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PREFACE 

rpHE present volume consists substantially of a course of 

"*■ lectures which, by special invitation of the authorities, 

I delivered in the University of Calcutta during parts of January 

and February, 1913. The invitation was accompanied by a 

stipulation that the lectures should be published 

As regards choice of subject for the course, I was allowed 

complete freedom. It was intimated that the class would be 

mainly or entirely of a post-graduate standing. What was 

desired, above all, was an exposition of some subject that, later 

on, might suggest openings to those who had the will and the 

skill to pursue research. 

Accordingly I selected a subject, which may be regarded as 

being still in not very advanced stages of development, and into 

the exposition of which I could incorporate some results of my 

own which had been in my possession for some time. Owing 

to the limitations of the period over which the course should 

extend, it was not practicable to make the lectures a systematic 

discussion of the whole subject; and I therefore had to choose 

portions, in order to discuss a variety of topics and to indicate 

some paths along which further progress might be possible. Thus, 

instead of concentrating upon one particular issue, I preferred to 

deal with several distinct lines of investigation, even though 

their treatment had to be relatively brief. 
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Wherever it was possible to refer to books or to memoirs, 

I duly referred my students to the authorities. In particular, 

I urged them to prepare themselves so that they could proceed 

to the study of algebraic functions of two variables; because 

happily, in that region, there is the treatise by Picard and 

Simart, Functions algebriques de deux variables independantes, 

which includes an account of the researches made by Picard 

and others in the last thirty years. As this treatise is so full, 

1 made no attempt to give to my students what could only 

have been a, truncated account of the elements of that theory; 

but, as will be seen, what I did was to restate some of its 

problems from a different (and, as I think, a more general) 

point of view. 

At seveial stages m my lectures, I deviated from the almost 

usual practice of dealing with only a single uniform function 

of two complex variables. I thought it preferable to deal 

with two dependent variables as functions of two independent 

variables Characteristic properties of the variation of uniform 

analytic functions of two variables are brought into fuller 

discussion, when two such functions are regarded simultaneously. 

The combination of at least two such functions is necessary 

when the general theory of quadruply-periodic functions is under 

review. The same combination of two functions seems to me 

desirable in the general discussion of the theory of algebraic 

functions of two variables whether these occur, or do not occur, 

in connection with quadruply-periodic functions, the considera¬ 

tion of relations between independent variables and dependent 

variables is thereby made more complete, and illustrations will 

be found in the course of the book. Even in the simplest case 

that has any significance, when these algebraic relations are 

nothing more than the expression of the lineo-linear substitutions, 

it is of course necessary to have two new variables expressible in 

terms of the variables already adopted. 
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The following is a summary outline of the whole course of 

lectures. 

The first Chapter deals with the various suggestions that have 

been made for the geometrical representation of two complex 

variables. The intuitive usefulness of the Argand representation, 

when we are concerned with functions of a single independent 

complex variable, is universally recognised; but there seems 

to be a deficiency in the usefulness of each of the geometrical 

representations when more than a single independent complex 

variable occurs. 

The second Chapter is devoted to the consideration of the 

analytical properties of the lineo-linear substitution, defining two 

variables in terms of two others,, yich uniquely by means of the 

others. It is a generulisatat<v-i A the homographic substitution 

for u single variable, some of the properties of the latter are 

extended to the case when there are two variables. In particular, 

insistence is laid upon certain invariantive properties of such 

substitutions. 

The third Chapter is concerned with the expressibility of 

uniform analytic functions in power-series The limitation of 

the range of convergence of such series leads to the notion of 

the various kinds of singularity which, under the classification 

made by Weierstrass, uniform analytic functions can possess. 

The fourth Chapter is devoted to the consideration of the 

form of a uniform analytic function in the immediate vicinity 

of any assigned place in the field of variation. The central 

theorem is due to Weierstrass, and was established by him for 

functions of n variables; I have developed it in some detail when 

there are only two variables; and it is applied to the description 

of the behaviour of a function in the vicinity of any one of its 

various classes of places, whether ordinary or singular. 

The fifth Chapter is occupied with two constructive theorems, 

both of them originally enunciated (without proof) by Weierstrass, 
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as to the character of functions either entirely devoid or almost 

devoid of essential singularities. A function, entirely devoid of 

essential singularities, is expressible as a rational function of the 

variables; the proof given is a modification of the proof first 

given by Hurwitz. A function, which has essential singularities 

only in the infinite parts of the field of variation, is expressible 

as the quotient of two functions which are regular in all finite 

parts of the field; the proof, which is given, follows Cousin’s 

investigations for the general case of u variables. 

The next Chapter is devoted to integrals. The earlier 

paragraphs are concerned with double integrals of quantities 

which are uniform functions " two variables; after an exposition 

of Poincard’s extension of . *“ ' main integral theorem, these 

paragraphs are mainly occupied Uv.as. imple examples of a subject 

which awaits further development. The later paragraphs are 

concerned with integrals, whether single or double, of algebraic 

functions, a theory to which Picard’s investigations have made 

substantial contributions. In restating the problems for the sake 

of students, I took the line of introducing a couple of algebraic 

functions, instead of only a single algebraic function, of two 

variables, so that there may be complete liberty of selection of 

two independent variables. The geometry of surfaces has led 

to valuable results connected with integrals of algebraic functions 

of two variables, just as the geometry of curves led to valuable 

results connected with integrals of algebraic functions of one 

variable. But my own view is that the development of the 

theory, however much it has been helped by the geometry, must 

(under present methods) ultimately be made to depend completely 

upon analysis. This will be more complicated wrhen two alge¬ 

braic equations are propounded than when there is only a 

single equation; but its character will be unaltered. And so 

I have stated the problem for what seems to me the more 

general case. 
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In Chapter VIII have discussed the behaviour of two uniform 

analytic functions considered simultaneously. In particular, when 

the functions are independent and free (in the sense that they 

have no common factor), it is shewn that their level places are 

isolated; and the investigations in Chapter IV are used to obtain 

an expression for the multiplicity of occurrence of such a level 

place, when it is not simple 

The last Chapter is devoted to the foundations of the theory 

of uniform periodic functions of two variables. In the early part 

of the chapter, I have worked out the various kinds of cases that 

can occur. The method may be deemed tedious; it certainly 

could not be used for the function' »f *» variables with not more 

than 2n sets of periods; but it briv,tj ...to relief the discrimination 

between the cases which, stated initially only from the point of 

view of periodicity, are degenerate or resoluble or impossible or 

actual. The theta-functions are then introduced on the basis of 

a result in Chapter V ; and the discrimination between functions 

with three period-pairs and those with four period-pairs is indicated. 

Later, some theorems enunciated (hut not proved) by Weierstrass 

are established for functions of two variables, togethei with some 

extensions, all these being concerned with algebraic relations 

between homoperiodic uniform functions devoid of essential sin¬ 

gularities in the finite part of the field of variation. The Chapter 

concludes with some simple examples belonging to the simplest 

class of hyperelliptic functions. But 1 have not attempted, in 

these lectures, to expound the details of the theory of quadruply- 

periodic functions of two variables; it can be found in specific 

treatises to which references are given in the text. 

My whole purpose, in the Calcutta course, was to deal with 

a selection of principles and of generalities that belong to the 

initial stages of the theory of functions of two complex variables. 
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Often before, I have had to thank the Staff of the Cambridge 

University Press for their efficient help during the progress of 

proof-sheets of my books. This volume has made special demands 

upon their patience; throughout, as is their custom within my 

experience, they have met my wishes with readiness and skill. 

To all of them, once again, I tender my grateful thanks. 

A. It. FOKSYTH. 
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and Technology, London, S W 
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CHAPTER I 

Geometrical Representation of the Variables 

In regard to functions of a single complex vanable, reference may generally lie made, 

for statements of results and for quoted theorems, to the author’s Theory of Function* 

No reference is made to the ultimate foundations of the theory of functions of a single 

real variable , a full discussion will be found in Hobson's Functions of a real variable 

For a large part of the contents of the first two chapters, reference may be made to 

two papers by the author*, and particular references to memoirs will be made from 

time to time as they are quoted 

But in additiou, reference should be made to a paper + by Poincare, who discusses 

groups, classes of invariants, and conformation of space, when the representation of the 

two complex variables is made by means of four-dimensional space. 

1. This course of lectures is devoted to the theory of functions of two 

or more complex variables. It will be assumed that the substantial results 

of the theory ot functions of a single complex variable are known, so that 

references to such results may be made briefly or even only indirectly, and 

suggestions, especially in regard to the extensions of ideas furnished by 

that theory, can be discussed in their wider aspect without any delay over 

preliminary explanations. 

My intention is to deal with some of the principles and the generalities 

of the selected subject. Special illustrations and developments will be given 

from time to time, but limitations forbid the possibility of attempting an 

exposition of the whole range of knowledge already attained Moreover, 

my hope is to establish some new results, and suggest some problems, 

in order to make that hope a reality within this course, some developments 

must be sacrificed. The sacrifice, howevei, need only be temporary, m one 

sense; because references to the important authorities will be given, and 

their work can be consulted and studied in amplification of these lectures. 

* “Simultaneous complex variables and their geometrical representation,” Me»»enger of 

Math , vol. xl (1910), pp. 113—134 ; “Lineo-lmear transformations of two complex variables,” 

Quart. Joum Math., vol xlm (1912), pp. 173—207. 

t “ Lea fouctious analytiquea de deux variables et la representation conforme,” Bend. Circ. 

Mat. Palermo, t. xxiii (1907), pp. 186—220. 

F. 1 
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Usually, it will be assumed that the number of independent variables is 

two. In making this restriction, a double purpose is proposed. 

Not a few of the propositions for two variables, with appropriate changes, 

can justly be enunciated for n variables, and sometimes they will be 

enunciated explicitly. In such cases, they usually are true for functions 

of a single variable also, and they become generalisations of the last- 

mentioned and simplest form of the corresponding proposition. Results of 

this type have their importance m the body of the theory. But it is 

desirable to have other results also, which may be called characteristic of 

the theoiy for more than a single variable, in the sense that they have no 

corresponding counterpart in the theoiy for a single variable. 

Again, it is desirable, wherever possible, to obtain results equally character¬ 

istic of the theory m another direction, that is to say, results which are not 

mere specialisations of results for the case of three or more variables. Such 

a result, is provided in the case of the quadruply-periodic functions of two 

variables and t.heir association with single integrals involving the quadratic 

radical of a quintic or sextic polynomial The case might be taken as the 

appropriate specialisation of 2a-ply periodic functions of v variables and 

their proper association with single integrals involving the quadratic radical 

of a polynomial of order 2n + 1 or 2a -f 2. These latter functions, however, 

are notoriously not the most general multiply-periodic, functions for values 

of n from 3, inclusive and upwards. Consequently, it is sufficient to develop 

the association with quadratic radicals of a quintic or sextic polynomial; 

the formal generalisations of the results so obtained are only limited and 

restricted forms of the results belonging to the wider, but not most com¬ 

pletely general, theory. 

These combined considerations constitute my leason for dealing mainly 

with the theory of functions of two independent complex variables 

The two variables will be denoted by a and z. 

2. One illustration of real generalisation from the theory of functions 

of a single variable arises as follows. In that theory, when a variable w is 

connected with a variable z by a relation f(w, z) = 0 of any form, we frequently 

consider that w is defined as a function of z by the relation. But frequently 

also there is a necessity for regarding a as a function of w; and important 

results, especially in connection with periodic functions, are obtained by using 

this dual notion of inversion. A question naturally suggests itself:—what is 

the general form of this notion of inversion when there are two independent 

variables? 

A function w of z and a' can be regarded as given by a relation 

f(w, a, a') = 0, any precision as to the form of/being irrelevant to the immediate 

discussion. A limited use of the notion of inversion can be applied at once 
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to the relation. Just as in the Cartesian equation of a surface in ordinary 

space it is often a matter of indifference which of the three coordinates is to 

be regarded as expressed by the equation in terms of the other two, so now 

we may regard the relation f (w, z,z') = 0 as defining anyone of the three 

variables w, z, z'm terms of the other two. Such an interpretation of the 

relation does not imply the complete process of inversion in the simpler case, 

whereby the quantity initially regarded as independent is expressed in terms 

of the quantity initially icgarded as dependent. In the present case, the 

initially independent variables z and z are not expressible in terms of the 

single initially dependent variable w. 

The limitation in the use of the notion, however, disappears when two 

functionally distinct quantities w and w occui This occurrence might arise 

through the existence of two functional relations 

f(w, z, z ) = 0, g(w',z,z) = 0, 

or of two apparently more general functional relations 

F(w, w', z, z') = 0, G(w, uJ, z, r') = 0 

We assume that the equations F— 0, G — 0, do actually define distinct 

functions w and v/ in the sense that they are independent equations, that 

is, wc assume that their Jacobian 

J(*°) 
\iv, w / 

does not vanish identically Moreover, for our purpose, w and w are not 

merely to be distinct from one another, they are to be independent functions 

of z and z , so that, the Jacobian 

J(^) 
\ z, z J 

does not vanish identically Now 

/(«•*)/(*£,). i. 
\z, z / \w, w j 

\w, w / \z, z y \z, z J 

always, hence neither of the Jacobians 

\w, w / \z, z / 

can vanish identically. In other words, we can interpret the two relations 

F =* 0 and G = 0 in a new way; they define z and z as two distinct and 

independent functions of the two independent variables w and w'. 

Ex. Thus the equations 

w3 + v/3+z3+z'3—a, w3 — ic'3 +z? — z!3 = b, 

satisfy both conditions; the quantities w and id are mdejiendent functions of z and z’. And 

conversely for z and z' as independent functions of w and to'. 

1—2 
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On the other hand, the equations 

ww’-z— /—(), w* - tc' - 1 = 0, 

being independent equations, determine w and w' os distinct functions of the variables, for (Jp 
does not vanish identically. But these distinct functions are not independent 

functions of i and e\ for J ^ vanishes identically. As a matter of fact, both w and 

w' are functions solely of the combination r+ / of the variables, and therefore w and u/ are 

expressible in terms of each other alone; the actual relation of expression is the seoond of 

the two equations. 

Thus, by the introduction of a second and independent function w', we 

are in a position to adopt completely the notion of inversion, as distinct from 

any precise expression of inversion, for the case of two complex independent 

variables*. The inversion will be equally possible from any two relations, 

which are the exact and complete equivalent of F = 0 and G = 0 in 

whatever form these relations may he given. In particular, if F and G 

are algebraical in w and w', they have an exact equivalent in relations of 

the type f= 0 and g — 0, obtained by eliminating tv and w in turn between 

^ = 0 and 0 = 0. 

Finally, we could regard any two of the four variables z, z\ w, w as 

independent and the remaining two as dependent The necessary and 

sufficient condition is that no Jacobian of F and G with regard to any two 

of the variables shall vanish identically. 

Accordingly, for many purposes, we shall find it desirable to consider 

simultaneously two independent functions w and w' of the two independent 

variables z and /. 

Geometrical Representation of the Variables. 

3 Next, it proves both convenient and useful in the theory of functions 

of one variable to associate a geometrical representation of the variables 

with the analysis It happens that this representation is simple and 

complete while full of intuitive suggestions, and thought the notion of 

geometrical interpretation has not been adopted by all investigators and has 

occasionally been deliberately avoided by the sterner analytical schools, it 

has acquired importance because of the character of the results to which it 

has led. The representation, initiated by Argand, is obtained by the customary 

association of a point upon a plane with one variable, and of a point upon 

* When there are n independent variables r,, , zn, then n functions toj, , u>„ are required 
(or the coi^espanding complete use of inversion. 

+ Tht re' is a wide diversity of practice, in regard to the extent of the adoption of geometrical 

notions in thp development of the analysis of the theory of functions. As an indication of this 
variety, it is sufficient to note the different relations to the subject as borne in the work of 
Cauchy, Hermlte, Kroneoker, Poincare, Biemann, and Weierstrass. 
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another plane with the other variable; and the functional relation between 

the two variables is exhibited as a conformal representation of either plane 
upon the other. 

An adequate geometrical representation of two independent complex 

variables is a more difficult problem than the representation of a single 

complex variable; at any rate, there is as yet no unique solution of the 

problem which has been found quite so satisfactory as the Argand solution 

of the problem for a single variable. 

In order to let the full variation appear, wo resolve each of the complex 

variables into its real and its imaginary parts, so we write 

z = x + iy, z' = x + iy'. 

Here x, y, x, y are real; when z and z' are independent in every respect, 

each of these four real quantities admits of independent variation through 

the range of reality between — x and + x Thus a four-fold set of 

variations is required foi the purpose, and such a set cannot be secured 

simply among the facilities offered by the ordinary space of experience. 

4. Several methods have been proposed. No method has been adopted 

universally. The respective measures of success are attained through some 

greater or smaller amount of elaboration, but each increase of elaboration 

causes a decrease of simplicity, and therefore also a decrease of intuitive 

suggestiveness, in the geometrical representation. 

Among the methods, there are three which require special mention. In 

one of them, four-dimensional space is chosen as the field of variation. In 

the second, a line (straight or curved) is taken as the geometrical entity 

representing the two variables simultaneously. In the third, each of the 

variables is represented by a point in a plane (the planes being the same 

or different), so that two points arc taken as the geometrical entity repre¬ 

senting the two variables simultaneously. 

5 Of these methods, the simplest (in a formal analytical bearing) is 

based upon the use of four-dimensional space, and applications to the 

theory of functions of two complex variables have been made by Poincar^*, 

Picard f, and others The four real variables x, y, x', y' are associated with 

four axes of reference. Sometimes they are taken as the ultimate vanables, 

sometimes they are made real functions of other ultimate real variables, 

from one to three m number according to the dimensions of the continuum 

* “Sur les fonotions de deux variables,” Acta Math., t n (1883), pp. 97—113, “ Sur les 

residua des integrates doubles,” Acta Math., t. ix (1887), pp. 321—380; “ Analysis situs,” Joum. 

de VEcnle Polyt., Sdr. 2, t l (1896), pp. 1—123; “Analysis situs," Pend. Ctrc. Mat. Palermo, 

t. xin (1899), pp 285—345, t. xvm (1904), pp. 45—110, and elsewhere. 
f TraitS d'Analyse, t. ii, oh. ix; ThSorie des fonetions algSbnques de deux variables in- 

dependantss, t. i, ch. u, in the course of which other references are given. 
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to be represented. Thus a single relation between x, y, x', y provides a 

hypersurface (or an ordinary space) in the quadruple space; and, along the 

hypersurface, each of the four variables can be conceived as expressible in 

terms of three variable parameters. Two such relations provide a surface 

in the quadruple space; along the surface, each of the variables can be 

conceived as expressible m terms of two variable parameters. Similarly, 

three such relations provide a curve along which each of the variables can 

be conceived as expressible in terms of a single variable parameter. Lastly, 

four such relations provide a point or a number of points The intersection 

of a hypersurface and a surface is made up of a curve or a number of 

curves Two surfaces intersect m points; two hypersurfaces intersect in a 

surface or surfaces. We consider only real surfaces, curves, and points, in 

such intersections, because what is desired is a representation of the four 

real variables, from which the complex variables are composed. 

The representation, by itself, does not seem sufficiently definite and 

restricted. There is no preferential combination in geometry among the 

four coordinate axes, which compels a combination of x and y for one of the 

complex variables, while x! and y' must be combined for the other. But 

this original lack of restriction is supplied, so far as concerns functions of z 

and z', by retaining the partial differential equations of the first order, which 

are satisfied by the real and the imaginary parts of any function w. Writing 

mi = w -f ii' = f (z, z), wheie a and v are real, we have 

du _ dv du _ dv du _ dv du _ dv 

dx dy ’ dy dx ’ dx' dy' ’ dy' dx ’ 

so that u satisfies (as does v also) the equations 

?Pu d2 u _ d‘u (Pu _ dJu (Pu 

dx‘ + dy’1 ’ dxdx' dydy' ’ dxdy'3 ’ 

d3u d3v _ 

dx&y dydx' 

From a value of u, satisfying these equations, the value of v to be associated 

with it in the value of mi can be obtained by quadratures. Thus we have a 

geometry, tempered implicitly by differential equations. 

The comparative difficulty of dealing with the ideaB of four-dimensional 

geometry tends to prevent this mode of representation from being intuitively 

useful, at least to those mmds who regard the stated results to be analytical 

relations merely disguised in a geometrical vocabulary. In particular, the 

method fails to provide (as the other methods equally fail to provide) a 

representation of quadruple periodicity which serves the same kind of purpose 

as is served by the plane representation of double periodicity; and a 

fortiori there is an even graver lack, when divisions of multiple space are 

required in connection with functions of two variables that are automorphic 
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under lineo-linear transformations. Still, it is the fact that certain results 
have been obtained through the use of this method in the extension of one 
of Cauchy’s integral-theorems, m the formation of the residues of double 
integrals, in the topology of multiple space, and in the conformation of 
spaces. 

6. The second of the indicated methods of representation of the four 
variable elements in two complex variables is based upon the fact that four 
independent coordinates are necessary and sufficient for the complete 
specification of a straight line m ordinary space Such a line would be 
determined uniquely by the two points (and, reciprocally, would uniquely 
determine the two points) at which it meets a couple of parallel planes. and 
therefore, if one variable s is represented by a variable point in one plane 
and the other variable z is represented by a variable point in the other 
plane, we might regard the line joining the points z and z m the respective 
planes as a geometrical representation of the two variables s and z con¬ 
jointly. (It can also be determined by a point, and a direction through the 
point, again, the determination requires four real variables in all.) 

We must, however, bear m mind that the two points on the line are the 
ultimate representation of the two variables When the whole line* (with 

the assistance of the two invariable parallel planes of reference) is taken to 
represent the two variables, a question at once arises as to the geometrical 
relations between a line z, z and a line w, w, which correspond to two 
analytical relations between the variables Docs the whole line z, z, under 

any transforming relation, become the whole line w, w '> 

7. It is only a specially restricted, set of transforming relations, which 
admit such a transformation of a, whole line The result can be established 

as follows. 

For simplicity, we assume that the planes for z and z are at unit distance 
apart, and likewise that the planes for w and w are at unit distance, apart; 

and we write 
V) — u+ IV, V! = u + iv' 

The Cartesian coordinates of any point on the z, z line arc 

ax + (1 - a) x, ay +(1 - a) y, l - a, 

and those of any point on the w, w' line are 

pu + (l-p)u, pv + (l-p)v, 1 - p, 

where p and a are real quantities, each parametric along its line Let two 

relations 
F(w, w', z, z') = 0, G (w, w', z, z') = 0, 

be such as to give a birational correspondence between w, w and z, z. If, 

* For the following investigation reference may be made to the first of the author’s two 

papers quoted on p 1. 
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then, in connection with these relations, the whole 2, s' line is transformed 

uniquely into the whole w, w line, and vice-versa, some birational corre¬ 

spondence between the current points upon the lines must exist; and so the 

coordinates of the current point upon one line must be connected, by functional 

relations, with the coordinates of the current point upon the other line. 

Because of the independent equations F=0, 0 = 0, the quantities u, v, 

u, v' are functions of x, y, x', 1/ alone; and these functions do not involve a. 

Similarly x, y, x', y are functions of u, v, u', v' alone, and these functions do 

not involve p. Hence p is a function of tr only, such as to take the values 

0 and 1 (in either order) when <7 has the values 0 and 1; and, for the 

current points, we must have 

pu + ( 1 - p) u =/(£ y, 1 - <t), 

pv + (l - P)v =*g(%, i), 1 -<t), 

where / and g are appropriate functions of their arguments, and 

f = ax + (1 - tr) x, y = ay + (l-a)y' 

As p is some function of a alone, the former relation gives 

da a . . du' df du du' 
r + a p) dx~ad£> P dx- + ^ P dx r d$ o') 

du 

Pdy 

and therefore 

, du df du du' df I ’ 
+ (1~P) dy=°irl' dy W dy 

du ,, . du') ( du .du') 

P Si+ (1~p) fi HP 3j'+ (I ' ^ 

. 0m'I ( du du' 

The relation holds for all values of p, and the quantities u and u do not 

involve p, hence 
du du du du 

bx by' by da/ ’ 

du du du' du du du' du du 

dx by' dx by’ dy da'’ by dx' ’ 

du' du' _ du' du' 

dx by' dy dx 

Similarly, the second relation requires the conditions 

bv dv 

dx by' 

dv dv' dv' dv 

dx by1 dx by' 

dy dy 
dx by' 

dv dv 

by dx ’ 

dv dv dv' dv 

by dx' + dy dx' ’ 

dv dv' 

dy dx'' 
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Moreover, because both ?/ + iv and u' 4- in' are functions of z and z, we have 

the permanent relations 

3 u dv du dv du dv du dv 

dx ~dy’ 3 y dx ’ dx' d y ’ 3y~ dx' 

d u' dv du' _ dv' du' 3?/ ?u dv 

dx "3 y' ~3y ~d.i ’ 

1! 

dy’~ ~?y 

By using these relations, the three equations involving the derivatives of v 

and v' can be transformed into the three equations involving the derivatives 

of u and u', and therefore, as the permanent relations exist for all functional 

relations, we need retain only the three equations involving the derivatives of 

u and it! as the essential independent equations for our problem 

8. The complete integral of the first of these three retained equations— 

it involves u only—is 

ti = ax - fty + ax' — ft'y' 4 k, 

where a, ft, a!, ft', k are any real constants, provided the condition 

aft' — aft — 0 

is satisfied. The permanent relations then give 

v = ftx + ay + ft'x + ay' + 
where k is any real constant, and so 

w = u + iv 

= (a + ift) z + (a' + 10) z' + k + 11c'. 

The presence of the term k +1 k in w merely means a change of origin m the 

w-plane, neglecting this temporarily, we have 

w = (a + ift) z + (a + ift') z 
Now let 

a + ift = Ae* \ a' + ift' = A'e*1, 

where A, A', y, 0 are real; then the condition aft' — a!ft — 0 becomes 

A A’ sm (y, — 0) = 0, 

so that either A = 0, or A' = 0, or y = y, giving three poss’ Jioh 

Similarly, the complete integral of the third of the rev equations— 

it involves u! only—is 

u = yx — Sy + y'x — 8' y + \, 

where 7, 8, 7', S', A. are any real constants, provided the condition 

78' - 7'S = 0 

is satisfied. The permanent relations then give 

v' = 8x + yy + 8'x + y'y + X, 
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where X' is any real constant; and so 

«/ = «' + iV 

= (y + iS) z + (y + ih') z' + \ + i\'. 

The presence of the term X + i.\' in w merely means a change of origin in 

the w'-plane; neglecting this temporarily, as before for w, we have 

w’ = (y + i£) z + (y + i&) z. 
Now let 

y + i8 = Cev\ y + ih' = C'ev', 

where 0, C, v, v are real; then the condition yi> — yh = 0 becomes 

CC’ sin (v - v) = 0, 

so that either C= 0, or C = 0, or v = v , giving three possibilities 

The second of the three retained equations still has to be satisfied, it 

involves derivatives of u and of a\ and it is satisfied identically by the fore¬ 

going values of u and a', provided 

a.h‘ — a'h — fjy' — fty, 

or (what is the equivalent condition) provided 

AC sm (n — v) = A'C sin {p! — v). 

9 Nine cases arise for consideration, because the three possibilities 

from the first of the retained equations must be combined with the three 

possibilities from the third of the retained equations. Each combination 

is governed by the last condition, and the expressions obtained mubt satisfy 

the conditions holding between p and a Moreover, m the end, w and w 

are to be independent functions of the variables , and, for the present 

purpose of geometrical representation by a line, we manifestly may inter¬ 

change z with z\ and w with w' 

Of the nine combinations, two are impossible under these requirements, 

viz. A =0, (7=0, and A' = 0, C' = 0. Four of them are equivalent to one 

another under these requirements, viz. A=0, v — v, A' = 0, v = v , /a = p, 

(7=0, /t = p!, C = 0; and they lead to the expressions 

j w = {Az + AY) e**1, w' = C'z'e 

Two of them equivalent to one another under these requirements, viz. 

A = 0, C' = 0; and A' = 0, (7=0, and they lead to the expressions 

w = Aze'", w = C'z'eC 

The remaining combination, viz. p = p, v «= v, under the requirements leads 

to the expressions 
w = (Az + A'z’)***, w' = (Gz + C'z') e^. 

All these expressions must still satisfy the terminal condition applying to p 

and <r, viz. that p must be 0 or 1 when o- is 0 or 1. When these expressions 



91 REPRESENTED IN SPACE 1] 

are inserted for the functions f and g m the earliest equations in § 7, the 

latter lead to the relations 

pa -f- (1 —■ p)17 _ pa! + (1 - p) y' 

a 1 — er 

p/S+_a - p)J = p£'+<i - p) * 
a 1 — <r 

and therefore 

pAehl + (1 - p) Ce“l _ pA V"'* + (1 - p) G'ey l 

<7 1 — <7 

For the first of the expressions, this becomes 

pA __ pA' + (1 — p) O' 

(T 1 — <J 

In order that p may be 1 when <r is 1, we must have A' =0 and the 

necessity, that then p must be 0 when cr is 0, imposes no further condition, 

the expression becomes 

w = Aze^’, w = Cz’e 

which is the same as the second. 

For the second of the expressions, the relation is satisfied without any 

further condition. 

For the third of the expressions, the relation becomes 

pA +(1 - p) a _ <7 

pA' + (1 - p) O' 1 - cr' 

In order that p may be 1 when <7 is 1, we must have A — 0, and in order 

that p may be 0 when <7 is 0, we must have 0 = 0, the expression becomes 

w-Aze»l, w' — G'z'e*', 

the same as before. 

In obtaining this result, we neglected temporarily an arbitrary change 

of origin in each of the planes. and we assumed that z can be inteichanged 

with z, and w with w' Thus we have the result. 

The only relations which give a birational transformation of the straight 

line, joining z and z in two parallel planes, into a straight line, joining w and 

w' also w two parallel planes, either are 

w = az<?1 + bes\ w' = aze*1 + ceT\ 

where a, a', b, c, a, ft, 7 are real constants, or can be changed into this form by 

interchanging z and z, or w and w', or both 

These relations, as equations in a general theory, are so trivial as to be 

negligible; and so we can assert generally that two functional relations 

F(w,w',z,z') = 0 and G (vj, «/, z, /) = 0, which transform the variables z 
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and 2' in their respective parallel planes mto the variables w and w' likewise 

in their respective parallel planes, do not (save in the foregoing trivial cases) 

admit a birational transformation of the whole straight line joining z and zr 

into the whole straight line joining w and w'. 

10. Manifestly, therefore, we need not retain the suggested geometrical 

representation of two variables by the whole straight line joining the two 

points z and z', because the only effective part of the representation is 

provided by the two points in which the line cuts the planes. 

Nor would any other method of selecting the four real variables for the 

specification of the straight line be more effective. For example, the line 

would be uniquely selected by assigning a point where it cuts a given plane 

and assigning its direction relative to fixed axes in spaco, and then we 

could take 

z = x 4 ly, z = tan 8, 

with the usual significance for x, y, 8, <f>. It is easy to see that, when we 

take a plane at unit distance from the given plane, and we write z" = z + z, 

the former representation by the straight line arises for z and z" As 

before, the whole straight line is not an effective representation of the two 

complex vanables, the only effective part of the. representation is the 

point in the given plane and the direction relative to fixed axes 

11. Another method of constructing a straight line to represent two 

complex vanables z and 2/ has been propounded by Vivanti *, whereby it is 

given as the intersection of the two planes 

xX + yZ = 1, x'Y + y Z = 1, 

where X, F, Z are current coordinates in space. The immediate vicinity of 

a line z0, z0' is assumed to be the aggregate of all lines such that 

(x - *„)= + (y- y,y < r\ (x - xa'f + (3/ - y0')a < r'\ 

where r and r are arbitrary small quantities, and the boundary of the 

vicinity is made up of the lines 

(x - xoy + (y- y»y = r\ (x‘ - x0ry + {y - yc')8 = r\ 

It is easy to see that, as before, the whole straight line as a single 

geometrical entity is not an effective representation of the two complex 

variables z and z', the only effective part of the representation depends 

upon the coordinates of the two points in which the line cuts the planes of 

reference Y — 0, X =0 (or any two of the coordinate planes). 

Rend. Circ. Mat. Palermo, t. ix (1896), pp. 108—124. 
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12. The preceding investigation suggests cognate questions which will 

only be propounded. Two functional relations, F (to, w', z, z ) = 0 and 

0 (w, w', z, z') = 0, transform a pair of points z and z\ in parallel planes, 

into a pair (or into several pairs) of points w and w\ also in parallel planes. 

Let z and z be connected by any analytical curve, let a correspond mg pair 

of points w and w also be connected by any analytical curve, and suppose 

that the two analytical curves have a birational correspondence with one 

another. Then • 

(l) How are the equations of this correspondence connected, if at all, 

with the original functional relations ? and what are these 

equations when the two analytical curves are assigned > 

(u) What functional relations are possible if, under them, the whole 

z z curve is to be transformed into the whole w, w curve'' 

(lii) When functional relations are given and an analytical z, z curve 

is assigned, what are the equations of the w, w' curve, if and 

when the whole curves are transformed into one anothei ? 

13. One warning must be given before we pass away from the con¬ 

sideration of a line, straight or curved, as a geometrical representation of a 

couple of complex variables The pieceding remarks refer to the possibility 

of this geometrical representation , they do not refer to functions of two 

complex variables which are functions of a line. Functions of a real line 

occur in mathematical physics, thus the energy of a closed wire, conveying 

a current m a magnetic field, is a function of the shape of the wire. This 

notion has been extended by Volleria* on the basis of Poincare’s general¬ 

isation of one of Cauchy’s integral-theorems In the case of the integral 

of a uniform function of one complex variable, we know that the value is 

zero round any contour, which does not enclose a singularity of the function, 

and that the integral between two assigned points is (subject to the usual 

proviso as to singularities) independent of the path between the points, 

that is, the integral can be regarded as a function of the final pomt. So 

also (as we shall see) the integral of a function of two complex variables over 

a closed surface in four-dimensional space is zero if the surface encloses no 

singularity of the function. and when the surface is not closed, the integral 

(subject to a similar proviso as to singularities) depends upon the boundary 

of the surface, that is, the integral can be regarded as a function of the 

boundary-line. 

This property has nothing in common with the line-representation of 

two complex variables which has been discussed 

14 The third of the indicated methods of representation of two complex 

variables is the effective relic of the discarded line-representation. It is the 

simple, but not very suggestive, method of representing the two variables z 

* Acta Math , t, xii (1889), pp. 233—286 
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and z‘ by two points, either in the same plane or in different planes, the two 

points always being unrelated. It is the method usually adopted by Picard 

and others. For quite simple purposes, it proves useful, thus it is employed 

by Picard* in dealing with the residues of the double integrals of rational 

functions, and it is important in his theory of the periods of double integrals 

of algebraic functions. 

Let me say at once that the point-representation of z and z' is not 

completely satisfactory, in the sense that it does not provide a representation 

which gives a powerful geometrical equivalent for analytical needs. One 

illustration will suffice for the moment It is a known theoremf, due 

originally to Jacobi in a simpler form, that a uniform function of two 

variables cannot possess more than four pairs of periods. The point- 

representation of two variables admits of an effective presentation of simple 

periodicity for either variable or for both variables, of double periodicity for 

either variable or for both variables separately, of triple periodicity for both 

variables in combination, but (as will be seen later in these lectures) it 

does not lend itself to a presentation of quadruple periodicity for both 

variables in combination, a presentation which is much needed for functions 

so fundamental as the quotients of the double theta-functions. An attempt 

to circumvent the latter difficulty will be made later for one class of 

quadruply-penodic functions But the general difficulty remains. There 

are other limitations also upon the effectiveness of the method of repre¬ 

sentation by points; they need not be emphasised at this stage. 

New ideas, or some uniquely effective new idea, can alone supply our 

needs. In the meanwhile, we possess only two fairly useful methods, 

viz., the method of four-dimensional space, and the method of two-plane 

representation. 

Properties of the two-plane representation. 

15. As the principal use of the representation of two variables in four¬ 

dimensional space occurs in connection with double integrals, illustrations 

can be deferred until that subject arises for discussion We proceed now 

to make a few simple inferences from the two-plane representation of two 

variables j. 

We shall use the word place to denote, collectively, the two points in 

the 2-plane and the 2'-plane respectively which represent the values of 2 and 

* See the referenoe to the second treatise by Picard, quoted on p 6 

t The general theorem ir that a uniform function of n independent variables oannot possess 

more than 2n independent sets of periods. The simplest case, when n=1, was originally estab¬ 

lished by Jaoobi, Get. Werke, t. u, pp 27—82 For the general theorem, see the author’s Theory 

of Functions, § 110, $ 239, where some references are given. 

t For muoh of the investigation that follows, referenoe may be made to the author’s paper, 

quoted on p. 7. 



15] TWO-PLANE REPRESENTATION 15 

d ■ Let w and w be two independent functions of z and 2', so that their 
Jacobian J, where 

does not vanish identically, and let the places s, z and w, w bo associated 

by functional relations. Any small variation from the former place, repre¬ 

sented by dz and dz', deteimines a small variation fiom the latter place, 

which may be represented by dw and did, the analytical relations between 

these small variations are of the form 

d-w = Adz + Bdz, dw' = (’dz 4 lJdz , 

where A, B, C, D are free from differential elements, and AD— BO=J. 

Next, let d^z and d,2', d2z and d2z‘ denote any two small variations from 

the z, z’ place; and let d2w and dtw', d,w and d.w’ denote the consequent 

small variations from the w, id place Then 

j d,«>, d,w i= rl djZ 4 Bd,z, Cdtz 4 Dd,z' ] 

| d/w, d.,w' 1 AA,z + Bdtz, Cd.z 4 Dd,z' 

— if djZ, djz j. 

d2z, d2z 1 

Manifestly, if d,zd2z' — d.zd,z vanishes, then d, wd2w' - d.2wd, id also 

vanishes, and the converse holds, because J is not zero. Hence if, at the 

place z, 2', two similar infinitesimal triangles are taken in the planes of z 

and of z' respectively, the corresponding infinitesimal triangles at the place 

w, w in the planes of 10 and of w' respectively also are similar, and 

con versely 

This property holds for all pairs of similar infinitesimal triangles, and 

therefore, when the 2-plane and the 2'-plane are put into conformal relation 

with one another, the re-plane and the r(/-plane are also put into conformal 

relation with one another This result is the geometrical form of the 

analytical result that, when the two equations 

F(«’, w, 2, z) = 0, ti (w, «/, 2, z) = 0, 

determine w and w as independent functions of 2 and 2', a relation 

(2, z') = 0, involving 2 and z only, leads to some relation yfr (w, uu') — 0, 

involving w and vf only. 

Another interpretation of the relation 

dtw, d,w = J d,z, d,z j 

d2w, d2w' i dsz, d3z' ! 

is as follows:_When w and w arc two independent functions of two 

independent complex variables 2 and z, and when d,2, d^z, d~v, d3 vj are 
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any one set of simultaneous small variations, while d2z, d,z', d.2w, d2w' are 

any other set of simultaneous small variations, the quantity 

I d2w, d, w ' —| d,z, ifz 

i d3w, d2W \ ; rf22, d.j,z' 

is independent of differential elements and depends only upon the places 

z, z and w, id. 

16. The converse also is true, viz.:— 

Let z and z' be two complex variables, such that 

z = x + iy, z' — x' + iy', 

where x, y, x, y are four leal independent variables; and let w and id be 

other two complex variables, suth that 

w = u + iv, id = u + tv, 

where u, v, u', v' are four real independent quantities, being functions of x, y, 

sc', y'; then, if the magnitude 

d ,10, d,id - | dx z, d, z 

d, w, d,,id d2z, d2z' 

for all infinitesimal variations is independent of these variations, w and w 

are independent functions of z and z alone. 

This property, which for two independent complex variables corresponds 

to Kiemann’s definition-property* for functionality in the case of a single 

complex variable, can be established as follows Let 

dw dw dw dw 

dx 
J 

dx' 

dw' dw' dw' , did 

dx 
fl', ~;- = ft, 

3 y 3? 
so that 

dw = adx + ft dy +• y dx' -f Bdy' 

dw' = a'dx + ft'dy + y 'dx' + bdy' 
Then 

! dxw, dxw' 

| d.2w, d.tw j 

adxx + ftdxy + ydxx' 4- 8dxy\ adxx + ft 'dxy + ydxx -I- B'dxy‘ 

oufx + ftdpy + yd2x' + Sd2y', a’dax + ft'dpy + y'd^x + d'd.2y 

a, a' j dxx, dxy , + a, a! j dxx, dxx + j a, a' | dxx, dxy j 

ft, ft' | d„x, dpj | y, y | dpx, d,x | 8, 8' | d2x, dfy' j 

+ ft, ft’ dxy, dxx j + l ft, ft' dxy, dxy I + y, y' dxx\ dxy’ 

\ 7> y dty, d2x j | 8, 8' d2y, dp/ j 8, b' d%x f d%y 

* Riemann’s Get. Werke, p. 5. 
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Also 

diZ, djz' 

daz, difZ 

= d^x + i rf, y, dsx + id^f 

d*x -f i d?y, d.rT.' + ui^y' 

d,x, d, cc + i( dxy, d,x‘ + » d,x, d,y 1 - d, y. rfi y' 
d^x, d2x' 1 1 d.,y, d^x' i djx, d.y | day, d,y' 

ihese two quantities are to stand to one another in a non-vanishing ratio, 

which is independent of the arbitrarily chosen differential elements that 

occur in them Consequently, when we denote this ratio by ./, we must 
have 

a/9' - a'/9 = 0, 

ay' — a'y = ,/, 

a8' — a'h = id, 

fiy' - &'y = id, 

08' - 0'8 = —J, 

yS' — y'S = 0 , 

and these necessary conditions also suffice to secure the property 

The first of these conditions shews that a quantity m exists such that 

/9 = ma, 0' = m d , 

and the sixth shews that a quantity n exists such that 

8 = ny, 8' = ley' 

The third condition then gives 

id - ah' — a'8 = n {ay — a'y) = nJ, 

the fourth and the fifth conditions similarly give 

id = rnd, — J — mnJ, 

and the second condition gives the value of J. Thus all the conditions are 

satisfied if 
m = i, n = i, J = ay' — a'y 

But now 
dw 

dy 
= /9 = ia = i 

dw 

dx ’ 

dw 
dy' 

= h = ly — l 
dw 

dx” 

and these are the only equations affecting w alone The theory of partial 

differential equations of the first order shews that their most general in¬ 

tegral is any function of x + ly and of x + iy' alone, that is, w is a function 

of z and z alone. Similarly 
dw' dw' dw' _ . dw’ 

dy 1 dx ’ dy’ 1 dx' ’ 

F. 
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and these are the only equations affecting w' alone; hence, as before, w 

also is a function of z and z alone. Moreover, we now have 

and therefore 

3 w 3 w 3 W 3 w 

dz = fa ~a’ dz' ~ dx' = = 7. 

3 w 3 w 3 w' 3 w' / 
dz = dw ~ “ ’ 3 z dx - 7 

J = 
3w dw dw dw 

ay — a'y = 
dz az' dz dz 

Also J is a non-vanishing quantity Hence w and w' are independent 

junctions of z and z alone—which is the result to be established. 

17. The Riemann definition-property for a function of a single complex 

variable leads to a relation 

dw _ $2 

S'w h'z ’ 

this relation, when uiteipreted geometrically, gives the conformal repie- 

sentation of the w-plane and the .z-plane upon one another. The property 

just established in connection with the quantity 

dtz. d%z da d\Z 

has a corresponding geometrical interpretation. 

Foi simplicity, let z and z' be represented m the same plane. At any 

point 0 in the plane, take OA, OK, 00, 01) to represent dtz, d,z't d2z, d,z' 

Along the internal bisector of the angle between OA and OD, take OP 

a mean proportional between the lengths OA anil OD, and along the 

internal bisector of the angle between OK and OG, take OQ a mean 

proportional between the lengths OB and 00 Complete the parallelo¬ 

gram of which OP and OQ are adjacent sides, let M denote the product 

of the lengths of its diagonals, and let 8 denote the sum of the inclinations 

of those diagonals to the positive direction of the axis of real quantities, 

then 
dxz, d2z‘ — d3z d,z = MeSl. 

Constructing a similar parallelogram in connection with the variations of 

w and w', we should have 

dxw d,w' — (hw. d, w = Ne4“. 

Consequently 

Net” — J Mem 

Now let two sets of pairs of small variations of z and z be taken, 

one of them leading to a quantity Me•*, the other of them leading to a 

quantity M'e*1, and let the corresponding quantities, arising out of the 
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two sets of pairs of the consequent small variations of w and w\ be Ne*1 

and N'e*'*. Then 

Ne** = JMef>\ N'e*'1 = JMY’, 

and therefore 

N' 

N 

which is the extension, to two functions of two variables, of the conformation 

property for a function of one variable Moieover, the extension is dotet- 

minate, for the parallelogram, constructed to give the Representation of 

d,z. d,z — d.,z dxz\ is unique in magnitude and orientation 

18 While a geometrical interpretation of functionality can thus bo 

provided at any place in the two planes of the independent vaitables, 

a limitation upon the general utility of the method is found at once when 

we pioceed to the transformation of equations It does not, in fact, piovide 

any natural extension of the transformation of loci and of areas which occurs 

when there is only one complex vaitable 

Thus considei the periodic substitution 

z \J2 = w + w', v'2 = w — w\ 

which gives 

w •dcl — z-e z, w\ 2 — z — s. 

Corresponding to any z, z place, theie exists a unique w, w place. Hut 

the combination, of a definite locus m the z plane unaffected by variations 

of z with a definite locus in the z plane unaffected by vaiiations of z, does 

not lead to similar loci in the planes of w and of w Thus suppose that s 

and z describe the circles 

z — tie6', z — (i'ea 

in their respective planes, the corresponding ranges in the w and w' jilanes 

are given by the equations 

(a + u'Y + (d + v')1 = 2a2, (it - u'y + (v - \<‘y = 2a", 

neither of which gives a locus in the w piano alone m m the w' plane 

alone The z circle and the z circle, which can he described by the 

respective variables independently of each othei, determine »2 places in 

the w and w' planes combined, but there is no locus either in the w plane 

alone or in the w' plane alone corresponding to the two circles 

Again, the content of the field of variation represented by 

I z | *£ a, | /1 a', 

can be described very simply, it consists of the oo * places given by com¬ 

bining any point within or upon the z circle with any point within or 
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upon the z' circle. When this field of variation is transformed by the 

periodic substitution, the new field of variation is represented by 

\ib + w'\t. a V2, 1 w — w' | < «' \/2; 

it consists of x * places in the w and w' planes, each corresponding uniquely 

to the appropriate one of the oo4 places in the z and z planes, but there 

is no verbal description of the w, w field so simple as the verbal description 

of the z, z field which has been transformed. 

Analytical expression oj frontiers of two-plane regions. 

19 One consequence emerges from even the foregoing simple illus¬ 

tration, and it is confirmed by other considerations 

When we have a four-fold field of variation such that places m it are 

represented by a couple of relations 

</> (■*> y, <*■'. y) < o, f (.'<•, i/, ■/, f) < o, 
the three-fold boundary of the field consists of two portions, viz the range 

repiesented by 

f> (s* 1/, x, y) = 0, fr (x, y, A, y') t 0, 

and the range represented by 

f> (oc, y, x, y) sg 0, \fr (x, »/, a\ f) = 0 

These two portions of the three-fold boundary themselves have a common 

frontier represented by the equations 

4> y, x’> f) = o, f (x. y, x, f) = o, 
which give a two-fold range of vanation '1'his last range is a secondary or 

subsidiary boundary for the original four-fold field, to distinguish it from 

the proper boundary, we shall call it the frontier of the field 

Accordingly, we may regard the frontier of a field of the suggested kind 

as given by two equations 

<t> {*, y,y) = 0, f (x, y, x, f) = 0. 

(The simpler case of unrelated loci in the planes of z and of z arises when 

does not contain x or f, and fr does not contain x or y, and, at least 

when ft and fr are algebraic functions of their arguments, the foregoing 

relations can be modified into relations of the type 

6 (a, y, x) = 0, 6 (x, y, if) = 0, 

or into relations of the type 

xk y) = o, x (y> x, y) = o, 
which aie equivalent to them.) Now this form of the equations of the 

frontier of the field possesses the analytical advantage that, when the 

variables are changed from z and z to w and w by equations 

F (w, w', z, z‘) = 0, G (w, w', z, z’) > 0, 
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the equations of the frontier of the u\ w field are of the saint' type as 

before, being of the form 

<t> («, v, u, v ) = 0, M/(«, r, u', a') - 0 

It is necessary to find some analytical expression ot the dotibly-inhnile 

content of these equations In the special example arising out ot the 

periodic substitution in § 18, we at once have the expressions 

u \/2 = a cos 0 -fi a cos O', a' >Ji = a cos 0 — a! cos O', 

v V'2 = a sin 0 + a sin O', r \J"1 = a sin 6 — a sin O', 

giving the doubly-mfinite range ot vauation for u, v, v', when 0 and O' uity 

independently, But when the equations ot the frontier do not, lead, by 

mere inspection, to the needed expressions, we can piocoed as follows 

Let .r, y, x\ y' — ti, b, a', b‘ be an ordinary place on the frontier given 

by the equations </> = 0 and i/r = 0, in the sense that no one ot the fust 

derivatives of <p and of y vanishes thoie, and m its vicinity let 

x — a + f, y — b •+• t), x' = a + y = b' + t) 

Then we have 

„ y rid 
0 = f . -t 

da 

dtfc 

V hi) + + + r'r>a+' 

da'+V'W + [^V' F* V'l + 

there being only a finite number of terms when rf> and y aie algebraic in 

form Introduce two new paiameters s and t, and take 

s = fa + v@ + f y + v 

t = %a +17/9' + ?V + y 

where a, /3, y, S, /3', 7'. 8' are constants such that the determinant 

d<p d<t> d(f> d<P 

da ’ db ’ da" db' 

dyfr dip difr dyjr 

da’ db' da” db' 

a , @. 7> 8 

t 
a , /S', y > S' 

does not vanish. Then the four equations can be resolved so as to express 

£, v, f, V m terms of ,s and t, owing to the limitations imposed, the deduced 

expressions are regular functions of s and t, vanishing with them, and so we 

have each of the variables x, y, x, y, expressed as functions of two real 

variables s and t, regular at least in some non-infinitesimal range. 
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In order to indicate the two-fold variation in the content of the frontier, 

it now is sufficient to consider regions of variation m the plane of the real 

, variables s and t Thus, corresponding to a region m that plane included 

within a curve k (s, t) = 0, there are frontier ranges of variation in the z 

and the z planes, determined respectively by the equations 

x — a = p (s, f)j x — a =p' (s, f)j 

xj -6= q(s,t) , y'-b' = q(s, t) -, 

0 ^ k (s, t) 0 ^ k (s, t)J 

that is, by the interiors of curves 

/O' -«,!/-1>) = 0, y (x - a, y' - U) * 0, 

the current descriptions of those inteiiors being related 

Moreover, the equations F = 0 and G = 0 potentially exptess u, v, u, v in 

terms of x, y, x, y , and so the frontier range of variation in the w and w 

planes would bo given by substituting the obtained values of j, y, x', y\ 

as regular functions of s and t, m the oppressions for u, v, u, v', that is. the 

frontier range of variation is defined by equations of the form 

a, v, a, v = functions of two real variables s and t. 

But, in dealing with the geometrical content of the frontier, whether with 

the variables z and z' or with the variables w and w\ care must be exercised 

as to what is justly included. We arc not, for instance, to include every 

point within the curve f (x — a, y — b) — 0 conjointly with every point within 

the curve y (x' — a', if — b') = 0, even if both curves are closed , we are to 

include every point within either curve conjointly with the point within the 

other curve that is appropriately assoeiable with it through the values of s 

and t. 

Ex 1 The method just given for the expression of x, y, x\ y' is general in form , but 

there is no necessity to adopt it when simpler processes of expression can be adopted 

Thus m the case of the equations 

1, x^-y^y', 

a complete representation of the variables is given by 

x = sins cos t, y = smasin x' — coss, y' = sm2ir cos2t. 

A full range of variation m the plane of s and t is 

0 < * < 7T, 0 < t < 2n. 

When we select, as a portion of this range, the area of the triangle bounded by the lines 

» —«■= 0, s+t=^ir, t=0, 
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the limiting curves corresponding to /»0 and <j=0 aro a curvilinear figure made up 

of a straight line and two quarter-circles in the z plane, and another curvilinear figure 

in the z'-plane made up of a parabola and arcs of the two curves 

y' = (1 - x'2) 1>, y' = - (1 - ,F2) (2x'2 - 1) 

Ex 2 For the periodic substitution 

/ti v/2=r+z', w'k/2 = z- z', 

a z, z' frontier defined by the equations 

*a+.r'*= 1, /+/2= 1, 

is transformed into a w, w‘ frontier defined by the equations 

that is, the frontier is conserved unchanged 

Ex. 3. To show how a field of variation can be limited, considei the four-fold held 

represented by the equations 

x- +y*+1^ 1, 2a2 + 3ya +y'1 Zt 1 

As regardb the z-plane, the hint, equation allows the whole of the interior of the < ircle 

x2+y'i= 1 The second equation allows the whole of tho interior of the ellipse 2r- + 3y- = 1 

The region common to these areas is the interior of the ellipse , hence the content in the 

z-plane is the interior of the ellipse 2.r2 + 3ty2=l, so that ii ranges from 0 to and y- 
ranges from 0 to ^ 

As regards the z'-plane, we have 

3 r'2 - - 2 - r2, 2a'2 - y"‘ = 1+/ 

Because of tho range of <*, the first of these equations gives the region between the two 

hyperbolas 
3»'2 — y'z — 2, 3 j"2—y'-—ti 

Because of the range of yi, the second ot these equations gives the region between the two 

hyperbolas 
2c'2-//'2= 1 

The required content m the z'-plane is the area common to these two regions , that is, it 

is the interior of two crescent-shaped aioas between the hypeibolus 

2r'2-//’- = l, 3a'--y2 = 2 

The whole field of four-fold variation of the variables z and z' is made by combining 

any point within or upon the first ellipse with any point within or upon the contour of 

each of the crescent-shaped areas 

Ex 4. Discuss the four-fold hold of variation represented by tho equations 

•z2 + >'/2 + 2u (x / + yy') $ k2, 

v"£ + y"1 + 2c (xy‘ — y F) ^ /- 

20- The last two examples will give some hint as to the process of 

estimating the field of variation when it is limited by a couple of frontier 

equations in the form 
6 (sc, y, x) = 0, © (x, y, y) = 0, 

or in the equivalent form 

x ix> *'• y) = °> x (y> x'< y )= 
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We draw the family of curves represented by 9 = 0 for parametric values 

of x, for limited forms of 9, there will be a limited range of variation for 

x and y, bounded by some curve or curves Similarly, we draw the family 

of curves represented by 0 = 0 for parametric values of y ; as for 9, so for 0, 

there will be a limited range of variation for x and y, bounded by some other 

curve or other curves Further, the equations % = 0 and X = 0 may impose 

restrictions upon the range of x' and the range of y, which are parametric 

for the preceding curves. In the net result for the orange, when subject to 

the equations 9= 0 and (H) = 0, we can take the internal region common to all 

the interiors of these closed curves. 

The same kind of consideration would be applied to the equations % = 0 

and X = 0, so as to obtain the range in the /-plane as dominated by these 
equations. 

And the four-fold field of variation for z and z' is obtained by combining 

eveiy point m the admissible region of the c-plane with every point in the 

admissible region of the /-plane. 

Note In the preceding discussion, a special selection is made of the four-fold fields of 

variation which are determined by a couple of relations 0 <: 0, 0 ^ 0 

It is of course possible to have a four-fold field of variation, determined by a single 

relation </i Z 0 The boundary of such a field is givon by tho single equation 0 = 0, there 
is no question of a frontier. 

It is equally possible to have a four-fold held of variation, determined by rnoro than 

two relations, say by 0 ^ 0, 0^ 0, y < 0 The boundary thon consists of throe portions, 

givon by 0 = 0, 0^0, y<0, 0<0, * = 0, , <j>< 0, 0s=O, y=0 The frontier 

consists of three portions, given by 0<O, 0=0, y = 0 . 0=0, 0 0, y=0 , 0 = 0, 0=0, 

y < 0 And thore could arise the consideration of what may be called an edge, defined by 
the three equations 0=0, 0 = 0, y = 0 

Sufficient illustration of what is desired, for ulterior purposes in these lectures, is 

provided by the consideration of four-fold fields determined by two relations 
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Lineo-i,inear Transformations Invariants and Covarhnts 

Ltveo-lvnear tr ansformutums 

21 Whatever mefisure of success may be attained, great or small, with 

the geometrical ^presentation, the analytical work persists, the geometry 

is desired only as ancillary to the analysis So we shall leave the actual 

geometrical interpretation at its present stage 

The fundamental importance of the lineo-linear transformations of the 

type 
az + b 

in the theory of automorphic functions of a single variable is well-known. 

We proceed to a brief, and completely analytical, consideration of lineo- 

linear transformations of two complex variables* * * §, shewing the type of 

equations that play in the analytical theory the same kind of invariantive 

part as does a circle or an arc of a circle m the geometry connected with 

a bingle complex variable 

These lineo-linear transformations between two sets of non-homogeneons 

variables have arisen as a subject of investigation m several regions of 

research. Naturally, their most, obvious analytical occurrence is in the 

theory of groups When *he groups are finite, they have been discussed 

for real variables by Valeritmerf, Gordonand others, they are of special 

importance for algebraic functions of two variables and for ordinary linear 

equations of the third order which are algebraically integrable§. Again, 

and with real variables, they arise in the plane geometry connected with 

Lie’s theory of continuous groups || They have been discussed, with complex 

* For much of the following investigation, as far as the end of this ebapter, referenoc may 

be made to the second of the author’s papers quoted on p 1 

f Vtdensk Sehk Skr , 6 Raikke, naturvid. oy math. Afd , v., 2 (1H89) 

J Math. Am , t lm (1905), pp 453—526 

§ See the author’b Theory t>l DtJJerential Equations, vol. iv, oh v 

|| Lie-8cheffsis, Forl il. cont. Gruppen, (1893), pp 13—82. 
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variables, by Picard* in connection with the possible extension, to two in¬ 

dependent variables, of the theory of automorphic functions And a memoir 

by Poincar^ has already been mentioned-f\ 

22, We take the general hneo-hneai transformation (or substitution) 

between two sets of complex variables in the form 

w _ w 1 

az + bz'+c~ a'z + bY+ c' = a"z i~b"z‘ + c"’ 

where all the quantities a, b, c, b\ c, a", b", c" are constants, real or 

complex The first step m the generalisation of the theory for a single 

variable is the construction of the canonical form, and this can be achieved 

simply by using known results} in the linear transformations of homogeneous 
variables. For our purpose, these are 

U i = “■'] + bx, -f dra, 

]]'! — 0 + b J,2 + t'.l\, 

i/,,= «"j1 + //V., + c'V„ 
so that we have 

z _ ~ _ 1 w w ] 

■*<’ ,'/i >Ji !h 

1 he quantities w and w' are independent functions of £ and z , and there¬ 
fore the determinant 

n, b, c , 

b\ c 

<>", b", c" 

denoted by A, is not zero As a matter of fact, 

The equation 

f (lvi w_ i _ 
z, z 

a — 0, 

(n"z + b"s + c "Y 

b ■ c 1 = 0 

a , b'-e, o' 

I a" , b" , c"-e 

is called the characteristic equation of the substitution This characteristic 

equation is invariants when the two sets of variables are subjected to the 
same transformation , that is to say, if we take 

W' _ ] 

aw +0w' + 7 a'w + tf'vj' + y' " ct"w + "w + y" ’ 

Z’ = Z 1 

UZ + ftz’ + 7 a’z 4- fix’ + y' a"z + tf"z' + y" ’ 

* Acta Math., t. 1 (1882), pp. 297—820, 

f See the referenoe on p 1. 

+ Jordan, Trait6 dee substitutions. Book 
1911), ch, xih. 

it., t. ii (1888), pp. 114—136. 

u, ch. ii, § v; Burnside, Theory of groups, (2pd ed., 
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and express W and W' in terms of Z and Z\ the characteristic equation of 

the concluding substitution between W, W', Z, Z' is the same as the above 

characteristic equation of our initial substitution between w, w‘, z, z 

There are three cases to be discussed, according as the characteristic 

equation, which is of the form 

6* - A,#2 + A,d - A = 0, 

has three simple roots, or a double root and a simple loot, or a tuple root 

Case I Let all the roots of the characteristic equation be simple, 

and denote them by 6U $3. Then quantities ar /3, yr, determined as 

to their ratios by the equations 

<tar 4- a'4- a"<y, = draT , 

bar + b'/3r + b"y, = 0r&r, 

ca, + c’Pr + c"y, = 6ry, , 

are such that, if 

V, = ciri/! + &ry. + 7rya, XT = a,.r, + /3ra,+ y, «„ 
we have 

Yr = 0rXr 

The canonical foim of the homogeneous substitution is 

A’„ r2 = 6tXt, F = 6tX,, 

and so the canonical form of the lmeo-lmear transformation is 

a, w + &,w’ + 7, _ a,z + /8) z' + yt" 

a,«' + &w' + 7., ~ op + + 7, 

OjW + /3„w' + y, _ a3z + ft.:’ + y. 

asw + &3ii/ + 7, ^ a,r + Cf,.?'+ 7, 

where the quantities X, and ji, called the multipliers of the transformation, 

are 

being the quotients of roots of the characteristic equation. The multipliers 

are unequal to one another, and neither of them is equal to unity. 

This canonical form can be expressed by the equations 

W=\Z, W'=fxZ' 

Case II. Let one root of the characteristic equation be double and 

the other simple, and denote the roots by 6lt 0,, 6, The canonical form 

of the homogeneous substitution is 

F, = Fa = kX, + 6xXt, Y, = 03X,, 

where the forms of the variables X and F are the same {is in the first case; 

and the constant k, in general, is not zero 
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The canonical form of the hneo-hnear transformation is of the type 

where 
W=*\Z, W' = \Z'+aZ, 

and the constant tr, in general, is not zero The repeated multiplier X is 

not equal to unity 

Case III. Let the characteristic equation have a triple root 0 The 

canonical form of the homogeneous substitution is 

F, = ex,, Y, = aX, + 0X2, F, = fix, + yX3 t 0X,, 

and the canonical form of the hneo-lmcar transformation is of the type 

W = Z + p, W' = Z' + aZ +- r, 

where the repeated multiplier is unity, and the constants p, a, r, m general, 

do not vanish 

23 Any power of the transformation can at once bo derived from its 

canonical form Let the transformation be applied m times in succession, 

and let the resulting variables be denoted by wm and wm‘. then 

«iWm + + y, _ a,z + fixS + y, 

+ fi,wM' + y, «3z + fi,z' + ys ’ 

ct2u’m + fi2wn; + y2 = m a.z + fi±z + yi 

«*wm + fi3wm' + y, M a.,z + fi]z' + y„ ’ 

expressing wm and w;„,'m terms of z and z 

When Xm = 1 and pm = 1, the with power of the transformation gives 

an identical substitution For then 

<Wm + &Wm + y, _ OtWm + 3i Wm' -f ya _ «3w,„ + +_y, 
a,z + fiiZ + y, asz + fi.3z + ys a3s + fi,z' 1- y, 

When each of these three equal fractions is denoted by p, we have 

<*i (wtn - pz) + 8, (wm’ - pz') + y, (1 - p) = 0, 

«S! (w„, - pz) + & (wj - pz1) + 7j (1 - p) = 0, 

«8 (wm - pz) + fi, (wj - pz’) + y3 (1 - p) = 0. 

The determinant of the coefficients a, /S, y is not zero, because otherwise 

the canonical form of the original transformation would contain only one 

independent equation, hence 

Wjn — pz — 0, Wm — pz’ = 0, 1 - p = 0, 
that is, 

wm = Wm' = F, 

shewing that the r/ith power of the original transformation gives an identical 

substitution, if \m = 1 and pm — 1. 
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Invariant centres 

24 Certain places are left unaltered by the lmeo-hnear transformation 

between the z, z field and the «>, w field. On the analogy with the 

corresponding points in the homographic transformation w (cz + d) = az + b, 

these unaltered places may be called double places or (because repetitions 

of the transformation still leave them unaltered) they will be called the 

invariant centies of the transformation 

Returning to the initial form of the transfoi mation, and denoting any 

invariant centre by £ and we have 

+ b£ + r = 0%, 

+ //£' + c' — t)K‘, 

a'X + h'%' + c" = 6 , 

with our preceding assumptions, 0 manifestly is a root of the characteristic 

equation Hence when all the loots of this equation are simple, we generally 

have three invariant centres, say and f/, £, and f, and associated 

with f?,, 0.2, Oj respectively It is easy to verify that 

(0'iZi + + Jj) 
= (aa.j + a'/33 + «"7i) ?i + (boq + 6'/?2 + b"y3) + co2 + c'/?a ■+ c'y2 

— (ai£i + 

so that, as and 6, arc unequal, we must have 

as£j + + 7a = 0 

Similarly 
a»£i + A?i' + 7^ = 0, 

while 

«*i?i + + 7i + 0- 

Thus the invariant centres are given by the equations 

+ 7i = 0) 

aifi + /5s + 7s = 0_f 

a i + /5s + y.i — 0 \ 

«i £.• + fii ?»' + 7) = 0 i ’ 

ai ?■> + /5) fa + 7i = 0 | 

aif. + + 72 = 0 j ’ 

a result which can be inferred also from the canonical form of the trans¬ 

formation. 

In deducing this result, certain tacit assumptions have been made as to the exclusion 

of critical relations. It will easily be seen that the transformation 

w J2~z+z'l w */2 *=z- z', 

is not an example (for the present purpose) of the geueral transformation 
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Manifestly, we can take 

w, to', 1 -=-1 Mb -Ml', 1 = X 2, 1 - 2, 1 

f.'. 1 ! r„ £/> 1 ‘ &, 1 r. 1 

£. 1 ! &, 1 
! 

6'. 1 fe. 6'. 1 

w, w'. 1 - j Ml, W, 1 = ^ /, 1 - 2', 1 

?». 1 1 1 fc. Si'. l 

Cl. £/, 1 1 C., r/, 1 ft'. 1 1 

as a canonical form of the hneo-linear transformation. 
.ilM- 

This canonical form leads/J^^pce to an expression of the relations 

between the two sets of variables' m the immediate vicinity of the invariant 

centres Near f, and f,', we have 

: = £ + 2,2, Z = + \z\ * W = £i + 2, Ml, W’ = £/ + g,w', 
where 

where 

5, Ml 5, w' i ( 5,2 2, ill 
&-&“ a - £/ _ x’ 7 - c, -c.r 

5,10 S,w' _A* I | 2,2 2, *' ! 
IT- X I 7 - c. - r/i 

have 

,2, 2' = , bV + 2.2' , Ml = c, + 2, s «i' = ?/ + 

5,Ml Bav>’ _x 1 2,2 2, ■2' ! 
r; - r; M ! 7 - r, r.‘- c/J ’ 

5, Ml 5, mi' = I 1 S22 2, 2' ) 

- £ M i ?,& " bi “ :d 

Near & and £>', we have 

2 =£, + 5,2, 2' = £7 + 5,2'. W=£,, + 5jW, w' = £,' + 5,w', 
where 

S»w 8au>' _ j Sg2 5,2' | 

6^7. ” r.' - £»'= M 7 - & ■ S' - £') ’ 

2„«i _ 5„«/ f 5,2 _ 83z' I 

c.-6 lt-fc &'-&r 
Moreover this new canonical form, involving explicitly the places of the 

invariant centres m their expressions, shews that the assignment of three 

invariant centres and two multipliers is generally sufficient for the con¬ 

struction of a canonical form of a lineo-linear transformation of the first 

type. 



24] EXAMPLES 31 

Ee I. Same vary special assignments of invariant centres may lead to equations that 

do not characterise lmeo-linear transformations The resulting equations, in that event, 

belong to the range of exceptions. 

Thus, if we take 

\ 

J c/=- J (/= -a2) 

where a is neither zero nor unity, and if we assign at bitrary multipliei s A and p different 

from unity and different from one anothei, the canonical equations can lie satisfied 

only by 
w+w'= 0, z + z' = 0, 

which is not a lineo-liuear transformation of the z, z' held into the tv, w' field 

Othor special examples of this exceptional class can easily lie recognised. One 

inclusive example is given hy the relations 

-Cl' Ci~ Ci CiC.i - C iC/ 
1 Cl’ 

A 11 c 

-Cl' Cl-Cl CiCi' - CiCi 1 

A B c I Ch 

and then the equations acqnne the unsuitable foini 

zhe— Bw'+C—O, A; — Bz' + C=0. 

Er 2 When neither point m any one of the three invariant centres is at infinity, 

we can (by unessential changes ot all the vanables that amount to change of origin, 

rotation of axes, and magnification, in each of the planes independently of one another) 

give a simplified expression to the canonical iorin. 

Suppose that no one of the quantities f,, (3, then is zero , alternative 

foirns, when this supposition is not justified, are left as an e.veicise We then ttansfoiui 

the j-plane and the mj-plane by the longruent relations 

"-{WG-Ci) »»', 
and wo transform the z‘-plane and the (/-plane hy the congruent relations 

1 ~(i — )(/ — Ci) w - Ci — (C‘i ~Ci) ^ 

All ot tliese are of the typo just dcsciiljod , they loquire the same change ot oligiu, the 

same magnification, and the same lotation, foi the x-plwue and the (/'-plane , and likewise 

for the /-plane and the «•'plane The efleit of the trausfoi matiou is to place, in the 

Z, Z' field and the If, H" held, two ot the invuiiant entities at 0, 0 and 1, 1 

The third invariant centre theu becomes a, a, where 

Ci — Cl 

fc-Ci 

Ci — Ci 

(■/-Cl" 

The equatious, m a cauotucal form, of the hueo-lnioar transformations of the Z, Z' held 

into the If, If' held, having 0, 0 , 1, 1, a, a'; for the invariant centres, aro 

if, if', 1 Z, 1 

i, i, L 1, 1, 1 

a, a', 1 _ \ _Pj a, 1 

If- W’ 
— A 

Z-Z' 

fa' — If'a Za — Z\i 
lf~~ll" -/J Z-Z' ’ 
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where A and ft are different from one another and where (so far as present explanations 
extend) neither A nor fi is equal to unity, 

But it must be remembered, in taking these equations as the canonical form, that 
definite (if special) identical modifications of the 2-plane and the w-plane have been made 
simultaneously, and likewise for the i'-plane and the id-plane The result of these 
modifications, m so far as they affect the original lineo-linear transformation, is left for 
consideration as an exercise. 

