

LECTURES
INTRODUCTORY TO THE
\section*{THEORY OF FUNCTIONS} OF TWO
COMPLEX VARIABLES

CAMBRIDGE UNIVERSITY PRESS

C f Clay, Manager
zondon: FETTER LANE, EC.
detinburgb: 100, PRINCES STREET

Berlin: A ASHEK AND (O

fetm 登otk (G P PUTNAM' P SONS
Sombay and (ralcutta: MACMILLAN ANI)CO, Ltd
Uoronto: J M IENI AND SONS, LIJ
שokno THI MARU/IN KABUSHIKI-KAIムHA

LECTURES

INTRODUCTORY TO THE THEORY OF FUNCTIONS OF TWO

 COMPLEX VARIABLES

 COMPLEX VARIABLES
 DELIVERED TO THE UNIVERSITY OF CALCUTTA DURING JANUARY AND FEBRUARY 1913

A. R. FORSYTH,
Sc D, LLD, MathD, FRS
CHIFF PROHFSSOR OI MATHFMASICS IN THE
IMPERIAI COILFGF OT SCIENCF AND IFCHNOLOC.Y, LONDOA

> Cambridge: at the University Press
> 1914
crambrioge
printed ay john ciay, ma
af thf univeksity press

PREFACE

THE present volume consists substantially of a course of lectures which, by special invitation of the authorities, I delivered in the University of Calcutta during parts of January and February, 1913. The invitation was accompanied by a stipulation that the lectures should be published

As regards choice of subject for the course, I was allowed complete freedom. It was intimated that the class would be mainly or entirely of a post-graduate standing. What was desired, above all, was an exposition of some subject that, later on, might suggest openiugs to those who had the will and the skill to pursue research.

Accordingly I selected a subject, which may be regarded as being still in not very advauced stages of development, and into the exposition of which I could incorporate some results of my own which had been in my possession for some time. Owing to the limitations of the period over which the course should extend, it was not practicable to make the lectures a systematic discussion of the whole subject; and I therefore had to choose portions, in order to discuss a variety of topics and to indicate some paths along which further progress might be possible. Thus, instead of concentrating upon one particular issue, I preferred to deal with several distinct lines of investigation, even though their treatment had to be relatively brief.

Wherever it was possible to refer to books or to memoirs, I duly referred my students to the authorities. In particular, I urged them to prepare themselves so that they could proceed to the study of algebraic functions of two variables; because happily, in that region, there is the treatise by Picard and Simart, Fonctions algébriques de deux variables indépendantes, which includes an account of the researches made by Picard and others in the last thirty years. As this treatise is so full, I made no attempt to give to my students what could only have been a truncated account of the elements of that theory; but, as will be seen, what I did was to restate some of its problems from a different (and, as I think, a more general) point of view.

At several stages in my lectures, I deviated from the alnost usual practice of dealing with only a single uniform function of two complex variables. I thought it preferable to deal with two dependent variables as functions of two independent variables Characteristic properties of the variation of uniform analytic functions of two variables are brought into fuller discussion, when two such functions are regarded simultaneously. The combination of at least two such functions is necessary when the general theory of quadruply-periodic functions is under review. The same combination of two functions seems to me desirable in the general discussion of the theory of algebraic functions of two variables whether these occur, or do not occur, in connection with quadruply-periodic functions, the consideration of relations between independent variables and dependent variables is thereby made more complete, and illustrations will be found in the course of the book. Even in the simplest case that has any significance, when these algebraic relations are nothing more than the expression of the lineo-linear substitutions, it is of course necessary to have two new variables expressible in terms of the variables already adopted.

The following is a summary outline of the whole course of lectures.

The first Chapter deals with the various suggestions that have been made for the geometrical representation of two complex variables. The intuitive usefulness of the Argand representation, when we are concerned with functions of a single independent complex varable, is universally recognised; but there seems to be a deficiency in the usefulness of each of the geometrical representations when more than a single independent complex variable occurs.

The second Chapter is devoted to the consideration of the analytical properties of the lineo-linear substitution, definng two variables in terms of two others, mich uniquely by means of the others. It is a generulisatafat it the homographic substitution for a single variable, some of the properties of the latter are extended to the case when there are two variables. In particular, insistence is laid upon certan invariantive properties of such substitutions.

The third Chapier is concerned with the expressibility of miform analytic functions in power-series The limitation of the range of convergence of such series leads to the notion of the varous kinds of singularity which, under the classification made by Weierstrass, miform analytic functions can possess.

The fourth Chapter is devoted to the consideration of the form of a unfform analytic function in the immediate vicinity of any assigned place in the field of variation. The central theorem is due to Weierstrass, and was established by him for functions of n variables; I have developed it in some detail when there are only two variables; and it is applied to the description of the behaviour of a function in the vicinity of any one of its various classes of places, whether ordinary or singular.

The fifth Chapter is occupied with two constructive theorems, both of them originally enunciated (without proof) by Weierstrass,
as to the character of functions either entirely devoid or almost devoid of essential singularities. A function, entirely devoid of essential singularities, is expressible as a rational function of the variables; the proof given is a modification of the proof first given by Hurwitz. A function, which has essential singularities only in the infinite parts of the field of variation, is expressible as the quotient of two functions which are regular in all finite parts of the field; the proof, which is given, follows Cousin's investigations for the general case of u variables.

The next Chapter is devoted to integrals. The earlier paragraphs are concerned with double integrals of quantities which are uniform functions "two variables; after an exposition of Poincarés extension of .,", main integral theorem, these paragraphs are mainly occupied in:as. imple examples of a subject which awaits further development. The later paragraphs are concerned with integrals, whether single or double, of algebraic functions, a theory to which Picard's investigations have made substantial contributions. In restating the problems for the sake of students, I took the line of introducing a couple of algebraic functions, instead of only a single algebraic function, of two variables, so that there may be complete liberty of selection of two independent variables. The geometry of surfaces has led to valnable results connected with integrals of algebraic functions of two variables, just as the geometry of curves led to valuable results connected with integrals of algebraic functions of one variable. But my own view is that the development of the theory, however much it has been helped by the geometry, must (under present methods) ultimately be made to depend completely upon analysis. This will be more complicated when two algebraic equations are propounded than when there is only a single equation; but its character will be unaltered. And so I have stated the problem for what seems to me the more general case.

In Chapter VII I have discussed the behaviour of two uniform analytic functions considered simultaneously. In particular, when the functions are independent and free (in the sense that they have no common factor), it is shewn that their level places are isolated; and the investigations in Chapter IV are used to obtain an expression for the multiplicity of occurrence of such a level place, when it is not simple

The last Clapter is devoted to the foundations of the theory of uniform periodic functions of two variables. In the early part of the chapter, I have worked out the various kinds of cases that can occur. The method may be deemed tedions; it certainly could not be used for the function " of m variables with not more than $2 n$ sets of periods; but it brix, arto relief the discrmmination between the cases which, stated initially only from the point of view of periodicity, are degenerate or resoluble or umpossible or actual. The theta-functions are then introduced on the basis of a result in Chapter V ; and the discrimination between functions with three period-pairs and those with four period-pairs is indicated. Later, some theorems enunciated (bnt not proved) by Weierstrass are established for functions of two variables, togethen with some extensions, all these being concerned with algebraic relations between homoperiodic uniform functions devoid of essential singularities in the finite part of the field of variation. The Chapter concludes with some simple examples belonging to the simplest class of hyperelliptic functions. But 1 have not attempted, in these lectures, to expound the details of the theory of quadruplyperiodic functions of two variables; it can be found in specific treatises to which references are given in the text.

My whole purpose, in the Calcutta course, was to deal with a selection of principles and of generalities that belong to the initial stages of the theory of functions of two complex variables.

Often before, I have had to thank the Staff of the Cambridge University Press for their efficient help during the progress of proof-sheets of my books. This volume has made special demands upon their patience; throughout, as is their custom within my experience, they have met my wishes with readiness and skill. To all of them, once again, I tender my grateful thanks.
A. R. FORSYTH.

Implial College of Scienge
and Technology, London, SW
February, 1914

TABLE OF CONTENTS

CHAPTER I
GEOMETRICAL REPRESTANTATION OF THE VARIABLEA.
$\$$ pasd
1 (xeneral introductory remarks 1
2 Functions of two rarialiles, wason for octanonally consideng two such fmuctions, modepentent of one anothar 2
3, 4 Geometrical representation of the varubles, three method, 4
5 Kepresentation m four-dimenymonal apace !
6 Representation by lines in ordmary space 7
7-9. Lematatome upon the ase of the lume 7
10-13 ()ther methods of asmg lines in space for the geometrical repiesentation 12
14 Representation by ponts 111 two planes, or by two mdependent ponts in the same plane 13
15 Inferences from the two-plane ropesentation of the variables 14
16 Extension of Remann's detuntion of a function of a sugle variable to fimetions of two rarmbles 16
17. Entenmon of the property of couformal represoutation, when there are two independent variables 18
18 But it belongs to any place m the field, and does not extend to loce or to areds 19
19, 20 Analytical expession of foutiens of a donbly intinto region in the teld, with eximples 20

CHAPTER II.

LINEO-LINEAR TRANSFORMATIONS, INVARIANTS AND COVARIANTS

21 Limeo-linear transformations in two variables 25
22, 23 Canonical form of the transformation, in the alternatives from the characteristic equation, with expressions for ity powers 26
24. Invariant-centres of transformations 29
25. Curves conserved, in character, under homograplinc substitutions in one varable 32
26 Frontiers conserved, in character, under lineo-linear transformations in two vamables 32
27 Simplest conserved equations quadratic froutiers 34
$\$$ PAGE
28 When the axes of real quantrites are conserved 35
29. Arnother method of construc ting the equations of some conserved frontiers 35
30. Invariants and covariants of quadratic fiontiers 39
31. Introduction of horrogeneoun variables and umbral forms, use of Lie's theory of contimuous groups 39
32 Simple examples of mvariants and covarimits 41
33 The infinteaimal transfortiations 42
34. The partial differental equations of the finst order characteristic of the infinitesmal transfon mations 44
3 3i Number of algobrarcally independent integrals 46
36, 37. Method of deterniming the integials, it gemeral 46
38. Determanation of the four moricnts 48
39. Contragredient vamahles 49
40. Suggestod canomical form of equations for a quadratic frontier 50
41. Periodic lineo-hnear trinsformations 52
42. Equation for the multiphers, conditions for periondity, with oxamphen 52

CHAPTER III

UNIFORM ANALYTIC FUN(TIIONS

43 Prelmanary defimions, field, domem, vicinty, for the variables 57
$\$ 4$ Unıform, multyform, for functions, with an example 58
45 Contınuous, analytıc, regular, integral, transcendental, algebrair, mero- morphes, for functions 59
46 Property of function estahlishing its regulanty 61
47, 48. U[per limita for the moduli of denvatives of a regular function, wome double integrals 64
49 A theorem expressung, by memas of a double integral, any number of terms in the expansion of a regular function 67
50 Dominant functions, angociated with a regula finction 70
51 Absolute convergence of a double power-series 72
52. A regular function must acqure minnite values somewhere in the whole z, z^{\prime} field, identity of two regular functions under a conditiou; when the regular function roduces to a polynomial 72
53 A regular function must acquire a zero value somewhere in the whole z, z^{\prime} field 75
54 The mvestigations of Picard, Worel, and others, in regard to the same property for a regular funetion of one variable 77
55 Extension of Picard's theorem concerning functions of one variable 78
56. Weierstrass's process of analytical continuation of a function, the region of continuity 79
57 Sengularitzes, unessential, essentzal, of umform functions 82
58. Two kinds of unessential singularity for a unform function of two variables; discriminated, in wame, by pole and (the other type of) unessential singularity 84
59. Extension, to functrous of two variables, of Laurent's theorem for functions of one variable 86

CHAPTER IV.

UNIFORM FUNOTIONS IN RESTRICTEJ) DOMAINS

8
60. Expression of a regular function $f\left(z, z^{\prime}\right)-f(0,0)$ in the nmmediate vicinity of 0,0 , the function $f\left(z, z^{\prime}\right)$ being regular .

$$
\begin{aligned}
& \text { 61-63. Weierstrass's theorem for the case when } f(z, 0)-f(0,0) \text { is not an ideutical } \\
& \text { zero, hkowise for the cise when } f\left(0, z^{\prime}\right)-f(0,0) \text { is not an identical } \\
& \text { zero, together with a corollary from the theorem as to an expression } \\
& \text { fol } f\left(z, z^{\prime}\right)-f(0,0) \text { in these casen }
\end{aligned}
$$

64 New expression (distuct from Weierstrass's expression) for $f\left(z, z^{\prime}\right)-f(0,0)$ when either $f(z, 0)-f(0,0)$, or $f\left(0, z^{\prime}\right)-f(0,0)$, or looth expressions, may he an identical zero, with summary of sesults, and a general ovamplo
65 Weierstrass's mothod of proceeding, adapted to two varrables, for the casen of \& 64 , with examples

66, 67 On the lopel values of functions in the mmedate vininty of the value
$f(0,0)$ at 0,0 , with examples

68 The order of the zero-value of $f\left(z, z^{\prime}\right)-f\left(a, a^{\prime}\right) \quad . \quad 111$
69 Dnozslality of one function by another . . 112
70 Anolytical tests of divisibility, when both $f(0,0)$ and $g(0,0)$ are zero 113
71 Analytical teats that the two functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ in the latter case should possess a comuon factor $h\left(z, z^{\prime}\right)$ wnch that $h(0,0)$ is zero, roduciblity of functions
72 Expression of a nuform function in the ammediate vicinity of a pole, it has an infintude of poles near a pole
73 Expression of a unform function near un unessental singularity; when the expression is arreducible, tho unessential singularity is isolated
74 Expreasion of thentorm function near an essential singularity, references to authorities

CHAPTER V.

FUNCTIONS WITHOUT ESSENTIAL SINGULARITIES IN THE FINITE PART OF THE FIELD OF VARIATION.

75 Two theorems on the expression of a unform function of two variables 124
76. Properties of a polynomial function of z and z^{\prime} as regards singularities $\quad 124$
77. Properties of a rational function of z and z^{\prime} as regards singularities . 125

78 Proof (based on Hurwitz's proof) of Weierstrass's theorem that a unform
function, which has no essential singularity anywhere in the whole
field of variation, is rational
79. A possible expression for a function which has no essential singularity
in an assigned fimite part of the field

80 Weierstrass's theorem (as adumbrated) on functions having exsential singularities only in the infinte part of the field . . . 130
8 PAGE
81 Cousin's proof of the theorem, his preliminary lemmas 131
82 Division of a domain into regions with which functions are associated, functions equavalent in a region or at a point 133
83, 84 Construction of a function $F\left(z, z^{\prime}\right)$, equvalent to the assigned functions assocrated with each region 135
85 Consin's extended theorem, wi) as to lead to an ultmate product- theorem 138
86 The geueial theoram as to the expresvion of a function of two variables having no eqsential singularities in the finte part of the field 141
87-90. Establishment of the theorem that such a function 18 expressible as the quatient of two regular functions 143
91, 92. Appell's sum-theorem, with an example 147
93 Example of a product-theorem for a neechal class of functions 150

CHAPTER V]

INTEGRALS, IN PARTI(ULAR, DOUBLE INTEGRALS

94 Two kinds of double integrals, the class arisng fiom repeatod smple mitegration 152
95 Defmition of a double mtegral with complea variables 153
96. Theorem on double mtegrals with real vamables 156
97-99) Appleation to the double mitegral $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$, taken through a limited fout-dinsensional npace, when $f\left(z, z^{\prime}\right)$ is regular, Pomenré's extension of Cauchy's Theorom 158
100 Several examples of double integrals when $f\left(z, z^{\prime}\right)$ is not regular withn the region, deduced by means of the mferences m $\$ \mathbf{S} 97-99$ 161
101. Some remarks on algebraw functaons of two varables, the most general form of tunction 170
102 Simblarly as to the form of the mort gencral function mvolving two algubrac functions. 172
103. Single integrals of algelrate functions, prelmmary condition if they are to have no mfinties 178
104, 105 Equivalent forms of a single nutegral 180
106, 107 For two quite general algebrace equations in two dependent variables, integrals of the first kind do not exist 185
108 Double integrals, in equivilent forms 187
109. 110 Some conditions that a double integral should be of the first kind. 190
111 Partinl extension of Abel's theorem 143

CHAPTER VII.

LEVEL PLACEs OF TWO SIMULTANEOUS FUNUTIONS

112. Theorem as to the possession, somewhers in the whole fiold of variation, of common zoros by two functions which are regular for fiute values
113. Lemma as to the march of the gradual dimmution of $\left|f\left(z, x^{\prime}\right)\right|$ and $\left|g\left(z, z^{\prime}\right)\right|$
CONTENTSXV
$\$ 8$ Pagk.
114 Application of the lemmor to estabish the theorem enunclated in § 112 202
115 Extension of the theorem to a comple of functions devond of essential singularities in the finite part of the plane 203
116 Order of the common zero, when isolated the condition for inolation 204
114. A common zero may hapjen not to be asolated, conditions 205
118 Summary of results as to the possession of common zeros 206
J19 But the two functions must be andependent, and must be fire, if the common zero is isolated. 208
120 Deternmation of the order of a (ommon isolated zero 209
121, 122. Common level-places of two furctions, mdependent and fiee 210

CHAPTER VIII.

UNIFORM PERIODIC FUNOTIONS

123 Defimition of periodicity, and poriods 213
124. Why infintesimal periods for functions of two variables are eseluded fiom consideration, Wenerytrans's theorem 213
125 A unform analytic function camot possebs more than four pars of lunealy mdependent periods 216
126 Prehmmary lemma 217
127-130 Jacoln's theoren one par of penods two purs of penods. 222
131-133 'Throe pans of perods canomeal form of period-tableau 226
134 Complete field of varation for variables of triply periohe functions 23!
135-137 Four pans of 1 reroods 23:
138 Represeotation of vanation for wrimbles of quadroply penodic functions. 236
139 Uniforn triply periodic finctions ageneral espiremion 2.38
140 Triple theta-functrons 240
141, 142 Law of coeflements in a douhle Founer-series, in order that it may be a triple theta-function 241
143 Persoducty of double Foun rer-sernes in general ± 43
144 Special forms of coothcients leading to special functions 244
145 Remark on the addition-theorem for thetd-functions 246
146 The sixteen triple theta-functions 246
147, 148 Limatation on coefficents so as to secure oddness or evemness 248
149 Interchange of triple theta-functions for half-period increments of thevarnbles, (i) in general, (in) when each of the functions is eithereven or odd, (iII) when the coefficients are spectalised so as togive double theta-functions250
150. Table of the interchanges m $\S(149$ 253
151 Some selected zero places of the theta-functions 453
152-154. Two uniform quadruply periodic functions considered simultaneouslytheir common irreducible level plaees are isolated and are tuitein number, when there are no essential snagularities for fintevalues of the variablea256
sis PAGE155. The number of irreducible level places of two uniform quadruplyperiodic functions is independent of the level values. grade oftwo functions259
156. Algebralc relations between three unform quadruply periodic functions, having the same periods 260
157 Any unforin quadruply periodic function satisfies a partial differential equation of the first order 262
158 Expressibility of a quadruply periodic function, (1) 11 terms of three given homoperiodic functions; (il) in terms of a homoperiodic function and its first derivatives 262
159. Algebrace equation between two homoperiodic functious and their Jacolran. 264
160. Expressibility of a quadruply periodic function in terms of two homo- penodic functions and their Jacobinn 265
161, 162 The doublo theta-functions, and the hyperelliptic functions of order two 266
l63-166 Illustrations of the theorems of \$ 156-160 271
Index 278

CHAPTER I

Geomethical Representation of the Variables

In regard to functions of a sugle complex vanable, reference may geuerally be made, for statements of results and for quoted theorems, to the author's Theory of Functoons No reference is made to the ultimate foundations of the theory of functions of a single real variable, a full discussion will be found in Hobson's Functions of a real varuble

For a large part of the contents of the first two chapters, reference may be made to two papers by the author*, and particular references to memors will be made from time to time as they are quoted

But in aldition, reference should be made to a papert by Pomearé, who discusses groups, classes of invanunts, and conformation of space, when the representation of the two complex variables is ruade by meane of four-dimensional satace.

1. This course of lectures is devoted to the theory of functions of two or more complex variables. It will be ussumed that the substantial results of the theory of functions of a single complex variable are known, so that references to such results may be made briefly or even only mdurectly, and suggestions, espectally in regard to the extensions of ideas furnoshed by that theory, can be discussed in their wider aspect without any delay over preliminary explanations.

My intention is to deal with some of the principles and the generalities of the selected subject. Special illustrations and developments will be given from time to time, but limitations forbid the possibility of attempting an exposition of the whole range of knowledge already attaned Moreover, my hope is to establish some new results, and suggest some problems, in order to make that hope a reality within thas course, some developments must be sacrificed. The sacrifice, however, need only be temporary, in one sense; because references to the mportant authorities will be given, and their work ean be consulted and studied in amplifieation of these lectures.

[^0]Usually, it will be assumed that the number of independent variables is two. In making this restriction, a double purpose $1 s$ proposed.

Not a few of the propositions for two variables, with appropriate changes, ean justly be ellunciated for n variables, and sometimes they wall be enunciated explicitly. In such cases, they usually are true for functions of a single variable also, and they bceome generalisations of the lastmentioned and simplest form of the corresponding proposition. Results of this type have their importance in the body of the theory. But it is desirable to have other results also, which may be called characteristic of the theoly for more than a single variable, in the sense that they have no corresponding counterpart in the theory for a single variable.

Again, it 18 desirable, wherever possible, to obtain results cqually characteristic of the theory in another direction, that is to say, results which are not merc spocialisations of results for the case of three or more variables. Such a result is provided in the case of the quadruply-periodic functions of two variables and their association with single integrals involving the quadratic radical of a quintic or sextic polynomial The case might be taken as the appropriate specialisation of $2 n$-ply periodic functions of n variables and their proper association with single integrals involving the quadratic radical of a polynomial of order $2 n+1$ or $2 n+2$. These latter functions, however, are notoriously not the most general multiply-penodic functions for values of n from 3, inclusive and upwards. Consequently, it is sufficient to develop the association with quadratic radicals of a quintic or sextic polynomial; the formal generalisations of the results so obtained are only limited and restncted forms of the results belonging to the wider, but not most completely general, theory.

These combined considcrations constitute my reason for dealing mainly with the theory of functions of two independent complex variables

The two variables will be denoted by z and z^{\prime}.
2. One illustration of real generalisation from the theory of functions of a single variable arises as follows. In that theory, when a variable w is connected with a variable z by a relation $f(w, z)=0$ of any form, we frequently consider that w is defined as a function of z by the relation. But frequently also there is a necessity for regarding z as a function of w; and important results, cspecially in connection with periodic functions, are obtained by using this dual notion of inversion. A question naturally suggests itself:-what is the general form of this notion of inversion when there are two independent variables?

A function w of z and z^{\prime} can be regarded as given by a relation $f\left(w, z, z^{\prime}\right)=0$, any precision as to the form of f being irrelevant to the immediate discussion. A limited use of the notion of inversion can be applied at once
to the relation. Just as in the Cartesian equation of a surface in ordinary space it is often a matter of indifference which of the three coordinates is to be regarded as expressed by the equation in terms of the other two, so now we may regard the relation $f\left(u, z, z^{\prime}\right)=0$ as defining any one of the three variables w, z, z^{\prime} in terms of the other two. Such an interpretation of the relation does not mply the complete process of inversion in the simpler case, whereby the quantity mitrally regarded aa mdependent is expressed in terms of the quantity intially regarded as dependent. In the present case, the initially mdependent variables z and z^{\prime} are not expressible in terms of the single initially dependent variable w.

The limitation in the use of the notion, however, disappears when two functionally distinct quantities w and w^{\prime} oceus This occurrence aught arise through the existence of two functional relations

$$
f\left(v, z, z^{\prime}\right)=0, \quad g\left(w^{\prime}, z, z^{\prime}\right)=0
$$

or of two apparently more general functional relations

$$
F\left(u^{\prime}, w^{\prime}, z, z^{\prime}\right)=0, \quad G\left(w, w^{\prime}, z, z^{\prime}\right)=0
$$

We assume that the equations $F=0, G=0$, do actually define distmet functions w and w^{\prime} in the sense that they are independent equations, that 1s, we assume that their Jacoban

$$
J\binom{\frac{F}{\prime},}{w, w^{\prime}}
$$

does not vamish identically Moreover, for our purpose, w and w^{\prime} are not merely to be distinct from one another, they are to be independent functions of z and z^{\prime}, so that the Jacobian

$$
J\left(\frac{\prime \prime \prime, w^{\prime}}{z, z^{\prime}}\right)
$$

does not vanish dentically Now

$$
\begin{aligned}
& J\binom{w, w, w^{\prime}}{z, z^{\prime}} J\left(\frac{z, z^{\prime}}{w, w^{\prime}}\right)=1, \\
& J\left(\frac{F, G}{w, w^{\prime}}\right) J\binom{w, w^{\prime}}{z, z^{\prime}}=J\left(\frac{F, G}{z, z^{\prime}}\right),
\end{aligned}
$$

always, hence neither of the Jucobuans

$$
J\left(\frac{z, z^{\prime}}{w, w^{\prime}}\right), \quad J\left(\frac{F, G}{z, z^{\prime}}\right)
$$

can vanish identically. In other words, we can interpret the two relations $F=0$ and $G=0$ in a new way; they define z and z^{\prime} as two distinct and independent functions of the two independent variables w and w^{\prime}.

Ex. Thus the equations

$$
w^{9}+w^{\prime 2}+z^{2}+z^{\prime 2}=\alpha, \quad w^{3}-w^{\prime 3}+z^{3}-z^{3}=b,
$$

satisfy both conditions; the quantities w and w^{\prime} are mdependent functions of z and z^{\prime}. And conversely for z and z^{\prime} as independent functions of w and w^{\prime}.

On the other hand, the equations

$$
w w^{\prime}-z-z^{\prime}=0, \quad w^{2}-x^{\prime}-1=0,
$$

being independent equations, determine w and w° as distinct functions of the variables, for $I\left(\frac{F_{j}^{\prime}, G}{w, w^{\prime}}\right)$ does not vaush identically. But these distinct functions are not indepeudent functions of z and ε^{\prime}, for $J\left(\frac{w, w^{\prime}}{z, z^{\prime}}\right)$ vanshes identically. As a matter of fact, both w and w^{\prime} are functions solely of the combination $z+z^{\prime}$ of the variables, and therefore w and w^{\prime} are expressible in terms of each other dlone; the actual relation of expression se the seound of the two equations.

Thus, by the introduction of a second and independent funetion w^{\prime}, we are in a position to adopt completely the notion of unversion, as distinct from any precise expression of inversion, for the case of two complex independent variables*. The inversion will be equally possible from any two relations, which are the exact and complete equalent of $F=0$ and $G=0$ in whatever form these relations may be given. In particular, if F and G are algebraical in w and w^{\prime}, they have an exact equivalont in relations of the type $f=0$ and $g=0$, obtamed by eliminating w^{\prime} and w in turn between $F=0$ and $G=0$.

Finally, we could regard any two of the four variables $z, z^{\prime}, w, w^{\prime}$ as independent and the remaining two as dependent The neeessary and sufficient condition is that no Jacobian of F and G with regard to any two of the varables shall vanish identically.

Accordingly, for many purposes, we shall find it desmable to consider smmultaneously two independent funetions w and w^{\prime} of the two independent varables z and z^{\prime}.

Geometrical Representation of the Varubles.

3 Next, it proves both convenient and useful in the theory of functions of one variable to associate a geometrical representation of the variables with the analysis It happens that this representation is simple and complete while full of inturtive suggestions, and thought the notion of geometrical interpretation has not been adopted by all investigators and has occasionally been deliberately avoided by the sterner analytical schools, it hos acquired importance because of the character of the results to which it has led. The representation, initiated by Argand, $1 s$ obtained by the customary association of a point upon a plane with one variable, and of a point upon

[^1]another plane with the other variable; and the functional relation between the two variables is exhibited as a conformal representation of either plane upon the other.

An adequate geometrical representation of two independent complex variables is a more difficult problem than the representation of a single complex variable; at any rate, there $1 s$ as yet no unique solution of the problem which has been found quite so satisfactory as the Argand solution of the problem for a single variable.

In order to let the full variation appear, we resolve each of the complex variables into 1 ts real and its imaginary parts, so we write

$$
z=x+i y, \quad z^{\prime}=x^{\prime}+i y^{\prime} .
$$

Here $x, y, x^{\prime}, y^{\prime}$ are real; when z and z^{\prime} are independent in every respect, edch of these four real quantities admits of independent varation through the range of reality between $-\infty$ and $+\infty$ Thus a four-fold set of variations is required for the purpose, and such a set cannot be secured simply among the facilities offered by the ordinary space of experience.
4. Several methods have been proposed. No method has been adopted universally. The respective measures of success are attaned through some greatel or smaller amount of elaboration, but each increase of elaboration causes a decrease of simplicity, and therefore also a decrease of intuitive suggestiveness, in the geometrical representation.

Among the methods, there are three which require special mention. In one of them, four-dimensional space $1 s$ chosen as the field of variation. In the second, a line (straight or curved) is taken as the geometrical entity representing the two varables stmultaneously. In the third, each of the variables is represented by a point in a plane (the planes being the same or different), so that two points are taken as the geometrical entity representing the two variables simultaneously.

5 Of these methods, the stmplest (in a formal analytical bearing) is based upon the use of four-dmensional space, and applications to the theory of functions of two complex variables have been made by Poincaré*, Picard \dagger, and others The four real variables $x, y, x^{\prime}, y^{\prime}$ are associated with four axes of reference. Sometimes they are taken as the ultimate variables, sometımes they are made real functions of other ultimate real variables, from one to three in number according to the dimensions of the continuum

[^2]to be represented. Thus a single relation between $x, y, x^{\prime}, y^{\prime}$ provides a hypersurface (or an ordinary space) in the quadruple space; and, along the hypersurface, each of the four variables can be conceived as expressible in terms of three variable parameters. Two such relations provide a surface in the quadruple space; along the surface, each of the variables can be conceived as expressible in terms of two varıable parameters. Similarly, three such relations provide a curve along which each of the variables can be concelved as expressible in terms of a single variable parameter. Lastly, four such relations provide a point or a number of points The intersection of a hypersurface and a surface is made up of a curve or a number of curves Two surfaces intersect in points; two hypersurfaces intersect in a surface or surfaces. We consider only real surfaces, curves, and points, in such intersections, because what is desired is a representation of the four real variables, from which the complex variables are composed.

The representation, by itself, does not seem sufficiently definite and restricted. There is no preferential combination in geonetry among the four coordinate axes, which compels a combination of x and y for one of the complex variables, while x^{\prime} and y^{\prime} must be combined for the other. But this original lack of restriction is supplied, so far as concerns functions of z and z^{\prime}, by retaining the partial differential equations of the first order, which are satisfied by the real and the unaginary parts of any function w. Writing $w=u+i v=f\left(z, z^{\prime}\right)$, whele u and v are real, we have

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}, \quad \frac{\partial u}{\partial x^{\prime}}=\frac{\partial v}{\partial y^{\prime}}, \quad \frac{\partial x}{\partial y^{\prime}}=-\frac{\partial v}{\partial x^{\prime},}
$$

so that u satisfies (as does v also) the cquations

$$
\begin{array}{rlr}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, & \frac{\partial^{2} u}{\partial x \partial x^{\prime}}+\frac{\partial^{2} u}{\partial y \partial y^{\prime}} & =0, \\
& \frac{\partial^{2} u}{\partial x^{\prime 2}}+\frac{\partial^{2} u}{\partial y^{\prime_{2}}}=0, \\
& \frac{\partial^{2} u}{\partial x \partial y^{\prime}}-\frac{\partial \varepsilon u}{\partial y \partial x^{\prime}}=0 .
\end{array}
$$

From a value of u, satisfying these equations, the value of v to be associated with it in the value of w can be obtained by quadratures. Thus we have a geometry, tempered implicitly by differential equations.

The comparative difficulty of dealing with the ideas of four-dimensional geometry tends to prevent this mode of representation from being inturtively useful, at least to those minds who regard the stated results to be analytical relations merely disgused in a geometrical vocabulary. In particular, the method falls to provide (as the other methods equally fail to provide) a representation of quadruple penodıcity which serves the same kind of purpose as is served by the plane representation of double periodicity; and a fortion there is an even graver lack, when divisions of multiple space are required in connection with functions of two variables that are automorphic
under lineo-linear transformations. Still, it is the fact that certain results have been obtained through the use of this method in the extension of one of Cauchy's integral-theorems, in the formation of the residues of double integrals, in the topology of multiple space, and in the conformation of spaces.
6. The second of the indicated methods of representation of the four variable elements in two complex variables is based upon the fact that four independent coordinates are necessary and sufficient for the complete specification of a straght line in ordmary space Such a line would be determined uniquely by the two points (and, reciprocally, would uniquely determine the two points) at which it meets a couple of parallel phanes. and therefore, if one variable z is represented by a variable point in one plane and the other variable z^{\prime} is represented by a vainale point in the other plane, we might regard the line joming the points z and z^{\prime} in the respective planes as a geometrical representation of the two variables z and z^{\prime} conjointly. (It can also be determined by a point, and a durection through the pornt, again, the determmation requires four real variables in all.)

We must, however, bear m mind that the two points on the line are the ultimate representation of the two variables When the whole line* (wath the assistance of the two mvariable parallel planes of reference) is taken to represent the two variables, a question at ouce arises as to the geometrical relations between a line z, z^{\prime} and a lme w, w^{\prime}, which correspond to two analytical relations between the variables Dous the whole line z, z^{\prime}, under any transforming relation, become the whole line $w, w^{\prime}{ }^{\text {r }}$
7. It is only a specually restricted set of trunsforming relatuons, which admit such a tromsformation of a whole line The result can be established as follows.

For simplicity, we assume that the planes for z and z^{\prime} are at unt distance apart, and hikewise that the planes for w and w^{\prime} are at unit distance apart; and we write

$$
w=u+v v, \quad w^{\prime}=u^{\prime}+\imath v^{\prime}
$$

The Cartesian coordinates of any point on the z, z^{\prime} line are

$$
\sigma x+(1-\sigma) x^{\prime}, \quad \sigma y+(1-\sigma) y^{\prime}, \quad 1-\sigma,
$$

and those of any point on the w, w^{\prime} line are

$$
\rho u+(1-\rho) u^{\prime}, \quad \rho v+(1-\rho) v^{\prime}, \quad 1-\rho,
$$

where ρ and σ are real quantities, each parametric along its line Let two relations

$$
F\left(w, w^{\prime}, z, z^{\prime}\right)=0, \quad G\left(w, w^{\prime}, z, z^{\prime}\right)=0
$$

be such as to give a birational correspondence between w, w^{\prime} and z, z^{\prime}. If,

[^3]then, in connection with these relations, the whole z, z^{\prime} hne is transformed unquely into the whole w, w^{\prime} line, and vice-versa, some birational correspondence between the current points upon the hnes must exist; and so the coordinates of the current point upon one line must be connected, by functional relations, with the coordinates of the current point upon the other line.

Because of the independent equations $F=0, G=0$, the quantities u, v, u^{\prime}, v^{\prime} are functions of $x, y, x^{\prime}, y^{\prime}$ alone; and these functions do not involve σ. Similarly $x, y, x^{\prime}, y^{\prime}$ are functions of $u, v, u^{\prime}, v^{\prime}$ alone, and these functions do not involve ρ. Hencc ρ is a function of σ only, such as to take the values 0 and 1 (in either order) when σ has the values 0 and 1 ; and, for the current ponts, we must have

$$
\begin{aligned}
& \rho u+(1-\rho) u^{\prime}=f(\xi, \eta, 1-\sigma), \\
& \rho v+(1-\rho) v^{\prime}=g(\xi, \eta, 1-\sigma),
\end{aligned}
$$

where f and g are appropriate functions of their arguments, and

$$
\xi=\sigma x+(1-\sigma) x^{\prime}, \quad \eta=\sigma y+(1-\sigma) y^{\prime}
$$

As ρ is some function of σ alone, the former relation gives

$$
\left.\begin{array}{ll}
\rho \frac{\partial u}{\partial x}+(1-\rho) \frac{\partial u^{\prime}}{\partial x}=\sigma \frac{\partial f}{\partial \xi}, & \rho \frac{\partial u}{\partial x^{\prime}}+(1-\rho) \frac{\partial u^{\prime}}{\partial x^{\prime}}=(1-\sigma) \frac{\partial f}{\partial \xi} \\
\rho \frac{\partial u}{\partial y}+(1-\rho) \frac{\partial u^{\prime}}{\partial y}=\sigma \frac{\partial f}{\partial \eta}, & \rho \frac{\partial u}{\partial y^{\prime}}+(1-\rho) \frac{\partial u^{\prime}}{\partial y^{\prime}}=(1-\sigma) \frac{\partial f}{\partial \eta}
\end{array}\right\},
$$

and therefore

$$
\left.\begin{array}{rl}
\left\{\rho \frac{\partial u}{\partial x}+(1-\rho)\right. & \left.\frac{\partial u^{\prime}}{\partial x}\right\}\left\{\rho \frac{\partial u}{\partial y^{\prime}}+(1-\rho) \frac{\partial u^{\prime}}{\partial y^{\prime}}\right\} \\
& =\left\{\rho^{\frac{\partial u}{\prime y}}+(1-\rho) \frac{\partial u^{\prime}}{\partial y}\right\}\left\{\rho \frac{\partial u}{\partial x^{\prime}}+(1-\rho) \frac{\partial u^{\prime}}{\partial x^{\prime}}\right\}
\end{array}\right\} .
$$

The relation holds for all values of ρ, and the guantitics u and u^{\prime} do not involve ρ, hence

$$
\begin{gathered}
\frac{\partial u}{\partial x} \frac{\partial u}{\partial y^{\prime}}=\frac{\partial u}{\partial z y} \frac{\partial u}{\partial x^{\prime}} \\
\frac{\partial u}{\partial x} \frac{\partial u^{\prime}}{\partial y^{\prime}}+\frac{\partial u^{\prime}}{\partial x} \frac{\partial u}{\partial y^{\prime}}=\frac{\partial u}{\partial y} \frac{\partial u^{\prime}}{\partial x^{\prime}}+\frac{\partial u^{\prime}}{\partial y} \frac{\partial u}{\partial x^{\prime}} \\
\frac{\partial u^{\prime} \partial u^{\prime}}{\bar{\partial} x \frac{\partial u^{\prime}}{\partial y^{\prime}}}=\frac{\partial u^{\prime}}{\partial y} \frac{\partial u^{\prime}}{\partial x^{\prime}}
\end{gathered}
$$

Similarly, the second relation requires the conditions

$$
\begin{gathered}
\frac{\partial v}{\partial x} \frac{\partial v}{\partial y^{\prime}}=\frac{\partial v}{\partial y} \frac{\partial v}{\partial x^{\prime}} \\
\frac{\partial v}{\partial x} \frac{\partial v^{\prime}}{\partial y^{\prime}}+\frac{\partial v^{\prime}}{\partial x} \frac{\partial v}{\partial y^{\prime}}=\frac{\partial v}{\partial y} \frac{\partial v^{\prime}}{\partial x^{\prime}}+\frac{\partial v^{\prime}}{\partial y} \hat{\partial v} \frac{\partial x^{\prime}}{\prime}, \\
\frac{\partial v^{\prime}}{\partial x} \frac{\partial v^{\prime}}{\partial y^{\prime}}=\frac{\partial v^{\prime}}{\partial y} \frac{\partial v^{\prime}}{\partial x^{\prime \prime}}
\end{gathered}
$$

Moreover, because both $u+i v$ and $u^{\prime}+i v^{\prime}$ are functions of z and z^{\prime}, we have the permanent relations

$$
\begin{array}{llll}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, & \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}, & \frac{\partial u}{\partial x^{\prime}}=\frac{\partial v}{\partial y^{\prime}}, & \frac{\partial u}{\partial y^{\prime}}=-\frac{\partial v}{\partial x^{\prime}}, \\
\frac{\partial u^{\prime}}{\partial x}=\frac{\partial v^{\prime}}{\partial y}, & \frac{\partial u^{\prime}}{\partial y}=-\frac{\partial v^{\prime}}{\partial y^{\prime}}, & \frac{\partial u^{\prime}}{\partial x^{\prime}}=\frac{\partial y^{\prime}}{\partial y^{\prime}}, & \frac{\partial u^{\prime}}{\partial y^{\prime}}=-\frac{\partial y^{\prime}}{\partial x^{\prime}}
\end{array}
$$

By using these relations, the three equations mvolving the derivatives of v and v^{\prime} can be transformed into the three equations involving the derivatives of u and u^{\prime}, and therefore, as the permanent relations exist for all functuonal relations, we need retan only the three equatoons involving the derivatives of u and u^{\prime} as the essential independent equations for our problem
8. The complete integral of the first of these three retaned equations it involves u only-1s

$$
u=\alpha x-\beta y+\alpha^{\prime} x^{\prime}-\beta^{\prime} y^{\prime}+\kappa
$$

where $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}, \kappa$ are any real constants, provided the condition

$$
\alpha \beta^{\prime}-\alpha^{\prime} \beta=0
$$

is satisfied. The permanent relations then give

$$
v=\beta x+\alpha y+\beta^{\prime} x^{\prime}+\alpha^{\prime} y^{\prime}+\kappa^{\prime},
$$

where κ^{\prime} is any real constant, and so

$$
\begin{aligned}
w & =u+\imath v \\
& =(\alpha+i \beta) z+\left(\alpha^{\prime}+\imath \beta^{\prime}\right) z^{\prime}+\kappa+\imath \kappa^{\prime} .
\end{aligned}
$$

The presence of the term $\kappa+\tau \kappa^{\prime}$ in w merely means a change of origin in the w-plane, neglecting this temporarily, we have

Now let

$$
w=(\alpha+i \beta) z+\left(\alpha^{\prime}+\imath \beta^{\prime}\right) z^{\prime}
$$

$$
\alpha+i \beta=A e^{\mu_{1}}, \quad \alpha^{\prime}+\imath \beta^{\prime}=A^{\prime} e^{\mu^{\prime}}
$$

where $A, A^{\prime}, \mu, \mu^{\prime}$ are real ; then the condition $\alpha \beta^{\prime}-\alpha^{\prime} \beta=0$ becomes

$$
A A^{\prime} \sin \left(\mu-\mu^{\prime}\right)=0
$$

so that either $A=0$, or $A^{\prime}=0$, or $\mu=\mu^{\prime}$, giving three poss ${ }^{\text {tion }}$,
 it involves u^{\prime} only-1s

$$
u^{\prime}=\gamma x-\delta y+\gamma^{\prime} x^{\prime}-\delta^{\prime} y^{\prime}+\lambda,
$$

where $\gamma, \delta, \gamma^{\prime}, \delta^{\prime}, \lambda$ are any real constants, provided the condition

$$
\gamma \delta^{\prime}-\gamma^{\prime} \delta=0
$$

is satisfied. The permanent relatious then give

$$
v^{\prime}=\delta x+\gamma y+\delta^{\prime} x^{\prime}+\gamma^{\prime} y^{\prime}+\lambda^{\prime},
$$

where λ^{\prime} is any real constant; and so

$$
\begin{aligned}
w^{\prime} & =u^{\prime}+i v^{\prime} \\
& =(\gamma+i \delta) z+\left(\gamma^{\prime}+i \delta^{\prime}\right) z^{\prime}+\lambda+i \lambda^{\prime}
\end{aligned}
$$

The presence of the term $\lambda+i \lambda^{\prime}$ in w^{\prime} merely means a change of origin in the w^{\prime}-plane; neglecting this temporarily, as before for w, we have

Now let

$$
w^{\prime}=(\gamma+i \delta) z+\left(\gamma^{\prime}+i \delta^{\prime}\right) z^{\prime}
$$

$$
\gamma+i \delta=C e^{\nu n}, \quad \gamma^{\prime}+i \delta^{\prime}=C^{\prime} e^{\nu^{\prime} 4}
$$

where $C, C^{\prime}, \nu, \nu^{\prime}$ are real ; then the condition $\gamma \delta^{\prime}-\gamma^{\prime} \delta=0$ becomes

$$
C C^{\prime} \sin \left(\nu-v^{\prime}\right)=0
$$

so that either $C=0$, or $C^{\prime}=0$, or $\nu=\nu^{\prime}$, giving three possibilities
The second of the three retaned equations still has to be satisfied, it involves derivatives of u and of u^{\prime}, and it is satisfied identically by the foregoing values of u and u^{\prime}, provided

$$
a \delta^{\prime}-\alpha^{\prime} \delta=\beta \gamma^{\prime}-\beta^{\prime} \gamma
$$

or (what is the equivalent condition) provided

$$
A C^{\prime} \sin \left(\mu-\nu^{\prime}\right)=A^{\prime} C \sin \left(\mu^{\prime}-\nu\right)
$$

9 Nine cases arise for consideration, because the three possibulities from the first of the retaned equations must be combined with the three possibilities from the third of the retaned equations. Each combination is governed by the last condition, and the expressions obtaned must satisfy the conditions holding between ρ and σ Moreover, in the end, w and w^{\prime} are to be independent functions of the variables, and, for the present purpose of geometrical representation by a line, we manifestly may interchange z with z^{\prime}, and w with w^{\prime}

Of the nine combinations, two are impossible under these requirements, viz. $A=0, C=0$, and $A^{\prime}=0, C^{\prime}=0$. Four of them are equivalent to one another under these requirements, viz. $A=0, \nu=\nu^{\prime}, A^{\prime}=0, \nu=\nu^{\prime}, \mu=\mu^{\prime}$, $C=0, \mu=\mu^{\prime}, C^{\prime}=0$; and they lead to the expressions

$$
w=\left(A z+A^{\prime} z^{\prime}\right) e^{\mu_{2}}, \quad w^{\prime}=C^{\prime} z^{\prime} e^{\mu z}
$$

Two of them i equivalent to one another under these requirements, viz. $A=0, C^{\prime}=0$; and $A^{\prime}=0, C=0$, and they lead to the expressions

$$
w=A z e^{\nu \prime}, \quad w^{\prime}=C^{\prime \prime} z^{\prime} e^{\mu t}
$$

The remaining combination, viz. $\mu=\mu^{\prime}, \nu=\nu^{\prime}$, under the requirements leads to the expressions

$$
w=\left(A z+A^{\prime} z^{\prime}\right) e^{\mu i}, \quad w^{\prime}=\left(C z+C^{\prime} z^{\prime}\right) e^{\mu i}
$$

All these expressions must still satisfy the terminal condition applying to ρ and σ, viz. that ρ must be 0 or 1 when σ is 0 or 1 . When these expressions
are inserted for the functions f and g in the earliest equations in $\S 7$, the latter lead to the relations

$$
\begin{gathered}
\rho \alpha+(1-\rho) \gamma \\
\sigma
\end{gathered}=\frac{\rho a^{\prime}+(1-\rho) \gamma^{\prime}}{1-\sigma}, ~=\frac{\rho \beta^{\prime}+(1-\rho) \delta^{\prime}}{1-\sigma},
$$

and therefore

$$
\underset{\sigma}{\rho A e^{\mu 1}+(1-\rho) C e^{\nu 2}}=\frac{\rho d^{\prime} \rho^{\mu^{\prime}}+(1-\rho) C^{\prime} e^{\nu_{1}}}{1-\sigma}
$$

For the first of the expressions, this becomes

$$
\frac{\rho A}{\sigma}=\frac{\rho A^{\prime}+(1-\rho) C^{\prime}}{1-\sigma}
$$

In order that ρ may be 1 when σ is 1 , we must have $A^{\prime}=0$ and the necessity, that then ρ must be 0 when σ is 0 , imposes no further condition, the expression becomes

$$
w=A z e^{\mu z}, \quad w^{\prime}=C^{\prime} z^{\prime} e^{\mu l},
$$

which is the same as the second.
For the second of the expressions, the relation is satisfied without any further condition.

For the thard of the expressions, the relation becomes

$$
\begin{gathered}
\rho A+(1-\rho) C^{\prime}=c \\
\rho A^{\prime}+(1-\rho) C^{\prime} \\
1-\sigma
\end{gathered} .
$$

In order that ρ may be 1 when σ is 1 , we must have $A^{\prime}=0$, and in order that ρ may be 0 when σ is 0 , we must have $G=0$, the expression becomes

$$
w=A z e^{\mu 2}, \quad w^{\prime}=C^{\prime} z^{\prime} e^{\mu 1}
$$

the same as before.
In obtainng this result, we neglected temporanily an arbitrary change of ongin in each of the planes, and we assumed that z can be interchanged with z^{\prime}, and w with w^{\prime} Thus we have the result.-

The only relations which give a burational trangformation of the straight lne, joining z and z^{\prime} in two purallel planes, into a strarght lune, joining w and w^{\prime} also in two parallel planes, etther ure

$$
w=a z e^{a^{2}}+b e^{\beta_{2}}, \quad w^{\prime}=a^{\prime} z e^{a_{2}}+c e^{r^{2}}
$$

where $a, a^{\prime}, b, c, a, \beta, \gamma$ are real constants, or can be changed into this form by interchanging z and z^{\prime}, or w and w^{\prime}, or both

These relations, as equations in a general theory, are so trivial as to be negligible ; and so we can assert generally that two functional relations $F\left(w, w^{\prime}, z, z^{\prime}\right)=0$ and $G\left(w, w^{\prime}, z, z^{\prime}\right)=0$, which transform the variables z
and z^{\prime} in their respective parallel planes into the variables w and w^{\prime} likewise in their respective parallel planes, do not (save in the foregoing trivial cases) adinit a birational transformation of the whole straight line joming z and z^{\prime} into the whole straight line joining w and w^{\prime}.
10. Manfestly, therefore, we need not retain the suggested geometrical representation of two variables by the whole straight line joining the two points z and z^{\prime}, because the only effective part of the representation 18 provided by the two points in which the line cuts the planes.

Nor would any other method of selecting the four real variables for the specification of the straight line be more effective. For cxample, the line would be uniquely selected by assigning a point where $1 t$ cuts a given plane and assigning its direction relative to fixed axes in space, and then we could take

$$
z=x+\imath y, \quad z^{\prime}=e^{\imath \phi} \tan \theta,
$$

with the usual sigmficance for x, y, θ, ϕ. It is easy to see that, when we take a plane at unit distance from the given plane, and we write $z^{\prime \prime}=z+z^{\prime}$, the former representation by the straight line arises for z and $z^{\prime \prime}$ As before, the whole straight line is not an effective representation of the two complex variables, the only effective part of the representation is the point in the given plane and the direction relative to fixed axes
11. Another method of constructing a stranght line to represent two complex vamables z and z^{\prime} has been propounded by Vivanti*, whereby it is given as the intersection of the two planes

$$
x X+y Z=1, \quad x^{\prime} Y+y^{\prime} Z=1
$$

where X, Y, Z are current coordinates in space. The immediate vicinity of a line $z_{0}, z_{0}^{\prime} 1 \mathrm{~s}$ assumed to be the aggregate of all lines such that

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \geqslant r^{2}, \quad\left(x^{\prime}-x_{0}^{\prime}\right)^{2}+\left(y^{\prime}-y_{0}^{\prime}\right)^{2} \geqslant r^{\prime 2},
$$

where r and r^{\prime} are arbitrary small quantities, and the boundary of the vicinity is made up of the hnes

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}, \quad\left(x^{\prime}-x_{0}^{\prime}\right)^{2}+\left(y^{\prime}-y_{0}^{\prime}\right)^{\mathbf{8}}=r^{\prime 2} .
$$

It is easy to see that, as before, the wholc straight line as a single geometrical entity is not an effective representation of the two complex variables z and z^{\prime}, the only effective part of the representation depends upon the coordinates of the two points in which the line cuts the planes of reference $Y=0, X=0$ (or any two of the coordinate planes).

[^4]12. The preceding investigation snggests cognate questions which will only be propounded. Two functional relations, $F^{\prime}\left(w, w^{\prime}, z, z^{\prime}\right)=0$ and $G\left(w, w^{\prime}, z, z^{\prime}\right)=0$, transform a pair of ponts z and z^{\prime}, in parallel planes, into a parr (or into several pars) of points w and w^{\prime}, also in parallel planes. Let z and z^{\prime} be connected by any analytical curve, let a corresponding pair of points w and w^{\prime} also be connected by any analytical curve, and suppose that the two malytical curves have a birational correspondence with one another. Then
(1) How are the eqnations of this correspondence connected, if at all, with the original functional relations? and what are these equations when the two analytical curves are assigned t
(i1) What functional relations are possible if, undel thim, the whole $z z^{\prime}$ curve is to be transformed into the whole w, w^{\prime} curve"
(ui) When functional relations are givell and an analyticol z, z^{\prime} curve is assigned, what are the equations of the w, w^{\prime} curve, if and when the whole curves are transformed moto one another?
13. One warning must be given before we pass away from the consuderation of a line, straght or curved, as a gcometncal representation of a couple of complex varables The preceding remarks refer to the possibility of this geometrical representation, they do not iefer to functions of two complex variables which are functions of a line. Functions of a real line uccur in mathenatical physics, thus the energy of a closed wire, conveying a current in a magnetic field, is a function of the shape of the wire. This notion has been extended by Volteria* on the basis of Poncarés generalisation of one of Cauchy's mtegral-theorems In the case of the integral of a unform function of one couplex variable, we know that the value is zero round any contotir, whicll does not enclose a singularity of the function, and that the integral between two assigned points is (subject to the usual proviso as to singularities) independent of the path between the points, that is, the integral can be regarded as a function of the final point. So also (as we shall sce) the mitegral of a function of two complex variables over a closed surface in four-dimensional space is zero if the surface encloses no singularity of the function, and when the surface is not closed, the integral (subject to a similar proviso as to singularities) depends upon the boundary of the surface, that is, the integral can be regarded as a function of the boundary-hne.

This property has nothing in cominon with the line-representation of two complex variables which has been discussed
14. The third of the indicated methods of representation of two complex variables is the effective relic of the discarded line-representation. It is the simple, but not very suggestive, method of representing the two variables z

[^5]and z^{\prime} by two points, either in the same plane or in different planes, the two points always being unrelated. It is the method usually adopted by Picard and others. For quite simple purposes, it proves useful, thus it is employed by Picard* in dealing with the residues of the double integrals of rational functions, and it is mportant in his theory of the periods of double integrals of algebracc functions.

Let me say at once that the point-representation of z and z^{\prime} is not completely satisfactory, in the sense that it does not provide a representation which gives a powerful geometrical equivalent for analytical needs. One illustration will suffice tor the moment $l t$ is a known theoren \dagger, due originally to Jacobi in a smopler form, that a uniforin function of two variables cannot possess more than four pairs of periods. The pointrepresentation of two variables admits of an effective presentation of simple periodicity for elther variable or for both variables, of double periodicity for either variable or for both variables separately, of triple periodicity for both variables in combination, but (as will be secn later in these lectures) it does not lend itself to a presentation of quadruple periodicity for both variables in combination, a presentation which is much needed for functions so fundamental as the quotients of the double theta-functions. An attempt to circumvent the latter ditheulty will be made later for one class of quadruply-periodic functions But the general difficulty remains. There are other limitations also upon the effectiveness of the method of representation by points; they need not be emphassed at this stage.

New ideas, or some umquely effective new idea, can alone supply our needs. In the meanwhile, we possess only two fanrly useful methods, viz., the method of four-dimensional space, and the method of two-plane representation.

Propertzes of the two-plane representation.

15. As the principal use of the representation of two variables in fourdumensional space occurs in connection with donble integrals, illustrations can be deferred untal that subject arses for discussion We proceed now to make a few simple inferences from the two-plane representation of two variables ${ }^{+}$.

We shall use the word place to denote, collectively, the two points in the z-plane and the z^{\prime}-plane respectively which represent the values of z and

[^6]of ε^{\prime}. Let w and w^{\prime} be two independent functions of z and z^{\prime}, so that thetr Jacobian J, where
$$
J=J\binom{u_{1}^{\prime \prime}, w^{\prime}}{z, z^{\prime}}
$$
does not vamsh identically, and let the phaces z, z^{\prime} and w, w^{\prime} be associated by functional relations. Any small variation from the former place, represented by $d z$ and $d z^{\prime}$, determmes a small variation fion the latter place, which may be represented by $d w$ and $d w^{\prime}$, the analytical relations between these sunall variations are of the form
$$
d w=A d z+B d z^{\prime}, \quad d w^{\prime}=\left(' d z+D d z^{\prime},\right.
$$
where A, B, C, D are free from differential elements, and $A I-B C=J$.
Next, let $d_{1} z$ and $d_{1} z^{\prime}, d_{2} z$ and $d_{2} z^{\prime}$ denote any two small variations from the z, z^{\prime} place: and let $d_{1} w$ and $d_{1} w^{\prime}, d_{2} w$ and $d_{2} u^{\prime}$ denote the consequent small variations from the w, w^{\prime} place Then
\[

$$
\begin{aligned}
& \left|d_{1} u, \quad d_{1} w^{\prime}\right|=A d_{1} z+B d_{1} z^{\prime}, \quad C d_{1} z+D d_{1} z^{\prime} \mid \\
& : \begin{array}{lll}
d_{2} w, \quad d_{2} w^{\prime}
\end{array}, A d_{2} z+R d_{2} z^{\prime}, \quad C d_{2} z+D d_{2} z^{\prime} \\
& =\begin{array}{lll}
J & d_{1} z, & d_{1} z^{\prime} \\
& d_{1} z, & d_{2} z^{\prime}
\end{array} .
\end{aligned}
$$
\]

Manifestly, if $d_{1} z d_{2} z^{\prime}-d_{2} z d_{1} z^{\prime}$ samushes, then $d_{1} w d_{2} w w^{\prime}-d_{2} w d_{1} w^{\prime}$:ulbo vanshos, and the converse holds, because J is not zero. Hence of, at the place z, z^{\prime}, two sumdar mfimtesmal trangles are taken in the planes of z and of z^{\prime} respectively, the corresponding mfintesmal triangles at the place w, w^{\prime} in the planes of w and of w^{\prime} respectively also are smmar, aund conversely

This property holds for all pairs of simiar infimtesimal triangles, and therefore, when the z-plunc and the z^{\prime}-plane are put into conformal relation with one another, the w-plane and the w^{\prime}-plane are also put into conformal relation with one another This result is the geometrical form of the analytical result that, when the two equations

$$
F\left(w^{\prime}, w^{\prime}, z, z^{\prime}\right)=0, \quad G\left(w, w^{\prime}, z, z^{\prime}\right)=0,
$$

determine w and w^{\prime} as independent functions of z and z^{\prime}, a relation $\phi\left(z, z^{\prime}\right)=0$, involving z and z^{\prime} only, leads to some relation $\psi\left(w, w^{\prime}\right)=0$, involving w and w^{\prime} only.

Another interpretation of the relation

$$
\left|\begin{array}{ll}
d_{1} w, & d_{1} w^{\prime} \\
d_{2} w, & d_{3} w^{\prime}
\end{array}\right|=\left\{\left.\begin{array}{ll}
d_{1} z & d_{1} z^{\prime} \\
d_{2} z & d_{2} z^{\prime}
\end{array} \right\rvert\,\right.
$$

is as follows:-When w and w^{\prime} are two independent functions of two independent complex variables z and z^{\prime}, and when $d_{1} z, d_{1} z^{\prime}, d_{2} w, d_{1} w^{\prime}$ are
any one set of simultaneous small variations, while $d_{2} z, d_{2} z^{\prime}, d_{2} w, d_{2} w^{\prime}$ are any other set of simultaneous small variations, the quantity

$$
\left.\left|\begin{array}{ll}
d_{1} w, & d_{1} w^{\prime} \\
d_{2} w, & d_{2} w^{\prime}
\end{array}\right| \begin{array}{cc}
d_{1} z, & d_{1} z^{\prime} \\
d_{2} z, & d_{2} z^{\prime}
\end{array} \right\rvert\,
$$

is medependent of differential elements and depends only upon the places z, z^{\prime} and w, w^{\prime}.
16. The converse also is true, viz.:-

Let z and z^{\prime} be two complex varables, such that

$$
z=x+i y, \quad z^{\prime}=x^{\prime}+i y^{\prime}
$$

where $x, y, x^{\prime}, y^{\prime}$ are four \quad eal independent vartables; and let w and w^{\prime} be other two complea vamubles, surh that

$$
w=u+v v, \quad u^{\prime}=u^{\prime}+v v^{\prime},
$$

where $u, v, u^{\prime}, v^{\prime}$ are four real independent quantities, being functıons of x, y, x^{\prime}, y^{\prime}; then, of the magnatude

$$
\left|\begin{array}{ll}
d_{1} w, & d_{1} w^{\prime} \\
d_{2} w, & d_{2} w^{\prime}
\end{array}\right|-\left|\begin{array}{ll}
d_{1} z, & d_{1} z^{\prime} \\
d_{2} z, & d_{2} z^{\prime}
\end{array}\right|
$$

for all infintesimal varutuons is independent of these varnations, w and w^{\prime} are independent functions of z and z^{\prime} alone.

This property, which for two independent complex variables corresponds to Reemann's definition-property* for functionality in the case of a single complex variable, can be established as follows Let

$$
\begin{array}{llll}
\frac{\partial w}{\partial x}=\alpha, & \frac{\partial w}{\partial y}=\beta, & \frac{\partial w}{\partial x^{\prime}}=\gamma, & \partial u \\
\partial y^{\prime}=\delta, \\
\partial w^{\prime} & =a^{\prime}, & \frac{\partial w^{\prime}}{\partial y}=\beta^{\prime}, & \frac{\partial w^{\prime}}{\partial x^{\prime}}=\gamma^{\prime}, \\
\frac{\partial w^{\prime}}{\partial y^{\prime}}=\delta^{\prime}
\end{array}
$$

so that

$$
\left.\begin{array}{l}
d w=\alpha d x^{\prime}+\beta d y+\gamma d x^{\prime}+\delta d y^{\prime} \\
\left.d w^{\prime}=\alpha^{\prime} d x+\beta^{\prime} d y+\gamma^{\prime} d x^{\prime}+\delta^{\prime} d y^{\prime}\right\}
\end{array}\right\} .
$$

Then

$$
\begin{aligned}
& \left|\begin{array}{ll}
d_{1} w, & d_{1} w^{\prime} \\
d_{2} w, & d_{2} w^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\alpha d_{1} x+\beta d_{1} y+\gamma d_{1} x^{\prime}+\delta d_{1} y^{\prime}, & \alpha^{\prime} d_{1} x+\beta^{\prime} d_{1} y+\gamma^{\prime} d_{1} x^{\prime}+\delta^{\prime} d_{2} y^{\prime} \\
\alpha d_{2} x+\beta d_{2} y+\gamma d_{2} x^{\prime}+\delta d_{2} y^{\prime}, & \alpha^{\prime} d_{3} x+\beta^{\prime} d_{2} y+\gamma^{\prime} d_{2} x^{\prime}+\delta^{\prime} d_{2} y^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
a, & a^{\prime} \\
\beta, & \beta^{\prime}
\end{array}\right|\left|\begin{array}{ll}
d_{1} x, & d_{1} y \\
d_{2} x, & d_{2} y
\end{array}\right|\left|\begin{array}{cc}
\alpha, & \alpha^{\prime} \\
\gamma, & \gamma^{\prime}
\end{array}\right|\left|\begin{array}{ll}
d_{1} x, & d_{1} x^{\prime} \\
d_{2} x, & d_{2} x^{\prime}
\end{array}\right|+\left|\begin{array}{cc}
\alpha, & \alpha^{\prime} \\
\delta, & \delta^{\prime}
\end{array}\right|\left|\begin{array}{l}
d_{1} x, \\
d_{1} y^{\prime} \\
d_{2} x, \\
d_{2} y^{\prime}
\end{array}\right| \\
& \left.\cdot \stackrel{+}{\beta,} \begin{array}{l}
\\
\gamma, \\
\gamma^{\prime}
\end{array}\left|\left|\begin{array}{l}
d_{1} y, d_{1} x^{\prime} \\
d_{2} y, \\
d_{2} x^{\prime}
\end{array}\right|+\left|\begin{array}{cc}
\beta, & \beta^{\prime} \\
\delta, & \delta^{\prime}
\end{array}\right|\right| \begin{array}{l}
d_{1} y, d_{1} y \\
d_{2} y, \\
d_{2} y^{\prime}
\end{array}\left|+\left|\begin{array}{cc}
\gamma, & \gamma^{\prime} \\
\delta, & \delta^{\prime}
\end{array}\right|\right| \begin{array}{l}
d_{1} x^{\prime}, d_{1} y^{\prime} \\
d_{2} x^{\prime}, \\
d_{2} y^{\prime}
\end{array} \right\rvert\, . \\
& \text { * Riemann's Ges. Werke, p. } 5 .
\end{aligned}
$$

Also

$$
\begin{aligned}
& \left|\begin{array}{ll}
d_{1} z & d_{1} z^{\prime} \\
d_{9} z & d_{4} z^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
d_{1} x+\imath d_{1} y, & d_{1} x^{\prime}+i d_{1} y^{\prime} \\
d_{2} x+i d_{2} y, & d_{2} x^{\prime}+\imath d_{2} y^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
d_{1} x, & d_{1} x^{\prime} \\
d_{2} x, & d_{2} x^{\prime}
\end{array}\right|+i\left|\begin{array}{ll}
d_{1} y, & d_{1} x^{\prime} \\
d_{3} y, & d_{2} x^{\prime}
\end{array}\right|+i\left|\begin{array}{ll}
d_{1} x, & d_{1} y^{\prime} \\
d_{2} x, & d_{2} y^{\prime}
\end{array}\right|-\left|\begin{array}{ll}
d_{2} y, & d_{1} y^{\prime} \\
d_{2} y, & d_{2} y^{\prime}
\end{array}\right| .
\end{aligned}
$$

These two quantities are to stand to one another in a non-vanishing ratio, which is independent of the arbitranly chosen differential elements that oecur in them Consequently, when we denote this ratio by J, we must have

$$
\begin{aligned}
& \alpha \beta^{\prime}-\alpha^{\prime} \beta=0, \\
& \alpha \gamma^{\prime}-\alpha^{\prime} \gamma=J, \\
& \alpha \delta^{\prime}-\alpha^{\prime} \delta=\imath . \\
& \beta \gamma^{\prime}-\beta^{\prime} \gamma=\imath I, \\
& \beta \delta^{\prime}-\beta^{\prime} \delta=-J, \\
& \gamma^{\prime} \delta^{\prime}-\gamma^{\prime} \delta=0,
\end{aligned}
$$

and these necessary conditions also suffice to secure the property
The first of these conditions shews that a quantity m exists such that

$$
\beta=m a, \quad \beta^{\prime}=m \alpha^{\prime},
$$

and the suxth shews that a quantity n exists such that

$$
\delta=n \gamma, \quad \delta^{\prime}=n \gamma^{\prime}
$$

The third condition then gives

$$
\imath . J=a \delta^{\prime}-\alpha^{\prime} \delta=n\left(\alpha \gamma^{\prime}-\alpha^{\prime} \gamma\right)=n J,
$$

the fourth and the fifth conditions sumlarly give

$$
\imath J=m J, \quad-J=m थ J,
$$

and the second condition gives the value of J. Thus all the conditions are satisfied if

$$
m=i, \quad n=i, \quad J=\alpha \gamma^{\prime}-\alpha^{\prime} \gamma
$$

But now

$$
\frac{\partial w}{\partial y}=\beta=\imath \alpha=\imath \frac{\partial w}{\partial x}, \quad \frac{\partial w}{\partial y^{\prime}}=\delta=\imath \gamma=\imath \frac{\partial w}{\partial x^{\prime}},
$$

and these are the only equations affecting w alone The theory of partial differential equations of the first order shews that therr most general integral is any function of $x+\imath y$ and of $x^{\prime}+2 y^{\prime}$ alone, that $18, w$ is a function of z and z^{\prime} alone. Similarly

$$
\frac{\partial w^{\prime}}{\partial y}=\varepsilon \frac{\partial w^{\prime}}{\partial x}, \quad \frac{\partial w^{\prime}}{\partial y^{\prime}}=i \frac{\partial w^{\prime}}{\partial x^{\prime}},
$$

F.
and these are the only equatrons affecting w^{\prime} alone; hence, as before, w^{\prime} also is a function of z and z^{\prime} alone. Moreover, we now have

$$
\begin{array}{ll}
\frac{\partial w}{\partial z}=\frac{\partial w}{\partial x}=\alpha, & \frac{\partial w}{\partial z^{\prime}}=\frac{\partial w}{\partial x^{\prime}}=\gamma \\
\frac{\partial w^{\prime}}{\partial z}=\frac{\partial w^{\prime}}{\partial x}=\alpha^{\prime}, & \frac{\partial w^{\prime}}{\partial z^{\prime}}=\frac{\partial w^{\prime}}{\partial x^{\prime}}=\gamma^{\prime}
\end{array}
$$

and therefore

$$
J=\alpha \gamma^{\prime}-\alpha^{\prime} \gamma=\frac{\partial w \frac{\partial w^{\prime}}{\partial z}-\frac{\partial w}{\partial z^{\prime}}-\frac{\partial w}{\partial z^{\prime}} \partial z}{\partial z} .
$$

Also J is a non-vanishing quantity Hence w and w^{\prime} are independent functions of z and z^{\prime} alone-which is the result to be established.
17. The Riemann defintion-property for a function of a single complex variable leads to a relation

$$
\frac{\delta w}{\delta^{\prime} w}=\frac{\delta z}{\delta^{\prime} z},
$$

this relation, when interpreted geonuctrically, gives the conformal repiesentation of the w-plane and the z-plane upon one another. The property just established in connection with the quantity

$$
d_{1} z \cdot d_{2} z^{\prime}-d_{2} z \quad d_{1} z^{\prime}
$$

has a corresponding geometrical interpietation.
For simplicity, let z and z^{\prime} be represented in the same planc. At any point O in the plane, take $O A, O B, O C, O J$ to represent $d_{1} z, d_{1} z^{\prime}, d_{2} z, d_{2} z^{\prime}$ Along the internal bisector of the angle between $O A$ and $O D$, take $O P$ a mean proportional between the lengths $O A$ and $O D$, and along the intenal bisector of the angle between $O B$ and $O C$, take $O Q$ a mean proportional between the lengths $(A B$ and $O C$ Complete the parallelogram of which $O P$ and $O Q$ are adjacent sides, let M denote the product of the lengths of its dagonals, and let θ denote the sum of the inclinations of those diagonals to the positive direction of the axis of real quantities, then

$$
d_{1} z \cdot d_{2} z^{\prime}-d_{\mathrm{r}} z \quad d_{1} z^{\prime}=M e^{\theta_{2}} .
$$

Constructing a similar parallelogram in connection with the variations of w and w^{\prime}, we should have

$$
d_{1} w \quad d_{2} w^{\prime}-d_{9} w \cdot d_{1} w^{\prime}=N e^{\phi 2} .
$$

Consequently

$$
N e^{\phi_{1}}=J M e^{\theta_{r}}
$$

Now let two sets of pars of small variations of z and z be taken, one of them leading to a quantity $M e^{\theta_{n}}$, the other of them leading to a quantity $M^{\prime} e^{\theta^{i}}$, and let the correspondmg quantities, arising out of the
two sets of pars of the consequent small variations of w and w^{\prime}, be $N e^{\phi t}$ and $N^{\prime} e^{\phi^{\prime} t}$. Then

$$
N e^{\phi_{2}}=J M e^{a_{2}}, \quad N^{\prime} e^{\phi^{\prime} t}=J M^{\prime} e^{\theta^{\prime}},
$$

and therefore

$$
N^{\prime}=\frac{M^{\prime}}{M^{\prime}}, \quad \phi^{\prime}-\phi=\theta^{\prime}-\theta,
$$

which is the extersion, to two functions of two variables, of the conformation property for a function of one varrable Moreover, the extension is detetmmate, for the parallelogram, constructed to give the reprerentation of $d_{1} z . d_{2} z^{\prime}-d_{2} z \quad d_{1} z^{\prime}$, is unque in magnitude and orientation

18 While a geometrical interpretation of functionality can thas be provided at any place in the two planes of the independent vanables, a limitation upon the general utility of the method is found at once when we proced to the transformation of equatoons. It does not, in fact, provide any natural extension of the transformation of loes and of arcas whel occurs when there as only one complex wabable

Thus considel the periodic substitution

$$
z \sqrt{ } 2=w^{\prime}+w^{\prime}, \quad z^{\prime} \sqrt{ } 2=w-w^{\prime}
$$

which given

$$
u \sqrt{ } 2=z+z^{\prime}, \quad w^{\prime} \vee 2=z-z^{\prime} .
$$

Corresponding to any z, z^{\prime} place, these exsists a unique w, w^{\prime} place. But the combination, of a definute locus in the z plane unafiected loy variations of z^{\prime} with a defimite locms in the z^{\prime} plant maffected by vanations of z, does not lead to smmar lees in the planes of w and of w^{\prime} Thus suppose that z and z^{\prime} describe the carcles

$$
z=u e^{\theta_{1}}, \quad z^{\prime}=a^{\prime} e^{\theta^{\prime}}
$$

in then respective planes, the corresponding ranges on the w and w^{\prime} planes are given by the equations

$$
\left(u+u^{\prime}\right)^{3}+\left(v+v^{\prime}\right)^{2}=2 a^{2}, \quad\left(u-u^{\prime}\right)^{2}+\left(v-r^{\prime}\right)^{2}=2 a^{\prime \prime},
$$

neither of which gives a locus in the w plane alone on in the u^{\prime} plant alone The z circle and the z^{\prime} carcle, which can be described by the respective variables independently of each othet, determine x^{2} places in the w and w^{\prime} planes combined, but there is no locus eather in the w plane alonc or in the w^{\prime} plane alone corresponding to the two creles

Again, the content of the field of variation represented by

$$
|z| ₹ a, \quad\left|z^{\prime}\right| ₹ a^{\prime}
$$

can be described very simply, it consists of the ∞ ' places given by combining any point within or upon the z circle with any point within or
upon the z^{\prime} circle. When this field of variation is transformed by the periodic substitution, the new field of variation is represented by

$$
\left|w+w^{\prime}\right|<a \sqrt{ } 2, \quad ' w-w^{\prime} \mid<a^{\prime} \sqrt{\prime}^{\prime} 2
$$

it consists of ∞^{4} places in the w and w^{\prime} planes, each corresponding uniquely to the appropriate one of the ∞^{4} places in the z and z^{\prime} planes, but there 15 no verbal description of the w, w^{\prime} held so simple as the verbal description of the z, z^{\prime} field which has been transformed.

Analytical eapression of frontiers of two-plane regions.

19 One consequence emerges from even the foregong simple illustration, and it is contirmed by other considerations

When we have a four-fold field of variation such that places in it are represented by a couple of relations

$$
\phi\left(x, y, x^{\prime}, y^{\prime}\right)<0, \quad \psi\left(x, y, x^{\prime}, y^{\prime}\right)<0
$$

the three-fold boundary of the field consists of two portions, viz the range represented by

$$
\phi\left(x, y, x^{\prime}, y^{\prime}\right)=0, \quad \psi\left(x, y, x^{\prime}, y^{\prime}\right) \geqslant 0
$$

and the range represented by

$$
\phi\left(x, y, x^{\prime}, y^{\prime}\right)<0, \quad \psi\left(x, y, a^{\prime}, y^{\prime}\right)=0
$$

These two portions of the threc-fold boundary themselves have a common frontier represented by the equations

$$
\phi\left(x, y, x^{\prime}, y^{\prime}\right)=0, \quad \psi\left(x, y, x^{\prime}, y^{\prime}\right)=0
$$

which give a two-fold range of vanation this last range is a secondary or subsidary boundary for the original four-fold field, to distinguish it from the proper boundary, we shall call it the frontter of the field

Accordingly, we may regard the frontrer of a field of the suggested kind as given by two equations

$$
\phi\left(x, y, x^{\prime}, y^{\prime}\right)=0, \quad \psi\left(x, y, x^{\prime}, y^{\prime}\right)=0 .
$$

(The sinipler case of unrelated loci in the planes of z and of z^{\prime} arises when ϕ does not contan x^{\prime} or y^{\prime}, and ψ does not contain x or y, and, at least when ϕ and ψ are algebrace functions of their arguments, the foregoing relations can be modified intor relations of the type

$$
\theta\left(x, y, x^{\prime}\right)=0, \quad \bar{\theta}\left(x, y, y^{\prime}\right)=0
$$

or into relations of the type

$$
\chi\left(x, x^{\prime}, y^{\prime}\right)=0, \quad \bar{\chi}\left(y, x^{\prime}, y^{\prime}\right)=0,
$$

which are equivalent to them.) Now this form of the equations of the frontier of the field possesses the analytical advantage that, when the variables are changed from z and z^{\prime} to w and w^{\prime} by equations

$$
F^{\prime}\left(w, w^{\prime}, z, z^{\prime}\right)=0, \quad G\left(w, w^{\prime}, \varepsilon, z^{\prime}\right)=0,
$$

the equations of the frontier of the w, w^{\prime} field are of the same typ as before, being of the form

$$
\Phi\left(u, v, u^{\prime}, v^{\prime}\right)=0, \quad \Psi\left(u, u^{\prime}, u^{\prime}, v^{\prime}\right)-0
$$

It is necessary to find some analytical expressom of the doubly-mfinte content of these equations In the specal example ansing out of the periodic substitution in $\S 18$, we at oner have the expressons

$$
\begin{array}{ll}
u \sqrt{ } 2=u \cos \theta+a^{\prime} \cos \theta^{\prime}, & u^{\prime} \sqrt{ }{ }^{\prime}=a \cos \theta-a^{\prime} \cos \theta^{\prime}, \\
u \sqrt{ } 2=u \sin \theta+a^{\prime} \sin \theta^{\prime}, & u^{\prime} \sqrt{ } 2=u \sin \theta-u^{\prime} \sin \theta^{\prime},
\end{array}
$$

giving the doubly-mfinte range of vanation for $u, v, u^{\prime}, v^{\prime}$, when θ^{θ} and θ^{\prime} any independently. But when the equatoons of the frontser do not lead, by mere mspection, to the needed "xpressuons, we can proceed as follows

Let $x, y, x^{\prime}, y^{\prime}=a, b, u^{\prime}, b^{\prime}$ be an ordmary place on the frontier given by the equations $\phi=0$ and $\psi=0$, in the sense that no one of the first dervatives of ϕ and of ψ vanshes there, and in its viemity let

$$
x=a+\xi, \quad y=b+\eta, \quad a^{\prime}=a^{\prime}+\xi^{\prime}, \quad y^{\prime}=b^{\prime}+\eta^{\prime}
$$

Then we have

$$
\begin{aligned}
& 0=\xi^{\partial \phi} \frac{\partial \Delta}{\partial u}+\eta \frac{\partial \phi}{\partial b}+\xi^{\prime} \frac{\partial \phi}{\partial u^{\prime}}+\eta^{\prime} \frac{\partial \phi}{\partial b^{\prime}}+\left[\xi, \eta, \xi^{\prime}, \eta^{\prime}\right]+\cdots \\
& 0=\xi \frac{\partial \psi}{\partial u}+\eta \frac{\partial \psi}{\partial b}+\xi^{\prime} \frac{\partial \psi}{\partial u^{\prime}}+\eta^{\prime} \frac{\partial \psi}{\partial b^{\prime}}+\left[\xi, \eta, \xi^{\prime}, \eta^{\prime}\right]_{2}+
\end{aligned}
$$

there beang only a finte number of terms when ϕ and ψ nus algebrane in form Introduce two new parameters s and t, and take

$$
\begin{aligned}
s & =\xi \alpha+\eta \beta+\xi^{\prime} \gamma+\eta \delta, \\
t & =\xi \alpha^{\prime}+\eta \beta^{\prime}+\xi^{\prime} \gamma^{\prime}+\eta^{\prime} \delta^{\prime},
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ are constants such that the determmant

$$
\left|\begin{array}{cccc}
\partial \phi & \partial \phi & \partial \phi & \partial \phi \\
\partial a & \partial b & \partial a^{\prime \prime} & \partial b^{\prime} \\
\partial \psi & \frac{\partial \psi}{\partial}, & \partial \psi & \partial \psi \\
\partial u^{\prime} & \frac{\partial a^{\prime \prime}}{\partial b^{\prime}} \\
\alpha, & \beta, & \gamma, & \delta \\
\alpha^{\prime}, & \beta^{\prime}, & \gamma^{\prime}, & \delta^{\prime}
\end{array}\right|
$$

does not vanish. Then the fonr equations can be resolved so as to express $\xi, \eta, \xi^{\prime}, \eta^{\prime}$ in terms of s and t, owing to the limitations imposed, the deduced expressions are regular functions of s and t, vanishing with them, and so we have each of the variables $x, y, x^{\prime}, y^{\prime}$, expressed as functions of two real variables s and t, regular at least in some non-infinitesimal range.

In order to indicate the two-fold variation in the content of the frontier, it now is sufficient to consider regions of variation in the plane of the real variables s and t Thus, corresponding to a region in that plane included within a curve $k(s, t)=0$, there are frontier ranges of variation in the z and the z^{\prime} planes, determined respectively by the equations

$$
\left.\left.\begin{array}{rl}
x-a=p(s, t) \\
y-b & =q(s, t) \\
0 \geqslant k(s, t)
\end{array}\right\}, \quad \begin{array}{rl}
x^{\prime}-a^{\prime}=p^{\prime}(s, t) \\
y^{\prime}-b^{\prime} & =q^{\prime}(s, t) \\
0 & \geqslant k(s, t)
\end{array}\right\},
$$

that is, by the intermors of curves

$$
f(x-a, y-b)=0, \quad y\left(x^{\prime}-a^{\prime}, y^{\prime}-b^{\prime}\right)=0,
$$

the current descriptions of these intenors beng related
Moreover, the equations $F=0$ and $G=0$ potentially express $u, u^{\prime}, u^{\prime}, v^{\prime}$ in terms of $x, y, x^{\prime}, y^{\prime}$, and so the frontier range of varation in the w and w^{\prime} planes would be given by substituting the obtamed values of $x, y, x^{\prime}, y^{\prime}$, as regular fuuctions of s and t, in the expressions for $u, v, u^{\prime}, v^{\prime}$, that is, the fiontier range of variation is defined by equations of the form

$$
u, v, u^{\prime}, v^{\prime}=\text { functions of two real variables } s \text { and } t \text {. }
$$

But, in dealing with the geometrical content of the frontier, whether with the variables z and z^{\prime} or wrth the variables w and w^{\prime}, care must be exercised as to what is justly included. We aro not, for instance, to include every pount within the curve $f(x-a, y-b)=0$ conjointly with every point within the curve $g\left(x^{\prime}-a^{\prime}, y^{\prime}-b^{\prime}\right)=0$, even if both curves are closed, we are to melude every pont within either curve conjointly with the point withon the other curve that is appropriately associable with it through the values of s and t.

Ex 1 The method just given for the exprossion of $x, y, x^{\prime}, y^{\prime} 19$ general in form, but there is no necessity to adopt it when smpler processes of expression can be adopted Thus in the case of the equations

$$
x^{2}+y^{2}+x^{\prime 2}=1, \quad x^{2}-y^{2}=y^{\prime},
$$

a complete representation of the varables is given by

$$
x=\sin s \cos t, \quad y=\sin s \sin t, \quad x^{\prime}=\cos s, \quad y^{\prime}=\sin ^{2} s \cos 2 t .
$$

A full range of variation in the plane of s and $t{ }_{18}$

$$
0<8<\pi, \quad 0<t ₹ 2 \pi .
$$

When we select, as a portion of this range, the area of the triangle bounded by the lines

$$
s-t=0, \quad s+t=\frac{1}{2} \pi, \quad t=0,
$$

the limiting eurves corresponding to $f=0$ and $g=0$ are a eurvilinear figure made up of u straught line and two quarter-circles in the z plane, and another curvilinear figure in the z^{\prime}-plane made up of a parabola and arcs of the two curven

$$
y^{\prime}=\left(1-x^{\prime 2}\right)\left(2 x^{\prime 2}-1\right\rangle, \quad y^{\prime}=-\left(1-x^{\prime 2}\right)\left(2 x^{\prime 2}-1\right)
$$

$E x 2$ For the periodic substitution

$$
10 \sqrt{ } 2=z+z^{\prime}, \quad w^{\prime} \sqrt{ } 2=z-z^{\prime}
$$

a z, z^{\prime} frontier defined by the equations

$$
x^{2}+x^{\prime 2}=1, \quad y^{2}+y^{\prime 2}=1,
$$

1s transformed into a w, w^{\prime} frontior detined by the equations

$$
u^{2}+u^{\prime 2}=1, \quad v^{2}+r^{\prime 2}=1
$$

that 18 , the frontier is conserved mochanged
Ea. 3. To ahow how a held of varition can be hinited, considel the four-fold held represented by the equations

$$
x^{2}+y^{2}+x^{\prime \prime}<1, \quad 2 x^{2}+3 y^{2}+y^{\prime 2}<1
$$

As regards the z-plane, the fust equation allows the whole of the interior of the arcle $x^{2}+y^{2}=1$ The second equation allows the whole of the materor of the ellpuse $2 x^{2}+3 y^{2}=1$ The region common to these areas is the interjor of the ellipse, hence the content in the z-plane is the intarior of the ellipe $2 x^{2}+3 y^{2}=1$, so that x^{2} ranges from 0 to $\frac{1}{2}$, and y^{2} ranges from 0 to $\frac{子}{3}$

As rogards the $z^{\prime} \cdot$ plane, we have

$$
3 r^{\prime 2}-y^{\prime 2}=2-x^{2}, \quad 2 x^{\prime 2}-y^{\prime 2}=1+y^{2}
$$

Because of the range of x^{2}, the thrst of those equations gives the region between the two hyperbolas

$$
3 x^{\prime 2}-y^{\prime 2}=2, \quad 3 x^{\prime 2}-y^{\prime 2}=4
$$

Because of the range of y^{2}, the second of these equations gives the region between the two hyperbolas

$$
2 t^{\prime 2}-y^{\prime 2}=\frac{4}{3}, \quad 2 t^{\prime 2}-t^{\prime 2}=1
$$

The required content an the $\varepsilon^{\prime}-p$ line we the area common to these two regions, that is, it is the intomor of two crescent-bhaped aiens between the hyperbolas

$$
2 x^{2}-y^{\prime 2}=1, \quad 3 x^{\prime 2}-y^{\prime 2}=2
$$

The whole field of four-fold varation of the variables z and $z^{\prime} 18$ made by combming any point withn or upon the first ellipse with any ponit wathn or upon the contour of each of the crescent-shaped areas

Ex 4. Discuss the four-fold held of variation represcuted by the equations

$$
\begin{aligned}
& x^{2}+y^{2}+2 u\left(x x^{\prime}+y y^{\prime}\right) ₹ k^{2} \\
& x^{2}+y^{\prime 2}+2 c\left(x y^{\prime}-y v^{\prime}\right) ₹ l^{2}
\end{aligned}
$$

20. The last two examples will give some hint as to the process of estimating the field of variation when it is limited by a couple of frontier equations in the form

$$
\theta\left(x, y, x^{\prime}\right)=0, \quad \Theta\left(x, y, y^{\prime}\right)=0
$$

or in the equivalent form

$$
\chi\left(x, x^{\prime}, y^{\prime}\right)=0, \quad \mathrm{X}\left(y, x^{\prime}, y^{\prime}\right)=0
$$

We draw the family of curves represented by $\theta=0$ for parametric values of x^{\prime}, for hunited forms of θ, there wall be a limited range of variation for x and y, bounded by some curve or curves Sunilarly, we draw the family of curves represented by $\Theta=0$ for parametric values of y^{\prime}; as for θ, so for Θ, there will be a limited range of variation for x and y, bounded by some other curve or other curves Further, the equations $\chi=0$ and $X=0$ may impose restrictions upon the range of x^{\prime} and the range of y^{\prime}, which are parametric for the preceding curves. In the net result for the z-range, when subject to the equations $\theta=0$ and $\Theta=0$, we can take the internal region common to all the interiors of these closed curves.

The same kind of consideration would be applied to the equations $\chi=0$ and $\mathrm{X}=0$, so as to obtain the range in the z^{\prime}-plane as dommated by these equations.

And the four-fold field of variation for z and z^{\prime} is obtained by combining every point in the admissible region of the z-plane with every point in the admissible region of the z^{\prime}-plane.

Note In the proceding discussum, a special yelection is made of the four-fold fields of variation which are determmed by a couple of relations $\phi \geqslant 0, \downarrow \geqslant 0$

It is of course possible to have a four-fold field of varration, determmed by a sungle relation $\phi<0$ The boundary of such a tield $1 s$ givon by the single equation $\phi=0$, there is no question of a frontier.

It is equally possible to have a four-fold held of varation, determued by more than two relations, say ly $\phi<0, \psi ₹ 0, \chi<0$ The boundary thon consists of throu portious, given by $\phi=0, \psi ₹ 0, x<0, \phi ₹ 0, \psi=0, x ₹ 0, \phi ₹ 0, \psi ₹ 0, x=0$ The fronter consigts of three portions, given by $\phi ₹ 0, \psi=0, x=0, \phi=0, \psi ₹ 0, x=0, \phi=0, \psi=0$, $x<0$ And there could anse the consideration of what may be called an edge, defined by the three equations $\phi=0, \psi=0, \chi=0$

Sufficient illustration of what is desired, for ulterior purposes in these lectures, is provided by the consideration of four-fold helds determmed by two relatious

CHAPTER II

Lineo-linear Transformations Invariants and Covariants

Lineo-linear transformatuons

21 Whatever measure of success may be attamed, great or small, with the geometrical iepresentation, the analytical work persists, the geometry is desired only as ancillary to the analysis So we shall leave the actual geometrical mterpretation at its present stage

The fundamental mportance of the hneo-linear transformations of the type

$$
w=\frac{a z+b}{c z+d}
$$

In the theory of automorphic functions of a single variable is well-known. We proceed to a bref, and completely amalytacal, consideration of lineolinear transformations of two complex variables*, shewing the type of equations that play in the analytical theory the same kind of invariantive part as does a carcle or an arc of a circle in the geometry connected with a sungle complex variable

These lineo-lmear transformations between two scts of non-homogeneous pariables have arisen as a subject of investigation in several regions of rescarch. Naturally, them most obvous analytical occurrence is in the theory of groups When the groups are finte, thcy have bcen discussed for real varables by Valentiner \dagger, Gordan ${ }_{i}$, and others, they are of special importance for algebraic functions of two variables and for ordinary hear equations of the thard ordcr which are algebraically integrable§. Again, and with real variables, they arise in the plane geometry connected with Lie's theory of continuous groups\| They have been discussed, with complex

[^7]variables, by Picard* in connection with the possible extension, to two independent variables, of the theory of automorphic functions And a memoir by Poincaré has already been mentioned \dagger.
22. We take the general Inneo-linear transformation (or substitution) between two sets of complex variables in the form
$$
a z+b z^{\prime}+c=\frac{w^{\prime}}{a^{\prime} z+}+\frac{1}{b^{\prime} z^{\prime}+c^{\prime}}=\frac{1}{a^{\prime \prime} z}--\bar{b}^{\prime \prime} z^{\prime}+c^{\prime \prime \prime}
$$
where all the quantities $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}, a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}$ are constants, real or complex The first step in the generalisation of the theory for a single variable is the construction of the canoncal form, and this can be acheved simply by using known results $\dagger+$ in the linear transformations of homogeneous variables. For our purpose, these are
so that we have
\[

$$
\begin{aligned}
& y_{1}=a_{1}+b x_{1}+c x_{3}, \\
& y_{2}=a^{\prime} x_{1}+b^{\prime} x_{2}+c^{\prime} x_{4}, \\
& y_{3}=a^{\prime \prime} x_{1}+b^{\prime} x_{2}+c^{\prime \prime} x_{1},
\end{aligned}
$$
\]

$$
\begin{gathered}
z \\
x_{1}=\frac{z^{\prime}}{u_{3}}=\frac{1}{x_{3}}, \quad w=\frac{u^{\prime}}{y_{1}}=\frac{u^{\prime}}{y_{2}}=y_{y_{3}}
\end{gathered}
$$

The quantities w and w^{\prime} are independent functions of z and z^{\prime}, and therefore the determinant

$$
\left|\begin{array}{ccc}
a, & b, & c \\
a^{\prime}, & b^{\prime} & c^{\prime} \\
a^{\prime \prime}, & b^{\prime \prime}, & c^{\prime \prime}
\end{array}\right|,
$$

denoted by Δ, is not zero As a matter of fact,

The equation

$$
J\left(\frac{w, w^{\prime}}{z, z^{\prime}}\right)=\begin{gathered}
\Delta \\
\left(a^{\prime \prime} z+b^{\prime \prime} z^{\prime}+c^{\prime \prime}\right)^{s}
\end{gathered}
$$

$$
\left|\begin{array}{ccc}
a-\theta, & b, & c \\
a^{\prime}, & b^{\prime}-\theta, & c^{\prime} \\
a^{\prime \prime}, & b^{\prime \prime}, & c^{\prime \prime}-\theta
\end{array}\right|=0
$$

is called the characteristic equation of the substitution This characteristic equation is invariantive when the two sele of variables are subjected to the same transformation, that is to say, if we take

$$
\begin{gathered}
\frac{W}{\alpha w+\tilde{\beta} w^{\prime}+\gamma}=\begin{array}{c}
W^{\prime} \\
Z
\end{array} \begin{array}{c}
\alpha^{\prime} w+\beta^{\prime} w^{\prime}+\gamma^{\prime}= \\
Z^{\prime \prime} w+\beta^{\prime \prime} w^{\prime}+\gamma^{\prime \prime} \\
\alpha z+\beta z^{\prime}+\gamma
\end{array}=\begin{array}{c}
\frac{1}{a^{\prime} z+\beta^{\prime} z^{\prime}+\gamma^{\prime}}=\frac{1}{\alpha^{\prime \prime} z+\beta^{\prime \prime} z^{\prime}+\gamma^{\prime \prime}}
\end{array}
\end{gathered}
$$

[^8]and express W and W^{\prime} in terms of Z and Z^{\prime}, the characteristic equation of the concluding substitution between $W, W^{\prime}, Z, Z^{\prime}$ is the same as the above charactenstic equation of our initial substitution between $w, w^{\prime}, z, z^{\prime}$

There are three cases to be discussed, according as the characteristic equation, which is of the form

$$
\theta^{3}-\Delta_{1} \theta^{2}+\Delta_{2} \theta-\Delta=0,
$$

has three simple roots, or a double root and a simple root, or a triple root
Case I Let all the roots of the charactenstic equation be simple, and denote them by $\theta_{1}, \theta_{2}, \theta_{3}$. Then quintitues $\alpha_{r} \beta_{r} \gamma_{r}$, determuned as to their ratios by the equations

$$
\begin{aligned}
& a \alpha_{r}+a^{\prime} \beta_{r}+a^{\prime \prime} \gamma_{r}=\theta_{r} \alpha_{r}, \\
& b \alpha_{r}+b^{\prime} \beta_{r}+b^{\prime \prime} \gamma_{r}=\theta_{r} \beta_{r}, \\
& c \alpha_{r}+c^{\prime} \beta_{r}+c^{\prime \prime} \gamma_{1}=\theta_{r} \gamma_{r} .
\end{aligned}
$$

are such that, if
we have

$$
Y_{1}=\alpha_{r} y_{1}+\beta_{r} y_{2}+\gamma_{r} y_{3}, \quad X_{r}=\alpha_{1} x_{1}+\beta_{r} x_{2}+\gamma_{1} x_{9},
$$

$$
Y_{r}=\theta_{r} X_{r}
$$

The canonsal form of the homogeneons substitution is

$$
Y_{1}=\theta_{1} X_{1}, \quad Y_{2}=\theta_{2} X_{2}, \quad Y_{3}=\theta_{3} X_{3},
$$

and so the canonical form of the lineo-linear transformation is

$$
\left.\begin{array}{l}
\alpha_{1} w+\beta_{1} w^{\prime}+\gamma_{1} \\
\alpha_{3} w^{\prime \prime}+\beta_{3} w^{\prime}+\gamma_{3}
\end{array}=\lambda \frac{\alpha_{1} z+\beta_{1} z^{\prime}+\gamma_{1}}{\alpha_{3} z+\beta_{3} z^{\prime}+\gamma_{1}} \begin{array}{|}
\alpha_{2} w+\beta_{2} w^{\prime}+\gamma_{2} \\
\alpha_{3} w+\beta_{3} w^{\prime}+\gamma_{3}=\mu_{2} z+\beta_{2} z^{\prime}+\gamma_{2} \\
\alpha_{3} z+\beta_{3} z^{\prime}+\gamma_{3}
\end{array}\right\}
$$

where the quantities λ and μ, called the multiphers of the transformation, are

$$
\lambda=\frac{\theta_{1}}{\hat{\theta}_{4}}, \quad \mu=\frac{\theta_{2}}{\hat{\theta}_{3}},
$$

being the quotients of roots of the characteristic equation. The multiphers are unequal to one another, and nerther of them is equal to unity.

This canonical form can be expressed by the equations

$$
W=\lambda Z, \quad W^{\prime}=\mu Z^{\prime}
$$

Case $I I$. Let one root of the characternstic equation be double and the other simple, and denote the roots by $\theta_{1}, \theta_{1}, \theta_{8}$ The canonical form of the homogeneous substitution 18

$$
Y_{3}=\theta_{1} X_{1}, \quad Y_{2}=\kappa X_{1}+\theta_{1} X_{2}, \quad Y_{3}=\theta_{3} X_{4}
$$

where the forms of the variables X and Y are the same as in the first case; and the constant κ, in general, is not zero

The canonical form of the lineo-linear transformation is of the type

$$
W=\lambda Z, \quad W^{\prime}=\lambda Z^{\prime}+\sigma Z,
$$

where

$$
\lambda=\frac{\theta_{1}}{\theta_{3}},
$$

and the constant σ, in general, is not zero The repeated multipher λ is not equal to unity

Case III. Let the characterishic equation have a triple root θ The canonical form of the homogeneous substitution is

$$
Y_{1}=\theta X_{1}, \quad Y_{2}=\alpha X_{1}+\theta X_{2}, \quad Y_{3}=\beta X_{1}+\gamma X_{2}+\theta X_{3},
$$

and the canonical form of the hneo-lmear transformation is of the type

$$
W=Z+\rho, \quad W^{\prime}=Z^{\prime}+\sigma Z+\tau
$$

where the repeated multipher is umty, and the constants ρ, σ, τ, in general, do not vansh

23 Any power of the transformation can at once be derived from its canonical form Let the transformation be apphed m times in succession, and let the resulting variables lie denoted by w_{w} and $w_{m}{ }^{\prime}$. then

$$
\begin{aligned}
& \begin{array}{l}
\alpha_{1} w_{m}+\beta_{1} u_{m}^{\prime}+\gamma_{1} \\
\alpha_{3} v_{m}+\beta_{9} w_{m}^{\prime}+\underline{\gamma}_{1}
\end{array}=\lambda^{n} \frac{\alpha_{1} z+\beta_{1} z^{\prime}+\gamma_{1}}{\alpha_{3} z+\beta_{9} z^{\prime}+\bar{\gamma}_{3}}, \\
& \begin{array}{l}
\alpha_{2} u_{m}^{\prime}+\beta_{2} w_{m}{ }^{\prime}+\gamma_{2} \\
\alpha_{3} w_{m}+\beta_{3} w_{m}^{\prime-}+\gamma_{3}
\end{array}=\mu^{m}{ }^{2} \alpha_{2} z+\beta_{2} z^{\prime}+\gamma_{2},
\end{aligned}
$$

expressing w_{m} and $w_{m}{ }^{\prime}$ in terms of z and z^{\prime}
When $\lambda^{m}=1$ and $\mu^{m}=1$, the m th power of the transformation gives an identical substitution For then

$$
\frac{\alpha_{1} w_{m}+\beta_{1} w_{m}^{\prime}+\gamma_{1}}{\alpha_{1} z+\overline{\beta_{2} z^{\prime}+\gamma_{1}}}=\frac{\alpha_{2} w_{m}+\beta_{2} w_{m}^{\prime}+\gamma_{2}}{\alpha_{2} z+\overline{\beta_{z}} z^{\prime}+\gamma_{2}}=\frac{\alpha_{3} w_{m}+\beta_{3} w_{m}^{\prime}+\gamma_{3}}{\alpha_{3} z+\overline{\beta_{3} z^{\prime}}+\gamma_{1}}
$$

When each of these three equal fractions is denoted by ρ, we have

$$
\begin{aligned}
& \alpha_{1}\left(w_{m}-\rho z\right)+\beta_{1}\left(w_{m}^{\prime}-\rho z^{\prime}\right)+\gamma_{1}(1-\rho)=0, \\
& \alpha_{3}\left(w_{m}-\rho z\right)+\beta_{2}\left(w_{m}^{\prime}-\rho z^{\prime}\right)+\gamma_{2}(1-\rho)=0, \\
& \alpha_{3}\left(w_{m}-\rho z\right)+\beta_{8}\left(w_{m}^{\prime}-\rho z^{\prime}\right)+\gamma_{3}(1-\rho)=0 .
\end{aligned}
$$

The determinant of the coefficients α, β, γ is not zero, because otherwise the canonical form of the original transformation would contain only one independent equation, hence
that is,

$$
w_{m}-\rho z=0, \quad w_{m}^{\prime}-\rho z^{\prime}=0, \quad 1-\rho=0,
$$

$$
w_{m}=z, \quad w_{m}^{\prime}=z^{\prime},
$$

shewing that the m th power of the original transformation gives an identical substitution, if $\lambda^{n n}=1$ and $\mu^{n g}=1$.

Invariant centres

24 Certain places are left unaltered by the lmen-hnear trausformation between the z, z^{\prime} field and the u, w^{\prime} field. On the analogy with the corresponding points in the homographic transformation $w(c z+d)=a z+b$, these unaltered places may be called dumble places or (because repetitions of the transformation stall leave them unaltered) they will be called the invariant centies of the transformation

Returning to the mitral form of the transfomation, and denoting any invariant centre by ζ and ζ^{\prime}, we have

$$
\begin{aligned}
& a \zeta+b \zeta^{\prime}+r=0 \zeta \\
& a^{\prime} \zeta+b^{\prime} \zeta^{\prime}+c^{\prime}=\theta \zeta^{\prime} \\
& a^{\prime \prime} \zeta+b^{\prime \prime} \zeta^{\prime}+c^{\prime \prime}=\theta
\end{aligned}
$$

with our preceding assumptions, θ manifestly is a root of the characteristic equation Hunce when all the soots of this equation are simple, we generally have three invariant centres, scy ζ_{1} and $\zeta_{1}^{\prime}, \zeta_{2}$ and $\zeta_{2}^{\prime}, \zeta_{3}$ and ζ_{3}^{\prime}, associated with $\theta_{1}, \theta_{2}, \theta_{3}$ respectively It is casy to verify that

$$
\begin{aligned}
& \quad \theta_{1}\left(\alpha_{2} \zeta_{1}+\beta_{2} \zeta_{1}^{\prime}+\gamma_{2}\right) \\
& =\left(a \alpha_{2}+a^{\prime} \beta_{2}+a^{\prime \prime} \gamma_{2}\right) \zeta_{1}+\left(b \alpha_{2}+b^{\prime} \beta_{2}+b^{\prime \prime} \gamma_{2}\right) \zeta_{1}^{\prime}+c \alpha_{2}+c^{\prime} \beta_{2}+c^{\prime \prime} \gamma_{2} \\
& = \\
& \theta_{2}\left(a_{2} \zeta_{1}+\beta_{2} \zeta_{1}^{\prime}+\gamma_{2}\right)
\end{aligned}
$$

so that, as θ_{1} and θ_{2} are unequal, we must have
Simularly

$$
\alpha_{2} \zeta_{1}+\beta_{2} \zeta_{1}^{\prime}+\gamma_{2}=0
$$

while

$$
\alpha_{3} \zeta_{1}+\beta_{3} \zeta_{2}^{\prime}+\gamma_{d}=0
$$

$$
\alpha_{1} \zeta_{1}+\beta_{1} \zeta_{1}^{\prime}+\gamma_{1} \neq 0
$$

Thus the invariant centres are given by the equations

$$
\left.\begin{array}{l}
\alpha_{2} \zeta_{1}+\beta_{2} \zeta_{1}^{\prime}+\gamma_{2}=0 \\
\alpha_{1} \zeta_{1}+\beta_{3} \zeta_{1}^{\prime}+\gamma_{3}=0
\end{array}\right\},
$$

a result which can be inferred also from the canonical form of the transformation.

In deducing this result, certam tacit assumptions have been made as to the exclusion of critical relations. It will easuly be seen that the transformation

$$
w \sqrt{ } 2=z+z^{\prime}, \quad w^{\prime} \sqrt{ } 2=z-z^{\prime},
$$

is not an example (for the present purpose) of the general transformation

Manifestly, we can take

$$
\begin{aligned}
& \left|\begin{array}{l}
w, w^{\prime}, 1 \\
\zeta_{1}, \zeta_{2}^{\prime}, 1 \\
\zeta_{3}, \zeta_{3}^{\prime}, 1
\end{array}\right|-\left|\begin{array}{l}
w, w^{\prime}, 1 \\
\zeta_{1}, \zeta_{1}^{\prime}, 1 \\
\zeta_{2}, \zeta_{2}^{\prime}, 1
\end{array}\right| \begin{aligned}
& z, z, 1 \\
& \zeta_{2}, \zeta_{2}^{\prime}, 1 \\
& \zeta_{3}, \zeta_{3}^{\prime}, 1
\end{aligned}\left|\begin{array}{l}
z, z^{\prime}, 1 \\
\zeta_{1}, \zeta_{1}^{\prime}, 1 \\
\zeta_{2}, \zeta_{2}^{\prime}, 1
\end{array}\right|
\end{aligned}
$$

as a canonical form of the lineo-linear transformation.
This canonical form leads, 4 agise to an expression of the relations between the two sets of variables' if the immediate vicinity of the invariant centres Near ζ_{1} and ζ_{1}^{\prime}, we have

$$
z=\zeta_{1}+\delta_{1} z, \quad z^{\prime}=\zeta_{1}^{\prime}+\delta_{2} z^{\prime}, ; w=\zeta_{1}+\delta_{1} w, \quad w^{\prime}=\zeta_{1}^{\prime}+\delta_{1} w^{\prime},
$$

where

$$
\begin{aligned}
& \left.\frac{\delta_{1} w}{\zeta_{2}-\zeta_{1}-\frac{\delta_{1} w^{\prime}}{\zeta_{2}^{\prime}-\zeta_{1}^{\prime}}=\frac{1}{\lambda}\left\{\begin{array}{c}
\delta_{1} z \\
\zeta_{2}-\bar{\zeta}_{1} \\
\overline{\zeta_{2}^{\prime}}-\zeta_{1} z_{1}^{\prime}
\end{array}\right\},} \begin{array}{r}
\frac{\delta_{1} w}{\zeta_{3}-\zeta_{1}}-\frac{\delta_{1} w^{\prime}}{\zeta_{2}^{\prime}-\zeta_{1}^{\prime}}=\frac{\mu}{\lambda}\left\{\delta_{1} z\right. \\
\zeta_{3}-\zeta_{1}-\overline{\zeta_{1} z^{\prime}} \\
\zeta_{3}^{\prime}-\zeta_{1}^{\prime}
\end{array}\right\}
\end{aligned}
$$

Near ζ_{2} and ζ_{2}^{\prime}, we have

$$
z=\zeta_{2}+\delta_{2} z, \quad z^{\prime}=\zeta_{2}^{\prime}+\delta_{2} z^{\prime}, \quad w=\zeta_{2}+\delta_{2} w, \quad w^{\prime}=\zeta_{2}^{\prime}+\delta_{y} u^{\prime},
$$

where

$$
\begin{aligned}
& \frac{\delta_{2} w}{\zeta_{3}-\zeta_{2}}-\frac{\delta_{2} w^{\prime}}{\zeta_{d}^{\prime}-\zeta_{2}^{\prime}}=\frac{\lambda}{\mu}\left\{\begin{array}{cc}
\delta_{2} z & \delta_{2} z^{\prime} \\
\zeta_{3}-\zeta_{2} & \zeta_{1}^{\prime}-\zeta_{2}^{\prime}
\end{array}\right\}, \\
& \frac{\delta_{2} w}{\zeta_{1}-\dot{\zeta}_{2}}-\frac{\delta_{2} w^{\prime}}{\zeta_{1}^{\prime}-\zeta_{2}^{\prime}}=\frac{1}{\mu}\left\{\begin{array}{c}
\delta_{2} z \\
\left.\zeta_{1}-\zeta_{3}-\frac{\delta_{2} z^{\prime}}{\zeta_{1}^{\prime}-\overline{\zeta_{2}^{\prime}}}\right\}
\end{array}\right\}
\end{aligned}
$$

Near ζ_{3} and ζ_{3}^{\prime}, we have

$$
z=\zeta_{3}+\delta_{3} z, \quad z^{\prime}=\zeta_{3}^{\prime}+\delta_{3} z^{\prime} . \quad w=\zeta_{3}+\delta_{3} w, \quad w^{\prime}=\zeta_{3}^{\prime}+\delta_{3} w^{\prime},
$$

where

$$
\begin{aligned}
& \frac{\delta_{3} w}{\zeta_{1}-\zeta_{z}}-\begin{array}{c}
\delta_{3} w^{\prime} \\
\zeta_{1}^{\prime}-\zeta_{3}^{\prime}
\end{array}=\mu\left\{\begin{array}{c}
\delta_{3} z \\
\zeta_{1}-\zeta_{3}
\end{array}{\left.\begin{array}{c}
\delta_{3} z^{\prime} \\
\zeta_{1}^{\prime}-\zeta_{3}^{\prime}
\end{array}\right\},}_{\frac{\delta_{n} w}{\zeta_{2}-\zeta_{3}}-\frac{\delta_{3} w^{\prime}}{\zeta_{2}^{\prime}-\bar{\zeta}_{3}^{\prime}}=\lambda\left\{\begin{array}{c}
\delta_{3} z \\
\zeta_{2}-\zeta_{3}-z_{3}^{\prime} \\
\zeta_{2}^{\prime}-\zeta_{3}^{\prime}
\end{array}\right\} .} .\right.
\end{aligned}
$$

Moreover this new canonical form, involving exphcitly the places of the invariant centres in their expressions, shews that the assignment of three invariant centres and two multiphers is generally sufficient for the construction of a canomical form of a lineo-linear transformation of the first type.

Ec 1. Some very special assigaments of invaruant centres may lead to equations that do not characterise hneo-hnear transformations The resulting equations, in that event, belong to the range of exceptions.

Thus, if we take

$$
\left.\left.\left.\begin{array}{l}
\zeta_{1}=1 \\
\zeta_{1}^{\prime}=-1
\end{array}\right\}, \quad \begin{array}{c}
\zeta_{2}=a \\
\zeta_{2}^{\prime}=-a
\end{array}\right\}, \quad \begin{array}{c}
\zeta_{3}=a^{2} \\
\zeta_{3}^{\prime}=-a^{2}
\end{array}\right\}
$$

whore a is neither zero nor unty, and if we ansign arbitrary multrphens λ and μ different from unty and different from one anothen, the canomial equations can to satinfied only by

$$
u^{\prime}+w^{\prime}=0, \quad z+z^{\prime}=0,
$$

which is not a heo-hmear transformatien of the z, z^{\prime} geld inte the w, w^{\prime} field
Other special exanples of this exceptiond class can oasily ha recogmsed. (He inclusive example is given hy the relations
and then the ogrations acciume the unvintable fon m

$$
A w-B w^{\prime}+C^{\prime}=0, \quad 1 z-B z^{\prime}+C=0 .
$$

Ex 2 When neither ponit in any mo of the three mvariant centros is at intury, we can (by unessential changes of all the vanables that amount to change of origia, rotation of axtes, and magnifeation, in each of tho planes mdependently of ono anether) grea smphified expresson to the canoucal form.

Suppose that no one of the quantities $\zeta_{1}, \zeta_{1}^{\prime}, \zeta_{2}, \zeta_{2}^{\prime}, \zeta_{3}, \zeta_{i}^{\prime}$ then is ero, altermative
 the a-phane nud the w-plane by the congruent relations

$$
\left.z-\zeta_{1}=\left(\zeta_{2}-\zeta_{1}\right) Z, \quad u_{1}-\zeta_{1}=i \zeta_{2}-\zeta_{1}\right) H^{\prime},
$$

and we transform the $z^{\prime}-p$ late and the $m^{\prime}-$ plane $^{\prime}$ by the congruent relations

$$
z^{\prime}-\zeta_{1}^{\prime}=\left(\zeta_{2}^{\prime}-\zeta_{1}^{\prime}\right) Z_{1}^{\prime}, \quad m^{\prime}-\zeta_{1}^{\prime}=\left(\zeta_{2}^{\prime}-\zeta_{1}^{\prime}\right) W^{\prime}
$$

All of these are of the type just descnibed, thoy requre the same change of ongm, the same magufication, and the sume rotation, fon the z-phate and the a-phane, mad hakewe
 Z, Z^{\prime} field and the $W^{\prime}, W^{\prime \prime}$ held, two of the meanant ceutrom at 0,0 and 1,1

The thard invaranut centre then beeomes a, a^{\prime}, where

$$
a=\frac{\zeta_{3}-\zeta_{1}}{\zeta_{2}-\zeta_{1}}, \quad a^{\prime}=\frac{\zeta_{3}^{\prime}-\zeta_{1}^{\prime}}{\zeta_{2}^{\prime}-\zeta_{1}^{\prime}} .
$$

The equations, in a canomical form, of the hineo-lnear transformations of the Z, Z^{\prime} feld into the W, W^{\prime} held, having $0,0,1,1, a, a^{\prime}$; for the invarant centres, are

$$
\begin{aligned}
& \frac{\left|\begin{array}{ccc}
W, & W^{\prime}, & 1 \\
1, & 1, & 1 \\
a, & a^{\prime}, & 1
\end{array}\right|}{W-W^{\prime}}=\lambda \frac{\left|\begin{array}{ccc}
Z, & Z Z^{\prime}, & 1 \\
1, & 1, & 1 \\
a, & a^{\prime}, & 1
\end{array}\right|}{Z-Z^{\prime}}
\end{aligned}
$$

where λ and μ are different from one another and where (so far as present explanations extend) nether λ nor μ is equal to unity.

But it must be remembered, in taking these equations as the canonical form, that definite (if special) identical modifications of the 2 -plane and the ro-plane have been made simultaneonsly, and likewise for the z^{\prime}-plane and the w^{\prime}-plane The result of these modifications, in so far as they affect the original liueo-linear transformation, is left for consideration as an exercise.

Invariantive Frontzers.

