Chapter 2

Literature Review

‘I have seen farther by standing on the shoulders of giants.’

-Isaac Newton

The knowledge-base in the area of bearing fault diagnosis is ever increasing due to
gigantic amount of literature. The accessibility and dissemination of knowledge due to

digitisation are major factors taking the research forward in this area.

Highlights:

* Bearing fault diagnosis has three important steps - measurement, signal pro-
cessing and decision making.

* Vibration signals are most commonly used for diagnosis, followed by acous-
tic emission, sound and current signature.

* Out of several processing techniques, wavelet and empirical mode decom-
position based methods are most commonly found in the literature. The
performance of wavelet based methods mainly depends on the selection of
mother wavelet.

* Fractional domain processing is introduced and has a potential of enhancing

fault features in fractional domain.
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Bearing fault diagnosis is a classical research problem, which has been of prime
industrial and academic interest. The gigantic amount of literature in this field is ever
increasing in size and this trend can be seen in Fig. 2.1. Historically, the field of bearing
fault diagnosis has evolved due to breakthroughs in various areas of science and tech-
nology. Earlier fault diagnosis equipments were too bulky, with simple algorithms and
with less processing power. In 1970s, the real-time analysers weighed around 50 Ibs
[30]. However, introduction of fast Fourier transform (FFT) and development of small
computers revolutionised the way machine faults were diagnosed.

Since the earliest research on machine fault diagnosis, vibration and sound monit-
oring are commonly practised and require human expertise. The time domain analysis
techniques reveals very little information about the fault. Even the frequency domain rep-
resentation of bearing signal suppresses the fault signature because of complex modula-
tion that occurs due to structural elements of the machine. During the surface-to-surface
impact between the faulty raceway and rolling element, a high frequency resonance is
generated, which is dominantly observed in the frequency spectrum. Whereas, the ac-
tual diagnostic information lies in the fault characteristic frequencies that appear in low
range of the spectrum. To reveal this crucial signature in the frequency domain, the signal
needs to be demodulated. Therefore, envelope spectrum is almost an irreplaceable part of

bearing fault diagnosis algorithms.
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Figure 2.1: Bearing fault diagnosis research trend (From Scopus database)
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The development of various signal processing tools has been instrumental in the pro-
gress made in bearing fault diagnosis. As shown in Fig. 2.2 and 2.3, signal processing

is mainly used in bearing fault diagnosis to address two key issues - how to represent the

bearing signal properly and how to demodulate it.
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Figure 2.2: Evolution of different signal processing techniques in bearing fault diagnosis
for appropriate signal representation. (Dashed lines show that the concepts are closely
related.)

Bearing fault signals are cyclostationary in nature under constant speed and non-
stationary under variable speed. Thus the evolution of cyclic domain and time-frequency
domain representations is very important. The cyclostationary methods mainly use spec-
tral correlation density for representing the fault characteristic frequency (FCF) and res-
onant frequency in the same plot. Though such representation is practically difficult to
interpret, it provides a framework and theoretical basis to highlight the importance of
squared envelope spectrum. Non-stationarity analysis, on the other hand, has evolved

from spectrograms (short time Fourier transform) to Hilbert-Huang spectrum (empirical
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Figure 2.3: Evolution of different signal processing techniques in bearing fault diagnosis
for signal demodulation.

mode decomposition). Wavelet based scalograms are also widely used for representing
the bearing signal in time-frequency domain. Another approach includes the order track-
ing analysis, in which, bearing signal is first converted to a resampled signal based on
the instantaneous rotational speed and converted to the angle domain. Then its envelope
spectrum is calculated to analyse the faults at fault characteristic orders (FCO), which are
multiples of the rotational speed.

Although, all these methods are reported in the literature, envelope spectrum and en-

formations for non-stationary analysis are very efficient to solve the other issue - demodu-
lating the bearing signal. As shown in Fig. 2.3, signal demodulation is carried out in two
steps - band pass filtering and envelope detection. Envelope detection is most commonly
carried out using Hilbert transform, but, band pass filtering is the most elusive problem of
bearing fault diagnosis. Several research articles are dedicated to this in a quest of finding
the optimum resonance band that contains the fault information. Earlier research uses fil-
ter banks with kurtosis maximisation to select the optimum band. This technique, known
as the kurtogram, is a common practice, but it later evolved into the wavelet based and

empirical mode decomposition based algorithms. Following subsections discuss these
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issues with the help of existing literature in the field.