Invariantive Frontiers. 
* 

25. In the theory of automorphie functions of a single complex variable, 
it proves important to have bounded regions of variation of the independent 
variable which are changed by the homographic substitutions into regions that 
are similarly bounded Thus we have the customary period-parallelogram for 
the doubly-periodic functions, any parallelogram, under the transformations 

w = z + &>i, w = z + 

remains a parallelogram and—with an appropriate limitation that the real 
part of m.j/m, is not zero—the opposite sides of the parallelogram correspond 
to one another Similarly a circle or a straight line, under a transformation 
or a set of transformations of the type 

(cz + d) w — az + h, 

remains a circle or sometimes becomes a straight line, and so we can 
construct a curvilinear polygon, suited for the discussion of automorphie 

functions These boundary curves—straight lines and circles—are the 
simplest which conserve their general character throughout the trans¬ 
formations indicated, they are the only algebraic curves of order not 
higher than the second which have this property They are not the only 
algebraic curves, which have this property, when we proceed to orders higher 
than the second, thus bicircular quartics are homographically transformed 
into bicircular quartics 

For the appropriate division of the plane of the variable, when auto- 
rnorphic functions of a single complex variable are under consideration so 
as to secure an arrangement of polygons m each of which the complete 
variation of the functions can take place, other limitations—such as relations 

between constants so as to secure conterminous polygons—are necessary. 
They need not concern us for the moment What is of importance is 
the conservation of general character in the curve or, what is the same 

thing, conservation of general character in the equation of the curve, under 
the operation of a homographic transformation 

26. Corresponding questions arise in the theory of functions of two 
complex variables. We have already seen that, when a z, z field is determined 

by two relations, its frontier is represented by a couple of equations between 
the real and the imaginary parts of both variables, and therefore what 
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is desired, for our immediate illustration, is a determination of the general 

character of a couple of equations which, giving the frontier of a z, z field, 

are changed by the lineo-hnear transformation into a couple of equations 

which, giving the frontier of a corresponding w, w' field, are of the same general 

character for the two fields The invaiiance of form of such equations, at 

any rate for the most simple cases, must therefore be investigated 

We shall limit ourselves to the determination of only the simplest of 

those frontiers of a field of variation which are invanantive in character 

under a lineo-lineai translation Also, we shall consider only quite general 

transformations, special and more obvious forms may occur foi special trans¬ 

formations, such as those contained in the simplest finite groups Accordingly, 

in the equations 

w w f 

az + bz‘ + c az + b‘z -f c a"z + b"z' + c" ’ 

we resolve the variables into then real and imaginary parts, viz. 

z = x + iy, z ~ x -t- iy, w = u + id, w = u + iv', 

and we require the simplest equations of the foim 

(f> (x, y, x, y) = 0, \jr (a:, y, j', y’) = 0, 

which, under the foregoing tiansforrnation, become 

<1> (n, v, u', v') = 0, T ( ii, v, v ) — 0, 

where d> and T are of the same character, m degree and combinations of 

the variables, as <p and t{r Moreover, the constants in the transformatron 

may bo complex, so we write 

a = a, 4- iaa, b = b, + ibit c = c, + ica, 

a' — a,' + iaa, V = 6/ + iba, c' = c,' + ic,a, 

a" = a/' + ta*b" = 6," + ib,”, c" = c," + w", 

in order to have the real and imaginary parts lastly, let 

iV, = a,x + — a./y — bay' + c,, N., = a.2x + b2x' + a,y + b,y' + c2, 

A,' = o,,‘w + bj'ir' — a2'y — bay‘ + c,', Aa' = a.2x + bax + a,'y + b,'y + c,', 

A/' = (ix"x + b"x — aay — ba'y' + c", Nt'' — aa'x + b.."x' + a2"y + b"y' + cs", 

d = Nr+N.r, 

then the real equations of transformation are 

Du = A, A/' + A, AY', 

Dv = A, A," - A, Aa", 

Du =A1'A1" + AYAa", 

Dv' = Aa'A," - A,'A2". 
F. 3 
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Further, we have 
D (u‘ + v-) = Ni + N?, 

D (mi + vv) = N,N,' + A^A./, 

d (m/ - u'v)=n,n; - n,n;, 

D (u1 + Vs) = A,'2 + Nf 

These equations express each of the quantities v, v, u\ v, u? + v2, mi + vo, 

uv — u'v, «/' + v'\ in the foim of a rational fraction that has D for its de¬ 

nominator. The denominator 1) and each of the numerators in the eight 

fractions are linear combinations (with constant coefficients) of the quantities 

1. x, V, n, V, tt2 + if, xx' + yy', xy - xy, .<" + >/'. 

The same form of result, holds when we express y, x, y m terms of 

ii, v, li, v', any quantity, that is a lineai combination of 1, x, y, x, y, 

a? 4- y~, aa’+ yy', xy' — j'y, r'1 + y"\ comes to be a rational fraction the 

nuineratoi of which is a linear combination of l, u, v, u', v', u! + d!, uv' + vv', 

uv' — u'v, u" + v'a, the denominator is a linear combination of the same 

quantities, and is the same for all the fractions that represent the values 

of x, y, x', y, x1 + if, xx +- yy', xy — yx, x* + yn Consequently, any equation 

A (x5 + f) + 0 (xx + yy') + I) (xy' - yx’) + B (a/2 + y"') 

+ Ex + Fy + Gx -f Hy — K 

is transformed into an equation 

A' (m* -f v-) + C (mi + vv') + D' (uv — u'v) + B' («'* -f if) 

+ E'u + F'v + G'u' + HV = K', 

where all the quantities A, ..., K aie constants, as also are A', .. , K', 

each member of either set being expressible linearly and homogeneously 

m terms of the members of the other set 

27. Thus the transformed equation is of the same general character, 

concerning combinations and degree m the variables, as the original equation, 

and theie is little difficulty in seeing that it is the equation of lowest degree 

which has this general character of invariance. Further, two such simul¬ 

taneous equations arc transformed into two such simultaneous equations of 

the same character. 

This is the generalisation of the property that the equation of a circle 

is transformed into the equation of another circle by a homographic sub¬ 

stitution in a single complex variable. 

Accordingly, when a z, z field having a frontier given by two equations 

of the foregoing character is transformed by a lineo-linear transformation into 

a w, tv' field, the frontier of the new field is given by two similar equations. 

We define such a frontier as quadratic, w'hen it is given by equations 

of the second degree in the variables, and therefore we can sum up the 
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whole investigation by declaring that a z, z field, which has a quadratic 

frontier, is transformed by a hneo-lmear transformation into a w, w' field, 

which also has a quadratic frontier 

28. One special inference can be made, which has its counterpart in 

homographic substitutions for a single variable, viz, when all the coefficients 

in a hneo-lmear transformation are real, the axes of real parts of the com¬ 

plex variables in their respective planes are conserved For when all the 

constants are real, we have 

vl) = (a"b — ab") (rf — Ay) -f (ac" — a"c) y + (be" - b"c) if, 

v'D = («"/>' - ab") (xf - x'ij) + {ac" - al'c') y 4- (b'c" - b"c') f. 

and therefore the configuration given by y = 0 and f = 0 becomes the 

configuration given by v = 0 and >i = 0 The converse also holds, owing 

to the hneo-lmear character of the transformation. 

These axes of real quantities 111 the planes of the complex variables 

are, of course, an exceedingly special case of the general quadratic frontiei, 

which can be regarded as given by the two equations 

A, (A 4- y") + if, (j-'2 4- if2) + C, (xA + yf) + D, (xf - sc'y) 

+ li, 1 x 4- F, y 4- (?) x + ii, y = if,, 

A , ((Vs + y*) 4- li, (A* + if) + (?, (irj' + yf) + I), (xf - Ay) 

* + E,.i + F ,1/ + Gj x 4- IIty — if" 

Let 5 and be the conjugates of ^ and a' respectively, so that 

? = x — iy, c = j' — if , 

then the general quadratic frontier can also be regarded as given by the 

equations 

AjZC 4- B,z'z + Cfzz + Ifizz + Jfz 4- Ff G,’z 4- Hfz = Ku 

Afz 4- Bfz‘ + Cfzz' + D.!z’z 4 IIz 4- Flz 4- G[z 4- Ifz = 

where A,, if,, K,, AJt ii2, K„ are real constants, while C,' and D,', GJ and />/, 

If and Ffi Ef and FJ, (?,' and Hf (f and Ilf aie pairs of conjugate 

constants. 

Manifestly any equation of this latest form is transformable by the 

lineo-hnear substitution into another equation of the same form 

29 Another mode of discussing the frontier of a z, z field, which 

is represented by two equations that have an invariantive character undei 

a hneo-lmear transformation, is provided by the generalisation of a special 

mode of dealing with the same question for a single complex variable 

The general homographic substitution affecting a single complex variable 

has the canonical form 
w — a _ K z — « 

w -/3 ~ 2- B ’ 

3—2 
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where a and /3 are the double points of the substitution, and K is the 

multiplier. Let 

w = u + iv, z = x + ly, a = a + wl, @ = b + ib', K = ke*1, 

where u, v, x, y, a, a', 6, b', k, k are real, then 

w — <z + t (v - a) _ . 

u — b + i (v — b’) * x~b + i(y-b')’ 

and therefore 

('« - b) (v - «') - (u - a) (t- - 6') 

an (u — a) (u — b) + (« — a) (v - b‘) 

(x - b) (y - a’) - (x - a) (y - b') _ , 

an (x - a)(x - b) + (y — a) (y — b') 

Hence the circle 

(x -a){x-b) + (y - a) (y - b‘) = m {(.r - b) (y - o') - (x - a) (y - b’)), 

which passes through the double points (a, a') and (b, b') of the substitution, 

is transformed into the circle 

(u — a,) (u — b) + (v — a') (v — b') = M {(u - b)(v — a') - (u - a) (v — 6')}, 

which also passes through those common points The constants m ami M 

are connected by the relation 

m — M = (1 + mM) tan k * 

At a common point, the two circles cut at an angle k, which depends only 

upon the multiplier, thus when an arbitrary circle is taken through the 

common points, it is transformed by the homographic substitution into 

another circle through those points cutting it at an angle that depends only 

upon the constants of the substitution 

This process admits of immediate generalisation to the case of two 

complex variables Let the hneo-hnear transformation in two variables be 

taken m its canonical form, and write 

a,2 + /S,s' + 71 = + ila, mi + /3j w' + y, = Lx + iLx", 

+ + 72 = 1} + ila", a2w + /S,«/ + 73 = Ld + iLt", 

o8z + f3,z +71 = 4 + il,", a3w 4- id, w' -+■ y, = 14 + iA3 ', 

where li, l", 4", lt\ l," are real linear functions of x, y, x, y' and Lx, L”, 

14, L.t", 14, L,' are respectively the same real linear functions of u, v, u, v. 

The .three invariant centres are the places given by the equations 

0
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and they are also the same places given by what are effectively the same 

equations 

II 1 z3'= 0, L, = 0 | 

e-
i II o
 o

 II y> 

o
 II 

^3 

o
 II 

*4 li 

s
 l: = o | 

if
 

o
 

1 Z," = 0 ii 
The canonical form of the hneo-hnear transformation now is 

Li +1/-/ _ li 4- 

l:+iir_ i' + iir 
lx i;+ X’' 

and therefore, among other inferences, we, have 

tan- 
, l'l; "-LX" , <X 

•1- P"L," 
- tart- 

ii>: + Vv 
- ai g X, 

tan* 
, Li Li ' - l;l;' , in; '-IX' 

+ i) LJ' 
- tan* i * 1 

/;/; + HV ~ 

tan- 
, t,:l; ’-P'Lr ' - IX' 

+ L,! L" 
- tan- 

IX + IX' 
nrg X — ai g p 

Acconlingly, the frontier configuration, represented by any two of the three 

equations 

ix'-i.x=<i(hv+m, 
i*v-hv=i(iM+m, 

where the three constants p, </, r are subject to the relation 

p + q + J =pqr, 

so that the three equations arc really equivalent to only two independent 

equations, is changed by the transformation into the frontier configuration 

represented by any two of the three equations 

l;l;‘ - l;w = P(Ul: + z,"4"), 

l;l" - L'L'1 = q (l;l; + z,"z3"), 

UW - JnL;’=r (l;l; + 
where the throe constants P, Q, R are subject to the relation 

P + Q + R = PQR, 

so that these three equations are really equivalent to only two independent 

equations. Moreover, if 

p — Ge^, X = Ileh\ 
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where g, h, 0, H are real constants while 0 and H are positive, we have 

P-p=(l + Pp) tan g, 

Q — q = - (1 + Qq) tan h, 

R — r = (1 + Rr) tan (/t — g). 

It is easy to verify that, if either of the relations 

P + Q + R = PQR, p + q + r = pqr, 

is satisfied, the other also is satisfied in virtue of these last equations. 

The quadratic frontier of the a, z field and the quadratic frontier of 

the transformed «>, w field both pass through the three invariant centres of 

the lineo-linear transformation 

Ei 1 In connection with the homographie substitution in a single vanablo 

W — « _ r- 2 — <1 

10 — $ 2 - ft 

(in the preceding notation!, shew that the constant m m the equation of the circle 

(x - a) (r - b) + (y - a') (y - It)=m {U -1>) (,</ - a') - {x - a) (y - V)} 

is the tangent of the angle at which the circle cuts the straight line joining the double 

points of the substitution 

Prove also that, if 2d is the distance between the double points, r is the radius of the 

foregoing circle, and Jt the radius of the circle into which it is transformed, 

1 2 cos I- 1 _sin2f- 

7f'2" 7JT + rl~ ~W ' 

Ex 2 Shew that the circle 

(ic—a)'‘ + {y-hjl=.n'i{{x-a')'l+ (>/ - i/)2) 

is transformed, by the honiographic substitution, into the circle 

(u -«)2 + (e- &)2=i\r2{(« — a')2 4- (t> — b')2}, 
where 

N=f.n 

Interpret the result geometrically. 

Ex 3 Construct a lineo-linear transformation which has 0, 0, 1,1, i, -1 for its 

invariant centres , and shew that there are quadratic frontiers of the z, 2' field, which 

pass through these invariant centres and are represented by any two of the three 

equations 
r2 + y2+#'2 + if 2 - 2 {xxJ■+■yy’) - 2 (.v/ - xfy) - 2 (y - /) 

“ a {x't+y2 - (x,1+y'i) + 2 (x - .r')}, 

xl +1/2 + x'2 +y'2 + 2 (.«' + yy’)- 2 (a/-,rty) — 2 {x+x') 

=0 (.z2+y2 - (x'2+y'2) - 2 (y+y')\, 

x2+y2- (,r'2+y'2) — y (xy' - x'y), 

provided the constants a, ft, y satisfy the relation 

y (a ft) = 2a + 2/3 - y 
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Verify that the hneo-liueor transformation changes these equations into equations in 

u} vf u, v of the same foim but witli different constants 0, y' satisfying the i*elation 

y(a+(f) = 2„’ + W-y' 

Shew that, at the invariant centre 0, 0, small vanations d; and dz cause small variations 
dw and did such that 

du> - dw — i d: - dz), 

dip+did = t ^ (dz+dz'), 

and obtain the lelations between the small variations at each of the other two invariant 
centres 

Invariants and, Cuvarmnts of quad/ atic frontiei s'. 

30 Owing to tho importance of the quadratic fioutlet, because it is 

given by two equations of the second order that are invariantive in general 

character under any lineo-linear transformation, we shall btiefly consider 

those combinations of the coefficients which are actually invariantive under all 

such transformations The pioper discussion of the in valiants and covariants, 

which belong to two equations of any order that are invariantive in gontnal 

character under the transformations, requites an claboiation of analysis that 

will take us far from the maul puipose into what ically is the full theory of 

invariants and covariants It will be sufficient to give the elements of that 

theory as connected with the fundamental procedure. Moreover, we shall 

take a general quadratic front'd and not inetely the special class which 

pass through the mvaliant centres of an assigned transfoimatiou , and we 

require the quantities which are invariantive nuclei all lineo-lmeai trans- 

foirnations and not merely urnlei one particular transformation We further 

shall only deal with such invariantive quantities as are algebraically 

independent of one another. 

31 There are several modes of procedure, in all of them, it is con¬ 

venient to use homogeneous variables, as was done in establishing the 

canonical form of the lineo-linear substitution. So we take 

z z 1 w w' _ 1 

*i a-2 ’ Vi !J- !h 

Also, as the vanables respectively conjugate to z, s', w, w have been mtio- 

duced, we shall require variables respectively conjugate to x2, yx, yt, yi} 

denoting these by xl, x,t, ,c8, yu yit y3, we take 

z _ z 1 To _ Tit _ 1 

~x3 ’ y, lh Vi ’ 
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For the present purpose, we take a z, z field determined by two relations 

Q < 0, Q' < 0, where 

Q = Ayxyx + Byxy.t + CyJh + Dy,(/, + Ey2yt + Fy^% 

+ Oy»Vi + Hy,y., + Ky3yt, 

Q' = A'yxyx 4- if'//, ih + 0’yx //, + F>'y.,yx + E'ytyt + F'yJ/, 

+ (i'yith + E'y%y3 + K'y*y3, 

its quadratic frontier is given by the equations 

<2 = 0. Q' = o, 

which, on division by the non-vanishing quantity ?/.,v/3, acquire the form of 

our earlier equations In Q the coefficients A, E, K are real, while B and D, 

C and 0, Fund II, are conjugates in the stated pairs; and similarly for the 

coefficients in Q' 

The method of procedure that we shall use is based upon an application 

of Lie’s theory of continuous groups to these quantities Q and Q, and the 

application proves fairly simple in detail when we use umbra! forms 

simultaneously with the expressed forms Accordingly, wo introduce 

umbral coefficients a,, a,, <r„ a(, a.', <r/, with their conjugate's a,, a.,, aH, 

5/, 5/, 5/; we take 

II = rr,!/, + tr,y2 + o/y, ] 17' = rr/l/, + cr2';f/, + <r,'yt | 

n = a,i/i + ayj, + ff,ys | O' = a,'?/, + + a/ }h J 
and we write 

V = on, </ = n'n' 
We then both define and secure the umbral character of these new 

coefficients by imposing the customary condition that the only combinations 

of the umbral constants which have significance arc those leading to the 

expressed coefficients m the form 

A = cr, cr,, D - o-2o-,, G = <r3<7,, 

B = <rxa.,, Ij = C2(72, H = (J;, 5„ . 

C ~ (7X <7y, F = cr,jCT,, K = ct.,cts 

and likewise for the coefficients of Q' 

When the hneo-linear transformation, in the form 

yx = axv + bxt + ca\ j 

ys = n'xx 4- b'x% + cxn j-, 

y3 = a"xl + b"x.j + c"xt) 

and its conjugate, in the form 

yx = aa\ +bx, + 'cxs ' 

y3 — d'x, + 6'av + c% ■, 

-y,« a"xt + + c'% 
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are applied to Q and Q', these become P and P' respectively, so that 

we take 

Q = P, = 
and then 

P = Axxj.£, + Brr,,',, + C,x,x., + D,j\,.ri 4- Aja 2x2 + P,x.3x2 

4 A|x, r, 4~ //1•I’,-Cj + A,J', f,, 

]y = + li,'xLx2 4- CV», r, + r, f A’/j^ c.j + r, 

We take 
4-G, x T- 4- II, x3x2 4- K, J iXj. 

S = .s,.r, 4- s2x. 4- s3tu S' = s/.r, 4- A'3Vj + S|V,(, 

»S = a,,/-, 4- iy, 4- i,A" = s.'c, 4- r, 4 5,'.r„ 

wheio s3, s,', «/, s/ are new umhi.il coefficients, while s,, s2, s3, si, si, s,' 

are their conjugates, and vve write 

P = SS, Q = S’S', 

regarding 17 as transformed into S, II into S, II' into S', and II' into S . 

Then the laws of relation between the umbral coefficients in II and S and 

in fl and S, are 

s, = a<r, 4- n <r„ + a <r, 

S.2 = 6cr, 4- //<r. 4- b"<r, 

s3 = ccr, + c'a, 4- c/V,, 

&, = na, 4 a4- n'V3 1 

a, = 6<x, 4- Bo- 4- b"o, t. 
_ :,_r 

s, - no, +CO..+C CT, ) 

and the same laws of relation hold between the umbral coefficients in IT 

and S', and in II' and S' Finally, in connection with our transformation, 

we write 
A — j cr , b , c !, A = | u , b , c |, 

1 a', b', c' ! , b', o' | 

i a , b , c a y b ,< \ 

where A has the same significance as before, A is its conjugate, and neither 

A nor A vanishes 

32 As an example of an invariant, consider tin1 quantity 

i = | A„ B„ C, ; 

j A, Ei, E, ; 

i A, IP. IP 1 

To express it in umbral symbols, three sets of these are required because it 

is of degree three in the non-umbral coefficients Denoting these by 

Si,s2,s3, ti, fa, 4, Mj, u2, u3, with their conjugates, we easily find that I is 

equal to 

*1- s2, Si ! 
s, , S2 , *8 

4 > 4, 4 i 4 > 4, 4 | 

Ml, «a, uH 1 Mi, Mj, «a 
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that is, to 

*1 

that is, to 

0-1, 02, 0S a , b , 0 1 
1 0-,, 02, 03 

Tl, TS a , b'. c' ! 1 T, 

Vu u2, us a". b". c" 1 
1 

o,. Us 

and therefore 

a 

a 

d" 

fAA 01. 02, 0! j 01, 02, 0j 

T,( T2, 
Ti 

t,, r„. 

o., Vi, 

1 

Vj 1 Vi, V-i, Vi 

\ A„ B,, Ci = AA A, B, C 

! A, A. A 
1 lA 

E F 

I <P, IP, A', ! ! (I. II, A' i 

b , 

V, 

l”, 

a relation which establishes the invariantive property of the quantity I 

which is a function of the non-umbral coefficients of P alone. 

The same combination of the coefficients of P' alone is easily seen to be 

an invariant The simplest covariants are P and P', for we have 

Q=P, Q' = P' 

33. Passing now to the consideration of invariants and of covariants 

that belong to the general quadiatic frontiei, we define any quantity 

y» Vu >h, A, . , K, A', , K') 

to be such a function if it satisfies a i elation 

<t> = A^A^, 

where <f> is the same function of x,, .<■>, ar„ '.i\, .o>, x3, A,, .. , AT,, A/, , A,' 

as <fr is of its own arguments We shall deal only with integral (not with 

fractional) homogeneous combinations of the variables and the coefficients, 

and we assume that, in the foregoing relation which defines an invariant 

or a covariant, the index of A is the same as that of A because we are 

limiting ourselves to the properties of real frontiers as defined by two 

real equations And we retain the customary discrimination, by the occur¬ 

rence or the non-occurrence of variables, between a covariant and an 

invariant 

By Lie’s theory of continuous groups*, it is sufficient to retain the 

aggregate of the most general infinitesimal transformations of a continuous 

transformation in order to construct the full effect of the finite continuous 

* For proofs of this fundamental theorem, see Campbell, Theory of continuous groups, 

chap in 
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transformation. Accordingly, for our immediate purpose, it is sufficient to 

obtain an algebraically complete aggregate of integrals of the set of partial 

differential equations which characterise the full tale of the infinitesimal 

transformations in question To obtain these, we take 

a = 1 + e,, b =£,, c = e., | 

a' — b' = 1 4- e,,, c' = e„ J- , 

u — 67, b = , c — 1 + ) 

® = 1 + €j, b — €,, c — 5, \ 

d = t4, b — 1 4*(' = r0 f . 

a" = t7, b = t„, r" — 1 4- gj, I 

For the most general infinitesimal transformation, all the quantities e and t 

are small, arbitrary, and independent of one another, subject to the condition 

that e„ and e„, for the nine values of 11, are conjugate to one another. 

The laws of relation among the umbral coefficients now are 

S, - <r, ■--- €jtx, 4- e4oq4- f7ff, j i, -5, = t,5, 4- t4a. + t75, 

- tjo-, 4- e6cr., 4- efffj j , - a.. = 1,5, 4- t„a,, 4- esas 

S3 - tjCT, + e,,o-, + e#o\ ) s, - a., - ej5, 4- i„cr2 4- f„CT, 

Consequently the uifinitesiinal variations ol the coefficients in the equations 

of the quadiatic frontier aie given by the equations 

8A = At — A = etA 4- e4 /) 4• e7G 4- t, A 4- (4 4- t70 

SB ~ B\ — B = e^B 4- e4 A 4- e7 A ~h ?» A + e5/f + s8b 

8(7 — (\ — (' = 6] C1 +1 tF 4- e7 K + e ,A 4- IS 4- t,,(7 

8Z) = Di — D = e2 A 4- eBA 4- eBG' 4- elD 4- fjA 4- e7 A 

8A’ = A, - E = eji + e,A 4- ejl 4- £,1) + t„A + hF , 

8A = Fi — F = 62C 4- 6^’+ eBA 4- 4-10E 4- e#F 

8(r = (fj — 0 = t.,A + e,£> 4- e„(1 4- «7(t 4- e4A 4-t7 A 

8// = /A— i/ = 4- e»E 4- esH + t2(? 4- 15// 4- isK 

8A = A, - A = ea(J + e„F 4- epA 4-4- ijl 4- A , 

with a corresponding set of nine expressions for the infinitesimal variations 

of the coefficients A', .... K' 

The infinitesimal variations of the variables are given by the relations 

y, — aq = 4- 4- e3*s j y, — a"i = e,Xj 4- t2;<;2 4- 

y.t — a:2 — t44- «ta;2 4- e«£s V, Vi ~ ■ri= ^1*1 + *=V';2 + ' > 

y3 — %„ = tyaij 4- e6a;7 4- £ej;i ) ]/» ~~ = _ 
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and therefore, so far as small quantities up to the first order are concerned, 

we have 

*1 ~ ?/i = - Vi ~ e-iU-i ~ ' 

■r2— H'< — ~ eilh ~ ec //» ~~ ‘■nj/a ' > 

xt ~ ?h - - «7.Vi - - e9y. 

And, lastly, we have 

A A = 1 4" I* €5 "t €# y tj 4* y £(,. 

•4 - fh = - ti/A - - ii2A. 

•*i - ,'/j = - e*/yi - it lit - e»Vi 

•4 — y, — ~ e7y, - hjh - «»2/» 

34 Now any covariant or invariant satisfies the equation 

<p(a!u u\. ,r„ .ra, r,, .r,, 4,, .. , IT,, 4,', .... A-,') 

= (AA)-><4> (/A, //„ //,, //#, 4, . , K, A', .... A"') 

Substitute in this defining equation the values of A,, .... Ku A', 

yu 2/a, 2/8, AA, write 

D m + E 4* F 4 + 4 * *’ .4 + r 4 1, aA f)A' 9A' a A' 

A ^ 4 4 Kt)K+G'dG' + H'djf + K'f)K' I 

a;, 

0,= = 4 
94 

+ A 
9D 

4- f? 
97? 

+ 4' 
V 

94' 
+ D' 

V 

dD' 
4 A' 

0 ! 

0A' 

= A 
9 

dB 
4 E 

a 

?E 
+ E 

4+ * 
, 9 
dB’ 

+ E 
, 0 
BE 

,+ H 
, 0 
dH' 

4 = = C 
9 

9(i 
4 A 

d 

9A 
+ A 

. 0 

0A 
4- O' 

0 
9(7' 

+ A' 
0 

0A' 
+ 1V 

0 
0A" 

0,- = 4 
9 

ad 
+ B 

0 
0A 

+ A 
9 

9A 
+ 4' 

0 
97/ 

+ B' 
0 

077' 
4 C 

0 
0A' 

ft = = 4 
9 

0A 
+ D 

9 
BE 

+ A 
9 

077 
+ 4' 

0 
BE 

+ D' 
0 

0A" 
4 A' 

0 
977' 

ft* = 4 
9 

9 A 
+ B 

0 

077 
+ A 

0 

a# 
+ 4' 

9 
0G' 

+ F 
0 

0P' 
4 C 

0 

9/7' 

ft= = 4 
9 

0A 
+ n 

9 

9A 
+ G 

0 

0/7 
+ 4' 

0 

00' 
+ 7)' 

0 

0A' 
4 A' 

0 

dK‘ 

ft= = D 
9 

94 
4 E 

0 

dB 
4 A 

0 

0A 
4 7)' 

0 

04' 
A FA 

0 

BIT 
4 A' 

0 \ 

0A' 1 

ft = - B 
9 

04 
+ E, 

i 

0 

SP 
4 H 

0 

0G 
+ S'. 

< 

0 

04' 
4- FA 

0 

97)' 
4 H' 

0 j 

0G' ) 
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e.=D 

et = B 

07 = <? 

07 = C 

t)K= (x 

e, = c 

A + pA + pA + j)' A. + py A. 4 p' A_ 
a<j dH+ dK+ dG,+ dn^ p die 

d ,, d r.d d d d 
dC + h dF^ dK + 1 dC' + E dF'+ 1 dK' 

A + H - a. K 3 4. r A , u' d , ir A 
dA + H dB A dO G dA'+ H dir K dv 

i , P 3 , K d_ r„ 3 p/ 3 d 
dA + eA + A 3A + ' ad' + F dll'+A dW 

d . TI d ,, d ,,, d TT, d JF, d 
dB + H dE + A BF + G dU'+ H dE'+ A 0/f' 

as+ FdE+KdH+ c dir + F W + A a//' 

and expand both sides of the equation in powers of the small quantities e 

and c Equating the coefficients of these small quantities on the two sides, 

and denoting out covanantive function 

<Js, !h> Us, Us, !/<• A • ■> E, ii', A") 

by <f)} we have the paitial diffeiential equations 

°s<}>- !h^ = p<f> 

rich 

0,<p-ys?ilh = P<f>, 
a 3<f> 

0r°^~ :hdtiA 

eA-U^=p4>, 
is j 3cf> 
B»<P ~ !h df.-PV 

e>+-4t=°- ^-4=u 

0*+-y%r0’ 

0**-4i=0’ 

6'+-*tyr°' ^-y4tr° 

w-y'ltr0’ Oi<i>- !h p * = 0 
1 y* 

e'+-4tr0' 
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as equations satisfied by the function <f>. Moreover, by Lie’s theory, any 

function <f>, which satisfies all these equations, is a covariant (or invariant) 

of the required type 

35. Having regard to the fact that ultimately we are dealing with 

quadratic frontiers and with transformations between w, w' and z, z\ we 

shall consider only those integral functions <f>, which are homogeneous (say 

of order in) in y,, y3 and homogeneous (also then of order m) in //,, //«, ya 

We also shall eonsidei only such functions cf* as are homogeneous (say of 

degree n) in the coefficients A, ..., K and homogeneous (say of degree n) 

in the coefficients A', , K'. Then, from the first set of equations and by 

means of Euler’s theorem on homogeneous functions, we have 

n + n' — in = 3y 

It follows that oveiy integral invariant of a quadratic frontier has its degree 

in the coefficients of the boundary a multiple of 3 

When the index p is taken as equal to the foregoing value, and when we 

note the equality between the indices of A and A in the relation which 

defines the covariants, the first six equations can be replaced by the fom 

- 'Atre^~ !Lhrd^~ 
and we then letain the other twelve equations, so that wo have a set of 

sixteeri partial equations of the first order 

It is easy to verify that the conditions of co-existence of these sixteen 

equations are satisfied, either identically or m virtue of the equations in 

the set. Hence the set of equations constitutes a complete Jacobian system 

of partial equations of the first order. The possible arguments in any 

solution cj> are twenty-four ju number, viz, the nine coefficients A, K, 

the nine coefficients A', ..., K', and the six variables y,, y,, y3, //,, yt, y$, 

consequently, by the customary theoiy of such systems*, the number of 

algebraically independent integrals is eight, the excess of the number of 

possible arguments over the number of equations in the complete system. 

36. After the limitations that have been imposed, every integral 4> of 

the system is homogeneous of degree rn in y,, y2, y3, and also homogeneous 

of degree rn in y„, y2, y3. Let it be represented by 

s u^.p'nr yr-v~q yhiW1^ yfyf; 

See toy Theory of Differential Equations, vol. v, obap tit. 
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then, m order that it may satisfy the equations, we must have the relations 

(among others) 

^4- Up,q,p',11' (p + 1) Up+itq:p‘tq' —0 ' 

^4 t p, </ (}> +1) Up q p'+1,^ = 0 | 

■ t'p,q,p',q’ ~~ (<J +1) Up,q hi,p',q‘ = 0 

^7 • Upi<jtpity ~ ((] +1) Up q p q'+1 = () 

By the continued use of those equations, all the coefficients Up<,/tPil/ can be 

obtained when once (say U) is known, and therefore, as usual in the 

theory of homogeneous foims, the whole covariant can he ieg.uded as known 

when its leading term Uyl"'yl~m is known 

Again, and just as in the ordinaiy theory, the leading coefficient U of the 

covanant satisfies the equations 

0,{/ = <), d,f7=0, 8eU = (), dsf/ = (), 

8.U - 0, 0,11 = 0, 0M= 0, QJJ - 0, 

0,U-0nU = 0, 9'.U—8,,U = 0 

These ten equations also are a complete Jacobian system of partial diffe¬ 

rential equations of the first older Each integral can involve the eighteen 

possible aigunients, constituted by the constants in the two equations of the 

quadratic frontier, and therefore the system of equations possesses eight 

algebraically independent integrals which aie the leading coefficients of the 

eight covariants constituting the algebraically complete set of integials of 

the full system of equations It follows that, m this method of proceeding, 

we have to obtain eight algebraically independent integrals of the preceding 

set of ten equations in the second complete Jacobian system 

37 The actual pioeess of solving the equations is the customary process 

that applies to complete Jacobian systems that are linear and homogeneous 

The algebra requned in the manipulation is long and tedious for the present 

set of equations, so the results will merely be stated, especially as they can 

be obtained by another method (or combination ol methods) applicable to 

the equations of the quadratic frontier The summary of the final integra¬ 

tion of the ten equations, which are to possess eight algebraically independent 

integrals, is as follows — 

Every integral of the system is expressible algebraically in terms 

of the eight independent integrals A, A', I, J, J', I\ T, T', where / is 

the invariant of Q, I' the similar invariant, of Q\ 

J = SA 
d i 

9 A ’ 
T — ^ 
J -*AdA“ 

(the summation being extended over all the coefficients of Q and (/), 
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and where T and T' are the coefficients of X and y, respectively m the 

expression 

(XA+fiA') j B; 
a ■ 

i j 1 G ’ 
D 

1 B, C' | G', D' 

+ (XE + U,E') A ’ G \ 
A, G 

A', C' ‘ A', G‘ | 

+ (XK + ^K')! A; B1 
1 A, U \ 

1 A', B' I 1 A', ]y i 

+(xf +pF');A; B 1 G, A 

A', B' i : O', A' j 

+ (A’ J) , , c, A 

1 A', D i | C, A' j 

Moreover, A determines a covariant Ayly, + .... that is, Q, A' deter¬ 

mines a eovariant A'y,T/, +..., that is, Q', T determines a covanant 

Tyfy? + , say R, T' determines a covariant T'y,2//,8 + ., say R', and 

/, J, J', 1' are invariants Finally, any quantity connected with the 

quadratic frontier that is invariant!ve under the lineo-linear trans¬ 

formation is expressible in terms of Q, Q', R, R', I, J, J', I' 

38. Had our quest boon for invariants alone, the preceding analysis 

shews that they must satisfy the equations 

0i-ot=o, 0„-e.,=o, 0,-e^o, 

02=o, 02 = o, 0t = o, 0e=o, 07 = o, ds = o, 

02=0, 0, 0, 02 = 0, 0» = O, 0r = O, 0„ = O 

But always 0, + 0S + 0,, = 0, + 0O + 0„, 

so that, in virtue of the first four we have 

0> = 0>, 
and therefore 0S = 0S, 0„ = 09. The two equations 

0\ 0q — 0 and 0S — 0e = 0 

are therefore satisfied in virtue of 

02-02=0, 02-02=0, 

and so the system for the invariants contains fourteen independent equations. 

They are a complete Jacobian system, and involve the eighteen arguments 

constituted by the coefficients of Q aDd Q'\ hence there are four algebraically 

independent invariants. 

They can be obtained simply as follows. We have seen that 

A, B, C 
D, E, F 

G, H, K 
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is an invariant of Q, the same function for aQ + /9Q', where a and ft are 

arbitrary parameters, also is an invariant of the system. Let 

clA + ft A', aB + ft B’, aC + ftC = a* 14- a?ftj + aft'J’ + ft*I’, 

aD + ftD', aE + ftE', aF + ftF' 

aG+ftG', aH+ftH', aK + ftK', 

then I, J, J\ /' are four invariants, independent of one another, and there¬ 

fore suitable for the aggregate of the four algebraically independent invariants 

They manifestly agree with the four invariants in the earlier aggregate of 

invariants and covariants 

Ex Prove that the complete system for a single equation Q=0 is composed of (J and J. 

39. The detailed consideration of the invaiiantive forms will not be con¬ 

sidered further What has actually been done should suffice to shew the 

march of a general method of proceeding for the particular problem 

But one warning must lie given if this general method is to be applied to 

a wider problem, viz. the determination of all the covanantive concomitants 

of all kinds whatever that are to be associated with any single form or with 

any couple of forms that are integral and homogeneous in y2, y„, and uIro 

integral and homogeneous of the same ordei in ?/2, y3i where we still assume 

the lineo-hnear transformation for y,, y, and its conjugate for ?/,, y2, y, 

as the transformations under which the concomitants arc to be invaiiantive 

For this problem, it is necessary to introduce variables contragredient to the 

vanables a?,, x,, ,r( and y,, y,, according to the customary law of variation in 

the theory of forms, that is, it we denote these further variables by £,, 

Vi, and their conjugates, they are subject to the lineo-hnear trans¬ 

formations 
= cry, 4- a'V‘1 + 1 = ) 

= biji 4- 6'ryi 4- — brjx 4- b'rji 4- b"v1. 

?,i = cy, + c'y2 4- c" Vs I = < Vi + l'% + c''Vj ’ 

It will be noticed (as is to be expected) that the uinbral coefficients, used to 

express a given homogeneous form symbolically, are themselves contragredient 

to the variables. Manifestly we have 

V\Vi + ViVi + ViVi = 

y,Vi + hVi + 1/jVs = 4- X.& + -Cjf3. 

It need hardly be pointed out that, while the complex variables xx, ic3, 

correspond to the point-variables m the ordinary theory of ternary forms, the 

complex variables f3, £, correspond to the line-variables in that theory. 

In order to obtain the most general concomitant of any kind, we should 

apply the preceding method to a function of the type 

y-i, y3, y>, y*, y», vi, vi, vi, v„ vs, v>, a, ...), 
F. 4 
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involving all the variables and the coefficients of any or all of the initial 

given system of forms whose aggregate of concomitants is wanted. There is 

plenty of room and opportunity for research; but the investigations would 

take us into the wider pure algebra of the theory of homogeneous forms, and 

they will not be pursued in these lectures. 

Ex 1. Let U and V be any two covariants that belong to a form or to a system of 

homogeneous forms , and let 
JUIV JbUlV 

8//s fyafyn 

J)U?>V _dUdV 

2 ~ fyj fyi fyi tys 

JU?VJ<UoV 

1_fyi %/2 '>i 

y J>U fir dUdV 

<'J/i 

v_?u?r duar 
2~3y, o//i dy, ?T/j f * 

y JiUdV _du?t\r 
3~3yi?y2 dy^dl/i) 

Provo that Ft, F2, F3 aro cogredient with yu y2, ya, and that F,, F2, F, are cogredient 

with y\, , and shew that 

fii f ai T|, J2, .1 :i) and 1 ( F], ) 2, F3, Flt Fa, Fj) 

are covanants of the system. 

In particular, when U and V are the two initial quantities Q and (/ belonging to 

a quadratic frontier, determine the two covariants which are thus constructed 

Ex. 2 Shew that when a quartic frontier, generally covarmntive under a lmeo-liuear 

transformation, is given by equations Q~0 and (/=0, where symbolically 

= and 1/ = II,1!I1'2, 

tho algebraically complete set of invariants and pure covariants belonging to the system 

consists, m addition to y and (/, of sixty functions. 

40 One other matter is left for investigation outside the range of 

these lectures. We have already dealt with the canonical form to which the 

expression of a lineo-hnear transformation can be reduced. Also we have seen 

that there are quadratic frontiers, represented by the two equations of lowest 

degree, which keep a general invaiiantive character under such a trans¬ 

formation It remains to consider what is the simplest canonical form to 

which two simultaneous equations representing such a quadratic frontier 

can be reduced, where there no longer is a question of invariance under a 

single transformation only*. This more general problem has some analogy 

with the problem of reducing to canonical forms the equations of two conics, 

* The simplest examples of forms, invariant under a single given transformation, have 

already been given, they aie the equations of the frontier which passes through the three 

invariant centres of the transformation, 
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In that solved problem, certain invariants of the system are necessarily 

conserved, m this propounded problem, the four invariants of the system of 

two equations, which already have been obtained, must also be conserved. 

One appropriate form is suggested almost at once by the known result m 

the case of two conics referred to their common self-conjugate triangle. It is 

natural to enquire whether two forms 

P — Ax,.i, + Bx,t3 + Gx,t3 + Dx,x, + Ex.x, + Fx3x, + Gxa5, + Hxaj^ + Kz:ifs, 

P’ = A'x,J, + B'x,x., +C'x1xa + +E'x.ax,l+F'xaxt + G'xa.r, + H'xsx.t 4 K'xp,, 

can simultaneously, by homogeneous linear transformation of the variables, 

be changed to forms 
P = X,X,+X3X., + XZXU 

P’ = + B"X.J, + G" XaXa, 

where no two of the three quantities A", B", C” are equal to one another, 

and no one of them is equal to unity. With these last restrictions, wc have 

/ + aj + a?J' + asI' = (1 + aA”) (1 + aB") (1 + aC"), 

for arbitiary values of a, consequently, the three invariants <///, J’jl, /'// 

(which are absolute invariants) aie independent of one anothei, and no one 

of them vanishes. Thus the general condition as regards conservation of 

invariants is satisfied 

Now all the quantities A, E, K, A\ E', K' are real, hence a requirement 

that they shall respectively acquire the values 1, 1, 1, A", B’\ C", where 

A", B", G" are real, imposes six conditions Also B and I), B' and I)', 

C and G, O' and GF and H, F' and H', are (in each combination) conjugate 

constants, hence a requirement that all these coefficients shall vanish 

imposes twelve conditions. In order, therefore, that the suggested canonical 

forms shall be possible, eighteen conditions of the specified kind must be 

satisfied. 

Suppose, then, that the variables are transformed by the relations 

x, = OX, + ipX.j 4- y\rX j, 

x,= 0' X, + 4>'X,+ +’Xt, 

x, = 6" X, + <fi'X, + i{r"Xi, 

where the complex constants are at our disposal. Let 

0, * > V = 
’ e. 4>. 

e\ f' o\ . yj/ 

0", f. t" 0", f'. 
r n 

then 1 = V v I, 

A" + B” + C" = VV/, 

B"G" + C"A" + A"B" = VVJ', 

A"B"C" = VVi', 
4—2 
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so that the values of A", £", V" are given by means of the quantities 

Jjl, J'/I, I’jl, three real quantities. Also, as each of the nine arbitrary 

* constants 0, , ijr" is complex, we have effectively eighteen constants at our 

disposal, formally sufficient to satisfy the eighteen conditions which take the 

form of linear equations, 

It therefore may be inferred that a couple of general forms P and P’ can 

be transformed so that they acquire forms of the suggested type. 

Periodic transformations. 

41. These results, as regards hneo-hnear transformations, are general 

Simple forms occur when the transformations are periodic, that is, are such 

that after a finite number of repetitions in succession we return to the initial 

variables; and these provide the generalisation of finite groups of homo¬ 

graphic transformations m a single variable. 

The requirement of periodicity will impose conditions upon the unequal 

multipliers X and p in the first type (§ 22) 

The second type cannot be periodic unless a vanishes. But if <r does 

vanish, the type can be periodic when an appropriate condition is imposed 

upon the repeated multiplier X 

The third type cannot be periodic unless all the constants p, a, x vanish. 

But if all these constants vanish, we have merely the identical transformation 

at once. There is no modification of the variables, and consequently there is 

no question of periodicity 

When therefore we deal with periodic substitutions, we have to consider 

only the first type of transformation which has unequal multipliers X and p, 

and a limited form of the second type which has a repeated multiplier X. 

42 A multiplier is the quotient of two roots of the characteristic 

equation, hence the equation, which is satisfied by a multiplier, is the 

eliminant of 

6s-A,0J + As6>- A = 0, 

fs08- A,ti(?i+ XA6 - A=0 

The eliminant is of degree nine in t, but there is a factor (< —l)3, which is 

irrelevant to the present issue and must therefore be rejected One of the 

simplest ways of obtaining the residual equation is to proceed by the method 

of Bezout and Cayley for constructing the eliminant; it leads to the result 

1 +1 + V , 

A>t (1 +1), 

Ait3 , 

A] (1 +1) 

A (1 + t + f) + AAf 

A it (1 + t) , 

A2 

A] A (1 +t) 

A(1 + t + t>) 

= 0, 
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which, when the determinant is expanded, becomes 

Aa(«* + l)+(3A3-A,AsA)(f5-M) 

+ (6A3 - 5A, AaA + A,8A + A,1) {t* + <-) 

+ (7A- - BAjA^A - A,2A./ + 2A,JA + 2Aa>) tJ = 0. 

This is a reciprocal equation, as is to be expected from the mode of occurrence 

of the multipliers in the canonical form of the transformation 

For the first type of transformation, the six roots of this multiplier 

equation are 

\ /a, 
1 1 X fi 

X’ fi’ fi’ X’ 

and the solution of the equation effectively involves the two quantities 

A,A-i and A2A_t, which are homogeneous (of order zero) in the coefficients 

of the original transformation. 

For the second type, the six roots of the multiplier equation are 

\ X, i, t, 1, 1, 

and we must have 

27A2 - 18AiAaA - A,3A./ + 4A,’A + 4A,/ = 0, 

being the discriminant condition for the equality of two roots of the charac¬ 

teristic equation 

When the lineo-lmear transformation is periodic of order n, then 

\" = ], = 

and it must be the lowest integer for which both the conditions are satisfied. 

Thus, for the first type, 
X = «r/n ^ _ gS«»/n 

where r and s are unequal positive integers, greater than zero, less than n, 

and such that r, s, n have no common factor other than unity Then 

A, = 0S (1 + e*',rln + e™"'"), 

As = (>•+*)'«), 

A = 033eJ’r'<r+8i/n, 

and the conditions for periodicity of order n are 

^2 | J -j- rxrjn ^ gSnttf/nj—: 2 = ^ g^nsln g2ffi(r+«)/n|—1^ 

J J g2mrfn _|_ gSim/nJ — a = ^g-2m(r-H?)/n> 

The conditions thus imposed upon r and * require that n should be greater than 2 ; 

and so lineo-linear transformations, of which the characteristic equation has three unequal 

roots, cannot possess quadratic periodicity. 
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As a matter of mere algebra, it is easy to verify that the original transformation 

w vf X 

az + bz' + c a'2+b‘Y + c' a"z + b"z + c" 

is of quadratic periodicity in the two cases settled by the relations 

b' — 1 <' a1 ’ 
b c a —l 

a" _b" _e"-l 1 -a?-a'b ’ 

a—1 b' c c (o- 1) j 

b' +1 (/ _ a' 'i 

6 c a +1 I 

a" b" _ c" +1 _ 1 - o® - a'b J 

« + l b' c c(a + l) J 

In each case four parametric constants, whu h may be taken to be a, 6, e, a', are left 

unrestricted by the limitation of quadratic periodicity. 

For the second type of transformation, the characteristic equation of 

which has a double root and a simple root, the discriminant condition has to 

be satisfied by all forms. If the transformation is to be periodic, another 

condition (the vanishing of the quantity <r) must also be satisfied whatever 

the order, and then the order of periodicity is the lowest value of A. such 

that 

V-l, 
so that we can take 

A = emrln, 

where r is any integer between 0 and n, which is prime to n 

Ex 1 The simplest example of such a transformation is 

w—Az, w'=\z'. 

The 2 plane can be divided into n triangular wedges, bounded by lines through the origin 

inclined at successive angles 2jt/» to one another , and similarly for the s' plane The 

whole 2, d configuration is then tiansformod into itself by a double rotation of each plane 

through an angle 2nrjn about an axis through the origins perpendicular to the planes , and 

the z, z' field, made up of two such wedges m the z and z planes, is transformed into 

the w, icf field, made up of two similar wedges in the w and V’’ planes 

Ex 2. When the original transformation is linear and has the form 

w=az+b/ + c, w' ^a'z + b'z' +c', 

a factor 6— 1 can be dropped from the characteristic equation which then becomes 

ff1 — (a + 6’) 6 + ah' - o’6=0 

Let the roots of this equation be v and v ; the canonical form of the substitution is 

aw+ jSw’ + y = v (az + ), 

a'li’++ y' = v' (a'z -f /9Vy ), 
where 

aa + a'j9=va , fia + 6'|3 «= v|3 , Co + o')9 = (» — l)y, 

aa1+a'ff = v'a, ba'+b'f3'^v'(S', ca'+c'l9'= (s'— 1) y. 
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Ex. 3. Find a canonical form of the periodic transformation 

u>y/i^z+z', w' Ji — z-z' 

Ex 4 Prove that all transformations of the linear type, which have quadratic 

periodicity, belong either to the form 

or to the form 
w = — z + e, w' = - z1 + <•', 

, , . 1 - a2 ,1 +a 
«' = az + bz + c, to — —,— z- az-,— c, 

b It 

where a, b, c, c' are arbitrary constants 

Ex. 6 Prove that all cubic linear ti ansformations have either the form 

io<=8z + c, it/ = ff- +1', 

or the form w=az+bz'+c, with either 

w' ~ - ~ (it2 + ad2 + 6) : - (« + 81) - ~ (a - 6), 

or 

»'= - j (o2 + o+l)i-(o + l)x.'+r', 

where 6 and 6' arc lmagimny cube-roots of unity, and a, b, c, <S are unrestneted constants 

Ex 6 Shew that, if 

az + bz' + c a':+b'z' + <' a"z + b"z' + c" ’ 

Aw+A'w'+A" llw+li'w' + B" Ctc + Cw’ + 0"’ 

where A, A', A", , V, C, C" aie the respective minors of a, o', a", ..., e, c', c" m tho non- 

vamshing determinant A, where 

A =1 o , b , c i , 

and prove that 

[ a , V, t/ i 

a", b", <" 1 

{a"z+b"z’+cyj^;y 

Provo that the roots of the characteristic equation for this inverse transformation, 

expressing i and z' in terms of tv and to, viz 

A-<f>, A' , A" =0, 

B , B' — tj.i, B" 

C , O' , C"-4> 

are connected with the roots of the characteristic equation of the original transformation 

by the relation 
6(f>—A , 

and verify that tho invariant centres for the inverse transformation are the same as those 

for the original transformation 

Ex. 7. Obtain for a lineo-lmear transformation, between two sets of n variables, 

results corresponding to those in the preceding example 
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Ex 8. Prove that the invariant centre and of the general lineo-linear trans¬ 

formation is given by the equations 

Cl Ci _ i__ 
A" + cffl = B"+<-'6, “ C"- (a + b') 6, +■ ’ 

the denominator in the third fraction being dmtmct from zero. Prove also that, for the 

quantities m (3, y,, 

ai fl+ft +Tl cr^r+y) jf+ 

Ex 9. Shew that, when n is a prime number, all the periodic substitutions 

w = az+bz'+c A 

w' = - ° ~1 (a - emlH) z~(a- 1 - em/B) *' - * (a - /’rl/n) j 

for .1 = 2, . , n- 1, are powers of the same periodic substitution l'oi >■!. 

Shew that all the substitutions 

ir—az + r, w = a':'+c', 

whore a and a' are primitive »th roots of unity, are penodu 

Do the two preceding classes contain all the purely lineal substitutions which are 

tieriodic ? 



CHAPTER III 

Uniform Analytic Functions 

43 We now pioceed to the more immediate and direct consideration of 

the properties and the charactei istics of functions of two independent complex 

variables, beginning with the simplest fundamental propositions Not a few 

of these can be considered as well known , they are included for the sake of 

completeness, and also tor the sake of reference. Some among them are 

expiessed in forms that appear more comprehensive than the customary 

enunciations. Others of them appear to be new, such as those which deal 

with the characteristic relations and the properties of two functions of a 

couple of variables considered simultaneously, and these, as being more novel 

than the others, aie expounded at fuller length (Chaps, vn and vm) 

Though the exposition is restricted to the case when there are only two 

independent complex variables, it should he noted that many of the theorems 

belong, mutatis mutandis, also to functions of n independent variables. For 

others, however, further ideas are needed before a corresponding extension 

can similarly be effected. 

We begin with definitions and explanations of the more frequent terms 

adopted, many of which are obvious extensions of the corresponding usages 

for functions of one complex variable 

The whole range of the variables z and z is often called the field of 

variation The extent of the field sometimes depends upon the properties of 

the functions concerned, otherwise, it implies the four-fold range of variation 

between - x and + x. 

A restricted portion of a field of variation is called a domain, the range of 

a domain being usually indicated by analytical relations. Thus we may have 

the domain of a place a, a', given by relations 

\z — a\^r, |z' — a j<r', 

we may have a domain given by relations 

$(x-a, y - ft, x - a, y - ft') «; c, i]r (x - a, y - ft, x - a, y' - ft') ^c, 

where a = a + ift, a' = a + i/3', the equations being such as to secure a finite 
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range of values of z and a finite range of values of z. When r and r (or c 

and d, in the alternative case) are small, the domain of a and a' is sometimes 

called the vicinity, or the immediate vicinity, of the place a, a. 

In these definitions we substitute for Iz — a\ when a is at infinity, and 
1*1 

r-n for \z'-a'\ when a' is at infinity. 
\z 1 

44 A function of z and z, say w =f(z, z'), is said to be uniform, when 

every assigned pair of values of z and z gives one (and only one) value 

of w. Through familiarity with properties subsequently established, the 

notion that z and z may attain their assigned values in any manner 

whatever sometimes comes to be associated with the definition, but the 

notion is not part of the definition 

The function w is said to be multiform, when every assigned pair of 

values of z and z gives a finite number of values of w, the finite number 

being the same for all z, z places where the function exists. Sometimes it 

is convenient to specify the number in the definition , when there are m values, 

and no more than m values, w is sometimes called m-valued 

A function w may have an infinite number of values for given values of 

z and z. Among such functions, each class can bo specified by its own 

general property. Thus one simple class of this kind arises from integrals 

of functions that have additive periods 

Just as with uniform functions, so with multiform and other functions, 

familiarity with properties subsequently established loads to the notion that 

a specification of the path or range by which z and z attain their values 

will lead to the acquisition of some definite one among the m values , again, 

the notion is not part of the definition 

Even in this mattor of the description of the range of z and of z\ care must be 

exercised , it may become necessary to take account, not merely of the actual range of z 

and of z, but also of the mode of description of those actual ranges. Consider, for 

example*, the function 

«>.. («*-/+1)4 

Take z=0 and z' = 0 as the initial place, and consider the branch of w which has the 

value +1 at that place. 

We make z vary from 0 to +1 by describing (in the direction indicated by the arrow) 

a simple curve OAB which, when combiued with the axis OB of real quantities, encloses 

the point it and does not enclose the point i 

* The example was suggested to me by Prof W. Burnside Another example, viz. 

ic = (s-z' + l)4, 

is given by Sauvage, Ann. de Marseille, t. xiv (1904), section i, a particular path being specified. 

Obviously any number of special examples ol the same type can be constructed. 
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We make z vary from 0 to +1 by describing the straight line O' C' m the direction 

indicated by the arrow; the point D' on that line is given by z' , 

Consider two different descriptions of these paths 

In the first description, keep s' at O', while z describes the whole path OAB , and then 

keep z at B, while z’ describes its whole path O'O' Foi this description, the final value 
of w is manifestly + 1 

In the second description, keep z at 0, while z‘ descrilios the part O'If of its whole 

fiath, then keep s' at I)', thus making w- (z2+])^ for that value of :, and now make 

z describe its whole path OAB When s arrives at B by this path, the value of w is 

— (|)4, that is, when ; is at B and s' at D' by this description ol paths, the value of 

(z2~ s' + 1)4 has become -(J)4 Now keep : at B, and let s' desuibe D'C', the remainder 

of its path , the final value of w is manifestly — 1 

It thus appears in tho case of the special function that, even when the range for each 

variable is perfectly precise, the final value can depend upon the mode of description of 

the piecise ranges The matter belongs, in its simplest form, to the theory of algebraic 

functions 

45 A function f (z, s') is said to lie continuous if, when the leal and 

linaginaiy parts of 5 and of z arc substituted and tho function is expressed in 

its real and imaginary parts v + m, both the functions u and v of a1, y, x\ y' 

are continuous. 

Let the function f(z, z) be uniform and continuous, everywhere within 

a field of z, z variation It is said to be analytic, when it possesses 

derivatives of all orders with regard to both variables 

d/(g, z) df(2, z) 
dz ’ rV ’ " ’ 

which axe uniform and continuous everywhere within that field, or what is 

equivalent, it is said to be analytic if j\z, z) is an analytic function of z when 

any arbitrary fixed value is assigned to z and is also an analytic function of 

z when any arbitrary fixed value is assigned to z. But it need hardly be 

pointed out that, while f(z, z ) is—under this definition—expressible as a 

power-series of z alone having functions of the parametric z for coefficients, 

and also as a power-series of z alone having functions of the parametric z 

for coefficients, an expansion in powers of z and z simultaneously is a 

matter of proof, to be considered later. 
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It is a known proposition that an absolutely converging double series can 

be rearranged in any manner and can be summed in any order, the sum 

being the same m all arrangements and for all orders of summation. 

Suppose, then, that the double power-series 

SScm,m- (z - a)m (z - a')m‘, 

where m and ni are positive whole numbers (including zero), and where the 

coefficients cmim> are constants, converges absolutely at every place within some 

domain of the place a, a'. The series, within the domain, defines a function , 

and the function is said to be regular, or to behave regularly, everywhere 

in the domain of the place a, a'. The domain must not be infinitesimal in 

extent; and the place a, a' is said to be an ordinary place for the function 

When it is desired to indicate specifically that the double series contains 

only positive powers of z — a and z' — a' in accordance with the definition, we 

call the series integral, or whole, or holomorphic and sometimes the function 

is called integral or holomorphic within the domain of the place a, a'. 

When the power-series is finite in both sequences of indices, the function 

is a polynomial in z and z. When it is infinite in either sequence or in both 

sequences, the function repiesented is usually called transcendental, unless it 

can be represented by algebraic forms. 

When the function is transcendental, the question arises as to the 

range of the domain over which the power-senes converges. When the 

domain is limited, a question arises as to whether the power-series, 

representing the function within the domain, can be continued analytically 

beyond the limits of the domain. 

Perhaps the simplest example of a multiform function w of z and z occurs, 

when the three variables are connected by an algebraic equation 

* A (iu, z, z')= 0, 

where A is a polynomial in each of its arguments. As already explained, it 

sometimes proves desirable in this connection to consider two multiform 

functions w and w, defined by algebraic equations 

C (w, w, z, z‘) — 0, D (w, v>, z, z') = 0, 

where 0 and D are polynomial in each of their arguments. In this event, the 

ordinary processes of elimination enable us to substitute equations 

A (w, z, z') = 0, B {w, z, z’) = 0, 

for the equations (7 = 0, D = 0, but care must be exercised to secure that the 

separate roots of A = 0 and of B = 0 must be grouped so as to give the 

simultaneous roots of (7 = 0, X>= 0. 
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For example, we shall have (Chap, vi) to consider an expression 

22 
R <ll>, U)\ 2, 2') 

where R (w, w\ c, 2') denotes an integral polynomial in w and w\ and whore the double 

finite summation extends over the simultaneous roots of C— 0, 1) -0 In the method 

adopted for its evaluation, we are led to introduce terms which arise from combinations 

of the roots of A =0, B — 0, that do not jnovide simultaneous roots of 0=0, 0 = 0 

In the first case, to the function w and, in the second case, to the 

functions w and w' the epithet algebraic is assigned. Manifestly, among 

the four variables w, w, 2, z\ any two can be described as algebraic functions 

of the other two, unless (in limited cases) elimination should lead to a single 

relation between two variables alone 

In this initial stage, it is not necessary to state the definitions of terms 

pule, accidental (01 non-essential) singularity, essential singularity New and 

modified definitions are required, because functions of two variables possess 

properties which have no simple analogue in the properties of functions of 

a single variable These definitions will he given later (§§ 57, 58), when 

the properties are undei actual consideration. As will be seen, a dis¬ 

crimination between functions of two variables and functions of more than 

two variables can be made, so as to give, a classification proper to functions 

of two variables Wo may, however, mention in passing that, in the vicinity 

of any non-essential singularity a, a', a uniform analytic function is expressible 

in a form 

Q(z — a, z — a) 

P (z - a, z - <(.') ’ 

v here Q and P are functions, which are regular in a domain of a and a. 

Such a function is sometimes called meromorphic in the vicinity of the 

place a, a. 

The simplest example of a meromorphic function occurs when both Q and 

P are polynomial functions of their arguments, m that case, the function is 

called rational. 

Some properties of regular functions 

46. Consider functions that are regular everywhere in some finite domain 

of an assigned place a, a. By writing z — a = f or ^, according as ] a | is finite 

or infinite, and by writing z' — a = or , according as j a j is finite or is 

infinite, we can take the assigned place as 0, 0, without any loss of generality. 
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We then have a theorem* connected with the definition of the analytic 

property, as follows •— 

When a function f(z, z'),for values of z\^r and of\z'\ r, is a regular 

function of z everywhere within the assigned z-circle for every value of z within, 

its assigned circle, and also is a regular function of z' everywhere within the 

assigned d-circle for every value of z within its assigned circle, it is a regular 

function of z and z' everywhere within the indicated field of z, z variation. 

Let the function f (2, z) be represented by a series 

f(z> z') = 2 gm (z) zm, 
7rt-0 

as is possible under the first hypothesis If Ma' denote the greatest value of 

\f(z, z')\ for any assigned value z/ of z within the /-circle, and for all the 

values of z within its circle, our series gives 

f(z, V) = 2 gm(zfi)zm, 
?n = o 

and then by a well-known theoremf, we have 

IMV>i<£ 

Consequently, if M denote the greatest value of \f(z, z’) | within the 

whole 2, 2' field considered, we have 

m; M, 

and therefore 
. , M 
i Qm (z0 ) I < t,m , 

for all values of m, for any value of 2/ such that ] | ^ r. Consequently, for 

all values of 2' in question, we have 

\gm{z)) < 

Now f (2, 2') is a regular function of 2' for every value of z for which 

| z | < r, hence g0 (2'), being the value of f{z, 2') when 2 = 0, and 

9m{z')=->w dz'«f{z’ z'\ ’ 

for all values of m, are regular functions of z. Accordingly, we can write 

00 

gm (z) — 2 cmr n Z n , 
»=0 

* The theorem ie true under eren less restricted conditions See two papers by Osgood, 

Math, Ann., t In (1899), pp 482—464, ib , t. Ini (1900), pp 461—164 , and a paper by Hartogs, 
ib., t lxu (1906), pp. 1—88 

t Theory of Functions, § 22. 



46] HEUULAB. FUNCTIONS 63 

where the senes represents a regular function ot z ; and as | gm (z ); throughout 

the whole range of variation of z' is less than Mjrm, wo have, again by the 

theorem already quoted, 

i | M 1 
1 C«!.” I < rm ' r'n • 

On these results, consider the double senes 

F(z, z)= 2 ii zw z", 
m~ 0 rt-0 

if it converges absolutely, we can take it in the form 

00 ( 00 'j 
2 | 2 cm:nz'n\zm, 

n — 0 (m—4) J 

that is, 

<7m (F) zm, 

and so we shall have 

F{z,z')=f(z, z) 

for the field of variation within which F{z, z') converges absolutely But 

we have just proved that 

i rin,n i < }m)'n . 

and therefore we have 

IF{z, z')\ = V V r ~m r'n , 
^ — l')ntn z * i 

;»~0 n- 0 

» zr 

*Z 2 ^ | Cw,* | |*|"|y|» 
m '0 

“ * M 
y.r/1 r'n I 

m - 0 w — 0 • ’ 

M 

1 121 f I z I { 
| 1 -■ 1 - ,[ 
1 r r ) 

for all values of \z \ < r and all values of \z'\<r 

This result establishes the absolute convergence of F(z, z'), and so we 

have 

f(z, z ) = t i cm,nzmzn, 
W-l) M =0 

where the double series converges absolutely m a field | z | ^ k < r, z | ? k < r, 

while & and k' are not infinitesimal. 

Consequently the function f(z, /), under the postulated conditions, is a 

regular function of the variables z and z 
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47. 
domain 

Now let /(z, z) be a regular function of z and z everywhere in the 

, a - o i s? r, | / — a' j < r‘, 

and within this domain let M be the greatest value of If(z, z)j. 

power-senes for f (z, zr) is 

we have 

and also 

shewing that 

/(z, z ) = 2 2 cM n (z — a)m (/ — <x')'\ 
W — 0 W — 0 

1 jfr»+»/(*, /)) 

m! n! ( dzm dz " j 

i ^ M 
I c,«." i < • 

(0”l + "/(S, /)) 
| dzm0z'n 

^ «i1« > 
i)7 

Then, if the 

Another expression for cm>„ can be obtained by a simple extension of 

Cauchy's well-known integral-theorems for a single variable Denoting by 

r/(z) a function that is uniform, continuous, and analytic, within a range 

z - a j < r, we have 

jdn,<7(A)l n'{ g(z) 

t dz" j„a-2mj (z-a)"+> U*' 

for all values of n, the integrals being taken positively round any simple 

closed cuive which lies entirely within the region and encloses the point a. 

The extension indicated can be established in exactly the same way as these 

theorems just quoted , the analysis and the reasoning aie so similar to those 

for the simple case that they can be stated very briefly. 

For our function f(z, z) which is uniform, continuous, and analytic, and 

therefore icgular, everywhere m the domain 

we have 

z — a j < r, | z' — a | ^ r', 

If f(z, z) 
/(it, A') = -s— | 

2m J z — a 
dz, 

\<)mf(s, /)j m ’ f f(z, /) , 

V r)z'" j,.a 2ml(z-u)m+' ’ 

the integrals being taken positively round any simple closed curve which lies 

entirely within the region bounded by \z — a\ = r and encloses the point a, 

and holding for every value of / for which f(z, z) is defined. Again,/(a, z') 

, owing to the character of f(z, a!) within the z, z' field 

of variation, are regular functions of z' throughout the /-region bounded by 

and 
\f(z. d)\ 

dzm ) 
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] z' — a | = r', hence, by a repeated application of Cauchy’s integral-theorems, 
we have 

1 ff(u.z'),, 
/(«, a ) = «-,/ - ,dz, Z7n] z —a 

f)M « ’ f f (o, s’) , , 

dJ* Z /_„/ = 2m I (z - a'y**1 dz ’ 
the integrals being taken positively round any simple closed curve which lies 

entirely within the region bounded by z — a | = r and encloses the point a'. 

The variations of z and z' are independent of one another, as also are the 

mtegidtions in the two planes of the variables, combining the results, we 

have 

/(«, «')= 1 fj f “ * dzdz 
(Imyj 1 {z - a) (z — a ) 

-iff , f(lyl)—, dzdz, 
(z - a) (z - a ) 

0,n+'1./ (s, s') 

dzmdz'n 
in 1 n "{[ 

~ I (z — n) 
f(z, -’) dzdz', 

4ir- ! I (z — a)"11-1 (z' — <t')n+l 

the mtegials being taken round simple closed curves in the 2-plane and the 

/-plane, the 2-curve lying entirely within the region \ z — a |= r and enclosing 

the point ft, and the /-curve lying entirely within the region | / — o' | = r' and 

enclosing the point a. 

We thus have expressions, in the foun of double contour integrals foi the 

value of f(z, z) and of every derivative of J(z, s') at the place a, a. 

Again, let M denote the greatest value of j f (z, z') j for places within the 

whole z, z domain of vat lation repi esented by j z — a | < r, | z — a | ^ r', then 

.it every place on the double contour integral we have 

1 /'(«■> -') i *5 M. 

Proceeding exactly as in the case of a single variable, we can shew that 

t\z, z) iff , , dzdz' 
(z— a) (z —ci) 

and therefore 
j f(a, a') | sc M, 

which is merely a statement that the value of \f{z, z) j at a particular place 

in the field is not greater than its greatest value m the field, and we can 

also shew that 
jff_f(z, z) 
\ JJ (z- «)"+' (r - 

and therefore 
dm+uJ(z,z')) : . . if 

' ( dz’"ds'K 

which is the former result. 

< in ' n 

v. 
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Another method of stating these results is as follows. Let z, / be any 

place ivithm the field of vanation where f(z, z) is regular; in the 2-plane, 

take any simple closed curve lying within the field and enclosing the point z, 

say a circle of centre z, and let t denote the complex variable of a current 

point on this curve, and in the /-plane, take any simple closed curve lying 

within the field and enclosing the point z', say a circle of centre z, and let t' 

denote the complex variable of a current point on this curve Then 

t (z< z) = - 

dm+n J(z, z ) _ 

dZmdz',‘ 

III 
>u 1 it 

47T 

(t 

rii 

dtdt\ 
t (t f) 
z)z ) 

t(t, f) 

(t- jV"+1 
did? 

Ex Provo that, for the foregoing function f (z, z) and with the foregoing curves of 

integration, the value of each of the integrals 

1 
4tTj // f(*. O rftdt', /(<■ o 

it'-z')**' 
dt dt‘, 

for all positive integer values (including zero) of m and », is zero 

48 We shall come later (Chap vi) to a fuller discussion of double 

integrals involving complex variables , meanwhile, it will be sufficient to state 

that integrals of the foregoing ty'pe, in which the integrations with regard to 

z and to z' aie completely independent of one another, belong to a very 

special and limited class of double integrals They may even be regarded as 

merely iterated simple integrals, and many of then properties can be deduced 

as mere extensions of conesponding properties for simple integrals 

Thus we know that the value of the intcgia! 

taken positively lound the whole boundary of any region within which f(z) 

is uniform, continuous, and analytic is zero, even if the region is multiply 

connected, and it follows, as a corollary, that the value of the integral taken 

round any simple closed curve is unaltered if the cuive is deformed without 

crossing any point where f (z) ceases to have any one of the three specified 

qualities. This result can at once be generalised, merely through a double 

use of the result, into the following theorems •—■ 

I Let F(z,z') denote a function which, over a limited region in the 

2-plane with a complete boundary unaffected by variations of z', and over a 

limited region in the /-plane with a complete boundary unaffected by variations 

of 2, is uniform, continuous, and analytic Then* zero is the value of the 

integral 

~4\,fj F(z,z')dzdz', 

* The constant -1 /!*■* is inserted here merely for the purpose of formal expression 
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taken positively round all parts of the complete boundary* of the ^-region, 

and positively over all parts of the complete boundary of the z' -region, when 

these boundaries are entirely unrelated to each other 

II For the same type of function, and with the same type of range of 

integration, the value of an integral 

z')dzd.z' 

is unaltered when the r-boundary and the ^'-boundary are deformed separately 

or togethei in any continuous manner which, while leaving them unrelated, 

does not cross a place where the function F (z, z') does not possess each of 

the three specified qualities 

It is to be noted that the theorems are exclusive and not inclusive 

The function F (z, z') might cease to possess the property of being continuous 

(thus it might, be c ~-z'~2 in a region round 0, 0), without causing the integral 

:') dzdz' 

to be ditfeient horn zeio as in the first theorem, and without preventing the 

deformation contemplated in the second theorem Koi the moment, we aie 

concerned with the theoiems as enunciated 

49 As an illustration of the use of all the preceding theoiems, we shall 

establish the following proposition — 

Let f{z,z) denote a function which is tegular everywhere in a z, z field 

represented hi/ the idatums 

and let l and, t' he cm rent variables m that field Then the magnitude 

(Vwi4i g'/tfl ^Mi+1 

£~\ | fin +1 fmi fiu+lf'nn 

when the double integral is taken positively round a, simple closed curve 

enclosing the z-ongm and the point z in the z-plane, and positively round 

a simple closed curve enclosing the z'-oiigm, and the point z m the z -plane, is 

a polynomial P {z, z) of older m m z and of order n m z\ such that 

W)1 = ]3r+"/(^. *')) 
(* dzr()z11 j o ( oz'llz- Jz.-o,r~o 

for the values r = 0, m and s = 0, n m all simultaneous combinations, 

the descriptions of the two curves being unrelated. 

* That is, with the customaiy convention as to the punitive direction of any portion of the 

boundary when the included area is multiply connected , see my Theory ot Function«, § 2 

5—2 

/('■*-') ulJf fit, 
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The result can also be stated in the form 

and can easily be established from this form by inserting the values of 

jl - }~(1~t) a,ld j1 ~(t') | - (1 “ l') iind U9ing the preceding 

theorems as they stand 

The derivation of the result fiom the first form requires a different use of 

the theorems it is set out as an exercise in integrals, as follows 

As our function f(z, z) is everywhere regular within the specified field, 

the only places where the subject of integration ceases to be regular within 

the selected domain are 

(1) at £ = 2, t‘ = z , (11) at t = z, t'= 0, 

(in) at£ = 0, t'-z', and (iv) at t = 0, £'=0. 

After the preceding theorems, it is sufficient to take the double integral 

positively along small curves round these places. 

