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PREFACE 

Microwaves are electromagnetic waves of wave lengths that 
we may take, for definiteness, to be between 1 centimeter and 
I meter. They are unique in the whole range of electromagnetic 
waves, a range that extends from the longest radio waves to the 

shortest x-rays and gamma rays: they are the only electromag¬ 
netic waves whose wave length is of the order of magnitude of 
ordinary laboratory apparatus. This feature makes possible 

experimental methods that are completely different from those 
used for any other type of electromagnetic wave; only sound 
waves, which likewise have wave lengths comparable with ordi¬ 

nary apparatus, present a close analogy. This book describes the 
general theory underlying the methods actually used for trans¬ 
mitting microwaves from point to point, from the generator in 
which they are produced to the receiver in which they are 
detected, with the intermediate stage of radiation from one 
antenna and absorption by another antenna. This transmission 
generally takes place in the interior of a hollow conductor, either 
in a hollow pipe or in a coaxial line, which is the hollow space 
between two concentric cylindrical conductoi's. It is the short 
wave length of the microwaves that makes such transmission 
possible; in a hollow pipe, in particular, only those waves can be 
transmitted effectively whose wave lengths are comparable with 
the diameter of the pipe. Not only is transmission through a 
hollow line possible for microwaves; it is practically imperative. 
The reason is that waves transmitted along ordinary, nonenclosed 
transmission lines, such as parallel wires, radiate more and more 
vigorously as their lengths become smaller, until in the micro- 
wave range the radiation would be intolerably large. In an 
enclosed transmission line, on the contrary, radiation is impossible, 

except f rom antennas, horns, or other devices open to empty space 
and de^signed expressly as radiators. 

An extensive theory of transmission lines has been built up, 
based on the ordinary ideas of electric circuits. Much of this 
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theory can be carried over to the theory of microwave transmis¬ 
sion, which is outlined in the first chapter. Microwave problems 
differ from ordinary circuit problems, however, in that much 

more attention must be focused on the electromagnetic field. 
Maxwell's equations underlie the study of electromagnetic fields 
and are the basis of the treatment in this hook. Much of the 

work is devoted to finding out how far the simple circuit methods 
are really justified by the more correct methods of Maxwell's 
equations and how these simple methods must ho supplemented. 

In this book the emphasis has been more on the fundamental 
theory than on practical ap])lications. Enough description of 
practical methods has been given, however, so that the (experi¬ 

mental worker in the field will find that he (*an tie theory and 
experiment together without great difficulty. 

No other text dealing exclusively with mi(‘rowavH\s is at ])resent 
available, and the author has tried to write a l)ook of an inter¬ 

mediate range of difficulty. No previous knowlcMlge of micro- 
waves is assumed, but some acciuaintance with classical electro¬ 
magnetic theory and Maxwell's e(iuations is m^ccssary. These 
are familiar to the physicist and to the electri(‘al engineer trainc'd 
in communications, and the^^ are treated in many well-known 
texts. For the sake of those whose knowledge of electromagnetics 
theory is small, however. Maxwell's ecpiations and the small 
amount of vector analysis used arc introduced in a fairly eh^- 
raentarj" manner. The first-year graduate student or the senior 
with good training in electricity should he able to handle the 
work, and an extensive mathematical knowledge is not assumc'd. 
On the other hand, the hook is definitely not a simple descriptive 
treatment of microwaves, such as would appeal to the ordinary 
undergraduate. Microwave transmission is such a new suhjc'ct 
that the workers in the field, as well as students, should he 

interested in a book like the present one, bringing together con¬ 
siderable material that has been developed largely during the 
last 10 years and is now available only in the periodical literature, 
such as the Proceedings of the Institute of Radio Engineers^ the 
Bell System Technical Journal^ the Journal of Applied Physics^ 
and one or two other journals. The development of microwave 

technique may be said to date from the adaptation of hollow pipes 

and horns to microwaves, carried out independently by the 
author's colleagues Barrow, Chu, and others at the Massa- 
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chusctts Institute of Technology, and by Southworth, Schel- 

kunoff, and others at the Bell Telephone Laboratories. This 
was followed by the development of cavity resonators by Hansen, 
Condon, and others. The author is indebted to various col¬ 

leagues and friends, including those just named, and particularly 

to Prof. J. A. Stratton, for valuable advice and suggestions. 

J. C. Slater. 

Cambridge, Mass., 

July, 1942 
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MICROWAVE TRANSMISSION 

INTRODUCTION 

f]lectrical communication has been carried on at ever-increasing 

frequencies. The progress has been from audio frequencies to 

radio frequencies, to short waves, and now to the range of waves 

called micTowaves: wave lengths perhaps in the range from a half 

meter to a few centimeters. The progress has been an orderly 

one, with few new principles needed for its understanding, until 

the latest step; but microwaves are so different in many ways 

fi-om longer waves that a new technique is needed, a technique 

that comes more natuially to the physicist trained in Maxwell's 

equations than to the electrical engineer trained in electric 

circuits. Microwaves are of the same order of magnitude as the 

dimensions of the apparatus used. We can no longer think of 

lumped resistances, inductances, capacities. If we think of 

conventional circuits at all, we must think of distributed induc¬ 

tances and capacities. But the differences are really much 

greater than this. The conventional conductor in the ordinary 

range of wave lengths is a wire, carrying current throughout its 

volume. Conductors in the microwave region are very different 

things: coaxial lines, consisting of a rod carried concentrically 

within a hollow pipe, or even simply a hollow pipe alone. The 

coaxial line is at first sight like an ordinary transmission line; 

current flows down the wire, back along the pipe. But the 
hollow pipe is very completely different from a conventional 
transmission line. Current flows in one direction in one wall of 

the pipe, in the other direction through the other wall. Though 

the two walls are connected electrically to each other, this condi¬ 

tion does not lead to a short circuit. In many cases, it is not 

even practicable to define the current at all, in any unique way. 

Our attention rather must be focused on the electromagnetic 

field within the pipe. We must consider Poynting's theorem, 

and remember that it is best to consider the energy as flowing in 
1 
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the field anywa,y. Maxwell’s equations, and the electromag¬ 

netic field, must be our constant guide. 
Nevertheless, the ideas of conventional transmission lines are 

of constant help. The theory of lines of continuously dis¬ 
tributed parameters furnishes an analogy to actual lines which 
is very far-reaching and powerful. No actual line behaves like 
the theoretical line, for any actual line has many possible modes 

for the transmission of energy. These different modes are 
unimportant in work at longer wave lengths, for they have cutoff 
frequencies below which they cannot transmit power, and for 
long wave w'ork only one mode is possible. But in the micro- 
wave region several or many modes are often important, and 
onl}'^ by use of electromagnetic field theory can we understand 
them. In spite of this, each mode by itself behaves like a 
conventional transmission line, and an understanding of such 
lines gives the best way of understanding the actual propagation. 

For this reason we shall start our survey by a chapter on con¬ 

ventional transmisvsion lines, and the terminology and properties 
of lines will be constantly at the foundation of our work. In 
particular, the idea of impedance is one of the most important 

concepts in transmission-line theory, and this concept can be 
carried over into microwave work, exerting a great unifying 
effect and contributing greatly to effective understanding of 

the field. 
A communication .system naturally has three parts: a source 

of power, a transmission line, and a receiver. The present book 

deals almost exclusively with the transmission line. This is an 
electromagnetic problem, a problem that can be handled by 
Maxwell’s equations and that can be formulated mathematically 

and treated completely, subject only to mathematical difficul¬ 
ties. The power sources and the receivers, on the contrary, are 
almost always electronic or other devices which depend on a 

great deal besides Maxwell’s equations. They are diversified 
in their structure, often not well understood in their operation. 
In the present state of the art, hardly more than a descriptive 
discussion could be given of these parts of the problem, although 
the transmission can be handled fairly completely. For these 
reasons we have left out power sources and receivers almost 
completely. We may form a very simple picture of their essen¬ 

tial operation, however. We shall find that the thing in micro- 
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wave theory that corresponds to the resonant circuit of ordinary 
circuit theory is a resonant cavity, a region enclosed by a con¬ 

ducting wall, in which certain electromagnetic oscillations can 
take place with large intensity and comparatively small losses. 
A microwave generator always contains fundamentally such a 

resonant cavity, determining by its resonant frequency the 
frequency of the generated power. The generators in common 
use are almost invariably electronic generators: electrons are 
given power by a direct-current source, as a battery; they come 
into the field of the oscillating resonant cavity; this field alters 
their motion, so that they have a periodic component in their 

motion; this periodic component is acted on by the periodic 
field, in such a way that the electrons lose energy to the periodic 
field. If the net effect is that each electron loses energy to the 

alternating field, energy which in turn it has gained from the 
direct field, the net effect is to sustain the oscillations, at 
the expense of power supplied by the battery. Thus we have an 

oscillator, a power source for microwaves. We may, for practical 
purposes, regard this as a resonant cavity on which is impressed 
a voltage, the voltage representing the effect of the electrons. 

Similarly receivers of power in the microwave region are 
complicated things, but again they can be simply described, for 
the present purposes. Again we have a resonant cavity of some 

form, in which an oscillation is set up by the incident power. 
The cavity contains some form of detecting device: an electronic 
device, a rectifying crystal, or some other scheme. In any case, 

the effect of the receiver is to abstract energy from the oscillation 
in the cavity. We may replace this by a simple load in the 
cavity, for instance a resistance, which would absorb energy in a 
similar way. We may find the power dissipated in the resistance 
and regard this as a simplified model for the actual receiver. 

In other words, the expedients that we must use for describing 
generators and receivers are very similar to what must be used 
in conventional transmission line theory, where a generator is 
regarded as an applied voltage with a certain internal impedance, 
and a receiver is replaced by a terminal impedance, and the 
primary attention is focused on the transmission line. We 
shall find, here as there, that we can build a complete and usable 
theory, without further study of the properties of terminal 
equipment, .' 
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In our study of transmission lines themselves, we shall consider 
constantly the two most common types of lines, the coaxial 

line and the hollow pipe. In many cases we do not have a simple 
line, however; we have a composite line, consisting of sections of 
various types. For instance, our generator may be represented 

by a resonant cavity, which is more like a closed hollow pipe 

than anything else. From this cavity we may couple by a 
coupling loop into a coaxial line. This may terminate in another 
loop or other coupling device, feeding its power into another 

pipe. This pipe may terminate in a horn, feeding power into 
empty space. We shall have to consider radiation in empty 
space and transmission from antennas and horns, with reception 

by similar antennas and horns. The power after its radiation 
may be received by another horn or antenna, fed into another 
pipe, picked out of the pipe by another loop, led into a final 

cavity representing the receiver, and there received. We shall 
have to consider all the elements of such a complicated composite 
line and how they join together. In fact, one of our most impor¬ 

tant problems will be just this joining from one type of trans¬ 
mission line into another. We shall find that the steady flow 
of power from generator to receiver can be interrupted in two 

ways. In the first place, at every dis(*ontinuity, there can be 
reflection of power. This sends some power back toward the 
generator, so that it does not reach the receiver, and yet it is 

not completely lost. We shall learn how to avoid this reflection; 
a well-designed line, no matter how complicated, has no net 
reflection. In the second place, there can be real power loss 

along the line. This can come only by conversion of power 
into some other form, as in the heating of imperfectly conducting 
materials or in loss of power in radiation, in systems that are 

not closed. We shall find where such losses occur and how to 
make them as small as possible. 

Whenever reflections occur, standing waves can be set up and, 

if^the.dimensions of the system are properly chosen, we have the 
possibility of resonance. .._We could focus our attention on this 
resonance, building up our theory by analogy with the mathe¬ 

matical theory of vibrating strings, for instance. We prefer 
not to do this, however, regarding the resonance as an incident, 
rather than a fundamental thing. Our main attention will be 
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directed to the transmission of power. A resonant chamber 
from this point of view is just part of a transmission line, with 

power being fed in at one side, out the other, but exercising on 
account of the resonance a strong selective or filtering action. 
Even though we shall not make much use of the analogy of the 

vibrating string, this analogy and others are useful. Acoustics 
is obviously very similar to many problems in microwaves. 
The wave lengths are in the same range of magnitude, and many 

of the devices used for microwaves remind us strongly of similar 
acoustical devices. One can have electric horns, and they can 
even be tuned as trombones and cornets are tuned. There is 
one considerable difference: electromagnetic disturbances are 
transverse, sound in air is longitudinal, so that our electromag¬ 
netic horns have two modes of propagation, corresponding to 
the two directions of polarization, for each single mode of an 
acoustical horn. But this is a technical rather than a funda¬ 
mental difference; fundamentally the analogy is close enough to 
be of great service both to microwaves and to acoustics. 

Then there is an obvious analogy to optics. Light is a form of 
electromagnetic disturbance, and, if we were to reduce the wave 
length still farther from a few centimeters to a few hundred 

thousandths of a centimeter, we should go from microwaves to 
light directly. The analogy with light, however, is really not so 
close as it might seem, on account of the very small wave length 
of light in comparison to the size of our apparatus. Only with 
apparatus of the order of magnitude of the wave length do we 
get a good analogy. Sometimes we have such optical problems, 

as in diffraction of light through a slit of width comparable to 
a wave length, or in scattering of light by an obstacle comparable 
with the wave length. These cases are the exception, however. 

We must be vei^^ wary of optical analogies, when they deal for 
instance with reflection of light by mirrors very large compared 
to the wave length; we may not be sure that microwaves will 

behave in the same way. 
With this preliminary understanding of our problem, w^e shall 

start with our most useful analogy, the theory of transmission 
lines. We shall develop this as a subject in itself, without 

particular reference to the actual type of line we shall take up 
later. After we have gained a thorough familiarity with the 
theory of lines, we shall go on to MaxwelFs equations and the 
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explanation of coaxial lines, hollow pipes, antennas, radiation, 
and methods of joining different kinds of lines, explanations 
which are given properly only by Maxwell’s equations but 
in which the analogy with transmission line theory will be 
of constant help and will constantly add to the depth of our 
understanding. 



CHAPTER I 

TRANSMISSION LINES 

In the theory of electrical networks, there is one particularly 
simple problem: the infinite transmission line, a succession of 
identical four-terminal networks connected together. In such 
a line, the electrical properties are very much like the mechanical 
properties of a stretched string: waves can be propagated down 
the line, in either direction. If the line has resistance, the waves 
are attenuated, otherwise not. If a line is terminated, rather 
than being infinitely long, the wave will be reflected at the 
termination, so that the disturbance in the line will consist of 
an incident and a reflected wave. If the terminal network 
absorbs no power, the reflected wave will have the same amplitude 
as the incident wave at the terminal, though it may have a 
different phase; if the terminal network absorbs power, the 
reflected wave will have smaller amplitude than the incident 
wave. The combination of the incident and reflected waves 
forms standing waves. If both ends of a line are terminated by 
reflecting networks, the line becomes a resonant system: only 
frequencies for which the length of the lino is properly adjusted 
with respect to the wave length can be used to set up standing 
waves of large amplitude in the line. If other frequencies are 
impressed on the line, the amplitude will be small. The fre¬ 
quency difference between the frequencies at which the response 
of the resonant line has half its maximum value can be used to 
define a Q for the line, just as for the corresponding resonant 
circuit. Not only is a single transmission line, terminated or 
not, of interest; we must consider combinations of lines. Thus 
we can have two lines of different properties connected together 
in series. There will be reflection at the junction between the 
two lines, just as there would be at the junction between a line 
and a terminal impedance. Again,, we may have one line in 
shunt across another line. This again will introduce reflections 
into the line and can be treated much as the corresponding 
problem in ordinary circuit theory would be handled, the prob- 

7 



8 MICROWAVE TRANSMISSION [Chap. I 

lem of one impedance shunted across another. Problems of 

these types will be taken up in the present chapter. Later on, 
we shall see how actual (*oaxial lines or hollow pipes form analogues 
to transmission lines, how terminated lines form resonant cavi¬ 
ties, and how coaxial lines and pipes can be connected together 
to form analogues to transmission lines in series or in shunt. 

1. The Infinite Line.—^By an infinite transmission line, one 
means an infinite set of identical four-terminal networks, con¬ 
nected together as shown in Fig. 1. Before understanding the 
nature of the transmission line, we must understand clearly the 
structure of the four-terminal networks that make it up. We 
shall assume that these are linear networks; that is, that the 
currents flowing to the various terminals are linear functions 

Fig. 1.- An infinite transniisBion line. 

of the voltages of the terminals. This will be the case if the 
networks consist entirely of resistances, inductances not con¬ 
taining iron, and capacities, but will not be the case if they con¬ 

tain vacuum tubes, iron-core inductances, or other nonlinear 
devices. In a general four-terminal network, there are four 
separate currents, the currents flowing into each terminal; and 
four voltages, the voltage of each terminal with respect to ground. 
On account of the linear nature of the network, each voltage 
will be a linear function of the four currents, and the four resulting 
equations will have 16 coefficients, of the dimensions of imped¬ 
ances. This case is much more general than we need, however. 
Our actual networks have two terminals at one side, for definite¬ 
ness the left side, which we shall consider as input terminals, and 

two others at the right side which are output terminals. We 
shall consider only the case in which the current flowing into 
one of the input terminals equals the current flowing out from 
the other input terminal, and the current flowing out from one 
output terminal equals the current flowing into the other output 
terminal. This is the case analogous to the familiar, closed, 
two-wire circuit of low-frequency work, in which equal currents 
in opposite directions flow through the two wires. Thus there 
are only two currents which we must consider, which we shall 

denote by ia and u- These currents are shown in Fig. 2. Simi- 
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larly there are only two potential differences of importance, the 
one between the two input terminals, which we shall call Fa, 
and the one between the output terminals, 
Vb. Va will be assumed positive if the 
upper of the terminals a is at higher voltage, 
and Fb is positive if the lower of the ter- . ^ 
minals b is at higher voltage; thus in each 
case the current flows in the direction of ^ 
decreasing voltage. The linear equations ences in a single 

connecting the currents and potential differ- 
ences will have four coefficients, and may be written 

F a ^aa^'a I ^ab'^b 
Vb = Zbaia + Zhbib (1-1) 

It can be proved, however, that the coefficients Zab and Zha are 
equal. This proof is similar to that of the reciprocity theorem, 
which can be stated as follows: If we have any system of ironlcss 
alternating-current circuits, however complicated, and if we 
have in the system a sinusoidal impressed e.m.f. applied at any 
point of the system and an impedan(*eles8 ammeter at any other 
point of the system, the ammeter and e.m.f. are interchangeable 
without changing the amplitude or phase of the steady-state 
current through the ammeter. This theorem is proved by 
setting up Kirchhoff’s equations for an arbitrary network and is 
true because a corresponding result holds for each element com¬ 
mon to two circuits of the network. Thus if a resistance or 
capacity or inductance is common to two circuits, or if there is a 
mutual inductance between them, the e.m.f. induced in one 
circuit by a given current in the other equals a mutual impedance 
times the current in the other, and this mutual impedance is 
the same for the e.m.f. induced in the first circuit by a current 
in the second, or for the e.m.f. induced in the second by a current 
in the first. It is an extension of this fact that leads to the 
result 

Zab = Zba (1.2) 
in Eq. (1.1). Thus there are only three independent impedances 
for a four-terminal network with currents and voltages as in 
Fig. 2, and we may rewrite Eqs. (1.1) as 

Fo ~ Zaa^a ~i*" Zab'^b 
Ft = Zabia + Zi^ib (1.3) 
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As a result of Eq. (1.3), we see that the network has just three 

arbitrary parameters in it, and the suggestion is obvious that 
we can construct an equivalent network in a simple way out of 
three properly chosen impedances. We can at once show that 
this can be done in the form of a T network, as shown in Fig. 3. 

If we take the T structure of Fig. 3 and apply Kirchhoff^s laws in 

Z/ Z2 

Fig. 3.— A T structure eciuivaleiit to a four-terminal network. 

the usual way, taking account of the fact that the current in the 

shunt element Zz is 4 — Uy we have at once 

Fa = (-Zi + Z'^ia — Zzih 
Vb = ~Zzia {Z2 Zz)ib (1*4) 

a pair of equations similar to (1.3). Comparing them, we see 

that 

Z(M = + Zzy Zab = '~~Zzy Zbb = Z2 Zz 
Zi = Zaa + Zahy Z2 = Zbb + Zaby Zz = ’-‘Zab (1-5) 

The network of Fig. 3 furnishes a convenient way of visualizing 
the general network that we are considering. It should be 

Zi Z^ Zj Z2 Z2 Zi Z2 

Fig. 4.—Infinite line formed from T networks. 

understood that many other simple networks could also be set 
up equivalent to the general network, but the T structure is as 

simple as any. It should also be understood that, in order that 
Eqs. (1.5) should hold at all frequencies, the Z^s, both of the 

set Zaay Zaby Zbbj and of Zi, Z2, Z3, may have to be complicated 
functions of the frequency, so that it is not to be assumed that 
in general the impedances Zi, Z2, Zz of the T section can be 
chosen as simple elements, such as simple series combinations 

of inductances and capacities. 
Using the equivalent T section of Fig. 3, let us now set up the 

infinite transmission line. This is shown in Fig. 4. From the 

appearance of the network, it is obvious that the two series 
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members Zi and Z2 between two shunt impedances Zz are in 
series with each other. Now it is really arbitrary where we 
draw the terminals of our separate networks (shown by circles in 
Fig. 4). We have spoken, in Fig. 1, as if each network were, 
definitely fixed, confined in a box so to speak. But this of course 

is not really so, and, with the impedances Zi and Z2 in series, we 
may imagine terminals to be inserted anywhere in the series 
impedance Zi + Z2. In particular, we may make our T net- 

works symmetrical, by inserting the terminals halfway through 
the impedance Zx Z2, which amounts to replacing both 
and Z2 by {Zx + Z^I2, This will make no real change in the 

network. Since it involves no loss of generality, we shall from 
now on deal with such a symmetrical line, as shown in 5. 

Zs/2 Zs/2 Zs/2 Zs/2 Zs/2 Zs/2 Zs/2 Zs/2 

Fig. 5.—Symmetrical line of T sections. 

In this figure, we have relabeled the series elements ZJ2, so 
that two together form and we have called the shunt, or 
parallel, elements Zp., (We might have called the series elements 
by the subscript s for series and the shunt elements by .s for 
shunt, but then we should be involved in the same difficulty as 

the old lady who labeled her mince pies TM for ^^^Tis mince,^^ 
and her others TM for ‘^’TainT mince,and never did figure 
out why the pies got so mixed up.) As we have seen in the 

preceding paragraphs, this line of symmetrical T sections is 
really just as general as the most general line shown in Fig. 1. 
Using (1.5), we then have 

Z, = Zi + Z2 = Zaa + Z66 + 2Zub 
Zp = Z3 = —Zab (1-fi) 

Let us now set up our electrical network problem, to find the 

currents that can flow in the line. In Fig. 6 we show the line, 
indicating by in the current flowing into one of the networks of 
the type shown in Fig. 1, or the current flowing in one of the 

series elements of the line of the type of Fig. 5. The voltage Vn 
is measured across the terminals of the network in the first case 

Or is measured from the mid-point of the series impedance to 
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the opposite side of the line in the second case. In either case, 
we shall take the current to be positive if it flows in a clockwise 

direction, and the voltage to be positive if the upper terminal is 
positive with respect to the lower. If in and Vn are positive, 
then, the current is flowing in the direction of decreasing voltage 

to the right of the terminals, and in the direction of increasing 
voltage to the left of the terminals. We shall now set up the 
problem by both methods illustrated in Fig. 6. 

Using the first method, wc have Eqs. (1.3) for the voltage 
in terms of the current. Applying to the network to the right of 
the terminals in which in is flowing, we have 

Fn ■” ^aaXn “i“ ^ahtn-j-l ( b 0 

Applying to the network to the left of those terminals, we note 

that our present convention of signs for the voltage is the opposite 
of what was used before. Thus we have 

— Vn == Zabin~l + Zbbin (1-8) 

Adding (1.7) and (1.8), we find 

{Zaa + Zbb)in + Zab{in-1 + U+l) =0 (1-9) 

Similarly using the second method, we note that the downward 
current in the shunt element to the right of the terminals where 

Vn is measured is in — in+u the downward current in the 
shunt element to the left Is in-i — 4. Applying Kirchhoff^s law 
to the circuit consisting of the series element Z, and the two shunt 

elements Zp, we have 

Zain + Zp(in — 4+1 + 4 “ 4-l) = 0 (blO) 
or 

{Zg + 2Zp)in Zp(4-i + 4+i) == 0 (1-11) 

Using Eqs. (1.6), we see that Eqs. (1.9) and (1.11) are identical, 

as of course they must be. 
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It is now possible to solve Eq. (1.11) by a very simple device. 
We assume 

in = Ae-y’' (1.12) 

where A and y are complex constants. Then we have 

(Z, + 2Zj,)Ae-y’‘ - Zp{ey + e-y)Ae-y’' = 0 (1.13) 

Canceling Ae"^”, we have an equation independent of n: 

^ - = cosh 7=1+ ^ (1.14) 

If 7 is chosen to .satisfy (1.14), the assumption (1.12) will furnish 
a solution of the infinite set of equations (1.11). We notice that, 
since the hyperbolic cosine is an even function of 7, each set of 
values of Z, and Zp will furnish two solutions for 7, one the 
negative of the other, so that we could equally well have written 
(1.12) in the form Aey". We shall prefer to handle the two pos¬ 
sible values in the following manner, whose significance will 
become plain shortly. We write the complex number 7 in the 
form 

7 = a+ii8 (1.15) 

where a and /3 are real and imaginary parts of 7, j = — 1. Of 
the two possible values of 7, one will have its real part a positive, 
the other will have a negative. Henceforth we shall denote by 7 
that root of (1.14) which has its real part positive, and shall call 
the other root —7. We then have found two solutions of (1.11): 
Ae-y and where 7 is defined as just described, and A and B 
are arbitrary complex constants. Since (1.11) forms a set of 
linear homogeneous equations, the sum of these two solutions is 
itself a solution. Inserting the factor e'"' representing the time 
variation of the current, our general solution of (1.11) is then 

in = Ae’^^-y” + (1.16) 

This is the most general solution of (1.11) which is a sinusoidal 
function of time with angular frequency w; of course the general 
solution would be a sum of such terms for all frequencies, with A 
and B arbitrary functions of frequency and 7 determined as a 
function of frequency by (1.14), but as usual in circuit work we 
can deal with solutions sinusoidal in time and combine them at 
the end of our calculation. 
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The interpretation of our solution (1.16) is most easily found 
by using (1.15). We then have 

in = 4- (1.17) 

where we remember that a is positive. We can also arrange to 
have positive. We remember that cosh 7 = cosh (a + j/S) 
is periodic in /3 with period 27r, since it can be written in terms of 
trigonometric functions of /3. Thus p is not uniquely determined 

by (1.14); an infinite set of is possible, differing by integral 
multiples of 2^, We shall for definiteness choose ^ to be between 
0 and 27r. We shall now show that the two terms of (1.17) 

represent two waves propagated along the transmission line with 
definite velocity and wave length, attenuated as they go along, 
the first term being a wave propagated to the right, the second 

to the left. To see this, let us remind ourselves of a few simple 
facts regarding wave motion. An undamped sinusoidal wave 
propagated along the x axis in a continuous medium has a dis¬ 
placement as a function of x and t given by 

u = (1.18) 

where v is the velocity of propagation, so that the disturbance will 
be in the same phase at points for which 

X 
t-- const., X = vt + const. (1.19) 

from which we verify at once that v is the velocity. The quan¬ 

tity k is given by 

* = - (1.20) 
V 

It is closely related to the wave length X, the distance along the x 
axis in which the disturbance repeats itself, at constant time. 
This quantity is easily derived by rewriting (1.18) in the form 

u = (1.21) 
where 

is the frequency, or number of vibrations per second; for from 

(1.21) we see at once that increase of a: by X brings u back to its 
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original value. We then have 

^ = Y’ A = . (1.23) 

Now let us consider the possibility that the constant k may be 
complex, writing 

k = kr + jki (1-24) 
Then we have 

U = (1.25) 

The factor is a damping or attenuation term; if ki is negative, 

as it normally would be, the amplitude is attenuated as we go 
along the x axis, falling to a factor 1/e of itself in a distance l/ki. 
The remaining factor e represents a propagated wave, just 
as in (1.18), and kris to be substituted in (1.20) and (1.23) in place 
of k in finding the velocity and wave length of the wave. The 
wave (1.25) is propagated along the positive x axis; for a wave 
along the negative x axis, we need merely change the sign of x, 
which amounts to the same thing as changing the sign of fc. 

Comparing (1.25) with the first term of (1.17), we see that they 
agree if we regard n as a distance equivalent to x (it is actually 

distance along the line measured in terms of the length of a single 
network as a unit) and if we place 

iS = fcr, a = -ki, (a + jP) = y = jk = j{kr + jki) (1.26) 

Thus we see, as we stated earlier, that the first term of (1.17) 
represents an attenuated wave traveling to the right, and the 

second term, which differs from it in a change of the sign pre¬ 
ceding n, is an attenuated wave traveling to the left. The 
constant a, which measures the attenuation, is often called the 

attemmtion constant; which determines the wave length 
according to the equation 

X = (1.27) 

which we derive from (1.23) and (1.26), is called the wave length 
constant. The complex quantity y is often called the prop¬ 

agation constant. We note that, from (1.20) and (1.26), the 
velocity of propagation is given by 

CO 
(1.28) 
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This of course is in units of networks, or sections of line, per 
second. 

Before leaving the infinite line, we shall derive several formulas 
that will be useful in our later work. In the first place, we may 
regard (1.14) as a quadratic for either e'* or e~'^ and solve for 
that quantity directly. We find 

The choice of the proper sign is to be made according to the 
principle discussed in connection with Eq. (1.15), so as to make 
the real part of 7 positive; whether it is the + or — sign in (1.29) 
depenas on the nature of and Zp. In any case, one sign in 
(1.29) is to be chosen, in accordance with the principle just 
mentioned; when this has been done, the other sign in (1.29) 
will give as we can easily verify from the fact that the product 
of the two values in (1.29) is unity. 

Another useful relation is found by considering the ratio of 
voltage to current in the nth network, in the case where the 
current is just given by the first term of (1.16), in = 
representing a wave traveling to the right along the line. This 
ratio is called the characteristic impedance of the line and is a 
quantity of which we shall make constant use in our later work. 
It is denoted by Zo. To find it, we may use the line in the form 
shown in Fig. 6. In that case, remembering that the current in 
the shunt element to the right of the terminals is in — tn+i, we 
have 

= i„ + Z„- e-yZ^ (1.30) 

where we have u.sed the fact that 

in+i = e-yin (1.31) 

which follows directly from the assumed current. From (1.29) 
we substitute for e-y, using the + sign in front of the radical, in 
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place of the ± which appears in e'^. Then we find 

Vn = inZo 

where 

= 4 ZaZp + 

(1.32) 

(1.33) 

As in the formula for (1.29), the sign in (1.33) is to be deter¬ 
mined uniquely. The positive signs in (1.29) and (1.33) go 
together, as do the negative signs, so that when the sign of (1.29) 

is determined, that of (1.33) is known as well. 
Finally, we can get an interesting relation between Zq and y 

by computing sinh 7. To do this, we use (1.29), finding at once 

sinh 7 = 

sinh 7 = (1.34) 

We observe that the ± sign has disappeared from (1.34); this 
forms, then, a convenient way for finding Zq uniquely from 7. 

2. The Infinite Line with Distributed Parameters.—The lines 
we have considered in Sec. 1 consist of finite lumped networks. 
A much closer analogy to the transmission lines of microwave 
theory is found in continuous lines with distributed parameters. 
We can conveniently consider such lines by passing to the limit 
as the size of the network elements becomes smaller and smaller. 
Let us think of such a line as that of Fig. 1, in which each net¬ 
work repi esents a length dx of the line. Let us assume that the 
distributed series impedance per unit length of the line is Z and 
that the distributed shunt admittance per unit length is Y, 
Then the series impedance of the element of length dx is 

Zf = Z dx (2.1) 

Similarly the shunt admittance of the length dx is dx, so that 
the shunt impedance of this length is 

(2.2) 
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Since we are interested in the limit as dx goes to zero, we see that 
the series impedance per element will become small in this limit, 
])ut the shunt impedance will become infinite. This allows us to 
neglect certain terms in the formulas of the preceding section. 

First let us find the current i(Xyt) at a point with coordinate 
X along the line, at time L We must here adopt a convention 
slightly different from that made in the preceding section. There 

we assumed, for instance in (1.31), that the ratio of the current 
in the (n + l)st network to that in the nth element was 
If we did that in this case, since the (n + l)st and nth elements 

are infinitesimally separated from each other, e~y would be 
arbitrarily close to unity, and y infinitesimal. We prefer rather 
to define y so that e~^ is the ratio of the current at coordinate 

(x + 1) to that at coordinate x. That is, in place of (1.16), 
we assume for the continuous line 

i{x,t) = (2.3) 

This would agree with (1.16) only if x were a coordinate measured 
along the lumped constant transmission line, increasing by unity 

in going from one network to the next. Now, taking only the 
first term representing the wave propagated to the right, wi) 
have 

i{x + dx,t) = e~y^H{Xyt) 
= (I — y dx (2.4) 

We may compare this formula with (1.29). As we pass to the 
limit in that formula, we note that 

p^ZYdx^ (2.5) 

We need retain only the term of (1.29) in dx; this is the first term 
under the square root. Thus we have 

e-y = I + -v/ZK dx ■ ■ • (2.6) 

By comparison with (2.4), we sec that 

7 = + (2.7) 

As usual, the sign is to be chosen so as to make the real part of 7 

positive. Next let us find the characteristic impedance of the line. 



Sec. 2] TRANSMISSION LINES 19 

In formula (1.33), the second term under the radical is negligible 
compared to the first, for the continuous line. Thus, using (2.1) 
and (2,2), we have 

Jo = (2.8) 

Combining (2.7) and (2.8), we have 

7 = ZoY (2.9) 

The close relationship between (2.9) and (1.34) is obvious, if we 
replace sinh y by the value which it would have for small y and 
remember that Zp is inversely proportional to Y. As in (1.34), 
the sign in (2.9) is unique and serves conveniently to define the 
relation between y and Zq. 

It is often convenient to have a specific case of continuous 
transmission lines in mind. In either a parallel-wire transmission 
line, or a coaxial line, the series impedance Z per unit length 
consists of resistance and inductive impedance in series, and the 
shunt admittance Y per unit length consists of conductance and 
capacitive admittance in shunt. Thus we may write 

Z = R j(ji)L (2.10) 

where R is the series resistance per unit length, L the series 
inductance per unit length, and 

Y = G +jwC (2.11) 

where G is the shunt conductance per unit length and C the shunt 
capacitance per unit length. Then wc have 

y = ± VQt + + jeoC) (2.12) 

For a nondissipative line, the series resistance and shunt con¬ 
ductance R and G would be zero. Thus in this case we should 
have 

y = ±ia> a/LC = a + (2.13) 

« = 0, /3 = w y/LC (2.14) 

In (2.14), we have chosen the positive sign for /3, to agree with 
our assumption that /3 is positive. Using (1.28), we have in 
this case 

V = 
— ca __ 1 

Vlc 
(2.16) 
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for the velocity of propagation. Actual lines have some dissi¬ 
pation, but it is generally small. In case R is small compared 
to coL, and G is small compared to coC, we can expand the square 
root in (2.12) in powers of R/o)L and G/wC, and the leading 
terms become 

+ + ■ ■ ■ ) 

“ ■ I -y/l + 5 -v/ff’ 
a _ R G 
/3 2a)L 2a>C 

(2.16) 

(2.17) 

(2.18) 

where we have again chosen the positive sign, making both a 
and /3 positive. 

We may find the characteristic impedance of our specialized 
line from (2.8), using again the positive sign before the square 
root. It is 

For the dissipationless line, this becomes 

Zo = (2.20) 

a real quantity, and therefore a pure resistance. For the line 
with slight dissipation, expanding as in the preceding paragraph, 
we have 

_ /Lf ,/ G \ ■ 

' \CL 2c^L~^2cJcJ (2.21) 
R G 

2ci^Z/ 2ci)C y 

We see that losses in the line introduce a reactive component into 
the characteristic impedance of the line, just as they introduced 
an attenuation, as we saw in (2.17). It is possible, however, for 
the series and shunt losses to cancel in their effect on character¬ 
istic impedance, though not on attenuation. Thus if 7^ + jo)L 
and G + jo)C are chosen to have the same phase angle, it is plain 
from (2.19) that Zo will be real. As we see from (2.21), this is 
accomplished if 

R G 
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For some purposes, it is desired to have attenuating lines which 
nevertheless have real characteristic impedances. This can be 
done, as we see from (2.22), by using properly chosen series 
resistances and shunt conductances. 

3. The Terminated Line and Reflection.—^We have seen in 
(1.16) and (2.3) that the current in an infinite line consists of 
two waves, one propagated to the right, the other to the left, 
with arbitrary amplitudes and phases. We shall now show that 
if the line is cut at an arbitrary point and terminated by a 
terminal impedance Zr, the ratio B/A between the complex 
amplitudes of reflected and incident waves, which is called the 
reflection coefficient, is uniquely determined. In particular, we 
shall find that if the terminal impedance equals the characteristic 
impedance Zo, the reflection coefficient is zero; the greater the 
difference between Zo and Zrj the greatc'r the reflection. 

Fio. 7.—Single section terminated by Zo. 

As a preliminary, let us consider a line terminated by the 
characteristic impedance Zo. When we first defined this quan¬ 
tity, in deriving Eq. (1.33), we stated that it was the ratio of 
voltage to current in the nth section of the line, when the current 
consisted only of a wave propagated to the right. Now if we 
have a terminal impedance Z^, the ratio of voltage across Zr to 
the current flowing in it must be Z«, by definition. If the termi¬ 
nal impedance equals Zo, the ratio of voltage across the line at 
the terminals of Zo to current flowing in the line, and therefore 
flowing into Zo, must be Zo. But this is just the ratio that we 
should find if the disturbance in the line consisted only of a wave 
flowing to the right. This single wave, then, satisfies the bound¬ 
ary conditions at a terminal impedance Zo, showing that when 
a line is terminated by this impedance only the incident wave is 
necessary, and there is no reflection. 

A line terminated by the characteristic impedance Zo acts like 
an infinite line, in that it can sustain a single wave traveling to 
the right; any other type of line must have simultaneously a 

reflected wave. It follows that any length of line, terminated 
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by Zo, will itself have an input impedance Zo. This will be made 
clearer by Fig. 7, which shows a single section of lumped constant 
line, terminated by Zo. Since the current in this line will be 
simply a wave traveling to the right, it follows as in (1.32) that 
the ratio of voltage to current at the terminals aa will be the 
same as at 66, equaling in each case Zo. Thus the input imped¬ 
ance of the network whose terminals are aa is Zo. From this 
fact, we can find Zo by elementary circuit theory, verifying the 
result of (1.33), which was found by considering the waves 
propagated down the line. The whole network between aa is a 
combination of an impedance ^Z« in series with a parallel circuit 
containing Zp in one branch, ^Z« + Zo in the other. Thus we 
have 

= + -y - —-j-- (3.1) 

Zp ^Z, + Zo 

(Zo — •jZ«)(Zo + ^Zg Zp) = Zp(Z{i + ^Zg) 
Zq = ZpZg -f- (^Z,)“ 

Zo = ± TPT- (3.2) 

agreeing with (1.33). Now having shown that one network cle¬ 
ment terminated by Zo has the impedance Zo, we can consider 
the second network and show in an obvious manner that its 
impedance, terminated by the first element and Zo, is again Zo, 
and so on indefinitely. We could use the same method to find 
the impedance of any number of network elements terminated 
by an impedance Zr different from Zo; but in this case we should 
find that the impedance of n elements terminated hy Zr depended 
on n, and the calculation would be very involved. The line 
terminated by Zo is the only one that has the same impedance, no 
matter where we cut it. One of our next problems will be to 
find the impedance of a line of arbitrary length terminated by an 
arbitrary Zr. We shall find that this problem is much more 
easily solved by considering direct and reflected waves than by 
the type of network theory just described. 

Let us now assume a line terminated by a general impedance Zr. 
At the terminals of Z/j, the ratio of voltage across the line, to 
current flowing in the line, must be Zr. Since this is in general 
different from Zo, it is plain that the current in the line cannot be 
simply a wave traveling to the right. By combining such a 
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wave with a wave traveling to the left, however, we can give the 

ratio of voltage to current any desired value, and this must be 
done to satisfy our general boundary condition. Let us then 
ask what is the voltage across a line, when the current consists 

of the sum of waves traveling to right and left. For simplicity, 
we shall consider the continuous line, in which, following (2.3), 

the current is 

i(x,t) = (Ae-y^ 4- Bey^)e^^^ (3.3) 

We can adapt our result to the lumped constant line, where the 

current is given by (1.16), by replacing the continuous variable x, 
measuring distance along the line, by n, indicating the nth section 
of line. 

We now know, following (1.32), that if we have only the first 
term of (3.3), so that B = 0, the voltage is given by Z'o times the 
current. We have not so far asked what is the voltage if we 
have only the second term, so that 4=0. Looking back to the 
derivation of (1.32) and taking in = we see that the 
derivation goes through in just the same way, except with a 
changed sign; we have 

Fn - in{-Zo) (3.4) 

where Zo is defined as before. Let us try to understand why 
there is this difference of sign between waves propagated to the 
right and to the left. Suppose we have an infinite line, with a 
wave propagated toward the right, attenuated as it goes. If 
we imagine this line to be cut at terminals oa, then when the 
upper of the terminals a is at positive voltage with respect to the 
lower, the current 4 will be flowing into the upper terminal, out 

of the lower one. That is, within the right half of the line, the 
current is flowing in the direction of decreasing voltage. The 
impedance of this half line is positive, and the current is delivering 

power to the half line. The other half line, to the left of the 
terminals aa, however, is in just the opposite situation. The 
upper terminal is still at higher voltage than the lower one, but 

current flows out of the upper terminal, into the lower one. The 
current flows opposite to the voltage, so that the left-hand half line 
is delivering power, or is acting as a generator. If we compute 
its impedance, as the ratio of voltage difference between top and 
bottom terminals- to the current flowing into the top terminal, in 
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the same direction as the voltage difference, we find the imped¬ 

ance to be negative, the negative of the impedance of the right 
half line. In other words, we see that the impedance of a half 
line, looking in the direction of power flow, from generator to 

receiver, is positive, and that the impedance of the other half 
line, looking opposite to the power flow, is negative. Next we 
may consider the case of two simultaneous flows of power, arising 

from* two waves, one traveling to the right, the other to the left. 
We consider the impedance of our same half line, looking to the 
right. This impedance will be different for the two waves: for 
the wave traveling to the right we shall be looking toward the 
receiver and the impedance will be positive; for that traveling 
to the left we shall be looking toward ‘the generator and the 

impedance will be negative. This is the meaning of the negative 
sign in (3.4). 

We now see that, corresponding to the current (3.3), the 
voltage between the two conductors of the line, at a:, is 

V{x,t) = Zo(Ae-y^ - (3.5) 

the sum of the voltages connected \vith the two waves. The 
ratio of voltage to current at point x, which we may call the 
impedance at x, Z^, is 

® Ae-y^ + Bey^ 
(3.6) 

Suppose now that the line is cut at a particular point I and termi¬ 
nated there by the impedance Z*. In this case, the ratio of 

voltage to current at Z, which we have called Zj, must equal Zr. 

That is, we must have 

^ ^ - Bey^ 
~ Ae-y^ + Bey^ 

(3.7) 

Equation (3.7) provides the condition that we have been looking 
for, giving the reflection coefficient B/A, We have 

Ae~y\Z, - Zr) = Bey\Z, + Zr) 

Bey^ __ Zo Zr 

Ae'^y^ Zo “f* Zft 
(3.8) 
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In the particular case where the terminal impedance is located 

at x = 0, this becomes 

^ B   Zq — Zr 

A ^0 "h Zr 
(3.9) 

This important result verifies our earlier statement that if the 
terminal impedance equals Zq there is no reflected wave, and that 

the amplitude of the reflected wave is greater, the greater the 
difference between Zq and Zr. Two limiting cases are of par¬ 
ticular interest: the short-circuited and the open-circuited lines. 
For the short-circuited line, Zr = 0, and B/A equals unity, so 
that the reflected and incident currents at x = 0, where the line 
is short-circuited, are equal, while the reflected and incident 
voltages are opposite and cancel. For the open-circuited line, 
Zr is infinite, B/A equals — 1, the reflected and incident currents 

cancel, while the voltages add. These results fit in with the 

obvious condition that the voltage across a short circuit and the 
current across an open circuit must be zero. They also show 
that the power carried to the termination by the incident w^ave 

must just equal the power carried back by the reflected wave, 
since it is obvious that no power can be lost in the short circuit 
or the open circuit. 

4. Impedance of the Terminated Line.—^Let us assume a line 

extending from x = 0 to x = Z, terminated at x = Z by a terminal 
impedance Zr. Our problem in this section will be to find the 

impedance of such a line. We have already seen that if Zr 

equals the characteristic impedance Zo of the line, the input 
impedance wdll also be Zq, independent of the length Z of the line. 
In any other case, however, the input impedance wall depend on Z. 
We shall call the input impedance of the line of length Z, termi¬ 
nated by Zrj Z(l). We can find it as follows. From (3.6), the 
impedance of the line at x = 0 is 

Z{l) = Z,^^ (4.1) 

From (3.8) we have the value of f Ae~^\ given by 

M piyl = ^0 ~ . V (4.2) 



26 MICROWAVE TRANSMISSION (Chap. 1 

Combining with (4.1), we have 

- 7 1 - B/A 
1 + B/A 

= Zq 

1 _ ^0 ~ e-2yl 

Zf) + Zs 

1 + e-2yl 

Zo + Zk 
_ y (Zq + Zf^e'^^ (Zq — Zn^e 

f/fi\ __ y Zq sinh yl + Zr cosh yl 
^ ^ Zq cosh yl Zh sinh yl 

(4.3) 

Equation (4.3) is an important formula for the input impedance 
of a line of length I, and characteristic impedance Zq, terminated 
by an impedance Zr. 

When the general formula (4.3) for the impedance of a termi¬ 
nated line has been found, it is often useful to consider the special 
cases of short-circuited and open-circuited lines. The first is the 

case where Zr = 0, the second the case Zr = oo. Substituting 
these values in (4.3), we have at once 

Zc\ = Zq tanh yl (4.4) 

for the impedance of a clovsed or short-circuited line, and 

Zov = Zq coth yl (4.5) 

for an open-circuited line. We note, since the hyperbolic tangent 
and hyperbolic cotangent are reciprocals of eac^h other, that 

ZclZov = Zq (4.6) 

so that the characteristic impedance of a line is the geometric 
mean of its short-circuited and open-circuited impedances. 

This is a general relation for any line and can furnish a convenient 
method for determining the characteristic impedance experi¬ 
mentally from a finite length of line, by measuring short-circuited 

and open-circuited impedances, experimentally. 
It is important to consider Eqs. (4.4) and (4.5) for the imped¬ 

ances of short-circuited and open-circuited lines, as a function of 

i, the length of the line. Let us start with (4.4) and first consider 



Sec. 41 TRANSMISSION LINES 27 

a line without attenuation, for which a = 0, 7 = j0. In this 

ease we have 

(>y — f>—y — 0—jfi ^ ^ 

sinh 7 == -2- ==-2-^ ^ 

, ^ 
cosh 7 =-2- “-2-~ ^ 

tanh 7 = ^ = j tan /3 
cosh 7 

Thus (4.4) becomes 

Zci = Zoj tan (4.10) 

In case Zq is real, representing a resistance, as is usually the case 
in practice, we see that the impedance of the short-circuited line 
is pure imaginary and is a pure reactance. It is useful to write 
(4.10) in terms of the wave length X of the disturbance on the 
line, given by Eq. (1.27) as 0 = 2t/\. Then we have 

Z^ = Zojtan^ (4.11) 

We remember that the tangent is zero when its argument is zero; 
it increases, at first equaling its argument, then increasing more 
rapidly, becoming infinite for the angle 7r/2. It then reverses 
sign, decreasing from negative infinity to zero as the angle goes 

from t/2 to ir, then repeating the cycle, with periodicity of tt. 
Thus we see that the impedance of the short-circuited line starts 
from zero for an infinitely short line (as it must be, on account of 

the short circuit), becoming a positive reactance, or inductive 
reactance, at first proportional to the length, and then increasing 
more rapidly, until for 27rZ/X = 7r/2, or the length Z equal to one- 

fourth wave length, the impedance becomes infinitely great. 
Then the impedance changes sign, becoming negative or capaci- 
tative as the length increases from a quarter to a half wave length. 

At a half wave length the impedance is again zero, as for zero 
length, and increasing length carries us through the same cycle, 
so that at three quarters of a wave length the impedance is again 

infinite, and so on. 
The reason for this periodicity is seen when we consider the 

pattern of standing waves on the line. We have seen in Sec. 3 
that for the short-circuited line, Zr = 0, the amplitude B of the 

(4.7) 

(4.8) 

(4.9) 
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reflected wave equals the amplitude A of the incident wave. 

Thus, from (3.3), the current at x is 

i(x) = 
== 2Ae^'^^ cos fix (4.12) 

The voltage, from (3.5), is 

V{x) = 

= —2^20^4^^^^^ sin fix (4.13) 

In Fig. 8 we show current amplitude (proportional to cos fix) and 
voltage amplitude (proportional to — sin fix) as functions of 

distance along the line. We see that at the end of the line, the 
current has a maximum, while the voltage is zero (as is natural 
from the fact that the line is short-circuited). Thus the imped- 

End of 
/ine 

Fig. 8.—Standing waves of voltage and current near end of short-circuited lino 
with no attenuation. 

ance, or the ratio of F/f, is zero. On the other hand, a quarter 
wave length from the end, the voltage has come to a maximum, 
while the current is zero, so that the impedance is infinite. 
Increasing the distance changes the sign of the current, and hence 
of the impedance. We see that, in the standing wave pattern 
set up in the line, the current is always zero at odd numbers of 

quarter wave lengths from the end and that the voltage is zero 
at even numbers of quarter wave lengths from the end. These 
places where an amplitude of a standing wave is always zero are 

called nodes; the points midway between are antinodes or loops. 
We see that nodes are a half wave length apart, explaining the 
periodicity with this period, and furthermore the nodes of V 
are at the antinodes of ij and vice versa. 

Next let us consider the short-circuited line with attenuation, 
for which a is not equal to zero. In this case the two traveling 

waves are not of equal amplitude, so that the exponentials do not 
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combine, as in (4.12) and (4.13), to give a sinusoidal variation of 
voltage and current along the line. In this case we cannot use 
the value (4.11) for the impedance, but must instead use the 
general formula (4.4). Writing y = a + jff, this becomes 

Z = Zo tanh {a + jp)l (4.14) 

We should like to find the real and imaginary parts of Z, or the 
resistance R and reactance X of the line. To do this, we need the 
formula for the hyperbolic tangent of a complex number. For 
convenience, we tabulate a number of relations of hyperbolic 
functions, which can all be proved in an elementary way from 
the definitions of these functions in terms of the exponential 
functions. We have 

cosh X = -2 — ’ sinh X tanh X = 
sinh X 
cosh X 

cosh (x ± y) 
sinh (x ± y) 

cosh2 X — sinh2 x 
cosh jx 

cosh (x ± jy) 
sinh {x ± jy) 

= cosh X cosh y ± sinh x sinh y 
= sinh X cosh y ± cosh x sinh y 
= 1 
= cos .T, sinh jx — j sin x 
= cosh X cos y ± j sinh x sin y 
— sinh X cos y ± j cosh x sin y 

(4.15) 
(4.16) 
(4.17) 
(4.18) 
(4.19) 
(4.20) 
(4.21) 

From (4.20) and (4.21), we have at once 

tanh (a + jP)l = 
sinh al cos fil + j cosh al sin jSi 
cosh al cos + j sinh al sin pl 

sinh al cosh al + j sin pi cos pi 
cosh^ al cos“ pi + sinh- al sin^ pi 

(4.22) 

Tims if the characteristic impedance Zo of the line is real, which 
we shall assume, the resistance R and reactance X of the short- 
circuited line of length I are given by 

P ^ sinh al cosh al 

” ^ cosh^ al cos^ pi + sinh^ al sin^ pi 

Y ^ y sin pi cos pl__ 
^ cosh2 ai cos^ pl + sinh^ al sin^ pl 

(4.23) 

A convenient way to plot these relations is to use an ordinary 
vector diagram, plotting R/Zq as abscissa, X/Zo as ordinate, and 
drawing lines of constant al and lines of constant pi. This gives 
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two families of curves, shown in Fig. 9. From the figure, it 
appears that the lines of constant al and constant pl are two 
families of circles. This is in fact the case. For convenience, 
let 

X (4.24) 

X 

Fig. 9.—Resistance-reaotance plot for transmission line. 

Then the circles of constant al have their centers on the r axis, 
at an abscissa which we shall call ri, and all surround the point 
r = 1, X = 0, as we see from Fig. 9. The circles of constant 
have their centers on the x axis, at an ordinate which we shall 
call Xiy and all pass through the point r = 1, x = 0. We shall 

let the radii of these circles be p«, pp. The circles are shown in 
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Fig. 10. The equations of the circles, from elementary analytic 
geometry, are 

Const, al: (r — ri)^ + = pj (4.25) 
Const, ffl: + (x — Xi)"^ — (4.26) 

The values of ri, pa, Xi, and p^ are given by the following 
expressions: 

Vi = ^(tanh al + coth al) = coth 2al (4.27) 
Pa = i(coth al — tanh al) = csch 2al (4.28) 
Xi = ^(tan SI cot SI) = — cot 2Sl (4.29) 

Pff = ^(tan SI + cot SI) = CSC 2Sl (4.30) 

The proofs of Eqs. (4.25) and (4.26), expressing the lines ot 
constant a and S as circles, are straightforward, though tedious. 

X 

Fig. 10.—Circles of constant al and constant 

We simply substitute x and r from (4.23) and the other quan¬ 

tities from Eqs. (4.27) to (4.30), and the equations prove to be 
satisfied. We give a proof of (4.25); that for (4.26) is very 
similar. We have with a little manipulation, reducing to a 
common denominator, 
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2 sinh^ al cosh^ al (a 

^ 2 sinh al cosh aJ(cosh2 al cos-^ + sinh^ al sin-* fil) 

^ 2 sinh^ al cosh^ al + cosh^ al cos^ fil — sinh^ al fil 

2 sinh al cosh ai(cosh- at cos*-* fil + sinh^ al sin- fit) 

(4.32) 
_ 2 sinh al cosh al sin fil cos fil ,. 

^ 2 sinh al cosh al{cosh^ al cos^ fil + sinh- al sin^ filj ^ 

Thus 

(r — ri)2 + 

(— cosh- al cos^ /3Z + sinh- al sin^ /30" 
_ 4- (2 sinh al cosh al sin fil cos fil)- 

[2 sinh al cosh Q:Z(cosh‘^ al cos^ fil + sinh'-^ al sin- jSZ)]- 

__ (cosh^ al cos^ fil + sinh^ al sin^ piy 

[2 sinh al cosh a^(cosh‘'^ al cos‘^ ^1 + sinh-^ al sin^ Sl)]‘^ 

= (^ -i—i) = <’sch' 2a« = p„= (4.34) 
\2 smh al cosh al/ 

Thus we verify (4.25), and (4.26) is handled similarly. 
Let us now see what our solutions for the resistance and 

reactance of the short-circuited line mean qualitatively. In 
many cases the attenuation constant a is small compared to the 
wave length constant /3. In this case, the functions ri = coth 2al 

and Pa = csch 2al from (4.27) and (4.28) stay approximately 
constant while Xi =*= — cot 201 and = esc 201, from (4.29) and 
(4.30), go through a complete cycle. As we see from Fig. 9 or 
Fig. 10, a line of constant al is a circle surrounding the point 
r = 1, X = 0. Thus, so long as we can neglect the variation of al, 

the point representing the impedance, in Fig. 9 or 10, traces out 
a circle of tliis type, as the length I of the line increases. Let us 
find how much 201 increases as we go once around a circle of 
constant al. As 201 increases from zero to 7r/2, Xi goes from — oo 
to zero, and p^ goes from qo to 1. Using the relation (1.27), 
X = 2ir/0, we see that this corresponds to a length of one-eighth 
wave length. This corresponds to the circle marked 0l = 0.257r 
in Fig. 9, a circle of unit radius with its center at the origin. An 
increase of length of another eighth wave length makes Xi go 
from zero to oo, while the radius p/j increases again from its 
minimum value of unity to infinity. Thus the circle representing 
201 = T, or i = a quarter wave lengtl^ degenerates to the axis 
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of abscissas, corresponding to the notation of = 0.5x on Fig. 9. 
This carries us halfway around a circle of constant al; the next 
quarter wave length carries us back, the values of Xi repeating 
exactly, those of repeating with opposite sign (which means 
nothing, since it is only which appears in Eq. (4.26) for the 

circle). In this next quarter wave, we must use the parts of 
the circles of constant which extend to the opposite side of the 
point r = 1, a; = 0. We see therefore that a half wave length 

along the line carries us completely around one of the circles 
surrounding this point r = 1, in the plot. 

In an actual case, of course, al is increasing at the same time 

that pi is, so that the point representing the impedance of the 
line does not travel around and around a single circle. Instead, 
we see that the radius 

2 
Pa = csch 2al = (4-35) 

as given by (4.28) is infinite for Z = 0 but decreases regularly as 
I increases, reducing to zero as I becomes infinite. For large 
values of alj the first term of the denominator alone is important, 

and we have the limiting exponential decrease, 

pa — 2c“2“^ for large al (4.36) 

Thus instead of staying on one circle, the point representing the 
impedance in the rx plane travels from one circle to another, of 
continuously decreasing radius. In other words, it travels on a 
spiral, gradually winding up onto the point r = 1, a: = 0, or 
R = Zq, X = 0, as we see from (4.24). The longer the line, the 
more closely the impedance approaches that of an infinite line, 
and the more completely the effect of the short-circuited end is 
lost. For a small attenuation, successive turns of the spiral 
have almost the same radius, so that it decreases gradually; for 
large attenuation it winds up rapidly. The limiting case of no 
attenuation would correspond to a spiral that did not wind up at 
all, so that the impedance would be a pure reactance, increasing 

to infinity, then changing sign, and repeating every half wave 
length, as we showed in Eq. (4.10). For a finite attenuation, 
the impedance of a quarter wave line is not infinite, as for no 

attenuation, and that of a half wave line is not zero; but never- 
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theless a quarter wave line has a very high impedance, which 
as we can see is a resistance, and a half wave line has a very 
low imp)edance. We can see this and other features of the 

problem from the spiral as shown in 

Fig. 11. 
The impedance is very large, and 

the circuit shows antiresonance, for 
odd numbers of quarter wave lengths, 
but it is very small, and the circuit 

^ shows resonance, for even numbers of 
quarter wave lengths, or for whole 
numbers of half wave lengths. This 
can be best shown by plotting the 
magnitude of the admittance as a 

Fig. 11.—Reactance vs. re- function of jS. We recall that the 
Bistance of short-circuited lino, ^^0 origin tO a 
as function of length of line. 

point of the spiral of Fig. 11 has a 
magnitude equal to the impedance, so that the reciprocal of 
this vector has a length equal to the magnitude of the admittance. 
To get the mathematical formula for it, we may proceed as in 
the derivation of (4.22) and (4.23). Letting 

r = 2 (4.37) 

where Z is given in (4.14), we have 

y = ^ coth (a + jP)l 
^0 

where 

coth (a + jP)l = 
sinh al cosh al — j sin pl cos 

sinh^ al cos^ pi + cosh^ al sin^ pl 

(4.38) 

(4.39) 

The magnitude of Y is then the square root of the sum of the 
squares of the real and imaginary parts, or is 

lyi — A / sinh^ al cosh^ al + sin^ pi cos^ pi 4.a\ 
' ' Zo\ (sinh^ al cos* pi + cosh* al sin* piy ^ 

A plot of IF] as a function of ply for a case where a is small 
compared to P, or where the attenuation is small, is given in 
Fig. 12. We see that the admittance goes to a sharp maximum 
whenever pi equals an integer times tt, or when the length of the 

line is a whole number of half wave lengths. Mathematically 
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this comes about in (4.40) because at these points sin = 0, so 
that the second term in the denominator is zero, and the term 
sinh^ al is small anyway on account of the assumed small value 
of Thus the denominator is small and the admittance large 
for these points. 

As is usual in resonance curves, it is interesting to compute 
the behavior in the neighborhood of the resonant points. Let 
us continue to assume that a is small compared to i8, so that 

Fig. 12.— Magnitude of admittance of sliort-circuited line, as function of jSL 

for the first few maxima sinh- al can be replaced by (aZ)^, and 
cosh^ al approximately equals unity. Furthermore, let 

pi = 71T+ 6 (4.41) 

where 5 is a small quantity. Then we shall have approximately 
sin^ pi = 52, cos^ pi = 1. Using these values, we have 

\Y\=i 
Za y/{aiy + 5* 

(4.42) 

Since al varies slowly compared to 5, we may replace it by its 
approximate value 

al - rnr 
P 

(4.43) 

We now see that \ Y\ has the form of an ordinary resonance curve. 
This becomes a little more obvious if we compute its square: 

F2 == 1 1 
2 

(4.44) 



36 MICROWAVE TRANSMISSION [Chap. I 

In this formula, 5 can play the part either of the length of the 

line, at constant frequency, or of the frequency, at constant line 
length, as we see for instance from (2.14). We see from the 
formula that the admittance has a maximum for 5 = 0 but 

rapidly falls as the frequency departs from this value. Let us 
find the value of 5 for which has half its maximum value. 
This comes when 

5 = nir (4.45) 
P 

By this equation, two values of 5 are determined, or two values of 

Plf equally spaced on opposite sides of the resonant value = nx, 
at which and consequently the power delivered to the line, 
has half the value it would have at resonance. The ratio of the 
difference of these values to the value 01 is the same as the ratio 
of the difference of frequencies to the resonant frequency, since 
the frequency is proportional to 01, Thus we have 

/ 
(4.46) 

As is common in the theory of resonant circuits, this ratio is 
defined as 1/Q: 

^ = 2a ^ 1_ 
f Q 

(4.47) 

Equation (4.47) can serve as a definition of Q for a transmission 
line. 

The Q as defined in (4.47) ties in with another definition often 
used with resonant circuits. For a series circuit containing 
resistance i?, inductance L, and capacity C, Q is defined as 

(4.48) 

the ratio of the inductive reactance to the resistance. We can 
set up an analogous definition for a line. Suppose as in Eq. 
(2.18) we consider a continuous line, with resistance R, induc¬ 
tance L, and capacity C per unit length. We shall assume the 
shunt conductance G to be zero, to get a closer analogy to the 
series circuit. Then from (2.18) we have 

2^ = A ^ 1 
0 <f)L Q (4.49) 
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where Q is given by (4.48), showing that this definition agrees 

with the previous one (4.47) based on the sharpness of resonance. 
It is interesting and easy to get formulas for the impedances 

(which are pure resistances) of short-circuited lines of any 

whole number of quarter wave lengths. Let Rn be the resistance 
of a line n quarter wave lengths long. Then we have pi == nTrf2, 

Substituting in Eq. (4.23), we have 

Rn — Za tanh al if n is even 
= Zo coth al if n is odd (4.50) 

The same result can be found at once from (4.27) and (4.28), 

since we note that 

r = Ti — Pa if n is even 
= ri + Pa if n is odd (4.51) 

as is obvious from Figs. 10 and 11. Relations (4.51) are to bo 

combined with the obvious one 

1 OLTT TT n 

“ " ^ 2 ^ 4 Q 

for a line of n quarter wave lengths. Thus in particular, if a is 
small enough so that can be regarded as a small number for 

a line of a few quarter wave lengths, we have for the resistance 

of such a line 

if n is even 

if n is odd (4.53) 

since the hyperbolic tangent becomes equal to its argument, and 
the hyperbolic cotangent to the reciprocal of its argument, for 
small arguments. Taking account of the difference in notation 
(n here means the number of quarter wave lengths, and in (4.44) 
it means the number of half wave lengths), we see that the 

value (4.53) for n even agrees with the value given by (4.44) at 
resonance. 

In the discussion from Eq. (4.4) to the present, we have taken 
up in a good deal of detail the short-circuited line. The dis¬ 
cussion of the open-circuited line proceeds in an entirely parallel 

TT 71 
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way. Using Eqs. (4.5) and (4.39) we can set up the resistance 
and reactance of such a line as a function of We find 

P _ y _sinh al cosh al_ 
® sinh^ al cos^ fil + cosh^ al sin^ fil 

Y __ y _— sin pi cos fil_ 
® sinh^ al cos^ fil + cosh^ al sin^ fil 

(4.54) 

The plot of reactance vs. resistance again forms a spiral, similar 
to that of Fig. 11, only now starting out when Z = 0 from an 
asymptotic direction at infinity, since in this limit we have 

Zo 
I 

a Zo * 

Z 
(4.55) 

The reactance again becomes zero when the length of the lino 
is a whole number of quarter wave lengths, but now the resonant 
points, with small resistance and large admittance, come for odd 
numbers of quarter wave lengths, and the antiresonances come 
for even numbers of quarter wave lengths. For the resistances 
at these lengths we have 

Rn — Zo coth al if n is even 
= Zo tanh al if n is odd (4.56) 

Using the same methods employed in deriving (4.53), we see 
that for a line of small attenuation the resistances of the first few 
resonances and antiresonances are given by 

Rn n 
Z 

if n is even 

if n is odd (4.57) 

A great deal of the discussion that has been given for the 
short-circuited and the open-circuited lines can be taken over 
to the general case of a line with arbitrary terminal impedance. 
In the general equation (4.3) for impedance, let us define a 
quantity 

(tOo = {al)o + m)o (4.58) 

by the equations 

cosh (yl)o = 
Zq 

(4.59) sinh iyl)o = 
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Then the impedance becomes 

39 

Z — Z 
^ cosh yl cosh (yl)o + sinh 7rsinh {yl)Q 

^ „ sinh [7^ + {yl)o] 
^^cosh [yl+{yl)o] 

= Zq tanh [yl + (yl)o] (4.60) 

Thus the impedance of the general line differs from that of the 
short-circuited line only in having an additive constant added to 
the quantity yL The formulas corresponding to (4.23) for 
resistance and reactance are 

sinh [al + (al)o] cosh [al + (q?Oo] 
cosh^ [al + (aOo] cos^ [fii + i0i)o] 

~cosh‘^ 

+ sinh^ [al + {aljo] sin^ [^1 -f (fil) 

sin [fil + (fil)o] cos [fil + (gQol_ 
{al)o] cos^ [pi + {pl)o] 

+ sinh- [al + (a/)o] sin*-^ [pi + {pi)o] (4.1 (4.61) 

It is obvious that the discussion leading to the spiral form of the 
reactance vs. resistance curve of Fig. 11 holds in the present case 

as well as in the special case of the 
short-circuited line, with the only -- 
difference that the spiral starts at 
the point /?«, Xr corresponding to 
the impedance of the terminal resist- \ 
ance, and then winds around as in —-1-r 

Fig. 11. The initial values of ri, y—^ I 
etc., can be found in an obvious way \ / 

from Eqs. (4.27) to (4.30), by sub- -^ 
stituting (aVjo and {pl)o in place of al _ 
and PL After the spiral starts, its Fig. 13.—Spiral diagram repre- 

radius p„ decreases from its initial renting line terminated by imped- 

value gradually to zero, as in the 
short-circuited case, and it is still true that an increase of length 
of half a wave length carries the point once around the spiral. 
The general form of such a spiral is shown in Fig. 13. 