25. In the theory of automorphic functions of a single complex variable, it proves important to have bounded regions of variation of the independent variable which are changed by the homographe substitutions into regions that are simularly bounded Thus we have the customary period-parallelogram for the doubly-periodic functions, any parallelogram, under the transformations

$$
w=z+\omega_{1}, \quad w=z+\omega_{2}
$$

remains a parallelogram and-with an appropriate limitation that the rcal part of ω_{2} / ω_{1} 1s not zero-the opposite sides of the parallelogrann correspond to one another Simularly a circle or a straight line, under a transformation or a set of transformations of the type

$$
(c z+d) w=a z+b
$$

remans a circle or sometimes becomes a stranght hne, and so we can construct a curvilinear polygon, suited for the discussion of automorphic functions These boundary curves-straight lines and circles-are the simplest which conserve their general character throughout the transformations indicated, they are the only algebraic curves of order not higher than the second which have this property They are not the only algebratc curves, which have this property, when we proceed to orders higher than the second, thus bicircular quartics are homographically transformed into bicrecular quartics

For the appropriate division of the plane of the variable, when dutomorphic functions of a single complex variable are under consideration so as to secure an arrangement of polygons in each of which the complete variation of the functions cun take place, other hmitations-such as relations between constants so as to secure conterminous polygons-are necessary. They need not concern us for the moment What is of importance is the conservation of general character in the curve or, what is the same thing, conscrvation of general character in the equation of the curve, under the operation of a homographic transformation
26. Corresponding questions arise in the theory of functions of two complex variables. We have already seen that, when a z, z^{\prime} field is determined by two relations, its frontier is represented by a couple of equations between the real and the imaginary parts of both variables, and therefore what
is desired, for our immediate illustration, is a detemonation of the general character of a couple of equations which, giving the frontier of a z, z^{\prime} field, are changed by the lineo-linear transformation into a conple of equations which, giving the froutier of a correspondung w, w^{\prime} field, are of the same general character for the two fields The mvanance of form of such equations, at any rate for the most simple cases, must therefore be investigated

We shall limit ourselves to the determunation of only the simplest of those fronticrs of a field of variatron which are invariantive in character under a hneo-linear translation Also, we shall consider only quite general transformations, spectal and more obvous forms may occur for spectal transformations, such as those contaned in the smplest finte groups Accordingly, in the equations
we resolve the vanables into then real and magmary parts, viz.

$$
z=c+1 y, \quad z^{\prime}=x^{\prime}+\imath y^{\prime}, \quad w=u+v, \quad w^{\prime}=u^{\prime}+v v^{\prime}
$$

and we require the sumplest equations of the fom

$$
\phi\left(x, y, x^{\prime}, y^{\prime}\right)=0, \quad \psi\left(x, y, x^{\prime}, y^{\prime}\right)=0
$$

whrch, under the foregoing tansformation, become

$$
\Phi\left(u, v, u^{\prime}, v^{\prime}\right)=0, \quad \Psi\left(u, u^{\prime}, u^{\prime}, v^{\prime}\right)=0
$$

where Φ and Ψ are of the same character, in degree and combinations of the variables, as ϕ and ψ Moreover, the constants in the transformation may be complex, so we write

$$
\begin{aligned}
u=a_{1}+\imath a_{2}, & b=b_{1}+\imath b_{2}, & c=c_{1}+i c_{2}, \\
a^{\prime}=a_{1}^{\prime}+\imath a_{2}^{\prime}, & b^{\prime}=b_{1}^{\prime}+\imath b_{2}^{\prime}, & c^{\prime}=c_{1}^{\prime}+\imath c_{2}^{\prime}, \\
a^{\prime \prime}=a_{1}^{\prime \prime}+\imath a_{2}^{\prime \prime}, & b^{\prime \prime}=b_{1}^{\prime \prime}+\imath b_{2}^{\prime \prime}, & c^{\prime \prime}=c_{1}^{\prime \prime}+\imath c_{2}^{\prime \prime},
\end{aligned}
$$

in order to have the real and magmary parts lastly, let

$$
\begin{array}{cl}
N_{1}=a_{1} x+b_{1} x^{\prime}-a_{2} y-b_{2} y^{\prime}+c_{1}, & N_{3}=a_{2} x+b_{2} x^{\prime}+a_{1} y+b_{1} y^{\prime}+c_{2}, \\
N_{1}^{\prime}=a_{1}^{\prime} x+b_{1}^{\prime} x^{\prime}-a_{2}^{\prime} y-b_{2}^{\prime} y^{\prime}+c_{1}^{\prime}, & N_{2}^{\prime}=a_{2}^{\prime} x+b_{2}^{\prime} x^{\prime}+a_{2}^{\prime} y+b_{1}^{\prime} y^{\prime}+c_{9}^{\prime}, \\
N_{1}^{\prime \prime}=a_{1}^{\prime \prime} x+b_{1}^{\prime \prime} x^{\prime}-a_{2}^{\prime \prime} y-b_{2}^{\prime \prime} y^{\prime}+c_{1}^{\prime \prime}, & N_{2}^{\prime \prime}=a_{2}^{\prime \prime} x+b_{2}^{\prime \prime} x^{\prime}+a_{1}^{\prime \prime} y+b_{1}^{\prime \prime} y^{\prime}+c_{2}^{\prime \prime} \\
D=N_{2}^{\prime \prime \prime}+N_{12}^{\prime \prime 2},
\end{array}
$$

then the real equations of transformation are

$$
\begin{aligned}
D u & =N_{1} N_{1}^{\prime \prime}+N_{2}^{\prime} N_{2}^{\prime \prime}, \\
D v & =N_{2} N_{1}^{\prime \prime}-N_{1} N_{2}^{\prime \prime}, \\
D u & =N_{1}^{\prime} N_{1}^{\prime \prime}+N_{2}^{\prime} N_{2}^{\prime \prime}, \\
D v^{\prime} & =N_{2}^{\prime} N_{2}^{\prime \prime}-N_{1}^{\prime} N_{2}^{\prime \prime} .
\end{aligned}
$$

Further, we have

$$
\begin{aligned}
D\left(u^{2}+v^{2}\right) & =N_{1}^{2}+N_{2}^{2}, \\
D\left(u u^{\prime}+v v^{\prime}\right) & =N_{1} N_{1}^{\prime}+N_{2} N_{2}^{\prime}, \\
D\left(u u^{\prime}-u^{\prime} v\right) & =N_{1} N_{2}^{\prime}-N_{2} N_{1}^{\prime}, \\
D\left(u^{\prime 2}+v^{\prime 2}\right) & =N_{1}^{\prime \prime 2}+N_{2}^{\prime 2}
\end{aligned}
$$

These equations express each of the quantities $u, v, u^{\prime}, v^{\prime}, u^{2}+v^{2}, u u^{\prime}+v v^{\prime}$, " $v^{\prime}-u^{\prime} v, u^{\prime 2}+v^{\prime \prime}$, in the form of a ratomal fraction that has D for its denominator. The denommator D and each of the numcrators in the eight fractions are linear combmations (with constant cocfficents) of the quantities $1, x, y, x^{\prime}, y^{\prime}, x^{2}+y^{2}, x x^{\prime}+y y^{\prime}, x^{\prime} y^{\prime}-x^{\prime} y, x^{\prime 2}+y^{\prime 2}$.

The same form of result holds when we express $x, y, x^{\prime}, y^{\prime}$ in terns of $u, v, u^{\prime}, u^{\prime}$, ally quantity, ihat is a hear combination of $1, x, y, x^{\prime}, y^{\prime}$, $x^{9}+y^{\prime}, x x^{\prime}+y y^{\prime}, r y^{\prime}-x^{\prime} y, x^{\prime 2}+y^{\prime 2}$, comes to be a rational fraction the numerator of which is a linear combination of $\mathbf{l}, u, v, u^{\prime}, u^{\prime}, u^{2}+v^{2}, u u^{\prime}+v v^{\prime}$, $u v^{\prime}-u^{\prime} v, u^{\prime \mu}+v^{\prime 2}$, the denominator is a lincar combination of the same quantities, and is the same for all the fractions that represent the values of $x, y, x^{\prime}, y^{\prime}, x^{2}+y^{2}, x x^{\prime}+y y^{\prime}, x y^{\prime}-y x^{\prime}, x^{\prime 2}+y^{\prime z} \quad$ Consequently, any equation

$$
\begin{aligned}
A\left(x^{2}+y^{2}\right)+U\left(x x^{\prime}+y y^{\prime}\right)+D\left(x y^{\prime}-y x^{\prime}\right) & +B\left(x^{\prime 2}+y^{\prime 2}\right) \\
& +E x+F y+G x^{\prime}+H y^{\prime}=K
\end{aligned}
$$

is transformed into an equation

$$
\begin{aligned}
A^{\prime}\left(u^{2}+v^{2}\right)+C^{\prime}\left(u u^{\prime}+v r^{\prime}\right)+D^{\prime}\left(u v^{\prime}\right. & \left.-u^{\prime} v\right) \\
& +B^{\prime}\left(u^{\prime 2}+v^{\prime 2}\right) \\
& +E^{\prime} u+F^{\prime} v+G^{\prime} u^{\prime}+H^{\prime} v^{\prime}=K^{\prime}
\end{aligned}
$$

where all the quantities A, \ldots, K are constants, as also are $A^{\prime}, . ., K^{\prime \prime}$, each member of either set being expressible linearly and homogeneously in terms of the members of the other set
27. Thus the transformed equation is of the same general character, concerming combmations and degree in the variables, as the original equation, and theie is little difficulty in seeing that it is the equation of lowest degree which has this general character of invariance. Further, two such sumultaneous equations are transformed into two such smaltaneous equations of the same character.

This is the generalisation of the property that the equation of a circle is transformed into the equation of another circle by a homographic substitution in a single complex variable.

Accordingly, when a z, z^{\prime} field having a frontier given by two equations of the foregong character is transformed by a lineo-linear transformation into a w, w^{\prime} field, the frontier of the new field is given by two similar equations. We define such a frontrer as quadratic, when it is given by equations of the second degree in the variables, and therefore we can sum up the
whole investigation by declaring that a z, z^{\prime} field, which has a quadratic frontier, is transformed by a lineo-lunear transformution into a w, w' field, whoch also has a quadratec frontzer
28. One special mference can be made, which has 1ts counterpart in homographic substitutions for a single vaiable, viz, when all the coefficients in a lineo-hnear transfomation are real, the axes of real parts of the complex variables in their respoctive planes are conserved for when all the constants are real, we have

$$
\begin{aligned}
v D & =\left(a^{\prime \prime} b-a b^{\prime \prime}\right)\left(x y^{\prime}-x^{\prime} y\right)+\left(a c^{\prime \prime}-a^{\prime \prime} c\right) y+\left(b c^{\prime \prime}-b^{\prime \prime} c\right) y^{\prime} \\
v^{\prime} D & =\left(a^{\prime \prime} b^{\prime}-a^{\prime} b^{\prime \prime}\right)\left(x y^{\prime}-x^{\prime} y\right)+\left(a^{\prime} c^{\prime \prime}-a^{\prime \prime} c^{\prime}\right) y+\left(b^{\prime} c^{\prime \prime}-b^{\prime \prime} c^{\prime}\right) y^{\prime}
\end{aligned}
$$

and therefore the configaration given by $y=0$ and $y^{\prime}=0$ becomes the configuration given by $n=0$ and $n^{\prime}=0$ The converse also holds, owing to the lmeo-linear charactel of the tadnsformation.

These axes of real quantities in the planes of the complex variabless are, of course, an exceedingly special case of the general quadratic fontice, which can be regarded as grven by the two equations

$$
\begin{aligned}
A_{1}\left(x^{2}+y^{2}\right)+B_{1}\left(x^{\prime 2}+y^{\prime 2}\right)+C_{1}\left(x x^{\prime}\right. & \left.+y y^{\prime}\right)+D_{1}\left(x y^{\prime}-x^{\prime} y\right) \\
& +E_{1} x+F_{1} y+G_{1} x+H_{1} y= \\
A_{1}\left(x^{2}+y^{2}\right)+B_{2}\left(x^{\prime 2}+y^{\prime 2}\right)+C_{2}\left(x x^{\prime}\right. & \left.+y y^{\prime}\right)+D_{2}\left(x y^{\prime}-x^{\prime} y\right) \\
& +E_{y^{\prime \prime}}+F_{2} y+G_{3} x+H_{2} y=K_{1}
\end{aligned}
$$

Let \bar{z} and \bar{z}^{\prime} be the compugates of z and z^{\prime} respectively, so that

$$
z=x-x y, \quad z^{\prime}=x^{\prime}-y y^{\prime},
$$

then the gencral quadratic fonitier can also be regarded as given by the equations

$$
\begin{aligned}
& A_{1} z \tilde{z}+B_{1} z^{\prime} \bar{z}^{\prime}+C_{1}^{\prime} z \bar{z}^{\prime}+I_{1}^{\prime} z^{\prime} \bar{z}+H_{1}^{\prime} z+F_{1}^{\prime} \bar{z}+G_{1}^{\prime} z+H_{1}^{\prime} \bar{z}=K_{1}, \\
& A_{2} z \bar{z}+B_{2} z^{\prime} z^{\prime}+C_{2}^{\prime} z \tilde{z}^{\prime}+D_{2}^{\prime} z^{\prime} z+B_{12}^{\prime} z+F_{2}^{\prime} z+G_{2}^{\prime} z+H_{2}^{\prime} \tilde{z}=K_{2},
\end{aligned}
$$

where $A_{1}, B_{1}, K_{1}, A_{2}, B_{2}, K_{2}$ are real constants, while C_{1}^{\prime} and $D_{1}^{\prime}, C_{2}^{\prime}$ and I_{2}^{\prime}, E_{1}^{\prime} and $F_{1}^{\prime}, E_{2}^{\prime}$ and $F_{2}^{\prime},\left(_{1}^{\prime}{ }^{\prime}\right.$ and $H_{1}{ }^{\prime}, G_{2}{ }^{\prime}$ and $H_{2}{ }^{\prime}$, al(${ }^{\prime}$ pars of compugate constants.

Manfestly any equation of this latest form is transformable by the lineo-Inear substitution into another equation of the same form

29 Another mode of discussing the frontier of a z, z^{\prime} field, which is represented by two equations that have an mvarantive character under a lineo-linear transformation, is provided by the generalisation of a special mode of dealing with the same question for a single complex variable

The general homographic substitution affecting a single complex variable has the canomeal form

$$
w-\alpha=K_{z-\alpha}^{z-\alpha},
$$

where α and β are the double points of the substitution, and K is the multiplier. Let

$$
w=u+i v, \quad z=x+\imath y, \quad \alpha=a+\imath a^{\prime}, \quad \beta=b+i b^{\prime}, \quad K=\kappa e^{k n},
$$

where $u, v, x, y, a, a^{\prime}, b, b^{\prime}, \kappa, k$ are real, then

$$
\frac{u-a+\imath\left(v-a^{\prime}\right)}{u-b+\imath\left(v-b^{\prime}\right)}=\kappa e^{k i} \frac{x-a+\imath\left(y-a^{\prime}\right)}{x-b+\imath\left(y-b^{\prime}\right)},
$$

and therefore

$$
\begin{aligned}
& \tan ^{-1}(u-b)\left(u-a^{\prime}\right)-(u-a)\left(x-b^{\prime}\right) \\
& (u-a)(u-\bar{b})+\left(\bar{b}-a^{\prime}\right)\left(v-b^{\prime}\right) \\
& \quad-\tan ^{-1}(x-b)\left(y-a^{\prime}\right)-(x-a)\left(y-b^{\prime}\right)=k . \\
& \quad(x-a)(x-b)+\left(y-a^{\prime}\right)^{\prime}\left(y-b^{\prime}\right)=k .
\end{aligned}
$$

Hence the carcle

$$
(x-a)(x-b)+\left(y-a^{\prime}\right)\left(y-b^{\prime}\right)=m\left\{(x-b)\left(y-a^{\prime}\right)-(x-a)\left(y-b^{\prime}\right)\right\},
$$

which passes through the double points $\left(a, a^{\prime}\right)$ and $\left(b, b^{\prime}\right)$ of the substitution, is transformed into the circle

$$
(u-a)(u-b)+\left(v-a^{\prime}\right)\left(v-b^{\prime}\right)=M\left\{(u-b)\left(v-a^{\prime}\right)-(u-a)\left(v-b^{\prime}\right)\right\},
$$

which also passes through those eommon pounts The constants m and M are eonnected by the relation

$$
m-M=(\mathbf{1}+m M) \tan k
$$

At a common pont, the two corcles cut at an angle k, which depends only upon the multapher, thus when an arbitrary circle is taken through the common points, it is transforined by the homographic substitution into another circle through those points cutting it at an angle that depends only upon the constants of the substitution

This process admits of numediate generalishtion to the case of two complex variables Let the lineo-linear transformation in two variables be taken in its canomeal form, and write

$$
\begin{array}{ll}
\alpha_{1} z+\beta_{1} z^{\prime}+\gamma_{1}=l_{1}^{\prime}+i l_{1}^{\prime \prime}, & a_{1} w+\beta_{1} w^{\prime}+\gamma_{1}=L_{1}^{\prime}+i L_{1}^{\prime \prime}, \\
a_{2} z+\beta_{2} z^{\prime}+\gamma_{2}=l_{2}^{\prime}+\imath l_{2}^{\prime \prime}, & \alpha_{3} w+\beta_{2} w^{\prime}+\gamma_{2}=L_{2}^{\prime}+i L_{2}^{\prime \prime}, \\
a_{3} z+\beta_{8} z^{\prime}+\gamma_{9}=l_{3}^{\prime}+i l_{3}^{\prime \prime}, & a_{3} w+\beta_{3} w^{\prime}+\gamma_{3}=L_{8}^{\prime}+\imath L_{3}^{\prime \prime},
\end{array}
$$

where $l_{1}^{\prime}, l_{1}^{\prime \prime}, l_{2}{ }^{\prime}, l_{2}^{\prime \prime}, l_{\mathrm{s}}^{\prime}, l_{\mathrm{s}}{ }^{\prime \prime}$ are real linear functions of $x, y, x^{\prime}, y^{\prime}$ and $L_{1}{ }^{\prime}, L_{1}{ }^{\prime \prime}$, $L_{2}{ }^{\prime}, L_{2}{ }^{\prime \prime}, L_{8}^{\prime}, L_{3}^{\prime \prime}$ are respectively the same real linear functions of $u, v, u^{\prime}, v^{\prime}$. The three invariant centres are the places given by the equations

$$
\left.\left.\left.\begin{array}{l}
l_{2}^{\prime}=0 \\
l_{2}^{\prime \prime}=0 \\
l_{\mathrm{g}}^{\prime}=0 \\
l_{3}^{\prime \prime}=0
\end{array}\right\}, \begin{array}{l}
l_{3}^{\prime}=0 \\
l_{3}^{\prime \prime}=0 \\
l_{1}^{\prime}=0 \\
l_{1}^{\prime \prime}=0
\end{array}\right\}, \begin{array}{l}
l_{1}^{\prime}=0 \\
l_{1}^{\prime \prime}=0 \\
l_{2}^{\prime}=0 \\
l_{2}^{\prime \prime}=0
\end{array}\right\}
$$

and they are also the same places given by what are effectively the stame equations

$$
\left.\left.\left.\begin{array}{l}
L_{2}^{\prime}=0 \\
L_{2}^{\prime \prime}=0 \\
L_{3}^{\prime}=0 \\
L_{3}^{\prime \prime}=0
\end{array}\right\}, \quad \begin{array}{l}
L_{s}^{\prime}=0 \\
L_{4}^{\prime \prime}=0 \\
L_{1}^{\prime}=0 \\
L_{1}^{\prime \prime}=0
\end{array}\right\}, \begin{array}{l}
L_{1}=0 \\
L_{1}^{\prime \prime}=0 \\
L_{4}^{\prime}=0 \\
L_{2}^{\prime \prime}=0
\end{array}\right\}
$$

The canonical form of the lineo-hnear transformation now is

$$
\begin{aligned}
& L_{1}^{\prime}+\imath L_{1}^{\prime \prime} \\
& L_{3}^{\prime}+1 L_{3}^{\prime \prime}=\lambda l_{1}^{\prime}+l_{1}^{\prime \prime} \\
& l_{1}^{\prime}+l l_{3}^{\prime \prime \prime} \\
& L_{2}^{\prime}+\imath L_{2}^{\prime \prime} \\
& L_{3}^{\prime}+L_{1}^{\prime \prime}=\mu_{2}^{\prime} l_{2}^{\prime}+l l_{2}^{\prime \prime} \\
& l_{3}^{\prime}+2 l_{3}^{\prime \prime}
\end{aligned}
$$

and therefore, among other inferences, we have

$$
\begin{aligned}
& \tan ^{-1} L_{L_{3}^{\prime} L_{2}^{\prime \prime}-L_{3}^{\prime} L_{3}^{\prime \prime}}^{L_{4}^{\prime} L_{2}^{\prime}+L_{4}^{\prime \prime} L_{2}^{\prime \prime}-\tan ^{-1} l_{1}^{\prime} l_{2}^{\prime \prime}-l_{2}^{\prime} l_{3}^{\prime \prime}} l_{3}^{\prime} l_{2}^{\prime}+l_{1}^{\prime \prime} l_{2}^{\prime \prime}=\operatorname{ang} \mu, \\
& \tan ^{-1} \frac{L_{2}^{\prime} L_{1}^{\prime \prime}-L_{1}^{\prime} L_{2}^{\prime \prime}}{L_{2}^{\prime} L_{1}^{\prime}+L_{2}^{\prime} L_{1}^{\prime \prime}-\tan ^{-1} \frac{l_{2}^{\prime} l_{1}^{\prime \prime}-l_{1}^{\prime} l_{2}^{\prime \prime}}{l_{2}^{\prime \prime} l_{1}^{\prime}+l_{2}^{\prime \prime} l_{1}^{\prime \prime}}=\arg \lambda-\arg \mu}
\end{aligned}
$$

Accondingly, the frontier configuration, represented by any two of the three equations

$$
\begin{aligned}
& l_{3}^{\prime} l_{2}^{\prime \prime}-l_{2}^{\prime} l_{3}^{\prime \prime}=p\left(l_{1}^{\prime} l_{2}^{\prime}+l_{3}^{\prime \prime} l_{2}^{\prime \prime}\right), \\
& l_{1}^{\prime} l_{4}^{\prime \prime}-l_{3}^{\prime} l_{1}^{\prime \prime}=q\left(l_{1}^{\prime} l_{3}^{\prime}+l_{1}^{\prime \prime} l_{3}^{\prime \prime}\right), \\
& l_{2}^{\prime} l_{1}^{\prime \prime}-l_{1}^{\prime} l_{2}^{\prime \prime}=r\left(l_{2}^{\prime} l_{1}^{\prime}+l_{2}^{\prime \prime} l_{1}^{\prime \prime}\right),
\end{aligned}
$$

where the three constants p, q, r are subject to the relation

$$
p+q+ו=p q r
$$

so that the three equations are really equivalent to only two udependent equations, is changed by the transformation mto the fiontier configuration represented by any two of the threo equations

$$
\begin{aligned}
& L_{3}^{\prime} L_{2}^{\prime \prime}-L_{2}^{\prime} L_{3}^{\prime \prime}=P\left(L_{3}^{\prime} L_{2}^{\prime}+L_{3}^{\prime \prime} L_{2}^{\prime \prime}\right), \\
& L_{1}^{\prime} L_{3}^{\prime \prime}-L_{3}^{\prime} L_{1}^{\prime \prime}=Q\left(L_{1}^{\prime} L_{3}^{\prime}+L_{1}^{\prime \prime} L_{3}^{\prime \prime}\right), \\
& L_{2}^{\prime} L_{1}^{\prime \prime}-L_{1}^{\prime} L_{3}^{\prime \prime}=R\left(L_{2}^{\prime} L_{1}^{\prime}+L_{2}^{\prime \prime} L_{1}^{\prime \prime}\right),
\end{aligned}
$$

where the three constants P, Q, R are subject to the relation

$$
P+Q+R=P Q R
$$

so that these three equations are really equivalent to only two independent equations. Moreover, if

$$
\mu=G e^{\pi}, \quad \lambda=H e^{h_{2}}
$$

where g, h, G, H are real constants while G and H are positive, we have

$$
\begin{aligned}
& P-p=(1+P p) \tan g \\
& Q-q=-(1+Q q) \tan h \\
& R-r=(1+R r) \tan (h-g)
\end{aligned}
$$

It 18 easy to verify that, of either of the relations

$$
P+Q+R=P Q R, \quad p+q+r=p q r
$$

is satisfied, the other also is satisfied in virtue of these last equations.
The quadratic frontier of the z, z^{\prime} field and the quadratic frontier of the transformed w, w^{\prime} field both pass through the three invariant centres of the lineo-linear transformation
E. 1 In comection with the homographe substitution in a sungle variable

$$
\begin{gathered}
w-a \\
w-\beta \\
w-\beta \\
z-\beta \\
z-a \\
z
\end{gathered}
$$

(in the preceding notation), shew that the constant m is the equation of the circle

$$
(x-a)(x-b)+\left(y-a^{\prime}\right)\left(y-b^{\prime}\right)=m\left\{(x-b)\left(y-a^{\prime}\right)-(x-a)\left(y-b^{\prime}\right)\right\}
$$

is the tangent of the angle at which the crrcle cats the straight line joinng the double points of the substitution

Prove also that, if $2 d$ is the distance between the double pomes, r is the radius of the foregong crrcle, and R the radus of the crucle moto whel it is transformed,

$$
\frac{1}{R^{2}}-\frac{2 \cos k}{r R}+\frac{1}{r^{2}}=\frac{\sin ^{2} k}{d^{2}} .
$$

Ex 2 Shew that the corcle

$$
(x-a)^{2}+(y-b)^{2}=n^{2}\left\{\left(x-a^{\prime}\right)^{2}+\left(y-b^{\prime}\right)^{2}\right\}
$$

is transformed, by the homographic substitution, into the circle
where

$$
(u-a)^{2}+(v-b)^{2}=N^{2}\left\{\left(u-a^{\prime}\right)^{2}+\left(b-b^{\prime}\right)^{2}\right\}
$$

$$
N=\kappa n
$$

Interpret the result geometrically.
Ex 3 Construct a hnen-linear transformation which has $0,0,1,1,2,-2$ for its muariant centres, and shew that there are quadratic frontiers of the z, z^{\prime} field, which pass through these invariant centros and are represented by any two of the three equations

$$
\begin{aligned}
& x^{2}+y^{2}+x^{\prime 2}+y^{\prime 2}-2\left(x x^{\prime}+y y^{\prime}\right)-2\left(x y^{\prime}-x^{\prime} y\right)-2\left(y-y^{\prime}\right) \\
&=a\left\{x^{2}+y^{2}-\left(x^{\prime 9}+y^{\prime 2}\right)+2\left(x-x^{\prime}\right)\right\}, \\
& x^{2}+y^{2}+x^{\prime 2}+y^{\prime 2}+2\left(x x^{\prime}+y y^{\prime}\right)-2\left(x y^{\prime}-x^{\prime} y\right)-2\left(x+x^{\prime}\right) \\
&=\beta\left\{x^{2}+y^{2}-\left(x^{\prime 2}+y^{\prime 2}\right)-2\left(y+y^{\prime}\right)\right\}, \\
& x^{2}+y^{2}-\left(x^{\prime 2}+y^{\prime 2}\right)=\gamma\left(x y^{\prime}-x^{\prime} y\right),
\end{aligned}
$$

provided the constants a, β, γ satisfy the relation

$$
\gamma(\alpha+\beta)=2 \alpha+2 \beta-\gamma
$$

Verify that the hneo-hucar transformation changes these equations into equations in $u, v, u^{\prime}, v^{\prime}$ of the same form but with different constants $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ satisfyung the relation

$$
\gamma^{\prime}\left(a^{\prime}+\beta^{\prime}\right)=2 a^{\prime}+2 \beta^{\prime}-\gamma^{\prime}
$$

Shew that, at the invariant centre 0,0 , small vamations $d z$ and $d z^{\prime}$ cause small variations $d w$ and $d w w^{\prime}$ such that

$$
\begin{aligned}
& d u-d w w^{\prime}=\frac{1}{\lambda}\left(d z-d z^{\prime}\right) \\
& d u+d w^{\prime}=\lambda_{\lambda}^{\mu}\left(d z+d z^{\prime}\right)
\end{aligned}
$$

and obtan the selations between the small varations at eath of the other two muariant centres

Invaruats and Covaruants of quadiatic frontie's.

30 Owing to the smportance of the quadratic fiomter, because it is given by two equations of the second order that are invariantive in general character under any lineo-lnear transformation, we shall biefly consider those combinations of the coefficients which are actually moarmantive under all such transformations The proper discussion of the mvanante and covariants, which belong to two equations of any order that are mvariantave in general character under the transformations, requice an clabotation of analysis that will take us far from the man pupose mbo what really is the full theory of moariants and covarlants It will be sufficient to give the clements of that theory as connected with the fundamental procedure. Moreover, we shall take a gencral quadratic frontion and not monely the spectal class whach pass through the onvaiant eentres of an assigned transfomation, and we require the quantities whach are invarmantive andel all lmeso-lmoal transformations and not merely under one partseular trinsformation We further shall only deal with such mvarantive guantitues as are algebracally mdependent of one another.

31 There are several modes of procedure, in all of them, it is convenient to use homogeneous variables, as was done in establishing the canomical form of the lmeo-lmear substitution. So we take

$$
\frac{z}{a_{1}}=\frac{z^{\prime}}{x_{2}}=\frac{1}{x_{\mathrm{s}}}, \quad \frac{w}{y_{1}}=\frac{w^{\prime}}{y_{2}}=\frac{1}{y_{3}} .
$$

Also, as the variables respectively conjugate to $z, z^{\prime}, w, w^{\prime}$ have been introduced, we shall require variables respectively conjugate to $x_{1}, x_{2}, x_{4}, y_{1}, y_{2}, y_{3}$, denoting these by $\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{y}_{1}, y_{2}, \bar{y}_{3}$, we take

$$
\frac{\bar{z}}{x_{1}}=\frac{\bar{z}^{\prime}}{\bar{x}_{2}}=\frac{1}{\bar{x}_{3}}, \quad \frac{\bar{w}}{\overline{\bar{y}}_{1}}=\frac{\bar{x}^{\prime}}{y_{z}^{\prime}}=\frac{1}{\bar{y}_{5}} .
$$

For the present purpose, we take a z, z^{\prime} field determined by two relations $Q=0, Q^{\prime} ₹ 0$, where

$$
\begin{aligned}
& Q=A y_{1} \bar{y}_{3}+B y_{1} \bar{y}_{2}+C y_{1} \bar{y}_{3}+D y_{2} \bar{y}_{1}+E y_{2} \bar{y}_{4}+F y_{2} \bar{y}_{3} \\
& +G y_{8} \bar{y}_{1}+H y_{3} \bar{y}_{2}+K y_{3} y_{3}, \\
& Q^{\prime}=A^{\prime} y_{1} \bar{y}_{1}+B^{\prime} y_{1} y_{2}+C^{\prime} y_{1} y_{1}+D^{\prime} y_{2} y_{1}+E^{\prime} y_{2} \bar{y}_{2}+F^{\prime} y_{2} \bar{y}_{4} \\
& +G^{\prime} y_{3} \bar{y}_{1}+H^{\prime} y_{3} \bar{y}_{2}+K^{\prime} y_{2} \bar{y}_{3},
\end{aligned}
$$

its quadratic frontier 18 given by the equations

$$
Q=0, \quad Q=0,
$$

which, on division by the non-vanishing quantity $y_{4} y_{3}$, acquare the form of our earher equations In Q the coofficients A, A, K are real, while B and D, C and Q, F and H, are conjugates in the stated pars; and similarly for the coefficients in Q^{\prime}

The method of procedure that we shall use is based upon an application of Lie's theory of continuous groups to these quantities Q and Q, and the application proves farly simple in detal when we use umbral fonme simultancously with tho espressed forms Accordingly, we introduce umbral coefficients $\sigma_{1}, \sigma_{2}, \sigma_{1}, \sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}$, with their conjugates $\bar{\sigma}_{1}, \bar{\sigma}_{2}, \bar{\sigma}_{3}$, $\bar{\sigma}_{1}^{\prime}, \bar{\sigma}_{2}^{\prime}, \bar{\sigma}_{a}^{\prime}$; we take

$$
\left.\left.\begin{array}{ll}
\Pi=\sigma_{1} y_{1}+\sigma_{2} y_{2}+\sigma_{3} y_{s} \\
\Pi=\bar{\sigma}_{1} \bar{y}_{2}+\bar{\sigma}_{3} \bar{y}_{3}+\bar{\sigma}_{8} \bar{y}_{3}
\end{array}\right\}, \quad \begin{array}{l}
\Pi^{\prime}=\sigma_{1}^{\prime} y_{1}+\sigma_{2}^{\prime} y_{2}+\sigma_{3}^{\prime} y_{d} \\
\Pi I^{\prime}=\bar{\sigma}_{1}^{\prime} \bar{y}_{1}+\bar{\sigma}_{2}^{\prime} \bar{y}_{2}+\bar{\sigma}_{3}^{\prime} \bar{y}_{3}
\end{array}\right\}
$$

and we write

$$
Q=\Pi \Pi, \quad Q^{\prime}=\Pi^{\prime} \bar{\Pi} I^{\prime}
$$

We then both define and secure the umbral character of these new coefficients by imposing the customary condition that the only combinations of the umbral constants which have stgnificance are those leading to the expressed coefficients in the form

$$
\begin{array}{lll}
A=\sigma_{1} \bar{\sigma}_{1}, & D=\sigma_{2} \bar{\sigma}_{1}, & G=\sigma_{3} \bar{\sigma}_{1}, \\
B=\sigma_{1} \bar{\sigma}_{2}, & E=\sigma_{2} \bar{\sigma}_{2}, & H=\sigma_{3} \bar{\sigma}_{3}, \\
C=\sigma_{1} \bar{\sigma}_{3}, & F=\sigma_{2} \bar{\sigma}_{3}, & K=\sigma_{3} \bar{\sigma}_{3},
\end{array}
$$

and likewise for the coefficients of Q^{\prime}
When the lineo-hnear transformation, in the forin

$$
\left.\begin{array}{l}
y_{1}=a x_{1}+b x_{2}+c x_{3} \\
y_{3}=a^{\prime} x_{1}+b^{\prime} x_{2}+c^{\prime} x_{3} \\
y_{3}=a^{\prime \prime} x_{1}+b^{\prime \prime} x_{2}+c^{\prime \prime} x_{3}
\end{array}\right\}
$$

and its conjugate, in the form

$$
\left.\begin{array}{l}
\bar{y}_{1}=\bar{a} \bar{x}_{1}+\bar{b} \bar{x}_{2}+\bar{c}_{3} \bar{x}_{8} \\
\bar{y}_{2}=\bar{a}^{\prime} \bar{x}_{1}+\bar{b}^{\prime} \bar{x}_{2}+\bar{c}^{\prime} \bar{x}_{3} \\
\bar{y}_{8}=\bar{a}^{\prime \prime} \bar{x}_{1}+\bar{b}^{\prime \prime} \bar{x}_{2}+\bar{c}^{\prime \prime} \bar{x}_{3}
\end{array}\right\},
$$

are applied to Q and Q^{\prime}, these become P and P^{\prime} respectively, so that we take

$$
Q=P, \quad Q^{\prime}=I^{\prime}
$$

and then

$$
\begin{aligned}
& P=A_{1} x_{1} \cdot \bar{x}_{1}+B_{1} x_{1}, \bar{x}_{2}+C_{1} x_{1} \bar{x}_{3}+D_{1} x_{2} \bar{x}_{1}+E_{1} a_{2} \bar{x}_{2}+F_{1} \cdot x_{3} \bar{x}_{3} \\
& +G_{1} x_{3} r_{1}+H_{1} x_{3} x_{2}+K_{1} x_{3} i_{4} \\
& P^{\prime}=A_{1}^{\prime} x_{1} \bar{x}_{1}+B_{1}^{\prime} x_{1} \bar{x}_{2}+C_{1}^{\prime} x_{1} \bar{x}_{3}+D_{1}^{\prime} x_{2} r_{1}+E_{1}^{\prime} x_{2}^{\prime} \bar{r}_{2}+F_{1}^{\prime} x_{2} x_{1} \\
& +G_{1}^{\prime} x_{1} \bar{x}_{1}+H_{1}^{\prime} x_{3} \bar{x}_{2}+K_{1}^{\prime} x_{3} x_{3} .
\end{aligned}
$$

We take

$$
\begin{array}{ll}
S=s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}, & S^{\prime}=s_{1}^{\prime} x_{1}+s_{2}^{\prime} x_{2}+s_{1}^{\prime} x_{3}, \\
\bar{S}=\tilde{s}_{1}, \dot{x}_{1}+\bar{s}_{2} x_{2}+\bar{s}_{3} \bar{x}_{3}, & \bar{S}^{\prime}=\dot{s}_{1}^{\prime} \bar{x}_{1}+\bar{s}_{2}^{\prime} r_{2}+\bar{s}_{1}^{\prime} x_{3},
\end{array}
$$

whese $s_{1}, s_{2}, s_{3}, s_{1}^{\prime}, s_{2}^{\prime}, s_{1}^{\prime}$ are new ambud coefficients, while $\bar{s}_{1}, \bar{s}_{2}, \bar{s}_{s}, \bar{s}_{1}^{\prime}, \bar{s}_{2}^{\prime}, \bar{s}_{3}^{\prime}$ are there conjugates, and we write

$$
P=\sin , \quad Q=s^{\prime} \bar{S}^{\prime},
$$

regardung Π as transformed into S, Π into S^{\prime}, I^{\prime} into S^{\prime}, and $\bar{\Pi} \bar{\Pi}^{\prime}$ into \bar{S}^{\prime}. Then the laws of relation between the umbral coefficients in II and S and in $\bar{\Pi}$ and \bar{S}, are

$$
\left.\left.\begin{array}{l}
s_{1}=a \sigma_{1}+a^{\prime} \sigma_{n}+a^{\prime \prime} \sigma_{3} \\
s_{2}=b \sigma_{1}+b^{\prime} \sigma_{3}+b^{\prime \prime} \sigma_{1} \\
s_{3}=c \sigma_{1}+c^{\prime} \sigma_{2}+c^{\prime \prime} \sigma_{3}
\end{array}\right\}, \begin{array}{l}
s_{1}=a \bar{\sigma}_{1}+\bar{a}^{\prime} \bar{\sigma}_{2}+a^{\prime \prime} \bar{\sigma}_{3} \\
\bar{s}_{3}=\bar{b} \bar{\sigma}_{3}+b^{\prime} \bar{\sigma}_{2}+\bar{b}^{\prime \prime} \bar{\sigma}_{3} \\
s_{3}=c \bar{c}_{1}+\bar{c}^{\prime} \bar{\sigma}_{2}+\bar{c}^{\prime \prime} \bar{\sigma}_{3}
\end{array}\right\},
$$

and the same laws of relatson hold between the umbral coefficients in 11' and S^{\prime}, and m II' and \bar{S}^{\prime} Fmally, in comnectoon with our transformation, we write

$$
\Delta=\left\{\begin{array}{lll}
a, & b, & c
\end{array}: \quad \bar{\Delta}=\left\{\begin{array}{lll}
a, & \bar{b}, & \bar{c} \\
a^{\prime}, & \overline{b^{\prime}}, & c^{\prime} \\
a^{\prime \prime} & b^{\prime}, & c^{\prime} \\
a^{\prime \prime}, & b^{\prime \prime}, & c^{\prime \prime}
\end{array}\right.\right.
$$

where Δ has the same signuficance as before, $\bar{\Delta}$ is its conjugate, and nether Δ nor Δ vamehes

32 As an example of an invariant, consider the quantity

$$
I=\left|\begin{array}{ccc}
A_{1}, & B_{1}, & C_{2} \\
D_{1}, & E_{1}, & F_{1} \\
O_{1}, & H_{1}, & K_{1}
\end{array}\right|
$$

To express it in umbral symbols, three sets of these are required because it is of degree three in the non-umbral coefficients Denoting these by $s_{1}, s_{2}, s_{3}, t_{1}, t_{3}, t_{3}, u_{1}, u_{2}, u_{3}$, with therr conjugatea, we easily find that I is equal to

$$
\frac{1}{6}: \begin{array}{lll}
s_{1}, & s_{2}, & s_{3} \\
t_{3}, & t_{2}, & t_{3} \\
u_{1}, & u_{z}, & u_{9}
\end{array}\left|: \begin{array}{lll}
\bar{s}_{1}, & \bar{s}_{2}, & \bar{s}_{3} \\
t_{1}, & t_{2}, & \bar{t}_{3} \\
u_{1}, & \bar{u}_{2}, & \bar{u}_{3}
\end{array}\right|,
$$

that is, to

$$
\left.\frac{1}{6}\left|\begin{array}{ccc}
\sigma_{1}, & \sigma_{2}, & \sigma_{3} \\
\tau_{1}, & \tau_{2}, & \tau_{3} \\
v_{1}, & v_{2}, & v_{3}
\end{array}\right| \begin{array}{ccc:cc}
a, & b, & 0 & \bar{\sigma}_{1}, & \bar{\sigma}_{2}, \\
\bar{\sigma}_{3} & a^{\prime}, & b^{\prime}, & c^{\prime} & \bar{\tau}_{1}, \\
\bar{\tau}_{2}, & \bar{\tau}_{3} & b, & b^{\prime \prime}, & c^{\prime \prime}
\end{array} \right\rvert\, \begin{array}{cc}
v_{1}, & v_{2}, \\
\bar{u}_{3} & \bar{a}^{\prime}, \\
\bar{b}^{\prime \prime}, & \bar{c}^{\prime}, \\
\bar{b}^{\prime \prime}, & \bar{c}^{\prime \prime}
\end{array},
$$

that 1 s, to

$$
\left|\begin{array}{lll}
\sigma_{1}, & \sigma_{2}, & \sigma_{3} \\
\tau_{1}, & \tau_{2}, & \tau_{3} \\
v_{1}, & v_{2}, & v_{3}
\end{array}\right|: \left.\begin{array}{lll}
\bar{\sigma}_{1}, & \bar{\sigma}_{2}, & \bar{\sigma}_{3} \\
\bar{\tau}_{1}, & \bar{\tau}_{2}, & \bar{\tau}_{3} \\
\bar{v}_{1}, & v_{2}, & v_{3}
\end{array} \right\rvert\,
$$

and therefore

$$
\left|\begin{array}{ccc}
A_{1}, & B_{1}, & C_{1} \\
D_{1}, & E_{1}^{\prime}, & F_{1}^{\prime} \\
\boldsymbol{r}_{1}, & H_{1}, & K_{1}
\end{array}\right|=\Delta \bar{\Delta}\left|\begin{array}{ccc}
A, & B, & c^{\prime} \\
l, & E & h^{\prime} \\
G, & H, & K
\end{array}\right|
$$

a relation which establishes the invariantive property of the quantity I which is a function of the non-umbral coefficients of P alune.

The same combuntion of the coefficients of P^{\prime} alone is easily seen to be an invariant The simplest covariants are P and P^{\prime}, for we have

$$
Q=P, \quad Q^{\prime}=l^{\prime}
$$

33. Passing now to the consuderation of mvariants and of covariants that belong to the general quadıatic frontes, we define any quantity

$$
\phi\left(y_{1}, y_{2}, y_{3}, \bar{y}_{1}, \bar{y}_{2}, y_{1}, A, \quad, K, A^{\prime}, \quad, K^{\prime}\right)
$$

to be such a function if it satisfies a relation

$$
\Phi=\Delta^{\rho} \Delta^{\rho} \phi
$$

where Φ is the same function of $x_{1}, x_{2}, x_{3}, \tilde{x}_{1}, x_{2}, \dot{x}_{3}, A_{1}, \ldots, K_{1}, A_{1}^{\prime}, \quad, K_{1}{ }^{\prime}$ as ϕ is of its own arguments We shall deal only with integral (not with fractional) homogeneous combinations of the variables and the coefficients, and we assume that, in the foregong relation which defunes an mvariunt or a covainant, the index of Δ is the same as that of Δ because we are liniting ourselves to the properties of real frontiers as defined by two real equations And we retain the customary discrimination, by the occurrence or the non-occurrence of variables, between a covariant and an invarlant

By Lie's theory of continuous groups*, it is sufficient to retain the aggregate of the most general infinitesimal transformations of a continuous transformation in order to construct the full effect of the finite continuous

[^9]transformation. Accordingly, for our immediate purpose, it is sufficient to obtain an algebracally complete aggregate of integrals of the set of partial differential equations whech characterne the full tale of the infintesumal transformations in question To obtain these, we take
\[

\left.$$
\begin{array}{lll}
a=1+\epsilon_{1}, & b=\epsilon_{2}, & c=\epsilon_{3} \\
a^{\prime}=\epsilon_{4}, & b^{\prime}=1+\epsilon_{b}, & c^{\prime}=\epsilon_{6} \\
a^{\prime \prime}=\epsilon_{7}, & b^{\prime \prime}=\epsilon_{8}, & c^{\prime \prime}=1+\epsilon_{0}
\end{array}
$$\right\},
\]

For the most general infintesmal thansfomaton, all the quantities ϵ and E are small, arbitraty, and independent of one another, subject to the condition that ϵ_{i} and $\bar{\epsilon}_{n}$, for the mone valnes of μ, are conyugate to one inother.

The laws of relation among the umbral coefficonts now are

$$
\left.\left.\begin{array}{ll}
s_{2}-\sigma_{1}=\epsilon_{1} \sigma_{1}+\epsilon_{4} \sigma_{2}+\epsilon_{7} \sigma_{y} \\
s_{2}-\sigma_{2}=\epsilon_{2} \sigma_{1}+\epsilon_{8} \sigma_{2}+\epsilon_{4} \sigma_{3} \\
s_{3}-\sigma_{4}=\epsilon_{3} \sigma_{1}+\epsilon_{4} \sigma_{3}+\epsilon_{9} \sigma_{3}
\end{array}\right\}, \begin{array}{l}
\tilde{s}_{1}-\bar{\sigma}_{1}=\bar{\epsilon}_{1} \bar{\sigma}_{1}+\bar{\epsilon}_{4} \bar{\sigma}_{2}+\bar{\epsilon}_{7} \bar{\sigma}_{4} \\
\bar{s}_{2}-\bar{\sigma}_{2}=\bar{\epsilon}_{,} \bar{\sigma}_{1}+\bar{\epsilon}_{s} \bar{\sigma}_{2}+\bar{\epsilon}_{8} \bar{\sigma}_{3} \\
\bar{s}_{1}-\bar{\sigma}_{3}=\bar{\epsilon}_{3} \bar{\sigma}_{1}+\bar{\epsilon}_{4} \bar{\sigma}_{2}+\bar{\epsilon}_{9} \bar{\sigma}_{4}
\end{array}\right\}
$$

Consequently the mfintesmal variations of the evefficients in the equations of the quadratic fronter are given by the equatoms

$$
\begin{aligned}
& \delta A=A_{1}-A=\epsilon_{1} A+\epsilon_{4} D+\epsilon_{7} G+\bar{\epsilon}_{1} A+\bar{\epsilon}_{4} B+\bar{\epsilon}_{7} C \\
& \delta B=B_{1}-B=\epsilon_{1} B+\epsilon_{4} E+\epsilon_{7} H+\bar{\epsilon}_{2} A+\bar{\epsilon}_{5} B+\bar{\epsilon}_{4} C \\
& \delta C=G_{1}-C=\epsilon_{1} C+\epsilon_{4} F^{\prime}+\epsilon_{7} K+\bar{\epsilon}_{7} A+\bar{\epsilon}_{A} B+\bar{\epsilon}_{4}(i) \\
& \left.\delta D=D_{1}-D=\epsilon_{2} A+\epsilon_{5} I\right)+\epsilon_{\mathrm{n}}\left(\dot{\theta}+\bar{\epsilon}_{1} D+\bar{\epsilon}_{4} E+\bar{\epsilon}_{7} F\right. \\
& \left.\delta E=E_{1}-E=\epsilon_{2} B+\epsilon_{9} E+\epsilon_{8} H+\bar{\epsilon}_{2} D+\bar{\epsilon}_{5} E+\bar{\epsilon}_{8} F\right\}, \\
& \delta F=F_{1}-F=\epsilon_{2} C+\epsilon_{5} F+\epsilon_{8} K+\bar{\epsilon}_{3} D+\bar{\epsilon}_{g} E+\bar{\epsilon}_{9} F \\
& \delta G=G_{1}-G=\epsilon_{9} A+\epsilon_{6} D+\epsilon_{9}\left(\dot{\gamma}+\bar{\epsilon}_{1}\left(\boldsymbol{r}+\bar{\epsilon}_{\mathrm{s}} H+\bar{\epsilon}_{7} K\right.\right. \\
& \delta H=H_{1}-H=\epsilon_{3} B+\epsilon_{6} E+\epsilon_{9} H+\bar{\epsilon}_{2} G+\bar{\epsilon}_{5} H+\bar{\epsilon}_{8} K \\
& \delta K=K_{\mathrm{a}}-K=\epsilon_{\mathrm{s}} C+\epsilon_{\mathrm{t}} F+\epsilon_{\mathrm{v}} K+\bar{\epsilon}_{3} G+\bar{\epsilon}_{\mathrm{t}} I I+\bar{\epsilon}_{\mathrm{g}} K ;
\end{aligned}
$$

with a corresponding set of nine expressions for the infimitesimal variations of the coefficyents $A^{\prime}, \ldots, K^{\prime}$

The infintesimal variations of the variables are given by the relations

$$
\left.\left.\begin{array}{l}
y_{1}-x_{1}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+\epsilon_{8} x_{8} \\
y_{2}-x_{2}=\epsilon_{4} x_{1}+\epsilon_{8} x_{2}+\epsilon_{6} x_{3} \\
y_{3}-x_{3}=\epsilon_{7} x_{1}+\epsilon_{8} x_{2}+\epsilon_{8} x_{3}
\end{array}\right\}, \begin{array}{l}
y_{1}-x_{1}=\bar{\epsilon}_{1} \bar{x}_{1}+\bar{\epsilon}_{2} x_{2}+\bar{\epsilon}_{4} \bar{x}_{3} \\
\bar{y}_{2}-\bar{x}_{2}=\bar{\epsilon}_{4} x_{1}+\bar{\epsilon}_{8} \bar{x}_{2}+\bar{\epsilon}_{6} x_{3} \\
\bar{y}_{3}-\bar{x}_{3}=\bar{\epsilon}_{7} \bar{x}_{2}+\bar{\epsilon}_{8} x_{2}+\bar{\epsilon}_{4} \bar{x}_{3}
\end{array}\right\},
$$

and therefore, so far as small quantities up to the first order are concerned, we have

$$
\left.\left.\begin{array}{l}
x_{1}-y_{1}=-\epsilon_{1} y_{1}-\epsilon_{2} y_{3}-\epsilon_{9} y_{9} \\
x_{2}-y_{2}=-\epsilon_{4} y_{1}-\epsilon_{6} y_{2}-\epsilon_{4} y_{8} \\
x_{3}-y_{1}=-\epsilon_{7} y_{2}-\epsilon_{\mathrm{a}} y_{2}-\epsilon_{9} y_{\mathrm{s}}
\end{array}\right\}, \begin{array}{l}
x_{1}-\bar{y}_{1}=-\bar{\epsilon}_{1} y_{1}-\bar{\epsilon}_{9} \bar{y}_{2}-\bar{\epsilon}_{9} \bar{y}_{3} \\
x_{2}-y_{2}=-\bar{\epsilon}_{4} y_{1}-\bar{\epsilon}_{5} y_{2}-\bar{\epsilon}_{6} \bar{y}_{3} \\
\bar{x}_{3}-y_{3}=-\bar{\epsilon}_{7} \bar{y}_{1}-\bar{\epsilon}_{\mathrm{s}} \bar{y}_{2}-\bar{\epsilon}_{9} \bar{y}_{3}
\end{array}\right\}
$$

And, lastly, we have

$$
\Delta \vec{\Delta}=1+\epsilon_{1}+\epsilon_{\mathrm{s}}+\epsilon_{\mathrm{g}}+\bar{\epsilon}_{1}+\bar{\epsilon}_{\mathrm{b}}+\bar{\epsilon}_{\mathrm{g}} .
$$

34 Now any covariant or mvariant satisfies the equation

$$
\begin{aligned}
& \phi\left(x_{1}, x_{2}, x_{1}, \bar{x}_{1}, r_{2}, \bar{r}_{4}, A_{1}, \ldots, K_{1}, A_{1}^{\prime}, \ldots, K_{1}^{\prime}\right) \\
& =(\Delta \bar{\Delta})^{\rho} \phi\left(y_{1}, y_{2}, y_{1}, \bar{y}_{1}, y_{2}, y_{2}, A, \ldots, K, A^{\prime}, \ldots, K^{\prime}\right)
\end{aligned}
$$

Substitute in this defining equation the values of $A_{1}, \ldots, K_{1}, A_{1}{ }^{\prime}, \quad, K_{1}{ }^{\prime}$, $y_{1}, y_{2}, y_{3}, \Delta \Delta$, write

$$
\begin{aligned}
& \left.\theta_{1}=A^{\frac{\partial}{\partial \bar{A}}}+B \frac{\partial}{\partial B}+C^{\prime} \frac{\partial}{\partial \bar{C}}+A^{\prime} \frac{\partial}{\partial A^{\prime}}+B^{\prime} \frac{\partial}{\partial B^{\prime}}+C^{\prime} \frac{\partial}{\partial C^{\prime}}\right) \\
& \left.\theta_{0}=D \frac{\partial}{\partial \bar{D}}+E \frac{\partial}{\partial \bar{E}}+F^{\prime} \frac{\partial}{\partial F^{\prime}}+D^{\prime} \frac{\partial}{\partial \bar{D}^{\prime}}+E^{\prime} \frac{\partial}{\partial E^{\prime}}+F^{\prime} \frac{\partial}{\partial B^{\prime}}\right\}, \\
& \left.\theta_{\mathrm{g}}=G^{\prime} \frac{\partial}{\partial \bar{G}}+H^{\partial} \frac{\partial}{\partial H}+K \frac{\partial}{\partial K}+G^{\prime} \frac{\partial}{\partial G^{\prime}}+H^{\prime} \frac{\partial}{\partial H^{\prime}}+K^{\prime} \frac{\partial}{\partial K^{\prime}}\right) \\
& \tilde{\theta}_{1}=A \frac{\partial}{\partial A}+D \frac{\partial}{\partial D}+G \frac{\partial}{\partial G}+A^{\prime} \frac{\partial}{\partial A^{\prime}}+D^{\prime} \frac{\partial}{\partial D^{\prime}}+G^{\prime} \frac{\partial}{\partial G^{\prime}} \\
& \left.\tilde{\theta}_{0}=B \frac{\partial}{\partial \bar{B}}+E \frac{\partial}{\partial E}+H \frac{\partial}{\partial \bar{H}^{\prime}}+B^{\prime} \frac{\partial}{\partial \bar{B}^{\prime}}+E^{\prime} \frac{\partial}{\partial \tilde{E}^{\prime}}+H^{\prime} \frac{\partial}{\partial \bar{H}^{\prime}}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\theta_{2}=A \frac{\partial}{\partial D}+B \frac{\partial}{\partial \bar{R}}+C^{\frac{\partial}{\partial F}}+A^{\prime} \frac{\partial}{\partial \overline{D^{\prime}}}+B^{\prime} \frac{\partial}{\partial{E^{\prime \prime}}^{\prime \prime}}+C^{\prime} \frac{\partial}{\partial \overline{F^{\prime}}} \\
\overline{\boldsymbol{\theta}}_{2}=A \underset{\partial B}{\partial}+D_{\partial}^{\partial} \frac{\partial}{\partial E^{\prime}}+G_{\bar{\partial} H}+A^{\prime} \frac{\partial}{\partial \overline{B^{\prime}}}+D^{\prime} \frac{\partial}{\partial E^{\prime \prime}}+G^{\prime} \frac{\partial}{\partial \overline{H^{\prime}}}
\end{array}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left.\tilde{\boldsymbol{\theta}}_{8}=A \frac{\partial}{\partial C^{\prime}}+D \frac{\partial}{\partial \tilde{F}^{\prime}}+G \frac{\partial}{\partial K}+A^{\prime} \frac{\partial}{\partial C^{\prime}}+D^{\prime} \frac{\partial}{\partial \bar{F}^{\prime \prime}}+G^{\prime} \frac{\partial}{\partial \tilde{K}^{\prime}}\right\}, \\
& \left.\begin{array}{l}
\theta_{4}=D \frac{\partial}{\partial A}+E^{\frac{\partial}{\partial B}}+F^{\frac{\partial}{\partial C}}+D^{\prime} \frac{\partial}{\partial A^{\prime}}+E^{\prime} \frac{\partial}{\partial \bar{B}^{\prime}}+F^{\prime} \frac{\partial}{\partial C^{\prime}} \\
\bar{\theta}_{4}=B \frac{\partial}{\partial A}+E^{\prime} \frac{\partial}{\partial D}+H^{\frac{\partial}{\partial \bar{G}}}+B^{\prime} \frac{\partial}{\partial A^{\prime}}+E^{\prime} \frac{\partial}{\partial D^{\prime}}+H^{\prime} \frac{\partial}{\partial G^{\prime}}
\end{array}\right\},
\end{aligned}
$$

$$
\left.\begin{array}{l}
\theta_{6}=D \frac{\partial}{\partial G}+E_{\bar{G}}^{\partial \bar{H}}+F \frac{\partial}{\partial K}+D^{\prime} \frac{\partial}{\partial G^{\prime}}+E^{\prime} \frac{\partial}{\partial H^{\prime}}+F^{\prime \prime} \frac{\partial}{\partial K^{\prime}} \\
\bar{\theta}_{6}=B \frac{\partial}{\partial C^{\prime}}+E^{\frac{\partial}{\partial F}}+H^{\frac{\partial}{\partial K}}+B^{\prime} \frac{\partial}{\partial \bar{C}^{\prime}}+E^{\prime} \frac{\partial}{\partial F^{\prime}}+H^{\prime} \frac{\partial}{\partial \overline{K^{\prime}}}
\end{array}\right\},
$$

and expand both sudes of the equation in powers of the small quantistes ε and \vec{E} Equating the coefficients of these small quantities on the two sides, and denoting on covalantive function

$$
\phi\left(y_{1}, y_{3}, y_{3}, y_{1}, \bar{y}_{2}, y_{3}, A, \quad, K, A^{\prime}, \quad, l^{\prime}\right)
$$

by ϕ, we have the partial differential equations

$$
\begin{aligned}
& \left.\theta_{2} \phi-y_{2} \partial y_{1}=0, \quad \bar{\theta}_{1} \phi-y_{2} \bar{\partial} y_{y_{1}}=0\right) \\
& \theta_{3} \phi-y_{3} \frac{\partial \phi}{\partial y_{1}}=0, \quad \bar{\theta}_{1} \phi-\bar{y}_{3} ; y_{y_{1}}^{\partial \phi}=0 \\
& \theta_{4} \phi-y_{1} \frac{\partial \phi}{\partial y_{2}}=0, \quad \bar{\theta}_{1} \phi-y_{1} \frac{\partial \phi}{\partial y_{2}}=0 \\
& \left.\theta_{6} \phi-y_{8} \frac{\partial \phi}{\partial y_{2}}=0, \quad \bar{\theta}_{6} \phi-\bar{y}_{s} \frac{\partial \phi}{\partial y_{2}}=0\right\}, \\
& \theta_{7} \phi-y_{1} \frac{\partial \phi}{\partial y_{3}}=0, \quad \bar{\theta}_{7} \phi-y_{1} \frac{\partial \phi}{\partial y_{d}}=0 \\
& \left.\theta_{8} \phi-y_{2} \frac{\partial \phi}{\partial y_{s}}=0, \quad \bar{\theta}_{8} \phi-\bar{y}_{2} \frac{\partial \phi}{\partial y_{s}}=0\right)
\end{aligned}
$$

as equations satisfied by the function ϕ. Moreover, by Lie's theory, any function ϕ, which satisties all these equations, is a covariant (or invariant) of the required type
35. Having regard to the fact that ultimately we are dealing with quadratic frontiers and with transformations between w, w^{\prime} and z, z^{\prime}, we shall consider only those integral functions ϕ, which are homogeneous (say of order m) in y_{1}, y_{2}, y_{3} and homogeneous (also then of order m) in y_{1}, y_{2}, y_{3} We also shall considet only such functions ϕ as are homogeneous (say of degree n) in the coetficients A, \ldots, K^{\prime} and homogeneous (say of degree n^{\prime}) in the coefficients $A^{\prime}, \quad, K^{\prime}$. Then, from the first set of equations and by means of Euler's theorcm on homogeneous tunctions, we have

$$
n+n^{\prime}-m=3 \rho
$$

It follows that every mergral mvarmant of a quadratic fronter has its degree in the coefficients of the boundury a multiple of 3

When the index ρ is taken as equal to the foregong value, and when we note the equality between the indices of Δ and $\bar{\Delta}$ in the relation which defines the covariants, the first six equations can be replaced by the four

$$
\left.\begin{array}{c}
\theta_{1} \phi-y_{1} \frac{\partial \phi}{\partial y_{1}}=\theta_{0} \phi-y_{2} \frac{\partial \phi}{\partial y_{2}}=\theta_{\theta} \phi-y_{3} \frac{\partial \phi}{\partial y_{3}} \\
\theta_{1} \phi-y_{1} \frac{\partial \phi}{\partial y_{1}}=\bar{\theta}_{n} \phi-y_{2} \frac{\partial \phi}{\partial y_{2}}=\bar{\theta}_{1} \phi-y_{2} \frac{\partial \phi}{\partial y_{s}}
\end{array}\right\},
$$

and we then retan the other twelve equations, so that we have a bet of sixteen partial equations of the first order

It is easy to verify that the conditions of co-existence of these sixtreen equations are satisfied, either identically or in virtue of the equations in the set. Hence the sel of equations constituter a complete Jarobian system of partial equations of the first order. The possible arguments in any solution ϕ are twenty-four in number, viz, the mne coefficents $A, \ldots K$, the mme coefficients $A^{\prime}, \ldots, K^{\prime}$, and the six variables $y_{1}, y_{2}, y_{3}, y_{1}, \bar{y}_{2}, \dot{y}_{3}$, consequently, by the customary theory of such systems*, the number of algebraically independent integrals 19 eight, the excess of the number of possible arguments over the number of equations in the complete system.
36. After the limitations that have been imposed, every integral ϕ of the system is homogeneous of degree m in y_{1}, y_{2}, y_{3}, and also homogeneous of degree m in $\bar{y}_{1}, y_{2}, \bar{y}_{3}$. Let it be represented by

$$
\Sigma U_{p, q, p^{\prime}, q^{\prime}} y_{1}^{m-p-q} y_{l} y_{y^{\prime}}^{q} \bar{y}_{1}^{m-p^{\prime}-q^{\prime}} \bar{y}_{p^{\prime}}^{p^{\prime}} \bar{y}_{\mathrm{l}}^{q^{\prime}} ;
$$

* See my Theory of Differential Equations, vol. v, ohap int.
then, in order that it may satisfy the equations, we must have the relations (among others)

$$
\left.\begin{array}{c}
\theta_{4} \cdot U_{p, q, p^{\prime}, q^{\prime}}-(p+1) U_{p+1, q, p^{\prime}, q^{\prime}}=0 \\
\bar{\theta}_{4} U_{p,,, p^{\prime}, q^{\prime}}-\left(p^{\prime}+1\right) U_{p, q, p^{\prime}+1, q^{\prime}}=0 \\
\theta_{7}, U_{p, q_{2}, p^{\prime}, q^{\prime}}-(q+1) U_{p, q+1, p^{\prime}, q^{\prime}}=0 \\
\bar{\theta}_{7} \cdot U_{p, q_{1}, p, q^{\prime}}-\left(q^{\prime}+1\right) U_{p, q, p, q^{\prime}+1}=0
\end{array}\right\} .
$$

By the continued use of these equations, all the cocfficients $U_{p, n, p^{\prime}, q}$ can be obtaned when once $U_{0,0,0,0}$ (ary (J) is known, and therefore, as usual in the theory of homogeneous foms, the whole covamant can be regaded as known when its leading term $U y_{1}{ }^{m} y_{1}{ }^{-m}$ is known

Agan, and just as in the ordmary theory, the leading coefticuent U of the covariant satisfies the equations

$$
\begin{array}{cc}
\theta_{2} U=0, & \theta_{3} U=0, \\
\bar{\theta}_{2} U=0, & \theta_{6} U=0, \quad \theta_{4} U=0, \\
\theta_{3} U-\theta_{n} U=0, & \bar{\theta}_{n} U=0, \quad \bar{\theta}_{n} U=0, \\
\theta_{5} U-\theta_{4} U=0
\end{array}
$$

These ten equations also are a complete Jacobian system of partial differential equations of the first onder bach integral can onvolve the eighteen possible arguments, constituted by the constants in the two equations of the quadratic fromtier, and therefore the system of afuations possesses eight algebracally independent mtegrals wheh ane the leading coufficients of the eight covarants coustatuting the algebracally complete set of integrals of the full system of equations It follows that, in this method of proceeding, we have to obtain crght algebrucally mdependent integrals of the preceding set of ten equations m the second completr Jacobran system

37 The actual process of solving the equations is the enstomary process that apples to complete Jacobian systems that are lmear and homogencous The algebra requised in the manipulation is long and tedions for the present set of equations. so the results will merely be stated, cspecially as they can be obtained by another method (or combmation of methods) apphcable to the equations of the quadratie frontier The summary of the final integration of the ten equations, which are to possess eight algebracally independent integrals, is as follows -

Every integral of the system is expressible algebracally in terms of the eight independent integrals $A, A^{\prime}, I, J, J^{\prime}, I^{\prime}, T^{\prime}, T^{\prime}$, where I is the invariant of Q, I^{\prime} the similar invariant of Q^{\prime},

$$
J=\Sigma A^{\prime} \frac{\partial I}{\partial A}, \quad J^{\prime}=\Sigma A \frac{\partial I^{\prime}}{\partial A^{\prime}}
$$

(the summation being extended over all the coefficients of Q and Q^{\prime}),
and where T^{\prime} and T^{\prime} are the coefficients of λ and μ respectively in the expression

$$
\begin{aligned}
& \begin{array}{l|ll:ll}
\left(\lambda A+\mu A^{\prime}\right) & \begin{array}{cc}
B, & C \\
B^{\prime}, & C^{\prime}
\end{array}\left|\begin{array}{l}
G, \\
G^{\prime}, \\
D^{\prime}
\end{array}\right|
\end{array} \\
& +\left(\lambda E+\mu E^{\prime}\right) \left\lvert\, \begin{array}{ll|ll}
A, & C & A, & G \\
A^{\prime}, & C^{\prime} & A^{\prime}, & G^{\prime}
\end{array}\right. \\
& +\left(\lambda K+\mu K^{\prime}\right)\left|\begin{array}{ll}
A, & B \\
A^{\prime}, & B^{\prime}
\end{array}\right|\left|\begin{array}{ll}
A, & D \\
A^{\prime}, & D^{\prime}
\end{array}\right| \\
& +\left(\lambda F+\mu F^{\prime}\right) \left\lvert\, \begin{array}{lll|ll}
A, & B & \mid & G, & A \\
A^{\prime}, & B^{\prime} & : & G^{\prime}, & A^{\prime}
\end{array}\right. \\
& +\left(\lambda H+\mu H^{\prime}\right)\left|\begin{array}{ll|lll}
A, & D & C, & A \\
A^{\prime}, & D^{\prime} & C^{\prime}, & A^{\prime}
\end{array}\right|
\end{aligned}
$$

Moreover, A determines a covariant $A y_{1} y_{1}+\ldots$, that 1 s, Q, A^{\prime} determines a covauant $A^{\prime} y_{1} \bar{y}_{1}+\ldots$, that $1 \mathrm{~s}, Q^{\prime}, T$ determines a covariant $T_{y_{1}^{2}}^{2} \bar{y}_{1}^{2}+$, say R, I^{\prime} determmes a covariant $T^{\prime \prime} y_{1}^{2} \bar{y}_{1}^{2}+\ldots$, say R^{\prime}, and $I, J, J^{\prime}, I^{\prime}$ are mvariants Finally, any quantity connected with the quadratic frontier that is invariantive under the lineo-linear transformation is expressible in terms of $Q, Q^{\prime}, R, R^{\prime}, I, J, J^{\prime}, I^{\prime}$
38. Had our quest been for mouriants alone, the preceding analysis shews that they must satisfy the equations

$$
\begin{array}{llll}
\theta_{1}-\theta_{5}=0, & \theta_{5}-\theta_{4}=0, & \bar{\theta}_{1}-\bar{\theta}_{5}=0, & \bar{\theta}_{5}-\bar{\theta}_{9}=0, \\
\theta_{2}=0, & \theta_{3}=0, & \theta_{5}=0, & \theta_{6}=0, \\
\theta_{5}=0, & \theta_{5}=0, \\
\theta_{4}=0, & \bar{\theta}_{3}=0, & \bar{\theta}_{4}=0, & \bar{\theta}_{6}=0, \\
\bar{\theta}_{7}=0, & \bar{\theta}_{8}=0
\end{array}
$$

But always

$$
\theta_{1}+\theta_{5}+\theta_{4}=\bar{\theta}_{3}+\bar{\theta}_{5}+\bar{\theta}_{6},
$$

so that, in virtue of the first four we have

$$
\theta_{1}=\dot{\theta}_{1},
$$

and therefore $\theta_{5}=\bar{\theta}_{5}, \theta_{9}=\bar{\theta}_{3}$. The two equations

$$
\bar{\theta}_{1}-\bar{\theta}_{5}=0 \text { and } \bar{\theta}_{5}-\bar{\theta}_{8}=0
$$

are therefore satisfied in virtue of

$$
\theta_{1}-\theta_{5}=0, \quad \theta_{5}-\theta_{9}=0,
$$

and so the system for the invariants contains fourteen independent equations. They are a complete Jacobisn system, and involve the eighteen arguments constituted by the coefficients of Q and Q^{\prime}; hence there are four algebracally independent invariants.

They can be obtained simply as follows. We have seen that

$$
\begin{array}{lll}
A, & B, & C \\
D, & E, & F \\
G, & H, & K
\end{array}
$$

is an invariant of Q, the same function for $\alpha Q+\beta Q^{\prime}$, wherc α and β are arbitrary parameters, also is an invariant of the system. Let

$$
\begin{array}{lll}
\alpha A+\beta A^{\prime}, & \alpha B+\beta B^{\prime}, & \alpha C+\beta C^{\prime} \\
\alpha D+\beta D^{\prime}, & \alpha E+\beta E^{3}, & \alpha F+\beta{a^{\prime}}^{2} \beta J+\alpha \beta^{2} J^{\prime}+\beta^{3} I^{\prime}, \\
\alpha G+\beta G^{\prime}, & \alpha H+\beta H^{\prime}, & \alpha K+\beta K^{\prime} .
\end{array}
$$

then $I, J, J^{\prime}, I^{\prime}$ are four invariants, independent of one another, and therefore suitable for the aggregate of the four algebracally independent meariants They manfestly agree with the four mvariants in the earlier aggregate of invariants and covariants

Ex Prove that the complete nystem for a smgle equation $\ell=0$ is composed of Q and I.
39. The detailed consideration of the invainantive forms will not be considered further What has actually been done shomld suffice to shew the march of a general method of proceeding for the particular problem

But one warning must be given if this general method is to be appled to a wider problem, viz, the determination of all the covariantive concomatants of all kinds whatever that are to be associated with any single form or wath any couple of forms that, are integral and homogeneous in y_{1}, y_{2}, y_{3}, and also integral and hounogencous of the same order in $y_{1}, \bar{y}_{2}, y_{3}$, where we still assume the lineo-linear transformation for y_{1}, y_{2}, y_{3} and its congugate for $y_{1}, \bar{y}_{2}, y_{3}$ as the transformations under which the concomitants are to be memanantive For this problein, it is necessary to mtroduce variables contragredient to the valiables x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3}, according to the customary law of variation in the theory of forms, that 1 s , it we denote these firther variables by $\xi_{1}, \xi_{2}, \xi_{7}$, $\eta_{1}, \eta_{2}, \boldsymbol{\eta}_{3}$, and their conjugates, they are subject to the lineo-hnear transformations

$$
\left.\left.\begin{array}{ll}
\xi_{1}=a \eta_{1}+a^{\prime} \eta_{12}+a^{\prime \prime} \eta_{3} \\
\xi_{2}=b \eta_{1}+b^{\prime} \eta_{2}+b^{\prime \prime} \eta_{3} \\
\xi_{3}=c \eta_{1}+c^{\prime} \eta_{2}+c^{\prime \prime} \eta_{3}
\end{array}\right\}, \begin{array}{l}
\bar{\xi}_{1}=\bar{a} \bar{\eta}_{1}+\bar{a}^{\prime} \bar{\eta}_{2}+\bar{a}^{\prime \prime} \bar{\eta}_{3} \\
\bar{\xi}_{2}=\bar{b} \bar{\eta}_{1}+\bar{b}^{\prime} \bar{\eta}_{2}+b^{\prime \prime} \bar{\eta}_{3} \\
\bar{\xi}_{3}=\bar{c} \bar{\eta}_{1}+c^{\prime} \bar{\eta}_{2}+c^{\prime \prime} \bar{\eta}_{3}
\end{array}\right\} .
$$

It will be noticed (as is to be expected) that the umbral coefficients, used to express a given homogeneous form symbolically, arc themselves contragredient to the variables. Manfestly we have

$$
\begin{aligned}
& y_{1} \eta_{1}+y_{2} \eta_{4}+y_{3} \eta_{3}=x_{1} \xi_{1}+x_{2} \xi_{2}+x_{3} \xi_{3} \\
& y_{1} \bar{\eta}_{1}+\bar{y}_{2} \bar{\eta}_{2}+y_{3} \bar{\eta}_{3}=x_{1} \xi_{1}+x_{2} \xi_{2}+x_{3} \xi_{3}
\end{aligned}
$$

It need hardly be pointed out that, while the complex variables x_{1}, x_{2}, x_{3} correspond to the point-variables in the ordinary theory of ternary forms, the complex variables $\xi_{1}, \xi_{2}, \xi_{3}$ correspond to the line-variables in that theory.

In order to obtain the most general concomitant of any kind, we should apply the preceding method to a function of the type

$$
\phi\left(y_{1}, y_{2}, y_{3}, y_{1}, \bar{y}_{2}, \bar{y}_{3}, \eta_{1}, \eta_{2}, \eta_{3}, \bar{\eta}_{1}, \bar{\eta}_{2}, \bar{\eta}_{3}, A, \ldots\right)
$$

unvolving all the variables and the coefficients of any or all of the initial given system of forms whose aggregate of concomitants is wanted. There is plenty of room and opportunity for research; but the investigations would take us into the wider pure algebra of the theory of homogeneous forms, and they will not be pursued in these lectures.

Ex 1. Let U and V be any two covariants thant belong to a form or to a system of homogeneous forms, and let

$$
\begin{aligned}
& Y_{1}=\frac{\partial U}{\partial y_{2}} \frac{\partial V}{\partial \bar{y}_{3}}-\frac{\partial U}{\partial y_{3}} \frac{\partial V}{\partial y_{2}} \\
& Y_{2}=\frac{\partial U}{\partial y_{3}} \frac{\partial V}{\partial y_{1}}-\frac{\partial U}{\partial y_{1}} \frac{\partial V}{\partial y_{3}} \\
& \Gamma_{3}=\frac{\partial U}{\partial y_{1}} \frac{\partial V}{\partial y_{2}}-\frac{\partial U}{\partial y_{2}} \frac{\partial \bar{\partial}}{\partial y_{1}}
\end{aligned},,
$$

Prove that Y_{1}, Y_{2}, Y_{3} are cogredent with y_{1}, y_{2}, y_{3}, and that $\bar{Y}_{1}, \bar{Y}_{2}, Y_{3}$ are cogredent with $\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}$, and shew that

$$
U\left(Y_{1}, \Gamma_{3}, Y_{3}, \bar{Y}_{1}, \bar{F}_{2}, \bar{Y}_{3}\right) \text { and } V\left(Y_{1}, Y_{2}, Y_{3}, \bar{Y}_{1}, \bar{Y}_{2}, \bar{Y}_{3}\right)
$$

are covarnants of the system.
In particular, when U and V are the two initial quantities Q and Q^{\prime} belonging to a quadratic frontier, determine the two covariants which are thins constructed

Ex. 2 Shew that when a quartic frontier, generally covariantive under a lmeo-lmear transformation, is given by equations $Q=0$ and $Q=0$, where symbolically

$$
Q=\Pi^{2} \bar{\Pi}^{2} \text { and } Q^{\prime}=\Pi^{\prime 2} \bar{\Pi}^{\prime 2},
$$

the algebraically complete set of mivariants and pure covariants belonging to the system consists, in addition to Q and Q, of sisty functions.

40 One other matter is left for investigation outade the range of these lectures. We have already dealt with the canonical form to which the expression ot a lineo-linear transformation can be reduced. Also we have seen that there are quadratic frontiers, represented by the two equations of lowest degree, which keep a general invaiantive character under such a transformation It remains to consider what is the simplest canonical form to which two simultaneous equations representing such a quadratic frontier can be reduced, where there no longer is a question of invariance under a single transformation only*. This more general problem has some analogy with the problem of reducing to canonical forms the equations of two conics.

[^10]In that solved problem, certan invariants of the system are necessarily conserved, in this propounded problem, the four mvariants of the system of two equations, which alrtady have been obtaned, must also be conserved.

One appropriate form $1 s$ suggested almost at once by the known result in the case of two eomes referred to their common self-conjugate triangle. It is natural to enquire whether two forms
$P=A x_{1} \bar{x}_{1}+B x_{1} \bar{x}_{2}+C x_{1} \bar{x}_{3}+D x_{2} \bar{x}_{1}+E x_{4} \bar{x}_{3}+F x_{2} \bar{x}_{3}+G x_{3} \bar{x}_{1}+H x_{3} \bar{x}_{2}+K x_{3} \bar{x}_{3}$,
$P^{\prime}=A^{\prime} x_{1} \bar{x}_{1}+B^{\prime} x_{1} \bar{x}_{2}+C^{\prime} x_{1} \bar{x}_{3}+D^{\prime} x_{2} \bar{x}_{1}+E^{\prime} x_{2} \bar{x}_{2}+\bar{F}^{\prime} x_{2} \bar{x}_{3}+G^{\prime} x_{3} \bar{x}_{1}+H^{\prime} x_{3} \bar{x}_{2}+K^{\prime} x_{4} \bar{x}_{3}$, can simultaneously, by homogeneous hnear transformation of the variables, be changed to forms

$$
\begin{aligned}
& P^{\prime}=X_{1} \bar{X}_{1}+X_{2} \bar{X}_{2}+X_{3} X_{3} \\
& P^{\prime}=A^{\prime \prime} X_{1} \bar{X}_{1}+B^{\prime \prime} X_{2} \bar{X}_{2}+C^{\prime \prime} X_{3} \bar{X}_{s}
\end{aligned}
$$

where no two of the three quantities $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are equal to one another, and no one of them is equal to unity. With these last restrictions, we have

$$
I+a J+a^{2} J^{\prime}+\alpha^{9} I^{\prime}=\left(1+\alpha A^{\prime \prime}\right)\left(1+\alpha B^{\prime \prime}\right)\left(1+a C^{\prime \prime}\right)
$$

for arbitiary values of a, consequently, the three mvariants $J / I, J^{\prime} / I, I^{\prime} \mid I$ (which are absolute invariants) ane independent of one anothex, and no ono of them vanishes. Thus the general condition as regards conservation of muariants is satisfied

Now all the quantities $A, E, K, A^{\prime}, E^{\prime}, K^{\prime}$ are real, hence a requirement that they shall respectively acquire the values $1,1,1, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, where $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are real, imposes six conditions Also B and J, B^{\prime} and D^{\prime}, C and G, C^{\prime} and G^{\prime}, F and $H, F^{\prime \prime}$ and H^{\prime}, are (in each combination) conjugate constants, hence a requirement that all these coefficients shall vaush imposes twelve conditions. In order, therefore, that the suggested canonical forms shall be possible, eighteen conditions of the specified kind must be siatisficd.

Suppose, then, that the variables are transformed by the relanons

$$
\begin{aligned}
& x_{1}=\theta X_{1}+\phi X_{2}+\psi X_{3}, \\
& x_{2}=\theta^{\prime} X_{1}+\phi^{\prime} X_{2}+\psi^{\prime} X_{3}^{\prime}, \\
& x_{3}=\theta^{\prime \prime} X_{1}+\phi^{\prime \prime} X_{2}+\psi^{\prime \prime} X_{3},
\end{aligned}
$$

where the complex eonstants are at our disposal. Let

$$
\nabla=\left|\begin{array}{lll}
\theta, & \phi, & \psi \\
\theta^{\prime}, & \phi^{\prime}, & \psi^{\prime} \\
\theta^{\prime \prime}, & \phi^{\prime \prime}, & \psi^{\prime \prime}
\end{array}\right|, \quad \overline{ }=\left|\begin{array}{ccc}
\bar{\theta}, & \bar{\phi}, & \bar{\psi} \\
\bar{\theta}^{\prime}, & \bar{\phi}^{\prime}, & \bar{\psi}^{\prime} \\
\bar{\theta}^{\prime \prime}, & \bar{\phi}^{\prime \prime}, & \bar{\psi}^{\prime \prime}
\end{array}\right|
$$

$$
1=\nabla \because I
$$

$$
A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}=\nabla \nabla J
$$

$$
B^{\prime \prime} C^{\prime \prime}+C^{\prime \prime} A^{\prime \prime}+A^{\prime \prime} B^{\prime \prime}=\nabla \nabla J^{\prime}
$$

$$
A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}=\nabla \nabla I^{\prime}
$$

so that the values of $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are given by means of the quantities $J / I, J^{\prime} / I, I^{\prime} / I$, three real quantities. Also, as each of the nine arbitrary * constants $\theta, \ldots, \psi^{\prime \prime}$ is complex, we have effectively eighteen constants at our disposal, formally sufficient to satisfy the eighteen conditions which take the form of linear equations.

It therefore may be inferred that a couple of general forms P and P^{\prime} can be transformed so that they acquire forms of the suggested type.

Periodic transformations.

41. These results, as regards lineo-hnear transtormations, are general Simple forms occur when the transforinations are periodic, that 1 s, are such that after a finite number of repetitions in succession we return to the initial variables; and these provide the generalisation of finite groups of homographic transtormations in a single variable.

The requirement of periodicity will mpose conditions upon the unequal multiphers λ and μ in the first type ($\$ 22$)

The second type cannot be periodic unless σ vanishes. But if σ does vanish, the type can be periodic when an appropriate condition is imposed upon the repeated multiplier λ

The third type cannot be periode unless all the constants ρ, σ, τ vanish. But of all these constants vanish, we have morely the identical transformation at once. There $1 s$ no modification of the varnables, and consequently there is no question of periodicity

When therefore we deal with periodic substitutions, we have to consider only the first type of trunsformation which has unequal multiphers λ and μ, and a himited form of the second type which has a repeated multipher λ.

42 A multaplier is the quotient of two roots of the characteristic equation, hence the equation, which is satisficd by a multiplier, is the eliminant of

$$
\begin{array}{r}
\theta^{3}-\Delta_{1} \theta^{2}+\Delta_{2} \theta-\Delta=0 \\
t^{3} \theta^{3}-\Delta_{1} t^{2} \theta^{2}+\Delta_{2} t \theta-\Delta=0
\end{array}
$$

The eliminant is of degree nine in t, but there is a factor $(t-1)^{3}$, which is irrelevant to the present issue and must therefore be rejected One of the simplest ways of obtaining the residual equation 18 to proceed by the method of Bezout and Caylcy for constructing the elimmant; it leads to the result

$$
\left|\begin{array}{ccc}
1+t+t^{2}, & \Delta_{1}(1+t) & , \\
\Delta_{2} t(1+t), & \Delta\left(1+t+t^{2}\right)+\Delta_{1} \Delta_{3} t, & \Delta_{1} \Delta(1+t) \\
\Delta_{1} t^{2}, & \Delta_{2} t(1+t) & , \\
\Delta\left(1+t+t^{2}\right)
\end{array}\right|=0,
$$

which, when the determinant is expanded, becomes

$$
\begin{aligned}
\Delta^{2}\left(t^{8}+1\right) & +\left(3 \Delta^{2}-\Delta_{1} \Delta_{2} \Delta\right)\left(t^{5}+t\right) \\
& +\left(6 \Delta^{z}-5 \Delta_{1} \Delta_{2} \Delta+\Delta_{1}^{3} \Delta+\Delta_{2}^{3}\right)\left(t^{4}+t^{3}\right) \\
& +\left(7 \Delta^{2}-6 \Delta_{1} \Delta_{2} \Delta-\Delta_{1}{ }^{2} \Delta_{2}{ }^{2}+2 \Delta_{1}^{3} \Delta+2 \Delta_{2}{ }^{3}\right) t^{3}=0
\end{aligned}
$$

This is a reciprocal equation, as is to be expected from the mode of occurrence of the multiphers in the canonical form of the transformation

For the first type of transformation, the six roots of this multipher equation are

$$
\lambda, \quad \mu, \frac{1}{\lambda}, \frac{1}{\mu}, \frac{\lambda}{\mu}, \frac{\mu}{\lambda},
$$

and the solution of the cquation effectively involves the two quantities $\Delta_{1} \Delta^{-\frac{1}{3}}$ and $\Delta_{2} \Delta^{-i}$, which are homogeneous (of order zero) in the coefficients of the orginal transfornation.

For the second type, the six roots of the multipher equation are

$$
\lambda, \quad \lambda, \frac{1}{\lambda}, \frac{1}{\lambda}, 1,1,
$$

and we must have

$$
27 \Delta^{2}-18 \Delta_{1} \Delta_{2} \Delta-\Delta_{1}{ }^{2} \Delta_{2}{ }^{2}+4 \Delta_{1}^{9} \Delta+4 \Delta_{i}^{3}=0,
$$

being the discrimmant condition for the equality of two roots of the characteristic equation

When the lneo-linear transformation is periodic of order n, then

$$
\lambda^{n}=1, \quad \mu^{n}=1 ;
$$

and n must be the lowest integer for wheh both the conditions are satisfied. Thus, for the first type,

$$
\lambda=e^{2 \pi r r / n}, \quad \mu=e^{2 \pi r s / n},
$$

where r and s are unequal positive integers, greater than zero, less than n, and such that r, s, n have no common factor other than unity Then

$$
\begin{aligned}
& \Delta_{1}=\theta_{3}\left(1+e^{8 \pi r r r / n}+e^{2 \pi r i n / n}\right), \\
& \Delta_{3}=\theta_{8}^{2}\left\{e^{2 \pi r / n}+e^{2 \pi \pi / 3 / n}+e^{2 \pi(r+8) / n}\right\}, \\
& \Delta=\theta_{3}{ }^{3} e^{2 \pi(r+n) / n},
\end{aligned}
$$

and the conditions for periodicity of order n are

$$
\begin{aligned}
& \Delta_{1}^{2}\left\{1+e^{2 \pi r r / n}+e^{2 \pi n / n}\right\}^{-2}=\Delta_{2}\left\{e^{3 \pi r r / n}+e^{2 m 8 / n}+e^{2 \pi i(r+8 / n}\right\}^{-1}, \\
& \Delta_{1}^{3}\left\{1+e^{2 \pi r r / n}+e^{2 \pi r s / n}\right\}^{-3}=\Delta e^{-2 \pi(r+8) / n} .
\end{aligned}
$$

The conditions thus imposed upon r and s require that n should be greater than 2 ; and so lineo-hnear transformations, of which the characteristic equation has three unequal roots, cannot possess quadratic perrodicity.

As a matter of mere algebra, it is easy to verify that the original transformation

$$
\stackrel{v}{a z+b z^{\prime}+c}=\frac{u^{\prime}}{a^{\prime} z+b^{\prime} z^{\prime}+c^{\prime}}=\frac{1}{a^{\prime \prime} z+b^{\prime \prime} z^{\prime}+e^{\prime \prime}}
$$

is of quadratic periodicity in the two cases settled hy the relations

$$
\left.\begin{array}{l}
\frac{b^{\prime}-1}{b}=\frac{c^{\prime}}{c}=\frac{a^{\prime}}{a-1} \\
\frac{a^{\prime \prime}}{a-1}=\frac{b^{\prime \prime}}{b^{\prime}}=\frac{c^{\prime \prime}-1}{c}=\frac{1-a^{2}-a^{\prime} b}{c(a-1)}
\end{array}\right\},
$$

In each case four parametric constants, which may be taken to be a, b, c, a^{\prime}, are left unrestricted by the limitation of quadratic periodicity.

For the second type of transformation, the characteristic equation of which has a double root and a simple root, the discriminant condition has to be satisfied by all forms. If the transformation is to be periodic, another condition (the vanishing of the quantity σ) must also be satisfied whatever the order, and then the order of periodicity is the lowest value of λ such that

$$
\lambda^{n}=1
$$

so that we can take

$$
\lambda=e^{2 \pi r r / n}
$$

where r is any integer between 0 and n, which is prime to n
EX 1 The simplest example of such a transformation is

$$
w=\lambda z, \quad w^{\prime}=\lambda z^{\prime} .
$$

The a plane can be divided nato n triangular wedges, bounded by hnes through the omgn melined at successive angles $2 \pi / n$ to one another, and sumlarly for the z^{\prime} plane The whole z, z^{\prime} configuration is then $t_{\text {anaformed }}$ into itself by a double rotation of each plane through an angle $2 \pi r / n$ about an axis through the origns perpendicular to the planes, and the z, z^{\prime} field, made up of two such wedges in the z and z^{\prime} planes, is transformed into the w, w^{\prime} field, made up of two similar wedgen in the w and u^{\prime} planes
$E x$ 2. When the original transformation is linear and has the form

$$
w=a z+b z^{\prime}+c, \quad w^{\prime}=a^{\prime} z+b^{\prime} z^{\prime}+c^{\prime},
$$

a factor $\theta-1$ can be dropped from the characteristic equation which then becomes

$$
\theta^{2}-\left(a+b^{\prime}\right) \theta+a b^{\prime}-a^{\prime} b=0
$$

Let the roots of this equation be ν and ν^{\prime}; the canoncal form of the substitution as

$$
\begin{aligned}
& a w+\beta w^{\prime}+\gamma=\nu\left(\alpha z+\beta z^{\prime}+\gamma\right), \\
& a^{\prime} w+\beta^{\prime} w^{\prime}+\gamma^{\prime}=\nu^{\prime}\left(a^{\prime} z+\beta^{\prime} z^{\prime}+\gamma^{\prime}\right),
\end{aligned}
$$

where

$$
\begin{array}{lll}
a a+\alpha^{\prime} \beta=\nu a, & b a+b^{\prime} \beta=\nu \beta, & c a+o^{\prime} \beta=(v-1) \gamma \\
a a^{\prime}+a^{\prime} \beta^{\prime}=\nu^{\prime} a^{\prime}, & b a^{\prime}+b^{\prime} \beta^{\prime}=\nu^{\prime} \beta^{\prime}, & c a^{\prime}+c^{\prime} \beta^{\prime}=\left(\nu^{\prime}-1\right) \gamma
\end{array}
$$

Ex．3．Find a canonical form of the pemodic transformation

$$
w \sqrt{ } 2=z+z^{\prime}, \quad w^{\prime} \sqrt{ } z=z-z^{\prime}
$$

Ex 4 Prove that all transformations of the hear type，which have quadratic periodicity，belong either to the form
or to the form

$$
\begin{gathered}
w=-z+c, \quad w^{\prime}=-z^{\prime}+c^{\prime}, \\
u=a z+b z^{\prime}+c, \quad w^{\prime}=\frac{1-a^{2}}{b} z-a z^{\prime}-\frac{1+a}{b} c,
\end{gathered}
$$

where a, b, c, c^{\prime} are arbitrary constants
Ex． 5 Prove that all cubic linear tiansformations have either the form

$$
w=\theta_{i}+c, \quad w^{\prime}=\theta^{\prime} z^{\prime}+i^{\prime}
$$

or the form $w=a \hat{i}+b z^{\prime}+c$ ，with etther

$$
w^{\prime}=-\frac{1}{b}\left(a^{2}+a \theta^{2}+\theta\right) z-\left(a+\theta^{2}\right) z^{\prime}-\frac{c^{2}}{b}(a-\theta)
$$

or

$$
w^{\prime}=-\frac{1}{b}\left(a^{2}+a+1\right) z-(a+1) i^{\prime}+r^{\prime}
$$

where θ and θ^{\prime} are magina y cube－roots of umity，and a, b, c, c^{\prime} aro moresticted constants
Ex 6 Shew that，if

$$
\stackrel{{ }^{\prime \prime}}{a i+b z^{\prime}+c}=\frac{c^{\prime}}{a^{\prime} z+b^{\prime} z^{\prime}+c^{\prime}}=\begin{gathered}
l \\
a^{\prime \prime} z+b^{\prime \prime} i^{\prime}+c^{\prime \prime}
\end{gathered}
$$

then

$$
\begin{gathered}
z \\
A w+A^{\prime} w^{\prime}+A^{\prime \prime}
\end{gathered}=\frac{z^{\prime \prime}}{B w+B^{\prime} w^{\prime}+B^{\prime \prime}}=\frac{1}{C^{\prime} w+C^{\prime} w^{\prime}+C^{\prime \prime}},
$$

where $A, A^{\prime}, A^{\prime \prime}, \quad, C^{\prime}, C^{\prime}, C^{\prime \prime}$ ale the respective momors of $a, a^{\prime}, a^{\prime \prime}, \ldots, c, c^{\prime}, c^{\prime \prime}$ an the nou－ vanishing determmant Δ ，where

$$
\left.\begin{array}{rlr}
\Delta=\left|\begin{array}{lll}
a, & b, & r
\end{array}\right| \\
\mid a^{\prime}, & b^{\prime}, & \iota^{\prime} \\
\mid a^{\prime \prime}, & b^{\prime \prime}, & c^{\prime \prime}
\end{array} \right\rvert\,
$$

and prove that

$$
\left(a^{\prime \prime} z+b^{\prime \prime} z^{\prime}+c^{\prime \prime}\right)^{\prime} d\left(\frac{\prime ⿰ 丿 丿_{1}, 0^{\prime}}{z, z^{\prime}}\right)=\Delta
$$

Prove that the roots of the characteristic equation for this inverse transformation， expressing z and z^{\prime} in terms of w and u^{\prime} ，viz

$$
\left|\begin{array}{rcc}
A-\phi, & A^{\prime}, & A^{\prime \prime} \\
B, & B^{\prime}-\phi, & B^{\prime \prime} \\
C, & C^{\prime}, & C^{\prime \prime}-\phi
\end{array}\right|=0
$$

are connected with the roots of the characteristic equation of the original transformation by the relation

$$
\theta \phi=\Delta,
$$

and verify that the invariant centres for the inverse transformation are the same as those for the original transformation

Ex．7．Obtain for a lineo－linear transformation，between two sets of n variables， results corresponding to those in the preceding example

Exx 8. Prove that the invariant centre ζ_{1} and ζ_{1}^{\prime} of the general lineo-linear transformation is given by the equatious

$$
\frac{\zeta_{1}}{A^{\prime \prime}+c \theta_{1}}=\frac{\zeta_{1}^{\prime}}{B^{\prime \prime}+c^{\prime} \theta_{1}}=c^{\prime \prime}-\left(a^{\prime}+b^{\prime}\right) \theta_{1}+\theta_{1}^{2}
$$

the denominator in the third fraction bemg distuct from zero. Prove also that, for the quantities $a_{1} \beta_{1} \gamma_{1}$,

$$
a_{1} \zeta_{1}+\beta_{1} \zeta_{1}^{\prime}+\gamma_{1}=\gamma_{1}{\underset{\theta^{\prime}}{\prime \prime}-\left(a+\theta_{2}\right)\left(\theta_{3}-\theta_{1}\right)}_{\overline{\theta_{1}+\theta_{1}^{\prime}}}
$$

Ex 9. Shew that, when n is a prime number, all the periodic substitutions

$$
\left.\begin{array}{rl}
w & =a z+b z^{\prime}+c \\
w^{\prime} & =-\frac{a-1}{b}\left(a-e^{8 \pi \tau / n}\right) z-\left(a-1-e^{8 \pi z / n}\right) z^{\prime}-\frac{c}{b}\left(a-e^{a \pi / n}\right)
\end{array}\right\}
$$

for $s=2, ., n-1$, are powers of the same periode substitution for $\varepsilon=1$.
Shew that all the substitutions

$$
w=a z+c, \quad w^{\prime}=a^{\prime} z^{\prime}+c^{\prime},
$$

whore a and a^{\prime} are primntive nth roots of unty, are periodle
Do the two proceding classes contain all the purely lineat substitutions which are periodic?

CHAPTER III

Uniform Analytic Functions

43 We now proceed to the more immediate and drect consideration of the properties and the charactenstics of functions of two independent complex variables, beginning with the simplest fundamental propositions Not a few of these can be consudererl as well known, they are included for the sake of completeness, and also tor the sake of reference. Some among them are expressed in furms that appear more comprehensive than the customary enuncations. Others of them appear to be new, such as those which deal with the characteristic relations and the properties of two functions of a couple of variables considered simultaneously, and these, as being more novel than the others, ate expounded at fuller length (Chaps. vil and viin)

Though the exposition is restricted to the case when there are only two mdependent complex variables, it should be noted that many of the theorems belong, mutatas mutandes, also to functions of n independent variables. For others, however, further ideas are neoded before a corresponding extension can similarly be effected.

We begin with definitions and explanations of the more frequent terms adopted, nany of which are obvious extensions of the corresponding usages for functions of one complex variable

The whole rauge of the variables z and z^{\prime} is often called the field of variation The extent of the field sometimes depends upon the properties of the functions concerned, otherwise, it imples the four-fold range of variation between $-\infty$ and $+\infty$.

A restricted portion of a field of vamation is called a domain, the range of a domain being usually indicated by analytical relations. Thus we may have the doman of a place a, a^{\prime}, given by relations

$$
|z-a|<r, \quad\left|z^{\prime}-a^{\prime}\right|<r^{\prime},
$$

we may have a domain given by relations

$$
\phi\left(x-\alpha, y-\beta, x^{\prime}-\alpha^{\prime}, y^{\prime}-\beta^{\prime}\right) \leqslant c, \quad \psi\left(x-\alpha, y-\beta, x^{\prime}-\alpha^{\prime}, y^{\prime}-\beta^{\prime}\right) \leqslant c^{\prime},
$$

where $a=\alpha+i \beta, a^{\prime}=\alpha^{\prime}+i \beta^{\prime}$, the equations being such as to secure a finite
range of values of z and a finite range of values of z^{\prime}. When r and r^{\prime} (or c and c^{\prime}, in the alternative case) are small, the domann of a and a^{\prime} is sometimes called the vicinuty, or the immediate vicinty, of the place a, a^{\prime}.

In these definitions we substıtute $\frac{1}{|z|}$ for $|z-a|$ when a is at infinity, and $\frac{1}{\left|z^{\prime}\right|}$ for $\left|z^{\prime}-a^{\prime}\right|$ when a^{\prime} is at infinity.

44 A function of z and z^{\prime}, say $w=f\left(z, z^{\prime}\right)$, is said to be uniform, when every assigned pair of values of z and z^{\prime} gives one (and only one) value of w. Through familiarity with properties subsequently established, the notion that z and z^{\prime} may attain their assigned values in any manner whatever sometimes comes to be associated with the definition, but the notion is not part of the definition

The function w is sadd to be multuform, when every assigned pair of values of z and z^{\prime} gives a finite number of values of w, the finite number being the same for all z, z^{\prime} plares where the function exists. Sometimes it is convenient to specify the number in the definition, when there are m values, and no more than m values, w is sometnnes called m-valned

A function w may have au infinite number of values for given values of z and z^{\prime}. Among such functions, cach class can be specificd by its own general property. Thus one simple class of this kind arises from integrals of functions that have additive periods

Just as with uniform functions, so with multiform and other functions, familarity with properties subsequently established leads to the notion that a specification of the path or lange by which z and z^{\prime} attan their values wall lead to the acquisition of some definte one among the m values, agan, the notion is not part of the defintion

Even in this mattor of the description of the range of z and of z^{\prime}, care must be exercised, it may become necessary to take account, not merely of the actual range of z and of z^{\prime}, but also of the mode of description of thone notual ranges. Consider, for example*, the function

$$
w=\left(z^{2}-z^{\prime}+1\right)^{\frac{1}{3}}
$$

Take $\tilde{z}=0$ and $z^{\prime}=0$ as the mintial place, and consider the branch of w wheh has the value +1 at that place.

We make 2 vary from 0 to +1 by describing (in the direction modicated by the arrow) a sumple curve $O A B$ which, when combuned with the axis $O B$ of real quantities, encloses the prunt $\frac{1}{2} i$ and does not enclose the pount a

* The example was suggested to me by Prof W. Burnside Another example, viz.

$$
w=\left(z-z^{\prime}+1\right)^{\frac{1}{2}}
$$

${ }^{18}$ given by Sauvage, Ann. de Marsetlle, t. xiv (1804), section y, a parthcular path being specified. Obviously any number of special examples of the same type can be constracted.

We make z^{\prime} vary from 0 to +1 by describing the straight line $O^{\prime} C^{\prime}$ in the direction indicated by the arrow; the pront D^{\prime} ou that line 18 given by $z^{\prime}=3$.

Consider two different descriptions of these paths
In the first description, keep z^{\prime} at O^{\prime}, while z describes the whole path $O A B$, and then keep z at B, while z^{\prime} describes its whole path $\theta^{\prime} C^{\prime \prime}$ For this description, the final value of w is manfestly +1

In the second derenption, kecp z at 0 , while z^{\prime} descriten the part $\left.0^{\prime} 1\right)^{\prime}$ of its whole path, then keep z^{\prime} at D^{\prime}, thus maling $a=\left(z^{2}+\ddagger\right)^{\frac{1}{2}}$ for that whe of z^{\prime}, und now make z describe its whole path $0.1 B$ When z arrives at B by this path, the value of w is
 $\left(z^{2}-z^{\prime}+1\right)^{\frac{1}{2}}$ has become $-(\bar{i})^{\frac{2}{2}}$ Now keop z at B, and let z^{\prime} desconbe $D^{\prime} C^{\prime}$, the remander of its path, the final value of w is mamfestly -1

It thus apmears in the case of the spean function that, oven whon the range for each variable if perfectly preano, the tanal value can depend upon the mode of description of the precise ranges The matter belonge, in its amplest form, to the theory of algebrac functions

45 A function $f\left(z, z^{\prime}\right)$ is sad to be contrinuous if, when the ical and maginay parts of z and of z^{\prime} are substituted and the function is expressed in its real and magmary parts $u+w$, both the functions u and v of $x, y, x^{\prime}, y^{\prime}$ are continuous.

Let the function $f\left(z, z^{\prime}\right)$ be uniform and continuous, everywhere within a field of z, z^{\prime} varnation It is sald to be analytic, when it possesses derivatives of all orders with regard to both variables

$$
\frac{\partial f\left(z, z^{\prime}\right)}{\partial z}, \underset{\partial z^{\prime}}{\partial f\left(z, z^{\prime}\right)}, \quad . \cdot,
$$

which are unform and continuous everywhere within that field, or what is equivalent, it is satd to be analytic if $f\left(z, z^{\prime}\right)$ is an analytic function of z when any arbitrary fixed value is assigned to z^{\prime} and is also an analytic function of z^{\prime} when any arbitrary fixed value is assigned to z. But it need hardly be pointed out that, while $f\left(z, z^{\prime}\right)$ is-under this definition-expressible as a power-series of z alone having functions of the parametric z^{\prime} for coefficients, and also as a power-series of z^{\prime} alone having functions of the parametric z for coefficients, an expansion in powers of z and z^{\prime} simultaneously 18 a matter of proof, to be considered later.

It is a known proposition that an absolutely converging double series can be rearranged in any manner and can be summed in any order, the sum being the same in all arrangements and for all orders of summation. Suppose, then, that the double power-series

$$
\Sigma \Sigma c_{m, m^{\prime}}(z-a)^{m}\left(z^{\prime}-a^{\prime}\right)^{m^{\prime}}
$$

where m and m^{\prime} are positive whole numbers (including zero), and where the coefficients $c_{m, m^{\prime}}$ arc constants, converges absolutely at every place within some domain of the place a, a^{\prime}. The series, within the domain, defines a function, and the function is said to be regular, or to behave regularly, everywhere in the domain of the place α, a^{\prime}. The domain must not be infinitesimal in extent; and the place a, a^{\prime} is said to be an ordinary place for the function When it is desired to indicate specifically that the double series contains only positive powers of $z-a$ and $z^{\prime}-a^{\prime}$ in accordance with the definition, we call the series integral, or whole, or holomorphic and sometimes the function is called integral or holomorphic within the doman of the place a, a^{\prime}.

When the power-series is finite in both sequences of indices, the function is a polynomial in z and z^{\prime}. When it is infinite in either sequence or in both sequences, the function represented is usually called transcendental, unless it can be represented by algebranc forms.

When the function is transcendental, the question arises as to the range of the domain over which the power-serics converges. When the domain 18 limited, a question arises as to whether the power-series, representing the function within the domain, can be continued analytically beyond the limuts of the doman.

Perhaps the sumplest example of a multiforin function w of z and z^{\prime} occurs, when the three variables are connected by an algebrace equation

$$
A\left(w, z, z^{\prime}\right)=0
$$

where A is a polynomial in each of its arguments. As already explained, it sometimes proves desirable in this connection to consider two multiform functions w and w^{\prime}, defined by algebrac equations

$$
C\left(w, w^{\prime}, z, z^{\prime}\right)=0, \quad D\left(w, w^{\prime}, z, z^{\prime}\right)=0
$$

where C and D are polynomial in each of their arguments. In this event, the ordinary processes of elimination enable us to substitute equations

$$
A\left(w, z, z^{\prime}\right)=0, \quad B\left(w^{\prime}, z, z^{\prime}\right)=0
$$

for the equations $C=0, D=0$, but care must be exercised to secure that the separate roots of $A=0$ and of $B=0$ must be grouped so as to give the simultaneous roots of $C=0, D=0$.

For example, we shall have (Chap. vi) to consider an expression

$$
\Sigma \Sigma \frac{R\left(w, w^{\prime}, z, z^{\prime}\right)}{J\left(\frac{C, D}{w, w^{\prime}}\right)}
$$

where $R\left(w, w^{\prime}, z, z^{\prime}\right)$ denotes an integral polynomial in w and w^{\prime}, and where the double finte summation extends over the simultaneous roots of $C=0, D=0$ in the method adopted for its evaluation, we are led to utroduce terms wheh arise from combinations of the roots of $A=0, B=0$, that do not provide simultaneous roots of $C=0, D=0$

In the first case, to the function w. and, in the second case, to the functions w and w^{\prime} the epithet algebrave is assigned. Manifcstly, among the four variables $u^{\prime \prime}, w^{\prime}, z, z^{\prime}$, any two can be desciibed as algebratc functions of the other two, unless (in lumited cases) elimmation should lead to a single relation between two variables alone

In this imitial stage, it is not necessary to state the definitions of terms pole, accudental (on non-essential) singularity, essential singularity New and modified definitions are requred, because functions of two variables possess properties which have no simple analogue in the properties of functions of a single variable These definitions will be given later (585, 58), when the properties are undet actual considetation. As will be seen, a discrimination between functions of two varmables and functions of more than two varinbles can be made, so as to give a classafication proper to functions of two vandbles We may, however, mention in passing that, in the vicinity of any inon-essential singularity a, a^{\prime}, a unfform analytic function is expressible in a form

$$
\begin{aligned}
& Q\left(z-a, z^{\prime}-a^{\prime}\right) \\
& Y^{\prime}\left(z-a, z^{\prime}-a^{\prime}\right)
\end{aligned}
$$

where Q and P are functions, which are regular in a doman of a and a^{\prime}. such a function is sometimes called meromorphec in the vicinity of the place a, a^{\prime}.

The simplest example of a meromorphic function occurs when both Q and P are polynomal functions of their arguments, in that case, the function is called rational.

Some properties of regular functions

46. Consider functions that are regular everywhere in some finite doman of an assigned place a, u^{\prime}. By writing $z-a=\zeta$ or $\underset{\zeta}{\mathbf{1}}$, according as $|a|$ is finite or infinite, and by writing $z^{\prime}-a^{\prime}=\zeta^{\prime}$ or $\frac{1}{\zeta^{\prime}}$, according as $\left|a^{\prime}\right| 18$ tinite or is infinite, we can take the assigned place as 0,0 , without any loss of generality.

We then have a theorem* connected with the definition of the analytic property, as follows -

When a function $f\left(z, z^{\prime}\right)$, for values of $|z| ₹ r$ and of $\left|z^{\prime}\right| ₹ r^{\prime}$, is a regular function of z everywhere withan the assigned z-circle for every value of z^{\prime} withun uts asszgned curcle, and also is a regular function of z^{\prime} everywhere withon the assigned z-circle for every value of z withon ats assigned corcle, it is a regular function of z and z^{\prime} everywhere wuthen the indicated field of z, z^{\prime} varration.

Let the function $f\left(z, z^{\prime}\right)$ be represented by a series

$$
f\left(z, z^{\prime}\right)=\sum_{m=0}^{\infty} g_{m}\left(z^{\prime}\right) z^{i n}
$$

as is possible under the first hypothesis If $M_{0}{ }^{\prime}$ denote the greatest value of $\left|f\left(z, z^{\prime}\right)\right|$ for any assigned value z_{0}^{\prime} of z^{\prime} within the z^{\prime}-circle, and for all the values of z within its circle, our series gives

$$
f\left(z, z_{0}^{\prime}\right)=\sum_{m=0}^{\infty} g_{m}\left(z_{0}^{\prime}\right) z^{m},
$$

and then by a well-known theorem \dagger, we have

$$
\left|g_{m}\left(z_{0}^{\prime}\right)\right|<\frac{M_{0}^{\prime}}{r^{m}}
$$

Consequently, if M denote the greatest value of $\left|f\left(z, z^{\prime}\right)\right|$ within the whole z, z^{\prime} field considered, we have

$$
M_{\theta}^{\prime} \gtrless M
$$

and therefore

$$
\left|g_{n n}\left(z_{0}^{\prime}\right)\right|<\frac{M}{r^{m}}
$$

for all values of m, for any value of z_{n}^{\prime} such that $\left|z_{0}^{\prime}\right|<r^{\prime}$. Consequently, for all values of z^{\prime} in question, we have

$$
\left|g_{m}\left(z^{\prime}\right)\right|<\begin{aligned}
& M \\
& M
\end{aligned}
$$

Now $f\left(z, z^{\prime}\right)$ is a regular function of z^{\prime} for every value of z for which $|z|<r$, hence $g_{0}\left(z^{\prime}\right)$, being the value of $f\left(z, z^{\prime}\right)$ when $z=0$, and

$$
g_{m}\left(z^{\prime}\right)=\frac{1}{m!}\left[\frac{\partial^{m}}{\partial z^{m}} f\left(z, z^{\prime}\right)\right]_{z=0}
$$

for all values of m, are regular functions of z^{\prime}. Accordingly, we can write

$$
g_{m}\left(z^{\prime}\right)=\sum_{n=0}^{\infty} c_{m, n} z^{\prime n}
$$

[^11]where the senes represents a regular function of z^{\prime}; and as $\mid g_{n}\left(z^{\prime}\right)$; throughout the whole range of varation of z^{\prime} is less than M / r^{m}, we have, agan by the theorem already quoted,
$$
\left|c_{m, n}\right|<\frac{M}{r^{\prime m}} \cdot \frac{1}{r^{\prime n}} .
$$

On these results, consider the double senes

$$
F\left(z, z^{\prime}\right)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m, n} z^{m} z^{\prime n}
$$

If it converges absolutely, we can take it in the form

$$
\sum_{n=0}^{\infty}\left\{\sum_{m=1}^{\infty} c_{m, n} z^{\prime n}\right\} z^{m}
$$

that 1 s ,

$$
\sum_{n=\vartheta}^{\infty} g_{m}\left(z^{\prime}\right) z^{n},
$$

and so we shall have

$$
F\left(z, z^{\prime}\right)=f\left(z, z^{\prime}\right)
$$

for the field of variation within which $F^{\prime}\left(z, z^{\prime}\right)$ converges absolutely But we have just proved that

$$
\left|c_{m, n}\right|<\underset{\gamma, m, r^{1 n}}{M}
$$

and thercfore we have

$$
\begin{aligned}
& \left|\boldsymbol{H}^{\prime}\left(z, z^{\prime}\right)\right|=\left|\sum_{m=10}^{\infty} \sum_{n=0}^{\infty} c_{m, n} z^{m} z^{\prime n}\right|_{\mid}^{\prime} \\
& ₹ \sum_{m-0}^{\infty} \sum_{n=0}^{\infty}\left|c_{n, n}\right||z|^{m}\left|z^{\prime}\right|^{n} \\
& <\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}-\frac{M}{r^{m}} \overline{r^{\prime n}}|z|^{m}\left|z^{\prime}\right|^{n} \\
& <\frac{M}{\left\{1-\begin{array}{c}
|z| \\
r
\end{array}\right\}\left\{1--_{r^{\prime}}^{\left|z^{\prime}\right| \mid}\right\}},
\end{aligned}
$$

for all values of $|z|<r$ and all values of $\left|z^{\prime}\right|<r^{\prime}$
This result establishes the absolute convergence of $F^{\prime}\left(z, z^{\prime}\right)$, and so we have

$$
f\left(z, z^{\prime}\right)={\underset{n}{n=0}}_{\mathbb{\alpha}}^{\sum_{n=0}^{\infty}} c_{n, n} z^{n} z^{\prime},
$$

where the double series converges absolutely m a field $|z| ₹ k<r,\left|z^{\prime}\right| ₹ k^{\prime}<r^{\prime}$, while k and k^{\prime} are not infinitesimal.

Consequently the function $f\left(z, z^{\prime}\right)$, under the postulated conditions, is a regular function of the variables z and z^{\prime}
47. Now let $f\left(z, z^{\prime}\right)$ be a regular function of z and z^{\prime} everywhere in the doman

$$
z-a|₹ r, \quad| z^{\prime}-a^{\prime} \mid ₹ r^{\prime},
$$

and within this domain let M be the greatest value of $\left|f\left(z, z^{\prime}\right)\right|$. Then, if the power-series for $f\left(z, z^{\prime}\right)$ is

$$
f\left(z, z^{\prime}\right)=\sum_{m=0} \sum_{n=0} c_{m, n}(z-a)^{m}\left(z^{\prime}-a^{\prime}\right)^{n}
$$

we have

$$
c_{r n, n}=\begin{gathered}
1 \\
m!n!
\end{gathered}\left\{\begin{array}{l}
\partial^{m+n} \\
-\frac{f\left(z, z^{\prime}\right.}{} z^{n} \\
\partial z^{n}
\end{array}\right\}_{z-a, z=a^{\prime}}
$$

and also

$$
\left|c_{m, n}\right|<\frac{M}{r^{m} r^{\prime} n}
$$

shewing that

$$
\left\{\left\{\begin{array}{c}
\partial^{m+a} f\left(z_{1} z^{\prime}\right) \\
\partial z^{m} \partial z^{\prime n}
\end{array}\right\}_{z m, z^{\prime}-a^{\prime}}<m^{\prime} n^{\prime} \underset{r^{\prime \prime} r^{\prime} n}{M}\right.
$$

Another expression for $c_{m, n}$ can be obtamed by a sumple extension of C'auchy's well-known integral-theorems for a suggle variable Denoting by $g(z)$ a function that is unform, contmuous, and analytic, within a range $z-u \mid<r$, we have

$$
\begin{gathered}
g(a)=\frac{1}{2 \pi i} \int \frac{g(z)}{z-a} d z, \\
\left\{\begin{array}{c}
d^{n} g(z) \\
-\frac{z^{n}}{d} z^{n}
\end{array}\right\}_{z=a}=\frac{n^{1}}{2 \pi i} \int \frac{g(z)}{(z-\bar{a})^{n+1}} d z,
\end{gathered}
$$

for all values of n, the integrals being taken positively round any sumple elosed cuive which hes entirely within the region and eneloses the point a. The extension indicated can be established in exactly the same way as these theorems just quoted, the analysis and the reasoning are so similar to those for the simple case that they can be stated very briefly.