2.1 Wavelet Decomposition Methods

The kurtogram method was initially introduced in [31, 32] as a kurtosis maximised op-
timum band pass filtering, followed by envelope spectrum analysis. This was later adap-
ted using wavelets as a filter bank, but several articles are often reported as a modification
of the kurtogram, based on the simple band pass filtering [33—38] or short-time Fourier
transform (STFT) [39]. But, based on the selection of appropriate basis function, wavelet
analysis gives prominent fault features compared to simple band pass filter or STFT by re-
moving intra-band and in-band noise. Earlier work on application of continuous wavelet
transform (CWT) established its superiority over the envelope spectrum [40]. The faults
are diagnosed from the scalogram based on the theoretical value of fault characteristic
frequency (FCF). A similar attempt is made in [41], using impulse response wavelet, but
the faults are diagnosed from Scale-Wavelet Power Spectrum.

Use of narrow-band envelopes after wavelet decomposition is suggested in [42], and
the performance of matching pursuit based Gabor time-frequency atoms is better than
the conventional CWT. Although this work suggests the idea of narrow-band envelopes,
selection of scales representing the resonance band is not methodical. This issue is well-
addressed in [43-48]. These works use different mother wavelets and different optim-
isation criteria, but the purpose is to select appropriate scales to represent the resonance
band. [49] puts forth the idea of calculating envelope spectrums for multiple scale val-
ues and then creating a waterfall diagram, called multiple-scale enveloping spectrogram
(MuSEnS), for diagnosis. CWT has redundant information and is computationally ex-
pensive. Therefore, to compete with the fast kurtogram technique and to incorporate the
advantages of wavelet analysis, the use of discrete wavelet transform (DWT) is repor-
ted in [50-56]. Application of wavelet packet transform is suggested in [40, 57-59], as
it decomposes both the approximations and details, which provides better choice of the

resonance band selection.
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A detailed review of literature, focusing on wavelets for bearing fault diagnosis, is

summarised in Table 2.1. Few important observations from this review are -

1. Continuous wavelet transform (CWT) is computationally expensive, has redund-
ant information and requires an optimisation algorithm to find the optimum scale
containing prominent fault information. On the other hand, discrete wavelet trans-
form (DWT) or discrete wavelet packet transform (WPT) are computationally less
complex and finding the optimum node does not require an optimisation algorithm
because of finite number of nodes.

2. Lifting scheme is often reported in the literature to construct suitable wavelet for
bearing fault diagnosis.

3. Several base wavelets are found in the literature. Out of these Morlet and impulse
response wavelet is widely accepted as the most suitable ones for bearing fault
diagnosis.

4. Finding the optimum node is still an elusive problem, as the resonance frequency
band is not exactly known. The level of decomposition is often chosen greater
than or equal to 5. Whereas, kurtosis is a standard selection criteria for finding the
optimum node.

5. Though kurtosis is the most widely used criteria for selection of optimal wavelet
band, there are several other which are reported in the literature, like smoothness
index, Gini index, L, /L; norm.

6. For denoising, energy or entropy based thresholding is often recommended.
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Table 2.1: Review of wavelet analysis (CWT - Continuous Wavelet Transform, DWT -
Discrete Wavelet Transform, WPT - Wavelet Packet Transform, DB - Daubechies Wavelet
Family, L* - Maximum Level of Decomposition)

Title Measurement| Decomposition | Spectral Ana- | Features Classification

lysis
Wavelet analysis and | Vibration CWT  (Gaus- | Envelope Spec- | Fault Time Period | Visual
envelope detection for sian) trum
rolling element bearing
fault diagnosis—their
effectiveness and flexib-
ilities (Tse et al. 2001)
[60]
Bearing failure detection | Vibration CWT, Match- | Narrow Band | Fault Time Period | Visual
using matching pursuit ing Pursuit | Envelopes
(Liu et al. 2002) [42] (Gabor Time-

Freauency
Atoms)