In drawing our spiral diagrams up to the present, we have 
assumed the characteristic impedance Zq of the line to be real. 
If however it is complex, the situation is altered in a very simple 
fashion. Our spirals are formed by plotting real and imaginary 
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parts of Zo tanh [yl + (tOo], as was shown in Eq. (4.60). Every 

point in such a diagram is simply the representation of the 
corresponding impedance, in the complex plane. If now Zq is 
complex rather than real, we can write it as a product of its 
absolute magnitude, times an exponential representing rotation 
about the origin by the amount of its phase angle. The whole 
diagram, then, is to be rotated by this angle, to give the appropri¬ 

ate spiral in this case. In other words, there is still a spiral 
diagram if Zo is complex, but now the spiral winds up on a point 
that is no longer on the real axis. 

Often it is desired to have a diagram representing, not the 
impedance, but its reciprocal the admittance. We see at once 
that 

r = I = i eoth [yl + (7O0I (4.62) 

We may, however, rewrite this by noting that coth x = 
tanh {x + 7rj/2), which follows simply from Eqs. (4.20) and 
(4.21). Then we have 

Y = ~ tanh ^yl + (7O0 + ^ (4.63) 

Since (7^)0 + Trj/2 is simply another constant, this shows that 
the curves obtained by plotting real and imaginary parts of the 
admittance are spirals of the same sort as those found by plotting 
real and imaginary parts of the impedance. The points that are 

close to the origin in the impedance spiral are of course far from 
the origin in the admittance spiral, on account of the reciprocal 
character of the two spirals. As we should expect, the impedance 
spiral is particularly useful when lines are connected in series; the 
admittance spiral when they are in parallel. 

As a final point regarding transmission lines of finite length, 

we may note that a section of line is really a four-terminal net¬ 
work. In Sec. 1 we treated a lumped constant line as being 
made up of networks connected together; but now we consider 
them in a different way and consider a finite length of line, of 
arbitrary length, as a single network. Suppose we have a length 
of continuous transmission line, of length i, and ask what are the 

impedance coefficients Zaa, Zab, Z^bj of this line, as defined in 
Eq. (1.3). We can find these coefficients easily by using Eq. (4.3) 
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for the impedance of a terminated line. Thus suppose we have a 
section of line as in Fig. 14, terminated by an impedance Zr. 

We regard the line as a network, as in Fig. 2, Let us now find 
the input impedance of the network terminated by Zr, equate it 
to the value (4.3), and thus find the impedance coefficients. 
Equations (1.3) become 

F a Z aal'a 1 Z ai/i'b 

Vh = —iuZh — Zabia “b ZbbH (4.64) 

In this equation, we have taken account of the fact that the 
output impedance Vh/ib of the line must equal the terminal 
impedance, the negative sign coming on account of the assump¬ 
tion made in deriving Eq. (1.3), to the effect that F?, is positive 

let 

Zh 

ta 4 
Fi(}. 14.—Section of traiisiuission line as a network. 

if th(^ lower of the terminals h is at higher voltage, h^liminating 4 
between Eqs. (4.64), we now have 

_Zgh 

Zbb Zr 
(4.65) 

This expression must be set equal to (4.3): 

= Z{1) = z, Zq sinh yl + Zr cosh yl 

Zo cosh yl + Zr sinh yl 
(4.66) 

To exhibit (4.65) in a form equivalent to (4.66), we reduce both 
terms of (4.65) to a common denominator and multiply numei- 
ator and denominator by sinh yL Then (4.65) becomes 

„ _ {ZaaZbb - Zlt,) sinh yl + ZaaZn sinh yl 

(Zbb sinh yl + Zr sinh yl^ 

(4.67) and (4.66) will now agree if we have 

ZaaZbb — Zli, = Zq 

Zo cosh yl = Zaa sinh yl 

Zo cosh yl = Zbb sinh yl (4.68) 
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Solving these equations, making use of Eq. (4.18), we have 

Zaa == ^hb ~ 2^0 coth yl^ Zab == Zq csch yl (4.69) 

Equation (4.69) furnish the necessary impedance coefficients for 

replacing a section of line of length i, propagation constant 7, and 
characteristic impedance Zo, by a four-terminal network, accord¬ 
ing to Eqs. (1.3). Having these coefficients, we may replace the 

line by the network in any network calculation. 
6. Composite Lines and Impedance Matching.—^In practice, 

composite lines are often encountered, in which the properties 

change discontinuously from one section of the line to another. 
Two methods for handling such a line will occur to the reader at 
once. In the first place, we may use the'ideas of reflection met 
in Sec. 3, in particular in the derivation of Eqs. (3.8) and (3.9). 
Referring back to the derivation of these formulas for reflection 
coefficient, we see that there is nothing compelling the terminal 

impedance Z« to be a small, finite network. It can perfectly well 
be another infinite line, or terminated line, so long as its input 
impedance is Zr. Thus we see that at a discontinuous boundary 
between two lines a reflection will be set up, as given by Eq. (3.8) 
or (3.9). If a wave approaches such a boundary from the left, 
there will be a reflected wave in the line to the left, a transmitted 
wave in the line to the right. Similarly a wave approaching a 

boundary from the right will give rise to a reflected wave on the 
right, a transmitted wave on the left. By assuming both a 
reflected and a transmitted wave in each section of line and 

imposing the boundary condition at each discontinuity that the 
voltage-current ratio must be the same on each side of the dis¬ 
continuity, we have enough equations to determine all the ampli¬ 

tudes of the waves and to solve the problem completely. 
This method of solving directly for the waves traveling in both 

directions in each section of line is not so convenient in practice 

as a method of computing impedances. The thing we generally 
want to know about a composite line is its input impedance. 
Suppose the line consists of several sections, of characteristic 
impedances Zo, ZJ, ZJ,', etc., terminated by the terminal imped¬ 
ance Zr; let the lengths of the corresponding sections be Z, Z', Z", 
etc. Thus the line has the appearance shown in Fig. 15. Then 

we may handle the problem in the following way. First we 

imagine the line broken at the terminals c in the figure and find 
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the impedance of the line Z” terminated by Zr^ the part of the 
line which we see looking to the right from the terminals c. We 
do this by the methods of Sec. 4. Next we break it at 6, take 
the impedance just found as a terminal impedance, and find the 
impedance of the line of characteristic impedance Zq terminated 
by the combined impedance of the circuit to the right of c. This 
process can be continued indefinitely (one stage more in the 
special case shown in the figure), to give finally the impedance 
of the whole line, looking to the right from the input terminals a. 

A transmission line is usually used for delivering power from 
a generator, which we may imagine to be connected across the 
left-hand end of the line, to a receiver, which may be imagined 
as an impedance across the right-hand end, a terminal impedance 
Zr. We generally wish to design the line so as to transmit the 
maximum possible power from generator to receiver. We shall 

a be 

Fig. 15.-—a composite lino. 

ask in this set^tion what conditions the line must satisfy, in order 
to transmit this maximum power. There arc conditions of two 
sorts. In the first place, it is obvious that if the line has attenua¬ 
tion, there will be power loss along the line. Thus, without any 
calculation at all, we see that the first condition for maximum 
power transfer is to have a line without attenuation. Such a 
line cannot be set up in practice, since resistance is inevitable; 
but in a well-designed microwave transmission line the attenua¬ 
tion is small, and we can proceed by assuming no attenuation as 
a first approximation and then by asking what effect the small 
attenuation necessarily present will have. Even a line without 
attenuation, however, will not necessarily transmit the maximum 
possible power from the generator to the receiver. The reason 
is the same as the well-known one encountered whenever a 
generator delivers power to a load. For maximum power transfer, 
the impedance of the generator must be matched to that of the 
load. There is a similar condition for impedance matching in 
microwave transmission theory, and as a first step in under¬ 
standing it we shall write down the proof of the familiar imped¬ 
ance-matching theorem for generators and loads. 
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Let US suppose that, as in Fig. 16, we have a generator of 
e.m.f. Ej internal impedance Z/, connected to a load Zr^ and let 

us find the condition on Z/e, for fixed 
E and Z/, which will give us maximum 
power dissipation in the load. As a 
first step, we must remind ourselves 
how to find a power loss in terms of 

Fig. 16.—a generator con- voltage and Current. Suppose we 
nected to a load. have a voltage and a current 

where Fo, and io in general are complex and where the 
actual voltage and current are the real parts of the quantities 
written in complex form. That is, if 

Fo = Fr jVij io = ir + jit (5.1) 

the real voltage and current are 

Fr cos oot — Vi sin ir cos o)t — ii sin cot (5.2) 

The power dissipation in an element carrying the current above, 
with the voltage above between its terminals, is the product of 
current and voltage. This instantaneous power is 

P = {Vr COS oot — Ft sin o}t){ir cos cot — ii sin oot) 

= Frfr cos^ ojt + Viii sln^ oit — {Vrii + Fiir) sin ot cos ot (5.3) 

Averaging over a cycle, the average of cos^ oot and sin- ot is and 
the average of sin ot cos ot is zero. Thus the average power can 
be written 

p = \{Vrir + Vdi) (5.4) 

This expression can be written in a convenient way in terms of the 
complex voltage and current F = Foc^*^^ and i = Let us 
write the product of F and the complex conjugate of i. This is 

VI = Veto = (Fr + jVi)(ir - jii) 
= Vrir + Viii + j(Viir - Vrii) (5.5) 

Except for the factor the real part of (5.5) is just the same as 
the expression (5.4). Thus we may write for the average power 

P = iRe VI (5.6) 

Equation (5.6) gives the standard formula for power dissipation 
in a network element in which the current i flows, with a voltage F 
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between terminals. If we have 

45 

F = iZ = i{R + jX) (5.7) 

where Z is the impedance, 72 the resistance, and X the reactance 

of the network element, then Eq. (5.6) can be rewritten 

P-5l.1'K-5lvTjjr|Tp 

where \i\^ and \V\^ are the squares of the magnitudes of i and V 

respectively. 
Using these results, let us return to our network of Fig. 16 and 

find the power dissipated in the load. We have 

E = i(Zi + Zn) (5.9) 

where i is the current flowing in the circuit. The voltage across 

Z/j is then 

V = iZn 

The average po^ver dissipated in Zr is 

P = 
1 \E\^Rh 

2 \Zi + Zr\^ 

(5.10) 

(5.11) 

where Rr is the real part and Xr the imaginary part, of the 
impedance Zr, with similar expressions for Z/. Rewriting, this 

becomes 

1 \Ey^RR 

2 (72/ + 72/e) 2 + (X + X/e)2 
(5.12) 

We now wish to choose the terminal impedance, Rr and Z/e, to 
make this dissipated power a maximum. First we choose Xr. 

By inspection, or by setting the derivative with respect to X/e 
equal to zero, we see that Xr must be so chosen that the total 
reactance of the circuit is zero, or the circuit is resonant: 

Z/e = -Xi (5.13) 

That is, if the generator has an inductive reactance, the load 
must have a capacitive reactance, and vice versa. Assuming 

this condition and differentiating (5.12) with respect to 72/e, we 
have the additional condition 

d72/e 
= o = ||£|^ Ri — Rr 

(R, + RhY 
(5.14) 
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For this condition to be satisfied, we must have 

Rr = Ri (5.15) 

or the resistances of generator and load must be equal. In this 
case, equal powers will be dissipated in the load and in the 
internal resistance of the generator. Thevse conditions, that the 
generator and load must have equal resistances and opposite 
reactances, are the conditions of impedance match for maximum 
power transfer to the load. 

Now let us ask what similar conditions hold with a transmission 
line. Let us assume a generator of e.m.f. internal impedance 
Z/, feeding power into a line, which is terminated by a load Zr, 

The line may be a composite one, as complicated as we please. 
We now imagine the line broken at an arbitrary point and ask 

Fig. 17.—Equivalent circuit for generator connected to load through transmia- 
sion line. 

what the condition is for maximum power transfer through the 
line at this point. Having found this condition, we can use it 
to discuss the general problem of optimum conditions for power 
transfer. Using the method discussed at the end of Sec. 4, we 
can replace the part of the line to the left of our arbitrary point 
by a four-terminal network (though if the line is a composite one 
the impedance coefficients will not be given by the simple values 
(4.69)). The whole terminated line to the right of the arbitrary 
point can be replaced by a single impedance Zr. Let us then, 
as in Fig. 17, assume an equivalent circuit and find the power 
dissipated in Zr. The equations for the four-terminal network 
are 

"Va ■ E 1'aZI Zaala i Z 

Vh = —ihZr = Zabia "b Zbbib (5.16) 

Eliminating ia, we find 

TP ZJt — (Zaa + Zi)(Zbb + Zr) . 
E = -y-— tb 

Afab 
(5.17) 



Sec. 5] TRANSMISSION LINES 47 

By (5.8), the average power'dissipation in Zt = where 
Rr is the resistive part of Zt. This can be rewritten 

_ 1 \E\mT\Z.t\ 

2 \Zl- {Zaa + Zi){Z^ + Zt)\^ 

Rather than rewrite this complicated expression in terms of 
resistances and reactances, we leave it in this form, remembering 
that the denominator is the square of the absolute magnitude 

of a complex quantity or is the product of the complex quantity 
with its complex conjugate. We now wish to apply the con¬ 
dition that P is a maximum with respect to variations of the 

terminal impedance Zt, keeping the input e.m.f. E and the prop¬ 

erties of the input line, described by Zoa, Zbh, Zab, constant. We 
can get our information by differentiating (5.18) with respect 
to Rt. Doing this, we have, after some manipulation, 

Je-o-jWW 
Re [ZfJ, — (Zoa + Z[){Zbb + ^T)][Zlb — {Zaa + Zi){Zbb — Zt)] 

\Zlb- (Zaa + Z^iZlb + Zt)|^ 
(5.19) 

To make this equal to zero, we set the last factor equal to zero, 
giving 

Tt = Rt- JXt = Z^- (5.20) 
^aa ~r 

By a method entirely analogous to that used in deriving Eq. 
(4.65), we can show that the expression on the right of (5.20) 
is the impedance looking to the left from the arbitrary point 
where we are applying our condition, provided w^e replace the 
generator by an impedance equal to its internal impedance. Our 
result, then, is that for maximum power transfer, the impedance 
looking to the right from our arbitrary point must be the complex 

conjugate of the impedance looking to the left from the same 
point; the reactances of the two half networks must be equal and 
opposite, an inductive reactance balancing a capacitive reactance, 

and the resistances must be equal. Obviously our earlier theorem 
of (5.13) and (5.15), relating to a simple generator and load, is a 
special case of this more general theorem. 
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The theorem we have just stated gives the general condition 
for impedance matching. If however the transmission line join¬ 
ing generator and receiver is resistanceless, so that there are no 
losses in it, we can prove a remarkable further theorem, no 
matter how complicated the line may bo: if the conditions of 
impedance match are satisfied at one point of such a lossless 

line, they are automatically satisfied at all points. We can first 
see why this result should hold physically and can then prove it 
mathematically. If the line has no losses, that means that the 
only power dissipation must be in the generator and the receiver; 
the complete power output of the generator, aside from what is 
absorbed in its own internal resistance, is delivered to the receiver. 
The flow of power through any cross section of the line must 
then be the same and equal to the flow of power into the receiver. 
If then we match impedances at one point of the line, we ensure 

that the maximum possible power crosses this point and hence 
is delivered to the receiver. Further matching at other points 
must lead to the same condition and hence must automatically 
be secured by matching at one point. 

To prove our theorem mathematically, let us actually show 
that if the impedance match conditions are satisfied at one point 

of a resistanceless line, they are satisfied at another. We shall 
assume the composite line to be made up of a set of sections of 
uniform lino, connected in series. First we shall show our theorem 

for two points within the same uniform section of line, and later 
we shall extend it to points in different sc^ctions. Lot us consider 
two points a and 6 in a uniform section. We may replace the 

whole circuit to the left of a by an impedance 2/, the whole 
circuit to the right of b by an impedance Zr, and the line between 
a and 6 by a four-terminal network with the impedance coeffi¬ 
cients given in (4.69), where Zo is real, y pure imaginary, as we 
should have for a line without dissipation. From (4.65), the 
impedance looking to the right from a is 

^aa rf I rf 
/jbh -r 

where 

Zaa — Zbb = —jZ() cot ply Zah — —jZo CSC pl 

(5.21) 

(5.22) 

which follow from (4.69) by putting y = jp. By the condition 
of impedance matching which we assume at a, the expression 
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(5.21) equals the complex conjugate of Zi. We now wish to 
prove from this that the conditions of impedance match are 

satisfied at 6; that is, that the impedance looking to the left 
from bj which we can show is 

z»t, - 7^^ (5.23) 
^aa “T 

by methods like those used in the derivation of (5.21), is the 

complex conjugate of Zr. First we set the expression (5.21) 
equal to Zj. The resulting equation can be written 

Zl, = (^aa - Zu){Z,, + Zr) (5.24) 

The equation which we wish to prove, setting (5.2S) c^qual to 
Zr^ is 

Zl = (Zaa + Z,)(Z,, - Zr) (5.25) 

Remembering that according to (5.22) the quantities Zaaj Zhhy Zab 

are all pure imaginaries, the conjugate of (5.25) is 

Zl, = {-Zaa + Z^{-Zbb - Z,^ (5.26) 

which is equivalent to (5.24), showing that our theorem is proved. 
We have now shown that if the impedance match conditions 

are satisfied at one point of a uniform resistanceless line, they 
are satisfied at another arbitrary point of the same lino. Thus 

they are satisfied at the end of that uniform line. This however 
is the beginning of another section of uniform line; if the con¬ 
ditions are satisfied at the beginning of this section, by our same 

theorem they are satisfied at any arbitrary point of it, and by 
extension of this method they are satisfied at any point of the 
composite line, so long as each section of the line is resistanceless, 

so that by (5.22) the coefficients of impedance are pure imaginary. 
If there were losses in any secd^ion of the line, the corresponding 
impedance coefficients would have both real and imaginary parts, 

so that we could not perform the transformation from (5.25) to 
(5.24) by taking conjugates, and the theorem would not be true. 

Suppose we have a generator, connected by a lossless line to a 

load. The lossless line and load can be replaced by a single 
equivalent impedance, so that wc can teduce the problem to the 
elementary one of a generator connected with a simple load. 

Then, as we showed in (5.13) and (5.15), the condition for maxi- 
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mum power output from generator to load is that the reactances 
of generator and load should be equal and opposite, the resist¬ 
ances equal, and in this case the povvei* dissipations in generator 
and load are equal. The same thing must hold in this more 
general case, if by load we understand the composite impedance 
made up of transmission line and load. Since the line absorbs no 
power, all power delivered by the generator goes into the actual 
load, and this power is then equal to that used up in the gener¬ 

ator. The impedance-matching condition may be applied directly 
at the generator, and we see that for maximum power transfer 
the internal impedance of the network composed of line and load 

must be the conjugate of the internal impedance of the generator. 
If this condition is applied and if as we are assuming there are 
no losses in the line, then we have seen that the condition of 

impedance match is automatically satisfied at every point of the 
line. 

This does not mean, however, that the load itself must have 

an impedance that has any fixed relation to the impedance of 
the generator. The lossless transmission line connecting them 
has the properties of a transformer. We may replace the line by 
a four-terminal network. Then power is fed in from the gener¬ 
ator at one voltage and current, or with one impedance, and it 
is fed out from the other end to the load with another voltage 
and current, or another impedance, but on account of the lossless 
nature of the line no power is lost in the line, so that the product 
of input voltage and current equals the product of output voltage 
and current, the characteristic of a lossless transformer. We 
may, then, use a section of transmission line to connect a gener¬ 
ator and a load, as a matching transformer, so as to satisfy the 
conditions of maximum power transfer. This is a very impor¬ 

tant use of sections of transmission line, and we shall next 
examine it in more detail. We shall show, in a simple manner, 
that a section of lossless transmission line can be chosen, such 

as to join an arbitrary generator to an arbitrary load, provided 
the characteristic impedance of the line (which will necessarily 
be real) and the length are properly chosen. 

The theorem we have just mentioned can be proved analytically 
without trouble, by setting up an equation 

aa 
Zbb + Zt 

(5.27) 
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Rimilar to (5.20) and by stating that the impedance of the net¬ 
work formed from the line and the terminal impedance Zt must 
be the conjugate of the input impedance Zi. Then we replace 
Zaa, Zbbj Zab by the values (5.22) appropriate to a definite length 
of lossless line. Equation (5.27) then involves the unknowns Zo, 
the characteristic impedance of the line, and determining its 
length in wave lengths. Equation (5.27) really furnishes two 
equations, one from its real and one from its imaginary part. 
Thus we have enough equations to determine the two unknowns, 
and it is a matter of a little algebra to do this. The result, how¬ 
ever, can be interpreted much more simply in a resistance- 
reactance diagram than analytically. For this reason we give 
only a geometrical discussion. As in Fig. 18, let Z/, Zt be repre¬ 
sented by two points in the complex plane, and construct the 
circle passing through these two points and having its center on 
the real axis. The center of this circle can be found at once as 
the intersection of the perpendicular bisector of the line join¬ 
ing the points Z/, Zt, with the real 
axis. This circle is then one of the ^ 
type shown in Fig. 10, and the points 
on it represent the impedance at 
various points of a lossless line. The 
characteristic impedance of this line 
can be found, as we see for instance 
from Eqs. (4.56), as the square root 
of the product of the two resistance 
values corresponding to the inter¬ 
sections of the circle with the real 
axis, and the required length of line 
can be found from the other set of 
circles in Fig. 10, by noting the values 
of jSZ corresponding to the points Zj 

and Zt. The commonest case is that in which Z/ and Zt are 
real. In that case these values are themselves the intercepts, and 
the required characteristic impedance of the line is 

ance plot for matching trans¬ 
former between impedances Zi 
and Zt. 

Zq = \/Z/Zr (5.28) 

Furthermore, it is obvious in this case that the length of the line 
is a quarter wave length (or three quarters, or in general any odd 
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number of quarter wave lengths). Thus we arrive at the very 
important quarter wave transformer, a quarter wave length of 

lossless line with characteristic impedance equal to the geometric 
mean of two resistances, and so designed that it matches these 
resistances to each other, so that a generator having a real 

impedance equal to the first resistance will be properly matched 
by the transformer to a load having a real impedance equal to the 
second resistance. It is plain, however, that the quarter wave 
transformer is only a special case, and that to match any two 
impedances we can equally well set up a transformer of this t3^pe, 
if only the length and characteristic impedance are properly 
chosen. Another simple case is the half wave transformer. This 
matches any arbitraiy real impedance to itself, since after a half 
wave length (or any whole number of half wave lengths) the 

circle returns to its starting place. In other w^ords, if a generator 
and load have equal resistances and no reactances, so that they 
are matched without a transmission line between them, we can 

insert betw^een them any whole number of half wave lengths of 
lossless transmission line of arbitrary characteristic impedance, 
and they will still be matched, so that just as much power will 

flow to the load as before. 
We have seen some of the properties of lossless lines in con¬ 

necting a generator to a load. We have seen that an arbitrary 

generator can be connected to an arbitrary load by a properly 
chosen uniform transmission line, of definitely determined charac¬ 
teristic impedance and of length which must bo a definite value, 

or this plus any number of half wave lengths, in such a way as 
to get the maximum possible power transfer from generator to 
load. We have seen that w'e can use composite lincis; for, if wo 

for example cut the line just described at any point w^here the 
impedance is real (that is, where the impedance circle in the 
complex diagram cuts the real axis), we may insert at that point 
an arbitrary number of half wave lengths of line of arbitrary 

characteristic impedance, without destroying the impedance 
match. We may now ask, how does this situation change if parts 
of the lines have attenuation? This is essentially a practical 
question. Certainly attenuation anywhere in the line will pre¬ 
vent some of the power delivered by the generator from reaching 
the load, and in any particular case we can calculate how much 

this power loss will be. Let us however consider the actual sort 
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of systems likely to be used and see what their situation is 
regarding attenuation. 

An ordinary transmission system consists of three parts: a 
generator, transmission line, and receiver. From the standpoint 
of circuit theory, the generator can be replaced by a network or 
by a more or less complicated set of transmission lines, of small 
length; the transmission line is a long, uniform line; the receiver is 
another network or set of short transmission lines. All these 

sections of hne actually must have some attenuation, even though 
it may be small. Generally the transmission part of the line 
is much longer than the parts representing generator and receiver, 
so that the losses in the line, other things being equal, will be 

greater than in the generator and receiver. Let us then ask, 
how can we minimize these losses in the transmission line? 

So far, we have been quite forgetting reflections; we have paid 

no attention to whether there were reflections in a given section 
of line or not, and as far as impedance matching between gener¬ 
ator and receiver is concerned, this is entirely immaterial. We 

shall now show, however, that to minimize losses it is very 
desirable that there be no reflected wave in the main length of 
transmission line. This leads us, then, to an additional require¬ 

ment for impedance matching: not only do we try to get the 
maximum power from generator to re(*oiver, but we try to do 
it in such a way as to have no reflected wave in the line. Before 
seeing why this is necessary, we can see very easily the conditions 
that it imposes. A practical transmis.«ion line generally has an 
almost exactly real characteristic impedance, or pure resistance, 

and generally this characteristic resistance is determined by some 
sort of conditions of convenience, as for example convenient 
dimensions. If a single wave transmitted to the right, without 
reflected wave, is to be the form of disturbance in this line, then 
by the conditions of Sec. 4 we know that it must be terminated 
at each end by an impedance equal to its characteristic resistance. 
Thus both generator and receiver must be matched to the line, 
in the sense of having impedances equal to its characteristic 
resistance. Since generator and receiver by themselves would 
not ordinarily happen to have impedances of this value, trans¬ 

former networks must ordinarily be inserted between them and 
the line, to transform their impedances to the value necessary 
to match the line. These networks, as we have seen in the 
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preceding paragraphs and in Fig. 18, can be made of suitably 
chosen lengths of lossless, or practically lossless, lines of suitable 
characteristic impedance. The matching can also be done by 
other devices, some of which we shall describe later. This type 
of impedance matching, in which generator and receiver are 
matched to the line by transformers, is as we have just seen not 
primarily for the purpose of transmitting maximum power from 
generator to receiver; it indirectly accomplishes this purpose by 
reducing standing waves and reflections in the transmission line, 
thereby reducing losses in the line due to attenuation. If there 
were no attenuation in the lines, this form of impedance matching 

would be unnecessary. 
Let us now fill in the gap in our argument, by showing that in 

an attenuating line, the presence of standing waves, or of reflec¬ 

tions, increases the losses. The reason qualitatively is simple. 
If there are reflections, the power transmitted to the right is the 
difference of that transmitted by the direct and the reflected 

waves. The greater the reflections, the greater the intensity of 
both direct and reflected waves must be, in order that their 
difference may represent a constant net power flow. But both 
direct and reflected waves are attenuated, in proportion to their 
intensity. Thus large reflections mean large losses through 
attenuation, for a fixed net power flow. This reasoning is so 

obvious that, unless an actual computation of losses is needed, 
it seems hardly worth while to write down the analytical formu¬ 
lation of the problem. In addition to the losses due to resistance 

in the line, there is another closely related form of losses, impor¬ 
tant in practice, which also acts to make reflections undesirable 
in transmission lines. Particularly in coaxial lines, the limit to 
the possible transmitted power is generally set by difficulties of 
corona or sparking between the two conductors of the line. This 
difficulty is obviously more serious, the greater the voltage on the 
line. For a given flow of power, the voltage is greater, the more 
intense the reflected wave, since again it is the difference of the 
two waves that determines the net power flow, but the sum, at 
the voltage maxima, which is effective in producing corona. 
The greatest practical reason for avoiding reflections is to reduce 

the magnitude of these voltage maxima. 
We can now form a clear picture of the actual procedure used 

for impedance matching: the characteristic impedance of the 
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line is matched to both generator and load by transformer net¬ 
works or some other device. If we neglect the losses in the 

transformers, as we usually can on account of their relatively 
short length in terms of wave lengths, then by this matching 
we secure the maximum power transfer from generator to line 

and from line to load, and by avoiding standing waves on the 
line we obtain the minimum possible loss on the line as a result 
of heating and of corona losses. Our next task is to examine 

in more detail the transformer networks used in joining line to 
generator or load. As a first step, we note that in general it is 
unavoidable that there should be a refl(^ct('d wave in a transformer 
network. For the only object of the transformer is to match 
a line of one irnpc'dance to a load of another, and this can be 
done only if the transfornu'r has still a different characteristic 
impedance, which n'quires that standing waves be set up at the 
junction of transformer and line. The same objections to stand¬ 
ing waves, wliich we have already raised in connection with the 
line, hold against standing waves in transformers; they are not 

serious only because the transformer network is small, the line 
long, so that losses in the transformer are less important in their 
total effect than loss(‘s in the line. They must be minimized, 
howev(*r, and for this reason reflections should be made as small 
as possible in transformer design. At the same time there is 
another difficulty with transformers. They can be easily 

designed for a given wave length. For another wave length, 
however, they are no longer correct to pcu’form their function 
of impedance matching. They are, in other words, resonant 

or selective. We shall find that the greater the reflections in 
them, the mon^ sc^lective they are, .so that as the reflected wave 
approaches the incident wave in intensity, and the whole di.s- 

turbance approaches a standing wave, the transformer approaches 
a resonant circuit, which will pass only a very narrow band of 
wave lengths, reflecting all others. To make a nonselective or 
nonresonant transformer, we then must take the same steps that 
would lead to small reflections and hence small losses in the 
transformer. We shall find that this is best done by making 

the change in characteristic impedance from line to load a 
gradual change, rather than a sharp one, as we have considered 
up to date. The more gradual this change, the less the reflec¬ 

tions, and the less selective is the transformer^ We sh^U no\Y 
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proceed to consider the resonant or selective properties of trans¬ 

formers and to see how these are affected by gradual changes in 

properties. 
Although it is not hard to discuss these problems analytically, 

it is qualitative results that we arc primarily interested in, and 
they can be found easily by graphic*al methods. Let us first 
consider a quarter wave matching transformer, for matching 
two pure resistances. For definiteness, let the terminal imped¬ 
ance Zr be greater than the desired input impedance Zi. Then 
in Fig. 19 we show a resistance-reactance diagram for a quarter 

wave line of characteristic impedance 
ecpial to the geometric mean of Zj 
and Zr, connecting these two imped¬ 
ances. The semicircle includes the 
impedance's of the various points of 
the quarter wave line, and it ends at 
Z/, showing that the line terminated 

by Zj has an impedance Z/, match¬ 
ing the input. Now let us ask what 
would happen if the wave length 

changed. Then the line, though of 
the same physical size as before, will 
no longer be a quarter wave length 

long, for the wave length is different. 
In the diagram of Fig. 19, the circle will be the vsame, but 
the line will correspond to more or less than a semicircle. 
Thus the impedance of the combination will be like Zi or Z2, 
depending on whether the new wave length is longer or shorter 
than the original one, and there will be a net reflected wave, 
since the impedance no longer matches the input impedance Z/. 
Furthermore, for a given Z/, it is clear that if Zr is very different 
from Zj the circle will be very large, so that a small change of 
phase angle will correspond to having Zi or Z2 very far from Z/. 

That is, in this case, the reactive component of the impedance 
of the line terminated by Zr is very large, even for a small change 
of wave length or frecpiency. In such a case the resonance 
would be sharp and the Q large. It is not hard to set up a 
formula for the Q in such a case and to show that it increases 
as the ratio Zr/Zj inen^ases, while it becomes smaller as Zr 

approaches Z/. For this case the transformer is almost com- 

X 

ance plot for quarter-wave 
transformer. 
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pletoly nonselective. We notice at the same time that the 
greater the ratio Zr/Zi^ tlie greater the discontinuity of charac¬ 

teristic impedance between input and transformer, so that by 
our reflection equation (3.9) the greater is the reflected wave in 
the transformer. Thus we verify our previous statement that 
the case of large discontinuity of impedance has large reflection 
and is very selective. 

It is not hard to devise an imp(^dance-matching device con¬ 
sisting of two successive quarter wave lines of properly chosen 
impedances, whi(*h will giv(^ a ndlectionless impedance match, 
just as a single (juarUu* wave line will at a pro pearly chosen 

frccpiency, but which will also give an approximate match over 

X 

Fi<i. 20.—Matrliiiig transformer of two (luartor-wave sections. 

a much wider frequency range. The i^rinciplc of this device 
is shown in Fig. 20. The problem is to match an input line of 
characteristic iippedance Zi to an output impedance Zt. We 
do this by two (piarter wave lin(\s of characteristic impedances 

Zq and .ZJ", so chosen that 

(5.29) 

These relations are more easily expressed in terms of the log¬ 
arithms^ of the impedances. 9dien we merely say that on a 
logarithmic scale, the increment from Zq to ZJ" is twice that 

from Zi to Zo, or from Zq" to Zr. To see how this device works, 
we draw an additional point at Z'J in Fig. 20, such that Zq is 
the geometric mean of ZJ and ZJ", so that Z/, ZJ, ZJ', ZJ", and 

Zt are spaced at equal intervals on a logarithmic scale. Then 
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the point a, with impedance ZJ', represents the impedance of 

the terminal impedance Zt and the quarter wave line of imped¬ 
ance Zo". The other line, of characteristic impedance Zo, is 
then terminated by the network of impedance Zq', so that the 

impedance of the whole device looking into Zq is Z/, and the 
network is matched to the input line. But now consider a 
slightly different wave length, say a slightly longer one. The 

impedance of the line Zq" terminated by Zr will no longer be 
the value Zq at the point a but will correspond to a point 6, 
not quite so far around the circle. This will correspond to the 
terminal impedance for the line of impedance Zq. In traversing 
the line Zq, then, the point must start at 6, w'hich lies almost 
exactly on the circle surrounding Zf,, and.must go around this 

circle. Since the wave length is longer, liow^evei’, the point will 
not have to go a whole semicircle but will stop at a point which 
to a first approximation will be the same as Z/, the impedance 

which w^as found for the original wave length. Thus we see 

that w'ith this netw'ork a small change of wave length makes a 
much smaller change in transmission than it did for the single 

quarter wave matching line. 
We can get a better understanding of this device by considering 

reflections at discontinuities. This method is useful in con¬ 
sidering any impedance-matching device, and we shall think 
of it first in connection with the ordiimry quarter wave trans¬ 
former. The object of this transformer is to eliminate the 
reflection that would be present if the impedance Z/ were con¬ 
nected directly to Zy. The method of eliminating reflections is 
based on the interference between waves. Two waves half a 
wave length apart are in opposite phases,, and the sum of them, 
if their amplitudes are numerically equal, is zero. The funda¬ 
mental principle behind the elimination of reflections is then 
to have each reflected wave canceled by another wave of equal 

amplitude and opposite phase. In order that this second wave 
may have traveled half a wave length farther than the first, it is 
obvious that it must have gone a quarter wave length farther 
up the line, and correspondingly a quarter of a wave length 
back, before it meets the original reflected wave. In other words, 
two discontinuities in characteristic impedance, of such magni¬ 

tude as to give equal amplitudes of reflected waves and spaced 
a quarter of a wave length apart, wall give no net reflection and 
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hence will not introduce reflections into the line. Let us now 
apply this principle to the quarter wave line for matching pure 

resistances. First we notice, from Eq. (3.9), that the reflection 
coefficient at a discontinuity depcmds on the ratio of characteris¬ 
tic impedances. Thus this reflection coefficient between a line 
of characteristic impedance Zo and one of characteristic imped¬ 
ance Zi can be written 

B _ ^0 — _ f — (2i/2o) 
A Zq A- ZI 1 -b (Zi/Zo) (5.30) 

depending only on the ratio Zi/Z<). Then we can see in a crude 
way that for the reflections at the two boundaries of a quarter 
wave transformer to be equal, so that the reflected waves should 

Fig. 21.- Veotor diuKrain illustrating luatohinp; with two quarter-wave sertions. 

cancel, we should have the ratio Zo/^/ of the characteristic 
impedance of the line to the input impedance equal to the ratio 
Zi’/Zo of the terminal impedance to the characteristic impedance. 
But this leads just to our previous condition that Zl should 
equal ZjZr, or that the characteristic impedance of the line 
should be the geometric mean of the impedances of input and 

output. 
Now we can return to our double quarter wave transformer of 

Fig. 20 and show why it works as well as it does. Let us imagine 
that we station ourselves at a point in the input line and draw 
the amplitude and phase of the wave reflected from each dis¬ 
continuity, as it reaches us. With the wave length for which the 
device is designed, there will be three reflected waves, coming 

from the junction between Zi and ZJ, that between Zq and Z'o", 
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and that between and Zr, The first and third will be in 
phase; the second will be 180° out of phase and twice as great in 
amplitude, so that it will just cancel the other two. But now 
assume that the wave length has changed. The phases of the 
three waves will have been displaced by amounts 5, 25, and 35, 
respectively, where 5 is a small quantity. Thus they will be 
represented by the vectors 1, 2, and 3 in Fig. 21. It is seen 
from the figure tha‘t the resultant of 1 and 3, shown by the dotted 
vector, is very nearly equal and opposite to vector 2, so that the 
vector sum of all three is very nearly zero in this case, as well 
as for the original wave length. 

The device just described was .suggested to the writer by Dr. 
W. W. Hansen, who points out that similar devices, l)eeoining 

Fio.^ 22. Logarithm of characteri.stic iinpodanco aa function of distance along 
line, for case where discontinuities are in ratio l:4:r>;4;l. 

progressively less selective, can be made by using more and more 
sections, with the discontinuities in the logarithms of the impc'd- 
ances following the laws 

121 
1331 
1 4 64 1, etc. (5.31) 

or the successive sets of binomial coefficients. As more and 
more sections are inserted, according to this rule, we sec that 
the effect is to start the change of impedance gradually, so that 
a curve of impedance against distance along the line would be 
fairly smooth, joining the initial to the final impedance without 
any sudden change of slope. Such a curve for the case 1 4 6 4 1 
is shown in Fig. 22. The impedance diagram corresponding to 
this case is shown in Fig. 23. This diagram is ecpuvalent to 
that of Fig. 20, and the same sort of explanation applies to the 
present device that applies to that one. It is more obvious in 
Fig. 23 than in Fig. 20, however, that we are approaching a 
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gradual, smooth transition from one limiting characteristic 
impedance to the other. As this happens, since each discon¬ 
tinuity of impedance becomes small, it is plain from the reflection 
equation (5.30) that the amplitude of the reflected wave in 
each section of the transformer will become smaller, so that 

X 

Fig. 23.—Rcsiataiicc-reactancc plot for case of Fig. 22. 

we verify our statement that nonselective transformers tend to 
have small reflections. 

An interesting comi)osite line, which can be used to match 
impedances without reflection, is the exponential line. This is a 
line in which the impedance varies by a constant fraction for 
ecfual increments of length, so that the logarithm of the imped¬ 
ance is proportional to the length. We can make a composite 

X 

line of this tyi^e out of quarter wave sections, with constant 
increment of the logarithm of the characteristic impedance from 
one section to the next. The impedance diagram of such an 
exponential line is shown in Fig. 24. The same sort of argument 
used in the discussion of Fig. 20 would show that here too the 
impedam^e matching produced by such a line is relatively insensi¬ 

tive to small changes in wave length. This exponential line 
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will be discussed more in the next section, where we take up the 

continuous exponential line. 
The type of impedance-matching problem that we have been 

discussing in the preceding paragraphs has analogies in many 

fields. In the first place, in ordinary circuit theory, as we have 
already seen, a transformer is an impedance-matching device. 
But there are also analogies in the field of wave propagation, 
which will be brought out in later chapters. Thus a light wave 
incident on a discontinuity between two media, as a surface 
of separation of air and glass, is reflected. If the surfaces are 
separated b}" a quarter wav(i film of material whose index of 
refraction is the geometric mean of the index(\s of the two media, 
however, the reflection can be eliminated} this is the method used 
in setting up so-called ^rinvisible glass.’' If two films are used, 
with indexes of refra(*tion chosen to agree with our device of 
Figs. 20 and 21, the reflection can be eliminated over a wider 
range of wave lengths. In this problem, as in that of impedance 

matching, it is found that a sufficiently gradual change of index 
of refraction, extending over a number of quarter wave lengths, 
results in practically no reflection at any wav(i length. It is 

only the sudden discontinuities of properties, in distam^es short 
compared to a wave length, that result in reflection. Another 
analogy to our impedance matching comes when we have waves 

in pipes, as in acoustics where we have waves of sound, or in 
microwaves where we have electromagnetic waves in hollow 
pipes. In such a case, a sudden discontinuity in the size of the 
pipe, as from a smaller pipe to a larger one or even more from a 
small pipe to empty space, will result in reflection. This is 
familiar in acoustics, where a pipe open at one end can sustain 
standing waves, showing that the sound is reflected as it 
approaches the discontinuity at the open end of the pii)e. Here, 
as before, to avoid reflection, we must make the change in prop¬ 

erties gradual rather than sudden. A single section of pipe a 
quarter wave length long, inserted between two pipes of differing 
properties and with ])roperly chosen properties intermediate 
between the two pipes, will reduce reflection, but this can be 
done more successfully and for a greater range of wave lengths 
by a more gradual change of cross section, })roperly designed. 
Thus we have a horn, corresponding to a transmission line which 

changes its properties in manv small steps. Its object is again 
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that of matching impedances. An acoustical or electrical horn 
shooting out into empty space is a device for matching the 
acoustical or electri{^al impedance of the pipe feeding the horn, 
or the generator at its throat, to the impedances of omj)ty space, so 
that the energy will leave the generator and be radiated, rather 
than be reflected back to form useless standing waves in the 
system. 

The problems that we have so far taken up in this section 
relate to a change of impedance from one line to another, and 
methods of setting up impedance-matching transformers to 
avoid reflection. Other types of problem arise when short 
discontinuous elements arc insert(‘d into an otherwise continuous 
line of characteristic impedance Zq. Several examples will come 
to mind. First, we can insert an element in series into a line. 
For instance, in a coaxial transmission line, dielectric beads are 
necessary to keep the center conductor ccuitered in the line, and 
the}" change the impedance of the line. We may be interested 
in the reflections produced by these beads, and in ways of spacing 
them so as to minimize reflection. Secondly, we can insert an 
element in shunt. In a coaxial line, such a shunt is often a 
section of transmission line, shunted across the line and short- 
circuited at the outer end by a movable plunger. If the losses 
in this section of line are neglected, there is formed a v^ariable 
reactance, adjustable by moving the plunger to any value, posi¬ 
tive or negative. Such shunts, as we shall see, can be con¬ 
veniently used for introducing predetermined reflections into 
the line, and hence for canceling undesired reflections already 
present; that is, they can be used for impedance matching. 
Or in a hollow pipe, a similar j)urpose is served by introducing an 
iris diaphragm in the pipe. Such a diaphragm acts like a shunted 
capacitance or inductance, and hence acts as far as the circuit is 
concerned like any shunted reactance and can again be used to 
cancel undesired reflections and match impedances. 

First let us consider the effect of a short series element inserted 
into a continuous line. Ordinarily this element would be a pure 
reactance, in practical applications. In a resistance-reactance 
diagram this would then correspond to a certain displacement 
up or down, the amount of displacement corresponding to the 
reactive impedance of the series element. Thus for instance 
consider a line of real characteristic impedance Zo, terminated 
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by its characteristic impedance or infinitely long. At a point a 
it is broken, and a short element of reactance A" is inserted in the 
line. Looking to the right into the series element plus line, the 
whole thing has a resistance Zo, a reactance X. If there is again 

a line of characteristic impedance Zq to the left of a, we see that 
a Avave approaching the point a from the left will be reflected, 
the reflection coefficient B/A being [Zo — (Zo + jA)]/[Zo 
A-{Zo + jX)]=^ - jX/(2ZQ + jX), vanishing as X goes to 
zero, but being large if X is comparable with Zo. Such a reflec¬ 
tion, as we have mentioned, could be used to cancel a reflection 
already present. Thus suppose that in Fig. 25 the circle repre¬ 
sents the locus of impedances for a line of characteristic impcd- 

X 

R 

Fig. 25.—Impodanco matching by a .scrios reactance. 

ance Zo, but terminated by some difhn’ent impedance, so that 
standing waves are set up on it. We can then br(*ak tlu' line 
at the point indicated by a in Fig. 25, at which tlu' resistance of 
the line is the same as Zo, and in.sert a series (dtuiuait whose 
reactance equals the negative of the reactance of the line, as 
indicated in the figure. The impedance of the whole network 
will then be Zo, so that if it is joined to a line of characteristic 

impedance Zo on the left, a wave approaching a from the left 
will not be reflected, and our inserted series element has caiu^eled 
the reflection already present and has matched impedances. 
This scheme is perfectly possible in theory; in pra(*tice, it is not 
easy to set up an arbitrary reactance of physical dimensions 
small compared to the wave length. We shall find later that 
the corresponding solution by means of a variable shunt reactance 

is much simpler. \ 
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If the reflection already present in the line is small, however, 
as for instance that produced by one of the dielectric beads or 
spacers in a coaxial line, as mentioned before, its reflection can 
be canceled by another similar reflection from an obstacle a 
quarter wave length away. Thus in Fig. 26, we assume a line 
of characteristic impedance Zo, terminated by its characteristic 
impedance, so that the impedance at any point of the line is Zq. 
At a point a we insert a series reactance X, so that the impedance 

of this reactance plus the line, looking to the right, is Zo + jX, 
as shown hy the point a in Fig. 26. Next we assume approxi¬ 
mately a quarter wave of line to the left of a. The impedance 
looking to the right from the point 6, at the left of this quarter 

Fig. 26.—Impedance diagram for cancellation of two reflections. 

wave length, is indicated by the point b in Fig. 26; we assume 
the line differs from a quarter wave length just enough so that 
this impedance is Zo — jX. Another similar series reactance X 
inserted at this point b will cancel the reactance already present, 
giving Zo as the impedance of the whole line, so that it will be 
matched to the line of impedance Zo, and the two obstacles 
together will be nonreflectivc, though one by itself would cause 

reflection. 
In this case, as in the quarter wave transformer previously 

discussed, there is a resonant or vselective effect: although the 
reflections cancc'l at the wave length for which the device is 
designed, they will not cancel at other wave lengths. Here as in 
the case illustrated in Fig. 21 w^e can make a less vselective device 
by using mon^ reflecting elements. Thus if we have a scattering 
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element at point a, an element of twice the reactance at point b 

approximately a quarter wave length away, and a third element 
like the first at point c approximately another quarter wave 
length away, we shall have just the situation shown in Fig. 21, 

with the same desirable properties. We can vary this by replac¬ 
ing the double-strength scattering element at point b by two 
elements of single strength a half wave length apart, since the 
two points a half wave length apart are effectively in contact as 
far as impedance is concerned. Such a device, with four equal 
scattering elements, spaced approximately one, two, and one 
quarter wave length apart, will then be nonrefiective through a 

considerable range of wave lengths about the wave length for 
which it is designed. 

Next we can consider the similar case of a reactance in shunt 
across a line. In this case not the impedances, but the admit¬ 

tances, of the line and of the 
added reactance must be added. 

It is then more convenient to 

^ conductance-susceptance 
I ^ diagram than a resistance-react- 

& I ^ \_ ance diagram. We saw in Eq. 
§ T J Condudance (4.63) that the curve connecting 

^ conductance and susceptance of 

b a line is of the same form as that 
connecting resistance and react¬ 
ance, only now the spiral winds 

Fig. 27.—-Impedance matching around the point representing 

diagram. the characteristic admittance Yo, 
which is the reciprocal of Zo. 

Thus for instance in Fig. 27 we show the diagram for a line of char¬ 
acteristic admittance Yo, terminated by some other admittance, 
so that standing waves are present, as indicated by the circle. We 

can then break this line at a or 6, where the conductance of the 
line equals the characteristic admittance Fo, and can shunt the 
line with a susceptance equal and opposite to the susceptance of 
the line at that point. The total admittance of the resulting 
network is then Yo, so that the line will be matched to a line of 
characteristic admittance Fo. Since, as we have mentioned 
before, this shunting can be done by a length of transmission line 

of adjustable length, this forms a convenient and practical way of 
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matching impedances. The one inconvenient feature of it is that 
it is sometimes impractical to have to break into the line at an 

arbitrary point. For this reason matching is often carried out by 
two such adjustable shunts, at fixed points of the line. By adjust¬ 
ing both reactances, we have two variables at our disposal for 
matching, much as if we could adjust the value and position of a 
single shunt. 

We can understand the action of this double-shunt tuner by 
an admittance diagram. In Fig. 28, we assume that a line has 
a certain terminal admittance, 
in shunt with an afl)itrary 
reactance. By adjusting this 
reactance, the terminal admit¬ 
tance can be given any value 
on the vertical line inters('ct- 
ing the real axis in the conduct¬ 
ance (7i, as shown. Suppose 
we wish to match this to a line 
of characteristic admittance 
Yo. FiCt the distance between 
the two shunts be 1. From 
each point a of the vertical 
line through Gi, a length of 
line I of characteristic admit¬ 

tance Yo will carry us to a 
point 6, as shown. If the 
point a is so adjusted that the 
point b lies vertically above 
or below Fo, a reactance can 
be inserted in .shunt at b which will bring the final reactance 
of the whole combination to Fo, matching it to the line. As will 
be described in the next paragraph, the points b lie on a circle, 
as shown. If this circle extends as far to the right as Fo, the 
matching can be accomplished; if it does not, matching is impos¬ 
sible. It is clear, then, that not all impedances can be matched 
by this device, but if the distance I between shunts is properly 
chosen, a considerable range of impedances can be matched. In 
practice this device is very useful, particularly in experimental 
arrangements where the values of the impedances to be matched 
are not exactly known in advance. On the other hand, if the 

Fig. 28.—Admittance diagram explain 
ing operation of double-shunt tuner. 
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values of impedances are well known, the quarter wave trans¬ 
former mentioned previously can be used. Its disadvantage, or 
the disadvantage of the double quarter wave transformer described 
in Fig. 21, is that it is not readily adjustable. 

We have mentioned that the locus of the points b in Fig. 28 

is a circle. It can be })roved that the circle is determined by the 
following simple geometrical construction, which is clear from the 
figure. Starting with a terminal admittance of Gi, a pure con¬ 
ductance, we construct the circle surrounding 1^) representing the 
admittance of any point on a line of characteristic admittance Fo 
terminated by Gi. We choose the point c, representing the input 
admittance of a line of length /, terminated by Gi. The circle 
of points b is then tangent to our first cinOe at this point c and 
is also tangent to the vertical axis of our diagram. This fixes 

the circle completely. Analytically, it can be proved that the 
equation of this circle of points b has the following value, where G 
represents the condiH‘tance (abscissa), B the susceptance (ordi¬ 
nate) of an arbitrary i)oint of the circle: 

(g - + {B+ Fo cot m- = (-|f (5.32) 

Here we remember that Gi is the conductance of the terminal load 
that we are trying to match. This is the equation of a circle of 
radius (yo/2Gi) csc^ 01, with center at abscissa (F§/2Gi) csc^ 
so that it is tangent to the axis of ordinates, and with the ordinate 
of the center at — Fo cot 01, The proof that this is the locus of 
the points b is tedious but not fundamentally diffi(‘ult, and we 
shall not reproduce it. To vderive it, we first start with an 
admittance equal to Gi plus an arbitrary susceptance. By the 
methods of Sec. 4 we can at once write the admittance of a line 
of length Z, characteristic admittance Fo, terminated by this 
terminal admittance. We write down the real and imaginary 
parts, G and B, of this admittance. Each of these now contains 
the arbitrary imaginary part of the terminal admittance as a 
parameter. We eliminate this arbitrary parameter between the 
two equations, and the result proves to be (5.32). 

The circle of points b extends to the right to twice its radius, 
or to an abscissa equal to (Fg/Gi) csc^ 01. If this value is greater 

than Fp, our construction is possible, and matching can be car- 
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ried out. This condition for matching can thus he written 

^ csc^ > 1, sin'-= pi < ^ (5.33) 

If Gi is greater than Fo, this demands that sin^ fil be less than 
unity, which means that the length of the line must be not too 
close to a quarter wave length (for which sin^ 01 w^ould equal 
unity). ()rdinarily for pra(*tical convenience the distance between 
shunts is set at some value greater* than a quarter wave length 
and less than a half wave length (since for a half wave length the 
locus of points b (h'genorates to the same vertical line through Gi 
with which we started, and matching is again impossible). 

In this section we have taken up several examples of composite 
lines wdiich an^ useful for impedance matching, for joining lines 
of different impedances without introducing reflection, and for 
similar purposes. We shall not go further with this subject at 
present, but merely remark that the general principles we have 
already introduced are capable of handling the most complicated 
problems. 

6. The Line with Continuously Varying Parameters.—The 

composite lines that we have taken up in the preceding sections 
have been made of sections of uniform lines of various character¬ 
istic impedances, with perhaps various discontinuous sections 
in.serted in them. There is no reason, however, why the charac¬ 
teristic impedance of a line may not be a continuous function of 
length along the line. We have mentioned the analogy of a 
horn to an im])edance-matching device; obviously a horn has 
continuously varying proi)erties, and the lines wc take up in this 
section behave in the same way. We coujd treat such a line by 
the methods of the preceding sections, passing to the limit where 
the length of each section of line w'as infinitesimal, but this is a 
clumsy way of handling the problem. It is better to introduce 
differential equations for the line, since this forms the mathe¬ 
matical w^ay of passing to the limit of infinitesimal sections. 
Consequently our first step wall be to introduce the differential 
equations of a transmission line, equations that can be applied 
to the uniform line as well as to the line of varying properties. 
We shall verify our previous solutions of the uniform line problem 
by means of our differential equations and then shall go on to 

the nonuniform line, giving a general method of approximate 
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solution for the case where the characteristic impedance varies 
slowly in comparison with the wave length, and giving an exact 
solution for the exponential line as a particular case. 

Let us consider an infinite line with distributed parametcns, 
as in Sec. 2. As in that section, we shall assume that a section ot 
line of length dx has a series impedance Z dx, and a shunt admit¬ 
tance Y dx. Let us consider an infinitesimal section of length dx, 
and let i{x) be the current entering one lead, and leaving the 

other, at the point x, and i{x + dx) the current entering one lead 
and leaving the other at the other end of the section, at o* + dx. 
(If the line is as in Fig. 7, we might have the })oint x at the 
terminals aa, the point x + dx at the terminals bb, assuming 
the sections of the line to be infinitesimal.) Furthermore let 
the voltage between the terminals at x (say the terminals aa in 

Fig. 7) be V{x)j and the voltage between those at x + dx be 
V{x + dx), where in each case V is positive if the upper terminal 
is at higher voltage. Then we can easily set up two equations for 

current and voltage. In the first place, the current flowing 
through the shunt element is i(x) — i(x + dx), and this must 
equal the voltage V between the two ends of this shunt impedance, 

times the shunt admittance Y dx. That is 

i(x) — i(x + dx) = VY dx 
i{x + dx) - i{x) _ y 

dx 

or, passing to the limit of infinit(‘simal dx, 

'ii = - VY 
dx 

(64) 

(6.2) 

To get the other equation, we note that the voltage between the 
terminals of the series impedance Z dx is V(x) — V{x + dx). 
This must equal the current times the impedance. Thus 

V{x) - V{x + dx) = iZ dx 

or, passing to the limit of infinitesimal dx. 
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Equations (6.2) and (6.4) are the two eciuations of a transmission 
line, in one simple form. 

We have found two equations in the two unknowns V and i. 
For many purposes it is more convenient to separate variables, 
so as to have separate equations for V and for i. To do this, 
we can first differentiate (6.2) with respect to x: 

dH 
dx^ dx dx 

= YZi - (6.5) 

where we have used Eq. (6.4). From (6.2) we can write V in 
terms of dijdXj so that (6.5) becomes 

dH 
dx^ 

_ XdY di _ 
, Y dx dx 

YZi = 0 (6.6) 

dH 
dxY^ 

d In y di _ 
dx dx 

YZi = 0 (6.7) 

Similarly from (6.4) we can show that 

dW d In Z dV 
dx^ dx dx 

YZV = 0 (6.8) 

The pair of equations (6.7) and (6.8) form the basis for the treat¬ 
ment of nonuniform lines. , 

First let us verify our equations for the case of a uniform line, 
where Y and Z arc constants. In that case the terms in di/dx 
and dV/dx do not appear, and the coefficient YZ is a constant, 
so that w^e have 

i = V = Voc~^^ (6.9) 

where 7 is a constant, given by 

7" - YZ •■= 0, 7 = ±\/yZ (6.10) 

agreeing with the result (2.7) that wo obtained for the same 

problem by our previous method. Substituting in (6.2) or (6.4), 
to get the relation between i and V, we then have 

-7t„ = -FoF 

z® 
io 

agreeing with Eq. (2.8). 

(6.11) 
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In case Y and Z arc arbitrary functions of o', Eqs. (6.7) and 

(6.8) are difficult to solve and, in the general case, cannot bo 
handled by simple analytic methods but must be integrated 
numerically. There is a useful limiting case, however, in which 
we can give an approximate solution. This is the case in which 
the fractional change in Y and in Z in a wave length is small. 
It is the case that we approached for example in Fig. 22, where 
we made a transition from a line of one characteristic impedance 
to a line of another by a number of quarter wave sections, such 
that the characteristic impedance did not change by a very large 
fraction from one section to another. The point of that arrange¬ 
ment was that it minimized ndlections, and the approximation we 
are going to present is precisely that which neglects reflections 
altogether. If there are no reflections, then we may plausibly 
assume the following character for the solution. It should repre¬ 
sent a wave traveling to the right (with an altc'rnative solution 
representing a w'ave traveling to the left). The propagation 

constant y should vary with position along the line but should be 
given, at least approximately, by the value (6.10) at each point, 
where we now have Y and Z depending on x. The ratio of V 

to i should be given at least approximately by (6.11), again 
varying from point to point. Finally the power transmitted 
dowm the line should decrease as w'e travel along the line by just 

the amount to compensate the loss on account of attenuation. 
To set up such a solution, let us multiply an amplitude func¬ 

tion, varying with x, by an exponential similar to the quantity 
appearing in the case of a uniform line. As a matter of fact, 

the exponential that we must use is in case y varices with x. 
We can see this easily from a si)ecial case, that in which y is pure 

imaginary, equal to j0 = 2wj/\. If X varies from point to })oint, 
the quantity dx/\ gives the number of wave lengths in distance 
dXj so that /(1/X) dx gives the total number of wave lengths in a 
finite interval,^ the quantity which should appear in the exponen¬ 
tial. Following this suggestion, let us then assume 

i = io(x)e-iy V = Vo(x)e-!y (6.12) 

where 
y = a/FZ 

and where io and Fo are functions of x to be determined. We 

then substitute (6.12) in (6.7) and (6.8), obtaining the equations 
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1 dWo 
7^ dx'^ 

1 din / 
f 

9 _ 1 In F\ 1 

y dx \ 
— Z 

y dx / 
“T 

1^/ / _9 1 d In 
1 + y dx ' 

— Z 1 1 

A A? (^/-^) 
27 dx 

Vod\n (Z/Y) 
2y dx 

= 0 

= 0 (6.13) 

Let us now find the order of magnitude of the various terms and 
see which ones we can neglect in our approximate case where Y 
and Z vary slowly compared to a wave length. We can see this 
most easily in the case where 7 = 2Trj/\. Then for instance 

equals A x proportional to the change of In Z 

in a wave length, or the fractional change of ^ in a wave length, 
which we are assuming is small compared to unity. Thus to a 

first approximation w(3 can neglect the terms 

1 d In Z 
compared to unity. On the other hand, presumably ^ Vy V/A 1 * 1^ V -i. V/V* UV/ ** VA&V./ ^ ^ 

we shall find that U and To change by more or less the same 
fraction in a wave length that or Z do, so that the quantities 

- and - are presumablv of the same order of magnitude 
ydxydx 

iod In (Y/Z) , Tod In (Z/Y) 1 dHo ^ 
y dx 7 dx y^dx^ 

1 0 _ 1 ..r.... Ai_ _i. ^1_•„ _ 

The quantities ^ and 

^~d^ are however smaller, for they represent the change in a 

wave length of the quantity 7^^’ quantities which are 

themselves small and in addition vary slowly. We shall neglect 
them. 

Leaving out the terms that we consider negligible, Eqs. (6.13) 

can be rewritten 

d In u _ 1 d In (Y/Z) 
dx 4 dx 

din To 1 d In (Z/F) 
-^ = 4-dx- 

The solutions are at once 

io = const. const. (6.15) 
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Substitution in Eqs. (6.2) and (6.4) shows that the constants in 
(6.15) must be equal. Hence our final approximate solution of 

Eqs. (6.7) and (6.8) is 

. ^ (yY 

/z\' -/VTz 
V = a(^) e 

where A is an arbitrary constant. Dividing V by we then 
verify immediately that the ratio Yji equals \/Z/F, or the 
value of characteristic impedance computed for the point in 
question. Let us next consider the flow of power along the line. 
This is very easy to do in ca.^e there is no attenuation. Then 
the ratio ZjY is real, and YYZ is pure imaginary. Then the 
quantit}^ Vl, which appears in the flow of power, is simply equal 
to \A\^, a constant, showing that the flow of power is the same 
at any point of the line, as we should expect. On the other hand, 
if there is attenuation, we should expect that the fractional rate 

of change of power with distance. 
d In (Fl) 

dx 
should equal —2a. 

In tliis case we have 

/Z\^ -2jadi; 

In Vl = In + In ~ ^ ^ 

If we may neglect the rate of change with x of In {Z/Yy'*{Y/ZY\ 
compared to —2a, then the power decreases at the proper rate in 
going along the line. This is the case if a is comparable numeri¬ 
cally with for then we are simply neglecting the rate of change 
of In (Z/F)^(F/Z)‘/^ with respect to /3 or 7, which is essentially 
what we have done before. If however a is small compared to jS, 
we cannot be sure that the rate of decrease of power down the 
line is accurately given by our expressions (6.16); but in that case 
the decrease of power is small anyway and can be neglected to a 
first approximation. 

In our solution (6.16), we have found an approximate solution 
for the current and voltage in a line with wslowly varying proper¬ 
ties, the case in which we can neglect reflections. In cases 
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where this solution applies, we have seen that a single wave 
traveling in one direction forms an approximate solution of the 

problem and that the ratio of voltage to current in this wave 
remains constant down the line. In other words, in this case 
there is an automatic impedance match all the way down the 
line, independent of the wave length Ijeing propagated. The 
best way to eliminate reflections, and to do it in a nonselective 
or nonresonant way, as we see from this, is then to change the 

properties of the line gradually, using a length of a numV)er of 
wave lengths to make a large change in properties and avoiding 
any sudden changes or discontinuities. In practice, it is often 
found that this method is rather better than would be expected at 
first sight. The properties of a lira', can be changed considerably 
even in the distance of one wave length, with very small reflec¬ 
tions. In oth(T words, the terms that we have neglected in Eq. 
(6.13) really seem to be negligible, in many ordinary cases. 

The method we hav(i just described is a satisfactory approxima¬ 
tion for handling cases of continuously varying impedance, 
when the variation is not too rapid. Fortunately there is one 
case which can be treated exactly, and which is useful on its own 

account and is a valuable check on th(^ correctness of our approxi¬ 
mation and an indication as to how far it can be trusted. This 
is the so-called ‘^exponential line,” in which either Z increases 

exponentially and Y decreases exponentially at the same rate 
with j*, or vice versa. That is, let us assume 

Z = const, Y = const. (6.18) 

where 5 is a constant. In this case the ciuantity YZ api)earing 
in (6.7) and (6.8) is constant, and we have 

d\nZ ^ _ din Y 
dx dx 

(6.19) 

also a constant. Thus Eqs. (6.7) and (6.8) become 

- t" - YZV . 
dx^ dx 

(6.20) 

which are second-order linear differential equations with constant 

coefficients and therefore have solutions varying exponentially 
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with X, To make connection with our approximate solutions 

(6.16), let us assume 

We note from (6.18) that Y/Z varies ('xponentially with r, so 
that both i and V from (6.21) vary in this way. We have 
assumed different constants A and A' multiplying the expres¬ 

sions for i and V in (6.21), so as not to assume that the ratio of 
V to i is the value given by the approximate theory, and we have 
inserted an arbitrary constant F in the exponential, instead of 

the value 

7 = VYZ (6.22) 

which would appear in the approximate theory. Thus our 

expressions (6.21) are general exponentials, except that we have 
assumed a relation between the exponentials ai)pearing in i and 
y, which fortunately proves to be correct. 