For our function $f\left(z, z^{\prime}\right)$ which is uniform, continuous, and analytic, and therefore iegular, everywhere in the domam

$$
|z-a| ₹ r, \quad\left|z^{\prime}-a^{\prime}\right| ₹ r^{\prime}
$$

we have

$$
\begin{gathered}
f\left(\prime \prime, z^{\prime}\right)=\frac{1}{2 \pi i} \int \frac{f\left(z, z^{\prime}\right)}{z-a} d z, \\
\left\{\partial^{m} f^{\prime}\left(z, z^{\prime}\right)\right\}_{z=a}^{\partial z^{m}}=\frac{m}{2 \pi i} \int_{(z-a)^{m+1}} \frac{f\left(z, z^{\prime}\right)}{m} d z,
\end{gathered}
$$

the integrals being taken positively round any simple closed curve which hes entrrely within the region bounded by $|z-a|=r$ and encloses the point a, and holding for every value of z^{\prime} for which $f\left(z, z^{\prime}\right)$ is defined. Again, $f\left(a, z^{\prime}\right)$ and $\left\{\partial^{\partial^{m}} \frac{f\left(z, z^{\prime}\right)}{\partial z^{m}}\right\}_{z-a}$, owing to the character of $f\left(z, z^{\prime}\right)$ within the z, z^{\prime} field of variation, are regular functions of z^{\prime} throughout the z^{\prime}-region bounded by
$\left.\mid z^{\prime}-a^{\prime}\right\}=r^{\prime}$, hence, by a repeated appheation of Cauchy's integral-theorem, we have

$$
\begin{gathered}
f\left(a, a^{\prime}\right)=\frac{1}{2 \pi l} \int_{z^{\prime}-u^{\prime}}^{f\left(u, z^{\prime}\right)} d z^{\prime}, \\
{\left[\frac{\partial^{n}}{\partial z^{\prime \prime}} f\left(a, z^{\prime}\right)\right]_{z^{\prime}-n^{\prime}}=\frac{n^{\prime}}{2 \pi l} \int_{\left(z^{\prime}-a^{\prime}\right)^{\prime 2+1}}^{f\left(a, z^{\prime}\right)} d z^{\prime},}
\end{gathered}
$$

the integrals being taken positively round any simple closed curve which hes entirely within the region bounded by $\left|z^{\prime}-a^{\prime}\right|=r^{\prime}$ and encloses the point a^{\prime}. The variations of z and z^{\prime} are medependent of one another, as also are the integrations on the two planes of the variables. combining the results. we have

$$
\begin{aligned}
f\left(a, a^{\prime}\right) & =\begin{array}{c}
1 \\
(\underline{2} \pi)^{\prime}
\end{array} \int_{(z-a)\left(z^{\prime}-a^{\prime}\right)} d z d z^{\prime} \\
& =-\frac{1}{4 \pi^{\prime}} \iint_{\frac{z^{\prime}}{}(z-a)\left(z, z^{\prime}\right)}^{\left(z-a z^{\prime}-a^{\prime}\right)} d z d z^{\prime}, \\
\left\{\begin{array}{c}
\partial^{m+n} f\left(z, z^{\prime}\right) \\
\partial z^{m} \partial z^{\prime} n
\end{array}\right\}_{z=n, z^{\prime}, a^{\prime}} & =-\begin{array}{c}
m^{\prime} n^{\prime} \\
4 \pi^{\prime}
\end{array} \iint_{(z-a)^{n+1}\left(z^{\prime}-a^{\prime}\right)^{n+1}} d z d z^{\prime},
\end{aligned}
$$

the intrgrals being taken round smple closed curves in the z-plane and the $z^{\prime} \cdot p$ lane, the $z-r$ urve lying entirely witho the region $|z-a|=r$ and enclonng the point a, and the z^{\prime}-curvi lying entirely withon the region $\left|z^{\prime}-a^{\prime}\right|=r^{\prime}$ and enclosing the point a^{\prime}.

Wo thus have expresstons, in the form of double contour integrals for the value of $f\left(z, z^{\prime}\right)$ and of every derivative of $f\left(z, z^{\prime}\right)$ at the place a, a^{\prime}.

Agan, let M denote the greatest value of $\left|f\left(z, z^{\prime}\right)\right|$ for places within the whole z, z^{\prime} domaun of vantation represented by $|z-a| ₹ r,\left|z^{\prime}-a^{\prime}\right| ₹ r^{\prime}$, then at every place on the double contour integral we have

$$
\left|f\left(z, z^{\prime}\right)\right| ₹ M
$$

Proceeding exactly as in the case of a single variable, we can shew that

$$
\left|\iint_{(z-a)(z)\left(z^{\prime}-a^{\prime}\right)} d z d z^{\prime}\right|<4 \pi^{2} M,
$$

and therefore

$$
\left|f\left(u, u^{\prime}\right)\right|<M
$$

which is merely a statement that the value of $\left|f\left(z, z^{\prime}\right)\right|$ at a particular place in the field is not greater than its greatost value in the field, and we can also shew that

$$
\left|\iint_{(z-\pi)^{m+1}\left(z^{\prime}-u^{\prime}\right)^{\prime+1}} d z d z^{\prime}\right| ₹{ }_{r^{\prime \prime \prime} r^{\prime n}}^{4 \pi^{\prime \prime}} M,
$$

and therefore
which is the former result.

Another method of stating these results is as follows. Let z, z^{\prime} be any place within the field of valiation where $f\left(z, z^{\prime}\right)$ is regular; in the z-plane, take any simple closed curve lying within the field and enclosing the point z, say a circle of centre z, and let t denote the complex variable of a current point on this curve, and in the z^{\prime}-plane, take any simple closed curve lying within the field and enclosing the point z^{\prime}, say a circle of centre z^{\prime}, and let t^{\prime} denotr the complex variable of a current pount on this curve Then

$$
\begin{aligned}
& f^{\prime}\left(z, z^{\prime}\right)=-\frac{1}{4 \pi^{2}} \iint_{(t-z)\left(t^{\prime}-z^{\prime}\right)}^{f\left(t, t^{\prime}\right)} d t d t^{\prime}, \\
& \partial^{m+n} f\left(z, z^{\prime}\right)=-\frac{m^{\prime} \cdot u^{\prime}}{4 \pi^{2}} \iint_{(t-z)^{m+1}\left(t^{\prime}-z^{\prime}\right)^{n+1}} d t d t^{\prime} \\
& \partial z^{n n} \partial z^{\prime \prime}
\end{aligned}
$$

Ex Prove that, for the foregomg function $f(z, z)$ and with the foregong curven of integration, the value of ciuch of thir mitegrals

$$
-\frac{1}{4 \pi^{2}} \iint_{(t-i)^{m+1}}^{f\left(t, t^{\prime}\right)} d t d t^{\prime}, \quad-\frac{1}{4} \pi^{2} \iint \frac{t\left(t, t^{\prime}\right)}{\left(t^{\prime}-z^{\prime}\right)^{n+1}} d t d t^{\prime},
$$

for all prositive integer values (meluding zero) of m and n, 心 a mo
48 We shall come later (Chap vi) to a fuller discussion of double integrals involving complex variables, meanwhile, it will be sufficient to state that integrals of the foregoing type, in which the integrations with regard to z and to z^{\prime} are completely undependent of one another, belong to a very special and limited class of donble integrals They may even be regarded as merely iterated simple integrals, and many of then properties can be deduced as mere extensions of cortesponling properties for simple integrals

Thus we know that the value of the utegral

$$
\frac{1}{2 \pi i} \int f(z) d z,
$$

taken positively tomed the whole koundary of iny region within which $f(z)$ is unform, contmuons, and analytic is zero, even if the region is multiply conneeted, and it follows, as a corollary, that the value of the integral taken round any simple closed curve is unaltered if the curve is deformed withont crossing any point where $f(z)$ ceases to have any one of the three specified qualities. This result can at once be generalised, merely through a double use of the result, into the following theorems.-

I Let $F\left(z, z^{\prime}\right)$ denote a function which, over a limited region in the z-plane with a complete boundary unaffected by varations of z^{\prime}, and over a linuted rcgion in the z^{\prime}-plane with a complete boundary unaffected by variations of z, is uniform, continuous, and analytic Then* zero is the value of the integral

$$
-\frac{1}{4 \pi^{4}} \iint F\left(z, z^{\prime}\right) d z d z^{\prime},
$$

[^12]taken positively round all parts of the complete boundary * of the z-region, and positively over all parts of the complete boundary of the z^{\prime}-region, when these boundaries are entirely unrelated to cach other

II For the same type of function, and with the same type of range of integration, the value of an integral

$$
-\frac{1}{4 \pi^{2}} \iint F\left(z, z^{\prime}\right) d z d z^{\prime}
$$

is unaltered when the z-boundary and the z^{\prime}-boundary are deformed separately or togethel 11 any contmuous manner which, while leaving them unrelated,
 the three speesficd qualumes

It is to be noted that the theorems are exchnave and not melusive The function $F^{\prime}\left(z, z^{\prime}\right)$ might case to possioss the property of being continuous (thus it inght be $-^{-2} z^{\prime-2}$ in a legon round 0, 0), without causing the integral

$$
-\frac{\mathrm{J}}{4 \pi^{2}} \iint F\left(z, z^{\prime}\right) d z d z^{\prime}
$$

to be different foom zeto as in the fist theorem, did without preventing the deformation contemplated in the second theorem Fui the moment, we ale concerned with the theorems as enunctated

49 As an illustration of the nse of all the preceding theonems, we shall "stablish the following proposition -

Let $f\left(z, z^{\prime}\right)$ denote a tunction whech is iegular everywhere in a z, z^{\prime} field repmesented by the relation.s

$$
\left|z^{\prime} ₹ r, \quad\right| z^{\prime} \mid ₹ r^{\prime},
$$

and let t and t^{\prime} be curvent varuables on that jueld Then the magnitude

$$
\left.f\left(z, z^{\prime}\right)+\begin{array}{c}
1 \\
4 \pi^{\prime} \\
\int
\end{array} \frac{f\left(t, t^{\prime}\right)}{(t-z)\left(t^{\prime}-z^{\prime}\right)} \stackrel{1 z^{m+1}}{ } \frac{t^{m+1}}{}+\frac{z^{\prime n+1}}{t^{\prime n+1}}-z^{m+1} z^{\prime n+1} t^{m+1} t^{\prime n+1}\right\} d t d t^{\prime} .
$$

when the double integral is taken positively round a simple closed curve enclosing the z-orign and the pont z wh the z-plune, and positwely round a somple closed curve enclosing the z^{\prime}-on ign and the pont z^{\prime} in the z^{\prime}-plane, in a polynomual $P\left(z, z^{\prime}\right)$ of onder m in z and of order n on z^{\prime}, such that

$$
\left\{-\frac{\hat{r}^{r+s} P\left(z, z^{\prime}\right)}{\partial z^{r} \partial z^{\prime \prime}}\right\}_{z=0, z^{\prime}=0}=\left\{\begin{array}{c}
\partial^{r+x} f^{\prime}\left(z, z^{\prime}\right) \\
\partial z^{\prime} d z^{\prime \prime \prime}
\end{array}\right\}_{z=0, z=0}
$$

for the values $r=0, \ldots, m$ and $s=0, \ldots, n$ in all simultaneous combinations, the descriptions of the two curves being unrelated.

* That 1s, with the eustomany convention as to the positive direction of any portion of the boundary when the included area is multiply connected, see my Theory of Functions, $\$ 2$

The result can also be stated in the form

$$
P\left(z, z^{\prime}\right)=-\frac{1}{4 \pi^{2}} \iint \frac{\dot{\left(t, t^{\prime}\right)}}{(t-z)\left(t^{\prime}-z^{\prime}\right)}\left\{1-\binom{z}{t}^{m+1}\right\}\left\{1-\left(\frac{z^{\prime}}{t^{\prime}}\right)^{n+1}\right\} d t d t^{\prime}
$$

and can easily be established from this form by unserting the values of $\left\{1-\binom{z}{t}^{n+1}\right\}-\left(1-\begin{array}{l}z\end{array}\right)$ and $\left\{1-\binom{z^{\prime}}{t^{\prime}}^{n+1}\right\}-\left(1-\frac{z^{\prime}}{t^{\prime}}\right)$ and using the preceding theorems as they stand

The derivation of the result fiom the first form requires a different use of the theorems it is set out as an exercise in mintegrals, as follows

As our function $f\left(z, z^{\prime}\right)$ is everywhere regular within the specified field, the only places where the subject of integration ceases to be regular within the selected doman are

$$
\begin{array}{ll}
\text { (1) at } t=z, t^{\prime}=z^{\prime}, & \text { (II) at } t=z, t^{\prime}=0, \\
\text { (iII) at } t=0, t^{\prime}=z^{\prime}, & \text { and } \\
\text { (Iv) at } t=0, & t^{\prime}=0 .
\end{array}
$$

After the preceding theorems, it is sufficient to take the double integral positively along small curves round these places.

For a double integral, taken positively round small cireles, one in the ε-plane round the point z and one in the z^{\prime}-plane round the point z^{\prime}, sut that we should have

$$
t-z=\rho e^{\theta l}, \quad t^{\prime}-z^{\prime}=\rho^{\prime} e^{t^{\prime}}
$$

where ρ and ρ^{\prime} are small, while θ and θ^{\prime} vary modejendently each from 0 to 2π, the value of the integral

$$
-\frac{1}{4 \pi^{4}} \iint J\left(t, t^{\prime}\right)\left\{z^{\prime \prime+1} t^{m+1}+\frac{z^{\prime \prime n+1}}{t^{\prime n+1}}-\frac{z^{m+1} z^{n+1}}{t^{m+1} t^{\prime n+1}}\right\}\left(\frac{d t d t^{\prime}}{(t-z)\left(t^{\prime}-z^{\prime}\right)}\right.
$$

is the value of
when $t=z, t^{\prime}=z^{\prime}$. that s , the value of the mtegral for the double small contour round z and z^{\prime} is $f\left(z, z^{\prime}\right)$.

For a double integral, taken positively round small circles, one in the z-plane sound the pont z, and one in the z^{\prime}-plane round the ongin, we have

$$
t-z=\rho e^{\theta_{1}}, \quad t^{\prime}=\rho^{\prime} e^{\phi_{1}}
$$

where ρ and ρ^{\prime} arr small. We then expand $\left(t^{\prime}-z^{\prime}\right)^{-1}$ in ascending powers of $t^{\prime} \mid z^{\prime}$, and obtan the subject of integration in the form

$$
\begin{aligned}
& f\left(t, t^{\prime}\right)\left\{\begin{array}{l}
z^{m+1} \\
-\frac{z^{\prime n+1}}{}-z\left\{z^{m+1}+\frac{z^{n+1} z^{\prime n+1}}{t^{n+1}} t^{m+1} t^{\prime n+2}\right.
\end{array}\right\} \sum_{a=0} \frac{t^{\prime a}}{z^{\beta+1}} .
\end{aligned}
$$

Let integration be effected first along the path in the z-plane, on the completion of the path, the value of the integral is

$$
-\frac{1}{2 \pi i} \int f\left(z, t^{\prime}\right)\left(1+\frac{z^{\prime n+1}}{t^{\prime n+1}}-\frac{z^{\prime n+1}}{t^{\prime n+1}}\right)\left(\Sigma \frac{t^{\prime}}{z^{\prime 2}+2}\right) d t^{\prime},
$$

that 1 s ,

$$
-{ }_{2 \pi i}^{1} \int f\left(z, t^{\prime}\right)\left(\Sigma \sum_{z^{\prime \times+1}}^{t^{\prime \times}} \vdots d t^{\prime}\right.
$$

This integral is to be taken along a small closed path in the z^{\prime}-plane tomnd $t^{\prime}=0$, and $f\left(z, t^{\prime}\right)$ is regulan, hence the whe of the intergral is zero Thus the double integral, taken round the place $t=z, t^{\prime}=0$, contributue zaro to the value of the general donble integral

Smalaly the double integral, taken ronnd the place $t=0, t^{\prime}=z^{\prime}$, contribation yero to the value of the general double integral

For a double integial, taken posituvely mound small carcles, one in the z-plane round the z-orgin and one in the z^{\prime}-plane round the z^{\prime}-omgin, we have

$$
t=\rho e^{\phi_{1}}, \quad t^{\prime}=\rho^{\prime} e^{\phi^{\prime}},
$$

whete ρ and ρ^{\prime} are small. We then expand $\left\{(t-z)\left(t^{\prime}-z^{\prime}\right)\right\}^{-1}$ in ascendung puwers of t / z and $t^{\prime \prime} / z^{\prime}$, the expansion being

$$
\sum_{\mu=1} \sum_{2} t^{\mu} t^{\prime} l^{\prime} z^{-\mu-1} z^{\prime-\nu-1},
$$

dall so the subject of mitegration becomes

$$
f\left(t, t^{\prime}\right)\left\{\begin{array}{l}
z^{m+1} \\
t^{m+1}+\frac{z^{\prime n+1}}{t^{\prime n+1}}-z^{m+1} z^{m+z^{\prime n+1}} \\
t^{m+1} t^{n+1}
\end{array}\right\}_{\mu-0} \sum_{v-0} \sum_{v^{\mu} z^{\mu+1} z^{\prime \prime} v+1}^{z^{\prime 2}}
$$

The value of the parto
taken round the contour as mdicated, is zero (Ex , §47), hecanse there are no negative powers of t^{\prime} Similarly the value of the pat

$$
-\frac{1}{4 \pi^{2}} \iint f\left(t, t^{\prime}\right) \frac{z^{\prime n+1}}{t^{n+1}} \sum_{\mu=0}^{\sum} \sum_{v-0} \frac{t^{\mu} t^{\prime \prime}}{z^{\mu+1} z^{v+1}} d t d t t^{\prime}
$$

is zero Agan, the value of the mtegial

$$
-\underset{4 \pi^{2}}{1} \iint f^{\prime}\left(t, t^{\prime}\right) \frac{d t d t^{\prime}}{t^{r+1} t^{x+1}}
$$

1.5

$$
\left\{r_{r^{\prime} s}^{1} \quad-\frac{\partial^{r+1} f\left(t, t^{\prime}\right.}{\partial t^{r} \partial t^{\prime g}}\right\}_{t=0, t^{t^{\prime}=0}},
$$

for all integers $r=0,1, \ldots$, and all integers $s=0,1, \ldots$. When etther of the integers r and s is negative, and when both of the integers are negative, the value of the integral is zero. Hence, taken positively along the small contour that encloses the z-origin in the z-plane and the z^{\prime}-origm in the z^{\prime}-plane, we have

$$
\begin{aligned}
1 \\
4 \pi^{2}
\end{aligned} \int \begin{gathered}
f\left(t, t^{\prime}\right) \\
(t-z)\left(t^{\prime}-z^{\prime}\right)
\end{gathered} \begin{aligned}
& z^{m+1} t^{m+1} z^{\prime n+1} \\
& t^{n+1}
\end{aligned} d t d t^{\prime} .
$$

We thius have the full value of the integral

$$
-\frac{1}{4 \pi^{2}} \iint_{\left(\bar{t}-\frac{f\left(t, t^{\prime}\right)}{z)\left(t^{\prime}\right.}-z^{\bar{\prime}}\right)}^{z^{m+1}}\left\{\begin{array}{l}
z^{m+1}
\end{array} \frac{z^{\prime n+1}}{t^{\prime \prime n+1}}-\frac{z^{m+1} z^{\prime n+1}}{t^{m+1} t^{\prime n+1}}\right\} d t d t^{\prime},
$$

taken positively round our contour in the z-plane enclosing the z-ongin and the pornt z, and our contour in the z^{\prime}-plane enclosing the z^{\prime}-origin and the point z^{\prime}, it is

$$
f\left(z, z^{\prime}\right)-\sum_{r-1}^{m} \sum_{s}^{n}\left[\frac{z^{r} z^{\prime \prime}}{r^{\prime} s^{\prime}}\left\{\frac{\partial^{0+\kappa} f\left(t, t^{\prime}\right)}{\sigma t^{\prime} \partial t^{\prime \prime}}\right\}_{t=0, t^{\prime \prime}=0}\right]
$$

Consequently our magnitude

$$
f^{\prime}\left(z, z^{\prime}\right)+\frac{1}{4 \pi^{2}} \iint \frac{t\left(t, t^{\prime}\right)}{(t-z)\left(t^{\prime}-z^{\prime}\right)}\left\{\begin{array}{l}
z^{m+1} \\
t^{m+1}+\frac{z^{\prime} n+1}{t^{\prime n+1}}-\frac{z^{m+1} z^{\prime n+1}}{t^{m+1} t^{\prime \prime+1}}
\end{array}\right\} d t d t^{\prime}
$$

is equal to the polynomal
and when this polynomal is denoted by $P\left(z, z^{\prime}\right)$, we manifestly have

The proposition is thus established
The result, in either form, shews that, it is possuble to construct an expression the value of wheh shall be a polynomal approxmation to the value of a function $f\left(z, z^{\prime}\right)$ in a field where it is a regular function of its arguments.

Ex Evaluate the integral

50. In connection with the function $f\left(z, z^{\prime}\right)$, which is regular within the field $\left|z-u_{i}\right| ₹ r$ and $\left|z^{\prime}-u^{\prime}\right| ₹ r^{\prime}$, and for which $\left|f\left(z, z^{\prime}\right)\right|$ is never greater than M for places in the field, cousuder a function $\phi\left(z, z^{\prime}\right)$ defined by the relation

$$
\phi\left(z, z^{\prime}\right)=\frac{M}{\left(1-\begin{array}{c}
z-a \\
r
\end{array}\right)\left(1-\frac{z^{\prime}-a^{\prime}}{r^{\prime}}\right)}
$$

Evidently $\phi\left(z, z^{\prime}\right)$ can be expanded in a double power-series in $z-a$ and $z^{\prime}-a^{\prime}$, which converges absolutely for values of z and z^{\prime} such that

$$
|z-a|<\rho<r, \quad\left|z^{\prime}-a^{\prime}\right|<\rho^{\prime}<r^{\prime},
$$

and it has the form

$$
\phi\left(z, z^{\prime}\right)=M \sum_{m=0} \sum_{n=0} \frac{(z-a)^{m}}{r^{m}} \frac{\left(z^{\prime}-a^{\prime}\right)^{n}}{r^{\prime / n}} .
$$

Hence
and therefore
for all values of m and n It therofore tollows that

$$
\begin{aligned}
& \left|f\left(u, u^{\prime}\right)\right| ₹ \phi\left(u, u^{\prime}\right) \text {, }
\end{aligned}
$$

The function $\phi\left(z, z^{\prime}\right)$, telated in this manner to a function $f\left(z, z^{\prime}\right)$ from some chanactenstics of whech it is constructed, is called ia dommant funchon Mamfestly the result can be extended to any number of andependent comples variables by a precisely similar process

These dommant functions prove to be of great moportance in valous regons of analysm, thus, for example, they are of general use in the prescont methods of estableshing many theorems concerning the actual existence of integrals of whole classes of differential equations. particularly in connection with certam boad external asugned eonditions mader which those integrals exist

A dommant function $\phi\left(z, z^{\prime}\right)$ is not necessanly umque In the same creumstances is before consider a function $\psi\left(z, z^{\prime}\right)$ defined by the relation

$$
\psi\left(z, z^{\prime}\right)=\frac{M}{1-\frac{z-\theta^{\prime \prime}}{r}-\frac{z^{\prime}-\theta^{\prime}}{r^{\prime}}}
$$

which also is expresebbe ds a donble powet-stries in $z-a$ and $z^{\prime}-a$, comvergmg absolutely for the regron $\frac{|z-a|}{\prime \prime}+\frac{\left|a^{\prime}-a^{\prime}\right|}{r^{\prime} \mid}<h<1$ Proceding in for $\phi\left(z, z^{\prime}\right)$, we find, for all integer valnes of m and n,

Now $(m+n)^{\prime} \geqslant m^{\prime} n^{\prime}$, hence

$$
\begin{aligned}
& \left.\left\{\partial^{m+n} \psi\left(z, z^{\prime}\right)\right\}_{z z^{n} \partial z^{\prime \prime}}\right\}_{z-n, z-u^{\prime}} \geqslant\left\{\begin{array}{c}
\partial^{m+n} \phi\left(z, z^{\prime}\right) \\
-\partial z^{n} \partial z^{\prime} z^{n}
\end{array}\right\}_{z=n, z^{\prime}=a} \\
& \geqslant\left\{\begin{array}{c}
\partial^{m+n} f\left(z, z^{\prime}\right) \\
\partial z^{m} \partial z^{\prime n}
\end{array}\right\}_{z=a_{1} z^{\prime}=a^{\prime}},
\end{aligned}
$$

so that $\psi\left(z, z^{\prime}\right)$ also is a dominant function*

* Pomcaié uses the term majoranti'

51. Dunng the foregoing investrgations, particular series in suitable circumstances have been declared to converge, and it will be noted that, in such series as have occurred, the convergence has been absolnte. We do not propose to consider, in detall, the general theory of convergence of double series When convergence is absolute, no other kind of convergence need be considered specially, and such series, as will be discussed in these lectures, will be discussed with a view to absolute convergence What is wanted here is a knowledge of some non-infinitesimal region of vaintion of the variables in which the respective series converge absolutely*.

In this regard, one warming inust be given Both in what precedes and In what will follow, a region of vanation, m which a double series converges absolutely, is usually defined by a couple of relations of the form $|z| ₹ \rho<r$, $\left|z^{\prime}\right| ₹ \rho^{\prime}<r^{\prime}$, where $\rho, \rho^{\prime}, r, r^{\prime}$ are positive constants, while r and r^{\prime} are not, infintesimal It must not therefore be assumed-and it is not the case in fact-that the whole region, within which a double series converges absolitely, must be determmed by two (and only two) relations of the precedng form, thus the whole region of absolute convergence of the double senes, that represents the dominant function $\psi\left(z, z^{\prime}\right)$ of $\$ 50$, is determmed by the single relation

$$
|z-a|+\frac{z^{\prime}-a^{\prime} \mid}{r}<k<1,
$$

as there stated \dagger.
To repeat the substance of what has just been samd, what is manly wanted at the initial stage as a knowledge of some non-minintesimal region of absolute convergence of the series, not neccssanly a knowledge (however desirable) of the whole region of convergence

52 Three simple propositions relating to umform analytic functions can be established at once
I. A uniform analytic function most acquire infimte values somewhere in the whole z, z^{\prime} field, unless it reduces to a mere constant

Suppose that a uniform analytic function $f\left(z, z^{\prime}\right)$ does not acquire infinite values anywhere in the z, z^{\prime} field. In that event, there must be some greatest value for $\left|f\left(z, z^{\prime}\right)\right|$ in the held, say M, where M is finte; and no matter how the field is extended, this value of M for $\left|f\left(z, z^{\prime}\right)\right|$ cannot be exceeded.

Accordingly, we take a domain in the field, determmed by the relations

$$
|z| ₹ R, \quad\left|z^{\prime}\right| ₹ R^{\prime}
$$

[^13]and, under the hypothesis, we can make R and R^{\prime} as large as we please. Wir still shall have, over this domain, M as the greatest value of $f\left(z, z^{\prime}\right)$.

In the domam thus chosen, let $f\left(z, z^{\prime}\right)$ be represented by a domble powerscries, is in $\S 47$, and let the series be

$$
\sum_{m=n} \sum_{n} c_{m, n} z^{m} z^{\prime n}
$$

By ou preceding results, wo have

$$
, c_{m, n} ₹ \stackrel{M}{M} R_{n^{n}} \dot{R}^{\prime n}
$$

for all values of m and of n, independently of one another We can inctease the doman of the field to any extent, so that, by mereasing R and R^{\prime} sutficuently, we can make

$$
\left|c_{n n, n}\right|=0
$$

for all values of m and n except smmitaneous zero values Hence, under the hypothess that $f\left(z, z^{\prime}\right)$ does not acqume mfinte values, every tem in the series vantshes except the first, which is a constant, the propositron therefore sh established

Note It ss obvous that the place, where a function acqurres an mfinter value, does not he withm the domain aver which the function is regular nor (to intrepate the explanations connected wath the continuatoon of series reprenenting regular finctions) does such a place he within the egion of contmuity of the function Every such phace lies on the boundary of thi. regron of contmurty of the function.

Thus consider the function

$$
\begin{aligned}
& z+z \\
& z-\overline{z^{\prime}}
\end{aligned}
$$

For all places other than $z=0, z^{\prime}=0$, whech he m the ficld and are given by $z=z^{\prime}$, the functron is infimte, such places do not he within the region of continuity of the function At the place $z=0, z^{\prime}=0$, the value of the function is indetcrminate, near $z=0, z^{\prime}=0$, say such that

$$
z=r e^{\theta_{1}}, \quad z^{\prime}=r^{\prime} e^{\theta \imath}
$$

where r and r^{\prime} are suall, we have

$$
\left|\begin{array}{l}
z+z^{\prime} \\
z-z^{\prime}
\end{array}\right|=\left\{\begin{array}{l}
\left.r^{2}+r^{\prime 2}+2 r r^{\prime} \cos \left(\theta-\theta^{\prime}\right)\right)^{\frac{1}{2}} \\
r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \left(\theta-\theta^{\prime}\right)
\end{array}\right\}^{2}
$$

which as r and r^{\prime} tend to zero independently of one another can be made to acquire any value Thus at $z=0, z^{\prime}=0$, the function is not regular, the place does not lie within the region of continuty of the function.
II. If two functions, both of them regular withun one and the same domain, acquire the same value at every place within any region of that doman, they acqure the same value at every place within the whole domain, the regron (like the doman) being one of four-fold variation.

Firstly, suppose that the origin of the domain hes within the region considered, and round that origin, take a smaller domain given by $\mid z\}<k<\rho$ and $\left|z^{\prime}\right|<k^{\prime}<p^{\prime}$, lying entirely within the region

Let the two regular functions be $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, and suppose that the double power-series representing them in the whole doman are

$$
\begin{aligned}
& f\left(z, z^{\prime}\right)=\sum_{m=0} \sum_{n=0}^{\sum} c_{n, n} z^{m} z^{\prime n}, \\
& g\left(z, z^{\prime}\right)=\sum_{m-0} \sum_{n=1}^{\sum} k_{m, n} z^{m} z^{\prime n},
\end{aligned}
$$

buth series converging absolutely within that doman Then the difference of the functions $f\left(z, z^{\prime}\right)-g\left(z, z^{\prime}\right)$ is represented by the absolutely couverging double sentes

$$
\underset{m-0}{\searrow} \sum_{n=1}^{\sum}\left(c_{m, n}-h_{m, n}\right) z^{\prime n} z^{\prime n}
$$

Now this function $1 s$ everywhere zelo within the smalle doman, so that its (greatest) modulus M_{0} nevel differs from zero, accordugly we have

$$
\begin{aligned}
\left|c_{m, n}-k_{m, n}\right| & =\frac{M_{0}}{\rho^{m i n} \rho^{\prime n}} \\
& =0 .
\end{aligned}
$$

so that

$$
c_{m, n}=k_{m, n},
$$

for all values of m and n Consequently, the coefficients in the power-semes representing the functions are the same, and so the two functions are the same within the whole doman

Secondly, when the orign of the doman does not lie withn the rugion consudered, we take an ongin within that region, and proced as betore The coefficients in the power-series, representing the two functions in the smaller doman round the new origm, are the same There, these coefficients determine the functions uniquely, and so, when the process of analytical continuation ($\$ 56$) is adopted in exactly the same way for the two functions suas to cover the whole of the original domann in which they are regular, the two functions reman everywhere the same withm the whole of that doman
III. If $f\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} for all finte values of the variables, and if there exists a fimte positive quantity M such that, no matter how $|z|$ and $\left|z^{\prime}\right|$ are increased, there exist integers m and n for which

$$
\left|\begin{array}{c}
f\left(z, z^{\prime}\right) \\
z^{m} z^{\prime n}
\end{array}\right| ₹ M
$$

then $f\left(z, z^{\prime}\right)$ is a polynomial $\ln z$ and z^{\prime}, of degree m in $\underset{\sim}{z}$ and of degree n in z^{\prime}, when m and n are the smallest integers satisfying the condition.

Let $f\left(z, z^{\prime}\right)$ be expressed as a double power-series

$$
f\left(z, z^{\prime}\right)=\sum_{p=0} \sum_{q=0} c_{p, q} z^{p} z^{\prime q}
$$

then

$$
\begin{aligned}
& =-\frac{1}{4 \pi^{2}} \iint_{t^{\mu+1} t^{\prime q+1}}^{f\left(t, t^{\prime}\right)} d t d t^{\prime},
\end{aligned}
$$

where the double integral is taken round any stmple closed contour (say a cucle) enclosing the origin in the z-plane, and any simple closed contur (also say a curcte) enclosing the origm in the z^{\prime}-plame. Let the former cricle be of rachus R and the latter of radus R^{\prime}, so that we can take

$$
t=R e^{\theta_{1}}, \quad t^{\prime}=R^{\prime} e^{\theta_{1}}
$$

then

Now no matter how $t \mid$ and $\mid t$ ' anclease, wo have

$$
\left\lvert\, \begin{aligned}
& f\left(t, t^{\prime}\right)! \\
& \left.t^{\prime \prime \prime} t^{\prime \prime}\right)
\end{aligned}<M\right.,
$$

and therefore

$$
\left\lvert\, \begin{aligned}
& f\left(t, t^{\prime}\right) \\
& t^{\prime \prime} t^{\prime} q
\end{aligned} \gtrless_{t^{p-m} t^{\prime \prime} \|}^{M}<\begin{gathered}
M \\
R^{p-m} R^{\prime q-n}
\end{gathered}\right.
$$

Consequently

$$
\begin{aligned}
\mid r_{n, g} & <\frac{1}{4 \pi^{2} R^{\prime-m} R^{\prime} q^{-n}} \iint d \theta d \theta^{\prime} \\
& <\frac{M}{R^{p-m} R^{\prime} q^{-n}}
\end{aligned}
$$

By hypothesis, we can merease R and R^{\prime} without, hma, hence, for all values of p that ate grater than n, or for all values of g that are greater than n, and for both sets of values smultaneously, we have
and therefore

$$
\begin{aligned}
r_{p, q} \mid & =0, \\
r_{p, q} & =0,
\end{aligned}
$$

for those values Accordingly, when we nomeve from the series those terms which have vanshing cocticients, the modified expression for $f\left(z, z^{\prime}\right)$ becomes

$$
\sum_{p=0}^{m} \sum_{q-0}^{n} c_{p, q} z^{\mu} z^{\prime} \psi,
$$

shewing that $f\left(z, z^{\prime}\right)$ is a polynomial in z and z^{\prime}, of degree n in z alone and of degree n in z^{\prime} alone.

53 It follows, from the first investigation in §52, that a uniform analytue function must acquire infinite values In particular, a general polynomial in z and z^{\prime} acquires infinite values, when $|z|$ is infinite while $\left|z^{\prime}\right|$ is not zero, or when $\left|z^{\prime}\right|$ is infinite while $|z|$ is not zero, or when both $|z|$ and $\left|z^{\prime}\right|$ are infinite, though in the last event conditions may have to be satisfied*.

[^14]The questuons then arise --Must a umform analytic function of z and z^{\prime} acquire a zero value within the whole field of variation? And, what is a subsidary question governed by the answer to this preceding question, must a uniform analytic function of z and z^{\prime} acquire any assigned value withon the whole field of variation? Naturally, in considering the questions, we assume that we are dealing with functions that do not reduce to a mere constant

First, a brief proof will justify the answer that a muform analytic function of z and z^{\prime} must acquire a zero value somewhere within the whole ficld of vamation. Let $f\left(z, z^{\prime}\right)$ be a function of z and z^{\prime}, which is umform ; consequently, it

$$
\phi\left(z, z^{\prime}\right)=\begin{gathered}
1 \\
f\left(z, z^{\prime}\right)
\end{gathered}
$$

the function $\phi\left(z, z^{\prime}\right)$ is uniform Further, $\phi\left(z, z^{\prime}\right)$ is contimuous, unless $f\left(z, z^{\prime}\right)$ has zero values Let $f^{\prime}\left(z, z^{\prime}\right)$ be andlytie, then $\phi\left(z, z^{\prime}\right)$ also is unalytic. Thus, assuming that $f\left(z, z^{\prime}\right)$ is a regular function, that has no zero within the whole field of variation, its reciprocal $\phi\left(z, z^{\prime}\right)$ is unform, contmuous, and analytic thoughout the doman where $f\left(z, z^{\prime}\right)$ is segular. Consequently, $\phi\left(z, z^{\prime}\right)$ is a function that is regular throughout the wholo field.

Now wo have seen that a unform malytic finction must acqure an infintu, value or mfinte values somewhere in the field of variation of the varlables. hence our function $\phi\left(z, z^{\prime}\right)$ inust acquire an infimte value somewhere, that 1s, the regulan function $f\left(z, z^{\prime}\right)$ must acquire a gero valuc some where and therefore the hypothesis, that $f\left(z, z^{\prime}\right)$ han no zelo, is unterable But as was the case with the place where the function acquires an mfinute value, so that the function is not regular there and the place does not belong to the region of continuity of the function, so it may happen that a place where a function aequres a zero value does not belong to the region of contmuty of the function

Thus the function $e^{e+\gamma}$ is 1 egular over a domang given by fimite values of $|z|$ and finite values of $\left|z^{\prime}\right|$, it is not regular for mbnte values of $|z|$ alone and of $\left|z^{\prime}\right|$ alone, because it camot be expanded in power of $\frac{1}{z}$ and $\frac{1}{z^{\prime}}$, When a is real, mhnite, and negative, while $\left|z^{\prime}\right|$ is finte, the function $c^{+s^{\prime}}=0$, and so for other places No one of these places belongs to the region of continuty of the regular function $\mathrm{m}^{2+} \boldsymbol{k}^{\prime \prime}$

The corresponding question, as to the acquisition of an assigned value α, would simularly be answered in the affirmative after a consideration of the function $f\left(z, z^{\prime}\right)-\alpha$ which, under the foregong argument, would have to acquire a zero value, so $f\left(z, z^{\prime}\right)$ wonld have to acquare an assigned value.

The difficulty, that the zero of the function perhaps will not occur in the domain of regularity, may be illustrated by returning to the corresponding question in the theory of functions of a single complex variable, indeed, it would be raısed directly, for example, by taking $z^{\prime}=0$, in the case of a regular function
54. It is a result, in Welerstrass's theory of nnfom functions of a single variable*, that, in the vicimity z_{p} of an essential singularity of a umform function $f(z)$, there always is at least one pomt within a carcle $z-z_{0} \mid=\epsilon$, where ϵ is any assugned small (puantity, such that

$$
\mid f(z)-\alpha<\epsilon,
$$

where α is any assigued quantity But the specified point does not need to be distinct from the point z_{v}.

Picard \dagger discriminates between essentral singularities according as the value α is, or is not, actually acquired at a point inside the carele $\left\{z-z_{0} \mid=\boldsymbol{\epsilon}\right.$ whinh is not its centre, the centre being the essential sungulanty. As examples, illustrating the disermmation, he adducen the two functions

$$
\frac{1}{\sin \frac{1}{z}}, e^{\frac{1}{z}}
$$

considerng both of them 11 the vicinity of then essential smgularity at the z-ongun.

The function $+1 / \mathrm{sin}\binom{1}{z}$ has any number of poles in the immediate vicuity of the ongm, they are given by $z=\frac{1}{1-\pi}$, where i is any integer sufficiently large to keep z within the suggested viomity The function dies not vansh for uny value of z (other that $z=0$) withm that vicminty \ddagger. But consider a range of z wean $z=0$ along the positive part of the dars of y, so that we can wrile

$$
z=11 .
$$

where the small ponitive quantity r is at our disposal, we have

$$
\frac{1}{\sin 1}=\frac{\ddot{2}}{e^{-2}}
$$

The denominator can be made as large as we please by naking r as small as we please, my own view is that, when r is made zuro, so that z approaches the ongin along the axis of y and falls moto the orign, the function in question does actually acquare the value zero at the ongm. But the value is açured only at the essential singularity $z=0$, and at no point in the vicinity of $z=0$, other than the centre itself.

Simularly for the other function

* Weierstrass, (ics. Werhe, t n, p 124, see my Theoly of liunctons, § 33
+ His valuable, and far-reachng, ideas were expounded in some memors to which reference $1 s$ given in his Thaite d'Analyse, t in, ch v See also, for further investigations, Borel, Lecfons *u) les fonctwow entières, (1900), ch 1; 2b., ch v, b, Note 1
\ddagger Pieard, l c., p 126, p 12\%, in the second sentence, I have added the words "other than $z=0$."

The difference between Picard's statement and my own is obvious Picard considers the vicinity of $z_{0}=0$, and does not include the actual point $z_{0}=0$, not regarding it as a pont where the value or a value of the function can be stated I do melude the actual point $z_{0}=0$ und do regard it as a point where, if the function nowhere else acqures some assigned value, it must there acquire that assigned value, and that assignerl value can then be stated as a value thal can be acquired there but the point $z_{0}=0$ is actually merged in the essential singularity.

And, it need hardly be added, all the valuable meestigations* of Picard, Hadamard, Borel, and others, ate unaffected by these considerations The discimmation is between functrons, that acquire an assigned value in the uemity of the essential sugularity at a pont which does not comende with the smgularity, and functions that acquate the assugned value only at the ensental singularity

The whole discussion thus suggests, even for tunctions of a smgle variable, the dea of places where our function, reguldi withon a doman, ceases (at the boundary of the doman, or elsewhere) to mantam its character of regulanty To the consideration of these possibitities wo now proceed

65 First, however, in connection with the earlier remarks, a reference to a theorem by Pieard must be inade.

It may happen that an megral function $f(z)$ cannot acquire a fimts value a for a fimte value of z, so that the equation $f(z)=a$ then has no fimte root, thus $e^{z}=0$ has no finte 1 oot Picard shews that an integral functon $f(z)$, which for finite values of z cannot acquare a fimte value a and camot acqune another distinct fimte value b, neduces to a eomstant \dagger

The smolar question would then a ise for an integral finction $G\left(z, z^{\prime}\right)$ of two vanablen Suppose that there are no values of z and z^{\prime}, which are smultaneously fimete, such that $G^{\prime}\left(z, z^{\prime}\right)$ can acqure a special fimte value a, dud smmlarly suppose that there are no values, also restricted to be simultancously finte, such that $G^{\prime}\left(z, z^{\prime}\right)$ can acquire another spectal finte value b, where b is different from a. To z^{\prime} assign a tmite value c^{\prime}, as $G\left(z, z^{\prime}\right)$ is an integial function of z and z^{\prime}, being regular for finte values of z and z^{\prime}, then $G\left(z, c^{\prime}\right)$ is dn integral function of z By the suggested postulate about $\mathcal{G}_{(}\left(z, z^{\prime}\right)$, the integral function $G^{(}\left(z, c^{\prime}\right)$ camot acqure for finite values of z eather the finte value a or the different finte value b, accordingly, by Picard's theorem, $\left(7\left(z, c^{\prime}\right)\right.$ can only be a constant, which must necessarily be a finte constant because $\mid\left({ }^{\prime}\left(z, z^{\prime}\right)\right.$ is finte for finte values of z. As this holds for any assigned value c^{\prime} of z^{\prime}, it follows that $G\left(z, z^{\prime}\right)$ is constant

[^15]for each assigned finite value of z^{\prime}, but the constaut values of $\left(t\left(z, z^{\prime}\right)\right.$ are not neccssarily one and the same. Now $G\left(z, z^{\prime}\right)$ is an integral function of z^{\prime}, because it is an integral function of z and z^{\prime}, hence all the requirements will so tar be met by takurg
$$
G\left(z, z^{\prime}\right)=g\left(z^{\prime}\right),
$$
an minegral function of z^{\prime} alone

Agann, by the suggested postulate about $G\left(z, z^{\prime}\right)$, there 14 no finte value of z^{\prime}-stmultaneously with a fintte value of z-for whel $\left(\begin{array}{rl}(\\ (z) \\ z\end{array} z^{\prime}\right)$ can acqure the finte value a or the different finite value b, and therefore there is no finte value of z^{\prime} for which the integral function $g\left(z^{\prime}\right)$ can acyure the finte value a or the different finte value b By a repeated appheation of Pomods theorem, it follows that $g\left(z^{\prime}\right)$ can only be a constant, and the ofore ($\left(\begin{array}{rl} \\ \left(z, z^{\prime}\right)\end{array}\right.$ can only be a constant

It thercfure follows that, if an integn al function $G\left(z, z^{\prime}\right)$ cummot, for any finte value of z rend any nute value of z^{\prime} taken sumultaneonsly, arquire a finte value ar, and also camot, for any finte value of z and any finte value of z^{\prime} taken simultaneously, acquare a tonte valuc b different fiom a, then $\left(\frac{1}{T}\left(z, z^{\prime}\right)\right.$ is a constunt

The result is manifontly the meiest generalisation of Picard', theorm. It is specially mportant t o note that the limitation about the noir-acquastion of the finate values a and b is confined to tunte values of z and of z^{\prime}. A varable function may be unable' to acqume a finte value a for fime values of z and z^{\prime}, but could aequase that value for minite values of z and fimte values of z^{\prime}, of for fimte values of z aud minite valuen of z^{\prime}, on for montinte values of z and of z^{\prime}, such is the case, for the value zelo, of the varable medegial tunction

$$
e^{r(1)}
$$

where $P\left(z, z^{\prime}\right)$ is a polynomat in z and z^{\prime}

Analytical Contınuatuon

56 Now let us consider a function $f\left(z, z^{\prime}\right)$, wheh is regular everywhere in a domann round a place a, a^{\prime} determmed by

$$
|z-\dot{a}| ₹ r, \quad\left|z^{\prime}-u^{\prime}\right| ₹ \prime^{\prime}
$$

it can be represented by a double sentes of pouers of $z-a$ and $z^{\prime}-a$, the series converging absolutely for values of z and z^{\prime} such that

$$
|z-a| ₹ \rho<r, \quad\left|z^{\prime}-a^{\prime}\right|<\rho^{\prime}<r^{\prime}
$$

Denoting the series by $P\left(z-a, z^{\prime}-a^{\prime}\right)$, we have

$$
f\left(z, z^{\prime}\right)=P\left(z-a, z^{\prime}-a^{\prime}\right)
$$

for values of z and z^{\prime} thus defined The values of the constant cocfficients in the double series are deterinned by the values, at the place a, a^{\prime}, of the derivatives of the function $f\left(z, z^{\prime}\right)$ of the appropuate orders

Such a series* niay be capable of the process called analytical continuation outside a given domain within which the series represents a regular finction. Let $z=b$ and $z^{\prime}=b^{\prime}$ be any place within the domain, at this place b, b^{\prime}, the values of the function $f\left(z, z^{\prime}\right)$ and of its derivatives are unique and finite, and they can depend upon the origin a, a^{\prime} of the doman.

Because the place b, b^{\prime} lies withn the domain of a, a^{\prime}, where $f\left(z, z^{\prime}\right)$ is tegular, there is a definite doman, actually lying within the doman of a, a^{\prime}, appertaining to the place b, b^{\prime}, and providing a region over which $f^{\prime}\left(z, z^{\prime}\right)$ is regular, this domain is given by the relations

$$
|z-b, ₹ r-|b-a|, \quad| z^{\prime}-b^{\prime}\left|<r^{\prime}-b^{\prime}-a^{\prime}\right|
$$

Let the double power-series be constructed to represent $f\left(z, z^{\prime}\right)$ within this definite doman The coefficients in this new double series arc determined by the values, at the place b, b^{\prime}, of the function $f\left(z, z^{\prime}\right)$ and of 1 ts derivatives; and these may depend for their expression upon the initial double series $P\left(z-a, z^{\prime}-a^{\prime}\right)$. Denote this new donble series by

$$
Q\left(z-b, z^{\prime}-b^{\prime}, a, a^{\prime}\right)
$$

Within the specfied doman round b, b, whech belongs also to the doman round a, a^{\prime}, we have two power-series representing one and the same regular function $f^{\prime}\left(z, z^{\prime}\right)$, accordingly, (II, §52) for all places z, z^{\prime} within that sperified limited doman, the new scries Q provides no expression for the function $f\left(z, z^{\prime}\right)$ which, in significance, is additional to the expression for the function $f\left(z, z^{\prime}\right)$ provided by the old series P

But now consider the range of absolute convergence of the double series (, which will be the general domam of the place b, b^{\prime}. It certamly meludes the preceding specified domam, which hes within the general doman of the place a, a^{\prime} in connction with the absolute convergence of the series P. It may extend beyond the boundary of that precering specified doman, if it does, then it includes places z, z^{\prime} not meluded wathin the domain of a, a^{\prime}. For all such places, the series Q converges absolutely and therefore has a unque significance whereas, for them, the serles P has no significance

Accordingly, when some of the general doman of b, b^{\prime} as connected with the absolute convergence of the series Q lies outside the general domain of a, a^{\prime} as connected wath the absolute convergence of the series P, our new series Q provides an expression for a regular function of z and z which is not provided by the old series P, while over the region common to the two general domans the series Q represents the regular function which is represented by

[^16]the series P over the domann of a, a^{\prime}. Using the term adopted for the corresponding result in the similar event for functions of a single variable, we say that (in the supposed circumstance of the more extensive character of the general domain of b, b^{\prime}) the series Q is a conturuation, sometimes an analytical continuation, of the series P, and we call each of the two series an element of the regular function which they help to represent.

The process may be repeated by selecting a new place c, c^{\prime}, lying withm the general domain of b, b^{\prime} and not within the general doman of a, a^{\prime}. When a definte doman of c, c^{\prime} is constructed lying within the domain of b, b, and when we form a new double series for the function represented by $Q\left(z-b, z^{\prime}-b^{\prime}, a, a^{\prime}\right)$ by taking the value of the function and of its derivatives at, c, c^{\prime} as determing the coefficients for this new series, we can denote this series by

$$
\pi\left(z-c, z^{\prime}-c^{\prime}, a, a^{\prime}, b, b^{\prime}\right)
$$

Within the specificd domam round c, c^{\prime}, the new sories R represents the same regular function as is represented by Q withn that doman.

Agam, now consuler the range of convergence of the double series R, which range will bo the gencral domann of c, c^{\prime}. It certannly meludes the specified doman round c, c^{\prime}. It may extend beyond the boundary of that specified domant, and then it includes places z, z^{\prime} not included in the general doman of b, b^{\prime} and, when c, c^{\prime} is properly chosen, not included in the general doman of a, a^{\prime}. For all such places z, z^{\prime}, whthn the general domain of c, c^{\prime} and outside the general domans of b, b^{\prime} and of a, a^{\prime}, the series R provides a regular representation of the function which is not provided either by the series Q or by the series P, while over the part of the doman of c, c^{\prime} that belongs to the doman of b, b^{\prime} it represents the same function as 18 epresented by the series Q In this event, the series R provides a continuation of the series Q and it $1 s$ another element of the function, now represented by the scries P, Q, R.

And so on, from domain to doman The ultinate aggregate of all the series, each providing a new element, is the combined analytical expression of a function. The ultimate aggregate of the z, z^{\prime} field, provided by all the domans, is called the region of contriuity of that function.

It is clear, after earler explanations, that one of the simplest instances is provided by an integral function, that 1s, a double series converging for all finite values of z and z^{\prime}; and 1 ts region of continuity consists of the part of the z, z^{\prime} field given by finite values of z and z^{\prime}.

Ex Consider the double series
which converges for values of $|z|<k<1$ and $\left|z^{\prime}\right|<k^{\prime}<1$. At the place $z=-\frac{1}{2}$, $z^{\prime}=-\frac{1}{2}$, we have

$$
\begin{aligned}
f_{0,0} & =\frac{1}{\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2}\right)}=\binom{2}{3}^{2} \\
\frac{f_{m!} n}{m^{\prime} n!} & =\frac{1}{\left(1+\frac{1}{2}\right)^{m+1}\left(1+\frac{1}{2}\right)^{n+1}}=\binom{2}{3}^{m+n+2}
\end{aligned}
$$

When we form a series in powers of $z+\frac{1}{2}$ and $z^{\prime}+\frac{1}{2}$, so that $-\frac{1}{2}$ and $-\frac{1}{2}$ is the new ongin for a new donam, the series converges for values of z and z^{\prime} such that

$$
\left|z+\frac{1}{2}\right|<l<\frac{3}{2}, \quad\left|z^{\prime}+\frac{1}{2}\right|<l^{\prime}<\frac{3}{2}
$$

The series is

$$
\Sigma \Sigma \frac{t_{m, n}}{m!n}\left(z+\frac{1}{2}\right)^{m}\left(z^{\prime}+\frac{1}{2}\right)^{n}
$$

that is, it is

$$
\sum_{m=0}^{\sum_{n=0}}\left(\frac{2}{3}\right)^{m+n+2}\left(z+\frac{1}{2}\right)^{m}\left(\frac{z}{z}+\frac{1}{2}\right)^{n}
$$

For values of $|z|<h<1$ and $\left|z^{\prime}\right|<h^{\prime}<1$, the series gives no representation of f which is not given by the first series For values of $\mid=1 \geqslant 1$ such that $\left|z+\frac{1}{2}\right| \geqslant l<\frac{3}{2}$, and values of $\left|z^{\prime}\right| \geqslant 1$ such that $\left|z^{\prime}+\frac{1}{2}\right| \geqslant l^{\prime}<\frac{3}{2}$, the second sermes does give a representation of f whach is not given by the first series

The first sentes is the expansion, withan a doman round 0,0 , of the function

$$
\frac{1}{(1-z)\left(1-z^{\prime}\right)}
$$

When we sum the second series, we have, as the sum,

$$
\frac{\left(\frac{2}{3}\right)^{2}}{\left\{1-\frac{2}{3}\left(z+\frac{1}{2}\right)\right\}\left\{1-\frac{2}{3}\left(z^{\prime}+\frac{1}{2}\right)\right\}}
$$

$$
\frac{1}{(1-a)}\left(1-z^{\prime}\right)^{\prime}
$$

verifying the property that the two series, withm their respective domans, are elements of one and the same function

Singularities of uniform functions.

57. Any region of continuity of a function that is unform, continuous, and analytic has for its boundary a place or an aggregate of places (whether these are given by values of the variables that are continuous in succession or are given by discrete sets of variables) where the function ceases to be regular. Such a place is called singular by Weierstrass*.

Let k, k^{\prime} be a singular place for a uniform function $f\left(z, z^{\prime}\right)$; then in the mmediate vicinity of k, k^{\prime}, the function cannot be expanded as a converging

[^17]series of powers of $z-k$ and $z^{\prime}-k^{\prime}$. Two alternative possiblities present themselves as to the behaviour of functions in the vicinity of such a place.

Under the first of these altcrnatives, it can happen that a power-scries $P_{0}\left(z-k, z^{\prime}-k^{\prime}\right)$, representing some function regular at k, k^{\prime} and vanishing there, exasts such that the product

$$
P_{0}\left(z-k, z^{\prime}-k^{\prime}\right) f\left(z, z^{\prime}\right)
$$

is regular in the immediate vicinity of k and k^{\prime}. Denote this product by $F^{\prime}\left(z, z^{\prime}\right)$. Then $F\left(z, z^{\prime}\right)$, being a regular function of z and z^{\prime} in the immeduate vicinity of k and k^{\prime}, cari be expanded in a double sertes of powers of $z-k$ and $z^{\prime}-k^{\prime}$ which converges absolutely within non-infinitesimal regions round k and k^{\prime}. Denote this new scries by $P_{1}\left(z-k, z^{\prime}-k^{\prime}\right)$, then we have

$$
f\left(z, z^{\prime}\right)=\frac{P_{1}\left(z-k, z^{\prime}-k^{\prime}\right)}{P_{0}^{\prime}\left(z-k, z^{\prime}-k^{\prime}\right)}
$$

Following Weterstrass*, we call such a place an unessential singularty of the function.

Under the second of the alternatives indicated, it can happen that no power-series $P_{0}\left(z-k, z^{\prime}-k^{\prime}\right)$, representing some function of z and z^{\prime} legular in the immediate vicinity of k, k^{\prime}, exists such that the product

$$
P_{0}\left(z-l, z^{\prime}-k^{\prime}\right) f\left(z, z^{\prime}\right)
$$

is regular in the iminediate vicinity of k, k^{\prime} Following Welerstrass*, we call such a place k^{\prime}, k^{\prime} an essential surgularity of the function $f\left(z, z^{\prime}\right)$

It is to be noted, in passing, that, for the occurrence of an unessential singularity, it is suffictent to have a single power-scries P_{0} such that the product $P_{0} f_{1}$ s regular in the unmediate vicinity of the place But there is no assumption (and it is not universally the fact) that only a sungle powerseries exists having this property or that all such power-senes, as exist having this property, are expressible in terms of P_{0} alone, When two different expressions for the unform function $f\left(z, z^{\prime}\right)$ are obtaned in the vicinity of the place k, k^{\prime}, they must be equivalent; and we should then have a relation

$$
\frac{Q_{1}\left(z-k_{1} z^{\prime}-k^{\prime}\right)}{Q_{0}\left(z-k, z^{\prime}-k^{\prime}\right)}=\frac{P_{1}\left(z-k, z^{\prime}-k^{\prime}\right)}{D_{0}^{\prime}\left(z-k^{\prime}, z^{\prime}-k^{\prime}\right)}
$$

We shall assume that, while $P_{1}(0,0)$ and $P_{0}(0,0)$ vanish, the power-series P_{1} and P_{0} possess \dagger no common factor vanishing at k, k, whether it takes the form of a regular power-series or a mere polynomial which is a special case of a regular power-series. Similarly, we shall assume that Q_{1} and Q_{n} possess no common factor vanishing at k, k^{\prime}. Now

$$
Q_{1}\left(z-k, z^{\prime}-k^{\prime}\right)=\frac{P_{1}\left(z-k, z^{\prime}-k^{\prime}\right)}{P_{0}\left(z-k, z^{\prime}-k^{\prime}\right)} Q_{0}\left(z-k, z^{\prime}-k^{\prime}\right) .
$$

[^18]Here Q_{1} is regular in the immediate vicinity of k, k^{\prime}, while P_{1} and P_{0} have no common factor vanishing at k, k^{\prime}; hence Q_{0} must contain P_{0} as a factor. Let F denote the quotient of Q_{0} by P_{0}, so that F is regular at k, k^{\prime}; then

$$
Q_{0}=P_{0} F, \quad Q_{1}=P_{1} F .
$$

Again,

$$
P_{1}\left(z-k, z^{\prime}-k^{\prime}\right)=\frac{Q_{1}\left(z-h, z^{\prime}-k^{\prime}\right)}{Q_{0}\left(z-k, z^{\prime}-k^{\prime}\right)} P_{0}\left(z-k, z^{\prime}-k^{\prime}\right) .
$$

Here P_{1} is regular in the immediate vicmity of k, k^{\prime}, while Q_{1} and Q_{0} have no common factor vanshing at k, k^{\prime}; hence P_{0} must contan Q_{0} as a factor. But

$$
P_{0}=Q_{0} \cdot \frac{1}{F}
$$

and therefore $1 / F$ is regular at k, k^{\prime}. Consequently both F and $1 / F$ are regular at k, k^{\prime}; and therefore F^{\prime} does not vanish at k, k^{\prime}. It is not difficult to see that we then may choose a domain round k, k^{\prime}, which may be small but is not infinitesimal, such that F does not vanish in that domain, and then the behaviour of Q_{0} in the immediate vieinty of the place k, k^{\prime} is effectively the same as the behaviour of P_{0} in that immedate vicinity.

Likewise for P_{1} and Q_{1} if they vanish at k, k. When either does not vamsh, the other will not vanish, they are different from zero at k, k^{\prime} together

It follows that, in discussing the behaviour of $f\left(z, z^{\prime}\right)$ in the unmediate vicinity of k, k^{\prime}, any representation of $f\left(z, z^{\prime}\right)$ by a quotient $P_{1} \mid P_{0}$ can be used, if P_{1} and P_{0} have no common factor*.
58. In the case of functions of a single variable, it is known that there are different types of essential singularities, whether these occur at isolated points, or along lines, or over contmuous areas Special kinds of essential singularities are considered in that theory, and they furmsh partal characteristies of some classes of functions; for example, not a few definte results have been acheved when the essential singularties in question ean be approached as the limits of groups of particular points of a function; but the theory is far from easy or complete. A fortiori, it is to be expected that even greater difficulties will arise in the consuderation of the typues of essential singularities of uniform functions of a eouple of variables.

But when we deal with unessential singularities of uniform functions, there is a real divergence between the theory of functions of a single variable, and the theory of functions of two variables or more than two variables. In the case of functions of one variable, there is only one type of unessential singularities, the only variation in the type being the variety of the order; such a point a is said to be an unessential singularity (or a

[^19]pole) of a function $f(z)$, and of order n for the function, when there is a positive integer n such that
$$
(z-a)^{2 i} f(z)
$$
is finite and not zero at the point.
In the case of unform functions of two variables, we arrange the me essential singularitics in two distinct types or classes After the explanatory defintion we know that, in the mmediate vicmity of k, k^{\prime}, the function $f\left(z, z^{\prime}\right)$ can be expressed in the form
$$
f\left(z, z^{\prime}\right)=\frac{P_{1}\left(z-k, z^{\prime}-k^{\prime}\right)}{P_{0}(z-k,}, z^{\left.z^{\prime}-k^{\prime}\right)}
$$
where P_{0} and P_{1} are converging double series in powers of $z-h$ and $z^{\prime}-h^{\prime}$, of which P_{0} vanshes at k, h^{\prime}.

Two different cases then can occur as alternatives, diserimmated acconding to the value acqured by P_{1} at k, l^{\prime}.

In the one case, leading to one of the two types of unessental singularaties, it is the fact that P_{1} does not vamsh at k, l^{\prime}. It then follows that, no matter how z tends to the value k and z^{\prime} to the value k, the quantity $\mid f\left(z, z^{\prime}\right)$ can, for sufficiently small values of $z-k \mid$ and ' $z^{\prime}-h^{\prime} \mid$, be made larger than any assigned nagmtude, however large : that is to say, this lange magmotude $1 s$ assigned at will, and the appropnate small values of $|z-k|$ and $\left|z^{\prime}-k^{\prime}\right|$ are deternumed subsequently to the assignment We therefore can take infimty as the limit for the assugnment, and the place h, k^{\prime} then gives a definte and minque value to $f\left(z, z^{\prime}\right)$, this value being infinite.

This type of unessential smgularity is one of the two hinds of unessential singularity considered by Weierstrass It is convement to use fur functions of two variables, the samo name as is used, for functoons of on variable, when the place gives a defimte and unique minity of the functon Accordungly we shall call this type of unessential singularity the polar type, and a place k, h^{\prime}, being an unessential singularity of the polar type for the uniform function, will be called a pole of the function $f\left(z, z^{\prime}\right)$.

In the other case, leading to the other of the two types of uncssential smgularities, it is the fact that P_{1} does vanish at k, k^{\prime} The place h, k^{\prime} then does not give a definite and unique infinite value for the function $f\left(z, z^{\prime}\right)$. Subsequent explanations may so far be anticipated here as to declare that particular modes of approach of z to k and of z^{\prime} to k^{\prime} can be selected, so as to make $f\left(z, z^{\prime}\right)$ tend towards any assigned value near k, k^{\prime} and acquire that assigned value at k, k^{\prime}; thus the function $f\left(z, z^{\prime}\right)$ does not acquire a definite unique value at the place.

This type of unessential singularity as the other of the two kinds of unessential singularity considered by Weierstrass. We have given a definite name to the other type of unessential singularity that can belong
to unform functions of two variables; to the type just indicated, we shall give simply the general name unessential singularity and, so far as concerns functions of two variables, there need be no confusion in taking this unrestricted name*.

Thus, for the function

$$
\frac{z+z^{\prime}}{z-z^{\prime}},
$$

the place $z=1, z^{\prime}=1$ is a pole ; the place $z=0, z^{\prime}=0$ is an unessential singularity.
For the function

$$
\frac{z+z^{\prime}}{z-z^{\prime}} e^{\frac{1}{z}+\frac{1}{z^{\prime}}}
$$

the place $z=1, z^{\prime}=-1$ is a zero, the place $z=1, z^{\prime}=1$ is a pole ; the place $z=0, z^{\prime}=0$ is an essential singularty

For a function

$$
\frac{P\left(z, z^{\prime}\right)}{Q\left(z, z^{\prime}\right)},
$$

where $P\left(z, z^{\prime}\right)$ and $Q\left(z, z^{\prime}\right)$ are polynomials in z and z^{\prime} having no conimon factor, all places satisfying the equation

$$
Q\left(x, z^{\prime}\right)=0
$$

are poles unless they also satisfy the equation

$$
P\left(z, z^{\prime}\right)=0 ;
$$

and all places satisfying the two equations
are unessential singularities

$$
Q\left(z, z^{\prime}\right)=0, \quad P\left(z, z^{\prime}\right)=0,
$$

As a summary conclusion, we see that there are four kinds of places for a uniform analytic function of two varnables, viz ordinary places, poles, unessential singularities, essential singularities. The first set of these constitute the region of continuity of the function; the remainder constitute the boundary of the region of continuity of the function.

Extension of Laurent's Theorem.

59. As a last theorem for the present, we proceed to an cxtension of Laurent's theorem on functions of a single variable, in order to make the establishment simpler, we shall rostate Cauchy's theorem'concerning the

[^20]expansion of a function in a double series of positive powers. Consider a function $f\left(z, z^{\prime}\right)$ within a region where it is continuous, uniform, and analytic. Within that region (assumed to include 0,0) consider the domain defined by
$$
|z| ₹ \rho<r, \quad\left|z^{\prime}\right| ₹ \rho^{\prime}<r^{\prime} .
$$

Then we have the result

$$
f\left(z, z^{\prime}\right)=\stackrel{1}{(2 \pi i)^{2}} \iint_{(t-z)\left(t^{\prime}-z^{\prime}\right)} \frac{f\left(t, t^{\prime}\right)}{\left(t d t^{\prime},\right.}
$$

when the double integral is taken round crrcles in the domain such that

$$
|z|<|t|<\rho<r, \quad\left|z^{\prime}\right|<\left|t^{\prime}\right| ₹ \rho^{\prime}<r^{\prime}
$$

Moreover, takıng

$$
\begin{aligned}
& \frac{1}{t-z}=\frac{1}{t}+\frac{z}{t^{2}}+\frac{z^{2}}{t^{3}}+\ldots+\frac{z^{n}}{t^{n}}+\frac{\left(\frac{z}{t}\right)^{m+1}}{1-\frac{z}{t}}, \\
& \frac{1}{t^{\prime}-z^{\prime}}=\frac{1}{t^{\prime}}+\frac{z^{\prime}}{t^{\prime 2}}+\frac{z^{\prime 2}}{t^{\prime,}}+\ldots+\frac{z^{\prime n}}{t^{\prime n}}+\frac{\binom{z^{\prime}}{t^{\prime}}^{n+1}}{1-\frac{z^{\prime}}{t^{\prime}}},
\end{aligned}
$$

we obtain an explession for $f\left(z, z^{\prime}\right)$ in the form

$$
f\left(z, z^{\prime}\right)=\sum_{p=0} \sum_{q=0} c_{p, q} z^{p} z^{\prime} q
$$

The forms for the coefficients $c_{p, g}$ have already been given, the upper values of the limits of $\mid c_{p, q}$, for all positive integer values of p and q have already been given also, when the function $f\left(z, z^{\prime}\right)$ has the assigned propertses; the sernes can be continued to infinity for both sets of indices, and it converges absolutely within the z, z^{\prime} domain*.

Now consider a corresponding extension of Laurent's theorem, which may be enunciated as follows -

Let $f^{\prime}\left(z, z^{\prime}\right)$ denote a function, which is uniform, continuous, and analytic, unthin a region $2 n$ the field of variation defined by relations

$$
R_{0}>R \geqslant|z-a| \geqslant r>r_{0}, \quad R_{0}^{\prime}>R^{\prime} \geqslant\left|z^{\prime}-a^{\prime}\right| \geqslant r^{\prime}>r_{0}^{\prime} .
$$

Denote by t and by s current variables (or points) on the curcumferences of the outer circle of radius R_{0} and the inner circle of radius r_{0} in the z-plane; and simularly for t^{\prime} and for s^{\prime} on the carcumferences of the outer circle of raduus R_{0}^{\prime} and the inner carcle of radius r_{0}^{\prime} in the z^{\prime}-plane. Then the function $f\left(z, z^{\prime}\right)$ can be expressed as a series of integral powers of $z-a$ and $z^{\prime}-a^{\prime}$; the indices of those powers can range from $-\infty$ to $+\infty$ for each of the

[^21]variables, and the double serves converges absolutely for values of z and z^{\prime} given by
$$
R \geqslant|z-a| \geqslant r, \quad R^{\prime} \geqslant\left|z^{\prime}-a^{\prime}\right| \geqslant r^{\prime} .
$$

By the generalisation of the first part of Cauchy's theorem, we have

$$
\begin{aligned}
f\left(z, z^{\prime}\right)= & \frac{1}{(2 \pi i)^{2}} \iint_{\left(t-\frac{1}{z}\right)\left(t, t^{\prime}\right)}^{\left.z-z^{\prime}\right)} d t d t^{\prime} \\
& -\frac{1}{(2 \pi i)^{3}} \iint_{\left(s^{\prime}-\bar{z}\right)} \frac{f\left(s, t^{\prime}\right)}{\left(t^{\prime}-z^{\prime}\right)} d s d t^{\prime}-\frac{1}{(2 \pi \imath)^{2}} \iint_{(t-z)\left(s^{\prime}-z^{\prime}\right)} \frac{f\left(t, s^{\prime}\right)}{(2 \pi)^{2}} \iint_{(s-z)\left(s^{\prime}-z^{\prime}\right)} d s d s^{\prime} .
\end{aligned}
$$

Now, for our values of $a, t^{\prime}, z, z^{\prime}, t, t^{\prime}$, we have

$$
\begin{aligned}
& \frac{t-a}{t-z}=1+\frac{z-a}{t-a}+\ldots+\binom{z-a}{t-a}^{m}+\frac{t-a}{t-\bar{z}}\binom{z-a}{t-a}^{m+1} \\
& t^{\prime}-a^{\prime} \\
& t^{\prime}-z^{\prime} \\
& =1+\frac{z^{\prime}-a^{\prime}}{t^{\prime}-a^{\prime}}+\ldots+\binom{z^{\prime}-a^{\prime}}{t^{\prime}-a^{\prime}}^{n}+\frac{t^{\prime}-a^{\prime}}{t^{\prime}-z^{\prime}}\binom{z^{\prime}-a^{\prime}}{t^{\prime}-a^{\prime}}^{n+1}
\end{aligned}
$$

and so the integral

$$
\frac{1}{(2 \pi i)^{2}} \iint_{(t-z)\left(t^{\prime}-z^{\prime}\right)} d t d t^{\prime}
$$

is expressible as a double series of terms

$$
\Sigma \leq c_{p, q}(z-a)^{p}\left(z^{\prime}-a^{\prime}\right)^{\prime}
$$

for $p=0,1, \ldots, m$ and $q=0,1, \ldots, n$, where

$$
c_{p, q}=\frac{1}{(2 \pi i)^{2}} \iint_{(t-a)^{p+1}\left(t^{\prime}-\left(a^{\prime}\right)^{q+1}\right.}^{f\left(t, t^{\prime}\right)} d t d t^{\prime},
$$

together with a single senes of terms

$$
\sum_{q} \frac{1}{(2 \pi i)^{2}} \iint_{t-z}^{f\left(t, t^{\prime}\right)}\left(\frac{z-a}{t-a}\right)^{m+1}\binom{z^{\prime}-a^{\prime}}{t^{\prime}-a^{\prime}}^{q} d t d t^{\prime}
$$

for $q=0,1, \ldots, n$, and a single senes of terms

$$
{\underset{p}{\mathrm{y}}}^{\left(2, \frac{1}{(2} \pi\right)^{2}} \iint_{t}^{t\left(t, t^{\prime}\right)}\left(\begin{array}{l}
z^{\prime}-a^{\prime} \\
t^{\prime}-z^{\prime} \\
t^{\prime}-a^{\prime}
\end{array}\right)^{n+1}\binom{z-a}{t-a}^{p} d t d t^{\prime}
$$

for $p=0,1, \ldots, m$, and a term

$$
\left.\underset{(2 \pi i)^{2}}{1} \iint_{(t-z)\left(t^{\prime}-z^{\prime}\right)} \begin{array}{c}
f\left(t, t^{\prime}\right) \\
\left(\frac{z-a}{t-a}\right)^{m+1} \\
\left(z^{\prime}-a^{\prime}\right. \\
t^{\prime}-\bar{a}^{\prime}
\end{array}\right)^{n+1} d t d t^{\prime} .
$$

To consider the coefficients in the double semes, let M denote the greatest value of $\left|f\left(z, z^{\prime}\right)\right|$ within the whole region considered; then, as before,

$$
\left|c_{p, q}\right| ₹ \frac{M}{R_{0}^{y} \bar{R}_{0}^{j} q^{\prime}}
$$

though nothing can be declared as to a relation between $c_{p, q}$ and the derıvative $\frac{\partial^{p+q} f\left(z, z^{\prime}\right)}{\partial z^{p} \partial z^{\prime q}}$ at a, a^{\prime}, for our function is not defined within the domain $|z-a|<r_{0},\left|z^{\prime}-a^{\prime}\right|<r_{\theta}^{\prime}$.

As regards the second senes of terms, say S, we have

$$
\begin{aligned}
\mid S_{\mid} & =\sum_{q=0}^{n}\left|f\left(t, t^{\prime}\right)\right|\left(\frac{R}{R_{0}}-\bar{R}\right)^{m+1}\left(\frac{R^{\prime}}{R_{0}^{\prime}}\right)^{q+1} R_{0} R_{0}^{\prime} \\
& =\sum_{q=0}^{n} M R_{0} R_{0}^{\prime}\left(\frac{R}{R_{0}}-\bar{R}^{m+1}\left(\frac{R_{0}}{R_{0}}\right)^{m+1}\left(\frac{R^{\prime}}{R_{0}^{\prime}}\right)^{q+1}\right.
\end{aligned}
$$

as $R<R_{0}$, indefinite increase of m makes each term m the series on the right-hand side as small as we please, and $R^{\prime}<R_{0}^{\prime}$ that is, by taking m indefinitely large, we can make $K=0$.

Next, as regards the third series of terms, say S^{\prime}, we have

$$
\begin{aligned}
& \left|S^{\prime}\right| ₹ \sum_{p=0}^{m} \left\lvert\, \begin{array}{l}
\mid f\left(t, t^{\prime}\right) \\
R_{0}^{\prime}-R^{\prime}
\end{array}\binom{R^{\prime}}{\vec{R}_{0}^{\prime}}^{n+1}\binom{R}{\vec{R}_{0}}^{p+1} R_{0} R_{v}^{\prime}\right. \\
& ₹ \sum_{p^{\prime-0}}^{m} \stackrel{M}{R_{0}^{\prime}-R^{\prime}}\binom{R^{\prime}}{R_{0}^{\prime}}^{n+1}\binom{R}{R_{0}^{\prime}}^{p+1} R_{0} R_{0}^{\prime},
\end{aligned}
$$

as $R^{\prime}<R_{n}{ }^{\prime}$, indefinte increase of n makes each term m the series on the nght-hand side as small as we please, and $K<R_{n}$, that $1 s$, by taking n indefintely lage, we can make $S^{\prime}=0$

Lastly, as regaris the modulns of the single tem, it is

$$
₹_{\left(R_{n}-R\right)\left(R_{0}^{\prime}-R^{\prime}\right)}\binom{R R_{0} R_{0}^{\prime}}{R_{0}^{\prime}}^{m+1}\binom{R^{\prime}}{R_{0}^{\prime}}^{n+1}
$$

which, with the assumptions made concemming m and n, can be made less than any assigned quantity, however small, that 1 s , we can make the term zero

In these crreunstances, the expression fur the first of the four integrals becomes

$$
\sum_{p=0}^{m} \sum_{y-0}^{n} c_{p, 4}(z-a)^{\prime \prime}\left(z^{\prime}-a^{\prime}\right)^{T}
$$

As $|z-a| ₹ R<R_{0},\left|z^{\prime}-u^{\prime}\right| ₹ R^{\prime}<R_{0}^{\prime}$, and as $\left|c_{p, \eta}\right| ₹ \begin{gathered}M \\ R_{v}{ }^{\mu} R_{0}{ }^{\prime q},\end{gathered}$, this double senes converges absolutely when m and n increase indefintely and independently of one another. Thas the first integial is expressible as an absolutely convergng serics of positive powers of $z-a$ and $z^{\prime}-a^{\prime}$.

To obtan an expression for the second integral, which is

$$
-\frac{1}{(2 \pi t)^{2}} \iint_{(s-z)\left(t^{\prime}-z^{\prime}\right)} \frac{f\left(s, t^{\prime}\right)}{} d s d t^{\prime},
$$

we note that $|z-a| \geqslant r>r_{0}>|s-a|$, while $\left|t^{\prime}-z^{\prime}\right|<\left|t^{\prime}-a^{\prime}\right|$, so we take

$$
\begin{aligned}
& -{ }_{s-a}^{z-a}=1+\begin{array}{l}
s-a \\
z-a
\end{array}+\ldots+\binom{s-a}{\bar{z}-\frac{a}{a}}^{\mu}+\frac{z-a}{z-s}\binom{s-a}{z-a}^{\mu+1}, \\
& \begin{array}{l}
t^{\prime}-a^{\prime} \\
t^{\prime}-\widetilde{z^{\prime}}
\end{array}=1+\frac{z^{\prime}-a^{\prime}}{t^{\prime}-a^{\prime}}+\ldots+\binom{z^{\prime}-a^{\prime}}{t^{\prime}-a^{\prime}}^{n}+\frac{t^{\prime}-a^{\prime}}{t^{\prime}-z^{\prime}}\left(\frac{z^{\prime}-a^{\prime}}{t^{\prime}-a^{\prime}}\right)^{n+1} .
\end{aligned}
$$

We proceed as in the last case. It is possible to increase μ without limit and n without limit; and we obtain, as the expression for the integral,

$$
\sum_{\beta=0} \sum_{q=0} c_{\mu, n}(z-a)^{-\mu}\left(z^{\prime}-a^{\prime}\right)^{n},
$$

where

$$
c_{p, q}=\frac{1}{(2 \pi \tau)^{2}} \iint_{\left(t^{\prime}-a^{\prime}\right)^{)^{+1}}} \frac{f(s, a)^{p-1} d s d t^{\prime} .}{}
$$

Also

$$
\left|c_{p, q}\right| ₹ M r_{0}^{p} R_{0}^{\prime-q},
$$

and the double series converges absolutely for the retained range of values for z and z^{\prime}.

Similarly, as the expression for the third of our double integrals, which is

$$
-\frac{1}{(2 \pi i)^{2}} \iint \frac{f\left(t, s^{\prime}\right)}{(t-z)\left(s^{\prime}-z^{\prime}\right)} d t d s^{\prime}
$$

we obtan

$$
\sum_{p=0} \sum_{q=0} c_{p, q}(z-a)^{p}\left(z^{\prime}-a^{\prime}\right)^{-q}
$$

where

$$
c_{p, q}=\frac{1}{(2 \pi \tau)^{2}} \iint \frac{f\left(t, s^{\prime}\right)}{(t-a)^{p+1}}\left(s^{\prime}-a^{\prime}\right)^{p-1} d t d s^{\prime} .
$$

Also

$$
\left|c_{p, q}\right| ₹ M R_{0}-\boldsymbol{p} r_{0}^{\prime \prime},
$$

and this double series converges absolutely for the retaned range of values for z and z^{\prime}.

Lastly, as the expression for the fourth of our double integrals, which is
we obtain

$$
\frac{1}{(2 \pi i)^{2}} \iint_{(s-z)\left(s^{\prime}-z^{\prime}\right)} \frac{f\left(s, s^{\prime}\right)}{} d s d s^{\prime},
$$

where

$$
\sum_{p=0} \sum_{q=0} c_{p, q}(z-a)^{-p}\left(z^{\prime}-a^{\prime}\right)^{-q}
$$

$$
c_{p, q}=\frac{1}{(2 \pi l)^{2}} \iint f\left(s, s^{\prime}\right)(s-a)^{p-1}\left(s^{\prime}-a^{\prime}\right)^{\eta-1} d s d s^{\prime}
$$

Also

$$
\left|c_{p, g}\right| \geqslant M r_{0}{ }^{p} r_{0}{ }^{\prime \prime},
$$

and this double series converges absolutely for the retaned range of values for z and z^{\prime}.

Gathering these results together, we see that, in the circumstances as stated in the extended Laurent's theorem, the function $f\left(z, z^{\prime}\right)$ is expressible in the form

$$
f\left(z, z^{\prime}\right)=\sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} c_{m, n}(z-a)^{m}\left(z^{\prime}-a^{\prime}\right)^{n}
$$

the summation being for all integer values of m and of n between ∞ and $-\infty$; also

$$
\begin{aligned}
& \left|c_{m, n}\right| \gtrless M R_{0}^{-n} R_{0}^{\prime-n}, \text { when } m \text { is positive and } n \text { is positive, } \\
& \left|c_{m, n}\right| \gtrless M R_{0}^{-m} r_{0}^{\prime n}, \ldots \text { positive } \text { negative, } \\
& \left|c_{m, n}\right| ₹ M r_{0}^{2 n} R_{0}^{\prime-n} \\
& \left|c_{m, n}\right| \gtrless M r_{0}^{m} r_{0}^{\prime n} \quad, \ldots \text { negative positive, }
\end{aligned}
$$

and the double series converges absolutely for values of z and z^{\prime} given by

$$
R_{0}>R \geqslant\left|z-a_{i} \geqslant r>r_{0}, \quad R_{0}^{\prime}>R^{\prime} \geqslant\left|z^{\prime}-a^{\prime}\right| \geqslant r^{\prime}>r_{0}^{\prime}\right.
$$

It follows as an immediate corollary that when a function $\phi\left(z, z^{\prime}\right)$ is uniform, contonuous, and analytic for all the z, z^{\prime} regron of variation represented by the relations

$$
|z-u| \geqslant r>r_{0}, \quad\left|z^{\prime}-a^{\prime}\right| \geqslant r^{\prime}>r_{0}^{\prime}
$$

it is expressible as a double sernes of negative powers in the form

$$
\phi\left(z, z^{\prime}\right)=\sum_{1} \Sigma_{1} c_{m, n}(z-a)^{-m}\left(z^{\prime}-a^{\prime}\right)^{-n}
$$

where

$$
\left|c_{m, n}\right|^{\prime}<M r_{0}{ }^{m} r_{0}^{\prime n}
$$

M being the greatest value of $\left|\phi\left(z, z^{\prime}\right)\right|$ within the foregoing region, and the sernes converges absolutely for the specitzed iange of values for z and z^{\prime}.

The result is at once derivable from the extension of Laurent's theorem by making R_{0} and R_{0}^{\prime} increase without hmit, and it can of course be established independently in the same manner as the general theorem.

Eal The function

$$
\left.e^{p\left(z, \frac{1}{z}, z^{\prime},\right.} \begin{array}{l}
1 \\
z^{\prime}
\end{array}\right)
$$

where $p\left(z, \frac{1}{z}, z^{\prime}, \frac{1}{i^{\prime}}\right)$ is a polynomial in $z, \frac{1}{z}, z^{\prime}, \frac{1}{i^{\prime}}$, can be expanded in a serios

$$
\sum_{-\infty} \sum_{-\infty}^{\infty} c_{m, n} z^{2 n} z^{\prime n},
$$

for fimte valuen of $|\hat{\imath}|$ and $\left|\tilde{z}^{\prime}\right|$ nuch that

$$
|z| \geqslant r>e, \quad\left|z^{\prime}\right| \geqslant r^{\prime}>\varepsilon^{\prime},
$$

where and ϵ^{\prime} are positive non-zero quantities
Ev 2 Shew that the coofficent of $z^{n} z^{\prime n}$ (where m and n are positive) in the Laurent expanston of

$$
e^{\frac{1}{2}} t\left(z-\frac{1}{z}\right)+\frac{1}{2} \eta\left(z^{\prime}-\frac{1}{z^{\prime}}\right),
$$

$|\xi|$ and $|\eta|$ leing finte and independent of z and of z^{\prime}, is

$$
J_{m}(\xi) J_{n}(\eta)
$$

where J_{m} and J_{n} are Beesel's functions of order m and n, and obtam the coefficient of $z^{m} z^{\prime \prime n}$ in the same expunsion (1) when either m or n is negative, (11) when both m and n are negative

CHAPTER IV

Uniform Functions in Restricted Domains

A theorem due to Wererstrass.

60 AFTER these prelimmary results relating to expansions of a unform function, which converge absolutely and are valid over the appropriate domann, it is important to take account of the detailed behaviour of the function in the immediate vicinity of each of its several kinds of places

Accordingly, let a, a^{\prime} be an ordmary place foi a umform, contmuons, analytic function $f\left(z, z^{\prime}\right)$, the preceding investigations shew that $f^{\prime}\left(z, z^{\prime}\right)$, regular in some domam of that place, can be represented within the domain by a donble series of positive powers of $z-a$ and $z^{\prime}-a^{\prime}$ which there converges absolutely. No generahty, for our present purpose, is lost by assuming that $a=0$ and $a^{\prime}=0$, for the assumption can be secured by taking $z-a=Z$, $z^{\prime}-a^{\prime}=Z^{\prime}$. Hence we write

$$
F\left(z, z^{\prime}\right)=f\left(z, z^{\prime}\right)-f(0,0)=\Sigma \Sigma c_{m, n} z^{\prime \prime} z^{\prime n}
$$

where the summation is for positive integer values of m and of n save only simultaneous zero valucs. Also, $|f(0,0)|$ is fimite and may be zero.

The detaled behaviour of the function $F^{\prime}\left(z, z^{\prime}\right)$ in the immediate vicinity of the place 0,0 is governed by an important theorem, originally due to Weierstrass. After the analysis has been given, the Irmeipal results will be enunciated in a form that differs from Weierstrass's, because the limitation to two varıables renders greater detail possıble than when n is the number of varıables.

* The theorem $1 s$ proved by Weserstrass for functions of n variables, Ges Werke, $t . u$, pp. 185-142. Another proof, due to Simart, as gaven by Picard, Traité d'Aualyse, t in, pp. 243-245

The theorem 18 discussed here for the special case when there are only two variables. For this case, a proof (which follows Wererstrass's proof for the general case) is given in my Theory of Functions, $\$ 297$, it is modified in the proof given in the text, because the theorem 18 not regarded from the point of view of establishing the existence of implicit functions of a single variable.

Our function $F\left(z, z^{\prime}\right)$, which is regular in a doman ronnd 0,0 , can be expressed in a form

$$
F\left(z, z^{\prime}\right)=\phi_{0}(z)+z^{\prime} \phi_{1}(z)+z^{\prime 2} \phi_{2}(z)+\ldots
$$

Two cases arise according as $F(\varepsilon, 0)$ does not vanish, or docs vanish, identically for all values of z within the doman.
61. First, suppose that $F(z, 0)$ does not vanish for all values of z. Denoting $F(z, 0)$ by $F_{0}(z)$, which is equal to $\phi_{0}(z)$, and introducing a new function $F_{1}\left(z, z^{\prime}\right)$ defined by the equation

$$
F^{\prime}\left(z, z^{\prime}\right)=F_{0}(z)-F_{1}\left(z, z^{\prime}\right),
$$

we have a function $F_{1}\left(z, z^{\prime}\right)$ which, when $z^{\prime}=0$, vanishes for all values of z. Now $F_{n}^{\prime}(z)$ is independent of z^{\prime} and does not vanish for all values of z, hence we can choose places z, z^{\prime} in the vicinity of 0,0 , which lie within the region of convergence of $F\left(z, z^{\prime}\right)$ and are such that

$$
\left|F_{0}\right|>\left|F_{1}\right|
$$

It is to be remembered that F_{0} vanshes when $z=0$, and so there may be some lower limit for $|z|$ below which this inequality is not satisfied $A s|z|$ increases, a zero of F_{0} may be attaned, and then the inequality would not be satisfied. Also as $\left|z^{\prime}\right|$ increases, the value of $; F\left(z, z^{\prime}\right) \mid$ may increase, and so there may be some upper limit for $\left|z^{\prime}\right|$ above which the inequality is not satisficd. Accordingly, we suppose that, for places satisfying the relations

$$
\rho_{0}<|\boldsymbol{z}|<\rho, \quad!z^{\prime} \mid<\rho_{1}
$$

the inequality $\left.\left.\mid F_{0}\right\}>F_{1}\right\}$ holds. For all such places we have, on taking logarithmic derivatives of the equation

$$
F=F_{0}\left(1-\frac{F_{1}}{F_{0}}\right),
$$

the relation

$$
\frac{1}{F} \frac{\partial F}{\partial z}=\frac{1}{F_{0}^{\prime}} \frac{\partial F_{0}}{\partial z}-\frac{\partial}{\partial z}\left(\sum_{\lambda=1}^{\infty} \frac{1}{\bar{\lambda}} F_{1}^{\lambda} F_{0}^{\lambda}\right) .
$$

Now $F_{0}(z)$ is a regular function of z in a doman round $z=0$, and it vanishes when $z=0$; hence the lowest exponent in its expansion must be a positive integer greater than zcro, say m. Thus

$$
F_{0}(z)=z^{n} h(z)
$$

where $h(z)$ is a regular function of z in the selected domain and has a constant terin, consequently

$$
\begin{aligned}
\frac{1}{F_{0}} \frac{\partial F_{0}}{\partial z} & =\frac{m}{z}+\frac{h^{\prime}(z)}{h(z)} \\
& =\frac{m}{z}+G(z),
\end{aligned}
$$

where $G(z)$ is a converging series of positive powers of z in the selceted domain. Similarly

$$
\frac{F_{1}^{\lambda}}{F_{0}^{\lambda}}=\sum_{\mu=0}^{\infty} z^{-m \lambda+\mu} G_{\lambda, \mu}\left(z^{\prime}\right),
$$

where $G_{\lambda, \mu}\left(z^{\prime}\right)$, the coefficients of the powers of z, are converging series of positive integral powers of z^{\prime}, and because $F_{1}\left(z, z^{\prime}\right)$ vanshes when $z^{\prime}=0$ for all values of z, each of these coefficients $G_{\lambda, \mu}\left(z^{\prime}\right)$ vanıshes when $z^{\prime}=0$. Take each power of z, and collect all the terms which involve that power of z in the expansion

$$
\sum_{\lambda=1}^{\infty} \frac{1}{\lambda} \frac{F_{1}^{\lambda}}{F_{\theta}^{\lambda}}
$$

then we have

$$
\sum_{\lambda=1}^{\infty} \frac{1}{\lambda} \frac{F_{1}^{\lambda}}{F_{0}^{\lambda}}={ }_{n=-\infty}^{n=\infty} G_{n}\left(z^{\prime}\right) z^{n},
$$

while each of the coefficients $G_{n}\left(z^{\prime}\right)$, beng a linear combination of the coefficients $G_{\lambda, \mu}\left(z^{\prime}\right)$, vanshes when $z^{\prime}=0$. Thus

$$
\frac{1}{\bar{F}} \frac{\partial F}{\partial z}=\frac{m}{z}+G(z)-\frac{\partial}{\partial z}\left\{\sum_{n=-\infty}^{n=\infty} G_{n}\left(z^{\prime}\right) z^{n}\right\},
$$

and the only term on the right-hand side, which involves the power z^{-1}, is the term $\frac{m}{z}$.

Now let $\zeta_{1}, \ldots, \zeta_{s}$ denote the zeros of $F\left(z, \zeta^{\prime}\right)$, regarded as a function of z, when we consider a range of values of z such that $|z|<\rho$, and when we assign to z^{\prime} a parametric value ζ^{\prime} such that $\left|\zeta^{\prime}\right|<\rho_{1}$ Repeated zeros of $F\left(z, \zeta^{\prime}\right)$ are given by repetition in the quantities ζ, so that s denotes the tale of zeros of $F\left(z, \zeta^{\prime}\right)$ within the range. Then, as $F\left(z, \zeta^{\prime}\right)$ is regular for all such values of z, the function

$$
\frac{1}{F} \frac{d F\left(z, \zeta^{\prime}\right)}{d z}-\sum_{p=1}^{n} \frac{1}{z-\zeta_{p}}
$$

is finite for those values; it can therefore be expanded as a converging series of positive powers of z, say $P(z)$, so that

$$
\frac{1}{F} \frac{d F\left(z, \zeta^{\prime}\right)}{d z}=\sum_{p=1}^{s} \frac{1}{z-\zeta_{p}}+P(z) .
$$

Choose values of z, such that $|z|$ is still less than p and is now greater than the greatest of the quantities $\left|\zeta_{1}\right|, \ldots,\left|\zeta_{A}\right|$. The fractions on the right-hand side of the equation can. for such values of z, be expanded in descending powers of z, and the equation, after such expansions, becomes

$$
\frac{1}{\mathscr{F}^{\prime}} \frac{d F\left(z, \zeta^{\prime}\right)}{d z}=P(z)+\frac{s}{z}+\sum_{\tau=1}^{\infty} S_{\tau} z^{-r-1}
$$

where

$$
S_{\tau}=\zeta_{1}{ }^{\top}+\ldots+\zeta_{z}^{\top}
$$

As this result is valid for all values of ζ^{\prime} within the selected z^{\prime}-range, ζ^{\prime} being independent of z, we have

$$
\begin{aligned}
\frac{m}{z} & +G(z)-\frac{\partial}{\partial z}\left\{\sum_{n=-\infty}^{n=\infty} G_{n}\left(\zeta^{\prime}\right) z^{n}\right\} \\
& =\frac{s}{z}+P(z)+\sum_{\tau=1}^{\infty} S_{\tau} z^{---1}
\end{aligned}
$$

identically for all values of z, and therefore, among other results, we have

$$
s=m, \quad S_{\tau}=\tau G_{-\tau}\left(\zeta^{\prime}\right)
$$

for all values of τ
The first result shews that, for any given value of z^{\prime} such that $\left|z^{\prime}\right|<\rho_{1}$, the function $F^{\prime}\left(z, z^{\prime}\right)$ has m zeros in the range $|z|<\rho$, where the number n is the index of the lowest exponent in $F^{\prime}(z, 0)$ when expressed as a regular series of positive powers of z

The second result then shews that, for all the positive values of τ, the quantity

$$
\zeta_{1}{ }^{\tau}+\quad+\zeta_{m}^{\tau}
$$

is expressible as a regular function of ζ^{\prime} which vanishes when ζ^{\prime} is zero. Hence all integral symmetric functions of $\zeta_{1}, \ldots, \zeta_{m}$ are regular functions of ζ^{\prime} which vanish with ζ^{\prime}, and as ζ^{\prime} is a parametric value of z^{\prime}, we may (wathin our range) substitute z^{\prime} for ζ^{\prime}. It therefore follows that, if

$$
\begin{aligned}
g\left(z, z^{\prime}\right) & =\left(z-\zeta_{1}\right) \ldots\left(z-\zeta_{n}\right) \\
& =z^{m}+g_{1} z^{m-1}+\ldots+g_{m}
\end{aligned}
$$

the coefficients g_{1}, \ldots, g_{m} are regular functions of z^{\prime} within the selected range, cach of them vansshing when $z^{\prime}=0$.

Further, from the same equation, we have

$$
P^{\prime}(z)=G(z)-\sum_{n=0}^{\infty}(n+1) z^{n} G_{n+1}\left(z^{\prime}\right)
$$

where all the functions are regular. Thus, if

$$
\Gamma\left(z, z^{\prime}\right)=\int_{0}^{z} G(z) d z-\sum_{n=0}^{\infty} z^{n+1} G_{n+1}\left(z^{\prime}\right)
$$

where $\Gamma\left(z, z^{\prime}\right)$ manfestly is a regular function of z and z^{\prime}, and vanshes when $z=0$ and $z^{\prime}=0$, we have

$$
P(z)=\frac{\partial}{\dot{\partial} z}\left\{\boldsymbol{\Gamma}\left(z, z^{\prime}\right)\right\}
$$

Thus

$$
\begin{aligned}
\frac{1}{\bar{F}} \frac{\partial F}{\partial z} & =P(z)+\frac{m}{z}+\sum_{\tau=1}^{\infty} S_{\tau} z^{-r-1} \\
& =\frac{\partial}{\partial z}\left\{\Gamma\left(z, z^{\prime}\right)\right\}+\frac{1}{g\left(z, z^{\prime}\right)} \frac{\partial}{\partial z}\left\{g\left(z, z^{\prime}\right)\right\},
\end{aligned}
$$

and therefore

$$
F=U g\left(z, z^{\prime}\right) e^{\Gamma(z, z)}
$$

where U is independent of z.
As U is the same for all values of z, and as F and $g\left(z, z^{\prime}\right)$ and $\Gamma\left(z, z^{\prime}\right)$ are regular functions of z and z^{\prime} for the range considered, it follows that U (if variable) is a regular function of z^{\prime}. When $z^{\prime}=0$, let the first term in the expansion of the regular function F_{0}, which is all of $F\left(z, z^{\prime}\right)$ that then survives,
be $C z^{m}$, then $g\left(z, z^{\prime}\right)$ becomes z^{m}; and $\Gamma\left(z, z^{\prime}\right)$ is then a regular function of z alone Thus, when $z^{\prime}=0$, we have $U=C$, and U, at the utmost, is a regular function of z^{\prime}; hence

$$
\begin{aligned}
U & =C\left(1+\text { positive powers of } z^{\prime}\right) \\
& =C e^{u},
\end{aligned}
$$

where u is a regular function of z^{\prime} which vanishes when $z^{\prime}=0 \quad$ Let

$$
R\left(z, z^{\prime}\right)=u+\Gamma\left(z, z^{\prime}\right)
$$

where again $R\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} which vanishes when $z=0$ and $z^{\prime}=0$; and we then have

$$
F\left(z, z^{\prime}\right)=C g\left\langle z, z^{\prime}\right) e^{R\left(z, z^{\prime}\right)},
$$

with the defined significance of $g\left(z, \varepsilon^{\prime}\right), R\left(z, z^{\prime}\right)$, and C.
The new expression is valid within the assigned range of z, z^{\prime} in the immediate vicunity of 0,0 . But it must not be assumed-and usually it is not the case in fact-that the new expression is valid over the whole doman where $f\left(z, z^{\prime}\right)$ is initially taken as regular.

We thus have the result.-
I. When a function $f\left(z, z^{\prime}\right)$ is regular in some domazn of 0,0 , and is such that $f(z, 0)-f(0,0)$ does not vanish for all values of z in that domun, we have
where

$$
f\left(z, z^{\prime}\right)=f(0,0)+C g\left(z, z^{\prime}\right) e^{R\left(z, z^{\prime}\right)}
$$

$$
g\left(z, z^{\prime}\right)=2^{m}+g_{1} z^{m-1}+\ldots+g_{m}
$$

the quantuties g_{1}, \ldots, g_{m} being functions of z^{\prime}, each of which is regular th the ımmediate vicintty of $z^{\prime}=0$ and vanishes when $z^{\prime}=0$, where $C z^{m}$ is the lowest power in the expansion of $f(z, 0)-f(0,0)$ in positve powers of z; and where $R\left(z, z^{\prime}\right)$ is a function of z and z^{\prime}, whoch is regular in the immediate vicomty of 0,0 and vanushes when $z=0$ and $z^{\prime}=0$.
62. One important corollary can be at once derived from the preceding result.

Suppose that 0,018 a non-zero place for the function $f\left(z, z^{\prime}\right)$, so that $f(0,0)$ is not zero, then we have

$$
\frac{f\left(z, z^{\prime}\right)}{f(0,0)}=1+\frac{C}{f(0,0)} g\left(z, z^{\prime}\right) e^{R\left(z, z^{\prime}\right)}
$$

Now $R\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime}, vanishing when $z=0$ and $z^{\prime}=0$, so that $\left|e^{R(z, z)}\right|$ is finite throughout some definite domain round 0,0 . Also $|C / f(0,0)|$ is finite; and $g\left(z, z^{\prime}\right)$, while polynomial in z and regular in z^{\prime} in the immediate vicinity of $z^{\prime}=0$, vanishes at the place 0,0 . It therefore is possible, owing to the regularity of $g\left(z, z^{\prime}\right)$ and $R\left(z, z^{\prime}\right)$, to choose a noninfintesimal domain given by

$$
|z|<r, \quad\left|z^{\prime}\right|<r^{\prime}
$$

such that, for all the included values of z and z^{\prime},

$$
{ }_{f(0), \overline{0})}^{(} \quad g\left(z, z^{\prime}\right), e^{B l z, z^{\prime}}, z M<1
$$

where M is a real positive quantity. For all such values of z and z^{\prime}, we have

$$
1+\underset{f(0,0)}{O} g\left(z, z^{\prime}\right) e^{R(z, z)}=e^{\bar{H}\left(z, z^{\prime}\right)}
$$

where $\bar{R}\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime}, given by the expansion

$$
\stackrel{O^{\prime}}{\tilde{f}(0,0)} g\left(z, z^{\prime}\right) e^{S\left(z, z^{\prime}\right)}-\frac{1}{s} f^{2}(0,0)^{g^{\prime}\left(z, z^{\prime}\right)} e^{2 R(z, z)}-\ldots,
$$

that is, $\bar{R}\left(z, z^{\prime}\right)$ is a regular function in a doman of z and z^{\prime} and vanishes when $z=0$ and $z^{\prime}=0$ This domann dow not include any place that is a zero of $\dot{f}^{\prime}\left(z, z^{\prime}\right)$, becaune at a zero-place z, z^{\prime} of $f\left(z, z^{\prime}\right)$ we should have

$$
\frac{G}{f(0,0)} g\left(z, z^{\prime}\right) e^{R(z, z)}=-1
$$

and therefore

$$
\begin{array}{c|cc}
(& g\left(z, z^{\prime}\right) & e^{\left(i a z, z^{\prime}\right)}:=1,
\end{array}
$$

a possibility which is excluded. Hence we mast have

$$
\begin{aligned}
& f\left(z, z^{\prime}\right) \\
& f(0, \overline{0})=e^{\left(r\left(z, z^{\prime}\right)\right.},
\end{aligned}
$$

and therefore

$$
f\left(z, z^{\prime}\right)=f(0,0) e^{k(z, z)}
$$

Our conollary can therefore be stated as follows -
When $f(z, z$) is regular uththn a fimte doman round 0,0, and $f(0,0)$ does not ramsh, then there is a doman round 0,0 -usually mone limated than the forme, domain mithim whach $f^{\prime}\left(z, z^{\prime}\right)$ is regular-such that $f\left(z, z^{\prime}\right)$ can be expressed on the form

$$
f\left(z, z^{\prime}\right)=t(0,0) e^{A(z, z)}
$$

where $\bar{R}\left(z, z^{\prime}\right)$ is a functoon of z and z^{\prime}, whoch venshes when $z=0$ and $z^{\prime}=0$ "nd as regular withu the second domain

In particular, this expression is valid in the mumedrate vicinity of 0,0 , on the supposition adopted

63 In precisely the same manner and with exactly minilar analysis, we can establish the following result which therefore needs only to be stated -

II When a functoon $f\left(z, z^{\prime}\right)$ is regular in some domain of 0,0 , and is such that $f^{\prime}\left(0, z^{\prime}\right)-f^{\prime}(0,0)$ does not vamsh for all values of z^{\prime} in that domain, we have
where

$$
f^{\prime}\left(z, z^{\prime}\right)=f(0,0)+K h\left(z, z^{\prime}\right) e^{S\left(z, z^{\prime}\right)}
$$

$h\left(z, z^{\prime}\right)=z^{\prime n}+h_{1} z^{\prime n-1}+. .+h_{n}$,
the quantitues h_{1}, \ldots, h_{n} being functions of z, each of which is regular in the inimedrate vicinuty of $z=0$ and vanashes when $z=0$, where K $z^{\prime n}$ is the lowest
power in the expansion of $f\left(0, z^{\prime}\right)-f(0,0)$ in positve powers of z^{\prime}, and where $S\left(z, z^{\prime}\right)$ us a function of z and z^{\prime}, whech is regular in the immedrate vicinuty of 0,0 and vanshes when $z=0$ and $z^{\prime}=0$.

The postulated circumstances are not the samc in these two theorems If it should be the case that $f(z, 0)-f(0,0)$ does not vanish for all values of z within the range, and also the case that $f\left(0, z^{\prime}\right)-f(0,0)$ does not vanish for all values of z^{\prime} within the range, then both theorems hold. In that event, we have two different expressions for $f^{\prime}\left(z, z^{\prime}\right)-f(0,0)$ which must be equivalent to one another. This equivalence will be illustrated by an example, that will be given after we have discussed the altemative to the imital hypothesis

64 Secondly, suppose that the function $F(z, 0)$, where

$$
F^{\prime}\left(z, z^{\prime}\right)=f\left(z, z^{\prime}\right)-f^{\prime}(0,0),
$$

vanishes identically for all values of z Now $F\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime}, within the range considered, as before, it can be expressed, by summation of the uniformly converging series, which represents it, in the form

$$
F\left(z, z^{\prime}\right)=\phi_{0}(z)+z^{\prime} \phi_{1}(z)+z^{\prime \prime} \phi_{2}(z)+\ldots,
$$

which itself is a converging semes withn the ronge (As already stated, $\phi_{\mathrm{n}}(z)$ is the $F_{0}^{\prime}(z)$ of the preceding investigation). If then $F^{\prime}(z, 0)$ vanshes identically for all values of z, then $\phi_{v}(z)$ vanishes identically. It may happen that othet coefficterntis $\phi_{1}(z), \phi_{2}(z)$, , vansh identically, let $\phi_{t}(z)$ be the first that does not thus vanısh, t being a finte integer because $F\left(z, z^{\prime}\right)$ is presumably not a constant zero Consequently

$$
F^{\prime}\left(z, z^{\prime}\right)=z^{\prime \prime}\left(\phi_{t}(z)+z^{\prime} \phi_{t+1}(z)+.\right\}
$$

and the series

$$
\phi_{t}(z)+z^{\prime} \phi_{t+1}(z)+.
$$

is a regular function of z and z^{\prime}, that is, in the suggested circumstance when the function $F^{\prime}(z, 0)$ vamshes identically for all values of z, our function $F\left(z, z^{\prime}\right)$ has some power of z^{\prime} as a factor Let this factor be z^{\prime}, then t is a positive integer greater than zero, and it is assumed to be the largest positive integer which allows $F^{\prime}\left(z, z^{\prime}\right) z^{\prime-t}$ to be a regular function of z and z^{\prime} in the vicinity of the place 0,0 .

The first of the two preceding theorems does not hold as an expression for $f\left(z, z^{\prime}\right)$. But if the function $F^{\prime}\left(0, z^{\prime}\right)$ does not vansh identically for all values of z^{\prime}, the second of the preceding theorems does hold as an expression for $f\left(z, z^{\prime}\right)$. There are, however limitations upon the forms of the quantities h_{n}, h_{n-1}, \ldots, in particular,

$$
h_{n}=0, \quad h_{n-1}=0, \quad, \quad h_{n-t+1}=0 .
$$

But the momentarly important result is that

$$
f\left(z, z^{\prime}\right)-f(0,0)=z^{\prime} G\left(z, z^{\prime}\right)
$$

where $G\left(z, z^{\prime}\right)$ is regular in the vicinty of 0,0 , and $G(z, 0)$ does not vanish dentically for all values of z.

Next, suppose that the function $F\left(0, z^{\prime}\right)$ where (as before)

$$
F\left(z, z^{\prime}\right)=f\left(z, z^{\prime}\right)-f(0,0)
$$

vanishes identically for all values of z^{\prime}. Then an argument precisely sumilar to the preceding argument shews that the finction $F\left(z, z^{\prime}\right)$ has some power of z as a factur. Let this factor be z^{s}, then s is a positive integer greater than zero, and it is assumed to be the largest posituve integer which allows $F^{\prime}\left(z, z^{\prime}\right) z^{-k}$ to be a regular function of z and z^{\prime} in the vicmity of 0,0

The second of the two preceding theorems does not now hold as an expression for $f^{\prime}\left(z, z^{\prime}\right)$. But it the function $F^{\prime}(z, 0)$ does not vamsh identically for all values of z, the first of the preceding theorems does hohl as an expression for $t\left(z, z^{\prime}\right)$ As befolt, there are hmatations upon the torms of the quantities g_{m}, g_{m-1}, \ldots in particular,

$$
g_{m}=0, \quad g_{m-2}=0, \ldots, \quad g_{m-s+2}=0
$$

But the momentarily mportant result is that

$$
f^{\prime}\left(\hat{z}, \hat{z}^{\prime}\right)-f(0,0)=z^{\prime \prime} H\left(z, z^{\prime}\right),
$$

where $H\left(z, z^{\prime}\right)$ is regular in the viennty of 0,0 , and $H\left(0 z^{\prime}\right)$ does not vamish identically for all values of z^{\prime}

Next, agaun taking

$$
F^{\prime}\left(z, z^{\prime}\right)=f^{\prime}\left(z, z^{\prime}\right)-f(0,0),
$$

suppone that the functun $F^{\prime}(z, 0)$ wimshes dentrally for all values of z and that the function $F^{\prime}\left(0, z^{\prime}\right)$ vamshes dentically for all values of z^{\prime} As in the preceding cases, $F^{\prime}\left(z, z^{\prime}\right)$ has a factor which is now of the form $z^{*} z^{\prime \prime}$, where s and t are prositive integers cach grater than zero, and it is assumed that each of them, mependently of one another, is the langest positive anteger which allows $F\left(z, z^{\prime}\right) z^{-*} z^{-t}$ to be a regular functoon of z and z^{\prime} in the viemity of 0,0

Neither of the two thenems already proved now holds as an expression for $f\left(z, z^{\prime}\right)$ The momentarily mportant result is that

$$
f\left(z, z^{\prime}\right)-f^{\prime}(0,0)=z^{*} z^{\prime} I\left(z, z^{\prime}\right),
$$

where $I\left(z, z^{\prime}\right)$ is regular m the viomity of 0,0 , while $I(z, 0)$ does not vansh identically for all values of z and $I\left(0, z^{\prime}\right)$ does mot vanish identically for all values of z^{\prime}.

Thus in each of the cases contemplated, we have

$$
f\left(z, z^{\prime}\right)-f(0,0)=z^{\prime \prime} z^{\prime \prime} U\left(z, z^{\prime}\right),
$$

where s and t are positive integers that are not smoltaneous zeros, and $U\left(z, z^{\prime}\right)$ is regular in the vicinity of 0,0 , while neither $U(z, 0)$ nor $U\left(0, z^{\prime}\right)$ vanishes identically for all values of z or of z^{\prime} respectively. The alternatives are as follows
(a) When $U(0,0)$ is not zero, then, within the sufficiently small doman round 0,0 , we have

$$
U\left(z, z^{\prime}\right)=U(0,0) e^{T\left(z, z^{\prime}\right)}
$$

where $T\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime}, vanishing at 0,0
Then we have

$$
f\left(z, z^{\prime}\right)=f(0,0)+C z^{\prime \prime} z^{\prime \prime} e^{T(z, z)}
$$

where the constant C is the non-zero value of $U^{\prime}(0,0)$
(β) When $U(0,0)$ is zero, the conditions attaching to $U\left(z, z^{\prime}\right)$ require that $U(z, 0)$ does not vanish identically for all values of z and that $U\left(0, z^{\prime}\right)$ does not vanish identically for all values of z^{\prime}.

As $U(z, 0)$ does not vansh identically for all values of z and as $U\left(z, z^{\prime}\right)$ is a regular function, the first of our two earher theorems apphes to $U\left(z, z^{\prime}\right)$; we have an expression of the form

$$
U\left(z, z^{\prime}\right)=A g\left(z, z^{\prime}\right) e^{N\left(z, z^{\prime}\right)},
$$

where A is a constant, $g\left(z, z^{\prime}\right)$ is a polynomal in z having, is its coefficients, regular functions of z^{\prime} which vanish with z^{\prime}, and where $R\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} whech vanshes when $z=0$ and $z^{\prime}=0$ Then

$$
f^{\prime}\left(z, z^{\prime}\right)=f(0,0)+A z^{8} z^{\prime \prime} g\left(z, z^{\prime}\right) \rho^{h\left(z, z^{\prime}\right)}
$$

Also $U\left(0, z^{\prime}\right)$ does not vamsh identically for all values of z^{\prime}, and $U\left(z, z^{\prime}\right)$ is a regular function, hence the second of our two earliel theorems appless to $U\left(z, z^{\prime}\right)$. We have an expression of the form

$$
U\left(z, z^{\prime}\right)=B h\left(z, z^{\prime}\right) e^{S\left(x, z^{\prime}\right)}
$$

where B is a constant, $h\left(z, z^{\prime}\right)$ is a polynomial in z^{\prime} having, as its cosefficients, regular functions of z which vanish with z, and where $S\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} which vanshes when $z=0$ and $z^{\prime}=0$. Then

$$
f\left(z, z^{\prime}\right)=f(0,0)+B z^{\prime \prime} z^{\prime t} h\left(z, z^{\prime}\right) e^{S(z, z)} .
$$

Summarising these results, we have the theorem.-
III. When a functoon $f\left(z, z^{\prime}\right)$ as regular in some domain of 0,0 , and is such that either (i) $f(z, 0)-f(0,0)$ vanrshes vdentrcally for all values of z while $f\left(0, z^{\prime}\right)-f(0,0)$ does not vanash identically for all values of z^{\prime}, or (11) $f\left(0, z^{\prime}\right)-f(0,0)$ vanishes identically for all values of z^{\prime} while $f(z, 0)-f(0,0)$ does not vanesh vdentically for all values of z, or (11) $f(z, 0)-f(0,0)$ vannshes adentically for all values of z and $f\left(0, z^{\prime}\right)-f(0,0)$ vanishes identically for all values of z^{\prime}, then expressions for $f\left(z, z^{\prime}\right)$ in the immediate vacnity of the place 0,0 are

$$
\begin{aligned}
& f\left(z, z^{\prime}\right)=f(0,0)+A z^{\prime \prime} z^{\prime \prime} g\left(z, z^{\prime}\right) e^{R\left(z, z^{\prime}\right)} \\
& f\left(z, z^{\prime}\right)=f(0,0)+B z^{s} z^{\prime t} h\left(z, z^{\prime}\right) e^{S\left(z, z^{\prime}\right)}
\end{aligned}
$$

where s and t are posituve integers such that $s=0, t>0$ for the first hypothesss, $s>0, t=0$ for the secund hypothesis; and $s>0, t>0$ for the thrd hypothesis. The quentities A and B are constants; tie functoons $R\left(z, z^{\prime}\right)$ and $S\left(z, z^{\prime}\right)$ are functions of z and z^{\prime}, each of which is regular in the immedrate vicinty of 0,0 and vansshes when $z=0$ and $z^{\prime}=0$, the function $g\left(z, z^{\prime}\right)$ is a polynomual in z of the form

$$
z^{m}+g_{1} z^{m-1}+\quad+g_{m},
$$

where the coefficients $g_{1}, \ldots,!I_{m}$ (1re functions of z whach are regulur in the immediate vicunty of $z^{\prime}=0$ and vanash with z^{\prime}, and the function $h\left(z, z^{\prime}\right)$ us a polynomial in z^{\prime} of the form

$$
z^{\prime n}+h_{1} z^{n-1}+\quad+h_{n},
$$

where the ropfficients h_{1}, \ldots, h_{n} ane functuons of z whach are regular in the imnieduate vcinity of z and vanish with z There is a limuting case when both m and n are zero, the eap esswo for $f\left(z, z^{\prime}\right)$ n the mumeduate vicunty of 0,0 is

$$
f\left(z, z^{\prime}\right)=f(0,0)+C z^{s} z^{t} e^{r^{\prime}\left(z, z^{\prime}\right)}
$$

where C^{\prime} is a constant, while $T\left(z, z^{\prime}\right)$ is a function of z and z^{\prime} which is regular in the ummeduate vanuty of 0,0 and vanshes when $z=0$ and $z^{\prime}=0^{*}$.