For a double integral, taken positively round small circles, one in the 

2-plane ■round the point z and one in the /-plane round the point /, so that 

we should have 
t — : = pe6\ t' — z' = p'e0’1, 

where p and p' aie small, while 6 and 6' vary independently each from 0 to 

27r, the value of the integral 

— 4-tt- J J •'( ’ ’ \r+l + t'M 1 r+1S ( t- z)\t' - /) 

is the value of 

t f £'rt+l £mll£'«-H j" 

when t = z, t’ = /. that is, the value of the integral for the double small 

contour round z and z »/<*. 2'>- 

For a double integral, taken positively round small circles, one in the 

2-plane tound the point z, and one in the /-plane round the ongin, we have 

t - z = pe6\ t' - p'e*‘‘, 

where p and p are small. We then expand (£' — /)—1 in ascending powers 

of t'jz1, and obtain the subject of integration m the form 

fit, t‘) fm+' /“+* 2w+,2'n+I| v 

~ t-z "[r+i + £»+•~ s~o/*+>' 

Let integration be effected first along the path in the 2-plane, on the 

completion of the path, the value of the integral is 

jin+i ^'u+i ZmJ> 1 Zn ’ 

^m+i £'«+i fm f ]ffn+\ f 

■2 *!'('• *K1 + ^7t+x ffn+i 
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that is, 

EQUAL TO A POLYNOMIAL fill 

This integral is to bo taken along a small closed path in the /-plane lound 

t'— 0, and f(z, t') is regulai, hence the value of the integral is zero Thus 

the double integral, taken round the place t = z, /' = (), contributes zoio to 

the value of the general double integral 

Sinulaily the double integral, taken round the place t = 0, t' — /, contributes 

zeio to the value of the general double integral 

For a double integial, taken positively lound small circles, one m the 

j-plane round the ^-origin and one in the /-plane round the /-oiigm, we 

have 
t - pe*', t‘ — p'e*', 

where p and p' are small. We then expand {(t — z){t' — /)’_l m ascending 

powers of t/z and <'//, the expansion being 

4-0 l - 0 

and so the subject of integration becomes 

/ f l y'»-H i l */«-41) f^t'v 

f(1 +~ — * ( v v 
7 V ’ t'n+1 tu 

The value of the part 

1 t! zm+l t*t!* 

taken round the contour as indicated, is zero (Ex , § 47), because there are no 

negative poweis of t' Similarly the value of the pait 

477 ?//«<■ y 4~0 

is zero Again, the value of the integial 

is 

1 /■//,, dtdf 

~ 4^1.1 

(t, t')\ 
‘ j 1—0,1'—0 

(1 0r‘-7(b 
)?■1 a ' dt'dt 

for all integers r = 0, 1, ., and all integers s = 0, 1. When either of the 

integeis r and s is negative, and when both of the integers are negative, the 

value of the integral is zero. Hence, taken positively along the small contour 

that encloses the 2-origm in the 2-plane and the /-origin in the /-plane, we 

have 
1 fit, f) 

477s IJ (t — Z) {f — /) t"H 't’n+l 
zrz* (dr+lf(t, <')] 

r'*'t s<rs<'‘ jt-o,i'-„_' 
in n 

V V AW -W 
J’^0 #^0 
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We thus have the full value of the integral 

i rr /«,<') |2”,+i /n+i zm+iz'n+i] 

4ir2 JJ /) {<*+' + t'»+' ~ r+'t^H | 

taken positively round our contour in the 2-plane enclosing the 2-ongin and 

the point z, and our contour in the /-plane enclosing the /-origin and the 

point /, it is 

/>. z’)~ 

m n 

V V 

r- 0 s o 

V/1 (3,+t f(t, t’)\ 

r U' { ht' dty 

Consequently our magnitude 

f(z, /) + 
47T2 

fit, n 
-Z)(t'- ■') 

(z"l+1 /'*! 1 

(«'”+’+ C,H 

*'n-H 

pn+lpn+i dtdt' 

is equal to the polynomial 

r/_/* |a* "/(<, O) 

_!■ I H ' ( j,_0,C-i,_ 

and when this polynomial is denoted by P (z, /), we manifestly have 

\otytP{z, /)( = t')| 

t dz'dz* j 2-n, r'-n 1 <trdt' }("»,(-n 

The proposition is thus established 

m n 

N V 

r~0 # =n 

The result, in eithei form, shews that it is possible to construct an ex¬ 

pression the value of which shall be a polynomial approximation to the value 

of a function/(r, /) in a field where it is a regular function of its arguments. 

fix Evaluate the integr.il 

_ 1 [f 0_ -n/’"n+ 

with the same Hup}K>ai turns as to the function / u, /) >m<l the range of integration 

50. In connection with the function f(z, /), which is regular within 

the field | z — a, | < r and | / — a' j r, and for which j f(z, z) j is never greater 

than M for places in the field, consider a function cp (z, /) defined by the 

relation 

<j> {z, /) = 

Evidently <f>(z,z') can be expanded m a double power-senes in z — a and 

/ — a', which converges absolutely for values of z and / such that 

| z — a | < p < r, i z — a p < r , 

and it has the form 

4> 0, *') 
rr ^ v (z - a)m (/ - ft')n 
m ** '**" ’ njt/ni ~'n 
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Hence 

FUNCTIONS 7] 

dm_+n_cf> (z, /) _ ni' n1 v v (p + tn)' (q + v)'(z — aY (s' - a')'' 
dzmdz'n rmr'H m ' p\ q\ ,/> r <1 

and therefore 
{d'"+"(j)(C, z)) 

( r)zm0z'“ I r'" r''^ ’ 

for all values of in and n It theicfoie lollows that 

!/(«. «')! $ 4> (o, o'), 

i dw+nf(z, y) i | _ j* » <i> (z, z) | 

( dzmdz'’‘ dz"'0z'1 

The function <p(z,z'), related m this manner to a function f(z,z) from 

some characteristics of which it is constructed, is called a dominant function 

Manifestly the result can be extended to any number of independent complex 

variables by a precisely similar piocess 

These dominant functions piove to he of great importance in vaiious 

regions of analysis, thus, fot example, they are of general use in the present 

methods of establishing many theorems eoncernmg the actual existence of 

integrals of whole classes of diffeiential equations, paiticulaily in connection 

with certain bioad external assigned conditions under which those integrals 

exist 

A dominant function $ (z, z) is not necessanly unique In the same 

eiicumstaiu.es as before ((insider a function ^(z, z) defined by the relation 

r r' 

which also is expressible as a double powei-senes in z - a and z — a', con- 

veigmg absolutely foi the region - — +— , $ /, < 1 Proceeding as 

for <p (z, z), we find, foi all integei values of in and n, 

\d,n»‘Jr (z, z'Y =(i« + nV M 

] ‘ dz'n?zn >"'rn ' 

Now (m + ii)1 ^ rn1 n1, hence 

(9,n+n f (z, z')| 

j dzm dz'n J z " I dz’" dz'n J s-,,,*■-« 

. [dm+n f(s, /)) 

" I 3>ete'* je=a,*w 

so that ijr (z, z) also is a dominant function* 

Poincaie usea the term majorantt* 
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51. Dunng the foregoing investigations, particular senes in suitable 

circumstances have been declared to converge, and it will be noted that, in 

such series as have occurred, the convergence has been absolute. We do not 

propose to consider, in detail, the general theory of convergence of double 

series When convergence is absolute, no other kind of convergence need be 

considered specially, and such series, as will be- discussed in these lectures, 

will be discussed with a view to absolute convergence What is wanted here 

is a knowledge of some non-infinitesnnal region of variation of the variables 

in which the respective series converge absolutely*. 

In this regard, one warning must be given Both in what precedes and 

in what will follow, a region of variation, m which a double series converges 

absolutely, is usually defined by a couple of relations of the form \ z) ^ p < r, 

! z j ^ p < r', where p, p', r, »' are positive constants, while r and r' are not 

infinitesimal It must not therefore be assumed—and it is not the case in 

fact—that the whole region, within which a double series converges absolutely, 

must be determined by two (and only two) relations of the preceding form, 

thus the whole region of absolute convergence of the double series, that 

represents the dominant function (s, z') of § 50, is determined by the 

single relation 

r r 
as there statedf. 

To repeat the substance of what has just been said, what is mainly 

wanted at the initial stage is a knowledge of some non-infinitesimal region 

of absolute convergence of the series, riot neccssanly a knowledge (however 

desirable) of the whole region of convergence 

52 Three simple propositions relating to uniform analytic functions can 

be established at once 

I. A uniform analytic function must acquire infinite values somewhere 

m the whole z, z' field, unless it reduces to a mere constant 

Suppose that a uniform analytic function f(z, z) does not acquire infinite 

values anywhere in the z, z field. In that event, there must be some 

greatest value for \f(z, z)) in the held, say M, where M is finite; and no 

matter how the field is extended, this value of M for | f{z, z ) \ cannot be 

exceeded. 

Accordingly, we take a domain in the field, determined by the relations 

\z\<R, \z R ; 

* For the theory of absolute convergence of double series, readers may consult Bromwich,, 

An introduction to the theory of infinite tenes 

t Other examples of the same type are given by Bromwich, p. 504 of his treatise just quoted. 
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and, under the hypothesis, we can make li and R' as large as we please. We 

still shall have, over this domain, M as the greatest value of f (z, z') . 

In the domain thus chosen, let / (z, z') be represented by a double power- 

senes, as in § 47 . and let the series be 

V V n n.*IX 
** *-* L Hi, n *> & 

!«--()» 0 

By oui preceding results, we have 
M 

■ c"‘- “ ^ um 

for all values of m and of n, independently of one another We can increase 

the domain of the field to any extent, so that, by increasing R and R' 

sufficiently, we can make 

! r,„, „ | = 0, 

for all values of m and w except simultaneous zero values Hence, undci 

the hypothesis that f(z, z) does not acquire infinite values, every tenn 

in the senes vanishes except the first, which is a constant, the proposition 

therefore is established 

Note It is obvious that the place, where a function acquires an infinite 

value, docs not lie within the domain over which the. function is regular noi 

(to anticipate the explanations connected with the continuation of scries 

representing regular functions) does such a place lie within the legion of 

continuity of the function Every such place lies on the boundary of the 

region of continuity of the function. 

Thus consider the function 

Z + Z 

For all places other than z = 0, z' = 0, which lie in the field and are given by 

z — z, the function is infinite, such places do not lie within the region of 

continuity of the function At the place 2 = 0, s' = 0, the value of the 

function is indeterminate, near z = 0, s' = 0, say such that 

= rea\ z = r'e6 *, 

where r and r are small, we have 

j : + z\_ J?-2 + r'2 + 2rr' cos (0 - 0')} - 

I z — z' | (r2 + r'% — 2rr' cos (6 — 6 ) f 

which as r and r' tend to zero independently of one another can be made to 

acquire any value Thus at z = 0, z = 0, the function is not regular, the 

place does not lie within the region of continuity of the function. 

II. If two functions, both of them regular within one and the same 

domain, acquire the same value at every place within an}7 region of that 

domain, they acquire the same value at every place within the whole 

domain, the region (like the domain) being one of four-fold variation. 
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Firstly, suppose that the origin of the domain lies within the region 

considered, and round that origin, take a smaller domain given by \z\^k<p 

and j z ^ k' < p, lying entirely within the region 

Let the two regular functions be / (z, z) and g (z, z), and suppose that 

the double power-senes representing them in the whole domain are 

/ (z, z) = 1 2 cm,„ zmzn, 
W = 0 M = 0 

g(z, /)= 2 X zmz'n, 
»»-« »~(l 

both series converging absolutely within that domain Then the difference 

of the functions f(z, z ) - g(z, z ) is represented by the absolutely converging 

double senes 
V V /, _ / \ Jn 
— V t tti, n ,xmyn) ^ * • 

»/-<) w-0 

Now this function is everywheie zeio within the stnallei domain, so that its 

(greatest) modulus M„ nevei differs from zero, accordingly we have 

so that 

1- U 1 V. ,n 

P P 

= 0, 

u, ?i — k III, n i 

for all values of m and n Consequently, the coefficients in the power-senes 

representing the functions are the same, and so the two functions are the 

same within the whole domain 

Secondly, when the origin of the domain does not lie within the region 

considered, we take an ongin within that region, and proceed as before 

The coefficients in the powei-senes, lepresenting the two functions in the 

smaller domain round the new origin, aie the same There, these coefficients 

determine the functions uniquely, and so, when the process of analytical 

continuation (§ 56) is adopted in exactly the same way for the two functions 

so as to cover the whole of the original domain m which they are regular, the 

two functions remain everywhere the same within the whole of that domain 

III. If f(z, z) is a regular function of z and z' for all finite values of 

the variables, and if there exists a finite positive quantity M such that, no 

matter how [ z j and ! z j are increased, there exist integers in and n for which 

/(*, *') 

then f(z, z ) is a polynomial m z and z, of degree m in z and of degree n 

in z\ when rn and n are the smallest integers satisfying the condition. 

Let f(z, z ) be expressed as a double power-series 

f{z,z') = 2 2 cp,gzPz‘v, 
p=0q=0 
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then 
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_ 1 1 f(z, /) 

rp,,'~p\<j' { dz‘'dz'i 

/<*. n 

z ~(\,z -<I 

-w/l clt dt'. 
ti'+1 <'»+> 

where the double integial is taken round any simple closed contour (say 

a cnule) enclosing the origin in the i-planc, and any simple closed contour 

(also say a elide) enclosing the origin in the /-plane. Let the formei elide 

be of radius R and the latter of radius R', so that we can take 

t = Re6', t’= R'e°\ 
then 

e„ 
1 

" 47r 
[f 

2 ! I it> t v 

Now no matter how <t \ and \ t', liiciease, we have 

< M, 

and therelore 

Consequently 

I fit. /'»1 

1 t'“ fn 

fit. tj 1 M 
v t,p-"‘ fv 11 

1 M 
i (V.7 < 4tt- R‘-m J 

M 
" Ri- R'v-n 

< RJ'-” 

M 

R'i-n' 

By hypothesis, we can increase R and R' without limit, hence, for all values 

ot p that aie gieatei than m, oi for all values of (/ that are gieater than n, 

and for both sets of values simultaneously, we have 

and therefoie 
'u “ 

for those values Accordingly, when we lcmove from the series those terms 

which have vanishing coefficients, the modified expression for / (z, z ) becomes 

111 n 
V V c -f ?'<1 —v a* l*ptq « r 

/>~0ff-Q 

shewing that f(z, zj is a polynomial in 2 and z, of degree m in « alone and 

of degree n in z alone. 

53 It follows, from the first investigation in § 52, that a uniform analytic 

function must acquire infinite values In particular, a general polynomial in 

z and z' acquires infinite values, when \z\ is infinite while \z j is not zero, 

or when \z\ is infinite while \z\ is not zero, or when both \z \ and Iz \ are 

infinite, though in the last event, conditions may have to be satisfied*. 

* For example, the function 1 +z + z' does not become infinite when 2] is infinite and )z' | is 

infinite unless j* + *'| also is infinite. 
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The questions then arise —Must a uniform analytic function of z and s' 

acquire a zero value within the whole field of vanation ? And, what is a 

subsidiary question governed by the answer to this preceding question, must 

a uniform analytic function of z and z acquire any assigned value within the 

whole field of variation > Naturally, m considering the questions, we assume 

that we are dealing with functions that do not reduce to a mere constant 

First, a bnef proof will justify the answer that a uniform analytic function 

of z and rf must acquire a zero value somewhere within the whole field of 

variation. Let f(z, z) be a function of z and s', which is uniform; con¬ 
sequently, it 

4> (s, 2') = 

1 

f(z, z) ’ 

the function <f>(z, z ) is uniform Further, <f>(z,z') is continuous, unless f(z, 2) 

has zero values Let j (z, z) be analytic, then <j>(z, z) also is analytic. 

Tlius, assuming that f(z, z) is a regular function, that has no zero within 

the whole field of variation, its reciprocal <f>(z, z) is uniform, continuous, and 

analytic thioughout the domain where f (s, z ) is icgulai. Consequently, 

4>(z, z) is a function that ih regular throughout the whole field. 

Nowr we have seen that a uniform analytic function must acquire an infinite 

value or infinite values somewhere in the field of variation of the variables, 

hence our function <f>(z, z) must acquire an infinite value somewhere, that 

is, the Jbgulai function f (z, 2') must acquire a zero value somewhere and 

therefore the hypothesis, that f (z, s') has no zeio, is untenable But as was 

the case with the place where the function acquires an infinite value, so that 

the function is not regular there and the place does not belong to the region 

of continuity of the function, so it may happen that a place w'here a function 

acquires a zero value does not belong to the region of continuity of the function 

Thus the function e, + *' is icgular over a domain given by finite values of jzj and finite 

values of | z | , it is not regular fin infinite values of i 1 alone and of I\ alone, because it 

cannot be expanded m powers of - and When 1 is real, infinite, and negative, while 

I ‘ I 18 finite, the function c'+I' = 0, and ao for other places No one of these places 

belongs to the region of continuity of the regular function + 

The corresponding question, as to the acquisition of an assigned value a, 

would similarly be answered in the affirmative after a consideration of the 

function f (z, z ) — a which, under the foregoing argument, would have to 

acquire a zero value, so f(s, s') would have to acquire an assigned value. 

The difficulty, that the zero of the function perhaps will not occur in the 

domain of regularity, may be illustrated by returning to the corresponding 

question in the theory of functions of a single complex variable, indeed, it 

would be raised directly, for example, by taking z' = 0, in the case of a 

regular function 
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54. It is a result, m Weierstrass's theory of umfnirn functions of a 

single variable*, that, in the vicinity of an essential singularity of a uni¬ 

form function f (z), there always is at least one point within a circle 

z — z„ | = e, where e is any assigned small quantity, such that 

I f{z)~a'<e, 

where a is any assigned quantity But the specified point does not need 

to be distinct from the point z„. 

Picardf discriminates between essential singularities according as the 

value a is, or is not, actually acquired at a point inside the circle j z — z01 = e 

which is not its centre, the centre being the essential singulauty. As 

examples, lllustiating the discrimination, he adduces the two functions 

1 r 

1 ’ 
sin - 

z 

considering both of them in the vicinity of then essential singularity at 

the a-oiigm. 

The function]: 1 /sin j has any number of poles in the immediate 

vicinity of the oiigm , they are given by z = / , where k is any integer 
Itt 

sufficiently large to keep z within the suggested vicinity The function 

does not vanish for any value of £ (other than a = 0) within that vicinity]. 

But consider a range of z neai z — 0 along the positive part of the axis 

of y, so that we can write 
z = </, 

where the small positive quantity r is at our disposal, we have 

J_-2( 

1 ~ -1 1 
sm g < — e1 

c 

The denominator can be made as large as we please by making r as small 

as we please, my own view is that, when r is made zero, so that z 

approaches the oiigin along the axis of y and falls into the origin, the 

function in question does actually acquire the value zero at the origin. 

But the value is acquired only at the essential singularity ; = 0, and at 

no point in the vicinity of z = 0, other than the centre itself. 

Similaily for the other function 

* Weierstrasa, (leg, Werke, t II, p 124 , see my Theoiy (if Functionj>, § S3 

+ His valuable, and far-reaching, ideas were expounded in some memoirs to which reference 

is given in his Tiaite d’Analyse, t n, ch v See also, lor further investigations, Borel, I.e<;0Hn 

sin les fonctiom entieree, (1900), eb i; ib,, ch v, ib , Note i 

t Pioard, l c,, p 126, p 12S, in the second sentence, I have added the words "other than 

z=0.” 
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The difference between Picard’s statement and my own is obvious 

Picard considers the vicinity of z„ = 0, and does not include the actual 

point z0 = 0, not regarding it as a point where the value or a value of 

the function can be stated I do include the actual point za = 0 and do 

regard it as a point where, if the function nowhere else acquires some 

assigned value, it must there acquire that assigned value, and that assigned 

value can then be stated as a value that can be acquired there But the 

point z„ = 0 is actually merged in the essential singularity. 

And, it need hardly be added, all the valuable investigations* of Picard, 

Hadamard, Borel, and others, arc unaffected by these considerations The 

discrimination is between functions, that acquire an assigned value in the 

vicinity of the essential singularity at a point which does not coincide with 

the singularity, and functions that acquue the assigned value only at the 

essential singularity 

The whole discussion thus suggests, even for functions of a single variable, 

the idea of places where our function, regulai within a domain, ceases 

(at the boundary oi the domain, or elsewhere) to maintain its character 

of regularity To the consideration of these possibilities we now proceed 

55 First, however, m connection with the earlier lemaiks, a reference 

to a theorem by Picard must be made. 

It may happen that an integral function f{z) cannot acquire a finite 

value a for a finite value of z, so that the equation f(z) = a then has no 

finite root, thus e* = 0 has no finite loot Picard shews that an integral 

function J\z), which for finite values of z cannot acquire a finite value a and 

cannot acquue another distinct finite value It, reduces to a eonstantf 

The similar question would then anse for an integral function G {z, z') of 

two variables Suppose that theic arc no values of z and z', which are 

simultaneously finite, such that G{z,z) can acquire a special finite value a, 

and similarly suppose that there aie no values, also restricted to be simul¬ 

taneously finite, such that G(z, z) can acquire another special finite value b, 

where b is different from a. To z assign a finite value c , as G{z,z) is 

an mtegial function of z and z, being tegular for finite values of z and z, 

then G (z, c ) is an integral function of z By the suggested postulate about 

G (z, z ), the integral function G {z, o') cannot acquire lor finite values of z 

either the finite value a or the different finite value b, accordingly, by 

Picard’s theorem, G (z, c) can only be, a constant, which must necessarily 

be a finite constant, because \G(z,z) j is finite for finite values of z. As 

this holds foi any assigned value c of z, it follows that <} (z, z') is constant 

* See the iodines by Borel, already cited 

t Picard’s proof depends upon the theory of modular functions (TraiUd’Analyte, t. n, 2nd ed , 
pp. 251—254). Borel, (Lrpo/is iut let fonctions entiires, Note i, pp. 103—106) gives a direct 

proof of this theorem without the intervention of any theory of special functions. 
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for each assigned finite value of z , but the constant values of (i (z, z') 

are not necessarily one and the same. Now Of (z, z) is an integral function 

of z, because it is an integral function of z and z', hence all the, requirements 

will so far be met by taking 

(i (z, :')=;/ (s’), 

an integial function of z alone 

Again, by the suggested postulate about G (z, z'), there is no finite value 

of z— simultaneously with a finite value of z—for which (f(z, z) can acquire 

the finite value a or the different finite value b, and therefore there is no 

finite value of z' foi which the integral function <f(z) can acquire the finite 

value a oi the diffeient finite value b Ky a repeated application of Pieaixl’s 

theorem, it follows that (j (z ) can only be a constant, and thoiefore (f (z, z') 

can only be a constant 

It tlieicfore follows that, if an wteiji <il Junction (J (z, z') cannot, foi uni/ 

finite value oj z and an;/ finite value of z taken /amultaneously, acquire 

a finite value ir, and also cannot, for any finite value of z and any finite 

value of z' taken simultaneously, acquve a finite value b different fiont a, 

then (t(z, z') -is ii constant 

The result is manifestly the rneiest geneialisation of Picard's theorem. 

It is specially linpoitant to note that the limitation about the non-acrpiisition 

of the finite values a and b is confined to finite values of z and of z. A variable 

function may be unable to aequne a finite value a for finite values of z and 

z, but could aequne that value for infinite values of z and finite values of z , 

01 for finite values of z aud infinite values of z, oi for infinite values of z and 

of z', such is tile case, for the value zeio, of the variable integial function 

eri, a 

where P (z, z') is a polynomial in z and z' 

A nnli/tical Continuation 

56 Now let us consider a function f{z, z'), which is icgulai overywheie 

in a domain round a place u, a determined by 

! z — a \ < r, | z — a' j ^ /', 

it can be represented by a double senes of powers of z — a and z —athe 

series converging absolutely for values of z and z such that 

\z — a\t. p < r, \ z — a \Zl p < r 

Denoting the senes by P (z — a, z — a), we have 

f{z, z’) = P(z-a, z’-a) 

for values of z and z thus defined The values of the constant coefficients 

in the double series are determined by the values, at the place a, a , of the 

derivatives of the function f(z, z) of the appropuate orders 
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Such a series* may be capable of the process called analytical continuation 

outside a given domain within which the series represents a regular function. 

Let z = b and z — b' be any place within the domain , at this place b, b', the 

values of the function f{z, z') and of its derivatives are unique and finite, 

and they can depend upon the origin a, a' of the domain. 

Because the place b, b' lies within the domain of a, a, where f(z, z’) is 

legular, there is a definite domain, actually lying within the domain of a, a', 

appertaining to the place b, b', and providing a region over which f\z, z) 

is regular, this domain is given by the relations 

\z — b^r— \b — a\, \z’ — b'\^r— b’ — a'\. 

Let the double power-senes be constructed to represent f(z, z) within this 

definite domain The coefficients in this new double series are determined 

by the values, at the place b, b\ of the function f(z, z) and of its derivatives; 

and these may depend for their expression upon the initial double senes 

P (z — a, z — a). Denote this new double series by 

Q (z — b, z — b', a, a'). 

Within the specified domain round b, b\ which belongs also to the domain 

round a, a', we have two power-senes representing one and the same 

regular function f(z, z), accordingly, (II, § 52) for all places z, z within that 

specified limited domain, the new senes Q provides no expression for the 

function /(s, z') which, in significance, is additional to the expression foi the 

function j(z, z) provided by the old series P 

But uow consider the range of absolute convergence of the double series 

Q, which will be the general domain of the place b, b\ It certainly 

includes the preceding specified domain, which lies within the general 

domain of the place a, a in connection with the absolute convergence of 

the series P. It may extend beyond the boundary of that preceding 

specified domain, if it does, then it includes places z, z' not included 

within the domain of a, a. For all such places, the series (J conveiges 

absolutely arid therefore has a unique significance whereas, for them, the 

series P has no significance 

Accordingly, when some of the general domain of b, b' as connected 

with the absolute convergence of the senes (,1 lies outside the general domain 

of a, a as connected with the absolute convergence of the series P, our new 

series Q provides an expression for a regular function of z and z which is not 

provided by the old series P, while over the region common to the two general 

domains the series Q represents the regular function which is represented by 

* For many o( tin- investigations which are given at this stage, reference can be made to the 

memoir by WeierstraHs, “ Eimge auf die Theorie der analytisolien Functionen mehrerer Veran- 

derheheu sich beziehende Satze,” Gee Werke, t. u, pp 185—188. A doctor's thesis by DautheviUe, 

“Etude sur les series entires par rapport 4 plusieurs variables imaginaires mdependantes,” 

(rauthier-Viilars (1885), may also be consulted. 
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the series P over the domain of a, Using the term adopted for the 

corresponding result m the similar event for functions of a single variable, 

we say that (in the supposed circumstance of the more extensive character 

of the general domain of 5, b') the series Q is a continuation, sometimes an 

analytical continuation, of the series P, and we call each of the two series 

an element of the regular function which they help to represent, 

The process may be repeated by selecting a new place c, c‘, lying 

within the general domain of b, b' and not within the general domain of 

a, a'. When a definite domain of c, c is constructed lying within the 

domain of b, b’, and when we form a new double series for the function 

represented by Q (z — b, z' — b', a, a') by taking the value of the function 

and of its derivatives at c, d as determining the coefficients for this new 

series, we can denote this senes by 

It (z — c,z—c', a, a', b, U) 

Within the specified domain round c, c', the now series R represents the 

same regular function as is represented by Q within that domain. 

Again, now consider the range of convergence of the double series R, 

which range will be the general domain of c, c'. It certainly includes the 

specified domain round c, c‘. It may extend beyond the boundary of that 

specified domain, and then it includes places z, z‘ not included in the general 

domain of 6, b' and, when c, c' is properly chosen, not included m the general 

domain of a, a’. Fot all such places z, z, within the general domain of c, c' 

and outside the general domains of b, b1 and of a, the series R provides 

a regular representation of the function which is not provided either by the 

series Q or by the scries P, while over the part of the domain of c, c' that 

belongs to the domain of b, b’ it represents the same function as is lepro- 

sented by the senes Q In this event, the senes R provides a continuation 

of the senes Q and it is another element of the function, now represented 

by the series P, Q, R. 

And so on, from domain to domain The ultimate aggregate of all the 

series, each providing a new element, is the combined analytical expression 

of a function. The ultimate aggregate of the z, z’ field, provided by all the 

domains, is called the region of continuity of that function. 

It is clear, after earlier explanations, that one of the simplest instances 

is provided by an integral function, that is, a double series converging for all 

finite values of z and z ; and its region of continuity consists of the part of 

the z, z field given by finite values of z and z. 

Ex Consider the double series 

/= S 2 i’V* 
r-'J »=0 

F. 6 
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which converges for values of \z\Z.k<\ and At the place 2 = 
2 ’ 

if = - 0, we have 

fo.o— If 
fmn 

m 1 

(i+£Kl+y 
1 /2\m*w+2 

*"KTHT'W ■ 
When we form a senes in powers of 2 + ^ and 2' + i so that - J and - 

« « it 

for a new domain, the series converges for values of 2 and z' such that 

is the new origin 

k+ 
The senes is 

that is, it is 

<f<s 

iiffi'.HTH)‘ 
For values of 12 j < I < 1 and | s’ [ < i' < 1, the series gives no representation of f which is 

I ] j 3 
not given by the first series For values of j 2 [ > 1 such that j 2 + ^ [ ? I < ^, and values of 

I 1 I 3 
\z' \^l such that 2' + 5 ^ V < -, the second series does give a representation of / which 

I Z | x 

is not given by the first scries 

The first senes is the expansion, within a domain round 0, 0, of the function 

1 _ 
(1-"*5(1-0* 

When we sum the second series, we have, as the sum, 

f2\* 

that is, 
1 

(1-21(1-=')’ 

verifying the property that the two series, within their respective domains, are elements 

of one and tho same function 

Singularities of uniform functions. 

67. Any region of continuity of a function that is uniform, continuous, 
and analytic has for its boundary a place or an aggregate of places (whether 
these are given by values of the variables that are continuous in succession 

or are given by discrete sets of variables) where the function ceases to be 

regular. Such a place is called singular by Weierstrass*. 

Let k, k' be a singular place for a uniform function figs, z'); then in the 
immediate vicinity of k, lc', the function cannot be expanded as a converging 

* See the memoir cited (§ 56) above, p. 156. 
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series of powers of z — k and z' — k'. Two alternative possibilities present 

themselves as to the behaviour of functions in the vicinity of such a place. 

Under the first of these alternatives, it can happen that a power-series 

Pt)(z — k, z' — k'), representing some function regular at k, h’ and vanishing 

there, exists such that the product 

P0(z-k, z' - k')f(z, z) 

is regular in the immediate vicinity of k and //. Denote this product by 

F(z, z'). Then F(z, zr), being a regular function of z and z in the immediate 

vicinity of k and k\ can be expanded m a double series of powers of z — k and 

z' — k' which converges absolutely within non-infinitesimal regions round k 

and k'. Denote this new series by P, (z — k, z — k'), then we have 

/(*. *')- 
P, ( z — k, z 

P„ (z - k, z 
-JD 
-k'Y 

Following Weierstrass*, we call such a place an unessential singularity of 

the function. 

Under the second of the alternatives indicated, it can happen that no 

power-senes P0(z — k, z' — k'), representing some function of z and z -tegular 

in the immediate vicinity of k, A-', exists such that the product 

P»(z ~k, z —k) f(z, z ) 

is regular in the immediate vicinity of k, k' Following Weierstrass*, we 

call such a place k, k' an essential singularity of the function f(z, z ) 

It is to be noted, in passing, that, for the occurrence of an unessential 

singularity, it is sufficient to have a single power-senes P0 such that the 

product P„/is regular in the immediate vicinity of the place But there is 

no assumption (and it is not universally the fact) that only a single power- 

senes exists having this property or that all such power-senes, as exist 

having this property, are expressible in terms of P„ alone. When two 

different expressions for the uniform function f (2, z') are obtained in the 

vicinity of the place k, k', they must be equivalent; and we should then 

have a relation 
Qt (z — k, z' — k") _ P, (2 — k, z' — k’) 

Qa (z - k, z' - kf) P„ (2 - 2' - k' j ‘ 

We shall assume that, while i)1(0, 0) andPo(0, 0) vanish, the power-senes 

Pj and P„ possess-}- no common factor vanishing at k, k', whether it takes 

the form of a regular power-senes or a mere polynomial which is a special 

case of a regular power-series. Similarly, we shall assume that Q, and Q„ 

possess no common factor vanishing at k, k'. Now 

Q, (2 - k, 2 - AO = ^{Z -k’Z'~ h‘X 

* l e., p 156. 
t This matter will he considered later, so as to obtain the conditions necessary and sufficient 

to justify the assumption. 

6- -3 
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Here Q, is regular in the immediate vicinity of k, k', while Pl and P0 have 

no common factor vanishing at k, k’; hence Q„ must contain P„ as a factor. 

Let P denote the quotient of Q0 by P0, so that F is regular at k, Ic ; then 

<2, = p,p. 
Again, 

r, («- fc ✓ - «0 - V>f• <‘ -*•'*' - *>• 
Here Pi is regular in the immediate vicinity of k, k', while Q, and Q, have 

no common factor vanishing at k, k'; hence P„ must contain Q0 as a factor. 

But 

Po = Q».i; 

and therefore 1/P is regular at k, k'. Consequently both P and 1/P are 

regular at k, k'; and therefore P does not vanish at k, k'. It is not difficult 

to see that we then may choose a domain round k, k\ which may be small 

but is not infinitesimal, such that P does not vanish in that domain, and 

then the behaviour of Q„ in the immediate vicinity of the place k, k' is 

effectively the same as the behaviour of P0 in that immediate vicinity. 

Likewise for P, and Ql if they vanish at k, k'. When either does not 

vanish, the other will not vanish, they are different from zero at k, k' 

together 

It follows that, in discussing the behaviour of f(z, z') m the immediate 

vicinity of k, kr, any representation of f(z, z) by a quotient P,/P0 can be 

used, if Pj and P0 have no common factor*. 

58. In the case of functions of a single variable, it is known that theie 

are different typos of essential singularities, whether these occur at isolated 

points, or along lines, or over continuous areas Special kinds of essential 

singularities are considered in that theory, and they furnish partial charac¬ 

teristics of some classes of functions; for example, not a few definite results 

have been achieved when the essential singularities in question can be 

approached as the limits of groups of particular points of a function; but 

the theory is far from easy or complete. A fortiori, it is to be expected that 

even greater difficulties will arise m the consideration of the types of 

essential singularities of uniform functions of a couple of variables. 

But when we deal with unessential singularities of uniform functions, 

there is a real divergence between the theory of functions of a single 

variable, and the theory of functions of two variables or more than two 

variables. In the case of functions of one variable, there is only one type 

of unessential singularities, the only variation in the type being the variety 

of the order; such a point a is said to be an unessential singularity (or a 

* The relation between two such functions as Pt and Q0 will be considered fully in Chapter iv: 

in particular, see g 64. 
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pole) of a function f(z), and of order n for the function, when there is a 

positive integer n such that 

(z - a)nf{z) 

is finite and not zero at the point. 

In the case of uniform functions of two variables, wo arrange the un¬ 

essential singularities in two distinct types or classes After the explanatory 

definition we know that, in the immediate vicinity of k, P, the function 

f(z, z') can be expressed in the form 

/ 0. *') = 
P, (z — z — p) 

P^--T,Y^¥y 

where P„ and P, are converging double series in poweis of z —1c and z —P, 

of which P„ vanishes at Ic, P. 

Two different cases then can occur as alternatives, discriminated accoiding 

to the value acquired by P, at k, P. 

In the one case, leading to one of the two types of unessential singular¬ 

ities, it is the fact that P, does not vanish at k, P. It then follows that, 

no matter how a tends to the value k and z' to the value k', the quantity 

\f(z,z)\ can, for sufficiently small values of \z — k j and \z — P j, be made 

larger than any assigned magnitude, however large: that is to say, this laige 

magnitude is assigned at will, and the appropnate small values of \z — k\ 

and \z'-k'\ are determined subsequently to the assignment We therefore 

can take infinity as the limit foi the assignment, and the place k, P then 

gives a definite and unique value to f(z, z'\ this value being infinite. 

This type of unessential singularity is one of the two kinds of un¬ 

essential singularity considered by Weierstrass It is convenient to use 

for functions of two variables, the same name as is used, for functions of on 

variable, when the place gives a definite and unique infinity of the function 

Accordingly we shall call this type of unessential singularity the polar type, 

and a place k, P, being an unessential singularity of the polar type for the 

uniform function, will be called a pole of the function f(z, z). 

In the other case, leading to the other of the two types of unessential 

singularities, it is the fact that P, does vanish at k, P The place k, P then 

does not give a definite and unique infinite value for the function f(z, z). 

Subsequent explanations may so far be anticipated here as to declare that 

particular modes of approach of z to k and of z to P can be selected, so as 

to make f (z, z') tend towards any assigned value near k, P and acquire that 

assigned value at k, P; thus the function /(z, z) does not acquire a definite 

unique value at the place. 

This type of unessential singularity is the other of the two kinds 

of unessential singularity considered by Weierstrass. We have given a 

definite name to the other type of unessential singularity that can belong 
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to uniform functions of two variables; to the type just indicated, we shall 

give simply the general name unessential singularity and, so far as concerns 

functions of two variables, there need be no confusion in taking this un¬ 

restricted name*. 

Thus, for the function 

the place 2 = 1, 2' = 1 is a pole ; the place 2=0, z' — O is an unessential singularity. 

For the function 

z+j'el+i 
z-/ ’ 

the place 2= 1, 2' = - 1 is a zero , the place 2 = 1, 2' = 1 is a pole ; the place 2=0, 2' = 0 is an 

essential singularity 

For a function 
P(z,z') 

Q(z,*r 
where P(2, z') and Q (2, 2') are polynomials in 2 and 2' having no common factor, all places 

satisfying the equation 
<2(2,20=0 

are poles unless they also satisfy the equation 

P(z, 2')=0; 

and all places satisfying the two equations 

Q (2» 2 )**0i — 0> 

are unessential singularities 

As a summary conclusion, we see that there are four kinds of places 

for a uniform analytic function of two variables, viz ordinary places, poles, 

unessential singularities, essential singularities. The first set of these 

constitute the region of continuity of the function; the remainder constitute 

the boundary of the region of continuity of the function. 

Extension of Laurent’s Theorem. 

59. As a last theorem for the present, we proceed to an extension of 

Laurent’s theorem on functions of a single variable, in order to make the 

establishment simpler, we shall restate Cauchy’s theorem’concerning the 

* Corresponding considerations arise (or (unctions of n variables. WeierBtraBS arranges their 
unessential singularities in two kinds. One kind includes places that, as in the text, may be 

called poles ; at such a place, the function definitely and uniquely acquires an infinite value. 

The other kind includes all unessential singularities which are not poles. Now it is oonoeivable 

that an unessential singularity of this second kind for a uniform function of n variables might 

be ranged m one or other of n -1 classes, according as there are m, 00’, ec2, . , op"-2 ways 

(where m is finite) in which zlt zs, , r„ could be made to approach the unessential singularity 

O], a2, ., a„ so as to make the function 

P1 (21 - O] I 2; - «2,_» *n - nn) 
Po(Jl~ali *l~a2i > ln~an) 

acquire an assigned value at the place 

The question manifestly does not arise when there are only two independent variables, hence 

the adoption of the names pole and unessential singularity in the text. 
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expansion of a function in a double series of positive powers. Consider a 

function f (z, s') within a region where it is continuous, uniform, and 

analytic. Within that region (assumed to include 0, 0) consider the domain 

defined by 
\z\^p<r, \z'\<p<i'. 

Then we have the result 

f{z'z) (2tti:yfj(t-z)\t’-z)dtdt‘’ (2triyJJ(t - z) (t' — z') 

when the double integral is taken round circles in the domain such that 

Moreover, taking 
1 -1 < 1 t\<P< r, | z' \<\t'\<p'< r 

1 l z z- 
-~ — -j- — -"I- — -}- ( zm ] W 

1 _ 1 z’ zf_ 

t'-z'~t, + t’i + P + 

we obtain an expiession for f(z, z) in the form 

f{z,z)= 1 5 Cp'^z'i 
-0 

The forms for the coefficients cPtlJ have already been given , the upper values 

of the limits of |cj,i9J for all positive integer values ol p and q have already 

been given also, when the function f(z, z) has the assigned properties; the 

senes can be continued to infinity for both sets of indices, and it converges 

absolutely within the z, z domain*. 

Now consider a corresponding extension of Laurent’s theorem, which 

may be enunciated as follows — 

Let f(z, z) denote a function, which is uniform, continuous, and analytic, 

unthin a region in the field of variation defined by relations 

R0>R>\z — u\^r>r0, Rf > R' > | z' — a' | ^ r' > rf. 

Denote by t and by s current variables (or points) on the circumferences of 

the outer circle of radius R0 and the inner circle of radius ra in the z-plane ; 

and similarly for t! and for s' on the circumferences of the outer circle of 

radius Rf and the inner circle of radius rf in the z-plane. Then the function 

f(z, z ) can be expressed as a series of integral powers of z — a and z — a'; 

the indices of those powers can range from — oc to + oo for each of the 

* The analytical work, needed to establish the result, is so similar to the corresponding 

analysis for functions of a single variable (see my Theory of Functions, § 28) that it need not be 

set out in detail. 
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variables, and the double series converges absolutely for values of z and z 

given by 
R^\z — a\^r, R’ > J z' — a j > r\ 

By the generalisation of the first part of Cauchy’s theorem, we have 

+ A . [f f(s’s) dsds‘. 
( 27rif JJ(s— z){s' —z') 

Now, for our values of a, a, z, z , t, t', we have 

t — a , z— a (z — a\m t — afz — a\m+l 
- = 1+ - — + ...+ , + . 

t-z t—a \t—aj t — z\t — a; 

t' — af z — a (z' — a'\n t’ — a! (z — a'\,,+l 

t — z t—a \t —a / t —z \t —a ! 

and so the integral 

is expressible as a double senes of terms 

2S cPi<1 (z - a)1’ (z - a')'/ 

for p — 0, l, ..., m and q = 0, 1, . , n, where 

ff O 
= l-(l 

M (2th fJJl (27TifJJ(t-a)r+> (f - «'/'T 
dtdt', 

together with a single series of terms 

fo, o /i - /z - «y dt<M, v 1 ti (z~ a 
“ (2m)1 JJ t-z \t—a, J t! — a’ 

dtdt’. 

q (2iri)s 

for q = 0, 1, ..., n, and a single series of terms 

s-o1- ,(rayw. P (27riyJJ t-z \t —a) \t -aj 

for p = 0, 1, ..., m, and a term 

1 if f(t.t') rz-a\m+1 (z‘ ~«'\n+l 
(27n)2J I (t — z) (t‘ — z') \i — a) — a'/ 

To consider the coefficients in the double senes, let M denote the 

greatest value of \f(z, z')\ within the whole region considered; then, as 

before, 
M 

'Cp'q <~R/Rji' 

though nothing can be declared as to a relation between cPiq and the 
0P+7 f(z z'\ 

derivative —zffi, I—- at a, a, for our function is not defined within the 
dzpdz* 

domain \z — a\<r0, \z — a'\< 
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As regards the second senes of terms, say S, we have 

n \f(t, 0| l 

R,- R \ltj \RJ r«r: 

_ “ MRJU (R\m+l (Ry+l 
<9~o R.-R \RJ ’ 

as R < _R0, indefinite increase of m makes each term m the series on the 

right-hand side as small as we please, and R' < R„' that is, by taking m 

indefinitely large, we can make R = 0. 

Next, as regards the third series of tenns, say S’, we have 

\S'\e v \fjRJ) i f R 
1 1 A r:-r'\r: 

M 

»+* 

R, 
r»r: 

M fR'y+wRy+' 
*■ p / p/ lx?') I _p" I ‘ *» ) 

7J -o Jto — rt \r>o / \tw 

as 7i' < A,,', indefinite increase of n makes each term m the senes on the 

light-hand side as small as we please, and R<R„, that is, by taking n 

indefinitely huge, we can make <S’' = 0 

Lastly, as legards the modulus of the single term, it is 

„ MR«R<! {Rv^wR'y^ 

<{r„-r)(r:-r')\rj UoV ’ 

which, with the assumptions made concerning in and n, can be made less 

than any assigned quantity, however small, that is, we can make the term 
zeio 

In these circumstances, the expression for the fiist of the four integrals 

becomes 
m ti 
1 S cP] ,j {z - a)1’ (z - a )i. 

</—0 

As iz — a\^R< R0, \z'-a'\<R'< R„', and as j cll>{,! < ,, . , , thus double 
/l,/ 1\q V 

series converges absolutely when m and n increase indefinitely and inde¬ 

pendently of one another. Thus the first intcgial is expressible as an 

absolutely converging series of positive powers of z — a and z' — a'. 

To obtain an expression for the second integral, which is 

_ 1 [f dsdt> 
( 27Tt)a JJ (s — z) (£' — Z) d ’ 

we note that | z — a | 2= r > r0 > | s — a \, while ] t' — z \ < \ t’ — a' |, so we take 
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We proceed as in the last case. It is possible to increase fj. without limit 

and n without limit; and we obtain, as the expression for the integral, 

2 2 cMi, 
p=Q <?=0 

where 

1 ff c™~(2 viyJJ( 
Also 

ldsdt'. 

\cP,q\< MrfRs'-i, 

and the double series converges absolutely for the retained range of values 

for z and z. 

Similarly, as the expression for the third of our double integrals, 

which is 

we obtain 

J fffV’*') dtds' 

where 

2 2 Cpg (z - ay (z - o')-9, 
*>=««=0 

Also 
(iLrJki - «>«(s'' “'r'iM- 

I cPlV | < MR, pr<!'‘, 

and this double series converges absolutely for the retained range ot values 

for z and /. 

Lastly, as the expression for the fourth of our double integrals, which is 

we obtain 

where 

1 ff f(s, s') , , , 
(2 iriyjj(s — z)(s'-z’) 

2 ScM(i- a)-P (z - a')-v. 

cp,g = jjf(s’ *') (* ~ a)P_I (»' “ a')n ’ dsds'- 

Also 

and this double series converges absolutely for the retained range of values 

for z and z'. 

Gathering these results together, we see that, in the circumstances as 

stated in the extended Laurent’s theorem, the function f(z, z') is expressible 

in the form 

f{z, z ) = 2 2 cra,„ (z-a)m («' - a')n, 
— CO - 00 

the summation being for all integer values of m and of n between oo and 

— oo; also 
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|c»n,n| ^ MR<rmR(>'-n, when m is positive and n is positive, 

|Cm,»|< MR„~mr0'n ,. positive   negative, 

i cm.,n 1 ^ Mr0mR0'~n ,. negative. positive, 

\cm,n\^ Mr„mi-„'n ,. negative. negative; 

and the double series converges absolutely for values of z and z given by 

R„ > R Ss | z - a J > r > r0, /£„' > R' ^ | z' - a' j ^ / > ?•„' 

It follows as an immediate corollary that when a function (z, z) is 

uniform, continuous, and analytic for all the z, z region of variation repre- 

sented by the relations 

\z-a\^r>r0, \z'-a'\>r' 

it is expressible as a double senes of negative powers in the form 

<p (z, z') = ll cm,n (z - a)~m (z' - a')~n, 
0 0 

where cm, n t Mr™rf\ 

M being the greatest value of j (j> (z, z) j within the foregoing region , and the 

series converges absolutely for the specified lange of values for z and z. 

The result is at once derivable from the extension of Laurent’s theorem 

by making R0 and R,, increase without limit, and it can of course be 

established independently in the same manner as the general theorem. 

Ex ] The function 

i 
where P (z, -, z', ] is a polynomial in ^, can be expanded in a Berios 

2 2 cm,nzmz'n, 
- T -X 

for finite valueR of | z | and |j such that 

whore r and t' are positive non-zero quantities 

Ev 2 Shew that the coefficient of zmz'u (where m and « are positive) in the Laurent 

expansion of 

e > 

1£1 and 11; | being finite and indejiendent of z and of z\ is 

Jm (() J*W'h 

where Jm and ./„ are Bessel’s functions of order m and n, and obtain tho coefficient of 

zmz<* in the same expansion (i) when either m or n in negative, (n) when both m and n are 

negative 



CHAPTER IV 

Uniform Functions in Restricted Domains 

A theorem due to Weierstrass. 

60 After these preliminary results relating to expansions of a uniform 

function, which converge absolutely and are valid over the appropriate 

domains, it is important to take account of the detailed behaviour of the 

function in the immediate vicinity of each of its several kinds of places 

Accordingly, let a, a' be an ordinary place foi a uniform, continuous, 

analytic function f\z, z), the preceding investigations shew that f(z,s'), 

legular in some domain of that place, can be represented within the domain 

by a double series of positive powers of z — a and z — a' which there con¬ 

verges absolutely. No generality, for our present purpose, is lost by assuming 

that 0 = 0 and a'—O, for the assumption can be secured by taking z — a = Z, 

z — a' = Z'. Hence we write 

F(z, z’) =f(z, z ) -/(0, 0) = £2c„ltn2"’2'n, 

where the summation is for positive integer values of m and of n save only 

simultaneous zero values. Also, 1 f (0, 0) ] is finite and may be zero. 

The detailed behaviour of the function F(z, z) in the immediate vicinity 

of the place 0, 0 is governed by an important theorem, originally due to 

Weierstrass. After the analysis has been given, the principal results will be 

enunciated in a form that differs from Weierstrass’s, because the limitation 

to two variables renders greater detail possible* than when n is the number 

of variables. 

* The theorem is proved by Weierstrass for functions of 71 variables, Gee Werke, t. 11, 

pp. 135—142. Another proof, due to Simart, is given by Picard, Traite d’Analyse, t ii, 

pp. 243—245 

The theorem is discussed here for the special case when there are only two variables. For 

this case, a proof (which follows Weierstrase’s proof for the general case) is given in my Theory 

of Functions, § 297, it is modified in the proof given in the text, because the theorem is not 

regarded from the point of view of establishing the existence of implicit functions of a single 

variable. 
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Our function F(z, z), which is regular in a domain round 0, 0, can be 

expressed in a form 

F(z, z) - + (z)+ z'2^(z) + .... 

Two cases arise according as F(z, 0) does not vanish, or does vanish, identically 

for all values of z within the domain. 

61. First, suppose that F(z, 0) does not vanish for all values of z. 

Denoting F(z, 0) by F0(z), which is equal to <j>D(z), and introducing a new 

function F, (z, z) defined by the equation 

F (z, z) = F„ (z) - F, (z, z'), 

we have a function Fx(z, z’) which, when z‘ — 0, vanishes for all values of z. 

Now F„(z) is independent of z and does not vanish for all values of z, hence 

we can choose places z, z in the vicinity of 0, 0, which lie within the region 

of convergence of F (z, z') and are such that 

It is to be remembered that F„ vanishes when z = 0, and so there may be 

some lower limit for \z \ below which this inequality is not satisfied As \z\ 

increases, a zero of F0 may be attained, and then the inequality would not be 

satisfied. Also as | z J increases, the value of j F(z, z)! may increase, and so 

there may be some upper limit, for \z'\ above which the inequality is not 

satisfied. Accordingly, we suppose that, for places satisfying the relations 

p0<\z\< p, \z' \ < pit 

the inequality j 7y > j F, j holds. For all such places we have, on taking 

logarithmic derivatives of the equation 

r=r, (,-£), 

the relation 
1 0F = 1 0F„__0 / 5 1 FF 

F dz F„ dz dz \*=i A F0*/ ’ 

Now F0(z) is a regular function of ; in a domain round z = 0, and it vanishes 

when z=. 0; hence the lowest exponent in its expansion must be a positive 

integer greater than zero, say m. Thus 

F<>{z) = z'nh{z), 

where h(z) is a regular function of z in the selected domain and has a 

constant term, consequently 

1 dF0 _ vi h! (z) 

F„ dz z ^ h (z) 

= - + G (z), 
z 

where 0 (z) is a converging series of positive powers of z in the selected 

domain. Similarly 

i An 
■Po M — 0 
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where h(z')! the coefficients of the powers of z, are converging series of positive 

integral powers of z', and because Fy (z, z) vanishes when z' «= 0 for all values 

of z, each of these coefficients GKtll(z) vanishes when z = 0. Take each power 

of z, and collect all the terms which involve that power of z in the expansion 

v 1 -F/ 
X F> 

then we have 
cc 1 f1 A n ~ 

2 Gn(z')z\ 
\=i a. r0 »=-* 

while each of the coefficients Gn(z'), being a linear combination of the 

coefficients (?*,„(/), vanishes when z = 0. Thus 

S G„ (*')*« 
1 dF m r, , 3 

and the only term on the right-hand side, which involves the power z~ 

, , m 
the term —. 

is 

Now let £i, . denote the zeros of P(z, £'), regarded as a function of z, 

when we consider a range of values of z such that \z\< p, and when we assign 

to z a parametric value £" such that | f'| < p, Repeated zeros of F(2, £') 

are given by repetition in the quantities f, so that s denotes the tale of zeros 

of F (2, £') within the range. Then, as F(z, %') is regular for all such values 

of z, the function 
1 dF(z, n 

F 

1 

dz yt=\ Z ilp 

is finite for those values; it can therefore be expanded as a converging series 

of positive powers of z, say P (2), so that 

Choose values of z, such that |zj is still less than p and is now greater than 

the greatest of the quantities |f,|, ..., | f«|. The fractions on the right-hand 

side of the equation can, for 6uch values of z, be expanded in descending 

powers of z, and the equation, after such expansions, becomes 

1 dF(z, n 

F ■ dz 
where 

ST — £/ + ■ ■ ■ + K» ■ 

As this result is valid for all values of £' within the selected z'-range, being 

independent of z, we have 

7 + 0<*>-siX e-<H 

= P(z) + - + 2 STz-'-\ 

; + P(z)+ 2 8rzr'-\ 
Z t=~ 1 
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identically for all values of z, and therefore, among other results, we have 

for all values of r 

s = m, St = tG^t(£'), 

The first result shews that, for any given value of z' such that \z \ <pu 

the function F(z, z) has m zeros in the range j z | < p, where the number m 

is the index of the lowest exponent m F(z, 0) when expressed as a regular 

series of positive powers of z 

The. second result then shews that, for all the positive values of t, the 

quantity 

£r+ +U 
is expressible as a regular function of which vanishes when is zero. 

Hence all integral symmetric functions of .fro are regular functions of 

which vanish with , and as £' is a parametric value of z, we may (within 

our range) substitute z' foi It therefore follows that, if 

g{z, z') = (z- ?,)... (*-£,„) 

= zm + glzm~' + ... + gm> 

the coefficients gu ...,g„, arc regular functions of /within the selected range, 

each of them vanishing when z — 0. 

Further, from the same equation, we have 

F(z) = G(z)~ I (n + 1) znG,l+l(z'), 
n-0 

where all the functions are regular. Thus, if 

'{z, z')= f 
J 0 

G (z) dz — £ zn+'Gn+l(z'), 
Ti — 0 

where T (z, z) manifestly is a regular function of £ and z', and vanishes when 

z — 0 and z = 0, we have 

Thus 

P(z) = /(r(,, /» 

i£-pw+i+ia-'r~ 

and therefore 
F= Ug(z, z') eri2'2>, 

where JJ is independent of z. 

As U is the same for all values of z, and as F and g (z, z ) and T (z, z ) are 

regular functions of z and z' for the range considered, it follows that U (if 

variable) is a regular function of z'. When z = 0, let the first term in the 

expansion of the regular function F0, which is all of F(z, z) that then survives, 
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be Czm, then g (z, z') becomes zm; and T (z, z) is then a regular function of 

z alone Thus, when z =0, we have U-C, and U, at the utmost, is a 

regular function of z'; hence 

U= C(1 + positive powers of z) 

= Ceu, 

where u is a regular function of z which vanishes when z = 0 Let 

R (z, z') = u + T (z, z'), 

where again R (z, z ) is a regular function of z and z which vanishes when 

z = 0 and z' — 0; and we then have 

jF{z, z') = Cg (z, z')eR<z-z'\ 

with the defined significance of g (z, z), R (z, z'), and C. 

The new expression is valid within the assigned range of z, z in the 

immediate vicinity of 0, 0. But it must not be assumed—and usually it is 

not the case in fact—that the new expression is valid over the whole domain 

where f (z, z') is initially taken as regular. 

We thus have the result.— 

I. When a function f(z, z) is regular in some domain of 0, 0, and is 

such that f(z, 0) — /(0, 0) does not vanish for all values of z in that domain, 

we have 
f(z, /)=/(0, 0)4- Cg{z, z')elltz’*\ 

inhere 
g (z, z') = zm + + ... +</,*, 

the quantities gs, gm being functions of z\ each of which is regular in the 

immediate vicinity of / =» 0 and vanishes when z = 0, where Czm is the lowest 

power m the expansion of f(z, 0) —f(0,0) in positive powers of z; and. where 

R(z, z) is a function of z and z, which is regular m the immediate inanity 

of 0, 0 and vanishes when z — 0 and z = 0. 

62. One important corollary can be at once derived from the preceding 

result. 

Suppose that 0, 0 is a non-zero place for the function f(z, z’), so that 

f (0, 0) is not zero, then we have 

/(*■<> ,, O 
/(0,0) a+/(0.0) 

g(z, z ) 

Now R(z, z ) is a regular function of z and z, vanishing when z — 0 and 

z - 0, so that \ en,f’l) \ is finite throughout some definite domain round 0, 0. 

Also | C/f(0, 0) | is finite; and g (z, z), while polynomial in z and regular m 

z in the immediate vicinity of / = 0, vanishes at the place 0, 0. It therefore 

is possible, owing to the regularity of g (z, z') and R (z, z'), to choose a non¬ 

infinitesimal domain given by 

1*1 <r, \z'\<f, 



63] COROLLARY 97 

such that, for all the included values of z and z, 

, (< 

!;/ (0,0) 

where M is a real positive quantity. For all such values of z and z, we have 

a 

g (z, z' ) M < 1, 

ty. For all such value1 

g(z, z')eR^z] = e‘Uz'1'', 
1 +/(0, 0) 

wheie R (z, z ) is a regular function of z and z, given by the expansion 

_ /(<>,<>)ff(z’ ~ <>/u' S'^RU'Z' ~ • ’ 

that is, R(z, z') is a iegulai function in a domain of z and z' and vanishes 

when c = 0 and z -= 0 This domain does not include any place that is a zero 

of / (z, z ), because at a zero-place z, z of f (z, z') we should have 

and therelore 
C ! 

no, 0) ' } 
a possibility which is excluded. Hence we must have 

f(z, z) 
= e li z’\ 

and tberefore 
./(0, 0) 

f(z, z') = /{*), 

Our coiollaiy can therefore be stated as follows — 

When f{z, z) is regular within a finite domain round 0, 0, and f( 0,0) does 

not vanish, then there is u domain round 0, 0— usually mate limited than the 

formei domain within which f(z,z') is regular—such that f{z,z') can he 

expressed in the form 
f(z, z') = / < 0, 0)e"'-’*', 

where R (z, z) is a function of z and z, which vanishes when z = 0 and z = 0 

and is tegular within the second, domain 

In particular, this expression is valid m the immediate vicinity of 0, 0, on 

the supposition adopted 

63 Ill precisely the same manner and with exactly similar analysis, we 

can establish the following result which therefore needs only to be stated —• 

II When a function f{z, z) is regular in some domain of 0, 0, and is 

such that /’(0, z') —f{0, 0) does not vanish foi all values of z m that domain, 

we have 
f{z, e) =/(0, 0) + Kh (z, z ) e‘s,z’z'\ 

where 
h{z, z) = z'n + hxz'n~l + .. +/(„, 

the quantities A,, h„ being functions of z, each of which is regular in the 

immediate vicinity of z = Q and vanishes when z = 0, where Kz'n is the lowest 

r. 
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power w the expansion of f(0, z ) — f (0, 0) in positive powers of z, and where 

S (z, z) is a function of z a,nd z, which is regular in the immediate vicinity of 

0, 0 and vanishes when z = 0 and z = 0. 

The postulated circumstances are not the same in these two theorems 

If it should be the case that f(z, 0) —/'(0, 0) does not vanish for all values of 

z within the range, and also the case that f (0, z) —/(0, 0) does not vanish 

for all values of z within the range, then both theorems hold. In that event, 

we have two different expressions for f(z, z) — /(0,0) which must be equivalent 

to one another. This equivalence wall be illustrated by an example, that will 

be given aftei we have discussed the alternative to the initial hypothesis 

64 Secondly, suppose that the function F(z, 0), where 

F(z,z')=J(z,z)-f( 0,0), 

vanishes identically for all values of z Now F (z, z') is a regular function of 

z and z, within the range considered, as before, it can be expressed, by 

summation of the uniformly converging series which represents it, in the form 

F(z, z) = <f>0(z) -1- z'4>i (s) + z'-<t>,{z)+ ..., 

which itself is a converging series within the r.inge (As already stated, 

<f>„(z) is the F„(z) of the pieceding investigation). If then F{z, 0) vanishes 

identically for all values of z, then tf>„ (z) vanishes identically. It may 

happen that othet coefficients <jf>, (*>. 4>i{z), ..vanish identically, let cf>, (z) 

be the first that does not thus vanish, t being a finite integer because F(z, z) 

is presumably not a constant zero Consequently 

F(z, z) = z* \4>,(z) + z<pi+l (z) + ■ 1, 
and the series 

<f>,(z)+ z'<f>t+i 0?)+. 

is a regular function of z and z , that is, in the suggested circumstance when 

the function F(z, 0) vanishes identically for all values of z, our function 

F (z, z') has some power of z as a factor Lot this factor be zl, then f is a 

positive integer greater than zero, and it is assumed to be the largest positive 

integer which allows F (z, z')z~' to be a regular function of z and z' in the 

vicinity of the place 0, 0. 

The first of the two preceding theorems does not hold as an expression 

for f(z, z). But if the function F{0, z) does not vanish identically for all 

values of z, the second of the preceding theorems does hold as an expression 

for J (z, z ). There are, however limitations upon the forms of the quantities 

h», ..., in particular, 

hn~ 0, /<n_i = 0, , l+i “ 0. 

But the momentarily important result is that 

f (2, z) -/(0, 0) = z'G (2, z'), 

where G(z, z) is regular in the vicinity of 0, 0, and G (z, 0) does not vanish 

identically for all values of z. 
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Next, suppose that the function F(0, z) where (as before) 

F(z, z) =f(z, z)-f(0, 0), 

vanishes identically for all values of z. Then an argument precisely similar 

to the preceding argument, shews that the function F(z, z) has some power 

of z as a factor. Let this factoi be z*, then j> is a positive integer greater 

than zero, and it is assumed to be the largest positive integer which allows 

F (z, z )z~“ to be a tegular function of z and z in the vicinity of 0, 0 

The second of the two pieceding theorems does not now hold as an 

expression for f(z, z ). But if the function F(z, 0) does not vanish identically 

for all value's of z, the first of the preceding theorems does hold as an 

expression for t(z,z') As hefoie, there are limitations upon the forms of 

the quantifies g,„, ym ,, , in particular 

/7m ~ //m—i — 0, .. , gid—i r I — 0 

But the momentarily important result is that 

f{z. z') - f (0, 0) = z“H {z, z'), 

where H (z, z') is regular in the vicinity of 0, 0, and II (0 z) does not vanish 

identically foi all values of z 

Next, again taking 

F(z, z')=f(z, z)-f(0, 0), 

suppose that the function F(z, 0) \anishcs identically for all values of z and 

that the function F(0, z) vanishes identically for all values of z As in the 

preceding cases, F(z, ~) has a factor which is now of the form z‘z’1, where s 

and t are positive integers each greatei than zero, and it is assumed that 

each of them, independently of one another, is the hugest positive integer 

which allows F(z, z’)z~*z'~' to be a regular function of z and z in the vicinity 

of 0, 0 

Neither of the two theoiems already proved now holds as an expression 

for f{z, z') The momentarily important result is that 

f(z, z) —/((), 9) =z“z'lI {z, z), 

where I (z, z') is regular in the viemity of 0, 0, while I(z, 0) does not vanish 

identically for all values of z and I (0, z) does not vanish identically for all 

values of z. 

Thus in each of the eases contemplated, we have 

f(z, z') —f{0, 0) = z’z' U (z, z), 

where s and t are positive integers that are not simultaneous zeros, and 

U (z, z) is regular m the vicinity of 0, 0, while neither U (z, 0) nor U (0, z’) 

vanishes identically fot all values of z or of z respectively. The alternatives 

are as follows 
7—2 
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(a) When U (0, 0) ia not zero, then, within the sufficiently small domain 

round 0, 0, we have 
U0, z) — U(0, G)eT^\ 

where T(z, z) is a regular function of z and z', vanishing at 0, 0 

Then we have 

f(z, z) = f (0, 0) + Cz?z'teT'I't), 

where the constant C is the non-zero value of U(0, 0) 

(/?) When U (0, 0) is zero, the conditions attaching to U (z, z) require 

that U(z, 0) does not vanish identically for all values of z and that V(0, z') 

does not vanish identically for all values of z. 

As U(z, 0) does not vanish identically for all values of z and as U (z, z ) 

is a regular function, the first of our two earlier theorems applies to U(z, z ); 

we have an expression of the form 

U (z, z ) = Ag {z, z) eIt^<z'\ 

where A is a constant, g (z, z') is a polynomial in z having, as its coefficients, 

regular functions of z' which vanish with z , arid where R (z, z ) is a regular 

function of z and z which vanishes when 2 = 0 and z — 0 Then 

f (z, z ) — f (0, 0) + Azgz'g (2, z'\oR[z'z') 

Also U (0, z') does not vanish identically for all values of 2', and U(z, z) 

is a regular function , hence the second of our two earliei theorems applies 

to U (2,2'). We have an expression of the form 

U (2, z) = Bh (z, z') eS{z’z'\ 

where B is a constant, k (z, z) is a polynomial in 2' having, as its coefficients, 

regular functions of z which vanish with z, and where S(z, 2') is a regular 

function of 2 and 2' which vanishes when 2 = 0 and 2' = 0. Then 

f (2, z')—f( 0, 0)-f Bz*z'li(z, z) eS{1-z). 

Summarising these results, we have the theorem •— 

III. When a function f(z, z!) is regular m some domain of 0, 0, and 

is such that either (1) f (z, 0) ~f(0, 0) vanishes identically for all values 

of z while f{0, 2') — /(0, 0) does not vanish identically for all values of 2', 

or (n) /(0, z') — /(0, 0) vanishes identically for all values of z' while 

f(z, 0) — /’(0, 0) does not vanish identically for all values of z, or (111) 

f(z, 0) — f(0,0) vanishes identically for all values of z and f(0,2') -/(0,0) 

vanishes identically for all values of z', then expressions for f(z, z) in • the 

immediate vicinity of the place 0, 0 are 

f(z, z)=f( 0, 0 ) + Az,z'lg (2, 

f(z, z)=f(0, 0) + Bz'z* h (2, z) 
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where s and t are positive integers svch that s= 0, t > 0 for the first hypothesis, 

s > 0, t = 0 for the second hypothesis; and s > 0, t > 0 for the third, hypothesis. 

The quantities A and B are constants ; the functions R (z, z') and S (z, z) are 

functions of z and z\ each of which is regular in the immediate vicinity of 0, 0 

and vanishes when z = 0 and z — 0 , the function g (z, z) is a polynomial in z 

of the form 

z™ + g,z’n~' + +gm, 

where the coefficients g,, gm at e functions of z which are regular m the 

immediate vicinity of z — 0 and vanish with z’, and the function h (z, z) is a 

polynomial in z of the form 

z‘1 + hlz'n~l + +hn, 

where the coefficients hlt me functions of z which are regular in the 

immediate vicinity of z and vanish with z There is a, limiting case when both 

in and n ate zeio, the eaptessiun for J (z,z') in the immediate vicinity of 0,0 is 

f(s, z) = / (0, 0) + Czsz'ter,!’*'>, 

where (J is a constant, while T(z, z) is a function of z and z’ which is regular 

m the immediate vicinity of 0, 0 and vanishes when z = 0 and z = 0*. 

Note We saw before that, in certain circumstances, both Theorem I and 

Theorem II ate valid, thus providing for the tegular function f (z, z ) two 

expressions, which ate formally distinct from one another, and must he 

equivalent to one anothei 

In Theorem III it follows that, in certain circumstances, the regular 

function f(z, s') can have two expressions, which are formally distinct from 

one another and must he equivalent to one another. 

In the former case, the two expressions torf{z, z')-f(0, 0) are 

Cg (z, z) Kh (z, z ) esu>z’, 

where g(z, z) is polynomial in z with coefficients that are regular functions 

of z vanishing with z, while h (z. z) is polynomial in z with coefficients that, 

are regular functions of z vanishing with j. Thus 

g (z, 2 ) _ K Sa,z’)-R(z,i') _ TPviz,e> 
h {z, z’) ~ a _i/e ’ 

where L is a constant and V(z, z) is a regular function of z and z which 

vanishes when z = 0 and s' — 0 , hence 

g(z, z')=Lev^h{z, z'), 

h (z, z’) = ~e~r,z’zig(z, z) 

Similar relations hold in the latter case. 

* This theorem is quite distinct from Weierstrass’s Becond preliminary theorem (p 141 of hi» 

memoir already quoted) for the case ;i = 2, the latter will come hereafter (j (15). 



102 GENERAL [CH. IV 

It follows that, for a regular function f(z, z'), when it is not expressed as 

a power-senes valid over a domain round 0, 0, but is expressed for con¬ 

sideration in the immediate vicinity of 0, 0, we usually can obtain two 

different expressions according as z or z' is taken as the variable for simplifying 

the representation. Each of the expressions is unique in its form; the two 

expressions are equivalent to one another. 

Ex Consider an ordinary place of a regular function f (z, z'), and let it be 0, 0 , and 

take the general power-series for /, in that domain, in the form 

f[z, *')-/(<>.") 

= (al0 s+a01 z’) + (a*, zi+a,, z’J + 

+ ("si*3 + «2|Z2z’ + «i2zz'2 + a0Jz'3) + _ _ 

First, assume that neither nor a,,, vanishes It is not difficult to establish the 

following results* — 

/(*, s') - f(0, 0) = + 6(,i *' + ^ + f»„3z'3 + . )PAi«; + loi*' + W + *!i«' + hisZ'2 + _ 

where 

hoi =* rt,u, 

h<)2“= —-5 (OouOio2 ~Oi\aioftm ^azn(loi2)t 
“ill 

b<id — '~a (^m^io'1 - «u«io2«tu + “in «io«oi2 — ,lKia»] >} 
<*10 

— ~~4 (a02«104— <*ll“l0<*01+ ®2i>Ooi2) (2rt21,0,11 - B|]«in), 

£lll — 
«20 
al«’ 

^01 = ~i («11«10 — a2nf70l)i 
"HI 

, a ill 1 <**I2 
o n 2’ "10 Z «10 

— ("2i«io_a3o«m) -—^5 («n«io — «a><*oi)* 
«H> "in 

^02 “-j (a12"l02 — *21 *lo*m + *3o"oi2) 
<*K» 

_- (*02*1112 _ *ii“i«*w +«2o"m2) — „ - <alta)0- q-:ki«oi)2> 
«10 1 (t]() 

which is the expression for f(z, s') under Theorem I 

Similarly, as the expression for f{z, z) under Theorem II, we have 

/ (z, z') -f (0, 0) = (on, 2' + c]0z + + C;w 2* + .) <Ao* + z' + + hi «' + W2 + , 

* The expressions suggest that the theory of invariantive forms can be applied to the 
expansions, in all the cases stated. 
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where 

cit. = +io, 

1 
^ (+12**10" —+11+10+01++20«,,!*), 

“01 

1 
*00 — “ j (+io+iti — +21 +>i2**io++12+01 **io2— Ooi+io1! 

+n 

— .. i (+12+102 — +11+10+01 ++20**012) (2+02**10 —+11+11) 
“01 

^Ol— 7~2 (**11+11 “**02**lo)> 
+01 

(ill = 

(yn — 

+12 

**ul ’ 

1 

*v (**211*01* +13**01+10+ **01**102J 

**02 

*v (+.2+Id2 — **11**10+11 + " 20**111l) •2. 

(**12**01 ~ **01**11.) — _ "2 (**11**01 ~ <*02**10)1 +.1 

, **!*) 
<02= - 

1 Oo2S 

2 **,„'< ’ 

And it is easy to verify that 

«io2 + +n-, + (>o2~i! + (\m,’'+ *10) z+ (<oi- Aoi)*'-f 

** in* + +01 ** + *,2o22 + Cjo~t 4- 

Secondly, when um vanishes hut. not +„>, the Inst expiession is effective for 

t'(z, 0-/(0, 0), 

hut the second is ineffective When +]0 vanishes but not +n, the second expression in 

effective but the first is ineffective 

Thirdly, when aIU and +,, both vanish, neither of the expressions is effective Then 

f(z, «')--/(0, ()) = a.iHiJ+r(nzz‘ + <^az'i + a30z> + an:iz' + anzz'1 + ciiU^ + , , 

and we find 

/(2, 0-/(0, 0) 

= !<*ao^ + » C**!!^ + b1iZr2+ )+~‘ (+I2 + /'0I: + y, 
where 

/*12-""5 1+I2+202 — +21 +11 **20+**20 (<*11^ “ **02**2..)}. 
**a. 