Application of discrete | Vibration DWT  (DB4, | NA Fault Time Period | Visual
wavelet transform  for L4)
detection of ball bearing
race faults (Prabhakar et
al. 2002) [50]
Singularity analysis us- | Vibration CWT (Gaus- | NA Fault Time Period Visual
ing continuous wavelet sian, Lipschitz
transform for bearing fault exponent  for
diagnosis (Sun and Tang optimum band
2002) [43] selection)
Multi-fault diagnosis of | Vibration DWT (DB2, | NA Mel  Frequency | HMM
rolling bearing elements L4) Complex  Cep-
using wavelet analysis strum Coefficients
and hidden Markov model
based fault recognition
(Purushotham er al. 2005)
[51]
Fault diagnosis of rolling | Vibration WPT (Symlet8) | NA Fault Time Period Visual
element bearings using
basis pursuit (Yang et al.
2005) [57]
Application of an impulse | Vibration CWT (Im- | Scale-Wavelet NA Visual
response wavelet to fault pulse Response | Power  Spec-
diagnosis of rolling bear- Wavelet) trum
ings (Junsheng et al. 2007)
[41]
A joint resonance fre- | Vibration CWT  (Gabor | NA Kurtosis, Smooth- | Visual
quency estimation and Wavelet-Scale ness Index
in-band noise reduction and Shape
method for enhancing the factor  Selec-
detectability of bearing tion)
fault signals (Bozchalooi
and Liang 2008) [44]
An extended wavelet spec- | Vibration DWT  (Mor- | Autocorrelation | Fault Character- | Visual
trum for bearing fault dia- let,L7) Spectrum istic Frequencies
gnostics (Liu et al. 2008)
[52]
Customized wavelet de- | Vibration DWT (Custom- | Envelope Spec- | Fault Character- | Visual
noising using intra- and Kurtosis Max- | trum istic Frequencies
inter-scale  dependency imised, L4)
for bearing fault detection
(Zhen et al. 2008) [53]
Morphological undecim- | Vibration Mathematical FFT Spectrum Fault Character- | Visual
ated wavelet decomposi- Morphology istic Frequencies
tion for fault diagnostics Based Wavelet
of rolling element bearings
(Hao and Chu 2009) [61]

Continued on next page
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Table 2.1 — continued from previous page

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
Bearing fault detection | Vibration Intra-Band: Envelope Spec- | Fault Character- | Visual
based on optimal wavelet Morlet Wave- | trum istic Frequencies
filter and sparse code let  (Kurtosis
shrinkage (He et al. 2009) Optimised),
[54] In-Band:
Sparse  Code
Shrinkage,
Optimization:
Differential
Evolution
Fault severity assessment | Vibration CWT (Mor- | NA Lempel-Ziv com- | Visual
for rolling element bear- let, Kurtosis plexity
ings using the Lempel- and Energy
Ziv complexity and con- Maximized)
tinuous wavelet transform
(Hong and Liang 2009)
[45]
Multi-scale ~ enveloping | Vibration CWT (Morlet) Scalogram Fault Character- | Visual
spectrogram for vibration istic Frequencies
analysis in bearing defect
diagnosis (Yan and Gao
2009) [49]
Energy-based feature ex- | Vibration CWT  (Mor- | Envelope Spec- | Fault Character- | Visual
traction for defect dia- let), Selection | trum istic Frequencies
gnosis in rotary machines by Energy-
(Yan and Gao 2009) [46] Bandwidth
Ratio
Rolling element bearing | Vibration Fast Kurto- | Envelope Spec- | Fault Character- | Visual
fault diagnosis based on gram, Genetic | trum istic Frequencies
the combination of genetic Algorithm
algorithms and fast kurto- (Kurtosis
gram (Zhang and Randall Optimisation)
2009) [33]
Detection of signal transi- | Vibration CWT (Morlet), | NA Fault Time Period Visual
ents based on wavelet and K-S Test
statistics for machine fault
diagnosis (Zhu et al. 2009)
[47]
Rolling element bearing | Vibration CWT (Laplace | Envelope Spec- | Fault Character- | Visual
fault detection based on Wavelet - | trum istic Frequencies
optimal antisymmetric real Kurtosis Max-
Laplace wavelet (Feng et imised)
al. 2011) [48]
Rolling element bearing | Vibration DWT (Com- | NA Kurtosis, ~Skew- | Support vector
fault  diagnosis  using plex Morlet, ness, Standard | machines, self
wavelet transform (Kankar L7), Shan- Deviation organizing
etal. 2011) [55] non  Entropy maps
Minimised
Transient modeling and | Vibration Periodic Multi- | NA Fault Time Period | Visual
parameter  identification Transient
based on wavelet and Wavelet Model
correlation filtering for
rotating machine fault
diagnosis (Wang et al
2011) [62]
Multiwavelet  denoising | Vibration Multiwavelet Envelope Spec- | Fault Character- | Visual
with  improved neigh- (Geronimo, trum istic Frequencies
boring coefficients for Hardin,
application on  rolling Massopust),
bearing fault diagnosis NeighCoeff
(Wang et al. 2011) [63] Optimised
Identification of multiple | Vibration Adaptive  Fil- | Envelope Spec- | Fault Character- | Visual