Note We saw hetore that, in certan circumstances, both Theorem I and Theorem II ate valul, thas providng for the regular function $f\left(z, z^{\prime}\right)$ two expressions, which are formally drstmet from one another, and must be equivalent to one another

In Theorem III it follows that, in certain crrcumstances, the regular tunction $f^{\prime}\left(z, z^{\prime}\right)$ can have two expressrons, which are formally distinct from one another and must be equivalent to one another.

In the former case, the two expressions for $f\left(z, z^{\prime}\right)-f(0,0)$ are

$$
O g\left(z, z^{\prime}\right) e^{n\left(z, z^{\prime}\right)}, \quad K h\left(z, z^{\prime}\right) e^{N(z, z)},
$$

where $g\left(z, z^{\prime}\right)$ is polynomal in z with coefficients that are regular functions of z^{\prime} vamshing with z^{\prime}, while $h\left(z, z^{\prime}\right)$ is polynomal in z^{\prime} with coefticients that are regular functions of z vamshing with z. Thus

$$
\begin{aligned}
& g\left(z, z^{\prime}\right) \\
& h\left(z, z^{\prime}\right)
\end{aligned}=\begin{gathered}
K \\
e^{S\left(z, z^{\prime}\right)-R\left(z, z^{\prime}\right)}=L e^{\left.r^{(z, z} z^{\prime}\right)},
\end{gathered}
$$

where L is a constant and $V\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} which vanishes when $z=0$ and $z^{\prime}=0$, hence

$$
\begin{aligned}
& g\left(z, z^{\prime}\right)=L e^{T^{\prime}\left(x, z^{\prime}\right) h\left(z, z^{\prime}\right)} \\
& h\left(z, z^{\prime}\right)=\frac{1}{L} e^{-V^{\prime}\left(z, z^{\prime}\right)} g\left(z, z^{\prime}\right)
\end{aligned}
$$

Similar relations hold in the latter case.

[^22]It follows that, for a regular function $f\left(z, z^{\prime}\right)$, when it is not expressed as a power-series valid over a domain round 0,0 , but is expressed for consderation in the immedrate vicmity of 0 , 0 , we usually can obtain two different expressions according as z or z^{\prime} is taken as the variable for simplifying the representation. Each of the expressions is unique in its form; the two expressions are equivalent to one another.

Ex Consider an ordinary place of a regular function $f\left(z, z^{\prime}\right)$, and let it be 0,0 , and take the general power-series for f, in that dowan, in the forin

$$
\begin{aligned}
& f\left(z, z^{\prime}\right)-f(0,0) \\
& =\left(a_{10} z+a_{01} z^{\prime}\right) \\
& \\
& \\
& \\
& \\
& \\
& \\
& +\left(a_{321} z^{2} z^{2}+a_{11} z_{21} z^{\prime}+a_{02 z^{\prime}} z^{\prime} z^{\prime}\right) \\
& \left.a_{12} z z^{\prime 2}+a_{03} z^{3}\right)+\ldots
\end{aligned}
$$

Tirst, assume that netther a_{11} nor a_{01} vanishes it is not difficult to establish the following results* -

$$
f\left(z, z^{\prime}\right)-f^{\prime}(0,0)=\left\langle\alpha_{10} z+b_{01} z^{\prime}+b_{122} z^{\prime 2}+b_{13} z^{\prime 3}+.\right) e^{h_{11} z+h_{(11} z^{\prime}+k_{22} z^{2}+k_{11} z z^{\prime}+h_{12} z^{\prime 2}+},
$$

where

$$
\begin{aligned}
& b_{011}=f_{11} \text {, } \\
& b_{12}=\frac{1}{a_{10}{ }^{2}}\left(a_{122} c_{10}{ }^{2}-a_{11} a_{10}\left(a_{01}+a_{212} a_{01}{ }^{2}\right),\right. \\
& b_{03}=\frac{1}{a_{10}{ }^{3}}\left(a_{03} a_{29}{ }^{3}-a_{12} a_{14}{ }^{2} a_{01}+a_{21} a_{10} a_{01}{ }^{2}-a_{21} a_{12}{ }^{3}\right) \\
& -\frac{1}{a_{11}{ }^{4}}\left(a_{02} \alpha_{10}{ }^{2}-a_{11} a_{10} a_{01}+a_{29} a_{112}{ }^{2}\right)\left(2 a_{21} a_{01}-a_{11} a_{10}\right), \\
& k_{11}=\frac{a_{2 n}}{a_{10}}, \\
& \lambda_{111}=\underset{a_{10}}{1}{ }_{10}^{2}\left(\alpha_{11} \alpha_{10}-a_{20} a_{01}\right) \text {, } \\
& { }_{229}=\frac{a_{21}}{a_{10}}-\frac{1}{2} \frac{a_{21}{ }^{2}}{2} \frac{a_{10}{ }^{2}}{2}, \\
& h_{11}=\frac{1}{a_{10}} \frac{1}{2}\left(a_{21} \alpha_{20}-a_{31} \alpha_{01}\right)-\frac{a_{21}}{a_{10}{ }^{3}}\left(a_{11} a_{10}-a_{30} \alpha_{011}\right), \\
& k_{02}=\frac{1}{a_{11}{ }^{3}}\left(a_{12} a_{10^{2}}{ }^{2}-a_{21} \alpha_{110}\left(a_{11}+a_{31}\left(\alpha_{01}{ }^{2}\right)\right.\right.
\end{aligned}
$$

whieh is the expression for $f\left(z, z^{\prime}\right)$ under Theorern I
Similarly, as the expression for $f\left(z, z^{\prime}\right)$ under Theorem II, we have

$$
f\left(z, z^{\prime}\right)-f(0,0)=\left(a_{01} z^{\prime}+c_{10} z+c_{21} z^{2}+o_{30} z^{3}+.\right) e^{l_{10} z+l_{01} z^{\prime}+l_{80} z^{2}+l_{11} z z^{\prime}+l_{112} z^{\prime} z^{\prime}+},
$$

*The expressions suggest that the theory of invariantive forms oan be applied to the expanmons, in all the cases stated.
where

$$
\begin{aligned}
& c_{11}=a_{111} \text {, } \\
& c_{21}=\frac{1}{a_{01}^{2}}\left(a_{012} a_{10}{ }^{2}-a_{11} a_{10} f_{01}+a_{20} u_{01}{ }^{2}\right) \text {. } \\
& c_{31}=\frac{1}{a_{011}{ }^{s}}\left(a_{10} a_{01}{ }^{3}-a_{21} a_{01}{ }^{2} a_{10}+a_{12} a_{101} a_{11}{ }^{2}-a_{913} a_{31}{ }^{3}\right) \\
& -a_{01}^{1}\left(a_{12} a_{10}^{2}-a_{11} a_{10} a_{011}+a_{21} a_{01}{ }^{2}\right)\left(2 a_{02}\left(a_{10}-a_{11} a_{01}\right)\right. \\
& l_{11}=\frac{1}{u_{01}}\left(a_{11} a_{01}-a_{02^{\prime}} \tau_{11}\right), \\
& l_{11}=\frac{a_{012}}{a_{011}}, \\
& \left.l_{21}=\frac{1}{a_{01}}\left(a_{21} a_{01}^{2}-a_{12} a_{01} a_{10}+a_{103} a_{10}\right)^{2}\right) \\
& -\frac{a_{02}}{a_{01}}\left(a_{02} \alpha_{11^{2}}^{2}-a_{11} a_{10} \alpha_{01}+a_{30} a_{01}{ }^{2}\right)-\frac{1}{2}-\frac{1}{a_{i 11}}\left(a_{11} a_{01}-\left(a_{02} a_{10}\right)^{2},\right. \\
& l_{11}=\frac{1}{a_{01}^{2}}\left(a_{12} \alpha_{91}-a_{01} a_{10}\right)-\frac{a_{02}}{a_{61}^{3}}\left(a_{11} a_{11}-a_{112} f_{11}\right), \\
& l_{012}=\frac{a_{03}}{u_{01}}-\frac{1}{2} \frac{a_{002}^{2}}{\alpha_{01}^{2}},
\end{aligned}
$$

And it is easy to verify that

$$
\begin{aligned}
& a_{11} z+a_{01} z^{\prime}+b_{12} z^{\prime \prime 2}+b_{03} z^{\prime \prime}+ \\
& a_{112} z+\left(a_{01} z^{\prime}+c_{201} z^{2}+c_{30} z^{3}+\right.
\end{aligned}=e^{\left(l_{11}-k_{10}\right) z+\left(l_{111}-h_{11}\right) z^{\prime}+}
$$

Socondly, when a_{11} vanushen but wot α_{10}, the finst expersion is effective for

$$
\left.f\left(z, z^{\prime}\right)-f(0), 0\right)
$$

but the second is meffective When π_{10} vamshes but not a_{11}, the second expression in effective but the first in meffertive

Thurdly, when α_{10} and a_{01} both vanish, netther of the expressions is effective Then

$$
f\left(z, z^{\prime}\right)-f(0,0)=a_{20} z^{2}+u_{11} z z^{\prime}+a_{112} i^{\prime 2}+a_{31} z^{3}+a_{21} z^{2} z^{\prime}+a_{12} z z^{\prime 2}+a_{013} z^{\prime 3}+.,
$$

and we find
where

$$
\begin{aligned}
& t\left(z, z^{\prime}\right)-f(0,0) \\
&=\left\{a_{2,1} z^{2}+z\left(\mu_{11} z^{\prime}+b_{12} z^{\prime 2}+\quad\right)+z^{\prime \prime \prime}\left(a_{012}+b_{01} z^{\prime}+\quad\right) ; c^{h_{10} z+k_{01} z^{\prime}+},\right.
\end{aligned}
$$

$$
\begin{aligned}
& b_{12}=\frac{1}{a_{21}}{ }^{2}\left(a_{12} a_{20}{ }^{2}-a_{21} a_{11} a_{20}+a_{31}\left(a_{11}{ }^{2}-a_{022}\left(a_{21}\right)\right\},\right. \\
& b_{03}=\frac{1}{a_{20}^{2}}\left\{a_{13} \alpha_{21} v^{2}-a_{21} a_{v 2} \alpha_{20}+a_{30} a_{11} a_{v 22}\right\}, \\
& \text { : } \\
& h_{10}=\frac{u_{30}}{a_{2 n}}, \\
& k_{v 1}=\frac{1}{a_{20^{2}}}\left(a_{21} \alpha_{20}-a_{30} a_{11}\right),
\end{aligned}
$$

We also find
where

$$
\begin{aligned}
& f\left(z, z^{\prime}\right)-f^{\prime}(0,0) \\
& \quad=\left\{a_{02} z^{\prime 2}+\tilde{i}^{\prime}\left(a_{11} z+c_{21} z^{2}+.\right)+z^{2}\left(a_{20}+c_{31} z+.\right)\right\} e^{l_{10} z+l_{01} z^{\prime}+}
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{n 1}=\frac{1}{a_{12}^{2}}\left\{a_{21} a_{02^{2}}^{2}-u_{12} a_{11} \alpha_{122}+a_{03}\left(a_{11}^{2}-a_{02} a_{20}\right)\right\}, \\
& c_{30}=\frac{1}{a_{122^{2}}^{2}}\left\{\alpha_{30} a_{\left(\mathrm{NL}^{2}\right.}{ }^{2}-a_{12} a_{02} a_{21}+a_{43} a_{11} a_{203},\right. \\
& \text { ! } \\
& I_{11}=\frac{1}{u_{12}{ }^{2}}\left(a_{12}\left(a_{02}-a_{1,3} a_{11}\right),\right. \\
& l_{01}=\frac{a_{113}}{u_{02}},
\end{aligned}
$$

The first expression is effective when $a_{s,}$ does mot vanish, but it is meffective when a_{21} doen vamsh The second expression is effective when a a_{02} does not vanish, but it is meffertive when α_{12} does vanish.
 must be ohtaned In that case, we have

$$
f\left(z, z^{\prime}\right)-f(0,0)=u_{11} z z^{\prime}+u_{3 j} z^{3}+a_{21} z^{2} z^{\prime}+a_{12} z z^{\prime 2}+a_{03} z^{\prime 3}+,
$$

and then we find that

$$
\begin{aligned}
& f\left(z, z^{\prime}\right)-f(0,0) \\
& \quad=\left\{a_{310} z^{3}+z^{2}\left(b_{21} z^{\prime}+b_{22} z^{\prime \prime 2}+\right)+z\left(b_{11} z^{\prime}+b_{12} z^{\prime 2}+.\right)+b_{03} z^{\prime 3}+b_{04} z^{\prime 4}+\right\} e^{h_{10} z+h_{01} z^{\prime}+}
\end{aligned}
$$

where

$$
\begin{aligned}
& k_{10}=\frac{a_{41}}{a_{31}}, \\
& h_{11}=\frac{1}{a_{31}{ }^{3}}\left(\alpha_{31} u_{10}{ }^{2}-a_{21} \alpha_{41} \alpha_{31}-\alpha_{11} \alpha_{30} \alpha_{61}+\alpha_{11} \alpha_{410}{ }^{2}\right), \\
& k_{31}=\frac{1}{a_{31}{ }^{2}}\left(a_{51}\left(a_{51}-\frac{1}{2} a_{41}{ }^{2}\right),\right. \\
& k_{35}=\frac{1}{a_{31}{ }^{3}}\left(a_{30}{ }^{2} \alpha_{60}-a_{30} \alpha_{40} \alpha_{60}+1 u_{410}{ }^{3}\right), \\
& k_{11}=k_{10} k_{01}+\frac{1}{a_{31}}\left\{a_{41}-a_{11} k_{11}-a_{40} k_{01}-a_{21}\left(k_{21}-\frac{1}{2} k_{11}{ }^{2}\right)-a_{11}\left(k_{31}-h_{29} k_{11}+\frac{1}{3} k_{10}{ }^{3}\right)\right\}, \\
& b_{11}=\alpha_{11} \text {, } \\
& b_{21}=a_{21}-a_{11} k_{11} \text {, } \\
& b_{12}=\alpha_{12}-\alpha_{11} k_{101} \text {, } \\
& b_{03}=\alpha_{16} \text {, } \\
& \begin{array}{l}
b_{22}=\alpha_{22}-\alpha_{12} k_{10}-\alpha_{21} k_{01}-\alpha_{11}\left(k_{11}-k_{10} k_{01}\right), \\
\quad \vdots
\end{array}
\end{aligned}
$$

There is a corresponding expression for $f\left(x, z^{\prime}\right)-f(0,0)$, in which z^{\prime} is made the dominating variable, it has the form

$$
\begin{aligned}
& f\left(z, z^{\prime}\right)-f(0,0) \\
&=\left\{a_{03} z^{\prime 3}+z^{\prime 2}\left(c_{21} z+c_{22} z^{2}+\ldots\right)+z^{\prime}\left(c_{11} z+c_{12} z^{2}+\ldots\right)+c_{50} z^{3}+c_{40} z^{4}+\ldots\right\} e^{l_{10} z+l_{01} z^{\prime}+}
\end{aligned}
$$

where

$$
\begin{aligned}
& l_{01}=\frac{a_{14}}{a_{131}},
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\prime}{ }_{11}=a_{11} \text {, } \\
& r_{\text {sn }}=a_{311} \text {, } \\
& { }^{\prime}: 9=\alpha_{21}-a_{11} l_{10}, \\
& { }_{12}=a_{12}-a_{18} l_{111} \text {, } \\
& r_{22}=a_{22}-a_{31} l_{11}-a_{12} l_{111}-a_{11}\left(l_{11}-l_{111} l_{m 1}\right),
\end{aligned}
$$

The fust of theye is effective when α_{90} diey not vaminh The securd is efiective when a_{03} does niot vamsh

The general form of curesstom for $f\left(z, z^{\prime}\right)-f(0,0)$, when luths $f\left(0, z^{\prime}\right)-f(0,0)$ and $r(z, 0)-\hat{f}(0,0)$ vanish identically, has been madicated it then is pussille to isolate a fator $:^{*} \mathrm{E}^{\prime \prime}$, where

$$
f\left(i, z^{\prime}\right)-f(0,0)=z^{\prime \prime} z^{\prime \prime} f\left(A, a^{\prime}\right),
$$

 those which pecede, can le obtamed for $\bar{f}\left(., z^{\prime}\right)$.

65 When the function $F(z, 0),=f(z, 0)-f(0,0)$, varmshes for all values of z, unother method of proceedmg was given by Welerstrass* It was devised for functions of n variables (when $n>2$) and somo method is needed for them other than the method for functions of two varlables, because with n variables it is not generally possible to extract an aggregate factor snch as $z^{y} z^{\prime \prime}$ from the function corresponding to $f\left(z, z^{\prime}\right)-f(0,0)$ Appied to functions of two variables, the Wirerstrass method is as follows

In the double-series expansson of $f\left(z, z^{\prime}\right)-f(0,0)$, valid in a domain round 0,0 , lat the terms be gathered together into groups, each group contaming all the terms of the same order in z and z^{\prime} combined, and suppose that the group of lowest order is of order μ, so that we have

$$
f\left(z, z^{\prime}\right)-f(0,0)=\left(z, z^{\prime}\right)_{\mu}+\left(z, z^{\prime}\right)_{\mu+1}+\ldots
$$

Change the variables from z and z^{\prime} to u and u^{\prime} by relations of the form

$$
z=\alpha u+\beta u^{\prime}, \quad z^{\prime}=\gamma u+\delta u^{\prime},
$$

where $\alpha, \beta, \gamma, \delta$ are constants such that $\alpha \delta-\beta \gamma 1 s$ not z ero, so that u and u^{\prime} are new undependent variables Then $f\left(z, z^{\prime}\right)-f(0,0)$ becomes a regular

* See p. 140 of has memorr already quoted
function of u and u^{\prime}, say $G\left(u, u^{\prime}\right)$, the lowest terms in which are of order μ; and

$$
G(u, 0)=(a, \gamma)_{\mu} u^{\mu}+(\alpha, \gamma)_{\mu+1} u^{\mu+1}+\ldots
$$

so that, choosing $(\alpha, \gamma)_{\mu}$ to be different from zero, $G(u, 0)$ does not vanısh for all values of u

The first of the preceding theorems can therefore be appled to $G\left(u, u^{\prime}\right)$; the result is of the form

$$
G\left(u, u^{\prime}\right)=(a, \gamma)_{\mu}\left\{u^{\mu}+u^{\mu-1} g_{1}\left(u^{\prime}\right)+\ldots+g_{\mu}\left(u^{\prime}\right)\right\} e^{I\left(u, u^{\prime}\right)}
$$

where $(\alpha, \gamma)_{\mu}$ is the non-vamishing coefficient, g_{1}, \ldots, g_{μ} are regular functions of u^{\prime} which vamsh with u^{\prime}, and $I\left(u, u^{\prime}\right)$ is a regular function of u and u^{\prime} which vanishes when $u=0$ and $u^{\prime}=0$, moreover, as the lowest terms in $G\left(u, u^{\prime}\right)$ are of dimensions μ, the regular series for $g_{r}\left(u^{\prime}\right)$ begins with a term In $u^{\prime r}$, for $r=1, \quad, \mu$

When retransformation to the original virrables z and z^{\prime} is effected, we have

$$
\begin{aligned}
f(z, & \left.z^{\prime}\right)-f(0,0) \\
& =G\left(u, u^{\prime}\right) \\
& =\left[\left\{z, z^{\prime}\right]_{\mu}+\left\{z,\left.z^{\prime}\right|_{\mu+1}+.\right] e^{J\left(z, z^{\prime}\right)}\right.
\end{aligned}
$$

where $J\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} which vanishes when $z=0$ and $z^{\prime}=0$, and by expanding $e^{J\left(z, z^{\prime}\right)}$ so as to have the complete series for the new expression, we have

$$
\left\{z,\left.z^{\prime}\right|_{\mu}=\left(z, z^{\prime}\right)_{\mu}\right.
$$

so that, as is to be expected, the first term in $g\left(z, z^{\prime}\right)$, where

$$
f\left(z, z^{\prime}\right)-f(0,0)=g\left(z, z^{\prime}\right) e^{J\left(z, z^{\prime}\right)}
$$

is the aggregate $\left(z, z^{\prime}\right)_{4}$ in the original double series for $f\left(z, z^{\prime}\right)-f(0,0)$
Note 1. It may be pointed out that the preceding method is effictuve, even if $f(z, 0)-f(0,0)$ does not vanish Thus for a firnction it inght happen that, in the regular function $f(z, 0)-f(0,0)$ when it does not vanish for all values of z identically, the term of lowest order is $\mathrm{A} z^{n}$, while, in $f\left(z, z^{\prime}\right)-f(0,0)$, the terms of lowest order are of dimensions less than n. (As a matter of fact, each of these terms of lowest order will then contain some positive power of z^{\prime} as a factor). The application of the method will then lead to an expression of the preceding form

Note 2 In the method, the limitations upon $\alpha, \beta, \gamma, \delta$ are mercly exclusive, they are

$$
\alpha \delta-\beta \gamma \neq 0, \quad(\alpha, \gamma)_{\mu} \neq 0 .
$$

Thus a certain amount of arbitrary element will appear in the result; by varying these constants $\alpha, \beta, \gamma, \delta$, different expressions will be obtained which are equivalent to one another

Ex. 1 Consuder the function*

$$
f=z x^{\prime}+\frac{1}{n}\left(z^{3}+z^{\prime 3}\right)+\frac{1}{2}\left(z^{4}+z^{\prime 4}\right)+\ldots
$$

the unexpressed terms being of order hagher than 4 We take
so that

$$
z=u, \quad z^{\prime}=u+u^{\prime},
$$

$$
\begin{aligned}
f=u^{2}+u u^{\prime} & +\frac{1}{3}\left(2 u^{3}+3 u^{2} u^{\prime}+3 u u^{\prime 2}+u^{\prime 3}\right) \\
& +\frac{1}{2}\left(2 u^{4}+4 u^{1} u^{\prime}+6 u^{2} u^{2}+4 u u^{3}+u^{\prime 4}\right)+
\end{aligned}
$$

This must be equal to
where

$$
\begin{gathered}
\left(u^{2}+g_{1} u+g_{2}\right) e^{u_{1} u+b_{1} u^{\prime}+u_{2} u^{\prime}+u_{2} u n^{\prime}+c_{2} u^{\prime 2}+} \\
g_{1}=k_{1} u^{\prime}+h_{2} u u^{\prime 2}+h_{4} u^{\prime 3}+ \\
g_{2}=l_{2} u^{\prime 2}+l_{3} u^{\prime 3}+l_{4} u^{4}+
\end{gathered}
$$

Expanding, and equating coefticients, we find

$$
\begin{array}{lll}
l_{1}=1, & l_{2}=\frac{1}{3}, & h_{1}=-\frac{1}{b}, \\
l_{2}=0, & l_{1}=1, & l_{4}=\frac{1}{2}, \\
a_{1}=\frac{1}{3}, & b_{1}=1, \\
l_{2}-\frac{1}{3}, & b_{2}=0, & c_{2}=c_{3},
\end{array}
$$

and this the expression for our function becomes $g\left(u, u^{\prime}\right) e^{I\left(u, u^{\prime}\right)}$, where
nnd

$$
\left.g\left(u, u^{\prime}\right)=u^{2}+u i u^{\prime}+\frac{4}{} u^{2}-\sqrt{6} u^{\prime 3}+\quad\right)+\frac{d}{} u^{3}+\frac{d}{2} u^{2}+,
$$

$$
I\left(u, u^{\prime}\right)=\left\{u+\hbar u^{\prime}+\frac{r^{2}}{2}\left(4 u^{2}+5 u^{2}\right)+\right.
$$

When wo retransfomn to the varables z and z^{\prime} by the relations

$$
u=z, \quad u^{\prime}=z^{\prime}-z,
$$

the terms of the lowest order in $g\left(u, u^{\prime}\right)$ become as', as is to be expected
3ut the completely retransformed new expresmon for f is less effectise than the origimal expresanon, and the discussion of f in the vicmity of 0,0 as more effectively made in connection with the expression in terms of z and z^{\prime}.

Ei 2 Obtan an expresson for the function in the preceding example, when the thansformed varables are given by the relatons

$$
z=u+\boldsymbol{a} u^{\prime}, \quad z^{\prime}=u+\beta u^{\prime},
$$

where the constants a and β are unequal, and prove that, when retransformation takes place, the terms of the funt onder m $I\left(u, u^{\prime}\right)$ become $a+z^{\prime}$.

This last method of Welerstrass has been outlmed, because of its importance when the number of varables is greater than two. When the number of vanables is equal to two, the general case for which it was devised falls more simply under the comprehensive results of Theorem III

We may therefore summarise the rosults of the whole investigation briefly as follows Whatever be the detailed form of any function $f^{\prime}(z, z)$, regular in a doman round 0,0 , its general characteristic expression in the immedrate vicinity of $0,0 \mathrm{ss}$

$$
f\left(z, z^{\prime}\right)-f(0,0)=z^{\prime} z^{\prime t} P\left(z, z^{\prime}\right) e^{I\left(z, z^{\prime}\right)}
$$

* The expansions under Theorem I and Theorem II arise as special cases of the result given above, p 104.
where $I\left(z, z^{\prime}\right)$ is a function of z and z^{\prime} which is regular in the immediate vicinity of 0,0 and vanishes when $z=0$ and $z^{\prime}=0$. The quantities s and t are pusitive integers, which may be zero separately or together. When either of these integers is zero, on whern both of them are zero, $P(0,0)$ can be different from zero for special functions, for all other functions, $P\left(z, z^{\prime}\right)$ is polynomal in one of its variables, the coefficients of the powers of which are regular functions of the other variable withon a limited doman, each such coethcient vanishing when that other variable vanishes.

Level values of a regular function.

66 One immediate deduction of substantial importance can be made from the expression for $f\left(z, z^{\prime}\right)$ which has just been obtaned, viz.

$$
b^{\prime}\left(z, z^{\prime}\right)=f\left(z, z^{\prime}\right)-f(0,0)=z^{\prime} z^{\prime \prime} A\left(z, z^{\prime}\right) e^{I I\left(z, z^{\prime}\right)}
$$

as to the places where $f\left(z, z^{\prime}\right)$ acqumes the same value as at 0,0 When $f(0,0)$ vanshes, we shall call the place a zero for $f\left(z, z^{\prime}\right)$ When $f(0,0)$ does nut vamsh, we shall call the value $f(0,0)$ a level value for all the places z, z^{\prime} such that $f^{\prime}\left(z, z^{\prime}\right)=f(0,0)$, all these places are theretore zeros of $F^{\prime}\left(z, z^{\prime}\right)$

As $B\left(z, z^{\prime}\right)$ is a regular function of z, z^{\prime} within a himited domain of 0,0 , the quantity $\left.e^{f(z, z} z^{\prime}\right)$ cannot vanish at any place 1 the doman. Consequently the zero-places of $F\left(z, z^{\prime}\right)$ withon the doman ate green by three possible sets.

When the positive integer s does not vamsh, zero-places of $F^{\prime}\left(z, z^{\prime}\right)$ arise when

$$
z=0, \quad z^{\prime}=\text { any value within the doman! }
$$

When the positive integer t does not vamsh, zero-places of $F\left(z, z^{\prime}\right)$ arise when

$$
z=\text { any value within the domain } z^{\prime}=0
$$

When $A\left(z, z^{\prime}\right)$ is not merely the constant $A(0,0)$, all the places in the doman such that
are zero-places for $F^{\prime}\left(z, z^{\prime}\right)$.

$$
A\left(z, z^{\prime}\right)=0
$$

As regards the first set, we obtain an unlimited number of zero-places of $F\left(z, z^{\prime}\right)$ withn the doman of 0,0 , they constitute a continuous twodimensional aggregate, the contmuity being associated with the plane of z^{\prime} alone

As regards the second set, we obtain also an unlimited number of zeroplaces of $F\left(z, z^{\prime}\right)$ within the domain of 0,0 , they too constitute a continuous two-dimensional aggregate, the contmuity now being associated with the plane of z alone.

For the third set, there is no additional zero-place for $F\left(z, z^{\prime}\right)$, if $A(0,0)$ is a non-vanishing constant: in that event, either s, or t, or both s and t, must be different from zero. When $A(0,0)$ does vanish, the function
$A\left(z, z^{\prime}\right)$ ether $1 s$ polynomal in z and (usually) transcendental in z^{\prime}, on is polynomial in z^{\prime} and (usually) transcendental in z, and these alternatives are not mutually exclusive In the former case, tor any assumed value of z^{\prime} withn the doman, there is a hmited number (equal to the polynommal degree of A) of values of z, whech vanosh with z^{\prime} and usudlly are transcendental functions of z^{\prime}, hence, taking a succession of contauous values of z^{\prime} in the doman we have, with each value of z^{\prime}, a hmoted number of associated values of z All these places taken together constitute a coutinuous twodimensional aggregate, the continuty now is associated with both planes, each value of z^{\prime} having a definte value of z or a limited number of definite values of z associated with 1 , all within the assigned doman of 0.0 . Simalarly, in the lattor case, as regards $A\left(z, z^{\prime}\right)$, the same iesult holds when the appropriate interchange of z and z^{\prime} is made in the statement, and the two-dimensonal aggregate is unaltered

Ex 1 Among the nomplent examples that oceur, are those when $A\left(z, z^{\prime}\right)$ ean be expressed ma form

$$
\left(\alpha z+P^{\prime}\left(z^{\prime}\right),\right.
$$

whele a is aconstant and $P^{\prime}\left(a^{\prime}\right.$) as a regular function of \sim ' gren by

$$
r^{\prime}\left(\theta^{\prime \prime}\right)=b r^{\prime}+r^{\prime 2}+,
$$

 function in the "xpenential, can ala, in expressed wo the form

$$
b z^{\prime}+l l(z),
$$

$$
R(z)=a_{i}+C z^{2}+
$$

 dimenenomal aggregate

$$
-a_{z}=P\left(z^{\prime}\right), \quad-h z^{\prime}=K^{\prime}(z)
$$

The result is the generalisation of the known priperty wherely, win the wimety of

$$
r-\xi=P(\eta-\eta), \quad y-\eta=R(x-\xi),
$$

the lmear term in $P(y-\eta)$ combned with $x-\xi$, and the huean term n $R(x-\xi)$ (ombuned with $y-\eta$, give the trugent to the curve at the real ordmary point ξ, η on the curse

Er 2. In lesth cises that arise ont of the alteruative forms of A, the a thal detenunnation of the set of values of z un terms of z^{\prime} (or of the set of values of z^{\prime} in torms of z) can
 being selected by the use of Newton's parallelogian Fon example, in the case of the menow of the function

$$
f\left(z, z^{\prime}\right)-f\left(0,(1)=\left(a_{11} z z^{\prime}+\alpha_{111} z^{\prime}+a_{21} z^{2} z^{\prime}+a_{12} z z^{\prime 2}+\alpha_{1,3} z^{\prime \prime}+\right.\right.
$$

withm a small doman roumd 0,0 , we find three values for in terms of z^{\prime}, wa

$$
\begin{aligned}
& \left.z=\left(-{ }_{a_{11}}^{a_{30}}\right)^{\frac{1}{2}} z^{\frac{1}{2}}+\underset{2 a_{31}{ }^{2}}{1}\left(\mu_{41} \prime_{11}-a_{21} \mu_{31}\right) z^{\prime}+\quad\right) \\
& \begin{array}{l}
z=-\left(-\frac{a_{11}}{\alpha_{31}}\right)^{\frac{1}{2}} z^{\frac{\prime}{2}}+\frac{1}{2 a_{30} a^{\prime}}\left(a_{411} a_{11}-a_{21} a_{31}\right) z^{\prime}+\quad 1 \\
z=-\frac{a_{13}}{a_{11}} z^{\prime 2}+\frac{1}{a_{11}{ }^{2}}\left(a_{12} \alpha_{03}-a_{11} a_{14}\right) z^{\prime \prime 3}+\ldots
\end{array},
\end{aligned}
$$

and there are three corresponding values for z^{\prime} in terms of z, viz

If a_{30} is zero, the first two serien in the earher pair are not vahd, if a_{03} is \%ero, the first two series in the later par are not vald. If all the coefficients an wamb so that $f(z, 0)-f(0,0\rangle$ vanshes for all valnes of 2 , only the third expresson in the earher pan survives If the forst coefficient $a_{n 0}$, which doey not ramsh, is $a_{a y}$, theie is a set of $r-1$ expanions in a cycle corresponding to the above two whinch owat whal a a_{30} does not vamsh And so on, for the renples tive casen

EX is Quite generally, it may be stated that the detaled determmation of the behaviour of $F^{\prime}\left(\because, z^{\prime}\right)$ in the vominy of 0 , 0 , so as to obtam the bature of its zeros as well as the atual pontions of ats zero-places, has a close resemblance to the method of proceeding in the consideration of an equation $f(x, z)=0$, wheh is algebracal buth $12 w$ and $11 \% z$, and in the determmation of the issociated Riemmin suiface*

67 All the results relatning to the zeros of $F^{\prime}\left(z, z^{\prime}\right)$ can apply, in descriptive range, to a determinate finte level value (bay a) of a unfom function $f\left(z, z^{\prime}\right)$ in a doman wherr it is regulan Let a, a^{\prime} be a place where f acqures the valuce a, so that

$$
f\left(a, u^{\prime}\right)=\alpha
$$

For places $a+Z, a^{\prime}+Z^{\prime}$ neal a, a^{\prime} within the doman of a, a^{\prime}, we have

$$
\begin{aligned}
f\left(z, z^{\prime}\right) & =f\left(a+Z, u^{\prime}+Z^{\prime}\right) \\
& =f\left(a, u^{\prime}\right)+\Sigma \Sigma r_{m n} Z^{m} Z^{\prime n}
\end{aligned}
$$

that 1 s ,

$$
f\left(z, z^{\prime}\right)-\alpha=\Sigma \Sigma c_{m n} Z^{n} Z^{\prime n}
$$

Thus the places within the doman of a, u^{\prime} where f acqures the level value α are given by the zeros of the double series wheh itself vanishes when $Z=0$, $Z^{\prime}=0$.

Hence the level places which give a determinate finte value α to a function $f\left(z, z^{\prime}\right)$ form a continuous aggregate withon the doman of any one such level place

Manifestly, as we are dealing with properties of a uniform function of f, which is regular within the domain of an ordinary place, the values of f must be finite (for poles do not occur within such a domain) and they must be determmate (for singularities, whether unessential or essential, do not occur within such a domain) The behaviour of a function in the vicinity of a pole and in the vicinity of an unessentalal singularity will be discussed separately.

[^23]68 Not because of any immedrate mpentance for a single function of two variables but inamly because of the need of estmating the multishicity of a common zero-place or a common level-place of two functions of two variables, it is worth while assigning integers that shall represent the orders, In z and z^{\prime} respectively, of the zero of $f\left(z, z^{\prime}\right)-f^{\prime}\left(u, a^{\prime}\right)$ at the place ($\left(u, u^{\prime}\right)$ By the precedung proposition, for a place $z=a+u, z^{\prime}=a^{\prime}+u^{\prime}$ in the immediate vicinity of a, a^{\prime}, we have

$$
f\left(z, z^{\prime}\right)-f\left(u, u^{\prime}\right)=u^{\star} u^{\prime \prime} G\left(u u^{\prime}\right)
$$

where G in reguhar in the doman, and the utegers s and t can be chosen so that $\left(f(u, 0)\right.$ does not vanish for all values of u and $G\left(0, u^{\prime}\right)$ does not vamsh for all values of $\|^{\prime}$ The positive metegers s and t can be zero, ether separately or togrother

As ($i(u, 0)$ doen not vamish for all values of u, there exists a senes

$$
Q\left(u, u^{\prime}\right)=u^{m}+u^{n-1} \eta_{1}\left(u^{\prime}\right)+\quad+q_{n}\left(u^{\prime}\right),
$$

where $q_{1}\left(u^{\prime}\right), ., q_{m}\left(u^{\prime}\right)$ are legulan functans of u^{\prime} banshing with u^{\prime}, surh that

$$
G\left(u, u^{\prime}\right)=K Q\left(u, u^{\prime}\right) e^{\phi\left(u, u^{\prime}\right)}
$$

where K is a coustant and $\bar{Q}\left(u, u^{\prime}\right)$ is a cegula function of u and u^{\prime} vanishing with u and u^{\prime} 'Thus for any shall valne of u^{\prime}, there are m small vatues of u, making ($i\left(u, u^{\prime}\right) x w_{1}$

As $\left(\dot{r}^{\prime}(0), u^{\prime}\right)$ does not vansh for all values of u^{\prime}, there exists a sermes

$$
R\left(u, u^{\prime}\right)=u^{\prime n}+u^{\prime n-1} r_{1}(u)+\quad+i_{n}(u),
$$

where $f_{1}(1), r_{n}(\|)$ are regulan functions of $"$ vimishing with $"$, such that

$$
\left(r^{r}\left(u, u^{\prime}\right)=L R\left(u, u^{\prime}\right) e^{R\left(u, u^{\prime}\right)},\right.
$$

where L is a constant and $\bar{R}\left(u, u^{\prime}\right)$ is a regula function of u and u^{\prime} vanshing with u and u^{\prime} Thus for any suall value of u, there ane u small values of u^{\prime}, making (i (u, u^{\prime}) zuro.

In both of these cases, $G^{\prime}\left(u, u^{\prime}\right)$ vanshes when $u=0, u^{\prime}=0$, aust then nethel of the integers m and n is zelo There remans a third case, when $G(0,0)$ is not zero, then

$$
G^{\prime}\left(u, u^{\prime}\right)=G(0,0) e^{I\left(u, u^{\prime}\right)}
$$

where $I\left(u, u^{\prime}\right)$ is a regular function of u and u^{\prime} vanshing when $u=0$ and $u^{\prime}=0$ Thus no small values of u and u^{\prime} make $G\left(u, u^{\prime}\right)$ vamsh, and then both of the integers m and n are zero.

With these explanations, we define the orders of the zero of the function

$$
f\left(z, z^{\prime}\right)-f\left(a, a^{\prime}\right)
$$

at a, a^{\prime} as $s+m$ for the variable z and as $t+n$ for the variable z^{\prime}. But it must be pointed out that the zero of the function at a, a^{\prime} is not an isolated
zero, for it is only a place in a continuous aggregate of zeros, still, a settlement of an order in each variable at a place a, a^{\prime} is convemient as a preliminary to the settloment of the multiple order (Chap vir) of such a place when it is a simultaneous and isolated zero of two functions considered together

Relative divisubility of turo regular functions near a common zero
69. Before proceeding to obtain the expression of any uniform analytic function in the vicinity of a singularity, it is important to consider the behaviour of two umform functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ simultaneously, both being regular within a common domam which will be taken round 0,0

First, suppose that $g(0,0)$ is not zero, then we have seen that a unform function $\bar{S}\left(z, z^{\prime}\right)$ exists, which vanshes when $z=0$ and $z^{\prime}=0$ and is regular in a doman in the mmedrate viemity of 0,0 , and is such that

$$
g\left(z, z^{\prime}\right)=g(0,0) e^{S\left(z, z^{\prime}\right)}
$$

for that doman Also, we know that we can take

$$
f\left(z, z^{\prime}\right)=f(0,0)+A \phi\left(z, z^{\prime}\right) z^{f} z^{\prime t} e^{R\left(z, z^{\prime}\right)}
$$

where s and t ale non-negative integers, $\phi\left(z, z^{\prime}\right)$ is polynomial in z and regular in z^{\prime}, and $R\left(z, z^{\prime}\right)$ is a umform function of z and z^{\prime} whinch vanshes when $z=0$ and $z^{\prime}=0$ and is regular in a domain in the immedute vicimity. of 0,0 Consequently

$$
\begin{aligned}
f\left(z, z^{\prime}\right) & =\frac{1}{g\left(z, z^{\prime}\right)}
\end{aligned} \begin{aligned}
& g(0,0) \\
& \\
& \\
&
\end{aligned}
$$

The right-hand side, whether $f(0,0)$ vanshes or not, can be expressed as a regular double semes $U\left(z, z^{\prime}\right)$, that is,

$$
\begin{aligned}
& f\left(z, z^{\prime}\right) \\
& g\left(z, z^{\prime}\right)
\end{aligned}=U\left(z, z^{\prime}\right) .
$$

When a uniform function $f\left(z, z^{\prime}\right)$ is expressed as a double series $P\left(z, z^{\prime}\right)$, and another umform function $g\left(z, z^{\prime}\right)$ is expressed also as a double series $Q\left(z, z^{\prime}\right)$, and when a third uniform function $U\left(z, z^{\prime}\right)$ exists such that

$$
\frac{P}{\bar{Q}\left(z, z^{\prime}\right)}\left(\bar{z}, z^{\prime}\right)=U\left(z, z^{\prime}\right)
$$

all the functions being regular in a doman round 0 , 0 , we say, following Welerstrass*, that the series $P\left(z, z^{\prime}\right)$ is duvsible by the senes $Q\left(z, z^{\prime}\right)$.

It therefore follows that, when $g(0,0)$ is not zero, the regular function $f(z, z)$ is divisible by the regular function $g\left(z, z^{\prime}\right)$, the regularidy of both tunctions extending over a dowam wond 0,0 , and the sesult is true whethes $f(0,0)$ is zelo or is not ziro

70 Next, suppose that $g(0,0)$ is aelo, then we know that we can take

$$
g\left(z, z^{\prime}\right)=B z^{a} z^{\prime} \rho^{T}\left(z, z^{\prime}\right) \chi\left(z, z^{\prime}\right),
$$

where B is a constant, σ and τ are nom-negrative integers, $T\left(z, z^{\prime}\right)$ is a function of z and z^{\prime}, regular in the momedrate vicmity of 0,0 and vamshing when $z=0$ and $z^{\prime}=0$, and $\chi\left(z, z^{\prime}\right)$ is a function wheh is a polynomal $m z$ having functions of z^{\prime} for its coefficients, thesc conftielents being regular in the unmediate vemity of $z^{\prime}=0$ and vanshing when $z^{\prime}=0$ The form of $f\left(z, z^{\prime}\right)$ is the same as before It at once follows that, when $f(0,0)$ is not zero we cannot express

$$
\begin{aligned}
& f\left(z, z^{\prime}\right) \\
& g\left(i, z^{\prime}\right)
\end{aligned}
$$

in the form of a regular function, in that case, the firnction $f\left(z, z^{\prime}\right)$ is not divisible by $g\left(z, z^{\prime}\right)$

But when $f(0,0)$ in zero, as also is $!(0,0)$ under the presint hypothesas, then wo have

$$
\begin{aligned}
\dot{f\left(z, z^{\prime}\right)} & =A z^{\top} z^{\prime \prime} \phi\left(z, z^{\prime}\right) e^{B\left(z, z^{\prime}\right)} \\
y\left(z, z^{\prime}\right) & B z^{\sigma} z^{\prime \tau} \chi\left(z, z^{\prime}\right) e^{P^{\prime}\left(z, z^{\prime}\right)} \\
& =A z^{*} z^{\prime \prime} \phi\left(z, z^{\prime}\right){ }^{h(z,-)-I^{\prime}(z, z)}
\end{aligned}
$$

Now $R\left(z, z^{\prime}\right)-T\left(z, z^{\prime}\right)$ as regulan in the mmednate vecmity of 0,0 and vanishes when $z=0$ and $z^{\prime}=0$, hence the expouentral factor in the last expression admits the divisibility of $f\left(z, z^{\prime}\right)$ by $g\left(z, z^{\prime}\right)$ Also this divasibility is admitted, so far ay powers of z are concerned, it $s \geqslant \sigma$ and, so far as powers of z^{\prime} are concerned, it $t \geqslant \tau$ There remans therefore the divisibility of $\phi\left(z, z^{\prime}\right)$ by $\chi\left(z, z^{\prime}\right)$, where (for the present purpose) we shall assume that both $\phi\left(z, z^{\prime}\right)$ and $\chi\left(z, z^{\prime}\right)$ are polynomals in z the coefficients in which arc regular functoons of z^{\prime} in the immediate vicminty of $z^{\prime}=0$ and vansh when $z^{\prime}=0$. Mamfestly the degree of $\phi\left(z, z^{\prime}\right)$ m z cannot be less than that of ($\left(z, z^{\prime}\right)$, if divisibility is to be possible, accordingly, we suppose that

$$
\begin{aligned}
& \phi\left(z, z^{\prime}\right)=z^{m}+z^{m-1} g_{1}+\quad+y_{m}, \\
& \chi\left(z, z^{\prime}\right)=z^{n}+z^{n-1} h_{3}+\quad+h_{n},
\end{aligned}
$$

where $m \geqslant n$, and all the coefficrents $g_{n}, \ldots, g_{m}, h_{1}, \ldots, h_{n}$ are regular functions of z^{\prime} in the mmediate vicmity of $z^{\prime}=0$ and vanush when $z^{\prime}=0$

When $\phi\left(z, z^{\prime}\right)$ is divisible by $\chi\left(z, z^{\prime}\right)$, the quotient is manifestly of the torm

$$
z^{\prime \prime \prime-n}+z^{\prime n-n-1} k_{1}+.+k_{m-n}
$$

where the coefficients k_{1}, \ldots, k_{m-n} are functions of $z^{\prime} \quad$ Also

$$
\begin{aligned}
& g_{1}=h_{1}+k_{1}, \\
& g_{2}=h_{2}+h_{1} k_{1}+h_{2}, \\
& \cdots \cdots \cdots \cdots \cdots \\
& g_{r}=h_{r}+h_{r-1} k_{1}+h_{2-2} h_{2}+\ldots, \\
& \cdots \cdots \\
& g_{m}=
\end{aligned} \quad \cdots \cdots, h_{n} k_{m-n} . \quad l
$$

From the first, it follows that the function k_{1} is regular and vamshes when $z^{\prime}=0$, from the second, that the function k_{2} is regular and vanshes when $z^{\prime}=0$; and so on, in succession from the first $m-n$ of these relations Also all the relations are to be satisfied, by appropriate values of k_{1}, . , k_{m-n}, for all values of z^{\prime} in the immedlate vicminty of $z^{\prime}=0$ The conditions, necessary and sufficient to satisfy the last requirement, are that, when we form the n independent determmants each of $m-n$ rows and columns from the array
each of these n determinants must vanish identically for all such values of z^{\prime}
Thus there are n conditions. The form of the conditions should, however, be noted As all the functions g and h are regular functions of z^{\prime} m the immediate vicinty of $z^{\prime}=0$ and vansh when $z^{\prime}=0$, each of the n determinants is also a regular function of z^{\prime} in the immediate vicmity of $z^{\prime}=0$ and vanishes when $z^{\prime}=0$. Each determinant is to vansh identically for all values of z^{\prime} in the range round $z^{\prime}=0$, and therefore every coefficient, in the power-series which is the expression of the determinant, must vansh Thus in practice, when the power-series are infinte, the number of relations among the constants would be infinte for cach of the conditions; the arithmetic process could not be carried out in general". But the n analytical conditions among the functions would still reman, in the form of determinants that are to vanish identically

Thus, in particular, the conditions, that the function

$$
\begin{gathered}
z^{3}+z^{2} g_{1}+z g_{2}+y_{3} \\
z^{2}+z h_{1}+h_{2},
\end{gathered}
$$

are that the two andependent determinats from the array

$$
\left\|\begin{array}{ccc}
g_{1}-h_{1}, & g_{2}-h_{2}, & g_{8} \\
1, & h_{1}, & h_{2}
\end{array}\right\|
$$

[^24]shall vamsh identically
When the two conditions are satisfied, the quotient is
$$
=+\frac{g_{3}}{h_{2}}
$$

The general argument shews that the function q_{s} / h_{2} is to be regular and to vansh with z^{\prime}, a limit upon the orders of the lowest powers of z^{\prime} in h_{2} and g_{3} is thereby mposed

Relative reducibuluty of functions.

71 Further, it is mportant to discover whether, even in the cuse when a function $\phi\left(z, z^{\prime}\right)$ is not actually divisible by a function $\chi\left(z, z^{\prime}\right)$, both being of the foregong type, each of them is actually divisible by a function $\psi\left(z, z^{\prime}\right)$ also of the same type that is to say, if $\psi\left(z, z^{\prime}\right)$ exists, it is to be a polynomial in z the corfficents of which are regular functions of z^{\prime} in the immediate vieinity of $z^{\prime}=0$ and vanish when $z^{\prime}=0$

A method of determinng the fact is as follows Both $\phi\left(z, z^{\prime}\right)$ and $\chi\left(z, z^{\prime}\right)$ must vansh for all the places where $\psi\left(z, z^{\prime}\right)$ vanshes, if ψ exists We therefore regard

$$
\phi\left(z, z^{\prime}\right)=0, \quad \chi\left(z, z^{\prime}\right)=0
$$

as two simultaneous algebracal equations in z We eliminate z between these two equations, adopting Sylvester's dialytic process The resultant is a detcrminant of $m+n$ rows and columns, every constituent in the determanant (other than the zerv constituents) being divisible by z^{\prime}, and therefore this resultant is of the form

$$
z^{\prime \mu} \Theta\left(z^{\prime}\right)
$$

where μ is a positive mteger not less than the smaller of the two integens m and n, and where $\Theta\left(z^{\prime}\right)$ is a regular function of z^{\prime} in the ummediate vicinity of $z^{\prime}=0$, when 1 it is not an evanescent function

When $(\rightarrow)\left(z^{\prime}\right)$ does not become evanescent, the values of z^{\prime} different from $z^{\prime}=0$ which nake the resultant vamsh are given by the equation

$$
\Theta\left(z^{\prime}\right)=0
$$

and these values of z^{\prime} form a discrete and not i continuous succession. In that event, for each such value of z^{\prime} and for the specially associated values of z, both ϕ and χ vanish. But their simultaneous zero values are limited to these isolated places, there is no function $\psi\left(z, z^{\prime}\right)$ possessing a contmuons aggregate of zero-places in the vicinity of 0,0

When $\Theta\left(z^{\prime}\right)$ is evanescent, the functions $\phi\left(z, z^{\prime}\right)$ and $\chi\left(z, z^{\prime}\right)$ become zero together, not merely at the place 0,0 , but at all the continuous aggregate of places where some function $\psi\left(z, z^{\prime}\right)$, as yet unknown, vanshes, for there is no equation $\Theta\left(z^{\prime}\right)=0$ hmating the values of z^{\prime} and requiring associated values of z

In the latter case, $\phi\left(z, z^{\prime}\right)$ and $\chi\left(z, z^{\prime}\right)$ possess a common factor $\psi\left(z, z^{\prime}\right)$, which necessarily will be a polynomial in z of degree less than n; and the polynomial will have functions of z^{\prime} for its cocfficients, all of which are regular in the nomediate vicinity of $z^{\prime}=0$ and vanish when $z^{\prime}=0$ Let

$$
\psi\left(z, z^{\prime}\right)=z^{r}+z^{p-1} h_{1}+\ldots+k_{p},
$$

as ψ is a factor of ϕ by hypothess, and also a factor of χ by hypothesis, our earlier analysis shews that (as already stated) k_{1}, \ldots, k_{p} are regular functions of z^{\prime} in the immediate vicmity of $z^{\prime}=0$ and vanish when $z^{\prime}=0$

Accordingly, let

$$
\begin{aligned}
& \frac{\phi\left(z, z^{\prime}\right)}{\psi\left(z, z^{\prime}\right)}=z^{m-p}+z^{n-p-1} G_{1}+\ldots+G_{m-p}, \\
& \chi\left(z, z^{\prime}\right)=z^{n-p}+z^{n-p-1} H_{1}+\ldots+H_{n-p}, \\
& \psi\left(z, z^{\prime}\right)
\end{aligned}
$$

where all the coefficients $G_{1}, \quad, G_{m-p}, H_{1}, \ldots, H_{n-p}$ are regular functions of z^{\prime} in the immediate vicimity of $z^{\prime}=0$ and vanish when $z^{\prime}=0$ Consequently the relation

$$
\begin{aligned}
& \left(z^{m}+z^{m-1} g_{1}+\ldots+g_{m}\right)\left(z^{n-p}+z^{n-p-1} H_{1}+\ldots+H_{n-p}\right) \\
& \quad=\left(z^{n}+z^{n-1} h_{1}+\ldots+h_{n}\right)\left(z^{n-p}+z^{m-p-1} G_{1}+\ldots+G_{m-p}\right)
\end{aligned}
$$

must be satisfied ideritically for all values of z and z^{\prime} within the immediate vicinity of 0,0 , the common value of the equal expressions being $\phi\left(z, z^{\prime}\right) \chi\left(z, z^{\prime}\right)-\psi\left(z, z^{\prime}\right)$. Equating the coefficients of the same powers of z min the expressions, we have $m+n-p$ relations, linear in the $(n-p)+(m-p)$ unknown functions $H_{1}, . ., H_{n-p}, G_{1}, \ldots, G_{m-p} \quad$ When these are clinnated determinantally, we have $m+n-p-(n-p)-(m-p)$, that 1 s , we have p, equations in z^{\prime} which, being satisfied for all values of z^{\prime}, must become evanescent The conditions for this evanescence, which are thence derived as existing between the coefficients of ϕ and χ, are the conditions necessary and sufficient for the existence of $\psi\left(z, z^{\prime}\right)$

When these conditions are satisfied, the actual expression of $\psi\left(z, z^{\prime}\right)$ can be obtaned by constructing the algebracal greatest common measure of $\phi\left(z, z^{\prime}\right)$ and $\chi\left(z, z^{\prime}\right)$, regarded as polynomials in z.

We thus have analytical tests deterıming whether two functions $\phi\left(z, z^{\prime}\right)$ and $\chi\left(z, z^{\prime}\right)$, each polynomial in z and having for the coefficients of powers of z regular functions of z^{\prime} which vanish when $z^{\prime}=0$, are or are not divisible by a common factor of the same type as themselves. To these tests, the same remark apphes as in $\$ 70$; each condition usually would, in practice with infinite power-series, require an infinite number of arithmetical relations among the constants. Still, the analytical tests remam in the form indicated.

When the tests are satisfied, the two functions are sand to be relatively reducible, each of them $1 s$ said to be reducible by itself.

Note 1. The processes connected with finding the conditions are those connected with constructing elummants un algebra Thus, m order that the functions

$$
z^{4}+g_{1} z^{3}+g_{2} z^{2}+g_{3} z+g_{4}, \quad z^{2}+h_{1} z^{2}+h_{2}
$$

should have a common factor linear in z, all the coefticrents of powers of z^{\prime} m the final expansion of the determinant

$$
\begin{array}{ccccc}
g_{1}-h_{1}, & 1, & 1, & 0, & 0 \\
g_{2}-h_{2}, & g_{1}, & h_{1}, & 1, & 0 \\
g_{3}, & g_{2}, & h_{2}, & h_{1}, & 1 \\
g_{4}, & g_{3}, & 0, & h_{2}, & h_{1} \\
0, & g_{4}, & 0, & 0, & h_{2}
\end{array}
$$

must vamshe identically.
Note 2 In the preceding investrgations, we are concerned with tho possession by $\phi\left(z, z^{\prime}\right)$ and $\chi\left(z, z^{\prime}\right)$ of a common factor of the samc type as themselver, that is to say, $\phi\left(z, z^{\prime}\right), \chi\left(z, z^{\prime}\right)$, and the common factor (if it exists) are polyuomal in z We are not concerned with the comparison of axpressions

$$
\phi\left(z, z^{\prime}\right) \text { and } \phi\left(z, z^{\prime}\right) e^{l\left(z, z^{\prime}\right)}
$$

where $R\left(z, z^{\prime}\right)$ is regular in the mmediate vicmity of 0,0 cund vamskes when $z=0$ and $z^{\prime}=0$, the latter expression, when expressed in a double series, is no longer polynomal in z 'The case, when $R\left(z, z^{\prime}\right)$ can be such as to make the second expressom polynomal m z^{\prime} alone, has already been discussed (§ 63)

Er When two functrons

$$
\begin{aligned}
& \left(a_{i}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime} \gamma_{z}^{\prime}, z_{2}^{\prime}\right)^{2}+\left(b_{4}^{\prime}, b_{1}^{\prime}, b_{z^{\prime}}^{\prime}, b_{3}^{\prime \prime}\left(z=, L^{\prime}\right)^{3}+,\right.
\end{aligned}
$$

possess a commou factor of the type

$$
z+R\left(z^{\prime}\right),
$$

where $R\left(z^{\prime}\right)$ is regular in the mmedrate vichuty of i^{\prime} and vanshes when $z^{\prime}=0$, we cum approximate to itm oxpression as follows (The algolira will illustrate the distinction between the fimte number of andytical testos and the minnte number of arithmetial selations between the ennstants, the latter, of eourse, camot be set out explectly)

The first function is expressed ($\$ 64$) in the form
where

$$
\left\{a_{0} z^{2}+z\left(a_{1} z^{\prime}+a_{2} z^{\prime 2}+\ldots\right)+a_{2} z^{\prime 2}+\beta_{3} z^{\prime 3}+.\right\} e^{\lambda_{10} z+\lambda_{1} z^{\prime}+},
$$

$$
\begin{aligned}
& \lambda_{0}=\frac{b_{0}}{a_{0}}, \quad \lambda_{1}=\frac{1}{a_{0}^{2}}\left(a_{0} b_{1}-a_{1} b_{0}\right), \ldots \\
& a_{2}=\frac{1}{a_{01}}\left(a_{11} b_{2}-\alpha_{2} b_{11}\right)-\frac{a_{1}}{a_{10}^{2}}\left(a_{0} b_{1}-a_{1} b_{0}\right), \\
& \beta_{3}=b_{3}-\frac{a_{2}}{a_{0}^{2}}\left(a_{0} b_{1}-a_{1} b_{0}\right),
\end{aligned}
$$

and 80 on ; and the second function is expressed in the sumilar form

$$
\left\{a_{0}^{\prime} z^{2}+z\left(a_{1}^{\prime} z^{\prime}+a_{2}^{\prime} z^{\prime 2}+\ldots\right)+a_{2}^{\prime} z^{\prime 2}+\beta_{3}^{\prime} z^{\prime 3}+. .\right\} e^{\lambda_{0}^{\prime} z+\lambda_{1}^{\prime} z^{\prime}+},
$$

where

$$
\begin{aligned}
& \lambda_{0}^{\prime}=\frac{b_{0}^{\prime}}{a_{0}^{\prime \prime}}, \quad \lambda_{1}^{\prime}=\frac{1}{a_{0}^{\prime 2}}\left(a_{0}^{\prime} b_{1}^{\prime}-a_{1}^{\prime} b_{0}^{\prime}\right), \quad, \\
& a_{2}^{\prime}=\frac{1}{a_{0}^{\prime}},\left(a_{0}^{\prime} b_{2}^{\prime}-a_{0}^{\prime} b_{0}^{\prime}\right)-\frac{a_{1}^{\prime}}{a_{0}^{\prime \prime}}\left(a_{0}^{\prime} b_{1}^{\prime}-a_{1}^{\prime} b_{0}^{\prime}\right), \\
& B_{3}^{\prime}=b_{9}^{\prime}--\frac{a_{2}^{\prime}}{a_{0}^{\prime 2}}\left(a_{0}^{\prime} b_{1}^{\prime}-a_{1}^{\prime} b_{0}^{\prime}\right)
\end{aligned}
$$

and so on We then must have the conctition or conditions that
and

$$
\begin{gathered}
a_{0} z^{2}+z\left(a_{1} z^{\prime}+a_{2} z^{\prime \prime}+\right)+1_{2} z^{\prime \prime 2}+\beta_{3} z^{\prime 3}+ \\
a_{0}^{\prime} z^{2}+\varepsilon\left(a_{1}^{\prime} z^{\prime}+a_{2}^{\prime} z^{\prime 2}+\right)+{ }_{2}^{\prime} z^{\prime} z^{\prime 2}+\beta_{3}^{\prime} z^{\prime 3}+
\end{gathered}
$$

should pussess a common factor of the type

$$
z+R\left(z^{\prime}\right)
$$

sty

$$
z+\gamma_{1} z^{\prime}+y_{2} z^{\prime 2}+
$$

Let these two expressions, which are quadiatic in z, be denoted ly

$$
a_{0} z^{2}+\star \xi_{1}+\xi_{2}, \quad a_{11}^{\prime} z^{2}+z \eta_{1}+\eta_{2}
$$

They broth will vansh, of they possess a common factor linear in a and if that facton vanishes When they vanish, we have

$$
a_{0} z^{2}+z \xi_{1}+\xi_{2}=0, \quad a_{1} z^{\prime} z^{2}+\tilde{\eta}_{1}+\eta_{2}=0,
$$

sumultaneously, and therefore the relations

$$
\frac{z^{2}}{\xi_{1} \eta_{2}-\xi_{2} \eta_{1}}=\frac{:}{\xi_{2} a_{01}^{\prime}-\eta_{z} \mu_{0}}=\frac{1}{\eta_{1} a_{0}-\xi_{1} a_{v}^{\prime}}
$$

will be satisfied for the value of z, in terms of z^{\prime}, which makey the common factor vamal Thus wo must have

$$
\left(\xi_{1} \eta_{2}-\xi_{2} \eta_{1}\right)\left(\eta_{1} a_{1}--\xi_{1} a_{10}^{\prime}\right)=\left(\xi_{2} a_{0}^{\prime}-\eta_{2} a_{0}\right)^{2},
$$

satisfied identically for all values of z^{\prime}, and the value of z, which would make the common factor vamsh, is given by

$$
z=\frac{\xi_{2} a_{0}^{\prime}-\eta_{2} a_{0}}{\eta_{1} a_{0}-\xi_{1} a_{0}^{\prime}}
$$

Now

$$
\begin{aligned}
& \xi_{1} \eta_{2}-\xi_{2} \eta_{1}=z^{\prime 3}\left\{\left(a_{1} a_{2}^{\prime}-a_{1}^{\prime} a_{2}\right)+\left(a_{1} \beta_{3}^{\prime}-a_{1}^{\prime} \beta_{3}+a_{2} a_{2}^{\prime}-a_{2}^{\prime} a_{2}\right) z+\ldots\right\}, \\
& \xi_{2} a_{0}^{\prime}-\eta_{2} a_{0}=z^{\prime 2}\left\{\left(a_{0}^{\prime} a_{2}-a_{2}^{\prime} a_{0}\right)+\left(a_{0}^{\prime} \beta_{3}-a_{1} \beta_{3}^{\prime}\right) z^{\prime}+\quad ;\right. \\
& \eta_{1} a_{0}-\xi_{1} a_{0}^{\prime}=z^{\prime}\left\{a_{0} a_{1}^{\prime}-a_{1} a_{0}^{\prime}+\left(a_{0} \alpha_{3}^{\prime}-a_{0}^{\prime} a_{2}\right) z^{\prime}+;\right.
\end{aligned}
$$

and therefore, dasregarding the factor $z^{\prime 4}$, the expression

$$
\begin{aligned}
& \left\{a_{0}^{\prime} a_{2}-a_{2}^{\prime} a_{10}+\left(a_{0}^{\prime} \beta_{3}-a_{0} \beta_{3}^{\prime}\right) z^{\prime}+.\right\}^{2} \\
& \quad-\left\{\left(a_{1} a_{2}^{\prime}-a_{1}^{\prime} a_{2}\right)+\left(a_{1} \beta_{3}^{\prime}-a_{1}^{\prime} \beta_{3}+a_{2} u_{2}^{\prime}-a_{2}^{\prime} a_{2}\right) z^{\prime}+\right\}\left\{\left(a_{0} a_{1}^{\prime}-a_{1} a_{0}{ }^{\prime}\right)+\left(a_{1} a_{2}^{\prime}-a_{0}^{\prime} a_{2}\right) z^{\prime}+\right\}
\end{aligned}
$$

must vanish identically, for all values of $z^{\prime} \quad$ Let the expression be denoted by
then we must have

$$
C_{0}+C_{1} z^{\prime}+
$$

$$
C_{0}=0, \quad C_{1}=0,
$$

as the arithmetical relations between the constants

Also the value of z, which makes the common fuctor vanish, is

$$
\begin{aligned}
& z=\begin{array}{l}
\xi_{2} u_{0}^{\prime}-\eta_{2} \alpha_{0} \\
\eta_{1} a_{6}-\xi_{1} \alpha_{6}^{\prime} \alpha_{6}^{\prime}
\end{array} \\
& =z^{\prime} \frac{a_{1}^{\prime}\left(u_{2}-a_{2}^{\prime} a_{0}+\left(a_{1}^{\prime} B_{1}-a_{1}, s_{1}^{\prime}\right) z^{\prime}+\right.}{u_{4} u_{1}^{\prime}-u_{1} a_{0}^{\prime}+\left(a_{0} u_{2}^{\prime}-a_{1}^{\prime} a_{2}\right) z^{\prime}+}
\end{aligned}
$$

Consequently, when all the relations between the constants are sutisfied, the common factor is

$$
\sim+\gamma_{1} z^{\prime}+\gamma_{2} z^{2}+
$$

where

$$
\begin{aligned}
& \gamma_{1}=\frac{\alpha_{11}^{\prime} \alpha_{2}-\alpha_{1} \alpha_{2}^{\prime}{ }^{\prime},}{a_{1}{ }^{\prime} \alpha_{1}-a_{0} \alpha_{1}{ }^{\prime},} \\
& \gamma_{2}=\left(\alpha_{0}^{\prime} \alpha_{2}-\alpha_{2}^{\prime} \alpha_{0}\right)\left(a_{0} a_{2}^{\prime}-\alpha_{10}^{\prime} \alpha_{2}\right)-\left(a_{11} a_{1}^{\prime}-a_{1} \alpha_{0}^{\prime}\right)\left(a_{0}^{\prime} \beta_{3}-a_{0} \beta_{1}^{\prime}\right),
\end{aligned}
$$

aud wo on
It is clear that, in the ibsence of general laws gnving relations between the coefficients in ench of the two functions, we cannot set out the aggregate of relations $O=0$ and the uggregate of constiuts γ

Expressions of functoons near a pole or an accudental singularity

72. The non-ordinary places of a umform function have been sorted into three classes, the poles (or accidental singularities of the first kind), the unessential singulanities (or aecidental singularities of the second kind), and the essential singularities.

The smplest of these, in their analytical character and in their effect upon the function, are the poles Let p, p^{\prime} be a pole of a unform function $f\left(z, z^{\prime}\right)$, then, after the definition, some series of positive powers of $z-p$, $z^{\prime}-p^{\prime}$ exists, say $F\left(z-p, z^{\prime}-p^{\prime}\right)$, which is regular in the immediate vicimity of p, p^{\prime} and vanshes when $z=p$ and $z^{\prime}=p^{\prime}$, and 18 such that the product

$$
f\left(z, z^{\prime}\right) F^{\prime}\left(z-p, z^{\prime}-p^{\prime}\right)
$$

is regular in the vicinity of p, p^{\prime} and does not vansh when $z=p, z^{\prime}=p^{\prime}$. Thus the function $f\left(z, z^{\prime}\right)$ acquires a unque infinte value at a pole; that 1 s, the infinite value is acquired no matter by what laws of variation the variables z and z^{\prime} tend towards, and ultimately reach, the place p, p^{\prime}. Further, the pole-annulling factor $F^{\prime}\left(z-p, z^{\prime}-p^{\prime}\right)$ is not unique, a factor
\bullet

$$
F^{\prime}\left(z-p, z^{\prime}-p^{\prime}\right) e^{\mu\left(z-p, z^{\prime}-p^{\prime}\right)}
$$

where $R\left(z-p, z^{\prime}-p^{\prime}\right)$ is any regular function of $z-p$ and $z^{\prime}-p^{\prime}$, would have the same effect. All such factors we shall (for the present purpose) regard as equivalent to one auother, they can be represented by $F\left(z-p, z^{\prime}-p^{\prime}\right)$. Moreover, there cannot be more than one such representative factor for $f^{\prime}\left(z, z^{\prime}\right)$ at a pole, if there were two, say $F\left(z-p, z^{\prime}-p^{\prime}\right)$ and $G^{\prime}\left(z-p, z^{\prime}-p^{\prime}\right)$, we should have
$f\left(z, z^{\prime}\right) F\left(z-p, z^{\prime}-p^{\prime}\right)=$ regular function, not vamshing when $z=p$ and $z^{\prime}=p^{\prime}$, $f\left(z, z^{\prime}\right) G\left(z-p, z^{\prime}-p^{\prime}\right)=$
and therefore p, p^{\prime} would be an ordinary non-zero place for the quotient

$$
\begin{aligned}
& F\left(z-p z^{\prime}-p^{\prime}\right) \\
& G^{\prime}\left(z-p, z^{\prime}-p^{\prime}\right)
\end{aligned}
$$

whech is impossible unless F is divisible by G, and it would be an ordinary non-zero place for the reciprocal of this function, which is impossible unless G is divisible by F.

Hence, denoting the representative factor by F, we have

$$
f\left(z, z^{\prime}\right) H^{\prime}\left(z-p, z^{\prime}-p^{\prime}\right)=k_{010}+k_{10}(z-p)+k_{01}\left(z^{\prime}-p^{\prime}\right)+\ldots
$$

the series on the right-hand sude being a regular function in a doman of μ, p^{\prime}, and therefore

$$
\begin{aligned}
& \frac{1}{f\left(z, z^{\prime}\right)}=\begin{array}{l}
k_{\mathrm{w}}+k_{10}(z-p)+k_{01}\left(z^{\prime}-p^{\prime}\right)+ \\
\end{array}=\text { a regular function }(\S 69) \text { of } z \text { and } z^{\prime} \text { in a domain of } p, p^{\prime}, \\
& \quad \text { vanshing when } z=p, z^{\prime}=p^{\prime}
\end{aligned}
$$

It therefore follows that a pole of $f\left(z, z^{\prime}\right)$ is a zelo of $\begin{gathered}1 \\ f\left(z, z^{\prime}\right)\end{gathered}$, so that the place p, p^{\prime} is an ordinary place for the function $\frac{1}{f\left(z, z^{\prime}\right)}$ Hence, in the ucimity of a pole of $f\left(z, z^{\prime}\right)$, it is convement to consider the reciprocal function, say

$$
\phi\left(z, z^{\prime}\right)=\frac{1}{f\left(z, z^{\prime}\right)}
$$

and then the behaviour of $f\left(z, z^{\prime}\right)$ in the vicmity of the pole p, p^{\prime} can be described by the behaviour of $\phi\left(z, z^{\prime}\right)$ wheh is regulan in the vienity of its zero there Moreover, any zero of $f\left(z, z^{\prime}\right)$ in a doman of p, p^{\prime} is a pole of $\phi\left(z, z^{\prime}\right)$, hence the doman of μ, p^{\prime}, within which $\phi\left(z, z^{\prime}\right)$ is regular, does not extend so far as to include any zero of $f\left(z, z^{\prime}\right)$

As $\phi\left(z, z^{\prime}\right)$ is regular in this doman of p, p^{\prime}, and as it vanishes at p, p^{\prime}, it has an unlumted number of zero-valnes in the mmediate vicmity of p, p^{\prime}, and these occur at places forming a continuous two-dimensional aggregate that includes p, p^{\prime} Hence u the immeduate uncinty of any pole of a unaform analytuc function, there as an unlamated number of poles forming a continuous two-dimensionul aggregate that includes the given pole.

Further, we have definte integers as the orders of the zero of $\phi\left(z, z^{\prime}\right)$ in the two variables at p, p^{\prime}, the integer bemg derived from the equivalent expressions of $\phi\left(z, z^{\prime}\right)$ in the immediate vicinity of μ, p^{\prime}, these integers will be taken as the orders of the pole of $f\left(z, z^{\prime}\right)$ in the two varnables at p, p^{\prime}.

Cor. Mannfestly, a pole of $f\left(z, z^{\prime}\right)$ of any order is a pole of $f\left(z, z^{\prime}\right)-\alpha$ of the same order, where $|\alpha|$ is finite.
73. An unessental singularity (an accidental singularity of the second kind, to use Welerstrass's fuller phrase) of a umform function $f\left(z, z^{\prime}\right)$ at a place δ, s^{\prime} is defined by the property that there exists a power-series $F^{\prime}\left(z-s, z^{\prime}-s^{\prime}\right)$, which is a regular finction of z and z^{\prime} in the immediate vocminty of s, s^{\prime} and vamishes at s, s^{\prime}, and is such that the product

$$
f\left(z, z^{\prime}\right) F^{\prime}\left(z-s, z^{\prime}-s^{\prime}\right)
$$

is a regular function in the nomedate vicinty of s, s^{\prime}, and vanishes at s, s^{\prime} Let this latter regular function be denoted by $H\left(z-s, z^{\prime}-s^{\prime}\right) \quad$ No gencrality is lost by assuming that the functions F and H have no common factor vanishing when $z=s, z^{\prime}=s^{\prime}$. We then have a fractional expension for $f, \mathrm{v}_{\mathrm{Lz}}$

$$
f^{\prime}\left(z, z^{\prime}\right)=\begin{aligned}
& H\left(z-s, z^{\prime}-s^{\prime}\right) \\
& F^{\prime}\left(z-s, z^{\prime}-s^{\prime}\right)
\end{aligned}
$$

As in the case of a pole of $f\left(z, z^{\prime}\right)$ at p, p^{\prime}, the function $F\left(z-p^{\prime}, z^{\prime}-p^{\prime}\right)$ was representative and unique, so here cach of the functions $H\left(z-s, z^{\prime}-s^{\prime}\right)$ and $F\left(\hat{z}-s, z^{\prime}-s^{\prime}\right)$ is representative and umque, when H and F^{\prime} have no common farton vanuhing when $z=s, z^{\prime}=s^{\prime}$. The functions H and F can of course have any number of exponential factoss, each exponent being a regulan functoon of $z-s z^{\prime}-\varepsilon^{\prime}$, but no facton of that type affects the characteristic varations of f in the ummedate vicmity of that place Thus, in our expression for $f\left(z, z^{\prime}\right)$, we can legat the representative functions H and t as minque.

To consider the behariour of f at, and near, the acedental singularity, write

$$
z-s=\sigma, \quad z^{\prime}-s^{\prime}=\sigma^{\prime} .
$$

then we have expressions of the form

$$
\begin{aligned}
& H\left(z-s, z^{\prime}-s^{\prime}\right)=E \sigma^{m} \sigma^{\prime m^{\prime}}\left\{\sigma^{l}+\sigma^{l-1} h_{1}\left(\sigma^{\prime}\right)+\quad+h_{l}\left(\sigma^{\prime}\right)\right\} e^{H\left(\sigma, \sigma^{\prime}\right)} \\
& F\left(z-s, z^{\prime}-s^{\prime}\right)=D \sigma^{n} \sigma^{\prime n^{\prime}}\left\{\sigma^{k}+\sigma^{k-1} f_{1}\left(\sigma^{\prime}\right)+\quad+f_{k}\left(\sigma^{\prime}\right)\right\} e^{l^{\prime}\left(\sigma, \sigma^{\prime}\right)}
\end{aligned}
$$

whete E^{\prime} and D are constants $m, m^{\prime}, n, n^{\prime}$ are positive integers, each zero III the sunplest cases l and k are positive integers, each greater than zero III the simplest cases, $h_{1}, \quad, h_{l}, f_{1}, \ldots, f_{k}$ are 1 egular functions of σ^{\prime} in the immedrate vicinity of $\sigma^{\prime}=0$ and vansh with σ^{\prime}, and \bar{H}, \bar{F} are regular functions of σ and σ^{\prime} in the immedrate vicinity of $\sigma=0, \sigma^{\prime}=0$ and vanish with σ and σ^{\prime}, so that nether H nor F can acquire a zero value or an infinte value from the factors e^{H} and $e^{\bar{F}}$ Moreover, H and F are devold of any common factor so that either m or n (or both) must be zero, and m^{\prime} or n^{\prime} (or both) must be zero. Also

$$
\sigma^{l}+\sigma^{l-1} h_{1}\left(\sigma^{\prime}\right)+\ldots+h_{l}\left(\sigma^{\prime}\right), \quad \sigma^{k}+\sigma^{k-1} f_{2}\left(\sigma^{\prime}\right)+\ldots+f_{k}\left(\sigma^{\prime}\right)
$$

have no common zero in the immediate vicinity (defined as a region round σ^{\prime} of radus less than the modulus of the smallest root of the resultant of these two polynomials) of $\sigma=0, \sigma^{\prime}=0$ save actually at 0,0 , for their eliminant is a function $\sigma^{\prime \mu} \Theta\left(\sigma^{\prime}\right)$ which does not vamsh for sniall values of σ^{\prime} other than $\sigma^{\prime}=0$

Mamfestly, the value of $f\left(z, z^{\prime}\right)$ at, s, s^{\prime} is not definute, it can be made to açure any value by assigming appropriate laws for the approach of z to s and of z^{\prime} to s^{\prime}. In the mmediate vicinity of $s, s^{\prime}, f\left(z, z^{\prime}\right)$ possesses
(1) an unlimited number of zeros, given by zero-values, other than at 0,0 , of $\sigma^{l}+\sigma^{l-1} h_{1}\left(\sigma^{\prime}\right)+\ldots+h_{l}\left(\sigma^{\prime}\right)$.
(11) an unlmited number of poles, given by zero-values, other than at 0,0 , of $\sigma^{k}+\sigma^{k-1} f_{1}\left(\sigma^{\prime}\right)+.+f_{k}\left(\sigma^{\prime}\right)$,
(ii1) an unlimited number of places at which it assumes a level value of finte modulus,
but $\sigma=0$ and $\sigma^{\prime}=0$ is the only place in the immediate vicinity of 0,0 , where the value of $f\left(z, z^{\prime}\right)$ is not unque and dofinte. Hence we have the result --

The unessentzal singularities of a 1 maform function $f\left(z, z^{\prime}\right)$ are isolated places in the domain of existence of $f\left(z, z^{\prime}\right)$, the value of f at an unessential singularity is not definite; and, in the immeduate vocinity of any unessential singularity, there is an unlimated number of places where f can assume any assigned definte value, zero, finate, or infinte

Further, let the unessential singularities (each of them being an isolated place) of a uniform analytic function be represented by a_{m}, a_{m}^{\prime}, whese $m=1,2$, . They may be finte in number or mfinite in number When they are infinte in number, the places $\alpha_{m}, a_{m}^{\prime}$ must have one or more limitplaces, let such a himet-place be b, b. As regards the function in a sindll doman sound b, b^{\prime}, it cannot be represented by any of the different foregong expressions, suitable to the respective vicinities of an ordinary place, a pole, and an isolated unessential singularity. The linnt-place must therefore be an essential singularity of the function.

Expression near an essentral singularity

74. The defintion of an essential singularity of a unform function, that has been adopted after Weierstrass, is maınly of an unınforming characterto the effect that, in the immediate vicinity of such a place, no power scries $U\left(z, z^{\prime}\right)$ representing a regular function and vanshing at the place can be obtained such that the product

$$
f\left(z, z^{\prime}\right) U\left(z, z^{\prime}\right)
$$

is a regular function of z and z^{\prime}. But, as as known to be the fact with unform functions of a single variable, essential mingularities cannot effectively be sorted together in one class there can be points, or lines, or spaces, of essential singularity for a uniform function of a single variable The conception of added complications, when we deal with unforin analytic functions of more than one variable, needs no argument for postulation, though it gives no substantial assistance towarts analytical formulation

It may however be added that one large question dealing with the essential singularities of a unform analytical function has occupied a nuinber of memors published in recent years

We have seen that the zeros of an analytucal function of two variables constitute a two-dimerisional aggegate, and likewise that its poles constitute a two-dumensional aggregate We have also seen that its messential singularities are 1 solated places.

The question just mentioned relates to the aggregate constituted by the essential singularities of a uniform analytical function, for its discussion, as well as for other matters, we shall refer to the memors indicated*.

[^25]
(OHAPTER V

Two Theorems on the Expression of a Function without Essential Singillarties in the Finite Part of the Fieln

75 We now come to the consideration of a couple of theorems relating to the expression of a umform analytic function of two variables. In the first of them, we have to deal with a function that has no esseutal singularities within the whole range of the field of variation of z and z^{\prime}. the function then has the form of a rational function of the variables In the second of them, we have to deal with a function that has no essential singularities within the range of the field of variation of z and z^{\prime} such that $|z| ₹ R,\left|z^{\prime}\right|<R^{\prime}$, where R and R^{\prime} can be taken as large as we please. the function then has the form of the quotient of two functions, each of which in a regular function of z and z^{\prime} for the values of z considered *,

76 First of all, consider a polynomal in z and z^{\prime}, say

$$
p\left(z, z^{\prime}\right)=\zeta_{1 v} z^{n}+\zeta_{1} z^{n-1}+.+\zeta_{n},
$$

where $\zeta_{0}, \zeta_{1}, \ldots, \zeta_{n}$ are themselves polynomals in z '. Then we at once have the results -
(1) every finte place is ordinary for $p\left(z, z^{\prime}\right)$,
(u) with every fimite value z^{\prime}, that is not a zero of ζ_{0}, can be associated n finite values of z, such that each of the n places thus constituted is a zero for $p\left(z, z^{\prime}\right)$, repetition of values of z causing multipheity of zero-places for $p\left(z, z^{\prime}\right)$,
(iil) with every fimte value z^{\prime}, that 18 a zero of ζ_{0} and is such that $\zeta_{r}(r>0)$ is the first coefficuent of powers of z in $p\left(z, z^{\prime}\right)$ which does not vansh, can be associated $n-r$ finite values of z, such that each of the $n-r$ places thus constituted is in zero for $p\left(z, z^{\prime}\right)$.
(iv) the poles of $p\left(z, z^{\prime}\right)$ are given by mfinte values of $|z|$ and finite values of z^{\prime} other than the roots of ζ_{0}, and by infinite values of $\mid z^{\prime}$ and finte values of z other than the roots of the coefficient

[^26]of the highest power of z^{\prime} in $p\left(z, z^{\prime}\right)$ arranged in powers of z^{\prime}, and by infinte values of $\mid z_{\mid}$and of $z^{\prime} \mid$,
(v) the unessential singularities of $p\left(z, z^{\prime}\right)$, it any, are given by infimte. values of $|\boldsymbol{z}|$ and by the roots of ζ_{0}, but each such place is an unessential singulanty only if other conditions are satisfied, and similarly for infinite values of $\left|z^{\prime}\right|$ and by the finte values of z excepted in (iv), but cach such place is an unessential singularity only if wthei couditions are satisfied so that, in general, $p\left(z, z^{\prime}\right)$ has no unessential singulanties, and
(vi) there are no essential singularities of $p\left(z, z^{\prime}\right)$

77 In the next place, consider an irreducible rational function of z and z^{\prime}, say

$$
R\left(z, z^{\prime}\right)=\frac{p\left(z, z^{\prime}\right)}{q\left(z, z^{\prime}\right)}
$$

where $p\left(z, z^{\prime}\right)$ and $q\left(z, z^{\prime}\right)$ are polynomials in z and z^{\prime},

$$
\begin{aligned}
& p\left(z, z^{\prime}\right)=\zeta_{0} z^{n}+\zeta_{1} z^{n-1}+\quad+\zeta_{n}, \\
& q\left(z, z^{\prime}\right)=\eta_{0} z^{n}+\eta_{1} z^{m-1}+\quad+\eta_{m}
\end{aligned}
$$

while $\zeta_{0}, ., \zeta_{n}, \eta_{0}, \quad, \eta_{m}$ ane polynomals in z^{\prime} alone Then it is easy to inter the following results -
(1) every finte place, that is not a zero of $q\left(z, z^{\prime}\right)$, is ordmary for $R\left(z, z^{\prime}\right)$,
(11) every zeio of $p\left(z, z^{\prime}\right)$, that is not a zelo of $q\left(z, z^{\prime}\right)$, is a zeto of $R\left(z, z^{\prime}\right)$,
(ini) every zero of $q\left(z, z^{\prime}\right)$, that is not a zero of $p\left(z, z^{\prime}\right)$, is a pole of $R\left(z, z^{\prime}\right)$,
(1v) every place, that is a smultaneous zero of $p\left(z, z^{\prime}\right)$ and of $q\left(z, z^{\prime}\right)$ which have no common factor because our rational function is irreducible, is an uncssential smgularity of $R\left(z, z^{\prime}\right)$,
(v) the behavour of $R\left(z, z^{\prime}\right)$ for minimite values of $|z|$ or of $\left|z^{\prime}\right|$ on of both $|z|$ and $\left.\mid z^{\prime}\right\}$, depends upon the degrees of $p\left(z, z^{\prime}\right)$ and $q\left(z, z^{\prime}\right)$ in z and in z^{\prime}, while every such place is either a zero, or ordmary, or a pole, or an unessential singulanty, and
(vi) the rational function $R\left(z, z^{\prime}\right)$ has no essential singularities

Functuons entirely devoid of essential singularities.
78 Now we know that not a few of the mportant properties of umiorin analytic functions of a single variable are deduced from those expressions of the function which arise when special regard is paid to its singularities, and occasionally some classitication of functions can be secured according to the
number and nature of these points*. In particular, we know that a uniform function, devoid of essential singularities throughout the whole field of variation of the variable z, is a rational function of z Of this result, there is the generalisation, given by the theorem \dagger -

A uniform analytic function of two complex variables z and z^{\prime}, having no essentual sinqularity in the whole field of their variation, is a rational function of z and z^{\prime}

To establish this theoren, we proceed as follows
Let $f\left(z, z^{\prime}\right)$ be a uniform function of z and z^{\prime}, entrirely devold of essential singularities, and let any ordinary place (say 0,0) be chosen which is a non-zero place of the function. In the vicimety of 0,0 , let the expansion of $f\left(z, z^{\prime}\right)$ be

$$
f\left(z, z^{\prime}\right)=\sum_{m=0}^{\infty} \sum_{n=-0}^{\infty} c_{n n, n} z^{m} z^{\prime n},
$$

and suppose that this series converges absolutely within a domain $|z|<r$, $z^{\prime} \mid<r^{\prime}$. Manifestly, after the supposition ds to $f(0,0)$, the quantity c_{00} is not zero

Within the domain, we have

$$
f^{\prime}\left(z, z^{\prime}\right)=\sum_{m=1}^{\infty}\left(\sum_{n-1}^{\infty} c_{m, n} z^{\prime n}\right) z^{m}
$$

because the double series converges absolutely, so, writing

$$
g_{m}\left(z^{\prime}\right)=\sum_{n-9}^{\infty} c_{m, n} z^{\prime n},
$$

we have

$$
f\left(z, z^{\prime}\right)=\sum_{m=0}^{\infty} z^{m} g_{m}\left(z^{\prime}\right)
$$

Consequently, for all values 0,1 , . of m, and for all values of z^{\prime} within the doman, we have

$$
\frac{1}{m!}\left\{\partial^{m} f\left(z, z^{\prime}\right)\right\}_{z=0}=g_{m}\left(z^{\prime \prime}\right)
$$

Now $f\left(z, z^{\prime}\right)$ is everywhere a unform analytic function without essential sangularities, consequently every derivative of $f\left(z, z^{\prime}\right)$, at every place in the

[^27]field, also is a unitorm analytic function without essential singularities. At the places $0, z^{\prime}$ within the doman, the converging senes denoted by $g_{\text {m }}\left(z^{\prime}\right)$ represents a derivative of $f^{\prime}\left(z, z^{\prime}\right)$, it is therefore an element of a function of a single variable z^{\prime}, which is imform, analytic, and devord of essential singularities But we know* that such a function of a suggle varialle is a rational function of the variable, and therefore $g_{m}\left(z^{\prime}\right)$ is an element of a rational function of z^{\prime}. Wenoting this rational functaon by $A_{m}\left(z^{\prime}\right)$, or ly A_{m}, for all values of m, we have
$$
g_{m}\left(z^{\prime}\right)=A_{m}\left(z^{\prime}\right)
$$
for all values of z^{\prime} withm the domann, and so, withen that doman, we have
$$
f\left(z, z^{\prime}\right)=A_{4}+A_{1} z+A_{2} z^{2}+\ldots
$$
where now A_{0}, A_{1}, A_{2}, are rational functrons of z^{\prime} whach have no pole anywhere withon our doman

Moreover, when $z=0, z^{\prime}=0$, the quantity $c_{\text {ap }}$ is not zeju, so that $A_{0}(0)$ in different foom zero Hence we can choose a more restructed doman given by $|z| ₹ \delta$ and $\left|z^{\prime}\right| ₹ \delta^{\prime}$, where δ and δ^{\prime} me not infinitesmal, such that the umform analytic function $f\left(z, z^{\prime}\right)$ as everywhere regular and different from zero.

Assign an arbitrary value a^{\prime} to z^{\prime} in this restricted doman, that is, such that $\left|a^{\prime}\right|<\delta^{\prime}$ 'Then $f\left(z, a^{\prime}\right)$ is a function of a songle variable only. it is umform, and it possesses ano essential smgularity, it is therefore a rational function of z, so that we may write

$$
f\left(z, a^{\prime}\right)=\frac{B_{0}+B_{1} z+\ldots+B_{r} z^{r}}{C_{0}+C_{1} z+}+C_{r} z^{r}
$$

As a rational function of a has a lunted number of zeros and of poles, the highest index of z in the mumerator and the demmmator combined is finte that is, r is a finite migege. No generahty is lost by assuming that K_{r} and C_{r} ane not zero together If B_{0} were zew, then $z=0$ and $z^{\prime}=u^{\prime}$ would br a zero of $f\left(z, z^{\prime}\right)$, contrary to the supposition that f does not vansh withon the selceted doman, if C_{0} were zero, then $z=0$ and $z^{\prime}=a^{\prime}$ would be a polt. of $f\left(z, z^{\prime}\right)$, contiary to the supposition that f is regular within the selected domann, hence neither B_{0} nor C_{0} is zero

Let $K_{0}, K_{1}, K_{v}, \quad$ espectively denote the values of the rational functions $A_{0}, A_{1}, A_{2}, \ldots$ when $z^{\prime}=a^{\prime}$ Then a converging series for $f^{\prime}\left(z, a^{\prime}\right)$ is given by

$$
f\left(z, a^{\prime}\right)=K_{\mathrm{u}}+K_{1} z+K_{2} z^{2}+\ldots
$$

so that, from the two expressions of $f\left(z, u^{\prime}\right)$, we have

$$
\left(K_{0}+K_{1} z+K_{2} z^{2}+\ldots\right)\left(C_{0}+C_{1} z+\ldots+C_{r} z^{r}\right)=B_{0}+B_{1} z+\ldots+B_{r} z^{r}
$$

holding for all values of z such that $|z|<\delta$. The two evefficients of each power of z on the two sides must be equal to one another, and therefore, as

[^28]z^{r+n} (for $n \geqslant 1$) docs not occur on the right-hand side, we have the coefficient of z^{r+n} on the left-hand side equal to zero Thus all the determinants
\[

\left\{$$
\begin{array}{ccccc}
K_{1} & , & K_{2}, & K_{3} & , \\
K_{y}, & K_{1}, & K_{4} & \cdots \\
\ldots & \cdot & & \\
K_{r+1}, & K_{1+2}, & K_{1+3}, & \ldots
\end{array}
$$\right.
\]

must vanısh.
With each valuc of a^{\prime}, some finte integer r must be associated because $f\left(z, a^{\prime}\right)$ is rational in z But with at lcast one value (and, it may bc, with more than one value) of r, an infinite number of values of a^{\prime} must be associated, for otherwise. If with each valuc of r only a finte number of values of a^{\prime} conld be associated and as every admassible integer r is finite, there would in all be only a finite number of values of a^{\prime}, contrary to the fact that a^{\prime} is any place in the domain $\left|z^{\prime}\right|<\delta^{\prime}$.

Consequently, taking r to be the greatest integer for any value of a^{\prime} in the domain determined by δ^{\prime}, all the preceding determinants vamsh for the nfimte number of values of a^{\prime} in the doman. Hence there must exist functions of z^{\prime} (to be denoted by $F_{0}, F_{1}, \quad, F_{r}$), such that the equations

$$
\begin{aligned}
& F_{r} A_{1}+F_{r-1} A_{2}+\ldots+F_{0} A_{r+1}=0 \\
& F_{r} A_{2}+F_{r-1} A_{9}+.+F_{0} A_{r+2}=0
\end{aligned}
$$

are satisfied for an infinite number of valucs of z^{\prime}, and not all the functions F can vanish Moreover, the functions A are rational and, at most, only some of them (limited in number) are evanescent, hence, as the functions $F_{0}, F_{1}, \ldots, F_{r}$ can be taken as equal to determinants the constituents of which arc rational functions of z^{\prime}, they are themselves rational functions of z^{\prime}

Consider the function

$$
\left(F_{0}+z F_{1}+\ldots+z^{r} F_{1}\right) t\left(z, z^{\prime}\right)-\left(G_{0}+z G_{1}+\ldots+z^{r} G_{r}\right)
$$

where

$$
G_{0}=A_{0} F_{0}^{\prime}, G_{1}=A_{1} F_{0}+A_{0} F_{1}, \quad, \quad G_{r}=A_{0} F_{r}+A_{1} F_{r-1}+\ldots+A_{r} F_{r}
$$

and denote it by $\Phi\left(z, z^{\prime}\right)$, which may on may not vanish identically The quantities $G_{0}, ., G_{r}$, being lineo-linear in the rational functions A and F, are themselvey rational functions of z^{\prime}, and not all the functions G can vanish. Then the function $\Phi\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} within the domam $|z|<\delta$ and $\left|z^{\prime}\right|<\delta^{\prime}$, because all its components are regular within that domain. The foregoing analysis shews that, for all values of z in the range $|z|<\delta$, there is an infinite number of values of z^{\prime} in the range $\left|z^{\prime}\right| ₹ \delta^{\prime}$ for which $\Phi\left(z, z^{\prime}\right)$ vanshes If $\Phi\left(z, z^{\prime}\right)$ does not vanish identically, we take any special value of z within the range $|z| ₹ \delta$, say $z=c$; then $\Phi\left(c, z^{\prime}\right)$ is
a regular function of z^{\prime} within the range $\left|z^{\prime}\right| ₹ \delta^{\prime}$, and (after what precedes) there $1 s$ an infinite number of values of z^{\prime} within that range where $\Phi\left(c, z^{\prime}\right)$ vanishes It is a known property* of regular functions of ont variable that the number of its zeros, within any finite region where the function is regular, is necessanly finte, and thr preceding result, based immedately upon the hypothesis that $\Phi\left(z, z^{\prime}\right)$ does not vamsh dentically, does not accord with this requirement Accorlingly, the hypothes's must be abandoued, the function $\Phi\left(z, z^{\prime}\right)$ vamshes identrally, and thereforc, for all values of z and z^{\prime} withon the selected doman, we have

$$
\left(F_{1}+z F_{1}+\quad+z^{r} F_{r}^{\prime}\right) /\left(z, z^{\prime}\right)=\left(i_{0}+z G_{1}+\quad+z^{r}\left(i_{r},\right.\right.
$$

where $F_{0}, F_{1}, \quad, F_{r}, G_{n}, G_{1}, \quad, G_{r}$, are rational functions of z^{\prime}
The function F_{0} and the function (F_{0} do not vansh under our intial hypothesis that the ordndy placr 0,0 n not a zero of $f\left(z, z^{\prime}\right)$, some (hut not all) of the other functions $F_{1}, \quad, F_{1},\left(i_{1}, \quad, i_{r}\right.$ may vansh

We thas have

$$
\begin{aligned}
& f\left(2, z^{\prime}\right)=G_{0}+z\left(i_{1}+\quad+z^{r} G_{1},\right. \\
& F_{0}^{\prime}+z H_{1}^{\prime}+\quad+z^{r} F_{r}^{\prime} .
\end{aligned}
$$

that is, $f^{\prime}\left(z, z^{\prime}\right)$ is a dational function of z and z^{\prime} Tlur proposition is thus established

79 One provisional rematk will be made at this stage Let $f\left(z, z^{\prime}\right)$ be a uniform function which, within some hamted region of its existence, has no essential singularitnes aul, within that regiom, does possoss zeros, and poles, and unessental sugguarties

Suppose that a momform function exists, which has those zelos, those poles, and those unessential singulatios, all in precisely the same fashon as $f\left(z, z^{\prime}\right)$, and which possesses no others within the region, and suppose that thes function has no essential singularity anywhere 10 the whole field of variation of z and z^{\prime} The preceding proposition shews that it must be a rational function of z and z^{\prime} (Examples can easily be constructed, in the case of definite sumple assignments of such places) We shall, for the moment, assume the possible cxistence of such a rational function. and then, denoting it by $r\left(z, z^{\prime}\right)$, we write

$$
g\left(z, z^{\prime}\right)=\begin{aligned}
& f\left(z, z^{\prime}\right) \\
& r\left(z, z^{\prime}\right)
\end{aligned}
$$

Within the region, the function $g\left(z, z^{\prime}\right)$ has no zeros and it has no singularities of any kind, hence, within the doman of cvery place in that region, the two functions g_{1} and g_{2}, where

$$
g_{1}=\frac{1}{g} \partial g, \quad g_{3}=\frac{1}{g} \partial g z^{\prime},
$$

can be expressed as absolutely converging power-spries, which are elements
*See my Theory of Functoons, \& 37
of two regular functions. Moreover, as regards these two power-series for g_{1} and g_{2}, we obviously must have

$$
\frac{\partial g_{1}}{\partial z^{\prime}}=\frac{\partial g_{2}}{\partial z}
$$

identically, so we denote the common value of these two quantities by

$$
\frac{\partial^{2} P\left(z, z^{\prime}\right)}{\partial z \partial z^{\prime}},
$$

where $P\left(z, z^{\prime}\right)$ is itself a double series converging absolutely in the domann, and is an element of a single regular function, which may be denoted by $Q\left(z, z^{\prime}\right)$ Then

$$
\begin{aligned}
& 1 \partial g \\
& g \partial z
\end{aligned} \frac{\partial P^{\prime}\left(z, z^{\prime}\right)}{\partial z}, \quad 1 \frac{\partial q}{g} \partial z^{\prime}=\frac{\partial P^{\prime}\left(z, z^{\prime}\right)}{\partial z^{\prime}},
$$

$$
g=e^{p_{\left(z, z^{\prime}\right)}},
$$

within the doman Now $g\left(z, z^{\prime}\right)$ is regular throughout the region, and, for each domann within the regoon, $P\left(z, z^{\prime}\right)$ is the element of the regilar function $Q\left(z, z^{\prime}\right)$ Consequently, on the assumption that the ratomal fuuction $r\left(z, z^{\prime}\right)$ exists, we have

$$
r\left(z, z^{\prime}\right) e^{\left(z z, z^{\prime}\right)}
$$

as a representation of $f\left(z, z^{\prime}\right)$ withon the region, $Q\left(z, z^{\prime}\right)$ denoling a function that is regular within the region

The definite existence of the function, denoted ly $r\left(z, z^{\prime}\right)$, has not been established in general. The assumption that has been made rases the question as to whether rational functoons exist, defined by the possession solely of assigned zeros, assigned poles, and assigned unessentral singularitien Also, that question raises the further question as to what are the limitations (if any) upon the arbitary assignment of feros, poles, and inmessontial sungularities, in order that it may lead to the existence of a rational function

These questions mitiate a subject of separate enquiry wheh will not be pursued here

Functions having essential singularities only in the infirite part of the field

80. The other of the theorems already mentioned relates to the expression of a unforin analytic function, of which all the essential singularities arise for infinite values of one or other or both of the variables It was adumbrated by Wenerstrass*; the following proof 18 based upon a memor by Cousin \dagger We have to establish the theorem:-

A unuform analytic function of two varables, all the essential sungularitzes of whech arse for infinite values of exther of the varubles or of

* Ges. Wirke, t u, p 163.

+ Acta Math, t xix (1895), pp. 1-62; 1t applies to n variables.
It may be added that a proof 18 given by Poncsré, Acta Math, t 11 (1888), pp. 97-113;
both of the variables, can be expressed as the quotuent of two functoons which are everywhere regular for finte values of the varubles
For this purpose, Cousin uses the Cauchy method of contour integrals.
81 Consider an integral, the variable of integration Z^{\prime} being taken in the plane of z^{\prime}, as given by

Fig 1

$\mathrm{F}_{\mathrm{Lg}} 2$
where the integration extends along an are $A B$ from A as the lower limit to B as the upper lumit When we take a dosed contour of wheh $A B$ is a portion, $A B$ is the pasitive direction of desciption in figure 1 and is the negative direction of deseription in figure 2

Now in figure 1, we have

$$
\theta\left(z^{\prime}\right)=1+\frac{1}{2 \pi t} \int_{-1 M H} Z^{\prime}-z^{\prime}
$$

for all points z^{\prime} within the coutour $A E B M A$, and

$$
\theta\left(z^{\prime}\right)=\frac{1}{2 \pi i} \int_{A M B} Z^{\prime}-z^{\prime}
$$

for all points z^{\prime} without the same contour For all points withon the contour, and for all points without the contour, $\theta\left(z^{\prime}\right)$ is a legular function of z^{\prime} Consequently the line $A E B$ is a section* for the function, the continuation $\theta(D)$, taken from the inside point C to the outside point D across the section $A B$ when the latter is described positively for the area, is $-1+\theta\left(0^{\prime}\right)$.

In the same way for figure 2 , the collinuation $\theta(I)$, taken from the inside point C to the outside point D acruss the section $A B$ when the latter is described negatively for the area, is $1+\theta(C)$.

[^29]The general value, of course, $1 s$

$$
\theta\left(z^{\prime}\right)=\frac{1}{2 \pi i} \log \begin{gathered}
b^{\prime}-z^{\prime} \\
a^{\prime}-z^{i}
\end{gathered}
$$

where a^{\prime} and b^{\prime} arre the variables of A and B. Clearly the quantity

$$
\theta\left(z^{\prime}\right)-\frac{1}{2 \pi i} \log \left(b^{\prime}-z^{\prime}\right)
$$

is regular in the momediate vicinty of B, and the quantity

$$
\theta\left(z^{\prime}\right)+\frac{1}{2 \pi i} \log \left(a^{\prime}-z^{\prime}\right)
$$

is regular in the immediate vicinty of A
Next, let $g\left(z, z^{\prime}\right)$ denote a function of z and z^{\prime}, which is regular for ranges of z and z^{\prime} that have finite values; and consider an integral

$$
\chi\left(z, z^{\prime}\right)=\frac{1}{2 \pi i} \int_{A}^{H} \frac{g\left(z, Z^{\prime}\right)}{Z^{\prime}-z^{\prime}} d Z^{\prime}
$$

taken precisely as for the preceding integral $\theta\left(z^{\prime}\right)$ Then $\chi\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime}, except when z^{\prime} hes upon the he $A E B$, and $A E B$ is a section for the function $\chi\left(z, z^{\prime}\right)$. Now let

$$
G\left(z, z^{\prime}, Z^{\prime}\right)=\frac{g\left(z, Z^{\prime}\right)-g\left(z_{2} z^{\prime}\right)}{Z^{\prime}-z^{\prime}}
$$

as $g\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime}, it is easy to see * that $Q\left(z, z^{\prime}, Z^{\prime}\right)$ is a regular function of $z, z^{\prime}, Z^{\prime}$ Hence

$$
\begin{aligned}
\chi\left(z, z^{\prime}\right) & =\frac{1}{2 \pi i} \int_{A}^{B} G\left(z, z^{\prime}, Z^{\prime}\right) d Z^{\prime}+\frac{g\left(z, z^{\prime}\right)}{\mathbf{2}^{2} \pi i} \int_{A}^{B} d Z^{\prime}-z^{\prime} \\
& =H\left(z, z^{\prime}\right)+\theta\left(z^{\prime}\right) g\left(z, z^{\prime}\right)
\end{aligned}
$$

where $H\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} for all the values of z and z^{\prime} included, and $\theta\left(z^{\prime}\right)$ is the preceding integral already considered Consequently $\chi\left(z, z^{\prime}\right)$ is a regular function of z and z^{\prime} for all ponts z^{\prime} that do not he upon the section $A E B$, and the change in the analytical continuation of $\chi\left(z, z^{\prime}\right)$

* If we take
then

$$
q\left(z, Z^{\prime}\right)=q_{1}(z)+Z^{\prime} g_{1}(z)+Z^{\prime} g_{2}(z)+
$$

$$
G\left(z, z^{\prime}, Z^{\prime}\right)=g_{1}(z)+\left(Z^{\prime}+z^{\prime}\right) \varphi_{2}(z)+,
$$

so that

$$
\left|G\left(z, z^{\prime}, Z^{\prime}\right)\right| ₹\left|g_{1}(z)\right|+2 i^{\prime}\left|g_{2}(z)\right|+3 r^{\prime 2}\left|g_{3}(z)\right|+
$$

for values of z^{\prime} and Z^{\prime} such that

$$
\left|\boldsymbol{x}^{\prime}\right|<r^{\prime}, \quad\left|Z^{\prime}\right|<r^{\prime}<R^{\prime}
$$

With the properties of a regular function such as $g\left(z, z^{\prime}\right)$, whoh have been established earlel, the series on the right-band side converges absolntely, hence $G\left(z, z^{\prime}, Z^{\prime}\right)$ is regular.
across the section $A E B$ is $-g\left(z, z^{\prime}\right)$ or $+g\left(z, z^{\prime}\right)$ according as $A E B$, when crossed, is being described negatively or positively Mureover, the function

$$
\chi\left(z, z^{\prime}\right)-\frac{1}{2 \pi i} g(z, z) \log \left(l^{\prime}-z^{\prime}\right)
$$

is regular in the mmediate vicmity of b°. and thin function

$$
\chi\left(z, z^{\prime}\right)+\frac{1}{2 \pi \imath} g\left(z, z^{\prime}\right) \log \left(a^{\prime}-z^{\prime}\right)
$$

is regular in the immediate vicinty of a^{\prime}
Next, take in onder a finte number of hnes $A_{1} B, A_{2} B$, in the plane of z^{\prime}, such that they have a common extremrty B. do not meet except at B, and all he withm the z, z^{\prime} doman consudered Assoctated with each of the lines $A_{r} B$, we take a regular function $g,\left(z, z^{\prime}\right)$, occurring precisely as $g\left(z, z^{\prime}\right)$ occurred in the proceding discussion of the
 function $\chi\left(z, z^{\prime}\right)$ over itn section, and write

$$
\chi_{r}\left(z, z^{\prime}\right)=\frac{1}{2 \pi \iota} \int_{A_{r}}^{B} g_{r}\left(z, Z^{\prime}\right) d Z^{\prime},
$$

the integral beng taken from A_{r} to B The chanacter of $\chi\left(z, z^{\prime}\right)$ is known from the earlier mestigation.

Let a new function $\Phi\left(z, z^{\prime}\right)$ be defined by the equation

$$
\Phi\left(z, z^{\prime}\right)=\sum_{r-1}^{\vdots} \chi_{r}\left(z, z^{\prime}\right)
$$

For all places not lying upon any one of the lines, the function $\Phi\left(z, z^{\prime}\right)$ is regular In the imnediate vicinity of the place B common to all the lines, the function

$$
\Phi\left(z, z^{\prime}\right)-\frac{1}{2 \pi i}\left\{\log \left(b^{\prime}-z^{\prime}\right)\right\} \underset{r-1}{\Sigma} y_{r}\left(z, z^{\prime}\right)
$$

is regular, hence, if $\Phi\left(z, z^{\prime}\right)$ is regular in the innediate vicminty of B, it is necessary and sufficient that

$$
\sum_{i=1}^{\sum} g_{r}\left(z, z^{\prime}\right)
$$

should vansh at B Moreover, it

$$
\sum_{r=1}^{\searrow} g_{r}\left(z, z^{\prime}\right)=2 k \pi r
$$

at R, where k is a constant, then

$$
\Phi\left(z, z^{\prime}\right)-k \log \left(b^{\prime}-z^{\prime}\right)
$$

is legular at B.
82 We are to deal with a uniform analytic function $f\left(z, z^{\prime}\right)$, which has no essential singularity in the finte part of the z, z^{\prime} field In this field, take any finite domain. Within the selected domann, $f\left(z, z^{\prime}\right)$ deviates from regularity at or in the immeduate vicimity of poles, and at or in the immediate vicinity of unessential singularities. At a pole and in its vicinity, there 18
one definte type of representation of $f\left(z, z^{\prime}\right)$ which is valid for some region round the pole At an unessential singulanty and in its vicinity, there is another definte type of representation of $f\left(z, z^{\prime}\right)$ which likewise is valid for some region round the unessential singularity At an ordinary place and within some limited region of the plaee, $f\left(z, z^{\prime}\right)$ is iegular; within that region, there is another definite type of representation of $f\left(z, z^{\prime}\right)$ which likewise in valid for the limited region

When any two of these respective regions have any area in common, the respectrve representations of our umform function $f\left(z, z^{\prime}\right)$ are equivaleitt to one another over that area. Moreover, we have selected a fibte doman in the z, z^{\prime} field, so that the total number of these regons in this doman is finite

Now let the whole selected domam in the z, z^{\prime} field be divided up in different farhion Let the whole region'm one of the two planes (say the z^{\prime}-plane) belonging to this doman in the field be divided into n regions, where n is finite Each of these regions is to be bounded by a simple contour With each of these u regions m the z^{\prime}-pline, we combine the whole of the z-plane that belongs to the selected doman so that we now have n domans within the single selected finte domanim the z, z^{\prime} field. At every place in each of thesc n domans, our function $f\left(z, z^{\prime}\right)$ is defined Let $f_{1}\left(z, z^{\prime}\right)$ denote the whole representation of $f\left(z, z^{\prime}\right)$ un one domain, $f_{2}\left(z, z^{\prime}\right)$ the whole representation in another doman, and so on for the n domans, up to $f_{n}\left(z, z^{\prime}\right)$ With each region in the z^{\prime}-plane, we associate the function $f_{m}\left(z, z^{\prime}\right)$ giving the representation of $f\left(z, z^{\prime}\right)$ for the domann which meludes that particular z^{\prime}-region

It may happen that two such regions have a common drea, so that the respective functions belonging to the regions coexist ovei that area, we shall assume that, if devations from regularity occur withon the area, such devations are the same for the two functions, say $f_{k}\left(z, z^{\prime}\right)$ and $f_{l}\left(z, z^{\prime}\right)$, so that

$$
f_{k}\left(z, z^{\prime}\right)-f_{l}\left(z, z^{\prime}\right)
$$

Is a regular function over the area
When two funetions are such that their difference over an area is a regular function, they are said* to be equivaleut over the area, if their difference 18 a regular function in the immediate vicinity of a point, they are said to be equivalent at the point

Denote the regions in the z^{\prime}-plane by $R_{1}, R_{z}, \ldots, R_{n}$ with which $f_{1}\left(z, z^{\prime}\right)$, $f_{2}\left(z, z^{\prime}\right), . ., f_{n}\left(z, z^{\prime}\right)$ are respectively associated. Further, denote by l_{12} the boundary between R_{1} and R_{2}, such that when z^{\prime} passes from R_{1} to R_{3} by crossing l_{12}, this line is described positively for the boundary of R_{2}, and sumilarly for the boundary between any two contiguous regions. Lastly, there will be points where three or more boundary lines are concurrent

[^30]When a point P^{\prime} les within the region R_{k}, then $f_{k}\left(z, z^{\prime}\right)$ is the function assoclated with P^{\prime}. When a point Q^{\prime} hes on the boundary between two contiguous regions R_{k} and R_{l}, then either of the functions $f_{k}\left(z, z^{\prime}\right)$ and $f_{i}\left(z, z^{\prime}\right)$ is the function associated with Q^{\prime} When a point S^{\prime} is a point of concurrence of noore than two boundary lines of regons $R_{j}, R_{k}, R_{l}, \ldots$, then any one of the functions $f_{j}\left(z, z^{\prime}\right), f_{h}\left(z, z^{\prime}\right), f_{l}\left(z, z^{\prime}\right)$, , is the function associated with S^{\prime}.
83. Considei the integral

$$
I_{k m}=\frac{1}{2 \pi i} \int \frac{f_{m}\left(z, Z^{\prime}\right)-f_{k}\left(z, Z^{\prime}\right)}{Z^{\prime}-z^{\prime}} d Z^{\prime}
$$

taken along the line $l_{k m}$ between two contiguous reghons, the order of the suffixes in $I_{k i n}$ being the same as their order in $l_{k m}$ Mannfostly

$$
I_{k m}=I_{m L}
$$

As the function $f_{m}\left(z, Z^{\prime}\right)-f_{k}\left(z, Z^{\prime}\right)$ is regular everywhere along the path of integration, the integral is of the same character as the integial previonsly denoted by $\chi_{r}\left(z, z^{\prime}\right)$, the line $l_{k m}$ is a section for the function $I_{k m}$

Now take all these integrals $I_{k m}$ which arise for contiguous regions, and write

$$
\Phi\left(z, z^{\prime}\right)=\Sigma I_{k m}
$$

where the summation as for all pars of suffixes that correspond to contiguous regions The function $\boldsymbol{\phi}\left(z, z^{\prime}\right)$ has each line $l_{k m}$ as a section, at every place that does not he upon a section, $\Phi\left(z, z^{\prime}\right)$ is regular

Next, wo take a set of functions $\phi_{1}\left(z, z^{\prime}\right), \phi_{2}\left(z, z^{\prime}\right), \quad, \phi_{n}\left(z, z^{\prime}\right)$, associated with the lespective regons $R_{1}, R_{3}, \quad, R_{n}$. and we define $\phi_{p}\left(\tilde{z}, z^{\prime}\right)$ as the value of $\Phi\left(z, z^{\prime}\right)$ within thee region R_{p} A point P^{\prime} in the z^{\prime}-plane niny he within a region, it may lie upon the boundary of two contiguous regions, and it may be a point of concurrence of severul such boundaries

When the point P^{\prime} less withon the region K_{p}, the function $\phi_{p}\left(z, z^{\prime}\right)$ as defined is regular, because the sections of $\Phi\left(z, z^{\prime}\right)$ are only the boundarios of regrons

When the point P^{\prime} hes on a boundary of the region R_{p}, say on the line $l_{p q}$ so that R_{q} is the contiguous region, and when $P^{\prime \prime}$ does not lie at cither extremity of $l_{p q}$, the analytical continuation of $\phi_{p}\left(z, z^{\prime}\right)$ through the point $P^{\prime \prime}$ remiuns regular For, writugg

$$
g_{p q}\left(z, z^{\prime}\right)=f_{q}\left(z, z^{\prime}\right)-f_{p}\left(z, z^{\prime}\right),
$$

so that $g_{p q}\left(z, z^{\prime}\right)$ is regular for all the values of z and z^{\prime} considered, the earher investigation shews that, in crossing the suction $l_{p q}$, the change in the analytical continuation of $I_{p q}$ is $-g_{p q}\left(z, z^{\prime}\right)$ when $l_{p q}$, as it is crossed, is being described positively For this position of P^{\prime}, every element in the sum of the functions $I_{k m}$ is regular except $I_{p q}$, and therefore the change in the analytical continuation of $\Phi\left(z, z^{\prime}\right)$ is $-g_{p q}\left(z, z^{\prime}\right)$. But the new function $\phi_{q}\left(z, z^{\prime}\right)$ is the value of $\Phi\left(z, z^{\prime}\right)$ in the region R_{q}, hence

$$
\phi_{q}\left(z, z^{\prime}\right)=\phi_{p}\left(z, z^{\prime}\right)-g_{p q}\left(z, z^{\prime}\right)
$$

and therefore

$$
\phi_{q}\left(z, z^{\prime}\right)+f_{q}\left(z, z^{\prime}\right)=\phi_{p}\left(z, z^{\prime}\right)+f_{p}\left(z, z^{\prime}\right),
$$

where R_{p} and R_{q} are contiguous regions
When the point P^{\prime} is a point of concurience of several boundaries, the regrons may be taken as in the figure Our function $\Phi\left(z, z^{\prime}\right)$ can be rearranged in its summation We group together all the integrals $I_{k m}$ which have no section passing through P^{\prime}; and we call this group $\Phi_{1}\left(z, z^{\prime}\right)$ We group together all the remaining integrals, the section of each of which passes through P^{\prime}, and we call this group $\Phi_{2}\left(z, z^{\prime}\right)$ Thus

$$
\Phi\left(z, z^{\prime}\right)=\Phi_{1}\left(z, z^{\prime}\right)+\Phi_{z}\left(z, z^{\prime}\right)
$$

The sum $\Phi_{1}\left(z, z^{\prime}\right)$ is regular at P^{\prime}, because every element I in the sum is regular

As regards the sum $\Phi_{2}\left(z, z^{\prime}\right)$, our carhen investrgation shews that the function

$$
\Phi_{2}\left(z, z^{\prime}\right)-\frac{1}{2} \pi!\left\{\log \left(P^{\prime}-z^{\prime}\right)\right\} \Sigma g\left(z, z^{\prime}\right)
$$

is regular at P^{\prime} But the functions $g\left(z, z^{\prime}\right)$, for the vanious elements I in $\Phi_{2}\left(z, z^{\prime}\right)$ taken as in the figure, are

$$
\begin{aligned}
& f_{\beta}\left(z, z^{\prime}\right)-f_{a}\left(z, z^{\prime}\right), \\
& f_{\gamma}\left(z, z^{\prime}\right)-f_{\beta}\left(z, z^{\prime}\right), \\
& f_{\delta}\left(z, z^{\prime}\right)-f_{\gamma}\left(z, z^{\prime}\right), \\
& f_{e}\left(z, z^{\prime}\right)-f_{\gamma}\left(z, z^{\prime}\right), \\
& f_{a}\left(z, z^{\prime}\right)-f_{e}\left(z, z^{\prime}\right),
\end{aligned}
$$

that is, the quantity $\Sigma g\left(z, z^{\prime}\right)$ is identically zero. Hence the sum $\Phi_{i}\left(z, z^{\prime}\right)$ is regular at P^{\prime}.