/'ll:] = -2 {**03 **20^ — **21 +12 **20 + **30 ** 11 **02}. 
+20 

1 +3(1 
*10— —) 

+20 

1 
2 (+21**20 —+30 + ll)l 
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We also find 

f(z, z') - f (0, 0) 

= {a„2z'2+c'(alt2 + cuz-+. ) + zi (“an + r^z +. )] eIj°2 + ^ 2 + 
whore 

Csi—~ 2 {“21 “»22 - “l2“ll“o2+ “l)3 (“'ll2 _ “ll2“2o)}» 
“|I2 

r»~ —o {ay,\at\L — “ii“o2“2<i+“t>3“ii“2o!i 
<'113 

On— ~ ' (<*i2'l»2 — “oj“ii)» 

i 'fin 
fin — - . 

«iu 

The first expression in effective when rtj, does not vanish , but it is ineffective when a^n 

does vanish The second expression is effective when “02 does not vanish , but it is 

ineffective when «oi does vanish. 

When both “a> and ww vanish and when nH then does not vanish, nnothei expression 

must lie obtained In that case, we have 

f{pi “)~J (°> 0) = «j1*;' + UjoCj + "2j;2- +<'i2—'■' + «iuJ',+ , 

and then we find that 

(0,0) 

= !"#i-d+ 22(^2i'S, + ^3j-,3+ )+z (l>n-+I>h~' +■ ) + bus:'3 + bni;’J + } (/w* + ^oi- 1 j 

where 

/<11 =-5 (“3l“K|2 — “2l“4o“iU -“ll“jll“5u + «Il“ll)2), 
“JO 

^20“ 2 (“jo“5<| — i<fi»l2)> 
“30 

/jl) =-3 (“3ll2“t)<| — “»><*4«<*6tl + i“4l>1J> 
“3II 

/'ll — ^1(1^111 H-{“41 “ “ 11^10 “ “m/'ill - “21 (/*20 ~4IT1„2) — “ll (/.JO — / 20/'ll) “b 

“30 

/'ll ““ill 

fc2i = 'i2i — a i j 

“I2=“l2— «ll4l, 

0()3 

^22 = “22~ “12/10 — “21^01 - “ll (^U - /‘lo/;Ol)i 

There is a corresponding expression for f{z, z') -/(O, 0), in which z' is made the dominating 

variable , it has the form 

/(*, 0-/(0,0) 

«{“q33,3+3'2 + . .J+z' (CuX + Cij32+ . ..) + C8023 + C4()34 +...} ^012 , 
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where 
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«,/‘W t,17'<«lalk) — <'lI',<UaH6 + ®ll®l>ti)) 

7 _ a"l e01-1 
<hn 

A«s=- 

A>3 „(,{l l7il3f*lni7U5-|-(ff(,.p), 

Ao Am"1“ “ 1^14 — — omA,,, — (Ae IAn") — (An — Ai2Aii *1“ (Anp)[ 

I'll — «U, 

Oi—Um, 

'’i!l**'»21 ~ r'll^ll, 

' ij = "ia _ f,n An i 

l’2is= C/j'i — C7ji All — l*uAll — II ] I (An — A),I All), 

flic hist of those is effective when does not vanish The second is effective when am 
does not vanisli 

The general form of expression for 1 (0, 0), when Loth /(0, (0, 0) and 

t (~i ") — / (0, 0) vanish identically, has heen indicated It, then is possible to molate a 
factor whole 

A(h c')“/(O,0l = /,'x, JU 

such that hoth f (.,()) aud t (0, ;') do not vanish identically, and expressions, similar to 

those which piecede, can lie obtained foi f(., 

65 When the function F(z,0), =f(z,{)) — f(0,0), vanishes for all 

values of z, another method of proceeding was given by Weierstrass* It 

was devised for functions of v variables (when it >2) and some method is 

needed for them other than the method for functions of two variables, because 

with n variables it is not generally possible to extract an aggregate factor 

such as zszl from the function corresponding to f(z, z') — f(0, 0) Applied 

to functions of two variables, the Weierstrass method is as follows 

In the double-series expansion of f(z, z) —/(0, 0), valid in a domain 

round 0, 0, let the terms be, gathered together into groups, each group con¬ 

taining all the terms of the same order in z and z combined, and suppose 

that the group of lowest ordei is of order fi, so that we have 

f(z, 0-/(0, 0) = (*, z')M + (z, Oe+i + — 

Change the variables from z and z to u and «' by relations of the form 

z — a.u + /3u', z' = yu + Su', 

where a, /3, y, 8 are constants such that aS — /3y is not zero, so that u and u 

are new independent variables Then f(z, z')— /(0, 0) becomes a regular 

See p. 140 of his memoir already quoted 
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function of u and u, say G(u, >/), the lowest terms in which are of order fz; 

and 4 
G («, 0) = (a, 7V «** + (a, 7V+, «'1+1 + ..., 

so that, choosing (a, 7)^ to be different from zero, G («, 0) does not vanish 

for all values of u 

The first of the preceding theorems can therefore be applied to G(n, u')\ 

the result is of the form 

G(u, «') = («, 7V {uli + u'L~lgl(u')+ ... + g?(u')} e1(a’ u'\ 

whore (a, 7),, is the non-vanishing coefficient, g,, ... g„ are regular functions 

of u' which vanish with u\ and I (11, a') is a regular function of « and u 

which vanishes when u = 0 and m' = 0, moieover, as the lowest terms in 

G(u, u') are of dimensions fz, the regular series for gr (u) begins with a term 

in ur, for r = 1, , fz 

When retransforination to the original variables z and 2' is effected, 

we have 

f(z,z')-f(0, 0) 

= G(u, u') 

= l>, *')*+{*> *Vi + .}eJI<z'z'\ 

where J(z, z) is a regular function of z and 2' which vanishes when 2=0 

and z — 0, and by expanding e'1 : * so as to have the complete series for 

the new expression, we have 

!*, = 
so that, as is to be expected, the first term in g (2, z), where 

/0> z')~ A°> 0) = g(^, z'\ 

is the aggregate (2, 2')„ in the original double series for/(2, 2')—/(0, 0) 

Note 1. It may be pointed out that the preceding method is effective, 

even if f(z, 0) — /(0, 0) does not vanish Thus for a function it might 

happen that, in the regular function f(z, 0)— f(0,0) when it does not vanish 

for all values of 2 identically, the term of lowest order is Azn, while, in 

f (z, z') -f{0,0), the terms of lowest order are of dimensions less than n. 

(As a matter of fact, each of these terms of lowest order will then contain 

some positive power of z' as a factor). The application of the method will 

then lead to an expression of the preceding form 

Note 2 In the method, the limitations upon a, ft, 7, 8 are merely ex¬ 

clusive, they are 
u8- ft7 + 0, (a, 7),, 4= 0. 

Thus a certain amount of arbitrary element will appear in the result; by 

varying these constants «, ft, 7, S, different expressions will be obtained which 

are equivalent to one another 
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Ex. 1 Consider the function* 

/= .V + * (C+z'3) + ^ (-• + *'■>) + 

the unexpressed terms being of order higher than 4 We take 

z = v, z'=■ u + ?/', 
so that 

/ = «* + ««' +J (2«1 + 3i(2?r' + .lM«'J+ it'1) 

+ (2a1 -f iti'ii + Hu'2u’J + Attti^ + u*) + 
This must he equal to 

(«* + £,, u + </.,) e11' “ + h' + “*“s ++ ^u'2+ , 
where 

,9! = I-, + , 

92 =* a ^ + f31/'3 + ^4 a1 + . 

Exjiandmg, and equating coefficients, we find 

1-1=1, ^ i — — ile > 

h = 0, 
"I-1,* *,=*. 

"‘Z~ j’ki V-o, <•2“ -f’z . 

and thus the expressiori for our function becomes <j (a, it') e1 (u’ M *, where 

,9 (w, «') = it2 + u (a' + \u'i- a'* + ) + It u'1 + ^ u'* + , 
and 

I (it, it’) = ^ u + i «■' + -b (4a- + 6a’0 + 

When we retmnsform to the variables z and z' by the relations 

u=-z, u' = :'-z, 

the terms of the lowest order m 9 (u, u') become _d, ns is to be expected 

But the completely l’ctransformed new expression for f is less effectiv e than the 
original expression , and the discussion of f hi the vicinity of 0, 0 is more effectively 
made 111 connection with the expression 111 terms of z and z'. 

Ei 2 Obtain an expression foi the function in the preceding example, when the 
tiansformed variables are given by the relations 

z=u + alt', z' = u+fiu', 

where the constants « and 3 are uuequal , and prove that, when retransformation bikes 
place, the terms of the fust older in /(«, u') become z+-. 

This last method of Weterstrass has been outlined, because of its 
importance when the number of variables is greater than two. When the 
number of variables is equal to two, the general case for which it was devised 

falls more simply under the comprehensive results of Theorem III 

We may therefore summarise the results of the whole investigation 
briefly as follows Whatever be the detailed form of any function f{z, z ), 
regular in a domain round 0, 0, its general characteristic expression in the 

immediate vicinity of 0, 0 is 

/ (z, z) —/ (0, 0) = z,z't P (z, z)el^z'\ 

* The expansions under Theorem I and Theorem II arise as special cases of the result given 

above, p 104. 
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where I (z, s') is a function of z arid s' which is regular m the immediate 

vicinity of 0, 0 and vanishes when z= 0 and s' = 0. The quantities s and t 

are positive integers, which may he zero separately or together. When 

either of these integers is zero, oi when hoth of them are zero, P(0, 0) can 

be different from zero for special functions, for all other functions, P (z, s') 

is polynomial in one of its variables, the coefficients of the powers of which 

are regular functions of the other variable within a limited domain, each such 

coefficient vanishing wrhen that other variable vanishes. 

Level values of a regular function. 

66 One immediate deduction of substantial importance can he made 

from the expression for f(z, z) which has just been obtained, viz. 

F(z, z') =f(z, z') —f{0, ()) = z*z'1 A (z, s') e,( z \ 

as to the places where f(z, s') acquires the same value as at 0, 0 When 

/(0, 0) vanishes, we shall call the place a zeio for f(z, z') When /(0, 0) 

does not vanish, we shall call the value /(0, 0) a level value for all the 

places z, s’ such that f(z, s') =/(<), 0), all these places are therefore zeros 

of F(z, s') 

As II (z, s') is a regular function of s, s' within a limited domain of 0, 0, the 

quantity e11 z) cannot vanish at any place in the domain. Consequently 

the zero-places of F{z, s') within the. domain aie given by three possible sets. 

When the positive integei s does not vanish, zero-places of F(z, s') arise 

when 
s = 0, s' = any value within the domain 

When the positive integer t does not vanish, zero-places of F(s, s') arise 

when 
s = any value w ithin the domain s' = 0 

When A (s, s') is not merely the constant A (0, 0), all the places m the 

domain such that 
A (z, z) = 0 

are zero-places for F(z, s'). 

As regards the first set, we obtain an unlimited number of zero-places 

of F{z,z) within the domain of 0, 0, they constitute a continuous two- 

dimensional aggregate, the continuity being associated with the plane of s' 

alone 

As regards the second set, we obtain also an unlimited number of zero- 

places of F(z, £) within the domain of 0, 0, they too constitute a continuous 

two-dimensional aggregate, the continuity now being associated with the 

plane of s alone. 

For the third set, there is no additional zero-place for F(z, s'), if A (0, 0) 

is a non-vanishmg constant: in that event, either s, or t, or both s and t, 

must be different from zero. When A (0, 0) does vanish, the function 
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A(z,z') either is polynomial m z and (usually) transcendental in z\ 01 is 

polynomial in z and (usually) transcendental mi, and these alternatives 

are not mutually exclusive In the former case, for any assumed value of z' 

within the domain, there is a limited number (equal to the polynomial 

degree of 4) of values of z, which vanish with z and usually are trans¬ 

cendental functions of z , hence, taking a succession of continuous values of z 

in the domain we have, with each value of z, a limited number of associated 

values of z All these places taken together constitute a continuous two- 

dimensional aggregate, the continuity now is associated with both planes, 

each value of z having a definite value of ^ or a limited nunibei of definite 

values of z associated with it, all within the assigned domain of 0, 0. 

Similarly, in the latter case, as regards A (z, z'), the same icsult holds when 

the appropriate interchange of z and z is made in the statement, and the 

two-dimensional aggregate is unalteied 

Ev 1 Among the simplest examples that occur, are those when A (;, z’) can be 

expressed m a fmru 

<tz + l‘ ii'l, 

whole (t is a constant and /’(Aj is a regular function of J gnen by 

r (;■)=!>/+<:*+ , 

h not being zero Then J (z, z‘), with an appropriate change m /i (z, z') winch is the 

function in the exponential, can also be expressed in the form 

h;' + lt (c), 

where the icgulai function // i-' is given bv 

R(z) = «z+Czl + , 

with suitable values of the constants The zeio-valuos aie given bv the two- 

dimensional aggregate 

-a: -■ P(:'), -IE = I((z) 

The result is the gcneialisation of the known projierty whereby, m the vicinity of 

a real non-singulai point £, t) on an analytical (Uivc /'i,yi=0, we have 

r~ $-=P L'f-V), ,'/-'l = P\JC-f) i 

the linear term m l'{j/-r)) combined with > - £, and the lineal term in Il(i -£) eornhined 

with tf — give the tangent to the curve at the real ordinary point f, rj on the curve 

Ei 2. In both cases that arise out of the alternative forms of A, the u< tual deteiun- 

nation of the set of values of r in terms of / (or of the set of values of J m terms of z) can 

lie made aH in Puisoux’s theeny of the algebtaical ecpiation f (w, i) = 0, the governing terms 

being selected by the use of Newton’s parallclogiain Foi example, ill the case of the 

zeios of the function 

f (s, A) — f (0, f)) = «j|Z;'-t-a|„; A'-f-ctijUC^-p Oiijs'1 + 

Wlthm a small domain round 0, 0, we find three values for . in terms of 2', viz 

( -""P/i + 1 ^ -rtj!«»)-'+ ) 

t= + ^ ^ («4o"ii — «a!«ao) ' > 
\ a&>/ I 

^ z'“ 4- — .» z 1 + ••• ) 
«n «ir 
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and there are three corresponding values for m terms of r, viz 

c'= (- + («|I4"|I — "l2"ltj) s+ • ] 
\ "in/ 2am* 

■2 — — — „ I + r-« — "l2"#0 • 
V “03/ -“tu“ 

— ~ T ’'2+r j ("31 "in "11" si) d- 
"11 "11 ' 

If a*, is zero, the first two series 111 the earlier pair are not valid, if ct01 is zero, the first 

two series in the later pair are not \ahd. If all the coefficients «nl) vanish so that 

/ (2, 0) — f (0, 0) vanishes for all values of 2, on I v the third expression 111 the earlier pan 

survives If the first coefficient an0, which does not vanish, is «rt,, them is a set of 

r-1 expansions 111 a cycle corresiionding to the above two which ovist when a*1 does 

not vanish And so on, for the lesjieitive cases 

fix .t yuite generally, it may In' stated that the detailed determination of the 

behaviour of F{:, :’) m the \1c1n1ty of 0, 0, so as to obtain the nature ot its zeros as 

well as the actual positions of its zero-places, has a close resemblance to tho method 

of proceeding 111 the consideration of an equation 1 (»', z)=0, which is algebraical both 

in «j and 111 ;, and in the deteimunition of tho associated Riemmin suifaco* 

67 All the results relating to the zeros of F(z, z) can apply, in 

descriptive range, to a determinate finite level value (say a) of a unifoim 

function f{z, z) in a domain where it is regulai Let 0, a' be a place 

where / acquires the value a, so that 

.1 (", a') = «. 

For places a 4- Z, a' + Z' neai a, a' within the domain of <1, a', we have 

f (z, z ) —/ (a + Z, a' + Z ) 

=/(«, <>') + 22rmnZmZ'n, 
that is, 

f{z, z') — a = 22 cmnZmZ'n 

Thus the places within the domain of a, a where /’ acquires the level value a 

are given by the zeros of the double series which itself vanishes when Z = 0, 

Z’ = 0. 

Hence the level places which give a determinate finite value a to a 

function f(z, z') form a continuous aggiegate within the domain of any one 

such level place 

Manifestly, as we are dealing with properties of a uniform function of/, 

which is regular within the domain of an ordinary place, the values of/must 

be finite (for poles do not occur within such a domain) and they must be 

determinate (for singularities, whether unessential or essential, do not occur 

within such a domain) The behaviour of a function in the vicinity of a pole 

and in the vicinity of an unessential singularity will be discussed separately. 

* For this subject, Bee Chapter vm of my Theory of Functions for the discussion of the 

algebraioal equation and Chapter xv for the construotion of the associated lhemann surface 

Reference should also be made to the early chapters of Baker’s Abelian Functions. 
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68 Not because of any immediate inipot tanco for a single function of 

two variables but mainly because of the need of estimating the multiplicity 

of a common zero-place or a common level-place of two functions of two 

variables, it is worth while assigning integers that shall represent the orders, 

in z and z lespeetively, of the zero of f(;, z') — f\a, a) at the place (a, a') 

By the preceding proposition, for a place z = a + ti, z' = tt' + ii in the im¬ 

mediate vicinity of a, a!, we have 

f(z, s')—f(a, <(')= it" it'1 G(tt it'), 

wheie G is regular in the domain, and the integers s and t can be chosen so 

that G (»,<)) does not vanish for all values of u and G (0, </') does not 

vanish for all values of u' The positive mtegeis g and t can be zero, either 

separately oi togethei 

As (1 fa, 0) does not vanish for all values of it, there exists a senes 

Q(a, »') = tim + 7, (u) + + 7„, (u'), 

wheie 7,(11'), . ,</m(tt') are legulai functions of n' vanishing with it, such 

that 

G{u, h')-*KQ(u, 

wheie K is a constant and Q(it, n') is a legulai function of n and a vanishing 

with n and it' Thus foi any small value of it', them are m small values of it, 

making ft (it, a') zeio 

As G (0, it') does not vanish foi all values of a', them exists a series 

R (u, it') = u'“ + r, {it) + + ;„(«), 

wheie 1,(0) , rn(u) aie legulai functions of it vanishing with it, such 

that 

G(u, u') = IjR (it, u)e1Gu> ")) 

when- Jj is a constant, and R(u, it') is a regulai function of n and li vanishing 

with u and it' Thus for any small value of it, them an* it small values of it', 

making G(u, it!) zero. 

In both of these cases, G(a,u') vanishes when «=0, it' — O, and then 

neithei of the integers in and n is zeio Them remains a third case, when 

G (0, 0) is not zero , then 

G(u, u) = G{0, *'», 

where 7(it, u) is a regular function of a and u! vanishing when u = 0 and 

y' — 0 Thus no small values of u and u make G(u, it') vanish, and then 

both of the mtegeis m and n are zero. 

With these explanations, we define the orders of the zero of the function 

f(z, z) -f (a, a) 

at a, a’ as s + m for the variable z and as t + n for the variable z. But it 

must be pointed out that the zero of the function at a, a' is not an isolated 
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zero, for it is only a place in a continuous aggregate of zeros, still, a 

settlement of an order m each variable at a place a, a' is convenient as a 

preliminary to the settlement of the multiple order (Chap vii) of such a place 

when it is a simultaneous and isolated zero of two functions considered 

together 

Relative divisibility of two tegular functions near a common zeio 

69. Before proceeding to obtain the expression of any uniform analytic 

function in the vicinity of a singularity, it, is important, to consider the 

behaviour of two uniform functions f(z, z') and g (z, z) simultaneously, both 

being regular within a common domain which will be taken round 0, 0 

First, suppose that g (0, 0) is not zeio, then we have seen that a uniform 

function S(z, s') exists, which vanishes when z- 0 and z' = 0 and is regular 

in a domain in the immediate vicinity of 0, 0, and is such that 

g{z, z') = g (0, 0)eS(z’*> 

for that domain Also, we know that we can take 

J\z, z) =/( 0, 0) + A<p(z, z) z,z'teIif'z' * \ 

where s and t aie non-negative integers, (f>(z, z’) is polynomial in z and 

regular in z, and R(z, z) is a uniform function of z and z' which vanishes 

when 2=0 and z' = 0 and is regular in a domain in the immediate vicinity 4 

of 0, 0 Consequently 

/(*, *')_ 1 
g(z,z) g{ 0,0) 

|/(0, 0) + A4>(z, z')Az''en^^}e s(-m') 

= mo) 
<7(0,0) <7(0,0) 

<f>(z, z')z*z'te,<' 11 * ,s z 1 

The right-hand side, whether /(0, 0) vanishes or not, can be expressed as 

a regular double series U(z, z) , that is. 

/(*. 2') 

V (z> z) 
U (z, z). 

When a uniform function f(z, z') is expressed as a double senes P(z, z), and 

another uniform function g (z, z) is expressed also as a double series Q (z, z), 

and when a third uniform function U (z, z') exists such that 

R(J, A) 

Q (*, z) 
= U{z, z), 

all the functions being regular m a domain round 0, 0, we say, following 

Weierstrass*, that the series P(z, z) is divisible by the series Q (z, z). 

Get. Werke, t. u, p. 142. 
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It therefore follows that, when </(0, 0) is not zero, the regular function 

f (z> z ) is divisible by the regular function y (z, z')t the regularity of both 

functions extending over a domain lound 0, 0, and the lesult is true whethei 

/(<>, 0) is zeio or is not zero 

70 Next, suppose that r/(0, 0) is zeio, then we know that we can 
take 

g(z, z') = B?z''eT^:)x(Z'Z')t 

where B is a constant, <r and r are non-negative integers, T i z, z) is a 

function of z and z\ regulai in the immediate vicinity of 0, 0 and vanishing 

when z — 0 and z' — 0, and x (z, z') is a function which is a polynomial in z 

having functions of z' for its coefficients, these coefficients being regular m the 

immediate vicinity of z - 0 and vanishing when z — 0 rrhe foim of f(z, z ) 

is the same as before It at once follows1 that, when f(0, 0) is not zero we 

cannot express 

VV.~) 
m the form of a tegular function , in that case, the function f(z, z) is not 

divisible by <J (z, z') 

But when /'((), 0) is zero, as also is <j (0, 0) under the present hypothesis, 

then we have 

f(z, z'\ _ Az'z'1 <f>(z, z')en *1 

:') Hz°-Jrx(z, 

_ -'l -'),« 5) 

/>’ zvzTxKz, 

Now ll (z, z) - T (z, :') is legulai in the immediate vicinity of 0, 0 and 

vanishes when ^ = 0 and z — 0, hence the exponential factor in the last 

expression admits the divisibility of f(z, z) by y (z, -') Also this divisibility 

is admitted, so far as powers of z are concerned, if s > a and, so far as powers 

of z are concerned, if t ^ t There remains therefore the divisibility of 

by X(z’ z )’ where (for the present purpose) we shall assume that 

both <f> (z, z ) and x (z> - ) are polynomials in z the coefficients m which aie 

regular functions of z‘ in the immediate vicinity of z' — O and vanish when 

z = 0. Manifestly the degree of 6 (2, z’) m z cannot be less than that of 

^ (z, /), if divisibility is to he possible, accordingly, we suppose that 

4>(z,z') = zm + zm~' <7, + + ym, 

X (z, z‘) = z‘L -1- zn~‘ h, + + h 

where in > 11, and all the coefficients //,, h1.hn are regular 

functions of z in the immediate vicimt\ of z = 0 and vanish when z = 0 

When <p(z, z’) is divisible by z), the quotient is manifestly of the 

form 

F 

z"'-” + Zm~ "-1 k+ . + Jc,n_n 
X 
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where the coefficients ku ..., &m_„ are functions of z' Also 

ffi = h, + k, 

g2 — h2 4- A]lcl + la, 

gr = hr 4- hr_jkz 4" a 4- , 

ffi/t — hn^m—«• 

From the first, it follows that the function k, is regular and vanishes when 

z — 0, from the second, that the function k., is regular and vanishes when 

z = 0; and so on, in succession from the first r/t — n of these relations 

Also all the relations are to be satisfied, by appropriate values of k,t . , 

for all values of z in the immediate vicinity of z = 0 The conditions, 

necessary and sufficient to satisfy the last requirement, are that, when we form 

the v independent determinants each of m — n rows and columns from the array 

f/l klt g2 h2, g3 ha, .. , <Jn }ln, ffn+l) > ffrn y 

1 , h, , K , , 0 , 0 , , 0,0 

0 , 1 , A, , 0 , 0 , ., 0,0 

0 , 0 , 0 , hn , | 

0 , o , 0 , . , . , . o , h„ i 
each of these n determinants must vanish identically for all such values of z 

Thus there are n conditions. The form of the conditions should, however, 

be noted As all the functions g and h are regular functions of z in the 

immediate vicinity of z' = 0 and vanish when z — 0, each of the « deter¬ 

minants is also a regular function of z' in the immediate vicinity of z = 0 

and vanishes when z = 0. Each determinant is to vanish identically for 

all values of z! in the range round z’ = 0, and therefore every coefficient, m 

the power-series which is the expression of the determinant, must vanish 

Thus in practice, when the power-senes are infinite, the number of relations 

among the constants would be infinite for each of the conditions; the 

arithmetic process could not bo carried out in general*. But the n 

analytical conditions among the functions would still remain, m the form of 

determinants that are to vanish identically 

Thus, in particular, the conditions, that the function 

‘i+=‘ffi+z<j2+g3 
should be divisible by the function 

2'** +-/<j 4-/l^ , 

arc that the two independent determinants from the array 

gi — hl, gi~h«, ga 

1 , hx , Aj 
* In particular cases, it might be feasible, e g. when there are known Beales of relation 

governing all the coefficients 
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shall vanish identically Whon the two conditions are satisfied, the quotient is 

the general argument shews that the function gjjh2 is to ho regular and to vanish with 2', 

ri limit upon the orders of tlie lowest powers of 2' in /i2 and </,t is thereby imposed 

Relative reducibilitrj of functions. 

71 Further, it is important to discover whether, even in the case 

when a function cf> (2, 2') is not actually divisible by a function y (2, 2'), 

both being of the foregoing type, each of them is actually divisible by a 

function •<]<• (2, 2') also of the same type, that is to say, if 1^(2,2') exists, 

it is to be a polynomial in 2 the coefficients of which are regular functions 

of z m the immediate vicinity of z = 0 and vanish when z — 0 

A method of determining the fact is as follows Both (■£, z’) and y (2, 2') 

must vanish for all the places where 1|r(2, 2') vanishes, if tJr exists We 

therefore regard 

<f> (2, 2') = 0, x (2, 2) = 0, 

as two simultaneous algebraic,il equations in 2 We eliminate 2 between 

these two equations, adopting Sylvester’s dialytie process The resultant, is 

a determinant of m + n rows and columns, every constituent in the deter¬ 

minant (other than the zero constituents) being divisible by 2', and therefore 

this resultant is of the form 
z'v 0(2'), 

where /x is a positive integer not less than the smaller of the two integers 

m and a, and where <4 (z ) is a regular function of z in the immediate 

vicinity of 2=0, when it, is not an evanescent function 

When H (2') does not become evanescent, the values of 2' different from 

2' = 0 which make the resultant vanish are given by the equation 

<r>(2') = 0, 

and these values of 2' form a discrete and not a continuous succession. In 

that, event, for each such value of 2 and for the specially associated values 

of 2, both <f> and y vanish. But their simultaneous zero values are limited 

to these isolated places, there is no function yfr(z, 2') possessing a continuous 

aggregate of zero-places in the vicinity of 0, 0 

When @(2') is evanescent, the functions <f>(z,z) and y (2, 2 ) become 

zero together, not merely at the place 0, 0, but at all the continuous 

aggregate of places where some function \jr (2, s'), as yet unknown, vanishes , 

for there is no equation ©(2') = 0 limiting the values of 2' and requiring 

associated values of 2 

b—2 
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In the latter case, <£ (z, s') and x (z< z') possess a common factor (z, z), 

which necessarily will be a polynomial in z of degree less than n ; and the 

polynomial will have functions of z for its coefficients, all of which are 

regular m the immediate vicinity of z'=0 and vanish when z' = 0 Let 

if- (z, z') — z‘‘ + zp~l 11 + ... + kv, 

as ^ is a factor of <f> by hypothesis, and also a factor of x by hypothesis, 

our earlier analysis shews that (as already stated) A,, ..., kp are regular 

functions of z m the immediate vicinity of z = 0 and vanish when z = 0 

Accordingly, let 

= Zm~P + Z^-1 0, + + Gm-;„ 
Y<z, z) 

XrpS-l = zn~p + //, + ...+ Hn_p, 
^{z,z) 

where all the coefficients (?,, , Gm-P, //,, ..., H„-p are regular functions 

of z' in'the immediate vicinity of z' = 0 and vanish when z' = 0 Consequently 

the relation 

(zm + z'"-' g, +... + gm) (zn-p + zn-^ H, + ...+ 7/„_p) 

= (zn + zn~' A, + ... + htl)(zm-p ■+ zm~P-‘ G, + ...+ Gm^p) 

must be satisfied identically for all values of z and z within the im¬ 

mediate vicinity of 0, 0, the common value of the equal expressions being 

<t> (z, z) x (z, z ) — \jr (z, z'). Equating the coefficients of the same powers of z 

m the expressions, we have ni + n — p relations, linear in the (n ~p) + (m—p) 

unknown functions II,, Hn-p, G,, . ., Gm-P When these are eliminated 

determinantally, we have m + n — p — (w — p) — (m — p), that is, we have p, 

equations in z which, being satisfied for all values of z, must become 

evanescent The conditions for this evanescence, which are thence derived 

as existing between the coefficients of <p and x> are the conditions necessary 

and sufficient for the existence of yfr (z, z') 

When these conditions are satisfied, the actual expression of yfr(z, z') can 

be obtained by constructing the algebraical greatest common measure of 

<p(z, z) and x (z< z')> regarded as polynomials in z. 

We thus have analytical tests determining whether two functions <p (z, z) 

and x (z> z')< each polynomial m z and having for the coefficients of powers 

of z regular functions of z which vanish when z = 0, are or are not divisible 

by a common factor of the same type as themselves. To these tests, the 

same remark applies as in § 70; each condition usually would, in practice with 

infinite power-series, require an infinite number of arithmetical relations 

among the constants. Still, the analytical tests remain in the form indicated. 

When the tests are satisfied, the two functions are said to be relatively 

reducible, each of them is said to be reducible by itself. 
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Note 1. The processes connected with finding the conditions are those 

connected with constructing elimmants m algebra Thus, in order that the 

functions 

? + <hz' + gtz- + (j.z + i/4, z‘ + hlZ‘ + li, 

should have a common factor linear in z, all the coefficients of poweis of z 

in the final expansion of the determinant 

gi-K> 1 , 1 , o , 0 

$2 h2% fh, hi, ] , 0 

9a > K, hi. 1 

9* , !h. o , hi, hi 

0 , 9*< 0, 0 , hi 
must vanish identically. 

Note 2 In the pieeeding investigations, we aie concerned with the 

possession by </> (z, z") and y (z, z) of a common factoi of the same type as 

themselves, that is to say, <f)(z, z’), y(z, z ), and the common factor (if it 

exists) aie polynomial in z We are not concerned with the comparison of 

expressions 

</> {z, z") and cf> (z, z') e11 u' : \ 

where R(z, z) is regular in the immediate vicinity of 0, 0 and vanishes when 

z = 0 and z = 0 , the lattei expression, when expressed in a double series, is 

no longer polynomial in z The case, when U (z, z') can bo such as to make 

the second expression polynomial in z alone, has already been discussed 

(§ «») 

Ei When two functions 

|«0> "1. .y + (i„, bt, b2, bfc, ;'); + , 

Hi, :'Y + {b», V, Vi Vf~, J)1 + , 

possess a common factor of the type 
z+ It (z), 

where R(z') is regular in the uumoilm.tc viumty of and vanishes when ^=0, we can 

approximate to its expression as follows ((The algebra will illustrate the distinction 

lietween the finite numbci of analytical tests and the infinite number of anthmetic.il 

lelations lietween the constants, the latter, of course, cannot lie set out explicitly) 

The first function is expressed (§ G4) in the form 

»AJ*+:(a|/ + a^+. .) + V'+fe'1+ } + M'+ , 

Xo—“l X, — „ 2 (“(du —'*! V, • •, Oy <?([ 

“2=- -- (ai,i>2-r/26,p) - -a, V) 

&3 *= bs - 
Of? 

(«0?i,-a,60), 

where 
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and so on ; and the second function is expressed in the similar form 

{«,/**+* (a, V + 0lV« + . .) + «/;*+01'**+ ..}eV* + V*'+. f 
whore 

V = —,, ~ a\ 
«0 «D 

a‘i — — / (Uti’^a’— ai^i!) - \, iad W — a;K), 
«o uv ~ 

a“, - 0,'fy,'), 
a, i 

and so on We then must have the condition or conditions that 

Ut>-^4*s (Gtjif + u-j/2-f- ) An^z''4- S:iz'" 4- 
and 

a„'z2 + z (a,'z' + a/z'3+ ) + n!dl + ftV’ +. 

should possess a common factor of tho ty|ie 

*+/t(0, 
say 

z + yiz'+yiz'2 + 

Let these two expressions, winch are quadiatic in z, be denoted by 

+ + <t»'z2+:i]1 +1), 

They both will vanish, if they possess a lomuion factor linear in 

vanishes When they vanish, we have 

+; $ i + $2 *“ 0, o(l'z2+ci;i +r/2 = 0, 

and if that factoi 

simultaneously , and therefore the relations 

z2 c 1 

Si^i—Wu na»~!;iav' 

will be satisfied for the value of z, in terras of which makes the common factoi vanish 

Thus wo must have 

({i72 — £271) (7iao~ li au) —(?2ao ~ 1znu)iy 

satisfied identically for all values of s', and the value of z, which would make the common 

factor vanish, is given by 

z_£tuO — V2au 

Viao~ £iau 
Now 

£11?2 - la’ll -z'3 {(«! «•/ - a,'a„) + (a, ft,' - n,'ft3 + a2a2' - «/a2) 4 + ...}, 

l2a()’ ~’lz^0 — 3,3 {(*(l'a2 - ®2“o) +(«oft>~ a<)&3 ) - + li 

I/IIXq— =1 — ttjdo +(&(>U2 “ 0|, fl‘2) Z + } 1 

and therefore, disregarding tho factor z'4, the expression 

|ao'a2-a./a(1+(ao’03-<toi93')z'+. }2 

~ {(<i1 a2 — 0.{<z^) + (a, ft-/ — u/ft, + o2 a*/ — a2 z' 4* } — o, (p/) 4 (*2<,a2' -* i4i’a2) z’ 4- } 

must vanish identically, for all values of / Let the expression be denoted by 

then we must have 
Co+Ci®,+ , 

<?0-0, Cj-0, 

as the arithmetical relations between the constants 
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Also the value of z, which makes the common factor vanish, ts 

z_ £zuu ~ 12"a 

*11 aa ~ $i"ti 

^1 cl,, — Q” 4"(cr,, S, — a,,S,) t -(- 

—«i«o +(«o«z -'Vo,;) ~+ 

Consequently, when all the relations lietween the constants are satisfied, the common 

factor is 

- + yi 2, + -yi‘'2+ , 
where 

a»'a, - 
y. — 

«» al “ «0«l' * 

_(«(>tf2"ff2ffo) Kn;-« fan'/aH-a(,/3,') 

and so on 

It is clear that, m the absence ol general laws givng relations between the coefficients 

in each of the two functions, wo cannot set out the aggiogate of relations C -0 and the 

aggregate of constants y 

Expressions of functions near a pole or an accidental singularity 

72. The non-ordinary places of a uniform function have been sorted into 

three classes, the poles (or accidental singularities of the first kind), the 

unessential singulanties (or accidental singularities of the second kind), 

and the essential singularities. 

The simplest of these, in their analytical character and m their effect 

upon the function, are the poles Let p, p be a pole of a uniform function 

j{z, /), then, after the definition, some series of positive powers of z — p, 

z —p exists, say F(z — p, z — p'), which is regular in the immediate vicinity 

of p, p' and vanishes when z=p and z =p‘, and is such that the product 

f(z, z) F (z - p,z - p') 

is regular in the vicinity of p, p and docs not vanish when z — p, z' — p'. 

Thus the function f{z,z') acquires a unique infinite value at a pole; 

that is, the infinite value is acquired no matter by what laws of variation 

the variables z and z tend towards, and ultimately reach, the place p, p. 

Further, the pole-annulling factor F(z—p, z —p') is not unique, a factor 

* F(z-p,z,-p)eK^z-P’z'-P'), 

where R{z — p, z—p') is any legular function of z -p and z' —p\ would have 

the same effect. All such factors wo shall (for the present purpose) regard 

as equivalent to one another, they can be represented by F(z — p, z — p). 

Moreover, there cannot be more than one such representative factor for 

f(z, z) at a pole, if there were two, say F(z —p, z' - p') and G(z—p, z' — p), 

we should have 

f (z, z')F(z—p, z —p')= regular function, not vanishing when z=p and z—p', 

f(z, zf)G(z-p, z'-p')= . , 
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and therefore p, p' would be an ordinary non-zero place for the quotient 

F (z - p z —p') 

G(z-p, z-p) ’ 

which is impossible unless F is divisible by G, and it would be an ordinary 

non-zero place for the reciprocal of this function, which is impossible unless 

G is divisible by F. 

Hence, denoting the representative factor by F, we have 

f(z, z) F{z - p, s’ - p) = km + (z - p) + km (z' -/>') + • . 

tin1 series on the right-hand side being a regular function in a domain of 

p, p , and therefore 

1 _ F (z — p, z — />' ) 

/(z, z') + km (z - p) + km (z - p ) + 

- a regular function (§ 69) of z and z in a domain of p, p\ 

vanishing w'hon z = p, z = p 

It therefore follows that a pole of f(z,z') is a zeio of .. , , so that, the 
1 f(z, z ) 

place p, p is an ordinary place for the function ^ Hence, in the 

v icimty of a pole of f (z, z’), it. is convenient to consider the reciprocal 

function, say 

yd*- 
and then the behaviour of f(z, z) in the vicinity of the pole p, p' can be 

described by the behaviour of <p(z,z') which is regulai in the vicinity of 

its zero there Moreover, any zero of /’(z, z ) in a domain of p, p is a 

pole of <£(z, z), hence the domain of p, p, within which z) is regular, 

does not extend so far as to include any zero off{z, z) 

As <p(z, z ) is regular in this domain of p, p. and as it vanishes at p, p', 

it has an unlimited number of zero-values in the immediate vicinity of 

p, />', and these occur at places forming a continuous two-dimensional 

aggregate that includes p, p Hence m the immediate vicinity of any pole 

of a uniform analytic function, there is an unlimited number of poles forming 

a continuous two-dimensional aggregate that includes the given pole. 

Further, we have definite integers as the orders of the zero of <f>{z, z ) 

in the two variables at p, p, the integer being derived from the equivalent 

expressions of tf>(z, z) in the immediate vicinity of p, // , these integers will 

be taken as the orders of the pole of f(z, z ) m the two variables at p, p. 

Cor. Manifestly, a pole of f(z, z() of any order is a pole of f(z, z) — a. 

of the same order, where | a | is finite. 
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73. An unessential singularity (an accidental singularity of the second 

kind, to use Weierstrass’s fuller phrase) of a uniform function f(z, z) at a 

place s, s' is defined by the property that there exists a power-senes 

F(z — s, F — s'), which is a regular function of z and F in the immediate 

vicinity of s, s' and vanishes at s, s', and is such that the product 

f(z, z’) F(z - s, z - s') 

is a regular function in the immediate vicinity of s, s', and vanishes at 

s, s' Let this lattei regular function be denoted by H {z — s, z' — s') No 

generality is lost by assuming that the functions F and II have no common 

factor vantshing when z = s, z' = s. We then have a fractional expression 

for f viz 

/'(*> F) - 
11 (z 

F (z 

s, 

X, 
-s’) 

-s') 

As in the case of a pole of f(z, F) at p, p, the function F (z — p, z' — p ) 

was representative and unique, so here each of the functions H(z — s, z' — s') 

and F (z — s, z'— s') is representative and unique, when If and F have no 

common factor vanishing when z = s,z'—s. The functions H and F can 

of course have any number of exponential factors, each exponent being a 

regular function of z — s z'— s', but no factor of that type affects the 

characteristic variations of f in the immediate vicinity of that place Thus, 

in our expression for f(z, z'), we can regard the representative functions H 

and F as unique. 

To consider the behaviour of f at, and neai, the accidental singularity, 

write 
z — .s = cr, F — s' = a'. 

then we have expressions of the loim 

II (z — S, z — s') = Ecrm cr'm' [cr1 + cr1-' h, (a') + + /(((cr')j \ 

F (z — s, F — s') = Dan a'”' [<r* + (a ) -f +/* (ff')j e1' a K 

wheie E and Jj are constants m, ml, u, n are positive integers, each zero 

in the simplest cases l and k are positive integers, each greater than zero 

in the simplest cases, hu , hi,f,, .. ,/* are legular functions of cr’m the 

immediate vicinity of cr' = 0 and vanish with a', and H, F are regular 

functions of cr and a in the immediate vicinity of cr = 0, a = 0 and vanish 

with a and cr', so that neither H nor F can acquire a zeio value or an infinite 

value from the factors eH and e1' Moreover, H and F are devoid of any 

common factor so that either m or n (or both) must be zero, and m or n 

(or both) must be zero. Also 

a1 + cr1-' /q (<r') + ... +ht (cr'), cr* + <rk~l fx {a) + .. +/*(cr') 
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have no common zero in the immediate vicinity (defined as a region round 

o' of radius less than the modulus of the smallest root of the resultant of 

these two polynomials) of <r = 0, a = 0 save actually at 0, 0, for their 

eliminant is a function <r'e <*) (o') which does not vanish for small values of o' 

other than o' = 0 

Manifestly, the value of f(z, z ) at s, s' is not definite, it can be made to 

acquire any value by assigning appropriate laws for the approach of z to s 

and of z to s'. In the immediate vicinity ofs, s', f(z, z ) possesses 

(l) an unlimited number of zeros, given by zero-values, other than at 

0, 0, of o! + ol~' hi {o')-\- ... -I- In(o') , 

(n) an unlimited number of poles, given by zero-values, other than at 0, 0, 

of crk + er*'1/, (<r') + . + fk {o') , 

(ill) an unlimited number of places at which it assnmes a level value of 

finite modulus, 

but o = 0 and o' = 0 is the only place in the immediate vicinity of 0, 0, 

where the value of f(z, z) is not unique and definite. Hence we have the 

result — 

The unessential singularities of a uniform function f{z, z ) are isolated 

places in the domain of existence of figs, d), the value of f at an unessential 

singularity is not definite; and, m the immediate vicinity of any unessential 

singularity, there is an unlimited number of places where f can assume any 

assigned definite value, zero, finite, or infinite 

Further, let the unessential singularities (each of them being an isolated 

place) of a uniform analytic function be represented by am, a'rn, wheie 

wt = l, 2,. . They may be finite in number or infinite in number When 

they are infinite in number, the places am, a'm must have one or more limit- 

places, let such a limit-place be b, If. As regards the function m a small 

domain lound b, b', it cannot be represented by any of the different foregoing 

expressions, suitable to the respective vicinities of an ordinary place, a pole, 

and an isolated unessential singularity. The limit-place must therefore be 

an essential singularity of the function. 

Expression near an essential singularity 

74, The definition of an essential singularity of a uniform function, that 

has been adopted after Weierstrass, is mainly of an umnforming character— 

to the effect that, in the immediate vicinity of such a place, no power scries 

U (z, z) representing a regular function and vanishing at the place can be 

obtained such that the product 

f{z, z') U (z, z') 
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is a regular function of z and z. But, as is known to be the fact with 

uniform functions of a single variable, essential singularities cannot effectively 

be sorted together m one class there can be points, or lines, or spaces, of 

essential singularity for a uniform function of a single variable The con¬ 

ception of added complications, when we deal with uniform analytic functions 

of more than one variable, needs no argument for postulation, though it 

gives no substantial assistance towards analytical formulation 

It may however be added that one laige question dealing with the 

essential singularities of a uniform analytical function has occupied a 

number of memoirs published in recent years 

We have seen that the zeros of an analytical function of two variables 

constitute a two-dimensional aggregate, and likewise that its poles con¬ 

stitute a two-dimensional aggiegate We have also seen that its unessential 

singularities arc isolated places. 

The question just mentioned relates to the aggregate constituted by 

the essential singularities of a uniform analytical function, for its dis¬ 

cussion, as well as for other matters, we shall refer to the memoirs indicated*. 

* The chief momoim are thone by Hartugs, viz Math Ann, t Ixu (li)O(i), pp 1—88, Munch 

Sitzungib , t. xxxvi (190G), pp 223—212, Jahrcth <I Dents/her Math Veienugunti, t xvi (1907), 

pp 223—240, Acta Math , t mu (1909), pp .17 70, Math inn, t Ixx (1911), pp 207—222 

See also a memoir by E E Levi, Ann/th di Mat, Ser m, t xvn (1910), pp 61—87 



CHAPTER V 

Two Theorems on the Expression of a Function without Essential 

Singularities in the Finite Part of the Field 

75 We now come to the consideration of a couple ol theorems relating 

to the expression of a uniform analytic function of two variables. In the 

first of them, we have to deal with a function that has no essential 

singularities within the whole range of the field of variation of z and z , the 

function then has the form of a rational function of the variables In the 

second of them, we have to deal with a function that has no essential 

singularities within the range of the field of variation of 2 and z' sueh 

that \z\^R,\z'\^R\ where R and R' can be taken as large as we please. 

the function then has the form of the quotient of two functions, each of which 

is a regular function of z and z' for the values of z considered*. 

76 First of all, consider a polynomial 111 z and z, say 

p(z,/) = &»+&”-'+ . + 

where £,.£„ are themselves polynomials in z. Then we at once have 

the results — 

(I) every finite place is ordinary foi p (z, z'), 

(II) with every finite value z, that is not a zero of £0, can be associated 

v finite values of z, such that each of the n places thus constituted 

is a zero for p(z, z ), repetition of values of z causing multiplicity 

of zero-places for p {z, z), 

(III) with every finite value z, that is a zero of and is such that 

%r(r > 0) is the first coefficient of powers of z in p(z, z) which 

does not vanish, can be associated n - r finite values of z, such 

that each of the n —r places thus constituted is a zero for p (2, z). 

(iv) the poles of p (z, z‘) are given by infinite values of j z | and finite 

values of z' other than the roots of f„, and by infinite values 

of | z' and finite values of z other than the roots of the coefficient 

* Both theorem# were enunciated by Weierstrass for n variables, but without proof; references 

will be given later. 



78] RATIONAL FUNCTIONS 125 

of the highest power of z' in p (z, z) arranged in powers of z , and 

by infinite values of i z \ and of z |, 

(v) the unessential singularities of p(z, z ), if any, are given by infinite 

values of ] z j and by the roots of f0, but each such place is an 

unessential singularity only if other conditions are satisfied, and 

similarly for infinite values of \z [ and by the finite values of z 

excepted in (iv), but each such place is an unessential singularity 

only if othei conditions are satisfied so that, in general, p (z, 2') 

has no unessential singulaut.ies, and 

(vi) there are no essential singularities of p{z, z) 

77 
and z\ 

In the next place, consider an irreducible rational function of z 

say 

R (z, z) = 
p (z, z) 

q (z, =') ’ 

where p (z, z) and q {z, z) are polynomials in z and z , 

71(2,2') + £,*»-> + +£„, 

q {z, z‘) = 7]uZm + ViZm~' + + Vm, 

vvhde f0, . , £,,, t)„, , i)m ate polynomials in alone Then it is easy to 

infer the following results —■ 

(I) every finite place, that is not a zero of q{z, z’), is ordinary foi 

R (z, z), 

(II) every zeio of p (z, z ), that is not a zeio of q(z,z'), is a zeio of 

R (2, z ), 

fin) every zero of q (z, z), that is not a zero of p (z, z ), is a pole of 

R (z, z'), 

(iv) eveiy place, that is a simultaneous zero of p(z, z') and of q (z, z) 

which have no common factor because 0111 rational function is 

irreducible, is an unessential singularity of R (2, z), 

(v) the behavioui of R (z, z) for infinite values of 12 j or of 12' I 01 of 

both 12 j and \z I, depends upon the degrees of p (z, /) and q (2, z ) 

in 2 and in z, while every such place is either a zero, or ordinary, 

01 a pole, or an unessential smgulauty, and 

(v 1) the rational function R (2, z') has no essential singularities 

Functions entirely devoid of essential singularities. 

78 Now we know that not a few of the important properties of uniform 

analytic functions of a single variable are deduced from those expressions of 

the function which arise when special regard is paid to its singularities , and 

occasionally some classification of functions can be secured according to the 
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number and nature of these points*. In particular, we know that a uniform 

function, devoid of essential singularities throughout the whole field of 

variation of the variable z, is a rational function of z Of this result, there is 

the generalisation, given by the theorem f — 

A uniform analytic function of two complex variables z and /, having no 

essential singularity in the whole field of their variation, is a rational function 

of z and z 

To establish this theorem, we proceed as follows 

Let f(z, z) be a uniform function of z and z, entirely devoid of essential 

singularities, and lot any ordinary place (say 0, 0) be chosen which is a 

non-zero place of the function. In the vicinity of 0, 0, let the expansion of 

f (z, z') be 

/(*,*')« 2 Zcin<nzmz‘n, 
m—o ii -- 0 

and suppose that this senes converges absolutely within a domain \z\<r, 

z j < r. Manifestly, after the supposition as to /(0, 0), the quantity c„„ is 

not zero 

z'n zm, 

Within the domain, we have 

on / x 

/(*.*')« ^ S c,„. „ 
in - 0 \ n - 0 

because the double series converges absolutely, so, writing 

(hn (z ) = " nz 
n-l) 

we have 

f(z, z) -= 1 zmgm (z) 

Consequently, for all values 0, 1, . of m, and for all values of z within the 

domain, we have 

1 z')\ 
m 1 1 dzm = 9m(z) 

Now f(z, z ) is everywhere a uniform analytic function without essential 

singularities, consequently every derivative of f(z, z), at every place in the 

* Of couise, tlieie are other classification*, such as those connected with the kinds of aggregate 

of the zeros of a uniform analytic function of a single variable, leading to the clast {genre) 

question that has been the subject of many investigations in recent years, initiated by Laguerre, 

I’oineart, Hadmuard, Borel, and others 

t It is the first of the two theorems which, as already stated, were enunoiated by Weierstrass 

without proof His enunciation, given for n variables instead of two only, is to be found Get. 

Werke, t n, p 129. 

A proof is given by Hurwitz, Crelle, t xov (1883), pp. 201—206, for n variables, and this 

proof is followed by Dautheville, X’tads eur let series entieret par rapport a pbmeurs vanablet 

imagmatres indipendantes (These, Pans, 1885). Hurwitz’s proof, modified for the case of two 

variables, and amplified, is substantially adopted in my text. 
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field, also is a uniform analytic function without essential singularities. At, 

the places 0, z within the domain, the converging senes denoted by g,„ (s') 

represents a derivative ol f(z, s ), it is therefore an element of a function of 

a single variable z\ winch is uniform, analytic, and devoid of essential 

singularities But we know* that such a function of a single variable is a 

rational function of the variable , and therefore <jm (z') is an element of a 

rational function of z. Denoting this rational function by Am(z'), or by Am, 

for all values of rn, we have 

9m (z) = Am (z), 

for all values of z within the domain, and so, within that domain, we have 

f(z, z') = A(l + A,z + A,z“ + ..., 

where now A(), Au A.2> . ate rational functions of z which have no pole 

anywhere within our domain 

Moreover, when ^ = 0, z =0, the quantity is not zero, so that A„ (0) is 

different horn zero Hence we can choose a more restricted domain given 

by lz and | z' \ S', where S and S' aie not infinitesimal, such that the 

uniform analytic function 1{z,z') is everywheie regular and different from 

zeio. 

Assign an arbitrary value a to z in this restricted domain, that is, such 

that | a | < S' Then f(z, a ) is a function of a single variable only, it is 

umfoim, and it possesses no essential singularity, it is therefore a rational 

function of z, so that we may write 

J (*» <>') = 
l>q + H\Z + 
G'(I + G^Z -f 

-1- J{rzr 

+ l'rZr 

As a rational function of z has a limited number of zeros and of poles, the 

highest index of z in the numerator and the denominator combined is finite 

that is, r is a finite integer. No generality is lost by assuming that Br and 

Gr aie not zero together If B„ were zeio, then z= 0 and z = a would be 

a zero of f (z, /), contrary to the supposition that f does not vanish within 

the selected domain, if G0 wcie zero, then z — 0 and z — a would be a pole 

of f(z, z), contiary to the supposition that f is regular within the selected 

domain, hence neither B„ nor G„ is zero 

Let K0, A',, K.,, lespectively denote the values of the rational functions 

Ae, Au A2, ... when z = a Then a converging series for f(z, a!) is given by 

f(z, a) — K„ + Kxz + K.,z2 + ..., 

so that, from the two expressions of f(z, a), wc, have 

(Arc + Kxz + AV + ..) (C. + Gxz + . . + Crzr) = B, + B,z + ... + Brz\ 

holding for all values of z such that lz\^.S. The two coefficients of each 

power of z on the two sides must be equal to one another, and therefore, as 

Sec my Theory of Functions, $5 48. 
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zr4" (for n ^ 1) docs not occur on the right-hand side, we have the coefficient 

of zr+n on the left-hand side equal to zero Thus all the determinants 

1 K' ’ 
Kt , K> , . 

J K, , A", , Kt , . . 

li/" 
ii ^ r+i j K, M, Kf+j, ... | 

must vanish. 

With each value of some finite integer r must he associated because 

/ (z, a') is rational in z But with at. least one value (and, it may be, with 

more than one value) of r, an infinite number of values of a' must be 

associated, for otherwise, if with each value of r only a finite number of 

values of a' could be associated and as every admissible integer r is finite, 

there would in all be only a finite number of values of a', contrary to the 

fact that a' is any place in the domain | z | < 8'. 

Consequently, taking r to be the greatest integer for any value of a' in 

the domain determined by S', all the preceding determinants vanish for the 

infinite number of values of a' in the domain. Hence there must exist 

functions of z (to be denoted by Ft, Flt , Fr), such that the equations 

FrAx + Fr^A, + ... + FaAr+, = 0, 

FrA„ + Fr^A-, + . + FaA,+i = 0, 

are satisfied for an infinite iiumbei of values of z\ and not all the functions 

F can vanish Moreover, the functions A are rational and, at most, only 

some of them (limited in number) are evanescent, hence, as the functions 

Fa, Fl, ...,Fr can be taken as equal to determinants the constituents of whuh 

are rational functions of z, they are themselves lational functions of z 

Consider the function 

(F„ + zFt + ... + zrF’,) f {z, z ) — (G„ + zGj + . + zrGr), 

where 

O0 = A0F„, Gt —AtFa +A0Flt , Gr — A0Fr + A1Fr—] + ... + ArF?, 

and denote it by <I> {z, z‘), which may oi may not vanish identically The 

quantities G0,. , Gr, being lineo-1 inear in the rational functions A and F, are 

themselves rational functions of z', and not all the functions G can vanish. 

Then the function <t> (z, z ) is a regular function of z and z withm the 

domain | z | < S and \z’ j < S', because all its components are regular within 

that domain. The foregoing analysis shews that, for all values of z in the 

range | z | ^ S, there is an infinite number of values of z‘ in the range \z' \-<: S' 

for which 4> (z, z) vanishes If <t> (z, z) does not vanish identically, we take 

any special value of z within the range \z\t.S, say z = c; then (c, z') is 
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a regular function of / within the lange \z'\^.h\ and (aftei what piecedes) 

there is an infinite number of values of z within that range where <t> (c, z) 

vanishes It is a known property* of regular functions of one variable 

that the number of its zeros, within any finite region where the function is 

regular, is necessarily finite, and the pieeeding result, based immediately 

upon the hypothesis that ll> (z, z ) does not vanish identically, does not 

accord with this lequiiemont Accordingly, tin* hypothecs must be 

abandoned . the function <t> (z, s') vanishes identically, and therefore, for 

all values of z and z' within tile selected domain, we have 

(F+ zFt + + z'Fr) J (z, z ) — (i0 t zbj + + z'(ir, 

where F(l, Flt , Fr, fr„, (j,, .,G, are rational functions of z 

The function F„ and the function (t„ do not vanish under our initial 

hypothesis that the ordinary place1 0, 0 is not a zcio of f{z, z), some (but 

not all) of the other functions Flt , F,, fr',, , <ir may vanish 

We thus have 

f(z,z') = 
G„ + z(i\ -+■ 

F. + zh\ + 

+ SG, 

4 zrFr' 

that is, f(z, z) is a lational function of ^ and z The proposition is thus 

established 

79 One piovisional remark will be made at this stage Let f(z, z') be 

a uniform function which, within some limited region of its existence, has no 

essential singularities and, within that region, does possess zeros, and poles, 

and unessential singularities 

Suppose that a uniform function exists, which has those zeios, those poles, 

and those unessential singulatities, all in precisely the same fashion as f(z,z'), 

and which possesses no others within the legion , and suppose that this 

function has no essential singularity anywhere m the whole field of variation 

of z and z The preceding proposition shews that it must be a rational 

function of z and z (Examples can easily be constructed, m the case of 

definite simple assignments of such places) We shall, for the moment, 

assume the possible existence of such a rational function, and then, denoting 

it by r (e, z), we write 

9 O, z) = 
/0, z ) 
r{z,J)' 

Within the region, the function g (z, z) has no zeros and it has no 

singularities of any kind, hence, within the domain of every place m that 

region, the two functions gx and g2, whore 

can be expressed 

_ 1 dg _ 1 dg 

g* ~ g dz ’ ~ g (V ’ 

as absolutely converging power-series, which arc elements 

* See my Theory of Funtturmt, 67 

F. 9 
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of two regular functions. Moreover, as regards these two power-series for g, 

and (/t, we obviously must have 

fyi = dff* 

dz' dz 

identically, so we denote the common value of these two quantities by 

d2P (z, z') 

dz dz' 

where P(z,z) is itself a double series converging absolutely in the domain, 

and is an element of a single regular function, which may be denoted by 

Q(z, z') Then 
1 dg = ?P (s, z ) 1 dg _ ?P(z. z ) 

g dz dz ’ g dz" dz' 
and therefore 

g = 

within the domain Now g(z, z) is regular throughout the region, and, foi 

each domain within the region, P(z, z') is the element of the regulat function 

Q(z,z') Consequently, on the assumption that the rational function r(z, z) 

exists, we have 

as a representation of f(z, z) within the region, Q (z, z) denoUng a function 

that is regular within the legion 

The definite existence of the function, denoted by r(z,z'), has not been 

established in general. The assumption that has been made raises the 

question as to whether rational functions exist,, defined by the possession 

solely of assigned zeros, assigned poles, and assigned unessential singularities 

Also, that question raises the further question as to what are the limitations 

(if any) upon the arbitiary assignment of zeros, poles, and unessential singu¬ 

larities, in order that it may lead to the existence of a rational function 

These questions initiate a subject, of separate enquiry which will not In- 

pursued here 

Functions having essential singularities unlg m the infinite part 

of the field 

80. The other of the theorems already mentioned relates to the expression 

of a uniform analytic function, of which all the essential singularities arise 

for infinite values of one or othei or both of the variables It was adumbrated 

by Weierstrass*; the following proof is based upon a memoir by Cousin f 

We have to establish the theorem 

A uniform analytic function of two variables, all the essential singu¬ 

larities of which arise for infinite values of either of the variables or of 

* Get. Wirkc, t u, p 163. 

t Acta Math, t xix (1895), pp. 1—62; it applies to n variables. 

It may be added that a proof is given by Pomcari), Acta Math , t n (1883), pp. 97—113; 
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both of the variables, can be expressed as the quotient of two functions 

which are everywhere regular for finite values of the variables 

tor this purpose, Cousin uses the Cauchy method of contour integrals. 

81 Consider an integral, the variable of integration Z' being taken m 

the plane of z', as given by 

where the integration extends along an arc A B from .1 as the lower limit to 

li as the upper limit When we take a closed contour of which AB is a 

portion, AB is the positive direction of descnption m figure l and is the 

negative direction of description in figure 2 

Now in figure 1, we have 

0 (/) = 1 1- 1 f dZ' 
2m j i i\i u Z' — z 

for all points z' within the contour AEBMA, and 

27TlJ AMU 

dZ' 

Z' - s' 

for all points z' without the same contour For all points within the contour, 

and for all points without the contour, 0(z) is a icgular function of z' 

Consequently the line ABB is a section* for the function, the continuation 

0(D), taken from the inside point C to the outside point D across the section 

AB when the latter is described positively for the area, is — 1 + 6 ((!). 

In the same way for figure 2, the continuation 8(D), taken from the inside 

point G to the outside point D across the section AB when the latter is 

described negatively for the area, is 1 + 0(C). 

it is based upon the properties of potential functions The following liieinoirH may also be 

oonsulterl -- 

Poincare, ,lrtu Aiulh , t. xxu (1899), pp 89 —17H, ifi , t xxvi (1902) pp 43—98. 

Baker, Cainh Phil Trans , vol xvm (1899), p. 433 , Proc Land Math Soc , 2nd Ser , vol i 

(1903), pp 14— 3b 

Hartogs, Jahrrsh d. deutschen Mathematikerverciniguni/, t xvi (1907), pp. 223—240 , and the 

memoir bv Dautheville already (p 126) quoted 

* See my Theoi-y of Functions, § 103, the notion is due to Hermite, who called such a line a 
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The general value, of course, is 

a, ,, 1 , b' - z 

a — z 

where a and b' are the variables of A and B. Clearly the quantity 

6 (Z>) ~ 2wil0g {h' ~ S ) 

is regular in the immediate vicinity of B, and the quantity 

!>(*■>+zltH 

is regular m the immediate vicinity of A 

Next, let g (z, z) denote a function of 2 and z\ which is regular for ranges 

of z and z that have finite values ; and consider an integral 

. ,, 1 / W/7 (“» Z>) .y, 
X{z’z)=2V>!a Z'-z' dZ> 

taken precisely as for the preceding integial 6 (z ) Then % (z, z') is a regular 
function of z and z', except when z lies upon the line AEB, and AEB is a 

section for the function x (z, z). Now let 

g (z, Z’) - g (z, z) 
Z'-z‘ ' 

G(z,z\ Z') = : 

as g(z, z') is a regular function of ^ and z, it is easy to see* that G (z. z , Z') 

is a regular function of z, z', Z' Hence 

. , If1' , q (z, z ) (“ dZ' 
X(*,*)=-2Vi\AG(*-z.Z)dZ +■ ^ \aZ,_z, 

= H (z, z) + 0 (z) g (z, z'), 

where H (z, z ) is a regular function of z and z for all the values of z and z 

included, and 6 (/) is the preceding integral already considered Consequently 

X (z< z ) is a. regular function of z and z' foi all points z that do not lie upon 
the section AEB, and the change m the analytical continuation of x (z> z) 

* If we take 

then 

so that 

q (z, Z') = qit (z) + Z'o, (z) l Z'2<i2 (z) + , 

G (z, z', Z') = </, (z) l (Z' -1 z') qt (z) + , 

I G (z, z', Z') I % I g, (z) ) +2>' I gz (z) | +3r'“ | 7,(z) | + 

for values of z' and Z' such that 

I *' I < r', I Z' i < r' < R'. 

With the properties of a regular function such as q(z, z’), whioh have been established earliei, 

the senes on the right-hand side converges absolutely, hence G (z, z', Z') is regular. 
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across the section AEB is — g(z,z') or + g (z, z') according as AEB, when 

crossed, is being described negatively or positively Moreover, the function 

X (z* z‘') ~ U (z> 2 ' 0>' ~ z) 

is regular m the immediate vicinity of b'. and the function 

X 0. z') + oL 9 (z< z) !(>K («' - *'> 

is regular in the immediate vicinity of </' 

Next, take in older a finite number of lines AJi, AJi, 

z , such that they have a common extremity B, 

do not meet except at B, and all he within 

the z, z' domain considered Associated with 

each of the lines A T B, we take a regular 

function g, (a, z), occurring precisely as g (z, z) 

occurred in the preceding discussion of the 

function x (z, z') over its section, and write 

m the plane of 

/ 1 f11 gr (z, Z') , 

Xr {z’ “ * iiri JAr 7A - z dz ’ 

the integral being taken from Ar to B The chaiacter of x (z< z ) 18 known 

from the earlier investigation. 

Let a new function <t> (z, z') be defined by the equation 

<t>(A, z) = i Xr(Z< z!) 
r~l 

For all places not lying upon any one of the lines, the function 4* (a, z') is 

regular In the immediate vicinity of the place B common to all the lines, 

the function 

* iz< *') - 2~ !logi ~ *')} ^ <Jr {z, z) 

is regular, hence, if <I>(a, z') is regular in the immediate vicinity of B, it is 

necessary and sufficient, that 
Z9r(z,z') 

should vanish at B Moreover, it 

- gr (z, z') - 2km 
r-1 

at B, where k is a constant, then 

(z, z) — k log (b' — z’) 
is tegular at B. 

82 We are to deal with a uniform analytic function f (z, z ), which has 

no essential singularity in the finite part of the z, z' field In this field, take 

any finite domain. Within the selected domain, / (a, z') deviates from regu¬ 

larity at or in the immediate vicinity of poles, and at or m the immediate 

vicinity of unessential singularities. At a pole and in its vicinity, there is 
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one definite type of representation of f (z, z ) which is valid for some region 

round the pole At an unessential singularity and in its vicinity, there is 

another definite type of representation of f(z,z') which likewise is valid for 

some region round the unessential singularity At an ordinary place and 

within some limited region of the place, / (z, z') is legular; within that region, 

there is another definite type of representation of f (z, z') which likewise is 

valid for the limited region 

When any two of these respective regions have any area in common, thp 

respective representations of our uniform function f (z, z) are equivalent to 

one another over that area. Moreover, we have selected a finite domain in the 

z, z field, so that the total number of these Tegions in this domain is finite 

Now let the whole selected domain m the z, z field be divided up in 

different fashion Let the whole region'in one of the two planes (say the 

/-plane) belonging to this domain in the field he divided into n regions, 

where n is finite Each of these legions is to be bounded by a simple 

contour With each of these n regions m the /-plane, we combine the 

whole of the 2-plane that belongs to the selected domain so that we now 

have n domains within the single selected finite domain in the z, z field. At 

every place in each of these n domains, our function f {z,z) is defined Let 

yi (2, /) denote the whole ^presentation of / (2, /) in one domain, f, (z, /) the 

whole representation 111 another domain, and so on for the n domains, up to 

fn(z,z') With each region in the /-plane, we associate the function f„ (2,/) 

giving the representation of f(z, z) foi the domain which includes that 

particular 2'-region 

It may happen that two such regions have a common area, so that the 

respective functions belonging to the regions coexist ovei that area, we 

shall assume that, if deviations from regularity occur within the area, such 

deviations are the same for the two functions, say (2, z) and fi(z,z'), 

so that 
fk{z, z')-fi(z, /) 

is a regular function over the area 

When two functions are such that their difference over an area is a regular 

function, they are said* to be equivalent over the area, if their difference is a 

regulat function in the immediate vicinity of a point, they are said to be 

equivalent at the point 

Denote the regions in the z'-plane by Ru Rly with which fi(z, z'), 

f2(z, z), ,/„(2,2') are respectively associated. Further, denote by ln the 

boundary between Ji, and Riy such that when z' passes from R, to R3 by 

crossing lu, this line is described positively for the boundary of i?a, and 

similarly for the boundary between any two contiguous regions. Lastly, 

there will be points where three or more boundary lines are concurrent 

Cousin, l, c , p 10. 
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When a point P' lies within the region Rk, then fk (z, z ) is the function 

associated with P . When a point Q lies on the boundary between two 

contiguous regions Rk and then either of the functions fk(z, z') and f{z, z) 

is the function associated with Q' When a point <S" is a point of concurrence 

of more than two boundary lines of regions R]t Rk, Rlt .. , then any one of 

the functions /] (2, z), fL (z, z ), f, (2,2'), . , is the function associated with S'. 

83. Considei the integral 

_ 1 ffm(z, Z')-fk(z, Z’) 

Z'-z “ 1 
taken along the line lkm between two contiguous regions, the ordei of the 

suffixes m Ikm being the same as their order in lkm Manifestly 

1 km = Imi 

As the function fm (2, Z) — fk{z, Z') is regular everywhere along the path of 

integration, the integral is of the same character as the integral previously 

denoted by yr (2, 2'), the line 4>» is a section for the function Ikm 

Now take all these integrals Ikm which arise for contiguous regions, and 

write 

<t>(z, z') = tlkm, 

where the summation is for all pairs of suffixes that coirespond to contiguous 

regions The function ‘I>(2,2) has each line 4m as a section, at every 

place that does not lie upon a section, (2, z) is regular 

Next, we take a set of functions <f>} (2,2'), 1f>2 (2, 2'), , <pn (2, z). associated 

with the lcspective regions Rx, R,, , R„ . and we define 4>p(z,z') as the 

value of 4> (2, 2') within the region Rp A point P' in the 2'-plane may lie 

within a region, it may lie upon the boundary of two contiguous regions, 

and it may be a point of concurrence of several such boundaries 

When the point P' lies within the legion Rp, the function <pr, (2, z ) as 

defined is regular, because the sections of (2, z) are only the boundaries of 

regions 

When the point P' lies 011 a boundary of the region Rp, say on the line 

lpq so that Rq is the contiguous region, and when P' does not lie at either 

extremity of lvq, the analytical continuation of <pf, (2, 2') through the point 

P’ remains regular For, wilting 

(Jv» (z> z) =/»(*. z>) ~fp (z’ A 

so that gr,j (z, z) is regular for all the values of 2 and 2' considered, the earlier 

investigation shews that, in crossing the section lpq, the change in the 

analytical continuation of Ivq is - gpq (z, z) when lpq, as it is crossed, is being 

described positively For this position of P\ every element in the suin of the 

functions Ikm is regular except Ipq , and therefore the change in the analytical 

continuation of <J> (z, z) is - gn (2, z). But the new function <f>,; (2, 2') is the 

value of <P (2, 2') in the region Rq, hence 

(z, z') = <pp (2, z ) - gpq (z, z'Y 
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and therefore 

4>g (z> z') +fg (z> z') = <t>p(z> z) +fp (z< z')> 

where Rv and R(/ are contiguous regions 

When the point P' is a point of concunence of several boundaries, the 

regions may be taken as in the figure Our 

function d>(z, z) can be rearranged in its sum¬ 

mation We group together all the integrals Ikm 

which have no section passing through P'; and 

we call this group d>, (z, z) We group together 

all the remaining integrals, the section of each of 

which passes through P', and we call this group 

z') Thus 

d> (z, z') — d3, (z, z) + d>,, (z, z ) 

The sum d>, (z, z') is regular at P', because every element 1 in the sum 

is regular 

As regards the sum dq (z, z'), our earliei investigation shews that the 

function 

(«, z ) - :jvl I^g (P' - s) 1 Sg (z, z’) 

is regular at P' But the functions g (z, z'), for the vatiotis elements I in 

d>, (z, z ) taken as in the figure, are 

Mz> O, 
fy(z, z')-fe(z, z), 

ft O, Z) - fy(Z, 2), 

f, (z, z) ~J\ (z, z‘\ 

fa (Z, Z ) -f, (Z. A 

that is, the quantity —(7(2, z) is identically zero. Hence the sum duf-s, A is 

regular at P'. 

Consequently, the function d3 (z, z) is regular at P', in this third case, 

and therefore all the functions <f>(z, z), equivalent to one another at P'. are 

regular at that point 

We thus have a set of functions <f>(z, z) Each of them is regular within 

its own region Each of them is regular at any point of concurrence of the 

boundaries of several regions. The change in the analytical continuation, 

from the function <f>p (z, z) belonging to a region Rp, to the function <i>,; (z, z) 

belonging to a contiguous region tiq, is known, we have 

4>q (s> z") ~ 4>p (z- z) =/P (*. z) ~f, 0> A 

The last relation gives 

4>p (z, s') +fP (z, z) = <f>q(z, z’) +fg(z, /) 
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as a relation lidding between two contiguous regions Rp and Rtj Let R, be 

a region contiguous to Rv and distinct from Rv, then 

<f>q (2. Z) + fq (2, Z') = <j>r (Z, Z) + fr (2, z'). 

