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PREFACE
The birth of Stellar Dynamics may quite fairly be associated with Kapteyn’s

discovery of star-streaming in 1904; within the short space of a third of

a century the subject has grown to such dimensions as to constitute one

of the most important departments of theoretical and observational

astronomy. Hard on the heels of Kapteyn’s discovery came the mathe-

matical researches of Eddington on the two-drifts theory of stellar motions

and of Schwarzschild on the alternative ellipsoidal hypothesis
;
in each case

the theory was submitted to as stringent a test as the rather limited

observational material available at the time permitted. With the recent

rapid increase in the number of accurate proper motions and radial

velocities, this kinematical part of the subject has steadily expanded and,

so far as one can predict, it will form the basis of many extensive observa-

tional programmes in the years to come.

The region of dynamics is definitely entered with the researches of Jeans

and Eddington on stellar systems, almost a quarter of a century ago.

Further development only became possible with the increase of accurate

observations and in 1926 the subject received a fresh impetus when Oort

published his first investigation on galactic rotation.

Such, in brief, are the main stages in the history of Stellar Dynamics.

This book is an attempt to present the subject in its full mathematical

and observational development. After an introductory chapter, in which

the correction of observational statistics is given a place, the mathematical

theory of a single star-drift is described in Chapter ii with considerable

detail. The following chapter discusses the problem of the solar motion in

many of its aspects, historical, theoretical and practical. Chapter iv is

devoted to the theory of the two star-streams, with its mathematical

foundations resting on the theorems of the second chapter. Chapter v deals

in detail with Schwarzschild’s ellipsoidal hypothesis; in both Chapters tv

and V special emphasis has been laid on the practical applications of the

several theoretical methods described.

Chapter vi is devoted to a discussion of the various methods of deriving

statistical parallaxes of the stars from a knowledge of their proper motions,

with due consideration of their distribution in the sky. The information

supplied in this way is of great value; in particular, the scale of the dis-

tances of the globular clusters depends largely at present on the apphcation

of the statistical method to the Cepheids. In the succeeding chapter

Dyson’s formula for the distribution of the stars is made the basis of an

investigation dealing with proper motions; results involving the two-
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streams theory and the ellipsoidal theory are given in some detail. General

theorems on stellar statistics are brought together in Chapter viii. Although

much of the theoretical work described was published a quarter of a

century ago, practical applications have been comparatively few owing,

in the main, to the general paucity of observational material. Chapter ix

deals with moving, open and globular clusters with sections on the galactic

absorbing cloud.

Chapter x contains the fundamental work of Jeans and Eddington on

the Dynamics of Stellar Systems, and Chapter xi deals with Galactic

Rotation, to a great extent, from the observational standpoint. The final

chapter on the Dynamics of the Galaxy incorporates several recent re-

searches on diflFerent aspects of galactic phenomena.

Although I have consulted a very considerable number of memoirs, it

has been impossible to treat, within the compass of a single volume of

reasonable dimensions, all the various view-points of the subject. Another

author would, almost certainly, have })roceeded on somewhat different

lines, but I hope that the systematic account of Stellar Dynamics given in

the book will form the foundation on which the reader can build a more

complete structure.

There remains the pleasurable duty of thanking several astronomers for

valuable assistance. To Sir Arthur Eddington, O.M., I am specially in-

debted, first, for my introduction to the study of stellar motions while I

served under him at Cambridge and, second, for helpful and illuminating

discussions on practically every department of the subject. Dr Alan

Fletcher has road the manuscript with the utmost care and patience; in

detecting errors and removing obscurities and ambiguities his assistance

has been invaluable and I am very grateful to him for all the time and

labour he has so ungrudgingly devoted to a long and tedious task. I am
also deeply obliged to Dr S. Chandrasekhar for his careful reading of the

proofs. Finally, it is a pleasure to express my thanks again to the Officials

and Staff of the University Press for their attention and care while the

book was assuming its final shape.

UNIVEBSITY OBSEBVATOBY
GLASGOW, W.2

1938 June 25

W.M. S.



CHAPTER I

INTRODUCTION

1 • 1 . General description of the galactic system.

The astronomical objects visible in a telescope—with the exception of

those recognised as members of the solar system—may be broadly classified

as follows: stars, open star clusters, diffuse nebulae, planetary nebulae,

globular clusters, spiral and other extra-galactic nebulae. The assembly of

stars is generally referred to as the galactic system, and within its bounds

are to be found the objects mentioned above with the exception of the

globular clusters and the spiral and extra-galactic nebulae. The spiral

nebulae are now believed to be independent galaxies, comparable in size

with the galactic system and separated from each other by distances many
times greater than their diameters. The globular clusters, of which about

one hundred are known, are believed to form a spherical system concentric

with the galactic system.

Modern research has established that the galactic system has the spatial

characteristics of an oblate spheroid. The median plane defines the

galactic equator (the coordinates of its north pole are: r.a. 190"^, declination

H- 28°) and in its immediate neighbourhood are to be found the great star-

clouds forming the Milky Way. The star-density—that is, the number of

stars per unit volume of space—^is greatest in the galactic equator and

decreases rapidly towards the galactic poles. The galactic equatorial plane

is thus a plane of maximum stellar concentration and a plane of maximum
extension. The sun’s position in the galaxy is not known with any great

accuracy; however, it is believed to be a little on the north side of the

galactic equator and distant about ten thousand parsecs from the centre of

the system. The excentric position of the sun may be qualitatively inferred

from the observed positions of the globular clusters in the sky, if it be

assumed that these have a more or less symmetrical distribution with

respect to the galaxy as a whole; nearly all the globular clusters are to be

found in one hemisphere of the sky, with almost equal numbers on either

side of the galactic equator. The direction of the centre of the system of

globular clusters is in the constellation of Sagittarius* and it is significant

that here the Milky Way clouds are densest, from which the inference is

drawn that the centre of the galactic system is also in the direction of

The position given by Shapley, Star Clv^etera, 22, 1930, is: e.a. 17** 28“, dec. -29°, very close

to the point common to Sagittarius, Ophiuchus and Scorpio.

SSD I



2 Introduction M
Sagittarius. Investigations based on counts of stars also fortify this con-

clusion, but perhaps the most striking confirmation is derived from con-

siderations based on the idea that the galactic system is in a state of

rotation. In several instances the rotation of extra-galactic nebulae has

actually been observed spectroscopically and it is not unreasonable to

assume that our own galactic system has similar dynamical characteristics.

The hypothesis has been put to the test within the last decade and various

investigations have confirmed the rotation about a distant centre whose

direction is almost exactly that foreshadowed by the distribution of

globular clusters. The use of the expression ‘‘galactic rotation ’’
is somewhat

misleading—the underlying idea is that of the orbital motion of the in-

dividual stars about a distant centre of attraction analogous to the orbital

revolution of the planets around the sun. As we shall see later, it is also

possible from the appropriate observational material to make an estimate

of the sun’s distance from the galactic centre and of the gravitational mass

responsible for the orbital motions of the stars.

There is some evidence that the stars in the neighbourhood of the sun

form a loose cluster—known as the local cluster—with characteristics of

distribution somewhat different from those of the galactic system as a

whole. For example, the bright stars of spectral class B have a plane of

concentration inclined at about 12° to the galactic equator; on the other

hand, the faint B-type stars, which are presumably at much greater

distances, are situated symmetrically with respect to the Milky Way and

thus conform to the general galactic distribution.

The greater part of the succeeding pages will be devoted to studying the

motions and spatial distribution of the galactic stars; we shall omit detailed

consideration of the recessional velocities of the spiral nebulae.

1 *2

1

. Spectral types of the stars.

From considerations of the characteristics of their spectra, the stars are

arranged by astrophysicists in the following main spectral classes:

0, B, A, F, G, K, M,

with the further decimal subdivision of each class, e.g. AO, Al, ..., A9. The

sequence is a continuous one; in particular it is a sequence of decreasing

effective temperature. In this work we shall not be concerned with the

physical foundations of spectral classification; it is sufficient for our purpose

to accept this system of classification so that stars of very similar physical

characteristics may be considered together, as a group, in relation to

particular problems of stellar distribution and of stellar motions in the
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galactic system. We add for reference* Table 1, in which are given the

colours and the approximate effective temperatures of stars of different

spectral types.

Table 1 . Colours and effective temperatures according to spectral class

Spectral
class

Colour
Effective temperature

Giants Main series

O Blue > 30,000°
BO Blue 23,000
AO Bluish-white 11,200
FO White 7,400
GO Yellow 5500° 6,000
KO Orange 4100 5,100
MO Red 3050 3,400

1*22, Stellar magnitudes.

Hipparchus, more than two thousand years ago, was the first to classify

the stars, visible to the naked eye, according to apparent brightness. The

twenty brightest stars were designated stars of the first magnitude, and

stars just visible to the naked eye of the sixth magnitude, stars of inter-

mediate brightness being assigned to intermediate magnitude classes. The

accurate classification, according to brightness, of the myriads of stars

visible even in a telescope of moderate aperture evidently requires to be

based on precise principles, and magnitude has now come to mean a num-

ber, on a cei*tain scale, associated with the brightness of a star. If m^ and

mg denote the magnitudes of two stars on this scale and l^ and l^ their

apparent brightness or luminosity, the difference of magnitude m^ — m^ is

defined by the formula /
-i = 10~0-4(mi-ma)^ (1)

h
A difference of five magnitudes thus corresponds to a ratio of 100:1 in

brightness and a difference of one magnitude to a ratio of 2*512: 1. The

zero of the magnitude scale is chosen arbitrarily. On the visual magnitude

scale adopted in practice the magnitude 1*0 corresponds very closely to the

mean brightness of the two nearly equally bright stars Altair and Alde-

baran. The various magnitude systems will be briefly noticed.

(a) Visual magnitudes.

These are determined from observations made by the eye directly. The

instrument used, called a photometer, is generally one of two types. In

one type the brightness of a particular star is compared with that of a

* Russell, Dugan and Stewart, AatroTwmy^ 734, 1927. More recent and detailed information

is given by G, P. Kuiper, Ap. J, 86, 180, 1937.
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standard star such as Polaris, while in the other type an artificial source

of light is the standard by which comparisons are effected.

(6) Photographic magnitudes.

If a photograph is taken of a field of stars, the brightest stars will, as a

rule, give rise to the largest images or, if the plate is placed outside the

focus of the objective, to the images of greatest density. Thus measures of

the diameters of the images or, in the second case, of the density or degree

of blackening of the extra-focal images, furnish a method of comparison

of brightness so far as actinic effect is concerned. As the ordinary photo-

graphic plate is more sensitive to blue light than to yellow or red light, a

blue star will form a larger image on the plate than a yellow star of the

same visual magnitude and will consequently have the smaller magnitude

on the photographic scale. The zero of the photographic magnitude scale

is adjusted in such a way that, for a star of spectral type AO, the photo-

graphic magnitude is defined to be the same as the visual magnitude.

(c) Photovisual magnitudes.

These are essentially equivalent to visual magnitudes but are determined

photographically by allowing only the light to which the eye is most

sensitive to fall on a special kind of photographic plate which in this

instance is sensitive to the same range of radiations as the eye. This is

achieved by placing a yellow filter in front of the photographic plate.

(d) Photo-electric magnitudes.

These are measured by means of a photometric apparatus embodying a

photo-electric cell. The relation between photo-electric magnitudes and,

say, photographic magnitudes is dependent on the particular kind of cell

in use. Very great accuracy can be attained by a photometer of this type

and the instrument is employed mainly in the detection and measurement

of the light changes in variable stars.

(e) Bolometric magnitudes.

Visual, photographic and photo-electric magnitudes are concerned with

different sections of a star’s total radiation
;
in the case of visual magnitudes,

for example, it is the section of the spectrum to which the eye is sensitive.

Magnitudes based on the total radiation of the stars are called bolometric

magnitudes. So far, very few direct determinations have been made, but

it is possible to calculate bolometric magnitudes fairly accurately from the

visual magilitudes when the effective temperatures are known.

The difference between the photographic magnitude and the visual

or photovisual magnitude of a star, in the sense — m^, is called the
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colour index. The values* of the colour index (c.i.) for different spectral

classes are shown in Table 2.

Table 2. Colour indices

Spectral
C.I.

Spectral
C.I.

class class Giants Dwarfs

BO GO 4'0«^-57

B5 -0-18 G5 4-0-92 4-0-65
AO 000 KO 4-1-12 4-0-78
A5 -f 0*20 K6 -hl-57 4-0-98

FO
F5

+ 0-33

+ 0*47
MO 4-1*73 4-1*45

From type GO onwards in the table the stars are divided into '‘giants” and

"dwarfs”, that is, stars of high intrinsic luminosity and stars of low

intrinsic luminosity. In investigations involving large numbers of faint

stars for which a rough separation into spectral classes is regarded as

important, the colour indices can be readily determined photographically

and the corresponding spectral classes inferred within fairly narrow hmits.

1 *23 . Stellar parallaxes.

To Bessel, in 1838, belongs the distinction of the first positive deter-

mination of the distance of a star (61 Cygni) and within a few months

Henderson and Struve announced successful parallax measurements of

a Centauri and Vega respectively. As the earth moves in its orbit around the

sun, the direction of a near star, as viewed against the background of the

very faint and, presumably, very distant stars, alters by a minute amount

which depends, amongst other things, on the distance d of the star and on

the radius a of the earth’s orbit (which in this connection may be assumed

circular). The angle of parallax, p, is defined by sinjp = ajd or, expressing

p in seconds of arc, n

P =
dsinl"

.( 1 )

since the angle of parallax is at most an extremely minute quantity—for

the nearest star it is 0"*76. The angular displacement of the parallax star,

due to a change in the earth’s position in its orbit, is a function of p;

hence if the displacement can be measured, the value ofp can be obtained.

A parallax determined according to these principles is called a trigono-

metrical parallax. At the present time, such parallaxes are obtained photo-

graphically; generally, at least a score of plates with two or three exposures

per plate are necessary for a reasonably accurate determination of the

Russell, Dugan and Stewart, Astronomy, 734, 1927. See also a paper by Miss Payne in

Harvard Annals, 89, No. 6, 1936.
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parallax of a single star and even then the probable error of the result is

usually estimated to be about ± 0"*010. The normal practice is to measure

the parallax displacement with reference to stars of the tenth to the

twelfth magnitude. The resulting parallax is, accordingly, a relative

parallax, for the faint comparison stars are also displaced by amounts

depending on their parallaxes which are generally of the order of 0"*003.

The determination of the absolute parallax of the star thus involves the

determination of the parallaxes of faint stars which are too distant for

the application of the trigonometrical method. The necessary information

relating to the faint stars is obtained by statistical methods depending

on principles to be considered in detail later.

The unit of stellar distance in general use is the parsec which is defined

to be the distance corresponding to an angle of parallax equal to 1". Thus,

from (1),

1 parsec = a cosec 1" == 206,265 astronomical units

or, since

1 astronomical unit = 149*5 x 10® km.,

1 parsec = 30*84 x 10^^ km. or 19*16 x 10^^ miles.

The distance of a star of parallax p is evidently 1/p parsecs, where p is

expressed in seconds of arc.

The light-year is another unit of distance generally encountered in

popular writings; it is the distance traversed by light in the course of a

year. As the velocity of light in vacuo is 299,800 km. /sec.,

1 light-year = 9*46 x 10^^ or 5*88 x 10^^ miles.

We have also the relation, easily derived from the previous data,

1 parsec == 3*26 light-years.

1*24. Absolute magnitudes.

Assuming that there is no absorption of light in interstellar space, the

apparent brightness of a star as viewed in the sky depends on the intrinsic

luminosity of the star and on its distance from us. If all the stars were at

the same distance, a knowledge of their apparent magnitudes would, by
formula (1) of section 1*22, enable us to compare their relative luminosities.

When the distances of several stars are known, we can calculate the

magnitudes they would be observed to have if they were situated at the

same distance from the sun. The apparent brightness, Z, of a star at a

distance d varies as l/cZ^. Hence, if L denotes its brightness if it were at a

distance Z>, ^2

(
1 )
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or, ifp and P are the parallaxes corresponding to d and D,

L_^
I " y- (2)

Denote by m and M the apparent magnitudes, say on the visual scale,

corresponding to the brightnesses I and L. Then we have

p2
][0O*4(m—71/)

or, on taking logarithms,*

M~m = 5 IjOgp — 5 Log P.

For the comparison of the intrinsic luminosities of the stars, the value ofP
adopted in practice is 0"-l (corresponding to a distance of 10 parsecs) and

the magnitude M is then called the absolute magnitude. It is given, by the

preceding formula, in terms of the apparent magnitude m and the parallax

= m + 5 + 5Log^. (3)

It is sometimes found convenient to express the intrinsic luminosity of

a star in terms of the sun’s luminosity as the unit. It has been calculated

that on the visual scale the sun’s apparent magnitudef is ~26"^-72; this

of course corresponds to its geocentric distance of 1 astronomical unit or

sin 1" parsecs. Putting p — 206,265 in (3), we find that the sun’s absolute

magnitude is + 4*”-85. If P is now taken to mean the luminosity of a star

of absolute magnitude M, in terms of the sun’s luminosity as the unit,

we have Log p = o-4(4-85 -M), (4)

from which the luminosity of the star can be easily calculated provided its

absolute magnitude is known.

It is found that the stars vary greatly in absolute magnitude; at one end

of the scale are stars of absolute magnitude — 5 and at the other end are

stars of absolute magnitude +15, the corresponding luminosities being of

the order of 10^ and 10~^ respectively times the sun’s luminosity. The very

luminous stars are the giants and the feebly luminous stars are the dwarfs.

There is no precise line of demarcation between giants and dwarfs, but as a

rough working rule it may be assumed that stars with absolute magnitudes

algebraically less than + 2 are giants and that stars with absolute magni-

tudes greater than + 2 are dwarfs. The sun is, accordingly, a dwarf star, its

spectral type being GO.

Within recent years, various small differences in the spectra of giant and

dwarf stars of the same spectral types have been detected, notably the

differences in the relative intensities of several absorption lines. For stars

* The logarithm of a quantity x to base 10 will be denoted by Log x and to base e by log x.

f H. Spencer Jones, Oeneral Aatronomyt 305, 1934.
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of known distance, these differences exhibit a definite correlation with

absolute magnitude. Thus, for a star sufficiently bright for spectroscopic

observation, the absolute magnitude may be inferred and, further, its

parallax can then be calculated by means of (3). Parallaxes determined in

this way are called spectroscopic parallaxes.

1*31. Proper motions.

In 1718 it was noticed by Halley that the positions of three bright stars

—Sirius, Arcturus and Aldebaran—were appreciably different from the

positions as recorded in the catalogue of Hipparchus, compiled more than

eighteen centuries before, due allowance being made for the effects of

precession on the coordinates of the stars during the interval. This could

only be interpreted as due to the individual motion of the three stars at right

angles to the line of sight against the otherwise apparently unchanging

background of the stars. Since Halley’s time precise observations have

shown that every star examined is in motion and the conception of a fixed

stellar background must, in theory at least, be abandoned. However, we
can retain the idea of a fixed stellar background in practice if we have in

mind the stars, say, of the twentieth magnitude which are, in the main, so

distant that linear cross-velocities of the ordinary stellar size would be

insufficient to change the directions of the stars by an observable amount
even after the lapse of a century. The rate of change of direction which we
are considering here is called proper motion and is usually measured in

seconds of arc per annum.

Proper motions of the bright stars are derived from meridian-circle

observations covering an interval of at least 50 years in general. If a^, 8^

are the coordinates of a star observed at time and referred to the mean
equator and equinox for the beginning of the year of observation, and if

ag, <^2 a^re the coordinates at time and referred to the same mean equator

and equinox as in the first observation, the coordinates of the star have

altered in {t^ — t^ years at the yearly rates of (ag— ai)/(<2 -“^i)

^ right ascension and declination respectively. These

quantities are the proper motions of the star in right ascension and declina-

tion respectively and they are generally denoted by and jUg respectively.

It is to be understood that all the corrections customary in meridian-

circle work have been applied. In particular, the coordinates ag and ^g are

obtained after the removal of the effects of precession for the appropriate

number of years; consequently, an error in the constants of precession is

reflected in the deduced proper motions. The possibility that such an error

exists is taken account of in certain statistical investigations involving

proper motions (for example, see section 3*32).
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The proper motions of the faint stars are determined most easily by

photography and considerable progress in extending our knowledge of the

motions of stars as faint as the fifteenth magnitude has been made in recent

years in representative areas of the sky. In 1906 Kapteyn put forward his

Plan of Selected Areas and, as one part of the Plan, several observatories

have measured, or are measuring, the proper motions of stars in the areas

accessible to their telescopes. The selected areas, 206 in number, are centred

on the parallels of declination 0°, ± 15°, ± 30°, ± 45°, ± 60°, ± 75° together

with two polar areas. There are, in addition, 46 ‘^special areas ” to deal with

representative or special features of the Milky Way. Parallax plates can

also be used for the purpose of obtaining proper motions
;
in securing them

the utmost precautions are taken as regards both mechanical and obser-

vational conditions, and the proper motions derived from the comparison of

such plates with others taken after a suitable interval (usually 10 to 20

years) are generally of a high order of accuracy. The method now widely

adopted is to photograph the parallax field at the second epoch through the

glass; that is to say, the plate is placed in the telescope with its film-side

away from the incident beam which, accordingly, has to pass through the

plate glass before affecting the emulsion. This procedure enables the two

plates—the parallax plate and the reversed plate—to be placed film to film

so that corresponding images can be made to overlap approximately.

Actually the plates are given a small relative displacement with the result

that each star is represented by a pair of images resembling a double star.

The displacement of one image from its companion is measured in directions

parallel to the equator and to the meridian corresponding to the equatorial

coordinates of the centre of the plate. A number of stars distributed over

the region are used as comparison stars and the reduction of the measures

for all the stars leads to proper motions relative to the mean motion of the

comparison stars. If the proper motion of one star has been obtained from

meridian-circle observations, the correction to be applied to the relative

proper motions to convert them into absolute proper motions (that is,

according to the system of meridian proper motions) is at once obtained.

Actually, owing to the errors inherent in the observations of both meridian

and relative proper motions, it would be necessary in practice to have

several stars with weU-determined meridian proper motions in order to

provide the necessary accuracy for this correction. It is the exception rather

than the rule to have a sufficient number of such stars in any photographic

region and accordingly an indirect method of ascertaining the correction

has to be employed; this is based on the parallactic motions of stars of

definite magnitude groups, for which mean parallaxes ai'e known. The

method will be further considered in Chapter vi.
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If 8 and 8' are the positions of a star on the celestial sphere at the begin-

ning and end of a year and referred to the same mean equator and equinox,

the arc 88' is the annual total proper motion, denoted by p. If P is the north

pole of the equator concerned, the angle P88' is the position angle'^ of 8'

with respect to 8, Denoting it by d, we have the formulae

— p^ind) p^ = pco^d, ( 1 )

In practical applications we shall always assume that p, p^ and p^ are

expressed in seconds of arc.

The linear velocity corresponding to the total proper motion p can be

found if the star’s parallax is known. This linear velocity wdll be referred to

as the cross-velocity or the tangential or transverse velocity. If d is the

distance of the star in kilometres, and T is the transverse velocity ex-

pressed in kilometres per second, we have

. „ Tn
sm 1 == —r ,

a

where n is the number of seconds in a year; hence, by (1) of section 1*23,

np*

Inserting the values 149*5 x 10® and 31*56 x 10® for a and n respectively,

we obtain
T = 4*74 ^

V

or, writing /c= 4*74, (2)

1 *32 . Radial velocities.

The rate at which a star (or any other heavenly body) is approaching the

earth or receding from it can be measured directly by the spectroscope. The
velocity so obtained is the component, in the line of sight, of the star’s

spatial velocity; it is called the line-of-sight velocity or the radial velocity.

The star’s spectrum, obtained by means of a slit-spectroscope, is photo-

graphed and alongside the stellar spectrum a comparison spectrum produced

by a terrestrial source of Ught, such as an iron arc, is also photographed.

As the wave-lengths of the iron lines are known with high accuracy, the

w^ave-length of any line in the stellar spectrum can be obtained. The differ-

ence between this wave-length and the normal laboratory wave-length of

the element or compound concerned gives the displacement of the stellar

line. According to the Doppler-Fizeau principle, a line of normal wave-

length A is displaced towards the red end of the spectrum—that is, in the

direction of increasing wave-length—by uXjc, where u is the velocity of

The position angle at the point S is measured eaatvxirds from the meridional arc SP,



1-33 Introduction 11

recession of the star with reference to the observer and c is the velocity of

light. If the star is approaching the observer, the displacement of the

stellar line is towards the violet end of the spectrum and is given numerically

by the formula just mentioned. The convention as to the sign of the radial

velocity is that a velocity of recession is positive and a velocity of approach

is negative.

The important point about such spectroscopic observations is that the

radial velocity of a star is determined directly in kilometres per second.

The velocities so measured are relative to the observer. They are affected

by two variable factors, one the component in the line of sight of the

observer’s linear velocity due to the earth’s diurnal motion, and the other a

similar component due to the earth’s orbital motion around the sun. These

components are easily calculated and when they are removed from the

star’s observed radial velocity, the radial velocity relative to the sun is

obtained. It is in this latter sense that the term “radial velocity” will be

employed in succeeding pages.

A few stars have radial velocities of two, three or four hundred km. /sec.,

but for the great majority of the stars the radial velocities lie within the

comparatively small range of —40 to +40 km. /sec.

1 *33 . The equatorial linear components of a stellar velocity.

Fig. 1 represents the celestial sphere centred at the sun, 0; OZ is parallel

to the earth’s axis and the great

circle XYN

,

of which Z is the pole,

is the equator. We take OX, OY
and OZ as the equatorial system of

rectangular coordinate axes, OX
being directed towards the vernal

equinox, and 0Y towards the point

on the equator with right ascen*

sion 90°.

Consider a star, whose equatorial

coordinates are (oc,S), at S. The

R.A. component of its proper

motion gives rise to an arcual dis-

placement at S of amount cos 8,

parallel to the equatorial plane and

perpendicular to the meridional plane through S. If x denotes the corre-

sponding linear velocity, x is given—according to (2) of section 1*31—by

x^k--cob8 ( 1 )

P
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and the direction of this velocity is parallel to ON, where N is the point

(a-f 90",0).

The component of the proper motion is parallel to OQ, where Q is the

point, distant 90° from S, on the prolongation of the meridian SZ, The

corresponding linear velocity y is given by

y KIh

V ‘

.(2 )

The radial velocity i?—which we shall temporarily denote here by z for

purposes of symmetry—is directed along 08.

The axes ON
,
OQ and 08 clearly form a rectangular system with refer-

ence to which the components of the star’s linear velocity are {x, y, z).

Let {u,v,w) denote the components of the star’s linear velocity with

reference to the equatorial system OX, OY, OZ. Resolving along ON, OQ
and 08 in order, we obtain (remembering that N is the pole of the great

circle 8ZQ),
X ^ u cosXN -f V cos YN,

y = u cosXQ -h V cos YQ +w cos ZQ,

z = uoosXS+ vco& Y8 + wcosZ8.

The coefficients of u, v and w in these formulae are easily expressed in terms

of a and S; for example,

cosXQ = cosXif cosMQ = cos a cos (90° -f^)

= — cos a sin d.

Replacing x and y by the expressions in (1) and (2) and writing R for z, we
have the formulae

— usinoL + vcosa =/c— cos^, (3)
P

— ucosa ainS—vaina sin^-f w^coseJ = , (4)
p

ticosa cos^+i;sina cos5+i^sin(y == R. (6)

This system of equations will be found useful later.

The expression of each of the components u, v and w in terms of

and R can be obtained either by solving the equations (3), (4) and (5) or

directly as follows.

Resolving along OX, 0 Y, OZ in order we obtain

n = xcoaXN+ycoaXQ+ zcoaXS,

V = iccos YN+ y ooa YQ + zooa Y8,

w = a; cos J^iV'+ ycos ZQ+ zcqa Z8,
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from which the desired formulae are easily found to be

u = -/c— sina cos 5-- N
-/c~ cosa sind+R cos a cos S, .

,

(6 )

p p

V = K “ 008 a cos 8 -
flu .

-/c~ sina sin5+i2sina cos^, (7 )

P P

w = K-~ COS d + R sin d. (8)

p

1 *4 1 . Oalactic coordinates.

In many problems, it is a matter of great importance to investigate the

positions and motions of the stars with reference to the galactic equator

—

the median jjlane of the galactic system. The position of the galactic equator

or, more particularly, the position of the galactic pole with respect to the

usual equatorial system of coordinates, can be estimated in various ways:

(a) the Milky Way clouds provide one source of information; (6) from counts

of stars it is possible to define a plane of maximum stellar distribution,

regions of obscuration by dark nebulae being of course avoided in the com-

pilation of the statistics; (c) several classes of celestial objects, for example,

Cepheid variables and stars spectroscopically designated with the c-cha-

racteristic show a strong concentration towards the Milky Way and the

plane ofsymmetry can be estimated.

The several methods agree in plac-

ing the north galactic pole* near

R.A. 190°, declination +28° (mean

equator and equinox for 1900-0).

The conversion of equatorial co-

ordinates into galactic coordinates

is easily effected. In Fig. 2, P is the

pole of the mean equator for 1900*0,

of galactic

equator UTV, Sis the position of a

star (a, d) and T is the vernal equi-

nox. The position of S is specified

with reference to the galactic equa-

tor by means of its longitude G
(the arc UT—measured from the

ascending node U in the direction

Galactic latitudes are reckoned positive if the objects concerned are in

the hemisphere containing the north celestial pole. From the figure the

* A. Kohlschiitter adopts + 27® as the declination of the galactic pole in calculations of certain

galactic quantities relating to stars of Boss’s Prdiminary Oeneral Catalogue (P.O.G,): v. Veroff,

der Univ, Sterrvwarte zu Bonn, No. 22, 1930.

P
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following formulae are easily found by means of which the galactic

longitude and latitude of any star can be calculated, the values of ccq

and Sq being supposed known:

sin (a — ao) tan 0 = cos tan d— sin 8^ cos (a — ag), ( 1

)

sin g == sin 8^ sin 8+ cos cos 8 cos (a — ag) (2)

Some astronomers measure galactic longitudes, not from the ascending

node U, but from other points on the galactic equator suggested by par-

ticular lines of investigation. The direction of the centre of the galactic

system, for example, would give a suitable point of departure for measuring

longitudes, but as this is not known with sufficient accuracy it would be

unwise—at any rate, at present—to adopt this system in the construction

of tables.

It is to be noted that, in our definition, U is the ascending node of the

galactic equator on the celestial mean equator for a specified epoch, namely

1900*0; accordingly, the mean coordinates of the stars for 1900*0 must be

used. Extensive tables giving the galactic longitudes and latitudes have

been compiled at the Lund Observatory* at intervals of one degree in right

ascension and in declination.

In Fig. 2, the angle WSP, denoted by is called the galactic parallactic

angle. It is conventionally measured from the galactic meridian aSIF to the

meridian SP, in the direction of the arrow, from (f to 360°. The spherical

angle WSP of the spherical triangle, as shown in Fig. 2, can be calculated

from the formula

sin (a — ag) cot WSP = cos 5 tan (Jg - sin ^ cos (a — ag) (3)

In this instance (Fig. 2) there is no doubt as to the appropriate quadrant in

which (j) lies; in other cases, the rule to be observed is that 0 lies between
0° and 180° when a lies between olq and ag + 180° (that is, between 190° and

10°), and (j) lies between 180° and 360° when a lies between 10° and 190°.

The Lund tables (Zoc. cit.) contain also the values of (p.

We can now obtain the components /Iq and ofproper motion in galactic

coordinates in terms of and From Fig. 3 it is easily seen that

PQ cos g = p^ cos 8 cos $5 -f sin (4)

and Pg = — /^^cos^ sin^+/^^cos{i. ......(5)

1 *42 . The galactic linear components of a stellar velocity.

In Fig. 4, let P and W be respectively the poles of the celestial equator

and of the galactic equator. As in Fig. 1, for a star at S the linear com-

ponents of velocity x, y and z—where x and y are given by (1) and (2) of

hund Annals, No. 3, 1932. Other tables are to be found in Harvard Annals, 56, 2-1 , 1912 and
Pvbhl. Specola Vaticana, No, 14, 1929—the latter calculated by P. Emanuelli. For rough purposes,

O. R. Walkey’s table {M,N, 74, 201, 1914) may be found useful.
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section 1-33, and the radial velocity—are parallel to the radii ON,

OQ and OS, N being the pole ofthe meridian PS and the arc PQ being equal

to the star’s declination S,

We require to find the components rj and f ofthe star’s velocity, parallel

to the galactic rectangular axes OV, OV and OW, the galactic longitude of

V being 90^

Let ^3 ,
mg, ^3 be the direction-cosines of OS with respect to OU, OV and

OW

,

Then Iq = cosSU, m^ = cosSV, n2 = coBSW. (1)

Consider any point Z with equatorial coordinates {A, D). Then

qobSZ = sin(J sinD-f cos^ cosZ) cos(^ — a). (2)

Now the equatorial coordinates of U, V and W are as follows:

(ao+90^0); F, (ao+ 1 80°, 90° - 5o)

;

Hence, from (2),

Zg = cos SU = cos S sin (a— a^) \

mg = cos aSF = sin (J cos Sq — cos 8 sin 8q cos (a — a^,) V (3)

ng= cos SW = sin # sin #0 + cos 8 cos 8q cos (a — ag) j

Let li, nil, the direction-cosines ofON with respect to OU, OV, OW,

coaNU, mj^cosW, = cosiV^ff.

Now the equatorial coordinates of N are (a-|-90°, 0); hence, by putting

(a -h 90°) for a and 0 for 8 in (3), we can write down the values of Zj, m^ and

Ui. The results are

Zi = cos NU = co8(a— aQ) \

miscos NV = sin^o sin(a — ao) (4)

nis cosNW — cos 8q sin (a ~ a^) |



16 Introduction 1-42

Again, let denote the direction-cosines of OQ with respect to

OU, OV, OW. Then

Zg = cos QU, m^ — cos QF, ^2 = cos QW,

The equatorial coordinates of Q are (180° + a, 90° — ^); hence, putting

(180° + a) for a and (90° — S) for 8 in (3), we obtain

Zg ^ cos QU = — sin sin (a — ocq) \

m2 = cos QV — cos S cos + sin $ sin Sq cos {oc — iXq)\ (5)

7^2 = 008 QW = cos# sin^Q— sin(J cos^o cos (oc — oCq) j

We can now express rj and ^ in terms of x, y and z\ the formulae are

g = Ziar-hZa^Z + Zg^

Tf = m-^x + m2y + m^zY

,

^=^nT^x+ n2y + n^z
^

(
6

)

in which x = /c— cos 8. y ^ . z = R
P P

and the values of Z^yZg, ... Wg are given by (3), (4) and (5). The values of

Zi, ...Tig have been computed by Kohlschiitter* for star^ in Boss’s P,0.C.

for which the complete data required in (6) are known.

When tables for the conversion of equatorial coordinates into galactic

coordinates are available—such as the Lund tables—the calculation of the

components can be effected more easily than by the methodsummarised

in the formulae (6). It is advisable first to compute the values of fig and /i^

by means of the formulae (4) and (5) in section 1’41. We have then a system

in galactic coordinates analogous in every way to the system in equatorial

coordinates treated in section 1*33; the components ^ are accordingly

given by the analogues of (6), (7) and (8) of that section. The formulae are:

g = — /c— sin(? cosg — A:^cos(?8ing-f-i?cos(?cosg, (7)

7 = K— COS Q cos g— K-’^s\JxO
V P

sin g -f i? sin C? cos g. (8)

K^cosg
P

-fiJsing. (9)

It may be verified that (7), (8) and (9) are the same as the three formulae

of (6). For example, in the first formula of (6) the coefficient of x is Z^ or

cos (a — ao). Now apply the polar analogue of the fundamental formula to

the triangle PWS (Fig. 2); we have

cos (a — ao)
= — sin (? cos ({> + cos sin ^4 sing

and the right-hand side of this formula is the coefficient of a; in (7) when the

formulate for fig and fig are substituted.

Ferdjgr. B<mn, No. 22, 1930.

,
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1 *5 . The solar motion.

The discovery of stellar motions inevitably led to the inference that the

gun—itself a star—is also in motion. But at this stage we require to dis-

tinguish between the observed motion of a star and the motion of the sun.

As regards the star, its movement is inferred from its proper motion and

radial velocity and these are obtained relative to the sun; actually, the

measures of proper motion are essentially geocentric but, owing to the

star's great distance compared with the sun’s distance from the earth, the

observed proper motion may be regarded as identical with the proper motion

relative to the sun; also, as we have previously noted, we mean by the term

'‘radial velocity” the line-of-sight motion relative to the sun. Thus the sun

is the point of reference for the specification of the observed components

of stellar velocities. As regards the solar motion, however, there is no such

simple point of reference and the best we can do, having regard to the com-

paratively small section of the stellar system which can be adequately

surveyed by our instruments, is to define the motion of the sun with respect

to the group of stars in the immediate neighbourhood of the sun, say within

a sphere of radius one thousand parsecs. The centre of mass of this group of

stars suggests itself as the most suitable point of reference for the solar

motion; but, as stellar masses are known only in a comparatively few

instances, this procedure is at present impracticable. As, however, a star’s

motion is sensibly rectilinear over very long intervals of time, it is sufficient

to take as the theoretical reference point the centre of position of the group

of stars. It is in this sense that the solar motion is defined. A detailed

discussion will be deferred to Chapter iii but, meanwhile, it may be stated

that with reference to the naked-eye stars the study of proper motions and

ofradial velocities separately places the direction in which the sun is moving

near the point of the celestial sphere at r.a. 270° and dechnation -j-30°.

From the radial velocities the solar speed is found to be approximately

19j km./sec. The point of the heavens towards which the solar motion is

directed is called the solar apex; the antipodal point is the solar antapex.

We can now divide the observed velocity of a star (that is, relative to the

sun) into two parts, one part relative to the point of reference connected

with the group of stars concerned, the other part depending on the solar

motion. The former is the star’s motus peculiaris; the latter is called the

parallactic motion. It was for long assumed or taken for granted that the

peculiar motions of the stars were entirely haphazard in character. How-
ever, in 1904 Kapteyn’s discovery of star-streaming introduced a new
feature into the laws governing the distribution of stellar velocities, namely,

the recognition that there is a certain direction, associated with the galactic

system, parallel to which the stars show an unmistakable preference for

SSD 2
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moving. If the galactic system is in, or near, a steady state, the argument

of symmetry—and according to observation the galactic system may be

described as symmetrical as regards its large-scale features—leads to the

expectation that the direction of preferential motion should be parallel to

the galactic equator. Most investigations dealing with the preferential

motions of the stars confirm this point satisfactorily.

1*6. Stellar masses.

The masses ofthe stars can be determined directly only from observations

of binary systems. A binary is a double star, each component of which

revolves around the common centre of mass in an elliptic orbit under the

force of gravitational attraction. Sir William Herschel was the first to

demonstrate the existence of such systems in the heavens. When each com-

ponent is visible in the telescope, the system is known as a visual binary.

If 7% and 7^2 are the masses of the components of a visual binary, T the

orbital period and a (in linear measure) the semi-major axis of the orbit of

one star relative to the other, Kepler’s third law gives

477
-2^3 ^

-^=G(mi + m2), (1)

where 0 is the constant of gravitation in terms of the units employed for

r, a, and For the earth’s orbit around the sun, we have similarly

Tl

in which denotes the sun’s mass, the earth’s mass being neglected in

comparison with m^. For units we take the solar mass to be unity, a^ to

be one astronomical unit of distance and to be one year. In terms of these

units, we have from (2) q _

and hence (1) becomes •(4)

The observed orbit is the projection ofthe true orbit on the plane at right

angles to the line of sight, and the apparent separation of the components is

measured in seconds of arc. The study of the observed orbit leads, in par-

ticular, to the period T, the inclination of the plane of the true orbit to the

plane perpendicular to the line of sight, and the angular measure a corre-

sponding to the true semi-major axis a. If p is the parallax, a = ajp in

astronomical units, a and jp being expressed in seconds ofarc. Hence from (4)

a®
= (6 )

If the parallax is known, the sum of the masses can be easily calculated by

means of this formula. It is found that the masses of visual binary systems

are approximately, on the average, twice the mass of the sun.
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This last result leads to an indirect method of estimating the parallax of a

binary when the orbit, or a portion of the orbit, has been sufficiently well

observed so as to give satisfactory values of a and T, Ifwe equate (m^ + m^)

to 2 in (5), we obtain p in terms of the quantities a and T derived from the

observations. Parallaxes obtained in this way are usually called dyimmical

parallaxes. It is to be noted that if the true value of the total mass of the

system is, say, twice the hypothetical value, the dynamical parallax is 2^®,

or approximately, 1 J times the true parallax. Even in this probably excep-

tional instance, an error of 25 % in a parallax determination is not un-

satisfactory and in the case of a parallax of 0"*01 the accuracy is superior to

that attainable by the direct trigonometrical method.

The individual masses and can only be determined if the orbit of

one component about the common centre of mass of the system can be

observed. In some instances, such as the binary system of Sirius, meridian-

circle observations can be used to give the necessary information; in other

instances photographic methods are employed.

In 1 889, E. C. Pickering discovered the first of another class of binaries by
means of the spectroscope—these are known as spectroscopic binaries. In

such a system the components are very much closer together than in the

case of visual binaries and almost invariably beyond the resolving powers of

the ordinary telescope; moreover, the relative orbital motion, in linear

measure, is also very much greater and is of a magnitude easily measurable

by the spectroscope. If each component of a spectroscopic binary is bright

enough to register its own characteristic lines in the spectrum, the line-of-

sight component of the velocity of each star about the common centre of

mass can be deduced. The study of the velocity curves enables the values

of and m^ain^i—and, consequently, of the ratio —to be

derived, where i is the inclination of the orbital plane to the plane per-

pendicular to the line of sight. Unless the value of i can be determined,

as in the case of a very few systems that are also close visual binaries, the

information provided by the spectroscopic binaries can only be utilised

statistically to yield average values of the individual masses.

The following table,* quoted by Spencer Jones, gives the relation of mass

(or rather, the mass multiplied by sin^i) and of mass-ratio to spectral type,

with the number of spectroscopic binaries for which the requisite informa-

tion was then available.

The main apparent difference, other than differences due to spectral

characteristics, between visual and spectroscopic binaries lies in the relative

dimensions of their orbits t)r, owing to the comparatively small range in

stellar masses, in the orbital periods. The periods of visual binaries range

H, Spencer Jones, General Aeltonomy, 335, 1934.
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Table 3. Masses of spectroscopic binaries

Spectral class sin® i mj sin® i m^im^ Number

06-B4 1318 10*50 1*25 21

B5-B9 605 3-40 1-49 9

A0-A4 1-71 1*01 1*69 21
A5-F4 1-80 1*24 1*45 18
F5-G4 101 0*89 M3 15
G5~K4 0*87 0*68 1*28 3

from a few years to several centuries; the periods of spectroscopic binaries

range from a third of a day to several thousand days. This separation into

two classes is due to the limitations of the respective observational

methods and not to intrinsic differences.

A third class of binary from which valuable information can be derived

is that of the eclipsing variable which is essentially of the same character as,

and is also frequently observed as, a spectroscopic binary. Ifthe Une of sight

is in or near the orbital plane, eclipses of one component by the other will

clearly occur, thus leading to a diminution ofthe light reaching the observer.

The study of the light-curve of a typical eclipsing binary yields the radii of

the component stars as fractions of their linear separation, the inclination of

the orbital plane to the line ofsight, the relative brightness ofthe components

and, with an assumption as to the ratio of the masses, the mean densities

of the two stars. If the system can also be observed as a spectroscopic

binary, the dimensions of the system and the masses of the stars can be

deduced; both spectra must be observable if the assumption of the mass

ratio is to be avoided. In many of the best-observed systems the problem

of deriving the quantities just mentioned is complicated by several other

factors—the ellipsoidal forms of the stars (if they are very near together),

darkening at the limb (due to the diminution of light, proceeding to the

observer, from the centre of the disc towards the limb) and the reflection

effect (the brightening ofone star by means ofthe incident radiation emitted

by the other).

From all the information garnered mainly within the last few years, the

masses of the stars are found to range from about one-sixth of the sun’s

mass to about twenty times the sun’s mass. A few stars exceed the latter

figure; the most massive star so far investigated is b.d. -f 6° 1309, a spectro-

scopic binary with components at least 85 and 70 times respectively more
niassive than the sun.

An indirect method of finding the mass of a star is based on Eddington’s

massduminosity relationship * From purely theoretical considerations,

Eddingtonestablished aformula connectingthemassand absolutemagnitude

* A. S. Eddington, M.N, 84 , 308, 1924.
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(bolometric) of a giant star of which the material, owing to its extremely

low density, is in the state of a '‘perfect gas’’. Unexpectedly, it was found

that dwarf stars of well-determined masses, with densities comparable

with that of water, all satisfied the relationship; the conclusion naturally

followed that dwarf stars, despite their high density, are also in the con-

dition of a perfect gas, the explanation being based on the extreme smallness

of the stellar ions as compared with terrestrial atoms. The relationship

—

shown diagrammatically in Fig. 5—is thus applicable to giant and dwarf

stars alike, the only exceptions being the “white dwarfs ” in which the mean

The abscissae are the logarithms of the mass; the ordinates are the absolute bolometric magni-

tudes. The full-line curve represents the theoretical relation8hi2> between mass and luminosity.

Each dot is plotted from observational data obtained from individual stars.

density of the stellar material is of the order of 10® times the density of

water. Thus the diagram can be used to estimate the mass of a star if its

absolute bolometric magnitude is known.

1*7. Stellar evolution and the time-scale.

The recognition of the great diversity in the absolute luminosities of the

stars dates from the beginning of the century; in particular, the great

diversity in the absolute luminosities of stars of the same spectral type

(G,K,M) was pointed out by E. Hertzsprung,* who coined the terms

“giants” and “dwarfs” to express the distinction between stars of high

* A.N. 179
, 373, 1909; PoUdcm PubL 63, 1911.
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intrinsic brightness and low intrinsic brightness. In 1913, H. N. RusseU*

provided additional material to support this view; he had at his disposal

the measured parallaxes of several hundreds of stars with their spectral

classification, and from these he calculated the absolute magnitudes. The
relation between spectral type and absolute magnitude is shown schematic-

ally in Fig. 6—^known as the Hertzsprung-RusseU diagram. In particular,

it will be noticed that stars of type M fall into two sharply divided groups;

in one group near X, the absolute magnitude is about — 2 and in the second

group near Z, the absolute magnitude is about -f 12. Thus stars of the first

group are of the order 10® or 10® times more luminous than stars of the

-6
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0
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-^6

48

+10

+12

O B A F G K M
Fig. 6. The Hertzapruiig-RtLsseU diagram

The absolute magnitudes {ordinates) are plotted against spectral type

second group; these are respectively the giants and the dwarfs of spectral

class M. As the spectral types are the same for the two groups, thus indicating
similarity in the effective temperatures, the difference in luminosity is to

be ascribed to the great diversity in surface area and consequently in the

radii of the stars. Later determinations of stellar parallaxes have added
weight to the relationship between intrinsic luminosity and spectral type as

exhibited by the diagram. One of the most conclusive pieces of evidence,

relating to the branch X^YZ {the main series) in Fig, 6, has been provided
by Hertzsprungt in his study of over 1000 stars in the Pleiades cluster.

With proper motion as the criterion, the stars belonging to the cluster can

* OhservaloTy, 36, 324, 1913. f M.N, 89, 660, 1929.
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be separated from the non-cluster stars; as the parallax of the cluster is

known, the absolute magnitudes of the cluster stars can be easily obtained

from the apparent magnitudes. As most of the stars are too faint to permit

of their spectral types being determined in the usual way, Hertzsprung

measured their colour indices which are related to spectral types as shown

in Table 2, p. 5. The result of the investigation was to show that the stars

of the Pleiades reproduced the main series in the diagram.

An additional observational feature of the Hertzsprung-Russell diagram

is that the sequence XYZ one of increasing density; the stars at X are

extremely diffuse and the stars at Z have densities several times the density

of water. This suggested to Russell that the course of evolution of a star

was in the senseA -> F Z in accordance with the theoretical investigations

of Lane and Ritter. A star in a highly diffused state, such as a giant M star,

contracts under gravitational attraction and its temperature rises. Accord-

ingly, it is supposed to pass from A to F where the density reaches such a

value that the gain of heat energy by contraction is balanced by the loss due

to radiation. Thereafter, that is, along YZ the star gradually cools as the

density increases and finally reaches the state of a dwarf star of class M.

The turning-point at F was originally believed to mark the point where the

star ceased to be in the condition of a perfect gas.

There was general acceptance of this theory until 1924 when Eddington

established his mass-luminosity relationship illustrated in Fig. 5. In

Russell’s theory, stellar mass was not one of the physical factors directly

involved although, even with the small amount of information available

at the time, it was noticed that the stars of smallest mass were found

near Z in Fig. 6. But, since mass is observed to be correlated with

luminosity, the Hertzsprung-Russell diagram acquires a new feature,

namely, the diminution of stellar masses in the direction X-^Y->Z. If

Russell’s theory of stellar evolution is to be maintained, it follows that if a

star starts its luminous career as a giant M star and passes through the

sequence of changes indicated by XFZ, it must lose approximately 99 %
of its mass in the process. (If the mass is finally one-fifth of the sun’s mass

when the star is a dwarf of type M, its mass originally as a giantM star may
be postulated to be of order 20 times the solar mass—a not extravagant

value.) According to the theory of relativity, mass and energy are inter-

related entities so that, by the simple process of radiating light and heat, a

star is automatically losing mass at a rate that can be calculated. For

example, due to this cause, the sun’s mass is decreasing at the rate of about

four million tons per second. But an important physical question arises as

to the mechanism whereby mass is eventually converted into radiant

energy. It may be noted in passing that gravitational contraction can
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provide a certain amount of energy which is converted into radiation, but it

is wholly inadequate to account for more than a small fraction of the energy

radiated by the sun during the period of its existence as a luminous star.

There is a consistent body of evidence giving 2.10® years as the age of the

earth and presumably the sun must be at least as old. But gravitational

contraction of a diffuse globe to the present dimensions of the sun can pro-

duce energy sufficient only for the comparatively short interval of twenty

million years. Thus contraction must be ruled out as anything more than a

minor contributory agent with respect to the supply of stellar energy. Two
suggestions as to the source of stellar energy, or to the mechanism at work

within a star, have been offered. In one it is supposed that matter is actually

destroyed through the annihilation of protons and electrons, the energy of

mass being converted into radiant energy; in the other, the source of energy

is found in the synthesis of the atoms of the various chemical elements

from hydrogen atoms.

If the first hypothesis is true, it is possible for a star to begin its evolu-

tionary career as a giant of type M and by the process of self-annihilation

to pass along the sequence of states represented in the Hertzsprung-Russell

diagram. Moreover, it can be calculated that about 7 .
10^2 years would be

necessary for the sun to arrive at its present stage if it started as a massive

star. When we pay regard to the stars with masses smaller than that of the

sun, we can conclude that the time-scale is of the order of 10^^ years. If, on

the other hand, stellar energy is derived from the synthesis of the elements

from hydrogen, it would appear that the loss of mass could amount only to

rather less than 1 % and, accordingly, the Hertzsprung-Russell diagram,

although representing facts, cannot represent the course of events in the

Kfe-history of a star.

The theory of stellar evolution is thus at a deadlock, and all that we can

say definitely is that, according to present knowledge and present ideas,

RusselFs original theory can only be saved by the hypothesis of the annihi-

lation of matter within the star. But this implies a time-scale of the order of

10^^ or 10^^ years which is now seriously challenged by the relativistic theory

of the expansion of the universe as evidenced in the recessional motions of

the extra-galactic nebulae; in this latter theory the time-scale is not greater

than 10^® years. Various suggestions have been put forward to attempt a

reconciliation between the two time-scales but, for the present, no obser-

vational evidence of a wholly conclusive character has been produced to

settle what is, perhaps, the most baffling and the most important problem

of astronomy to-day.*

• For a discusaion of the arguments in favour of each of the two time-scales, see Obaervatory,

58, 108, 1035.
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1 *81 . The correction of an observedfrequency curve .

Many important investigations depend on the compilation of statistics

exhibiting the number of stars with an observed value of a particular

characteristic x, which may be parallax, proper motion, magnitude, etc.

The practical procedure is to determine the number, y, of stars with values

of the characteristic lying between x~\Ax and x-h\Ax, where Ax denotes

a small step in the characteristic x\ in parallax statistics, for example. Ax

may be taken to be 0"*005, and in magnitude statistics 0”i-2 or Plotting

y against x we obtain a series of points and it is generally possible to draw a

smooth curve y = v{x) to give a good representation of the observed fre-

quency. The problem is to deduce the true frequency curve y = u{x), when
information as to the precision of the observations is available.

We have to recognise that each observation is liable to an error which we
shall denote by e, and, if these errors follow the Gaussian law, the proportion

of errors falling between e and e-\-de is given by Ce~^^^^d€, in which h is

known as the modulus of precision. The constant C is found from the con-

sideration that for all errors in the range —oo<e<co
[* CO

= 1
,

so that C = hj^TT.

The probable error, r, is defined to be such that the proportion of errors

for which — r<€<ris0*5; that is to say, the expectation of the error falling

within this range is equal to the chance that it is outside the range. From
the definition,

1 h , o o , 2 ,~ — e-^''^^de = -
7- e-^^dx.

2 ^J7^J^r J 0

From numerical tables of the last integral, it is found that

= 0-4769. (1)

When the probable error, r, of a deduced result is known—such as the

measure of the parallax of a star

—

h can be obtained from (1); for a group

of parallax observations made at a particular observatory, the probable

error varies very little from one determination to another and, accordingly,

h may be regarded as a constant associated with this group of observations.

We have

u{x) dx = true number of stars with the value of the characteristic

between x and x + dx\

v{x) dx = observed number of stars with the value of the characteristic

between x and x -I- dx.

If e is the error* of observation when the observed characteristic is x, the

In the sense of being applied algebraically to the true value to give the observed value.
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true value is x— e, and the proportion of observations with errors lying

between e and e-f de is

^Jn

Let t denote the true value of the characteristic corresponding to the

observed value x; then
t = x— e.

The number of stars with true values of the characteristic between t and

t-\-dtm u(t) dt and, of these, a number

u(t) .“ dtde
^JTT

will be observed with errors lying between e and e+ de.

Change the variables t, e to x, e. Then, since

dtde^dtde,
d(t, €)

the number of stars with the observed characteristic between x and x -f dx,

the errors lying between e and e+ de, is

u(x— e) dxde,
^Jn

The total number, v{x)dXy of stars with observed characteristics between

X and x^dx will be obtained by summing the previous expression for all

values of e between — oo and + oo. Thus we obtain

v(x) = “T f u{x— e)e-^^^'^d€. (2)
J -00

By means of this formula the true frequency function u{x) is to be found

from the given observed frequency function v(x).

In actual practice the function v{x) is identified with a curve of which the

ordinates at points x^ (i = 1, 2, . , . n) are determined in the first instance from

the observed numbers of stars with characteristics lying within small

intervals — a to -f a. The curve is thus based on n points corresponding

to n distinct values x-^,x^^ of x\ and when the observations are

smoothed we may still regard the smooth curve as being determined from

n points. Thus v(x) may be supposed to be a polynomial of degree (w — 1).

It is clear from (2) that, if u(x) is a polynomial of degree (n- 1), v(x) is

also a polynomial of degree conversely, if v{x) is regarded as a

polynomial, as derived from the observations, the function u(x) is a poly-

nomial of the same degree.
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Expanding u{x — e) by Taylor’s theorem and denoting ^n(^)»

we find that (2) can be written

6^ e® i

u(x) - eMi(x) +— Mj(x) -^ u^(x) + . . . e-**'*’ de.

in which the series terminates, the last term being

Also f _ Q

for integral values of p. Hence

g= f” e-^‘‘^‘de = '^
J —CO ^

+ . .
. } de.

and, as the integral is uniformly convergent.

Hence

-2kj

r.j

o A®

Similarly, we can derive the general formula, for positive integral values

^
de - — (4)

J_oo A>!(4Ar’
Hence (3) becomes

v{x} = u{x) + + 4̂
“4(*) + - + + - •

Regarding the probable error r—and consequently l/h by (1)—as a small

quantity (otherwise the statistics would be of comparatively little value),

we derive u(x) in terms of v{x) and its derivatives by the process of successive

approximations. Thus,

(i) u{x) = v{x),

(ii) u{x) = v{x)--^^v^{x).

(iii) u{x) = v(x) - ^(^)~7r2^2(^)h^4^4Wih^dx^V^' 4*2
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It is easily seen that the general formula is

u(x) = + (5)

a formula first given by Eddington.*

Eddington’s proofdepends on the use ofsymbolic operators. LetD denote

the operational symbol djdx. Then

u(x — e)~ . u(x)

by the symbolic form of Taylor’s theorem. Hence (2) becomes

g-7t2e2-e£>

Now

Hence

so that

J
e~^^^^~a^de —

Jtt

h ^

v{x) = . u{x),

u{x) v{x)

or u(x) = v(x)- v^{x) + 2fpT)2

which is formula (5).

In this proof, questions relating to the convergency of the function u{x)

arise in the general case but, as explained previously, we are concerned

in practice only with n different numbers corresponding to the values

a?!, ... a;,j of the characteristic, and in the present case both the functions

u(x) and v{x) can be described as polynomials.

There remains the evaluation of the functions V2 i^x),
vj^x), .... We shall

suppose that v{x) is obtained from the smooth curve of the observations for

each of the series of values of the abscissa

...a; — 3a, a;— 2a, a:— a, x, x + ol, a: + 2a, ....

Further, we shall suppose that the interval a is small and we shall neglect

powers of a higher than the fourth. Assume that the tabular differences

corresponding to a value x have been found, and let b and d denote the

second and fourth differences respectively. Then

b = v(x-{-oc) + v{x— a) — 2v{x),

a^
whence b = ah}^{x)+ ^Vn{x).

Also d = v(x+ 2a) — 4v(x+ a) + 6v{x) — ^v(x— ot) + v{x

—

2a)

= a*Vi{x).

* M.N. 73, 369, 1913. Some criticisms of a theoretical nature are given by H. Jeffreys,

M.N. 98, 190, 1938.
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From these results we obtain

(6)

'’«<*! *’>

Also the value ofh is presumed to have been calculated by ( 1 )
from the given

probable error of the observations. From (6) and (7), the formula (5)

becomes—keeping only the first three terms

—

.

. , ^
12b — d d

'*>

Thus the value of the true frequency function corresponding to any given

value of X can be determined and in this way the true frequency curve

y — u[x) can be obtained.

1 *82 . T'he correction of observed mean values.

As before, the number of stars with the observed characteristic between

X and X + dx, with errors lying between e and e + de, is

“ u{x— e) dxde.
yTT

Let e denote the average error for the stars with the observed characteristic

between x and x + dx; then e is given by

€
I

u(x— e) de = f €u(x— e) de
J —00 J —00

or, with the help of (2) of the previous section,

e~ v(x) = J
eu(x — e) de. ( 1

)

When integrated by parts, the right-hand side of (1) becomes

-i [“(*- '> iJ
*„ s) • *.

of which the integrated part vanishes at both limits. Also,

Hence f u(x — e)e-^’^d€,
th ^ifh ax J CO

fromwUch (2)

a result* depending only on the observed distribution.

This result, due to A. S. Eddington, was first given by F. W. Dyson, M.N. 86, 686, 1926.
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It is to be remembered that e has been used in the sense of being applied

algebraically to the true value of the characteristic to give the observed

value; consequently, the quantity, as derived from (2), to be applied to the

1 (tC)

observed statistics will be given by + “

.

2h^ v(x)

Formula (2) has been used extensively by Dyson"** and Nassauf for the

correction of parallstxes with a given mean probable error. The following

table relating to parallaxes measured at the Leander McCormick Obser-

vatory is given by Nassau

Table 4. Statistics of parallaxes

Limits of p
(unit 0"*001)

Observed
number
of stars

Correction
to p

(miit 0''*001)

Corrected
number
of stars

— 30 to -26 3 + 29 0
— 25 ,, -20 7 26 0
-20 „ -15 7 22 0
-15 „ -10 17 18 0
-10 „ - 6 27 13 0
- 5 „ 0 39 8 2

0 „ 5 46 4 ]3
5 10 51 + 2 150
10 „ 15 56 - 1 109
15 „ 20 50 - 2 65
20 „ 25 43 ~ 3 57
25 „ 30 45 - 4 42
30 „ 35 43 - 5 38
35 „ 40 32 - 5 42
40 „ 45 33 - 6 17

45 „ 50 29 - 7 20

50 „ 55 21 - 6 18

55 „ 60 12 - 6 13
60 „ 65 17 - 6 16

65 „ 70 13 - 6 14
70 „ 75 15 - 6 13

75 „ 80 12 - 7 7

80 „ 85 6 - 8 7

85 „ 90 6 - 7 3

90 „ 95 5 - 7 2

95 „ 100 5 - 6 3

In the second column are the numbers of stars observed to have paral-

laxes, p, within the Umits indicated in the first column. These numbers

give the broken curve in Fig. 7 ; the full-line curve is the smoothed curve

y = v(x). Formula (2) may be written approximately

e^-±l.4y, (3)
2h^y'Ax'

Corresponding to the interval x to Ax (or p to p-^^Ap) in the abscissae

the value Ay can be taken from the smoothed curve. For Ax^Ap ^

Loc, cit t J* Nassau, M.N. 88, 441 and 683, 1928. t M.N, 88, 584, 1928.
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and the probable error + 0"-0096 (from which 1/A = 0'0096/0'4769 numeric-

ally), as given by the observers, formula (3) becomes

e = -0'-040^, (4)
y

SO that the correction to be apphed to the observed statistics is + 0"-040Zl2//y.

This correction is given in the third column of the table. Each value of the

observed parallax is corrected and the distribution of the corrected paral-

laxes is shown in the last column. The result of applying the corrections is

to remove practically all of the negative parallaxes from the distribution.

Fig. 7. Parallax Statistica (Nassau), The abscissae are the values of the parallax, p, the unit being

0^001 ; the ordinates are the numbers of stars with parallaxes within intervals of O'^OOo.

Applying the above method, Dyson {loc, cit.) has corrected the parallaxes

measured at the Royal Observatory, Greenwich, and computed the absolute

magnitudes of the stars concerned and their transverse linear motions,

using for the latter the observed proper motions. An extension ofthe method

in connection with the combination of trigonometrical and spectroscopic

parallaxes has been given by T. Nicolini.*

* Caiania, C<mtrihuti astrqfisici, No. 37, 1937.



CHAPTER II

A SINGLE STAR.DRIFT

2 * 1 . In 1906 Eddington* introduced the term drift to denote an isolated

assembly of stars whose linear velocities relative to a system of coordinate

axes are entirely haphazard. The axes are fixed in direction and the origin

is chosen so that

Zu — Sv = Zw = 0, (1)

where (u, v, w) are the components of motion of a star parallel to these axes.

There is the further consideration implied in the term '‘haphazard’',

namely that, corresponding to a given numerical value, of a velocity

component, say u, the number of stars with positive values of u between

Uq and Uq + du^ is equal to the number of stars with negative values of u

between and — + formulae (1) show that we can regard

the centre of position of the stars forming the drift as at rest (this is identical

with the centre of mass if the stars are all assumed to have equal masses)

and we can take this point as the origin of coordinates. With this origin and

system of axes the motion of the sun with reference to the assembly of stars

can be defined without ambiguity. In the same way we define the velocity

of the drift to be the motion of this origin relative to parallel axes through the

sun. Actually, the motion of an individual star at any instant will be deter-

mined by the gravitational potential of the system and, over long periods

of time, we should have to take into account the accelerations produced.

No linear acceleration and no curvature in the path of a single star have

hitherto been detected which can be ascribed to gravitational causes—we
exclude, of course, the members of binary or multiple systems—and,

accordingly, the theoretical concept of a drift can be related to the practical

study of stellar motions.

Before 1904 the investigators of the solar motion assumed that the stellar

system, as then explored, formed a single drift, but Kapteyn’s discovery of

star-streaming showed that this hypothesis was not in accord with the

observed facts; in other words, that the individual motions of the stars were

not distributed at random. Eddington’s development ofthe theory involved,

mainly, the division of the stars into two drifts and agreement between

theory and observation followed. In this chapter we shall be concerned with

a single drift of stars and the results will be used later in discussion of the

two-drift theory.
* M.N, 67, 34, 1906.
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Let (Uf V, w) denote the components ofthe linear velocity W of a, star with

respect to the coordinate axes associated with a drift. Then

== -2^2 -f -f w^. (2)

The mathematical expression corresponding to a haphazard distribution of

velocities must satisfy several conditions. In the first place, we have to

rule out infinite velocities and thus the functional expression must vanish

for infinite values of or i; or 2^; secondly, the expression must be in-

dependent of the orientation of the axes; thirdly, it must be a function of

and and since the distribution is the same for negative as for positive

velocities. These conditions imply that the function is of the form F{W)^

where W is given by (2), it being assumed that as or v or

We therefore have that the proportion of drift-stars with linear com-

ponents between (u, v, w) and (u -j- du, v-\-dv,w-{- dw) is

F{W)dudvdvj. (3)

This distribution of velocities is called a s^^herical velocity distribution^

In the practical applications to be considered later, the form of the

function will be taken to be

F{ W) = (4)

which is the Maxwellian frequency law, C and h being certain constants.

As Eddington remarked,* “we are not at the moment concerned with what

law stellar motions are likely to follow; that is a dynamical problem. We
are rather choosing a standard of comparison with which to compare the

actual distribution of motions and that standard ought to be the simplest

possible. Further, there is a special propriety in taking Maxwell’s Law as

it is the nearest possible approach to an absolutely chaotic state ofmotion.”

Also, it is to be noted, that with Maxwell’s Law there is no correlation

between the u, v and w components of velocity.

We now develop the consequence of the general distribution of velocities,

as given by (3), on formal lines.

2*2 1 . The mean random radial speedfor a drift.

Consider a small area of the celestial sphere, with the sun as centre, at S,

in which there are N stars per unit area with the given spherical velocity-

distribution. We here assume that our point of observation—the sun—is at

rest with respect to the drift; consequently, all velocities concerned wiU be

random velocities. This procedure is equivalent to observing the stars of

the drift in any direction from any point fixed with respect to the coordinate

axes associated with the drift, and we shall assume that the stars in any

sample volume of space obey the velocity-distribution law (3).

SSD

Stellar Movements, 128, 1914.

3
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Let the 24;-axis be the radius passing through 8. Then w is the random or

peculiar radial velocity which we shall generally denote by B. It is to be

noted that, theoretically, the values of B range from — oo to + oo.

IfdN is the number of stars, per unit area at 8, with velocity components

between (u, v, w) and {u + du, v-\-dv,w + dw), we can write

dN = BF(W)dudvdw,

where, on summing for all theoretically possible values of u, v and w, B is

defined by
^ oo oo r co

N=B\ F(W)dudvdw,
J —oo J — oo J — 00

or, since F(W) is an even function of u, v and w,

N=8B r r r F(W)dudvdw. (1)

J 0 J 0 J 0

In this formula the integration is taken through the octant of the sphere

O 0,0 o

of which the radius, r, tends to an infinite value and for which u, v and w
play the part of current coordinates.

We set

u — W cos ^ sin^, V — ITsinfS sin^*, w = W cos6^, (2)

so that the element of volume of the sphere is W^sin(MWd0d^. Hence

N
fao

= 8B
J 0

7T/2

or

where

W^F(W)dwj sinGdO

N = inBQi,

rnl2

d(f)

J 0

= J”
W^F{W)dW.

.(3)

•(4)

Let B denote the mean arithmetical value of the random radial velocities,

B—or the mejan random radial speed—of the stars concerned. Then the

number of stars for which B lies between w and w -f- div, for all possible values

of u and v, is ^oo /•co

Bdw\
J

F{W)dudv

or ABdwn oo

0

F(W)d^idv.

There is an equal number of stars for which R lies between —w and

— {w+dw). Considering only the arithmetical values of R, we then obtain

for R the formula

NR = 8B {'^wdw f” f” F(W)dudv.
Jo J 0 J 0
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Using the transformations in (2), we find that

_ Too (*nl2 (*nl2

NB = SB] W^F{W)dW sin <9 co^Odd d(l>,

Jo Jo Jo

whence (5)

where Q2 — j
W^F{W)dW. (6)

From (3) and (5) we obtain B ~
. (7)

It is to be noticed that this value of the mean radial speed depends only on

the form of the frequency function F and not on the numerical distribution

of the stars. It is thus constant for all areas of the celestial sphere.

The results just obtained will be used in the sections immediately fol-

lowing and in Chapter x.

2*22. The mean random transverse speed.

With the same convention as in section 2*21 with regard to the t(;-axis,

the transverse linear component of the motion of a star at 8 is +
which we denote by T. We denote by T the mean of the arithmetical values

of T for all the stars concerned. The number of stars with transverse velocity

components between v) and (u -f- du, v -f dv) is, for all possible values of w,

Bdudv f F(W)dw.
J — 00

Accordingly, T is given by

NT - 4j5 f"" dw f”" r{u^-\-v^Yi^F{W)dudv,
J -00 J 0 J 0

the coeflScient 4 arising since the number of stars with negative ^^-com-

ponents is equal to the number with positive components, with a similar

argument as to the i;-components. The transformation (2) of the previous

section leads to
00 /• 77/2 /* 7r/2

AT = 85 W^F{W)dW ^in^ddO dcf),

Jo Jo Jo

whence, in terms of the function Q2 ,
previously defined,

NT - tt^BQ^

or, by (3) of the previous section,

As in the case of 5, this value ofthe mean random transverse speed depends

only on the form of the frequency function F and is independent of the

distribution of the stars.

3-2
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From (7) of section 2-21 and (1) above, we obtain

T = (2)

and this result is independent of the frequency function F,

2*23. The mean linear speed.

Let W denote the mean linear speed and we have at once

iV'iF = SB f” f“ f“ WF(W)du(lv(iw,
J 0 J 0 J 0

which, with the usual transformation, becomes

_ foo /•7r/2 r 7tI2

NW = SB W^F{W)dW ^inddO dcj).

Jo Jo Jo

Hence, we derive in the same way as before,

NW ^

and, using (3) of section 2*21, W = (1)

We then have the result ^ : T : W'" = 2 : tt : 4, (2)

which is independent of the form of the function F,
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We regard the modulus A as a constant defining the dispersion of velocities

in the drift and it can be evaluated by means of (1), (2) or (3) if any one of

the quantities B, T and W is known.

Another criterion that may be adopted is the value, TFj, of the median

speed such that the proportion of stars for which 0 ^ W < is equal to the

proportion for which W >Wi, In this case,

Wx foo

0 Jo

hWx r® h
e~^^dx = i e~^^dx =

0 ^Jo 4

Tables of the integral give

hWi = 0-4769,

which may be used as a definition of h.

2*3. The drift-curve.

We shall now find the distribution of the transverse velocities for a small

area of the sky at 8 (Fig. 8), the sun

being the centre of the celestial sphere,

taking into account the drift-velocity

relative to the sun. If the solar motion,

t7, is directed towards (the apex), the

drift-velocity relative to the sun will be U
in the direction of the antipodal pointA
(the antapex). We take the area at 8 to

be defined by the two small circles at

angular distances A and A-f dA from A
and by the two “meridians” ^ and

^ + d(f). The area at 8 is thus sinAdAd^i.

As before, we shall take the t^;-axis

of the haphazard motions to be the

radius through 8, The projection of the

drift-velocity, U, on the tangential plane

at ^ is ?7 sin A and we shall take the corresponding direction on the tangent

plane to be the w-axis. We write

F=E7sinA. (1)

The transverse velocity, as observed from the sun, for any star is com-

pounded of the haphazard transverse velocity OQ (Fig. 9) with components

(u, v) and the constant velocity V (the parallactic velocity) represented by



38 A Single Star-Drift 2-3

OP in the direction of the '?i-axis. The observed transverse velocity is thusOR—
which we denote by T—making

an angle 6 with the direction of

the parallactic motion.

Let n denote the number of

stars in the small region at S
(Fig. 8). We shall assume that

the Maxwellian law holds for

this sample of stars, so that,

if dn is the number of stars

with random transverse velocity

components between (u, v) and (Sun)

(u + du, v + dv),
Fig. 9

dn = dudv. .(2)

Hence

and therefore

n = A
00

(
3

)

It is required to find the frequency of the observed transverse velocities in

the small sector, defined by 0 a^d 0-\-d6, of the tangent plane.

From Fig. 9, we have

= T^ — 2TV cos^4- F^.

Also, u = T COB6— V, V = Tsin^,

from which dudv = dTdO = TdTdO.
OyJ. f (Jf

Using these results in (2), we obtain

7i2

dn = — - e-«r«-2rF cos e+v^) TdTdd -, (4)
7T

dn is thus the number of stars moving in the sector 6, 0-\rdd and with

observed velocities between T and T-]-dT, The total number of stars

moving in the small sector is obtained by summing dn for all values of T
between 0 and oo; consequently, if we denote this number by n{d)d6 or

pdO, we obtain

p = n{d) =— rTe-^HT^-^Tv cos e+r^) dT. (6)
n j 0

We write x = h{T— V oos6), (6)

t = AFco8(9, (7)

hT = a:+T.so that
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Then (5) becomes

= n{6) = ~ f {x + t) dx.
n J -r

B.t
J

05 Too

(x + 7 )
dx ~ + t e"'^^ dx.

-T J -T
..(8)

Hence we have p s n((9) = ~ J
” dA. ..(9)

Eddington,* to whom this formula is due, defines a function /(r) by

.(10)

We thus write
K)

.(11)

The values of/(r) can be derived from the dataf of Table 5.

Table 5. Values of log/(T)

T log/(r) r log/(T) T log/(T)

-1*2 9 0411 -0-1 9-6763 1-0 0-7461

-M 9-0874 0-0 9-7514 1-1 0-8751
- 1-0 9-1355 0-1 9-8303 1-2 1-0103
-0*9 9-185G 0-2 9-9131 1-3 1-1520
-0-8 9-2378 0-3 0-0001 1-4 1-3003
-0-7 9-2923 0-4 0-0916 1-5 1-4555
-0*6 9-3493 0-5 0-1876 1-6 1-6177
-0*5 9-4088 0-6 0-2886 1-7 1-7871
-0-4 9-4711 0-7 0-3947 1-8 1-9637
-0-3 9-5363 0-8 0-5061 1-9 2-1478
-0-2 9-6046 0-9 0-6232 2-0 2-3393

-O-l 9-6763 1-0 0-7461

We can write the function /(r) in the alternative form

where K{t) = (13)

The values of K{r) are easily obtained from tables such as that in Brunt’s

The Combination of Observations (2nd edition), 234, 1931.

Now p is a function of 6—it is given by (11)—and the curve obtained by

calculating p for different values of d between 0° and 360° is called a drift-

curve. It is clear that a drift-curve is symmetrical about the radius vector

corresponding to ^ = 0.

* M.N. 67, 34, 1906.

t A. S. Eddington, SteUar Movements^ 129, 1914.
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Fig. 10 shows four drift-curves* drawn for the values 0‘3, O-G, 1"0 and 1*5

ofhV. In each case 0 is the origin from which the radii vectores, p, are drawn,

and the •w-axis, or the direction of the parallactic motion, is given by 0 = 0.

ftF=0-6

2 -41 . The mean value of the observed linear transverse ^notions in a given

direction, for a small area of the sky.

The number, dn, of stars with transverse velocities between T and T -\-dT

and lying in the sector between 6 and 0 + is given by (4) of section 2*3.

As n{d) dO is the total number of stars with velocities of all magnitudes in

this sector, the mean value of T for the sector—we denote it by —is

gi^en by
T.,.n{d)d0 = -—dd

n Jo

or, using (6) and (7) of section 2-3,

hT^.n{d) = f" {x-\-rfe-^dx.
^ J -T

J
da; = — + i

J
Now

and

Hence hTi . n{6) = ~ ~ + (r^ i)
J

These have been taken from Eddington’s SteUar Movements^ 88, 1914.
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or, from (11) of section 2-3,

ATi ./(t) = J T J

= t/(t) + -x e’’* f e-^^dx,
y^T J —X

gT»

I*

e-*^dx

whence JiT^ = rH (1)
' snf(T)

which may be written A7\ = g{r), (2)

where g{r) is the right-hand side of (1) and may be expressed in the alter-

native form 1

f{r)-~r
= ^ +

The values of g{T) have been tabulated by Eddington;* they are given in

Table 6.

Table 6. Values of g(T)

T g{T) T 9(-r) T g('r)

-10 0-565 -01 0-845 0-8 1-315
-0-9 0-589 0-0 0-886 0-9 1-381
-0-8 0-614 0-1 0-930 1-0 1-449
-0-7 0-641 0-2 0-977 1-1 1-520
-0*6 0-670 0-3 1-027 1-2 1-594
-0*5 0-701 0-4 1-079 1-3 1-669
-0^4 0-734 0-5 M34 1-4 1-747
-0-3 0-768 0-6 1-191 1-5

!

1-827
-0-2 0-805 0-7 1-252 1-6 1-908
-0*1 0-845 0-8

1
1-315 1-7 1-991

2*42. The mean value of the observed linear transverse motions in all direc-

tions, for a small area of the sky.

We write the number, n{0) dO, of stars moving in the sector 6,d + d6 as

n{d)dd — Bf(T)d6,

where B =

For this number the mean value of T is as deduced in the previous

section. Let denote the mean value of the observed transverse linear

motions for all the stars, n in number, between the directions ^ = 0 and

6 == 2n, We then have r‘2n

nT^^ \ T^n{d)dd

* Stellar MovemerUs, 141, 1914.
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or, from symmetry about 0 = 0,

nT^ = 2Bjyj(T)d0.

But, using (12) and (13) of section 2*3 and (1) of section 2*41,

hTJ(T) = T/(T) + K(t)
^7T

= (t2 + i) + -r {t + (2t2 + 1 )
K(t)}.

^Jn

Hence
\ (

7^+ + {t+

(

27^+ l)e-^A»}rf^ (1)

J 0 ^Jn J 0

Since 7 = hV cosd, we have I rdO — 0,

J 0

and we can write

r-n (*nl2 rn

{2T^-i~l)e'^^K{T)dd =:
\

(2T^-i-l)e^^K{T)dO-^
\

{2T^--{-l)e^^KiT)dO.
Jo Jo J 7t12

(2)

Putting {n — 0) for 0 in the second integral on the right of (2), we find that

it becomes /*7r/2

(2T^+l)e/^K(-T)dd.
J 0

Also K( — t) — —K{t); hence the right-hand side of (2) vanishes. The

formula (1) then becomes

nhT^

or, inserting the expression for B,

T = ^
p-^

^ 2h^7T

We put {h

so that T =

or, in the alternative form,

r(2T2+l)e"V(9.
J 0

{hVf = 2b, (3 )

r = V26cos0. (4 )

^-2baic'e ^ 4^ cos^O) dd
0

(5 )

""

cos 2<9
( 1

4. 26 + 26 cos 26) dd. (6)

The integral on the right can be expressed in terms of Bessel functions of

imaginary argument, since

J
COB 20^0 _ nJQ(ib)
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and r cos ^ ~ —inJ-^(ib). (8)
Jo

Hence ‘^{^^) “ ^ibJ^{ib)).

If n is an odd integer, positive or negative, i® ^ imaginary

quantity; if n is even or zero, i® real. Defining real functions I^{b) by

= ^ (9)

we obtain ^2 = ^^“^{(1 + 26)/(,(6)4- 26/i(6)}.

Now, by (2) of 2*24, the mean random transverse linear speed, T, is given by

Fp _
2A*

Hence we have* = Txlr{b), (10)

where ^(6) = e-^{{\-\-2b)lQ(b) + 2bI-^{b)]. (11)

The values of e~^lQ{x) and e~^I-Ax) are tabulated in G. N. Watson’s Theory

of Bessel Functions, 698-713, 1922, and the values of the function ^/(6) are

thus easily found. They are given in Table 7.

Table 7. Values of ?/^(6)

hV b hV b ^(b)

0-0 00 1-000 1-0 0-50 1-446

0-1 0-005 1005 M 0-605 1-629
0-2 0-02 1-020 1-2 0-72 1-616

0-3 0-045 1-045 1-3 0-845 1-706
0-4 0-08 1-078 1-4 0-98 1-800
0-5 0-125 M21 1-5 1-125 1-896

0-6 0-18 1-172 1-6 1-28 1-994
0*7 0-245 1-231 1-7 1-445 2-094
0-8 0-32 1-297 1-8 1-62 2-196
0-9 0-405 1-369 1-9 1-805 2-299
1-0 0-50 1-446 2-0 2-00 2-404

We add for reference the following formulae for the /-functions (the

modified Bessel functions):

J
g6cos2<?^^ _ (12)

cos 20 e^ ^dd — 7T
,

do
(13)

(I (14)

* W. M. Smart, M.N. 95, 127, 1934. The results given in sections 2*43 to 2-46 following are

also given in this paper.
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Also,
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Jo 'Jo

on writing (j> = 2d, We thus have the alternative formula

= 7r*7o(i6).

/:
The modified Bessel function of order m is given by

ttL c^cos^?(3Qg friOdd.

(15)

(16)

2*43 . The mean value of the observed linear transverse speedsfor the whole sky.

We shall assume that the stars are distributed uniformly over the celestial

sphere. The j)rocedure in any statistical investigation based on the result

of this section must consequently be modified by considering only the means

of the observed quantities over each small region (of standard area) con-

sidered, irrespective of the number of stars utilised in such areas.

LetN denote the number of stars per unit area of the sphere. The number

in the zone between A and A -f dA (Fig. 8) is accordingly 27rN sin AdA and the

mean observed transverse linear speed of these stars is ^2. as given by (10)

in the previous section, where
26 = {hVf,

Now, since F is the projection of the drift-velocity, U, on the tangent plane

at any point of the zone A, A + dA, we have F = sin A, so that

26 = (A?7)^sin^A. (1)

Set 2c = (AC/)2 ~ rj^. (2)

Let Tg denote the mean value of the observed linear transverse speeds for

the whole sky. The total number of stars is 4:7tN, We have, in consequence,

for the whole sphere,

4v7tNTg = 2nN
J

Tg ^

or 2T3 “ ^ J
^

which can be written, since 6 = csin^A,

But

T, sinA^(6)dA.

db = 2c sin A cosAdA.

T-^r
* 2VcJo

^(l>)

^Ic-b
db.

(
3 )

Hence
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Consider the integral on the right of this last formula; it is, by 2-42
(
11 ),

f -^c-^{(l + 26)/„(6) + 26/,(6)}.
J 0 VC — 6

Integrating by parts, we find that it becomes, using 2*42 (14),

- 2[V^T e-f-iCl + 26) /o(6) + 26/i(6)}]g

The first line reduces to 2^Jc. Also, Bessel’s differential equation for Jq{z) is

= o

which becomes, on writing z — ib,

d^M^b) 1 dJo{ib) _
db^ ^b db

or, since I^ib) = Joiib), by 2-42 (9),

4._: „ 011^' -^l(b) - 0
db^ ^b db

The integral concerned thus reduces to

2^0 + 2
^

\/c~6c-^{/o{6) + /i(6)}d6.

We thus obtain

1 = 1+1 ^^6 e-<'{/o(6 ) + /i(6 )} db

or, since the expression on the right of the preceding equation is a function

of rj—we have, from
(
2 ), 2c = rj

^—^we can write it as

T^=Tx{v)> (6 )

where A;(7) = 1 + T f Vc- 6 e-''{/o(6 ) + /i(6)} db. (7)
sjcjo

We shall later prove that x(v) identical with a function ^
6
(7 ), given by

4>{V) = ie-^^+^{2v^+l)K(v), (8 )

where K{7)) is defined by (13) of section 2*30. The values of are given

in Table 9, p. 51.

Meanwhile we shall assume that Jg is given by

T,= T(f>{vh (
9

)

where rj = hJJ (10)

and U is the drift-velocity relative to the sun.
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2*44. The mean value of the observed radial speeds for a small area of the sky.

We now consider the arithmetical values of the radial velocities—or the

radial speeds—of n stars in the small area sin at S (Fig. 8). Denote

by dn the number of stars with haphazard radial velocities between R and

R + dR. As before the i^^-axis (or the i?-axis) is radial at S. Using the general

frequency function F{W) of section 2*1, we have

dn = ndR f
j

F{W)dudv

in which the sum is taken for all possible values of u and of v between — oo

and +00. The integral on the right will be a function of R (we have

1+2 „ 1^2 ^ ^2 hence the above formula can be written

dn= CG{R)dR, (1)

where U is a constant and it is assumed that G(R) is an even function of R.

Later we shall use the Maxwellian form, namely for G(R), but mean-

while it is convenient to retain the functional form. It follows from (1) that

n^cT G(R)dR==2C r G(R)dR, (2)

J -00 jo

which is to be regarded as an equation to determine C when n and G(R) are

supposed known.

First consider the hemisphere in Fig. 8 for which O^A^OO'^. The pro-

jection of the parallactic motion, U, on the M;-axis (or J?-axis) at /S is U cos A

.

We denote it by p, so that n ^

p = U cosA. (3)

The observed radial velocity, Rq, of any star at S will thus be the sum of

the parallactic component, p, and the haphazard radial velocity, R, and

accordingly = E+p. (4)

In (4), is a positive quantity for 0 ^ A < 90°, and R, being the haphazard

radial velocity, can be positive or negative.

f Let 2^1 denote the number of stars with random radial velocities such that

^ I

i?
I
< p ;

this is, of course, the number with radial speeds between 0 and p.

^Let 2n^ denote the number of stars with random radial velocities such that

I

R
\
>p. Then

Prom (1),

and

n = 2(?ii + ?i2 ). (5)

n, = C 0{R)dR (6)
J 0

Cao

n2 = Cj Q{R)dR. (7)
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We now form the sum ^
|

i?Q
|

for the n stars at 8. The n stars are divided

into three groups:

(i) (% + stars, for each of which R is positive.

JRo is accordingly positive and

i
i?o

I
=

I
-R

I
+p,

so that, summing for the stars,

2 I -^ol = 2 I ^I+K + «2)P- (8)
Til +71* R~()

(ii) stars, for each of which R is negative and 0 ^
|

jK
|

^
Rq is accordingly positive and therefore

I
^0

I
““1^1

so that, summing for the stars,

2|i?ol = -2l^l+«iP- (9)
ni ii-O

(iii) stars, for each of which R is negative and
\

R\> p.

Thus J?o is negative and consequently

“
1
^0

I

= -
I
^

I
+/>

or |^ol = l-K|-p,

SO that, summing for the ng stars,

21 i?ol = 2 (10)
Ui jR=/)

Hence, adding the results given by (8), (9) and (10), we have for the n stars

at 8 to

2|i?ol = 2f |ii;| + 2wip. (11)
n It—p

Let i?2 denote the mean value of the observed radial speeds of the n stars;

then •

21 ^oI=«^2-
n

Also, since by (1) the number, dn, of stars with random radial velocities

between R and R^-dR is CO{R)dR, we obtain the result

CO (*Q

2|i?| = C'

= J f

RO(R)dR.

Hence, using (6), the formula (11) becomes

= 20 rRG(R)dE-{-2pC f’ 0(R)dR
J p Jo

or nRi = 20 R0(B)dR-i-20 r{p-R)0{R)dR (12)
Jo Jo
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The mean random radial speed, R, is given by

nR = 2C j’^^RG{R)dR.

Also, if we set ^ ~Also, if we set

we have from (2)

Hence (12) becomes

n = 2(7(3.

i2o= jK + (p-R) Q(R)dR.

It is evident that this formula also holds for a small region at S', antipodal

to 8. The mean haphazard radial speed, E, is that investigated in section

2 * 21 .

We shall now find the expression for in (14) when the random linear

velocities are distributed according to the Maxwellian function

F(W) =

Then 6{R) = and, by (1) of section 2-24,

Also, (13) gives

Hence (14) becomes

Write

Then we have

n = > =
2A 2h^R'

1 + 2A2 {p-R)e-^^«^dR.

X = hR,

g = hp =hU cos A.

' x) dx,

which we write in the form
R = RF{i), (16)

where it is easily seen that

m) = e-^*+ 2^A(g). (17)

It is to be noted that

^ = ^cosA, (18)

where tj = hU, according to (2) of section 2‘43. Table 8 gives the values of
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Table 8. Values of F{^)

49

i m) m 1 F(l)

000 1-000 0-70 1-453 1-40 2-503

005 1-003 0-75 1-515 1-45 2-588

010 1-010 0-80 1-579 1-50 2-673

015 1-022 0-85 1-646 1-55 2-759

0-20 1-040 0-90 1-716 1-60 2-845
0-25 1-062 0-95 1-788 1-65 2-932

0-80 1-089 1-00 1-861 1-70 3-019
0-35 1-120 1-05 1-936 1-75 3-106
0-40 1-156 1-10 2-014 1-80 3-194
0-45 1-196 1-15 2-093 1-85 3-282
0-50 1-240 J -20 2-173 1-90 3-370
0-55 1-288 1-25 2-254 1-95 3-458

060 1-340 1-30 2-336 2-00 3-546
0-65 1-395 1-.35 2-419
0-70 1-453 1-40 2-503

2*45. The mean value of the observed radial speeds for the whole sky.

We shall again assume that the stars are distributed uniformly over the

sphere so that, in practical applications of the formulae, the means of the

observed quantities over each small region (of standard area) are to be

taken, irrespective of the numbers of stars in these areas. As the results for

antipodal areas S' are the same as for the areas S, we need consider only one

of the hemispheres, of which the antapex, A, is the pole.

Let N denote the number of stars per unit area of the sx)here. The number
in the zone between A and A + (Fig. 8) is 27rAsinA(iA, and the mean
observed radial speed of these stars is given by (14) of section 2-44.

The total number of stars in the hemisphere is 27tN.

Let i?3 denote the mean observed radial velocity for the hemisphere. Then

rw/2

27tNR^ = 2nN
J

R^ sin ArfA.

- 1 Ce
Hence = J? -

I- (P— -K) 0{R) sin AdAdi?.
V J 0 Jo

But p = U cos A; hence sin AdA = — ^dp

and i?s= ^+ 7^, Vdp {" {p- R)G{R)dR. (1)
Vt/ Jo Jo

Now dp
\ (p— R) G{R) dR is the summation of the function (p — R) G(R)
J 0

over the strip AB (Fig. 1 1 ) of width dp, OQ bisecting the angle between the

p-axis and the i^-axis, and the double integral is the summation of the

function over the triangle QOP in which OP = PQ = U. Changing the

sso 4
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order of integration we sum first over the strip CD of width d!i?, that is

between OE and thus obtaining

cv R
dR {p-R)0{R)dp

J OE

or 0{R)dR f {p — R)dp,
J EC

We then sum over the triangle QOP,
that is from = 0 to R = U. Thus

the double integral is

ru ru
G(R)dR\ {p-R)dp,

Jo J li

which is equivalent to

0(R)dB.

Hence — B -

2QUJ:

iistribu

G(B) = B =

. rm-(U-Bf 0{B)dB. •(2 )

In the case of a Maxwellian distribution of random velocities, we have, as

before, _ 1 1

^ ^
2h^B'

Also, writing as before

(2) becomes

where

hU — hR = X,

i?3 = R<^>{7J),

^{tj) = 1+^j
{7i
— x)^e~^^dx

r, in terms of the integral E{7})^ f dx,
J 0

<P(V)==¥~^' + {v + -2-^K(ri).