Consequently, the function $\Phi\left(z, z^{\prime}\right)$ is regular at P^{\prime}, in this third case, and therefore all the functions $\phi\left(z, z^{\prime}\right)$, equivalent to one another at P^{\prime}, are regular at that point

We thus have a set of functions $\phi\left(z, z^{\prime}\right)$ Each of them is regular within its own region Each of them is regular at any point of concurrence of the boundaries of several regions. The change in the analytical contimuation, from the function $\phi_{p}\left(z, z^{\prime}\right)$ belonging to a region R_{p}, to the function $\phi_{q}\left(z, z^{\prime}\right)$ belonging to a contiguous region K_{q}, is known, we have

$$
\phi_{q}\left(z, z^{\prime}\right)-\phi_{p}\left(z, z^{\prime}\right)=f_{p}\left(z, z^{\prime}\right)-f_{q}\left(z, z^{\prime}\right) .
$$

The last relation gives

$$
\phi_{p}\left(z, z^{\prime}\right)+f_{p}\left(z, z^{\prime}\right)=\phi_{q}\left(z, z^{\prime}\right)+f_{q}\left(z, z^{\prime}\right)
$$

as a relation holding between two contiguous regions R_{p} and R_{g} Let R_{r} be a regron contiguous to $R_{i q}$ and distinet from R_{p}, then

$$
\phi_{q}\left(z, z^{\prime}\right)+f_{g}\left(z, z^{\prime}\right)=\phi_{r}\left(z, z^{\prime}\right)+f_{r}\left(z, z^{\prime}\right) .
$$

And so on, for each region in succession, untal the whold domann considered is covered

Accordingly, we define a new function $F\left(z, z^{\prime}\right)$, by the relation

$$
\boldsymbol{F}\left(z, z^{\prime}\right)=\phi_{r}\left(z, z^{\prime}\right)+, t,\left(z, z^{\prime}\right)
$$

for every region R_{r} But all these different expressions for $F\left(z, z^{\prime}\right)$ are the same, because the relation

$$
\phi_{l}\left(z, z^{\prime}\right)+f_{l}\left(z, z^{\prime}\right)=\phi_{m}\left(z, z^{\prime}\right)+f_{m}\left(z, z^{\prime}\right)
$$

holds for any two conteguous regions within the domain This final function $F\left(z, z^{\prime}\right)$, at every place withm the doman, is equivalent to the assigned function $f_{m}\left(z, z^{\prime}\right)$ belonging to the region which, within that donnim, includes the place, and the expression for this function $F\left(z, z^{\prime}\right)$ is

$$
F^{\prime}\left(z, z^{\prime}\right)=f_{m}\left(z, z^{\prime}\right)+\phi_{m}\left(z, z^{\prime}\right),
$$

where $\phi_{m}\left(z, z^{\prime}\right)$ is regular in the doman of the place The expression for $F^{\prime}\left(z, z^{\prime}\right)$ is valud over the doman considered, and the argument establishes the existence of the function $F^{\prime}\left(z, z^{\prime}\right)$, possessing the property that it is equivalent to tach of the functions $f_{1}, ., f_{n} m$ ther respective domans.

84 The result can be extended We can substitute a single function $F\left(z, z^{\prime}\right)$ for the aggregate of functions $f_{m}\left(z, z^{\prime}\right)$ within the aggregate of regrons R_{1}, \quad, R_{n}. When thas aggregate of regions is denoted by S, we miter that a function $b^{\prime}\left(z, z^{\prime}\right)$ exists which, within this aggregate region S, possesses all the characteristics of the functions $f_{m}\left(z, z^{\prime}\right)$; it 14 subject to an additive function $\phi\left(z, z^{\prime}\right)$ which is regular throughout the region S.

Now take a number of these corporate regroms S It is not difficult to see that all the conditions for the individual functions $f_{m}\left(z, z^{\prime}\right)$ can be transferred, in each such region S, to the function $F\left(z, z^{\prime}\right)$ for these regions The functions $F\left(z, z^{\prime}\right)$ for the different regoons S are then taken as the elements for the composition of a new function which may be denoted by $\sqrt{f f}\left(z, z^{\prime}\right)$, and this new function $\mathfrak{f f}\left(z, z^{\prime}\right)$ is equivalent, over the whole aggregate of these corporate regions, to the functions $f_{m}\left(z, z^{\prime}\right)$ whech exist in any part of it Thus wo infer the existence of a function $\sqrt{f}\left(z, z^{\prime}\right)$ which is such that, in the vicinity of any place in the finite part of the field of variation where a umform analytic function $f_{m}\left(z, z^{\prime}\right)$ is not regular, the quantity

$$
\sqrt{f}\left(z, z^{\prime}\right)-y_{m}\left(z, z^{\prime}\right)
$$

is a regular function of the variables. But it must be remembered that only
a finite part of the ficld is considered and that the whole number of functions $f_{m}\left(z, z^{\prime}\right)$ is finite.

85 In the establishment of the preceding result, which is of the nature of a summation theorem, all the functions $f_{r}\left(z, z^{\prime}\right)$ weie assumed to be muform and analytic. There is a corresponding result, which is of gieater importance for our mestigation, it is of the nature of a product theorem, and the associated functions are logarithms of regular functions

The z^{\prime}-plane is divided into regions R_{1}, \ldots, R_{n} as lefore, with each region R_{k} we associate a regular function $u_{k}\left(z, z^{\prime}\right)$, and we take

$$
f_{k}\left(z, z^{\prime}\right)=\log u_{k}\left(z, z^{\prime}\right)
$$

so that the value of $f_{k}\left(z, z^{\prime}\right)$ is subject to additive integei multiples of $2 \pi \tau$, and otherwise is a regular function of z and z^{\prime} except at places which are zero-places of $u_{k}\left(z, z^{\prime}\right)$.

As regards the functions $u_{1}\left(z, z^{\prime}\right), \ldots, u_{n}\left(z, z^{\prime}\right)$, we assume that, over any area common to two contiguous regions R_{k} and R_{m} or, if no area is common, along the part of their boundary which is common to them, the function

$$
\begin{aligned}
& u_{k}\left(z, z^{\prime}\right) \\
& u_{m}\left(z, z^{\prime}\right)
\end{aligned}
$$

is regular and different from zero. Consequently the function

$$
f_{k}\left(z, z^{\prime}\right)-f_{m}\left(z, z^{\prime}\right)
$$

is regular for the same range of the variables, subject to a possible additive integer multiple of $2 \pi \tau$

We now proceed as before We again form the integrals

$$
I_{k m}=\frac{1}{2 \pi i} \int \frac{f_{m}\left(z, Z^{\prime}\right)-f_{k}\left(z, Z^{\prime}\right)}{Z^{\prime}-z^{\prime}} d Z^{\prime}
$$

taken along the line l_{k+m} which is the boundary common to two contiguous regrons, the order of the suffixes in $I_{k m}$ is the same as their order in $l_{k m}$, and clearly

$$
I_{k m}=I_{m k}
$$

The function $f_{m}\left(z, Z^{\prime}\right)-f_{k}\left(z, Z^{\prime}\right)$ is regular along the line $l_{k m}$, and there is nothing to canse a change in the additive multiple of $2 \pi i$ when once this multiple has been assigned; thus the integral is of the same character as the integral previously denoted by $\chi\left(z, z^{\prime}\right)$, and the line $l_{k m}$ is a section for the integral $I_{k m r}$.

Agam, as before, we take

$$
\Phi\left(z, z^{\prime}\right)=\Sigma I_{k m},
$$

where the summation is for all parrs of suffixes that correspond to contiguous regions. The function $\Phi\left(z, z^{\prime}\right)$ has each line $l_{k m}$ as a section.

At any point P^{\prime} lying within a region. the function $\Phi\left(z, z^{\prime}\right)$ is regular.
At any point P^{\prime}, which hes on a boundary of the region R_{p} (say on the lne $l_{p q}$ so that R_{q} is the contrguous regron) and does not he at etther extremity of $l_{p q}$, the analytical contmontion of $\Phi\left(z, z^{\prime}\right)$ from R_{p} to R_{q} through z^{\prime} is regular, the function in R_{η} being

$$
\Phi\left(z, z^{\prime}\right)-\left\{f_{q}\left(z, z^{\prime}\right)-t_{p}\left(z, z^{\prime}\right)\right\}
$$

where the additive multiple of $2 \pi \imath$ is the sance as in the integral $I_{p q}$
When the pornt P^{\prime} is at b^{\prime}, a poont of concurence of several boundares which may be taken ds before, it is agann necessary to rearrange the summation of $\Phi\left(z, z^{\prime}\right)$ We group together all the integrals having no section passing through b^{\prime}, and call the sum of this group $\Phi_{1}\left(z, z^{\prime}\right)$ We then group together all the remaning integrals, the scetion of each of which passes through b^{\prime}. and we call the sum of this group $\Phi_{2}\left(z, z^{\prime}\right)$ Thns

$$
\Phi\left(z, z^{\prime}\right)=\Phi_{1}\left(z, z^{\prime}\right)+\Phi_{2}\left(z, z^{\prime}\right)
$$

Fach element I in the first sum $\Phi_{1}\left(z, z^{\prime}\right)$ is regular at b^{\prime}, and therefore $\Phi_{1}\left(z, z^{\prime}\right)$ itself is regular at b^{\prime}.

As regards $\Phi_{2}\left(z, z^{\prime}\right)$, our carler mestigation shews that the function

$$
\Phi_{1}\left(z, z^{\prime}\right)-\frac{1}{2 \pi \iota}\left\{\log \left(b^{\prime}-z^{\prime}\right) \mid \Sigma g\left(z, z^{\prime}\right)\right.
$$

in regular at b^{\prime}, the summation being over all the limes l which meet at b^{\prime} Now these furctions $g\left(z, z^{\prime}\right)$, for the varions elements I in $\Phi_{2}\left(z, z^{\prime}\right)$ taken as in the former figure ($\$ 83$), are

$$
\begin{aligned}
& f_{\beta}\left(z, z^{\prime}\right)-f_{a}\left(z, z^{\prime}\right) \\
& f_{r}\left(z, z^{\prime}\right)-f_{\beta}\left(z, z^{\prime}\right) \\
& f_{\delta}\left(z, z^{\prime}\right)-f_{\gamma}\left(z, z^{\prime}\right) \\
& f_{8}\left(z, z^{\prime}\right)-f_{\delta}\left(z, z^{\prime}\right) \\
& f_{a}\left(z, z^{\prime}\right)-f_{\mathrm{e}}\left(z, z^{\prime}\right)
\end{aligned}
$$

respectively, subject-for each of the functions $g\left(z, z^{\prime}\right)$-to an additive integer multiple of $2 \pi i$ Accordingly, the quantity $\mathrm{V}_{\mathrm{g}}\left(z, z^{\prime}\right)$ is some integer multiple of $2 \pi \imath$, let 1 t be denoted by $k .2 \pi r$ It follows that the function

$$
\Phi_{2}\left(z, z^{\prime}\right)-k \log \left(b^{\prime}-z^{\prime}\right)
$$

is regular at the place b^{\prime}
We have seen that $\Phi_{1}\left(z, z^{\prime}\right)$ is regular at b^{\prime}, hence

$$
\Phi\left(z, z^{\prime}\right)-k \log \left(b^{\prime}-z^{\prime}\right)
$$

is regular at the place b.

At any point of concurrence of boundaries $b^{\prime \prime}$, other than b^{\prime}, the function $\log \left(b^{\prime}-z^{\prime}\right)$ is regular, subject to an added multiple of $2 \pi r$. Consequently, the fimetion

$$
\Phi\left(z, z^{\prime}\right)-\Sigma\left\{k \log \left(l^{\prime}-z^{\prime}\right)\right\}
$$

where the summation is taken over all the ponts of concurrence of the boundaries of regions, is regular for all places z^{\prime} in the range considered, its expression being always subject to nu additive integer multiple of $2 \pi i$ Let this function be denoted by $\psi\left(z, z^{\prime}\right)$, then

$$
\psi\left(z, z^{\prime}\right)=\Phi\left(z, z^{\prime}\right)-\Sigma\left\{k \log \left(b^{\prime}-z^{\prime}\right)\right\} .
$$

Subject to the added multiple of $2 \pi \imath$, the function $\psi\left(z, z^{\prime}\right)$ is regular for the z^{\prime}-region considered and its sections are the hnes $l_{p q}$.

Having constructed this function $\psi\left(z, z^{\prime}\right)$, we now take functions $\psi_{1}\left(z, z^{\prime}\right)$, $\psi_{2}\left(z, z^{\prime}\right), \quad, \psi_{n}\left(z, z^{\prime}\right)$, associating them with the regions $R_{1}, R_{n}, \ldots, R_{n}$ respectively, and defining them by the condition that the relation

$$
\psi_{i n}\left(z, z^{\prime}\right)=\psi\left(z, z^{\prime}\right)
$$

is satisfied within and on the boundary of R_{m}, for all the values of m When we pass across the boundary of R_{m} into a contiguous region R_{p}, we change to another function $\psi_{p}\left(z, z^{\prime}\right)$ But, as we have seen, the analytical change in $\psi\left(z, z^{\prime}\right)$ in passing over a line $l_{m p}$ is

$$
-\left\{f_{p}\left(z, z^{\prime}\right)-f_{m}\left(z, z^{\prime}\right)\right\}
$$

and so the analytical continuation of $\psi_{\text {in }}\left(z, z^{\prime}\right)$ is

$$
\psi_{m}\left(z, z^{\prime}\right)-\left\{f_{\mu}\left(z, z^{\prime}\right)-f_{m}\left(z, z^{\prime}\right)\right\}
$$

As this is the function $\psi_{p}\left(z, z^{\prime}\right)$, we have

$$
\psi_{p}\left(z, z^{\prime}\right)=\psi_{m}\left(z, z^{\prime}\right)-\left\{f_{p}\left(z, z^{\prime}\right)-f_{m}\left(z, z^{\prime}\right)\right\}_{j}
$$

there always being an additive multiple of $2 \pi i$ on the right-hand side. Hence, subject to this additive multiple, we have

$$
\psi_{m}\left(z, z^{\prime}\right)+f_{m}\left(z, z^{\prime}\right)=\psi_{p}\left(z, z^{\prime}\right)+f_{p}\left(z, z^{\prime}\right)
$$

for contıguous regions R_{m} and R_{p}.
Now pass from R_{p} to another contrguous region R_{q}, distinct from R_{m}, then, again subject to an additive multrple of $2 \pi \tau$, we have

$$
\psi_{p}\left(z, z^{\prime}\right)+f_{p}\left(z, z^{\prime}\right)=\psi_{q}\left(z, z^{\prime}\right)+f_{q}^{\prime}\left(z, z^{\prime}\right)
$$

And so on, for the full succession of contiguous regions, unthl the whole z^{\prime}-runge is covered It follows then that, for any two regions R_{m} and R_{μ}, we have the relation

$$
\psi_{m}\left(z, z^{\prime}\right)+f_{m}\left(z, z^{\prime}\right)=\psi_{\mu}\left(z, z^{\prime}\right)+f_{\mu}\left(z, z^{\prime}\right),
$$

always subject to an additive integer multiple of $2 \pi i$, and each of the functions ψ is regular withon its own region.

Accordingly, we define a new function $(f)(z, z)$ by the equation

$$
G^{\prime}\left(z, z^{\prime}\right)=\psi_{m}\left(z, z^{\prime}\right)+t_{l \prime}\left(z, z^{\prime}\right),
$$

for every regron R_{m} But all these different 'xpressions for $G(z, z)$ are the same as one another (save for an alditive multiple of $2 \pi i$ which may change from region to region), because the relation

$$
\psi_{m}\left(z, z^{\prime}\right)+f_{m}\left(z, z^{\prime}\right)=\psi_{\mu}\left(z, z^{\prime}\right)+f_{\mu}\left(z, z^{\prime}\right)
$$

is satisfied for all values of m and μ
Funally, take a new function $U\left(z, z^{\prime}\right)$ defined by the equation

$$
U\left(z, z^{\prime}\right)=e^{f i\left(z z^{\prime}\right)}
$$

The added integes multiple of $2 \pi \imath$ in $G^{\prime}\left(z, z^{\prime}\right)$ does not aftect the charactel of $U\left(z, z^{\prime}\right)$, and so we have.

$$
\begin{aligned}
U\left(z, z^{\prime}\right) & =e^{(f(z z z)} \\
& =e^{\psi_{n}\left(z, z| | t_{m}(z, z)\right.} \\
& =\mu_{m}\left(z, z^{\prime}\right) e^{u_{m}(z, z)}
\end{aligned}
$$

within the region R_{m} We thus have establshed the result --
A fanction $U\left(z, z^{\prime}\right)$ exists, regular throughout the whole finte regon consudered, such that the quotwent

$$
\begin{gathered}
U\left(\tilde{z}, z^{\prime}\right) \\
U_{m}\left(z, z^{\prime}\right)
\end{gathered}
$$

is a regular function of z and z^{\prime} withen the regron R_{m} and as different from zero, $u_{m}\left(z, z^{\prime}\right)$ being itself ${ }^{\prime}$ regalar, functom withen that iegion, and thes holds for all the n values of m

Agam 1 t must be remembered that n, the number of functions $\mu_{m}\left(z, z^{\prime}\right)$. is finte

The general themem

86. After these two propostions, which are general in character and the second of which is mimednately useful for ous purpose, we can proceed to the establishment of the generd theorem, stated by Wererstrass, as to the expression of a functoon of two vanables, of which the ensential sungularities occur only for mfinte values of ather or of both the variables

It has been proved that, in the immedute viomity of a zero-place of a unform analytie function $f\left(z, z^{\prime}\right)$, we have

$$
f\left(z, z^{\prime}\right)=l^{\prime} e^{A}
$$

where P as a polynomal in z having, as coefficients of powers of z, regular functions of z^{\prime}, or converscly as between z and z^{\prime}, and where R is a regular function of z and z^{\prime} which vamshes when $z=0$ and $z^{\prime}=0$

We have defined a pole of a umform analytic function $F\left(z, z^{\prime}\right)$ as a place, where a function $f\left(z, z^{\prime}\right)$ of the preceding form exists such that

$$
F\left(z, z^{\prime}\right) f\left(z^{*}, z^{\prime}\right)
$$

is a regular function of z and z^{\prime}, which does not vanish at the supposed pole or in its immediate vicminty.

We have defined an unessential singularity of a unform analytic function $F\left(z, z^{\prime}\right)$ as a place, where two functions $f^{\prime}\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ of the preceding type, and irreducible rolatively to one anothir, are such that

$$
F\left(z, z^{\prime}\right) \frac{g\left(z, z^{\prime}\right)}{f\left(z, z^{\prime}\right)}
$$

is a regular function of z and z^{\prime} which doe's not vanish at the supposed smgularity.

Suppose, then, that a function $P\left(z, z^{\prime}\right)$ is defined as being umform and analytic ove the whole ficld of ramation that it has poles and unessential sngularities of defined type within that fold that it has no essential singulatacs except watho the minmer parts of the field of vamation of the two complex vamables and that, except for the poles, and for the unessental singularities, the function otherwise is regula for finite values of the variables z and z^{\prime}

For the expression of the function, we need take account only of functions $f\left(z, z^{\prime}\right)$ which $g^{\prime} v e$ use to poles, and of functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ which give nise to messential singularities We range these functions in two classes In one class, we melode all the denominator functions $f\left(z, z^{\prime}\right)$, in the other class, we include all the numenator functions $g\left(z, z^{\prime}\right)$

Let $f\left(z, z^{\prime}\right)$ be typical of all the denominaturs, which wecur me the expresson of the function at a pole amb has immediate voemity, and let $\bar{f}\left(z, z^{\prime}\right)$ be typical of all the denommators, which occur in the expresson of the function at an unessental singulanty We proceed to construct a function $\boldsymbol{F}_{(}\left(z, z^{\prime}\right)$ such that, in the monedrate viemty of any of these places, the quotient

$$
\begin{aligned}
& G\left(z, z^{\prime}\right) \\
& f\left(z, z^{\prime}\right)
\end{aligned} \text { or } \quad \begin{aligned}
& G\left(z, z^{\prime}\right) \\
& f\left(z, z^{\prime}\right)
\end{aligned}
$$

is regular and different from zero, the fiunction $G\left(z, z^{\prime}\right)$ exists, and is regular, in the whole fimte part of the field of varation

Agan, let $g\left(z, z^{\prime}\right)$ be typical of all the numerators whech occur in the rxpression of the function at an unessential singularity. Aurlysis, precisely smilar to that used for the establishment of the function $G\left(z, z^{\prime}\right)$, enables us to establish the existence of a function $\bar{G}\left(z, z^{\prime}\right)$ such that, in the ammediate vicinty of any such place, the quotient

$$
\begin{aligned}
& \bar{G}\left(z, z^{\prime}\right) \\
& \mathcal{g}\left(z, z^{\prime}\right)
\end{aligned}
$$

1s regular and different from zero, the function $\bar{G}\left(z, z^{\prime}\right)$ exists, and 18 regular, in the whole finte part of the field of variation.

Accordingly, we consider the possibility of the existence of the functions $G\left(z, z^{\prime}\right), \vec{G}\left(z, z^{\prime}\right)$

87 Imagme a succession of regions in the firld of varlation, each region encloumg the one betore it in the sucession We shall take, as the boundares of the regions, concentric circless in the respective planes, and these may be denoted by $\left(C_{1}, C_{1}^{\prime}\right),\left(C_{2}, C_{2}^{\prime}\right)$, which may be unlinited in number, as we proceed to cover the whole field of varataon We also tak the common centres of the circles at the respective origins

For the first 1 egion, there is only a limited mumber of functions $f_{n n}\left(z, z^{\prime}\right)$, each of which 15 regular at, and in the momehate viemty of, ith place of definition Hence, by $\$ 85$, there is a function, say U_{1}, which is ugular. throughout the region and is such that the quoticut

$$
\frac{U_{1}}{f_{i m}\left(z_{1}, z^{\prime}\right)}
$$

is a regular function of z and z^{\prime} withom the region and is diffrent from zeio, and this holds for cach of the functions $f_{m}\left(z, z^{\prime}\right)$ defined wathon the region

For the second regem, there ane all the functoons $f_{m}(z, z)$, which are defined for places in the first regom, and there are the additional functions, which lee m the belt between the fwo regions (moluching the boindary of the first region) Then, agan by $\S 85$, there is a function T_{2} when is regulat throughout the second legion and is such that, (1) the quotient $l_{U_{2}}^{U_{1}}$ is a regular function thoughont the regron and is difticrent fom zero, and (n) the quotrent

$$
\begin{gathered}
U_{z_{2}}, \\
f_{n}\left(z, i^{\prime}\right)^{\prime}
\end{gathered}
$$

where $f_{n}\left(z, z^{\prime}\right)$ is any one of the newly included adilitional functions, is a regular tunction of z and z^{\prime} withm the regron and is different from zero, and this holds for each of these functions $t_{n}\left(z, z^{\prime}\right)$

And so on, from cach region to the regon next in succession, wr ohtam a gradual sucersson of functions $U_{1}, U_{2}, \ldots, U_{1}$, , each regulai mits regoon, and having the properties, (1) that $\frac{U_{r+1}}{T_{r}^{T}}$ is a regula function throughont the region ($\mathrm{C}_{r}, \mathrm{O}_{r}^{\prime}$) and is different from zero, and (in) that, for each of the functrons $f_{*}\left(z, z^{\prime}\right)$ defined for the region $\left(C_{r+1}, C^{\prime}{ }_{++1}\right)$ but not for the region $\left(C_{r}, C_{r}^{\prime}\right)$, the quotient

$$
\frac{U_{r \prime 1}}{\bar{f}_{b}^{\prime}\left(z, \overline{z^{\prime}}\right)}
$$

is regular for the region $\left(C_{r+1}, C_{r+1}^{\prime}\right)$ and is different from zero

88 Take a converging serres of positive quantities α_{1}, a_{2}, , a_{r}, , assoclating them in order with the sirccessive regions, so that a_{1} is associated with the region (C, C_{r}^{\prime}) Also, let

$$
\frac{U_{r+1}}{U}=\rho_{r}
$$

then the regular functions U_{1}, U_{2}, can bechosen so as to give

$$
\rho_{1}<e^{a_{r}},
$$

for each value of r.
Suppose that U_{1}, \ldots, U_{s} have been chosen so as to satisfy this relation for $r=1, \quad, s-1$ The function U_{n+1} / U_{s} is regular throughout the region $\left(C_{8}, O_{s}^{\prime}\right)$ and is different from zero there, and therefore

$$
\log U_{n+1}-\log U_{n}
$$

is (nave as to an additive integer multiple of $2 \pi a$) a regular function of z and z^{\prime} throughout the region Thas regular function, save as to the additive multiple of $2 \pi i$, can be expressed as a double power-sentes 112 and z^{\prime} converging absolutely within the region Let this series be denoted by

$$
\sum_{n-1} \sum_{n=0} c_{m, n} z^{\prime \prime} z^{\prime n}
$$

let M be the (finite) greatest value of ats modulus within the 1 genm, and let R and R^{\prime} be the radn of the creles $C_{z}^{\prime}, C_{b}^{\prime}$. Choose values, μ_{R} of m, and r_{r} of n, sufficiently large to secure that

$$
\begin{aligned}
& \frac{M}{\left\{1-\frac{z}{\bar{R}}\right\}\left\{1-\frac{\left|z^{\prime}\right|}{R^{\prime}}\right\}}\left\{\begin{array}{c}
z \\
R
\end{array}\right\}^{\mu_{x}}<\frac{1}{3} \alpha_{\beta}, \\
& \frac{M}{\left\{1-\frac{|z|}{R}\right\}\left\{1-\frac{z^{\prime} \mid}{R^{\prime}}\right\}}\left\{\frac{\left.\mid z^{\prime}\right\}^{\prime \prime}}{R^{\prime}}\right\}^{\prime \prime}<\frac{1}{3} \alpha_{n},
\end{aligned}
$$

the third of the mequalities being satisfied when the first two are satisfied Then, writing

$$
P_{s}=\sum_{m-0}^{\mu_{n}} \underset{n-1}{\sum} c_{m, n} z^{m n} z^{\prime n} .
$$

so that P_{y} is a polynomial in z and z^{\prime}, and also

$$
Q_{k}=\left(\sum_{m=\mu_{s}}^{\infty} \sum_{n=0}^{\infty}+\sum_{m=0}^{\infty} \sum_{n=v_{0}}^{\infty}-\sum_{n=\mu_{s}+1}^{\infty} \sum_{n=\nu_{d}+1}^{\infty}\right) c_{m, n} z^{m} z^{\prime n},
$$

so that

$$
\left|Q_{8}\right|<\frac{1}{3} \alpha_{8}+\frac{1}{8} a_{n}+\frac{1}{3} \alpha_{8}<\alpha_{8},
$$

we have

$$
\log U_{s+1}-\log U=P_{x}+Q_{s}
$$

save as to an additive integer multiple of $2 \pi i$ Consequently

$$
\begin{gathered}
U_{n+2} e^{-P_{n}} \\
U_{n}
\end{gathered}=e^{\psi_{n}}
$$

where now the multiple of 2π, no longer affects the functions concerned Let

$$
U_{k+1}^{\prime}=U_{k+1} e^{-P_{x}}
$$

so that

$$
\frac{U_{k+1}^{\prime}}{U_{s}}=e^{Q_{s}}
$$

The function $U^{\prime}{ }_{8+1}$, withm the region ($C_{k}^{\prime},\left({ }_{z}^{\prime \prime}\right)$, possesses all the properties of U_{8+1}, becanse $e^{-P_{n}}$ within that region is a tegular function of z and z which vanishes nowhere in the finte part of the field. thus $U^{\prime}{ }_{n+1} / U_{0}$ is everywhere regular in that region and nowhere vamshes there, and the quotient

$$
\frac{\left[\Gamma^{\prime}{ }_{n+1}\right.}{i_{k}\left(\bar{z}, z^{\prime}\right)}
$$

for each of the functions $f_{k}\left(z, z^{\prime}\right)$ defined for the region between $\left(U_{z+1},\left(\prime_{x+1}\right)\right.$ and ($C_{s}^{\prime}, C_{s}^{\prime}$), is everywhele regular for the region $\left(C_{x+1}^{\prime}, C_{s+1}^{\prime}\right)$ and vanishes nowhere in the region. Accordingly, we substitute U_{t+1}^{\prime} for U_{x+1}, we write

$$
e^{Q_{s}}=p_{s},
$$

so that

$$
\cdot \rho_{*} \mid<e^{a_{s}},
$$

and we now have

$$
U_{n+1}=\rho_{s}
$$

with the condition $\left|\rho_{s}\right|<e^{a_{s}}$ satistied
89 For any region ($\left.C_{q}, C_{q}^{\prime}\right)$, we define a function $\left(i_{q}\left(z, z^{\prime}\right)\right.$ by the form

$$
i_{q}\left(z, z^{\prime}\right)=U_{q}^{\prime} \prod_{t=1}^{x} \rho_{q+t}
$$

The function U_{q}^{\prime} is regular everywhere within the segion. The product

$$
\prod_{1+1}^{x} \rho_{q+t}
$$

is regular there, for its modulus

$$
\begin{aligned}
& =\prod_{\ell+1}^{\infty}\left|\rho_{g+1}\right| \\
& <e^{\Sigma a_{v+1}},
\end{aligned}
$$

which is a finte quantity because of the convergence of the series of positive quantities α_{1}, α_{2}, and, within the region, no one of the quantilies ρ_{q+1}, $\rho_{q+2}, .$. vanishes, while each of them is regular there Thus within the region, the function

$$
\begin{aligned}
& G_{q}\left(z, z^{\prime}\right) \\
& f_{q}\left(z, z^{\prime}\right)
\end{aligned}
$$

is everywhere regular, and nowhere zero, withm the region (C_{q}, C_{q}^{\prime}), for each of the functions $\dot{f}_{i}\left(z, z^{\prime}\right)$ defined within the region

Next, take a function $G_{q+p}\left(z, z^{\prime}\right)$, defined for the region $\left(C_{q+p}, C_{q+p}^{\prime}\right)$ We have

$$
G_{q+p}\left(z, z^{\prime}\right)=U_{q+p}^{\prime} \prod_{t=1}^{\infty} \rho_{q \vdash p+t}
$$

Also

$$
\begin{aligned}
& \left(\dot{r}_{q}\left(z, z^{\prime}\right)=U_{q}^{\prime}{ }_{I^{\prime}=1}^{\infty} \rho_{q++^{\prime}}\right. \\
& =U I_{q}{ }^{\prime} \prod_{t=1}^{p} \rho_{q+t^{\prime}} \prod_{t=1}^{\infty} \rho_{p+q+t}
\end{aligned}
$$

$$
\begin{aligned}
& =G_{q+p}\left(z, z^{\prime}\right)
\end{aligned}
$$

Thus all the functions G_{q} are one and the same, let this function, the same for all the regoons, be denoted by $\left(f\left(z, z^{\prime}\right)\right.$ Then the function $G\left(z, z^{\prime}\right)$ exists, it is regular everywhere ovel the firld of variation consodered, that is, for all finte values of the vartables z and z^{\prime}, and it is such that at, and in the mmedrate viemity of, any place where a typincal function $f\left(z, z^{\prime}\right)$ is defined, the quotient

$$
\begin{aligned}
& \left(x\left(z, z^{\prime}\right)\right. \\
& f(z, z)
\end{aligned}
$$

is regular and different from zoro
We thus have established the existence of the function denoted by $G\left(z, z^{\prime}\right)$.

In precsely the same way, we can establish the existence of the function denoted ly $\overline{\mathcal{T}}\left(z, z^{\prime}\right)$
90. Now take the quotient

$$
\Theta\left(z, z^{\prime}\right)=\begin{aligned}
& \hat{G}\left(z, z^{\prime}\right) \\
& (\dot{\prime}) \\
& \left(z, z^{\prime}\right)
\end{aligned}
$$

This fuuction $\Theta\left(z, z^{\prime}\right)$ has unessential singularities at all the places where \bar{G} and G vansh simultaneously, that is, at all the places where associated functions $g\left(z, z^{\prime}\right)$ and $\bar{f}\left(z, z^{\prime}\right)$ vanish simultaneously, in other words, $\Theta\left(z, z^{\prime}\right)$ pussesses, in exact and precise form for each of them, all the unessential silgularities possessed by the function $P\left(z, z^{\prime}\right)$ of $\S 86$ Agan $\Theta\left(z, z^{\prime}\right)$ has poles at all the places where $G\left(z, z^{\prime}\right)$ is zero while $\bar{G}\left(z, z^{\prime}\right)$ is different from zero, that is, at all the places, where the functions $f\left(z, z^{\prime}\right)$ vansh while the functions $g\left(z, z^{\prime}\right)$ do not vanish in other words, $\left(\mathcal{H}\left(z, z^{\prime}\right)\right.$ possesses, m exact and precise form, all the poles possessed by the function $P^{P}\left(z, z^{\prime}\right)$ Nother $\Theta\left(z, z^{\prime}\right)$ nor, by hypothesis, $P^{\prime}\left(z, z^{\prime}\right)$ has any essential singularity for finite values of z and z^{\prime}, and at all places, other than isolated unessential singularties and other than the contmous aggregates of poles, both $\Theta\left(z, z^{\prime}\right)$ and $P\left(z, z^{\prime}\right)$ ate regular functions Hence

$$
\begin{aligned}
& P\left(z, z^{\prime}\right) \\
& \Theta\left(z, z^{\prime}\right)
\end{aligned}
$$

is a function that is regular everywhere in the doman constituted by all finte values of z and z^{\prime}, denoting this regular function by $R\left(z, z^{\prime}\right)$, we have

$$
\begin{aligned}
& P\left(z, z^{\prime}\right)=\boldsymbol{\mathcal { A }}\left(z, z^{\prime}\right) R\left(z, z^{\prime}\right) \\
&=\overline{G\left(z, z^{\prime}\right) R\left(z, z^{\prime}\right)} \\
&\left.G(z), z^{\prime}\right)
\end{aligned}
$$

Now $\bar{G}\left(z, z^{\prime}\right)$ is a function that is regular tol all finte values of z and z^{\prime}, consequently the product $\bar{G}\left(z, z^{\prime}\right) R\left(z, z^{\prime}\right)$ is a function that is egntar for all finite valuen of z and z^{\prime} Denoting this product by $H(z, z)$, we have

$$
P^{\prime}\left(z, z^{\prime}\right)=\begin{aligned}
& H\left(z, z^{\prime}\right) \\
& G\left(z, z^{\prime}\right)
\end{aligned}
$$

as the final expression of cur function, and, in this expression, the functions $H\left(z, z^{\prime}\right)$ and ${ }^{\prime}\left(z, z^{\prime}\right)$ are regular for all finte values of z and $z^{\prime} \quad W e$ thus, have the theorem -

When a uniform analytuc fanction of two marnables possesses only unessentaal sangulatioes for fonte values of the varables, it can be expressed us the quotuent of two functions, each of whoch is regular for all frute ralue, of the varables, and the quotient is arredurible

The last statement in the theorem follows from the constatuction of the functions $\bar{G}\left(z, z^{\prime}\right)$ and $\left(\dot{j}\left(z, z^{\prime}\right)\right.$ A quotient $g\left(z, z^{\prime}\right)-\tilde{f}\left(z, z^{\prime}\right)$ is irreducible at an unessential smgularity, there is no question of the reduciblity of a function $\left\{f\left(z, z^{\prime}\right)\right\}^{-1}$ in the vicunty of any p ole, and $R\left(z, z^{\prime}\right)$ is wegular for all finte values of z and z^{\prime}

Note, In the pariocular case where the mafom analytic function has no essential singularity withon the whole feld of vanation of z and z^{\prime}, both the functions $H\left(z, z^{\prime}\right)$ and $G\left(z, z^{\prime}\right)$ are devord of essential smgularitues withon that whole ficld, that 14 , they munt, be folynomala in z and z^{\prime} We thus agan have the ealier theorem already ($\$ 78$) estabhshed

For further developments from the results now proved, reference should be made to Cousin's memorr

Appell's Examples

91 Such ss the genoral existence-theorem, obtaned in the productform There is a corresponding theorem, in a sum-form Smpler exprossions may be obtamable in particular cases, when the functions $f_{m}\left(z, z^{\prime}\right)$ or $u_{k}\left(z, z^{\prime}\right)$ are known

As an example of the sum-theorem, for a particular class of functions, Appell* proceeds as follows, in a generalisation of Weierstrass's proof of Mitcag-Leffer's theorem on functions of a single variablet. The set of

[^31]unnform analytic functions $f_{3}\left(z, z^{\prime}\right), f_{2}\left(z, z^{\prime}\right)$, . is supposed to have the property that for all integers n, greater than some definite integer N, we can assign a magnitude r_{n} such that $f_{n}\left(z, z^{\prime}\right)$ is holomorphic for all values of z and z^{\prime} given by $\left|z_{1}<r_{n},\left|z^{\prime}\right|<r_{n}\right.$, and such also that r_{n} moreaser indefintely with n

Let $\epsilon_{1}, \epsilon_{2}, \quad, \epsilon_{n}$, be a converging series of positive quantities, and let ϵ denote a positive quantity less than unity Take first the sum of the functions $f_{1}(z, z), f_{2}\left(z, z^{\prime}\right), \quad . . f_{N}\left(z, z^{\prime}\right)$, and write

$$
F_{1}\left(z, z^{\prime}\right)={\underset{m-1}{\prime}}_{y_{m}}(z, z)
$$

Next, consider the functions $f_{n}\left(z, z^{\prime}\right)$ such that $n>N$. as each of them in regular for values of z and z^{\prime} such that

$$
z_{1} ₹ \varepsilon r_{n}, \quad\left|z^{\prime}\right| ₹ \epsilon r_{n}
$$

we can express $f_{n}\left(z, z^{\prime}\right) \mathrm{m}$ a form

$$
f_{n}\left(z, z^{\prime}\right)=\sum_{p-0} \sum_{q-0} c_{p, y}^{(n)} \hat{z}^{\mu} z^{\prime q},
$$

where the double serres converges absolutely As m $\S 88$, we can assigu a positive integer μ_{n}, taking μ_{n} to be the greater of the two mtegers μ_{s} and ν_{k} there assigned, such that
for all the values of z and z^{\prime} considered Hence, denoting by $\phi_{n}\left(\varepsilon, \varepsilon^{\prime}\right)$ the polynomial

$$
\phi_{n}\left(z, z^{\prime}\right)=\sum_{p=0}^{\mu_{n}-1} \sum_{q=0}^{\mu_{n}-1} c_{p, q^{(n)}} z^{p} z^{\prime},
$$

and constructing a function

$$
F_{z}^{\prime}\left(z, z^{\prime}\right)=\sum_{n-A+1}^{\infty}\left\{f_{n}\left(z, z^{\prime}\right)-\phi_{n}\left(z, z^{\prime}\right)\right\} .
$$

we have, on the right-hand side, a serres which converges absolutely for the values of z and z^{\prime} considered

Now consider the sum

$$
F^{\prime}\left(z, z^{\prime}\right)=F_{1}^{\prime}\left(z, z^{\prime}\right)+F_{2}^{\prime}\left(z, z^{\prime}\right)
$$

The function

$$
F^{\prime}\left(z, z^{\prime}\right)-f_{n}\left(z, z^{\prime}\right)
$$

is regular at all the singularities of $f_{m}\left(z, z^{\prime}\right)$, and so the function $F^{\prime}\left(z, z^{\prime}\right)$ is regular at all places in the field of varration which are not singularities of any of the functions $f_{1}\left(z, z^{\prime}\right), f_{2}\left(z, z^{\prime}\right)$, .; and $F\left(z, z^{\prime}\right)$, at places which are singularities of a function $f\left(z, z^{\prime}\right)$, is non-regular in the same way as $f\left(z, z^{\prime}\right)$
92. An a special instance of this sum-theorem, Appell adduces the case when

$$
f_{m n}\left(z, z^{\prime}\right)=\frac{1}{\sqrt{(z+m)^{2}}+\left(z^{\prime}+n\right)^{2}+\left(w^{2} ;\right.}
$$

where s is a positive integer, a is a coustant, and the different functions $f_{\text {run }}\left(z, z^{\prime}\right)$ arise by assigning to m and to 11 , independently of one another, all integer values fiom $-\infty$ to $+\infty$

We have

$$
{ }^{1}(z+1 \prime)^{2}+\left(z^{\prime}+n\right)^{2}+a^{2}|>|(z+m)^{2}+\left(z^{\prime}+n\right)^{2}-c^{\prime}{ }^{2}
$$

Also

$$
(z+m)^{2}+\left(z^{\prime}+n\right)^{z}=\left(z+\imath z^{\prime}+m+\imath n\right)\left(z-\imath z^{\prime}+m-m\right)
$$

But

$$
\begin{aligned}
\left|z+\imath z^{\prime}+m+m\right| & >|m+i m|-\left|z+\imath z^{\prime}\right| \\
& >\left(m^{2}+n^{2}\right)^{4}-|z|-\left|z^{\prime}\right|,
\end{aligned}
$$

and

$$
z-i z^{\prime}+m-i n>\left(m n^{2}+n^{2}\right)^{\frac{1}{2}}-\mid z-, z^{\prime}
$$

Hence, it

$$
\begin{aligned}
& |z| \geqslant \frac{1}{2}\left\{\left(m^{2}+n^{2}\right)^{\}}-\mid a_{i}-c\right\}, \\
& \left|z^{\prime}\right|<\frac{1}{2}\left\{\left(m^{2}+n^{2}\right)^{\frac{1}{2}}-\left|a_{i}-c\right|,\right.
\end{aligned}
$$

we haver

$$
\left|(z+m)^{2}+\left(z^{\prime}+n\right)^{2}\right|>||a|+c|^{2},
$$

and therefore

$$
\begin{aligned}
(z+m)^{2}+\left(z^{\prime}+n\right)^{2}+a^{2} \mid & >\{|a|+c\}^{2}-|a|^{2} \\
& >2 c|a|+c^{2}
\end{aligned}
$$

Consequently, for all values of z and z^{\prime} within a range that mereases indefintely with m and n, as given by the foregong lnats, $\left|f_{m n}\left(z, z^{\prime}\right)\right|$ remans smaller than an assigned quantity, and so for those values, $f_{m n}\left(z, z^{\prime}\right)$ is a regular function. Thus the set of conlitions for the function $f_{m n}\left(z, z^{\prime}\right)$ is satisficd

When the integers is greater than unty, the sentes
converges absolutely We therefore take

$$
F^{\prime}\left(z, z^{\prime}\right)={\underset{-\infty}{ \pm-\infty} \sum_{-\infty}^{n-\infty}\left\{(\bar{z}+m)^{2}+\left(z^{\prime}+n\right)^{2}+a^{y}\right\}}^{1}
$$

The function $f^{\prime}\left(z, z^{\prime}\right)$ has poles at all the places

$$
z=-m+\imath \alpha \cos \theta, \quad z^{\prime}=-n+\imath a \sin \theta,
$$

for the continuous succession of values of θ and for all valnes of m and of n Elsewhere, at all places in the field of variation, the function $F\left(z, z^{\prime}\right)$ is regular. In this case, there is no need to take polynomials corresponding to the functions $\phi_{n}\left(z, z^{\prime}\right)$ in the general investigation.

When the integer s is equal to unity, the expression of the function is not so simple, because the series, of which the general term is

$$
\overline{(z+m)^{3}+\left(z^{\prime}+n\right)^{-}+\overline{n^{2}}},
$$

does not converge absolutely. We then take all the values of m and n, which are finite in number and are such that

$$
\left(m^{3}+u^{2}\right)^{\frac{1}{2}} ₹|a|+c,
$$

selecting all the functions $f_{m n}\left(z, z^{\prime}\right)$ given by these values of m and n, we denote their sum by $F_{3}\left(z, z^{\prime}\right)$.

Next, take the values of m and n which are such that

$$
\left.\left(m^{2}+n^{2}\right)^{\frac{1}{2}}>!a \right\rvert\,+c
$$

and expand $f_{m n}\left(z, z^{\prime}\right)$, for any such pan of values, mowers of z and z^{\prime}, valid in a lange

$$
|z|=\frac{1}{2}\left|\left(m^{2}+n^{2}\right)^{\frac{1}{2}}-|a|-c\right\}, \quad, z^{\prime}, ₹ \frac{1}{2}\left\{\left(m^{2}+n^{2}\right)^{\frac{1}{2}}-|u|-c\right\}
$$

Thus

$$
f_{m n}\left(z, z^{\prime}\right)=\frac{1}{m^{2}+u^{2}+a^{2}}-\frac{2 m z+2 n z^{\prime}}{\left(m^{2}+u^{2}+u^{2}\right)^{2}}+.
$$

For our purpose, it is sufficient to take the desired polynomal $\phi_{\text {inn }}\left(z, z^{\prime}\right)$ as equal merely to the constant term in the expansion, for the series

$$
F_{2}\left(z, z^{\prime}\right)=\leq \pm\left\{\begin{array}{c}
1 \\
(z+m)^{2}+\left(z^{\prime}+u\right)+t^{2}
\end{array}-\begin{array}{c}
1 \\
m^{2}+n^{2}+\left(t^{2}\right.
\end{array}\right\},
$$

for all such values of z and z^{\prime}, and for the doubly unfinite set of values of m and n, converges absolutely. Our required function is

$$
F^{\prime}\left(z, z^{\prime}\right)=F_{1}^{\prime}\left(z, z^{\prime}\right)+F_{2}\left(z, z^{\prime}\right)
$$

It has poles at all the places

$$
z=-m+i a \cos \theta, \quad z^{\prime}=-n+i a \sin \theta,
$$

for the continuous succession of values of θ, and for all integer values of m and n. At all other places in the tinite part of the field of variation, the function $F\left(z, z^{\prime}\right)$ is regular.
93. As an example of the product-theorem, let $u_{1}\left(z, z^{\prime}\right), u_{2}\left(z, z^{\prime}\right), \ldots$ denote a set of regular functions of z and z^{\prime}, and let them have the property that for all integers n, greater than some definte integer N, we can assign a magmitude r_{n} so that $u_{n}\left(z, z^{\prime}\right)$ is distinct from zero for values of z and z^{\prime} such that $|z|<r_{n},\left|z^{\prime}\right|<r_{n}$ and such also that r_{n} increases indefimtely with n. Then denoting by k_{1}, k_{2}, \ldots a succession of positive integers, we can form
a regular function $G^{\prime}\left(z, z^{\prime}\right)$, vanishng for all the values of z and z^{\prime} which make $g_{m}\left(z, z^{\prime}\right)$ vanish, and vamshing in such a way as to make the quotient

$$
\begin{gathered}
\left(\dot{\prime}\left(z, z^{\prime}\right)\right. \\
{\left[g_{m}^{\prime}\left(z, z^{\prime}\right)\right\}^{k_{m}}}
\end{gathered}
$$

finte and different fiom zero for those values
This function $G\left(z, z^{\prime}\right)$ is of the form

$$
\left(i _ { 1 } (z , z ^ { \prime }) \left(G_{2}^{\prime}\left(z, z^{\prime}\right)\right.\right.
$$

where

$$
\begin{aligned}
& G_{1}\left(z, z^{\prime}\right)=\prod_{\{m=1}^{N}\left\{g_{m}\left(z, z^{\prime}\right)\right\}^{k_{m}} \\
& \dot{r}_{\mathfrak{m}}\left(z, z^{\prime}\right)=\prod_{N+1}^{\infty}\left\{\left.g_{n}\left(z, z^{\prime}\right)\right|^{k_{n}} e^{\psi_{n}(z, z)}\right.
\end{aligned}
$$

while $\psi_{u}\left(z, z^{\prime}\right)$ is an approprate polynomal in z and z^{\prime}
Ec. 1 Shew that, when

$$
g_{m n}\left(z, z^{\prime}\right)=(z+m)^{2}+\left(z^{\prime}+n\right)^{2}+a^{2},
$$

where m and " vary mdependently of one another through all integer values from $-\infty$ to $+\infty, a$ function $U\left(z, z^{\prime}\right)$, regular everywhere win the finte part of the field and vanshmg like $g_{m n}\left(2, z^{\prime}\right)$, cul be constructed an follows. Trake all the values of m and n, finite in number, such tlat

$$
\left(m^{2}+n^{2}\right)^{\frac{1}{2}}<|a|+c,
$$

where a is miny psssuned finte quantity, wid write

$$
\left(i_{1}(x, z)=m \Pi\left\{(z+m)^{2}+\left(z^{\prime}+\mu\right)^{2}+a^{2}\right\},\right.
$$

where the product extends over all these values of m and n.
Take all the values of n and n, doubly infinte mumber, such that
and write

$$
\left(m^{2}+n^{2}\right)^{\frac{1}{2}}>|a|+c
$$

$$
f_{2}\left(z, z^{\prime}\right)=\Pi \Pi\left\{\left\{\begin{array}{c}
(z+m)^{2}+\left(z^{\prime}+n\right)^{2}+a^{2} \\
m^{2}+n^{2}+a^{2}
\end{array} \psi_{m n}\left(z, z^{\prime}\right)\right\}\right.
$$

where the product extends over all thewe vahey of m and n, and where

$$
\psi_{m n}\left(z, z^{\prime}\right)=\begin{gathered}
2 m z+2 n z^{\prime}+z^{2}+z^{\prime 2} \\
m^{2}+n^{2}+a^{2}
\end{gathered}-\frac{1}{2}\binom{2 m z+2 n z^{\prime}+z^{2}+z^{\prime 2}}{m^{2}+n^{2}+a^{2}}^{2} .
$$

The required function is given by

$$
G^{\prime}\left(z, z^{\prime}\right)=\left(G_{1}\left(z, z^{\prime}\right) G_{2}\left(z, z^{\prime}\right)\right.
$$

Ex 2 Verify that, when a is zero, the function $G^{\prime}\left(z, z^{\prime}\right)$ can be expressed by means of two Welerstraks's $\boldsymbol{\sigma}$.functions

CHAPTER VI

Integralis, in particular, Double Integrals

As regards the matter of this chapter and, above all, as regards mitegrals of algehrac functions of two variables, the student should pry special attention to various sections in the trentise (which usudily is quoted here in Picard's nafue) Picard et Simart, Theorle des fonctions algélraques de neux vartables andfpemdantes, t. i (1897), t il (1906) Other' references will be found in the couse of this chapter

It way be noted mitially, as regards algebraic functions of two variables, that I have chosen, for reasons already stated, to take two fundamental equations dofing two mdependent algebraic functions of the variablen, instead of ouly a single equation definug ouly a single algebras function If three (or more) equations were taken definng the aame number of algobruc functions, thase would not be mdependent, wo it is sutficient to take not more than two fundamental equations

94 In the theory of functions of a single vanable, many mportant results are derived through the use of Cauchy's theorems concerning contour integrals It is natural to attempt some extension of theorems so as simularly to denve results in the theory of functions of more than one variable Here we shall restrict the discussion to the case of a couple of complex variables

The integral of a function of two independent complex variables may be single or may be double. The defimition of a single integral is the same as in the customary theory of functions of one complex variable, but there is the added complication through the occurrence of two complex varnables. Ether there is-variation, within the range of the integral, of only one of the two variables, or within that range, there is a defimtely connected and simultaneous variation of both varables

Of double integrals, there are two classes In one class, the integration with regard to each variable is entirely independent of the integration with regard to the other, so that the integrations can be performed in either order. In each integration, only one variable is subject to variation. Thus the double integral is effectively only a double operation of single integration We have already had some examples, at an earler stage, of this class of double integrals.
E.x A function $f(\psi, \theta)$ is penodic in ψ, with period 2π, and is also periodic in H, with period 2π, and it is regular for all values of the van inbles withu the ranges of two conplete respective periods Lat $u\left(r, r^{\prime}, \phi, \phi^{\prime}\right)$ denote the utegral

$$
\left.\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} f(\psi, \theta), 11-2 r \cos (\psi-\phi)+r^{2} ; 11-2, \cos (\theta-\phi)+r^{\prime 2}\right\} d \psi d \theta
$$

Piove that, when $r<1$ and $r^{\prime}<1$, the function $u\left(r, r^{\prime}, \phi, \phi^{\prime}\right)$ in rogular, ind that, in the limut when $r=1$ and $r^{\prime}=1$, the function $u\left(r, r^{\prime}, \phi, \phi^{\prime}\right)$ is equal to $f\left(\phi, \phi^{\prime}\right)$

Shew also that, if

$$
z=r e^{\phi_{2}}, \quad z^{\prime}=r^{\prime} e^{d^{\prime} i},
$$

$u\left(r, r^{\prime}, \phi, \phi^{\prime}\right)$ is expresuble as the real part of a egular fum tion of the complex variables z and z^{\prime}

Wote This reanlt will be noted ay the extension of the simplest reand, relating to pontential function of two real variables, in Schwarz's eatabhahment of the existence of a function of one complex variable satisfying conditions of specithed assigned types*

95 In the other class of double integrals, the variations are not undependent of one another, if ether can be porformed alone, usually the range of variation for the variable is affected by the other vainable, and, in the general case, such integration cannot be performed for one variable alone It then becomes imperative to define precisely what is the meaning assigned to the double integral Fon this parpose, we adopt the procedure imtiated by Pomcaré \dagger, using space of four dimensions in real variables.

As usual, we take

$$
z=x+\imath y, \quad z^{\prime}=x^{\prime}+\imath y^{\prime},
$$

where $x, y, x^{\prime}, y^{\prime}$ are real and are the coordinates of a point in this space Without further limtation, the variables $x, y, x^{\prime}, y^{\prime}$ are mdependent of one another.

For our immedate purpose, we now make two successive suppositions consistent with one another, so as to secure a working definition of a donble integral

First, let X, Y, Z be real variables of a point in ordmary space, and suppose that $x, y, a^{\prime}, y^{\prime}$ are limited in variation so as to be expressible in finms

$$
x=F_{1}(X, Y, Z), \quad y=F_{2}(X, Y, Z), \quad x^{\prime}=F_{1}^{\prime}(X, Y, Z), \quad y^{\prime}=F_{4}(X, Y, Z)
$$

where (for purposes of description) we assume that $F_{1}, F_{2}, F_{3}, F_{4}$ are rational functions of X, Y, Z not becoming infinite for real values of these variables Ehmmating X, Y, Z, we shall have an (algebracal) relation

$$
\Phi\left(x, y, x^{\prime}, y^{\prime}\right)=0
$$

[^32]which represents a three-dinensional continuum in the four-dimensional space

Next, let X, Y, Z describe a surface S, or a portion of a surface S, in ordinary space Again for purposes of illustration, we shall assume S, or the selected portion of S, to be devold of smgularities. We can take X, Y, Z as functions of two real parameters p and q, valid over the surface S or the portion of $1 t$, and we then have equations

$$
x=g_{1}(p, q), \quad y=g_{2}(p, q), \quad x^{\prime}=q_{3}(p, q), \quad y^{\prime}=g_{s}(p, q)
$$

These relations imply two equations, say

$$
U\left(x, y, x^{\prime}, y^{\prime}\right)=0, \quad V\left(x, x^{\prime}, y, y^{\prime}\right)=0 .
$$

which represent a two-dmenswal continuum (the surface S, as in § 5) in our four-dimensional space We take a simple closed area in the plane of the variables p and q, represented by an equation

$$
F(p, q)=0 .
$$

and for the double integral, we allow all values of p and q withm this area, representing them by the relation

$$
F^{\prime}(p q) \gtrless 0
$$

Then the limit of the range of integration on the surface s is given by $F^{\prime}(p, q)=0$, and this himit will lead to three equations of the form

$$
\Gamma_{x}\left(x, y, x^{\prime}, y^{\prime}\right)=0, \quad(s=1,2,3)
$$

representing a curve in the four-dimensional space.
Now let $f\left(z, z^{\prime}\right)$ be the function, to be "doubly integrated" in the sense that a meaning has to be assugned to the double integral

$$
I=\iint f\left(z, z^{\prime}\right) d z d z^{\prime}
$$

As $f\left(z, z^{\prime}\right)$ is a complex function, we resolve it into its real and imaginary parts; let

$$
f\left(z, z^{\prime}\right)=P+\imath Q
$$

where P and Q are real functions of $x, y, x^{\prime}, y^{\prime}$. Then

$$
\begin{aligned}
I & =\iint(P+\imath Q)(d x+i d y)\left(d x^{\prime}+\imath d y^{\prime}\right) \\
& =\iint\left\{(P+i Q) d x d x^{\prime}+(i P-Q) d x d y^{\prime}+(\imath P-Q) d y d x^{\prime}-(P+\imath Q) d y d y^{\prime}\right\}
\end{aligned}
$$

Manifestly I, whatever 1 ts value, can be a complex variable, so writing

$$
I=I_{2}+i I_{2},
$$

where I_{1} and I_{2} are real, we have

$$
\begin{aligned}
& \left.I_{1}=\iint\left\{P\left(d x d x^{\prime}-d y d y^{\prime}\right)\right\}-\iint Q\left(d x d y^{\prime}+d y d x^{\prime}\right)\right\} \\
& I_{2}=\iint\left\{Q\left(d x d x^{\prime}-d y d y^{\prime}\right)\right\}+\iint\left\{P\left(d x d y^{\prime}+d y d x^{\prime}\right)\right\}
\end{aligned}
$$

And now, I_{1} and I_{2} are ordmary double integrals involving only real variables, for the real quantities $x, y, x^{\prime}, y^{\prime}$ we functions of only the real varables p and q, and these double integrals are taken over the lamited area $F(p, q)<0$ in the plane of the variables p and q.

Both nutegrals are of the form

$$
\int \mid\left(A d x d x^{\prime}+B d x d y^{\prime}+\left(^{\prime} d y d x^{\prime}+D d y d y^{\prime}\right)\right.
$$

where all the quantites concenned are real-there being, of course, limitations upon the forms of $A, B,\left({ }^{\prime}, D\right)$ and also of thear differential relations to one mother When we give explicat expression to the funchonahty of $x, y, x^{\prime}, y^{\prime}$ in terms of p and q, the integral becomes

$$
\iint\left\{A J\left(\frac{x, x^{\prime}}{p, q}\right)+B \cdot I\left(\frac{x, y^{\prime}}{p, q}\right)+C J\left(\frac{y, x^{\prime}}{p, q}\right)+D J\left(\frac{y, y^{\prime}}{p, q}\right)\right\} d p d q
$$

but for our purposes it will suffice to take the first form.
Our object is the genemahation, if generalisation be possible, of the fundamental theorem of Cauchy which asserts that, under appopriate conditions as to $f(z)$, the integral $\int f(z) d z$ taken round a closed contour is zero it is a consequence that the integral $\int f(z) d z$, between two points in the plane, has a value independent (subjuet to restrictions) of the z-path between the points Suppose that, insteal of the former values of $x, y, x^{\prime}, y^{\prime}$, we take

$$
x=h_{1}(p, q), \quad y=h_{3}(p, q), \quad x^{\prime}=h_{s}(p, q), \quad y^{\prime}=h_{4}(p, q)
$$

so that we could have a new surface T different from S, and suppose that, corresponding to the former equation $F(p, q)=0$ limating the range of mitegration, the range of integration in T is still limited by $F(p, q)=0$, and that the limting curve connected with T in our four-dimensional space is given by the same equations

$$
P_{n}\left(x, y, x^{\prime}, y^{\prime}\right)=0, \quad(s=1,2,3)
$$

as the limiting curve connected with S We thus should have two different surfaces passing through the same contour Then the generalisation would be that the integral $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$ should reman unvariable if only the surface over which the integration extends is made to pass through an
assigned fixed contour, or, if we take a completely closed surface through the fixed contour, the integral $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$ taken over the whole of this surface vanishes
96. Accordingly, we consider an integral

$$
\leq \Sigma \iint A_{m n} d x_{m} d x_{n}
$$

where the summation is taken ovet all pars of values $m, n=1,2,3,4$, and where $x_{1}, x_{2}, x_{3}, x_{4}$ take the place of $x, y, x^{\prime}, y^{\prime}$. We define the integral for the four-dimensonal space as above, consequently, because

$$
\iint A_{m n} d x_{m} d x_{n}=\iint A_{m n} J\left(\begin{array}{l}
x_{m}, \frac{x_{n}}{x_{n}}, \frac{x_{m}}{x_{m}}
\end{array}\right) d x_{n} d x_{m}
$$

with the foregoing interpretation, we have

$$
\iint A_{m n} d r_{m} d x_{n}=-\iint A_{m n} d x_{n} d x_{w}
$$

and

$$
\iint A_{n m} d x_{n} d x_{m}=-\iint A_{n m} d x_{m} d x_{n}
$$

that is, taking account of the whole integral and of the combinations of m and n instead of the permutations, we shall assume that

$$
A_{m n}=-A_{m p},
$$

so that we need only consider the combination $\iint A_{m n} d x_{m} d x_{n} \quad$ Moreover, this process of regarding the integral obvously involves the additional assumptions
for all the values of m

$$
A_{m, n}=0,
$$

Next, we take* $x_{1}, x_{2}, x_{\mathrm{s}}, x_{4}$ as expressed in terms of the three variables X, Y, Z, so that our double integral becomes

$$
\Sigma \Sigma\left[A_{m n}\left\{J\binom{x_{m}, x_{n}}{Y, Z} d Y d Z+J\binom{x_{m}, x_{n}}{\bar{Z}, \bar{X}} d Z d X+J\binom{x_{m}, x_{n}}{X, \ddot{Y}} d X d Y\right\}\right]
$$

that is,

$$
\iint\left(\xi d Y d Z+\eta d Z d X^{\gamma}+\zeta d X d \Gamma^{\gamma}\right)
$$

where

$$
\begin{aligned}
& \xi=\Sigma \Sigma A_{m n} J\binom{x_{m}, x_{n}}{V, Z}, \\
& \eta=\Sigma \Sigma A_{m n} J\binom{x_{m}, x_{n}}{\bar{Z}, \bar{X}} \\
& \zeta=\Sigma \Sigma A_{m n} J\binom{x_{m}, x_{n}}{\bar{X}, \bar{Y}}
\end{aligned}
$$

* Here Picard's proof (Tranté d'Anatyse, t. n, p. 270) is followed exactly.

The integral is to extend over the surface in the X, Y, Z ordmary space.

We therefore requare the condition necossury and sufficient that such an integral

$$
\iint(\xi d Y d Z+\eta d Z d X+\zeta d X d Y)
$$

over any surface whoch passes throngh an assigned contour in the $p .7$ plane, shall depend solely upon the contour This condition is well known. we must have*

$$
\frac{\partial \xi}{\partial X^{Y}}+\frac{\partial \eta}{\partial \eta}+\frac{\partial \zeta}{\partial \mathscr{Z}}=0
$$

Accordingly, the condition is

$$
\begin{aligned}
& \frac{\partial}{\partial X}\left\{\sum \sum A_{m n} J\binom{\alpha_{n}, u_{n}}{Y, Z}\right\}+\frac{\partial}{\partial \bar{Y}}\left\{\underset{\leq}{ } A_{m n} J\left(\begin{array}{c}
x_{n}, r_{n} \\
Z, \bar{X},
\end{array}\right\}\right. \\
& +\begin{array}{c}
\hat{\lambda} \\
{ }^{Z} Z
\end{array}\left\{=A_{i n n} \cdot J\left(\begin{array}{c}
x_{m}, x_{n} \\
X, \bar{Y}
\end{array}\right\}=0\right.
\end{aligned}
$$

In this expression, the coethement of $A_{m n}$ is
whech vamishos identically
As regards the derivalives of $A_{m n}$, we haw

$$
\frac{\partial A_{m n}}{\partial X}=\sum_{i-1}^{1} \frac{\partial A_{m u}}{\partial x_{l}} \partial x_{l},
$$

and so for the others Hence, in the foregoing expression, the coefficient of $\dot{c} A_{n n}$, and the coetficient of $\frac{\partial A_{m n}}{\partial x_{n}}$, both vamsh identically. and the monvamshong coefficients are the sum of terms of the form

$$
\left(\begin{array}{c}
\partial A_{m n} \\
\partial x_{l}
\end{array}+\frac{\partial A_{n l} l}{\partial x_{m}}+\frac{\partial A_{l n}}{\partial x_{n}}\right) \cdot J\binom{x_{l}, x_{m}, x_{n}}{X, y^{\prime}, Z^{\prime}} .
$$

Consequently, the condition becomes

$$
\sum_{i=1}^{4} \sum_{m=1}^{4} \sum_{n=1}^{\ddagger}\left\{\begin{array}{c}
\partial A_{m n} \\
\partial x_{l}
\end{array}+\begin{array}{c}
\partial A_{n t} \\
\alpha x_{m}
\end{array}+\frac{\partial A_{l m} l_{m}}{\partial x_{n}}\right) \cdot \int\left(\begin{array}{c}
x_{l}, \iota_{m}, x_{n} \\
X, Y, Z
\end{array}\right\}=0,
$$

- When the condition is batistred, we caut tahe

$$
\xi=\frac{\partial \gamma}{\partial Y}-\frac{\partial \beta}{\partial Z}, \quad \eta=\frac{\partial a}{\partial K}-\frac{\partial \gamma}{\partial \mathrm{A}}, \quad s=\frac{\partial \mu}{\partial \bar{Y}}-\frac{\partial a}{\partial Y},
$$

and then the integial can be expressed in the form

$$
\int(a d r+\beta d y+\gamma d z),
$$

taken round the contour in the p, q plane. The result was first enanciated as a problem by Stokes, in the old examination for the Smith's Prizes at Cambraige an the year 1454, see Stokes, Math and Phys Papers, vol v, p 320, with a note by Prof Sir J Larmor
a condition which must be satisfied identically, whatever be the surface over which the integration extends, subject to its passing through the contour.

The quantities $x_{l}, x_{m}, x_{n}, x_{p}$ are functions of X, Y, Z such that, a way from the contour, any three of them are mependent of one another, and therefore the quantities

$$
J\left(\frac{x_{l}, x_{m,}, x_{n}}{X, 1, \not, Z}\right)
$$

except along the contour and mdindually at special places in space, are different from mero It follows that we must have

$$
\frac{\partial A_{m n}}{\partial x_{1}}+\frac{\partial A_{m l}}{\partial x_{m}}+\frac{\partial A_{l m}}{\bar{\partial} r_{n}}=0,
$$

for all the combinations $l, m, n=1,2,3,4$ Morrover, it is easy to see that this set of four conditions is sufficient, as well as necessary, to seemre that the value of the integral

$$
\leq \leq \iint A_{m n} d x_{m} d x_{n}
$$

depends only upen the contour
97 Now let us apply all the conditions to the integrals I_{1} and I_{2}. Wh. have

$$
I_{1}=\iint\left(P d \cdot r d r^{\prime}-Q d x d y^{\prime}-Q d y d x x^{\prime}-P d y d y^{\prime}\right),
$$

and we take

$$
x, y, x^{\prime}, y^{\prime}=x_{1}, x_{1}, x_{1}, x_{4}
$$

respectively We have

$$
A_{12}=0, \quad A_{1,}=P, \quad A_{14}=-Q, \quad A_{20}=-Q, \quad A_{24}=-P, \quad A_{24}=0
$$

Consider the conditions

$$
\frac{\partial A_{m n}}{\partial x_{l}}+\frac{\partial A_{n l}}{\partial x_{m n}}+\frac{\partial A_{l m}}{\partial x_{n}}=0,
$$

for the combuations $l, m, n=1,2,3,4$ They require the relation

$$
-\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=0
$$

for $l, m, n=1,2,3$, the relation

$$
-\frac{\partial Q}{\partial y^{\prime}}+\frac{\partial P}{\partial x^{\prime}}=0
$$

for $l, m, n=2,3,4$, the relation

$$
\frac{\partial Q}{\partial x^{\prime}}+\frac{\partial P}{\partial y^{\prime}}=0
$$

for $l, m, n=3,4,1$, and the relation

$$
-\frac{\partial l^{2}}{\partial x}+\frac{\partial Q}{\partial y}=0
$$

for $l, m, n=4,1,2$
Simlarly, we have

$$
I_{2}=\iint\left\{Q d x d x^{\prime}+P d x d y^{\prime}+P d y d r^{\prime}-\left(Q d y d y^{\prime}\right\}\right.
$$

so that we cin take

$$
A_{12}=0, \quad A_{13}=Q, \quad A_{14}=P, \quad A_{24}=P, \quad A_{24}=-Q, \quad A_{34}=0
$$

The general conditions require the relation

$$
\frac{\partial P}{\partial x}-\frac{\partial Q}{\partial y}=0
$$

for the combination $l, m, n=1,2,3$; the relation

$$
\frac{\partial P}{\partial y^{\prime}}+\frac{\partial Q}{\partial x^{\prime}}=0
$$

for the combination $1, m, u=2,3,4$, the relation

$$
-\frac{\partial l}{\partial e^{\prime}+}+\frac{\partial Q}{\partial y^{\prime}}=0
$$

for the combmation $l, m, n=3,4,1$, and the relation

$$
-\frac{\partial U}{\partial!}-\frac{\partial Q}{\partial U}=0
$$

for the rombmation $l, m, n=4,1,2$
Thus all the conditions are satisfied of only

$$
\frac{\partial I^{\prime}}{\partial U}=\frac{\partial Q}{\partial y}, \quad \frac{\partial I^{\prime}}{\partial y}=-\frac{\hat{\sigma} Q}{\partial x^{\prime}}, \quad \frac{\partial l}{\partial r^{\prime}}=\frac{\partial Q}{\partial y^{\prime}}, \quad \frac{\partial I^{\prime}}{\partial y^{\prime}}=-\begin{aligned}
& \hat{r}(Q \\
& \partial r^{\prime}
\end{aligned}
$$

But, by definition, we have

$$
l^{\prime}+l l=f\left(z, z^{\prime}\right)=f\left(x+1 \eta, x^{\prime}+!y^{\prime}\right)
$$

where $P, Q, x, y, a^{\prime}, y^{\prime}$ are real, and so these four ielations are satisfied.
It follows, then, that, I_{1} and I_{2} depend solely upon the contour, and therefore $I,=I_{1}+I_{2}$, also depends solely upon the contour And we have, thoughout, assumed that the quantitien P and Q, - that w, aloo the function $f\left(z, z^{\prime}\right)$-are tree from smgularities Hence we have Pomearés extensoon of Canchy's theorem -

If, wuthin the closed surface S, whach is taken un the space of three demensions X, Y, Z, and points on wheh are quen by equations of the form

$$
X=f_{1}(p, q), \quad Y=f_{2}(p, q), \quad Z=f_{1}(p, q)
$$

so that, along the surface,

$$
\begin{array}{rlrl}
x & =F_{3}(X, Y, Z) & =g_{1}(p, q), \quad y & =F_{2}(X, Y, Z) \\
x^{\prime} & =F_{3}(X, Y, Z) & =g_{2}(p, q) \\
(p, q), & y^{\prime} & =F_{4}(X, Y, Z) & =g_{4}(p, q)
\end{array}
$$

there is no place X, Y, Z, where the function $f\left(z, z^{\prime}\right)$ ceases to be regular, the mulue of the integral $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$ taken over the whole of the closed surtace is zero

Agann, for such a function and oner such a space, the value of the untegral $\iint f^{\prime}\left(z, z^{\prime}\right) d z d z^{\prime}$ taken over any portion of any such surface S bounded by a contour, the surface and the contour lying wnthin the domain, depends only "pon the contour

Further, it follows that the value of the mtegral $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$, taken over any such closed surface, remans unaltered during deformations of the surface provided they occur in the doman of X, \mathcal{Y}, Z, and cross no place giving nise to no singularity of $f\left(z, z^{\prime}\right)$

98 Now consuder the smgularities, or other deviations from regularity, of a function $f\left(z, z^{\prime}\right)$ We take the preceding surface S^{\prime} existing, as in $\S 95$, in an ondinaly space of three dimensions, the representation of the variables being

$$
x=F_{1}^{\prime}(X, Y, Z), \quad y=F_{2}(X, Y, Z), x^{\prime}=F_{y}(X, Y, Z), \quad y^{\prime}=F_{4}^{\prime}(X, Y, Z)
$$

The singularities of $f\left(z, z^{\prime}\right)$ may be given by a set of single equations, typified for each of them by

$$
\theta\left(z, z^{\prime}\right)=0
$$

or by sets of two ndependent equations, typified fon each set by

$$
\theta\left(z, z^{\prime}\right)=0, \quad \phi\left(z, z^{\prime}\right)=0
$$

The former will lead to two equations, say

$$
\Im_{1}\left(x, y, x^{\prime}, y^{\prime}\right)=0, \quad \Im_{2}\left(x, y, x^{\prime}, y^{\prime}\right)=0,
$$

so, in our X, Y, Z space, they will be given by equations

$$
\Theta_{1}(X, Y, Z)=0, \quad \Theta_{1}(X, Y, Z)=0
$$

These two equations represent a curve C in that space, at every point on the curve there is a singularity of $f\left(z, z^{\prime}\right)$

The latter will lead to four equations, which may be regarded as defining dul isolated place or an aggregate of isolated places determined by the values of $x, y, x^{\prime}, y^{\prime}$ Such places may or may not exist in our X, Y, Z space

Take a closed surface S in the space, contaning no place or places X, Y^{\prime}, Z, giving rise to an isolated singularity of $f\left(z, z^{\prime}\right)$, to any curve C, or to any part of such a curve The integral $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$ taken over $S 18$ zero.

Take two closed surfaces S and $S^{\prime \prime} 11$ the space X, Y, Z, such that As can be contmuously deformed into S^{\prime}, without passing over any place giving rise to an ssolated singularity of $f(z, z)$, or over any curve C, or any part of such a curve C. The value of the integral taken over the surface S is equal to its value taken over the surface S^{\prime}.

Take two closed surfaces S and S^{\prime} in the space X, Y, Z, such that they enclose places giving rise to exactly the same isolated singulanties of $f\left(z, z^{\prime}\right)$, to excectly the same curves C and to exactly the same portions of curves C The value of the integral taken over the sufface S is equal to its value taken over the surface $S^{\prime \prime}$
'Thus the value of the donble megral $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$, taken over the closed surface s, in zoro when the surtace encloses no phace X, Y, Z, where $f\left(z, z^{\prime}\right)$ erdsess to be regulde When the surtace does molone places X, Y, Z, where $f\left(z, z^{\prime}\right)$ eataces to be iegular, the value of the metegial deperids upon these cuclosed places, we camot anselt that tia walue in zell

99 The theoren can be emnelated in simula terms when a two-plane representation of z and z^{\prime} is alopted Thes, very speccally, withu a cur ula ring in the z-phane and wathon a curnlar nung in the z^{\prime}-plane, let a function $f\left(z, z^{\prime}\right)$ he everywhere regulda, then the valure of $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$ is the same, whether the mtegral be tiaken positivaly romad the outer ancles m the two planes, or be taken jesitavely round the inner cucles in the two planess But such a case is cexecedingly spechal, and, an wan indicated earluen in the lectures ($\$ 19$), the trontien of a doman of valation for z and z^{\prime} is of a more compheated chatacior than we the result just enunerated

100 We proced wo consuder sonue of the smiplest cases when the subject of megration in a donble mingral $\iint f\left(z, z^{\prime}\right) d z d z^{\prime}$ possevses cither molated angulantač or any continuous aggregate of smgulantien withon an assugued donation lu passug to these examples, it may be wenarked that the whole subject of double intugrals of mulorm analytic functions, possessing sugularities of the known types, offers a field of reseach, in which many of the results already obtaned ae of a tentatively exploratory character

In the examples that will be consdered, we shall use the two-plane representation of z and z^{\prime}, ind we shall deal only with a finite part of the whole field of variation of z and z^{\prime}, that 1 s , for all the variations, $|z|$ and $\left|z^{\prime}\right|$ will be kept finite. To these examples*. all of wheh unvolve only rational functions of z and z^{\prime}, we now proceed in ordel

Example I Let $F^{\prime}\left(z, z^{\prime}\right)$ denote a function that is regular everywhenc withm an assigned finte doman, let a, a^{\prime} denote any place within that doman. Then we consider the integral

$$
\iint_{(z-u)\left(z^{\prime}-u^{\prime}\right)}^{F\left(z, z^{\prime}\right)} d z d z^{\prime}
$$

[^33]taken over the closed frontier given by the equations $z-a \mid=R$, $\left|z^{\prime}-a^{\prime}\right|=R^{\prime}$, so that it encloses the place a, a^{\prime}.

The singularities of the subject of integration are given by
(1) $z=a, z^{\prime}=$ any enclosed value of z^{\prime},
(i1) $z=$ any enclosed value of $z, z^{\prime}=a^{\prime}$
By our general theorem, we can detorm the closed frontiel without changing the value of the double integral, provided the deformation calises no transition through any of these places. Accordingly, let the closed frontier be deformed until it encloses only the small doman, composed of the interion of the carcles

$$
z-a=r e^{\theta_{1}}, \quad z^{\prime}-a^{\prime}=r^{\prime} e^{\theta_{2}},
$$

where r and r^{\prime} are small real positive constant quantities Then

$$
\iint_{\left(z-a \overline{)}\left(z^{\prime}-u^{\prime}\right)\right.} d z d z^{\prime}=-\iint F\left(a+r e^{b^{\prime}}, u^{\prime}+r^{\prime} e^{\theta^{\prime} r}\right) d \theta d \theta^{\prime}
$$

the integration extending over a θ-range from 0 to 2π and over a θ^{\prime}-range from 0 to 2π Now $F^{\prime}\left(\begin{array}{ll}z & \left.z^{\prime}\right) \text { is regula throughout the domann, hener }\end{array}\right.$

But for positive integer values of m and n, such that either m or n is greater than zero, we have

$$
\iint e^{\left(1 n \theta+n \theta^{\prime}\right) t} d \theta d \theta^{\prime}=0
$$

and

$$
\iint d \theta d \theta^{\prime}=4 \pi^{2}
$$

Hence

$$
\iint F^{\prime}\left(a+r e^{\theta_{2}}, a^{\prime}+\prime^{\prime} e^{\theta_{2}}\right) d \theta d \theta^{\prime}=4 \pi^{2} F\left(a, a^{\prime}\right)
$$

and therefore, with our hypothess as to the regular character of $f^{\prime}\left(\approx, z^{\prime}\right)$ withen the doman, we have

$$
-\frac{1}{4 \pi^{2}} \iint_{\substack{F^{\prime}\left(z, z^{\prime}\right) \\(z-a)\left(z^{\prime}-a^{\prime}\right)}} d z d z^{\prime}=F\left(a, a^{\prime}\right),
$$

taken ovel the closed frontier of integration $|z-a|=R,\left|z^{\prime}-a^{\prime}\right|=R^{\prime}$.
Corollary With the preceding assumptions concerning the regular function $k^{\prime}\left(z, z^{\prime}\right)$, we have

$$
\begin{aligned}
& -\frac{1}{4 \pi^{2}} \iint \begin{array}{c}
F^{\prime}\left(z, z^{\prime}\right) \\
z-a \\
z-a \\
-\frac{1}{4 \pi^{2}} \\
\iint \frac{F}{F}\left(z, z^{\prime}\right) \\
z^{\prime}-a^{\prime}
\end{array} d z d z^{\prime}=0,
\end{aligned}
$$

taken over the closed frontier of integiation $|z-a|=R,\left|z^{\prime}-a^{\prime}\right|=R^{\prime}$
Note When the integrals are taken over a closed frontier of integration which does not enclose the place a, a^{\prime}, all the three integrals have a zero value.

Example II. As before, let $F\left(z, z^{\prime}\right)$ be regular everywhere within an assigned finite domann, and let a, a^{\prime} be any place within that domain. We consider the integral

$$
\iint_{(z-a)^{m+1}} \frac{F\left(z, z^{\prime}\right)}{\left(z^{\prime}-a^{\prime}\right)^{n+1}} d z d z^{\prime},
$$

taken over the same closed frontier in that doman, the fontiel enclosing the place a, a^{\prime}, and the quantities m and n denoting positive integers, zero included.

We proced exactly as in the preceding example Because

$$
\iint_{e^{i-m+\mu \mid \theta_{1}+1-n ; \nu \theta^{\prime}}} d \theta d \theta^{\prime}=0,
$$

for the range 0 to 2π for θ and for θ^{\prime}, except only when $m=\mu$ and $n=\nu$, we find
for all minteger valnes of m and n that are mot negative.
Example III Let a, β, γ, δ denote four constants such that $\alpha \delta-\beta \gamma$ is not eero, and consider the double integral

$$
\iint_{\left(\Lambda z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)} \quad d z d z^{\prime}
$$

taken over a fronter that encloses the place 0.0
For a given value of z^{\prime}, che quantity $\alpha z+\beta z^{\prime}$ vamshes of $z=z_{1}$, and the quantity $\gamma^{z}+\delta z^{\prime}$ vanshom if $z=z_{2}$, where

$$
z_{1}=-\frac{\beta}{\alpha} z^{\prime}, \quad z_{2}=-\frac{\delta}{\gamma} z^{\prime} .
$$

The values of z_{1} and z_{1} are unequal except only when $z^{\prime}=0$
First, let integration with regard to z ler effected before integiation wath regand to z^{\prime} Take on the z-phane a small smple curve enclosing z_{1} and excludung z_{2}, say a corcle centric z_{1} and of radius $<\left|z_{1}-z_{2}\right|$, and effect the integration round this circle in the z-plane while z^{\prime} м supposed invariable Then, as

$$
\begin{aligned}
\begin{array}{c}
1 \\
\left(\alpha z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)
\end{array} & =\alpha_{\gamma}\left(\bar{z}-\frac{1}{z_{1}}\right)\left(z-z_{2}\right) \\
& =\left(\alpha \delta-\frac{1}{\beta_{\gamma}}\right) z^{\prime}\left(-\frac{1}{z-z_{1}}-\overline{z-z}\right),
\end{aligned}
$$

we have (when the indicated integration is effected)

$$
\int_{\left(\alpha z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)}=\begin{gathered}
2 \pi i \\
(\alpha \delta-\beta \gamma) z^{\prime}
\end{gathered}
$$

because

$$
\int \frac{d z}{z-z_{1}}=2 \pi i, \int_{z-z_{2}}^{d z}=0
$$

taken round the z-circle Now let the integration with respect to z^{\prime} be effected round a small circle, the circumference of which passes through z^{\prime} and the centre of which is at $z^{\prime}=0$, then, as

$$
\int \frac{d z^{\prime}}{z^{\prime}}=2 \pi \imath
$$

for this integration, we have

$$
-\frac{1}{4 \pi^{2}} \iint \frac{d z d z^{\prime}}{} \frac{1}{\left(\alpha z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)}=\stackrel{1}{\alpha \delta-\beta \dot{\gamma}} .
$$

Writing

$$
\begin{aligned}
& \zeta=\alpha z+\beta z, \quad \zeta^{\prime}=\gamma^{z}+\delta z^{\prime}, \\
& J\binom{\zeta, \zeta^{\prime}}{z, z^{\prime}}=J\left(\zeta, \zeta^{\prime}\right)=\alpha \delta-\beta \gamma,
\end{aligned}
$$

we have

$$
-\frac{1}{4 \pi^{2}} \iint \frac{d z d z}{\zeta_{\zeta}^{\prime \prime}}=\stackrel{1}{J}\left(\zeta, \zeta^{\prime}\right),
$$

when integration is effected, first with regard to z Iound a simall simple z-curve enclosing a root of ζ for a given value of z^{\prime} but not a root of ζ^{\prime}, and then with legard to z^{\prime} round a smple z^{\prime}-curve through that value of z^{\prime} cuclosing the origin $z^{\prime}=0$

Smularly, we have

$$
-\frac{1}{4 \pi^{2}} \iint \frac{d z d z^{\prime}}{\bar{\zeta} \xi^{\prime}}=\begin{gathered}
1 \\
J\left(\zeta^{\prime}, \zeta\right)^{\prime}
\end{gathered}
$$

when integration is effected, first with regard to z round a small smple z-curve enclosing a ruot of ζ^{\prime} for a given value of z^{\prime} but not a root of ζ, and then with regard to z^{\prime} round a smople z^{\prime}-curve, passing though that value of z^{\prime} and enclusing the orign $z^{\prime}=0$

Simularly, we have

$$
-\frac{1}{4 \pi^{2}} \iint \frac{d z d z^{\prime}}{\zeta \zeta^{\prime}}=0
$$

when integration is effected first with regard to z round a z-curve enclosing both a root of ζ and a root of ζ^{\prime} for a given value of z^{\prime}, and then with regard to z^{\prime} round a z^{\prime}-curve passing throngh that value of z^{\prime} and enclosing the origin $z^{\prime}=0 \quad$ For we then have

$$
\int_{z-z_{1}}^{d z}=2 \pi \imath, \quad \int_{z-z_{2}}^{d z}=2 \pi \imath
$$

so that

$$
\begin{aligned}
\int \begin{array}{c}
d z \\
\left(\overline{\alpha z}+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)
\end{array} & =\begin{array}{c}
1 \\
(\alpha \delta-\beta \bar{\gamma}) \bar{z}^{\prime}
\end{array} \int\left(\begin{array}{c}
d z \\
z-z_{1}
\end{array}-\begin{array}{c}
d z \\
z-z_{2}
\end{array}\right) \\
& =0 .
\end{aligned}
$$

Next, let integration with regard to z^{\prime} be effected before integration with regard to z Indicating this order in the same way as before, we consider

$$
\iint_{\left(\alpha z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)}
$$

and then, from the defintion of the symifieance of a double integral, we have

$$
\begin{aligned}
I=\iint_{\left(\alpha z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)} & =-\iint_{\left(\alpha z+\beta z^{\prime}\right.} \frac{d z^{\prime} d z}{\left.\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)} \\
& =-\left.\int\right|_{\zeta \xi^{\prime}} ^{d z^{\prime} d z}
\end{aligned}
$$

Take in the z^{\prime}-phane a small smple z^{\prime}-curve enclosing a noot z_{1}^{\prime} of ζ but not a root z_{2}^{\prime} of ζ^{\prime}, for a giveril value of z, where

$$
\therefore_{1}^{\prime}=-\frac{\alpha}{\beta} z, \quad z_{2}^{\prime}=-\frac{\gamma}{\delta} z,
$$

effect the integration with icgatd to z^{\prime} round this curve and then effect the metegration with regad to z romd a smople curve through the gien value of z anclosing the z-origin, then

$$
-\frac{1}{4 \pi^{2}} \iint_{\zeta \zeta^{\prime}}^{d z^{\prime} d z}=-\frac{1}{J\left(\zeta, \zeta^{\prime}\right)^{\prime}}
$$

and so

$$
-\frac{1}{4 \pi^{2}} \iint_{\left(\alpha z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)}=\stackrel{1}{d z d z^{\prime}} \stackrel{1}{J\left(\zeta, \overline{\zeta^{\prime}}\right)}
$$

in thes case also
Simianly, when integration with regad t o z^{\prime} is effected first, romed is small simple z-ruve onclosing a wot of ζ but not a root of ζ fon a given value of z, and then integration is effected with regard to z round a smple curve through the value of z enclosing the z-origin, we find

$$
-\frac{1}{4 \pi^{2}} \iint_{\left(\alpha z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)} \frac{d z d z^{\prime}}{}=\stackrel{1}{J\left(\zeta^{\prime}, \zeta\right)}
$$

Lastly, when integration with regard to z^{\prime} is effected first, round a small simple z^{\prime}-curve enclosing both a root of ζ and a root of ζ^{\prime} for a given value of z, and afterwards integration is cffected with regard to z round a smple curve, passing through the value of z and enclosing the z-origin, we find

$$
-{\underset{4}{4} \pi^{2}}_{1}^{\int} \int_{\left(\alpha z+\beta z^{\prime}\right)} \frac{d z d z^{\prime}}{\left(\gamma z+\delta \overline{z^{\prime}}\right)}=0
$$

Summng up, we can nay thut the value of the double integral

$$
-\frac{1}{4 \pi^{2}} \iint_{\left(\alpha z+\beta z^{\prime}\right)\left(\gamma z+\delta z^{\prime}\right)} \frac{d z d z^{\prime}}{}
$$

is independent of the order of integration, that it is $\left.\begin{array}{c}1 \\ J \\ \zeta\end{array} \zeta^{\prime}\right)$, where

$$
J\left(\zeta, \zeta^{\prime}\right)=\alpha \delta-\beta \gamma,
$$

when integratzon is effected round a curve enclosing a root of ζ, where $\zeta=\alpha z+\beta z^{\prime}$, but not a root of ζ^{\prime}, where $\zeta^{\prime}=\gamma^{z}+\delta z^{\prime}$, that it is $\frac{1}{J\left(\zeta^{\prime}, \zeta\right)},=-\begin{gathered}1 \\ J\left(\zeta, \zeta^{\prime}\right)\end{gathered}$, when integration is effected nound a curve enclosing a root of ζ^{\prime} but not a root of ζ, and that it us zero when integration is effected round a curve enclosing both a root of ζ and a root of ζ^{\prime}.

And, of course, the value is zero when the integration is effected round a region that does not enclose any zero of $\boldsymbol{\zeta}$ or of ζ^{\prime}.

Example IV The preceding result cannot be apphed when the mitial assumption, viz. that $a \delta-\beta \gamma$ is different from zero, is not satisfied. In that case, we have to deal with

$$
\iint_{\left(\alpha z+\beta z^{\prime}\right)^{2}}^{d z d z^{\prime}}
$$

When the integral is taken round the place 0,0 in either of the ways indicated in the construction of the last result, the value of the double integral is zero

Example V From III and IV, we infer the following results relating to the double untcgral

$$
-\frac{1}{4 \pi^{2}} \iint_{\lambda z^{\prime}+2 \mu z z^{\prime}+\rho z^{2}} d z d z^{\prime}
$$

There are two cases, according as μ^{2} is not, of is, equal to $\lambda \rho$
(1) Suppose that $\mu^{2}-\lambda \rho$ is not zeru When integration is effected in either plane, round a small simple curve enclosing the root of $\lambda z+\left\{\mu+\left(\mu^{2}-\lambda \rho\right)^{\frac{t}{2}}\right\} z^{\prime}=0$ but not the root of $\lambda z+\left\{\mu-\left(\mu^{2}-\lambda \rho\right)^{\frac{1}{2}}\right\} z^{\prime}=0$, and the round a small simple curve enclosing the origin in the other plane, the value of the double integral is

$$
-\frac{1}{2}\left(\mu^{2}-\lambda \rho\right)^{-\frac{1}{2}}
$$

When integration is effected in ether plane, round a small sumple curve enclosing the root of $\lambda z+\left\{\mu-\left(\mu^{2}-\lambda \rho\right)^{i}\right\} z^{\prime}=0$ but not the root of $\lambda z+\left\{\mu+\left(\mu^{2}-\lambda \rho\right)^{2}\right\} z^{\prime}=0$, and then round a small simple curve enclosing the orign in the other plane, the value of the double integral is

$$
\frac{1}{2}\left(\mu^{2}-\lambda \rho\right)^{-\frac{1}{2}}
$$

And when integration is effected in either plane, round a small simple curve enclosing both roots of $\lambda z^{2}+2 \mu z z^{\prime}+\rho z^{\prime 9}=0$, and then round a small simple curve enclosing the ongm in the other plane, the value of the double integral us zero.
(in) Suppose that $\mu^{2}-\lambda \rho=0$. When the integral is taken round the place 0,0 in any of the ways indicated for the preceding case, the value of the double integral is zero.

Example VI. Let

$$
P=z^{\prime n}\left(\gamma_{0}+\gamma_{1} z^{\prime}+\ldots\right), \quad Q=z^{\prime n}\left(\delta_{0}+\delta_{1} z^{\prime}+.\right),
$$

where γ_{0} and δ_{0} are different from zero and (for the immediate purpose) m and n are positive real quantities, not necessarily integers. We require the value of

$$
-\frac{1}{4 \pi^{2}} \iint_{u v}^{J} \underset{u}{(u, v)} d z d z^{\prime}
$$

where $u=\alpha z+P, v=\beta z+Q$, when the integration is effected, first, with regard to z round a small simple closed z-curve enclosing a root of u (but not a root of v) for a value of z^{\prime}, and, then, with regard to z^{\prime} round a small simple closed curve, passing through that value of z^{\prime} and enclosing the z^{\prime}-origin We also assume that $\alpha Q-\beta P$ does not vanish identically. Now

$$
J=\alpha z^{\prime n-1}\left\{n \delta_{0}+(n+1) \delta_{1} z^{\prime}+\ldots\right\}-\beta z^{\prime m-1}\left\{m \gamma_{0}+(n+1) \gamma_{1} z^{\prime}+\right\}
$$

Thus, if $m<n$, the lowest power in J is $-m \beta \gamma_{n} z^{\prime m-1}$, if $m>n$, the lowest power is $n \alpha \delta_{0} z^{\prime n-1}$, if $m=n,=l$ say, the value of J is

$$
l z^{\prime \prime n-1}\left(\alpha \delta_{1}-\beta \gamma_{0}\right)+(l+1) z^{\prime m}\left(\alpha \delta_{1}-\beta \gamma_{1}\right)+
$$

For any sinall value of z^{\prime}, such that $\left|z^{\prime}\right|$ is less than the modulus of the smallest loot of I^{\prime} on Q wther than $z^{\prime}=0$, let,

$$
\alpha z_{1}+P=0, \quad \beta z_{y}+Q=0
$$

Then the double integral

$$
\begin{aligned}
& =-\frac{1}{4 \pi^{2}} \iint_{\alpha \beta\left(z-z_{1}\right)\left(z-z_{2}\right)} d z d z^{\prime} \\
& \left.=-\frac{2 \pi I}{4 \pi^{2}} \right\rvert\, \int_{\alpha\left(Z-\beta P^{\prime}\right.} d z^{\prime} .
\end{aligned}
$$

When $m<n$, the value of the right-hand side is n.
When $m>n$, the value of the right-hand sude is m
When $m=n,=l$, the value of the right-hand side is $l+k$, where $\alpha \delta_{l}-\beta \gamma_{k}$ is the first of the coefficients $\alpha \delta_{11}-\beta \gamma_{0}, \alpha \delta_{1}-\beta \gamma_{1}$, which does not vanush

In each of the three alternatives, the value of the ntegral ws the degree of the lowest power of z^{\prime} in the eluminant of $\alpha z+P$ and $\beta z+Q$, when z is eliminated Moreover, when m and n are integers, the value of the integral as then the multiplicity of 0,0 , as the sole ssoluted simultaneous zero of the uniform. functions

$$
\alpha z+P, \quad \beta z+Q
$$

enclosed by the frontier of integration.
Example VII. Next, let

$$
\begin{aligned}
& u=z^{m}+z^{m-1} f_{1}\left(z^{\prime}\right)+\ldots+f_{m}\left(z^{\prime}\right), \\
& v=z^{n}+z^{n-1} g_{1}\left(z^{\prime}\right)+\ldots+g_{n}\left(z^{\prime}\right),
\end{aligned}
$$

where the functions u and v are independent and have no common factor of thelr own form, and all the coefficients $f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{n}$ are functions of z^{\prime} which are regular m the vicinity of $z^{\prime}=0$ and vansh with z^{\prime} We require the value of the double integral

$$
-\frac{1}{4 \pi^{2}} \iint \frac{J(u, v)}{u v} d z d z^{\prime},
$$

taken (as have been the preceding integrals) round a frontici, which encloses the place 0,0 , and cncloses no other smultaneous zero of u and v Let

$$
u=\left(z-z_{1}\right)\left(z-z_{2}\right) \quad \ldots \cdot\left(z-z_{1 n}\right), \quad v=\left(z-\zeta_{1}\right)\left(z-\zeta_{2}\right) . \quad\left(z-\zeta_{n}\right),
$$

where each of the quantines $z_{1}, \quad, \hat{i}_{n}, \zeta_{1}, \quad, \zeta_{n}$ is a regular function of positive powers of $z^{\prime \mu}$, where μ is a positive rational fraction, and where each of these quantities vamshes with z^{\prime} The chommant of u and v is

$$
\prod_{r-1}^{m} \prod_{s-1}^{\prime \prime}\left(\varepsilon_{r}-\zeta_{d}\right)
$$

If, when $z_{1}-\zeta_{1}$ is arranged in ascoming (fractonal or integral) powers of z^{\prime}, the lowest power of z^{\prime} has an modex $\mu_{2, a}$, and if

$$
\sum_{i=1}^{m} \sum_{\pi=-1}^{n} \mu_{r, n}=M
$$

the chmmant of u and v is

$$
z^{\prime M} \phi\left(z^{\prime}\right),
$$

where $\phi(0)$ is not zero The magnitude M is an integer, mantently finte it is the measure of the multipheity of 0,0 , as an isolated zero common to u and v

For the range of integration, first take a value z^{\prime} of modulus smaller than the root of $\phi\left(z^{\prime}\right)$ whech has the smallest modulus I_{n} the z-plane mark all the quantities $z_{1}, \quad, z_{n}, \zeta_{1}, ., \zeta_{n}$, which ane functions of this value of z^{\prime}, and draw a simple closed z-curve, enclosing all the places z_{1}, \quad, τ_{m} and none of the places $\zeta_{1}, \quad, \zeta_{n}$. We take the integral round this z-curse, when this first integıation has been effected, we integrate with tegard to z^{\prime} along a small sumple closed z^{\prime}-curve, through the place for the assigned value of z^{\prime} and enclosing the z^{\prime}-origm

We have

$$
\frac{J}{u v}={\underset{r}{2}=1}_{i m}^{\sum_{k=1}^{n}} \begin{gathered}
-\zeta_{s}^{\prime}+z_{r}^{\prime} \\
\left(z-z_{r}\right)\left(z-\zeta_{s}\right)
\end{gathered},
$$

where $z_{r}^{\prime}=\frac{d z_{r}}{d z^{\prime}}$ and $\zeta_{B}^{\prime}=\frac{d \zeta_{A}}{d z^{\prime}}$, hence

$$
-\frac{1}{4 \pi^{2}} \iint_{u v}^{J(u, n)} d z d z^{\prime}=-\frac{2 \pi i}{4 \pi^{2}}{\underset{r}{m=1}}_{m}^{\sum_{s=1}^{n}} \int_{z_{r}^{\prime}-\zeta_{s}^{\prime}}^{z_{z}^{\prime}-\zeta_{s}^{\prime}} d z^{\prime} .
$$

But the lowest power of z^{\prime} in $z,-\zeta_{\theta}$ is $z^{\prime \mu} \mu_{r x} \quad$ Hence

$$
-\frac{1}{4 \pi^{2}} \iint \frac{J(u, v)}{u v} d z d z^{\prime}=\sum_{r=1}^{m} \sum_{s=1}^{n} \mu_{r, n}=M,
$$

that is, the value of the double integral, taken over the range inducated, is the
measure of the multiplicaty of 0,0 , as an asolated smultaneous zero of the functions u and v, which are supposed to be independent and to be devord of any common factor of theor own form

Corollary Two or more of the quantities $z_{1}, ., z_{m}$ may be equal, or they may be equal in groups, and, nimbarly, two or more of the quantities ζ_{1}. . , ζ_{n} may be equal, or they may be equal in groups. whrle, after the hypothesis an to the functions u and v, no one of the quantities ζ is equal to any of the quantities z_{1}, \ldots, z_{m} The value of the donble untegral over the ordicated range stull is M

Note 1 If the range of integratom, enclosing 0, 0 and no other smoultraeous zero of $1 /$ and v, is chosen so that the z-curve (for a value of z^{\prime}) concloses all the places $\zeta_{1}, ., \zeta_{n}$ and no one of the places z_{1}, \quad, z_{m}, and the z^{\prime}-cuse is drawn as before, the value of the double integral becomes $-M$

Note 2 We have

$$
-\frac{1}{4 \pi^{2}} \iint_{u}^{J(\prime \prime, ")} d z d z^{\prime}=\frac{1}{4 \pi^{2}} \iint_{\substack{J(u, v) \\(1 \prime \prime}} d z^{\prime} d z
$$

When mitegration is effected hast with regad to z^{\prime}, round a curve cuchening all the roots of $u=0$ and no root of $2=0$ for an assigned value of z, and then bound d z-curve through the value and enclosing the z-orign, we stall have

$$
-\frac{1}{4 \pi^{2}} \iint \frac{(u, v)}{u v} d z d z^{\prime}=M
$$

In othes words, the walue of the double antegral is independert of the order of entegnation

Example Y1II Let a and β be nom-maruble guantities, of firnte modula, let c, c^{\prime} be a level place fon turo vegular fanctions, f and g, such that

$$
f\left(r, c^{\prime}\right)-x=0, \quad!\left(c, c^{\prime}\right)-\beta=0
$$

and let $j^{\prime}\left(z, z^{\prime}\right)-\alpha, g\left(z, z^{\prime}\right)-\beta$. be independent, and huve no common fuctur
 value of the double integral

$$
-\frac{1}{4 \pi^{2}} \iint_{\left\{f\left(z, z^{\prime}\right)-\alpha\right\}\left\{g\left(z, z^{\prime}\right)-\beta\right\}} d z d z^{\prime}
$$

taken first round a small stmple closed curve th the z-plane whoch, for an assugned small value of z^{\prime}, encloses all the roots of $f\left(z, z^{\prime}\right)=\alpha$ and none of the roots of $g\left(z, z^{\prime}\right)=\beta$, and then round a small simple closed curve, through that malue of z^{\prime} and erclosing the z^{\prime}-origin

The result follows from the last example by writing

$$
u=f\left(z \quad z^{\prime}\right)-\alpha, \quad v=g\left(z, z^{\prime}\right)-\beta
$$

the multuplicity of c, c^{\prime} as a level place for f and g is its multipheity as a zero for " and v^{*}.

[^34]
Algebranc functions in general.

101. Hitherto, all the subjects of integration in the double integrals that have been considered, have been unfform functions. Bearing in mind the extraordinary importance of Riemann's investigations connected with the simple integrals of algebraic functions, we should naturally seek the generalisation of that work for algebrace functions of two variables

Into that theory I do not propose to enter in detall In one sense, it is enough for me to refer to the long series of valuable researches by Picaid* All that will be done here is to submit one or two simple propositions, whion there is a single dependent vanable, partly from the standpomt of the general theory of finctions and without regard to the theory of the singularities of surfaces, partly also to state the corresponding propositions when we have to deal with the case when the findamental algebrace equations provide two dependent varables and not one alone, the number of independent variables always being two

Suppose then that we have, in the first place, a single irreducible algehnac equation

$$
f\left(w^{\prime}, z, z^{\prime}\right)=0
$$

expressing w as an algebianc fonction of z and z^{\prime}, and assume that the equation is of onder m in w, so that w is m-valued Any ratomal function in the field of variation is of the form $R\left(u, z, z^{\prime}\right)$, where R_{1}, the quotient of two prlynomials in all the variables w, z, z^{\prime} To this rational fimetion $R\left(w, z, z^{\prime}\right)$ a canomeal and recognisable form can be given, the proposition, tating its form, can be established in the same kind of way as for the corresponding proposition when there is only a single independent variable

Let the m roots of the fundamental equation $f\left(u, z, z^{\prime}\right)=0$ be denoted by $w_{1}, w_{2}, \ldots, w_{m}$ Then, for any positive integes n, the quantity

$$
w_{1}^{n} R\left(w_{1}, z, z^{\prime}\right)+w_{2}^{n} R\left(w_{n}, z, z^{\prime}\right)+.+w_{m}{ }^{n} R\left(w_{m}, z, z^{\prime}\right)
$$

is a symmetric function of the roots w_{1}, \ldots, w_{m} of the fundamental equation, having rational functions of z and z^{\prime} for the varous symmetrie combinations of the roots, it is therefore a rational function of z and z^{\prime} Denoting this rational function by $P_{n}\left(z, z^{\prime}\right)$, we have

$$
\sum_{r=1}^{m} w_{r}^{n} R\left(w_{r}, z, z^{\prime}\right)=P_{n}\left(z, z^{\prime}\right) .
$$

This result holds for all integers n, hence, taking it for $n=0,1, \ldots, m-1$, we have m equations, each linear in the m quantities $R\left(w_{1}, z, z^{\prime}\right), \ldots, R\left(w_{m}, z, z^{\prime}\right)$.