And so on, for each region m succession, until the whole domain considered 

us covered 

Accordingly, we define a new function F(z, z'), by the relation 

F(z, z')= 4>r (z, z) + /, (2, z) 

foi every region Rr But all these different expressions foi F(z, z') aie the 

same, because the relation 

4>i (*■ z') + ft (z, z) = <f>m (z, z) + (2, z') 

holds for any two contiguous regions within the domain This final function 

F(z, z'), at every place within the domain, is equivalent to the assigned 

function fm(z, z) belonging to the region which, within that domain, in¬ 

cludes the place , and the expression for this function F (z, z') is 

F(z, z) z')+ </>,„ (2, z'\ 

where <f>,„ (z, z') is regular m the domain of the place The expression for 

F (z, z) is valid over the domain considered, and the argument establishes 

the existence of the function F(z, z'), possessing the property that it is 

equivalent to each of the functions f\, ., f, in their respective domains. 

84 The result can be extended We can substitute a single function 

F(z,z') for the aggregate of functions 1,u{z, z') within the aggregate of 

regions Rj, , Rn. When this aggregate of regions is denoted by S, 

we infer that a function F (z, z) exists which, within this aggregate 

legion S, possesses all the characteristics ot the functions fm (z, z); it is 

subject to an additive function z) which is regular throughout the 

region N. 

Now take a number of these1 corporate regions S It is not difficult to see 

that all the conditions foi the individual functions fm (z, z ) can be transferred, 

in each such region S, to the function F(z, z) for these regions The functions 

F (z. z') for the different regions are then taken as the elements for the 

composition of a new function which may he denoted by j}{z, z), and this 

new function (z, z) is equivalent, over the whole aggregate of these cor¬ 

porate regions, to the functions fm (z, z') which exist in any part of it Thus 

we infer the existence of a function jf (z, z) which is such that, m the vicinity 

of any place in the finite part of the field of variation where a uniform analytic 

function/,„ (2, z') is not regulai, the quantity 

§(Z, z) 

is a regular function of the variables. But it must be remembered that only 
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a finite part of the field is considered and that the whole number of 

functions fm (z, z') is finite. 

85 In the establishment of the preceding result, which is of the nature 

of a summation theorem, all the functions fr(z,z') weie assumed to be 

unifoim and analytic. There is a corresponding result, which is of gieater 

importance for our investigation , it is of the nature of a product theorem, 

and the associated functions are logarithms of regular functions 

The 2'-plane is divided into regions R,. . ., R„ as before . with each region 

Rk we associate a regular function ak (z, z'), and we take 

fk (z, z') = log iik (z, z'), 

so that the value of fk(z, z') is subject to additive integei multiples of 2m, 

and otherwise is a regular function of z and z' except at places which are 

zero-places of uk (z, /). 

Am regards the functions u, (z, z'), .... ?/„(z, z'), we assume that, over any 

area common to two contiguous regions Rk and R,„ or, if no area is common, 

along the part of their boundary which is common to them, the function 

uk (z, z') 

"w {z, z') 

is regular and different from zero. Consequently the function 

fk (z, z') (z, z ) 

is regular for the same range of the variables, subject to a possible additive 

integer multiple of 2m 

We now proceed as before We again form the integrals 

•/,„(*, Z')-fk(z, Z') 

Z'-z' 
1 km 

2m J 
d,Z\ 

taken along the line lkm which is the boundary common to two contiguous 

regions, the order of the suffixes in Ikm is the same as their order in lkm, and 

clearly 

-Ijfcm “ Imk' 

The function fm (z, Z') —fk (z, Z ) is regular along the line lkm, and there is 

nothing to cause a change m the additive multiple of 2m when once this 

multiple has been assigned; thus the integral is of the same character as 

the integral previously denoted by % (z, z'\ and the line lkm is a section for 

the integral Ikm. 

Again, as before, we take 

<I> (z, z') = S/tm, 

wliere the summation is for all pairs of suffixes that correspond to contiguous 

regions. The function <I>(z, z) has each line lkm as a section. 
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At any point P' lying within a region, the function 0 (z, z ) is regular. 

At any point P', which lies on a boundary of the region Rv (say on the 

line lvq so that Rg is the contiguous region) and does not lie at eithei 

extremity of lplJ, the analytical continuation of 0 (z, z ) from Rp to Rq through 

z is regular, the function in Rq being 

'h (z, z') - \j<) (z, z') -Jj, (z, z)\, 

when' the additive multiple of 2m is the same as m the integral ivq 

When the point P’ is at b\ a point of eoncurience of several boundanes 

which may be taken as before, it is again necessary to reanange the sum¬ 

mation of 0 (z, z) We group together all the integi'als having no section 

passing through U, and call the sum of this group 0, (;, z) We then group 

togethei all the lemaumig integrals, the section of each of which passes 

through b1. and we call the sum of this group 02(z, z) Thus 

0(2, 2') =--0,(2, z') + 0, (z, z) 

Each element 1 in the first sum 0, (2, z) is regular at b', and therefore 

0i (2, z') itself is regular at b'. 

As regards 0,(2, z'), our earlier investigation shews that the function 

0, (z, /) - r1 - {log (b' - z )| 1(J (z, z’) 
Lit 1 

is regular at V, the summation being over all the lines l which meet at b' 

Now these functions g(z, z), for the various elements ] in 0,(2, z) taken as 

in the former figure (§ 83), are 

(z, z) - /; (2, z'), 

fy (2, z) -f„ z), 

fi (Z, Z) -jy (Z, Z), 

f. (z, z) - fi (2, z), 

fa (2, Z) -/« (2, Z\ 

respectively, subject—for each of the functions g (2, z)—to an additive integer 

multiple of 2m Accordingly, the quantity -g (2, z) is some integer multiple 

of 2m , let it be denoted by k . 2m It follows that the function 

0,(2, z) -k log (V -2') 

is regular at the place b' 

We have seen that 0, (2, 2') is regular at b’, hence 

0 (z, z') — k log (b1 — 2') k 

is regular at the place b1. 
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At any point of concurrence of boundaries b", other than b\ the function 

log (b' — z') is regular, subject to an added multiple of 2m. Consequently, 

the function 

<!>(*, /)-:£{£ log (//-*')}, 

where the summation is taken over all the points of concurrence of the 

boundaries of regions, is regular for all places z m the range considered , its 

expression being always subject to an additive integer multiple of 2m Let 

this function be denoted by i/r (z, z ), then 

yfr (z, z') = <t> (z, s') — £ [k log (It — z')\. 

Subject to the added multiple of 2m, the function yfr (z, z) is regular for the 

/-region considered and its sections are the lines lpq. 

Having constructed this function (s, s'), we now take functions i|r, (z, z ), 

\j/.2(z, z'), , \j/n(z, z'), associating them with the regions A,, R,, Rn 

respectively, and defining them by the condition that the relation 

(z, z') - 'P (z, z) 

is satisfied within and on the boundary of Rm, for all the values of m When 

we pass across the boundary of Rm into a contiguous region Rp, we change 

to another function ^frp (z, /) But, as we have seen, the analytical change 

in i/r (z, s') in passing over a line lmp is 

- {fp (z, z) (z, /)}, 

and so the analytical continuation of i|r,n (z, z) is 

1Ym (z, z') — [ fp (z, z) - fm(z, z')\ 

As this is the function \jrp (z, z‘), we have 

ypp (z, z) = yfr m (z, z') - { fp (z, z)-/„» (z, z) j, 

there always being an additive multiple of 2m on the right-hand side. 

Hence, subject to this additive multiple, we have 

yp-m(z, z) +fm (z. z) = yjrp (z, z) +fp (z, z'), 

for contiguous regions Rm and Rp. 

Now pass from Rp to another contiguous region Rq, distinct from Rm, 

then, again subject to an additive multiple of 2m, we have 

V'r (z, z) + fp (z, z) = f,, (z, z) +fq {z, z). 

And so on, for the full succession of contiguous regions, until the whole 

z-range is covered It follows then that, for any two regions Rm and Rh, we 

have the relation 

(z, z) +/,„ (z, z) = (z, z) +fp (z, /), 

always subject to an additive integer multiple of 27U , and each of the 

functions is regular within its own region. 
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Accordingly, we define a new function G yz, z ) l>y the equation 

G (z, z) = yjr,,, (z, z') +/„, (z, z), 

for every region Rm But all these diffeient expressions for G (z, z) are the 

same as one anothei (save foi an additive multiple of '2tti which may change 

from region to region), because the relation 

yfr,n (z, z)+ /m(z, z')= fn{z, “') + te(z< z') 

is satisfied for all values of vt and /x 

Finally, take a new function U (z, z) defined by the eijuation 

U(z, z) — cr,iz z’' 

The added integei multiple of 27n in G(z, z ) does not affect the charactei of 

U (z, z‘). and so we have 

U (z, z ) — efl 1 

= I I 1m 1-,-’) 

- It,,, (-, z') 

within the legion lim We thus have established the result -- 

A function U (z, z') e.rists, regular throughout the whole finite region con¬ 

sidered, such that the quotient 
U(z,z') 

"m Z) 

is a regular function of z and, z within the region lim and, is different fiom 

zero, um (z, z') being itself a regular function within that i eg ton , and this holds 

tor all the n values oj rn 

Again it must be remembered that n, the nunibei of functions um (j, z'), 

is finite 

The general theoiew 

86. After these two propositions, which are general m character and the 

second of which is immediately useful foi oui purpose, we can proceed to the 

establishment of the general theorem, stated by Weierstrass, as to the 

expiession of a function of two variables, of which the essential singularities 

occur only for infinite values of either or of both the variables 

It has been proved that, m the immediate vicinity of a zero-place of a 

uniform analytic function f{z, z ), we have 

f{z, z) = PeK, 

where P is a polynomial in z having, as coefficients of powers of z, regular 

functions of z, or conversely as between z and z, and where R is a regular 

function of z and z which vanishes when z = 0 and z = 0 

We have defined a pole of a uniform analytic function F (z, z) as a place, 

where a function f(z, z ) of the preceding form exists such that 

F(z, z') f(z, z) 
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is a regular function of s and z, which does not vanish at the supposed polo 

or in its immediate vicinity. 

We have defined an unessential singularity of a uniform analytic function 

F (z, z') as a place, where two functions f(z, z) and g(z, z) of the preceding 

type, and irreducible relatively to one another, are such that 

F(z, Z'\ 
f(z,z) 

is a regular function of z and z' which does not vanish at the supposed 

singulaiity. 

Suppose, then, that a function F (z, z ) is defined as being uniform and 

analytic ovei the whole field of variation that it has poles and unessential 

singularities of defined type within that field that it has no essential smgu- 

lauties except within the infinite parts of the field of variation of the two 

complex vanables and that, except for the poles, and tor the unessential 

singularities, the function othei wise is regular for finite values of the variables 

z and z' 

For the expression of the function, we need take account only of functions 

f(z, z) which give use to poles, and of functions j (z, z) and g (z, z') which 

give use to unessential singularities We range these functions in two 

classes In one class, we include all the denominator functions J (z, a'), m 

the other class, we include all the numeiator functions g (z, z) 

Let f(z, z') be typical of all the denominates, which occur in the 

expression of the function at a pole and its immediate vicinity, and let 

f(z, z) be typical of all the denominators, which occur m the expression of 

the function at an unessential singularity We proceed to construct a 

function G (z, z) such that, in the immediate vicinity of any of these places, 

the quotient 
G(z,z) G(z,z') 

or 
f(z, z') f{z, /) 

is regular and different from zero, the function G(z,z’) exists, and is regular, 

in the whole finite part of the field of variation 

Again, let g (z, z') be typical of all the numeratois which occur in the 

expression of the function at an unessential singularity. Analysis, precisely 

similar to that used for the establishment of the function G (z, /), enables us 

to establish the existence of a function G {z, z) such that, in the immediate 

vicinity of any such place, the quotient 

5 (z, z) 

9 (*, *’) 

is regular and different from zero , the function G (z, z') exists, and is regular, 

m the whole finite part of the field of variation. 
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Accordingly, we consider the possibility of the existence of the functions 

(t(z,z'), 0 (z, Z) 

87 Imagine a succession of regions in the field of variation, each region 

enclosing the one before it m the succession We shall take, as the boundaries 

of the regions, concentric circles in the respective planes, and lhe.se may he 

denoted by ((7,, (?,'), (6\, <7/), , which may he unlimited m number, as we 

pioceed to cover the whole field of variation We also take the common 

centres of the circles at the respective origins 

For the first legion, there is only a limited number of functions f,„ (z, /), 

each of which is regular at, and m the immediate vicinity of, its place of 

definition Hence, by §85, there is a function, say 17,, which is ugular 

throughout the region and is such that the quotient 

th 
/;„ -') 

is a regular function of z and z within the region and is different from zeio, 

and this holds for each of the functions fm (z, z') defined within the region 

For the second region, there ate all the functions fln(z,z'), which are 

defined for places in the fitst region, and then- are the additional functions, 

which lie m the belt between the two regions (including the boundary of the 

first region) Then, again by §85, t.heie is a function U.2 which is regular 

throughout the second legion and is such that, (i) the quotient is a 

regulai function thionghout the legion and is different horn zeio, and 

(n) the quotient 

Ut 
fn (*, V) ’ 

where fn(z,z') is any one of the newly included additional functions, is a 

regular function of * and z within the region and is different lrom zero, and 

this holds for each of these functions t„(z, z) 

Anil so on, from each region to the legion next m succession , we obtain 

a gradual succession of functions Ux, U2, .,U,, , each legulat in its 

region, and having the properties, (i) that is a regular function through¬ 

out the region (f>, and is different from zero, and (n) that, for each of 

the functions f„(z, z) defined for the region (fr+l, C’',+1) but not for the 

region (CT, V,'), the quotient 

Uril_ 

z) 

is regular for the region (Cr+U C'r+,) and is different from zero 
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88 Take a converging series of positive quantities a,, aa, . , ar, 

associating them in order with the successive regions, so that a, is associated 

with the region (C,, C/) Also, let 

Ur+1_ 
U, ~pT' 

then the regular functions £7,, £72, . can hi' chosen so as to give 

\p, <e°r, 
lor each value of r. 

Suppose that U,, £7, have been chosen so as to satisfy this relation 

forr=l, ,s - 1 The function £7M, j U, is regular throughout the region 

(C,, Cs) and is different from zero there, and theretbie 

log £7,+1 - log L\ 

is (save as to an additive integer multiple of 27n) a rcgulai function of 

z and z throughout the region This regular function, save as to the 

additive multiple of '1-m, can be expressed as a double power-senes in z and 

z’ converging absolutely within the region Let this series be denoted by 

v v Jn ^ > /i V 
w L?n,v ~ * 

»»-(> « = n 

let M be the (finite) greatest value of its modulus within the legion , and let 

R and W be the radii of the circles C,, Cs. Choose values, fj.R of m, and i<„ 

of n, sufficiently large to secure that 

M 

I, >*11 !i k'l) 1 R 1 
< 1°*’ 

1-L' 

< Kl 
«) 

(if) ( R' j <iK' 

R R’ 

the thud of the inequalities being satisfied when the first two are satisfied 

Then, writing 
v-h ** — V v r r'* 

X g   ** — I'M, n 4, 6 

m~Q n- 0 

so that P, is a polynomial in z and z , and also 

ac oo 

Q. 

so that 

we have 

t3 ac 30 50 v 

2 2 - 2 2 Zm 
, I {yrn, n * * » 

<i=Q n~vt vi = ^«=s 0 m — C 

! Q, \ < $<*, + $«» + < a», 

log U,+1 - log £7 = P, + Qs, 
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save as to an additive integer multiple of 2th Consequently 

= e«*. 
U.ue-K 

Uu 

where now the multiple of '2-m no longer affects the functions concerned Let 

so that 
CVh « t/»4, 

= eQ. 
u. e 

The function tT#J-1, within the legion ((.*, possesses all the properties of 

Cs+1, Jiecause e~7J« within that region is a legular function of z and z which 

vanishes nowhere in the finite part of the held . thus U'^J lj\ is everywhere 

regular in that region and nowhere vanishes there, and the quotient 

/*U. :)' 

for each of the functions j\{z, z) defined for the region between (Ci+,, C',+l) 

and (C'„ CV), is everywhcie regular for the region (C,+1, C',+1) and vanishes 

nowhere in the region. Accordingly, we substitute f/',41 for f/»+1, we write 

so that 

and we now have 

e(u~ p„, 

p» |< , 

with the condition \ p„\< fi“> satisfied 

89 F 'or any region (C(/, C*,/), we define a function (iq (z, z‘) by the foiin 

^ q (.£> z ) — Wq I 1 Pq+t 
1 

The function Uq' is regular cveiywhere within the legion. The pioduct 
X 

^ + 1 
is regular there, for its modulus 

cr 

= H I Pg+t I 
t * 1 

which is a finite quantity because of the convergence of the series of positive 

quantities a,, a.,, , and, within the region, no one of the quantities p,l+l, 

pg+i,.. vanishes, while each of them is regular there Thus within the 

region, the function 
Gq (z, z) 

fg iz> z) 

is everywhere regular, and nowhere zero, within the region (<7?, Cq'), for each 

of the functions fi (z, z ) defined within the region 

F 10 
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Next, tAke a function Gq+P{z, z'), defined for the region (Cl/+P, C'q+P) 

We have 

Gq+P (Z> Z ) = U g+p 0 Pg j.jj.j.f 
1 = 1 

Also 

(t,, (Z, z) = Ug IF pq+r 
t'~ 1 

= v, 
V 

<1 ^ p<l+f 
r-1 

II 

= u.; v\ 
u„ 

v+l 

Pp+q+t 

U'n 'l+V 11 Pp+q *•* rr+7-t' 
l-ji-l 1 -1 

Gq+p (z, Z ) 

Thus all the functions Gq aie one and the same, let this function, the same 

for all the regions, be denoted by G (z, z ) Then the function G (z, z) exists , 

it is regular everywhere ovei the field of variation considered, that is, for all 

finite values of the variables z and z , and it is such that at, and m the 

immediate vicinity of, any place when- a typical function f (z, z') is defined, 

the quotient 
G (z, z') 

f (z, z ) 

is regular and different from zero 

We thus have established the existence of the function denoted by 

0 (z, z). 

In precisely the same way, we can establish the existence of the function 

denoted by G (z, s') 

90. Now take the quotient 

0(ii, z') = 
G (z, 

G (z. 

z') 
z) 

This fuuction B (z, z) has unessential singularities at all the places where G 

and G vanish simultaneously, that is, at all the places where associated 

functions g (z, z') and / (z, z) vanish simultaneously , in other words, B (z, z) 

possesses, in exact and precise form foi each of them, all the unessential 

singularities possessed by the function P (z, z') of § 86 Again B (z, z ) has 

poles at all the places where G (z, z) is zero while G (z, z) is different, from 

zero, that is, at all the places, where the functions f (z, z) vanish while the 

functions g (z, z') do not vanish in other words, B (z, z) possesses, in exact 

and precise form, all the poles possessed by the function P (z, z) Neither 

B (z, z) nor, by hypothesis, P (z, z) has any essential singularity for finite 

values of z and z , and at all places, other than isolated unessential singu¬ 

larities and other than the continuous aggregates of poles, both B (z, z‘) and 

P (z, z') arc regular functions Hence 

P{z, z>) 

0 (*,0 
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is a function that, is regular everywhere in the domain constituted by all 

finite values of z and z , denoting this regular function by 11 (.z, z), we have 

P{z, z')= <=>(., z')R{z, z') 

_ (5 («, z) R (z, z) 

G (z, z') 

Now 8(z, z') is a function that is regular foi all finite values of z and z , 

consequently the product G (z, z') H (z, z') ifi a function that is tegular for all 

finite values of z and z Denoting this product by H (z, z ), we have 

1> (z, z) = 
II (z, z) 

a (z, z) 

as the final expression of our function, and, in this expression, the functions 

H (z, s') and G (z, z) are regular for all finite values ol z and z Wo thus 

have the theoieni — 

When a uniform analytic function of two variables possesses unit/ un¬ 

essential siny it la i ities for finite values of the variables, it can. be expressed 

us the quotient of two functions, each, of which is i eyular for all finite rallies 

of the variables, and the quotient is irreducible 

The last statement m the theorem follows from the consti action of the 

functions G(z, z) and G (;, z) A quotient c/ (;, z) — j (z, z') is irreducible 

at an unessential singularity, theie is no question of the roducibility of a 

function j f (z, z'))_1 in the vicinity of any polo , and R (z, z') is regular for all 

finite values of £ and z 

Note, In the particular case where the unifoim analytic function has no 

essential singularity within the whole field of variation of z and z, both the 

functions H (z, z ) and G(z,z') are devoid of essential singularities within 

that whole field, that is, they must, be polynomials m z and z' We thus 

again have the earlier theorem already (§78) established 

For further developments from the results now proved, reference should 

be made to Cousin’s memoir 

Appell's Examples 

91 Such is the general existence-theorem, obtained in the product- 

form There is a corresponding theorem, in a sum-form Simpler expressions 

may be obtainable in particulai cases, when the functions fm (z, z’) or a* (z, z’) 

are known 

As an example of the sum-theorem, for a particular class of functions, 

Appell* pioceeds as follows, in a generalisation of Weierstrass's proof of 

Mitcag-Leffler’s theorem on functions of a single variable "h The set of 

* Acta Math , t n (1883), pp 71—80. 

t For references, see my Theory of functions, ch ni 

10—2 
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uniform analytic functions f(z,z'), f, (z, z"). , is supposed to have the 

property that for all integers n, greater than some definite integer N, we 

can assign a magnitude r„ such that fn(z, e) is holomorphic for all values 

of z and z given by j z \ < rn, j z \ < rn, and such also that r„ increases 

indefinitely with n 

Let e,, , en, be a converging series of positive quantities, and let 

6 denote a positive quantity less than unity Take first the sum of the 

functions f(z,z),fi(z,z'), . , fv(z, z ), and write 

F, (z, z ) = i fm (z, z ) 
>n - 1 

Next, consider the functions Jn {z, z) such that » > N. as each of them is 

regular for values of z and z such that 

,z,Z.ertl, !z'\<ern, 

we can express fn(z,z) in a form 

fn (z, z) = X ^ sP z'q> 
p - 0 q- 0 

where the double senes converges absolutely As in § 88, we can assign a 

positive integer fin, taking fin to be the greater of the two integers /a, and v, 

there assigned, such that 

I ( oo x r x a> uc ^ 

S 2t + - S - 2: 1 f (V,vml zPz''‘ ^ 

for all the values of z and z considered Hence, denoting by <pn (*, *') the 

polynomial 
M» - 1 M»~ 1 

4>n (Z, Z )= ± 1 C,,,<»■ *1-A 

p- 0 tj-0 

and constructing a function 

K(z, 0 = ~ \rH(z, z')-(f>tl(z, z')\, 
n-A t-1 

we have, on the right-hand side, a senes which converges absolutely for the 

values of z and z considered 

Now consider the sum 

F (z, z) = F\ (z, z) + Ft (z, z'). 

The function 

F(z, z’)-Jm(z, z) 

is regular at all the singularities of fm (z, z), and so the function F{z, z) is 

regular at ail places in the field of variation which are not singularities of 

any of the functions f (z, z’),ft(z, z), . and F(z, z'), at places which are 

singularities of a function f(z, z), is non-regular in the same way as f(z,z') 
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92. As a special instance of this sum-theorem, Appell adduces the case 

when 

fmn (Z, Z ) — f, , -- --- 

\(z 4- w)- -| (z 4- u Y 4- tr, 

where s is a positive mtegei, a is a constant, and the different functions 

fmn (z, z') arise by assigning to in and to n, independently of one another, all 

integer values fiom — so to 4- so 

We have 

Also 

But 

and 

1 (z 4- in)- 4- (z + nf + a-< > I (£ 4- inf + (z + n¥ — 1 a ‘ 

(z + in Y + (z + rif = (z 4- iz + m + n>)(z — iz' 4- m — m) 

| z + iz -I- m + in i > | m + ni i —! z 4- iz' I 

> (m- 4- — I z j — i z i, 

z — iz 4- m — in > (m* 4- ri'1)- — \ z — , z' \ 

Hence, it 

we have 

and therefore 

i z i |(w* 4- w-)- — l </ [ — cj, 

\z'\t^{(ni‘+ wa)4 — I « ; — (•], 

| (z + my 4- (z' + nf \ > J i a j 4- r]J, 

(z 4- m)1 4- (/ 4- nf 4- a31 > j | a j + c}s — j a H 

> 2c > a j + c" 

Consequently, tor all values of z and z within a range that increases in¬ 

definitely with m and n, as given by the foregoing limits, | fmn{z, z') | remains 

smaller than an assigned quantity, and so foi those values, (z, z) is a 

regular function. Thus the set of conditions for the function tmn{z, z') is 

satisfied 

When the integer ,s is greater than unity, the senes 

in = oo n «- 1 

V V __ 

- oo -oo ((* 4* )“ (z 4 u)‘ ■+■ U'j* 

converges absolutely We therefore take 

m - r> n — x> i 
F(s, z) - 2 2 - - - - 

-oo i(^4 mY 4- (z' + Ilf 4- 

The function F(z, z) has poles at all the places 

z = — m 4- la cos 9, z = — n 4- iu sin 6, 

for the continuous succession of values of 6 and for all values of m and of n 

Elsewhere, at all places in the field of variation, the function F(z, z ) is 

regular. In this case, there is no need to take polynomials corresponding to 

the functions 4>n{z, z) in the general investigation. 
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When the integer s is equal to unity, the expression of the function is not 

so simple, because the series, of which the general term is 

1 

(z + in)2 + (z' +• w)2 4- a* ’ 

does not converge absolutely. We then take all the values of m and n, which 

are finite in number and are such that 

(m3 4- ir)^ < 1« | + c , 

selecting all the functions fmn (z, z) given by these values of m and n, we 

denote their sum by F, (z, z'). 

Next, take the values of w and n which are such that 

(m- + a3)^ > | a ] + c, 

and expand fmn (z, z'), for any such pan of values, m powers of z and z, valid 

in a range 

|z\'S.\ \(m- 4- n")i — |a| -c(, ,z • < £ |(//t3 4- n*)^ — j ti | — r| 

Thus 

Ann (Z, 
1 

m2 4 ir + a2 

2 »tz 4 2 ns 

(nr 4- u2 + d2)2"*" 

For our purpose, it is sufficient to take the desired polynomial <f>,nn(z, z) as 

equal merely to the constant term in the expansion, for the series 

F,(z, /) = !! 
1 

(z + in)2 4- (z 4- n) 4- a2 
1 ) 

lit2 4- v2 4- «2| ’ 

for all such values of z and z, and for the doubly infinite set of values of in 

and n, converges absolutely. Our required function is 

F (z, z ) = Fi (z, z) 4- F% (z, z). 

It has poles at all the places 

z — — in 4- ia cos 6, z = — n 4- ta sin 0, 

for the continuous succession of values of 6, and for all integer values of m 

and ii. At all other places in the finite part of the field of variation, the 

function F(z, z) is regular. 

93. As an example of the pioduct-theorern, let a, (z, z ), u.t (z, z ), ... 

denote a set of regular functions of z and z, and let them have the property 

that for all integers n, greater than some definite integer N, we can assign a 

magnitude rn so that un (z, z) is distinct from zero for values of z and z 

such that j z \ < rn, \z \< rn and such also that rn increases indefinitely with n. 

Then denoting by ku k.^ ... a succession of positive integers, we can form 



93] EXAMPLES 151 

a regular function G(z, z), vanishing for all the values ot z and z which 

make gm (z, z') vanish, and vanishing in such a way as to make the quotient 

G (z, z) 

z')\km 

Unite and different fioni zero for those values 

This function G{z, z) is of the form 

G, z) G.,(z, z ), 

where 
N 

<j, (z, Z ) = 11 \(Jm (z, z')\k'», 
lm = l 

G.. (z, z) - IT \gn (z, 
JVH 

while yfrn(z, z) is an appropriate polynomial in z and z 

Ec. 1 Show that, when 

ffmn (2> * ) = (*+»«)" + (z + «)2 + a\ 

where m and n vary independently of one another through all integer values from — x to 

+ cc, a fumtinn O (z, z'), regain everywhere in the Unite part of the field and vanishing 

like <h„n(z, z'), can be construeted as follows. Take all the values of in and n, finite in 

number, siuh that 

(;w-'+»2)^ |«| + 0, 

where a is any assumed finite quantity , and write 

<>\ („, z) = nn 1 (z + m )2 + (z + «)2 + a2}, 

where the product extends over all these values of m and n. 

Take all the values of m and w, doubly inhinte m number, such that 

and write 

<G{z, ff=nn | 

(w- + /t2d > |u| + r, 

(z + m)l+{z' + n,y +a1 _ 
’/'mn z 

where the product extends over all these values of m and n, and where 

_ 2)«z + 2/)z'+z2+z'2 1 /2mz+2«/+z2+z'i\2 
Ymn V, -}- /(2 + „2 — “ 2 \ m‘ + n- +«2 

The required function is given by 

a (a, z') = (/, fez') G, (*,*-) 

Er 2 Verify that, when a is zero, the function G(z, z ) can be expressed bv means of 

two Weiorstrass’s (r-functions 



CHAPTER VI 

Integrals, in particular. Double Integrals 

As regards the matter of this chapter and, above all, as regards integrals of algebraic 

functions of two variables, the student should )»u special attention to various sections m 

the treatise (which usually is quoted here in Picard’s name) Picard et Sitnart, Thdurie des 

foactions alijebnques de deux variables uidJpendantes, t. 1 (1897), t n (190(5) Other 

references will be found m the coutse of this chapter 

It may lie noted initially, as regards algebraic functions of two variables, that I have 

chosen, for reasons already stated, to take two fundamental equations defining two 

independent algebraic functions of the variables, instead of only a single equation 

dofimng only a single algebraic function If three (or more) equations wore taken 

defining the same number of algobraic functions, those would not be independent, so 

it is sufficient to take not more than two fundamental equations 

94 In the theory of functions of a single variable, many important 

results are derived through the use of Cauchy’s theorems concerning contour 

integrals It is natural to attempt some extension of theorems so as similarly 

to derive results in the theory of functions of more than one variable 

Here we shall restrict the discussion to the case of a couple of complex 

variables 

The integral of a function of two independent complex variables may be 

single or may be double. The definition of a smglo integral is the same as 

in the customary theory of functions of one complex variable, but there is 

the added complication through the occurrence of two complex variables. 

Either there ls-vanation, within the range of the integral, of only one of the 

two variables, or within that range, there is a definitely connected and 

simultaneous vanation of both variables 

Of double integrals, there are two classes In one class, the integration 

with regard to each variable is entirely independent of the integration with 

regard to the other, so that the integrations can be performed in either order. 

In each integration, only one variable is subject to variation. Thus the 

double integral is effectively only a double operation of single integration 

We have already had some examples, at an earlier stage, of this class of 

double integrals. 
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Ex A function f(rp, 6) is periodic m \p, with period 2rr, and is also periodic m ft 

with period 2jr , and it is regular for all values of the vaunhles within the ranges of two 

complete respective periods Lot n (r, r', <p, <f>') denote the integral 

1 f2ir f\2,n 

4ir4 Jo jo f{+, & 
(1 -r*)fl -r'2) 

11 — ir cos (\jr — cjy) + rlJ J1 — 2/' cos (d — </>') 4- F'1] 
<{ \J/ dd 

Piove that, when r < 1 and i' < 1, the function u(r, /, cp, r)>) is regular , and that, in the 

limit when r=l and / = 1, the function it (r, r', <f>, tp') is equal to /"(</>, <pr) 

Show also that, if 
' > (/>'* 
= r <r , 

i»(r, r', <p, <p') is expressible as the real part of a tegular function ol the complex variables 

z and t' 

.Vote This lemilt will be noted as the extension of the simplest result, relating to 

potential functions of two real variables, in Schwarz’s establishment of the existence of 

a function of one complex variable satisfying conditions of specified assigned types* 

95 In the other class of double integrals, the variations arc not inde¬ 

pendent, of one another, if either can be poiformed alone, usually the range 

of variation for the variable is affected by the other vauable, and, in the 

general case, such integration cannot be performed for one variable alone 

It then becomes imperative to define precisely what is the meaning assigned 

to the double integral Foi this purpose, we adopt the procedure initiated 

by Poincare f, using space of four dimensions in real variables. 

As usual, we take 
s -x + ty, 2-' = x + iy', 

wheie j, (/, x\ i/' are real and are the coordinates of a point in this space 

Without further limitation, the variables x, y, x. y are independent of one 

another. 

For om immediate purpose, we now make two successive suppositions 

consistent with one another, so as to secure a working definition of a double 

integral 

First,, let A', F, Z be real variables of a point in ordinary space, and 

suppose that a, y, x, y' are limited in variation so as to be expressible in 

foi ins 

•r - F, (X, F, Z), y = F,(X,Y,Z\ x = Ft(X, Y, Z), y'= FJX, Y, Z), 

whoie (for purposes of description) we assume that Fu F„, F,, Ft are rational 

functions of X, Y, Z not becoming infinite for real values of these variables 

Eliminating X, F, Z, we shall have an (algebraical) relation 

'P (x, y, x, y') = 0, 

* See my Theory of Functions, chap xvn 
t Acta Math , t lx (1887), pp 821—380. It is billowed, in part, by Picaid who has made 

great extensions, us also by other methods, of the properties of double integrals specially 

connected with algebraic functions, see his Trnitf d'Analyse, t li, ch. ix, fnd lus Them te dn 

fonctions algfbnquet de deux variables mdfpendantes, already quoted 
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which represents a three-dimensional continuum m the four-dimensional 

space 

Next, let X, Y, Z describe a surface S, or a portion of a surface ti, in 

ordinary space Again for purposes of illustration, we shall assume S, or the 

selected portion of S, to be devoid of singularities. We can take X, Y, Z as 

functions of two real parameters p and q, valid over the surface S or the 

portion of it, and we then have equations 

* = <7. (P> ?)• .'/ = !h (P> ?)> a:‘ = <h (p, q), !)' = 9* (p> q) 

These relations imply two equations, say 

JJ (.1, y, a-', y’) = 0, V (,r, x, y, y) = 0. 

which represent a two-dimensional continuum (the surface ti, as m § 5) in 

our four-dimensional space We take a simple closed area in the plane of 

the variables p and q, represented by an equation 

F(p. q) = 0, 

and for the double integral, we allow all values of p and q within this area, 

representing them by the relation 

F(p </)$ 0 

Then the limit of the range of integration on the surface ti is given by 

F(p, q) = 0, and this limit will lead to three equations of the form 

I\ (x, y, a:', y') = 0, (6 = 1, 2, 3), 

representing a curve in the four-dimensional space. 

Now let /(2, z) be the function, to be “doubly integrated” in the sense 

that a meaning has to be assigned to the double integral 

I=JJf(z, z ) dzdz 

As f (z, /) is a complex function, we resolve it into its real and imaginary 

parts; let 

f(z, z) = P + iQ, 

where P and Q are real functions of x, y, x, y'. Then 

I = JJ(P + iQ) (dx + idy) {dx + id\j) 

= JJ\(P + iQ) dxdx' + (iP — Q) dxdy + (iP — Q) dydx —(P+ iQ) dydy'\. 

Manifestly I, whatever its value, can be a complex variable, so writing 

1 = /1 + Ht, 



95] DOUBLE INTEGRAL 155 
9 

where /, and /, are real, we have 

1\ =JJ{P(dxdx' — dy dy' ) I — j j]Q{dxdi/ + dy dr )}, 

lt = I f {Q (dxdx — dydy')\ 4 fjl F (dcdy + dydx) |. 

And now, It and /, are ordinary double integrals involving only real 

variables, for the real quantities x, y, .r, y are functions of only the real 

variables p and q, and these1 double integrals are taken over the limited area 

F(p, q) ^ 0 in the plane of the variables p and q. 

Both integrals are ol the form 

Jj(Adxdx' + Bd.rdy' + ('dydr' 4- Ddydy'), 

where all the quantities concerned are real—there being, of course, limitations 

upon the forms of A, B, J) and also ol their diffetential relations to one 

another When we give explicit expression to the functionality of x, y, x, y 

in terms of p and q, the integral becomes 

but for our purposes it will suffice to take the first foitn. 

Our object is the generalisation, if generalisation be possible, of the 

fundamental theorem of Cauchy which asserts that, under appiopriate con¬ 

ditions as tof{z), the integral jf(z)dz taken round a closed contour is zero- 

it is a consequence that the integral \ f(z)dz, between two points in the 

plane, has a value independent (subject to restrictions) of the A-path between 

the points Suppose that, instead of the former values of x, y, x', y, we take 

x = h, (p, q), y = hi(p, q), x = hs (p, q), y' = ht (p, q), 

so that we could have a new surface T different from S, and suppose that, 

corresponding to the former equation F(p,q) = 0 limiting the range of 

integration, the range of integration m T is still limited by F (p, q) = 0, and 

that the limiting curve connected with T in our four-dimensional space is 

given by the same equations 

1\ (*, y, x\ y') = 0, (s = I, 2, 3), 

as the limiting curve connected with We thus should have two different 

surfaces passing through the same contour Then the generalisation would 

be that the integral Jf f {z, z ) dzdz should remain invariable if only the 

surface over which the integration extends is made to pass through an 
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assigned fixed contour, or, if we take a completely closed surface through 

the fixed contour, the integral j'j f (z, z) dzdz taken ovei the whole of this 

surface vanishes 

96. Accordingly, we consider an integral 

«/i 
A^nndxmdxn » 

where the summation is taken ovei all pairs of values m, n = 1, 2, 3, 4, and 

where xlt x,, x,, xt take the place of x, y, x\ We define the integral for 

the four-dimensional space as above, consequently, because 

JjAm„dxmdjH = IjAmnJdx„dxm 

with the foregoing interpretation, we have 

A„iltdx„dxM, 

and 

jjA dr,„ da n = — [j 

JJa dx„ dxm = - j j A d.rm dx, 

that is, taking account of the whole integral and of the combinations of m 

and n instead of the permutations, we shall assume that 

A — — A X1 nmy 

so that we need only considei the combination ^ Amndxmdxn Moreovet, this 

process of regarding the integral obviously involves the additional assumptions 

Amm ~ 
for all the values of m 

Next, we take* xu x„ x3, j;4 as expressed in terms of the three variables 

A', F, Z, so that our double integral becomes 

22 

that is, 

where 

AnH |y (,r™’ J) dYdZ+J (*£-*'} dZdX + J[ X£’ 5) dXdY 

[f(?dYdZ + vdZdX + £dXdY), 

^=22Am„./(J;“'J), 

t-SSA-'Grr)- 
* Here Picard’tt proof (Traite d’Analyse, t. n, p. 270) is followed exactly. 
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The integral is to extend over the surface in the X, Z oidmary 

space. 

We therefore require the condition necessary and sufficient that such an 

integral 

fj(gdYdZ+vdZdX + £dXdY), 

over any surface which passes through an assigned contour in the p, 11 plane, 

shall depend solely upon the contour This condition is well known . we 

must have* 

8f + s’+s? = o 
wor a 

Accordingly, the condition is 

! V V J / / ,'"l> "tn\] , <i_ IvV A 

dx (— "m v y,z) s r>r r m" v if, x 

In this expression, the toefheient of Am„ is 

Sir /Jin, '»\| S 1 I ''n'd Si t ’ m, ■'(A) 
dx r \Y,z)\ + dv (if, x)\ + „z x U, r )\ 

which vanishes identically 

As regards the derivatives of Amn, we have 

SA mu   ^ ^1 mu (l,t l 

(3 A i - j h.i'i dX 

and so for the others Hence, in the foregoing expression, the coefficient of 

pA dA 
* mn, and the coefficient of _ both vanish identically, and the non- 
r)jm ()a:n J 

vanishing coefficients are the sum of terms of the form 

idAmn c.ln[ dAi1n\ . /up >rm, jn \ t , ('dx [jfl \ . /£iy U lfl, 1 n \ 

ftrm <)j'» / ’ \X, Y, Z J ' 

Consequently, the condition becomes 

V v v 1 i/m j C A h[ ^ 0 A im i j /Xif a , J'n ! |   

!-l m— I «-l (\ d.E[ P'Lm bu*„ / \X, 1 , Z /j" 

* Whi n the condition is satisfied, wp can take 

dy _ d/i _ 3a fly dp da 

(~dY~ d/A v~d/,~d\’ C~d\ ~ dY' 

and then the internal can lie expressed in the form 

j {adr + pdt/ 1-7(1:), 

taken round the contour in the p, if plane. The result was first enunciated as a problem by 

Stokes, in the old examination for the Smith's Prizes at Cambridge in the year 1854, bee Stokes, 
Hath and Phyi Papin, vol v, p 320, with a note by Prof Sir J Larmor 
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a condition which must be satisfied identically, whatever be the surface 

over which the integration extends, subject to its passing through the 

contour. 

The quantities xt, ,rm, an, xp are functions of X, Y, Z such that, away 

from the contour, any three of them are independent of one anothei , and 

therefore the quantities 

J \~x7~yz j' 
except along the contour and mdmdually at special places in space, are 

different from zero It follows that we must have 

bA mu oA ni . 

dj/ < >.rm d.r„ ’ 

for all the combinations l, nt, n = 1, 2, 8, 4 Moreover, it is easy to see that 

this set of foul conditions is sufficient, as well as necessary, to secure that the 

value of the integral 

J I d inn m cLtn 

depends only upon the contoui 

97 Now let us apply all the conditions to the integrals /, and /,. We 

have 

/, = j^Pd.tds — Qdxdy' — Qdyd.d — Pdydy), 

and we take 
y, , //' = ■*,, j,, ,/4> 

respectively We have 

^n = 0, AU=I>, A» — Q, Au = — V, Au = -P, Am= 0 

Consider the conditions 

rtAmj\ dAni dAim_ 

()X I dj'm dj„ 

for the combinations l, m, n = 1, 2, 3, 4 They require the relation 

_dQJ>P=0 
<)x by ’ 

for l, m, « =1, 2, 3, the relation 

by' dx' U’ 

for l, m, n = 2, 3, 4 , the relation 

dQ , dl 



= 11{Qdxdx' + Pdxdy’ + Pdyd.x — (plydif j, 

so that we can take 

A* = 0, vl13=y, AU=P, A.a = P, A,t=--Q, = 0 

The general conditions require the relation 

'olJ _?Q o 
().l <Uj 

for the combination l, m, n = I, 2, 3; the relation 

S'VC„ ay .v ■ 
for the combination /, /«, » = 2, 3, 4, the relation 

-s,V«„o 
(V '<<j ’ 

for the combination /, ?», « = 3, 4, 1 , and the relation 

<■<// <■*./ 

for the combination /, w, it = 4, 1,2 

Thus all the conditions aie satisfied if only 

?P = ?Q ?P^_o(J rip 'Ml dp = _hQ 
ci.i dy ' ?y dx ’ dx d</ ’ dy' dx 

But, by definition, we have 

P + tQ = f(z, 2 ) = f(.T + IIJ, ,1 + II/'), 

where P, Q, a, y, y are real, and so these four lelations are satisfied. 

It follows, then, that /, and /. depend solely upon the, contour, and 

therefore /", = /, + i/>, also depends solely upon the contour And we ha\e, 

thioughout, assumed that the quantities P and Q,—that is, also the function 

f(z, z)—are free from singularities Hence we have Poincares extension of 

Cauchy’s theorem — 

If, •within (he closed surface 8, winch is taken m the space of three 

dimensions X, F, Z, and points on winch are given by equations of the fonn 

X = f {p, q), Y=fi( p, q), Z=f,( p, q), 

so that, along the surface, 

X — Fj (X, Y, Z) = g, (p, q), y = F, (X, Y, Z) = <h(p, g), 

x = F,{X, Y, Z) = g,(p, q), y = Ft(X, Y, Z) = gt(p, q), 
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thei e m no place X, Y, Z where the function f(z, z ) ceases to be regular, 

the value of the integral j jf(z, z')dzdz taken over the whole of the closed 

surface is zero 

Again, for such a function and over such a space, the value of the integral 

f(z,z')dzdz‘ taken over any portion of any such surface S bounded by a 

contour, the surface and the contour lying within the domain, depends only 

upon the contour 

Further, it follows that the value of the integral jf f (z, z) dzdz', taken 

ovei any such closed surface, remains unaltered during deformations of the 

surface provided they occur in the domain of X. F, Z, and cross no place 

giving use to no singularity of f(z, s') 

98 Now consider the singularities, or other deviations from regularity, 

of a function f(z, z) We take the preceding surf,ice S existing, as in § 95, 

in an oidinaiy space of three dimensions, the representation of the variables 

being 

./■ = A,(A, Y, Z), y = FfX, Y, Z), A = F, (X, Y, Z), </ = F<(X, Y, Z) 

The singularities of f(z, z‘) may be given by a set of single equations, typified 

foi each of them by 
0 (z, z) = 0, 

or by sets of two independent equations, typified foi each set by 

6 (z, z ) = 0, ij> {z, z) — 0 

The former will lead to two equations, say 

O, ■>', f) = 0, (r, (/, .r', if) = 0 , 

so, in our X, Y, Z space, they will be given by equations 

<S), (A', Y, Z) = 0, to, (X, Y, Z) = 0 

These two equations represent a curve C in that space, at eveiy point on 

the curve there is a singularity off (z, z) 

The latter will lead to four equations, which may he regarded as defining 

an isolated place or an aggregate of isolated places determined by the values 

of x, y, x, y' Such places may or may not exist in our A, F, Z space 

Take a closed surface S in the space, containing no place or places 

A', F Z, giving rise to an isolated singularity of f (z, z), to any curve C, or 

to any part of such a curve The integral j'J f(z, z)dzdz' taken over S is zero. 

Take two closed surfaces N and S' in the space A, F, Z, such that 

S can be continuously deformed into S', without passing over any place 

giving rise to an isolated singularity of / (z, z"), or over any curve G, or any 

part of such a curve C. The value of the integral taken over the surface 

S is equal to its value taken over the surface S'. 
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Take two closed surfaces & and <S" m the space X, F, Z, such that they 

enclose places giving rise to exactly the same isolated singulanties of f(z, z'), 

to exactly the same curves C and to exactly the same pot turns of curves C 

The value of the integral taken over the suiface S is equal to its value taken 

over the surface iS" 

Thus the value of the double integral jj f(z,z') dzdz', taken over the 

closed surface »S\ is zero when the surface encloses no place X, V, Z, where 

f (z, z’) ceases to he legulai When the surface docs enclose places X, F, Z, 

whole f (z, z') ceases to hi' tegular, the value of the integral depends upon 

these enclosed places, we cannot asseit that its value is zeio 

99 The theorem can he enunciated in similai terms when a two-plane 

representation of 2 and : is adopted Thus, very specially, within a cm ulai 

ring in the 2-plane and within a circular nng in the /-plane, let a function 

/ (z, /) he everywheie regular , then the value of Jj J (z, z) dzdz is the same, 

whether the integral be taken positively round the outer nicies m the two 

planes, or be taken positively round the inner circles in the two planes But 

such a case is exceedingly special, and, as was indicated earliet m the lectuics 

(j If)), thi> irontiei of a domain of v.ui.ition for 2 and / is of a more com¬ 

plicated character than in the result just enunciated 

100 We pi weed to consider some of the simplest cast's when the subject 

of integration m a double integral jjf(z, z'\dzdz possesses citin'1 isolated 

singularities or any continuous aggregate of singulanties within an assigned 

domain In passing to these examples, it, may be icrnarked that the whole 

subject of double integrals ol uniform analytic functions, possessing singu¬ 

larities of the known types, offers a field of teseaich, in which many of the 

results already obtained aie of a tentatively exploratory character 

In the examples that will be considered, we shall use the two-plane 

representation of 2 arid z, and we shall deal only with a finite part of the 

whole field of variation of z and 2', that is, for all the variations, \z | and | 2'| 

will bo kept finite. To these examples*, all of which involve only rational 

functions of z and z', we now proceed in ordei 

Example I Let F (2, z) denote a function that is regular everywhere 

within an assigned finite domain, let a, a' denote any place within that 

domain. Then wc consider the integral 

ff F(z,z') , ff, Ffr‘) 
Jl(z-u)(z - a ) 

* In this connection, tefeience should he made to Picaid, Function# alyebriquen de deux 

vanabU*, 1.1, ch 111. 

F. 11 



INTEGRALS OF FUNCTIONS 162 [CH. VI 

taken over the closed frontier given by the equations z — a \ = R, 

| / — a! | = R', so that it encloses the place a, a'. 

The singularities of the subject of integration are given by 

(i) z = a, z'= any enclosed value of z , 

(11) z = any enclosed value of z, z = a' 

By our general theorem, we can deform the closed frontiei without changing 

the value of the double integral, provided the deformation causes no transition 

through any of these places. Accordingly, let the closed frontier be deformed 

until it encloses only the small domain, composed of the interim of the circles 

z — a = re*', z — a — re* \ 

where r and r' are small real positive constant quantities Then 

[f.— - f ^ 7 dzdz = — I l-F(a + ?e*’, a' + r'e*’’) dOdB', 
JJ (z — a)(z — a) JJ 

the integration extending over a 61-range from 0 to 2ir and over a A'-range 

from 0 to 27r Now F (z z ) is regulai throughout the domain , hence 

1 9 m+nF(a,a') 
;_' rui r'n 

ckimda'n 
F(a + re*1, a + r'e*') =2 £ 

wt- 0 »— 0 

But for positive integer values of m and », such that either m or n is greater 

than zero, we have 

and 

Hence 

//■ e,».»+««•,. dedff = o, 

dddff =It- lh 
JjF(a + re*', a + i'e*'1) dtidff = \tt’1 F(a, a'), 

' F(Z’f] , dzdz' = F («, «'), 
(z-a)(z -«) 

and therefore, with our hypothesis as to the regular character of A’ (r, z) 

within the domain, we have 

1 

47TJ 

taken ovei the closed frontier of integration J z — a I — R, ]/ — «'= R'. 

Corollary With the preceding assumptions concerning the regulai 

function F(z, z), we have 

fF(z, z) 
— fF^z’ z ) dzdz' — 0, 

47T-' / z — a 

J 

47T2 JJ F<JZ’ Z) dzdz' = 0, 
z — a 

taken over the closed frontier of integiation \ z — a \ — R, j z' — a | = R' 

Note When the integrals are taken over a closed frontier of integration 

which does not enclose the place a, a', all the three integrals have a zero value. 
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Example II, As before, let F(z,z) be regular everywhere within an 

assigned finite domain, and let a, a be any place within that domain. We 

consider the integral 

fl _LL dzdz’ 

taken over the Name closed fiontier in that domain, the hontiei enclosing the 

place it, a', and the quantities m and ndenoting positive integers, zero included. 

We proceed exactly as in the preceding example Because 

[Li-wi+MiO' + l-nl vlVi d6dff - 0, 

for the range 0 to iv lor 0 and for 6', except only when m =• /i and n — v, we 

find 

_ 1 fi _ F<z> -') ... _ d-dz = - 1 ^ F{Z- /}l 
47T!J!(z — a)m+l(z' — ii'Yl+1 ~ vi 1 » 11 dzmdz'" 

for all integer values of m and w that aie not negative. 

Example III Let a, fi, y, £ denote four constants such that aS — fiy is 

not zero, and considci the double integral 

I r dzdz 

U(jz + fiz')(yz + Sz') ’ 

taken ovoi a frontier that encloses the place 0, 0 

For a given value' of z , the quantity az + fiz vanishes if z—zx, and the 

quantity 72 + Sz' vanishes if z = zit where 

fi , S , 

The values of sx and 2a are unequal except only when z — 0 

First, let integration with icgard to z he effected before integration with 

regaid to z' Take m the 2-plane a small simple curve enclosing 2, and 

excluding s2, say a circle centre z, and of radius < j 2, — z2 \, and effect the 

integration round this circle m the 2-platie while z is supposed invariable 

Then, as 
1 = _1 

(az + fiz') (yz + Sz’) ay (s - z,){z - z,) 

1 / 1 __1_\ 

- fiy)z'\z — z1 z— z) ’ (aS - fiy) z \z- 2, z—z 

we have (when the indicated integration is effected) 

r dz _ 2tti 

J(az + fiz') {yz + Sz') (aS — fiyjz'} 

fJf- .2,i, f * =0, 
Jz-z, Jz-Zi 

because 
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taken round the 2-cirele Now let the integration with respect to z be 

effected round a small circle, the circumference of which passes through z 

and the centre of which is at z = 0, then, as 

' dz 

z 

for this integration, we have 

1 

It- 

Writing 

dzdz 1 
4m JJ (az + jdz‘)(yz + Sz') a8—@y' 

f = az + ftz , S’ = V2 ■+ 8/, 

= ./(?, n=«s-/37, 

i 

477' 

dzdz 1 

c;' =ac o’ 
when mtegiatiou is effected, first with regard to z round a small simple 2-curve 

enclosing a toot of f for a given value of z but not a root of and then with 

regard to z' round a simple /-curve through that value of z enclosing the* 

origin z = 0 

Similarly, we have 

1 f fdzdz _ 1 

^JJ W~jfr.o’ 
when integration is effected, first with regard to z round a small simple 2-curve 

enclosing a root of for a given value of z but not a root of £, and then with 

regard to z round a simple /-curve, passing through that value of / and 

enclosing the origin / = 0 

Similarly, we have 

1 J [dzdz = 
47/JJ g 

when integration is effected first with regard to z round a 2-curve enclosing 

both a root of f and a root of J' for a given value of 2', and then with regard 

to 2' round a 2'-curve passing through that value of z and enclosing the origin 

z = 0 For we then have 

1 dz 

J Z — Zj 
= 'l-m., 2m, 

/, 
dz 1 

( az 4- jdz) (yz + &/) ~ (aS - f3y) 

= 0. 

so that 
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Next, let integration with iegard to / be effected befbie integration with 

regard to z Indicating this order in the same way as before, we consider 

j f dzdz 

'J (az i tdz) (yz + 8;') 

and then, from the definition of the significance of a double integral, we have 

r r 
r_ 

J J ( 

dzdz 

(az 4- /dz') (7 z 4- 8/) L dz'dz 

■ + 0z') (75 4- 8/) 

dz' dz 

Take in the /-plane a small simple /-curve enclosing a loot z( of £ but not a 

root z! of for a given value of z, where 

effect the integration with iegaid to / round this curve, and then effect the 

integration with iegaid to z round a simple curve through the given value of 

z enclosing the ^-origin , then 

and so 

ill this case also 

_1_ ffd:'dz__ 1 

4^’J & ~ J (?,“?')’ 

4tr-J 
dzdz 1 

(az 4- /3z')(yz 4- 8/) ~ J(£, fy 

Similail), when integration with regaid to / is effected first, round a 

small simple /-eutvo enclosing a loot of % but not a root of f foi a given 

value of z, and then integiation is effected with regard to z round a simple 

curve through the value of z enclosing the j-ongin, we find 

1 ff dzdz’ 1 

47/ J J (az 4- 0:') (yz -f 8/) ./(£', f) 

Lastly, when integration with regard to / is effected first, round a small 

simple /-curve enclosing both a root of f and a loot of for a given value of 

z, and afterwards integration is effected with regard to z round a simple 

curve, passing through the value of z and enclosing the ^-origin, we find 

1 fI dzdz 

47T2j '(az + 0z) (yz + hz) 

Summing up, wo can say that Ike value of the double integral 

dzdz' - L ff 4 tH ' ( (az + 0z‘) (yz + 8/) 

1 
is independent of the order of integration , that it is r , where 

J (t> £) 
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when integration is effected round a curve enclosing a root of f, where f = az + j3z\ 

but not a root of where = yz + 8z', that it is , * , = - , * when 
J is > O « (s> s ) 

integration is effected lound a curve enclosing a root of f but not a root of f, 

and that it is zero when integration is effected round a curve enclosing both a 

root of f and a root of f. 

And, of course, the value is zero when the integration is effected round a 

region that does not enclose any zero of f or of t‘. 

Example IV The preceding result cannot be applied when the initial 

assumption, viz. that a& — fty is different from zero, is not satisfied. In that 

case, we have to deal with 
ff dzds 

Jj < az + fBz'f 

When the integral is taken round the place 0, 0 in either of the ways 

indicated in the construction of the last lesult, the value of the double 

integral is zero 

Example V From III and IV, we intei the following results relating to 

the double integral 

1 f f dzdz 

47r-JJXz- + 2fizz' -f pz i 

There are two cases, according as g- is not, cu is, equal to Xp 

(l) Suppose that g" — Xp is not zero When integration is effected in either 

plane, round a small simple curve enclosing the root of Xr + [g + (g:- Xp)-i z' = 0 

but not the root of \z + {g — (g1 — Xp)^j z = 0, and then round a small simple 

curve enclosing the origin in the other plane, the value of the double integral is 

- ^ (g* - Xp) ' i 

When integration is effected in either plane, round a small simple curve 

enclosing the root of \z •+ \g — (g1 — Xp)-j z = 0 but not the root of 

Xz + \g 4- (g- — Xp)'^| z = 0, and then round a small simple curve enclosing 

the origin in the other plane, the value of the double integral is 

%(g2-\p)~f 

And when integration is effected in either plane, round a small simple curve 

enclosing both roots of \z2 + 2gzz + pz'“ = 0, and then round a small simple 

curve enclosing the origin in the other plane, the value of the double integral 

ut zero. 

(ii) Suppose that p.8 — Xp = 0. When the integral is taken round the 

place 0,0 in any of the ways indicated for the preceding case, the value of the 

double integral is zero. 
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Example VI. Let 

P = 2m(7„ +7,s'+ ...)> Q - z'n (8„ + S,z' + .), 

where y0 and 80 are different from zero and (for the immediate purpose) m and 

n are positive real quantities, not necessarily integers. We require the 

value of 
1 

47T3 I 1 1<?) 

where u = az + P, v = (3z -)- Q, when the integration is effected, fir at, with 

regard to z round a small simple closed z-curve enclosing a root of u (but not 

a root of v) lor a value of z\ and, then, with regard to z' round a small simple 

closed curve, passing through that value of z and enclosing the /-origin 

Wc also assume that aQ — ftP does not vanish identically. Now 

J = az'n~l (n£„ + (n + 1) 8,/ + . . j — fiz'm~' jwiyo + (ru 4 1) 7,/ + J 

Thus, if m < u, the lowest power m J is — ml3ynz'm~', if »> > n, the lowest 

powei is 11 aS,,/'*"1, if id, = = 1 say, the value of J is 

izu~' (aS„ - fty„) + (/ + 1 )z’m (a8, - f3y,) + 

F01 any small value of /, sueh that \z \ is less than the modulus of the 

smallest loot of P 01 Q othei than z — 0, let 

az, + P = 0, fSz.j -tQ~0 

Then the double integral 

1 If dzdz■ . 

4tt\I j a/3 (z - £,) (z - z,) 

If 
When m < n, the value of the right-hand side is n. 

When m > n, the, value of the right-hand side is m 

When m = n, = /, the value of the right-hand side is l + 1c, where aS^ — /^y* 

is the first of the coefficients aB„— fiy0, aS, — /3y]t . which does not vanish 

In each of the three alternatives, the value of the integral is the degree of 

the lowest power of z in the ehminant of <xz + P and &z + Q, when z is 

eliminated Moreover, when m and n are integers, the value of the integral is 

then the multiplicity of 0,0, as the sole isolated simultaneous zero of the uniform 

functions 
a z + P, (3z+ Q, 

enclosed hy the frontier of integration. 

Example VII. Next, let 

« = zm + z^'f (*') +•■•+/». (*'). 
V = zn + Zn~l g, (/) + . + gn (/), 
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dzdz, 

where the functions u and v are independent and have no common factor of 

their own form, and all the coefficients /,.fm, gu . qn are functions 

of z which are regular m the vicinity of z = 0 and vanish with z We 

require the value of the double integral 

_ J f- 
47r2JJ vv 

taken (as have been the preceding integrals) round a frontiei, which encloses 

the place 0, 0, and encloses no other simultaneous zeio of u and v Let 

II = (z - Z,) (z - Za) .. . [Z-Z,„\ V=(z-Z,)(z-&). (z~£„), 

where each of the quantities zu , ctn, is a regular function of 

positive powers of s, where g is a positive rational fraction. and where 

each of these quantities vanishes with z The eluninant of u and v is 
m >i 
11 U (Sr-&). 

r- 1 I 

if, when z, — / is airanged m ascending (fractional or integral) powers of z\ 

the lowest powei of z has an index /j,, t, and if 
m n 

S S fzr,, = M, 
i =i *--i 

the eluninant of u and v is 
z'M <j> (z)t 

where <p (0) is not zero The magnitude M is an integei, manifestly finite 

it is the measure of the multiplicity of 0, 0, as an isolated mo common to n 

anil v 

For the range of integration, first take a value z of modulus smaller than 

the root of <f>(z') which has the smallest modulus In the z-plane mark all 

the quantities zu , zm, which ate functions of this value of z', and 

draw a simple closed 2-curve, enclosing all the places z,, , z7„ and none of 

the places , £),. We take the integral round this 2-curve, when this 

first mtegiation has been effected, we integrate with legard to z along a 

small simple closed z'-curve, through the place for the assigned value of z' 

and enclosing the z1 -origin 

We have 
J _ ” £ - +■ Zr 

UV (z — Zr)(z £#) 

where z/ = ^ and , hence 

-M 
J (u, v) 

UV 
dzdz' — 

27n 

47T* 

tn n r 7 •   y ' 
y y zr 

'■=1 *=] Z, — 
dz. 

But the lowest power of z in e, — & is z'^* Hence 

that is, the value of the double integral, taken over the range indicated, is the 
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measure of the multiplicity of 0, 0, as an isolated simultaneous zero of the 

functions u and v, which are supposed to be independent and to be devoid of 

any common factor of their own form 

Corollary Two or more of the quantities slt ., zm may be equal, or they 

may be equal m groups , and, similarly, two or more of the quantities 

may be equal, oi they may be equal m groups, while, aftei the hypothesis 

as to the functions u and v, no one of the quantities £ is equal to any of the 

quantities zt, . .,zm The value of the double integral over the indicated range 

still is M 

Note 1 If the range ol integration, enclosing 0, 0 and no other simul¬ 

taneous zero of n and v, is chosen so that the z-curve (for a value of s') 

encloses all the jilae.es and no one of the places z,, , zm, and the 

/-cune is drawn as befoie, the value of the double integral becomes — M 

Note 2 We have 

1 

W2 

{U, I’) 

III’ 
dzdz' = 

1 

-hr/ 
dz'dz 

When mtegiation is effected fust with regaid to lound a curve enclosing 

all the roots of u = 0 and no root of r = 0 foi an assigned value of z, and then 

lound a r-cuive through this value and enclosing the 4-origin, we still have 

I 

47Tj uv 
M 

In othei wolds, the value, of the double integral is independent of the older 

of intei/iatioii 

Example VIII / ,et a and jd be non-variable guantities, of finite 'moduli, 

let r, c' be a level place fu two tegular functions,J and g, such that 

f(r, r')-3 = 0, g(c,i') — fd = 0, 

and let f(z, z)— a, g(z,z')—l3, be independent, and have no common factor 

which vanishes at c, c' Then the place e, c is isolated, its multiplicity is the, 

value of the double integral 

-Ml, dzdz J (t, 9) 
f(z, z ) - aj {g (z. z) - £} 

taken first round a small simple closed curve m the z-plane which, for an 

assigned small value of z, encloses all the roots of f (2, z ) = a and none of the 

roots of g(z, z ) = (3, and then round a small simple closed curve, through that 

value of z' and enclosing the z-origin 

The result follows from the last example by writing 

u = f(z z) - a, v^g (z, z) - /3, 

the multiplicity of c, c' as a level place for/’and g is its multiplicity as a zero 

tor 11 and v*. 

* In connection with double integrals of the preceding types and taken over such ranges of 

integration, the reader should consult Picard's treatise, t 1, ch m, quoted p 161. 
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A Igebrmc functions m general. 

101. Hitherto, all the subjects of integration in the double integrals that 

have been considered, have been uniform functions. Bearing in mind the 

extraordinary importance of Riemann’s investigations connected with the 

simple integrals of algebraic functions, we should naturally seek the general¬ 

isation of that woik for algebraic functions of two variables 

Into that theory I do not propose to enter in detail In one sense, it is 

enough for me to refer to the long series of valuable researches by Picaid* 

All that will be done here is to submit one or two simple propositions, when 

there is a single dependent vanuble, partly from the standpoint of the general 

theory of functions and without regaid to the theory of the singularities of 

surfaces, partly also to state the corresponding propositions when we have 

to deal with the case when the fundamental algebraic equations provide 

two dependent variables and not one alone, the number of independent 

variables always being two 

Suppose then that wc have, in the first place, a single irreducible algebraic 

equation 
t (tv, z, z') = 0, 

expressing w as an algebiaic function of a and z', and assume that the equation 

is ol older m m w, so that w is to-valued Any rational function in the field 

of variation is of the form R(w, z, z), where R is the quotient of two poly¬ 

nomials in all the variables tv, z, z‘ To this rational function R(w, z, z') a 

canonical and recognisable form can be given , the proposition, stating its 

form, can be established in the same kind of way as for the corresponding 

proposition when there is only a single independent variable 

Let the m roots of the fundamental equation f (tv, z, z') = 0 be denoted 

by wu w2, . , wm Then, for any positive integei it, the quantity 

WjnR (w,, z, z) + w,“R (wz, z')+ . + R (w,„, z, z) 

is a symmetric function of the roots w,, .... u\„ of the fundamental equation, 

having rational functions of z and z for the various symmetric combinations 

of the roots, it is therefore a rational function of z and z Denoting this 

rational function by Pn (z, z'), we have 

£ wrn R (wr, z, z) = Pn (z, z). 
r—l 

This result holds for all integers n, hence, taking it for n =0,1,..., m — 1, we 

have m equations, each linear in the to quantities R (ui,, z,z),R (u>m, z, z ). 

* They are expounded fully in his treatise already quoted (pp. 161, 169), and in that treatise 

full references will be found to the work of Noether, Enriques, Castelnuovo, Seven, Humbert, 

Berry, and others, in especial oonneotion with the analytical developments associated with 

surfaces xn ordinary real space. 
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Solving these m linear equations for the m functions R (w,, z, z ), wc have 

1 , 1 , • , 1 R(w \,z,z')= P0(z,z'), 1 , , 1 

Ml, , W.2 , . , «l|« mi2 , , M)m 

Ml,’™-1, Wtm~\ 7/1 TM—1 > wm ! A,,-, (-, S), Ml™-1, , w*"-1 

The determinant on the left-hand side is the product of the differences of all 

the roots of the fundamental equation f(w, z, z') = 0 regarded as an equation 

in w, and is usually denoted by 

fO,, mi2, . , wm), 

so that, from this definition of f, we have 

± f(Wi, W.2, . , W,„) = (W, - W.,) (Wl - «’,) . (W,(Wj, ,w,„) 

On the right-hand side, each of the quantities (z, z) has, as its coefficient 

a determinant of the roots v<3, , wm , and in each case, this determinant can 

be expressed as a product of .... wm) and a symmetric function of 

w.j, ..., wm Thus the coefficient of P„ (z, /) is waw, . tvm£(w2, . w,„), 
f w j\ 

the coefficient of J\(z,z') is —w,w., and soon 

Hence dividing out fiy f(wis, , we have 

(mi, — mn) (w, — w.) (w, — m»,„) /t* (m>,, 2, z') 

— P«*» + + •• + 

where ,s'0, slt , are the symmetric functions of ml, wm 

Now by the algebiaic equation / (mi, z, z) = 0, each symmetric function of 

«>2, ., wm can be expressed as a polynomial in w,, having rational functions 

of z for its coefficients. Also 

A (tv, — w„) (w, - w,). . (mi, — wm) = 

where A is the coefficient of w,m 111 /’(«', 2. A) Hence 

1{ ( wlt 2, :') = 0 (w„ z, A 

where 0 is a polynomial in mi,, which can always be made of degree ^ »i — 1 

by use of the equation ('(«/, z, z)= 0, and the coefficients in this polynomial 

are rational functions of z and z 

A corresponding expression holds for each of the functions R («/.,, z, z), 

. , R (wm, z, z ), all the polynomials 0 (mi, z, z) having the same coefficients in 

the form of rational functions of z and z'. Consequently, when we denote any 

root of our algebraic equation 
/(mi, z, z) = 0 

simply by mi, any rational function R («/, z, z ) of all the variables can be 

expressed in the form 
0 

R (mi, z, z') - — 
(mi, 2 ) 

¥ 
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wheie 0 (w, z, z) is a polynomial m w of degree <m—1, the degree of 

f(w, z, z') = 0 in w being w, and where the polynomial has rational functions 

of r and z‘ tor the coefficients of the poweis of m 

This is the generalisation of the well-known theorem of Kicmann on the 

expression of functions that are uniform functions of position on a Riemann 

surface * 

/;') 1 Let the fundament il equation lie 

7d + z-' + -- = 1, 
and let 

^_A:+A’z' + Cw 

a. -(- «V +1 tr 

There ,ue two values of R, \i/ the expressed value, and /£', where 

_A:+ A'z' - Cur 

HZ -p fl'z' — I H' 

Hence, following the geucuil aigumoiit, we have 

R+R'-^i :lli)(u~+ '<■*') -Hj'”' =/, 
1nz + a'jy < ->r~ 

wlieie /' i' a rational function of: and , and 

,, , ,< lAz + Az -t (az + a: 
kR — wH = -in-- , , , =2V, 

'IZ+<(Zj--ClU'£ 

wheie (J is a latioual function of z and Hen< e 

n="r- + V 
a 

wlndi establishes the proposition 

lit 2 When the fundamental equation is 

ic' + d-P- '=1, 
obtain canonical expressions for 

A:+ Hz' + Cw 

az + hj +i >r 

Hz' -phzw — i’ll)1 
u’^ + b’z ir + i‘wi 

Mote Theie ate of course partuailar methods hettei adapted to particular eases than 

is the general method which applies to all eases 

Thus the function 

... A z + A'z -P Ott' 
R{w,z) = — , , 

az -p bz + (■«’ 

when "’>+:, + ;'<— I is the governing algebraic equation, gives 

pdz+JV+Cw) [(orz + iz')2- (dz-pi.)cif + cVj 

(«z + £>z') ‘ 

(n) 

R (w, z) = 

and so 
L + J/ u> -p Rw- 

ir‘/C (w. z)=— r j-, - ttt - i-,, > 
v ' (az-pbzp + t’(lj 

where L, 1/, N are polynomials in z and z' ot degrees five, four, three respectively 

102. When we have to deal with the case, in which there are a couple 

of algebraic functions w and w given by two algebraic equations 

/(w, w\ z, z) = 0, g (w, w, z, z) = 0, 

* See my Theory of Functions, § 399 
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it is desirable to have a canonical bum of the most, general rational 

function, we shall prove that, this canonical form is 

<") (w, w', z, z') 

where H is a polynomial in w and «>', having rational functions of z and z for 

its coefficients 

Lot /’bo of degree in in w and w eomlmied, and <) of degree r m tc and w 

combined that is to say, if w and w vveie Cat tesian plane leal eooidiniites, and 

if / = 0 and g = 0 were loci in that w, v) plane, / — 0 and g = 0 would he plane 

curves of degrees m and n respectively (Construct the /c-eluninarit of t <md 

g by eliminating w‘ between f - 0 and g — 0, and denote it h^ IT, then horn 

the oidmaiy processes of algebra, we know that 

W = A; + Bg, 

wheie /I is a polynomial in w of degiee inn — in, and in w' of degree n — 1 B is 

a jiolynomial in w of degiet in it — n, and in w' of degree /// — 1 , and W, not 

containing w is of degree mn in w Similaily, the le'-elumnant of / and g, 

obtained by eliminating w between t — 0 and g — 0. can be put into the form 

W = Vj + ])g, 

where W is of degree mu in w alone, and does not imolve tv 

There are nut roots of W = 0, expressing each w as one of mn functions of 

s and z , and theio are likewise mn loots of W' = 0 The mn combinations 

of one loot of W = 0 with one loot of W = 0, which make 

/-0, g = 0 

simultaneously, aie called the congiuous pans the coiubinations are deter¬ 

mined by the ordinary processes of algebra The remaining nut (mn — 1) 

combinations of roots of W — 0 and W' = 0 are called the non-congruous 

pairs , they all satisfy A = 0, where 

A=A1)-BC 

Now take a congruous pan of roots, say w, and w,. they satisfy / = 0, 

<7 = 0, W = 0 We have 
W = A f + Bg 

identically, hence differentiating with inspect to w and vj, and inserting the 

pair of congruous roots after differentiation, we have 

dW df ,, dg . of . dq 

ow, dw, aw, dw, dw. 