This result may be obtained directly from (1) as follows. We have

-®3

.(3 )

.(4)

.(6 )

B

Set hp ^ i and, as before, hR — x,hU = ^. Then

^=1 + ? rdi(\i-x)e-‘dx
R V J 0 Jo

-ynljlcKta^-
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But
2 J’

gK{i) di =

and the result, (5), follows immediately.

The values of are given in Table 9.

Table 9. Values of

V ^(v ) V V

0-0 1-000 0-7 1-156 1-4 1-553
01 1-003 0-8 1-201 1-5 1-622
0-2 1-013 0-9 1-250 1-6 1-693
0-3 1-029 1-0 1-304 1-7 1-766
0-4 1-052 1-1 1-362 1-8 1*841
0-5 1-081 1-2 1-423 1-9 1-917
0-6 1-116 1-3 1-487 2-0 1-994
0-7 1-166 1-4 1-553

2*46. Proof of the ideyitity f){rj) =
By (4) of section 2*45, we have

f)(7j) = 1+i J
(7j
— x)^e'^^^dx

1
= 1 +

I

i

VJo

= ^ “
J
2—^Tj”

~ 27jx^-^^ + dx.

{

00 j,2r\

The integrand is a uniformly convergent series. Hence

f — 1 7?2r+2 / 1

-Q r\

A-iy

+-
\2r 4-1 2r + 2 27* + 3

V
2r+2

(2r+l)(2r + 2)(2r+3)‘

Now consider xiv)- From (3) and (6) of section 2-43, we have

r7rl2

A:(^) = Jo
ainAi/r{b)d\y

where 6 = csin2A and c ~ ^(hU)^ =

We shall first express i/r{b) as a power series in b.

Since T = ^ , we can write (5) of section 2*42 as

T- = - + ibcos^d)dd.
7r J 0

•(1)

(2)

,(3)

(^)

4-2
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Also, by (10) of the same section,

= T^lf(b).

Hence we define ^(6) by means of (4) and (5) as

2

.(5)

2 C”!'
^{b) = -

^ J 0

-26sln2^?
{{1 + 46) — 46 8111^ 6} dd.

The integrand can be expanded into a uniformly convergent series and we
obtain

7T

f{h)

But

a CO

..2(-

r^i2

Jo
"

1)^ (2bY
sin^^ 0 2 sin^^“^ 0 2 sin^'* O'

r\ (r— 1)1 (r

8inWdo =
2r— 1 . 2r — 3 1 n

~2r,2r-2,,,?2~ *

2

(2r) ! 77

22r{^!)2-2 *

Hence . .f <_

The right-hand side is seen to reduce to

’

Uj (r-l)!(r!)2

and accordingly we can write

fib) = 1 + 22 (- 1)’‘(7
bV+i (2r)

!

.(6 )
r!{(r+ 1)!}2

'

Insert now the series given by (6) in (2) and we have, putting b = csin® A,

rnj2 oo /-\r+l

Now

Hence

xiv) = 1+2

/•"/Z

I sin2’-+»Ad:A

%(?/) = i+22(-ir

(2r)!
,
sin^’'+® AdA.

2r + 2 . 2r . 2r- 2 . . . . 2 2^’-+^{(r+ 1)

''2r + 3.2rTr. ...T “ (2r+ 3)!

(2c)’-+i

-0 (2r+3)(2r+2)(2r+l).r!

or, since 2c = by (2) of section 2-43,

00 ^2r4-2

xiv) = l + 2|;(-l)’’p^_|_3^^2r+2)(2r+]).'7!

and the expression on the right is the same as that in (1) ; hence

xiv) = </>iv)

(7
)

and the identity is established.
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It follows from the preceding sections that

-^3 • ^3 ~ R\T
and consequently that jRg : Tg = 2 : tt. (8)

Thus the ratio of the mean observed radial speed to the mean observed

transverse speed for the whole sky is the same as the ratio of the mean
random radial velocity to the mean random transverse velocity in the drift.

The result (8) seems to have been first stated explicitly by W. J. Luyten.*

2-51 . Proof of the relations, 2 : tt : 4.

As in the previous sections, and denote respectively the mean ob-

served radial and transverse speeds, taken over the whole sky, for a single

drift of stars. We denote by in a similar way, the mean value of the

observed total speeds, for the whole sky. The following proof of the

formulae was given by ¥. J. W. Whipple.f

Consider the stars, n per unit area of the

sky, with the same velocity Wq relative to the

sun and in the same direction. Let OZ (Fig. 12)

be the given direction of Wq, the sun being

at the centre, 0, of the celestial sphere. As-

suming uniform distribution of the stars over

the sphere, we have that the number of stars

with the given value of Wq in the zone 6 to

O-^dO is 27Tnsiu 0d6 . But the radial velocity

of these stars, observed with reference to the

sun, is 1TqCos 0 and their transverse velocity

is W^sin6^. Hence, if R^r and Tj^ denote the

mean observed radial speed and the mean
observed transverse speed respectively for all the stars of velocity Wq in

directions parallel to OZ, and taken over the hemisphere 0^0^77/2, we
have—since the total number of such stars over the hemisphere is 27Tn—

rnl2

2nnRffr — 27TnWQ I sin 6? cos6dd
J 0

C7r/2

and 27rnT^r = 27TnWQ
J

sin^

Hence = Wo (1)

and = (2)

The hemisphere, n/2^0^7T, provides identical results and so the formulae

(1) and (2) hold for the whole sphere.

* Proc. Nat. Acad, of Sciences, 11, 192, 1925.

Fig. 12

t M.N. 95, 442, 1935.
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Averaging for all possible values of Wq and for all directions we obtain

from (1) and (2)
(3)

and II
(4)

whence — 2 : 7t : 4. (5)

It is thus seen that the relations

R:T\W = 2-.n\i.

given by (2) of section 2*23, are a particular result of the more general

formula (5).

2*52. Whipple's proof of the formulae = R(l>{7j), = T(l)[7j),

In previous sections the average observed transverse and radial speeds

have been obtained for any small area of the sky (these results will be used

in a later chapter) and the mean observed transverse and radial speeds for

the whole sky follow by integrating over the celestial sphere. To obtain the

results for the whole sky, Whipple* proceeds by integrating in a different

order and by making use of the formulae of the preceding section.

Let W denote the haphazard linear velocity of a star, with com])onents

u, V and w. Then, with a Maxwellian distribution of velocities, the number

ofstars with velocity components between (u, w) and {u -^-du.vi- dv, w-\-dw)

is
(7e- dudvdw,

where (7 is a constant related to the total number, A, of the stars concerned.

Let the direction of W make an

angle 6 with the direction of the

solar motion, which will be taken as

the ^/;-axis (Fig. 13), and write

W cos^ sin^,

V — If sin 5^ sin^,

w W COS0.

Then the number of stars with hap-

hazard velocities between W and

If -f d If ,
in directions between 6 and

6+ d6y(j> and + is

or W^AnedWded(l>. Fig. 13

Loc. cit.
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Hence, if dN denotes the number of stars with haphazard velocities between

W and W -^-dW and in directions lying between the cones 0 and d -f dd,

dN = W^sinOdWdd,

We thus obtain N = 27tC f f sin^d^,
Jo Jo

Nh^
from which

so that

C
^3/2 >

2Ar^3
dN = W^dW^inOde.

If Wq denotes the velocity, relative to the sun, of a star with haphazard

velocity W, we have

Wl = W^-2W[Jco80+U\

where U is the solar motion.

Denoting, as before, by the mean speed, relative to the sun, for all

stars in the drift, we obtain

9^3 (*oo (*iT

/- {W^-2WUcosd~hlP)^f^e’'^^^^^W^dWsindd0,
J 0 J 0

in which it is to be understood that the square root has the positive sign.

Integrating first with respect to 0, we have

97>3 (*<c

{(W+U)^-{W~ Uf} WdW.
oU ^7T J 0

JJ
{( IF+ t/)» - ( Tf ~ Uf} WdW

= JJ{(TF+ UY-(U- W)^}e->‘‘^ WdW

+ {'^{{W+Uf-{W- Uf] WdW
J u

=
2 J^(TF* + 3H^t72)e-*“"’* WdW

+ 2 f"(3Tf2Z7+C/*)e-'‘‘^“PrdPr
J u

= 2j"(3W^U+ WdW

-2
J^(£7-

W)^e-^‘^ WdW.

IF3 =^ jJJ(3F3+C72TF)e-'‘’'^dlF-~JJ(?7- WdW^
Hence
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Write T^ = R, hU :

h.Jn
= y and hW = x.

Then U {3x^ 4- y^x) e~^^dx—^ f (y — x)^e~
vJo

But
J*

^3^-x2 _
J

xe~^^dx — 4

and
j

1 {tj — x)^ e~^^ xdx = “ (^-
0 L2

1 3
^

j
(y — x)^e~^^dx.

Hence we obtain = 2R
|
^

^ J

|* (y — x)^ e~^“ dj^

.

But the expression within the parentheses is by (4) of section 2-45;

consequently = 2R<l>{7i).

But from (6) of section 2*51,

Rz = Wz-

Hence R^ — R^(r/).

Similarly

But

^3 ^2^<f>{v)-

T = %R.

Hence = T^(7j),

But by (6) of section 2*43, = Tx('i])

and we accordingly have the result that xiv) — Whipple’s procedure

thus contains imphcitly the proof of the identity of the functions ^(rj) and

Xiv)^ given by the expressions 2*43(7) and 2*45(4), which we proved

directly in section 2*46.

2*61 . They frequency function of the observed transverse velocities for the

whole sky.

The principal formula of this section was given by W. J. Luyten* in a

paper on ‘

' The mathematical expression ofthe law of tangential velocities
’
’

.

The following is a modification of his work.

From (4) of section 2*3, if there are n stars in a small area of the sky at an

angular distance A from the solar antapex (Fig. 8), the number dn of stars

* Proc. Nat. Acad, of Sciences, 11 , 87 , 1926 .
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with transverse linear components between T and T + dT, relative to the

sun, and in the sector 0,6 + dd is given by
2

dn =— TdTdO,
71

where V = f/sinA, (1)

U being the solar motion. Hence, if dn^ denotes the number of observed

transverse velocities between T and T ^dT for all values of 0,

/*7r

dn^ ^ TdT dO
7t Jo

or, in terms of the modified Bessel function of zero order, by 2*42 (15),

dn^ = TdT, (2)

This formula holds for all small areas in the zone between A and X-\-dX and

it will accordingly hold for the whole zone between A and A + dA, whose

area is 27rsinAc?A.

Let N be the number of stars per unit area of the sky, so that 4.nN is the

total number over the sky. If n, dn and dn^ now refer to the area of the zone

between A and A + ^^A, we have

n ~ 27tN sin AdA.

Hence (2) becomes, using (1),

dn^ = 47rm2sinArfAe-''^<^^+^^«»«^^>/o(2A2^

If W(T) denotes the frequency function for the observed transverse

velocities over the whole sky, so that W(T)dT is the proportion of stars

with transverse velocities between T and T + dT, we have

4:7rN'F{T)dT = 4nNh^TdT J’'8in Ac-W^+f'^»‘"^^>/o(2A2TC7sinA)rfA.

We write hT ~ z, hU —
7j

and 2h^TU sin A = 27iz sin A =

Then Iq{21i^TU sin A) =

P ^12 2^^ “

« ^2?2;2? gijj2/

^

Hence W{T) - h^Te-^^ a £

which we shall write in the form

gin2y+i X

W{T) = 2h‘^Te-‘‘^yB,z^>,
0

^21 I’nl2

-8i = rLJ e-’“«'“‘^8in2'+iAdA.

(
3

)

where
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Expanding the exponential function in the previous formula, we obtain

O (”
a [‘7iI2

I „2 , 1

I

|sin®'+^
\

A— ...
I

dA

r 2_; .
2^‘ — 2 . . . . 2 2j + 2 .2j . ...2 7j^

^ (jlf L2j+1.2j-l....l
“

2j + 372j+l....l • Yl

2i + 4.2i+2. ... 2 v* “I

+2jT674737n-2l--J
and, finally,

^ {2^( 2{j+l) f,2^(i+ 1)0 + 2)
] (4)

1 (2j+l)!| 2i+ 3 •l!^(2j+3)(2j+5)'2! -j

The formulae (3) and (4) define the frequency function.

Since the observed transverse velocities, T, are signless—(2) has been

obtained, effectively, by integration with respect to 6 from 0 — 0 to 6? — 277

—the definition of W{T) gives

JJ'i"(T)//T = 1

and hence, using (3), 2
J

ze--'‘^^BjZ^>^dz = \. (5)

(6) becomes

TO n ]

^2jA-l^-z^dz
,

0 ^

0

which is the relation connecting the coeflScients, B,.

2*62 . The mean value, T^, of the observed transverse speeds for the whole sky.

The results of the previous section can be employed to derive the formula

for T3
,
the mean value of the observed transverse speeds for all the stars of

the drift scattered uniformly over the sky. We have

4:nNT^ = 47rA’
JJ

TW{T) dT,

which, by (3) of section 2*61, becomes

0 2

Vw 1.3.5....2j+l

2 2’+i

(2j+ 2)!

2 2W+2(j+l)I
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and, using the formula

A Single Star-Drift

fp
“ 2A’

we obtain
{2j+ 2)!

.B,.
i2«+2(j+l)!

Inserting the value of Bj given by (4) of the previous section, we have

®
I 2j+3‘l!'^2jf+3.2j+ 5’2! '"j

It is easily found that, up to the term in 77^,

I
,

_r ^
1.3 3.5.2!

4-
^6

5.7.3!
.(3)

This result was given by Luyten* and it is readily verified that the series

on the right of (3) is identical with the corresponding terms of the expression

of x(v) in series form in (7) of section 2*46.

2*71 . The representation of theformula for a drift-curve by a Fourier Series.

By (11) of section 2*3 the radius vector, p, of a drift-curve, which is

inclined at an angle 6 to the axis of symmetry, is given by

or, using the form of/(r) in (12) of section 2*3,

P = ^
+ (1)

where r = AF cos^, (2)

K{t) — j
e~^“dx, (3)

and n is the number of the stars forming the drift. Following Eddington,

t

to whom the following analysis is due, we write, by Fourier’s theorem, since

/> is a function of 6,

n n 7? n n
n = - j5 + - (7cos^-j---Z>cos2^-}- i^cos3^4--Fcos404- ...

7T 7T 7T 7T 7T

-f- sin^-h^g sin 20+ ...,

where II1
1 e2n r2Tr

™-
1

pdd or nB = J
j

pdd,
J 0 ^ J 0

(4)

r2fr

nC^ pQOsddO,
J 0

(5)

* Proc. Nat. Acad, of Sciences, 11 , 90, 1925.

t M.N. 68, 688, 1908.
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nD =
p2n

p cos 20dO,
1 0

(6)

»£-J
f p cos WdO,
' 0

(7)

nF =
]

'*2Tt

p COB 4t0dd
0

(8)

and B, = ~
7T

^2n

1 pBinjOdO,
J 0

The coefficients all vanish owing to the symmetry of the drift-curve.

We then have

p ~ C'cos^ + Z) cos 2^?-f ^ cos 3^ -h cos 46^ + ...} (9)

and we require to evaluate the coefficients B, C, ... F,

(i) Evaluation of B,
^2n

We have pdO = n,
J 0

Hence, by (4),

(ii) Evaluation of C.

From (5), using (1), we have

Hre'H^+ K{r)

where t is given by (2). We shall write, as in previous sections,

hW^ = 2b.

Then C = e-2" + K(t^ d().

I*2n

Now ^~
\

F.{T)dd

rnl2 [*n

- 2 c082 6 e2^ ^ K(t) dd + 2] cos^ 6 ^ K(r) dO
Jo J nl2

and, writing {n — d) for 6 in the last integral, it becomes

2
j

coQ^d K{ — T)dd,

Also K( — r) = —K(t); hence i = 0.

We then have

2V^ Jo

hV . C”
= I

cc
Jo

coB^Oe^^

COS^^e^ ^08 20^^
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Now, by 2*42 (12),
J

= 7r/Q(6) (]

and consequently
J

= 7re%(6), (]

From (13), by differentiation with respect to 6, we derive

2 J
cos^ 0 dO — ne^

|/q

(

i/
) +

on using 2-42 (14).

Hence we obtain from (11) and the last result

C = ^^hVe-'iI,(b) +IM, (1

in which b = IhW^. We can now readily calculate C from (15).

(iii) Evaluation of D.

We have, from (6),
r2n

nD =
\ pcos20dd

r2n [*2n

= 2 poos^Odd— pdO
Jo Jo

= 4
I
pcos^OdO— n, (1

J 0

Referring to 2-3 (5) we see that p is defined by

^7)2 Too

p = „„
.

^-hHTHV^--2TV cos 0 y^ ^ ^
J

7T J 0

whence
rn ^}f2 foo /•tt

pcoB^6d6=' -\
Jo 77* Jo Jo

=^ \f
TdT.

(1

Write 2h^TV = z. Then the integral with regard to 6 in (18) is

j""
(II

Now by 2-42 (16),
J

= 7tIq(z),

from which f cos^Od^^^^^dO — n .

Jo dz
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Hence f'p coB^OdO = nh^e~^ f TdT.
Jo Jo dz^

But by 2-43 (5), = I^(z) -

1

.

dz^ ^ z dz
Hence

jycos^Odd = J
jr/„(z)-

A

...(20)

Also, from (17),

f" 2nh^ r“> 11"” \

w =
2j

pdO = --—e~^'‘j e‘^‘^dO^^TdT

or n = 2nh^e-^JV''"2’7o(2) TdT. (21)

Hence, from (20) and (21),

C” n rl

2j^pcos^dd6 = j^(z)dT (22)

Now,

|”e-'‘^^’^^/o(2)dJ’ = [e-^‘^7o(2)JJ +
2;i2j”e-;i«T7^(^) 7.^7,

(23)

The value of the integrated part on the right of (23) is - 1 and the integral

is given by (21). We thus obtain from (22)

and finally, from (16), D = 1 (24)

(iv) Evaluation of E and F,

By following the previous methods the expressions for E and F can be

easily obtained. The results are

^ hVe-^ {/o(6) + (l -
1j

/,(6)j (25)

or, perhaps more simply, E — C—^~ e-''Ii(b) (26)

and F=l-~ {(3 + hW^) e-^‘^+ 2hW^- 3} (27)

or i^ = ^(6+l-e-“-3i)). (28)

F is easily expressed as a series in hV ; thus, writing {hVf — x, we obtain

„ 2a:® 4a:® 6x^ 8a;®^ = 7T-r7 +^-^+— (29)
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which converges rapidly for values of x less than unity; (29) is a convenient

form for calculating F for values of hV between 0 and 1 . For larger values,

it is better to obtain the values of F from (28), the values of D having

previously been calculated.

The values of C, D, E and F are given in Table 16, p. 1 27, for values of hV
between 0 and 2*0—the values of (7

, D and E have been taken from Edding-

ton’s table.*

The principal formulae of this section will be employed in Chapter iv for

the purpose of deriving analytically the constants of the two star-streams.

2*72. General method of deriving the Fourier constants of a drift-curve.

The following analysis has been given by A. Fletcher.t

We write the Fourier series for p in the form

p = ~ (1^0 + J.iCOS<94-^2^^® 20+ ...). (1)

The identification of the constants in ( 1 )
with those in the previous section is

= J5 = \ (or Aq = 1), = C, .^2 = D, A^ ^ E, A4 = F.

Then, from (1),

n 1 2'4..=- /?cosm0d0 = - peo^mddO.
^ njo TTjo

By 2*71 (17), p = ~~ (2)
n Jo

so that = ““|’'eosmO j|
"e-wr^+F^-arrcosO) ^

=^
J

”

j

J%2
a=f2’co8 b ^os rtUddo]^ dT (3)

M.N. 68, 592, 1908.

t M.N. 96, 877, 1936.
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This integral is convergent at its lower limit provided m> —2, Also, we
have the formulae*

I-iib) =

m =
vl””*'*'.

Mb) = y|(coBhi,-^»inh6

Mb) = w-lm-
Using these in conjunction with the expressions for A<^ and A^
(Aj^ ~ C is given in section 2*71 by (15), A^~D by (24) and A^^E by (25)),

we see that

Aq = Vp6e-''(/_j + /j) = 1,

= Vp6e-''(/o+ /i),

A 2 = Virr6e-'>(/j + /,),

^3 = "^\nbe-*>{Ii + I^),

the argument of the /-functions being b.

The formulae just given suggest that the A ’s follow the general expression

(^)

Thus, referring to (4), we have to prove that

J
V'^4(V860rff = #) + -^i(m+l)(^)} (®)

Consider the integral {
= L) on the left-hand side of this equation, and

write X for Then

L=iJ e~^I^('sJSbx) dx

~^Jo^ ^orir^r+ mJrl)

” (26ri”» p

dx

of+^dx

r=0

(26)*'+*^ r(r 4- + 1

)

r ! r{r -f -h 1

)

G. N. Watson, Theory of Besml FunctionSf 53-56, 1922.
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Consider now the right-hand side of (6). We use the following relation

daetoKummer,*
1 - (2i,r'/’«'+ - +«

flOf+ar+i)

We thus have (®)

and (10)

Adding (9) and (10), we obtain

^2nd

^ (2by+^^r(r+ im.) .. . .

~
r?o ^^rTjliF+mTl

= 2 V ^(r+ 1
) n n

r±o r!r(r+m-H)
' ^ ’

We thus see from (7) and (11) that the general relation (5) has been

established.

The Foui’ier coefficient can be readily expressed in the form of a series

by means of the companion formula of (8), namely,

e-67(^) ~ A. y (--
^ r!r(r-f-2r+l)

'

We then obtain, by a procedure similar to that in deriving (11),

^ r!r(r-f-m+])

This series is convenient whenm is even. Thus, form = 4, we readily find that

^4 = li - |j
- . . .

.

Watson, Theory of Bessel Fundions^ 191, 1922. The formula (8) may be derived for

which is all that matters in the present connection, from the formula

1,=.
V7rr(v + i)yo

We then have e’>I,{b) =
' V,rr(v + 4)jo 2 2 2

V,rr(v+4)yo

Expand the exponential in the integral and integrate term by term; the result (8) is then obtained.

Similarly, the series for used in establishing (12), can be obtained.

SSD 5



CHAPTER III

THE SOLAR MOTION

3* 1 1 . Definition of the solar motion.

We shall consider a group of stars—^in the ideal case, scattered over the

sky—and we shall suppose that for each star the proper motion has been

observed or that, alternatively, the radial velocity of each star is known.

The group consists, consequently, of stars which depend for their choice on

the capabilities of the instruments used for the rneasui’ement of either

proper motion or radial velocity. For example, the proi)er motions of the

naked-eye stars of Boss’s Preliminary General Catalogue as faint as the sixth

magnitude have been determined with great accuracy from meridian-circle

observations spread over several scores of years; a large proportion of these

stars have also been observed spectroscopically for the determination of

radial velocity. If the solar motion is to be derived from the proper motions

of Boss’s stars, the magnitude and direction of the solar motion are to be

defined with reference to this particular group of stars and to no other; in

the same way, if we employ the radial velocity measures of stars of a par-

ticular catalogue the solar motion is to be defined strictly with reference to

such stars.

Consider a group of N stars and let the coordinates of a star be {x, y, z)

with reference to rectangular axes through a particular point as origin.

We can clearly choose the origin so that

Zx — Hy Zz = 0, (
J

)

and we define this point as the geometrical centre of the group. The geo-

metrical centre is evidently the same as the centre of mass, or centroid, of

the group if all the stars are all ofthe same mass. Frequently, the geometrical

centre is referred to as the centroid but this latter term must not be identified,

in this connection, with the centre of mass.

Let (t7, F, W) denote the rectangular components of motion of any star

with reference to axes fixed in direction and passing through the geometrical

centre. Then, by (1),

ZU ^ZV ^ZW ^0, (2)

Let be the components of the sun’s motion with respect to the

axes considered. Further, let (u^v^w) denote the components of the star’s

motion relative to the sun and with respect to axes parallel to those of the

first system. We then have

(
3 )
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and summing for the N stars of the group and using (2) we obtain

— + = 0, Ew-{-N^=:0, (4)

In these equations, the components {u, v, w) of a stellar velocity, relative

to the sun, can only be found—see section 1-33, where the components are

defined for the usual equatorial system of axes—if the components, and
of the proper motion, the star's radial velocity and the parallax, p, are

all known.

It is to be remarked that the assembly of stars under consideration need

not form a “drift” in the technical sense in which this term has been used

in Chapter ii; in other words, we are not concerned with a particular law

governing the distribution of the velocity vectors (f7, V, W).

As remarked previously, there is no observational evidence that the

motion of any given single star is other than uniform and rectilinear and so

the geometrical centre of the group will have, at least for several centuries,

a uniform and rectilinear motion with reference, for example, to the centre

of the whole galactic system; thus the geometrical centre forms a dynamic-

ally convenient jmint of reference to which the motion of the sun can be

related.

As we shall see later, the equations (4) are readily adapted, with the

addition of certain assumptions, to the practical determination of the solar

motion either from the proper motions alone or from the radial velocities

alone.

3* 12. HerscheVs investigation of the solar motion.

Sir William Herschel* was the first to investigate the direction of the

sun’s motion. As judged by modern standards,

he had at his disposal a very meagre amount of

observational information—the proper motions

of but thirteen stars, in all, were available when

he made his first attack on the problem. Let us

assume for the moment that each of these stars

is at rest with reference to fixed axes as defined

in the previous section and that the sun, 8,

alone is in motion, towards the solar apex

(Fig. 14). A star, X, will consequently appear to

have an equal linear motion, relative to the sun,

in the opposite direction XA
,
that is to say, in the

direction of the solar antapex. This apparent

motion of the star will have a component along

XB, perpendicular to the line of sight, and this transverse component will

* Phil. Tram. 73, 247, 1783; Collected Scientific Papere, i. 108, 1912.

Solar
Apex

5-2
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be observed as a proper motion along the great circle arc joining X to the

position of the antapex on the celestial sphere. It is easy to see, in this case,

that the amount of the proper motion varies inversely as the distance of the

star from the sun and directly as sin A, where A is the angular distance of the

star from the antapex. On the hypothesis stated, the proper motions of all

the stars in the group would be directed towards a definite point in the sky

(the solar antapex) which could be simply ascertained from the obser-

vational data. However, the hypothesis is very far from the truth and,

accordingly, the observed proper motion of a star is actually the com-

bination of the effect produced by the reversed solar motion* and by the

star’s individual motion (or peculiar motion) with respect to the fixed axes.

Nevertheless, the directions of the observed total proper motions should

bo expected to indicate a general convergence towards a particular point in

the sky. This was the argument advanced by Herschel, and with the data at

his disposal he placed the apex of the solar motion near the star A Herculis.

Let the observed proper motion of a star, X, be along the great circle

XY (Fig. 15) and let 6 denote the position angle PX Y\ let A be the angular

distance ofX from the antapex A, and x position angle ofA with refer-

ence to X. Also, let AB (^d) be the great circle arc drawn perpendicular

from ^ to X r. Then sin d = sin A sin (^— ;^). ( 1

)

We have similar formulae for the other stars. Knowing 6 for each star, we
have to determine a point A such that

the distribution of the values of d will

indicate the maximum degree of con-

vergency . Ifwe regard the angles (0 — x)>

calculated for an assumed position of

as of the nature of accidental errors,

we choose that position of A for which

Zd^ is a minimum, applying the usual

procedure in the theory of errors. In

Herschel’s time the theory of errors had
not been developed and the criterion he

applied in effect, although not expressed

in mathematical language, concerned

the choice of A for which Zd was a

minimum, the length d of the great

circle arc AB being reckoned positive in each instance.

Any method involving the use of formula (1) directly is inconvenient in

practice, as it involves a vast amomit ofcomputation; we shall subsequently

* The component along XB (Fig. 14) of the reversed solar motion gives rise to the pwraUactic

proper motion i the component along XC is the paraUactic radial velocity*
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derive other methods depending on the same basic idea and comparatively

easy to apply, however abundant the observational material may be.

^13. A simple method of determining an approximate position of the solar

apex.

The method to be described appears to have been first given by Russell,

Dugan and Stewart.* If we consider a large number of stars scattered over

the sky, it is clear that for stars on the same meridian as the solar apex the

general tendency of motion, so far as the proper motions are concerned, will

be in declination; consequently, for this right ascension we should expect

the number of positive values of to be the same as the number of negative

values. For stars in right ascension, say, 2^ greater than that of the apex,

the number of positive values of should exceed the number of negative

values, since the position angle of the antapex, towards which the general

tendency of motion takes place, for stars in this meridian is between 0° and
180°. Similarly for stars with right ascensions, say, 2^ less than that of the

apex, the number of negative values of should be expected to exceed the

number of positive values. Similar arguments apply to stars on meridians

in the neighbourhood of that of the antapex.

Let now iV^ and denote, respectively, the number of positive and of

negative values of p^ for stars lying between two meridians, say, apart.

Let P denote, algebraically, the relative preponderance of positive values

over negative values, so that

We can then find very easily, from the observed data, the values of P corre-

sponding to different mean values, a, of the right ascension. Drawing a

graph with the values of a as abscissae and the values of P as ordinates, we
readily find the two values of the right ascension for which P vanishes. That

value near which P changes from negative to positive is evidently the right

ascension of the apex, and the other is the right ascension of the antapex.

The two values should, theoretically, differ by 12^, although in any applica-

tion of the method this difference is not likely to be obtained exactly.

A similar procedure with the values of p^ leads to an approximate deter-

mination of the declination of the apex.

Fig. 16 is adapted from the results of an investigation by F. K. Edmond-

son,! based on the proper motions of 7602 stars in Schlesinger’s Catalogue

of Bright Stars; the ordinates are the values of lOOP, corresponding to in-

tervals of 1^ in right ascension. It wiU be seen that the right ascensions of

the apex and of the antapex are close to 18*^ and 6^ respectively. To fix the

* Astronomy, 2
, 669, 1927. t A.J, 41 . 143, 1931.
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right ascensions more accurately, Edmondson found the values of P, for

intervals of 5 minutes in the right ascension, for some distance on either side

of 6^* and of 18^^; and by drawing a straight line through the corresponding

points of the graph so as to fit the observations as closely as possible, the

right ascensions of the apex and antapex were found to be 1 8^ 13“^ and 6^ 3^

respectively. If we apply the condition that the difference in these right

Fig. 16

ascensions should be 12^, we may take the right ascension of the apex to be

18^ or 272°. The declination of the apex was found in a similar manner
to be + 33°*6. It is to be noticed that the final determination of the right

ascension of the apex depends only on stars within 30”^^ or so of the right

ascension of the apex and of the antapex; a similar argument applies

to the declinations. We add that this position of the apex is in very good

agreement with that found by more general methods which take account

of the proper motions of all the stars, irrespective of their positions on the

celestial sphere.
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3*2 1 . The method of Bravais.

Bravais * first considered the solar motion as defined with reference to the

centre of mass of the system of stars forming a selected group; but as stellar

masses were entirely unknown in his time he was later compelled, in the

application of his method, to suppose that the masses of the stars were all

the same. This procedure, as we have seen, is equivalent to determining the

solar motion with respect to the geometrical centre of the group—the

conventional definition of the sun’s motion.

We shall take, as the fundamental equations, the formulae (4) of section

3*11, namely:
= Ev-^N'yj~0, ( 1 )

in which, it may be recalled, (u, v, w) arc the components of a star’s hnear

velocity relative to the sun and, as we shall now assume, with respect to the

usual equatorial system of axes; also (^, ?/, Q are the components of the solar

motion, referred to parallel axes through the geometrical centre, and N is

the number of stars in the group.

Let r denote the heliocentric distance of a star and (/, m, n) the direction-

cosines of the heliocentric radius vector to the star referred to a parallel

system of axes moving with the sun. The heliocentric coordinates of the

star are then given by
X — Ir, = mr^ z — nr.

Also Z==cosacos5, m = sin a cos (5, n — sind. (2)

Then, relative to the sun, we obtain

X = etc.

or u — lr^-lp, w = hr-\-np, (3)

where p denotes the star’s radial velocity relative to the sun. Also

i = sin a cos S— /i^ cos a sin

m = //^ cos oc cos $— //^ sin a sin (J k (4)

]

In these expressions we shall assume that the unit of time is a year; con-

sequently, p^ and pf are, for the present, the components of the observed

proper motion expressed in circular measure. The formulae (1) and (3)

then give
= -Eir -Elp \

Ntj = —Eyhr — Emp}, (5)

= —Ehr —Enp j

LiouviUe's Journal^ 8, 435 , 1843 .
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or, from (4),

The Solar Motion 3-21

sin a cos 8 + Tr/i^ cos a sin — Elp

Ntj — — Er/i^ cos a cos S+ Zrju^ sin a sin — Emp
= — Er/ig cos 8 — Enp

(
6

)

These equations, (6), are the equations of Bravais. They involve the three

observable quantities and p and if, in addition, the heliocentric

distances of the stars are known the equations are sufficient for determining

the components of the solar motion and the direction in the sky in which the

sun is travelling.

3*22. Modification of the equations.

In the time of Bravais, the spectroscopic method of measuring radial

velocities had not even been foreshadowed; consequently, the equations (h)

cannot be used with anything more than a knowledge of the observed

proper motions—we leave over for the present the question raised by the

appearance of the stellar distances, r, in the equations. An assumption as

to the distribution of the linear velocities of the stars is evidently required.

We proceed as follows.

Multiply the three equations in (3) of section 3-21 by Z, m and n\ adding,

we obtain
p :=z lu-^- mv+ 7iw, ( 1

)

since + = 1

and li +mm 4- nh = (P + m^ 4- n^) = 0.
2 dt

Also, if R denotes the peculiar linear velocity of a star, in the direction

defined by the direction-cosines (Z, m, n), with respect to fixed axes, we have

simUarly E = lU+mV + nW, (2)

where (U, V, W) are the components of the star’s linear velocity relative to

the fixed axes. Hence, since U — etc., we obtain, from (1) and (2),

p = + (3)

Substitute this expression for p in (5) of section 3-2 1. Then

^E(l-P)-7]Elm-^Eln = -Eir-ElR ‘i

— ^Elm + Tj E(l—vP) — ^Emn = — Eihr —EmR r (4)

^Eln— rj Emn’\-^E(l-’n^) = —Ehr —EnR ]

These are accurate formulae.

We now introduce the assumption made by Bravais for utilising the

equations in association with the observed proper motions of the stars.

Assume that = SmR = ZnR = 0, (6)
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the summation extending over the group ofN stars. Now jR is the individual

or peculiar radial velocity of a star with reference to the system of fixed

axes and the equations (5) may be stated in the form that the sum of the

projections of the peculiar radial velocities in any given direction is zero.

The assumptions summarised in (5) form a natural corollary if the space-

motions ofthe general assembly of stars are distributed at random in accord-

ance Adth the single-drift hypothesis and if the group with which we are

concerned is a representative sample of the totality of stars. For, if we
consider a small area of the sky with stars, the contribution to the value

of provided by these stars is, taking I constant, lyn and, i? being
V JV^

now a random velocity, this sum tends to vanish; accordingly 2 ZJS may be

considered to be zero.
^

But the single-drift hypothesis does not actually represent the distribu-

tion of stellar velocities. As is well known, stellar motions are represented

almost equally well on the two-streams theory and on the ellipsoWal

hypothesis of Schw arzschild. In the first, the totality of stars is supposed

to be formed from two intermingled aggregations. If the number of stars in

each drift is the same, the geometrical centre of one aggregation will move
in a particular direction with velocity V relative to the geometrical centre

of the totality of stars, while the geometrical centre of the other will move
with velocity V in the opposite direction. This direction defines the axis of

preferential motion.

Consider now a number of stars in a small region of the sky and suppose

that they form a representative sample of the stars in general. There will

be a number of stars whose radial velocities relative to fixed axes will consist,

first, of a common part—namely, the projection of V in the direction of the

region—and second, ofthe peculiar radial velocities relative to the geometrical

centre of the drift or stream concerned. There will also be an equal nmnber

of stars belonging to the second stream and their radial velocities relative to

the fixed axes will consist of a common part, namely, the projection of — F

in the direction of the region, together with the peculiar radial velocities

associated with the stream. The numbers being equal, the contribution of

all the stars of the region to the sum ZIR may be expected to vanish. Thus,

the assumptions represented by (5) are in conformity with the two-streams

theory, with equal numbers of stars in the streams. If the numbers of stars

in the streams are not the same, say and Wg, the speeds and Fg, of the

streams relative to the geometrical centre of the totality of stars are still

in opposite directions and, since this centre is taken as the ‘^standard of

rest”, we have
n,V, = n^V,. (C)

Suppose now that the group of stars in a given direction of the sky contains
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numbers belonging to the two streams in the proportion of to the

contribution of the two aggregates to the sum 2JIR will again vanish by

virtue of (6) and of the random character of the radial velocities of each

stream relative to its own geometrical centre. We conclude then that the

assumptions (5) are in accordance with the two-streams theory in general.

The ellipsoidal theory gives a similar result as, in this theory, speeds of a

given amount are equally probable in each of two opposite directions. The

conclusion at which we arrive is that the assumption of Bravais, as repre-

sented by equations (5), is in accordance with the known distribution of

stellar velocities.

Formulae (4) then become

g2’(l

=

-Elr
j

-^Elm-^Tj E{1 —m^) — ^Emn —
(7)

-^Eln-rjEmn^^E{\-~n^)^~Enr ]

We shall now write ^ - X, ^ ~ T, ^
^

(8)

so that the components of the solar motion are ( — X, —Y, — Z)\ thus the

motion ofa star relative to the sun, ignoring its individual or peculiar motion,

has components (X, F, Z).

Using (8) and inserting the values of /, m, h given in (4) of section 3*21, we

write (7) as follows:

--AX-^cY -\-bZ — Erpi^miOi cos <y -h Xr/f^ cos a sind'

cX-BY^-aZ — —Er/i^^ cos a cos 5 -j- sin a sin(^ K
bX + aF— CZ = — cos 8

in which ^=X(1— Z^) = X(1 — cos^acos^^)'

jS = X(1 — m^) = X(1 — sin^a cos^c^)

(7=X(1— =EcoB^d

a = Emn = Xsin a sin 8 cos 8

b = Enl = X cos a sin 8 cos 8

c = Elm = X sin a cos a cos^ 8,

.(9 )

(10)

The formulae (9) are those to be used in determining the solar motion from

the observed proper motions of the stars. It is to be noticed that the dis-

tances, r, enter into the right-hand sides of the three formulae (9); we shall

consider this feature more fully later.

If the stars with which we are dealing in this problem of the solar motion

are numerous and uniformly distributed over the sky, it is easily seen that

a = 6 = c = 0 (11)

and that A, B and C each tend to fX, where N is the total number of stars

considered. For example, we can find the value of C as follows. The number
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of stars per unit area of the sphere is Nj4m and therefore the number in the

zone between the parallels 8 and 5 of declination is

N— 27t cos S . dS.
4tn

Hence C = Icoa,^S^2 ~ cos^ d.dS=lN.
Jo ^

The values of A and B are easily obtained in a similar manner.

These results, however, are most simply derived as follows. From the

first three formulae of (10),

A + B-^C = 2N,

and, for uniform distribution of stars over the sphere, A — B — C since the

choice of axes has no special significance. Hence

A=. B=^C ^ IN.

3-31 • Airy's m.dliod.

In deriving the formulae for the solar motion, with the components of

the proper motions as the observational data, by Airy’s method* we shall

first assume that each member of the group of stars, to which the solar

motion is to be referred, is at rest relative to the geometrical centre. Let

{x, y, z) denote the coordinates of a star, measured from the sun at a given

epoch T, with respect to the usual equatorial system of axes, the equinox and

equator being specified for this epoch r; these axes are accordingly con-

sidered to be fixed. Let r be the corresponding heliocentric distance of the

star; then x = Ir, y = mr, z — nr,

where (Z, m, n) are the direction-cosines ofthe hehocentric radius vector to the

star at the epoch r; Z, m and n are given by (2) of section 3-21. Taking, as in

the previous section, (
— X, — Y, — Z) to be the components of the solar

motion relative to the given fixed axes (we take the unit of time to be one

year), we see that the coordinates of the star, relative to the sun, at the end

of a year—that is, at time (r-f 1)—are

X + lr, Y + mr, Z + nr.

Ifri is now the corresponding heliocentric distance of the star and (Zj, n^)

are the direction-cosines, we have

Z-}-Zr = Ziri, Y + mr = m^r^, Z^-nr^n^r^, (1)

where Z^ = cos cos = sin cos
<^i> Wi = sin<yi, (2)

(Xi and 8^ being the right ascension and dechnation of the star at time (r -f 1

)

with reference to the equatorial system of axes at time r. The differences,

* Memoirs, R.A.S. 28
,
143 ,

1859 .
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(aj — a) and {S-^ — 8), are the components of proper motion resulting from

the solar motion; we write

“i-a = -P». 8^-8 = Ps.

From (2) and (1), tanaj = ^ = ,

frj -A. “}" Lt

which may be written, by virtue of (2) of section 3-21,

, ,
l+Yjmr

tanai = tana.^^-^.

(3)

(4)

Now X/r and Y /r are small quantities—for the nearest star r is approxi-

mately 4. 10^3 km. and, as the solar motion is about 20 km. per second,

X and Y are not greater than 6.10® km. per annum—hence, neglecting all

quantities of order smaller than Xjr or Yjr, we obtain from (3) and (4)

from which

tan a -h sec^ a . = tan a
\ Ir mr]

X . 7
sin a H

—

r r
cos OL — P^ cos (5)

Again, from (2) and (1),

+ (X-\-lrY + {Y + mrY
cot 0^ — 2

— --
,

nl {Z-^nry

from which, on keeping small quantities of the first order only,

o 2J^ D Z^ + m^4-2?Z/r-f2m7/r
cot^ - 2 cot cosec^ d,P^ 5

— —
n^ + 2nZlr

2Xcosa 27sina
= cot2 5 1 + -f

-
[ r cos 0 r cos o

X Y Z
whence cos a sin 5 sin a sin 5+— cos 5

r r r

rsin
'

(6)

The formulae (5) and (6) have been derived by the procedure adopted by

Airy; they are essentially equivalent to the formulae (3) and (4) of section

1-33. We have to remember that in (5) and (6), if we express r in kilometres,

the unit for X, 7 and Z is the velocity of 1 km. per annum and that P^ and

are the components of the annual parallactic motion expressed in

circular measure.

We now consider the general problem in which the observed proper motion

of a star is compounded of the parallactic motion and the angular motion

resulting from the star’s individual linear motion with respect to fixed axes,

which we shall suppose, as before, to be defined with reference to the geo-

metrical centre of the group of stars under consideration. Let {u,v,w)
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denote the linear components of the individual velocity of a star at X
(Fig. 17), the axes being chosen so that

the t^-component is parallel to the

equator and perpendicular to the me-

ridian, the y;-component is tangential

to the meridian at X and the 24;-com-

ponent is radial. The last component

has no effect on the proper motion of

the star. The unit of time being a year,

the 'Z^-component gives rise to an

annual angular motion, ujr, along the

parallel of declination at X. Hence, if

and denote the observed annual

proper motion in right ascension and

declination (expressed in circular

measure), we have Fig. 17

u
cos cos (S + “ .

Similarly,

Equations (5) and (6) now become

X , Y u~ sin a -h— cos a + - = cos (

r r

X Y Zi V
cos a sin 8 sin a sin 5 4-— cos 5+ - = // .

T T rr
•( 7 )

.(8 )

3 *32 . The corrections to the proper motions dw to errors in the precessional

and other constants.

The accuracy of the observed proper motions derived from meridian-

circle observations depends, inter alia, upon the accuracy of the precessional

constants. Due to precession the right ascension of a star increases at the

annual rate,/, given by*

/ = ;\;co8e— A-f ;\;sine sin a tan5= m' — A-f^isina tan(J, (1)

where x is the luni-solar precession, A is the planetary precession and e is

the obliquity of the ecliptic. In reductions of star places, Newcomb’s values

of these constants are employed and, although these are believed to be of a

high order of accuracy, small errors can have a considerable effect on the

values of the proper motions derived in this way.

Let (a, 8) denote the equatorial coordinates of a star referred to the mean

* See, for example, the author’s Spherical Astronomy (2nd Edn.), p. 238, 1936.



78 The Solar Motion 3-32

equinox and equator for epoch /qj and (a^, the coordinates referred to the

mean equinox and equator for epoch + is to be supposed that a
and are obtained from meridian-circle observations near Iq and + 1, the

actual interval between the observations being We have, due to pre-

oessional and proper motion effects alone,

from which //^ = ~~—

-

— (2)
h h

The observed value oi is thus found from (2) using Newcomb’s constants

in the expression for /in (1). If, however, m'-f dm', A-fdA and n~\-An are

the true values of m', A and n respectively, the true value of the right ascen-

sion component of the j)ropcr motion, which we denote by {ji^), is given by

(/^a)

-a

h h '' h

where d/ = dm' — zlA -f d?^silla tan(^. Hence, from (2) and (3),

.(3)

(/O • (4)

As the observations have been supposed to be made near and /q + ^

are nearly equal and, as in (4) d/must be regarded as an extreme!}^ small

quantity, it will be sufficient to write t = tj, so that

(5)

Also, the true value will be in error due to an erroneous value of the motion

of the equinox; if the error of the latter is de, we have finally

(Ma) = i^-)

which we write in the form

{/ij = — d/b — dTisina tantf, (7 )

where dA: = dm' —dA — de. (8)

Thus on the right of (7) in section 3*31 we have to write in place of jii^ cos 5

— Ak —dn sin a tan S) cos S,

Again, ^

where g = n cos a,

and we obtain in a similar way, denoting the true value of the proper motion

component in declination by {jUg),

(/If) = /If--An coa a. (9)

We have then to replace /if on the right of (8), section 3*31, by /if —An cos a.
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The equations for determining the solar motion are now, adding and

—the accidental errors of observation in parallel and in declination

—

X Y u— — sin a + y cos a-\-Ah cos d-\-An sin a sin ^ - 4- cos 5, (10)

— ycosasin -^sina sin5+ “ cos<S-l-d?icosa + ^-f (11)

3’33 . Application of Airy's method ; first hypothesis.

The complete solution of equations (10) and (11) of the previous section

involves the determination of the quantities X, T, Z, Ak and An from the

observed values of the components of proper motion; we shall suppose for

the moment that the distances, r, are known. We require also definite in-

formation concerning the distribution of the individual linear velocity com-

ponents, u and V, We can make two hypotheses: first, that the values of

ujr and vjr, which are angular motions expressed in the same way as

/i^cosS and are of the nature of accidental errors; second, that the

distribution of u and v is associated in a definite way with the random

motions of the stars forming the group under consideration.

In the first hypothesis, we can then suppose the accidental errors ujr

and combined
;
this is equivalent to omitting ujr and vjr from the equations

and regarding the errors 6^, now as the combined accidental errors with

probable errors depending on those of ujr and and of vjr and

The equations can then be solved by the method of least squares. For

example, (10) of section 3*32 gives rise to the four normal equations:

XX^sin^a— Y X^sinacosa — zlA:X-sinacos^

— dnX-sin^a sin# = — X-//,,sina cos^,
r r

—XX \ sin a cosa+ Y X^jCos^a-f ZlAX-cosa cos 5

+ ZlnX-sina cosasin^ = cosa cosS.
r r

— XX--sina cos 5+ Y X™cosa costf+ dA^Xcos^^
r r

+ /lnXsina sin 5 cos 5 = X//.^ cos^^,

— XX-sin^a sin^-f- Y X~sina cosa sin^+ zl/rXsin a sin<y cos^
r r

i-AnZsin^ a sin^ d = Zp^ sin a sin S cos S.

In a similar way the equation (11) of section 3*32 gives rise to four normal
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equations involving X, Y, Z and An. The solutions can then be eflfected in

the usual way.

^ However, the hypothesis is hardly likely to be valid for stars at varying

distances as it implies greater linear peculiar velocities at greater distances

from the sun. Of course, if the various members of our group are at nearly

the same distance from the sun, the hypothesis is not open to the same

objection. But in statistical investigations of the solar motion we have,

generally, insufficient information about the distances of the stars and,

actually, in dealing with faint stars, whose i)roper motions are derived

photographically, direct information concerning distances is almost wholly

lacking; in this case, the distances may be distributed between compara-

tively wide limits, so that the objection to the hypothesis remains.

3*34. Application of Airy's method: second hypothesis.

We consider now the hyj)othesis that the irregularities in the ])roper

motion components are entirely due to the random linear motions of the

stars. Omitting and we write the equations (10) and (11) of section

3*32 as

—X sin a + T cos a-^rAk cos 8 -f rAn sin a sin ^ cos

—X cos a sin 5— Y sin a sin 5 + Z cos 8-^ rAn cos x^-v ~ r/i^.

Suppose that X, T, Z, u and v are expressed in kilometres per second,

that Ak, An are expressed in seconds of arc per annum and that,

instead of the distance, r, we use the parallax, p (in seconds of arc); then

the equations become

— Xsina+ Y cosa + ZlJb. -cos5
P
K K
siiiasin^-h?^ = - p„eo^8, (1)

P P

—X cos a sin 8—Y sin a sin 5+ Z cos 8

K K
\-An cos a + V = - (2)

p p '
'

where /c = 4*74.

We now form the normal equations in the usual manner (we take KAk
and KAn as the unknowns instead oiAk and An). Remembering that u and v

are random in character, the four normal equations derived from (1) are:

XiTsin^a— Y Xsina cosa — /cJfcZ-sina cos(J
P

— KAnE- oLBinS = — /cX-z^-sinacos 8,

P P
(
3 )
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—XE sin a cos a-{'YE cos^ a-{'KAlcE- cos a cos d
P

+ kAuE

-

sin a cos a sin S — kE ^ cos a cos S, (

p 'p
^ '

—X Z* sin a cos <^+ F Z* - cos a cos 8 4- kAUE- - cos^ S
p p p^

kAuE^ sin a sin S cos S = KE^iirr S, (pi p^r ^

—X E ^ sin^ a sin ^ 4- F Z" - sin a cos a sin 8 -\~KAke\ sin a sin 8 cos 8
p p^

-{-kAuE - „ sin‘^ a sin^ 8 ^ kE
^

sin a sin 8 cos 8 (pi
2^

The four normal equations derived from (2) are, similarly,

X E cos^ a sin^ 8+ YE sin a cos a sin- 8— Z E cos a sin 8 cos 8

— kAuE- cos- a sin 8 — ~ kE- jif. cos a sin (

V P

X Xsin a cos a sin^ 8 4- F Z'’ sin^ a sin^ <^ “ Z Xsin a sin 8 cos 8

— kAuE- sin a cos a sin 8 = —kE- //.^sina sint^, (8)
p p^^

—XE cos a sin 8 cos 8 — YE sin a sin cos ^ 4- ZZ cos^

4- kAuE~ cos a cos 8 = kE - cos 8, (9)
P P

—XE^ cos- a sin 8— FZ - sin a cos a sin ^ 4- Z Z- cos a cos 8
p p p

4- a:z1w-Z“ cos^a = /cZ-^/^^cosa. (10)
P P

Combining (3) and (7), we have

X Z" ( 1 — cos^ a cos^ 8)—Y Zsin a cos a cos- 8-- ZE cos a sin 8 cos 8

— KAkE~ sin a co&8— KAnE- sinc^
P P

= —kE- /I„ sin a cos 8— kE-ii^ cos a sin 8 (11)
p 2^

Combining (4) and (8), we have

— XZsina cosa 008^54- FZ(1 — sin^a cos'^8) — Z Esina sin<J cos5

4- AcJfcZ- cosa cosS = kE-il^cosoc cos 8— k E ~ a^sina sin<^.

p P P
(12)

SSD 6



3*3482 The Solar Motion

Combining (6) and (10), we have

— sin ZE- cos a cos S + kAIcE sin a sin S cos d
P P P^

^KAnE-x{l—sin^a cos^S) = kE —u^sinoc sin^ cos^ + zcZ’-^/^^cosa.

.(13)

The equations (II), (12) and (13) together with (5) and (9) are the five

combined normal equations from which X, T, Z, KAk and kAu can be found.

Comparing these equations with (9) and (10) of section 3*22, we see that

we have reproduced the equations of Bravais, with the addition, of course,

of the terms in kAU and kAu,

The group of equations (11), (12), (13), (5) and (9) cannot be solved unless

the various values of the parallax, p, are known. In default of this infor-

mation, it is customary to restrict the choice of stars to be used in the

equations by considering only stars of a limited range of magnitude and by

omitting stars with very large ])roper motions. Other things being equal, a

large proper motion suggests that the star is comparatively near. It is then

assumed that the remaining stars have the same parallax Pq, and writing

Xi for “X, for ~ Y and Z^ for -- Z, the equations of condition, (1)
K K K

and (2), are (omitting the random components u and v)\

— XiSina + TiCOsa-f/d/^cos^-fZlrisina sin# = /^^cos#, (14)

— X^cosa sin#— Fj sin a sin # -j- cos # -1- zl cos a = (15)

from which the normal equations are formed in the usual way, the trigo-

nometrical factors being the same as in (11), (12), (13), (5) and (9).

These equations, (14) and (15), we shall call Airy’s equations; with or

without the terms in Ak, An they are the equations generally employed for

determining the solar motion when the proper motions furnish the obser-

vational material.

3*35. The solution of L. Boss,

The equations (14) and (15) of the previous section were used by L. Boss*

for the stars of the Preliminary General Catalogue, Stars with annual proper

motions greater than 0"*2 were omitted. The mean magnitude was 5*“*7.

Boss’s solution must be regarded as the best that has hitherto been obtained

by Airy’s method owing to the high accuracy of the proper motions of the

P.O,C, stars, and the results are likely to be accepted as the standard values

for some time to come. The resultsf are in our notation (Boss denotes the

A,J, 26, 95, 111, 187, 1910. t p. 112.
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components of the solar motion by (X ,
Y, Z) whereas we have denoted them

by ( -- X, — F, — Z), and he also takes the century to be the unit of time)

:

Xi = ~0"*0003, Fj = -f 0"*0318, = -~0"-0217 (1)

If iif = (Xf+F2 + Z2)i, (2)

the coordinates of the solar apex (a^, Sq) are found from

M cosaQ cos^Q = -f- 0"-0003,

Jfsinao cos^o = ~0"*0318,

ilfsin^o =H-0"0217,

whence ao - 270°*5,
<^o
= + 34:°*3. (3)

Also M = 0"*0385, which is the annual parallactic motion for the stars at

an angular distance of 90'' from the solar apex, the parallax of the stars

being From the results obtained, we can easily derive the value of

used implicitly in the equations. We have

etc.
K

and consequently the solar speed, is given by

Vo= (X^+Y^+Z^)i = -M. (4)

Po

Since X, F and Z are expressed in km. /sec., is expressed in the same way.

If we assume that Vq = 19*5 km. /sec. as obtained from a study of the radial

velocities of the stars, it is then found that

p^ = 0''-0094. (5)

The numerical values of Ak and An, as obtained by Boss, may also be

noted; they are

Ak = - 0"*0037, An 0"*0034,

the year as before being taken to be the unit of time. From various con-

siderations, outside the scope of this book, concerning the values of AA

and Ae (see section 3-32), the definitive values of Ak and An were taken by

Boss to be JA; = -0''-0032, = +0'' 0023. (C)

Hence the corrections to the annual proper motions of the P.G.C. stars are,

from (6):

for +08*00021 — 08*00015 sin a tan 5, (7)

for — 0"*0023cosa. (8)

Further corrections relating to the system of Boss stars have been sub-

sequently obtained by Raymond;* these have been based on more recent

meridian observations.

* AJ. 36 , 129, 1926 ; 37, 88 ,
1927 .

6-2
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3*41 . The solar motionfrom radial velocities.

Denoting, as before, the components ofthe solar motion by (— X, — F, — Z)

in km. /sec., we see that, relative to the sun, the star will be displaced radially

away from the sun with the velocity

Pp = lX +mY + nZ,

where (I, m, n) are the direction-cosines of the line joining the sun to the star

and is the radial component of the parallactic motion. The observed

radial velocity will also include the peculiar radial velocity R referred to

fixed axes through the geometrical centre of the group of stars considered.

In addition, a constant term K, representing any systematic peculiarity

in the radial velocities—such as would result from incorrect wave-lengths

of the lines in the comparison source—^is generally added to the equation

of condition which then takes the form, on inserting the values of /, m and

n as given in (2) of section 3*21,

X cos a cos 5 -f F sin a cos Z sin S+K E = p, ( 1

)

in which p is the observed radial velocity (relative to the sun) in km. /sec.

Assuming that we may regard the peculiar radial velocities, E, as having

the characteristics of accidental errors, the formula (1) leads to the four

normal equations:

XXcos^a cos^(y-f F Xsina cosa cos^ -f Z 27 cos a sin^ cos^

-fX 27 cos a cos ^ = 27/9 cos a cos (2)

X27sina cosa co8^5-f- F27sin2a cos^^-f- Z27sina sin(^ cos5

-f X27sina cos^ = 27/9sina costJ, (3)

X27cosa sin5 cos5-f F 27sina sinS cos 5
-f Z 27 sin^ (5

-f X27sin5 = Z’/>sin5, (4)

X27co8a cos^-f F 27sina co8d-\- ZXsinS+NK = 27/o, (5)

where, in (5), N is the total number of stars under consideration.

Denoting the solar velocity by Vq and the coordinates of the solar apex by

(ao, Sq), we have
Vq cos aQ cos <^0 = " *^1

Vq sin Uq cos (Jq = — F >

,

Fosin^o

(
6

)

from which Vq, aQ and Sq can be calculated when the values of X, Y and Z
have been derived from the normal equations (2)... (5). It is to be remarked

that the solar velocity, Vq, is obtained in km./sec.
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3 *42 . The solar motion determined from the radial velocities according to the

method of Bravais,

We begin with the formulae (4) of section 3-11, writing the components

of the solar motion as
{
— X, — Y,—Z) relative to fixed axes whose origin

we may assume to be the geometrical centre of the group of N stars; the

equations are:

2u-NX = 0, ^v-NY = 0, =
( 1 )

N N

u, V and w being the components of

a star’s linear velocity with respect

to the sun and the usual system of

equatorial axes OX, OY, OZ (Fig. 18).

But we can describe the linear velocity

of a star at S by the radial velocity p
and rectangular components P and Q
in the tangent jfiane at S, the direc-

tion of P being perpendicular to the

meridian and Q tangential to it. The

components p, P and Q are relative

to the sun.

Now P is composed of a parallactic

component, p, and a component, p\
due to the star’s individual velocity relative to the geometrical centre, so that

P = P+p'. (2 )

Similarly Q = q^q\ (3)

where q is the parallactic component along the tangent to the meridian at

S and q' is the component in this direction of the star’s individual velocity.

The direction-cosines of P (or ofp) are

— sin a, +cosa, 0

and the direction-cosines of Q (or of q) are

— cos oc sin 8, — sin a sin 8, -f cos 8.

Also the direction-cosines of p are

+ cos a cos 8, -f- sin oc cos 8, -f sin 8,

Hence p = —X sin a + F cos a, (4)

q =: — Xcosa sin5— Y sin a sin (J -I- cos # . (5)

These equations are essentially the same as (7) and (8) of section 3*31.

N

z
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Now u is the sum of the projections, along OX, of P, Q and/), and therefore

2^ = — P sin a — Q cos oc sin S + p cos oc cos S.

Hence from (2), (3), (4) and (5) we obtain

n — — p' sin a — sin a( —X sin a -f- Y cos a) — q' cos a sin S

— cos a sin d{ —X cos a sin ^— F sin a sin S-\- Z cos S) + p cos a cos d.

( 6 )

Tlie first equation of (1 )
can be written as

= 0 .

.V

Hence inserting the expression for u, given by (6), in this formula, we obtain,

after some simplification,

XX cos^ a cos'-^ -h y 2" sin a cos a cos^S+ZX cos a sin 8 cos 8

q-Xp'sina + Xg'cosa sinr^ = 2/) cos a cos^.

We assume now that the sums of the random tangential velocity com-

ponents in any small area of the sky vanish and, accordingly, we are left

with the equation

X X cos^ a cos“ <y+ y 2sin a cos oc cos- 8

-h ZX cos oc sin 8 cos 8 — Xp cos oc cos 8 ( 7

)

Let us examine more closely the assumption which we have just made.

Consider a small region of the sky at S in which there are n stars; we cun

write Xp'sina as sinaZp'. If the n stars form a representative sample of

the stars in general, we should expect the sum ^p' to vanish, or tend to
n

vanish. This is evident if the components of the individual motions are of

a haphazard character as in a single drift and it is also true for star-streaming.

In the latter case we shall assume for simplicity that the velocities and

of the two drifts, relative to the geometrical centre of all the stars belonging to

the two drifts, are equal and opposite; this implies that there are equal

numbers of stars in the two drifts and we shall also assume that this holds

for the representative sample of n stars in the small region at S under con-

sideration. Taking the \n stars belonging to drift I, the component of a

linear velocity perpendicular to the meridian at S consists of the projections

of the drift velocity in this direction together with the random com-

ponent relative to the geometrical centre of the drift. Similarly, taking the

\n stars belonging to drift II, the component of a linear velocity perpen-

dicular to the meridian at 8 consists of the projection of the drift-velocity Fg

in this direction together with the corresponding random component. But

the direction of is opposite to that of consequently, since = 1^, the

systematic parts of disappear and the remaining random parts ensime,
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under ideal conditions, that ^p' — 0. The argument is similar if the drift-
n

velocities and are different (relative to the geometrical centre of the

whole assembly of stars), for in this case the numbers of stars in the t\\ o

drifts are inversely in the ratio of the drift-velocities.

It will be noticed that, with the exception of the K term, the equation (7)

is the same as equation (2) of section 3*41. The latter, being a normal

equation, was derived on the assumption that the peculiar velocities had

the characteristics of accidental errors.

By considering the equations

Ev~~NY = 0 and Ew —NZ — 0
,

we obtain the equations (3) and (4) of section 3-41—with the exception, of

course, of the K term.

3'43. Observational results from the radial velocities,

A fairly recent determination of the solar motion from radial velocities,

based on a homogeneous set of observations, is that of W. W. Campbell and

J. H. Moore.* The measures were made at the Lick Observatory and at the

Lick southern station at Santiago, Chile. After excluding stars belonging to

moving clusters and also 37 ‘Tiigh velocity stars”, 2148 stars were available

for use in the general solution. In this investigation, the criterion adoi)ted

for a ‘^high velocity” star is as follows; assuming that the solar motion is

20 km./sec. and that the apex is at r.a. 270"", declination -1-30®, the paral-

lactic component is found for each star; if exceeds GO km. /sec.,

where p is the observed radial velocity, the star is classed as a high velocity

star and is accordingly excluded from the equations. It has been foundf

that the high velocity stars have systematic motions towards one hemisphere

of the sky. We shall discuss this group of stars in a subsequent chapter.

The 2148 stars were divided into 94 groups depending on their position

on the celestial sphere and the mean was taken for each region. Thus there

were 94 equations of condition of the type of (1), section 3-41, and these

were weighted according to the number of stars in each region. The results

are:

ao == 270®-6, ^0 = + 29®-2, Fq == 19-7 km./sec., Z = 4- 1-3 km./sec.

This position of the solar apex thus differs by about 5® from the position

derived from the proper motions; the difference, it should be noted, is almost

entirely in declination.

Lick Publications, 16
,
1928.

t Adams and Joy, Ap. J. 49 , 179, 1919; Strdmberg, Ap. J. 66, 265, 1922.
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The results obtained by Smart and Green* from the radial velocities of

3683 stars taken from Schlesinger’s Catalogtic of Bright Stars

^

1930, are

Uq = 267''0, Sq = +32'^-0, Vq = 19*5km./sec., K = 4- 0*8 km. /sec.

There is a significant increase of about S'" in the declination of the apex.

The fact that the K term is non-vanishing—a zero value is to be expected

on the hypothesis ofrandom motions or of either kind of preferential motion

—implies, from the strictly kinematical point of view, that the group of

stars with which we are concerned is expanding at a mean rate of about

1 km. /sec. But when the 0 and B type stars are alone considered, the value

of the K term from Cam])bell and Moore’s results is about -f 5 km. /sec.

A similar result is found in the investigation of Smart and Green.* Also

the contribution to the K term made by the other spectral classes is com-

paratively trifling and well within the limits of accidental error. Thus the

incidence of a non-zero value for the K term is to be attributed entirely to

the stars of types O and B.

The kinematical explanation for the existence of the K term was always

received with caution as it was realised that small systematic errors in the

adopted laboratory wave-lengths used in the measurement of stellar spectra

could adequately account for the apparent phenomenon. Part ofthe K term

for the 0 and B stars (about -f 1 to +2 km. /sec.) can be attributed to the

gravitational displacement of the spectral lines towards the red end of the

spectrum as predicted by the relativity theory and this displacement is of

appreciable amount only in the case of the O and B type stars.f It has been

stated by the authors of the paper just quoted that the gravitational dis-

placement can account for the whole of the K term—its value they reduce

to about + 2 km./sec.—but their arguments are erroneous. J Making allow-

ance for the gravitational displacement, we find that there is a residual

K term amounting to +3 or 4-4 km./sec. Whatever the final physical or

kinematical explanation of the K term may be, it is important to preserve

it in the equations of condition as it represents a systematic tendency,

perhaps real or perhaps spurious, of the observed radial velocities to be

larger algebraically than they should be on any of the usual hypotheses as

to the distribution of stellar velocities.

3*44. Solar nmtion and spectral type.

The numerical results quoted in the previous section for the solar motion

are based upon the radial velocities of all spectral types (Smart and Green

omit the O type stars from their statistics), and the solar motion, it must be

* W. M. Smart and H. E. Green, M,N. 96, 471, 1936.

t See the calculations of J. S. Flaskett and J. A. Pearce, M.N. 94, 679, 1934.

j W. M. Smart, M.N. 96, 668, 1936.
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remembered, is defined with reference to the particular group of stars con-

cerned. When the solutions are made for stars of a single spectral class (e.g.

for stars of type B) alone, the numerical results show certain characteristic

differences. We take the investigation (Zoc. cit.) of Campbell and Moore as

typical in this connection. Later researches may, and probably will, produce

small modifications in the numerical results, but it is generally accepted that

the principal features are clearly established and represent a definite corre-

lation between motion and spectral type. As regards the position of the ax^ex

derived from groux^s of stars of different spectral type the variations from

the position (270", -h 30") are probably of an accidental nature, due in some

measure to the comparatively small number of stars in each sx)ectral groux^).

Assuming that no BX)ecial significance need be attached to such variations

and taking the position of the solar ax)ex to be (270", -f 30") for each spectral

groux3, the eciuation of condition becomes

Vq cos X +K ^ p,

where A is the angular distance of the star from the antax)ex (we omit the

peculiar velocity which, as before, is assumed to have no effect in the

normal equations). The following table due to Camx)bell and Moore {loc, cit.)

exhibits the results for the main sx)cctral subdivisions.

Table 10. Solar motion {Campbell and Moore)

Average

Spectral class Number
of stars

Vo
(km./sec.)

K
(km./sec.)

residual

velocity
(km. /sec.)

B{Oe5-B5) 284 22-7 + 4-9 8-7

A(B8-A3) 500 18-6
i

-f 1-7 9-9

F (A5-F4) 199 19-7
i

4-0-3 12-5

G {F5~G4) 244 18-6 1
-0-2 14-8

K(G5-K4) 687 18*0 i + 0-3 15-3

M (K5-Mb) 2,34 22-

1

+ 0-7 16-1

B to M 1 2148 19*7 + 1*3 —

The last line gives the results for all stars of 8X)ectral types from Oe5 to

Mb and corresponds to the general solution.

The princix)al features of the table are, first, the much greater value of

the solar motion with reference to the group ofB type stars and to the group

of M type stars than for the remaining groups A, F, G and K; second, the

large value of the K term for the B type stars as compared with the almost

insignificant values derived for the other spectral classes; and third, the

unmistakable progression of the average residual velocities from type B
towards type M. The average residual velocity is obtained by removing

from each observed measure the parallactic component l^cosA and the
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value ofK and forming the mean from the residuals without regard to sign.

This procedure is greatly facilitated by the use of special methods among
which may be mentioned those of Dufton* and of Pearce and Hill.t

In the following table (Table 11), the results obtained by Smart and GreenJ

are shown. The solutions were made according to galactic zones and in the

table and denote the galactic longitude and latitude respectively of

the solar antapex found for each spectral class (Type B means Bl to B9 and

so on).

Table 1 1 . Solar motion {Smart ami Green)

Hpectml Number Vo K Oo f/o

class of stars (km./hoc.) (km./hoc.)
I (degrocs) (degrees)

B 645 22-4 + 4-7 209-9 -22-5
A

1

742 17*1 + 0-0 193-5 -28-5
F '

523 18-1 - 0*6
1

194-8 -32-4
G 433 17-2 -10

1

205-2 - 17-8

K 1118 19-7 -0*2 205-4 -21-8
M 222 19-8 + 0-0 220-2 -24-1

A to M 3038 18-2 -0-2 202-2 -24-8
B to M 3683 19-5 + 0-8 204-6

i

-24-8

It will be noticed that in Table 11 the solar motion with respect to the

M type stars is not so conspicuously large as in Campbell and Moore's results.

The penultimate line shows that the K term is practically zero for stars of

spectral classes A to M and that it is a phenomenon associated with the

B type stars alone.

3 *45 . The relationship between absolute magnitude and linear velocity.

Let us first consider the space velocity of a star relative to the sun. Its

components {u, v, w) with respect to the usual equatorial system of axes

are (see section 1*33):

u = p cos a cos ^ ~ sin a cos d + Ps cos a sin 5),

V = prnicc cos d+ “ {/^a ^ ^“ ^

w = psin(y4- -7/^cos(^,
P

where p is the observed radial velocity, p is the parallax and k = 4*74.

If ( — X, — y, ~ Z) denote, as usual, the components of the solar motion,

Vq, we have

—X = T^cosao cos^o, — T = I^sinaQ cos^q, — Z = l^sin^Q.

* M.N. 92, 688, 1932.

t Publ. of the Dominion Astr. Obs., Victoria, 6, No. 4, 1931.

t M.N. 96, 471, 1936.
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The components of a star’s space-velocity relative to the geometrical centre

are then u — X, v— Y, w — Z, from which the space-velocity C7, given by

C7 - {(2^
-

-f - 7)2 Z)2}i,

can be readily found from the observational material and the assumed
values for the solar motion, and the solar a])ex {xq,8q). We shall refer to

U as the absolute velocity.

Owing to the great increase in the number of measured parallaxes,

especially by the spectroscopic method, it is now possible to obtain a suffi-

cient amount of material for such statistical investigations as that on the

correlation of absolute velocities with absolute magnitudes. Among such

investigations may be mentioned that of Adams, Stromberg and Joy,* one

definite result being that the average absolute velocity increases by about

3 km. /sec. for an increase of one magnitude on the absolute magnitude scale.

It is to bo noted, however, that as the observed parallax is used for deter-

mining both the absolute magnitude and the absolute velocity, these two

latter quantities are not wholly independent; consequently, it is preferable

to use a method which does not involve the parallax in determining the

absolute velocities. This can only be done by means of the radial velocities

alone. Removing the parallactic component from the radial velocities we
obtain the absolute radial velocities referred to fixed axes and it is these

radial velocities which we wish to correlate with absolute magnitude and

also with spectral type. The following results, shown in Table 12, have

recently been obtained by B. Boss,t using only stars found in Schlesinger’s

Catalogue of Bright Stars, 1930 : the parallaxes were taken from this catalogue

and the radial velocities from Mooto's General Catalogueof Radial Velocities.X

Table 12. Mean absolute radial velocity {km.jsec.)

Absolute
magni-
tude,M

Spectral tyjx^

B A F G K M

-1-5 7-7 9-4 12-1 ( + 1-7) 12-0 (-0-4) 14-2 (-0-3) 16-0 (4-0-4)

~0-5 8-9 11-5 13-7 (4-1-7) 14-3 ( + 0-2) KM (0-0) 20-8 (4-2-6)

-f 0-5 7-0 12-0 15-2 (4-1-5) 14-4 (-1-3) 17-0 (-0-8) 15-9 (-3-9)

-Hl-5 — 1J-] 12-7 (-2-6) 17-4 (0-0) 20-3(4-0-9) 18-4 (-3-1)

-f 2-5 — 8-7 15-4 (-1-6) 20-1 (4-M) 20-4 (-0-7) —
4-3-5 — 14-3 (-4-3) 23-8 (4-3-]) 29-7 (4-7-0) —
+ 4-5 — — 20-0

( + 0-3) 22-3 (0-0) 21-3 (-3-1) —
4-5-5 — — — 25-4(4-1-4) — —

The table shows that the absolute radial velocity, R, increases on the

whole with absolute magnitude, M, and spectral class between F and M.

An empirical formula is suggested, to represent the facts presented by the

table, namely, R = A +xC^ MD,
* Ap. J. 54, 9, 1921. t 44 , 182, 1935. t ^8, 1932.
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where C and D are constants and x a number attached to a spectral

type on the assumption that the spectral series is linear; thus for types

B, A, F, G, K, M, the corresponding values ofx are taken to be — 2*5, — 1*5,

— 0*5, + 0*5, + ] *5, -f 2*5. A least squares solution of the equation yields

A - + 13-88, (7 = +2-05, i)-+l-65.

The quantities in parentheses in Table 12 are the differences between the

observed quantities shown in the table and the corresponding values of R
calculated by means of the above formula. The value of D shows that for

any spectral class or for all the classes combined the absolute radial velocity

increases by 1-65 km. /sec. for each unit increase in the absolute magnitude.

According to the mass-luminosity relationship, the mass of a star is a

function of its absolute magnitude and, accordingly, the previous result

may be expressed in the form that the more massive a star is, the less is its

absolute speed. Although no great emphasis need be placed on the empirical

formula, it would appear that, qualitatively, the conclusions we have

mentioned are reliable.

3*5. Kapteyn ’s eqvxitions .

In the previous sections the analysis has been developed for the usual

equatorial system of axes, the observed quantities being the components,

and of proper motion and

the radial velocity, p. In certain

researches it is convenient to take

one of the axes of coordinates to be

defined by the direction opposite to

that of the solar motion. In Fig. 19,

A is the antapex of the solar motion

and we take OA to be the z-axis; OJ
and OK are the x- and i/-axes; we
can specify J, if we wish, as either

of the points of intersection of the

equator with the great circle of

which A is the pole. The observed

annual proper motion of a star

at X is resolved into two com-

ponents: (i) V, towards the antapex, and (ii) t, perpendicular to the great

circle AXB, Expressing all linear velocities in km. /sec., the linear velocity

corresponding to v is Ku/p, where p is the parallax of the star and — 4-74l

similarly the linear velocity corresponding to t is /cr/p.

Let A denote the angular distance of X from the antapex and (i) the arc
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JB, The direction-cosines of the vectors r, v and p, with respect to the

X", p-, 2;-axe8
,
are then as follows:

For r: — sin (0
, COBCO, 0 .

For v: — cos A cos 0), — cos A sin CO, sin A.

For p: sin A cos CO, sin A sin co, cos A.

If the components of the linear velocity of the star at X, parallel to the

three axes, are x, y and z respectively, we have

KT . KV . . .

sm oj cos A cos 4- p sin A cos co ~ x, ( I

)

P P

— cos — — cos A sin o)-i-p sin A sin co — y, (2)

^sinA 4-pco8A = 2:. (3)

The velocities x and y are components of the peculiar linear velocity of

the star and the component 2: is made uj) of the ])arallactic velocity and

the component of the pecuhar velocity in the direction of the z-axis. Sum-
ming (1), (2) and (3) for N stars scattered over the sky, we expect that Ex
and Ey will vanish or tend to vanish and that Ez will tend to the value NV^,

In the ideal case, we then have the equations

r.T .

K 2 - sill CO --kE- cos a cos -f i^p sin A cos = 0
, (4 )

P p

k1- cos CO --kE~ cos a sin co-^Ep sin A sin 0 = 0
, (5 )

P P

/cZ-sinA -f-ZpcosA =
(6 )

P
which are substantially the same formulae as given by Kapteyn* and his

collaborators.

Ifwe know the parallaxes, of the stars in addition to the other observed

quantities P'8 P-> we can try various positions of the antapex and the

correct position will be determined by the consideration that the left-hand

sides of (4) and (5) will both be zero. The 2:-axis is accordingly found and the

formula (6) then gives the solar motion. This method, originally suggested

by Kapteyn, involves a vast amount of computing and from this point of

view is hardly to be recommended.

Alternatively, we may suppose that the position of the antapex is known

with sufficient accuracy and we can employ (6) in a form to be found below

for calculating the solar motion; actually, the determinations of the solar

apex for stars as faint as the eighth magnitude are remarkably accordant

Qroningm Publ. 29, 6 , 1918 .
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and it would appear that no serious error would result, so far as (6) is con-

cerned, by assuming the coordinates of the apex to be (270°, + 34°), the

position found by L. Boss, as stated in section 3*35.

Eliminating r between (1) and (2), we obtain

cos A-f psin A = orcoscjH- vsinoj. (7)
V

Writing 2; = + in (3), where is the linear component of the star’s

peculiar motion in the direction of the z-axis, we have

KV~ sin A cos X
(
8

)

Eliminating v between (7) and (8), we obtain

p = cos A 4- (:r cos co + yi^in co) sin X + z^ cos A

or p = l^ocos A + e, (9)

where e is evidently the radial component of the star’s pecmliar motion. It is

to be remembered that p is the observed radial velocity, that is, measured

relative to the sun. We have an equation of the form (9) for each of the N
stars and the best we can do in determining the value of is to suj)])ose that

e has the characteristics of an accidental error and tlien to apply the method

of least squares. We thus obtain

y __
ZpcosX

- 2^(^A ’ (
10

)

the summations extending over the N stars.

Ifwe are dealing with B type stars, a K term must be added to (9), and the

normal equations formed in the usual way.

This formula, (10), is the most convenient one for finding the value of the

solar motion when the position of the solar apex is assumed, for A can be

found readily for any given star by means of diagrams specially constructed

for this purpose.*

We remark here—the subject will be more fully treated in Chapter vi

—

that the equations (1) to (3) can be used to find the mean parallax of the

group of stars concerned, if Vq has been determined by means of (10), or

otherwise. Eliminating p between (7) and (8), we find that

I^psinA = /ct;4-p{(:rcoswH-2/sina>)cos A — s^isinA}

or IJ,psin A = fca-hci, (11)

where it is assumed, has the characteristics of an accidental error, at any

rate if the dispersion in the parallaxes is small.

* or. M. Baldwin, M.N. 89, 453, 1929; J. A. Pearce and S. N. Hill, Victoria Publ. 4, 49, 1927;

W. M. Smart, M.N. 83, 466, 1923,
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In this case we may apply the method of least squares to the N equations

of type (11), and we obtain, denoting the mean parallax by p,

xiTysinA
<* 2 )

3*6 1 . The practical determinaMon of the solar motion.

In investigations of the solar motion which are based either on proper

motions or on radial velocities according to the theoretical principles out-

lined in previous sections, it is the practice to divide the sky into areas of

several hundred square degrees and to form the equations of condition for

the centres of the various areas. For example, if we are dealing with radial

velocities and if
{
— X, — Y, ~ Z) denote, as usual, the linear components

of the solar motion with respect to the assembly of stars for which we have

the required observational material, the equation of condition for a

particular star in a given area is

IX -^-mY -i-nZ-hK = p, (1)

where (/, m, n) are the direction-cosines for the star with reference to one of

the usual systems of coordinate axes—equatorial or galactic—and p is the

observed radial velocity. This equation is equivalent to (1) of section 3*41,

the peculiar radial component B being omitted. In a strict calculation we
should require to form an equation of the form of (1) for each star; but for

the sake of economy in calculation when the data refer to several thousands

of stars, the usual procedure is to form equations of condition of the type

IqX 7tiqY UqZ K ~ py ( 2 )

where (Iq, m^, Uq) are the direction-cosines for the centre of the region and

p is the mean algebraic radial velocity of the stars in the area, and to attach

the weight N to the equation, N being the number of stars in the area. This

procedure is tantamount to making the assumption that all the N stars are

situated at the centre of the region and that their radial velocities, if the

stars are so situated, are the same as the observed velocities. A similar argu-

ment applies to the determination of the solar motion from the observed

proper motions. It will be shown that the general result is to introduce a

systematic error into one or more of the quantities to be found, this error

depending on the extent ofthe areas into which the sky is divided. For areas

of four or five hundred square degrees, a systematic error of the order of

half a kilometre per second can result in one component of the solar motion;

relatively, this is about one-quarter* of the magnitude of the precessional

The results of section 3*35 show that A/fc and Aw are each numerically about one-tenth of the

annual parallactic motion, Jf, at an angular distance of 90^^ from the antapex, compared with

which the correction of J km./sec. is about 1/40 of the total solar motion.
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constants Ak and An discussed in section 3-32. With somewhat larger areas,

the correction to the solar motion would be, relatively, of the same order of

magnitude as the quantities Ak and An. It is, therefore, important to

investigate the effects of the corrections due to the grouping of the stars.

Clearly, the ideal way to deal with the problem is to subdivide the sky

into areas not exceeding a hundred square degrees, for then the systematic

corrections are comparatively innocuous. But this entails a vast expendi-

ture of labour and time which might justifiably be regarded as not com-

mensurate with the subsequent gain in precision. The alternative is to

continue to deal with large areas, thereby keej)ing the equations of con-

dition comparatively small in number, and to correct the observed quan-

tities—or rather the means over the areas—in accordance with the syste-

matic effects which can be easily calculated under normal circumstances.

We now investigate the theoretical expressions for these systematic

corrections.

Let {Xy 2/, denote the components of the linear motion of a star, corre-

sponding to the annual proper motion c('mj)onents /i^cosSy //^ and to the

observed radial velocity p. Then

K Kx= fi„C08 S, y = -/is, Z = p, (3)
JJ JJ

where k = 4*74 and p is the star's parallax. If {'u,Vy w) are the components

of the star's motion, relative to the sun, with respect to the usual system

of equatorial axes, we have the following equations connecting (a:, y, z) and

(UyVyW):
a; = — -iisina-f-^^cosa, (4)

y
~ cos a sin S— v sin a sin 8-{-w cos 8, (5)

z = u cos a cos 5 -h sin a cos ^ sin (G)

The formulae (4) and (5) are analogous to (4) and (5) of section 3*42, while

(6) is analogous to (1) of section 3*41. These equations can be written in the

alternative forms:

u = —xmia — y cos a sin ^ -f 2 cos a cos <J, (7)

V ~ a: cos a — ^ sin a sin -I- 2 sin a cos (5, (8)

w ^ ycoB8 +2 8in<J. (9)

Let (AyD) be the coordinates of the centre, i?, of the region. Let (x\y\z')

denote the values of {x, y, z) if the star were observed at R with the com-

ponents {Uy Vy w) unaltered. Then

= ~^sin-4 -fvcos^, (10)

y* == ^uco&A sinD — rsinal sini)-Me?co8Z), (11)

2 ' = uoosA cos2)-f-t;sin.4 cosD-htt^sinZ) (12)
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From (10) we obtain

x' — X — — — 4-^;co8^,

whence, using (7) and (8),

x' ~x= — a:{l --cos(a — ^)} — ^sin(a-~^)sin5 + 28in(a — ^)cos(^ (13)

Similarly, we derive

y' -y = x8m(a-A)smD-\-y{cosD cos^+cos (a-^)8inZ> sincJ- 1}

H-25{cosZ> sin<^ — cos(a — ^)sinZ> co8(^}, (14)

z' ---z = — xsin(a — ^)cosZ> + 2
/{sinD cos^—cos (a — ^)cosZ) sin(^}

4- 2:{sinZ> sin^ + cos (a -^) cosI> cost^— 1} (15)

The three formulae (13), (14) and (15) are accurate formulae, and the values

of x' — X, y' ~y, z' — z can be found if all the observational data are known
for each star.

The formulae are also accurate if we are dealing with parallactic motion

alone. In this case, writing X, T, and Z for u, v and w in (4), (5) and (0), we
see that (4) and (5) become simply Airy’s equations (section 3-34) for deter-

mining the solar motion from the proper motions and (6) the usual equation

for the radial velocities (we omit here the consideration of the Ale, An and

the K terms). Also, the values of x, y and z on the right of (13), (14) and (15)

become the corresponding components of the parallactic motion.

We shall suppose that a given region is defined by the meridians A —
(/>

and A-\-(/) and by parallels of declination D — 6 and D + O, For parallactic

motion it will be seen that, if the stars are uniformly distributed over the

region, the values of l\x' — x), E{y' — y) and E{z' — z) are of order and

the angles 6 and ^ being expressed in cii’cular measure and the summations

being taken over the whole area. It follows that, in the general case, when
using the formulae for E{x' — x), etc. it will be adequate to replace x, y and z

on the right of (13), (14) and (15) by the corresponding parallactic values.

N being the number of stars in the region, we write

Ex'-Ex = (16)

Ey'-^Ey = NC,, (17)

- Aa, ( 18 )

in which
,
Cy and can be found from the expressions on the right of ( 1 3),

(14) and (15) with x, y, z referring to parallactic motion.

For example, if we introduce the terms Ak and An in the first of Airy’s

formulae (compare (1) of section 3*34), the correct equation of condition

for the region as a whole is

K K 1
— Xsin^-f Y eo8A+—Akeo8D-h~-An8inA sinZ) = + (19)

p jy Is

its weight being A.

SSD 7
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As already stated, the value of for large areas is comparable in magni-

tude with the values of Ah and An.

We now consider the evaluation of the corrections, C, it being assumed

that the stars are uniformly distributed over the particular region concerned.

It may be noted here that the equations so far derived hold for galactic

coordinates on the understanding that a, A and S, D refer in this case to

galactic longitude and latitude respectively.

3*62. (i) Evaluation of Cy..

Let R in Fig. 20 denote the centre {A,D) of the region and X the position

of a star (a, 5) in the region. Let E be the

north pole andM the position of the antapex

(ocq,
(^o);

the solar motion is Vq. We denote by
A and x angular distance of X from M
and the position angle of M with reference

to Z, respectively; A' and x' similarly

to R. Also write

ocq —A — B; OL-^A^ijr.

We consider the region to be defined by the

meridians A — ^ and and by the

parallels of declination 8^ and 8^ ,
where

8^==D-0\ (1)

An element of area of the region is cos 8d8di/r^ and the total area, A, of the

region is given by
rd, r<i>

A = ooQ8d8 d\Jr

J Si J

— 2^(sin(y2— sin^i),

whence, by (1), A — 4^8in0 cosD. (2)

Equating {x' — x) to the difference of the parallactic components at R and Z,

we have
x' — X — I^sinA' sin;^'“I^sinA sin;\;

and hence x' ~x cos ^glsin B — sin {B — -^)}.

Let n denote the number of stars per unit area so that the number in the

element of area is n cos 8d8dijr. Also

N = nA. (3)

Hence we obtain

= Tid sin B—
I

cosd 8in(JS— ^)dtfd^,
Vq cos Oq j SxJ

P
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so that, by (16) of section 3-61 and by (3),

C 1— = sin {sin — sin (cos [B - (j))
— cos {B + <{>)],

Vq cos uq Z1

and, by (1) and (2),

Gx = K cos ^0 sin (a#-^
)

|l - . (4)

With the assumption as to the uniformity of distribution of the stars over

the region, this is an accurate formula. If <p is no greater than 20°, say, it

will be sufficient to write (4) in the form

(5)

where is in circular measure.

(ii) Evaluation of Cy.

At X the parallacitic component in declination is V^^ sin A cos y. We
then have

y' — y =zVq sin A' cos y' — Iq ^ X

= Vq (sin Sq cosD — cos Sq sinD cos B}

— Vq (sin Sq cos S— cos sin S cos (

B

— ^/)}*

Hence

^y'-^y

from which

— = sin (JojiV' cos — cos-^d<jJ

— cos sin Z) cos .B —nJ sin^ cos(Jrf^J cos (Z^—

,

^ich

Cy ^Vq sin (Jq |cos^ ^
(sin 26 cos 2D + 20^

or c; = Fosin^o

Vq cos ^0 sinD cos m
This is an accurate formula. Its approximate form, in which 0^ and (p^ are

neglected, is

Cy = jjVqO^ sin ^0 sec D(3 cos 2D — 1

)

— \Vq{W^-\-(1>^)cohSq sinD cos(ao~A). (7)

7-2
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(iii) Evaluation of

At X the parallactic radial component is Tq cos A. Hence

z' — z = P^cosA' — PqCosA,

from which

2;— = sin<Jo sinZ^ + cos^o cosi) cos JB

~ {sin ^0 sin S+ cos <^0 cos d cos (B — ^)}.

We then have

Fn

— = sin Sq (a' sin i) - 71 r sin S cos SdS f diA
0 I J^x J -0 J

+ cos Sq jiV' cos i) cos jB — 7
^J

cos^
J

cos
{
B —

,

from which we readily obtain

(7^ = P^sin (Jo sinZ) (1 — cosd)

f PqCoscJo cosi) cos (aQ — ^) (1
sin /26 + sin 26 cos 2D

)i
(
8

)

(p \ 4 sin 6^008^2)

which is an accurate formula. In the approximate form, it becomes

Gj = ^Vq 6^ sin (Jq sinD
+ ^0 ^nsD cos {olq— A) + <9^(3 _ 2 sec^ D)} (9)

3*63. Practical application .

It transpires* that the whole effect of the Cy and corrections is

thrown into the components X, Y and Z of the parallactic motion. Thus the

systematic errors introduced in the practical method of determining the

solar motion and related constants leave Ak^ An and K unaffected and pro-

duce errors only in the solar motion constants. These errors are not negligible

when the areas of the regions are about four or five hundred square degrees

as in the investigations of L. Boss and of Campbell and Moore, alluded to

in previous sections. With the increase of observational material it might

be thought desirable, or even essential, to divide the sphere into much
smaller areas—say of a hundred square degrees—for which the systematic

errors would be of negligible amount. But, since the whole sky contains

about 40,000 square degrees, this would mean the treatment of about 400

equations of condition, and with four, five or six unknowns in the equations

the amount of labour required to achieve the solutions would be prodigious.

But the greater part of this labour is unnecessary if we utilise the values

of G^., Cy and in our equations; in other words, we correct our observed

For a full (iiscussion v. W. M. Smart, M.N, 96, 461, 1936.
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quantities according to the dimensions of the regions into which we sub-

divide the sky. It is thus possible to work with very much larger areas than

have been used previously without sacrificing accuracy in the solutions.

It is only necessary that the stars in any given region should be fairly

uniformly distributed over the area. With this condition holding, the

equation of condition formed for the centre of the region, with attached

weight equal to the number ofthe stars in the region, is essentially the same,

when the appropriate value of or Cy or (7, is added, as if the equation of

condition were formed for each star and the sura taken.

When the regions are arranged in zones of declination or of galactic

latitude, the values of C^, Cy and C, can be easily and rapidly calculated.

In Smart and Green’s determination’’' of the solar motion, areas as large

as 900 to 1200 square degrees are employed; the number of equations of

condition is reduced to thirty-four and the labour of forming the normal

equations is thereby lessened to a very great extent.