[^35]Solving these m linear equations for the m functions $R\left(w, z, z^{\prime}\right)$, we have

The determinant on the left-hand side is the product of the differences of all the ronts of the fundamental equation $f\left(w, z, z^{\prime}\right)=0$ regarded as an equation in w, and is usually denoted by

$$
\zeta\left(w_{1}, w_{2}, \ldots, w_{m}\right)
$$

so that, from this definition of ζ, we have

$$
\pm \zeta\left(w_{1}, w_{2}, ., w_{m}\right)=\left(w_{1}-w_{n}\right)\left(w_{1}-w_{1}\right) \quad . \quad\left(w_{1}-w_{m}\right) \zeta\left(w_{3}, \quad, w_{n}\right)
$$

On the right-hand sude, each of the quantities $l^{\prime},\left(z, z^{\prime}\right)$ has, as its coefficuent a determinant of the roots w_{y}, \quad, w_{m}, and in each case, thes determinant can be expressed as a product of $\zeta\left(w_{2}, \ldots, w_{m}\right)$ and a symmetric function of w_{2}, \ldots, w_{m} Thus the coefficient of $P_{n}\left(z, z^{\prime}\right)$ is $w_{2} w_{n} . w_{m} \zeta\left(w_{2}, \quad . w_{m}\right)$,
 Hence dividing out by $\zeta\left(w_{2}, \quad, w_{m}\right)$, we have

$$
\begin{gathered}
\left(w_{1}-w_{2}\right)\left(w_{1}-w_{0}\right) \quad\left(w_{1}-w_{m}\right) R\left(w_{1}, z, z^{\prime}\right) \\
=P_{0} s_{n}+I_{1}^{\prime} s_{1}+. .+I_{1,1-1} s_{m-1},
\end{gathered}
$$

where $s_{0}, s_{1}, \quad, s_{1,-1}$ are the symmetric functions of $w_{s}, ., w_{m}$
Now by the algelnac equation $f\left(w, z, z^{\prime}\right)=0$, ach symmetric function of w_{2}, ., w_{m} can be expressed as a polynomal in w_{3}, having rational functions of z for its coefficients. Also

$$
A\left(w_{1}-w_{2}\right)\left(w_{1}-w_{\imath}\right) \cdot\left(w_{1}-w_{2 n}\right)=\left(\frac{\partial f}{\partial w}\right)_{w=w_{1}},
$$

where A is the coeffictent of $w_{1}{ }^{m}$ in $f^{\prime}\left(w, z, z^{\prime}\right)$ Hence

$$
\left(\begin{array}{l}
\partial f \\
\partial \\
\partial
\end{array}\right)_{1} R\left(w_{1}, z, z^{\prime}\right)=\Theta\left(w_{1}, z, z^{\prime}\right)
$$

where Θ is a polynomial in w_{1}, which can always be made of degree $₹ m-1$ by use of the equation $f^{\prime}\left(w, z, z^{\prime}\right)=0$, and the eoefficients in this polynomial are rational functions of z and z^{\prime}

A corresponding expression holds for each of the functions $R\left(w_{2}, z, z^{\prime}\right)$, . , $R\left(w_{m}, z, z^{\prime}\right)$, all the polynomials $\Theta\left(w, z, z^{\prime}\right)$ having the same cuefficients in the form of rational functions of z and z^{\prime}. Consequently, when we denote any root of our algebrate equation

$$
f\left(w, z, z^{\prime}\right)=0
$$

simply by w, any rational function $R\left(w, z, z^{\prime}\right)$ of all the variables can be expressed in the form

$$
R\left(w, z, z^{\prime}\right)=\frac{\Theta\left(w, z, z^{\prime}\right)}{\frac{\partial f}{\partial w}}
$$

where $\Theta\left(w, z, z^{\prime}\right)$ is a polynomal in w of degree $₹ m-1$, the degree of $f\left(w, z, z^{\prime}\right)=0$ in u beng m, and where the polynomal has rational functions of z and z^{\prime} for the coefficients of the powers of w

This is the generalisation of the well-known theorem of Riemann on the expression of functions that are umform functions of position on a Remann surface*

Ar 1 Let the fundrment il equation be
and let

$$
\begin{aligned}
& w^{\prime 2}+z^{2}+z^{\prime 2}=1, \\
& R=\frac{A z+A^{\prime} z^{\prime}+C}{} \begin{array}{l}
1+a^{\prime} z^{\prime}+z^{\prime} w
\end{array}
\end{aligned}
$$

There ane two calnex of R, in the oxpresssed value, and R^{\prime}, where

Hence, tollowng the gencial usument, we have

$$
w R-w R^{\prime}=-2 m^{\prime} x^{\prime}\left(A z+A^{\prime} z^{\prime}-C^{\prime}\left(\alpha z+a^{\prime} z^{\prime}\right)=2 \theta,\right.
$$

$$
R=\frac{w l^{\prime}+1!}{"}
$$

whe hatablislex the proposition
E. 2 When the fumdmental equation is

$$
w^{1}+i^{3}+z^{1}=1
$$

obtanio caumbal eapremsons for

$$
\begin{aligned}
& \text { (11) } \begin{array}{c}
a^{2}+b z a+r^{2}+w^{2} \\
i^{2} z^{2}+b^{\prime} z^{\prime} u+i^{\prime} w^{2}
\end{array}
\end{aligned}
$$

Fofe Thete ane of course particular methody bettel adapted to particular cases than 1s the general method whech apphen to all cases

Tlum the functom

$$
R(u, z)=\frac{A z+A^{\prime} z^{\prime}+U^{\prime}+r}{u z+b z^{\prime}+c^{\prime}}
$$

when $\mu n^{\prime \prime}+z^{\prime}+z^{\prime \prime}=1$ in the governing algelranc equatom, gives
and \cdots

$$
m^{2} R(u, z)=\frac{L+M w+N w^{2}}{\left(\alpha z+b z^{2}\right)^{2}+b^{3}\left(1-z^{3}-t^{\prime}\right)^{\prime}}
$$

where L, V, N are polynomuly $\mathrm{m} z$ and z of degrees five, four, three respectively
102. When we have to deal with the case, in which there are a couple of algebrace functions w and w^{\prime} given by two algebrac equations

$$
\begin{gathered}
f^{\prime}\left(w, w^{\prime}, z, z^{\prime}\right)=0, \quad g\left(w, w^{\prime}, z, z^{\prime}\right)=0, \\
\text { * See my Theony of Functions, \& } 399
\end{gathered}
$$

It is desirable to have a canomical fonm of the most general ratomal function, we shall prove that thes canoneal form 15

$$
\frac{\Theta\left(w, w^{\prime}, z, z^{\prime}\right)}{J\left(\frac{f, g}{w, u^{\prime}}\right)}
$$

whern G^{-}in a polynomial in w and w^{\prime}, having rational tunctoons it z and z^{\prime} tor its coefficients

Let f be of degree w in w and w^{\prime} combmed, and g of degree ${ }^{\prime}$ ni w^{\prime} and w^{\prime} combned that is to say, if w and w^{\prime} were Cantesman phane real comduatern and if $f=0$ and $g=0$ were loce in that w, w^{\prime} plane, $f=0$ and $g=0$ would be plane curves of degreces m and n reupectively Construct the u-eliminant if t and g by chmmating w^{\prime} between $f=0$ and $a=0$, and denote a by $W^{\text {r }}$, then from the oudmaty processes of algebra, we know that

$$
W=A t+B q,
$$

where A is a polynomal in w of degire $m m-m$, and in w^{\prime} of degrere $n-1 B_{1}$ a polynomal in w of rlegree $m m-n$, and m w^{\prime} of degiee $m-1$, and W, not contaming u^{\prime} is of degree $m=\frac{\text { in }}{} w^{\prime}$ Sumbaly, the w^{\prime}-ehmmant of t and g, obtamed by ehmonating w between $t=0$ and $g=0$. can be put moto the torm

$$
\left.W^{\prime}=0 y+l\right) g
$$

where W^{\prime} is of degree $m m$ in u^{\prime} alones, and does mit mulve ${ }^{\prime}$
There are men roots of $W=0$, "xpressing each w an one of $m n$ functions of z and z^{\prime}, and there are likewise m"t roots of $W^{\prime}=0$ The men combinations of one root of $W=0$ wath one root of $W^{\prime \prime}=0$, which mak.

$$
f=0, \quad y=0
$$

ammaltaneonsly, de called the conguous pans the combinatoms are determined by the ordmary processes of algebra The remaming men (m"-1) combmations of routs of $W=0$ and $W^{\prime}=0$ are called the non-congruous pars, they all satisty $\Delta=0$, where

$$
\Delta=A I)-B C^{\prime}
$$

Now take a congruous pan of roots, say w_{1} and w^{\prime}. they satisty $f=0$, $g=0, W=0$ We have

$$
W=A t+B g
$$

identically, hence differentiating with respect to w and w^{\prime}, and inserting the par of congruous roots after differentiation, we have

$$
\frac{\partial W}{\partial w_{1}}=A \frac{\partial f}{\partial w_{1}}+B \frac{\partial g}{\partial w_{1}}, \quad 0=A \frac{\partial f}{\partial w_{1}^{\prime}}+B \frac{\partial g}{\partial u_{1}^{\prime}}
$$

Similarly we have

$$
0=C \frac{\partial f}{\partial w_{1}}+D \frac{\partial g}{\partial w_{1}}, \quad \frac{\partial w^{\prime}}{\partial w_{1}^{\prime}}=C \frac{\partial f}{\partial w_{1}^{\prime}}+D \frac{\partial g}{\partial w_{1}^{\prime}}
$$

Hence, for the congruous par of roots, we have
that is ,

$$
\left.\left|\begin{array}{cc}
\frac{\partial W}{\partial w_{1}}, & 0 \\
0, & \frac{\partial W^{\prime}}{\partial w_{3}^{\prime}}
\end{array}\right| \begin{array}{cc}
A \frac{\partial f}{\partial w_{1}}+B \frac{\partial g}{\partial w_{1}}, & A \frac{\partial f}{\partial w_{1}^{\prime}}+B \frac{\partial g}{\partial w_{1}^{\prime}} \\
C \frac{\partial f^{\prime}}{\partial w_{1}^{\prime}}+D \frac{\partial g}{\partial w_{1}}, & C \frac{\partial f}{\partial w_{1}^{\prime}}+D \frac{\partial g}{\partial w_{1}^{\prime}}
\end{array} \right\rvert\,
$$

$$
\frac{\partial W}{\partial w_{1}} \partial W^{\prime} \partial w_{1}^{\prime}=\Delta_{1} J\binom{\dot{f}, g}{w_{1}^{\prime}, w_{1}^{\prime}}=\Delta_{1} J_{1}
$$

say, whese Δ_{1} is the valuc of Δ for the conguons par of roots w_{1} and w_{1}^{\prime}, and likewise for I_{1},

Simularly for each congruous par
Let our rational function of $w, m^{\prime}, z, z^{\prime}$, which is to be expressed in a canontcal form as stated, be denoted motally by $R\left(w, w^{\prime}, z, z^{\prime}\right)$, and let 1 to value, for a conguous pur of roots w_{μ} and $\mu^{\prime}{ }_{\mu}^{\prime}$, be denoted by K_{μ} Then, talang all the congruous pars of roots, we have

$$
\begin{aligned}
\sum_{\mu=1}^{m n} w_{\mu}^{r} R_{\mu} & =a \text { rational function of } z \text { and } z^{\prime} \\
& =I_{\nu}^{\prime}\left(z, z^{\prime}\right),
\end{aligned}
$$

sdy, the value of $P_{v}\left(z, z^{\prime}\right)$ is obtianable by the usual processes of algebra, and the result holds for all integer values of r Hence, taking $r=0,1, \quad, m n-1$ in succession, we have

$$
\begin{array}{cccc}
R_{1}+R_{2} & +\ldots+R_{m n \prime} & =P_{0} \\
w_{1} R_{1}+w_{2} R_{2} & +. . & +w_{m n} R_{m n} & =P_{1} \\
\cdots & \cdots . \cdot & \cdot & \cdot \\
w_{1}^{m n-1} R_{1}+w_{2}^{m n-1} R_{2}+\ldots & +w_{m n}^{m n-1} R_{m n} & =P_{m n-1} \cdot
\end{array}
$$

These equations can be solved for the $m n-1$ quantities K_{1}, K_{2}, which oceur linearly Proceeding as before in $\$ 101$, we find

$$
R_{1}=\frac{\Phi\left(w_{1}, z_{1}, z^{\prime}\right)}{\partial W},
$$

where Φ is a polynomial in w_{1}, having rational functions of z and z^{\prime} for its cocfficients Multiplyng the denommator and the numerator by $\frac{\partial W^{\prime}}{\partial w_{1}^{\prime \prime}}$, we have

$$
\begin{aligned}
R_{1} & =\frac{\Phi\left(w_{1}, z, z^{\prime}\right) \frac{\partial W^{\prime}}{\partial w_{1}^{\prime}}}{\frac{\partial W}{\partial w_{1}} \frac{\partial W^{\prime}}{\partial w_{1}^{\prime}}} \\
& =\frac{S\left(u_{1}, w_{1}^{\prime}, z, z^{\prime}\right)}{\frac{\partial W}{\partial w_{1}} \partial \overline{W^{\prime}}},
\end{aligned}
$$

where $S_{\text {is }}$ a polynomial in w_{1} and w_{1}^{\prime}, having rational functions of z and z^{\prime} for its coefficients But

$$
\frac{\partial W}{\partial u_{1}^{\prime}} \frac{\partial W^{\prime}}{\partial w_{1}^{\prime}}=J_{1} \Delta_{1}
$$

and therefore

$$
R_{1}=\begin{array}{cc}
S\left(w_{1}, w_{1}^{\prime}, z, z^{\prime}\right) & 1 \\
J_{1} & \Delta_{1}
\end{array}
$$

Now

$$
\Delta_{1} \Delta_{2} \quad \Delta_{m n}
$$

Is a symmetre function of w_{1} and m_{1}^{\prime}, w_{2} and w_{2}^{\prime}, , the pars of congrious roots, and it is therefore expressible as a rational function of z and z^{\prime}, say

$$
\Delta_{1} \Delta_{z} \cdot \Delta_{m n}=T^{\prime}\left(z, z^{\prime}\right)
$$

Simularly

$$
\Delta_{2} . . \Delta_{m, \ldots}
$$

is a symmetric function of all the congruous pars of roots other than the parr w_{1} and w_{1}^{\prime}, hence it is expressible as a polynomal tuaction of w_{1}, w_{1}^{\prime}, having rational functions of z and z^{\prime} for its coefficents, say

Consequently

$$
\Delta_{2}, \Delta_{m n}=Q\left(w_{1}, w_{1}^{\prime}, z, z^{\prime}\right)
$$

Hence

$$
\begin{array}{r}
1 \\
\Delta_{1}
\end{array}=\frac{Q\left(w_{1}, w_{1}^{\prime}, z, z^{\prime}\right)}{T}\left(z, z^{\prime}\right)
$$

$$
\begin{aligned}
R_{1} & =r\left(w_{1}, w_{1}^{\prime}, z, z^{\prime}\right) Q\left(M_{1}, \mu_{1}^{\prime}, z, z^{\prime}\right) \\
T\left(z_{2}^{\prime} z^{\prime}\right) & J_{1} \\
& =\begin{array}{c}
(-)\left(w_{1}, w_{1}^{\prime}, z, z^{\prime}\right) \\
J_{1}
\end{array}
\end{aligned}
$$

on multplyng the polynomials S and $(\mathbb{Q}$, and absombeng the ational function $T\left(z, z^{\prime}\right)$ min the coefthcients of the product,

The sane conclusion holds for evely congrions par of roots We theretore ufer that every function, iational in the algebsuc field of $w, w^{\prime}, z, z^{\prime}$, where w and w^{\prime} are given by algebate chations

$$
f\left(u^{\prime}, u^{\prime}, z, z^{\prime}\right)=0, \quad g\left(u^{\prime}, u^{\prime}, z, z^{\prime}\right)=0,
$$

can be expressed in the form

$$
\left.\frac{\leftrightarrow\left(w, w^{\prime}, z, z^{\prime}\right)}{J\left(\frac{f}{\prime}, w^{\prime}, w^{\prime}\right.}\right)
$$

where $(-)$ is polynomal in w and w^{\prime}, having lational functions of z and z^{\prime} for its coefficients

Modifications in the degree of Θ m w and of its degree in mi may sometumes be effected by the use of the equatoons $f=0$ and $g=0$. These modifications, when they ae possible, do not affect the demomanator J, and only give equivalent expressions for the polynomal (Θ, it is for this reaton that the form is called canoncal, even though the expression for Θ may happen to be not unique

Note \ln establahnig the preceding form for the ritional function, two theorems concerming symmetric tunctions have beon quoted In artatiliractice, we can proceed as follows

Take

$$
t=\lambda w+\lambda^{\prime} w^{\prime},
$$

elimmate if from f and g, wo that they become

$$
F^{\prime}\left(t, w^{\prime}, z, z^{\prime}\right)=0, \quad \quad^{\prime}\left(1, n^{\prime}, z, z^{\prime}\right)=0
$$

of the rame degrecs $m t$ and w^{\prime} combned as are f and q respectively Elammate π^{\prime} letween $F^{\prime}=0$ and ($f^{\prime}=0$, No an to gre ane equition

$$
T=0
$$

of degree mu in t, having ratoual functions (trequently polsmomal fimatoms of z and $:^{\prime}$ fow its roefficuents

In the product $\Delta_{1} \Delta_{2} \quad \Delta_{m a n}$, whe have symmetac functions of the congrions patis of roots, lat such an one he

$$
\Sigma v_{1}^{m} m_{1} w_{1}^{\prime} n_{1}, c_{2}^{m m_{4}} m_{2}^{\prime \prime t_{2}},
$$

where the summation is ouse all the like tems obtaned liy permatmg the congroma pans in all pomble wass We then form the symmetrie function of the poots of the ripation $T=0$ seprescuted ly

$$
\sum t_{1}^{m_{1}+n_{1}} t_{2}^{m_{2}+n_{2}}
$$

In its expression we select the coefficient of

$$
\lambda^{m_{1} i m_{9}+} \quad \lambda^{m_{1} i \mu_{t}+}
$$

and remore the multmonnal numencal fintor

$$
\begin{array}{cc}
\left(m_{1}+n_{1}\right)^{\prime} & \left(m_{2}+n_{2}\right)^{\prime} \\
m_{1}^{\prime} m_{1}^{\prime} & m_{2}^{\prime} m_{2}^{\prime}
\end{array}
$$

the result is the wymuctric function iequred
Agthe, in the product $\Delta_{2} \Delta_{m n}$, we have symmethar functions of all the onghoous parss of roots except only the parr w_{1} and m_{1}^{\prime}. Let

$$
T=\left(t-t_{1}\right) T
$$

so that $t_{2}, t_{m n}$ are the roots of $T^{\prime}=0$ The coeftitents $m T^{\prime}$ are harm m the coefficients of T and are polynomials in t_{1}, thens, if

$$
\begin{aligned}
& T=\theta_{0} t^{m n}+\theta_{1} t^{m n-1}+\theta_{2} r^{m m n^{2}}+, \\
& T^{\prime}=\theta_{0} r^{m n n} \quad+\phi_{1} t^{m n-z}+\phi_{3} t^{m n}+
\end{aligned}
$$

we have
and therefore

$$
\phi_{1}-t_{1} \theta_{0}=\theta_{1}, \quad \phi_{2}-t_{1} \phi_{1}=\theta_{4}, \quad \phi_{3}-t_{1} \phi_{2}=\theta_{1},
$$

$$
\begin{aligned}
& \phi_{1}=\theta_{1}+t_{1} \theta_{0} \\
& \phi_{2}=\theta_{2}+t_{1} \theta_{1} \theta_{11}+t_{1}^{2} \theta_{0}^{2} \\
& \phi_{3}=\theta_{3}+t_{1} \theta_{2} \theta_{11}+t_{1}^{2} \theta_{1} \theta_{11}^{2}+t_{1}^{3} \theta_{10}^{3}
\end{aligned}
$$

and so on
An was the case with $\Delta_{1} \Delta_{2} \quad \Delta_{m n}$, which is a sum of coeftecients 111 a polynomial function of the coefticionts of T divided by a power of θ_{0}, so also the symmetric product $\Delta_{2} \Delta_{m n}$ is a sum of coefficients of powers of λ and λ^{\prime} in a polynomal function of the coefficients of T^{\prime} divided by a power of θ_{0}, that is, $\Delta_{2} \ldots \Delta_{m n}$ is a polynomial finction of the coefficients of $T^{\prime \prime}$, itself also polynomisl in t_{1} (that is, in w_{1} and w_{1}^{\prime}) divided by a power of θ_{0}

These are the two theorems used

E'a For particular equations, a given rational function is most easily discussed in an mitial form, not m a canoncal form, it is for the general theory that a canonical form is required, as it moludes all rational functions We may however take mexample, to whew the outhine of the reduetion to a canomeal form, but the process is only an evereise 11 higebra

Let the two fiondamental equations be

$$
f=w^{3}-w^{3}-A=0, \quad g=w^{2}+r^{\prime 2}-B=0,
$$

where A and B are given functions of z and z^{\prime} only Their Jacohan J, on the omission of a fuctor 6, is

$$
J=w w^{\prime}\left(u^{\prime}+w^{\prime}\right)
$$

We take the sumple rational function

$$
R=\begin{gathered}
1 \\
\|+Z
\end{gathered}
$$

where Z in any rational function of z and z^{\prime}, and we proceed to express it in a canonual foris

$$
\begin{gathered}
\prime\left(w, w^{\prime}, z, i^{\prime}\right) \\
J^{\prime}
\end{gathered}
$$

where P is a polynomial in u and w^{\prime}, having rational functions of a and z^{\prime} for its coefherents.

The W-ehnmant of f and g is

$$
W=2 u^{0}-2 A u^{3}+A^{2}-3 B w^{4}+3 B^{2} u^{2}-B^{\prime}=0
$$

Lat

$$
\pi+Z=t
$$

then the six values of t are grven by the equation
let

$$
2(t-Z)^{3}-3 B(t-Z)^{4}-2.1(t-Z)^{3}+3 J^{2}(t-Z)^{2}+A^{2}-B^{3}=0
$$

$$
\Theta=2 Z^{3}-3 B Z^{3}+21 Z^{3}+3 B^{2} Z^{3}+1^{2}-B^{3}
$$

bemg the term indepondent of t in the last equation, then

$$
\begin{aligned}
& -\frac{\theta}{i}=2 \frac{u^{u}-Z^{3}}{w+Z}-3 B^{w^{4}-Z^{4}} \frac{Z^{4}}{w+Z}-2 A^{w^{2}+Z^{3}} w+3 B^{u^{2}-Z^{2}} w \\
& =2 w^{5}-2 Z w^{4}+\left(2 Z^{2}-3 B\right) w^{3}+\left(3 B Z-21-2 Z^{\prime \prime}\right) w^{2} \\
& +\left(3 B-3 B Z+2 A Z+2 Z^{4}\right) w+3 B Z^{3}-3 B Z-2 A Z^{2}-2 Z^{3} \\
& =\Phi \text {, say }
\end{aligned}
$$

Consequently

$$
-\frac{\theta}{w_{1}+Z}{ }^{w_{1}}\left(w_{1}+w_{1}^{\prime}\right)=\left(w_{1}^{2}+w_{1} w_{1}^{\prime}\right) \Phi_{1}
$$

All terms in the right-hind side, which are of degree six and higher, tun be removed by uaing the equation $W_{1}=0$. These terms are

$$
2 w_{1}^{7}+\left(2 w_{1}^{\prime}-2 Z\right) w_{1}^{4}
$$

The term $2 c_{1}{ }^{7}$ is to be replnced by

$$
3 B w_{1}^{5}+2 A w_{1}^{4}-3 B^{2} w_{1}^{3}-\left(A^{2}-B^{3}\right) w_{1}
$$

and the terms $\left(2 w_{1}{ }^{\prime}-2 Z\right) w_{1}^{6}$ by

$$
\left(w_{1}^{\prime}-Z\right)\left\{3 B w_{1}^{4}+2 A w_{1}^{3}-3 B^{2} w_{1}^{2}-A^{2}+B^{3}\right\}
$$

When these changes are made, let the expression for Φ_{1} be

$$
\Phi_{1}=\rho_{1} w_{1}^{6}+\rho_{1} w_{1}^{4}+\rho_{2} w_{1}^{3}+\rho_{3} /_{1}^{2}+\rho_{4} w_{1}+\rho_{6}
$$

where the coefficients ρ are polynomal in ${ }^{\prime}$, and are rational in z and z^{\prime} Then finally, absorbing the rational function of 2 and z^{\prime} represented by $-\frac{1}{\theta}$ into the coefficients of Φ_{1}. we have

$$
\frac{1}{w+Z}=-\frac{w^{5}}{J}\left(\frac{\rho_{11}}{\theta} w^{5}+\frac{\rho_{1}}{\theta} w^{s}+\frac{\rho_{2}}{\theta} w^{3}+\frac{\rho_{3}}{\theta} w^{2}+\frac{\rho_{4}}{\theta} w+\frac{\rho_{5}}{\theta}\right),
$$

which is of the required type.
Equivalent forms are olituned tor the mmerator ly uning the equations $f=0, g=0$

Integrals of algebraic functions.

103. The development of the theory of metegrals, whether single on double, of algebrac functions when there are two independent complex variables, owen its man foundations to Picard* Here I shall only reatate one or two of the simplest results for the case when there are two imitial findamental algebrane equations

$$
f\left(w, w^{\prime}, z, z^{\prime}\right)=0, \quad g\left(w, w^{\prime}, z, z^{\prime}\right)=0
$$

defining two dependent varrables w and w^{\prime} as algobrac functions of z and z^{\prime}, the quantities f and g bemg polynomial in all therr arguments.

Writmg

$$
J\left(u^{\prime}, w^{\prime}\right)=\frac{\partial f}{\partial w} \frac{\partial g}{\partial w^{\prime}}-\frac{\partial f^{\prime}}{\partial w^{\prime}} \partial g=J\left(\frac{f^{\prime}, g}{u^{\prime}, w^{\prime}}\right),
$$

we have seen that, any rational function of all the variables can be expressed in the form

$$
\Leftrightarrow\left(\begin{array}{c}
\left.\Theta, w^{\prime}, z, z^{\prime}\right) \\
\\
\sqrt{\left(w, w^{\prime}\right)}
\end{array}\right.
$$

where $\Theta\left(w, w^{\prime}, z, z^{\prime}\right)$ is a polynomal in w and w^{\prime} having rational functions of z and z^{\prime} for its coefficients

Accordingly, following Picarl, we take our most general single integial of algebrace tunctions in the form

$$
\int \frac{Z d z^{\prime}-Z^{\prime} d z}{J\left(w, w^{\prime}\right)}
$$

where Z and Z^{\prime} possess the same general form as the preceding function (\rightarrow)
Integrals of this form are said to be of the first kind when, on the analogy of Abelian integrals, they have no infinities anywhere in the whole field of variation Picard proves \dagger that no integral of the first kind exists in connection with a single equation $F\left(w, z, z^{\prime}\right)=0$, when this single equation is quite general, and he shews \ddagger that, when such an integral does exist in connection with a less general single equation $F\left(w, z, z^{\prime}\right)=0$, the form of

[^36]the subject of integration must satisfy special preliminary relations, even though these necessary relations are not of themselves sufficient to secure the existence of the integral. Herc I shall proceed only so far as to obtain the corresponding necessary prelimmary relations affecting the form of the subject of integration in the foregoing single integral, if it is to exist in comnection with the two equations $f=0, g=0$

The quantitres Z and Z^{\prime} are polynomial in w and w^{\prime}, we proceed to shew that, if the integral is everywhere finte, they must be polynomal also in z and z^{\prime}, of limited order. The coefficients of the various combinations of powers of w and w^{\prime} are certanly rational functions of z and z^{\prime}, let any such coefficrent be

$$
\begin{aligned}
& S\left(z, z^{\prime}\right) \\
& \boldsymbol{R}\left(z, z^{\prime}\right)
\end{aligned}
$$

where R and S denote polynomals in z and z^{\prime}, and consider the integral

$$
\int \frac{Z d z^{\prime}}{J}
$$

Assigning any paranetric value to z, let $z^{\prime}=c^{\prime}$ be a zero of $k\left(z, z^{\prime}\right)$ for that value of z. (If there is no such zero, ic, if R is a function of z only, the zeros of R would make the integral infinte so that, for our purpose, R would then have to be constant) For that parametrie value of z, let the subject of integration be expanded in powers of $z^{\prime}-c^{\prime}$, then, whether $z^{\prime}=c^{\prime}$ does or lows not give a zero value too J, the subject of integration 1 --for every set of values of w and w^{\prime}-of the form

$$
\underset{\left(z^{\prime}-\frac{c^{\prime}}{c^{\prime}}\right)^{s}}{A^{\circ}}+\frac{A_{z-1}^{\left(z^{\prime}\right.}-\frac{\left.c^{\prime}\right)^{x-1}}{}+. \quad+\frac{A_{1}}{z^{\prime}-c^{\prime}}+\text { regular function of } z^{\prime}-c^{\prime},}{}
$$

in the mmednate vicinity of $z^{\prime}=c^{\prime}$, the positive integer s bang $\geqslant 1$ The integral would be infinte at $z^{\prime}=c^{\prime}$, unless all the quantities A_{1}, \ldots, A_{g} vamsh These quantities molve the parametric value of z, they can only vansh for all paranetric values by vanishing identically, that is, by having no powers of $z^{\prime}-c^{\prime}$ with negative indices Hence the polynomal $R\left(z, z^{\prime}\right)$, for any prametric value of z, can have no zero for a value of z^{\prime}. It thus cannot molve z^{\prime}, we have seen that it cannot be a function of z alone. hence $R\left(z, z^{\prime}\right)$ is a constant. The coefficient in question is a polynomal in z and z^{\prime}

Sumlarly for cuery coefficient in esther Z or Z^{\prime} in the integrals

$$
\int \frac{Z d z^{\prime}}{J}, \quad \int \stackrel{Z^{\prime} d z}{J}
$$

Consequently the quantities Z and Z^{\prime} are polynomial in all four arguments $w, w^{\prime}, z, z^{\prime}$. And we know that J is polynomal in those four arguments.

Next, as regards the limitations upon the orders of these polynomats Z and Z^{\prime}, we shall assume that $f\left(w, w^{\prime}, z, z^{\prime}\right)$ is a quite general polynomal
of order m in the four argaments combined, and that $g\left(w, u^{\prime}, z, z^{\prime}\right)$ is a similar polynomial of ordeı n. Then J is a polynomial of order $m+n-2$. It is easy to see, by an argument sumular to the preceding argument, that integrals cannot be finite for infinite values of z and of z^{\prime}, if the order of the polynomals Z and Z^{\prime} in all the four arguments combined $1 s$ greater than $m+n-4$.

We therefore infer, as a finst condition, that if the integral is to be finite at all places in the whole field of varnation, Z and Z^{\prime} must be polynomial in all the four variables of order $₹ m+n-4$, when f is the most general polynomal of order m and g is the most gemeral polynomial of order n.
104. The independent variables for the integrals have been taken to be z and z^{\prime}. but any two of the varables may thus be chosen, and the integral must, still reman finite. We proceed to give the corresponding and equivalent expressions. We have

$$
\begin{aligned}
& \frac{\partial f}{\partial w} d w+\frac{\partial f^{\prime}}{\partial w^{\prime}} d w^{\prime}+\frac{\partial f}{\partial z} d z+\frac{\partial f}{\partial z^{\prime}} d z^{\prime}=0 \\
& \frac{\partial g}{\partial w} d w+\frac{\partial g}{\partial w^{\prime}} d w^{\prime}+\frac{\partial g}{\partial z} d z+\frac{\partial g}{\partial z^{\prime}} d z^{\prime}=0
\end{aligned}
$$

so that, on the elmmation of $d w^{\prime}, d w, d z, d z^{\prime}$ in turn,

$$
\begin{aligned}
& J\left(w, w^{\prime}\right) d w+J\left(z, w^{\prime}\right) d z+J\left(z^{\prime}, w^{\prime}\right) d z^{\prime}=0 \\
& J\left(w^{\prime}, w\right) d w^{\prime}+J(z, w) d z+J\left(z^{\prime}, w^{\prime}\right) d z^{\prime}=0 \\
& J(w, z) d w+J\left(w^{\prime}, z\right) d w^{\prime}+J\left(z^{\prime}, z\right) d z^{\prime}=0 \\
& J\left(w, z^{\prime}\right) d w+J\left(w^{\prime}, z^{\prime}\right) d w^{\prime}+J\left(z, z^{\prime}\right) d z=0
\end{aligned}
$$

[Ting the first of these relations to substitute d for $d z^{\prime}$ in the differential element, we have

$$
\begin{aligned}
& \begin{aligned}
Z\left(d z^{\prime}-Z^{\prime} d z\right. & \frac{Z^{\prime} d z}{J\left(w, w^{\prime}\right)}
\end{aligned}=-\frac{Z}{J\left(w, w^{\prime}\right)}-\frac{Z\left(w, w^{\prime}\right) J\left(z^{\prime}, \overline{w^{\prime}}\right)}{J\left(w, w^{\prime}\right) d w+J\left(z, w^{\prime}\right) d z^{\prime}} \\
&=\frac{-Z d w}{J\left(z^{\prime}, w^{\prime}\right)}-Z^{\prime} J\left(z^{\prime}, w^{\prime}\right)+Z J\left(z, w^{\prime}\right) \\
& J\left(w, w^{\prime}\right) J\left(z^{\prime}, w^{\prime}\right)
\end{aligned}
$$

The differential element now is to be

$$
\begin{gathered}
W d z-Z d w \\
\bar{\Gamma}\left(\overline{z^{\prime}}, w^{\prime}\right)
\end{gathered}
$$

where $W_{\text {is }}$ a polynomial in all the four variables, we therefore take

$$
Z I\left(z, w^{\prime}\right)+Z^{\prime} J\left(z^{\prime}, w^{\prime}\right)+W J\left(w, w^{\prime}\right)=0
$$

Similarly, when we make z and w^{\prime} the independent variables, the differential telement of the integral of the first kind is

$$
\begin{gathered}
Z d w^{\prime}-W^{\prime} d z \\
-\bar{J}\left(z^{\prime}, w\right)
\end{gathered}
$$

where W^{\prime} is a polynomial in all the four variables, and

$$
Z J(z, w)+Z^{\prime} J\left(z^{\prime}, w\right)+W^{\prime} J\left(u^{\prime}, w^{\prime}\right)=0
$$

In the same way, we can take any parr out of the four as thr mdependent vauables, and thus obtam six expressions in all for the subject of integration. The six expressions are

$$
\begin{array}{ccc}
Z d z^{\prime}-Z^{\prime} d z & W d z-Z d w, & Z^{\prime} d v^{\prime}-W d z^{\prime} \\
J\left(w, w^{\prime}\right) & \frac{J\left(z, w^{\prime}\right)}{} \\
\left.Z d w^{\prime}\right), W^{\prime} d z & W^{\prime} d w-W d w^{\prime} & W^{\prime} d z-Z^{\prime} d v^{\prime} \\
\bar{J}\left(z^{\prime}, w\right) & \frac{J\left(z^{\prime}, z\right)}{}, & J\left(z, w^{\prime}\right)
\end{array}
$$

and the relations connecting the polynomials are

$$
\begin{aligned}
& Z J\left(z, w^{\prime}\right)+Z^{\prime} J\left(z^{\prime}, w^{\prime}\right)+W J\left(w^{\prime}, w^{\prime}\right)=0, \\
& Z J\left(z, w^{\prime}\right)+Z^{\prime} J\left(z^{\prime}, w\right)+W^{\prime} J\left(w^{\prime}, w\right)=0, \\
& Z^{\prime} J\left(z^{\prime}, z\right)+W J(w, z)+W^{\prime} J\left(w^{\prime}, z\right)=0, \\
& Z J\left(z, z^{\prime}\right)+W J\left(w, z^{\prime}\right)+W^{\prime} J\left(w^{\prime}, z^{\prime}\right)=0,
\end{aligned}
$$

wheth are always subgect to the two fundamental equations

$$
j=0, \quad g=0,
$$

durl are equivalent to only two independent equations Writing

$$
\begin{aligned}
& M=Z^{\frac{\partial f}{\partial z}}+Z^{\prime} \frac{\partial f}{\partial z^{\prime}}+W^{\frac{\partial f}{\partial w}}+W^{\prime} \frac{\partial f}{\partial w^{\prime}} \\
& N=Z_{\partial z}^{\partial g}+Z^{\prime} \frac{\partial g}{\partial z^{\prime}}+W^{\frac{\partial g}{\partial q^{\prime}}}+W^{\prime} \frac{\partial g}{\partial u^{\prime}}
\end{aligned}
$$

wr an express the first of the four equations in the form

$$
\left(M-W^{\prime} \frac{\partial f}{\partial w^{\prime}}\right)^{\partial w^{\prime}}-\left(N-W^{\prime} \frac{\partial g}{\partial w^{\prime}}\right) \frac{\partial f^{\prime}}{\partial w^{\prime}}=0
$$

that is,

$$
M \frac{\partial g}{\partial w^{\prime}}-N \frac{\partial f}{\partial w^{\prime}}=0
$$

The others similarly give

$$
\begin{aligned}
& M \frac{\partial g}{\partial w}-N \frac{\partial f}{\partial w}=0 \\
& M \frac{\partial g}{\partial z}-N \frac{\partial f}{\partial z}=0 \\
& M \frac{\partial g}{\partial z^{\prime}}-N \frac{\partial f}{\partial z^{\prime}}=0
\end{aligned}
$$

The fundamental equations $f=0$ and $g=0$ are independent of one another; hence we must have

$$
M=0, \quad N=0
$$

that is, the polynomals $Z, Z^{\prime}, W, W^{\prime}$ are such that

$$
\begin{aligned}
& W \frac{\partial f}{\partial w}+W^{\prime} \frac{\partial f}{\partial w^{\prime}}+Z \frac{\partial f}{\partial z}+Z^{\prime} \frac{\partial f}{\partial z^{\prime}}=0, \\
& W \frac{\partial g}{\partial w^{\prime}}+W^{\prime} \frac{\partial g}{\partial w^{\prime}}+Z \frac{\partial g}{\partial z}+Z^{\prime} \frac{\partial g}{\partial z^{\prime}}=0
\end{aligned}
$$

But these equations ree not satisfied necessarily as identities, they need only be satisfied in virtue of the permanent equations

$$
f=0, \quad g=0
$$

These relations ampose hmitations upon the forms of the polynomals $Z, Z^{\prime}, W, W^{\prime}$, which wecur in the differential element of in integral of the first kind

105 Lamtations arise from two other causes The first of these causes hers in the requirement that the condition of exact mutegrability shall be satisfied As regards this condition, we shall take it for one of the forms of the integral. and shall reduce it to an expressuon symmetncal 11 all the varmblen

The condition, that

$$
\frac{Z d z^{\prime}-Z^{\prime} d z}{J\left(v, w^{\prime}\right)}
$$

shall be a perfect differential, is

$$
\frac{d}{d z}\left(\frac{Z}{\bar{J}}\right)+\frac{d}{d z^{\prime}} \cdot\left(\frac{Z^{\prime}}{J}\right)=0 .
$$

Now sunce

$$
\begin{aligned}
& \frac{\partial f^{\prime}}{\partial z}+\frac{\partial f^{\prime}}{\partial w} \bar{z} \overline{\partial z}+\frac{\partial f^{\prime} \frac{\partial w^{\prime}}{\partial w^{\prime}} \overline{\partial z}}{}=0, \\
& \frac{\partial g}{\partial z}+\frac{\partial g}{\partial w} \frac{\partial w}{\partial z}+\frac{\partial q}{\partial w^{\prime}} \frac{\partial w^{\prime}}{\partial z}=0,
\end{aligned}
$$

we have

$$
J\left(w, w^{\prime}\right) \frac{\partial w}{\partial z}+J\left(z, w^{\prime}\right)=0, \quad J\left(w^{\prime}, w\right) \frac{\partial w^{\prime}}{\partial z}+J(z, w)=0
$$

and similarly

$$
J\left(w, w^{\prime}\right) \frac{\partial w}{\partial z^{\prime}}+J\left(z^{\prime}, w^{\prime}\right)=0, \quad J\left(w^{\prime}, w\right) \frac{\partial w^{\prime}}{\partial z^{\prime}}+J\left(z^{\prime}, w\right)=0 .
$$

The condition of integrability is therefore

$$
\begin{aligned}
& J\left(w, w^{\prime}\right)\left(\begin{array}{l}
\partial Z \\
\partial z
\end{array} \frac{\partial Z^{\prime}}{\partial z^{\prime}}\right)-\left\{\begin{array}{l}
\partial Z \\
\partial w \\
\partial w
\end{array}\left(z, w^{\prime}\right)+\frac{\partial Z^{\prime}}{\partial w} J\left(z^{\prime}, w^{\prime}\right)\right\} \\
& +\left\{\frac{\partial Z}{\left\{\bar{\lambda} w^{\prime}\right.} J(z, w)+\frac{\partial Z^{\prime}}{\partial w^{\prime}} J\left(z^{\prime}, w\right)\right\} \\
& \left.-Z\left\{\frac{\partial J\left(w, w^{\prime}\right)}{\partial z}-\frac{J\left(z, w^{\prime}\right)}{J\left(w^{\prime}, w^{\prime}\right)} \frac{\partial\left(w, w^{\prime}\right)}{\partial w}+\frac{J(z, w)}{\partial J}+\frac{J\left(w, w^{\prime}\right)}{J\left(w, w^{\prime}\right)} \quad \partial w^{\prime}\right)\right\} \\
& \left.\left.-Z^{\prime}\left\{\begin{array}{c}
\partial J\left(w, w^{\prime}\right) \\
\partial z^{\prime}
\end{array}-\frac{J\left(z^{\prime}, u^{\prime}\right)}{J\left(w, w^{\prime}\right)} \frac{\partial J\left(w, u^{\prime}\right)}{\partial w}+\frac{J\left(z^{\prime}, w^{\prime}\right)}{\partial J} \bar{J}\left(w, w^{\prime}, w^{\prime}\right)\right\} \partial w^{\prime}\right)\right\}=0 .
\end{aligned}
$$

and it suffices that this condition should be satusfied in virtue of the govorning equations $j^{\prime}=0$ and $g=0$

Now, for approprate polynomals A and B, we have

$$
Z J\left(z, u^{\prime}\right)+Z^{\prime} J\left(z^{\prime}, w^{\prime}\right)+W J\left(w, w^{\prime}\right)=A f^{\prime}+B q
$$

identically, and so tor our purpuse, where the goveming equations persist, we can take
the omitted terma ramshing in virtue of $t=0$ and $g=0$
Sumblaly, for approprate polynomals (1 and D, we have
and we smmally mfer the corresponding relation
the onitted terms vanshing for the same reason as before
Also we have

$$
\frac{\partial J\left(w, w^{\prime}\right)}{\partial z}+\frac{\partial J\left(w^{\prime}, z\right)}{\partial w}+\frac{\partial J(z, w)}{\partial w}=0
$$

identically, together with three simular relations by omitting z, w, w^{\prime} ni turn from the set of four variables. Moreover

$$
J(z, w) J\left(z^{\prime}, w^{\prime}\right)+J\left(z^{\prime}, w\right) J\left(w^{\prime}, z\right)+J\left(w^{\prime}, w^{\prime \prime}\right) J\left(z, z^{\prime}\right)=0
$$

also rdentically. Using the foregoing relations, we have

$$
\begin{aligned}
& J\left(w, w^{\prime}\right)\left\{\begin{array}{l}
\partial Z \\
\partial z
\end{array}+\frac{\partial Z^{\prime}}{\partial \hat{i}^{\prime}}+\frac{\partial W^{T}}{\partial w}+\frac{\partial W^{\prime}}{\partial w^{\prime}}\right\}-\left\{A \frac{\partial f}{\partial w}+B \frac{\partial g}{\partial w}-C \frac{\partial f}{\partial w^{\prime}}-D \frac{\partial g}{\partial w^{\prime}}\right\} \\
& -Z\left\{\begin{array}{c}
\partial J\left(w, w^{\prime}\right) \\
\partial z
\end{array}+\frac{\partial J(z, w)}{\partial w^{\prime}}+\frac{\partial J}{}\left(w^{\prime}, z\right)\right\} \\
& -Z^{\prime}\left\{\frac{\partial J\left(w, w^{\prime}\right)}{\partial z^{\prime}}+\frac{\partial J\left(z^{\prime}, w\right)}{\partial w^{\prime}}+\frac{\partial J\left(w^{\prime}, z^{\prime}\right)}{\partial w}\right\}=0,
\end{aligned}
$$

that is, the relation

$$
\frac{\partial Z}{\partial z}+\frac{\partial Z^{\prime}}{\partial z^{\prime}}+\frac{\partial W}{\partial w}+\frac{\partial W^{\prime}}{\partial w^{\prime}}=\underset{J\left(w, w^{\prime}\right)}{1}\left\{A \frac{\partial f^{\prime}}{\partial w}+B \frac{\partial g}{\partial w}-C \frac{\partial f}{\partial w^{\prime}}-D \frac{\partial g}{\partial w^{\prime}}\right\}
$$

is satisfied in connection with the goverming equations

$$
f=0, \quad g=0 .
$$

Now we know that, in virtue of the governing equations, the quantites

$$
\Sigma Z{ }_{\partial z}^{\partial f}, \quad \leq Z \frac{\partial g}{\partial z}
$$

vamsh, hence polynomials F, E, H, G (any one or more of wheh may be zero) exist such that the equations

$$
\begin{aligned}
& Z \frac{\partial f}{\partial z}+Z^{\prime} \frac{\partial f}{\partial z^{\prime}}+W \frac{\partial f^{\prime}}{\partial w^{\prime}}+W^{\prime} \frac{\partial f}{\partial w^{\prime}}=F f+E g \\
& Z^{\frac{\partial g}{\partial z}+Z^{\prime}} \frac{\partial g}{\partial z^{\prime}}+W \frac{\partial g}{\partial w^{\prime}}+W^{\prime} \frac{\partial g}{\partial w^{\prime}}=H f+G!
\end{aligned}
$$

are satisfied identically These equations give

satisfied identically But the left-hand side is identically equal to

$$
A f+B g
$$

hence, subject to the goveming equations, we must have

$$
A=F \frac{\partial g}{\partial w^{\prime}}-H \frac{\partial f}{\partial w^{\prime}}, \quad B=E_{\partial w^{\prime}}^{\partial g}-G \frac{\partial f}{\partial w^{\prime}}
$$

Sumilarly, subject to the governing equations, we have

$$
C=F^{\prime} \frac{\partial g}{\partial w}-H \frac{\partial f}{\partial w}, \quad D=E \frac{\partial g}{\partial w}-G \frac{\partial f}{\partial w} .
$$

Consequently

$$
A \frac{\partial f}{\partial w}-C \frac{\partial f}{\partial w^{\prime}}=F J\left(w, w^{\prime}\right), \quad B \frac{\partial g}{\partial w}-D \frac{\partial g}{\partial w^{\prime}}=G J\left(w, w^{\prime}\right)
$$

always subject to the goverming equations $f=0, g=0$.

Thus the equations become

$$
\left.\begin{array}{c}
Z \frac{\partial f}{\partial z}+Z^{\prime} \frac{\partial f}{\partial z^{\prime}}+W^{\partial f}+W^{\prime} \frac{\partial f}{\partial w^{\prime}}=F t+E g \\
Z \frac{\partial g}{\partial z}+Z^{\prime} \frac{\partial g}{\partial z^{\prime}}+W^{\frac{\partial g}{\partial u^{\prime}}+W^{\prime}} \frac{\partial g}{\partial w^{\prime}}=H t+G g \\
\frac{\partial Z}{\partial z}+\frac{\partial Z^{\prime}}{\partial z^{\prime}}+\frac{\partial W}{\partial z^{\prime \prime}}+\frac{\partial W^{\prime}}{\partial w^{\prime}}=F+G
\end{array}\right\}
$$

The first two of these equations ate satisfied identically. the thud only needs to be satisfied in comnection wath $f=0, g=0$

They are the extension of Picad's equations* whach are given for the case when there is only is suggle equation

$$
f\left(u^{\prime}, z, z^{\prime}\right)=0
$$

Picard's equations are denved from the foregoing sett, by taking

$$
g=w^{\prime}=0
$$

as the sucond of our fundumental equations, together with

$$
W^{\prime}=0, \quad E=0, \quad H=0, \quad G=0
$$

rud then, owing to the ouder of F, the thad of the equations is satisfied ulentiseally

It thus appears that, when there are two equations $f=0$ and $g=0$, the exact differential can be presented m six forms, that four quantities $Z, Z^{\prime}, W^{\prime}, W^{\prime}$, each polynomial in all the four variables, occur in thene forms. and that there are other four polynomials E, F, F, H, such that the foregoing three equations cxist, the first two being satisfied adentically, while the third only needs to bo satisfied comenrently with the governmg equations $f=0$ and $g=0$.

106 It can easily be seen that, when $f=0$ is a quite general equation of order m and $g=0$ is a quite general equation of order n, the conditions required cannot be satisfied

Let $N(p)$ denote the number of terms in the most general polynomal, which is of order p in $w, w^{\prime}, z, z^{\prime}$, so that

$$
N(p)=\frac{1}{24}(p+1)(p+2)(p+3)(p+4)
$$

We have seen ($\$ 102$) that the polynomal Z, which ($(103$) can be of order $m+u-4$, is subject to modification by use of the equations $f=0$ and $g=0$
that is, it is subject to an additive quantity $A f+B g$, where A and B are quite general polynomials of orders $n-4$ and $m-4$ respectively Hence the number of disposable constants in Z effectively is

$$
N(m+n-4)-N(m-4)-N(n-4)
$$

Nimularly as regards $Z^{\prime}, W, W^{\prime}$.
Agan, E, F, G, H are polynomrals of order $₹ 2 m-5, m+n-5, n+m-5$, $2 i-5$ respectively. The expreasion $F f+E y$ is unaltered by changing F into $F+J g$ and E mino $E-J f$, where J is a quite general polynomal of order $m-5$, hence the number of disposable constantis in F and E together is

$$
N(m+n-5)+N(2 m-5)-N(m-5)
$$

Similarly the number of disposable eonstants on G and H together is

$$
N(m+n-5)+N(2 n-5)-N(n-5)
$$

The noodifications in F and G do not affect the third conditson, which has to be satisfied culy concurrently with $t=0$ and $g=0$ Thus the total number of disposable constants is

$$
\begin{aligned}
& 4\{N(m+n-4)-N(m-4)-N(n-4)\} \\
& +N(m+n-5)+N(2 m-5)-N(m-5) \\
& +N(m+n-5)+N(2 n-5)-N(n-5)
\end{aligned}
$$

The number of conditions to be watisfied in connection with the first dentity is $N(2 m+n-5)$, and the number in comnection with the second identity is $N(m+2 n-5)$ The thard relation, wheth attecte the pelyoumats F and G, only needs t_{1}, be satisfied subject to the equations $t=0$ and $g=0$, that is, subject to an additive quantity ($f+I_{g}$ on the right-hand side. where ($)$ and D are quite gencral polynomals of order $n-5$ and $m-5$ respectively, consequently, the third relation reques

$$
N(m+n-5)-N(n-5)-N(m-5)
$$

conditions Thus the total number of conditions is

$$
N(2 m+n-5)+N(m+2 n-5)+N(m+n-5)-N(n-5)-N(m-5)
$$

The excess of the number of conditrons to be satisfied, above the number of disposable constants, is

$$
\begin{gathered}
N(2 m+n-5)+N(m+2 n-5)+N(m+n-5)-N(n-5)-N(m-5) \\
-4\{N(m+n-4)-N(m-4)-N(n-4)\} \\
-\{N(m+n-5)+N(2 m-5)-N(m-5)\} \\
-\{N(m+n-5)+N(2 n-5)-N(n-5)\} .
\end{gathered}
$$

When the values of the different numbers N are inserted, this excess is easily found to be

$$
{ }_{2^{\frac{1}{4}}}^{m n}\{20(m-1)(m-2)+18(m-1)(n-1)+20(n-1)(n-2)+24\}-1,
$$

which mannfestly is positive when $m>1$ and $n>1$. Accordingly, in gencral, the relations cannot be satisfied by the disposable constants, and so we infer the result.-

When $f=0$ and $g=0$ are quite general equations, no single integral of the first kind connected with them exasts a l'sult which obvously corresponds to the theorem of Picard already ($\$ 10.3$) mentoned

It follows that, if an integral of the first kund is to exist in connection with two equations $f=0$ and $g=0$, these equations must have special forms

Ex Shew that all the peredmg conditum for the "asteme of , in mitegial of the tirst kind, in connection with the equation

$$
\begin{aligned}
& y=u^{\prime} z^{\prime}+h^{\prime} w^{\prime}+c^{\prime} z z^{\prime 2}+d^{\prime} w^{\prime} z z^{\prime}+n^{\prime} x z^{\prime 2}+t^{\prime} w^{\prime 2} z^{\prime}+g^{\prime} u w^{\prime} z^{\prime}+k^{\prime} u w^{\prime 2}=0,
\end{aligned}
$$

$$
\forall=\pi, \quad Z^{\prime}=-z^{\prime}, \quad \|=u, \quad W^{\prime}=-r^{\prime}
$$

107. The second class of conditions, mentemed at the beginnmg of § 105 at requared to be satasfied in older that the suggle integral may be everywhere finte, depends upon the places whele we have

$$
J\binom{f^{\prime}, g}{w, w^{\prime}}=0
$$

whech is not an identity, smultaneously with

$$
f=0, \quad g=0
$$

As already indicated (§ 103), I do not proposis here to enter upon any discussion of these conditions. The discussion will be difficult, but it is of supreme importance as regards even the existence of these integrals of the first order, as well as for all other single megrals It can be intiated analytically on the lines of Picad's investigations in his treatise already quoted It will involve the algebratcal singularities of w and w^{\prime} as algebranc functions defined by the two fundmental equations

Double Integrals

108 The discussion of double integrals follows a different trend There is no limitation corresponding to the condition that must be fultilled if the element of the integral is to be a complete differential element, as in § 105 .

We have seen ($\$ 102$) that, when two algebrace functions of z and z^{\prime} are simultaneously given by two algebrace equations

$$
f=f\left(u, w^{\prime}, z, z^{\prime}\right)=0, \quad g=g\left(w, w^{\prime}, z, z^{\prime}\right)=0,
$$

the most general rational function of the variables can be expressed in the form

$$
\frac{\Theta\left(w, w^{\prime}, z, z^{\prime}\right)}{J\binom{f, g}{m, w^{\prime}}}
$$

where Θ is a polynomial in w and w^{\prime}, the coefficients in this polynomial beng rational functions of z and z^{\prime} 'Thus the typical double integral, connected with the algebracal equations $f=0$ and $g=0$. is of the form

$$
\iint \frac{\Theta\left(w, u^{\prime}, z, z^{\prime}\right)}{J\binom{f, g}{u^{\prime}, w^{\prime}}} d z d z^{\prime}
$$

the integration extends over a two-fold continuum To express the integral more defintely, we take z and z^{\prime} as functions of two real variables p and q, as $111 \S 95$, and then the expression of the integial becomes

$$
\iint \frac{\Theta\left(u^{\prime}, w^{\prime}, z, z^{\prime}\right)}{J\left(\frac{f, g}{u^{\prime}, w^{\prime}}\right)} J\left(\frac{z, z^{\prime}}{p, q}\right) d p d q
$$

where the integration can be regaded as extending over an area in the p, q plane, hmited mitially by a fixed curve (or curves) 11 that plane and finally by a varable curve (on curver) in that plane The smplest case arises, when we have a single simple closed curve as the fixed initial limit and a single simple closed curve as the varnable final limst

The first form of the preceding defintion takes z and z^{\prime} as the independent variables for integration As we have already suggested that it may be convement to take any two of the four variables as the independent variables for integration, we procecd to give the equivalent forms.

For this purpose we assume that, in order to express the quantities $w, w^{\prime}, z, z^{\prime}$ in terms of real variables p and q. we take two algebraic equations

$$
F=F^{\prime}\left(w, w^{\prime}, z, z^{\prime}, p, q\right)=0, \quad Q=G\left(w, w^{\prime}, z, z^{\prime}, p, q\right)=0,
$$

forms which will prove useful in attempting an extension of Abel's theorem for the sum of any number of algebraic integrals of a single variable. The samultaneous roots of the four equations

$$
f=0, \quad g=0, \quad F=0, \quad G=0
$$

are functions of p and q, so we have

$$
\begin{aligned}
& 0=\frac{\partial F}{\partial w} \frac{\partial w}{\partial w}+\frac{\partial F^{\prime} \frac{\partial w^{\prime}}{\partial w^{\prime}} \frac{\partial F}{\partial p}+\frac{\partial z}{\partial z} \partial p+\frac{\partial F}{\partial z^{\prime} \partial z^{\prime}}+\frac{\partial F}{\partial p},}{0=\frac{\partial G}{\partial w^{\prime}} \frac{\partial w}{\partial p}+\frac{\partial G}{\partial w^{\prime}} \frac{\partial w^{\prime}}{\partial p}+\frac{\partial G}{\partial z} \frac{\partial z}{\partial p}+\frac{\partial G^{\prime} \partial z^{\prime}}{\partial z^{\prime} \partial p}+\frac{\partial G}{\partial p},} \\
& 0=\frac{\partial f}{\partial w} \frac{\partial w}{\partial p}+\frac{\partial f}{\partial w^{\prime}} \frac{\partial w^{\prime}}{\partial p}+\frac{\partial f}{\partial z} \partial z+\frac{\partial f}{\partial z^{\prime}} \frac{\partial z^{\prime}}{\partial p}, \\
& 0=\frac{\partial g \partial w}{\partial w}+\frac{\partial q}{\partial w^{\prime}} \frac{\partial w^{\prime}}{\partial p}+\frac{\partial w}{\partial z} \partial p+\frac{\partial y}{\partial z^{\prime} \partial z^{\prime}},
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& J\binom{F, G, f, g}{z^{\prime}, z^{\prime}, u^{\prime}, u^{\prime}} \frac{\partial z}{\partial p}+J\binom{F, G, f, g}{p, z^{\prime}, u, w^{\prime}}=0, \\
& J\binom{F, G, f, q}{z, z^{\prime}, u^{\prime}, w^{\prime}} \frac{\partial z^{\prime}}{\partial p}-J\binom{F, G, f, g}{\rho, z, u^{\prime}, w^{\prime}}=0
\end{aligned}
$$

Sumlarly

$$
\begin{aligned}
& J\binom{F^{\prime}, G, f, g}{z, z^{\prime}, u^{\prime}, u^{\prime}} \frac{\partial z}{\partial \bar{i}}+J\binom{F,(\bar{r}, t, q}{q, z^{\prime}, u^{\prime}, w^{\prime}}=0, \\
& J\binom{F,(G, f, g}{z, z^{\prime}, w^{\prime}, w^{\prime}} \frac{\partial z^{\prime}}{\partial q}-J\binom{F^{\prime}, \underline{G}, f, g}{q, z, w, w^{\prime}}=0
\end{aligned}
$$

Now, by the properties of determmants, we have

$$
J\binom{F, G, f_{2} g}{p, z^{\prime}, w, u^{\prime}} \cdot J\binom{F, G, t, g}{\frac{q}{z}, z, w, w^{\prime}}=J\binom{F, G, t, g}{z, z^{\prime}, u^{\prime}, w^{\prime}} J\binom{t, q}{w, w^{\prime}} J\binom{F,(r}{\mu, q},
$$

hence

$$
\cdot\binom{F^{\prime}, G, t, q}{z,-z^{\prime}, w, w^{\prime}} \cdot I\binom{\dot{z}, z^{\prime}}{p, q}=-J\left(\frac{f, g}{w, w^{\prime}}\right) \cdot I\binom{F,\left(\frac{i}{2}\right.}{p, \frac{q}{q}},
$$

and therefore

$$
\frac{1}{J\binom{f, g}{u^{\prime}, w^{\prime}}} \cdot J\binom{z, z^{\prime}}{\cdots, q}=\frac{-1}{J\binom{F^{\prime}, \xi^{\prime}, f, g}{z, z^{\prime}, w, w^{\prime}}} \cdot J\binom{F, G}{p, q}
$$

The right-hand sude is symmetrical, save as to sigus, for the four varmables $z, z^{\prime}, w, w^{\prime}$; hence it is equal to each of the six expressions

$$
\begin{aligned}
& J\left(\frac{z, z^{\prime}}{p, q}\right)-J\left(\frac{f, g}{w, w^{\prime}}\right), \\
&-J\left(\frac{z^{\prime}, w}{p, q}\right)-J\binom{f, g}{w^{\prime}, \frac{z}{q}}, \quad J\left(\frac{w, w^{\prime}}{p, \frac{q}{q}}\right)-J\left(\frac{f, g}{z, z^{\prime}}\right), \\
&-J\left(\frac{z, w}{p, q}\right)-J\left(\frac{f, g}{z^{\prime}, w^{\prime}}\right), J\left(\frac{z, w^{\prime}}{p, q}\right)-J\left(\frac{f, g}{z^{\prime}, w}\right),-J\left(\frac{z^{\prime}}{p, \frac{w^{\prime}}{q}}\right)-J\left(\frac{f, g}{z, w}\right)
\end{aligned}
$$

Accordingly, when the variables of integration in the double integral are taken to be p and q, there are six equivalent expressions of the integral, one of them is the form first taken, and the other five are simlarly constructed
from a comparison of the six foregong quantities, and each of the six expressions so obtaned is (save as to sign) equal to the double integral*

$$
\iint \frac{\Theta\left(w, w^{\prime}, z, z^{\prime}\right)}{J\left(\frac{F,(\dot{r}, f, g}{z, z^{\prime}, w, u^{\prime}}\right)} J\left(\frac{F, G^{\prime}}{p, q}\right) d p d q
$$

Double integrals of algebraic functions may be divided into various classes, following the analogy of the division of simple nitegrals of algebranc functions of a single variable. but the analogy is little more than a suggestion, becanse (as has been seen in Chap iv) a definite infinity of a function of two variables can be a one-fold continuum in the ummediate vicinity of any one definite place of infimite value, and because unessential singularities (when the torm is used in the sense defined in $\$ 58$) have no limited analogue even 112 the case of unform functions of only a single variable One class, however, survives naturally in spite of the deficiencies in the analogy, it is composed of those integrals of algebrace functions which never acquire an infinite value, no matter how the two-fold conthuum of integration is deformed. Such mitegrals ate formally styled double integrals of the frst kind.

109 The conditions, which must be satisfied by the double integral of an algebiace function connected with two given algebrate functions if it is to be of the first kind, are of four categones, according to the chalacter of a place z, z^{\prime} in relation to the subject of integration, and the four categonics can be grouped in two pars

It is manifest that a fimte place z, z^{\prime}, which is ordinary for the equations $f=0$ and $g=0$, and is also ordmary for the subject of integration, cannot give rise to an mifinity of the integral. For near such a place $w=\alpha, w^{\prime}=\alpha^{\prime}$, $z=a, z^{\prime}=a^{\prime}$, we have

$$
w=\alpha+W, \quad w^{\prime}=\alpha^{\prime}+W^{\prime}, \quad z=a+Z, \quad z^{\prime}=u^{\prime}+Z^{\prime}
$$

*This integral can also be expressed in the form

$$
\iint \frac{\theta\left(w, u^{\prime}, z, z^{\prime}\right)}{I\binom{k^{\prime}, u^{\prime}, \frac{\prime}{\prime \prime}}{z^{\prime}, z^{\prime}, u, \frac{u^{\prime}}{\prime}}} d F^{\prime} d G,
$$

which is the natural extension of the single integral

$$
\int \frac{R(w, z)}{J\left(\frac{\phi, I}{f_{1}, w}\right)} d \phi
$$

The latter integral is fundamental in one of the proofs of Abel's theorem for the sum of a number of integrals

$$
\int \frac{R(w, z)}{\frac{\partial f}{\partial w}} d z,
$$

when the upper limits of the integrals are given by the simultaneous roots of a permanent algebraic equation $f(w, z)=0$ and a parametric algebrase equation $\phi(w, z)=0$.
the equations $f=0, g=0$, then give relations of the form

$$
\begin{aligned}
& W=\left(Z, Z^{\prime}\right)_{1}+\left(Z, Z^{\prime}\right)_{2}+ \\
& W^{\prime}=\left(Z, Z^{\prime}\right)_{1}+\left(Z, Z^{\prime}\right)_{2}+
\end{aligned}
$$

and no one of the quantities

$$
\begin{array}{cccc}
\partial f \\
\partial w^{\prime}, & \frac{\partial f}{\partial w^{\prime}}, & \partial f & \partial z^{\prime} \\
\partial z^{\prime} \\
\partial \frac{\partial q}{}, & \frac{\partial q}{\partial w^{\prime}}, & \partial g & \partial z^{\prime} \\
\partial z^{\prime}
\end{array}
$$

vamshes at $\alpha, \alpha^{\prime}, a, a^{\prime}$. As the place $1 s$ ordmary also for $\Theta\left(w, w^{\prime}, z, z^{\prime}\right)$, the form of

$$
\frac{\Theta\left(w, q u^{\prime}, z, z^{\prime}\right)}{J\binom{f, g}{w, w^{\prime}}}
$$

m the vicanty of the place becomes

$$
\begin{aligned}
& \left(\Theta_{0}+\Theta_{1}\left(Z, Z^{\prime}\right)+\Theta_{2}\left(Z, Z^{\prime}\right)+\ldots\right. \\
& J_{0}+J_{1}\left(Z, Z^{\prime}\right)+J_{2}\left(Z, Z^{\prime}\right)+\ldots
\end{aligned}
$$

and so the integral, in the vicmity of the place, becomes equal to

$$
\iint \Theta_{11}+\Theta_{1}\left(Z, Z^{\prime}\right)+\left(\Theta_{2}\left(Z, Z^{\prime}\right)+\cdot \cdot-n Z a Z^{\prime}\right.
$$

Wheh is finte at the place and in its ummediate vicmity*.
In the first category, there are the conditions to be satusfied at a place z. 2 , which is ordmary for the equations $f=0, g=0$, but is not ordinary fol the subject of integration In the second category occur the conditions that must be satisfied for ufinte values of z and z, when these constitute ordinary places for the equations $f=0$ and $g=0$ These two categones form one group, contaming all the conditions which arise in connection with all the ordmary places of the two fundamental equations

In the thrd category occur the conditions that must be satisficd at a non-ordinary finite place of the two fundamental equations, all such nonordinary places are such as to satasfy some one or more than one of the six Jacobian equations

$$
J\left(\left(\frac{f, g}{w^{\prime}, w^{\prime}, z, z^{\prime}}\right)\right)=0
$$

concurrently with the fundamental equations themselves. In the fourth category occur the conditions that must be satisfied for infinte values of z and z^{\prime} when these constitute non-ordnary places for the equations $f=0$ and $g=0$ These two categorres form one gromp, contanng all the

[^37]conditions whieh arise in conneetion with all the non-ordinary places of the two fundamental equations.

110 As regards the first of these eategories of plaees which, while ordinary finte places for the equations $f=0$ and $g=0$, provide an infinite value for the subject of integration, this infinite value can arise only through the coefficients of the powers of w and w^{\prime} in the polynomial Θ. These coefficients are rational functions of z and z^{\prime}. If then the double integral is not to have an mfinity, the existence of these rational funetions of z and z^{\prime} must not compel such an mfinty. Accordingly, the rational functions of z and z^{\prime} must be integral functions that is, they must be polynomals in z and z^{\prime} Thus Θ ($u, w^{\prime}, z, z^{\prime}$) becomes a polynomal in all its four arguments; consequently, as a first endrtion that our double integral may be everywhere finite, it follows that the quantuty $\Theta\left(w, w^{\prime}, z, z^{\prime}\right)$ must be a polynomal "/ the four variables $u, w^{\prime}, z, z^{\prime}$

The similar consideration of the seeond category of plaees, constatuted of infinite places (supposed ordinary) for $f=0$ and $g=0$, leads to a limitation upon the order of the polyummal $\Theta\left(u, w^{\prime}, z, z^{\prime}\right)$ if the double integral is to be not infinite for such places. For sunplicity, suppose that f and g are quite general polynomials of aggregate onders m and n respectively, so that we may take

Then

$$
f=\left(* \ w, w^{\prime}, z, z^{\prime}, 1\right)^{m}, \quad g=\left(* \gamma u^{\prime}, w^{\prime}, z, z^{\prime}, 1\right)^{m} .
$$

$$
J\left(\frac{f, g}{w, w^{\prime}}\right)=\left(* \chi^{\prime} u, w^{\prime}, z, z^{\prime}, 1\right)^{m+n-2}
$$

111 the quite general ease In order that the double nintegral may be not infinite for infinite values of z and z^{\prime}, the order of

$$
\frac{\leftrightarrow\left(w, w^{\prime}, z, z^{\prime}\right)}{J\binom{f, g}{w, w^{\prime}}}
$$

must be equal to, or be less than, -3 , and therefore the aggregate order of the polynomial $\Theta\left(w, w^{\prime}, z, z^{\prime}\right)$ inust be not greater than $m+n-5$ Thus in order that the double integral may reman finite for infinite values of z and z^{\prime}, when these are ordinary places of $f=0$ and $g=0$, the aggregate order of the polynomual $\Leftrightarrow\left(w, w^{\prime}, z, z^{\prime}\right) m u s t$ be $₹ m+n-5$, where m and n denote the respective aggregate orders of f and g.

As regards the second group of conditions indicated above, they are eoneerned with the places where the equations

$$
f=0, \quad g=0, \quad J\left(\frac{f, g}{w, w^{\prime}}\right)=0
$$

are simultaneously satisfied. Their diseussion will involve the eonsideration of the singularities of w and w^{\prime} as algebraie functions of the vanables. As
before for single integrals (§ 107), so here for double integrals, the whole subject is left for investrgation; a beginning can be made on the lines of Picard's discussion of the matter when there is only a single equation $f=0$ defining a single algebraic function*

111 It is pessible to obtain an extension of Abel's theorem for the sum of a number of integials of algebrac functions of a sungle variable, by constructing an expression for the sum of a number of dorble integrals of the type

$$
\left.\iint \frac{\Theta\left(w, w^{\prime}, z, z^{\prime}\right)}{J\left(\frac{f}{u}, g\right.} w^{\prime}\right) \quad d z d z^{\prime}
$$

where f and g are polynomials of aggregate orders m and n wspectively We shall assume that the aggregate order of the polynomal Θ is not greater than $m+n-5$

As betore ($\S 108$), we define $w, w^{\prime}, z, z^{\prime}$ as functions of two real variables p and q by means of the permadent equations

$$
f\left(w, w^{\prime}, z, z^{\prime}\right)=0, \quad g\left(w, w^{\prime}, z, z^{\prime}\right)=0
$$

and associated parametne equalions

$$
F\left(u, w^{\prime}, z, z^{\prime}, p, q\right)=0, \quad\left(\quad\left(w, w^{\prime}, z, z^{\prime}, p, q\right)=0\right.
$$

and we shall assume that F and (f are quite general polynommals in w, w, z, z^{\prime}, of aggregate orders k and l respectively Λs these are four algebracal equations in $w, u^{\prime}, z, z^{\prime}$, of orders m, u, k, l respectively, they determue $k l m n$ $(=\mu)$ sets of roots, cach root in each set of roots being a function of p and q. Denoting any such sot by $z_{r}^{\prime}, m_{r}^{\prime}, z_{r} z_{r}{ }^{\prime}$, the donble integral can as before be transformed to

$$
\iint \frac{\left(w_{1}, w_{r}^{\prime}, z_{r}, z_{1}^{\prime}\right)}{H_{r}^{\prime}, l_{r}^{\prime}, t_{r}, g_{r}}\left(\begin{array}{c}
F_{r}^{\prime},\left(B_{r}\right) \\
p, q \\
\tilde{r}_{r}, z_{r}^{\prime}, w_{r}, w_{r}^{\prime}
\end{array}\right) d p d q,
$$

or, if we write

$$
\begin{aligned}
& \Phi_{r}=\Theta\left(w_{r}, w_{1}^{\prime}, z_{r}, z_{r}^{\prime}\right) J\binom{F_{r}, G_{r}}{p, q}=\Phi\left(w_{r}^{\prime}, w_{r}^{\prime}, z_{1}, z_{r}^{\prime}\right) \\
& J_{r}=J\binom{F_{1}^{\prime}, G_{r}, f_{r}, g_{r}}{z_{r}, z_{r}^{\prime}}
\end{aligned}
$$

so that Φ is a polynomal of aggregate order $₹ k+l+m+n-5$, the integral (for this set of roots) becomes

$$
\iint \frac{\Phi_{r}}{J_{r}} d p d q
$$

We assume the integral taken over any finite simple closed region in the p, q plane.

$$
\text { * l.e, } \mathrm{t} \mathbf{i} \text {, ch } \mathrm{mo}
$$

Let W denate the result of elminating $w^{\prime}, z, z^{\prime}$ between $f=0, g=0$, $F^{\prime}=0, G=0$; the quantities w_{1}, \ldots, w_{μ} are the roots of $W=0$. The theory of elimination shews that we have a relation of the form

$$
W=K f+L g+M F+N G
$$

Simılarly, eliminating w, z, z^{\prime}, and denoting the eliminant by W^{\prime}, we have a relation of the form

$$
W^{\prime}=K^{\prime} f+L^{\prime} g+M^{\prime} F+N^{\prime} G
$$

and the quantitics w_{1}^{\prime}, ., w_{μ}^{\prime} are the roots of $W^{\prime}=0$ Likewise eliminating $w, w^{\prime}, z^{\prime}$, and w, w^{\prime}, z in turn, and denoting the respective ehminants by Z and Z^{\prime}, we have relations of the form

$$
\begin{aligned}
& Z=I^{\prime} f+Q g+R F+S G \\
& Z^{\prime}=P^{\prime} f+Q^{\prime} g+R^{\prime} F^{\prime}+S^{\prime} G
\end{aligned}
$$

the quantities z_{1}, \ldots, z_{μ} are the roots of $Z=0$, and the quantities $z_{1}{ }^{\prime}, \ldots, z_{\mu}{ }^{\prime}$ are the roots of $Z^{\prime}=0$. And the quantities $K, L, M, N, K^{\prime}, L^{\prime}, M^{\prime}, N^{\prime}$, $P, Q, R, S, P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}$ are polynomals of the respective appropriate orders. In particular, if we write

$$
\Delta=\left\lvert\, \begin{array}{llll}
K, & L, & M, & N \\
K^{\prime}, & L^{\prime}, & M^{\prime}, & N^{\prime} \\
P, & Q, & R, & S \\
P^{\prime}, & Q^{\prime}, & R^{\prime}, & S^{\prime}
\end{array}\right.
$$

Δ is a polynomicl of aggregate order

$$
\begin{gathered}
(m n p q-m)+(n \iota n p q-n)+(m n p q-k)+(m m p q-l) \\
=4 \mu-m-n-k-l
\end{gathered}
$$

The simultaneous combinations $w_{r}, w_{1}^{\prime}, z_{1}, z_{1}^{\prime}($ for $r=1, \ldots, \mu)$ are the simul\tan eous roots of

$$
f=0, \quad g=0, \quad F=0, \quad G=0,
$$

these we call the congruous roots. All other combinations of the roots of $W=0, W^{\prime}=0, Z=0, Z^{\prime}=0$, are called non-congiuous roots, they are not simultaneous roots of $f=0, g=0, F=0, G=0$, but, for each such combination, we have

$$
\Delta=0 .
$$

For the sake of smplicity, we shall assume that each of the roots of $W=0, W^{\prime}=0, Z=0, Z^{\prime}=0$, is simple.

Now consider the quantity

$$
\begin{gathered}
\Phi\left(\frac{w, w}{}, w^{\prime}, z, z^{\prime}\right) \Delta \\
\bar{W} \bar{W}^{\prime} Z Z^{\prime}
\end{gathered}
$$

It can be expressed in a partial-fraction series of the form

$$
\operatorname{sE\Sigma E}\left(w^{\prime}-\bar{w}_{r}\right)\left(w^{\prime}-A_{r_{r}^{\prime}}^{\prime \prime}\right)\left(z-z_{s}^{\prime}\right)\left(z^{\prime}-z_{z}^{\prime}\right),
$$

the summation being for $r, r^{\prime}, s, s^{\prime},=1, \ldots, \mu$, independently of one another, and

$$
A_{r r^{\prime} x \alpha^{\prime}}=\frac{\Phi\left(w_{r}, w_{r^{\prime}}^{\prime}, z_{x}, z_{x^{\prime}}\right) \Delta_{r r r s^{\prime}}}{\partial W \partial W^{\prime} \partial Z \partial Z^{\prime}} \frac{\partial w_{r} \partial w_{r^{\prime}}^{\prime} \partial z_{x} \partial z_{s}^{\prime}}{}
$$

When $r=r^{\prime}=s=s^{\prime}$, we can denote the coefficient A by A_{r}, then

$$
A_{r}=\frac{\Phi_{r} \Delta}{\frac{\partial W}{\partial W_{r}^{\prime}} \frac{\partial Z}{\partial w_{r}} \partial u_{r}^{\prime} \partial z_{r} \frac{\partial Z}{\partial z_{r}^{\prime}}}
$$

Unless all the equalities $r=r^{\prime}=s=s^{\prime}$ are satisfied, we have

$$
\Delta_{r r^{\prime} x z^{\prime}}=0
$$

so that all the corfticents A other than A_{r}, for $r=1, \ldots, \mu$, vamsh Thus we have the udentity

$$
\begin{gathered}
\Phi\left(w, w i, z, z^{\prime}\right) \Delta \\
W W^{\prime} Z Z^{\prime}
\end{gathered}=\sum_{r=1}^{M}\left(\dot{w}-u_{r}\right)\left(\overline{w^{\prime}}-\frac{w_{r}^{\prime}}{w_{r}}\right)\left(\bar{z}-\overline{\left.z_{r}\right)}\left(\overline{z^{\prime}}-\overline{z_{r}^{\prime}}\right)\right.
$$

Let both aldes he axpanded in asconding powers of $1 / w, 1 / w^{\prime}, 1 / z, 1 / z^{\prime} \quad$ On the left-hand sude, the index of the term of highest order in $w, w^{\prime}, z, z^{\prime}$ in the numerator is

$$
\begin{aligned}
& ₹ k+l+m+n-5+(4 \mu-m-n-k-l) \\
& \text { ₹ } 4 \mu-5,
\end{aligned}
$$

the index of the term of haghest onder in $u^{\prime}, w^{\prime}, z, z^{\prime}$ in the denominator is 4μ, hence the index of the first term in the expansion <5. On the righthand side, the index of the first lerm m the expaision is -4 , and its coefficient is

$$
{\underset{r=1}{\mu} A_{r} .}
$$

No such term can occur in the left-hand side under the assugned conditions, hence

$$
\sum_{r=1}^{\mu} A_{r}=0,
$$

that is,

$$
\sum_{r=1}^{\mu} \frac{\Phi_{r} \Delta_{r}}{\frac{\partial W}{\partial w_{r}} \frac{\partial W^{\prime}}{\partial w_{r}^{\prime}} \frac{\partial Z}{\partial z_{r}} \frac{\partial Z^{\prime}}{\partial z_{r}^{\prime}}}=0
$$

From the expression for W, we have

$$
\begin{aligned}
\frac{\partial W}{\partial w_{r}} & =K_{r} \frac{\partial f}{\partial w_{r}}+L_{r} \frac{\partial g}{\partial w_{r}}+M_{r} \frac{\partial F}{\partial w_{r}}+N_{r} \frac{\partial G}{\partial w_{r}} \\
0 & =K_{r} \frac{\partial f}{\partial w_{r}^{\prime}}+L_{r} \frac{\partial g}{\partial w_{r}^{\prime}}+M_{r} \frac{\partial F}{\partial w_{r}^{\prime}}+N_{r} \frac{\partial G}{\partial w_{r}^{\prime}} \\
0 & =K_{r} \frac{\partial f}{\partial z_{r}}+L_{r} \frac{\partial g}{\partial z_{r}}+M_{r} \frac{\partial F}{\partial z_{r}}+N_{r} \frac{\partial G}{\partial z_{r}^{\prime}} \\
0 & =K_{r} \frac{\partial f}{\partial z_{r}^{\prime}}+L_{r} \frac{\partial g}{\partial z_{r}^{\prime}}+M_{r} \frac{\partial F}{\partial z_{,}^{\prime}}+N_{r} \frac{\partial G}{\partial z_{r}^{\prime}}
\end{aligned}
$$

and similarly from the expressions for W^{\prime}, Z, Z ' Thus

$$
\begin{aligned}
& \left|\begin{array}{cccc}
\frac{\partial W}{\partial w_{r}}, & 0, & 0, & 0 \\
0, & \frac{\partial W^{\prime}}{} \tilde{\partial}_{\prime}^{\prime} & 0, & 0 \\
0, & 0, & \frac{\partial Z}{\partial z_{r}}, & 0 \\
0, & 0, & 0, & \frac{\partial Z^{\prime}}{\partial z_{1}}
\end{array}\right|
\end{aligned}
$$

that 1 s ,

$$
\frac{\partial W}{\partial w_{r}^{\prime}} \frac{\partial W^{\prime}}{\partial w_{r}^{\prime}} \frac{\partial Z}{\partial z_{r}} \frac{\partial Z^{\prime}}{\partial z_{r}^{\prime}}=\Delta_{1} J_{r}
$$

Consequently, we have

$$
\sum_{r=1}^{\mu} \frac{\Phi_{r}}{J_{l}}=0
$$

and therefore

$$
\sum_{r=1}^{\mu} \iint \frac{\Phi_{r}}{J_{r}} d p d q=0
$$

when the double integration is taken over any simple closed region in the plane of the real variables p, q.

This is a restricted extension of a part of Abel's general theorem on the sum of integrals The result $2 s$ true, even of the integral

$$
\iint_{J}^{\Phi} d p d q
$$

is not everywhere finite, that $1 s$, if the integral is not of the first kind* The conditions, which have been imposed upon the integral, are that it is to be fimte for all places which are ordinary for the equatoons $f=0, g=0$, all mfinite places bemg supposed included among these ordmary places

[^38]
CHAPTER VII

Level Places of Two Uniform Functions

112. Hitherto. save for iare exceptions, only indivdual functions of two variables have been considered at any one time, and we have seen that there exist continuous aggregates of places where a function has an assigned level value or a zero value This propelty precludes us from estabhahing definte relations of inversion betwern a single function of more than one variable and the variables of that function Such relations are highly important in various branches of the theory of functions of a single variuble, they are no less important when functions involve severd independent variables To establish them, it is necessary to have as many functions, independent of one another, as there are variables. and thelefore, for the present purpose, we shall consider two mdependent functions of \hat{z} and z^{\prime} Moreover, quite apart from reasons that make inversion a possible necessity, we have seen that it is desirable to consider simultaneously two modependent functions of z and z^{\prime}.

We still shall limit ourselves thoughout to unform analytie functions, and we shall begin with the discussion of the relations between two functions that are regular everywhere in the finite pait of the ficld of variation. As we know, every such function can be expressed as a series of positive integral powers of z and z^{\prime}, whech (if an infinite series) converges absolutely for finite values of $|z|$ and $\left|z^{\prime}\right|$, and has all its essential singularities outside the finite part of the field of variation. We know (§53) that such a function must possess zeros somewhere in the field of varaation, but it may happen that the zeros do not occur in the finite part of the field*, and then they occur at the essential singularities.

We proceed to establish the following theorem.-
Two independent functions, regular throughout the finte part of the field of variation, vanush sumultaneously at some place or places within the whole field.

[^39]113. Let the two functions, everywhere regular, be denoted by $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$; and let a, a^{\prime} be any place in the finte part of the whole field of variation for z and z^{\prime}. In view of the proposition to be established, it is reasonable to assume that nether $f\left(z, z^{\prime}\right)$ nor $g\left(z, z^{\prime}\right)$ vanshes at a, a^{\prime}, if both should vanish at a, a^{\prime}, the proposition needs no proof, if one of them should vanish at a, a^{\prime}, bat not the other, the following proof will be found to cover the case

We consider the immediate vicmity of a, a^{\prime}, and take

$$
z=a+u, \quad z^{\prime}=u^{\prime}+u^{\prime} .
$$

Because $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ are regular everywhere in the finte part of the field of variation, we have expressions for them in the form

$$
\begin{aligned}
& f^{\prime}\left(\tau, z^{\prime}\right)=f\left(a, u^{\prime}\right)+{ }_{f}\left(u, u^{\prime}\right)_{m}+f\left(u, u^{\prime}\right)_{m+1}+, \\
& g\left(z, z^{\prime}\right)=g\left(a, a^{\prime}\right)+{ }_{y}\left(u, u^{\prime}\right)_{n}+f\left(u, u^{\prime}\right)_{n+1}+.,
\end{aligned}
$$

where $f_{f}\left(u, u u^{\prime}\right)_{m}$ represents the aggicgate of terms of combined dimension m in u and u^{\prime} as contamed in the power-series for f, and smalarly for the other homogeneous sets of terms in f, and for the homogeneous sets of terms ing In the smoplest cases, the integer m is unity and the integer n is unty, in all cases, both the positive integers m and n are finte

When $m=1$ and $n=1$, the quintities

$$
f\left(u, u^{\prime}\right)_{1}, \quad g\left(u, u^{\prime}\right)_{1},
$$

are usually independent lincial combinations of u and u^{\prime}, their determinant is the value, at a, a^{\prime}, of

$$
J\binom{f, g}{z, z^{\prime}}
$$

which does not vanish everywhere, because the functions f and g are andependent. If it should happen that.f vamshes at a, a^{\prime}, so that there

$$
\frac{\partial f}{\partial a}-\frac{\partial g}{\partial a}=\frac{\partial f}{\partial a^{\prime}}-\frac{\partial y}{\partial a^{\prime}}=\kappa
$$

then we have

$$
\begin{array}{r}
f\left(a+u, a^{\prime}+u^{\prime}\right)-f\left(a, u^{\prime}\right)=f\left(u, u^{\prime}\right)_{h}+\ldots \\
f\left(a+u, a^{\prime}+u^{\prime}\right)-f\left(a, a^{\prime}\right)-\kappa\left\{g\left(a+u, a^{\prime}+u^{\prime}\right)-g\left(a, a^{\prime}\right)\right\}={ }_{g}\left(u, u^{\prime}\right)_{2}+\ldots
\end{array}
$$

where the first set of terms ${ }_{g}\left(u, u^{\prime}\right)_{z}$ is of order higher than the first set $f\left(u, u^{\prime}\right)_{2}$ and usually is not the square of $f\left(u, u^{\prime}\right)_{1}$. If, however,

$$
\lambda\left\{_{g}\left(u, u^{\prime}\right)_{2}\right\}=\left\{f\left(u, u^{\prime}\right)_{1}\right\}^{2},
$$

where λ is a constant, then we should take a new combination

$$
\begin{aligned}
& f\left(a+u, a^{\prime}+u^{\prime}\right)-f\left(a, a^{\prime}\right)-\kappa\left\{g\left(a+u a^{\prime}+u^{\prime}\right)-g\left(a, a^{\prime}\right)\right\} \\
&-\lambda\left\{f\left(a+u, a^{\prime}+u^{\prime}\right)-f\left(a, a^{\prime}\right)\right\}^{u}
\end{aligned}
$$

Similarly for other cases

We proceed until, at some stage, we obtain two series in u and u^{\prime}, such that the lowest set of terms in one series cannot be expressed solely by means of the lowest set of terms in the other series, and this stage 18 attained after steps that are finite in number, because

$$
J\binom{f, g}{z, z^{\prime}}
$$

does not vanish identically.
Similarly, if m is greater than unity and $n=1$, and if $n=1$, while n is greater than unity, and if both m and n are greater than unity In each case, we obtain a couple of series, the aggregate of terms of lowest dimensions in the two series not being expressible solely in terms of one another And then, because of this independence, the equations

$$
\left.A=f^{(u, u} u^{\prime}\right)_{n}, \quad B=g\left(u, u^{\prime}\right)_{n},
$$

where A and B are assigned quautities independent of u and u ', determine a limited number of values of u and u^{\prime}. In particular, let l be the greatest common measure of m and n, and write

$$
m=\mu l, \quad n=\mu l,
$$

and let E be the ehmmant of $f\left(u, u^{\prime}\right)_{m}$ and $g_{g}\left(u, u^{\prime}\right)_{n}$, so that

$$
E=a_{m 0}{ }^{n} c_{0 n}{ }^{m}+\ldots
$$

Then the equation giving values of u is

$$
\left(a_{m n 0}{ }^{n} c_{0 n}{ }^{m}+\ldots\right) u^{m n}+.+\left\{\left(-A c_{o n}\right)^{n}-\left(-B a_{m 0}\right)^{m}\right\}^{l}=0,
$$

and therefore, if

$$
A=\kappa P^{m}=\kappa P^{\mu l}, \quad B=\lambda P^{n}=\lambda P^{v!},
$$

each value of u is of the type

$$
u=k P
$$

or, for sufficiently small values of $|u|,|A|,\left|u^{\prime},|,|B|\right.$, and so of $\left.| P\right|$, we have

$$
u=k P, \quad u^{\prime}=k^{\prime} P,
$$

where $|k|$ and $\left|k^{\prime}\right|$ are finite, while some of the quantities k and k^{\prime} can be zero Manıfestly,

$$
\kappa=r\left(k, l^{\prime}\right)_{m}, \quad \lambda={ }_{g}\left(k, k^{\prime}\right)_{n}
$$

and, in general, we shall have

$$
\left.\begin{array}{c}
u=k P+k_{1} P^{2}+\ldots \\
u^{\prime}=k^{\prime} P+k_{1}^{\prime} P^{2}+\ldots
\end{array}\right\}
$$

from the relations

$$
\left.\begin{array}{l}
A=f\left(u, u^{\prime}\right)_{m}+\jmath\left(u, u^{\prime}\right)_{m+1}+\ldots \\
B={ }_{g}\left(u, u^{\prime}\right)_{n}+{ }_{g}\left(u, u^{\prime}\right)_{n+1}+\ldots
\end{array}\right\}
$$

After these explanations and inferences, we proceed to shew that it is possible to choose quantities u and u^{\prime} of small moduh, so that the place $a+u, a^{\prime}+u^{\prime}$ is in a small domain of a, a^{\prime}, and so also that

$$
\begin{aligned}
& \left|f\left(a+u, a^{\prime}+u^{\prime}\right)\right|<\left|f\left(a, a^{\prime}\right)\right| \\
& \left|g\left(a+u, a^{\prime}+u^{\prime}\right)\right|<\left|g\left(a, a^{\prime}\right)\right|
\end{aligned}
$$

simultaneously. Let,

$$
f\left(a, a^{\prime}\right)=Q+\imath R, \quad q\left(a, a^{\prime}\right)=S+\imath T
$$

where Q, R, S, T ate real quantitice, and nether $|Q+\imath R|$ nor $|S+\imath T|$ vamshes Now chonse M a small positive quantity, in every case less than $|Q+i R|$, unless $|Q+i l|$ happens to be zero and then we take M zero, and choose an argument ψ such that Q and $M \cos \psi$ have opposite stgns and, at the same time, R and $M \sin \psi$ have opposite signs (If R be zero, we can take ψ equal to either 0 or π and should choose the value giving opposite sugns to Q and $M \cos \psi$ Similarly, if Q be zero, with a choice of $\frac{1}{2} \pi$ or $\frac{3}{2} \pi$ for ψ) Agan, choose N a small positive quantity, in every case less than $|S+\imath T|$, unless $|S+i T|$ haprens to be zero and then we take N zero; and choose an argunent χ such that S and $N \cos \chi$ have opposite sggns and, at the same time, T and $N \sin \chi$ have opposite signs (Arrangenerits as to choice of χ can be made simular to those for ψ, if either S or T should vanish) Then evidently

$$
\begin{aligned}
& \left|f\left(a, u^{\prime}\right)+M e^{\psi_{2}}\right|<\left|f\left(a, a^{\prime}\right)\right|, \\
& \left|g\left(a, u^{\prime}\right)+N e^{x}\right|<i g\left(a, a^{\prime}\right) \mid .
\end{aligned}
$$

Now we have seen that, for sufficiently small values of M and of N, the relations

$$
\begin{aligned}
& M e^{\psi_{2}}=f\left(u, u^{\prime}\right)_{m}+y\left(u, u^{\prime}\right)_{m+1}+ \\
& N e^{x^{2}}={ }_{g}\left(u, u^{\prime}\right)_{n}+{ }_{\eta}\left(u, u^{\prime}\right)_{n+1}+\ldots
\end{aligned}
$$

give a limited number of sets of values of the form

$$
\left.\begin{array}{rl}
u & =k P+k_{1} P^{2}+ \\
u^{\prime} & =k^{\prime} P+k_{1}^{\prime} P^{2}+\ldots
\end{array}\right\}
$$

where $|P|$ is a small magutude such that

$$
M e^{\psi_{2}}=\kappa P^{m}, \quad N e^{x^{2}}=\lambda P^{m}
$$

thus $|u|$ and $\left|u^{\prime}\right|$ are small, of the same magmtude as $|P|$, while $\left|k_{1} P^{2}+\ldots\right|$, $\left|k_{1}^{\prime} P^{2}+\ldots\right|$, are small compared with $|P| \quad$ For such values, we have

$$
\begin{aligned}
& \left|f\left(a+u, a^{\prime}+u^{\prime}\right)\right|<\left|f\left(u, a^{\prime}\right)\right| \\
& \left|g\left(a+u, a^{\prime}+u^{\prime}\right)\right|<\left|g\left(u, a^{\prime}\right)\right|
\end{aligned}
$$

which was to be proved.

Accordingly, we infer that it is possible to pass from a place a, a^{\prime} to a place z, z^{\prime}, which may be called a place adjacent to a, a^{\prime}, and which is such as to give the relations

$$
\begin{aligned}
& \left|f\left(z, z^{\prime}\right)\right|<\left|f\left(a, a^{\prime}\right)\right|, \\
& \left|g\left(z, z^{\prime}\right)\right|<\left|g\left(a, a^{\prime}\right)\right|
\end{aligned}
$$

simultaneously.
Within the finite part of the field of variation, the functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ are evcrywhere regular, so that no singularities are encountercd in transitions from a place to an adjncent place. We therefore can pass from place to place within the finte part of the field of variation, always choosing the passage so as to give successively decreasing values of $\left|f\left(z, z^{\prime}\right)\right|$ and $\left|g\left(z, z^{\prime}\right)\right|$.

If at any place c, c^{\prime}, one of the two functions (but not both of them) should vanish-say $f\left(c, c^{\prime}\right)=0$-then we choose the next place $c+u, c^{\prime}+u^{\prime}$, so that M is zero, that is, so that κ is zero, and such that

$$
f\left(c+u, c^{\prime}+u^{\prime}\right)=0, \quad\left|g\left(c+u, c^{\prime}+u^{\prime}\right)\right|<\left|g\left(c, c^{\prime}\right)\right| \cdot
$$

The chonce is always possible for finte values of z and z^{\prime}, because the functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ are regular for those finite values and consequently can be expressed as regular power-series
114. It thus follows that, by an appropnately detorminate choice of successive places at every stage, each place being adjacent to its predecessor, the moduln of $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ can be contmually decreasod so long as they differ, either or both, from zero. Thus they tend to zero m valuc, as the successive places are chosen, and contmued decrease can be effected, so long as they are not zero.

Moreover, we know that every regular function possesses a zero value or zero values somewhere within the whole field of variation. If the zero value does not uccur at some ordinary place, then (\$53) it occurs at the essential singularity or singularities, as e g . for the function $e^{P\left(z, z^{\prime}\right)}$, where $P\left(z, z^{\prime}\right)$ is a polynomial in z and z^{\prime}, when the places for the zero values belong to the non-finite part of the field.

Hence ultimately, cither for finite valucs of z and z^{\prime}, or for infinite values of either of them or of both of them, a place will be attaned at which both the inoduli $\left|f\left(z, z^{\prime}\right)\right|$ and $\left|g\left(z, z^{\prime}\right)\right|$ are zcro. Such a place is a common zero of $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, and therefore our theorem-that two functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, regular everywhere in the finte part of the field of vanation, vanısh simultaneously somewhere in the whole field-is established.

Ex. Consider the functions

$$
f\left(z, z^{\prime}\right)=e^{a+e^{\prime}}, \quad g\left(z, z^{\prime}\right)=z p^{-}-\left(p+z^{\prime}\right),
$$

both of which are regular for all timte values of z and z^{\prime}.
Let

$$
\begin{aligned}
z+t^{\prime} & =\log \left(r^{x} e^{m 01}\right) \\
z & =r e^{\theta t}
\end{aligned}
$$

where r, θ, m, n are real constauts, then

$$
\begin{aligned}
& f\left(z, z^{\prime}\right)=r^{n} e^{m \theta_{1}}, \\
& g\left(z, z^{\prime}\right)=r^{1-n)} e^{(1-m) \theta_{1}} .
\end{aligned}
$$

When $0<n<l$, we manfestly have

$$
f\left(z, z^{\prime}\right)=0, \quad g\left(z, z^{\prime}\right)=0,
$$

when r is zoro that is, the two suggested functions acequre zero valnes for some specitied values of z (even when $z=0$) which do not he in the funte part of the field of varration of the two vartables
115. Next, consider the case of two unform analytic functions, each of them devold of essential singularities in the fimte part of the field of variation, and each of them poissessing continuous aggregates of poles and asohated unessential singularities. We know, from an earlier proposition ($\$ 90$), that the functions can be expressed in the forms

$$
f\left(z, z^{\prime}\right)=\begin{aligned}
& l^{\prime}\left(z, z^{\prime}\right) \\
& Q\left(z, z^{\prime}\right)
\end{aligned}, \quad g\left(z, z^{\prime}\right)=\begin{aligned}
& R\left(z, z^{\prime}\right) \\
& S\left(z, z^{\prime}\right)
\end{aligned} .
$$

where $P\left(z, z^{\prime}\right), Q\left(z, z^{\prime}\right), R\left(z, z^{\prime}\right), S^{\prime}\left(z, z^{\prime}\right)$ are functions of z and z^{\prime}, which are regular everywhere in the finte part of the field of variation.

The zero-places of $f\left(z, z^{\prime}\right)$ are those of $P\left(z, z^{\prime}\right)$, it may happen that a zeroplace of $P\left(z, z^{\prime}\right)$ is also a zero-place of $Q\left(z, z^{\prime}\right)$, and then the place is an unessential singularity of $f\left(z, z^{\prime}\right)$ which, among its unlumited set of values there, can acquire the value zero that is, the zeros of $f\left(z, z^{\prime}\right)$ are given by the zuros of $P\left(z, z^{\prime}\right)$ Similarly for $g\left(z, z^{\prime}\right)$ and $R\left(z, z^{\prime}\right)$ Hence $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ wall vanish simultancously somewhere in the field of variation, if the furctions $P^{\prime}\left(z, z^{\prime}\right)$ and $R\left(z, z^{\prime}\right)$, everywhere regular in the finite part of the field, vanish sumultancously somewhere in the whole ficld But we have proved that these regular functions $P\left(z, z^{\prime}\right)$ and $R\left(z, z^{\prime}\right)$ must vanish simultancously at some place or at some places in the whole field Hence we infer the following theorem -

Two independent functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, which are uniform and analytuc, and all the essentral singularities of which occur only in the non-finte part of the field of varnation, must vanash together at some place or some places in the whole field of variation.

We infer also, as an immediate corollary, the following further theorem -
Two independent functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, whach are unaform and analytic, and all the essential singularitzes of which occur anly in the non-finte part of the field of variation, must acquare assugned level values at some place or some places in the whole field of variation.

For if the assigned level values be α for $f\left(z, z^{\prime}\right)$ and β for $g\left(z, z^{\prime}\right)$, the functions $f\left(z, z^{\prime}\right)-\alpha$ and $g\left(z, z^{\prime}\right)-\beta$ satisfy all the conditions imposed upon
the functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ in the earlier theorem, the application of that earlier theorem leads to the result just stated.

A corresponding result holds as regards simultaneous poles fer $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$.

In general, a corresponding result does not hold as regards the occurrence of simultaneous unessential singularities of $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$

116 When two functoms $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ have a common zero-place, we need to consider their relations to ons another in its immedrate vicimity, we need also, if possible, to assagn an integer which shall rupresent its multiphety as a common zero-place $L_{\text {eet }} a$, a^{\prime} be such a place, so that

$$
f\left(a, a^{\prime}\right)=0, \quad g\left(a, a^{\prime}\right)=0
$$

for places in its mmedate vemity, epresented by $a+u, a^{\prime}+u^{\prime}$, we have

$$
\left.\begin{array}{rl}
f\left(2, z^{\prime}\right) & =K u^{s} u^{\prime t} P\left(u, u^{\prime}\right) e^{P\left(u, u^{\prime}\right)} \\
& =L u^{*} u^{\prime t} Q\left(u, u^{\prime}\right) e^{\left.\bar{Q} u, u^{\prime}\right\rangle} \\
g\left(z, z^{\prime}\right) & =K^{\prime} u^{A} u^{\prime \prime} R\left(u, u^{\prime}\right) e^{R\left(u, u^{\prime}\right)} \\
& =L^{\prime} u^{\circ} u^{\prime t} S\left(u, u^{\prime}\right) e^{s i\left(u, u^{\prime}\right)}
\end{array}\right\}
$$

Here $K, L, K^{\prime}, L^{\prime}$ are constants, $s, t, s^{\prime}, t^{\prime}$ are positive integers which can be zero separately or together, $\bar{P}\left(u, u^{\prime}\right), \bar{Q}\left(u, u^{\prime}\right), \bar{R}\left(u, u^{\prime}\right), \bar{S}\left(u, u^{\prime}\right)$ ate regular functions of u and u^{\prime}, which vamsh with u and u^{\prime}. The functrons $P\left(u, u^{\prime}\right)$ and $R\left(u, u^{\prime}\right)$ are polynomals in u, having as ther coefficients regular functions of u^{\prime} which vanish with u^{\prime}, the functions $Q\left(u, u^{\prime}\right)$ and $S\left(u, u^{\prime}\right)$ are polynomals in u^{\prime}, having as therr cofficients regular functions of u which vamsh with u. When $u^{-a} u^{\prime-t} f\left(z, z^{\prime}\right)$ does not vamsh wath u and u^{\prime}, we substitute unity for each of the functions P and Q, and smmarly when $u^{-a} u^{\prime-t} g\left(z, z^{\prime}\right)$ does not vanish with u and u^{\prime}, we substitute umty for each of the functions $l R$ and S

The order of a zero-place for a single function on cach varmable has already been defined For the functron $f\left(z, z^{\prime}\right)$, it is

$$
s+m \text { in } z, \quad t+n \min z^{\prime}
$$

where m and n are the positive integers, which are the degrees of P and Q regardel respectively as polynomials m u and in u^{\prime}, and m and u are zero, only when $u^{-s} u^{\prime-t} f\left(z, z^{\prime}\right)$ dues not vanish with u and u^{\prime} For the function $g\left(z, z^{\prime}\right)$, it is similarly

$$
s^{\prime}+m^{\prime} \text { in } z, \quad t^{\prime}+n^{\prime} \text { in } z^{\prime}
$$

where m^{\prime} and n^{\prime} are the positive integers, which are the degrees of R and S regarded respectıvely as prlynomials in u and in u^{\prime}, and m^{\prime} and n^{\prime} are zero, only when $u^{-s^{\prime}} u^{\prime-t^{\prime}} g\left(z, z^{\prime}\right)$ does not vanish with u and u^{\prime}.

Beyond the factors $u^{*} u^{\prime t}$ and $u^{z} u^{\prime \tau}$, the relatrons of $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ in the vicintly of a, a^{\prime} depend upon the relations of the functions P or Q (as
representative of f) and the functions R or S (as representative of g) to one unother Consider, in particular, the functions

$$
P\left(u, u^{\prime}\right)=u^{m}+u^{m-1} p_{1}\left(u^{\prime}\right)+. \quad+p_{m}\left(u^{\prime}\right)
$$

where p_{1}, \quad, p_{m} are regular fimetions of u^{\prime}, vanishing with u^{\prime}, and

$$
R\left(u, u^{\prime}\right)=u^{n^{\prime}}+u^{1 n-1} r_{1}\left(u^{\prime}\right)+.+r_{m^{\prime}}\left(u^{\prime}\right)
$$

whele r_{1}, , $r_{m^{\prime}}$ are regular functions of u^{\prime}, vanshung with u^{\prime}. To determme whether there are common sets of values of u and u^{\prime}, in the vicuinty of $u=0$ and $u^{\prime}=0$, where P and R vamsh together, we take

$$
P=0, \quad R=0
$$

as simultaneons equatoons, algebracal in u Elimmatmg u between them, we have (save in one case) a resultint which is a function of u^{\prime} only, also, as each of the quantities $p_{1}, \quad, p_{m}, r_{1}, \quad, r_{m}$ is a legular function of u^{\prime} vanishmg with u^{\prime}, this resultant in of the form

$$
u^{\prime M} \phi\left(u^{\prime}\right)
$$

where M is a positive integer, chosen so that $\phi\left(u^{\prime}\right)$, a regular fimetron of u^{\prime}, does not, vamsh when $u^{\prime}=0$ To the exact determmation of M we shall return lates

The excepted case anses when the resultant vanshes adentically When the resultant does not vanish identie ally, the necessaly values of u^{\prime}, making P and R vamsh together, are given by

$$
u^{\prime M} \phi\left(u^{\prime}\right)=0
$$

where $\phi(0)$ is not zero and $\phi\left(u^{\prime}\right)$ is a regulur function We at once have $u^{\prime}=0$, as a possibility, the assiciated value of u is $u=0$. The alternative possibilities would arise through zeros of the regular function $\phi\left(u^{\prime}\right)$ but as $\phi(0)$ is not zero, it is possible to assign a finite positive quantity ϵ, less than the smallest runong the moxluly of the zeros of $\phi\left(u^{\prime}\right)$ In that case, these is no value of u^{\prime} withn the range $\mid u^{\prime} ₹ \epsilon$ such that $\phi\left(u^{\prime}\right)$ vanshes, and then the resultant vanshes fon no value of u^{\prime} other than $u^{\prime}=0$ that is to say, there is no zero-place for f and g in the immerhate viemity of a, a^{\prime}, other than a, a^{\prime} itself
117. When the resultant of the two cquations $P=0$ and $R=0$, whech are algebracal in u, vamshes identically, the mference is that these two equations in u have common roots, one or inore Let the number of these ${ }^{-}$ common roots be l, and let them be the roots of an equation

$$
U=u^{l}+u^{l-1} k_{1}\left(u^{\prime}\right)+. .+k_{l}\left(u^{\prime}\right)=0
$$

where k_{1}, \ldots, k_{l} manifestly are regular functions of u^{\prime} vanishing with u^{\prime}. Then U is a factor of P save as to possible multiplication by a factor $e^{a\left(u^{\prime}\right)}$, where $a\left(u^{\prime}\right)$ is a regular function of u^{\prime} that vamshes with u^{\prime}; and simularly U
is a factor of R, save as to a simular possible limitation. Let the quotient of P by U be

$$
u^{m-l}+u^{m-l-1} f_{1}\left(u^{\prime}\right)+\ldots+f_{m-l}\left(u^{\prime}\right) ;
$$

and let the quotient of R by U be

$$
u^{7 n^{\prime}-l}+u^{m-l-1} g_{1}\left(u^{\prime}\right)+\ldots+g_{m^{\prime}-l}\left(u^{\prime}\right),
$$

where all the quantitus $f_{1}, \ldots, f_{m-l}, g_{1}, ., g_{m^{\prime}-l}$ are regular functions of u^{\prime}, vanishing with u^{\prime} The conditions, necessary and sufficient to secure this result, are those which render the relation

$$
\begin{aligned}
& \left(u^{m-l}+u^{n-l-1} j_{1}+\ldots+f_{m-l}\right)\left(u^{m n^{\prime}}+u^{m-1} q_{1}+\quad+q_{m^{\prime}}\right) \\
& \quad=\left(u^{m^{\prime}-l}+u^{m-l-1} g_{1}+\ldots+g_{m^{\prime}-l}\right)\left(u^{m}+u^{m-1} p_{1}+\ldots+p_{m}\right)
\end{aligned}
$$

an identity viz we must have the l mdependent determmants, each of $m+m^{\prime}-2 l-1$ lows and $m+m^{\prime}-2 l-1$ colimns (we assume $m \geqslant m^{\prime}$ for purposes of statement), wheh can be furmed out of the array
vainshing identically for all values of u^{\prime}
In actual practice with two given functions, we should in general expertence the sane arithmetical difficulty as before ($\$ \S 70,71$) Here we are concerned with the effect of the relative reducibility of the functions, the foregong are the l analytical conditions for this reducibility.

When all the conditons for the identical evanescence of these l determmants are satisfied, P and R have a common factor U and then all the zeros of U within the doman are also zeros of P and R Now these zeros of O form a continuous aggregate, since U is a regular function, for l values of u can be associated with any value of u^{\prime} in the doman so as to make U vanish
118. It thus appears on the one hand that, when the resultant of P and K, regarded as polynomials in u, does not vanish identically, the zero-place a, a^{\prime} is isolated. that is to say, smultaneous zero-values of P and R cannot be found, except at a, a^{\prime}, in a region given by

$$
|z-a| ₹ \varepsilon, \quad\left|z^{\prime}-a^{\prime}\right| ₹ \epsilon^{\prime},
$$

where ϵ and ϵ^{\prime} are assigned positive quantries made as small as we please And it appears on the other hand that, when the resultant of P and R, regarded as polynomials in u, does vanish identically, the zero-place a, a^{\prime} is not isolated.

Moreover, in the case wher P and R have a common factor U, we can write

$$
P=U_{p}\left(u, u^{\prime}\right), \quad R=U_{I}\left(u, u^{\prime}\right)
$$

where all the functions P, R, U, p, q are regulai functions of u and u^{\prime}, each of them vanishes when $u=0$ and $u^{\prime}=0$, and each of them is a polynomial in u, having unity as the coefficrent of the hughest power of u and, as coefficients of the succeeding powers of u, regular functions of u which vanish when $u^{\prime}=0$. From the construction of U, we may assume that p and q have no common factor, so that the zero-place of p and q at $u=0$ and $u^{\prime}=0$ is rsolated. Now

$$
J\left(\begin{array}{l}
P, \frac{R}{u, u^{\prime}}
\end{array}\right)=R J\binom{p, U}{u, u^{\prime}}+P J\left(\frac{U, q}{u, u^{\prime}}\right)+U^{2} J\binom{p, q}{u, u^{\prime}}
$$

Hence the Jacobian of P and R vanushes for all the aggregate of places making U vanshs, because all these places make P and R vanish. But this Jacobran does not vanısh (except at a, a^{\prime}) for places in the doman of a, a^{\prime}, which make P and R vanish but leave U different from zero. Also, as
it follows that the Jacobian of the independent regular functrons f and g vanishes for all the aggregrate of places making U vanish, while it does not vamsh (except at a, a^{\prime}) for places in the domam of a, a^{\prime} that make f and g vanish but leave U different from zero

These results have followed upon the selection of $P\left(u, u^{\prime}\right)$ as the sigmificant factor of f in the ummediate doman of a, a^{\prime}, and of $R\left(u, u^{\prime}\right)$ as the sigmificant factor of g in the same doman. The same results follow upon a selection of $Q\left(u, u^{\prime}\right)$ and $K\left(u, u^{\prime}\right)$ as the significunt factors of f and g, hkewise upon a selection of $P\left(u, u^{\prime}\right)$ and $S\left(u, u^{\prime}\right)$ as these factors, and upon a selection of $Q\left(u, u^{\prime}\right)$ and $S\left(u, u^{\prime}\right)$ as these factors.

Gathering together all the results, we can summarise them as follows -
(1) Any two ondependent functions, unform, analytic, and devond of essential sungularities m the funte part of the field of varıation of the two varables z and z^{\prime}, possess common zero-places somewhere within the feld of variation:-
(11) In general, each common zero-place of two independent functrons, which are unuform, analytıc, and devond of essential singularities in the finte part of the field of variation of z and z, ws an vsoluted place, so far as concerns the vanishing of the two functions:-
(in) Less generally, when two such andependent functions possess a common factor, which is necessarily of the same charucter throughout the fiute part of the field of varnation and which itself vaneshes at the common zero-place of the two functions, then the common zero-place of the two functions is not usolated; in its immeduate vicinity, the two functions possess a continuous aggregate of zero-places which belong to the common factor -
(iv) The Jacobuan . J, of two independent functoons f and g, does not vamash rdentically It may vamsh at a zero-place common to the two functions. When the common zero-place is isoluted, then f, g, and J do uot smultaneously wansh at any other place on the rmmediate vicmity of that ploce. When the common zero-pluce is not soluted, then f, g, and J vamsh simultaneously at a continuous aggregate of places in the immedrate moncty of the common zero-place

119 In the preceding consideration of two functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ discussed simultancously, there has beell the fundamental assumption that the two functions are analytreally independent of one another in the sense that nether of them can be expressed, either implicitly or explicitly, by any functional relation which, save for the occurrence of f and g, is otherwise free from varable quantities. Were the assumption not justified, the Jacobian of the two functions would vansh identically, we then should not possess sufficient material for the consideration of the common characteristic properties of f and g as simultaneous functions of two variables

But, after the preceding explanations, two linitations can be introduced as regards a couple of functions One of these affects them simultantously the other affects them mdividually yet neither of them mposes himitations upon generality, for the purposes of this investigation.

Our discussions will deal with any par of regular functions, which an not merely independent in the general sense, but which possess the further quality that they have no common factor, itself a regular function and vanshing at places within the domam considered. For any such pair of regular functions, each simultaneous zero-place is isolated. The zero-place may be sunple or it may be nultiple, when it is multiple, the multiplicity is represented by a defimte positive integer.

It will be convenient to use some epithet to imply that two independent regular functions, existing together in the doman of a place where they vamsh, do not possess a common factor, which is itself a regular function in that domain and vanshes at the centre of the domain. When a common factor of that type is not possessed by a couple of such functions, they will be called free. If on the contrary they do possess a common factor of that type, they will be called tied. Accordingly, when we deal with a couple of regular functions simultaneously, they will be assumed to be both independent and free.

The other limitation ams at the exclusion of unessential complications, and is nuggested by the most general form of a function $f\left(z, z^{\prime}\right)$ in the numediate vicinity of a zero a, a^{\prime}, viz

$$
f\left(z, z^{\prime}\right)=K^{\prime}(z-a)^{g}\left(z^{\prime}-a^{\prime}\right)^{\prime} l^{\prime}\left(z-a, z^{\prime}-a^{\prime}\right) e^{\bar{p}_{(}\left(z-a, z-a^{\prime}\right)} .
$$

Thun $(z-\mu)^{4}$ is a factor of $t\left(z, z^{\prime}\right)$ at another zero c, c^{\prime}, it conld have another tactor $(z-c)^{\sigma}$, that is, it would have a factor $(z-u)^{p}(z-c)^{\sigma}$ And so on, for wher zeros We shall assume that, if $f\left(z, z^{\prime}\right)$ imtally possesses a factor whech is a function of z alone, then $f\left(z, z^{\prime}\right)$ is modified by the renoval of that factor in z alone Smularly, of conrse, if it monally possesses a factor which is a function of z^{\prime} alone, then we shall assume it to be monfifed by the removal of that factor also Any such factor of eather varnable alone can only contribute properties charactonstic of a finctom of a single variable. Thus, for mstance. we should not comsider $p(z) \rho\left(z^{\prime}\right)$, where the perood of $p(z)$ are unaftected by the periods of $p\left(z^{\prime}\right)$, as a propel quadriply-periodic tunctoon, we should not consider $z^{\circ}(z) \sin z^{\prime}$ as a proper timply-pariodic function, we should not comsidex sin $z \sin z^{\prime}$ as a proper doubly-perooluc function.

It seems innecessiay to introduce an epithet to indicate the non-composite tharacter of a tunction $\dot{f}\left(z, z^{\prime}\right)$, in what follows. we shall assume that we are dealing with functions wheh are of this non-comporite character

Accordingly we can enuncrate the theorem -
The common zero-pluces of thor punctomes of $=$ ant z^{\prime}, whech are wnfonm, "'malytic, and denond of essentral singularaties a the nuite put of the held af woratum, and utach we omdependent and free, we isoluted pluce, in the held of meriethom.

120 An mdication has been given of the determmation of the integer which shall represent the multapherty of an molated smultaneons zero-place of two regular functions In the vicinity of such a place a, a^{\prime}, we take

$$
z=a+u, \quad z^{\prime}=u^{\prime}+u^{\prime},
$$

and then, after the preceding explanations, we can assume that the integers s and t are zero for $f^{\prime}\left(z, z^{\prime}\right)$, and that the integers s^{\prime} and t^{\prime} are zero for $g\left(z, z^{\prime}\right)$. Thus

$$
f^{\prime}\left(z, z^{\prime}\right)=K P^{\prime}\left(u, u^{\prime}\right) e^{P\left(u, u^{\prime}\right)}, \quad g\left(z, z^{\prime}\right)=L K\left(u, u^{\prime}\right) e^{H_{1}\left(u^{\prime}, u\right)},
$$

in the immediate vicmity of $u=0, u^{\prime}=0$, and

$$
\begin{aligned}
& P\left(u, u^{\prime}\right)=u^{m}+u^{m-1} p_{1}\left(u^{\prime}\right)+. .+p_{n}\left(u^{\prime}\right), \\
& R\left(u, u^{\prime}\right)=u^{m^{\prime}}+u^{m^{\prime-1}} r_{3}\left(u^{\prime}\right)+\ldots+r_{m^{\prime}}\left(u^{\prime}\right),
\end{aligned}
$$

where all the coefficients $p_{1}, \ldots, p_{m}, r_{1}, \ldots, r_{m^{\prime}}$ are regular functions of ${ }^{\prime}$ and vanish when $u^{\prime}=0 \quad$ When the elimmant of $P\left(u, u^{\prime}\right)$ and $R\left(u, u^{\prime}\right)$, regarded as polynomials in u, is formed, it is a regular function of u^{\prime} which vanishes when $u^{\prime}=0$; and so it can be expressed in a form

$$
u^{\prime M} \phi\left(u^{\prime}\right)
$$

where $\phi(0)$ does not vanish, and where M is a positive integer. This integer M measures the multiplicity of a, a^{\prime}, as a simultancous zero of f and g.

The detaled determination of M can be effected as follows Let

$$
\begin{aligned}
& P\left(u, u^{\prime}\right)=\left(u-\rho_{1}\right)\left(u-\rho_{2}\right) \quad\left(u-\rho_{m}\right), \\
& R\left(u, u^{\prime}\right)=\left(u-\sigma_{1}\right)\left(u-\sigma_{2}\right) \ldots\left(u-\sigma_{m^{\prime}}\right),
\end{aligned}
$$

where $\rho_{1}, \ldots, \rho_{m}, \sigma_{1}, \ldots, \sigma_{m^{\prime}}$ are functions of u^{\prime} (regular funetions of fractional or integer powers of u^{\prime}) all vanishing when $u^{\prime}=0$. Their governing termsthat is, the lowest power of u^{\prime} in each of them, with its approprate coefficient -can be determmed as in Puseux's treatment of algebraic funetions. Now, except as to a constant factor that is of no mportance here, the eliminant of P and $R{ }_{\text {is }}$

$$
\prod_{r=1}^{m} \prod_{k=1}^{m}\left(\rho_{s}-\sigma_{s}\right) .
$$

When $\rho_{r}-\sigma_{b}$ is expressed in terms of u^{\prime}, every oceurring power having a positive index, let $\mu_{r s}$ be the madex of the lowest power it contans; then we see that

$$
M=\sum_{r-1}^{m} \sum_{s=1}^{i n} \mu_{r b}
$$

which thus gives an expression for the multiplacety M It 18 easily established that the quantity M, thus obtaned, ss an mitege

The smplest case occurs when, in the expansions

$$
\left.\begin{array}{l}
t\left(z, z^{\prime}\right)=a_{10}(z-a)+a_{01}\left(z^{\prime}-a^{\prime}\right)+. \\
g\left(z, z^{\prime}\right)=c_{10}(z-a)+c_{01}\left(z^{\prime}-a^{\prime}\right)+
\end{array}\right\},
$$

no one of the quantities $a_{10}, a_{01}, c_{10}, c_{01}, a_{10} c_{01}-c_{10} a_{01}$ vamshes the value of M. for the zero a, a^{\prime}, is unity wis this case.

Note If, instead of the functions P and R, we take Q and S, as representative of f and g, and construct the elmmant of Q and S regarded as polynomials in u^{\prime}, the elmmant is

$$
u^{M} \psi(u),
$$

where ψ is a regular function of u such that $\psi(0)$ as not zelo, and M is the same integer as before. The proof is a simple matter of pure algebra.
121. All the preeedmg remarks apply to the smultaneous zero-places of two regular functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$. It applies equally to the level values of two regular funetions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, say α and β respectively, where $|\alpha|$ and $|\beta|$ are finite The functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ are independent, as before The functions $f\left(z, z^{\prime}\right)-\alpha$ and $g\left(z, z^{\prime}\right)-\beta$ will be supposed free, that 19 , we shall extend the significance of the epithet 'free,' as applred to $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, so that it applies to this case also. The functions $f\left(z, z^{\prime}\right)-\alpha$ and $g\left(z, z^{\prime}\right)-\beta$ will also be supposed non-composite as regards
factors which are functions of z alone or functions of z^{\prime} alone, as was the case with $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ And, now, we can enunciate the theorem -

The common level places of tuso regular functaons, whach exist together in a doman of the varables, and which are mdependent and free, are asolated, and the multoplecty of (1my level place, gnn"!g values a and β to $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ respectively, is the multiplacty of the place, as a simultaueous zero of the functorns $f\left(z, z^{\prime}\right)-\alpha, g\left(z, z^{\prime}\right)-\beta$.

122 Further, consider two functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, undependent of one another, not tred, and exsting in a common doman, and suppose that $f\left(z, z^{\prime}\right)$ has a pole at a place p, p^{\prime}, which is an ordmary place for $g\left(z, z^{\prime}\right)$, say a level place for $g\left(z, z^{\prime}\right)$, (zero being a possible level value there). Then the place is a common level place for the functions $\phi\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, and We know that, if $\phi\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ are free, that is, if $\phi\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)-g\left(p, p^{\prime}\right)$ possess no common factor which is a regular function of z, z^{\prime} vamshing at p, p^{\prime}, then the common level place at p, p^{\prime} for $\phi\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ in isolated, and its multiphety is the index of the lowest power of z^{\prime} In the z^{\prime}-elummant of $\phi\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)-g\left(p, p^{\prime}\right)$.

It is convement to extend the signficance of the terms tied and free as applied to a couple of mdrpendent unform functions f and g. We shall say that they are tied if, for any constant quantitie, α and β, enther $f-\alpha$ and $\left(1-\beta\right.$. or $f-\alpha$ and $(g-\beta)^{-1}$, or $(f-\alpha)^{-1}$ and $g-\beta$. on $(f-\alpha)^{-1}$ and $(17-\beta)^{-1}$ (beng really two alternatives) possess a common factor which is a regular function of z and z^{\prime} havmg a \%ero (and so an mfinstude of zelos) 11 the domam, and we shall say that the two melependent functions f and g are tree, when no common facton of that type exasts tor any one of the combmatrons Moreover, we shall also assume that nether f - α nor $(f-\alpha)^{-1}$ nor $g-\beta$ nor $(g-\beta)^{-1}$ contans any facton, which is a regular function of z alone or of z^{\prime} alone and vamshes for one (or for more than one) fints value of the varrable.

On the basis of earhe results, we can now enuncrate the following theorems -
(1) Let $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ be two functoons, which are unform, analytuc, and devoid of essential singularities m the fimte part of the field of variation of z and z^{\prime}, and whoch are independent and free The places where one of the fitnctions acquares a level value and where the other has a pole, are $2 s o l a t e d$, rond the multiplicaty of the place for the two functoons conjonntly is the multiplicity of the place as a level-and-zero place for one of the functions and the reciprocal of the other.
(i1) The common poles of two ungforn functions, which exist together 1 " doman of the variables, and which are independent and free, are isolated; and the multiplicity of the common pole for the two functions compontly ts the
multiphaty of the place as a common zero for the reciprocals of the tam functions jountly.

The theorems follow at once from an earher theorem by consudering the behaviour of the reciprocal of a function in the immediate vicinity of any pole of the function.

When we extend the term level value of a uniform function to include
(1) a zero value of the function. this being a unque zero, indeprendent of the way in which the varables reach the place giving the zero value
(i) a level value a of the function, where $|a|$ is finite, this being a similarly unique level value of the function
(iin) an infinite value of the function, thas beng a muque infinty of the function arisung at a pole
then all the theorems, already enunciated concerning two functions, can be summarised in the one theorem --

The common level phaces of two untiorm fanctions, whach are unaform, unulytic, and devold of essental singularities in the finite part of the field of vurutuon of z and z^{\prime}, and which are umlependent and free, are wsoluted, and the multaplacity of the level place for the two functions comontly is the index of the louest term in the elamuant of the tur functoms or of then reciproculs or of either with the reciprocul of the other, expressed in the iminity of the place.

