ry + —2-4% R Ry} _——1-3% .
: X+R4+R3+z ! “+R4+R3+z
R, ~BiBs 2 RiRy R, R,

R, R, Ry+Ry+4z

There is, of course, an error on R; Ry — R, Ry, but if the resistance
z is very small this error will be negligible.

Calculation of the Systematic Error. Writing R; R; — RyRy=¢
(c will be the error on R; Ry — R, R,) and R, + R + z = g, we have
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RyRs 2 _ (RyReg) +(20)

o = R, +R29_— R.g
d_I_{E___d(Rleg +zc) dRyg)
Ry Ry Rsg + 2¢ Ryg
R, Rodg +gd (R, Ry) + 2do + cdz_ Rydg + g dRy
Ry Reg + 2¢ Ryg B
R, Rgdg + gR dRg + gRs dR; -} zdc - cdz R,dg + gdR,
R, Reg + 2 © Ryg
RiRyg dg gRl Rs dRs gRs R, de
(@RyRs+2) g = (gR,Rs+2) Rs = (gR, Ry +20) R,
poe  de e b Rigdy gRdR,
(@R1Rs+2c) ¢ (R, Rs + 2¢c) 2 Ryg g Ryg R,
_RiReg dg 9By Ry AR gRsR, dR,
(R Rs-+2c) g  (9R;Rs +2¢) Rs  (9R; Rs -+ 2¢) R,
zc de cz dz dg dR,

-~ - .

@R Rs+2¢) ¢ (GR Rz +2c) 2 g Ry

Aszcis much smaller than gR; Rg, we have gR, Ry - z¢ = gR, Ry, s0
that

d_l.{l‘._d_g_*_dR“_erR1+ ze de  ze dz dg dR,
Rx ¢ Rs R1 gRl Rs ¢ gR, Ry z 9 R,

dRg @_1 2c dz dR

) AR’y | 2 de e’ de
R’x Rls 1{/1 R,z glRllR!s cl glRllRls zl

AR’y _ AR, + 4R L AR % as zc is very small.
R'x R’s R’1 R,2

In the older Kelvin bridges, R;, R,, Rj, and R, were fixed, and R,
was a calibrated bar with a sliding contact ; nowadays R, is made
equal to Ry, both being fixed, whilst R; and R are variable.

When interpolating, the determination error is calculated in the
same way as in the Wheatstone bridge ; let, say, R,, be the value of
R,, giving a small deflection a, to the right, and R, the value of R,,
giving a small deflection a, to the left ; we have then
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ay

a + a

R, =Ry, 4o Rx:ﬁ’n(Ru"l"Q—

)
ay + a,
where p = R;; — R,, ; the relative maximum error on Ry is then

ARIx_ AR’S+ A 2+ AR 1+ Q Aal

R'x— R R, (a1+a2)

The greater the value of I, the greater the precision to be expected,
but a very large current can give rise to thermo-electric effects. It is
therefore advisable to make a second measurement with I reversed,
and to take the mean of the two readings.

(5) The Differential Bridge (Mathieson’s Method)

The arrangement is as shown in fig 12.

A B

I, Rh ___'le

Fig. 12

The resistance AB is of known value and constant ; it includes
variable resistance boxes and a slide wire for. fine adjustment. What-
ever changes are made in AB, its resistance has to be kept constant ;
so that, when increasing the resistance between AK by, say, Z, the
resistance between K and B is diminished by the same amount.

Rx and Rg are the unknown resistance and the standard resistance.
A source E, in series, with the rheostat Rh, supplies a current I, indicated
by an ammeter. Ry and Ry are four terminal resistances (see Kelvin
bridge); the galvanometer G has one terminal connected to the slide
K ; the other terminal can be connected to 1, 2, on Ry and 3, 4 on Rg.
Suppose the resistance of the connecting wires be a, b, c. When the
galvanometer is connected to 1, the position of K is varied till the
galvanometer shows no deflection ; then let the resistance between
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Cand K be R;, and we have
an arrangement which is a
Wheatstone bridge, as can be
seen from fig. 13.

In arm CK we have the
resistance R, ; in arm KD the
remaining resistance of AB;
in arm Cl, the resistance a;
we can then write :

RyI=ai, . . (7
Fig. 13

The galvanometer is then connected to 2 of Rx and the position of
K and resistance of CK varied till new balance is obtained ; then,

supposing the resistance between C and K to be R,, the bridge arrange-
ment is as shown in fig. 14.

We can write

R,1=Rx+a)i;, .(I8)

Fig. 14

The galvanometer is then connected to 3 on Rg; the bridge
becomes as shown in fig. 15, and at balance

R,I = (@ + Ry + b) i, .(19)
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Finally, the galvanometer is connected to 4 on Rg, and the resistance
between C and K is varied till new balance is obtained ; we then have
a Wheatstone bridge, as shown in fig. 16 ; and we can write :

Fig. 16
R,I=(a+ Rx+ b+ Rg)i,. . . . . (20)
Taking (17) of (18) and (19) of (20), we get
Reiy=R,—R)I . . . . . . (20a)
Rei; = (Rg—Ry)I . . . . . . (20Db)
Dividing (20a) by (20b)
B _Ry— Ry Rl; therefore Ry = Rs Ry — Ry),
Ry R;,—R, R, — R,

Calculation of the Systematic Error. As we can write Ry = R, + 1y,
R, = R; + ry, we have

I{X=Rs_ﬁ;ﬂ§£:(£§'_s+ﬂl_ﬂ£:d_l.{f+ dry _ dry ,
ra Ry R; 71 Ty Rs R,—R,; R,— R,

passing to errors

AR’X ARIB AT'] Ar'?
’ = ’ '{_ ’ + ’ )
R'x R's 'y 'y
The method is a good one, because the contact and connecting-wire
resistance are entirely accounted for, and there is no current taken,
at balance, from contacts 1, 2, 3, 4; there is, therefore, no disturb-
ance in the equipotential surfaces of Rx and Rs.. The error will,
however, be great if r, and r, are small.

(6) Opposition Method

The Mathieson method suggests a more convenient opposition
method, as shown in fig. 17. E is a source of suitable e.m.f., supplying
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a heavy current I, indicated by an ammeter in series with a regu-
lating rheostat Rh; Ry is the resistance to be measured, and Rs a
suitable standard resistance.

L L&
'
/ A
K, O |
G i ,Q
] NS
o b [ nd
W "W
0} i L]
(%
Fig. 17

The source E; supplies a small current I, to the resistance R; and R.
R; + R have to be kept constant, so that 1 should not vary. If R,
is altered, say, increased, R has to be decreased by the same amount,
and vice versa.

The points a,a; are joined by a conductor, while points b,b; are
joined through the galvanometer G in series with switch ;. When
k, is closed and R, varied till the galvanometer shows no deflection,
we have

R, T, =Ry 1 R 1))

Next, a,,b; are joined to c,d, through G and K;, and R, varied
until the galvanometer again shows no deflection. Suppose, then, the
value of R, is changed to that of R,, we shall have

R, I, =Rgl . . . . . . . (22)
Dividing (21) by (22) we get

R, Ry . R, ,

‘E’—-'R_s—’ Rx-— Rs_ﬁ; . . . . . (23)

As we can write : R, = R, 4 r, where r is the change in the resist-
ance box from R, to R,; we have, therefore,

R,
le:r

Calculation of the Systematic Error. The logarithmic differential of
Ry is

Rx=

‘Re . . .24
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dRy _dRy  dRy d(Ryr)

Ry —R,+R1 R, +7

dRs dR,  dR, dr

Rs E_R1ﬂ:7 Ry+7r

dRy dR, R, dR, roodr
Rs R, R, +trR, 'Rytrr
L N T
Rg R, Ry+r Ryd-rr
Bop B Er g _r &,

Rsg Ry ‘Ry 47 Ry4r r

the rclative error on Ry is therefore
AR« AR’y . AR, ( + 7 ) r' Ar'

= +
R'x Ry R, ‘Ry+7/ Ry+r o

The error diminishes with r, that is, with Ry — Ry, and is smallest
when Ry = Ry.

To the error given by (24a) we have to add the determination error
due to interpolation. This error on R, and R, is calculated in the
same way as in the Wheatstone bridge.

Other errors most likely to occur are due to

(@) Poor insulation, resulting in leakage between the two circuits
R,,R, and Rx,Rs; the two circuits have to be well insulated.

(b) Variation of the currents I and 1,.

As the current I, is small, there is not much danger from variance
of the e.m f. of E; ; the same cannot, however, be said of the source
E, since the current I has to be large. When variation of E is feared,
the best procedure is to make one mcasurement on Ry with I, say,
equal to I,, and R, equal to, say, R,, so that RyI, = R, I;. Next,
a measurement is made on R, giving Rl = R,I;; finally a third
measurement is made on Ry, giving, say, Rxl, = Rgl,. Assuming
the current I to have varied uniformly during the time of making
these measurements, we have

(24a)

Ry 4 Ry
2R,
The three measurements have to be made as speedily as possible.

1=l‘-12L—I—”ande=Rs><

MEASUREMENT OF HIGH RESISTANCES

High resistances of the order of several MQ to several hundred-
thousand M2 are rarely metallic. When non-metallic, they are generally
D
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dielectrics used as insulators. The measurement of metallic high
resistances is made in the same way as the measurement of the
resistance of dielectrics.

The resistance of a dielectric depends on very many factors, such
as temperature, humidity, condition of the surface of the dielectric,
shape and thickness, the time of flow of current or time of electrification,
magnitude of e.m.f. applied, etc. Some dielectrics can have their re-
sistance changed by as much as 1009, after a short electrification time.

It follows that the measurement of high resistances, such as dielec-
trics, cannot be exact, owing to the many factors involved ; it also
follows that when giving the result of such a measurement, the con-
ditions in which it was conducted have to be specified.

(7) The Volume Resistance of a Dielectric

By volume resistance we mean the resistance as given by the rela-
tion I = olfs where E is the voltage applied, o = the resistivity,

l = the fength and s = the cross-section of the dielcctric.

SAMPLE OF DIELECTRIC
e — 4

Fig. 18

If we were to measure the resistance of a sample of a dielectric in
the manner shown in fig. 18, by putting the sample between two
metal plates, a,a, and in series with a galvanometer, the instrument
will be deflected by two currents: one limited by the volume resist-
ance, and the other due to the leakage current ; that is, the current
passing from plate to plate by way of the dielectric surface.

This leakage current is absolutely negligible when dealing with
small or medium resistances because the leakage path is shunted by
the much smaller volume resistance, but in a high resistance the
leakage path resistance may be of the same order, or even smaller
than, the volume resistance ; the leakage current has therefore to be
eliminated from the measurement if any reasonable test is to be made.
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This elimination is achieved by the aid of a metallic guard ring
connected as shown in fig. 19.

a
o e e o s S 0 0 e !llrller

\3

Fig. 19

The galvanometer is now deflected only by the current passing
through the volume of the sample, while the leakage current passes
from source to one plate, thence to the guard square, and back to the
source, avoiding the galvanometer.

Because of the high resistance, even with E from 150 to 200 v., a
direct reading instrument, such as a micro-ammeter, is unsuitable,
and a galvanometer has to be used ; consequently a comparison method
is indicated.

(8) The Comparison Method of Measuring High Resistance

The connections are as in fig. 19.

The switch k, is necessary only when the resistance tested has an
appreciable capacity, such as a length of cable has; in this case k,
has to be closed (galvanometer shorted), when k, is first closed, so
as to protect the galvanometer from the charging current.

When k, is closed and %, opened, the galvanometer will show a

deflection, say, a. Suppose the current passing through the galva-
nometer to be

E
Rx
Ry is the volume resistance of the tested sample ; the resistance of
the source E and of the galvanometer can be neglected in this test.

The sample is then replaced by a known high resistance Rg, and
the measurement repeated ; it is generally necessary to change the
em.f. of the source to, say, E,, instead of E; the galvanometer
deflection will be a,, and the current

E,

1, = —% . . . . . . . . 26
1= 3R, (26)

'l:.—;—.

(25)
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Dividing (25) over (26) we get —1'- = E—X—lﬁ’—, and assuming the
2 ]Bl X I{x
galvanometer deflections to be directly proportional to the currents,
we can write :
a E x R E X a; X Rg
— = Ry = —F——
a, Uy X Ry Eja

The standard resistance Ry can be either in the form of a dielectric
of known volume resistivity, in which case it has to be provided with
a guard ring, or what is known as its resistance can include the volume
resistance and the resistance of its leakage path in parallel. Care has
to be taken to have the resistances clean, otherwise the leakage will
be much greater than normal.

In order to ensure a good contact between the metal plates and
the sample, the surfaces of the sample in contact with the plates are
covered with thin tinfoil. The tinfoil should adhere well to the sample,
and to ensure this the tinfoil is made slightly humid by one or two
drops of water or oil. Too much water or oil might give a false result,
or even spoil the dielectric.

MERCURY IN GROV
USED AS GUARD

RING

Al
MERCURY SAMPLE

MERCURY

OOONNNNINNNNNNNINRNY

Fig. 20

The sample can be floated in mercury in the manner shown in fig. 20.

The contact between sample and plates is here perfect ; neverthe-
less, this method is not recommended because the special machining
of the sample is difficult, and there is great uncertainty as to the
effective length and section of the sample for the calculation of the
volume resistance.

There is no point in calculating the error in this measurement,
considering that the accuracy obtained can never be better than
+ 5% to - 10%.

Measurement of the Insulation Resistance of a Length of Cable by the
Comparison Method. The insulation resistance of a cable is measured
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between the copper core and the outside sheath ; the shcath can be
conductive or not. If the sheath is conductive, the arrangement is
as shown in fig. 21. E is the source, : the galvanometer. Instead

INSULATION
CORE

‘ e
—fz——*|~§|+—j_{d]—

X,

[ $

SHEATH

Y —

Fig. 21

of a guard ring, a bare copper wire is wound on the cable insulation
near the core ; the insulation is bared and cleaned for this purpose
for about 6in. to 9in., and the leakage current from core to sheath
now passcs through the wire ¢ to the source and not through the
galvanometer.

The cable is tested as in fig. 19, the galvanometer deflection being
a; then a known resistance Rg is substituted for the cable; the
e.m.f. being now, say, E,, and the galvanometer deflection a,. The
insulation resistance of the cable will be given by

Ry = Ba, Ry . . . . . . .27
Ela

As a length of cable has an appreciable capacity, the switch k&, is
essential ; the galvanometer must be shorted while the cable is being
charged ; %, should be closed for a definite time, then opened, and
the deflection a noted ; the time of electrification has to be stated
in the result of the test, as Rx depends on this time.

When the cable sheath is not conductive, the arrangement for the
measurement is as shown in fig. 22.

The cable is immersed in slightly salted water for about twenty-
four hours, the temperature of the bath being kept at about 70° F. ;
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then the measurement is taken as in fig. 21. First, the current through
the cable is measured by the deflection a, then the cable is replaced
by a known resistance Rg, the deflection being a,; the insulation
resistance of the cable is given by (27).

A . 1
g it
q
N
N
N / N %
N AN .
il
Fig. 22

It is preferable to connect the negative pole of K to the cable core,
because if there is a defect in the insulation, the electrolysis will pro-
duce a smaller value of Ry and the measurement will be done under
the worst possible conditions.

The main advantage of the comparison method is that the voltage
applied is constant throughout the test ; the result obtained gives a
fair value of the resistance for the particular voltage applied.

(9) The Loss-of-charge Method of Measuring High Resistance

A condenser of capacity C charged to a potential V, is discharged
through the resistance measured Ry and the time of discharge is noted.
The potential across the condenser, which has fallen during the dis-
charge to a value V, lower than V,, is then measured.

Ry is calculated from the relation between Ry, Vo, V4, and the
time of discharge t.

Consider fig. 23 ; let v be the instantaneous value of the potential

across the condenser C during the
c] 1 discharge ; then the current in the
|

v
circuit will be ¢ = —; during the
time dt the condenser will lose &

v
charge — dq =: idt = —dt.
g q R

X

R, dq appears with & minus sign because
e AMAVVWWWA———  when v decreases the loss of charge

Fig. 23 increases.
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As the charge on the condenser is ¢ = Cv, and C is constant,

dg = C - dv, 30 that —— df = —Cdv; dt = — C Ry dv ;
Rx v

between the time ¢ = O (start of discharge) and ¢ (finish of discharge),

we have

integrating

(vatt=1t) =V,
t dv \'
— — = — 1 .
f dt = —CRx - CR« (log.v) | V.o (28)
° (vatt =0)=V,
and reversing the limits of (28) we can write :
Vo \% t
t = CRx| log.v = CRx " log. —2; Ry = —,
\'A Clog. Vo
Vl b
\£
(@) Pracrican MaNtpuraTioN. The circuit is arranged as in fig. 24.

4,5
Ky v

Q/é..e

b3
—
4

Ry
AW

Fig. 24

B.G. is a ballistic galvanometer, V, the source of e.m.f., Ry the
resistance to be measured, and C a standard capacity ; k;, k,, and
ky are switches.

First, make 1 and 2 (key 1), charging the condenser to Vo ; then
break 1-2 and make 2-3, discharging the condenser through the
ballistic galvanometer, which will be deflected by, say, ao; the galva-
nometer is then damped by making 4-5. The condenser is again charged
to Vo by making 1-2 ; then 1-2 is broken and 2-6 made immediately
after ; the time ¢ is counted from the moment of making 2-6 to the
moment of breaking it ; after the time ¢, break 2-6 and make 2-3,
discharging C through B.G. ; the deflection being now, say, a,.

Assuming the deflections ao and a, to be directly proportional to
the p.d.s across the condenser, we can writc:
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t

Clog. 2-‘13

sz

(29)

t is counted in seconds and C in farads; if C is counted in uF, Ry
will be given in MQ.

The resistance Ry found from (29) comprises, of course, the volume
resistance plus the leakage resistance in parallel.

There is no point whatever in calculating the error, because here
the accuracy is even less than in the comparison method, mainly
because the leakage current is not eliminated from the measurement,
and the voltage applied to Rx varies from V, to V,. We can, how-
cver, find the conditions which will give the minimum error.

The logarithmic differential of (29) is

d(lo fi?)
dRy dt dC Pa) _dt _dC  d(log.ao—log.a) _

Rx t C Ao t C
log.— =
og o log o
(dao) (dal
at _dC_lao/ ay/ ; as dao and da, are the reading errors on
¢ Y log.@
a

1

the galvanometer (usually + } to -} } mm. plus the indetermination,
expressed in mm., of locating the exact position of the line image),
and Adae = Ada,, we can write :

, ¢ 1 1
arey e e Aot )
= 4 + ;

Rl x tl C/ al o

log.—~

ay
multiplying and dividing the numerator of the last term on the right-

hand side by ao, we get

A(l ) ( I- o’ 0
AR’y 4t + 4¢ < ;and writing —:—-lc we have
R'x t (04 o a’ 1
log.—,—
ay
AR’X At AC Aa,o (l + k)
= . 30
R'x v + C’ + a’ o log.k (30)

At

is the relative error on the determination of the time ¢. If ¢

is small the error will be great, and if ¢ is great the error will be small ;
but then the variation of the p.d. from V, to V; will be great.
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4C

’

is the relative error on the condenser, and this can be diminished

by using a good standard.
The last term on the right-hand side of (30) will be the smaller
ot — (LD

——— = z. Differentiating z, we get i -
log .k dk log?k

equating to zero we have
e Lpk

togh— LEE) _oippgr 1R p o (30a)
k k
(30a) will be satisfied when k = gﬂ = 3.59.

But when %o _ 3:69, we also have ‘—{9 = 3-59 ; and as the resist-
ay 1
ance of a dielectric varies with the voltage applied, this variation is

too great ; a ratio \‘% = 2 is preferable.

1 | k
(V) ERRORS INHERENT IN THE i
METtHOD. (i) As the insulation resist-
ance of the condenser used in the R,

measurement is not infinite, the con- f——A\NMVVNWI——"

denser will discharge through the
resistance Ry and also through its

own resistance R¢; the circuit will R
therefore be as shown in fig. 25. VVVVVVV
Fig. 25
\ . e R Ry
The total resistance of the circuit is now Raq =m—, so that
proceeding, as in fig. 24, we will have ‘ *
t
Ry = = (31)
Clog.—
ay

To find Ry, two measurements are made as in fig. 24, one with the
condenser discharging through Rx and the other with the condenser
discharging through its own resistance alone during a time, say, #,;
the deflections of the B.G. being aoc and a,e. Then

1l
Ro = Qoc

(32)
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From (31) and (32) we get Ry.

Instead of a ballistic galvanometer, an electrostatic voltmeter, of
negligible capacitance compared with that of C, can be used to
measure the p.d. across C.

Ezample 14. “ A circuit consisting of a condenser, an electro-
static voltmeter, and a high resistance in parallel, is connected to a
230-volt d.c. supply. It is then disconnected and the reading on the
voltmeter is found to fall from 200 volts to 100 volts in 203 seconds.
The test is repeated without the high resistance, and the time for the
same fall in voltage is now found to be 278 seconds. The capaci-
tance of the condenser is 4 uF. Calculate the value of the high
resistance and prove any formula employed, pointing out any assump-
tions made. Describe the experimental arrangements that would be
required to make a measurement in this manner ”’ (Univ. of London,
B.Sc. Final Ext., Electr. and Meas. Instr. P. I1. Q. 5, 1940).

Fig. 26

230V

The experimental arrangement will be that shown in fig. 26. The
assumptions made are that the capacitance of the electrostatic volt-
meter is very small compared to 4 uF, and, as will be scen later, that
the resistance tested has no appreciable capacity.

Let the resistance tested be Ry, and the insulation resistance of the
condenser Rc ; then from the first test we have

R,— BeBe _ 203

-z R v = 200-.=7::¥-4M.Q.
c X o
Clog— 4 X log.—
v, T
In the second test we have
R = "ZV 28 —— = 100 M.
Clog—"= 4 x log.—og
Vie 100

R (Ro + Rx) = ReRy; Ry — 2l T84 X 100 _ 0oy
Re — Ry 100 — 734
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(ii) The resistance tested can itself have an appreciable capacity,
say, Cx (for instance, a length of cable). In this case we have the
condenser C in parallel with Cy, the two being in parallel with Ry
and R ; the circuit is therefore that of fig. 27.

If the measurement is made
as in b (i), then, when the con-
denser C, fully charged to V,,
is connected to Ry, there will be
an immediate transfer of charge
from C to Cx, before C discharges
appreciably through Ry and Ry ;
the p.d. across C will therefore
immediately fall to a lower
value, say, Vo,, as soon as it is
connected to Ryx. What it
amounts to is that we have a
condenser C, = C + Cx charged -
to Vo, and discharging through Fig. 27
R¢ and Ry in parallel.

Assuming the charge has not altered immediately after C is con-
nected to Ry, we shall have

CV, = (C + Cx) Vol = Cp V01 H V01 =

1 le

C—XVQ.
C+Cx

The condenser C discharges then through Ry and R for a time ¢
until its p.d. falls to V.

We can therefore proceed in the following manner. Charge C to V,
and discharge through the galvanomecter, the deflection being ao ;
charge C again to Vo, and then connect C to Ry for a very short time ;
the p.d. will then drop to V,,. Discharge C through the galvanometer,
the deflection being ao; ; make sure that Cy is discharged; charge C
again to Vo ; connect to Ry, noting the time. After a time ¢, disconnect
C from Ry, and discharge through the galvanometer, the deflection
this time being a;. We shall have

_ RoRyx t
"7 R + Ry

- )
(C + Cy) log. ("°1)

ay
R is measured by discharging the condenser through its own resist-
ance, as for Cx no separate measurement is necessary because

C(Vo — Vo)

01

CVo = (C+ Cx) Vo, ;3 Cx = , and (33) becomes

4

Ry = G
[C + (a0 — am)] log. (%of)

Aoy
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(c) MEASUREMENT OF THE INSULATION RESISTANCE OF A LENGTH
oF CABLE BY THE Lo0ss-OF-CHARGE METHOD. This method, particu-
larly suitable to a length of cable, should be used whenever the resist-
ance Ry has an appreciable capacity. The cable, previously charged,
is then discharged through its own insulation resistance in the manner
already explained.

The capacity of the cable can conveniently and easily be determined
as shown in fig. 28 (casc of a cable with conducting sheath).

il
4||;' >
5 ;:J

wne

—

Fig. 28

E is a source of suitable e.m.f.; C a standard condenser; k,, k,,
and k; switches ; B.G. is the ballistic galvanometer.

The manipulation is as follows. Make 1-2 charging C to E, open
1-2 and make 3-4 discharging C through the B.G., noting deflection,
say a ; make 2-5 charging cable to E, break 2-5, making immediately
4-6 discharging the cable through the B.G., note the deflection a, ;
assuming the deflections to be directly proportional to the charges on
C and on the cable of capacity, say, C.. We shall have

CE =sc¢pa; C¢ E = scpa;, where s¢p is a constant ; dividing
C a a . .
— = —; C¢ = C-L; k, is for damping the galvanometer.

c ay a .

Knowing C, we connect as shown in fig. 29 (case of cable with con-
ducting sheath), and manipulate as follows.

Make 1-2 charging cable to V,. Then discharge through B.G.,
noting the deflection ao, by making 2-3. Again make 1-2 charging
the cable, then break 1-2 noting time, letting the cable discharge
through its own insulation resistance for the time t. After the time
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\' g

/

Ka
E

f

Fig. 29

interval ¢, make 2-3 discharging the cable and noting the deflection
a,. We have

t

Rx = ——

C zog.‘_;f

1

If the cable sheath is not conductive, the cable can be put in a
bath in the manner shown in fig. 22.

(10) The Accumulation-of-charge Method -

of Measuring High Resistance < }—-'\AN\N—
A standard condenser is charged to a

p.d. V, through the resistance Rx to be

measured for a time ¢; from the charge

accumulated on the condenser we can v

determine Ry. 'M

Fig. 30
Consider fig. 30.

Let the voltage of the source be Vo ; the p.d. across the condenser
is in opposition to V, and variable with ¢ ; let its instantaneous value

be v; then the current in the circuit will be ¢ == Vo—v

X
The charge accumulated on the condenser in a time dt is idt = dg =
Vo —
X

Cdv =

dt, and as ¢ = Cv and C is constant, dg = Cdv. Thercfore

Vo= siand dt = 2xC

X 0o— v

- dv.
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Integrating between the time ¢ = O when the charging begins, to
¢t when the charging ends, we have

¢ vatt=ty=V, vV,
fdt:RxC dv__; t =—RxC |log. (Vo— v)
o— v
° watt=0)=0 0

Reversing the limits we have

0 Vv
t = RyC [log. (Vo — v)] v = RaCloy. ° _—
1 o 1
t
Vo
Vo—V,

The practical arrangement is shown in fig. 31.