* M.N. 96, 471 , 1936 .



CHAPTER IV

THE TWO STAK-STREAMS

4*1 . Kapteyrts discovery of the star-streams.

We have seen in section 2-3 that for an assembly of stars forming a single

drift the distribution of proper motions, according to position angle, for

any small area of the sky can be represented by a single drift-curve, sym-

metrical about a line giving the projection ofthe solar motion on the tangent

plane at the point of the sky considered. Until the end of last century, it was

generally assumed—in the absence of suflftcient observational data and as

a convenient working hypothesis—that the motions ofthe stars were entirely

haphazard, and on this basis the characteristics of the solar motion were

investigated in numerous researches. Kobold* was the first to recognise

that this hypothesis of the haphazard distribution of the motions of the

stars came into conflict w'ith the observational data. Actually, in two pa|)erst

in 1 895 and in 1 897, Kapteyn had noticed what he considered to be anomalies

in the distribution of the directions of proper motions—that is to say,

distinct deviations from symmetrical drift-curves—but he later concluded J

that the cause of such anomalies was to be looked for, not in any systematic

effect connected with the real proper motions for different regions of the

sky, but for the most part in a constant or systematic error in the decUnation

components of the proper motions. However, Kapteyn was forced, a few

years later, to abandon this attempted explanation, and in 1904, at an

international scientific congress held in St Louis, he announced the discovery

of the two star-streams.§ In particular he showed, in the language of drift-

motions, that for a given region ofthe sky the distribution ofproper motions

in position angle could be adequately represented by the combination of

two drift-curves, each with its own characteristic shape, dimensions and

direction of the axis of symmetry. The combination of such information

from diflferent parts of the sky led to the conception of two streams of stars

moving in opposite directions in space.
||

In 1906 Eddington published^ his convenient method of analysing the

proper motions of the stars in any region of the sky and of deriving the

characteristics of the streams. We shall now describe this method.

A,N. 144, 33, 1897; 150, 267, 1899.

t PM. Acad, of Sciencest Amsterdam.

t Groningen PM. 5, 3, 1900.

§ See also British Association Report^ 1906, p. 257.

II
Kapteyn’s mathematical analysis is to be found in M.N. 72, 743, 1912.

If M.N. 67, 34, 1906.
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4*21. Eddington's method of deriving the constants of the drift-curves from
proper motions.

It is assumed that, in a given region of the sky at S, the observed dis-

tribution of the proper motions in position angle is the result of superposing

two drifts—called drift I and drift IT—in which and are the numbers

of stars, 0-^ and 6^ are the position angles in which the drifts are pointing, and

hV^ and are the projections on the tangent plane at S of the space-

velocities of drift I and drift II with respect to the sun, the velocities being

measured in terms of a theoretical unit 1 jh pro])ortional to the mean peculiar

motion in either drift (see section 2*24). For a single drift of n stars, with

linear velocities distributed according to the Maxwellian law, we have from

section 2*3 for the number n{0)d0^pd0 of stars moving between angles/^

and d-{-d0 measured with respect to the axis of symmetry of the drift,

n{0)dd^pd() = (1)

where hV is the projection of the drift-velocity (that is, the velocity of the

assembly of stars as a whole) with respect to the sun, on the tangent plane

at S. Also j (2)

We now use 0 in the sense of position angle so that, for a given value of

the angles between the corresponding direction and the directions of the

axes of symmetry of drift I and drift II are 0 — 6^ and 6 — 02 ,
where 0^ and 0,^

are the position angles of the axes of symmetry of the drifts. For drift I

we accordingly have—denoting the radius vector of the drift-curve by —

Pid0 = ^^^^d0e->‘^^\‘f(r,), (3)

Ti = 7^1^ COS (^— ^i). (4)

Similarly, we have for drift II,

P,d0 = (6 )

Tg = hV^QO»{()-ef). (6)

Hence, for the distribution of proper motions resulting from the two drifts,

the number, pdd, of stars moving between position angles 6 and O + dO is

given by ^ p^dO+p^dd. (7)

Eddington’s “trial and error” method consists in fitting two drift-curves

so as to give as close a representation as possible of the observed distribution

of the proper motions. In general, there are five constants to be found for

the formulae (3) and (5) so that pdO, given by (7), may be in as good accord-

ance as possible, for all position angles, with the observed values; the con-
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stants are: 6^, hV^ and for drift I, and 0^, hV^ and for drift II, with the

condition that + N, whereN is the total number ofstars in the region

considered.

Owing to the incidence of errors in the proper motions and to the com-

paratively small number of stars in a region for which proper motion data

Tablets. Values of ^{JiV, 0-6^)

hV
01 0*2 0-3 0*4 0*5 0*6 0*7 0*8 0*9

0 ° 360 ^ 0-67 0*79 0*91 1*05 1*20 1-36 1*52 l -(i9 1*87

6 366 0-67 0*78 0*91 1*05 1*19 ]*35 1-50 1*67 1*84

10 350 0-67 0-78 0*90 1*04 1*18 1*34 1*48 1*04 1*80

15 345 0-67 0*77 0*90 1*02 M 6 1-.30 1*44 1*58 1*71

20 340 0-66 0*76 0*88 1*00 M 3 1*26 1*37 1*50 1*61

25 336 0-65 0*75 0*87 0*97 1*08 1*20 1*30 1*40 1*48

30 330 0-65 0*74 0*85 0-94 1*03 M 3 1*21 1*30 1*36

36 325 0-64 0*73 0*83 0*90 0*98 1*06 M 2 M 8 1*22

40 320 0-64 0*72 0*80 0*86 0*93 0*98 1*02 1*06 1*07

45 315 0-63 0*70 0*77 0*82 0*87 0*91 0*94 0*96 0*95

50 310 0*63 0*69 0*74 0*78 0-81 0*83 0*85 0*84 0*82

66 305 0-62 0*07 0*71 0*74 0*76 0*77 0*76 0-75 0*71

60 300 0-61 0*65 0-68 0*70 0*70 0*70 0*68 0*65 0*62

66 296 0-60 0-(53 0*65 0*66 0-66 064 0*61 0*57 0*53
70 290 0-59 0*62 0*62 0*62 0*60 0*58 0*64 0*51 0*46
76 285 0-58 0-60 0*69 0*58 0*65 0-52 0*48 0*44 0*39

80 280 0-67 0*58 0*66 0*54 0*51 0*48 0*43 0*38 0*33

86 275 0*57 0*56 1 0*54 0*51 0*48 0*43 0*39 0*34 0*29

90 270 0-66 0*54 0*61 0*48 0*44
:

0*39 0*35 0*30 0*25

95 266 0-55 0*52 0*49 0*45 0*41 0*36 0*31 0*27 0*22

100 260 0-64 0*51 0*47 0*43 0*38
,

0*33 0*28 0*23 0*19
105 265 0*63 0*60 0*45 0*40 0*35 0*30 0*26 0*21 0*17

no 250 0*52 0*48 0*43 0*38 0*33 0*28
{

0*23 0*19 0*15
116 245 0*52 0*47 0*42 0*36 0*31 0*26

I

0*21 0*17 0*14
120 240 0*51 0*46 0*40

i

0*34 0*29 0*24
!

0*19 0*16 0*12
125 236 0*50 0*44 0*38 0*33 0*27 0*22 0*18 0*14 0*11

130 230 0*50 0*43 0*37 0*31 0*26 0*21 0*17 0*13 0*10
136 225 0*49 0*43 0*36 0*30 0*26 0*20 0*10 0*13 0*09
140 220 0*49 0*42 0*36 0*29 0*24 0*19 0*16 0*12 0*09

146 215 0*48 0*41 0*34 0*28 0*23 0*18 0*14 0*11 0*08
150 210 0*48 0*41 0*33 0*27 0*22 0*17 0*13 0*10 0*08
166 206 0*48 0*40 0*33 0*27 0*21 0*17 0*13 0*10 0*08
160 200 0*47 0*39 0*32 0*26 0*21 0*16 0*12 0*10 0*07

165 195 0*47 0*39 0*32 0*26 0*20 0*16 0*12 0*09 0*07

170 190 0*47 0*39 0*32 0*25 0*20 0*16 0*12 0*09 0*07

176 186 0*47 0*39 0*31 0*25 0*20 0*16 0*12 0*09
1

0*07
180 180 0*47 0*39 0*31 0*25 0*20 0*16 0*12 0*09 0*07

can usually be obtained, it is not possible in practice to use too small a

sector, dB, for which to compare the theoretical number of proper motions

with the observed number. In investigations of this tjrpe where the total

number of proper motions is a few hundreds, the sector is usually taken to

be 10°, so that dd = tt/IS.
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Let denote the theoretical number of stars, say in drift I, moving in

the sector 0— 5° to 0 + 5'', Then

j e-5^
pdO —

ro+5°
7T

J 0-5^ lo

Table 13. Values of (p(hV, O-0q)

0 ~(^

hV
10 M 1*2 1*3 1*4 1*5 1*6 1*7 1*8

0° 360 ° 205 2*24 2*43 2*62 2*81 301 3*21 3*40 3-60
5 365 2-02 2-21 2*38 2*57 2*76 2*94 3*15 3*32 3-51

10 350 1-97 2*14 2*28 2*44 2*62 2-77 2*94 3*10 3*27
16 345 1-86 205 212 2*25 2-38 2-60 2*63 2*72 2*85
20 340 1-73

1

1*87 1*93 2*02 2*10 217 2*25 2*28 2*32
25 335 151 1*65 1*70 1*76 1*80 1*82 1*87 1*86 1*82

30 330 1-41 1*46 1*48 1*50 1*50 1*44 1*46 1-42 1*40

35 325 1-24 1*25 1*27 1*26 1*22 117 1*07 1*08 1-06

40 320 108 1*07 104 1*03 0*98 0*93 0*86 0*80 0*74

45 315 0-94 0*90 0-87 0*82 0*76 0*70 0*64 0*67 0*51

50 310 0-80 0*76 0*70 0*66 0*59 0*53 0*47 0*41 0*35

55 306 0*68 0*63 0*58 0*52 0*46 0*40 0*34 0*28 0*24
60 300 0-57 0*61 0*46 0*40 0*36 0*30 0*26 0*20 0*16

65 295 0-48 0*43 0*37 0*31 0*27 0*22 0*18 0*14 0*11

70 290 0-40 0-35 0*30 0*25 0*21 0*17 0*13 0*10 0*08

75 285 0-34 0*29 0*24 0*20 0*16 0*13 0*10 0*07 0*06

80 280 0-29 0*24 0*20 0*16 0*13 0*10 0*08 0*05 0*04

85 275 0-24 0*20 0*16 013
1

0*10 0*08 0*06 0*04 0*03

90 270 0-21 017 0*13 0*10 0*08 0*06 0*04 0*03 0*02

96 265 018 014 0*11 0*08 0*06 0*05 0*04 0*02 0*02

100 260 016 012 0*10 0*07 0*06 0*05 0*04 0*02 0*01

105 265 014 Oil 0-08 006 0*06 0*04 0*03 0*02 ! 0*01

110 260 012 0*09 007 0*06 0*04 0*04 0*03 0*02 0*01

115 245 Oil 0*08 006 0*04 0*04 003 0*03 0*02 0*01

120 240 009 0*07 0*05 0*04 0*03 0*03 0*03 0*01 0*01

125 235 0-09 0*06 0*05 0*04 0*03 0*02 0*02 0*01 0*01

130 230 0*08 0*06 0*04 003 0*02 0*02 0*02 0*01 0*01

136 225 0-07 0*05 0*04 0*03 0*02 0*02 0*02 0*01 0*01

140 220 0-07 0*05 0*04 0*03 0*02 0*02 0*02 0*01 0*01

145 216 0-06 006 0*04 0-03 0*02 0*02 0*02 0*01 0*01

150 210 006 0*05 0*03 0*03 002 0*02 0*02 0*01 0*01

155 205 006 0*04 003 0*03 0-02 0*02 0*02 0*01 0*01

160 200 0*05 0*04 0*03 0*03 0*02 0*02 0-01 0*01 0*01

165 195 006 0*04 0*03 0*03 0*02 0*02 0*01 0*01 0*01

170 190 0*05 0*04 0*03 0*03 0*02 0*02 001 0-01 0*01

175 185 0*05 0*04 0*03 0*03 0*02 0*02 0*01 0*01 0*01

180 180 0*05 0*04 0*03 0*03 0*02 0-02 0*01 0*01 0*01

where Pi is the mean value ofp in the sector. Since the sector is small, we

take the value of p^ to be equivalent to the value of p corresponding to 0,

Thus we obtain

ri = 0-04923iVie“^“^i7(Ti). (8)

The values of log/(r), for values of r between — 1*3 and -f 2-0, have been
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given by Eddington.* It is however more convenient in the calculations

to use numerical values of a function ^{hV, 0 — 0^), given by

(9)

so that = 0*04923iV^i 6-0^). ^ (10)

Table 1 3 gives the valuesf of the function (j) for values of 6^ —
6^o

at 5^^ intervals

and for values of AF from 0-1 to 1 - 8 at intervals of 0*1
; (<9o= ^2)*

In the same way, if rg denotes the number of stars belonging to drift II

and moving in the sector 6? — 5"" to ^ + 5°,

= 0-04923iV2^(AF2»

In most regions of the sky it is found that one drift (drift I) is usually

more prominent than the other and it is usually easy to obtain approximate

values of 6^1, h\\ and by little more than inspection. On the other hand,

drift II—owing to the much smaller values of hV̂—gives a less distinctive

distribution from which it is somewhat difficult to ascertain reliable values

of O2 and hV2 at a first attempt.

An example will be worked out in the next section to illustrate the pro-

cedure. It may, however, be conveniently stated here that the observed

statistics of the proper motions—derived as the number of stars moving in

each of the 10® sectors 6^ — 5® to + 5® for the following thirty-six values of 0:

5®, 15®, ... 355®—are smoothed by taking the means of three adjacent

sectors of 10®, This procedure tends to eliminate accidental irregularities

in the observed distribution. For the sake of consistency, the calculated

distribution (based on the figures of Table 13) is smoothed in a similar w ay.

4*22 . Example of the analysis ofproper motions.

Table 14 gives the distribution in position angle of the proper motions

of 684 stars, formed by combining the results of two adjacent regions

(XXVI and XXVII) measured by G. H. ten BruggencateJ at Groningen.

The combined region, denoted by M (centre at r.a. 14^5"^; dec. 4-34®*2),

was treated by the author§ according to the method of the previous section.

In Table 14, Tq denotes the observed number of stars moving between

position angles 0 — 5® and 0-f5® for 0 = 5®, 15®, 25®, ... 355® (fractional

numbers occur as the counts have been smoothed by taking, as the effective

number moving in a sector 0 — 5® to 0 -f 5®, the mean ofthe observed numbers

in the three sectors 0 — 1 5® to 0— 5°, 0— 5® to 0 + 5®, and 0 + 5® to 0 H- 1 5®).

The data of Table 14 are plotted in Fig. 21 (full-line curve), the position

angle 0 being taken as the abscissa and the number, r^, of stars as the

* M.N. 67, 37 , 1906.

t B.A.N. 3, 35, 1925.

t W. M. Smart, M.N. 87, 128, 1926.

§ M.N. 88, 144, 1927.
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Table 14. Distribution of proper motions in position angle

Position
anglo, 0

Number of
stars, Tq

Position
angle, 6

Number of
stars, Tq

Position
angle, 0

Number of
stars, Tq

5" 9*7 125° 21-3 245° 22-7
15 8-3 135 22*7 265 28-0
25 7-7 145 23-3 265 32-3
35 8-3 155 22*7 275 36-3
45 7-7 165 220 285 35*3
55 8-3 175

I

210 295 34-3
65 8-3 185 19-7 305 31-3
75 8-3 195 17*3 315 28-7
85 8-3 205 ' 16-0 325 27*0
95 90 215

i

160 335 220
105 11-3 225

I

16‘7 345 15-5

115 19-0 235 iI
18-7 355 120

ordinate. The curve shows two distinct maxima near

=

150° and 290°.

Assuming that 290° refers to drift I, we show the results of three solutions

by trying various values of and as follows:

hV^ hV^ 0, ^2
Solution (i) 1-2 290° 324 0-7 150° 360

(ii) 10 290 360 0'7 150 324
(iii) 10 290 300 0*6 150 324

The corresponding curves are shown or indicated in Fig. 21. The solution

(iii), which seems to represent the observed distribution of proper motions

most successfully, is taken as the definitive solution—it is represented in

the figure by a broken line.

The details of solution (iii) are given in Table 15. The second column

contains the values (denoted by (f)^ ofthe function f){hV, d — d-f) for AF = 1*0

and — 290°. These values are simply extracted from Table 13. In the

fourth column we have the smoothed values of obtained as explained

above. The third and fifth columns give similar information with respect to

theoretical values for drift II (hV^ = 0*6, = 160°).

The numbers under the heading are obtained by multiplying the

smoothed values of (j)^ (column 4) by 0*04923Ai= 17*7 (Ai = 360). The next

column, r^ , is obtained in a similar way by multiplying the smoothed values

of 5^2 by 0*04923^2=15*9 (iV2 = 324). The numbers under the heading

r — + give the theoretical distribution. The penultimate column gives

the observed distribution,
,
and the last column shows the differences, to

the nearest integer, between the observed and theoretical distributions.
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Fig. 21

The full-line curve is the observed distribution of proper motions.

XXX ... denotes solution (i).

o o o ... „ (ii).
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{Hi)

{Region
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Observed minns
Calculated

pH i-H f-H .-H i-H O rH CO “Tf TH »->* rH .H i-H O O O O rH pH O rH pH Q pH i«H fH CO Tf< fH (N CO fH
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cb’^COfNpHpHpHpHrH OOOO-^pHpHpHphCM COThCOdbc^COMl^CN'^ 4l(Nl>(NcbG^cb

PH pH CM N CO CO CO CO CM 04 pH PH

^2 (smoothed)

XOCOCC)pHCO'»t<COrt< r^-pHcpcOXCOCOXOSCO pHr-pfCO'^COpHCPCOO Xt^CDCOCOCOt^
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6
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•o.
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666666666 6
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ph ph ph ph p1i ph p^ ph 6666666666 6666666
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CO 04 pH pH pH O O O O © © O O O O O O pH pH pH (M X "^ © © 04 »C X © © X lO (M © © '^
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Position angle6
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4*23. Dyson's graphical method of analysis.

In this method* the principal object is the representation of the observed

distribution of the proper motions in position angle by two symmetrical

curves, the position angles ofthe maxima being identified with the directions

of the axes of symmetry of the two constituent drifts. The procedure may
be best explained by an example. Fig. 22 shows the observed distribution

ofproper motions in Dyson’s region B {loc. ci^.) with centre at r .a . 0°, dec. 0°.

Inspection shows that (i) there is a pronounced maximum between })Osition

angles 90° and 100° (this refers to drift I), (ii) there is a second maximum
between 180° and 210° (this refers to drift II), and (iii) the eife(*t of drift II

dies away at 280° approximately. If now the maximum of drift II is at

25

20

CO

ffi 15

«-(
o

'I

I
5

0
QO 3QO

90®
| 20« 130 ® 180® 210® 240® 270® 300® 330® 360

®

Position angle

Fig. 22

180°, its effect will be negligible between position angles 0° and 80°; con-

sequently the observed distribution in this range is entirely due to drift I.

We now draw a smooth curve to represent the observations between 0°

and 80° as well as possible, and assuming that the maximum of drift I is

at 90° we can complete the symmetrical representation of drift I between
100° and say 200°, where its effect becomes negligible. Subtracting the

ordinates, at each position angle between 100° and 200°, of this curve from

the ordinates of the observed curve, we are left with the distribution of

proper motions due to drift II alone. The maximum ofthis latter distribution

is found to be near 190°, and a symmetrical curve is drawn to fit the dis-

tribution as well as possible. We now subtract the ordinates of this sym-

metrical curve from the ordinates of the observed curve between say 80°

F. W, Dyson, Proc. Roy. Soc. Edin. 28, pt. iii, 231, 1908.
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and 200"^ and we are left with substantially the distribution of proper

motions due to drift I. A symmetrical curve can now be drawn to represent

the contribution of drift I to the observed distribution; its maximum is now

found to be near 95°. The contribution of drift II can now be derived in a

similar way and the maximum inferred as before; it is found to be about

190° or 195°.

The combination of the two symmetrical curves (drift I and drift 11)

should then give a good representation of the observed distribution. This

combined curve is shown by a dotted line.

It is to be remarked that the symmetrical curves drawn in the above

processes are not necessarily true drift-curves, although, in the great

majority of cases where the effect of star-streaming is well defined, they are

unlikely to deviate appreciably from true drift-curves. The procedure

determines di and 0^—the position angles in which the drifts are pointing

—

but the values of the drift-velocities are not determined. This method of

analysis has been extensively used, notably by Dyson and ten Bruggencate.*

4*31 . The a'pices and space-velocities of the two drifts.

When proper motion data are analysed for several different regions of

the sky, it is usually found that one drift has associated with it a drift-

velocity, relative to the sun, much greater than that of the second drift;

the former is accordingly shown up more distinctively—unless is very

much less than —in diagrams giving the distribution of proi)er motions,

of which Fig. 22 is an illustration. As the value of a drift-velocity, hV^ for

example, deduced from the analysis of a given region at S, is the projection

on the tangent plane at S of the space-velocity of the drift relative to the sun,

it follows that the space-velocity of one drift relative to the sun is greater

than the space-velocity of the other drift; thcwse drifts are conventionally

designated drift 1 and drift II respectively.

Consider the assembly of stars forming drift I and let hU^ denote the

space-velocity of this drift with respect to the sun. This space velocity will

have a certain direction and on the celestial sphere centred at the sun this

direction will be defined by a certain point, called the apex of drift I. The

apex of drift II is defined in a similar way. The two drifts are thus character-

ised by their apices and their space-velocities hZJ^y hlj^ relative to the sun.

4*32. Determination of the apices and the space-velocities of the drifts from

proper motions {first method).

In Fig. 23 consider a region at 8 with equatorial coordinates (a, 5) and

let (ai,<yi) denote the coordinates of the apex ^ of a dril't. Let hU denote

B.A.N. 3 , 35 ,
1925 .
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the space-velocity of the drift; then if hV is the projection oihV on the

tangent plane at /S', we have

hV ^hU^inSA, (1)

since the direction of hV is tangential at S to the great circle 8A. Thus, P
being the pole of the equator, the position angle, 0, of the axis of symmetry

of the drift-curve at 8 is the angle P8A, As we have shown, the analysis of

the proper motions at 8 gives the values oihV and 0 for the particular drift

concerned and the value of 0 defines the great circle through 8 on which

the apex, A, must he. Similarly we obtain the values oihV for other regions

at ASjj/S'g, ... and also the great circles through aSi,/S2»-** defined by the

corresponding values of Ideally, all such great circles should pass through

the apex, A,
^s-axis

Let Q {a,d) denote the coordinates of the pole, Q, of the great circle /S’A.

Then, since the great circles 8A, /Si-4, ••• theoretically concurrent,

the corresponding poles Q, ... lie on a great circle and one pole of this

great circle is the apex, A.

From the triangle PQS we have

sinrf = cosS sin6^, (2)

cot (a — a) = sin d tan 0, (3)

These equations give the position of Q.

Let lx-\-my — z (4)

denote the equation of the plane, on which the poles Q, Q^, Q2 ,
... lie, with

respect to the usual system of equatorial axes and let the corresponding

great circle cut the meridians a = 0, a = 90° in B and C respectively

(Fig. 24). Denote PB and PC by ^Jr and <!> respectively. Then, taking the
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radius of the sjihere to be unity, the coordinates of B are (sin rjr, 0, cos yjr).

Hence, from (4),
(5)

Similarly, m = cot^. (6)

From the triangle PAB, in which A is the ayjex and AB 90""

(since ^ is a pole of the great circle BC), we have

cos — cos ^ sin + sin i/r cos cos a^,

whence cos — cot ^ tan

or, from (5), cosa^ = — Ztan^j. (7)

Similarly, we obtain from the triangle P^4 C,

sinaj == — mtaiK^j. (8)

Now the equatorial coordinates (a, cZ) of Q can be calculated by (2) and

(3), and as the rectangular coordinates of Q are

cos a cos cZ, sin a cos cZ, sincZ,

we have, from (4), I cos a cos cZ +m sin a coscZ = sind, (9)

in which the coefficients of Z and m are now supposed known. For n regions

of the sky we have n equations of the form (9) which can be solved by least

squares to give the values of Z and m. The coordinates (a^, S^) of the ayiex

are then easily found by means of (7) and (8).

The angular distance, SA, of a region S from the apex A can now be

calculated and we obtain, in this way, n equations of the form

= sin (10)

from which to calculate the space-velocity, hlJ, of the drift, hV being

supposed known from the analysis of each region. The solution for hU from

(10) is effected by the method of least squares; it is expressed by

ZhV sin SA
” Usin^SA *

The above method,* which is analogous to Bessel’s method of finding the

solar apex, suffers from the disadvantage that only part of the observed

quantities (namely, the position angles, 0, of the axes of symmetry of the

drift-curves) is used in the determination of the coordinates of the apex of

the drift. The method, however, is important when the regions of the sky

are analysed by Dyson’s method.

• For a numerical application, see M.N. 87, 134, 1926. See also Eddington’s Stellar MovemcntSy

83, 119, 1914.

SSD 8
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4 *33 . Determination of the apices and the space-velocities of the drifts {second

method).

Consider drift I in a region at iS(a, S), the drift-velocity and the position

angle ofthe axis ofsymmetry of the drift-curve being hV^ and 6^ respectively.

Let (Xj, Z^) be the components of the space-velocity, hU^, of the drift

relative to the sun and referred to the usual system of equatorial axes.

Then, the observed projected drift-velocity, hV^, has components hV^mid^

and hV^ perpendicular to the meridian through 8 and tangential to the

meridian, respectively.

Using the formulae of section 1*33, we have

— XiSina-j-TiCosa = ^t^sin6^i, (1)

— Xj^cosa sin(^ — Fisina sinc^-f Z^qobS — hV^eoBd^ (2)

These are the equations of condition and when similar equations are formed

for all the regions concerned, a solution by least squares yields the values of

Xj, Yj ^^^1 The method is thus analogous to Airy’s method for deter-

mining the solar motion.

The normal equations formed from (1) are:

X sin^ a — }\ X sin oc cos a = —XhV^ sin 0^ sin a, (3)

— XjX sin a cos a + }\X cos^ a = XhV^ sin 0-^ cos a (4)

The normal equations formed from (2) are:

XjX cos^ a sin‘^ ^ -h YiX sin a cos a sin^ 8~ Z-^X cos a sin 8 cos 8

= —XhVi cos 0^ cos a sin 8, (5)

XiX sin a cos a sin^ ^ -h Y^ X" sin^ a sin^ 8— Z^X sin a sin 8 cos 8

= —XhV^ cos 6^ sin a sin (6)

— XiX cos a sin 8 cos 5— Y^X sin a sin 8 cos 8+ Z^X cos^ 8

== XAl^cos^i cos(J. (7)

Combining (3) with (5), and (4) with (6), and rewriting (7), we have the

group of equations to determine X^, Y^ and Z^:

XjX (sin^ a -f- cos^ a sin^ ^
)
— Yj Xsin a cos a cos^ 8— Z^X cos a sin 8 cos 8

= — XhVf^BinO^ sina-f-cos^i cos a sinrf), (8)

— XiX sin a cos a cos^ 5 -f Y^X (cos^ a -f sin^ a sin^ 8) - Z^ X(sin a sin 8 cos ^

)

= XAPi(sin cos a — cos sin a sin (9)

— X^Xcosa sincJ cos^—I^Xsina sin^ cos #+ X cos^

#

= XhV^ cos^i cos 8, (10)

These last three equations are analogous to Airy’s equations derived in

section 3*34.
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The coordinates (a^, of the apex of the drift are given by

tana^ == YJX^^,

tandi-Zi/(Al+rf)^/2,

and the space-velocity, hUi, of the drift by

A similar procedure gives the corresponding quantities for drift II.

4*34. The vertex of star-streaming.

The result of many investigations into the systematic motions of the

stars obtained from the distribution of proper motions shows that the

phenomena can be explained satisfactorily on tlie two-streams theory. In

particular, as we have seen, we can derive the components of the si)ace

velocities of each drift, relative to the sun, in terms of a theoretical unit \jh

and with reference to the usual equatorial system of axes. If we are to

consider the solar motion in relation to the stars observed for proper motion,

we have to remember that the totality of stars consists of two assemblies of

stars, each ex hypothesi with a Maxwellian distribution of velocities. From
the definition of solar motion the totality of stars defines a standard of rest

and consequently the space-motions of the two drifts with reference to this

standard of rest must lie in opposite directions. We can conveniently

consider the centroid, or geometrical centre, of the totality of stars as the

standard position and so, relative to this centroid, drift 1 will appear to be

moving in a particular direction and drift II in the opposite direction. This

direction is of fundamental importance in the distribution of stellar motions

and it defines two antipodal points in the sky, called the vertices of star-

streaming. The totality of stars being viewed from the centroid, the axis

joining the vertices has the characteristic property that the general tendency

ofmotion is parallel to this axis, which is an axis ofsymmetry . In the theory

with which we are at present dealing, the emphasis is laid on the division of

the totality of stars into two groups or streams which, as we shall see later,

are intermingled in space. In the next chapter, the tendency of the stars to

move parallel to the axis of symmetry is the starting-point of an alternative

theory (the ellipsoidal theory” of Schwarzschild) to explain or coordinate

the peculiarities in the distribution of stellar motions.

We assume that the components Ti, of the space-velocities, relative

to the sun, of drift I have been obtained by the method of the previous

section, and also the components Xg, ^2 The components x, y, z

of the velocity of drift I relative to drift II are given by

= Xi-~X2 , ^ = — z = Z-^ —

Z

2 )

the components of the solar motion disappearing from the differences

.^^2 ;
etc.

8-2
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Let {A,D) denote the coordinates of a vertex. Then the values oi A, D
are clearly found from the relations

X — k cosA cos D, y = k sinA cos D, z = k sin Z),

where k — + +

Thus tan .4 = yjx,

tanjD = zKpc^ + y'^Y!^.

When the galactic coordinates of the vertex are obtained from the values

ofA and i>, it is found that the vertex lies on the galactic equator. Thus the

axis ofstar-streaming is related in a significant way to the plane ofsymmetry

of the galactic system.

4 *35 . The solar motion.

We assume that the coordinates (^1 ,(^1 ) of the apex of drift I and the

coordinates (ag, ^2 )
apex of drift II have been calculated . For example,

the results’*' of Eddington’s analysis of the proper motions of the stars of

Boss’s P.G.C. are:

Coordinates oi A^ — 14°-6); of A^ (287^-8, — 64°*1). The angular

distance A^A^^ (which we denote by e) is calculated by means of the formula

cos e = sin 8^ sin 82 + cos 81 cos 82 cos — ag). ( 1
)

Consider now two vectors 8A2 25), including the angle e, of

magnitudes hlli and Af/g respectively; they define the space-velocities of

drift I and drift II respectively,

relative to the sun S. Let and

7I2 denote the total number of

stars belonging to drift I and to

drift II, respectively, for all the

regions of the sky considered.

The solar motion is defined

with reference to the totality,

+ of stars. Clearly, the

solar motion will be repre-

sented by a vector, lying in

the plane SA[A2, which we
shall provisionally designate by BS cutting A[A2m Aq. This point Aq will

accordingly define the direction of the antapex of the solar motion with

reference to the known directions SA{ and SA2*

Considering drift I, we have:

The space-velocity of drift I relative to the centroid of the 4- ng) stars

= the space-velocity of drift I relative to the sun -f the velocity of the sun

• M.N. 71 , 36, 1910.

B
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relative to the centroid of the + stars; or, in terms of the vectors in

Fig. 25, the space-velocity of drift I relative to the centroid of the
(
71^ + 71.^)

stars is obtained by compounding the vectors BS and and is thus

represented by the vector BA[. Similarly, the space-velocity of drift II

relative to the centroid of the (% + ^2 )
stars is rei)resented by the vector

BA^. But, in order that the centroid of the {n^-\-7i^) stars may be taken as

the standard ofrest, the vectors BA[ and BA^ must be in opposite directions;

this can only be so if B lies on the straight line ^45 ^ 2 * Hence the solar

motion is defined by the vector where Aq is at present a point between

A[ and A'^, Consequently, the space-velocities of drift I and of drift II

relative to the centroid of the (% + 712 )
stars are rej)resented by the vectors

AqA[ and AqA^ respectively. Further, the position of defined explicitly

by the relation ...v

where and are the lengths of AqA[ and ^q-42, this relation expressing

simply the consideration that the centroid of the {rii -f- Tig) stars is taken as

the centre of rest. From the known p
values of hU^ and ?iU2 (i.e. of SA[ and

SA 2 ), of e and of and iig, the posi-

tion of A Q can be easily calculated by

elementary methods and hence the

characteristics of the solar motion can

be found. We proceed as follows.

Let KIIq denote the solar motion

reversed. Then (rq + '^h) • hUQ is the

resultant of % . and ri2 . hU^

(Fig. 20).

S
Fig. 26

Let denote the angle PSQ (or AqSA[ in Fig. 25). Then we have

{'711 + 712)^ (fiUo)^ = nl(hUi)^ + nl(hU2)^ + 2n^n2(hUi)
.
(hU^) cose

and tan{:i =
n^ihV^) sin e

n^{hU^ + ^
*

(
4

)

Since e is supposed to have been found by means of (I ), these formulae,

(3) and (4), enable us to calculate hU^ and

Consider now in Pig. 27 the celestial sphere, with the sun as centre, in

which A^ and A^ are the apices of drift I and drift II respectively. Since the

direction of the antapex of the solar motion lies in the plane defined by the

vectors and SA^ (Fig. 25), on the celestial sphere the antapex—which

we denote by A—lies on the great circle arc A^A^^ Furthermore, as we
have found the angle, between the direction of the apex of drift I and the

direction of the antapex, the great circle arc A^A is
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We can now obtain the coordinates {^0 ,(^0 )
of the solar antapex, A, as

follows. From the triangle PA^A^ (Fig. 27),

in which PA^ = PA^ — —

A^PA^ — a^ — a^, A^A^^^e, all these

quantities being supi^osed known and

82 being used in their algebraic significance,

we have

Bin PA^A^
~ sin (a^ — ^2 )

cos ^2 cosec e, (5)

from w^hich the angle PA^A^ is calculated

—for the usual positions found for A^^ and

^2 il' is easily seen that PA^A^ lies between
90° and 180°. The declination, of the

antapex A is then calculated from the formula

sin (Jq = sin cos + cos sin cos ^2 (b)

and the right ascension, of A from

sin (a^ — a^) = sin sin PA^A^ sec (7)

An alternative, and simpler, method of calculating and 8^ is as

follows.

Projecting the vectors represented in Fig. 26 on the equatorial axes, we
have at once

(n^ + Tig) • hUo . cos aQ cos 50 = 711. hD\ . cos ai cos 5i -f Tig . ^f/g . cos ag cos ^g,

( 8 )

(Til + ^2 )
• ^^0 * ^0 5o = • hUi . sin cos 5i 4- Tig . APg • si^ ^2 ^2 ’

(9
*)

(tIj + Tig) . HIIq . sin 5o = Tij . hUi . sin 5i + Tig . /it/g . sin ^2, (10)

from which hUg, ag and 8g are readily derived.

4 *36 . Num.erical results for the stream constants.

During the last thirty years a large number of investigations into the

systematic motions of the stars have been made, using proper motion data.

The results—whether for the brighter or for the fainter stars—may be said

to be in fairly good accordance, and it will be sufficient to state, for reference,

Eddington’s conclusions since his research* dealt with the stars of Boss’s

P.O.C., the proper motions of which have a high degree of accuracy;

moreover, the stars are well distributed over the whole sky.

P

* M.N. 71 , 4, 1910 .
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() Drift constants.

Drift I Drift II

R.A. of apex 91° 288°
Dec. of apex — 1

5° — 64°

Space velocity relative to sun (unit 1//^) 1-516 0-855
Percentage of stars 60 40

() Vertex.

(i) Equatorial coordinates of vertex: k.a. 274°; Doc. — 12°

(ii) Galactic coordinates of vertex: Long. 347°; Lat. — 0°-5

(iii) Relative spet^d of drifts (unit l/Z^: 1-868

(c) Solar motion.

R.A. of apex: 267°

Dec. of apex: 4-36°

Speed of solar motion (unit \ jh): 0-908

As we have seen in Chapter iii, the position of the solar apex found by
L. Boss,* using the proper motions of the P.G.C., was (270''*5, 4- 34''*3).

It may be recalled that in Airy’s method the magnitudes of the proper

motions appear in the equations of condition whereas in the api)lication of

the twO’Streams theory it is only the distribution of proper motions in

position angle that is utilised. The agreement between the two sets of

results, obtained from the same data by wholly different methods, is note-

worthy.

As shown in Chapter in, the determination of the solar motion by means

of the observed radial velocities of the stars leads to the evaluation of the

solar speed in km. /sec. and the result may be taken to be 19*5 km. /sec. If

Vq denotes the solar speed in km. /sec.,

so that, on inserting the numerical values of (= 19*5) and
(
= 0*908)

from (c) above, it is easily found that the theoretical unit Ijh is equivalent

to 21*5 km, /sec,

4*4. The mean parallax of the stars of the two drifts.

We have seen in section 2*41 that for a given region of the sky the mean
linear speed, T (there denoted by 2\), of stars moving in a direction making

an angle 6 with the axis of symmetry of a single drift-curve is given by

T=^p{r), ( 1 )

where r = hV oosd and g{T) is the function tabulated on p. 41. T is deter-

mined by this equation in terms of the theoretical unit, 1/A, and it can

* A.J. 26, 111. 1910.
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afterwards be expressed in km. /sec. by substituting in (1) the value of

Ijh in kra./sec. if the value of 1/A km./soc. is substituted in (1).

Let now d denote position angle and let 0^, be the i)osition angles of the

axes ofsymmetry of drift I and drift II. Hence, if and denote the mean
linear speeds of stars belonging to drift I and drift II resjjectively and

moving in position angle 6, we have

’’i
= AFiCos(6?-6>i), (2)

^2 = ^^^(^2 ); r.^ = hV.iQ.os(0-6,^). (3)

If /I is the annual projjer motion corresponding to the linear transverse

speed, T, of a star whose parallax is p, we have

Kfl ~ pT,

where x = 4-74; // and p are expressed in seconds of arc and T in km./^^ec.

Let ]li denote the mean proper motion of stars of drift I in j)ositioii angle 0.

We define the mean parallax, p^, of these stars by

Hence (4)

Similarly, for drift II, x/Za = Pz • ^
gir^). (5)

Let and be the number of stars, moving in a small sector with position

angle 6, belonging to the two drifts; these numbers are supposed to be known
from the analysis of the region (for example, in Table 1 5, p. 109 ;

the columns

ri and give the theoretical numbers concerned). We then have, letting Ji

denote the mean of the observed proper motions of all the stars moving in

position angle 6, , .

. _ _ _^ ^ = n^ii^ -f

and hence = n^Pi-^g{r^)^ (b)

This is an equation of condition involving two unknowns, p^ and p^, all

the other quantities being assumed known from the analysis of the region;

in practice, the T)rocedure of considering sectors of 10°, say, is followed for

determining the quantities concerned.

For a given region, we have as many equations of condition of the form

of (6) as sectors in which the data are regarded as numerically adequate.

A least-squares solution leads to the appropriate values of p^ and pg for

the region considered.
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Eddington’s analysis* of the Groombridge stars—about 4500 in number,

mainly between magnitudes 6 and 9, and within 52"^ of the north pole

—

yields, on weighting equally each of the seven regions investigated,

i = 0"-0304, ] = 0"-0331,
h K h K

and, putting \\h = 21-5, /c = 4*74, the mean parallaxes are

= 0"-0067, j)^ = 0"*0073.

The conclusion to be drawn from these results is that, so far as the Groom-

bridge stars are concerned, the two drifts are intermingled systems with

practically identical mean parallaxes.

A similar conclusion! is reached with reference to the Boss stars from a

discussion of a large composite region containing 1122 stars. The analysis

gives
1 ^ = 0"-0694, 1 .^ = 0"-0738,
h K h K

from which ~ 0"*()153, — 0"*01C)3.

Again, the mean parallaxes of the two drifts (in this instance, consisting

of the naked-eye stars) are practically identical.

4*5. The effect of accidental errors in the proper motions.

A general investigation requires a knowledge of the distribution of the

stars in space; we shall here consider only the simplified problem in which

we suppose the stars of a drift to have the same parallax, p. An error Ap in

the i)roper motion (taking one component) leads to an error A T, given by

AT = -A/i, (1)
P

in the corresponding linear velocity.

It is easy to see in a general way that the effect of accidental errors in the

observed proper motions will be a tendency to conceal the characteristic

drift-motion (as exemplified in a drift-curve) especially for stars with small

proper motions; the observed drift-curve will be somewhat less “elliptical”

in form and accordingly the deduced drift-velocity will be smaller than the

true drift-velocity. We can express this otherwise by saying that the true

theoretical unit, l/h, of speed will be less than the corresponding observed

unit, I/Aq.

We shall suppose that the errors, e, in the components, w, oflinear velocity

follow the Gaussian error-law, so that the proportion of velocities with errors

between e and e -I- de is n
-f (2)

Stellar Move,ment8y 113, 1914. f Stellar Movements, 116, 1914.
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Since the stars are supposed to be at the same distance, the errors of the

proper motions obey a similar law.

Let the linear velocity, as affected by an error e, be denoted by we shall

call V the “observed velocity”. The corresponding true velocity is v — e.

It is to be remarked that as we supj)ose u to be expressed in terms of the

theoretical unit 1/A, we regard e as expressed in terms of this unit. For an

assembly ofN stars, the number with haphazard linear velocities between

u and u + dui^
~j~
^7T

Hence the number with true velocities between v — e and v + dv — eis

Nh
^7T

and of these the number which have an observed velocity between v and

v + dvm Tjjf fj

Summing throughout the range of e, we find that the total number of stars

with an observed velocity between v and v + dv is

which may be written

rr J_oo

Ngh
e

7T

«'•+*’ dv\ e de.

J — 00

Hence the number is
Ngh

-r=r—^ e dv
V7r(9f2 4.^2)i

or
aJtt

..(3)

where h^-

or
1 1 ]

hi~V^^h^-
..(4)

Thus the frequency function of the observed linear velocities is of the

same form as the frequency function of the true velocities, the theoretical

unit, 1 /Aq ,
however being greater than the true unit 1 /A.

Since the distribution of the errors of the linear velocities is given by (2),

the probable error is 0-477/g^ in terms of the theoretical unit 1/A. If we

denote the probable error by when expressed in km./sec., we have

0-477 21*5

g -i/A- (
5

)
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But, by (1), the probable error, /f,,, of the proper motions is related to Xo by

*o = -Ao. (6)

where k ~ 4*74, p is expressed in seconds of arc and jUq in seconds of arc per

annum. Hence from (5) and (6)

0*477 4*74
. 21-5A = jUf.

g p

or - = 0-462^.^. (7)

From (4) and (7) we then have

^\
= i{l+(0.462fp). (8)

Taking the mean parallax of the Boss stars to be 0"*0158 and the j)robable

error, juq, to be ± 0"*0055 per annum, we find that

The difference between I/Iiq and l/h is almost negligible, due to the com-

paratively small probable error of the proper motions and to the consider-

able value of the parallax.

Considering the Groombridge stars, we have the estimated probable

error of the proper motions to be ± 0"*007 per annum and, taking the mean

parallax to be 0"*0070, we find that

In this instance, owing to accidental errors, the drift-velocities obtained

from the analysis of a given region require to be increased by about 10 %.

4 '61 . Eddington's analytical method of deriving the drift constants.

In Chapter ii, section 2*71, we expressed the radius vector, p, of a single

drift-curve in the form of a Fourier series thus:

p = - £ + “ (7cos0-f “i)cos20-f - £'cos3^+ “Fcos 4^?+ ...,
7T n n n n

where
r2n r 27t

WjB = i I pd&, nC =
f

pcosddd,etc,
Jo Jo
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In these formulae 0 is the angle between the radius vector for the drift-

curve and the axis of symmetry. Regarding 6 now as the position angle

and taking 0^ to be the position angle of the axis of symmetry of drilt I,

wo rewrite the formulae as

p cos {d—d^dd — rii Cl

p cos 2{d — 0i)d6 = ni

p cos 3(6^ — Oi)dO = Til El

p cos 4(6 — 6i) do = riiFi

(
1

)

There is a similar set for drift II. In these formulae, Ci, Di, . . . are functions

of the velocity, hVi, of drift I and the corresiKmding quantities 62 ,
...

are functions ofthe velocity
,
liV

.^ ,
of drift II

;
their values are shown inTable 1 6,

p. 127. The following procedure is due to Eddington.

f

Considering drift I, we have

r 2n 27t

pe^^^dd =
Jo Jo

(*2it

= p cos {d—0i)d0-i-i pm\(d — Oi)dd (2)

Jo Jo

= (3)

since, owing to the symmetry of the drift-curve, the second integral on the

right of (2) vanishes.

Let Cf denote the complex quantity We then have, from (3),

Similarly, we obtain, from (1),

/• 27T

J
pe^^^dO — UiD^,

r 27t

J
pe^^Hd^UiEf,

r 2 t(

pe*^dO = niF*,

where Cf = Df = D^e^\ E* = Ff =

•(4 )

.(5)

.(6 )

( 7
)

.(8 )

+ M.N. 68, 688, 1908 .
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We now consider the theoretical formulae in relation to the observations.

r2rr r2iT

Since poosOdd^ cosd(pdd)
Jo Jo

and since pdd is the theoretical number of stars of a drift moving between

position angles 0 and 0 + dd, the integral may be interpreted as the sum of

the values of cos0 contributed by the stars concerned. We have a similar

T2ir

interpretation for pmiOdd,
J 0

Now for all the stars of the region belonging to drifts I and II we can

form from the observational material the sums i7cos6^ and iTsinC^. Let

L = -(I'eoB^^ + iSsin^), (9)

where n ( = + /? 2 )
is the total number of stars in the two drifts. L is thus

a complex quantity derived from the observations. Then

nL ^ 2’(co8 0 -hi sin 0)

is to be equated to the sum of the two integrals of the form

drift I and drift II; thus the equation of condition is

nL = • (1C>)

Let

7t

and, since n ^2 == o (12)

Hence (10) becomes 2L = (1 +a) 4- (1 -a) (13)

Similarly, we derive from the observations complex quantities ilf, N, 0
given by 1 ^M = -(i7 cos 26^ 4-?’ 2" sin 2(9)

n

N = -(2 cos 3^ 4-^2 sin 30) ^ (14)
n

0 = i(2cos404-^2sin40)
n

giving rise to the equations of condition

2itf = (l+a)i)f4-(l-a)i>f

2jV- (l4-a)2f4-(l-a)2* (15)

20 = (l4-a)i?’*4-(l -oc)F*

The equations (13) and (15) thus constitute four complex equations of

condition and since the real and imaginary parts must be separately

satisfied, the system of equations is equivalent to eight real equations of

Tztt

J
pe^^dOiov
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condition from which the five drift constants

—

hV^, AFg, 6^, 6^ and a—are

to be determined. Now the system (13) and (15) is one ofdiminishing weight,

since errors in the observed position angle 6 will in general give rise to larger

errors, for example, in the sums 2*008 20 and 2sin20, than in the sums

2cos0 and 2sin0.

Eddington, accordingly, employs only the equation (13) and the first

two of (15). He writes

= = E* = kpi (16)
71

and = Dt = ^^Pl, E*=^Pl (17)
72

From (16), = -Df, or

Thus p — Pi piO^

and, accordingly, is a complex quantity with argument 6^. It follows

from the relation that is a real quantity; it is also a function

of hV^. The values of \P\^DjC are tabulated in the second column of

Table 16 for different values of hV, and in the third column are the corre-

sponding values of C/l P |
, The values of C, D, E and F in the remaining

columns of the table are calculated by means of the formulae given in

Chapter ii, section 2*71.

Also _

from which it is seen that (and, similarly, yg) is real.

Moreover, it is found that the values of 7i (and of yg), as calculated from

(18), that is, from p j)2

or
)2x0-\

.(18)

E PI =
CE’

are sensibly constant for the range of hV from 0 to 1-8, and Eddington

writes simply
71 = 72=7=1-163. (19)

D.\P\
If Eq denotes the value calculated from Eq = ,

the values of E — E^
1 * 1 t)o

range from —0-008 to +0-009 for values of hV in the range 0 to 1-8. For

hV = 1-9 and 2-0, the respective values of P— JSq are +0-014 and +0-019.

The approximation (19) is thus of satisfactory accuracy.

Making the substitutions (16) and (17) in (13) and (15), we obtain

2L = (l+oc)CiPi + {l-a)^^P„ (20)

2M = {l + a)^,Pl+(l-oc)^,Pl, (21 )

27iVr = (l + a)^iPf+ (l-a)^2Pi, (22)

where, in the last equation, 7 has the value 1-163.
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Let (1 -f- a) ^2 “ (1 "1"/^) (2^)

= (24)

from which k — (25)

Since a, and fg ^re real, it follows that k and ji are real. We now have the

system of equations

2L
^=(l+/?)Pi + (l-/ff)P2, (26)

2M-- = (l+/?)PH(l~/?)/1, (27)

(28)

Table 16. Values of the Fourier constants

hV C D E F

00 0-0000 1-585 0-0000 0-0000 0-0000 0-0000
01 •0564 1-573 •0884 •0050 •0002 •0000
0-2 •1125 1-561 •1755 •0197 •0017 •0001
0-3 •1680 1-548 •2600 •0437 -0057 •0007
0-4 •2227 1-531 •3409 •0759 •0134 •0020
0-5 •2762 1-510 •4171 •1152 •0253 •0047
0-6 •3284 1-486 •4879 •1602 •0420 •0094
0-7 •3789 1-459 •5528 •2094 •0637 •0165
0*8 •4275 1-431 •6115 •2614 •0901 •0266
0-9 •4739 1-401 •6640 •3147 •1211 •0401

10 •5179 1-371 •7103 •3679 •1558 •0570M •5595 1-342 •7507 •4200 •1937 •0774
1-2 •5984 1-313 •7856 •4701 •2337 •1011
1-3 •6345 1-285 •8156 •5175 •2752 •1279
1*4 •6678 1-259 •8410 ’ 5C>17 •3172 •1573
1-5 •6984 1-235 •8626 •6024 •3590 •1888
1*6 •7262 1-213 •8807 •6396 •4000 •2219
1-7 •7514 M 92 •8959 •6732 •4396 •2559
1-8 •7742 M 74 •9087 •7035 •4774 •2904
1*9 •7946 M 57 •9194 •7305 •5133 •3249
20 •8128 1-142 • •9284 •7546 •5468 •3590

Now, since is a function of hV^ and fg is a function of hV^, k is by (25) a

function of a, hVy^ and hV^] similarly, from (23), y6? is a function of a, hV^ and

AFg and, consequently, a is a function of AT^, AFg and /?. For purposes of

solution, we can thus regard the five quantities to be determined as AI^l, Alg,

^2 , 6

2

and

From (25) it is seen that A is a weighted mean between and fg, the

weights being proportional to the numbers ofstars in the two drifts. Further,

Table 16 shows that ^ varies between fairly narrow limits, and for the usual

values ofAF for the two drifts in different parts of the sky and for values

ofa round about zero (corresponding to equal numbers of stars in the drifts),
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the value of k may be taken to lie between 1*35 and 1*45; for a first approxi-

mation it may be assumed that

i=l*40. (29)

The left-hand sides of (26), (27) and (28) are thus known (complex numbers.

We have to find from these equations a real number, /?, and two complex

numbers, 1\ and with arguments 0^ and respectively.

From (26), (27) and (28) we obtain easily

i {Nyk-LM) = (I -fi^) (P, - P,f (P, + P,) (30)

and ^^{Mk-L^) = {l-^^){P,-P.,f, (31)

from which •

Thus X is a complex quantity whose numerical value is easily found.

From (26) and (32) we obtain

Pi = X +
L-Kk

’

kfi
’

= (34)

from which, on substituting in (27),

L-Kk
^ ~ {(L-Kkf+(Mk-L^)Y

'

From (26) and (31) we express P, and Pj in terms of k, L and M-, the

results are
kP^=^L+\-^-^^{Mk-L^)K (36)

*P,= L-(|^)*(m'-P2)i.

If the numerical value of y? is found from (35), the formula (36) enables us

to calculate Pj, from which we obtain |P^| and the argument 6^-, from

Table 1 6, the value oihV^ corresponding to
j

Pj
|

is easily obtained. Similarly,

the values of and 62 are derived. The values of and ^2 are then found

from the table for the appropriate values ofWi and hV^. Finally, a is obtained

from the formula 1

1 + a 1 +^ ^ (38)

derived by dividing (24) by (23).

However, this procedure will break down in practice inasmuch as the

three complex equations (26), (27) and (28) in five unknowns are funda-

mentally equivalent to six real equations which are hardly likely to be

simultaneously satisfied when the observational values of 2Ljk, 2if//c and
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2yNjk are substituted in these equations. The result is that the numerical

value of derived from (35) will generally be a complex quantity, although

by definition yff is a real quantity. From a previous remark, the weight of

(28) may be expected to be less than that of (26) and (27), Taking the real

parts of (26) and (27) and their imaginary parts, we have four equations

uniting five unknowns and these are sufficient to determine h\\
,
liV^

, 0^ and

^2 in terms ofa
;
in this way, we shall have P^, and determined as functions

of <x. We can now determine the right-hand side of (28) as a function of a;

denote it by 2'yNJJc. We thus obtain

SN-N-N^
as a function of a.

For different values of a, we shall have corresponding values of the

residuals SN (which are, in general, complex quantities), and the value, ocq,

to be chosen is that which makes the sum of the squares of the residuals

(obtained from the real and imaginary parts) a minimum, subject to the

condition that is a real quantity. It follows that
|

8N
|

is to be a minimum.

With given numerical values of L and M, it is seen from (32) that N and

K are connected by a linear relation, from which it follows that 8N and SK
are connected by a linear relation. Hence, in our solution, the condition is

that
I

SK
(

is to be a minimum, corresponding to the value, ^q, of a, subject

to the condition that is real. Let Kq be the vahie of K corresponding to

Uq] then \K — Kq\ is the minimum value of SK,

From (35),
1 ^
P L-^Kk

j

(39)

and since is to be real we have to choose L--Kk so that the argument of

the resulting quantity (call it for the

moment L — K^^k) is the same as, or

differs by 180"" from, the argument

of {Mk — L^)^. On the Argand diagram

(Fig. 28) let A denote the complex

quantity L— Kk and B the complex

quantity (Mk — L^)^, The sign of the

root is chosen so that OB is nearer

the direction of motion of drift I

relative to drift II than the opposite

direction BO, Since L — K^k has the same argument as (Mk — it will

be represented by a point lying in OB.

Now,
that is,

the vector Cl^ = vector OA — vector C6\,

C^A - Yoctoi{(L--Kk)--(L--K^k)} = vector {-/^(JT-iCi)}.

SSD 9
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Thus, for (K — Ki) to be as small as possible, must be as small as

possible. Thus the condition is satisfied for the foot, C, of the perpendicular

from A to OB; consequently, G re])resents the complex number L — K^k.

Let ijf and 0 denote respectively the arguments of L — Kk and {Mk —

Then L~ K^k
\

L — Kk\coB{ilr — <j))e^^\ (40)

Also (41)

Further, the sign of /? is positive or negative according as {L — K^k) is of the

same sign as, or of opposite sign to, that of {Mk-
With the numerical value of/i derived from (41), is calculated from (33).

The value of h\\ is then deduced from the entries in Table 16 corresponding

to the value of
|

P^
|

and the argument of P^ is the position angle of the drift.

The values of hV^ ^2 obtained in a similar way. With the numerical

values of and hV^ we find and from the table and then a is obtained

from (38).

We can finally calculate k from (25). If this value is not in substantial

agreement with the assumed value (generally taken to be 1*40 for a first

approximation), the entire solution should be repeated with this new value

of k.

4*62 • Example of the deierminaiioii of the drift constants by the analytical

method.

The proper motion data are taken from a memoir* by V. Nechvile,

‘‘Recherches sur les mouvements propres de 3802 etoiles’\ The regions

19 to 22 are grouped together to form a composite region F containing

954 stars.!

In Table 17, the second column gives the effective number, of stars

observed to move in the various sectors <"7 — 5*" to ^ + 5°; the occurrence of

fractional numbers in this column is due to the fact that the counts have

been smoothed by taking as the effective number of stars moving in the

sector ^ — 5® to 0 + 5° the mean of the observed numbers in this sector and

its two flanking sectors. The next column contains the sum of the values of

COS0, that is 27 cos 0, for all the stars moving in the various sectors; it is

sufficient to assume for the present purpose that 27 cos 0 — r^co^d. The

entries in the third column are then easily calculated. A similar procedure

is adopted for the other columns,

Publ, de VObs, natioTial de Prague, No. 4, 1927.

t The distribution of the proper motions in position angle is given by W. M. Smart and H. E.

Green, M.N. 89, 149, 1928.
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From the totals at the foot of the table we obtain from (9) and (14)*

L == - 0*032 + 0*167i -0*170j^(100^*8), (a)

M - + 0*150 + 0*397i =0*424F(69°*3), (b)

N - -0*136-0*013/,

and, with y ~ 1*163,

Ny = -0*158-0*015^ =0*159^^(185^*4),

where E{6) denotes

Table 17. The calculation of L, M and N
Posi-
tion 27 cos 0 rain 6 cos 20 27 sin 20 ZcohSO r sin 30
angle
6

^0 ~ Tq cos 0 = sin^
u
cos 20 = Tq si n 20 = rQ COS HO = Tq sin 30

5^ 27-7 + 27*6 -f 2*4 + 27*3 + 4-8 + 26*7 + 7*2

15 370 35*7 9*6 32*0 18*5 20-2 26*2

25 500 45*3 2M 32*1 38*3 + 13-0 48-3

35 61*0 50*0 35*0 20*9 57*3 — 15-8 58-9

45 60*7 42*9 42*9 + 0*0 60*7 42*9 42-9

55 590 33*9 48*3 — 20*2 55*5 57*0 + 15*3

65 490 20*7 44*4 31*5 37*5 47*3 -12-7
75 36-7 9*5 35*5 31*8 18*3 25*9 25*9

85 26-7 + 2*3 26*6 26*3 f 4*6 _ 6*9 25*8

95 21*7 - 1*9 21*6 21*4 - 3*8 + 5*6 21*0

105 17-3 4*5 16*7 15*0 8*6 12*2 12*2

115 120 5*0 10*9 7*7 9*2 11*6 - 3*1

125 11-3 6*5 9*3 3*9 10*6 10-9 + 2*9

135 9*7 6*9 6*9 — 0*0 9*7 6*9 6*9

145 137 11*2 7*8 + 4-7 12*8 + 3*5 13*1

155 16-7 151 7*1 10*7 12*8 — 4*3 16*1

165 22-0 21*3 5*7 19-1 11*0 15*7 15*7

175 400 39*8 + 3*5 39*4 - 7-0 39-6 + 10*4

185 48*0 47*9 - 4*2 47*3 + 8-3 46*4 -12-4
195 51-3 49*6 13*3 44*4 25*6 36-3 36-3

205 490 44*4 20*7 31*5 37-0 — 12-7 47-4

215 470 38*4 26*9 16*0 44*1 + 12-2 45-4

225 44*3 31*3 31*3 + 0*0 44*3 31*3 31-3

235 29*3 16*8 23*9 — 10*0 27*5 28*3 - 7-6

245 19*3 8*2 17*5 12*4 14-8 18*6 + 5*0

255 10*0 2*6 9*7 8*7 5-0 7*1 7*1

265 9*0 - 0*8 9*0 8*9 + 1*6 + 2*3 8*7

275 8*0 -f 0*7 8*0 7*8 - 14 — 2-1 7*8

285 6*7 1*8 6*5 5*9 3*3 4*8 4-8

295 6*3 2-7 5*8 4*1 4*9 6*2 + 1-7

305 5*7 3*2 4*6 — 1*9 5*3 5*4 - 1*5

315 5*7 3*9 3*9 + 0*0 5*7 3*9 3*9

325 5*7 4*6 3*2 1*9 5*2
1

— 1*4 5*3

335 7*3 6*6 3*1 4*7 5*5 + 1*9 7*0

345 9*7 9*3 2*5 8-3 4*8 6*8 6*8

355 20*7 + 20*6 - 1*8 + 20*3 - 3-6 + 20*0 - 5*4

Totals -30*9 + 159*4 + 143*1 + 379*1 129*5
1

-12*0

The formulae, in numerals, quoted in this section refer to section 4-61.

9-2
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If we perform the solution with k s 1-40, as in (29), we arrive at values

of 1-3 approximately for hV^ and hV^ and about 0-05 for a. The result is that

k, calculated from formula (26), is somewhat less than 1-40. In the sub-

sequent work, we put k — 1-30. We then obtain

Nyk = - 0-205 -0-020is0-206jS;(186°-6) (c)

Prom (a), (b) and (c), we find

LM = 0-072i;(170°-l) s - 0-071 + 0-012i,

Nyk-LM = -0-134-0-032i = 0-138^(193°-4),

= 0-029£?(201°-6) = -0-027- 0-01 li.

MK = 0-195-h0-616i,

Mk-L^ = 0-222 -4-0-627^

{Mk-L^)i

= 0-572P(67“-2)

s0-766£’(33°-6).

Now by (32),

Hence

Nyk-LM _ 0-138j;(I93°-4) _ . o.,

K = -0-071 -f0-097t

Kk = - 0-092 0-1 26i.

We then have L-Kk = 0-060 -f0-041t = 0-073J5(34°-3)

and {L- Kk)^ = 0-006JS(68°-6) s 0-002 -f 0-005i.

Writing Xs(L-Kk)^-h Mk- L\

we derive X = 0-224 -f 0-532i= 0-577^(67°-2)

and X* = 0-760X(33°-6).

If p is calculated by means of (35), we have

L-Kk 0-073X(34°-3)
0-096X(0"-7),

Z* 0-760J?(33°-6)
' "

from which /? = 0-096 -fO-00 li.

Thus P comes out to be nearly real. However, to illustrate the method, we
shall keep P in its complex form and we have to modify the procedure in

accordance with formulae (40) and (41).

From (e) and (d), ^ = 34°-3 and
<f>
= 33°-6. Hence, by (40),

L-Kok = 0-073 cos {34°-3-33“-6}X(33°-6)

= 0-073J2?(33°-6).

{Mk-L^)i 0-766

~L-Kok “0-073“ ’Consequently,
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and, from (41), ^2=1 + (10-36)2 = 108-3,

from which ^ = +0*096,

the sign of yff being determined in accordance with the rule previously

mentioned.

With this value of /?, we find

= 0*908 X 0*756jE;( 33‘^*6)

= 0*572 + 0*380i.

Adding the value of i = — 0*032 + 0*167i, we obtain from (36)

iPi = 0*540 + 0*547i = 0*769P(45°*4),

from which, with k = 1*30,

Pi = 0*592P(45°*4).

Similarly, P2 = 0*602P(202‘^*1).

We then obtain, using the values of
|

P
|

in Table 16,

AFi =1*18, = 45^*4,

AFg = 1*21, 0^ = 202^^*!.

With these values of hV^ and ATg, we find from Table 1

6

^1=1*318, ^2=1*310.

Formula (38) now enables the value of a to be found; it is

a = +0*093.

Thus the numbers of stars in the drifts are 521 and 433 respectively. We
now calculate k from (25); the result is

k = 1*314,

in good agreement with the assumed value 1*30. A re-calculation with this

new value of k is unnecessary.

The results* of the analysis by the “trial and error” method of section

4*21 are (the corresponding drift-velocities are denoted by hV'^ and hV^ iu

the paper referred to):

AFi = 1*3, 0^ = 45^

AFg = 1*2, 6>2 = 200°,

and the numbers of stars in the two drifts are 509 and 445 respectively. The
two methods of solution give, in this instance, very accordant results.

When the stars are distributed between the two drifts in nearly equal

proportions, as in the example just worked out, the agreement between the

results ofthe two methods is generally satisfactory
;
otherwise, the analytical

W. M. Smart and H. E. Green, M.N, 89, 151, 1928.
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method of the previous section is not well adapted for determining a and

the ‘‘trial and error” method is to be preferred.

4*63. Modification of the analytical method.

Although earlier investigations, mainly of the brighter stars, appeared to

show that the stars of drift I were more numerous than the stars of drift II

(for example, in Eddington’s analysis* of the Boss stars, the ratio was

found to be 3 : 2), recent work on the faint stars has in the main suggested an

approximate equality in the numbers. If we assume a to be zero, our un-

knowns are reduced to four, viz, AT^, <9^ and 6.^, and the two equations,

(20) and (21) of section 4-61
, suffice to determine the drift-velocities and the

position angles 6^, 62 - have, then, with the same definition ofthe symbols,

2M = ^,PI + ^2PI

and + (1)

The solutions are then contained in the following equations (equivalent

to (36) and (37) of section 4*61):

= P-fe(m~P2)^ (3)

kP^= L--(Mk-L^)K (4)

The numerical work is evidently greatly reduced. Eddington has appliedf

this method in analysing the Cambridge proper motions.

In a preliminary solution of the equations (3) and (4) we can put e equal

to unity and take a suitable value of k. We then obtain Al^ and Alg and with

these values we obtain from Table 16 the corresponding values of and

which lead to new values of k and e given by (1) and (2). With these values

of k and e, the work may be repeated, if considered necessary.

We illustrate the method by means of the data of section 4-62. Putting

k = 1-28 and e = 1, we have

(Mk- = 0-751 P(33M) = 0-627 + 0-413^,

- 0-032 + 0-167i.

Hence, from (3) and (4),

kP^ = 0-595 -f 0-580i = 0-83lP(44‘^-3),

AP2 = -0-659-0-2461 = 0-703P(200°-5),

from which IP2 I

= 0-549.

• M.N. 71, 38, 1910; see also section 4-36, t M.N. 87, 138, 1926.
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The solutions then are:

h\\ = 1*34, 0^ = 44^-3; h\\ = 1-08, 0^ = 200°-5.

With these values of hV^ and we find

= 1-271 and = 1*348,

from which k = 1-31 and 6 = 1*03.

Repeating the solution with these values of k and e, we obtain

AFi = 1-29, - 44°-0; hV^ = 1-04, 0^ - 200^-5.

4*7. The three-drift hyjwthesis.

When the proper motions in a given region of the sky are analysed by the

methods of the preceding pages, it is generally found that the direction of

the apex of drift I is fairly close to the direction of the solar antapex. This

may be easily seen from a diagram. In

Fig. 29, Ai denotes the position, on the

celestial sphere, of the apex of drift 1

and A the solar antapex (we assume that

the right ascensions of A^ and A are 0^

and that the declinations are — 14° and
— 34°—in accordance with the results of

observation). For a region at R the

directions of A and A^^ from R have a

comparatively small separation. It is only

for regions such as S (and the antipodal

regions), with right ascensions approxi-

mately between and 7^* and declinations

between —14° and —34°, that the separation between these directions is

considerable. Now if, in addition to the two assemblies of stars forming

drift I and drift II, there is a third at rest in space with reference to the

totality of the stars, this third group will give rise to a drift—when the solar

motion is taken into account—with its drift-velocity in the direction of the

solar antapex. In addition to drift II, we should then have two drifts with

their drift-velocities, in general, not much separated in direction and the

combined effect would be to give a distribution ofproper motions resembling

a single drift. This is illustrated in Fig. 30, taken from a paper by Halm.*

The full-line curve gives the distribution resulting from the combination of

two drifts, one moving in position angle 90° with velocity hV— 1*05, the

other in position angle 135° with velocity 1*23, the numbers of stars in the

two drifts being assumed equal. The curve is clearly unsymmetrical, but

M.N. 71 , 620, 1911 .
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the deviations are so inconsiderable that a single drift-curve can be readily

found to give a good representation of the original curve. This single drift-

curve is shown by the broken-line and corresponds to position angle 116°

and velocity 0-90.

Investigations of the motions of the bright '‘Orion’’ stars (that is, of

spectral type B) of Boss’s P,G,C. suggest that there is little or no evidence

of preferential motions as with stars of the other spectral types, for which

star-streaming is unmistakable. The B type stars, in fact, form a single drift

with the drift-velocity directed towards the solar antapex. In Eddington’s

analysis of the Boss stars, the B type stars were omitted. Halm, however,

has shown {loc, cit.) in a rediscussion of the material that, in regions (such as

S in Fig. 29) where the directions of the apex of drift I and of the solar ant-

apex are widely separated, there is evidence of a residual antapical drift

of stars (other than of type B) to which, with the Orion stars, he gave the

designation “drift 0 ”. In the other regions where there is little divergence

between the direction of the apex of drift I and the direction of the solar

antapex, drift 0 is supposed to be concealed in the analysis on the two-drift

hypothesis, as it is mainly combined with drift I in the manner illustrated

in Fig. 30. Eddington* had remarked on the presence of a third drift in two

of the Boss regions which he analysed, but was inclined to regard it as of

minor importance in comparison with the two great star-drifts.

So far as can be ascertained, the emergence of drift O is not so evident in

the analysis of the proper motions of faint stars and it is generally ignored

in statistical discussions. Unless drift O is ofan importance comparable with

that of drift I and drift II, this procedure is in accordance with the method

• Jtf.ivr. 71 , 40, 1910.
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ofsolution by successive approximations, the two-drift hypothesis providing

the first approximation. It may be said that this first approximation re-

presents, on the whole, the observed distribution of proper motions very

satisfactorily and a more refined investigation of the proper motion data on

the basis of a three-drift hypothesis must await more accurate and more

plentiful observational material.

4*81 . The radial velocities and the two-drift hypothesis.

Hitherto, it has not been found practicable to use the radial velocities as

a means of deriving the drift constants but, nevertheless, it is extremely

important to ascertain whether the observed radial velocities are statistically

in accordance with the two-streams theory. One method of testing the

theory is as follows. From the observed radial velocities of stars scattered

over the sky, the solar motion is found by the method described in Chapter

III. IfA is the angular distance ofa star from the solar antapex, the observed

radial velocity of the star is made up of (a) the projection of the reversed

solar speed in the direction of the star-—in other words, the parallactic

component—of magnitude l^cosA, where is the solar speed, and
(
6

)
a

part, /?, due to the star’s motion in the drift. Knowing Vq and A we can remove

the parallactic component from the observed radial velocity and so obtain

the component, R,

Consider now N stars in a small region of the sky at S, and suppose that,

of these N stars, N-^ belong to drift I and No to drift II, where N +
Let the velocity of drift I relative to the centre of rest of the totality of stars

be V^, directed towards the vertex B, and let the direction of S make an

angle (j) with the direction of B. Thus, the component of drift I in the

direction of is cos (j). Consequently, the radial velocity of any star at S
(freed from the solar motion) is made up of a constant part cos

f)
and a

haphazard component v. The following analysis is analogous to that in

section 2-44.

Of the stars, % will have positive* radial velocities given by cos (}>-\-v,

if ~ cos f)<v<oo, and the remainder, (N^ = + ^2 )* have negative

radial velocities if ?;< —T^cos^. Now the number of stars with random
velocities between v and v-\-dvm

y/TT

and consequently, if denotes the mean radial speed of the stars,

hN r °°

n^pi = —

7

~
I

cos f>) dv
J _

* We consider cos here to be positive. As we shall be concerned with speedSf it is easily

seen that the formulae (4) and (5) are independent of the sign of \\ cos
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or, writing hv — x, Wi cos = T'l. ( 1 )

= (x + Ti)e-=^^dx. (2)

Similarly, if denotes the mean linear speed of the stars,

hN r °°

^2/^2 = —r (v-Vi cos (^) dv
J Fxcoe^

Let denote the mean radial sjieed (freed from solar motion) of the

stars; then 4.

from which, by means of (2) and (3),

^ 00 ^ CO

JisttR^^ {x-^T-^)e~^'^ dx-\-
\

{x — r-^e~^^dx
J -Ti J Ti

Too /*Ti

= 2 xe'~^^dx-{-2T^ e~^^dx,
J-n Jo

or, in terms of the integral

K(t)s j\-=^^dx,

h^ln Bi = e“’’i^4-2TiiC(ri). •(4)

The function on the right-hand side of (4) is the same as the function F{t-^)

defined in (17) of section 2-44; the numerical values are given in Table 8 .

Accordingly, we write

h^R^ = F{r^). (5)

Similarly, the mean radial speed, (freed from the solar motion), of the

stars of drift II is given by

h'Jn R^ = F(t^), (6)

where T2 = AF2 Cos^. (7)

Let Rq denote the mean radial speed (freed from the solar motion) of the

iV^( ~ iV^i -J- stars. Then

(N-^ +A 2 ) Rq = Ni R-i 4-N2 R^i

or, writing and using (5) and (
6 ),

hy/n Rq — (xF{Ti) + (

1

— a) F{t2 ). (8 )

It may be remarked that a and the stream-velocities, hV^ and hV^, are related

by the equation
cxV^ =r (l-a)I^.
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The formula (8) has been used by Eddington* in a particular case for

testing the two-streams hypothesis. Denoting by R the value of for a

region at the vertex, where 0 = 0, and by R" the value of Rq for a region

90° from the vertex, we have, since R = 7—y-

,

ft a^TT

— = aF(hVi) + {l-a)F(hV2). (9)

The theoretical value of R'jR" as derived from (9) with the known values

of a, hVi and was found to be in fairly good agreement with the value

obtained from the observed radial velocities.

The formula (8) is a general one and it can be apj)lied to any region of the

sky. The disadvantage of the method, however, is tliat the solar motion has

to be removed from the observed radial velocities of the stars in each area.

In the next section we demonstrate a method that is easy to apply in practice.

4*82. Consider a region of the sky at angular distances and Ag from the

apices of drift I and drift II respectively. By formula (16) of section 2*44,

the mean observed speed (that is, relative to the sun) for stars in drift I is

liF(T^), whore ^ hu^ cos Aj

and F(t) is the function tabulated on p. 49, hi\ is the space-velocity of the

drift relative to the sun, and R is the mean random radial speed for the stars

in the drift. There is a similar expression for the mean observed speed of the

stars belonging to drift II. With the meaning of a as defined in the previous

section, it is seen that, if denotes the mean observed speed of all the stars

in the region,
Po = + (1)

where Tg = cos Ag,

the space-velocity of drift II relative to the sun being

We suppose that the drift-velocities hU^ and hlJ^, the positions of the

apices of the drifts and the value of a have all been determined from the

analysis of the proper motions. Also, this analysis gives the solar speed

expressed in terms of the theoretical unit l/h; for example, Eddington’s

value for the solar speed (section 4*36) is 0-908 in terms of the theoretical

unit, and identifying this with the usual value of 19-5 km. /sec. obtained

irom the radial velocities as in Chapter iii, section 3-43, we have

1

h

19-5

0-908
km./sec.

Also, by (1) of section 2-24,

i? = 12-1 km. /sec.

Stellar Movements^ 144, 1914.

Hence
(
2

)
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The right-hand side of (1) can now be calculated in km./sec. and the result

compared with the value of Po obtained from the observed radial speeds in

the region. A recent investigation* showed that for the radial velocities of

Schlesinger’s Catalogue of Bright Stars, 1930 and with Eddington’s values

of the drift constants obtained from the analysis of Boss’s proper motions,

theory and observation were in close accordance. It should be remarked

that practically all the radial velocity stars are also Boss stars.

We can proceed {loc, ciU) in a somewhat different way by regarding (1) as

an observational equation in which R and a are to be determined, the value

of Po for each region being given by the observations. As before, we suppose

the space-velocities of the drifts relative to the sun and the drift apices to

be known. We then have as many equations of the form (1) as regions, and

by a least squares solution we can derive R and a. For convenience, write

R — x\ a==0-5 + /?; R^ — y

and set + \F{r^) = a, F{Tf) - F{r^) == 6.

Then (1) becomes ax-^by = pQ, (3)

in which a, b and Po are known for each region; (3) is then an equation of

condition for the unknowns x and y.

The radial velocities of 3679 stars were taken from Schlesinger’s catalogue.

Stars omitted from consideration were as follows: (a) stars of spectral type

other than B to M, (b) stars belonging to open clusters, and (c) stars in Oort’s

category of ‘‘high velocity stars ’’.f Two solutions were made, (i) for all

spectral types B to M, and (ii) for all spectral types A to M. The second

solution corresponds to Eddington’s analysis of the j^roper motions of the

Boss stars, as in this analysis the B type stars were omitted. The results are:

(i) jR = 11*8 km./sec.; a = 0*52,

(ii) R = 12*2 km./sec.; a = 0*49.

The solution (ii) is the appropriate one with which to compare the value of

R as given in (2); the two values of R are almost identical and we conclude

that the radial velocities are confirmatory of—certainly not antagonistic

to—the two-streams theory. The solution (ii) also indicates that the stars

utilised in this analysis are divided almost equally between the two streams.

• W. M. Smart, M.N. 96, 165, 1936. I Oroningen PubL 40, 30, 1926.



CHAPTER V

THE ELLIPSOIDAL THEORY

5 * 11 . Schwarzschild's hypothesis.

We have seen in the previous chapter that the observed distribution of

stellar motions can be explained satisfactorily by the assumption of two

assemblies of stars which are, so far as can be ascertained, intermingled in

space. The motion of one drift relative to the other defines a well>determined

axis lying in the galactic equator and fixing the vertices of star-streaming.

If we imagine that our observations are made from a position at rest with

reference to the totality of stars, the distribution of velocities will be such

that one assembly will appear to have, as a whole, a motion parallel to the

axis, the individual motions being compounded of this common motion and

the haphazard motions, while the other assembly will appear to have, as

a whole, a motion parallel to the axis but in the opposite direction, the

individual velocities again being compounded of this common motion and

the random motions. To our imaginary observer the i)henomenon may be

described as a greater mobility parallel to the axis joining the vertices than

in dii'ections perpendicular to the axis. It w'as this aspect of the distribution

of stellar motions that led Schwarzschild* to postulate a velocity function

of the form

in which (V, F, W) are the components of the linear velocity of a star, the

?7-axis corresponding to the axis of star-streaming, and symmetry about

this axis being assumed. The exponent in this formula is related to the

equation of an ellipsoid (with two equal axes), namely

= 1
,

in which the velocity components play the part of coordinates. IfK is less

than H, the mean speed component parallel to the 17-axis is, as we shall

show, greater than the mean speed component perpendicular to this axis.

The 17-axis, therefore, gives the direction of greatest mobility.

Let N be the number of stars with the given velocity function. If dN is

the number of stars with velocity components between {U,V,W) and

{U + dU, F-fdF, W + dW), Schwarzschild’s hypothesis gives

dN = (1)

OdUingen Nach. 1907, p. 614.
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The coefficient A is obtained by summing for all possible values of U, V
and W, Thus

so that
NKm

Let U denote the mean velocity component parallel to the U-axis, taken

without regard to sign. The total number, 8N, of stars with components

between U and V ^-dU obtained by summing ( 1 )
for all possible values of

F and W. Hence, using (2),

NKm
e-ii^v^dV

from which

Since we are concerned only with the arithmetical values of U in finding

the value of ?7, we have, from (3),

NU

from which

Similarly,

Hence, if K<H, the mean component in the U-direction is greater than

the mean component in a perpendicular

direction; in other words, the 17-axis is ^
the axis of greatest mobility.

7^,

Referring to (1), we see that U and F
are proportional to the semi-axes of the X

• \ \
velocity ellipsoid. / / \ \

5 * 12 . The velocity ellipse. ..
1

Consider a small area of the sky at 8
(Fig. 31) in which there are n stars with \^U ^ ^ vj
the given ellipsoidal distribution. The \ /
centre, 0, is at rest with respect to the y
assembly of stars and we are to find the

distribution of velocities in the plane at 8
perpendicular to the line of sight. Let OA
represent the t7-axis and let BC he the great circle of which A is the pole.

Since the velocity distribution is symmetrical about OAy we can choose the
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V and W axes according to convenience. Let the W axis lie in the plane

0A8, The F-axis defines the direction of a pole of the great circle A SC,

We now choose new rectangular axes, the ?4?-axis being radial at S and

theu and v axes in the tangent plane at 8
;
the 2^-axis is taken to be tangential

to the great circle 8

A

at 8\ the ^?-axis is tangential to the great circle SB.

Let X denote the angle AOS, that is, the angular distance of 8 from the

vertex A. From Fig. 31, it is evident that

w = U Bin x—W cos;^^

w = U cos
;\;
+ IF sin x.

or U = uBinx + ^<^osx

V = v

W = — cos + it; sin %
Hence

(
1

)

(
2

)

+ W^} = i42(A"2sin2X + ^"cos2;\:) + ^^^^^

+ w^(K^ cos^ A!) + — IP) sin x

X

(^)

Set, in (3),

a = cos^
A! + X X A!-

The number of stars with velocity components between (U,V, W) and

(U-^dU, V + dV, W ^'dW) is given by formula (1) of the previous

section; hence the number with velocity components between (u,v,w) and

{u-{'du, + dv, w + dw) is

A dudvdw cos2

Let dn now denote the number of stars with transverse velocities between

(u,v) and (u-\-du,v + dv). This number will be obtained by summing the

previous expression for all values of w between — oo and -f oo. Hence

i:

Now
j:

.(4)

e ^ ^ dw

jlT -w*= -e^ .

V a
Hence, from (4) and (5),

dn=A /- dudve^^
V a

which may be written dn =

.(5)

«(
H*v*

.(6 )
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C08®X+

X

and h — H.

The ellipse given by the equation

khi^+hV = 1

is called the velocity ellipse.

From (7) and (8), we obtain

^2 = p>

6- 12

(7)

(8)

(9)

from which
(m
\K^ j

1 sm^X =
A2

1 . (10)

This is an important formula. Since K<H, it is evident that k < h, so that

the ifc-axis is the major axis of the velocity ellipse and is consequently the

axis of greatest mobihty in the tangent plane. Also, since h = H, the minor

axis is the same for all parts of the sky.

The formula (10) gives the relation between the ratio of the axes of the

velocity ellipse and the ratio of the axes of the velocity ellipsoid. As will be

shown later, the value of hjk can be obtained, for a particular region, from

the observed proper motions and the combination of results from different

regions gives the value of H/K and the direction of the f7-axis, that is, the

direction of the vertices of preferential motion.

5*21. The distribution of the observed transverse motions in a given region

of the sky.

Consider now the effect of the parallactic motion on the distribution of

the transverse linear velocities in the region ofthe sky at S. As in the previous

section we define the i^-axis to be the tangent at S to the great circle joining

8 to the vertex A, Also, the number, dn, of stars with components between

{Uy v) and (u + du, v + dv) is, rewriting (6) of the previous section,

dn = Ce~^^^~^^^^dudvy

from which it is easily found that

nhk

n '

(
1

)

(2)

where n is the total number of stars in the region at 8,

Let Uq, Tq denote the linear components of the parallactic motion for the

region referred to the u and v axes. We require a convention as to the positive

direction of the t^-axis; we shall take the positive direction to be such that

the component ofthe parallactic motion is positive. The positive direction
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of the v-axis is chosen in a similar way. Let OA, in Fig. 32, represent the

vector {Uq, Vq) and let AB represent

the peculiar velocity of a star, with

components u and v. The star will

then be observed to have a linear

velocity r (represented by OB) in

a direction making an angle <p with

the u-sbxis.

If (x, y) are the components of the

observed velocity with respect to the

u and V axes, we have

x — rco^^, y — rsin^ (3)

Also x = u-{-Uq, y = v-\-Vq.

Hence the number, dn, of linear velocities with components between {x,y)

and {x -f dx^ y + dy) is given from (1 )
and (2) by

dn = dxdy (4)

From (3), dxdy = rdrdcj).

Consequently, the number of stars with linear velocities between r and

T-^dr and moving in the sector (^-hd(p is given by

dn = ^—d6

.

(5 )
7T

6 = 0

Let pd<l>^n{(l>)df^ denote the total number of stars moving in the sector

0 + ^9^. Then, from (5), by summing for all possible values of r between

0 and 00,

pd4,=n{4>)dd, =
7T

/*oo

X I rdr e— (^)
Jo

Let ^ =
-f- (A;2cos^^ + ^^8in^^)^ (7)

^ = ~(PC^cos9^ + ^%sin 96 ) (8)

and x = pr--^. (9)

It is to be noted that, with the conventions stated above, ^ is positive for

the positive directions of the u and v axes (corresponding to 9S = 0 and
= 7r/2).

SSD JO
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The integral in (6) becomes, by means of (7), (8) and (9),

“2^^’
f”

{x + i)e-^*dx

6-21

or where /(^) is Eddington’s function introduced in Chapter ii,

section 2*3. We thus have, from (6),

Jr

where J52 _ g_A:2l7oa-/t2Fo=

2>v/7r

.( 10)

.( 11 )

The polar curve derived from (10) gives the distribution of the transverse

linear velocities relative to the sun.

5*22. Characteristics of the polar curve.

From the formula for/(^), it is seen that f(f^) increases as ^ increases and

therefore /(^) will have its maximum value when ^ has its maximum value.

Writing ^ standi, we have, from (7) and (8) of the previous section,

k^U^ + hW^t

from which

and hence

dt

(F4-/A2)4
'

hW(V,^Uot)

h^k^^iy^ cos 96 — Z7o sin ^)

cos^ 96 4- sin^ 96)!

Thus ^ is a maximum or a minimum when tan 96 = V^jU^, that is, in the

direction of the parallactic motion or in the opposite direction. Further, it

is easily seen from the expression for d^jdf)^ that and consequently

/(^), is a maximum in the direction of the parallactic motion and a minimum
in the opposite direction.

In this respect the function /(^) resembles the function /(r) associated

with a single drift-curve which also has its maximum in the direction of the

parallactic motion and its minimum in the opposite direction. The function

/(t) is also symmetrical about the direction of parallactic motion, but this

is not the case with the function /(^), as may be easily seen as follows. Let

f>
where tan ijr = VqIUq. Then

lo.cos 94 = cos^^cosa—^ sinaj

,

sin 94 cos^J^^sina-f^ cosaj,
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(

V / F
cosa — ^sinaj 4-

^
j^sin a + ^ cos a

j
,

which is of the form
= A cos 2(X + B sin 2a -f C.

Also, ^= = —j^{{h^ — lc^)Uf^Qsina + {hWl-{-k^Ul)ooB(x},
P^o

It is therefore clear, in the first place, that ^(27t — a) # ^(a) and, accordingly,

/(g) is not symmetrical about the line a = 0, that is, about the axis of the

parallactic motion.

An example (approximate) of the curve pj = /(g) is shown by the broken-

line curve of Fig. 33.

Consider now the function /(g)/p2. We have

= (A^— A2)gin20,

Since k<h, p^ is a minimum for ^ = 0® and 180° and a maximum for

<f>
= 90° and 270°. Thus the effect of the factor, Ijp^, applied to the radii

vectores of the curve — /(g) is to extend the values of pi to a maximum
extent for ^ = 0° and 180° and to a minimum extent for ^ == 90° and 1 80°.

The result is, in general, a bilobed curve of the form shown by the full-line

curve in Fig. 33, with features resembling the curve obtained by the com-

bination of two drift-curves.

10-2
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5 *31 , Determination of the polar curve constants from the proper motions

{first method).

In the two-streams theory, there are five constants to be determined from

the data relating to the transverse motions for a particular area of the sky;

they are: N^, hV^ and 6^ for drift I and {N - and 6^ for drift II, it being

assumed that all the stars, N in number, belong to one or other of the two

drifts. In the ellipsoidal theory, the constants to be determined are four

in number; they are: Vo, kjh and 6^, where Oq is the position angle of the

axis of greatest mobility and consequently defines the orientation of the

2^-axis in the tangent plane.

The following analysis assumes that 0' — 6^ lies between 0° and 90°, 6'

being the position angle of the parallactic motion. Thus 6 is to increase in

a sense which, strictly, is known only after some progress has been made
with the solution. In practice, we quickly gain the requisite information

and, if necessary, reverse the sense of increasing 0 temporarily while per-

forming the solution. In combining results from different regions, as in

section 5*4, the values of Oq and <9' must naturally conform to the usual

convention. The point of these remarks occurs in connection with the final

term in equation (3) below.

Consider the number, nidd, of stars moving in the sector defined by the

position angles 6, 6 + d6. Then, by (10) of section 5*21,

=
( 1 )

where p and ^ are now given by

coa^ (6 —0^) + h^8m^ (d -0^), (2 )

g = - {k^Ug cos {&- Oq) + hW^ sin {0 - <?o)} . (3)

Let denote the number of stars moving in the opposite sector defined

by the position angles 18O°-i-0, 180°+^ + ^^. Then^ remains the same for

both sectors but ^ changes sign. Hence

From (1) and (4), we obtain

£2 W
«X_ M)

.(6)
*'2 /( ~

The values of log^i^(f) are given in Table 18.* It will be noticed that

log^ii) differs very little from the function 0*155^.

The function is not to be confused with the function ^6) of section 2*42,.
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Table 18. Values of log }Jri£)

149

i log
5^^(S) i

00 0-000 0-4 0-620
01 01 64 0-6 0-779
0-2 0-309 0-6 0-939
0-3 0-464 0-7 1-102
0-4 0-620 0-8 1-268

The observed proper motions give the ratio of the numbers and for

opposite sectors or, if the distribution of the proper motions is exhibited

in the form of a polar curve, the ratio ofthe radii vectores in position angles

6 and 04-1 80°. Hence, by means of Table 1 8, the value of ^ is found. In this

way, ^ is found for each value of the position angle 0 between 0 = 0° and

0 = 180°—for the remainder of the range 180° to 360°, the value of ^ for

position angle 04- 180° is numerically equal to, but of opposite sign to, the

value of ^ for position angle 0.

Again, for each value of ^ the corresponding value off(^) can be found by

means of Table 5 (p. 39), and nj being known formula (1) enables us to

calculate the corresponding value of B/p. It is to be remembered that

and Bjp are all functions of 0 {B is a constant for the particular region

concerned).

Suppose now that radii vectores, r^, are drawn for different values of the

position angle 0, their lengths being given by the appropriate values of B/p.

The theoretical locus traced out is given, from (2), by ^

rl {k^ cos2 (0- 0o) -f sin2 (0 - 0^)} = (6)

which is an equation of an ellipse (the auxiliary ellipse). Referred to its

principal axes its Cartesian equation is

k^x^-\-h^y^ = B^, (7)

An alternative method, suitable for a least-squares solution, is as follows.

We write (6) as 2
a;4-vcos204*zsin20 = —y (8)

rf

where x = {h^ -f k^),

y =

2 = -^(A2-*2)sin2i9o,

and the value of 2/rJ is known for each position angle 6. The linear equation

in X, y and z is solved by least squares; the values of kjB, hjB are then

easily derived.
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Since, by convention, the positive direction of the i^-axis is such that

is positive, we see from (3) that ^ is positive for 0 — Oq (p is the positive

square root of the right-hand side of (2)). Hence the data indicate which

direction of the major axis of the auxiliary ellipse corresponds to 6 ~ 6q.

In the same way, the positive direction of the t;-axis 7r/2 is found. This

defines the sense in which 6 must increase. If determined from the data,

happens to be negative at (9o+ 90°, the assumed sense of increasing 6 must

be reversed (or the analysis modified).