Combining this result with the investigation, which gettled the order of multiplicity of the place a, a^{\prime} as a level place of the functions f and $!$ and therefore as a zero of the functions

$$
f\left(z, z^{\prime}\right)-\alpha, \quad g\left(z, z^{\prime}\right)-\beta,
$$

we have the following corollary - -
Let a, a^{\prime} be an solated comnon zero of multaplucty M of the functions

$$
f\left(z, z^{\prime}\right)-\alpha, \quad g\left(z, z^{\prime}\right)-\beta
$$

then, for values of $\left|a^{\prime}\right|$ and $\left|\beta^{\prime}\right|$ sufficiently small, there are common zeros, simple or multaple, of aggregate multtiplacty M, of the functions

$$
f\left(z, z^{\prime}\right)-\alpha-\alpha^{\prime}, \quad g\left(z, z^{\prime}\right)-\beta-\beta^{\prime}
$$

which conlesce unto the single common zero of multiplicity M of

$$
f\left(z, z^{\prime}\right)-\alpha, \quad g\left(z, z^{\prime}\right)-\beta,
$$

when α^{\prime} and β^{\prime} vanash.

CHAPTER VIII

Uniform Periomic Functions

123. We now proceed to consider the property, of such functions as possess the property, which customarily is called periodicity. Limitation will be made at this stage to periodicity of the type that is hnear and additive, though the type is only a very particular form of the general antomorphic property, mentioned in Chapter 11.

In conformity with general usage, we say that two constant quantities ω and ω^{\prime} are periods, on a period-pant, or a period, of a functoon $f^{\prime}\left(z, z^{\prime}\right)$ of two complex variables, when the relation

$$
f\left(z+\omega, z^{\prime}+\omega^{\prime}\right)=f\left(z, z^{\prime}\right)
$$

in satinficel for all values of z and of $z^{\prime} \quad$ In such an event, the relation

$$
f^{\prime}\left(z+s \omega, z^{\prime}+s \omega^{\prime}\right)=f^{\prime}\left(z, z^{\prime}\right)
$$

in satinfied for all meger valics, positive and negative, of s. Moreover, it is dsumed mplicitly that ω and ω^{\prime} constatute a proper period-pair, that is to siy, a relatom

$$
f^{\prime}\left(z+k \omega, z^{\prime}+k^{\prime} \omega\right)=f\left(z, z^{\prime}\right)
$$

1. not satisfied for all values of z and z^{\prime} except when $k=h^{\prime}$, both h and h^{\prime} bonge integers, and that the same relation is not satisfied, even if $k=k^{\prime}$, when the common value of k and k^{\prime} is the ieciprocal of an meger

In dealing with proriodic functions of a single complex variable, infinitesimal periouls are excluded Speaking generally, we could say* that, if it umform function of a single varable possessed an intimtesimal perool, then within any finte region, however small, round any pont, however arbitrary, the function would açunce the same value an unlimated number of times. The possibility of the cxistence of such functions may not be demed, but they cannot belong to the class of analytic functions In the case of analytic functions which are not mere constants, the result of the possession of infintesmal periods would be to make practically any point and every pomt an essential singularity. Accordngly, so far as concerns functions of a single variable, the possibility of infintesmal penods is excluded

124 We likewise exclude the possibility of infinitesimal periods for functions of two variables, but the exclusion can be based on different
grounds also. For the present purpose, we shall limit ourselves to uniform analytic functions* of two varmables, and we then have a theorem \dagger, due to Welerstrass, as follows -

A umform unalytac function of two madependent complex variables z and z^{\prime} possesses infintesimal periods only $f f$ it can be expressed as a function of $a z+a^{\prime} z^{\prime}$, where a and a^{\prime} are any constants.

First, suppose that our function $f\left(z, z^{\prime}\right)$ can be expressed in a form

$$
f\left(z, z^{\prime}\right)=F^{\prime}\left(a z+u^{\prime} z^{\prime}\right)
$$

Then of we take any two quantities P and P^{\prime} wuch that

$$
a P+a^{\prime} P^{\prime}=0
$$

we have

$$
\begin{aligned}
f\left(z+P^{\prime}, z^{\prime}+P^{\prime}\right) & =F\left(a z+a^{\prime} z^{\prime}+a P+a^{\prime} P^{\prime}\right) \\
& =F\left(a z+a^{\prime} z^{\prime}\right) \\
& =f\left(z, z^{\prime}\right),
\end{aligned}
$$

and therefore when P and P^{\prime} are constants, we may regard P and P^{\prime} as at perrod-par for $f\left(z, z^{\prime}\right)$, supposed expressible in the given form. The only relation between P and P^{\prime} is $a P+a^{\prime} P^{\prime}=0$, hence eithes of them can be taken infintesmally small, and the other then is infintesmally small also It follows that, when a function of z and z^{\prime} can be expressed in the form of a function of $a z+a^{\prime} z^{\prime}$ alone, where a and a^{\prime} are any constants, then it possesces infinitesimal periods

Further, writing $a z+a^{\prime} z^{\prime}=v$, we have

$$
\frac{\partial f}{\partial z}=a \frac{\partial F}{\partial v}, \quad \frac{\partial f}{\partial z^{\prime}}=a^{\prime} \frac{\partial F}{\partial v},
$$

and therefore

$$
u^{\prime \partial f^{\prime}}-u_{\partial z^{\prime}}^{\partial f^{\prime}}=0
$$

Hence when the function is of the form $f\left(a z+a^{\prime} z^{\prime}\right)$, so that it possesses infinitesimal periods, the foregong relation is satisfied. Conversely, by the theory of equations of this form, the most general integral equation equivalent to this differential equation is

$$
f\left(z, z^{\prime}\right)=F\left(a z+a^{\prime} z^{\prime}\right)
$$

where $F_{\text {is }}$ any function whatever of its sungle argument; and therefore, when a function $f^{\prime}\left(z, z^{\prime}\right)$ satrsfies the relation

$$
a^{\prime} \frac{\partial f}{\partial z}-a \frac{\partial f}{\partial z^{\prime}}=0
$$

in general (and not merely for an arithmetrcal pair, or for sets of arthmetrical pairs, of values for z and z^{\prime}), it possesses infinitesimal periods.

[^40]Next, suppose that our unform analytic function is not expressible in a form $F\left(a z+u^{\prime} z^{\prime}\right)$ for any constants a and u^{\prime} whatever, and consider a regiou in the field of variation where the function $f\left(z, z^{\prime}\right)$ is regular No relation

$$
u^{\prime} \frac{\partial f}{\partial z}-u \frac{\partial f}{\partial z^{\prime}}=0
$$

fir non-vanishing values of a and a^{\prime}, is satisfied wer the whole of this region, hence we can take places z_{1} and z_{1}^{\prime}, z_{2} and z_{2}^{\prime} within the region, such that | J_{19} |, where
is finte and not zero Also when we take places $z_{2}+u_{1}$ and $z_{1}^{\prime}+u_{1}^{\prime}, z_{2}+u_{2}$ and $z_{2}^{\prime}+u_{2}^{\prime}, z_{1}+v_{1}$ and $z_{1}^{\prime}+v_{1}^{\prime}, z_{2}+v_{2}$ and $z_{2}^{\prime}+v_{2}^{\prime}$, where all the quantities $\left|u_{1}^{\prime},\left|u_{1}^{\prime}\right|,\left|u_{a}^{\prime},\left|u_{2}^{\prime}{ }^{\prime},\left|u_{i}\right|,\left|v_{1}^{\prime}{ }^{\prime},\left|v_{2}\right|, v_{a}^{\prime \prime}\right|\right.\right.\right.$ are mfimtesmally sinall, the quantity | $J_{11^{\prime},}^{\prime} \mid$ where

$$
\left.r_{11}^{\prime}=\begin{array}{cc}
\partial y^{\prime}\left(z_{1}+u_{1} z_{1}^{\prime}+u_{1}^{\prime}\right), & \partial t\left(z_{2}+u_{1}, z_{1}^{\prime}+v_{1}^{\prime}\right) \\
\lambda z_{1} & \partial z_{1}^{\prime} \\
\partial t\left(z_{2}+u_{2}, z_{2}^{\prime}+u_{2}^{\prime}\right), & \partial y\left(z_{2}+v_{2}, z_{2}^{\prime}+v_{2}^{\prime}\right) \\
\partial z_{2} & \lambda z_{2}^{\prime}
\end{array} \right\rvert\,,
$$

liffers from J_{12} only infinitesmally, and therefore its modulus is finte and not zero.

Consuler the possibulity of the existence of two periods k and h^{\prime}. Whatever these quantities may be, we have genemally

$$
f\left(z+h, z^{\prime}+h^{\prime}\right)-f\left(z, z^{\prime}\right)=\int_{z, z}^{z+h, z^{\prime}+h^{\prime}}\left(\frac{\partial f}{\partial \zeta} d \zeta+\frac{\partial f}{\partial \zeta^{\prime}} d \zeta^{\prime}\right),
$$

because the sulyect of mingration is a perfect differential Take a commoed ζ path from z to $z+h$ and a ζ^{\prime}-path from z^{\prime} to $z^{\prime}+h^{\prime}$, and let

$$
\zeta=z+h t, \quad \zeta^{\prime}=z^{\prime}+h^{\prime} t
$$

so that the range of integration is represented by variations of t from 0) to 1 ; and then generally

$$
\begin{aligned}
& f^{\prime}\left(z+h, z^{\prime}+h^{\prime}\right)-f\left(z, z^{\prime}\right)=h \int_{0}^{1} \frac{\partial f^{\prime}\left(z+h t, z^{\prime}+h^{\prime} t\right)}{\hat{a} z} d t \\
&+h^{\prime} \int_{0}^{1} \frac{\partial f\left(z+h t, z^{\prime}+h^{\prime} t\right)}{\partial z^{\prime}} d t
\end{aligned}
$$

Suppose now that h and h^{\prime} are infinitesimal, so that the derivatives of $f\left(z, z^{\prime}\right)$ differ only infintesimally in the t-range from 0 to 1 from then values at $t=0$, then we have a relation of the form

$$
f\left(z+h, z^{\prime}+h^{\prime}\right)-f\left(z, z^{\prime}\right)=h \frac{\partial f\left(z+u, z^{\prime}+u^{\prime}\right)}{\partial z}+h^{\prime} \frac{\partial f^{\prime}\left(z+v, z^{\prime}+v^{\prime}\right)}{\partial z^{\prime}}
$$

where $|u|,\left|u^{\prime}\right|,|v|,\left|v^{\prime}\right|$ are infintesimal of the same order as $|h|$ and $\left|l^{\prime}\right|$, and may depend upon z and z^{\prime}. Accordingly, returning in particular to our two places z_{1} and z_{1}^{\prime}, z_{2} and z_{2}^{\prime}, we have

$$
\begin{aligned}
& f\left(z_{1}+h, z_{1}^{\prime}+h^{\prime}\right)-f^{\prime}\left(z_{1}, z_{1}^{\prime}\right)=h \frac{\partial f\left(z_{1}+u_{1}, z_{1}^{\prime}+u_{1}^{\prime}\right)}{\partial z_{1}}+h^{\prime} \frac{\partial f\left(z_{1}+v_{1}, z_{1}^{\prime}+u_{1}^{\prime}\right)}{\partial z_{1}^{\prime}}, \\
& f\left(z_{2}+h, z_{2}^{\prime}+h^{\prime}\right)-f\left(z_{2}, z_{2}^{\prime}\right)=h \frac{\partial f\left(z_{2}+u_{2}, z_{2}^{\prime}+u_{2}^{\prime}\right)}{\partial z_{2}}+h^{\prime} \frac{\partial f\left(z_{2}+v_{2}, z_{2}^{\prime}+v_{2}^{\prime}\right)}{\partial z_{2}^{\prime}}
\end{aligned}
$$

and so on for any number of places: two will suffice for our purpose.
When h and h^{\prime} are periods (whether infintesmial or not), the left-hand sides vamsh. As the equations are valid, when the pernods aue mfintesumal, the rught-hand sides also vamsh, so that we have

$$
h J_{32}^{\prime}=0, \quad h^{\prime} \cdot J_{x_{2}^{\prime}}^{\prime}=0 .
$$

Now $J_{12}{ }^{\prime}$ is not zero, hence both h and h^{\prime} are zero In other words, ou uniform analytic function of two varables cannot have infintesimal periods, unless it is expressible as a function of a smgle argument $a \tilde{z}+a^{\prime} z^{\prime}$, where a and a^{\prime} are two constants
125. Next, let ω_{1} and ω_{1}^{\prime}, ω_{1} and $\omega_{2}^{\prime}, \omega_{1}$ and ω_{3}^{\prime}, .. be perod-parss for a untorm analytic function $f\left(z, z^{\prime}\right)$. then we have

$$
f\left(z+r_{1} \omega_{1}+r_{2} \omega_{2}+r_{3} \omega_{3}+\ldots, z^{\prime}+r_{1} \omega_{1}^{\prime}+r_{2} \omega_{2}^{\prime}+r_{3} \omega_{4}^{\prime}+\quad\right)=f^{\prime}\left(z, z^{\prime}\right),
$$

where $r_{1}, r_{2}, i_{3}, \ldots$ are any integers, positive or negative, and independeut of me another

In the case of a uniform analytic function of ono varable, it is known that there are not more than two independent periods and that the ratoo of these periods for a doubly permodic function cannot be real*, the last property can be expressed by saying that it the periods are $\omega,=\alpha+\imath \beta$, and $\omega^{\prime},=a^{\prime}+\iota \beta^{\prime}$, the determinant

$$
\left|\begin{array}{ll}
\alpha, & \beta \\
a^{\prime}, & \beta^{\prime}
\end{array}\right|
$$

is not zero.
The corresponding theoremt in the case of unnform analytic functions of two variables is as follows -

A ungform analytic function of two varmbles z and z^{\prime} cumot possess more than four independent perood-pars ω_{1} and $\omega_{1}^{\prime}, \omega_{2}$ and $\omega_{2}^{\prime}, \omega_{3}$ and $\omega_{4}^{\prime}, \omega_{4}$ and ω_{4}^{\prime}; and ${ }^{\prime} f$

$$
\omega_{v}=\alpha_{k}+i \beta_{y}, \quad \omega_{s}^{\prime}=\alpha_{\xi}^{\prime}+i \beta_{k}^{\prime},
$$

[^41]for all four values of s (the parts $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ beng real), the determmant
\[

$$
\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & \alpha_{3}, & \alpha_{4} \\
\beta_{1}, & \beta_{2}, & \beta_{3}, & \beta_{4} \\
\alpha_{1}^{\prime}, & \alpha_{2}^{\prime}, & \alpha_{3}^{\prime}, & \alpha_{4}^{\prime} \\
\beta_{1}^{\prime}, & \beta_{2}^{\prime}, & \beta_{3}^{\prime}, & \beta_{1}^{\prime}
\end{array}
$$
\]

Inest not vernsh.
126. As a preliminary lemina, we requice the following pinposition it relations

$$
\left.\begin{array}{l}
\omega_{1}=k \omega_{1}+l \omega_{12}+m \omega_{1} \\
\omega_{1}^{\prime}=k \omega_{1}^{\prime}+l \omega_{2}^{\prime}+m \omega_{1}^{\prime}
\end{array}\right\}
$$

are satisficd among four period-pars, where k, l, m are real quantities, then either there are not more than three linealy independent period-pars or there are infintesmal periods.

First, suppose that l, l, m are commensurable, and that then each of them is expressed in its lowest terms Let d denote the highest common factor of thear numerators, atd let M denote the least common multiple of their denommators, and wnite

$$
h=\frac{d}{M} l^{\prime}, \quad l=\frac{d}{M} l^{\prime}, \quad m=\frac{d}{M} m^{\prime}
$$

whele $h^{\prime}, l^{\prime}, m^{\prime}$ are integers, then we have

$$
\begin{aligned}
& M \\
& d \\
& \omega_{4}=h^{\prime} \omega_{1}+l^{\prime} \omega_{2}+m^{\prime} \omega_{3} \\
& M I \omega_{1}^{\prime}=l^{\prime} \omega_{1}^{\prime}+l^{\prime} \omega_{2}^{\prime}+m^{\prime} \omega_{3}^{\prime}
\end{aligned}
$$

Now $M / d_{\text {is a }}$ fraction in its lowest terms, being an integer only if d is umty, change M / d uto a contmued fraction and let. p / q be the last convergent before the final value, then

$$
\frac{M}{d}-\frac{p}{q}= \pm \frac{1}{\tilde{d} q}
$$

so that

$$
q \frac{M}{d}-p= \pm \frac{1}{d}
$$

Now $\frac{M}{d} \omega_{4}$ and $\frac{M}{d} \omega_{d}^{\prime}$ manfestly are a period-pair, and therefore also $q \frac{M}{d} \omega_{\downarrow}$ and $q \frac{M}{d} \omega_{i}^{\prime}$, consequently

$$
\left(q \frac{M}{d}-p\right) \omega_{4} \text { and }\left(q \frac{M}{d}-p\right) \omega_{4}^{\prime}
$$

also are a period-parr, that $18, \omega_{4} / d$ and ω_{4}^{\prime} / d are a period-parr Let*

$$
\omega_{4}=\Omega_{\mathrm{s}}, \quad \frac{\omega_{4}^{\prime}}{d}=\Omega_{d^{\prime}}^{\prime}
$$

then

$$
M \Omega_{4}=k^{\prime} \omega_{1}+l^{\prime} \omega_{2}+n^{\prime} \omega_{3}, \quad M \Omega_{4}^{\prime}=k^{\prime} \omega_{1}^{\prime}+l^{\prime} \omega_{2}^{\prime}+m^{\prime} \omega_{3}^{\prime}
$$

where the integers $M, k^{\prime}, l^{\prime}, m^{\prime}$ have no factor common to all
Moreover, we can assume that any two of the four quantities have no common factor. For if two of them, say k^{\prime} and l^{\prime} had a common factor μ, the quantities

$$
k_{\mu}^{k_{1}^{\prime}} \omega_{1}+\frac{l^{\prime}}{\mu} \omega_{2}, \quad \frac{k^{\prime}}{\mu} \omega_{1}^{\prime}+\frac{l^{\prime}}{\mu} \omega_{2}^{\prime}
$$

are pertorl-pars, integral in ω_{1} and $\omega_{1}{ }^{\prime}, \omega_{2}$ and ω_{2}^{\prime}. hence

$$
\frac{M}{\mu} \Omega_{4}-{ }_{\mu}^{m} \omega_{s}^{\prime}, \quad{ }_{\mu}^{M} \Omega_{4}^{\prime}-{ }_{\mu}^{m^{\prime}} \omega_{3}^{\prime},
$$

are a perrod-parr, say ω_{0} and ω_{5}^{\prime}, then as

$$
{ }_{\mu}^{M} \Omega_{b}-\frac{m^{\prime}}{\mu} \omega_{s}=\omega_{5}, \quad{ }_{\mu}^{M} \Omega_{s}^{\prime}-\frac{m^{\prime}}{\mu} \omega_{s}^{\prime}=\omega_{5}^{\prime}
$$

where M, m^{\prime}, μ are integers and $\Omega_{3}, \omega_{3}, \omega_{5}, \Omega_{4}^{\prime}, \omega_{s}^{\prime}, \omega_{3}^{\prime}$ are constutuents of pars But we knowt that, in such an event there are two integral combimations of $\omega_{s}, \omega_{5}, \Omega_{d}$, and the same two integial combinations of $\omega_{s}^{\prime}, \omega_{5}^{\prime}, \Omega_{4}^{\prime}$, because the cocfficients $\frac{M}{\mu}$ and $\frac{m^{\prime}}{\mu}$ are the same in the two relations, such that $\omega_{j}, \omega_{6}, \Omega_{\mathrm{d}}$ are expressible as integral combinations of the first and $\omega_{3}^{\prime}, \omega_{5}^{\prime}, \Omega_{4}^{\prime}$ are integral combmations of the second, that $1 s$, we have

$$
\begin{aligned}
& \frac{k^{\prime}}{\mu} \omega_{1}+\frac{l^{\prime}}{\mu} \omega_{2}=\text { hnear finction of two periods } \Omega_{1} \text { and } \Omega_{2}, \\
& \frac{k^{\prime}}{\mu} \omega_{1}^{\prime}+\frac{l^{\prime}}{\mu} \omega_{2}^{\prime}=\text { sume } \ldots \ldots \ldots \ldots \Omega_{1}^{\prime} \text { and } \Omega_{2}^{\prime},
\end{aligned}
$$

and now, in our equations, the mengral cocfficients $\frac{k^{\prime}}{\mu}$ and $\frac{l^{\prime}}{\mu}$ have no common factor

Similarly for the other cases; we can assume, in our relations

$$
M \Omega_{4}=k^{\prime} \omega_{1}+l^{\prime} \omega_{2}+m^{\prime} \omega_{3}, \quad M \Omega_{4}^{\prime}=k^{\prime} \omega_{1}^{\prime}+l^{\prime} \omega_{2}^{\prime}+m^{\prime} \omega_{3}^{\prime}
$$

that no two of the integers $M, k^{\prime}, l^{\prime}, m^{\prime}$ have a common factor.
Accordingly, we have k^{\prime} / l^{\prime} a fraction in its lowest terms. Expressing it as a continued fraction, and denoting by r / s the last convergent before the final value, we have

$$
\frac{k^{\prime}}{l^{\prime}}-\frac{r}{s}= \pm \frac{1}{s \bar{l}^{\prime}}
$$

* Obviously, if $d=1$, the period-parr ω_{4} and $\omega_{4}^{\prime} 18$ unchanged
\dagger See my Theory of Functions, $\$ 107$.

Then

$$
\begin{array}{lr}
\pm \omega_{1}=\omega_{1}\left(s k^{\prime}-r l^{\prime}\right)= & s M \Omega_{4}-l^{\prime}\left(r \omega_{1}+s \omega_{2}\right)-s m^{\prime} \omega_{1} \\
\pm \omega_{1}^{\prime}= & s M \Omega_{4}^{\prime}-l^{\prime}\left(r \omega_{1}^{\prime}+s \omega_{2}^{\prime}\right)-s m^{\prime} \omega_{9}^{\prime} \\
\pm \omega_{2}=\omega_{2}\left(s k^{\prime}-r l^{\prime}\right)=-r M \Omega_{4}+k^{\prime}\left(r \omega_{1}+s \omega_{2}\right)+r m^{\prime} \omega_{s} \\
\pm \omega_{2}^{\prime}= & -r M \Omega_{4}^{\prime}+k^{\prime}\left(r \omega_{1}^{\prime}+s \omega_{2}^{\prime}\right)+r m^{\prime} \omega_{3}^{\prime}
\end{array}
$$

ant so the four period-pairs are expressible in terms of threc period-pairs

$$
\Omega_{4}, \Omega_{4}^{\prime}, \quad \omega_{3}, \omega_{3}^{\prime}, \quad r \omega_{1}+s \omega_{g}, r \omega_{1}^{\prime}+s \omega_{2}^{\prime}
$$

Thus there are not more than three lmearly independent period-pars.
Next, suppose that one of the three quantities k, l, m, say k, is ineommensurable, while the other two are commensurable When l, m, ule expressed in their lowest terms, let the integer D be the least common multiple of thenr denommators, so that we can write

$$
l=\frac{l^{\prime}}{1,}, \quad m=\frac{m^{\prime}}{\bar{l},} .
$$

Then

$$
\begin{aligned}
& D \omega_{4}-l^{\prime} \omega_{9}-m^{\prime} \omega_{1}=k D \omega_{1}, \\
& D \omega_{1}^{\prime}-l^{\prime} \omega_{2}^{\prime}-n^{\prime} \omega_{1}^{\prime}=k D \omega_{1}^{\prime} .
\end{aligned}
$$

Now $k: D$, heke k, is incommensurable, hence, expressing it as an infinite continued fraction, and denoting two consecntive convergents by p / q and p^{\prime} / q^{\prime}, we have

$$
k I)=\frac{p}{q}+\frac{\theta}{q q^{\prime}},
$$

where the red quintity θ is such that $1>\theta>-1$ Thus

$$
\left(\frac{p}{q}+\frac{\theta}{q q^{\prime}}\right) \omega_{1} \text { and }\left(\frac{p}{q}+\frac{\theta}{q q^{\prime}}\right) \omega_{1}^{\prime}
$$

are a period-pair, and therefore also

$$
q\left(\frac{p}{q}+\frac{\theta}{q q^{\prime}}\right) \omega_{1}-p \omega_{1}, \quad q\left(\begin{array}{l}
p \\
q
\end{array}+\frac{\theta}{q q^{\prime}}\right) \omega_{1}^{\prime}-p \omega_{1}^{\prime},
$$

that is,

$$
\frac{\theta}{q^{\prime}} \omega_{1} \text { and } \stackrel{\theta}{q^{\prime}} \omega_{1}^{\prime}
$$

are a period-pair We may take q^{\prime} as large as we please, for the continued fraction is infinite, and the corcumstances thus give rise to infintesmal perods

Next, suppose that two of the three quantities k, l, m are incommensurable, say k and l, and that m is commensurable, equal to λ / μ, where λ and μ are integers. Then our relations can be taken in the form

$$
\mu \omega_{4}-\lambda \omega_{2}=k \mu \omega_{1}+l \mu \omega_{2}, \quad \mu \omega_{4}^{\prime}-\lambda \omega_{s}^{\prime}=k \mu \omega_{2}^{\prime}+l \mu \omega_{2}^{\prime} .
$$

But, writing

$$
\omega_{5}=\mu \omega_{4}-\lambda \omega_{\mathrm{a}}, \quad \omega_{\mathrm{b}}^{\prime}=\mu \omega_{4}^{\prime}-\lambda \omega_{\mathrm{s}}^{\prime},
$$

and denoting $k \mu$ and $l \mu$ by k^{\prime} and l^{\prime} respectively, we have

$$
\omega_{\mathrm{s}}=k^{\prime} \omega_{1}+l^{\prime} \omega_{2}, \quad \omega_{\mathrm{s}}^{\prime}=k^{\prime} \omega_{1}^{\prime}+l^{\prime} \omega_{2}^{\prime}
$$

where k^{\prime} and l^{\prime} are meommensurable, while ω_{s} and $\omega_{\mathrm{s}}^{\prime}$ are a period-pair Again it is known* that, by successive linear combinations of the period so always as to give a period, we can change ω_{3} into Ω_{2} (and ω_{2}^{\prime} into $\Omega_{2}{ }^{\prime}$ by the same algebraic relations) so that

$$
\left|\omega_{2}\right| ₹ \frac{1}{2}\left|\Omega_{2}\right|, \left.\quad\left|\omega_{2}^{\prime}!<\frac{1}{2}\right| \Omega_{2}^{\prime} \right\rvert\,,
$$

and at the same tume have relations

$$
\omega_{1}=k^{\prime \prime} \omega_{1}+l^{\prime \prime} \Omega_{\Delta}, \quad \omega_{x}^{\prime}=k^{\prime \prime} \omega_{1}^{\prime}+l^{\prime \prime} \Omega_{2}^{\prime},
$$

where both $k^{\prime \prime}$ and $l^{\prime \prime}$ are meommensurable The process can be conturued to any extent, by successive combinations of the period-pars. so ultimately, we can construct an infinitesmal period-pan

Lastly, we have the case when all the quantities k, l, m are inconmensurable, and we assume that the ratios $k l m$ also are incommensurable \dagger Then we express h as a contmued fruction, which of course will be mfinte taking any convergent r / s, we have

$$
k=\frac{v}{s}+\frac{x}{s_{n}},
$$

where always r and s are integers, and a is a real quantity such that $1>x>-1$. Also let t_{1} be the integer nearest to the incommensurablo quantity $s l$, and t_{4} be the uteger nearest to the incommensurable quantity $s m$, then we have

$$
s l-t_{1}=\Delta_{2}, \quad s m-t_{2}=\Delta_{3},
$$

where Δ_{2} and Δ_{3} are incommensurable quantities, each in numerical value being less than $\frac{1}{2}$ Thus

$$
\begin{aligned}
& s \omega_{4}-r \omega_{1}-t_{1} \omega_{2}-t_{2} \omega_{\mathrm{s}}=\frac{x}{s} \omega_{1}+\Delta_{2} \omega_{2}+\Delta_{s} \omega_{3} \\
& s \omega_{4}^{\prime}-r \omega_{1}^{\prime}-t_{1} \omega_{2}^{\prime}-t_{2} \omega_{3}^{\prime}={ }_{s}^{x} \omega_{1}^{\prime}+\Delta_{2} \omega_{2}^{\prime}+\Delta_{8} \omega_{3}^{\prime} .
\end{aligned}
$$

Again, as Δ_{2} is an incommensurable quantity, let it be expressed as a continued fraction, taking any convergent ρ / σ, where always ρ and σ are integers, we have

$$
\Delta_{1}=\frac{\rho}{\sigma}+\frac{y}{\sigma^{2}}
$$

[^42]where y is a real quantity such that $1>y>-1$. Also let t_{s} be the integer neurest to the value of $\sigma \Delta_{3}$, and write
$$
\sigma \Delta_{3}=t_{\mathrm{a}}+\nabla
$$
where ∇ is an incommensurable real quantity less than $\frac{1}{2}$. We then have
\[

$$
\begin{aligned}
& \sigma\left(s \omega_{4}-r \omega_{1}-t_{1} \omega_{2}-t_{2} \omega_{3}\right)-\rho \omega_{2}-t_{y} \omega_{3}=\sigma \frac{x}{s} \omega_{1}+\frac{y}{\sigma} \omega_{2}+\nabla \omega_{1} \\
& \sigma\left(s \omega_{4}^{\prime}-r \omega_{1}^{\prime}-t_{1} \omega_{2}^{\prime}-t_{2} \omega_{3}^{\prime}\right)-\rho \omega_{1}^{\prime}-t_{3} \omega_{3}^{\prime}=\sigma \frac{x}{s} \omega_{1}^{\prime}+\frac{y}{\sigma} \omega_{2}^{\prime}+\nabla \omega_{3}^{\prime}
\end{aligned}
$$
\]

the guantities on the left-hand side are a period-parr, which can be denoted by Ω_{3} and Ω_{3}^{\prime}

Now take an advanced convergent for Δ_{1}, we have σ very large, and so the values of $y \omega_{2} / \sigma$ and $y \omega_{2}^{\prime} / \sigma$ ate infintesmal Take a much more advanced convergent for k, so that s is very large compared with σ, the values of $\sigma x \omega_{1} / s$ and $\sigma a \omega_{1}^{\prime} / s$ are mfintesinal We thas have a new perod-par $\Omega \Omega_{3}$ and Ω_{s}^{\prime}, such that

$$
\begin{aligned}
& \left.\left|\Omega_{3}\right|=\sigma_{s}^{x} \omega_{1}+\frac{!}{\sigma} \omega_{2}+\nabla \omega_{1}\right\}<\frac{1}{2}\left|\omega_{3}\right| \\
& \Omega_{3}^{\prime} ;=\left\{\left.\sigma_{s}^{x} \omega_{1}^{\prime}+\frac{\prime \prime}{\sigma} \omega_{2}^{\prime}+\nabla \omega_{3}^{\prime} \right\rvert\,<\frac{1}{2}, \omega_{3}^{\prime}\right.
\end{aligned}
$$

Our relations now have the form

$$
\omega_{4}=k^{\prime} \omega_{1}+l^{\prime} \omega_{2}+m^{\prime} \Omega_{1}, \quad \omega_{4}^{\prime}=l^{\prime} \omega_{1}+l^{\prime} \omega_{2}+m^{\prime} \Omega_{s^{\prime}}^{\prime},
$$

where the quantities $k^{\prime}, l^{\prime}, m^{\prime}$ fall under one on other of the cases already ronsidered Either we have not more than thice penod-pans, or we have infinatesmal periods, or all the guantites $l^{\prime}, l^{\prime}, m^{\prime}$ ate incommensurable, while

$$
\left|\Omega_{3}\right|<\frac{1}{2}\left|\omega_{3}\right|, \quad\left|S \Omega_{3}^{\prime}\right|<\frac{1}{2}\left|\omega_{1}^{\prime}\right|
$$

In the last event, the same kind of transformation can be adopted, and by appropriate choce, we can form a new period-parr $\bar{\Omega}_{3}, \Omega_{2}^{\prime}$, such that

$$
\left|\bar{\Omega}_{3}\right|<\frac{1}{2}\left|\Omega_{3}\right|, \left.\quad\left|\Omega_{3}^{\prime}\right|<\frac{1}{2} \right\rvert\, \Omega_{8}^{\prime} i
$$

And so on, in succession. By taking a sufficient number n of transformations, each of the preceding type, we ultimately can construct a period-parr Φ_{3} and $\boldsymbol{\Phi}_{\mathbf{s}}{ }^{\prime}$, such that

$$
\left|\Phi_{3}\right|<\frac{1}{2^{n}}\left|\omega_{3}\right|, \left.\quad \Phi_{3}^{\prime}\left|<\frac{1}{2^{n}}\right| \omega_{3}^{\prime} \right\rvert\,
$$

that is, by taking n sufficiently large, we should have an infinitesimal period.

It therefore follows that, if we have two relations

$$
\begin{aligned}
& A \omega_{1}+B \omega_{2}+C \omega_{3}+D \omega_{4}=0 \\
& A \omega_{1}^{\prime}+B \omega_{2}^{\prime}+C \omega_{3}^{\prime}+D \omega_{4}^{\prime}=0
\end{aligned}
$$

between four period-pairs, where the coefficients A, B, C, D are real quantities, ether there are not more than three period-pars, or there are infinitesimal periods for the variables.

Accordmgly, when we have to deal with umform analytic finctions of two variables, there is nothing in the preceding analysis to exclude the possession of even four period-pairs, when these pars are linearly independent in respect of combinations between then respective members.
127. For the remander of the proposition in § 125 , it is necessary to consider the possiblity of the existence of five period-pairs if this be excluded, then a fortion we need not consider the existence of more than four perrod-parrs

For this purpose, let there be four penod-pars of the kind postulated in the theorem such that, if

$$
\omega_{k}=\alpha_{q}+\imath \beta_{k}, \quad \omega_{k}^{\prime}=\alpha_{s}^{\prime}+\imath \beta_{k}^{\prime} .
$$

(for $s=1,2,3,4$), the determmant

$$
\begin{array}{cccc}
\alpha_{1}, & \alpha_{2}, & a_{y}, & \alpha_{4} \\
\beta_{1}, & \beta_{2}, & \beta_{3}, & \beta_{4} \\
a_{1}^{\prime}, & \alpha_{2}^{\prime}, & a_{4}^{\prime}, & \alpha_{4}^{\prime} \\
\beta_{1}^{\prime}, & \beta_{3}^{\prime}, & \beta_{3}^{\prime}, & \beta_{4}^{\prime}
\end{array}
$$

does not vamsh When this last condition is satisfied, we cannot have relations

$$
\begin{aligned}
& m_{1} \alpha_{1}+m_{2} \alpha_{2}+m_{3} \alpha_{3}+m_{4} \alpha_{4}=0, \\
& m_{1} \beta_{1}+m_{4} \beta_{2}+m_{3} \beta_{3}+m_{4} \beta_{4}=0, \\
& m_{1} \alpha_{1}^{\prime}+m_{2} \alpha_{2}^{\prime}+m_{3} \alpha_{3}^{\prime}+m_{4} \alpha_{4}^{\prime}=0, \\
& m_{1} \beta_{1}^{\prime}+m_{2} \beta_{2}^{\prime}+m_{3} \beta_{3}^{\prime}+m_{4} \beta_{4}^{\prime}=0,
\end{aligned}
$$

for any set of real quantities $m_{1}, m_{3}, m_{1}, m_{4}$ other than simultaneous zeros The exclusion of the first parr of these relations excludes a relation

$$
m_{1} \omega_{1}+m_{2} \omega_{2}+m_{2} \omega_{3}+m_{4} \omega_{4}=0
$$

and conversely, and the exclusion of the second par excludes a relation

$$
m_{1} \omega_{1}^{\prime}+m_{2} \omega_{2}^{\prime}+m_{3} \omega_{3}^{\prime}+m_{\sqrt{ }} \omega_{4}^{\prime}=0
$$

and conversely. Hence, after the preceding lemina, we infer that our uniform analytic functions may possess four periods, or fewer than four periods, and they do not possess, as they cannot be allowed to possess, infinitesimal periods.

Now suppose that a uniform analytic function $f\left(z, z^{\prime}\right)$ possesses, in addition to four given linearly independent period-pairs $\omega_{1}, \omega_{1}^{\prime}, \omega_{2}, \omega_{2}^{\prime}, \omega_{3}, \omega_{3}^{\prime} ; \omega_{4}, \omega_{4}^{\prime}$; also a fifth period-pair, say $\omega_{s}, \omega_{s}{ }^{\prime}$. Let

$$
\omega_{b}=\alpha_{b}+i \beta_{b}, \quad \omega_{b}^{\prime}=a_{b}^{\prime}+i \beta_{b}^{\prime} .
$$

Then, with the preceding hypothess of the non-evanescence of the determınant ($\alpha_{1}, \beta_{2}, a_{d}^{\prime}, \beta_{4}^{\prime}$) in the customary notation, the equations

$$
\begin{aligned}
\alpha_{5} & =n_{1} \alpha_{2}+n_{2} \alpha_{2}+n_{3} \alpha_{3}+n_{4} \alpha_{4} \\
\beta_{5} & =n_{1} \beta_{1}+n_{2} \beta_{3}+n_{3} \beta_{3}+n_{4} \beta_{4} \\
\alpha_{5}^{\prime} & =\mu_{1} \alpha_{1}^{\prime}+n_{2} \alpha_{2}^{\prime}+n_{3} \alpha_{3}^{\prime}+n_{4} \alpha_{4}^{\prime} . \\
\beta_{3}^{\prime} & =n_{1} \beta_{1}^{\prime}+n_{2} \beta_{2}^{\prime}+n_{1} \beta_{3}^{\prime}+n_{4} \beta_{4}^{\prime},
\end{aligned}
$$

determme unquely four real finte quantities $n_{1}, n_{2}, n_{4}, n_{4}$, and they are such as to secure and to require the equations

$$
\left.\begin{array}{c}
\omega_{5}=n_{1} \omega_{1}+n_{2} \omega_{2}+n_{3} \omega_{3}+n_{4} \omega_{4} \\
\omega_{5}^{\prime}=n_{1} \omega_{1}^{\prime}+n_{2} \omega_{2}^{\prime}+n_{3} \omega_{2}^{\prime}+n_{4} \omega_{4}^{\prime}
\end{array}\right\}
$$

It therefore is necessary to considel the conditions, noler which thise equations are possible.

The analytical consuderation of the conditions follows a general march simbar to that followed in the establishment of the preceding lomma. The results therefone will only be stated, without further proof. They will relate only to the most geacial case when no me of the six ratios $n_{1} n_{2} n_{d} n_{4}$, as determmed by the elements of the fou period-pars is an integer, the alternative is to poovide only less general eases We find
(1) when all the real quantites $n_{1}, n_{2}, n_{1}, n_{+}$are commensurable, the formally the penorl-pars can be expressed in terms of not mone than four perrod-pars -
(1i) When one (and only one) of these quantities is mcommensurable, then an infintesmal perod-parir exists -
(iil) when two of these quantatios are incommensurable, then certamly onc infintermal period-par exists and possibly two such pans exist -
(iv) whon three of these quantities are meommensurable, then one infinitesimal perrod-pan certanly exists, and three such pars may exist -
(v) when fuar of these quantitses are neommensurable, then one infintesmal period-par certanly exists, and fou sach pars may exist.
It therefore follows that for any unform analytic function, which is really a function of two (and only two) independent complex variables so that it cannot possess mfinitesimal periods, theie may be four period-pars, and there cannot be more than four linearly independent period-pars*.

[^43]128 Now that we have established the result that a uniform analytic function of two complex variables cannot possess more than four linearly independent pairs of periods, so that we should have

$$
f\left(z+m_{1} \omega_{1}+m_{2} \omega_{4}+m_{3} \omega_{3}+m_{4} \omega_{4}, z^{\prime}+m_{1} \omega_{1}^{\prime}+m_{2} \omega_{2}^{\prime}+m_{3} \omega_{3}^{\prime}+m_{4} \omega_{4}^{\prime}\right)=f\left(z, z^{\prime}\right),
$$

fur all integer values of $m_{1}, m_{2}, m_{3}, m_{4}$, positive or negative, we proceed to consider the various possible cases that can arrse, under the significance of the result and within the alternatives admitted by the analysis leading to the result.

For the present purpose, the case when there are no periods needs only to be mentioned. We then have the customary theory of the uniforin analytic functions of two variables, which has been previously discussed in some detanl.

The remanning casces will be considered in succession

One parr of periods

129. Let the variables z and z^{\prime} have the periods α and α^{\prime}, and no other perwds Take new variables u and u ', where

$$
z=u u, \quad \alpha z^{\prime}-a^{\prime} z=\alpha a^{\prime} u^{\prime},
$$

which is an effective transformation of variables unless (i) both α and a^{\prime} vanish-a possibility that can be excluded-or (in) either α or \boldsymbol{a}^{\prime} vamshes

If a^{\prime} vanıshes, we take u and z^{\prime} as new variables. If a vamshes, we take z and v as the variables, where $z^{\prime}=\alpha^{\prime} v$ In all the cases, denoting the variables by u and u^{\prime}, we can now take 1,0 as the parr of periods Hence the field of variation of the variables is composed of a strip in the u-plane of breadth unity, measured parallel to the axis of real variables, and the whole of the u^{\prime}-plane, and the umform function in question can be expressed as a unform function of $e^{\pi t u}$ and u^{\prime}.

Two paus of periods.

130 Let the periods be

$$
\left.\begin{array}{ll}
\text { for } \left.\begin{array}{ll}
z, & =\alpha \\
z^{\prime}, & =\alpha^{\prime}
\end{array}\right\}, & =\beta \\
=\beta^{\prime}
\end{array}\right\},
$$

respectively, in bracketted pairs; manifestly it may be assumed that α and α^{\prime} do not simultaneously vamsh, and likewise that β and β^{\prime} do not simultaneously vanish.

Choose quantities k, l, m, n, such that

$$
\begin{array}{ll}
k \alpha+l \alpha^{\prime}=1, & k \beta+l \beta^{\prime}=0 \\
m \alpha+n a^{\prime}=0, & m \beta+n \beta^{\prime}=1
\end{array}
$$

When one of the two quantities α and α^{\prime} vanishes, say α^{\prime}, and nether of the two quantities β and β^{\prime} vanshes, we take $m=0$, and when one of the two quantities β and β^{\prime} vanishes, say β^{\prime}, and nether of the two quantities α and a^{\prime} vamshes, we take $k=0$ As will be seen, all the other possible special cases are included in the one special case that is to be considered.

The values of k, l, m, n are given by

$$
\begin{aligned}
h\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right) & =\beta^{\prime}, \quad m\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right)=-\alpha^{\prime}, \\
l\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right) & =-\beta, \quad n\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right)=\alpha,
\end{aligned}
$$

and these valucs are determinate and fimite unless

$$
\alpha \beta^{\prime}-\alpha^{\prime} \beta=0 .
$$

First, suppose that $\alpha \beta^{\prime}-\alpha^{\prime} \beta$ is not zero-which, of course, is the more general case. Introduce new variables u and u^{\prime}, such that

$$
u=k z+l z^{\prime}, \quad u^{\prime}=m z+n z^{\prime} ;
$$

and then the period-pars of these new variables are

$$
\left.\left.\begin{array}{rl}
\text { for } u, & =1 \\
u^{\prime}, & =0
\end{array}\right\}, \quad=0, \quad=1\right\} \text {, }
$$

respectively, in bracketted pains The ficld of varation of the variables is composed of a strip of unt breadth in the u-plane and of a strip of umt breadth in the u '-plane, the breadth of each of the strips being measured parallel to the axes of real quantities in the planes. The uniform function 11 question can be cxpressed as a unform function of $e^{\pi 11}$ and $e^{\pi n x^{\prime}}$.

Next, suppose that $\alpha \beta^{\prime}-\alpha^{\prime} \beta$ is zero-which, of course, is a special case. As α and α^{\prime} may not be zero simultancously, let α be ditferent from zero; and as β and β^{\prime} may not be zero simultancously, let β be different from zero. Then there are two alternatives
(i) when both α^{\prime} and β^{\prime} vansh
(1i) when netther α^{\prime} nor β^{\prime} vanishes, and then we have

$$
\frac{\alpha^{\prime}}{a}=\frac{\beta^{\prime}}{\widetilde{\beta}},=c
$$

say, where c is not zero nor infinitc.
As regards (i), the variable z has periods α and β, while the variable z^{\prime} is devoid of periods and in order that α and β may be effective distinct periods for z, we must as usual have the real part of $i a / \beta$ distinct from zero. The field of variation of the variables is composed of the customary $\alpha-\beta$ parallelogram in the z-plane, and of the whole of the z^{\prime}-plane, and the uniform function in question can be expressed as a uniform function of $\varphi(z), \varphi^{\prime}(z)$, and ε^{\prime}, where $\rho(z)$ is the customary Welerstrassian doubly-penodic function with periods α and β.

As regards (in), we keep the original variable z, and we introduce a variable v such that

$$
v=z^{\prime}-c z
$$

When z and z^{\prime} have the periods a and α^{\prime}, then v has zero for its period, and when z and z^{\prime} have the periods β and β^{\prime}, then again v has zero for its period Accordingly, when we take z and v for variables, the periods of z are a and β, while the variable v is devord of periods The uniform function in question can be expressed as a unform function of $\varphi(z) . \varphi^{\prime}(z)$, and v, with the same signficance as before for $f(z)$ and the same requirement as to the real part of $2 \alpha / \beta$

Should the requrement as to the real part of α / β not be satisfied, eather there is an infimtesmal period, or the two pairs are equivalent to one parr only. In the former case, there is no proper unform function with the periods, in the latter, the periods are not effectively two pairs of periods

Three pairs of periods.
131 Taking the vanables to be z and z^{\prime} as before, let the perrods be

$$
\left.\left.\begin{array}{ll}
\text { for } \left.\begin{array}{ll}
z, & =\alpha \\
z^{\prime}, & =\alpha^{\prime}
\end{array}\right\}, & =\beta \\
=\beta^{\prime}
\end{array}\right\}, \quad \begin{array}{l}
=\gamma \\
=\gamma^{\prime}
\end{array}\right\},
$$

where manifestly no parr of quantities in a column can vansh smultaneously Thus a can vanish, and a^{\prime} can vansh, as they may not vamsh together, there are three possibilities for the α, α^{\prime} pan Smailarly for each of the other two pars, so that there are twenty-seven possibilities in all They can be set out as follows
A. When all the quantities $\alpha^{\prime}, \boldsymbol{\beta}^{\prime}, \gamma^{\prime}$ vansh, the $p^{p r o d}$ rableau is

$$
\left(\begin{array}{lll}
\alpha, & \beta, \gamma \\
0, & 0, & 0
\end{array}\right),(A)
$$

no one of the quantities α, β, γ can vanish there 1 s one case.
B Let two of the three quantities $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ vanish, but not the third of them, there are three possibilities When γ^{\prime} is the one which does not vanish, then neither a nor β can vanish, and we can have two ulternatives, viz. γ vanishing, or γ not vanishing The periodtableaux are

$$
\left(\begin{array}{lll}
\alpha, & \beta, & 0 \\
0, & 0, & \gamma^{\prime}
\end{array}\right),\left(B_{1}\right), \quad\left(\begin{array}{lll}
\alpha, & \beta, & \gamma \\
0 & 0, & \gamma^{\prime}
\end{array}\right),\left(B_{z}\right)
$$

each 18 typical of three cases

C Let one of the three quantities $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ vanish, but not the other two, there are three possibulities. When α^{\prime} vanıshes, then α cannot vanish. and as β^{\prime} and γ^{\prime} do not vamsh in that event, we can have four alternatives, viz., β and γ, ether vamshing or not vanishing, independently of one another. The period-tableaux are

$$
\begin{aligned}
& \left(\begin{array}{ll}
\alpha, \beta, \gamma \\
0, \beta^{\prime}, & \gamma^{\prime}
\end{array}\right),\left(C_{\mathrm{I}}\right),
\end{aligned}\left(\begin{array}{lll}
\alpha, & 0, \gamma \\
0, & \beta^{\prime}, & \gamma^{\prime}
\end{array}\right),\left(C_{2}\right), ~\left(\begin{array}{ll}
\alpha, \beta, & 0 \\
0, \beta^{\prime}, \gamma^{\prime}
\end{array}\right),\left(C_{3}\right), \quad\left(\begin{array}{ll}
\alpha, & 0, \\
0, \beta^{\prime}, & \gamma^{\prime}
\end{array}\right),\left(C_{4}^{\prime}\right), ~ l
$$

each is typical of three cases
I) Let no one of the three quantities $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ vamish, there is only a single possibility But as regards α, β, γ, there are eight alternatives, viz, they may enther vamsh or not vanish, independently of one another The pertod-tableaux arr

$$
\begin{array}{ll}
\binom{\alpha, \beta, \gamma}{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}},\left(D_{1}\right), & \binom{0, \beta, \gamma}{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}},\left(D_{3}\right), \\
\binom{0,0, \gamma}{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}},\left(D_{3}\right), & \binom{0,0,0}{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}},\left(D_{\downarrow}\right)
\end{array}
$$

Among thesc, $\left(D_{1}\right)$ and $\left(D_{4}\right)$ ane one case each. $\left(D_{2}\right)$ and $\left(D_{3}\right)$ are, each of them, typreal of three cases

132 As regarrls the hinds of tunctions conssdered, no generality can be lost by assuming that a function is substantially unaltered
(1) when one period-par is interchauged with another period-par or
(11) when hear transformations are effected upon the varmbles, coupled with corresponding honear transformations upon the pentod-pars and, in particular, when the variables are interchanged provided that the periods are interchanged at the same time, each combined period-par being conserved
Under the first of these assumptrons, the three cases typified by (B_{1}) become one case only, of which $\left(B_{1}\right)$ will be taken as the talleau of periods The same applies to $\left(B_{3}\right),\left(C_{1}\right),\left(C_{2}\right),\left(C_{3}\right),\left(C_{4}\right),\left(D_{2}\right)$, and $\left(D_{1}\right)$, in succession.

As regards (B_{2}), when we replace the varable z by u, where

$$
u=z-\underset{\gamma^{\prime}}{\boldsymbol{\gamma}} z^{\prime},
$$

the periods for u and z^{\prime} are

$$
\left(\begin{array}{cc}
\alpha, & \beta, \\
0, & 0 \\
0, & \gamma^{\prime}
\end{array}\right)
$$

the case becomes (B_{1}), and therefore needs no separate discussion.

It is convement to consider next the case $\left(D_{1}\right)$. Let four quantities k, l, m, n be chosen so that

$$
\left.\begin{array}{rc}
k \alpha+l \alpha^{\prime}=1, & k \beta+l \beta^{\prime}=0 \\
m \alpha+n \alpha^{\prime}=0, & m \beta+n \beta^{\prime}=1
\end{array}\right\}
$$

their values are given by

$$
\left.\begin{array}{rl}
k\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right) & =\beta^{\prime}, \\
l\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right) & =-\beta, \\
l\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right)=-\alpha^{\prime} \\
\left.\alpha^{\prime} \beta\right)= & a
\end{array}\right\}
$$

When $\alpha \beta^{\prime}-\alpha^{\prime} \beta$ does not vamish, the values of k, l, m, n are determmate and finite, when it does vanish, the selection cannot be inade.

Aceordingly, in the first place, suppose that $\alpha \beta^{\prime}-\alpha^{\prime} \beta$ does not vamsh. No generality is then lost by assuming that $\gamma \beta^{\prime}-\gamma^{\prime} \beta$ does not vanish und also that $a \gamma^{\prime}-\alpha^{\prime} \gamma$ does not vanish, for the alternative hypothesis as to cach of these magnitudes leads, by the permissible interchange of period-pars, to the case when $\alpha \beta^{\prime}-\alpha^{\prime} \beta$ vanshes-a case yet to be considered Now write

$$
\begin{gathered}
u=k z+l z^{\prime}, \quad u^{\prime}=m z+n z^{\prime}, \\
\mu=k \gamma+l \gamma^{\prime}=\left(\gamma \beta^{\prime}-\gamma^{\prime} \beta\right)-\left(a \beta^{\prime}-\alpha^{\prime} \beta\right), \\
\mu^{\prime}=m \gamma+n \gamma^{\prime}=\left(a \gamma^{\prime}-\alpha^{\prime} \gamma\right)-\left(\alpha \beta^{\prime}-a^{\prime} \beta\right),
\end{gathered}
$$

where the new variables u and u are independent of one another because $k n-l m,=\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right)^{-3}$, is not zero. Thus the uniform function in question becomes a uniform function of u and u^{\prime}, with the tableau of periods

$$
\left(\begin{array}{ll}
1,0, & \mu \\
0,1, & \mu^{\prime}
\end{array}\right)
$$

In the second place, suppose that $\alpha \beta^{\prime}-\alpha^{\prime} \beta$ does vansh. Then

$$
\frac{\alpha^{\prime}}{\alpha}=\frac{\beta^{\prime}}{\bar{\beta}}=c,
$$

say. Introduce two new variables u and u^{\prime}, defined by the relations

$$
u=\frac{\gamma^{\prime} z-\gamma^{\prime}}{\gamma^{\prime}-c \gamma}, \quad u^{\prime}=z^{\prime}-c z
$$

which are definite and provide independent vanables when $\gamma^{\prime}-c \gamma$ does not vansh. The period-tableau for u and u^{\prime} is

$$
\left(\begin{array}{cc}
\alpha, & \beta, \\
0, & 0 \\
0, & \gamma^{\prime}-c \gamma
\end{array}\right),
$$

and so the case 1 s inclusible in $\left(B_{1}\right)$, provided $\gamma^{\prime}-c \gamma$ does not vanish. If however γ^{\prime}-oy does vansh, so that

$$
\frac{\alpha^{\prime}}{\alpha}=\frac{\beta^{\prime}}{\beta}=\frac{\gamma^{\prime}}{\gamma}=c
$$

we retan the variable z and take a new independent variable v, where $v=u^{\prime}-c u$; the period-tablean for z and v is

$$
\left(\begin{array}{ll}
\alpha, & \beta, \gamma \\
0, & 0, \\
0
\end{array}\right)
$$

and so the case is inclusible in (A). Thus no new kind of function, other than those already retained, arises out of $\left(D_{1}\right)$ when $\alpha \beta^{\prime}-\alpha^{\prime} \beta=0$

Now consider the cases under ($\left(C^{\prime}\right)$ The case (C_{1}) is inclided in (D_{1}) unless $\beta \gamma^{\prime}-\beta^{\prime} \gamma$ vanishes. When this quantity does vanish, we have

$$
\frac{\beta}{\beta^{\prime}}=\frac{\gamma}{\gamma^{\prime}}=k ;
$$

say, we take a new variable u, where $u=z-k z^{\prime}$, and then the period-tableau for u and z^{\prime} is

$$
\left(\begin{array}{ccc}
\alpha, & 0, & 0 \\
0, & \beta^{\prime}, & \gamma^{\prime}
\end{array}\right)
$$

that is, the case is inclusible in $\left(B_{1}\right)$ Thus no new kind of function, other than those already retamed, arises out of $\left(C_{1}\right)$.

The case (C_{2}) is inclusible in $\left(D_{1}\right)$.
The case (C_{4}), by interchange of period-pars, becomes $\left(C_{2}\right)$ and so is inclusible in (D_{1})

The case (C_{4}), by interchange of variables together with the proper interchange of perrods, becomes (B_{1}).

Similarly for the cases under (D) The case $\left(D_{2}\right)$, by interchange of variables together with the proper interchange of periods, becomes $\left(C_{1}\right)$ and so provides no new kind of function. In the same way, the case $\left(D_{3}\right)$ becomes (B_{2}), which is inclusible in $\left(B_{1}\right)$, it therefore provides no new kind of function. And, in the same way also, the case (D_{s}) becomes (A)

Hence the surviving independent cases are $(A),\left(B_{1}\right)$; and the case which has emerged from $\left(D_{1}\right)$. These will be considered now in succession
133. We can dismiss the case (A) very briefly. There are no periods for z^{\prime}. There are three periods for z, so that, in effect, the uniform function is periodic in a single variable only. But, in such an event, there cannot be more than two periods at the utmost*, hence the case either is unpossible, or 18 degenerate by falling into a class of doubly periodic functions of two variables already considered.

The case (B_{2}) can also be dismissed briefly. In all the functions which it provides, the double periodicity in z alone and the single periodicity in z^{\prime} alone are independent of one another. Even when the double periodicity
does not degenerate, the function in question is a uniform function of $\varphi(z, \alpha, \beta)$-with $\varphi^{\prime}(z, \alpha, \beta)$-and $e^{m r^{\prime} \gamma^{\prime}}$, its triple periodicity in the two variables combined is not a proper triple periodicity, for it is resoluble into the double periodicity in one variable alone and the independent single periodicity in the other variable alone

It remans to consider the case which has emerged from $\left(D_{1}\right)$. This case provides umform triply periodic functions, for which the triple periodicity is proper and not resoluble as it is in the case (B_{1}) We have seen that, without any loss of substantial generality, the tableau of periods for the variables z and z^{\prime} can be taken in the form

$$
\binom{1,0, \mu}{0,1, \mu^{\prime}}
$$

where neither μ nol μ^{\prime} vanishes.
Further, both μ and μ^{\prime} cannot be purely real If, for instance, μ were real and commensurable (equal to p / q, say, where p and q are integers), then a set of periods is

$$
\binom{1,0, q \mu-p}{0,1, q \mu^{\prime}}
$$

that 15 ,

$$
\left(\begin{array}{ccc}
1, & 0, & 0 \\
0, & 1, & q \mu^{\prime}
\end{array}\right)
$$

which is an mstance of (B_{1}). Similarly, if μ^{\prime} were real and commensurable
If μ and μ^{\prime} were real and, after the foregoing cases, were incommensurable, then the function would have infintesimal periods Thus let the supposed incommensurable quantity μ be expressed as a continued fraction and take an advanced convergent to its value, say p / q, then

$$
\mu=\frac{p}{q}+\frac{\epsilon}{q^{3}}
$$

where $0<|\in|<1$, so that

$$
q \mu-p=\frac{\epsilon}{q}
$$

Thus a set of periods is

$$
\left(\begin{array}{cc}
1,0, & \frac{\epsilon}{q} \\
0,1, q \mu^{\prime}
\end{array}\right)
$$

As μ^{\prime} is incommensurable, so also is $q \mu^{\prime}$; let it be expressed as a continued fraction and take a convergent r / s to 1 ts value, so that

$$
q \mu^{\prime}=\frac{r}{s}+\frac{\eta}{\varepsilon^{2}}
$$

where $0<|\boldsymbol{\eta}|<1$, thus

$$
s q \mu^{\prime}-r=\frac{\eta}{8}
$$

Accordingly, a set of periods is

$$
\left(\begin{array}{ccc}
1, & 0, & \epsilon \\
& & q \\
0, & 1, & \eta \\
\hline
\end{array}\right)
$$

When we take s very large and q / s also very large, the quantities

$$
\epsilon \frac{s}{q}, \text { and } \eta \frac{1}{s}
$$

are infinitesmal that is, we should have an intintesmal period-par-a possibility that is excluded. Thus μ and μ^{\prime} cannot be smultaneously real.

The most gencral case arises when nether μ nor μ^{\prime} is real and we shall assume that, henceforwand, we are dealing with this case. It is to be remembered that, in effecting the linear transformation upon the variables so that 1,0 , and 0,1 , are two perod-pars, we have used the constants of relation

Moreover, as the penods in the tableau can be linearly combined in simultaneous pars we have
that is,

$$
\mu+p .1+q 0, \quad \mu^{\prime}+p 0+q .1
$$

$$
\mu+p, \quad \mu^{\prime}+q
$$

as a period-par, p and q being any independent integers, and this periodpar can replace μ and μ^{\prime} in the tableau, for any valucs of p and q Let these integers be chosen so that the real parts of $\mu+p$ and $\mu^{\prime}+q$, say $R(\mu+p)$ and $R\left(\mu^{\prime}+q\right)$, satisfy the conditions

$$
0<R(\mu+p)<1, \quad 0<R\left(\mu^{\prime}+y\right)<1
$$

Assuming this done it follows that, without any loss of generaluty in the periodtableau

$$
\left(\begin{array}{ll}
1,0, \mu \\
0, & 1,
\end{array}\right)
$$

we can assume that

$$
0 \gtrless R(\mu)<1, \quad 0<R\left(\mu^{\prime}\right)<1
$$

while neither of the quantites μ and μ^{\prime} is purely real, moreover, this is effectively the general tableau for the proper triple periodictty of unuform functions of two varuables.
134. The field of variation of the two mdependent variables occurring in unform triply periodic functions can be assigned in two ways, which can be used in complementary fashion and will leave open an element of arbitrary choice. Let c and c^{\prime} denote sunultaneous values of the vanables z and z^{\prime}, for purposes of convenience we shall assume that they are a par of ordinary nonzero places of two uniform triply periodic functions with which we may have
to deal Moreover, we shall assunc at once that the functions in question possess no essential singularities for finite values of the variables, and we shall take

$$
\left(\begin{array}{lll}
1, & 0, & \mu \\
0, & 1, & \mu^{\prime}
\end{array}\right)
$$

as the tableau of the periods, with the due restrictions on μ and μ^{\prime}.
Owing to the period-par 1,0 , we can reduce any pornt in the z-plane to a point in, or upon the boundary of, a strip enclosing c, without thereby affecting the position of z^{\prime} in its plane Sumilarly owing to the period-parr 0,1 , we can reduce any point in the z^{\prime}-plane to a point in, or upon the boundary of, a strip enclosing c^{\prime}, without thereby affecting the position of z in ths plane Accordingly construct in the z-plane a parallelogram having $c, c+1, c+\mu, c+1+\mu$ as its angular points, and produce, to infinity in both directions, the side joining c to $c+\mu$ and the side joining $c+1$ to $c+1+\mu$ Simularly construct in the z^{\prime}-plane a parallelogram having $c^{\prime}, c^{\prime}+1, c^{\prime}+\mu^{\prime}$, $c^{\prime}+1+\mu^{\prime}$ as its angular points and produce, to mfinity in both directions, the side joming c^{\prime} to $c^{\prime}+\mu^{\prime}$ and the sade joming $c^{\prime}+1$ to $c^{\prime}+1+\mu^{\prime}$

Then, for our triply periodic functions, we can choose a complete ficld of variation in two ways By the first cholee, we allow z to vary over the parallelogran constructed in its plane, while we allow z^{\prime} to vary over the strip between the two infinte lines drawio in its plane By the second choice, we allow z^{\prime} to vary over the parallelogram constructed ul its plane, while we allow z to vary over the surip between the two infinite lmes drawn in its plane. For special purposes, it may prove convement to contemplate both the fields simultaneously, even though each field by atself is complete for the triply periodic functions.

But we do not obtain a complete field if we limit the smultaneous variations of z and z^{\prime} to the two parallelograms drawn in the two planes. For, in effect, such a field would give

$$
\left(\begin{array}{lll}
1, & \mu, & 0, \\
0, & 0, & 1, \\
\mu^{\prime}
\end{array}\right)
$$

as the period-tableau; and then there would emerge a repeated double periodicity, one in z alone, the other in z^{\prime} alone, that is, we should have a degenerate quadruply periodic function, instead of a triply periodic function,

Four pairs of periods.

135 Again denoting the variables by z and z^{\prime}, let the periods be
where manifestly n n pair of quantities in a column can vanish simultaneously Thus there are three possibilities for each pair of periods, and each possibility for a pair is unaffected by the possibulities for any other pair Hence there are eighty-one possibilities in all, they can be set out in a scheme, as follows.
A. When all the quintities $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ vanish, the period-tablean is

$$
\left(\begin{array}{llll}
a, & \beta, & \gamma, & \delta \\
0 & 0, & 0, & 0
\end{array}\right),(A)
$$

no one of the quantities $\alpha, \beta, \gamma, \delta$ can vamsh, there $1 s$ one case
B Let three of the quantities $a^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ vanish, but not the fourth, there are four possibilitifs. When δ^{\prime} is the one which does not vansh, then nevther α nor β nor γ can vanish, while δ may or may not vansh This the period-tableaux are

$$
\left(\begin{array}{lll}
\alpha, & \beta, & \gamma, \\
0, & 0 & 0 \\
0, & 0, & \delta^{\prime}
\end{array}\right),\left(B_{1}\right) . \quad\left(\begin{array}{lll}
\alpha, & \beta, & \gamma, \\
0, & \delta & 0, \\
0, & 0 & \delta^{\prime}
\end{array}\right),\left(B_{2}\right),
$$

each is typical of four cases.
C. Le't two of the quantithes $a^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ vamsh, but not the other two. The penod-tableana are

$$
\begin{aligned}
& \left(\begin{array}{l}
a, \beta, \\
0,
\end{array}, \begin{array}{l}
\delta \\
0,
\end{array}\right),\left(\gamma^{\prime}\right), \quad\left(\begin{array}{llll}
a, & \beta, & 0, & 0 \\
0, & 0, & \gamma^{\prime}, & \delta^{\prime}
\end{array}\right),\left(C_{4}\right),
\end{aligned}
$$

each is typical of six cases
D. Let one, but only one, of the quantities $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ vanish. The period-tableaux are

$$
\begin{aligned}
& \binom{\alpha, \beta, \gamma, \delta}{0, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(D_{1}\right),\binom{\alpha, \beta, \gamma, 0}{0, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(D_{2}\right) \\
& \binom{\alpha, \beta, 0, \delta}{0, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(D_{3}\right),\binom{a, 0, \gamma, \delta}{0, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(D_{4}\right) \\
& \binom{\alpha, \beta, 0,0}{0, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(D_{6}\right) ;\binom{\alpha, 0, \gamma, 0}{0, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(D_{6}\right) ; \\
& \left(\begin{array}{l}
\alpha, 0, \\
0, \beta^{\prime}, \gamma^{\prime}, \delta \\
\hline
\end{array}\right),\left(D_{7}\right) ;\binom{\alpha, 0,0,0}{0, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(D_{8}\right),
\end{aligned}
$$

each as typical of four cases.
E. Let no one of the quantities $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ vanish. The period-tableaux are

$$
\begin{aligned}
\binom{a, \beta, \gamma, \delta}{a^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(E_{1}\right), & \binom{0, \beta, \gamma, \delta}{a^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(E_{2}\right),\binom{0,0, \gamma, \delta}{a^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(E_{3}\right): \\
& \binom{0,0,0, \delta}{a^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(E_{4}\right),\binom{0,0,0,0^{\prime},}{a^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}},\left(E_{3}\right),
\end{aligned}
$$

of these, $\left(E_{1}\right)$ and $\left(E_{5}\right)$ are each one case,$\left(E_{2}\right)$ and $\left(E_{4}\right)$ are each typical of four cases, and $\left(E_{3}\right)$ is typical of six cases.

136 As regards the kinds of functions considered, the same assumptions, as to the interchangeability of period-purn and as to the lincar transformations of the vaisables without detriment to the generality of the functions, will be made as were made ($\$ 132$) in the discussion of the thele periodicity

Consequently all the cases, of which cach tablean is typical, become merged into a single case

The cases (A) and (E_{6}) are impossible, or else the periods degenerate, there cannot be unform functions, periodic in a single vanable and having four distinct periods for that variable

The cases $\left(B_{1}\right),\left(B_{2}\right),\left(D_{k}\right),\left(E_{4}\right)$ are impossible, or else the perrods degenerate; there cannot be uniform functions, periodic in a single variable and having three distinct periods in that variable

By taking a variable u instead of z, where

$$
u=z-\frac{\gamma}{\gamma^{\prime}} z^{\prime},
$$

the tablean of periods in $\left(C_{1}\right)$ is changed to a tableau of periods for u and z^{\prime} represented by $\left(C_{3}\right)$ or $\left(C_{4}\right)$. Also by interchange of perod-pars, $\left(C_{3}\right)$ becomes $\left(C_{2}\right)$; hence $\left(C_{2}\right)$ and $\left(C_{4}\right)$ are the only cases under (C) that require consideration.

By interchange of variables and the proper interchange of periods, (D_{5}), $\left(D_{8}\right),\left(D_{7}\right)$ bccome $\left(C_{2}\right)$, and so require no separate discussion, and similarly $\left(E_{8}\right)$ becomes $\left(C_{1}\right)$, and can therefore be omitted.

By interchange of period-pars, $\left(D_{\mathrm{z}}\right)$ and (D_{y}) become $\left(D_{4}\right)$ and so they require no separate discussion.

By interchange of variables and the proper interchange of periods, $\left(E_{2}\right)$ becomes (D_{1}) and can therefore be omitted.

Consequently, the cases that survive for further consideration are $\left(C_{2}\right)$, $\left(C_{\star}\right),\left(D_{1}\right),\left(D_{4}\right),\left(E_{1}\right)$

As regards (D_{4}), change the variables to u and u^{\prime} by the relations

$$
z=\alpha u, \quad z^{\prime}=\beta^{\prime} u^{\prime},
$$

and write $\beta=\alpha \lambda, \delta=\alpha \mu, \gamma^{\prime}=\beta^{\prime} \lambda^{\prime}, \delta^{\prime}=\beta^{\prime} \mu^{\prime}$, the period-tableall for the variables u and u^{\prime} is

$$
\binom{1,0, \lambda, \mu}{0,1, \lambda^{\prime}, \mu^{\prime}}
$$

which temporarily will be called (F)
As regards $\left(C_{2}\right)$, a sumilar change of variables, viz,

$$
z=\alpha u, \quad z^{\prime}=\delta^{\prime} u^{\prime},
$$

leads to a special form of the period-tablean (F) w which λ^{\prime} is zero. Assuming this meluded in (F), we have no new case out of (C_{2})

As regards $\left(C_{4}\right)$, we have a function, which is douhly pernodic in z alone with periods α and β, and is also doubly periodic in z^{\prime} alone with periods γ^{\prime} and δ^{\prime} The functions thus provided are undoubtedly quadruply periodic, but the perrodicity has an related distabution, they will therefore be omitted, as not belonging to the class of fumetions having proper quadruple periodicity

As regards $\left(I_{1}\right)$ and (E_{1}), we cffect linear transformations of the varables of the type

$$
u=k z+l z^{\prime}, \quad u^{\prime}=m z+n z^{\prime},
$$

where the quantities k, l, m, n are determined by relations

$$
\begin{array}{ll}
k \gamma+l \gamma^{\prime}=1, & m \gamma+n \gamma^{\prime}=0 \\
k \delta+l \delta^{\prime}=0, & m \delta+n \delta^{\prime}=1 .
\end{array}
$$

Different cases arise as under $\left(D_{1}\right)$ in the discussion of triple periodicity and wo find esther
(1) a period-tableau, with now varables, icpresented by $\left(F^{\prime}\right)$, or
(11) cases already decided, or
(in) cases that are mpossible or degenerate
Consequently it follows that properly quadruply periodic functions, which are uniform and mvolve only two variables, can be modified as to them variables so that they have

$$
\left(\begin{array}{ll}
1,0, \lambda, & \mu \\
0,1, & \lambda^{\prime}, \\
\mu^{\prime}
\end{array}\right)
$$

for their period-tablean
137. Now it is a property of quadruply periodic uniform functions, on the Riemann theory, that (for this tableau) the relation

$$
\lambda^{\prime}=\mu
$$

(or else $\lambda=\mu^{\prime}$) holds Further, Appell* has proved, by analysis and reasonng quite different from those adopted for the discussion of functions on a Riemann

[^44]surface, that this relation holds in general for a properly quadruply periodic uniform function, that is, by change of the variables and by the association of appropriate factors, the function can be made to depend upon others which posscss this property But under both theories, the property emerges from the discussion of the functions themselvcs, whereas the prcceding investigation deals only (or mainly) with the mere transformation of the periods, the property apparently cannot be deduced at this stage solely from the preceding considerations

Just as was the case with the triple periodicity when the period-tablenu had been rendered canonical, so here also we can infer (without any reference to a property $\lambda^{\prime}=\mu$ or $\lambda=\mu^{\prime}$) that all the quantities $\lambda, \lambda^{\prime}, \mu, \mu^{\prime}$ cannot be wholly real, and in the most general case they will be complex and such that nerther of the quantities $\lambda^{\prime} / \mu, \lambda / \mu^{\prime}$, is real. The course of the argument for the inference and its detauls are so ammar to those in the earlier discussion that no formal exposition will be made Moreover, the quantity λ / μ is not real, nor is the quantity $\lambda^{\prime} / \mu^{\prime}$, both statements can br established by shewing that the contrary event would lead to a zero-period for commensurable roality and to an infinitesimal perod for incommensurable reality
138. One difficulty, however, now ances, it is connected with the geometrical representation of two indcpendent complex variables, which has already been discussed Patting aside for the moment the method of representation in four-dimenstonal space, partly because of the difficulty of framing mental pictures in such a region, and partly because the representation does not by itself seem to retann sufficiently the mdividuality of the variables, we have the representation by means of the combined points in the z-plane and the z^{\prime}-plane

But we cannot construct a region m the z-plane and a region in the z^{\prime}-plane that shall suffice for the field of variation of z and z^{\prime} withon their

periods. Take any origins in those planes; in the z-plane, let the points a, b, c represent the values $1, \lambda, \mu$, and in the z^{\prime}-plane, let the points $a^{\prime}, b^{\prime}, c$ represent the values $1, \lambda^{\prime}, \mu^{\prime}$, and complete the parallelograms as in the figures, so that the points $\alpha, \beta, \gamma, \delta$ respectively represent the values $\lambda+\mu$, $1+\mu, 1+\lambda, 1+\lambda+\mu$, and simularly in the z^{\prime}-plane. No one parallelogram such as $O a \beta c O$ is sufficient for the representation of z; for there is a portion
of the parallelogram (0bacO not included, and there is a portion of the parallelogram $O a \gamma b O$ not included. The double parallelogram $O a \gamma b a c O$ is not, sufficsent, because there is a portion of the parallelogram $O_{a} \beta c O$ not included, morcover, the whole plane could not be covered once and once only by repetitions of the double parallelogram keeping unchanged the orientations of the sides. In the figure, the parallclogram $O a \beta c O$ is partly excessive and partly deficient, for the interior of the small parallelogram between ab, $b \gamma$, $a \beta, \beta c$ is reducible to another part of $O a \beta c O$ The triple parallelogrann Oaydac() is excessive, for much of its area (the part outside the parallelogram $O_{a} \beta c(0)$ is "reducible" to the area withon that parallelogram, and also the whole plane could not be covered, once and once only, by repetitions of the triple parallelogram keeping unchanged the orientations of 1 ts sides

The same remarks apply to the z^{\prime}-plane, in connection with the figure as drawn

Thus, nether by means of parallelograms, nor by means of strips u the two planes of reference, is it possible to obtain dotinite unique and complete limited fells of variation for z and z^{\prime}, that shall discharge for quadruply periodic functions of two variables the same duty as is discharged for doubly periodic functions of a single variable by the customary periodparallelogram.

But by taking an assoctated two-plane variation of the real variables $x, y, x^{\prime}, y^{\prime}$, the deficsency can be supphed for one purpose 'This representation is as follows* For a quadnuply periodic function, with the penod-tableau

$$
\left(\begin{array}{lll}
1, & 0, & \lambda, \\
0, & 1, & \lambda^{\prime}, \\
\mu^{\prime}
\end{array}\right)
$$

we resolve $\lambda, \mu, \lambda^{\prime}, \mu^{\prime}$ into their real and maginary parts, say

$$
\lambda=a+\imath b, \quad \mu=c+a d, \quad \lambda^{\prime}=a^{\prime}+\imath b^{\prime}, \quad \mu^{\prime}=c^{\prime}+\imath d^{\prime}
$$

then every place, differing from z, z^{\prime} only by multaples of the periods, can be represented by

$$
\begin{aligned}
& x+\imath y+p+r(a+\imath b)+s(c+\imath d) \\
& x^{\prime}+\imath y^{\prime}+q+r\left(a^{\prime}+\imath b^{\prime}\right)+s\left(c^{\prime}+\imath d^{\prime}\right)
\end{aligned}
$$

Take two planes, one of them to represent the variations of y and y^{\prime} with reference to $O^{\prime} y$ and $O^{\prime} y^{\prime}$ as rectangular axes, the other of them to represent the variations of x and x^{\prime} with reference to $O x$ and $O x^{\prime}$ as rectangular axes. In the y, y^{\prime} plane, let B be the point b, b^{\prime} and D the point d, d^{\prime}, and complete the parallelogram $D O^{\prime} B F$. In the x, x^{\prime} plane, let $O A=1$ and $O C=1$; and complete the square $C O A E$.

Then the integers r and s can be chosen, say equal to r^{\prime} and s^{\prime}, so that the point

$$
y+r^{\prime} b+s^{\prime} d, \quad y^{\prime}+r^{\prime} b^{\prime}+s^{\prime} d^{\prime}
$$

[^45]lies within or on the boundary of the parallelogram $O^{\prime} B F D$, let this point be Q. Then every point, which is equivalent to y, y^{\prime}, in the sense that its coordnates are $y+r b+s d, y^{\prime}+r b^{\prime}+s d^{\prime}$, is equivalent to Q and lies outside the selected parallelogram

Again the minegers p and q can be chosen, say equal to p^{\prime} and q^{\prime}, so that the point

$$
x+p^{\prime}+r^{\prime} a+s^{\prime} c . \quad y+q^{\prime}+r^{\prime} a^{\prime}+s^{\prime} c^{\prime}
$$

lies within or on the boundary of the square $O A E C$; let thas point be P. Then every point, which is 'rquivalent to $x+r^{\prime} a+s^{\prime} c, y+r^{\prime} u^{\prime}+s^{\prime} c^{\prime}$, in the sense that its coordmates are $a+p+r^{\prime} \alpha+s^{\prime} c, y+y+r^{\prime} u^{\prime}+s^{\prime} c^{\prime}$, is equivalent to P, and lies outsude the selected square

It follow's that, in connection with a place z, z^{\prime}, and with all places equivalent to it 112 the form

$$
z+p+r \lambda+s \mu, \quad z^{\prime}+q+r \lambda^{\prime}+s \mu^{\prime}
$$

we can select a unque point Q withon the y, y^{\prime} parallelogram, and then associate with it another unique point P within the x, x^{\prime} square We take the point-pair $Q P$ as representative of the whole set of places that, in the foregoing sense, are equiralent to z, z^{\prime}, it is given by the specially sclected place

$$
z+p^{\prime}+r^{\prime} \lambda+s^{\prime} \mu, \quad z^{\prime}+q^{\prime}+r^{\prime} \lambda^{\prime}+s^{\prime} \mu^{\prime}
$$

Uniform troply perioduc functions in general.
139. It is known (Chap. v) that a uniform function $f\left(z, z^{\prime}\right)$, which can have poles and unessential singularities but which has no essential singularity lying within the tinite part of the field of varation, can be expressed in the form

$$
f\left(z, z^{\prime}\right)=\frac{\phi\left(z, z^{\prime}\right)}{\psi\left(z, z^{\prime}\right)},
$$

where $\phi\left(z, z^{\prime}\right)$ and $\psi\left(z, z^{\prime}\right)$ are everywhere regular within the finte part of the field of variation.

We shall therefore proceed from this result, specially for the purpose of deducing* some initial propertios of triply periodic functions that are uniform We denote the period-pars by the tableau

$$
\left(\begin{array}{ll}
1,0, & \mu \\
0, & 1,
\end{array}\right)
$$

Now because

$$
f\left(z+\mathbf{1}, z^{\prime}\right)=f\left(z, z^{\prime}\right),
$$

and because the functions $\phi\left(z, z^{\prime}\right)$ and $\psi\left(z, z^{\prime}\right)$ are regular, each of the equal fractions

$$
\begin{gathered}
\phi\left(z+1, z^{\prime}\right) \\
\phi\left(z, z^{\prime}\right)
\end{gathered}=\frac{\psi\left(z+1, z^{\prime}\right)}{\psi(z, z)},
$$

derived from the equation expressing the 1,0 periodietty of f, is devord of zeros and of poles and of unessential singulanties for finite values of the variables hence, as in $\$ 79$, the common value of the fractions is of the form

$$
e^{g(z, z)}
$$

where $g\left(z, z^{\prime}\right)$ is a regular function of the varnables. Consequently

$$
\left.\begin{array}{l}
\phi\left(z+1, z^{\prime}\right)=\phi\left(z, z^{\prime}\right) e^{g\left(z, z^{\prime}\right)} \\
\psi\left(z+1, z^{\prime}\right)=\psi\left(z, z^{\prime}\right) e^{q(z, z)}
\end{array}\right\} .
$$

Similarly, through the 0,1 periodicity of f, we have the relations

$$
\left.\begin{array}{l}
\phi\left(z, z^{\prime}+1\right)=\phi\left(z, z^{\prime}\right) e^{h(z, z)} \\
\psi\left(z, z^{\prime}+1\right)=\psi\left(z, z^{\prime}\right) e^{h\left(z, z^{\prime}\right)}
\end{array}\right\},
$$

where also $h\left(z, z^{\prime}\right)$ is a regulat function of the variables
In onder that the two sets of relations may coenst, we must have

$$
\begin{aligned}
& \phi\left(z+1, z^{\prime}+1\right)=\phi\left(z, z^{\prime}\right) e^{\prime \prime(z, z+1)+h(z, z)}, \\
& \phi\left(z+1, z^{\prime}+1\right)=\phi\left(z, z^{\prime}\right) e^{\prime \prime(z, z)+h_{1}\left(z+1, z^{\prime}\right)},
\end{aligned}
$$

and smalarly for $\psi\left(z, z^{\prime}\right)$, therefore
let

$$
g\left(z, z^{\prime}+1\right)-g\left(z, z^{\prime}\right) \equiv h\left(z+1, z^{\prime}\right)-h\left(z, z^{\prime}\right), \quad(\bmod 2 \pi z) .
$$

$$
g\left(z, z^{\prime}+1\right)-g\left(z, z^{\prime}\right)-2 k \pi l=h\left(z+1, z^{\prime}\right)-h\left(z, z^{\prime}\right)-2 l \pi l,
$$

where $k-l$ is an integer manfestly, eithei k or l conld be taken equal to zero without loss of generality Now suppose a function $\lambda\left(z, z^{\prime}\right)$ determined such that

$$
\left.\begin{array}{l}
\lambda\left(z+1, z^{\prime}\right)-\lambda\left(z, z^{\prime}\right)=g\left(z, z^{\prime}\right)-2 k \pi \imath z^{\prime} \\
\lambda\left(z, z^{\prime}+1\right)-\lambda\left(z, z^{\prime}\right)=h\left(z, z^{\prime}\right)-2 l \pi \imath z
\end{array}\right\},
$$

which two equations are consistent because of the foregoing relation between g and h. If then

$$
\phi_{1}\left(z, z^{\prime}\right)=\phi\left(z, z^{\prime}\right) e^{-\lambda\left(z, z^{\prime}\right)}, \quad \psi_{1}\left(z, z^{\prime}\right)=\psi^{\prime}\left(z, z^{\prime}\right) e^{-\lambda\left(z, z^{\prime}\right)},
$$

[^46]we have
\[

$$
\begin{aligned}
& f\left(z, z^{\prime}\right)=\begin{array}{l}
\phi_{1}\left(z, z^{\prime}\right) \\
\psi_{1}\left(z, z^{\prime}\right)
\end{array}, ~
\end{aligned}
$$
\]

where the functions ϕ_{1} and ψ_{1} satisfy the relations

$$
\left.\left.\begin{array}{l}
\phi_{1}\left(z+1, z^{\prime}\right)=\phi_{1}\left(z, z^{\prime}\right) e^{2 k \pi z^{\prime}} \\
\phi_{1}\left(z, z^{\prime}+1\right)=\phi_{1}\left(z, z^{\prime}\right) e^{v \pi r z z}
\end{array}\right\}, \begin{array}{l}
\psi_{1}\left(z+1, z^{\prime}\right)=\psi_{1}\left(z . z^{\prime}\right) e^{2 k \pi z^{\prime}} \\
\psi_{1}\left(z, z^{\prime}+1\right)=\psi_{1}\left(z, z^{\prime}\right) e^{2 l \pi z z}
\end{array}\right\} .
$$

The function $f\left(z, z^{\prime}\right)$ under consideration has μ and μ^{\prime} for a third pair of periods Proceeding as with the other pairs 1,0 and 0 . 1 , we have

$$
\begin{gathered}
\phi_{1}\left(z+\mu, z^{\prime}+\mu^{\prime}\right) \\
\bar{\phi}_{1}\left(z, z^{\prime}\right)
\end{gathered}=\frac{\psi_{1}\left(z+\mu, z^{\prime}+\mu^{\prime}\right)}{\psi_{1}\left(z, z^{\prime}\right)}=e^{m\left\{z, z^{\prime}\right)},
$$

where $m\left(z, z^{\prime}\right)$ is a regular function throughout the domain. By the earher relations which are satisfied by ϕ_{1} and ψ_{1}, and from the relation
we find

$$
\begin{gathered}
\phi_{1}\left(z+1+\mu, z^{\prime}+\mu^{\prime}\right) \\
\bar{\phi}_{1}\left(z+1, z^{\prime}\right)
\end{gathered}=e^{m\left(z+1, z^{\prime}\right)}
$$

and sumilarly

$$
m\left(z+1, z^{\prime}\right)=m\left(z, z^{\prime}\right)+2 \pi \imath\left(\alpha+l \mu^{\prime}\right)
$$

$$
m\left(z, z^{\prime}+1\right)=m\left(z, z^{\prime}\right)+2 \pi i(\beta+l \mu)
$$

where α and β are integers Let
so that

$$
m\left(z, z^{\prime}\right)=M\left(z, z^{\prime}\right)+2 \pi \imath\left(\alpha+k \mu^{\prime}\right) z+2 \pi \imath(\beta+l \mu) z^{\prime}
$$

$$
M\left(z+1, z^{\prime}\right)=M\left(z, z^{\prime}\right), \quad M\left(z, z^{\prime}+1\right)=M\left(z, z^{\prime}\right)
$$

then both ϕ_{1} and ψ_{1} satisfy the relations

$$
\left.\begin{array}{rl}
9\left(z+1, z^{\prime}\right) & =9\left(z, z^{\prime}\right) e^{2 k m z} \\
9\left(z, z^{\prime}+1\right) & =9\left(z, z^{\prime}\right) e^{2 l n \prime z} \\
9\left(z+\mu, z^{\prime}+\mu^{\prime}\right) & =9\left(z, z^{\prime}\right) e^{2 \pi \prime\left(a+k \mu^{\prime}\right) z+k \pi\left(\beta+(\mu) z^{\prime}+M(z, z)\right.}
\end{array}\right\},
$$

where $M\left(z, z^{\prime}\right)$ is periodic with 1,0 and 0,1 for period-pairs, and $\alpha, \beta, k-l$ are integers.

The triple theta-functions.

140. The formally simplest cases anse when we take

$$
k=0, \quad l=0, \quad \alpha=-2, \quad \beta=-2, \quad M\left(z, z^{\prime}\right)=-2 \pi i\left(\mu+\mu^{\prime}\right)
$$

and when we require that the functions shall be only triply periodic and must not be quadruply periodic. Then

$$
\begin{aligned}
9\left(z+1, z^{\prime}\right) & =9\left(z, z^{\prime}\right), \\
9\left(z, z^{\prime}+1\right) & =9\left(z, z^{\prime}\right), \\
9\left(z+\mu, z^{\prime}+\mu^{\prime}\right) & =9\left(z, z^{\prime}\right) e^{-3 \pi(2 z+2 z)-2 x^{\prime}\left(\mu+\mu^{\prime}\right)},
\end{aligned}
$$

which (as will appear presently) are equations characteristic of functions that are triply periodic actually (or save as to a factor).

Without enduring into the comprchensiveness of this set of functions $\mathcal{T}\left(z, z^{\prime}\right)$, we see that a large class of functions, which are strictly periodic in three pars of periods, can be expressed as quotients of these pseudo-periodic functions Even at the risk of a little confusion (bocanse the title "triple theta-function" has hitherto been assigned to umform functions of three vartables which are sumbiarly psendo-periodic in six period-pairs), it will be convenent to call cettan functions, satisfying iclations simular to those satusfied by $\mathcal{S}\left(z, z^{\prime}\right)$. traple thetr-functions

We now proced to a more detanled combleration of their smplest properties, obtaining the above characteristic equations in a different inanner.

141 We denote by $1,0,0,1, \mu, \mu^{\prime}$, the period-pars in the variables z, z^{\prime} Owing specially to the first two penod-pans, we are led to consoder functions "xpressible in extended Fourier-series in the form

$$
\theta\left(z, z^{\prime}\right)=\sum_{-\infty}^{\infty} \sum_{\infty}^{\infty} a_{m \Lambda} e^{(i m m+\sigma) \pi z+\left(\left(u n+\sigma^{\prime}\right) m z^{\prime}\right.} .
$$

Here σ and σ^{\prime} are constants, taken to be integers, m and n are megers, ranging from $-\infty$ to $+\infty$ mdependently of me another, and the constant coethelents $a_{m n}$ are supposed to be such as to secure the absolute convergence of the double sories

We cannet at once declare, from the indices, that σ and σ^{\prime} are 0 or 1 , tach of them Thus, if σ were 2, we conld substitute zero for it by changing m into $m-1$, so far as the variable pari of the term is concerned, but the change could not necessamly be made in the coefficment, for there 15 no knowledge of the way (if any) in which $a_{m n}$ contams σ or $\sigma^{\prime} \quad$ But we have

$$
\begin{aligned}
& \theta\left(z+1, z^{\prime}\right)=(-1)^{\sigma} \theta\left(z, z^{\prime}\right) \\
& \theta\left(z, z^{\prime}+1\right)=(-1)^{\sigma^{\prime}} \theta\left(z, z^{\prime}\right),
\end{aligned}
$$

and so we can infer that, so far as σ and σ^{\prime} are concerned, all the possibilities are covered by taking $\sigma, \sigma^{\prime}=0,1 \mathrm{in}$ iny combmation that, is, fomr cases arise through this source alone.

142 Our function $\theta\left(z, z^{\prime}\right)$ is to have μ and μ^{\prime} as peroods or pseudoperiods, so we form $\theta\left(z+\mu, z^{\prime}+\mu^{\prime}\right)$, which is

$$
\sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty}\left(1_{m u} e^{\left(2(2 n+\sigma) \pi \pi \alpha+\left(2 n+\sigma^{\prime}\right) \pi u^{\prime}+(2 m+\sigma) \pi z+(22 n+\sigma) m z\right.} .\right.
$$

Adopting the usual process for dealing with the periodicity (actual, or save as to a factor) of a unfforn function, we compare the coefficients of terms in $\theta\left(z, z^{\prime}\right)$ and $\theta\left(z+\mu, z^{\prime}+\mu^{\prime}\right)$, and different possibilities occur, according to the diffierent methods of groupng the terms We definitely choose (for reasons that will appear very soon) to group the term in $\theta\left(z+\mu, z^{\prime}+\mu^{\prime}\right)$, which involves $a_{m n}$, with the term in $\theta\left(z, z^{\prime}\right)$, which involves $a_{m+1, n+1}$ As

$$
\theta\left(z, z^{\prime}\right)=\Sigma \Sigma a_{m+1, n+1} e^{\left(1 m+\sigma \mid \pi i z+\left(12 n+\sigma^{\prime}\right) m z^{\prime}+2 \pi t\left(\alpha+z^{\prime}\right)\right.}
$$

we have

$$
\theta\left(z+\mu, z^{\prime}+\mu^{\prime}\right)=B e^{-2 m(z+z)} \theta\left(z, z^{\prime}\right),
$$

if

$$
a_{m n} e^{(2 m+\sigma) \pi \mu+\left(a n+\sigma^{\prime}\right) \pi \mu^{\prime}}=B a_{m+1, n+1},
$$

where B is taken to be a constant, independent of m and n. Let

$$
q=e^{\frac{1}{\pi} \pi}, \quad q^{\prime}=e^{\frac{1}{7} \pi \mu^{\prime}} ;
$$

and take ncw quantities $c_{m n}$, connected with the quantities $a_{m n}$ by the relation
then

$$
\begin{gathered}
a_{m n}=c_{m n} q^{(2 n+\sigma)^{8}} q^{\prime\left(2 n+\sigma^{\prime}\right)^{2}}, \\
c_{m n}=B q^{4} q^{4} c_{m+1, n+1} \\
=A c_{m+1, n+1},
\end{gathered}
$$

say. The pseudo-penodicity of $\theta\left(z, z^{\prime}\right)$ is now exhibited in the property

$$
\theta\left(z+\mu, z^{\prime}+\mu^{\prime}\right)=A e^{-2 \pi 2\left(z+z^{\prime}\right)-\pi z\left(\mu+\mu^{\prime}\right)} \theta\left(z, z^{\prime}\right) .
$$

Further, let

$$
A=e^{-\pi \lambda \lambda}=(-1)^{-\lambda}
$$

the difference-equation for the quantities $c_{m n}$ becomes

$$
c_{m n}=e^{-\pi 2 \lambda} c_{m+1, n+1} .
$$

Having regard to the form of this relation, we take

$$
\begin{aligned}
c_{m n} & =e^{a+\pi l\left(\rho m+\rho^{\prime} n\right)+a_{2}(m-m)^{2}+a_{s}(m-n)^{2}+\ldots} \\
& =e^{m\left(\rho m+\rho^{\prime} n\right)} \phi(m-n) ;
\end{aligned}
$$

the differencc-equation then 18 satisfied if

$$
\rho+\rho^{\prime}=\lambda,
$$

and there is no restriction, beyond the requirements that secure the convergence of $\theta\left(z, z^{\prime}\right)$, upon the function ϕ. Accordingly, the form of $\theta\left(z, z^{\prime}\right)$ is

$$
\theta\left(z, z^{\prime}\right)=\Sigma \Sigma(-1)^{m \rho+n \rho^{\prime}} q^{(2 m+\sigma)^{2}} q^{\prime\left(2 n+\sigma^{\prime} \mid\right.} \phi(m-n) e^{(2 m+\alpha) \pi z+(2 n)+\alpha) m z^{\prime}} .
$$

Also, ρ and ρ^{\prime} always will be made integers-ether 0 or 1 , hence

$$
A=(-1)^{-\lambda}=(-1)^{-\left(p+p^{\prime}\right)}=(-1)^{\rho+p} ;
$$

and so the characteristic equations, connected with period-increments of the vanables, are

$$
\left.\begin{array}{rl}
\theta\left(z+1, z^{\prime}\right) & =(-1)^{\sigma} \theta\left(z, z^{\prime}\right) \\
\theta\left(z, z^{\prime}+1\right) & =(-1)^{\sigma^{\prime}} \theta\left(z, z^{\prime}\right) \\
\theta\left(z+\mu, z^{\prime}+\mu^{\prime}\right) & =(-1)^{p+\rho^{\prime}} e^{-2 m\left(z+z^{\prime}\right)-m\left(\mu+\mu^{\prime}\right)} \theta\left(z, z^{\prime}\right)
\end{array}\right\} .
$$

These results, and all results connected with period-increments of the variables, are included in the formula

$$
\begin{aligned}
& \theta\left(z+\alpha \mu+\beta, z^{\prime}+\alpha \mu^{\prime}+\gamma\right) \\
&=(-1)^{g \sigma+\gamma \sigma^{\prime}+\alpha\left(\rho+\rho^{\prime}\right)} e^{-9 m a\left(2+z^{\prime}\right)-\pi i^{\prime} \rho^{\prime}\left(\mu+\mu^{\prime}\right)} \theta\left(z, z^{\prime}\right),
\end{aligned}
$$

where α, β, γ are independent integers.

Manifestly, the integers ρ and ρ^{\prime} can be restricted to the values 0 and 1 independently of onc another. When it is necessary to put $\rho, \rho^{\prime}, \sigma, \sigma^{\prime}$ in evidence as magnitudes occurrmg in $\theta\left(z, z^{\prime}\right)$, we shall denote the function by

$$
\theta\left(\begin{array}{ll}
\rho, & \rho^{\prime}, \\
\sigma, & \sigma^{\prime}, \\
z^{\prime}
\end{array}\right)
$$

143 Before proceeding with any development of the properties of these functions θ, 1 t is convement to indicate the reason for the selected grouping of the terms in the comparison of $\theta\left(z+\mu, z^{\prime}+\mu^{\prime}\right)$ and $\theta\left(z, z^{\prime}\right)$. As already staterd, some grouping of terms has to be made moder the method adopted, and the smplest grouping would compare the tem in $\theta\left(z+\mu, z^{\prime}+\mu^{\prime}\right)$, which involves $a_{\text {min }}$, with either one or other of the terms in $\theta\left(z, z^{\prime}\right)$, whach involve $u_{m+1, n}$ or $u_{m, n+1}$.

Suppose that a difference-equation is established between $a_{m n}$ and $u_{m+1, n}$ all the following argument, mutatis mutandes, holds for the alternative supposition of a difterence-equation between $a_{m n}$ and $a_{m, n+1}$. Let it be

$$
B\left(I_{m n} e^{(n n+\sigma) \pi \mu \mu+1 m n+\sigma^{\prime} \mid \pi \tau \mu^{\prime}}=a_{m+1, n} .\right.
$$

When there is no other difference-equation between the coefficients, (in partroular, when there is no rolation between $a_{m n}$ and $a_{m, n+1}$), we take
and then

$$
u_{i n n}=c_{i n n} e^{\frac{1}{12 m+\sigma)^{2} \pi \mu \mu+m(m+\sigma) \pi \mu \mu^{\prime}},}
$$

so that

$$
c_{m+1, n}=c_{m n} B e^{-f \sigma^{2} m \mu}=C c_{m / n},
$$

The function becomes

$$
c_{m n}=c^{m} \psi(n)
$$

$$
\Sigma \Sigma(-1)^{m_{\rho}+n \rho^{\prime}} \psi(n) C^{m} e^{f\left(2 m+\sigma^{\prime} x^{2} \pi \mu+m(2 n+\sigma) \pi / \mu^{\prime}+(e m+\sigma) \pi z+f\left(2 n+\sigma^{\prime}\right) \pi+z^{\prime}\right.},
$$

The aggregate of all the terms in the double sentes for one and the same value of n is (with the restrictions as to integer values of ρ and σ) a single theta-function of z alone. and so it becomes

$$
\theta_{0}(z) f_{0}\left(z^{\prime}\right)+\theta_{1}(z) f_{1}\left(z^{\prime}\right)+\theta_{2}(z) f_{3}\left(z^{\prime}\right)+\theta_{3}(z) f_{3}\left(z^{\prime}\right)
$$

where $f_{0}\left(z^{\prime}\right), f_{1}\left(z^{\prime}\right), f_{2}\left(z^{\prime}\right), f_{3}\left(z^{\prime}\right)$ are functions of z^{\prime} alone. It thus becomes the sum of four resoluble products, each of two factors and each factor involves only one variable. The case is limited in generality

A similar result ensues when we assume a grouping which compares $a_{m n}$ with $a_{m+1, n}$ and excludes at the same tume a grouping which compares $a_{m n}$ with $a_{m, n+s}$, where r and s are any integers.

Further, we cannot have two distinct sets of periods for the case when there is only a single grouping of terms. For otherwise, we should have

$$
\begin{aligned}
B a_{m n} e^{\left(2 m+\sigma ; \pi \mu+\left(3 n+\sigma^{\prime}\right) \pi \mu^{\prime}\right.} & =a_{m+1, n} \\
& =B^{\prime} a_{m n} e^{(2 \pi n+\sigma) \pi \mu+\left(m n+\sigma^{\prime}\right) m \lambda^{\prime}},
\end{aligned}
$$

for all values of m and n hence

$$
\lambda \equiv \mu(\bmod .1), \quad \lambda^{\prime} \equiv \mu^{\prime}(\bmod .1)
$$

so that, when account is taken of 1,0 and 0,1 as period-pars, λ and λ^{\prime} are effectively the same as μ and μ^{\prime}.

On the other hand, when there is a double grouping of terms, so that $a_{m n}$ is compared with $a_{m+1, n}$ in one of the groupngs and with $a_{n, n+1}$ in the other, we have one period-parr for the first and another period-pair for the second this is the case with the double theta-functions, which are quadruply periodic (actually so, or save as to a period). Let the difference-equations be

$$
\begin{aligned}
& B a_{m n} e^{19 m+\sigma \mid \pi \mu+\left(2 n+\sigma^{\prime}\right) \pi \mu}=a_{m+1, n}, \\
& C a_{m n} e^{\left.19 n+\sigma 1 \pi \lambda \lambda+12 n+\sigma^{\prime}\right) \pi, \lambda}=a_{m, n+1},
\end{aligned}
$$

for all values of m and n Then
and

$$
\begin{aligned}
& a_{1 n+1, n+1}=B a_{m, n+1} e^{(i 2 m+\sigma \mid \pi \mu+1(n n+2+\sigma) \pi i \mu} \\
& =B C a_{m n} e^{(22 m+\sigma) \pi(\mu+\lambda)+(i n n+\sigma) \pi \pi(\mu+\lambda)+2 \pi m},
\end{aligned}
$$

$$
\begin{aligned}
a_{m+1, n+1} & =C a_{m+1, n} e^{(2 m+2+\sigma) \pi \lambda \lambda+\left(2 n+\sigma^{\prime}\right) m \lambda^{\prime}} \\
& =B C a_{m n} e^{\left(2 n n+\sigma \mid m 2(\lambda+\mu)+(2 n+\sigma) \pi\left(\lambda^{\prime}+\mu\right)+2 m u\right.},
\end{aligned}
$$

for all values of m and n, hence

$$
2 \pi \imath \lambda \equiv 2 \pi i \mu^{\prime}(\bmod 2 \pi \imath)
$$

or, having regard to the existence of the period-parss 1,0 and 0,1 , we infer the relation

$$
\lambda=\mu^{\prime},
$$

the well-known condition in the Remann theory
Any other double grouping of terms gives rise to quadiuply periodic functions. Consequently when there is a question of dealing only with triply periodic functions, there can be only a single grouping When the grouping is such as to affect only one of the suffixes in $a_{n n}$, we have seen that the resulting function is composite and can be resolved into a finite number of sums of products of simpler functions. Accordingly the grouping must be such as to affect both the suffixes in $a_{m n}$. The simplest difference-equation of this kind connects $a_{m+1, n+1}$ with $a_{m, n}$ and so this $1 s$ the grouping which has been chosen.
144. We have taken our triply periodic function in the form
and we know that, save as to a simple factor, at the utmost, $\theta\left(z, z^{\prime}\right)$ has 1,$0 ; 0,1, \mu, \mu^{\prime}$; for its period-pairs, whatever be the form of the coefficient $\phi(m-n)$. The preceding discussion has indicated the reason for the choice that ultimately leads to the construction of the coefficient: but some special
cases have to be noted and rejected from the class of triply (and only triply) periodic functions.
I. Let $\phi(m-n)=1 \quad$ Then

$$
\theta\left(z, z^{\prime}\right)=\left\{\Sigma(-1)^{m \rho} q^{(2 n+\sigma)^{2}} e^{(2 m+\sigma) \pi z z]}\left\{\Sigma(-1)^{n \rho^{\prime}} q^{\prime}\left(m n+\sigma^{\prime}\right)^{2} e^{(m n+\sigma) \pi\left(z^{\prime}\right)}\right\},\right.
$$

that is, $\theta\left(z, z^{\prime}\right)$ is the product of two single theta-functions, and the periodpairs are

$$
\text { for } \begin{aligned}
z, & 1, \mu, 0,0 \\
z^{\prime}, & 0,0,1, \mu^{\prime} J^{\prime}
\end{aligned}
$$

that is, $\theta\left(z, z^{\prime}\right)$ becomes a resoluble, but quadruply periodic, function
II Let $\phi(m-n)=e^{r a(m-n)} \quad$ Then

$$
\theta\left(z, z^{\prime}\right)=\left\{\Sigma(-1)^{m(\rho+a)} q^{(2 m+\sigma)^{2}} e^{(3 m+\sigma) \pi r}\right\}\left\{(-1)^{n\left(\rho^{\prime}-a\right)} q^{\prime\left(2 n+\sigma^{\prime}\right)} e^{(2 n+\sigma) \mid \pi+z^{\prime}}\right\},
$$

we have the same conclusion as in the preceding case. The function $\theta\left(z, z^{\prime}\right)$ 1. not a proper triply periodic function.
III. Let

$$
\phi(m-n)=e^{\ddagger \times \pi \zeta(2 m+\sigma-2 n-\sigma)^{2}},
$$

where $\kappa 1 s$ mdependent of m and n. Then it 1 c easy to prove that, save as to a factor, $\theta\left(z, z^{\prime}\right)$ has four period-pairs, viz.
the addition of the thard and the fourth of the pars giving the period-par μ, μ^{\prime} In that case, $\theta\left(z, z^{\prime}\right)$ is a proper quadruply periodic fuuction, being a non-degencrate, double theta-function, it is not a function which is triply (but only triply) periodic.

Accordingly, $\phi(m-n)$ may not have any one of the three preceding forms, nor any combination such as

$$
e^{\pi a ; i n-m)+1 \times \pi(2 m+\sigma-m-\sigma)^{2}},
$$

in order that the function may be only triply periodic But any other form of $\phi(m-n)$ is admissible provided, of course, that it is such as to secure the absolute convergence of $\theta\left(z, z^{\prime}\right)$.

If, in particular, for any one of these admassible forms, ϕ involves σ and σ^{\prime} so that

$$
\phi(m-n)=a \text { function of } 2 m+\sigma-\left(2 n+\sigma^{\prime}\right)
$$

then it is easy to prove that

$$
\begin{aligned}
& \theta\left(\begin{array}{cc}
\rho, \rho^{\prime}, z \\
\sigma+2, & \sigma^{\prime}, z^{\prime}
\end{array}\right)=(-1)^{\rho} \theta\left(\begin{array}{lll}
\rho, & \rho^{\prime}, z \\
\sigma, & \sigma^{\prime}, & z^{\prime}
\end{array}\right), \\
& \theta\left(\begin{array}{cc}
\rho, & \rho^{\prime}, z \\
\sigma, \sigma^{\prime}+2, & z^{\prime}
\end{array}\right)=(-1)^{\prime} \theta\left(\begin{array}{ll}
\rho, & \rho^{\prime}, z \\
\sigma, & \sigma^{\prime}, \\
z^{\prime}
\end{array}\right)
\end{aligned}
$$

thus furmshing an additional reason for restricting the values of σ and σ^{\prime} to 0 and 1 , independently of each other.
145. One remark may be made at this stage as to the so-called additiontheorem for the theta-functions. Thus it is possible to cxpress the product of four double theta-functions in terms of sums of products of four double theta-functions of other arguments • and it is possible to express the product of a double theta-function of $z_{1}+z_{2}, z_{1}^{\prime}+z_{2}^{\prime}$ and a double theta-function of $z_{1}-z_{2}, z_{1}^{\prime}-z_{2}^{\prime}$, in terms of double theta-functions of z_{1}, z_{1}^{\prime} and of z_{2}, z_{2}^{\prime} In the purely arithinetical establishment of this theorem, relations

$$
\left.\begin{array}{c}
\mu_{1}^{\prime}=\frac{1}{2}\left(\mu_{1}+\mu_{2}+\mu_{4}+\mu_{4}\right)-\mu_{5} \\
\nu_{1}^{\prime}=\frac{1}{2}\left(\nu_{1}+\nu_{2}+\nu_{3}+\nu_{4}\right)-\nu_{1}^{\prime}
\end{array}\right\}, \quad\left(r_{2}=1,2,3,4\right),
$$

for arguments, parameters, and integer-indices of terms, ate adopted (rcquirmg that, for parameters, $\sigma_{1}+\sigma_{2}+\sigma_{9}+\sigma_{4}$ is an even integet, and so on) and then

$$
\begin{gathered}
\Sigma \mu^{\prime}=\Sigma \mu, \quad \Sigma \nu^{\prime}=\Sigma \nu \\
\Sigma \mu^{\prime 2}=\Sigma \mu^{2}, \quad \Sigma \mu^{\prime} \nu^{\prime}=\Sigma \Sigma^{\prime}, \quad \Sigma \nu^{\prime 2}=\Sigma \nu^{2}
\end{gathered}
$$

The last equations allow the transformation of a product of four coefficients such as

$$
e^{x(m-n+c)^{t}}
$$

into the product of other four like coefficients and so renders the additiontheorem possible But except for coefficients that have this quadratic modex, the transformation cannot be effected for instance, it could not be effected for coefficients such as

$$
e^{x(n-n+e)^{2}} .
$$

Consequently, we are not to expect an addition-theorem for our triply periodie function similar to that possessed by the double theta-functions.

The sixteen triple theta-finctions.

146. Coming now more specially to the detailed properties of the functions denoted by

$$
\theta\left(\begin{array}{ll}
\rho, \rho^{\prime}, & z \\
\sigma, & \sigma^{\prime}, \\
z^{\prime}
\end{array}\right)
$$

we have seen that, when ρ and ρ^{\prime} are restricted to be integers, it is sufficient to take for each of them either 0 or 1. Further, the actual values of σ and σ^{\prime} in the coefficients of the variable parts of the exponential terms would not be of importance as, owing to their linear occurrence, they would (if changed) affect only a factor common to the whole series, but they occur in the coefficient in each term and the occurrence is not hnear. We have seen that a large class of these functions θ is selected from the whole body, by ussigning to σ and σ^{\prime} the values 0 or 1 independently of one another; but it must be noted that such an assignment of value $2 s$ a distinct limitation upon the full generality of the functions.

Suppose then that the values indicated are assigned to $\rho, \rho^{\prime}, \sigma, \sigma^{\prime}$, as there are two possibilities for each of the four parameters, there are sixteen functions in all. It is convenient to shorten the symbols of the functions. and so we write*

$$
\begin{aligned}
& \theta\left(\begin{array}{lll}
0, & 0, & z \\
0, & 0, & z^{\prime}
\end{array}\right)=\theta_{0}=\Sigma \Sigma a_{r} q^{4 n n^{2}} q^{4 n^{2}} e^{2 n \pi i z+2 n \pi z z^{\prime}} \\
& \theta\left(\begin{array}{ll}
0, & 0, \\
1, & 0, \\
z^{\prime}
\end{array}\right)=\theta_{1}=\Sigma \leq a_{r} q^{(2 m+1)^{2}} q^{4 n^{2}} e^{(2 m+1) \pi z+2 n \pi l z^{\prime}} \\
& \theta\left(\begin{array}{lll}
0, & 0, & z \\
0, & 1, & z^{\prime}
\end{array}\right)=\theta_{2}=\Sigma \Sigma a_{r} q^{4 m^{2}} q^{(2 n \rightarrow 1)^{2}} e^{2 m \pi t z+(2 n+1) \pi r z^{\prime}} \\
& \theta\left(\begin{array}{lll}
0, & 0, & z \\
1, & 1, & z^{\prime}
\end{array}\right)=\theta_{3}=\Sigma \Sigma a_{3} q^{(2 m+1)^{2}} q^{\prime(2 n+1)^{2}} e^{(2 m+1) \pi / z+(2 n+1) \pi z^{\prime}} \\
& \theta\left(\begin{array}{lll}
1, & 0, & z \\
0, & 0, & z^{\prime}
\end{array}\right)=\theta_{4}=\Sigma \leq(-1)^{m} a_{1} q^{4 n i^{2}} q^{4 n^{2}} e^{2 m \pi ı z+2 n \pi i z^{\prime}} \\
& \theta\left(\begin{array}{lll}
1, & 0, & z \\
1, & 0, & z^{\prime}
\end{array}\right)=\theta_{6}=\Xi \check{(}(-1)^{m} a, q^{(2 m+1)^{2}} q^{4 n^{2}} e^{(2 m+1) \pi l z+2 l n i z^{\prime}} \\
& \theta\left(\begin{array}{ll}
1, & 0, \\
0, & 1, \\
z^{\prime}
\end{array}\right)=\theta_{6}=\Sigma \Sigma(-1)^{m} a_{r} q^{4 m^{2}} q^{(2 n+1)^{2}} e^{2 m \pi 2 z+(2 n+1) \pi \imath z^{\prime}} \\
& \theta\left(\begin{array}{ll}
1, & 0, \\
1, & 1, \\
z^{\prime}
\end{array}\right)=\theta_{7}=\Sigma \Sigma(-1)^{m} a_{r} q^{(2 m+1)^{2}} q^{(2 n+1)^{2}} e^{(2 m+1) \pi 1 z+(2 n+1) \pi i z^{\prime}} \\
& \theta\left(\begin{array}{lll}
0, & 1, & z \\
0, & 0, & z^{\prime}
\end{array}\right)=\theta_{8}=\Sigma \Sigma(-1)^{n} a_{r} q^{4 m^{2}} q^{4 n^{2}} e^{2 m \pi / z+2 n \pi / z^{\prime}} \\
& \theta\left(\begin{array}{ll}
0, & 1, z \\
1, & 0, \\
z^{\prime}
\end{array}\right)=\theta_{9}=\Sigma \Sigma(-1)^{n}\left(t_{r} q^{(2 m+1)^{2}} q^{4 n^{2}} e^{(2 m+1) \pi i z+2 n \pi r z^{\prime}}\right. \\
& \theta\left(\begin{array}{ll}
0, & 1, \\
0, & z
\end{array}\right)=z_{10}=\Sigma \Sigma(-1)^{n} a_{r} q^{4 m^{2}} q^{\prime(2 n+1)^{2}} e^{2 m \pi i z+(2 n+1) \pi \imath z^{\prime}} \\
& \theta\left(\begin{array}{ll}
0,1, z \\
1, & 1, \\
z^{\prime}
\end{array}\right)=\theta_{11}=\Sigma \Sigma(-1)^{n} a, q^{(2 m+1)^{\prime}} q^{(2 n+1)^{n}} e^{(2 m+1) \pi \imath z+(2 n+1) \pi \imath z^{\prime}} \\
& \theta\left(\begin{array}{ll}
1, & 1, \\
0, & 0, \\
z^{\prime}
\end{array}\right)=\theta_{22}=\Sigma \Sigma(-1)^{m+n} a_{r} q^{4 m^{2}} q^{4 n^{2}} e^{2 m \pi z z+2 n \pi \imath z^{\prime}} \\
& \theta\left(\begin{array}{ll}
1, & 1, z \\
1, & 0, z^{\prime}
\end{array}\right)=\theta_{13}=\Sigma \Sigma(-1)^{m+n} a_{r} q^{(2 m+1)^{2}} q^{\left(4 n^{2}\right.} e^{(2 m+1) \pi \imath z+2 n \pi \iota z^{\prime}} \\
& \theta\left(\begin{array}{ll}
1, & 1, \\
0, & 1, \\
z^{\prime}
\end{array}\right)=\theta_{14}=\Sigma \Sigma(-1)^{m+n} a_{r} q^{4 n 2^{2}} q^{\prime(2 n+1)^{2}} e^{2 m \pi \imath z+(2 n+1) \pi \imath z^{\prime}} \\
& \left.\theta\left(\begin{array}{ll}
1, & 1, z \\
1, & 1, z^{\prime}
\end{array}\right)=\theta_{15}=\Sigma \Sigma(-1)^{m+\pi} a_{r} q^{(2 m+1)^{2}} q^{(2 n+1)^{2}} e^{(2 n+1) \pi z+(2 n+1) \pi 2 z^{\prime}}\right)
\end{aligned}
$$

* The symbols adopted angee with the symbols used for the donble theta-functions in a memoir by the author, Phil. Trans (1882), pp 783-K62; the reason 28 that, as indicated above, the functions actually become double theta-funotions when the proper value as asagned to the coeffioients a_{r}.
where, throughout, r denotes $m-n$, and the coefficient a_{r} is an abbreviation for $\phi\left(m-n, \sigma, \sigma^{\prime}\right)$ in the respective cases.