Ry =
Clog.

Make 1-2, noting the time ¢ during
which the condenser is charged
through the measured resistance Ry.
Then break 1-2 and make 3-4 dis-
charging the condenser through the
ballistic galvanometer B.G. and noting
the deflection a,. Make 3-5 charging
the condenser to V,, then break
3-5 and make 3-4 discharging the
condenser and noting the deflec-
tion ao.

Assuming that «; and «o are directly proportional to the p.d.s

t
across the condenser, we have Ry =

Qo
C log . a; —

It is necessary to get the deflection a, before ao, because if the
condenser is first fully charged, then after discharge there might be
a residual charge left, and the deflection a; will not be a measure of
the charge through Ryx.

It can be proved that the error on u, and a, will be a minimum
when %’ = 1-87. The accuracy of this measurement is, however, so
poor that a different ratio g-f will not much alter the error.

Similarly, as in the loss-of-charge method, the accumulation-of-
charge method gives the combined resistance, leakage, and volume
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resistance. Its other chief disadvantage is that the voltage across Ry
changes during the measurement.

ERRORS INHERENT IN THE METHOD.! c Ru

The condenser insulation not being
infinite, the circuit is in reality as
shown in fig. 32.

Let R¢ be the insulation resistance

of the condenser C; as the p.d. across . Vorhl
R, is always equal to the p d. across b
C, the current in Re will be _1_);_ ifvis Fig. 32

C

the instantaneous voltage across C. The condenser therefore loses,

during the time dt, a charge equal to —E{ dt.
C

But as the condenser is being charged through Ry by a current

!3——, it therefore gains in the time dt a charge Y—‘l“——vdt; the
X X

net charge gained is therefore

Vo—v dt — 2 dt = Cdv; Re (Vo — v) — vRx - dt = Cdv, and
Ry Re R Ry

dt = C R Ry dv. Integrating between the time ¢t = O

Rc Vo — v (Rc + 1{')()

when the charge begins, to the time ¢ when the charge is finished,
we have

(vatt=1t) =1V,

t dv
f dt = CRxRe [ — ;
0 ReVo—w (Rc + Rx)

(vatt=0)=0
CRxR. \Y%
t=— —2"""log. |[RcVo — v (Re + R Y
Rc+Rx09[ o— v (Re + x)]o
inverting the limits
_ CRxR,
t -_ "Ii"'c + lO [RcVo — v (Rc +‘ Rx)]

CRxRe¢ log ReVo
Re¢ + Ry ReVo — Vi (Re + Ry)

! Further details will be found in Chaumat: Cours de Mesures Eleciriques
(S.F.E.; ES.E., Vol. I).
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If we know R, we can calculate Ry.

We also have
t(Ro+ R) _ RoVo .
CRxR. RcVo — V, (Re + Rx)
t (Re -+ Ryx)
CRxRc _ RcVo and
ReVo — V; (Re + Ry)
_ t(Re+Ry)
V.= _BVo 1—e CRxRe .
Re 4+ Rx
It follows that when the condenser insulation R is not infinity,
the maximum p.d. to which it can be charged is V,u = ——ECX-"—-.
R¢ 4+ Rx

A careful check on the time ¢ is therefore necessary, otherwise ¢
can have any value whatever for the same voltage V.

(¢) Practical Manipulation: I. The diagram of connections is that
of fig. 31.

Assuming R is known (it can be measured by any suitable method),
the condenser is charged through Ry for a time ¢,, then discharged
through the B.G.; the deflection being a;. The condenser is again
charged through Ry, but for a shorter time ¢,;; discharged, and the
deflection a;; noted. If a; =: a;;, then the maximum voltage V,
is reached. Another charge, for a time t,,,, shorter than ¢,,, is neces-
sary, giving on discharge a deflection a,;,. If a;,, is smaller, but very
nearly equal to u,;, then #,;, is the maximum time of charge. After
every charge and discharge, the condenser C has to be shorted for a
while, in order to eliminate any residual charge left.

Knowing t;,; and a,;,, the condenser is charged to the full voltage
Vo, and then discharged ; the deflection being ao, we have

. CRch lOg aoRc
Ry 4+ Re aoRe — Q111 (Re + Rx)

When the resistance tested has an appreciable capacity, say C,
the circuit will be as shown in fig. 33.

Immediately after the circuit is connected to the source of voltage
Vo, the two condensers are charged electrostatically. The total capa-
C Cx
C+ Cx

t

city is Cp =

; and the two condensers being in series, the
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C
by vy
b))
Ry Re
Vo | lL
L
Fig. 33

charge Q is the same on both, so that Q = C, Vo = C V,; = Cx Vy,
where Vo, and Vy are the p.d.s across C and Cx respectively ; therefore
=CTVO___ Cx 'Vo;er-CTVo: C V.
C C 4 Cx Cx C + Cx

After the electrostatic charge, when the p.d.s across the condensers
are Vo, and Vy, C will begin charging through Ry and losing charge
through R¢. Let the values of the instantaneous currents be as
shown in fig. 33.

The condenser C gains during dt a charge ¢, df, and loses in the

VOl

. v . .
same time a charge —- dt, where v is the instantaneous voltage across

c
C. Starting from the value Vo, the net charge gained by C is therefore

q =iy dt — >

a . . . .34

c

The current in Ry is equal to

Vo -

v .
== 135, and the current i,,
X

which is the discharge current of Cx through Ry, is i, = %‘—, where
vx is the instantaneous voltage across Cx starting from Vy.
The condenser Cx loses during the time dt a charge i, dt = X dt

R
and as Vo = v 4 vx; vx = Vo — v, we can write: x
ipdt =2 dt = Yo TV @ Oed (Vo - ) = — Uy do
Rx X

Now i, = 145 — 15; that is, ¢,dt = 2,,dt — i,dt; so that (34) can

be written : ¢ = Cdv = Vo—v dt 4+ Cxdv 2
X RC
(Yo _ 2)a—(c—Cod=—Ft Ve DR gy
Ryx Re RxRe

4 BeRy (C—Cy
RcVo — v (Re + Rx)

E

dv. Integrating between the time ¢t = O,
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when the charge through Ryx begins, until the time ¢, when the charge
is finished, we have
(vatt=1t) =V,
dv

11
dt = RxR¢ (C — C ,
]; xRe ( ) | RoVo — v (Re + Rx)
(vatt=0)= Vo,

RxRe (C — Cy) v,
t=— 2" T llog.[RVo—1v(RecH4 R
Re 1 R, [ g.[RcVo — v (Re x)]] Vo,
and inverting the limits,
RxR¢ (C — Cy) Vo1
t=—"2""" " llog. [ReVo — v (R¢ + R ==
Re + Ry [ 0g. [ReVo — v ( + x)]] v,

ReRx (C — Cx) 1) RoVo — Vo (Re -+ Rx)]
Rc 4+ Rx RcVo — V,; (Re + Rx)
We have also
t(Ro+ Re) _;  ReVo— Vo (Re + Ra)
RcRy (C — Cy) ReVo — V, Re -+ Ry)
t (Rec + Ry)
e RcRx (C - Cx) — RcVo - Vol (Rc + Rx)
ReVo — Vi (Re + Ry)

from which we get

_ (Re + R,Q__ - _E(Rc + Rx)
ReVo [l e Re Ry (C — Cx)] + Vo |:e Re Ry (C —Cx) :l

1

 Re+ Ry
The maximum p.d. to which C can be charged is therefore
RV
" Ret Re

A check on the time ¢ is therefore necessary.

() Practical Manipulation : II. The circuit is as in fig. 31.

Make 1-2 for a time ¢;, and discharge by making 3—4, noting the
deflection a;. Again make 1-2 for a time ¢,,<Ct,, and note the deflec-
tion. If a,; = a,, charge again for a time ¢,,,<t;,, discharge, and
note the deflection a@;;;. If a;,, is smaller but very nearly equal to
a,, then ¢;;, is the maximum time of charge. After each charge and
discharge, C has to be shorted for a while in order to eliminate any
residual charge. Having determined a,;; and ¢,;;,, make again 1-2
for a very short time ; immediately after, 1-2 is broken and 3-4 is
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made, the deflection now being ao;, corresponding to Vo, ; finally
3-5 is made, charging C to V,, then 34 is made, discharging C, the
deflection being a,. We have

= ]grcRx (C — Cx) l Rcao _— aol (R(‘, + Rx)
R "l_ Rx Rcao — 0111 (}.{c + Rx)
R has to be determined, but not Cg, because Cx Vx = CV,,; and

Vx = Vo -_— VOI 5 Cx (Vo - VO]_) - CVO] ; 80 thab Cx = C———Y—Ol—"—‘.
Vo — Vo,

G
RReo ( Qo — Uog + 1) ¢ Reao — Aoy (Ro + Rx)
Re + Ry " Retto — 333 (Re + Ry)’

The accumulation-of-charge method is more difficult and even less
reliable than the loss-of-charge method.

t =




CHAPTER 1V

CALIBRATION AND TESTING OF D.C. INSTRUMENTS. MEASUREMENT OF
CURRENT, POTENTIAL DIFFERENCES AND E.M.F.

(1) The Comparison Method of Checking Ammeters and Voltmeters

Ammeters and voltmeters have to conform to certain specifications,
and when a check for this purpose only is required, the comparison
method is the best, because it is both simple and speedy.

(a) CALIBRATION OF AN AMMETER. The instrument, which can be
a permanent-magnet moving-coil, moving-iron, or hot-wire ammeter,
is checked against a substandard ammeter. . Any number of ammeters
can be checked at the same time, provided there are sufficient reliable
observers.

The connections are as shown in fig. 34, where two ammeters are
compared with a substandard.

A suitable source, of
voltage V, supplies current
to all the ammeters con- SUBSTANDARD CHECKED AMMETERS
nected in series, the cur-
rent being regulated by

the rheostat Rh.
The current is first sct W_\

Rn

to such a value that the Fig. 34

pointer of the sub-standard

stands at ; of its maximum scale; then the readings of all the
ammeters under test are noted. The current is now varied until
the pointer of the substandard stands at & of its maximum, and
the rcadings of the test ammeters again noted. This is repeated
for &, ¢, ete., of the substandard scale till its full indication is reached.
The check is now repeated by going back on the substandard scale
to &, &, 4 etc., until zero is reached. With a moving-iron ammeter,
this test will also give an idea of the instrument hysteresis. It is
necessary in this case never to decrease the current when going up
the scale, nor to increase it when going down.

When checking a hot-wire instrument, a certain time has to elapse
between the setting of the substandard and the reading of the ammeter;
this is required to allow the instrument to reach the temperature
corresponding to the current flowing.

68
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The readings of all the ammeters have to be taken simultancously
should it be found that the current is changing between the readings
of separate instruments.

fach instrument zero has to be adjusted before starting the calibra-
tion, and it is important to note whether the pointer comes back to
zero after the test.

The result of the test should be presented in a form which will at a
glance show the reliability or otherwise of the instrument. The
differcnce between the indications of each test ammeter and the
substandard, given as a percentage of the substandard reading, is
plotted against the substandard reading. When this difference is
positive, it is plotted above the horizontal zero line, and if negative,
below it, as shown in fig. 35(a).

8 N
19%
NS /Yo
. 6 \ CALIBRATION LINE
/o‘ N N o
o | N o v~
5 /o
K
o 7 < AMPS
3 9 P BUBSTANDARD
% 2[5 —
3
-4
-6
-8

Fig. 35(a)

The points a, b, ¢, ete., are joined by straight lines ; the whole line a, b,
¢, . . . isthe calibration line. [fthe true currentis 3 A., we see that the
test ammeter reads 3 4 5% or 3-15 A. Again, for 6 A., the checked
ammeter reads 6 — 19, or 594 A.

As, however, the readings of the substandard are guaranteed only
within certain limits, and there is also a reading error on the sub-
standard, each point of the calibration line is subject to an error. The
constructional error and the reading error of the substandard, expressed
as a percentage of the substandard reading, is therefore plotted above
or -below each point of the calibration line. The points above and
below the calibration line are also joined, as shown in fig. 35(a), by the
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dotted lines ; the area between these lines is the uncertainty area.
Considering a current of 3 A., we sec that the test ammeter reading
is 3-15 A. + 19, should the constructional plus reading error on the
substandard be + 19%,.

(¢) Checking the Instrument Damping. The damping is a very
important characteristic of the instrument ; two tests should be made.

(@) A test on the time it takes the pointer to come to rest. In order
to avoid any ambiguity, and to perform the test under well-defined
conditions, the time between the first deflection (greater than that
corresponding to the current in the instrument, which is the steady
reading) and that which differs from this steady indication by as near
as possible J; of the steady value. Normally this time should not exceed
3 seconds.

(b) The ratio of the first deflection to the steady value. The test
should be made with a current of about 609, of the maximum reading.
This ratio should not exceed 1-33.

(13) Example of Ammeter Calibration. A moving-iron and a hot-wire
ammeter were checked against a substandard in the manner shown
in fig. 34. The constructional error of the substandard can be taken
as 4 0-59, over the whole of its scale, and the reading error is 4 J;
of a division. The following results were obtained.

| o L o
. Substand. | MoV Mol ol i op diff.  Substand. 9| Substand.
Div. di won  wire T W, read. error | tot. error %
T€AdWY " reading, reading! A : | Lot o

10 lamp. ' 1 0'953' 0

|
|
\
i
|

—5 405

' : F1
20 2emps. 190l 2 ‘- 2)1 0 ‘ 1025 | £ 075
30 3amps.| 307 | 31 'r 234 | 333 | £ 0167 | - 04667
40 4amps.} 4-03% 42 1 20 |5 40125 | + 0625
50 5amps.'| 51 ! 522 4 401 | +06
60 6a.mps.‘ 61 t 6-15'; 167 | 25 £ 0084 | + 0-584
70 7amps.i 71 E 712 | 143 | 1715 | 1 00715 | £ 0571
80 8amps. s~25|| 818 | 313 | 225 | - 00625 | |- 0-5625
90 9 amps. 9-201 925 | 222 | 278 | -4 00656 | - 0-555
100 10amps. (108 (103513 |35 | £005 | 1065
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The calibration lines and uncertainty areas are shown in figs. 35(b)
and (c)
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’ \\ 7
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Fig. 35(b)
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Fig. 35(c)
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(b) CALIBRATION OF A VOLTMETER. The method is similar to that of
checking an ammeter. The voltmeter, or voltmeters, to be checked
are all connected together with the substandard across a variable d.c.
supply, or when a constant supply only is available, arranged in the
manner shown in fig. 36.

CHECKED SUBS{TANDARD

VOLTMETER!

m
k]

Fig. 36

E is the constant voltage supply ; R a suitable resistance; S a
sliding contact on R. S is moved till the substandard pointer is on
1y of its scale maximum, then all the checked voltmeters are read and
their indications noted. S is moved again till the pointer of the sub-
standard is on & of its maximum ; the voltmeters are again read and
their indications noted. This procedure is repeated, for every tenth
of the scale, till the full scale indication of the substandard is reached.
Then the checking is repeated from full-scale reading to zero.

The same precautions apply as when checking ammeters. The
calibration lines and the uncertainty areas arc plotted in a similar
manner.

(2) D.C. Potentiometers

The opposition method described on p. 48 (fig. 17) is a simple
potentiometer method. Considering the two resistances R, and R, in
series with the rheostat Rh (fig. 37), the em.f. E will produce a

E

current : v = ; Ry is the resistance of Rh, Ry, that
Rb ‘I‘ Rl '{‘ R'z l" Rh
of E.

For a certain setting of Rh and with E constant, the current @ is
constant, if R, 4+ R, is unaltered. If we vary R, while keeping
R, + R, constant, the p.d. across R, will change, so that when con-
necting across R; an e.m.f. K, in series with a galvanometer (by
connecting b to a in fig. 37), the galvanometer will show no deflection
if E; = iR;.

The arrangement shown in fig. 37 constitutes a potentiometer. In
order to have a precise measurement of E,, the p.d. across R,, or
across any part of it, has to be known with a high degree of accuracy
before any useful measurement can be made. This determination of the
p.d. across R, (or across part of it) is known as the setting, or the
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Rh ' ||e
”Tij Ul

Fig. 37

standardisation, of the potentiometer, and it is best achieved by
means of a standard cell.

The cell now officially recognised as a standard is the Weston cell,
the e.m.f. of which, at a temperature of 20° C., is equal to e = 1-0183
0-0001 v., in international volts; or, as 1 international volt =
1-00036 absolute volts, we have e = 1-0186 -{- 0-0001 v., in absolute
volts.

Its e.m f. is therefore known within 0-00982%, = 0-019%,.

The temperature coefficient of the cell is negative ; the e.m.f. of
the cell as a function of its temperature is given by :

e = 1-0183 -— 0-0000406 (¢ — 20) — 0-00000095 (¢ — 20)2

— 0-00000001 (¢ — 20)3
where ¢ is in international volts and ¢ is the temperature in ° C. (e can
be converted to absolute volts by the relation given above).

Extreme care has to be taken not to allow the cell to supply any
appreciable current, even for a very short time ; a voltmeter should
never be used to measure the e.m.f. of the cell. The cell, in scries with
the galvanometer, and the resistance R, are connected across R, by
joining b to ¢ (fig. 37) ; and when the galvanometer shows no deflection,
the drop across R, is equal to 1-0186 v, if the cell is at 20° C. If then
R, is 10186 ohms, and variable by steps of 1 ohm (keeping, of course,

R, 4+ R, constant), the current in R, is: ¢ =M= 1 amps, and

) 10186 10*
a variation of e.m.f. of i&could be detccted.

The resistance R is for the purpose of protecting the cell while
standardising the potentiometer ; after an approximate balance is
obtained, R can be shorted by means of key k.
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Once the potentiometer is standardised, let e be the e.m.f. of the
cell ; we have at balance e = iR,.
Connecting b to a and varying R;, so that it becomes R,;, and
a new balance is obtained, we have E; = {R,,, therefore
R _ e Ry

= — 1:8—-—,

R’ll El R’l
It is always preferable to interpolate in the same manner as with
the Wheatstone bridge (p. 36) when standardising and when deter-
mining K.
The source E, supplying 7, is usually between 2 and 4 volts, so that
when using for R, and R, two resistances boxes of 11110 ohms cach,

the current ¢ will be between _2 and ——
22220 22220
course dropped in the connecting wires in Rh and Ryp.

amps; a part of Eis of

1 .
The current in the potentiometer should be low ; Ldto ™ amps is

usual (although there are potentiometers carrying i; of an amp), for
if the current is high thermoelectric, e.m.f.s might arise.

The sensitivity of the arrangement shown in fig. 37 varies with the
magnitude of the e.m.f. measured, because when we measure an e.m.f.
of the order of a volt (R, being variable in steps of 1 ohm, and having
been set by means of ¢ to 10186 ohms) we can get a variation of
obos Of a volt or g5l while if we measure an e.m.f. of say ¢l; of a
volt the smallest variation possible will be 5.

(a) INpUSTRIAL POTENTIOMETERS. These are potentiometers giving
a precision of about 4% which is quite sufficient for such purposes as
calibrating ammeters, voltmeters, and wattmeters, but not for high-
precision measurements of current and e.m.f.

4| I \'/\)Ev—\———————

ll

e
|

Fig. 38(a)

(t) First Type of Industrial Potentiometer. In the first type, which
uses & galvanometer for determining balance, the circuit arrangement
is as shown in fig. 38(a).
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The source K supplies the current to R, and R,, which are so
arranged that their resistance can be varied by movement of the
slider S, while R; 4+ R, remains constant. The standard cell is e, by
closing 1-2 the cell is put in circuit and the potentiometer can be
standardised. R is the cell protecting resistance with its shortcircuiting
key k. Making 1-3 brings the e.m.f. E;, which is to be measured, in
the circuit.

E Rn

=

Fig. 38(b)

R, and R, are generally divided in sets of resistances in the manner
shown in fig. 38(b) ; the total resistance between a,a being equal to one
resistance of b,b.

The sliders move over dials marked directly in volts. If the resistance
between a,a is equal to 7, and is also equal to the resistance of one
part of b,b, the total resistance of the potentiometer a,a, b,b is then
r + 9r = 10r. Let the p.d. across a,a, b,b be V volts ; then the smallest
change in voltage we can have is ’

’
dV = ~Y—— X —; say V = 2 volts » = 108, then
10r g
V = 2 X -1—0- = 0-02222 volts.
10 x 10 9

The potentiometer can of course have a different number of coils
between a,a and b,b, than that shown in fig. 38(b).



76 ELECTRICAL MEASUREMENTS

There is a mark on the scales, corresponding to the standard cell
setting, so that when standardising, the dials are set for the cell, and
Rk varied till balance is obtained. When this is obtained, the scales
read directly in volts ; at balance with E,, the value of E, is therefore
read directly on the potentiometer scales.

When interpolating, while standardising, the dials are set for the
standard cell and Rh varied till zero deflection of the galvanometer
is found. Then R, should be decreased by a small amount (by means of
the coils a,a) so that it beccomes Ry, and a small deflection a, is
produced to the right, and then increased so that it becomes R,3, and
a small deflection a; is produced to the left. The value of R, is then
(see Wheatstone bridge, p. 40)

e
R, =Ry + (Ry3 — Ryy) = 7

ay + an

But as the dial readings are in volts and not in ohms, we can write :

Vl = V12 + (V13 - V12) 2 . . . . (35)
as + ap

V,, V,; and V,, are the potentiometer dial readings corresponding
to Ry, Ry, and Ry,
The error on V; will be :
_4_\7;1 = éﬁy +
V’l V,l V,]_ a'A—}-a'.,

v'p Ad’

where v, = V3 — V,,, if the constructional error is known to be
the same throughout the potentiometer, or

AVII - AV,12 AV’D a,,’ V’D Aa’ .

A4 v, Vi, datas V,idrtds’
if the constructional error is not the same through the potentiometer
(sec Wheatstone bridge, p. 40).

(22) Second Type of Industrial Potentiometer. When calibrating an
ammeter, voltmeter, or wattmeter, by means of a potentiometer
provided with a galvanometer, the work involved in balancing and
interpolating becomes tedious ; for the purpose of instrument calibra-
tion another type of a potentiometer, provided with a millivoltmeter
instead of a galvanometer, is more suitable, although less accurate.

The general arrangement is shown in fig. 39.

The resistance of the potentiometer between AB is constant ; the
division in sets of resistances and dials is the same as in fig. 42(a).

When we make 1-2 the standard cell e, in series with the milli-
voltmeter M.V. and the protecting resistance R, is in the circuit. The
standardisation is done in the usual way : the sliding contacts (dials

(35a)
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in reality) are set for e, and the value of Rk adjusted till the milli-
voltmeter reads zero. The potentiometer dials then read directly in
volts. When interpolating, the procedure is as described in the first
type of potentiometer.

L Lo

Rn
R
3 2 1
€ —
= -h—e
MV.
8
Fig. 39
¢
e, o
—_
R
-
E
MV. d
uTB
Fig. 40

To measure the e.m.f. of E,, 2-3 is closed, and the sliders a,a (dials)
moved till the millivoltmeter pointer reads anywhere within its scale.
The value of E, is then given by the sum of the potentiometer dial
reading and the millivoltmeter reading ; the potentiometer reading
the unit, tenths and hundredths parts of the e.m.f. and the milli-
voltmeter the i and g5l parts.

That these readings are approximately the value of the e.m.f.
measured can be seen by considering fig. 40.
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Let R, be the resistance between the sliding contacts a,a, when the
standard cell is in circuit ; at balance we have

. . e
tRy=¢; 1 =—.
1

Let the total resistance of the potentiometer circuit be r, then

rm=E; 1= —E~; therefore -1-1 .

r r Ry
When making 2-3, E; is in the circuit ; and as we let the milli-
voltmeter read within its scale, there will be a current through it. If

this current be ,, and in the direction as shown in fig. 40, then
By=r @y +d) + e +rviy . . . (36)

where 7, is the resistance between the sliding contacts a,a for the
setting of E; ; 7, is the resistance of E; ; and r, the resistance of the
millivoltmeter M.V. ¢, is now the current in the parts A,a, a,B of the
potentiometer (i, is of course ditferent from ¢, as the standard cell
delivers no current).

The e.m.f. E being unaltered, we now have
E—r 1,

; .
Combining (36a) with (36) we get

E=riy-tryi;in= (36a)

E1=,-1[(_l?__.r_rliL) + il] + 1yt Frve =

E—rd,+ri, . .
) (—————————) + iy vy =

r
r E . . L (r—r E e
l———{—rvzl—l—rzzl—{-rlzlg————l—),as———}——,welmve
r r r R,
rie . r—r) .
Ei=—=—4ri, +ryry +——r 1,
R, r

ry iy is of course the indication of the millivoltmeter, while the

potentiometer dials can be arranged to read %‘i ; so that when we
1
assume that E, = %E + rv 1, the error due to the method is
1

. (r— 1) .
7111—T+72@1.

7, 4, is the drop of volts in the source E;, which, if small, will intro-
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(r—ry)
r

duce a negligible error ; the term i, r; will be smallif r — 7 is

small ; that is, if the measured e.m.f. E, is nearly equal to the e.m.f.
E supplying the potentiometer.

The potentiometer is therefore unsuitable for small values of E;,
although the error can be made small by making ¢, small ; that is,
restricting the reading of the millivoltmeter to very near its zero.
Then the reading error on the millivoltmeter will be large, and the
measurement will not be rapid. These are disadvantages which will
defeat the main purpose of using this type of potentiometer.

When calibrating ammeters, voltmeters, and wattmeters, we can
make E, fairly large, so diminishing the error, and with proper pre-
cautions the potentiometer is capable of giving an accuracy within
10005 t© 060+

There is no determination error here except when standardising ;
we have, however, a reading error on the millivoltmeter.

(t13) Third Type of Indusirial Potentiometer. The arrangement is
shown in fig. 41.