From the values of Bjp and g, we now calculate the quantity Bjp^ for

each value of the position angle. Ifwe plot the i)oint8 whose radii vectores,

rg, are given by Bfp^, corresponding to the various values of 6^, we obtain by

means of (3) the theoretical locus

+ E, (9)

which is the equation of a straight line. Referred to the principal axes of

the auxiliary ellipse, its Cartesian equation is

kmoX + hWoy==^ B. (10)

Denoting the intercepts of this straight line on the principal axes of the

auxiliary ellipse by c and d, we have

= A*Fo = |. (11)

A simple procedure is to plot the points whose polar coordinates are

(Bjp^,6), as obtained from the data, and to draw a straight line to satisfy

as accurately as possible the points so plotted. As we now know the value of

6q, we have the positions of the axes 0 = Oq and ^ = 0^4- 90° and the inter-

cepts, c and d, on these axes can be obtained by measurement.

The equation (9) can also be used as the basis of a least-squares solution,

if desired.

From (8) and (11), kUQ = -y (12)
C Cv

We can write these in the form, using (8),

Uo =
bc‘h'

(13)

These last formulae determine and in terms of a theoretical unit, 1 jh.

Let 6' denote the position angle of the parallactic motion, corresponding

to the vector OA in Fig. 32. Then tan(0'— 0o) = VJUo, or, from (13),

(
14

)
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K a check on the calculations is required, it is to be noted that

_ nhk
fcZp a

from which ?^ = 2 Vtt a6 (15)

The quantities a, b, c and d on the right of this formula are measured quan-

tities and the identity may be used for purposes of verification.

However, it may hapjien that one of the four quantities a, h, c, d can be

obtained from the graphical work with rather less certainty than the other

three; under these circumstances the formula (15) should be used, with the

known value of n, to calculate this particular quantity.

5*32 . Example of the calculation of the polar curve constants.

We shall consider the region centred at (0^ 16^, -f 50^) for which we have

data* of the proper motions of 545 stars, measured photographically at

Cambridge. An analysis on the two-streams theory yielded the results:

hV^ = 1-5, = 105^^; hV^ = 0-8, 6^ = 19()^

where hV^y hV^ are the drift velocities and 6^ are the position angles of the

drift apices; also the numbers of stars in the two drifts are practically equal.

With these values of the drift constants the theoretical distribution has been

calculated and the second column of Table 19 shows the theoretical number,

r, of stars moving in the 30*^ sector 15® to 6^ -f 15° for values 0®, 10®, 20®, ...

350® of 0. The theoretical distribution and the observed distribution are

also shown diagrammatically in Fig. 34.

Instead of using the observed data, we shall use the theoretical distribution

on the two-drift theory for calculating the corresponding ellipsoidal

constants; we shall thus illustrate the method of the previous section and, in

addition, exhibit the relation between the theoretical two-drift curve and

the theoretical ellipsoidal distribution.

The third column of Table 19 contains the values off(0lf{ — S) which are

found by dividing the value of r in the second column, corresponding to a

particular value of d, by the value of r for 6 -h 180®—in accordance with (5)

of section 5*31. It is unnecessary to make the calculations for more than

eighteen consecutive values of dy as the remainder of the values are simply

the reciprocals of those found. The fourth column contains the logarithms

of/(^)//( — ^), and the fifth column the corresponding values of ^ deduced

from Table 18. The entries of this last column are readily completed, since

the value of^ for a position angle ^ -f 1 80® is equal numerically but ofopposite

sign to the value for 6. The sixth column contains the values of/(g) deduced

M.N. 87, 123, 1926 .
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from Table 5, p. 39. The entries in the seventh column are formed by
dividing the value of r in the second column by the corresponding value of

J{i) ;
l>y ( 1 ) of section 3*51, this quotient is The eighth column contains

the values of Bjp, which is the radius vector, of the auxihary ellipse.

The entries in the last column are the values of Bjp^, or the radius vector

associated with the straight line of formula (9).

Table 19. Calculation of the polar curve constants

0 r
M )

Jl
-
l )

'n<-b

'

1

g Sig)
ill

04
III

0 " 5-4 — — - 0-702 0*19 27*7 5-26 - 7*5

10 5-9 — — - 0*685 0*20 29*3 5*41 - 7*9

20 7-3 — — - 0*615 0*23 32*0 5*65 - 9*2

ao 9-8 — — - 0*510 0*25 38*8 6*21 - 12*2

40 14-4 — — - 0*367 0*31 46*7 6*85 - 18-5
50 22-5 — — - 0*192 0*41 54*9 7*41 - 38*5
00 35*9 —

1

0*010 0-57 62*9 7*94 —
70 55-9 — — 0-200 0*82 68*5 8*26 + 41*7

80 81-4 3*80 0*580 0-375 1*18 69*0 8*33 22 2
90 100-9 6*36 0*803 0-503 1*56 68*5 8*26 16*4

100 124*0 9*51 0*978 0*623 2*06 60*6 7*81 12*4

110 128-3 12*34 1*091 0-092 2-44 52*4 7*25 10*5

120 117*9 13*71 1*137 0*720 2*62 45-0 6*71 9*3

130 100*3 13*74 1*138 0*721 2*62 38*3 6*17 8*5

140 83*7 13*29 1*124 0*714 2-56 32*7 5*71 8*0

150 73*4 12*88 1*110 0-704 2*49 29-5 5*43 7*7

100 09*0 12*65 M02 0*698 2*46 28*3 5*32 7*6

170 09*6 13*13 1*118 0*702 2*48 28*1 5*29 7*5

180 70*8 13*12 1*118 0*702 2*48 28*5 5*35 7*6

190 70*5 11*95 1*077 0*685 2*38 29*6 5*43 7*9

200 67*3 9*22 0*965 0*615 2*03 33*1 5*75 9*3

210 61*2 6*24 0*795 0*510 1*58 38*8 6*21 12*2

220 53*2 3*69 0*567 0*367 1*17 45*4 6*76 18*5

230 44*1 1*96 0*292 0*192 0*80 55*2 7*41 + 38*5
240 35*2 0*98 T*992 - 0*010 0*55 64*1 8*00 —
250 27*5 0*49 T*692 - 0*200 0*40 69*0 8*33 - 41*7

260 21*4 0*26 1*420 - 0*375 0*31 69*0 8*33 - 22*2

270 16*8 — — - 0*503 0*26 65*8 8*13 - 16*4

280 13*1 — - 0*623 0*22 61*0 7*81 - 12-5

290 10*4 — — - 0*692 0*20 51*8 7*19 - 10*4

300 8*6 — — - 0*720 0*19 45*4 6*76 - 9*3

310 7*3 — — - 0*721 0*19 38*5 6*21 - 8*6

320 6*3 — — - 0*714 0*19 33*3 5*78 - 8*1

330 5*7 — — - 0*704 0*19 29*2 5*41 - 7*7

340 5*5 — — - 0*698 0*19 28*2 5*32 - 7*6

350 5*3 — — - 0*702 0*19 27*2 5*21 - 7*4

In Fig. 35 the radii vectores, are drawn in their respective position

angles. The full-line curve evidently approximates closely to an ellipse with

semi-axes ^ _ g,4 ^ _ 5 .3 .

also the position angle of the axis is either 77° or 257°. But since ^ is positive

for position angles 70° and 80° (see column 5 of Table 19), the positive
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direction of the w-axis is in position angle 77°. The broken-line curve in

Fig. 35 is the ellipse

(8-4)2’^ (6-3)2
= 1

,

which differs very little from the curve — Bjp.

Also ^>0 for 6 — 167°, so that the usual convention for 0 increasing is

also the right one for the present purpose.

In Fig. 36, the radii vectores, r2 ( = are plotted in their respective

Fig. 36

position angles. The straight line HJ is drawn to satisfy the points as well

as possible. The measured intercepts on the u and v axes are

c == 24-5 and d = 7-4.

In this instance the straight lineHJ is only a fair representation ofthe points

plotted.

Summarising the results from Figs. 35 and 36, we have

= 77°; a = 8*4, b = 5-3; c = 24*5, d = 7-4.
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From these values we find, by means ofthe formulae ofthe preceding section,

\ = 0-631,
h

kUo = 0-343, hVo = 0*716,

tan((9'-6^o) = 1*318, 6' -Oq = 53° or 233°.

Since Uq, Vq are by definition positive, 6' —6^ is by definition between 0°

and 90°; accordingly we have

We now jiroceed to apply the check given by (15) of section 5-31, noticing

however that an adjustment of scale is first of all necessary. Actually, the

curves in Fig. 34 are drawn through the extremities of radii vectores in

position angles 0 equal in magnitude to the numbers of stars in the corre-

sponding sectors — 15° to 15°. The theoretical radius vector, p, is thus

related to the radius vector, r, by

pdd ~ r,

or, if p is the mean value of p in the sector,

7T

The curves drawn in Fig. 34 consequently correspond to a number ttti/G of

stars and the check formula becomes

^ = 2^lnabS‘^^\
6

Inserting the values of a, 6, c and d, we find that

n = 567,

whereas the actual number of stars in the region is 545.

We have seen that the determination of the straight line in Fig, 36 is

somewhat approximate. Assuming that c = 24-5 and taking the values of

a and 6 already found from the auxiliary ellipse, we use the check equation

above for calculating d. The result isd — 7-7.

The following values are then found:

- = 0-631, do = 77°,
h

kUo = 0-343, hVo = 0-688,

tan{0'-(?o) = 1 -266
,

6' = 129°.

The parallactic motion is given by (f7g+ Fg)* or, in terms of the theoretical

unit 1/A (which is constant for all parts of the sky, since h = H), by

A(?7§+ Fg)* = [p
+ (AFol^j* = 0-877.
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The twO“drift theory* gives (273''*2, -f 43''*6) for the coordinates of the solar

apex, as deduced from this and other regions, and the position angle, d\

for the parallactic motion in this region is easily calculated to be 122®, in

good agreement with the value deduced above from the ellipsoidal theory.

We cannow construct the theoretical ellipsoidal distribution corresponding

to the values of a, 6, c and d ( s 7-7) already found. The appropriate formulae

are

2\a^^b^) 2\62

= ~co8((9-0o) + i8in((9-6'o)-

With the values of a, 6, c and d derived above, we obtain

^ = 0-0249 -0-0107 co8 2(6'-6»o),

0-0408 C08 (0- (9o) + 0-130 sin {6- d^).

The separate steps in the calculation are shown in Table 20, omitting the

less important position angles. In the actual computations the various

quantities were generally found to an additional decimal place (not shown

in the table). The final column gives the theoretical ellipsoidal distribution

of the proper motions and the corresponding curve is shown in Fig. 34. It is

seen that the ellipsoidal curve and the two-drift curve represent the obser-

vations equally well and are very much ahke except between position angles

180® to 220®, where it is rather difficult to decide whether one theoretical

distribution is in better accord with the observed curve than the other.

5*4. Combination of resultsfrom different regions of the shy.

As we have seen, the analysis ofa single region according to the ellipsoidal

hypothesis gives

(i) kjh, the ratio of the semi-axes of the velocity ellipse,

(ii) 0Qy the position angle of the ^^-axis, or in other words, the position

angle of the vertex,

(iii) A(I7g-h Fo)^j parallactic velocity in terms of the theoretical unit

l/h or 1/H.

(iv) 6', the position angle ofthe parallactic motion.

Denoting, as before, the angular distance of a region from the vertex by Xt

we have, from (10) of section 6-12,

(g-l)8in‘‘x = p-l (1)

or = U (2)

where

M.N. 87, 137, 1926 .
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In Fig. 37 let R be the centre of a region, the coordinates of R being

(a, (S). Let V be the vertex with co-

ordinates {A,D), The angle PRV is the

observed position angle ^o* We have, from

the triangle PRV,

sin^ cos^o = BinD co&S

— cosD sin S cos {A— a),

sin;\; sin Oq = cosD sin {A — a),

from which, by means of (2),

fo cos Bq = ^ sinD cos S

— ^ cosD sin S cos (-4 -a), (4)

sin^o = ^ cos Z) sin (^ — a) (5)

Let X = ^cosZ) cos^"

Y = f cosi) sin A
]

Z = fsinD

We then have, from (4), (5) and (6),

— Xcosa sin^— Y sina sin^-j-Zcosd = ^qOOsOq,

—X sin a +Y cos a = fo sin 6q,

.( 6 )

.( 7 )

.(8 )

As hjk is known, from the analysis of a region, the numerical values of

fflCos^o and ^osin^Q are known for each region. A least-squares solution of

the equations (7) and (8) yields the values of X, Y and Z, and from (6) we
obtain tan^ = YjX,

tanZ) = Z/(X2+ Y^f,

C= (Z2+r2+Z2)*.

Thus the coordinates of the vertex can be found and the last formula, with

the help of (3), enables us to calculate the ratio KjH of the axes of the

velocity ellipsoid.

In a similar way we deduce the coordinates of the antapex of the solar

motion and the value ofthe space velocity ofthe sun relative to the assembly

of stars. Let A be the angular distance of R from the antapex and let —hU
be the space-velocity of the solar motion in terms of the theoretical unit,

1/A or 1/J?. Then the projection of the parallactic velocity on the tangent

plane at i? is AC/ sin A. Hence

AC/sinA = A(C7§+Fg)*,

which we write in the form ^ sinA = rj',

where tj = hU and 7/' = A(C7g-}- Fg)*.
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if is a numerical quantity derived from the analysis of the proper motions

in the region. If {A\D') are the coordinates of the antapex, A\ we have,

from the analysis, the position angle. O', for each region. As before,

sin A cos O' = sin D' cos d— cos D' sin S cos {A ' - a),

sin A sin 6' = cos D' sin {A' - a),

from which

7]' eo^O' == TjmiD' cos S -- y cos I)' sin S cos (A' — a),

Y sin O' = 7j cos
D'

sin (A' -a).

Write = rj cos
D'

cos^',

— tjcosD' sin A',

— TjsinD'

.

Then — cos a sin S—Y^ sin a sin ^ cos S ~ Y
— Xj sin a 4- li cos a - Y

The quantities on the right-hand sides of these equations are known for

each region. A least-squares solution yields the values of X^, Y^ and Z^ and

from these values the coordinates of the antapex and the value of the solar

speed are derived from

tan A' - Ji/Xi,

tanD' = ZJ(Zf 4 7^)^

A[7= (Z2 4 7f4Zf)i.

Schwarzschild’s investigation* of the proper motions of the Groombridge

stars, treated earlier by Eddington, leads to tlie following results:

Coordinates of vertex: r.a. 93°, Dec. 4 6°.

Coordinates of solar apex: r.a. 266°, Dec. 4 33°.

Solar motion, hU: 0*70.

KIH: 0-63.

Eddington’s resultsf for the vertex from the same data are: r.a. 95°,

Dec. 4 3°, almost identical with Schwarzschild’s results.

Schwarzschild’s position of the solar apex is within a degree or two of the

position derived in several more recent investigations based on the proper

motions of the brighter stars.

* OdUiv^m Nach. 1907, p. 614.

t M.N. 67, 34, 1906.
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5 *51 . Determination of the polar curve constants from the proper motions

{second method).

As we have seen in section 5*21, formula (4), the number, dn, of stars with

linear velocity components between {x, y) and {x -\-dx,y + dy) is given by

dn = F{x, y) dxdy, ( 1

)

where F{x,y) (2)

and x = u-^Uq, y — r + (3)

Uq, Vq being the components of the parallactic motion and ii, v the com-

ponents of the peculiar velocity of a star in the tangent plane.

Following Schwarzschild,* we shall denote the projection of the solar

motion on the tangent plane by 8, making an angle (1)^ with the i^-axis; (j)^

will thus define the direction of the solar apex for the region concerned.

Since and are positive, is in the third quadrant. We have

Uq~—S cos ^0 ,
Tq = — S sin (4)

'nhli'

so that F{x, y) = ' - (5)

We shall find an expression for the total number of stars moving in the

sector tp to <p' when the corresponding radii vectores are parallel to two

conjugate diameters of the velocity ellipse

•\-h^v^ = 1 .

In this ellipse, let two radii vectores make angles p and p' with the ?^-axis

and let O' and o"' be the corresponding eccentric angles. If p, cp' correspond

to conjugate diameters, ^ (6^

k k
Also tan^ = ^tano* and tan^' = ^tano'', (7)

with the relation cr' = cr + 90°. (8)

In Fig. 38 let OX and OF be the x and y axes (parallel to the u and v

axes). Let OP and OQ be parallel to two conjugate diameters of the velocity

ellipse. In the figure Op and Oq are parallel to the corresponding radii of

the auxiliary circle of the ellipse.

Let denote the number of stars moving in the sector POQ. Then>

from (1),

4 =

where the integration is taken over the infinite sector bounded by OP
and OQ.

jj
F{x,y)dxdy,

SSD

Oottingm Nach, 1008, p. 191.

II
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We now choose new axes through 0 such that

5*51

g == kx cos (T + Ay sin or, ... ...(10)

^ - kx sin or + Ay cos cr, ...(11)

wliich are equivalent to

kx = ^oos(T-y sin or,. .

.

...(12)

Ay = ^sincr + y cos<T.... ...(13)

From (11), the ^-axis, for which

7
j
= 0, is given by

kx sin a— hy cos o' = 0

or y = X .j^tdiucr.

But, by (7), the last equation is

y^^-axis
y „ ^tan^.

Bui this is the equation of OP
with res])ect to OX and OY,

Hence OF is the ^-axis.

From (10), in a similar way, we see that OQ is the T^-axis.

We now express F{x,y) as a function of ^ and y. We have, from (5), (12)

and (13),

7? ibk

F(x y) = Fi{£„7i) =

Let

and we obtain

Also

y = S{k cos cos cr + h sin sin (t),

i; =z S( — k cos ^0 sin cr-f- A sin cos cr),

dxdy = ^^^yhidrj.

.(14)

.(15)

.(16)

Hence, using (12) and (13), we have

Consequently, from (9),

dxdy == ^d^drj.

L, = lj^^^F,{i,v)didr,,

where the integration is over the infinite sector bounded by OP and OQ.

The limits of ^ are 0 and oo and the limits of rj are 0 and cx). Hence, by (16),

Lj = - f“
^Jo JO
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Let
2 /**

0{t) = -
7- e-** dt.

\l^J 0
(17)

Then = ^{1 - 0{y)}.

Similarly r e-^'^+'’^dri =~ {1 — 0{v)}-

Hence L, = l{l-0(y)}{l-0(v)}. (18)

The function 0{t) is the ‘‘probability integral’', values of which are

tabulated for example in Brunt’s The Cornbijiation of Observatio7is (2nd

edition), 234, 1931,

It is to be remembered that gives the number of stars moving in a

sector bounded by two radii vectores which are parallel to two conjugate

semi-diameters of the velocity ellipse.

Consider now the sector QOPi in Fig. 38. The eccentric angle corre-

sponding to OQ is cr' and if jll^, are the values of /^, p as defined by (14)

and (15), we have

/h — ^0 + h sin sin cr'),

P^ = S{ — k cos sin <t' -f h sin <pQ cos cr').

These become, since </' = cr -h 90°,

and ~ — //.

Hence, the number, Lg, of x)roper motions for the sector QOP^ is, using (18),

given by ^

But, from (17),

Consequently,

In the same way we obtain and for the sectors P^ OQ^ and OP,
The results are summarised as follows:

Sector 0 to 0':

to 180° + 0: L^ = \{l + 0(,i)}{l-0{v)}

180° + 95 to 180° + 5i': L3 = ^{l + 0(/4)}{l +6)(i/)}

180° + 94
' to 94:

where ji, v are defined by (14) and (15)

A = ^{1 - <9(/t)} {1 + 0 (»')}

.(19)
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From (19) we easily deduce the following;

= L^L^, (20 )

’

i>2 -tIji Li4̂ + i>2 -^3 “r “^4

Q(i,\ = ^ ^ h^AZl^H-k^
Z/4 + L1 Z/3+L2 L^ + L^ + L^ + L^’

and 7i = ii +L2+L3 +i4 . (23)

At this stage, we shall make a simple transformation of the analytical

expressions for /i and v in (14) and (15).

Let k cos = m cos (Tq, h sin = m sin (24)

Then = mS cos (
0*0 — cr), (25)

V — m;Ssin(crQ~(r). (26)

From (24), tan^o = (A;/A) tan<To; h^nce (7) shows that cr^ is the eccentric

angle corresponding to
(f)^.

As before, let Oq be the position angle of the w-axis and let be the position

angle of the solar apex. Then

<f>^0-Oo, ^'=^'-^
0 . ^o==^i-^o>

where, as previously, ^ and refer to conjugate diameters.

From the statistics of the proper motions we can find, corresponding to

a particular value of 6, the numbers Zj, h Z4 of stars moving in the

quadrants 0 to d + 7Tl2, 6?+ 7r/2 to 0 + 7r, 0 + n to 0 + 37t/2 and 0 + 37tI2 to 6.

As the data are usually arranged so as to exhibit the number of stars with

proiDer motions, for example, in 10 *^ sectors, the numbers Z^, l^, Z3
and Z4 are

easily found for each value of 0.

We consider two particular cases.

5*52. The direction of the solar motion.

We take (j) — (f>Q,
so that OP in Fig. 38 corresponds to the direction of the

solar motion. Then cr = (Tq and it follows from (26), (25) and (19) that

= 0
, /4 = mS, = L4 and Lg = ^3 *

Consequently, Z/i +L2 = + L4 . ( 1 )

But Li + L2 is the theoretical number of proper motions between and

+ 180®, that is, between position angles 0^ and 0^ + 180°, and this number
must be equal to the observed number Z^ + Zg between 0^ and + 1 80°. Hence

Zj + Zg ~ -Z'l d ig*

Z3 + Z4 = Zfj -f L4.

d Zg— Zg— Z4 = 0 ,

Similarly,

Hence, from (1), (2 )
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This is the condition by means of which the direction of the solar motion is

to be obtained. The procedure is as follows. Obtain the value ofthe quantity

{li + ^2 ~ ^3 ~ h) for value of the position angle
(
0°, 10°, . .

.
). The statistics

will then show the position angle for which this quantity vanishes. As
for 0 = 0^ is the same as for 0^ + 180° and so on for Zg, Z3 and Z4 ,

there will

be two position angles, differing by 180°, satisfying the relation
(
2 ), say ^

and 180°. A rule is required to determine which of these values corre-

sponds to 6^, the position angle of the direction of the solar apex. If Z^, Zg, Z3

and Z4 are formed for then ^ if Z3 > Z^ and Z4 > Zg. Otherwise, 1 80°

is to be identified with 6^, Actually, it is usually easy in practice to dis-

criminate between the two values, as the value corresponding to ^1 + 180°

indicates roughly the direction in which most of the stars are moving.

The inequalities above may be formally proved as follows.

By definition, the number of stars moving in the quadrant to ^q + 7t/2

is Zi which, on referring to formula
(
10

)
of section 5*21, is seen to be given by

Zi = £2
/.

^+7r/2 I

where

or, writing as before

^ ^
{k'^UQ cos ^ + hW^^ sin (j))

=r — cos ^Q, = — /S sin

S

P
{Jc^ cos (p cos ^0 -f h^ sin ^ sin ^q). (

3
)

Setting ^ the expression for ^ becomes

^
— (3Qg2 _|_ ^2 gijj2

J
QQQ ^ ^ (^2 „

^.2 J QQg gJj^j

Also, p = cos2
((f>Q + a) -f- ^2 sin2

( 9^0 + i^)

In the quadrant under consideration 0 < a ^ 7r/2, and a.s k<h the value of

^ is negative and, say, equal to —r, where r is a positive quantity. It is

to be noted that from the definition of the positive directions of the u and v

axes, 180° < < 270°,

We now have Z^ == £2
J

Ay*(_ 7-)cZ^^ (5 )

Consider now the opposite quadrant, defined by (^o + n and + 37r/2 ,

in which the number of stars is Z3 .

Setting, in
(3 ), ^ = (f>Q+ 7T + a, where 0<a^ 73r/2

,
we have for this sector

that ^ is positive and equal to r. Also p is given by (4). Hence

rnl2 1
^nr)da.

It is noted that, in (6) and (6), p and t are functions of a.

(6)
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Now /{ ~ r) </(t) for r positive
; hence > l^. Similarly > l^.

These inequalities enable us to decide which of the two possible values

of the position angle, for which {li-¥l2— h — ld vanishes, corresponds to the

direction of the solar apex.

5 *53 . The direction of the u-axis and the value of klh.

The direction of the i^-axis is given by
(f)
= 0 and the corresponding

direction of the ^-axis is parallel to the major axis of the velocity ellipse;

consequently, the conjugate diameter is given by (j)' ~ 90°. It follows that,

in this case, and similarly L.^ = and Hence, by

(20) of section 5*51,
i i i i t.

To determine the position angle, 0^, of the ^/-axis, the quantity

is formed from the data for each value of and by inspection, or interj>ola-

tion, the value of the position angle corresponding to the vanishing of

(ii /3 —

Z

2 ^4 )
found. It is clear that there will be four such values, corre-

sponding to ^ = 0°, 90°, 180° and 270°, since for eacli of these values the ^

and rj axes are perpendicular. It is only necessary to distinguish between

^ = 0 and <{) = 90°, and the manner of doing this will be explained later.

Suppose that when — ^ associated value of 0 corresponds

to the direction of the ?/-axis, 96 = 0 . Let /t^ and denote the values of /i

and V for this direction. Then, by
(
21

), (
22

)
and (23) of section 5-51, we have

—since etc.

—

O(yo) = (2 )

®(^o) ~ ~ (^3 d- ^4
~ ” ^2)* (^)

7C

It is to be remembered that Zj, Zg, Z3 and Z4 now refer to the particular value,

of the position angle, and as this latter is supposed known as the result

of the application of the condition
(
1 ), the values of Zj, Zg, Z3 and Z4 in (

2
)
and

(3) are obtained from the statistics. Thus the numerical values of the

functions &(jUo) and 0{Vq) are readily found from (2) and (3), and from

tables of the function the values of /Iq and Vq are obtained.

But when = 0
,
we have cr = 0

, so that, by (14) and (15) of section 5*51,

//q = Sk cos (pQ,

Vq = Sh sin </)q,

or, since ““
^o»

^ (^1~ ^o)» (^)

Sh = V0 cosec (^1 ~ ^o) • (^)
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Now the value of is known from the analysis of the previous section and

we have also the value of 6^. Hence we can find the numerical value of klh,

from (4) and (5), given by

^
= (6)

a]] the quantities on the right being known. The necessary condition is that

k/h should be less than unity. If this condition is satisfied for the value of

Oq, we have obtained the positive or negative direction of the ?^-axis and

therefore the direction of the vertices for the given i*egion.

If, however, k/h is greater than unity as a consequence of the calculation

according to (6), it is evident that this result is associated with the minor

axis of the velocity ellipse.

The positive directions of tlie two axes are easily determined, since they

are such that the direction of the parallactic motion lies between them.

It is clear from (4), (5) and (6) that, if S is small—that is, when the region

under consideration is near the solar apex or antapex—or if 0^ —Oq is close

to a multiple of 90°, the resulting value of k/h may not be well determined.

In these circumstances the following procedure is preferable to that just

outlined.

We have, from (20) of section 5*51,

Z/jig = L^L^.

Hence + L^) = + L^),

so that
Z/j -fiig

z:+z.
z +

z

h + h
Consider any position angle 0 and let 6' be the position angle corre-

sponding to the conjugate semi-diameter next in order of position angle.

Then is the number of proi)er motions between 0 and 0' and is the

number between 180°-f 6^' and 6, Also Z + Z number between 0 and

6^+180° and Z + Z number between <9+180° and 0. The ratio

(Z + Z) • (Z + Z) readily obtained from the data for each value of 6.

Let this ratio be denoted by q\ then

L.
.(7)

Also, the relation between 0 and 6 '—obtained from (6) of 5*51—is given by

]A— z= — tan(^— 0Q)tan(0'-“^o)- (^)

If can be found for a given value of 0, kjh is easily found from (8).

Obtain from the data the numbers, L[ ,
of proper motions between 0 and

6 + 100°, 6 and 6^+ 1 10°, 6^ and 6 + 120°, . . . and in the same way the numbers
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L'^, between 0 + 280° and 0, 0 + 290° and Q, calculate the corresponding

values of and from these values find by inspection or interpolation

the position angle 0 + a for which is equal to the number j in (7).

Thus 0 + a = 0\ the position angle corresponding to the conjugate semi-

diameter associated with 0. Thevalue ofkjh is then calculatedbymeans of ( 8)

.

5 *54 . Example of the method.

We shall illustrate the method of the previous three sections by means of

the prox)er motions of 219 stars between magnitudes 9*0 and 1 4-0 in Region

14 of the Radcliffe Catalogue of Proper Motions in the Selected Areas, 1 to

115 (1934). The counts in 10° sectors <9 — 5° to 6^ + 5° are given on p. xxvi of

the Introduction. The statistics are smoothed by adding the numbers in

the three sectors 6^ — 15° to <9 — 5°, 6?— 5° to 0 -h 5° and 0 4- 5° to 6^ -f 15° for the

values 5°, 15°, 25°, ... of We shall regard the numbers so obtained as

referring to 3x219 or 657 stars for the 10° sectors <9—5° to <94- 5°, ... for

the values 5°, 15°, 25°, ... of 6^. The data are shown in Table 21.

In Table 22, the numbers corresponding to ^2’ ^3 l^ are given. Thus

for a particular position angle <9, l^ is the number of j)roper motions in the

quadrant 6 to ^^4- 90°, Zg is the number in the quadrant ^4-90° to Z?4- 180°,

Z3 is the number in the quadrant <9 + 1 80° to 6^ 4* 270° and Z4 is the number in

the quadrant <9+ 270° to <9.

The quantities (Z^ -f Zg — Z3 — Z4) and (Z^Zg — l^lf) are formed and their values

are given in the last two columns of the table for position angles between
0° and 170°. For the values of d between 180° and 350°, the numbers

(Zj 4- Zg — Z3 — Z4) repeat themselves with change of sign.

By interpolation, (Zi 4* Zg — Z3 — Z4) vanishes for <9 = 73° and also for 253°.

Hence the position angle of the solar apex is 73° or 253°. But we have the

condition Zg > l^ and this inequality is observed for 6 = 73° and not for 253°.

Hence, the position angle, 6^, of the solar apex is given by

<9i
= 73°. •

Again (Z1Z3 — Z2Z4) vanishes for <9 = 48° or 138°, so that the position angle

Oq, of the vertex (or its antipodal point) is either 48° or 138°.

For the value 6 = 138° we find the corresponding values of Z^, Zg, Z3 and Z4

by interpolation in Table 22 ;
the results are

Zj = 191, Zg - 237, Zg = 127, Z4 -= 102.

By formulae (2) and (3) of section 5*53 we find, for 6 = 138°,

n

^3 d" ^4
““ ^2

71 _

657

0*108,

-0*303,
n
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and from the tables of the function 0(0. we obtain

= 0-096, j/o
= -0-275.

Now <9i-(9o = 73° - 138“ = 295°.

Hence, by (4) and (5) of section 5-53, we have

Sk = 0-096 sec 295°, 8h = - 0-275 cosec 295°,

from which 8k = 0-227,

8h = 0-303,

and klh = 0-75.

Thus k<h and the value for is 138° and not 48°.

As 8k and 8h have rather small values, the ratio kjh is not very well

determined. We proceed to calculate kjh by way of formula (8) of section

5-53.

Table 2 1 . Data for the Radcliffe region 1

4

0

Nuinbor
in sector
^y-5° to

0 Number 0 Number d Number

5° 13 95® 6 185° 24 275° 33

15 11 105 12 195 11 285 33

25 10 115 19 205 13 295 32

35 9 125 21 215 13 305 25

45 5 135 23 225 19 315 22

55 5 145 23 235 16 325 20

(i5 6 155 27 245 22 335 20

75 7 165 31 255 26 345 19

85 0 175 29 265 29 355 17

Table 22. Values of l^, and

0 h h ^3 h to

1 1 W ^3
“ ^2 ^4

0° 72 191 173 221 ^131 -298x 102

10 65 209 182 201 -109 -302
20 66 208 204 179 -109 -238
30 75 202 223 157 -103 - 150

40 87 194 235 141 - 95 - 69

50 105 190 238 124 - 67 + 14

60 123 183 242 109 - 45 + 98

70 144 178 240 95 - 13 + 176

80 168 173 233 83 + 25 + 248

90 191 173 221 72 + 71 + 298

100 209 182 201 65 + 125 + 302

110 208 204 179 66 + 167 + 238

120 202 223 157
1

75 + 193 + 150

130 194 235 141 87 + 201 + 69

140 190 238 124 105 + 199 - 14

150 183 242 109 123
1

+ 193 - 98

160 178 240 95 144 1 +179 -176
170 173 233 83 168 + 155 -248
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Consider the position angle 0 — 170®. Then

1'62.

5-54

Find, by means of Table 21 and Table 22
,
the number L[ for the sectors

170® -fa, where a ~ 90®, 100®, 110®, and the numbers L'^ for the corre-

sponding angles. We have the following results, the last column giving the

quotient

Table 23

0 0-\-CL L\ 7/4 iA/1m

170° 2(i0° 173 108 10:3

270 202 102 1-25

280 235 150 1-5]

290 208 144 1-80

By interpolation, it is seen that L'JL'^ = 1*()2 when ^ -fa - 283®. Hence

283®

and by
(
8

)
of section 5*53,

p - tan (1 70® - 1 38®) tan (283® ~ 1 38®)

= 0-438,

k
from which ~ = 0 -66 .

h

The original choice of 170® for 0 in this computation is dictated by the

consideration that greater accuracy is likely to result in the calculation of

k\h if 0 is chosen so that tan (0 — 0^ and tan {O' —0^ are as nearly equal as

possible numerically, in which event tan {0 — 0^) is approximately equal to

kjh. With a rough idea of the value of kjh, 0 can be found to the nearest 10
®

and the calculation outlined above is based on this value of 0. Actually,

with the value of kjh just derived we find that 6 — 170®, assuming that

tan 6^

0 )
= kjh numerically. Thus the most satisfactory value (that is,

170®) has been chosen.

With kjh = 0*66 and Sh = 0-303, it follows that Sk = 0 - 201 , which we
may consider a somewhat more reliable value than that previously deter-

mined. The collected results for this region are (accepting the second value

of k/h)

:

^ position angle of vertex : 138®.

6^
— position angle of solar apex: 73®.

kjh: 0 -66 .

8k =0-20 and Sh = 0-30.

The projection, 8, of the solar velocity on the tangential plane of the region

is 0-30 in terms of the theoretical unit, 1 /A, or l/Z?.
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5’6. The general eqimtion of the velocity ellipsoid.

Referred to its principal axes, the equation of the velocity ellipsoid can

be written
[72 1/2 1^2

/==
1

(

^2 ^^3
(
1

)

in which and .93 are no longer necessarily equal.

The number of stars with velocities between (f/, F, If) and {U + dU,

F + dF, W + dW) is

PeridUdVdW, (2)

where P is a constant given in terms of the total number, N

,

of stars under

consideration by
/oo ^00 ^00

iV = P e-fdUdVdW. (3)
J — ooj — ooj — 00

Consider now a small region ofthe sky with N stars whose motns peculiares

obey the general elli])soidal law. Let a velocity have components (u, v, w)

with respect to rectangular axes chosen so that the i<;-axis is the hne of sight,

and 'll and v axes lying in the tangent plane. If (^i, {l^^rn^.nf) and

(Z3 , m3 , nf) denote the direction-cosines of the u, v, w axes respectively with

respect to the 1/, F, If system, we have

U = l^u~{-l^v-{-l^w \

V — m^u + m2V-{‘m^w^

,

(4)

W = n^u n2V + n.^tv
]

so that the equation of the ellipsoid referred to the u, v, w axes is, from (
1 ),

F{u, V, w) ~ av? 4- hv"^ + cw^ -f- 2fvw -f 2gwn -h 2huv == 1 , (5)

where
l\ m\ n\

a -
^2 "^3

,
ll ml nl

^2 *^3

II ml nl
c = -^ 4- -^ 4--^

^1 ^9. ^9

. ^2^3
_|_

^2^3 ^2 ^'3

*1 ^2 *3

®2 ®3

h =
^1^2

I

in^m2
^

.(6 )
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The number, SN, of stars with linear components between {u,v) and

{u -I- duy V + dv) is found by summing for all possible values of w, so that

SN = Pdudvi e~^dw
^ 00

J -0

Now F s au^ + bv’^ + 2huv— ^ fv+gu

^

= “ (^0
^*“ ^KqUv+ a^v^) + c

j
,

where b^, ... Hq are the minors oi a,b, ... h in the determinant

A = a, h, g

h, b, f

g, /. c

Hence SN — Pdudve '
(bott*-2hoUV+aoV‘

4)

p
-r( u’+

fv+ouy

dw.

The value of the integral is a/tt/c. Hence

1

SN P 7T (i>o«*~2/toWt?+aoV*) , -

e ^ dudv,
c

•(7)

Thus the motions, projected on the tangent plane of the region con-

sidered, correspond to the velocity ellipse whose equation is

1
-(bQU^— 2hQUV-\-aQV^) = 1 . .( 8 )

It is to be remarked that (8) is the equation of the cross-section of the

enveloping cylinder of the velocity ellipsoid whose generators are parallel

to the direction given by the region concerned; the velocity ellipse is thus

the outline of the velocity ellipsoid seen from an infinite distance in the

direction concerned; this property enables us to visualise the variation of

the velocity ellipse in difi'erent j^arts of the sky.

Again, let SiN denote the number of stars with velocity components

between u and u-hdu. Then

V®o
But
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Pn --U-
Hence $jN = -j—e du, (9)

V«o

from which, by summing for all possible values of u, we obtain

1^-

Thus, P is given in terms ofN by the formula

(10)

The distribution of transverse linear velocities is given, from (7) and (10), by

SN^ -J~e ^ dudv (11)

l~A -~u'
and S^N is given by S^N — N ^ «« du. (12)

Also, if dN is the number of stars with components of velocity between

(u, w) and {u + du^ v + dv,w-\- dw), we have

dN = N c'^nv,v,w)dudvdw. (13)

5*71. The treatment ofradial velocities ; a theorem concerning the meanpeculiar

radial speed for a small region of the sky.

Let dN now denote the number of stars in a given region with radial

velocity components between w and w + dw. By analogy with formula (12)

of the previous section, we have

I'~A' --w^
8N = N /— c dw. (1)V TTCq

^ ^

This is the frequency function for the peculiar radial velocities. Now, by

(6) of section 5-6,

CQ^ab-h^

\^1 ^2 1^1 ^2 ^zf \ ^2 «3 /

But — etc.; hence

^^0 ^ r~r^ (2)
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Also, the determinant, id, is an invariant for change of axes. Consequently,

A is equal to the corresponding determinant when the equation of the

ellij)soid is referred to its principal axes, as in (1) of section 5-6. Thus

A = (3 )

Accordingly, by means of (2) and (3), the expression for SN in (1) becomes

M?*

SN = Qe (4)

where ^

{7r(Z|5i + m|s2 + n|53)}*
(5)

The expression, lls^ + mls^ + nla^, has a geometrical significance. Let p
denote the length of the perpendicular from the origin to that tangent plane

of the velocity ellipsoid whose normal is parallel to the line of sight. Then p
is given by

p 2 „
-f mis., + (<1)

so that dN = (7)

and Q = ^ , (8)
p^TT

Let denote the mean radial speed for the region considered. Then

NRq == 2Q
^

dw

^Qp^\

V
from this result and (8), y (9)

or TriZg = Z|5i + m|52 + ??|53. (10)

Formula (9) embodies the theorem that the mean peculiar radial speed

for a region is times the length of the perpendicular from the origin

to that tangent plane of the velocity ellipsoid whose normal is parallel to

the line of sight; and formula (10) is an expression of this theorem when the

equation of the ellipsoid is referred to its principal axes.

5*72. Consider now the equation of the velocity ellipsoid referred to the

usual system of equatorial (or galactic) axes; we write it

F(U, V, W) = AU^ + BV^+CW^^2FVW + 2GWU+ 2HUV = 1.

( 1 )

The mean radial speed, Rq, in the direction (I, m, n) is given by

(2 )

where p is the length of the perpendicular from the origin to the tangent
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plane of (1) whose normal has direction-cosines (l,m,n). The equation of

the plane is accordingly lU -\-mV -hnW = p. (3)

The condition that (3) should be a tangent plane to (1) is

A, H, O, I ^ 0.

Hy B, F, rn

a, F, C, n

ly m, Tty P^

Expanding the determinant we obtain the relation between p and the

coefficients A, B, ... H in the form

AqI^ + Bfym^ -h 4- 2FQ7nn -f- 2Gq7iI + — p‘^A' y

where A^y Bq, ... Hq are the minors of J5, in the determinant

Zl'= Ay H, O . (4)

Hy By F

Gy Fy C
Consequently,

ttE^ — -f 4- Cj 7i^ 4- 2/jmn -f Til + hn, ( 5

)

wiiere

Each region of the sky provides an equation of the form (5), in whicli R^y

ly m and n are all supposed known. A least-squares solution then gives the

values of dj, 6i, ...h^.

It is to be remembered that in our notation, is the mean tyioIus

peculiariSy without regard to sign, in the line of sight for the region con-

sidered. As each observed radial velocity contains the parallactic com-

ponent in the line of sight, the observed velocity must first be corrected for

the effects of the solar motion so as to yield the appropriate value of Rq.

In general, this procedure requires that all the radial velocity material must

be first analysed to give the direction and amount of the solar motion.

5 *73 . DeterTYiination of the lengths and directions of the principal axes of the

velocity ellipsoid.

We assume that the coefficients dj, ... \ of 5-72 (5) have been deter-

mined. The ellipsoid

a^U^ + b^V^ + c^W^-{^2f^VW + 2g^WU-\-2hJJV ^ 1 ( 1 )

is the reciprocal elh’psoid of the velocity elhpsoid with respect to a con-

centric sphere of unit radius, and since dj, b^y ... h-^ have been found the

reciprocal ellipsoid is known. Also, the directions of the principal axes of
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(1) are the same as those of the velocity ellipsoid and the lengths of corre-

sponding semi-axes are reciprocal; these theorems are at once evident if

the equation of the velocity ellipsoid is referred to its principal axes.

The direction-cosines {L,M,N) of the principal axes of (1) are easily

found as follows. The diametral plane of the straight line

U __V _W
M" N (

2
)

is U{a^ L + h^M^g^N) + V(h^L^b^M +f^N)+ Wig^L-^f^M -hc^N) == 0.

(3)

Since (2) is a principal axis, it is perpendicular to (3); hence

aiL + k,3I + giN _ k^L + b^M+f^JV _ g^L-i-f^M

+

M N
Setting each of these ratios equal to A, we have

(a^-X)L + h^M + g^N =^0^

h^L + (b^-A)M+f,N = 0

g,L+f,3I-^(c,-X)N = 0^

(4)

EUminating Ly M and Ny we see that A is a root of

— A, 9i = 0. (5)

hi. bi-X, fi

9v fv Cl- A

that is, A is a root of

A3 A^((ii 4* + A(-d2 -f -f Cj) — dj = 0, (6)

where Ai = hi, 9i

K K fi

9v fv Cl

and are the minors of 6^, Cj in dj.

Substituting each of the three roots of (6) in (4), we obtain the three sets

of values for {L, M, N).

Now consider the cone
TJ2, 172J. If2

ai + 6i F2 + Cl W^ + 2f^VW-h2g^WU-\~2h^UV == (7

)

passing through the extremities of all semi-diameters, of length r, of the

reciprocal ellipsoid, ( 1 ) . When r is equal to the length ofa principal semi-axis,

the cone (7) degenerates into a pair of planes; the appropriate condition is

tti- l/r*, hi, Qi

hi, 6l-l/r^ fi

ffv fv Cl- l/r*>

= 0,

where now r denotes the length of a principal semi-axis.

(
8 )
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Comparing this equation with (5), we see that the lengths of the principal

semi-axes of (l)are given by l/^v/Aj, I/VA2 ,
1/VA3 ,

where Ai,A2 ,
A3 are the roots

of
(
6 ). It follows that the lengths of the principal semi-axes of the velocity

ellipsoid are ^Aj, >y/A 2 ,
and

We have thus shown how to find the lengths and directions of the axes

of the velocity ellipsoid in terms of the quantities a^, ... h^.

5*81 . The general treatment ofproper motions.

As before, we shall write the general equation of the velocity ellipsoid,

referred to equatorial (or galactic) axes, as

F(U,V\ W)~Ain-{^BV^^^CW^-^2FVW^-2GWlJ^2HUV = 1
, ...( 1

)

so that the number, dn, of stars with

peculiar velocities between (f/, F, W)
and (U -\-d U, V + d

V

,
W -{-dW) is given,

according to 5- 1 (> ( 13), by

dn = n

where A' is defined by 5-72 (4) and n is

the total number of stars concerned.

Consider a small region at S (Fig. 39
)

with n stars obeying the frequency law

(
2

)
and transform to the axes as shown

in the figure, the w>axis being radial.

Let (/i,mi,ni), and (i^,m^,n^)

be the direction-cosines of the u, v and w axes with respect to the C/, V
and W axes. If (a, (^) are the coordinates of S, we have

li — — sin a, = cos a, /q ~ 0

Zg == — cos a sin 8, mg = — sin a sin 8, n.^ — cos ( 3 )

Z3 = cos a cos 8, m3 = sin a cosc^, 7i.^ == sin^^

Also L = Zi'W-fZgV + ZgW; I (4)

V = mj^u-i-m2V-{-m^wy

W = n^u n2V n^w J

By means of (4), F(U, F, W) is transformed into

f(u, V, w) s + bv^ -f cw^ -f 2fvw -f- 2gwu + 2huv = 1 , (5)

where, for example,

a = Al\ + Cn\ + 2Fm^ni~^2Gn^l^-^2Hl^m^y (6)

f — ^ZgZg-f J?m2m3 4-(77i2W3-fF(m2^3 + m37i2)

+ Q(n2l^’^n^l^ + H(l2m^-^l^m2) (7)

W

Fig. 39

SSD 12
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From 5’6 (11), the distribution of the peculiar transverse components (u, v)

is given by

» n A — (6otfc*-2Ao'WV+aoV*) _ ,
dn = ~ ~e ^ dudvy

ttV c
(S)

where Iiq, 6q are the minors of a, h, b in the determinant

A = a, h, g

h b, f

9, f, c

(9)

Following Fleming,* to whom this investigation is due, we write (8) in

the form

Sn — ~ I-

e

(10)
VN C

where p = bjc, q = ajc, s = ^hjc. (11)

It is to be noticed that since (5) is obtained from ( 1 )
by change of axes, the

determinants A and zl' are equal, by the theorem of invariancy. Thus we can

write (9) in the alternative form

A = A, H, 0

H, B, F
Gy F, G

(12)

5*82. We consider now the observed transverse motions. Let
{
— —lo)

denote the components of the solar motion, projected on the tangent plane

at S, parallel respectively to the u and v axes. Ifx and y are the components

of the observed linear transverse velocities, we have

x=^u + Uq, y = v-hVQ.

The formula 5*81 (10) becomes

Sn =
n

71

dxdy,

(
1
)

(2)

which gives the number of stars with observed components between {x^ y)

and {x-^dx,y + dy).

Put x — rmid, y^TCo^d, (3)

If the general equation, 5*81 (1), of the velocity ellipsoid is referred to

equatorial axes, it will be seen by referring to Fig. 39 that 0 is the position

angle of an observed proper motion.

From (3), dxdy = rdrdO,

M.N. 97, 173 , 1937 .
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Hence the number of stars moving in the sector 0 tod -\-d0 with total trans-

verse motions between r and r 4- dr is

n

7T

rdrdO o-v^y^-q^r cos e-v^y^-is^r sin o-UQ){r cos^'-Ko)

Let n(0)dd denote the total number of stars moving in the sector d6\ this

number is obtained by integrating the previous expression with respect to

r from 0 to oo. We thus obtain

n(d)
n i

7TN c

F0 0
I

J 0

where p
2 _ ^ 0-{-q cos^ 0 4- 26' sin 0 cos 0^

1

^ = ~ [{pUq-\~sV^^) smO-{-{sUQ + qV^) cos 6.

Write pr — ^ = T

in the integral in (4). This integral becomes

^-1
.21

^

[2 1^00

{T + ^)e~^'dT

(
4

)

(
5

)

(6)

or, in terms of Eddington’s function /(^),

^Jn

2p

Hence (4) becomes

n{0)
=

2^2J ..(7)

Write i = ” /.4 e-J'Po“-«»V-2sD„K„
2y 7TC

..(8)

so that ..(9)

The number of stars moving in the sector 0 to O + dO is then given by

11 (10)

Now let n\d)dd denote the number of stars moving in the sector O + n to

O-i-dd + n. The addition of tt to 0 in (5) leaves p unaltered but in (6) ^ changes

sign. Hence

n'{e)de^^j{-i)dd. ( 11 )

Subtracting (11) from (10), we have

{n{e)-n’{d)]dd = ^^d^{S{^)-f(-i)} (12)

p
12-2
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By the definition of/(^)—see 2-3 (10)

—

/({)-/(-« -
;^{j+

J.(i

= 2ge«‘.

Hence {n{d)-n'{d))dB ='^^’‘dd. (13)

5 *83 . Write 5-82 (6) for convenience in the form

^ ^ sin04- Bcos^^j_

—

We find on difierentiating with respect to 0 that

/>^^= p\A Gosd — B sinO) — (A An0-\- B gobO).

Also, from 5*82 (5),

= (p — q)sin0 gob6 + 2sgos^0 — s.

After some reduction we obtain

= (i)g-«2)(i7oCos(9-Fosiny).

Let (py-g^)t(Z7oCos^-Fo sin<9)

' P
'

Then (2)

It is easily shown that

p2(^2_|_^2) ^ (psm^d + qcos^0 + 2$sm6 cos6){pUl~\'qVl-^2sUQVQ),

from which ~ (3)

where — pUl-{-qVl-\-2sUQVQ, (4)

It is to be remarked that e is independent of 6?; hence

drj

^dd~ '^dd'

We thus obtain from (2)

(0)

Also from (
4

)
and 5-82 (8) _

<«)

Using (3), (6) and (6), we find that 6-82 (13) becomes

=
(
7 )
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By 6-8] (11),

But

SO that

Hence (7) becomes

The Ellipsoidal Theory

= ^K^o-^o)-

aobo-K = c/1,

A = c(pq— s^).

{n{0) -- n' (d)} dO = — ^e~^^d7j.

(8)

(
9

)

5*84. Counts of proper motions in semi-circular sectors.

Let N{d) denote the total number of jirojier motions in the sector d to

d^7T and N\6) the number in the sector O-^tt to0-\- 2n. Then

N(d)-N'(d) = ^^f\n(e)-n'{d)}dd.

n r*/*

Hence, by 5*83(9), N(0) — N\0) = e~^i'^d7}, (1)
n‘j

rj

where tj and rj^ correspond to 6 and 0 + tt respectively.

Now, by 5*83 (1), rj changes sign when 6^ + 77 is substituted for 0. Hence

rj^ = — t] ;
and ( 1 )

becomes

N{d)-N\d) = - ^
Introducing the error integral

0(^) (2)

and writing M{d)^N{d) — N'{0), (3)

we finally obtain M(d) — n0{i]). (4)

5*851 . Determination of the solar apex.

In practical investigations it is customary, as previously described, to

work with counts in 10° sectors. If n^iOf) is the number of proper motions

in the sector 6^ — 5° to 6^ -f 5°,

Wo(<9i) = n{d)d9,
J e.-5»

or, taking n(0i) to be the mean value of n{6) in the sector.

Similarly, n'oi^i) =

Then corresponding to ^= — 5°, we have

M(d)^Z{no{0,)--n'o{e,)},

where the summation extends for values of between ^ + 5° and 6^+175°.
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The values of M{d), derived from a given region, can then be plotted

against 0.

By 5*84 (4), M{d) vanishes when vanishes. But, by 5*83 (1), 9/
= 0 for a

position angle^^o given by ^

This value 6^ is obtained at once from the graph of M(p). Oq is the position

angle of the projected solar motion on the tangent plane of the region.

Denote tan6>o ^7 which is now supposed known; then

t7,~AFo = 0. (2)

But, if ( — r/j, — Bj) are the components of the solar motion referred to

the (f/, F, W) axes of Fig. 39, we have, by 5*81 (4),

U^^hUo + hVo + hW„
Uq 4- mgFo +

where — is the radial component of the solar motion. From these we have

Uq = 4" rHi li 4- B^

,

Vq = ^2^4 4- ^2^1 "f ^2 ^1*

Hence the condition (2) becomes

C7i(?i~-Ai2)4-li{Wi~Am2)4-Bi(ni-~A7i2) = (^)

Each region furnishes an equation of condition of this type, in which the

coefficients of t/j, and B^ are known; by a least-squares solution the ratios

U,:V,:W,

are obtained. The coordinates of the solar apex are then found in the usual

way from the formulae
tan^ ~VjU
tanD = B;/(C/f4-Fl)F

5 *852 . Example.

As an illustration ofthe method we give Table 24 containing the statistics*

resulting from the analysis of a regionf by Fleming’s method
;
the second and

third columns are taken directlyfrom the data ofthe second pax)ermen tioned.

The values of M{d) in the last column are given only for values of 0

between 5° and 175°; between 185° and 355° they are reproduced as in the

last column with a change of sign throughout.

It will be noticed that M{d) vanishes when 6^6^ = 126°. The value of

6q calculated from the coordinates of the solar apex (273°*6, 4“43°*6), as

derived in the second paper, is 121°, with which Fleming’s value is in good

agreement.

* J. Fleming, M.N. 97, 181, 1937. t W. M. Smart, M.N. 87, 122, 1927.
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Fleming’s analysis ofthe eight Cambridge groups ofregions by the method
of the previous section yielded the following coordinates of the solar apex

:

A = 272°-4, 2) = -f43"*l,

in good agreement with the j^osition already quoted and obtained by an

entirely different procedure.

Table 24. Values of M{6) for the Cambridge Group I

0 no no N(0) N’(0) M{d)

5° 7 29 393 152 241
If) 3 23 415 130 285
25 7 19 435 110 325
35 7 14 447 98 349
45 6 16 454 91 363
55 14 12 464 81 383
65 16 4 462 83 379
75 27 5 450 95 355
85 34 4 428 117 311

95 50 3
!

398 147 251

105 40 3 351 194 157
115 40 1 3 314 231 83
125 33 3 277 268 9
135 28 3 247 298 - 51

145 31 1 222 323 -101
155 20 3 192 353 - 161

165 15 2 175 370 -195
175 15 5 162 383 -221

5*86. Determination of the constants of the velocity ellijjsoid.

From 5*83 (1), we have

2 _ (pg — {U^cofid — V^sinO)^
p = _____ __

.

Let Tq denote the projection of the solar motion (which we denote here

by X) on the tangent plane of the region under investigation. If A is the

angular distance of the region from the solar apex,

Tq~X sin A.

Also, —Uq = T(,sin/9o, —To = 5ro<^^^s<9o,

where 6q is the position angle of the projection of the solar motion on the

tangent plane. We suppose that Oq has been found by the method of section

5-851.

We then have

or

— 52)X2sin2 A 8in2(0 — 0q)

P - ^

K = — 5^) Z^sin^ A.

e{7,)

where

Now, by 6-84(4),

(
1 )

(
2
)
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As n and M(0) are known from the statistics for each value of 6 used, the

corresponding value of ©(ly) is easily found; from tables of the function

0(^), the value of ^ corresponding to a given 6 can then be obtained. Thus

the value of . o //^ x

^^sm2(^-6>o)

r
.(3)

can be calculated for each value oiO,

We thus have, from (1) and (3),

Now is given by 5*82 (5); accordingly

p sin^O^q cos^

0

+ 2,s* sin 0 cos 0 — K

or, on writing p = PA", q = QK, s = SK, (4)

we obtain Psin^6^-f Qcos^0-i~2Ssin0 eosP = (5)

It will be assumed that the counts of proper motions are made in lO"^ sectors

for the values O'", 10°, 20°, ... of 0. It follo'vs that for each region we shall

have eighteen equations of condition of the form of (5), in which the separate

values of ^ are known. A solution by least squares will give the values of

P, Q and S for the region concerned.

The normal equations are:

,

TTT
.
TTT TTT rn rn

P

I

sin^ + sin^— cos^ — + 2^2; sin^ -- cos -- = 27 ^ sin
18 18 18 18

,
rn

'

18
’

^rn ^rn
,
rn rn rn

,
rnPI sin2 cos2^ 3 4- QIcos^ + 2S I" sin— cos^ =2:^ cos^

,

18 18 18 18 18

rn rn rn rn rn rn
2PZsin» cos^ + 20 Tsin cos* + 4.8 27 sin* -- cos*^lo Jo lo lo lo 1 o

where the summations are taken from r = 0 to r = 17.

cos^ ^ = I cos 4/7 + J cos 20 -h |

27 f sin
rn

Now

and

Similarly

. r/r

18

2rn rn
27cos^ — =1 {27 cos + 42^ cos -- + 54

9

= ^{0 + 0 + 54}

27
T'*

27sin^
rn

18
2_Z
4 »

rn rn
i:sin*-cos*~ 9

4 >

.TTT rn ^ •
^rn m

ian
jg

cos*
j5 - rsm* cos

jg
- 0.
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The normal equations are thus

3P-f g = |r^sin2

P+3e = |i:Ccos2

rn

18

rn

18
.(6 )

These equations enable us to calculate the values of P, Q and S for the
region.

From (2) and (4) we have

= (PQ-A^2)X2sin2A. (7)

Also, by 5-83(8), pq-s^ = ^

,

so that (2) can be written K = A^sin^ A. (8)

Multiplying (7) and (8), we obtain

c- JZ4(P(?~-.82)8inU

or c = y(Pg-^2)sin4A, (9)

where y = AX^, (10)

It is to be noticed that A and X are constants, the former being the invariant

given by 5*81 (12); hence y is independent of the region concerned. Also

PQ — and A are to be determined for each region.

Now c is given by the analogue of 5*81 (6), so that (9) can now be written

All + Pw| + Cnl -f 2X^3 ?i3 + 20n^l^ -f = y(PQ- S^) sin^ A.

( 11 )

This is the equation of condition for a given region. A least-squares solution

of (1 l)gives the values ofA,P, ...JVinterms ofy. The directions and relative

lengths of the principal semi-axes of the velocity ellipsoid are then found by
the method described in section 5*73.

5*91 . The treatment of parallax stars.

By parallax stars we mean those stars whose parallaxes are known, as

well as the components of proper motion and the radial velocities. We thus

can determine the linear components of motion relative to the sun by the

formulae of sections 1*33 or 1*42 with respect to equatorial or galactic axes.

We assume that the solar motion is completely known; hence, using the

linear components (~X, — T, —Z) of the solar motion with respect to



186 The Ellipsoidal Theory 5*91

these axes, we obtain the linear components of the motus peculiares of the

stars.

Consider now the velocity ellipsoid referred to its principal axes. The

linear com})onent8 of the motus peculiares are now (
U, V, W) and the number

of stars with velocity components between {U, V, W) and {IJ -\~dU,V -^dV

,

W + dW) is N
e Si St St dUdVdW,

where N is the total number of stars under consideration.

Let U = r sin d cos (j) = /?*,

V ~ r sin 6? sin ^ = mr,

W = rco^O ^nr.

Then dlldVdW = r^m^dddd^dr^r^^drdS,

where dS = sindddd^. The number of stars with linear velocities between

r and r^-dr within a cone of solid angle dH is

Nr'^drdS
^

•‘^2 /

Now, the radius vector, p, of the velocity ellipsoid

is given by 1 p—
j ^ ^

^1 ^2

( 1 )

in the direction (Z, in, n)

(2 )

Hence (1) can be Avritten Ke f^W^dr,

The total number of stars within the cone is

zj°’e •‘’r^dr Kp^\ x^er^^dx
j:

or K'l^p\

This result shows that the number of stars moving in a given direction is

proportional to the cube of the radius vector drawn to the velocity ellipsoid

in this direction.

Let Wq denote the mean linear velocity in the given direction. Then

e i^'r^dr

"4
'K^p^

r -

I
dx,

1'^Jo

4p

whence (3)
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Consider now the velocity ellipsoid

AlP^BV^+CW^ + 2FVW-^2GWU-\-2HUV ^ 1

referred to the usual system of axes. For linear peculiar motions in a given

direction {I, m, n) with respect to these axes, we have

where p is now given by

\ — AP + Bm^ + Cii^ 4- 2Fmn + 20nl + 2Hlm.
p2

Hence the equation of condition is

Al^ + Bm^+W + 2Fmn+ 2Gnl + 2Hlm = ^
(4)

7T

If we use equatorial coordinates, we can define /, m, n by

I = cosai cos^i, m = sina^ cos(^i, ^ = sin^i

and then

IJ = rcosaj cos^i, “ rsina^ cos(^i, W = rsin^j (5)

It is to be remarked that and must not be confused with the equatorial

coordinates of the stars. Since we are supposed to know the values of U, V
and W for each star, we derive the corresponding values of r, and

from (5).

For a small region* in the neighbourhood of {I, m, n) we obtain the value

of Wq which, with the values of /, m, n, can be substituted in (4).

The solution of (4) by the method of least-squares yields the values of

A, B, ... H. We thus obtain the equation of the velocity ellipsoid referred to

the equatorial axes.

The application ofthe method described in 5* 7 3 leads to the determination

of the lengths of the semi-axes of the velocity ellipsoid and their directions.

5*92. Numerical results.

There have been numerous investigations on the derivation of the

characteristics of the velocity ellipsoid, many of them undertaken at Lund

Observatory by C. V. L. Charlier, K. G. Malmquist and W. Gyllenberg. It

cannot be pretended that the various results are in completely satisfactory

agreement; but this is hardly surprising when one considers the somewhat

inadequate observational material available in most of these investigations.

Charlier’s researches may be summed up in the following table, f which

* In “velocity-space”, and not in the sky.

t The motion and distribution of the stars: Memoirs of the University of California^ 7, 74, 1926.
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gives his results obtained by three different methods: (1) from radial

velocities; (2) from parallax stars; (3) from proper motions. In the last

method—which we have not described—it is assumed that the mean paral-

laxes of the stars of different groups arc known. Charher expresses the

ellipsoidal velocity function in terms of the standard deviations cr^, cr^ and

<73, which are related to s^, and Sg in our notation by

= 2crf, S2 = 2(r|, S3 = 2o-|. (1)

In the table, we give Charlier’s values of (T^, cTj and 0-3.

{Gv9i), the galactic coordinates defining the direc-

tions of the principal axes.

Table 25

Number ofstars

:

Radial v^elocities Parallax stars Proper motions

1986 64(5 4182

(ri = Vsi/2

0,
ffi

19*9 km. /sec.

UV2
27-9 km. /sec.

34P3
+ 2?8

23-4 km./sec.
339?0
-3?9

(Tg = ^J82[^

O2

92

13*4 km./sec.

69?6

+ 16?2

19-4 km./sec.

IIH
+ 7?G

! 15*1 km./sec.
70?0

-13?4

a3 = ^JsJ2

(jg

92

15*6 km. /sec.

270^0

+ 72?8

16‘1 km./sec.
233? 1

+ 83?1

12*1 km./soc.
52?9

+ 76?8

The lengths of the semi-axes of the velocity ellipsoid can be

easily found by means of (1) from the data of the table.

The axis corresponding to (Tj is the longest axis of the ellipsoid and it

lies nearly in the galactic equator. The throe values of 0^ are in good agree-

ment with the direction of the vertex as obtained from the theory of the

two star streams. The third axis is directed approximately towards the

galactic yjole. The lengths of the second and third semi-axes are, on the

average, not very dissimilar.



CHAPTER VI

STATISTICAL PARALLAXES DERIVED FROM
STELLAR MOTIONS

6 '
1 . In this chapter we investigate the methods adopted for obtaining

mean parallaxes for particular groups of stars, usually selected according to

apparent magnitude or spectral type, when the proper motions of the in-

dividual stars are known. A parallax determination of a single star involves

a large amount of work—about a score of plates, with two or three exposures

on each plate, have to be secured and measured—and for stars at distances

greater than a hundred parsecs the probable errors of the trigonometrical

parallaxes generally exceed in magnitude the quantities to be derived. An
annual output of fifty parallaxes from an observatory, or a department of

an observatory, devoted to this class of work represents a considerable

achievement. Despite the progress that has been made in recent years, the

number of stars with accurately determined parallaxes (of which the prob-

able error is, say, a third or a quarter of the parallax itself) is comparatively

small and such stars are generally our nearest stellar neighbours. Within

recent years the trigonometrical method has been supplemented by the

spectroscopic method which, however, is based on a knowledge of repre-

sentative ])arallaxes as determined by the trigonometrical method. In the

latter method, the faintness of the object whose distance is to be measured

is no practical disadvantage, say, to the tenth or eleventh magnitude, since

the necessary cx])osures can be made with modern refractors in a minute

or two. The spectroscopic method, however, suffers from the disadvantage

that the star must be comparatively bright, say, brighter than the sixth or

seventh magnitude, for otherwise very long exposures must be given. It is

hardly surprising that up to the present time the measures of spectroscopic

parallaxes scarcely go beyond the naked-eye stars. Thus, in practice, each

method has its definite limitations.

Moreover, in the trigonometrical method the parallax of the star under

investigation is relative to the mean parallax of the comparison stars used

in the reductions. These are generally stars ofthe tenth or eleventh magnitude

and are presumably at considerably greater distances from us. To obtain

the absolute parallax of the star we require to know the mean parallax of

the comparison stars and this can only be ascertained by statistical methods

based on the proper motions of representative stars of these magnitudes.

Proper motions are comparatively easy to measure by the photographic

method, and it ia probably true to affirm that the proper motions ofa hundred
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stars can be as easily measured with, at least, the same relative accuracy

as the parallax of a single star. The proper motions of large numbers of stars

as faint as the fifteenth or sixteenth magnitude have been measured up to

the present and these proper motions furnish the material for the statistical

investigations of mean parallax.

6*21 . The v-components ofproper motion.

We shall assume that the magnitude and direction of the solar motion

are known with respect to the magnitude class of stars with which we are

concerned. Actually, the solar speed measured in km. /sec., has only been

determined from observations of the brightest stars owing to the j)ractical

limitations experienced in deriving the radial velocities from the spectra of

stars fainter than the sixth or seventh magnitudes. The position of the solar

apex, on the other hand, can be derived by the methods of Chapters ill, iv

or v from the proper motions alone, whatever the magnitudes of the stars

observed may be. We shall consider first a single drift of stars and later

investigate the modifications, if any, of the various

methods resulting from the preferential motions ol

the stars, using as our basis either the two-streams

theory or the ellipsoidal theory.

As in section 3*5 we resolve the annual proper

motion of a star at X (Fig. 40) into two com-

ponents, the first, V, directed towards the antapex A
and the second, r, perpendicular to the great circle

XA. The component u thus consists of the paral-

lactic component in the direction XA and a part

due to the star’s peculiar motion. Denote the solar speed by Vq, in km./sec.,

the angular distance of X from ^ by A and the parallax of the star by p;

pV
the parallactic component of proper motion is then given by—^ sin A and

A
tAntapex)

Fig. 40

we can write

v = ^sinA + i;',

K •( 1 )

where v' is the part of the observed proper motion (in the direction XA)
due to the star’s peculiar motion and a: = 4-74.

Let us consider a number of stars, in various parts of the sky, with their

peculiar linear velocities distributed according to the Maxwellian law.

Assuming first that the parallaxes are the same, the quantities u' will be

distributed according to the law of errors. Consequently, the value ofp will

be found from ( 1 ) by applying the principles of the method of least-squares.

In this case, we shall have
/c Z sin A

^ Fo Xsin^A ’ •(2 )
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the summations extending over all the stars. This formula is equivalent to

(12) of section 3*5. With the assumptions made, (2) may be expected to give

a reliable value of the common parallax,

In the more general case, we now assume that the stars, N in number,

with which we are dealing can be divided into m groups, in each of which

the parallax may be regarded as constant. This is a theoretical subdivision

and it is not suggested that we can place a particular star in any one of the

groups.

For each star in the first group, containing stars, and of parallax

we have y
V — ^^^sinA + i;';

K

the value of p^ as determined from the % stars will be obtained from

K

2 V sin A

J sinU
'

Til

(
3

)

We shall have similar equations for the other groups.

Let p denote the mean parallax of theN stars, whereN — + ^2 + • • • +
Assuming that the different groups have the same distribution over the

parts of the sky for which data are available, we may take the mean value

of i^sin^A to be the same for each group and, denoting it by Zq, we write

2 V sin A

(4 )

P^o
K

Wi

Now

Hence, by (4),

^ N

~y + 2i^8inA4-

.

V 0̂ _ Ui nj

or, since NI^q = which sin^A is summed for all the N stars,
N

p =
y i;sinA

FoY sin^A
* .(5)

Formula (5) gives the statistical mean parallax on the assumption that the

stars form a single drift. The procedure shows that p, as derived from (5),

is an arithmetical mean.

In many practical applications, the data will come from several small

regions {n, say, in number) in different parts of the sky and A may be taken
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to be the same for each star in any particular region. If v denotes the mean
value of V for the stars in a region, the appropriate formula for p is

^l^sinA

where the summations are taken over tlie 7i regions.

We have now to examine the api)licability of (5) when the stars are

divided into two drifts, as actually observed.

Consider the space velocities, 1^ and of drift I and drift II relative to

the sun, S. As in section 4-35 they are re])resented by vectors SA^, SA^

(Fig. 41), the lengths of SA
2
being i)ro2)ortional to Kg. If ife

divided at 0 so that

= (7)

where Ni and iVg are the numbers of stars in the two drifts, the solar motion,

Vq, is given by the vector OS. since 0 corresponds to the motion of the

geometrical centre or centroid of the totality of stars. Also, SO gives the

direction of the antapex of the solar motion. Again, the symce-velocities

and Wg of the drifts with respect to 0 are given by the vectors OA^ and

OAo, so that, by (7),

JVJli^Ayfg. (8)

Leaving tlie random motions of the stars, relative to their appro])riate

drifts, out of consideration for a

moment, we see that the syste-

matic motion along SO of a star

belonging to drift I and measured

relative to the sun consists of a

systematic velocity Vq along SO
and a systematic velocity

WiCOsAiOA.

The sum of such systematic

motions of the stars of drift I

is, accordingly,

WiT^ + WiTIicos^i 0A .

Similarly, the sum of the systematic motions of the A^g stars of drift II

relative to the sun and in the direction SO is

N2VQ + N2W2COSA2OA.

Hence, from (8), the sum of the systematic motions, relative to the sun, of

the (Ni -fN2 )
stars along 80 is

{N,+N,)V,.
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If we consider a small area of the sky, at an angular distance, A, from the

antapex, in which the stars are distributed between the two drifts in the

ratio it follows that when all the stars belonging to the two drifts are

taken together the systematic motion of each star may be taken simply as

lo sin A.

In addition, we have the random motion of each star in the drifts in the

direction of the antapex giving rise to the ])roper motion component v' as

in (1 ). In all regions in which the ratio holds the probable magnitude

of is the same for each region. Where this ratio is not strictly observed

the values of v' for a given region will contain a residuum of systematic

motion which may be positive or negative and, consequently, in com-

bining all such regions this effect may be regarded as an accidental error and

its effect in deriving (5) from (1) as neghgible. We conclude, then, that (5)

is valid when streaming is taken into account.

This method, as summarised in (5) or (6), has been extensively used to

determine mean parallaxes. It is to be remembered that, in the absence of

observational evidence, the solar motion with resf)ect to faint stars, say of

magnitudes 9 to 15, is assumed to be the same (namely 19-5 km. /sec.) as

that found for the naked-eye stars.

6 *22 . The r-components ofproper motion.

Consider, first, a single drift of stars. We shall suppose as before that the

magnitude and direction of the solar motion are known. The r-component of

the proper motion of a starwill then correspond to its random linear velocity

in one coordinate. From the observed radial velocity of a star and the

radial com])onent of the parallactic velocity we obtain at once the random
radial velocity of the star, and from a large number of stars we find the mean
random speed, R. Since R can only be obtained at present from the brighter

stars, we have to assume that the observed value of R is appropriate to the

investigations based on faint stars. Accordingly, for a number of stars in

a given region of the sky we take the mean linear speed corresponding to the

mean of the r-components of proper motion to be this value of R. If the stars

are all at the same distance, we have at once

p = KflR,
•

( 1 )

where f is the mean arithmetical value of the r-components.

Consider now different groups of stars with parallaxes pj, pg? ••••

ideal case, the value of R will be the same for each group on the single drift

hypothesis; we shall have, accordingly,

P^ = KfjR, p^ = KfjR,....

SSD 13
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The mean parallax, p, will then be given by

where f now denotes the mean of the r>components, regardless of sign, for

all the stars of the various groups.

In a later section (6*41) we investigate the validity (or otherwise) of (2)

when account is taken of the preferential motions of the stars.

6*23. The v'-residuals.

A third method of investigating mean parallaxes is based on the values

of v' . For a single drift of stars all having the same parallax the distribution

of the values of v' must be expected to be the same as that of the r-com-

ponents. Consequently, the parallax is given by

where denotes the mean of the aritlunetical values of v'

.

It is to be under-

stood that the residuals v' are found after the ])arallactic motion has been

deduced by any of the known methods. If the stars are at different distances,

it is only the mean parallactic motion that can be found and the resulting

values of the residuals v' are, in general, different from the true residuals as

deduced from the true parallactic motion for each star. The use of (1) is

thus restricted to stars at the same distance or to stars known to be of the

same absolute magnitude (such as tlie stars belonging to a subdivision of

spectral class B) or to stars whose absolute magnitudes are known except

for an undetermined constant (such as the Cepheids and cluster variables).

In these last two classes, the apparent magnitudes enable us to calculate

the relative distances of the stars and so to determine what their observed

proper motions would be if they were all at some standard distance.

Proper motions so adjusted are called reduced proper motions.

The effect of preferential motion in the derivation of mean parallaxes by

(1) will be investigated subsequently (section 0*44).

6-31 . The mean peculiar radial speed for a small area of the sky.

In the next few sections we take the ellipsoidal hypothesis as the more

convenient mathematical expression for preferential motion and we assume

that the individual linear motions are distributed according to the law

^-^Kw^--mv^+w^)dVdVdW.
( 1 )

The ?7«axis is directed towards the vertex and K<H.
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From (4) and (5) of section 5*1 1, the mean speeds, U and V, parallel to the

U and V axes are given by

“*

or, writing c and a for U and V respectively,

""
TJn’

® ^

and ( 1 )
can be expressed as

_
e dUdVdW, (4)

It is to be noted that c> a.

The intensity of streaming may be defined as cja and we write

- = cosh 6. (5)
a

In the absence of preferential motion, we have c = a and consequently

b = 0. We are concerned only with the ratio of c to a.

Consider a small region of the sky, at an angular distance x froni the

vertex A
,
containingN stars (Fig. 42).

For a star at X, the IJ -comi)onent of

the preferential motion will be along

X Y which is parallel to OA
; we take

the F-axis in the ])lane of the great

circle AX, Thus the W-component
does not contribute to the radial pre-

ferential motion, R,

The mean radial speed, which we
now denote by R, at X is given by
formula (10) of section 5*71. With
our choice of axes in Fig. 42 the

direction-cosines of OX are cos x^ sin x^ Hence, from (4),

R^ = c2 cos^X+ ^^ sin^ X- (6)

We can derive this formula directly as follows.

The number, dN
,
of stars with linear velocities, resolved in the plane of

the great circle AX, with components between (C7, V) and (U + dlJ, V + dV)
is given by

dN = Ce-^^^^-^^dUdV,

where (7 =
7T

(7)

(
8)

13-2
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The radial velocity of any one of these stars is U cos;^H- V sin;\; and we
require to form the mean value of this quantity, regardless of sign, for all

the stars in the region. As we are concerned with speeds, we consider only

positive values of U
;
the values of F, however, can be of either sign. We are

thus dealing effectively with stars. For a given value of U (a positive

quantity), the radial velocity will be positive if F > — cot;^'; hence, the

radial speeds, R, can be divided into two groups in the first of which, the

radial velocity being positive,

R = sin;^ (C7 cot;^'+ F),

where the range of F is given by

— V cot < F < 00
,

and, in the second group, the speed R (the corresponding radial velocity

is negative) is given by

R ~ 8in;\; {V — U coty),

where the range of V is now such that

V>U coty.

Forming the sum for all possible values of U between 0 and oo, we obtain

the mean radial speed R for the \N stars from

\NR - Osinx f ir
(J-UootA;

{V cot

Let

Ucotx

I = C cot;\;|

rj = K tan^/

{V-U cot x)e-^’‘'^"dV

.(9)

tJ jJ
“ + V) e-B‘^‘dV+ J

^ c«Fj

,

Then

NB = 2Csmx tan xj di
{

from which it is ‘found that

= 2C sinX tan + 2gJ
dv]^

= 2C'8inx tanxj^J ...(10)

\^C?siny tany
.

.
. r

where I denotes the double integral in (10),
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In Fig. 43 let OB bisect the angle between the g and V axes (OA and OD).

The integral denotes the summation of the function of ^ and V over the

infinite area between OA and OB, first summing with respect to V over the

strip PQ, where PQ = OP = and then summing all such strips between

^ = 0 and i — CO. Changing the order of integration, we fiirst sum over the

strip R8 for g between OT ( = F) and oo. Hence

/ = jVs’''*d!Fj”^e-7’Fdg

29/2Jo ]/

__ ^|7l
1

49/2 (^2 ^
'

_ ... +
Hence NE ~ ^nC sin x tan x » O

or, using (3), (8) and (9), ^ Fig. 43

E = (c2cos2;^4-a2sin2;\;)i,

which is the same as (6).

It is to be noted that the mean peculiar radial speed, E, is a function of X‘

In the absence of streaming we have c = a, so that the mean radial speed

is a. Thus the mean pecuhar radial ^peed when there is streaming is greater

than the mean peculiar radial speed in a single drift l)y a factor/, defined by

/ = ^(c2cos2;)^ + a2sin2;^')^, (11)

or, in terms of 6 in (5), by

/ = (l4'Sinh2 6 cos2;^')*. (12)

6*32. The mean peculiar radial speed for uniform distribution over the whole

sky.

Let E^ denote the mean pecuhar radial speed for stars uniformly distri-

buted over the celestial sphere. Then

We shall write

Then

or

AotE^ =1 E .27t sin x^X-
_
Ra = «/«•

rnl2

1 + sinh2 b cos2 ;i^)^ sin x^X
Jo

= J
(1 -f-a:2sinh2 6)*da;

This result was given by Eddington.*
* Stellar Movements, 157, 1914.

(
1 )

(
2

)
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6*33. The mean peculiar radial speed for uniform distribution over the

galactic equator.

The various determinations of the vertex of the preferential motions

place it in or near the galactic equator; we shall accordingly assume that

the galactic latitude of the vertex is zero.

Let Rq denote the mean peculiar radial speed in the case under consider-

ation, andlet = af^. (1)

For stars on the galactic equator we can regard y as the galactic longitude

measured from the vertex. Consequently

11

C27T

( 1 + sinh^ b cos^ y )^ dx,
0

whence ( 1 — tanh^ b sin^ y)^ dy.
'

0

(2)

Setting Jt =: tanh6 = -(c2 - a^)^,
c

(3)

we write (2) as (4)

where E2 (lc) is the elliptic integral of the second kind with modulus k.

When the intensity (cja) of streaming is known
, /q can be obtained from

tables of the elliptic integrals. This result was lirst given by A. Fletcher.*

6*34. The mean peculiar radial speed for uniform distribution over a parallel

of galactic latitude.

Consider a small area at X (Fig. 44), whose

galactic coordinates are {0,g), at an angular

distance x from the vertex. The mean value,

R, of the radial speeds at X is given by a/,

where/is defined by (12) of section 0*31.

Also, cos X = oos g cos ((?— Gq),

where is the galactic longitude of the

vertex.

Writing the small area at X as cos gdgdO,

we have, if Rg denotes the mean peculiar

radial speed for uniform distribution of the

stars between the parallels, g ei,ndg-\-dg, of galactic latitude,

—
Bg.2ncoBgdg = acosgdgj {l + siiih^fe cos^^ cob^ (G- G^)}* dG,

* M.S. 92, 780, 1932.
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or, setting II (1)

= -(14- sinh^ b cos^ g)^ EJkf),
TT

(2)

where ^ 2
sinh^ b cos^ g

^
1 + sinh^ b cos‘^ g

*

(3)

These equations* may be wTitten more concisely in the form

fa
~ (4)

in which 0 is defined by
tan 0 — sinh b cos g. (5)

6*35 . The ''factor of exaggeration'' for the mean peculiar radial speeds.

The results of the three previous sections show that the mean peculiar

radial speed, 7?, is a function of position on the c*elestial sphere. It follows

that the determination of mean parallaxes from the formulae in sections

6*22 and 6*23 depends on the a})})ropriate value ofR to be used. For example,

B type stars and Cepheids are strongly concentrated towards the plane of

the Milky Way and for them the value of R—assuming that they i)artake

of the usual preferential motion—is considerably greater than the value to

be used if streaming were absent. In the formulae of sections 6*22 and 6*23

it is assumed that the mean peculiar linear speed corresponding to the mean
of the r-components and of the t^'-residuals is the same as the mean peculiar

radial speed which can be obtained from the observed radial velocities.

With star-streaming as a fundamental feature of stellar motions this is no

longer true, and, accordingly, we must adjust f and R, for example, to the

same standard of mean motions; in particular, we take this standard to be

that corresponding to a Maxwellian distribution of velocities (that is, a

single drift), for in this case the mean linear speeds for different directions

are the same. Thus, the mean peculiar radial speed, considered in the

previous three sections, is/ times greater than it would be if star-streaming

were absent.

Fletcher {loc. cit.) defines the percentage ‘"exaggeration” of the mean
peculiar radial speeds by 100(/— 1 )

and writes it as

c= 100(/-1). (1)

The percentage exaggerations for uniform distribution over the sphere, over

the galactic equator and over the parallel of galactic latitude are denoted

respectively by e^, and The values of these quantities, calculated from

the previous formulae for/, are given in the following two tables.

* A. Fletcher, M.N. 92, 782, 1932.
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Table 26. Values of and

cja ^0

10 0*0 00
1-2 6*9 10*2
1*4

1

14*2 20*8
1-6 21*9 ' 31*7
1-8 29-9 42-9

20 38*0 54-2
2-2 46*4 05*7

Table 27. Values of e^for different galactic latitudes

c/'a 0 ^
15

°
30 ° 45 ° 60 ° 76° 90 °

1*0 0 0 0 0 0 0 0
1*2 ]0 10 8 5 3 1 0
1-4 21 20 16 11 6 2 0
1*6 32 30 25 17 9 3 0
1*8 43 41 34 24 13 4 0
20 54 51 43 31 17 5 0
2*2

i

66 62 52 38 21 i

1

6 0

6 *41 . The effect of preferential motion on the mean r-component for a small

area of the sky.

Consider the stars in a small region of the sky at /S; we shall assume at

first that their parallaxes are all identical. Let A be the solar antaj)ex and

V the vertex of preferential motion (Tig. 45) and

let SA and /ST be A and x respectively. The

velocity ellipse of the transverse motions at 8
has its major axis directed along the great circle

SV. We denote the mean arithmetical values

of the pecuhar angular motions of the stars by

^ and r/, the former along SV and the latter in

a perpendicular direction. Since the stars are all

assumed to be at the same distance, ^ and rj are

proportional to the major and minor axes of the

velocity elhpse. The mean of the arithmetical

values of the r-components of the peculiar

angular motions is then given by analogy with (
6

)
of section 6-31 by

f2 = ^2 5 -f ^2 QQg2

in which 8 denotes the angle ASV, Also, by 5T2 (8), 7j is the same for all

parts of the sky; in the absence of streaming the corresponding value off,

which we denote by fq, is simply 7 ,
by (

1 ) . Thus, owing to preferential motion

the mean r-component is exaggerated by the factor/', given by

sin** 8+ cos^ sf^

.

V W I

A

(2 )
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.(3)
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Now, from 5*12 (10) we have the relation

between the constants of the velocity ellipsoid and of the velocity ellipse.

Since K and H are inversely proportional to the mean speeds, c and a, in

the directions of the major and minor axis respectively, we have

H e

K~
and similarly

t
~ ^

‘

Hence, from (3),

rj^

1 + ^^2
“

^ A!
— ^ + sinh^ b sin^ (^)

and (2) becomes /' = {] -f-sinh^^ sin^;^^ sin^AS}^''^.

But sin X sin S — sin y sin \Jr,

where ^ is the angle VAS, and y is the angular distance of the solar antapex

from the vertex and may be supposed known; its value is in the neighbour-

hood of 45 . Thus j' _ -fsinh^^ sin^y (5)

It is seen that /' is a function of a single coordinate wliich Fletcher,* to

whom the above result is due, designates the apical longitude of the region

at S. Thus/' is the same for all points on the meridian of apical longitude

Consider another group of equidistant stars at S with a different value

of the parallax. Then the factor/' will be the same for this new group as for

the previous group, since the expression on the right of (5) is independent

of the parallax. It follows that, for an assembly of stars at S, the value off

obtained from all the stars will be greater by the factor /' than the corre-

sponding value, Tq, which would have been obtained if the assembly formed

a single drift.

6*42 . The effect of preferential motion on the mean 7-component for stars

distributed uniformly over the sky.

The corresponding factor, which we denote by/^, is simply obtained by

integrating G-41 (5) over the sphere, that is, between the values 0 and 27r

of \Ir, Thus
1

c27r

/^ = --- { 1 -f sinh^ b sin^ y sin^ dijr, ( 1

)

Jo

or, as in sections 6*33 and 6*34,

(2 )
7T

where 6' is given by tan0' = sinh6 siny. (3)

* Loc, cit. p. 782.
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The values of the mean percentage exaggeration, which is defined by

are given in Table 28 for the three values 35°, 45° and 55° of y.

Table 28. Values of e,'

eja y = 35“ 11 o
y = 55°

1-0 0 0 0
1*2 4 5 7

1-4 7 11 15
1-6 12 17 22
1-8 16 24 31

20
i

21 31 30
2*2 26 38 48

6'43. The effect of preferential motion on the mean t

-

components for stars

distributed uniformly over the galactic equator.

In Fig. 45 let S now be a region on the galactic equator which will thus be

defined by VS. Denote the angle A VS by a, wliich may be supposed known

from the positions ofA and V derived from observations.

Iffo denotes the mean value of/ round the galactic equator,

1

/o = {1 -f sinh^ b sin^ y sin^ dx, ( 1

)

0

in which xjr and x ^re related by the formula, derived from the triangle -4 /S' F,

cos y cos a = sin y cot x— shi a cot ijr, (2)

Writing cotx^l ^ > (^)

where I = sin a cosecy, m = cos a coty, (4)

and expressing dx in terms of fr by (3), we obtain

_ 1 r^jocos^^ + gcos^yJ^-f r ld\lr

^Jo fcoH^xlr + geoH^fr^h
’

(1 + /c^ sin^
’

where = sinh2 6 sin^y,

p = K^{1 — m'^).,

^ = Z2( 1 + /c2) ~ ( 1 + m2) ( 1 4- 2/c2),

r = (1 +m2) (1 4-/c2),

/ = 1 - 2^2 4- 2m2 4- (Z2 -|- m^Yy

g = 2\p — Ihn^ -(14- m^Y]y

A = (l4-m2)2.
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Further, setting

P = /c2/(i +/c2), = ^ =

we obtain from (5)

~
7T Jo /sin^^-f9f8in2^ + ^ ’ (1 — Psin20)i/2‘

By an approximate method Fletcher was able to obtain numerical values

of from (1) corresponding to y = 45° and a = 35°, values given by the

most reliable positions of the antapex and vertex. Subsequently, Fletcher

and A. Mulligan,* using the formula (b), calculated the exact values off^

for c/a = 1-6 and 2 -0 . As these agreed sufficiently well with the values

obtained by the a])proximate method, they concluded that it was un-

necessary to repeat the long calculations involved in the formula
(
6 ).

Write, in accordance with previous procedure,

The values of as found by Fletcher, are given in Table 29.

Table 29. Vahms of

(7 = 45°, a = 35°)

c/a < c/a

10 0 10 13
1-2 4 1'8 18
1-4 8 20 23
10 13 2-2 29

6 *44 . The v'-residuals.

Assuming that the stars in a region of the sky at S have the same parallax

we find, as in section 6-41, that the mean of the arithmetical values of o'

is given by
^ ^^^2 ^ 4- 9^2 sin^ S,

and denoting by /" the factor of exaggeration, we have as before

r =

so that /" = {!+ sinh 2 6 sin^x ^^s^

Define e^ and Cq by means of

<=100(/:-l), e'' = 100(/;-l),

where /^' and /2 respectively the mean values of / over the sphere and

over the galactic equator, for uniform distribution in each case. The follow-

ing table computed by Fletcher by a method of approximation gives the

values of e" and ej for y = 35° and a = 35°:

* M.JV. 95, 737, 1935.
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Table 30. Values of e" and

cja <
10 0 0
1-2 9 7

1*4 18 13
1*6 27 21
1-8 37 28
20 4.1 36
2-2 57 44

6*45. Application to the calculation of mean parallaxes.

In deriving the mean arithmetical values of the v and r-components in

a small area of the sky for insertion in the formulae (6) of section 6*21 and

(2) ofsection 6*22, wehave toremember that the components ofpropermotion

are subject to accidental errors; consequently, it is essential, if the highest

accuracy is aimed at, to correct the statistics for the effect of accidental

errors. Generally, in the process of determining proper motions, it is pos-

sible to estimate the values, p, of the probable error for the cosS and pg

components, and usually these two values are equal or approximately equal.

If we take them to be the same, the probable errors of the i;-components

and ofthe r-components are eachp numerically and the observed distribution

of the i;-components, for example, can be corrected by the method of 1*81 or

1*82. We then obtain the true distribution of the t;-components and from it

the value of u to be used in (6) of section 6*2 1 . We obtain similarly the value

of r to be used in (2) of section 6-22.

We shall denote by Tq and Bq the means of the arithmetical values of the

r-components and of the radial speeds (freed from the solar motion) as

observed and corrected for accidental errors. If we insert these values in

(2) of section 6*22, we obtain the “calculated’’ value of the mean parallax,

which we denote by p^. Thus

J)^ = KfjMo. ( 1 )

But the use of this formula implies, as we have seen, that the mean linear

speed corresponding to the r-components is the same as the mean radial

speed; thus, on the hypothesis of preferential motion, the application of

(1) gives an erroneous value of the mean parallax. If we denote by pi the

true value of the mean parallax, we have

p^ = ktIR,

where f and B refer to the absence of preferential motion. Now, by the

previous sections, _
BQ==fS and fo=/'f,
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where / and /' refer to any one of the distributions of the stars in the sky.

Accordingly,

Pt (
2

)

Thus, the true value of the mean parallax is obtained by applying the

appropriate factor ///' to the value as computed by (2) of section 6-22; for

example, if the stars are distributed uniformly over the galactic equator

the appropriate formula is

Pl = J, Pc-
J 0

In the case of the -residuals we obtain in a similar way

/
.(3)

where/,/" refer to one of the distribution of stars considered.

It is to be emphasised that the / factors only apply to the formulae for

p derived from pejculiar motions; the formulae (5) and (6) of section 6-21

for p derived from para/Zac^ic motions remain valid when there is streaming.