The law that m and n, when they vccur in the coefficients, must occur in the combination $m-n$, secures the periodicity (actual, or save as to a factor) of the functions: thus it is essential. As will be seen later, another limitation will be imposed so as to secure the oddness or the evenness of each of the sixteen functions, but the hmitation is conventional, not essential. In the meanwhile, we note that σ and σ^{\prime} are the same for the set $\theta_{0}, \theta_{4}, \theta_{8}, \theta_{12}$; likewise for the set $\theta_{1}, \theta_{8}, \theta_{4}, \theta_{11}$, for the set $\theta_{2}, \theta_{6}, \theta_{10}, \theta_{16}$, and for the set $\theta_{3}, \theta_{7}, \theta_{11}, \theta_{15} \quad$ Let

$$
\left.\begin{array}{l}
\phi(m-n, 0,0)=f(m-n)=f(r) \\
\phi(m-n, 1,0)=g(m-n)=g(r) \\
\phi(m-n, 0,1)=h(m-n)=h(r) \\
\phi(m-n, 1,1)=k(m-n)=k(r)
\end{array}\right\}
$$

then the typical coefficient a, is

$$
\left.\begin{array}{l}
f(r), \text { for } \theta_{0}, \theta_{4}, \theta_{4}, \theta_{12} \\
g(r), \\
h(r), \\
h\left(\theta_{1}, \theta_{5}, \theta_{9}, \theta_{13}\right. \\
k(r), \\
. . . \theta_{3}, \theta_{3}, \theta_{7}, \theta_{11}, \theta_{14}
\end{array}\right\}
$$

Even functions. Odd functions.
147. It is important to know the conditions that will allow any (and, if so, which) of these functions to be either odd or even in their arguments. We have

$$
\theta\left(-z,-z^{\prime}\right)=\Sigma \Sigma(-1)^{m \rho+n \rho^{\prime}}\left(a_{r} q^{(22 n+\sigma)^{2}} q^{\prime(2 n+\sigma)^{z}} e^{-(m)+\sigma \mid \pi z-\left(2 n+\sigma^{\prime}\right) m u z},\right.
$$

where

$$
a_{r}=\phi\left(m-n, \sigma, \sigma^{\prime}\right) .
$$

Let new integers m^{\prime} and n^{\prime} be chosen so that

$$
m+m^{\prime}+\sigma=0, \quad n+n^{\prime}+\sigma^{\prime}=0
$$

then

$$
\theta\left(-z,-z^{\prime}\right)=(-1)^{\log +\rho^{\prime} \sigma^{\prime}} \Sigma \Sigma(-1)^{n^{\prime} \rho+n^{\prime} \rho^{\prime}} a_{r} q^{\left(2 m^{\prime}+\sigma^{2}\right)^{2}} q^{\prime\left(2 n^{\prime}+\sigma^{\prime}\right)} e^{l\left(2 m^{\prime}+\sigma\left|m z z^{\prime}+\left|n^{\prime}+\sigma\right| x i z z^{\prime}\right.\right.} .
$$

But

$$
\theta\left(z, z^{\prime}\right)=\Sigma \Sigma(-1)^{m n^{\prime} \rho+n \rho^{\prime}} c_{r} q^{\left(2 m^{\prime}+\sigma\right)^{2}} q^{\prime\left(2 n^{\prime}+\sigma^{\prime}\right)^{2}} e^{\left(2 m m^{\prime}+\sigma\right) m z+\left(2 n^{\prime}+\sigma^{\prime}\right) \pi \boxed{\prime} z^{\prime}},
$$

where

$$
c_{r}=\phi\left(m^{\prime}-n^{\prime}, \sigma, \sigma^{\prime}\right) .
$$

In order to compare $\theta\left(-z,-z^{\prime}\right)$ with $\theta\left(z, z^{\prime}\right)$, we take

$$
\phi\left(m^{\prime}-n^{\prime}, \sigma, \sigma^{\prime}\right)=\phi\left(m-n, \sigma, \sigma^{\prime}\right) ;
$$

and then

$$
\theta\left(-z,-z^{\prime}\right)=(-1)^{\sigma \sigma+\rho^{\prime} \sigma^{\prime}} \theta\left(z, z^{\prime}\right),
$$

that is, $\theta\left(z, z^{\prime}\right)$ then is even when $\rho \sigma+\rho^{\prime} \sigma^{\prime}$ is even, and $\theta\left(z, z^{\prime}\right)$ then is odd when $\rho \sigma+\rho^{\prime} \sigma^{\prime}$ is ndd

Thus the imposition of the condition upon ϕ secures the evenness or the oddness of the functions As regards the expression of the condition, let
so that

$$
m^{\prime}-n^{\prime}=-r
$$

the condition is

$$
m-n=r-\sigma+\sigma^{\prime}
$$

$$
\phi\left(-r, \sigma, \sigma^{\prime}\right)=\phi\left(r-\sigma+\sigma^{\prime}, \sigma, \sigma^{\prime}\right)
$$

To monlify the expression of the condition, let,

$$
\phi\left(t, \sigma, \sigma^{\prime}\right)=\psi\left(2 t+\sigma-\sigma^{\prime}, \sigma, \sigma^{\prime}\right)
$$

where ψ is a new form of coefficient, then the condition is

$$
\psi\left(-2 r+\sigma-\sigma^{\prime}, \sigma, \sigma^{\prime}\right)=\psi\left(2 r-\sigma+\sigma^{\prime}, \sigma, \sigma^{\prime}\right)
$$

shewing that ψ is in even function of the first of its three arguments This is the necessary and sufficient condition, that each of the functions $\theta\left(z, z^{\prime}\right)$ should be euther odd or even.

One very inportant class of functions is provided by limiting the coefficients ψ still further Let it be assumed that the function ψ is a function of its first argument only, so that the typical coefficient, whel was $\phi\left(m-n, \sigma, \sigma^{\prime}\right)$, is

$$
\psi\left(2 m-2 n+\sigma-\sigma^{\prime}\right),
$$

where ψ as now an even function of its only argument $2 m-2 n+\sigma-\sigma^{\prime}$. the parameters σ and σ^{\prime} enter into the coefficent solely through their occurrence In this argument If then by any change in the function $\theta\left(z, z^{\prime}\right)$, such as an werement of the arguments, the parameters σ and σ^{\prime} are increased or are decreased by the same integer, the coefficient ψ is unaltered.

It may be noted that the double theta-functions arise from one particular case of this last law, viz.

$$
\psi=p^{\left(m n-m+\sigma-\sigma^{2}\right)^{2}} .
$$

Other simple laws can be constructed, subject always to the requirement of convergence, for our immediate purpose, we have also the requirement of merely triple perrodicity.
148. Before the final postulation of the aggregate of conditions and limitatrons upon the coefficients, consider any functron $\theta\left(z, z^{\prime}\right)$, which is triply periode but not otherwise limited, so that it is mixed as to a quality of oddness or evenness Let

$$
E\left(z, z^{\prime}\right)=\theta\left(z, z^{\prime}\right)+\theta\left(-z,-z^{\prime}\right), \quad O\left(z, z^{\prime}\right)=\theta\left(z, z^{\prime}\right)-\theta\left(-z,-z^{\prime}\right)
$$

so that $E\left(z, z^{\prime}\right)$ is certainly an even function, and $O\left(z, z^{\prime}\right)$ is certainly an odd function, and let the series-expressions for E and O be

Then substituting for θ in the definition of the function E, and denoting by $a_{n, n}$ (as at first) the customary part of the coefficient of the typical term in θ, we find

Consequently

$$
k_{n, n}=u_{m, n}+(-1)^{\rho \sigma+\rho^{\prime} \sigma^{\prime}} u_{-m-\sigma,-n-\sigma^{\prime}}
$$

$$
k_{m-\sigma, n-\sigma^{\prime}}=a_{m-\sigma, n-\sigma^{\prime}}+(-1)^{\sigma \sigma+\rho^{\prime} \sigma^{\prime}} a_{-m,-n}
$$

and theiefore

$$
k_{-m,-n}=\left(q_{-m n_{1}-n}+(-1)^{\rho \sigma+\rho^{\prime} \sigma^{\prime}} a_{m-\sigma, n-\sigma^{\prime}}\right.
$$

$$
k_{-m,-n}=(-1)^{\rho \sigma+\rho^{\prime} \sigma^{\prime}} h_{m-\sigma, n-\sigma^{\prime}}
$$

Similarly, we have

$$
l_{-m,-n}=-(-1)^{\rho \sigma+\rho^{\prime} \sigma^{\prime}} l_{a n-\sigma, n-\sigma^{\prime}}
$$

Moreover, by analysis that is similar to the analysis used in establishing the earlier condition that a function should be odd or even (and not mixed), we have

Similarly, we have

$$
O\left(-z,-z^{\prime}\right)=-O\left(z, z^{\prime}\right)
$$

Consequently, even when the initial function $\theta\left(z, z^{\prime}\right)$ is mixed as regards its quality of oddness or evenness, we can deduce (by appropriate combnations) triply periodic functions which defintely are odd or definitely are even. We therefore have sand that the limitations imposed upon the coefficients in θ, to secure the oddness or the evenness of the function, are conventional and are not essential.

Effect of half-period ucrements of vuriables.
149. The law of reproduction of the general function $\theta\left(z, z^{\prime}\right)$, when the arguments are ncreased by any combination of integer multuples of the periods, has already been given. We proceed to consider the laws of changes among the functions $\theta\left(z, z^{\prime}\right)$, when the arguments are increased by hnear combinations of half-periods: and these have two forms according as the typical coefficients in the series are taken to be $\phi\left(m-n, \sigma, \sigma^{\prime}\right)$ in general or $\psi\left(2 m+\sigma-2 n-\sigma^{\prime}\right)$ less generally, excepting from the latter the single case when the expression for ψ gives quadruply periodic functions.

$$
\begin{aligned}
& E\left(-z,-z^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\Sigma \Sigma(-1)^{m^{\prime} \rho+n^{\prime} \rho^{\prime}} k_{m^{\prime}, n^{\prime}} q^{\left(2 m n^{\prime}+\sigma\right)^{2}} q^{\prime\left(12 n^{\prime}+\sigma^{\prime}\right)^{2}} e^{(22 n+\sigma) \pi z+\left(2 n^{\prime}+\sigma^{\prime} \mid m L^{\prime}\right.} \\
& =E\left(z, z^{\prime}\right)
\end{aligned}
$$

I. Let the coefficient in θ be $\phi\left(m-n, \sigma, \sigma^{\prime}\right)$ We have

$$
\begin{aligned}
& \theta\left(\begin{array}{lll}
\rho, & \rho^{\prime}, & z+\frac{1}{2} \\
\sigma, & \sigma^{\prime}, & z^{\prime}
\end{array}\right)=\imath^{\sigma} \theta\left(\begin{array}{ccc}
\rho+1, & \rho^{\prime}, & z \\
\sigma, & \sigma^{\prime}, & z^{\prime}
\end{array}\right), \\
& \theta\left(\begin{array}{ll}
\rho, & \rho^{\prime}, \\
\sigma, & z \\
\sigma, & z^{\prime}+\frac{1}{2}
\end{array}\right)=i^{\sigma^{\prime}} \theta\left(\begin{array}{cc}
\rho, & \rho^{\prime}+1, \\
\sigma, & \sigma^{\prime} \\
, & z^{\prime}
\end{array}\right), \\
& \theta\left(\begin{array}{cc}
\rho, & \rho^{\prime}, \\
\sigma, & \sigma^{\prime}, \\
z^{\prime}+\frac{1}{2} \\
2
\end{array}\right)=\imath^{\sigma+\sigma^{\prime}} \theta\left(\begin{array}{cc}
\rho+1, & \rho^{\prime}+1, \\
\sigma, & \sigma^{\prime} \\
\sigma & z^{\prime}
\end{array}\right) .
\end{aligned}
$$

With these half-period increments, the members of the set

$$
\begin{array}{llll}
\theta_{0} & \theta_{4}, & \theta_{8} & \theta_{12}
\end{array}
$$

are interchanged among one another, as also are the members of each of the sets

$$
\begin{array}{llll}
\theta_{1}, & \theta_{5}, & \theta_{4}, & \theta_{13}, \\
\theta_{2}, & \theta_{6}, & \theta_{111}, & \theta_{11}, \\
\theta_{3}, & \theta_{7}, & \theta_{11}, & \theta_{15},
\end{array}
$$

the law of interchange being the same as that given in the first four columns of the table on p. 254

Further, let $\mathcal{G}\left(\begin{array}{cc}\rho, \rho^{\prime}, z \\ \sigma, & \sigma^{\prime}, \\ z^{\prime}\end{array}\right)$ denote the value of $\theta\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}$ when, in the latter, we take $\phi\left(m-n, \sigma-1, \sigma^{\prime}-1\right)$ as the typical cocffielent in place of $\phi\left(m-n, \sigma, \sigma^{\prime}\right) \quad$ Also, let

$$
N=\pi \imath\left(z+z^{\prime}\right)+\frac{1}{3} \pi \imath\left(\mu+\mu^{\prime}\right) .
$$

Then we have

$$
\left.\begin{array}{lll}
\theta\binom{\rho, \rho^{\prime}, z+\frac{1}{2} \mu}{\sigma, \sigma^{\prime}, z^{\prime}+\frac{1}{2} \mu^{\prime}} & = & e^{-x} g\left(\begin{array}{cc}
\rho, & \rho^{\prime}, z \\
\sigma+1, & \sigma^{\prime}+1, \\
z^{\prime}
\end{array}\right) \\
\theta\binom{\rho, \rho^{\prime}, z+\frac{1}{2} \mu+\frac{1}{2}}{\sigma, \sigma^{\prime}, z^{\prime}+\frac{1}{2} \mu^{\prime}} & =\imath^{\sigma} & e^{-v} g\left(\begin{array}{cc}
\rho+1, & \rho^{\prime}, \\
\sigma+1, & \sigma^{\prime}+1, \\
z^{\prime}
\end{array}\right) \\
\theta\binom{\rho, \rho^{\prime}, z+\frac{1}{2} \mu}{\sigma, \sigma^{\prime}, z^{\prime}+\frac{1}{2} \mu^{\prime}+\frac{1}{2}} & =\imath^{\sigma^{\prime}} & e^{-N} g\left(\begin{array}{cc}
\rho, & \rho^{\prime}+1, z \\
\sigma+1, & \sigma^{\prime}+1, \\
z^{\prime}
\end{array}\right.
\end{array}\right\} .
$$

It therefore follows that, with the general coefficients adopted, there is no interchange of the functions $\theta\left(z, z^{\prime}\right)$ among one another, they change into other triply periodic functions $9\left(z, z^{\prime}\right)$ with different general coefficients.

There are corresponding laws of change for the functions $9\left(z, z^{\prime}\right)$, when the arguments are increased by linear combinations of half-periods, into the functions $\theta\left(z, z^{\prime}\right)$. this reciprocal property being, of course, due to the periodicity of $\theta\left(z, z^{\prime}\right)$ and of $\mathcal{A}\left(z, z^{\prime}\right)$.

It is to be noted that, in all these changes, the quantity $\sigma-\sigma^{\prime}$ is unchanged : so that, when the coefficient $\phi\left(m-n, \sigma, \sigma^{\prime}\right)$ as specialised into $\psi\left(2 m+\sigma-2 n-\sigma^{\prime}\right)$, the functions $\mathcal{F}\left(z, z^{\prime}\right)$ are the same as the functions $\theta\left(z, z^{\prime}\right)$ The functions $\theta\left(z, z^{\prime}\right)$ would then interchange for all these halfperod combinations, these laws of interchange will be given in the table (p. 254).

Again, we have

$$
\begin{aligned}
& \left.\theta\left(\begin{array}{lll}
\rho, & \rho^{\prime}, z+\frac{1}{2} \mu \\
\sigma, & \sigma^{\prime}, & z^{\prime}
\end{array}\right)=e^{-\pi z-\frac{1}{2} \pi \mu} \theta^{+}\left(\begin{array}{cc}
\rho & \rho^{\prime}, \\
\sigma+1, & \sigma^{\prime}, z^{\prime}
\end{array}\right)\right) \\
& \theta\left(\begin{array}{llc}
\rho, & \rho^{\prime}, & z \\
\sigma, & \sigma^{\prime}, & z^{\prime}+\frac{1}{2} \mu
\end{array}\right)=e^{-\pi t z-\frac{1}{2} \pi \mu^{\prime} \theta^{-}}\left(\begin{array}{cc}
\rho, & \rho^{\prime}, z \\
\sigma, & \sigma^{\prime}+1, \\
z^{\prime}
\end{array}\right) \\
& \theta\left(\begin{array}{cc}
\rho, & \rho^{\prime}, z \\
\sigma+2, & \sigma^{\prime}, \\
z^{\prime}
\end{array}\right)=\left(-1 \mu^{\rho-} \Theta^{-}\left(\begin{array}{cc}
\rho, \rho^{\prime}, & z \\
\sigma, & \sigma^{\prime}, \\
z^{\prime}
\end{array}\right)\right. \\
& \theta\left(\begin{array}{cc}
\rho, & \rho^{\prime}, \\
\sigma, & \sigma^{\prime}+2, \\
z^{\prime}
\end{array}\right)=(-1) \rho^{\prime} \Theta^{+}\left(\begin{array}{ll}
\rho, & \rho^{\prime}, z \\
\sigma, & \sigma^{\prime}, \\
z^{\prime}
\end{array}\right) \\
& \left.\theta\left(\begin{array}{cc}
\rho, & \rho^{\prime}, z \\
\sigma+2, \sigma^{\prime}+2, & z^{\prime}
\end{array}\right)=(-1)^{\rho+\rho^{\prime}} \theta\left(\begin{array}{ll}
\rho, \rho^{\prime}, z \\
\sigma, & \sigma^{\prime}, \\
z^{\prime}
\end{array}\right) \quad\right)
\end{aligned}
$$

where $\theta^{+}\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}, \theta^{-}\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}, \Theta^{-}\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}, \Theta^{+}\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}$ are derived from $\theta\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}$ by changing its typical coefficient $\phi\left(m-n, \sigma, \sigma^{\prime}\right)$ into $\phi\left(m-n, \sigma-1, \sigma^{\prime}\right), \phi\left(m-n, \sigma, \sigma^{\prime}-1\right), \phi\left(m-n-1, \sigma, \sigma^{\prime}\right), \phi\left(m-n+1, \sigma, \sigma^{\prime}\right)$, respectively, all these functions $\theta^{+}, \theta^{-}, \Theta^{+}, \Theta^{-}$being tıiply periodic Also

$$
\begin{aligned}
& \theta\left(\begin{array}{ll}
\rho, & \rho^{\prime}, \\
\sigma, & \sigma^{\prime}, \\
z^{\prime}
\end{array}\right)=(-1) \rho e^{-2 \pi z-\pi \mu \mu} \xi^{-}\left(\begin{array}{lll}
\rho, & \rho^{\prime}, & z \\
\sigma, & \sigma^{\prime}, & z^{\prime}
\end{array}\right) \\
& \left.\theta\binom{\rho, \rho^{\prime},}{\sigma, \sigma^{\prime}, z^{\prime}+\mu^{\prime}}=\langle-1)^{\rho} e^{-9 \pi \pi z^{\prime}-m \mu^{\prime}(\Theta+}\left(\begin{array}{lll}
\rho, & \rho^{\prime}, & z \\
\sigma, & \sigma^{\prime}, & z^{\prime}
\end{array}\right)\right)^{\cdot}
\end{aligned}
$$

II Let the coefficient in θ be $\psi\left(2 m+\sigma-2 n-\sigma^{\prime}\right)$, where ψ is any even function of its argument except a constant or

$$
p^{(2 m+\sigma-9 n-\sigma)^{2}}
$$

always provided that the series converges. Then the sixteen functions $\theta\left(z, z^{\prime}\right)$ range themselves into two sets, the members of each set interchanging with one another for half-period increases of arguments, as in the first eight columns of the table (p. 254)
III. Let the coefficient in θ be a special case of the last, so chosen that

$$
\begin{aligned}
\psi\left(2 m+\sigma-2 n-\sigma^{\prime}\right) & =p^{\left(2 m+\sigma-2 n-\sigma^{\prime}\right)^{2}} \\
& =e^{\ddagger \kappa \pi t\left(2 m+\sigma-m n-\sigma^{\prime}\right)^{2}}
\end{aligned}
$$

where there are limitations upon the real parts of $\mu+\kappa, \mu^{\prime}+\kappa, \mu \mu^{\prime}+\kappa\left(\mu+\mu^{\prime}\right)$ necessary to secure the convergence of the functions θ.

The sixteen functions are now quadruply periodic (beng the double theta-functions) when we write

$$
a_{11}=\mu+\kappa, \quad a_{12}=-\kappa, \quad u_{x 2}=\mu^{\prime}+\kappa,
$$

the four pars of periods and pseudo-periods are

$$
\text { fo } \left.\begin{array}{rllll}
z, & 1, & 0, & a_{11}, & u_{12} \\
z^{\prime}, & 0, & 1, & a_{12}, & a_{22}
\end{array}\right\}
$$

The three pars of periods for the triple theta-functions ale

$$
\left.\begin{array}{rlll}
\text { for } z, & 1, & 0, & \left(a_{11}+a_{12}=\right) \mu \\
z^{\prime}, & 0, & 1, & \left(a_{12}+a_{12}=\right) \mu^{\prime}
\end{array}\right\}
$$

As already stated, the first four columns 11 the table give the laws of interchange for half-period increments when the cocfficients in the triple theta-functions are quite general, the first eight columis give the laws of meterchange fon half-period increments when these general coefficients are lumited so as to secuic that the triple theta-functions are, cach of thein, etther aus odd function or an even function of its arguments, and now we add the result that the sixtecn columns give the laws of intorchange for half-period moremonts when the coefficients are further specialised so as to give rise to double theta-functions

150 With the definitions just given for a_{11}, a_{12}, a_{22}, we write

$$
\left.\begin{array}{l}
L=\pi \imath z+\frac{1}{4} \pi \imath(\mu+\kappa)=\pi \imath z+\frac{1}{4} \pi i a_{11} \\
M=\pi \imath z^{\prime}+\frac{1}{4} \pi \imath\left(\mu^{\prime}+\kappa\right)=\pi i z^{\prime}+\frac{1}{4} \pi \imath a_{22} \\
N=\pi \imath\left(z+z^{\prime}\right)+\frac{1}{4} \pi \imath\left(\mu+\mu^{\prime}\right)=\pi \imath\left(z+z^{\prime}\right)+\frac{1}{4} \pi \imath\left(a_{11}+2 t_{12}+u_{22}\right)
\end{array}\right\} .
$$

and then the table is as on the next page
151 Of the sixteen functions, whether they are the general properly triply periodic functions or the more special quadruply periodic functions, six are odd, viz. $\theta_{7}, \theta_{11}, \theta_{\mathrm{s}}, \theta_{10}, \theta_{18}, \theta_{14}$, and the remaming ten are eveli.

The table enables us to deduce a number of irreducible zero-places for the functions, whether trıply perıodic or quadıuply perıodıc, from the fact that the odd functions vanish at 0,0 . These zoro-places are given, say fon any function θ_{0}, by noting that

$$
\theta_{0}\left(z+\frac{1}{2} \mu+\frac{1}{2}, z^{\prime}+\frac{1}{2} \mu^{\prime}\right)=\theta_{7}\left(z, z^{\prime}\right)
$$

so that $z=\frac{1}{2} \mu+\frac{1}{2}, z^{\prime}=\frac{1}{2} \mu^{\prime}$ is a zero of $\theta_{0}\left(z, z^{\prime}\right)$, and so for the others in turn. The whole set thus deducible is given in the succeeding table (p. 255) • the first eight lines give the zeros when the functions are triply periodic and not quadruply penodic; the last elght hnes give the further zeros when the functions are further specialised so as to become quadruply periodic.

But it must be remembered that each such picked zero 1s, for a single function, only a place in a continuous aggregate of zero-places for any par of functions, any simultaneous preked zero (such as 0,0 for θ_{6} and θ_{7}) is an inolated smultaneous zero.

The table* of picked zeros is as follows -

2. $i^{\prime}=$	θ_{0}	θ_{1}	A_{2}	θ_{3}		0	θ_{5}	θ_{3}		θ_{i}	1_{4}	θ_{y}	θ_{11}	θ_{11}	θ_{12}	θ_{11}	θ_{14}	θ_{15}
0,0							\times			\times			\times	\times		\times	x	
$\frac{3}{2}, 0$		\times		x								\times	\times				\times	\times
$0 \pm$			\times	\times			\times	\times								\times		\times
$\frac{1}{2}, \frac{1}{2}$		\times	\times					x		\times		\times		\times				
$\frac{1}{2} \mu, \frac{1}{2} \mu^{\prime}$						\times		\times			\times	\times				\times	\times	
$\frac{1}{2} \mu+\frac{1}{2}, \frac{2}{2} \mu^{\prime}$	\times		\times									\times	\times		\times	\times		
$\frac{1}{2}, \frac{1}{2} \mu^{\prime}+\frac{1}{2}$	\times	\times					\times	\times							\times		x	
$\frac{1}{2} \mu+\frac{1}{2}, \frac{1}{2} \mu^{\prime}+\frac{1}{2}$		\times	\times			\times	\times				\times		\times					
$\frac{1}{2} a_{11}, \frac{2}{2} \alpha_{12}$						\times		\times					\times	\times	\times			\times
$\frac{2}{} a_{11}+\frac{1}{2}, \frac{1}{2} \alpha_{12}$	x		\times								\times			\times			\times	x
$\frac{1}{2} a_{11}, \underline{b} a_{12}+\frac{1}{2}$			\times	\times		\times				\times					\times		\times	
$\frac{1}{2} a_{11}+\frac{1}{2}, \frac{1}{2} a_{12}+\frac{1}{2}$	x			\times				\times		x	\times		\times					
$\frac{1}{2} a_{12}, \frac{1}{2} a_{24}$							\times			x	\times	\times			\times			\times
$\frac{1}{2} a_{12}+\frac{1}{2}, \frac{1}{2} \alpha_{22}$		\times		\times							\times			\times	\times	\times		
$\frac{1}{2} \mu_{12}{ }^{2}, \frac{1}{2} \alpha_{m}+\frac{1}{2}$	\times	\times				\times				\times						\times		\times
$\frac{1}{2} \alpha_{12}+\frac{1}{2}, \frac{1}{2} \alpha_{22}+\frac{1}{2}$				\times		\times	\times		,			\times		\times				

Construction of functions that are strctly periodic.

152. The results of $\S 142$ shew that each of the sisteen θ-functions is periodic in 1 and 0 , save possibly as to sign, also in 0 and 1 , save possibly as to sign, also in μ and μ^{\prime}, save as to the factor $\exp \left(-2 \pi \imath z-2 \pi \imath z^{\prime}-\pi i \mu-\pi \imath \mu^{\prime}\right)$ and save pussibly as to sign. The actual periods (except for multiples of μ and

[^47]μ^{\prime}, when the variable exponential factor occurs) for the functions are as follows -
\[

$$
\begin{aligned}
& 1,0,0,1 ; \mu, \mu^{\prime} ; \text { for } \theta_{0} \text { and } \theta_{12}, \\
& 1,0,0,1,2 \mu, 2 \mu^{\prime}, \text { for } \theta_{4} \text { and } \theta_{\mathrm{s}}, \\
& 2,0,0,2, \mu, \mu^{\prime}, \text { for } \theta_{3} \text { and } \theta_{15}, \\
& 2,0,0,2,2 \mu, 2 \mu^{\prime}, \text { for } \theta_{7} \text { and } \theta_{11}, \\
& 2,0,0,1, \mu, \mu^{\prime}, \text { for } \theta_{1} \text { and } \theta_{15}, \\
& 2,0,0,1,2 \mu, 2 \mu^{\prime}, \text { for } \theta_{\mathrm{s}} \text { and } \theta_{\mathrm{a}}, \\
& 1,0,0,2, \mu, \mu^{\prime}, \text { for } \theta_{2} \text { and } \theta_{14} . \\
& 1,0,0,2,2 \mu, 2 \mu^{\prime}, \text { for } \theta_{\mathrm{n}} \text { and } \theta_{10} .
\end{aligned}
$$
\]

Hence the fifteen quotients of any fifteen of the functions by the remamng sixteenth function are actually triply perrodic (save possibly as to sign) in $1,0,0,1, \mu, \mu^{\prime}$, the squares of these quotients are actually triply periodic in the three pairs of persods. And it may be noted that the eight quotients
are actually triply perionic in $1,0,0,1, \mu, \mu^{\prime}$
The analogy of the quadruply periodic functrons which anse out of the double theta-functrons suggests that, for the triply perrobic finctions, we should take the quotients

$$
\theta_{1}-\theta_{12},
$$

where r has all the valuts $0,1, . ., 15$ except $r=12$ 'Triply periodic functions thus are secured without doubt but it must at once be noted that the functrons are thed as to therr infinitios In the simplest case, when the θ-functions are regular for all fimte values of the variables, the infimties of each of the fifteen quotients are the zeros of $\theta_{1,}$ and are these alone But such zeros are a contmuous aggregate, and so the simultaneous poles of the fifteen quotients, taken in pars anyhow, are not isolated points the fifteen quotients are tied, through the common occurrence of θ_{12} in the denominator. The simultaneous zeros of any two of the fifteen quotients are isolated places, being the smultaneous zeros of the θ-functions which occur in their numerators. and these constitute the whole of the zeros simultaneously belonging to two quotreuts for finte values of the variables.

But, of course, the quotients indicated are, initially at any rate, not a potential aggregate of actually pernodic functions Thus, for any one of the θ-functions, it is clear that the quantities

$$
\begin{gathered}
\partial^{r+s} \log \theta \\
\partial s^{r} \partial z^{\prime 4}
\end{gathered}
$$

for integers r and s, such that $r+s \geqslant 2$, will provide periodic functions: and so for other possible derivatives and combinations.

Later (\$161), we shall return to the "dunble" theta-functions which arse as a particular set of these " triple" theta-functions.

A property of unaform quadruply perzodec fienctions in combination

153. We proceed to consider the level places of two unform quadruply periodic* functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, having four pairs of periods in the form

$$
\left(\begin{array}{llll}
1, & 0 & \lambda, & \mu \\
0, & 1 & \lambda^{\prime}, & \mu^{\prime}
\end{array}\right)
$$

Let α and β be two level values for f and g, so that

$$
f\left(z, z^{\prime}\right)=\alpha, \quad g\left(z, z^{\prime}\right)=\beta .
$$

If $z=a_{1}, z^{\prime}=u_{1}^{\prime}$ be a place where f and g acquire the values a and β respectively, they will acqure these respective values at the whole set of places

$$
u_{1}+p^{\prime}+r \lambda+s \mu, \quad u_{1}^{\prime}+q+r \lambda^{\prime}+s \mu^{\prime}
$$

for all integer values of p, q, r, s.
We have seen, in $\S 138$, that, by taking an associated two-plane representation for the real vartables $x, y, x^{\prime}, y^{\prime}$, we can choose a unique point-pair $Q_{1} P_{3}$, where Q_{1} lies in a paadelogram in tho y, y^{\prime} plane and P_{1}^{\prime} in a square in the x, x^{\prime} plane, such that the point-parr $Q_{1} P_{1}$ may represent the whole foregong set of values equialent to a_{1}, a_{1}. We shall say that the whole set of values is expressuble by the point-pan $Q_{1} P_{1}$

Let $z=a_{2}, z^{\prime}=u_{2}^{\prime}$ be another place, not belonging to the set expressible by the point-pair $Q_{1} P_{2}$, where f and g acquire the respective values α and β, and let the whole set of places, equivalent to a_{2}, a_{2}^{\prime} by the addition of periods, be expressible by the point-pair $Q_{3} P_{2}$

And so on in successon, for places and sets of places equivalent to them, each new set contaning no place belonging to any of the preceding sets. Each new set will be expressible by a pont-parr, m the assuchated two-plane representation of the real variables $x, y, r^{\prime}, y^{\prime}$. We thus obtan a succession of different point-pairs $Q_{1} P_{1}, Q_{2} P_{2}, \ldots$, expressing the succession of distmet sets of places where the functions f and g acquire the respective level values α and β. Each such set can be denoted by any one of the members of the set, and from the construction of the sets, each set contans finte places in the field of variation. Let these finite places be denoted by $a_{1}, a_{1}{ }^{\prime} ; a_{2}, a_{2}^{\prime}, \ldots$, in succession, corresponding to the point-pairs $Q_{1} P_{1}, Q_{3} P_{2}, \ldots$. We shall say that such a finite place $z_{m}, z_{n \prime}$ ' is the irreducible level place for its set.

[^48]If the number of point-pairs $Q_{1} P_{1}, Q_{2} P_{2}, \ldots$, which thus arise, is finte, then the number of irreducible level places z, z^{\prime}, giving level values α and β to the functions f and g, is finite.

If the number of point-pars $Q_{1} P_{1}, Q_{2} P_{2}, \ldots$, which thus amse, $1 s$ infinite, then within the finte y, y^{\prime} parallelogram and the finte x, x^{\prime} square, there must be at least one (and there may be more than one) limiting point-pair QP such that its ammedate vicmity contans an minite number of such point-pars We then, for all such pout-pars in that unmediate vicinity, have an mfinte number of finte places a, a^{\prime}, at which the functions f and g acquire the level values α and β respectively.

Now suppose that, for finite places in the field of variation, our functions f and g possess no essential singulanties On this hypothess, we know (§ 121) that the level places are isolated, so that there cannot be au infinte number of those level places in the immediate vieinity of any one of them.

The second alternative must therefore be rejceted, and so we infer the theorem -

The number of irreducrble level places, givng level values a and β to two undeperdent free uniform quadruply peroduc functions, is finte.
154. It has been established for a couple of independent uniform functions in general, and therefose for a conple of mdependent umform quadruply periodic functions in particula, that the level places are asolated pair-places Any such par-place may be simple or multiple Whether simple or multiple, it is isolated, provided the two functions are independent and tree.

Further, if a, a^{\prime} is a simple level place for two mdependent and free functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, such that

$$
f\left(z, z^{\prime}\right)=\alpha, \quad g\left(z, z^{\prime}\right)=\beta,
$$

so that it is an isolated level place of those functions for those values α and β, then there is one (and there is only one) smple level place in the immediate vicinity of a, a^{\prime}-say at $a+b, a^{\prime}+b^{\prime}$, where $|b|$ and $\left|b^{\prime}\right|$ are small-such that

$$
f\left(z, z^{\prime}\right)=a+\alpha^{\prime}, \quad g\left(z, z^{\prime}\right)=\beta+\beta^{\prime},
$$

where $\left|\alpha^{\prime}\right|$ and $\left|\beta^{\prime}\right|$ are sufficiently small, and

$$
\left|a+\alpha^{\prime}\right|<|\alpha|, \quad\left|\beta+\beta^{\prime}\right|<|\beta| .
$$

For, by the theorems in Chapter iv and Chapter vil, if $z=a+b, z^{\prime}=a^{\prime}+b^{\prime}$, then we can write

$$
\begin{aligned}
f\left(z, z^{\prime}\right)-a & =f\left(a+b, a^{\prime}+b^{\prime}\right)-\alpha \\
& =a_{10} b+a_{01} b^{\prime}+\ldots, \\
g\left(z, z^{\prime}\right)-\beta & =g\left(a+b, a^{\prime}+b^{\prime}\right)-\beta \\
& =c_{10} b+c_{01} b^{\prime}+\ldots ;
\end{aligned}
$$

and therefore, as the level place a, a^{\prime} is simple, the equations

$$
\left.\begin{array}{l}
a_{10} b+a_{01} b^{\prime}+\ldots=\alpha^{\prime} \\
c_{10} b+c_{01} b^{\prime}+\ldots=\beta^{\prime}
\end{array}\right\}
$$

for sufficiently small values of $\left|\alpha^{\prime}\right|$ and $; \beta^{\prime} ;$, provide a single parr-value for b, b^{\prime}, where $\mid b^{\prime}$ and $\left|b^{\prime}\right|$ are sinall.

Similarly, from the theorems in $\$ 113,120-122$, we infer that, when a, a^{\prime} is a multiple level place of multiphesty M for two independent and free functions $f\left(z, z^{\prime}\right)$ and $q\left(z, z^{\prime}\right)$, such that,

$$
f\left(z, z^{\prime}\right)=x, \quad g\left(z, z^{\prime}\right)=\beta
$$

so that it 1 s an isolated level place of those functions of multiplicity M for those values, there are level par-places (some perhaps sumple, some perhaps multiple), in the immedate vicinity of a, a^{\prime}-say at $a+b, a^{\prime}+b^{\prime}$ where $|b|$ and $\left|b^{\prime}\right|$ are small, -of the same multipheity M in addative aggregate for

$$
f\left(z, z^{\prime}\right)=\alpha+a^{\prime}, \quad g\left(z, z^{\prime}\right)=\beta+\beta^{\prime},
$$

where α^{\prime} and β^{\prime} are sufficently small, and

$$
\left|\alpha+a^{\prime}:<\left|a_{1}^{\prime},\left|\beta+\beta^{\prime}<|\beta| .\right.\right.\right.
$$

155 Now consider the total finte number of irreducible level places such that the unfom quadruply periode functions f and g acquire the values a and β. The propositions just quoted shew that we can proceed from these values of the two functions to other values having smaller moduli to any aggregate of level places at or near any one place a, a^{\prime} for the values α and β, there corresponds another aggregate of level places for the values $\alpha+\alpha^{\prime}$ and $\beta+\beta^{\prime}$, the corporate muluphicity of one aggregate being the same as the corporate multipheity of the othor. We can thus proceed from one pair of level values to another parr of level values for f and g-m the argiment, we have chosen a succession with decreasing moduli-without, at any step, affecting the corporate multiplicity of the level places. Moreover, in this succession, it is necessary to have only a finte range for z, and only a finite range for z^{\prime}, because the ranges in the y, y^{\prime} plane and in the x, x^{\prime} plane in the two-plane representation described in § 138, giving the finite arreducible places z, z^{\prime}, of $\$ 153$, are finte. Hence we infer the theorem. -

The number of irreducible level places, at whoch two mdependent and free muform quedruply peroduc functzons f und g, haowg no essental singularity for finite values of the variables, acquare firite values a and β, so that

$$
f\left(z, z^{\prime}\right)=\alpha, \quad g\left(z, z^{\prime}\right)=\beta,
$$

regard being paid to possible multzplocuty of each such level place, is independent of the actual level values acquired by the functions. In particular, the number of level places is the same as the number of simultaneous zero places of two such functions, regard always beng paid to possible multiphaity of occurrence at a level place or a zero place.

The property also holds when the level value for either of the functions or for both of the functions 18 a unique infinity so that the level place is a pole (an unessential singularity of the first kind) for etther of the functions or for both of the functions, as the case may be; it follows at once by considering the reciprocal of the function or of the functions having the place for a pole. But care must always be exercised to make certan that the functions are free as well as independent: thus the theorem would not apply to the poles of functions, such as $\theta_{0}-\theta_{12}$ and $\theta_{1}-\theta_{12}$ of $\S 152$, because the poles, so fir from being isolated, are the continuous aggregates of zeros of the function θ_{12}.

But the unessential singularities (the unessential singularities of the second kind) of a single function are isolated, and when two functions are considered simultancously, then unessential singularities are not mecissarily (and are not usually) the same places Hence the theorem dous not apply to unessential singularities.

And the theorem does not apply to essential singularities.
If, then, we adopt a more comprehensive definition of level places and level values, the first including ordinary places and poles, and the second including zeros, finite values, and umque infinite values, we can say that the number of orreducible level places of two ndeperdent and free unaform quadruply periodic functions, having no essential singularty for finte values of the varables, is mdependent of the actual level values, regard betng pand to possible multiplicity.

This integer, being the number of arreducible level places of the two functions when regard is paid to possible multiplicity, will, after Wererstrass*, be called the grade of the parr of functions

Algebrac relations betueen functions.

156 Now consider two uniform quadruply pertodic functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$-say f and g-which are independent and free, and let them be of grade n, so that there are n irreducible places giving level valucs a and β to f and g

Let $h\left(z, z^{\prime}\right)$ be another unform function, homoperiodic with f and g. At each of the n irreducible level places of f and g, the uniform function h has a single definte value ; and therefore, at the aggregate of those places, there are n values of h in all. Honce there are n values of h corresponding to assigned values of f and g; and these n values arise solely from the values of f and g, without any intervention of the variables z and z^{\prime} beyond their occurrence in f and g. Consequently, there is a relation between f, g, h,

[^49]which is of degree n in h, the coefficients in this relation are functions of f and g alone.

Next, suppose that f and h, being uniform quadruply pertode functions of z and z^{\prime}, are independent and free, and let them be of grade m. Also suppose that g and h are independent and free; and let them be of grade l Then an argument, simular to the argument just expounded, leads to the conclusion that the ielation between f, g, h, already known to be of degree n in h, is of degrec l in f and of degree m in g it is an algebrace relation.

Of the n values of h. conresponding to assigued values of f and g, it can happen that several may comcide for sone not completcly general assigument of values. But if this comendence occurs for completely general values of f and g, the values of h comerde in groups of equal numbers, and the number of values of h, corresponding to assigned values of f and g. is a factor of n Hence we have the theorem * -
I. Between any three untorm functoons, whach are homoperosinc in the same four perud-paurs and which taken i" paurs are independent and jree, there subsists an ulyebranc equation the degree of this equation '"1 ench of the functoons either is equal to the grade of the other two functuons or as equal to some integral factor of that grade
It is assumed "xplieatly that the functions, in pairs, are independent and trew, and the only level places that have been used for the functions are such as give finte level values to the functions But it may happen that two functrons, indeprident of one another, and frep for all finite values (amcluding zero), ar tied as regards infinite values. Thus the quadruply perrodic functions, which arise as the quotients by θ_{12} of the quadruple theta functions other than θ_{12}, cannot be estumated for grade by their mfinitics. then infintues are given by the zeros of θ_{12}, and (except for the irredueible isolated unessential singularities, limited in number) they are the same for all the quadruply periodic functions so framed. These functions therefore, while they are indeperdent, are tied as regards their infinities

The foregong theorem is still true for these umform functions there 18 nothing to traverse the argument at any of its stages But the cffect of the tic, in connection with the infinties, is to smplify the form of the algebraic equation We can suppose that the latter has been made rational and integral The three functions f, g, h are infinite together and only together ; and therefore the terms of the highest aggregate order in all the functions combincd will, by themselves, give relations among the parts of f, g, h that govern ther infinithes.

[^50]157. Among the functions related to any given uniform quadruply periodic function of two variables are tts two first derivatives, which manifestly are homoperiodic with the function. Moreover, all the infinities of the original function are infinities (as to place, but in increased order) of the derivatives, and they provide all the infinities of these derivatives.

The foregoing theorem, when applied to a single function, leads to the result, practically a corollary -
II. Any umiform quadruply periodic function $f\left(z, z^{\prime}\right)$ and its first derivatves $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial z^{\prime}}$ are connected by an algebrazcal equation When the equation is made rational and integral, the aggregate of the ter'ms of hoghest order gives relutions among the constants of the infinties of f and ats derinatives

Thus a quadruply periodic unform function of two vanables situsfies a par tial differential equation of the first order, just as a doubly periodic uniform function of one variable satisfies an ordinary differential equation of the first order

158 We return to homoperiodic functions. For purposes of reference among them, we select three umform functions f, g, h, of the character prescribed in theorem I

Now let $k\left(z, z^{\prime}\right)$-say k-be another uniform function, homoperiodic with f, g, h; and let it be untied with any of them Then between f, g, k there subsists an algebracal equation, the degree of which in k is either n or is a factor of n taking the degree as n, we can denote the equation by

$$
A(f, g, k)=0 .
$$

Also, between f, h, k there subsists an algebracal equation, the degree of which in k is either m or 18 a factor of $m \cdot$ taking the degree as m, we can denote the equation by

$$
B(f, h, k)=0 .
$$

Similarly, there is an algebraical equation

$$
C(g, h, k)=0,
$$

which is of degree l in k, and there is the orignal algebraical equation

$$
D(f, g, h)=0,
$$

which is of degree l in f, of degree m in g, and of degree n in h. These equations are necessanly consistent with one another, thus the k-elimnants of $A=0$ and $B=0$, of $B=0$ and $C=0$, of $C=0$ and $A=0$, all vanish in virtue of $D=0$.

These k-eliminants can be formed by Sylvester's dalytic process, becanse all the equations are algebraic; and an added use of the process leads to another important result. The equations

$$
\left.\begin{array}{l}
k^{\prime} A(f, g, k)=0, \text { for } r=0,1, \ldots, m-2 \\
k^{m} B(f, h, k)=0 \quad, \quad s=0,1, \ldots, u-2
\end{array}\right\}
$$

are a set of $m+n-2$ equations, linear and not homogeneous in the $m+n-2$ quantities $k, k^{n}, \ldots, h^{m+n-2}$ When these are resolued for the $m+n-2$ quantities, we have expressions for the various powers of k (in particulan, fon k 1tself) rational in the quantities f, g, h and reducible, by means of $D=0$, so as to contain either f to no degree higher than $l-1$, or g to no degree higher than $m-1$, or h to no degree higher than $n-1$. Paying no special regard to these degrees, but noting the assumption made as to the degree of the equation $A=0$, we have the theorem -

III When f and g ane untorm functions, quadruply pervodic in the same perwds, and are of grade n, and when h is another umform function, whoch is homopervodnc with f and g, and which takess " distinct valuen at the reduced penrt-paiss determaned by gwen values of f and g, then any other uniform function which is homoperioduc wnth f ' and g, can be expressed ratuonally in terms of f, g, and h, provided every two of the four functrons are independent and free, and provided also no one of the functions hus an essentul singularity for fiute values of the varubles

And, as before, we have a corollary to the theorem, as follows -
IV When two unifurm quadruply periodic functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$ are independent and free, and when nerther of them has an essentul singularity for finite values of the variables, then $g\left(z, z^{\prime}\right)$ can be expressed ratuonally in terms of $f, \frac{\partial f}{\partial z}, \frac{\partial f}{\partial z^{\prime}}$, and $f\left(z, z^{\prime}\right)$ cun be expressed ratıonally in terms of $g, \frac{\partial g}{\partial z}, \frac{\partial g}{\partial z^{\prime}}$.

Note But just as there was possible degeneation of degree in the equation $D(f, g, h)=0$, so it might conceivably happen that, owing to the equation $D(f, g, h)=0$, the actual expression for k might not be determinate. But this indeterminateness would not occur for every power of k, and so we should then only be able to infer that some power of k is rationally expressible in terms of f, g, h. Such cases occur when the fundamental periods of the functions considered are only commensurable with one another and are not exactly the same for all the functions. The exceptions may be wider than the exceptions of the same kind in the case of doubly periodic functions of one variable, though they will cover the generalisation of such
apparent (but only apparent) exceptions to Liouville's well-known theorem which might imply that en z and $\mathrm{dn} z$ are expressible* in the form

$$
P+Q \frac{d}{d z}(\operatorname{sn} z)
$$

where P and Q are rational functions of $\operatorname{sn} z$.
159. Next, consider two uniform functions $f\left(z, z^{\prime}\right)$ and $g\left(z, z^{\prime}\right)$, homoperiodic in the same four pars of periods, and, as usual, assume that they are independent and free, their grade being n, and that they have no essential singularities for finite values of the variables. Ther Jacobian J, with respect to the independent varubles, is

$$
\begin{aligned}
J & =\frac{\partial f}{\partial z} \partial g-\frac{\partial g}{\partial z^{\prime}}-\frac{\partial f^{\prime}}{\partial z} \partial z^{\prime} \\
& =\frac{\partial(f, g)}{\partial\left(z, z^{\prime}\right)} .
\end{aligned}
$$

It is a uniform function, homoperiodic with f and g. consequently it satisfies an algebraical equation, which has rational functions of f and g for its coefficients, and the degree of which in J is either n or a factor of n Morvover, as f and g are uniform, infimties of J can arnse only through infinitics of f or of g or of both: and no infinity of J can arase from finite values of f or of g, or from any integral rclation between f and g satusfied by finte values of f and g. Hence, when the algebrace relation between J, f, g is completely freed from fractions, the coefficient of the highest power of J is a constant, and the degrees in f and g of the succeeding powers of J are hmited To indicate the limits, take the simplest forms of two extreme cases
(i) when f and g are completely free as to infimties:
(ii) when they are completely tred as to mfinitres-n such a way as are e.g the periodic functions indicated in § 1.52

In the former case, consider the vicinity of a simple sumultaneous pole of f and g, then we can take, in that vicinty,

$$
f=\begin{aligned}
& U \\
& V
\end{aligned}, \quad g=\begin{aligned}
& R \\
& S^{\prime}
\end{aligned}
$$

where V and S have a simple sumultaneous zero at the place Then

$$
J=\frac{1}{\bar{V}^{2} S^{2}} T
$$

where T is a uniform function, regular, and usually not vanishing at the place. The place thus is an infinity of J, as is to be expected: manifestly it is of order 4. Hence in this case, the algebraic equation (taken to be of order n in J) must be such as to provide infinities of order 4 for J; hence the coefficient

[^51]of $J^{n-n^{\prime}}$ is a polynomial in f and g of order not greater than $4 n^{\prime}$, while for some value or values of n^{\prime}, among $1,2, \ldots, n$, it must be of order $4 n^{\prime}$

In the latter case, we can take

$$
f=\frac{U}{\vec{V}}, \quad g=\frac{R}{\hat{V}}
$$

where the infinities of the functions (now tied) are given by $V=0$, then

$$
J=\frac{1}{V}, W
$$

where W is a uniform function, regular, and usually not vamshing with V. The place thus is an infinity of J, as again is to be expected, manifestly it is of thrice the order for f and g As in the preceding case, the coefficient of $J^{n-n^{\prime}}$ is a polynomial in f and g of order not greater than $3 n^{\prime}$, while tor some value or values of n^{\prime}, among $1,2, \ldots n$, it must be of order $3 n^{\prime}$

Other orders of infinities belonging to f and g will lead to other degrees for the polynomial coefticents in the equation In all instances, we have the theorem -
V The Jucobuen I of tu', unifiom quadruply perwoduc functoms f und g. whath are independent and fiee, and which have wo essential singularities for finteve values of the vainables, satisfies an algebraic erquation; when this equatcon is of degree n, the coefficient of J^{n} is unaty and the coeffictent of J^{n-n} an a polynomal in f and g, of degree not greater. than $4 n^{\prime}$, for $n^{\prime}=1,2,, n$ Also, n as enther equal to the grade of fiand g, or is a fuctor of that grade
160 Combinng this result with the earlier theorems I and III, we have the further theorem.-

VI When f and g are umform finctums, quadruply perioduc in the same periods and of grude n, and when the algebruc equatoon satusfied by thew Jucobuth J is of degree n, "ny unform finction, which is homoperiodir with them, can be expessed rationally m terms of f, g, and J, promaded no tuto of the functoons are tied as to level values, and provided. nenther of the functions has an essential sngularity for finite values of the varubbles.
In particular, for such functions f and g, we have the relations

$$
\begin{array}{ll}
\frac{\partial f}{\partial z}=F_{1}(f, g, J), & \frac{\partial g}{\partial z}=G_{1}(f, g, J), \\
\frac{\partial f}{\partial z^{\prime}}=F_{2}^{\prime}(f, g, J), & \frac{\partial g}{\partial z^{\prime}}=G_{2}(f, g, J),
\end{array}
$$

where $F_{1}, F_{2}, G_{1}, G_{2}$ are rational functions of the arguments. The algebranc relation

$$
J=F_{1} G_{2}-F_{2} G_{1}
$$

must be satisfied in virtue of the algebraic equation between f, g, and J.

The quadruply periodic functions which urise out of the double theta-functroms

161. It is desirable to have some special illustrations of the foregong general propositions relatang to periodic functions of two variables.

Accordingly, we assume that the coofficients $\phi\left(m-n, \sigma, \sigma^{\prime}\right)$ of the triple theta-functions are so specialised as to yield the double theta-functions, periodic or pseudo-perionic in four pars of perinds, always limated so as to secure the convergence of the double semes Moreover, we shall assume that our functions have no essential singularity for finite values of the variablesan assumption which requires the theta-functions to be finite (as usual) over the whole field of variation given by these finte values We thua have ten even functions, $\mathrm{viz}, \theta_{0}, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{6}, \theta_{8}, \theta_{9}, \theta_{12}, \theta_{15}$, and six odd functions, $\mathrm{viz}, \theta_{3}, \theta_{7}, \theta_{10}, \theta_{11}, \theta_{14}, \theta_{14}$ all these being functions of z and z^{\prime},

When $z=0$ and $z^{\prime}=0$, the six odd functions vamsh. The ten even functions then acquire finte constant values which are denoted by c_{0}, c_{1}, c_{1}, $c_{3}, c_{4}, c_{A}, c_{\theta}, c_{\theta}, c_{13}, c_{15}$ respectively

The (ffects upon any function $\theta\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}$ of a period-increment in the various cases are given by the relations

$$
\begin{aligned}
& \theta\binom{\rho, \rho^{\prime}, z+1}{\sigma, \sigma^{\prime}, z^{\prime}}=(-1)^{\sigma} \theta\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}} \\
& \theta\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}+1}=(-1)^{\sigma^{\prime}} \theta\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}} \\
& \theta\binom{\rho, \rho^{\prime}, z+a_{11}}{\sigma, \sigma^{\prime}, z^{\prime}+a_{12}}=(-1)^{0} e^{-2 m z-\pi / a_{11} \theta} \theta\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}, \\
& \theta\binom{\rho, \rho^{\prime}, z+a_{32}}{\sigma, \sigma^{\prime}, z^{\prime}+a_{22}}=\left(-1 \rho^{\prime} e^{-2 \pi \pi z-m a a_{22}} \theta\binom{\rho, \rho^{\prime}, z}{\sigma, \sigma^{\prime}, z^{\prime}}\right)
\end{aligned}
$$

and by denvatives from these relations The effects upon the suxteen functions, by way of interchanges consequent upon half-period merements of the arguments, are given in the full table on p. 254.

Among the even theta-functions, the simplest relations* are as follows.

$$
\left.\begin{array}{l}
c_{0}^{2} \theta_{0}^{2}-c_{12}^{2} \theta_{12}^{3}=c_{1}^{2} \theta_{1}^{2}+c_{6}^{2} \theta_{8}^{2}=c_{2}^{2} \theta_{9}^{2}+c_{8}^{9} \theta_{9}^{2} \\
c_{0}^{2} \theta_{0}^{2}-c_{8}^{2} \theta_{3}^{2}=c_{6}^{2} \theta_{6}^{2}+c_{8}^{2} \theta_{8}^{2}=c_{4}^{2} \theta_{4}^{2}+c_{9}^{2} \theta_{0}^{2} \\
c_{4}^{2} \theta_{0}^{2}-c_{15}^{2} \theta_{36}^{2}=c_{2}^{2} \theta_{9}^{9}+c_{8}^{2} \theta_{6}^{2}=c_{2}^{2} \theta_{1}^{2}+c_{4}^{2} \theta_{4}^{2}
\end{array}\right\}
$$

[^52]and others derived frum these by hear combinations. The smplest relation among the constant values of the even functions when the arguments arw made zero are the sets
and others derived from them as well as the seto of smple biquadratic relations,
\[

\left.$$
\begin{array}{l}
c_{0}^{2} c_{13}{ }^{2}=c_{4}^{2} c_{x}^{2}+c_{3}^{2} c_{13}{ }^{2} \\
c_{4}^{2} c_{14}{ }^{2}=c_{4}^{2}{ }^{2} a_{4}{ }^{2}+c_{0}{ }^{2} c_{13}{ }^{2}
\end{array}
$$\right\},
\]

Among the simplest relations, expressing the squares of the odd functions in terms of the even functions, are the set
as well as others derived from the relations, among the even theta-functions above given, by using the table on p. 254 for interchanges among all the functions for half-period increments.

Lastly, for the present purpose, it is sufficient to give the three relations

$$
\left.\begin{array}{l}
c_{0}{ }^{2} \theta_{z}{ }^{2}=c_{2}{ }^{2} \theta_{b}{ }^{3}+c_{13}{ }^{2} \theta_{12}{ }^{2}-c_{8}{ }^{2} \theta_{14}{ }^{2} \\
c_{01}{ }^{2} \theta_{10}{ }^{2}=c_{4}{ }^{2} \theta_{n}{ }^{2}-c_{8}^{2} \theta_{11}{ }^{2}+c_{8}^{2} \theta_{14}{ }^{2}
\end{array}\right\},
$$

connecting the squares of odd functions alone. They can be derived from the relations connecting the squares of the even functions alone, by using the same table of interchanges for half-period increments of the variables.

As regards the odd functions, we write

$$
\theta_{\mu}=k_{\mu} z+k_{\mu}^{\prime} z^{\prime}+\ldots,
$$

where the expressed terms are the tarms of the first order, and μ has the values $5,7,10,11,13,14$. and we have
with exactly the same relations when h^{\prime} is substituted for k
162 All the relations thus far given, connecting the theta-functions, and connecting the quotients of the theta-functions, are quadratic in form In ench relation, there are three such quotients Every function involves two independent variables z and z^{\prime}, and therefone it is to be expectod that each of the functions is expressible algebracally in terms of two new independent variables This expectation is justified by the detaled results and properties of the double theta-functions which give rise to the hyperelliptic functions of order two, beling quadruply periodic functions, and the actual forms can be expressed as follows.

We take five constants $a_{1}, \alpha_{2}, a_{3}, a_{4}, a_{3}$, unequal to one another; and we write

$$
\alpha_{m}-a_{n}=m n,
$$

for all the five values of $n t$ and of n, avoiding equal values, avoiding also some other similar limitations that obviously are to be avoided. Two variables ζ and ζ^{\prime} are introduced, and we write

$$
\begin{aligned}
& \tau=\left\{\left(\zeta-a_{1}\right)\left(\zeta-a_{2}\right)\left(\zeta-a_{3}\right)\left(\zeta-a_{4}\right)\left(\zeta-a_{5}\right)\right)^{\frac{1}{2}} \\
& \tau^{\prime}=\left\{\left(\zeta^{\prime}-a_{1}\right)\left(\zeta^{\prime}-a_{2}\right)\left(\zeta^{\prime}-a_{3}\right)\left(\zeta^{\prime}-a_{4}\right)\left(\zeta^{\prime}-a_{5}\right)\right)^{\frac{1}{4}} \\
& P=\left\{\left(p-a_{1}\right)\left(p-a_{8}\right)\left(p-a_{3}\right)\left(p-a_{4}\right)\left(p-a_{6}\right)\right\}^{\frac{1}{2}}
\end{aligned}
$$

Two other variables u and u^{\prime} are introduced, being defined by the equations

$$
\left.\begin{array}{l}
u=\frac{1}{2} \int_{a_{1}}^{\zeta} p-a_{2} P^{-} d p+\frac{1}{2} \int_{a_{2}}^{\zeta^{\prime} p-a_{2}} P^{a^{-}} d p \\
u^{\prime}=\frac{1}{2} \int_{a_{1}}^{5} p-a_{1} d p+\frac{1}{2} \int_{a}^{5^{\prime} p-a_{1}} P^{-\frac{1}{2}} d p
\end{array}\right\} .
$$

The variables ζ and ζ^{\prime} are, in general, uniform quadruply periodic functions of u and u^{\prime}; for sufficiently small values of u and u^{\prime}, we have

$$
\begin{gathered}
\zeta-u_{1}=\begin{array}{l}
13.14 .15 \\
12
\end{array} u^{2}+. \\
\zeta^{\prime}-u_{2}=\begin{array}{c}
23 \\
24.25 \\
21
\end{array} u^{\prime 2}+.
\end{gathered}
$$

where the unexpressed terms are of even onders (beginning with the order 4) in u and u^{\prime} combined

The fifteen quadroply periodic functions of z and z^{\prime}, arising from the quotients of the double theta-functions, are algebaacally expressible as follows -

$$
\begin{aligned}
& \theta_{11}-\theta_{12}=(1213.14 .15)^{\dagger} p_{1} \\
& \theta_{10}-\theta_{12}=(21.2324 .25)^{-t} p_{2} \\
& \theta_{11}-\theta_{12}=\left(\begin{array}{lll}
-31 & 32 & 34.35
\end{array}\right)^{\dagger} \mu_{1} \\
& \theta_{2}-\theta_{12}=(-41.424 .3 .45){ }^{4} p_{i} \\
& \theta_{0}-\theta_{12}=\left(\begin{array}{lllll}
51 & 52 & 53 & 54
\end{array}\right)^{\dagger} p_{0} \\
& \theta_{11}-\theta_{12}=\left(\begin{array}{llll}
13 & 14.15 & 23 & 24.25
\end{array}\right){ }_{p_{12}} \\
& \left.\theta_{8}-\theta_{12}=\left(\begin{array}{ll}
12 & 14.15
\end{array}\right) 32.3435\right)^{-1} p_{11} \\
& \theta_{9}-\theta_{12}=\left(\begin{array}{llll}
12 & 13.15 & 42 & 43.45
\end{array}\right)^{-1} p_{14} \\
& \theta_{1}-\theta_{32}=(-12.143 .1452 .5354)^{-1} p_{15} \\
& \theta_{15}-\theta_{12}=\left(\begin{array}{llll}
21.24 & 25.31 & 34 & 35
\end{array}\right)^{-1} \mu_{28}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{6}-\theta_{12}=\left(\begin{array}{lllll}
-21 & 23 & 24 & 51 & 53 \\
\hline
\end{array}\right)^{-\frac{1}{2}} \mu_{55} \\
& \theta_{7}-\theta_{12}=\left(\begin{array}{lllll}
31 & 32.35 & 41 & 42 & 4.5
\end{array}\right)^{-\frac{1}{7}} p_{4} \\
& \theta_{\mathrm{b}}-\theta_{32}=\left(\begin{array}{lll}
31 & 32.34 & 51.52 .54
\end{array}\right)^{1} \mathrm{p}_{\mathrm{a}} \\
& \theta_{14}-\theta_{12}=(41.42 .43 .51 .52 .53)^{-\frac{1}{2}} p_{4}
\end{aligned}
$$

where

$$
p_{1}^{2}=\left(a_{1}-\zeta\right)\left(a_{i}-\zeta^{\prime}\right)
$$

for $r=1,2,3,4,5$, and

$$
\frac{p_{r g}}{p_{r} p_{s}}=\left\{\begin{array}{c}
\tau \\
\left(\zeta-a_{r}\right)\left(\zeta-\overline{a_{s}}\right)
\end{array}\right)\left(\zeta^{\prime}-\overline{a_{r}}\right)\left(\zeta^{\prime}-\overline{u_{s}}\right) ; \bar{\zeta}^{\prime}-\bar{\zeta},
$$

for all the ten combinations of r and s from the set $1,2,3,4,5$.

The constant values of the even theta-functions for zero values of the variables are related as follows

$$
\begin{aligned}
& c_{0}-c_{12}=\left(\begin{array}{ll}
51 & 52 \\
5.3 & 54
\end{array}\right)^{\ddagger} \\
& c_{3}-c_{21}=\left(\begin{array}{cc}
-41 & 42 \\
-43 & 45
\end{array}\right)^{\frac{1}{2}} \\
& c_{4}-c_{12}=\left(\begin{array}{cc}
31 & 32 \\
-34 & 35
\end{array}\right)^{1} \\
& c_{1}-c_{32}=\left(\begin{array}{ccc}
-52 & 13 & 14 \\
\hline 12 & 53 & 54
\end{array}\right)^{\frac{1}{2}} \\
& c_{3}-c_{12}=\left(\begin{array}{ccc}
42 & 13 & 15 \\
12 & 4: 3 & 45
\end{array}\right)^{4} \\
& c_{4}-c_{12}=\left(\begin{array}{lll}
41 & 2: 3 & 25 \\
21 & 4: 3 & 4 \overline{5}
\end{array}\right)^{\frac{1}{2}} \\
& c_{1}-c_{12}=\left(\begin{array}{cc}
-51 & 93 . \\
-21 & .54 \\
21 & 54
\end{array}\right)^{\frac{1}{2}} \\
& c_{x}-r_{12}=\left(\begin{array}{lll}
32 & 14 & 15 \\
12 & 34 & 35
\end{array}\right)^{\frac{1}{4}} \\
& c_{13}-c_{12}=\left(\begin{array}{lll}
31 & 24 & 25 \\
21 & 34 & 35
\end{array}\right)^{t}
\end{aligned}
$$

The lowest terms in the odd the ta-functions are as follows -

The relations between the two variables u and u^{\prime}, and the two variables z and z^{\prime}, are

$$
\left.\begin{array}{l}
\frac{k_{10}}{c_{12}} z+\frac{k_{10}{ }^{\prime}}{c_{22}} z^{\prime}=\left(\frac{32 \cdot 42 \cdot 52}{12} \cdot\right)^{\ddagger} u^{\prime} \\
\frac{k_{13}}{c_{12}} z+\frac{k_{13}{ }^{\prime}}{c_{12}} z^{\prime}=\left(\frac{31 \cdot 41 \cdot 51}{21}\right)^{\ddagger} u
\end{array}\right\}
$$

The quadruply periodic functions of z and z^{\prime} are quadruply periodic functions of u and u^{\prime} and conversely.

Finally, derivatives of any function, of the first order with regard to u and u^{\prime}, are linear combinations (with constant coefficients) of its derivatives of the first order with regard to z and z^{\prime}

Examples of the theorems in $\$ 156-160$

163 Adequate illustrations of the first theorem, in $\S 156$, are provided through the homogencons relations among the theta-functions which have just been stated Each of them, when divided throughout by the appropriate power of θ_{12}, gives a relation among strictly periodic functions Many other such relations are given in the memonr by Broschi already quoted (p 266, note), and many can be deduced from the algebracal expicssions for the functions p in terms of the variables ζ and ζ^{\prime} Among them, we select the following, as being of particular use in the succeeding investigation -

$$
\frac{p_{r}^{2}}{r s r t}+\frac{p_{t}^{2}}{s r \cdot s t}+\frac{p_{t}^{2}}{t r \cdot t s}=1
$$

where $s=a_{r}-u_{s}$, and so on, and r, s, t ane any three of the mtegers $1,2,3,4,5$, alsu

$$
\begin{gathered}
p_{r}^{2}+\frac{1}{s t}\left(p_{1,}^{2}-p_{r t}^{2}\right)=r l r m \\
(s t) p_{r} p_{r l}+(t r) p_{r} p_{s l}+(r s) p_{t} p_{l l}=0,
\end{gathered}
$$

where , s, t, l, m are the integers $1,2,3,4,5$, m any order These examples will suffice for the present requrement.

164 We now proceed to give an example of theorem II, in § 157 , by formung the partial differential equation of the first order which is satisfied by the uniform quadruply periodic function p_{1}

From the values of u and u^{\prime}, expressed in terms of ζ and ζ^{\prime} by means of definite integrals, we have the values of $\frac{\partial \zeta}{\partial u}, \frac{\partial \zeta^{\prime}}{\partial u}, \frac{\partial \zeta}{\partial u^{\prime}}, \frac{\partial \zeta^{\prime}}{\tilde{\partial} u^{\prime}}$. Using the expression for $p_{1}{ }^{2}$ in terms of ζ and ζ^{\prime}, we find

$$
\begin{aligned}
\frac{2}{p_{1}} \frac{\partial p_{1}}{\partial u} & =\frac{1}{\zeta^{-}-a_{1}} \frac{\partial \zeta}{\partial u}+\frac{1}{\zeta^{\prime}-a_{1}} \frac{\partial \zeta^{\prime}}{\partial u} \\
& =\frac{1}{21 . \zeta-\zeta^{\prime}}\left\{\frac{2 \tau}{\zeta-a_{1}}\left(\zeta^{\prime}-a_{1}\right)-\frac{2 \tau^{\prime}}{\zeta^{\prime}-a_{1}}\left(\zeta-a_{2}\right)\right\} \\
\bar{p}_{1} \frac{\partial p_{3}}{\partial u^{\prime}} & =\frac{1}{21 . \zeta-\zeta^{\prime}}\left\{\frac{2 \tau}{\zeta-a_{1}}\left(\zeta^{\prime}-a_{2}\right)-\frac{2 \tau^{\prime}}{\zeta^{\prime}-a_{2}}\left(\zeta-a_{2}\right)\right\}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \underset{\zeta-a_{1}}{\tau}=\left(\zeta-a_{2}\right) \frac{1}{p_{1}} \frac{\partial p_{1}}{\partial u}+\left(\zeta-a_{1}\right) \frac{1}{p_{1}} \frac{\partial p_{1}}{\partial u^{\prime}}, \\
& \zeta^{\prime}-\bar{\tau}_{1}^{\prime}{ }^{\prime}=\left(\zeta^{\prime}-a_{2}\right) \frac{1}{p_{1}} \frac{\partial p_{1}}{\partial u}+\left(\zeta^{\prime}-a_{1}\right) \frac{1}{p_{1}} \frac{\partial p_{1}}{\partial u^{\prime}} .
\end{aligned}
$$

Now, for the values $r=3,4,5$ in particular, we have

$$
\left.\underset{p_{1} p_{r}}{p_{1}}=\stackrel{1}{\zeta^{\prime}-\zeta\left(\left(\zeta-a_{1}\right)\left(\bar{\zeta}-a_{r}\right)\right.}-\frac{\tau}{\left(\overline{\zeta^{\prime}}-\bar{a}_{1}\right)\left(\bar{\zeta}^{\prime}-\cdots, a_{r}\right)}\right\}
$$

so that

$$
{ }_{p_{1}}^{p_{1}} p_{1 r}=-(2 r) \frac{1}{p_{1}} \frac{\partial p_{1}}{\partial u}-(\mathrm{l} r) \frac{1}{p_{1}} \frac{\partial p_{1}}{\partial u^{\prime}}
$$

on substituting the foregoing values of τ and τ '. 'Thus, if we write

$$
\frac{\partial p_{1}}{\partial u}=q_{1}, \quad \frac{\partial p_{1}}{\partial u^{\prime}}=q_{1}^{\prime}
$$

we have

$$
\left.\begin{array}{rl}
a & =-p_{3} p_{13} \\
=(23) q_{1}+(13) q_{1}^{\prime} \\
\beta & =-p_{4} p_{14}=(24) q_{1}+(14) q_{1}^{\prime} \\
\gamma & =-p_{5} p_{15}=(25) q_{1}+(15) q_{1}^{\prime}
\end{array}\right\}
$$

where $\alpha_{1} \beta, \gamma$ are temporarily used to denote the combinations of q_{1} and $q_{1}{ }^{\prime}$
Again, from the values of the functions in terms of ζ and ξ^{\prime}, we have

$$
\begin{aligned}
& p_{1}^{2}+\frac{1}{34}\left(p_{13}^{2}-p_{14}{ }^{2}\right)=12 \quad 15, \\
& p_{1}^{2}+\frac{1}{54}\left(p_{18}^{2}-p_{14}{ }^{2}\right)=12 \quad 13,
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \frac{\alpha^{2}}{p_{3}^{2}}-\frac{\beta^{2}}{p_{s}^{8}}=34\left(1215-p_{1}^{2}\right)=C, \text { say }, \\
& \frac{\gamma^{2}}{p_{3}^{2}}-\frac{\beta^{3}}{p_{4}^{2}}=54\left(12.13-p_{1}^{v}\right)=A, \text { say }
\end{aligned}
$$

Also

$$
\underset{13.14}{p_{1}^{2}}+\frac{p_{3}^{2}}{31.34}+\underset{41.43}{p_{9}^{2}}=1,
$$

so that

$$
\begin{aligned}
p_{\mathrm{a}}^{2} & =31.34+\frac{34}{14} p_{1}{ }^{2}+\frac{31}{41} p_{4}^{2} \\
& =c+\frac{31}{41} p_{4}^{2}
\end{aligned}
$$

say; and similarly

$$
\begin{aligned}
p_{6}^{2} & =51 \cdot 54+\frac{54}{14} p_{1}^{2}+\frac{51}{41} p_{4}^{2} \\
& =a+\frac{51}{41} p_{4}^{2}
\end{aligned}
$$

say Thus

$$
\begin{aligned}
& \frac{a^{2}}{1+\frac{31}{41} p_{4}^{2}}-\frac{\beta^{2}}{p_{i}^{2}}=r! \\
& \frac{\gamma^{3}}{a+\frac{51}{41} p_{4}^{2}}-\frac{\beta^{2}}{p_{i}^{2}}=A .
\end{aligned}
$$

These two quadratice equations satisfied by p_{4} can be writhen

$$
\begin{aligned}
& \left(p_{4}^{4}-\left(L-\beta^{2}-C^{\prime}\right) p_{4}^{2}+\beta^{2} c^{\prime}=0,\right. \\
& A p_{4}^{4}-\left(N-\beta^{2}-A n^{\prime}\right) p_{1}^{2}+\beta^{2} \|^{\prime}=0 .
\end{aligned}
$$

whew

$$
a^{\prime}=a_{51}^{41}, \quad r^{\prime}=c_{31}^{41}, \quad L=a_{3}^{2}, 31, \quad N=\gamma^{41} \begin{aligned}
& 41 \\
& 31
\end{aligned}
$$

Ehmmatmg p :" between the two "quatoms, we find

$$
\begin{gathered}
\left\{\left(I-\beta^{2}-C c^{\prime}\right) \prime^{\prime}-\left(N-\beta^{\prime}-A a^{\prime}\right) c^{\prime}\right\}\left\{\left(N-\beta^{2}-A r^{\prime}\right) C-\left(L-\beta^{3}-\left(c^{\prime}\right) A\right\}\right. \\
=\beta^{2}\left(A c^{\prime}-C a^{\prime}\right)^{\prime \prime} .
\end{gathered}
$$

 br p_{1}.
 duetoons we merre acorise it dgehat We find

$$
A-O=\pi\left(1014-p,{ }^{2}\right)
$$

4) that

$$
\left(A-(1) a^{\prime} c^{\prime}=-\begin{array}{c}
34+5 \\
1: 33 \\
15
\end{array}\left(1214-p_{1}^{\prime 2}\right)\left(13.14-p_{1}^{*}\right)\left(14.1: 3-p_{1}^{2}\right) .\right.
$$

alw,

$$
\prime^{\prime}-c^{\prime}=\frac{14.35}{13.15}\left(131.5-p_{1}^{\prime}\right) .
$$

no that,

$$
\left(a^{\prime}-c^{\prime}\right) A C^{\prime}=\begin{aligned}
& 1+34.45 .53 \\
& 13.15
\end{aligned}\left(1218-p_{1}^{2}\right)\left(12.15-p_{1}^{2}\right)\left(1: 315-p_{1}^{2}\right) .
$$

And

$$
\left(a^{\prime}-A c^{\prime}=\frac{34.45 .53}{13.15}\left(12131+.1 .3-m^{\prime}\right)\right.
$$

As regards the parts meolving derivatives, we hawe

$$
\begin{aligned}
& \left(L-\beta^{2}\right) a^{\prime}-\left(N-\beta^{2}\right) c^{\prime} \\
& =-\frac{14}{13.15}\left\{54\left(14.15-p_{1}^{2}\right) \alpha^{2}+35\left(1315-p_{1}^{2}\right) \beta^{2}+43\left(13.14-p_{1}^{2}\right) \gamma^{3},\right.
\end{aligned}
$$

F.
in substatution to α, β, γ, and, simularly,

$$
\begin{aligned}
& \left(N-\beta^{2}\right) C-\left(L-\beta^{2}\right) A \\
& ={ }_{31}^{41} 45\left(1213-p_{1}^{2}\right) \alpha^{2}+\frac{41}{41} 53\left(12.14-p_{1}^{2}\right) \beta^{2}+\begin{array}{c}
41.34 \\
=-12 \\
=-14.34 \\
4.5 .53
\end{array}\left(12.15-p_{1}^{5}\right) \gamma^{2} \\
& \left(q_{1}+q_{1}^{\prime}\right)^{2}-13 \\
& \left.14.15 p_{1}^{2} q_{1}^{3}\right\}
\end{aligned}
$$

Hence the differential equation for p_{1} take the form

$$
\begin{gathered}
101131415\left(Q_{1}+\frac{X_{1}}{12} 14^{2}\right)\left(Q_{2}+\begin{array}{c}
X_{2} \\
12 \\
13 \\
15
\end{array}\right) \\
=\left(\begin{array}{ll}
24 & \left.q_{1}+14 . q_{1}^{\prime}\right)
\end{array}\right) X_{2}^{2}
\end{gathered}
$$

wher the varmols sumbols in the equatron (wheh manifestly is of the firt order, and of the fourth degree, in the derivativas of p_{1}) have the valuen

$$
\left.\begin{array}{c}
Q_{1}=q_{1}{ }^{2}-\frac{1}{12^{2}} p_{1}^{2}\left(q_{1}+q_{1}^{\prime}\right)^{\prime} \\
Q_{2}=\left(q_{1}+q_{1}^{\prime}\right)^{4}-\frac{12}{13} 1415 p_{1}^{2} \varphi_{1}^{2}
\end{array}\right) .
$$

The infinty of p_{1} at any place beng of order κ, that of q_{1} at the place and that of g_{1}^{\prime} at the place are $\kappa+1$. from the terms of highest orfler in the infinities, as they ocem in the differential mation, we have (as these orvern)

$$
8 \kappa+4 . \quad 10 \kappa+2 . \quad 12 \kappa, \quad 10 \kappa+2
$$

which are the same when $\kappa=1$ - that k amy infimity of p_{1} w simple The result is to be expected because p_{1} is a constant multiple of $\theta_{1}, \theta_{10}{ }^{-1}$ so that an mfinty of p_{1} is a zero of θ_{12}, that 14,14 s amplr. The terme of highest, ordes also provide redations among the constants comerted with ant such mfinity but these are not une present concern

165 The partal differential rquation of the fiss order tor any other of the functions p can be constucted in the same manner, in particular, the rquation satisfied by p_{i} can be derived from the cquation satisfied by p_{1}, through mturchangmg p_{1} and p_{2}, q_{1} and $q_{2}^{\prime}, q_{1}^{\prime}$ and q_{5}, a_{1} and μ_{2}, wherr-

$$
q_{2}=\frac{\partial p_{2}}{\partial u}, \quad q_{2}^{\prime}=\frac{\partial p_{2}}{\partial u^{\prime}}
$$

Note Another proof can be framed, by noting the relations

$$
\begin{aligned}
& c_{12} c_{1} \theta_{1} \theta_{11}+c_{n} c_{11} \theta_{12} \theta_{11}=c_{n} c_{3} \theta_{2} \theta_{3} \\
& c_{n}{ }^{2} \theta_{10^{9}}=c_{12}{ }^{2} \theta_{0}{ }^{3}-c_{1}{ }^{2} \theta_{13} 3^{3}-c_{0}{ }^{5} \theta_{13^{3}}{ }^{3} \\
& \left.c_{5}{ }^{2} \theta_{11}{ }^{3}=c_{12}{ }^{2} \theta_{1}{ }^{2}-c_{0}{ }^{3} \theta_{18}{ }^{2}-c_{1}{ }^{2} \theta_{13}{ }^{4}\right\} \\
& c_{4}{ }^{3} \theta_{2}{ }^{3}=c_{4}{ }^{4} \theta_{0}{ }^{2}-c_{9}{ }^{2} \theta_{13}{ }^{3}-c_{4}{ }^{2} \theta_{12}{ }^{2} \\
& \left.c_{13}^{2} \theta_{3}^{2}=c_{4}^{2} \theta_{1}^{2}-c_{8}^{2} \theta_{1, ~}{ }^{2}-c_{b}^{2} \theta_{18}{ }^{2}\right)
\end{aligned}
$$

rmong the theta-functrom, by using the experssons fon the constants c and the quothenth of the the ta-funchons, and by ohsirving that $\theta_{1} \theta_{y} \theta_{12}^{--} 15$ a conwhat multiple of the quantaty denoted by γ and that $\theta_{2} \theta_{d} \theta_{1-2}=\frac{19}{}$ a constant multaple of the goantity denoted by β.

A thad prot can be fiamed hy notmg the tari, that

$$
\frac{P}{p-a_{1}}=\left(p-u_{2}\right) \frac{1}{p_{1}} \partial p_{1}+\left(p-a_{1}\right) \frac{1}{p_{1}} \partial u_{1}
$$

$$
\left(z-u_{1}\right)\left(j-u_{3}\right)\left(z-u_{1}\right)\left(i-u_{1}\right)-\left(j-a_{1}\right)\left\{\left(w-u_{2}\right) \frac{1}{p_{1} \partial p_{1}}+\left(i-a_{1}\right) \frac{1}{p_{1}} \partial p_{1} u^{\prime}\right\}^{\prime}=0
$$

has ζ ancl ζ^{\prime} fer' its sooth 'Ihe andytucal conditions for then property of the quartis equalum momately lead to the jandal differental equatson of the first wreder satisficed by p_{1}.
 Whatatem of theorems 111 and IV, in $\$ 158$ It mast, however, be borme in mond that these theoremu reter to functons that ae homopenodic

 fone by the theorem $I N$, we unst have p_{4}^{2} experssble aitionally in terms of p_{1}^{2} and its first denaturen, that is, expressible matomally in tome of $p_{1}, q_{1}, q_{1}^{\prime}$

The two quadraties that exerm in the mvestegration give

$$
-\frac{p^{2}}{\beta^{2}}=\left(N-\beta^{2}-\overline{A u^{\prime}}\right) \bar{C}-\left(\overline{L^{\prime}}-\beta^{\prime}-\overline{C_{c}^{\prime}}\right) A,
$$

(1), with the procedng notatom,

$$
\left.\mu_{4}=\frac{\left(2+y_{1}+14 y_{1}^{\prime}\right) X_{1}}{1213.14^{2}\left(Q_{2}+\frac{X_{2}}{12.13} 15\right.}\right),
$$

Whe requred aynesmom
Also

$$
-n_{1} p_{14}=24 q_{1}+14 q_{1}^{\prime}
$$

 $p_{1}, q_{1}, q_{1}^{\prime}$ Expresisions for $p_{2}, p_{5}, p_{1,}, p_{13}$ can be denved by interehange of the constants a_{b}, a_{4}, a_{5}, aud 'apressions for the remameng functions can be
 constants π_{1} and π_{2}.

As an illustraturn of theorem V m $\$ 159$, consider the Jaceben of iny two functionn p_{i}, p_{s} and let

$$
r, s, l, m, n=1,2,3,4,5,
$$

in any order We have
and therelons.

$$
\begin{aligned}
& \begin{array}{l}
\partial\left(u, u^{\prime}\right)=\stackrel{1}{\partial\left(\zeta, \zeta^{\prime}\right)}=4 \tau \tau^{\prime} \\
\partial\left(\zeta-\zeta^{\prime}\right)\left(u_{2}-u_{1}\right) .
\end{array} \\
& \frac{\partial\left(p_{1}, p_{k}\right)}{\partial\left(\zeta, \zeta^{\prime}\right)}=\frac{1}{4 p_{1}^{\prime} j_{s}}\left(\zeta-\zeta^{\prime}\right)\left(u_{s}-u_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
J\left(p_{1}, p_{k}\right) & =\frac{\partial\left(p_{1}, l_{n}\right)}{\partial\left(11, u^{\prime}\right)} \\
& ={ }_{21}^{s \prime} p_{l} p_{m_{1}} p_{n \prime}
\end{aligned}
$$

Comequently

$$
\begin{aligned}
\left\{\left(\rho, p_{s}\right)^{\prime \prime}\right. & =\binom{s 1}{21}^{2} m_{i}^{2} \mu_{n i}^{2} p_{n}{ }^{2} \\
& =\binom{21}{21}^{2} \text { Ir.ls mi wes nt ns } l^{\prime}, n
\end{aligned}
$$

"her"
 s ot jomit degiee sid.

Sumlarly, we find

$$
\begin{aligned}
& \left\{J\left(p_{1}, p_{m}\right)\right\}^{\prime}=\frac{1}{12^{2}} p_{1+} p_{1, m^{\prime}} p_{m_{n}}=
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{p_{r}{ }^{2}+p_{r}^{2} \cdot s n-r t . m, s m\right\},
\end{aligned}
$$

and w for other mstances of dacobans. So long an the Jacobans are formed from any lwo of the fifteen finctions, the algebrancal equation between two mactions and then Jacobian in of even degiee in the Jacobian Tt is casy to verify that

$$
\left\{J\left(p_{r m}, p_{r n}\right)\right\}^{2}
$$

is an even polynomal in $\mu_{r m}$ and p_{1} of degiee six, and trom general considerations (but without having constructed the iespective equations) I meter that

$$
J\left(p,, p_{s t}\right), \quad J\left(p_{r m}, p_{a t}\right)
$$

each of them satisfy an equation, quartic in its own Jacobsan and of the degree twelve in the term free from the Jacobian.

As a lust illustration, consider a special case of theorem VI m $\$ 160$ The dernvative of p_{1} with respect to u, abready denuted (\$164) by q_{1}, is quadruply ${ }^{\circ}$ periodic. It is homoperrodic with p_{4}, but it is not homoperiodec with p_{2},
ther periods bergy only cemmensinable. But $q_{1}^{2}, p_{1}^{2}, p_{2}^{2}$ are homoperode and theretore, by the theormm, $q_{1}{ }^{2}$ is ratmally experssible m 4 rmm of $p_{1}{ }^{4}, p_{2}{ }^{5}$, and the Jucobme of $p_{1}{ }^{2}$ and p_{2}^{2}. that is, $q_{1}{ }^{3}$ is ationally expersible murms of p_{1}, p_{2}, and $J\left(p_{1}, p_{2}\right)$. The actual expessmen can be obtamed in a vancty of ways, requrmg mere algebra for the purpose Plocerding fiom the relation

$$
{ }_{p_{1}} q_{1}=\frac{1}{21\left(\zeta-\zeta^{\prime}\right)}\left\{\begin{array}{c}
\tau \\
\zeta^{\top}-u_{1} \\
\left.\left(\zeta^{\prime}-a_{1}\right)-\stackrel{\tau^{\prime}}{\zeta^{\prime}-a_{1}}\left(\zeta-a_{1}\right)\right\}, ~
\end{array}\right.
$$

alrealy ohtamed tor q_{1}, we find ditmately the followng result. Jet 12,1 , . . demote $\left\|_{1}-\right\|_{2}, \mu_{1}-a_{2}, \ldots$ as unial, wite

$$
\begin{aligned}
& \Delta=\left(p_{1}^{4}-\mu_{2}^{2}\right)^{2}-2.122^{2}\left(p_{1}^{2}+p_{2}^{2}\right)+12^{4}, \\
& \kappa_{1}=p_{2}^{2}-p_{1}^{2}+12(1 r+2)_{1}, \text { for } r=1,2,3,+5 .
\end{aligned}
$$

.und, for ans quantaty ξ, let.

$$
\begin{aligned}
& \left(\xi+\kappa_{2}\right)\left(\xi+\kappa_{s}\right)\left(\xi+\kappa_{4}\right)\left(\xi+\kappa_{\mathrm{i}}\right) \\
& =\xi^{4}+S_{1} \xi^{\prime}+N_{2} \xi \cdot S_{4} \xi+S_{4} .
\end{aligned}
$$

Then a antional expressom for $g_{1}{ }^{2}$ is

$$
\begin{aligned}
\left(04 \cdot q_{1}^{2} 12^{7} \cdot \Delta\right. & +128 \cdot 12^{7} p_{1}^{3} p_{3} J\left(p_{1}, p_{2}\right) \\
& =\left(S_{4}+S_{2} \Delta+\Delta^{2}\right)\left(3 \kappa_{1} \Delta+\kappa_{1}\right)-\left(S_{3}+S_{1} \Delta\right)\left(3 \kappa_{1}^{2} \Delta+\Delta^{2}\right)
\end{aligned}
$$

Other examples can asoly he moticated these will suffice fin the promen purpose.

INDEX

(The numbers lefer to the praten)

Abel's theorem partually extended to double integrals involving a couple of algobrate funotions of two independent variables. 193-197
Accidental singularity, 61, (sce unessential singulaity)
Algebras functions in general, 61, 170 et seq , rational fuuctions, anvolviug one algebraic variable, 171, and two algebrak vaiables. 173 , integrals of, 178 et saq.
Algebraic relations between homoperiodic functions, 261 et seq ; llustrations of, from byperelhptio functions, 265 et seq
Analytic fuuction, 59
Analytical continuation, (6), 50
Appell, 147, 235, 239.
Baker, H F , 110, 131, 261, 266.
Berry, 170
Borel, 77, 78, 126
Boundaises of a region for oettan tields of variation, and then frontier, 20, 24
Briosch, 260.
Bromwich, 72
Burnide, W, 26, 58, 297.
Camphell, 42.
Canonioal form of linoo-linear transformations, 26 ; leads to powers of the transformation, 28 ,
of equations for quadratio frontier, 51 ,
of rational functions which involve
algebraio variables, $171,173$.
Castelnuovo, 170.
Cauohy, 4.
Cauchy's theorem as to the integral of a function of a single complex variable ex. tended by Poinoaré to finnotions of two complex vanables, $13,169$.
Conformal representation whth one varisble extended to two variables, 18.

Contmuation of regular functions, aualytiona, No.
Continuty of a fuaction, region ot, $81, \mathrm{~N}, ~ 86$
Contumous function, 59.
Continuona groups, Lie's theory of, applied to determme invariants and covariauts of quadiatic frontiers, 40, 42.
Contour integals, as used by Cousin, 131 ot sey
Cousm, 130, 147
Dautheville, 80, 126
Dependent varables, number of, 2 ; used for a kind of inversion, 4
Divisibility (zelative) of two segular functions, 112.

Domann, 57
Duminant function, 71.
Double-integral expressions connected with coefficients in the expanazon of regular functions. 64
Double integral for real variables, application of theorem by Stokes on, 157.
Double integrals, defined for two complex variables, 154; Poincars's extension ot Cauchy's theorem for functions of a single variable, 159 ; ressdues of, with examples, 160 et seq
Double integrals of rational functions involving two algebraio variables, 187, eqnivalent forms of, 189; oonditions that they should be of the first kivd, 190 , Abel's theorem partially extended to, 198.

Donble theta-fnnctions, 249,253 et seq.
Enriques, 170.
Eqnivalent functiong, 134, 141.
Eseentiml singularity, 61, 83, 119, 123; behaviour of a function at and near an, 77 , 83 ; functions devoid of, 125.

Field of variation, in general, 57 ; for periodie functions, with one pair of perinds, 224 ; with two pairn of pcriods, 225 ; with three pars of periods, 231, with four pars of periods, 236, togethes with a modified two. plane representation of the variables, 237.
First kind of double integrals, conditions for. 190, extension of Abel's theorem to, 198
First kind of single integials of algebrasc tuno tions of tuo variables, 178 , mitial oondition as to form of subjeot of integration, 180 , cquivalent forms of, 180, with the necessaly relations, 185, do not exist for geneial equations, 1×7
Four dmensional space, used to represent two variables, 5; used by Pomearé in connection with donble integrals, 153
Free functions, 20x, properties of two, 209 212
Frontiel of a region in celtain helds of varation, 20, 24, itw analytical exprension, 21, invarinutive, for linco-linear transformathons, 32, quadeatic, 34.
Functions devoid of eseential singularitics, averywhere, 12\%, in the finte part of the held. 130 et sely

Geumetrical repiesentation of two variables, Ohapter I, in folli-dimensional space, 5 , by means of a line in ordinary space, 7 , by mesns of two pluner, one for each of the valublen, 13
Gordan, 25
Grade of two monfons quadiuply periodic functions, 260

Hadamard, 126
Hartogs, 62, 124, 131
Hermite, 4, 131
Hobson, 1
Homoperiodio functions, algebraic relations between, 261 et Bey
Humbert, 170.
Hurwit:, 126.
Hyperelhiptic functions of order two used to illustrate algebracic relations between homoperiodio functions, 265 et seq.

Independent functions, 208.
Intinitesimal periods exoluded, 213-216.
Integral function, 60.
Integrals, of funations of two variables (Chapter VI), of aigebraic functions, 178 et seq

Invariant centres of haeo-hneal transforms. tions, 29
Invanantive frontiers for lineo-linear thansformations, 32 ; simplest forins of, 34,37
Invariants aud covariants of quadratic frontier , 39 , invariants alone, 48
Inversion, a kind of, 4
Irrcducible places of quadraply periodic functions, 257: any set expressible by a single place in an associated two-plane represcnta tion, 257 , their number for level values of two functions 18 finite, 258 , and is independent of those level values, 259.

Jrcoli, 14, 26.
Jacobian of two homoperiodic functions, 264. used, in connection with the two functions, for the ational expression of other homoperiodic functions, 265 , equation satistied by when they are hyperelliptic. 275
Jordan, 26
Komigulocigel, 255
Kranse, e66
Kronecker, 4
Laguerie, 126
Larmor, 157
Laurent's theorem extended to function of two vanablen, 87-91.
Level places of two unifolm functions (Chapter V11), must exist for assigned values of the functions, 203.
Level values of a regular function, 108 , order of, 111
Levi, E E, 123
Lue, 25, 40, 42
Lume in space ased to represent two oomplex variables simultaneously, 7 ; hmitations upon use of whole line, 11 , by means of the points where at cuts two parallel planea, 12
Lineo-linear tranaformations, Chapter II; canonical form of, 26 , powers of, $28,1 n-$ variant centres for, 29 ; invariantive frontiers for, 32 , property of, when coeflicients are real, 35 ; periodic, 52.
Limes, Volterra's functions of, 13.
Meromorphic function, 61
Multiform function, 58.
Multiphaty, of a simultaneous zeio of two uniform functions, 168 , expressed as a double integral, 169, of a leval value of two functions, as a double integral, 169

Nuther, 170
Non-essential singularity, 61, (see unessential singularity).

Order of multiplicity, of a common zero of two uniform analytic functions, 205, 209, of level valuen of two uniform antlytic functions, 212
Order, of zero of a regniar function, 111, of pole of nniform innction, 11)
Ordinary place, 60
Osgood, 62.

I'ars of periods for unitorm functions of two variables (see period-pairs)
Feriodic functions in two qurubles (Chapter VIII)

1'emodic lineo-linear transformations, 19, 28, 52
Period-pains, if infinitesimal, are exuladed, 213 ; may not be more than four for uniform function of two variablet, 216-223, one, 224 , two, 224 , with the different canes, three, 226 , with the different cases, and the gencral result, 231 , four, 232 , with the different cases, 235
Heard, pelace, $5,14,26,77,78,92,152$. $153,156,161.169,170,17 \mathrm{k}, 193,197$
Pioard's theorem, on functions that cannot aegure assigued values, extended to functions of two variables, 76
l'acard's theorem concerning single integrals of rational functions involving one algebraic variable extended to integrals of rational functions involving two algebraic varsables, 180-187
Poncare, Proface, 1, 4, 5, 13, 26, 71, 126, 131,158
Pouncare's extension of Cauchy's theorem to double integrals, 109 ; with inferences, 160, extengion to the reesdues of double integrals, 160,161 , with examples, 161 et seq.
Pole, 61,85 (see nnessential singularity); expression for umform function in the vicinity of, 119 ; sequence and order of, 120
Polynomial, when a regular function 18 a, 74 ; properties of, as regards angularities, 124
Prym, 266

Quadratic frontiers, 34, invarisnts and covariants of, 89 ; suggested annonical form for, 51.
Quadruply periodic functions, 258 et seq.; level placeß of two, 257 ; satisfy an algebraio
partial differential equation of the fist order, 262, wath example, 273.

Rational, any umform function entirely devold of essential singularities must be, 126
Rational function connected with algebraic equations in two independent vasiablea, most general form of (i) when there is one equation. 171 , (11) when there are two equations in two slgebraic variables, 173 ; integrals of, 178 et seq.
Rational function, smgularities of, 125
Hedueability (relative) of two segular functions, 115
IRegion of continuity of a function, 81, its bounda1y, 82, 86.
Regulai functions, any uniform function having essential sungalarities only in the infinite part of the field 1 thexpresmble as the quotient of two, 117
liegular tunctions, 60, fundamental theorem relating to, 62 ; double integral expiession for the coefficients in the expaneion of, 64 , one property of, 73, condition that it 15 a polynomial, 74 , analytical contmuation of, 80 , level values of, 108 , 1elative divimbility of, 112
Relative, divisilnility of two legular functions, 112, reducibility of funotions, 115
Riemanis, 1,16 .
Riemanis definition of a function extended to two functions, 16

Sauvage, 58.
Severi, 170
Simart, Popface, 92, 152
Simnltancoun poles of two unform analytic functions exist, 204, usnally is an solated place, 211
Simultaneous unessential singulanties of two uniform functions do not exist in general, 204
Simultaneous zero, of two regular functions, must exist, 202 , likewise for two uniform snslytio functions, 203; usually is an ssolated place, 207, 209, but there may be exceptions, 208.
Singls integral, 162.
Bingle integrals of sigebrace functions involving two algebraic variablea, 178; equivalent forms of, 180, with necessary relations, 185 ; first kind do not exiat fol general equations, 187.
Singularities, 61, 82, 119; of a rationsl function, 125.
Stokes, 157.
'liseta-functions, triple, 940 et sey ; even functions and odd fumetionts, 218, doulle, 249, 253 et serf
Thed functions, 20x.
Transcendental functiou, fol
Thiple theta functions, $\mathbf{2 4 0}$, effect on, caltsed by merements of peniods. 212 , by halt-period merements, 250 , two sets of, $2: 3$ et self
Triply penodie finnctions, gise
Two functions, evelywhere regular in the Inite pait of the fiefd, must vamish at some common phace, 20%; hkewisc, when they m unform and malytic, 20.3
Two pline ropresentation of the reat puits of the variables need fol quadinply periodic functions, 237, 257
T'wo-plane reperentation of two valables, $1 ;$, sone prolicities of, 11, limitations ol, 19

Gimbial symbols mitioduced for coctlecents, in homogeneous torms, 11
Unessontial smgulanty, 61, 83, 11s, expression of muform fanation in the vemit) ot, 121 , is an isolated place, 122
I'miform analytu function must acyume an intinte valut, 72 , aud a zero vilue, 76 , und un asmgned fonte value, 76
Unitom frantion jy
Unform periolic functions (Chapter VIII)

Vilentmer, 2π
Vicinity ol a place, is
Vivanti, 12
Volteria, 13
 $101,105,112,122,124,14.214,260$, ≥ 61
Weremstans's theotem on the behaviom of a unfonm contminous andyin function in the vacinty of an ondinaly place, 92 , vablous casch of, 92, 97, 100, example ot, 102, altenative method of poocoeding in onc (atse, 105:
Werestamb 4 theorm on functums atirely devond of ensential angulantues, 126 , proot of, 120-124, on lunctuons having essental angulanties ouly in the inthate purt of the fiold, 130, with Consin's proof, 130 et yecg.
Wenertiass theotem on minnh smal pernode, 214.

Werestiass theome on wigebian indationbetween homoperiode fantions, 261 et sed, illustrated by hyperelliptic functions, 205) et sex

Ceton (relected) of the thatal functann of two vulables, 2ラ

Camblogr

THEORY OF FUNCTIONS OF A COMPLEX VARIABLE

Scond edition Large Royal Svo 21 s net

Abstract

 serence of Mathematren not the lemst materesturg and not the least mpontant is the 'Theory of

LECTURES ON THE DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES

Large Royal Syo 쓰n neb

THEORY OF DIFFERENTIAL EQUATIONS

Drmy Svo In frum fant

1	
Put 11	
Pat Jll	
Palt 1 V	Patal Jifferantial Equatmons ln two volumes 2.ss net

 annoticed. No mathematical teatise on the sune seale him appensed sunce baboim completed
 Geometry, l'of Forsyth's will be to the stadent of the pue theoy of Differentind Equatoms. The catefulness and lucudty of has cupostion temam unmpaned to the last page If Euglish

Cambridge University Press

Fetter Lane, London C' F Chay, Manages

THE CAMBRIDGE UNIVERSITY PRESS

The Theory of Functions of a Real Variable and the Theory of Fourier's Series. ly E W Hobson, Sc II, LL I), FR.S, Sallerian Professor of Pure Matheruatics, and Fellow of Christ's College, Cambndge. Royal 8vo. 21s net
The Integration of Functions of a single Variable. By G H. Hardy, M.A, FRS Demy 8vo 2n ond net C'amlordgo Tractio on Mathematies and Mathematical Physicn
A Courme of Pure Mathematics. By \mathbf{G} H Hariv, M A., F.R.S., Fellow and Lecturer of Thmaty Collegre, Chumbradge Deny Rio bey net
Principia Mathematica. By A. N Whitehead, Sc 1)., FRS., and the
 Volume 11 30- net finhme 111 ols net
Abel's Theorem and the Allied Theory, meluding the Theory of the

An Introduction to the Theory of Multiply-Periodic Functions. By

Theory of Groups of Finite Order. By W. Burnside, M A, FR.S.,
 15s net
An Elementary Course of Infiniteaimal Calculub. By Horace Lamb,
 chester. siecond edition. Chown 8io 12-
Mathematical and Physical Papers. By Lohd Kelvin, LLLD, F.RS

 10
Mathematical and Physical Papers. By Sir (ieorge Gabrime Stokes,

 liI, IV aud Y lis rach
The Collected Mathematical Papers of James Joseph Eylvester,
 1853. Vol. It 18.it-1873 fol TII 1471-1883 Vol. iv 1882 -1897 lhyal 8vo Buckram 184 net earl
Matrices and Determinoids. Unversity of Calcutta Readership Lectures. By ("E CuIns, MA, Ph.D, Profeswor of Mathemates in the Presidency Colloge, Coleutta Volune I large loy, swo 218 net
The Progress of Physics during 33 years (1875-1908). Four lecturen delwered to the limversity of (alcutta durng March 1908 Py Arthitr Schuster, FRS, fo.D Deny kvo With frontaspece 3 m 6d net
Outlines of the Theory of Eflectromagnetism. A series of lectures dalivered before the (alentat Umversits By Ghaert T Waiker, M.A, Sc.D, F.R.S Demy Roo 3s net

Cambridge University Press

Fetter Lane, London• C. F. Clay, Manager

DAIE OF ISSUE

r The book munt ing returimit
wrthin 3, 7, 14 dayw of ita ismue A
fame of ONSANNA per ing will
beacharged it the beok is inerdue.
-

[^0]: " "Simultaneons complex variables and therr geometrical representation," Messenger of Math, vol. x] (1910), pp. 113-134; "Lineo-hnesr transformations of two complex vaniables," Quart. Journ Math., vol xlin (1912), pp. 17\$-207.
 \dagger "Leb fonctions analytiques de deux parisbles et la représentation conforme," Rend. Curc. Mat. Palermo, t. $\times x$ iii (1907), pp. 185-220.

[^1]: * When there are n independent variablea $z_{1},, z_{n}$, then n functions w_{1}, \quad, w_{n} are required for the cortresponding complete use of inversion,
 + Therelas a wide diversity of practioe, in regard to the extent of the adoption of geometrieal notions in the development of the analysis of the theory of functions. As an indieation of thas variety, it 38 cufficuent to note the dufferent relations to the sabject as borne in the work of Canohy, Hermfta, Kronecker, Poinoaré, Riemann, and Weuerstrass,

[^2]: * "Sur les fonctions de deux variables," Acta Math., t ${ }^{n}$ (1883), pp. 97-113, "Sur les résıdus des intégrales doubles," Acta Math., t. $1 x$ (1887), pp. $321-380$; "Analysis situs," Journ. de l'École Polyt., Sór. 2, t 1 (1895), pp. 1-123; "Analysis situs," Rend. Circ. Mat. Palernuo, t. xin (1899), pp 285-845, t. xunl (1904), pp. 45-110, snd elsewhere.
 + Trante d'Analyse, t. in, ch. 1x; Theore des fonetions algelmques de deux varaables indépendantes, \mathbf{t}. \mathbf{i}, ch. 11 , in the course of which other references are given.

[^3]: - For the following invertigation reference may be made to the first of the author's two papers quoted on $p 1$.

[^4]: *Rend. Circ. Mat. Palermo, t. $1 \times$ (1895), pp. 108-124.

[^5]: * Acta Math, t. 211 (1889), pp. 233-286

[^6]: * See the reference to the secund treatise by Piosard, quoted on $p 5$
 + The general theorem is that a unform function of n independent variables cannot posseas more than $2 n$ independent sets of periods. The simplest case, when $n=1$, was originally estabhahed by Jaoobi, Ges. Werke, t. ii, pp 27-82 For the genersl theorem, wee the author's Theory of Functions, \& 110. \& 239, where some references are given.
 \ddagger For much of the invertigation that follows, reference may be made to the author's paper, quoted on p. 7.

[^7]: * For mueh of the following investigation, as far as the end of this chapter, reference may be made to the second of the author's papers quoted on $p 1$
 \dagger Vadensk Selsk Skr, 6 Rotkke, naturvid. og math. Afd, v., 2 (1889)
 \ddagger Math. Ann, t lxı (1905), pp 453-526
 \& See the author's Theory of Differential Equationa, vol. iv, oh v
 \| $\mathrm{L}_{1 \mathrm{e}-\text {-Bchelfers, }}$ Vorl 4. cont. Grupyen, (1893), pp 13-82.

[^8]: * Acta Math., t. 1 (1882), pp. 297-820, tb., t. in (1884), pp. 114-135.
 + See the reference on $p 1$.
 \ddagger Jordan, Traite des substitutzons, Book ut, ch. i1, §v ; Burnside, Theory of groups, (2nd ed.,
 1911), ch, nii.

[^9]: * For proofs of this fundamental theorem, see Campbell, Thenry of continuous groups, chap 11

[^10]: *The simplest examples of forms, invariant under a single given transformation, have already been given, they ane the equations of the frontier which passes through the three invariant centres of the transformation.

[^11]: *The theorem 18 true under even less restricted conditions See two papers by Oagood, Math. Ann., t ln (1899), pp 462-464, $2 b$, t. lui (1900), pp 461-464, and a paper by Hartogs, 2b., t lxn (1906), pp. 1-88

 + Theory of Functzons, 822 ,

[^12]: *The constant $-1 / 4 \pi^{4}$ is 10 serted here merely for the parpose of formal expression

[^13]: * For the theory of absolute convergence of double series, readers mey consult Bromwioh, . An introduction to the theory of anfinite serzes
 \dagger Other examples of the same type are given by Bromwich, p. 504 of his treatise just quoted.

[^14]: * For example, the function $1+z+z^{\prime}$ does not become infinite when $z \dot{j} 1$ infinte and $\left|z^{\prime}\right|$ is infinite unless $\left|z+z^{\prime}\right|$ also is infinite.

[^15]: * See the lectures by Borel, already cited
 + licard's proof depends upon the theory of modular functions (Traite d'Analyse, t. 11, 2nded, pp. 251-254). Borel, (Lepons sur les fonctions entières, Note 1, pp. 103-106) gives a direct proof of this theorem without the intervention of any theory of special functions.

[^16]: * For many of the investigations which ere given at this stage, reference can be made to the memoir by Wejerstrans, "Einge auf die Theorse der analytisohen Functionen mehrerer Veranderncheu suoh bezuehende Satze," Ges Werke, t. 11, pp 135--198. A doctor's thesin by Dautheville, " Étude sur les séries ontıères par rapport a plasieurs varıables imagınares indépendantes," Gauther-Villars (1885), may also be consulted.

[^17]: * See the memorr cited (856) above, p. 156.

[^18]: * l c., p 156.
 + This matter will be considered later, so as to obtain the conditions necessary and sufficient to juatify the assumption.

[^19]: *The relation between two such functions as P_{9} and Q_{0} will be considered fully in Chapter iv: in particular, see \& 64.

[^20]: * Corresponding considerations arise for functions of \boldsymbol{n} variables. Weierstrass arranges their unessential singularities in two kinds. One kind includes places that, as in the text, may be called poles; at sach a place, the function definitely and unquely acquires an infinite value. The other kind includes all unessential singularities which are not poles. Now it is concervable that an unessential singularity of thas second kind for a uniform function of n variables might be ranged in one or other of $n-1$ classes, according as there are $m, \infty^{1}, \infty^{2}, \ldots, \infty^{n-2}$ ways (where m is tinite) in whoh $z_{1}, z_{2}, \quad, z_{n}$ could be made to approach the unessential singularity $a_{2}, a_{2}, ., a_{n}$ so as to make the function

 $$
 \begin{array}{ll}
 p_{1}\left(z_{1}-a_{1}, z_{2}-a_{2},\right. & \left., z_{n}-a_{n}\right) \\
 p_{0}\left(z_{1}-a_{1}, z_{2}-a_{2},\right. & \left., z_{n}-a_{n}\right)
 \end{array}
 $$

 acquire an assigned value at the place
 The question manifestly does not anse when there are only two independent variables, hence the adoption of the names pole and uressentral singularity in the text.

[^21]: *The analytical work, needed to establish the result, is so similar to the corresponding analysis for functions of a single variable (see my Theory of Functions, 8 28) that it need not be set out in detand.

[^22]: *This theorem is quite distinet from Weieratrass'b second preliminary theorem (p 141 of his memoir already quoted) for the case $n=2$, the latter will come hereafter (\$ 65).

[^23]: *For this subject, see Chapter viri of my Theory of Functions for the discussion of the algebracal equation and Chapter xy for the construction of the associated liemann surface Reference should also be made to the early chapters of Baker's Abelian Functions.

[^24]: * In partioular cases, it might be feasible, eg, when there are known scales of relation governing all the coeffictents

[^25]: * The chef memon4 are those by Hartogs, viz Nath Ann, tixu (1906), pp 1-88, Munch
 pp 223-240, Acta Math, $\mathrm{t} \times \times 11$ (1909), pp i7 -79, Math finn, tlxx (1911), pp 207-222 See also a memor by E E Levi, Amualı di Mat, Ser 111, $t \operatorname{xvin}(1910)$, pp 61-87

[^26]: * Both theorems were enunciated by Weierstrass for n yariables, but without proof; references will be given later.

[^27]: * Of cous be, these are other classifications, such as those connected with the kinds of aggregate of the zeros of a unform analytic function of a sugle variable, leading to the clasa (genre) question that has been the subject of many investigations in recent years, initiated by Laguerre, Poncare', Hadsmard, Borel, and others
 + It is the first of the two theorems which, as elready stated, were enunciated by Weierstrass without proof His enunciation, given for n varisbles instead of two only, is to be found Ges. Werke, $\mathrm{t} 11, \mathrm{p} 129$.

 A proof 1 s givon by Hurwitz, Crelle, t yov (1883), pp. 201-206, for n variables, and thas ptoof $1 s$ followed by Dautheville, F́tude sur leo sêtues entiètes par tapport à plusteurs varables ımagınatres indépendantes (Thèse, Paris, 1885). Hurwitz's proof, modited for the case of two warables, and amplified, is aubstantisily adopted in my text.

[^28]: * See my Theory of Functions, \$ 48.

[^29]: it 19 based upon the properties of potential functions The following memors may aloo be oonsulted --

 Pouncaré, Acta Math, t. xxu (1899), pp 89-17ش, th, t xxyı (1902) pp 43-98
 Baker, Camb Phi Trans, vol xvm (1899), p. 431, Proc Lond Math Soc, 2nd Ser, vol 1 (1903), pp 14-36
 Hartogs, Juhresh d. deutschen Mathematıkerverpinıgung, $\mathrm{t} \times \mathrm{x} 1$ (1907), pp. 228-240, and the memorr by Dautheville already (p 126) quoted

 * See my Theory of Functions, $\S 103$, the notion 18 due to Hermote, who called such a line a eoupure

[^30]: * Cousin, l.c, p 10.

[^31]: * Acta Math, t 11 (1883), pp 71—80.
 \dagger For references, see my Theory of Fiunctions, ch vil

[^32]: * See my Theory of F'unctions, chap vvil
 + Acta Math, t ix (1887), pp 321-380. It 18 followed, in part, by Picard who has made great extensions, as ulso by other methods, of the properties of double intrarals specially connected with algebrave functions, see his Trate d'Aualyse, t in, ch. ax, end has Thruite des fonctoons algebreques dr deux variables indépendanter, already quoted

[^33]: * In this connection, reference should be made to Picaid, Fonctwns algébriques de deus variablen, t. 1. ch m.

[^34]: * In connection with double integrals of the preveding types and taken over such ranges of integration, the reader should consult Picard's treatise, t i, ch im, quoted p 161.

[^35]: *They are expounded fully in his treatise already quoted (pp. 161, 169), and in that treatise full references will be found to the work of Noether, Enngues, Castelnuovo, Severi, Humbert, Berry, and others, in expecial connection with the analytical developments associated with surfaces in ordinary real space.

[^36]: * A full and consecutive account of his researches is contaned in his treatise already quoted.
 + His treatise, vol 1, p. 113.
 $\ddagger+b$, p 118

[^37]: * The symbols $\left(Z, Z^{\prime}\right)_{1}, \Theta_{1}\left(C, Z^{\prime}\right), J_{1}\left(Z, Z^{\prime}\right)$ denote the aggregate of terms of the first order, the symbols $\left(Z, Z^{\prime}\right)_{2}, \Theta_{2}\left(Z, Z^{\prime}\right), J_{2}\left(Z, Z^{\prime}\right)$ denote the aggregate of terms of the second order, and so on.

[^38]: * It should be added that, by a different method, Picand (l c. t, p 190) obtains this extension for double intefrals of the fist kind (that is, mitegals which are everywhene finste) when there in a angle fundameutal equation $f\left(u, z, z^{\prime}\right)=0$.

[^39]: * For example, the function esta' cannot vanish for finite values of z and of z^{\prime}; all ita zeros, a continuous aggregate, occur for those values of z and z^{\prime} which make the real part of $z+z^{\prime}$ negative and infinste.

[^40]: * The result holds for multiform functions and, under conditions not yet established, possibly even for functions that have an unlimited number of values for any assigned values of the variables; see Weierstrass, Ges. Werke, t u, p. 69, p 70.
 + It in established for the case of n variables, Weierstrass, Ges. Werke, t. ii, pp. 62-64.

[^41]: * When the ratio is real and commensurable, both periods are integer multiples of one and the same period; when the ratio is real and incommensurable, there are infintesimal periods
 \dagger It is partly due to Jacobi, Ges. Weike, t. 11, pp. 25-50.

[^42]: * See my Theory of Functions, § 108.
 \dagger The alternative suppositions, for the last case, and for the present case, are left as an exeruse.

[^43]: * It is a tacit assamption, throughout the preceding investigation, that an infinitesimal period-pair $\bar{\omega}$ and $\bar{\omega}$ for z and z^{\prime} ineans a period-par for which both $|\omega|$ and $\left|\omega^{\prime}\right|$ are minitesimal.

[^44]: * Laouville, $4^{\text {mo }}$ Sér , t. vi (1891), pp. 157 sqq.

[^45]: - For thas suggestion I anm indebted to Professor W. Burnside, who commanicated it to me in a letter dated 14 January 1914.

[^46]: * Thas particular investigation follows the earher sections of Appell's memor already quoted,

[^47]: * Both the tables may be compared with the table given by Königgerger, Cielle, tixiv (1865), p. 28

[^48]: * An attempt to eatablish the property for triply periodic functions, ammar to that which follows for quadruply periodic functions, did not meet with success.

[^49]: * Crelle, t. Ixxxix (1880), p. 7; Qes. Werke, t. ht, p. 132.

[^50]: *This theorem, and several of the theorems that follow, were enunciated by Welerstrass for $2 n$ ply periodic uniform functions of n variables The enunciations, in most instances, are not accompanied by proofs; they are to be found in his memoirs, Berl Monatsh. (1869), pp 853-857, u. (1876), pp 680-693, and Crelle, t lxxxix (1880), pp. 1-y, see also his Ges Werke, t. n, pp. 45-48,55-69, 125-133 See also Baker. Multiply perioduc functions, ch. vi.

[^51]: *The expladation, of course, is that en z, on $z, \mathrm{dn} z$ do not possess the ame fundamental periods

[^52]: *These are taken from my memoar, Phil. Trans. (1882), pp 783-862; they occur in many of the memorrs there quoted, and in others, relating to the subjeot, as well as in treatisen such as those of Prym and Krause Moch algebraical dageussion of the properties of the functions will be found in Briosohi's memoir, Ann. di Mat., 2di Ber., t. xiv (2887), pp. 241-344, and Opere Matematiche, t 11, pp. 345-454. Reference also mby be made to Baker, Abelian Functrows, ch. x1, and Multiply Periodic Functions, ch. ni, and notes, p. 327.