Substituting the expressions (6.21) in (6.20), we now have 

(r + 0’-s(r + i)-.<-o 

(‘'-0’ + »(>'-0 (6'2« 

The two Eq.s. (6.23) are con.si.stent with each other and lead to 
the solution 

Substitution in (6.2) or (6.3) then gives 

V _ A' [z _ r + 5/2 [z _ 7 [Z 
i A '\Y 7 V y r - 5/2 \Y 

(6.24) 

(6.25) 

the two forms being equivalent on account of (6.24). We thus 
see that the quantity F, appearing in the exponential, differs from 
the value y which it would have in the approximate theory by a 

small quantity of the second order in 5/y; the ratio V/i differs 
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from the value y/ZjY which it would have in the approximate 

theory by a ratio differing from unity by a small quantity of the 
first order in 5/7. These errors begin to be appreciable when 5 
becomes numerically of the same order of magnitude as 7; that 
is, when the proportional change of Y and Z per unit length 
becomes largo, which is just the case where we expected our 
approximate solution to break down. We can see, in fact, that 

the behavior in this case of large changes of Y and Z is just what 
vve should expect. For an ordinary line, with small attenuation, 
or better with no attenuation at all, 7^ will be a negative real 
quantity, or at least its real part will be negative and larger than 
its imaginary part. (5/2)^ is positive. If it is small, the leading 
term of T will be pure imaginary, corresponding to small attenua¬ 
tion; in particular, if the line is nonattenuating, T will be pure 
imaginary, and there will be no attenuation at all. If however 
(5/2) becomes larger than the magnitude of 7, the quantity 
in tlie radical in (6.24) will change sign, Y will become real, and 

the line will have no real propagation at all. This means, 
if tlier(‘ is no attenuation, and hence no loss, that there is total 
r('fle(*tion. In other words, when the fractional change in proper¬ 
ties of the line per wave length becomes greater than a critical 
value, the line will reflect all the energy instead of transmitting it. 
This is what we should expect, for we have seen throughout that a 
rapid changes of properties of a line produces reflection and that a 
gradual change does not. If we have a line of fixed properties 
and pass waves of different frequencies through it, we see that 

for short wavers tlu^ change of ])roperties will be gradual and that 
for long waves it will not. That is, it is the long waves, longer 
than a critical cutoff value, which will be reflected. An exponen¬ 

tial line, in other words, forms a highpass filter, passing only 
fre(iuencies above a critical value, in case the line is nonattenuat¬ 
ing. If it is attenuating, it is not hard to show that the attenua¬ 
tion increases rapidly as we go through a cutoff value, from low 
attenuation at higher frequencies to very high attenuation for 
the lower frequencies. 

Since T is pure imaginary in the transmission region for a 
nonattenuating line and 5 is real, we see that the ratio (6.25) of 
voltage to current is complex, corresponding to both a resistance 
and a reactance. If we wish to terminate an exponential line by 
a nonreflective impedance, we see then that this terminal imped- 
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anee must have a reactive as well as a n^sistive component, even 

though the quantity \^ZIY is a pure resistance. As the wave 

length becomes longer, or the frequency Iowct, approaching cut¬ 

off, the reactive component of the terminal impc'dance must be 

made numerically greater, and the resistive component smaller, 

until finally at cutoff* it must be entirely reactive. Since this 

teiminal impedance varies with frequency, even when y/ZjY 

is independent of frequency, we see that if a section of exponen¬ 

tial line is used as a matching transformer, as is sometimes done, 

it will be selective, being nonreflective only for the* frequency for 

which it is designed. In this respect it is not so well suited for 

matching impedances as the type of line discussed in Figs. 22 

and 23. 

The exponential line, which we have just taken up, furnishes 

an example of a continuously varying line that can be solved 

exactly. Many other exact solutions could be set up, since 

there are many second-order differential equations of the form 

(6.7), (6.8), with coefficients varying with x, whose exact solu¬ 

tions are known. An example is BesseFs equation; lines can be 

set up whose solution is in the form of Bessel functions. Prob¬ 

lems analogous to those of the present section come up not only 

in real transmission lines whose properties vary continuously 

with position, but also in other problems such as horns, which 

as we have mentioned previously are n^ally transmission lines 

of varying properties. Thus one can find horns whose solutions 

are exponentials or Bc^ssel functions, or other simple functions; 

alternatively we can use a method analogous to our approximate 

method if an exact solution is not available. Here we note that 

generally in the throat, or small end, of a horn, the properties 

vary rapidly in a wave length. Thus our approximate solution 

must be inaccurate in that region, and we must expcH’t reflections 

to take place near the throat, with rapid attenuation of the wave. 

This is actually the case, and it means that exact solutions of 

simplified problems are the only reliable method of handling the 

propagation through the throat of a horn. 



CHAPTER II 

MAXWELL’S EQUATIONS, PLANE WAVES, 
AND REFLECTION 

In our first chapter wo have gone about as far as we can, using 

the ideas of electric circuits alone. To go further, we must 
think about coaxial lines, wave guides, antennas and radiating 

systems, and radiation itself. Tb6\se are problems of the electro¬ 

magnetic field. It is true that the id('as of imp(‘dance and 
reflection introduced in the preceding chapter in ('onnection 

with transmission lines can often be advantag(^ously carried 
over into these problems of the electromagnetic field, but this 
is by no means always the case; in any case they are valuable 
rather as analogies than as representing the fundamental theory 

of the situation. This fundamental theory is always based on 
Maxwelbs equations. When ideas of transmission lines lead 
to the same results as Maxwell's (equations th(\y are right, though 

superfluous; when they l(‘ad to different results they are wrong, 
an ineorr(‘(‘t analogy, fl^his statement is perhaps a little hard 
on transmission lines, for certainly their theory leads to a goou 

understanding of many problems that deal fundamentally with 

fields. But, as Dr. W. W. Hansen has said, the first thing to 
learn about tlu' theory of microwaves is that the idea of imped¬ 

ance cannot b(‘ used as a substitute for thought. In this chapter 
we sliall begin to use Maxwell’s equations; in later (‘hapters 
we shall learn how to think by means of them and to apply them 

to the actual sort of transmission lines Uvsed in microwave work. 
7. Maxwell’s Equations. -This is not a treatise on electro¬ 

magnetic theory, and we shall not start at the beginning with our 

discussion of Maxwell’s equations. We assume that the reader 
has a bowing acquaintance with them, such as he would get from 
one of the standard books on electromagnetic theory. We shall 

also assume that he is familiar with the elements of vector analy¬ 

sis, as he will be if he has read these works on electromagnetic 
tlieoiy. Nevertheless, in case his acquaintance with these 

matters is merely a casual one and does not reach the point of 
79 
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intimacy, we shall start with a statement of the vectors con¬ 

cerned in Maxweirs equations and the equations themselves 
and their meaning, before going on to their use. 

Maxwell's equations deal with four vector fields, vectors 

defined as functions of position and time. These form two pairs: 
Ej the electric field intensity, and B, the magnetic induction, 
forming one pair, and /), the electric displacement, and 
the magnetic field intensity, forming the other. (The more 
familiar grouping of E and H in one pair and B and D in another 
is less fundamental than the grouping that we have indicated.) 

The first pair, E and /?, are the vectors determining the forces 
acting on electric charges and current elements in space. By 
definition, the force acting on a charge r/.at rest is qE, in the 

direction of the vector E^ so that E measures the for(*e acting 
on unit charge. Similarly the force acting on an element of 
current I is a vector at right angles to the plane of the vector / 

and of By equal in magnitude to the product of B and of the com¬ 

ponent of / at right angles to B. Thus B measures the force on 
unit current element at right angles to B. The force on a 
current element is symbolized in terms of vector analysis by the 

equation that the force equals / X By the vi'ctor product of I 
and By where by definition the vector product of two vectors 
equals a vector normal to the [ilane of the two vectors, ecpial to 

the magnitude of one of the vectors times the component of the 
second vector at right angles to th(‘ first. In terms of com¬ 
ponents, it is proved in vector analysis that the x component of 
the vector product is 

(/ X 7?). = lyB. - LB, (7.1) 

with corresponding formulas for the other two components, if 
Ixy ly, L are the x, y, z components of current, and similarly for B. 
We have stated the forces acting on charges or curnmts at rest. 

A charge in motion, however, is equivah^nt to a (current. Thus 
a charge q moving with velocity v is equivalent to a current 
/ = qv. The force acting on a charge q moving with velocity 
V is then 

F = q[E +(vX B)] (7.2) 

This equation is particularly important in ai)plications to el(’c- 

tronics, where we wish the forces acting on individual electrons. 



Sec. 7] MAXWELUS EQUATIONS, PLANE WAVES 81 

The second pair of vectors, D and H, arc determined from 

charges and currents in the field, as lines of force originating from 
the charges and currents. Lines of D emanate from electric 
charges, and, if we use rationalized units, as we shall, we find 
that the total number of lines of D originating on a charge, or 
the total flux of D outward from the charge, is numerically equal 
to the charge itself. By the flux of a vector such as D, we mean 
the following: the flux of a vector D across an clement da of area 
equals the component Dn of the vector normal to the area, times 
the area. This definition is set up in analogy to the flux of a 
vector representing the velocity of a fluid: the flux of fluid across 
an area, or the volume crossing the area per second, equals the 
c(jmponent of velocity normal to the area, times the area. The 
total flux of D outward across a closed surface is denoted by 
jjDnda, where the double integral indicatc's that we are to 
sum the elements of flux Dn da through each element of the 
surface, over the whole surface. Our statement is then 

fiDn da (7.3) 

whore q represents the total charge within the surface. 
Although lines of D start out from charges, the situation is 

(piite different with II: lines of II form closed paths surrounding 
currents. We can state the law governing these lines in terms of 
line integrals. A line integral is defined as follows. We first 
take a curve and consider a short element ds of this curve. We 
then take the component //« of H in the direction of the curve 
and multiply by ds. The sum of these quantities for all the 
elements of the curve, or ///, ds, is called the line integral of H 
along the curve. It is set up by analogy with the total work 
done on a body by a force F, as the body moves along a given 
path. The work done in the element ds is Fs ds, the product of 
component of force along the direction of motion, times the 

distance moved, and the total work done is JFs ds, the line inte¬ 
gral of force along the curve. Let us now take a closed curve 
enclosing a current I. The law governing H is now the following: 

^ the line integral of H around any closed curve enclosing the 
current I is numerically equal to I (if we use rationalized units). 
That is, 

JH. ds = I (7.4) 
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Maxwell showed that this equation could be correct only in 
static problems, in which the currents do not change with time. 
For suppose we have a current changing with time and flowing 
into a condenser. Then in the wire leading to the (‘ondenser 

there may be a current /, while in the condemser there is no 
current. It is then impossible to say whether a closed curve 
surrounds the wire, in wdiich there is a current /, or the condenser, 

in wliich there is no current. To avoid this difficulty Maxwell 
introduced the displacement current. This is a quantity that 
plays the part of a current in a condenser, or in any place in 

which the displacement I) is changing with time. To get at 
the correct value for the displacement current, let us consider 
a closed volume. If there are bodies withiathis volume having a 

certain capacity, there can be a net flow of real current into this 
volume. Maxwell’s displacement current must be so defined 
that there is an equal and compensating flow" of displacement 

current out of the volume, so that the total current, real plus 
displacement, will not be able to pile up, even on condensers, 
but as much will flow' into a volume as out again, so that essen¬ 
tially the total current \vill obey KirehhotFs law that the total 
current entering any point of a circuit eciuals the current leaving 
it. The total current entering our closed volume equals the 
time rate of increase of charge within the volume. This in 

turn, by (7.3), equals {d/dt)iiDnda, The total displacement 
current leaving the volume must then equal this amount, and the 
natural assumption is that the amount of displacement current 
crossing any element da of the area is {d/dt)Dn da. This was 
the assumption which Maxwell made. Then in the general 
case, in which currents are changing with time, w"c must modify 

(7.4) by adding the total displacement current flowing through 
the closed curve around which we are integrating //. This is 
the flux of displacement current across a surface bounded by the 

closed curve. Writing the flux in terms of a double integral, 
as before, we can write the modified form of (7.4) as 

There are now two experimental laws of electromagnetism 

which we must state. One is that lines of magnetic induction B 
are always closed, never starting or stopping. That is, the total 
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flux of B out of any closed surface is always zero, or 

iJBn da = 0 (7.6) 

where the integration is carried out over any closed surface. The 
other law is Faraday’s induction law. This states the electro¬ 
motive force developed in a circuit as a result of electromagnetic 
induction, or of changing magnetic fields. The electromotive 
force in a circuit by definition is the work done on unit charge 
carrying it once around the circuit. If we have a closed curve 
representing the circuit, then the forc^e on unit charge is E, and 
the work done on this charge carrying it around the circuit is 

jEa ds, integrated around the curve. Faraday’s law states that 
such an electromotive force is produced by change in the flux 
of magnetic induction B through the circuit and is numerically 

equal to the rate of change^ of flux, with a negative sign, if the 
line integral is carried out in a positive direction (going counter¬ 
clockwise around the curv(') and the positive direction of B is 

upward. That is, the induction law may bo stated 

In addition to these laws already stated, which are quite 
general, there are relations between the various vectors, depend¬ 
ing on the nature of the material media in which they are found. 
In ordinary materials, D is proportional to E and in the same 
direction, and in nonferromagnetic materials B is proportional to 
H and in the same dir(*ction. The relations are written 

D = eK, f ("-8) 

where e is called the electric inductive capacity, m the magnetic 
inductive ca})acity. In the system of units which we shall use, 
€ and fjL have definite dimensions and numerical values, though in 

some units they are pure numbers. In our units, empty space 
has quite definite values of € and which we shall denote by eo 
and Ho. Then the ratio of the electric inductive capacity of a 

medium to that of empty space is called the specific inductive 
capacity, or dielectric constant, of the medium. We shall 
denote it by 

€ X 

= — 

Co 
(7.9) 
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Similarly the ratio of the maRnetic indiietivo rapacity of a 

medium to that of empty space is ealh'd tlu' maRrudie permeabil¬ 

ity. We shall write it 

^ (7.10) 
Mo 

For most ordinary materials, € is really a constant, though for 
crystalline media the relation is moie complicated, the three 
vector components of D being linear functions of tlie three 
components of E, so that instead of one constant t there are 
really nine coefficients of the three linear equations. We shall 

not have to consider that case, however, in our discussion. For 
nonferromagnetic materials, /x is constant and very closely 
equal to /xo, so that the j)ermeahility is almost exactly equal to 
unity. For ferromagnetic materials, /x is not even a constant; 
it is well known that the relation between B and II is a compli¬ 
cated one, showing phenomena of hysteresis, saturation, etc. 
Wo shall not consider these complications, since iron is ordinarily 
not used in microwave work. 

In addition to the four vectors £', /i, D, and //, we need quanti¬ 

ties expressing the charge density and current dcmsity. The 
charge density is denoted by p and m(‘asures the amount of (*harge 
in unit volume, a function of position. The (luantity r/, which 

we have used previously, is the total charges in a volume, or the 
integral of p over the volume: 

7 = J7Jpdp (7.11) 

Similarly the current d(*nsity is denoted by a vector, measuring 
the amount of current per unit area. Our quantity /, the 
current flowing through an area, is the integral of J over the area: 

/ = J/./.da (7.12) 

These two quantities satisfy the equation of continuity, an equa¬ 
tion stating that the current flowing out of a volume ec^uals the 
rate of decrease of charge within the region. This equation may 
be written 

where the left sidp represents the flux of current out of a volume, 
the right side the rate of decrease of charge within the volume. 



Sec. 7J MAXWELIJS EQUATIONS, PLANE WAVES 85 

In a conductor obeying Ohm^s law, there is a relation between the 

current density J and the electric field E. Ohm’s law in this 
form is 

J = (tE (7.14) 

where <r is the electrical conductivity. In materials not obeying 
Ohm’s law, the relation between field and current is more com¬ 
plicated. For instance, in a discharge tube, the intensity E 
determines the force on the electrons or ions in the discharge, 
they move according to Newton’s laws of motion under the 

action of this force, and from their resultant average velocity 
we can find the current density J. 

We have now derived a number of relations between the elec¬ 
tromagnetic quantities. Let us repeat these, in the form in 
which they load to Maxwell’s equations. From Eqs. (7.7), 
(7.6), (7.5), and (7.3), respectively, we have 

(I) J E.ds + ^^j 1* da = 0 

(11) ^ J B„ da = 0 

(III) J' II, ds ~ j j da = I 

(IV) ^ ^ Dn da - q (7.15) 

These equations are the integral forms of Maxwell’s equations. 
We note that the surface integrals fjEn da and jjDnda appear¬ 
ing in P]qs. (1) and (III) are over surfaces spanning the curves 

around which the lino integrals jEsds and JHads, respectively, 
are to be computed, while the surface integrals fJBnda and 
jjDnda in (II) and (IV) are over closed surfaces enclosing 
volumes. It is now possible by vector methods to transform 
the four integral equations (I) to (IV) into differential equations. 
This is done by the use of two vector theorems. Gauss’s theorem 
and Stokes’ theorem. These theorems are stated in terms of 
two vector differential quantities, the divergence and the curl. 
By definition the divergence of a vector is a scalar, given by 
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(7.17) 

The curl of a vector is a vector, whose x component is 

curl. ^ ^ dy dz 

with corresponding formulas for the other components, formed 
by advancing the letters. In terms of them Gausses theorem is 
stated as follows: 

JJ7 div il dv = jjAn da (7.18) 

That is, the volume integral of the divergence of any vector, over 
a finite volume, equals the surface integral of the normal com¬ 
ponent of the vector, or the total flux of the vector, over the 

surface enclosing the volume, n representing the outer normal 
to the surface. Similarly St(jk(\s’ theorem is 

JJ curln A da = /A, ds (7.19) 

or the surface integral of the normal component of the curl of a 
vector, over a surface spanning a closed curve, equals the line 
integral of the tangential component of the vector around the 

closed curve. 
We may now use Gauss\s theorem and Stokes^ theorem to 

rewrite Eqs. (7.15). Using (7.11) and (7.12), the equations 

become 

(I) 

(II) 

(III) 

(IV) 

JJ curb E da + JJ Bn da = 0 

JJJ*'''"* dv = 0 

JJ curb // da ~ J ~ JJ Jn da 

(7.20) 

Since P^qs. (I) and (III) hold for any arbitrary surface and (II) 
and (IV) for any arbitrary volume^ the integrands themselves 
must obey corresponding relations, and we have 

(I) 
1 IP 1 curl E + 

(II) div B 

(III) 
1 ij curl H-X,- 

at 

(IV) div D (7.21) 
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In Eqs. (7.21) we have the differential form of Maxwell’s equa¬ 
tions. Remembering the definitions of (7.16) and (7.17), these 

give relations between derivatives of the various field vectors. 
When combined with Eqs. (7.8), (7.14) in a medium having a 
definite dielectric constant, permeability, and conductivity, the 
equations form a complete system. These supplementary rela¬ 
tions, often called the constitutive equations of the medium, are 
then 

D = eE, B ^ nH, J ^ aE (7.22) 

For more complicated material media, other relations must be 

substituted for (7.22), but the.se simple ecpiations are sati.s- 
fa(*tory for most of the materials encountered in microwave 
work, with the one restriction that e, /x, and a must in general be 
considered functions of frequency. 

Maxwell’s ecpiations hold at any point where the fields are 
not changing discontinuously. At a surface of discontinuity, 

however, thc^re are certain boundary conditions, which are 
derived by limiting processes, assuming that the discontinuity 
is the limiting case of a more and more rapid continuous change, 

and finding the limiting form of Maxwell’s equations. These 
conditions are the following: 

(I) Et is continuous 

(II) Bn is continuous 
(III) Discontinuity in Ht = surface current density 
(IV) Discontinuity in A* = .surface charge density (7.23) 

at a surface of dis(*ontinuity, where the sub.script t refers to the 
tangential component, and the subscript n to the normal com¬ 
ponent, of a vector, and where the relations numbered (I) to 
(IV) follow from the correspondingly numlx^red Maxwell’s 
equations. The surface curnuit density and surface charge 
density mean the current cro.s.sing ufiit length lino in the surface, 
and charge per unit area in the surfa(*e, in cases where charge and 
current are assumed to be localized in the surface layer. 

The di.scu.ssion of Maxwell’s equations which we have given 
is not, as we have said earlier, intended to be a complete deriva¬ 
tion, but it should serve to recall the equations to those who have 
met them before, and to introduce them in usable form to those 

who are meeting them for the first time. It should be understood 
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that our introduction of them in the integral form, from Faraday 

law of induction and other similar relations, is not in any sense 
a derivation, Imt mer(*ly an indication of their relation to well- 
known elementary laws. The proper point of view to take is 

that Maxwell’s e(|uations are the postulates of electromagnetic 
theory, not to be prov^nl or derived from anything else, but 
to be assumed as the foundation of the theory. They can be 
proved only by deriving results from them that are in agreement 

with experiiiKUit. 
The units that we shall use in Maxwell’s equations arc rational¬ 

ized m.k.s. (that is, meter-kilogram-second) or Georgi units. 

In these units, the (‘lectrical quantities are (vxpressed in practical 
units, distances in nuders, masses in kilograms, times in seconds, 
and the whok' forms a consistent set of units. Let us consider 
the units to be used for each quantity api)earing in Maxwell’s 
equations. The ('le(*tric field intensity E is measured in volts 
per meter, wluax^ of course 1 volt pea* meter equals volts per 

centimeter. The magiudic induction J J7?n da is measured in 
webers, so that B is in webers per scpiarc^ meter, wluu’e 1 welxu’ 
per square meter e(pials 10^ gauss. From (1) we can see that 

there is a relation between \a)lts and w(‘b(M’s: volts per scpiarc 
meter = webers per square meter-s(‘Cond, or volts = wcdxas per 
second. The (diarge density p is in coulombs per cubic nuder, 

and the current density J in amperes }K‘r scpiarc* meter. From 
Eq. (IV) we then see that the units of D are (amlombs per scpiarc 
meter, and from (111) the units of II are amperes per meter. 

These units are not ordinarily givTii diffcnait nam(\s. We see 
that in these units, the quantities e and /x, the ekadric and mag- 
nedic inductive capacities, have dimensions, unlike the situation 
with some other systems of units. The units of e are those of 
D/Ey or (coulombs per square meter)/(volts ])er meter) or cou¬ 
lombs/(volt-meter). We note that the farad, the unit of capac¬ 
ity, is ecpial to the number of coulombs per volt; thus € has the 
dimensions of farads per meter. Similarly the units of g are 
those of B/H or (webers per sejuare meter)/(amperes per meter) 
or webers/(ampere-meter). But the henry, the unit of induct¬ 

ance, has the dimensions of volts/(amperes per second) or 
(volt-seconds)/ampere or webers per ampere, so that p has the 
dimensions of henry per meter. The values of the quantities 
eo and go, for empty space, are 
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/io = 47r X 10“’^ henry per meter (7.24) 

_ 1 _ 1 
“ 47r X 10-^ X (3 X 10*)2 

= 8.85 X farad per meter (7.25) 

c = —L-r-r = 3.00 X 10^ m. per second (7.26) 
V ^oMo 

is the velocity of light, as we shall show later. Of the two quanti¬ 

ties €o, jLin, the second, /io, given ))y (7.24), is pure definition; when 

it is determined, the value of €o is also determined. The two 

quantities €o and /xo are really the only numerical quantities that 

one must remember to keep this system of units straight, which 

is certainly simpler than all the powers of 10 and of c that must 

be remembered in changing from either the absolute electro¬ 

magnetic system or the Gaussian syst(‘m to practical units. A 

derived numerical quantity that is often encountered is 

-- = 376.6 ohms 
€() 

(7.27) 

To check the units in (7.27), we note that mo/^o is of the dimen¬ 

sions of (w(4)ers/ ampere-meter)/(coulombs/volt-meter) or (weber 

X volt)/(ampere X coulomb). Using the relation that 1 weber 

= 1 volt X 1 second, and 1 coulomb = 1 ampere X 1 second, 

our (luantity becomes (volt-)/(ampere") = ohm-. The quantity 

(7.27) api)ears later in connection with the characteristic imped¬ 

ance of empty space, regarded as a transmission line. 

Certain otlun- units a])pear in connection with our equations. 

In the force eciuation (7.2), if the electrical quantities are in the 

units we have used, the force F is given in newtons, where by 

definition I newton equals 10^ dynes. That is, a newton is the 

force required to give a unit kilogram mass an acceleration of 

I meter per second per second. With the force given in (7.2), 

we can solve the equations of motion by methods of mechanics, 

getting distances in meters as a funetion of time. If we compute 

energy in our units, it comes out in joules, where 1 joule is 

10^ ergs, or the work done by a force of 1 newton acting through 

a distance of 1 meter. When we compute a rate of working, 

or a power, it comes out in joules per second, or watts. In 

materials obeying Ohm\s law (7,22), the conductivity of the 
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material, a, must be expressed in the same units as J/E. That is, 

its units are 1 / (ohm-meter) = mhos per meter, where 1 mho is 

defined as the reeiproeal of 1 ohm. It is to be noted that 1 mho 

per meter is of 1 mho per centimeter, the usual unit of 

conductivity. 

8. Poynting’s Vector, the Wave Equation, the Potentials.—In 

the present section we shall collect a number of familiar electro¬ 

magnetic theorems, which follow from MaxwelFs equations and 

which we shall need in later work. These theorems will all be 

proved for the case where the constants e and ju are really con¬ 

stants, independent of the field strengths, and furthermore 

independent of position and of time. That is, we deal only 

^\ath homogeneous media. For that reason one must be on his 

guard in applying these theorems to cases in which 6 and g 

change from point to point, for some of the theorems do not hold 

in that case. The ordinary cases met in practice, fortunately, 

involve a number of regions in each of which the properties are 

homogeneous. Thus one can a{)ply the theorems of the present 

section in each homogeneous region and us(' the continuity condi¬ 

tions (7.23) to join solutions together in different regions. 

First we prove Poynting^s theorem, reflating to energy flow 

and energy density in the electromagnetic field. We begin by 

computing the quantity div {E X //). By a well-known vector 

identity this is 

div {E X H) = II • curl E - E • curl H (8.1) 

Using Maxweirs equations (7.21), this becomes 

div (E X H) + E + H = -E ■ J (8.2) 

If we assume D = tE, B = /x//, we have 

div {E X //) + {eE-^ + nlP) = -E-J (8.3) 

This equation reminds us of an ordinary equation of continuity,' 

which states that the divergence of the flux of any quantity, plus 

the rate at which the density of the quantity increases with time, 

equals the rate at which the quantity is produced. In other 

^ See for instance Slater and Frank, Introduction to Theoretic[il 
ics,'^ p. 186, McGraw-Hill Book Company, Inc., New York. 
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words, applying the equation to a small volume, it states that the 

rate at which the quantity increases within the volume equals the 
rate at which it is produced within the volume, minus the rate at 
which it flows out over the surface. We can give such an inter¬ 
pretation to Eq. (8.3). The quantity —E-J represents the rate 
at which energy is produced (that is, E • J represents the rate at 
which energy is lost) per unit volume on account of ordinary 
Joulean or resistance heating. Thus the quantity for which 
(8.3) forms the equation of continuity is the energy. We can 
then interpret the vector 

S == EXH (8.4) 

which is known as Poynting’s vector, as the flux of energy, the 
amount of energy crossing unit area perpendicular to the vector, 
per unit time, and the scalar 

U^E^ + m//“) (8.5) 

as the energy density, the amount of energy per unit volume. In 
our units, S comes out in joules per s(|uare meter per second or 
watts per square meter, and the energy density is in joules per 

cubic meter. The interpretation of S as an energy flux, and (8.5) 
as an energy density, is well known not to be unique, but it Ls the 
most convenient interpretation and will not involve us in error. 

Next we shall derive the wave ecpiations for propagation of 
electromagnetic waves in homogeneous media. We shall assume 
a conducting medium satisfying Ohm's law, for generality, and 

shall therefore set J = <tE, as in (7.22). If we wish to deal with a 
nonconducting medium, we need only set cr = 0. We may now 
take Maxwell’s equation (I) and take its curl. Using the vector 

identity curl curl F = grad div F — V'W, where F is any vector, 
this is 

grad div E — V^E -f ~ curl B = 0 (8.6) 
at 

In the first term, we write E = D/e and assume € to be a constant, 
so that We can disregard it in differentiating. We replace div D 
by p, according to Maxwell’s equation (IV), and set p = 0 since 
we are in the interior of a conducting medium. In the third term, 
we write B = assume p to be a constant, and rewrite curl H 
from MaxwelPs equation (III). Thus we have 
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(8.7) 

Similarly, starting by taking the curl of Eq. (Ill), we find 

V-H = 0 (8.8) 

Thus b«th E and II, as well as each component of each of these 

vectors, must satisfy the same equation. For the case of a non¬ 
conducting medium, these e(iuations reduce to 

= 0, V^// - 6/x = 0 (8.9) 

the familiar wave equation. If we deal with a disturbance vary¬ 
ing as Eqs. (8.7) and (8.8) take the form 

V“E + (c^o)- — jafxo))E = 0, 

V2// + (€MCo2 - i(TMC0)// = 0 (8.10) 

Finally we shall set up the electromagnetic potentials and 
derive the equations that they satisfy. We assume a scalar 

potential <(> and a vector potential A, in terms of whi(*h E and B 
are given by 

n A 
E = - grad B = curl A (8.11) 

ot 

Then, using the facts that the curl of any gradient and the diver¬ 
gence of any curl are zero, we find that Maxwell’s equations (I) 
and (II) are automatically satisfied. Next we substitute (8.11) 
in Maxwell’s equations (III) and (IV), treating e and ^ as 

constants, and again assuming J = aE and p = 0. From (III) 
we have 

i grad (div A + <Tfi<l> + , dA 

-i(rd- 
\ 
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From (IV) we have 

-e ^ (div A+an<(, + .^^ 

- ^ jf) = ® 

We find that we can n(3W assume 

div .1 + (TfJL(t> + 6/i — = cons. (8.14) 
ot 

without involviiif^ ourselves in any contradictions or difficulties. 
Then Eqs. (8.12) and (8.13) liecome 

=0 (8.15) 

so that the potentials satisfy the same wave equation that we 
liave already seen in (8,7)and (8.8) to be satisfied by E and //. 

The etiuations that we have found are those which hold in a con¬ 
ducting region obeying Ohm’s law, where there is no concentra¬ 
tion of (*harge. They hold for a nonconducting region, such as 

empty space, if it likewise contains no charge. 
9. Undamped Plane Waves.^—^The wave eipiations (8.9), or 

the more general form (8.10), have a great variety of solutions; 

in fact, a large part of our work will consist of a study of different 
forms of solutions of these equations. Using the principle of 
starting with simplest things first, we begin with the most ele¬ 

mentary type of plane wave. We shall assume that E and H are 
functions of z and t alone and shall assume that E has a com¬ 
ponent only along the x axis; it will turn out that in that case H 
has a component only along y. Furthermore, we may assume 
that both E and // vary with t according to the familiar exponen¬ 
tial and with z according to the exponential in complete 

analogy with the continuous transmission line, as discussed in 
Secs. 1 and 2. Thus we assume 

Ex = 

(9.1) 
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where Eo and Ho are constants to be determined and where all 
other components of E and H are assumed to be zero. 

Ex and Hy^ as given in (9.1), must in the first place satisfy the 
wave equation. To start with simplest cases first, we shall 

assume a nonconducting medium, so that the wave equation is 
(8.9), Substituting, we then have 

7o €M(iw)“ = 0, 7o = ±jo) (9.2) 

Thus there are two possible waves, varying as V^). These 
obviously represent waves traveling along the positive or negative 

z axis, the + sign in Eq. (9.2) for 70 corresponding to the positive 
z axis, the — sign to the negative z axis. Comparing with Eq. 
(1.19), we see that the velocity of propagation is given by 

1 
(9.3) 

In the case of empty space, this b(‘com(\s 

t; = c = —= 3 X 10'^ m. p(*r second (9.4) 
V eoMo 

as w'e see from Eq. (7.26). In optical theory it is (‘onvenient to 
define an index of refraction n, as the ratio of c to the velocity 

of light in the medium in question: 

where is the dielectrics constant, Km the magnetic permeability, 
as defined in (7.9) and (7.10). That is, 

= K,Km (9.6) 

Since most materials of interest for microwave propagation have 

permeabilities nearly equal to unity, this means i)ractically that 
the square of the index of refraction equals the dielectric constant. 
Since ordinarily both and Km are greater than unity, the index 
of refraction is commonly greater than unity, and the velocity of 
propagation of the wa^x' in a material medium is commonly less 
than that in free space. This does not necessarily have to be the 
case, however. (This may seem at first sight to contradict the 

result of the thooiy of lelativity, that no signal can be propagated 
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faster than the velocity c. It does not, however, for the velocity 
we are speaking of is the phase velocity, which does not in general 
agree with the group velocity, the velocity with which a signal 
travels in the medium.) 

The wave equations by themselves are not the only conditions 
which E and H must satisfy; they must satisfy Maxweirs equa¬ 
tions. We derived the wave equations from MaxwelFs equations, 
so that it is obvious that it is necessary for E and H to satisfy the 
wave equation, but that is not a sufficient condition to make them 
satisfy Maxwell’s equations. Using h]q. (7.21), we have 

(I) M = 0, -Toi^o + = 0 

(III) - - 6 = 0, 7o//o - = 0 (9.7) 

The two equations above result from Maxwell’s equations (I) and 
(III); Eqs. (II) and (IV) are identically satisfied by our assump¬ 

tions (9.1). Ecjuations (I) and (III), (9.7), both give values for 
the ratio of Eq to //o’. 

^ (9.8) 
Ho 70 

The two values of the ratio Eq/Hq agree on account of the relation 

(9.2). Substituting this relation, we have 

The positive sign corresponds to the wave traveling along the 
positive z axis, the negative sign to the negative z axis. 

Referring to Eq. (7.27), we see that the ratio of Eo to Ho, just 
computed, has the dimensions of a resistance; in empty space it 
has the specific value of 376.6 ohms. This is the simplest of a 
considerable number of reasons which lead us to regard this ratio 
as an analogy, in wave propagation, to impedance in the theory 
of transmission lines. For discussion of this analogy, see for 
instance Stratton;^ the antilogy was developed particularly by 
SchelkunofT.2 The analogy is based on a resemblance between 

* “ Electromagnetic Theory/' p. 282, McGraw-Hill Book Company, Inc. 
^ Bell System Tech. /., 17, 17 (1938). 
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Ex and the voltage in a transmission line, and between Hy and the 
current. We shall later see physical reasons why this resem¬ 
blance is a close one. For the moment, however, we shall simply 
point out the mathematical reasons for the resemblance. These 
come from the similarity between MaxwelFs equations, in the 
form (9.7) which they take in this problem, and the differential 
equations of a transmission line, (G.2) and (6.4). For a dis¬ 
turbance whose time variation is given by MaxwelPs equa¬ 
tions (9.7) become 

— = —njoiHy, — = —ejuEx (9.10) 

while the transmission line equations arc 

^ = -Zi = -{R+jo>L)i 

-YV = -(G + M')V (9.11) 

where we have used the definitions (2.10) and (2.11) of series 
impedance and shunt admittance. For a line without attenua¬ 
tion, so that R and G are zero, we sec that there is a mathematical 
parallelism between (9.10) and (9.11), if we identify Ex with the 
voltage V, Hy with the current i, n with the inductance L, and e 
with the capacity C. The units are not the same; following the 

discussion of Sec. 7, we see that while Ex is measured in volts per 
meter, V is in volts; Hy is measured in amperes per meter, i in 
amperes. Thus to make the quantities appearing in (9.10) have 

the same dimensions as those in (9.11), we must somehow multi¬ 
ply each one by a length, and w^e shall see later how this can be 
done, so as to get an exact parallelism between our wave problem 
and a transmission line. The quantities ii and €, however, are 
exactly analogous to L and C; ^ is measured in henrys per meter, 
and so is L, since it is the inductance per unit length; and 6 and C 
are both measured in farads per meter. With this mathematical 
parallelism between Maxwell’s equations and the equations of a 
transmission line, it is obvious that they must lead to the same 
solutions. We have seen, for example in (2.3) and (9.1), that 

this is the case. Our value (9.2) for 70 follows immediately from 
that of (2.13) by replacing L by n and C by €. And our formula 
(9.9) for the characteristic impedance follows from (2.20) by mak¬ 
ing the same replacement. 
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Not only in propagation in a single medium, but in the bound¬ 

ary conditions between two media and the conditions for reflec¬ 
tion, our quantity (9.9) plays the part of an impedance. Let us 
suppose that there are a number of planes normal to the z axis, 

dividing space into different media of different dielectric constants 
and magnetic permeabilities; we shall still for the moment retain 
our restriction that the media be nonconducting. Within each 
medium we can express the fields as a sum of two waves, traveling 

along the positive and negative z directions, so that if we make the 
definition 

Zo = yjf (9.12) 

following (9.9), we have 

II y = 
(9.13) 

exactly analogous to (3.5), where here as in Sec. 2 we write 70 as 
the positive root of (9.2). At a surface of separation of two 
media, following (7.23), (I), the tangential component of E, or 

Ex, is continuous, and from (III) the tangential component of H, 
or Hy, is continuous, since we are dealing with nonconductors and 
there can be no surface current. Since there are no normal 
components of E or H in this case, the conditions (II) and (IV) of 

(7.23) are automatically satisfied. In other words, since both Ex 
and Hy have the same values in the two media, their ratio must 

also be continuous from one medium to the other. That is, the 
condition determining the behavior of Ex and Hy at a boundary is 
just the same as that wo had in Secs. 3 and 4 for the behavior of 
V and i at a discontinuity in a transmission line, and all our discus¬ 

sion of reflection coefficients, of input impedance of composite 
lines, of impedance matching, and such things, in Chap. I, can be 

carried through without change to our present problem of plane 
wave propagation. This is a very far-reaching and valuable 
analogy between our previous theory of transmission lines and our 

present problem of plane waves. 
We have seen the mathematical explanation for the interpreta¬ 

tion of the ratio of Ex to Hy in a plane wave as an analogue to 
the impedance of a transmission line. Now let us examine the 

physical interpretation of the same thing. To do this, we shall 
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set up a simple type of transmission line, in which on the one 
hand the electric and magnetic fields are just the plane wave we 
have been considering, but in which on the other hand we can 
find the current, voltage, inductance, and capacity, and so treat it 
as an ordinary transmission line. Let us imagine that the two 

conductors of the transmission line are two 
pamllel strips of a perfect conductor, each 
of unit width (that is, one meter) and spaced 
unit distance apart. Let them extend indefi¬ 
nitely along the z axis, and let the normal to 
the strips be the x axis. Between them we 
shall show that the field is just the plane 
wave we have described, provided that, in 
order to eliminate edge effects, we imagine 
that the strips are really only part of con¬ 
ducting planes extending to infinity and act¬ 
ing as guards, so that the field will not 
depend on y. The arrangement is shown in 
Fig. 29. In this figure we show the electric 
field along the x axis and the magnetic 

field along the y axis. We now have to ask about the effect of the 
perfectly conducting strips forming the transmission line. 

In (7.23) we have seen that at a boundary the tangential com¬ 
ponent of E and the normal component of B must be continuous, 
while the discontinuity in the tangential component of H equals 
the surface current and the discontinuity in the normal com¬ 
ponent of D equals the surface charge. In the arrangement of 
Fig. 29, the tangential component of E and the normal component 
of B are zero just outside the conducting plate, and by continuity 
they are zero inside as well. Inside a perfect conductor, in fact, 
all components of both the electric and the magnetic field must 
vanish. We shall show this in detail later, when we consider 
waves in conductors and go to the limit of the perfect conductor. 
For the present, we can argue merely that on account of the 
infinite conductivity, any electric field different from zero would 
be accompanied by infinite current, and^ if the electric field is zero 
everywhere within the volume, then by Maxweirs equations the 
magnetic field must be zero also. In Fig. 29, then, since the 
magnetic field H is tangential to the surface just outside the con¬ 
ductor and is zero inside, the discontinuity at the surface is equal 

Fig. 29.—Parallel- 
strip transmission line. 
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to the surface current flowing on the surface of the conductor. 
This surface current is the limit of a volume current, which on 
account of skin effect, which we take up later, is confined to a 
thinner and thinner depth below the surface as the conductivity 
becomes greater and greater. Hy, then, measures the surface 
current, in amperes per meter; or, with a strip of conductor 1 m. 
wide, it measures directly the current flowing in the strip. The 
sign is such that, if Ex points along the positive x axis, Ily along 

the positive y axis, as shown in Fig. 29, the surface current is 
upward in the left-hand conductor, downward in the right-hand 
conductor. At the same time, there is a discontinuity in the 
normal component of D at the surface of the conductor, equal to 
D itself, or to eEx. Thus there must be a surface charge of tEx 
coulombs per square meter, positive on the left-hand conductor, 

negative on the right-hand one, in the (‘ase shown. It is the 
motion of this surfa(‘e charge along the positive z direction, the 
direction of propagation of the wave, which gives rise to the sur¬ 

face current. To see this, let us note that the current carried bj’^ a 
charge etpials the charge times its velocity. In this case the 
charge per square meter of area is eEx^ and its velocity, by Eq. 

(9.3), is Thus the current is eEx/ = y/ej \iEx — Hy, 
using (9.9). But this is just the value that we found previously, 
by direct use of the tangential component of H. 

In the preceding paragraph, we have shown that in the parallel 
strip transmission line shown in Fig. 29, the current flowing in 
the line is equal to Hy, Furthermore the voltage between the 
two conductors is plainly Ex, since this measures the number of 
volts per meter, and the field extends over a distance of one meter. 
Thus we have made the fundamental identification of Hy with 
current, Ex with voltage, which we desired to justify our definition 

of the ratio Ex/flu as an impedance, in (9.9) and (9.12). We still 
wish to compute the inductance per unit length, L, and the 
capacitance per unit length, (7, however, and show that these 
are respectively equal to y and 6. Unit length of the line corre¬ 
sponds to a square meter of conducting plate, or a cubic meter 
of the space between the plates. The number of lines of B 
threading this region is yHy, so that the time rate of change of 
this number of lines is y{dHy/di), The current flowing in the 
conductor is Hy, so that its time rate of change is dlly/dt. Thus 

the rate of change of magnetic flux, for unit rate of change of 
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current, is just /x, which is the inductance per unit length. Simi¬ 

larly, regarding a square meter of each plate as forming a con¬ 
denser, the charge on each plate is ± == ± eE^y and the voltage 
between plates is Ejc. Thus the charge per unit voltage is c, 

wliich is just the capacity of the condenser. From this example, 
then, we get a very vivid picture of the meaning of the numerical 
values of the magnetic and electric inductive capacities of a 
medium, or of empty space, as given in (7.24) and (7.25). The 

magnetic inductive capacity of empty space, 4^ X 10~^ henry 
per meter, is the inductance of one meter length of a circuit like 
that of Fig. 29, consisting of two conducting strips a meter in 
width and separattnl by a meter; the electric inductive capacity 
eo of empty s])ace, 8.85 X 10~^“ farad per meter, is the capacity 
of a condenser whose plates are each one scpiare meter in area, 
spaced a meter apart. In each case, it is assumed that the 
parallel strips are parts of infinite parallel plane conductors, so 
as to avoid edge effects. 

10. Reflection of Plane Waves at Oblique Incidence.—In 
Sec. 9, we have investigated plane waves, we have shown that a 
(juantity analogous to the impedance of a transmission line can 

be set up for them, and we have shown that at a boundary 
between two media the conditions governing reflection are stated 
in terms of this impedance just as they would be for a dis¬ 

continuity in properties of a transmission line, so that practically 
all of the analysis of Chap. I can be applied to wave's propagated 
through a medium with a set of parallel planes separating 

materials of different properties. We assumed throughout that 
the waves were traveling along the normal to the surfaces of 
separation, however; that is, we assumed that the; waves struck 

these surfaces at normal incidemcc. In this section we shall take 

the more general case of obliciue incidene^e, studying the laws of 
reflection and refraction, and we shall see that the concept of 

impedance can be used here too. 
Let us assume as before that any surfaces of discontinuity 

between different media are perpendicular to the z axis, so that 
the z axis is the direction of the normal, for any reflection or 
refraction. We shall not lose in generality if we also assume 
that the direction of propagation lies in the yz plane. Let us 
then establish a set of coordinates as in Fig. 30, with the a:' axis 

coinciding with the x axis, and the z* axis in the direction of 
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propagation, making an angle 6 with the z axis, where 6 is ordi¬ 
narily called the angle of incidence. We have seen in Sec. 9 
that in a plane wave the vectors E and // are at right angles to 
each other and to the direction of propagation, and that the 
ratio of E to H is the impedance of the medium. To be specific, 
we shall refer to this ratio of E to II in a plane wave as the intrin¬ 
sic impedance of the medium and shall denote it by Zq\ this will 
distinguish it from other quantities that also play the part of 
impedance. Now if E and H are perpendicular to the direction 
of propagation in the present 
case, they must lie in the x'y' 
plane. There is a preferred 
direction in this plane, the x' 
axis. Consequent!}^ there are 
two simple cas(‘s; that in which 
the electi ic ve(‘tor E lies along 
x', so that II must lie along 
and that in which the magnetic* 
vector II lies along x' and E is 
along — ?/'. In optics, these 
two cases are ordinarily de¬ 
scribed by saying that the elec¬ 
tric vector is normal to the 

z z' 
/ 

/ 

'•-y' 

x' 
uj. 30. Rotated coordinates for 

ol)li(iue incidence. 

plane of incidence in the first 
case, parallel in the second. In the theory of wave guides and 
transmission lines, which is essentially built up on the l)asis of 
this simple* problem, the first case is sometimes called the trans¬ 
verse (‘l(‘ctric case, since the electric field is entirely transverse to 
the z dirt'ction, and the second is called the transverse magnetic 
case. Som(‘times another notation is used, however, in which 
the first case is called an II wave (since II has a component along 
the z direction, or a longitudinal component as far as the direction 
normal to the reflecting surfa(*es is concerned), and the second 
case is called an E wave (since E has a longitudinal component). 

Let us first consider the case where E is in the x direction (the 
transverse electric case) and write down the components of E 
and H in the original, xyz, coordinates, and consider Maxwell's 
equations in those coordinates. We still consider the case of a 
nonconducting medium, as in the preceding section, so as to 
avoid attenuation. It is easy to write down the components of 
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E and H. In the first place, each component will be multiplied 
by the same exponential function, which as we can see from 
the value of 70 found in (9.2) can be written = 

v^(v8in«>-f^cos<»] Furthermore, using the value of the 

intrinsic impedance Zo = of the medium as given in (9.12), 
we see that the magnitude of E will be \/^fe times as great as 
the magnitude of //. Finally E will be along the x axis, H along 

the y' axis, so that it will have components along both y and 
z axes. Then it is easy to see that E and // may be written 

E X 

Ey = E: = 0 
H, = 0 
Hy = .1 cos ^ 
II^ = —^4 sin ~ (10.1) 

It is simple to verify by direct substitution that these values of 
E and // satisfy Maxwells eciuations. 

We shall now show that even in this case of oblique incidence, 
//y, the transverse component of magnetic field, still plays the 
part of a current, and Ex still plays the part of a voltage, and 
their ratio ExIIIy is analogous to an impedance. As a first step 
in this, let us write down those components of Maxwell’s equa¬ 
tions which are of e.ssential importance in this particular case. 
From Eq. (I) (as given in (7.21)) we have 

dEx 

dz 
dEx 

From Eq. (Ill) we have 

dHx 
dy 

dlly . „ 

(10.2) 

(10.3) 

(10.4) 

Equation (10.2) is already of the form of the first equation of 
(9.10) and hence is analogous to the first of the transmission line 

equations of (9.11). Equation (10.4) can l?e made to resemble 
the second transmission line equation by the following steps: 
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dHy 1 -1- 

= —tjwE,: + 
njo3 dy^ 

_ ( . 11 dm\ „ 

in which we have u.sed (10.3). Now we u.se (10.1) to show that 

1 

Substituting (lO.G) in (10.5), we have 

= — €jcj(l — sin^ e)E^ = —ejo) cos^ BE:, (10.7) 

We have now, in Eqs. (10.2) and (10.7), two equations similar 
to (9.10) or (9.11), and we see that they are equivalent to trans¬ 
mission line equations, if we make the identification 

L = m 
C = € cos^ B (10.8) 

Following (2.13), we have 

7 = jco cos B \/etx (10.9) 

which is correct, since we note that the part of the exponential in 

(10.1) can be written 

e~y^ = (10.10) 
The impedance of the line is 

Z(«) = Jl sec B (10.11) 

using (2.20), and this is also correct, since it is the ratio of Ex 
to //y, as we see from (10.1). The impedance Z(0), which depends 
on the angle of incidence, is to be distinguished from the intrinsic 
impedance Zq of (9.12); the intrinsic impedance is the particular 
value that Z(B) takes on for ^ = 0, or for normal incidence. 

From the results of the preceding paragraph, we see that 

mathematically we can regard a plane wave traveling obliquely 
to a fixed z direction as equivalent to a disturbance traveling 
in a transmission line along that direction. The correspondence 

is not quite so definite physically as for normal incidence, how¬ 
ever. The value of the capacity C, given in (10.8); in connection 
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with the shunt admittance of the line, is not really entirely a 
capacity at all. As we can see from the derivation in (10.5), 

the shunt admittance is made up of a capacitative admittance 
ej(j)y in parallel with an inductive admittance — ejo; sin^ result¬ 
ing from the voltage induced across the line on account of mag¬ 

netic lines of force in the 2, or longitudinal, direction. This term 
is perfectly easy to understand, but it is a term of a sort that 
would not occur in the simplest type of transmission line. Never¬ 
theless the analogy with a transmission line is mathematically 
as good in the present case as before, and it is just as useful. In 
particular, as w^e shall see in the next paragraph, we can discuss 
reflection coefficients in the present case by means of the imped¬ 
ance, just as with a transmission line. 

Let us assume a surface of separation at the plane 2 = 0, the 
medium for negative values of 2 having constant jn, e, and that 
for positive values having /x', We shall first consider the 
problem of reflection and refraction at this surface by ordinary 
methods of imposing boundary conditions at the surface, and 

then w^e shall show that the same results can be ol)tained by using 
the method of the impedance. We assume an incident wave in 
the medium at negative 2, just like the wave of (10.1). In that 
medium w'e also assume a reflected wave, which can be got from 
(10.1) by changing the sign of 2 and of Ex and Hz, We shall let 
the amplitude of that wave be B, corresponding to A for the 

incident wave. Finally in the second medium, at positive 2, we 
as.sume a single refracted wave, like (10.1), only with primed 
values o{ A j Hj €, and 6. Thus in the first medium we have 

E =r — co» 0 _ ro.s 0'^ 

Hy — — \Hiiy sin 0)— cos 0 Jjpju}\^tfJiZ cos 0)'^ 

Hz — sin V^I/^)( — 0 

-|- cos 0) (10.12) 

In the second medium w^e have 

^*V'l/ 0'') p— jtay/VII'z COB 0* 

Hy — COS "*'* cos 

H, = — sin 9')yl'g-;w-v/?7jc08«' (10.13) 
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We now must satisfy the boundary conditions of (7.23) at the 
surface 2 = 0. These lead, since the surface 2 = 0 can carry no 

current, to the conditions that Exy Hy, and are continuous at 
the boundary. That is, setting 2 = 0, we must first have 

\/^ sin 6 = sin 6' 

so that the exponentials will cancel, and then 

(10.14) 

1 11 

^
1

 

(10.15) 

cos d(A -V B) = cos A' (10.16) 
fx sin 6(A — B) = / sin 6' A' (10.17) 

The relation of Eq. (10.14) is the ordinary Snell’s law of refrac¬ 
tion, which may be written 

sin 6 __ A/eV _ 
sin 6' n (10.18) 

where 71 and arc the indexes of refraction of the two media, as 
defined in (0,5). We note that (10.17) is not an independent 
condition, for each side is obtained by multiplying the correspond¬ 

ing sides of (10.14) and (10.15) together. In other words, if 
Snell’s law is satisfied and the tangential components of E and II 
are continuous, then the normal component of B is automatically 

continuous. We can then handle (10.15) and (10.16) by dividing 
the first by the second, obtaining 

4 € ^ {A +B) 
— sec 6' (10.19) 

But we notice that, using the definition in (10.11), this can be 

written 

Z{e) = Z'{d') (10.20) 

which is exactly equivalent to (3.7), the corresponding equation 
for a transmission line, using the method of impedances. Pro¬ 

ceeding as in the derivation of (3.9), we have 

B _Z(e) - Z'{e') 
A Z{e) + Z'ie') 

(10.21) 
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Thus our method of satisfying boundary conditions has led to the 
same result that we should have found directly by use of the 

impedance. It is easy to see why this should be the case. As we 
see from Sec. 3, Eq. (10.20) states that the impedance of the 
actual disturbance, consisting of incident, reflected, and refracted 

wave, is the same on both sides of the boundary. This is equiva¬ 
lent to the conditions (10.15) and (10.16) for the continuity of the 
tangential components of E and H. But if the tangential com¬ 
ponent of E is continuous at the surface, its derivative with 
respect to y must obviously be continuous, so that by MaxwelFs 
equation (10.3) the component fiHg must be continuous, and 

(10.17) must be automatically satisfied, as we have seen that it is. 
The reflection coefficient of Kq. (10.21) can be ea.sily put in a 

more familiar form, by writing out the-value of Z(6) and 
and by using Eq. (10.18). We find at once 

^ ^ ^ tan e' no 22'> 
A M tan 0 + /i' tan 0' \ ‘ ) 

Equation (10,22) gives the reflection coefficient for a wave with E 
in the plane of incidence. In the ca.se m = which ordinarily 
occurs in practice, it reduces to 

B 
A 

which is one of the familiar Fresners equations for reflection. 

Having taken up the case of a transverse electric field in con¬ 
siderable detail, we can give the essential steps in the entirely 
similar treatment of the transverse magnetic case. Correspond¬ 
ing to (10.12), the field in the first medium is 

tan 0 — tan 0' sin 0 cos 0' — cos 0 sin 0^ 
tan 0 + tan 0' 
sin (0 — 0') 
sin {0 + 0') 

sin 0 cos 0' -+• cos 0 sin 

(10.23) 

Hy = H,=^E, = 0 

Ey 

E. 

COS V^v sin 0)^ — cos 6 coe 

sin V^y sin coa ^ co* 

(10.24) 
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and the field in the second medium, like (10.13), can be obtained 
from (10.24) by setting B = 0 and replacing all appropriate 

unprimed quantities by the corresponding primed ones. On 
account of the rotation of coordinates in compari.son with the 
earlier case, the current corresponds to Hx, the voltage to —Ey. 

From Maxwell’s equations we have 

dHx 
dz 

H-Ey) 
dz 

— «j(a( — Ey) (10.25) 

— lijojHx — 

dy 
( . 11' dm\ „ 

- -(«" - IS.H.'w) "■ 
“(Miw “ ^)Hx = cos2 sHx (10.26) 

From Eqs. (10.25) and (10.26) we see that the quantity cor¬ 
responding to the inductance L is pt cos^ and the capacity C is 

replaced by t. Then, following the pattern of (10.8) to (10.11), 
we have 

7 = jco cos e Vni (10.27) 

as before; and 

Z{e) = yj^cose (10.28) 

The reflection coefficient (10.21), written in terms of the imped¬ 
ance (10.28), becomes 

B _ pi sin ^ cos 6 — yL sin cos B' 
A pi sin ^ cos 6 + pi' sin 6' cos d' 

(10.29) 

In the case pi = pi', we can use the trigonometric relations 

sin {6 ± S') cos {0 + B') = (sin 0 cos 0' ± cos 6 sin S') 
(cos 0 cos 6' ± sin 6 sin S') 

= sin S cos ^(cos^ 6' + sin^ S') 
± sin 6' cos ^'(sin^ 6 -f cos^ 6) 

= sin 0 cos 0 ± sin 0' cos 0' (10.30) 

from which we have 

B _ sin (0 — O') cos (0 + 0') _ tan (0 — 0') ot\ 
A sin (0 + 0') cos (0 - 6') " tan {0 + 0') 

Equation (10.31) is the other one of Fresnel’s equations, analogous 
to (10.23) and applying in this case to the transverse magnetic 

wave. There is one interesting feature met in this case, which is 
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not present with the transverse electric wave: if 0 + 0' = 90®, a 
perfectly possible situation, the denominator of (10.31) is infinite, 

so that the reflection coefficient is zero. Going back to (10.21), 
this means that for this particular angle there is automatically 
an impedance match between the two media. This angle is 

called the polarizing angle; if unpolarized radiation, consisting of 
a mixture of both transverse electric, and transverse magnetic 
radiation, falls on the reflector at this angle, only the transverse 
electric radiation will be reflected, and the reflected radiation will 
be polarized. To find the polarizing angle, we note that if 
e 6' = 90®, we have cos 6 = sin 6'. But from (10.18), 
sin = (n/n') sin 6, Thus the polarizing angle is given by 

tan 0 = - . (10.32) 
n . 

11. Posmting’s Vector and Plane Waves.—Wo have shown in 
Eq. (8.3) that the Poynting vector E X // represents the energy 
flow, and the quantity + ^lIP) represents the energy 

density. Let us first consider an undamped wave at normal 
incidence, as in Sec. 9, and show the analogy of these quantities 
to the corresponding quantities for a transmission line. In that 

case the magnitude of // is ecpiivalent to the current i in the 
transmission line, and the magnitude of E is the voltage V. 
Thus the Poynting vector becomes eipiivalent to Vi, which is 

equal to PZq, where Zo is the characteristic impedance. If Zo is 
real, which is the case we are considering at the moment, this 
is the expression for the energy flux in the transmission line. 
Similarly the expression ^eE- for the electric energy becomes 

and for the magnetic energ}^ becomes both the 
correct values for unit length of a transmission line which has 
capacity C and inductance L per unit length. 

Before considering the case of oblique incidence, let us ask 
what is the correct formulation of Poynting\s theorem, when we 
arc writing E and H in complex form. At a given point of space, 

E is given by the real part of and // by the real part 
of where Eq and IIq are complex vector functions of posi¬ 
tion. Let the real part of Eq be J5?r, and the imaginary part Ei, 
with similar notation for Hq, Then E is given by 

Re (£^oc^'"0 = Re {Er + jEi)(coH o)t + j sin cot) 
= Er cos cot — Ei sin cot (11.1) 
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Similarly H is given by ♦ 

Re cos wt — Hi sin cot (11-2) 

Poynting’s vector is then 

E X H ^ (Er X Hr) cos^ o)t + (Ei X Hi) sin^ cot 
— [(Er X Hi) + (Ei X Hr)] sin cot cos cot (11.3) 

We notice that there are two types of terms: the first two, whose 
time average is different from zero, since cos^ oot and sin^ cot aver¬ 

age to and the last term, whose time average is zero, since 
sin cot cos oot averages to zero. Thus the time average Poynting 
vector is 

Average (E X //) = UEr X IH + Ei X //,-) (11.4) 

This can be rewritten in a convenient way, by using the notation 

of complex conjugates, where the complex conjugate of a com¬ 
plex number is the number obtained from the original one by 
changing the sign of j wherever it appears, and is indicated by a 

bar over the number. In terms of this notation, let us consider 
the quantity (E X It). This is 

(E X il) = (EocJ^^) X (lUer-i^^) 
^ EoX Ho == (Er + jEi) X (Hr - jHi) 
= (Er X Hr + Ei X H,) 

+ j(EiX Hr - ErX Hi) (11.5) 

We see that, except for the factor of the real part of (11.5) is 
just the same as the quantity appearing in (11.4). That is, we 

have 

Average (E X //) = i Re (E X H) (11.6) 

where the E and H appearing on the right side of the equation are 
the complex quantities whose real parts give the real J?*and H 

appearing on the left of the equation. This derivation is 
obviously exactly parallel to that of the corresponding theorem 

(5.6) for transmission lines. 
In case we are dealing with plane waves of the type discussed 

in this section, we have been interested in Ex and Hy, for example, 
and are particularly concerned in that case with the z component 
of Poynting’s vector. This would then be 

Average (E X H)t = ^ He (Exfty) (11.7) 
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We have been using the concept of impedance, where we have had 

E, = ZHy (11.8) 

where Z has been real in the eases we have considered, but in 
general might be complex, given by a relation 

Z = R+jX (11.9) 

Then we have 

Average (E X H)^ = i Re ZIIyRy (11.10) 

But Hyfty is the square of the absolute magnitude of Hy and is a 

real quantity, so that (11.10) becomes 

Average {E X //)* = ^R\Hy\' (11.11) 

where R is the real part of the impedance, as given by (11.9) and 
where \Hy\ is the absolute magnitude of Hy, We see from (11.11) 
that it is only the real part of the impedance, the resistance, that 
contributes to flow of power; the reactance leads to a term that 

averages to zero. It is to be noted that the values of £*, Hyy etc., 
here and throughout, are peak amplitudes, as follows from the 
fact that we take the real part of our complex exponential to give 
the real field. If we had used root mean square values instead, 
the i would have been absent in (11.11) and similar formulas. 

Now that we have considered the form of Poynting's vector, 
we shall proceed to the case of oblique incidence and shall show 
in that case that the flow of energy toward the reflecting plane, 
carried by the incident wave, minus the energy carried away by 

the reflected wave, equals the energy transmitted through and 
carried by the refracted wave. We wish the z component of 
Poynting^s vector. In the case of the transverse electric vector, 

given ki (10.12) and (10,13), we first take the incident wave, 
given by the first term in each equation of (10.12). For this 
wave, we have 

Average (EJIy) = ^ cos 0 (1112) 

Similarly for the reflected wave we have 

Average (E^Hy) = — ^ cos 6 (11.13) 
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For the refracted wave, using (10.13), we have 

Average (ExHy) = ~ A'* cos d' (1114) 

We should now expect that the sum of (11.12) and (11.13) should 
equal (11.14). That is, we should expect 

(A^ - B^) cos 9 = 4'' cos 9' (11.15) 

To prove this, we need only multiply (10.15) and (10.16); the 
result follows immediately. The proof for the case of the trans¬ 
verse magnetic wave is carried through in an identical way, 
using (10.24). 

12, Damped Plane Waves, Normal Incidence.—We shall now 

give up the restriction that the conductivity of our medium is 
zero and shall consider conducting materials, in which the waves 
will be damped or attenuated. First we consider the case of 
normal incidence, in which E is along the x axis, H along y, and 
the propagation is along z, as in the case of undamped waves in 
Sec. 9. We make the same assumption as in (9.1) for the values 
of the field components, but must use the wave equation (8.10) 
instead of (8,9). Then we find at once 

To = — — jV/^) 

To = Jw ^ (12.1) 

Instead of being pure imaginary, as in the case of an undamped 
wave, we see that 70 is complex, so that it has a real part, resulting 
in attenuation. It is important to see the order of magnitude 

of this attenuation, for the sorts of materials and wave lengths 
we are interested in, and for that reason we give some numerical 
values. 

Let us first consider the ratio a/eo) of the second term inside 
the radical to the first. Let us take copper as an example. The 
resistivity of copper at 20®C. is given in the tables as 1.74 X 10“® 

ohm-cm. Thus its conductivity is (1/1.74) X 10® = 0.58 X 10® 
= 5.8 X 10® mhos per centimeter, or 5.8 X 10^ mhos per meter. 
(This value, as well as values for other materials, is given in 

Appendix III of Stratton, ‘^Electromagnetic Theory.^^) The 
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value of € for a conductor is very hard to estimate, but we shall 
probably not be seriously in error if we take the value for empty 

space, which as we have seen in (7.25) is 8.85 X 10“^^ farad per 
meter. For co we may write 27rc/Xo, where c is the velocity of 
light in empty space, or 3.0 X 10^ meters per second, and where Xo 
is the equivalent wave length in empty space, in meters. Then 
we have 

<r _ 5.8 X lO^Xo 
"■ 8 85 X 10-'“ X 27r X 3 X 10» 
= 3.5 X lO^Xo (12.2) 

For a wave length of 1 m. the ratio is thus 3.5 X 10^, showing 
that at such a wave length the first term in (12.1) is entirely 
negligible. This first term, if we look back at MaxwelFs ecpia- 
dons, is the one coming from the displacement current; the second 
comes from the conduction current, so that we see that the dis¬ 
placement current in a conductor like co])per is entirely negligible 
compared to the conduction current even at ultrahigh frequencies. 

To get to wave lengths small enough so that the ratio (12.2) is 
comparable to unity, so that the displacement current ])ecomes 
appreciable, we must go to the range of wry short ultraviolet 

wave lengths. This checks the experimental fact that in the 
ultraviolet region metals become much more transparent to light, 
the attenuation term becoming loss important. It is obvious 

from this why the dielectric constant of a metal is hard to esti¬ 
mate: k enters in the first term of (12.1), which is entirely masked 
by the conduction effect, until we get to wave lengths so short 
that, though we can measure c for those wave lengths perfectly 
well, we are not justified in tliinking that that value would agree 
with the static or radio frequency value. 

Copper of course is a good conductor, and it is interesting to 
consider our ratio of (12.2) for poor conductors. For sea water, 
the conductivity is about 4 mhos per meter, and the dielectric 
constant of the order of 80. Then proceeding as in (12.2) the 
ratio ff/eco is about 3Xo. For 1 m., then, the ratio is about 3, so 
that the two teims of (12.1) are of the same order of magnitude. 
Ordinary insulators are much poorer conductors, so that the con¬ 
ductivity term is a very small correction only for them. On the 
other hand, though the other metals are poorer conductors than 
copper, they are still all so good that the same situation holds for 
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them as for copper, namely that the displacement current is 
entirely negligible. 

The physical meaning of the ratio a/eo) can be made clearer 
by computing the relaxation time for a distribution of charge 
within a conductor. We start with the equation of continuity 
for the current and charge, or div J + dp/dt = 0, write J = <tE 
from Ohm^s law, and D = eE, Finally we use MaxwelFs 
equation (IV), of (7.21), div D = p. Then we have the equation 

T + ¥ - “ 

The solution of this differential equation is 

p = Poe ^ = Poe " (12.4) 

where po is a function of .r, ?/, z representing the value of the charge 
density at t = 0, and where 

(12.5) 

is the time in which the original charge density falls to 1/e of its 
value at t = 0 and is called the relaxation time. In terms of it 
and of the period 

T = - (12.6) 
O) 

of the oscillation, we see that our ratio a/eo) can be rewritten 

<r 
ew 

\^T 

27r T 
(12.7) 

Since we have shown in (12.2) that this ratio is very large for 
microwave frequencies and high conductivity, we see that 
this means that the relaxation time is very small compared 
to the period of the oscillation in such a case, so that any dis¬ 
tribution of charge which is set up in a metal will fall off to 
zero in a time which is insignificantly small compared to a period 
of the vibration. 