6 *46 . The corrections to absolute magnitude.

It is sometimes convenient, in the application of the previous formulae,

to deal with absolute magnitudes. Let m denote the mean apparent magni-

tude of the stars concerned and the mean absolute magnitude corre-

sponding to the value p^ as obtained from (1) of section 6*45. Then

= m -I- 5 + 5 Log p^.

Similarly, the true absolute magnitude, M^, is given by

ilf
^
= m + 5 -f 5 Log Pl.

Hence, writing AM' — Mi— M^,

we have from the r-components

AM' = 5 Log (///').

In a similar way, HAM" denotes the corresponding correction for absolute

magnitude when the u'-residuals are employed, we obtain

= 5 Log (///").

We can thus calculate from the data of Tables 26-30 the values of

AM'^, AMq and AM'^, AM'q corresponding to uniform distribution over the

sky and over the galactic equator. The results* are summarised in the

following tables (for various values of y and a = 35°) :

* Fletcher and Mulligan, M.N. 95, 741, 1936.
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Table 31. Corrections to absolute magnitude (t

-

components)

c/a
(y = 45 °, a= 35°)

7 = 35 °

7 = 45° 0II

M M M M
]0 0-00 0*00 0*00 0*00

12 + 0-07 4- 0*03 0*00 + 0*13
1-4 4- 0*13 + 000 - 0*01 4- 0*24
1-6 4- 0*19 + 0*08 - 0*01 4- 0*33
1-8 4- 0*24 4- 0*10 - 0*01 4- 0*41
2*0 4- 0*28 4- 0*12 - 0*02 4- 0*48
2-2 4- 0*32 4- 0*13 - 0*02 + 0*55

Table 32. Corrections to absolute magnitude {v'-residuals)

eja

AM," AM„"
\

7 = 35
°

7 = 45°
7 = 55 °

(7 = 45 ", a = 35 °)

M M M M
1*0 0*00 ooo 0*00 0*00

1*2 - 0*07 - 0*03 0-00 4- 0*07

1*4 - 0*12 - 0*06 ooo 4- 0 -
J 4

1*6 - 0*17
!

- 0*09 0*00 4- 0*19

1*8 - 0*21 - 0*11 - 0*01 + 0*24
!

2*0 - 0*24 - 0*13 - 0*01 4- 0*27

2*2 - 0*27 - 0*15 -* 0*01 + 0*31

For normal streaming tlic ratio of the minor axis of the velocity spheroid

to the major axis is found to be about 0-6, so that c/a is approximately 1*7.

Taking the usually accepted value of y (the angular distance between the

vertex and the antapex) to be 45"", the tables show that for stars uniformly

distributed over the sky the correction to the absolute magnitude is faiily

small and of opposite sign for the r and v' formulae, so that the average of

the mean parallaxes derived from these formulae requires practically no

correction. But when the stars are concentrated on or near the galactic

equator, the correction is substantial.

The most important application concerns the mean parallaxes of the

Cepheids or of the cluster variables on which are based the estimates of the

distances of the globular clusters and extragalactic nebulae in which these

objects are found. The galactic Cepheids are, almost without exception, too

remote for the successful determination of parallax by the trigonometrical

method, and it is by means of their proper motions that estimates of their

mean distances can be made. From observations of these variables in a

particular star cluster it is found that the periods of light-variation are

related in a definite way to the mean apparent magnitudes and, as we can

assume for practical purposes that all the stars in the cluster are at the same
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distance from us, it follows that the relation can be expressed as being

between the periods and the relative luminosities. This relation is known as

the period-luminosity law and it is assumed to hold for all Cepheids, whether

in the galactic system or elsewhere. If we can find accurately the parallax

of a single Cepheid, relative luminosities can be converted into absolute

magnitudes and the law can then be expressed as a relationship between

period and absolute magnitude. In this way, the distance of a remote

cluster or nebula, containing one or more ofthese variables, can be estimated,

for the observed periods fix the absolute magnitudes, M, and if the apparent

magnitudes, m, are measured the parallax is deduced from the formula

M = m 4- 5 + 5 Logp.

More strictly, the period-luminosity relationship involves the period P,

the bolometric absolute magnitude 31 and the effective temperature

and as given by Jeans* its mathematical expression is

Log7^-f-0-23J/ + 3LogP,, = U, (1)

where C is a constant whose value has been determined to be 11-35. The

evaluation of (J dex)ends, of course, on the evaluation of the j^arallax of at

least one star, so that the corresponding value of 31 can be obtained.

Consider a group of galactic Cepheids at varying distances and, for sim-

plicity, su|)|)ose that the values of are the same for all these stars. By
measuring the periods P^ and P^, of any two stars, we have

0-23 (31,^ M,) = Log(Po/Pi), (2)

from which the difi’ercnce of their absolute magnitudes can be calculated.

If we suppose that the second star is moved to the same distance from us as

the first star, the aj)parent magnitude, Wo? second star would then

be given by
3/^ = mi + 5 + 5 Log p^,

and, since M^ = 7n^ + 5 +

5

Logp^,

we obtain from these and (2),

= nil- Log (PJPi). (3)

Thus, regarding the parallax to correspond to a standard distance we
can find from (3) the apparent magnitude ofthe second star if it were situated

at this standard distance. But its apparent magnitude is actually wig and

the relation between its actual distance d^ and the standard distance d^

is given by ^ 5Log(dJd,). (4)

The observed proper motion of the second star corresponds of course to

its actual distance, but by multiplying the proper motion by the factor

Astronomy and Cosmogony (2nd ed.), 386, 1929.
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as calculated from (4) we obtain the proper motion which the second

star would have if it were at the distance d^. Such a proper motion is called

a redwed proper motion. In this way we can deal with a group of stars which

may now be all supposed to be at the same distance, and the distribution of

the reduced proper motions is then the distribution of the transverse linear

velocities. The application of the formula (3) of section 6*45 in the case of

the c'-residuals is then vahd. It is to be noted however that the introduction

of the factor (^2/^1 iiiay have serious effects on the probable errors of the

reduced proper motions unless the observed proper motions have been

determined with almost complete accuracy.

It is by such processes as have been described in the previous sections of

this chapter that the Cepheids can be arranged on the usual absolute

magnitude scale.

6'5. Formula for the mean parallax derivedfrom the total proper motions.

We denote by [i the total proper motion of a star so that, with the usual

notation,

fi- = //|cos“^-f'//|.

In the case of photographic proper motions the values of cos 8 are found

directly from the measures. The values of p can be rapidly obtained by

plotting and p^ on squared })a])er.

In section 2*42 we derived the formula for the mean transverse linear

speed, for a small region of the sky when the stars concerned form a

single drift; it is _
T^^Tf(b), ( 1 )

where T is the mean random transverse speed, b = \hW^, in which hV is

the projection of the space-velocity of the drift, relative to the sun, on the

tangent plane for the small region and fr is the function

ff{b) = 6“^{(1 + 26)/o(6) + 26/,(6)}, (2)

w^hose values are given in Table 7 (p. 43).

Basing our procedure on the two-streams theory we shall have, for the

given region, the proportion, a, of the total number of stars belonging to

drift I and the proportion (1 — a) belonging to drift II. If hV^ and hV^ are the

projections of the space-velocities of the two drifts on the tangent plane, the

mean transverse linear speed, T, of all the stars concerned will be given, by

means of (1), by _
T == T{cx.ir(b^) + {\-a)ilr(b^)}, (3)

where = b^ = \mi (4)
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Suppose at first that all the stars have the same parallax, p. Then, if ]i is

the mean of the total proper motions, T is given in km. /sec. by

where ac == 4-74.

Hence, from (3) and (5),

K/l

^ f + ( 1 - a) (62))

(6)

(6)

Also, from section 2-24,
(
7

)

in terms of the theoretical unit 1 jh.

We shall su[)pose tljat from an analysis of several regions of the sky the

various drift constants have been derived, as described in Chapter iv. To
particularise, we assume that the following are known for each region:

(i) a, (ii) hV^ and (hi) the value of the solar motion in terms of the

theoretical unit 1 jh. From (ii) we obtain the values of and to be used in

(0), and from (hi) and the value of the solar motion in km. /sec., as found

from radial velocity measures, we can express the theoretical unit in km. /sec.

and so obtain T in km. /sec. by means of (7).

Thus with 77 given by the observations we can calculate p by means of (6).

In the general case with N stars in the region divided up into m groups,

containing ... stars, the stars in each group having the same

parallax, the mean parallax, p, of all the iV stars is given by

iVp = + . . . +

If each group is supposed to be a representative sample of the two drifts,

we see from (6), inasmuch as the denominator of (6) is constant for each

group, that

Kfl

T{af{bi) + (1 - a) 4r{b^)] ’

(«)

where Ji now denotes the mean total proper motion of the N stars. In the

apphcation of this formula we can, if we like, restrict the stars to those

lying within prescribed limits of magnitude.

It is to be remembered that the value of/Z will be affected by the accidental

errors inherent in the measurement of the proper motion components;

accordingly, it will be necessary to use the corrected value of /Z in (8). Wo
now investigate the methods of allowing for accidental errors in the total

proper motions.

14SSD
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6*61 • The correction of the toted proper motions {first method).

We consider here the statistics ofa quantity which is given as the resultant

oftwo rectangular components, the measurement ofeach ofwhich is subject

to the Gaussian law of errors. In particular, we take the quantity to be the

total proper motion ti given by
= ( 3

)

where ^ cos 8 and rj
— so that an error in p depends on the error in

^ and the error in We shall assume that the quantities ^ and rj are measured

with the same probable error r; accordingly, the modulus, h, in the Gaussian

error law is given by
^

0-4769

Following Kapteyn and van Rhijn,* to whom the method to be described

is due, we denote by Nf{p)dp the number of stars with values of the true

total proper motion between p and p + dp, N being the total number of

stars concerned.

Let Nf>(pQ)dpQ denote the number of stars with values of the observed

total proper motion between p^ and //„ -f- dpQ, The observational statistics

will furnish the form of the frequency function </){Pq) and we require to

deduce the true frequency function f(p).

In Fig. 46 let OS define the true total proper motion p of a star, the

coordinates of S being (^,9/) with

respect to the axes OA, OB. As a

result of errors in ^ and tj the

observed total proper motion, Pq,

is represented by a radius vector

such as OT. Let {x,y) denote the

coordinates ofT with respect to the

axes OX, 0F as shown in the figure,

OX being drawn through 8. Then

PI = +

Thus the error in p^ is due to error

components {x — p) along OX and

y along OY. It follows from the

equality of the probable errors for g and rj that the probable errors for

measures with respect to the axes OX and OY are also equal and that

the modulus in each coordinate is A, as given by (2). Hence, the probability

that, in the direction ofthe OX axis, the observational error will lie between

ix—p) and {x-'p-hdx) is h

* Groningen Pvhl. No. 30, 44, p. 1920.
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Similarly, the probability that, in the direction of the OY axis, the obser»

vational error will be between y and y-^dy

Hence the probability that the observed total proper motion will have com-

ponent errors lying between {x — fi) and {x-jn-^dx) and between y and

y^-dy is /*2

7T

Transforming to polar coordinates so that

(a; - + 2/2 == ^2 — 2///ij,cos6/ + /^^

and dxdy — /i^dfi^dO,

we find the probability that the observed total proper motion will have

values between and + d/^Q lying in directions between 0 and 6 -{-dO to be

~~ ii^ c-^ cos

TT

and consequently the probability that the total proper motion lies between

and for all possible values of 0 from 0 to 277 is where

<0},2 rn

g dfiQ
cos e

^

^ Jo

The integral on the right is expressible in terms of the modified Bessel

function of zero order and of imaginary argument as

We can then write (3) as

f e- d/^o. (4)

Consider now, for a given value of /i, the number Nf{/i)dju, of stars with

values of the true proper motion between ii and fi-\-dfi. Then the corre-

sponding number with observed values between and -f djii^ is

Nf{jii)dju,^d/iQ,

where ^d/iQ is given by (4). Summing for all possible values of /i between 0

and 00
,
we obtain the total number of stars with observed values of the

total proper motions between /Iq and jiio + d/iQ\ this number is, by definition,

N(f>{/iQ)d/iQ, Hence

from this result and (4)

(5 )

14-2



212 Statistical Parallaxes derived 6*61

Theoretically, given the form of determine the form of/(/^)

from this integral equation. But, in the general case, it is evident that the

diflSculties in the way of solving for/(/^) would be at least formidable and

possibly unsurmountable. Instead, we can find the form of the function

for assumed functional forms of f(fL). In particular, the integral on

the right of (5) can be evaluated in simple form if/(/^) is given by

f{li)=^A/icrP^\ (6)

the constant A being determined from the relation

= N,

^ 00

which leads to A = 1,

Jo

whence A = (7)

and /(//) = 2ytf2// (8)

By invoking the principles of section 4*5, it is clear that ^(/^o) ''id he

given by a function similar to that in (8), with a modulus k defined by

11 2p-^2 + p-

We verify this result by direct integration of (5).

We then have

9^(Ao) = io(2A2///to) (9)

Write y == (10)

IfK denotes the integral in (9), we have

^ = ( 11 )

Now = (12)

/•oo 00 ,,.2n

H.nce

We have the formula

= (13)

(which may be derived by differentiating n times the uniformly convergent

integral coo
2

xe~^^^dx = — with respect to a)
Jo 2a
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and, consequently, K 1 V 1

!_~ 2m
or K = --- e (14)

Hence

or, defining k by
h^ + P^'

(15)

(16)

Thus ^(/^o) is of the same analytical form as/(/^).

We conclude that if the observed frequency function of the total proper

motions is given by (16), in which k may now be supposed known, the true

frequency function /(/^) is given by

fifji) =

where =

6*62. Derivation of the theoretical correction.

It is found in practice that the observed distribution of the total proper

motions can be represented satisfactorily by one or more functions of the

form given by (16) in the previous section. In the general case, we can con-

sequently assume that

9^(/<o) = + (1)

where the constants A
2 , - fki, ... are determined from the statistics

of the observed total proper motions. In consequence, the distribution of

the true total proper motions is given by

f(fi) = + (2)

in which
hVc\

Ai
h^kl

''h^y .(3)
h^-kf

Actually, it is more satisfactory to determine the constants Aj, Aj,

/cj, k^,, ... from a function <?(/<(,) which gives the proportion of the observed

total proper motions greater than a given value Thus

^(Ao)=

which leads to ^(/^o)
~ A^ ^ 2

Vo* -f , .

.

with the condition, since 0(0) = 1,

4" -^2 "f- . . . = 1 .

(
4

)
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I have found it more convenient to work with centennial proper motions,

and in the tabular matter and numerical work that follow, the century will

be taken as the unit of time.

Table 33 gives the values of the function for different values of h

and for values of the observed centennial proper motions between = O^-O

and fiQ = 8"-0.

Table 33. Values of

\
0*1 0-2 0-3 0-4 0-5 0-6

0^0 1000 1000 1-000 1-000 l-OOO 1-000
0*5 0-998 0-990 0-978 0 - 9(51 0-939 0-914
10 0-990 0-961 0-914 0-852 0-779 0-698
1-5 0-978 0-914 0-817 0-698 0570 0-445
2*0 0-961 0-852 0-698 0-527 0-368 0-237
2-5 0-939 0-779 0-570 0-368 0-210 0-105
30 0-914 0-698 0-445 0-237 0-105 0-039
3-5 0-885 0-613 0-332

1

0 141 0-047 0-012
4-0 0-852 0-527 0-237 ' 0-077 0-018 0-003
50 0-779 0-368 0-105 0-018 0-002
60 0-698 0-237 0-039 0-003
70 0613 0-141 0-012 0-000

!

8-0 0-527 0-077 0-003

In the following table the values of /? as a function of k and of the probable

error, r, of the centennial proper motion components, /i^cohS and are

given for numerical values of r between 0''*2 and T'-O per century; the value

of h corresponding to a particular value of r is calculated first from (2) of

6*61 and with this value of h, fi is obtained from (17) of section 6*61 for each

value of k between 0*1 and 0*7.

Table 34. Values of p

\ T

k \
0^2 0^3 0^4 0^5 0^6 0^7 0^8 0^9 VO

0-1 0-100 0-100 0-100 0-100 0-101 0-101 0102 01 02 0-102
0-2 0-201 0-201 0-203 0-205 0-207 0-209 0-213 0-216 0-220
0-3

i

0-303 0-306 0-311 0-316 0-324 0-334 0-347 0-364 0-386
0-4 0-405 0-413 0-426 0-441 0-463 0-494 0-539 0-609 0-731
0-5 0-512 0-527 0-552 0-593 0-643 0-737 0-920 1-506
0-6 0-620 0-649 0-694 0-771 0-914

i

0-7 0-732 0-784
1

0-866 1-030
1

!

When the constants ••• been obtained, the theoretical

correction—which we denote by c—to be applied to the mean ofthe observed

total proper motions to give the mean of the true total proper motions is

easily derived.
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We have
f*co

J 0

-Tte + A'"-)-
(5)

and, similarly,

Coo

/i-0 =
1

/^0^(/^o) o
J 0

,-^2,
\ (6)

and, writing (7)

we have (8)

Reference to 6*61(17) shows that is greater than the corresponding

value of k and consequently the correction c is always negative. Thus the

effect of correcting for accidental error is to diminish the mean of the

observed total proper motions.

Generally, the observed distribution show^s a somewhat greater pro-

portion of the larger total proper motions than is allowed for by the theo-

retical distribution given by the function ^i(/io) or the function ^^(//o). By
omitting several of these larger j)roper motions from the statistics (the

number is readily found by ‘‘trial and error’’), the remaining distribution

—

which we call the adjusted distribution—gives, as a rule, a sufficiently satis-

factory representation betw^een /i^ = 0"*0 and //q = 4"*0, say, of the function

0(//q) composed of one or more of the exponential functions. Let N be the

total number of stars and N' the number in the adjusted distribution. The

theoretical correction then applies only to the N' stars and w^e take as the

mean, ]i, of the true proper motions the expression given by

_ _ iV'
+ (9)

In this way we correct the great majority of the total proper motions for

accidental error and leave uncorrected a few of the larger ones, together with

the residual numbers between the theoretical and observed distributions

of the N' stars. The result is a slight under-correction of JIq but this may be

balanced empirically by taking a slightly larger value of the estimated

probable error, r.

6*63 . Example of the application of the method.

Table 35 gives the relevant details* concerning the total proper motions,

in a particular region, of 115 stars between magnitudes 9*0 and 9*4 on

Argelander’s scale or of mean magnitude 9*5 on the Harvard scale (visual).

* W. M. Smart, M.N. 96, 141, 1935,
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Table 35

Ih
No.

(observed)
0

(k=^0‘4S)

0-0

5

1-00 100

0-5

12

0-95 0-94

1-0

26
0-83 0-79

1-5

16

0-57 0-59

2-0

18

0-41 0-40

2-5 0-23 0-24

30
QC

0-14 013

3-5
n

0-07 006
2

4-0 0-05 o6
>4-0 5

In the second column are the numbers of stars with observed centennial

total proper motions between the limits 0"*5-r'‘0, etc. (a star

with fiQ = 3"*0, for example, contributes I to the interval 2"-5-3"*0 and | to

the interval 3"-0-3"*5). The number of total proper motions greater than
4"-0 is assumed to be 5 (actually the number of proper motions greater than

4"-0 is 20), so that in the adjusted distributed N' = 100; thus 1 5 of the total

proper motions exceeding 4"-0 per century are unaccounted for in the

adjusted distribution.

Denote by the number of stars in the adjusted distribution with

total propermotionsexceeding/^Q; thus, for

=

4",iV''(//Q) = 5:for//Q = 3"*5,

N\iIq) = 7: for = 3"-0, — 14iand so on. The third column contains

the values of and this set of values represents the observed

adjusted frequency distribution. In the last column are the values of the

function 0(//o) = for the value k = 0*48; the value of k is most readily

obtained from graphs of the function 0 for various values of /c, so as to

give as accurate a rex)resentation of the observed adjusted distribution as

possible. In this particular example it is found that a good representation

can be obtained when 0 is represented by one exponential function. In-

spection of the last two columns shows that there is satisfactory agreement

between the observed adjusted distribution and the theoretical distribution

given by = 0*48.

The probable error, r, is estimated to be 0"*4 numerically; hence with this
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value of r and Ic = 0-48, we find from Table 33 that /? 0-525. Formula (8)

of section 6-62 then gives c = — 0"-158.

The statistics of the proper motions give 297 "-3 as the sum of the total

proper motions for the 1 15 stars; hence = 2"-585. Formula (9) of section

6-62 then gives

/Z = 2"-585-|^^ X 0"-158,
1 15

from which Ji — 2"*448.

This is the value to be used in (8) of section 6*5.

6*64. The correction of the total 'proper motions {second method).

In this method we derive the mean value of the true total proper motion
corresponding to a given value of the observed proper motion.

The formula (4) ol section 6*61 gives the probability that for a given

/^ the observed total })roper motion lies between and p^-^-dp^. Also

f{p)dp is the i)rop()rtion of stars with true total proper motions between //

and//- -f dp. Hence the proportion of stars with observed total proper motions
between p^ and p^^ -f dp^ and with true proper motions betweenp and p-{-dpvs>

U{p)dpdp^. ( 1 )

We may equally well describe this result as giving the proportion of stars

with true total pro})er motions between p and p-\-dp for observed values

between p^ and p^ -^-dp^.

Denote by p^ the mean of the true total proper motions for a given value

Pq of the observed total proper motions. Then

f
TUWdp

p, = ^-^ , (2)

whence, on inserting the expression for f given by (4) of section 6-61,

r oo

Ml = -L- • (3)

J^e-"V/(/0/o(2/t>//„)rf/t

Assuming, in accordance with (2) of section 6-62, that/(//) is given by

f(p) = 2i:AjjSfpe~^jK
we then have

f"p^e~^^('^^+t^^)I^(2h^ppAdp

u ^ J
^'1 ^00 > (4)
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in which we drop the suffix j for the sake of simplicity. Writing as before

+ y = 2h^/io^ (6)

(4) becomes /^i
= 0

f
iA£-^^i^%{yy)dy

J 0

.(6 )

The integrals in the denominator are of the form in (11) of section 6*61;

hence the denominator of (6) is

Consider a typical integral

A /?2

r lQ(iiy)dfi
J 0

in the numerator of (6). Using the series for I^){Q given by (12) of section

6-61, we have ^ „

But

Hence

We write

so that, by (6),

Jo ^ >711
I 1 • ff2n+a

>”/y2Y»2n+l 1.3.r)....2w-l

q = yy4II^,

<1 =
h*nl

Ai u 1.3.6....2W-1 ] pAlso, we have — = “
2.4.6— 2n 77- J 0

Hence (8) becomes

.( 8 )

.(9)

= —i— f + dO,
4V7rH^ J 0

or, on writing q == 26,

«26

4^77^3 J’'(l + 46cos2/9)e-“«‘“’'’d(9. (10)

But, by referring to section 2-42, it is seen that the integral in (10) is 7n/r(b)t

where, in the notation of that section,

^(6) == {(1 + 26) /o + 26/i(6)}.
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^71
Thus

4:(h^+
(11)

or, in terms of g, L/ = ’ (12)

where G(q) is defined to be ^ ^ ^f)
* (13)

From (6), (7) and (12) we then obtain

(14)

where q is defined by (9).

If the function f{fi) contains one exponential only,

in this case

we have the result

a - (15)

Kapteyn and van Rhijn expressed the function G{q) as an infinite series

which is rapidly convergent for q<l and in this way they evaluated the

function for such restricted values of q. For q>\, they effected the evalua-

tion of the function by numerical integration. The calculation of the values

of 0{q) by this procedure is extremely laborious. The preceding demon-

stration* shows that G{q) can be expressed in terms of the function ^(ql2),

the evaluation of which can be very simply effected by means of the tables

for e~^lQ(b) and e-^I^{b) given in Watson’s Bessel Functions.

The following table gives the values of G{q) as calculated by Kapteyn

and van Rhijn.

I

Table 36. Values of G{q)

q 0{q) q 0(q) q 0{q)

00 0-89 70 2*73 40 0 6-38

1-0 1-28 80 2-91 500 713
20 1-61 90 308 600 7-80

30 1-89 100 3-24 700 8-41

4-0 213 15 0 303 800 8-98

6-0 2-34 200 4*62 900 1
9-51

6-0 2-54 300 6-65 1000 10-02
7-0 2-73 40 0 6-38 1500 12-31

* W. M. Smart, M.N. 96, 136, 1935.

t Groningen PM. No. 30, p. 63, 1920.
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6 *65 , Example offinding the values,

Taking the statistics of the adjusted distribution in section 6-63, we have

fi = 0*525 andA, calculated from A = 0*477/r, isfoundtobe l*19forr = 0"*4.

Thus we obtain i *>

M9//g.

Also ^ 1.303^

For the values 1"*0, ... 4"*0 of we find the corresponding values of fii,

using the entries of Table 36, as follows:

Mo Ml

VO r^03
20 1-75
3*0 2^51

40 3*39

6 *7 . Determination of the rn^an parallax derivedfrom the total proper rnolions.

The formula for the mean parallax is, from (8) of section 6*5,

KJi(

T{af(b^+ ( ] - a) ^(6J}
’ (

1
)

in which Ji is now the corrected mean total proper motion.

We have to express T in km. /sec. This can be done when the solar motion

is known both in terms of the theoretical unit, Ijh, and in km. /sec. Taking

as an example the analysis* of the Cambridge photographic proper motions,

it is found that the theoretical value of the solar motion is 0*881
;
identifying

this with the generally adopted value of 19*5 km. /sec., we find that

J9*5
2 ’0*881

19*6km./8ec.

Hence, on inserting the value of /c^ 4*74 in (1), we have

^ = 0-242 £,

where D ^ a\lr{bf)-\-{\ — oc)\lr{b,f^, (2)

With the values of a and the drift velocities K\\ and for the region

concerned, D is readily calculated and hence p is obtained.

For example, for the region to which the data of section 6*63 refer, D is

found to be 1*582 and, as the corrected value of Ji is 2"*448, the mean
parallaxt of the stars, in the region, ofmean magnitude 9*5 on the Harvard-

scale is found to be 0"*0037.

M,N. 87 , 137, 1926.

f For further details and results, the reader is referred to J/.JV. 96 , 132, 1935.



CHAPTER VII

THE SPACE DISTRIBUTION OF THE STARS DERIVED
FROM THEIR PROPER MOTIONS

7*1. Density laws.

In this chapter we consider one of several suggested laws of stellar dis-

tribution and investigate its theoretical implications concerning the dis-

tribution of proper motions. Observation and tlieory can then be brought

together for comparison and it will then be possible to decide as to the degree

of justification for the assumed law of stellar density.

Let D(r,g) denote tlie number of stars per unit volume of space at a

distance r from the sun and in galactic latitude g. As the sun is believed to

be very near the galactic plane, the form of D{r,g) must be such that this

function decreases, for r constant, from the galactic equator towards the

galactic poles in accordance with the well-authenticated thinning-out of

the stars towards the poles. There is a certain amount of evidence in favour

of a ‘'local cluster” with the sun occupying a fairl}^ central position; for

example, Charlier’s investigation* of the B type stars is in accordance with

this suggestion, and van Rhijn’s research^ on the absorption of fight in

interstellar space provides a certain amount of additional confirmation. In

consequence we })ostulate, for a given galactic latitude, a function D{r)

decreasing with the heliocentric distance r in the expectation that it will

be of the nature of a first approximation, at least, to the true distribution.

We shall see in a subsequent chapter that there is a general method of

determining the form of D(r) from the observed distribution of stellar

motions, but its practical application has met with difficulties depending

on the uncertainty and insufficiency of observational data. Just as w'e can

regard the Maxwellian law concerning the distribution of linear velocities

as a standard of comparison between theoretical considerations and obser-

vational facts, so in a similar way we can treat an emj)irical law of density.

There is a further practical consideration of a different nature. Statistics

of proper motions, for example, are frequently incomplete so far as the

smallest values are concerned, and a general discussion ofsystematic motions

of stars with proper motions exceeding an assigned minimum value is

invalid unless the space distribution ofsuch stars is, in some way, taken into

account. With an assumed law of stellar density, even if it is but a first

approximation, the effect of omitting the smallest proper motions can be

found. For example, the omission of annual proper motions less than

* Lund Medd. Ser. n, No. 14, 1916. t Groningen Puhl. No, 47, 1936.
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0''-02 for any part of the sky, generally leads, on the two-streams theory, to

values of the drift velocities conspicuously greater than the values obtained

from the analysis of proper motions of all magnitudes. Such high values are

not representative of the star-drifts and must be regarded as spurious. But
with the introduction of a density law, they can be correlated with the true

velocities of the drifts and can serve to give reliable information concerning

the systematic motions of the stars.

Other than D{r) == constant, the simplest empirical density law is that of

Seeliger, whose name is associated with the formula

i)(r) = Dor-^ (1)

in which s is positive, and Dq a constant.

In 1912, Schwarzschild proposed the formula

D(r) = (2)

in which y = logr and Dq, a and b are constants.

In 1913, Dyson suggested the formula

D{r) = (3)

in which Dq and k are constants.

The results of his investigation into the motions of the B type stars

suggested to Charlier the adoption of the formula

D(r) = (4)

where, again, and k are constants.

In this chapter we shall be concerned only with formula (3) and its

implications.

7*2 1 . Investigation of the peculiar proper motions.

In the absence of systematic motion, we shall assume that the proportion

ofstars with linear motions in one coordinate between v and v + dvis given by

Ae-Wrfv. (1)

We suppose that, in a particular region of the sky, we can resolve the

observed proper motions in such a direction that (1) holds. For example,

on the ellipsoidal theory, if we select a region on the great circle passing

through the vertex of star-streaming and the solar apex, the motions

perpendicular to this great circle will be haphazard and in accordance

with (1).

If th6 region subtends a small solid angle 8, the element of volume of

the cone between distances r and r -f dr is Sr'^dr and the number of stars in

this volume is 8r^D(r) d/r.
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Writing the number of stars, within the cone and at distances between r

and r-hdr, as/(r)dr, we define /(r) as the linear density. Then

/(r) = Sr^D{r),

or, by (3) of the previous section,

f(r) = Are~^^\ (2)

where A and k are constants.

As a generalisation we shall take, following Dyson,*

f(r) = Ar^e~^^^\ (3)

where A > 0. This formula contains two disposable constants A and k, A
being determinable later in terms of A and k and the total number, N, of

stars under consideration.

Since the total number of stars is N, we have from (3)

or, on putting kh^ = y,

N

A r
A-1

2^ = ifcATiJo^

'

Hence A =
(
4

)

This formula determines A in terms of N, A and k.

The number, dN, of stars at distances between r and r^-dr and with

linear velocity components, in the assigned direction, between v and v-^dv

is given by

.(5 )
dN

y/n

^Ag-feva drdv.

If r denotes the proper motion (in circular measure) corresponding to the

linear velocity v, the units of time for v and r being the same,

v == rr,

and for the stars at distances between r and r + dr,

dv = rdr.

Hence the number, dN, of stars with proper motions between t and r + dr

and at distances between r and r -f dr is given by

4h

M.N. 73, 334, 1913 .



224 7*21The Space Distribution of the Stars

Summing now for stars with proper motions between the limits r and

T-frfr for all distances between 0 and oo, and denoting the number so

obtained by N{T)dr, we have

A h
N(r)dT

\
r^+ie-rHk^+h^r^)dr

Jo

2 Jtt A^2
*

(P + AV) 2

Set k = ah, (6)

Then we can write .a+ 2\

'

<’»

where C is found, with the help of (4), to be

/’IfA
+ 2 \

2 /
]

^

'

VV|a+n
i

2 )

It is to be noted that a is expressed in terms of the same units as r.

The number of proper motions with numerical values greater than r

(r being positive) is, from (7),
A-f- 2

and if we denote the number when r = Tj by and the number when t = Tg

by we can find from (9) the ratio of to A\, In particular when r is

large compared with a, we have, as an approximation,

r <30 / -j \ —(A+2) r / 7 \
~(A+2)

H..U
=

( 10 )

This last relation, (10), can be used, in conjunction with the statistics of

T, for estimating the value of A and for testing the legitimacy of the assump-

tion regarding the form of the density function.

7 *22 . Application to the r-components of the Carrington stars.

The analysis of the previous section is due to Dyson (loc, ciL), To test the

formulae he used the proper motions of 3708 stars in Carrington’s Circum-

polar Catalogue, which includes all stars between declinations -f-ST and

H-
90*" down to the tenth magnitude. For the comparatively small area of

the sky represented by this catalogue, the parallactic motion may be taken
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to be towards the point (6^, 0°), and this is also approximately the direction

of the velocity of drift I and opposite to the direction of drift II on the two-

streams theory. By finding the components, r, of the observed proper

motions in the direction perpendicular to that of the parallactic motion, we
obtain angular motions which are almost completely free from the effects

of the preferential motions and are consequently of the type to which the

foregoing analysis can be applied.

At the outset, the statistics of the r-components were con'ected for

accidental error, partly by an empirical process and partly according to

the method of section 1*81.

Dyson compared the distribution of the r-components with formula (7)

of section 7*21, taking dr to be 0"*4 (centennial) and the three values 0*8, 1*0

and 1*2 of A and different values for a. He concluded that the observations

were best satisfied when A = 1*0 and a = 1"'47.

The following table gives the comparison of the observed distribution

with the theoretical distribution for A = 1*0 and a = r'*47.

Table 37

Limits of r
Number of stars

Observed Calculated Difference

Oro-O'^4 634 604 + 30
0-4-0‘8 555 575 -20
0-8--1-2 503 517 -14

440 443 - 3
1-6-20 372 366 -f 6
20-24 281 288 - 7

2-4~2-8 215 224 - 9
2-8-3-2 162 163 - 1

3-2-3-6 121 120 + 1

3-6-4-0 94 88 4- 6

40-4-4 64 64 0
4-4-4-8 51 47 + 4
4-8-6-0 76 83 - 7

6-0-80 66 59 f 7

8-0-10-0 33 26 + 7

100-150 25 1 24 + 1

>16*0 16 18 - 2

7*23 . Evaluation of k.

Taking the function /(r) to be given by (2) and (4) of section 7*21 (A== 1),

f{r) = Are-^^^ ( 1 )

and A = 2km. (2)

With the parsec as the unit of distance, the parallax, p, in seconds of arc is

1

SSD 15
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and the mean parallax, p, of the stars is given by

p = 2*2 f
”

- dr = k^7T (3)

Jo r

or p= lll'Ilc. (4)

The mean parallax can be determined numerically by means of the t;-com-

ponents, as explained in section 0*21. Dyson assumed that the antapex of

the solar motion is at (6^, — 35°), so that, for the small polar area under con-

sideration, the component of the parallactic motion due to the solar speed,

Tq, is along the great circle joining the pole to the point (0^, 0°). For a star

with parallax, p, the parallactic centennial motion v in this direction is

given by
o 4 * 74 ^;

and inserting — 19*5 km. /sec., we obtain

p = 412 cos 35
*

The observed value of v was found to be r'-41; consequently

p = ()"*00418. (5)

From (4) and (5) it is found that

k = 0*00236. (6)

Prom these results the percentage of the Carrington stars at different

distances or between different hmits of parallax are readily calculated; the

details are shown in the following table given by Dyson.*

Table 38

Distance
(parsecs) Parallax

Percentage
of stars

0-40 > 0-025 0-9

40-100 0^025 -0-010 5-0

100-200 0 010 -0 005 15-1

200-400 0 005 -0 0025 401
400-667 00025-000 15

*

31-5

667-1000 00015-0-0010 7-1

>1000 <0^'0010 0-3

7*31 . Investigation of the systematic components.

Consider again the small polar area treated by Dyson. The coordinates of

the vertex ofpreferential motions are ( 94°, +12°) and consequently the great

eircle joining the pole to the solar antapex passes very close to the vertex.

Consider the components, v, ofproper motion ofthe stars at the pole resolved

M.N. 73, 342, 1913.



7*31 derived from their Proper Motions 227

along this great circle; they will correspond to the linear pecuhar velocities

given by the major axis of the velocity ellipse for the polar region combined

with the parallactic linear velocity in the same direction.

We write the velocity ellipse at the pole in the form

g-u- + = 1 , (g <h).

The peculiar linear motions in the direction concerned are, by the ellipsoidal

theory, distributed according to the frequency law

( 1 )

where g is inversely proportional to the major axis of the velocity ellipse for

the polar region.

If w is the total linear velocity in the direction we are considering and V
is the component of the parallactic motion in this direction,

u ~ w~V

,

and hence the total linear velocities are distributed according to the fre-

quency law

Since v is the component of proper motion corresponding to w,

Whth the linear density law expressed by (1) and (2) of the previous

section, the number of stars between distances r and r-{-dr and with linear

velocities between w and w -f dw is

(4)

If dN denotes the number of stars at distances between r and r + dr and

with 23roper motion components between v and v-\~dv, (3) and (4) give

dN = ^2^-kh-‘-gHrv-vr- drdv. (5)

Hence the total number, N{v} dv, of stars at all distances with proper motion

components between v and v -f dv is given by

Niv)dv = --^dv dr (6)> Jo

Set + = a; (7)

and gv = A:tan^. (S)

Then kr = co8(9(;r-f-9^Fsin(9), (9)

gdv = kme^OdOy (10)

15-2
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and (6) becomes

N(v)dv = I (a;-4-^F sin 0)^ e~** cJo;,

J —gV slntf

or, on writing r = gV sinO, (11)

N{v)dv — ^coadd0e~^^^^^e^^
j

{X'\'r)'^e~^^d2^,

But
J

(x + r)^ dx — 2t^)
J

dx + |t

i:"IsH'
Hence, using (11),

N(v)dv =
^TT d/U "j: e~'''^“dx\ .

gV sinO
.( 12 )

If N{0, 4- v) denotes the number of stars with values of v between 0 and

+ V, we obtain, from (12),

-^(b, +a) = f e~^^^dx, (13)
J—gV Bind

since 6 — 0 when a = 0.

Similarly, the number, iV"(0, — t;), of stars with values of v between 0 and

— a is given by

^^(0, —v)— ™ f er^^dx, (14)
JgV Hind

From (13) and (14),

N(0,u) + N(0, -u) = (15)

and JV(0, i;)~iV(0, -i;) -
2N rgVBind

Jo
(16)

Similarly, denoting by N{VyCO) and N( — v,-co) the numbers of stars

with proper motion components between v and cx), and between — v and — oo

respectively,

N(u,co)'^N{-u, — oo) = — {iV(0, t^)4-iV'(0, -v)} (17)

This last formula gives the number of stars with proper motion com-

ponents greater numerically than v.

When V is large, 6 is near to 7r/2 and, writing

a = 7r/2~l9, (18)

the number, of large proper motions (taken regardless of sign) is given

l>y = ^^{1 — cos
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Hence, as a is now supposed small, we have—up to the second order in a

—

(19)

But, from (8) and (18),
k

tan a = —

,

k
or, with sufficient accuracy, a = — . (20)

Hence, (19) becomes
Nk^

(21)

Similarly, if N2 denotes the difference between the number of stars with

large positive proper motions and the number with large negative proper

motions (the limits being numerically the same),

oo)-iV'( — t;,
— 00

)

= iV70,oo)-A^((), ~oo)-{Ar(0,i;)~A^(0, -t;)} (22)

But from (13) and (14) and from the consideration that 6^ = 7r/2 when v == co

as deduced from (8),

A^O, oo)=-~
1^1"+

J"
(23)

and A^(0, -oo) = ^ . (24)
I 2 Jo )

Hence from (22), using (23), (24) and (16),

2N CoV 2N rgVBlnG

V^rJo Jo

or, with the previous approximation with regard to a,

2N 2N r 1

* >Jo Uo Jeroosa J
rffV

Also, e^^'^dx is approximately, since a is small, equal to
J f^VcoBa

e-c^^y^gV(l-co8a) or ia^gVe~^^^\

Hence, inserting the value of a given by (20), we obtain

A ( Cov \

^2 = ;^^272((1 + + (25)

The formulae (21) and (25), which were derived by Dyson,* can be used

in conjunction with the observational data.

* M.N, 73 , 402, 1913 .
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7*32 . Applicatioji to the Carrington stars.

Of the 3735 Carrington stars used by Dyson in this particular investiga-

tion 87 had values of d greater than 12" per century and 18 had negative

values exceeding 12" per century numerically, so that = 105. Hence,

from (21) of the previous section,

IP
2^2

105

^35 (
12 )‘^.

(
1 )

From (3) of 7-23, kV = ,

ylTT

where p is the mean parallax.

Also Vp is the parallactic proper motion which was found to be 1"*44 (a

later value than that used in section 7-23). Hence

kV =

Substituting (2) in (1), we obtain

l"-44

But we had from section 7*22

- = 2 •61.
9

f = l?-47.
h

(
2 )

(
3 )

Hence, from (3) and (4), f = 0-663.
h

(•5 )

But g and h are respectively inversely proportional to the axes of the velocity

elbpse at the pole. The ratio of the axes of the velocity ellipsoid is given by,

from formula (10) of section 5*12,

With the usual position of the vertex, x— so that, with the help of (5),

a result which may be regarded as in fair agreement with the results based

on the methods of Chapter v.

1*44 1
From (2) and (3) gV =—

-^ 0-311, (6)

and with this value of gV, we obtain from (13) and (23) of section 7-31

00) = ^.3-40 {0-60+ 0-37},

when V is taken to be a large proper motion.
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N
Similarly, JV( ~ t;, - oo) = . 3*40 (0*60 - 0*37}.

With iV = 3735 and v = 12" per century,

N{v, 00
)
= 85, N( - V, - 00

)
= 20,

as compared with the observed numbers 87 and 18 respectively; the agree-

ment between theory and observation is thus satisfactory.

Again, formula (13) of section 7*31 enables us to calculate the number of

stars with values of v between and and formula (14) of section 7*31

is available in the same way for the corresponding negative values of u.

Before comparing the theoretical and observed distributions, it is first

necessary to take account of the accidental errors. Instead of correcting

the observed distribution, Dyson put the effect of the errors into the

theoretical distribution. Accordingly, in Table 39, ‘'theoretical number"’

implies the number as calculated from the formula, together with the

effect of accidental error; it is to be compared with the “observed number”

in the adjoining column. The details for the Carrington stars, as given by

Dyson (loc. cit.), are in Table 39.

Table 39

Contormial

7.iroj)er

motion (/>)

Theo-
retical

numb('r

Observed
number

1V 10 18
- 12" to -8" 19 13
~ 8 „ -0 28 23
- « „ -5 33 30
- 5 „ -4 57 50
- 4 „ -3 104 91
- 3 „ -2 211 225
- 2 „ -1 347 359
- 1 „ 0 480 517

0 „ 4-1 553 I 574
+ 1 ,, 4-2 528

1
530

4- 2 ,, 4-3 425
j

410

Centennial
proper

motion {v)

Theo-
retical

number

Observed
number

4- r to -f
4" 304 257

4- 4 -f 5 201 182
4- 5 „ 4- 0 125 120
4- 6 4- 7 81 80
4- 7 »> “f 8 53 48
4- 8 „ 4- 9 36 34
4- 9 „ 4-10 27 30
4-10 „ 4-12 34 39
4-12 „ 4-15

1

27 27
4- 15 „ 4- 20

i

> 20
i

30
> 4 20"

! 27

i
i

30

The agreement between the theoretical and observed results is, as Dyson

remarked, very satisfactory.

A further test can be applied as follows. The total number, ^"(0
,
00 ), of

positive proper motions is given, from 7*31 (23), by

N ( 2 1 AT

0(0 being the probabihty integral.* With the value of given in (6), we
find that A^(0, 00) = 0*67Ar.

For numerical values of &(t), see Brunt’s The Combination of Observations (2nd ed.), 234, 1931.
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Thus 67 % of the stars have positive values of v according to the theory.

Table 39 shows that the observed number is 2409, or 64|^ %, in good agree-

ment with the theoretical value.

7*33. Relation to the two-streams theory.

The pi'cceding tests have been made with reference to the ellipsoidal

hypothesis. On the two-streams theory the polar region is such that the

directions of the speeds of both drift I and drift II are given approximately

by the great circle joining the pole to the point 0 °). In this case, we can

use formula (21) of section 7*31 for each drift, with the proviso that the

modulus, g, in this formula is to be replaced by h, the modulus in the per-

pendicular direction. Assuming that the stars are equally divided between

the drifts and that the projections of the space velocities of the drifts on the

tangent plane at the pole are and the number, N[, of stars belonging

to drift I with large proper motions (taken regardless of sign) and the

corresponding number, N
2 y

for drift II are given by

Hence, of the N stars forming the tw^o drifts, the number, N
2 ),

will have proper motions greater numerically than v, where

Thus with the numerical data corresponding to 7-32
(
1 ), we have

But, as we have seen, i/A = 1"47. Hence

Wf +Wi = 2-75. (1)

Also, with the stars divided equally between the two drifts, the mean linear

1.44
parallactic motion is + AF^), which by 7-32 (2) we see is equal iohj-j-.

IC ^7T

2*88 1

Hence +
'XT47

~

From
(
1 )
and (

2 ), we find that

AFi = l-58, AFj = -0-48. (3)

The negative sign associated with hV^ in (3) indicates that the drift

velocities for the polar region are in opposite directions, as can easily be

deduced from the coordinates of the apices of the drifts.
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Eddington's results from the analysis* of the Carrington stars brighter

than magnitude 8*9 give the numerical values of hV^ and to be 1-40 and
0-35, in fair agreement with the values in (3). It should be added however
that as the direction of the velocity of drift II is approximately 20° different

from the direction of the velocity of drift I for the polar area, exact agree*

ment could hardly be anticipated. In consequence, the r-components
treated in section 7-21 include the effect of the velocity of drift II in this

direction, and the theoretical formulae, pertaining to the two-streams
theory, which we have used cannot be applied with complete strictness to

a comparison with the observations.

7 *41 . General theory

.

We investigate now a general theoryf applicable to any region of the sky;

as we have seen, Dyson’s researches deal with a special region of the sky in

which the proper motions can be resolved in two directions, one approxi-

mately free from systematic motions and the other containing the greater

part of the systematic motions.

We consider first a single drift. Suppose that there are N stars in a small

region subtending a solid angle S. If V is the projection of the space velocity

of the drift on the tangent plane at the centre of the region and 6 is the angle

between the direction of the projected drift velocity and any other direction

in the tangent plane, the number of stars with transverse linear velocities

between w and w -f dw and in directions between 0 and 0 + dd is, by 2*3 (4),

7>JJf2

~ ~ dOwdw cos 0)

7T

in which h is the modulus of the drift.

Denote the star-density by D{r) per unit volume. The element of volume
of the cone of solid angle 8 between the distances r and r-{- dr is Sr‘^dr and
the number of stars in this volume is Sr^D{r) dr. Of these stars the number
with transverse linear velocities between w and w-\-dw and in directions

between 6 and O + dO is

— r'^ Dir)
71

If jx is the proper motion corresponding to w,

w = rfi.

Hence the number of stars in the element of volume, at a distance 7', with
proper motions between fi and p-^rd/xand in directions between d and O + dOis

Sh^— r^D(r) cos 6) dji^dOdr,

M.N. 67, 63, 1906. t W. M. Smart, M.N. 88, 567, 1928; 89, 93, 1928.
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(i) The distribution of proper motions in any direction 6.

Let M(fiJ))dfidO denote the number of stars in the whole cone with

proper motions between p and p + dp and in directions between 0 and 0+ dO,

Sh^a C °°

M{p,0) = ( 1 )

^ Jo

We assume that D{r) is given by (3) of section 7-1, but for convenience we

shall write it in the form .

= (2)
r

l^he total number of stars in the cone is given by

/•oo /*<x>

N = SD(r)r^dr -
Jo Jo

from which AS = 2Nh^k^, (3)

From (1) and (2),

M{tl,d) = r°°^3g-/,nrV>ifc‘’)+r»-2rr/,COB0)(^y
(4)

^ Jo

Let h^(fi^ + k^) = a-, (5)

/ F/y co»(9\

“(’"T-’I-f)"*-

hVpeo^d
<'>

Then M[ii,0) - (x + yfe-^dx (8)
Tta J

Let 0{y) — f e~^^dx. (9)

J ~y

Expand (a: + 2/)^ under the integral in (8) and make use of the following

results:

r xe~^^dx “ (10)
J -V

f " xH-^-^dx = lG{y)-lyery\ (11)
J -V

j

x^e~^'^dx = \y^e-y^-^le-'y\ (12)
J -y

Then, using (3),

Nh^lc^
M(p,d) -,--//e-'^^^^l(22/3+ 32/) e^^(?(y) + 2/2+1^ (13)

Tta

This formula, combined with (3), gives the distribution of proper motions

in any direction d.
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(ii) The number ofproper motions greater than p in any direction 6.

Let N{p,d)dd denote the number of stars with proper motions

p and 00 in directions between 0 SindO-^dd. Then

between

From (7)

N(pyd) = f M{p,0)dp.
J n

ydy =

from this equation and (5) we obtain

Write

^ y^y
a^ /^«FF2cos2 6>‘

hV eos^ = T.

Then from (7) we see tiiat y — r when p = oo.

From (13), (14), (15) and (16) we obtain

N{pJJ)
Ct

{(2y* + 3^
2
)
gw* Q(.y^ + y^ + y) dy.nr j y

But, since
dO{y)

we can wiite the integral in (17) as

Thus N (ii, 6) = (?(t) + i} - y^{y&^ G(y) + 1}].

Now Eddington’s function /(a;) is given in 2*3 (10) by

iVe-W’« / „2 \

Hence N(,i,0) = j/(r) - Aj(y) j . (18)

Describing proper motions which exceed a certain value of /i as restricted

proper ^notions, we see that (18) gives rise to the frequency curve of restricted

proper motions and is analogous to the formula for the drift curve derived

in section 2*3. It is clear that ^ = 0 is an axis of symmetry, as in the drift

curve.

Let us suppose now that the drift curve and the frequency curve of the

restricted proper motions have an axis of symmetry in position angle 0-^.

Then, from (16), t = AFco8(0-6>i), (19)

in which 6 signifies position angle.
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SO that, by (7), yz=:rjT, (21)

Formula (20) shows that ij cannot exceed unity. Defining d' by

cos(^?'~6/i) = ^/cos(<9-0i), (22)

we have y = AFcos(6>'-6>i)- (23)

Introduce the function

(24)

whose values are given in Table 13, pp. 104, 105. Then we have

= /j- {,p{hv,e-ei)-v^<p(hv,e'-e,)}, (
25

)

or, in terms of Eddington’s function, /(t),

G) = {/('^) - ( 26 )

In any region of the sky we have an equation of the form, (25), for drift I

and a similar equation for drift II. If the drift constants hV^

and ATg) known, we can readily calculate tlie theoretical distribution

of the restricted proper motions belonging to the two drifts, by means of

the values of <j){hV,0 — given in Table 13 (pp. 104, 105), for any assumed

value of the parameter, k, occurring in the density function D(r). Thus we

can compare the theoretical distribution (corresponding to a definite value

of k) of the restricted proper motions with the observed distribution and, if

the stellar density follows the assumed law, we are then enabled to deduce

the value of k for the region concerned. It may be anticipated that k is

likely to vary with galactic latitude.

7*42 , Approximate formula for N{p,d) when kjp is small.

By 7*41 (20) it is seen that rj approaches unity as kjp tends to zero

= 1 —a.

Then, up to the second order in kjp^

Also, it is easily found that up to the first order in a

/(T) - tfiVr) = a |(3+ 2t‘‘)/(t) -
,

. Let

,.( 1 )

..(2)
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where /(r) is Eddington’s function; this result can be obtained at once from

the equations following (5) of section 7*5. We thus derive from 7*41 (26),

<*'

or, in terms of the (}> function,

7*43. A special case of the density function.

The analysis of section 7*41 breaks down when the value of k is zero.

The density function is then given by

= ( 1 )

Let N be the number of stars within a cone of solid angle S and extending

to a distance R. Then
N == AS

J
rdr,

2N
so that == . (2)

The formulae (5), (6), (7) and (19) of section 7-41 become

hp = a, hpr — T^x, y ^ t = hV ooB(0 — 6f) (3)

and M(p,6) is now given by

4Slp-h^r^ ChfiR-T

Mill, 6) =
J

ix + rfe-^dx.

If R is large we can write the upper limit of the integral as co, without

introducing any appreciable error. It is found that

Mi,i,d) = ^^^, (4)

where C is independent of F, p and r and

Fir) = (r*+ |)«4(AF,^-0,)-~ (5)

The number, Nin,6)dd, of stars with proper motions greater than /i in

position angles between 6 and d+dd is then given by

(6)
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7-44 • The number of stars in a drift with total proper motions greater than p.

Let R{n) denote the number of stars in a region of the sky, belonging to a

drift, with total proper motions exceeding a given value p. Then

r'Zn

R(fi)=\ N(ft,0)de

or, from (26) of section 7'41,

= ( 1 )

Jo

If pdd is the number of stars moving between position angles 0 a^ndO-{-dO,

no restriction being made on the magnitude of tlie proper motions, we have,

from 2-3(11), ^
pd6 = :fj-er^^-^^y{r)d0,

in which r has the signification of the previous sections. Now

pdO = N,

where N is the total number of stars in the drift. Hence

rZn

P
J 0

^2n

f{j)d() = (2)
J 0

Similarly, f f(7)T)d6= f f(7]hV cos 0) dO
jo Jo

= (3)

Consequently, R(fi) = — (4)

7*5. The pseudo-drift curve of restricted proper motions.

It is found that the polar curve

p = N{p,e), ( 1 )

representing the distribution of the restricted proper motions in position

angle, resembles very closely a drift curve of which the velocity is greater

than that in the true drift curve which would have been obtained for the

same region if no restriction had been placed on the magnitude of the total

proper motions. The curve given by (1) is called, in consequence, Sb 2)seudo-

drift curve and we denote the pseudo-velocity by hVi- As 0^ is the position

angle for the axis of symmetry of the true drift curve, it will also be the

position angle of the axis of symmetry of the pseudo-drift curve, and we

shall write = hV^cosid-di). (2)
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Identifying the curve, given by (1), with a drift curve relating to a total

number, R{fi), of stars, we write

whence, using (26) of section 7*41 and (4) of section 7*44,

.(3)

1 — 7/2
.(4 )

It is to bo remembered that (4) is not a true equation, as the sign of equality

only implies that the function on the left can be represented satisfactorily

by the drift function on the right in terms of a pseudo-drift velocity, hV^.

The close approximation of the left-hand side of (4) to a drift curve is

illustrated by the entries* in Table 40.

Table 40

A B 0-0, A B

ir 4*03 404 90° 1-20 ]-20

10 3-96 3-96 100 0-99 1-00

20 3-15 3-73 110 0*81 0*85

30 3-42 3-37 120 0-69 0-73

40 3-01 2-94 130 0-60 0-64

50 2-57
,

2-51 140
1

0-53 0*57

60 213 212 150 0-48 0-52

70 1-76 ' 1-76 160 0-42 0*49

80 1-44 1*45 170 0-41 0*48

The entries in the columns A are derived from the left-hand side of (4)

for a true drift velocity, of 0-5 and for rj ~ 0-1 (corresponding to A; = 2"-0

centennially and a minimum centennial proper motion of 2"). In the columns

B are the values derived from the right-hand side of (4) with = 0*6. In

each, case the sums for three adjacent 10° sectors are given—this conforms

to the usual practice of smoothing the counts in the 10° sectors.

A curve based on the entries, A, would evidently be indistinguishable

from a curve based on the entries B; in other words, the frequency curve of

the restricted proper motions is practically identical with a true drift curve.

On analysing the statistics of the restricted proper motions (for which the

true drift velocity is hV) we associate the curve with a drift curve in which

the velocity is hV^, Thus we can regard hV^ as given by the observations of

the restricted proper motions and it is then required to derive the true drift

velocity hV pertaining to an assembly of stars in which there is no restriction

as to the magnitude of the proper motions.

Table 41 gives the values of h corresponding to several values ofAF and

of ky when the limiting proper motion is 2^ per century.

W. M. Smart, M,N. 89, 96, 1928.
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Table 41 . Values of hV^ in terms of hV and k

k (peiX^^
century)

0-0 0*6 10 1-5

2^0 0-0 0-60 MO 1-68

10 I
0-0 066 1-22 1*65

0-5 00 0-68 1-25 1*71

0-0 0-0 0*70 l-2() 1*73

Except when n] is close to unity (corresponding to values of k near zero—or

to large values of the limiting proper motion, fi), the entries in this table

have been derived by means of formula (4). When // is near unity, this

formula is unsuitable and we proceed as follows.

Let 7}
= I— a,

where a is to be regarded as a small quantity. Up to terms* in a^, we have

/(t) - tf(7jT) = a j2/(T) + j/(T) + 2t-^ + (5)

But

from which

2
J(t) = er^^dx,

«-(6H-4r»)/(r)-A

Inserting these in (6), we obtain

= Aa- Ba^,

^ = e-^‘^‘{(3 + 2r^)/(r)-^j,where

B = j(3 + 7t2 4- 2t^)/(r) - (2 + T^)j
,

or, in a form more suitable for computation,

A = (3+ 2T2)<4(AF,0-0i)-~e-'*‘^*,
\j7T

5 = (3 + 7t*+ 2t«) ?i(AF, (9 -
) -4- (2+ t*)

In a similar manner we obtain

where

1 _ ^2 (!-,«) = jPa_ GTa*,

J-- 2{1 + A2F«),

Q= 1 + 6PF2+2A‘F*.
.(6 )

For the expansions up to terms in a*, v, W. M. Smart, M.N. 89, 97, 1928.
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Thus (4) becomes

F{hV,ri,T)^'^r-^^ (7)

The values of A, B, F and O and the values of the function F(hV, 7},t)

were found at intervals of lO'" or 20° in (0 — 6^- These latter values are to be

associated with the corresponding values for a true drift curve with velocity

so chosen as to give as satisfactory a representation as possible of the

function F(y,T),

In the limit when r/ = 1
, (7) reduces to

2(l4-^2p)
.( 8 )

This is the form correspond-

ing to k ~ 0, the density

function D{r) being given by

Fig. 47* illustrates the re-

sults for AF— 0-5. The curve

A is the true drift curve

in polar coordinates, with

0-^ — 0. Curve B is drawn

from the entries A of Table

40 and is the frequency

curve of the restricted pro-

I)er motions (with ja = 2"

as the limiting centennial

value) for k = 2*0. It is in-

distinguishable from a true

drift curve with velocity

0*6. Curve C, derived from

(8), corresponds to k = 0-0;

the differences between this

curve and a true drift curve

with velocity 0*70 are so

small that in practical applications C would be identified with the latter.

^= 270**

M.N. 89, 99 , 1928 .

SSD i6
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7-6 . Tests of the density formula.

There are several ways in which the formulae of the previous sections

may be tested. In each case we assume that, for a given region of the sky,

the analysis of all the proper motions, whatever their magnitudes may be,

into two constituent drifts has been made. We thus know the constants of

the drifts for the region concerned.

Method (a).

If the stars are sufficiently nimierous we can find the observed numbers

of stars moving in an assigned sector, say 0 — 5"^ to with centennial

proper motions* greater than 2", 3", 4" and so on. From 7-41 (13) we can

calculate the corresponding values of M{y ,0) for two or three values of I',

say 0*0, 1-0 and 2-0. If the density law is satisfied, the observed quantities

should satisfy the theoretical curve y — in which 0 is constant, and

consequently it should bo possible to estimate the value of k. The process

can be repeated for different sectors and it will be seen whether the deduced

values of k are all consistent. This method, however, is hardly practicable

at present, as, for a satisfactory application, the observational material is

not yet sufficiently abundant.

Method (h).

The frequency curves of the restricted proper motions, for a given mini-

mum value of //, can be analysed into two pseudo-drift curves. We obtain,

then, the two pseudo-drift velocities, for the two drifts. The corre-

sponding true drift velocities, AF, being known, the data of Table 4i will

enable us to find the appropriate value of k for each drift. Repeating the

process for a new minimum value offi, we ought to find again the same values

of k. The method suffers from the same defect as («), namely, the present

inadequacy of the observational material.

Method (c).

In this method, which is at present the most practicable of the three, we
find the total number of stars in the region with proper motions exceeding

a given value of fi. If R{fi) denotes this number, we have

in which and R^ are each given by 7-44 (4) in terms of the total numbers

and of stars in the true drifts and of the corresponding true drift

velocities. For a given value of A, we can then draw the curve

y = ^(/*)

for values of /Jt, say, 2", 3", 4", ....

These should first be corrected for accidental errors.
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Fig. 48 shows two such curves* calculated for A; = 0 and fc = 1*6, the

velocities of the true drifts being 1*5 and 0-7. In each curve the number of

stars corresponding to /i ~ 2" has been taken arbitrarily to be 50. The
curves are well separated and, if the observational data are in accordance

with the theoretical considerations on wliich the method is based, it ought

to be possible to estimate k for a given region to within 0-2 or so.

The method was applied to the Cambridge proper motions (loc, cit,) with
2" per century as the minimum proper motion. A positive result of the in-

vestigation—the observational material was comparatively meagre—was

that k increased with galactic latitude. Since, by a modification of 7*23 (3)

in accordance with the change of notation in section 7-41
,
the mean parallax

p is ^Inhk, this result is in accordance with the observed fact that the mean
parallaxes of the stars within a given range of magnitude increase with

galactic latitude. It was also estimated that, for galactic latitudes 0°, 30^

and 60°, k had the values of 0*3, 1*0 and 1*6 approximately. According to

r6-2

* M.N, 88, 581 , 1928 .
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these results the mean parallax increases at a greater rate than that in-

dicated by investigations based on the methods of Chapter vi.

When the limiting value of p is large, the value of 77 to be used in the

formula for J?{//) is close to unity and the relation between the true drift

velocity and the pseudo-drift velocity is the same as if k were close to zero

in the entries ofTable 41. From this point of view, Dyson’s proper motions,*

exceeding 20" per century, have been re-analysed. t From the values of the

pseudo-drift velocities, the true drift velocities were deduced in the manner

already described. As the coordinates of the drift apices may be assumed

known, the space velocities of the drifts can be readily calculated and these

were found to be in good agreement with the values derived by the methods

of Chapter iv.

7*71 . The density law and the ellipsoidal hypothesis.

We now undertake a parallel investigation onj the basis of the ellipsoidal

hypothesis. Let the equation of the velocity ellipse for a given region with

stars be ghi^+hV=\.
Then the number of stars with transverse linear velocities between {u, v)

and in -f du. v -f- dv) is i^nh

TT

and, consequently, the number within these limits of velocity in the

volume-element Sr^dr of the cone, defined by the region, is

- rW(r) dudvdr.
71

Let XJ
,
V be the components of the parallactic motion and w the resultant

transverse linear velocity making an angle with the u-axis. Then

u = WCO80— U, V — wmid—V,

Also dudv = wdwdd.

Let M{fi,d)dfidd denote, as before, the number of total proper motions

between p and p-\-dpm the sector 6 tod ^ dd. Since w = rp, we obtain, on

writing — e'"^®***’* for D(r),
r

_ p,^g-<aV>-l»r+c»)

jo
Proc. Boy* 80c, Edin, 28, pt. iii, 231, 1908.

t M,N, B% 101, 1928. For further applioatioiw of the method, v. M.N, 89, 147, 1928; 90, 112,

1029*

X W. M. Smart, M.N, 89, 105, 1928.



7-71 derived from tlieir Proper Motions 245

where a* = + /i\g^ cos*O+ h^ sin* d), ..(1)

b = fi(g^U cos^-f A^Fsin^), ..(2)

c2 = ^2t7*+ A*F*. ..(3)

Write
6- = y, ar^x+ y.
d

..(4)

Then M{iM,d) = p (x + yfe-^'‘dx.
na* J

Using the results of section 7-41, we have

AS ^ 2Nh^k^

and M{y., 0) = e-«‘ [(22/* + 3y) e*'” G{y) + 2
/* + 1]

Tra*
..(5)

This equation determines the function M{fi,d),

Let N{fjL,0)d6 denote the number of proper motions exceeding [i

sector 0 tod dd. Then *

in the

N(y,0) = M{y,0)dy.
J fl

..(6)

Now ,
i* n^ig^Ucosd+hWsmOf

Put 01} = ..(7)

^ = g'^JJ OOBd-t-hW Bind. ..(8)

Then _ AV
..(9)

from which
/?2/,2jr,2

ydy = PJ^±f,dy.
(J;

.(10)

From (5), (6) and (10), we obtain

N(/i, d) =^ e-o* r[(2y* + 3y^) e‘'“ G{y) + + y] dy,
J y

where = jSjcx, corresponding to jn = oo.

The integral on the right has been evaluated in section 7-41. We then

obtain, in terms of Eddington’s function,

( 11 )

This last equation gives the distribution of the restricted proper motions

in position angle. It can be readily verified that (11) reduces to 7*41 (26)

when g is put equal to h—the distribution is then that of a single drift.
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7*72. Limiting case for kl/i-^0.

Regard k,p as a small quantity. From (9) of the previous section,

/? ^h^k^

a 2/i^a^

where denotes the value of ^ when y = ^

.

Consequently,
\ay/o dy ^ a.

•'U; h^k^ + oi}fi^^^y’ 2a\ay/„|

Also,
y^ = (2y2 + 1 )f(y) _ .

After some reduction, we obtain, from (11) of section 7-71,

which may be written N{fi,0)
Ck^F{0)

where (7 is a constant for the region.

This is a similar result to that in 7*42 (6).

7*73. The num ber of stars in the region with total proper motions exceeding //.

As before, let R{fi) denote the number of stars in the region with total

proper motions greater than jx in all position angles. Then

[*2Tr

R{H)=\ N{ii,0)dd

-

Let pdd be the number of stars in the region with total proper motions

between 0 and co in the sector 6 to O+ dO. Then

p = A(0,oo),

and from (1 1) of section 7*71 we have, putting = 0 in this formula,

^ 2^Jn a^^\aj

I

pdd^N.
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Hence (2)

where c2 = + (3 )

Consider now the second integral on the right of (1) and denote it by I,

Writing for —
^
we have, since

h2h2

A^ = GHtos^O + lPi^hi^O,

.(4 )

or

where (72 = + IP = A2 +

.(5)

.( 6)

Comparing (4) and (5), we see that and are analogous functions of <?.

Also, from 7-71 (9), ^2

r
^2

A^’ 0 )

in which /y==^2f;cos6»+ A2Fsin(9

= G2f7i cos 6» + /f 2
Fi sin C» s il,

where (PU^^gW, IPY^ = h^\

From (7) and (8), we have

in which B and A are functions of 6 analogous to /? and a.

We can now write down the value of I, by means of (2); the result is

(
8
)

(
9

)

_ cn

OH ’

where C is analogous to c and is given by

C2 ^ G^U\-\-fPV\.

Using (6) and (9), we find that

g2t72

1 + ~Y~2 ^ 2(/>2 ^2

We have now from (1), with the help of (2) and (10),

.(10)

.( 11 )

.( 12 )

.( 13 )
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or, writing

The Space Distribution of the Stars

g
€ =

Bit/)0 (^.2

A’
.(14)

0*U^ h*V*

k*+€*/i* k*+ft' ] .(16)
(k^ + (P + /i^)^

The value of i?(//) can be obtained from (15) when e (the ratio of the axes in

the velocity ellipse) and glJ, hV are known from the analysis of all the stars

in the region, without restriction as to the magnitude of the proper motions,

following the method of Chapter v

7*81. Comparison of R{n) as obtained from the ellipsoidal and two-streams

theories.

The following table* shows the values of i?(//), as calculated on the two

theories, for a typical region; E. denotes “ellipsoidal theory” and T.S.

“two-streams theory”; fi and k are expressed in centennial measure; it is

assumed that R{/Ji) = 100 for pi = 2^ in each instance.

Table 42. Values of R(/i)

A
k = 2^) k = VO k = 0^5 A— oo

E. T.S. E. T.S. E. T.S. E. T.S.

2" 100 100 100 100 100 100 100 100
4 54*4 53-6 34-7 34-3 27*7 27*3 250 2.50

6
1

30*2 29*2 170 16-3 12*6 124) IM IM
8 19*2 18-4 9-8 9*4 71 71 6-2 6-2

Within the range of /i considered in the table, the two formulae for R(/i)

lead to very much the same numerical results, and it is hardly hkely that the

values of R(ju) obtained from actual counts of observed proper motions

would be able to differentiate between the two theories. If we continue our

calculations for limiting values ofp> S'', the agreement between the pairs of

columns would become more exact, since, in the limit as kjp-yO, the two

expressions for R(/i) are of the same form, namely

It may be concluded that the frequency distribution of restricted proper

motions is practically identical in the two theories.

7*82. An approximate relation between the ellipsoidal and the two-streams

constants.

In the preceding section we have seen that if kjp is small the two expres-

sions for R{pi) derived on the ellipsoidal and two-streams theories may be

taken to be identical.

• M,N, 89, 112, 1928.
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Taking the ellipsoidal formula for as in 7-73 (15), and writing it in

the form ^

we find, up to the second order in kjju (which we regard as a small quantity),

Q = ~(U^+V^),

so that 2h\m+v^)+i+- •d)

On the two-streams theory,

R{/i) = Ri(/i) + R2(/^),

where Ri{/i) refers to drift I with constants iVj, hV^, and drift II with

constants hV^. Now

Write a — I—
7j

(since kj/i is small, ^ is a little less than unity); then

^ , ^
“ (/P+ k^)^ 2>2

and, with the same approximation as before and using 7*5 (6),

N k^

r

Assuming that the two drifts contain equal numbers of stars, we have

2^(2 +Wf + A2pi). (2)

Equating (1) and (2), we obtain

^^=\+hW\+ hWl-2h^(U^ + V% (3)

Now ^(C/^+F^)* is the transverse parallactic motion, for the region

concerned, in terms of the theoretical unit Ijli, so that if hV^ denotes the

solar motion and A the angular distance of the region from the solar antapex,

A(?72-f F2)^ = AFosinA.

Accordingly, (3) becomes

= I +hWl + hWl- 2hWl 8in2 A. (4)

This equation enables us to calculate the ratio of the axes of the velocity

ellipse when the drift velocities and the solar motion are known.
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Considering the region discussed in section 6-32, we have

hV^ = 1-5, AFj = 0-8.

From the complete analysis* of eight regions of which the preceding region

is one, hVf, = 0-88, and from the given position of the solar apex it is found

that A = 120° for the region under consideration. Inserting these numerical

values in (4), we derive

esf = 0-61.
h

The analysis, in section 5*32, of the proper motions in the same region gave

e = 0*63.

Thetwo results, obtained by widely different methods, are in good agreement.

W. M. Smart. 87, 137, 1920.



CHAPTER VIII

GENERAL THEOREMS OF STELLAR STATISTICS

8*1

1

. Introduction.

In previous chapters we have dealt with several types of investigations

by making in each an initial assumption concerning the law governing the

distribution of a particular characteristic amongst the stars; by following

out the implications of such an assumption we have been able to compare

theoretical conclusions with observed facts. If there is reasonable agreement

between theory and observation, we are entitled to affirm that the original

assumption is likely to be of the character of a fundamental law or, at least,

a good approximation to an actual law. For example, we have studied the

implications of the ellipsoidal distribution of j)0C‘uliar velocities and have

shown that the observed features of stellar motions support the original

assumption. A statement of the same character may be made equally well

as regards the two-streams theory. But the true frequency function of

peculiar velocities cannot be represented exactly by both theoretical dis-

tributions and all we conclude is that the true distribution can be imitated

very successfully by cit her of the two theories.

In this chapter we invert, to a large extent, the procedure just outlined

and we show how it is })ossible to deduce from observation certain frequency

functions* associated with various characteristics of the stars.

We have to distinguish between an observed or apparent characteristic

of a star and the real or absolute characteristic. The apparent brightness of

a star, for example, depends on the star’s intrinsic^ luminosity and on its

distance from us. We assume at first that interstellar space is perfectly

transparent; in later sections we consider the effects of a galactic absorbing

medium. We can obtain from observation the distribution of apparent

luminosities, but this does not represent something of fundamental import-

ance. What is of importance to an understanding of the stellar system is the

manner in which the stars are arranged according to intrinsic luminosity.

This is but one example.

8 * 12 . Two funda7nental theorems.

Consider an absolute characteristic X ; this may be absolute magnitude

or intrinsic luminosity or peculiar linear velocity (the latter being supposed

here to be independent of position in the galaxy). We denote by x the corre-

* Most of these in sections 8T“8‘3 are due to Schwarzschild {A.N. 190, 361, 1912).
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sponding apparent characteristic (apparent magnitude or apparent lumino-

sity or proper motion). If r denotes the distance of a star from the sun (we

shall generally measure r in parsecs), we have that a: is a function of X and

r, that is,

and inversely,

X^f(X,T),

X = F{x,r). .( 1 )

We shall suppose that ^(X) is the frequency function of X, so that the

proportion of stars with the characteristic X between X and X-\-dX is

<j)(X)dX\ consequently, if X^ and X^ are the limiting values of X for the

assembly of stars concerned,

^'"^(l){X)dX= 1 . (2 )

J:

Let D(r) be the density function. If a small region of the sky subtends a

solid angle S, the element of volume of the cone witli generators passing

through the periphery of the region is Sr^dr and the number of stars in this

element of volume is o o rw ^ j
Sr^D{r) dr.

Of these stars, the number with the absolute characteristic between X
and X +dX in

^^2

and these will be observed to have the apparent characteristic between x

and X 4- dx.

Also, for the element ofvolume considered, r may be regarded as constant

;

drdX = drdx - drdx.
d(r, x) dx

Consequently, the number of stars in the cone at distances between r and

r + dr, and with apparent characteristics between x and x + dx, is

ax
dN dx= 8r^ D{r) (f>{X) drdx .( 3 )

in which X is expressed as a function of r and x by means of (1).

Let now b(x) dx denote the total number of stars within the cone with the

apparent characteristic between x and x-^dx. ThQXi the function b{x) is

given by summing the expression on the right of (3) for all values of r

between 0 and oo; hence
Too pjV

b(x) = 8j^r^D(r)m-^dr, (4)

This is the first theorem.
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Let p(x) denote the mean parallax of stars with the apparent character-

istic X. Defining the parallax, p, ofa single star by 1 jr so that, as r is measured

in parsecs, p will be given in seconds of arc, we have from (3)

whence

p{x)

p{x) =

f" fJr

j^

rD(r)^(X)

dN,

dX
dx

dr

or

/*QO

D{r) (l)(X) — dr
Jo

/•oo X
b{x) .p(x) = -S'

J ^

rD{r) (f>(X) dr.

.(5)

.(6 )

This is the second theorem.

If the functions l){x) and p{x) can be determined from the observations,

(4) and (6) are two integral equations from which the functions D{r) and

(f>{X) can theoretically be determined.

We can extend the previous procedure to the case when ^ is a function

of two (or more) absolute characteristics Xj, Xg. Then if h{x^,x^)dx^dx
2̂

denotes the number of stars with apparent characteristics between x^ and

between and X2 + dx^, it is clear that b[Xi, x^) will be given by

b(x„ X,) = S X,) (7)

in which Xj is supposed to be expressed in terms of r and x-^, and Xg in terms

of r and Xg. There is an equation, similar to (5), giving the mean parallax

function p{x^,

8*13. Apparent and absolute luminosities.

Let L and I denote the absolute and apparent luminosities of a star. We
define the former as the luminosity the star would appear to have if it were

at unit distance (r = 1). Then, since the apparent brightness of a star varies

inversely as the square of the distance,

L = IrK (1)

In (4) and (6) of section 8-12, X and x are to be replaced by L and I respec-

tively. Also 02/

"07 ""

Hence b(l) == S r*D{r)(^{lr^)dr (2)

and a(l)sb(l) .p{l) = S'

J
Vx)(r) <^(lr^)dr. (3)
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In these formulae we have explicitly assumed that a function, ?5(L), of

the absolute luminosities, independent of r, exists for the stars concerned.

In practice we associate a function (j) with each of the various spectral

divisions (or subdivisions) in the Hertzsprung-Russell diagram, distin-

guishing betw^een giants and the stars of the main series.

8*14, The total apparent brightness in any region of the sky.

Considering stars of a single spectral division, the mean absolute lumin-

osity, Z, is given by r Qc

J 0

L<f(L)dL. .( 1 )

If we assume that the mean absolute luminosity of the stars in the element

ofvolume, Sr^dr, of the cone is given by ( 1 ), these stars wall have an a])parent

luminosity Ljr^ on the average. As the number ofstars in the volume-element

is S D{r)r^dr, the total apparent luminosity arising from these stars is

LSD(r)dr.

We then have for the total apparent luminosity, A, for the region

*/,
A - LS I){r)dr,

equivalent to the brightness of a single star of apparent magnitude

— 2-5 Log A, assuming that zero apparent magnitude corresponds to / = 1.

The stars of the other spectral divisions furnish similar results.

8*1 5. Apparent and absolute magnitudes.

The absolute magnitude, ilf
,
of a star is given in section 1-24 in terms of

the apparent magnitude m and parallax p by

3i = w-f- 5 + 5Log^. (1)

M is thus defined in terms of the standard distance of 10 parsecs.

We write, for convenience,

ifcfi = i/-5, (2)

so that is defined in terms of the standard distance of 1 parsec, and

Afi = m-f5Logp. (3)

In this formula the base of the logarithm is 10.

We shall refer to in this connection as the modified absolute magnitude.

Also, with r measured in parsecs, w© have jo = 1/r, and so

ilfj = m — 5 Log r. (4)

Let denote the frequency function of the modified absolute magni-

tudes. From (4),

dm
= 1 .
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Hence, b(7n) = ^J
^ (5)

and
r 00

b(m) .
^(m) = /S

J
r D(r) ^(m — 5 Log r) dr. (6)

In these formulae, h{m) is the number and p{m) is the mean

stars of apparent magnitude m.

parallax of

We write p = -5Logr,

so that r = e~^^, (7)

where c = 1 logg 10 = ()-46()5. (8)

Then b(m) = cS
J

e-^f^ D(e--^P)(l)(7n-\- p)dp. (9)

b(m ) .
2^{7n) — cS \ 4.

p) dp^
J -CO

(10)

or, on setting A {p) = cSe^^f' D[e~^f'), (11)

b(m) ^
J

A{p)(j){m + p)dp, (12)

a(m)^b{7n) .p){m) =
j

A(p)(f)(7n-^ p)dp.
J -CO

(13)

If the functions b(ni) and a(m) can be derived from observations, the

functions A{p) and + can theoretically be found by means of (12)

and (13).

8*16. Linear velocity and proper motion.

Let T denote the transverse linear velocity of a star in a given region and

fi the corresponding total annual proper motion. Then

r = /4r, (1)

With r measured in parsecs and p in seconds of arc, T will be measured

in terms of the unit k or 4*74 km./sec. Here T and // correspond to the

characteristics X and x.

Let \lr{T) be the frequency function of the linear velocities. Then by (4)

and (6) of section 8-12,

6(/^) =
/S'J

r^ D{r)ilr{pr)dr, (2)

a{ii) = b{n) .pill) = -S' r^Dir) fipr) dr, (3)

in which b(p) and p(p) are respectively the number and mean parallax of

stars with proper motion p.



256 General Theorems of Stellar Statistics

Set r = ee and /i = e®.

Then (2) becomes

6(/{) = 61(a) = iS f D{eP)\jr{ef‘+'^)dp,

J —CO

and setting Se*pD{eP) = Ai{p),

ir(eP+‘^) = fiip-^a),
the formula (5) becomes

b(p)sbi(a)=f Ai(p)ilri(p+ cx)dp.

J -00

Similarly,
/* CO

a(p)safjx) = 6(/^).i)(/A) = J^^e-^zli(p)^i(/)+ a)dp.

8-16

(
4

)

(6)

(
6)

(
7

)

(8)

(
9

)

The formulae (8) and (9) are integral equations from which the functions

^i(p) and V^i(/>-f-a) can be determined when the functions b{fi) and a{j,i)

have been obtained from observations.

8*17. The number and mean j^ctrallax of stars of magnitude m and proper

motion p.

Denote, as before, the frequency function of the modified absolute magni-

tudes by <l>{Mi) and the frequency function of the linear velocities by ^(T),

Let b(m,p)dmdp be the number of stars with apparent magnitudes

between m and m-^dm and proper motions between p and p + dp. Then,

assuming that there is no correlation between and T, we have

fco f)][f
pjfp

b(m,p)dmdp = S r^D(r)^(Mi)-^-^dm'ijr[T)-^dpdr,
J 0 ^p

e 00

whence b(m,p) = S\ r^ D{r)^(m — 6JuOgr)fr{pr)dr. (1)

Similarly, the mean parallax pirn.p) is given by

a{m, p)^h[m, p) ,p{m, p) = r'^B{r)^{m — b\jogr)'ilr{pr)dr (2 )

Setting r =: e'~^Py

where c = 0*4605 as in 8*15(8),

and cSe-*pp D(erpp)f{/ier^p) = Ai{p,p), (3 )

we have b{m,p)-^ j\^{p,p)(l>{rn, +p) dp (4)

and b{m,p).p{m,p)== r ePPA^(p,p)<^{m+p)dp.
J — 00

(6)
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8* 1 8 • The mean proper motion of stars of apparent magnitude m.

From the preceding section, the number of stars with a given assigned

apparent magnitude m and with proper motions between fi and p 4* dp is

proportional to b{m,p)dp and, if p{m) denotes the mean proper motion of

all stars of apparent magnitude m, we have

p(m)=^^

J(

Prom 8*17 (1), this formula becomes

j

r^ D{r) (j){m —

Him) =

pb(m,p)dp

30

b{m,p) dp

J*

y3 i)(7') ^(m ~-5Logr)|
rco \

J
^/(pr) pdp^^dr

J
r^D{r)(j)(m -5Logr)

{Jo

or, on the assumption that the frequency function of the linear velocities T
is independent of r,

f rZ)(r)^(m — 5 Log r) dr f T\j/{T)dT

Him) = .

r^ D{r) ^{m — 5 Log r) dr \
xlr{T)dT

Jo Jo

But rTrlr{T)dT = T f
Jo Jo

where T is the mean transverse linear velocity. From (5) and (6) of section

8*15 we obtain p{m) == p{m) .T, (1)

where p(m)m the mean parallax of stars of apparent magnitude m.

As (1) holds for each small range of magnitude, we obtain

= (2)

where p and p denote the mean proper motion and parallax of stars within

any given magnitude range.

Prom (1), b{m) .p(m) = b{m) .p{m) . T,

Hence, from (13) and (12) of section 8-15,

b(m).p{m) = T\ e^P A{p)(j>{m-\- p)dp (3)
J -00

and 6(w) =
j

A{p)^{m+p)dp. (4)

If the functions b{m) and p(m) are obtained from observations and if we
suppose that T can be found for the given region, say from a representative

SSD 17
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number of stars ofknown parallax, the formulae (3) and (4) are two integral

equations from which the functions A(p) and 9S(m+/9) can theoretically be

obtained.

8*21 , Th^ Fourier integrals.

We begin with the well-known double integral

dpi f(a)coap{x-a)da, (1)
J-QO

where the function /(a:) satisfies Dirichlet’s conditions* and

f S{^)dx
.

J — CO

IS absolutely convergent.

We vTite (1) as

~ C08/?a;|J /(a) cos/?a(iaj(i/?-h^J sin/?a;|J f{(x)^in^(xdcx^d^

/(ic) = f P(/?)cosy?a;rfy?4- f (?(/?) sin (2)
Jo Jo

where P(/?) = - f /(a)cos/?ac?a
]

j r«> [

‘ ^

Q{^) = -
j

f{oL) sin ^OLdoi\

Prom (2),

fix) = \\\P(P)-iQm<^'‘‘^dp^-^\p(P) + iQ{p)^^^^^ (4)

Let 2F(p) = P{P) + iQ(P). (5)

Then, by (3) and (5), = J-
f” /(a)e»V?“da. (6)

^TTJ — GO

Also, from (3), P(-P) = P{P) and Q(-p) = -Q(P).

Hence 2F{ -p) = P{p) - iQ(P).

But, from (4), /(a;) = f F(-P)e^f^dp+i F(P)e-^^^dp,
Jo Jo

from which, on writing — /? for /? in the first integral,

J -00 Jo

or f{x) = f (7)
J —<X3

* Whittaker and Watson, Modern Analysis (4th Edn.), pp. 163-167, 1927.
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The integrals F{P) = “J f(a)e^^°^da (8)

and f{x) = J
F{J3) dj3 (9)

are the Fourier integrals and we describe/ and F as conjugate functions.

8*22. The integral equations .

The principal formulae of sections 8*15, 8*16, 8*17 and 8*18 can all be

summarised in the following two forms:

6(a;)=r A{p)(l)(x + p)dp, (1)
J — 00

a(x) = \ e^f* A{p)(j>(x + p)dp, (2)
J - 00

In (2), k^c for 8*15(13),

k = -1 for 8*16(9),

k c for 8*17 (5),

k^c for 8*18 (3).

We shall indicate by an asterisk the Fourier function which is conjugate

to a given function. In this notation, the formulae (8) and (9) of the previous

section are i r®
= (3 )

/(^) = f* /*(/?) (4)
J — 00

In general, the formulae (1) and (2) are such that the functions b{x) and

a{x) may be supposed given by observation. The problem is to solve these

equations so as to derive the functions A and 0. The solutions were first

effected by Schwarzschild| by means of the Fourier integrals.

We first consider the case when b{x) and <{>{x) are known and it is required

to find A(x),

8*23. Solution of the integral equations, the functions b{x), or a{x), and (j){x)

being known.

It is clear that the integral equation involving a{x) is of the same type, in

this case, as the equation involving b{xy, we consider only the latter.

Multiply ( 1 )
of section 8*22 by dx and integrate between ~ oc and + oo.

Then /•« ^00 r 00

j

b(x)e^^^dx=\ A{p)(f{x+p)e^^^dxdp
J ’—CO J—aoJ—co

=
j

A{p) e~'^P dp
I

<j){x + p) dx ( 1

)

J — 00 J — 00

t A.N. 185, 81, 1910. See also Charlier, Lund Medd. Ser. n, No. 8, 1912.
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In the second integral on the right-hand side, let a; + p = a, so that for a

given value ofp it can be written

da,

which is equivalent, by 8*22 (3), to

2n^*(co).

Also, by 8-22(3),

poo

A (p) e~^^p dp = 27tA*( — o))

J — 00

(2)

and
1

b{x)e^^^dx = 27Tb*((jt)).

J -00
(3)

Hence (1) leads to b*(aj) = 27rA*( — (o)^*(oj). (4)

Similarly, b*( — (i)) ~ 27rA*((ij) ^*( — 0)). (5)

Now, by 8*22(4),
p 00

A(x) :=
j

A*((o)e~^'‘''^daj,

J — 00

whence, by (5),

or (6)

Since h{(ij) and ^(oj) are presumed known, the conjugate functions 6*(<4>)

and ^*{co) can be obtained; formula (6) then gives from which the

density function D(x) is easily deduced. An example of the process will be

given later, in section 8*33.

8*24. General solution of the two integral equations.

We assume that the functions b{x) and a{x) are obtained from observations

and it is required to find the functions A{x) and (f>(x).

Consider a{x) =
j

e^P A{p)(j>{x+ p) dp. ( 1

)

Multiply by e^^'^^dx and integrate between — oo and -foo. Then

/•oo ^00 Too

j

a(x)e^^^dx—\ e~''^^^p^^p A{^p)dp\ e^^^'^p^<f>{x-\-p)dx.
J— 00 J— 00 J~co

Hence 2na*((i)) = 2ti<I>*{(i)){
^ -00

Hence = 27r<j>*((j))A*{ — (>)— ilc). (2)

Similarly, a*( — (o) = 27T^*( — (i))A*{(t)— ik). (3)

In deriving these relations we are assuming that the Fourier integrals hold

for complex values of the argument.
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But from 8*23 (5),

= 27r A*{(i)) — 0)),

Hence, eliminating ct>) between (3) and (4), we derive

A'*‘{(i) — ik)

oj — ik{^+ 1).

A *(ik^) a*{ — ik(l + 1)}

‘

Let

Then

261

(
4

)

,(5)

.(6 )

(7)

Since h{x) and a{x) are supposed to be known functions, the corresponding

conjugate functions can be determined. Thus, the right-hand side is a known

function of ^ and we shall write it in the form Similarly, let

A*(ik^) = (8)

Then (7) becomes G(^ 1) — G(^) = F(^). (9)

Til is is a functional difference equation, the solution of which gives us

Zl*(^). The function Zl(g) is then given by

This constitutes the formal solution of the problem.

(
10

)

8*25. Solution of the difference equation.

A particular solution of the difference equation

(1)

can be written as Oa) = -fF{^+ s), (2)

for then (3)

and (1) is verified. It is assumed that the series in (2) and (3) are uniformly

convergent.

It is to be noted that the most general solution will contain periodic

terms of period unity; for such termsf

Hence 0(i) = i F{i+s) (4)

is a solution of (1).

t A simple example is 0^{(:)
~ sin 27rf

.
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The series in (2) can be expressed as a closed expression as follows.

Consider the integral

taken, in the first instance, over the contour
,
consisting of the imaginary

axis between -hiUn and the semicircle of radius w^here

n<jR^<7i-hl (Fig. 49). Now

jrcot7r^-^ = ^j+^--+^ +^— + ...+^3-^ + ^---+...,

SO that

^iRn

I = -1
, r F(z +01 (y- + -) dO

.(6 )

^(V

Consider (7). The poles within the contour

are at f == 1, 2, 3, ... and the corresponding

residues are F(z+1), F(z + 2), F(z + 3)y ...

F(z + n). Hence by Cauchy’s residue theorem

-bf F(z + O--~^0,
z + s

for all positive integral values of s, and

-f
2niJc,

Fiz +0^^ = F{z + i

2,
— or

.( 8 )

= 0
,

.(9)

according as s is one (;f the positive integers

1, 2, 3, ... n or as s > n.

For a semicircular contour C of infinite

radius, we can write

Fig. 49

and it follows from (8) and (9) that

= -
• f2m Ji

= 1 /8=-lJ C

F(z +01
] 1

+ -

F{z +OU
1 1

+ ,

^-s dO (10)

I=2F(z + s). (11)

Assuming that F(f)->0 as ^->oo sufficiently rapidly for the integral

in (10) along the semicircular arc to vanish, we have
^-ioo

Hence, from (5) and (11),

^
r-ico

2iJ,

j =r“

+<00

F(z+ 0\^tn^--y\d^ = 1 F{z+8),
«•*!
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so that, from (3),

G{z+\) - + 0 (cot 77^-1jd? (12)

This is the required solution. Formula (12), or its equivalent, appears to

have been given first by Schwarzschild.*

The general solution of the problem, as represented by (3) or (12), has up

to the present been outside the possibility of practical apphcation. This has

been due, in great part, to the insufficiency of accurate observational

material. So far as the author is aware, the only attempt to apply the

Fourier solution of the integral equation to actual astronomical statistics

was made by Eddington.!

8*31 . The distribution of apparent magnitudes for constant density.

We assume that the absolute magnitudes are distributed in accordance

with a frequency function <p{Mf) which is independent of distance from the

sun.

From 8*15(5) we have

b{m) ^ ^j
^

or, putting r —

where c is defined by 8*15 (8), and setting D{r) = K,

b{m) = cSK
I

e~^P p)dp.

Write m4-/> = x. Then
/;

b{m) = cSKe^
j

'

(l)(x)dx.