E Rn

—p

TN BY.VVI S

- 3

Fig. 41

The numbers relating to this type of potentiometer given below are
for the purpose of an example only. They are not necessarily actual

numbers,
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Between a,a we have 11 resistances of 1000 ohms each.

i3] &1,(11 » i3 11 ” " 10 ” ”
” b)b ”» ” 10 I ) 200 3] i3]
%) bl)bl 2 i3] 10 ’ ) 2 ) 12)

The sliding contacts S,S and S,,S; are always scparated by two
resistances, of a,a and a,,a, respectively, so that the total resistance
of a,a, b,bis
(10 x 200) (2 x 1000)

= 10000 2

9 x 1000
+ (10 x 200) -} (2 x 1000)
and that of a,a,, b,,b, is
9 x 10 - 19 x2 @10 _ 1590

(10 x 2) + (2 x 10)

Assume for ease of calculation that the total p.d. across a,a, a,,a,
is 2:02 volts, the total resistance across a,a, a,,a, being 10000 4- 100 =

10100 2 ; then the p.d. across a,a, isl—f):% X 100 = 0-02V.
The voltage change caused by the movement of the slider S,,S; by

. 002
one contact of a,,a, is To = 0002 V.

The movement of slider s; by one contact of b,b;, which is the
0-002

smallest change possible, will therefore be = 0-0002 V.
The p.d. across a,a is 2—-0—2—1%(%)@0—2 = 2V.; the movement of the

slider S,S by one contact produces a change of i26 = 0-2V.; and the
movement of slider 8 by one contact of b,b produces therefore a change

of (;—j= 0-02 V., which is equal to the change produced by the slider

S1,8; over the whole of a,,a,.

(b) THE LABORATORY PRrECISION PorENTIOMETER. The potentio-
meters mentioned so far, even those working with a galvanometer,
are not precision instruments, because the resistance R, -+ R, cannot
be kept absolutely constant. In fig. 37 there is no guarantee that,
when changing the plugs in the resistance boxes, there will be no
alteration in the total resistance, while in figs. 38(a) and 38(b) there is
no guarantee that the sliding contact resistance is the same all over
R, and R,.

In potentiometers used for precision measurement of e.m.f. or
potential differences, the sliding contacts are transferred to the
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galvanometer circuit ; their effect is therefore zero, because there is
no current in the galvanometer circuit at balance (or the current
there is extremely small when interpolating). The general arrangement
of the potentiometer is as shown in fig. 42(b). The values given are
for example only, and vary in different makes.

E Rn.

L wm

‘___{9 |__-/_/\:\/\:’j 3'£_|
E

!l
Fig. 42(a)

Consider first the simple arrangement of fig. 42(a). Between A and B
we have a certain number of resistance coils (9 in the case of fig. 42(a) ) ;
ab is a resistance wire for fine adjustment; and the resistance of ab
is equal to the resistance of one coil of AB.

The potentiomecter is standardised in the usual way, by connecting
the standard cell e in series with the galvanometer and the cell pro-
tecting resistance R to the terminals marked for the purpose, and
varying Rh till the galvanometer gives no deflection. By making 1-2,
E; can be measured, and its value read directly on the potentiometer,
after a new balance has been achieved.

The current in the potentiometer circuit has to be small in order to
avoid thermo-electric effects, and also to keep E constant during
the measurement. if we allow a current of 20 m.amp, with a p.d.
of 2 volts across A-b, the total resistance between A and b has to be

2x1
2x 1000 _ 000
20
If now we have 9 resistance coils between A and B, then the resist-

ance of each coil and also the resistance of the slide wire ab will be

&0- =10 2.
10

F
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The sliding contact on the wire ab is moved against & scale{, and rf
we have 100 divisions on this scale, and the thickness of the m.dt.ax. is
such that we can distinguish 4 g of a division, then as one division

g
o\
m
= =
]
h‘. n m -
ob A
I v
Q
L { .‘r
0n
« <
- -
3

Rh

E
2 {e2¥ ¥

ILD

Fig. 42(b)

9Xis

Rh

9X10n

of the scale corresponds to 2 _ 2 V., the precision of the
10 x 100 1000
2 1 2
otentiometer will be = —— —)=£—=V.
P o0 (+ 10) = Eige
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This of course will not do, the precision being low, and the slide
wire, having to be fairly thick in order to withstand wear, owing to
the sliding contact, will be far too long, and very difficult to make
uniform.

To increase the precision and have a reliable slide wire, its resistance
should be about 0-1 ohm and its length no more than about 50 cm.,
but then, as the resistance of each coil of AB is equal to that of the
slide wire, the number of resistance coils required with the arrangement

of fig. 42(a) willbeE)-OO——lg—l- = 999 ; this would of course make the

potentiometer too cumbersome and costly.

Consider now fig. 42(b).

The potentiometer is divided into two parts A and B, the arrange-
ment of the dials and resistances being as shown. The dials and
resistances a and a, are for the special purpose of standardising the
potentiometer, while b,c and b;,c, are used for the measurement of
the e.m.f. E;. By joining 1-2 and 1,-2,, leaving all the other keys in
their neutral positions, part A of the potentiometer is standardised ;
by making 1-3 and 1,-3, (all other keys in neutral) part B is standard-
iced. Joining 4-5, 4,-5, and 6-7 (all other keys in neutral), the e.m.f.
E, can be measured. The potentiometer dials are graded directly in
volts.

The standardisation is done by varying Rh and Rh, till the galvano-
meter shows zero deflection and then interpolating by means of dial
a and c, if desired.

When A and B are standardised, the current is exactly the same
in A and B.

Let the sum of the p.d.’s across bc and b,c, equal 2 V, then, with
the resistances as shown in fig. 42(b), the p.d. across the slide wire is

2 X 0-1 =0-002V.
100

If the slide wire dial has 100 divisions, and the index is such that
=+ ¢ of a division can be distinguished, the potentiometer precision,
or the smallest change of voltage available, will be

0-002 1 -9
— —)=42x10 V.
100 (ﬂ: 10) +

Besides a and a, we have here 27 resistances, plus a slide wire,
while to get the same precision with the potentiometer shown in fig.
42(a) we should have had to have 999 resistances.

Triple potentiometers for still greater precision can also be made.
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(8) Calibration of Meters by a Potentiometer
(a) CALIBRATION OF AN AMMETER BY A POTENTIOMETER. The
arrangement is that of fig. 43(a).

ity (5

Ry

T

Fig. 43(a)

The ammeter A which is to be calibrated is in series with a source
V, a rheostat Rh, and a standard resistance Rg; the p.d. across the
standard Rg is measured on the potentiometer in exactly the same way
as the e.m.f. E, in figs. 42(a) and 39. The current I is varied so that the
ammeter pointer indicates g, &, ete., of its scale to full scale reading.
If the values of the p.d. across Rg are then V, V,, Vg, . . . Vy, then

the values of the current I are —VL, —V—Z,Xl ce e 'V—n
Rs :Ras RE

The potentiometer is standardiscd before the calibration in the
usual way, and the standardisation has to be checked during the
calibration.

Calculation of the Systematic Error. For cach value of the p.d.
across Rg of value V;, we have

I, = ﬁ, but Vy = eﬁ,sothatln = ¢ Rn
R, R, R; Rg
where Rp is the setting of the potentiometer for V, and R, the
setting for the standard cell.

But we can write Ry = R, 4 75 where 7y is the difference in the
potentiometer setting between for the standard cell and for Vg, so
that the interpolation is done on 75 and not on the common unaltered
part of the potentiometer resistance. If therefore 7y produces a
deflection a; to the right and ,rs a deflection a, to the left, we shall

ay

, and writing ¢rs — 175 = 0
a; + a

have rg = 175 + (475 — 17s)

oy

e = 175 + 0 ; Rn therefore becomes

a; + a,
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a,

Rn=R1j:17'g:te ,Sotvha:t
a; + a,
a
e(Bi £ 17 Lo L
I,,=( “1+"2). .. .@n

While changing the position of the dials of the potentiometer, we
alter resistances ; the dials, however, read in volts, so that (37) ought
to be written :

ay
. e (Vl + ¥ v a; + az) e Vn (37a)
n ViRs ViR - | |

where V; corresponds to the resistance R; (setting for V,). Also, v
corresponds to the difference between V, and V,, and v to the differ-
ence between ,v3 and ;vs, which give respectively the deflections a,
and a,.

As Vo=V, & ws +v—"1 _ the differential of V, is
a; + a,
AVa=dV, +d,vs +dv e S (ay + a5) da, — a, (da, + day) _
a; + ag (ay + ap)?
day — ada
AV, + dys 4+ dv —22 | 2204 172 .
' e £ ay + o (ay + ay)?
the logarithmie differential of Vy, is therefore
dVy  dv, 1 d(yvs) , dv  a, v agda; — a,dag

Vn Vn Vn Vn a, *I’- ag Vn ((11 + a2)2 '
When standardising the potentiometer, we determined V,, corres-
ponding to R,, by interpolation, and found that
Vi=Vig+ (Vi3 — V) - Vig + v — 2 see (35),
as + ag ap + as .

and the logarithmic differential of V, is

% _ dV12 @B as _?32 anda,\ —_— aAdaB

Vl Vl Vl ax + ags Vl (aA + an)2
The logarithmic differential of (37a) will be

dl n de dv n av 1 dRB

In e Vn Vl Rs
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de  dV,  d(ws)  dv a, v agda, —aday, dV,
Zptapt 2 S 2 .
e Vn Vn Vn az + ag Va (al + az) Vl
%_ aa . Vp (andaA —_ aAdag) _ .d___Ras —
Vl aa + as Vl (aA '+' (13)a Rg
de + Vidv, + 1% 4 (1%5) + v dv v ogday — ayday
e VaV, Vo Vs Vo va,+ag Vi (a4 ay)?
Xl_’ de _ ¥Up d’UD ax o 2 aBdaA — aAdaB _ (iB;‘_g
Vi Vi V, vp (ax + as) V:, (osx+ as)? Ry
AsV, =YV,,and ;v5 = vg, we have é‘—rl = % and @5 = %, so that
1 Vie Vs 1Ys
A _de | ViV, V,dV, v dlw) o do_a
I e VoV, V,V, Vi Vo v a; + aq
v ayda) —ada, vpdvp  ax v apdan —andas  dR, _

Vo (0 + ay)? Vivwar+a V; (ax+ ag)? Rs

T WMLy pmde 0o 0 odn —addy
e V, \V, Vn vs Vav a;+ a3 = Vo (ay + ayp)

vp dvp ay __ ¥ agday, — adag _ @E _
Vv as+ ap V, (as+ as)? Rg
de | dV, (Vl — Vn) v dvg v dv o« v ayday — ayda,

“ 4 R N ;
e Vl Vn Vn Vs Vn vV ay + ag Vn (fll + 02)2

Vp d’UD aa Vp aBdaA —_ aAda,, ng

Vl Up Qs + dg Vl ((IA + (111)2 Rs’

The relative error on I, is therefore

AI,n_ Ae’ AV'I V'I—V,n
Iln - e + V'l ( Vln )

v'g dv's v AV
V'n v’s Vln v’ a/l_l_a’z

+

v a'pda; +a' Aa’, , vy AV da

+
Vln (a'1+a'z)2 V,I 'U'n (I’A+(l’n
in_ [05: AGA + aa Aan AR'; .
Vll (a,A + aln)a R’a ’

and as da, = Auy = da, = daz = Aa say, we have
Al 5 Ae’ AV’I(V'I—V’,.) v Av's v Av oy

-2y
I'n e V’l V'n V'n 'v'g Vln v o 1+a”
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_v'_. Aa .?.'_ll _A_il)_ _.___a,A E,_D_ Aa' + AR'B’ where
V,na’1+a’2 Vll 'U’D a'A—{—a'g V'la',\—l—a'g R'g

vV, —

L is taken as positive whether V, is greater or smaller than V.
n
If it were known that all the resistances of the potentiometer have

d (,vs) _ dv

the same constructional error, we could write — =k say,
v

v
therefore 178

— a,da
dVa = dV, + k (y05) + kv —2 iva’da‘ N1%9s . and as 1 =
' e a; + a, (ay + ap)? ’

a

1’s + o % , we have vg = v + v —, then dV, = dV, +
a; + a, a; + a,

agdal it aldaz

kvs + v
° (ay + a,)?

. The logarithmic differential of V5 is now

dVa _dVy  vs dvg | v ayda, — ayda,

Vn Vn Vn Vs Vn (al + (12)2

~

; 1Vs = Us.

When standardising and interpolating we now have

dVy, dVy, | vp apday — axdag
\'A Vi Vi (oa+ ap)?
i1
In

, 80 that

_de VadVy w dvs v gy —adey  dVy,

e Vn Vl Vn Vs Vn (al + ag)2 Vl

gn_ aBdaA — aAdan . CLR_:E . as dV12 -~ dVl
Vi (oa + as)? Ry’ v, v,
dln _de | v (ayda; — ayday) vy asdas — audas

In e Vo (a; + ap)? V, (as+ ag)?

de n v aday —ayday, v apday — axday | dV, (Vl — Vn) +
e Vo (o + ay)? V, (ax+ as)? v, Van

vs dvs dRg
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The relative error is now
Vi) U™ Ae’' v Aa v  Add AV V' —V'y
=0 3 ( Vin ) +

= — +
lln e V’na'l—{—az’ Vlla’A'l'a'B V’l
vy Ay AR,
Vin v's R'g '
Vl

VizVa has to be taken as positive whether V, is greater or smaller
n

than Vn.
The smaller vg, that is, the nearer Vy is to e, the smaller the error.
The constructional error or errors of the resistances making up the

4

potentiometer should be supplied by the manufacturer ; 4112,1} % is the
8

Ae’

constructional error on the standard resistance Rg, whilst

0-00982

is, as
!
e

we have seen, |+ , assuming the temperature correction to be
properly applied.

(b) CALIBRATION OF A VOLTMETER BY A POTENTIOMETER.
The arrangement is shown in figs. 43(b) and (c).

alll

p pb
Fig. 43(b) Fig. 43(c)

If the total voltmeter reading is not higher than the maximum
voltage of the potentiometer, the arrangement is that of fig. 43(b).
If the voltmeter reading is higher than that of the potentiometer
voltage, the arrangement of fig. 43(c) should be used.

The potentiometer having been set or standardised with the aid of
the standard cell, terminals p,p are connected to the potentiometer
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exactly as E, in figs. 39 or 42(a), and when balance is obtained, the
potentiometer reading gives the p.d. across p,p.

The voltmeter is checked in the same manner as the ammeter for
several positions of the pointer on the scale.

In fig. 43(b), the voltage read on the potentiometer is also the
p.d. across the voltmeter, while in fig. 43(c), as there is no current
from or to p,p, the p.d. across the voltmeter is V = (R, + Ry) 1,,
¢, being the current in R, and Ry ; the voltage read on the potentio-
meter is V, = Ry ¢,, 80 that

*Va . . . . . . (38)

box.

Calculation of the Systematic Error. The error when using fig. 43(b),
calculated in the same manner as for the ammeter, is

AV'y  Ae n a4V, (V'l—V'n) Vs A’ | v AV oy
‘-vfln el Vll V'n V'n vls Vln vl all + al2
v da vp Av'p 3)_'7;,»_ da (39)

Vigna'i+a'y, V' vp an+an V'ya's+a’s
or
AV'y  Ae n vl’ ,Aa' : _*_v_’_:, : Aa” AV,II (V’l — V’n) n
V'n e’ Via(a'y+a’y) V' ad'a+"up A% V'n
Vo Av'y (398)
Vi v's

if all the potentiometer resistances are known to have the same con-
structional error.
The error when using fig. 43(c) is the same as (39) or (39a) plus

Ri+ Rp

B

the error on ; the logarithmic differential of (38) is

4V _dVa  d(Ry Ry _dRy_

V. Vi Rs + R Rp

Vo ARy ARy dRy _
Vn Ry+Rg Ry+Rp Rs

dvy, Ru dR, Ry dRs dRs

Vi Ri+Rs R Ri+ Rz Rs Ry
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dVy Ra dRy  dRs ( Ry 1) -
Va Ri+ Rz R, Rs ‘Ra+Rs
an + RA dRA dRB (Rn —_ RA —_ Rn) . (40)
Vi Ri+Rz Ry Rs Ra+ Rs
The relative error is therefore
AV AV'y n R, AR’ 4 R, AR'g
v’ V'a R'x+ R's R’y R’y 4+ R's R's
The error varies with R, ; if Al?' A and ARR E are large, the pre-
A B

cision of the measurement will be low even with the best potentio-
meter.

The results of the calibration should be presented as in the method
of checking the instrument against a substandard, by drawing the
calibration line and the uncertainty area.

(¢) CALIBRATION OF A WATTMETER BY A POTENTIOMETER. The

general arrangement, using a potentiometer provided with a milli-
voltmeter, is shown in fig. 44.

A

Fig. 44

P is the potentiometer, the internal connections of which are as in
fig. 39. By means of keys k;, k; and k4, the Weston cell, or the drop
across R, or the p.d. across p,p, is connected to the potentiometer.
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A source of low voltage, about 4 volts, supplies current to an am-
meter in series with the rheostat Rh, the standard resistance Rg, and
the wattmeter current coil we, by way of the double-reversing switch
K.
Another source of voltage, V, suitable for the wattmeter volt coil
wy, supplies this volt coil, the voltmeter and through the volt box,
provides the p.d., across p,p, to the potentiometer. The wattmeter
volt coil is also connected through the reversing switch K.

The switch K is used because two readings for each setting of the
wattmeter pointer are necessary in order to eliminate the influence
of any external fields. The mean of each pair of readings is taken
as the true reading. The ammeter and voltmeter are used for giving
a rough indication of the potentiometer setting which makes the
calibration much speedier.

Calculation of the Systematic Error. The error is calculated in the
usual way. There will be a determination error when standardising
the potentiometer, and a reading error for each setting for Rs and
for the p.d. across p,p.

As the wattmeter indicates W = IV, the error for each checked
ar av' AT

and ;
AV I \'4 I
and ETS are calculated in the manner already explained.

position of the pointer will be the sum of

The result of the calibration is given by drawing the calibration
line and the uncertainty area.



CHAPTER V
D.C. GALVANOMETERS

(1) The Permanent-magnet Moving-coil Galvanometer

The essential part of the galvanometer is a rectangular coil wound
on a non-conducting former and placed between the poles of a perma-
nent magnet. The coil is suspended by a silver or phosphor-bronze
wire, called the suspension, which provides the opposing torque and
serves also as a conducting connection to the coil. The other connection
is at the bottom of the coil, and is either a stretched wire similar to
the suspension or a thin wire wound in a wide spiral. The spiral is
practically torsionless.

SUSPENSION

Fig. 45(a)

A small concave mirror is attached to the suspension ; light from
a source provided with a suitable lens, passes through a round aper-
ture and is projected on to the mirror. In the centre of the aperture,
along its vertical diameter, there is a thin wire, so that when the
light is reflected back from the mirror on to a transparent scale, often
graded in millimetres, the reflected image is a bright circle with a
dark vertical line in the centre ; this reflected image is called * the
spot .

92
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The scale is usually placed at a distance of one metre from the
mirror, with the zero of the scale at its centre. When the galvano-
meter coil is deflected or oscillates, the spot is deflested from the zero
or oscillates.

The arrangement is shown on fig. 45(a).

Referring to fig. 45(b), the distance ab is a measure of the coil
deflection. These deflections are small (the spot should not reach a
deflection greater than 250 mm., which is half the total length of the
scale), so that even when the deflection of the spot is 250 mm., the

angle aob is 2a = arc tan.

250 = 14°2’,
0

It is easy to see from the figure that the deflection of the coil is half
that of the beam of light, or that of the spot, so that the coil deflection
is a, and when the spot deflection is 14° 2', a = 7° 1",

Fig. 45(b)

Permanest-magnet moving-coil instruments (ammeters, volt-
meters) come under the category of galvanometers; the difference
between the reflecting galvanometer and this instrument is that the
latter is provided with a direct reading scale and a pointer, the moving
parts rest on a pivot or pivots, and the opposing torque and con-
ducting connection to the coil is provided by small springs; the
opposing torque is therefore much greater in instruments than in
reflecting galvanometers.

The arrangement of the essential parts of a moving-coil instrument
is shown in fig. 46(a) and (b).

The coil ¢ is placed between the two rectangles a,a, made of copper
or aluminium, which are called the formers (the coil can also be
wound on one rectangular frame, also called a former). When the coil
deflects, the formers have currents induced in them by rotation
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SCALE

e, between the poles
) of the permanent
magnet, and so
provide a very
effective damping,
the result being

s that the moving part comes to rest
™ quickly without oscillations (the in-
T, strument is in this case said to be

% dead-beat). The iron cylinder d, called

the core, serves to produce a radial
\c field, as shown by the dotted lines in
the airgap. Two springs 8,8 provide
the opposing torque, and also the

connections to the coil; p is the
I pointer ; a nut n can be screwed
s up or down the length k in order to

u .

balance the pointer around the axis
Fig. 46(b) of rotation ; Sc is the scale.
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There are two types of permanent-magnet moving-coil galvano-
meters ; the uniform field type (fig. 47) and the radial field type (fig.
48).

The difference between fig. 47 and fig. 48 is that in the radial field
type there is an iron cylinder, or core, between the magnet poles and

i
‘ il

[
i

Fig. 47 Fig. 48

the coil. The radial field thus produced results in the force on the
coil being at 90° to the active coil sides, even if the coil is deflected
(provided a is not too great) ; while in the uniform field type the torque
on the active coil sides varies with the angle of coil deflection.

(2) Theory of the Permanent-magnet Moving-coil Galvanometer

Consider fig. 49(a). Suppose the current through the coil be I and
the coil deflection due to this current a, the dimensions of the coil
being as shown and the field in the airgap H. The force on one con-
ductor of one side of the coil, of length I, will be f = HII.

If the coil has » turns, the force on one side of the coil is f; = HIIn.

This is also the force on the other side of the coil, so that the total
force is F = 2HIIn.

The forces f, being at 90° to H, the torque on the coil is

__2HIlnwcos.a

T, = ——-—2——— = Hlwln cos.a;

but as lw = 8 is the coil surface, we can write:
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7y = HSIn cos.a = @ In cos.a, where @ = HS is the flux through
the coil. If we write n® = @, = flux linkages, we have 7, = Dol cos.a.

The torque 7, is balanced by the torsion of the suspension, if this
torsion per radian deflection is 7, then for a deflection a we have
Ta = Pol cos.a, and as a is usually very small, Ta = D,l.

W —P

Fig. 49(a)

The same system of units has of course to be adhered to, so that
if a is in radians, 7 is in dyne cm. per radian, @, in Maxwell-turns, and
Iin e.m.c.g.s. units of current (in e.m.c.g.s. unit of current = 10 amps).

Fig. 49(b)

When the field is radial, fig. 49(b), the forces f, are always at 90° to
the active coil sides (a small) even when the coil is deflected from the

axis z-z (assuming the field in the airgap to be as shown); the torque
is therefore 7, = @ nl = P, 1 . . . . . (41
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Relation (41) gives the steady deflection state, but we have also
to oonsider the behaviour of the galvanometer between the instant
the current I (the injected current) starts flowing and the time the
deflection corresponding to I is reached.

When a current is injected in the galvanometer, whether a steady
current or a discharge, such as from a condenser, there is an electro-
magnetic torque acting on the coil, deflecting it from the zero position.
Owing to the inertia of the moving parts, the coil can be deflected
beyond its position corresponding to (41), after which the moving
part will come to rest, and then start moving back towards zero in the
opposite direction ; it might again pass its equilibrium position, come
to rest, and again move in the first direction, e¢tc. In other words, the
mobile part of the galvanometer might oscillate around its position
of equilibrium.

These oscillations would go on for ever were it not that the energy
is used up in air friction (air damping), torsion of the suspension, or
friction in the pivots in the case of instruments (frictional damping),
and damping due to currents induced in the coil (or in the former on
which the coil is wound in case of instruments), owing to the coil
rotating between the poles of the permanent magnet (electrical
daiping).

The amplitude and character of the oscillations will depend on the
current injected, on the inertia of the moving parts, on the total
damping, and on the torsion of the suspension, or springs.

Let the damping moment relative to the suspension axis, resulting
from all causes except the currents induced in the coil (that is, all
damping on open circuit), be D,, let the torsion constant (torsion
moment per radian) be 7, and the moment of inertia of the moving
part be J; whatever the value of the instantaneous current in the
coil, we shall have

de d .
ngg--i—Dlﬁ-l—ta:d)oz. N 7 0)

where a is the variable angle of deflection of the galvanometer coil,

da d*a .
% the angular speed, and o the angular acceleration.

In (42) we assume that the damping moment D, is proportional to
the angular speed ; this is very nearly true for small speeds, and
strictly true for electrical damping.

The current ¢+ must not be confused with I of (41); I is the current
injected by an external p.d., while ¢ is the sum of I and the current
due to the movement of the coil between the poles of the magnet.
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If v be the p.d. applied to the coil, and R and L its resistance and
inductance respectively, we can write:

di
Rt 4+ L— 4 e =w.
v+ dt+g

eg is the e.m.f. induced in the coil caused by its rotation between
the poles of the magnet. As the sides of the coil move in a field H
and cut lines at 90° in the radial field, or very nearly 90° in a uniform
field if the angle a is small, the e.m.f. induced in one conductor of one
side of the coil will be: e¢; = Hlu, where 1 is the length of the coil side
and u is the linear speed of the conductor.

The ¢.m.f. induced in all the conductors of one coil side is therefore :
es = Hlun, and the same e.m.f. being induced in the two sides of the
coil the total e.m.f. is eg = 2 Hlun.