We shall now limit ourselves to the case of metals, for which 
we can neglect the first term of (12.1). We then have 

70 = ±j<» \ —J<^ \ CJ 
(12.8) 
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But y/-j = (I _ j)/V2, so that this beroira's 

7o = «o+i^o=^"'|“(l +J) (12.9) 

and 

a„ = l9o = (12.10) 

In terms of these quantities, the exponential appearing in the 
expression (9.1) for field intensities can bo written 

t~fioz) (12.11) 

from which we see that the field is damped to l/e of its value in 
a distance of 1/ao and that the velocity of propagation, given by 
(1.28) as co//3o, is 

» = ^ (12.12) 

If we define 6 as the distance 1/ao and use the relation co = 

2irc/Xo, where c is the velocity of light in empty space, Xo the 
equivalent wave length in empty space, we have 

ao \7r 
(12.13) 

For copper, using the same numerical values as in (12.2), this 
gives us 

6 = 3.8 X 10-® V>^o (12.14) 

so that for Xo = 1 m., we have 6 = 3.8 X 10~® m. = 3.8 X 
10“^ cm. Thus for microwaves in good conductors the dis¬ 
turbance penetrates only a very small distance into the con¬ 
ductor before being damped off practically to zero. From 
(12.13) we see that poorer conductors will have greater values 
of 5; for sea water at 1 m. wave length, the distance 5 is about 
1 cm. Even here, however, it is small compared to the wave 
length in free space. The velocity (12.12) is best compared 
to the velocity of light in free space, which is c = I/V^omo. 
Using this, we have without trouble 

C \ <T \€/U ""V 
(12.15) 
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From our previous disoussion we see that this is a very small 
(|uantity. Thus for instance if we put in the value for copper 

at 1 m. wave length, v/c is 0.24 X 10“^, so that v is 0.72 X 10^ m. 
per second, a value in the range of ordinary acoustic velocities. 
The effective wave length in the conductor has the same ratio 
to the value in free space that the velocity in the conductor does 
to that in free space; thus in this case the wave length in the 
conductor is only 2.4 X 10“^ cm., which as we can at once see 
is 27r5. The velocity of propagation, as given by (12.12) or 

(12.15), depends on the w'ave length or frequency of the dis¬ 
turbance, unlike the case of propagation in free space. 

The intrinsic impedance of the conducting medium can be 
found at once from Ec^. (9.8), as modified for the presence of 
conductivity. It is given by 

Zo = ^ (12.16) 
To 

where To is given in (12.1) and where its value for good conduc¬ 
tors is given in (12.9). Substituting that value, we have 

= (12.17) 

From the second form of (12.17), we see that the ratio of Zo to the 
impedance of empty space, which is \/mo7^o = 377 ohms, as we 
have seen, depends on the very small ratio ew/tr. Thus the elec¬ 
tric field in a conductor is a much smaller value in comparison 
to the magnetic field than would be the case in free space, and in 
the limiting case of perfect conductivity, cr = oc, the electric 
field vanishes, though the magnetic field does not. In addition 
to the small magnitude of the intrinsic impedance, we see that 
it is a complex quantity, so that the magnetic field is out of 
phase with the electric field. In fact, since (1 — j)/\/2 = 
we see that there is a phase difference of 45° between them. 

Using (9.1), we can write 

= //o e-./«e7(«<-./«-ir/4) 

II y = (12.18) 

Often we have a wave in empty space, striking a conducting 

surface at normal incidence and being reflected. Let the ampli- 
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tude of the magnetic vector in the incident wave be A, and in the 
reflected wave B, Then, as in (3.9), we shall have 

B ^ Zo ~ Z'o 
A Zo + 2q 

(12.19) 

where Zo is the impedance of free space, or x/juo/co, and ZJ is the 
impedance of the conductor, given in (12.17). Since we have 
seen that Zq is very small compared to Zo, this means that the 
ratio B/A is very nearly unity, so that almost all of the incident 
radiation is reflected. We can easily find the coefficient R giving 
the fraction of incident energy which is reflected, for this is the 
ratio of the square of the magnitude of B to the square of the 
magnitude of A. For simplicity we shall assume that the e and 
/Lt of the conductor equal those of empty space; then we have 

B ^ 1 — V’«o/2(r (1 - j) ^ j_2 A/€w/2<r (1 - j) (12 20) 

A 1 + (1 - /) 1 + \7«a>72(7 (1 - j) 

In the denominator we can neglect the second term, since it is so 
small compared to unity. We then have 

R = (12.21) 

where we have neglected terms of higher order. The quantity 
1 — measuring the fraction of the incident energy absorbed 

by the reflector, is extremely small for good conductors at 
microwave frequencies, and as we see from (12.21) it decreases 

still more as the frequency decreases, or as the conductivity 
increases. For a wave length of 1 m. and the conductivity of 
copper, we have I — R = 0.5 X 10“'*, a practically negligible 
amount. The frequency must increase to values in the infrared 
before 1 — /2 becomes appreciable, for copper. 

We can get at R in another way by finding the power flowing 
into the metal, directly from Poynting\s vector. To satisfy 
the boundary conditions at the surface, the resultant E from the 
incident and reflected waves must be very small, so that the 
electric fields of these two waves must almost exactly cancel. As 

a result the magnetic fields must be in the same phase and must 
add. Thus the Ho for the wave inside the metal, just at the 
surface, as in (12.18), must be almost exactly equal to 2A. The 
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Poynting vector in the metal will be the real part of the imped¬ 
ance, times the mean square value of Ho, as we saw in (11.11), 

and the Poynting vector of the incident wave is the impedance of 
free space, times the mean square value of the H of the incident 
wave. Thus I — R, which represents the ratio of the power 
flowing into the metal to the power in the incident wave, must be 

VMio/go- (2Ay ^ ^8^ (12.22) 

in agreement with (12.21). We shall find in the next chapter 
that this type of calculation will be very useful in calculating the 
attenuation in wave guides. There w^e shall have a field inside 

the conducting walls of the guide wdiich is almost identical with 
what we have here. It will penetrate to the same depth, and the 
fact that the current flows only in this narrow surface layer is 

what is called the skin effect. There, as here, the electric field 
at the surface of the conductor will be almost, but not quite, zero, 
with the result that there will be a small Poynting vector directed 

toward the surface and resulting in energy flow into the metal. 
It is this energy flow w^hich goes into heating up the conductor 
and which is responsible for the powder loss and attenuation in 

the conductor. 
13. Damped Plane Waves, Oblique Incidence.—The general 

case of attenuated plane waves, striking a reflecting surface at an 

arbitrary angle of incidence, is complicated enough so that it is 
best to use more general methods than we have employed so far, 
to make it understandable. In this section we shall set up these 

general methods and shall describe qualitatively how to treat 
such problems, though without going into great detail. The 
reavson for the complication, from the mathematical side, is that 
all, the vectors concerned in Maxwell's equations become complex 
vectors. In such a case it is not necessary for the real and com¬ 
plex parts of a vector to have the same direction in space, any 

more than it is necessary for them to have the same magnitude. 
Thus the direction of propagation can have both a real and an 
imaginary component, meaning that the surfaces of constant 
phase, or the wave fronts, are perpendicular to one direction, 
and that the surfaces of constant amplitude are perpendicular to 
another direction. This is clearly necessary in problems of 
reflection from absorbing media: the wave normal in general is at 
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an oblique angle to the normal to the surface, and yet the sur¬ 
faces of constant amplitude are parallel to the surface, the inten¬ 
sity being damped off as we travel into the absorbing medium 

from the surface. Similarly the electric and magnetic fields can 
have both real and imaginary parts, pointing in different direc¬ 
tions in space. This means that they show elliptical polarization, 
rather than plane polarization. We shall investigate the rela¬ 
tions between these various quantities by setting up the fields 
and the direction of polarization, as complex vectors, and then 

investigating the meaning of Maxwell’s equations in terms of 
these vectors. 

Let us suppose 

E = H = (13.1) 

where //o, and k are complex vectors, given by 

Eq = Er "h jEx 
= Hr + jHx 

k - kr+jki (13.2) 

and where r is the radius vector, of components x, y, z. The quan¬ 
tity k is analogous to the corresponding quantity introduced in 

(1.18) and (1.26), where it was shown that jA: was equivalent to 
7, only now we have set k up as a vector. Then, assuming an 
absorbing medium, Maxwell’s equations (I) to (IV) become 

-j(k X Eo) = —fljojllo, {k X Eq) — yitiHo (13.3) 
k ■Ho = 0 (13.4) 

-Kk X Ho) = (ejo) + <r)/i’o, 

(k X Ho) = — (eco — j(T)Eo (13.5) 
k ■Eo = 0 (13.6) 

where in the last equation we have set the charge density inside a 
conductor equal to zero, as we have found it will be in the preced¬ 
ing section, after the expiration of the relaxation time. From 
(13.4) and (13.6) we see that both Ih and Eq are at right angles to 
fc. From (13.3), we see that Eq and Ho are at right angles to each 
other, since the vector product of Eo with another vector must be 
at right angles to Eo. These relations do not have their simple 

meanings, however, on account of the complex nature of the 
vectors. We shall see later just what the relative directions are 
in this case. 
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We can easily find the value of the constant k, by taking the 
v^ector product of k and the expression (13.3). Thus we have 

kX {kX Eo) = k{k • Eo) - Eo{k • k) = -Eok^ 
= fjio}(k X Ho) = ficoi — eco + jV)jEJo (13.7) 

where we have used a vector identity to find k X {k X Eq) and 
have substituted from (13.5). Canceling Eq, this gives 

= txo){eo) — ja) (13.8) 

Using (13.2) for k, this becomes 

A*? — + 2jkr • hi = — jcruo) 
kf — A’^ = 2kr ■ A» = '—afjLco (13.9) 

I'^quation (13.9) shows that we can set up propagation for any 
arbitrary value of ki, the quantity detcn'mining the attenuation. 
From the first of the two ecjuations we (‘an then find the magni¬ 

tude of Av; from the second we can find the angle between the two 
vectors. It is inter(\sting to note that a damped wave, with ki 
different from zero, is possible even in a nonabsorbing medium, 
with O’ = 0. In this case, kr and ki must be at right angles. 
This is a case that we lUeet in connection with total internal 
reflection. It is also interesting to note, from the first equation, 
that the greater the damping is, or the greater A,, the greater also 

must be Av. Remembering that Av is inversely proportional to 
the wave length, this mcmns that a highly damped wave must 
have a very short wave length. This has already been pointed 
out in the special case of normal incidence in the preceding sec¬ 
tion. The results of that section are plainly in agreement with 
the more general case considered here. liquation (13.8) agrees 
with (12.1), and the preceding case is the one in which Av and Av 
are parallel to each other. 

The general case is that in which Eq and Ho are both complex 

vectors. However, on account of the linear nature of MaxwelFs 
equations, it follows that if for example Eo is complex, we can set 
up solutions consisting only of the nml, or only of the imaginary, 

part of Eo, combined with appropriate magnetic fields. Thus 
there arc simple solutions in which Eq is real, or pure imaginary. 
Similarly there are solutions in which Ho is real, or pure imaginary. 

The general solution can be built up out of linear combinations of 
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these. Let us first take tlie case in which Eo is real. Then 
Eq. (13.6) has a simple result: we have both 

and 
kf * Eq — 0 

ki‘Eo = 0 (13.10) 

That is, the vector Eq is at right angles to both K and ki or is in 
the direction normal to the plane determined by kr and ki. This 
direction is unique, except in the special case of the preceding 
section, where kr and ki are parallel to ea(‘h other and thus do not 
determine a plane. Using (13.3), we then have 

kr X Eq = fJLOjIIry ki X Eq = fJLwHi (13.11) 

showing, since Av and A * are perpendicular to Eq, that Hr and Hi 
are proportional to A\ and ki but at right angles to them. The 
situation, in the plane containing kr and is then as shown in 
Fig. 31. Eq in this figure is at right angles to the paper. The 

situation is not essentially altered if Eq is 

pure imaginary instead of real. This type 
of wave might well be considered a tran.s- 
verse electric wave, since E has no compo¬ 

nent along either kr or ki, while 11 does have 
such a component. We can equally well 
set up a transverse magnetic wave, by 
assuming Hq to be real. In that case, Er 
and Ei will be at right angles to kr and ki, as 
Hr and //» are in Fig. 31. We note that in 
Poynting^s vector, whose average value is 
determined by Re (E X H), as we have 
seen in Sec. 11, it is only the component H 

in Fig. 31 that will contribute to the energy flow. Thus the flow 
of energy is along kr, the normal to the surfaces of constant phase, 
and it is entirely justifiable to consider this direction as the direc¬ 
tion of propagation of the wave. 

Let us now ask how to satisfy boundary conditions at a surface 
of separation between two media. In the first place, the tangen¬ 
tial component of k must be continuous at the surface, in order 
that the exponentials in (13.1) may join continuously in the two 
media. This means that both the tangential components of ki 
and of kr must be continuous at the surface. This leads to one 

magnetic and propaga¬ 
tion vectors in damped 
plane wave with real 
electric vector. 
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very simple result: if one of the two media is not absorbing and if 

the wave in that medium is not damped, k, in it is zero. To get 
continuity of the tangential component of ki, then, we see that ki 
in the absorbing medium must be normal to the surface, so as to 
have no tangential component. In addition to this, the tangen¬ 
tial component of kr must be continuous, and this leads to the 
law of refraction in this case. It is not Snell’s law in the ordinary 
form, however, for as we see from (13.9), it is not true in this case 
that kr = CO which is the condition on which Snell’s law 
depends. It is not hard to get the actual law from (13.9), but we 
shall not derive it; it is rather complicated. In addition to con¬ 

tinuity of the tangential component of k, we must have con¬ 
tinuity of the tangential components of E and H and of the normal 
components of D and B. Let us define an impedance of the 
wave, as the ratio of the tangential components of E and H, 
Then it is clear that if we comjmte the impedance for a disturb¬ 
ance consisting of an incident and reflected wave in the first 

medium and a refracted wave in the second medium, the con¬ 
tinuity of this quantity is necessary in order that the tangential 
components of E and II should be continuous. From Eq. (13.3) 

we then see that if the tangential components of k and of E are 
continuous, the normal component of fiH = B will be continuous. 
Finally from (13,5) we see that if the tangential components of k 

and H are continuous, the normal component of Z) + aE, the 

sum of the displacement current and the conduction current, will 
be zero. This is really the correct condition in this case, not the 
continuity of the normal component of Z); it is the condition, in 
the case of conducting media, which is the limit of the divergence 
equation div Z) = p, in the limit of sudden changes at a surface. 
In other words, we see that the situation is the same that we have 
encountered before: to satisfy boundary conditions at a surface, 
we must impose the correct law of refraction and the continuity of 
impedance on both sides of the surface, computed for the dis¬ 
turbance actually present. Then all conditions demanded by 
Maxwell’s ecpiations will be met. 

Two cases of reflection involving the principles of this section 
are familiar. The first is the case of total internal reflection. 
This is met where both of the media in question are nonconduct¬ 
ing, but where the second medium has a smaller index of refrac¬ 

tion than the first, and the angle of incidence is greater than the 
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critical angle. In the first medium, there is no damping, and ki 
is zero. The magnitude of kr in this medium, from (13.9), is then 

0) \/^t. If the angle of incidence is the tangential component 
of kr is CO \/^ sin 6. If we could satisfy the boundary conditions 
with a real vector k in the second medium, we should have 

cov^ sin ^ = CO V^V' sin 6' (13.12) 

where primed quantities refer to the second medium. This 

would give 

sin 0' __ n 
sin $ n' 

(13.13) 

where n is the index of refraction, as in (10.18). If n' is less than 
n, the ratio is greater than unity, so that fen* angles greater than 
a certain critical angle, sin 9' as defined by (13.13) would be 
greater than unity, and 6' would be imaginary. It is in this case 
that we must use the damped solution in the second medium. 

We must then have normal to the surface, so that A:' is tangen¬ 
tial to the surface, meaning that in the second medium there is no 
flow of energy normal to the surface, but only parallel to the 
surface. Since this carries no energy across the surface, the 
reflected wave must carry as much energy away from the surface 
as the incident wave carries to it, and the reflection coefficient is 
unity. For this reason the case is referred to as total reflection. 

The rate of attenuation of the wave in the second medium is 
given by (13.9): 

kl = kf — yJ = ‘Sin*^ 6 — eVO (13.14) 

where we have usc^d the condition that the tangential component 
of kr is continuous. Just at the critical angle, where e/jL sin^ 6 = 

there is no attenuation, but as the angle of incidence increases 
from the critical angle the attenuation becomes more rapid, so 
that the disturbance docs not penetrate far into the rare medium. 

The other important case of our equations comes in reflection 
from a metallic surface. Again we ordinarily assume the incident 
medium to the nonabsorbing, so that we have an undamped 

incident wave. The vector ki in the second medium must then 
be normal to the surface, but since <t is not zero in the second 
medium, (13.9) tells us that in this case ki is not parallel to the 

surface but instead has a normal component. In fact, in any 
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ordinary case, if the second medium is a metal, A:' is almost 

exactly normal to the surface itself. To see that, we note that in 

such a case, as we saw in Sec. 12, is very small compared to 

(t'/x'w- Thus in (13.9) we see that kr is almost exactly equal to 
ki. We shall see in a moment that the angle between A:' and k[ 

is very small; thus from the second equation of (13.9) we see that 

kr and k^ in magnitude arc approximately equal to \/orVt*^* 
On the other hand, the tangential component of fc', by the condi¬ 

tion of continuity, must equal the tangemtial component of kr, 

which is 0) y/efi sin 6. ^bhus the ratio of the tangential compo¬ 

nent of kr to the magnitude of A;' is 

(13.15) 

From the arguments of Sec. 12, we see that this ratio is very 
small, so that we are justified in saying that k[ is almost normal 
to the surface. In other words, no matter what the angle of 

incidence may be, the wave in a good conductor will be very 

nearly the same that it is at normal incidence, so that the discus¬ 
sion of Sec. 12 applies with only small corrections to the general 

case of arbitrary angle of incidence. The equations of the present 

section can be used to investigate the reflected wave and show 
that in general it is elliptically polarized. However, since we shall 

not use the results at present, we shall not carry them through. 

The cases taken up in the present section are not intrinsically 

of great importance in microwave work. Nevertheless the 

principles underlying damped waves at oblique incidence are 

important and will come up again in a number of connections. 
Thus in the next chapter we shall consider attenuation in wave 

guides and in the general nature of skin effect. This is merely a 

special case of the equations of the present section. Again, we 

shall encounter waves that arc attenuated as we pass down wave 

guides, even though they are traveling in empty space. These 

are solutions essentially like those met in the problem of total 

reflection, where the wave in the rare medium is attenuated, 

even though there is no absorption in the medium. 



CHAPTER III 

RECTANGULAR WAVE GUIDES 

An infinitely long hollow pipe, of rectangular cross section 
and conducting walls, transmits many types of electromagnetic 
waves with small attenuation and is a practical transmission line. 

On the one hand, it has many of the properties of the transmission 
lines of Chap. I; on the other, it forms a simple and natural 
extension of the study of plane waves taken up in Chap. II. In 

this chapter we consider such rectangular wave guides. Later we 
shall go on to wave guides of more complicated cross section than 
rectangles and to composite wave gutdes, whose properties 

change from point to point along the length of the guide, intro¬ 
ducing reflections like those found in a composite transmission 
line. The theory of rectangular wave guides is given in a num¬ 

ber of papers. ^ 
14. Wave Propagation between Parallel Perfectly Conducting 

Planes.—As a first step, we shall consider wave propagation in 

the space between two infinite parallel perfectly conducting 
planes. A special case of this was considered in tlu' arguments 
illustrated by Fig. 29, in Sec. 9. We shall base our argument 

on Sec. 10, which treated the reflection of plane waves at oldique 

incidence. We shall show that if two plane waves are superposed 
in a suitable way, they automatically set up a disturbance that 

satisfies correct boundary conditions at the surfaces of the planes 
and hence forms the solution of our problem. 

Figure 32 shows a diagram of the set of coordinates that we 
shall use. We imagine two conducting planes perpendicular 

to the y axis, as indicated by the sections of planes in Fig. 32. 
The type of disturbance that we shall consider is propagated along 

the z axis. Let us now make up the disturbance out of two plane 
waves, traveling along the z' and directions, as shown in Fig. 32. 
These directions are both in the yz plane, making angles of d with 
the z axis. It is reasonable that we should superpose these two 

^ Barrow, Proc. LR.E.j 24, 1298 (1936); Carson, Moad, and Scholkunoff, 
Bell System Tech, J., 16, 310 (1936); Chu and Barrow, Froc, I.R.E.j 26, 
1520 (1938). 
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waves to set up the disturbance between the planes. If we 
started with the wave traveling along 2' alone, it would be 

reflected from the right-hand plane, and the reflected wave would 
travel along 2". Similarly the wave along 2" would be reflected 
by the left-hand plane, the reflected wave traveling along 2'. 
Thus the superposition of these two waves 
should form a complete solution for the / Z Z Z j 
space between the reflectors. / \ I \ 

As in Sec. 10, there will be two types of 
particularly simple solutions: the transverse W 
electric^ wave (abbreviated TE), in which \ j 
the electric field is along the x axis, and the ^ y 
magnetic field has y and 2 components; and / ^ 
the transverse magnetic wave (TM), in / 
which the magnetic field is along Xy and the 
electric field has y and 2 components. Let ^ ^ ^ / 
us start with the TE wave. We now have f / 
in (10.1) the values of the components of E Fio. 32.—Coordinate 

and H for a TE wave propagated along the propagation 

direction 2 . To get the wave propagated 
along 2", we need only change the sign of 6 wherever it appears. 
Let us then superpose waves of equal amplitude and, for 
convenience, opposite phase along 2' and 2". The result is 

Ex = v'eMcos ez) 

Ey = JiJ, = //^ = 0 

Hy = —2Aj cos 6 sin (w \/^ sin cos ez) 
Hz = —2/1 sin 6 cos (w y/Ty sin $y)cj^(t-V€ncoa ez) (14.1) 

Formulas (14.1) may.be simplified by using as abbreviations 

Fig. 32.—Coordinate 
system for propagation 
between parallel planes. 

y = jia y/tii cos 0 = 

ky = w y/iti sin 9 

... E. lu 

Then they become 

sec 6 

(14.2) 

(14.3) 

(14.4) 

= Z(e)Hn sin kyye>‘“-y 
Hy = Ha sin kyye’“‘~'^’ 

lit = Ho — cos 
y 

(14.5) 
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where Hq is another constant. We can easily verify by direct 
calculation that (14.5) are solutions of Maxwells equations. We 
see that they represent a wave propagated along the z axis, with 
propagation constant 7 along this axis and varying sinusoidally 
Avith y. 

Let us now consider the boundary conditions on the two parallel 
conducting planes. We remember that on a surface of infinite 
conductivity the tangential component of E and the normal 
component of H must be zero. From the results of Sec. 13, we 
can now justify these boundary conditions completely. In the 
first place, in (12.17) we found the impedance at the surface of a 
conductor, and from the formula we see that it becomes zero as 
the conductivity becomes infinite. Thus the tangential com¬ 
ponent of E is zero inside the surface;- hence by continuity it 
must be zero outside the surface as wxdl. Then from (13.15) we 
see that in a perfect conductor the wave normal inside the con¬ 
ductor must be along the normal to the surface, no matter whab 
may be the direction of the normal outside. Then from the 

construction of Fig. 31 we vsee that the magnetic field in the con¬ 
ductor must be perpendicular to the normal and must have no 
normal component, so that by continuity there is no normal 

component of H outside the surface. Considering Fig. 32, then, 
we see that at the conducting planes E^ and Hy must be zero. 
That is, at these planes sin kyy must equal zero. Let us suppose 

that the planes are located at 2/ = 0 and i/ = b. The condition 
at 1/ = 0 is automatically satisfied; for the condition ht y = b we 

must have 

kyb = nx, K = 'y 

where n is an integer greater than zero. The wave associated 
with an integer n is called the TE^ijn wave; the first subscript, 
equal to zero in this case, refers to another term varying sinus¬ 

oidally wiiJh Xj which we shall find in the general case. 
Let us consider the TEo^n wave more in detail. First we may 

find the angle 6 in terms of the wave length of the disturbance 
in empty space, and 6. Thus let 

x« = (14.7) 
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ho the wave length in empty space. Then from (14.3) and (14.6) 
we have at once 

8in0 = ?^, COS0 = - ('^) (14.8) 

Since the sine cannot be greater than unity, we see that such a 
wave is only possible if 

nXo < 2b (14.9) 

In other words, n half wave lengths must be smaller than the 
distance between the parallel conductors, in order to have real 
propagation. If the wave length is greater than this, then from 
(14.8) the cosine is pure imaginary, so that from (14.2) the propa¬ 
gation constant y is real, and the wave is damped exponentially 
as we go along z, instead of varying sinusoidally. The attenua¬ 
tion constant can be found at once from (14.2) and (14.8). The 
set of parallel conductors, then, forms a high-pass filter, only 
frequencies above a critical frequency being propagated through 
it. Instead of having one critical frequency for cutoff, however, 
like an ordinary filter, we have an infinite number, one given by 
each value of n. If the frequency is so low that the wave is 
attenuated, the resulting field (14.5) is the type that would be 
set up by superposing two damped waves of the type discussed 
in Sec. 13, with their vectors ki pointing along the z axis, and 
their real vectors kr pointing along the y axis, so that the resulting 
disturbance is damped along z but varies v^inusoidally along y. 

Using f]q. (14.8), we can rewrite our wave in terms of Xo and 
h rather than in terms of 6. Thus we have 

The impedance Z is given by 

z = (14.11) 
Vl - (nXo/26)* 

The phase velocity of propagation along the z axis, which by 
(1.28) equals cu/jS, is given by 

1 1 
V = 

— (nXo/26)2 
(14.12) 
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For any given n or any given mode, we see that as the frequency 
becomes infinite, or Xo becomes zero, the impedance and velo(*ity 
approach those characteristic of empty space. At the same time 
the angle given by (14.8), approaches zero, so that we liave the 
simple case of a plane wave propagated along the z axis. As the 
frequency decreases toward the cutoff frequency, however, both 
impedance and velocity of propagation increase, becoming infinite 
at cutoff. At the same time the angle 6 increases, becoming 90® 
at cutoff, so that there is no real propagation along the z axis at 
all, a fact which is shown also by the fact that y becomes zero 
at this point. It is interesting to notc^ that for any arbitrary 
wave length Xo, we shall in general find some modes that have real 
propagation along z and others that are attenuated. Thus those 
for which n is less than 26/Xo will be [)ropagat(Hl, those with 
higher n will be attenuated. As the frequcuicy decreases and Xo 
increases, fewer and fewer will be propagated. For example, if 
a half wave length is less than b but greater than 6/2, only the 
mode n = 1 will be propagated; all higher valu(\s of 7i will n'pre- 
sent attenuated modes. This is a common condition for the 
operation of a type of wave guide based on this ('xampl(\ 

The TEojn wave which we have just been considering can be 
propagated in a rectangular wave guide, constriuded from the two 
parallel conducting planes of Fig. 32 by adding two additional 
planes perpendicular to the x axis, at aibitrarv points. From 
(14.5) it is obvious that E has no tangential components, and II 
no normal components, over these planes, so that the boundary 
conditions are automatically satisfied. The lines of E terminate 
in surface charges on these planes perpendicular to j, just as they 
did in the case illustrated in Fig. 29, and the tangenitial magnetic 
field Hy results in currents flowing along the z axis in th€*s(i con¬ 
ductors. We approach exactly the case of Fig. 29, if 6 becomes 
so great that the planes perpendicular to y may be considered to 
recede to infinity. In this case 6 becomes zero, and the proj^aga- 
tion constant and impedance reduce to the values for empty 
space. In the formulas (14.5) for the fields, it is more con¬ 
venient in this case to use a factor cos k^y in Ex and Hy and 
— sin kyy in i?*, having as a result that the mid-point between 
the two planes is at the origin instead of one of the planes. Then 
if the planes recede to infinity, by making 6 infinite, ky goes to 
zero, so that Ex becomes Hy becomes IIoc^'^^~y% and 
Hx becomes zero, just as in the case of empty space. 
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Next we consider the transverse magnetic waves. Starting 
with Eq, (10.24) and combining as in the derivation of (14.5), 
only now combining the two waves in the same phase rather than 
in opposite phases, we have 

E, = 0 
Ey = —ZHo cos 

El = Z — Hq sin 
7 

Hx — Ho cos kyye^'^^~^^ 
Hy = //, = 0 (14.13) 

with 

Z(e) = - ^ cos e (14.14) 

and with y and ky as defined in (14.2) and (14.3). We note that 
the value of Z{d) found in (14.14) agrees with that found in 
(10.28) for the transverse magnetic wave in empty space, just as 
the value (14.4) agrees with (10.11). We see, then, that as far 
as propagation vectors are concerned the transverse magnetic 
wave is just like the transverse electric case, but that the imped¬ 
ance, or ratio of E to /f, is different. 

Next let us impose boundar\^ conditions. On a conducting 
surface perpendicular to the y axis, the normal component of 
magnetic field is automatically zero, and the tangential com¬ 
ponent of electric field is Ez. Since this depends on y through the 
term sin kyy, we see that the boundary condition is just the same 

as (14.6), already met in the transverse electric case, with one 
exception: the integer 7i can be zero, as well as other values, for 
the TM wave; with the TE wave the value zero was excluded. 
The reason fs that the field components of (14.5) all automatically 
become zero if n is zero, but this is not the case with the com¬ 
ponents of (14.13). In the TM case, in fact, if n = 0, we see 

from (14.8), which applies here also, that ^ = 0, the propagation 
is like that of a wave along the z axis in free space, and the fields 
reduce to Ey = Hx = with all other com¬ 
ponents zero, just as in (9.1), except that the axes are rotated. 
Thus the TMo,o wave is essentially just like a wave in free space 
and is equivalent to that used in Fig. 29. Since ^ = 0 for it, the 
velocity of propagation is equal to that in free space, there is no 

attenuation or cutoff at any frequency, and the impedance is 
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equal to that for free space. This wave is often called the 
principal wave. The other transverse magnetic waves, TMo.n 
for n different from zero, are not unlike the TEo,n waves. The 
formulas (14.8) for d are the same, and consequently as far as 
propagation is concerned they are exactly equivalent. The only 
mathematical difference comes in the impedance. There is one 
other important difference, however. We have seen that for the 
TE waves, it is possible to put up an extra set of conducting sur¬ 
faces perpendicular to the x axis and make the system into a 
rectangular wave guide, in which case the boundary conditions 
on the new surfaces are automatically satisfied. This is not the 
case, however, with the TM waves. We see from (14.13) that 

at a surface perpendicular to a*, Ey and are transverse com¬ 
ponents of Ey and Hx is a normal component of //, and all three 
are in general different from zero. Thus these waves TMo.n can 
exist in the present case of two parallel conductors but cannot 
exist in a rectangular wave guide. In particular, the principal 
wave, TMQ,o does not exist in a wave guide. We shall see in a 
later chapter that principal waves exist only in systems, like that 
of two parallel planes, in which there are two separated con¬ 
ductors, but cannot exist in systems like a rectangular pipe, with 

only one conductor. Thus a coaxial line has a principal mode, 
but a hollow pipe does not. The reavson is essentially that in the 
principal mode the electric vector goes across from one conductor 

to the other, being terminated by opposite charges on the two 
conductors. If the two conductors are connected, so as to make 
a hollow pipe, this inevitably results in a short-circuiting of this 

mode, since the lines of force otherwise would run tangentially 
to the side walls. 

16. Undamped Waves in Rectangular Pipes.—In the preceding 
section we have taken up the problem of wave propagation 
between parallel conducting planes and have seen that by super¬ 
posing two elementary plane waves, representing the waves 
incident on and reflected by each surface, we can satisfy the 
boundary conditions and get a solution of our problem. Corre¬ 
sponding to the two types of polarization of a plane wave, there 
are two types of solution, the transverse electric and transverse 
magnetic, corresponding to the polarizations where the electric 
and magnetic vectors respectively are in the planes perpendicular 

to the z axis. Similarly with a rectangular pipe, with boundaries 
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perpendicular to both the x and the y axis, we can build up the 
general disturbance out of a sum of elementary plane waves. 
Here in general we need four waves, however: an incident wave, 
and the reflections of this wave in both sets of planes. That is, 
writing the exponential part of the wave, we need all combina¬ 
tions of + and — signs in the expression where 
kxj kyy kz are three constants. Again we can have either trans¬ 
verse electric or transverse magnetic waves; but now, since the 
wave normals are no longer in the yz plane, the transverse field is 
no longer along the x axis but has both x and y components. 
Similarly the other field, which is not transverse, now has not 
only y and z components but an x component as well. The whole 
situation thus becomes rather involved and, although we can 
continue if we please to set up a solution by superposing plane 
waves, it becomes simpler to proceed directly, assuming fields 
that vary exponentially along 2, sinusoidally along x and y, 
and choosing the constants so as to satisfy MaxwelFs equations. 
Let us first consider the transverse electric wave and see what 
Maxwell’s equations give, on the assumption that only Ez is 
zero. 

For a case where Ez = 0, Maxwell’s equations become 

(I) 

(ii) 

(III) 

(IV) 

dy 
dH, 
dz 

+ njwHy = 0 
oz 

dEy dE^ 
djc 
dH 

dy + njwH, = 0 

dHy , dH, 
dx ^ dy ^ dz 

dHy 

dH, 
dx 

— {eju + a)E, = 0 

— (fjo) + <T)Ey = 0 

dHy _ dHx _ Q 
dx dy 
dE, _ A 
ax dy 

(15.1) 

In the case of the wave guide, we assume that the variation of 
each field component with z is given by the expression e~^‘. 
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Inserting this assumption, the equations become 

yE„ + ixjoiHx = 0 
—yEx + njo>H^ = 0 

ix dy 

dHx BH 
dx "dy 

+ fijosH, = 0 

yllx = 0 

+ yHy — ((jw + a)Ex — 0 

-yHx - — ((jw + ff)Ey = 0 

=.o (15.2) 

Of these equations, the first two serve to express Ex and Ey in 
terms of Hx and //„: 

i-Hx) 
(15.3) 

In the third equation, we can express Ex and Ey in terms of 

Hx and Hy, and then find that it becomes identical with the 
fourth equation. Using (15..3), the fifth and sixth equations 
then serve to express Hx and Hy in terms of derivatives of H,: 

IT ^ _ -y_^ 
7* — + ffj dx 

TT  _—y_^Hi 
7* — + <r) dy 

(15.4) 

Using (15.3) and (15.4), we find that the seventh and eighth 

equations are automatically sati.sfied. This then leaves only 
the third, or fourth, equation, and it becomes an equation for Hz. 
Substituting from (15.4), this equation is 

+ (7® - + <r))Hz = 0 (15.5) 

—~ 4- -|_ jQ2ff (15.6) 
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where 
/[;2 = ^2 __ njo){ejcjJ + (t) (15.7) 

In the preceding paragraph we have set up a procedure for 
handling the TE waves, which is applicable to any form of wave 
guide. We first find a solution of (15.6) for Hz. This equation is 
simply the familiar wave equation in two dimensions, in the 
form where the time is eliminated. Then from the Hz so deter¬ 
mined we may find Hx and Hy by (15.4), and Ex and Ey by (15.3). 
In addition to satisfying the wave equation, we must satisfy 
our boundary conditions at the surface of the conductors. For 
the moment let us consider the general problem of a wave guide 
of arbitrary cross section in che xy plane, but whose boundaries 
are parallel to the z axis. Then the component of 7/ in the xy 
plane perpendicular to the surface, and the component of E in 

the xy plane parallel to the surface, must both vanish, at the 
surface of a perfect conductor. The first condition, using 
(15.4), means that the rate of change of Hz along the normal to 

the surface must be zero. The second condition is equivalent 
to the first; for Eq. (15.3) tells us that the components of E and 
of H in the xy plane are perpendicular to each other, since it can 

be written ExIEy = —HyfHx. Thus if the normal component 
of H is zero, the tangential component of E will automatically 
be zero also. 

Now that we have set up the general formulation of our 
problem, let us specialize for the case of a rectangular wave guide, 
bounded by perfectly conducting planes at x = 0, x = a, y = 0, 
y = b. We can plainly set up a solution of (15.6) which varies 
sinusoidally with both x and y. In order that the derivative of 
Hz with respect to the normal to the surface may be zero, we 
must use a cosine function and must have the boundaries come 
at points where the cosine has a maximum or minimum. To 
satisfy these conditions, we must have 

TT TT vvjtx mry . , ox 

Hz = Ho cos-cos y* (15.8) 
d 0 

where m, n, are integers, which as far as we can see at the moment 
can be zero as well as different from zero. The wave equation 

(15.6) then gives 

[-(tT (15.9) 
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(15.10) 

(15.11) 

(15.12) 

In these expressions, kx and ky are given by (15.10), k’^ is deter¬ 
mined in terms of them by (15.11) and y by (15.7). It will be 

seen that there are a doubly infinite set of solutions, one for each 
pair of integers m, n. A particular one is denoted as a TEm.n 
wave. Let us consider the special cases where one or both of the 
indexes are equal to zero. If for instance m = 0, we have exactly 
the solution given in (14.5), except that the Hq which appears in 
(15.12) is equal to the quantity Hoky/y in (14.5). Since the 
solution in that case is independent of x, it is immaterial whether 
the wave guide is terminated at a; = 0, x = a, as in the present 
case, or whether it extends to infinity along the x axis, as in Sec. 
14. If n = 0, so that we have the TEm,o wave, the situation is 
of course just like the only with the axes interchanged. 
Finally, we see particularly easily from (14.5) that there is no 
solution when both m and n are zero; in that case all field com¬ 
ponents automatically reduce to zero. 

The transverse magnetic case is handled in a manner practi¬ 
cally identical with that already used for the transverse electric 
case. In this case all field components except Hz are different 
from zero. We find Ex and Ey from Eg, by equations that are 
exactly like (15.4), except with E substituted for H, and Ez 
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satisfies a wave equation that is exactly like (15.6). The ratio of 
Ex to Hy and of Ey to —Ex is a quantity that we can again call an 
impedance, but it is different from its value for the TE case, as 
given in (15.3); instead, we find 

Ex _ Ey _ r7 ^ y 
Hy (-i/x) “ ^ 6jc0+(7 

(15.13) 

The boundary conditions at the boundaries of the wave guide are 
different from the TE case. Ez is now a tangential component of 
the electric field; consequently it must be zero at the boundaries 
of the wave guide. From the equations analogous to (15.4), 

we then see that Ex and Ey, regarded as the components of a 
two-dimensional vector in the xy plane, are proportional to the 
gradient of Ezj regarded as a scalar function of x and y. But 
the gradient is a vector at right angles to the surfaces on which 
the function whose gradient is taken is constant. Thus the vector 
of components 1?*, Ey is at right angles to the surfaces on which 

E» is constant. Since Ez is zero over the surface of the wave 
guide, this means that the vector Exy Ey is normal to the surface, 
so that the condition that the tangential component of E should 
be zero is satisfied. Finally from (15.13) we see that the vector 
H is perpendicular to J?, so that since E is normal to the surface 
of the wave guide, H must be tangential, and the condition that 
the normal component of H should be zero is also satisfied. 

Using thcvse relations, we find that the expressions for the 
field components in the TM case, analogous to (15.12) for the 
TE case, are 

Ex = ~ Eo cos kxX sin 

yk 
Ey =-Eo sin kxX cos kyye^'^^~'f* 

Em = Eq sin kxX sin kyycl^^~'^^ 

l{^ = gin kxX cos kyyU^^~'^* 

Hy — — JS'o cos fcxX sin kyyU^^~^* 

//. = 0 (15.14) 

Here, as for the TE case, kx, ky^ and k’^ are defined by (15.10) and 

(15.7). Contrary to the TE case, however, we see by inspection 
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of (15.14) that neither rn nor n can be zero; if either one is zero, 
all components of field vanish. This verifies our conclusion of 

Sec. 14, that waves of the form TMo.n can exist in the case of two 
infinite parallel conductors but cannot exist in a rectangular 
wave guide. 

As in the case of propagation between two parallel conductors, 
discussed in Sec. 14, each type of wave in the rectangular pipe can 
be propagated only above a critical or cutoff frequency. Let us 
find this frequency. First we write (15.7) for 7-^, substituting 
from (15.10) and (15.11) for and assuming a perfect dielectric 
within the pipe, so that a = 0. Then we have 

For low frequencies, the first term in (15.15) is smaller than the 
sum of the other two, 7^ is positive and 7 is real, resulting in an 
attenuated wave. However, for high freciuencies, the first term 
outweighs the other two, 7^ is negative, 7 is imaginary, and there 
is a real wave propagated, without attenuation. Thus the 
cutoff is given by setting 7^ = 0 in (15.15). The relation is most 
conveniently stated by using the equivalent wave length of the 
disturbance in empty space, given by 

Xo = 7 = (15.16) 
J w V (/X 

where v is the velocity of the disturbance in the dielectric. Then 
(15.15) gives us 

From (15.17) w'e see that the cutoff frequency is higher, or the 
wave length shorter, the greater the value of m and n. Thus for 
propagation of a given frequency wave through a given pipe, a 
certain number of the lower modes will be propagated, but the 
higher mddes will all be attenuated. Often it is desirable to 
design a pipe so that for the frequency being employed only one 
mode, that of lowest frequency, will be propagated. This will 
be a transverse electric mode, with either m or n equal to unity, 
the other one equal to zero; clearly the index connected with the 
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smaller of the dimensions a and b must be zero, that connected 
with the greater must be unity. The transverse magnetic 

modes all have higher cutoff frequencies, since both m and n 
must be different from zero for the TM modes. For the lowest 
TE mode, the electric lines of force run across the guide, from 

one long side to the other, with maximum intensity in the center, 
as shown in Fig. 33. If the longer of the two dimensions is a, 
(15.17) then becomes 

(15.18) 

as the condition of cutoff. That Is, the longest wave that can be 
transmitted in the pipe has a half wave length equal to the greater 

Fig. 33.—Lines of electric force in TEi.o inode, looking along axis of pipe. 

of the two dimensions of the pipe. For further diagrams, 
similar to Fig, 33, showing lines of electric and magnetic force in 

various modes, the reader is referred for instance to Chu and 
Barrow.^ The case shown in Fig, 33 is the most important in 
practice. 

It is interesting to find the velocity of propagation along the 
z axis, and the impedance, for the various modes of propagation. 
Let us again take (7 = 0. Then using (15.15), with the substitu¬ 

tion (15.16), we have y = jjS, where 

from which v, which is ecjual to to/|9, is - 

^ 1 ___ 

, \/l — (mi\o/2a)“ — (nXo726)* 

(15.19) 

(15.20) 

»/Voc. I.n.E., 28, 1520 (1938). 
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reducing properly to our previous value (14.12) for the case 
m = 0. We noti(5e that the phase velocity is greater than the 
value 1/a/€/x characteristic of the dielectric medium, becoming 
infinity at cutoff but gradually reducing to the limiting value 
l/\/^ Q'S the frequency is increased indefinitely. The imped¬ 
ance Z is different in the TE and the TM case. For the TE case, 
using (15.3), we have 

Z = 
__1_ 

— (mXo/2a)2 — {n\Q/2b)^ 
(15.21) 

proportional to the velocity; for the TM case, using (15.13), 
we have 

inversely proportional to the velocity and reducing to zero at 
cutoff. We note that each separate mode of propagation has its 
own impedance. A hollow-pipe transmission line has entirely 
different characteristics for its different modes, so that the best 
analogy to the simple transmission lines of Chap. I is obtained if 
we regard one mode of the hollow pipe as being equivalent to a 
whole transmission line. 

16. Attenuation in Rectangular Wave Guides.—In the preced¬ 
ing sections of this chapter, we have considered only the case of 
hollow pipes with perfectly conducting walls, so that the electric 
vector could have no tangential component at the surface. 
Corresponding to this, the propagation constant y was pure 
imaginary, above cutoff, corresponding to a wave without 
attenuation. Now we shall take up the case where the walls 
have only a finite conductivity and shall ask how much attenua¬ 
tion this introduces. To handle this problem straightforwardly, 
we should set up a damped wave in the metal walls, of the type 
discussed in Secs. 12 and 13, and join this properly to a damped 
wave inside the wave guide, built up as in Sec. 13. We shall 
however use an approximate method, entirely accurate enough 
for our purposes, which requires practically no calculation beyond 
what is already done for the case of perfectly conducting walls. 
Then we shall describe an exact solution and show that it reduces 
to the approximation already worked out. 
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We have seen in Sec. 12 that the propagation constant in a 
good conductor is given by 

7o = ao + jfio = (1 + j) (16.1) 

as shown in (12.9), and the intrinsic impedance is given by 

(1 + i) (16.2) 

as in (12.17). In Sec. 13, we have seen that at a boundary 
between a good conductor and a dielectric, no matter what may 
be the angle of incidimce in the dielectric, the wave normal in the 
condu(‘tor is almost exactly along the normal to the surface. 
This is the case with both the vectors kr and ki of Fig. 31, repre¬ 
senting the vectors perpendicular to the surfaces of constant 
phase and of constant amplitude respectively. Thus, by the 
arguments used in deriving Fig..31, both electric and magnetic 
field in the im^tal will be practically tangential to the surface, 
having no normal component. The ratio of the tangential 
component of E to the tangential component of H is given by 
(16.2); the two vectors are at right angles to each other. Since 
Zq, as given in (16.2), is very small, as was shown in Sec. 12, the 
tangential component of E is very small, but it is not zero, as it 
would be in a perfect conductor. A method now suggests itself 
for approximating to the solution of our problem. First let us 
find the tangential component of magnetic field in the dielectric, 
for the case of perfectly conducting walls. This tangential 

component ordinarily will be large. It is reasonable to suppose 
that it will not be much changed if the walls are given a finite 
rather than an infinite conductivity. By the conditions of 
continuity, it will equal the tangential component of H just inside 
the metal. The principal effect of giving the walls a finite 
conductivity will be to introduce a small tangential electric field, 
given by Zo times the magnetic field, inside the metal, which 
by continuity must equal a corresponding tangential component 
of E just outside the surface. 

The method just described allows us to estimate the small 
tangential component of E at the surface of a good but not 
perfect conductor. This is not the quantity of primary interest, 

however; we are really interested in the attenuation constant a, 
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the real part of the propagation constant 7 connected with 
propagation of the wave along the z direction in the wave guide. 

Fortunately we can find a from a knowledge of the tangential 
components of electric and magnetic field over the conducting 
surface. To do this, we use the principle that a is determined if 
we know how rapidly the energy flow diminishes with distance 
as we go along the w^ave guide, and the decrease of energy flow is 
accounted for by flow of energy into the conducting walls, which 
in turn can be computed by integrating Poynting\s vector 
over the surface of the walls. Poynting’s vector and the energy 
per unit volume both depend on the square of the field and, since 
both electric and magnetic fields are attenuated according to the 
exponential in going along the wave guide, the energy flow 
must be attenuated according to the exponential c"-"*. Thus 
we have the relation 

d (energy flow) _ 

But the energy flow is the integral of Poynting’s vector over a 
cross section of the wave guide, while (energy flow)/rJz is the 
energy lost in unit distance or is the integral of Poynting’s vector 

over the part of the metallic surface contained in unit length of 
the wave guide. Hence we have 

1 f (metallic surface) Re (E X //) da 
a =--»—— (lb.4) 

2 / (cross section) Re (E X II) da 

The integral in the denominator of (16.4), the total energy 

flow along the wave guide, has to be computed specially for each 
mode of oscillation, and there is nothing more to say about it 
until we come to special cases. The numerator, however, 
representing the rate of energy flow into the metal, is of con¬ 
siderable interest. The Poynting^s vector representing energy 

flow into the metal has an average value of ^ llo (E X fl), 
as we saw in Sec. 11. We are interested only in the component 
of Poynting’s vector normal to the surface, which means that 
we must use tangential components of E and H in computing it. 
By (16.2), the tangential component of E, which we may call Et, 
equals Zo times the tangential component Hi of H, Thus we 
have 

iS = i Re (£7 X /?) = i Re (16.5) 
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The product of any number by its complex conjugate is simply 
the square of its absolute magnitude and is real. Hence, sub¬ 
stituting the real part of Zq from (16.2), we have 

^ - Ws '"'I’ 

Equation (16.6) thus gives a simple formula for the energy loss 
per unit area of conducting walls of a wave guide, in terms of the 
tangential component of magnetic field and the magnetic per¬ 
meability and electrical conductivity of the metal. This formula 
can be put in an interesting form if we compute the energy 
flowing into unit area of the metal per cycle of the alternating 
field. This is found by multiplying (16.6) by 27r/co, the period 
of the oscillation. The result is 

We recognize the quantity \/2ltxwa as the distance d defined in 
(12.13), the distance in which the field inside the metal falls to 
\/e of its value at the surface; this distance is sometimes called 
the skin depth. Furthermore, we recognize as the 
magnetic energy per unit volume associated with the tangential 
component of magnetic field. Thus we have the interesting 
result that the energy dissipated per cycle, in the conductor, 
equals the magnetic energy contained in a thin sheet of thickness 
7r5, in which the energy density is the same that it is immediately 
outside the surface. Since as we saw in (12.14) the thickness 8 
is very small for a good conductor like copper, this means that 
the energy loss per cycle is a very small fraction of the total 
energy, from which it follows that the Q value of such a wave 
guide is large. 

To estimate the Q value of a wave guide, we may use an 
approximation which is interesting in showing the order of 
magnitude. From our fundamental definition (4.47) we have 

Q-l (16.8) 

and we shall use this definition later in making exact calculations 
of Q values. Using (16.4) and the relation v = co//3, this gives 
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Q _ w ^_energy flow in pipe_ 
V energy loss per unit length per second 

= — X energy flow in pipe_ 
V energy loss per unit length per cycle ^ ^ 

The energy flow in the pipe equals the average flow per unit area, 
times the area of the pipe. If we picture the energy as flowing 
with the velocity v (an assumption which is not really correct and 

^ which prevents this argument from being correct except in order 
of magnitude), we should find that the energy per unit volume, 
times the velocity of flow, should equal the energy flow per unit 

area. Thus the energy flow in the pipe, divided by v, which 
appears in (16.9), should be the energy per unit volume, times 
the cross-sectional area, or should be the energy contained in 
unit length of the pipe. In other words, wo should conclude that 
Q equaled 2w times the ratio of energy contained in unit length 
of the pipe, to the energy lost per unit length per cycle. We have 
seen that this energy loss equals the magnetic energy contained 

in a sheet of thickness v8 around the boundary of unit length 
of the pipe. Thus in order of magnitude Q equals the ratio of 
the volume of unit length of the pipe, to the volume of a sheet of 

thickness 8 around the area; or it is equal to the ratio of the cross 
section, to the cross section of a strip of width 6, and length 
equal to the perimeter of the pipe. This argument, as we have 

pointed out, is correct to order of magnitude only, but it gives a 
good way of visualizing the reasons behind the large Q valuers 
of wave guides. 

I.et us now apply our methods to the calculation of attenuation, 
in some important special cases. First we shall consider the case 
of two infinite parallel planes, with the electric field and magnetic 

field both transverse between the two planes, as in Fig. 29, 
and as in the TM case with 0 = 0 in (14.13). In this case the 
magnetic field is tangential to the conducting planes, and the 

electric field is normal to the planes, equal to \/m/c times the mag¬ 
netic field. We now see, however, that if the planes have only 
finite conductivity, there must be a small tangential component 

of electric field at the surface. If, as in Fig. 32, the magnetic 
field is along x and the normal component of electric field is 
along ]/, this tangential component of electric field will be along z. 
It v/ill point in opposite directions on the two planes, for in each 
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case Poj^nting's vector must point into the metal. Thus over 
the right-hand plate Ez will be along +2, and over the negative 
plate it will be along —z. As a matter of fact, an exact expres¬ 
sion for the field between the plates can be set up on the l^asis of 
Eq. (14.13), treating the problem as a TM case, but with ky no 
longer zero, as in the case of perfectly conducting plates, but 
equal instead to a small, complex quantity. If it is small enough, 
(14.13) indicates that Ez should be proportional to y and thus 
should be positive on the right-hand plate, m^gative on the left 
one, as we have just seen that it is. The magnitude of Ez, 
from (16.2), is \/no)/2cr (1 +i)//x. The time average of the 
component of Poynting^s vector pointing into the metal is 
Re ^EzUx = ^ \/fxoo/2<j HI. Supposes we consider unit width 
of the conductors, along the x axis. Then for unit length of the 

line, there will be two conductors, each with unit area of surface, 
so that the mean energy flow into the walls, or the energy loss 
per unit length per second, will be \/"x(^/2<j III. the other 

hand, the average component of Poynting’s vector along the z 
axis, the axis of the line, is \ \/mo7^) HI, where mo, €0 represent 
th(' values for the dielectric, while ju represented the value for the 
conductor. If the distance bet ween plates, along the y axis, is h, 
the cross section of the line will be b, so that the flow of energy 
along the line will be 6/2 \/no/eo HI. Then, using (16.4), we 
have 

1 \/jLlCo/2(7 HI _ 1 Teo j pLU) 

2 6/2 VmoTTo“ 6 \ 
(16.10) 

The attenuation constant, we notice, is proportional to the 
square root of the frequency and inversely proportional to the 
square root of the conductivity. This behavior is characteristic 
of skin effect attenuations. 

We can understand the variation of a with frequency and 
conductivity better if we consider the resistance of a strip of 

conductor of unit wdth, when the skin effect formulas apply. 
The quantity //x, as we saw in Sec. 9, equals the current in the 
z direction in the conductor. We have just seen that the z 
component of electric field is 'v//ico/2(r (1 + j)Hx. This is 
the voltage between two points unit distance apart along the s 
axis. The real part of the ratio of Eg to Hg, or \//Lico/2or, is thus 

the resistance of unit length of a strip of unit width of the con- 
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ductor. It is easy to understand why this formula is correct. 
Suppose we consider the current to be confined to a thin sheet 
of conductor of thickness 6, as defined in (12.13), given by 

6 = (16.11) 

Then its resistance would be 1/5 times the resistance of unit cube, 
or would be l/5<r, which is equal to 

(16.12) 

just the value we have found above. The reason why the 
resistance increases A\’ith increasing frequency is thus seen to be 
that the thickness of the skin in which the conduction takes place 
decreases with increasing frequency. Let us now see what we 
should expect for the attenuation constant a in this case, by 
analogy with a transmission line. From I]q. (2.17) w^e can see 
eavsily that a line with series resistance R per unit length, series 
inductance L, and shunt capaciU^ C should have 

2 
R fC 

L 
(16.13) 

In the present case, referring back to the arguments of Sec. 9, 
we see that unit length of the transmission line, formed of unit 
widths of strips at a distance of b apart,’ should have a capacity 
of €o/6, and an inductance of 6mo. The resistance of unit length 
should be twice the value of (16.12), since the current must flow 
through both conductors in series. Thus we should expect 

1 

b\Mo 
(16.14) 

which is just the value (16.10). We shall use the value (16.14) as 
a standard to which to refer the attenuation in other cases. It is 
usual to refer to this type of wave, in which both electric and 
magnetic fields are transverse, as a transverse electromagnetic 
wave, denoted by TEM. Thus we shall use the abbreviation 

oltem 

as the attenuation of the transverse electromagnetic wave. 
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Let us write down the formula for the Q of a TEM wave. 
From (16.8) this is iS/2a, where a is given in (16.15). The value 
of p for a TEM wave, from (9.2), is w \/^6. Thus we have 

(16.16) 

where 8 is the skin depth, given in (16.11). This value of Q 
has the ord(u* of magnitude of the value given qualitatively by 
our discussion of Eq. (16.9); there we saw that in order of magni¬ 
tude it should equal the ratio of the cross section, which here is 6, 
to the cross section of a strip of width 8 and length equal to the 
perimeter of the pipe. Since the present pipe has only two walls, 
this latter cross section should presumably be taken to be 25. 
Thus the ratio would be 6/25, which depends on 6 and 5 as the 
correct formula (16.16) does. 

Now let us consider the attenuation of a TE wave between 
parallel conducting planes. We take the planes to be at 2/ = 0, 
2/ = 6, as in Fig. 32. For perfect conductivity, the fields are as 
in (14,5): 

E 
1 

Vl — (nXo/26)- 
//o sin 

,/(wXo/26) 

- Ilfi sin kyyc’“‘~^’ 

Ih = //o - T. 
Vi {n\o/2by 

■' COS (16.17) 

First we find the z component of Poynting^s vector. This is 
^ Re {E^Iiy), involving the factor sin^ kyy. To integrate Poynt- 
ing’s vector over the area of the line, we note that the average 
value of sin^ kyij is so that the integral is ^ times the area, or 
6/2, since we a.ssume the dimensions to be unity along x, 6 along y. 
Thus for the total flow of energy along the z axis we have 

\.^-j==M== (16.18) 
4\eo Vl - (nXo/2fe)* 

Next we find the energy loss in the walls. As before, we take the 
tangential component of H at the surface of the wall, as computed 
on the assumption of perfect conductivity. In the present case, 
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thi.s component is He We then assume the time average energy 
flow per unit area into the metal is ^ \/ho}/2<t H\. Taking 
//z from (16.17), wo note that the term cos kyy is unity at each 
metallic surface. The area of metallic surface concerned is two 
square units of area, one for each plate. Thus the energy loss 
to the walls, per meter of line length, is 

4 
W HlinU/2by 

' 2(r 1 - (nXo/26)2 (16.19) 

We are now in position to find a. Using (16.4), this is one-half 
the ratio of (16.19) to (16.18). Thus we have 

_ 2 j/JLO) (71X0/26)“ 

“ “ 6 Vl - (nX^2W- 
2(n\o/2by- 

— OtThWt 
VT- (n\«/26)2 

(16.20) 

where axEM is defined in (16.15). This result is remarkable, in 
that the attenuation decreases for increasing freciuency, instead 
of increasing as aTH.\f does. To see this, we note that the scjuarc' 
root becomes equal to unity for high frequencies, or short wav(' 
lengths, while the term XJ in the numerator varies inversely as 
the square of the freciuency, and arsM is proportional to the 
square root of the frequency. Thus a varies as the —f power of 
the frequency, reducing to zero for infinite frequency. The 
reason for this behavior is simple enough. As the frequency 
increases, the angle d, of Fig. 32 and Eq. (14.8), approaches zero. 
Thus the wave approaches the TEM case and Hz approaches 
zero. It is only Hz however, that represents a current in the 
walls of the wave guide and hence that results in energy dissipa¬ 
tion. As Hz goes to zero, it is obvious that the attenuation 
decreases to zero. 

In a similar way we can consider the attenuation of a TM 
wave between parallel conducting planes. The fields, from 

(14.13), are 

B.- 
Hx = Ho cos (16.21) 
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The z component of Poynting’s vector is ^ Re { — Eyfix). Inte¬ 
grating over the area of the line, as in the TE case, we have as the 
total flow of energy 

In finding the flow of energy into the walls, is the tangential 
component of the magnetic field. Remembering that 

cos kyy = 1 

at the conducting walls and proceeding as before, we find the 
energy loss per unit length of line is 

The attenuation is then 

(16.23) 

a 
2 

b 

— OiTEM 

fXOJ 1 

2cr vT^(riXo/26)2 
2 

Vl - («Xo/25)2 
(16.24) 

We see that for the TM mode the attenuation increases with 
increasing frequency, just as it do(vs for the TEM wave. It does 

a 

Fia. 34.—Attenuation as function of frequency, for waves between parallel 
conductors. 

not go to zero at zero frequency, however; it becomes infinite at 
the cutoff frequency of the wave guide, where the square root 
in the denominator goes to zero, and there is a point of minimum 
attenuation between the cutoff and infinite frequency. This 
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situation is shown in Fig. 34, where we show the attenuation as a 
function of frequency for the TEM, TE^ and TM modes of the 
problem of two parallel conductors. 

As a next step after the problem of two parallel conducting 
plates, let us take the T^o.n wave in a rectangular wave guide. 
The field components are the same as those given in (16.17). 
There are additional conducting surfaces, however, at x = 0 and 
X — Gy and these result in two changes. In the first place, the 
total flow of energy along the z axis is equal to a times the value 
of (16.18), since the area of the guide is now aby instead of b. 
Secondly, there are energy losses not only on the walls per¬ 
pendicular to ?/, which are similar to that found in (16.19), 
but also on the walls perpendicular to j. Both Hy and Hz are 
tangential to these walls, so that //J + H\ will appear in the 
expression for energy loss. Both these terms contain terms like 
sin^ kyXf and cos^ kyy^ which average to ^ over the surface. We 
then have three terms in the energy loss. The first, similar to 
(16.19), comes from loss on the walls perpendicular to y. It is 

a 
Hl{nU/2hy 

\2<7 1 - ~{n\o/2by 
(16.25) 

The second comes from the Hz term and from the loss it producers 
on the walls perpendicular to x. On account of th(^ cos- term, 
there is an extra factor and this term is 

b Hl(nU/2by 
2\2(t 1- (a/Xo726)2 

(16.26) 

The third term comes from the term //,^, on the faces perpen¬ 
dicular to X. It is 

h 
2 

(16.27) 

The two terms (16.26) and (16.27), representing the losses on the 
faces perpendicular to x, combine to 

b fJjLw HI 
2\2a i - \7i\o/2by 

The attenuation constant a is now 

(16.28) 

2 1^ (n\o/2by + {b/2a) 
(16.29) 
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The last term, by which (16.29) differs from (16.20), represents 
the effect of attenuation on the faces perpendicular to x, on which 

the electric lines of force terminate. 

The expression (16.29) behaves quite differently from (16.20). 
We have seen that the attenuation in (16.20) decreases with 

'increasing frequency or with decreasing wave length. The 

added term in (16.29), however, approaches 1/a \/€o/mo 
at high frequencies, increasing with frequency as the attenuation 

constant of the TEM wave does. As a result, the constant a 
for the TEo,n modes goes through 
a minimum at a certain fre¬ 

quency, increasing at high fre¬ 
quencies. To illustrate this, we 
give in Fig. 35 the attenuation 

of the n = 1 mode, or the TEo,if 
the mode of lowest frequency. 
Instead of «, we often use th(' 
attenuation in decibels per meter. 

To got the relation Ix^tween this 
quantity" and a, we note that 
attenuation in decibels, by defi¬ 

nition, is 10 times the logarithm to the base 10 of the ratio of 
original power to attenuated power. For unit length, remember¬ 
ing that the power goes as the square of the field, this ratio is 

The logarithm to the base 10 of this quantity is 2a logic e = 0.8686. 

Hence we have 

Attenuation in decibels 8.686a (16.30) 

The method that Ve have used in this section for finding atten¬ 
uation of the modes in the problem of two parallel conducting 

planes, and of the TEo,n modes in a rectangular pipe, can be 
extended in a straightforward way to the general case. Since 
the TE(i,i mode is the important one in practice, however, we 

shall not carry out the analysis. The formulas are found in 
references of Schelkunoff and of Chu and Barrow already men¬ 
tioned, and the qualitative results are similar to what we have 

found in the TEo,n case, the attenuation going through a mini¬ 
mum between the cutoff and infinite frequency. 

It was mentioned at the beginning of this section that the 
straightforward way to handle the problem of attenuation in 

Fig. 35. -Attenuation of TEo,i wave 
ill a pipe, as function of wave length.. 
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rectangular wave guides was to set up a solution of the wave 
equation within the guide, damped along the z axis, in such a 

way that exact boundary conditions could be satisfied at the 
metallic surface. In the case of propagation between two paral¬ 
lel surfaces, this can be carried out exactly, though we shall not 

carry it through. Referring to Fig. 32, we start with waves' 

propagated along the z' and 2" directions, making an angle of 0 

with the z axis. At the same time, we wish to have these waves 

damped. From the principles of Sec. 13, remembering that the 

medium within the guide is nonabsorbing, we see that the wave 
must be attenuated in a direction at right angles to the wave 

normal. That is, for instance, the wave that is propagated 

along the 2' axis in Fig. 32 must be attenuated along a direction 
in the yz plane at right angles to 2', or mast contain an attenua¬ 

tion factor Similarly the wave propagated 
along 2" must have a factor d+yCombining these 
waves, we have a resultant disturbance attenuated along the 2 

axis according to the factor and at the same time 

varying with y, not as the sine or cosine of a real constant times 
4/y as in (14.1), for instance, but as the sine or cosine of a complex 

constant times y. This change, to a complex propagation con¬ 

stant along ij, introduces a small tangential component of electric 
field, proportional to ao, at the surface of the conductor. We 
then adjust ao, which so far is arbitrary, so that the tangential 

component of electric field satisfies proper conditions of con¬ 
tinuity with the field within the conductor, which we have set 
up according to the principles of Sec. 13. When this is done, 

the attenuation constant ao sin 6 along the 2 axis should equal 

the value a which we have computed in the present section, 
and it proves to agree with the value we have found. Since this 

more exact method yields no new result and since it is straight¬ 

forward though a little tedious to carry out, we shall not repro¬ 
duce the argument in detail. 



CHAPTER IV 

THE GENERAL TRANSMISSION LINE PROBLEM 

The rectangular hollow-pipe transmission line, which we have 
taken up so far, is the simplest type from the standpoint of 
theory, since the waves propagated in such lines are very similar 
to plane waves in empty space. Now we shall consider more 

complicated types of transmission lines. The most important 
of these is the coaxial cable. These lines are more complicated 
mathematically, in that the metallic surfaces on which boundary 

conditions must be applied are of less simple shape than in the 
rectangular pipe, so that the waves that result from the wave 
equation are of more involved type than plane waves. The 

fundamental principles, however, are very similar to what we 
have found with the rectangular case. The general problem 
which we take up is the following: we imagine the general case of 
cylindrical conductors, generated by arbitrary cross-sectional 
curves in the xy plane, moved parallel to the z axis, and find the 
field and the characteristics of propagation along these conduc¬ 
tors, in the z direction. After setting up the general problem, 
we consider in detail two special cases: the parallel-\vire trans¬ 
mission line and the coaxial cable. 