Similarly we have 

a n <f .. Pa dW' n df n dq 

dw, ow, dw, dwi dw. 
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Hence, for the congruous pair of roots, we have 

\dW 
! 

aw, 

0 . 

that is, 

0 

a w 
dw. 

, = A V + B-V «w, dw,’ 

C '-r- + D~9 , 
?W, ow. 

dW a W = f <J 

dw, air i 1 \Wi, to. 

Af. + llX 
(m\ dwy 

ef.+D*-. 
fkUy VWy \ 

— A,./,, 

say, whei e A] is the value of A for the congiuous pair of roots w, and w,, 

and likewise foi J,. 

Similarly tor each congruous pair 

Let our rational function of w, w\ z, z\ which is to be expressed m a 

canonical form .is stated, be denoted initially by R (w, w', z, z'), and let its 

value, foi a congiuous pan of loots wh and m’m, be denoted by Rh Then, 

taking .til the congruous pairs of roots, we have 

tWfl > t 
A w/Rfj. — a rational function of a and z 

= Z ), 

say, the value of l\ (.z, z) is obtainable by the usual processes ol algebra, and 

the result holds for all integer values of r Hence, taking r = 0, 1, , inn - 1 

in succession, we have 

R, It., + ... -f R'tnv “ J o t 

w, R, + w.j R, -+ •. + Rm,t — P,, 

w,mn~l R, + w2mn-‘ R,+ ■ ■ + Rmn = Rm„-,. 
These equations can be solved for the tun — 1 quantities R,, Rtl 

occur linearly Proceeding as before in §101, we find 

„ 4>(w,,z,z') 

R' = —?w— ’ 
aw, 

where 4 is a polynomial in having ?ational functions of a and 

coefficients Multiplying the denominator and the numerator by 

have 

which 

z' for its 

9 W' 

dw,' ’ we 

Jf,= 

<t>(w„z,z)^w, 

BJVdW' 

dwi dw,' 

S («'i, Wi, z, z) 

dWdW’ ’ 

dw, dw 
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where S is a polynomial m w, and mi,', having rational functions of z and z for 

its coefficients But 
dWBW' 

and therefore 

Now 

fJtt*, ?w,' ’ 

„ _ S(w,, w,’, z, z) 1 

- J, A, 

A / A, Amn 

is a symmetric function of vi, and n\\ w2 and w!, , the pairs of congruous 

roots , and it is therefore expressible as a rational function of z and z, say 

A, A, . Amn = T(z,z'). 
Similarly 

A-..-. A,„„ 

is a symmetric function of all the congruous pairs of roots othei than the pair 

w, and mi/, hence it is expressible as a polynomial function of w,, «i/, having 

rational functions of z and z for its coefficients, say 

Consequently 

Hence 

lt,= 

Aj . Amn — Q { //>,, w,, z, z ). 

1 _ yfW'n -') 
A, ' T(z, z) 

N(«i(, w,'. z) V («’>, «’/> -') 
T(z, z')J, 

_ W (W,, Ml/, £, T) 

V, 

on multiplying the polynomials S and (/, and ahsoibmg the lational function 

T (z, s') into the coefficients of the product 

The same conclusion holds for eveiy congruous pair of loots We there¬ 

fore infer that evety function, rational m the algefuaic field of w, w', z, z , 

whole w and m/ are given by algebiaic equations 

/ (ir, ii’', z, z’) = 0, </(w, u1', :, z’)~ 0, 

can be expressed m the foim 

fu) (w, w\ z, z') 

/• <r ■(J'JL) w, «r 
where (H) is polynomial m w and to, having lational functions of z and z for 

its coefficients 

Modifications in the degree of ® in w and of its degree in w may some¬ 

times be effected by the use of the equations /’= 0 and g = 0. These 

modifications, when theyT aie possible, (Jo not affect the denominator and 

only give equivalent expressions for the polynomial ®, it is foi this reason 

that the form is called canonical, even though the expression for H may 

happen to be not unique 
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Note In establishing the preceding form for the rational function, two theorems 

concerning symmetric functions have beon quoted In actual practice, we can proceed 

as follows 

Take 

t — \w + XV, 

eliminate tr from / and </, so that they become 

F (t, to', z, z') = <), <111, it1', z, -')=<>, 

of the same degiees m t and w‘ combined as are / and q res]iectivel> Eliminate tr 

between F=0 and (! — (), so as to give an equition 

T=- 0, 
of degree mu in t, having lational functions (trecpiontly pohnoniial functions) of z and 

loi its coefficients 

In the product A, A., 

roots , let .such an one be 

A,n„, we have symiuetnc functions of (lie congruous pans ot 

' tC;JirN 

where the summation is ovei all the like teims obtained by pel muting the c ongrtious 

]>ans in all possible w.iys We then form the symmetric function of the loots of the 

equation T~0 lepreseuted hv 

In its expression we select the coefficient of 

I ni, f- 

and remove the multinomial numencal f.u toi 

(m,+/t,y im, + nj)' 

in[' /i,1 in,' a,' ’ 

the result is the symmetric function inquired 

Again, in the product A2 A,„„, we have .synimetiic functions of all the (ongmous 

pans of roots except only the pair to, and irt'. Let 

T=(t-t\) r, 

so that f2, , tmn are the roots of T' = 0 The coefficients m T' are hneai m r,he 

coefficients of T and are polynomials in /,, thus, if 

T-d„fm"+d,tm"-' + 0.,rm“ J+ , 

T' = e„rm 1 +<f>, tm,‘-* + <]>,tm" '+ , 
we have 

= ^2-b</),=d2, = 
and therefore 

$2 ^ + 6 $jdn + 1*/d,/, 
+ tidbit+tIidi ffip+ty&y, 

and so on 

As was the case with AjA2 Amn, which is a sum of coefficients m a polynomial 

function of the coefficients of T divided by a power of d„, so also the symmotric product 

A2 Amn 18 a sum of coefficients of powers of A and X in a polynomial function of the 

coefficients of T' divided by a power of d„, that is. A2... Am„ is a polynomial function of 

the coefficients of Titself also polynomial in tx (that is, in it>, and w{) divided by a {lower 

of do 

These are the two theorems used 



102] RATIONAL FUNCTION 177 

Hx For particular equations, a given rational function is most easily discussed in an 

initial form, not m a canonical form , it is for the general theory that a canonical form 

is required, aH it includes all rational functions We may however take an example, to 

shew the outline of the reduction to a canonical form , hut the process is only an 

exercise in algebra 

Let the two fundamental equations he 

f—uA- u/'*-A —0, g*= wi+ to1-B — 0, 

where A and IS are given functions of z and / only Their Jacobian ./, on the omission of a 

factor 6, is 
J = iow' («’ + «''; 

We take the simple rational function 

1 ,,, 
where Z is any rational function of i and z', and we proceed to express it ill a canonical 

form 
J‘ (w, w\ e, A) 

:r 
where P is a polynomial m to and w\ having rational functions of i and foi its 

coefficients. 

The VF-eliminaiit of / and g is 

IF=iid1— iA U'-, + A'i—3Bw* + .iJFw‘i— 
Let 

w + Z=t, 

then the six values of t arc given by the equation 

Z{t-Z?-31iKt-Z)*-1A {t-Z)'+\Umt-Z)- + A±-7f> = 0 

Let 
e =.IZ*- 3BZ*+-lAZ1+%BlZ- + A'- B\ 

being the term independent of t m the last equation , then 

- 0 -2 f - MS -2A + f+3B f 
l w + Z w + Z w + Z w+Z 

= ■21+ — 'iZw* + (2.Z2 — 3B) w‘ + (SBZ-2A —2Z1) wL 

+ (3B - 3 ISZ+ 2AZ+ 2Z*) w + 'ABZJ - SBZ- 2AZ2 — 2Z> 

— *, say 
(Consequently 

0 
-ry ";1 («’i + 1C,') = (»,-’+to, if,') <t, 

All terms in the right-hand side, winch are of degree six and higher, can be removed by 

using the equation 1F1 = 0. These terms are 

2 ay -f- (2ip,' — 2Z) w{\ 

The term 2«y is to lie replaced by 

3Bw,5 + 2Amii4 - 3It1 )V ~{Al-B') «,, 
and the terms (2wj' — 2Z) wf by 

(wf — Z) |3if w,4 + 2Aw,'1— — A'J + B3j. 

When these changes are made, let the expression for 4>, be 

3>l = pa I'd6 + pi «’i4 + pile,"1 + p3 "'i2 + p\wi + pti 

F 12 
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where the coefficient* p are [wlynomial m «/, and are rational in z and z Then finally, 

abworbing the rational function of z and z represented by -i into the coefficients of ♦(. 
0 

we have 

—1 Vf' + — IC4 — M'3 + 
ve 0 6 

w‘ + r- w + 
e e e 

2 _ »'■' (p 
w+Z~ ,/ \€ 

which is of the required t} pe. 

Equivalent forms aie obtained toi the imineiator by using the equations f—0, <j — 0 

Integrals of algebraic functions. 

103. The development of the theory of integrals, whether single oi double, 

of algebraic functions when there are two independent complex variables, 

owes its main foundations to Picard* Here I shall only restate one or two 

of the simplest results for the case when there are two initial fundamental 

algebraic equations 

f (w, w, z, z) = 0, g (w, w\ z, z) = 0, 

defining two dependent variables w and w as algebraic functions of z and z‘, 

the quantities / and g being polynomial in all their arguments. 

Writing 

J (m>, vj') — 
df dj 

dw dw‘ 
?f *9 

dw' ?w \u\ w } ’ 

we have seen that any rational function of all the variables can be expressed 

in the form 
(“) (w, w , z, z') 

J (w, w) ’ 

where 0(«>, w', z, z) is a polynomial in w and w having rational functions, of 

^ and z for its coefficients 

Accordingly, following Picard, we take our most, general single mtegial 

of algebraic functions in the form 

[Zdz'-Z’dz 

J J (w, w ) 

v, here Z and Z' possess the same general form as the preceding function M 

Integrals of this form ate said to be of the first kind when, on the analogy 

of Abelian integrals, they have no infinities anywhere m the whole field of 

variation Picard provesf that no integral of the first kind exists in 

connection with a single equation F{w, z, z') = 0, when this single equation 

is quite general, and he shews J; that, when such an integral does exist in 

connection with a less general single equation F (w, z, z') = 0, the form of 

* A full and consecutive account of his researches is contained m his treatise already quoted, 

i His treatise, vol 1, p. 11S. * lb , p 118 
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the subject of integration must satisfy special preliminary relations, even 

though these necessary relations arc not of themselves sufficient to secure the 

existence of the integral. Here I shall proceed only so far as to obtain the 

corresponding necessary preliminary relations affecting the form of the 

subject of integration in the foregoing single integral, if it is to exist m 

connection with the two equations/= 0, g — 0 

The quantities Z and Z' are polynomial m w and w , we proceed to shew 

that, if the integral is everywhere finite, they must be polynomial also m 

z and z', of limited order. The coefficients of the various combinations of 

powers of w and w' are certainly rational functions of z and z , let any such 

coefficient be 
8 (z, z') 

R (z, z)’ 

where R and <S denote polynomials in z and z\ and consider the integral 

f Zdz 

I J ' 
Assigning any parametric value to z, let z' = c be a zero of R (z, z') for that 

value of z. (If there is no such zero, le, if R is a function of z only, the 

zeros of R would make the integral infinite so that, for our purpose, R would 

then have to be constant) For that parametric value of z, let the subject of 

integration be expanded in powers of z —c , then, whether z' — c does or 

does not give a zero value to J, the subject of integration is—for every set 

of values of w and w' — of the form 

/ +• . + , + legular function of z - c', 
(z —cy (z - cz - c 

in the immediate vicinity of z'=<:', the positive integer s being ^ 1 The 

integral would be lntimte at z = c, unless all the quantities Alt .., As vanish 

These quantities involve the parametric value of z, they can only vanish for 

all parametric values by vanishing identically, that is, by having no powers 

of z' — c' with negative indices Hence the polynomial R(z,z'), for any 

parametric value of z, can have no zero for a value of z. It thus cannot 

involve z , we have seen that it cannot be a function of z alone, hence 

R(z, z) is a constant. The coefficient in question is a polynomial in 

z and z' 

Similarly for every coefficient m either Z or Z m the integrals 

f Zdz' f Z'dz 

]~J~’ J J 
Consequently the quantities Z and Z' are polynomial in all four arguments 

w, w\ z, z. And we know that J is polynomial in those four arguments. 

Next, as regards the limitations upon the orders of these polynomials 

Z and Z‘, we shall assume that f (w, w, z, z') is a quite general polynomial 

12—2 
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of order m in the four arguments combined, and that g(w, w', z, z) is a 

similai polynomial of ordei n. Then J is a polynomial of order m 4- n — 2. 

It is easy to see, by an argument stmilar to the preceding argument, that 

integrals cannot be finite for infinite values of z and of z', if the order of the 

polynomials Z and Z' in all the four arguments combined is greater than 

m 4- n — 4. 

We therefore infer, as a fiist condition, that if the integral is to be finite 

at all places in the whole field of variation, Z and Z' must be polynomial in 

all the four variables of order < m 4- n — 4, when J is the most general poly¬ 

nomial of order m and g is the most general polynomial of order w. 

104. The independent variables for the integrals have been taken to be z 

and z , but any two of the variables may thus be chosen, and the integral must 

still remain finite. We proceed to give the corresponding and equivalent 

expressions. We have 

f dw 4- M-, dw' 4- f dz + f, dz' = 0, 
dw cw dz dz 

Y dw + Y' dw' + Y dz 4 dz' = 0, 
ow oio dz dz 

so that, on the elimination of dw\ dw, dz, dz in turn, 

J (w, w') dw + J (z, w')dz + J (z't «>') dz' = 0, 
J (tv', w) dw + J (z, w )dz + J (z‘, w ) dz' — 0, 

J (w, z ) dw 4-J(w',z) dw' + J (z\ z ) dz' = 0, 

J (w, z! ) dw + J (w\ z) dw 4- J (z , z )dz =0 

Using the first of these relations to substitute dw for dz' in the diffeiential 

element, we have 

Zdz'-Z'dz 

J (w, tv') 

Z'dz 

J (w, to ) 

_Z 
J (w, w') J (z, w') 

\J(w, w')dw + J (z, w')dz\ 

_ — Zdw Z’J (z, w') 4- ZJ (z, w') 

J {z',iv') J(w, Ul) J (z, tv') 

The differential element now is to be 

Wdz— Zdw 

J (z\ w') 

where W is a polynomial m all the four variables, we therefore take 

ZJ(z, tv) + Z’J(z, w') 4- WJ(to, w') = 0, 

Similarly, when we make z and w' the independent variables, the differential 

element of the integral of the first kind is 

Zdw'- W’dz 

J (z, w) ’ 
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where W' is a polynomial in all the four variables, and 
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ZJ(z, w) + Z'J (/, w) + W'J (w', w) = 0 

In the same way, we can take any pair out of the four as the independent 

variables, and thus obtain six expressions in all for the subject of integration. 

The six expressions are 

Zdz' - Z'dz Wdz-Zdw Z'dw-Wd:' 

J(to, w') ’ J (z, ii>) ’ J w) 

Zdw — W'dz W'd.w- W (hr' 

J (2, W) ’ J (z, Z) 

W'dz - Z'dir 

J(z, w) 

and the relations connecting the polynomials are 

ZJ(z, w) + Z'J (z, w') + WJ («», «/) = 0, 

ZJ (;, w) -(- Z'J(z', w) + W'J(w\ in) = 0, 

Z'J(z',z) + WJ (tv, z) + W'Jiw’, z) = 0. 

ZJ (z, z) + WJ (w, /) + W'J (it)', z') = 0, 

which are always subject to the two fundamental equations 

/= 0, g = 0, 

and ate equivalent to only two independent, equations Writing 

M = Zf + Z' + W & + W' 1*,, 
dz dz aw aw 

N=z{9 + Z'l9-,+ Wl9 + W' l9,, 
dz oz dir ow 

we t an oxpiess the first of the four equations in the form 

(m-w ?9\ dq, -(n- W' \9\ =0. 
V ow I ow \ dw / aw 

that is, 

The otheis similarly give 

Mp-,-N%L,= 0. 
dw ow 

Md9 -N |^ = 0, 
cHu ow 

M l9 -N 
oz 

If 
dz 

¥ 
dz' 

0, 

0. 
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The fundamental equations f— 0 and g = 0 arc independent of one another; 
hence we must have 

M = 0, N= 0, 

that is, the polynomials Z, Z‘ > W, W' are such that 

w % + W111, + z¥ + Z'f,=0, 
Pw GW GZ GZ 

W J7 + IT 
GW 

&-, + z&+z'%-0 
ow <)z oz 

But these equations <ue not satisfied necessarily as identities, they need onl\ 
be satisfied in virtue of the pennanent equations 

/'= o. ^ = 0 

These relations impose limitations upon the forms of the polynomials 
Z, Z\ IT, W\ which occur in the differential element of an integral of the 

first kind 

105 Limitations arise from two other causes The first of these causes lies 

in the requirement that the condition of exact integrability shall be satisfied 
As regards this condition, we shall take it for one of the forms of the integral, 
and shall reduce it to an expression symmetnca! in all the variables 

The condition, that 
ZdZ — Z'dz 
J (tv, w') 

shall be a perfect differential, is 

Now since 

d 
dz 

d ,Z‘ 
dz 

(2, \ _ 
■\J)~ 

0. 

df df dw df dw _ 
dz + dw dz + dw' dz ’ 

we have 

dg dg dw dq_ dw 
dz du- dz dw' dz ’ 

J (w, v>) £ + /(* w') = 0, J (w\ tv)^~ +J (z, w) = 0; 

and similarly 



(dZ . . s dZ' T , , ) 

+ {?ro'J(2’ "')+dw'Jiz’W)\ 

g \dJ(V), v>') J (z, w') d.J(w, w‘) J (z, w) dJ (w, «/)] 

( d z ./(«’,«/) dw J (w,w) dw' ) 

_ w') _ ■/(/, Ml') Ml') ./ «i) ?/(w, Ml')] _ 

{ 05' J(w,w) dw .1 ( w, n»') dw' j 

and it suffices that this condition should be satisfied in vutiie of the governing 

equations f— 0 and q — 0 

Now, foi appropriate polynomials A and 11, we have 

/•f (5, w')+ Z’J(z, w')+ WJ (w, w') = Af+ ll(i, 

identically, and so foi oui purpose, where the governing equations peisist, 

we can take 

dW dZ Ju.w') dZ1 J (z, to') Z dJ(z, w ) Z’ dJ{z',w‘) 

dw dwJ(w,w') dw J (in, to) J (w, tv') dw J(w,w’) dw 

+ ZJ (5, w') + Z'J(z\ in') dJ {w, w) + A_ df + 11 dq 

J-{w,w') dw J(w,w')?n> J{w,w')dw’ 

the omitted tenns vanishing in virtue of f — 0 and tj — 0 

Sundaily, foi appropriate polynomials C and /), we have 

ZJ(z, w) + Z'J(z, v>)~ W'J (w, w') = Cf + Dq , 

and we similarly infer the corresponding relation 

d IT' = dZ_ J (z, w) dZ' J(5', w) Z ?J (z, w) Z' dJ(z, w) 

dw' d'w' J(w,w ) dir' dw' J{w, w') dw' J (to, w') dw' 

ZJ(z, w) + Z'J(z’, w) dJ (to, w') (' df 1) dq 

J-(w, w) dw' J(w,w')dw' J(w,w’)dw' ’ 

the omitted terms vanishing for the same reason as before 

Also we have 

dJ (w, w') dJ(w', z) dJ(5, w) _ 

dz dw dw 

identically, together with three similar relations bv omitting z, w, w m turn 

from the set of four variables. Moreover 

J (z, w) J (z , w) + J {z , w) J (w , z) + J (w , w) J (z, z) = 0, 
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also identically. Using the foregoing relations, we have 

J(w, w') ■' 
3 Z 3 Z' 3 W dW' 

3z dz’ dw dw' 
a df + nd9 r d-f n ^91 
Adw + Bdw-C dw'~Ddv/\ 

-Z 

that is, the relation 

„ (3J (v), w') 3J (z, w) dJ (w\ z) 

j ^ dw' + 3 w 

r/, f dJ (to, w’) i 3 J(z',v>) i dJ(w', z) 

| ' ?z' 
+ 

dw' dw 
= 0, 

3 Z 3 Z' 3 If 314’ 
+ " = - 1 I A ¥ B dg _ r 3 f _ n 

dw dw dw' dw 

dg 

is satisfied in connection with the governing equations 

/ = 0, y =0. 

Now we know that, in virtue of the governing equations, the quantities 

2Z?f, 
dz dz 

vanish, hence polynomials F, E, H, 0 (any one or more of which may be 

zero) exist such that the equations 

Z f- + 7/ K + lf|; + W'f, = Ff+ Eg, 
3 z dz dw dw • 

Z^ + Z' +W^+ W'lv, = Hf+ Gy, 
dz oz dw dw 

are satisfied identically These equations give 

ZJO, .„■) + w«•') + WJ(»..«o- (,& - // g)., + (*£ - 0 g, 

satisfied identical 1)- But the left-hand side is identically equal to 

4f+ Kg, 

hence, subject to the governing equations, we must, have 

A = F f - H IK, B = E dg, - G S/, 
dw dw dw dw 

Similarly, subject to the governing equations, we have 

a=f l9 - n y, 
dw dw 

D-E 
dg _ a df 

dw dw 

Consequently 

A t- 0&-FJ<*■ 
always subject to the governing equations f— 0, g = 0. 
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Thus the equations become 

z¥ + % + wlf + wp-, d z dw 

z\a + z’ % + w + ir ?<J, 
dz oz dir dw 

dz dZ' (>W 
dz dir 

+ 
air' 

dw' 

— Fj + Eg \ 

= Hf + Gg l. 

= F+G 

The first two of these equations me satisfied identically, the thud only 

needs to be satisfied in connection with f—0, g — 0 

They are the extension of Picaid’s equations* which are given for the 

case when there is only a single equation 

f(w, z, z') = 0 

Picard’s equations are denved from the foregoing set, by taking 

g = w' — 0 

as the second of our fundament.il equations, together with 

W' = 0, E — 0, II ^ 0, G = 0, 

and then, owing to the oidei of F, the tlnid of the equations is satisfied 

identically 

ft thus appears that, when there arc two equations/=0 and g = 0, the 

exact differential can be presented m six forms, that four quantities 

Z, Z , W, W, each polynomial in all the* foui variables, occur in these forms. 

and that there are other four polynomials E, F, G, II, such that the foregoing 

three equations exist, the first two being satisfied identically, while the third 

only needs to be satisfied concmrently with the governing equations f= 0 

and g — 0. 

106 It can easily be seen that, when f= 0 is a quite general equation 

of order m and g— 0 is a quite general equation of order n, the conditions 

required cannot be satisfied 

Let N(p) denote the number of terms in the most general polynomial, 

which is of order p in w, w', z, z, so that 

E(p) = ^(p + 1) (p + 2) (p+ 3) (p + 4). 

We have seen (§ 102) that the polynomial Z, which (§103) can be of ordei 

m + n — 4, is subject to modification by use of the equations f — 0 and g = 0 

l c , t i, oh v, § 4 
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that is, it is subject to an additive quantity Af+ Bg, where A and B are quite 

general polynomials of orders n — 4 and m — 4 respectively Hence the numbei 

of disposable constants in Z effectively is 

N (in + n — 4) — N (m — 4) — N (n — 4). 

Similarly as regaids Z', W, W'. 

Again, E, F, 0, H are polynomials of order ^ 2m — 5, m + n — 5, «» + « — 5, 

2» — 5 respectively. The expression Ff + Eg is unaltered by changing F 

into F+Jg and E into E — Jf, where J is a quite general polynomial of 

order m — 5 , hence the number of disposable constants in F and E togethei is 

N (in + n — 5) + N (2m —5) — N (in— 5) 

Similarly the number of disposable constants in G and H together is 

N(in + n — 5) + N(2n — .5) - N(u — 5) 

The modifications m F and G do not affect the third condition, which 

has to be satisfied only concurrently with / = 0 and g — 0 Thus the total 

number of disposable constants is 

4 j N (m -bn — 4) — N (in — 4) — iV (n — 4)] 

+ N (m + n — 5) + Ar (2in — 5) — N (in - 5) 

+ + a — 5) + A (2/i — 5) — Ar (» — 5) 

The number of conditions to be satisfied in connection with the fust 

identity is N(2m + n — 5), and the number in connection with the second 

identity is N(m+ 2n— 5) The third relation, which affects the polynomials 

F and G, only needs to be satisfied subject to the equations J — 0 and g = 0 , 

that is, subject to an additive quantity (\f + l>g on the right-hand side, where 

G and D are quite general polynomials of order n — 5 and in — 5 respectively , 

consequently, the third relation requites 

N (rn + n— 5) — FT (it — 5) — N (m — 5) 

conditions Thus the total number of conditions is 

N(2m + n — 5) + N(in + 2n — 5) + N(rn + n — 5) — N(n — 5) - N(in — 5). 

The excess of the number of conditions to be satisfied, above the numbei 

of disposable constants, is 

N (2in + n - 5) + N(rn + 2n - 5) + N (rn + n - 5) — N (n — 5) — N(m — 5) 

— 4 (A (m + n — 4) — N (m — 4) — N (n — 4)} 

— jN(m 4- n - 5) + N (2m — 5) — N (m — 5)J 

— {A(m + n — 5) 4- N(2n — h) — N(n — 5)}. 
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When the values of the different numbers N are inserted, this excess is easily 

found to be 

& mn {20 (m - 1) (m - 2) + 18 (m -1) {n - 1) + 20 (n - 1) (« - 2) + 24) - 1, 

which manifestly is positive when m > 1 and u > 1. Accordingly, in general, 

the relations cannot be satisfied by the disposable' constants, and so we infer 

the result-— 

When /=() and g = 0 are quite genera,l equations, no single integral of the 

first kind connected with them exists a lesult which obviously corresponds 

to the theorem of Picard already (§ 108) mentioned 

It follows that, if an integral of the first kind is to exist in connection 

with two equations /’= 0 and g = 0, these equations must have special 

forms 

Ex Show that all the pieeethng conditions for the existence of an mtcgnil of the first 

kind, m i mmection with the equations 

1 — at 4- bw -f ct-t' i cln — + fuIt- + 4- r/ii'ii't+hidir' — (I, 

y — a't'+h'w' + < 'it'-+rfV::' + ‘■'>rz'- +1 'tr'-z+y’wtt’z' + It'ii to'- = 0, 

whole the (oefticionts a, , It, a', , It .ue const.nits, ale siitished wlien 

Z'=-z', B = to, ir=-ir' 

107. The second class of conditions, mentioned at the beginning ol 

§ 105 as required to be satisfied in older that the single integral may be 

everywhere finite, depends upon the places wheie we have 

J /> 9 
w, w' 

= 0, 

which is not an identity, simultaneously with 

/-0* g = 0 

As already indicated (§ 103), 1 do not pioposo here to enter upon any 

discussion of these conditions. The discussion will be difficult, but it is of 

supreme importance as regards even the existence of these integrals of the 

first order, as well as for all other single integrals It can be initiated 

analytically on the lines of Picaids investigations in his treatise already 

quoted It will involve the algebraical singularities of w and w as algebraic 

functions defined by the two fundamental equations 

Double Integrals 

108 The discussion of double integrals follows a different trend There 

is no limitation corresponding to the condition that must be fulfilled if the 

element of the integral is to be a complete differential element, as in 

§ 105. 
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We have seen (§ 102) that, when two algebraic functions of z and z' are 

simultaneously given by two algebraic equations 

/=/(“’. w'< -> -') = 0, g = g(w, w\ z, z ) = 0, 

the most general rational function of the variables can be expressed in the 

form 

fH) (w, «/, z, :') 

where @ is a polynomial in w and w\ the coefficients in this polynomial 

being rational functions of z and z Thus the typical double integral, con¬ 

nected with the algebraical equations f= 0 and g = 0, is of the form 

1 <*) (w. M\ 2» F) 

./ 
vu\ w'J 

dzdz', 

the integration extends over a two-fold continuum To express the integral 

more definitely, we take z and z' as functions of two real variables p and <p 

as in § .9.5, and then the expression of the integial becomes 

l5) (w, w\ z, :') 

where the integration can be legaided as extending over an area in the 

p, q plane, limited initially by a fixed curve (or curves) in that plane and 

finally by a variable curve (oi curves) in that plane The simplest case 

arises, when we have a single simple closed curve as the fixed initial limit and 

a single simple closed curve as the variable final bunt 

The first form of the preceding definition takes £ and z as the independent 

variable's for mtegiation As we have already suggested that it may be 

convenient to take any two of the four variables as the independent variables 

for integration, we proceed to give the equivalent forms. 

For this purpose wre assume that, in order to express the quantities 

w, w\ z, z' in terms of real variables p and q. we take two algebraic equations 

F = F(w, w\ z, z, p, q) = 0, 0 = G (w, iv', z, z, p, q) = 0, 

forms which will prove useful in attempting an extension of Abel’s theorem 

for the sum of any number of algebraic integrals of a single variable. The 

simultaneous roots of the four equations 

/= 0, g = 0, F=0, (? = 0, 
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are functions of p and q, so we have 

t)F dw dF dw' dF dz dF dz' dF 

dw dp dw’ dp ?z dp dz' dp dp ’ 

_ ()G dw oG dw' dG dz dG dz' d(l 

dw bp dw dp + dz dp~>r dz' dp + dp ’ 

and therefore 

Similarly 

df dw df dw’ df dz df dz 

f'w dp dw' dp dz dp + dz' dp ’ 

_ dp dw dq dw' dq dz dg dz 

dw dp + dw' dp dz dp + dz dp ’ 

J 
/F, G, f ?n dz 

+ J 
'F, G 

= 0, 
\z, z, tv tv / 1 dp \p< * , tv, w ) 

J 
dz' 
- -J 

/F, G 
= 0 

\z, z , tv, w / dp \p,z, W, (V J 

J 
/F G, f (A f>Z 

+ J = <>, 
\Z, Z , U\ W ) (,q \<p~, tt\W ’ 

,/ \F’ fLff\ dz’ 
-J 

{F G, 
M) = 0 

\z, z , tv, w 1 dq V’ z> * V, w J 

Now, by the properties of determinants, we have 

j j (?■ °-M)-*(*■ '• ».\4 ('■ ".)J (* "1, \p, Z , W, W ) \(J} z, w, w ' 'z,z,w.w) \w,wj \ p, q ) 

hence 

and therefore 

- 1 

./ /F, <r, f, g\ 

K), w'J 

./ 

The right-hand side is symmetrical, save as to signs, tor the four variables 

z, z, w, w ; hence it is equal to each of the six expressions 

Accordingly, when the variables of integration in the double integral are 

taken to be p and q, there are six equivalent expressions of the integral, 

one of them is the form first taken, and the other five are similarly constructed 
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from a comparison of the six foregoing quantities, and each of the six 

expressions so obtained is (save as to sign) equal to the double integral* 

(•w, w', z, z) J 

(F, (r, f g\ 

\z, Z ’, IV, IV ) 

Double integrals of algebraic functions may be divided into various 

classes, following the analogy of the division of simple integrals of algebraic 

functions of a single variable. but the analogy is little more than a sug¬ 

gestion, because (as has been seen in Chap IV) a definite infinity of a function 

of two variables can be a one-fold continuum in the immediate vicinity of 

any one definite place of infinite value, and because unessential singularities 

(when the term is used in the sense defined in § 58) have no limited analogue 

even in the case of uniform functions of only a single variable One class, how ¬ 

ever, survives naturally in spite of the deficiencies in the analogy, it is 

composed of those integrals of algebraic functions which never acquire an 

infinite value, no matter how the two-fold continuum of integration is 

deformed. Such integrals aie formally styled double integrals of the Jirst 

kind. 

109 The conditions, which must be satisfied by the double integral of 

an algcbiaie function connected wufch two given algebraic functions if it is to 

he of the first kind, are of four categories, according to the chaiacter of a 

place z, z' in relation to the subject of integration, and the four categoues 

can be grouped in two pairs 

It is manifest that a finite place z, z, which is ordinary for the equations 

/= 0 and g = 0, and is also oidmary for the subject of integration, cannot give 

rise to an infinity of the integral. For near such a place w = a, w' = a, 

z — a, z' = o', we have 

w — a + W, w'—a'+W, z=a, + Z, z'=a'+Z', 

* Thifl integral can also be expressed in the form 

ff e (»,«-, *, *') 
t/K u, t, <i\ 

\J, z', !<// 

which is the natural extension of the single integral 

The latter integral is fundamental m one of the proofs of Abel’s theorem for the sum of a 

number of integrals 

when the upper limits of the integrals are given by the simultaneous roots of a permanent 

algebraic equation /(w, z) = 0 and a parametric algebraic equation <p [to, r) = 0. 
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the equations/ = 0, g = 0, then give lelations of the form 

W~(Z, Z/), + (Z, Z'),+ , 

W' = (Z,Z'), + (Z,Z%+ , 

and no one of the quantities 

df K df df 

7) tv ’ dw1 ’ dz' dz' 

dq Sq d{) dg 
dw ’ dw” dz' dz 

vanishes at a, a\ a, a’. As the place is ordinary also for H (w, w, z, z'), the 

form of 
<*) (w, in', z, z') 

m the vicinity of the place becomes 

». + «, (Z, Z') + C%(Z, Z')+.. 

Jt + J1(Z,Z') + Jt(Z,Z')+... ' 

and so the integral, in the vicinity of the place, becomes equal to 

0,,+e, (Z, Z') + (-K(Z, Z') + .. 

<Z, Z') + ./jZ, Z'j + 
dZdZ', 

winch is finite at the place and in its immediate vicinity*. 

In the first category, there are the conditions to he satisfied at a place 

s, w’hich is oidinar}’ for the equations f =0, g — 0, but is not ordinary foi 

the subject of integration In the second category occur the conditions that 

must be satisfied for infinite values of z and z , when these constitute ordinary 

places for the equations f— 0 and g = 0 These two categories form one 

group, containing all the conditions which arise in connection with .ill the 

ordinary places of the two fundamental equations 

In the third category occur the conditions that must be satisfied at a 

non-ordinary finite place of the two fundamental equations, all such non¬ 

ordinary places are such as to satisfy some one or more than one of the six 

Jacobian equations 

concurrently with the fundamental equations themselves. In the fouith 

category occur the conditions that must be satisfied for infinite values 

of z and z when these constitute non-ordmary places for the equations 

/= 0 and g — 0 These two categories form one group, containing all the 

* The symbols (Z, Z’)i, (/, Z’), .1, (Z, Z’) denote the aggiegate of terms of the first coder , 

the symbols (Z, Z’)«, (Z, Z'), ./2 (Z, Z’) denote the aggregate of terms of the second order , 

and so on. 
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conditions which arise in connection with ail the non-ordinary places of 

the two fundamental equations. 

110 As regards the first of these categories of places which, while 

ordinary finite places for the equations /'=0 and <7=0, provide an infinite 

value for the subject of integration, this infinite value can arise only through 

the coefficients of the powers of w and w in the polynomial 0. These 

coefficients arc rational functions of z and z If then the double integral 

is not to have an infinity, the existence of these rational functions of z and z' 

must not compel such an infinity. Accordingly, the rational functions of z 

and z must be integral functions that is, they must be polynomials m 

s and z Thus 0 ( w, w', z, z) becomes a polynomial in all its four arguments ; 

consequently, as a fiist condition that our double integral may be everywhere 

finite, it follows that the quantity 0(w, w\ z, z') must be a polynomial in the 

four variables w, w, z, z 

The similar consideration of the second category of places, constituted of 

infinite places (supposed ordinary) for f= 0 and g = 0, leads to a limitation 

upon the order of the polynomial 0 («», w\ z, z ) if the double integral is to be 

not infinite for such places. For simplicity, suppose that f and q are quite 

general polynomials of aggregate onlers in and n lespectively, so that we 

may take 

w - *. z, 1rJ — (*$«’, w', z, z', 1 )’*. 
Then 

1 = (*&w> w>> z' z'< 

in the quite general case In order that the double integral may be not 

infinite for infinite values of 2 and z, the order of 

0 (w, w\ z, z') 

must be equal to, or be less than, — 3, and therefore the aggregate older of 

the polynomial 0 (w, w\ z, z) must be not greater than m + n — 5 Thus in 

ordei that the double integral may remain finite for infinite values of z and 

z\ when these are ordinary places of f = 0 and y - 0, the aggregate order of 

the polynomial 0 (w, w', z, z") must be ^m + n — 5, where in and n denote the 

respective aggregate orders off and g. 

As regards the second group of conditions indicated above, they are 

concerned with the places where the equations 

/-0' J(£?)-«■ 
are simultaneously satisfied. Their discussion will involve the consideration 

of the singularities of w and v/ as algebraic functions of the variables. As 
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before for single integrals (§ 107), so here for double integrals, the whole 

subject is left for investigation ; a beginning can be made on the lines of 

Picard’s discussion of the matter when there is only a single equation /= 0 

defining a single algebraic function* 

111 It is possible to obtain an extension of Abel’s theorem for the sum 

of a numbei of integrals of algebraic functions of a single variable, by con¬ 

structing an expression for the sum of a number of double integrals of the 

ty{je 
W (w, w, z, z ) 

./ (■■) \w, w / 

dzdz', 

where f and g are polynomials of aggregate orders m and n iespectively 

We shall assume that the aggregate order of the polynomial © is not 

greater than m + it — 5 

As before (§ 108), we define w, w/, z, z as functions of two real variables 

p and q by means of the permanent equations 

f(w, «>', z, z) = 0, </(w. w‘, z, z) = 0, 

and associated paiarnetiic equations 

F («», w, z, z , p. q) = 0, (r (w, ■«>', z, z , p, q) — 0 , 

and we shall assume that F and 0 are quite general polynomials in w, w , z, z', 

of aggregate orders k and l respectively As these are four algebraical 

equations in w, w, z, z , of orders at, v, k, l respectively, they determine. Iclinti 

(— g) sets of roots, each root in each set of roots being a function of p and q. 

Denoting any such set by w,, in,', zr the double integral can as before 

be transformed to 

or, if we write 

j | & r, Gr, /, , V p, q ) 

\<2f> J 

dpdq. 

<t>r = © (WT, W,\ Zr, dM/'V, Wr, z,, 2,'), 

j _ j Ft, (xr, f ., g 7* j 
1 r ' \Zr,Zr‘ Wr.'Wr)’ 

so that 4> is a polynomial of aggregate order < k + l + m + n — 5, 

(for this set of roots) becomes 

the integral 

We assume the 

p, q plane. 

integral taken over any finite simple closed region in the 

F 

l.r , t i, cb vn 

13 
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Let W denote the result of eliminating w\ z, z between f— 0, g = 0, 

F — 0, G — 0; the quantities u\, are the roots of W — 0. The theory 

of elimination shews that we have a relation of the form 

W~Kf+Lg+MF+NG. 

Similarly, eliminating w, z, z, and denoting the eliminant by W', we have a 

relation of the form 

W' = K’f+L'g + M'F+N’G, 

and the quantities w,', ., are the roots of W' = 0 Likewise eliminating 

w, w, z’, and w, w, z in turn, and denoting the respective ohminants by Z and 

Z', we have relations of the form 

Z=Pf + Qg + RF+S G, 

Z' — P'f+ Qg + R'F + S'G, 

the quantities zx, are the roots of Z — 0, and the quantities z,', zj 

are the roots of Z'— 0. And the quantities K, L, M, N, K', L\ M', N’, 

P, Q, R, S, P', Q't R', S' are polynomials ol the respective appropriate 

orders. In particular, if we write 

A = A', L, M, N 

K', L\ M’t N' 

P, Q. R, S 

P', Q'. R’, S’ 

A is a polynomial of aggregate order 

(mnpq — m) + (mnpq — n) + (mnpq — k) + (mnpq — /), 

= 4 fi — in — n — k — l 

The simultaneous combinations wr,w,', z,, z,' (for r= 1, .... p) are the simul¬ 

taneous roots of 

/= 0, g = 0, F=0, G = 0, 

these we call the congruous roots. All other combinations of the roots of 

W = 0, W' =0,Z = 0, Z'= 0, are called non-congiuous roots, they are not 

simultaneous roots of f — 0, g = 0, V = 0, G — 0, but, for each such combina¬ 

tion, we have 
A = 0. 

For the sake of simplicity, we shall assume that each of the roots of 

}F = 0, W' = 0, Z = 0, Z‘ — 0, is simple. 

Now consider the quantity 

<t> (w, w', z, z') A 

WW'ZZ' 
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It can be expressed in a partial-fraction series of the form 

V V V V . ^rr'm' _ 

“ (w - Wr) («/ - w'y) (2 - Z„) (Z - z's) ’ 

the summation being for r, r, s, s, = 1, fi, independently of one another, 

and 

, (wr, V! r., z ,■) ArrM' 

Arr’"‘‘ w cn/n& <w 
diur dtv'r- lis, ?z't 

When r = r — s — s', we can denote the coefficient A by A r, then 

, _ d>rA, 

r~?WdW' ?.Z dZ‘ 

(1WT dll’r ?>Zr dZr 

Unless all the equalities r = r' = i = .s' arc satisfied, we have 

= 0, 

so that all the coefficients A other than Ar, for r = 1, .. , p., vanish Thus 

we have the identity 

4>(w, w\ z, r') A _ e __ /U 

W IT ZZ' r“i (w - U’r) (w' - wr ) (z — zr) (z - Z/) 

Let both sides be expanded in ascending poweis of ]/«.', 1/w', 1/z. i/z' On 

the left-hand side, the index of the term of highest order in w, w, z, z'm the 

numerator is 

< k + / + ru + n — 5 ■+■ (4i* — m — n — k — /) 

^ 4yz - 5 , 

the index of the term of highest older m w, z, z' in the denominator is 

4fj,, hence the index of the first term in the expansion <5. On the right- 

hand side, the index of the first term in the expansion is — 4, and its 

coefficient is 

- Ar. 
r=1 

No such term can occur in the left-hand side undei the assigned conditions, 

hence 

that is, 

i dr = 0, 
r- 1 

<Jh-Ar 
I dWdH^dZdJ_' 

dwr dWr dzr dzr' 

= 0 

13—2 
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From the expression for W, we have 

— = K V+r ~9- + M ~ + N ~ 
dwr r dwr r dwr r dwr r dwr 9 

0 _ K K_ . T dg ] M dF I jy dG 

° K' Bwr' + Lr Bwr’+ Mr dwr’ + A r dwr' ’ 

a i/ 'if r dg , BF M BG 
0 — Kr ~ +Lr + Mr — + Nr „ , 

OZr ()Zr oz, VZr 

. ,, df T dg tr dF BG 
0 = Kr 0V + Lr dz; + Mr Bi; + Nr 0-7 ■ 

and similarly from the expressions for W, Z, Z' Thus 

BW 

Bwr ’ 
0 , 0 , o ! 

1 

0 , 
BW’ 

Bv>; ’ 
o , 0 

0 , 0 , 
BZ 

BZr ’ 01 
0 , 0 , 0 , £l 

Kr, Lr, Mr, S, 
cV 

Bwr ’ 
dg 

Bwr ’ 

BF 

dw, ’ 

BG 

Bit’, 

k;. L r , Mr', 

\ 

n;\ dj_ 
dwr' ’ 

dg 
dwi ’ 

BF 

dwi ’ 
BG 

Bw,' 

Fr . Q.> R,, *r\ 
Bf 

Bzr 
dg 

dzr ’ 

BF 

Bzr 

BG 

Bzr 

Pi, q;, Ri, s;\ i 
B[_ 

Bzi ' 
dg 
dz; ’ 

BF 
dz,' ’ 

BG 

Bz; 

that is, 

BWdW'BZdZ' = 

dug dwr' dzrdzr' ' 

Consequently, we have 

and therefore 

when the double integration is taken over any simple closed region in the 

plane of the real variables p, q. 
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This is a restricted extension of a part of Abel’s general theorem on the 

sum of integrals The result is true, even if the integral 

is not everywhere finite, that is, if the integral is not ot the first kind* The 

conditions, which have been imposed upon the integral, aie that it is to be 

finite for all places which are ordinary for the equations f— 0, </ = 0, all 

infinite places being supposed included among these ordinary places 

* It should be added that, by a different method, Picaid (l c , t i, p 190) obtains this 

extension for double integrals of the fust kind (that is, mtegials which are everywhere finite) 

when tlieie is a single fundamental equation /(it,r, r') = 0. 



CHAPTER VII 

Level Places ok Two Uniform Functions 

112. Hitherto, save for iare exceptions, only individual functions of two 

variables have been considered at anyone time, and vre have seen that there 

exist continuous aggregates ol places where a function has an assigned level 

value or a zero value This piopeity precludes us from establishing definite 

relations of inversion between a single function of more than one variable 

and the variables of that function Such relations are highly important in 

various branches of the theory of functions of a single variable, they are no 

less important when functions involve several independent variables To 

establish them, it is necessary to have as many functions, independent of one 

another, as there arc variables, and theiefore, for the present purpose, we 

shall consider two independent functions of z and z! Moreover, quite apart 

from reasons that make inversion a possible necessity, we have seen that it is 

desirable to consider simultaneously two independent functions of z and z. 

We still shall limit ourselves thioughout to uniform analytic functions, 

and we shall begin with the discussion of the relations between two functions 

that are regular everywhere in the finite pai t of the field of variation. As 

we know, every such function can be expressed as a senes of positive integral 

powers of z and z', which (if an infinite series) converges absolutely for finite 

values of \z \ and \ z'\, and has all its essential singularities outside the finite 

part of the field of variation. We know (§ 53) that such a function must 

possess zeros somewhere in the field of variation, but it may happen that the 

zeros do not occur in the finite part of the field *, and then they occur at the 

essential singularities. 

We proceed to establish the following theorem.— 

Two independent functions, regular throughout the finite part of the 

field of variation, vanish simultaneously at some place or places within the 

whole field. 

* For example, the function cannot vanish for finite values of i and of z'; all its seros, 

a continuous aggregate, occur for those values of z and z' which make the real part of z + z' 

negative and infinite. 
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113. Let the two functions, everywhere regular, be denoted by f(z, z) 

and g (z, z); and let a, a be any place m the finite part of the whole field of 

variation for z and z. In view of the proposition to be established, it is 

reasonable to assume that neither f(z, z') nor g (z, z) vanishes at a, a , if 

both should vanish at a, a, the proposition needs no pi oof, if one of them 

should vanish at u, a, but not the other, the following proof will be found 

to cover the case 

We consider the immediate vicinity of a, a, and take 

z = a + u, z' = a! + u. 

Because f(z, s') and g (z, s') are regular everywhere m the finite part of the 

field of variation, we have expressions for them in the form 

/ (,“> - ) =./ (a, <0 + /("» u )m + f(u> u')rn+1 + • , 

9 (*> ~) = 9 «') + ,/«. «')» + «')»+i + • . 

where j(u, u')M represents the aggicgate of terms of combined dimension m 

in u and u as contained in the powei-senes for f, and similarly for the other 

homogeneous sets of terms in f, and tor the homogeneous sets of terms in g 

In the simplest cases, the integer vi is unity and the integer a is unity, in 

all cases, both the positive integers in and n are finite 

When m— 1 and n = 1, the quantities 

/(«, w')i, 9{a, 
are usually independent lino.u combinations of u and u , their determinant is 

the value, at a, a’, of 

which does not vanish everywhere, because the functions f and g are inde¬ 

pendent. If it should happen that J vanishes at a, a, so that there 

<f _ <9 _ Jf _ fy = 
da da da' da' ’ 

then we have 

f(a + u, a! + u')-f(a, a) =/u, w'),+ 

f(a + u, a' + u') -f(a, a') - k [g (a + u,a + u)-g {a, a’)} = „(u, u'% + ..., 

where the first set of terms g{u, u )2 is of order higher than the first set 

j(u, u')i and usually is not the square of j(u, u\. If, however, 

X {j,(u, u')2] = \j(u, u')t}\ 

where X is a constant, then we should take a new combination 

f(a + u, a’ + u) — f (a, a') — k [g (a + u a' + u') — g (a, a')} 

- X {/(a + u, a + u') - f(a, a')j” 
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Similarly for other cases 

We proceed until, at some stage, we obtain two series in u and u\ 

such that the lowest set of terms in one series cannot be expressed solely by 

means of the lowest set of terms in the other series, and this Stage is 

attained after steps that are finite in number, because 

does not vanish identically. 

Similarly, if m is greater than unity and >i = 1 , and if m — 1, while n is 

greater than unity, and if both m and n are greater than unity In each 

case, we obtain a couple of series, the aggregate of terms of lowest dimensions 

in the two series not being expressible solely in terms of one another And 

then, because of this independence, the equations 

A = f(u, u%, B = 9(u, 

where A and li are assigned quantities independent of u and a', determine a 

limited number of values of u and u. In particular, let l be the greatest 

common measure of m and n, and write 

in = fj,lt n — id, 

and let E be the ehminant ofy(u, u')m and g(u, u')n, so that 

B — U,noftCa1l7n -+■ .... 

Then the equation giving values of u is 

{o,Mncmm +...) umn + . + |(- Aconr - (- Ba,mr\l = 0, 

and therefore, if 
A = kI^ = /c/v, B = \Pn = \Pvl, 

each value of u is of the type 
u = kP, 

or, for sufficiently small values of | u |, | A 1, j u |, | B |, and so of | P j, we have 

u = kP, u = k'P, 

where |k| and \k'\ are finite, while some of the quantities k and kf can be 

zero Manifestly, 

k — f{k, K )m, X = g(k, k )n, 

and, m general, we shall have 

u = kP + ki P* + ...) 

u' = k'P+kiIn +. .)’ 

A * f{u, u')m + /(u, u')m+l + ... 1 

B = g(u, U )n + W )n+i + • ■ ■ J 

from the relations 
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After these explanations and inferences, we proceed to shew that it is 

possible to choose quantities u and uf of small moduli, so that the place 

a + u, a' + u' is in a small domain of a, a, and so also that 

if {a + u, a + u') j < ,f{a, a') |, 

|g(a + «, a' + "') | < \g(a,<i')\, 

simultaneously. Let 

f (a, a) — Q + iR, q (a, a') — S + iT, 

where Q, R, S, T aie real quantities, and neither | Q +1R nor |t<? + »7,| 

vanishes Now choose M a small positive quantity, in every case less than 

| Q 4- iR |, unless j Q + iR | happens to be zero and then we take M zero , and 

choose an argument i/r such that Q and M cos \|r have opposite signs and, at 

the same time, R and Msin ijr have opposite signs (If R be zero, we can 

take i/r equal to either 0 or ir and should choose the value giving opposite 

signs to (J and Mcos yfr Similarly, if Q be zero, with a choice of or Sir 

for i/r) Again, choose JV a small positive quantity, in every case less than 

j>S, + »7’l, unless |<S' + i7'[ happens to be zero and then we take JV zero; and 

choose an argument % such that S and A cos y have opposite signs and, at 

the same time, T and N sin x have opposite signs (Arrangements as to 

choice of x can be made siniilai to those for >/r, if either S or T should vanish) 

Then evidently 

!/(«> o') + Me*11 < | f(a, or') , 

u') + lYe*' \< \g(a,a’) |. 

Now’ we have seen that, for sufficiently small values of M and of N, the 

relations 

Me*1 = /(m, «')»> +j{h. v')llH, + 

Ae** = /a, u)n + ,(h, u)n+1 + . ., 

give a limited number of sets of values of the form 

u — kP + kxP2 + , | 

u' = k'P + k1'ln+ ...)’ 

where | P | is a small magnitude such that 

Me*1 = tel*", Nex'^xP™, 

thus | u | and | u' j are small, of the same magnitude as j P I, while | kxP* + ... |, 

| &/P1 + ...|, are small compared with \P\ For such values, we have 

l/(«+ w, (i + u )| < | f{a, a') |, 

\g{a + u, a + w')I < Ig{a, a')\, 

which was to he proved. 
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Accordingly, we infer that it is possible to pass from a place a, a' to a 

place z, z\ which may be called a place adjacent to a, a', and which is such as 

to give the relations 
|/(2, /)\< | a') |, 
\9(z, tf)\<\g(a, a')|, 

simultaneously. 

Within the finite part of the field of variation, the functions f(z, z’) and 

<7(2, 2/) are everywhere regular, so that no singularities are encountered in 

transitions from a place to an adjacent place. We therefore can pass from 

place to place within the finite part of the field of variation, always choosing 

the passage so as to give successively decreasing values of \f(z,z')\ and 

I g(*> *')l- 
If at any place c, c\ one of the two functions (but not both of them) 

should vanish—say/(c, c') = 0—then we choose the next place c + m, c' + u\ 

so that M is zero, that is, so that n is zero, and such that 

f(c + w, c + u) = 0, |g(c + u, c + u) | < | g (c, c') |. 

The choice is always possible for finite values of z and z', because the functions 

t'(z, z‘) and g (2, zf) are regular for those finite values and consequently can 

be expressed as regular power-series 

114. It thus follows that, by an appropriately determinate choice of 

successive places at every stage, each place being adjacent to its predecessor, 

the moduli of f (z, z’) and g (2, z’) can be continually decreased so long as 

they differ, either or both, from zero. Thus they tend to zero in value, as the 

successive places are chosen, and continued decrease can be effected, so long 

as they are not zero. 

Moreover, we know that every regulai function possesses a zero value or 

zero values somewhere within the w'hole field of variation. If the zero value 

does not occur at some ordinary place, then (§ 53) it occurs at the essential 

singularity or singularities, as eg. for the function ePU-l'\ where P(z, z') is a 

polynomial in 2 and 2', when the places for the zero values belong to the 

non-fimte part of the field. 

Hence ultimately, either for finite values of 2 and z’, or for infinite values 

of either of them or of both of them, a place will be attained at which both 

the moduli | f(z, z')\ and | g(z, z') \ are zero. Such a place is a common zero 

of /(2, z) and g(z,z'), and therefore our theorem—that two functions 

f(z, z') and <7(2, 2'), regular everywhere in the finite part of the field of 

variation, vanish simultaneously somewhere in the whole field—is established. 

Ex. Consider the functions 

/(-, *0-«’***', 9(>, 
both of which are regular for all huite values of z and z'. 

Let z +■ i = log (r* e’"®1), 

2=re®1, 
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where r, 6, m, n are real constants , then 

f(z, z') = rHeme*, 

g (z, = 

When 0 < n < 1, we manifestly have 

/(*.*')“ °> 'J (-. 

when r is zoro that is, the two suggested functions acquire zero values foi some specified 

values of z' (even when z = 0) which do not lie m the finite part of the field of variation of 

the two variables 

115. Next, consider the case of two uniform analytic functions, each of 

them devoid of essential singularities in the finite part of the field of variation, 

and each of them possessing continuous aggregates of poles and isolated 

unessential singularities. We know, from an earlier proposition (§ 90), that 

the functions can be expiessed in the forms 

) 0, z') = 
P {z, z) 

Q (z, z) ’ 

g(z, z) = 

z') 

Z) ’ 

where P (z, z’), Q (z, 2’), R(z, 3’), S(z, 3) arc functions of z and z\ which are 

regular everywhere in the finite [tart of the field of variation. 

The zero-places of f(z, /) are those of P (z, it may happen that a zero- 

place of P (z, s') is also a zero-place of Q (z, z), and then the place is an 

unessential singularity off(z, z ) which, among its unlimited set of values there, 

can acquire the value zero ■ that is, the zeros of f(z, z ) are given by the zeros 

of P (z, z') Similarly for g (z, z') and II (z, z) Hence f(z, z’) and g (z, z) 

will vanish simultaneously somewhere in the field of variation, if the functions 

P (z, /) and 11 (z, /), everywhere regular in the finite part of the field, vanish 

simultaneously somewhere in the whole field But we have proved that these 

regular functions P (z, /) and It (,z, /) must vanish simultaneously at some 

place or at some places in the whole field Hence we infer the following 

theorem — 

Two independent functions f(z, /) and g(z, z'), which are uniform and 

analytic, and all the essential singularities of which occur only in the non-finite 

part of the field of variation, must vanish together at some place or some places 

in the whole field of variation. 

We infer also, as an immediate corollary, the following further theorem — 

Two independent functions f{z, s') and g(z,z'), which are uniform and 

analytic, and all the essential singularities of which occur only in the non-fimte 

part of the field of variation, must acquire assigned level values at some place 

or some places in the whole field of variation. 

For if the assigned level values be a for /(z, z ) and for g (z, z'), the 

functions f{z, z ) — a and g (z, z' )- /3 satisfy all the conditions imposed upon 
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the functions f(z, z’) and g (z, z') in the earlier theorem , the application of 

that earlier theorem leads to the result juBt stated. 

A corresponding result holds as regards simultaneous poles for f (z, z') 

and g (z, z). 

In general, a corresponding result does not hold as regards the occurrence 

of simultaneous unessential singularities off(z, z) and g{z, z') 

116 When two functions f(z, z) and g(z, z') have a common zero-place, 

we need to consider their relations to one another in its immediate vicinity, 

we need also, if possible, to assign an mtegoi which shall represent its multi¬ 

plicity as a common zero-place Let a, a be such a place, so that 

f(n, «') = 0, g (a, it') = 0 , 

tor places m its immediate vicinity, lepiesented by a -I- u. a’ + u', we have 

/(*, 2) = Kusu'‘ P (M, u) ePlU'v'1 'I 

= Ln’u' Q (u, u) eQ1”’*'1 

g(z, z) = K'u"ii't R (u, u')eKiu<ul 

= XVii' S(u, u)es"‘-u’> 

Here K, L, K\ U are constants, s, t, s', t' are positive integers which can 

be zero separately or together, P (u, it'), Q (u, u'), R {u, u’), S (u, it') aii‘ icgulai 

functions of u and vf, which vanish with u and The functions P (it, u') 

and R (i/, t/) are polynomials in u, having as their coefficients regular functions 

of u which vanish with u', the functions Q (w, u ) and $ (a, «') are polynomials 

m u, having as their coefficients regular functions of u which vanish with u. 

When vr*u'~l f (z, z') does not vanish with u and a, we substitute unity foi 

each of the functions P and Q, and similarly when u ~* u'~l g {z, z') does not 

vanish with u and u, we substitute unity for each of the functions R and 8 

The order of a zero-place foi a single function in each variable has already 

been defined For the function / (z, z'), it, is 

s + m in 2, t 4- n in z\ 

where vi and n aie the positive integers, which are the degrees of P and Q 

regarded respectively as polynomials in u and m it', and m and n are zero, only 

when u-u'^J (z, z ) does not vanish with u and u For the function g (z, z'), 

it is similarly 
s' + m' in z, t’ + n in z', 

where in' and n' are the positive integers, which are the degrees of R and S 

regarded respectively as polynomials in u and in u , and m! and n are zero, 

only when g(z, z) does not vanish with u and u. 

Beyond the factors «*«'* and M*Vr, the relations of f(z, z) and g(z, /) in 

the vicinity of a, a' depend upon the relations of the functions P or Q (as 
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representative of f) and the functions R or S (as representative of g) to one 

another Consider, m particular, the functions 

P (it, it') = Um + (it') + . +pm (it'), 

where , p„, are regular functions of it', vanishing with it', and 

i£ (it, it') = it’"' + a’"-1 r, («') + . + rm- (u), 

where ru . , rm- are regular functions of vanishing with it'. To determine 

whether there are common Hets of values of u and it', in the, vicinity of it = 0 

and it' = 0, where iJ and vanish together, we take 

P = 0, R = 0, 

as simultaneous equations, algebraical in « Eliminating it between them, we 

have (save in one case) a resultant which is a function of u only, also, as each 

of the quantities p,, , p,„, r,, ., iv is a legular function of it' vanishing 

with it', this resultant is of the form 

u'M <f> (it'), 

where M is a positive integer, chosen so that ip (u ), a regular function of it', 

does not vanish when it' = () To the exact determination of M we shall 

return latci 

The excepted case anses when the lesultant vanishes identically When 

the resultant does not vanish identically, the neeessuiy values of it', making P 

and R vanish togethei, are given by 

u'M <p (it') = 0, 

where <f> (0) is not zero and <f>(it') is aregul.tr function We at once have 

it' = 0, as a possibility, the associated value of it is it = 0. The alternative 

possibilities would arise through zeios of tile regular function 4>(u') hut as 

(f)(0) is not zero, it is possible to assign a finite positive quantity e, less than 

the smallest among the moduli of t.he zeros of <p(u') In that, case, there is 

no value of it' within the range i u'' ^ e such that <f>(?/) vanishes, and then 

the resultant vanishes foi no value of it' other than u‘ = 0 • that is to say, 

there is no zero-place for f and g in the immediate vicinity of a, a , other than 

a, a itself 

117. When the resultant of the two equations P = 0 and R = 0, which 

arc algebraical in it, vanishes identically, the inference is that these two 

equations in it have common roots, one or more Let the number of these 

common roots be l, and let them be the roots of an equation 

U = ul + id-1 &,(«')+.. + k{( u,') = 0, 

where klt kt manifestly are regular functions of it' vanishing with u. 

Then V is a factor of P save as to possible multiplication by a factor ea<u’>, 

where a(u') is a regular function of it' that vanishes with it'; and similarly U 
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is a factor of R, save as to a similar possible limitation. Let the quotient of 

P by U be 

nm~l + u"*-'-7; («')+... +/,„_* (it'); 

and let the quotient of R by U be 

m“’_i + »"~l~' ffx («') + • • + ffm-i (u), 

where all the quantities f,.. 0\, ■ , ffm’-i are regular functions of u, 

vanishing with u The conditions, necessary and sufficient to secure this 

result, are those which render the relation 

+ u,n~l-Vi 4- ... («"* + u'" ~'q,+ + qm.) 

= («m i + umg, + . . + (u,m + um“Jp, + ... + pm), 

an identity viz we must have the l independent determinants, each of 

m -f ni — 21 — 1 lows and nt+m— 21 — ] columns (we assume m > m' for 

purposes of statement), which can be formed out, of the array 

S P -n. ?2-r2 Pi I'j t • • 1 pm’ 1 in' jPm'+i. • •• * • * ; Pm) Q 0, . , 0 

l , fi , r> ,. , rm I'm 7 • • • . ., 0 , 0 0 , . 

0 , 1 , ^l » } I'm'—3 > ? m'—1 7 rm’ 1 0 , 0 , 0 , 

0 , 0 , 0 ,. . . > *2W 

1 , Pi > p2 j 7 Pm— 1 7 Pm , • »Pm—11 Pm > 0 , 0 

; (^_ 
1 , Pi . . >Pm—‘£i Pm-i > Pm, 0 

0 , 0 , 0. . , . . > Pm 

vanishing identically for all values of u 

In actual practice with two given functions, we should in general experi¬ 

ence the same arithmetical difficulty as before (§§ 70, 71) Heie we are 

concerned with the effect of the relative reducibihty of the functions, the 

foregoing are the l analytical conditions for this reducibility. 

When all the conditions for the identical evanescence of these l deter¬ 

minants are satisfied, P and R have a common factor U and then all the 

zeros of U withm the domain are also zeros of P and R Now these zeros of 

0 form a continuous aggregate, since U is a regular function , for l values of 

u can be associated with any value of it' in the domain so as to make U 
vanish 

118. It thus appears on the one hand that, when the resultant of P and 

R, regarded as polynomials m it, does not vanish identically, the zero-place 

a, a' is isolated. that is to say, simultaneous zero-values of P and R cannot 

be found, except at a, a', in a region given by 

I z-ajte, j— a!| < e', 
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where e and e' are assigned positive quantities made as small as we please 
And it appears on the other hand that, when the resultant of P and R, 
regarded as polynomials in u, does vanish identically, the zero-place a, a is 
not isolated. 

Moreover, in the case when P anti R have a common factor U, we can 

write 
P = (Jp fit, u), R = Uij (it, a\ 

where all the functions P, R, U, p, q are regulai functions of u and u , each 
of them vanishes when u = 0 and u! = 0, and each of them is a polynomial in 
u, having unity as the coefficient of the highest power of it and, as coefficients 
of the succeeding powers of u, regular functions of it which vanish when 

u' = 0. From the construction of U, we may assume that p and q have no 
common factor, so that the zero-place of p and q at u = 0 and w'=0 is 

isolated. Now 

J = JiJ + U‘J >1\ (P>3 
U, U 

Hence the Jacobian of P and R vanishes for all the aggregate of places 
making U vanish, because all these places make P and R vanish. But this 

Jacobian does not vanish (except at a, a) for places in the domain of a, a', 
which make P and R vanish but leave U different from zero. Also, as 

f(z, z') = Kti’iUP (•«, u') ef'w’,n 1 

g(.z') — Lu" u' R (a, it')e^"’u 1 j ’ 

it follows that the Jacobian of the independent regular functions J and g 

vanishes for all the aggregate of places making U vanish, while it does not 

vanish (except at a, a) for places in the domain of a, a' that, make/and g 
vanish but leave U different from zero 

These results have followed upon the selection of P (u, a) as the sig¬ 

nificant factor of / in the immediate domain of a, a', and of Ji (u, u) as the 
significant factoi of g in the same domain. The same results follow upon a 

selection of Q (u, it') and R(u, u') as the significant factors of / and g, like¬ 
wise upon a selection of P(u, u) and S (a, u) as these factors, and upon a 
selection of Q(u, u) and S(u, u) as these factors. 

Gathering together all the results, we can summarise them as follows — 

(l) Any two independent functions, uniform, analytic, and devoid of 
essential singularities in the finite part of the field of variation of the two 
variables z and z , possess common zero-places somewhere unthin the field 
of variation:— 

(n) In general, each common zero-place of two independent f unctions, 
which are uniform, analytic, and devoid of essential singularities in the 
finite part of the field of variation of z and z!, is an isolated place, so far 

as concerns the vanishing of the two functions:— 
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(in) Less generally, when two such independent functions possess a 

common factor, which is necessarily of the same character throughout the 

finite pari of the field of variation and which itself vanishes at the common 

zero-place of the two functions, then the common zero-place of the two 

Junctions is not isolated; m its immediate vicinity, the two functions 

possess a continuous aggregate of zero-places which belong to the common 

Jactor — 

(iv) The Jacobian J, of two independent functions f and g, does not 

vanish identically It may vanish at a zero-place common to the two 

functions. When the common zero-place is isolated, then f g, and J do 

not simultaneously vanish at a,ny other place in the immediate vicinity of 

that place. When the common zero-place is not isolated, then f g, and J 

vanish simultaneously at a continuous aggregate of places m the immediate 

vicinity of the common zero-place 

119 In the preceding consideration of two functions f\z, z') and g (z, z') 

discussed simultaneously, there has been the fundamental assumption that 

the two functions are analytically independent of one another in the sense 

that neither of them can be expressed, either implicitly or explicitly, by any 

functional relation which, save for the occurrence of f and g, is otherwise free 

from variable quantities. Were the assumption not justified, the Jacobian of 

the two functions would vanish identically. we then should not possess 

sufficient material for the consideration of the common characteristic pro¬ 

perties off and <j as simultaneous functions of two variables 

But, after the preceding explanations, two limitations can be introduced 

as regards a couple of functions One of these affects them simultaneously 

the other affects them individually yet neither of them imposes limitations 

upon generality, for the purposes of this investigation. 

Our discussions will deal with any pair of regular functions, which are not 

merely independent in the general sense, but which possess the further 

quality that they have no common factor, itself a regular function and 

vanishing at places within the domain considered. For any such pair of 

regular functions, each simultaneous zero-place is isolated. The zero-place 

may be simple or it may be multiple, when it is multiple, the multiplicity is 

represented by a definite positive integer. 

It will be convenient to use some epithet to imply that two independent 

regular functions, existing together in the domain of a place where they 

vanish, do not possess a common factor, which is itself a regular function in 

that domain and vanishes at the centre of the domain. When a common 

factor of that type is not possessed by a couple of such functions, they will be 

called free. If on the contrary they do possess a common factor of that type, 

they will be called tied. Accordingly, when we deal with a couple of regular 

functions simultaneously, they will be assumed to be both independent and free. 
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The other limitation aims at the exclusion of unessential complications, 

and is suggested by the most general form of a function f(z,z') m the 

immediate vicinity of a zero a, a', viz 

f(z, z) = K{z — a)‘ (/ - aj P (z - a, z'- a') ePtz~"■*-«>. 

Thus (z — a)“ is a factor of f (z, z') at another zero c, c, it, could have anothei 

factor (z— ef, that is, it would have a factor (z — a)" (z — c f And so on, for 

other zeros We shall assume that, if f(z,z') initially-possesses a factoi which 

is a function of z alone, then f (z, z') is modified by the removal of that factor 

in z alone Similarly, of course, if it initially possesses a factor which is a 

function of z' alone, then we shall assume it, to he modified by the removal of 

that factor also Any such factor of either variable alone can only contribute 

pioperties chai acton Stic of a function of a single variable Thus, for instance, 

we should not consider jp (z) (p (/'), where the periods of p(z) are unaffected 

bv the periods of p (z'), as a propel quadruple -periodic function, we should 

not consider (p(z)sin/ as u pioper triply-periodic function, we should not 

consider sin ; sin z’ as a propel doubly-penodic function. 

It seems unneeessaiy to introduce an epithet to indicate the non-composite 

( haracter of a function f(z, z), in what, follows, we shall assume that we are 

dealing with functions which are of this non-composite character 

Accordingly we can enunciate the theorem - 

The common zeia-places of two /auction.s of z and which ore uni f inn, 

analytic, ond devoid of essential singularities in the finite pa it of the field oj 

nutation, and winch aie independent and free, on isolated places in the held 

of miiation. 

120 An indication has been given of the determination ot the liitegei 

which shall represent, the multiplicity of an isolated simultaneous zero-place 

of two leguhu functions In the vicinity of such a place a, a', we take 

z = a + u, z' = a' + a , 

and then, aftoi the preceding explanations, we can assume that the integers 

s and t are zero for f\z, z), and that the integers s' and t' are zero for <j {z, z'). 

Thus 
f{z, z ) = KP (ti, u) g (z, z) — LR (u, u')elt'"’">, 

in the immediate vicinity of u = 0, li = 0, and 

P (a, u) = um + a"1”1 pi (u) + .. + p,„ (u'), 

R (u, u') = um 4- um~l r, (u) + ... 4- rra, (u'), 

where all the coefficients pu pm, rit..., rm- are regular functions of a' and 

vanish when u' = 0 When the elirmnant of P (u, u) and R (u, u'), regarded 

as polynomials in u, is formed, it is a regular function of n' which vanishes 

when u = 0; and so it can be expressed in a form 

u'M d> O'), 

v 14 
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where <f> (0) does not vanish, and where M m a positive integer. This integer 

M measures the multiplicity of a, a, as a simultaneous zero of f and g. 

The detailed determination of M can be effected as follows Let 

P (m, u') = (u-Pi)(u- p.2) (u - pm), 

R (u. v') = (u — O-,) (u - a(u - <Tm), 

where pi, .... p,„, a-,,.... <rm- are functions of u (regular functions of fractional 

or integer powers of it') all vanishing when u' = 0. Their governing terms— 

that is, the lowest power of u in each of them, with its appropriate coefficient 

—can be determined as in Puiseux’s treatment of algebraic functions. Now', 

except as to a constant factor that is of no importance here, the eliminant of 

P and R is 
m in’ 

IT II (p) -o-s). 
r=1*^1 

When pr — <rs is expressed in terms of v', every occurring power having a 

positive index, let pIR be the index of the lowest powei it contains; then we 

see that 
m m 

M= 1 2 prt, 
r-l it — 1 

which thus gives an expression for the multiplicity M It is easily established 

that the quantity M, thus obtained, is an mtegei 

The simplest case occurs when, in the expansions 

/(2, s') = au(z- a) +«„, (z'-a') + . 1 

g (z, s') = cu, (z-a) + col (z - o') + 

no one of the quantities au, a0I, cw, c„,, a,„ c„, — cID a„, vanishes the value of 

M, for the zero a, a.', is unity in this case. 