•( 1 )

The integral on the right is a constant and we have

6(m) = Ae^^^\

in which ^ is a constant.

I^t B{m) denote the number of stars brighter than apparent magnitude m.

Then Cm
B(m) —

I

b{m)dm
J —00

or B{m) = 7
”

oc
(
2

)

Similarly, if fi(m4- 1) is the number of stars brighter than apparent magni-

tude (m+l), .

= (3)

* A,N, 185 , 85, 1910. t M.N, 72 , 368, 1912.
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Hence, (2) and (3) give

5^tA) . e- - 10«
B(m)

or 1) : i?(m) = 3*98:1. (4)

This result shows that, with the hypothesis concerning the density

function, the total number of stars brighter than apparent magnitude

(w-f 1) should be nearly four times the number of stars brighter than ap-

parent magnitude m, this ratio being independent of the frequency function

of absolute magnitudes. Actually, the ratio is found from star-counts to

be much less than 4 and the ratio is also found to diminish with increasing m.

Hence the original assumption is incompatible with observation and the

general inference is that the density function decreases with increasing

distance. However, this conclusion must not be regarded as final inasmuch

as we have not taken into consideration the effects of galactic absorption

which we shall discuss in section 8-61.

8*32. 8eeliger 's hypothesis .

The density law used by Seeliger in his researches is

D(r) =

which gives a density diminishing as r increases if ,9 > 0. We have as before

b{m) = aSDqJ — 5Logr)dr

= CaSDq
J

-f p) dp,

so that on writing x for (m + p),

b(m) = cSDQe^^~^^ f (l>{x)dx.

The integral on the right is a constant and so b(m) can be expressed by

Also

and

6(m) = (1)

B(m) ^ (2)

B(m+ 1) : B{m) = e^3-s)c
. i

= 10l(3"«):l. (3)

The ratio is thus a constant, being independent of m; it is less than the

ratio 3*98 : 1 found in the previous section provided s> 0. Here again, the

theoretical implications of Seeliger’s hypothesis are not in accord with a

diminishing ratio for fainter stars.
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8 *33 . Schwarzschild's density fmiction.

We investigate the density functiont when the distributions of the ap-

parent and absolute magnitudes are Maxwellian in form. We assume that

6(m) = (1)

( 2 )

and that K>k, (3)

As regards (1), this is the form found to satisfy the star-counts for a given

galactic latitude in the exhaustive investigation by Chapman and MelotteJ
on the number of stars of each photographic magnitude down to 17«^*0,

the counts being based on the Franklin-Adams plates; and it is the form that

represents, approximately at least, most ofthe later work in this department

of stellar statistics. The parameters a, k and are to be regarded as func-

tions of galactic latitude and possibly also of galactic longitude.

The formula (2) must be regarded as applicable only to a particular spec-

tral type or subdivision of spectral type. In Stromberg’s studies § of the

distribution of absolute magnitudes, the separation of the stars into the

giant and dwarf classes is recognised, so that in dealing with a given spectral

type we represent the function (1>(M^) as the sum of two Maxwellian ex-

pressions of the type (2). In the following analysis, we deal with a single

Maxwellian function only.

The condition (3) implies that the dispersion about the mean is less for

absolute magnitudes of a given spectral type than for the apparent magni-

tudes. This is in accordance wit/h observation, for the giants or for the

dwarfs.

From formula 8*15 (12) we have

6(m) =
I

/J(yo)^(TO+/>)dp, (4)

where A{p) = cSe-^^^ D(e~^P) (5)

and (6)

Since the functions 6(m) and in (4) are given by (1) and (2), the

function A{p) can be found by the method of section 8-23.

The solution is, by 8-23 (6),

do). (
7

)

t Schwarzschild, A.N. 185, 81, 1910.

j Memoirs, E.A,S. 60, 146, 1914.

§ See for example Mt Wilson Contribution, No. 442, 1932, or Ap. J. 75, 115, 1932.
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Now
1

6*((j>) = —
1

b(m)e^^^^dm
ZTT j _ 00

a C °°

—
j

g— wiQ)^+ia>wi

27rJ_co

or, on setting m — —

a . r
b*{o)) == cos cox dx.

27r J — CO

The value of this well-known integral is

Hence

Similarly, = .vy;2K yjn

Substituting (8) and (9) in (7), we obtain

iK
+iM ^oj

.(8 )

.(9)

aK /*oo

p 4

2nAk\LJ
aK 8 1

tt“i

^ 1

2nAlcj[-00^

aK^

- i1/o+ p)

d(o

cos (o{mQ — p) doj.

He„» ,10)

Using (5) and remembering that r — e~^^, we obtain for the density function

(H)
^ K^k*

, ,

D^r) = ,

which, as regards p, is of the Maxwellian form

D[r) = .( 12 )

This formula for the density function has been extensively used in statistical

investigations.

It is to be noted that the maximum density occurs where p = p^. With
the values of the constants, as derived by Kapteynf and Schwarzschild,f

entering into the formula for the density function, the density is a maximum
within a few parsecs of the sun.

t AJ. 24, 115, 1906.

% A.N, 190, 361, 1912.
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8*34. The mean parallax of stars of given apparent mugnitvde.

We have from 8-16(13)

^ 00

h{m),p{m)=^ e^f'A(p)(f>{m-\-p)dp,
J -00

where p(m) is tlie mean parallax of stars of apparent magnitude rn. In-

serting the functions h{m), A{p) and <j)(m-{-p) in (1), (10) and (2) of the

previous section, we obtain

p{7a) = F \ e ^ dp,

where F is a constant. Put

Then

whence

where

a; = p -f mo — Mq, mj = m —
r 00

p{m) = Fe-<^^^o~M,) g K^~k*

J — 00

dx

dx,

p{m) = F^e~^'^, •( 1 )

•(2 )

In these formulae F^ and F^ are constants.

Formula (1) may bo written

Logp(m) = a — bin, (3)

where a and b are constants, b being positive; from (1) and (2) the value

of b is easily seen to be {K^ — Jc^)l5K^.

This last formula (3) can be readily compared with observations; it has

been used extensively in statistical studies.

8*35 . The mean proper motion of stars of given apparent magnitude.

It follows from (1) of section 8*18 that the mean proper motion, //(m), of

stars of apparent magnitude m is given by

p{m) = F^e-^^\ ( 1 )

F^ being a constant.

8*36. Kapteyn^s formula for the mean parallax of stars of given apparent

magnitude and proper motion.

We denote, as in section 8*17, the number of stars with apparent magni-

tudes betweenm andm 4- dm, and total proper motions between fi and // -i~ dp,

by b(m,p)dmdp, and the mean parallax of such stars hy p(m,p). Kapteyn's

formula* is Logjp(m, /4)
== -4 -fBm + C Log p.

This was originally derived empirically.

* Gronirugen Pvbl. No. 8, 1901.
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Wenow show that the formula can be derived on the basis of (a) a Gaussian

distribution for the absolute magnitudes, (b) Schwarzschild’s density func-

tion, and (c) a form ofthe frequency function ofthe linear transverse velocities

used by Schwarzschild. The latter function is

f(T) ^ (1)

where is the transverse linear velocity /ir relative to the sun and Aq, j and

Tq are constants. This velocity function is analogous in form to Schwarz-

schild’s density function.

We have, from 8*17 (1),

6(m, /f) = aS

J
D(r) ^(m - 5 Log r) dr, (2)

and setting r = [i —

and making use of (1), Schwarzschild’s density function D{r) and the form

(2) of section 8*33 for the function we can write (2) in the form

b{m,fi) /:
p-lHp-^ p-nH:T-\-p—rQf

.(3)

where P; /c, I, n, Tq are constants.

We further write (3) as

b(m,fi) = -j:

where = /c^ 4- 4- and d, q are constants.

Similarly, (2) of section 8*17 becomes

roo

b{m,/i),p{m,/i) = PJ e
-2p^Vm+nH+ y Of

dp.

Hence

p{m,p) j:
-2^/2m+w*T-Kj)

j:
g-aV^-2/?(i^7W+n2r-K2) dp

where and Cg are constants. It is easily seen that

, ,
ia»m+?i'T+Ci)»--ia*w+n«T+c*)*

from which it follows that Logp{m,p) is of the form

Logp{m,/i) = A-^Bm + CLog/i, (4)

in which A, B and C are constants. These constants, however, depend on

galactic latitude and spectral type; their mean values for galactic latitudes

numerically greater than 40° have been determined by Kapteyn and van
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Rhijn* from an exhaustive analysis of the data relating to the bright stars,

and they write (4) in this case as

Log^(m,/^) = —0*691 — 0*0682m + 0*645 Log /^. (5)

A more general form of (4) was later derived and employed by Seares.f

To secure more satisfactory agreement with the measured parallaxes of

the very distant stars, Strombergf added a constant d to the proper motion

li, so that the formula becomes

Log^(m,//-) = A + CLog(/^ + r/). (6)

Expressed in terms of absolute magnitude M, by means of

M — m-f-5-h5Logp(?n,/^),

the formula (6) assumes the form

M = a-h6m + cLog(/^'fi). (7)

This is the form used by R. E. Wilson.§

With the numerical coefficients of (5), the formula (7) becomes

M = 1*545 -h0*659m + 3*225 Log (/^ 4-

in which the coefficient of Log {fi H- k) is about five times the coefficient of m.

Luytenll has pointed out that the relation between absolute magnitude,

proper motion and apparent magnitude for a given spectral class is

equivalent (for the particular value of i = 0 in (7)) to

M = a^ + b^H, (8)

where // = m + 5 + 5Log/4. (9)

A further generahsation^ is

M = + ( 10 )

These formulae involving H have been used extensively by Luyten,**

Prasad,ft CecchinitJ and others in deriving numerical relations between

parallax (or absolute magnitude), proper motion and apparent magnitude.§§

Ap. J. 52, 23, 1920 {Mt Wilson Contr, No. 188, 1920).

t Ap. J. 59, 310, 1924 {Mt Wilson Contr. No. 273, 1924). Ap. J. 74, 320, 1931 (Mt Wilson

Contr. No. 438, 1931).

J Ap. J. 47, 9, 1918 {Mt Wilson Contr. No. 144, 1918).

§ A.J. 36, 49, 1925.

|j
Lick Obs. Bull. 11, 39, 1923.

^ M.N. 85, 157, 1924.
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8*4 . Eddington's method of deriving the velocity law.

Consider the formula 8*16 (2)

r® D{r) dr, .( 1 )

b{/i) dpi being the number of total proper motions between y and /i-\-dpL

in a particular direction in the tangent plane for a given region, and

is the velocity function of the corresponding linear transverse velocities

T(^lir).

We assume that the observations furnish tlie lunciion />(//). If we know

the velocity law the density function D{r) can be determined from

(1) according to the procedure of section 8-23.

We further assume that for the given region tiie direction ofstar-streaming

is known and that at right angles to this direction the pecailiar linear velo-

cities are distributed according to the Maxwellian law

yjn

The linear velocities, T, relative to the sun will consequently be distributed

according to the law h

7 ^
>

where V is the component of the parallactic motion, in the tangent plane,

perpendicular to the direction of the vertex. Hence by the method of

section 8*23 the density function is derived.

Now consider any other direction in the tangent plane. The observations

will furnish b{/i} as before and now we know the density function D(r).

By the method of section 8-23 we then derive the velocity function for the

given direction.

Eddington* employed this method in 1912 and concluded that the

observational material slightly favoured the two-streams theory rather

than that of the ellipsoidal distribution of peculiar velocities.

As noted by Schwarzschild and Eddington,f the solution for i/r is in-

determinate if SeeUger's density law

B{r) = DqT-^

is used. From (1), we have

b(/i) = r^~^i/r(/ir)dr,

which becomes, on setting /ir = T, the transverse linear velocity,

b(/i) =

* SteUar Movements, 218, 1914; M.N. 72, 368, 1912. t M.N. 72, 371, 1912.
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Since the integral is independent of /^, we have simply

b{fi) =

so that the distribution ofproper motions is independent ofthe form assumed

by the velocity distribution.

8*51 . The density law.

We consider here the components of the linear velocities and the proper

motions of the stars, in a given region, perpendicular to the direction of the

vertex of star-streaming. We assume as before that the distribution of the

linear motions is independent ofdistance from the sun and that in particular,

as in the previous section, the linear velocities T perpendicular to the

direction of the vertex are distributed according to the law

^(T) = (1)

where V is the component of the parallactic motion in this direction.

From 8*16(2),

6(/^) =
S'J

r^D(r)^(/ir)dr. (2)

Let F(r) denote the number of stars within the cone of solid angle S up

to the distance r from the sun. Then

F{r) = S rW(r)dr. .(3)

Integrate (2) by parts so as to make use of (3); then

b{/i) = |^r^(/tr) sj D{r) eirj — S r® D{r) rfrj~ dr

or b(/i) = F{r) dr (4)

Paying attention to the form of ^ in (1), we see that the integrated part

of (4) vanishes at both limits, provided fi^O.

Also
0 0

But _0

dp}

^{rir(pr)} =-^{p^(pr)}.Hence
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In consequence, (4) becomes

*(i«)
= ~

or bi/i)==~^j^j^/iF{r)i/r(/ir)dr. (5)

Let B(j!i) denote the total number of j)roper motions in the assigned

direction with positive values between 0 and /^ ;
we take the convention

that jii is positive if it is in the same direction as the parallactic component F.

Then, if is the total number of stars with positive values of /i between 0

and 00
,

-^i-'B(a)= b(/i)d/c.

J fl

Hence, by (6), N-^- B(fi) = /< F{r)^(/ir)dr, (6)

since, by (1), -> 0 as for a given value of r.

In the same way, if denotes the total number of negative proper

motions perpendicular to the direction of the vertex and B{ — ju) the number

of negative proper motions between 0 and — /i, we have

= ii^^F{r)}jf{-nr)dr. •(7 )

We now assume that F{r) is an even function of r. Then (7) becomes

^2 - -®( -F) = F ( Tir) dr. (8)
J —m

Hence, on adding (6) and (8),

Ni + Ni-B(/i)-B{-/i) = /i f F{r)\jr{fir)dr (9)
J — 00

These general formulae are due to Eddington.*

In (6), put 7* = /A = e*. Then

= r F^{p)f^(p+ a}dp, (10)
J — 00

where Fi{p) = ePF{ce),

r^i(p + a) = ^(ei“+*).

Thus (10) is of the form (1) of section 8-22. If Bf^a) and ^^(p + a) are

known, F^ip) is found by the method of section 8-23.

The solution of (7) is obtained in a similar manner. When J^i(p) is derived,

the density function D{r) is found from (3), for

D(r) =
1 dF(r)

Sr^ dr •

• M.N. 73, 346, 1013 .
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8 *52 . Application to Dyson's density law.

Eddington* has employed 8*51 (9) to test Dyson’s law of density. Since,

in this case.

D(r) =
r

we obtain, from 8*51 (3),

A R

If N is the total number of stars witliin the cone of solid angle S, this last

formula is simply
F{r) = N{1 '} •( 1

)

Inserting in 8-51 (9) the functions F(7-) and ^(/ir), rjr being as in 8-51 (1),

we find readily that

N/i
e •(2 )

or, if denotes the number ofproper motions greater than n (irrespective

of sign),
hrrv\

/• (
3

)

This is analogous to the general expression obtained in section 7*43 for a

single drift and of course it applies only to components of j^roper motions

perpendicular to the direction of the vertex.

f

The test was applied to the proper motions of A and K type stars separ-

ately, in two regions, one in high galactic latitude and the other in low

galactic latitude, and was considered to be successful for the K stars and

less satisfactory for the A stars.

8 *61 . Galactic absorption.

Within the last few years there has come the realisation that galactic

space is not perfectly transparent. Although the existence of dark nebulae

in the Milky Way has long been known, it was formerly believed that these

were isolated agglomerations of diffuse matter and that the remainder ofthe

Milky Way was free from absorbing matter. The present position is that

there is distinct evidence of an absorbing layer in the equatorial plane of

the galaxy, variously estimated to be, at any rate so far as the denser parts

are concerned, from 100 to 200 parsecs in thickness (that is, perpendicular

* hoc. cit.

f In 8'52 (3), V refers to the component of the parallactic motion at right angles to the direction

of the vertex, whereas in 7-43 (4), V refers to the drift velocity.

s iS
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to the galactic equator). This is, qualitatively, in conformity with the well-

known fact that very distant objects such as globular clusters and extra-

galactic nebulae are never observed in or near the galactic equator. Edding-

ton’s theoretical researches* and Plaskett and Pearce’s observational

investigations t on the stationary H andK lines of ionised calcium in 0 and

B type stars leave little doubt as to the existence of interstellar matter, a

conclusion strengthened subsequently by different lines of attack, notably

by Trumpler’s investigation J of the open clusters, to be discussed more
fully in the next chapter.

Measuring the distance, r, of a star in parsecs and assuming that there is

no loss of light during its passage through interstellar space, we have the

relation between the apparent magnitude m and the absolute magnitude M,

M — m -f 5 — 5 Log r. ( 1

)

But, if there is an absorbing medium, the star’s apparent brightness will

be less than if its light traversed transparent space
;
accordingly the observed

magnitude, mo, will be greater than m by a quantity which will depend on

the absorbing properties of the medium and on the length of path within

the medium. We can thus write

mo = m + F(r),

the absorbing properties being regarded as a function of the distance r and

the total effect being denoted by F(r). The relation between the absolute

magnitude, M, and the observed apparent magnitude (as affected by

absorption) is then M = mo + 5 - 5 Logr - jP(r), .(2)

where the function F{r) depends on the characteristics of the absorbing

medium, and is positive. For a first approximation it is generally assumed

that the absorption, as expressed in magnitudes, is proportional to the

distance, so that
il/ = mo + 5 — 5 Logr — kr. .(3)

where k (a positive quantity) is defined to be the absorption constant

(expressed here in terms of magnitude per parsec) and, strictly, should be

regarded as pertaining to one direction in the Milky Way alone.

We can express the result (3) in another way by saying that the effect of

the absorbing medium is to increase the apparent magnitude of a star by kr.

In accordance with physical principles, the loss of light we have been

considering may be due to absorption by free atoms (or molecules) or due to

scattering by electrons, or by atoms, or by small discrete particles. We shall

discuss this aspect of the subject in the following chapter.

* Bakerian Lecture^ Proc. lt,8. Ill, A, 424, 1926.

t M.N. 90, 243, 1930.

i Lick Ohe. BvU. 14, 154, 1930.
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We further remark that A: is a function of the wave-length of light and is

larger for the photographic wave-lengths than for visual wave-lengths. We
denote by and the values of k referring respectively to photographic

and visual observations. According to Trumpler,* the mean values of k^

and the averages being taken over several directions in or near the

galactic equator, are

k^ = -f 0^*67 per 1000 parsecs,

k^ = + 0'^*35 per 1000 parsecs.

We have seen in section 8-31, formula (4), that the ratio 1) : B{m)

is numerically equal to 3*98, where B{7n) is the total number of stars brighter

than the apparent magnitude m, on the assuin])tion that the space-density

of the stars is constant and that intei’stellai’ space is perfectly transparent.

As the observed ratio is found to decrease with increasing m (that is, effec-

tively, with increasing distance), it was early inferred that the star-density

must decrease at increasing distances from the sun. But, as we have

previously remarked, this apparent decrease in star-density may quite well

be ascribed, in whole or in i)art, to the effect of interstellar absorption; on

this assumption, Halmt and SchalenJ obtained values of k of 2*"-l and

per kiloparsec respectively; the former value must now be regarded as an

upper limit.

8*62. Galactic absorjJtion and the statistical eqimtions.

From section 8-15, we have for the number, b{m) dm, ofstars with apparent

magnitudes between m and m-{-dm,

b(m) ~ J
r^ D(r) dr,

it being assumed that there is no absorption. In this formula

Ml = m— 5 Log r,

where, being the modified absolute magnitude,

Also, with an absorbing medium present, we have from 8*61 (2)

Ml = mo~5Logr-F(r), (1)

in which is now the apparent magnitude actually observed.

If 6(mo) dniQ is the number of stars with observed apparent magnitudes

between Mq and mQ dm^,

b{mo) = sj^r^D(r)4>(Mj)dr, (2 )

in which Mi is now given by (1).

t M.N, 80, 162, 1919.Loc, cit. i A.N, 236, 249, 1929.
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Following the method of Seares,* write

F{r) + 6 Log r = 5 Log ro,

80 that ro = r.

and, putting c = f log^ 10,

we have Tq = (3)

If F{r) is known, we can invert this relation and obtain r as a function of r^.

From (3) rgdrg = r®e®®^(’‘>|l + cr^^^^|(ir (4)

or r^dfQ = G(r)r^dr, (5)

where G(r) = |l + cr—
|

• (6)

Now write Do(ro) =~ i>(r), (7)

the right-hand side of (7) being expressible in terms of /q by means of (3).

Then (2) becomes

6(mo) = ^0 -^o('‘o) ?^(Wo- 5 Log ro) dr#, (8)

which is of the same form as 8*15 (5) and leads to an integral equation similar

to 8*15(12).

If the functions 6(mo) and are known, the solution of (8) leads to

the function hence from (6) and (7) the density function D{r) is given

by ( f] w\
D{r) =: 1 + cr^ . (9)

In the case of uniform absorption, F(r) = kr and (9) becomes

D{r) = DQ(re^) { 1 -f kcr}. (10)

The equation (9)—or (10)—constitutes a formal solution of the problem

if the function F(r)—or the value of k—^is known.

In the same way the other integral equations involving apparent magni-

tudes can be modified to take account of galactic absorption.

However, the application of these formulae must be a task for the future

when observational material is more abundant and accurate. The integral

equations, derived in earlier sections, must at present be confined to in-

vestigations of stars in regions at some distance from the Milky Way; in

such directions, the apparent magnitudes of stars at distances exceeding

t cosec g parsecs are aU affected by a constant amount depending on the

absorption by an effective depth of t cosec g parsecs of the interstellar cloud,

t being half the thickness of the cloud and g the galactic latitude ofthe region

* Ap. J, 74, 91 , 1931 .



8*72 General Theorems of Stellar Statistics 277

concerned. If the characteristics ofthe cloud can be derived by other means,

it will then be possible to make the proper magnitude allowance for the

given direction,

8*71 . The frequency function of the space-velocities of the stars derived from
radial velocities.

We have remarked on several occasions that the observed characteristics

of the stellar velocity distribution are represented equally well according

to the assumi)tions inherent in the two-streams and ellipsoidal theories.

The modus operandi has been to compare the implications of an assumed

formula with observations. We now consider the inverse problem ofderiving

the frequency function of the space-velocities from the observations them-

selves, in the present instance the observed radial velocities freed from solar

motion and the K term. In practical applications it will be generally con-

venient to deal with each spectral t3rpe separately. Also, the assumption is

made that the frequency function is the same in all parts of the sky in our

neighbourhood. The solution of the problem is due to Ambarzumian.*

8 •72 . The two-dimensional problem.

We consider first the distribution of stars in a plane with a view to

the application of the method to stars strongly concentrated towards the

galactic equator. The position ofa star is then defined by its angular distance

from any arbitrary point on the galactic equator. Denoting this angular

distance by a—we refer to this simply as the longitude—and the radial

velocity by F (freed from solar motion and the K term), we have that the

number ofstars with radial velocities between V and V -\-dV and in longitudes

between a and a-k-da can be written as

f(V,cx)dVdoc, (1)

where the function /(F, a) is supposed to be derived from observations. If

N(a)da is the total number of stars observed between longitudes a and

a -f da, we have

N(a)=: j"^J(V,cc)dV. (2)

Let ^(u, v) be the frequency function of the peculiar linear velocities whose

components are {u, v) in the galactic plane, it being assumed that the com-

ponents of velocity perpendicular to the galactic plane are neghgible. We
take the -M-axis in the direction a = 0.

* M,N, 96, 172, 1936 .
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The proportion of stars with velocity components between {u^v) and

{u -f du, V + dv) is

v) dudv,

the function <}> satisfying the relation

(j>{u, v)dudv = 1.

The number of stars between longitudes a and a + rfa and with velocity

components between (w, i?) and (u-Vdu,v^dv) is then

iV(a) (l>(UyV)dudvd(x (3)

Now the radi al velocity is givenby

F = -w cos a 4- 1’ sin a, (4)

which is the equation of a straight

line in the plane, the perpen-

dicular from the origin to this line

being V. Hence the number of stars

in the longitude interval (a, a 4- (/a)

with radial velocities between V and

F4-c?F is obtained by summing the

expression (3) over the strip be-

tween AB and CD in Fig. 50. But

this number is also given by the

expression (1). Hence

(
5

)

Fig. 50

fiV,a)dV = iV(a)jj^{u,v)dudv,

the integration being over the strip of width dV,

Let ucoBa-\-vsma,

Tj = — -wsina-l- vcosa.

This transformation corresponds to a change of axes as indicated in Fig. 50.

We have dudv = d^drjy

and for the strip = dF.

Then over the strip

j
v) dudv — dV

j $5(
F cos a— ^ sin a, F sin a 4- ^ cos a) (6)

the integration on the right-hand side being along the straight line AB,

f(V,oc)T ^4. 177/ TT in\
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A8/(F, a) and N{ol) are supposed known from the observations, we regard

F{V, a) as a known function. From (5), (0) and (7) we obtain

^00

F{V,a) =
J

^{V cosa — ?/sina, Fsina-f T/cosa)^^ (8)

From this integral equation we have to deduce the function It is to be

added that the conditions of the problem require that F( F, a) -> 0 as F--> oo

,

8*73 . Solution of the two-dimensional problem.

In (8) of tile previous section, write

V ~ X cos oi + y sin a + IF, ( 1

)

where x, y and W are arbitrary parameters, and introduce a new variable

U by means of
rj ~ V — x sin a + y cos a. (2)

Then F cos oc — y sin a = x-{-W (;os cc—LJ sin a,

F sin a + 7/ cos a = ^ + hFsin cos a,

and w© obtain

F{x cos oc-\-y sin a + PF, a)

Coo

= <p(x -h W cos a — <7 sin a, y + W sin <x+Ucos a) dU.
J — CO

Integrate both sides with respect to a between 0 and 27t, and set

r2n

X(x,y, W) ^ \ F{x cos a y sin a + W,oc)d(x. ( 3 )

Since F is a known function, being derived from the observations, it follows

that X is a known function; also X(x, ?/, PF) 0 as PF -> oo. We have

Coo r*2n

X(x,y,W)= dU
\

Pf'^cosa— f/sina, PP^sina4- ?7cosa)da,
J -00 Jo

Write PF = JScosyff, U = Fsiiiyff,

so that (4)

and yff is independent of a. Then

Coo C2w

X{x,y,W)= dU
\

<j>{x-\-Bcos{(x-\-^), y^ Bsm{oi^^)]doi (5 )

J -00 Jo

But, if we put y = a -f /? in the integral with respect to a on the right of (5),

C2w C27r4-/?

<i>{cc)da.= <p(7)dy
Jo J fl

fin fin+fi ffi

= ^{7)dy+ ^{7)d7- <l>(7)d7
Jo J 2n Jo
C2w

= Jo
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poo p27r

Hence X{x,y,W)=
1

dU
\

^{x+ Bco&a, y+ BBma)dix. ..

J -00 Jo
(6)

Let
p2;r

0(x,y,B)=\ <j>{x+ B cos a, y-\^B sin a) da. (7)

so that X{x,y,W)^ r 0{x,y,B)dU.
J —CO

(8)

But (4)
jjT BdB

give, ....(9)

Hence (8) becomes

f” BdB
Xix,y,W)^2^^nx,y,B)-^,-^^^,^ ...(10)

This integral equation can be transformed into Abel’s form.* Consider the

equation

J

R BdB

where R>W.
Set hmR^-W\ tsR^-B"-

and X{x,y,W)-X{x,y,R)^6(h),

0(x,y, =

Then (11) becomes 0{h) = I* (12)
j 0 \h—tr

of which the solution is ^{t) = — f (13)

Integrating by parts, we have

no - (.4)

The integrated part vanishes for h ~ i and also for h = 0, since ^(0) = 0,

by (12). Accordingly, we have simply

dd(h)

^
0 (t-h)*

dX

whence
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This is the solution of (11). Making iJ^oo, we see that (11) takes the form

(10), since X{x,y, j?)->0. Thus the solution of (10) is

1 f” dW
0(x,y, B) = ( 15 )

But from (7) 0(x,y,O) = 2TT<j>{x,y),

and from (15) di{x,y,0) = _1
njo WdW

Hence 11II
C-ldX{x,y,W)
lo dW (16)

or \W dW
(IV)

Sinc;e the function X is known, the frequency function (J){u, ?;) is obtained

by means of (17); this equation constitutes the solution of the two-dimen-

sional problem.

8 *74 . The three-dimensional iwohlem.

We consider a region, subtending a small solid angle dd), with galactic

coordinates We can set the number of radial velocities between V
and F + dF in the region to be

/(F, Q,g)dVdd>,

where /is the frequency function of the radial velocities. The total number,

N{G,g) do)y of stars in the region is given by

N{G,g) = G,g)dV. (
1

)

Let <p{u, V, w) denote the frequency function of the linear velocities. By
analogy with the two-dimensional problem, the frequency ofradial velocities

between F and F-fdF is given by

/(F, G,g)dV <f>{u,v,w)dudvdw, (
2

)

where the integration extends throughout the volume between two parallel

planes, whose equations in the (u, v, w) coordinates are

V = lu-i- mv -
1
- nw, ( 3 )

F + dF = lu-{-mv+ nw,

in which (Z, m, n) are the direction-cosines of the region; actually,

I = cos G cosg, m = sin 0 cosgr, n = sin gr. (4)
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Write (5,

Let d(T denote the element of area of the plane (3). Then

dudvdw = dadV,

We thus obtain from (2)

T{V, 0,g) = v,w)d(r.

(6)

TnFig.610i7,0Fand0If
arc the u, v, w axes, which

we take to be parallel to the

usual galactic system; OP
gives the direction of the

region and the length of OP
is V\ the plane (3), which

is perpendicular to OP, is

shown in the figure. Referred

to any rectangular axes PB,

PC in this plane,

d(T = pdpdO,
Fig. 51

{p,0) being the polar coordinates of a point Q in the plane. Let OQ = H
and let the direction-cosines of OQ be (L, M, N), Then, in (6),

u^LH, v=^MH, w = NH,

Too T2n

and hence F(V,0,g)^ (j>{LH,3IH,NH)pdpd6 (7)
J 0 J 0

As the integral on the right of (7) is independent of the choice of PB and

PC as axes, we have

F(V,0,g) = 2Tr (8)

Integrate both sides over the surface of a sphere, centre 0, with unit radius.

Then, do) being an element of the surface of the unit sphere.

J*
V(F, 0, g) do) = 277 MH, NH) dcopdp. . (9)

Set 0(H) = 27t MH, NH) dM. ...(10)

Then J**V{F, G,g)du} = ^“0(H)pdp. ...(11)
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Now V^+p^ =

Hence, for a given F,

Tin foo

\F(V,0,g)d(o=\^ 0(H) HdH,

from which 0{V) = - {^”f(V, G,g)do). (12)
y dv j 0

But, from (10), 0(0) — 8n^ <^(0,0,0), (13)

and consequently (12) and (13) give

(^(0,0,0) = - F(V,G,g)d0) (14)

In Fig. 51 the origin of the velocity system of axes, OU, OV and OW, is

entirely arbitrary and the formula (14) will hold for any system of parallel

axes. Hence, by a translation of the origin, we obtain from (14)

1 1 d
6(u, lu w) = - Lim -z- F(Iu + mv +nw+W, G, g) do).

Ir a It J 0

The formula (15) constitutes the solution of the problem, for the function

F is obtainable from the observations and the right-hand side of (15) is

thus determinable.



CHAPTER IX

STAR CLUSTERS

9*1 1 . The determination of the Convergent Point of a moving cluster.

A moving cluster is an assembly of stars in a limited volume of space

witliin the galactic system characterised by the parallelism and equality of

their motions. Well-known examples are the Taurus Cluster and the Pleiades.

In the former the stars belonging to the cluster are scattered over several

hundred square degrees of the celestial sphere, whereas in the latter the

cluster stars are much more concentrated in the sky.

Relative to the sun, each star has the same linear velocity components

(X, y, Z) with respect to the usual equatorial system of coordinates or,

expressed somewhat differently, each star has the same velocity T" in a

particular direction (A,Z>), the corresponding point on the celestial sphere

being called the convergent point, which we denote by C. The transverse

linear velocity of each star gives rise to a proper motion along the great

circle joining the position of the star to C. If the cluster stars are sufficiently

well scattered in the sky, the point C can easily be determined.

As in Airy’s method (section 3*31), we have for a star at (a, 8)

K
--Xsina + r cos a = -u^cosd, (1)

p

— XooQa sin^— Y sina sin 5 -f Z cos 5 = - /ig, (2 )

where are the components of proper motion, p is the parallax and

K = 4*74. Also,

Xcosa cos 5-1- Y sina co8 5-+-Zsin5 — p, (3)

where p is the radial velocity. Write

/i„cos<y = ^, = 7 . (4)

Multiply
(
1
) by ^ and

(
2

) by ^ and subtract; we obtain

X(7 sina — gcosa sin 5)— F(^
7
Cosa'f ^sina sin5)-f-Z^cos5 = 0, (5)

which we may write in the form

aX -^hY -f-cZ == 0 . (6 )

Each star contributes an equation of the form (6), the coefficients of X, Y
and Z being supposed known. A least-squares solution then determines the

ratios X :Y :Z.
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tanD —

Also, X = FcosA cosZ), F = FsinA cosZ), Z = F8inZ>,

so that tanA = YjX, (7)

tanD = *

The formulae (7) and (8) thus determine the convergent point C from the

proper motions alone. This method is due to Charlier.

In the same way, if there is a sufficient number of stars with observed

radial velocities, the formula (3) may be used in a least-squares solution to

give the values of X, Y and Z in km. per second. It is to be noted that ifany

of the stars are of type B, the observed radial velocity contains the K term

whose value, being presumed known from other investigations, must be

removed from p before the formula (3) is apj)lied.*

9 * 12 . The determination of the Convergent Point {Bohlin's method).^

This is essentially the same method as described in section 4-32; the

procedure is, however, somewhat different. In Fig. 52, S is a star of the

cluster with its proper motion directed towards C, and Q(A\D') is a pole

of the great circle SC, If 0 is the position angle (PSC) of the proper motion

of S, we have from the triangle PSQ (in which PSQ — d — 90"^ and Q8 = 90*^)

cos// sin {A' — a) = — cos 6^ \

cosD' cos (-4' — a) == — sin ^ sin^ 1. (1)

sin Z>' = cos S sin 0

j

Since 0 is supposed known, these equa-

S'
tions determine A' and D'.

(a,8)/^
" From the triangle PCQ, in which

/ \ / \ QC= 90°, we have

( \ / \ cos(A'—A) = — tanZ> tanZ)' (2)

1 I cote sin4
\ (A, D) j Then (2) becomes

\ / X cos ,4 ' + y sin A' + tan D' — 0 .

p

V' \

t V
7Q \

/{A',n’) \

\ C /

Each star contributes an equation of

the form (4) and by a least-squares

solution we obtain the values of x and y, from which

tan4 = yjx, cotZ> = (x'^-^y^f.

* See a remark by C. C. L. Gregory, Observatory, 59, 154, 1936.

t The formulae are given by Rasmuson, Lund Medd. Ser. n, No. 26, p. 6, 1921.
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It may be remarked that the difference between the procedure in section

9*11 and in section 9*12 is merely in the arrangement of the computations.

By definition X : Y : Z in section 9*11 is the same as a;
: 2/

: 2: in section 9*12,

where 2:
= 1 is the coefficient of tan D' in (4). Also, the coefficients in 9* 11(5)

and 9*12 (4) are in the same ratio. For

cos-d' :sin^' :tanZ>' = cosD' cos^' :cosZ>' sin^' :m\D'

= cosZ>' cos(^' — a-f a):cosi>' sin (A' — a + a) :smD'

== sin a cos^ — cos a sin S siri^>^ : — cos a cos 6^ — sin a sin 5 sin 6^ : cos d sin^

by means of (1),

= 7] sin a ~ ^ cos a sin S: — 7j cos a — ^ sin a sin S
: ^ cos S,

9 ’ 13 . Determhmtion of the jMrallaxes of the cluster stars.

The angular distance, A, of a star from tlie point of eonvergency, C\ is

found from ^ ^ gjj^ /> ^ j) (A— a).

Also, the radial velocity, p, of a star such as S (Fig. 52) is the projection

of the common velocity, F, in the direction of S. Thus

p = Fcos A. (1)

Ifp is freed from such systematic effects as the K term, we obtain V from ( 1
).

Other stars ought to furnish the same value of V within, of course, the

limits of observational error. A least-squares solution of (1) yields the cluster

velocity relative to the sun

.

Let p denote the total annual proper motion of any star of the cluster.

Then
FsinA = '^^,

P
(
2

)

jfrom which the parallax, p, can now be computed.

The absolute magnitudes of the stars can then be found from the formula

M = m -I- 5 4- 5 Logp.

9 *14 . The characteristics of the moving clusters .

Rasmuson has made a detailed study* of thirteen clusters; in several,

however, the proper motions do not satisfy very well the necessary criterion

of eonvergency, to which, for example, the proper motions of the Taurus

cluster conform so accurately.

When the effects of the solar motion are removed from the cluster velocity

as derived by the methods of the previous sections, it is found that the

clusters are moving almost parallel to the galactic equator.

Lund Medd. Ser. n. No. 26, 1921.
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The {spatial distribution of the stars in any given cluster is found to be

approximately ellipsoidal in form; as regards the Taurus cluster, the lengths

of the axes of the ellipsoid are in the ratio 5-9 : 4*1 : 7*4; the corresponding

results for the Ursa Major cluster are 4*5 : 5*9 : 2*7. As regards the Taurus

cluster, the shortest axis is directed approximately to the galactic pole
;
and

as regards the Ursa Major cluster, the longest axis is directed approximately

to the galactic pole. R. E. Wilson* gives 8*5 : 5*7 : 5*0 as the ratio of the

axes for the Tamms cluster, with the directions of the axes considerably

different from those found by Rasmuson.

Important results concern the absolute magnitudes of stars of various

spectral typos. The derivation of individual parallaxes of stars in such

clusters as the Taurus cluster is ofa high order ofaccuracy and, consequently,

the deduced absolute magnitudes carry great weight. Rasmuson’s con-

clusions regarding mean absolute magnitudes f are summarised in the

following table.

Table 43. Mean absolute magnitude,

(Standard parallax 0^1)

Sj^ectral tyq)(3

B0-B5 -O'n-45

B8, 9 + 0-92

A + 1-57

The moan dispersion is, in each case, about two-thirds of a magnitude,

the distribution of absolute magnitudes being assumed to follow the law

0(Jf) =

9*21. Oj^e^n clusters.

An open cluster is essentially of the same physical nature as a moving

cluster but, because of its much greater distance and more compact apparent

form, it has hitherto been found impossible to treat the open cluster by the

methods of the previous sections. The proper motions of open clusters have

been measured in only a small number of instances and radial velocity

measures of the brighter cluster stars are also not very abundant. Photo-

metric studies can be made, however, according to the usual methods, and

it is on these that we have to depend for investigating the distances of the

clusters. A knowledge of the clusters is important in investigations dealing

with the rotation of the galaxy.

* A.J. 42 , 64, 1932.

f In Rasmuson’e memoir the standard parallax for which absolute magnitude is dehiied is

0^206; to convert Rasmuson’s absolute magnitudes into the absolute magnitude system norm-

ally employed (standard parallax 0^1), add 1"‘*67.
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9*22. The distances of the clusters {Raab's method).

As the distances of the open clusters are so great, we can assume that all

the stars in a given cluster are at the same distance, r parsecs. We assume

with Raab* that the frequency function of the absolute magnitudes of

stars of a given spectral type is

iM-MoY
(/>{M) = Ce ^ ( 1 )

in which 3/q is the mean absolute magnitude and cr is the dispersion, both of

which afe supposed known from the results of other investigations.

The relation between the apparent and absolute magnitudes of a star is

31 = m + 5 — 5 Log r.

Since r is constant for all the stars of a cluster, the frequency function of the

apparent magnitudes is

1

^(m) = Ce
(7n+5-5 Logr-iV/o)*

Consider all the stars brighter than a given apparent magnitude m^.

The mean magnitude m is given by

j:
me

— ~5Logr-3/#)‘
dm

/
dm

Let (TX — m-{- 5 — 5 Log r —

(TX^ = 5 — 5Logr— 3Iq. (2)

Then m^ —m = cr(x-^ — x).

Hence

rx,

(x^-x)e ^ dx
m.y —m J -00

cr Cxx _£!

1
e dx

J -x>

Xi*

e 2

= *i +- T.
rxx JL
1

e 2 dx
J -00

or
m^ —m ,

(3)

The values of F(Xj) are readily computed and are given in the following

table,t
Lund Medd. Ser. ii, No. 28, 1922.

t Raab (ibid.), p. 87.
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Table 44. Values of F{xf)

.Ti Fix,}

-4() 4-0*22()*
- .3*8 0-235*
-3 b 0-240
-3-4 0-257
- 3-2 0-270
-30 0-283
-2-8 0-298
-2-6 0-314
-2-4 0-332
-2-2 0-351*
-2-0 0-373
- 1-8 0-397
-1*6 + 0-424

Fix,}

-1-6 + 0-424
-1-4 0-454
-1-2 0-488
- 1-0 0-525
-0-8 0-507
-0-0 0-015
-0-4 0-009
-0-2 0-729

0-0 0-798

+ 0-2 0-875

+ 0-4 0-902

+ 0-0 1-059

+ 0-8 + M08

Fix,}

+ 0-8 + 1-108

+ 1-0 1-288

+ 1-2 1-419

+ 1-4 !

+ 1-0 1-717

+ 1-8 1-882

+ 2-0
1

2-055

+ 2-2 2-236

+ 2-4 2-423

+ 2-0 2-014

+ 2-8 2-808

+ 2-9 2-906

+ 3-0 + 3-004

* Ke-calciilated by A. Fletcher.

In applying formula (3), Raab considers only the A type stars, for which

he takes the dispersion in absolute magnitudes to be and the mean
absolute magnitude to be

For any assigned value of the value of m is obtained from the obser-

vations; thus the value of F{xfj can be readily determined and from Table 44

tlie value of is obtained. The value of r is then calculated from (2).

9'23. The influence of galactic absorption on the measured distances of the

open clusters.

Most of the open clusters are situated in or near the Milky Way, and as

their distances are large the effect of the general galactic absorption on the

apparent magnitudes of the cluster stars is considerable. If h now denotes

the coefficient of absorption per kiloparsec, the observed magnitude m is

given in terms of the absolute magnitude M— see 8*61 (3), where k was

expressed in terms of magnitude per parsec—by

m = J/-5+5Logr + ^^-

or m = ilf — 5-f 5Logri, (1)

kr
where Logr, = Logr+^^. (2)

The apparent magnitudes are generally measured photographically, and

in these formulae we replace k by k,^, the absorption coefficient for photo-

graphically effective wave-lengths. Its value, according to Trumpler, may
be taken to be 0”'*67 per 1000 parsecs.

Raab's investigation was undertaken before much was knovm of the

galactic absorbing cloud and he implicitly assumed that galactic space is

SSD 19
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transparent. By referring to ( 1 )
it will be seen that the distances determined

by Raab correspond to the values of r^; the true distances, r, as is clear from

formula (2) are much smaller. For example, if the true distance r is 1000

parsecs, the value of r^, using the above value of is 1361 parsecs.

9*31. Trumpler's research on open clusters; preliminary determination of

the distances.

Altogether a total of a hundred clusters form the subject of a systematic

investigation by Trumpler.* On an average, the photographic magnitudes

of 30 or 40 stars per cluster were obtained, together with the spectral types.

The absolute magnitudes (visual and })hotographic) of the various spectral

types and subdivisions as adopted by Trumpler are shown in Table 45.

These values are mainly based on the results ofAdams and Joy,t Lundmark,}:

Malmquist§ and Hess.H

Table 45. Mean absolute magnitudes according to spectral type {Trumpler)

Spectral
type

Dwarf branch G iants

Visual Photographic Visual Photographic

0 -4“'*0 - 410.3

BO ~31 -3*4
B 1 -2-5 - 2*8

B 2 ~ 1-8 - 2*1

B3 -12 -1*4
B5 - 0-8 - 1*0

B8 - 0*2 -0-3
B9 -4- 0-3 + 0*3

AO -f 0*9 + 0*9

A2 + 1-7 + 1*7

A3 + 20 + 2*1

A5 + 2-3 + 2-5

FO + 2-9
: + 3*2 + 0“**6 + 0®*9

F2 + 3-2 + 3*5

F5 + 3-6 + 4*0 +0*5 + 1*0

F8 + 4*2 + 4*7

GO + 4*6 + 5*1 ! + 0*5 + 1*2

G5 + 50 + 5*7 + 0*5 + 1*4

KO + 6-2 + 7*0 + 0*6 + 1*6

The value of m —M is readily obtained for each observed star in the

cluster and from the mean value of this quantity the distance, r, of the

cluster is calculated from

m — itf = 5Logr — 5. (1)

Lick Ohs. BtiU. No. 420, 1930.

f Mt Wilson Contributionsj Nos. 199, 244, 262 or Ap. J. 53, 13, 1921; 56, 242, 1922; 59, 294,

1923.

t PM. Asir. Society of the Pacific, 34, 150, 1922.

§ Lund Medd, Ser. n, No. 32, 1924.
|{

Seeliger Festschrift, p. 266.
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For example, in the open cluster M36 the thirty faintest stars observed,

with photographic magnitudes between 9"^*7 and and of spectral

types ranging from B4 and A 2, yielded

m-M = 11^12,

so that, by (1), r is found to be 1675 parsecs. On the other hand, the ten

brightest stars, with photographic magnitudes between S^'5 and and
of spectral types B3 and B5, gave

m-M = 10®'30.

It follows that, if we accept the results for the faintest stars, the ten stars of

types B3, B5 are abnormally bright intrinsically by about three-quarters

of a magnitude. Trampler suggested that this discordance is due to selection

and he applied an empirical correction to bring the distance as deduced

from the bright stars into line with the distance derived from the faint stars.

The preliminary values of the distance, r, for the clusters, calculated by

(1), take no cognisance, of course, of galactic absorption.

9*32. Preliminary values of the linear diameters of the clusters.

Let D denote the linear diameter of a cluster in parsecs, and d its angular

diameter in minutes of arc, d being easily derived by measuring the extent

of the cluster on a photographic plate. Then

D — rsinrf

or, with sufficient accuracy,

D = rdsin T.

The preliminary values ofD are then obtained from this formula.

9*33 . Classification of the clusters,

Trumpler noted that clusters of similar constitution had similar linear

diameters. Consequently, the clusters were classified in four main groups

according to the concentration of the stars towards the centre; each group

was further subdivided into three sections, the criterion used being the

range in luminosity of the cluster stars.*

Trumpler introduced the assumption that clusters of similar constitution

have actually the same linear dimensions, and it was on the basis of this

assumption that it was found possible to determine the absorbing effects

of the galactic cloud.

* For the details of the classification, see Lick Ohs. Bull. No. 420, p. 159, 1930.

19-2
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9-34 . The absorption of light.

It is assumed that the absorption is uniform throughout that part of the

galactic system with which the observations deal. We have the group of

equations
m-if = 5Logr+ (1)

m —M = 5Logrj — 5, (2)

Log., = Log. +-jt . (3)

Since the preliminary values of the linear diameters have been determined

by way of equations of the form of (2), those values, which we denote by Dj,

correspond to the unreduced distance so that

= rj^Zsin 1'.

The true linear diameters, in terms of the true distances r, are given by

1) = rrfsin r.

hr
Hence, using (3), Log - Log 1) = , (4)

and, on taking means for the clusters of a subclass,

Loi/;,-LoP=-|-^, (5)

or, since it is assumed that all the clusters of the subclass have the same

hnear diameter D, 7 -

LogA = Logi> +-^. (6)

Since the preliminary values, are known, the residual for a cluster,

as defined by j -p, t
^1 = Logi)i-LogZ>i, (7)

can be calculated; hence, from (4), (6) and (7),

kr kr
""

5000 “5000’

which may be written = a -I- br,

(
8

)

(9)

where
kr A _ ^

0̂00
’ ""

5000
*

It is assumed further that r is the same for all sub-classes; consequently,

(9) can be employed for all the clusters, a being regarded as a constant.

Also, from (3), Logr^ = Log r 4-6/-. .( 10 )

Equations (9) and (10) are solved for r by successive approximations. The
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first approximation is obtained as follows: for near clusters, br is regarded

as a small quantity in comparison with a, so that a is given approximately by

d =
where is the mean value of for the near clusters. Also, from (9) and (10),

Logr — Logr^ + a —
?;i,

from which r is obtained for each cluster. Equation (9) is then solved by

least squares to determine a and b. The process is repeated two or three

times. In this way, Trumpler obtained the value of k, the value finally

adopted being /. _ ()m.07 kiloparsec

for photographic absorption.

Galactic S outli Pole

Fig. 53. Trumpler's model of the Galaxy. The Globular Clusters are represented by dots

With this value of k, the distances and the linear diameters of the clusters

can then be (lalculated. It is found that the diameters range from 2 to 20

parsecs and the distances of the most remote clusters investigated are as

great as 5000 parsecs.

In Fig. 53, reproduced from Trumpler's memoir,* the distribution of the

open clusters, globular clusters and the Magellanic Clouds on a plane through

the galactic poles and galactic longitude 325"^ is shown; the open clusters

lie within the shaded elongated area around the sun at S\ the globular

clusters are represented by dots and the Magellanic Clouds by the two shaded

circles. The direction along the galactic equator towards longitude 325°

gives, according to Shapley, the direction of the centre, C, of the galactic

system which is estimated to be about 15,000 parsecsf from the sun.

* Lich 01)8. Bull. No. 420, p. 180, 1930.

f This figure is now believed to bo somewhat exaggerated.
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9 *35 . Colour excess.

In section 8*01 we briefly alluded to the fact that the coefficient of absorp-

tion is a function of wave-length. If, for example, the absorption is caused

by scattering, the consequent loss of light is greater for short wave-lengths

than for long wave-lengths. If and denote respectively the apparent

photographic and visual magnitudes of a star, the normal colour index, /,

is defined, in the absence of absorption, by

I = (1)

The observed colour index, /', when absorption is present is given by

= ( 2 )

where nip and are the observed photographic and visual apparent magni-

tudes. But, with scattering, nip is increased more than is increased, so

that r is greater than /; in other words, the star appears redder, or less blue,

than a star ofthe same spectral type unaffected by absorption. The difference

between /' and I is called the colour excess, E, so that

E^r-i. (3)

Denoting, as in section 8-61, the values of k for photographic and visual

light by kp and k^, we have

= Jf^ + 5Logr+^-5
and m; = -M;,+ 5Logr+j^-5.

Hence, from (1), (2) and (3),

^ =

Thus the colour excess increases linearly with distance.

Table 46 gives the results’** obtained by several observers for seven clusters.

The first columngivesthenumberofthe clusterin theNew General Catalogue
;

the second, the distance as found by Trumpler; and the third, the observed

colour excess.

Table 46. Colour excess of open clusters

Cluster
N,O.C,

Distance r

(parsecs)

Colour excess
E

Number
of stars Residual

1647 610 -f-0®-17 33 - 0»^-02

2682 740 -hO-26 81 + 002
2099 820 -f-005 25 -0-21
1960 980 + 005 40 -0*26
6705 1340 + 0*65 46

i

+ 0-22
7654 1360 + 0*49 43

1

+ 006
663 2170 + 0»71 41 + 002

Trumpler, he, cit, p. 165.
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Solving the equation E = cr/1000 (5)

by least-squares, Trumpler finds that

c = 0"^*32 ± per kiloparsec. (6)

The last column in Table 46 contains the residuals obtained from (5) with

the value of c given by (6).

Hence, with the value of (for photographic light) already found in

section 9*34, we have the results

= -f 0"^*67 per kiloparsec,

A;^ = 4-0®-35

Shapley’s earlier investigations dealing with globular clusters show^ed

that the colour excess of cluster stars in the higher galactic latitudes was

negligible; later,* he found some, but comparatively trifling, indications of

the loss of light for globular clusters in the lower galactic latitudes. As the

globular clusters appear to avoid the Milky Way, the conclusion we reach is

that the absorbing cloud is extended along the galactic plane and is of

comparatively small thickness. Van de Kampf has made a determination

of the thickness from a study of the absorption for distant objects presum-

ably outside the layer and in different galactic latitudes; his estimate of the

mean thickness is 175 parsecs. A later investigation J by Van de Kamp
suggests a somewhat larger value for the thickness.

9’41 . Globular clusters.

Nearly a hundred globular clusters are known. They are, apparently,

dense aggregations of stars, many times more numerous than the stars of

the richest open clusters. Shapley’s researches give us reliable indications

of their great distances. The most trustworthy method of estimating their

distances is based on the period-luminosity law pertaining to Cepheids and

cluster variables. The periods of the latter are, in general, much shorter

than the periods of the galactic Cepheids but, assuming the whole to form

a continuous sequence, the absolute luminosity of a cluster variable can be

deduced simply from the period-luminosity relationship the characteristics

of which are determined from a study of the galactic Cepheids. The obser-

vation of the apparent magnitude of a cluster variable in combination with

the absolute magnitude so derived leads to the evaluation of the distance

of the cluster. It is assumed that there is no light absorption
;
as the known

clusters are situated in galactic latitudes well away from the Milky Way,

this assumption involves but an almost negligible error resulting from the

thickness of the galactic cloud which we have been considering in the

* Harvard Bulletin, No. 864, p. 9, 1929. f ^ 40, 145, 1930. t ^ 42, 97, 1932.
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previous sections. As the definitive existence of this cloud was unverified

at the time of Shapley’s investigations, it was assumed that interstellar

space was transparent. Shapley’s apparent magnitudes are thus too large

by the amount ofthe equivalent absorption through this layer; consequently,

his computed distances of the clusters are somewhat too large. We can

obtain an estimate of the necessary correction roughly as follows. Let m
be the apparent magnitude on the assumption of the transparency of space,

and tn-hdm the magnitude as affected by the absorbing cloud. Let r and

r -f- dr be the computed distances corresponding to 7n andm +dm resx)ectively

.

M = m + 5 — 5 Log r,

if = m + dm -f 5 — 5 Log (r -f dr),

whence ^ ? dm,
r 5

where 10 = 2*30.

If wo assume that the sun is in the centre of the absorbing layer and that

h is half its thickness, the length of the path of light from a cluster, in

galactic latitude g, tlirough the cloud is A cosec g. Taking dm to be the

increase in photographic magnitude due to the absorption, we have

so that

dm = JkA cosec g

“’lOOF"

0*00046M cosec g.

For k = 0"^*67 and h = 100 parsecs,

dr
= 0*03 cosec

Hence the distances as computed by Shapley should be reduced by

3 cosec ^ %. Except for clusters in very low galactic latitudes, this is an

almost insignificant amount and certainly much smaller than the uncer-

tainties arising from the application of the period-luminosity law or of the

other methods employed by Shapley.

Another line of attack on the investigation of cluster distances is based

on the measurement of colour indices and their associated absolute magni-

tudes.

The distances found by Shapley * for the globular clusters range between

5000 and 50,000 parsecs. For example, the distance of Ml 3 (the great

cluster in Hercules—the brightest in the northern sky) is estimated to be

10,300 parsecs.

* For a description of Shapley’s researches, together with a full bibliography, see Shapley ’s

Star Clusters (McGraw*Hill), 1930.



9-42 Star Clusters 297

9*42. The stellar density-function for globular clusters.

The distribution of stars in globular clusters is inferred from counts of

the stellar images on photographic plates. Although several of the clusters

appear to be somewhat ellipsoidal in form, we consider only the case of

spherical symmetry; the analytical results can then be apj)lied to spherical

clusters and to those whose ellij^ticity is small. When the departure from the

spherical form is considerable, the general problem of stellar distribution in

such clusters becomes, in practice, almost intractable.

We take the origin of coordinates to be the centre of the cluster and the

positive direction of the Z-axis in the line of sight and towards the observer.

Owing to the assumed symmetry the

X and Y axes can be chosen arbitrarily

in the plane 2; = 0. The positions of

the stellar images on the photographic

plate will then be represented by the

projections, parallel to the Z-axis, on

the XY plane (Fig. 54).

Consider a cylinder of small rect-

angular cross-section with its axis

parallel to OZ. Take the X-axis

through B, the point of intersection

of the axis of the cylinder with the

plane 2 = 0. Let r denote the distance

from the centre of an element of

volume dxdydz at A and let ^(r) be the density function. Then

(l){r)dxdydz

is tlie number of stars in the volume element. On the photographic plate,

these stars will appear to be within the area dxdy at B.

Let f(x)dxdy be the number of stars observed in the element of the

photograpliic plate corresponding to dxdy
\ f(x) is the plate density of the

stars at a distance x ( == OB) from the centre of the cluster as shown on the

plate. This number is equal to the number of stars inside the complete

cylinder through B terminated at the surface of the sphere. If the radius

ofthe sphere is denoted by R, the 2 coordinates ofthe ends ofthe cylinder are

— and —^Je^ — x^. Accordingly, we have

f(x)dxdy = dxdy ^(r)dz,

where 2^.
(
1

)
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Hence Six) = 2j^ ^(r) dz.

But from (1), ii; being constant for the cylinder,

rdr = zdz = {r^-x^)^dz.

Hence , ,3)

The result (3) is the integral equation, obtained by von Zeipel,* involving

the plate density (which can be obtained from counts) and the cluster

density function

9*43. Other expressions involving cj).

(i) Let o’{x) denote the number of images counted on the plate within a

circle of radius x. Then the number of images in the ring defined by the

radii x and x-]rdxis 27rxf(x) dx. Accordingly,

cr{x) = 27r

J
xf(x)dx

fi^) =
1 d(r{x)

' 27TX dx
' ^ ^

Formula (1) has been used by von Y
Zeipel for obtaining the function f(x) j

from counts of stars on photographic
| / i/\

plates. /
' / / \

(ii) Let F{x) dx denote the number /
‘ / V ' \

of stars on the plate in the strip /
|

plS^\ -}

bounded by the straight lines at dis-

tances x and x^dx from the F-axis. \ /!/

\

These stars are situated in the cluster \ /
between the planes parallel to YOZ \ /
at distances x and x^^-dx from O
(Fig. 65). Then

Fix) dx =
JJ

S>ip) dydz, 55

the integration being taken over the circle, centre B and radius BA, Let

(r^,^) be the polar coordinates of a point C on this circle. Then we obtain

i>ip)ridr^.

* AnmUa de VObservcUoire de Parie, Mdmoires, xxv, P 29, 1908.
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But + r\,

so that, X being constant, pdp = r^dr^,

rR
Hence F{x) =

27rJ
p<j)(p)dp, (4)

(iii) Let Z(x) denote the number of stars on the plate between the

diameter a; = 0 and the straight line rr = Then

Z{x) — j
F{x) dx

or, using (4), i:(x) = 2n
/:(/:

p(j){p)df^dx. (5)

The functions cr(x), F(x) and Z(x) can all be found from star counts and each

of them is connected with the density function (j) by an integral equation.

It is therefore theoretically possible to deduce the function (p in several

ways. These formulae were given by Plummer.*

9 *44 . Solution of the integral equation in section 9*42.

We had, 9-42 (3), f{x) = 2 . (1)

Von Zeipelf has shown that (1) can be reduced to an integral equation solved

by Abel. J

Put k = B^-x^

and let f{x)^6(h),

Then from (1) d(h) = (2)

This is the usual form of Abel’s integral equation of which the solution is

<’>

Integrate the right-hand side by parts; we obtain

m - (4 )

Consider now the boundary conditions. The plate density vanishes at the

M,N. 71 , 460, 1911.

f Loc. cit, p. 29. t Ordle, 1 , 1826.
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periphery of the cluster corresponding to x = R, that is when A = 0 ;
hence

6(Ji) = 0 for A = 0. The integrated part of (4) thus vanishes. Hence

m (5)

from which ^'(g) = - P - To7T}a{i-hf dh

or, in terms of the original functions and variables,

On integrating by parts we obtain

TTL X J^=^r ^jr dx\x dx
]

The integrated part vanishes if f'(x) = 0 at x = R. Near the boundary of

the cluster the star density is small, decreasing to zero at the boundary;

hence we can write /'(a;) = 0 at a: = i?. We then have

4>(r)
1

(x^-r^y-
^Jr dx \x

f'(x)\dx. (7)

This is the form employed by von Zeipel in numerical applications to

clusters.

9 *45 . Alternative solution of the integral equation in section 9*42.

The following analysis is due to Plummer.* From (1) of the previous

section we have, applying the boundary conditions,

Hence

f{x) =
2J

~ <^{r) (r^ — x^)^ dr

= -
2
j^(r^-x^)^^^dr.

_ 2a:

^
^-^^}dr

dx “ J* {r^-x^)i dr

In this formula, x = OB and r = OA, where .4 is a representative point in

BD (Fig. 56). Also

r2 _ ^2 ^
where BA s z. Hence

dz = 2x
/.

BDA'(r)
dz. •( 1

)

M.N. 71 , 461 , 1911 .
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A formula of this type holds for any point such as C in the plane XOY;
all we have to do is to rotate the X axis

till it passes through (7, Let OC = q

and let if be a representative point in

the chord through C parallel to OZ; let

OM = Then we have

Idfiq)

q dq
-dz.

Summing for all points on BE, drawn

parallel to 0 Y, we obtain

^
2

/:
= 2 r<iy

Jo Jo b

I'ig. 56

where dS is an element of area of the quadrant BEJJ and the double inte-

gration is taken over the quadi*ant.

Let be the 2>olar coordinates ofM in the 2)lane BED, Then

But = and —

Hence Joy jx

= 7r{^(-R) -

But, at the boundary of the cluster, ^(r) = 0. Hence

'ViJ'-x* 1

-mdy.1 c
4>i^) = --

TTjo

Now

consequently,

We then obtain

g2

dy _dq dq

y
~

y
~

1 /'(g)
dq. .(2)

This gives the density function at a distance z from the origin
;
changing the

variables in (2) we have

<="

which is the formula 9*44 (6). The form as used by von Zeipel—9*44 (7)—is

obtained as before.
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9*46. EvdlvMion of the densityfunction from star counts (first method).

This method is due to von Zeipel. The plate density /(a;) is obtained by

means of 9'43 (3), namely,

/(^) =
1 dcr{x)

2ttx dx ’
(
1 )

where cr(x) is the number of stars within a circle of radius x on the plate.

The star density ^(p) at a distance p from the centre of the cluster is

given by 9*44 (7), which is

(2)

It is to be noticed that (j) depends on / only through f\ so that it is not

altered by changing / to /+ constant; hence, in calculating it is un-

necessary to determine and subtract the uniform density contributed by

non-cluster stars.

The procedure as adopted by von Zeipel* is to calculate numerical values

of f{x) by means of (1) from the star counts cr(x}. Then by interpolation

formulae the numerical values of the functions f'(x), -/'(x), — f'(x)

d i\ \

^ ^

and (x^—p^)^ successively obtained for each value of x and p

Corresponding to a given value of p, we then have

the radius of the cluster being divided into n parts Ax, and p being defined

as p . Ax.

The following tablet gives von Zeipel’s results for the globular cluster M3.

Table 47. Density function (f>{p)for M3

4p ^(p) 4p 4>iP) 4p <^{p)

1' 58-6 8' 4-83 19' 019
2 50-6 9 4-18 21 017
3 48-0 10 3-34 23 014
4 31-6 11 1-84 25 010
6 16-2 13 0-96 27 006
6 8-81 15 0-41 29 006
7 6-26 17 0-21 31 006

Rung. Sveneka Vet. Akad. Handlingar, Bd. 61, No, 6, p. 9, 1913.

t Annates de VObaervatoire de Paris, Mimoires, xxv, F 31, 1908.
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9*47, Evaluation of the density function {second method).

This method is due to Parvulesco.* A cluster is supposed to be built up
of n concentric uniformly dense spheres of radii and density and numbers

of stars according to the following scheme (the radius of the cluster is taken

as unity):

Radii

Density

NumVjor of sta;

Consider one of these spheres, with radius R and density <j>{p)^d\ from

9*42 (2) we have /*

n n-l n — 2 2 1

n’ n ’ n ’

n’ n'

dn, dn-l> ^n.—2> d^. d,.

K-1, ; N,.

j.
f{x) = 2d

or f{x) = 2d{R^ — x^)^. (1)

Hence the number, of stars, due to this sphere, between radii

and on the plate is given by

N{r^,r2) = 27r
I

xf{x)dx
JTx

= 4t7Td r x{R'^ — x^)^dx.
J n

.(2)

Hence

IfN is the total number of stars in the sphere,

4:7TN = y di?®.

= ,3,

Consider now the number of stars counted in the outermost ring on the

plate between radii (n--l)jn and n/n; the corresponding density is denoted

by Since the remaining (ti — 1) spheres do not contribute to this number
we have, from (3), putting R = 1, == (n — l)/n and = n/n,

If is obtained from the star counts, is given by (4) and hence is

found by (2).

The number of stars in the penultimate ring contains a number

(n—l n — 2\N /n—l n — 2\

\ n ’ n /'n n

due to the outermost sphere of radius R — 1, given by

Sur lea amas globtdairea d'Uoilea et leur reUUiona dans Vespace (Gauthier-Villars, Paris), 1925.
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The remainder of the stars in the ring come from the last ring pertaining

to the sphere of radius li = (n— l)jn; their number is given by

(n-1 n-2\ r (n-2Y]i
n ’ n U-l)_ .(6 )

Hence, if is the total number of stars in the penultimate ring, we obtain,

from (5) and (6),

•(7)

This equation gives since is known; then, by (2), is found.

This procedure is followed for the remaining rings. The density function

^ corresponding to a ring m (that is, at a distance m from the centre) is

found from n
= (8 )

m

This constitutes the numerical solution of the problem.

9*51 . Analogy with a spherical 7nass of gas.

Plummer * has suggested that, if a globular cluster has originated by local

condensations in a primordial gaseous nebula, it might be expected that

the star density at different distances from the centre will bear an approxi-

mate similarity to the density in the nebula.

Consider a spherical mass of gas in equilibrium under its own gravitation.

Let p and p denote the pressure and density at a distance r from the centre.

For a perfect gas in convective equilibrium the relation between p and p is

V =
( 1 )

where a is a constant and y is the ratio of the specific heats at constant

pressure and at constant volume.

If m(r) is the mass within a sphere of radius r,

m{r) = 47r
j
pr^dr,

J 0

whence ^ = 4t7rpr^. (2)

Consider an element ofvolume with a base of area dS, lying on the surface

of a sphere of radius r and between the spheres of radii r and r 4-rfr. The

hydrostatic equation gives

pdS-ip + dp)d8 ~{pdSdT),

M.N. 71 , 462,
1911 .
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where O is the constant of gravitation; consequently,

dp Ornp
j — 2 >

dr

whence, by (1) and (2),

Let y = 1 H— , (5)
' n

a:'‘=p, (6)

r = i, (7)
M

62=--!^. (7a)
OL{n-)r\.)

d^x
Then (4) becomes ~ 0. (8)

For isothermal equilibrium, 7=1, and we obtain from (4) in this case

f72

2^4™(logp)4-6fp = 0, (9)

where b\ =
^ a

The equation (8) is Emden’s equation for polytropic gas spheres.*

Two solutions of (8) are known—for the values n = I and n = 5. The first

is Ritter’s solution, namely

(n=l), x^Ai-^, (10)

and the second is the Schuster-Emden solution, namely

V3c
(n= 5), * = ^+i,2cV)l’

which may be written in the alternative form

where a = “ and = (12)
6c 6

Hence, from (6), we have the density p given by

where B = A^,

* Oaskugdn (Leipzig), 1907.

SSD
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9*52. Plummer s law of demity in a globular cluster.

It is assumed, following the analogy with a spherical mass of gas, that

the stellar density, <j>{r), at a distance r from the centre of a globular cluster

is given by g=

This formula may be conveniently referred to as Plummer’s density law.

It will be noticed that a cluster with this law of distribution is infinite in

extent, but that the total number, N, of stars is finite. N is found from

N = ^nB\ (2)
J 0 {a- + r^)^

whence B = . (3)
4:7T

J

R T cLt

so that, when R tends to infinity,

Al.„

or Itx) =^ ^
whence, by (3), E(x) = | (5)

r^ T (It

Again, by 942(3), - W
Write 7*2 ~ + x^),

from which and (3) we obtain

“
7T(a^ + x^f'

Also (r(x) = 27r
j
xf(x)dx

J 0

Nx^
and we find that crix) = -r r . (7)

a^ + x^

The formulae (4), (5), (6) and (7) can be used to test the assumed law of
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density by means of the observed distribution of the cluster stars on a

photographic plate.

Plummer* has employed the formula (5) in connection with the star

counts, madef under the direction of E. C. Pickering, of several globular

clusters. For the cluster oj Centauri, for example, it is found that the formula

2;(x) = 3540
X

represents the star counts very satisfactorily, the unit of distance, x, being

taken to be 7*14 minutes of arc on the plate.

Von ZeipelJ has also shown that the star counts of the globular clusters

M2, M3, M13 and M15 are in accordance with Plummer’s law.

In a later investigation Plummer § used further statistical material
|1
for

ten clusters to test the validity of the assumed density function; in some of

the clusters, the counts showed an excess of stars, close to the centre, over

the theoretical numbers; with this exception the density law represented

the observed distribution with a close approach to accuracy.

It is to be remarked that the tests concern only the most luminous stars.

By increasing the length of an exposure on a (cluster, the number of images

on the plate is increased, due to the inclusion of still fainter stars. But in

practice there is a limit to the length of exposure for useful results to be

obtained; beyond this limit, the central portions of the clusters become

irresoluble into discrete images and, consequently, the density law cannot

be examined.

Plummer’s argument in favour of the stellar density law being a con-

sequence of the adiabatic equilibrium of the primordial gaseous nebula has

been criticised by von Zeipel on the grounds that during the condensation

of stars, their movements would be taking place in a resisting medium with

the result that the cluster would become more concentrated towards the

centre as compared with the corresponding distribution of density in the

original nebula.

To account for the density law in clusters, von Zeipel invoked the kinetic

theory of gases, suggesting that the stars of a cluster behave like the mole-

cxiles of a gas and interpreting y, given by

7-l + i = l-2,

as the ratio ofthe specific heats in the sense ofthe kinetic theory . Eddington
,^

however, challenged von Zeipel’s arguments and concluded that “instead

of interpreting y (or n) physically, we regard y as a mathematical constant

M.N. 71, 464, 1911. f Harvard Annals, 26, 213, 1897.

t Kung, Svenska Vet, Akad, Handlingar, Bd. 51, No. 5, p. 9, 1913.

§ M.N. 76, 107, 1916.
||
Harvard Annals, 76, 43, 1915. If M.N. 76, 574, 1916.

20-2
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in the equation of the star density”, divorced entirely from any physical

interpretation based on the equihbrium of a spherical mass of gas.

9*6. Estimates of the maximum values of the proper motions and radial

velocities of stars in a globular cluster.

In a globular cluster the individual stars are necessarily in motion under

the gravitational influence of the cluster stars as a whole. Taking spherical

symmetry as the simplest case, we see that the field of force in the neigh-

bourhood of a particular star consists, first, of the general attraction of a

sphere in which the density is a function of the distance from the centre and,

secondly, of the attraction of chance stars that are temporarily in the im-

mediate neighbourhood of the given star. As will be shown in the next

chapter, the second effect may be regarded as negligible.

Since the attraction is central, a star will move in a plane passing through

the centre. Let (r, 0) be the polar coordinates of a star referred to the centre

of the cluster and the star’s orbital plane. If M(r) denotes the mass within

a sphere of radius r, the equations of motion for the star are

where G is the constant of gravitation, and

- 0.

From (2), r^0 = c,

where c is a constant.

Taking the units of length, time and mass to be respectively the astro-

nomical unit of distance, the year and the mass of the sun, we have

0 = 47T^,

(
1 )

(
2

)

(3)

We consider two extreme possible orbits, (i) a rectilinear orbit and (ii) a

circular orbit. It may be expected that the actual orbit will be intermediate

in character.

For a rectilinear orbit, c = 0 and, from (1),

dr r^

whence, on writing r = v,

f
M{r)

dr.

If r^ is the maximum distance of the star jfrom the centre, we obtain.

since = 0 when r = M(r)
dr. (4)
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We clearly have

where
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F* = 8;t®

v^<V\

Jo r
dr.

Again, for a circular orbit of radius r, we have from (1)

(
5 )

(
6
)

The proper motion for any given value of r will be a maximum when the

rectilinear orbit and the plane of the circular orbit are perpendicular to the

line of sight.

Let p, in seconds of arc, be the angular distance corresponding to r, so that

r (
7

)

wherep is the parallax in seconds of arc. With the units adopted, the annual

proper motion p (in seconds of arc) is given by

fi= Vp.
(
8
)

Then, from (5) and (6) and using (7) and (8), the proper motion cannot

exceed r C<»M(oln\ _ U

or

(9 )

( 10)

for rectilinear or circular motion respectively.

Assume that the average mass ofa star is m and that N{p) is the number of

stars within a sphere of angular radius p. Then

M^pIp) = miV(/o).

Von Zeipel,*** to whom the preceding arguments and the calculations

below are due, has estimated from his counts of the cluster M3 that the

maximum value of N{p)jp is 4*2 for p = 150^ and that

Hence, from (9) and (10), the maximum values of p in the two cases (we

write then p^ and p^ are given by

p^ = 7r(2^)* (10m)* = 28(mp^)*, (11)

P2 = 27rp*(4-2m)* = 13(mp^)*. (12)

The brightest stars of a cluster (to which the earlier counts refer) are

undoubtedly giant stars and as a reasonable estimate of mass of an average

* Annates de VObservatoire de Paris, Mimoires, xxv, F 4, 1908.
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star we can take the value ofm to be 10. For a near cluster we can take p to

be C'CCOl. It is then found from (11) and (12) that

= 0-00009, //g = 0-00004. (13)

As we can see from the modern long-exposure photographs of clusters, the

estimates of the number of cluster stars with which we have been dealing

are only a small proportion of the true number of stars; accordingly, the

numerical values in (13) should be several times greater. Even if the factor

wwe 10, the values of and are still too small to be determined success-

fully by present methods.

In the same way, the maximum radial velocities will occur when the

rectilinear motion is in the line of sight and when the plane of the circular

orbit contains the line of sight. The observable radial velocities in the two

cases must then be not greater than \\ and Tg respectively, w^here

\\ = 28(mj[;)^, Ig === 13(mp)^.

These velocities are expressed in astronomical units per annum; the values

of and Ig hi km. /sec. are accordingly

28/c(mp)^ and 13a:(/^P)^

respectively, where k = 4*74. Hence, with the previous values ofm and p,

— 4-2km./sec., T 2 = l*9km./soc. (14)

Ifwe allow for the under-estimate ofthe number of cluster stars, these values

might be expected to be increased several-fold. Radial-velocity measure-

ments w^ould then appear to hold out a certain amount of promise for

determining the distribution of velocities of the brightest stars. But in

view' of existing telescopic equipment and technical methods of determining

radial velocities, such an investigation could hardly be attempted at

present with a reasonable prospect of success.

9*71 . The virial theorem as appMed to a star cluster.

We consider a stellar system in which the motions of the individual stars

are governed by their mutual attractions and collisions are ignored.*

Let {x, y, z) be the coordinates of a star referred to the centroid of the

cluster as origin. The a;-equation of motion of a given star, of mass m^, due

to the attraction of a star of mass with coordinates (Xp z^) is

miXi = , ( 1 )

where 0 is the gravitational constant and

* H. Poineax^, Hypotheses Cosmogoniques, 90, 1913 j A. S. Eddington, M.N, 76, 624, 1916.
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From this last formula we have

311

^L-3 = ±(±] (2)
A%- dXi\Aj

From (1) and (2) and summing for all tlie stars, N in number, wo have for

the a;-oquation of motion of

This equation is the same as

0 (
ChuumA _ , ^

U -=^l j=-l ^kj /

N N 'yyt

Write = 1 U^IO- (3)

Here Q is the total gravitational potential energy of the cluster. Let

Yf, Z.i) be the components ofthe gravitational force on The equations

of motion are then pp
niiXi = X

i

(
4

)

with two similar equations in y and z.

The function Q does not involve t explicitly, being a function of the

coordinates only. Hence

dQ ^IvQ. cQ , dQ,\

N
= -2 uiiiXiXi+ + Z^i,.)

1

= + + (5 )

The internal kinetic energy, T, of the cluster stars is given by

T = ^fm,(xf + 2/H=^!)- (6)
1

Hence, from (5) and (6), T + ii — h, (7)

where h is the constant of integration and is equal to the whole energy of

the cluster with reference to its centre of mass.

Also, from the identity

^2—
(
a:
2
)
= 2x^A-2xx,

we have

= 2mi(xl + yl+i^} + 2(XiXi + yJi + ZiZi). ...(8 )
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Let C denote the moment of inertia of the cluster about its centre of

mass. Then
C =

1X

where r| = xf+y|+ 2|.

Summing (8) for all the stars, we obtain

^-47'+2r,

N
where F = 2 (10)

The expression for V given in this last formula is called the virial, a function

which has important applications in the kinetic theory of gases.

Now, from (4) and (10),

-?(*•
dD
dxj

dQ dQ
‘dz.
-)

and since i3 is a homogeneous function of the coordinates of order — 1, we
have in the problem rmder consideration

Thus (9) becomes

V^Q.
d^C

dt^
= ^T + 2Q, (11 )

which can be written in the alternative forms by means of (7)

d^n
-^ = 2T+ 2h, (12)

d^n

^ =

If the cluster is in a steady state, G is independent of the time and in this

case we have Q = 2h, T = -^Q = -h. (14)

9*72 . The rate of dissolution of a cluster.

Eddington has employed the results of the previous section to investigate

the rate of dissolution of a moving cluster.* As we have seen, the observed

characteristics of a moving cluster are the substantial equality and paral-

lelism ofthe motions ofthe individual constituent stars. As the cluster moves
through galactic space it will encounter non-cluster stars which will produce

changes in the magnitude and direction of the motions of the cluster stars

through their gravitational attractions. We shall discuss this problem in

greater detail in Chapter x
;
meanwhile it will be sufficient to consider some

numerical results. For example, Jeansf has calculated that if the cluster is

M.N. 76 , 627, 1916 . t 74^, 111 , 1913 .
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moving with the speed of 40 km. /sec. relative to the non-cluster stars, a

reasonable value of the space-density of these stars being assumed, the

average deflection of the cluster stars will be 1' in about one million years.

Although this scattering appears small, yet it is evident that over long

astronomical intervals of time the cluster would cease to maintain its com-

pact form and would eventually be dissipated. The fact that clusters exist

despite these disintegrating influences suggests that there is some counter-

balancing force, such as the mutual attraction of the cluster, preventing its

comparatively rapid dissolution. In the absence of such a force Eddington*

has shown that the maximum age of the Taurus cluster (to which the pre-

ceding numerical details apply approximately) could not have exceeded

57 million years.

It will be shown in section 10*16 that the probable deflection of a cluster

star due to the pertm'bations of non-cluster stars is proportional to the

square root of the time during which the process continues; hence the

kinetic energy, with reference to the centroid of the cluster, acquired

through encounters is proportional to the time. Thus the rate of increase of

internal kinetic energy is given by where is the linear component

of velocity transverse to the direction of motion of the cluster. We write

this expression just given as in which M is the total mass of the

cluster. From the previous section the rate of increase of potential energy

will be twice or ifwe assume that the steady state ofthe cluster

is maintained. But, by 9*71 (3), the potential energy can be expressed as

~ OM^I2c, in which c is related to the linear dimensions of the cluster and

to the law of distribution of the cluster stars. Hence

from which

dt\ 2c J

J. _ 1 _ ^2
(
1

)

In this formula Cq is the value of c at the beginning of an interval t,

when Cq = \c, we find that

^ GM^
2ca2

’ (
2

)

Thus T is the interval during which the hnear dimensions of the cluster have

been doubled.

We take a to be the linear transverse velocity corresponding to a deflec-

tion of 1'. Now, for the Taurus cluster, the velocity of 40 km./sec. is equi-

valent approximately to 800/19 parsecs per milhon years; accordingly,

a = ®^sin 1' = 0*0123 parsecs per million years.

* Stellar Movements

^

254, 1914 .
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If we take the mass of the sun as unit and a million years as the unit of

time, the unit of distance required to make the value of 6^ in (2) unity is

0-165 parsec—the dimensions of G are [Lf \TY^ [^\~^ if® value is 477^

when L ~ I astronomical unit, T = I year and M = mass of sun. In terms

of the new units, a = 0*073. The diameter of the Taurus cluster is estimated

to be 10 parsecs and Eddington takes c as 3 parsecs, so that its value in

terms of the new unit is 18. Hence, from (2),

r = 5J/ million years. (3)

Forty highly luminous stars are known to belong to the cluster, on the

average about 40 times brighter intrinsically than the sun,* that is to say

about four magnitudes brighter on the absolute scale. As the sun’s absolute

magnitude is -f 4"^-6 (bolometric), the absolute magnitude of the Taurus

stars will, on the average, be close to 0; from Eddington’s mass-luminosity

relationship (Fig. 5, p. 21) their average mass will be about four times the

mass of the smi. Thus M is approximately 160, so that, from (3), r is of the

order of one thousand million years. Additional members of the cluster

will tend to increase this estimate still further. The mutual gravitational

attraction of the cluster stars thus prolongs greatly the life of a (duster in

spite of the disrupting influences of the general field of galactic stars.

* See Stellar Movements

^

60, 1914.



CHAPTER X

THP^ DYNAMICS OF STELLAR SYSTEMS

10*1 1 . Introductory.

We consider in this chapter an isolated stellar system. We have in view

the dynamical and density characteristics of the Galaxy which we consider

to be unaffected by the very remote extragalactic nebulae, themselves

galaxies of the same order of magnitude as our stellar system.

The motion of a given star is determined by the gravitational attraction

of all the other stars and matter in the system. This force may bo regarded

as arising in two ways: (a) from the ‘‘smoothed” attraction of the system

as a whole and {b) from the accidental effects of stars temporarily in the

neigh boui-hood of the given star. As reg<ards (6) it is at once clear that the

motion of a star may be radically changed by the close approach of another

star and it is therefore necessary to investigate the frequency and magnitude

of such effects. The term cmcountcr is used to describe the close approach of

one star to another, resulting in a change in direction of the velocity of each

star. It will be shown that such encounters are so infrequent that we can

ignore (6) in investigating the dynamics of a stellar system.

1 0 • 1 2 . I'he dynamics of stellar encounters.

We consider two stars and of masses and Ifg’ i^^oving indepen-

dently and making a close approach. Let be the centre of mass, which we
regard as being at rest. The orbit ofeach star will be a branch of a hyperbola

with as focus. Fig. 57 shows the hyperbolic orbits of the two stars, the

asymptotes with reference to S-^ being OK and OL. We shall investigate the

deflection in the velocity of due to the gravitational attraction of

At great distances from is moving parallel to KO before the encounter

and parallel to OL after the encounter. The deflection is n — KOL, which

will be denoted by It is clear that ^ is also the deflection suffered by

during the encounter.

Let F^S-^ = and FiS'g = ^2 * Then from the definition of

and hence ^1 + ^2 = • •

The equations of motion of about are

(2)

r\d = h, (3 )

in which 0 is the gravitational constant and h is the “constant of areas”.
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Using (1) and (3), (2) becomes

where

Eliminating t between (3) and (4), we obtain the differential equation of

the orbit, from which the polar equation of the orbit is found in the usual

way to be
i

Y ~
^ 1 -he 0086^1

’

where I is the semi-latus rectum and e is the eccentricity.

Fig. 57

Also, we have the following relation between h, and Z, namely,

— {ij,, (6 )

Referred to the principal axes OX, OY the equation of the hyperbola is

al

Then OA = a^, = %e and = aj^(e- 1) (7)

Also, bl = al(e^-l) and Z = — . (8)

From (6) and (8), A* = (9)
d-l
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The equations of the asymptotes OK, OL are

b^x±a^y = 0.

Hence the perpendicular distance is
,
since is (a^e, 0). Thus

F,D==b^.

If Fj is the velocity of 8^ at a great distance from i\, the constant h is

by ^ ^

Also, from (9) and (10), (11)

The deflection ijr is given by cot— = —
, (12)

^ d-^

whence, by (11), tan^ = ^^i-
2

. (13)

In the same way, if we consider the orbit of 8^ relative to 8^, the radial

equation of motion of 8-^ about F (Fig, 58) is

f-rO^=

where fi = 0(M-^-{-M^ (14)

and r is the distance between and M^,

The relative orbit of 8^ is similar to the

orbits in Fig. 57, with the same angle rjr

between its asymptotes. If V denotes the

velocity of 8-^ relative to 8^^ at a great dis-

7 tance from 8^ (or F), we have from (13)

= ( 15)

in which h is the perpendicular distance

of F (or 82) from an asymptote. Thus h

is the distance at which the stars would

pass each other if their motions were

unaffected by gravitation.

10-13, Multiple encounters.

Consider now the encounter ofthe star 82 with a moving cluster consisting

of equally massive stars, the common motion, relative to /Sg, being F in a

direction parallel to KO (Fig. 58). Let v denote the number of cluster stars

per unit volume. All stars which encounter 82, so that the perpendicular
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distances from to the asymptotes of the relative orbits are less than a

given length 6, lie within a cylinder whose axis is parallel to KO and whose

cross-section is nb'^. Hence the number of stars making such encounters

with in unit time is nvbW, (1)

and the deflection produced in the path of S2 by each of these stars is, on

the average, greater than ijr defined by 10*12(15). Hence the number of

encounters, per unit time, producing deflections greater than ^ is

J73 2
’

firom which the average interval between two encounters is

—
TTVfl^ 2

•(2 )

.(3)

10*14. Very close encounters.

Following Jeans,* we define a very close encounter as one in which the

deflection produced exceeds OO'^. By 10*13 (3), the average interval between

two such encounters is at least yz

In evaluating this expression, Jeans expresses F, v and fi in c .g . s . units.

We shall use here the astronomical unit of distance, the sun's mass and the

year as the units of length, mass and time. In these units, we have

O = 47r2.

Also, putting ifi == il/g = 1 in 10*12(14), we obtain y = or approxi-

mately, ^ ^ 80.

We take F = 20 km. /sec. as an average velocity of one star relative to

another. Now

1 km. /sec. = astronomical unit per annum.

In our units, we shall have F = 20/4*74, or simply,

F = 4.

Jeans takes the density of stars near the sun to be approximately 1 per

10 cubic parsecs; in our units, this is

v^\. 10-i«.

Inserting these values in (1), the average interval between two very close

encounters is
3. 10^^ years. (2)

* Astrommy and Cosmogony^ 310 , 1028 .
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If c denotes the distance in Fig. 68 (the distance of closest approach),

l\i
we have

.(3)

For an encounter which produces a deflection of 90°, we have a = 6 and

e = and by 10*12(15)

6 =
j/2- .(4)

With the values of and V already used, we obtain from (3) and (4),

c — 2 astronomical units, approximately.

For encounters within this distance, the direction of a star’s motion will

be altered by more than 90°.

10 • 1 5 . The frequency of collisions.

If two stars, similar to the sun, have a grazing encounter, the value of c is

given by the sun’s diameter, so that in astronomical units c — 2,1

.

10^/15 .
10^

approximately, or roughly

^ ~ Too* (1)

From the relations

c == a(e — 1) and 6^ = — 1)

we obtain, by eliminating e,

62 c2-j-2ca.

Now, by analogy with 10-12(11), a = /^/F^; hence

‘ = +
2c/^

F2

'

With c given by (1) and with = 80 and F = 4, we obtain, approximately,

From 10*13 (1), the average interval between two encounters is

1

TTVbW

so that, for grazing encounters, this interval is about
I*

6 . 10^® years.

For actual collisions, the interval will be greater; consequently, grazing

encounters and collisions are such rare events that they can be ignored in

discussing the dynamics of the stellar system. Even for globular clusters,

with a star density one thousand times that under consideration, the in-

terval for grazing encounters is of the order of 10^^ years and, again, such

encounters may be ignored.
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10*16. The cumulative effect offeeble encounters.

Encounters between stars at comparatively great distances produce

small deflections, but as such encounters must be very many times more

frequent than the encounters just considered, their cumulative effect may
not be negligible, Jeans’s calculations* in this case are based on the following

arguments.

From 10-13(2), the number of encounters per annum producing deflec-

tions greater than }jr is
nvfi
73 cot^2-

Hence the number of encounters per annum producing deflections between

}Jr and \jr + d^jr is

TTVfl

,cos^

F3 .

sin3~

dxjr.

.( 1 )

If }Jr is small, this number is substantially

STTV/i^d^jr

The encounters take place in haphazard directions and the corresponding

small deflections are to be compounded according to the theory of errors.

Thus the total probable deflection Wy compounded of small deflections

- --j between two limits a and ^ and occurring during a time /, is

= + + (2)

so that, by (1), W^ = t.

ijfl+ rlrl+...,

Snv/i^ C^drjr

Snv/i^

2 //?

J a xlf

7s
<log .(3)

Formula (2) is derived on the assumption that the deflections ...

are independent. If the minimum value is extremely small, the corre-

sponding minimum distance, c, of two stars during an encounter must be

very large; if it is several times, say, the average distance between two

adjacent stars in a normal distribution, the corresponding volume of space

will, at a given instant, contain a certain number of stars each producing

a minute deflection; but, in the aggregate, these random encounters may be

expected to neutralise each other so far as their combined effect is con-

cerned. Jeans accordingly chooses the lower limit a to correspond approxi-

Astronomy and Cosmogony, 311 , 1928 .



10-17 The Dynamics of Stellar Systems 321

mately to the distance between neighbouring stars in a normal distribution,

that is, to In this case 6 = c so that, by 10*12 (15),

2/1 2/iv^
“ ^^ T^' •

With /I = 80, = 1 . 10"^®, F — 4, we find that

a = 2. 10-5^4" (4)

22 ^
and ^ 10-1^ ^ log'-.

7

If these feeble on(?ounters eventually produce a deflection T = nj2 in T
years, wo have .

,

T = — —
. (5)

14 log (4/a)

The formula (3) was derived on the 8Up];)osition that a and are small;

however, T exceeds the value given by putting /? = 7r/2 in (5). This

minimum value of T is 7 .
10^2 years.

10-17. The. fumlamental principle of stellar dynamics .

The preceding calculations indicate, ovdng to the immense intervals of

time involved, that with the galactic system as at present constituted the

effects of encounters are negligible; in general a star pursues its path which

is not substantially affected by other stars temporarily in its neighbourhood.

Also, as we have seen in section 9*72, the mutual gravitation of the stars

in such a cluster as the Taurus cluster ensures a long life for a formation of

this kind and substantially counteracts the effectiveness of the ordinary

galactic stars, through which the cluster must pass, to clause disruption.