17. General Formulation of the Transmission Line Problem.— 
As with rectangular wave guides, so in the general case we have 
two types of waves, the transverse electric and the transverse 
magnetic. At the beginning of Sec. 15 we carried out an analysis 

for these two types of wave, which was completely general and 
not limited to the rectangular case. We rewrite the essential 
equations derived there, taking for convenience only the case 

where the dielectric has zero conductivity. Then for the TE 
case we can derive all components of field from H,. This 

quantity satisfies the equation 
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where 
= 72 + (17.2) 

and where as usual //* varies as r*. From H, we can find 
the other components of field by the relations 

= ZHy, 

H. — 7 dll! 

dx’ 

Ey = -ZH., 

Hy = 

where 

— 7 dHt 

dy 

Z = ^ 
7 

\« Vl - 

(17.3) 

(17.4) 

If we regard Hz as a function of the two variables x and y, we 
see that //*, Hy form a vector in the xy plane equal to the two- 

Fig. 36,—Vector relations in xy plane, TE wave. 

— y 
dimensional gradient of IIand Ex^ Ey form a vector at light 

angles to //*, Hy, and equal in magnitude to Z times the magni¬ 
tude of the vector of components //x, IIy. The quantity Hz must 
satisfy the boundary condition that its rate of change along the 
normal to a conducting surface is zero, provided the conductor has 
perfect conductivity. These relations are shown more con¬ 
veniently by a diagram. In Fig. 36 we show the xy plane in an 
arbitrary problem, with the lines Ht = const, indicated on the 
diagram. The vector //x, Hy is at right angles to the lines 
Hz = const., and the vector Exy Ey is therefore along the lines 
Hz = const., so that these lines at the same time form the lines of 
electric force, while the lines of magnetic force (or rather their 
projections in the xy plane) arc the orthogonal trajectories of 
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the first set of curves. The surfaces of conductors, like the one 
shown, must be orthogonal to the lines IIz — const., in order that 
the electric field may b(^ normal, and the magnetic field tangential, 
to the perfect conductor. 

The situation is similar for the TM waves. Here it is Ez that 
is different from zero, and it satisfies an equation just like (17.1). 
Ex and Ey are determined from it by relations just like (17.3). 
There is a difference between the two cases, however, in the 
relations between E and //. Thus for the I'M wave we have 

y 
where Z = —r- 

ejw 

(17.5) 

The boundary conditions at the surface of a perfect conductor are 
also different in this case from what they are in the TE case. Here 
we must have Ez equal to zero at 
the surface of a conductor. The 
situation is then as in Fig. 37. 
Lines of const. Ez are shown. 
In this case the conductor must 
have one of the lines of const. 
Ez as its boundary. The vector 
Ex, Ey is perpendicular to the 
lines Ez = const., and the vector 
IIX, Hy is parallel to the lines, 
so that lines Ez = const, form at 
the same time magnetic lines of 
force. 

EyrConsfanf 

Fkj. .37.- Veotor relations in xy plane, 
TM wave. 

It is clear from this formulation that any solution of (17.1) 
furnishes a set of lines which, together with their orthogonal 
trajectories, provide a solution for either the TE or the TM case. 
We shall first investigate the special case fc- = 0. This is the 
case ordinarily called the principal wave. In this case, accord¬ 
ing to (17.2), 

7 = jeo \/^ (17.6) 

the value which it has for a plane wave in empty space propagated 
along the z direction; for either the TE or the TM case, Z is given 
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by 

(17.7) 

also the value characteristic of a plane wave propagated through 
the medium in the absence of conductors. In this case, we see 
from (17.3) that Hz = 0, in order that the ratio HJk'^ may be 
finite. That is, this wave is a TEM wave with no longitudinal 
component of either H or E. It is convenient then to introduce 
a quantity, say </>, defined by 

(17.8) 

which remains finite in the limit as k goes tp zero. In terms of it, 
we have 

with 

E. = //„ E, = 

From (17.1), we see that <t> .satisfies 

(17.9) 

(17.10) 

d^<t> d^<t> 

3x^ '*■ dy^ 
(17.11) 

or the two-dimensional Laplace’s etjuation. Or if we choo.s(‘, 
we can proceed from the TM case to the limit. In this casi* we 
can define a quantity by the equation 

^ = (17.12) 

from which Ei and Ep are defined by the relations 

Ep dy 
(17.13) 

The relations between E and H are again given by (17.10), and 
i/, like 4>, satisfies Laplace’s equation (17.11). Then as a result 
of conjugate function theory jve can obtain a solution of a trans¬ 
mission line problem from any set of orthogonal trajectories 
set up from a two-dimensional solution of Laplace’s equation. 
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We shall come to special examples later. We can also derive 
some general conclusions. Thus let us consider waves within a 
hollow pipe. The cross section of this pipe will form a closed 
curve in the xy plane. Then we must find a function ^ satisfying 
Laplace\s equation inside the curve and reducing to zero at every 
point of the boundary. By general function theory, no such 
continuous function exists, except zero. Thus there can be no 
principal wave inside a hollow pipe. This is in accordance with 
what we found in Chap. III. There the TEM wave discussed in 
Sec. 14, the limiting case of the TMyn.n wave for m = 0, n = 0, 
was found to e.xist in the space between two parallel infinite 
conducting planes, but it could not exist in a hollow pipe enclosed 
on all .sides. This wave was essentially the same principal wave 
that we are now discussing. The fact that it can exist in the 

space between two parallel planes does not contradict our state¬ 
ment that it cannot exist within a hollow pi])e, for the two planes 
do not enclose a finite area in the xy plane. 

Though a principal wave cannot exist in a wave guide in the 
form of a hollow pipe, nevertheless it does occur in important 
practical cases, in particular in the coaxial line, in which the 
propagation takes place in the ring-shaped region between two 
concentric cylindrical conductors. In this case the cross section 
consists of the ring between two concentric circles, and it is 
easily shown that functions exist that satisfy Laplace^s equation 
in the region between two such circles and that satisfy proper 
boundary conditions on both surfaces. Considering the outer 
surface as a hollow pipe, the rcnjuired functions satisfy Laplace^s 

equation everywhere within the j)ipe and reduce to the proper 
boundary conditions on the surface of the pipe, but nevertheless 
are not allowable solutions of the problem of a hollow^ pipe, for 
they have singularities within the material of the inner con¬ 
ductor. These singularities make no trouble in the problem 
of the coaxial line but would make the solution impossible in the 
case of a pipe. In fact, the general situation is that a principal 
wave is impossible in any case where the wave travels in a 
region bounded by a single conductor; but it is possible if the 

region is bounded by two or more conductors. The coaxial 
line, the pair of infinite parallel plates, and the line consisting 
of two parallel wires are examples of problems in which the 

principal wave is a possible solution. In cases where the princi- 
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pal wave exists, it is ordinarily by far the most important mode of 
propagation. We shall accordingly start by considering the 

principal wave in some important actual cases. 
18. The Principal Wave in the Parallel-wire Transmission 

Line.—The case of the parallel-wire transmission line is such a 

well-known one that it will pay us to see how it works out, even 
though it is not a type of line suited to microwave propagation. 
Let the cross section of the line in the xy plane be as given in 

Fig. 38, the wires having a radius r and a distance d on centers. 
We recognize at once that there is a well-known electrostatic 
or magnetic problem that furnishes a mathematical analogy 

to this case. Thus if we have two parallel cylindrical wires 

Fig. 38,—Cross section of parallel-wire transmission line. 

carrying opposite charges, the equipotentials and lines of force 
form two sets of orthogonal curves, satisfying I^aplace\s equation, 

one set, the equipotentials, being constant over the conducting 
surfaces. Similarly if two wires carry currents in opposite 
directions, the magnetic lines of force and their orthogonal 

trajectories take the form of the same two sets of curves. These 
curves are shown in Fig. 39. Obviously in the present case the 
lines going from one wire to the other are lines of electric force; 

those surrounding a wire are lines of magnetic force. It is a 
well-known fact that in this problem the lines are all circles. 
In fact, the problem and the sets of circles are mathematically 
identical with those met in Fig. 9, in connection with an entirely 
different problem. 

It is hardly worth while to work out the details of this problem, 

since we are not going to use it in applications. It is easy by 
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analogy with the electrostatic case, to set up the value of <#> 
or V' as a function of x and y, and hence to find the complete field. 

Since the wave is a principal wave, it is propagated with the 
velocity of light, and the ratio of components of E and H in the 
xy plane is the same as for a free wave. It is interesting to see, 

however, that in this case the analogy to the type of transmission 
line considered in Chap. I is very close. Thus it is well known 
that the capacity of two parallel wires per unit length, when 

Fig. 39.—Lines of force for parallel-wire transmission line. 

the diameter of the wire is small compared to the distance 
between, is 

C = 
7r€ 

In d/r (18.1) 

where d is the axial distance apart, r the radius of a wire, as in 
Fig. 38. This result can be easily proved from the electrostatic 
problem mentioned just above. Similarly the inductance per 

unit length of such a pair of wires is 

L = ^ In - (18.2) 
IT T 

If we were to use these values, determined from static problems, 
in Eq. (2.15), which states that the velocity of propagation of a 

disturbance down a line with inductance L, capacity C per unit 
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length, in the case of no attenuation, is i; = l/\/LCj we should 
find 

(18.3) 

which as a matter of fact is just the velocity of light. Hence we 

can find the correct velocity of propagation in this case by use of 
the analogy of lumped transmission lines. We can hardly have 
much faith in the derivation, however, since the C and L which 

appear in our formula are determined from static problems, and 
the problem of wave propagation is certainly not static. The 
method used in the present section is a much more rigorous way 

of deriving the results for such a line. When we consider the 
concept of impedance, we see that the .analogy between the 
present methods and the method of lines is not very close. From 

Eq. (2.20), the equivalent impedance of the line should be 

Zo = y/h/C, This gives 

= 08.4) 
\ 6 TT 

w'hich does not agree at all with the value found in (17.7). 

This does not indicate an error in either derivation; it merely 
means that we have meant different things by impedance in the 
two cases. This is an illustration of the fact that when we deal 

with wave guides and such problems, the concept of impedance 

is not a unique and simple one, and it is not obvious what we 
should mean by impedance. We have so far avoided this 

question and have used the term ^‘impedance^^ only to refer 
to a ratio of the type E/H. In one simple case, the TEM wave 
between parallel plane electrodes, we saw that this definition 
of impedance reduced in an obvious way to the ordinary defini¬ 

tion as a ratio of a voltage to a current, but we have not tried to 
push this analogy further, and in fact in general it does not hold. 
We shall come to this question in more detail in a later section, 

where we deal with composite lines, and must handle questions of 
impedance matching between different parts of such a line. 
Until then, we shall continue referring to ratios of ^ to 77 as 
impedances, in a rather uncritical way. 

19. The Principal Wave in the Coaxial Line.—Let us con.sider 
an inner circular cylindrical condqctor of radius a, surroynded by 
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an outer cylinder of radius 6. Then in the principal mode the 
electric lines of force are obviously radial straight lines, and the 

magnetic lines of force are circles surrounding the origin. As in 
(17.13), the electric field must be proportional to the gradient 
of a scalar function that satisfies Laplace^s equation. From 

one’s general knowledge of potential theory, the scalar function, 
since it depends only on r, the radial distance out from the axis 
of the cylinders, must be proportional to In r, and its gradient, 

the electric field, is proportional to 1/r. This is the same result 
that we should have for the electric field in the corresponding 
electrostatic problem of a uniformly charged infinitely long 

circular cylinder. If we write our vectors in cylindrical coordi¬ 
nates, r, dy Zy denoting the component along the radius by sub¬ 
script r, the component along the tangent to a circle surrounding 

the origin by subscript dy wc then have, using the principles of 
Sec. 17, 

\eo r 

(19.1) 

with 

y = jci} y/toMo (19-2) 

all other components of the fields being zero. By direct substitu¬ 

tion in Maxwell’s equations it is ea.sy to show that these fields 
satisfy the field equations, and it is obvious that they satisfy 
the boundary conditions at the surfaces of the conductors. 

From (19.1) we see that a principal wave can be propagated 
within a coaxial line, a wave traveling with the velocity of light in 
the dielectric with which the line is filled, and having both 

transverse electric and magnetic fields. The fields get stronger 
and stronger as we approach the center of the line, so that they 
are much stronger at the surface of the inner conductor, at 

r = a, then at the outer conductor at r = 6. If there were no 
inner conductor, the field would have a singularity at r = 0; 
this illustrates our previous remark that a principal wave is not 

possible in a hollow pipe, as for instance a hollow circular cylinder, 
but becomes possible when there is an inner conductor on which 
the electric lines of force can terminate. It is to be noted that 

there is no cutoff frequency for the principal wave. It can be 
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propagated down the coaxial line for any frequency of wave, or 
any values of the radii of the conductors. This is in contrast 
to the case of propagation in hollow pipes, as discussed in the 
preceding chapter, and in contrast to the other modes of propaga¬ 
tion in the coaxial line, which we shall discuss later and in which 

the wave length of the wave must be comparable with or smaller 
than the dimensions of the line. 

We shall now look at the coaxial line a little more closely. 
First we ask what is the voltage difference between the conductors 
and the current flowing in the conductors, and compute an 
equivalent impedance from these values. The z component of 

surface current in either of the conductors is equal to the tangen¬ 
tial component of H at the surface of the conductor, given in 
(19.1). The total current is the integral of- the surface current 
over the circumference of the circle, or 2Trr times 11$^ as given in 
(19.1). That is, it is 

i = (19.3) 

This of course has opposite signs, but the same magnitude, on the 
inner and outer conductors. The voltage is the integral of Er 
from one conductor to the other, or is 

y = .p^oln(19.4) 
\ €o a 

Regarding the coaxial line as a transmission line, with ordinary 

voltage and current, there would be an (equivalent impedance 
equal to the voltage divided by the current: 

As in the equivalent impedance of the parallel-wire transmission 

line, given in (18.4), this quantity is different from the ratio of 
E to H, which we have also interpreted as an impedance and 
which is simply equal to VT^oT^o for any principal wave. Again 
as in the parallel-wire problem we can set up a capacity and an 
inductance per unit length of the line, from ordinary static 
methods, and can compute the velocity of propagation and the 

equivalent impedance from them. Thus by well-known methods 
the capacity per unit length in this case is 

2ir€o /../N 
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and the inductance is 

j MO In h/a 

from which the velocity is 

V — 
1 

\/LC \/coMo 

and the equivalent impedance is 

(19.7) 

(19.8) 

as in (19.5). 

Next we shall consider attenuation in the coaxial line, as 
a result of the finite conductivity of the walls. We proceed as in 
Sec. 16. First we find the flow of power down the line, by com¬ 
puting the time average Poynting vector, ^ Re (£/ X 5) = 
i Re (ErHe), and integrating it over the cross section of the line. 
This is 

We note that this is the same expression for flow of power which 
we should have got from a conventional transmission line point 
of view. In that case we should have found the power from the 

product of voltage and current, and in case voltage and current 
are given as the real parts of complex quantities, this leads to the 

relation 

Power = ^ Re Vl (19.11) 

by Eq. (5.6). If we insert the values of V and i from (19.4) and 
(19.3), we get just the expression for power already derived 
from Poynting’s vector in (19.10). Having found the flow 
of power down the line, we next find the power loss to the walls 

of the coaxial line. To do this, as in (16.6), we must integrate 
^ over the surface of the conductor. The area of 
unit length of the conductor is 2irr, where r is a or 6 for the inner 

or outer conductors. Thus the energy flow into the walls is 
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where r equals a or b, and for the two walls we have the total 
power loss 

We can now use (16.4) to find a, the attenuation constant; from 

that equation, a should be ^ times the ratio of (19.13) to (19.10). 
Hence we have 

1 (l/g + 1/b) 
2 \ Mo \ 2<r In b/a 

(19.14) 

It is evident that the first term, in 1/a, is the more important one 
in determining the attenuation. This means that the larger 
part of the loss occurs in the small inner conductor, and the 
smaller this is, the greater is the loss. The reason is that the 
fields increase rapidly as the conductor is made smaller, resulting 
in greater energy flow into the conductor. We can at once write 
down the formula for Q for the principal wave in a coaxial line. 

Using the defii^ion Q = /3/2a, and remembering that in this 

case 0 = 03 \^opLoy we have at once 

a - 9^ 
^ ^ y. h/a ^ d/b (19.15) 

where 5 is the skin depth, given in (16.11). 

20. General Wave Propagation in the Circular Wave Guide 
and the Coaxial Line.—In the preceding section we have investi¬ 
gated the principal wave in the coaxial line. This was very 

simple, since the solution could practically be written down by 
inspection. The general case of propagation in a coaxial line 
can be easily solved, however, using the well-known solution 

of the wave equation in cylindrical coordinates. At the same 
time, the problem of the circular wave guide can be handled by 
practically identical means. These problems are both taken up, 

for example, in Stratton,* Chap. IX. Since we shall not make 
much use of the results, we shall not give full mathematical 
details but shall merely sketch the derivations. 

Both the coaxial line and the circular wave guide depend on 
solutions of the wave equation (17.1) in polar coordinates. For 

^ J. A. Stratton, “Electromagnetic Theory/' McGraw-Hill Book Company, 
Inc, 
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the coaxial line, boundary conditions must be satisfied on both an 
inner circle of radius i2o and ^ outer circle of radius R\) for the 
wave guide, only the outer circM is present. It is well known that 
the solution of the wave eqijJ^ion in polar coordinates is the 
product of a sine or cosine function of the angle, sin nS or cos 
where n is an integer, multiplied by & Bessel function of k times 
the radius, of order n. For each value of n, there are two 
independent solutions of BessePs equation, generally called 
Bessel’s function, Jn(x)y and Neumann’s function, Nnix). 
These have the general behavior shown in Fig. 40. They both 
vary in a more or less sinusoidal way, with an amplitude that 

Fig. 40.—and Nn(r) as functions of x (schematic). 

decreases roughly as the inverse square root of the value of x. 
They have a pha.se relation to each other like the sine and cosine, 
one having its maxima and minima where the other has its zeros. 
At X = 0, Ju{x) is finite for all values of x, being in fact zero for 
all cases except for n = 0, whereas Nn{x) becomes logarithmically 
infinite at x = 0. The general solution is an arbitrary linear 
combination of Jn(x) and Nn{x). This combination must be 
chosen to satisfy boundary conditions on the conductors. 

In the matter of boundary conditions, the circvilar wave guide 
is simpler than the coaxial line. The function must certainly 
be continuous at the origin, which means that Nn{x) cannot be 
u.scd, so that the .solution must be .simply the Bessel function 
Jn{x), which remains finite at the origin. Thus in this case we 
have 

(20.1) 
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The boundary conditions are different for TE and TM waves. 
In the TE case, as we have seen, the normal derivative of Hg 
must be zero at the boundary; that is, Jn must have a maximum 
or minimum when r equals the radius of the pipe. By suitable 

choice of k, we can arrange it so that Jn has its mth maximum or 

minimum at the radius of fhe pipe. In this case, we can denote 
the mode as the TEn,m mode. Similarly in the TM case the 
function Eg must be zero at the boundary. In this case we can 

choose k so that Jn has its mth zero (not counting the origin) 
at the radius of the pipe, and we denote this mode as the TMn,m 
mode. By giving a table of maxima, minima, and zeros of 

Jny we can find the value of k for each of these modes. These 
values are given in the following table: 

Maxima and Roots of Bessel^s Functions 

n= 1 0 1 2 

= 0 (TE) 3.832 1.842 3.05 
7.016 5.330 6.71 

/. = 0 {TM) « 2.405 3.832 5.135 
5.520 

1 
7.016 8.417 

We give values for m = 1, 2, in each case. For purposes of 
notation, we may denote the value of x for the mth maximum or 

zero of Jn as Xnmj where we have one set (marked J' = 0) for 
the TE waves, another set for the TM waves. Thus for instance 

for the TE waves, we have Xn = 1.842. 
From the values given in the table, we can find the value of 

k occurring in (17.2) and other formulas. We do this simply by 
the condition 

kRl = Xnn,, fc = %= (20.2) 
rCi 

where Ri is the radius of the pipe. We can then use (17.2) to find 

7, the propagation constant. In the case of real propagation, 
where y = jfi, this gives 

jT— 2t 
Using the relation 

(20.3) 
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where Xo is the wave length in empty space, this can be rewritten 

(20.5) 

and the pipe wave length, or the wave length of the disturbance 

in the pipe, is 

(20.6) 

We see that the wave length in the pipe is greater than in free 

space, on account of the fact that the phase velocity in the pipe is 
greater than in free space. Furthermore, we see that as in the 
rectangular pipe there is a cutoff frequency, below which real 

propagation does not take place. This comes when the square 
root in (20.5) becomes zero, or when 

•Tnm 

(20.7) 

From (20.7) we see that the smaller Xnm is, the longer is the 
cutoff wave length, or the lower the cutoff frequency. From the 
table, we see that the lowest value of Xn„, is the value 1.842, com¬ 
ing from the TEi,^ wave. There will then be a considerable 

range of wave length in which this one mode is propagated, while 
all other modes are attenuated. In particular, this range is 
that for which the circumference 2wKi is between 1.842 and 

2.405 wave lengths. It is customary to use a circular wave guide 
in this range, so as to have only one mode propagated. 

In the TEiji mode, Hz is given by ./i(At). The func¬ 

tion ,/i starts off linearly with x, and then reaches a maximum, 
which in this mode comes at the wall of the pipe. On account 

of the sine or cosine function, //, itself shows a maximum on one 
side of the pipe and a minimum on the other. We remember 
according to Fig. 36 that the lines //, = const, are at th^ same 

time the electric lines of force in the problem. Thus the lines 
of force run as sketched in Fig. 41. As we see, the lines of force 
remind us of those shown in Fig. 33, representing the TEi o 
mode of a rectangular pipe. In each case the lines run across 
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from one side of the pipe to the other and are stronger toward 
the middle of the pipe. In a way these two modes correspond to 
each other, representing in each case the mode of lowest cutoff 
frequency. The sizes of pipe required in tlie two cases are com¬ 
parable: for the rectangular case, we saw in Sec. 15 that the 
larger dimension of the pipe must be equal to or greater than a 
half wave length of the disturbance in empty space; in the circular 
pipe the diameter 2Ri must be at least 1.842/7r = 0.584 wave 

lengths. 
In the range where the circumference 27r7?i is between 2.405 

and 3.05 wave lengths, we see from the table that two modes, 

the TEi,i and the TMqa waves are possible. It is sometimes 
desirable to operate circular pipes in the second of these modes, 
since it has circular symmetry and can thus be used in problems 
where parts of the apparatus must be allowed to rotate about the 
axis of symmetry of the pipe. In this mode, Ez is proportional 

to Jo(kr)y as we see from (20.1), a 

function of r only, reducing to zero at 
the surface of the pipe. Er is pro¬ 
portional to the derivative jQ(kr)y 
having a maximum at the surface of 
the pipe and reducing to zero at the 
center, and Ee is zero, so that in the 

plane normal to the axis of the pipe E 
points radially outward. The mag¬ 
netic field //, which is transverse to 

Fio. 41.—Electric lines of force the axis, points tangentially, so that 
in TEi.i mode of circular pipe, magnetic lilies of force are circles 

surrounding the axis. In the range of wave lengths where this 
TMoa wave is used, it Is necessary to avoid the TEi,i wave, 
which is always simultaneously possilile, by being careful not to 

excite the TEi,i, by taking advantage of the symmetr}^ of the 
device used to excite the wave. 

Now that we have considered the circular hollow pipe, let us 
see how we should handle the general case of propagation in a 
coaxial line. In this case, as we have stated before, the function 
Hz or Ez must be made up of a cosine function of the angle, times 
a linear combination of Jn(kr) and Nn{kr). Since as we see from 
Fig. 40 these two functions have the same relation to each other 

that the sine does to the cosine, we see that by combining them 
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wc again get a function of sinusoidal type but with an adjustable 
phase. We choose this phase so as to satisfy the proper bound¬ 
ary condition at the surface of the inner conductor; that is, to 
make the combined function have a maximum there in the case 
of the TE waves, or a zero for the TM waves. Then we choose 
k so as to give a correct boundary condition on the outer conduc¬ 
tor. Here as with the circular pipe there are an infinite number 
of ways of satisfying this condition on the outer conductor. 

Thus for the TE waves we have one maximum of the function 
on the inner conductor. We can have the next minimum on 
the outer conductor, or the next maximum beyond that, or any 

one of the infinite number of maxima or minima. We can then 
denote each mode by two indexes n and m, as before, the first 
referring to the cosine function, the second one numbering the k 
value which is used. On account of the fact that both Bessel’s 
and Neumann’s functions come into the final result, it is not 
easy, as it was with the hollow pipe, to derive the cutoff fre¬ 

quencies and pipe wave lengths of the modes in a coaxial line. 
Qualitatively the situation is the same as before, however: 
each mode has a cutoff, and the condition for propagation is 
that the wave length must be smaller than some small numerical 
factor times the dimensions of the conductor. 

The principal mode of the coaxial line, which we have already 
treated in Sec. 19, can be obtained as a limiting case from the 
treatment just sketched, but it is easier to investigate it directly, 
as wc have done. To derive it as a special case, we have to write 
the Bessel and Neumann functions in power series, the Neumann 
function including also a logarithmic term. We then pass to the 
limit as k goes to zero, so that onl}'' the first term of the power 
series remains. It then proves to be the cavse that Ht or Et goes 

to a logarithmic function, so that when it is differentiated to give 
the r and B components of electric or magnetic field we get func¬ 
tions proportional to 1/r, as we found in (19.1). We saw in 

Sec. 19 that the principal mode had no cutoff but could be 
propagated at arbitrarily long wave length. For this reason, 
a coaxial line in practice is invariably used in its principal mode. 
It is used at wave lengths so large that all modes except the 
principal one will be below cutoff and will not be propagated. 
In other words, the dimensions of a coaxial line must be con¬ 

siderably smaller than a wave length, to prevent propagation 
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of the other modes. For this reason, a coaxial line is very 
convenient for transmission of fairly long wave lengths, and it is 
very commonl^^ used for wave lengths of 10 cm. and upwards. 
For shorter wave lengths, however, the diameter of the line must 
become inconveniently small. The main objection to such a 

small diameter is the large value of the electric field which results 
around the inner conductor. With large power transmission, 
this field can easily grow big enough to lead to corona from the 
conductor. Thus for smaller wave lengths, the hollow pipe, 
which can have dimensions comparable with the wave length, 
is much more convenient. In practice, the transition comes 
between wave lengths of 1 m. and 1 cm. The hollow pipe is by 
far the more convenient means of propagation at 1 cm., and the 
coaxial line is better at 1 m. 

21. Composite Transmission Lines and Impedance Matching. 
Our first chapter was devoted to the study of conventional trans- 
misvsion lines. The most important ideas developed in that 

chapter related to wave propagation, the reflection of waves at 
discontinuities in the line, and the relation of this reflection to 
changes in the characteristic impedance of the line. Since then 
we have taken up the study of Maxwell's equations and their 
application to wave propagation in rectangular and circular 
pipes, coaxial lines, and parallel wires. We now come to a 

question of fundamental importance: to what extent is there an 
analogy between the conventional transmission lines and our 
wave guides and coaxial lines? To what extent can we carry 

over the ideas of impedance and impedance matching to the 
actual lines we are treating? The que.stion is a difficult and 
involved one, not a simple and elementary one, and we cannot 

do more than begin to answer it. Nevertheless it is a very 
important question, because the engineer, who is used to thinking 
in terms of transmission line theory, wishes to be guided by this 

theory in his study of coaxial lines and hollow pipes, and it is 
most important to know how far these analogies can be safely 
followed and where they may lead him astray. 

The problems that really concern us are those of composite 
lines, for it is only here that impedance matching and reflection 
come in. And here, in contrast to conventional transmission 
line theory, we see that when portions of two uniform lines are 
joined to form a composite line, there is much more than a mere 
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question of a change in characteristic impedance involved. 
A real line has many properties, not expressible in a single num¬ 
ber. This can be illustrated by examples. The simplest case 
of the joining of two lines is that in which the two lines are of the 
same type (both hollow pipes, or both coaxial lines, for example), 

both of the same dimensions and shape, but differing only in the 
materials of which they are made. For instance, part of a 
coaxial line may be filled with air, part with a dielectric material 
with quite a different dielectric constant. There will be reflection 
at the surface of separation, and this can be handled easily and 
completely, as we shall see shortly. A special case of this is the 
short-circuited line or wave guide, in which the line is terminated 
by a conducting plate. A next more complicated case of joining 
is that in which two lines of similar type, as for instance two 

rectangular wave guides, but of different dimensions, are joined 
together. Similar to this is the problem of wave guides of 
uniform properties, but with various obstacles, such as dia¬ 

phragms, inserted at various points. More complicated still 
are the cases in w hich lines of different type are joined together, 
as for instance a coaxial line inserted into a wave guide to excite it 

or a coaxial line coupled to a resonant cavity by a coupling loop. 
Problems of this t^'pc^ border closely on antenna problems, in 
which a coaxial line or wave guide is coupled to empty space. 

All these problems have some elements of similarity, and these 
elements can be tied in qualitatively with properties of trans¬ 
mission lines. But they also possess great and important 

differences, and it w^ould be a grave mistake to think that all 
questions relating to them could be solved by transmission line 
methods. They are, on the contrary, difficult problems in 

electromagnetic theory, most of which have not yet been solved. 
Since they have not been solved, our mathematical treatment 
cannot extend nearly so far as it has in the discussion of the uni¬ 

form line up to this point. In most respects, the practice of 
impedance matching has gone much further than the theory, and 
in many ways it has to be regarded at the present time more as an 
art than as a science. Fortunately there are some general 
theoretical ideas which will throw light on the subject, how^ever, 
even without detailed calculation. 

Suppose one has one semi-infinite uniform line extending from 

the left, joined by some sort of construction to another semi- 
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infinite line of different properties extending indefinitely to the 
right. These might be a hollow pipe of one cross section, joined 
by a short tapering region to another pipe of another cross 
section; or a coaxial line joined by some form of coupling device 
to a hollow pipe; or two hollow pipes of identical properties, 
separated by an iris diaphragm, to name only three examples. 
In each of these lines, there are an infinite number of possible 
modes of waves possible. (It is this infinite number of modes 
which makes these real problems so different from the idealized 
conventional transmission line.) A few of these modes cor¬ 
respond to waves that are really propagated, without attenuation 
if there are no leases in heating on account of finite conductivity 
of the walls or leakage in the dielectric, or with small attenuation 
if these losses must be considered. All the rest of the modes have 
no real propagation, but instead are attenuated exponentially 
as we pass along the line, with no real transmission of power if 
the losses in the walls and dielectric are neglected. So far, 

have considered only the really propagated waves, but a general 
solution of the problem must include the attenuated waves as 
well. Each type of propagated wave can be propagated either 

to the left or to the right; each attenuated mode can be attenu¬ 
ated either to the left or to the right. 

We now have the mathematical problem of building up solu¬ 

tions of the wave equation in each of the two lines, which will 
satisfy certain boundary conditions of continuity at the junction 
between the two lines. The precise nature of these boundary 

conditions depends on the special problem we are dealing with, 
but the general principles are the same in each case. In broad 
outlines, the general solution that we desire is one consisting of an 

incident and a reflected wave in the line to the left, and a trans¬ 
mitted wave in the line to the right. Let us inquire to what 
extent this may be possible. Of course, it may be that one type 

of incident wave, one reflected wave, and one transmitted wave, 
will by themselves satisfy the necessary boundary conditions. 
We shall find an important special case whore this is true: the 

case where the cross section and geometrical nature of the line 
do not change, but only the electrical properties of the materials. 
But this is a very special case, and in general the boundary 

conditions cannot be satisfied over the whole cross section of the 

line in this simple way. The reason is that, if the two lines have 
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different cross sections, a simple elementary wave in one will not 
vary in the same way across the cross section that a similar wave 

in the other one would, so that with these waves alone we cannot 
satisfy boundary conditions at all points of the cross section. 
We are forced instead to build up a combination of all possible 
types of waves, propagated and attenuated, and to satisfy the 
boundary conditions by a combination of them. 

We do not need literally all possible types of waves. Our 

physical intuition tells us, and the mathematics justifies our 
intuition, that the boundary conditions can be satisfied by super¬ 
posing a single traveling wave of one type moving to the right 

in the first line, reflected waves of all the propagated types 
traveling to the left in the first medium, attenuated waves of all 
possible types falling off exponentially to the left in the first 

medium, transmitted waves of all possible types traveling to the 
right in the second medium, and attenuated waves of all possible 
types falling off exponentially to the right in the second medium. 

By sufficiently complicated mathematics we could hope to find 
the amplitude and phase of each of these waves, in teims of the 
amplitude and phase of the incident wave. We should then 

have, not one reflection coefficient, but a variety of reflection 
coefficients, one giving the ratio of the complex amplitude of 
each reflected wa^'e to the incident wave, and similarl}^ a variety 
of transmission coefficients. Almost no problems have actually 

been carried to the point where all these coefficients can be 
calculated. 

The situation is simplified a good deal if only one type of 

propagated wave is possible in each line. This is the case usually 
met in practice, where for instance only the TEo,i wave may be 
possible in a rectangular wave guide when used at the frequency 
for which it is designed, or where only the principal wave is 
possible in a coaxial line. Then we can satisfy the boundary 
conditions by an incident wave, a single reflected wave, a single 

transmitted wave, plus all the attenuated waves. At dis¬ 
tances from the junction at which the attenuated waves have all 
been reduced essentially to zero, the situation is really much 

like that in a conventional transmission line, with only the 
incident, reflected, and transmitted waves. We may in this 
case reovsonably ask two questions. First, is it possible to set up 

a formula for the reflection coefficient in terms of the charac- 
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teristic impedances of the two lines, of the form (Zo — Z«)/ 
(Zq + Zr), such as we met in Chap. I? Secondly, do we need to 
bother with the attenuated waves, for any ordinary physical 
application of the problem? 

The answer to the first question is that it is a matter of defini¬ 
tion. Obviously if the reflection coefficient is known, as a 
result of exact calculations, we can set it equal to the quantity 
(Zo.— Zr),^{Zq + Zr), and from that can determine the ratio 
Zq/Zr. We can then arbitrarily define Zo and Zr so as to have 
this ratio, and the reflection coefficient formula will hold. This 
will do us no ^i;ood, however, unless the Z's so defined have some 
simple value in terms of the properties of the lines. We have 
met at least two quantitie's that we have-treated as impedances, 
in the present chapter. In the first place, we have the ratio of 
components of E to II. Secondly we hiive what we have called 
an equivalent impedance in coaxial lines, the ratio of the actual 
voltage between the conductors to the actual current flowing in 

them. These two quantities did not agree. If either of them 
would give a reflection coefficient by the simple formula, then 
the formula would be a very useful thing. One of our tasks in 

succeeding sections will l)e to try to gc't approximate solutions 
for joining conditions in some actual cases, and see whether either 
of these values of im{>e(lan(‘e can be usc'd in the reflection coeffi¬ 

cient. In that way we shall get some idea as to what quantities 
may be usefully called impedances in actual types of transmission 

lines. 
The answer to the second question, as to the usefulness of 

the attenuated waves, is very definite. In the first place, for an 
exact mathematical treatment, they must be considered, for it is 

only by handling the complete problem that we can hope to 
compute the reflection coefficient from first principles. But 
secondly, they have a very real physic al importance in the case 

where the finite conductivity of the walls must be considered. 
These attenuated waves can have very considerable amplitudes 
in some cases. They then will give rise to large tangential 

magnetic fields on the surfaces of the conductors near the junc¬ 
tion, and thus to large energy loss into the conductors. The 
general situation at a junction, then, is that the power carried 

by the transmitted and reflected waves does not equal the inci¬ 

dent power but is less by the amount of loss in these attenuated 
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waves. This causes a junction loss, which may be of considera¬ 
ble importance. Such a junction loss is possible even at a 

junction at which there is no reflection; th(u:e still may have to be 
attenuated waves, to satisfy the boundary conditions. 

In a line in which an incident wave approaches a junction 

and a reflected wave travels back from it, we certainly have the 
sort of situation met in Chap. I, in which we found the imped¬ 
ance of a line of length Z, terminated by an arbitrary terminal 

impedance. Even though we may have trouble in deciding 
on the best definition of impedance, the various possible defini¬ 
tions will differ from each other onl}^ in numerical factors, so that 

we can apply the spiral type of diagram discussed in Secs. 4 and 5, 
with at most an uncertainty as to the scale of the diagram. 
It may not be possible to give a simple meaning to the terminal 

impedance Zbut at any rate the shape of the diagram and its 
general characteristics can be carried over quite correctly to 
the actual line. It is natural to appl}" the term impedance 

matching to the process of reducing reflections by suitably 
combining sections of a composite line, and the fundamental 
principle of impedance matching in a conventional transmission 

line applies here too: if we can produce two reflected waves, by 
means of two discontinuities having equal amplitudes and 
opposite phases, they will •cancel. Furthermore, to secure the 

proper phase relation, the discontinuities must be a quarter 

wave length apart. This may not ne(‘essarily be exactly true, 
for the attenuated waves will generally extend more than a 

quarter wave down the tube and may complicate the exact 
situation near the discontinuities, resulting in slight corrections, 
but the principle is correct and shows that we can make imped¬ 
ance-matching devices of real lines, similar to those discussed in 
Chap. I. Thus even though an exact parallelism with the con¬ 

ventional lines of Chap. I is hardl}^ possible, nevertheless the 
ideas developed there can be of very wide use with actual lines. 

22. Reflections at Changes in Properties of Dielectric.—We 
shall now proceed to look at a number of types of junction 
between two transmission lines and find out the relations that 
hold in each case. By far the simplest case is that in which 
the line has the same geometrical shape on both sides of the 
boundary, but in which the properties of the dielectric or other 

materials concerned in the line change discontinuously on a 
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certain plane, say the plane 2 = 0 (if the line extends along the 
z axis). Two cases of this type are particularly important in 
practice. One is the line terminated by a conducting plunger. 
For tuning purposes, cither a hollow pipe or a coaxial line is often 

closed by a metallic piston, whose position can be adjusted. 
This case is that in which the line is filled with a dielectric for 
2 less than zero, but by a conductor (which can be approximated 
by a perfect conductor) for z greater than zero. The other 
important case is found in the dielectric beads or spacers used 
in the construction of coaxial lines. For mechanical reasons, 
the inner conductor of a coaxial line must be supported; this 
is ordinarily done by slipping dielectric beads or disks over the 
inner conductor, fitting tightly in the outer conductor. The 
surface of one of these disks is approximately a surface normal 
to the z axis, so that reflection at this surface can be handled 
by the methods of the present s(*ction. 

The present type of problem is the only one dealing with 
actual transmission lines in which we have a perfect analogy to 
the conventional idealized line of Chap. I. The reason is that 
the boundary conditions at the surface 2 = 0 can be satisfied 

exactly in this case by the incident, reflected, and transmitted 
waves alone, without use of attenuated waves. First we shall 
examine the physical reason for this, and then the mathematical 

reason. Physically, the reason is that the wave in a wave guide 
or coaxial line can be considered as made up of a number of plane 
waves traveling in different directions, chosen so as to satisfy 

boundary conditions at the surface of the line. In Chap. Ill 
we saw how this was done in the special case of transmission 
between two parallel plane conductors. A similar treatment, 

with a finite number of waves, is possible in the rectangular wave 
guide, and a similar treatment with an infinite number of waves 
in other types of lines. When a discontinuity in properties is 

assumed at the surface 2 = 0, each of these plane WQ^ves effec¬ 
tively meets a plane reflecting surface, and is reflected according 
to the laws of optics. In Chap. II we have investigated such 

reflection and have shown that it can be handled according to 
the impedance equations of a transmission line, provided we 
use a ratio E/H in place of the intrinsic impedance of the line. 

The reason was that the boundary conditions at the surface, 

demanding continuity of tangential components of E and H 
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and of normal components of B and D, were automatically 
satisfied if we did two things: first, adjusted angles of incidence 

and refraction so that incident, reflected, and refracted waves 
varied in the same way along the surface of discontinuity; and 
second, arranged that the ratio of tangential components of 

E and H (which we called the impedance) should be continuous 
over the boundary. It now proves to be the case that the same 
situation holds in the wave guide or coaxial line, so that this 
ratio of to is what must be used as the impedance in this 
case. 

To verify these statements, let us now look at the matter from 

a somewhat more mathematical point of view. Suppose we 
consider the TE wave. Then, as given in Eqs. (17.1) to (17,4), 
we first determine Hg by a wave equation, then find Hz and Hy 
by differentiating //^, and finally set up Ex and Ey by the condi¬ 

tion that the magnitude of E is equal to Z times the magnitude of 
//, and the vector is at right angles, where Z is given by (17.4). 
Such a calculation can now be made in each medium, on each 

side of the boundary at z = 0. Referring to Eq. (17.1), we 
assume the same value of k in each medium. Then automatically 
Hz satisfies the same equation in each case, and we choose 

the same solution for each medium, except that we adjust the 
magnitudes so that /i/Zr, rather than Hz itself, is continuous at the 
surface. Next we consider the components of E. Combining 

(17.2), (17.3), and (17.4), we find that 

Ex 
jo) dllz 

Ey 
JCl) dllz (22.1) 

Thus on account of the continuity of ^iHz and of A*, we see that E 
is automatically continuous over the boundary. If the Z^s, 

as defined by (17.4), are then different for the two media, we see 
that the tangential component of H cannot be continuous, if we 
assume only an incident and a transmitted wave. However, if 

we assume that the disturbance in the first medium is made 
up of the sum of an incident and reflected wave, we shall find 
as in Chap. I that Z has opposite signs for the incident and 

reflected waves. That is, for the same direction of Ey we shall 
have H in opposite directions for the two waves, as we should 
expect since Poynting\s vector is oppositely directed for them. 

Then, as in Chap. I, wc have relations like 
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All 

(22.2) 

in the first medium, with 

Ex = Cc'“‘-T'«, Hy = (22.3) 
Z2 

in the second, and for continuity 

/I + C = C, (.4 - B) = 1 c (22.4) 

from which the reflection coefficient follows as in the derivation of 
(3.9) in Chap. I: 

B ^ Z.- Zi 
A Zo + Zi 

(22.5) 

The coefficient as here written has the sign opposite to that of 

(3.9), because here our A and B are the coefficients of the voltage 
rather than of the current. 

Thus we see, mathematically as well as physically, why the 
boundary conditions can be satisfied without attenuated waves 
and why we are led to the same reflection coefficient as in the 
case of transmission lines. A derivation entirely parallel to the 

one we have given can be carried out for the TM case. In either 
case, as we see, it is simply the ratio of tangential components 
of E and H which takes the place of an impedance. This does 
not fix the impedance uniquely, however, for this quantity 
could be multiplied by any dimensionless function of the 
geometrical parameters, and we should still have impedance rela¬ 
tions as before, since both, lines are geometrically similar. Sup¬ 
pose for instance that we are dealing with the principal mode in a 
coaxial line. The ratio of E to H is simply the value 
that we should have for a plane wave in free space. However, in 

Sec. 19, we saw that for many reasons a quantity called the 
equivalent impedance, equal by (19.9) to (In 6/a)/27r, 
was a more useful quantity. We rememlx^r that it was the ratio 
of the actual voltage between the conductors, to the actual cur¬ 
rent flowing in either conductor, and that in terms of it we could 
correctly compute the flow of power down the line. If now wc 

regard this quantity Z^ as the correct formulation of the imped- 
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ance for a coaxial line, the arguments of the present section still 
go through without change. The geometrical factor (In 6/a)/27r 

is the same for both parts of the line, so that if has a certain 
value on one side of the line and another value on the other side, 
the quantity \/m/€ will vary in a proportional way. Hence 
if the formula (22.5) for reflection coefficient can be written in 
terms of the quantities \/n/e in this particular case, it can equally 
well be written in terms of Our present arguments, in other 

words, would hold equally well whether E/H were chosen as the 
impedance, or some geonuitrical factor times E/H, and, although 
the equivalent impedance is a natural (piantity to use for the 

coaxial line, we have so far not s(^t up a (|uantity for the wave 
guide which seems like the natural and obvious definition of the 
impedance. 

Having found that the methods of Chap. I apply to reflections 
at discontinuitie's of the medium, we hardly have to go into 
further detail. A line closed by a perfectly conducting plug 

is effectively short-circuited. By Eq. (12.17) the intrinsic im¬ 
pedance of a conducting medium is extremely small, and in the 
limit of perfect conductivity it is zero. Thus a perfectly conduct¬ 

ing plug acts like a zero imi)edance terminating a line, just as we 
should expect it to, and the whole theory of short-(*ircuited lines, 
as developed in Sec. 4, applies without change in this case. 
Similarly the coaxial line with dielectric beads is handled exactly 
like a transmission line, and the di.scussion of such problems in 
Sec. 5 is correct, even though it was handled on the l^asis of the 
transmission line analogy. We might reasonably ask, can a 
hollow pipe open at one end be considered as an open-circuited 
transmission line, using the methods of Sec. 4? The answer to 
this question is that we cannot say on the basis of the present 
section. The open-ended pipe opens into emi)ty space, so that 
it is not an example of a change of dielectric properties, without 
change in cross section. In many cases the open end of a pipe 

is badly matched to empty space and radiates little power, most 
of the power being reflected. In this case the open pipe would 
act much like an open-circuited transmission line. But if the 

pipe were well matched to empty space, which it can be if its 
dimensions arc correct or if it is terminated by a proper horn, 
there may be very little reflection, and the line will act very 

differently from an open-circuited transmission line. These 
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problems of open pipes, in other words, are tied up essentially 
with antenna problems, and we cannot assume at the moment that 
they can be handled like the analogous transmission line problems. 

23. Reflections at Changes of Cross Section with the Principal 
Mode.—We have seen that in cases where there is a principal 

mode, as in the coaxial line, the parallel-wire transmission line, 
and the case of two infinite parallel plates, it is easy to define an 

equivalent impedance, the 
ratio of the ac^tual voltage 
between the two conductors, 
to the current flowing in the 
conductors. In the present 
section we shall ask whether 
we are justified in using the 
transmission lino equations in 
discussing reflection at a sud¬ 
den change of cross section, 

using this equivalent imped¬ 
ance in the formulas. It 
(*ertainly seems at first sight 

that we should be justified, 
since at such a change of cross 
section we should expect volt¬ 
age and current, and hence 

equivalent impedance, to be continuous. We shall find that our 
intuition in this case is correct, to a first approximation. It is only 
in this approximation that we can easily get a solution at all; 
presumably in higher approximations we are not justified in using 
the simple transmission line equations. 

The simplest case of the principal mode mathematically is the 
propagation of a wave between two parallel perfectly conducting 
plates, with the electric vector normal to the plates, the magnetic 

vector tangential. We shall accordingly take up this case first. 
Let us consider the type of propagation shown in Fig. 29, only 
now with a sudden change in cross section of the line, as shown 

in Fig. 42. The conductors are supposed to extend indefinitely 
along the y direction, but for convenience we may consider a 
meter width. The distance of separation is supposed to change 

at z = 0 from the value ai for negative z, to the value for 

positive z. 

Fig. 42.—Parallel-strip transmission line 
with sudden change of crcjss section. 
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Let us now set up the problem mathematically. By symmetry, 
II must be in the y direction, and E may have only x and z 
components. Furthermore, since propagation is along 2, all 
the vectors must be independent of y. Then Maxwells equa¬ 
tions become 

dE^ 
dz 

dE^ 
dx 

+ i/Liw/Zy = 0 

dE 
d 

dz 

ax dz 

— jueEx = 0 

dx 
^ - jcfEx = 0 (23.1) 

The third and fourth of Eqs. (23.1) serve to give E^ and Ez in 
terms of //yi 

I dll, ^ 1 dHy 
dz jo)€ dx 

(23.2) 

The vsecond equation is then automatically satisfied. This 
leaves only the first, which becomes an equation for Hy i 

dMIy 
dx^ 

d^Hy 

dz^ 
+ efiOj'^Hy = 0 (23.3) 

That is, Ily satisfies a two-dimensional wave equation in the xz 
plain*. The vector JS'x, Ezj is perpendicular to the gradient of Hyj 
from (23.2). That is, it points along the lines Ily = const., or 
these lines are at the same time electric lines of force. Since 

the electric lines of force must be normal to the conductors, we 
see that the lines Hy = const, must also be normal to the con- 
dvictors, or the normal derivative of Hy must be zero. This then 
defines our mathematical problem completely. 

The boundary value problem which we have just set up does 
not have a simple, closed solution. In fact, if we try to satisfy 
it by ordinary means, we shall be led to exactly the problem dis¬ 
cussed previously, that of setting up a combination of propagated 
and attenuated waves in the two sections of the transmission 

line and of joining them smoothly at the junction. Although 
this can be done, it is an involved problem, and we shall not 
try to set it up mathematically. However, there is an important 

special case in which we can get definite information without 
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complicated mathematics. This is the case in which the wave 
length is long compared to the distance between the conductors. 

In this case we may expect the whole disturbance in the region 
about the junction to take place in much less than a wave length. 
We can then show easily that the first two terms of (23.3) are 

large compared to the last, in the region of the junction. To see 
this, we first note that at a considerable distance from the 
junction, Hy will vary sinusoidally with z, as the sine or cosine of 

27r2:/Xo, where 

X„ = ~ — (23.4) 
y/ejjL ^ 

the wave length of the disturbance in the pipe, which equals that 
in empty space, since we are dealing with the principal mode. 
Over a distance short compared to a wave length, this sinusoidal 
variation can be approximated by a straight line; the second 
derivative of Hy with respect to z is, in fact, by (23.3), equal to 

— (27r/Xo)Wi/, and a Taylor expansion of Hy would be of the 
form 

Hy = Hy, + H'y,{,z - ^ //"o(2 - 2o)^ • • • (23.5) 

where //yo, values of the function and slope at 2 = 2o, 
about which the expansion is made. From (23.5) we see then 

that the quadratic term represents a small fraction of Hyo, if 
(z — zq) is a small fraction of a wave length. In the immediab^ 
neighborhood of the junction, however, the slope of Hy will be 
changing very rapidly. In fact, it may change by a large frac¬ 
tion of itself in a distance comparable to the width a of the 
transmission line, going from the narrow part of the line to the 
wide part. This means that in this neighborhood the quad¬ 

ratic term in (23.5) would be of the order of magnitude of 

//yo[(2 ~ 2o)/ai]2, rather than of Hyo[(z — 2o)/Xf)]^ so that 
d^Hyfdz^ w^ould greater than e^o^^Hy in the ratio of (Xo/ai)-, 
which we have assumed to be large compared to unity. To 
satisfy (23.3), d^Hy/dx^ must also be large in this region and must 
approximately cancel dHiyjdz^, In other words, to a first 

approximation in the neighborhood of the junction, Hy will 
satisfy Laplace’s equation 

d^Hy dHIy _ 
dx^ ^ dz^~ 

(23.6) 
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in place of the wave equation (23.3). This is simply a rather 
roundabout mathematical way of stating the rather obvious 

fact: if the wave length is long compared to the dimensions 
of the junction, the problem of the fields at the junction can be 
handled to a good approximation as a static problem. 

As a result of this argument, we can see that the electric lines 
of force are just what we should have if the two parallel strips 
of Fig. ‘42 were charged to different static electrical potentials. 

Fig. 43.—Sketch of lines of force at junction of transmission line of Fig. 42. 

If we could solve Laplace’s etjuation in this case, we should find 
a set of lines of constant Ily and a set of orthogonal trajectories, 
similar to those shown in Fig. 43. As we have seen before, the 
lines of const. IIy are at the same time the electric lines of force. 
In this particular problem, to the accuracy to which we arc 
working, the last term of the first eciuation of (23.1) can be 

neglected compared to the other two terms; for this eciuation 
is just the same as (23.3), in which we could neglect the last 
term. This equation then states that the curl of E is zero, or 

that E can be derivcnl from a potential. Thus the orthogonal 
trajectories to the lines of force are equipoteritials, as indicated 
in Fig. 43. This gives us just the information that w^e need for 
our problem of joining. For it states that the two conductors 
are ecpiipotentials, or that the line integral of E, or the voltage, 
between them, is constant, eciual on both sides of the junction, 

so long as we are at distances from the junction small compared 
to the wave length. We have thus verified the result, which 
seems very natural from an intuitive argument, that the voltage 

between conductors is continuous across such a junction. 
Similarly wc can convince ourselves that the current flowing 

in either conductor is essentially continuous over the junction. 

From (23.2) wc see that the rate of change of II^ along the surface 
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is proportional to the normal component of E. But from Fig. 43 
it is obvious that E does not have abnormally large values in the 
neighborhood of the junction (if it is large near the sharp convex 
corner of the conductor, in Fig. 43, it is compensatingly small 
near the sharp concave corner). Thus there is no abnormally 
large change in Hy as we go from one part of the line to the other, 
nothing that could be considered as a discontinuity. The 
changes of Hy are rather just such as we should expect normally 
in going from one part to another of a continuous line. Since 
Hy measures the current in the conductor, this means that the 
current as well as the voltage is continuous across the junction, 

so that the quantity we have defined as the equivalent imped¬ 
ance, the ratio of voltage to current, is continuous, and we can 
use our transmission line ecjiiations in discussing reflection, 

impedance of composite lines, and other related problems. 
If the voltage and current are continuous, this means that 

the electric field E is, in effect, discontinuous at the junction, 

though H is continuous, as we have seen. By the discontinuity 
of E we mean that its approximately constant values inside the 
two parts of the line, as shown in Fig. 43, are different, so that it 
changes by a considerable fraction of itself in going through the 
region of transition. If Ei is the field in the lower part of the 
line, J?2 in the upper part, the voltage in the lower part is EiOi, 
and in the upper one £2^2. Since these must be equal, wo so(» 
that E varies inversely as a, decreasing as we pass to the wider 
part of the line. It is interesting to .set up the equivalent imped¬ 
ance in this case. If the line has a width b in the y direction (up 
to now we have assumed h to be unity), the current flowing will 
be Hyb, Thus the equivalent impedance is 

V _ E^a _ La 
7 ^ iTyb ~ yje b 

(23.7) 

differing from the impedance of empty space by the factor a/6. 
We thus see clearly that though u/e stays constant going from 
one size line to another, changes, thus introducing reflections 

at the junction. 
The simple result just obtained can be generalized. In the 

first place, we have made no use of the exact shape of the junc¬ 
tion. Instead of having square corners, as in Figs. 42 and 43, 

the junction could be rounded off, without changing the result, 
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so long as our fundamental postulate is satisfied, that the whole 
change in size of the line, and the whole transition region, is 
small compared to a wave length. Reflection will not be 
decreased, in other words, by a small amount of rounding off of 
the corners. On the other hand, as we shall see in a later section, 
a gradually tapering junction, extending over several wave 
lengths, will greatly diminish the reflection, just as we have found 
in Chap. I that a line of gradually changing properties is prac¬ 

tically nonreflecting. A further generalization of our results 
comes when we consider other types of transmission lines, such 
as coaxial lines. Intuitively ve should expect the same result 
to hold there: if the dimensions of the line are small compared to 
a wave length, so that the whole transition region is small com¬ 
pared to a wavelength, the problem of the transition can be 

handled as a static problem, and we can show that the voltage 
and current, and hence the equivalent impedance, are continuous 
at the junction, so that transmission line theory can be applied. 

A mathematical discussion, similar to what wt have given in this 
section, verifies this intuitive expectation. 

As a final remark, it is plain from Fig. 43 and from well-known 
cases of electrostatic solutions that the region in which the fields 
are showing large fluctuations, or the transition region, is of 
small extent, its length along the z axis being comparable to 

the width of the line. We have here a picture of the sort of dis¬ 
turbance to be expected in every case in the neighborhood of a 
discontinuity in properties of a transmission line. We have 

pointed out before that this disturbance can be built up by super¬ 
posing attenuated waves, falling off exponentially as we travel 
away from the junction. In this case too we could describe our 
transition effects by means of attenuated waves, but the sort of 

picture given by Fig. 43 is more graphic and gives us an idea of 
what to expect in the more general case. 

24. Reflection at Changes of Cross Section in Hollow Pipes, 

and Iris Diaphragms.—The problem of reflection at a change of 
cross section in a hollow pipe is one that has not been handled 
very completely, theoretically. We have already seen schemati¬ 

cally how to solve it: we expand the solution on each side of the 
discontinuity in incident, reflected, and transmitted propagated 
waves and in the various possible types of attenuated waves, 

and apply boundary conditions of continuity at the surface. 



184 MICROWAVE TRANSMISSION [Chap. IV 

One can compute coefficients of the various waves, in practical 

cases, and not only can find how strong the attenuated waves are 
but can compute their contribution to the heating loss in case 
the conducting walls have only finite conductivity. Such 
specialized calculation, however, does not carry us very far with 
the important question: how are we to define the impedance of 
a wave guide, so that the transmission line equations can be 
used for composite guides? Plainly the case of the wave 

guide is much less simple than that of the coaxial line; for the 
coaxial line could have dimensions which were small compared 
to a wave length, and with a wave guide that is impossible on 

account of cutoff. Thus it is inherently impossible to treat the 
junction between two wave guides by. electrostatic methods. 
This can be seen particularly simply from the fact that the 

electric lines of force start and terminate on parts of the same 
conductor in a wave guide, showing obviously that we cannot 
introduce a potential function in terms of which the metal would 

be an equipotential. Any obvious definition of voltage and 
current, and of equivalent impedance as their ratio, must then 
be suspected, and reflection coefficients computed from su(‘h a 

definition cannot be expected to be accurate. Until more calcu¬ 
lations are made, it is not possible to say how great the inaccu¬ 
racies would be expected to be, however. 

In spite of these limitations, we can set up in simple cases very 
plausible expressions for voltage and current and can expect 
that the impedance defined from them Avill give at least qualita¬ 

tively correct answers. Let us consider the TE\,q mode of a 
rectangular pipe, as shown in Fig. 33. Let a be the longer side, 
and h the shorter side, of the cross section. Then there is 

current upward in one of the wide faces, downward in the other, 
along the axis of the pipe, so that these faces act rather like the 
two conductors of a transmission line. The electric field runs 

from one face to the other. If Ei and II i are the values at the 

center of the pipe, where they have th(?ir maximum values, the 
voltage between conductors at the center is Eib, decreasing as 
we go to the edges of the pipe. The current density flowing 
upward at the center is Hi, and the total current, obtained by 
integrating the current density across the width of the conductor, 

is a numerical constant times Hia. Thus we should expect to 

have 
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(24.1) 

except for a numerical constant independent of a and 6. This 
numerical constant is not determined by the theory, but it is 
not of importance, since it would be the same for two wave 
guides which were joined together and hence would cancel 
out in the equations for reflection. Using the value (15.21) for 
the ratio Z = Ei/IIi we find 

ly_I _6 
(24.2) 

We observe that as the width 6 of the wave guide becomes large, 
the term (Xo/2a)“ can be neglected compared to unity, so that this 
expression reduces to the value (23.7) found for the principal 
wave between infinite planes, as we should expect it to do. 

As we have already stated, we cannot give anything approach¬ 
ing a proof, as we could for the principal mode, that the imped¬ 
ance as defined in (24.1) or (24.2) can be used in the transmission 
line equations to cahailate reflection coefficients. Nevertheless it 
is very plausible that it should give a first approximation. We 
have just seen that when the term (Xo/2a) becomes small, the 
expression reduces to the correct limiting case. This limit can 
be reached for short wave length or high frequency. It is 
possible that in the other limit, as (Xo/2a) approaches unity, 
or as we approach cutoff, the errors might become more serious. 
There is some experimental evidence, however, that even in this 
limit the expression is fairly accurate. It is hardly possible to be 
sure of the theoretical predictions without further calculation, 
or to estimate the probable error in the approximations. 

It is interesting to consider the conditions for impedance 
match between two rectangular wave guides of different dimen¬ 
sions, if we assume that Eq. (24.2) is applicable, so that two 
guides of the sanne equivalent impedance should match. We 
may rewrite (24.2) in the form 

h^ = -^Zl [a» - (24.3) 

This is the equation of a hyperbola, connecting a and 6, if Zeq is 
kept constant. Any two pairs of points lying on such a hyper- 
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bola, then, will represent wave guides whose impedances match. 
For any value of the longer dimension a of a wave guide, provided 
only it is longer than a half wave length, Eq. (24.3) determines 

the shorter dimension 6, such that the guide will have a desired 
impedance. We notice that as a becomes only very slightly 
greater than a half wave length, b becomes very small; that is, 

very thin wave guides, slightly greater than half a wave length 
in their other dimension, can be set up to have any desired imped¬ 
ance and to match any desired guide. It would be remarkable if 

such thin guides could be set up to transmit all the power from a 

large guide, without reflection, but if Eq. (24.2) is correct, it 
should be possible. Of course, in such a thin guide the necessary 
fields become very great, if considerable power is to be trans- 

Fio. 44.—Rectangular irises in wave guides. Case (1), inductive; (2) capacitive, 

mitted, and the loss by resistance in the walls and by corona can 
be considerable. 

A device that is often useful is the diaphragm, a metallic 
plate closing a wave guide, with a hole cut in it. If this hole is 
rectangular, we may regard the diaphragm as a short section of 

wave guide of different size from the main wave guide, and so 
handle the transmission problem by the principles of Sec. 5. 
In the first place, we note that the characteristic impedance 

of the slot in the diaphragm can be made to match that of the 
wave guide in which it is inserted, by using Eq. (24.3), as we 
have just described. In that case the diaphragm will transmit 

radiation without reflection, even if it is a very narrow slot 
about a half wave length long. On the other hand, if the 
characteristic impedance of the slot, regarded as a short section 
of wave guide, is different from that of the wave guide in which 
it is inserted, there will be reflection. Simple cases are those in 
which either a or 6 of the slot equals the value for the wave 

guide, the other constant being smaller than for the wave guide. 
Thus suppose the slot has the same small dimension b as the wave 
guide, but that the large dimension a is smaller (as in Fig. 44, 
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ease 1). Then by Eq. (24.2) the slot will have larger charac¬ 

teristic impedance than the guide. On the other hand, if the 
slot has the same value of a as the guide, but a smaller 6, its 
characteristic impedance will be smaller than that of the guide. 

It is often convenient to consider a diaphragm as a reactance 
shunted across a transmission line. We can easily derive a 
formula for this shunt reactance, in terms of the characteristic 

impedance Zo of the wave guide, and the characteristic impedance 
Z\ of the guide of which the diaphragm forms a small section. 
Let the length of the diaphragm be L, the propagation constant 

of the wave In it /3i, and let us assume that 0\L is small compared 
to unity, so that the diaphragm is thin. Then, using the recip¬ 
rocal of Eq. (4.3), the admittance of the section of diaphragm 
terminated by the line of characteristic impedance Zo is 

y _ _L Zi cos 0iL + jZo sin /3i/> , . 
Zi jZi sin fiiL + Zo cos ^ ‘ ' 

Considering /3iL as a small quantity, this may be rewritten 

1 1 4" i(Zo/Zi)^i/v 

Zo 1 + J(Zi/Zo)0iL 

(24.5) 

Equation (24.5) is the admittance of a shunt combination of the 
resistance Zo and a reactance 

X = 
Z, 

- 1] 
(24.6) 

In Eq. (24.6) we have afi expression for the equivalent reactance 

which we must assume shunted across a line, to be equivalent 
to a diaphragm. We see, then, that a diaphragm of type 1, 
Fig. 44, corresponds to a positive or inductive reactance, that a 
diaphragm of type 2 is a negative or capa(*itive reactance, and 
that the slot of the same characteristic impedance as the guide 
has an infinite reactance or zero admittance or makes no differ¬ 

ence in the circuit. 
26. Gradual Change of Cross Section with the Principal Mode. 

In Chap. I wc have given reasons for thinking that reflection at 

a change in properties of a transmission line will be very small, 
if the change is made gradually, over a length of several wave 
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lengths. We can handle such a proldom analytically, in a 
number of cases, and show that this is acdiially the situation. 
We shall choose as an example the principal wave between paral¬ 
lel conductors, as in Figs. 21) and 42, taking the case where the 
change in cross section occurs by means of a tapered section with 
plane walls, as shown in perspective and in cross section in Fig. 
45. The tapered section is a simple form of horn, and the 
theory of electromagnetic horns of sectoral foiin has been 
treated quite completely.^ We shall not treat the g('neral case 

K i V 
Fig. 45.—Perspective and cross section of tapered section ii\ parallel-strip trans¬ 

mission line. 

of horns at pre.sent. The particular case ru'cded hiae is very 
simple, and we can handle it by nndhods that are not very 
difficult. From the cross .section .shown in Fig. 44 it is ch'ar that 
the tapered section can be reganhid as jjart of tlu^ sectoral 
region bounded by two planes making an angle with each 
other. We then investigate .solutions of Maxwelks e(|uations 
within .such a sectoral horn and ask whether these solutions can 
be fitted smoothly onto the solutions already investigated in the 
two plane parallel lines joined by the sectoral sector. 

The problem of wave propagation in a sectoral horn is mathe¬ 
matically not unlike that of propagation in the circular wave 
guide, handled in Sec. 20. Both problems deal with the .solu¬ 
tion of Maxwelbs equations in eylindric^al coordinates. In 
Fig. 44 we can obviously set up polar coordinates, with the pole 

* See Barrow and Chu, Proc. 27, 51 (1939). 
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at the intersection of the two sides of the sectoral horn. Now, 
in contrast to the case of Sec. 20, we do not want to consider 
propagation along the axis of the cylindrical coordinates (in 
this case, the y axis), but rather we wish propagation out along 
the radius. In Sec. 20, we considered a solution which varied 
sinusoidally along the axis of the cylinder {z in that case, y in this 
case), sinusoidally with 0, and as a Bessel function Jn or Neumann 
function Nj, of A-r, where k was a constant and r the radius. We 
chose constants so as to satisfy boundary conditions on one or 

two cylindrical surfaces, the boundaries of the wave guide or 
coaxial line. Here we do not wish our solution to depend on y. 
On the other hand, we must satisfy boundary conditions on the 

surfaces at ^ = 0, ^ = ^o, the two surfaces of the sector. It 
turns out that in this case there is a very simple solution cor¬ 
responding to the principal wave. II is everywhere along the y 
direction and depends on the distance r from the axis, but not on 
0; /i* is along the direction tangential to a circle, so that lines of 
electric force are segments of circles, and E depends only on r. 