Now if %’ is the angular speed and w the width of the coil, we have

w="2 ‘—lg, so that eg = Hin2w d_a
2 dt dt

but lw = S = coil surface, and SHn = @, so that

da

w=Py
. di da . di da
So that R L—-4®,— =v,0orR L—=v—®,—.
o that R1 4 dt+ odt v,or Rv 4 i v odt

Now in permanent-magnet moving-coil galvanometers the term

L -g—: can be neglected, even if L is high, because %% is small compared

with the rate of increase of current ; or, in other words, the current will
arrive at its full value before the galvanometer coil has moved
appreciably, so that we can write :

. da v  Doda
Ri=v—Py—and i = — — -2~ . . . 43
‘ w TR T Rat (43)

Putting the value of 7 from (43) in (42) we get

d2%a da v  Dolda
g% L p,%e =, 2 2o
TPyt =% TR

d%a ¢ao da ¢ov
e%a | (p. 4 Do) da =
Jdt +( 1+ R) T

or

=d,1 . (43a)
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2
I is the injected current, %9 is the damping constant due to the
2
currents induced in the coil ; writing D, + %‘)— = D, we have
d?a da
J—+D—+ra=D,1I . . . . . (44
@ Caut ° ()

As we have a particular solution of (44), namely ra = @I, we need
only solve the equation

gBa p® a0 . . L 4

The characteristic equation of (45) is

Jp2+Dp+7v=0 . . . . . . (46)
the roots of which are
_ 2+\/D2*4JL_ _D . [D s
Py 27 47 2w Va7
__b_/pr=-4z D _ /D T
P2 27 477 2w Vag — 1
writing
D D2 ¢
Ay = —; Qg == _
2J 4J2 J
which gives p;, = —a; 4+ a,; py= —a; — a,.
‘We have three cases to consider :
2
Case I: —P— > l.
4J2 J

The roots of (46) are real and unequal, the solution of (45) will be

a= Aeplt-l— BeP2 t — Ae(—a’l +ay)t + Be(— a, — as)t. 47
where A and B are constants ; differentiating (47) we get

da . (—a1+a,)t+(_al__a2)Be(— a; —ag)t (48)

To determine A and B, let us count the time £ = O when a = O,
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the coil of the galvanometer having then an angular speed wo (due
to an impulse) ; then at ¢ = O (47) becomes

a=0=A+4+B; —A=B; and (48) becomes
wo=(—a,;+az) A+ (—a; —ay)B; or

wo = (—a; + a,) (— B) + (— a; — a;) B = — 2Ba,; therefore

. @o
2a2'
(47) and (48) can therefore be written

=2ge(_a1+az)t__f_)_oe(—al"az)‘=

a
T 2ay 2a,
ﬂ[e(_ a; + ayp) t e(— a; — ay) t] (49)
2a,
da_ (—a, + aa)_(_u_ge(—a1+az)t_ (—a, — az)_“’_"e( @y — )t
di 2a, 2

Wo (— ay + ay) 0(— a1+a2)t_( (—ay—ay)t

—ay, —ag)e
2a4

When the maximum deflection is reached, the angular speed becomes

zero, this will happen at a time ¢, such as will make (50) equal zero,
or when

(-al‘i‘az)e(—al—l_az)tm“(_ a1—az)e(_al-—02)tm=0;

or (— ay + ay) e(—_ ot ) tm=(" ay — ay) e(— 1= Ga)bm

a,t 2a,t
(—ay+ay)e 2 m=(—a1—a2)e .

—al—a2=e2a,tm_

I

—a,+a,
the time tg, is therefore
tm = L log.:ill—‘lg =L Iog.& . . . (51)
2a, —ay+a; 2a, P

The maximum deflection occurring at the time t, is found by
putting (51) in (49), which gives

o[ B (2 _ (02) G2

am=-2—a;
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P P2
P2 Pa D2 204
P ?222‘
2(12 P1 Ao Y2
l 2a, log.(P2 2a,
, Og< 1) _ (zl) az’ . og (]’)1) (z:) az, we have
P P2
wo | (P> pg)
m= 2a, (171) (E) =
_ % il " ]
Wo | /Py 25 P2 2a D 2y |1
=@ e -

( 4 1 _1
selcars ClEnry —Car -
2ay \\—a; 4-a, —ay + a, —a,+ a,

4
Wo [— Ay — @ 22 _ 2a o
e Catad v o

T 2ay J
as a,? — azzzjwe get am = (;—)—f) \/-T—-(— wo).

It follows that the maximum deflection depends on J, 7" and wo.

After the maximum deflection is reached, the moving part will
start going back to zero, but at the maximum deflection the angular
speed is zero, so that when putting ¢ m in (48) we can write :

0= (—a, +ap)AeP1im (o —q)BeP2im_
1 2 1 2

— (AcP tm+B€p2 tm) + as( AcPrim_g,Ps tm).
As at tm we have am, which according to (47) can be written

= AeP tm—i— BePeim , we have
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O=—a;0m+ayam — 2Ba,ep 2 tm, hence the constant B is now

B— (_:‘121;";“_9(,,,,3— Palm ond putting this value of B in (47)
2

we have

am = Aep1 fm + (;gl—i_a—”) am, which determines the constant A.

2a,
A= .(f_l_‘l'_‘fl).am e—pltm,so that finally
2a,
o = (01+az)ame—P1tmeP1t+an—'axame“PztmeI’zt;
2a, 2a,

writing ¢ = ¢t + ¢y, ¢, is the time counted from ¢p, we get
=& +ﬁ)~amepltl + (@, —a,) amep’tl —
2a4 2a,
ame(_ a; + ay) ty {al +a, L Tl 2a,t
2a, 2a,

)

As in this case %2— > %’ a, is positive, and therefore — 2a,1, is
2

negative ; also as a; = 2% is greater than a,, the terms of (52) tend
towards zero ; that is, a decreases from ¢, onwards without theoretically

ever reaching zero; practically, however, after a short time the
deflection becomes nearly zero.

t

tm

—~

Fig. 50

There are no oscillations in this case, the curve a = f (¢) is shown
in fig. 50.
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D T
Case Il : — < —.
4J3 J
D D2 T —_—
Writing as in case I, — = a ;\/—————- = a —1, the two
Hne 27 Ny, 7 2V

roots of the characteristic equation will now be
Pr=—a +a,V—1=—a,+ja,;

Py = —a; — Gy —1= — Gy — ja,.
The solution of (45) is
a = Al 8(— ay +]a2)t + Be(_ a; —Jaz) t____

e oyt (A1 % t—i— Bye Jaat)

Ased®t_ cos.agt + jsin.a,t; e %t oo, ayt —jsin.a,t we
havea =e alt[A (cos.agt + jsin.ast) + B, (cos.ast — jsin.ayt)]=
1 2t T)J 1 gt —) 2

e Gt [(A; + By) cos.ayt + (A; — B,)jsin.a,t]; and writing

A, +B,=A;j(A;, — B, = Bweget

=e a‘t(A cos.agt 4+ Bsin.ayt) . . . (63)
Differentiating (53), we have the angular speed

%: —a,c—a‘t[Acos.a,t + B sin. ay i)

—aze alt[Asin.a,t-Boos.agt].

To determine the constants A and B, count the time as zero when
a = O, the galvanometer having then an angular speed wo, (53)
becomes O = A, therefore

a=Be a’tsin.a,t . . . . . . (64)

Differentiating (54), we get Be b [agcos.agt —a,sin.aml] = %‘;,
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which for ¢ = O gives wo, = Ba,, therefore B = ot

ay
da .
aand m can now be written (from (54) )
—ait .

a=20""% sin.agt . . . . . . (85)

ay
da —ayl . -
22 _@e,m M (@gc08.a5t — a,8in.ant) . . . (55a)

dt a,

Considering (55) we see that sin. a,t will make a alternately positive
and negative, so that the moving part of the galvanometer will oscil-

late. Were it not for e alt, the oscillations would be purely sinu-
soidal, of constant magnitude ; as it is, the amplitude of the oscillations
decreases with time.

The times at which the moving part passes through zero are given

by sin.azt == O, that is when agt = O, =, 27, 3w, . . . nm, or at
timest:O,%,%f—,?;—:, R %—}.
The time between two consecutive zeros is nm_ _(1_»(1-—_12_17 = Z;L’
and the time of a complete oscillation (zero t2g ma.ximlznn, back tzo
™

zero, negative maximum, back to zero) is T = P
2

The maxima of the deflections are reached when g:l = 0, that is,

at times tp such as will make (55a) equal to zero. This will happen
when a,c08.a5tm — @, 8. agtm = O; @,€08.Ggty = @y 8IN. Agtm, OT

a a
Ltan.agn=1; tm =— arctan. .
ay a, a

Let B be the smallest positive arc (between O and 21), whose

tangent is 9—2, then we can write
a
1
tm=—(f +nmn) . . . . . . . (586)
as

Putting in (56) all integral numbers for n (from zero), we get the
times ¢y, when the maxima deflections occur.
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We can produce the following table :

Time t Deflection
0 Q) First zero.
f- Qmy First max. deflection, say positive.
2
x T | .
L = 0 Second zero, half period.
a, 2
B + T = T + B Amg Second max. deflection, negative.
a2 az 2 a2
Qm 2 .
S = 0 One complete period.
a, 2
27 p 2T B . . -
N + =2 + o Ams Third max. deflection, positive.
8m_ 3T o Fourth zero.
@y 2 |
B, 37_B , 8T i -
a + 2. "G Umg Second negative deflection.
1
%."l — 9T ‘ 0 Two complete periods.
2 .

etc., for n periods.

We note from the table that the times #,, between the maxima
deflections and the following zeros are greater than the times ¢,,
between these zeroes and the following maxima deflections. We have

{ __’L__ﬁ__'ll_.ﬁ-t —./_3.+.I__'1_‘—£.
1n= = y lag = : =
a, Qg 2 2 ay 2 2 a,
tu—t”:—'ll—ﬂ—ﬁ'—!-—%, a.nda.sa,:gz,
2 a; ay 2 a,
27T — 4T, T T — 2
t:l_t22=—‘——ﬂ=—“x ﬂ;
47 2 T

as f} is between O and %, t1, 18 greater than ,,.
The time between two consecutive maxima is
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and the time between two consecutive maxima in the same direction
is —25— = T = period.

The ratio between two successive maxima deflections in opposite
directions is

wo  Ya,. —a I3
ot 2énn.azﬁ- la,
am; _ ag ay __ _®
amg B m a,
we (a +¢_z_ B m _Tz-(ﬁ—*- )
o 2 2 2
— s a2<—- -+ -—-)
42 a2 ay
a o
=
a
— e O
L. aym a
and writing —2— =p; — L= e
a, Omg

¢ is constant for a given damping and is called the logarithmic
2

. . & .
decrement of the oscillations, and as a, = T we can write :
a,nw a,T
L = 1= — .
™ 9 s
T

The ratio between two successive maxima deflections in the same

direction is Gmy _ 820, between the first and the nth maxima deflec-

am3
.oa n—1
tion .(;ﬂ = e( )9.
o ty_ T _B .8
The times ¢,, and ¢,, depend on g because -+ = — — =~ = &, and
or ¢ tag 2 ay ay
— a .
asa,=—l,—l—1=—ﬂ——£—; as — = =2 we can write :

T ¢ty B e a, -
a ¢ T — arctan. —
m

B = arctan. Eg = arctan. —, 80 thatt—‘i = ¢
1 e 22 arc tan. —
y e

For instance, when = = g we get 1! = 3.
122

Note that as g—l tan.axtm =1, wehavetan.agty = %3, which means
2 1

Qs

a;? + ag?

; (66) can then be written :
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wo — Ay a 1 a
dm = —e 1m><———’~——,andastm=a—arctan.—1
2 Val ¥ a2 2 &

the maximum deflection is

— (—(b—) arc tan. ?

dm=—20 __, % r . . (56a)
Va? + a,?
Again,as T = gl, and p = a_;’_I" we can write :
aq

VaT Fag =y /200 Bm® 2Veld o4y 2. 27 _ @
™

_ ; —_ = =

T2 T2 T a, T T
-2 arc tan. I
wo T T 0
therefore ap = ——2——— ¢ =,
2\/92 F a2
oL
i ta tu
dwy
t
t2) tn Amy, ta2 tn .
Fig. 51

The curve a = f (t) is shown in fig. 51.

Consider now the case when Z—]?I; = 0; that is, D = O. There is
no damping ; we have now p, = ja,, py == — ja,; and as this is a
case which comes under % < Jl’ the equations will be the same
except that D = O; we can therefore write:

a= aﬁsin.a,t = —%&in. «/-—i -
as T J

J
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da (wo T
— = — (9C08.0yl = WoC08. At =W COS. o [ — " L.
dt a, J

The oscillalions are now purely sinusoidal ; the amplitude is con-

stant; and as T = %’f-, the period is T = 211\/ iI—
2 T

/.
VAR

Fig. 52

The curve a = f () is shown in fig. 52.

2
Case 11T 22 7.
4J2 J

Here a; = —2% is a double root of the characteristic equation ; the

solution of (45) is therefore

a4l

a=(A+Btye (57)

If, when t = O, a = O and %‘ = Wy, then (57) becomes O = A and

@ = Bte~ “ (58)
Differentiating (58), we get
‘%‘ — B BT BT U Gy (s9)
which for ¢ = O becomes wo = B, so that (58) and (59) can be written :
a = we” M (60)
99 _ e M (1 — ayt) 61)
dt o 1 . . . . .

The maximum deflection apy will be reached at a time ¢, such as
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will make (61) equal zero ; thatis, whenl —ayty = O,y = ai'
1
Putting this value of ¢ in (60), we get the maximum deflection
Wo — 1

¢ “;andasa D, a ®o2J
a —_ — , = — 3 -
" Y MRS

T 1
am = Wo -;’z.

The relation giving am at ¢tm can be written (from (57))

1 .
+ -, againas D? = 4J7.
e

am=(A+Bim)yxe ™ (e
Differentiating, we get
da _ _ a;[A + Btmle fm + Be altm; and as at ¢y = 1 the
dt a,
angular speed is zero, we have
0= —a, (A—I— (—?) % + % = —a,am + —12, from which we get the
1

new value of B as B = ea,am; and combining with (62)

am = (A -+ ame) —i, so that A = O. With these values of A and B

a

— a,l . .
we have a = a,am-et-e 1 1If ¢, is the time counted from ¢y, we

1
c&nwritct:tm-l-tl:‘—l—-l—t;; and
1

1
— — -t
o = a;0me (t1 +al—) e " (a, 1) =

1

am(L4agye ™ . . (63

— ait —
differentiating %‘-: =am [ale Mgl 4t 1+ axtx)] =

amae Gl (1—1—a)) = —ama®e ity t.

Comparing (63) with (52) of case I, we see that in case III a decreases
more quickly than in case I; thecre are no oscillations here either.

The curve a = f (t) is shown in fig. 53, where the curves of cases
I and IT are also shown for comparison.
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Case I1I is the case of critical conditions, and the damping D for
which it will occur is called the critical damping. To the damping
on open circuit we have to add an electrical damping by currents
induced in the coil. The value of external resistance, plus the coil
resistance, which, together with the open circuit damping, will pro-
duce critical conditions, is called the critical resistance.

4”- NN
d ,".’ ! AN O
Qo \
VA \
Yy ! \ AN
/s : \ \\
,/" | o \\ S I CASE I
" 1 m \ N CASE
\ ~. )
V4 : \ \~/
\ Seee
| \ “plea
! \
! \ t
\
t, X,
\
\
\
\
« 11 CASE
\
~
~e’
Fig. 53

It is obvious that & galvanometer should, if possible, be used in
non-oscillatory conditions, as otherwise the galvanometer will oscillate
and much time will be lost.

Of the two cases I and III, the latter, that is, the critical condition,
is the better, because the galvanometer comes back to zero or rest
more quickly.

It is, however, a fallacy, unfortunately maintained by many authors,
to suggest that the critical conditions are the best; because if an
additional damping occurs when working in critical conditions, it will
not be easily noticeable, the spot coming to rest without passing the
zero in any case. It is therefore better to use the galvanometer in
oscillating conditions, preferably near the limit, giving the strong
damping which occurs when the logarithmic decrement g = .
Here the spot passes to the other side of the zero, so, when any
additional damping occurs, it is immediately noticed ; also, the
damping being strong, the galvanometer comes to rest quickly.
What, however, is more important still, is that the maximum
deflection for a given impulse is greater in oscillatory conditions than
when non-oscillatory.
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CoMPARISON BETWEEN NEAR LimiT oF OSCILLATING CONDITIONS,
AND THE CRITICAL CoNDITIONS.! Near the limit of oscillating condi-

tionswehavep = = ; andasp = :171_ m, it follows that a; = a, ; thatis,
2

- |z
Dz_[ E_L] x——}— N ()]
4J2 4J2 J (v/ -1)2
T D
As T is not zero, (64) is only true if = T = 4J2’ so that

\/—’—zx/i-—]?:\/é-al.
J 2J

If o = m, then a; = a,;, and we are near oscillating conditions ;
if o < =, then a; < a,, and we have oscillating conditions with less
damping than when p = .

When g = =, the value of the maximum deflection becomes (from

m

o -
(56&)) om = Wo e 4 _ (Oo e

Via, J_

When working in critical conditions, the maximum deflection is

Qme = w°_- e 1, so that the ratio of the maxima deflections
T
T
with ¢ = = and in critical conditions is, for the same impulse,
-
am e 4
— = = 1.235.
QA me e

For a given impulse the maximum deflection reached by the galvano-
meter when o = 7 is 1-235 times the deflection in critical conditions.

The ratio of the first maximum deflection am,, when ¢ = =, to the
second deflection amg in the opposite direction, is

2mi_ ¢ "= 23;and amg = 00435 am,.
ama

1 For further details, see Bedeau : Cours de Mesures Electrigues (3.F.E.; ES.E.,
Paris; Vol. I).
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The third deflection will be
Omg= Ame 2" =000189 4py, . . . . (69)

We see that o mg will be quite imperceptible with the usual deflections,
and the spot is practically at rest after the third deflection.

ol
o,
/dmz d‘ma t
t&l tn g1 tu $22
Fig. 54

The curve a = f (¢t) for p = = is shown in fig. 54.
Now let us see what the galvanometer deflection is, when used in

critical conditions, after half a period 1y and a whole period T,, of

D
2

the condition p = .

When ¢ = =, we have \/% = V2a,, and the period T; = 27
a,
(@, = a,4), the damping being greater in critical conditions where

e = \/—}- If we put a,c in T;, we get

2m

T,=2"-vV2; Tya,0 =27 V2,
227
the deflection in critical conditions being
a=an(l +a,t)e b
we shall have at ?2_1’ a=amnm(l + = \/é) e 7 V2 2 00647 ap

and at T,
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a=an(l+27V2)e 2m V3 = 00014 ap, . . (66)
Comparing (65) with (66), we see that there is not much difference
(in practice none) between the times taken by the spot to come to
rest in critical conditions and when g = =.

(3) The Sensitivity of the Galvanometer
(a) THE THEORETICAL CURRENT SENSITIVITY. This is defined as the

ratio (_II =g, or the coil deflection in radians per 1 e.m.c.g.s. unit of

current ; 8 has only a theoretical importance.

() TaE PrAcTICAL CURRENT SENSITIVITY. This will be defined
as the current in amps necessary to produce 1 mm. deflection of the
spot when the scale is at 1 metre distance from the mirror. We will
call it 8p.

(¢) RELATION BETWEEN THE THEORETICAL AND PRACTICAL CURRENT
SENSITIVITIES. As 8) is a current expressed in amps, we can write :

ap . . . . .
8 =~ = —L if a, is the coil deflection corresponding to sp; and
Sp

as 1 mm. of spot deflection, at a distance of 1 metre, corresponds to
8p, we have

1 1

ap=-—————X27m X =

27 X 1000 2

is half of the spot deflection.

Remembering that sp is in amps, and that 1 ampere = J;e.m.c.g.s.

unit of current, we get

radians, because the coil deflection

1 1 1
8§ = — — Sp ¢ — == .
2000 10 200s)
(d) THE THEORETICAL POTENTIAL SENSITIVITY. This is defined as

8y = s, or the coil deflection in radians when 1 e.m.c.g.s. unit of

potential is applied to it.

(e) THE PracricAL VoLt SENsITIVITY. This is defined as the p.d.
in volts across the coil, required to produce 1 mm. deflection of the
spot, the scale being at 1 metre from the mirror. We will call it s,.

(f) RELATION BETWEEN THEORETICAL POTENTIAL SENSITIVITY AND
PracticaL VoL SENSITIVITY. As 8, is expressed in volts, we can
write :

8 = Z—v, if av is the coil deflection for sv. Remembering that the
v

coil deflection is half the spot deflection, and that 1 volt equals
108 e.m.c.g.s. units of potential, we have
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1 1

=—— X — X —.

2000 10% sy

The volt and ampere sensitivities are often expressed as the number
of millimetres of spot deflection per 1 uV across and 1 pA in the coil
respectively, the scale being at 1 metre distance from the mirror.

(9) Tue MecoEM ConsTANT. This is defined as the number of
megohms that must be connected in series with the galvanometer in
order that 1 volt applied to the terminals produces a deflection of
1 mm. of the spot when the scale is 1 metre away from the mirror.

$1

(4) Measurement of the Galvanometer Characteristics

(a) MEASUREMENT OF THE OsciLrATION PERIOD. The period can
be measured either between two successive maxima deflections in the
same direction, or between two successive zeros.

If the angular speed of the galvanometer is great, it is difficult to
determine the precise time when the spot passes through zero. In this
case, it is better to determine the period between two successive maxima
in the same direction.

If the angular speed is small, the spot will remain for an appreciable
time near the maximum. In this case, it is better to determine the time
between two zeros.

The galvanometer is given an impulse either by discharging a
condenser through it (arrangement of fig. 57), or by injecting a current
from a suitable source, in series with a sufficiently high resistance,
for a short time. (Care has to be taken to inject a very small current,
or when discharging a condenser, not to have too great a charge, other-
wise the spot will overshoot the scale, and the galvanometer might
even be permanently damaged.) The time is measured with the aid
of a stop-watch.

For greater accuracy, it is preferable to count several periods, and
to divide the total time by the number of periods counted. This
method is, however, tedious when the period is long, and it is therefore
often productive of error.

(t) Gauss’s Method of Determining the Period. We determine first
an approximate time T, of the period by counting several oscillations
with the aid of a stop-watch. Having determined T, the galvanometer
is left oscillating for a certain time, say, ¢, but the periods are not
counted.

If T; were the exact value of the period T, then A would be an
1
. t . . .
integer ; generally, however, T will be an integer N, plus or minus a
1
certain fraction, but —tﬁ— = T, will be a value nearer to T than is T,.
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Having determined T,, we can repeat the experiment by letting the
galvanometer oscillate for a time, say, ¢,, without counting the periods,
and calculating a time T, nearer to T than is T,.

We must, however, make sure that N = L2 differs from an integer

1
by less than 0-5, preferably 0-3 at the most, otherwise there will be a
doubt as to whether N or N + 1 is equal to t—

1

As the exact value of the period is T = T, 4y, where y is the
error in the measurement of time, we have NT = NT, 4+ Ny;
NT =N 4 &, we must therefore have Ny <o03.
T, T, T,

Ezample 14. If we assume that T, = 15 secs. and that the

experimenter has found or knows that the maximum error on T, that
is, y = } or 4 } secs., then

Ny <03 x 15 Ng_oﬁfilﬁ — 18,

4
t should therefore not exceed

t<NT, <15 x 18 = 270 secs. = 4 min. 30 secs.

(#) Calculation of the Systematic Error. The only error here is in
the determination of the time at the beginning and at the end of the
count. The magnitude of this error 4y (4 3y at the start and + } p
at the end of the count) depends mainly on the care of the experimenter.
If one period only is counted, the error is of course + ¥ ; if N periods

+
are counted the error becomes _ﬁ_}’ When using Gauss’s method, and

stopping at T,, the error will be %}-’ ; and if we go on further to, say,

T,, with another N, counts the error becomes .
N x N,
(b) MEASUREMENT OF THE LOGARITHMIC DECREMENT g. As the
ratios of successive deflections in opposite directions are
a a a
D0, % _0 % _ 0
Qg ag Qn+1
n -—
G _
an

, we have
l)g’ therefore n — 19 = log. _?_1; o= —l—log i
On 1 an

The galvanometer is given an impulse, and the deflections a, and an
noted. The damping has to be kept constant during the measurement,



116 ELECTRICAL MEASUREMENTS
because g = a_;’l_l?_ and a; = 513 depend on the damping.

Calculation of the Systematic Error. The logarithmic differential of g is

o LD 4 ()

- ?

a
— log.all

but # can be treated as a constant, becausc there should normally
be no error on 7, so that

9 (d a,) _ (d an)
de _ d (log an) _ d (log. ay — log. ap) _ an ;
e & N e
log. n log. o log. n

a
log —* a, log. 2
an n
!
a
AQI Aa,l ( ) !
The error is therefore —- = —= and as we have seen,
o log. 21
1 a’ll

in the loss of charge method of measuring high resistances (p. 57), this
error will be minimum when Z-—‘ = 3-59.
n
Ada’, is the reading error on the galvanometer.
(c) MEASUREMENT OF THE MOMENT OF INERTIA J AND THE TORSION
ConsTaNT 7. Having found T and g, T being measured on open

2 2
circuit, we have Ja, = r_ ]—)—1_ because — > Dy’ (oscillating con-
J  4J2 J 7 4J2
2 20)2
dition) and a, = 20 =]ﬁ, therefore a2, —_—(——2 T g‘_‘_(i’ and
T 2 T2 J T2
2
; (67)

=
s tey "

Adding to the moving part of the galvanometer a small moment of
inertia J,, by putting on the coil a small ebonite strip with two de-
pressions, in which two small, non-magnetic, non-metallic balls can be
placed (see fig. 55), we repeat the measurement of the period and of
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the logarithmic decrement, getting now the values, say, T, and p,.

rnn 2
L 7; combining this with (67),
4 (7% + 0,%)

J = T2 (.,,2 -+ 912)
T2 (7 + 0% — T2 (7* + 0,7
Knowing J, we get v from (67).

We shall have J 4 J; =

X J;.

| I
__@_._rh_._@._

I

! i |
[N
f

ym|
y)ll.

Fig. 55 Fig. 56

As the damping on open circuit is usually small, except in instruments
such as ammeters and voltmeters (an average value for g and g, is
about 0-04), p? and g,% can be neglected before =2 and we have

T2 T,2
J=>—17and J + J, = — 1, from which we get
4 2 4 2

2 2
J:—T___Jl;-[=il_iz__.
le_Tz

T,% — T2

The errors on J and 7 can be calculated in the usual way from the
logarithmic differentials.

(d) MEASUREMENT OF THE GALVANOMETER RESISTANCE. A suitable
method is Kelvin's false zero method, the arrangement of which is
shown in fig. 56. It is very similar to a Wheatstone bridge.

The galvanometer G, the resistance of which has to be measured,
is in one arm of the bridge ; the resistances R;, R4, R, make up the
other arms, E is the source; R a suitable resistance to limit the
current in the galvanometer; k, and k, are switches.



118 ELECTRICAL MEASUREMENTS

Manipulation. Close k,, then there will be a current in the galva-
nometer, and the corresponding deflection will be, say, a. Close k,,
and vary the resistances R;, Rg, Ry, until, with X, open or closed,
the deflection remains a. When this happens, points A and B are
at the same potential, and the balance conditions are the same as in

the Wheatstone bridge ; therefore R,R3 =gRy; g = BRL R, where
4

g is the galvanometer resistance.