A possible disintegrating influence to which we have not yet referred is

that of galactic rotation and we briefly mention the results of a recent

investigation* by B. J. Bok on the stability ofmoving clusters. It is assumed

that the motions of the individual cluster stars are governed by (a) the

attraction of the cluster as a whole, (6) the attraction of the galactic system

as a whole and (c) the chance encounters of non-cluster stars. The principal

influence tending to cause disruption of an extensive cluster is undoubtedly

galactic rotation but, even so, Bok finds the effective fife of a cluster to be,

at least, of the order of 10^ years. The numerical results in Table 48 for the

Taurus cluster are taken from his paper it is assumed that the cluster is

ellipsoidal in form with the present values of the semi-axes a, b and c

respectively 6, 6 and 4 parsecs, and that the present stellar density, v, of

* Harvard Circular, No. 384, 1934.

f Ibid. p. 30.

SSD 21
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the cluster is 0*25 O per cubic parsec (the c-axis is perpendicular to the

galactic equator). The table gives the values of these quantities at various

times t in the future.

Table 48

t

^unit= 10®

years)

a
(parsecs)

6
(parsecs)

c

(parsecs)

V

(0 per
cubic parsec)

0*5 6-3 6-2 41 0-22

10 6-6 6-4 4-2 0-20
1-5 7-0 60 4-3 0-18

20 7-5 0-9 4-4 0-16
2-4 8'7 71 4-5 013
2-5 9-9 7-2 4-5 Oil
2-6 21-8 11-2 4-6 003

According to Bok, it may be anticipated that after 3.10® years the cluster

will be completely dispersed. The whole life of the cluster must of course be

greater than the number just quoted and it may well be 10^® years.

So far as the motion of an individual galactic star is concerned, we con-

clude that its motion is, in general, determined only by the gravitational

field of force of the galactic system as a whole (it is this feature that differ-

entiates stellar dynamics from the dynamical theory of gases) and we take

this statement as the fundamental principle of stellar dynamics.

For analytical purposes we replace the actual attraction of the system by

a “smoothed” attraction of the system as a whole, in which we imagine

the actual discontinuous gravitational field due to the stars, regarded as

mass-points, to be replaced by a continuous gravitational field produced by
a smoothed distribution of density.

10*21, The fundamental equation of stellar dynamics.

Consider a stellar system ofN stars, referred to a rectangular system

of axes. Let the number of stars with coordinates between {x, y, z) and
{x-\-dx, y-\-dy, z + dz) and with velocity components between (u,v,w) and

(u + du, v-i-dVjWi-dw) be denoted by dN. If we assume the existence of

a function .

f(t; x,y,z; u, v,w)

expressing the space-velocity distribution of the stars, we have

dN ^f{t; x,y,z\ UyV,w)dxdydzdudvdw (1)

or, denoting the space-velocity element by dQ, so that

dQ — dxdydzdudvdwy (2)

dN ^f{t] XyyyZ\ UyV,w)dQ. (3)we have



10‘21 The Dynamics of Stellar Syste7ns 323

Denote by V the gravitational potential at (x,y,z)\ F is a function of

y and z. The components {X, F, Z) of the gravitational force per unit mass

are given by

so that X, Y and Z are functions of the coordinates (x, y, z).

The equations of motion of an individual star are

After an interval dt, the {x^y^z) coordinates of a star become {x^.y^^z^,

where
x-\-udt, y^ — y-\-vdt, z^^z-\^wdt, (6)

and tiie (a, v, w) components of velocity become (?/i, u\)y where

du
,

dv dw ,

^ dt ^ dt ^ dt

or, by (5), u^^^u-vXdt, v^ — v-\-Ydty u\:=w + Zdt. (7)

The dN stars now occupy a space-velocity element dQ^^ given by

dQi = dx^dy^dz^du^dv^du\. ( 8 )

Now dQ^ = (9)
d(Xy y, Zy Uy Vy W)

and from (6) and (7) the value of the Jacobian is

1. 0, 0, dt. 0, 0

0, 1, 0, 0, dt. 0

0, 0, 1, 0, 0, dt

~r dty
dy

1, 0, 0

dx^^’
^dt,
dy

dY ^

dz^'
0, 1, 0

dx^^'
dty

dy
^^dt 0, 0, 1

which reduces, to the first order in dty to unity. Hence by (9)

dQ^ = dQ, ( 10 )

After time dty the number dN of stars in the space-velocity element dQ^

is given by

dN f(t-bdt; x-^-udtyy-hvdtyZ-i-wdt; U‘i-XdtyV+ YdtyW+ Zdt)dQ^,

( 11 )

21-2
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Expanding to the first order in and equating ( 1 1 )
to ( 1 )

we have
,
making

use of (10),

or, by (4),

df df df df ^df ^df „df ^+ —h w-j” + t ^—V Z -z — 0,
at ex oy oz ou ov ow

df df df df dv df dv df dv df ^
“ Si

+ ^ du + ~dv + 0w
~

.( 12 )

.(13)

These formulae were given by Jeans.* They are the equivalent of Boltz-

mann’s equationf in the kinetic theory of gases, with molecular collisions

omitted.

Let the operator D/Dt denote differentiation with regard to the time,

following a star throughout its motion; the operator thus represents the

rate of change of a characteristic pertaining to a particular group of stars.

In this sense, DjDi is equivalent to

D 9 dx d dy d dz d du d dv 9 div 9

Dt dt dt dx'^ dt dy dt dz ^ dt du'^ dt dv dt dw *
(14)

Hence when the motions are governed by the gravitational potential, V,

we can write (13) in the form dj*

l)t’
0 . .(15)

This is the statement of Liouville’s theorem. J

We can write the theorem in a slightly different notation. Since dN is

invariable with the time,

(16)

and hence, by (3) and (15), 2iW)-o, (17)

so that, as in (10), II

10*22. Jeans's theorem.

Since X, Y, Z are functions of x, y, z, the equation

3/ 3/ 9/ 9/ ^ 9/ r.

is a partial differential equation, of the first order, in the variables t, x, y, z,

u, V and w. The solution is found by Lagrange’s method.§ Form the sub-

.( 1 )

sidiary equations
dt =

dx _ dv

u V w X Y
which are seen to be the equations of motion.

d^

V

dw
(2)

* M.N. 76, 70, 1915. f Jeans’s Dynamical Theory of Gases (4th ed.), 208, 1925.

t Jeans’s Dynamical TTieory of Oases (4th ed.), 73, 1925.

§ See, for example, Forsyth’s Differential Equations (6th ed.), 405, 1929.
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If Ii{t\ x,y,z\ u,v,w) = ... Iq = are six independent in-

tegrals of (2), where (Xg, ... are constants, the general solution of (1) is

J = F{Ii, I2 , ••• 1q), ( 3 )

where F is any function of 4 , /g, ...

Now, by (1), DfjDt = 0, so that / is constant along the path of a star;

hence / is a function of those quantities which remain constant along the

orbit or path of the star.

Although (3) is the most general solution ofthe equation ( 1 ), the frequency

function / is limited by the consideration that Poisson’s equation must be

satisfied at all points of the system when the potential V is due, as we are

supposing, to the system itself. Poisson’s equation is

V2F = — 47rp, (4)

where p is the mass per unit volume in the neighbourhood of the point

{x,y,z).

We suppose that the stars are divided into groups according to mass, so

that w^e may take all the stars within one group to have the same mass M.
By 10-21 (1), the number of stars, of a given group, per unit volume and

with velocity components betw^een {u, v, w) and (u + du, v 4- dv, w + d\v) is

f{t\ X, y, z\ u, V, w) dudvdw. (5)

Hence the total number, of such stars per unit volume is obtained by

summing (5) for all possible values of u, v and w, with the limitation that a

star with a given value of (u, v, w) shall not escape from the system. Thus

= jj
jfdudvdw (6)

and p is then given by p = ZM
jj

jfdudvdw,

where the summation refers to the various groups of stars and the assump-

tion is made that the same form for/ applies to each group.

Poisson’s equation is then

VW = -4:7rZM
I-fdudvdw. (

7
)

In the sequel, we shall generally write (7) simply as

yW = -inM
I-fdudvdw,

in which the summation is implied.

(
8

)
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We refer to the results embodied in the formulae (3) and (8) as Jeans's

theorem,

10*23. The dynamical equations for a stellar system in a steady state.

Rewriting 10*22 (6), we have for the number, v, of stars per unit volume

V =
JJJ

f{t; x,y,z\ UyV,w)dudvdw,
(
1

)

so that, in the general case, p is a function of t, x, y and s.

velocity function/ is such that dfjdt ~ 0, then by (1)

If the space-

^^=0-
dt ’

consequently, the distribution of the stars in the neighbourhood ofany point

is independent of the time. The system is then said to be in a steady state.

In the sequel we shall consider the possible steady states of a system, so

that the function / has the analytical property

II p (2)

The subsidiary equations (which are now five in number) are

dx dy dz du dv dw
IT " T “ w “ z “ T ” H'’

( 3 )

and the general form of/ is given by

/ = F(I^y Jzi (4)

where I^(x, y, z\ u, v, w) = a^, 4 =

are first integrals of the equations of motion not involving the time ex-

plicitly. Thus / is a function of such quantities as do not involve the time

explicitly and remain constant along the orbit of a star.

One such integral is the energy equation, which we write in the form

= + — (5)

This follows simply from (3); for we have—writing dVjdx for X, etc.

—

udu = ^-dx, vdv = ^dy, wdw = ~dz,
dx ^ dz

whence, on adding,

giving the result (5).

\d{u^-\-v^+ w^) = dVy

* M.N. 76, 70, 1915. See also Jeans’s AstroTwmy and Cosmogony^ 364, 1929, and Charlier,

lyuvid Medd. Ser. n, 19, 1918, in which the theory is developed to take account of encounters and
collisions; the fundamental equation is written in the form

Dt
=V/+V/'.

where V/ «uul V/' denote the effect, of encounters and collisions respectively.
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Other possible integrals of (3) are conditioned by the general properties

—spherical, uniaxial, etc.—of the system under investigation.

As before, if the potential is due to the system itself, Poisson’s equation

has to be satisfied at all points of the system.

10 *24 . The ellipsoidal law of velocities.

In the neighbourhood of the sun, the chara(^teristic feature of stellar

motions is the fact that the peculiar velocities have an axis of greatest

mobility, and this characteristic is represented most conveniently on the

basis of Sehwarzschild’s ellipsoidal law of velocity distribution. If we
consider the ellipsoidal law to be associated in general and at all points with

the steady state of a stellar system, the function / must be expressible in

the form
/= F{x,y,z\ au^-\-bv'^-{-cw‘^-^2fvw-\-2gwu-\-2huv), (1)

in which a, c, ... h are in general functions of x, y and z. In this general

form the lengths and directions of the principal axes of the velocity ellipsoid

vary from point to point of the system.

For example, if the system is heterogeneous, the only integral of the

equations of motion that can be found is (5) of section 10*23 and the

space-velocity function / takes the special form

where c? := + (2)

In this case the velocity-distribution is spherical but the space-distribution

can be of any form, depending on the analytical expression for V in terms of

X, y and z.

If we assume that F == 0 at infinity,

— 2F = a negative quantity;

and if a star remains a member of the system its velocity must not exceed

\/2F; this latter is the velocity of escape. The density, v, is given by

Hence is a function of F, namely v(V), and the equi-density surfaces are

the equi-potential surfaces F = constant. Poisson’s equation is then

V^F —4nMv{V),
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1 0*3 1 . The frequency function for systems with spherical symmetry.

In this case V is a function of the distance, r, from the centre of the

system. Hence

r dr ^ r dr ^ r dr
^

so that the group of subsidiary equations is

dx dy dz du dv dw

u V w xdV ydV zdV'

r dr r dr r dr

From these, we have the pair

wdy — vdz,

ydw = zdt\

whence, on adding and integrating, being a constant,

/o ~ yw — zv^a^. ( 1

)

This is the expression of the constancy of the angular momentum, per unit

mass, about the a;-axis. Similarly,

L^~zu — xw —
(2)

I^^xv— yu — a^. (3)

The frequency function / is then

/—/(A> -^3?

in which is the energy integral.

Since F is a function of r, it follows formally from Poisson’s equation—or

simply from considerations of symmetry—that v is a function of r. Hence

by 10*22(6), the function / must also be a function of r. Now the total

angular momentum, /, defined by

11^11+ II

is a symmetrical function of r for, from (1), (2) and (3), we have

/2 = (x^ + 2/^4- z^) {u^ + w^) — {xu 4- 2/v + zwY

= ch^^ — rH^,

where c is the velocity as in (2) of section 10*24.

The function /is then given by

/(4/i+/i+/l)

or by /(c*— 2F, cV®

—

rH^).
(
4

)
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10*32. The fundamental equation in polar coordinates.

Let {r,0, (j>) be the polar coordinates of a star with reference to the centre

of the system (Fig. 59), ^ being the azimuthal angle. The elements of a

linear displacement are

{8r, rSd, r sin 05^)

along SA, SB and SC respectively.

Let R, S, 0 denote the corresponding

components of linear velocity. Then

R — r, fy — rd, 0 = rsin/9^. ...(1)

The equation of continuity to be satis-

fied by the frequency function /is

Dt

or, in polar coordinates,

whence

or

Dt

dR' d0

(r,0,^; R,&,0) = 0,

30

®
0.

cr r do rmiOdcj) oR cS 00
( 2

)

Now, the components (a, fi, y) of the acceleration along SA, SB, SC respec-

tively are

whence, by (1),

a = r — rd^— rBin^0.<p^,

yS = -- ^(r^d)--rsinO cosO .6^,
r at

02 02
a = R ,

^ A R0 cot (9

^ =
’

r T

A R0 Goto
y = 0+ 1

.00.
r r

Also, expressing the gravitational potential in polar coordinates, we have

1 dVdV
dr’

137
r dd' rsin6?

'
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Hence i-i(e“ + 0>) - (3)

d + ,4,
r r r ou

. E0 cot0 1 dV0 +— -f .&0 = 5
r r r sin deep

Insert the expressions for R, & and 4>, obtained from (3), (4) and (5), in

(2); then

^

gay
^

^ 8/
,

pF
,

1 I 8/

dr r dO rainffd(f> r j dR

+ 02]
3[

\r 30 r r jd9

^(_i (6)
(r Sind dp r r \d<P

This is the fundamental equation for the space-velocity distribution func-

tion/in polar coordinates, the system being in a steady state.

10*33. Application of the fundamental equation in polar coordinates to

spherical symmetry.

For spherical symmetry, the functions / and V must be independent of

6 and of since the axes OP and OF (0 = 0 and 9^ = 0) in Pig. 59 can be

chosen arbitrarily. Thus

dd df>
^

^ 37 37 .

Then, (6) of the previous section becomes

This equation must be true for all orientations of the 0-axis; hence

<*'

*“>

9/ 9/
a(02) “ d(0^y

(2) can be written (3 )
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Let = 02^02 (4 )

Then Q is the transverse hnear velocity.

Prom (3) and (4) it is evident that so far as 0 and 0 are concerned / is a

function of Q.

Also

Hence
( 1 ) becomes

d0 d0 ^dQ

.(5)
dr \dr r f dR r dQ

This is the fundamentalequation inpolar coordinates for spherical symmetry.

The solution of (5) is obtained by forming the subsidiary equations

according to Lagrange’s method; these are

dr dR dQ
~R^ dv 0^

dr^r
M'

r

.( 6)

The first and third of these give

^ o

Q ’

so that a first integral is rQ (7)

where is a constant. This equation expresses the fact that the total

angular momentum about the centre is constant. Also

RdR-{- QdQ dr

R dV
dr

whence g2 _ 2F = a^; ( 8 )

this is the energy equation, which could of course have been written down
at once. Thus the general integral of (5) is

f^f{R^^Q^-2V,rQ)

or f = f{c^-2V,rQ), (9)

where c ~ is the linear velocity.

Also — R^) — r\c^ — r^)

and so (9) is equivalent to (4) of 10-31.

This analysis is due to Shiveshwarkar,*

The star-density, v, is given by

V = 2V,rQ)dRd0d0.

If the velocity of escape is large, we may take the hmits of integration in

this formula to be — oo and 4* oo for each of R, 0 and 0.

M,N, 96, 751 , 1936 .
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Write 0=Qcosfi, 0 = Qsinfi, (10)

so that d&d0 = QdQd/l. (11)

The range of is from 0 to 2n and ofQ from 0 to oo. Also,/is an even function

of B. Accordingly,

V = 47r f” rQf{c^-2V,rQ}dRdQ. (12)
J 0 J 0

Since, in polar coordinates, for spherical symmetry

•'''

Poisson’s equation is

kwr = “ l<inHlj^Jyf(c^-2V, rQ) dRdQ (14)

10*34. Preferential motion in a stellar system with spherical symmetry.

Star-streaming in accordance with Schwarzschild’s ellipsoidal law will

only occur if the frequency function /is a function of a quadratic expression

of the velocity-components. In this case, the general expression for /must
be of the form

f ^ FS^Rij^e^ + 0^-2V kr\&^ + 0^)} ( 1

)

and the number, dv, of stars per unit volume of space with velocity-com-

ponents between (R, 0, 0) and {R-{-dR,0-\-d0,0-\-d0) is given by

dv = FdRd0d0. (2)

Let ©1 = (l+iT2)J0, (3)

0^ = (4)

Then (2) becomes

dv = F(R^ + e\+ 0\- 2V) dRd0id0^ (5)

The function in (5) is now spherical with regard to the velocity com-

ponents R, ©1 and 0^, Define by

c\ = R^^ 0l^ 0l, (6)

Then by (3) and (4) of section 2*21,

<’»

Let i?, ©1 and 0^ denote the mean values of R, ©j and 0^, taken in each

case without regard to sign. Then by (6) and (7) of section 2-21,

f c\F(c\ — 2V)dc^
p Jo

/•oo

2 cf2?’(cf-2F)dci

(
8)
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By symmetry, jR = = 0^.

Hence, by (3) and (4),

R:&:0 = (l4-iT2)*:l: 1. (9)

R, 0 and 0 are proportional to the semi-axes of the velocity ellipsoid

(see section 5*11). If k is positive, the greatest axis of the ellipsoid is in the

radial direction and consequently we shall have star-streaming at any point

of the system with the axis of greatest mobility passing through the centre

of the system. If k is negative, the previous solution will only apply to

distances r less than and there will be star-streaming in all directions

perpendicular to the radius vector.

It is to be noted, as pointed out by Shiveshwarkar,* that this investigation

involves a generalised velocity function of which Sehwarzschild’s exponen-

tial law is a particular example.

Writing / (or F) as an exponential, we have

The star-density, v, is given by (5) to be

V =
4i7TA

1 +kr^ j;

whence

Poisson’s equation is then
P^(l-f^T2)‘

(10)

dW 2dV _
dr^ r dr kr'^)

’

The formulae (9) and (10) were found by Eddington by a method which will

be described in the next section.

10*35. Eddington's investigation of the dynamics of a globular stellar system.

As we have just seen, Eddington’s formulae for the density function of

stars in a cluster, with spherical symmetry, in which Schwarzschild’s law is

obeyed is a particular case of the general solution derived from Jeans’s

theorem. Eddington’s proceduref is as follows.

Consider the orbit of a star under the central attraction of the whole

system; the orbit will then lie in a plane passing through the centre, (7, of

the system. Let r denote the distance ofthe star from C, R its radial velocity

and T its transverse linear velocity. As before, the gravitational potential

will be denoted by V, We assume spherical symmetry so that F is a function

Loc. cit.

t M.N. 75, 366, 1916. See also M.N. 74, 6, 1913.



10-35334 The Dynamics of Stellar Systems

of r alone. We use a zero suffix to denote these quantities when the star is

at its greatest distance from C (that is, when it is at apcentron). Then

is the apcentric distance, is the transverse linear motion at apcentron,

and the corresponding radial velocity, i?o, is zero; also Fq is the gravitational

potential corresponding to

The orbit being in a plane, the equations of motion are

( 1 )

rT Bb constant. (2)

In (2), the constant is so that

rT = roTo* (3)

For a circular orbit of radius the transverse linear velocity, is given

from (1) by

The actual velocity, Tq, at apcentron is less than

Let P denote the orbital period; P is, of course, a function of and Tq.

We can regard Tq and as the

elements of the orbit, ignoring the

third element associated with the

plane of the orbit, namely, the

orientation of the line of apsides.

Let Pf{rQjTQ)drQdTQ •••(5)

denote the number of stars with

apcentric distances between Tq

and VQ-hdrQ, and with apcentric

velocities between Tq and Tq + dTo*

In Fig. 60 several orbits are

shown with the same apcentric

distance /-q and the same apcentric

transverse velocity Tq. Consider

a spherical shell defined by radii

r and ri-dr with C as centre. The
star whose orbit is A is within the

shell at F and at F it is with-

in the shell for a time dr/JS, and

similarly at (?. Thus in each revolution the star is within the shell for the
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fraction 2drlPR of the orbital period. Consequently, the stars defined in (5)

contribute permanently a density di^ given by

= ^hdr
• '^o)drodT, .

since ^nr^dr is the volume of the shell. Hence

2dr

~PR^

dv = .(6 )

It is to be noticed that in deriving (6) the radial velocity R is to be taken

without regard to sign.

The density, v, at a distance r from the centre for all the stars in the system

is obtained by summing (6) for all values of and Tq, the radial velocity R
being supposed to be expressed in terms of and Thus

•( 7 )

We now change the variables in (6) from Tq to R, T. We have the

energy equation
J(J!t + yt)- F

.

iJ-J-F., (8)

remembering that Rq is zero.

Using (3) we obtain

Now dRdT =

From (9) the following relations are easily found:

8rn dro

From (3), similarly,

Hence rR
HS.T)

^(^OI ^o)

dT

^^0 rpi^ rp

aro

= ro-?’o

,..(9)

.( 10)

by means of (4).
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Hence (10) becomes

dRdT = "^-4-^dr.dT^,
tK

and we obtain from (6)

<">

This last equation gives the number of stars, per unit volume, with linear

velocities between (i?, T) and {R-\-dR,T ^dT). But if Schwarzschild’s

elHpsoidal law characterises the peculiar motions in the cluster, dv is given by

dv = CTer^h^^^-^H^'^^dRdT, (12)

in which the factor T is inserted owing to the fact that the transverse velocity

T is a two-dimensional component (this is analogous to 10*33(11)). In

the formula (12), C, and functions of r
;
in other words, the

lengths of the axes of the velocity ellipsoid may be assumed to vary radially

from one part of the system to another.

We can write (12) in the form

dv == (13)

in which C, h and k may be functions of r. Using (8) and (3), we obtain

dv = (14)

Hence, from (11) and (14),

/(ro,To) = (15)

Since /(ro, Tq) is independent of r, the right-hand side of (15) must not

involve r. Since V and C are functions of r, this condition is satisfied if

27rUc-2'^^^ = B, (16)

where B is independent of r, and

h and k are constants.

Hence, from (13) and (16),

dv = (17)

The density, v, at a distance r from the centre of the system is then given

by integrating (17) for all values of R and T between 0 and oo. Thus

V = —p

—

(18)
8V7r^(A2 + ifc2r2)

which is of the same analytical form as (10) of section 10*34. Poisson’s

equation is found as before to be of the same form as (11) of section 10*34.
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Choosing the units and the zero ofpotential so as to reduce the latterequation

to its simplest algebraical form, we write it as

dW 2dV
dr^ r dr 1 r^

(19)

Let u ^ Ijr. Then (19) becomes

dW
du^^ u^{l+u^)

^ (20)

and, setting V = -logz,

(20) becomes (dzY_ 1

^ du^ / u\l + u^)'
(21)

Also, in these units, _ _ 1

1+r^ 2:^(1 -i-r'^)’
(22)

These equations have been studied by Eddington in the j)aper referred to.

10*41 . The fundamental equation in cylindrical coordinates.

Let (m,0, z) be the cylindrical coordinates of a star S as shown in Fig. 61.

^
The components of velocity parallel to OX,

XY and XS are denoted respectively by

n, 0 and Z, a notation introduced by

Jeans; we have

n = m, 0~m(), Z = s (1)

The continuity equation DfjDt = 0 be-

comes, for steady motion,

z
A
1

'S

z

y

Tf7\

y'y
YX

Fig. 61

. 5/ A^f rV®/
dm dd dz dU

0,. •(2 )

/ being expressed as a function of w,d, z\

n, 0 and Z.

From (1) and (2), we have

dm m dd dz dU d0 dZ .(3)

SSI) 22
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If (a, /?, y) are the components of acceleration parallel to OX, XY andXS
respectively, we have

a =^ — WO^ = ,r-"
,ow

1 dv

vj do ’

IIIII

whence
- dV 02
77 =— H ,cw w (4)

^ _ 1 aF 77©

w dd w ’ (5)

i-l?. (6)

Formula (3) then becomes

„ a/ ©a/ „?f (dv &^\df iidv nexdf aF a/
,,^ dw'^mdd^ ^ dz^\dw'^ m)dn'^\wdd w )d0^dz'dZ~^'
(7 )

For uniaxial symmetry, the functions / and V are independent of in this

case we have

dm dz \dww)'dn m de^ dz'dz (
8

)

In these formulae 0 is not to be confused with the 0 of sections 10-32-

10*34.

10-42. Systems with uniaxial symmetry.

We take the axis of symmetry to be the z-axis and we use cylindrical

coordinates. From 10-41 (8), we can in theory find four independent

integrals, /j, ... I^.

As before, we have the energy integral (in rectangular coordinates)

—
( 1 )

or, in cylindrical coordinates, defined as in the previous section,

== /72-h02 + Z2~2F = Ui. (2)

Also, the constancy of angular momentum about the axis of symmetry
gives a second integral of the equations of motion, namely,

/g =m0 = CTg.

These are the only integrals that can be found in general.

(3)
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The frequency function/ is then a function of and /g and we write it as

(4 )

or, by means of (2) and (3),

/=/(c^-2F,tz70), (5)

where (92 ^2
^ ^0 j

Owing to uniaxial symmetry, F is a function of w and z only.

If the velocities are distributed according to a generalised ellipsoidal law,

/ must be a function of a quadratic expression of the velocity components,

and the most general Avay of writing this, consistently with the form of/ in

(4) and (5), is

f = M), (7)

where S = 7j + 2k^ /g -\-k2 I\i (8)

in which and are indejjendent of 77, & and Z. In particular, Schwarz-

schild’s ellipsoidal law in this notation is

/ =
We can write ^ as follows;

(9)

^ = 772 + /\ 2(0 - + 2Fi, (10)

whore = 1 (11)

e -- - (12)

V = F +
^ 2l + k2^w^

(13)

In these equations, A, 0^ and Fj are functions ofm and ;r.

The formula
(
10

)
shows that 0^ is a rotational linear component. The

residual velocity components (the rotational component being removed)

are 77, 0' and Z, where

These components

star-streaming.

The star-density,

are distributed ellipsoidally and consequently there is

V, is given by

/'oo /’oo /*ao

M)dnd&dz.
J — 00 J — ooj —CO

(15)

On writing 6>i = A(0-0„), (16)

cf = 772+ 6>f + Z2, (17)

(15) becomes v =
= jf” f” r f(cl-2V^)dndeidZ.
AJ — coj — ooj — 00

(18)

The form of the function/in (18) implies a spherical velocity distribution

22-2
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with regard to the velocity-components 77, 0^ and Z. Hence by (3) and (4)

of section 2-21, we obtain

^ cf/(cf - 2Fi) dcj. (19)

Let n, 0^ and Z denote the mean values of 77, 0^ and Z, taken without

regard to sign.

Then, by (6) and (7) of section 2*21, and as in section 10*34,

/7 = 0, = Z = (20)

2j^cf/(c?-2F,)dCi

Let 0' denote the mean value of 0' = 0 —

0

q, taken without regard to

sign. Then, from (16) and (20), we have

/7:0':Z- A:1:A. (21)

With ^2 positive, A is greater than unity, by (11). Since 77, 0' and Z are

proportional to the lengths of the axes of the velocity elhpsoid in the corre-

sponding directions, the velocity elhpsoid in this ease is an oblate spheroid

with its greatest axes in the radial and in the ^-directions.

10*51 . Stellar systems in general.

It is assumed throughout the present treatment—except for a generalisa-

tion, due to Shiveshwarkar, which we interpolate in section 10*53—that the

stellar velocities are distributed according to Schwarzschild’s ellipsoidal

law. Accordingly, we suppose that at any point of the stellar system a

velocity elhpsoid is defined with its principal axes oriented in assigned

dii’ections. Consider one of the principal axes. At a neighbouring point it

will be oriented in a slightly different direction and, tracing it from point to

point, we see that the direction of this axis wih be given at any point by the

tangent to a three-dimensional curve which can be regarded as the inter-

section of two members of a family of surfaces with each of which is asso-

ciated a parameter, the surfaces being envelopes of principal planes of the

velocity elhpsoids. As the principal axes form an orthogonal set, the direc-

tion of a principal axis at a given point of the system is given by the normal

to a surface which is one of a triply-orthogonal family. These surfaces are

called by Eddington,* to whom the following analysis is due, the principal

velocity’Surfaces,

Let A, [I and v be the three parameters associated with the three families

of principal velocity-surfaces, so that at any point of the system the co-

ordinates are specified by A, p and v which are, in effect, the curvilinear

coordinates of the point.
M,N, 76. 37, 1915 .
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The elements of length in the principal directions are

PdX, Qd/i, Rdv,

where P, Q and R are, in general, functions of A, /^, v.

The components of velocity in the principal directions are

PA, Q/i, Rv.

The kinetic energy of a particle of unit mass is given by

T = + ( 1 )

As in previous sections, we suppose that the motion of an individual star

is controlled by a gravitational potential, F, which will be in general a

function of A, v.

Using Lagrange’s dynamical equations, a sample of which we write in

the form
^

dL\dX)'

dT
0A

dv
0A’

we obtain, from (1),

d (ipi
^.-(P^A).P^A+A^

ap'* .,dm dv

dP^ .ap2 .ap2 .ap2

dt ~^'dA d/i dv
'But

Hence

<^)

Similarly,

<«

„
These are the equations of motion in curvilinear coordinates.

1 0*52 . The equation of continuity.

At a given point of the stellar system, the axes of the velocity ellipsoid

are oriented in particular directions, and taking these dii’ections to define a

system of rectangular axes, we can write the number of stars in an element

of volume surrounding the point as adxdydz, where we now denote the star-

density by a—and not by v, as previously—to avoid confusion with the

generalised coordinate v. Accordingly, the number, dN, ofstars with velocity

components between {u^ v, w) and (u + du, v + dv,w-\- dw) in the element of

volume is given by

dN = o’dxdydzAe'^^^-'^^^^-^^'^dudvdw.
(
1 )
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Hence, summing for all possible values of u, v and w,

crdzdydz = crdxdydzA f f f e~‘‘*'‘^~^~^dudvdw,
J — GOj —aoj —00

from which A = n-^^^abc. (2)

Hence (1) becomes

dN = 7r~^ dxdydz dudvdw, (3)

The lengths of the semi-axes of the velocity ellipsoid at the given point

are I /a, 1/6, 1/c and these are functions of A, ji and v.

In curvilinear coordinates, (3) becomes

dB = 7r-« PdX . QdiL . Rdv . pdk
. Qdfi . Rdv,

and, on writing = orabCy (4)

rjf = — — + (5)

we obtain dN — 7t~^ e'^P^Q^^R’^dXdiidvdXdfidv, (6)

The equation of continuity is

^AdN) = 0. (7)

Now, by Liouville’s theorem, in the form given by 10*21 (17),

^^{dQ)^^-(PdX.Qdy.ltdp.PdX.Qd/i.Rdv) = 0.

Hence, from (6), (7) and (8), = 0

or ~
-f c*PV*).

Now, the operator DjDt for curvilinear coordinates is given by

D .d .0 .0 5 0 ..0 ..0

Pi = ^ ^ ^ al 0A
+

•

Hence, from (9), we obtain

—

k being a function of A, fx and v alone-

+ A/i='^ (
02 (32) +^3|. (62^2) (fc2g2)

+ A.>21 (C2P2) (C2i?2) + (C2P2)

+ 2a2
j

_ „ + p^2_^ + A2p^-A2.-^. +A

^ /xi2.1P^ i ,>3
9GV , • O • H/ .

. r

01^ 0A
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where, in the last three lines, the expressions for A, //. and v, as given by the

equations of motion (2), (3) and (4) of section 10*51, have been substituted.

The formula (10) holds for all points of the system and for all values of

A, /i and v. Hence, for example, the coefficient of A on the left-hand side of

(10) is equal to the coefficient on the right-hand side. Accordingly,

SA ^ dx •

Again, equating the coefficients of A^, we have

9 9P2

a
from which == d.

oA (
11

)

Equating the coefficients of A/i^, we find that

0
9A cA ’

from which

or, using (11),

Hence
d /a2-62\

dX\
(12)

Proceeding in this way, we obtain the complete results as follows:

s'’
- “ •• ....(13)

d/i\

3 /c^— a^\
0,

3

"3A\
)
1

= 0, .. ....(14)

3 /c2-a2\
0,

3 /a^-b^
1

= 0, .. ....(16)
3A\ R^ )~ wA F^-

'

l

SA “
0A’ d/i 3/i’ ^

3j/ dy'
....(16)

It is to be remembered that P, Q and R are functions of A, //, v and may
be supposed known in accordance with the adopted system of curvilinear

coordinates. Hence the nine equations in (13), (14) and (15) are sufficient to

determine a, b and c in terms of the parameters A, /^, v\ these functional

values of a, b and c are independent of the potential, F, and the density <7.

The three equations in (16) determine k if the potential V is known and

consequently the density, (T, can be found; this last function must also satisfy

Poisson’s equation if the potential is due to the system itself.
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10 *53 . Shiveshvxirkar's generalisation.'^

Consider the frequency function /(^), where

^ — ahi^— + jSl ( 1

)

and a, 6, c andK may be functions ofthe coordinates {x, y, z) in a rectangular

system. Then the number, dN, of stars with the volume-element dxdydz

and with velocity components between (u,v,w) and (u du,v -{ dv,w -V dw)

is given by
^ f{\]r)dxdydzdudvdw.

The function / is of the generalised ellipsoidal type.

The star-density, cr, is given by

f(ilf)dudvdw. .( 2 )

This equation connects <r and X in a way similar to that in which or and k

are related in 10-52(4). Also, by Jeans’s theorem, i/r must be a first

integral—or a function of the first integrals—of the equations of motion.

Consider now the equations in curvilinear coordinates. Let p^y p-s

denote the generalised momenta so that

dT dTdT
d/i’ ^^^~'dv'

where T is given by (1) of section 10-51. We thus have

Pi = P% Pi. = Pz =

tM^A. ,
p1

, ^
2\P^

and T becomes

The Hamiltonian function, H, is given by

and the equations of motion are

)

-(3)

...(4)

/ri2

. dH dH . dH
(6)A =

dpi
p =

dPi
"

dpa’

dH dH dH
(6)~ dA

’ P2 = dp’

Since ^ = constant is an integral ofthe equations ofmotion, this equation

must be satisfied by (5) and (6). Expressing ^ in terms of the generalised

coordinates A, /t, v and the generalised momenta p^, we write the

integral as
v, Pi,P2,Pa) = constant.

* MM. 96, 760, 1936 .

.(7 )
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Differentiate this last equation with respect to the time, and there results

Hence, by (5) and (6),

2 ||a+
,^Pl

Pl = 0.

dH_ df dH _
^'dX'dp^ ^'dp^'dX~

+ MiEt + M.’
9{A,Px)'^3(/*,P2) d{v,p^)

(
8

)

By (1), ^ is defined in terms of the generalised coordinates by

in which a, 6, c and K are functions of the coordinates A, //, v. From (3), ^
is expressed in terms of the coordinates and generalised momenta by

-^iPl--j^Pl + ^- (9 )

Hence, from (8), we obtain

\iP)

dK
' 0A’ pi.Pi

f
1 \ 2^/1'! {

^ \1-2^^
' 0A’

1

p2^1

This equation holds for all values of i^3 * Equating coefficients of

the various p’s and combinations of the p’s we arrive at the equations (13),

(14), (15) and (16) of the previous section, K replacing k in (16). If the

potential V is known, K is determinable from the equations (16). Thus the

function ^ is found. Poisson’s equation remains to be satisfied and we must

have
V2F = -47rif /(^) PQRdXdpdv. .( 10 )

10 '54 . Eddington's theorem.

This theorem* states that the principal velocity-surfaces are confocal

quadrics. The proof in the general case is long and we shall confine ourselves

to the case of axial symmetry.!

In this case, two of the families of velocity-surfaces are surfaces of

revolution and the third family consists of planes passing through the axis

of revolution. Taking the v parameter to be the azimuthal angle we see that

P, Q, Ry a, 6 and c are independent of v.

* M.N. 76, 64, 1915.

t Ibid. p. 42.
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From (14) and (15) of section 10*62 we have

d/a^-b^\ „ j a /a*-62\ ^

5a( 'a/t( p2 ()

a^— b^
Hence i® independent of A and must consequently be a function of

alone; thus a^-b^ .

= fM-

Similarly, from ( 1 ),
—

We then have a^-b'^ = Q^fyifi) = P%(X). (2)

Take the axis of z to be the axis of revolution and consider cylindrical

coordinates {m,z,6), 6 being the azimuthal angle. The element of length

corresponding to the A parameter is PdX, which is equivalent in cylindrical

coordinates to {dw^-{-dz^Y^^. Thus

(3)

Similarly, e’-(0)'+(|)’' (4)

Let Aq, /Iq be new parameters defined by

'•“J
r dy

'V/iC/*)’

(5)

so that Aq is a function of A alone and is a function of fi alone. Now by (5)

SAo

dm

0//.O

Hence, from (3) and (6),

and
aA

and

dz

aAo

dz

Va(A)
•; dz

dz

and from (4) and (7)

(Is)’- (^r=

..(6 )

..(7)

..(8 )

..(9)

.( 10)

We then obtain from (2)

\aAo/ \dAJ Xd/iJ \d/ij

Since, by definition, the surfaces m = constant, z = constant are ortho-

gonal, as are also the surfaces A^ = constant, /Iq == constant, the formula
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( 10) is the sufficient condition that the transformation from the coordinates

{tu,z) to the generalised coordinates (Aoj^Mq) should be conformal. Hence

we obtain, from (10), w + iz = jF(Ao+ i/4o),

where i^-i-V—lor — V—l.

From (8)
(dm dz\ (dm .P f2W -

J
i

9

.( 11 )

= F'(A^+ i/i,).F'(A^-i^.,). (12)

Hence (2) and (12) give

a2-62 ^ F\XQ + i/iQ)

,

(13)

Since, by (5), Aq is a function of A alone and //q is a function of /i alone, we
can use A^ and /Iq as the parameters of the corresponding surfaces, for the

families of surfaces Aq = constant and /Iq — constant are the same as the

families of surfaces A = constant and /i = constant respectively. We can

accordingly di'op the suffixes in (13), which we now write

a2~62 = F'(A + i/^) * F'(A~i//), (14)

from which

^ (^2_ ^2) „ iF"'{X + ill ) . jF'(A ~ ill) — iF'{X + i/i ) . F'"{X — i/i),
(jA Gfl

( 15 )

But, from (13) of section 10'52,

W = 0
0A d/i ’

hence the left-hand side of (15) vanishes and we obtain

F"'(X + in) _ F“'(A-i/i)

F'(A+ i/j.)
~ F'(A-i/i)‘

As A -I- i/i and A— i/i are different variables, each side of ( 16) must be equal to

a constant, say Thus

F"'(A + i/i) = p^F'(A + i/i)

or, writing A+ ifi = Z,

the solution of which is

d^F{Z) _ ^dF(Z)

dZ^ dZ '

F{Z) = A cosh (pZ + €) + B,

where A, B and e are constants of integration and may, in general, be com-

plex. The real and imaginary parts of e only change the A and /i origins, and

the real and imaginary parts of B only change the m and z origins; we can

accordingly take £ = e = 0. Hence

mA-iz — A coshp{X + i/i),
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Taking A to be real and equating real and imaginary parts, we obtain

m A coshpA co&pji,

z = A sinhjpA sin^/^.

The curves in the (m, z) plane for A = constant and [i = constant are

respectively

_l
—

™

cosh^^A sinJi^^A
= .42

and
cos2^//. sin^jr;//

= ^ 2
,

These are confocal conics and the corresponding principal velocity-surfaces

are formed by the revolution of these conics about the 2;-axis. IfA is wholly

imaginary, we obtain a similar result. If A is complex, we obtain systems

of confocals unsymmetrical with respect to the m and z axes.

Thus the theorem is established, in the case of axial symmetry, that the

principal velocity-surfaces are confocal quadrics—the third family of

quadrics in this case degenerating into the system of planes passing through

the axis of revolution.

10*55 • The possibility of star'Streaming.

Taking the most general case, we have from Eddington’s theorem that

one family of principal velocity surfaces is a system of confocal elhpsoids.

Assume that these ellipsoids correspond to the parameter A. Then along a

curve, at every point of which the tangent is a normal to the confocal

ellipsoid through that point, A varies but p and v are constant. Now from

(13), (14) and (15) of section 10-52,

Sa2

aA
= 0

,

3 /a2 - 52\

aAl ^2 )

= 0,
3A\ i?2 J

= 0
,

so that as we pass along the curve

a2 = constant = A,

b^^A + BQ^

= A

Aj B and G being constants.

Since the components, along the principal axes of the velocity ellipsoid,

ofthe mean peculiar motion are inversely proportional to a, b and c, we must
have B and C positive, otherwise h and c would vanish at some point of the

system. Consequently, b and c are each larger than a, so that the greatest

axis of the velocity ellipsoid is in the A direction, that is normal to the



10*56 The Dynamics of Stellar Systems 349

principal velocity-surface. The ratios of the mean speeds along or parallel

to the principal axes of the velocity ellipsoid are given by

: {A + BQ^)-^
:
{A + CR^)-K

Unless the principal velocity surface departs very markedly from a sphere,

the direction of the normal to the surface will be more or less in the direction

of the centre of the system; in other words, the direction of the greatest

mobility of the pecuhar motions will be roughly radial.

If the equations (16) of section 10*52 can be satisfied, star-streaming in

the radial direction is thus possible. We shall consider this point in detail

in a later section.

10*56. Integration of the equations for a, b and c.

We consider particular cases of Eddington's theorem.

(i) Spherical coordinates.

If one of the systems of principal velocity-surfaces is a family of spheres,

the orthogonal surfaces, in polar coordinates, are

r = constant, 6 = constant and (j) = constant,

where r, 0, <j) correspond to A, y and v respectively. Also,

dr, rdd, r&mdd(j)

are the orthogonal components of a small displacement from one point to a

neighbouring point. Hence

P == 1, Q = r, P = rsin^.

The formulae (13), (14) and (15) of section 10*52 then become

dr
= 0,

d / b^-c^

dd \r^ sin

dh^

dd

_a

= 0 ,

(c2-a*) = 0,

r® /
’ 3r\r^8in*^/

Using (1-2) with (3'3), and (1-3) with (2-2), we have

da^ _ 0o* _ da^ _

0C2 ^

d(l>~^'
(M), (1-2). (1-3)

ar ( j

- • (2-1), (2-2), (2-3)

(3-1), (3-2), (3-3)

so that

From (1-3) and (3-1) we have

o* = constant.

db^

•(4)

.(6 )

d^
= 0

d<l>
(
6

)or, using (4),
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Similarly, (1-2) may be written

dd\ r2 )“®'

The formulae (6), (7) and (2-3) show that —~— is constant; hence we can
write

^

= a2(l+pV), (8)

where we put the constant equal to the positive quantity since b must
not vanish at any point of the stellar system.

Writing (2-3) as
3 l a^-b^

dr Ir^sin^^

and adding it to (3-2), we have

3 /62-c2\

3r\r2sin2^/

which, together with (2*1) and (3*1), shows that

sin^0
= constant = (7, say.

Hence c2 = b^-\-a^Cr^Bin^d

or, using (8), +^2^2+ Cr^sin^^). (9)

(ii) Prolate spheroidal coordinates.

When one ofthe principal velocity-surfaces is a prolate spheroid, with the

z-axis as axis of revolution, its equation can be put in the form

sinh^^ cosh^l ^ ’

Choose the unit of length so thatp — \ \
then the coordinates of any point

on the surface can be expressed as

X = sinh ^ sin tj cob 7,

y = sinh ^ sin rj sin 7,

z = cosh^ cos 97.

We consider g, 7 to be the generalised coordinates A, p, v respectively.

P.=(|)V(|)V(ID-,

from which and the similar equation for we obtain

= cosh* cos® (10)

Similarly, it is easily found that

= sinh*f sin*^. (H)
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Since P* = Q^, we derive from (14) and (15) of section 10-52

0 _ 0 /a*-62\

0gV p2 /-0^l p2

0 la‘^-b^\ 0 /6*-c‘‘\ 0 /c2-a*\ ^

P* )“ 07 \ ) eyl P*

Hence, —pT' constant,

and we write this last result, using (10), as

=z BP^ — ^(cosh^f — cos^i/), (12)

in which jB is a constant.

Also, ^1=0 and
|^

= 0. (13)

Hence from (12) and (13) = A-{’ Bcos^r/, (14)

— A + Bcosh^^, (15)

in which A is positive (since a^~A for rj = 77-/2) and independent of g and rj\

also, since a and b must not vanish, £ is by ( 15) a positive constant. A is also

independent of y—and is therefore a positive constant—as may readily be

shown as follows. We have, from 10-52 (14),

dy ( P2 )

But, by (10), P is independent of y. Hence, since dc^/dy = 0, by 10-52(13),

we obtain 0^2

?A
so that, by (14), ^ = 0.

Accordingly, A is a positive constant.

Again, from (14) and (15) of section 10-52,

d lc^--b\ ^ ^ a /c2~a2\ ^

The latter equation can be Amtten

0 /c*-a*-62\

0^1 p* }- mW)-
Writing 6* in the form—from (15)

—

62 = ^-fP-i-P8inh2^,
we have, using (11),
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Hence

Similarly,

Also, since
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d (c^-a^-b^+A + B

r2-a^-b^+A + B'

0c2

10-66

8l

_0

drj
(-

= 0. ( 16 )

= 0. ( 17 )

dy
= 0

,

and since a^, 6^ and are all independent of y, we have

dy

^-a^-b^ +A + B
V 0 . .(18)

.(19)

Hence (16), (17) and (18) give

+ CR\

where C is a constant. This last equation can be written

c2 = u4 + jBcos2 7 + jBsinh2^H-C'sinh2^sin^^.

The results of the other cases have been given by Eddington* as follows.

(iii) Rectangular coordinates (x^y^z).

In this case the principal velocity-surfaces degenerate into orthogonal

planes. Then p _ ^ _ 2

and a, b, c are all constant,

(iv) Cylindrical coordinutes {w,z,d).

The principal velocity-surfaces are cylinders with the 2:-axi8 as axis,

planes normal to the 2:-axi8 and planes passing through the z-axis. Then

P=(2=l, R==rjj

and a^ = constant,

6^ = constant,

c2 = a\\-\-kw^),

(v) Oblate spheroidal coordinates (g, y, y).

Here one of the principal velocity-surfaces is the oblate spheroid given by

X = cosh ^ cos Tj cos y, y — cosh g cos rj sin y, z = sinh ^ sin

Then = cosh^g — cos^^,

= cosh^g QO&^TJ,

and a^ — A cos^ rj,

62=:^ + j5c08h2^,

— A^B cosh^ g -f JS cos* ^ + 0 cosh* ^ cos* y.

* MM. 76 , 45 , 1915 .
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(vi) Ellipsoidal coordinates p).

In this general case the principal velocity-surfaces are confocal quadrics.

If the squares of the semi-axes of the confocals through (A, /i, v) are

A^, A2 — A^— y^; — y^; v-, — —

then

(A2-^2)|A2-y2)’ ^ ^ V^) - V^)

and a^ = A -[• -f Bv'^ +

b^ = A + Bv^+ BA^ + Cp^A^

A + BA^ + Bfi^ + CAYK

1 0*57 . Evaliuition of the density.

The equations (16) of section 10*52 enable us to derive Eddington’s

function k when the gravitational potential, F, is known. From these

equations, we obtain

a^^^dA-\-b^ da dv
aA oy OP

I idfc ax
, ax

'I

Since the right-hand side of this equation is a perfect differential, it follows

(a* -K) = I g^g- = {b‘ g-) . (2)
0/1 \ oaJ zoA 0/1 dA\ 0/1/

that a
1

3/1. r aA/

Similarly IX
^

/ .

¥V
From (2),

d/iX dv) dv\ d/ij'

dVda^ dVdb^
, , dw ^

0A d/i ~d/i dA ^ dAd/i.
~ ®

or, since

.d\a^-b^) d

dAdJc '^d/i^

^ _ db^

dA d/i.

dV d
,

whence

Similarly,

When the potential is given, it must satisfy these equations in which

a, 6 and c are all expressed in terms of A, y and p.

SSD 2 ^
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In the case of axial symmetry, all the variables concerned will be in-

dependent of V (the azimuthal angle), and we obtain from (3)

>

where F and G are arbitrary functions.

Now, from (1),
-jlX

" “ TA

da^
or, since = 0,

cA

Now, from (6), we can VTite

„ 1 d/C d ia^F(A)-i-b^G(u)]

2-aA
= aAl“--a^-T^- )•

Similarly
^ ^

Hence iK = -
i (^)

where C is a constant.

From (4) of section 10-52, the density a is given by

abccr = 6"^. (8)

If the motions of the stars in the system are derived from the attraction

of the system, Poisson’s equation must also be satisfied; hence

1 I
a'>c

With spheroidal coordinates, it has been found impossible to separate

the variables in the above equation—^so as to determine the functions F(A)

and 0{/i), It therefore appears that a solution of (9) does not exist.

For spherical symmetry, = 0 ifwe associate A with r. From (6), (8)

and (9) of section 10*56—setting (7 = 0 in the last equation because of

spherical symmetry—we have

Then (9) becomes

a* = constant; = a\ \

47rp^11
drH o2 ^2F(r)

e >’^*1 .(10)
1 7-2 /J a(l-fpV2)

from which F{r) can theoretically be obtained; thus /c can be found and then
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the density is obtained by means of (8). It is to be remarked that formula ( 10)

above is essentially (11) of section 10*34.

In Shiveshwarkar’s generalised formulae /c is replaced by K which, in

the case of spheroidal coordinates, is given by an equation similar to (7).

The density is then given by (2) of section 10*53 and, if the system is

moving under its own gravitational potential, Poisson’s equation has to

be satisfied.

There is one possibility that we have not yet considered. So far we have

made the general assumption that the motions of the stars in a given system

are derived from the gravitational attraction of the system itself. It may
be that the stellar motions are controlled by a potential compared with

which the potential of the system itself is negligible. The simplest case is

where the motions are due principally or entirely to a dense aggregation of

matter at the centi e of the system; in this case we may assume that V is due

to this central condensation and thus Poisson’s equation does not require

to be satisfied.

In the case of uniaxial symmetry the solution is complete if the potential

V of the controlling system is given by (0), so that

F(A) + G(/i)

in which F and G are now supposed to be known functions; k is then given

by (7) and the density <t by (8).

10*58. Eddington dealt, in his paper, with further problems which we do

not consider here in detail. The principal conclusions,* however, may be

briefly stated, when the velocities are distributed according to Schwarz

-

schild’s ellipsoidal law.

(i) For systems moving solely under their own gravitational attraction,

the only exact three-dimensional solution, for steady motion, is in the case

of spherical symmetry.

(ii) For systems moving under forces other than their own gravitation, it

is possible to obtain an oblate distribution of stars (as in the galactic system)

either by taking prolate velocity-surfaces, or by assuming that the whole

system is in rotation, or by a combination of these two causes.

We examine the question of rotation in Chapter xii.

* For a review of the problems with which we have been dealing see Eddington, A.N. 815, 1921

(Jubilee Number); also G. L. Clark, M.N. 97, 182, 1937; 0. Heckmann and H. Strasl, Gottingen

Veroff. Nos. 41 (1934), 43 (1935).

23-2
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10-61. The ‘ ‘ hydrodynamical eqv/itions ’
’ for a stellar system .

In rectangular coordinates the fundamental equation, from section

10-21, is 3. df dVdfdVdfdV df

dx du'^Jy dv'^ dz dw ^

Multiply (1) by ududvdw and integrate over the complete range of the

variables.

The first term gives ^ f f {fududvdw. (2)Ijjjjndu

Since the star-density, u, is given by

=JJJ
fdudvdw,

the expression
(
2

)
is -^-^(ru), where u denotes the mean value of the velocity

component u.

The second term gives

fu^dudvdw,

which, by (3), is equivalent to where is the mean value of

Similarly, the third and fourth terms give

0 0
-^-(ruv) and
oy oz

The fifth term gives

dv

dx

Integrating by parts, we havearts, we have

E — j
j[uf]dvdw—

///
fdudvdw^

where [uf] denotes the value of uf after the limits of integration for u have

been inserted. In the analytically simple case of Schwarzschild’s ellipsoidal

law, it is evident that

Lim [uf(Uy V, w)\ = 0 (5)
M->00

and in the general case this condition must also be postulated from physical

considerations. Hence, from (4),

= — JJJ
fdudvdw == —V

so that the fifth term yields —v~
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Again, we have, by arguments similar to that resulting in (5),

dudvdw
ov

u dudvdw = 0.
aw (

6
)

We finally obtain

0 0 3 0 0

5 (~) + ai + ap
(7)

There are two other equations of a similar nature.

Formula (7) is the hydrodynamical equation for stars, all ofthe same mass,

in unit volume at the point (x,y,z) of the system, and moving under the

gravitational field of the whole system.

Multiply (1) by dudvdw and integrate; we obtain in the same way

dv ^ ^ / -v ^ .

^ + = (8)

which is the hydrodynamical equation of continuity for stars of equal mass.

For steady motion, the equations are

and

0 ,
— 0 ,

—
,

d
,
~ dV

0 / 9 / -V 9 / —

V

..(9)

(
10)

( 11 )

(
12)

10*62. The hydrodynamical equations in cylindrical coordinates.

For steady motion the fundamental equation in cyhndrical coordinates

is, from (7) of section 10*41,

^0/ 00/ ^df (dv @2\0/ / 13F ne\df dVdf
^ dm'^wdd'^^ dz'^Xdm^ w)dn'^\m'W w )d&'^ dzdZ~^'

( 1 )

Multiply by TldtldOdZ, which we shall write as Ilda, and integrate over

the complete range of the velocity-components.

With a notation similar to that of the previous section,

///

w dd
LI
rodd

(viie).and
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Also,
JJ

Ji70» ^da. = JJ
[77/] OHOdZ -

JJ

J

by utilising the condition represented by (5) of the previous section.

Again, JJj77^da=JJ[/]77rf77rfZ = 0,

since we must sui)po8e that / vanishes for infinite values of the com-

ponent 0.

Proceeding in this way with the remaining terms of (1 ), we finally obtain

a — 10 — a — viiT^-W^) dv
(2)

Similarly,

,3)

- -f (‘t

Multiply (1) by dFIdOdZ and integrate; then

(5 )

10*63. The equations for uniaxial symmetry.

In this case, F is a function of w and z alone, so that

dV
w =

Also, from section 10*42, the distribution function,/, is given by

/=/(/72 -f 02^ ~ 2 F, U70) (2)

and the density, by v ^
J/i

fdndGdZ.

Thus positive and negative values of 77 and Z are equally probable; hence

Tie = 1TZ = ^9Z = 0. (3 )

Let p = vll^, (4)

q = v0*. (6)

Owing to the symmetry of 77 and Z in (2), p is also given by

p = vJZ*.
(6)
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The equations (2), (3) and (4) of section 10*62 become

dw

-q dV

w ( 7 )

11 II p (8)

dp dV

dz
~

" dz •
(9 )

The equation (8) simply expresses the fact that q is independent of 6.

By eliminating V between (7) and (9), we obtain

d lq—p\ 3 /1\ dp d (I

02
: \ vw ) dw dz\v) dz 37i7\i^

(
10

)

These equations were given by Jeans in an investigation* on the motions

of the stars in a “Kapteyn Universe From a study of direct parallax

determinations and statistical relationships such as are treated in Chapter

vin, Kapteyn and van Rhijnf had obtained numerical values of the star-

density at different points of the galaxy. Later, KapteynJ showed that the

stellar distribution could be represented tolerably well by means of sphe-

roidal shells in each of which the density was constant; the equi-density

surfaces were taken to be concentric, similar and similarly situated spheroids,

the ratio of the axes being 5* 1 : 5*1 : 1, with the shorter axis (the 2;-axis in our

notation) perpendicular to the galactic equator. In the subsequent dynamical

investigation Kapteyn assumed (i) that the system was in a steady state

and (ii) that the distribution of velocities in the 2:-direction obeyed the

Maxwellian law. In the paper referred to, Jeans showed that Kapteyn’s

second assumption was unnecessary, and on the basis of the equations of

this section, together with Kapteyn’s schematic representation of the

galactic system, he was able to deduce some of the principal features of

stellar motions.

M.N. 82 , 122, 1922.

t Ap. J. 52
, 23, 1920 (Mt Wilsrni. Contr, No. 188, 1920).

t Ap. J. 55
, 302, 1922 {Mt Wilson Conir. No. 230, 1922).



CHAPTER XI

GALACTIC ROTATION

1 1 •! 1 . The principal characteristics of the galactic system.

In the preceding chapter we considered certain general principles in the

dynamics of a stellar system; in the present chapter our investigations

will be devoted more particularly to one aspect of systematic motion in the

galactic system as revealed by observation.

In a broad and general sense the galactic system is spheroidal, as was first

noted by Sir William Herschel. It was later suggested by Sir John Herschel

that this characteristic might be the result of rotation about an axis per-

pendicular to the plane of the Milky Way, and he further suggested that the

centre of the system was in the direction of the rich star fields in or near

Sagittarius. But it was not until nearly a century afterwards that the vast

extent of the galactic system was revealed by the investigations of Shapley

.

Through the discovery of Cepheid variables in the nearer globular clusters,

Shapley was enabled to deduce the distances of these objects and, on the

assumption that the system of clusters bore a relation of symmetry with

respect to the galactic system itself, he arrived at the first reliable conception

of the dimensions of the Galaxy and of the direction and distance of the

centre. In his earlier work Shapley placed the centre in the galactic equator

and in the direction of galactic longitude 325° (modified laterf to 327°) and,

in roxmd figures, the distance of the sun from the centre was estimated to be

15,000 parsecs. This value of the longitude, namely 325° (or alternatively,

327°), of the galactic centre is now regarded as having great weight and we
regard this result as expressing a definitive characteristic of the galactic

system. As we shall see later, there are dynamical methods of estimating

independently the direction and distance of the centre from the sim.

1 1 • 12 . The relation of the line of vertices to the direction of the centre.

A second feature of the galactic system concerns the systematic character

of the peculiar motions of the stars in general in the neighbourhood of

the sun, which we describe as star-streaming. As we have seen in previous

chapters, this feature may be expressed mathematically in terms of the two-

streams theory, or more conveniently for analytical purposes, in terms of

the ellipsoidal theory. Studies of the motions of faint stars show that this

systematic feature extends up to distances of several hundred parsecs from

the sun and, as it is hardly likely to be a purely local phenomenon, we are led

* Ap. J. 48, 164, 1918 {Mt Wilson Contr. No. 162, 1918). f Clusters, 22, 1980.
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to regard star-streaming as a general dynamical characteristic of the galactic

system as a whole.

Now the analysis ofstellar motions places the line ofvertices in the galactic

equatorwith one vertex in galactic longitude 343°. This result is Eddington’s,

obtained from the analysis of the proper motions of the Boss stars, and in

consequence of the homogeneity and accuracy of these proper motions

must, even now, be regarded as the best determination. Other investigations

point to a similar value for the longitude of the vertex, and it is now agreed

that the longitude of the vertex and the longitude of the centre of the system
are not quite identical but differ by about 15° to 20°. It was suggested by
Turner* in 1912 that the explanation of star-streaming might be found in

the character of the orbits of stars described about a distant centre. If

many of these orbits are liighly elongated, analogous to ellipses with

eccentricdties near unity, then near the sun there will be a large number of

such orbits in about half of which we shall observe the approach of stars on
their way towards or from the centre and, in the remainder, the recession of

stars on their way towards or from the centre. The general effect will be

characterised by a preferential motion in a direction indicated by the position

ofthe centre of the system . As we have already noted, the observed direction

of the vertex differs by about 20° from the dii'ection of the galactic centre

and we regard this relation of the vertex to the centre as a feature of the

galaxy that calls for explanation and interpretation.

11*13, The asymmetric drift.

Another important feature that has been studied only in recent years

concerns what is called the asymmetric drift and, in particular, the pheno-

menon of the high-velocity stars. On the ellipsoidal theory the peculiar

linear motions of the stars as a whole are distributed with equal numbers,

in opposite directions, between any two assigned values of the speeds; in

particular, if we consider peculiar speeds exceeding, say, 80 km. /sec,, we

should expect from the theory that the number of such large speeds would

be the same in opposite directions of the sky. It was however noted first by

B. Bossf and independently by Adams and JoyJ that a symmetry of this

nature was definitely lacking and that the directions of motion of the stars

of high velocity, as they are now called, avoided the greater part of one

hemisphere of the sky. The work ofBoss, Raymond andWilson §, Stromberg 1

1

and Oort^ has left no doubt as to the reality of this phenomenon,

M,N, 72, 387, 474, 1912.

f DvdXty Observatory, Annual Report, 1918; algo. Popular Astronomy, 26, 686, 1918.

t Ap. J. 49, 179, 1919 (Mt Wilson Contr. No. 163, 1919). § A.J. 35, 26, 1923.

II
Ap. J. 59, 228, 1924 (Mt WOson Contr. No. 275, 1924); Ap. J. 61, 363, 1926 (Mt WOson

Contr. No. 293, 1925). H Groningen PtM. No. 40, 1926.
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Fig. 62, taken from a paper by Oort,* shows the numbers of space-

velocities exceeding 80 km. /sec. plotted against the galactic longitudes

towards which they are directed; the curve is obtained by smoothing the

actual data in a simple way. The particular feature of the diagram, to which

attention is to be called, is the region of avoidance of the velocity vectors

between galactic longitudes 10° and 100°, the centre of which is given by

Oort as 57°. Broadly speaking, we infer from this diagram and other Hke

considerations that the directions of motion of by far the greatest pro-

portion of high-velocity stars avoid the hemisphere whose centre is (57°, 0°)

in galactic coordinates. This direction, it is to be noted, is approximately

90° from the direction of the galactic centre.

The results of Stromberg’s investigations may be best described by means
of Fig. 63. The axes OX and OY refer to the components of the velocity

vectors in the galactic plane and tlie scale in km, per second is indicated.

Consider first the stars which give the normal solar velocity of 19-5 km. /sec.

The group-velocity, on the galactic plane, with respect to the sun is given

by the vector joining O to the centre of the curve A, which represents the

section of the velocity ellipsoid by the galactic plane; we may express the

relation otherwise by saying that the solar motion with respect to these

stars is the vector joining the centre of the curve A to the origin O,

The curve B refers to the short-period variables and the solar motion with

respect to these stars is represented by the vector joining the centre of the

curve B to the origin 0. The curves C and D are interpreted in a similar

way; these curves refer respectively to the high-velocity stars and the

globular clusters. Stromberg’s investigations included several other groups

of stars and the complete observational data indicated, as is shown in

Fig. 63, that the velocity vectors of the several groups B, C and D with

respect to the sun lay nearly in the same direction, OP, and that the velocity

dispersions, as indicated by the lengths df the axes of the curves, in the

* Bulletin of the Astron. Institutes of the, Netherlands, 4 , 270, 1928 .
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several groups increased on the whole with the group-velocity. Also, it was
—

found that the galactic longitude of the vector PO was 61°—again, approxi-

mately 90° away from the direction of the galactic centre.

11-14. The suggestion of rotation.

Proper motion investigations by several astronomers, notably Charher,*

Fotheringhamf and Schilt,J had suggested a systematic motion which was

interpreted as due to rotation of the galactic system about a distant centre.

Charlier’s values of this rotational effect in the two papers referred to were

— O''0035 and —0^0024 per annum, while Fotheringham’s and Schilt’s

values (the latter derived from a study of galactic Cepheids) were — 0''0015

and — 0‘0075 respectively, the negative sign indicating that the supposed

rotation is opposite to the direction in which galactic longitude is measured.

These are all extremely small quantities and, as we shall see later, the detec-

tion and study of galactic rotation follow much more satisfactorily from

radial velocity measures. However, assuming that the proper motion effect

gives —O''004 per annum as the average of the observed results, it follows

* Lwnd Medd. Ser. n, No. 9, p. 78, 1913; Memoirs of the University of Califomm, 7, 32, 1926.

t M.N. 86, 4U, 1926. t Ap. J. 64, 161, 1926.
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that the local rotational period of the stars near the sun is, for circular

orbits, about 320 million years. The motions of the stars, in the sense in

which we regard galactic rotation, are analogous in many respects to those

of the family of asteroids and comets around the sun.

Strdmberg’s work on the asymmetry of stellar motions led Lindblad* to

seek a dynamical explanation. He supposed that the galactic system was
composed of several subsystems, not actually separated spatially from one

another, but differing according to the characteristics of their motions.

Lindblad’s picture of the subdivisions of the galactic system is represented

in Fig. 64, where the Z-axis is the axis ofrotation. The most flattened system

is supposed to consist of the Milky Way clouds and the least flattened the

system of globular clusters.

It is further supposed that

at any given point of the

galaxy the rotation is greatest

forthe most flattened systems

and smallest for the least

flattened systems and that

the dispersion of the internal

velocities of a system in-

creases from the most flat-

tened to the least flattened

systems. Taking the high-velocity stars to form one of these subsystems

we see that, as the rotational velocity of such stars in the neighbourhood

of the sun is less than the rotational velocity of the stars in the most

flattened system, the high-velocity stars will appear to lag behind the

stars of the latter system or, expressed otherwise, the group motion of

the high-velocity stars with reference to the stars of the most flattened

system near the sun will appear to be in the direction opposite to that of

the general rotation. Thus we infer from Fig. 63 that the rotational direction

is given by the vector PO, that is, towards galactic longitude 61°, which,

aswe have noted previously, is approximately at right angles to the direction

of the galactic centre.

In OorFs theory,! f^e stars are all considered to form one single system in

rotation. His investigation of the high-velocity stars,! 260 in number, puts

the lower limit at which the phenomenon becomes apparent at 66 km./sec.

approximately. Let 0^ denote the linear velocity, due to rotation, for the

centroid of the stars in the neighbourhood of the sun—^it will be shown later

XJpaala Medd. No. 3, 1925; Arkiv for Matematik, 19, A, No. 21, 1926.

t B,A.N, Nos. 120, 132, 133, 1927; 169, 1928.

J Groningen Puhl. No. 40, 1926.
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that 0Q is about 300 km. /sec. Individual stars may have velocities greater

or less than but there must be a hmit for, otherwise, stars with velocities

exceeding this hmit would escape from the system. Let denote the velocity

of escape. Then, relative to the centroid of stars near the sun, the maximum
velocity in the direction of the rotation must not exceed — &q. Now we
have seen (Fig. 62) that there is a large area of the sky, with its centre

(57^,0) in galactic coordinates, towards which no velocities exceeding

65 km. /sec. are directed. With 300 km./sec. as the value of ©q, tlie velocity

ofescape is thus 365 km./sec. in the direction of rotation and this value must
be the result of the particular physical characteristics of the galactic system

as a whole. Stars moving with velocities exceeding 65 km./sec. in the

direction opposite to that of rotation and relative to the centroid of the

stars near the sun have velocities, relative to the centre of the system, less

than 235 km./sec. and are, accordingly, to be regarded as slowly-moving

stars, lagging behind the general field of stars near the sun. These are the

so-called high-velocity stars, the observed distribution of which is to be

expected on Oort’s theory.

Oort’s hypothesis is illustrated* in Fig. 65, which gives a representation

of velocity vectors projected on the galactic equator. C corresponds to the

centre ofthe galaxy and, relative to C, the rotational velocity of the centroid

of the stars near the sun is represented by the vector CA, equivalent to

300 km./sec. drawn in the direction of longitude 55°. The solar motion of

19‘6 km./sec. is represented similarly by the vector AS, The full-line circle

with A as centre has a radius of 65 km./sec. and the large dotted circle with

0 as centre has a radius of 365 km./sec.

The dots represent the projections of the velocity vectors, measured

from S, of all stars with parallaxes exceeding 0''050 and brighter than 9^1*5

and with velocities, relative to the sun, exceeding 20 km./sec. The dots

outside the full-line circle around A refer to part of the high-velocity stars

tabulated by Oort, the small open circles to the remaining stars.

The diagram explains very clearly the reason why the velocity vectors

of the high-velocity stars are mainly in one hemisphere of the sky only.

With or without the solar motion removed from the individual velocities

it wiU be seen that the area to the right of a straight fine through A, or

tliTough Sf perpendicular to CA and between the circles centred at C and A
is almost infinitesimal compared with the area to the left of such a fine. The

velocity vectors of the high-velocity stars should accordingly be mostly

distributed between longitudes 145° and 325°, and this we see from Fig. 65

is actually what the observational material shows.

For all stars belonging to the galactic system the representative points

B.A.N, No. 159, p. 273, 1928.



Galactic Rotation 1114366

should, lie within the dotted circle with centre C. Oort mentions two possibly

exceptional stars which many not fulfil this condition, namely the wide

binary* Ci 2018-9 and RZ Cephei, a variable of the RR Lyrae type, but in

Fig. 65

each instance there is a large uncertainty as to the space-velocity relative to

the sun. Considering the former star, the radial velocity is + 306km./sec. and

the annual proper motion is 3*68; the spectroscopic and the trigonometrict

* The B.D. designation is - 15® 4041, 4042.

t Schlesinger’s Catalogue of ParaUaxee, 1935 (No. 4506).
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parallaxes are O'- 01 8 and 0''040 respectively. The velocity relative to the

sun, based on the spectroscopic parallax, is 1016 km. /sec., while that based

on the trigonometric parallax is 533 km./sec. The direction of motion (on

the galactic plane) is indicated at the left-hand side of Fig. 65. With the

smaller space-velocity the corresponding representative vectorial point

falls just within the large dotted cii'cle, in which case the star belongs to the

galactic system and from the point of view suggested by Oort’s diagram is

not exceptional. With the larger space-velocity it must be concluded that

the star is only a temporary member of the galactic system and that, in the

absence of favourable close encounters with galactic stars, it will eventually

escape from the system. If Shapley’s estimate* of the distance (1170

parsecs) of RZ Cephei is correct, the velocity of this star, relative to the

centre, C, of the system and based on proper motion data alone (the radial

velocity is practically zero, —3 km./sec.), is found to be 1020 km./sec.

—

nearly three times the velocity of escape.

1 1*15. The solar motion with respect to the globular clusters.

Although there are about a hundred globular clusters known, radial

velocities of only 26t have been determined; this paucity of information

is due, of course, to the faintness of these objects in general, very long

exposures being required to obtain measurable spectra. The procedure in

finding the solar motion with respect to the system of clusters is the same as

in section 3-41. It is convenient to make the solution in galactic coordinates. J

If {X, r, Z) denote the linear components of the solar motion with respect

to the cluster system, the equation of condition is

XcosCr cos^+ Y sinG Gosg + Zaiug ~ — JK, (1)

where (G,g) are the galactic coordinates of a cluster and E is its radial

velocity.

The centroid of the stars in the neighbourhood of the sun is clearly a more

convenient point of reference than the sun itself. Taking the solar motion

with regard to the local stars to be 19-5km./sec. towards the apex (18^, -h 30°)

in equatorial coordinates it is found that the linear components (Xj, F^, Z^)

of the solar motion in galactic coordinates are

Zi = +17, ri-+7, Zi = +7. (2)

A least-squares solution of (1) gives X, ¥ and Z. The linear components

of motion of the centroid of the local stars are then (X — Xj
,
F -- Fj, Z — Z^).

Harvard BuUetin, No. 773, 1922.

t In 1936.

t The galactic coordinates of the individual clusters are given in Shapley’s Star Clusters, 224,

1930.
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For convemence and simplicity we sliall use the term “solar motion in the

present connection to mean the motion of the centroid with respect to the

system of globular clusters. From the values of Z — Y — and Z —

we derive in the usual way the velocity and the galactic longitude and

latitude, Oq and of the “solar motion”.

The first determination of the “solar motion ” was made by Lundmark.*

Two years later, Strombergt using the radial velocities of 18 clusters

obtained the results (uncorrected for the local solar motion as in (2))

329±50km./sec.; Go = IT; ^To = +11°-

A further determination was made by ShiveshwarkarJ using the radial

velocities of 21 clusters and the equation of condition (1) with and without

a K terra; the value of the K term was found to be negligible. The values of

Z, Y and Z in km. per second, as found by Shiveshwarkar, are given,

together with their probable errors:

Z = +123±25; r==-f285±45; Z = -|-63±32,

which give, in conjunction with (2),

Fo:= 302; Go = 69°; 10\ (3)

An almost simultaneous determination by Edmondson, § from the radial

velocities of 26 clusters, results in the values

Fo = 274 ± 40; Go = 67° ± 6°;
fi^o
- + F ± 8° (4)

It is to be noticed that in all these solutions, the apex ofthe
‘
‘ solar motion ’ ’

is very close to the galactic equator and almost at right angles to the direc-

tion of the centre of the galaxy (longitude 325°).

If 77', 0' and Z' denote the components of the “solar motion'' in cylin-

drical galactic coordinates, 0' being measured in the sense of increasing

longitude, it is found
||
that

n' = +81 ±32; 0' = -286±4]; Z' = +55±32 (5)

The values of 77' and Z' are not much larger than their probable errors

and, in the absence of more adequate observational material, it is difficult

to say how much weight should be attached to the definitive values of 77'

and Z\ On the other hand, there can be little doubt about the reality and

order of magnitude of the transverse component, 0'. Accordingly, we arrive

a t the general conclusion that the centroid of the stars in the neighbourhood

of the sun is moving, relative to the system of globular clusters, approxi-

mately in the galactic plane and nearly at right angles to the direction ofthe

galactic centre, with a velocity of rather less than 300 km. /sec.

* Publ. Aetr. Soc. Pacific^ 35, 318, 1923.

t Ap, J. 61, 363, 1925 {Mt Wilson CorUr. No. 292, 1925).

j M.N. 95, 555, 1935. § AJ. 45, 1, 1935.
j|
Shiveshwarkar, loc, cit
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This result is in accordance with Oort’s hypothesis of galactic rotation.

It is to be noted that the rotation is in a retrograde direction, that is, oppo-

site to the direction in which galactic longitude is measured. Thus, the

conclusions of the proper motion investigations by Charlier and others are,

to this extent, in qualitative agreement with the direction of rotation as

deduced from the radial velocities of the globular clusters.

Although the globular clusters have an approximately spherical dis-

tribution, symmetrical with the galactic equator, the previous value of the

“solar motion” cannot bo identified (without further consideration) with

the velocity of the centroid of the stars near the sun relative to the centre of

the galactic system, even if we assume that the centre is coincident with the

centroid of the clusters; for it is reasonable to suppose that the clusters

partake in the general galactic rotation. Consequently, it is necessary to

interpret strictly the value of the velocity just found as the rotational linear

velocity at the sun relative to the rotating system of clusters. Attempts*

have been made to take into account a rotation of the clusters, but it is

hardly hkely that such attempts can lead to definitive results until much
more observational data are available. In this sense, the values of found

by the various investigators mentioned in this section are minimum values.

The spherical distribution of the clusters suggests, however, that the hnear

rotational effect, so far as they are concerned, is small compared with the

rotational effect near the sun, and in the absence ofmore definite information

we shall regard the velocity of 300 km. /sec. as the circular velocity at the

sun relative to the centre of the galactic system.

1 1*21 . Oort^8 formula for the effect of galactic rotation on radial velocities.

We consider here the simple case of the

differential effect of galactic rotation on

a star X, situated in the galactic plane at

a distance r from the sun, 8—or rather

the centroid of the stars close to the sun

—which we also suppose to lie in the

galactic plane (Fig. 66).

Let C be the centre of the galaxy,

at a distance R from 8. We denote by

Oq the galactic longitude of the centre,

(7, measured in the direction of the

arrow. It is assumed that the centroid

of the stars near the sun moves in a

circular orbit around C in the retrograde direction. Let V and be the

H. Mineur, M.N. 96 , 61, 1935. See also comments by F. K. Edmondson, M.N. 96
, 636, 1936.

Fig. 66

SSD 24
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circular linear velocities at S and at X respectively; these are measured in

the retrograde direction—the direction in which the rotation is observed

to occur.

Let 0 be the galactic longitude of X. We write

( 1 )

so that, in the figure, L is the angle CSX,
Let K be the gravitational attractive force per unit mass at S'; it is

assumed that jfiC is a function of R.

Then we have
72
-^-K(R)

and, similarly,

Due to galactic rotation, the radial velocity, p, of X relative to 8 is

p = \\coB<!>-VmxL,

where ^5 is the angle between the radius vector SX and the direction of

Now ^ = 90° —

where 0 is the angle XCS, Hence

p = Fj sin L cos^-f F^cob L sin 6^— F sin L. (4)

We now assume that r is small compared with R, and we][shall neglect

powers of rjR beyond the first.

Writing + we have from the relation

= 7^2 _ 2Rr cos L +

and neglecting (rjR)^, AR = — rcosL. (5 )

Now, by (3), Fj is a function of R^, so that

V^^f(Ri)=f{B+dli)

But, since F = f{R), we obtain, using (5),

filV

V^ = V-rj^oo8L. (6 )

sin (9 sinL
Auo,

and, to the approximation indicated, we have

and =
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It follows that we can write co8& = 1. Using these results, together with (6),

in (4) we have
dV ^ ^ r \

p -11 V — r

^

gosL\ isinL-f-^smL cosLi — FsinL,

whence p = rH8in22/, (7)

in which ,
IF IdV

,....(8)~2R 2dR'

In terms of galactic longitudes, the formula (7) is

p = rA sin 2(G — Oq). (9)

It is to be noted that the radial velocity, p, due to differential rotation is

proportional to r, the distance of the star at X from the sun.

The appropriate formula for a star in galactic latitude
{/ and at a distance

r from the sun is
p = r

A

sin 2(0— G^) cos-^ g, (10)

This formula is readily derivable from the more general investigation in

section 11*32.

We remark that, since rA has the dimensions of a velocity, A is expressed

in “km. per second per parsec

1 1 -22 . The formula for projjer motion in galactic longitude.

Let T denote the transverse linear velocity of X relative to S. The

circular motion at X gives a component F^sin^ along XH (which is per-

pendicular to SX) and the circular motion at S gives a component V cos L
parallel to X//. Hence y = gin <1>-V cos L.

From the formulae of the previous section we obtain

T = dV
(cos L — sin L sin^) — V cos L

or

sin^ L —
dV

f—
dE

cos^ L

T = r
1^1
2dEj

cos 2L — r
'V 1^1
,2~E'^2dEj'

Using (8) of the previous section, we have

T = r

A

cos 2L -h rjB,

V
where B — A — ^.

(
1

)

(2)

The formula (1) shows that, due to differential galactic rotation, a star at

X will have a systematic proper motion in galactic longitude, given by

A gos2(0—Oq) + B, (3)

which is independent of the distance of the star concerned.

24-2
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It will be shown later (section 11-33) that this formula holds also for a star

in galactic latitude g, it being understood that /Hq refers to the increase of

galactic longitude due to proper motion. In practice the component

measured along the parallel of latitude, is more convenient. Since

/4

the appropriate general formula is

/Iq = A cos 2(0 — Oq) cos g + B CO& g, (4)

From (2) the dimensions of B are the dimensions of V/R
;
if V is expressed

in km. /sec. and R in parsecs and if the proper motion is expressed in the

usual way in seconds of arc per annum, the formula (4) becomes

K/ifj = A cos 2(0 — Gq) cos g + B cosg, (5)

where /c — 4-74.

The corresponding formula for (which will be proved in section 1 1*34) is

K/ig = -^A sin 2(0 — Gq) sin 2g. (6)

It is to be noticed from Fig. 66 that the directions of T and of /Iq are in

the sense of increasing longitudes. From (3), the mean proper motion of

stars distributed uniformly round the galactic circle, due to the differential

effects of galactic rotation, is B\ thus the mean proper motion will be in the

direct sense if B is positive and in the retrograde sense ifB is negative. Thus

the sign ofB will determine the sense in wliich galactic rotation takes place.

1 1'23. Oort's constants A and B,

The expressions for A and B have been expressed in terms of V and R,

which refer to the motion of S and its distance from the galactic centre.

72
Since, by 11*21(2),

~R

we can express A and B in terms of K. From (1),

Hence, A can be written

^ IF/, EdK\
KdE}'

Now F/i2 is the angular rotation at S, and ifwe denote it by (o we have

The corresponding formula for B is

B = A-0). (4)
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We consider two simple cases.

(i) Central mass.

If the gravitational field at any point such as S in the galactic plane is

due to a mass concentrated at the galactic centre, it follows that {K-^ being

the value ofK in this case) (j

where C is a constant. Then, being the corresponding circular velocity*

in the neighboui‘hood of the sun,

and from (2) it is easily found that the corresponding value ofA is given by

~~
4. ji

~~

Similarly, = -1^ = - (6)

(ii) Uniform ellipsoidal distribution of mass.

If the gravitational field is due to an ellipsoidal system with constant

star-density, or a series of such systems each with constant star-density,

as Lindblad has suggested, the function K is then of the form (we write K
in this case as ifg), _ jy£i^

where i) is a positive constant. It follows that

^2 = 0 (7)

and = —| = (8)

where is the corresponding circular velocity.

These formulae show that, in this case, there is no differential effect in

the radial velocities and that the system would appear to rotate like a soUd

body.

1 1*24. Numerical estimates.

Assuming that the gravitational field is due to a central mass, we have,

from 11*23(5),

Taking V to be 300 km. /sec. and R to be 15,000 parsecs, we find that when

f = 1000 parsecs,
p = 15 sin 2(0- GJ.

The Oort effect for radial velocities is thus considerable and, for the distant

stars, easy to detect. With 0^ = 325®, the radial velocities due to galactic

Fj here is not to be confused with the Fj of section 11*21.
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rotation are greatest numerically for galactic longitudes 10®, 100®, 190® and
280° and are zero for longitudes 55®, 145®, 235° and 325®.

1 V
With the same assumption, B — m that the proper motion due

to galactic rotation is given by

k/Iq =^ {3 cos 2{G- Go) - 1),

which is a maximum numerically when G~Gq = 90° or 270®, and then

whence, with the previous values of V and R,

= -0-0042.

Also, B — —O'^OOll, which is somewhat smaller numerically than the

estimates of CharUer and others, given in section 11*14.

Again, (o = 0-'0042 per annum, leading to a period of revolution of about

300 million years for stars in the neighbourhood of the sun.

1 1 *31 . The equations, for galactic rotation, with second-order terms.

Oort’s equations are sufficiently accurate for objects less than a thousand

parsecs from the sun for, in this case, the fraction rjR is of the order 1/15

(assuming that the galactic centre is 15,000 parsecs distant from the sun);

consequently, the inclusion of powers of rjR higher than the first will

produce anunimportant increase

ofprecision. Butwhen the theory

is applied to open clusters whose

distances are several thousands

of parsecs, the simple formulae

are not quite sufficiently accu-

rate. Formulae with terms of

order higher than the first have

been given by Miss P. Hayford*

for objects situated on the galac-

tic equator and by Bottlinger.f

Take the system of galactic

axes (Fig, 67) with the sun, or ^
rather the centroid of stars near

Fig. 67

the sun, at the origin 8, the X-axis in the direction of the centre C
(longitude Gf) and the F-axis in the galactic plane and in longitude

Lick Ob^, BuU, 16 , 53, 1932. t Verdff, Berlin-BcUielsberg, 10 (2), 4, 1933.
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(?o + 90°. We assume that the mean of the systematic motions is circular

about an axis through C parallel to SZ (in the figure, this is CW), Since

the motion is retrograde, the circular motion at jS is along the positive

direction of the Y-axis; we denote it by F. Consider a star 27, with galactic

coordinates (G, g), at a height z above the galactic plane and at a distance r

from also, T is the projection of 27 on the galactic plane. With the usual

notation we write , n
JLj vT ^0^

where L is the angle CST.
Let denote the circular velocity of H about the axis CW, This is equi-

valent to
. II 1 4.sm c, parallel to Sa

and Fj cos e, parallel to S Y,

where e is the angle SCT,
Relative to S, the components of motion of 2' in the galactic plane are

Vi sin € and Vj cos e — V. We write

V' - Fjsine, (1)

F" = Fjcose-F. (2)

To take account of a possible systematic motion perpendicular to the

galactic plane, we denote the corresponding motion of 27 relative to S by

The motion of 2* relative to S is then characterised by the components

(r, F", F'").

If (^, 7], f )
are the linear components corresponding to the proper motion

components [ig and to the radial velocity respectively, we have

^ = - F'sinL-fF'cosL, (3)

7
j
— — (F'cos2-f- F'" sin 2) sin F'"cosg^, (4)

f = (F' cos 2-f F'^sin 2) cos^ -f F"' sin^. (5)

Let SC = R, ST - R, and CT = R^.

The rotational velocity is assumed to be a function ofR2 and z. Then if

R2=^ R + AR, (6)

we write f(R2,z) ~ fiR-^- AR,z), (7)

We regard r, JiZ and z as small quantities in comparison with R and we

neglect powers of r/i?, ARjR and zjR higher than the second.

From (7),

(«)

the expressions for the various differential coefficients being evaluated at 8.

F=/(J?,0). (9)
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We set

A and B are Oort’s coefficients. From (12) and (13)

11-31

.( 10 )

.( 11 )

.(12)

,(13)

,(14)

(15)

(16)

^(2(7- 4/1). (17)

The formula (8) becomes

V + aAR+ 2Cz + ^E(ARf+ -^(2C-^D)AR.z^2Fz'^. ...(18)

The expression for AR, to the second order of rjR, is obtained from the

formulae
jRg == {R^ — 'IRRi cos L + J?f )*, (19)

R^:=z r cos g. .. (20)

The result is
AR r 1 i

=-^cosX,cosj7 + -|
frY
-I sin^Lcos^^.

kR/
(21)

Similarly, = l+lcosicosg + i(^)
1

(ScOB^ly— l)COS^0f. .. (22)

We require the expansions for F' and V^.

(i) Expansion for F'.

We have II

Also JSg sin € = R^ sin L = rsinLcos^. (23)

Hence F' =:Fi.^.^sin2ycossr.
jtt

We thus require the expansions of and RjR^ up to the first order only.

From (18) and (22) we obtain

F' = ^F — ar cos ly cos^-h F“Cosii cos^ + 2(7»j^siniy cos^

or, using (10) and writing z as rsingr,

T
V' = (V+ 2AroosL cos ff+2Cr sing) Bin L COB ff (24)



11-32

(ii) Expansion for V".
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or

But, from (23),

F" =

V" =

sine

Fj cos e— F

F,-F-2FiSm2 .(25)

r R
R'R,

sin L cos g,

so that sine is a quantity of the first order of magnitude; accordingly, to

the approximation adopted,

Fjsin^“ = ^sin^e.

Hence (25) becomes

.(26)F" = Fj - F -

After some reduction we obtain

A
V" — — ar cos L cos g -f 2Cr sin g — sin^ L cos^ gK

^2
+ cos‘^ L cos^ g — (C~ 2D) -con L sin 2g -f 2/V^ sin^ ^ (27)K

1 1*32. The fortmila for the radial velocity.

Writing p for ^ (the radial velocity) in (5) ofthe previous section we obtain

p ^ r

A

sin 2L con^g

{ .

+ sin L Cr sin 2g ——- cos^ g + Er^ cob^ g -h Fr^ sin g sin 2g
I 4ii

IDr^
-f sin 2L sin 2g cos g

(3 )

+ sin 31/

A

^
cos^ g + Er^ cos'-^

+ F"sin^. .( 1 )

The first term in this formula gives the radial velocity effect, to the first

order in rjR, for a star in latitude g, on the simple hypothesis of circular

motion about the galactic axis, this motion being independent ofthe distance

of the star from the galactic plane. If we include the possibility that the

circular motion is a function of galactic latitude, the approximate Oort

formula, to the first order in rjR, is, from (1),

p = r

A

sin 2L cos^ ^ + r(7 sin L sin 2^^. (2)

The complete formula (1) should be used in testing the hypothesis of

galactic rotation by means of the radial velocities of very distant objects.

For purposes of numerical analysis, (1) may be written in the form

p = r

A

sin 2L cos^ g-\-rC sin L sin 2g + V'" sin g

-f r^{oL sin L -f yff sin 2i/ + y sin ZL) (3 )
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11-33. The formula for the proper motion in galactic longitude.

From (3) of section 1 1-31, g is the linear velocity corresponding to /Iq cos jr.

With r measured in parsecs, we have

I
= KPa^osg,

where k = 4-74. Also //q = /^^cos^,

where is the annual displacement along the parallel of latitude due to

proper motion. Using the expressions for V' and V" we find, after some

reduction, that

kjhq = a:/4 sec ^ ^ cos 2L + B
T

4- 2C cos L tan g — 2(U — i>) sin g
Jti

(

^A \

dE cos^/+ 2jP8ingr tan^ — j^cospj

4- r cos 2L

-hr cos 3L

2D
R sin^

ZA
^-^cosg + Ecosg]. (

1 )

The terms in the first line are those aheady obtained when first-order

terms in the galactic plane were alone considered. It is to be noticed that the

non-j)eriodic part of (1)—that is, the part independent of L—is

B-^(C-D)e;mg, (2 )

which is of the form B — Pr or B-\- Pr

for stars in north galactic latitudes or south galactic latitudes respectively.

1 1 *34. The formula for the proper motion in galactic latitude.

In the same way, we obtain

( rAi ^— sin
i |2(7 sin^g— -^sing cos^ gr 4- ^^r sin ^ cos^ g -h 2Fr sin® g

( Dr 1- sin 2L
I

^A sin 2^ + sin ^ sin 2g\

- sin 3L
ym

4-— cos^.
r

Except for the last term, this is a purely periodic expression in L.

ZrA

4i?
sin g cos^ g-¥Er sin g cos^ g

( 1 )
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Ifwe keep only the first order terms and assume that the circular velocity

at any point is independent of the distance z from the galactic plane, the

simple formula for fig is

KfiQ = — sin 2L sin 2g, (2)

as stated in section 11*22.

1 1*41 . Determination of Oort's constant A from radial velocities.

We shall suppose that the rotational effect on the radial velocities is

given, according to the simple theory, by the term

rA sin 2{G — Gq) cos“ g. ( 1

)

As this term is proportional to r, the stars selected should be the most

distant available and consequently O and B type stars and stars with the

c-characteristic are mainly used in investigations of this kind. Moreover, as

r is a variable, the stars selected for any particular solution should lie within

narrow magnitude limits and in one or two sub-divisions of a spectral class;

in this event, the range ofvariation ofr may be expected to be comparatively

slight and we can accordingly replace the coefficient in (1) by fA, where

f is the mean distance of the stars concerned. It is the quantity fA that will

be determined from the radial velocities; with r supposed known from other

som’ces, such as the statistical determination of parallaxes, the value of A
is finally determined.

Let Pq denote the observed radial velocity of a star relative to the sun.