Solutions of this type are 

II y = [d,/o(A*r) + 7Wo(At)]c>-^ 

Eo = (25.1) 

where A and B are constants, Jo and No are Bessel’s and Neu¬ 
mann’s functions of order zero, and Jo and represent deriva¬ 
tives of the corresponding functions with respect to their 
arguments kr. In their computation, a useful relation from the 

theory of Bess(*rs functions is 

j:,(.r) = ~Jd.r), N'oM = -N,(x) (25.2) 

In (25.1), k is givTU in terms of the fretpiency by the relation 

k = CO \/^ (25.3) 

The solution (25.1) can be verified by direct substitution in 

Maxwcdl’s equations, in polar coordinates. 
Either the buin in A or in B, in (25.1), would represent a 

standing wave, since it is a product of a function of r times a 
sinusoidal function of t. By combining the two, however, we 
can get a traveling wave, propagated either outward or inward. 

To see how to do this, we first must remember that Jo and No 
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vary roughly as the sine or cosine of their argument, times the 
inverse square root of the argument, as we mentioned in Sec. 20. 
In fact, for large x, they approach the asymptotic values 

These asymptotic values are fairly accurate for x greater than 

about TT, corresponding to a half wave length out from the origin 
of coordinates. We then see that for large r the combination 

H, = AlJo(kr) - jNo(kr)]c^‘-^ 

would approach the value 

(*'■ - j) - “ i) ] 

(25.5) 

w/4) (25.6) 

a traveling wave moving outward with velocity 

t; — ^ ^ 

k \/^ 
(25.7) 

or the velocity of light in empty space. If we had used the 
positive sign instead of the negative in (25.5) we should have had 
a wave traveling inward. 

Not only does the wave in the horn travel with the velocity 
of light, so long as we are not too near the apex of the triangle, 
but also the ratio of E to // has the same value as in empty space. 
Using the second of Eqs. (25.1) and the approximations (25.4) for 

Jo and Nof we have 

so that 

Ee 

E$ 
Hy 

Hy (25.8) 

(25.9) 
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as in a free wave in empty space. This ratio, the impedance, 
naturally does not remain constant down to the apex of the 

triangle, since the approximations (25.4) do not hold that far; 
calculation shows, however, that it remains constant to a fairly 
good approximation to within a half wave length of the apex. 

We may now ask how the solution we have found can be joined 
onto principal wave solutions for the two plane-parallel regions 
in Fig. 45. If the angle Bq giving the taper of the horn is suffi¬ 
ciently small, the joining becomes very accurate. For in that 

case, in the first place, the arcs of circles, like that shown in 
Fig. 45, representing lines of force within the horn, wdll be almost 
equivalent to straight lines, so that the z component of E in the 

horn can be practically neglected. Then we can set Ee in the 
horn equal to E^ in the plane-parallel region, without any con¬ 
siderable error. In addition, if is small, the imaginary dotted 
part of the horn, shown in Fig. 45, w^ill be long; if it is considerably 
longer than a w'ave length, the impedance in the part of the horn 
actually existing will be practically the same as in empty space 

and hence practically the same as in the plane-parallel trans¬ 
mission line. Thus if we join E continuously, H will be con¬ 
tinuous as w^ell, and the boundary conditions will be exactly 
satisfied. Such a joining can be carried out at both extremities 
of the tapered section, so that we have succeeded in setting up a 
single, nonreflecting solution of the wave equation traveling 

right through the tapered region of the line. On the other hand, 
if the angle of flare Oq is large, the joining will be poor, both 
because the circular lines of force will depart considerabl}^ from 

the straight lines and because the impedance of the part of the 
horn that actually exists will be considerably different from 
the impedance of empty space. In that case, the boundary 
conditions cannot be satisfied without the use of reflected and 

attenuated waves. Obviously in the limiting case where Oq 
approaches 180°, the problem must approach that of Sec. 23, 

in which we have already seen that there is reflection. Without 

more elaborate calculation than has been made, it is hard to 
estimate the way in which the reflection depends on the angle 6o, 
but our derivation shows qualitatively the sort of dependence to 
expect. It is clearly the angle that is significant, rather than 
the actual length of the tapered section; with a small change of 

cross section, a relatively short tapered section will be adequate 
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to prevent reflection; with a large change a mu(‘h longer taper is 
necessary. In any case, the small end of th(‘ horn must he cut 

off at least a half wave length from the imaginary ai)ex of the 

sector. 
In reflectionless transmission down a tapered line, it is obvious 

that the same power must be transmitted through each cross 
section of the line. Through the tapered region, the cross section 
is proportional to r. Thus the Poynting vector must be inversely 
proportional to r, and the electric and magnetic field separately 
must be inversely proportional to the s(|uare root of r. This 
dependence is shown in the solutions (25.6) and (25.8) and arises 

from the approximate proportionality of the Bessel function 
to the invei*se square root of r. As a result of this, when two 
sections of line of separation ai and a2,*as in Fig. 45, are joined by 
a nonreflecting tapered section, the fields Ei and in the two 
sections will be in the ratio of \/a2/ai, and the voltages, which 
are equal to E times the distance a between plates, will be in the 
ratio of \/ai/a2. The voltage will not be continuous, as it was 
in the cavse of a sudden change of cross section dis(‘uss('d in Sec. 
23, but instead will be greater in the wid(‘r part of the line. 
We may well ask where the argunuuit of Sec. 23, which was used 
to prove the continuity of voltage, })n‘aks down in the present 
case. The argument there was based on the abnormally large 
values of d^Hy/dx^ and d-Hy/dz^^ in the neighborhood of the 
junction. Those large values arose from the distortc'd shape of 

the lines of force near the junction. In tlu» i)r(*sent case, however, 
with tapered walls, the lines of force will not b(; greatly distorted, 

so that the second derivatives will not be large, and the argument 
used in Sec. 23, by which we reduced the wave ecjuation to 
Laplace^s equation, cannot be u.sed, so that the problem cannot 

be handled as an electrostatic problem. On the contrary, curl E 
is of important significance throughout the region of the tapered 
section in the present case, so that it does not follow by any 

means that the voltage between the two conductors, computed 

along different lines of force, must be the same. 
We have handled mathematically only a very simple case of 

tapered transmission lines. There is no reason to doubt, liow- 
ever, that the same sort of result will hold in the general case, that 
a line of slowly changing properties, changing l)y only a small 

fraction of itself in a wave length, will be nonreflecting. This 
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conclusion presumably applies to hollow-pipe transmission lines, 
as well as to the coaxial line and other types of lines operating 
in their principal mode. For rectangular hollow pipes, one can 

make the same sort of calculation we have used in the present 
chapter. The different types of waves are possible in a sectoral 
horn, just as they are in a hollow pipe, and we can pick out a type 

that joins fairly smoothly onto each of the hollow-pipe modes. 
These waves in the horn are discussed in the paper of Barrow 
and Chu, previously quoted. The situation with all these 

modes in the horn is similar to that found in the simple case we 
have taken up. Far from the apex of the horn, the velocity of 
l)ropagation and the impedance approach those of empty space. 

Closer to the apex, these quantities vary somewhat as the 
corresponding quantities would for a rectangular pipe of the 
same cross section. There are larger and larger departures 

from this situation as we approach the apex, however, and we 
have a rather involved field close to the apex, in which there are 
large fi(‘lds of the attenuated type, which fall off rapidly as we 
dei)art from the ai)ex, and do not carry power. This means 

that the joining conditions between a hollow pipe and a horn 
are not very accurately fulfill(‘d if the joining is near the apex, 
just as we found in the present section; except that the higher 

the order of the wave, the farther out these abnormalities 
l)ersist. Furthermore, if the walls of the pipe are of finite 
conductivity, these attenuated parts of the wave can result in 
considc'rable power loss in the walls. In other words, this 
problem approaches that taken up in the preceding section, where 
we di.scussed joining of hollow pipes, and we cannot go much 

further than we could there in e.stimating die exact nature of the 
reflections and loss(‘s. We can be sure in all cases, however, that 
a sufficiently gradually tapered line will be nonreflecting. 

26. Survey of Other Problems of Composite Lines.—There 
aixi many otln'i* types of discontinuities that can be present in 
transmission lines, beyond those taken up in this chapter. In 

coupling wave guides to (‘oncentric lines, and vice versa, it is very 
common to terminate the concentric line in a small dipole, or 
coupling loop, or other device, within the wave guide. We are 

really not yet eciuipped to take up many of these problems. 
The H'jison is that, if we consider them in detail, most of these 
problems have a close analogy to radiation from an antenna, or 
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scattering or absorption by an antenna. Coupling loops are 
obviously like antennas; a concentric line terminated by such 
a loop inside a wave guide is plainly radiating into the wave guide, 
or absorbing radiation from the wave guide. Before handling 
these problems, it is plain that we must understand the radiation 
and absorption of radiation by antennas, and the diffraction 
resulting from the limitation of a beam. We shall accordingly 
go ahead with the study of antennas and radiation. After we 
have handled them, we shall be equipped to return to problems 
of transmi.ssion lines and to understand more in detail some of the 
practical devices used in connection with them. Of course, such 
study as we shall make of antennas, scattering, and like problems 
will be applied primarily to the propagation of radiation in empty 
space. In the next chapter we proceed with the problem of 
radiation and absorption of energy by a simple antenna and then 
go on to the effect of reflectors and other devices for producing 
directed beams, with the problems of diffraction associated with 
them. 



CHAPTER V 

RADIATION FROM ANTENNAS 

All our work so far has dealt with disturbances propagated 

along one definite direction. An antenna in free space, however, 

sends out radiation in all directions. Our present problem is to 

investigate the spherical waves emitted by antennas, including 

their directional properties. This problem really can be divided 

into two parts: first, radiation from bare antennas, and secondly, 

the effect on the radiation of various directive devices, such in par¬ 

ticular as dummy" antennas and parabolas. At the same time 

that we are interested in the radiation emitted from the antenna, 

we must consider the other side of the problem, the antenna 

as a circuit element. Generally an antenna forms the termi¬ 

nus of a conventional transmission line, in the present case of 

a coaxial line. It acts, then, as a terminal load on this line, 

and its impedance must be considered so as to understand how 

to match it to the line and have the maximum radiated power. 

In coasidering this problem, we shall find that it is a very useful, 

though not entirely accurate, conception to think of the antenna 

itself as a length of transmission line, starting where the coaxial 

line impresses voltage on it and terminating at the ends of the 

antenna. We shall find that in a certain sense we are justified in 

thinking of the antenna as guiding the wave, just as a coaxial 

line guides a w^ave, out to its ends, at w^hich the radiation leaves 

the guiding members and spreads out into empty space. As a 

first step in our problem, we shall consider spherical solutions of 

Maxwell’s equations. The solutions that we shall use have 

singularities, which generally come at the origin; to make them 

valid, we must assume conductors, the singularities lying inside 

the conductors. We must then satisfy the ordinary boundary 

conditions at the surface of each conductor. Our procedure to 

some extent will be the reverse process, first finding the field, 

then asking what form of conductor could be used to satisfy 

suitable boundary conditions with it. 
195 
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27. Maxwell^s Equations in Spherical Coordinates.—We shall 
use conventional spherical polar coordinates, as shown in Fig. 46. 
The components of a vector can be given in terms of these 
coordinates, as is indicated in the components Fr, F®, in the 
figure. Then, by well-known methods,^ MaxwelPs equations 

become 

1 ^ (sin dE^) 

1 dEr _ 
r sin d d<t> 

1 djrEe) 
r dr 

- = 0 

1 dijrEff,') I • IT 

(27.1) 

(27.2) 

(27.3) 

fi I <’■’«.) + * ^ (sin eH,) + -4-^ ^ = 0 
r s\n 6 36 r sin 6 d<l> 

1 d(rlh) _1_ ^ 
r sin B d<t> 

4 A (rH,) 
r dr 

r dr 

_ 1 dllr 
r 36 

jco^Ed == 0 

j(j)tE^ = 0 

1 
r .sin B dB 

(sin BE^ + 
1 dE^ 

r sin B d<t> 
= 0 

(27.4) 

(27.5) 

(27.6) 

(27.7) 

(27.8) 

The solutions of these ccjuations represent, in general, waves 
propagated outward along the 
radius. Thus the r direction can 
be considered the direction of 
propagation. As with the case 
of Cartesian coordinates, taken 
up in Sec. 15, there are two types 
of waves: transverse electric, or 
TEy in which the longitudinal 
component of the electric field, 
Erj is zero; and transverse mag¬ 
netic, TMy in which Hr is zero. 
There is also the limiting case of 

Fig. 46.—Spherical polar coordinates. . i . i , 
the transverse electromagnetic 

wave, TEMy a principal wave, in which both Er and Hr are zero. 

‘ See, for instance, Slater and Frank, ** Introduction to Theoretical 
Physics/^ McGraw-Hill Book Company, Inc., New York, or Stratton, 
♦‘Electromagnetic Theory/’ McGraw-HiU Book Company, lac., New York. 
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This analysis into TEj TMj and TEM waves is brought out par¬ 
ticularly clearly, for instance, in a paper by S. A. Schelkunoff.^ 

The problem of Sec. 15 was simplified a great deal because we 
could assume from the outset that each Component of the field 
varied exponentially along the z axis, the direction of propaga¬ 
tion. It cannot be assumed in a corresponding way here that 
the components vary exponentially with r; as a matter of fact, 
their variation with r is given by certain Bessers functions, which 
approach an exponential form only for large values of r. There¬ 

fore we cannot at once carry through derivations like those of 
(15.3), (15.4), etc., expressing all the field components in the TE 
case algebraically in terms of Hz, and all the field components in 

the TM case in terms of Ez, Nevertheless an essentially equiva¬ 
lent discussion can be carried through, except that here the 
relations are not simply algebraic but involve differentiation. 

Thus let us start with the TE case. We let Hr be a scalar func¬ 
tion of r, 6j (t>. It is slightly more convenient to operate, not with 
Ilff but with a quantity which we may denote w, defined by 

U = vHr (27.9) 

It will appear that the equation that must be satisfied by u is the 
wave equation, which in spherical polar coordinates becomes 

r* \ dr / 
+ I_ d 

sin 6 dd 

+ T" 2 = 0 (27.10) sin^ 9 d4>^ 

It is well known that this equation permits a separation of 

variables: u can be written as a product 

u(r,d,<l>) = R(r)0(e)^(<t>) (27.11) 

where /2(r) satisfies the equation 

? Jf (’■’ J " <27.12) 

which can also be written in the form 

+ [<oV - (rR) = 0 (27.13) 

^ Transmission Theory of Spherical Waves, Trans, AJ,E.E,^ 67, 744 

(1938). 
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The function 0(^) satisfies 

[Chap. V 

so/X™*s) + + ') -sS’j]®-0 
and satisfies 

^ 0 (27->5> 

where m, n are constants of separation. 
In terms of the function w, we can now set up values of all 

the other field components. Let us assume, for the TE case, 

Hr 
u 
r 

^ n{n + 1) r dr . 

JJ ^_\_^ ^ A 
n(n + 1) r sin dd<t>dr^ 

Er-^0 

Ee 
-J0)ix 1 

n(n + 1) r sin 0 d<i> 
{ru) 

E^ = 
n(n + 1) r 

la,. 
(27.16) 

By direct substitution in MaxwelFs equations, (27.1) to (27.8), 
we can show that these equations are satisfied if u obeys the 
wave equation (27.10) or its equivalent equations (27.12), 

(27.14), (27.15). We note that instead of defining He and H^, 
directly in terms of Uj we can instead set up the relations 

f/, = i_ 11- ^rE^) 
j(j)H r dr 

//« = ^ i I-(r£:,) (27.17) 
jcofjL r dr ^ ' 

These equations are the analogue of (15.3), giving the relation 
between the tangential components of E and H. We shall soon 

see the analogy more clearly. 
The relations for the transverse magnetic, TAf, case, are 

analogous to those just set up. In that case, we have a longi¬ 

tudinal component Er of electric field, which we write as 

(27.18) 
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where v satisfies the same wave equation (27.10) that u satisfied. 
In terms of v, we can then write the other components as 

with 

Ee = 

= 

1 d d , , 
n{n + 1) r dO dr 

1 1 d d . . 

n{n + 1) ^ sin d d<t> dr 
Hr ^0 

jo)€ 1 d 
He = 

H. = 

n{n + 1) r sin 6 d4> 
{rv) 

Id., 
r (xv) n(n + 1) r dd 

jo)e r dr ^ 

(rHo) 
jo)€ r dr ^ 

(27.19) 

(27.20) 

We have now written down our formulas. What are their 
solutions, in terms of well-known functions? Equations (27.12) 

and (27.13) can be easily transformed into BesseFs equation, and 
we can show that R(r) must be a linear combination of the 
spherical Bessel and Neumann functions jn{kr) and nn(fcr).^ 

These functions are defined in terms of the ordinary Bessel and 
Neumann functions by the relations 

2^ •^n-fj-i(^)> rinix) (27.21) 

The quantity k which appears in jn{kr) and nn(fcr) is 

k = 00 \/tiJL (27.22) 

In case n is an integer (which it generally is, as we shall see in 
a moment), jn and tin can be expressed in analytic form in terms of 
algebraic and trigonometric functions. For the first few func¬ 

tions we have 

io(x) 

ii(^) 

sin X -, 
X 

sin X cos X 

no(x) = — 

ni(x) = - 

cos X 

X 

sin X 

X 

cos X 

~x^ 
(27.23) 

^ These are defined in Morse, “Vibration and Sound,p. 246, McGraw- 
Hill Book Company, Inc., New York, and Stratton, “Electromagnetic 
Theory/* p. 404, McGraw-Hill Book Company, Inc., New York. 
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At large values of x, the terms in 1 /x are the leading ones. In the 
general ca.se, this loading term is given by 

. , , 1 / n+ 1 \ 

X V-^ ^) 

nn{x) —» ^ sin (x — (27.24) 

In the opposite limit, as x tends to zero, we can expand in power 
series. In this case the leading term is 

jnix) 

n„(x) 

a*" 

r^ T2n~4n:) 
- 1 AiliLi * 1 - 1) (27.25) 

Taking note of (27.24), we see that at targe x we can set up two 
combinations of jn and /u, representing respectively waves 
traveling outward and inward: 

Jn{x) ~ jrinix) - e V 2 / 

i»(x) + jn„(x) (27.26) 
X 

These functions are called spherical Hankel functions. We see 
that the amplitude of the wave falls off as 1/x; this means that 
the intensity, being proportional to the square of the amplitude, 
will fall off as l/x^, giving the inverse square law characteristic 
of spherical waves. For a wave traveling outward, we shall 
choose the first of the Hankel functions (27.26) to represent 
R(r), Then we shall find that the leading term in all transverse 
components of field depends on r through the function 

(27.27) 

at large distances. Thus at large distances quantities like 

which appear in (27.17) and (27.20), become equal to —jkE^, etc., 
BO that (27.17) and (27.20) become 

E,= (27.29) 
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the familiar relations for a TEM wave, showing that our spheri¬ 
cal waves approach the TEM type at large distances. 

We have now considered the function of r, which is a solution 

of (27.12) or (27.13). Next we take up (27.14) and (27.15). 
In the first place, from (27.15), it is obvious that 

= cos or sin m<l> (27.30) 

If the wave is being propagated in empty space, the function 
must be a single-valued function of 0, so that m must be an 

integer. On the other hand, we might want to consider the 
propagation of waves between two planes at angles <f> = 0i, 
4> == 02. In that case, we should have to satisfy boundary 

conditions on those two planes, and m would have to be chosen 
as nonintegral values. We shall not use that case, however. 
The equation (27.14) is now recognized as the equation for the 

associated Legendre polynomials, 

0(0) == P- (cos e) (27.31) 

These functions are so well known that we shall not list any of 
their properties. In order that these functions should be finite 
at 0 = 0 and 0 = tt (that is, along the axis of the coordinates), it 
is necessary that n be an integer, and this is the case we usually 
meet. There is another solution of (27.14), a function related 
to the associated Legendre polynomial something as the Neumann 
function is related to the Bessel function, which is infinite both at 
0 = 0 and TT. This solution is clearly inadmissible in the case 
where we have wave propagation in empty space. For propaga¬ 
tion in the biconical horn, however, we imagine conducting cones 

making ai%les 0 = 0i, 0 = 02 and consider the propagation of 
waves between these cones. (We shall consider the principal 
wave for this case in the next section.) In this case, the angles 

^ = 0 and TT are excluded from the region of the solution, and we 
must use suitable linear combinations of both and of the 
other solution of Legendre^s equation, with a nonintegral value 

of n chosen so as to satisfy boundary conditions on both cones. 
We shall describe this case but shall not make calculations with 
it; for that reason we do not give the necessary formulas here. 

We now see the mathematical form of the solutions of Max¬ 
wells equations in spherical coordinates. The general relations 

are rather formidable, however (wc have really given them only 
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for reference), and we now pass on to several important special 
cases, which we shall take up more in detail, with more attention 
to their physical significance. We start with the principal wave, 
or TEM wave. This could be found by a limiting process from 
either the TE case or the TM case, but since it would involve u 
or V becoming zero, this is a somewhat inconvenient way to get 

at it. Instead, we shall derive the solution directly, by ele¬ 
mentary methods. 

28. The Principal or TEM Wave.—There are two types of 
TEM wave: one in which Ee and are the only components 
different from zero, the other in which E^ and He only are differ¬ 
ent from zero. Only the first type is of physical importance, for 

reasons that we shall see later, and we shall derive it only. We 
shall find that Ee and depend only on r and 0, not on <t>. Then 
the only ones of MaxwelFs equations that are not trivial are 

lj-^(rEe)+jmH^ = 0 (28.1) 

•A (sin 9H^) = 0 (28.2) 

i - (r//*) + jwtE, = 0 (28.3) 

^ (sin eE,) = 0 (28.4) 

derived from (27.3), (27.5), (27.6), and (27.8) respectively. We 
may rewrite (28.1) and (28.3) in the form 

(rH,) = -j<,,(rE,) 

^ (rE>) = (28.6) 

two equations of the form of the transmission line equations of 
(6.2) and (6.4), with rll^ taking the place of the current and rEe 
taking the place of the voltage. Differentiating the first of 
Eqs. (28.5), and substituting from the second, we have 

(rH,) + = 0 (28.6) 

with an identical equation for rEe. Thus we see that rH. and 
rEt depend on r as e where k — u y/tfi. From (28.2) and 
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(28.4) we see that the field components vary inversely as sin 6. 
From (28.5) we can get the relation between the magnitudes of 
electric and magnetic fields. We then have 

Ae^^^t-kr) 

r sin 6 
(28.7) 

From the solution (28.7) for the TEM case, it is obvious that 
the field components become infinite when 6 becomes 0 or tt. 
Thus the solution cannot exist unless the axis is cut out by con¬ 
ducting surfaces. The case^ in which this solution holds is the 
biconical horn, shown in Fig. 47, in which 

there are conducting surfaces at di and 62. 
Clearly the electric field is normal, and the 
magnetic field tangential, to the conducting 
cones, so that the boundary conditions are 
satisfied by the solution (28.7), no matter 
what may be the angles of the cones. Since 
the electric lines of force go from one con¬ 
ductor to another, and the velocity of pro¬ 
pagation and other properties are like those 
of a wave in free space, this solution is a 
principal mode, in the same sense as the 
principal modes in transmission lines, which 
we took up in Secs. 18 and 19. As in those 
cases, we can define a voltage, a current, and 
an equivalent impedance, in a unique way. 

The voltage is the integral of Ee from one conductor to the 
other. Thus it is 

Fig. 47. The bicon¬ 
ical horn. 

-r Eer dS 
' dd 
sin d 

In (tan I* cot I) (28.8) 

The current is the integral of around a circle, or is 27rr sin 
Thus we have 

i = (28.9) 

^ This case is treated by Barrow, Chu, and Jansen, Proc. I.R.E., 27, 

769, (1939), as well as by S. S. Schelkunoff, Trans. A.I.E.E.y 57, 744 

(1938), and Proc. LR.E., 29, 493 (1941). 
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The equivalent impedance is then 

= (28.10) 

This formula simplifies slightly when the cones both have the 
same angle, so that 62 = v — di. Then cot 6i/2 = tan ^2/2, 

«o that 

Z„ = .^ilncot| (28.11) 

We notice that as approaches zero, so that the cones degenerate 
to very thin conductors surrounding the axis, Zea becomes 

indefinitely large. 
The case of very narrow cones, where 61 is very small and 

$2 very close to tt, is interesting, as Schelklinoff has pointed out, 
because it approximates a transmission line such as is found in an 
antenna, two wires or other conductors leading away from an 
electromotive force at the origin. For very small angle cones, a 
short segment of the cone approaches a segment of a cylinder, 
and the field (28.7) actually approaches the field of a principal 
wave guided by a cylindrical conductor. This field is given in 

(19.1), where we were discussing coaxial lines; the absence of an 
outer conductor would not affect the field of (19.1), which is 

H = ^ - E = — in the notation used there. We were 

then using cylindrical coordinates, and the quantity r measured 
the radial distance out from the axis, or just the same quantity 
measured by r sin 0 in spherical coordinates. Thus the fields 
agree exactly with (28.7), the only difference being that the 
electric field in the cylindrical case pointed out normal to the 
axis of the cylinder, and here it points along circles, as shown in 
Fig. 47. As far as the part of the field near the conductor is 
concerned, this makes no difference. On account of the factor r, 
or r sin B, respectively, in the denominator of (19.1) or (28.7), 
the field is very large near the conductor and falls off as we leave 
it. The case of very narrow cones, then, leads to the propaga¬ 
tion of a wave in both directions down the conductor from 
the electromotive force at the origin, the wave being guided by 
the conductor much as if it were cylindrical. There is a singu¬ 

larity of voltage at the origin; but it is to be assumed that the 
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wave propagation would be almost the same if there were a large 
but finite voltage confined to a small region near the origin. 

This problem, of the propagation of a wave in both directions 
down a cylindrical conductor as a result of a concentrated 
electromotive force near the origin, has been discussed by Strat¬ 

ton and Chu.^ Their solution, however, is in terms of cylindrical 
rather than spherical coordinates, and it is hard to see from it 
whether it reduces to something like the present principal wave 
or not. 

29. The Field of an Electric Dipole.—In many ways the most 
important spherical wave physically is that produced by an 
electric dipole. This is the simplest TM wave. If we consider 

our solution of Sec. 27, we see that the function v must depend 
on 6 or 0, in order that any of the derivatives in (27.19) may be 
different from zero. Thus we cannot have the case n = 0, 
since the spherical harmonic Fo(cos 6) is a constant and does not 
depend on angles at all. The lowest value that n may have is 1. 
In this case, m can be 0 or 1. We consider the case n = 1, m = 0. 
This proves to be the simple dipole field. If we choose v to be 

V = cos 0[ji(kr) — jni(fcr)] (29.1) 

or 

+ (29.2) 

which is equivalent to it according to (27.23), we find for the 
field components 

E, - fe.<—- CO, D [ - + ^.] 

“ [v'- (Bf. + (4] 
(29.3) 

The other field components are zero. These functions, of 

course, are to be multiplied by an arbitrary amplitude. 
To understand the meaning of our solution, let us first con¬ 

sider the terms that are important at small distances, those in 

the highest inverse powers of r (1/r® for Er and Ee, 1/r^ for H^). 
We shall show that the terms in the electric force represent the 

»/. Applied Phys., 12, 230 (1941). 
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field of an electric dipole at the origin and that the magnetic 
field is the field of the corresponding current element, derived 
from the time rate of change of the dipole moment, as found 
from the Biot-Savart law. We remember that a dipole of 
moment M consists of two equal and opposite charges, ± g, at a 
distance d apart, where 

M = qd (29.4) 

Then, as we see in Fig. 48, the electrical potential ^ at an arbi¬ 
trary point P can be written 

^ 47r€ \ri r2/ ire Vir^ 

— ^ d cos 6 _ M cos d 
4ir€ 4ir€r^ * 

(29.5) 

In this derivation, the 4t comes because we are using rationalized 
units; and r2 — ri becomes equal to d cos 6, and rir2 to r^, where 

r is the mean distance from P 
to the dipole, in the limit as d 
becomes small compared to r. 
We can now find Er and Ee^ by 
electrostatics, for a dipole of 
moment by the equations 

dr 
M 

Er= - 
4r( r« 

sin d 
= -P , r ad 47re 

(29.6) 

We observe that these two com¬ 
ponents are in the same ratio as 

the corresponding components in (29.3), so long as we consider 
only the terms in 1/r’, so that by multiplication by a proper 
factor we can convert (29.3) into the field of a dipole of moment 

Fio. 48.—Potential of a dipole. 

A dipole whose moment was would carry with it a current 
equal to its time derivative, or to jwMe'"*. This small current 
element would have a magnetic field which would be given 
according to the Biot-Savart law by 

4t r* 
(29.7) 
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On inserting the value of fc, one finds that this is in the same 
ratio to the of (29.3) that the other two field components of 
(29.6) are to the corresponding values of (29.3). In other words, 
all three components of field at short distances can be found 
from the field of a dipole of moment Let us now multiply 
the field components of (29.3) by •~jMfc2/27rc, so as to reduce 
them to the values of (29.6) and (29.7) at small distances. We 
then have 

Er = 

Ee = 

lU = 

Mk' ̂ -A:r) 6] ^ 
Are L 

^Ku>t~kr) 0 

ir +■ 
(29.8) 

The field components of Eq. (29.8) thus represent a solution of 
Maxwell’s equations reducing to the field of a dipole of moment 

at sufficiently small distances, and thus are the complete 
solution for the field of such a dipole. 

Let us now consider the behavior of our solution at large values 
of r. As we see from (29.3) or (29,8), Er is proportional to l/r^ at 
large distances, and Ee and are proportional to 1/f and 
hence become indefinitely greater than Er as r becomes great 
enough. In other words, the field becomes transverse in the limit 
of large r. At the .same time the ratio of £'9 to approaches the 
value \^lt characteristic of TEM waves, as we see particularly 

easily from (29.3). Let us compute Poynting’s vector and its 
integral. We have 

S = ille Eell. 

_ 1 Re sin-^ 
167r‘€ [(A-rp Ikry] 

jjL sin- 0 
327rV2 

(29.9) 

where we have used (29.8). We see that the intensity of radia¬ 
tion varies as l/r^, the inverse square law. To find the total 
radiation, we must integrate over all directions, by multiplying 
by the element of area 2irr^ sin 6 dB and integrating from 0 to tt. 

We then have 
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__ /i V^co^Af^ 

12ir 
(29.10) 

The total radiation is independent of r, as it must be, since the 
same energy must be radiated through every sphere concentric 
with the origin. The radiation is most intense at right angles 
to the axis of the dipole, the intensity being given by the formula 
sin^ 6^ as we see from (29.9). 

It is interesting to compute the ratio Ee/H^ for short distances, 
as well as long distances; we find that this ratio shows a behavior 
characteristic of the impedance of an antenna, as we should 
expect from general considerations. Using (29.3), we have 

Eb ^ /m j/(fcr)^ - l/(A;r)^ - j/kr 
\€ —\/{krY — j/kr 

= +jkr - (fcr)*][l - jkr + (jfcr)* - (jkry • • • ] 

= + Jt • • • (29.11) Jojer \ e 

The first term, as we see, is a capacitive reactance, the second an 
inductive reactance, and the third a resistance. We shall see 
later that the impedance of an antenna has very similar terms, 
and furthermore that an antenna of linear dimensions r has a 
capacity and inductance which are essentially proportional to r, 
while the resistance is proportional to for small sizes of 
antennas, just as we have in the expression of (29.11). As a 
result, a very short antenna has a large capacitive reactance, 
which as the antenna is increased in length (or as the frequency 

is increased) is more and more counteracted by the inductance, 
leading to zero reactance at a resonance point, which for an 
actual antenna comes when the antenna is approximately half 
a wave length long. (In this approximation, it would come for 
fcr == 1, or 27rr/\ = 1, or rr = X/2.) At this resonance point, 
the impedance is a pure resistance, which for an actual antenna 

is of the order of magnitude of 70 ohms, though this crude 
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approximation would give or 376 ohms. This resistance 

is called the radiation resistance. It does not result from any 
energy loss in heating the conductor of which the antenna is 
constructed, but rather from energy loss in radiation. We shall 

discuss the value of the impedance of actual antennas in a later 
section. It is interesting to see, however, that a simplified model 
for the actual behavior is provided by the simple formula (29P.11). 

30. The Field of a Finite Antenna.—In the preceding section, 
we have seen how one of the simplest solutions of Maxwell’s 
equations for the TM case, as tabulated in (27.16), reduces 
to the field, of an electric dipole. In a later section we shall 
consider the corresponding solution for the TE case, showing that 
it corresponds to a magnetic dipole.. In the present section, 
however, we shall inquire how to solve the general problem of 
finding the field of a finite antenna. As with any electrical 
problem involving condiu^tors, there are two types of problem 
that we may consider. First, and simpler, is the problem of 
finding the field, given the distribution of charge and current. 
Second, and much more difficult, is that of finding a field which 
reduces to the correct boundary conditions at the metallic 
surface of the antenna. The first type of problem can be 
completely solved; the second has been worked out in only one 
or two special cases. Fortunately, it turns out either by experi¬ 

ment or by a result of calculations of the second type, that the 
current distribution in actual antennas is often closely approxi¬ 
mated by a simple function, in particular by a sinusoidal dis- 

triljution along the antenna. Consequently a calculation of the 
field of such a current distribution gives a good appro.ximatiOn 
to the actual field of the antenna, and the total radiation of 

power from the antenna can be found with rather good accuracy 
from such a calculation. Such a calculation for the half wave 
antenna, which is very nearly at resonance, is particularly well 

known. 
Let us first ask how to find the field of an arbitrary current 

distribution. This field, of course, could be expanded outside 

the distribution in a series of functions like those of (27.16). 
This, however, is not ordinarily the simplest way to do it. If we 
chose to carry such a calculation through, we should first have to 
expand the current distribution in a series of multipoles, begin¬ 
ning with electric and magnetic dipoles and including all higher 
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multipoles, in a way familiar to physicists. We should then 

find by examination of (27.16) and (27.19), that each solution 
of the type we have set up represents the field of a particular 
multipole, just as we have found one solution to represent the 

field of an electric dipole. We then superpose these fields, with 
suitable coefficients derived from the expansion of the arbitrary^ 
current distribution in terms of multipoles, and the resulting 

sum of fields is the field of the antenna. This method is satis¬ 
factory if the dimensions of the antenna are small compared to 
the wave length. If they are not, however, the series proves 

to be very slowly convergent, or not convergent at all, so that 
the method is not practicable. 

A substitute method of expansion can be set up, using the 
solution (29.8) for the field of a dipole. This is the field of a 
small element of current, of magnitude qdj where q and d are as 
in (29.4), located at the origin. We can now consider the whole 
current distribution to be made up of many infinitesimal current 

elements, located at different points of space. The field can 
then be made up by superposing fields like (29.8), each one 
radiating from a different point of space, and each one with an 

amplitude and phase appropriate to the current element that 
happens to be located at that point. This method of expansion 
converges very much better than the expansion in multipoles, 

and if we are interested only in the field at a large distance, it 
can be carried out by quite elementary methods. Even the field 
close to the antenna can be found exactly, in simple cases. This 

method is often set up in terms of the Hertz vector, but this 
is not necessary; it comes down exactly to a superposition of 
fields like (29.8), with different origins and amplitudes. 

Let us use this method to find the limiting value of the field 
at large distances for a linear antenna half a wave length long, 
in which there is a sinusoidal distribution of current. Let the 
antenna extend from z = ---X/4 to z = X/4, where its length is 
X/2. Let the current at a point z be u{z)e^^\ where 

u{z) = i cos ^ = i cos kz (30.1) 

which equals i at the center of the antenna and reduces to zero 

at the ends. We then consider a length dz of the antenna. If 
this were polarized to form a dipole, the dipole moment would be 
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dM where 

dM — q dz = dz . (30.2) 

using the fact that the charge is the integral of the current. The 
field of this current element dz is then given by (29.8), substitut¬ 
ing dM for the M that appears in that formula. We find the 
field at a point P which is so far from the dipole that only the 
term in 1/r in the field needs to be considered, and so far that 
the variation of 6 and of 1/r from one part of the antenna to 
another can be neglected. We cannot, however, neglect the 

Fig. 49.—Geometrical arrangement for a half-wave antenna. 

variation of phase in the fields emitted by different parts of the 
antenna, for this variation of phase is the essential part of 
the problem; it results in interference effects that are important 
in the final answer. From Fig. 49, we see that the distance r 
from a point at coordinate 2, to the point P, can be approximately 
written 

r = To ■- z cos 6 (30.3) 

where ro is the distance from the center. Using (29.8), we then 
have for the total value of Ee at P the value 

E$ = \ t cos -v" 
J~X/4 A 

= i. 1^1 
4ir \ 6 ro 

sin 6 
Jif) 

sin e J 

co» 

X/4 

X/4 

dz 

cos kz c'*' '^^hdz (30.4) 
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where we have used the relation k = 2t/X. Writing the exponen¬ 
tial in terms of the cosine and sine, the integral can be carried 
out by elementary means, and the result is 

cos (7r/2 cos d) 
sin Q 

(30.5) 

It is interesting to compare this field with the one that we 
should have from an infinitesimal dipole of the same dipole 
moment as our antenna. The dipole moment of a finite dis¬ 
tribution of charge is by definition the sum of qz for all the 
elements of charge, where q is the amount of charge and z its z 
coordinate. If p represents the charge per unit length along 
the antenna, we can then find p from u{z) by the equation of 

continuity, 

^ = jcjp = — ^ = ik sin kze^^^ (30.6) 
dt dz 

The dipole moment is then the integral of pz dz^ or is 

’X/4 

M = 
JX/4 

. 

-X/4 
z sin kz dz 

When we now substitute this value in (29.8), we find 

Ee (dipole) = -1 k 
2iryl( ro 

^7W-kro) e 

(30.7) 

(30.8) 

differing from the value (30.5) for the half wave antenna only in 
the function of the angle. When 0 = t/2 or is at right angles 
to the antenna, both functions of the angle equal unity, and the 
expressions (30.5) and (30.8) agree. At other angles, however, 
the function in (30.5) is smaller than sin 0, so that the half wave 
antenna radiates less than the corresponding infinitesimal dipole 
of the same dipole moment. This is shown in Fig. 50, where 
the squares of proportional to the radiated intensity, are 
plotted in a polar diagram. The reason why the two cases give 
equal intensity at right angles, but why the half wave intenna 
has less intensity at other angles, is easy to see. At right angles 
all parts of the half wave antenna are radiating in the same phase, 
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and there is no interference effect. At other angles, however, 
different parts of the half wave 
antenna are partly out of phase 
with each other, and there is an 
interference effect, which is re¬ 
sponsible for the difference 
between the two cases. 

We have now found the field 
of our half wave antenna at 
distant points, and we can next 
calculate Poynting's vector and 
the total radiation from the 
antenna. Since Ee/H^, = 
the average Poynting vector in the direction 0, using (30.5), is 

Fia. 50.—Polar diagram of inten¬ 

sity as function of angle, for infini¬ 

tesimal dipole and half-wave 

antenna. 

_ 1*2 /m fcos (7r/2 cos d)l^ 
SttVJ \€ [ sin 0 J 

We may rewrite this 

(30.9) 

where 

(30.10) 

/r(0) = pos (Tr/2 cos 0) j 
(30.11) 

Then the total radiation, found by integrating over the surface of 
a sphere of radius ro, is 

Radiation = 4xrJ ^ ~ F'^(d) 
“ 8«-rJ \t 

(30.12) 

We remember that, if a current equal to the real part of 
flows in a resistance fl, the power dissipated in the resistance 
equals This suggests rewriting (30.12) in the form 

Radiation = (30.13) 

where 

(30.14) 



214 MICROWAVE TRANSMISSION [Chap. V 

Using the relations (7.24), (7.25), (7.27), we see that thequantity 
l/ir can be written as 376/t = 120 ohms, or as 4c X 10~^ 
= 4 X 3 X 10® X 10“^. Thus we have 

R = 120F^ (30.15) 

The quantity R may be called the radiation resistance of the 
antenna. In a later section we shall see what relation it has to 
the resistive component of the actual input impedance of an 
antenna, the quantity that is experimentally called the radiation 
resistance. We shall see that there are reasons to expect the 
two quantities to agree fairly closely, though not exactly. To 
find our radiation resistance, then, we must evaluate the average 
value where F{d) is given in (30*. 11). This is a somewhat 
complicated integral, which cannot be evaluated by elemen¬ 
tary means. It is discussed in Sti^atton.^ Using the method 
described there, we find approximately 

TKS) = 0.612 (30.16) 
Thus we have 

R = 73.5 ohms (30.17) 

for the half wave antenna. It is interesting to note that if we 
had had the infinitesimal dipole, as in (30.8), the distribution of 
intensity in angle would have been given by a function where 

F{e) = sin e (30.18) 

instead of the value of (30.11). If we find the corresponding 
average in that case, we have 

sm^ = I (30.19) 

and 
R = 80 ohms (30.20) 

The value 80 ohms just derived does not actually represent 
the radiation resistance of an infinitesimal dipole; it is only the 
value that would be found for a half wave antenna, if its direc¬ 
tional properties were like an infinitesimal dipole. It is of 
interest, however, to calculate the total radiation and radiation 

* Op. cU.f p. 444. Chapter VIII of Stratton contains a more complete 
discussion of the antenna problem than we have given here and is an excel¬ 
lent r^sumd of what has been done, together with references to the literetUTQ^ 
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resistance of a dipole of arbitrary length I, and sinusoidal current 
distribution, 

u(z) = i cos y (30.21) 

going to a maximum in the middle, reducing to zero at the ends 
at 2 = ±i. This might represent a very rough approximation 
to the actual behavior of a short antenna, since in that case the 
current would presumably have to go to zero at the ends and to a 
maximum in the middle. We can easily carry through with this 
current distribution a derivation just like that given in the pre¬ 
ceding pages and find that the value of F{6) is 

1 - (2Z7x)2“cos2 ^ 
(30.22) 

For the half wave antenna, 2l/\ = 1, and (30.22) reduces to the 
value (30.11). On the other hand, for an antenna short com¬ 
pared to a half wave length, (30.22) reduces to 

07 

= V sin (30.23) 
A 

Using (30.10), we then find 

R = 80 ohms (30.24) 

for the radiation resistance of an antenna of length I, This 
quantity, as we .see, is proportional to the square of the antenna 
length, as we mentioned in connection with our discussion of a 
similar term in (29.11). 

In considering the directional properties of an antenna, it 
is convenient to introduce a quantity called the gain. This will 
be particularly appropriate in later sections, w^here w’^e speak of 
antenna systems that concentrate most of their energy in a beam 
surrounding a particular direction. The object of such a system 
is to concentrate as much of the intensity in the preferred 
direction as possible, with as little as possible in other directions, 
like a searchlight. We can define the gain of such an antenna 
system as the ratio of the intensity of radiation in the direction 

of maximum intensity, to the intensity that w^e should have if 
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the antenna emitted the same total power, but if it were uni¬ 
formly distributed over all directions. That is, it is the ratio 
of the Poynting^s vector in the direction of maximum intensity, 
to the average Poynting^s vector. In our cases of the linear 
antenna, the maximum intensity comes at 0 == 90°. Thus the 
[,ain in such cases is 

0") ^ 1 

F'^ 6) 
(30.25) 

since in these cases F(90°) = 1. For the infinitesimal dipole, 
using (30.23) and (30.19), the gain is for the half wave antenna, 
it is 1/0.612 = 1.63. Of course, these antennas are hardly 
directional at all, com})ared to really directional systems, in 
which the gain can be of the order, of magnitude of several 
hundred. 

A final interesting problem is that of an antenna more than 
a half wave length long, but with the same sinusoidal current 
distribution u{z) = i cos 27r2/X which we have assumed in (30.1) 
for the half wave antenna. This is different from the case we 
have just taken up; in that one, the current distribution (30.21) 
did not correspond to the wave length X of the disturbance in 
empty space but instead was shorter, in proportion to the length 
of the dipole. Such a current distribution could only be set 
up in a ejuite artificial way. The present case is assumed, how¬ 
ever, to be one with the same wave length X that we assumed in 
(30.1). For the current to be zero at the end of the antenna, we 
must then have the antenna a whole number of half wave lengths 
long. If the length is 7n half wave lengths and m is odd, we can 
use just the current distribution (30.1); if m is even, the current 
must be given by the sine rather than the cosine. When we 
carry out this problem, we must carry out just the same steps as 
those of (30.3) to (30.5), only with different ranges of integration. 
The calculation is given by Stratton. We find that 

F{d) = 

siu 9 

for m odd 

for m even (30.26) 
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Polar diagrams of for various cases of m are given by Stratton. 
Instead of having only one loop, the polar diagram has rn loops, 
as shown in Fig. 51, where for illustration we reproduce the 
case m = 4. The zeros of intensity come for direc¬ 
tions for which 

rmr * TT Stt 
cos 0 = -2 ' • • • 

or 

cos 6 = —) — > 
m m 

cos 6 = 0, 
m 

for m odd 

for m oven (30.27) 

Fig. 51.— 
Radiation 
pattern of 
antenna four 
half wave 
lengths long. 

with the maxima approximately halfway between. 
It is easy to show that these zeros of intensity result 
from interference. At 6 = 0, each half wave length 
of the antenna radiates a wave which is 180° out of 
phase with the next half wave length. At another 
angle, however, there will be a path difference of 
(X/2) cos d betw^een succ(*.ssive half w^ave lengths, so 
that the phase difference will be 27r(^* + ^ cos B) = 
7r(l + cos 6). In a vector diagram, then, each half w^ave length 
of the antenna will send out a wave that can be represented by 
a vector of fixed length and phase 7r(l + cos B). In Fig. 52, for 
instance, w^e show the case of m = 4, in w hich w e have four vectors 
to be added together to give the resultant disturbance, represented 

in the left-hand figure by the 
dotted line. If the figure 

/ / closes, as in the square in F'ig. 
52, the vector sum is zero, and 
there is no intensity in the cor¬ 
responding direction. This 
comes w hen m times the phase 

difference 7r(l + cos B) equals 
a whole multiple of 27r. That is, it comes w hen 

m(l + cos B) = 2s (30.28) 

if 8 is an integer, or when 
2s 
7H 

This leads to the same condition as (30.27). 

Fig. 52. Vector diagram for interfer¬ 
ence in four half wave antennas. 

cos ® = — 1 + (30.20) 
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It has been shown by various writers^ that the field of a finite 
linear antenna with a sinusoidal current distribution can be 
computed exactly not only at large distances, as we have done 
in this section, but at small distances as w^ell. We shall not 
reproduce the calculation, which is somewhat involved. This 
allows us, however, to find the field of such an antenna on the 
surface of the antenna, assuming it to be a cylinder of small but 
finite radius. The magnetic field and the component of electric 
field pointing radially out from the cylinder prove to be just 
what we should expect them to be. Thus we know the current 
at each point of the cylinder, from our fundamental assumption 
(30.1); and the magnetic field proves to be just such as to give the 
correct surface current density, b^^ the condition of continuity of 
H. Similarly we know the charge in each part of the cylinder 
from (30.6), and the normal component of E is just what we 
should find from the resulting surface charge. In addition to 
these components, however, there is also a tangential component 
of Ey Ezj pointing along the axis of the antenna. Tins com¬ 
ponent proves to be given by the following formula for the half 
wave antenna 

Ez 
2 ^ ■ t cos kz + j{2kz/Tr) sin kz 

(30.30) 

We notice that Eg has components in phase with the current (the 
real part) and out of phase 
(the imaginary part). When 
z approaches the end of the 
antenna, we have kz = Tr/2. 
The denominator then goes to 
zero, as does cos kz^ and the 

numerator of the imaginary 
component stays finite. Thus 
the real part of Eg stays finite 
over the whole antenna, and 

the imaginary part becomes infinite at the ends. These com¬ 
ponents are shown in Fig. 53. 

Knowing E and H at the surface of the antenna, we can com¬ 
pute Poynting^s vector there and integrate over the surface. 
When we do this, we find the following result: 

i/J? Xff da =- ii*(73.5 + j42.6) 

* See Stratton, op. cit., Secs. 8.11, 8.12 for these results. 

Fig. 53.—Real and imaginary parts 
of Eg at surface of cylindrical half wave 
antenna, as functions of distance along 
antenna. 

(30.31) 
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The first term is exactly the same as the radiation found earlier 
from the calculation at large distances. Thus the real part of 
(30.31) , which should give the total radiation, agrees with our 
previous value. This must be the case, since no energy accumu¬ 
lates between the surface of the antenna and the large sphere on 
which our previous integration was made. The last term of 
(30.31) is not present at large distances, and this does not con¬ 
tradict anything. The imaginary term in Poynting's vector, 
or in an expression representing a power, gives the pulsating 
part of the energy flow, which averages to zero over a cycle. 
There is no reas<m why this has to give the same answer irrespec¬ 
tive of whei^e the energy flow is computed. We may, if we choose, 
regard the quantity 42.5 ohms in (30.31) as a reactance, since 
we should have ^Vl = jX) as the complex rate 
of energy production, corresponding to the quantity (30.31). 
We must be very suspicious of the correctness of identifying this 
reactance with the input reactance of the antenna, however, 
particularly when we rememl)er that this quantity, unlike i2, 
depends on the exact fi(4d in the neighborhood of the antenna, 
which is not accurately given by the assumptions of the present 
section. We merely mention these points here and shall come 
back to them in much more detail in the next section. 

31. The Field of Metallic Antennas.—In the preceding section, 
we have discussed the problem of finding the radiation field of 
an arbitrary distribution of current, and in particular the field of 
a sinusoidal distribution of current in a region half a wave length 
long. This problem was solved correctly; but there is no reason, 
as far as the arguments of that section went, to suppose that it 
had anything to do with the field of a real metallic antenna. 
For in a metallic antenna, as in any conductor in electromagnetic 
theory, we are not at liberty to assign the currents at pleasure. 
Instead, we must satisfy certain boundary conditions at the 
surface of the conductor. We have seen that if the conductor 
has perfect conductivity, these conditions are very simple: E 
must be normal to the surface and H tangential. If the conduc¬ 
tivity is finite, we have seen that there are small changes in these 
conditions, which can be neglected for a first approximation. 
We can now see, by reference to the preceding section, that the 
fields set up on the assumption of a sinusoidal current distribu¬ 
tion certainly cannot be correct. For they led to a tangential 
component of electric field, as we saw in Eq. (30.30) and Fig. 
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53, and this definitely contradicts the boundary conditions. 
The contradiction is not very serious. The field of Eq. (30.30) 
equals (2/7rX) x/ju/ciV"* times a geometrical factor of the order 
of magnitude of unity. On the other hand, the radial com¬ 
ponent of field proves to be y/fi/e times a geomet¬ 
rical factor, where Vq is the radius of the cylindrical antenna. 
If To is small compared to the wave length, it is clear that the 
normal component of field is large compared to the tangential 
component. Thus presumably the error in our current distribu¬ 
tion, and hence in the magnetic field and the normal component 
of the electric field, is not very large in proportion; presumably it 
gets smaller in proportion as the antenna becomes thinner and 
thinner, vanishing altogether as it degenerates to a line. 

How, then, can we correct our calculations? The method in 

principle is clear. We should solve MaxwelFs equations subject 
to suitable boundary conditions over the sur¬ 
face of the antenna, and as a result we should 
find both the radiation field and the current 
distribution. If we chose, we could take the 
current distribution so found and compute a 
radiation field by the methods of the preceding 
section, and the result would have to agree 
exactly with the radiation field found directly 
from Maxweirs equations. If the final, cor- 

Fig. 54.—Sketch ^ect. Current distribution differed only slightly 
of antenna fed by from the sinusoidal distribution we a.ssumed in 

the preceding section, the field would presuma¬ 
bly differ only slightly also, .so that our calculation of total radia¬ 
tion would be approximatt^ly correct, though the field would differ 
jast enough from our calculation so that Eg would be zero. 

Before we get far with this type of argument, we must have 
one thing clearly in mind: the place of the impressed electro¬ 
motive force in the calculations. We can visualize things more 
clearly if we have an actual ca.se in mind. Let us therefore 
think of an antenna fed by a coaxial transmission line. This is 
shown in a schematic way in Fig. 54. There are two conductors, 
one fixed to the center conductor and the other to the outer wall 
of a coaxial line. There is, of course, a large electric field 
between the two conductors of the coaxial line, which results in 
a large field between the two conductors of the antenna. As far 
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as the fields are concerned, one can then replace the actual 
antenna by a simplified model, as shown in Fig. 55. In this 

model, we have eliminated the coaxial fine and show only the 
conductors making up the antenna. Electric lines of force must 
pass from one terminal to the other, as shown in (a); but at the 

same time it must be possible for current to flow from one 
terminal to the other, as it actually flows through the mechanism 
of the coaxial line. This can be described as in (6), where we 
have shown the conductor as extending from one terminal to the 
other, so as to carry current. At the same time, however, we 
must allow the electric lines of force to pass from one conductor 
to the other, just as \\g did in (a), and this means that we must 

E 

(cl) (6) 

FkjI. 65. Two simplified models of antenna. 

allows E to be tangential to the conductor, in the small region 
symbolizing the junction between the tw^o terminals. We may, 
if we choose, follow the procedure of Stratton and Chu^ and 
assume that there is an applied electromotive force in the small 
central region of (6), a tangential nonelectrical force just equal 

and opposite to the tangential component of E, and we may 
interpret the boundary conditions as being that the sum of E and 
the applied electromotive force must be normal to the surface. 
It is not necessary to make this interpretation, however. If we 
keep in mind the way in which our model of Fig. 55(a) or (b) 
approximates the actual situation of Fig. 54, we see that all we 

must do is to find a solution of Maxwell’s equations that gives no 
tangential component of E over the actual terminals of the 
antenna but gives a predetermined value of tangential com¬ 

ponent over the region between the two terminals. Clearly 
the integral of this tangential from one terminal to the other, 
must be numerically equal to the voltage difference between the 

two conductors of the coaxial line of Fig. 54 and must be the 
voltage impressed on the antenna. Similarly the current flowing 
in the region between the two terminals, in Fig. 55, which of 

1 J, Applied Fhys,, 12, 230 (1941). 
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course could be measured from the tangential component of H, 
must be equivalent to the current flowing in the coaxial line of 
Fig. 54, the current flowing into one terminal and out the other. 

The ratio of this voltage to current is then the input impedance 
of the antenna, tthe impedance that it would have if it were 
regarded as a terminal impedance for the coaxial line. 

Since the tangential component of E is zero over the surface 
of the antenna, except in the region where the impressed elec¬ 
tromotive force is located, it is obvious that the normal com¬ 

ponent of Poynting’s vector must likewise be zero except in this 
region. That is, no power flows out of the antenna into space, 
in marked contrast to the approximate solution, in which we 

have seen, as in Fq. (30.31), that the normal component of 
Poynting^s vector integrates to a quite definite value. We 
naturally ask then, does this result of *(!i0.31) have any physical 
significance, and if so, why? This contrast between the approxi¬ 
mate solution and the correct one, in the matter of Poynting’s 
vector, is one which has been understood only recenth'. It is 
brought out clearly, for instance, in the papers previously quoted.^ 
These papers handle the problem by various essentially correct 
methods, which we shall describe presently. The n^sults, how¬ 
ever, are not very different from (30.31), and it becomes a (|ues- 
tion of much interest to ask why that approximate treatment 
works as well as it does, whether there is a fundamental reason 
behind it, or whether it is pure coincidence. 

There seems every reason to believe that the resistance com¬ 
ponent of the impedance, as found in (30.31), should really 
represent the input resistance of a real antenna, to a better and 
better approximation as the antenna becomes thinner and 
thinner, approaching the ideal linear antenna assumed in the 
derivation of (30.31). The reason is simple. If i is the input 

current into an antenna (peak valiuO, then the power input, 
which must equal the radiated power, has the average value of 

where R by definition is the radiation resistance. We 
could find this radiat(‘d i)Ower by integrating the normal com¬ 
ponent of Poynting’s vector ov<^r any closed surface surrounding 
the antenna. If the surface coincided with the surface of the 

antenna, Poynting’s vector would be zero except in the short 

* Stratton and C'hu, J. Applied Phys.j 12, 230 (1941); SchclkunofT, Proc, 
IM.E., 29, 493 (1041). 
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region of the electromotive force, where the tangential component 
of E was not zero. In that region, the tangential component of 
E would be connected with the voltage, and the tangential 
component of H with the current, in an obvious way, so that the 
integral would come out to give ^ Re Ft directly, which would 

equal The same answer would have to be obtained from 
any other surface, however, and in particular for a surface at a 
large distance from the antenna. Now (30.17) was found by 
just such an integration over a very large sphere, on the assump¬ 
tion of a sinusoidal current in the antenna. We have seen that, 
although this assumption is not right, as we observe from the 
fact that it incorrectly gives a tangential component of E along 

the whole surface of the antenna instead of a large tangen¬ 
tial component in the center section of the antenna and none 
elsewhere, still it is not very wrong, in that the tangential com¬ 

ponent is not very large anyway and becomes smaller in propor¬ 
tion to the normal component as the antenna becomes thinner 
and thinner. The correct current, then, will depart from the 
sinusoidal value by a smaller and smaller amount as the antenna 
becomes thinner. The difference between the actual current 
distribution and a sinusoidal distribution must give a field which, 

on the surface of the antenna, just cancels the tangential com¬ 
ponent of E given in (30.30) and replaces it by the correct value, 
concentrated in a small region about the center of the antenna. 

This is not a very big change, in proportion to the field as a whole, 
and it seems reiisonable to think that at large distances this 
additional current would make only a small correction to the 

field, and hence to the integral of Poynting’s vector. 
This argument makes it plausible, then, that the calculation 

of radiated power made in (30.31) for the sinusoidal current 
should be a fairly good approximation to the value for a real 

antenna, so that the radiation resistance of 73.5 ohms for the 
half wave antenna should be a good approximation to the real 

value. This of course is not a really valid demonstration 
of the value, or anything of that sort; it is intended merely to 
make it reasonable if the correct calculations give values in this 
neighborhood, as they do, rather than making it look like a pure 
coincidence. When it comes to the reactive part of the input 
impedance of a half wave antenna, however, the argument for 

the value 42.5 ohms of (30.31) is much weaker. The term in the 
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integrated Poynting vector corresponding to this represents 
the pulsating power, flowing out of the antenna for a half cycle, 

back during the other half cycle. The corresponding energy is 
located in the immediate neighborhood of the antenna, so that 
this term cannot be found by integrating over a large sphere; 

the value of the integral is different for each possible surface of 
integration. Since the field close up will presumably be decid¬ 
edly different in the actual case from what it is in the case of the 
sinusoidal current distribution, we might expect this pulsating 
energy to be decidedly different in the two cases, so that the 
value 42.5 ohms for the reactance of a half wave dipole might 
be rather seriously in error. As a matter of fact, values of this 

quantity determined by accurate methods are not very different 
from the value of 42.5 ohms, so that our misgivings are not too 
well justified. 

Now that we have gone into the relations between a correct 
calculation and the approximation based on the sinusoidal current 
distribution, let us look at the various methods of getting exact 

results. The two most successful methods are those of Stratton 
and Chu, and of Schelkunoff, whose papers have already been 
quoted. The method of Stratton and Chu approximates an 

actual antenna by a thin spheroidal conductor, which can become 
thinner and thinner, approximating more and more closely 
to the linear case. They solve the wave equation in spheroidal 

coordinates, in which a whole family of solutions is possible, in 
analogy to the family of solutions that we found in Sec. 27 in 
the case of spherical coordinates. By superposing a scries of 

such solutions, they can satisfy boundary conditions on the 
surface of the spheroidal conductor, and they choose the coeffi¬ 
cients of this series in such a way as to give a vanishing tangential 

component of electric field everywhere except in the region where 
the electromotive force is located. By integrating Poynting’s 
vector over the surface of the conductor, they can then find 

both the radiated and the reactive power, and hence both real and 
imaginary components of the radiation impedance of the anten¬ 
nas. This represents an exact solution of the problem they have 

attacked, accurate to the extent to which the series converge. 
They find curves for resistance and reactance as a function of 
impressed frequency, or as a function of antenna size for a 
fixed frequency, for spheroids of arbitrary eccentricity. These 
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results are thus very valuable in that they give exact solutions 
of a problem similar to the one actually met in practice. Of 
course, real antennas are not ordinarily of spheroidal shape; 
certainly the antenna of Fig. 55 is not. Nevertheless, it is 
probable that the approximations involved in replacing an actual 
antenna by a spheroid of comparable size, and using the solution 
of Stratton and Chu, are no greater than approximations met 
in other ways in the other types of attack on the problem. One 
drawback in the solution of Stratton and Chu is that the calcula¬ 

tions, have to be entirely numerical, and it is hard to visualize 
the results and get any further understanding of the problem 
from them. For this reason, we shall take up first the method 

of Schelkunoff, which is easier to understand, though probably 
less accurate. Then we shall come back later to a comparison 
of the numerical results of the two theories. 

Schelkunoff’s fundamental idea is to replace the two branches 
of an antenna like that shown in Figs. 54 and 55, by the two 
segments of a biconical horn, like that of Fig. 47, cut off at a finite 

length. The angular openings of the two segments of the horn 
are made small, so as to approximate the thin cylinders that often 
form an antenna. As we see from (28.7), there is a singularity 

of electric field at the origin, resulting in a finite voltage, given 
by (28.8), between the two conductors, at the origin. This 
singularity takes the place of the tangential field that we have 

interpreted as an electromotive force in Fig. 55. The two cones 
then form a transmission line, fed at the center and leading to 
propagation outward of a wave along both conductors, as we 

saw in Sec. 28. The equivalent characteristic impedance of this 
transmission line, as we see in (28.11), has a value depending 
on the flare angle of the cone, becoming infinite as the cone 

becomes infinitely narrow. 
An actual antenna differs from the transmission line of Sec. 28 

in that it is of finite rather than infinite length. Thus the princi¬ 
pal wave by itself will not satisfy the boundary conditions in 

all parts of space, and we must instead superpose many types of 
spherical waves to solve the problem, Schelkunoff imagines a 
sphere drawn about the antenna, as in Fig. 56, such that the 

cones and sections of the sphere bound the antenna. He then 
considers that the sphere forms essentially a junction between 
two transmission lines of different properties: within the sphere 
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we have the cone and essentially the principal waw; outside 
the sphere there is no conductor and the principal wave is impos¬ 
sible. He then builds up a solution as follows: 

1. Inside the sphere, he assumes not only a principal wave 
traveling outward, but also a reflected principal wave of adjusta¬ 
ble phase and amplitude, traveling inward from the sphere, which 
is regarded as a reflecting surface. At the same time, he assumes 
a superposition of all other types of wave that can be set up 
satisfying the boundary conditions at the surface of the cone. ©These other waves decrease in amplitude 

very rapidly, as we pass in from the sphere 
toward the origin, and take the place of 

the attenuated reflected waves which, as 
we have seen iix Sec. 24, must be assumed 
in the problem 6f reflection at a discon¬ 

tinuity in properties of a hollow pipe. 
Over mo.st of the length of the antenna, 
then, the disturbance consists of a direct 

Fio. 56.—Sphere bounding and a reflected principal wave, but these 
conical antenna. ,, . i i m j . • i 

attenuated waves build up to a consider¬ 
able importance near the spherical .surface. 

2. Outside the sphere, there is no principal wave. Schelkunoff 
then superposes all types of spherical waves of the suitable sym¬ 
metry, the field of an electric dipole being a leading term. He 

then applies joining conditions to make the fields in.side and 
outside the sphere join smoothly at the spherical surface. 
It is not practicable to apply these conditions entirely rigoroasly; 
as a result of this, the whole calculation is not exact, though it 
forms a good approximation. 

As far as the principal wave is concerned, the antenna behaves 
like a transmission line terminated by some definite impedance; 

one must use this impedance and the characteristic impedance 
of the line in the reflection equations to find the amplitude and 
phase of the reflected wave. When this reflected wave is known, 

we can then find the impedance of the line at the input end, using 
the ordinary transmission line equations for impedance at an 
arbitrary point. This gives us both input resistance and react¬ 
ance of the antenna. Schelkunoff^s calculation finds the terminal 

impedance that must be assumed to get the correct results from 

such a transmission line theory. The terminal impedance, 
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unlike the situation in simple lines, is not independent of the 
length of line. Rather it is a function varying in a more or less 

periodic fashion with the length of line. That this variation 
does not change the general characteristics of the problem is 
shown, however, by the curve of Fig. 57, where we show a 
resistance-reactance curve for a particular cone angle, as a 
function of the length of the antenna. We see that, for lengths 
greater than a half wave length, the curve is much like the circles 
found in Chap. I for the resistance-reactance diagram of an 
attenuationless line. The principal difference is that the circle 

Fio. 57.—Resistance' and reactance curve for conical antenna of characteristic 
resistance 750 ohms, as function of length; taken from Schelkunoff’s curves of 
R and X as functions of length. 

is displaced downward, so that its center lies below the real axis. 

Increase of length of the antenna by a half wave length corre¬ 
sponds to increase of the transmission line by a quarter wave 
length, and carries us halfway around the circle. 

It would seem plausible at first sight that the effective terminal 
impedance that should be used to terminate the line should be 
infinite, resulting in zero current at the end of the antenna. 
There are several ways of seeing that this is wrong, however. 
In the first place, it would give a reflection coefficient of unity. 
Then the reflected principal wave would carry back all the power 

carried out in the direct principal wave, and there would be no 
radiated power. Actually, the reflected wave must have smaller 
amplitude than the direct wave, the difference accounting for 

the radiation. We see immediately that the current distribution 
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in the antenna cannot be sinusoidal, in the half wave case, with 
a current node at the end, as is assumed in Sec. 30. For the 
sinusoidal distribution would be obtained by superposing a 
direct and reflected wave of equal amplitude and proper phase 
relation. As a matter of fact, since the reflected wave has a 
smaller amplitude than the direct wave, the total disturbance is 
not a pure standing wave at all. 

If the direct and reflected waves do not have equal amplitudes, 
there will not be a current node at the end of the antenna. At 

first sight this seems paradoxical. One naturally asks where the 
current goes to. The answer is simple, however. Toward the 
end of the antenna, the attenuated waves come in, and they 

furnish components of the current, which add to the current 
carried by the principal waves, to give a total current of zero. 
This is the condition assumed by Sehelkiinoff; it is not obvious, 

however, that it is correct, though at first sight it would seem to 
be. The reason is that the end of the antenna is a circnilar area, 
which has a certain capacity. Charge will then flow to and away 

from this end, resulting in a current at the end of the conical 
part of the antenna, though of course not at the center of the 
circular end. This effect, which can be considerable with a 
conical antenna of wide flare angle, or in the corresponding case 
of a rather thick cylindrical antenna, is very difficult to compute 
directly. The only antenna calculation in which it seems to be 

correctly taken into account is that of Stratton and Chu on the 
spheroidal antenna, in which there is no sharp boundary between 
the sides and ends of the antenna, and the current reduces to 
zero only at the center of the end. 