It is preferable to interpolate around the deflection a instead of
trying to keep a constant ; the interpolation and calculation of the
error are done in the same way as for the Wheatstone bridge.

(¢) MEASUREMENT OF THE CRITICAL RESISTANCE R; AND THE
RESISTANCE R, CORRESPONDING TO NEAR LiMIT oF OSCILLATING
CoxprrioNs. The arrangement is shown in fig. 57.

(¢) Manipulation. Make 1-2, charg-

S C ing the condenser C from the source
E, then break 1-2 and make 1-3,

discharging C through the galvan-
G ometer, and open 1-3 immediately
after the discharge. The galvan-

ometer, having received an impulse,
il starts with a speed w,, attains a
w1 maximum deflection ap, and then

y comes back to zero, without passing
it if the conditions are non-oscillatory.

EJ|||I| The galvanometer will start to oscil-
' late if the conditions are oscillatory.
Fig. 57 Start with the variable resistance S

high enough to have oscillatory con-

ditions, then gradually diminish S while the condenser C is being
charged and discharged for each value of S, until the ratio of the
first to the second deflection (opposite direction) is e™ = 23. When
this happens, we have

R, =g + S, where g is the galvanometer resistance and S the
resistance of S for the condition g = .

Having determined R ,, diminish S still more (increasing the damp-
ing), until the spot just comes back to zero without passing it ; then

R, = g + S,, where S, is the resistance of S for critical conditions.

(#8) Calculation of the Systematic Error. The logarithmic differential
of R, or R, is

Q&=d(g+8)= dg aS g '_i_’i S 48

= +
R g+8 g+8 ¢g+8 g+8¢g g+88

)
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and the error will be
4R’ ¢ Ag’ S’ 48’
RI gf + SI gl gl + SI SI

When calculating the error on R, A4S is the known error of S (con-
structional error) plus the determination A4,S, which is the value,
plus or minus, by which S can be changed without a noticeable change
in the behaviour of the spot.

When calculating the error on R, 4,8 is much more difficult to
assess because of the reading error on the galvanometer, which here
has to be translated into corresponding changes in S; very careful
manipulation is necessary.

(f) MEASURE-

MENT OF THE )

Frux LINKAGES, ‘ L) G

Frux, FiELD IN
THE AIRGAP AND
THE CURRENT
AND VoLt Prac-
TICAL SENSITIV-
ITIES. The
arrangement is
shown in figs.
58(a) and (b).

G is the gal-
vanometer, of
resistance g; S
a variable resist- Fig. 58(a)
ance shunting G;

R a suitable variable resistance ; E a suitable source of voltage E.

With the connections of fig. 58(a), we have

E S

= =
R + g g+
g+S8S
E is measured by a suitable instrument.
If a be the deflection for ¢,, we shall have
S
ta = Doty ; ¢o=z_(-l—=ra X Q—-_-'_———)-
1 S
As 7 has been determined, we have @,.
If we know the number of turns on the galvanometer coil, say, =,

.i;

(68)

then @ = —d—;ﬁ ; if we know the dimensions of the coil, say, ! and w,

4
H'—_l-w'
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We can get the theoretical current sensitivity knowing that
¢o a

8 = —= —, where « is in radians and ¢, in e.m.c.g.s. units, and the
i
1

. e 1 .
practical current sensitivity from sp = 7—’&1-, where m is the spot deflec-
tion in mm. and 7, the current in amps.

Knowing the galvanometer resistance g, we get the practical volt
sensitivity from s, = sp°g.

i G

|

Fig. 58(b)

The arrangement of fig. 58(a) is not suitable for very sensitive
galvanometers, since ¢, has to be very small for & suitable deflection,
S has to be small and R very great ; there can therefore be no pre-
cision in the measurement (as can be seen when giving the equation
for the logarithmic differential of (68)). The arrangement of fig. 58(b)
is preferable.

The resistances R; and R, can be varied by altering the position
of the sliding contact ; with the notations of fig. 58(b) we have
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E=IR;+ I+ 4 R;; IR, =¢RrwhereRy =R + Sg , 80 that,

S+g
. . E—-IR
E=:R iR IR,; 1 = ———%,
T+ 2+ 2 R@+R2
Asilz—‘-—s—-i,wegetilz 8 E—-IR,
S+g S+49) Re+R,
The value of the flux linkages is
q)o:ﬂ:Ta(g_*‘S)(RT_"Rz)
iy S(E—1IR,
As for the arrangement of fig. 58(a) we have also
@_—_..(p_o’ H=-—(2—: 3:-.90_’ ,gp_—_-zl, ,gvzz_l.xg.
n lw T m m

The source E in fig. 58(b) has to be an accumulator because care
has to be taken that E does not vary during the measurement. The
milliammeter A measuring I has its resistance included in R, ; the
resistance of A need not be known. E is checked by the voltmeter V.

(9) SIMPLE DETERMINATION OF THE GALVANOMETER CONSTANTS.!
Generally the open-circuit damping is very small, and when this
damping is neglected, the galvanometer constants can be determined
very quickly from the measurement of the period T, the critical
resistance R, and the practical current sensitivity sp. We have

T
T=2ﬂ\/r—. N ()

2
(at critical conditions D = E—).
432 J

2
All damping being by currents induced in the coil a; = D = —-¢3—,
2J  2JR.

T ¢o4

it follows that — = ; therefore

4J2R 2
2
Re = (1)(1— . . . . . . . (70)
2V

As
gL 1 _ P g
8p 200 8p T

1 For further details, see Bedeau: Cours de Mesures Electriques (S.F.E.;
ES.E.; Vol. I).
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Combining (69) and (70) we get

J 7®o?
R T = X 2 rr\/ ° . . (72
° 2\/ wJ (' )
Combining (71) and (72) we get
RQT = 87T¢o H ¢0 = RCT . . . . . (72@)
s

I¢, @ R
Asz=-l-1—2—?—8;". . N ( £))

42y T2r  ReT®
AsT? = D d = = . . .
z dn? 4l (73a)

Example 15. A galvanometer on test gave the following results :
period on open circuit T = 8 secs., critical resistance R = 2000 ohms,
practical current sensitivity s, = 2 X 107® amps. Find the galvano-
meter constants, neglecting the damping on open circuit.

The theoretical current sensitivity is

1
8§ = — X ———— = 0-25 X 107 radians/e.m.c.g.s. unit of current.
200 2 x 10 fom-cs *

The critical resistance in e.m.c.g.s. units is
Re = 2000 x 10° = 2 x 1012,

The flux linkages are

RTI 2 x 102 x 8

Do = =

s 025 x =107
The torsion constant is
_RT 2x102x8
T stm (025 x 107)27
The moment of inertia is
_ RT® 2 x 1012 x 8
T 4% 44%(0:26 X 107)?

= 20-38 X 105 Maxwell turns.

= 0-815 dyne-cm.-radian.

= 1:32 gm.-cm.?

(5) The Ballistic Galvanometer

A galvanometer is said to be ballistic when its period of oscillation
fs great compared with the time of a discharge through it, so that
the galvanometer is practically still at rest when the discharge is
finished. The galvanometer receives an impulse, and starts from rest
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with a speed wo. It follows that T = 211'\/ g being great, < has to
T T

be great ; that is, the moment of inertia has to be great and the control
constant small.
The general equation of the galvanometer being

d—ﬂ-—]—D——-}-ta_(Doz,

i being the injected variable current of the discharge. If we integrate
between the time ¢ = O at the beginning of the discharge, to t =t
at the end of the discharge, we have

i 14 t
0 0 (0

d2a da da
Now, Jfo az X dt = (df)o Jdt at t, mmusJ tat 0 =wo,

because the angular speed is zero at £ = O and w, at £.
f —— X dt = Da at ¢, minus Da at O = O, because the galvano-

meter is at rest at t = O and at { = ¢.

{
1:] adt = tat — ta0 = O, a, being zero at ¢t = O and at ¢ = ¢.
0

¢
f i dt = q, where ¢ is the charge received by the galvanometer.
(o)

(74) can therefore be written
on=¢oq&ndw°=—%; q=ﬂ . . . (15)
J D,

When the conditions are critical, we get as the maximum deflection
=9 —l-; and, combining with (75), we get am = 2% X l
J T ¢ ViJ ¢

J

(a) THE THEORETICAL CHARGE SENSITIVITY. The theoretical charge
sensitivity, which is defined as the number of radians by which the
coil will be deflected per e.m.c.g.s. unit of charge, will be
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am _ _Po

——= X — = 8.
7 Vi ¢
(b) TuE PracticaL CouLoMB SeNSITIVITY. This is defined as the
number of coulombs necessary to produce a deflection of 1 mm. of
the spot, the scale being at 1 metre distance from the mirror. It will
be denoted by s¢p.

(¢) RELATION BETWEEN THE THEORETICAL CHARGE SENSITIVITY
AND THE THEORETICAL CURRENT SENSITIVITY. As

) s (] /) T T 1
s=—2,wehave = = —>— - 2= = [ x -
T 8 VJe T ViTe J e

(d) RELATION BETWEEN THE PRACTICAL SENSITIVITY IN COULOMBS
AND THE PRACTICAL SENSITIVITY IN AMPS. As s¢p is a charge, we can

. Qep . . . N . .
write s = 78-53, if acp is the coil deflection in radians corresponding
cp
a 8 8 T 1
to scp; we have scen that s = —2, therefore — = -2 = [ — x =,
$p 8 Sep J e

We have also T = 277'\/ i, if the open-circuit damping is neglected,
T

so that

(758)

When working near the oscillation limit (o = #), the maximum deflec-
tion is 1:235 times the deflection at critical conditions, so that when
o = m, we get

D,

1 . -
X o where 8, . is  the charge sensitivity

2
J
when 7 = o.

(6) The Shunted Ballistic Galvanometer

Consider fig. 59. The ballistic galvanometer, of resistance g and
inductance I, is shuuted by a resistance R which has an inductance
L ; a discharge is produced across a,a.

Let the instantaneous values of the currents be as shown in fig. 59 ;

then Riy; + L diy v; gi 41 di + nd da v, where v is the valu
—_— ) — —_— =1, Q
! dt dt dt

of the instantaneous voltage across a,a ; n is the number of turns on
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the galvanometer coil ; and @ the flux from the permanent magnet
through the coil. Then Ri, 4 L%- = gi + lg_:. +n @%‘1; and
t

integrating between the time ¢ = O, beginning. of the discharge,
to t = ¢, end of the discharge, we have

¢
[@ldt—l—Lf d"dt fle-l —-xdt-l-nf a—-xdt('lG)
0

i’

The terms of (76) which are %/@(
multiplied by L and ! are zero,
because the currents ¢; and ¢
are zero at £ = O and at t =1¢.
The last term on the right-
hand side of (76) is zero, be-
cause there is no flux cut by
the coil at t =0 as at t =1,
considering that the coil did not
move during ¢ and the change
d® is zero, so that

Fig. 59

Rf it —gf s R aL_E

i, dt = idt ; =gq and — = —,

o Y o 91 a9

or the charges in the galvanometer and the shunt, divide inversely
as the resistance of the galvanometer and the shunt. The charges are
independent of the inductances. As the total charge across a,a is

Q = ¢, + ¢, we have
q R R

5y 9=
Q—q g R+yg

MEASUREMENT OF THE PRAcTICAL CouLOMB SENSITIVITY (CALI-
BRATION). The arrangement is shown in fig. 60.

R, and R, are variable resistances; the sum of R, 4 R, has,
however, to be kept constant, in order that the damping should be
constant. C is a standard condenser, E a suitable source, and G is
the galvanometer of resistance g.

(8) Manipulation. Set R, and Ry so as to have the proper resist-
ance for the required damping; the valuc of Ry depends on the
galvanometer sensitivity. Make 1-2, charging C to the em.f. E,
then the charge on Cis Q = CE.

Break 1-2 and make 1-3, discharging C through Ry, which, relative

xQ . . . . (77)
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to C, is in parallel with ¢ + R ; from (77), the charge passing through

the galvanometer is ¢ =

R, .
Ry +9+ R,

CE =mscp; m is the

deflection of the spot in mm., so that % = 8¢p, which is the practical

~F

N Ra,

s

galvanometer
coulombs.
The value s¢p is sometimes
referred to as the galvano-
meter constant. It will, how-
ever, be found that s¢p is not
always a constant throughout
the whole length of the scale.
If C, E and the resistances
arc not known with sufficient
accuracy, it is preferable to

sensitivity in

3 measure the practical current
> sensitivity and to calculate

8¢p from (75a).

(¢8) Calculation of the Sys-
tematic Error. The logarithmic
differential of scp is

Fig. 60
dup _dC  dB AR,  am, g
8cp C E R, Ry+9+R, Ry+g+R
dRy __ dm _
Ry+g9g+R, m
4o dB Ry Ry dR, g g
C E R, R, +9+ Ry Ry R;+9+R;y g
R, de_i@:__
Ry +9+Ry Ry m
_@__}.@__;.dR”( g+ R, >_ g L
C E R, ‘Ry+g9+ Ry Ry+9g+R;y g
R, de__t_iln_

Ry +9+R Ry m’
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The relative error is therefore
A4¢ cp _ ac’ n AE n AR’Z( g + R, )
8ep c’ E’ R'y ‘R'y3+¢ + R,
g’ i + R’ Va) n Am'
Ry+9 +Ry ¢  Ry+g +R; Ry m'
AE' is the error in the known value of E, which, if measured with

a voltmeter, will include the constructional plus the reading error on
the instrument.

& Ezample 16. “ Why is it advisable to shori-circuit the terminals
of a sensitive moving-coil instrument during transport?

“ The coil of a moving coil meter is wound on a non-conducting
former whose height and width are both 2 cm. It moves in a con-
stant field of 1200 lines per cm.? The moment of inertia of its moving
parts is 2-5 gm.-cm.2, and the control spring exerts a torque of 300
dyne-cm. per radian. Calculate (@) how many turns must be wound
on the coil to produce a deflection of 150° with a current of 10 mA.;
(b) the resistance of the coil to produce critical damping, all damping
being taken as electro-magnetic ” (University of London, Electr.
Measur., and Measur. Instruments, B.Sc. Final, 1948, paper 2, ques-
tion 7).

If the instrument is not short-circuited, the only damping is the
open-circuit damping, so that the moving part of the instrument will
oscillate when the instrument is moved. These oscillations might
become very violent, and damage might result. When shorted, the
conditions will be non-oscillatory and there is much less danger of
damage.

The surface of the coil is § = 2 X 2 = 4 cm.2, neglecting the thick-
ness of the wire.

The flux through the coil is @ = 4 X 1200 = 4800 lines per cm.?

From ta = Dol we have
__ 300 x 150 « 1
57-3 10
1000 x 10

converting 150° to radians by dividing by 57-3 and }§; amps into
e.m.c.g.8. units of current by dividing by 10.
The number of turns on the coil is
P, 0785 x 108

n=—=——"——=1635.
(/] 4800

Open-circuit damping being neglected, we have

D, = 0785 x 108 linkages ;
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D2 (07785 x 1092
VI 24300 X 25 x 10°

(dividing by 10° to get R in ohms).

Example 17. “ The combined resistance of the coil and springs
of a moving coil d.c. instrument is 1-1 ohms. The full-scale deflection
of 90° is caused by a current of 12:5 mA. It is desired to adjust this
movement so that its effective resistance measured at the terminals
of the shunt is 5 ohms, and the full-scale deflection is produced by
15 mA. What resistances are required? Calculate the periodic time
of this instrument on the assumption that no other form of electro-
magnetic damping is provided and air damping is negligible. The
constant of the control springs is 313 dyne-cm. per radian and the
moment of inertia of the movement 4-5 gm-cm.2. The equation of
motion for the instrument is given by

a0
dt?

Ro = 1120

2
+( ¢ ) 49 | b = i,
Rg+ R+ Rg/ dt

where Rg, R, and Rg are the movement resistance, series resistance
and shunt resistance respectively
(University of London, Electr. Measur.,
and Measur. Instruments, B.Sc. Final,
1947, paper 1, question 3).

One way of adjusting the movement
is to add a resistance R in series with
the moving coil and a shunt S across
the instrument (fig. 61).

Before adjustment, a current of 12-5
mA. produces full-scale deflection, and
this current is the coil current; after

Fig. 61 adjustment, as the coil itself is not
changed, we must have the same current
in the coil for full-scale deflection.

11 x 125 1375

1000

As after adjustment the total resistance of the instrument and its
shunt is 5 ohms, we have

. 5
5x16 (I'1 + R) 12.); 75 = 1375 + 12:5R,
1000 1000

75 — 13756 6125
125 125

The p.d. across the coil is V.

from which we get R = = 4:90.
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The current in S being 16 125 25 mA., we have
1000 1000 1000

_5x15 25 _ 75 _
1000 1000 25

The damping resistance is therefore R, = 1:1 4 4:9 4 30 = 36Q.
The flux linkages are

313 x 90
. 4
D, =14 — 57-3 _ 492 x 107 39356 x 10* Maxwell-turns.
I 12:5 12-5
1000 x 10

The letters G and U stand for @, and 7 in our notation.
The damping constant will be

Do (3935 x 1042 43 x 108

D="—= = =4-3;
Ry 36 x 10° 10?
2 : 3)2
we havetherefore Ja, = T D \/3_1_?3 @3 6-83
J 492 45 4 X (45)%
27 27
and the period is T = — = —— = 0-92 scc.
a, 683

Ezample 18. “ What is meant by critical damping in a measuring
instrument? Deduce from the equation of motion of a moving-coil
meter, an expression for the effective resistance of the coil necessary
for critical damping, taking all damping to be electromagnetic.

“The coil of a moving-coil meter has 100 turns, wound on a non-
conducting former, its width being 2 cm. and its height 3 cm. It
works in a constant field of 1170 lines per cm.? The moment of inertia
of the moving parts is 5 gm.-cm.?, and the control spring produces
a torque of 500 dyne-cm. per radian. Calculate (a) the current in the
coil to produce a deflection of 120°, and (b) the resistance of the coil
to produce critical damping, assuming all damping to be electro-
magnetic ” (University of London, Electr. Measur. and Measur.
Instruments, B.Sc. Final, 1946, paper 1, question 8).

The first part of the question can be answered from the text.

The surface of the coil is S =2 X 3 = 6 cm.2

The flux is @ = 1170 X 6 = 7020 Maxwells (or lines).

The flux linkages are @, = 7020 X 100 = 702000 Maxwell turns
(line turns).

1
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500 x 120

From ta = @,l, we get | = —————
57-3 x 702000

= 0-00149 e.m.c.g.8.
units of current or 0-0149 amps.
As all damping is electromagnetic, and as the former is nonconduc-
2 2
tive, we have Ro = ¢f__= 702000 = 4-930.
2vJTr  2v500 x b x 10°

Example 19. “ A moving coil reflecting galvanometer has a rect-
angular coil of 750 turns wound upon a former of non-conducting
material. The mean breadth of the coil is 1-3 cm. The effective depth
of the coil is 4-5 cm. and it is situated in a radial air-gap in which the
flux density is 1200 lines per cm.?

‘ The current sensitivity of the instrument is 0:001 micro-ampere per
millimetre at 1 metre, and the undamped period is 7 seconds. Calculate
the control torque of the suspension, the moment of inertia of the
coil and the total circuit resistance which just renders the instrument
dead beat. The effect of air damping can be neglected ” (University
of London Electr. Measur. and Measur. Instruments, B.Sc. Final,
1944, paper 1, question 4).

The question undoubtedly assumes that all damping, not only air
damping, on open circuit is negligible. The expression * just dead
beat >’ means critical conditions.

The coil surface is S = 1-3 X 4-5 = 5-85 cm.?

The flux is @ = 1200 X 5-85 = 7020 Maxwells.

The flux linkages @, = 7020 x 750 = 52:6 x 10°.

The theoretical current sensitivity is 8§ = 2—1— X 1_ 0-5 x 107
$p
radians per e.m.c.g.s. units of current.
. 5 .; 7
From (72a) we get Re — 220 % 10° X 2 5 XWX 7 _ 1180 x 1072
. 12
e.m.c.g.8. units of resistance or H—S-Qfg’lL = 11:80 x 103Q.

11-80 x 102 x 7

05 x 107)2m
1052 dyne-cm. per radian ; and from (73a) we have

J= 11-80 x 1012 x 73

47® X 025 x 1014

Example 20. * Describe briefly one modern type of d.c. poten-

tiometer suitable for precision measurements, and suggest a method

of using the potentiometer to calibrate a 300-volt d.c. voltmeter over

the whole range. Assuming that the resistance of the moving-coil
galvanometer used to indicate balance is proportional to the square

From (73) we get the torsion constant T =

= 1-3 gm./cm.?
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of the number of turns on the moving coil, deduce an expression for
the resistance of the galvanometer to give maximum sensitivity when
standardising the potentiometer with a standard cell of resistance
R ohms ” (University of London. Electr. Measur. and Measur. Instru-
ments, B.Sc. Final, 1943, paper 2, question 2).

The first part of the question can be answered by reference to the
text dealing with d.c. potentiometers.

WWWV=——

e
"@/ LR
|

Fig. 62

Consider fig. 62. Let AB be the potentiometer resistance, and a,a
that part of it which balances the standard cell of internal resistance
R. If i is the current in a,a, due to the unbalance only, then the
resultant e.m.f. in e, G, @, a, e is e, = e — ir, where 7 is the resistance
between a,a. We can look upon the circuit as having an e.m.f. e, of
resistance R in series with the galvanometer of resistance, say, gQ
per turn on the galvanometer coil. If the coil has » turns, the current

in the circuit will be ¢, = ‘L The torque on the coil is 7, =
+ gn?
ta = Oni, which can be written 7, = ®n S —
R + gn?

Differentiating with respect to n and equating to zero we get

dtl (R + gnz) ¢le - ¢n61 2gn —

dn (R + gn?)?

0

or: R 4 gn? = 2gn?, that is R = gn®. The torque, that is the
gensitivity, is maximum when the galvanometer resistance is equal
to the resistance of the standard cell.



132 ELECTRICAL MEASUREMENTS

MOVING-MAGNET (GALVANOMETERS

(7) The Tangent Galvanometer
The principle is shown in fig. 63.

A very small magnetic needle
F=] is placed in the centre of a
circular coil of radius r. The
suspension of raw silk (cocoon)
H is practically torsionless (torsion
constant equal to zero). The
plane of the coil is in the mag-
netic meridian, so that the
E=3  restoring torque is produced by
Fig. 63 the action of the carth’s field
on the ncedle.
When a current I passes through the coil, the needle will be deflected
due to the magnetic action of the coil.

The needle has to be small in order to have a magnetic field as

constant as possible in the space occupied by the needle.
Let the horizontal component of the earth’s field be H, and the
magnetic moment of the ncedle M ; if a current I circulates through
the coil of n turns, the field at the centre of the coil, that is the field

acting on the needle, and due to the coil, is F = 2—7—;——-“, and the field

. . o 27
per unit current in the coil is - = k, say.

Owing to the action of the earth’s field
¢ and the field of the coil, the needle will
deflect from its zero position AB to AC
o (fig. 64).
The torque on the needle due to the
7 current I is IkMcos.a, the torque due to
. " the earth’s field HMsin.a ; and when the
Fig. 64 needle reaches the equilibrium position
corresponding to I, we must have

IkMcos.a = HMsin.a, that is, HMtan.a = kMI.

As the deflections a are very small, we can write fan.a = a, so that

Ha kI

HMo =iMland I = —; a = —.
* k H

When the needle is moving (before taking up its position correspond-

ing to I) there will be a variation of flux through the coil, and therefore
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an induced current in it ; let this flux linkage variation be d®, for
a variation of the angle da, and let the induced current be ¢,, ¢, reacting
on the needle will produce a torque kM:;cos.a.

Again, a8 a is small, cos.a = 1, so that the torque is kMz;.

When the needle turns by da the work done is kM¢; da, and this work
has to be equal to the work of the electromagnetic forces i, d®,, so that

. da d¢o
kMI, da = i; d@o and kM — = — . . .7
1da = t; dPo an ik (78)

When a p.d. v is applied to the galvanometer coil of resistance R

and inductance L we have

dd,
—_— ;
dat
¢ is the instantancous current in the coil ; it is the sum of the injected

current I and the current ¢, induced in the coil by the movement of the
needle ; ¢ =1+ i,.

Ri+Lfi—z+
dt

% being small compared with the angular speed d—(:, we can neglect

the term —Lﬂ, and write
dt
Ri=p— 2 i=———~—°2 | . . . (79)

Putting in (79) the value of %° from (78), we get

it Loayde_ g Liyde
R R dt R dt
If the moment of inertia of the moving part relative to the suspension
axis is J and the damping constant D,, we have

d?a da .
J'a;“l— Dla + MHa = Mkl,
and substituting for ¢ from (79)
d2%a da v M2k2 da
J—4+D,—~—+MHa=Mk — ———— =
ap T Dig T e R R &

d%a M2k2\ da v
J—= D ——) — 4+ MHa = Mk — = MkI.
dt2+(1+ R)dt+ ¢ R

This equation is similar to (43a) of the permanent-magnet moving-
coil galvanometer, and the same solutions therefore apply.
In the arrangement of fig. 63, the field created by the coil is not
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I MIRROR

= =

In'vs

Fig. 65

and the current I for a deflection a is

I=+v125rH
—_—tan.
327n

a =

uniform over all the space
occupied by the needle; a
better arrangement is shown
in fig. 65.

Two coils of radius r each
are used ; the distance be-
tween the coils is exactly
equal to their radius r, and
the magnetic needle is in the
centre between the coils. The
field in the space occupied by
the needle is much more uni-
form than in fig. 63.

It can be shown that the
field in the centre o of fig. 65 is

V125 rHa
32mn

(8) The Thomson or Kelvin Galvanometer

In order to increase the sensitivity of the moving-magnet galvano-
meter, and to make it independent of the earth’s field, which is variable

coiLs

Fig. 66

-
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in time and space, the arrangement shown in fig. 66, designed by Lord
Kelvin, is used.

There are two magnets, or groups of magnets, disposed as shown ;
each group of magnets is placed in the centre between a pair of coils
(one pair of coils for one group of magnets alone can also be used).

If the two groups of magnets are identical, the torque due to the
earth’s field will act in opposite directions on each group, and the
resultant torque will be zero ; the system is then said to be astatic.