Note If, instead of the functions P and R, we take Q and /S’, as repre¬ 

sentative of f and g, and construct the eliminant of Q and S regarded as 

polynomials m u, the eliminant is 

uM \fr (u), 

where f is a regular function of u such that \fr(0) is not zeio, and M is the 

same integer as before. The proof is a simple matter of pure algebra. 

121. All the preceding remarks apply to the simultaneous zero-places of 

two regular functions/^,/) and g(z,z). It applies equally to the level 

values of two regular functions f(z, z') and g (z, z), say o and (3 respectively, 

where | a j and | ft ] are finite The functions f (z, z) and g (z, z') are inde¬ 

pendent, as before The functions f (z, z') - a and g (z, z) - will be supposed 

free, that is, we shall extend the significance of the epithet ‘ free,’ as applied 

to /(z, z') and g (z, /), so that it applies to this case also. The functions 

f(z, z) — a and g(z, z ) — /3 will also be supposed non-composite as regards 
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factors which are functions of z alone or functions of z? alone, as was the case 

with f (z, z') and g (z, z') And, now, we can enunciate the theorem ■— 

The common level places of two regular functions, which exist together in a 

domain of the variables, and which are independent, and free, are isolated , and 

the multiplicity of any level place, (Jiving values a and 0 to f(z, z‘) and g(z, z) 

i espectively, is the multiplicity of the place, as a simultaneous zero of the 

Junctions f(z, z') — a, g (z, z) — 0. 

122 Further, consider two functions / (z, z') and g(z, z'), independent of 

one another, not tied, and existing in a common domain, and suppose that 

J (z, z) has a pole at a place p, p\ which is an ordinary place for g (z, z'), say 

a level place for g(z, z), (zero being a possible level value there). Then the 

place is a common level place for the functions 0 (z, z) and g (z, z), and 

we know that, if <f> (z, z ) and g(z,z') are free, that is, if 0 (z, z ) and 

g (z, z) — g (p, p') possess no common factor which is a regular function of 

z, z vanishing at p, p, then the common level place at, p, p for 0 (z, z') and 

g(z, z’) is isolated, and its multiplicity is the index of the lowest power of z 

in the F-elnmnant of 0 (z, z ) and <j (z, z ) — g (p, p). 

It is convenient to extend the significance of the terms tied, and free as 

applied to a couple of independent uniform functions f and g. We shall say 

that they are tied if, for any constant quantities a and 0, cither f—a and 

g — 0. or f—a and (g — 0)~l, or (f—a)-' and g — 0. oi (/-a)-1 and 

(// — 0)~' (being really two alternatives) possess a common factor which is a 

iegnl.ii function of 5 and s' having a zeio (and so an infinitude of zeios) m 

the domain , anti we shall say that the two independent functions / and g are 

flee, when no common faetoi of that type exists tor any one of the combina¬ 

tions Moreover, we shall also assume that neither/ — a nor ( fa)-1 nor g — 0 

nor (g — 0)~‘ contains any factm, which is a regular function of z alone or of 

z‘ alone and vanishes for one (or for more than one) finite value of the 

variable. 

On the basis of earliei results, we can now enunciate the following 

theorems — 

(l) Let f(z, z') and g (z, z') be two functions, which are uni form, analytic, 

and devoid of essential singularities in the finite part of the field of variation of 

z and z', and which are independent and free The places where one of the 

functions acquires a, level value and where the other has a pole, are isolated, 

and the multiplicity of the place for the two functions conjointly is the multi¬ 

plicity of the place as a. level-and-zero place for one of the functions and the 

reciprocal of the other. 

(ii) The common poles of two uniform functions, which exist together in a 

domain of the variables, and which are independent and free, are isolated; 

and the multiplicity of the common pole for the two functions conjointly is the 

14—2 
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multiplicity of the place as a common zero for the reciprocals of the two 

functions jointly. 

The theorems follow at once from an earlier theorem by considering the 

behaviour of the reciprocal of a function in the immediate vicinity of any pole 

of the function. 

When we extend the term level value of a uniform function to include 

(1) a zero value of the function, this being a unique zero, independent 

of the way in which the variables reach the place giving the zero 

value 

(n) a level value a of the function, where jaj is finite, this being a 

similarly unique level value of the function 

(in) an infinite value of the function, this being a unique infinity of 

the function arising at a pole 

then all the theorems, already enunciated concerning two functions, can be 

summarised in the one theorem — 

The common level places of two uniform functions, which are uniform, 

analytic, and devoid of essential singularities in the finite part of the field of 

variation of z and z, and which are independent and free, are isolated, and 

the multiplicity of the level place for the two functions conjointly is the index of 

the lowest term m the elinunant of the two functions o> if then reciprocals or 

of either with the reciprocal of the other, expressed m the vicinity of the place. 

Combining this result with the investigation, which settled the order of 

multiplicity of the place a, a' as a level place of the functions / and g and 

therefore as a zero of the lunctions 

/(". z") ~ «■ 9 (z> *0 - 8, 

we have the following corollary •— 

Let a, a' be an isolated common zero of multiplicity M <f the functions 

f(z, z') - a, g(z,z')~fi 

then, for values of I a' j and f \ sufficiently small, there are common zeros, 

simple or multiple, of aggregate multiplicity M, of the functions 

f(z,z')-a-a', g(z, zf)-P- 

which coalesce into the single common zero of multiplicity M of 

f(z,z')-tt, g(z,z‘)-p, 

when a' and /S' vanish. 
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Uniform Periodic Functions 

123. We now proceed to consider the property, of such functions as 

possess the property, which customarily is called periodicity. Limitation 

will be made at this stage to periodicity of the type that is linear and 

additive, though the type is only a very particular form of the general 

automorphic property, mentioned in Chapter 11. 

In conformity with general usage, we say that two constant quantities &> 

and are periods, 01 a period-pail, or a period, ot a function f(z, z) ot two 

complex variables, when the relation 

f(z 4- ft), z' 4-«') -f(z, z') 

is satisfied for all values of z and of/ In such ail event, the relation 

t\z + .Vft), z + so') =f(z, z) 

is satisfied foi all integer values, positive and negative, of s. Moreover, it is 

assumed implicitly that to and &>' constitute a proper period-pair, that is to 

say, a relation 
f(z + ko, z + //ft/) = / (z, z) 

is not satisfied foi all values of - and z except when k = /,', both k and k' 

being integers, and that the same relation is not satisfied, even if k — k’, when 

the common value of k and // is the icciprocal of an integer 

In dealing with periodic functions of a single complex variable, infinitesimal 

ponods arc excluded Speaking generally, we could say* that, if a uniform 

function of a single variable possessed an infinitesimal period, then within 

any finite region, however small, round any point, however arbitrary, the 

function would acqmie the same value an unlimited number of times. The 

possibility of the existence of such functions may not be denied, but they 

cannot belong to the class of analytic functions In the case of analytic 

functions w'hich ate not mere constants, the result of the possession of 

infinitesimal periods would be to make practically any point and every point 

an essential singularity. Accordingly, so far as concerns functions of a single 

variable, the possibility of infinitesimal penods is excluded 

124 We likewise exclude the possibility of infinitesimal periods for 

functions of two variables, but the exclusion can be based on different 

See my Theory of Functions, § 105 
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grounds also. For the present purpose, we shall limit ourselves to uniform 

analytic functions* of two variables, and we then have a theorem +, due to 

Weierstrass, as follows — 

A uniform analytic function of two independent complex variables z and z' 

possesses infinitesimal periods only if it, can be expressed as a function of 

az + as', where a and a are any constants. 

First, suppose that our function f(z, z) can be expressed in a form 

f(z, z) = F(az + a'z'). 

Then if we take any two quantities P and P' such that 

aP + a'P' - 0, 
we have 

f(z + P, z + P’) = F (az + a'z’ + aP + a’P') 

= F (az + a'z') 

-/(*, s'), 
and therefore when P and P' are constants, we may regard P and P' <is a 

period-pair for f(z,z), supposed expressible in the given lorm. The only 

relation between P and P' is aP + a'P' = 0, hence eithei of them can be 

taken infinitesimally small, and the other then is infinitesimally small also 

It follows that, when a function of 2 and z can be expressed 111 the form of a 

function of az+ a'z alone, where a and a are any constants, then it possesses 

infinitesimal periods 

Further, writing az + a'z = v, we have 

and therefore 

a f bf if ,dF 

az (l dv ’ ?z' a ?v ’ 

df 
az 

Hence when the function is of the form f (az + a'z'), so that it possesses 

infinitesimal periods, the foregoing relation is satisfied. Conversely, by the 

theory of equations of this form, the most general integral equation equivalent 

to this differential equation is 

/(z, z') = F (az + a'z'), 

where F is any function whatever of its single argument; and therefore, when 

a function f(z, z ) satisfies the relation 

V. ff 
a — — a, 

az 1 

= 0 

in general (and not merely for an arithmetical pair, or for sets of arithmetical 

pairs, of values for z and z), it possesses infinitesimal periods. 

* The result holds for multiform functions and. under conditions not yet established, possibly 

even for functions that have an unlimited number of values for any assigned values of the 
variables ; see Weierstrass, Gts. H'erke, t 11, p. 69, p 70. 

t It is established tor the case of n variables, Weierstrass, Gee. Werke, t. li, pp. 62—64. 
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Next, suppose that our uniform analytic function is not expressible in a 

form F(az + a'z') for any constants a and a’ whatever, and consider a region 

in the field of variation where the function f (z, z) is regular No relation 

,<f af 
a -:7 - a ', 

ri z dz 
= 0, 

for non-vanishing values of a and a', is satisfied over the whole of this region , 

hence we can take places z, and z,', z* and 2/ within the region, such that 

{|, where 

(^1 > ^1 ) df(z„ z,') 

dz-! 

dz, ’ 

7)1 (z,£, 2/) 

dz* 

is finite and not zeio Also when we take places 2,+ a, and 2/ -f 2,+ «2 

and 2/ + u,\ z, + vt and 2/ +1>/, z, + v2 and 2/ + ®/, where all the quantities 

1 it, I, jw/|, la.,1, la./1, | a, i, |y/;, !«,|, a/J are infinitesimally small, the quantity 

Ju\ | when* 

df ("l + (,i, Z\ + V\) 

<v 

dj (2,+ r,, 2/ + 

dz« 

differs from , J,,1 only infinitesimally, and therefoie its modulus is finite and 

not zero. 

r >_ ?/’Ui + «i. «/+«/) 

* '■ 1 f'Z, I 1 

df (z2 -f- a.,, z, -4- 11,) 

dz. 

Consider the possibility of the existence of two periods A and A'. What¬ 

ever these quantities may he, we have genet ally 

,-u+1,,+io-m (| d(+1 <), 

because the subject ol integration is a perfect, differential Take a combined 

/-path from z to z + h and a /'-path from z' to z' + A, and let 

/ = z -f ht, /' = z -f h't, 

so that the range of integration is represented by variations of t from 0 to 1 ; 

and then generally 

/e+/.,*■+*•>-j/>.»['*<»*'“• - **t) 
J 0 (<Z 

— dt 

+ 4,c?/|.- + /,f,y+*i)* 
JO 

Suppose now that A and h! are infinitesimal, so that the derivatives of 

f{z, z) differ only infinitesimally in the t-range from 0 to 1 from then values 

at t = 0, then we have a relation of the form 

f(, + k, Z + k')-f(z, /) _ k + + k, ?/_(£ + »,£■ + »') 
(/.S' 
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whore j u j, \ u' |, |t;j, |tT| are infinitesimal of the same order as |A| and \ h‘ |, 

and may depend upon s and z. Accordingly, returning in particular to our 

two places zx and zf z» and z/, we have 

f (zj + h, zf + If) — t (~i, 
_ , df{z j 4- uu z’ + Ui) , df(zl+ vx,zf + r, 

OZj OZ i 

/(** + K V + /(') -/(«;, */) = A — 
df(z» + u„ Z.! + «./) Jt,df(zj + V,, + r, 

Vz 

and so on for any number of places; two will suffice for our purpose. 

When h and If aie periods (whether infinitesimal or not), the left-hand 

sides vanish. As the equations are valid, when the periods aie infinitesimal, 

the right-hand sides also vanish, so that we have 

hjf = o, h'.rY: = o. 

Now «/,,/ is not zero, hence both h and If are zero In other words, oui 

uniform analytic function of two vanables cannot have infinitesimal periods, 

unless it is expressible as a function of a single argument az 4- uY, wheie a 

and a! are two constants 

126. Next, let <w. and a>. and w./, m, and a>f .. be period-pairs tor a 

uniform analytic function f(z, z). then we have 

f(z + /"ict>i + rt0)2 4- 4- ..., 3' 4- /•,«,' + >2(02 4- r2at, 4- ) - f(z, /), 

where /*,, r., 1... are any integers, positive or negative, and independent of 

one another 

In the case, of a uniform analytic function of one variable, it is known 

that there are not more than two independent periods and that the ratio of 

these periods for a doubly periodic function cannot be real* . the last property 

can be expressed by saying that ll the periods are &>, = % + i(3, and &/, = a + iff', 

the determinant 

1 «, (3 

ff | 
is not zeio. 

The corresponding theorem + in the case of uniform analytic functions of 

two variables is as follows — 

A uniform analytic function of two variables z and z' cannot possess more 

than four independent period-pairs a>, and o>2 and co/, a),, and o>4 and 

w/; and if 

o>» = or„ 4-1$,, to,' = a,' 4- if3f, 

* When the ratio is real and commensurable, both periods are integer multiples of one and 

the same period ; when the ratio is real and incommensurable, there are infinitesimal periods 

t It is partly due to Jacobi, Ges. Wake, t. n, pp. 25—50. 
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for all four values of s (the parts a, f3, a', ff being real), the determinant 

217 

®1 t 

A, A. A. A 
i «/, or./, a,', a/ 

A', A'. A'. A' 
wnwf not vanish. 

126. As a preliminary lemma, we require the following preposition if 

relations 

<m, = A'ft), 4• leo.j -\-ina), 

cOj = hoy| 4“ la)2 4" mo), 

are satisfied among four period-pairs, where 1’, A, m are real quantities, then 

either there are not more than three lineally independent period-pairs or 

there are infinitesimal petiods. 

First, suppose that k, l, m arc commensurable, and that then each of 

them is expressed in its lowest terms Let d denote the highest common 

factor of their numerators, and let M denote the least common multiple of 

their denominators, and write 

A 
d , 

m = M »« ■ 

whole A', l'. m’ are integers, then we have 

M 

d 

M 

d 

0)4 = A' CO] 

t It t 
O) ! — A. (l)l 

-f- l Wo “f- VI O)) , 

+ 1 o)/ 4- lil'aif 

Now M jd is a fraction m its lowest terms, being an integer only if d is unity , 

change M/d into a continued fraction and let p/q be the last convergent 

before the final value, then 

so that 

M _ V = ± 1 
d q L dq’ 

M 1 

*d~P=±d 

Now 0), and ~ «/ manifestly are a period-pair, and therefore also q w, 

and q ^ af, consequently 

( M \ and 
(* 

M 

d~P 
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also are a period-pair, that is, as/d and as/jd are a period-pair Let1 

d 
— fi,, 

then 

“i 

d 

Milt = k'as, + I'tOo 4- in'as t, Milt — k'as/ + l ’as/ + ill'a/, 

where the integers M, k', i, in' have no factor common to all 

Moreover, we can assume that any two ol the four quantities have no 

common factor. For if two of them, say /.' and i had a common factor fx, the 

quantities 
k‘ V k' , V , 

as, H— fi>2, - eo, + - ai.j 
fx fx fx /x 

are period-pairs, integral in os, and os,', as2 and to,'. hence 

M in M m , 
iij O), j IZj £f)j j 

ft /X fi n 

are a period-pair, say tu5 and as/, then as 

M in! M ,, , m' , , 
Sit ~ W| = ft>5, ll4 — eo, = ta5, 

fX fX fX fx 

where M, in, fx are integers and SI,, os,, as,,, fi/, os,', as/ are constituents of 

pail's Kut we kuowh that, in such an event there are two integral com¬ 

binations of <ua, as6, ilt, and the same two mtegial combinations of as/, as/, fi/, 

M m 
because the coefficients - and - are the same in the two relations, such 

fX fX 

that wj, o>„, fl4 are expressible as integral combinations of the first and 

as/, as/, il/ are integral combinations of the second , that is, we have 

— to, 4- - as, = linear function of two lienods fi, and fi,, 
fx ix 

k’ l' 
- «o/+ as! = same.fi/ and fl/, 

)x 

and now, in our equations, the integral coefficients 

factoi 

V 

k- 
and - have no common 

Similarly for the other cases; we can assume, in our relations 

Milt = k'as, -)-1 'as., + m'ass, Mil/ = k'as, -I-1 as/ 4 in as/, 

that no two of the integers M, k’, i, in' have a common factor. 

Accordingly, we have k'ji a fraction in its lowest terms. Expressing it 

as a continued fraction, and denoting by rjs the last convergent before the 

final value, we have 
k' r 1 

V ~ s “ 1 si ’ 

* Obviously, if d—1, the period-pair w4 and u>4' is unchanged 

+ See my Theory of Function*, 8 107. 
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+ o), =to, (sk' — rl')= sMCl, — /' (ra>) 4- su>2 ) — smm,. 

± = sMf/l/ — l’ (rm/ 4- sco,') — sm'co/, 

+ &>2 = m, (sk’ — rl') — — rMi\i + k' (rml 4- sm, ) 4- rntas,, 

± &>,' = — rMkl/ + (ro)/ + «&>/) 4- rm'm/, 

and so the four period-pairs are expressible in terms of three period-pairs 

fli, 11/, «t>3, «/ , ra», + sco,, rco/ 4- so)/ 

Thus there are not more than three linearly independent period-pairs. 

Next, suppose that one of the three quantities k, l, m, say k, is lneom- 

inensurable, while the other two are commensurable When l, m ,ue expressed 

in their lowest terms, let the integer D be the least common multiple of their 

denominators, so that we can write 

, l' in' 

l = l)’ >>l = ]) ‘ 

Then 

I)coi —1'cn, — m'co. = kJ)col , 

Dm/ — I'm/ — in', co ' = kDm/. 

Now kD, like k, is incommensurable, hence, expressing it as an infinite 

continued fraction, and denoting two consecutive convergents by pjq and 

p lq', we have 

kI) = P- + , 
q qq 

where the real quantity 6 is such that 1 > 0 > — 1 Thus 

p+A w, 
\q qq 

are a period-pair, and therefore also 

and +A 
(/ (l(l 

that is, 

m, — pmx, -pm/. 

<Di and , co/ 
q q 

are a period-pair We may take q' as large as we please, for the continued 

fraction is infinite, and the circumstances thus give, rise to infinitesimal 

periods 

Next, suppose that two of the three quantities k, l, rn are incommensurable, 

say k and l, and that m is commensurable, equal to \/p, where X and p are 

integers. Then our relations can be taken in the form 

ficot — Xcog = kpmx + lpm3, pm/ — \m/ = lepco/ 4- lpm,. 
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But, writing 

<06 = fJ.o34 — Xa),t <0/ = po34 — Xco/, 

and denoting kp. and Ip by k' and /' respectively, we have 

<05 = k'031 + / 'o).j, <0,/ = k'(Oi + / to/, 

where k' and /' are incommensurable, whde <o0 and to/ are a period-pair 

Again it is known* that, by successive linear combinations of the period so 

always as to give a period, we can change to., into ft., (and to/ into ft/ by the 

same algebraic relations) so that 

and at the same time have relations 

to, = r<o, + /"ft,, <0/ = r<0,' + /"ft/, 

where both k" and Z" are incommensurable The process can be continued 

to any extent, by successive combinations of the period-pairs. so ultimately, 

we can construct an infinitesimal peuod-pan 

Lastly, we have the case when all the quantities k, l, m are incom¬ 

mensurable, and we assume that the ratios k l m also are incommensurable+ 

Then we express / as a continued fraction, which of course will be infinite 

taking any convergent r/s, we have 

where always r and s are integers, and a is a real quantity such that 

1 > x > — 1. Also let Z, be the integer nearest to the incommensuiablc 

quantity si, and Z, be the integer nearest to the incommensurable quantity 

sm , then we have 

si — t4 — A,,, sin — Za = A,, 

where A, and A3 are incommensurable quantities, each in numerical value 

being less than / Thus 

H' 
so)4 — ran — /,<o„ — /a<og — - to, + A3c0, + As<03, 

s 

sw4 — rto,' — /[ 032 — /..6>/ — ^ to/ 4- A., to! + As<o/. 

Again, as A2 is an incommensurable quantity, let it be expressed as a con¬ 

tinued fraction, taking any convergent p/cr, where always p and a are 

integers, we have 

A, = - + ■— 
cr a' 

* See my Theory of Functions, § 108. 

t The alternative suppositions, for the I&st case, and for the present case, are left as an 

exercise. 
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where y is a real quantity such that 1 > y > — 1. Also let <s be the integer 

nearest to the value of <rA3, and write 

<rA3 = f3 4- V, 

where V is an incommensurable real quantity less than We then have 

JC XI 
a (so»4 — ?•&>! — t, to2 — t.j <u3 ) — pa); — = cr - 6)] + “ ft>2 + V&),, 

S (7 

a (&a>/ — ?*&)/ — Lc** — t2 o>/) — pa>/ — tA= <7 - «/ + — &>/ 
s a 

the quantities on the left-hand side are ,i period-pair, which can be denoted 

by fl3 and 12/ 

Now take an advanced conveigent for A,, we have a very large, and so 

the values of ya>Ja and yo>2'/a aie infinitesimal Take a much more advanced 

convergent for Ic, so that s is very large compared with cr, the values of 

crirwj/s and crxw^'js are infinitesimal We thus have a new penod-pau 12, 

and 12,', such that 
u: 1/ r, ' , 

a - ca, + - d., + Vw, i < £ I (Dj !, 
ACT ' 

12/ \ = I a o)/ + ! cd./ + Vd,', < A , a>,/ 

i 6' cr 

Our relations now have the form 

ci)3 — k G), -4- 1 cOj -f- r/c 12,, ca4 = k a), -4- / or, + let 12j , 

where the quantities k', l', ni fall undei one 01 othei of the cases alieady 

considered Either we have not more than thiee poiiod-pans, or we have 

infinitesimal peiiods, or all the quantities k\ l', nt aie incommensurable, 

while 
112j l < ^ | w.,|, ill/1 < i 1 a>/1 

In the last event, the same kind of transformation can be adopted, and by 

appropriate choice, we can form a new period-pair 123, 12/, such that 

j II); ^ i I 031, > 12a | < i I Os I • 
And so on, in succession. By taking a sufficient, number n of transfoi mations, 

each of the preceding type, we ultimately can construct a period-pair 4>3 and 

4)/, such that 

! I < 2» 10,5 !• i < 2« I I 
that is, by taking n sufficiently large, we should have an infinitesimal 

period. 

It therefore follows that, if we have two relations 

do)] + Bo)3 4- (7w3 -f- JDeot = 0, 

A.(Oi + Bg>2 4- Cid3' + Du, = 0, 
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between four period-pairs, where the coefficients A, B,C, D are real quantities, 

either there are not more than three period-pairs, or there are infinitesimal 

periods for the variables. 

Accordingly, when we have to deal with uniform analytic functions of 

two variables, there is nothing in the preceding analysis to exclude the 

possession of even four period-pairs, when these pairs are linearly independent 

in respect of combinations between their respective members. 

127. For the remainder of the proposition in § 125, it is necessary to 

consider the possibility of the existence of five period-pairs if this be ex¬ 

cluded, then a fortiori we need not consider the existence of more than foui 

period-pairs 

For this purpose, let thete be four peuod-pairs of the kind postulated in 

the theorem such that, if 

— Of -f- l/3f, 03h = Ctg -f- 'ift, , 

(tor s = 1, 2, 3, 4), the determinant 

“i, «j> a3, a, | 

i * ft > ft > ft 

a/, «/, a,', a/ J 

ft/. ft/, ft/, ft/ i 
does not vanish When this last condition is satisfied, we cannot have 

relations 
w, o, -f rn, a2 + m3 a4 + m4 a4 = 0, 

wt,ft + wi.ft + m,ft, +?«4ft =0. 
j/v, a,' + w, a/ + ?«., or,' + m4 a/ — 0, 

oil ft' + »<sft/ + r/tjft' + m4ft' = 0, 

for any set of real quantities »«,, m2, /«„ ;«4 other than simultaneous zeros 

The exclusion of the first pur of these relations excludes a relation 

mlwl + nis£ii2 + m-ai, -f miwi = 0, 

and conveisely, and the exclusion of the second pair excludes a relation 

Wjto/ -f rrtjfu/ + «?,<»/ + m4o)/ = 0, 

and conversely. Hence, after tht preceding lemma, we infer that our uniform 

analytic functions may possess four periods, or fewer than four periods, and 

they do not possess, as they cannot be allowed to possess, infinitesimal 

periods. 

Now suppose that a uniform analytic function f(z, z’) possesses, in addition 

to four given linearly independent period-pairs co,, &>/, &>„ to./, o>3, «u,'; &>4, «/; 

also a fifth period-pair, say Let 

= «5 + *ft, &>/ = a,' + *ft/. 
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Then, with the preceding hypothesis of the non-evanescence of the determi¬ 

nant (a,, #>, a/, #/) in the customary notation, the equations 

a, = n, at) + Ka ou + rij a, + nt a4, 

A =«i/9i + loA + *> A + »i4&, 
a/ = «, «/ +- »2 a/ + /i, a/ + »4 a4', 

= Hj/8/ + «,/8/ + + n4j8;, 

determine uniquely four real finite (jnantities iq, /<_>, nx, «4, and they are such 

as to secure and to require the equations 

0), = MjO), + (lsO)j + 11,(1), + «4&>t | 

&>/ = ?/,«,' + n, &),' 4- «,&)/ + m4w/J" 

It therefore is necessary to considei the conditions, under which these 

equations are possible. 

The analytical consideration of the conditions follows a general march 

similar to that followed m the establishment, of the preceding lemma. The 

results therein]e will only be stated, without further pioof. They will relate 

only to the most gcueial case when no one of the six ratios n, n2 Vj u4, as 

determined by the elements of the foul period-pairs is an integei . the 

alternative is to pi ovule only less general cases We find 

(l) when fill the real quantities w„ n4 are commensurable, 

the formally five period-pairs can be expressed in terms of not mote 

than four period-pairs — 

(n) when one (and only one) of these quantities is incommensurable, 

then an infinitesimal period-pair exists — 

(m) when two of these quantities aie incommensurable, then cer¬ 

tainly one infinitesimal period-pair exists, and possibly two such pans 

exist — 

(iv) when three of these quantities are incommensurable, then one 

infinitesimal period-pan certainly exists, and three such pairs may 

exist — 

(v) when four of these quantities are incommensurable, then one 

infinitesimal period-pair certainly exists, and foui such pure may 

exist. 

It therefore follows that for any uniform analytic function, which is really a 

function of two (and only two) independent complex variables so that it 

cannot possess infinitesimal periods, theie may be four period-pairs, and 

there cannot be more than four linearly independent period-pairs*. 

* It is a tacit assumption, throughout the preceding investigation, that au infinitesimal 

period-pair a and i'for z and z' means a period-pair for which both | u| and |w'| are infinitesimal. 
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128 Now that we have established the result that a uniform analytic 

function of two complex variables cannot possess more than four linearly 

independent pairs of periods, so that we should have 

f (z + «&!<», + -+■ + m4a>i, z -t- jn,a)1/ + m,a»/+ ?n3a>/ -+- = f (z, z'), 

for all integer values of m}, mit m,, mit positive or negative, we proceed to 

consider the various possible cases that can arise, under the significance of 

the result and within the alternatives admitted by the analysis leading to 

the result. 

h'or the present purpose, the case when there are no periods needs only 

to be mentioned. We then have the customary theory of the uniform 

analytic functions of two variables, which has been previously discussed in 

some detail. 

The remaining cases will be considered in succession 

One pair of periods 

129. Let the variables z and z have the periods a and a, and no other 

periods Take new variables « and it', where 

z ~ an, az' — a z = aaV, 

which is an effective transformation ol variables unless (l) both « and a' 

vanish—a possibility that can be excluded—or (n) either a or a vanishes 

If a' vanishes, we take u and z‘ as new variables. If a vanishes, we take 

z and v as the variables, where z' = a'v In all the cases, denoting the 

variables by u and u', we can now take 1, 0 as the pair of periods Hence 

the field of variation of the variables is composed of a strip in the «-plane of 

breadth unity, measured parallel to the axis of real variables, and the whole 

of the w'-plane, and the uniform function m question can be expressed as a 

uniform function of en,u and a'. 

Two pans of periods. 

130 Let the periods be 

for z, = a | =/3i 

/, =«'/' -/S'}’ 

respectively, in bracketted pairs; manifestly it may be assumed that a and a' 

do not simultaneously vanish, and likewise that /3 and /S' do not simultaneously 

vanish. 

Choose quantities k, l, m, n, such that 

ka + la' = 1, k& + Iff = 0, 

rna + na' = 0, m/3 + nff * 1. 
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When one of the two quantities a and a' vanishes, say a, and neither of the 

two quantities 0 and 0 vanishes, we take m — 0, and when one of the two 

quantities 0 and 0' vanishes, say 0', and neither of the two quantities a and 

o! vanishes, we take k = 0 As will be seen, all the other possible special 

cases are included in the one special case that is to be considered. 

The values of k, l, m, n are given by 

k (a/3' — a'0) = 0', m (a0 — a'0) = — a', 

l (a0 — a'0) = — 0, n (a/3' — a'0) = a , 

and these values are determinate and finite unless 

a0 - a'0 = 0. 

Fust, supjKJ.se that a/3' — a'0 is not zero—which, of course, is the more 

general case. Introduce new variables u and u, such that 

a = kz -+- Iz, u' = mz + nz \ 

and then the period-pairs of these new variables are 

for u , = 1 [ = 

u, =0j* =])’ 

respectively, in bracketted pans The held of variation of the variables is 

composed of a strip of unit breadth m the «-plane and of a strip of unit 

breadth in the w'-plane, the breadth of each of the strips being measured 

parallel to the axes of real quantities m the pianos. The uniform function in 

question can be expressed as a uniform function of e™ and ewiu’. 

Next, suppose that a/3' — a'0 is zero—which, of course, is a special case. 

As a and a may not be zero simultaneously, let a be different from zero; and 

as 0 and 0 may not be zero simultaneously, let 0 be different from zero. 

Then there are two alternatives 

(i) when both a' and 0 vanish 

(n) when neither a' nor 0 vanishes, and then we have 

a ~ 0 ’ ~C’ 

say, where c is not zero nor infinite. 

As regards (i), the variable z has periods a and 0, while the variable z is 

devoid of periods • and in order that a and 0 may be effective distinct periods 

for z, we must as usual have the real part of ia/0 distinct from zero. The 

field of variation of the variables is composed of the customary a-0 parallel¬ 

ogram in the 2-plane, and of the whole of the z'-planc, and the uniform 

function m question can be expressed as a uniform function of f (2), p '(*)> 

and 0, where p (2) is the customary Weierstrassian doubly-penodic function 

with periods a and 0. 

f. 15 
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As regards (u), we keep the original variable z, and we introduce a 

variable v such that 

v = z' — cz 

When z and z have the periods a and a', then v has zero for its period, and 

when z and z' have the periods fB and 0', then again v has zero for its period 

Accordingly, when we take z and v for variables, the periods of z are a and 0, 

while the variable v is devoid of periods The uniform function in question 

can be expressed as a uniform function of (z), (z), and v, with the same 

significance as before for tf(z) and the same requirement as to the real part 

ofla/ft 

Should the requirement as to the real part of ia/0 not be satisfied, either 

there is an infinitesimal period, or the two pairs are equivalent to one pair 

only. In the former case, there is no proper uniform function with the 

periods, in the latter, the periods are not effectively two pairs of periods 

Three pairs of periods. 

131 Taking the variables to be z and z' as before, let the periods be 

for z , = ft | = /3 | — 7 ^ 

=«'/ = 0'\ = y' J 

where manifestly no pair of quantities in a column can vanish simultaneously 

Thus a can vanish, and a can vanish . as they may not vanish together, there 

are three possibilities for the a, a' pair Similarly for each of the other two 

pairs , so that there are twenty-seven possibilities in all They can be set out 

as follows 

A. When all the quantities o', /S', y' vanish, the p< nod-tableau is 

(«■ & y\ 
VO, 0, O), (A), 

no one of the quantities a, /S, 7 can vanish there, is one case. 

B Let two of the three quantities a', /S', 7' vanish, but not the third of 

them, there are three possibilities When y is the one which 

does not vanish, then neither a nor /3 can vanish , and we can have 

two alternatives, viz. 7 vanishing, or 7 not vanishing The period- 

tableaux are 

(a, 0, 0\ (a, 0, y\ 

lo, 0, y'J, (if.), Vo, 0, y), (Br¬ 

each is typical of three cases 
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Let one of the three quantities o', /S', 7' vanish, but not the other 

two, there are three possibilities. When a vanishes, then a cannot 

vanish. and as /S' and 7' do not vanish in that event, we can have 

four alternatives, viz., /3 and 7, either vanishing or not vanishing, 

independently of one another. The period-tableaux are 

(a, /3, 7\ /«. 0. 7\ 

Vo,/S', 7 7.(0,), \0, 7/ , (G-i), 

i«, /3, 0\ /a, 0,0] 

10, /S', 7 / , (Q, VO, /S', 7/ , <A). 

each is typical of three cases 

I) Let no one of the three quantities a, /S', 7' vanish, there is only a 

single possibility But as regards a, /if, 7, there arc eight alter¬ 

natives, viz, they may either vanish or not vanish, independently 

of one anothei The period-tableaux are 

/«. A 7 \ /°- £, 7 \ 
W, ff, 7V , (A), V, /S', y'J 

/<>> 0, 7 \ /0, 0, 0 1 
V«\ /s', 7'/ - (A), Vo', /S', 7/ 

Among these, (A) and (A) aie one case each. (A) and (A) are, 

each of them, typical of three cases 

132 As regards the kinds of functions considered, no generality can be 

lost by assuming that a function is substantially unaltered 

(I) when one period-pair is interchanged with another period-pair 01 

(II) when linear transformations aie effected upon the variables, coupled 

with corresponding lineai transformations upon the penod-pairs 

and, m particular, when the variables are interchanged provided 

that the periods arc interchanged at the same time, eaeh combined 

period-pair being conserved 

Under the first of these assumptions, the thiee cases typified by (B,) 

become one case only, of which (B,) will be taken as the tableau of periods 

The same applies to (/S3), (C,), (C\), (C,), (C\), (A), and (A), in succession. 

As regards (B2), when we replace the variable z by u, where 

the periods for u and z are 

the case becomes (Bt), and therefore needs no separate discussion. 

15—2 
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Let four quantities It is convenient to consider next the case (Dft. 

k, l, m, n be chosen so that 

lea + la.' = 1, left + Ift' = 01 

ma + no' = 0, mft + nft' = 1) ’ 

their values are given by 

Ic (aft' — a'ft) = ft', m (aft' - a’ft) - - a’ | 

l (aft' - a'ft) = - ft , n (aft' - a'ft) = a ) 

When aft' — aft does not vanish, t.he values of k, l, m, n are determinate .ind 

finite, when it does vanish, the selection cannot be made. 

Accordingly, in the first place, suppose that aft' — aft does not vanish. 

No generality is then lost by assuming that yft' — y’ft does not vanish and 

also that ay' — ay does not vanish, for the alternative hypothesis as to each 

of these magnitudes leads, by the permissible interchange of period-pairs, to 

the case when aft' — a ft vanishes—a case yet to be considered Now write 

u = kz + lz', u = mz + nz , 

fj. - Icy + ly = (yft’ - yft) - (aft' - a'ft), 

jW' = my + ny - (ay' — a!y) - (aft' - aft), 

where the new variables u and v! are independent of one another because 

hi — Irn, = (aft1 - a'ft)~\ is not zero. Thus the uniform function in question 

becomes a uniform function of a and uf, with the tableau of periods 

/1» 0, n\ 
VO, 1, ») . 

In the second place, suppose that aft' — aft does vanish. 

/3 

T 

Then 

say. Introduce two new variables u and u, defined by the relations 

y'z -yz' , , 
u — , u = z - cz, 

y -cy 

which are definite and provide independent variables when y —cy does not 

vanish. The period-tableau for u and u is 

(a, ft, 0 \ 
VO, 0, y'-cy], 

and so the case is inclusible in (5,), provided y' — cy does not vanish. If 

however y —cy does vanish, so that 

«' = ^ = 7' = c 
a ft y ‘ 
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we retain the variable z and take a new independent variable v, where 

v = u' — cu ; the period-tableau for z and v is 

(a, A y\ /«, A y\ 
\0, 0, 0), 

and so the case is inclusihle m (A). Thus no new kind of function, other 

than those already retained, arises out of (A) when n/3' — a!ft = 0 

Now consider the cases under {C) The case (A) is included in (A) 

unless py' — 0'y vanishes. When this quantity does vanish, we have 

£ _ 7 _ 7. 
A'y-' 

say , we take a new variable u, where a = z - kz', and then the period-tableau 

for u and z is 

fa, 0, 0\ 
VO, A, y) , 

that is, the case is inclusible in (A) Thus no new kind of function, other 

than those already retained, arises out of (C,). 

The case (C2) is inclusible in (D,). 

The case (Ct), by interchange of period-pairs, becomes ((7,) And so is 

inclusible in (A) 

The case (C4), by interchange of variables together with the proper inter¬ 

change of ponods, becomes (A). 

Similarly for the cases under (/>) The case (AX by interchange of 

variables together with the proper interchange of periods, becomes (A) and 

so provides no new kind of function. In the same way, the case (A) becomes 

(A), which is inclusible in (A)> !t therefore provides no new kind of function. 

And, in the same way also, the case (A) becomes (A) 

Hence the surviving independent cases are (A), (A); and the case which 

has emerged from (A). These will be considered now in succession 

133. We can dismiss the case (A) very briefly. There are no periods 

for z. There are three periods for z. so that, in effect, the uniform function 

is periodic m a single variable only. But, in such an event, there cannot be 

more than two periods at the utmost,,,, hence the case either is impossible, 

or is degenerate by falling into a class of doubly periodic functions of two 

variables already considered. 

The case (A) CRR also be dismissed briefly. In all the functions which it 

provides, the double periodicity in z alone and the single periodicity m z 

alone aro independent of one another. Even when the double periodicity 

Theory of Function», § 108. 
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does not degenerate, the function in question is a uniform function of 

f(z, a, j3)—with p'(z, a, j3)—and e’nj,y‘, its triple periodicity in the two 

variables combined is not a proper triple periodicity, for it is resoluble into 

the double periodicity in one variable alone and the independent single 

periodicity in the other variable alone 

It remains to consider the case which has emerged from (Z>,). This case 

provides uniform triply periodic functions, for which the triple periodicity is 

proper and not resoluble as it is in the case (5,) We have seen that, without 

any loss of substantial generality, the tableau of periods for the variables z 

and z can be taken in the form 

/l, 0,M) 
VO, 

where neither p noi p vanishes. 

Further, both p and p cannot he purely real If, for instance, m were 

real and commensurable (equal to pjq, say, where p and q are integeis), then 

a set of periods is 
/], 0, qp-p\ 

\0, 1, qp' J ’ 
that is, 

n, o, o \ 
VO, 1, qp) ’ 

which is an instance of (if,). Similarly, if p were real and commensurable 

If p and p were real arid, after the foregoing cases, were incommensurable, 

then the function would have infinitesimal periods Thus let the supposed 

incommensurable quantity p be expressed as a continued fraction and take 

an advanced convergent to its value, say pjq , then 

P ® 

** 
where 0 < | e | < 1, so that 

Thus a set of periods is 

' »• ,£). 
0, 1, qp' / 

As p is incommensurable, so also is qp ; let it be expressed as a continued 

fraction and take a convergent r/s to its value, so that 

where 0 < | y | < 1, thus 

V 
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Accordingly, a set of periods is 

('■ 
V' >• ’!/ 

When we take s very large and q/s also very large, the quantities 

s , 1 
q s 

are infinitesimal that is, we should have an infinitesimal period-pair—a 

possibility that is excluded. Thus p and p cannot be simultaneously real. 

The most general case arises when neither u. nor p is real and we shall 

assume that, henceforwaid, we aie dealing with this case. It is to be remem¬ 

bered that, in effecting the linear transformation upon the variables so that 

1, 0, and 0, 1 , are two period -pairs, we have used the constants of relation 

Moreover, as the penods in the tableau can be linearly combined in 

simultaneous pairs we have 

p + p .1 + q 0, p +p 0 + i/ . 1, 

that is, 

p + p, p + q, 

as a period-pair, p and q being any independent integers, and this penod- 

pair can replace p and p in the tableau, for any values of p and q Let 

these integers be chosen so that the leal part's of m + p and p+q, say 

R(p + p) and II (p+q), satisfy the conditions 

0 <: It (p + p) < 1, 0 < R (p + q) < 1 

Assuming this done it follows that, without any loss of generality m the period- 

tableau 

we can assume that 

0ZR(p)<l, 0^.R(p)< 1, 

while neither of the quantities p and p is purely real, moreover, this is 

effectively the general tableau for the proper triple periodicity of uniform 

functions of two variables. 

134. The field of variation of the two independent variables occurring in 

uniform triply periodic functions can be assigned in two ways, which can be 

used in complementary fashion and will leave open an element of arbitrary 

choice. Let c and c denote simultaneous values of the variables z and z’, for 

purposes of convenience we shall assume that they are a pair of ordinary non¬ 

zero places of two uniform triply periodic functions with which we may have 
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to deal Moreover, we shall assume at once that the functions in question 
possess no essential singularities for finite values of the variables, and we 
shall take 

as the tableau of the periods, with the due restrictions on p and p. 

Owing to the period-pair 1,0, we can reduce any point in the z-plane to 
a point in, or upon the boundary of, a strip enclosing c, without thereby 
affecting the position of / in its plane Similarly owing to the period-pair 
0, 1, we can reduce any point in the /-plane to a point m, or upon the 
boundary of, a strip enclosing c', without thereby affecting the position of z 
in its plane Accordingly construct m the z-plane a paiallelogram having 
n, c 4- 1, c 4- p, c + 1 4- p as its angular points , and produce, to infinity in both 

directions, the side joining c to c 4- p and the side joining c+1 to c + 1 + /x 

Similarly construct in the /-plane a parallelogram having c, c + 1, c + p, 
c + 1 4- p as its angular points and produce, to infinity in both directions, 
the side joining c' to c' + p and the side joining c 4- 1 to c' + 1 4- p 

Then, for our triply periodic functions, we can choose a complete field of 
variation m two ways By the first choice, we allow z to vary over the 
parallelogram constructed in its plane, while we allow / to vary over the 
strip between the two infinite lines drawn in its plane By the second choice, 
wre allow z' to vary over the parallelogram constructed in its plane, while we 
allow z to vary over the ship between the two infinite lines drawn in its 
plane. For special purposes, it may prove convenient to contemplate both 
the fields simultaneously, even though each field by itself is complete for the 
triply periodic functions. 

But we do not obtain a complete field if we limit the simultaneous 
variations of z and / to the two parallelograms drawn in the two planes. 
For, in effect, such a field would give 

/l, p, 0, 0 \ 
VO, 0, 1, ft') 

as the period-tableau; and then there would emerge a repeated double 
periodicity, one in z alone, the other in / alone, that is, we should have a 
degenerate quadruply periodic function, instead of a triply periodic function. 

Four pairs of periods. 

135 Again denoting the variables by z and /, let the periods be 

for z, = a j =■ /S i = 7 'l “S’! 

/, =«'/’ -0'/* -y(’ 
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where manifestly no pair of quantities in a column can vanish simultaneously 

Thus there are three possibilities for each pair of periods, and each possi¬ 

bility for a pair is unaffected by the possibilities for any other pair Hence 

there are eighty-one possibilities m all, they can be set out in a scheme, as 

follows. 

A. When all the quantities a', 0, y', 8' vanish, the period-tableau is 

(a, 0, 7, S\ 

\0, 0, 0, o) , (A), 

no one of the quantities a, 0, y, B can vanish , there is one case 

B Let three of the quantities a, 0', y', B' vanish, but not the fourth , 

there are four possibilities. When B' is the one which does not 

vanish, then neither et noi 0 nor y can vanish, while B may oi 

may not vanish Thus the period-tableaux are 

/a, 0, 7, ON /a, 0, y, B\ 

M>, 0, 0, 87, (B,). V(), 0, 0, 87, (B2), 

each is tyjucal of foui cases. 

0. Let two of the quantities a, 0', y', B' vanish, but not the other two. 

The pcnod-tableaux are 

fa, 0, y, 8 \ (a, 0, 7, 0\ 

Vo, 0, 7', 87, (00. Vo, 0, y’, 87, (00. 

fa, 0, 0, 8\ fa, 0, 0, 0 \ 

Vo, 0, y', 87, (C3), Vo, 0, y’, 87, (00, 

each is typical of six cases 

D. Let one, but only one, of the quantities a', 0’, y, B' vanish. The 

period-tableaux are 

fa, 0, 7. (*■ 0, 7. 

Vo, 0', y, 87 , (B0, Vo, 0, 
/ 

7> 87 , (A), 

fa. 0, 0, 8\ («, 0, 7 . 
Vo, 0, y, 87 , (A), Vo, 0, 

/ 
7, 87 , (A). 

(a, 0. 0, ON fa, 0, 7. 

vo, 0, y, 87 , (A); Vo, 0, y, 87 , (A); 

fa. 0, 0, 8\ fa, 0, 0, 
Vo, 0\ y, S) , (A); Vo, 0, 7> 87 , (A). 

each is typical of four cases. 
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E. Let no one of the quantities a', /3\ y, 8' vanish. The period-tableaux 

are 

(a, , 7, 8\ /0, /3, 7, 8\ /0 , 0 , 7, 8 \ 

U', P, y, 87 , (A), W, P, y, 87, (A), W, P, 7', 87 

(0, 0, 0, 8\ /0, 0, 0, 0\ 
w, P, 7'. 87, (A), W, p, y, W,(A), 

of these, (A) and (A) are each one case , (A) and (A) are each 

typical of four cases, and (Es) is typical of six cases. 

136 As regards the kinds of functions considered, the same assumptions, 

as to the interchangeability of period-pairs and as to the linear transformations 

of the variables without detriment to the generality of the functions, will be 

made as were made (§ 132) in the discussion of the tuple periodicity 

Consequently all the cases, of which each tableau is typical, become 
merged into a single case 

The cases (A) and (A) are impossible, or else the periods degenerate, 

there cannot be uniform functions, periodic in a single vauablc and having 

four distinct periods for that variable 

The cases (A), (A)> (A), (Et) are impossible, or else the periods degene¬ 

rate ; there cannot be uniform functions, periodic in a single variable and 

having three distinct periods in that variable 

By taking a variable u instead of z, where 

7 

the tableau of periods in (C,) is changed to a tableau of periods foi u and z' 

represented by (C*,) or (C4). Also by interchange of period-pairs, (C',) becomes 

(A); hence (Ca) and (C4) are, the only cases under (C) that require con¬ 

sideration. 

By interchange of variables and the proper interchange of periods, (A)> 

(A), (A) become (Ct), and so require no separate discussion, and similarly 

(Et) becomes (A), and can therefore be omitted. 

By interchange of period-pairs, (A) and (A) become (A) and so they 

require no separate discussion. 

By interchange of variables and the proper interchange of periods, (E.}) 
becomes (A) and can therefore be omitted. 

Consequently, the cases that survive for further consideration are (C2), 

(C4), (A), (A), (A) 

As regards (A), change the variables to u and u by the relations 

z = au, £ — Pu, 
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and write /9 = aA, 5 = cpx, y’ = /3'A', 8'=/9the period-tableau for the 

variables w and a' is 

/l, 0, A, /z\ 
VO, 1, A', fi’J ’ 

which temporarily will be called (F) 

As regards (C,), a similar change of variables, viz , 

z = an, z'=8'a, 

leads to a special form of the period-tableau (F) in which A' is zero. 

Assuming this included in (F), we have no new case out of (€.,) 

As regards (CV), we h<ive a function, which is doubly periodic in z alone 

with periods a and /3, and is also doubly periodic in z alone with periods y 

and S' The functions thus provided arc undoubtedly quadruply pel iodic, 

but the periodicity has an isolated distribution, they wdl therefore be 

omitted, as not belonging to the class of functions having proper quadruple 

periodicity 

As regards (A) and (E}), we effect linear transformations of the variables 

of the type 

u= kz + lz\ tt' = rnz + nz', 

where the quantities k, l, m, » are determined by relations 

ley + ly = 1, my + ny = 0, 

k8 + l8'= 0, /«8 + wB'=l. 

Different cases arise as under (Dt) m t he discussion of triple periodicity and 

we find either 

(l) a period-tableau, with new vanables, icpresented by (F), or 

(n) cases already decided, or 

(in) cases that are impossible or degenerate 

Consequently it follows that pioperly quadruply periodic functions, which 

are uniform and involve only two variables, can be modified as to their 

variables so that they have 
/l, 0, A, 
VO, 1, A', ixV 

for their period-tableau 

137. Now it is a property of quadruply periodic uniform functions, on 

the Riemann theory, that (for this tableau) the relation 

A1 =fi 

(or else A = p) holds Further, Appell* has proved, by analysis and reasoning 

quite different from those adopted for the discussion of functions on a Riemann 

* Liouville, 4“° Ser, t. vu (1891), pp. 157 sqq. 
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surface, that this relation holds in general for a properly quadruply periodic 

uniform function, that is, by change of the variables and by the association of 

appropriate factors, the junction can be made to depend upon others which 

possess this property But under both theories, the property emerges from 

the discussion of the functions themselves, whereas the preceding investigation 

deals only (or mainly) with the mere transformation of the periods, the 

property apparently cannot be deduced at this stage solely from the preceding 

considerations 

Just as was the case with the triple periodicity when the period-tableau 

had been rendered canonical, so here also we can infer (without any reference 

to a property \' = fj, or X = //) that all the quantities X, X', fi, fi cannot be 

wholly real, and in the most general case they will be complex and such that 

neither of the quantities X'/m, X///, is real. The course of the argument for 

the inference and its details are so similar to those in the earlier discussion 

that no formal exposition will be made Moreover, the quantity X//* is not 

real, nor is the quantity X'jfi , both statements can be established by shewing 

that the contrary event would lead to a zero-period for commensurable reality 

and to an infinitesimal period for incommensurable reality 

138. One difficulty, however, now' arises, it is connected with the 

geometrical representation of two independent complex variables, which 

has already been discussed Putting aside for the moment the method of 

representation in four-dimensional space, partly because of the difficulty of 

framing mental pictures m such a region, and partly because the representation 

does not by itself seem to retain sufficiently the individuality of the variables, 

we have the representation by means of the combined points in the s-plane 

and the /'-plane 

But we cannot construct a region in the ^-plane and a region in the 

/-plane that shall suffice for the field of variation of z and z' within their 

periods. Take any origins in those planes; in the s-plane, let the points 

a, b, c represent the values 1, X, /a, and in the /-plane, let the points a', b', c 

represent the values 1, X', /x', and complete the parallelograms as in the 

figures, so that the points a, /9, 7, S respectively represent the values X + n, 

1 + n, 1 + X, 1 + X 4- fi, and similarly in the /-plane. No one parallelogram 

such as 0a/3c0 is sufficient for the representation of z; for there is a portion 



138] QUADRUPLE PERIODICITY 237 

of the parallelogram ObacO not included, and there is a portion of the paral¬ 

lelogram OaybO not included. The double parallelogram OaybacO is not 

sufficient, because there is a portion of the paiallelogram OaftcO not included , 

moreover, the whole plane could not be covered once and once only by 

repetitions of the double parallelogram keeping unchanged the orientations 

of the sides. In the figure, the parallelogram OaftcO is partly excessive and 

partly deficient, for the interior of the small parallelogram between ab, by, 

aft, ftc is reducible to another part of OaftcO The triple parallelogram 

OaybacO is excessive , for much of its area (the part outside the parallelogram 

OaftcO) is “reducible” to the area within that parallelogram, and also the 

whole plane could not be covered, once and once only, by repetitions of the 

tuple parallelogram keeping unchanged the orientations of its sides 

The same remarks apply to the /-plane, in connection with the figure as 

drawn 

Thus, neither by means of parallelograms, nor by means of strips m 

the two planes of reference, is it possible to obtain definite unique and 

complete limited fields of variation for z and z, that shall discharge for 

quadruply periodic functions of two variables the same duty as is discharged 

for doubly periodic functions of a single variable by the customary period- 

parallelogram. 

But by taking an associated two-plane variation of the real variables 

a, y, ft, y, the deficiency can be supplied for one puipose This representation 

is as follows* For a quadmply periodic function, with the poiiod-tableau 

11, 0, X, /u \ 

\o, 1, X', ft)' 
we resolve X, /a, X', ft into their real and imaginary parts, say 

X — a + ib, /j, = c+id, X' = a + ib', ft — c + id', 

then every place, differing from z, z' only by multiples of the periods, can be 

represented by 
x + vy + p+r(a -j- ib ) + s (c + id), 

ft + iy' + q + r {a + ib') + s (c + id'). 

Take two planes, one of them to represent the variations of y and y' with 

reference to O'y and O'y' as rectangular axes, the other of them to represent 

the variations of x and ft with reference to O.c and Oft as rectangular axes. 

In the y, y plane, let B be the point b, b' and D the point d, d'. and com¬ 

plete the parallelogram DO'BF. In the x, ft plane, let 0A = 1 and 0C = 1; 

and complete the square GOAE. 

Then the integers r and 5 can be chosen, say equal to r and s', so that 

the point 
y + r'b + s'd, y + r'b' + s'd', 

* For this suggestion I am indebted to Professor W. Burnside, who communicated it to me 

m a letter dated 14 January 1914. 
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lies within or on the boundary of the parallelogram O'BFD, let this point 

be Q. Then every point, which is equivalent to y, y', in the sense that its 

coordinates are y + rb + sd, y‘ + rb' + sd\ is equivalent to Q and lies outside 

the selected parallelogram 

Again the integers p and q can be chosen, say equal to p' and q\ so that 

the point 

x + />' + / a + sc. y + q + r'a' + s'c 

lies within or on the boundary of the square OAEC; let this point be P. 

Then every point, which is equivalent to x + r'a + s'c, y + r'a' + s'c', in the 

sense that its coordinates ait* s + p+r'a+s'c, y + q + r'a' + s'c', is equivalent 

to P, and lies outside the selected square 

It follows that, in connection with a place z, z\ and with all places 

equivalent to it m the form 

z + p 4- r\ 4" sy. z 4" q 4" r\ + syf, 

we can select a unique point Q within the ?/, y parallelogram, and then 

associate with it another unique point P within the x, x square We take 

the point-pair QP as represenUtive of the whole set of places that, in 

the foregoing sense, are equivalent to z, s’, it is given by the specially 

selected place 

2+7/4- r'X + s’fi, z + q' + r'X' + s'y' 

Uniform triply periodic functions m general. 

139. It is known (Chap, v) that a uniform function f(z, z), which can 

have poles and unessential singularities but which has no essential singularity 

lying within the finite part of the field of variation, can be expressed m the 

form 

/0. *') 
<£Jz, z) 

f(z,z')’ 

where <f>(z, z') and yjr(z, z ) are everywhere regular within the finite part of 

the field of variation. 
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Wc shall therefore proceed from this result, specially for the purpose of 

deducing* some initial properties of triply periodic functions that are uniform 

We denote the period-pairs by the tableau 

Now because 
f(z + 1, z') = /(z, z), 

and because the functions <f> (2, z) and 1fr (2, z) are regular, each of the equal 

i ructions 
(p (2 + l, 2') \jr (2 4-1, z) 

<p(z,z') ~ ir(z,z) 

derived from the equation expressing the 1, 0 periodicity of f\ is devoid of 

zeros and of poles and of unessential singulanties for finite Vtilues of the 

variables hence, as in § 79, the common value of the fractions is of the form 

er~z,zit 

where g (2, 2') is a regular function of the variables. Consequently 

<f> (2 + 1, z) = cp(z, z) ev1*'*'11 

\[r(z+ 1,2')= yjr (z,z')e',il:’*’ f 

Sim daily, through the 0, 1 periodicity of f, we have the relations 

<p (2, 2' + 1) = <fi (2, 2') eh<z'l) ] 

\p{z, 2' + i) -■$'(z,2')ehur’*'‘ f ’ 

where also h (2, z) is a regulai function of the variables 

In older that the two sets of ielatious may coexist, we must have 

<£(2+1, 2'+ I) =<p(z, z) 

<j> (2 + 1, z + 1) = <f> (2, z) g'/a.zi+Ao+i./q 

and similarly for yfr (2, 2'), therefore 

g (2, 2' + 1) — g (z, z) 3 h (2 4-1, 2') - h (2, z), (mod 2m). 
Let 

g (z, z + 1) — g (2, 2') — 2km = h(z +-1, z) — h (s, 2 ) — 2lm, 

where k— l is an integer manifestly, eithei k or l could be taken equal to 

zero without loss of generality Now suppose a function X (2, z) determined 

such that 
X (2 + 1, 2') — X(2, z) = g (z, z) — 2kmz' I 

X (2, z + 1) — X (2, 2') = li (2, s') - 2lmz J ’ 

which two equations are consistent because of the foregoing relation between 

g and h. If then 

(}>, (2, 2') = <p (2, 2') ->/'■, (2, 2') = (2, 2') e 

$ 137 

This particular investigation follows the earlier sections of Appell’a memoir already quoted, 
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we have 

/(*> *0 = 
<fh (*. *) 

(*> *') ’ 

where the functions <^>, and satisfy the relations 

<p\(z + I, z) = <f>} (z, z') eikniz' 1 \f/,(z+ 1, /) = -^1 (z. z')e3hn* 

4>i (z, z + 1) = <£, (z, z) e'llmz J ’ \frt(z, z' + 1) = i|rj (r, z') e'ihx2 

The function f (z, z ) under consideration has p and p for a third pair of 

periods Proceeding as with the other pairs 1, 0 and 0, 1, we have 

<£, (z 4 fz, z' + p) _ i/r* (Z + M, + p) _ 

<f>l (2, Z) (z, z') 

where m (z, z) is a regular function throughout the domain. By the earlier 

relations which are satisfied by <f>, and -^r,, and from the relation 

*»<* + I+m* + 
(f>fz + l,z') 

we find 

m(z 4 1, z') = m (z, z) 4 2m (a 4 Ip), 
and similarly 

m (z, z 4 1) = m (z, z) 4 27ri (/3 4 Ip), 

where a and /3 are integers Let 

m (z, z') - M (z, z) 4- 27n (a 4 kp) z 4- 27ti (f3 4 Ip) z, 
so that 

M (z 4 1, z') = M (z, z), M (z, z' 4 1) = M (z, z), 

then both <p, and i|r, satisfy the relations 

^ (z 4 1, 2') = S (2, z) e!*’r,z 

= S (z, z) e"h,z 

^ (z 4 p, Z 4 p) = ^ (Z, z') (i, Z) 

where M(z, z') is penodic with I, 0 and 0, 1 for period-pairs, and a, ft, k — l 
are integers. 

The triple theta-functions. 

140. The formally simplest cases arise when we take 

k— 0, l — 0, a = — 2, /9 = - 2, M (z, z')— — 2ni (p 4 p'), 

and when we require that the functions shall be only triply periodic and 

must not be quadruply periodic. Then 

^0+1. 0 = O, 
»(*, z' + \)=^{z,z'), 

^(z + p,z' + p) = ^ (z, /) 

which (as will appear presently) are equations characteristic of functions that 

are triply periodic actually (or save as to a factor). 
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Without enquiring into the comprehensiveness of this set of functions 

A (2, z), ive see that a large class of functions, which arc strictly periodic in 

three pairs of periods, can be expressed as quotients of these pseudo-periodic 

functions Even at the risk of a little confusion (because the title “ triple 

theta-function ” has hitherto been assigned to uniform functions of three 

variables which are similarly pseudo-periodic in six period-pairs), it will be 

convenient to call ceitain functions, satisfying iclations similar to those 

satisfied by 'b (z, z'), triple theta-functions 

We now proceed to a more detailed consideration of their simplest 

properties, obtaining the above characteristic equations in a different manner. 

141 We denote by 1, 0, 0, 1 , p, a , the penod-pairs in the variables 

z, z' Owing specially to the first two peuod-pairs, we are led to consider 

functions expressible in extended Fourier-senes in the form 

X QCi 

6{Z,z') — £ ^ 
- oc ac 

Here a and cr' aie constants, taken to be integers, m and n are integers, 

ranging from — oc to 4- oo independently of one another, and the constant 

coefficients a„,n are supposed to be such as to secuie the absolute convergence 

of the double series 

We cannot at once declare, from the indices, that a and a' are 0 or 1, 

each of them Thus, if cr were 2, we could substitute zero foi it by changing 

m into /«—l, so far as the variable part of the term is concerned, but the 

change could not necessarily be made in the coefficient, for there is no know¬ 

ledge of the way (if any) in which amn contains a or a' But we have 

9(z + 1, «') = (— 1)* 9(z. z'), 

6(z, /+]) = (- iy d{z, /), 

and so we can infer that, so far as cr and cr' are concerned, all the possibilities 

are covered by taking cr, cr — 0, 1 in any combination that is, four cases 

arise through this source alone. 

142 Oui function 6 (z, z) is to have p and p as periods or pseudo- 

periods, so we form 6 (z + p, z + p), which is 
X X 

V S' it (27i+<r')7ri^’+i2m-f <r)mz+('2n+</}in? 
— ** t* mn c 

- » - 00 

Adopting the usual process for dealing with the periodicity (actual, or save 

as to a factor) of a uniform function, we compare the coefficients of teims in 

0(z, z) and 9 (z + p, z + p), and different possibilities occur, according to 

the different methods of grouping the terms We definitely choose (for 

reasons that will appear very soon) to group the term in 6 (z -f- p, z’ + p), 

which involves am„, with the term in 9(z, z), which involves am+li»41 As 

9 (z, z) = 

F. 16 
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we have 
9 (z + fi, z + fj!) = Be~miz+^) 9 (z, z'), 

if 
aMtle)Ml+r|^+^^ = Bam+1>n+1, 

where B is taken to be a constant, independent of m and n. Let 

q - ei’rtM q’—gi^L‘. 

and take new quantities cmn, connected with the quantities amn by the 

relation 
n =r r>|a»/H-cr)» ■/(Sn+P’')* 
umn — Wn/i 'i j 

then 
Cmn “ Blfq 4 Cm ^ i, 

= y}cn,+!n+i, 

say. The pseudo-penodicity of 6{z, z) is now exhibited in the property 

9 (z + fi, z‘ + ft) = Atr™"*•+*'>-«<*+»*'> 9 (z, z'). 
Further, let 

A = »-■"* = (- 1)_A, 

the difference-equation for the quantities cmn becomes 

('mn = & *** Cin+i,n*H" 

Having regard to the form of this relation, we take 

r __ ^a+irtlpm+p'n) +a2 *+... 

= e"K>TO+o'») - n); 

the difference-equation then is satisfied if 

p 4- p =\, 

and there is no restriction, beyond the requirements that secure the con¬ 

vergence of 6 (z, z), upon the function §. Accordingly, the form of 

9 (z, z) is 

9 (z z ) — V£ jynp-t-up' q(im+tr)i q'lsm+tr'i' ^ e(am+r)iw+(»!+</)nz’_ 

Also, p and p always will be made integers—either 0 or 1, hence 

A =(- 1)“A = (-1 )-<“+»'' = (- iy+o ; 

and so the characteristic equations, connected with period-increments of the 

variables, are 
9(z+l, z ) = (- l)17 9(z, /) | 

9(z, z'+l) = (-lf9(z,z) [. 

9 (z + p., z' + p!) = (- 1 y+f' 9 (z> z')\ 

These results, and all results connected with period-increments of the variables, 

are included m the formula 

9 (z + ap + ft, z + apf + y) 
]_^00*4-ya'+aifi+p'} g—!hrto^-4-«')—irta*(|i,+#i,') Q 

where a, /9, y are independent integers. 
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Manifestly, the integers p and p' can be restricted to the values 0 and 1 

independently of one another. When it is necessary to put p, p', o-, <r' in 

evidence as magnitudes occurring in 0{z, z), we shall denote the function by 

143 Before proceeding with any development of the properties of these 

functions 9, it is convenient to indicate the reason for the selected grouping 

of the terms in the comparison of 6 (z + p, z + p!) and 0 (z, z'). As already 

stated, some grouping of terms has to be made under the method adopted, 

and the simplest grouping would compare the teiiu in 0 (z + p, z' -f p), which 

involves a„m, with either one ot other of the terms in 0 (z, z'), which involve 

Suppose that a difference-equation is established between amn and 

all the following argument, mutatis mutandis, holds for the alternative 

supposition of a difference-equation between amn and «m,n+i. Let it be 

Tift oUm+(T)iniL+ MU ir'inin' — 

When there is no other difference-equation between the coefficients, (in 

particular when theie is no relation between amn and rtm,n+i)> we take 

and then 

so that 

The function becomes 

w mn — {'inn & i 

6«(+j,n “ Ctiut be ^rT = QCmiit 

Crnn=('myfr(/i) 

VV ^  | ynp+rip1 ^ j QtrigiItm+tramti+mtin+ir [in-i it')mz', 

The aggregate of all the terms in the double series for one and the same 

value of n is (with the restrictions as to integer values of p and a) a single 

theta-function of z alone . and so it becomes 

0o(z)fo(z') + 0i {z)f, O') + 02 O)/jO') + f'a 0)/» O'). 

where /„ (z‘),/i(z'),f2(z'),/3(z) are functions of z alone. It thus becomes the 

sum of four resoluble products, each of two factors and each factor involves 

only one variable. The case is limited in generality 

A similar result ensues when we assume a grouping which compares arnn 

with fflm+,,,1 and excludes at the same time a grouping which compares amn 

with am,n+t, where r and s are any integers. 

Further, we cannot have two distinct sets of periods for the case when 

there is only a single grouping of terms. For otherwise, we should have 

Bamn = <**+,,„ 

— -£» U'fnn v , 

16—2 
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for all values of m and n hence 

X = fi (mod. 1), X' = fi' (mod. 1), 

so that, when account is taken of 1, 0 and 0, 1 as period-pairs, X and X' are 

effectively the same as fi and /*'. 

On the other hand, when there is a double grouping of terms, so that amn 

is compared with in one of the groupings and with «Wj«+1 in the other, 

we have one period-pair for the first and another period-pair for the second • 

this is the case with the double theta-functions, which are quadruply periodic 

(actually so, or save as to a period). Let the difference-equations be 

Bamn W = aM+1>„, 

(1/1 p(2?»-fffnrlA-H2tt*fa'lmA — n 
\su>mnv —1j 

for all values of m and n Then 

and 

(J'm+ 

_ p(i»rt-f«r>Tri#i.+ (2»4-2+<r — /i+i e 

— fUla p{2m+a,)»iyt+A) + (2/i+cr iirii/i. — U\.sUmn C , 

= Ocim±] n ^J-l-cr) TF-tA-l- wxA' 

—. BCamn 6 Trl ^+ (2n+a) in (A'-fm 1 + 2mA 

for all values of m and n , hence 

2iriX= 2trifi (mod 2th), 

or, having regard to the existence of the period-pairs 1, 0 and 0, 1, we infer 

the relation 
X = /<■', 

the well-known condition in the Riemann theory 

Any other double grouping of terms gives rise to quadiuply periodic 

functions. Consequently when there is a question of dealing only with triply 

periodic functions, there can be only a single grouping When the grouping 

is such as to affect only one of the suffixes in a,„„, we have seen that the 

resulting function is composite and can be resolved into a finite number of 

sums of products of simpler functions. Accordingly the grouping must be 

such as to affect both the suffixes in amn. The simplest difference-equation 

of this kind connects «W+1,„M with am_n and so this is the grouping which 

has been chosen. 

144. We have taken our triply periodic function in the form 

6 (Z, /) = S2 (— l)m'+"o' q■ q'i2n+<r)> £ (m _ 7i) el»»+<r)»w+ w+j'liru' . 

and we know that, save as to a simple factor, at the utmost, 6{z,z’) has 

1, 0; 0, 1, fi, ft; for its period-pairs, whatever be the form of the coefficient 

— n). The preceding discussion has indicated the reason for the choice 

that ultimately leads to the construction of the coefficient: but some special 
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cases have to be noted and rejected from the class of triply (and only triply) 

periodic functions. 

I. Let <f> (m — n) = 1 Then 

e(z, /) = {S(-1)”* g{2»n \-<r)irizj jV ^_ iyip' q' u>?i+<r')i g(an-Hj )iritf) 

that is, 0 (z, z) is the product of two single theta-functions, and the period- 

pairs are 

for z, 1, fj,, 0, 0 ] 

0,0,1,//’ 

that is, 0(z, z ) becomes a resoluble, but quadruply periodic, function 

II Let <f> (m — n) = eVM{m~n) Then 

S {zy z'} = ( J^WHp+a) ^(am+a)3 g (sm-Hr) mz j |V ^  \ (««.+*')2 g(2n-*-<r )iriz' | ^ 

we have the same conclusion as in the preceding case. The function 0 (z, z) 

is not a proper triply periodic function. 

III. Let 

4> (lH - n) = <r-2n-,rH 

where x is independent of m and n. Then it is easy to prove that, save as 

to a factor, 6 (z, z') has four period-pairs, viz. 

for z, 1,0, fi+ic, — k j 

z, 0, 1, ’ 

the addition of the third and the fourth of the pairs giving the period-pair 

/i, / In that case, 0(z, z ) is a proper quadruply periodic function, being a 

non-degenerate, double theta-function, it is not a function which is triply 

(but only triply) periodic. 

Accordingly, <f> (in — n) may not have any one of the three preceding 

forms, nor any combination such as 

gTTiafm—n) (2 m-\-<r—2n—<T)2 

in order that the function may be only triply periodic But any other form 

of <f> (m —n) is admissible provided, of course, that it is such as to secure the 

absolute convergence of 0 (z, z'). 

If, in particular, for any one of these admissible forms, <p involves a and a 

so that 
<p (m — n) = a function of 2m + a — (2n + <r'), 

then it is easy to prove that 

0 ( P • P’ 

W + 2, a. 
e 

thus furnishing an additional reason for restricting the values of a and <r' to 

0 and l, independently of each other. 
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145. One remark may be made at this stage as to the so-called addition- 

theorem for the theta-functions. Thus it is possible to express the product 

of four double theta-functions in terms of sums of products of four double 

theta-functions of other arguments • and it is possible to express the product 

of a double theta-function of z, 4- z2, z,' -f z2' and a double theta-function of 

Zj — Zj, z,' — z./, in terms of double theta-functions of Zj, z,' and of z2, z./ In 

the purely arithmetical establishment of this theorem, relations 

fl,' = i (Mi + Ma + P's + Pv) — Pt 

v,' = }(r, + v, •+ I'., + Vi) - v, 
(r = 1, 2, 3, 4), 

for arguments, parameters, and integer-indices of terms, aie adopted (requiring 

that, for parameters, cr, + <r24-<r., + <r4 is an even integei, and so on) and 

then 
V=Zp, Sr'-Z*, 

= —/aJ, 2p.V = Sy'2 = Sr5 

The last equations allow the transformation of a product of four coefficients 

such as 
gK (m—n+c)4 

mto the product of other four like coefficients and so renders the addition- 

theorem possible But except for coefficients that have this quadratic index, 

the transformation cannot be effected for instance, it could not be effected 

for coefficients such as 
g<t(7n—n+ep 

Consequently, we are not to expect an addition-theorem for onr triply periodic 

function similar to that possessed by the double theta-functions. 

The sixteen triple theta-functions. 