In addition to the arguments we have already used, we can see 
that the effective terminal impedance of the antenna is finite 
rather than infinite by looking directly at the resistance-reactance 

curve of Fig, 57. The part of this curve for lengths less than 
a half wave length is quite different in character from the circular 
part of the curve, representing greater lengths. Let us consider 

this circular portion. At the point marked X in Rg. 57, the 
antenna is a wave length long, or the ecpiivalent transmission 
line is a half wave length. Thus by ordinary transmission line 
theory the input impedance of such a transmission line should, 
neglecting attenuation, equal its output impedance. The 
impedance at the point marked X, then, gives an idea of the order 
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of magnitude of the output impedance of tlie antenna (only an 
idea of order of magnitude, for as we have mention<‘d we must 

assume the output impedance to be a periodic function of lino 
length, rather than a constant). As we see, the output imped¬ 
ance is large, but by no means infinite. 

Other features of Fig. 57 are of interest. First let us consider 
the case where the antenna length is less than a half wave hmgth. 
Then, as Fig. 57 shows, the impedance starts for very short 

antennas as a very large capacitive reactance. With increasing 
length the reactance becomes more inductive, becoming zero at a 
length slightly less than a half wave length, the resonant point. 
At the same time the resistive component is increasing with 

the length of the antenna. We saw in Kq. (20.11) that even 
the very simple model of the electric dipole showed a behavior 
of impedance as a function of dimensions, which was qualitatively 

of this form. Next let us see how the impedance Ix'haves for 
approximately a half wave dipole. From Schelkunoff’s curves 
one can find the resistance and reactance of a half wave dipole, 

and the values prove to be not very far from the values 73.5 
+ i42.5 ohms of Kq. (30.31), though by no means exactly equal 
to them. The values of course depend on the characteristic 

impedance of the line, or the flare angle of the cone, though at a 
half wave length the variation with flare angle is less than at 
most other lengths. From Fig. 57 it is clear that if it is desired 

to have the input impedance of the antenna a pure resistance, its 
length must be slightly less than a half wave length. At this 
value, the admittance of the antenna (the reciprocal of the leifgth 

of the radius V(^ctor from the origin to the resistance-reactance 
curve of Fig. 57) is very close to its maximum value, so that an 
antenna should be made of about this length to develop maximum 

power in an antenna fed with a given voltage. In microwave 
work, antennas are almost always designed to operate with this 
resonant wave length. This is in partial contrast to long wave 

work, where a half wave dipole can sometimes become incon¬ 
veniently large, and a shorter antenna is used. In that case 
the capacitive reactance of the antenna must be balanced out by 
some lumped circuit-tuning device, if it is desired to have a high 

admittance. 
We note that the approximately half wave resonant antenna 

is a selective device, tuned for the frequency for which it is 
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designed but not for other frequencies. It is interesting to see 
how the Q value of the antenna is to be determined from the 
curve of Fig. 57. Q is the ratio of the frequency difference 
between the two points where the power has half its maximum 
value, to the resonant frequency. This plainly depends on the 
behavior of the admittance as a function of frequency at constant 
antenna length (or, what is essentially the same thing, the 
admittance as a function of antenna length at constant fre¬ 
quency). This in turn depends greatly on the flare angle of the 

cones, or on the thickness of the conductors of the antenna. 
For a very thin antenna, the characteristic impedance is very 
high, and the circular pattern of Fig. 57 is on a very large scale, 
extending out thousands of ohms along the real axis, as in the 
case shown in Fig. 57. On the other hand, for a large flare angle, 
or a thick antenna, such as is more common in microwave work, 

the characteristic impedance is low and the circle is much smaller 
than shown in Fig. 57. The curves for different thicknesses of 
antennas, however, all hav^e their fimt resonance in the same 

neighborhood, with the resistance not very far from 73.5 ohms, 
and the length not much less than a half wave length. We now 
see that for a thin antenna, a given proportional change of fre¬ 

quency will carry us the same fraction of the distance around the 
circle as for a thick antenna. This means a much greater 
absolute distance, howev^er. The square of the admittance, 

which gives the resonance curve whose width is used to find the 
Q value, equals l/(/2^ + X^). In the neighborhood of the first 
resohance, we see from Fig. 57 that R changes rather slowly with 
frequency and that X is zero at resonance and changes much 
more rapidly with frequency. The half maximum of the curve, 
then, comes approximately when X equals R. We have just 
seen that for a very thin antenna, this will come aV)out with a 
relatively small frequency change from resonance; with a thick 
antenna the frequency change must be much greater. In other 

words, a thin antenna has a high Q value, a thick antenna a 
relatively small Q value, so that a thick antenna is not nearly so 
selective as a thin one. For antennas as thick as those used in 
microwave work, the Q value may be as low as 10, so that the 
selectivity of such an antenna is not serious, if it is to be used for 
frequencies that do not differ a great deal fractionally from the 
value for which the antenna was designed. 
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We have been speaking mostly about Schelkunoff^s theory of 
the conical antenna. In his paper he also gives formulas for 
antennas of cylindrical and other forms, handled as transmission 
lines of slowly varying constants. Although these formulas are 
useful for computation, they do not indicate any striking quali¬ 

tative difference from the conical case, and for that reason we 
shall not discuss them here. The reader is referred to Schel- 
kunoff's paper for the details. Similarly the work of Stratton 
and Chu on spheroidal antennas, previously referred to, leads 

l/A 
Fig. 58.—Input admittance of spheroidal antennas as function of ratio of 

antenna length to wave length. Numbers 7.07, etc., give ratio of length of 
antenna to maximum diameter. {From Stratton and Chu.) 

to results qualitatively similar to the results we have just been 
discussing. Since their results are only numerical, without 
much possibility of qualitative understanding, it is hard to give 

anything more in an account of this sort than a statement that 
qualitatively the agreement with the theory we have just dis¬ 
cussed is good, and there are few conspicuous qualitative features 

that are new in the discussion. One interesting qualitative point 
is that as the spheroid becomes thicker and thicker, more and 
more like a sphere, the circlelike figure of Fig. 57 not only becomes 
smaller, as it would for the conical antenna, but also becomes 
more and more depressed, so that for the sphere itself the curve 
never cuts the real axis. The reactance stays capacitive for all 

frequencies, or all antenna sizes, and there is no true resonance at 
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all. In spite of this, of course the admittance goes through a 
maximum value, so that there is a preferred size of antenna for 

maximum power output. As for numerical results of Stratton 

and Chu’s theory, they are tabulated graphically in their paper 
in a convenient form. We give in Fig. 58 one quantity which 

they do not plot, though it can be found easily from their curves. 

This is the magnitude of the admittance, as a function of the 
length of the antenna. Curves for different thicknesses of 
antenna are given in Fig, 58. It is seen that the maximum 

admittance comes in each case for slightly less than a half wave 
length, but the resonant length is considerably smaller for the 

very thick antennas. This feature is also found in Schelkunoff^s 

theory. It is of interest in microwave antenna design, since they 

are usually thick, and the length for maximum admittance can 
well be as small as 0.45 wave lengths. We also notice in Fig. 58 

how much sharper the curves become for the thinner antennas, 
checking our previous statement that thin antennas had higher Q 
values than thick ones. 

32. The Magnetic Dipole Antenna.—In the preceding sections 

we have been speaking of antennas whoso field to a first approxi¬ 
mation was not ver}'' different from the electric dipole discussed 

in Sec. 29. This is the most important type of antenna for most 

purposes. However, there are cases where we are interested in 
radiation or absorption by wire loops. The most familiar 

example of this is the coupling loop used to introduce energy into 

or remove it from re.sonant cavities. Although such a loop 
behaves rather differently in a cavity from its behavior in empty 

space, still it is worth while understanding its behavior as a 

radiator. A current loop acts like a small solenoid and produces 

at neighboring points a field like a small magnetic dipole. Thus 

we may expect that the field of such a loop will resemble the field 

of an electric dipole, as given in (29.3), but with the magnetic 

and electric fields interchanged. This is in fact the case. Our 

electric dipole solution was the simplest TM wave; similarly the 

magnetic dipole Ls the simplest TE wave. By methods similar 

to those of Sec, 29, we can give the field components in terms 
of the magnetic dipole moment. 

By methods like those used" in deriving Eq. (29.8), wc find 

that the field of a magnetic dipole of moment is 
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As in (29.11), it is interesting to find the ratio of transverse 
components of E and //, since this quantity has some resemblance 
to the actual input impedance of an antenna. Proceeding as in 
the derivation of (29.11), we have 

- = jcoMr + {kry • • • (32.2) 

The first term is an ordinary inductive type of reactance, pro¬ 
portional to the frequency and to the linear dimension, as the 
inductance of a loop would be. The second 
term is the radiation resistance term, which 
is here proportional to the fourth power of 
frequency and linear dimensions, rather 
than to the square of these quantities as in 
the electric dipole case. There is no capaci¬ 
tive reactance in this simple case. Actually 
a coupling loop would not have capacitive 
reactance, except for the fact that it is 
ordinarily fed from some form of transmis¬ 
sion line, and the sharp changes in direction 
of the conductors, as indicated in Fig. 59, would act somewhat 
like a condenser. 

There does not seem to have been nearly so much work 
devoted to the theory of the finite loop antenna as to the electric 
dipole antenna. For coupling loops, however, this is hardly 
necessary, since such loops are generally made small compared 
to the wave length. Even for this problem, as far as the writer 
knows, there has not been any good investigation of the reactive 
part of the input impedance of such an antenna in free space. 
As would be suggested by Eq. (32.2), we should expect the reac¬ 
tive impedance to be an inductive reactance, which would reduce 
at low frequencies to the inductive reactance of the loop as com¬ 
puted by ordinary quasi-stationary arguments. We should 

Fk5. 59.—Sketch of 

magnetic dipole an¬ 
tenna. 
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probably not be too much in error in extrapolating this inductance 
up to the frequencies actually used in coupling loops. As far 
as the radiation resistance is concerned, a value can be easily 
found by computing the energy loss by integrating Poynting's 
vector over a very large sphere, as was done in Sec. 30 in the 

electric case. Suppose we have a loop of radius 7?o, carrying a 
current i in the wire. Then the equivalent magnetic moment is 

M = irRli (32.3) 

the current times the area, or the strength of the equivalent 
magnetic shell. We can substitute this in (32.1) and find the 
field in terms of the current. We then compute the radial 
component of Poynting^s vector, integrate over a sphere, and 
find for the power dissipated per second 

W = {kRo)H^ ' (32.4) 

Setting this equal to where R is the radiation resistance, 
we have 

(32.5) 

The resemblance of this formula to the simple one (32.2) derived 
from the ratio of E to H is obvious. If we wish to express k in 
terms of the wave length and use the value 376 ohms for y//x/c, we 
find 

R = 3.075 X 10^ (f)' ohms (32.6) 

For small loops, this gives a fairly small resistance; thus for Rq 
equal to about a tenth wave length, R would be 30 ohms. Pre¬ 
sumably at high enough frequencies there would be a resonance, 
the capacitive reactance indicated in Fig. 59 canceling the induc¬ 
tive reactance of the loop. With loops small compared to a wave 
length, however, we are far from this situation, and it is not 
necessary to consider resonance in the same way that it is for an 

electric dipole. For the magnetic dipole, unlike the electric 
dipole, the.impedance is low and the admittance high, at low 
frequencies or for small antennas. Thus small loops can be 
effectively used, whereas electric dipoles shorter than the resonant 
value near a half wave length have such small admittance that 
they cannot be used without some sort of tuning device, as we 
mentioned in the preceding section. 



CHAPTER VI 

DIRECTIVE DEVICES FOR ANTENNAS 

In the preceding chapter we were treating the radiation from 
simple antennas. This radiation was not very directive. For a 

half wave antenna, we saw in Fig. 50, that radiation was intense 
in all directions except in the neighborhood of the axis of the 
antenna; even for longer antennas, as we illUvStrated in Fig. 51, 

although the radiation pattern is more complicated, the energy 
is not concentrated in a single direction. One of the principal 
advantages of microwaves is, however, the fact that the waves 

can be directed in a rather sharp beam. In this chapter we shall 
take up some ways of accomplishing this purpose. The possi¬ 
bility of directing short waves depends on their resemblance to 

optical waves. A source of light placed at the focus of a parabolic 
mirror, for instance, forms a parallel beam and can be used like 
a searchlight. The width of this beam is limited among other 

things by diffraction. The parabolic mirror has a finite aperture, 
and the radiation reflected from it is effectively transmitted 
through an aperture of the size of the mirror. It is known from 

optics that if the aperture is many wave lengths in diameter 
diffraction is unimportant; if the aperture is of the same order 
of magnitude as the wave length, the beam will spread out 

broadly. Short microwaves become short enough so that it is 
practicable to have parabolic reflectors a number of wave lengths 
across and hence practicable to reduce the diffraction effects to 

reasonable magnitude. The present chapter deals with the 
pr9blem of setting up directive devices of desired character, to 
take the radiation from a simple antenna and transform it into a 

concentrated beam. 
33. Absorption and Scattering by a Dipole.—We shall begin 

our discussion by taking up a problem which at first sight might 

seem unrelated to our main interest. We shall consider a plane 
wave falling on a dipole and setting it into vibration, so that it 
both absorbs and scatters energy. This problem is interesting 

in one way: it furnishes a simple model for the behavior of a real 
235 
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antenna as an absorber of energy, rather than as an emitter. 
But it also has close connection with our problem of directive 

devices. Most such devices, such as dummy antennas and 
reflectors, consist of conductors placed near the antenna and not 
directly fed with any source of power. They serve to scatter the 

radiation reaching them from the antenna, and the scattered 
radiation interferes with the direct radiation from the antenna 
to form the radiation pattern. 

Our present problem is the simplest one in scattering. We 
assume a plane wave to fall on a dipole; later, in the director 
problem, we shall have to take a spherical wave from one source, 

falling on a conductor and making it into a source on its own 
account. We next ask how the dipole behaves under the action 

of the field. This is a problem that cannot be solved 
without making assumptions about the dynamical 

behavior of a dipole. It must act like a resonant 
circuit, if we use electrical analogies, or like a 

JL mechanical particle held by linear restoring forces, 

if we use mechanical analogies, so that when it is 
Fig. 60.— acted on by a sinusoidal force, it is set into forced 

gifted d^ipol^ vibrations with a definite amplitude and phase, 
determined by the efT('ctive inductance, resistance, 

and capacity of the dipole. Finally we must take the oscil¬ 
lating dipole and consider the radiation emitted by it, and the 

energy balance, as determined by Poynting^s vector. Before 
going through the analysis, it will be helpful if we describe in 
wwds just what the situation is. 

Suppose for the sake of definiteness we imagine a small dipole 
built as in Fig. 60. It is assumed to consist of conductors at top 
and bottom, forming a condenser of capacity C, and a wire con¬ 

necting them, with inductance L and resistance R, The length 
of the dipole is assumed to be d. We shall assume this length to 
be small compared to the wave length. The incident wave is 

assumed to have an electric vector along the axis of the dipole, 
which we may take to be the x axis. The direction of propaga¬ 
tion of the incident wave must be at right angles to x, say along 

the z axis. The frequency of the incident wave is assumed to be 
arbitrary. We are interested in the frequency variation of the 
scattering and absorption. The dipole, since it forms an oscillat¬ 

ing circuit, has a natural frequency, at which it resonates. As 
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the external frequency approaches this natural frequency, the 
amplitude of the oscillating dipole increases, becoming large at 
the natural frequency. The dipole, on account of this oscilla¬ 
tion, itself emits a spherical wave, as described in the preceding 
chapter. It is now interesting to consider Poynting’s vector. 
The field consists of two parts: the incident plane wave and the 
spherical wave. Since Poynting’s vector is a quadratic expres¬ 
sion, there will be three sorts of terms in it. There are the terms 
in which the E and H of the plane wave both appear, those in 
which the E and H of the spherical wave both appear, and finally 
cross terms, the product of the E of the plane wave by the H of 
the spherical wave, or vice versa. 

To investigate energy flow, we should integrate each type of 
term from Poynting’s vector over a sphere or other closed surface 

Fia. 61.—Schematic diagram of scattering and al)sorption of energy by a dipole. 

surrounding the dipole. The plane wave terms will integrate to 
zero. As much energy flows out of the far side of the sphere as 
flows in the near side. The spherical wave terms will give an 
outflow of energy, just as if the dipole were radiating on account 
of any other form of excitation. The interesting and new terms 
are the cross terms between plane wave and spherical wave. We 
shall find that these terms give a net inflow of energ>^ into the 
dipole, more than enough to compensate the energ}^ lost in its own 
spherical radiation. The excess of energy inflow over outflow of 

course supplies the energy used up in heat in the resistance of the 
dipole. It is interesting not only to find the amount of this 
inflow of energy into the dipole but to see where the flow is 
located in space. The easiest way to describe it is to say that the 
dipole casts a shadow. In Fig. 61, we show schematically the 
way Poynting^s vector behaves in this case. The plane wave is 
supposed to approach from the left, as is indicated by the hori- 



238 MI CROW A VE TRANSMISSION [Chap. VI 

zontal arrows. Superposed on this incident wave is the outward 
spherical wave, indicated by the arrows pointing out from the 
dipole. But in the direction to the right of the dipole, the 
shadow, the incident plane wave, and the scattered wave travel 
in the same direction. In this case, interference effects are 
possible; and these effects prove to be just such as to cancel 
the effect of the incident radiation, the scattered wave being of 
opposite phase to the incident wave. The cancellation is not 
complete, and there is no sharply defined shadow. Nevertheless 
the cross terms in Poynting^s vector represent a decrease of 
intensity compared to the sum of the intensities in the incident 
and scattered waves, and located in the region that we have 
described as the shadow. 

We can then describe the situation in the following way. 
The incident plane wave strikes the dipole, and a certain amount 
of the energy is stopped by the dipole and removed from the 
incident beam. We can describe the amount stopped by giving 
the dipole a fictitious cross-sectional area, such that the amount of 
energy removed from the beam would be the amount that we 
should find falling on the cross-se(dional area, if we calculated 
according to geometrical optics. We shall find this effective 
area to be of the order of magnitude of the square of the wave 
length. The energy removed from the beam is divided into 
two parts. One part is reradiated or scattered, in a spherical 
wave. The other part is absorbed, going into the heating of the 
resistance. 

It is natural to ask next, what determines the relative amounts 
of energy scattered and absorbed. We shall find that in the 
equation of motion of the dipole, we must assume as a resistance 
the sum of two terms: the ordinary ohmic resistance of the con¬ 
ductor and the radiation resistance, computed as in the preceding 
chapter. Let us call these /2o and Rr respectively, so that /i, the 
total resistance, will be the sum of /io and Rr. The power input 
into the dipole from the external wave, which acts as an applied 
e.m.f., will be ^i^(Ro + Rr)y of which the part ^PRo goes into 
absorption, and ^i^Rr into scattering. Thus the relative amount 
of absorption and scattering depends on the relative values of 
Ro and Rr. For different purposes we wish to adjust these 
relative values in different ways. Thus if we are using the dipole 
as an absorbing antenna, we wish the absorption to have the 
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maximum possible value, for a given input voltage. We shall 
find easily that this is accomplished when Rq equals Rr. In this 

case, of course, Ro is to represent the input impedance of the line 
inserted into the antenna and coupling it to the receiving appara¬ 
tus; we assume actual ohmic resistance in the antenna to be 
negligible. For maximum power absorption by the antenna, in 

other words, the antenna should be matched to the Une, each 
having a resistance Rr equal to the radiation resistance of the 
antenna. On the other hand, if we are using the dipole as a 

dummy antenna in a directive array, we are interested only 
in the scattering and wish to minimize absorption. In this 
case obviously the ohmic resistance Ro should be made as small 

as possible. For the absorbing dipole, since Ro equals Rrj the 
absorbed energy and scattered energy will be equal, while for 
the scattering dummy antenna, the absorption will be negligible 

compared to the scattering. The scattering cannot be made to 
vanish under any conditions. 

With this qualitative description of the results, we can now 

go on to the mathematical treatment. As a first step, let us take 
a dipole at the origin, with dipole moment in the z direction, 
and a plane wave with field components equal to 

Ih (33.1) 

and investigate Poynting^s vector for this field. Later we shall 
find what M must be equal to, if the dipole is acted on by the 
plane wave, regarded as an impressed e.m.f. It is obvious with¬ 

out proof that the integral of the normal component of Poynting^s 
vector over a closed surface, for the plane wave alone, is zero; 
the proof is not difficult, if one wants to give it. For the spherical 

wave alone, the integral has been computed in Eq. (29.10). 
This leaves only the cross terms to be computed. We shall find 
these terms on the surface of a sphere of radius r large compared 

to the wave length. On this sphere, using Eq. (29.8), we may 
take the leading terms of the field components, finding 

E$ 
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sin 6 (33.2) 
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We shall now find that the essential contributions to the cross 
term of Poynting^s vector all come from a small region of the 
sphere surrounding the point where the z axis cuts it; that is, 
they come from the region of the shadow, as shown in Fig. 61. 
It is convenient to introduce new coordinates on the surface of 
the sphere, near this point. These are shown in Fig. 62. They 
amount to a set of polar coordinates on the surface of the sphere. 
The angles 4> are the ordinary polar coordinate angles for the 
spherical polar coordinates having x as the axis, and suitable for 

considering the radiation from the dipole. We have indicated 
another set of polar coordinates, however, with the z axis as axis, 
and they are the ones that we shall use. In place of the usual 

Fig. 02.- Polar coordinates for scattering problem. 

colatitude angle like we shall use the distance p, measured 
along the surface of the sphere; this quantity equals r times the 

colatitude angle. The azimuth angle of these coordinates will 
be denoted by rp. We shall find that the essential region is in 
the immediate neighborhood of the pole, or for small values of p, 

and for these values the curvature of the sphere is unimportant, 
so that we can approximately consider p and ^ to be polar coordi¬ 
nates in the tangent plane to the sphere. 

In the immediate neighborhood of p = 0, we have sin 0 = 1, 
and Ee becomes equivalent to to —Hy. Thus the field 
components of the dipole, which we may call Ei and //i, become 

in this neighborhood 

E xl r 
II Vl 

__ je Mk^ 
\p iwe 

(33.3) 

To find the field components of the plane wave, which we may 
denote by subscript zero, we must find z in terms of our polar 
coordinates. We have at once 
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2 r 
(33.4) 

for small values of p. Thus the field components of the plane 

wave are 
Exo = 

Hyo = (33.5) 

The cross terms of Poynting^s vector are then 

Soi = ^ Re (Exoftyi + ExiHyo) 

= I Re ~ J (33.6) 

To get the integrated Poynting’s vector, we must integrate this^ 
quantity over the surface of the sphere. For small p, the surface 
element is the area between circles of radius p and p + dp, or 

is 27rp dp. We wish, then, integrals of the form 

27rdp (33 7) 

We note that this can be rewritten 

^ J^±p-.V2r,^(p2) = :p 2^-'':^±/A-.V2r (33 8) 

taken between suitable limits. The lower limit is p = 0. We 
must consider the upper limit, however. We have made a 
number of approximations which are good only for small p. For 

this region, as we see from (33.8), the integral varies sinusoidally 
wth p^. As p2 becomes very large, it does not approach any 
definite limit. However, actually the terms we have neglected 
in the integrand have the effect of making the oscillations of the 
function gradually decrease, as if for instance there were 
a small factor multipl>dng the complex exponential. If 
there were such a term, it would also appear in the integral, 
leaving the same value as in (33.8) at the lower limit but giving 
zero for the upper limit. More careful examination of the prob¬ 
lem shows that the upper limit of the integral really should be 
!Set equal to zero, as this suggests. The integral then becomes 

. 27rjr 
H- 1 (33.9) 
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so that we have 

JSoi da = 2 Re 
A-2 1 2tjV 

4x6 r k 
{E,M - E^M) (33.10) 

We may without loss of generality take Eq to be real. Then this 
becomes 

J/Soi (33.11) 

where Mi represents the imaginary part of the part out of 

phase with Eq. 
We have taken a rather involved, though interesting, method 

for computing the energy flow out of the dipole on account of the 

cross terms in Poynting’s vector. We can now show very 
simply that this result is just what we should have expected 
from ordinary conceptions of impressed * e,.m.f.\s. The dipole 
moment is the product of d, the distance between the two 
conductors in Fig. 60, and the charge on either conductor. If 
iV"* is the current flowing between the conductors, the charge is 

Thus we have 

M = - (33.12) 

Hence we have 
/Soi da — — ^Ei/l{ij)i 

= - lEi^dir (33.13) 

where ir is the real part, ii the imaginary part, of i. Putting it 
otherwise, we have 

-J.Soida = ille Vl (33.14) 

where 
F = (33.15) 

The quantity — JSoida is the power input to the dipole on 
account of the cross terms in Poynting^s vector, and V is the 
voltage between the conductors, as a result of the external field 
Eo acting through the distance d. Thus this most elementary 
method gives the correct value for the power input. 

Once we understand the situation regarding the flow of energy, 
the rest of the analysis follows very simply. Obviously the 
power input given by (33.14) must be equal to the sum of the 
power dissipated in the resistance and the power reradiated. 
If the ohmic resistance is /?o, the first part is 

^i^Ro (33.16) 
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If the radiation renistance is /2r, the second part is 

(33.17) 

On the other hand, if 

7 = iZ = i{R + jX) (33.18) 

then the total power input from (33.14) can be rewritten 

(33.19) 

It is then obvious that the total resistance R of the dipole is 

R = Ro + Rr (33.20) 

and that its impedance is 

Z Rq + /2r + i (33.21) 

The radiation resistance for this particular type of dipole can be 
easily found from the expression (29.10) for the radiated energy. 

We have 

2 

Rr 

1 MW 
2 d'^ 

1 /m 

Rr = 

{kdy 

H yjen u>*M^ 
(33.22) 

(33.23) 

This value may be compared with the value of (30.24), which 
was computed under somcuvhat different avssumptions and hence 
should not agree with (33.23). 

Using the expression (33.21) for the impedance, the power 
absorbed in the ohmic resistance can be written 

1 vm^ 
2 (Leo ~ 1/Ca))2 + (Tilo + RrY 

and the power reradiated is 
1 vmr 
2 (Lco '-T/Cco)2 + (fto + RrY 

(33.24) 

(33.25) 

Keeping V constant and differentiating with respect to 72o, we can 

show immediately that the expression (33.24) has a maximum 
when /f 0 = Rrj verifying our earlier statement that the maximum 
power absorption comes when the series resistance in the absorb¬ 

ing dipole equals the radiation resistance. Obviously both 
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absorption and scattering are at a maximum at resonance, 
when the reactive term in the denominator of (33.24) and 

(33.25) vanishes. It is interesting to consider the breadth of 
the resonance curve, or the value of Q. By (4.48), we have 

1 _ Ro + Rr 
Q (jjL 

(33.26) 

Thus both types of resistance, the ohmic resistance and the 

radiation resistance, act in series to diminish the value of Q. 
It is also interesting to compute the effective cross section of the 
antenna, the area from which energy would have to be absorbed 

from the incident beam, to equal the actual energy removed 
from the beam on account of absorption and reradiation. We 
can write = Eld — VmA EoIIod. Using this, the expres¬ 
sions (33.24) and (33.25) can be rewritten respectively as 

^EqHqAq and ^EqIIqAt (33.2/) 

where Aq and Ar are effective cross sections for absorption and 
reradiation and are given by 

d^Ro \//i/€ 
(la> - l/Cco)2 + 7^7 + 7i7)l 

d’^Rr € 

(Lo) - 1/Caj)2 + (/4 +7r;)2 
(33.28) 

It is interesting to find the maximum value which the absorption 
cross section Aq can have. It attains this value at resonance, 
w^hen the resistance Ra is matched to the radiation resistance Rr. 

It is thus equal to 

A Omax 

ilir 
(33.29) 

where we have used (33.23). This value, as we stated earlier, is 
of the order of magnitude of the square of the wave length. A 

somewhat simpler expression is obtained if we consider different 
possible orientations of the dipole. We have taken up only the 
case where the dipole is parallel to the electric field in the incident 
wave. If it is at an angle d to the incident electric field, the 
absorbed power will be only sin^ d times as great as we have 
found, so that if we wish to consider the average absorption of 
dipoles oriented at random, we must multiply the value above by 
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the average of sin^ $ over all directions, which is f. 

have 
Then we 

(33.30) 

the area of a circle whose circumference is the wave length. We 
then obtain a correct physical picture of the amount of absorp¬ 
tion by assuming that all the energy falling on such a circle is 
absorbed, the rest being transmitted. An equal amount, of 
course, is scattered, in addition to the absorption. 

The arguments of the present section have dealt with a par- 
ticular>5ort of infinitesimal dipole. However, most of the results 

hold for arbitrary types of antennas. It is quite clear that our 
analysis of the antenna as a resonant circuit, with a resistance 
which is the sum of the ohmic resistance Ro and the radiation 

resistance /2r, should be much more general than this special 
case. Of course, the reactance of an antenna cannot be written 
exactly as the reactance of a simple series circ^uit, but as we saw 

in the preceding chapter it really is a complicated quantity. 
Nevertheless in the neighborhood of resonance an effective L and 
C could be found such that the series circuit formula (33.21) 
would give a good approximation to the impedance. Our 
conclusions would still stand that the energy removed ffrom the 
incident plane wave equaled the energy absorbed plus the energy 
reradiated or scattered. These two quantities would still be 

determined from the ohmic and the radiation resistance respec¬ 
tively. And for maximum ab.sorption it would still be true that 

we should have to make the ohmic resistance equal to the radia¬ 
tion resistance or should have to match the line to the a^itenna, 
and we should still find that the total scattered energy equaled 
the absorbt^d energy. It is only the special results of this section, 

such as 4.hc value of the radiation resistance of the particular 
sort of dipole we have assumed and the angular variation of the 
reradiation, that apply only to the special case we have taken up. 

34* Directional Properties of a Finite Antenna in Emission 
and Absorption.—^In the preceding section we have considered 
the relations between emission and absorption for an infinitesimal 

dipole. Now we extend the same sort of argument to a finite 
antenna, paying particular attention to the directional properties 
of this antenna both in emission and absorption. We have 
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already considered the emission from a finite antenna in Sec. 30, 
and we need to make only a slight generalization of the formulas 

of that section to get results correct for any antenna or antenna 
system in emission. Let us suppose that in emission the antenna 
system has a current density at the point x, y, z, so 
that we assume a current distributed in space. The quantity J 
in general can be complex, so that the current at different points 
of space may be in different phases. This will not be true in 
a simple standing wave system of currents but must be true if we 

are to have the type of phase relation necessary to give one-sided 
propagation of radiation, as we shall see in a later section. It is 
always convenient in speaking of antennas to have a single 

quantity that we can call the current. There is no unique way 
of defining this current. In special casqs there may be obvious 
ways, as for instance to define it as the cUrrent flowing into the 
antenna system from a line which supplies the power, but in 
other cases it may not be so obvious. In any case we shall 
assume that a definition has been given. Since the definition is 

arbitrary, it cannot affect our final results. It does, however, 
affect the values that we find for voltage and for impedance, 
since these are arbitrary too; but it does not affect the value we 
find for power, since that can be defined in a unique manner. 
Assuming a current i, we find of course that the current density 
J is everywhere proportional to ^, the constant of proportionality 
being a complex function of x, y, z. We shall call this function / 
and shall thus have 

J = if{x,y,z) (34.1) 

We note that, since J is a vector and i a scalar, / must be a vector. 
In a complicated antenna system, there is no reason why / must 

everywhere point in the same direction, though it does in a 
simple dipole. 

Each small element of volume will now contain an infinitesimal 
current element, which will generate a dipole radiation field, as 

described in Sec. 29. We shall consider this field only at a large 
distance from the antenna. Let us try to find the total field in a 
particular direction from the antenna, at a distance ro, and for 
convenience let us take the z axis along this direction. The 
field at the p>oint P will then be perpendicular to z, having x and y 

components. Let us find one component of the field, choosing the 
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X direction to be in the direction of that component. This 
component of field will be determined by the x component of 
current, as we can see by (29.8), where Ee^ for B = 90°, repre¬ 
sents the component of E opposite to the x direction. In fact, 
using (29.8) and (30.2), as we did to find (30.4), we find that the 
infinitesimal field dEx coming from the current in dv is 

47r€j<oro 

= (34 2) 
iwejo^ro ^ ’ 

where we have used the relation that r, the distance from the 
volume element at xyz to the point P, at 0, 0, ro, was approxi¬ 
mately equal to ro — z. The whole field Ex is then 

We shall define 

Ex I J* (34.4) 

The definition is set up in just this way so as to get agreement 
with the function F{B) of Sec. 30. We then have 

Ex 
—jikei fiut—kra) 

2r€coro 

j It i 
T \ (To 

h\ 

2t 
-*rro) (34.5) 

Remembering that EIx corresponds to — of Sec. 30, we can 
see by comparison with (30.5), (30.8), (30.11), (30.18), that the F 
defined here agrees with the F of Sec. 30. 

As in Sec. 30, we can easily find the total radiation and the 
radiation resistance of the antenna. The part of Poynting^s 
vector along the z axis associated with Ex and is 

Similarly the part of Poynting’s vector associated with E„ and 
—Ht is an expression like (34.6), only with Fy substituted for F,, 

where Fy is defined by analogy with (34.4). To find the total 
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radiation, we multiply the expression like (34.6), only with 
terms in both F* and Fy, by the element of area rl dQ^ where dQ 

is an element of solid angle, and carry out an integration over all 
solid angles. This integration is properly over different direc¬ 
tions of the wave normal of the radiation. We have set up our 

problem, however, in such a way that it is more convenient to 
keep the wave normal along the z axis and consider different 
orientations of the antenna. Let 

F2 = average of \F,[^ + IFP (34.7) 

averaged over all orientations of the antenna. Then we may 

substitute for the \Fx\'^ + encountered in Poyntinges 
vector, and multiply by 4t in place of integrating over solid 
angles, obtaining 

Radiated power = 

R, - I sj; <34-8) 

Equation (34.8) is the obvious extension of Eq. (30.14) to the 
general case of an arbitrary antenna. At the same time, we see 
the general way to get the polar diagram of intensity of radiation 
from an antenna as a function of angle: the intensity of radiation 
in a given direction is proportional to the quantity \Fx[^ + lFy|^, 
where Fx and Fy are defined as in (34.4), the z axis being chosen 
along the desired direction. 

Now we are ready to reverse our problem and consider the 
effect of an external plane wave on the antenna. We shall find 

that there is a reciprocal relation: the intensity of radiation 
emitted in a given direction by an antenna is proportional to the 
absorption of radiation coming from that same direction. Thus 

we expect a relation between radiation along the z axis, as we 

have just set it up, and absorption of a plane wave traveling 
along the negative z axis. Let us then set up such a wave and 
ask how much power is absorbed from the wave by the antenna. 
To find this, we can proceed exactly as in Sec. 33, as far as we 
are concerned with the antenna as an electric circuit. We can 

take over Eqs. (33.24) and (33.25) for the power absorbed in the 
ohmic resistance and the power reradiated, without change, if 
only we define the voltage V correctly. To find V in an arbitrary 

case, we can proceed as follov^s. By definition, the total power 
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absorbed must be ^Vlj where i is the current flowing in the 
antenna. On the other hand, the power absorbed can also be 
written in terms of the integral over the volunac of the antenna 
of the power absorbed per unit volume. Thus we have 

^Vl = • J dv (34.9) 

where E is the electric field and J the current density, in dv. To 
compute the integral on the right-hand side, we assume the J? of a 

plane wave and make assumptions that will be described at once 
for J, The integral can then be carric^d out, and V can be 
determined from the ecjuation. 

At first sight, it would be supposed that J would be given by 
the expression (34.1), as in emission. In a simple antenna like 
the dipole of Sec. 33, it is certainly true that the current dis¬ 
tribution in emission and absorption will be the same. In the 
general case, this simple assumption must be changed for the 
following reason. If the phase of the current in the antenna 

differs from point to point (in other words, if the current is not a 
simple standing wave), it is clear that the phase relations must 
be different in absorption from what they are in emission. If 

there are differences of phase, the antenna behaves to some extent 
like a transmission line. There may be actual transmission 
lines of different lengths feeding different parts of the antenna 

array in different phases, or the phasing may be taken care of by 
having some parts of the array consisting of dummy antennas, 
fed only by radiation from a primary antenna, in which case the 

distance between the primary antenna and the dummy acts to 
some extent like a transmission line. In any case, in absorption 
the energy is flowing in tlie oj)posite direction through this 
transmission line from what it is in emission. Now in the 

simplest case of a transmission line, a direct wave varies as 
if z is the coordinate along the line, a wave in the opposite 

direction varies as the space part of the function being 
the conjugate of its value in the other case. This simple case is 
an example of the general situation, that to reverse the direction 
of the energy flow in a finite, closed system like a transmission 
line or an antenna array, we replace the space parts of the various 
functions by their conjugates. Thus we must expect that the 
current density J in a volume element of the antenna in absorp¬ 

tion will be the conjugate of the corresponding quantity for 
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emission. We then assume that for absorption 

J = (34,10) 

It is not perfectly obvious, and probably is not exactly correct, 
that the current density should be given by (34.10). The reason 

is that in emission the antenna is fed by a concentrated voltage 
applied for instance at the point where the transmission line 
feeds the antenna (as we saw in Sec. 31); in absorption it is fed 

by a distributed voltage of a plane wave, exerted all over the 
antenna. It is not at all obvious that the current distributions 
will be exactly the same in both cases; but the differences are 

probably slight, and we shall find reason later to suppose that 
they are such that their effects are felt only at small distances, 
and not at large distances where we.shall compute Poynting^s 

vector. 
We are now in position to compute the power absorption (34.9). 

Before doing this, we note that we could equally well find it, as we 
did in Sec. 33, by integrating the cross term in Poynting^s vector 

between the plane wave and the scattered wave, and as in Sec. 33 
the two calculations give exactly the same answer. Without 
carrying this calculation through, it is interesting to see how it 
explains the fact that the intensity patterns of a given antenna 
for emission and absorption arc the same. Suppose for the sake 
of illustration that we have a highly directional array, sending 

out most of its energy in approximately a given direction. Let 
us choose this direction as the z axis. Then we expect it to 
absorb highly the radiation coming along the negative z direction. 

The current distribution (34.10) which we find in absorption is 
the conjugate of what we find in emi.ssion, and the resulting 
scattered wave is the reflection in the origin of the emitted wave. 

That is, in our particular case it is intense along the negative z 
axis. A plane wave traveling along the negative z axis will then 
have particularly large cross terms in Poynting\s vector, since 

these terms come from interference between the plane wave and 
the parts of the scattered wave traveling in almost the same 
direction. Thus the large absorption of this wave is understood. 
If we investigated the whole radiation pattern, plane wave plus 
scattered wave, in this case, as in Fig. 61 for the simple dipole, 
we should find that the large scattered beam along the negative 

z axis was largely canceled by interference, leaving a shadow 
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behind the antenna as before, and the remaining part of the 
scattered wave would form the diffraction pattern around the 
edge of this shadow. 

Now let us find the absorbed power, by (34.9), and hence the 
voltage V. Let us assume a plane wave with its electric field 
along Xy traveling along the negative z direction. That is, we 
assume 

(34.11) 

Using (34.10), we have 

^Vl = ^EoJ.ffx{XyyyZ)€^^^ dv (34.12) 

Referring to (34.4), this gives us 

y = (34.13) 

for the voltage developed in the antenna by the wave whose 
electric vector is (34.11). The mean square voltage is then 

= (34.14) 

It is this quantity which should appear in Eqs. (33.24) and 
(33.25). It will be easily verified that the value (33.15) for the 
voltage for the short dipole follows from (34.13) as a special case. 
We now observe that the absorption of a plane wave polarized 

with the electric vector in the x direction, traveling along — z, 
depends on the same factor that we found in (34.6) deter¬ 
mines the intensity of radiation with the same polarization in the 
-\-z direction, in emission. This is the origin of our earlier state¬ 
ment that the radiation and absorption patterns of the same 
antenna should be the same. 

The theorem that radiation and absorption patterns should be 
the same is often proved by the reciprocity theorem.^ This 
theorem essentially states the following: if there is a four-terminal 

network, which may include radiation as part of its elements, 
and a given voltage impressed on two of the terminals produces 
a given current at the other two, then the same voltage impressed 

on the second set of terminals will produce the same current 
on the first set. This theorem is used to discuss a system of two 

^ See, for instance, J. R. Carson, Bell System Tech. 3, 393 (1924); 9, 
325 (1930). 
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antennas, each with its two terminals, and is used to compare 
the radiation from the first antenna toward the. second, and the 

radiation from the second toward the first. If the antennas are 
far enough apart, the second antenna impresses practically a 
plane wave on the first. If then the first antenna, which is the 

one we are interested in, is given various different orientations 
with respect to the second, we can compare the current induced 
in the second antenna by the first when in various orientations 

(thus measuring the radiation pattern from the first) Avith the 
current induced in the first antenna in various orientations by 
the second (thus measuring the absorption pattern of the first 
antenna). When the argument is carried through in detail, it is 
found, as this discussion would suggest, that the radiation 
patterns of the same antenna in emission and absorption must 
be the same. This theorem appears to be based on sounder 
foundation than our discussion of the preceding paragraphs, for it 
is not based on the assumption that we have had to make of the 
relation between the current distril)ution in the antenna in 
absorption and emission. Since it leads to the same result that 
we have found, however, we shall not go into details about it, 
merely quoting it as a verification of our results. It is on account 
of this verification that it seems likely, as we stated earlier, that 
though the real current distribution in absorption is probably 
not just the conjugate of that in emission, still the difference is 

probably only one that is felt at short distances and is inap¬ 
preciable in the radiation part of the field. 

There is another relation between emission and absorption 

of antennas which is not so well known as the reciprocity theorem, 
but which is just as fundamental and again verifies the results 
of the preceding paragraphs. This is based on thermodynamics 
and the theory of black-body radiation. On account of its 

intrinsic interest we shall describe it, though we shall not go into 
very great detail regarding the thermodynamic side of the 

argument. It is a fundamental principle of thermodynamics 
that at thermal equilibrium at temperature T, space is filled 
with radiation of a certain type, characteristic only of the tem¬ 

perature, called black-body radiation. Every body immersed 
in this radiation naturally absorbs a certain amount of it, and 
at the same time every body must radiate energy on its own 
account. For thermal equilibrium it is obvious that these two 
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processes should balance, so that each body emits as much 
radiation as it absorbs. By the use of this fact, one can often 

derive relations between the rate of emission and absorption of 
radiation, and this relation can be set up for antennas. We first 
consider absorption. It is easy, from the discussion we have 
given already, to find how much energy an antenna will absorb 
from an arbitrary plane wave. We may then consider the black- 
body radiation to be made up of a great many plane waves and 
can find the total rate of absorption at temperature T, Next 
we consider emission. From the thermodynamic theory of noise 
in electric circuits, it is shown that at temperature T, as a result 
of fluctuations, currents and voltages are automatically set up 
in an}" conductors. As a result of these voltages, the antenna is 
automatically excited, so that it must emit energy. For a 
verification of our ideas, we should prove that this rate of emis¬ 
sion eciuals the rate of absorption. We shall now give this 
proof. 

From (34.14) wc find the mean square voltage developed in 

an anb'iina as a iwsult of a single plane wave of amplitude Eox- 
From the theory of black-body radiation, we find that if the 
radiation is confined in unit v"olume, we can consider it to con- 

sist of a finite number of plane waves, of various frequencies, 
directions of wave normal, and directions of polarization. In 
a range of frc^quency df and with the wave normal in a solid 

angle dfi, we find that there are 

(34.15) 

diff(U'cnt waves of one type of polarization and an equal number 
of the other polarization. For orientation, we note that the 
mean energy of each of these waves at temperature T is kT^ where 
k is Boltzmann’s constant (not to be confused with the propaga¬ 
tion constant k), or more accurately is — 1), where h 
is Planck’s constant. The second expression, coming from the 
quantum theory, reduces to the first in the case where hf is small 
compared to kTy which is always the case if / is a microwave 
fn;quency and T is of the order of magnitude of room tempera¬ 
ture. Using the one or the other of these expressions and replacing 
the solid angle dil by 47r, we find that the total radiation energy 

in the frequency range d/, and in unit volume, is 
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SirPkT 
df or 

Sirhp df 
c3(eV/A:r _ 1) (34.16) 

respectively, the first being the so-called Rayleigh-Jeans law of 
black-body radiation, the second being the Planck law. 

For the calculation of the mean square voltage, from (34.14), 
we need the quantity the square of the electric field in a 
single plane wave. We can get this for one of our waves con¬ 
stituting the black-body radiation, from the fact that its energy 

is kT. If Eqxj Hdy represent peak values, as usual, the energy 
in unit volume is 

1 = 1 ,El (34.17) 

the last step following because the electric and magnetic energies 
per unit volume are equal, as we see from the relation between 
Eox and Hoy. Thus, since the energy (34.17) equals kTy we have 

9k T 
El = (34.18) 

The mean square voltage developed by a single wave is then, 
combining (34.18) and (34,14), 

^ (34.19) 

For a single wave polarized along y, we have a similar expression 
with Fy substituted for F*. For all the waves in the frequency 
range d/, with wave normal in the solid angle df2, using (34.15), 
the total mean square voltage is 

Next we must integrate over solid angles. To do this, as in the 
derivation of (34.8), we may replace -f \Fy\^ by its average 
value and multiply by 47r. Thus we have 

\ total = ^ 4RrkT df (34.21) 

where we have used Eq. (34.8) for 72,. It i.s hoped that in the 
preceding formulas k, Boltzmann’s constant, which always 
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occurs in the combination kT, will not be confused with k, the 
propagation constant. 

We have found in (34.21) a simple formula for the mean square 
voltage connected with the power absorbed in an antenna of 
radiation resistance Rr, at temperature T, in the frequency 
range d/. From Eqs. (33.24) and (33.25) we could now com¬ 
pute the power absorbed and the power reradiated by the 
antenna. Next we must find the power radiated by the antenna 
on account of the voltages resulting from thermal fluctuations 
and show that it equals the absorbed power. To find this 
radiated power involves considerable study of the theory of 
fluctuations in transmission lines. We shall not give this dis¬ 
cussion here, but shall direct the reader to some references.^ 
In these references, particularly in that of Nyquist, it is shown 
that every resistance in a circuit may be considered a source of 
power, resulting from fluctuations. Instead of computing the 
power output, which depends on the constants of the rest of the 
circuit, it is convenient to give the mean square voltage developed 
by the resistance. Thermodynamics shows that this mean square 
voltage is 

= ARkTdf (34.22) 

where R is the resistance we are considering, at frequency /. 
We now note that this result is the same as that of (34.21). 
The meanings are different, however. Equation (34.21) gives 

the mean square voltage associated with the absorption of power 
from the radiation field; (34.22) gives the mean square voltage 
associated with emission of power. Since they are equal, we 
have verified our statement that our values for emission and 
absorption by an antenna were correct to lead to thermodynamic 
equilibrium, to balance between emission and absorption. In 

this wa3^ since the thermodynamic result must be exact, we have 
a valuable check on our calculation of absorption. This check 
is really only a verification of the over-all emission and absorp¬ 
tion averaged over all directions. We observe, however, that 
we can draw conclusions about the relation between emission 
and absorption in a particular direction. In (34.6), supple¬ 

mented by a term in Fy, we have found the emission in a particular 

^Schottky, Ann. Pkysiky 67, 541 (1918); J. B. Johnson, Phys. Rev.^ 32» 
97 (1928) ; H. Nyquist, Phys. Rev., 34, 110 (1928); R. B. Barnes and S. 
Silverman, Rev. Modern Phys., 6, 162 (1934). 
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direction, and in (34.20) we have the absorption of radiation 
in the same direction, from black-body radiation. Wo observe 

that both quantities show the same dependence on direction. 
Thus, since the total emission and absorption balance and since 
both show the same directional properties, we sec that the emis¬ 
sion of radiation in a given infinitesimal solid angle balances the 
absorption in the same solid angle. This is an example of the 
so-called principle of detailed balancing in statistical mechanics, 

according to which in thermal equilibrium each infinitesimal 
process must be balanced by its inverse process. Often this 
principle of detailed balancing is taken as a postulate; it can be 

proved directly from general statistical principles.^ If we wish 
to assume this principle of detailed balancing, then, we may 
reverse our argument of the present s('ciion and derive the 
formula (34.14) for the mean square voltage induced by absorp¬ 
tion of waves in a particular direction directly from the formula 
for emission. This gives an additional justification of our 
formula (34.14) and adds to our assurance, which we have 
obtained from the reciprocity theorem, that this formula is 
correct, even though our direct derivation of it involved possibly 
unjustified assumptions about the current distribution in 
absorption. 

36. Directional Patterns of Current Distributions.—We now 
have investigated the general relations between emission, 

absorption, and directional patterns of antennas and are ready 
to go ahead to the study of the directive patterns of particular 
types of antennas. We have found that the essential quantity in 

studying these patterns is the integral Fx, of (34.4), obtained by 
multiplying the current density in the antenna by a plane wave 
function and integrating over the antenna. There are now 

two parts to our problem. First we may ask, what sort of 
patterns do we get from typical current distributions? Secondly, 
how do we go about getting the.se current distributioas experi¬ 

mentally? In the present section we shall take up the first of 
these questions, later passing on to the second. We have 
already made a start on both questions in Sec. 30, where we con¬ 

sidered the radiation pattern of a linear antenna with a sinusoidal 
current distribution. Much more complicated distributions are 

' See for instance J. C. Slater, “Introduction to Chemical Physics,“ p. 91, 
McGraw-Hill Book Company, Inc., New York. 
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necessary for highly directive antennas, however, and we shall 
consider a few such distributions in the present section. Obvi¬ 
ously a great many different types of distribution might be of 
interest, and we shall consider only a few. However, the general 
methods that we use will illustrate the proper procedure for 

studying the general case. 
The first problem we shall take up is the one in which we have 

a current distributed according to an arbitrary law in the xy 
plane. We shall assume that the current is all along the x axis, 
and that it is confined to a relatively small finite region. This 
region may be large compared to a wave length (it must be, in 

fact, if the antenna is to be very directive), but still it must be 

JC 

small enough so that we can investigate the radiation pattern at 
distances large compared to the dimensions of the antenna. 
We shall take the origin somewhere within the antenna. Accord¬ 
ing to our assumption the antenna is small enough so that the 
exact spot we choose for the origin is not significant. For our 
present p\irposes it is more convenient to use coordinates fixed 

in the antenna, rather than to choose the z axis along the direction 
of propagation, as we did in Sec. 34. For that reason we shall 
have to rewrite the quantity F, which gives the directional 
pattern, in terms of the new coordinates. In Fig. 63, we show 
a set of polar coordinates, with the x axis as the pole and the 
angle 0 measured from the normal to the xy plane. Since the 
current is assumed to be along the x axis, the electric field at 
the point P will be along the 6 direction. Thus, referring to 
(34.4), we wish to find Fe, a component associated with fields in 

this direction. The corresponding quantity /e, associated with 
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the component of current in the direction parallel to the field, 
will be sin B times the surface current density. Thus there will 

be a factor sin B coming into F, leading to a vanishing intensity 
along the x axis, since the current points along this axis. In 
(34.4), we need to write the exponential in terms of our new 

coordinates, where z measured the displacement along the wave 
normal. Plainly we must make the substitution 

z X cos {riyx) + y cos {n,y) + z cos {n^z) 
= X cos B — y sin B sin </> + 2 sin ^ cos 0 (35.1) 

where cos (n,x) represents the cosine of the angle between the 
wave normal and the x axis, etc. Remembering that the 
current is assumed to be all located in the xy plane, so that 
2 = 0 for all elements of current in (S4.4), the exponential 

becomes 
^ik{x 00a e—v ain a tin (35.2) 

To define the factor / of (34.1) and (34.4) uniquely, we must 
decide on the value of i. Since for the present purpose we are 
more interested in the radiation pattern than in the impedance, 

we shall choose i so as to make F come out unity along the z axis. 
This is bound to be the maximum value of F in this case, since 
there is no interference between waves emitted by different parts 

of the charge. In this direction the exponential of (35.2) reduces 
to unity, so that by (34.4) F becomes fc/2 times the integral of 
/ over the plane. Let us choose a quantity ^ proportional to /, 
in such a way that ^ is a function of x and y (proportional, then, 
to the surface current density), with the constant of propor¬ 
tionality so chosen that the integral of ^ over the complete plane 
equals unity. Then we shall have 

F = sin ^ da (35.3) 

This represents the form that (34.4) takes, with our choice of 
axes and of current density. 

As a first example, we shall assume that current is uniformly 
distributed over a rectangular area of dimension a along the x 
axis, b along the y axis, and is zero outside this rectangle. We 
must then take 4/ to equal l/ab within the rectangle, zero outside. 

If the origin is at the center of the rectangle, we have 
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sin 0 p = I e^kx \ e dy 
0^ J-a/2 J-b/2 

_ . sin (fcg cos g/2) sin {kb sin 0 sin <^/2) 
(fca cos ^)/2 (fcb sin d sin 0)/2 

— • p sin [(yg/X) cos 6] sin [(tt^/X) sin ^ sin 0] .v 
”” (wa/X) cos ^ (irb/X) sin ^ sin 

where in the last form we have used k = 27r/X. We note that 
(35.4) has two factors of the form sin w/w. This function, as 
shown in Fig. 64, equals unity when w = 0 and oscillates with 

Fia. 64.—The function sin w/w. 

decreasing amplitude as w increases, reaching its first zero at 
1C = TT, its first minimum approximately at ic = 37r/2, at which 
its value is —2/37r = —0.212, and having its second zero at 
w = 2w. The square of this function, which is needed for the 

intensity of the radiation, has zeros at tt and 27r, with a maximum 
of height (2/37r)2 = 0.045 at about 3ir/2. We see that the 
maximum value of F, w^hen both factors sin w/w equal unity, 

comes when d = 90®, 0 = 0, or along the z axis, as we should 
expect. The first zeros of intensity come for 

cos 6 = ±-j sin 0 sin </> = ± ^ (35.5) 
a o 

If X/a and \/b are small or if both dimensions of the rectangle 
are large compared to a wave length, this can be rewritten 

« - 5 ± ^ ■» ' ± 5 »5.6) 

The main radiated beam lies within these limits, as we see from 
Fig. 64. Looked at on the surface of a sphere, the limits mark 
off an approximately rectangular area, whose dimensions in each 
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direction are inversely proportional to the dimension of the slit 
in the same direction. This behavior is characteristic of all 
diffraction problems, of which this is a characteristic example. 
In order to have the beam fill a small angle, the area over which 
current is distributed must be large compared to a wave length, 
in each of its dimensions. Outside the main beam, as we can 
also see from Fig. 64, are small side lobes, containing a few per 
cent of the energy of the main beam 

It is interesting to find the gain, defined as in Sec. 30, Eq. 
(30.25), as the ratio of in the direction of maximum intensity, 
to the average f-. To find the average we must square (35.4) 
and integrate over all solid angles, dividing by 47r. This integra¬ 
tion is unmanageable in the general case but becomes simple 
if the pattern is concentrated, so that sines and cosines can be 
approximated by their angles, as we have done in (35.6). In this 
case, we can replace sin d by unity, cos B by ir/2 — sin </> by <f>. 
The element of solid angle sin B dB d<t> can be rewritten —d{Trl2 
— B) d<t>. Since the pattern falls to zero rapidly as we depart 
from its region of maximum intensity, we can carry our integra¬ 
tion with respect to {t/2 — B) and </> from — oo to oo, in place 
of the usual limits. Then we have 

4x06 

sin2 (xa/X)(x/2 - A 
[(xa/X)(x/2 - ^))‘^^^V2 7 

sin^ (x6/X)</> , 

(35.7) 

Since the maximum value of is unity, we then have 

4xa6 ah 
Gain = 

X2 x(X/2x)-’ 
(35.8) 

or the ratio of the area of the emitting region, to the area of a 
circle whose circumference is the wave length. Large gains are 
plainly possible according to (35.8). Thus if a and 6 are each 
10 wave lengths, the gain is 4007r. It is to be remembered that 
(35.8), by its derivation, is correct only in cases where the gain is 
large. If a and 6 became of the order of magnitude of the wave 
length, the gain would not go to zero, as (35.8) would indicate, 
but to a finite valufe greater than unity, as with the dipole 
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antennas of Sec. 30. Thus the correct formula, to be substituted 
for (35.8), would be to a first approximation 

„ . ab + const. 
Ga,„ . (35.9) 

where the constant presumably should be |7r(X/27r)^, so as to 
reduce properly to the value f giving the gain of an infinitesimal 
dipole, as found in Sec. 30. The resulting formula, 

0“"' ■■ .( W’ +1 

of course, is only an interpolation between the correct limiting 
values but presumably would be good enough for practical use. 

Our next problem will be that o a uniform distribution of 
current over a circle of radius /i, rather than a rectangular area. 
In this case, except for the factor sin B of (35.3), the pattern will 
show circular symmetry. We shall consider it only for the case of 
a narrow pattern with large gain, which as in the rectangular case 

will come when R is large compared to a wave length. In this 
case, as before, we can replace sin 6 by unity, cos 6 by w/2 — B, 
sin <t> by </>. On account of the circular symmetry, we do not 

need to find the pattern for all combinations of values of B and 0. 
We may, for instance, set 0 equal to zero and shall then find the 
pattern as a function of 7r/2 — B^ giving the radial distribution 

of intensity in the pattern. Let us set 

(35.11) 

Further, let us introduce polar coordinates in the xy plane, 
denoting them by r and 77. Then, taking 0 of (35.3) as 

we have 

F J I 

re'**”"’’ dr (35.12) 

The integral can be carried out in terms of Bessel’s functions, 

giving 
2J,(fc{fe) 

k^R 
(35.13) 
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An elementary discussion of this integral is given by Slater and 
Frank. ^ If well-known formulas involving BessePs functions are 
assumed, the integral can be carried out as follows. We inte¬ 
grate first with respect to 17. Using the formula 

(h!/ = 27rJo(2) 

we have 

Using the formula 

we then have 

I 
2jrrJo(fc{r) dr 

Jo{z)zdz = zJ\{z) i: 
mR)ji{HR) 

(35.14) 

(35.15) 

(35.16) 

(35.17) 

reducing at once to the value (35.13). 
The function 2J\{z)/z has an appearance much like the func¬ 

tion sin wjw plotted in Fig. 64. It equals unity when 2 = 0, 
has its first zero when z = 3.832, then passes through a minimum, 
and again reaches zero. Its square then has its first minimum 
when z = 3,832, This square represents the intensity as a 
function of radius, in the radiated pattern. Most of the intensity 
is contained in the circle within the first minimum. The angular 
radius of this circle is given by 

m = 3.832, i ^ X ^ X 

It is interesting to compare this with the corresponding quantity 
in the rectangular case. If we had a square distribution of 
current of the same area as our circle, so that 

06 = a2 = Tr/e^ (35.19) 

we should find from (35.6) that the angular distance out to the 
first minimum was X/a = (l/\/ir)(X//2) = 0.56 X//i. The close 
agreement with (35.18) is obvious. 

We can easily find the gain of the circular current distribution, 
as we have earlier found it for the rectangular distribution. 

^ ^‘Introduction to Theoretical Physics,” p. 325, McGraw-Hill Book 
Company, Inc., New York. 
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Aa before, we must find F^. From (35.13), F depends on the 
angle measured out from the center of the pattern. Since we are 
considering only small patterns, we may introduce polar coordi¬ 
nates in the pattern, setting the element of solid angle between ^ 
and ? + equal to 27r| d^. Then we have 

27r|F2 = 2 

(kRy 
1 

{kRy 

X 
W2Ty 

R^^ 
7r(X/27r)2 

(35.20) 

where we have used the result^ that 
r j\{z) 

Jo Z 
dz 

the maximum value of F' is unity, this gives us 

Gain 
7r(X/27r)2 

Since 

(35.21) 

As in the formula for the rectangular antenna (35.8), this holds 
only for an antenna large compared to the wave length, and a 
first order correction for smaller antennas could be made by 
adding a constant, as in (35.9) and (35.10). 

We notice the close similarity between (35.21) and (35.8), in 
that in each case the gain equals the area of the surface covered 
w’ith current, divided by the quantity 7r(X/27r)“, the area of a 
circle whose circumference is the wave length. This suggests 
that this should be a general formula in such cases, and we can 
show easily that it is. We can do this best by going back to the 
idea of the effective cross section of the antenna for absorption, 
which was introduced in Sec. 33. In Eq. (33.27) we defined 
this effective cross section in such a way that it w as proportional 
to the absorption in a given direction. In (33.30) we found that 
the average absorption cross section of a dipole antenna, at 
resonance and matched to its line, averaged over all directions, 
was 7r(X/27r)2. shall shortly prove that this result is general 
for any type of antenna. On the other hand, for a distribution of 
current on a plane, like that under discussion, the maximum 
emission wall be along the normal to the surface; consequently 

^ See for instance Watson, ** Bessel Functions,Cambridge University 
Press, 1922, p. 405. 
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the maximum absorption will be in the same direction. It seems 
most plausible that the absorption cross section in th^is ease will 
be just the area of the current distribution. The gain, by 
definition, will be the ratio of maximum absorption cross section 
to average cross section (that is, it is the ratio of maximum 
emission to average emission), so that it will be the ratio of the 
area of the current distribution, to the quantity 7r(X/27r)‘-^, which 
is just the value found in (35.8) and (35.21). We may expect 
the same result, then, in any case in which the current distribu¬ 
tion is large enough compared to the wave length so that its 
absorption cross section may be set equal to its actual area. 

The result that w'e have just stated rests on the fact that the 

average absorption cross section of a matched resonating antenna 
is ir(X/27r)2, independent of the type of .antenna This important 
result is easily proved. From (33.24), inserting the case of 

resonance and assuming that /io, the ohmic resistance of the 
antenna, is matched to Rrj the radiation resistance, we find that 
the absorbed power is 

iZ! 
2 4/e, (35.22) 

From (33.27) we can rewrite this as 

1 
EoII 0-^1 (35.23) 

From (34.14) we have 

= I (35.24) 

To find the average absorbed power, we must average in 
(35.22) and (35.24) and average i4o in (35.23). We then use 

in (35.24) and write it in terms of the radiated resistance by the 
use of (34.8). Combining these, we have 

(35.25) 

the result that we wished to prove. 
The rectangular and circular arrays, which we have just 

discussed, can be made to have as high gains and as directional 
patterns as desired, by making them large enough, as we have 
just seen. However, as we saw in Fig. 64, the intensity does not 
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fall entirely within a single beam but, instead, has side peaks 
or lobes of appreciable intensity. For some purposes it is 
desirable to eliminate these side lobes. This cannot be done with 
any arrangement in which we have a uniform current distribu¬ 
tion over a certain area, with no current outside that area. The 
larger the area is made, the narrower is the main beam, and the 
farther in the side lobes move, but they remain of the same 
intensity proportionally to the main beam. It turns out to be the 
case that it is the sudden discontinuity in current density that is 
responsible for the side lobes, and that by having the current 
density gradually fall off to zero, the side lobes can be eliminated. 

We can show this by an example. We shall assume that the 
current density is distributed according to Gauss\s error law, 
falling off as where a is a constant and d is the distance from 
a central point. Then we shall find that the radiation pattern 
follows the same law, also falling off from its center according to 
Gausses law, only of course with dimensions that vary inversely 
as the dimensions of the actual antenna system. 

In Eq. (35.3), wo must first .set up the quantity ^ representing 
the current distri))ution in the xy plane, with the constant of 
l)roportionality so chosen that the integral over the plane equals 
unity. Such a function is 

i/' = - (35.26) 

where a is an arbitrary constant. To see its meaning, we note 
that if the current were distributed uniformly over a finite area, 

with the constant value equal to the value of the function (35.26) 
at the origin, it would cover the area rr/a. Thus l/y/a might be 
considered an equivalent radius for the current distribution. 

We now insert (35.26) into (35.3) and integrate with respect to 
X and y from — oo to oo . The integrals can be carried out easily, 

and the result is 
^ — ~(eos* 0 + sin* sin=* 0) 

h = sin Be (35.27) 

The quantity cos“ 6 + sin- B sin* <j> reprc'sents simply the square 
of the angular displacement from the center of the radiation 
pattern, so long as the angles are small. Thus we find that in 
this case the radiation pattern is given by a Gauss error curve, 
just as the current distribution is. The coefficient k^/ia in the 
exponent of the Gauss curve is, as we should expect, inversely 
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proportional to the coefRciemt a in the exponent of (35.26), which 

gives the current distribution. Thus we verify our statement 
of the preceding paragraph that the radiation pattern follows 
the Gauss law, with dimensions varying inversely as the dimen¬ 

sions of the antenna system. Since the pattern follows the 
Gauss law, there are no side lobes, the intensity falling smoothly 
to zero. t 

Examination of other examples shows that what we have 
found in the case of the Gauss law is true in general: if the 
intensity of the current distribution in the xy plane falls smoothly 

to zero, instead of discontinuously, the side lobes in the radiation 
pattern will be absent. In a practical case, of course the Gauss 
cunent distribution cannot be used, f6r. at least theoretically 
this implies a distribution of current out to infinity. However, 
it is possible to approximate it in a finite region If one is to use 
a current distribution through a finite region, as for instance, a 
distribution within a circle, the side lobes may be diminished by 

decreasing the intensity of the current as the edge of the circle is 
approached, instead of using a uniform current density through¬ 
out the circle. There arc compensating disadvantages, however. 
If only the central part of the circle is strongly covered with 
current, which falls off as the ('dges are approached, the effective 
area of the current distribution is smaller than the area of the 

circle, and the gain will be diminished. In practical cases, in 
other words, one must make a compromise between high gain 
and absence of side lobes; and one must note that if the dis¬ 

tribution fades off toward the edge of the circle, so that only 
part of it contributes to the effective area, the gain may be a good 
deal less than that given in (35.21), which was based on the 

assumption of uniform current distribution. 