Then will include (i) the parallactic effect of the solar motion, (ii) the K
term and (iii) the effect of galactic rotation as represented by (1). The equa-

tion of condition for a star is then written*

IX +mY -VnZ-^K-\-fA sin2(6r — (7o) cos^[7 = p^, (2)

in which (~X, — T, —Z) are the components of the solar motion with

respect to the centroid of the stars in the immediate neighbourhood of the

sun and (l,m,n) are the direction-cosines of the star with regard to the

galactic system of axes. In the usual notation,

I = oo&G cosg, m = sin (7 cosg^, n — sin^. (3)

Write u — r

A

cos 2Go, v = r

A

sin 2Gq, (4)

p = sin 2(7 cos^gr, g = — cos2(7 cos^(7. (5)

Then (2) becomes
lX-\-rnY -j-nZ-h K-{-pu-j-qv = pQ. (

6
)

The quantities I, m,n;p and q are readily found for each star—or for the

* We omit the peculiar—or non-systematic—^part of the radial velocity, which is to be

regarded as an accidental error when the normal equations are formed.
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mean of a group of stars in a small area of the sky. The equation (6) is solved

by least-squares to determine X, T, Z, K, u and v.

If the number of stars is small and the solar motion is known with toler-

able accuracy for the type of stars concerned, the parallactic component of

radial velocity can be first removed from the observed radial velocity and

then the equation of condition becomes

K-\-'pu^qv ^ (7)

where is the radial velocity referred to the centroid of stars near the sun.

In his earliest paper* on the subject, Oort first showed from some of the

star groups utilised that the value of Gq, determined from the general

solution of (7), was in accordance with Shapley’s earlier value of 325"";

assuming this value the equation of condition in this case is

K+ rA sin 2{G — 325"^) = (8)

In a subsequent investigation,! Gq was determined from the solution of

equations of the form of (7) and its value was found to be 324°. It is to be

remarked that if u and v are derived from (6) or (7) two values of G^ differing

by 180° satisfy the formulae (4); the close agreement of one of these values

with the value of the longitude of the galactic centre is to be expected on

the theory of galactic rotation.

As an illustration, some of the details of Oort’s solutions^ are shown in

Table 49.

Table 49. Determination of A

Spoctrnrn Magnitude m Number
of stars

fA V A

B0-B2 3m.5_4in.9 4“-5 23 -h 3 0^0042 -f-0010
»» 50~5‘8 5-4 17 13 20 21

»»
5-9~6*9 61 7 15 17 21

B3-B5 3-5-4-9 4-5 ! 75
1

4 66 21

,, 5-0-5-8 5-4 74 ! 1 48 4
5-9-0-9 6-3 10 16 30 39

c-stars <50 3-8 44 9
1

30 23
*> 5-0™5-8 5-4 26 14

1
19 23

^5*9 6-8 23 35 09 28

The fifth column gives the value of rA as determined from the solutions

of (7); the penultimate column contains the mean parallaxes of the several

groups of stars, obtained by statistical or other methods. The last column

contains the various values of A
;
the weighted mean, as given by Oort, of

these and other determinations is

A = 0-019 km./sec. per parsec.

B,A.N. No. 120, 1927. f B.A.N, No. 132, 1927. f Ibid, p, 81.
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The value ofA published recently by Plaskett and Pearce* is

0-0155 ± 0-0009 km. /sec. per parsec,

and, by J, M. Mohr,t 0-0177.

1 1*42. Determination of Oort's constants from 'proper motions.

The formula to be employed with the proper motions is 11-22 (5), namely,

A B
/% — ™ ^ o) ^ ^

fc
^ ^

^

If we assume that A has been determined from the radial velocities, the

procedure in applying (1) is as follows. First, the effects of the solar motion

are removed from the proper motions; second, the effects of errors in the

preoessional constants are also removed (the derivation of these errors will

be discussed later in section 11-43); third, the value of may be assumed

to be 325°.

Oort’s first results^ are shown in the following table;

Table 50. Values of B/k

Stars Spectrum Number
of stars

BjK

Group I B0-B2 105 -0^0075
II B3-B5 336 42
III c, O, N and 8 Cephei stars 330

1

42

The second column shows the spectral sub-divisions etc. of the stars in-

cluded in the several groups.

The weighted result is

BjK = — 0*0050 per annum (2)

or jB = —0-024 km./sec. per parsec. (3)

Proceeding in a similar way, except that A and Oq were not assumed,

Oort obtained the result, from the stars of Boss’s P.O.C.,

B/k = -0*'0023, (4)

which is just about half of the value in (2).

In a recent memoir § Plaskett and Pearce determined the values of A, B
and Oq, using (1), from the proper motions of 717 stars of types O to B7.

The values ofA and Oq are in good agreement with the values of these con-

Publ D.A.O. {Victoria^ 5, 294, 1936.

t B.A.N. No. 132, p. 86, 1927.

t M.N. 92, 592, 1932.

§ Publ. D.A.O. {Vicioria)y 5, 299, 1936.
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stants determined from the radial velocities. These latter values being now
assumed, a further solution gave

£/a: = ->0*0025, (5)

which is close to Oort’s value in (4) found from the Boss stars.

The proper motions of the stars of types B0--B5, B8-A0 and A2-A5 in

Boss’s catalogue have also been treated by Dyson,* by the method of

harmonic analysis, but the presence of a third harmonic (in 3L, according

to our notation) with a large amplitude is disconcerting and not easily

accounted for. Otherwise, the derived values oi A, B and are in fair

agreement with the results previously mentioned.

It is evident that further progress in determining the value of B with

more satisfactory exactitude will not be possible until the proper motions

of distant stars are available in larger numbers and less liable to systematic

and accidental errors than at present. Meanwhile the best we can do under

the circumstances is to take B, in round figures, to be given as follows:

B//C = -0-003, (6)

B — —0*015 km./sec. per parsec. (7)

1

1

*43 . Precessional and equinox corrections.

If we consider stars in low galactic latitudes, the effects of differential

galactic rotation on the proper motions is wholly (or substantially so) in

galactic longitude and by 11*22 (6) we can write

11^
= 0

so far as galactic rotation is concerned; in other words, we assume that the

systematic motions in galactic

latitude are negligible. This as-

sumption is the basis of the

method of deriving the preces-

sional and equinox corrections.

Let Ap denote the coirection

to the value of the annual luni-

solar precession (in the ecliptic)

as used in determining the proper

motions ofthe stars; in Oort’s in-

vestigation, now to be described,

Ap is the correction to the annual

precession as used by Boss in

the P.G.C.

In Fig. 68 let K and L be the poles of the ecliptic and of the galactic

equator; let <?, ( = ON) be the galactic longitude of the ascending node N of
* M.N. 90, 233 , 1929 .
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the ecliptic on the galactic equator and the inclination. Let {O^g) and
(ly b) be the coordinates of a star S with reference to the usual galactic and
ecliptic systems. Prom Pig. 68 it is easily seen that the true value ofthe com-

ponent of proper motion of S measured along the ecliptic ^NQ 'm greater

than the catalogue value by the amount Ap. The true annual displacement

of S along the small circle ST (parallel to the ecliptic) is thus greater than

the catalogue value by ApcoBb. Hence the component, A/igy in galactic

latitude is given by

Af/^ ~ Apm^b sing,
( 1 )

where q is the angle LSK. But from the triangle KL8,

cos b sin q = sin sin KLS.

Now KLS = 90°

Hence Afig — Ap sin cos (G — G^), (2 )

As in section 3*32, let A\ and Ae denote respectively the annual correction

to the planetary precession and to Newcomb's adopted motion of the equi-

nox, both measured along the celestial equator in the direction of increasing

right ascension. If €2 a^nd G^ are respectively the inclination and the galactic

longitude of the ascending node of the celestial equator on the galactic

equator, the errors AX and Ae give rise to a component of proper motion in

galactic latitude given by

Api'g = — (zlA-f-/le) 8in 6
'

2 Cos (
6?- 6/2 )' (3)

If the effects of the solar motion are removed from the proper motions

of the stars, the total systematic component, Afigy in galactic latitude due

to Ap, AX and Ae is given by

Apg = Apmie^ cos(G— /lc)sine
2 cos((r~ 6r

2 ) (4)

This is the equation of condition used by Oort* for determining Ap and

(JA-h Je). With the coordinates of the galactic pole as found by Newcomb,
the values of e^y e^y O^y are as follows:

6^= 61^2, 62 = 63?2,

= 153?5, ©2 = 1S0?0.

Using the proper motion data of the stars considered in Table 50 (section

11*42) and also of the stars in Boss’s P.G.C., Oort obtained the results

= 4-0^0113, (5)

JA-f-Je = -f 0^0117. (6)

• B.A.N. No. 132, p. 84, 1927.
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From gravitational considerations* the value ofdA is taken to be — 0''0020

per annum; the value of Ae is then given by

= -fO^'0137. (7)

With the value of Ap in (5), the value of the annual luni-solar precession

is, for epoch 1900*0,
50^3821

Plaskett and Pearce have made a similar investigation (Zoc.

The corrections, Afi^ and Aja^, to the components of the proper motion

in right ascension and declination, when the proper motions have been

calculated according to Newcomb’s values of the fundamental processional

quantities, are readily found. In section 3*35 we have given Boss’s results ;

we repeat these and add the results of Oort and of Plaskett and Pearce.

Boss: Afi^ — 0®*00021 — 0®*00015 sin a tan S

A/ifi = — 0''0023cosa

Oort : Afi^ — + 08*00009 — 08*00030 sin a tan S

A(l^ — — 0''0045 cos cl

Plaskett and Pearce:

= +08*00005 -08*00025 sin a tan

= ~0'a)038cosa

These results are all consistent as regards the signs of the several coeffi-

cients and, considering the smallness of the quantities involved, in remark-

ably good agreement. It is to be remembered, however, that Boss’s solution

was made long before the study of galactic rotation had been begun; con-

sequently, his results contain the effects of a systematic motion not allowed

for in his equations of condition. For this reason and also because Oort’s

results for the Boss stars are in almost exact agreement with the results

derived from the three groups of distant stars in Table 49, it is evident that

the formulae (8) must be superseded by (9). The results of Plaskett and

Pearce in ( 10) may be regarded as strongly confirmatory of Oort’s numerical

values. This conclusion is fortified by the accordant results of a lengthy

investigation by Pariisky, Ogrodnikoff and Fessenkoff,! based on different

material from that used by Oort.

B.A.N. No. 132, p. 86, 1927. See also a note by Plaskett and Pearce (PubL D.A.O. (Victoria),

5, No. 4, 297, 1936) in which they quote the opinion of Fotheringham to the effect that this value

of AA is untrustworthy.

t See also Van de Kamp and Vyssotsky, Learider McCormick PubL 7, 11, 1937.

J ‘‘Study of the effect of known parallaxes and galactic rotation upon the determination of the

constant of the luni-solar precession of Newcomb”, PubL of the Sternberg State Astr. Institute, 6
(1), 104, 1936 (with summary in English, p. 187). See also a paper by P. van de Kamp and
A. N. Vyssotsky, Proc. Nat, Acad, of Sciences, 21, 419, 1935.

(8)

(9 )
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1 1 *44 • Interstellar matter .

Within recent years definite evidence, both observational and theoretical,

has been gathered to demonstrate that interstellar space (within the con-

fines of the galaxy) is not empty but is filled with a very highly rarefied gas

ofsubstantially uniform density—at any rate up to distances of the order of

a thousand parsecs from the sun. From this point of view the familiar

diffuse nebulae, both luminous and dark, may be regarded as local con-

centrations ofinterstellar matter, asmay also to a lesser extent the absorbing

cloud considered in Chapter ix. As we shall see, it is possible to infer the

presence of a galactic cloud from the principles of galactic rotation, for the

interstellar matter must be expected to share in the rotation.

The observational evidence, so far as galactic rotation is concerned, is

based on the behaviour of the ‘‘stationary” H and K lines of singly ionised

calcium atoms (denoted by Ca n; the neutral atoms are denoted by Ca i).

It was first noticed by Hartmann* that the H and K lines were present in

the spectrum of 8 Orionis, a spectroscopic binary of type BO, and that more-

over they remained invariable in position whereas the hydrogen and helium

lines, typical of a BO star, oscillated in the period of the binary. It was

subsequently shown by J. S. Plaskettf that the stationary lines—which are

characterised by their narrowness and sharpness—were present in the

spectra of single stars of type O and also of some Wolf-Rayet stars in the

spectra of which absorption lines are normally absent. Also, the radial

velocities deduced from the H and K lines differed appreciably in most

instances from, and bore no relation to, the radial velocities deduced from

the lines belonging normally to the types of stars concerned. The simplest

explanation appeared to be that the stars were moving tlirough a cloud in

which ionised calcium atoms were present in such sufficient numbers as to

produce the characteristic absorption lines of these atoms.

Later, Eddington,J by arguments into which we need not enter here, was

led to the hypothesis that, except in the neighbourhood ofthe diffuse nebulae,

space was filled with a highly rarefied gas with a density of 6
.

gm./cub.

cm. and a kinetic temperature (as defined by the atomic or molecular speeds)

of about 10,000°. Although most of the calcium atoms would be doubly

ionised at tliis temperature, it was estimated that the number of Ca ii

atoms would be sufficient to produce unmistakable absorption lines provided

the depth of the absorbing cloud was of the order of one or two hundi'ed

parsecs at least.

The hypothesis of interstellar matter, of substantially uniform distribu-

tion, leads to the two consequences that all distant stars, irrespective of

* Ap. J. 19, 268, 1904. f 84, 80, 1924. J Proc, Roy. Soc. A, 111, 424, 1926.

SSD 25
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type, should show the stationary lines in their spectra and that the strength

or intensity of the absorption should increase with increasing distance of

the stars. In types later than B8, the stationary lines are not generally

separable from the stellar H and K lines derived from the atmospheres of

the stars themselves, and in types from F onwards they are invariably

swallowed up in the broad stellar lines.

The detection ofthe interstellar lines depends then either on the complete

absence of the H and K lines from the normal stellar spectrum or, if the

stellar lines are present, on the sharpness of the latter and on an- adequate

Doppler displacement of about 50 km. /sec. at least; in every instance the

star concerned must be at a considerable distance from the sun.

The substantial uniformity of the interstellar cloud was first demon-

strated by 0. Struve* from intensity measures of the H and K hnes of over

1700 stars of spectral types O to B3, the intensity being found to vary

linearly with distance,

1

1

*45 . The researches of Plaskett and Pearce on interstellar matter.

Plaskett and Pearcef investigated the properties of the interstellar matter

by considering the effects of galactic rotation; it was tacitly assumed, of

course, that the cloud shared in the general rotation. The radial velocities

deduced from the stationary hnes for 261 stars, spread over about two-

thirds of the galactic circle and mostly within 10° of the galactic equator,

were first analysed for solar motion, K term and galactic rotation, the

equation of condition being 11-41(6). The solution yielded a neghgible

K term and a solar velocity of 19-9 km./sec., with the apex, however, about

20° (mainly in latitude) from the normal position. As the distribution of

the stars is clearly unfavourable for the determination of the galactic

latitude of the apex, the results were taken to indicate that the solar motion

with respect to the interstellar matter is very much the same as the solar

motion with respect to the stars in the neighbourhood of the sun. The

radial velocities were then corrected for the usual solar motion and the

equation of condition used in the solution is now 11-41 (7). The results were:

rA : + 7-9 ± 0-8 km. /sec.,

K: —0-6 ±0-6 km. /sec.,

©o**
332° ±6°,

the galactic longitude, (?q, of the centre being in good agreement with

Shapley’s value of 327°.

The stars were then arranged in magnitude groups, an approximate way
of arranging them according to distance. The solutions were then made

Ap. J. 67 , 353, 1928. t 90, 243, 1930.
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separately for the stars and for the corresponding interstellar velocities in

each individual group. Omitting the group of brightest stars, relatively few
in number, we exhibit the results in Table 51.

Table 51

Group Number m
rA

of stars Stars Cloud

(a) 45 5-6 + 10-3 5 0
(b) 79 60 + 13*9 + 7-7

(c) 119 71 + 16-6 -f- 8*3

(d) 69
!

7-3 -i-20-5
!

-f 101

If we adopt the value of 0*017 for A, the mean distances of the stars

range from 600 parsecs in group (a) to 1200 parsecs in group {d), and the

table shows that, over this range in distance, the mean distance for the stars

in a group is twice the mean distance for the absorbing matter; the conclusion

is that the interstellar matter is, more or less, uniformly distributed.

This result has an interesting appHcation. Reliable estimates of the

distances of novae are generally hard to obtain by ordinary methods; the

measurement of the stationary H and K lines in their spectra enables us to

find rA for the interstellar cloud and, with an assumed value ofA (say 0-017),

the distance, 2f, of the nova is then easily found. Estimates of the distance

can also be obtained from the investigation of the intensities of the inter-

stellar lines.*

1 1 *5 1 . Dynamical results.

Following Oort, we take as a simple working hypothesis that the gravi-

tational field of the galaxy is due to a central mass and to a uniform

distribution of matter, of total mass throughout a spheroid coextensive

with the galactic system. This hypothesis can be regarded only as approxi-

mating very roughly to actual conditions, especially as regards the second

part. It may be anticipated, however, that the deductions from such a

hypothesis will give at least the order of magnitude of the quantities arising

in the problem.

Let and be respectively the gravitational attractive forces per unit

mass due to the central mass and to the spheroidal distribution. We then have

and by 11-23(2)

(
1

)

(
2

)

Of. E. G. Williams, M.N. 95 , 573, 1936.

25-2
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Now =W
= DR, (4)

where C and D are constants. From these

rfAi ^ 2 ^
dR R ^

dR i?

jjence, from (2),

CO

II
(5 )

Also, 111 (6)

Hence -4m- (7 )

Prom (1), (5) and (7) we readily obtain, by eliminating F/i?,

(8)R~’3(A-B)'

Thus, when the values ofA and B are known, the ratio : K can bo derived

from (8).

The formulae for p and pg can now be written as

P = ^-^-j^rsm2L, (9)

^K^Vi 1 4:KA

Writings; for V/R in (6), we find that (8) becomes

Since, in the case under consideration, K/K^ > 1, we have from (11)

a>>^A. ( 12 )

We note that if the galactic rotation depends on a central mass alone, we
have, clearly,

1

1

*52 . The distance of the sun from the galactic centre.

The formula 11*51 (6) shows that ifA and B are found from observations

as described in previous sections and the value of V is known, the distance,

R, of the sun from the galactic centre can be easily found. For numerical



11*54 Galactic Rotation 389

purposes we have the following determinations of A and B by Oort* and

by Plaskett and Pearce.t

Oort: A = 0*019; B = -^0*024.

Plaskett and Pearce: A — 0*0155; B = —0*0120.

Taking V to be 275 kra./B^e. we easily find from 11*51 (6) the values ot

R to be, respectively,

6400 parsecs, and 10,000 parsecs. (1)

These values, Oort’s in particular, are on the small side as compared with

the distance estimated by Shapley from the study of the globular clusters

even when the effect of absorption is taken into account.

1 1*53. The value of KJK.

Oort’s value being given first as before, we derive from 11*51 (8) the two

results: xjx = 0*59 and KJK = 0*75. (1)

The inference is that the greater part of the central force is derived from the

central mass.

Oort has also derived the value of KJK from the proper motion com-

ponents /%, using 11*51 (10). We have

/f/io = ^|cos2Z<-- (2)

In this formula, /Iq is supposed to have been freed from the effects of the

solar motion. With A derived from the radial velocities, the formula (2)

enables us to determine Oort’s result^ is K^jK^ = 0*29, whence

KyjK = 0*78,

which points again to the predominance of the central mass in producing

the rotational velocity,

1 1 *54 . Formula for

We consider first an elhpsoid of uniform density p, and of mass the

semi-axes being a, b and c.

The components (X, Y, Z) of acceleration§ at any point P(g, rj, 0 within

the ellipsoid are given by

where 0 is the gravitational constant and a, P and y are defined by

g f” ^
^rrahc J o

’

in which = (a^^u)(b^-^u){c^-\~u).

* B.A,N, 4, 79, 1927. f Publ D.A,0. (
Victoria), 5, 299, 1936. t P ^.N. No. 120, p. 282, 1927.

§ See, for example, Routh, Analytical Statics, Vol. n, p. 106 (2nd ed. 1902).
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If now 6 = 0 and o > c, we find that

2a+7 = 47r (1)

and 2ao2 +7c“> =— (2)

For the galaxy, a is several times larger than c, so that (2) becomes

approximately 2aa^+yc^ = 2n^ac. (3)

Hence from (1) and (3) a = “

or, with suflficient accuracy, a

The mass, is given by =

Hence, we obtain ap

7rc(7Ta— 2c)

^ ^2

TT^C

(4 )
a = —

.

a

— ^na^cp.

S7rM»
(5)% II

Suppose now that the ^-axis passes through the sun, which we assume to

be in the galactic plane; the coordinates of the sun are now (R, 0, 0) and

Z = -(?api? =

or, in the notation of section 11-23,

__ SnOMoR
, ,

<«)

in which we have written R^ for a.

The most plausible estimate of the diameter of the galactic system is

about 30,000 parsecs. We accordingly take R^ to be given by

= 15,000 parsecs, (7)

R
so that, if iZ = 10,000 parsecs, =- f . (8)

1 1 *55 . An estimate of the mass of the galactic system.

The formulae in the preceding sections can be used to give some idea of

the mass of the galactic system if we base our hypothesis on a central mass
and a uniform spheroidal distribution.

From 11-23(1), we have = KR^ (1)

and from 11-23(3),
I ^)’

where u) = VjR,

Using (1), we find that (2) becomes
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+ ^ +pGM^R, (4)

in the second term of which we have written p for S7tI4,R^ in the expression

foriCg given by 11-54(6).

From (4),
dK 2QM^
dR R^

+p(^^2> (
5

)

and from (1) and (4), y2 _ +pOM^R\

from which pOM^ = w*- -^3^ (6)

Consequently, from (5) and (6),

dK , 3GM,
dR R^ ’

so that (3) gives
36Wi

~ 4wjR»
’ (7 )

whence
^loR^A" =
”3G- (8)

From (6) and (8), we obtain, on inserting the expression for

4w(3w-4j)i?»
*
~ • (9 )

Hence
llRANio 4\

M\ 7i\Rj U 3/'
....(10)

It may be noted that (10) is consistent with the inequality in 11-51 (12).

The formula (10) may be written in a slightly different form; from

11-51(11),

A s\ k;

Hence
(
11

)

For the purpose of making an estimate of the mass of the galactic system,

we shall use Plaskett and Pearce's values for A and R which are respectively

0*0155 km. /sec. per parsec and 10,000 parsecs. We also take JSj/i? to be 3/2

as given in 11-54 (8).

We adopt the year, the sun’s mass and the astronomical unit of distance

as the units of time, mass and length respectively; in this system

0 = 4n\
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Taking F to be 275 km./sec., we have in the new units

F =
K̂

'

where k = 4*74; and

R = 10^ cosec V
= 2.10® astr. units, approximately.

Also
,

0*0155
A = ~ ~~— astr, units per annum per parsec

o
II astr. units per annum per astr. unit .

275

(12)

and
"~2Ar.l09‘

(13)

From (8), we find ifi = 13.10i«.
(14)

and, from (10) and (14), i/2=:(5.10l» (15)

This last result may also be derived from (11) and the second value of

KJK given in 11*53 (1); it follows that

3‘

Thus the total mass of the galactic system is approximately

2.1011 (16)

in terms of the solar mass as unit.

We conclude that, on the hypotheses stated, the observed features of

galactic rotation may be ascribed to a highly concentrated central mass

together with a uniform spheroidal distribution of matter (including stars

and the cosmic cloud) whose total mass, as given in (16), may be regarded

as a rough estimate
;
it is to be remembered that the value of R^ adopted in

the calculations is somewhat uncertain.

The period, P, of revolution in circular orbits for stars in the neighbour-

hood of the sun, is given by p _ 27r/w

with the value of w adopted in (13), we find that, approximately,

P = 2 . 10® years.



CHAPTER XII

THE DYNAMICS OF THE GALAXY

12*1 1. Formulae for Oort's constants.

In the previous chapter we considered the phenomenon of galactic

rotation and, in particular, we derived the theoretical expressions for Oort’s

constants A and B— 11*21 (8) and 11*22(2)—in the form

IF \dV
(1)~2R 2dR’

li 1 II 1 (2)

in which the angular velocity w, at the distance R from the galactic centre,

is given by VjR. In these formulae V and <i) refer to the direction in which

tlie rotation actually occurs, that is, in the retrograde direction—or opposite

to that in which galactic longitude is measured.

We shall assume that the galaxy is a system with uniaxial symmetry.

In terms of cylindrical coordinates

and in the notation of section 10*41,

we represent the systematic trans-

verse linear velocities at S and X
(Fig. 69) by and 0^ and the dis-

tances of S and X from the galactic

centre, C, by m and 137^, where S

refers to the centroid of the stars

in the neighbourhood of the sun

and X is any star more remote. The

figure is supposed to be in the plane

of the galactic equator with the

positive direction of the axis of symmetry through C and perpendicular

(upwards) to the plane of the paper. The directional sense of 0q, and of ©j,

is thus the same as that in which the azimuthal angle, 6, of the cylindrical

coordinates is measured; also, the sense in which 6 is measured is the

same as that of increasing galactic longitude.

We denote the angular velocity at 8 by o)q, so that

(3 )
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Also, and F in (1) are the transverse linear velocities at S but measured

in opposite directions; hence

111
0 and a>Q = ~ ci>. (4)

We then have from (1) and (2)

. ] d0a 1 6>„
(6)

2 dm '2 w'

B A (0^
2 dw 2 m ‘

(6)

As before, we denote by K the gravitational attractive force per unit

mass at S\ if, as in Oort’s theory, the systematic transverse velocity is due

to the gravitational force AT, then

m (7)

It is easily seen from (5), (
6 ) and (7) that, in this case,

00 / mdK\
4m\ K'dmj’

(8)

4m\ K dm}’
(9)

or, by (3),
, (oj. mdK\ 1 / ,

dK\
^ 4(^ Kdmj 4wor“ dm)’

(10)

R ^o/..,^dK\
(11)

Another expression for A is obtained as follows:

9 A Gq m ^ 1 ^^0ZA — ^ = 1 = TJ7 ,aw w aw \w j aw (12)

so that A -^ d 2^-.— -^
4(Og dm 4wo dm vtit/

' (13)

It is to be remarked—from (11)—that JS 7^ 0 unless K(w) varies as

AJso, from (13), since is negative, the actual rotation being in the

retrograde direction, A is positive if— is negative. If K{'m) is given by

K{m) = ^-\-Dw, (14)w
as for a central condensation combined with a spheroidal distribution of

matter,
=

dvj\w} tZ7^‘
.(16)

Accordingly, in this case, A is positive.
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12*12. Relation between galactic rotation and star-streaming

,

We have seen in section 10*42 that, for a system with uniaxial symmetry
in a steady state, the space-velocity frequency function/ is given by

f{lD + A2(@ ~ (9,)2 -f - 2Fi}, (1)

where U,®, Z are the velocity components in cylindrical coordinates and

(2)

1 + k^m^’

V, = V + :
’ 2 l+igtTj"’

' ''

V being the potential.*

The distribution of velocities in (1) is spheroidal with the equal and
longer axes in the w and z directions, being positive. Now ©o
systematic linear rotational velocity at the point of the system under

consideration, and if this point be taken at S in Fig. 69, we have from

12 - 11
(
5

) 0
dm m

Also 2B =^+ -?.
dm m

From (3) and (2),

Hence

from which
B

B-A
and in consequence of 12*11 (6),

1 1
^™ = 1 -I

—

A2 0).

Now in (1), 1 : A is the ratio of the semi-minor axis to the semi-major axis

for the velocity spheroid; this ratio can, accordingly, be derived from (5).

From 11*55(12) and 11*55(13) the values of A and cJq—we remember

that 6io = by 12*11( 4)—have been given as

0j^55
2k, 10^' 2/c. 10»*

* F is not to bo confused with the velocity V occurring in the definition of the Oort constants.
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These may be regarded as typical numerical results with a substantial

claim to reliability. Inserting these in (5) we obtain

\ = 0-66, (7)

which is in good agreement with the usual values ofthe ratio ofthe semi-axes

found by the methods of Chapter v (compare, for example, the value

K/H = 0*63 mentioned in 5-4).

This accordance must not, however, be unduly stressed, for (5) is derived

from a model ofa spheroidal galaxy in a dynamically steady state embodying
the mathematical implication that the semi-axes of the velocity ellipsoid

are equal in the direction of the vertex (the rn-direction) and in the

direction perpendicular to the plane of symmetry (the ^-direction). So far,

the bulk of the observational evidence is contrary to this equality. If we
adopt a short time scale for the age ofthe galaxy, stars in the neighbourhood

of the sun will have made but a few revolutions round the galactic centre

and it may be anticipated that the steady state contemplated in the theory

and leading to (1) is not quite realised in the actual galactic system. The

model which we are now considering must then be regarded as a kind of

first approximation to the galaxy itself.

12*13. Formulae for Schvnrzschild's velocity-law.

If the function in 12-12(1) is exponential as in Schwarzschild's law, we

f=Pe^ o'
( 1 )

where P and a are constants, or

/ = /ie
^ “ '>• \ (2)

where /, = (3)

Also, 6 = f. (4)
A

Ifn denotes the mean of the peculiar speeds in the m direction we have, in

the notation of section 10*42,

i7= iAj
,

whence Tl = ^. (6)

and 2 = -^.
-Jn .jn

Similarly,
(6 )
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By 10*42 (19) the star-density, p, is given by

p =
J
d dc^

,

from which v ^ (na^)^ (7)
A

We shall require these formulae later.

12 * 14 . Lindblad's derivation of the ellipsoidal distribution of stellar velocities.

Relative to the centroid of stars in the neighbourhood of the sun the

peculiar stellar velocities, in one coordinate, have an average value, taking

all spectral types together, of the order of 10 km. /sec. As this is but a very

small fraction of the linear rotational velocity near the sun, the orbits of

the stars as viewed from the galactic centre do not differ very markedly

from circles, on the average. Lindblad’s investigation,* which will now
be described, is concerned with these orbits.

We consider motions in the galactic plane only. Consider a point, S', at

a distance w from the galactic centre, C (Fig. 70). The angular rotational

velocity at 8, relative to fixed axes CX and CY, will be denoted by o),

measured in the direction of increasing galactic longitude. As before, we

denote by K(m) the attractive force per unit mass at a distance m from C;

mo)^ = K(w). (1)

Let P be a star near 8 with coordinates (^, rj) relative to the axes 8B and

8D as shown in Fig. 70. The co-

ordinates ofP with respect to the

axes CB and GE are {xn^^,7j)]

these axes form a rotating system,

the angular motion being w.

Let t37i denote the distance CP.

In general, the motion of P about

C will be somewhat different from

that in a circular orbit of radius

TUi. The attractive force at P, per

unit mass, has components E

K{mi) and —^K(wi)
TZTi

parallel to CBandGPrespectively

.

* Arkiv for Maiematik^ Aatronomi och Fyaik^ Bd. 20, A, No. 17, 1927; Upsala Medd. No. 26,

1927.
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We accordingly have the following equations for the motion of P
relative to C:

dP m 4-

E

+ + (2)

jj + 2o)~{w4-i)~-o)hi = (3)
at

We assume that and rjjm are small and we shall neglect squares and

higher powers of these quantities.

In (2) and (3), w and (o are constants, since we assume circular motion

for S,

Now t37| = (tzj -f

from which, with the approximation in view,

tzTj = trr +

Then K(w^) = K(w) + g
^

.

dw
Making use of this result and also of (1), we find that (2) and (3) become

= (4)

^ + 2w| = 0. (5)

Now, by 12- 1 1 ( 10), Oort’s coefficient as defined for the point S, is given by

<«)

Hence (4) can be written | — ^corj + =0. (7)

From (5), ^ = 2w(^i-^), (8)

where is a constant of integration. Hence (7) becomes

|+4w(w + d)^ = (9)

If K{vj) is defined as in 12-11 (14), we have by 12-11 (13)

,
. w d IK\ K m d IK\

C,}((0 + A) = w*+ -jj-(- I = -+ rT~(— I^dw\vj) w 4:dv}\m)

The coefficient of ^ in (9) is thus positive. Let

( 10)

Then (9) becomes l + (11)

The solution of this equation is

i = CBing(t-tg) + -^^y, (12)
*7

in which c and are constants of integration.
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12*15. In Pig. 70 let 0 denote the angle which the rotating axis G8B makes
with the fixed axis CX, If (X, Y) are the coordinates of P with respect to

the fixed axes, X = {w + ^) cos 6 — 7
}
sin 0^

(1)Y = (tz7 4-^)sin^+ ^cos(9J1

)

from which, since 6 = 0),

X = £co8^ — 7/sin/9*-a»y|

Y = ^8in6^4-i7cos^-fojXjI-
(2)

Since the force is central, the radius vector CP will sweep out areas at a

constant rate, say Now
h =

which is readily found by (1) and (2) to become

A = (T77 + ^ 4- (DW\.

But h is also given, by considering the radius vector C8, by

h =

Hence, to the first order of ^jw and rjlm^

(tu 4- g) ^ -f 2(i)vy^ = 0.

If {rj) denotes the value of r/ when ^ = 0, we have, from (3),

(7/) = 0.

It follows from 12*14 (8) that = 0.

Hence + 2(0^ = 0

and the solutions of 12*14(11) and 12*14(8) are

g = csin^(^~g,

V = -y"cos^(^-^o)*

Thus the orbit of P relative to S is the elhpse, with its centre at S,

and the relative velocity components | and rj satisfy the relation .

(3)

(4)

.(5)

.(6 )

(7)

.(8 )

12*16. We consider now the orbits passing through a small volume ofspace

surrounding the sun, 8^ (Pig. 71). Referred to 8 and the axes 8B and 8D,

the coordinates of a star at, or very close to, Sq are (^, tj) and, to the order of

approximation adopted,
tz^o = tz; 4- g, ( 1

)

where is the distance CSq,
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io 9 Vo denote the components of velocity of a star with respect to the

axes SqBo and Since i is the

component ofvelocity parallel to CJS

.'Bq wehave—neglecting small quantities

of the second order

—

^0 = i (2 )

Also, referred to a fixed axis with

which CB is momentarily coincident,

the velocity ofthe star perpendicular

to this fixed axis is ^ + Similarly,

referred to a fixed axis with which

CB^ is momentarily coincident, the

velocity of the star perpendicular to this fixed axis is Vo'^^o'^o^ where <x>q is

the value of (o at Since CB and CB^ are inclined at a small angle we obtain,

on neglecting small quantities of the second order as before,

which can be written with sufficient accuracy

% = 7 + TZ7(6>-6>o)* (3)

Now, (j is a function ofw and 0)^ is a function of Wq\ hence

d(i)

(O-OJq = —

.

Hence, from (1) and 12*15(4), the formula (3) becomes

But from 12*11 (12), A is defined for S by

^ ^~2 dw

(4)

(5)

Hence (4) becomes (6)

Inserting the values of i and given by (2) and (6), in 12*15(8) and

remembering that g is given by 12*14(10), we find that and rj^ satisfy

the relation

ii, ^
g^((a+A)

Vl (7)

In this formula w and A, together with g, refer to the point 8 in Fig. 71. To
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the order of accuracy with which we are concerned we can replace A
and g by the values of these quantities at Sq. The formula (7) is then

II

9l
Vo = (B)

in which A now denotes Oort’s constant for and

9o = +
(
9 )

The quantities cjq, A and Qq are now constants independent of the position

of S relative to Sq, subject of course to the degree of approximation already

indicated.

It is to be remarked that and tJq are the components of velocity to be

associated with the stellar motions as observed at Sq. Further, the equation

(8) has been derived by considering the orbit of a star relative to a given

point S; the orbit is found to be an ellipse with the radial axis of length c.

When c is given, the components and tJq, referred to axes through the sun,

satisfy (8), and for a given c and varying positions of S there will be a family

of orbits for each of which (8) will be satisfied.

12* 17. We have to consider the continuity condition at Sq. Referred to

fixed axes CX, CY the kinetic energy is given—using (1)

and (2) of 12-15 and applying these formulae to the coordinate system at

-So—by ^

2T = il + 7}l- 2o)oVoio + 2Wo(^o + ^o) Vo + "o(So + + Vo)-

Let 9'i
= ra'o + ^o> Q2 = Vo- (1)

The generalised momenta andp^ (per unit mass) are given by

0T

_dT _ dT-
'0?2

~
8Vo'

Hence Pi = io-^oVo
| ^

2
)

P2 = ’/o+ «o(u^o + ^oP

The equations of motion are then

.
_dH

.
_dH

dH . dH

0gi’ dq^’

where H^T—V{w) is the Hamiltonian function. The qs and jp’s are

canonical variables and by Liouville’s theorem

^^{dqidq^dp^dp^) = 0.

26
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Now dq,dq,dp,dp, = ^f^.?lfl^diodVodiodVo-

It is easily seen from ( 1 )
and (2) that the value ofthe Jacobian in

expression is unity. Hence
the previous

(3)

or II p (4)

where dP ^d^^driQd^^driQ is the phase-element.

Ifwe assume that the number ofstars per unit phase-element is a function

^(c^) of the parameter c (the semi-major axis of the relative orbit), the

number of stars in the phase-element dP is given by

dN = ^(c2)dP.

Hence, by (4), ^ (dN) = 0,

so that the necessary condition is satisfied.

Thus, using 12* 16 (8), it is seen that the number of stars, per unit area of

the galactic plane, with velocities between rj^) and + +

(i)t,

(5)

If
(f)
takes the form (5) is equivalent to Schwarzschild’s ellipsoidal law

applied to two-dimensional motion. The major axis of the velocity ellipsoid

points towards the galactic centre and the ratio of the axes in the galactic

plane is / u

agreeing with the result of 12*12.

12*21. Asymmetry of stellar motions.

We begin with the formulae in section 12* 13. It is to be remembered that

we have defined the systematic rotational velocity 0q near the sun as

positive in the sense of increasing galactic longitude.

From 12*13(7) we have

A
dw
/IX _

2^
a^dta

or, using 12-12(4) and 12-12(2),

vdw \dm^ a^\dw
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+ 0g = --^ and ~Now, since

we obtain, on eliminating and ij.

vdm mX^ a^dm m

b

a’

(1)

where
(2)

Here, 0^ is the circular velocity at a distance m from the galactic centre

arising from the potential V of the field.

We write /S' = 6>^-6^o* (3)

Then 0^-0^ == 8^-h2S0Q

and, if S is small compared with ©q, we can write with sufficient accuracy

0?-0§ = 2.Sf(9o. (4)

Now by (3) and (6) of section 12-11,

00 =
Hence, by (4) and (5), the equation (1) becomes

jl dj^
+

4(A — B)\ydm m

(5)

(
6

)

We see from 12*13 (5) that a is times the mean speed in the Tzr-direction

(and also in the 2:-direction). We can thus regard a as a measiu*e of the

peculiar motions of stars in the system under consideration. If the peculiar

motions are small, as for the majority of stars in the neighbourhood of the

sun, a is small and, by (6), S is small; accordingly, 0^ approaches 0q in

magnitude. The stars in such a system describe orbits about the galactic

centre not differing greatly from circles, and the systematic rotational

velocity 0q is close to the circular velocity 0^ arising from the potential of

the field.

But for stars with large peculiar motions, such as the high velocity stars,

the deviation between 0q and 0^ for this particular system is very much

greater owing to the larger value of a. Accordingly, the high-velocity stars

have a systematic velocity (0q — 0^) relative to the stars with small peculiar

velocities, that is to say, relative to the great majority of stars in the neigh-

bourhood of the sun.

Accorcjing to Oort,* who has made extensive calculations based on the

observational material treated by Stromberg,t the numerical value of the

• B.A,N, No. 169, p. 283, 1928. t Ap. J, 61 , 363, 1925.

26-2
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first term in (6) is greater than that of the second term; also, if we make the

reasonable assumption that v increases as we approach the galactic centre,

dvjdm is negative. Hence the value of 8^0^ — 0^ is negative, or the syste-

matic relative velocity ofthe high-velocity stars, namely 0^ — 0^, is positive.

Now 0^ and 0^ are measured in the sense of increasing galactic longitude

and, as the actual rotation is retrograde, we write

n = -<9o, ^c
= -0c.

where Vq and are the speeds concerned in the dii’ection in which the rotation

is observed to take place. We then have that — is negative; in other

words, the systematic transverse speed, of the high-velocity stars is less

than the systematic transverse speed, of the majority of stars near the

sun. Thus, the high-velocity stars appear to lag behind the normal stars and

this is in conformity with the conclusions as summarised in section 11*14.

Assuming that the quantity within the brackets on the right of (6) is

substantially the same for various groups of stars with different velocity

-

dispersions or (where or is proportional to a), we can write (6) in the form

8 =

where c is a constant. This is a parabolic relation between the systematic

motion of a group (relative to the normal stars near the sun) and the dis-

persion. This parabolic relation was first obtained by Stromberg* from the

observational material to which reference has already been made. The

dynamical theory which we have just outlined is thus in accordance—at

least, qualitatively—with the observational evidence.

It is of interest to add that the average value of -“ as determined by

Oortf from Stromberg’s data is —0*00019.
^ ^

12*22. Lindblad has arrived at a similar conclusion by a slightly different

procedure,J substantially as follows.

Prom 12*13(7),

log v = log {P{7ra^)*} - log A + -^ V^(w)

.

a

Similarly, if is the density at a distance from the galactic centre,

log 1^1 = log{P(7ra2)S}-logAi+ ;^Fi(T!Ti),
Vi

where +

Writing

we have

a:==

2/

1 -f- i

F(tEr) — F(u7i) —
k\{w\ — m^) )

2(1 + k^m^) (I + k^rul)]

* Ap. J. 61 , 379, 1925. f No. 159, p. 282, 1928.

t Stochholms Obs. Annaler, 12, No. 4, p. 15, 1936.

(i)

• ...(2)
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We now assume that has been chosen so that (ruj^ — ru) is small compared

with m. It is easily found, by means of the reductions of tlie previous

section, that
^

^2
j^ ”

46^ot777j-T?7
(-3)-

.(3)

We suppose m and definitely known, the former being the sun’s distance

from the galactic centre and the latter having the limitation already

indicated. As the density, v, is supposed to be known as a function of V7, the

value of y can then be determined from (1).

We may jvroeeed in a slightly different way by choosing x 5e unity;

then V7^ can be determined from (1); in this case, we may define as the

“effective limit”, its value depending of coiuse on the density-gradient

dvjdm. If the limitation regarding — vstill holds, the formula (3) is

the parabolic relation connecting S and a aheady found in the previous

section.

It may be added that, from Stiomberg’s observational data already

refen*ed to, Lindblad* finds that, for

^Lr^ = 0-23.
m

12*31. General kinematical considerations.

In Oort’s theory, as we have seen, it is assumed that the galaxy is rotating

about the galactic centre and that the consequences of this assumption are

expressed in terms of equations giving the differential effects for radial

velocities and for proper motions. It has been shown independently by

Pilowski,t Ogrodnikoff f and Milne§ that theforms of these equations do not

depend uniquely on the particular d3
mamical theory envisaged but are

deducible from the simple hypothesis of

the existence of a space-velocityfrequency

function for the assembly of stars con-

cerned, provided that this function is

continuous with respect to the coordinate

system by which it is described. As Milne’s

investigation is the most general of those

just mentioned, we shall consider it here.

Consider an assembly of stars whose

positions are referred to non-rotating axes

OX, OF, OZ (Fig, 72). Let the coordinates

of the sun, 8^, and of a star, 8, be respectively Zq) and (X,Y,Z),

* Handbuch der Astrophysik^ 5 (2), 1051, 1933.

t Zeit8,J. Astrophysik, 3, 53, 279, 291, 1931; 4, 396, 1932.

I Ibid. 4 , 190, 1932. § M.N. 95 , 560, 1936.
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Let the linear velocity components of Sq and of 8 be (Uo, Vo, Wq) and

(Uy V, W), We assume that a space-velocity function / exists so that, if dN
denotes the number of stars in the volume-element at 8, dN is given by

dN = dXdYdZ ;X,Y,Z; U, F, W)dVdVdW,

where the integration is taken over all possible values of Z7, F and W,
If V denotes the number of stars per unit volume at 8, we have

= U,V,W)dUdrdW. ( 1 )

In (1) we have written the frequency function as depending explicitly on

the time, so that a steady state is not assumed.

The mean velocity component, C7, ofstars in the immediate neighbourhood

of the sun is given by

rCJ- UfdUdVdW, (2)

There are two similar equations giving F and W,

In the same way we can derive the mean components (Uq, Wq) for the

stars near the sun.

If (^, rj, f) are the components of the solar motion with respect to the

centroid of the nearby stars, we have

^=Uo-U„, v = V„-V„ (3)

I

12*32. Radial velocities.

Let p denote the radial velocity of a star at 8 relative to the sun. If

(x, y, z) are the coordinates of 8 with respect to axes through 8q parallel to

OX, OF, OZ, we have

where r is the heliocentric distance of 8,

Averaging over all the stars near 8 v e obtain the mean radial velocity

p, relative to the sun, given by

vp = ljjj{{U-Uo)x+ (V-V,)y+ iW-Wo)z}fdUdVdW.

It follows from (2) and (1) of the previous section that

p = l{{U-U^)x+ (f-V,)y + {W-Wo)z} ( 1 )

Now U-Uo=V-U^-{Uo-U^).

whence, by 12-31 (3), U-Uo= U-U^- g.
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Then (1) becomes

P+l{ix + vy+ ^z)^l{{U-U„)x + {f-V,)y + {W-W^)z}.

Now + +
r r r

is the component of the solar motion in the direction of 8q8\ denoting it

by Po’ have

P-^Po = l{iG -U^)x+{V -V^)y + (W -W^)z} (2)

Now f/ is a function of X, F, Z and and similarly is a function of

^0 ? ^0 i'be first order* in x, y and we can write

where the zero suffix indicates that (dUjdX), etc. are to be evaluated for the

coordinates of 8q, It is assumed that these differential coefficients exist.

We obtain similar equations for V and W

.

Let denote the mean radial velocity of stars at 8 with the solar motion

component removed. Then (2) becomes

Pi = - {ax^ + by^ -f cz^ + 2fyz + 2gzx-^ ^hxy), (4)

--(ss).' '’(Ij).- '-(m

•(a*(a »-©.*(a’ -a*®.--
or, if (/, m, n) are the direction-cosines of the vector 8,^8,

p^ = r{al^ -k- cn^ 2fmn 2gnl 2hlm). (7)

We can define (I, m, n) in terms of angles A and ji regarded as analogues of

longitude and latitude with respect to the system of axes OX, OY, OZ; then

Z = cosAco8^, m = sinAco8/^, n = Bm/f (8)

and (7) becomes

Pj = ^
[{a -f 6 -f 2c) + (a -f 6 - 2c) cos 2)? + 4(/8in A -t- gr cos A) sin 2j3

4- {{a — b) cos 2A -h 2h sin 2A} {1 -f cos 2/?}] (9)

The expression for p^ in this equation thus consists of a constant part

r(a-f-6 + 2c)/4 independent of the position of 8 on the celestial sphere, and

a part depending on the coordinates of 8 with respect to the system of axes

An extension of Milne’s analysis to second-order terms has been recently made by Edmondson,

97, 473 ,
1937.
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chosen. If the radial velocities in different parts of the sky are analysed

according to (9), we should regard

^
(a + 6 + 2c)

as the term” which, we notice, varies as the distance, up to the order of

approximation adopted.

Ifwe obtain the values of for all small areas of the celestial sphere and

take the mean—which we denote by p^—we obtain

_ r2n ^7tI2

4:7Tp2— p^cos/M/idX.
J A= oj yy--7r/2

rr 47tNow
j
\P cos /id/3dA = sj

J
COS^ COSUdyffrfA^ y

,

with similar results for the integrals involving and n^. Also, over the

sphere, r r

llmcos^d/idA = 0,

with similar results for the integrals involving 77t7i and nl. Hence

P2 = + * + (10)

Milne regards this last expression as the ''K term ”,

If we are analysing the radial velocities of stars situated on a great circle

of the celestial sphere—we have in mind the concentration of the 0 and B
type stars towards the galactic equator—^we can choose our axes so that the

plane of the great circle is the plane z = Q, For such stars we have from (9),

on putting = 0,

Px = ^ + 6 4- (a — 6) cos 2A 4- 2A sin 2A}, (11)

in which a, b and h now refer to the new system of axes.

In (11) write

2A=2Pco82Ao, a-6 = — 2P8in2Ao, (12)

from which tan2Ao = ^ +A2

|

( 13 )

Hence (11) becomes

Pi = ^(a + 6) +r|(^^| +A*j*sin2(A-Ao) (14)

This is of the same form as Oort’s equation for the radial velocities of stars

lying in the galactic equator, with the addition of a ''K term”, equal to

r(a4-6)/2, varying with the distance of the stars concerned. It follows that

the observational verification of (14) is not sufficient evidence in favour
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of any particular dynamical theory, for the equation, as we have seen,

follows from the assumption of the existence of a space-velocity frequency
function, whether the system is in a steady state or not.

12’33. Proper motions.

We consider, as before, the general system ofaxes in Pig. 72 and we denote

l^fi fhe proper motion components in “longitude’' and “latitude”.

If u, i;, w are the linear components of vekxnty of S relative to >Sq, we have

Similarly v = V -Vq — tj,

where (^, Q are the components of the solar motion.

Prom (3) and (4) of section 1*33 we obtain, in the usual system of units

with r in parsecs and a: — 4*74,

Kr/i^ cosj3 — — wsin A -h vcos A, (2)

Kr/i^- _^cosA sin/? — vsin A sin /? H- cos /? (3)

Prom (1) and (2)

Kr/i^ cos /? — - ( 17 - Uq) sin a -f ( P — V^) cos A -f-

where Q — ^ sin X~r] cos A.

Here Q is the effect produced by the solar motion. If we assume now that

and have been corrected for the solar motion, we write

Krp^ cosyff =—(?/— Uq) sin a 4-
(
P — Pq) cos A, (4)

Krp^ r=z — i7y)cosA sin/? — (P — l^)sinA sin/?-f (IP — HQ)co8yff, ...(^)

Prom (4), by averaging for all the stars in the neighbourhood of S, we obtain

Krp;^ cos/? = —([/ — Uq) sin A -h (P — Pq) cos A

and, expanding 17, P to the first order in x, y and ^, we find

Kr]i^ cos ^ = - sin A (x ^ +2 (S) 1Kl
U\ /0U\ (d

y +4';)1)1(
\dA^/o J Jo \o

Since a? = r cos A cos^, y = r sin A cos yff, 2; = rsinyff we obtain, using the

notation in (5) and (6) of section 12*32,

_ U/0P\ IdUW .

y-

j
1
4- A cos 2A - ^{a — 6) sin 2A

+ tan/!jo«A(||)^-smA(g)J. (6)
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If we confine ourselves to observations made on the great circle /ff = 0,

(6) is reduced to

Ky^ = (<>3 +Kt)' + k^\ co8 2(A — Aq), •(7)

where
ij/dv

2(1axI-(©J
and Aq is defined as in 12*32 (13).

Again, (7) is similar to Oort’s equation for proper motions of stars in the

galactic equator.

In the same way we derive from (5)

- a — 6 h . a, + 6 — 2c.
Kfip — — cos 2A sm 2p — - sm 2A sin 2p- j— sin 2p

4- g cos A cos

(«)

For stars situated on the great circle /? = 0 we have from (8)

_ /avr\
,

/aiF\
. ,

Unless
j

^.re both zero, the general frequency function

will give rise to a component ]i^ depending on the “longitude in the great

circle /? = 0.

.(9)

12*34. Application to the galactic system.

We identify the origin O in Fig. 72 with the galactic centre and the plane

XOY with that ofthe galactic equator. We assume that the galactic equator

is a plane ofsymmetry so that W = 0 and that U and V are independent of Z.

It follows that j,

c=f^g==0.
We then have from 12*32 (9), expressing our results in galactic coordinates,

Pi ~ |cos2gr{a4-6-f (a— 6)cos2(?i + 2A8in2C?i} (1)

and from (6) and (8) of section 12*33,

k]Iq = 4- a cos 20i— \(a — 6) sin 2Gj, (2)

K]ig = — i sin 2g{a + 6 4- (a— 6) cos 20^ 4- 2h sin 26?J, (3)

where 0^ is the “longitude” measured from an arbitrary position of the

X-axis.
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lYansform to cylindrical coordinates so that with respect to 0 the

Si{X,Y) coordinates of 8 are {m,d,z) and the

linear components of velocity are

/ (//, 0, Z). In Fig. 73 Si is the projection

L of 8 on the plane of symmetry; also,

/ 6^ is the angle between 08^ and OSi.

I
We have to evaluate dUjdX, etc. for

O tsJo 8(1 in terms of 0/7/0ti7, etc. We choose

*

CentreT
-X-axis to pass through 8q. Then

X — 177 cos fA Y == Tusinfy, (4)

From (4),

U = //cos(9-0sin6^, If sin 6^ + 0 cos (9.

From (5)

( 977 9t27 977 dO
cohO —U sinO &CO80-

The value of dU/dX at 8q is obtained by putting 0 — 0 and ttj = tttq in this

expression. We thus obtain

Similarly

\dxh laWo'

il^\ = .lW _^0
\ay/o ot<,\0(97o

(in =(^\
laz/o hWo’

(K\ =_iW
\07/o mo\d0}o T!7/

We then have the following relations:

, /ai7^ idn 1 d0 n\
a + b = I —I ^2 H— I\0Ti7 w da vjjf)

^ \dm m dO rnj,

(idH
\w dO dxn m/Q

[0T!7 w dd "^nr/o.
2(0.
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12*35. Galactic rotation.

For simple galactic rotation, we have /J = 0 and B ( s ©q) independent

of 6. Then
, ua-f6~a — 6 = 0

and we obtain from 12-34(1)

== rh cos'^g sin 20^. (1)

In this formula is the ‘Tongitude'’ measured from the X-axis, but as we
have now specified the X-axis as passing through Sq, (1) becomes

Pi = rhcos^g 8in2(G— Gq), (2)

where G is the galactic longitude of as usually defined, and Gq is the

galactic longitude of the galactic centre.

Also, since © = ©q, we observe that h is simply Oort’s constant A. Thus

(2) is Oort’s equation for the radial velocities.

Similarly, K//y = B-h A cos 2(G~ Gq), (3)

where B is identified with

Also, jcju^ = — sin 2g sin 2(G — Gq). (4)

The formula (3) is Oort’s equation for the longitude component of the

proper motions.

12*36. Galactic rotation and expansion.

The general equations for p^ and Pq are given by (1) and (2) of section

12 - 34
, namely.

Pi cos^ g{{a -f- 6) -f- (a - 6 )
cos 2 (G - Gq) -I- 2ln sin 2(G~ Gq)}, ( 1

)

kpq = W3-f-Acos2(G— Gq) — |(a — 6)sin2(G~-G0), (2)

in which we have replaced Gj by (G — Gq), as in the previous section. Intro

ducing Aq and P as defined in 12-32 (13), we have

Pi = ir(a + b) 008^ g Prcos^g Bin 2{G — Oq — A^), (3)

Kjty = Wg + P cos 2(G — Gq — Aq) . (4)

In Oort’s formula for the radial velocities, Pi vanishes when

0 = GQ-^nnl2 (n = 0, 1,2,3)

and the K term depending on r is absent. If the galaxy is rotating and

expanding (or contracting), it is seen from (3) that the variable part of

vanishes when ^ ^ , le^G = Go-hAo-fm7r/2;

one effect of expansion is thus to increase the apparent longitude of the

centre, as determined by Oort’s method, algebraically by A^. A similar
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conclusion follows from a consideration of the formula (4) for the proper

motions in longitude.

To form the equation of condition to be used in the analysis of the radial

velocities we write (3) as follows:

cos'^ (j + r cos^ g sin 2{Q-0^).P cos 2Ao

~rco82gco8 2(G^-(^^,).Psin2Ao, (5)

where = \{a + 6) and is a possible systematic effect arising, for example,

from an inaccurate knowledge of wave-lengths; is thus equivalent to the

K term originally introduced by Campbell.

In (5) we suppose that the value of Gq—the longitude of the galactic

centre—is known from considerations, independent of dynamical theory,

as in Shapley’s investigations. Also, it is assumed that the distances, r, of

the stars are known with sufficient accuracy ; the 0 and early B type stars

will be mainly used in investigations of tliis type, arranged in groups

according to distance.

The quantities to be determined from a numerical apphcation of (4) are

Ag, P cos 2Ao, P sin 2Ao.

Similarly, the quantities to be determined from an analysis of (5) are

6>3, P cos 2Ao, P sin 2Aq.

From 12-34(6), we obtain

~ K2 —

P

sin 2Ao,

\ Tfj m 0(7/

Q

K^-^-P sin 2Ao,

c«>3-f-Pcos 2Ao,

(
6 )

(
7

)

(S)

(9)

A full analysis of the observational material will thus give the values of

the quantities on the left-hand sides of (6) to (9).

An attempt has been made by Pilowski* to apply these formulae to the

results of Plaskett and Pearcet obtained from their investigation of the

O and B type stars; but it would appear that Pilowski 's conclusions must be

considerably vitiated owing to Plaskett and Pearce’s erroneous procedure

in dealing with the K term.J

* A.N. 257, 225, 1935.

t M,N, 94, 679, 1934; see also PM. D.A.O. {Victoria), 5, No. 4, 1936.

i W. M. Smart, M.N. 96, 568, 1936.
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It is very doubtful if we have at the present time adequate observational

material (radial velocities and proper motions), covering a suflScient range

in distance and distributed over all galactic longitudes, to justify the

somewhat elaborate analysis required in the problem discussed in this

section.

12*41. The direction of star-streaming.

We have seen that in the theory of galactic rotation the axis of greatest

mobility on the galactic plane is directed towards the galactic centre. If,

however, the system of stars is expanding (or contracting) with reference

to the galactic centre, the projection of the velocity ellipsoid on the galactic

plane may have its major axis at an angle xjr vuth the axis defined by joining

the galactic centre and the sun. This is illustrated in Pig. 74, which is drawn

for the galactic plane, the

direction in which galactic

longitude is measured being

indicated by the arrow. If ^
is positive (as in the figure),

the direction of the vertex of

preferential motions is given

by SVi so that the longitude

of the vertex exceeds the

longitude of the galactic cen-

tre, C. Eddington’s discussion

of the Boss stars (of all types) places the longitude of the vertex at

346"^, just about 20^" greater than Shapley’s value for the longitude of

the galactic centre; several other investigations are in support, at least

qualitatively. On the other hand, if we consider only the evidence from the

B type stars, from which the characteristics of galactic rotation—deduced

from radial velocity measures—can only be satisfactorily determined, the

results are conflicting. For example, the longitude of the vertex as deter-

mined by Lindblad* for stars of types BO to B7 is 289° (it is to be remarked,

however, that, as the projection of his velocity ellipsoid on the galactic

plane is nearly circular, the longitude of the vertex can be but uncertainly

defined); more recent valuesf for B type stars are 336° and 301°, the former

for stars close to the galactic equator and the latter for stars within a fairly

narrow zone centred at 20° north or south galactic latitude, and Nord-

strom’s valued of 315° for stars of types 05 to B5 brighter than the sixth

M.N. 90, 509, 1930.

t W. M. Smart and H. E. Green, M.N. 96, 479, 1936.

I Lund Medd. Ser. n, No. 79, p. 137, 1936.
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magnitude. In any event, all these results carry a considerable probable
error (of the order of ± 5°), and it is fairly evident that in tMs connection

theoretical investigations must not be strained too far in alliance with

observational results. The following theoretical discussion is based on work
by Shiveshwarkar.*

12 *42 . The frequency function.

We consider only the motions of stars in the galactic plane. With the

usual notation the equations of motion are

02
77 + A" - 0,m (1)

w (2)

in which K is the attractive force per unit mass; it is assumed that iST is a

function of w only. Also, the direction of 0 is in the sense of increasing

galactic longitude.

The equation of continuity for the frequency function /is, in two dimen-

sions,

Dt
'

or, by (1) and (2),

dt
^ ^dd dn'^^de

~ ^

dt dw mdd (?-)
df

dfl

nodf
m dO

= 0 . .(3)

Let /Zq, 0q denote the values of the radial and transverse velocities for the

mean of the stars close to the sun; for stars at some distance from the sun,

the observed quantities will be 77— 11^ and 0 — 0q (the effects ofthe ordinary

solar motion being supposed removed). If, as in Fig. 74, the major axis ofthe

velocity ellipse is inchned at an angle ^ to the axis defined by the galactic

radius through the sun, Schwarzschild’s ellipsoidal distribution of velocities

will be represented in two dimensions by the velocity ellipse

h(n^n,y^m(n^n,)(0^9,)+k(0-0o)^ ^ h w
and the frequency function may be written as

J (5)

in which it is assumed by Shiveshwarkar that/^, A, m and k are functions of

the coordinates alone. Writing x and y for 77 -/Zq and © — 0q respectively,

we have the velocity ellipse given by

hx^ + mocy+ ky^ = 1
, (6 )

for which the X and 7 axes are as shown in Fig. 74.

* M.N, 95, 665 , 1936 .
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The orientation of the major axis of this ellipse with respect to the a;-axis

is given by
. ^ m
tan 2^ h-k'

.(7 )

Differentiate (5) logarithmically with respect to w, d, 77 and & in succes-

rif

sion and substitute the resulting expressions for -A, and^ in (3);
, . . om oij dll o(y

we obtain

"[tM
+ 0~{2k6Q+ mno)- ^(A/7§+ TO77o0o + i0g)J

0ri 3/o rr ^ /ox rr /-t \

+ 0~{2k0o + m/7o) - (A77g + mn,0o + *0g)]

— —K^[2hn+Tn0 — {2hn0 + m0Q)]

+ ~[2k0+ mn-(2k0o + mno}] = 0. (8)
tZJ

This equation must be satisfied identically for all values of // and 0. We
obtain, on equating to zero the coefficients of 77^, 77^0, 0®, 770^, 77^, 770, 0^,

77, 0 and the independent term in the order indicated,

<»»

O'”

§+»n = 0, (11)

dk dm ^ /,^v+
-^

+ 2A-2A; = 0, (12)

^(2A77o + m0o) = 0, (13)

nr^ (2*00+ miZo) + ~(2A77o+ m0o) -(2*00 + to77o) = 0 (14)

^(2*0o+ m/7o) + (2A/7o+ m0o) = 0, (16)

^ (log/o- ®o- ^®o) + 2*^ = 0, (16)

^{logfo-hn^-mnQ0o-k0l) +mmK = 0, (17)

2*i7o + TO0O = 0. (18)
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Having regard to (18), we observe that (14) becomes

f)

m^{2k&o + mn„)-{2k0o + mno) = 0 (19)

0
and that (15) becomes ^^(2^6^o + ^^o) =

The equations (19) and (20) give immediately

2^"6^Q + mllQ ~ jjw, (21)

wJiere j!> is a constant of integration.

12•43. Application to observations.

In Fig. 75 S denotes the mean of the stars in the immediate neighbour-

hood of the sun and X a star at a hehocentrie distance r and distant w + dw
from the galactic (centre C.

Let L denote the difference

{Q~G^) of the galactic

longitudes of X and C\

then the angle between

CH produced and SX is

L + 7T. The systematic

motions at S are /7q and

&Q—the latter in the sense C
of increasing longitude

—

>no
Fig. 75

and at X they are IJ^ and 0^. We assume that TJj and 0^ are functions

of the coordinates at X.

Then
do

•( 1 )

•(2 )

to the first order in dw and dO.

Also, from the figure,

dw — rco8(LAn) = — rcosL,

xudO — r sin {Latt) = — r sin L.

Let p and T denote the radial and transverse linear velocities relative to S
(the latter in the sense of increasing longitude). Then

p-n, co8{L + n— dO) + 01 sin (L + n-dO)- Ilg cos {L + n}- 0„ sin {L + n),

(3)

T = 0j^coB(,L + n-dd)-ITiSin(L + 7r-d6)-0QCoa(L + 7r) + ITQBm(L + 7T).

(4)

SSD 27
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Simplifying (3) and (4) and using (1) and (2) we obtain, to the first order,

p = r{A + Bmi2L+C cos 2L), (5)

T = r(Ai ~ C sin 2L + B cos 2L), (6)

where 9. A — 4- 4- J-

2

w dm m dd ’
(7)

2 7? ^^0
,

1 ^^0

atu m'^mde' (8)

on _ ^^0 ^0 ^ ^^0

dm m m dO
' (9)

oA
^ m dm m dd

' (10)

The formula (6) can be expressed in a form suitable for use with the com-

ponent, iiq, of the proper motion by writing T —

The analysis of radial velocities and proper motions will furnish the

numerical values of A, C and

The equations ofmotion at S can be expressed in terms of the coefficients

A, B, (7, A^ as follows:

dhfj

dW dt w (
11

)

Now

Hence (11) becomes
dt ^ dm w dO

« dm
^

dUn

m\dd
Similarly, the second equation of motion

>.) 0 .

can be written + - 0.

Hence (12) and (13) become, with the help of (7) to (10),

(^ + C')77o+ (A-^i)6>o +A = 0,

{B+ Ai) JTo+ (A- C) 00 = 0.

(12)

(13)

(14)

(16)

12*44. Theformulaforilrinterm8ofA,...Ai.

From 12-42 (21), by differentiating with respect to m, we have

00
, dk

p = 2i:^+20o~+ /T,
dm

4-m-
a/7„

(
1 )
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Also, since by 12*42(18) — —2h,

we have, on differentiating with respect to w and using 12*42 (9),

rj ^ 06>o 077q
77o0og~ +m/7o g- = 0. (2)

Ehminate from (I
)
and (2); there results

^ ~
arjT r &o^^}

^ '

or, in terms of the coefficients A, ... A j,

HZ'*

jj — 261q-^—

+

4“A j) + z/^(3A + C*). (4)

Again, differentiating 12-42 (21) with respect to 6, we have

2k + 20 + 77 ~ +m - 0 (5)Ik + 2U^ + //o - 0. (5)

?k
But, by 12-42(11), =

and, by (12) and (18) of 12*42,

d7n die 6>a .

,

- = -w +m f-
4- 2k,

dO dm JJq

Hence (5) becomes

dk 2k/ 06^q\ w/

?k
from which Uq == 2k(A — 0) — m(Ai — B), (6)

Substitute the expression for dkjdm, given in (6), in (4); then

2(9

p = 2k(B + Aj^) + m{3A + C) + yj:^-{2k{A-C)-m(Aj^-B)} (7)
JIq

Also, by 12-42(21), p = 2k^ +m^^^. (8)

0 c—A n
Equate (7) and (8) and write w for — and ^ for as derived from

137 Ai 4~ X5 Cxq

12*43 (15). After some reduction we obtain

2ifc(A, + B + w) = m [SA + (7 + «<>} (9)

Also, 2A/7o-fOT©o = 0

or 2A(A — C) = m(Ai + B).

27-2



12*44420 The Dynamics of the Galaxy

Hence the deviation, defined in 12*42 (7) is given by

2 cot 2}/r =
+ +~ *

B^) A - C
^ + -r—^C0A^C ' A^ + B

A-G A']^-\- B -{ 0)
.( 10 )

Ogrodnikofi* has summarised the values of A, B, C and A^ obtained by

several investigators from the analysis of the radial velocity and proper

motion material then available. For purposes of calculation in (10) we

take the set

= 0*0301, i? = 0*0153, (7 = -00051, = -0*026.

Also, if 0Q = — 300 km. /sec. and ru = 10,000 parsecs, we have = — 0*03.

Substituting these values in (10), we find

f = + ir.

Thus the longitude of the vertex exceeds the longitude of the centre by IT’.

This result is in qualitative agreement with conclusions drawn from the

analysis of proper motions of stars of aU spectral types according to the

two-stream or elhpsoidal hypothesis. It is to be remembered, however, that

the information concerning the values oi A, B and 0 comes from the radial

velocities of B type stars alone, and the evidence is somewhat conflicting

and inconclusive as to the longitude of the vertex derived from these stars.

For example, Lindbladf and Nordstrom^ obtained values for the longitude

considerably less than 325°. On the other hand, the values found by Smart

and Green§ are 336° from 281 B ty{>e stars within 10° ofthe galactic equator,

301° for 253 stars between north and south galactic latitudes 10° to 30°,

and 330° for 630 stars lying within 60° of the galactic equator; the probable

error of the last result is ±3°.

12 ’45 . It is easily seen from the expression in 12*42 (5), defining the

frequency function /, that the star density v is given by

n oo

fdUde =

If the potential is due entirely to the system of stars under consideration,

Poisson’s equation must be satisfied, namely.

w'dw^ ~ {ihk m^)*
* *( 1 )

If, on the other hand, we regard the system of stars under observation—for

example, the B t3rpe stars—as a subsystem, the potential under which such

Zeits. f. Astrophysik, 4
, 190, 1932; see also Shiveshwarkar, M.N. 95 , 662, 1935.

t M.N. 90
, 503, 1930.

j Lund Medd, Ser. i[, No. 79, p. 162, 1936.

§ M.N. 96 , 479, 1936.
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stars move will be that produced by the entire galactic system and in this

case the formula (1) does not require to be satisfied.

The group of equations (9) to (21), however, impose certain conditions

on the form of the function K, as first shown independently by Heckmann*
and Lindblad.t

By 12-42 (9), h is a function of 0 alone. Hence, from 12-42 (10),

Consequently, m — Cw-\-l),

where C and 1) are, at present, arbitrary functions of 0.

Also, from 12-42(10) and (2),

From 12-42(11),

and from 12-42 (12)

dO dw

d^k 02m Jh ^

^ dOdm 36*2 ^ 00 ~

(2)

(
3 )

(
4

)

whence, by (2), (3) and (4),

We must then have

0(92
+ C = 0 and

02/9

0(92
+ 4/9 = 0,

so that C — a cos d^-b sin 0,

D = —2oc sin 2(9+ 2^ cos 2(9,

where a, b, oc and J3 are constants.

Hence m = m{a cos 6^ -f 6 sin (9) — 2a sin 20 + 2/9 cos 26

and h = oc cos 20+/} sin 20 + y,

in which y is a constant.

d / k\ I dm 2h
Also from 12-42(12), ^ (^)

= -^
from which it is readily found that

k = m(bcos0-aamd) — a<iQs20-/Ssm2d + y + Kw^,

where /c is a constant.

From (16) and (17) of section 12-42, we have

2K
00 dw

(mwK).

..(5)

..( 6 )

..(7)

..(8 )

(
9

)

• M.N. 96 , 67, 1930. t M.N. 96 , 69, 1935.
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This becomes, on wilting F{m)

The Dynamics of the Oalaxy

m dK
K dw ’

12-45

w{F(w) + 2} {a cos ^ + 6 sin 0) — 2{-^"(t27) — 1} (a sin 26? — cos 26) = 0 .

.( 10 )

This equation must hold for all values ofw and 6?. We then have the following

cases.

(i) a = 5 = a = = 0.

The function F{w )—and consequently the function K—is accordingly

arbitrary.

We have h — y \
m — k ~ y-\-Kw'^,

and from 12-42 (18) and (21),

TJq = 0 and &q
pm

2(y -f Km ‘^)

'

These results are the same as those obtained in the theory of galactic

rotation discussed previously.

(ii) a^O OT b:^0; a — - 0.

Then J^(t27) + 2 = 0,

whence K{w) =
2

*

The attraction in this case is due to a central mass.

(iii) a = 6 = 0; a^O or

Then F{m) = 1,

whence ^(^) =

The attraction in this case is due to a uniform spheroidal distribution of

mass.

The conclusion follows that if there is expansion (or contraction) Shivesh-

warkar^s theoretical derivation of a vertex deviation is legitimate only if

the attractive force is due either to a central mass or to a uniform spheroidal

distribution.

Lindblad’s derivation* of the preceding results follows simply from (2),

(3) and (9). We have at once

wdK D — 2mC
D + mC

' ^ ^

The left-hand side of ( 1 1 )
is a function ofw alone. Hence, if ( 1 1 )

is to be valid

for all values ofw and 6, either D = 0 or (7 = 0, so that

mdK_
Kdw~ ^

The results for K follow as in cases (ii) and (iii).

• M.N. 96, 71 , 1936 .
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12'46. The analytical forms off^.

In (16) and (17) of section 12*42 we write

— hl7^ ~ mil
0 ©0 “ ~ log/^ — P^Q,

Now, by (18) and (21) of section 12*42,

77 — _ r) __
^phm

® Ahk — m^ ’
"
® 4:hk — ni^

’

423

Hence P = p^hm^

4hk — m^'

Considering case (ii) of the previous section {K=^qjTa^), we have

h — y\ m = tf7(acos^-f ^sin^),

k — w( — a sin 0+ b cos 6^) + y +

We then write (16) and (17) of section 12*42 as follows (using (11)):

a

.( 1
)

dm

d

dd

or
dm

d

df'

Hence Q

Q — + q(asmd — b cosd)^ = 0
,

-f q{a sin O— b cos
(9)|

= 0.

— q(a sin O — b cos 6) + c,

Q

w

m

M
w

where c is a constant. Thus

, . p^m"^ 2yq , . n i n^
'“sA =

In the first termon the right theexpressions for andm are to be substituted.

In case (iii), K ^ sw and

h = acos204-/^sin2O + y,

m — —2ql sin 2d 4- 2fi cos 26,

k = — A4-2y-}-/ct27^

We have -5— {Q-^hsm"^) = 0,
ow

^{Q-ksm^) = 0.
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This last equation is equivalent to

^(Q + hsw^) = 0.

Hence log/o = -fv— ^
- hsm^ + c^,

4thk —

where is a constant, the expressions for h, k and rn being supposed sub-

stituted in the first term of the right-hand side of this formula.

12•51. Oort's investigation of the acceleration perjyendicular to the galactic

plane.

With the usual notation we take 2 to be the perpendicular distance of a

star from the galactic plane and Z the corresponding component of velocity.

The acceleration in the ^-direction due to the gravitational field of the

galaxy will be denotedby K{z). From the observed fact that the distribution

of stars, especially of the later types, is fairly symmetrical on either side of

the galactic plane, it is reasonable to assume that the function K(z) is such

as to be capable ofmaintaining, at least approximately, the present observed

distribution and that, so far as the ^-direction is concerned, the stars are,

on the whole, w^ell mixed. As we shall see later, the distribution of the

Z-components of velocity is also symmetrical about the galactic plane.

The following analysis is due to Oort.*

The equation of motion of a star in the ^-direction is

whence = 2 da;-!- constant.
Jo

If Zq is the value of Z for 2; = 0, this last equation gives

+ K{z)dz. (1)

From ( 1 ), Z = dzjdt is a function of Zq and z\ call it F(Zo, z). Hence

dt =
dz

F(Zq,z)' (
2

)

The period of a star’s oscillation in the ^-direction is then obtained by inte-

grating (2) between the appropriate hmits of z. Thus the period is a function

of Zq; we denote it by T(Zq),

The fraction of the period spent in the layer between z and z + dz is

evidently 2dz

the factor 2 accounting for the upward and downward passage through the

layer.
B.A,N, 6 , 249, 1932 .
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Lot f{ZQ)dZQ denote the total number of stars, above or below unit area

of the galactic plane, with components of velocity at 2: = 0 between Zq and
Zq h- dZ^\ let ^(2 ,

Z) dzdZ denote the average number of stars in the element

of volume between 2 and 2 + ^2 with velocity components between Z and
Z-\-dZ. Wo then have

<]>{z,Z)dzdZ

But, from (J), dZjZ^ — dZJZ,

Hence Z) = (3)

Accordingly, ^(2 ,
Z) is a function of Zq alone or, by (1), of

jz2-2^’‘K{z)d^y

If the distribution of the Z-components for stars on the galactic plane is

Gaussian, it follows that the distribution of velocities at a distance 2 is also

Gaussian. For, if r(0) denotes the stellar density for 2 = 0, we have

= (4)
^7T

since j^(0) is the value obtained by integrating ^(0, Zq) over all possible

values of Zq, Also, since Z) is a function of Zq alone, we must have, by

means of (1) and (4),

2r

^(2 ,
Z) = K0)e _/2^2

(
5

)

which is a Gaussian distribution for the Z-components. By integrating (5)

over all possible values of Z, we find that the density, v{z), at a distance 2

from the galactic plane is given by

v{z) = r(0) e
2l'llKiz)dz

(6)

If the observed velocity distribution is not quite Gaussian it can, according

to Oort, be represented satisfactorily, as a rule, by the sum of two Gaussian

distributions. The relevant formulae are then

and

<P(0,Z,) = .^e-W +^,.Ae-w'

v(z) = +d^e
t

(
7

)

(
8

)

in which 0 < ^ 1 and +^2 == 1*
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For an arbitrary distribution of the Z-components the appropriate rela-

tion between v, K{z) and the mean, Z*, of the squared velocities is

K(z) =
1 d{vZ^)

(9)

If K{z) is expressed in cm. /sec. and Z and z, as usual, in km. /sec. and
parsecs respectively, (9) can be written*

Z(2) = 7-48 X Log (10)
<jZ

12*52. Oort’s application of the formulae in the previous section will now
be briefly noted.

The distribution of the Z-components of linear velocity was first in-

vestigated by means of radial velocities of stars within 50° of the galactic

poles—in this connection the radial velocities are assumed to be corrected

for the effects of the solar motion. For a star situated at one or other of the

galactic poles the radial velocity and the Z-component are evidently

identical. For stars in the galactic zones considered, a suitable factor was

applied to the radial velocities to transform them to the Z-components.

Generally, the Z-distribution was found to be represented satisfactorily

by a sum of two Gaussian distributions and the values of Zg and 0^, of

formulae (7) and (8), were obtained for each spectral type. A subsidiary

investigationshowed that the Z-distributions were substantially symmetrical

above and below the galactic plane, which supports the assumptionon which

the formulae of the previous section are based.

To determine the variation of density (v) with distance from the galactic

plane, Oort utilised van Rhijn’s resultst concerning the numbers of stars

between given limits of parallax and absolute magnitude. Thus the values

of Log v(z) and djdz Log p{z) were obtained for values of z up to 600 parsecs

in four groups of absolute magnitude ranging from — 1“*5 to -f

With the data indicated and values of Z^ for different distances, numerical

estimates of K{z) for the four magnitude groups were calculated by means
of 12*51 (10). Table 52 shows the values of K(z) averaged for the four groups.

Table 52. Values of K{z)

z

(parsecs)
K(z)

(cm./sec.®)
z

(parsecs)
K{z)

(cm./sec.®)

60 ~0*77x 10“» 260 - 3-78 X 10~®

100 -1-66 300 -3*86
160 -2*69 400 - 3*68

200 ~3-52 600 -4-44

B,A,N. 6, 261, 1932. f OroniTigen PM. 38, 1930.
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In particular, the data of the table enable us to derive a value (at least

approximate) of dK{z)jdz for z = 0—that is, for the neighbourhood of the

sun; this value is 5 .
10"^® sec. '“2.

Oort then attempted to obtain some idea of the density of dark matter

near the sun by considering several models of the galaxy. For example, if

the model consists of a central mass and a uniform spheroidal distribution,

with semi-axes a and c, we have

^-^fK-^nOyA, ( 1 )

in which G is the gravitational constant, 7 is a number depending on the

ratio of a : c—the value of 7 can be easily found from the formulae (1) and

(2) of section 11-54—and A is the total density, including stars and dark

matter. Formula (1) then enables us to calculate the value ofA near the sun.

Oort investigated four different models, the total masses being conditioned

by the consideration that the forces exerted in the galactic plane balance the

centrifugal force arising from a rotational velocity of 300 km./sec. at a

distance of 10,000 parsecs from the galactic centre. It was found that A

varied between 0-079 and 0-108 solar masses per cubic parsec, with an

average value of 0-092. The stellar density near the sun is estimated to be

0-038 O per cubic parsec for stars of absolute magnitude brighter than

+ 13-5. Making an allowance for intrinsically fainter stars, Oort concluded

that the density of dark matter near the sun is not hkely to exceed 0-05 0
per cubic parsec or 3 x 10~^‘ gm./cm.®



APPENDIX

ASTRONOMICAL CONSTANTS

[Coordinates are for epoch 1900*0; T is measured in Julian centuries

from 19(X)*0.]

Constant of gravitation: 6*658x10“^ c.g.s. units.

Velocity of light in vacuo: 299,774 km. /sec. or 186,271 miles/sec.

1 Astronomical unit: 149*5x10® km. or 92*9 x 10® miles.

1 Parsec: 30*84 x 10^- km. or 1916x

1 Light-year: 9*463x PV^km. or 5*880 x lO^^ miles.

1 Parsec — 3*26 light-year.

1 Light-year = 0*307 parsec.

Mass of Earth: 5*98 x 10^'^gm.

Mass of Sun: 2*00x 10^ gm.

Annual general precession {Newcomb): 50"*2564 -f-
0"*0222 T.

Ajinual precession in R.A. {Newcomb): m 46"*0850'f 0"*0279 T
-3M)7234 f 0«*00]86T.

Annual precession in Dec. {Newcomb) : n — 20"*0468 — 0"*0085 T.

Obliquity of ecliptic {Newcomb)

:

c = 23° 27' 8"*26 — 46''*85 T.

Galactic equator:

—

Pole: a -190°, §-4-28°.

Longitude of ascending node on ecliptic: 266°*96-l- 1°*40 T.

„ „ „ „ „ equator: 280°-00 f 1°*23T.

Inclination to ecliptic : 60°*55.

,, „ equator : 62°-00 + 0°*55 T.

Coordinates of galactic centre : 0 — 327°, ?=o°.

Sun’s distance from galactic centre : 10,000 parsecs.

a s

Solar apex {Boss) 270° + 34°

(Eddington) 267° + 36°

{Campbell and Moore) 271° + 29°

{Smart and Green) 267° + 32°
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Solar motion (Campbell and Moore): 19*7 km./sec.

(Smart and Green): 19-5km./8ee.

Apex of Drift I (Eddington ) : a = 91°, S - 15°.

„ „ „ II „ a-288°,

Vertex of star-streaming (Eddington): a=- 274°, 8 = —12°.

347°, gr
-0°.

Solar motion with resx>ect to clusters (Edmondson )
:

—

- 274 km./sec.
;
Apex : G - 07°, - 4-T

.

Oort’s constants: ^4 — 0*017 km./sec./parsec.

~ 0*015 km./sec./parsec.

Mass of galaxy : 2 x lO^^Q =- 4 x lO^'^ gm.

Orbital period at sun’s distance from galactic centre: 2x10® years

Galactic absorption (Trwmpler):

Visual: 0*^*35 per kiloparsec.

Photographic: 0^^*67
,, „
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Abel’s integral equation, 28(j, 299
Absolute luminosity, 253
Absolute magnitude, 7, 254
Absolute magnitudes and linear velocities,

90; correction to, 205
Absorption, galactic, 273, 289
Absorption of light, 292
Acceleration perpendicular to the galactic

plane, 424
Adams, W. B., 87, 91, 290, 361

Adjusted distribution, 213
Age of the earth, 24
Airy’s equations, 82
Airy’s method (solar motion), 75
Amharzumian, V. A., 211
Analytical method of deriving the drift-

constants, 123, 130; modification of the, 134

Antapex, solar, 17, 67, 159, 190
Apcentron, 334
Apex, solar, 17, 67, 69, 161, 183; drift, 111, 119

Apparent luminosities, 253
Apparent magnitudes, 254
Asymmetric drift, 361, 402
Auxiliary ellipse, 149

Baldwin, J, M., 94
Bessel, F, W 5, 113

Bessel functions, 42; modified, 43, 63
Bessel’s differential equation, 45
Binary, spectroscopic, 19; visual, 18

Bohlin, K., 285
Bok, B. J., 321

Boss, B., 91, 361

Boss, L., 82, 94, 100
Bottlinger, K, F,, 374
Bravais, 71, 85

Bruggencate, O. 11. ten, 106, 111

Brunt, JX, 39, 163, 231

Campbell, W. W., 87, 89. 100, 413

CeceUni, Q., 269
Centroid, 66
Cepheids, 206, 296, 363

Chapman, S., 265
Charlier, C. V. L., 187, 221, 259, 285, 326, 363

Clark, a. L., 355
Cluster, locsal, 2; rate of dissolution of a, 312

Clusters, classification of (Trumpler), 291;

globular, 295, 306, 308, 367; moving, 286;

open, 287; star, 284
Collisions, frequency of, 319

Colour excess, 294
Colour index, 6

Continuity, equation of, 341

Contraction, gravitational, 23

Convergent point, 284

Cylindrical coordinates, 337

Density formula, testa of, 242
Density function, a special case of the, 237;

for globular clusters, 297, 302; Schwarzs-
child’s, 265

Density law, 221, 271, 306
Density, linear, 223
Difference equation, solution of the, 261
Distribution, adjusted, 215; the apace-, of the

stars derived from their proper motions, 221
Doppler-Fizeau principle, 10
Drift, 32; apex of, 111, 114; asymmetric, 361;

space velo(;ity of. 111, 114; velocity of, 32
Drift constants, 119, 120; Eddington’s

analytical method of deriving the, 123, 130,
134

Drift curve, 37
;
general method of deriving

the Fourier oonatantH of a, 63; pseudo-, 238;
representation of formula for, by a Fourier
series, 59

Drift O, 136

Dufton, A. F., 90
Dugan, R. B., 3, 5, 69

Dyson, Bir F. W., 29, 30, 110, 1J3, 222, 226,

229, 2‘44, 273, 382

Earth, age of the, 24

Eclipsing variable, 20
Eddington, Bir A. B., 20. 28, 39, 41, 59, 102,

116, 118, 121, 123, 134, 139, 160, 233, 270,

307, 310, 333, 340, 385, 414
Eddington’s function, 39

Eddington’s theorem, 345
Edmondson, F. K., 69, 368, 407
Ellipse, auxiliary, 149; velocity, 142

Ellipsoid, the velocity, 141

Ellipsoidal constants, an approximate rela-

tion between the, and the two-streams
constants, 248

Ellipsoidal distribution of stellar velocities,

Lindblad's derivation of, 397

Ellipsoidal hypothesis, 71, 115, 141; com-
bination of results from different regions,

158; the density law and the, 244

Ellipsoidal law of velocities, 327

Ema7iuelli, F., 14

Emden, R., 305
Encounters, cumulative effect of feeble, 320;

multiple, 317; stellar, 315

Equation, Abel's integral, 280, 299; of con-

tinuity, 341; solution of the difference, 261

Equations, hydrodynamical, 356; integral, 259

Equinox correction. 382

Escape, velocity of, 327, 365

Exaggeration, factor of, 199

Excess, colour, 294

Factor of exaggeration, 199
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Fessenkoff, V. G., 384
Fleming, 'j., 178, 182

Fletcher, A., 63, 198, 199, 203, 289

Fotheringham, J. K., 363, 384
Fourier constants of a drift-curve, 69, 63;

values of the, 127

Fourier integrals, 258

Frequency curve, correction of, 25

Frequency function, 415; for systems with
spherical symmetry", 328; of the space

velocities derived from radial velocities, 277

Galactic absorption, 273, 289
Galactic centre, 360, 388

Galactic coordinates, 13

Galactic equator, 1
;
pole of, 1

Galactic parallactic angle, 14

Galactic rotation, 2, 363, 369, 374, 412;

relation between, and star-streaming, 395
Galactic system, 1, 360, 410; mass of the, 390
Gaussian law, 25

Geometrical centre, 66, 86
Globular clusters, 295; density function for,

297, 306; maximum proper motions and
radial velocities in, 308; solar motion with
respect to the, 367

Globular stellar system, preferential motion
in a, 332

Gravitational contraction, 23

Green, 11. E., 88, 101, 130, 414, 420
Gregory, C. (\ L., 285
Gyllenberg, W,, 187

HaUey, E., 8
Hcdm, J., 135, 275
H and K lines, the stationary, 385
Hartmann, J., 385

Hayford, P., 374
Heckmann, 0., 355, 421

Henderson, T., 5

Herachei, Fir J. F. If.. 360
Herschel, Fir W,, 18, 67, 360
Hertzsprung, E., 21, 22

Hertzsprung-Russell diagram, 22

Hess, a,, 290
High velocity stars, 87, 140, 361

Hill, S. N., 90, 94

Hipparchus, 3, 8

Hydrodynamical equations, 356

Integral equation, Abel’s, 280, 299
Integral equations, 259
Integrals, Fourier, 258
Interstellar matter, 274, 385

Jeans, Sir J. H,, 207, 318, 324, 344, 359
Jeans’s theorem, 324, 344

Jeffreys, H., 28
Jones, H, F., 7, 19
Joy, A. H., 87, 91, 290, 361

Kapteyn, J. C., 9, 17, 92, 102, 210, 219, 266, 359
Kapteyn’s equations, 92

Kapteyn universe, 359
Kepler’s third law, 18

Kinematical considerations, general, 405
Kobold, //., 102

KohtschiiUer, A., 13, 16

K-term, 84, 88, 368, 379, 408

Lane, J. H., 23

Latitude, galactic, 13

Light-year, 0

Lindhlad; B., 364, 397, 405, 414, 420, 422
Linear density, 223

Linear speed, mean, 36

Linear velocity and proper motion, 255

Liouvine’s theorem, 324, 401

Local cluster, 2

Longitude, galactic, 13

Luminosities, apparent and absolute, 253

Lundniark, K., 290, 368
Luyten, W. J., 53, 56, 59, 269

Magnitude, 3 ;
absolute, 7, 254 ; bolometric, 4

;

modihed, 254; photoelectric, 4
;
photographic,

4; photovisual, 4; the corrections to, 205;

visual, 3

Main series, 22

Malmquist, K. G., 187, 290

Mass-luminosity relationship, 20

Mass of the galactic syskun, 390
Matter, interstellar, 274, 385
Maxwell’s law, 33

Mean parallaxes, calculation of, 204, 220,

267

Mean random radial speed, 34

Mean random transverse speed, 35
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Moore, J. H., 87, 89, 91, 1(K)
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Oort’s constants, 372, 379, 393
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Parallaxes, statistical, 189
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Parsec, 6

Parvulesco, 6\, 303
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Pearce. J. A., 88, 90, 94, 274, 381, 384, 413
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Polar curve, characteriHties of, 146
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Prasad, (L, 269
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;
planetary,77, 383
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preeessional constants, 77; determination of

the polar curve constants from, 148, 151;
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of, 190; the r components of, 190, 193, 224
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Haab, S., 288
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Radial speed, mean random, 33, 194, 197

Radial speeds, mean value of, 46, 49

Radial velocities, and the clIij>8oidal hypo-
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function of the space velocities derived from,
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proper motions, 79; from radial velocities, 84;
from two-streams theory, 116; practical de-

termination of, 95; with respect to globular
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Space distribution of the stam derived from
proper motions, 221, 233

Specific heats, ratio of, 307
Spectral type, 2

Spectroscopic binary, 19

Spherical symmetry, frequency function for

systems with, 328; preferential motion in a
stellar system with, 332

Spherical velocity distribution, 33
Star-streaming, 17, 102, 348; direction of.
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395; vertex of, 115

Stars, colours of, 3; effective temperatures of, 3

Stationary H and K lines, 385
Statistical parallaxes. 189

Steady state, 326
Stellar encounters, 315
Stellar energy, 24
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;
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Stream constants, numerical results, 118
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Transverse velocities, frequency function of,

56, 58
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Turner, H, II., 361
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Van de Kamp, P., 295, 384
van Hhijn, P. J., 210, 219, 221, 269, 359, 426
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Velocity ellipse, 142, 172

Velocity ellipsoid, 141; determination of

Constanta of, 183; determination of lengths

and directions of principal axes of, 175;

general equation of, 171; ratio of axes of,

i69, 396
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streaming, 115, 119, 360
Virlal theorem, 310
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