The permanent magnet NS provides the restoring torque, and by
changing the position of this magnet relative to the two groups of
magnetic needles, the sensitivity, as well as the zero position of the
galvanometer, can be altered.

The two groups of magnetic needles are stuck on discs of mica,
damping is provided by a larger piece of mica.

(9) The Broca Galvanometer

The arrangement is shown in fig. 67.

In order to diminish the inertia of the moving system, two thin
long magnetic needles are disposed as shown. The needles have
consequent poles ns, ns, as shown, in the centre between a pair of
coils. The earth’s field acting on NS, N,S; has no effect. The permanent
magnet N,S, acts on N,S,, providing the restoring torque, and by
changing the position of N,S, the sensitivity as well as the zero
position of the galvanometer can be altered.

Fig. 67



CHAPTER VI
THE FLUXMETER

TuE fluxmeter is a permanent-magnet moving-coil galvanometer,
and in its essential parts similar to an ordinary permanent-magnet
moving-coil galvanometer, except that its suspension has a torsion
constant equal to zero, and the damping due to currents induced in
the moving coil is very effective. The damping on open circuit is
negligible.

There are two types of fluxmeters.

(1) The Industrial Type (Fig. 68)
The moving part rests on a pivot or pivots ; the current is brought
to the coil by a very thin silver wire wound in a wide spiral, the torsion

< SPIRAL

NVOT‘ éxuk

CORE

Fig. 68

torque of which is practically zero. There are no restoring springs.
The instrument is provided with a pointer moving over a scale,
provided with a mirror. The scale is graded in Maxwell-turns.

(2) The Laboratory Type (Fig. 69)

The coil is suspended by a thread of raw silk, of torsion constant
zero. The current is brought to the coil by a silver wire wound in a
spiral in the same way as in the industrial type. A mirror is attached
to the suspension, and this mirror reflects light from a source on to
a scale in the manner of the ordinary reflecting galvanometer.

136
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A fluxmeter once deflected will not come
back to zero (or at least not for a fair time)
as there is no restoring torque ; a mechanical
arrangement is therefore provided by means
of which the pointer, or the spot, can be
brought back to zero. A measurement can
of course be made from any position of the
pointer or the spot, because deflection can be
measured from any part on the scale.

(8) Theory of the Fluxmeter

The ballistic galvanometer is suitable for
short time impulses, but for impulses last-
ing an appreciable time—a quarter of a
second to several seconds—it is of course
quite unsuitable. The fluxmeter, however,
owing to the absence of a controlling torque
and strong damping by induced -currents,
can measure long impulses with a high
degree of precision.

Fig. 70
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The mechanical equation of the fluxmeter is

Jzt-;-}- —-._(Doz . . . . . . (80)

J is the inertia, D, the damping constant on open circuit, and @, the
flux linkages of the fluxmeter coil due to the permanent magnet
within the poles of which the coil is placed. The term ta does not
appear in the equation, because 7 is zero.

Let us produce a discharge (impulse) in the fluxmeter by means of
a change of flux in a coil connected to the fluxmeter, the arrangement
being shown in fig. 70.

The change of flux A®, can be produced by moving a magnet near
the coil. Let the fluxmeter resistance and inductance be r and ! and
that of the connected coil R and L, so that we can write :

. di da dP
L+nZ i, %
R+ +(L+1D) 70 + e (80a)

As soon as the external field starts changing, the fluxmeter starts
moving. It will stop practically instantaneously when the change
stops, because of its very effective damping by induced currents.
Integrating (80a) between the time ¢ =-Opbeginning of the change of
flux, to ¢ = ¢, end of the change, we get

(R +r)/:) idt 4 (L + z)/:)di+/;¢°§’£ ftodd%-

The term (L 4 1) / tO di is zero because the current ¢ is zero at t = O,
and at ¢ = ¢ (assuming that the fluxmeter stops instantaneously when
the change stops); the term (R + ) [ i) tdt = (R + r) g, where ¢ is the
quantity of electricity which passed through the fluxmeter, so that

R+1rg+Do(a—ao)= 4D, . . . . (81)

(a — ao) is the deflection of the pointer or the spot from its position
acatt=0,toaatt ==t
A¢1 _— ¢o (a bl ao)
. R+4r )
We see that, under the assumptions made, L and ! do not have to

be taken into account. Integrating (80) between ¢t = O and ¢ = ¢, we
have

From (81) we get ¢ = (82)
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1 da&.dio ¢ idt = da -+ 'Dl (a hd ao) = ¢oq
0 dt o

As -Zd_t‘ = Oatt = Oandatt =t the term contamlng J becomes zero,

and D, (a — ao) = Do g . . . . . . (82a)
Substituting for ¢ from (82)

D, (a — ag) = @ [ A2 = Pola — aal],

R4r
a)[Dl(R—{—r +¢o] ¢°A—¢—~land
R+r R+r
D, (R D,2
A0, = (a — aq) [P fp'” ] (83)

The instrument deflection is thercfore a measure of the change of
flux produced.
The open-circuit damping can in a good fluxmeter be neglected, so

that if R + r is not too great the term D, (R 4 r) is negligible and
(83) becomes

AP, = Do (@ — ao) . . . . . . (84)

As @, is constant (with usual deflections), the instrument deflection
gives directly the change of flux produced.

a and a, are in radians. In a fluxmeter provided with scale and
pointer, the scale is graded in Maxwell-turns, and if one division
corresponds to k linkages (84) becomes

AP, = (m — mo) k . . . . . . (84a)

where m and m, are the divisions shown by the pointer at the time
t=0andt=1t.

It follows from 82 that the quantity of electricity ¢, which passed
through the fluxmeter, is very stall; in fact, if D, is negligible, we
get from (82a) @, q = O; that is, the quantity of electricity passed
through the fluxmeter is zero. ’

There is nothing surprising in this, for imagine a d.c. motor with
no losses whatever and negligible inertia. As soon as an e.m.f. is
applied to this motor it will immediately attain its normal speed, and
as there are no losses, there will be no current flowing, the back e.m.f.

d
D, -d—;'l exactly balancing the applied e.m.f.

If (84) is to be true, the fluxmeter has to comply with the following
conditions :
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(¢) Having no restoring torque.

(b) Having a negligible open-circuit damping.

(c) Having a very strong damping by induced currents, the total
resistance of the fluxmeter circuit (fluxmeter coil plus external circuit)
should normally not exceed 20 to 30 ohms.

(d) The fluxmeter should follow all changes of impulse instant-
aneously ; its inertia should therefore be small.

As regards condition (d), it is evident that the fluxmeter cannot
start and stop instantaneously, and it cannot immediately respond to
all changes in the impulse received. The fluxmeter is used for measuring
impulses such as the charge and discharge of a condenser, reversal or
change of a magnetic field. It is assumed that what is lost by acceler-
ating the fluxmeter at the beginning of the impulse is regained when
the acceleration is negative and the moving part of the fluxmeter
comes to rest.

Let us supply to the fluxmeter a small steady e.m.f. E, let the total
fluxmeter circuit resistance be R; and its total inductance L,. Let
@, be the flux linkages of the moving coil.

Neglecting the open circuit damping, we can write :

d2a

J""‘ = ¢0 1:,
and writing Tg = w = angular speed of the coil, we get
dw . Jdo di  J d*
J_=¢ 1, = — — ) — = — ——, . . 85
dt ° Dodt’ dt B, di? (89)
We also have
R1i+Ll%—|—¢ow=E . . . . . (86)
Combining (85) and (86), we get :
2
Rydo Lnd do g
D, dt D, dt?
d’w dw
LJ)— 4+ (R ) —+ P}%hw=EP, . . . (87
LD T2+ R DT+ Prow = Ed, (87)
o . do . d*
When the fluxmeter coil is moving at constant speed w, % and m
t

are both zero, so that v = w. =q>E is a particular solution of (87).
[}

During the positive acceleration period, the solution of (87) is added

to the solution of
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d2w

(L) =2+ (Ry J) dt+q§°2w=0 .. . (88
The solutlon of (87) is

=0+ AP L BLP2E T (88
where

__RyJ (R, J)? <p _ Ry \/
Pr= "5 T TN T, 9 2L1 TV L1
pm - Bl [RITTOE R [RE0S
2 2L, J 4(L,J)¢ L,J 2L, 4L,2 L,J

The constants in the fluxmeter circuit are such that the conditions
are non-oscillatory ; that is, we have

Ri2J2 _ @52 Rz D
>——; = >
4aL2J2 " L, 3 4L, J

At the time t = O we havew:Oand%: 0, so that
O=we+A+B; A= —we—B; B=—wc— A (89)

Differentiating (88a), we get : ((Ii—? = p, AP 1t 1 p, B t, which
for t = O becomes
O=pA+p,B; ppA=—p,B. . . . (90)
Combining (89) and (90), we have

= — Wg, B=— W¢
P1— P2 Py — P2
(88a) can therefore be written :
P2 Pyt Py 2
0= —E et — —— wee . .91
tri—p Pr—Ps ®D

When the external e.m.f. E ceases to act, we have
d%w dw
L,J—+ R, J—+D%w=0
1 i + R, at + oW
the solution of which is

w=AF" LB L L L L (92

Counting the time from the instant the e.m.f. E ceases, we shall
have at t = O ; w = we and
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wc=A1+Bl;A1=wc—Bl;Bl=a)c—A1 « . (93)
Differentiating (92), we get
® dw ¢ ¢
—="N Axepl + P, Blepz s
dt
which for ¢t = O becomes
0=p, A+ By Ay=—p, B, . . . (99
Combining (93) with (94) we have
P2 D1
Al = — (——2— Wg B, = Wc,
! (pl—pz) e (pl—pa) ¢
so that (92) can be written
Pe j 2% P1 Pt
= — —=2% _ wee —_— wce 95
@ Pl“Pawc +p1‘7’2 ¢ (95)

Considering (91) and (95), we see that what is lost in accelerating
the fluxmeter is regained when the acceleration becomes negative
and the fluxmeter coil stops moving.

When the time during which the e.m.f. is applied is very small, or"
when the impulse given to the fluxmeter is highly irregular, then,
owing to the inductance of the fluxmeter circuit, the rate of increase
and decrease of the fluxmeter current will affect the result. The loss
in accelerating the fluxmeter will not be balanced by the gain when
the acceleration is negative, so that, there is a lower limit, depending
on the circuit constants, below which the fluxmeter is not true.

Again, the time of the impulse, due to the friction in the fluxmeter
(open circuit damping), should not be too long. It may happen that the
impulse is too weak (charge and discharge of a condenser through a
high enough resistance), to move the fluxmeter, because of its friction.
The error caused by friction is especially important when the impulse
is irregular (resulting in stopping and producing violent changes in
the angular speed during the impulse).

It has to be remembered that even if the impulse is regular and
within the right time limits, we still have to calibrate and use the
fluxmeter, in such conditions that we may neglect the open-circuit
damping.

(4) The Shunted Fluxmeter

The arrangement is shown in fig. 71.

The fluxmeter F of resistance r and inductance [ is shunted by the
resistance R, ; L and R are the resistance and inductance of the coil
through which a change of flux A, is produced. We can write
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R(a:+il)+Ld(i+'1’ + R, i, _d;:l
l
ri 4 dz+ da

o_.

&
=R, ¢
r 1 %1

. o— |

I
)
, I!|

Fig. 71

Integrating between ¢ = O beginning of change of flux to ¢t =¢
end of change, we have

R/ (t+zl)dt+Lfdt+zl +R/ iy dt = fd¢1~A®1

/tdt—f—t/ dz+¢o(a—ao)—th1dt

The terms containing L and ! are equal to zero, and writing

t 41 dt_—Q;fidt—— ;fidt— , we get
f( 1) 1 '8 q g
and as

o =
RQ+Ryqy = 4D,; r¢ + Do (a — ao) = Ry ¢4

(98)
Q=¢+9¢ t1(R+ Ry +Rg= 49,

(97)
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multiplying (®6) by R + R; and (97) by Ry; (R + Ry) rq -+
Do (2 — o) (Rest- Ry) =R, ¢, (R + Ry)

RR,;q¢ — Ry 49, = — R, ¢; (R + R)).

Adding, we@get (R + Ry)rg + Po(a — ao) (R+R})) + RR; ¢ =
R, 49,.

Rr+ R;r+ RR, R,
( ROE )+¢o(a—ao)—R+R1A¢1,or
r(R+Ry) ., RR, R,

Do (a — ag) =
[R+R, +R+R1]+ ola—ao)=p= 5. 4%

The quantity in brackets is the resistance of the fluxmeter plus the
resistance R, in shunt with R, relative to the fluxmeter.

RR,

Writing 7 - R E, = Ry, we g:
qRr + Do (a — ao) = i{fﬁ‘l 49, D . . (98)
As we have D (¢ — ao) = Do q, theng = ——ia—:—gﬂ)—, substituting
this value of g in (98), we have °
DRy R
—a — ao) + Do (a — ao) = AD 1.
®, ¢ ° ° 'R+ R,
DR: + @2 R,
— = AD,.
(a ao) ( ¢0 ) R + Rl 1
2
Therefore AD, = (a — do) (DRT + 2o ) R+ R,
] R,
As we can neglect DR, we have approximately
@—ag) ot Br_ 4, . (98a)

1
while, when the fluxmeter was not shunted, we had (a — ao) Po = 49D,.

(5) Calibration of the Fluxmeter and Determination of the Limit of the
Fluxmeter Circuit Resistance

Two arrangements for the purpose are shown in figs. 72 and 73.

Fig. 72. The ring of non-magnetic material, of section S cm.? and
mean diameter D c¢m., has a uniform primary winding of N, turns.
The current is brought to the primary from the source E through the
ammeter A, rheostat RA reversing switch k, and switch k,. The
secondary winding on the ring is of N, turns and resistance R ; it is
connected to the fluxmeter F, of resistance 7, through the variable
resistance R;.
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Fig. 72

When the current I, flows through the primary, the magneto-motive

force is HI = ﬁllolh’ where | = #D.
The flux through the ring is therefore @ = HS = g—l—l\g—;h -8
Making or breaking k,, we get a change of flux linkages through the
secondary (N, @) = éﬂ—i-blll——s—Nﬁ = AD,.

We know that if the resistance of the fluxmeter circuit is not too
great, we shall have

47N;I,SN,
100

or when starting from zero of the fluxmeter scale (mo = O).

47 N;I,SN,
10!

where k is a constant and equal to the number of Maxwell turns per
division of the fluxmeter scale.

Fig. 73. Here we use a standard mutual inductance M, the primary
and secondary of which are connected as shown. The resistance of the
secondary is R.

The flux linkages through the secondary caused by unit current in
the primary are equal to M, and as M is given in Henrys, these flux
linkages will be M X 10° in the e.m.c.g.s. system, so that when a

K

A¢1 =

=k(m_m0))

A¢l= =km
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current I is established or stopped by means of k, in the primary the

secondary ﬂu§ linkages are M x 10° X —f-(l—) = MI, x 108 where I, is

. MI, 108
in amps. We then have k = 40, M1,

. m—moe m— Mo
om0,k =M% 99

, or, when starting

When determining k by the arrangements shown, R should be zero.

/K3

Fig. 73

The fluxmeter has to be calibrated over the whole scale on both
sides of the zero. After the first making of k, (I, established, deflection
arrived at m), the fluxmeter should not be brought to zero but dis-
connected by opening k3. Then I, is interrupted by opening k;. Then
k4 is closed, and the current again established, giving m, as the new
deflection. For the same current in the primary we should find that
m,; = m. Having checked the whole of the scale, reverse the direction
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of I, by means of k,, and repeat the experiment over the other half
of the scale.
The resistance in the fluxmeter circuit should not exceed 20 to 30 ohms.

CALCULATION OF THE SYSTEMATIO ERROR. It is evident that the
arrangement of fig. 73 is preferable to that of fig. 72, because its error
should be smaller.

The logarithmic differential of (99) is

dk’ _dM’  dI, dm'

¥OM L w

’

and the relative error

Allc =AM +AI +Am.
k M I m’

Ishould be measured by a potentiometer, or at least by a substandard
ammeter.

AM' is the constructional error on M, AI’;, the constructional
plus the reading error on 1,, and Am’ the reading error on the
fluxmeter.

To find the value of the resistance R + R; beyond which the
calibration will not hold, we use the arrangement of fig. 73 or 72;
with a fixed current, say, I,, giving when established a deflection m,.
We start with R; = O and increase it gradually, establishing the
current I for each value of R,. It will be found that above a certain
value of R, say, Ry;, the deflection n will decrease. The limit of the
fluxmeter circuit resistance, beyond which the instrument should not
be used in subsequent applications, is Ry, = Ry, + 7.

(6) Charge and Discharge of a Condenser through the Fluxmeter :
Measurement of a Quantity of Electricity or of a Capacity

The arrangement is shown in fig. 74.

F is the fluxmeter of resistance r and inductance ! ; F is connected
across R, ; R; + r should not exceed 20 to 30 ohms ; E is the source
of emf. E; C a standard condenser; and R a variable resistance,
high enough appreciably to change by its variation the time of charge
or discharge of C. i

Making 1-2, the condenser is charging ; making 1-3, it is discharging.
Each discharge will produce a deflection away from zero and each
charge bring the pointer back to the zero position. When a charge or
discharge starts, the fluxmeter begins to move; it stops when the
charge or discharge finishes.

da

With the notations of fig. 74, we have r1 + l% + @D, 7

= Rl (I—i):
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and integrating between the time ¢ = O, beginning of charge or dis-
charge, and ¢ = ¢, end of charge or discharge,

/t sl g oo eor, q—ia
e[ iat / i+f da_ f — 3y d.
Y TR T i 1

The term containing ! being zero, we get

rq+¢0(a— do) =R1Q-—qu; q)o(a‘— ao) =R1Q——Q(R1+1’),
where Q is the total charge of the condenser and ¢ the charge passed
through the fluxmeter.

||
I

Fig. 74

We have seen, however, that in a good fluxmeter we have ¢ = O
therefore we can write @, (a — ao) = R,Q; Q = E‘L(ilﬁ:-g‘)—)—; or in
terms of the fluxmeter scale constant (the number of iiaxweﬂ-tums
k (m — mo)

R,
But Q = CE, so that CE = MI—;—_M, and as C is in farads,
1
k(m — m,)

R, 108

We could therefore measure a charge Q, a capacity C, or an e.m.f. E,
with the aid of the fluxmeter.

per division) Q =

R in ohms, and E in volts, CE =
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(7) Determination of the Effect of the Time of Charge or Discharge, or
the Effect of Friction in the Fluxmeter

With the arrangement of fig. 74, starting from a small value of R,
the condenser is charged and discharged while R is gradually increased.
At a certain value of R, say, Ry,, the deflection will start decreasing.

If the condenser is not leaky this diminishing of the deflection is
due mainly to D, (R, + 7).

If the condenser is discharging slowly, the impulse at the end of
charge or discharge is too small to overcome the instrument friction.
In fact, some energy is lost in 72 or heating the fluxmeter coil, but 3
being small this loss of energy is obviously negligible.

Having found R;,, we can calculate the time constant C (R, + R;)
for which the deflection starts altering. The experiment should be
repeated for different values of C, so that in the subsequent use of
the fluxmeter the time constant will be known for condensers of
varying capacities.

Note that when the condenser is leaky, leakage will to a certain
extent influence m, so that only very good condensers ought to be
used for the check above.

R, should not be greater than the value Ry, found in the calibra-
tion experiment.
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(8) The Fluxmeter Used as a Clock

If we apply to the fluxmeter of resistance r and inductance I a con-
stant e.m.f. E, for a time {, we can write

: ¢ 4
ri+lﬂ+d>oi?=Eandrf idt-{-lf di+¢o(a-—-ao)=E/ dt.
dt dt 0 0 0

Or rq + D¢ (@ — ao) = Et; and as ¢ = O, we get
Do (a — ao) = k (m — mo) = Et.

If we know E, the fluxmeter deflection will give us the time ¢.

An arrangement whereby the time during which the contacts of a
relay remain closed can be measured is shown in fig. 75.

1 and 2 are the relay contacts. The p.d. across R, should not exceed
1 X 1078 to 5 x 104 volts, dependent on the fluxmeter used. The
resistance R, plus the fluxmeter resistance should not exceed Ry
(about 20 to 30 ohms), and R should be high enough to give the desired
p.d. across R; with E between 1 to 2 volts.

The current in the fluxmeter being always zero, under the assump-
tions of the fluxmeter theory we can write

ER,
R + R,

= (R +Ry)i; ER,= (R + Ry Ryi; iRy =e=

As soon as the relay contacts close, the fluxmeter starts moving.
It stops when the rclay contacts open, and we have

_ k(m —my)
R,E

x 10 -8 geconds.

jE:mwnple 21. “ Derive an expression in terms of the angular
movement of the suspended coil of a fluxmeter, for the change of
magnetic flux through a search coil of T turns connected to the meter.
The total resistance of the whole circuit, moving coil and search coil
is R, and the total self inductance L. The moving coil consists of N
turns each of area A suspended in a uniform field B ”” (University of
London, Electr. Measur. and Measur. Instruments, B.Sc. Final, 1947,
paper 1, question 1).

We have @, = ANB ; the total change of flux through the search
coil is AP, = DT, so that we can write :

Rz+L +A —————T—T; integrating,

Rq+ANB(a—ao)=TA¢= 49, . . . (100)
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D, (a—ao)

We have also D, (a — = ANBg; ¢ =
1(a — ao) q; 9 ANB

; and sub-
stituting for ¢ in (100),

RD, (a — a

—31(—1\[73——&)+ANB(a——ao) — AT = AD,;

— ao) [R'D1 + (ANB)® ] T AP = AD,, therefore

AP — (a — ao) [RDI—{-(ANB)z].
T ANB

Example 22. ‘ Describe the construction of a fluxmeter and find
the relation between the deflection and the change of flux-linkages
in the coil to which the fluxmeter is connected.

“An iron ring having a mean diameter of 25 cm. and a cross-
sectional area of 3 cm.2 has a primary winding of 150 turns. The
secondary winding of 50 turns is connected to a fluxmeter having a
constant of 10,000 Maxwecll-turns per division. A deflection of 30

Fig. 76

divisions is obtained when a current of 15 amperes is reversed in the
primary. Calculate the permeability of the iron. Is it essential that
the windings should be wound uniformly around the ring? " (Univer-
sity of London, Electr. Measur. and Measur. Instruments, B.Sc. Final,
1946, Internal, paper 2, question 2).
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The first part of the question can be answered by reference to the
text.

The arrangement for the test as described in the question is shown
in fig. 76.

The total change in flux linkages is 4%, = 10000 x 30 = 300000
Maxwell-turns. As 4@, = 28BN, because the current in the primary

is reversed we have B = _ 300000 _ 1000 Gauss.
2 x50 %3
The magnetomotive force in the ring is given by
HI = 4 NI and H = 4m X150 X 15 _ 3-6 oersted.
0 10 X = x 25
The permeability of the ring is therefore
n= B _1000_ 278.
H 3-6

It is essential that N, should be wound uniformly round the ring,
because then there is no leakage between any two points of the ring
and all the flux is the same in all the sections of the ring. It is not
essential that N, should be wound uniformly, because if the flux is
the same in all sections of the ring to begin with, we start with an
induction 4 B and finish with an induction — B, so that the answer
must be correct. The fluxmeter current, being negligible, cannot
affect the flux in the ring.

Example 23. ““ Derive, from the equation of motion, an expres-
sion for the sensitivity of a fluxmeter.

“ Explain, with the aid of the result obtained, why for low values
of the search coil resistance the sensitivity of the instrument is sub-
stantially independent of the value of this resistance ”’ (University of
London, Electr. Measur. and Measur. Instruments, B.Sc. Final, 1944,
Internal. paper 2, question 8).

As we have (a — ao) [D; (R 4 7) + D] = 4DPD, (from (83)).
The sensitivity will be given by

a — do . ¢o 1

2~

AD, D, (R+7)+ P2 &

because, D, being small, if r and R are small, the term D, (R 4 r)
can be neglected, and the sensitivity is independent of R and inversely
proportional to @,.

This is understandable, because the smaller the number of flux
linkages of the moving coil, the greater will be the deflection for a
given impulsp. As in a d.c. motor, the smaller the excitation provided
the higher the speed of the motor.




CHAPTER VII
PERMANENT-MAGNET MOVING-COIL AMMETERS AND VOLTMETERS

THE arrangement of the essential parts of an ammeter or voltmeter
is shown in fig. 46.

(1) Ammeters

An ammeter being connected in series in the circuit where the
current is measured should produce as small a potential drop as
possible ; its resistance ought therefore to be small.

The current sensitivity of a galvanometer is, as we have seen,

HS»
I T T’

(1_ ¢0 o

H being the field in the airgap where the coil is located, S the coil
section, and n the number of coil turns.
The coil resistance

R = Qén . . . . . . . . (1o1)

s is the area of the wire the coil is made of, I the average length
of one turn, and g the resistivity.
The volume of the coil, without insulation, will be

v = nls . . . . . . . . (102)

2]2
Combining (101) and (102), we have R = nt e

Therefore, for a given volume and dimensions of the coil, that is,
for a given airgap, and also for a given flux in the airgap, the sensi-
tivity increases as the number of turns on the coil, while the resist-
ance increases as the square of the number of turns. It follows that
a galvanometer used as an ammeter ought to have a fairly high resist-
ance. Naturally the coil has to be made of a metal of good conduc-
tivity (copper), because the number of turns will be greater for a given
resistance than with a metal of low conductivity.

(a) THE PRACTICAL SENSITIVITY OF AN AMMETER. This will be defined
ag the current in amps necessary to deflect the pointer by one scale
division.

153
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Examples of galvanometers used as ammeters.

| e on | Lt | i
100 0-00002 800 0-016 2 x 1077
100 0-00005 160 0-008 5 x 10-7
100 0-000075 100 1 0-0075 | 7-5 x 1077
100 0-001 ! 10 1 0-01 1x 108
100 005 | 1 005 | 5x107

In order to measure currents higher than the coil can carry and
also not to introduce too high a potential drop in the circuit, shunts
or resistances connected in parallel with the instrument are used.

() AMMETER SHUNTS.

Shunts are four-terminal low resistances,

usually made of strip manganin (849, copper, 4%, nickel, 12%, man-
ganese) terminating in heavy copper blocks, as shown in fig. 77. The

o

T T T

1 MANGAN'Z

Fig. 77

COPPE

current is brought in through the terminals a,a; the instrument is
connected to b,b. The total current to be measured divides into ¢
and I — ¢, the major part of the current flowing through the shunt.