From the examples that have been given, one can get a good 
idea of the type of patterns to be expected from a distribution of 

current in a plane. Many other problems can be reduced to 
equivalent plane current distributions; we shall see examples in 
later sections, for instance, in considering radiation from a 

parabolic reflector. There is one important respect, however, in 

which a plane current distribution is inadequate to represent 
many real systems, and that is in the problem of one-sided 

radiation. There are two beams emitted from a plane current 
distribution: beams emitted along the normal to the surface in 
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both positive and negative directions, or along ±2, if the current 
is in the xy plane. We have not stressed this fact in the deriva¬ 
tions we have given so far; in fact, in the calculation of gain, in 
(35.8) and (35.21), we have neglected it entirely; if we had taken 
it into account, we should have found a value of the gain only 
half as great as we did. Our reason for this was the practical 
one that actual radiating systems are usually one-sided ones, 
the beam along —z being cut out, so that the formulas we derived 
represented this practical case more closely. But we must now 
consider what characteristics a current distribution must have so 
that it will radiate in only one direction, say along the +2 

direction, and so that the other beam, in the —z direction, will 
be eliminated. We shall answer this question by a qualitative 
discussion, rather than by quantitative calculations. 

JC 

z=0 

(a) (b) 
Fig. 65.— Model of a directive antenna. 

Suppose that, as in Fig. 65, we had two identical current 
distributions, one located in the plane z = 0, the other in the 
plane z = X/4. These distributions are assumed to be identical 
as far as their dependence on x and y is concerned, but to be in 
different phases. In particular, we can have the distribution (a) 
at 2 = 0 a quarter cycle ahead of that (6) at 2 = X/4. Then 
first let us consider the beam along +2. The radiation from the 
distribution (a) leads that from the other distribution by a 
quarter cycle, but it takes a quarter cycle to catch up with the 
radiation from (5), on account of the path difference. Thus 
at any point along the +2 axis the two beams will be in phase and 
will reinforce each other. On the other hand, along the —2 axis 
the situation will be reversed. The radiation from (a) will lead 
that from (6) by one quarter cycle on account of their difference 
in phase, and by another quarter cycle on account of their path 
difference, making a phase difference of half a cycle in all, so 
that they will exactly cancel each other. Thus this combination 
of currents will give a beam directed along +2, with no cor¬ 
responding beam along —2. 
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We have so far considered the situation only exactly along 

the axes. If we consider radiation making a slight angle with 
the z axis, the path difference between the radiation from {a) and 
(6) will no longer be just a half wave length but will be slightly 

longer. Thus the reinforcement along the positive direction 
will not be quite so strong as before, and the cancellation along 
the negative direction will not be quite complete. Without 
making calculations, we cannot see exactly what will result, but 
the result is qualitatively clear. There will be a slight backward 
beam along the negative axis, with no intensity at the center 
but with intensity building up slightly as we go away from the 
center. The forward beam will not have quite twice the ampli¬ 
tude of the beam from a single current distribution but will have 
less in proportion as we go from the center of the pattern. 
Clearly if the beam is very narrow, its intensity will have fallen 
practically to zero by the time this situation comes about, and 
the backward beam will be almost exactly canceled. On the 
other hand, if the beam is broad, coming from a current dis¬ 
tribution of the same order of magnitude as the wave length, 
there will be considerable backward radiation, except in the 
exact negative x direction. Thus two short dipole antennas, 
arranged as in Fig. 65, will throw more of their radiation in the 
+2 direction than in the backward direction, but by no means 

will throw all their energy along the positive direction. 
The particular arrangement of phases that we have shown in 

Fig. 65 is one way, but by no means the only way, of securing 
one-sided radiation. Many other more complicated antennas 
would do the same thing. They all agree, however, in having 
current distributions at different points along the z axis, in 

different phases. For instance, it is obvious that if we have an 
infinite metallic surface of finite but high conductivity and allow 
currents to flow on one face of this metal, radiation will be 

emitted along the normal pointing out from that face, but not 
from the opposite face of the metal. The radiation must have 
been emitted from the currents actually flowing and could be 
computed from those currents by the methods of the present 
chapter. Now we know from Sec. 12 that a current flowing 
on the surface of a good conductor really is a rapidly damped 
wave, attenuated exponentially, and at the same time changing 

its phase, as we penetrate into the conductor for distances of the 
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order of magnitude of the skin depth. The attenuation is so 

strong that the intensity of the current has fallen to zero by the 
time we have penetrated a wave length or so. This is a compli¬ 
cated variation of amplitude and phase of the current with z. 

We can be sure, however, that if we were to calculate the radia¬ 
tion pattern of such a distribution, taking proper account of 
phases and amplitudes, we should find that it represented radia¬ 
tion traveling in one direction, outside the metal, but with no 
corresponding pattern on the opposite side of the metal, where 
our physical intuition tells us that the radiation will be cut off 
by the opacity .of the metal. 

36. Reflection and Scattering from Mirrors and Dummy 
Antennas.—^In the preceding section we have found the radiation 
patterns from various typical current distributions. Now we 
must ask how these current distributions could be set up. Of 
course, one possible method, which is sometimes used with fairly 
long waves, is to build up an array of dipole antennas, essentially 

filling a two- or a three-dimensional region, and to feed each 
dipole from a separate line, with suitable amplitude and phase. 
This is a straightforward but clumsy way to build up a distribu¬ 
tion and is one that is hardly practicable on the small scale 
required for microwave work. The more convenient and usual 
method in small-scale work is to feed power into only one part 

of the system, as for instance a single dipole antenna, but to 
arrange various reflecting or scattering conductors around this 
antenna, so that the currents induced in these conductors will set 
up the directional pattern that we desire. In the present section 
we shall consider some examples of such conductors, finding what 
sort of current distributions would be set up in them and what 

kind of radiation patterns we should expect in consequence. 
As a first example, we shall J;ake up the simple case of an 

infinite plane conductor, with a dipole antenna on one side of it. 

From either of tw^o legitimate arguments we should expect this 
conductor to act like a mirror. We might argue that the problem 
was like one in optics, or we might argue that it resembled an 

electrostatic problem. In either of these, we could replace the 
conductor by an image of the dipole, located as far behind the 
conductor as the actual dipole is in front of it, and we should find 

that the field of the real dipole and of its image was exactly 
equivalent to what we really have from the dipole and the 
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mirror. We shall find that in the present case, at least if the 

mirror has perfect conductivity, so that it is a perfect reflector, 
we can perfectly legitimately make up the field from that of the 
real dipole and its image. We can see immediately what we 

must do to prove this: we must set up the field of the dipole and 
its image and show that it satisfies the correct boundary condi¬ 
tions on the surface of the conductor, namely that the tangential 

component of electric field and normal component of magnetic 
field should be zero on the surface. Let us proceed to see how 
this can be carried out. 

(ct) (b) 

Fig. 6(i.—Imago of a dipole in a perfect conductor. 

Two cases are clearly possible: the dipole can be parallel to 
the mirror or perpendicular to it. These two cases are shown in 

Fig. 66, where the phase of the dipole is indicated by the direction 
of the arrow. It is clear in both cases that the phases are so 
chosen that the tangential component of electric field vanishes 
on the conducting surface. In other words, to satisfy this 
boundary condition, the electric image must have a phase 180® 
from what we should have if we just formed an optical mirror 

image of the arrow representing the real dipole. The field to 
the right of the conducting surface can then be taken to be the 
sum of the fields of the real dipole and of its image; inside the 

conductor, the field of course is zero. The discontinuity of 
normal component of electric field as usual measures the surface 
density of charge, and the discontinuity of tangential component 

of magnetic field the surface density of current, on the surface 
of the metal. It is not hard to see that the fields of source and 
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image have equal tangential components of magnetic field, and 

equal normal components of electric field, on the reflecting 
surface, and have equal and opposite normal components of 
magnetic field and equal and opposite tangential components of 

electric field. Thus while the total tangential electric field and 
the normal magnetic field vanish, the tangential magnetic field 
and the normal electric field are just twice the values resulting 
from the source alone. Using the field of the source, then, as 
we have learned how to find it in earlier sections, we can at once 
set up the surface densities of charge and current necessary to 
produce the reflection and satisfy the boundary conditions. 

This surface current distribution must have the same field, to 
the right of the conducting surface, that the image dipole would 
have. It is a rather complicated current distribution. It 
consists of circular zones in alternating phase, each zone formed 
by the intersection of a sphere of radius equal to a given number 
of half wave lengths and centered at the real dipole, with the 
conducting surface. It is hardly worth while to investigate the 
current distribution further, since we can equally well find 
the field from the electric image dipole. 

The two dipoles, one real and the other virtual, of Fig. 66, 
can naturally show similar interference effects to those which we 
have described in the preceding section, in the discussion of Fig. 

65. First let us consider case (a), where the dipole is parallel to 
the surface. The two dipoles are a half cycle apart in phase. 
If then their distance apart is a half wave length, the radiation 

from the virtual dipole will reach a point to the right of both 
dipoles in phase with the radiation from the real dipole, so that 
there will be a double amplitude and large intensity. On the 

other hand, if their distance apart is a whole wave length, the 
radiations from the two dipoles will cancel directly to the right, 
though not in other directions. In this case, the radiated 

intensity will be relatively small. As the real dipole is moved 
away from the surface, there will clearly be a periodicity in the 
radiated intensity, so that when the dipole is a quarter wave 
length, three quarters, five quarters, etc., from the reflector, 
there will be excess intensity, while halfway between, at a half 
wave length, whole wave length, etc., from the surface, there will 
be deficient intensity. In the other case, (6) of Fig. 66, the 

situation is reversed. There, if the dipole is a quarter wave 
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length, three quarters, etc., from the surface, so that it is an odd 

number of half wave lengths from the image, the fields of the two 
will cancel directly to the right; if the dipole is an even number of 
quarter wave lengths from the surface, the two fields will rein¬ 

force each other. This situation is complicated, however, by 
the fact that a single dipole has no radiation intensity" directly 
along its axis, so that it is only at an angle to the normal to the 

surface that we have any intensity at all, and in these directions 
the interference effect is not complete. It would not be hard to 
compute actual radiation patterns in these various cases, simply 
by combining the fields of the two dipoles, but we shall not carry 
this through. 

Now that we have considered reflection- by a plane mirror, we 

can take up the much more difficult but much more interesting 
problem of reflection by a parabolic mirror, since this type of 
mirror is capable of forming a narrow, concentrated beam, just 

as in an optical searchlight, and forms one of the easiest methods 
of directing a beam of microwaves. We shall consider only the 
simple case where the source is an infinitesimal dipole at the 
focus of the mirror; if the source is located away from the focus, 
we run into complications similar to the aberrations of geo¬ 
metrical optics. Just as with the plane mirror, there will be a 
distribution of charge and current in the surface of the parabolic 

mirror, just sufficient to cancel the field of the dipole at points 
behind the mirror but producing the reflected wave in front of the 
mirror. We shall assume that a small area of the mirror can be 
treated as if it were plane, so that the charge and current density 
can be found as they would be for a plane mirror. That is, we 
find the field of the source at this point of the mirror and assume 

that the total field at this point has a tangential magnetic field 
and normal electric field, which are twice the values for the source 
alone, while the tangential electric field and normal magnetic 

field are zero, to satisfy the boundary conditions. From the 
tangential magnetic field and normal electric field we can find 
the current and charge densities on the surface of the mirror, 

and we can then find the field at distant points of these current 
and charge densities. Thus we can investigate the reflected 
radiation. 

Two features of the surface current and charge densities are of 

interest: its phase, and its direction and magnitude. First we 



Sec. 36] DIRECTIVE DEVICES EOR ANTENNAS ^73 

shall consider the phase. If r is the distance from the source (at 

the focus) to a given point of the parabola, the disturbance at this 
point will contain a factor where is the propagation con¬ 
stant, determining the phase. At a point P where we are finding 

the field of the charge, there will be an additional retardation 
factor where ri is the distance from the current distribution 
to P, as shown in Fig. 67. Thus at P the contribution to the field 
from the particular element of current under discussion con¬ 
tains the factor But if P is far enough away so that 
the vectors reaching it from all points of the mirror are approxi¬ 
mately parallel, r + is the sum of the distance from the focus 
to a given point of the parabola, plus the distance from that point 

to a plane normal to the axis of the parabola, and by the funda¬ 

mental geometrical property of the parabola this sum is constant, 
independent of which point of the parabola we choose. In other 
words, the contributions of all current elements on the surface 

of the parabola will be in phase at P. This is really the origin 
of the focusing property of the parabolic mirror; by a funda¬ 
mental principle of optics, the optical paths from one conjugate 
focus to another must be equal, no matter which optical path is 

considered. As a result of our property, we can imagine a plane 
surface tangent to the paraboloid at its apex, as shown in Fig. 67, 
and can assume a distribution of surface charge and current 

on the surface of this plane, all in the same phase, which will 
produce the same field at P, and at neighboring points, that the 

actual distribution on the parabolic surface would produce. At a 

given point of the plane, we need only assume a charge and current 
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that can be found by projecting the actual distributions along the 

normal to the plane, as we shall see in the next paragraph. 
Consider a small element of area of the paraboloidal surface. 

The charge and current on this element will form a small dipole. 

The dipole moment will have one component along the axis of the 
paraboloid, another component at right angles to this axis. 
The component along the axis will emit no radiation along the 
axis and hence will not contribute to the field at P. This leaves 
only the component normal to the axis. It is this component 

that we may imagine located in 

the plane surface instead of the 
paraboloidal surface, as we have 
mentioned in the preceding para¬ 
graph, in 3uch a way that all cur¬ 
rent elements in this plane will be 
in the same phase. It is now a 

complicated problem in solid 
geometry to find the lines of cur¬ 
rent flow of these current elements 
in the plane, and to compute the 
radiation at P emitted by them. 

Fig. os.—Schematic diagram of We shall not Carry this through, 
lines of current flow in paraboloidal hoWCVer, givc a gOod idea 
reflector. , . i, r i i x 

graphically of the results. In I ig. 
G8 we show a diagram (from unpublished calculations of E. U. 
Condon) giving the direction of the lines of current flow in the 
equivalent current distribution on the plane surface. We notice 
that there are two poles, at which there is no current flow; lines of 
flow point into one of these poles, out of the other. These poles 
are found as follows. First we consider the actual dipole located 
at the focus and producing the primary radiation. We consider 
the axis of this dipole and find the two points at which this axis 

intersects the paraboloid (points a, a' in Fig. 67). Since the 
dipole emits no radiation along its axis, there is no electro¬ 
magnetic field at a and a', and hence no surface current. Thus 

there will be no surface current at the points 6, 6' of the plane, 
the projections of a and a' onto the plane. These points 6, 6', 
then, are the poles shown in Fig. 68. 

The problem of finding the radiation at P and at neighboring 
points is now that of finding the radiation from a distribution of 
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dipoles in a plane like that of Fig. 08, out to a certain circle 

representing the size of the mirror. This radiation can be 
found as in Sec. 35, only of course the problem is more compli¬ 
cated on account of the complicated current distribution of Fig. 

68. We naturally ask the question how the pattern will depend 
on the size of the paraboloid; that is, on the area of the illu¬ 
minated region of Fig. 68, in comparison with the distance out 

to the poles. From the figure it is obvious that the current ele¬ 
ments above the upper pole and below the lower one are in 
opposite directions to the rest of the current elements. Thus 
if the paraboloid Ls made too large so as to include too many of 
these current elements, they will tend to cancel the others and 
reduce the total radiation, rather than increase it. On the 
other hand, if the paraboloid is made too small, then by the 
principles of Sec. 35 diffraction will make the pattern too broad. 
A compromise must be made, deixuiding on the type of pattern 
desired. Clearly the pattern will be different in a vertical and in 

a horizontal plane. Looking up and down in Fig. 68, we see that 
the region contributing to the radiation is not essentially higher 
than the distance between the poles; even if the paraboloid is 

larger than this distance, tlie current density beyond the poles 
will be in the wrong phase to contribute to the radiation, as we 
have seen. Looking to the left and right in Fig, 68, however, 
we see that the illuminated region can be considerably greater 
than the distance between poles. Since by the principles of 
diffraction the pattern is narrower where the illuminated region 

is wider, we see that the pattern will tend to be narrower hori¬ 
zontally than it is vertically, (hi the other hand, vertically the 
illumination falls off gradually in intensity as the poles are 

approached. This gradual falling off of intensity, as we saw 
in the discussion of Eq. (35.27), tends to make the pattern also 
fall off gradually, without side bands. This is to be expected 

in the vertical plane. In the horizontal plane, on the contrary, 
the illumination will stay roughly constant out to the edge of the 
paraboloid, so that, although the pattern is narrower in that 

plane, side bands will be more pronounced. It is to be noted that 
in this discussion we have assumed the dipole antenna to be 
vertical; if it is horizontal, the situation will naturally be rotated 

through a right angle. As a matter of notation, it is common 
practice to denote the plane that we ha ve called vertical as the 
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electric plane (since the electric lines of force in the radiation 

pattern of the source dipole arc in this plane), and the one we have 
called horizontal as the magnetic plane. Then our conclusion 
is that the pattern in the magnetic plane is narrower than in the 

electric plane, but with greater side lobes. 
The actual pattern of radiation emitted from a paraboloidal 

mirror with an antenna near its focus is more complicated than 

this ideal situation for several reasons. In the first place, the real 
antenna is never infinitesimal and never a simple dipole. This 
means that its radiation pattern is more complicated than that 

of a dipole, so that there is a more complicated current dis¬ 
tribution than that of Fig. 68, and furthermore that some parts 
of the antenna are too close, others too far away, from the mirror, 
so that all parts of the current distribution on the equivalent 
plane are not really exactly in phase. Then we have neglected 
the fact that the radiation pattern at P is not only that produced 

by the reflection, but also that coming directly from the source. 
These two patterns can interfere with each other, something 
as the source and image interfered in the case of n^flection from a 
plane mirror, and can produce periodic elhnits, depending on the 
number of quarter wave lengths between antenna and mirror. 
These periodic effects will not be nearly so pronounced as with 
the plane mirror, for in the direction of P the reflected wave has a 

large gain, which the direct wave does not, so that the two 
interfering waves are not of the same intensity, but one is much 
weaker than the other. We may expect, then, relatively small 

periodic fluctuations of intensity at P as the dimensions are 
altered so as to change the focal length by a definite number of 
quarter wave lengths. These periodic effects can naturally be 
made weaker by using some form of reflector to catch the radia¬ 
tion traveling from the source directly toward P and to direct 
this radiation back on the mirror, so that it will form part of the 

reflected wave. 
Although a parabolic mirror is one of the most obvious direc¬ 

tive devices for microwaves, there are other types of devices 

that should be considered. One such device is the dummy 
antenna, a scheme often used at longer wave lengths and applica¬ 
ble at microwave frequencies as well. Near a dipole antenna 

and parallel to it can be placed another similar, insulated antennai 
not fed directly by any source of power. The radiation from 
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the driven antenna, falling on the dummy, will naturally set it 

into oscillation, according to the same principles that we have 
described in Sec. 33. The dummy in turn will become a source 
of radiation, which will interfere with the direct radiation from 

the driven antenna, and the resulting pattern can have direc¬ 
tional effects that a single antenna by itself cannot produce. 
Thus in Fig. 65 we have seen how two dipoles a quarter wave 

length apart, with phases a quarter cycle apart, will radiate 
most of their energy in one direction, with very small radiation in 
the opposite direction. Such a situation can be accomplished 

by a suitable dummy antenna. To do this, it is necessary to 
control the phase of the current in the dummy. This can be 
done, according to the principles of Sec. 33, by adjusting the 
length of the dummy. If the dummj" is just the right length for 
resonance at the frequency being used, the current flowing in it 
will be in phase with the voltage acting on it from the driven 

antenna. If the dummy is shorter than this, how^ever, it will 
correspond to a capacitive reactance; if it is longer, it will cor¬ 
respond to an inductive reactance. Thus by suitable choice of 
length we can make the current in the dummy lead or follow the 

voltage by any desired amount and can arrange it so that the 
radiation held either tends to flow^ from the driven antenna 
aw’ay from the dummy (which then acts as a reflector) or tow^ard 

the dummy (which acts as a director). Calculations of patterns 
for different lengths and positions of dummies have been made 
by Carter^ and Brown.^ These calculations are made on the 

same basis as the most elementary calculations of radiation 
resistance, based on the assumption of a sinusoidal current dis¬ 
tribution in the antenna, and for that reason are not to be trusted 
in detail. Nevertheless they are undoubtedly correct in a 
qualitative way. They are hardly accurate enough to serve as a 
guide for microwave WH)rk, however; the proper design of dummy 

antennas is still a subject that must be largely determined by 

experiment rather than theory. 
There is one point connected with reflectors, dummy antennas, 

and all types of directive devices, which is of importance in 
antenna design. This is the fact that any directive device 
changes the input impedance of the antenna. One way to see 

>Proc. LR,E,, 20, 1004 (1932). 
»Proc. 7.P.P., 25, 78 (1937). 
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this is to notice that any directive device is bound to reflect 
some of the radiation back to the antenna, so that it will be 
absorbed again and will set up standing waves in the antenna 
itself and in the transmission line feeding it. This produces, then, 

the same net effect as if the impedance of the antenna changed. 
As an extreme case, we may note that if the antenna were 
enclosed in a completely reflecting box, instead of being in empty 

space, the intensity of the reflected wave would equal that of the 
radiated wa\'e, no power could be dissipated in the antenna, and 
the radiation resistance of the antenna would be reduced to zero 
(though its reactance would not). The calculation of the change 
of impedance with a complicated directive device is so difficult 
as to be practically out of the question. In practice an antenna 

must be matched to its line with all directive devices in place. 
In the simple case of the dummy antenna, however, calculations 
of change of impedance are made in the same papers mentioned 

in the preceding paragraph, in which radiation patterns are 
computed. These calculations are made by the following simple 
method, treating the two antennas as two coupled circuits. Let 

Fi, i\ be the voltage impre.ssed on the driven antenna and the 
current in this antenna, and let F2, U be the voltage and current 
in the second antenna. (In (atse the .second is a dummy, F2 is 

zero, but we can consider the general case where it is also driven.) 
Then we can set up equations 

Fi = Zii?i + Z\2i2 

F2 = Zoiii “h ^22^*2 (36.1) 

where Zn, Z12, ^21, ^22 are coefficients of impedance and where 
by the reciprocity theorem 

Z12 = Z21 (36.2) 

In the papers mentioned, the coefficients Zn, Z12, Z22 are tabu¬ 
lated, as a result of numerical calculation, for different relative 
lengths and different positions of the two antennas. The 
quantities Zn, Z22 of course reduce to the ordinary input impe4- 
ances of the two antennas in case they are too far apart to affect 
each other, and Zn is of the nature of a mutual impedance 
between them, which can be of the form cither of a mutual 
inductance or a capacity term, depending on circumstances. 

For the case where the second antenna is a dummy, F2 = f 
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and we have 

(36.3) 

so that the driven antenna has an apparent input impedance of 

Zlz 
Zn - 

'22 
(36.4) 

The results of the calculation for this apparent input impedance 

are too complicated to summarize in a few words; the reader is 

referred to the original papers if he wishes to make calculations. 

Here as with the question of radiation patterns, however, the 

calculations cannot be trusted in detail. 



CHAPTER VII 

COUPLING OF COAXIAL LINES AND WAVE GUIDES 

In Chap. IV we have couj^idered composite lines, in which the 
properties change discontinuously at a given point, and we have 

considered to what extent they can be approximated by simple 

transmission lines with a discontinuity in properties. Certain 
problems were omitted in the discussion of that chapter. In 

particular, we did not consider the case in which one part of the 

line is a coaxial line, the other part a hollow pipe. The reason 

was that in those problems the input from the coaxial into the 

pipe is of the general nature of an antenna, and the problem is 

closely related to that of radiation from antennas, taken up in tlui 

two preceding chaptei*s. Now that we understand the nature 

of antennas, we are ready to take up these problems of the 

excitation of wave guides. As in the antenna problem, there is a 

simple and fundamental case which we shall take up first, build¬ 

ing the rest of our discussion around it. With antennas, this 

was the radiation from a dipole in free space, and the absorption 

of energy by such a dipole. Here wo consider the corresponding 

problem, the radiation and absorption from a dipole inside a 

rectangular wave guide. This problem can be solved exactly, 

and by means of it we can get qualitative results for the radiation 

and absorption of real antennas in rectangular wave guides. 

The corresponding problem for circular wave guides is more 

involved, and we shall not take it up. 

37. Radiation Field of a Dipole in a Rectangular Wave Guide. 
Suppose we have a rectangular hollow pipe, infinitely long (or of 

finite length and terminated by an impedance equal to its 
characteristic impedance, w^hich amounts to the same thing) and 

containing an oscillating electric dipole of moment at a 

specified point. Our present problem is to compute the radiation 

field of this dipole inside the pipe. The field will have compli¬ 

cated values close to the dipole but will approach a simple value 
at large distances. It is this limiting value at large distance 

which we shall compute. Having found it, we can find the 
280 
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power radiated by the dipole and hence its radiation resistance. 
As with a dipole in empty space, the reactance, unlike the 

resistance, depends on the field close to the dipole. Conse¬ 
quently we shall not try to compute it, though we can get some 
qualitative information regarding it. 

Before starting with the actual calculation, we shall describe 

in words the methods used and the results achieved. The 
method which we use is the method of images. By the method 
discussed in Sec. 36 and illustrated in Fig. 66, a dipole within a 

rectangular pipe will have four images, one in each of the four 
walls of the pipe. Each of these images in turn will form images, 
and as the process is continued the net result is a two-dimensional 
array or lattice of images, extending to infinity in both directions 
ill a plane normal to the axis of the pipe. The radiation from 
this doubly infinite array of images will automatically satisfy the 
boundary conditions at the faces of the pipe and hence will 
furnish the solution of our problem. The problem of finding the 
field of such an array of dipoles is analogous to the optical 
problem of a diffraction grating. As in that problem, there is 
interference between the radiation sent out by the various dipoles, 
which almost completely cancels the total radiation in most 

directions. Only in a finite number of directions does the 
interference result in building up the intensity of the radiation. 
These are the directions in which radiation from different dipoles 

differs in phase by a whole number of wave lengths. Correspond¬ 
ing to each of these directions, there is a plane wave emitted 
by the array of dipoles. The radiation at a large distance con¬ 
sists of a superposition of these plane waves. It now turns out 
that these waves are just those which, by superposition, result 
in the various waves that can be propagated down the pipe, 
according to the principles of Chap. III. From our calculation 

we find the amplitude of each of these waves. For instance, if 
we are in the range of wave lengths where only one mode can be 
propagated down the pipe, the only plane waves emitted by the 

dipoles will be the two that combine to form that mode. By 
finding the intensity of this wave and setting it equal to the 
radiation emitted by the dipole, we find the radiation resistance 
of the dipole. The field near the dipole, in contrast to this, 
is formed of the waves that are not propagated down the pipe 
but are exponentially damped. We must use an infinite series 
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of such waves to represent the field, and the convergence is not 
rapid. The net result of adding these waves is to give the 

reactance of the dipole, consisting of capacitive and inductive 
reactance. We shall not try to make this calculation but shall 
simply point out that the reactance is not greatly affected by 
the fact that the dipole is in a hollow pipe and is similar to that 
of a corresponding dipole in empty space. 

Let us now proceed with our calculation. (We shall follow 
the general lines used in an unpublished note by J. L. Synge; the 
same problem has also been discussed in an unpublished memo- 

Fio. 09.—Dipole in xy plane, normal to wave guide extending indefinitely along 

±^. 

randum by S. A. Schelkunoff.) We take coordinates as in Fig. 

69. We shall assume that the pipe is of such a size that only the 
TEi o wave can be propagated down the pipe. We choose the 
dipole to have its axis along the y axis, which is the direction 
of the electric field in the pipe, and can see intuitively that the 
other cases, in which the dipole has its axis along x or 2, will not 
radiate down the pipe; if the axis is along x, the orientation would 

be right to produce a wave with its electric field along x, which 
cannot be propagated down the pipe; if the axis is along 2, the 
dipole could produce only a transverse magnetic wave, and 
these waves cannot be propagated, by hypothesis. We assume 
the dipole to lie in the xy plane, at a distance d from the y axis. 
The vertical distance, from the x axis, as we shall find, is imma¬ 
terial, and we shall not specify it. 
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We next set up our images, following the pattern of Fig. 66. 
When we do this, the array of dipoles in the xy plane is as shown 
in Fig. 70. As we see, there are linear arrays of dipoles following 
lines parallel to the y axis, spaced with a distance 2a along the 
X axis. There are two such arrays, one at j = d + 2?ia, the 

other at X = — d + 2?ia, where n is an arbitrary integer. We 
shall first find the field of a single linear array of dipoles and then 
combine them to form the two-dimensional lattice. For a linear 

array, it is legitimate to replace the discrete dipoles by a con¬ 
tinuous distribution of dipole moment, of amount per 
unit distance along y. By (30.2), this 
corresponds to a current 

. M , 
(37,1) 

Fig. 
finding 
current. 

'1.—Coordinates for 
field of a linear 

flowing along the array. We could 
find the field of such a linear current 
in terms of Bessel’s and Neumann’s 
functions, following the methods of 
Sec. 20. Rather than do this, how¬ 
ever, we shall find the field directly by 
integration, so as to illustrate the method which we shall later use 
to sum the fields of the various linear arrays. In Fig. 71 we show 
a linear array, with a set of coordinates appropriate to the problem. 
We shall treat the current element in dyasa dipole, use the expres¬ 
sion (29.8) for its field, and integrate over all elements of length. 
In this integration, the essential contributions will come from 
small values of y, for which r approximately equals the perpen¬ 
dicular distance R, the quantity sin 6 in (29.8) is approximately 
unity, and Ee is approximately in the direction of —y. Keeping 
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only the term important at the largest distances, in (29.8), we then 
have 

dEg 
M 
h 

dy _*!_ 
AirtR 

(37.2) 

as the contribution to the field from dy. In the quantity r 
appearing in the exponent, the phase is of essential significance, 
so that we cannot replace this quantity by R, Instead we 
expand as follows: 

r = VR^ + 2/- 

= '^0 + ^1^+ ■■■ ■) 

= ^ + + ■ (37.3) 

Using this approximate value, we have 

M 
\ T 4^ gy (37 4) 

Using the result 

we find 

cosxMx = J^ sinx^dx^l^ 

E = — —11- ^iWt-kK) 
^ b Ay/i.VR 

(37.5) 

(37.6) 

as the limiting value of the field of our linear current, at large 
distances. This is the same value that we should have obtained 
from Bessers and Neumann^s functions, if we had used the 
asymptotic expansion of these functions for large R [similar 
to the expansions of (27.26)]. 

Now that we have found the field of a linear current, let us 
combine the current elements at a: = d + 2na to find the field of 
an infinite lattice. In Fig. 72 we show that such a lattice pro¬ 
duces radiation only in certain definite directions. Thus at the 
point P there is a beam coming normally to the x axis, in which 
the radiation from each lattice element has traveled approxi¬ 
mately the same distance in reaching P, and so is in the same 
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phase. There is another beam coming in the direction 6, in 
which each lattice element is one wave length farther from P 

than the next, so that again the waves reinforce each other. 
Similarly there could be beams in directions such that each 
element was two wave lengths farther than the next, and so on. 
In the corresponding problem of a diffraction grating, these are 
called first-order beams, second-order beams, and so on. We 
shall now show that in our case, where only the wave can 
be propagated down our pipe, only the first-order beams exist. 

Fig. 72.—Diffraction field of a lattice. 

To show this, lot us find the condition on 6 for the mth order 
beam. From Fig. 72 it is clear that this condition is that 

wjX = 2a sin d (37.7) 

The maximum possible value of m is given by setting sin 6 equal 
to 1. In this ca.se we have 

2 _ m 
X a 

(37.8) 

for the longest wave length at which the mth order diffracted 

beam exists. But from (15.17) we see that this is just the condi¬ 
tion of cutoff for the TEm.o mode in the pipe. Thus in our case, 
where only the TEi,o wave can be propagated, only the first- 
order diffracted beams exist. Not only this, the two first-order 

beams, shown in Fig. 72, are just the ones which, by interference, 
produce the I'Ei.o type of wave in the pipe, as we can see from 
Eq. (14.8), which is identical with (37.7) (except that in (14.8) 
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the roles of the x and y axes were interchanged) and which gives 
us the angle with the z axis at which two plane waves must be 
propagated, to give the TEi,q wave by interference. 

Now that we understand the physical side of our problem, we 
can proceed with the mathematical steps of summing the fields 
Ey from all linear currents, as shown in Fig. 72. We can handle 
separately each diffracted beam. We must sum quantities 
(37.6) for all current elements. In this expres.sion, the quantity 
R is the distance from the current element to the point P where 
we are finding the field. If this point has coordinates x, z, 
{y == 0), and if the current element is at x = d + 2na, e = 0, 
then, 

R = (37.9) 

Let 
d + 2na - x = 2 tan (? + f (37.10) 

so that f = 0 corresponds to the point from which radiation falls 
on P satisfying exactly the condition (37.7). Then (37.9) becomes 

R tan**^ 6 + 2^z tan ^ f“ 

= z sec 0 (1 + ^ K cos^ e) 
\ z sec 6 2- / 

- , f sin 0 , 1 , - 
= z sec ^ ( 1 + --- + o 2 ^ \ 2 sec 0 2 2^ 

I 
= 2 sec 6 + ^ sin 6 ^ - cos^ d • • 

^ 2 

1 \ 
^ -X Sin- 0 cos^ 6 ••' ) 
2 2^ f 

(37.11) 

We now substitute the value (37.11) in (37.6), finding for the 
exponential 

—}k\i sec B•\-{d-\-2na — X — z B) ain (jL_1 
^jkR g L J 

_jki^ coH* B 

^ g —jk[z coH 6-{-(d — x) sin B]^ —jk2na sin 0^ 2z (37.12) 

where we have used (37.10) and a little trigonometry. Now 
from (37.7) 

k2na sin 0 = 2na sin 0 — 2irn (37.13) 
A 

where we remember that n is an integer. Thus the exponential 
g~;*2n4i«in« eqyaLs unity. It i.s this fact which distingiiishes our 

diffraction beam from other directions and allows us to integrate 

(37.12), since n cancels out of the expression. 
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Having found the expression (37.12) for our exponential, we 
should sum over all values of n. We have just seen, however, 
that n appears in (37.12) only through the quantity in a term 
that varies only slightly from one value of n to the next, so that 
we can replace the sum by an integral. Since the interval 

between successive current elements is 2o, the sum of the EyS of 
Eq. (37.6) is 

Total Ey M ma - j) 
- -—-- /fc[zcoa 0 + (d—x) •in 0\^]<at 

0 4 vir c V 2 sec 9 
C08« e 

(37.14) 

where in the denominator we have replaced R by its leading term, 
from (37.11). Integrating, using (37.5), we have 

Total Ey== - ““ (37.15) 
4a6€ cos 6 ^ 

The expression (37.15) represents the total field of the array of 
current elements at d + 27ia, arising from the diffracted beam in 
the direction 6. There will also be a corresponding beam in the 
direction —0, however, and in addition to these there will be 
two beams, of opposite sign, coming from the oppositely directed 

array of elements at — d + 2na, When we add the fields of the 
four beams, we find from (37.15) 

Ey =-{Jed sin 9) sin {kx sin (37.16) 
^ abe cos 9 

In deriving (37.16), we have considered only the first-order 
diffracted beams, not the beams traveling along the z axis. The 

reason is that these last beams cancel, the two arrays of current 
elements, with opposite signs, exactly balancing in their effect. 

When we compare (37.16) wth (14.1), we see that the solution 

that we have found is of the correct form for a TjBi.o wave in the 
pipe. (We note that the roles of x and y are reversed, in com¬ 
parison with (14.1).) We can then use the comparison with 

(14.1) to find //* and //*, the other nonvanishing field com¬ 
ponents. We could find these components by direct integration 
of the field of elementary dipoles, as we have found Ey, but we 

should come to the same answer that we can find by comparison 
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with (14.1). We then find 

E, 

H. 

-Ml k irx 

af> Vi^irTl^y « 

sin — sin — 
ab a a 

Mlsin"^-_ggsJ^/g)-,— (37 17) 
ab a a jk y/V- {it/kay 

where we have used (37.7) to substitute for B. This is the field 
at large distances from the dipole, propagated along the +2 
direction through ^he wave guide. We note that at large dis¬ 
tances in the negative direction there will of course also be a 
wave, propagated along — The problem of finding this wave 
proceeds in the same way, and the final field can be obtained from 
(37.17) by the following changes: change the sign of 2, and of 
keeping other quantities unchanged. 

38. Radiation Resistance, Absorption, and Scattering for a 
Dipole in a Rectangular Wave Guide.—In the preceding section 
we have found, in (37.17), the radiation field, at large distances, 
of a dipole of moment located in a wave guide of larger 
dimension a, smaller dimension 6, for the case where the dimen¬ 
sions of the guide are such that only the TEi,o wave can be 
propagated. The quantity d is the distance of the dipole from 
the plane x = 0, which forms one wall of the guide. The dipole 
is assumed to be parallel to the y direction. We can now proceed 
as in Sec. 30 to find the radiation resistance of this dipole. 
To do this, we find the power radiated by the dipole and set this 
equal to where I is the current in the dipole and R Is the 
resistance. First let us find the radiated x>ower. This is 
the integral of Poynting's vector, which is ^ Re [ — EyRg), For 
the wave traveling along +2, we have 

1 jr, ^ _ 1 <a)^M^ jfi sin* (wd/a) . ^ ttx 
2 - 2 

(38.1) 

To integrate, we may replace sin* {tx/o) by its average value 
and multiply by the area ab of the pipe. For the wave traveling 
along we find an equal value for the radiated power. Adding 
the two, we have 

^ 1. . j 1 [jl sin* (wd/a) 
Radiated power = ^ ^ 

2 ab Mt ^/^^(1^/kay 
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To set this equal to iPR, we must know the current I in the 
dipole. Let us assume that the length of the dipole is Z. Then by 
analogy with Eq. (30.2) we have 

ja,M = II 

Using this value, we then have 

jf _ /m sin^ (ird/a) 
' ~ abyjt 

(38.3) 

(38.4) 

In (38.4) we have our desired formula for the radiation resistance 
of a dipole of length Z, in a wave guide of dimensions a and b. By 
comparison with (30.24), we may find the ratio of R to the radia¬ 
tion resistance of the same dipole in empty space. We find that 
it is 

sin^ (wd/a) 

Ro 2 \2ay \26y — (jr/ka)^ 
(38.5) 

This ratio is of the order of magnitude of unity. For our assump¬ 
tion about the size of the pipe, using (37.7), we see that X/2a 
must be less than unity but X/26 is greater than unity, so that 
these factors roughly cancel and the other factors are of the 
order of magnitude of unity. 

We shall next consider the dipole in the wave guide, hot as an 
emitter of energy, but as an absorber or scatterer, following the 
pattern of Sec. 33. First, as in that section, we shall consider 

the superposition of two wave fields, the emitted wave field of 
the dipole, which is given by (37.17), and a plane wave traveling 
along the z direction through the pipe. For this plane wave» 
following (14.1), we may write the field components 

Ey = Eo i^in — 
^ a 

«■ =-«•■<£' “ {0““T 

H. = -Eo J- cos — (38.6) 

We superpose this field and the field (37.17). In finding Poynt- 
ing’s vector, there are now three terms: terms coming from the 
radiated wave only, which give the value already found in (38.2); 
terms coming from the plane wave only, which give no net flow 

of energy into or out of the dipole; and interference terms between 
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the two. The interference effect will be felt only behind the 
dipole, as far as the incident wave is concerned (that is, for +2, 
since the wave is coming from —z, traveling in the -\~z direction), 
for it is only here that the incident and radiated waves travel 
in the same direction. To get the mutual term in Poynting’s vec¬ 

tor, we must multiply the E of the incident wave by the H of the 
radiated wave, and vice versa, and add the two results. When 
we do this and integrate over the area of the pipe as in deriving 

(38.2), we find 

Radiated power on account of interference 

- I IlEo sin— (38.7) 

We may now define a voltage acting on the dipole as the value 
of the field J?y, of (38.6), acting on the dipole, computed at the 
point X = d where the dipole is, multiplied by the length I of the 
dipole. When we define the voltage V in this way, we find 

Radiated power on account of interference = —^ Re VI (38.8) 

This result is exactly analogous to (33.14), obtained for the cor¬ 
responding problem in free space. 

We shall now assume that the dipole has a certain impedance, 
or ratio of voltage V to current /, as just defined. This asvsumj>- 
tion is the same one made in Sec. 33, in particular in Eq. (33.18), 

about a dipole in free space. As in that section, the total 
impedance will be the sum of what we might call the intrinsic 
impedance and the radiation terms. Let us be more precise 

about this. The dipole will have a certain reactance, which 
should be computed from the attenuated waves in the wave guide. 
The result will be similar to the reactance of a similar dipole 
in empty space, consisting of a capacitative reactance if the dipole 
is short, with inductive terms coming in for longer dipoles. 
The reactance will be affected by the walls; for really we have not 

a single dipole but an infinite set of images, each of which will 
affect the reactance of the real dipole, just as if they were dummy 
antennas, acting according to the principles mentioned in Sec. 

36. It is rather hard to estimate the changes in reactance 
produced in this way by the walls of the pipe, and we shall not 
try to do it. The dipole will also have a resistance: not only the 

radiation resistance but also the resistance due to its finite con- 
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ductivity. Finally it may be that the dipole is really connected 
to a coaxial line or other transmission line, as was the antenna of 

Fig. 54. In this case the impedance of the line, looking into it 
from the dipole, is effectively in series with the dipole, so that its 
resistance and reactance are added to the resistance and reactance 

of the dipole. We shall now adopt a somewhat different con¬ 
vention from that of Sec. 33: we shall assume that Z, the imped¬ 
ance of the dipole, includes its whole reactance, its resistance 

as arising from finite conductivity, and the resistance and 
reactance in series with the dipole, but not the radiation resist¬ 
ance. That is, the total impedance, the ratio of F to /, is 
assumed to be Z + Rri 

F = /(Z + Rr) = I(Rr + R+ jX) (38.9) 

We can now understand the situation when radiation traveling 
down the pipe falls on the dipole. Let us suppose that the 
incident wave is given by (38.6). The voltage F acting on the 

dipole is 

F = AVsin —e^“‘ (38.10) 
a 

The current induced in the dipole can be at once found from 
(38.9), and its dipole moment from the relation 

(38.11) 

By (37.17), the scattered field is then 

E, = 

where 

EX- /m sinM^d/a) . ^ (38.12) 
{Z + Rr)ab M Vi -\T/hay o 

/3 ^ ~ (ka) 
(38.13) 

This is the field for large positive z’s; for large negative z’s, 
there is a similar value but with the opposite sign for the term fiz 
in the exponent. Combining scattered and incident waves, the 
total disturbance for large positive values of z (that is, to the 
right of the dipole, or beyond it, in the direction of travel of 

the incident wave) is 
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Ey = C sin ^ eX-'-o*), //, = 
Zq 

(38.14) 

where 

_ p [ 1 _ /x sin* («■(//o) 1 

[ (2 + i2r)a6 V« ■(*r7fcay*J 

^•-/r VT^ {ir/kay^ 

Similarly for negative we have 
TX 

y - 4- sin — 

where 

+ Be^^\ . TTX H. . -j, --) ¥ 
A = Eo 

_ —EoP /m sin^ (wd/a) 
{Z'+ Rr)ab S7 Vf ~ (^/ita)2 

(38.15) 

(38.16) 

(38.17) 

The results we have just written down remind us of the sort 
of reflected waves that we should find if a uniform transmission 
line were shunted by an impedance at 2 = 0. We can in fact set 
up such an equivalent transmission line problem, which proves 
to be of great advantage in discussing further problems of a 
dipole in a wave guide, such as the question of what happens 
w^hen one end of the guide is closed, or for instance when the 
dipole contains a source of power, acting like a radiating antenna. 
We shall find that the problem is not quite so simple as we might 
suppose. At first sight, it would seem plausible that the equiva¬ 
lent circuit might be a uniform transmission line of characteristic 
impedance Zq (as defined in (38.15), which agrees with the 
definition of (14.11)), shunted by the impedance Z at 2 = 0. 
This however does not give the right answer. We must instead 
use a different value for the characteristic impedance of the 

transmission line, or else a different value for Z. This is not 
unreasonable; we have seen in Sec. 24 that the definition (38.15) 
for the impedance of a wave guide is not a very reasonable value, 
and that an equivalent impedance equal to b/a times (38.15) (we 
note that the meanings of a and b are here reversed from the 
values in (24.2)) is more reasonable. Even that equivalent 

impedance is not the one that must be used in the present case, 
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however. Let us set up the problem and find the correct value to 
assume. 

Suppose we have a line of characteristic impedance Zc, shunb'd 
by an impedance Z^. Looking to the right from the terminals 

oa, in Fig. 73, we see an impedance a 

^ l/Z. + 1/Z„ 
ZaZc 

Zg + Zc 
(38.18) 

Using Eq. (3.9), then, the ratio B/A of 
reflected to incident voltage (the nega¬ 
tive of the ratio of currents, which is given in (3.9)) should be 

Fig. 73.—Uniform line with 
shunt impedance. 

Z,Zc _ y 

A ZjkZjc \ ry Zc A- 2Z, 
z;+Tc 

(38.19) 

Let us set this equal to the ratio B/A from (38.17) and find 

values of Z, and Zc so that this relation will be satisfied, so that 

the etiuivalent circuit will lead to the same reflected amplitude 

as the ri'id wave guide. We can rewrite the ratio from (38.17) 

by using the value of the radiation resistance Hr from (38.4). 

When we do this we have 

B ^_Hr 
A Z + Rr 

(38.20) 

Equating (38.19) and (38.20) (or, more ea.sily, by equating their 

reciprocals), we ha\ e 

2 Z . ^ ^ = A 
Zc Hr Z 2Rr 

(38.21) 

Having found the relation (38.21), there are two po.ssible 
choices for Z, and Z,. that are natural; since (38.21) determines 
only their ratio, the exact choice is a matter of convenience, not 

of necessity. Fii-st, we may choose the shunt impedance Z, ecjual 

to the actual impedance Z of the dipole. I'hen we have 

Zc = 2Rr 
oh 

ab 

Ua 

sin“ 

sin‘*^ {ird/a) 

\/l — {rk/ay 
ltd ry 
- ^0 (38.22) 
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where Zo is given in (38.15), or 

Zc 12 ^in ZoQ 
0^ a 

(38.23) 

where Zeq is the equivalent impedance of (24.2). Or secondly 
we may choose Zc to be the equivalent impedance 

z^ = lzo a 
(38.24) 

in which case we have 

V Z 
* 21^ sin^ {wd/a) 

(38.25) 

and the shunt admittance of the dipole, \/Z„ is 

.. 12P . ,Td 
(38.26) 

Suppose we define a coefficient a, which we may call 
coefficient, by the formula 

21^ . ,Td 
« = TT «in2 — a 

a coupling 

(38.27) 

Then the first of our two assumptions, (38.23), gives 

Z, = Z, Zc = aZ^ (38.28) 

The second, (38.25), gives 

Z« = —y Zc — Zf^i (38.29) 

The coupling coefficient a, which we have introduced, measures 
the effectiveneas of the dipole in inducing a field in the wave 
guide. It is proportional to the square of the ratio il/h) of the 
length of the dipole to the width of the wave guide and propor¬ 
tional to the quantity sin^ (xd/a), which for small values of d is 
proportional to the square of the ratio d/a of the distance of the 
dipole from the wall, to the other dimension of the wave guide. 
If the length of the dipole equals 5, so that it stretches clear 
across the guide, and if it is placed in the middle of the guide, 
so that the sine equals unity, we have a = 2, its largest possible 
value; a small dipole near the edge of the guide, on the other hand, 
corresponds to a very small value of a. We may now ask under 
what conditions we wish to use either the assumption (38.28) 
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or (38.29). In the first place, we may be interested in looking 

into the wave guide from the dipole. Suppose the dipole forms 
the termination of a coaxial transmission line, and we want to 
know what the impedance is which terminates this line. In this 
case we naturally use (38.28). We find then, as in Fig. 74, that 
the dipole of impedance Z is in series with two parallel imped¬ 
ances, each of Zc = aZeq, one of these impedances representing 
the line to the left of the dipole, the other the line to the right. 
That is, the dipole is in series with Zc/2, which by (38.22) is i2r, 
the radiation resistance. It is only natural that Zc in this case 
should depend on a, for obviously the smaller the dipole is, the 
less it will radiate, and the less the radiation resistance will be- 
Looking in from the input of the dipole, 
then, the wave guide looks hke a transmis¬ 
sion line of characteristic impedance aZeq, 
a quantity varying all the way from 2Z^ 
to zero, depending on the closeness of 

coupling between the dipole and the guide, 
or on the coefficient a. 

The second assumption (38.29) is the more natural one to use 
when we are primarily interested in the wave guide. From this 
standpoint, the definition Z^ is the most natural one for the 
impedance of the wave guide. Then a dipole in the guide acts as 
far as the equivalent circuit is concerned hke an impedance 
Zja shuntki across the line, where Z is the actual impedance 
of the dipole. This impedance ZIol varies, then, from Z/2 in 

the case of closest coupling, to infinity with no coupling, or the 
admittance varies from twice the admittance of the dipole with 
close coupling to zero with no coupling. We are to remember 

in this that Z, the impedance of the dipole, includes its reactance 
(as affected by the walls of the guide), its intrinsic resistance 
arising from its finite conductivity, and the resistance and 
reactance of the line which feeds it, if any, but does not include 
its radiation resistance, which in this method of equivalent 
circuits is taken care of by the guide. A particularly interesting 
case is that in which the dipole is not connected to an outside line 
but is merely a small metallic element introduced into the guide 
as a scatterer. If we can neglect energy dissipation in the ohmic 

resistance of the dipole, Z will then be a pure reactance. We 
then have the result that a metallic scattering element in a wave 

Fig. 74.—Equivalent 
circuit for dipole in wave 
guide. 
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guide acts, as far as the equivalent circuit is concerned, like a 
reactance shunted across the line, the magnitude of the reactance 
being 1/a times the actual reactance of the scatterer. 

39. Properties of a Dipole in a Wave Guide Closed at One 
End.—In the preceding sections we have considered the behavior 
of a dipole in a wave guide open at both ends, as an emitter, 
absorber, and scatterer of energy. Now we shall take up the 
practically more interesting case in which the guide is closed at 
one or both ends. First we consider the case of a guide closed 
with a perfectly reflecting wall at one end, open at the other. 
This approaches the an*angements practically used for generating 
waves in w ave guides, by means of antennas inserted into them. 
As before, let us first find the radiation emitted by the dipole, far 
dowm the pipe toward the end that is not closed. Then we shall 
consider a wave approaching the dipole, being absorbed and 
scattered by it. 

By the principles discussed in Fig. 66, the closed end of the 

wave guide wfill form an image of the dipole, in opposite phase, 
and the complete field far to the right along the guide will be the 
sum of the fields of the dipole and of its image. If the dipole is 

located at 2 = 0 and the end of the guide at 2 = —c, the imago 
will be at z = —2c. Using the expression (37.17) for the field 
far to the right of a dipole and combining two such terms, one 

for the dipole and the other for the image, we see that the electric 
field at large distances to the right will be 

_ jo)M ffjL sin (ird/a) 

t sin {ird/a) 

__sin — 
\/l — {v/kaY ® 

jwAI 

ab 
wx 

_sm — J 2j sin pc (39.1) 
{r/kaY ^ 

This field, except for the change of phase involved in the appear- 
ance of (z + c) instead of z in the exponent, is 2j sin pc times 

the field that would be present if the guide were open at both 
ends. Thus the radiation dowm the pipe to the right will be 
4 sin* Pc times as great as without the closed end of the pipe. 
We can now follow the derivation of (38.4) and find the radiation 
resistance in the present case. The radiated power down the 
pipe to the right is 4 sin* pc times as great as that in the same 

direction in the open pipe, but there is no radiation to the left, 
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80 that the total radiated power is only 2 sin* fic times as great 

as for the open pipe, and the radiation resistance is then 

«, = 2sin*^c^^ 
sin^ jird/a) _ 

\/l — (irYka)^ 
(39.2) 

This varies from zero, when for instance the dipole is a half wave 
length from the end of the pipe, so that the image cancels the 

dipole in its effect, to twice the radiation resistance in the open 
pipe, when for instance the dipole is a quarter wave length from 

the end of the pipe. 
We should expect that this same result could be obtained from 

the type of equivalent circuit used in Sec. 38, and this is in fact 
the case. In Fig. 75 we show the 
circuit in this case. To the left of the 
shunt impedance Z is a length c of 
transmission line, which by Eq. 

(38.28) may be assumed to have a 
characteristic impedance aZeq. To 
the right is an open-circuited line of 
characteristic impedance aZ^n. Thus 
by fundamental principles the line to the left has an impedance 

tanh fic = aZ^^j tan /3c, assuming its att(‘nuation is negligible, 

and the line to the right has an impedance aZeq. As in Fig. 74, 
these two impedances are in parallel with each other and in serie.s 
with Z. A combination of impedances aZ^J tan fic and aZ^ in 
parallel with each other is easily sho^vn to be 

aZaq(sin2 /3c + j sin /3c cos /3c) (39.3) 

Using Eqs. (38.15), (38.24), (38.27), we see that the resistive 

component of (39.3) is the same as the radiation resistance (39.2). 
The reactive component gives the correction to the reactance of 
the dipole on account of its image in the end wall of the guide, 

in case the transmission line analogy is applicable. This will 
be the case if the field of the image, at the dipole, is essentially 
the same as the field at large distances, which is the case if the 

dipole is. far enough from the end of the guide. 
The arrangement we have just described can be made the 

basis for a matched input from a coaxial line into a wave guide, 

as shown in Fig. 76. Here the dipole antenna is a section of the 

inner conductor of the coaxial line. This line extends through 

—c 

_^_ 
Fi(}. 75.—Er4uivalent circuit 

for wave guide closed at one 
end. 
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the wave guide to the opposite side, where it is terminated by an 
adjustable plunger 5. By moving this plunger, the impedance 
across the coaxial line at the point where it leaves the wave 
guide can be given any purely reactive value. This is effectively 
in series with the antenna, so that we can adjust the reactance 
of the antenna to any desired value and in particular can tune it 
to have zero reactance, to match an external circuit that is a 
pure resistance. Then by adjusting the plunger a in the wave 
guide we can adjust the radiation resistance of the antenna, 
which is given by (39.2), within limits, thus matching it to an 
external line if the resistance of that line lies within the required 
limits. These limits are zero and a maximum resistance 

where is the equivalent char¬ 
acteristic impedance of the guide. 
We have seen that the maximum 
possible value of a is 2, attained 
when the length of the antenna 
equals b (as it does in this case), 
and when it is in the middle of 
the wave guide, as we should 
normally have it in this arrange¬ 
ment. Thus by such a device 

Fio. 76.—Schematic diagram of input ^an match the wave guide to 
from coaxial line to wave guide. • i i • 

any input whose resistance is 
less than twice the characteristic impedance of the wave guide, 
when that characteristic impedance is defined as in (38.24), 

(38.15). When this match is secured, the power flowing in from 
the coaxial line will all reappear as power flowing down the guide, 
and none will be reflected in the coaxial line. 

We have now considered the dipole in the wave guide closed at 
one end, as a radiator. Let us next consider it as an absorber and 
scatterer of radiation. The physical situation is simple. A wave 

comes down the pipe from the right, toward the closed end. 
Since the closed end is a perfect reflector, there would in the 
absence of the d pole be a reflected wave traveling back to the 
right, equal in intensity to the direct wave, so that no power 
would be lost in the reflection (neglecting attenuation on account 
of skin effect). This combined field of the incident and reflected 
waves, however, will fall on the dipole and will set it into oscilla¬ 
tion. The dipole in consequence of this oscillation will send out 
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a scattered wave of its own, which as we have just seen will 
travel down the pipe to the right. This scattered wave will inter¬ 
fere with the wave reflected by the closed end of the pipe, so that 
the net reflected wave to the right will have different intensity 
from the incident wave; in general it will have smaller intensity. 
The loss of energy represents the energy that has flowed into the 
resistive component of the impedance of the dipole. If the dipole 
has no resistance, the reflected intensity will equal the incident 
intensity, the only effect of the dipole being to change its phase 
in comparison with what there would have been in the absence of 
the dipole. If there is a resistance, however, as for instance if the 
dipole is in series with a resistive load, for instance a coaxial line 
terminated by its characteristic impedance, then power will flow 
into the dipole, and the reflected wave in the pipe will be weaker 

than the incident wave. For maximum power flow into the 
dipole, the situation is as we have found in Sec. 33: the reactance 
of the dipole must be zero, and its resistance must equal tjie 
radiation resistance. Now, however, in computing the reactance 
we must make correction for the effect of the end wall, and the 
radiation resistance we use must also be corrected for the wall, 

so that we use the values given in (39.3). When we match the 
dipole in this way, we now find that we achieve something that 
cannot be done with a dipole in empty space: all the power 

flowing to the dipole is absorbed, and none is reflected back. 
This was impossible in empty space, because the incident wave 
was a plane wave, the scattered wave a spherical wave, and these 

two could not possibly cancel everywhere by interference; they 
canceled only in a shadow behind the dipole. Here however 
the scattered wave, like the incident wave, is a plane wave 

traveling down the pipe, and it can exactly cancel the wave 
reflected from the end of the pipe, resulting in no reflected wave 
at all and a perfect match. We should expect that this would be 
accomplished when the impedance of the dipole was the conjugate 
of the value (39.3). For in this case the sum of the reactance 
of the dipole and the correction to the reactance given in (39.3) 
will add to zero, and the resistance of the dipole will equal the 
radiation resistance. This proves in fact to be the case. 

Rather than analyze this problem of absorption and scattering 

by setting up each of the waves in the pipe, we shall content 

ourselves with a treatment in terms of the equivalent trans- 



300 MICROWAVE TRANSMISSION [Chap. VII 

mission line. Looking to the left at the point where the dipole is 

located, we see the dipole shunted across the terminated line. 
Neglecting the attenuation in the line, the terminated line has an 
impedance tan /3c, if we use the formulas (38.29) for imped¬ 

ance, and the dipole is effectively an impedance Z/a shunted 
across the line. The impedance of this parallel combination is 

Z{Zt^j tan ^c) .V 

Z + aZ^j tan pc 

For an impedance match, this should equal the characteristic 
impedance Z^ of the wave guide. Equating (39.4) to Z^g, the 
resulting equation leads easily to the relation 

Z = aZeQ(sin- /3c — ja sin pt cos pc) (39.5) 

which is the conjugate of (39.3), as we saw it should be. In 
Eq. (39.5) we have the value to which the impedance of the dipole 
must be tuned, so that it will be matched to the wave guide. 
From what we have seen earlier, this matching will work both 
ways: a wave striking the dipole from the coaxial will be trans¬ 
mitted without reflection into the wave guide, and a wave strik¬ 

ing it from the wave guide will likewise be transmitted witho\it 
reflection into the coaxial. Thus practically both these results 
can be obtained by the sort of tuning indicated in Fig. 76. 

40. A Dipole in a Wave Guide Closed at Both Ends.—If a 
dipole is located in a wave guide closed at both ends, the situation 
is very different from the ones that we have so far taken up. 

No radiation can now escape from the system; unless we consider 
attenuation in the walls of the wave guide, or other forms of 
resistance, there is no way for energy to be lost at all. The dipole 

then cannot radiate energy, and the radiation resistance must be 
zero. A dipole in a hollow cavity, then, can have a radiation 
resistance only if there is some sort of resistance loading of the 

cavity, and the radiation resistance depends on this loading. 
Furthermore, a hollow cavity, such as a wave guide closed at 
both ends, bos resonance effects. For certain frequencies, oscil¬ 

lations of extremely high amplitude are set up, compared to the 
amplitudes at other frequencias. This subject of the resonances 
of hollow cavities is an extremely large one and is very important 

in some applications of microwave work. It can, in fact, be 

made the basis of the whole theory of microwave transmission. 
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We have preferred rather to reverse the order, handling trans¬ 
mission lines as the fundamental feature and keeping resonant 

cavities in the background. In the present section, we shall 
not in any sense go into the whole theory of the modes of resonant 
cavities but shall merely show how one runs into such things in 

wave guides closed at both ends, using the transmission line 
analogy to handle the dipole that excites the radiation in the 
wave guide. 

Suppose we consider the following simple problem: a closed 
wave guide of length L, running from a short-circuited end at 
z = — c to another closed end at z = L — c. So as to have some 

loading in the guide and a possibility of a finite radiation resist¬ 
ance for the dipole feeding it, we assume the closed end at 
2 = L — c to have a finite, real resistance R. Aside from this, 

we assume the walls of the guide to have no resistance. At 
2 = 0 we have a dipole of impedance Z, coupling coefficient a. 
The characteristic impedance of the guide is Z^. We shall now 

ask what is the input impedance of the whole combination, as we 
look into the dipole. For definiteness, we may assume the dipole 
to be fed b}^ a coaxial, as in Fig. 76; our problem differs from that 
only in having another plunger, of finite resistance, closing the 
right-hand end of the pipe. The circuit is now like Fig. 75, 
with a resistance R closing the right end; and we wish the total 

impedance across the terminals aa. The left-hand shunt branch 
of the circuit will have an impedance Zi, equal to 

Zi = jXi = aZe,j’ tan (40.1) 

where we use Eq. (38.28) for the impedances, since we are con¬ 
centrating our attention on the dipole. The right-hand shunt 

branch will have an impedance Z2, equal to 

Z2 - R2 “t" jX2 - OlZpg 
Z.^i sin /3(L 
Zpg cos P{L 

c) + R coj^/3(L 
c) + Rj sin fi(L — c) 

(40.2) 

We can rewrite this as 

B. + jX, = aZJ t.n - .) (40.3) 

The case we shall particularly consider is that in which R is small 
compared to Zeq,* that is, a resonant cavity with small resistance. 

In that case the denominator in (40.3) can be raised to the — 1 
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power and placed in the numerator, expanded in series, and only 

the first term retained, so that the fraction becomes 

1 — [cot /3(L — c) + tan /3(L — c)] 

= 1 — cot — c) sec2 /3(L — c) (40.4) 
^ e<j 

Inserting in (40.3), we then have for small R 

Ri + = otR sec^ — c) + aZ^j tan /8(L — c) 
i?2 = ctR sec^ )3(L “ c), X2 = aZ^ tan ff{L — c) (40.5) 

In the circuit of Fig. 75, the total impedance across the ter¬ 
minals aa is now the sum of Z and of the rn^pedance of Zi and Zz 
in parallel. This latter value is 

Z,Zz ^ +jXz) 
Zi + Z2 Rz 4“ j{Xi + X2) 

(40.6) 

where Xi is given in (40.1), Rz and Xz in (40.5). The denomina¬ 
tor of (40.6) shows the characteristic behavior of a resonance 
term: when Xi + Xz is zero, the impedance (40.6) becomes very 
large, as in the ordinary case of antiresonance of a parallel tuned 
circuit. In other words, at this point, for a given current flowing 
through the terminals aa in Fig. 75, there is an extremely high 

voltage across the tuned circuit, indicating extremely high cur¬ 
rents flowing in the two branches in opposite directions, or a very 
large circulating current in the tuned circuit or, in this case, in the 
wave guide. That is, the wave guide is set into violent oscilla¬ 
tion at these particular frequencies. We can easily find the 
values of the length of the wave guide which lead to resonance: 

they are simply integral numbers of half wave lengtLs. For 
suppose 

L = I3L = nr , (40.7) 

where n is an integer. Then 

tan /3(Z/ — c) = tan (mr — fic) = — tan /3c (40.8) 

so that is the negative of Xi, and the total reactance vanishes. 
The oscillations occurring at these lengths arc called the normal 
modes of the resonant cavity. For each of these normal modes, 
there is a voltage node (that is, the voltage is zero) at the short- 
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circuited end of the wave guide, and the voltage is approximately 
zero at the other end of the guide, so long as the resistance is 
small, as we have assumed; if the resistance is large, then our 
approximations are no longer valid, and the resonant length 
of the cavity is different from an integral number of half wave 
lengths. 

For our case of small R, the resonance peak described by (40.6) 
is very sharp. Let us describe this peak by two quantities: 
the impedance at resonance and the value of Q, or the ratio of 
the frequency difference between the two points where the square 
of the impedance has half maximum value, to the whole fre¬ 
quency. In the numerator of (40.6), we may neglect com¬ 
pared to jX2. Then at resonance the value of the impedance 
(40.6) will become 

(aZ^j tan 0c)[aZ,aj(— tan i3c)] _ Z^^ tan^ fic 
aR sec^ p(L — c) ^ R sec^ /3c 

= a-k sin^ pc (40.9) 

This is a pure resistance, and we see that it is greater the smaller 
the loading resistance R is, and greater the longer the dipole Ls 
(from the definition of a), and the more nearly the dipole is 
located at a point of large voltage in the wave guide (from the 
factor sin^ {rd/a) in a, and the factor sin^ /3c in (40.9)). Next 
let us find Q. As we see from (40.6), the square of the impedance 
will have half maximum value when X\ + X2 equals R2, Let us 
suppose 

/3L = 7?7r + 5 (40.10) 

where 6 is a small quantity. Then 

tan /3(L — c) = — tan (/3c + 3) 

- - - -<•*" ^« + *)(> +« 
— — tan j3c + 5( I + tan* pc) 
= — tan Pc — 5 .sec* Pc (40.11) 

to the first order of small quantities. The total reactance is then 

X, + Xj = -aZ„,.5 sec* pc (40.12) 

and for this to equal the resistance (40.5) we must have 

(xJi = aZ^8, 8 = -^ (40.13) 
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Since the frequency Is proportional to /9, and hence by (40.10) 
to the quantity nx + 6, we see that Q, which is equal to the 
frequency divided by the frequency difference between the two 
points of half maximum power, must equal nx/2S. That is, we 
have 

e = (40.14) 

The smaller the resistance, in other words, the greater is Q. 

Increasing the length of the resonant cavity, or increasing n, also 

increases Q. This result is different from that of Chap. I, where 

we considered the Q of a resonant length of attenuating short- 

circuited line, for here the resistance is confined to the end and 

is independent of length, whereas in that case resistance was 

distributed along the length of the cavity and was proportional 

to length, so that ?i canceled out. In either case, however, a 

decrease of resistance increases the Q of the cavity. 
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