transient faults based on
the adaptive spectral kur-
tosis method (Wang and
Liang 2012) [34]

tering, Spectral
Kurtosis

trum

istic Frequencies

Continued on next page




evidence of the signature
of repetitive transients
(Antoni 2016) [39]
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Table 2.1 — continued from previous page
Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
A kurtosis-guided ad- | Vibration Tunable Q | Envelope Spec- | Fault Character- | Visual
aptive demodulation Wavelet, trum istic Frequencies
technique for  bearing Kurtosis Max-
fault detection based on imisation
tunable-Q wavelet trans-
form (Luo et al. 2013)
(641
Early classification of | Vibration Mathematical FFT Spectrum Fault Character- | Fuzzy  Infer-
bearing faults using mor- Morphology istic Frequencies ence System
phological operators and (Top Hat,
fuzzy inference (Raj and Beucher Gradi-
Murali 2013) [65] ent, Kurtosis
based selection)
The design of a new spar- | Vibration WPT (DBI10, | Envelope Fault Character- | Visual
sogram for fast bearing L4, L2/L1 | Power  Spec- | istic Frequencies
fault diagnosis: Part 1 Norm Optim- | trum
of the two related manu- ised)
scripts that have a joint
title as "two automatic
vibration-based fault dia-
gnostic methods using the
novel sparsity measure-
ment - Parts 1 and 2" (Tse
and Wang 2013) [58]
The automatic selection | Vibration WPT (Morlet, | Envelope Fault Character- | Visual
of an optimal wavelet fil- L4, L2/L1 | Power  Spec- | istic Frequencies
ter and its enhancement Norm Optim- | trum
by the new sparsogram ised,  Genetic
for bearing fault detection: Algorithm)
Part 2 of the two related
manuscripts that have a
joint title as "two auto-
matic vibration-based fault
diagnostic methods using
the novel sparsity meas-
urement - Parts 1 and 2"
(Tse and Wang 2013) [59]
A new statistical model- | Vibration Band-pass Envelope Spec- | Fault Character- | Visual
ing and detection method Filter Bank | trum istic Frequencies
for rolling element bear- (Alpha-stable
ing faults based on alpha- fitting,  Alpha
stable distribution (Yu et Minimised)
al. 2013) [35]
Automatic fault feature | Vibration Tunable Q | Envelope Spec- | Fault Character- | Visual
extraction of mechanical Wavelet (Sub- | trum istic Frequencies
anomaly on induction band  energy
motor  bearing  using ratio stop-
ensemble  super-wavelet page, Fault
transform (He er al. 2015) Characteristic
[66] Frequencies
feature Maxim-
isation)
Wavelet Packet Envelope | Sound Wavelet Packet | Envelope using | FCF Visual
Manifold for Fault Dia- Transform Manifol Learn-
gnosis of Rolling Element ing
Bearings (Wang and He
2016) [67]
The infogram Entropic | Vibration STFT (Spectral | Squared Envel- | Fault Character- | Visual