146. Coming now moie specially to the detailed properties of the 

functions denoted by 

we have seen that, when p and p are restricted to be integers, it is sufficient 

to take for each of them either 0 or 1. Further, the actual values of a and 

cr' in the coefficients of the variable parts of the exponential terms would not 

be of importance as, owing to their linear occurrence, they would (if changed) 

affect only a factor common to the whole series, but they occur in the 

coefficient in each term and the occurrence is not linear. We have seen that 

a large class of these functions 6 is selected from the whole body, by assigning 

to o- and cr' the values 0 or 1 independently of one another; but it must be 

noted that such an assignment of value is a distinct limitation upon the full 

generality of the functions. 
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Suppose then that the values indicated are assigned to p, p', a, a', as 

there are two possibilities for each of the four parameters, there are sixteen 

functions in all. It is convenient to shorten the symbols of the functions ■ 
and so we write* 

n* glmmz + ‘Inwiz' a /0> ~ \ _ o 4m2 '4«; 

*U. 0. z) 0° « 

a z \ _ _v\r„ (2»i+l)2 <4n2 J2m + l)rtz + 2nm' 

Vl, 0, z')~ ’ rH q 

°x ® ) = 8, = nurqil,Ci q'^ 1)2 e'2 

6 J* * ) = 0, = Ha, (fm +1>2 </2n +1)2 

0(o o l') = 0i = -1 )m a> ?4m* (iMl ^mrlx+2"’r,f 

e (]’ ?’ 2) = 6, = (- I)”1 a, 9<2’" +1)2 q,in2e<2 
U, z / 

2inmz + {2n + 1) mzr 

(2m f 1)tt/2 + (2«+ 1) iris' 

Z + 27/TT/Z' 

(2m +1) iriz + 2/(tt<z' 

ptTiTiz -f (2 u 4-1) nz' 
0 (q , * ) = 6, -2S(-1 )marqim-q'^1^e 

0, = ^ (_ J y» ^(2m + ip ^/(2« +1)2 g(2m->l)niz + (2n +1) viz' 

0(?/ J; *,W. = SS(- 1 V* or94w2(/,4n2e1!m’r'“+ 2iiti:‘ 
\v, l), z J 

0(0> ]> 2) = 0% «SS(-l)naro(2m+1)29,4n2e<2m+1),r'2+2W 
VI, 0, z ) 

0 f0, J’ M = = l)nrtrtf4m*?,{2“+1)%2""rM + (2H+1)T“' 
\0, 1,5/ 

^/0, 1, 5 \ __ ^ 3-W ^ 1 o +1)" +1) xu + (2w + l) iriz 

\1, 1) W “ ~~ 

flf1’ M = 013*22(-ir+%tr^4maf/4n2ew*+'w 
\0, 0, z ) 

0(]’ 1 > */) = 0)3 = SS(- 1 )»+«„,/2™+1>29'4"2e<2"‘+4>"*+2nm~ 
VI, 0, z'J 

q/1> 1, z A _ p _ ^ yn+ ?! ^4m2 ^y(2n +1)2 gVmmz + {2n + 1) viz' 
Vo, 1, z) 14 ' 1 

^/l, 1, z \ _ q =S2(—l)m + ”tt ^(2m + l)2 j'(2n + l)-g(2?» + l)it«+(2«+l)xij' 

U, i> “ 

* The symbols adopted agree with the symbols used for the double theta-functions in a 

memoir by the author, Phil. Tram (1882), pp 788—H62; the reason is that, as indicated above, 

the functions actually become double theta-funotions when the proper value ib assigned to the 

coefficients ar. 
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where, throughout, r denotes to — n, and the coefficient aT is an abbreviation 

for — <r, a') m the respective cases. 

The law that to and n, when they occur in the coefficients, must occur in 

the combination m-n, secures the periodicity (actual, or save as to a factor) 

of the functions: thus it is essential. As will be seen later, another limitation 

will be imposed so as to secure the oddness or the evenness of each of the 

sixteen functions, but the limitation is conventional, not essential. In the 

meanwhile, we note that a- and a' are the same for the set 6„, 0t, de, 6n; 

likewise for the set d,, d,, d„, d,,, for the set d2, d„, d10, d14, and for the set 

da, d7, d„, dIB Let 

<f> (m -n, 0,0 ) = f(m- n) =/ (r) j 

<f> (m — n, I, 0) = g(in — n) = g (r) 

<f> (to — n, 0, 1) = h (to — n) = h (r) 

<p(m — n, 1, l) = /,-(m — w) = /r(r) 

then the typical coefficient a, is 

f(r), for d0) d4, d,, d,2 

g(r), . d,, ds, 6,, d]S 

/((r), .. d„ d„ dJ0, d14 

fc(r), .. ds, d7, du, dlB. 

Even function# . Odd functions. 

147. It is important to know the conditions that will allow any (and, if 

so, which) of these functions to be either odd or even in then arguments. 

We have 

Yyn-p+np ^qr$n+<r )'*£— (m+Dmz— fan-hr’iwtz 

where 
ar= <f)(rn — n, cr, a'). 

Let new integers to' and n be chosen so that 

in + m + cr = 0, n + n + a = 0, 
then 

d(— 2, —/) = (— \yr+p‘<r'(— l)»»'|i+»>'a)_^('inv,+iri5^,(OT'+<r'|2g(iim'+ir!)rK+(jn'+ir'lirir'_ 

But 
6 (z, z) = 2S (— 1 )«*'(>+»t> CTq'im ~'7l‘q'!>in !•»')2g(2m'+<r)TT12+ (2n'+<r'|^ 

where 

cr = <f> (in — n', cr, <r'). 

In order to compare d(- 2, -2') with d(z, /), we take 

0 (to' - <r, <r') = <f> (to - n, cr, cr'); 



148] 

and then 

THETA-FUNCTIONS 249 

d(-z,-£)={- 1 yr+**0(Zj £), 

that is, 0 (s, s!) then is even when pa + per' is even, and 0 (s, z') then is odd 

when pa 4- p'a' is odd 

Thus the imposition of the condition upon <f> secures the evenness or the 

oddness of the functions As regards the expression of the condition, let 

in' — n = — r, 
so that 

wi — n = r — a + a’ , 
the condition is 

<f> (— r, a, a') = <(> (r — a + a', a, a ) 

To modify the expression of the condition, let 

<£ (t, a, a) — yfr (21 + a — a', a, a), 

where \fr is a new form of coefficient, then the condition is 

\/r (— 2r + a — a', a, a ) = yfr (2r — a + aa, a) 

shewing that yfr is an even function of the first of its three arguments This 

is the necessary and sufficient condition, that each of the functions 0 (z, z ) 

should fie either odd or even. 

One very important class of functions is provided by limiting the co¬ 

efficients \fr still further Let it be assumed that the function ^ is a 

function of its first argument only, so that the typical coefficient, which 

was <p (ni — n, a, a’), is 

■fr (2in — 2« + a — a'), 

where yji is now an even function of its only argument 2m — 2n + a — a ■ the 

parameters a and a' enter into the coefficient solely through then occurrence 

in this argument If then by any change in the function 0 (z, s'), such as an 

increment of the arguments, the parameters a and a' are increased or are 

decreased by the same integer, the coefficient tfr is unaltered. 

It may be noted that the double theta-functions arise from one particular 

case of this last law, viz. 
yjf. _ p(->)/! -m+ir-a')'-' 

Other simple laws can be constructed, subject always to the requirement of 

convergence, for our immediate purpose, wc have also the requirement of 

merely triple periodicity. 

148. Before the final postulation of the aggregate of conditions and 

limitations upon the coefficients, consider any function 0 (s, s'), which is triply 

periodic but not otherwise limited, so that it is mixed as to a quality of 

oddness or evenness Let 

E (z, z’) = 0(z,z') + 0(-z,-s'), 0 (z, s') = 0 {z, s') -0(-s,~ s'), 
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so that E {z, 2?) is certainly an even function, and 0 (z, z ) is certainly an odd 

function, and let the series-expressions for E and 0 be 

E(z, 2)= 22 (—* ly’V+V JcfU nq{9m+<r)2 (ji™*9')2 g(2TO+a)n-tf+(3n4V)fftz ^ 

Q 2^ — VV ^_ ^ynp+'np' ^ ^Um-hr)J ^/(2»+«r')B g{zvi+<r)inz+ im+^jiriz J 

Then substituting for 0 in the definition of the function E, and denoting by 

a,„ „ (as at first) the customary part of the coefficient of the typical term in 0, 

we find 

Consequently 
h'm, n — ^m, n ( -1 9 (j . 

m—o,n—o' ~ U’m—o, n—o' 4" 1 ^ 9 

and theiefore 

&—w, —n — w,—n ( 1 'ytr+po ^ iw—<r,n—ff 5 

Similarly, we have 

k-m,_» = (- 1 >”r+<‘V A,—,n-V 

u«,-« = - (-1 y*+*v 

Moreover, by analysis that is similar to the analysis used in establishing 

the earlier condition that a function should bo odd or even (and not mixed), 

we have 

E( -z, -z) 

= (- l)w+i,v 22 (- 1 )»>'<■+">' q,sm+<r'\/!2»'+<rV e 

_ V^C J^m'p+n'p' ^i2Tii'+iT)2 (W+ff')2 +<y>m2+(2n'+cr')inz' 

= E(z,z) 

Similarly, we have 
0 (- z, -/) = - 0 (z, z) 

\2tn -Hmr«4 U»t +<r )inz 

Consequently, even when the initial function 0 (z, z ) is mixed as regards its 

quality of oddness or evenness, we can deduce (by appropriate combinations) 

tnply periodic functions which definitely are odd or definitely are even. We 

therefore have said that the limitations imposed upon the coefficients in 0, to 

secure the oddness or the evenness of the function, are conventional and are 

not essential. 

Effect of half-period increments of variables. 

149. The law of reproduction of the general function 8 (z, /), when the 

arguments are increased by any combination of integer multiples of the 

periods, has already been given. We proceed to consider the laws of changes 

among the functions 0 (z, z), when the arguments are increased by linear 

combinations of half-periods: and these have two forms according as the 

typical coefficients in the senes are taken to be 4>(m — n, a, a) in general or 

■f(2m + o- — 2« — <r') less generally, excepting from the latter the single case 

when the expression for yfr gives quadruply periodic functions. 
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I. Let the coefficient in 8 be <f> (rn — n, <r, a') We have 

d(p> P\ * + i\ t,0/7» + l, P, z\ 

\<r, <r, z / \ <7 , <7 , Z J 

e(p' p> 2 \ = i„'e(P’P+1-z\ U a', j + y "U ^ , W’ 
P', *+i\ t,+^^(p + i. p' + l * 

\<7, a, z + \) V cr , a , z! 

With these half-period increments, the members of the set 

K et, e%, e„ 
are interchanged among one another, as also are the members of each of 

the sets 

Pi, P>, P« , Pi j, 

0* 0„, Pu, 

Pn, Pi, Pn, Pii, % 

the law of inteichange being the same as that given in the first four columns 

of the table on p. 254 

Further, let Si (p’ P J Z,') denote the value of 6 ( p' P,’ when, in the 
\ar, a , Z J \cr, a , z J 

latter, we take <f> (ni — n, <r — 1, a1 — 1) as the typical coefficient in place of 

<f> (m — n, <7, a-') Also, let 

■N = m (z + z')+ {m (p + p!). 

Then we have 

6 
p, p, z + 

a-, <r', z + \p!, 

0 

a (P< P , z + \p + iy 

l<r, a , z + \p! 4- ^7 

e--vS\ 

p(p’p; z,+lfl, + ~)='L° 
V<r, <7 , z + \p J 

p, p, Z + £p 

<r, c-', z' +\p! + \) 1 

-.vs 

»- .v V 

p , p , z 
<7 + 1, <7 + 1, Z 

P + 1 

<7 + 
L P . z\ 
1, 17' 4-1, z'J 

. ^+0 g- .v ^ 

p , p +1, Z 

cr + 1, a + 1, 2' 

p + 1, p' + 1, ^ 

(7 + 1, cr' + 1, z'J J 

It therefore follows that, with the general coefficients ail opted, there is no 

interchange of the functions 0 (z, s') among one another, they change into 

other triply periodic functions Sy(z, z) with different general coefficients. 

There are corresponding laws of change for the functions A (z, z'J, when 

the arguments are increased by linear combinations of half-periods, into the 

functions 6 (z, z'J ■ this reciprocal property being, of course, due to the 

periodicity of 6 (z, z) and of if (z, z\ 
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It is to be noted that, in all those changes, the quantity o — o' is 

unchanged: so that, when the coefficient <f>(m — n, a, o') is specialised into 

^ (2m + a — 2n — cr'), the functions A (s, z) are the same as the functions 

8 (z, z’) The functions 8 (z, z') would then interchange for all these half- 

penod combinations, these laws of interchange will be given in the table 

(p. 254). 

Again, we have 

0(p, p, Z + ^p^ P - P’ Z 
\cr, cr, z > \<t + 1, <T, z, 

"CAA-AJ (£/, a 
*U2:£:A 

•UisU :■)-(-•) 

where <?+ A’ * ) , 0~ (P’ P,’ 2) ,P)~(P' p! Z\ , 0+ A’ A) are derived 
\<r,tr,z/ \o, a, z ) \o,o,z'J’ \o,o,zJ 

from 6 ^P’ P,’ Aj by changing its typical coefficient cf> (m - n, cr, o') into 

tf> (m — n, o — 1, <r')« 4> (m — n, <r, o' — 1), <p ( in — n — i,o, cr'), <p (m — n + 1, o, cr'), 

respectively, all these functions 8+, 8~, 0+, ®~ being tuply periodic Also 

8 fp’ p,’ 3 + p) = (- [ H~ f P’ P; M 
\<t, a, z J \o, o , z / 

,] =(— !>> e-:ww'-»V( 
p, p, Z 
a, cr', / + /*', 

p. p, z 

a, o', Z 

II Let the coefficient m 0 be iff (2m + cr — 2n — o'), where y)r is any even 

function of its argument except a constant or 

(2m-*'<7-2?i—f7 )fl 

r > 

always provided that the series converges. Then the sixteen functions 

8 (a, z') range themselves into two sets, the members of each set interchanging 

with one another for half-period increases of arguments, as in the first eight 

columns of the table (p. 254) 

III. Let the coefficient in 6 be a special case of the last, so chosen that 

yjr (2m + o - 2n - o') =_p(»»+'-»»-<r‘>‘ 

where there are limitations upon the real parts of p + k, p! + k, pp + tc(p + p!) 

necessary to secure the convergence of the functions 6. 
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The sixteen functions are now quadruply periodic (being the double 

theta-functions)- when we write 

«11 = M + K> «II — — K, ffffl = ^ + K, 

the four pairs of periods and pseudo-periods are 

foi z, 1, 0, an, uvl 

z\ 0, 1, a,2, aa 

The three pairs of periods for the triple theta-functions aie 

for s', 1, 0, («„ I- nu =)n ] 

z, 0, 1, («]2 + ((»• =) ix j 

As already stated, the first four columns in the table give the laws of 

interchange for half-period increments when the coefficients in the triple 

theta-functions are quite general, the first eight columns give the laws of 

interchange foi half-period increments when these general coefficients are 

limited so as to secuie that the triple theta-functions are, each of them, either 

an odd function or an even function of its arguments, and now we add the 

result that the sixteen columns give the laws of interchange for half-period 

increments when the coefficients are fnrthei specialised so as to give rise to 

double theta-functions 

160 With the definitions just, given for , a,,,. <t,,, we write 

L = 7tiz + \m (/x + k) = 7tiz 4- \trian 

M = mz -y J tti (tu + k) = iriz' + 17nau •, 

N = 7n (z -(- z’) + ] 7n (/x + p) = vi (z + + j tti (</„ + %iu -f aa) 

and then the table is as on the next page 

161 Of the sixteen functions, whether they are the general properly 

triply periodic functions or the more special quadruply periodic functions, six 

are odd, viz. 8,, 8U) 8t, 810, 8U, 8U, and the remaining ten are even. 

The table enables us to deduce a number of irreducible zero-places for 

the functions, whether triply periodic or quadiuply periodic, from the fact 

that the odd functions vanish at 0, 0. These zero-places are given, say foi 

any function 8„, by noting that 

8„ (z + z' + = 8, (z, z'), 

so that z = z — is a zero of 80(z, z), and so for the others in turn. 

The whole set thus deducible is given in the succeeding table (p. 255)- the 

first eight lines give the zeros when the functions are triply periodic and not 

quadruply periodic; the last eight lines give the further zeros when the 

functions are further specialised so as to become quadruply periodic. 
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But it must be remembered that each such picked zero is, for a single 

function, only a place in a continuous aggregate of zero-places for any pair 

of functions, any simultaneous picked zero (such as 0, 0 lor dfl and 07) is an 

isolated simultaneous zero. 

Construction of functions that are strictly periodic. 

152. The results of § 142 shew that each of the sixteen ^-functions is 

periodic in 1 and 0, save possibly as to sign, also m 0 aud 1, save possibly as 

to sign, also in p and p, save as to the factor exp (— 2 mz — 2 ttiz — Trip — Trip) 

and save possibly as to sign. The actual periods (except for multiples of p and 

* Both the tables may be compared with the table given by KOnigsberger, Cielle, t lxiv (1865), 

p. 23 
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ft, when the variable exponential factor occurs) for the functions are as 

follows — 
1,0, 0,1; ft, ft \ for 8„ and 6Vi, 

1, 0, 0, 1 , 2ft, 2ft , for 8t and 8g , 

2, 0, 0, 2 , ft, ft, for 8., and 8U, 

2, 0, 0, 2 , 2ft, 2ft , for 8? and 8U , 

2, 0; 0, 1, ft, ft . for 6, and 8U. 

2, 0; 0, 1 , 2ft, 2ft , for and 8„ , 

1, 0. 0, 2 . ft, ft , for 02 and 8U. 

1,0, 0, 2 , 2ft, 2ft , foi 8n and 8W. 

Hence the fifteen quotients of any fifteen of the functions by the remaining 

sixteenth function are actually triply periodic (save possibly as to sign) in 

1, 0, 0, 1 , ft, ft'. the squares of these quotients are actually triply periodic 

in the three pairs of periods. And it may be noted that the eight quotients 

8„ 8, 8, 81 8t 8, 0„ 8, 

8n' 0u’ 8U- 8a' 8h’ 8%' 8W 8n 

are actually triply periodic in 1, 0, 0, 1, ft, ft 

The analogy of the quadruply periodic functions which anse out of the 

double theta-functions suggests that, for the triply periodic functions, we 

should take the quotients 

0, - 0a, 

where r has all the values 0, 1, , 15 except r = 12 Triply periodic 

functions thus are secured without doubt but it must, at once be noted that 

the functions are tied as to their infinities In the simplest case, when the 

^-functions are regular for all finite values of the variables, the infinities of 

each of the fifteen quotients are the zeros of 8U and are these alone But 

such zeros are a continuous aggregate , and so the simultaneous poles of the 

fifteen quotients, taken in pairs anyhow, are not isolated points the fifteen 

quotients are tied, through the common occurrence of 012 in the denominator. 

The simultaneous zeros of any two of the fifteen quotients are isolated places, 

being the simultaneous zeros of the ^-functions which occur in their nume¬ 

rators . and these constitute the whole of the zeros simultaneously belonging 

to two quotients for finite values of the variables. 

But, of course, the quotients indicated are, initially at any rate, not a 

potential aggregate of actually periodic functions Thus, for any one of the 

^-functions, it is clear that the quantities 

3r+* log 8 

dsTdz'‘ ’ 

for integers r and s, such that r + s ^ 2, will provide periodic functions: and 

so for other possible derivatives and combinations. 
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Later (§ 161), we shall return to the “ double ” theta-functions which arise 
as a particular set of these “ triple ” theta-functions. 

A property of uniform quadruply periodic functions rn combination 

153. We proceed to eonsidei the level places of two uniform quadruply 
periodic* functions f (z, z) and g (z, z'), having four pairs of periods m 
the form 

/l, 0, A, p\ 
VO, I X', p'J ' 

Let a and /3 be two level values for / and g, so that 

f(z,z') = a, g(z,z') = /3. 

If z = al, f = «,' be a place where f and g acquire the values a and 
respectively, they will acquire these respective values at the whole set 
of places 

u, + p + r\ + up, a/ + </ + r\' + sp, 

for all integer values of p, q, r, s. 

We have seen, in § 138, that, by taking an associated two-plane repre¬ 
sentation for the real variables x, y, x, y\ we can choose a unique point-pair 
Q,JJU where Q, lies in a paiallelogram in the y, y plane and l\ in a square 
in the ,/■, x plane, such that the point-pair Q,J\ may represent the whole 
foregoing set of values equivalent to a,, We shall say that the whole 
set of values is expressible by the point-pan (/1\ 

Let z = ai, s'3* Us' be another place, not belonging to the set expressible 
by the point-pair Q,Pi, where/ and g acquire the respective values a and /3, 
and let the whole set of places, equivalent to u>, a.,' by the addition of 
periods, be expressible by the point-pair 

And so on in succession, for places and sets of places equivalent to them, 
each new set containing no place belonging to any ol the preceding sets. 
Each new set will be expressible by a point-pair, in the associated two-plane 
representation of the real variables x, y, x', y. We thus obtain a succession of 
different point-pairs Q,P], QtPt, ■■■, expressing the succession of distinct sets 
of places where the functions / and g acquire the respective level values 
a and {3. Each such set can be denoted by any one of the members of the 
set, and from the construction of the sets, each set contains finite places in 
the field of variation. Let these finite places be denoted by alt af,..., 
in succession, corresponding to the point-pairs Q, l\, .. . We shall say 
that such a finite place zm, zm' is the irreducible level place for its set. 

* An attempt to establish the property for triply periodic functions, similar to that which 
follows for quadruply periodic funotiona, did not meet with sucoess. 

F. 17 
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If the number of point-pairs Q, Px, Q2P2, . ., which thus arise, is finite, 

then the number of irreducible level places z, z, giving level values a and (3 

to the functions f and g, is finite. 

If the number of point-pairs Q,P,t Q.2Pj, ..., which thus arise, is infinite, 

then within the finite y, y parallelogram and the finite x, x square, there 

must be at least one (and theie may be more than one) limiting point-pair 

QP such that its immediate vicinity contains an infinite number of such 

point-pairs We then, for all such point-pairs in that immediate vicinity, 

have an infinite number of finite places a, a', at which the functions f and g 

acquire the level values a and fi respectively. 

Now suppose that, for finite places in the field of variation, our functions 

/ and g possess no essential singulanties On this hypothesis, we know 

(§ 121) that the level places are isolated, so that theie cannot be an infinite 

number of those level places m the immediate vicinity of any one of them. 

The second alternative must therefore be rejected, and so we infer the 

theorem — 

The member of irreducible level places, giving level values a and /i to tivo 

■independent free uniform quad reply periodic functions, is finite. 

154. It has been established for a couple of independent uniform 

functions in general, and theiefoie for a couple of independent uniform 

quadruply periodic functions in particular, that the level places are isolated 

pair-places Any such pair-place may be simple or multiple Whether 

simple or multiple, it is isolated, provided the two functions are independent 

and hee. 

Further, if u, a' is a simple level place for two independent and fioe 

functions f(z, z') and g (z, z'), such that 

f(z, z) = a, g(z,z') = 0, 

so that it is an isolated level place of those functions for those values a and fi, 

then there is one (and there is only one) simple level place in the immediate 

vicinity of a, a—say at a 4- b, a’ + b\ where j b j and | b' { are small—such that 

f(z, /) = « + a, g (z, z") = £ + 

where j a j and j ff | are sufficiently small, and 

| a + «' | < | a |, \8 + p\<\/3\. 

For, by the theorems m Chapter iv and Chapter vii, if z - a + b, z‘ = a’ + b', 

then we can write 
/ (z, z')- a=f (a + b, a' + b') - a. 

— ciio b + timb' + ..., 

g (z, z) - & = g (a + b, a' + b') - 0 

* Cjo b -f Coi b 4- ... 5 
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and therefore, as the level place a, a' is simple, the equations 

aKb + amb + .. = a 

cl0b + cmb' + ... -/?'] ’ 

for sufficiently small values of j a'| and J /S' j, provide a single pair-value for 

b, V, where j b1 and i b' \ are small. 

Similarly, from the theorems in §§ 118, 120—122, we infer that, when 

a, o' is a multiple level place of multiplicity M for two independent and 

fiee functions f(z, z') and q (z, z), such that 

f(z,z') = a, <j (z, z) - ft, 

so that it is an isolated level place of those functions of multiplicity M for 

those values, tlieie are level pair-places (some perhaps simple, some perhaps 

multiple), in the immediate vicinity of a, a—say at a + b, a' + b' where j b | 

and j b' j are small,—of the same multiplicity M in additive aggregate lor 

f(z, z') — a + o', g (z, z') = ft + ft', 

where ; a'i and \ ft'; are sufficiently small, and 

i a + a'; < | a |, \ft + ft' <\ft\. 

155 Now consider the total finite number of irreducible level places such 

that the unifoim quadruply periodic functions f and g acquire the values a 

and ft. The propositions just quoted shew that we can proceed from these 

values of the two functions to other values having smaller moduli to any 

aggregate of level places at or near any one place a, o' for the values a and ft, 

there corresponds another aggregate of level places for the values a + a' and 

ft 4- ft', the corporate multiplicity of one aggregate being the same as the 

corporate multiplicity of the other. We can thus proceed from one pair of 

level values to another pair of level values for/’and g—in the argument, we 

have chosen a succession with decreasing moduli—without, at any step, 

affecting the corporate multiplicity of the level places. Moreover, in this 

succession, it is necessary to have only a finite range for z, and only a finite 

range foi z', because the ranges in the y. y plane and in the x, x plane in 

the two-plane representation described in § 138, giving the finite irreducible 

places z, z, of § 153, are finite. Hence we infer the theorem.— 

The number of ii reducible level places, at which two independent and 

free uniform quadruply periodic functions f and g, having no essential 

singularity for finite values of the variables, acquire finite values a and ft, 

so that 
f{z,z') = a, g(z,z) = ft, 

regard being paid to possible multiplicity of each such level place, is inde¬ 

pendent of the actual level values acquired by the functions. In particular, 

the number of level places is the same as the number of simultaneous zero 

places of two such functions, regard always being paid to possible multi¬ 

plicity of occurrence at a level place or a zero place. 

17—2 
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The property also holds when the level value for either of the functions 

or for both of the functions is a unique infinity so that the level place is a 

pole (an unessential singularity of the first kind) for either of the functions or 

for both of the functions, as the case may be; it follows at once by con¬ 

sidering the reciprocal of the function or of the functions having the place 

for a pole. But care must always be exercised to make certain that the 

functions are free as well as independent: thus the theorem would not 

apply to the poles of functions, such as 0o - 9,„ and / — 6U of § 152, because 

the poles, so fill from being isolated, are the continuous aggregates of zeros 

of the function 6Vi. 

But the unessential singularities (the unessential singularities of the 

second kind) of a single function aie isolated, and when two functions are 

considered simultaneously, their unessential singularities are not necessarily 

(and are not usually) the same places Hence the’ theorem does not apply 

to unessential singularities. 

And the theorem does not apply to essential singularities. 

If, then, we adopt a more comprehensive definition of level places and level 

values, the first including ordinary places and poles, and the second including 

zeros, finite values, and unique infinite values, we can say that the number of 

irreducible level ■places of two independent and free uniform quadruply periodic 

functions, having no essential singularity for finite values of the variables, is 

independent of the actual level values, regard being paid to possible multiplicity. 

This integer, being the number of irreducible level places of the two 

functions when regard is paid to possible multiplicity, will, after Weierstrass*, 

be called the grade of the pair of functions 

Algebraic relations between functions. 

156 Now consider two uniform quadruply periodic functions f(z, z) 

and g (z, z )—say f and g—which are independent and free, and let them be 

of grade n. so that there an1 n irreducible places giving level values a and ft 

to /and g 

Let h (z, z ) be another uniform function, homoperiodie with/ and g. At 

each of the n irreducible level places of /and g, the uniform function h has a 

single definite value; and therefore, at the aggregate of those places, there 

are n values of h in all. Hence there are n values of h corresponding to 

assigned values of/aud g; and these n values arise solely from the values of 

f and g, without any intervention of the variables z and ef beyond their 

occurrence in / and g. Consequently, there is a relation between f g, h, 

CrelU, t. Uxux (1880), p. 7; Oei. Werke, t. ii, p. 132. 
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which is of degree n in h, the coefficients in this relation are functions of 

f and g alone. 

Next, suppose that f and h, being uniform quadruply periodic functions 

of z and z', are independent and free, and let them be of grade m Also 

suppose that g and h are independent and free; and let them be of grade* l 

Then an argument, similar to the argument just expounded, leads to the con¬ 

clusion that the ielation between f g, h, already known to be of degree n in 

h, is of degree l in f and of degree in m g it is an algebraic relation. 

Of the »i values of h, eonesponding to assigned values of /’and g, it can 

happen that several may coincide for some not completely general assignment 

of values. But if tins coincidence occuis for completely general values of 

/ and g, the values of h coincide in groups of equal numbers, and the 

number of values of h, corresponding to assigned values of / and g, is a 

factor of ii Hence we have the theorem * — 

I. Between any three uniform functions, which are homoperiodic in 

the same four period-pairs and which taken in pairs are independent 

and free, theie subsists an algebraic equation the degree of this equation 

in each <j the functions either is equal to the grade of the other two 

functions or is equal to some integral factor of that grade 

It is assumed explicitly that the functions, in pairs, are independent and 

free, and the only level places that have been used for the functions are 

such as give finite level values to the functions But it may happen that 

two functions, independent of one another, and free tor all finite values 

(including zero), an* tied as regards infinite values. Thus the quadruply 

periodic functions, which arise as the quotients by d12 of the quadruple 

theta functions other than 0a, cannot be estimated for grade by their 

infinities . their infinities aie given by tin*, zeros of 8n, and (except for the 

irreducible isolated unessential singularities, limited in number) they are 

the same for all the quadruply periodic functions so framed. These functions 

therefore, while they are independent, are tied as regards their infinities 

The foregoing theorem is still true for these uniform functions there is 

nothing to traverse the argument at any of its stages But the effect of the 

tic, in connection with the infinities, is to simplify the form of the algebraic 

equation We can suppose that the latter has been made rational and 

integral The three functions f g, h are infinite together and only togethei; 

and therefore the terms of the highest aggregate order in all the functions 

combined will, by themselves, give relations among the parts of /, g, h that 

govern their infinities. 

* This theorem, and several of the theorems that follow, were enunoiated by W eierstrass for 

<2tf p}y periodic uniform functions of n variables The enunciations, iu most instances, are not 

accompanied by proofs; they are to be found in his memoirs, Berl Monatsb. (1869), pp 858—857, 

ib. (1876), pp 680—693, and Crelle, t lxxxix (1880), pp. 1—8, see also his Ges Werke, t. n, 

pp. 45—18, 55—69, 125—138 See also Baker, Multiply periodic functions, ch. vii. 
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167. Among the functions related to any given uniform quadruply 

periodic, function of two variables are its two first derivatives, which mani¬ 

festly are homopenodic with the function. Moreover, all the infinities of the 

original function are infinities (as to place, but in increased order) of the 

derivatives, and they provide all the infinities of these derivatives. 

The foregoing theorem, when applied to a single function, leads to the 

result, practically a corollary •— 

II. Any vinform quadruply periodic function f (z, z ) and its first 

derivatives - - and are connected by an algebraical equation When 
OZ 02 

the equation is made rational and integral, the, aggregate of the terms 

of highest order gives relations among the constants of the infinities of 

f and its derivatives 

Thus a quadruply periodic uniform function of two variables satisfies a paitial 

differential equation of the first order, just as a doubly periodic uniform 

function of one variable satisfies an ordinary differential equation of the 

first order 

168 We return to homopenodic functions. For purposes of reference 

among them, wc select three uniform functions f g, h, of the character 

prescribed in theorem I 

Now let k (z, z)—say k—be another uniform function, homopenodic with 

fi g, h; and let it be untied with any of them Then between f, g, k there 

subsists an algebraical equation, the degree of which in k is either u or is a 

factor of n taking the degree as n, we can denote the equation by 

A if, g, ic) = 0. 

Also, between f h, k there subsists an algebraical equation, the degree of 

which in k is either m or is a factor of m • taking the degree as m, we can 

denote the equation by 

B(f h, k) = 0. 

Similarly, there is an algebraical equation 

C(g,h, *)-0, 

which is of degree l in k, and there is the original algebraical equation 

D if g, h) = o, 

which is of degree l in f of degree m in g, and of degree n in h. These 

equations are necessarily consistent with one another, thus the A-ehmmants 

of A - 0 and B =• 0, of B = 0 and V = 0, of C = 0 and A = 0, all vanish in 

virtue of D = 0. 
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These i-eliminanfcs can be formed by Sylvester’s dialytic process, because 

all the equations are algebraic; and an added use of the process leads to 

another important result. The equations 

k' A ( f\ g, k) = 0, for r — 0, 1, ., m — 2) 

k*B(/,h,k) = Q „ s = 0, 1, ..,n — 2j 

are a set of m + n — 2 equations, linear and not homogeneous in the in + n — 2 

quantities k, k", . ., km+n~l When these are resolved for the m + n — 2 quan¬ 

tities, we have expressions for the various powers of k (m particular, foi k 

itself) rational in the quantities f g, h and reducible, by means of D = 0, so 

as to contain either f to no degree higher than l — 1, or g to no degree higher 

than vi — 1, or h to no degree higher than n — 1. Paying no special regard 

to these degrees, but noting the assumption made as to the degree of the 

equation .4=0, we have the theorem — 

III When f and g a,ie uniform functions, quadruphj periodic in the 

same periods, and are of grade n, and, when h is another uniform function, 

which i,s homopenodic with f and g, arui which takes n distinct values at 

the reduced point-pairs determined by given values of f and g, then any 

other uniform junction which is homopenodic with f and g, can be expressed 

rationally in terms of f g, and, h, provided every two of the four functions 

are independent and, free, and provided also no one of the functions has 

an essential singularity for finite values of the variables 

And, as before, we have a corollary to the theorem, as follows — 

IV When two uniform quadruply periodic functions f(z, zj and 

g(z,zj are independent and free, and when neither of them has an essential 

singularity for finite values of the variables, then g(z, zj can be expressed 

rationally in terms off , and f(z, zj can be expressed rationally 

in terms of g, 
dg dg 
dz ’ 3? • 

Note But just as there was possible degeneiation of degree in the 

equation D ( f g, h) — 0, so it might, conceivably happen that, owing to the 

equation D (f g, h) = 0, the actual expression for k might not be deter¬ 

minate. But this indeterminftteness would not occur for every power of k, and 

so we should then only be able to infer that some power of k is rationally 

expressible in terms of f g, h. Such cases occur when the fundamental 

periods of the functions considered are only commensurable with one another 

and are not exactly the same for all the functions. The exceptions may be 

wider than the exceptions of the same kind in the case of doubly periodic 

functions of one variable, though they will cover the generalisation of such 
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apparent (but only apparent) exceptions to Liouville’s well-known theorem 

which might imply that cn z and dn z are expressible * m the form 

P + Q^sn*), 

where P and Q are rational functions of sn z. 

159. Next, consider two uniform functions f(z,z) and g(z,z), homo- 

periodic in the same four pairs of periods, and, as usual, assume that they 

are independent and free, their grade being «, and that they have no 

essential singularities for finite values of the variables. Their Jacobian J, 

with respect to the independent variables, is 

ty _ dg Sf 
dz dz' dz dz' 

= f> 9) 
d (z, z/) 

It is a uniform function, homoperiodic with / and g. consequently it satisfies 

an algebraical equation, which has rational functions of / and g for its co¬ 

efficients, and the degree of which in J is either n 01 a factor of n Moreover, 

as /"and g are uniform, infinities of J can arise only through infinities of / or 

of g or of both: and no infinity of J can arise from finite values of / or of 

g, or from any integral relation between / and g satisfied by finite values of 

f and g. Hence, when the algebraic relation between ./,/, g is completely 

freed from fractions, the coefficient of the highest power of «/ is a constant, 

and the degrees in / and g of the succeeding powers of J are limited To 

indicate the limits, take the simplest forms of two extreme cases 

(i) when /and g are completely free as to infinities: 

(li) when they are completely tied as to infinities—in such a way as are 

e.g the periodic functions indicated m § 152 

In the former case, consider the vicinity of a simple simultaneous pole 

of / and g, then we can take, in that vicinity, 

- U R 
/~ V ’ 9 S’ 

where V and S have a simple simultaneous zero at the place Then 

r_ *_ T 

where T is a uniform function, regular, and usually not vanishing at the place. 

The place thus is an infinity of /, as is to be expected: manifestly it is of 

order 4. Hence in this case, the algebraic equation (taken to be of order n in 

J) must be such as to provide infinities of order 4 for J; hence the coefficient 

* The explanation, of course, is that snz, enz, dnz do not possess the same fundamental 

periods 
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of Jn **' is a polynomial in / and g of order not greater than 4n, while for 

some value or values of among 1, 2, .. , n, it must be of order in' 

In the latter case, we can take 

U _R 
J ~ \r> 9 — y > 

where the infinities of the functions (now tied) are given by F = 0, then 

where IF is a uniform function, regular, and usually not vanishing with V. 
The place thus is an infinity of J, as again is to be expected, manifestly it is 

of thrice the order foi f and g As in the preceding case, the coefficient of 

jn-n' ]s a polynomial in / and g of order not greater than 3ft', while tor some 

value or values of n, among 1, 2, . «, it must be of order 3«' 

Other orders of infinities belonging to / and g will lead to other degrees 

for the polynomial coefficients in the equation In all instances, we have the 

theorem — 

V The Jacobian J of two uniform, quadruply periodic functions 

fund g, which a,re, independent and jiee, and which have no essential sin¬ 

gularities for finite values of the vai tables, satisfies an algebraic equation; 

when tins equation is of degree n, the coefficient of Jn is unity and, the 

coefficient of Jn~‘l is a polynomial in f and g, of degree not gi eater 

than in', for n — 1,2,. , w Also, n is either equal to the grade of 

f and g, or is a factor of that grade 

160 Combining this result with the earlier theorems I and III, we have 

the further theorem .— 

AM When, f and g are uniform functions, quadruply periodic m the 

same periods and of grade n, and when the algebraic equation satisfied by 

their Jacobian J is of degree n, any uniform function, which is hamo- 

periodic with them, can be erptessed rationally in terms of f g, and J, 

provided, no two of the functions are tied as to level values, and provided 

neither of the Junctions has an essential singularity for finite values of 

the valuables. 

In particular, for such functions / and g, we have the relations 

f^Fffg, J), (fg,J), 

%-F%(fg,J), l? = GAfg,J), 

where Fu F2, Gu (?s are rational functions of the arguments. The algebraic 

relation 
J^F.G.-F.G, 

must be satisfied in virtue of the algebraic equation between / g, and J. 
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The quadruply periodic functions which arise out of the double 

theta-fun cti ms 

161. It is desirable to have some special illustrations of the foregoing 

general propositions relating to periodic functions of two variables. 

Accordingly, we assume that the coefficients a, cr') of the triple 

theta-functions aie so specialised as to yield the double theta-functions, 

periodic or pseudo-periodic in four pairs of periods, always limited so as to 

secure the convergence of the double series Moreover, we shall assume that 

our functions have no essential singularity for finite values of the variables— 

an assumption which requires the theta-functions to be finite (as usual) over 

the whole field of variation given by these finite values We thus have ten 

even functions, viz, 60, 8,, 8... 8S, 8t, 8lt, 8f. 8U, 8,?, . and six odd functions, 

viz., 8., 8i0, 8n, 8U, 8U all these being functions of z and z. 

When z = 0 and z’ = 0, the six odd functions vanish. The ten even 

functions then acquire finite constant values which are denoted by e„, c,, ca, 

C„ c4, c„, c, cB, Cia, C10 respectively 

The effects upon any function 8 (pt p,’ Z,j of a period-increment in the 

various cases are given by the relations 

\a, a, Z ) \o,cr,zJ 

e(p’p;z, ,)=(-!yd(p'P;z, U. d.u + l/ \cr, <7 , Z 

6 (p’p:z,+ =(- iy e-™*-*"1" t V, a , z + ntJ 

8 (P’ P; Z, + M = (- 1 y'e-imt-nan ff (P> P> 
\<t, a, z + amI \a, <r, 

P> P’ z \ 
cr, a', Z ) 

z 
' f 

and by derivatives from these relations The effects upon the sixteen 

functions, by way of interchanges consequent upon half-period increments of 

the arguments, are given m the full table on p. 254. 

Among the even theta-functions, the simplest relations* are as follows. 

c»s8*- c,,/8J = c,s8S + c,56t* = Cj*8? + c,*8? 

c„2 8<? - c»s 8? = c8a Of + cs“ 0,* = eg 8? + cBa 0f 

c,;‘80* - c,y 8ia- = Csa0aa + csa8e> = c»8? + c4a8> 

* These are taken from my memoir, Phil. Tram. (1882), pp 788—862; they occur in many 

of the memoirs there quoted, and in others, relating to the subject, as well as in treatises such as 

those of Prym and Krause Much algebraical discussion of the properties of the functions will 

be found in Bnosohi’s memoir, Ann. di Mat., 2s* Ser., t. xiv (1887), pp, 241—844, and Open 

Matemattche, t n, pp. 345—454. Reference also may be made to Baker, Abelian Function*, 

oh. xi, and Multiply Periodic Function*, oh. li, and notes, p. 327. 
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and others derived from these by linear combinations. The simplest relations 

among the constant values of the even functions when the arguments are 

made zero are the sets 

c„4 - Cu* - c,4 + c„J = <;./ + c94 j 

c„4 - c,4 = e„4 + cS = cy4 + c„* • , 

c,‘ - c,„4 = + c„4 = c,4 4- c44 j 

and others derived from them as well as the sets of simple biquadratic 

relations, 

Or c,; = ry c„* 4- c,a cis2 j 

r,( Gy. — ey 4 cS c,S. , 

Cy Cy = Cj2 Cy "F C13~ yyj 

c,r cy - c/ c84 4- c*a Cy? 

Ci4 c4a = cy c,,4 4- cS c,y 

Co2c,3= eye,4 4- e8'4c„a 

Co4 cy — cy c„- 4- cy Cj5* 

C24 cS — C92 cy 4~ cga cy- 

c\,s c./ = e,2 c/ 4- Cy Cy' 

cy cS — C(,' c„a 4" Gy o,y | 

cy c4a = cy G*fl" 4* cy On" | , 

e./ Cj2” — Cf Cy + Cy Ci>>4 j 
cy c„2 = c„* cy + cy c,y j 

c32oy = csa c»* 4- C4aCi62 l . 

c,4 c,y = c42 c,a + csa c,,1 j 
Among the simplest relations, expressing the squares of the odd functions in 

terms of the even functions, are the set 

c,y 0S - - - c2a OS + cy os 4- c„4 o«*' 

C1S2 Os =- - c,,4 OS + cy os 4- C42 o,s 

CS = CkJ os - c.,4 os — C(|4 oj 

Cd'4 
Q 2 _ (7n — Cu' os - o,S 0 - cS os 

Co* 1713 — Cu' os + cS os - cy Or? 

Cy 
# 2 _ 
t7,4 — c,y os - cS os - cS OiS 

as well as others derived from the relations, among the even theta-functions 

above given, by using the table on p. 254 for interchanges among all the 

functions for half-period increments. 
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Lastly, for the present purpose, it is sufficient to give the three relations 

Co2 $78 = + Cm" 0X1~ C,2 9xi', 

c,r Oy - = cB2 — c„3 6U- + c„2 6ix- [, 

C0J 9 if = - Cle- 0f + Cf #11“ + C4S 

connecting the squaies of odd functions alone. They can be derived from the 

relations connecting the squares of the even functions alone, by using the 

same table of interchanges for half-period increments of the variables. 

As regards the odd functions, we write 

6h = fi'^c 4- k^z + .., 

where the expressed terms are the tonus of the first order, and p has the 

values 5, 7, 10, 11, 13, 14, and we have 

C„Ci,C• 2■ = C4C,Cj,/-10 + C]C4CB &13j 

C2C.|Cj.,A7 = C,C4C15/.10+ C,CnC8 his|^ 

CtiCjC'y /*]i = VjCtCf, 11(1 + 

CyCjCjj/ i4 — C46\ic„ kia c, C3 Cjg/i\j I 

with exactly the same relations when k' is substituted for k 

162 All the relations thus far given, connecting the theta-functions, and 

connecting the quotients of the theta-functions, are quadratic in form In 

each relation, there are three such quotients Every function involves two 

independent variables z and z'. and therefoie it is to be expected that each 

of the functions is expressible algebraically in terms of two new independent 

variables This expectation is justified by the detailed results and properties 

of the double theta-functions which give rise to the hyperelliptic functions of 

order two, being quadruply periodic functions, and the actual forms can be 

expressed as follows. 

We take five constants uu a?, a,, «4, unequal to one another; and we 

write 

for all the five values of m and of 11, avoiding equal values, avoiding also some 

other similar limitations that obviously are to be avoided. Two variables 

f and £' are introduced, and we write 

r = [(r- «i) <r- «=)(r- «»)(r-<0 

P = \(p-ax) (p-at)(p- a,)(p- o4) (p- a,)}4. 
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Two other variables u and u are introduced, being defined by the equations 

^ - i j[p y-dp+if/ 
The variables f and / are, in general, uniform quadruply periodic functions 

of u and u ; for sufficiently small values of a and a , we have 

18.14.15 
-«i = 12--»+- 

28 24.25 „ I 

-“*= 21 '"■+- i 

where the unexpressed terms are of even oiders (beginning with the order 4) 

in u and u‘ combined 

The fifteen quadruply periodic functions of z and z, arising from the 

quotients of the double theta-functions, are algebtaically expressible as 

follows — 

d„- d,a-(12 13.14.15) ip, 

d1(1 - d„ = (21.23 24.25)-^ 

$„ -d,2 = (-31 32 34.35) ip, 

02 - dls = (-41.42 43.45) ip, 

d0 - d,, = (51 52 53 54) lp„ ! 

d„ — 0,2 = (13 14.15 23 24.25) *pu j 

0* -dVi=(12 14.15.32.34 35)~ip,, 

d, -d,, = (12 13.15 42 43.45) ip,, 

d, - d,2 = (- 12. 13.14 52.53 54) ~ *pi5 | 

d19 - eK = (21.24 25.31 34 35)' *p.a 

0t - du = (21 23.25.41 . 43.45) ” ipJ4 

d8 -d,., = (-21 23 24 51 53.54)’ip. 

d- - d12 = (31.32.35 41 42 

d5 - d12 = (31 32.34 51.52.54) ip„ 

d]4 - dI2 => (41.42.43.51.52.53)' * p„ 

where 

*33
 n II 1 jT
 

1 

for r = 1, 2, 3 (, 4, 5 , and 

/>r« _ ! T _ _ T' ) 1 

p, ps j(f - Or) (f -«») ( r - «r) (?' - <o i r - f ’ 
for all the ten combinations of r and s from the set 1, 2, 3, 4, 5. 
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The constant values of the even theta-functions for zero values of the 

variables are related as follows 

_ /51 52,* 
C° c“~\53 54,' 

( 41 42\J 
Cj - 43 45 j 

/ 31 32\* 
G* :14 35/ 

( 52 13 14 
C‘ 12 5S .54) 

_/42 13 15 
I’-i -Cis- 43 45J 

_/41 23 25 
C< “ C’2 “ I2.I 43 45/ 

/ 51 23.24\i 

C" C,s ” i 21 . 53" 54/ 

_/32 14 15N* 
C" f'12 ~ v 12 34 35J 

_/31 24 25^ j 
r,% e" [21 34 35j j 

The lowest terms m the odd theta-functions are as follows — 

6, _ f 13 15 23 25\* , 1* , 24\ 

eir \ ■ 43 45 J l/* 12”“ 12/ 

07 _/13.14 23 24\*/ 
53.54 V V' 

d10_ f32.42.52\i . 
eK V 12 ) U + 

15 ,25\ 
12 ” u 12j 

+ • \ 

^ = (13.14.15.23 24 25)*“-^ + .. 
"la 12 

8U ,31.41 51 \* 
>.~i 21 J u+ ■ 
8» (15 14 25 -24\i 7 13 ,23\ 

[ 34. '35 J \ 12 ~~ * 12] 
4 ... J 

The relations 

z and z, are 

between the two variables u and and the two variables 

K , f32.42.52\* 
ci/+c/ l '12 "j 

u' 

u 
) 
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The quadruply periodic functions of z and z are quadruply periodic functions 

of u and u • and conversely. 

Finally, derivatives of any function, of the first order with regard to u and 

u , are linear combinations (with constant coefficients) of its derivatives of the 

first order with regard to z and z 

Examples of the theorems m §§ 1,56—160 

163 Adequate illustrations of the first theorem, in § 156, are provided 

through the homogeneous relations among the theta-functions which have 

just been stated Each of them, when divided throughout by the appropriate 

power of 0a, gives a relation among strictly periodic functions Many other 

such relations are given in the memoir by Bnoschi already quoted (p 266, 

note), and many can be deduced from the algebraical expressions for the 

functions p in terms of the variables £ and Among them, we select the 

following, as being of particular use m the succeeding investigation — 

Vr + Jpj_ + = j 
rs rt sr. st tr .ts ’ 

wheie ts — ar — and so on, and r, *•, t aie any three of the integers 

1, 2, 3, 4, 5, ulso 

Pra + s;f (p,* - Pn ) = rl mi. 

(st)prPri + (tr) pKp„, + (rs) p,p,i = 0, 

where ;, s, t, l, m are the integers ], 2, 3, 4,5, in any order These examples 

will suffice for the present requirement. 

164 We now proceed to give an example of theorem II, m § 3 57, by 

forming the partial differential equation of the first ordei which is satisfied 

by the uniform quadruply periodic function pi 

From the values of u and a, expressed m terms of £ and by means of 
piw z^y Z)y' 

definite integrals, we have the values g^> ’ pV - Using the ex¬ 

pression for pp in terms of f and we find 

2 dpt _ 1 _ 9? 1 9|" 

Pi du \ — a] 9u X’ ~ ai 

1 2t' />- 

2 9&_ 1 | 2t 

Pi du' 2i .r-rte-v6 

v 2t' „ . 

aa)“r-ai(r_tta) 
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and therefore 

RELATIONS AMONG 

(i\ pi ou pi du 

■,T' - = (r - «a> A f'+(r -«,) l ^. 

[CH. VIII 

Now, for the values r = 3, 4, 5 in particular, we have 

so that 

pir _ 1 |_ T __T'_ 

pip. r - d(?- «i) (?- ao <r- \> t?' - «7) 

^V — W^-dr)^- 
/>i“ ' ()« Pidu” 

on substituting the foregoing values of t and t'. Thus, if we write 

dp, dp, 
——   /» 

0« = 9‘- du’ = (l" 
we have 

a = -p,Pn = (23) 9, + (13) 7/ 1 

/9 = —p*Pn = (24) 9] + (14) 7l' 

7 = “ = (25) 7, + (15) q/ 1 

where a, /S, 7 are temporarily used to denote the combinations of 7, and 7/ 

Again, from the values of the functions m terms of £ and we have 

pi1 + (p,? ~ p,?) =12 15, 

and therefore 

Also 

so that 

Pi + 54 (Pi? ~ Pi?) — 12 13, 

34 (I2 15-yv) = 0, say, 
P$ Pi 

£-f,“*4(12. 13-Pl*) = A, say 
Pi P* 

P' + P' + =1 
13.14^ 31.34 41.43 ’ 

04, 01 

^ = 31.34 + — ^ + --^ 

31 
c + 4T^’ 

, .. 54 51 
pta = ol.54+ ]-4pJ' + —p4» 

say; and similarly 
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sav Thus 

HYPERELUPTIC FUNCTIONS 

_ F _ 
SI , TV '■ 

'■ + 41 pr 

-1-P.A. 
51 PC 

"+4l P' 

These (wo quadratic equal ions satisfied by p4- can be written 

f-'pf1 - (L -ft'- <'(•’) pc + ft-c' = 0, 

Ap/- (N — ft1—A o') />,-+ ft-u' — 0. 
tvhcie 

, 41 , 41 41 ,r „ 41 
" = n 51' r'rc3r ^T#"si ’ ^ =r 51 

Eliminating pi' between the t wo equations, we find 

\{L - p - C&) a’ - (N -ft’- A a') c J \(N - p - A o') 0 -{L-ft>- Cc') A1 

= p (Ac' - <V)a. 

which is a foini of the paitiol differential equation of the first older satisfied 

by p,. 

It is desirable that the equation should lie simplified, the v.uions re- 

duotions aie mere e\ei(ises in algebra We find 

A-n*=m(i'i 14-/),-), 
so that 

tA-<f) "V - - :i4( 4D1 ™ (12 14 - /V)( 16.14 — p,») (14.16- p,2). 

14 35 

(o' — c')ilC’ — 14 :J4-4'^'W(12 16 - />,-) (12 . f 5 — />,-) (14 16 — pc). 

•W, 46 66 
<W - Ac' = (12 16 14.16- /V). 

As regards the parts involving derivatives, we have 

(L-ft*)a -(N — ft-)c' 

= - ~4y6 l54 04 • 15 “ P*s) «'• + 35 (16 15 - p,2) /S- + 46 (13. 14 - pc) 7J1 

14.64.45.56 , . ,v„ 
= - u j 5 112‘fy.- - pr (o, 4- </,)-!. 
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on substitution tot a, ft, 7, and, similarly, 

(N - ft1-) C - (L - ft-) A 

41 45 (12 13 - p*) (12.14- p‘) ft> + 41'34 (12.15- Jh>) r 
3! ““ /'1/" ' 41 

= -12 14.34 45.53 ](</,+ q'f 
12 

13 14.I5?V'7, 

Hence the differential equation foi p, takes the foim 

13 "t' ,6(«+l/i4*K«‘+lS^ is) 
= (24 ql+ 14 WAV, 

where the various svnibols m the equation (which manifestly is of the fiist 

order, and of the fourth degree, in the derivatives ot p,) have the values 

Qx = 'h‘--^Pi<<qi + (h'y ) 

_ , 12 
Q= = (91 + ?1)--rri-4-Y5P,Vj 

Ar, = (12.14—p,,J)(13.14 — /»,-) (14 15-/V)| 

•V., = (12 13-/>,*)( 12 15 — p,J) (13 15—jo,-’) . 

A\=12 13 14 15-p/ ) 

The infinity of />, at any place being of order k, that of q, at the place and 

that of (ji at the place are * +1 . from the terms of highest order in the 

infinities, as they occni m the differential equation, we hate (as these orders) 

Sac+ 4, 10*+ 2, 12*, 10*+2, 

which are the same when * = 1 • that is. any infinity of p, is simple The 

result is to be expected because p, is a constant multiple of so that 

an infinity of p, is a zeio of 8n, that is, it is simple The terms of highest, 

ordei also provide relations among the constants connected with an\ such 

infinity but these are not our present concern 

165 The partial differential equation of the fiisl order tor any othei ot 

the functions p can be constiucted 111 the same tnannci , 111 particular, the 

equation satisfied by p., can be derived from the equation satisfied by p,, through 

interchangingp, and p._., q, and qi, q' and q-, a, and <1,, where 

_ dp, , _ dp, 

d u ’ h ~ dii • 
<h- 

Nnte Another proof can be framed, by noting tin- relations 

c?9,„a = c,./ 60- — r,-#,,- — 

Cfffn = e,,1 8? - c^6„3 - . 

= c4“ 6?- c,‘8n- - cpdy/ 

c0,a =c4! dy'-cfej-csej, 
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•intong the theta-functions, by using the expiessions toi the constants c and 

the quotients of the theta-functions, and by observing that 8,8,,6,.,- is a con¬ 

stant multiple of the quantity denoted by y and that 8,8ft,r1 is a constant 

multiple of the quantity denoted by /3. 

A third proof can be fiained bv noting tile fact, that 

r 

p- «i 
= (p - «..) 

1 dp, 

p, du 
+ (P ~ ltd 

I dp, 

p, da 

is satisfied bv p — f and so that the quaifu equation 

U - <b) (- - <b) (- - <b) < i ~ -U 
1 , .. _ „ , 1 hpi\ ‘ 

p, da v ‘ p, 9«'} 
= 0 

has f and for its mots The analytical <auditions for this jnojiuity of the 

quart,it equal,ion ultimately lead l.o the paitial differential equation of Lhe first, 

ordei saf.isfied by p,. 

166. The analysis m the preceding investigation leads to a simple 

illiistuition of theoiems ill and IV, in § 158 It must, however, be borne m 

mind that those theorems refer to functions that aie homoperiodic 

Now the functions p4 and p, me not homopei iodic them periods aie only 

roinmensinnble [>ul, the functions p/ and p,- arc homoperiodic and there- 

loir by the theorem IN', we must have p4- exjuessible lationally in terms of 

p,- and its first dematives, that is, exjuessible lationally m terms of 

Pi- </i- 7i' 

The two quadintics that oeeui m the investigation give 

/V Ac — A'c 
fp (M — fi- — A a') C — (L - /tf- — (V) A ’ 

oi, with the preceding notation, 

/V=- 
(24(/t + fhy/) A' 

the lequired exjiressioii 

12 13.I43(^,4- 
X 

12.13 15 )' 

Also 

- p*pu= 24»y, + 14<y,', 

so that we cun deduce at, once a rational expiession foi pu- in terms of 

p,t </,, (/,' Expressions for p,, p., pu, p,, can be deiived by inteichange of the 

constants <i„ <t4, <i4, and expressions foi the lemaming functions can be 

derived by simultaneous interchanges of the variables u and id and of the 

constants <i, and «... 

As an illustration of theorem V in § 159, consider the Jacobian of any two 

functions p,, p, and let 

/’, n, L, m, ii = 1, 2, 3, 4, 5, 
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in any older We have 

•uni thcielon 

B («,«') 1 I(, j., . 
8(f, f'> — 1 f 

0(5. 6) 4/1,pt 

</ (74,74) = 

Consequently 

I-4a 

.O'Y 
V2l) 

B (p,, 74) 

0(h, a') 

-21 flp III Pi,- 

JH“pni'Pn~ 

Ir.lb mr nib in ns 

w lieii 

IV _ f-‘ ) (1 _ \ 
V I l rs St A7V V lilt l.V Sill. 81'/ \ m IS AH At'/ 

.so that the squatc of the Jacobian of p, ami 74 is an even polynomial in 1 and 

s ot joint degiee six. 

Similarly, \\e find 

(p>' 7'"■)}'= J2- V>>'P<>»'P‘» 

I . 
— Y2'j \P'‘ + Pr~ ■ si — nn rn st j \p,b: -f jip. a in — ni. rl. sin, 

x [71,,- -I- pp . sn — rt. nn . s» j , 

and so for other instances of Jacolnaiis. So long as thi* Jacobian* are formed 

from any two ot the fifteen functions, the algebraical equation between two 

functions and then Jacobian is of even degiee in the1 Jacobian Tt is easy to 

verify that 

\*J (Pi-m, Pm)}' 

is an even polynomial in prm and [>,„ of degiee six, and from geneial con¬ 

siderations (but without having constructed the lespeetive equations) I infer 

that 

J (Pi-Pti), J {P nn > P*) 

each of them satisfy an equation, quartic 111 its own Jacobian and of the 

degree twelve in the term free from the Jacobian. 

As a last illustration, consider a special case ot theorem VI in § 11>0 

The derivative ot p, with respect to u, already denoted (§ 1 Ii4) by 17,, is quadruply 

periodic. It is homopenodie with pt, but it is not homopenodic with p3, 
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their periods being only coimnensin.ible. But pi\ p/ are hoinopenodle¬ 

an (I tiheieioie, by the theorem, yf is rationally expressible m terms of p,\ p.?, 
and the Jacobian of p/ and pr. that is, </,3 is lationally expn-ssible in terms of 

/>,, pit and J (p,, p.,). The actual expression can be obtained in n variety of 

ways, requiring mere algebra foi the purpose Proceeding fiom the relation 

1 

ih 
?»* 

1 

2i<£-r>ur-« r-«b 
(?-«»> 

already obtained foi <p, we find ultimately the following result, 

denote ii, — a,, (f, — a,, ... as usual, wiite 

A = (Pl- - p/y - 2.12J (pr + pj) + 12', 

Let 12, li, . . 

pp + 12 (lr 4- 2/), fin r = 1, 2, J, J, 5 , 

and, for anv quantity £, let 

<f + *8)(f+**)(!+ *o) 

Then a internal expression foi lyp is 

64, i/,-12r. A 4-128.127p^pJ (p,, p.) 

= (St + 8,A + A2) (:te, A + *,')- (& + 8', A) (:k,:A + A-) 

Other examples can easily he indicated these will suffice foi the piesent 

purpose. 
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(Tlif numbem icfrr to Ihr ftai/es ) 

Abel's theorem partially extended to double 

integrals involving n couple of algebraic 

functions of two independent variables, 

193-197 

Accidental singularity, 01, (nee unessential 

singulailty) 

Algebraic functions m general, 61, 170 et seq , 

rational functions, involving one algebraic 

variable, 171, and two algebraic vanablee. 

173, integrals of, 178 et seq. 

Algebraic relations between homoperiodie 

functions, 201 et seq ; illustrations of, from 

hyperelliptic functions, 200 et seq 

Analytic fuuotion, 59 

Analytical continuation, 0(1, 80 

Appell, 147, 235, 239. 

Baker, H Y , 110, 131, 201, 200. 

Berry, 170 

Borel, 77, 78, 196 

Boundaues of a region for ceitain fields of 

variation, and then frontier, 20, 24 

Brioschi, 200. 

Bromwich, 72 

Burnside, W , 20, 58, 237. 

Campbell, 42. 

Canonical form of linoo-linear transformations, 

26; leads to powers of the transformation. 

28, 

of equations for quadratic frontier, 51, 

of rational functions whioh involve 

algabraio variables, 171, 173. 

Castelnuovo, 170. 

Cauchy, 4. 

Cauchy’s theorem as to the integral of a 

function of a single complex variable ex¬ 

tended by Poincar^ to functions of two 

oomplex variables, 13, 169. 

Conformal representation with one variable 

extended to two variables, 18. 

Continuation of lcgului functions, analytical, 

80. 

Continuity ot a function, region ot, 81, 82, 86 

Continuous function, 59. 

Continuous groups, Lie’s theoiy of, applied to 

determine invariants and oovariauts ol 

qnadiatic frontiers, 40, 42. 

Contour integials, as used by Cousin, 131 et 

seq 

Cousin, 130, 147 

Dautheville, 80, 12G 

Dependent variables, number ol, 2; used foi 

a kind of inversion, 4 

Divisibility (lelative) of two tegular functions, 

112. 
Domain, 57 

Dominant function, 71. 

Double-integral expressions connected with 

coefficients in the expansion of regular 

functions, 64 

Double integral for real variables, application 

of theorem by Stokes on, 157. 

Double integrals, defined for two complex 

variables, 154; Poincare’s extension of 

Cauchy’s theorem for functions of a single 

variable, 159; residues of, with examples, 

160 et seq 

Double integrals of rational functions in¬ 

volving two algebraio variables, 187, 

equivalent foims of, 189; conditions that 

they should be of the first kind, 190, 

Abel’s theorem partially extended to, 

198. 

Double theta-functions, 249, 253 et seq. 

Enriques, 170. 

Equivalent functions, 184, 141. 

Essential singularity, 61, 83, 119, 123; be¬ 

haviour of a function at and near an, 77, 

83; functions devoid of, 125. 
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Field of variation, in general, 57 ; for periodic 

functions, with one pair of periods, 224; 

with two pairs of periods, 225; with three 

pairs of periods, 231, with four pairs of 

periods, 236, togethei with a modified two- 

plane representation of the variables, 237. 

First kind of double integrals, conditions for, 

190, extension of Abel’s theorem to, 

193 

First kind of single integials of algebraic tune 

tioiis of two variables, 178, initial condition 

as to hum of subjeot of integration, 180, 

equivalent forms of, 180, with the necessaiy 

lelations, 185, do not exist foi geneial 

equations, 187 

Four dimensional space, used to lepiesent two 

variables, 5; used by Poincare in connection 

with double integrals, 153 

Free functions, 208, piojieities of two, 209- 

212 

Frontiei of a legion in ceitam fields of 

variation, 20, 24, its anal>tieal expression, 

21, lnvanantive, foi linoo-hnear transforma¬ 

tions, 32, quadiatic, 34. 

Functions devoid of essential singularities, 

everywhere, 125, m the finite part of the 

field, 130 et seq 

Geometrical repiesentation of two variables, 

Chaptei 1, in fom -dimensional space, 5 , by 

means of a line in ordinary space, 7 , by 

means ot two planes, one foi each of the 

\ enables, 13 

Gordau, 25 

Giade of two unifoim quadiuplv periodic 

functions, 260 

Hadamard, 120 

Hartogs, 62, 123, 131 

Hermite, 4, 131 

Hobson, 1 

Homopenodio functions, algebraic relations 

between, 261 et seq 

Humbert, 170. 

Hurwitx, 126. 

Hyperelhptic functions of order two used to 

illustrate algebraic relations between homo- 

periodic functions, 265 et seq. 

Independent functions, 208. 

Infinitesimal periods exoluded, 213-210. 

Integral function, 60. 

Integrals, of functions of two variables 

(Chapter VI), of algebraic functions, 178 

et seq 

Invariant centres of hneo-hneai transforma¬ 

tions, 29 

lnvanantive frontiers for lineo-linear tians- 

formations, 32; simplest forms of, 34, 37 

Invariants and oovanants of quadratic frontiers, 

39, invariants alone, 48 

Inversion, a kind of, 4 

Irreducible places of quadrnply periodic func¬ 

tions, 257 : any set expressible by a single 

plaoe in an associated two-plane representa 

turn, 257, their number for level values of 

two functions is finite, 258, and is indepen¬ 

dent of those level values, 259. 

Jacobi, 14, 26. 

Jacobian of two homoperiodie functions, 264 , 

used, m connection with the two functions, 

for the tational expression of other homo- 

pei iodic functions, 265, equation satisfied 

by when they aie hyperelhptic, 275 

Jordan, 26 

Konigsbcigei, 255 

Krause, 266 

Kronecker, 4 

Laguene, 126 

Larmor, 157 

Laurent’s theoiem extended to function" of 

two vauables, 87-91. 

Level places of two unifoim functions 

(Chapter VII) , must exist foi assigned 

values of the functions, 203. 

Level values of a regulai function, 108, older 

of. 111 

Levi, E E , 123 

Lie, 25, 40, 42 

Line m space used to lepresent two complex 

variables simultaneously, 7; limitations 

upon use oi whole line, 11, by means of 

the points where it cuts two parallel 

planes, 12 

Lineo-linear transformations, Chapter II; 

canonical form of, 26, powers of, 28, in¬ 

variant centres for, 29; lnvanantive frontiers 

for, 32 , property of, when coefficients are 

real, 35; periodic, 52. 

Lines, Volterra's functions of, 13. 

Meromorplnc function, 61 

Multiform function, 58. 

Multiplicity, of a simultaneous zeio of two 

uniform functions, 168, expressed as a 

double integral, 169, of a level value of 

two functions, as a double integral, 169 
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Noether, 170 

Non-essential singularity, 61, (see unessential 

singularity). 

Order of multiplicity, of a common zero of 

two uniform analytic functions, 205, 209, 

of level values of two uniform analytic 

functions, 212 

Order, of zero of a regular function, 111, of 

pole of uniform function, 110 

Ordinary place, 60 

Osgood, 62. 

l’airs of periods for uniform functions of two 

variables (see period-pairs) 

Periodic functions in two variables (Chapter 

VIII) 

Periodic lineo-hnear transformations, 19, 28, 

52 

Period-pans, if infinitesimal, are excluded, 

213 ; may not be more than four foi 

uniform function of two variables, 216-223, 

one, 224 , two, 224, with the different cases, 

three, 226, with the different cases, and the 

general result, 231 , four, 232, with the 

different cases, 235 

Picard, Pieface, 5, 14, 26, 77, 78, 92, 152, 

153, 156, 161. 169, 170, 178, 193, 197 

Picard’s theorem, on functions that oannot 

acquire assigned values, extended to func¬ 

tions of two variables, 78 

Picard’s theorem concerning single integrals 

of rational functions involving one algebraic 

variable extended to integrals of rational 

functions involving two algebraic variables, 

180-187 

Poincare, Preface, 1, 4, 5, 13, 26, 71, 126, 

131, 158 

Poincard’s extension of Cauchy’s theorem to 

double integrals, 159 ; with inferences, 160 , 

extension to the residues of double integrals, 

160, 161, with examples, 161 et seq. 

Pole, 61, 85 (tee unessential singularity); ex¬ 

pression for uniform function m the vicinity 

of, 119 ; sequenoe and order of, 120 

Polynomial, when a regular function is a, 

74; properties of, as regards singularities, 

124 

Prym, 266 

Quadratic frontiers, 34, invariants and co- 

variants of, 39; suggested canouioal form 

for, 51. 

Qusdruply periodic functions, 253 et seq.; 

level places of two, 257; satisfy an algebraic 

partial differential equation of the Cist 

order, 262, with example, 273. 

national, any uniform function entirely devoid 

of essential singularities muBt be, 126 

Rational function connected with algebraic 

equations in two independent vanables, 

most geneial form of (i) when there is 

one equation. 171, (n) when tlieie are two 

equations in two algebraic variables, 173; 

integrals of, 178 et seq. 

Rational function, singularities of, 125 

Keduoibility (relative) of two legnlar functions, 

115 

Region of continuity of a function, 81 , its 

boundaiy, 82, 86. 

Regulai functions, any uniform function having 

essential singularities only in the infinite 

part of the field is expressible as the 

quotient of two, 117 

Regular (unctions, 60, fundamental theorem 

i elating to, 62; double integral expiession 

for the coefficients in the expansion of, 64 , 

one property of, 73, condition that it is a 

polynomial, 74 , analytical continuation of, 

80, level values of, 108 , lelative divisibility 

of, 112 

Relative, divisibility ol two legular functions, 

112 , reducibility of functions, 115 

Riemann, i, 16. 

Iiiemanu's definition of a function extended 

to two functions, 16 

Sauvsgw, 58. 

Seven, 170 

Simart, Ptejace, 92, 152 

Simultaneous poles of two uniform analytic 

functions exist, 204 , usually is an isolated 

place, 211 

Simultaneous unessential singularities of two 

uniform functions do not exist in general, 204 

Simultaneous zero, of two regular functions, 

muBt exist, 202, likewise for two uniform 
analytic functions, 203; usually is an 

isolated place, 207, 209, but there may be 
exceptions, 208. 

Single integral, 152. 

Single integrals of algebraic functions in¬ 

volving two algebraic variables, 178; 

equivalent forms of, 180, with necessary 

relations, 185; first kind do not exist foi 

general equations, 187. 

Singularities, 61, 82, 119; of a rational 
function, 125. 

Stokes, 167. 
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Theta-functions, triple, 240 ct son j oven 

functions and odd (unctions, 218, double, 

249, 25.4 et seif 

Tied functions, 2UH, 

Transcendental function, 00 

Tuple theta functions, 240, effect on, caused 

by liiciements of pounds, 242, by halt-period 

in elements, 250, two sets of, 251 et seif 

Triply pel iodic functions, 2.48 

Two functions, eveiywhen legulai in the 

finite pait uf tlie field, rnubt vanish at some 

common place, 202 ; likewise, when they am 

uniform and analytic, 20.4 

Two plane representation ol the real puits of 

the variables used foi cpiadiuply periodic 

functions, 247, 257 

Two-plane repiescntatiou of two Mumbles, 1 1, 

some propel ties ol, 11 , limitations ol, 19 

1‘mbiul symbols uitioduced foi coclbennts m 

homogeneous forms, 11 

Unessential singulanty, 01. 8.1, 110, ci- 

pioasiou of uiufoun lunation m the \ieinitv 

of, 121, is an isobited placo, 122 

I'mfoim analytic function linmf acipuie an 

infinite value, 72, and a mo value, 70, 

and an assigned finite value. 70 

Unifomi filiation 58 

Uuifoim peiiodic functions (Cliaptci VIII) 

Valentiner, 25 

Vicinity of a place, 58 

Vivanti, 12 

Voltena, 14 

Weierstiuss, l'n‘)au 1, 77, 8(1, 82 K(>, 02, 

101, 105, 112. 122, 124, 111, 214, 200, 

201 

Woieistiass’s theoiein on tlie behuviom ol a 

umfoim continuous analytic luuctiou m the 

vicinity of an oidmaiy place, 02, vauous 

canes ol, op, <)7, 100, example of, 102, 

alternative method ol piocoeding ill one 

case, 105 

Woieiatiahs s ihcoicui on (unctions iiilirely 

devoid ol essential siugulantluH, 120, ptuul 

ol, 120-120, on functions having essential 

Hinguluiitics only in the infinite part ol 

tlie lield, 140, with Cousin's pioof, 130 

ct scq. 

IVueistiass s thcoiotu on infinitesimal pounds, 

211. 
Wcii’istiass s thcoiuns on algobiaic lelattoiis 

between homopci iodic I mictions, 201 et seij , 

illustrated by hypeielliptic functions, 205 

et seq 

Zeios (selected) ol tin theta functions of two 

venables, 255 
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