AMMETERS AND VOLTMETERS 165

The shunt, if made of copper, would be too bulky. The reason it
is made of manganin is that this alloy has an extremely small tem-
perature coefficient (about 2 X 10~5 per °C), and its thermal e.m.f.
with copper is only 1 X 1078 volt per °C. The resistivity of manganin
is about 42 yohm at 18°C.

Consider fig. 78. Let the instrument resistance be r and that of
the shunt S. With the notation of the diagram we have

S(I—i)=ri; SI=i(r+S);1=r—S'_S-i.
The ratio of the total current I to the current in the instrument is
I_r48_,
) S
m is called the multiplying factor of the shunt.
AsI—. 1'=m—l=r—,wegetS(m——l)=r,S= U
) S m— 1
A shunt should indicate the total
current I for full-scale deflection of the . @l
instrument, the p.d. across the shunt
for full-scale deflection of the instru- ' .
ment, or the resistance of the instrument VYV -
with the shunt in parallel. Fig. 78

Example 24. The resistance of an
ammeter coil, springs and leads to shunt, is 0-8 ohm ; the coil current
for total scale deflection is 50 milli-amperes. What is the resistance
and the particulars given on the shunt for a circuit current of 10
amps?
The p.d. across the shunt for full-scale deflection (marked on the

shunt) ism = 004 v.
1000

Or the indication on the shunt can be the total resistance of shunt

and instrument, which is Oi?; = 0-0040.
The other indication on the shunt will be 10 amps.

The shunt multiplying power is m = I =10 =+ 0 200 ; the
i 1000
r

m—1_ 200—1

It is evident that the connecting wires, or leads, from shunt to

shunt resistance is therefore S = = 0-004024.
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instrument, are calibrated with the instrument and should not generally
be interchanged with those belonging to other instruments.

(¢) AMMETERS OF SEVERAL SENSITIVITIES. When several sensitivities
are required, for example full-scale deflections of 1, 10, 100 amps,
several shunts are used ; one for each sensitivity. Let the circuit
currents for full-scale deflection be I,, I,, I, and ¢ the current in the
ammeter coil ; the multiplying powers of the required shunts will be

I r_|_Sl=m I, r+82=m Li___r—%—Sa_

-1 22
. 1 -
1

. .‘ 2y P - 3
S, ) S, i S,

Considering the ratios of the multiplying powers

2

Zn‘l_:I_l_zr—}—Sl;r%—Sz:r—{—SlX&

my I, S, =S, r4+8, S,
ﬁz__zz_r—}-sz;r-}-ss_r-}-szxg
my; I S. S, r+8S; N,

we see that these ratios depend on the ammeter resistance r.

(d) THE UNIVERSAL SHUNT.
r The ratios of the multiplying
powers can be made indepen-
dent of r by the use of the
universal shunt, the arrange-
S ment of which is shown in
fig. 79.
o \ iy P 4 The whole shunt is composed
st of several resistances S;, S,,
Ss 84 . . . When the sliding
4 contact Sl, is at 1, the total
circuit current for full-scale
deflection is, say, I,; when at
2, it is I,; when at 3, Ij;
when at 4, I,.
With the sliding contact at
1 the resistance in series with
Fig. 79 ris S, + S; + S, and r + S,
+ S; + 84 is shunted by S,
8o that the multiplying power of the shunt is

L Se+S3+8,+7+(8)
i S, '

%2

pasne 1V)

my =
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When the sliding contact is at 2, the resistance in series with r is
Sg + S, and S; 4 84 + 7 is shunted by S; 4 S,, so that

I _ Si+8itr+(8:+8y)

my, = —
1 S;+ 8,

Similarly, at 3 we have

m _—_.l.: Se+7+ (81 + 8,1+ 8,)

2T Si+ 8,4+ 8,
And at 4

m __!__ r 4+ (S; +8;4+8; 4 8))

== .

i S;+8,+8; +8,
The ratios of the multiplying powers are

my_ Sp+85+844+r+(Sy) . Ss+8Ss+74(5;+8,) =Sx+Sz

my S, ‘ S, + S, S,
My _$1+8,+8;,. my 8 4+8,+8,+8,
ms S; + 8, my S;+8;+ 8,

all these ratios being independent of r.

(¢) CorRECTION OF TEMPERATURE EFFECT. The resistance of a con-
ductor is given at some standard temperature, say, 0°C, or 20°C, or
some other temperature. Over moderate ranges of temperature, say
between 0°C and 100°C, the resistance is directly proportional to the
change of temperature. If the resistance of the conductor is Ro at
0°C, it will be, at a temperature ¢ (within the limited range indicated)

R, = Ro [l + aof] P 4 (1))

@, is the resistance temperature coefficient of the given conductor,
referred to the temperature 0°C.

If the reference temperature is not zero, but some other tempera-
ture, say, t;, then the resistance of the conductor at the temperature
t is Ry = Ry, [1 + agy (¢ — ¢;)], where ayy is the temperature coeffi-
cient of resistance of the given conductor referred to the temperature ¢,.
at, is not the same as ao, and is given by

Ro aoRo . 1

Aty = o — 1 .
— 4t
QAo + 1

Ry;  Ro(l+ aoty)

(103) takes no account of the linear expansion (change of dimen-
sions of the conductor due to the change in temperature). If g, is the
resistivity of a conductor at the temperature ¢;, then its resistivity
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at the temperature ¢ will be, when taking into account the linear
expansion, g = gy [1 + By (t —t;)]. B, is the temperature co-
efficient at constant mass.

We have f;; = a;; + ¥ ; y being the coefficient of linear expansion,
but as y is generally very small compared with a;, we have f;; = ay, ;
therefore (103) is very nearly true.

For industrial copper ao = 42-7 x 1074, while y = 17 x 1074

As ay, for copper at 15°C, which is an average laboratory tempera-
ture, is about 0-004, if the temperature rises, say, by 1°C, the increase
in resistance in the coil of an ammeter will be

Rig — Rys = Ryg [1 + 0-004] — Ry = 0-004R44,
that is, 0-4%, per °C, the current in the coil will also vary, and decrease
by 0-4%, °C (neglecting the temperature coefficient of the manganin
shunt). This variation being far too great for laboratory instruments,
special arrangements have to be made in order to lessen this variation.

(f) ARRANGEMENTS FOR TEMPERATURE EFFECT COoRRECTION. The
first arrangement is shown in fig. 80.

'@'\N@w———

S

— AN —o
Fig. 80

A resistance R, of manganin is connected in series with the ammeter
coil of resistance r (coil and springs), the two being connected across
the shunt S.

Let R, = kr, where k is a constant (at the normal temperature).
Neglecting the temperature coefficient of magnanin, for a tempera-
ture rise of 1°C from 15°C, the increase in resistance of R, + r will
be kr 4 1004 r — r — kr = 0-004r and the percentage increase will

0-004r 04
e—r+kr X 100———1+kA,.

If, say, r = R, ; that is, ¥ =1; the percentage increase per °C

b

will be —Q;- = 0-29, instead of 0-4%, when R, is not present.

The resistance R, is sometimes called the swamping resistance ;
k is very often equal to 1, the increase of resistance is then one-half
of what it would be without R,. We could get a better correction if
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k were greater than 1, but then for the same ammeter sensitivity
(same r and same number of turns on the coil), the p.d. across the
instrument would be too great.

The arrangement of fig. 80 not being good enough for a precision
ammeter, & better arrangement is shown in fig. 81.

MANGANIN c
COPPER
Ly s
F——AAAAAAA
kl
é
Fig. 81

R,, R, and 8 are of manganin ; r is the resistance of the ammeter
woil ; R, is of copper.

If the temperature varies, increasing, for example, then the
resistance of 7 and R, increase ; the currents ¢ and ¢, decrease ; the
p.d. across R decreases; and as the drop across S is practically
constant, the p.d. across 7 -+ R, increases ; there is therefore a certain
compensation for the increase in resistance.

To facilitate the calculation, assume r =R;, R, = R =2r at
15°C; then at this temperature the resistance across a,a (fig. 81)

will be ;’-‘% = r and the resistance across a, ¢ is r 4+ 2r = 3r.
r r

The current in R is § 4 i; = I —>—andi =&, = T —>

S 4+ 3r 2(S + 37)

Suppose now that the temperature has risen by 1°C; the coil
resistance becomes 7, = 10047 ; R, becomes Ryp, = 2:008r; while
R,, R and S remain the same if we neglect the temperature coeffi-
cient of manganin.
2:004r x 2-008r

2:004r 4 2:008r
resistance across a,c becomes 2r 4 1-:003r = 3-003r.

The currents 4 and 7, now become 7, and 7,5, and assuming that the
total current I has not changed, we have

The resistance across a,z is now = 1-Q03r, the
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. . S . . 2-:008r
i tin =] —————— ana ip = X ———— =
nt i = Lo esy o = (i ind) X o 00k
IS % 2-008r
S + 3:003r ~ 4-012r
The ratio of the altered current i, to the current ¢ is therefore

in _ IS x2008r . IS _ 4:016S 4 12:048r

i (S+3003r) x 40127 ~ 2(S + 3r) 40128 + 120487
If we had a multiplying power of the shunt
I r

m = = = 10, that is, S = T
1 m—1 9

we have then
ﬁ,_ 4016 4 9 x 12:048  112-448
) 4012 + 9 x 12-048 112-444

the change in current is therefore 0-00359, per °C, which is quite
negligible if the temperature changes are normal.

= 1-000035 ;

(2) Voltmeters

(a) PRACTICAL SENSITIVITY OF A VOLTMETER. We define the practical
sensitivity of the voltmeter as the voltage across the instrument
required to deflect the pointer by one division of the scale.

We have seen that the theoretical volt sensitivity is

a_ o HSe andasR:—l@,weg tg—@§=l—{—s—><£—.

v IR Rz v Tnlp T lp
The sensitivity is proportional to s and inversely proportional to
I and p whilst being of course proportional to n. A galvanometer
used as a voltmeter has therefore to have a small resistance, and as
a voltmeter is connected across a circuit (or part of a circuit), the
voltage of which is to be measured, the voltmeter has to have a high
resistance in order to take a small current. The voltmeter will there-
fore be a galvanometer of small resistance in series with a high resistance.

(b) DEFINITION OF THE QUALITY OF A VOLTMETER WITH RESPECT
10 THE CURRENT TAKEN. The sensitivity, as well as the current taken
and the power absorbed by the voltmeter will depend on its resist-
ance, given in ohms per volt. The higher this number, the better
the voltmeter. The ohms per volt vary from 10 to 1000 and beyond.

Ezxample 25. A voltmeter of 1000 ohms per volt has & maximum
scale indication of 150 volts. What is its total resistance?
The total resistance of the voltmeter is 160 x 1000 = 150000£2.
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(c) VOLTMETERS OF SEVERAL SENSITIVITIES. An arrangement of a
voltmeter of three sensitivities is shown in fig. 82.

The terminals are 0-1, 0-2, and 0-3. Let the resistance of the coil
and springs be 10 ohms and the current for maximum deflection
1 milliamp.

=00

g ; 149900 1Ssooon 1200000

o 0 12 b
Fig. 82

The p.d. across the movement for full scale deflection is

10 x 0001 = 001 v.

The ohms per volt are therefore

101 = 1000£2.

Assume that the instrument has to have a full-scale deflection of

15 volts at the terminals 0-1,
30 volts at the terminals 0-2,
150 volts at the terminals 0-3.

The resistances in series with the coil are then calculated as follows :

Terminals 0-1 : total resistance = 15 x 1000 = 150002, the series
resistance is therefore 15000 — 10 = 14990%.

Terminals 0-2: total resistance = 30 x 1000 = 300002, serics
resistance = 30000 — 15000 = 15000%.

Terminals 0-3 : total resistance = 150 x 1000 = 15000082, series
resistance = 150000 — 30000 = 12000012.

(d) ErFEctr oF TEMPERATURE CHANGES. The resistance in series
with the instrument movement are made of manganin, and as the
temperature coefficient of manganin is negligible, the effect of tem-
perature changes on the total voltmeter resistance is much smaller
than in the case of an ammeter.

Suppose that in the voltmeter of three sensitivities given above
there is a rise of 1°C. from the normal temperature of 15°C., the ter-
minals 0-1 being used.

L
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The resistance of the voltmeter will become
10 (1 + 0-004) - 14990 = 15000-0482
and the percentage change will be

100 x 19000:04 — 15000 _ 0600,

15000

which is quite negligible. The percentage change will be still less at
the terminals 0-2 and 0-3.

(3) Measurement of the Resistance of an Ammeter

The resistance of an ammeter movement should be measured
separately and not with its shunt. The ammeter resistance should
not be calculated from its shunt resistance, and the ratio of the full-
circuit current to the coil current (that is, the multiplying power of
the shunt).

AsS =

,wehaver = S (m — 1), and the logarithmic differen-
m —

tial of 7 is dr _dS -+ d(m—1) _ dS + ii—"ﬁ, and the error on r will
r S m— 1 S m

The error is therefore the error on S plus the error on m, while if
the coil resistance is measured directly, we shall have one error only,
which is of the order of the error on S.

The resistance can be measured on a Wheatstone bridge or by
the opposition method. The movement ought to be clamped during
the measurement and care has to be taken to limit the current to a
suitable value.

(4) Measurement of the Resistance of a Voltmeter

The resistance of the movement of a voltmeter can be measured
by the same methods as with the ammeter movement. The move-
ment resistance should be measured alone, and not by measuring the
movement resistance in series with one of the voltmeter external
resistances, then measuring the external resistance alone and calculat-
ing the difference, because the error on the movement resistance can
be very large.

Consider fig. 83.

Let r be the resistance of the movement and R the voltmeter
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external resistance. If a measurement
first determines R, = r 4+ R and then
another determines R alone, we shall
have R, — R =7r. The logarithmic
differential will be - Fig. 83

dr _d(Rx—R)_ dRx _ dR
r RT—-R RT—'R RT’-R

Re dRx R 4R

R,—R R R.—R R

Here, there is no partial elimination of the error due to the common
part R. The error is therefore

Ve 'AR,'+ R' AR
" Ry—R' R R —R R’

which considering that R is much greater than 7, can be very large.
Example 25. Let Ry = 1010 2, R = 1000 £, given by measure-

ment, the errors on Ry and R being 4- 0-1%,.
The error on r is

o Ar' 1010 x 01 + 1000 x 0-1
° g 10 10

= 4 2019,
which is definitely inadmissible.

For the same reason the resistance of an ammeter coil should not
be calculated from the difference between the measurements of the
coil plus swamping resistance and swamping resistance alone, even
though the error will be much smaller than in the case of a voltmeter
measured with its external resistance, because the swamping resistance
is of the same order of resistance as the ammeter movement.

(5) Measurement of the Restoring Torque and Torsion Constant of an
Ammeter or Voltmeter

In a permament-magnet moving-coil instrument we have 7a = @, 4,
where 7 is the torsion constant, a the deflection corresponding to the
current ¢ in the moving coil, and @, the coil flux linkages.

As 7 is supposedly constant, and @, is constant for small angles a,
we ought to have a linear relation between a and .

Let the deflection be a; if the coil is displaced by a very small
angle da from its position a, then the work done is tada = @, (da) 1.

But @y da = dP, = flux cut, so that we have
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tada = d®Po 1 and Ta = P 7.
da

If therefore we can determine %,

, we have 7a and 7.
a

The arrangement for the test is shown in fig. 84.

The instrument tested is con-

__d——'\/vvﬁ\_— nected in scries with a rheostat Rk

to the source E through the contacts

ST, NS 1-2 of key k; in parallel with the

instrument, through the contacts
1-3, we have a fluxmeter F.

In the case of an ammeter with
kK y2 & temperature correction arrange-
Ys ment as in fig. 80, the swamping
F resistance can be left in circuit, if

@/ the total resistance of the moving-
- coil, swamping resistance, and flux-

Fig. 84 meter resistance, are low enough not
to affect the fluxmeter reading.
When the temperature correction arrangement is as in fig. 81 R; and
R can be left if they are small enough not to affect the fluxmeter,
but here we shall have a fluxmeter in series with R, shunted by R,.
(It is not advisable to disconncct Ry,.)

In the case of a voltmeter the resistances external to the coil have
to be out of the circuit, because, being fairly high, they will definitely
affect the fluxmeter readings.

(a) MaxnrpurLaTION. With RA at a safe value, make 1-2 and regulate
RhA till the instrument pointer is at ¢ of the scale maximum. Break
1-2 and immediately make 1-3. The pointer will come back to zero,
and while doing so the coil moving between the poles of the permanent
magnet will have a current induced in it. The fluxmeter will start
moving practically instantancously with the pointer and will stop
when the pointer stops. According to (84a) we shall have
ADo =k (m — my) ; or, if the fluxmeter starts from zero, AP, = km.

The experiment is repeated for each tenth of the scale till full-scale
deflection is reached.

Having secured the results of the test for the whole of the scale,
AD, is plotted against a in radians. The result ought to be a straight

line if P, is constant. The slope of this line is df" and iif_o multiplied
a a

by ¢ will give the restoring torque for the corresponding values of i.
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Plotting Ta against 1, we ought to get a straight line if v is constant,

the value of 7 is — = the restoring torque for a given a divided by
a

this value of a. The current i is the current in the coil for the particular
position of the pointer. '

(b) ERRORS INHERENT IN THE METHOD. («) When breaking 1-2 and
making 1-3, there might be transferred to the fluxmeter part of the
cnergy 3Ls2%, where L is the inductance of the instrument coil, and an
erroneous reading will result. The part of 3Li? transferred to the
fluxmeter depends on the speed of switching over from 2 to 3. As ¢ is
usually small and the coil of the instrument is wound on a metal
former, which acts like the secondary of a transformer, for any change
of current in the coil, the error introduced is very small and practically
negligible. Most of the energy 41.i? will be used in heating the metal
former.

(b) The switch k takes time to pass from 2 to 3, and during this time
the pointer of the instrument coil will move while the fluxmeter will
be stationary. Care has to be taken, therefore, to make the distance
between 2 and 3 as small as possible, and to switch over quickly.

If a test free of the above errors is required, proceed as follows.
With the connections as in fig. 84, we have a mechanical stop St.
(lotted lines in fig. 84) by means of which the pointer can be held at,
or released from any position, with no current in the coil (the glass
over the scale has of course to be removed for the test). The pointer
is brought to any desired position by making 1-2; St. is then set so
that the pointer cannot go back to zero, and 1-2 is opened ; 1-3 is
made a short time after 1-2 is broken, and when 1-3 is made, St. is
released, the pointer now coming back to zero.

With a temperature effect correction arrangement as in fig. 81 we

k(r+R1)+R’2_

shall have (n — n,) = AD, (see formula 98a). The

resistance R is taken as include(21 in the resistance of the fluxmeter.

A ballistic galvanometer should not be used instead of the fluxmeter.
The pointer takes an appreciable time to come back to zero, and an
error will be introduced into the ballistic galvanometer deflection.



CHAPTER VIII

THE PERMANENT-MAGNET MOVING-COIL DIFFERENTIAL
GALVANOMETER

(1) Principle

The differential galvanometer is identical with the ordinary perma-
nent-magnet moving-coil galvanometer, except that it has two
moving coils within the poles of the permanent magnet.

The coils have a common suspension to which the light reflecting
mirror is attached.

The principle is shown in fig. 85.

4o
116

AAR N N

FIRST cox SECOND COIL

Fig. 85

The current is brought to the coils by four wide spirals, made of
very thin silver wire. The torsion of these spirals is negligible, and the
suspension, mirror, permanent magnet, etc., are identical with those
of an ordinary reflecting galvanometer.

The two moving coils have to be as like as possible ; that is, they
must have the same surface, number of turns, resistance, and flux
linkages ; they have to be placed similarly within the poles of the
permanent magnet, so that their flux linkages @,, and P, will be
the same.

If the coils were entirely alike geometrically and electrically, then
when the same current flows in the two coils and in directions such that
the torques on the two coils are in opposition (fig. 86), the resulting
torque will be zero, that is, Ta = @y i — Doy 4 = O, and the spot will
remain at zero.

166
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The differential galvanometer is mainly used in this way ; that is,
so that the torques on the two moving coils are in opposition ; gener-
ally, however it is not possible to have the two coils entirely identical,
and therefore ta = @, ¢ — Do, 1 is not zero.

The differential galvanometer has many applications, such as the
measurement of low, medium and high resistance, measurement of
the difference or ratio of two currents, etc. Before it can be used,
however, we have to eliminate the error which might result from the
coils not being identical or identically placed.

When testing if the resulting torque is zero, care has to be taken to
have a suitable resistance in series with the galvanometer coils,
otherwise the current might be excessive, without the slightest visual
indication (no deflection), when the resultant torque is zero.

(2) Check on the Ditferential L w Y%
Galvanometer ;

The arrangement is shown in
fig. 87.

Let 7, and r, be the resist- R, R Ry

ances of the two moving coils
1 and 2; R, and R, are two
standard variable resistances ;

R is a fixed, suitable standard l

resistance. R, together with R, |

and Ry, should be high enough :]?:
K

to make the currents ¢; and ¢,
suitable for the coils. R; and R,
are varied till the galvanometer

shows no deflection, and when Fig. 87
this happens we have @, t; =
Doy iy; but
. E . E
i = ——— iy = ——,
R+R,+1n R+ R,+ 7,
so that
Eo . Eo®
¢01 1——_____._0_1_.; ¢021,2=_____0.L__
R+Ry+ 1y R4+ Rg+ 1y
and

b_uﬂ=psothati1=?'iz'

iy, R+Ry+r

The nearer p is to unity, and the nearer r, is to r4, the more alike
are the coils and the better the galvanometer.
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1f we know that r; = 75, and the resulting torque is not zero, then
Do, is not equal to Do, ; and as Do, 1; = Doy iy,

E¢01 — E@og .9‘0—1=R+R1+7‘1=1
R+R,+7r, R+Ry+7, @y R+Ry+r, p

The resistance of the coils can be measured, one after the other, by
Kelvin’s false zero method.

w T, (3) Measurement of Resistance
Using the Differential Galva-
nometer
(a¢) MEASUREMENT oF Hicw
R R REsistaNCEs. The arrangement
% . .
Ry is shown in fig. 88.

The resistance Rx which is to
be measured can be shorted by a
key k,; R, and R, are variable
standard resistances ; R is a fixed
X _Je standard resistance ; and E is the
T source of current.

K With %, open, we connect the
) .

— source by closing k,, and vary R,

Fig. 88 and R, till the deflection is zero ;
we then have

E . E ‘il_R+R2+r2_~

1: — -————-—-; 1 = —_——— " =

! R+Ry+n : R+Ry+7r, ip RAR 41y
Opening k,, we have Ry in series with R,. Without altering R,,
we diminish R, to, say, Ry, when the deflection is again zero. We
have then

Rx=R;,—Rn . . . . . . . (109

The maximum value of the resistance which can be measured is
equal to R,.

Calculation of the Systematic Error. Let R;; be the value of R,
which will give the smallest deflection, say, to the left, and R, that
which will give the smallest deflection to the right ; in other words,
R;; — R,, is the indetermination on R,. If, similarly, R,y be the
value of Ry giving the smallest deflection to the left, and Ryn that
giving the smallest deflection to the right, the determination errors
on R; and Ry, will be
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R12 - R’11. Rlz - R’ll AD Rl.

R, Ry, R, ’
Rgn - Rln ﬁRzn - Rln — AD Rn
Rn Rln Rn

If Ac R;and 4. Ry are the constructional errors on R, and Ry, then
the total errors on R, and R, are

AR1= ACR1+ ADRI; ARnZ AcRn+ ADRn.

The logarithmic differential of (104) is
dRx d(R; — Ryp) dR, dRp .
R« R,—R, R, — Ra R, — Ry
R, dR, Rn _dRq
R, —Rn R, R,— Ry, Ra
and the error on Ry is
AR/'x R, C AR

Ly R'n . 4R’y
Ry R;—Rjy R, R, —Rjy Ry

The determination error can of course be made smaller by inter-
polation, as in the Wheatstone bridge. Let R;; be that value of R,
which gives a small deflection a, to the left, and R, that which gives
a small deflection a, to the right ; similarly R, is the value of Ry,

giving a small deflection a,;n to the left, and R,y that which gives a
small deflection ayn to the right. We shall then have

R; = Ry; + (Ryy — Ryy) ——— & + az

a
Ry, =R Ryn — Ryp) —22—.
n 1+ (Ren 1n) %o + om
The determination errors on R; and Ry are now (calculated as in

the Wheatstone bridge under the assumption that the constructional
error is the same throughout R,)

ApR'y _ R’y — Ry, 4o AR’y _ R'yn — R'yn | 4’
R, R, d,+d3 R R'n oot agn
Again, as 4R’} = 4R’y + A4A,R'; and 4R’y = 4R’y + 4Ry,

we get

AR’y R, AR’ _|_ R' AR’y
R,x Rll _ R’n RI _ RI R'n :
The greater R, — Ry, the smaller the error.
The above calculation does not apply to resistances such as dielec-
trics, which depend on too many outside factors.
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Note that instead of decreasing R; to Ry, we could increase R,
to, say, Rgn, and so get a new balance, with currents of ¢;n and #gn.
We could then write

_‘il_nz R+R2n+72
ten R+R;+Rx+r7

R+ Ryn + 7, =R+R2+r2
R+R,+Rx+7r, R+R +n

from which we could get Ry.
To extend the range of measurement, R can be altered.

= p, therefore

(b) MEASUREMENT OF MEDIUM RESISTANCES. The arrangement is
shown in fig. 89.

u Ly Yo

)

1.
[KI

Fig. 89

The galvanometer coils are connected to shunts of resistances S,
and S,, otherwise the arrangement is the same as that of fig. 88. The

resistance of coil 1 and shunt S, is o, = "8,

-, that of coil 2 and
71 1

shunt S, is g, = ———r—zlsi;— With k, closed, we have
T+ S
. E . E
1,1 = e—— ; 1,2 =
R+ R+ o R+ R, + 04

R, and R, being varied till the galvanometer deflection is zero. Open-
ing k,, we have to diminish R, to, say, Ry in order to get zero
deflection (leaving R, unchanged), and then have Rx = R; — Ry.
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The only condition the shunts have to conform to is that their multi-

plying powers m, and m, should be such that 7, = %— and 7, = Y

m
should be suitable for the galvanometer coils. ' :

The error is calculated in the same way as for the measurement
of high resistance.

(c) MEASUREMENT OF SMALL REsIsTANCES. The arrangement is
shown in fig. 90.

* ¥,
333
. , “n i
R U R L2 R, Ry @
$—
o o o]
| - R« J 1 Rs- I 1 '—1 Ry Ry

l't‘ I- Lz

I

€ Rh
—

Fig. 90 Fig. 91

L i

Ry and Ry, the resistance to be measured and the standard resist-
ance, are both four terminal. The current I is of a large value and
supplied by the source E, measured by the ammeter A, and regulated
by the rheostat Rh.

- R, and R, are varicd till there is no deflection.

The p.d. across a,a, is

. . . Ryx
I—-1%)Rx= R ; =l
( t) Rx=(ri + Ry ty5 4 i+ R, + Ra
The p.d. across b,b, is
R
I —1 R = R ) , ) = I . __5—
( tg) Rs = (ra + Ry) 105 1y 72+ Ry + Re
and
l.!_zp___B."..“_H{_ﬂj'_Rl S 6 11 )
(29 Rg 7y + Rl + Rx

Changing R, to, say, R,;, and R, to Ry, till new balance is achieved,
let the new currents be ¢;; and 1,5, Then we now have
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iy, Rx(rs + Ryy + Ry)

ias T Rs (7 + Ryy + Rx)
rs+ Ry + Re 73 + Rys + Rs
r.+R;+Rx 74+ Ry + Ry
from which we get
_ (ra+Re) (Ry — Ryy) r + RyRy — RzRu'
Ry, — Ry, Ry, — Ry

, therefore

Rx

A better way of proceeding is as follows : after having determined
P (105), disconncct the terminals b,b, from Ry and connect them to
Ry, as shown in fig. 91.

Without altering R,, change R, to, say, R,,, until there is no
deflection. Let the new currents in the galvanometer coils then be
i1, and 1, giving i;; (R; 4 7;) = 955 (Rys + 7,), and therefore

(3 =Mand5£xrz+l{2+]{ﬁ_1{22+’z

iag R, + 1, Rs r+R;+Rx Ry+ry
&=R22+r2'rl+Rl+Rx
Rs Ri+ry ro+Ry+ Ry

As Rx and Ry are very small, we have approximately

&&Rez+r2.rl+RlﬁR22+r2 and Rx=R”+T"' R,
Rs Ry+r ry4 R, Ry 41y Ry 41y
Or, as we can write Ryy = R, + 7 because Ry, and R, are in the
same resistance box, Rx = Rydrtr, Re.
Ry 47,

Calculation of the Systematic Error. The logarithmic differential of
Ry is

de:d(Rz:i:"'}‘rz) _d(Ry+7y) _{_‘f_[_‘g:

Ry Ryd+r+r, Ry, +ry Rg
dR, I dr i dr, __dR,  dr, 4
Roytr+7r, Rytr+r, Rpotr+r, Ry+r, Ry+r,
dRs R, dR, r dr Ty dry

Rs_Rzﬂ;r—i-rz R, sz:r—}-ra;‘ E;ir—l—mrz
R, dR, 1 d’z_*_‘ilis
Ry+7, Ry, Rydryr, Re




DIFFERENTIAL GALVANOMETER 173

The terms containing iR, and dry are nearly equal because r is
2 T2
very small compared with Ry + 73 (r = O when Rx = Rg) ; the term

containing %—r is also very small and for all practical purposes
AR,x AR’S

dBx _ dRs , the error is therefore —= = .
Rx Rs R'x R’g

A cause of error is the disturbing of the equipotential surfaces at
a,a, and b,b. The currents 7,, ¢4 and ¢;, ¢5, ought therefore to be
very small compared with I.

We will note for the present that the differential galvanometer
when calibrated can be used for the measurement of the ratio or the
difference of two currents.

One of the advantages of the differential galvanometer is that it
can be used in non-oscillatory conditions and yet be connected in
series with a high resistance. This is achieved by short-circuiting one
moving coil and using the other coil as in an ordinary galvanometer.




CHAPTER IX
MEASUREMENT OF THE RESISTANCE OF BATTERIES

(1) Mance’s Method

The arrangement is shown in fig. 92.

We have a bridge arrangement with the resistances R,, R; and R,
constituting three arms, while the battery E the resistance of which

has to be measured form the
8 fourth arm.

\ The galvanometer diagonal
contains a variable resistance
o for the galvanometer pro-
tection and the switch k,;
the second diagonal contains
the resistance R and switch
k,.

With %, open and k; closed
there will be a current in the
galvanometer and this current
is regulated by means of g

R A till the galvanometer deflec-
—\WVWV tion a is of suitable value.
Fig. 92 The bridge resistances are

then varied till, when closing
or opening k,, the deflection a remains unchanged.

Considering the loop BCD (fig. 92) : with the notation of the fig.
we have

E—Raia“(g+9).i_inz=O;
9+ 0 t=E — Ryi; — Ryxiy . . . . (106)

where g is the galvanometer resistance and Ry the resistance of E.
Considering loop ABD, we have

— Ry — Ry + (g +0i=0;

(9 +0¢t=Ry; + Ry, . . . . . (108a)
Differentiating (106) and (106a) we get
But if the closing and opening of k, does not alter ¢, then di = O,

and we can Wl’ite O = - R3di3 —_ Rxdiz = Rldlil + R4di‘.
— Rydiy = Radiy; Rydi, = — Rydiy ;

174
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diy Ry, _diy_ Ry

~ %, R,  di, Ry

Considering now the junction points B and D, we can write
ig =1+ 1;; i3 =1+ i, and differentiating di, = di + di, ;
diy=di + dig, and as di = O, we have di, =di;; diz=di,;
therefore
_ By 4 _Bx _ Rip R _ RR,and Re= TLR,;

d'ra d"’l R3 R‘ R‘
the same relation as in a Wheatstone bridge.

A shunt across the galvanometer could be used if necessary. This
is helpful because the galvanometer, being shunted, will work in non-
oscillatory conditions. The resistances used should be great enough
to prevent too great a current, which would polarise the source of
e.m.f.

(2) Voltmeter Methods

The arrangement is shown in fig. 93.

R

Fig. 93

The voltage across the battery is measured twice; first with &
open (R disconnected), secondly with & closed (R connected). With
k open, the voltmeter of resistance 7, is alone across the battery. It
reads E;, which is taken as the battery e.m.f., the real battery e.m. f
being E.

When £ is closed, the battery delivers a current I through R (the
voltmeter current 4, being neglected). The voltmeter will now read

V<E,.
Neglecting the resistance of the connections, we have
v E, E,—V
=—= ;i VIRx+ R)=E,R; Ry= ‘R (107
R R4R (Rx+ R) =E, x (107)

Ry is the battery resistance.
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(a) ERrOR INHERENT IN THE METHOD.! With % open, we have in

reality ¢v = ; tv(Rx + rv) = E, while the voltmeter shows
X Tv
E,; = ry,. Dividing E by E,, we get
E=Rx+7v; E1= Erv . EzEl(Rx+rv) ) (108)
El v Ry 4+ 7v Tv

With k closed, the voltmeter shows V, which is the p.d. across the
battery or across R, if we neglect the resistance of the connections;
the voltmeter current will now be i,,, and we have

. . Rry
V=ivyrv=RIl =1+t - . 109
nry (L4 vy (109)
but (I + iv,) = __—E—I-{,— ; and substituting for (I + 4v,) in (109)
Rx + rv
R —+ rv
V . E . RTV _ ER?’V
R, + Ry R+ry Rx(R+7rv)+ Rry
R + rv

We do not know E, but we have the relation (108), and substituting
for E we get

E; (Rx 4+ rv) Rry _ E;(RBx+7rv)R

— = , therefore
rv [Rx (R + Tv) + RTv] I{x (R + Tv) + Rry
V [Rx (R + ry) + Rry] = E,;RxR + E;Rry, or
Rx (VR + Vr, — E;R) = R (E;ry, — V7).
Rx= (EI—V)RrVR =E1;V'R’ Tv == —
V(R—l—l’v—El-‘-]—) R+I‘v-——J‘17—
EI;V ‘R ’]; (110)
S 5
R ( v ) + rv

Comparing (110) with (107), we see that the correction factor is

A , and the greater rv compared with R, the nearer

.

the correction factor is to unity. We have therefore to use a volt-

1 For further details, see Bedeau : Cours de Mesures Electriques (S.F.E.; E.S.E.,
Paris; Vol. I).
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meter of great resistance, so that R should be negligible compared
with ry. If R is not negligible compared with ry, the correction factor
above has to be applied.

(b) CALCULATION OF THE SYSTEMATIC ERROR. Assuming that R is
negligible compared with 7y, we have

Ry = E, — V'Rfmd the log. differential of Ry is
dRx d(El——V)__d_V___i__(_i_E~ dE, __.dV _ﬂ+ii3___
Rx E,—-V V R E-V E-V V R
By B,V &V av R _
E,—-V E, E—-V VvV VvV 'R
E, dE av \Y% dR
L By AV N gy R
E,—VE, V ‘E,—V R
7__EL__ dE, 4V _E, iIB—; the error is therefore
E,—VE, V E -V R
AR’y E’, AE’l_|~ | AV'+ AR’
Ry E,—V K, E,—-VV 'R
E, (AR, | AV'\ | AR
B, -V ( AT )+ R’

AE' and AV’ comprise the constructional plus reading errors on
the voltmeter.
If the voltmeter indication is known to be absolutely proportional,

dE, dv
n —— —

the v and it follows that the maximum relative error is

1

dR'x E, ( AE, AR

- + 4:v R ,where 4;E’;and 4,V’,

Ry E,—-V\E 1z

are the reading errors only.

)+

(3) Measurement of the Resistance of a Battery of Small Internal
Resistance
When dealing with batteries of small internal resistance, such as
accumulators, we can neglect the difference between the e.m.f. and
the reading of the voltmeter when k is open, if the voltmeter is of high
M
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resistance, so that K, = E, but the resistance of the connections is no
longer negligible compared with R and Rx.
Two measurements are now necessary after E; has been determined :
(@) With % closed (R connected) we measure the p.d. across the
battery, fig. 94, and we have

V=E —Ry1 . . . . . . . (111)
(b) With k closed we measure the p.d. across R where V; = R 1
I= -‘1%1 Substituting for I in (111), we get V=E —M,
(E—-V)

1

‘R.

therefore Rx =

QLM F = WWWW— —=
X I
R
PP
L%J € | Rx
~ IV| ',
Fig. 94 Fig. 96

In order that the error should be small, V ought to be an appreciable
part of E ; this means that I has to be intense.

In all the voltmeter methods described, the choice of R is governed
by the magnitude of the current supplied by the source ; I ought to
be such that there is no danger of the source getting polarised.
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(4) Munro’s Method

The arrangement is shown in fig. 95.

G is a ballistic galvanometer, C a standard condenser, R a standard
variable resistance, and E the battery ; the resistance Ry of which
has to be determined.

With £ open, make 1-2, charging the condenser with a quantity of
electricity Q = C E.

Breaking 1-2 and making 1-3, the condenser discharges through the
ballistic galvanometer, the deflection being »; and if scp is the
galvanometer constant (practical sensitivity in coulombs), we can
write

CE=8cpn . . . . . . . . (112)

Next, with k closed, the battery provides a current I through R so
E V= RE ‘
R + Ry R + Ry
Making 1-2 again, the condenser is charged to Q, = V C; breaking

1-2 and making 1-3 the condenser discharges, the deﬂectlon being n,,
and

VC=scpn, . . . . . . . (112a)

that the p.d. acrossa,ais V=RI; I =

Dividing (112) by (112a) we have

E=§; V=E?—‘=—R——E— therefore1L=—~R~
V n, n R+Rx n R + Ry
Rx—-R (n'—'nl)

n,

This method, although very simple, requires many precautions.
The deflections » and n, have to differ considerably, otherwise the
precision of the measurement will be small. On the other hand =,
should not be too small, because if so the reading error will be great.
Making » — n, large means a small resistance R, and therefore a
large current I. The source can therefore polarise, and its character-
istics will vary. What we need therefore is a measure of E at the same
time as we measure V, and to achieve this we proceed as follows.

With % closed, we get & measure of V by charging and then dis-
charging the condenser ; then, with k open, we take several measure-
ments of E (by charge and discharge of C) at regular intervals of time
(say, at times #;, tg, f3, . . ., tn), the time being counted from the
determination of V. Let the deflections corresponding to these times
be ny, ng, ng . . ., n 4 We construct the curve n = f(¢) as shown in
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fig. 96, and by extrapolating this curve (part n, n) we can approxi-
mately determine 7 = o-a at time £ = O ; o-a is an approximate value
of the deflection which would have been obtained, had the time
between the determination of V and E been zero.

/l

DEFLECTION

e




CHAPTER X

MEASUREMENT OF THE INSULATION RESISTANCE OF INSTALLATIONS,
DIRECT-READING OHMMETERS

THE insulation resistance of an installation, either to ground or
between conductors, depends on so many uncontrollable factors, such
as humidity, surface conditions, etc., that there can be no question of
great accuracy. The calculation of the error in these measurements
would therefore be meaningless.

When a line or a cable is tested, it should always be connected to
the negative pole of the source supplying the testing current, because,
if connected to the positive pole, oxidisation will be produced at the
fault. This oxidisation will increase the fault resistance, and so give
an erroneous, optimistic result. If connected to the negative pole, a
disoxidisation will result, which will diminish the fault resistance,
and it will be safer to accept the result obtained in this manner.

(1) The Comparison Method of Measuring the Insulation Resistance of
a Main to Earth

The arrangement is shown in fig. 97.
The tested main is shown on the insulators 1, 2, 3.

o )

‘g

Dip

2
J2)

ﬂF——i'l;—J

Fig. 97
181
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The main, which is cut off from its supply, is connected at a, through
the switch k, to the galvanometer G in series with a protecting resist-
ance R, and switch %; to the negative pole of the source E; the
positive pole of E is connected to earth. Rgis a known high resistance.
The earth has to be a connection to a main water pipe, or made by
burying in wet ground a clean metal sheet, of at least one yard square.
The switch k, protects the galvanometer from the capacity current
arising when switching on %,.

The method is as follows. With &, open and k,, &, closed, close k,,
then, after a short time, open k,. The galvanometer current will be

) ———, where Ry is the cable insulation resistance and r the

T R+ Retr
galvanometer resistance (neglecting the resistance of the source).
As r is small compared with Rx, we can write ¢+ = and if the
galvanometer deflection is n, then *
1= 8pn . . . . . . . . (113)

Now k, is opened and k; closed, cutting off the main and bringing
into the circuit the resistance Rg. We have now a galvanometer current

il:R—]—R =8pn; . . . . . . (113a)
8
Dividing (113) by (113a), we have o _ B’—t&, therefore
spn; R 4 Ry
szR(nl—n)—{—ans
n

The method is exactly the same as the comparison method of
measuring high resistance ; the resistance R is essential because the
insulation resistance of the main may be very low.

(2) Measurement of the Insulation Resistance to Earth, and Between
Conductors of Two Live Mains, by the Voltmeter Method

Consider fig. 98, where the insulation resistance to ground of the
two mains + and — is represented by Rp and Ry.

A voltmeter of resistance R, is first connected between the positive
main and earth, where it reads, say, Vp; next between the negative
main and earth, where it reads V; ; and finally between the two mains,
the reading being the voltage V between the mains.

When the voltmeter is between — and earth, the current ¢ through
Rj divides into two parts, one part passing through the voltmeter,
the other through Rn. Then
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. Rnl‘v . . Rnrv
V=Rpt “t=1t(Rp + ———) . . (114
R (R» &) (114)
When the voltmeter is between - and earth, we have
. Rprv . . Rprv
V=Rpi P =14 (Rp + —2 7 . . (114
" 1+Rp+rv ! 1( " Rp-*—'rv) ( a)
] l"""‘
' : \
L
\ : \
: ] l.\:
ﬁ : AN
V, ' 1 S~
P 5 h 5
i pre < '
1 XRP gl?n '
| e <
22 g,
i < < "
; : :

When between — and earth, the voltmeter shows V, = i, r,, where
iy is the voltmeter current, but

. Va . Rnp
vy = — = | ————,
. Tv Rn + rv
and substituting for 7 from (114) we get
Vo__Ba | v
v Ry +1rv Rnry
R —
r + Rn + rv
V Rn

(115)
rv(Rp + Ryn) + Rp Rn

When the voltmeter is between -+ and earth, we have Vp = ¢, - r,,
where iy, is now the voltmeter current, but
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. Vo Rp .
vy = — = ———— "1y,
Tv Rp + rv
and substituting for ¢; from (114a), we get
V_p. = R/p . V ==
Tv Rp+7rv Ron+ Rypry
Rp + Tv
V Ry . . (115a)
Tv (Rp + Rn) + Rp Rn
From (115) and (115a) we have
v (Rp + Rn) + R’p Ry = VRury == VRprv s
Vn Vo
therefore
Vo Vp Vo Va
Substituting for Ry in (115) we get
= VI;:VRVR=V V\‘:"Rv,and
Tv Ty P n n Vp Ivp rv Vo -+ 7rv [)"‘ nvYp
R
(Ra + - ) + v
Ro= Y=Y, L e
p
Similarly, substituting for Ry in (115a), we have
RD=Y-ZX‘§:V“-“ . . ) . . (116a)
n
The insulation resistance between the two mains is simply
Rt = Rn + Rp

Example 25. * Describe a method by which the insulation
resistance to earth of each of a pair of live mains can be measured by
a voltmeter of known resistance. Discuss the limitations of the
method.

“The following readings were taken with a 250-volt, 1000-ohms-
per-volt voltmeter :

‘“ Between two mains 218 volts
““ Positive main to earth 188 volts
“ Negative main to earth 10 volts.

‘ Calculate the insulation resistance of each main.” (University of
London, Electr. Measur. and Measur. Instruments, B.Sc. Final, 1947,
paper 2, question 1.)



MEASUREMENT OF INSULATION RESISTANCE 185

One method of measurement is that described above.

The limitations of the method are as follows :

(a) It cannot be used when one main is earthed.

(b) If the insulation resistance of the mains is high, the voltmeter
current and its deflection will be very small, and as we have seen, an
indicating instrument should not be used at the beginning of its scale.
To measure high insulation resistance, the voltmeter resistance must
be very high. The limit of the method is about 1 megohm with a very
high quality voltmeter.

The voltmeter resistance is r, = 250 x 1000 = 250000 Q.

From (116) and (116a) we get

R, — 28188 — 10 520000 — 266000
188
Ry — 28— 11—(?8—_—5’ X 250000 = 5000002.

DimrEcT-READING OHMMETERS

(8) Ohmmeter Voltmeters

These are very sensitive, permanent-magnet, moving-coil voltmeters,
the scale of which is graded in ohms.

/K

€, Rx

=

Fig. 99

Consider fig. 99, representing a voltmeter of coil resistance 7, in
series with its high resistance R ; Ry, the resistance to be measured,
can be shorted by k; the source has an e.m.f. E. With Ry shorted,
let the full scale deflection be m for E volts ; the voltmeter current is

then ¢ = EET = 8pm, 8p being the current per unit deflection.
r
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We can write

E=(R+r)apm;R+r::—E— . . . . (117)

spm

If we know E and sp we can calculate R + 7.
With Ry in the circuit, we get a deflection mx, and we have

(R +7) + Re =
Substituting for gb% from (117) wo get
(R+7) +Rx=@——;—:)—"1and
Rye — (R+r)"(;n——mx) (118)
(R+r)m

my — ————
(R 4+ ) + Rx

The voltmeter scale can thereforc be graded directly in ohms for
the measurement of Ry.
R+7rm

R+
ment is therefore marked zero at full scale deflection.

If Ry = o, then mx = O ; therefore zero deflection will be marked
infinity.

Between O and o« the scale is graded in ohms.

If Rx = O, we get mx = = m ; the scale of the instru-

If Ry is very great we can write my = @-E'th—ﬂ The scale will
X
be very crowded near zero deflection.

If R + ris great compared with Ry, then the ohmmeter will not be
very sensitive at small values of Ry, and to allow for a wide range of
measurement the ohmmeter has to have several sensitivities ; that is,
several resistances R.

As E does not enter into (118), it follows that it is not essential that
E shall remain constant. For (118) to be true, all that is required is that
the source voltage shall produce the full scale deflection m when Ry is
shorted, and that it shall remain constant during a measurement. If
therefore E has altered between two measurements, and there exists an
arrangement by means of which m can be adjusted by variation of the
field in the instrument airgap according to the variation of the source
voltage, the instrument reading will remain true.

ConsTrUCTION OF THE OBHMMETER. The source and the instrument
are contained in the same box. Before any test can be made, a check
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on the total deflection with Rx = O is necessary. The terminals pro-
vided for Ry are therefore shorted, and m observed ; if the pointer is
at zero no correction is necessary ; if not, the field in the airgap is
altered by turning a knob or screw a, which in turn moves a magnetic
shunt placed near the poles of the permanent magnet (fig. 100).

() @<

MAGNETIC

:@""swm
(= &

O— & »

Fig. 100 Fig. 101

The source E should be changed only if the pointer cannot be
brought to zero by alteration of position of the magnetic shunt.

The ohmmeter can measure resistances up to 1 megohm, depending
on the instrument sensitivity.

Another type of ohmmeter is shown in fig. 101.

Instead of a battery, we have a small hand-driven d.c. generator
contained in the same box as is the instrument. The speed of rotation
is about 2 revolutions per second, and a mechanical arrangement
prevents any higher speed being attained, however quickly the handle
is rotated. This type of ohmmeter can measure resistances up to
100 megohms.

(4) Ratio-meter Ohmmeters

A ratio-meter or logo-meter (from Greck logos) has two galvano-
meter coils, solidly attached, and at an angle a° to one another, placed
in the same magnetic field. The arrangement for an angle of 90°
between the coils is shown in fig. 102.

The coils are free ; there is no restoring torque ; and in the absence
of any current in the coils, they may be in any position. There is no
fixed zero of scale to which pointer returns.

Consider fig. 103, where the coils 1 and 2 are placed in a uniform
magnetic field H in the direction as shown, the angle between the coils
being 90°. Let the currents in the coils be ¢, and ¢,. The current ¢, in coil
1 will produce a magnetic field of, say, F,, proportional to n, S, ¢, ; the
current 44 in coil 2 will produce a field F, proportional to ng Sy ¢4, where
ny, Ny, S;, Sy are the number of turns, and the areas of the coils 1 and 2.
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Fig. 102

Fig. 103

The currents in the two coils are in such directions that the torques
produced by the interaction of H with ¢, and ¢, are in opposite directions,
and the only equilibrium position possible is when F, the resultant of
F, and F,, is parallel to H. The torques on coils 1 and 2 are then
T,=XKn;1;,S;Hcos.a; Ty=Kny1,S; Hcos. (90 — a) = n,1,S, H
sin.a where K is a constant. As the coils are in the equilibrium
position n, 7, S; H cvs.a = n, 1, S, H sin.a, therefore

i M S; H
i, mny 8, H

If we know k;, the scale can be graded directly in the ratio t—l
2

tan.a = k, tan.a, k, being a constant . . (119)
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As in practice the coils are not in a uniform field, but in a radial
field (fig. 102), the equilibrium position is not such a simple function
as that given by (119). Nevertheless we can write :

z—.l- = f(a) ; that is, the ratio of the two currents is a function of the
3
deflection, and the instrument can be calibrated by comparison.
In order to improve the scale, the angle between the coils can be
made other than 90°.
Consider the arrangement shown in fig. 104.

Fig. 104 Fig. 105

A source E supplies the current I to a known resistance R in series
with the resistance Ry which has to be measured. The moving coils of
resistance r; and ry, in series respectively with the resistances R; and
R,, are connected across R and Ry as shown. With the symbols used
in the diagram we have

R , Rx

=l ——— ;=1 ———*—_ and
R+R,+n Rx + Ry + 1,
b _RetRotrn Ry 0

iy R+Ry+7r Rx
The scale can therefore be directly graduated in ohms. From (119) we
— R Ry + 1))

fl@)(R+ Ry +r) — R

A more practical arrangement is shown in fig. 105.

get Ry , given directly on the scale.
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Coil 1 of resistance r, is in scries with the resistance R; coil 2 of
resistance r,, in series with the resistance to be mecasured, Rx; E is

the source of supply.
We have
4= L iy = E ; ¥=R"+”=f(a)and
R+ 7, Rx+7r, 43 RH41m
Rx=f(a) (R + 1) — 1y Y § B0

Ry is read directly on the scale.
THE RATIOMETER OBMMETER WITH SEVERAL SENSITIVITIES. The
arrangement is shown in fig. 106.

5%

Fig. 106

Arm % can be connected to the contacts marked 1, 10, 100 and 1000.
The shunts 8;, 85, and 83 have resistances respectively

2
8y = —, 83 = —,
9

o —
! 29

999’
74 18 the resistance of coil 2.

Let & be in contact with 1; the current I, in Ry divides into ¢, in
coil 2 and 7,, in the shunt 8;,. We then have
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8 =12(L?___.££_+r2)= Iz°9997'g — Iz .
5. +rs  “\009 999 1000 x 9997, 1000

When arm £ is on contact 1000 (no shunt), the current in coil 2 is
I,, and if with a resistance Ry the deflection is a, when & is on 1 the

ia=Ig'

current in coil 2 is -igg—o, so that if we want the same deflection « as

when /% is on contact 1000, we have to replace Rx by a resistance Ry,
such that

8:7a _ Rx+ 7, .
Ry, + s+, = 1000 ° that is

Rx + 7‘2_ 81 To
1000 81 “l" 72

and as 8; = 9—:)%

Ry T, r? Ry
1000 1000  1000r, 1000

If the scale is such that we have to multiply the pointer readings by
1000, when % is on contact 1000, we have direct readings when A is on
contact 1. Similarly the readings have to be multiplied by 10 and by
100, when % is respectively on contact 10 and contact 100.

ConsTRUCTION. The source of supply is either a small hand-driven
d.c. generator or an a.c. generator with a rectifier. The generator is
contained in the same box as the instrument.

The resistance to be measured is connected to the terminals marked
for the purpose ; % is set in the proper position, and the handle turned ;
the resistance is given directly on the scale.

From (120) it follows that the supply voltage need not be constant,
the reading depending on the ratio of the curients alone.

X1