Continued on next page




lysis using induction mo-
tor (Yaman 2021) [73]
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Table 2.1 — continued from previous page
Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
Multi-frequency weak | Vibration DWT (DB, L6, | Frequency Fault Character- | Visual
signal detection based on Multi-Stable Spectrum istic Frequencies
wavelet transform and Stochastic
parameter ~compensation Resonance)
band-pass multi-stable
stochastic resonance (Han
et al. 2016) [56]
Optimised Spectral | Vibration Kurtosis Max- | Squared Envel- | Fault Character- | Visual
Kurtosis ~ for  bearing imised Band- | ope Spectrum istic Frequencies
diagnostics under elec- pass Filtering
tromagnetic  interference
(Smith et al. 2016) [36]
Kurtosis based weighted | Vibration Tunable Q | Envelope Spec- | Fault Character- | Visual
sparse model with convex Wavelets trum istic Frequencies
optimization  technique (Kurtosis-
for bearing fault diagnosis weighted
(Zhang et al. 2016) [68] Sparsity Model,
L4)
Improvement of kurtosis- | Vibration Filter Bank | Envelope Spec- | Fault Character- | Visual
guided-grams via Gini in- (Gini Index | trum istic Frequencies
dex for bearing fault fea- Optimised)
ture identification (Miao et
al. 2017) [37]
A new family of model- | Vibration Impulse Wave- | Envelope Spec- | Fault Character- | Visual
based impulsive wavelets let  (Sparsity | trum istic Frequencies
and their sparse represent- Optimised)
ation for rolling bearing
fault diagnosis (Qin 2018)
[69]
Nonconvex Sparse Reg- | Vibration tunable Q- | Squared Envel- | Fault Character- | Visual
ularization and Convex factor wavelet | ope Spectrum istic Frequencies
Optimization for Bearing transform (L1
Fault Diagnosis (Wang et Norm general-
al. 2018) [70] ized minimax-
concave (GMC)
penalty, L4)
Automated bearing fault | Acoustic Wavelet Packet | DDRgram (De- | NA Convolutional
diagnosis scheme using | Emission Transform (DB, | gree of Defect- Neural Net-
2D representation  of L7) iveness) work
wavelet packet transform
and deep convolutional
neural network (Islam and
Kim 2019) [71]
Adaptive Kurtogram and | Vibration Order Statistics | Envelope Spec- | Fault Character- | Visual
its applications in rolling Filter based | trum istic Frequencies
bearing fault diagnosis Bandwidth
(Xu et al. 2019) [72] Segmentation,
Empirical
Wavelet  De-
composition
(Meyer)
An Adaptive Spectral Kur- | Vibration Mathematical Envelope Spec- | Fault Character- | Visual
tosis Method and its Ap- Morphology trum istic Frequencies
plication to Fault Detec- and  Maxima
tion of Rolling Element Distribu-
Bearings (Hu et al. 2019) tion based
[38] Bandwidth
Segmentation,
Band-pass
Filter Bank
An automated faults clas- | Sound DWT (Symlet | NA Local Binary Pat- | Support Vec-
sification method based on 6,L4) terns and Neigh- | tor  Machine,
binary pattern and neigh- borhood Compon- | K-nearest
borhood component ana- ent Analysis Neighbors
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2.2 Empirical Mode Decomposition Methods

Although wavelet analysis provides many advantages over the Fourier transform, its biggest
problem is the selection of proper mother wavelet. In contrast to wavelet analysis, em-
pirical mode decomposition (EMD) is an adaptive algorithm that decomposes a signal
into its intrinsic mode functions (IMF) which characterises the local oscillatory nature of
the signal. Evidently, each IMF has a center frequency and bandwidth associated with it
and, thus, EMD can be used to isolate the resonance band from noise. Appropriate IMF
can be selected by calculating the Pearson Correlation Coefficient between the original
signal and each IMF [74]. Further analysis can either be carried out in the Hilbert-Huang
spectrum or the envelope spectrum of the reconstructed signal. But, EMD suffers with
a problem of mode mixing, that is oscillatory modes with different time scale are often
assigned to the same IMF or oscillatory modes with same time scale are assigned to dif-
ferent IMFs. To overcome this problem, it is suggested that an ensemble should be taken.
Application of Ensemble EMD (EEMD) is reported in [75, 76].

In EEMD, noise is deliberately introduced in the signal and the IMFs obtained for
each noise level are ensembled to give mixing-free decomposition of the signal. It is often
redundant to add different noise levels and also increases computational load. To avoid
this, application of complementary EEMD with adaptive noise (CEEMDAN) is reported
in [77, 78]. These works show that the number of ensembles required is significantly
less in CEEMDAN. Other methods to overcome the modes mixing problem in EMD are
local mean decomposition (LMD) and variational mode decomposition (VMD). LMD
decomposes a signal into its constituent product functions (PF) and is found to be effective
for bearing fault diagnosis [79, 80]. VMD tries to solve the mode mixing problem and
is found better than conventional EMD [81, 82]. Its application is also reported under
variable speed conditions [83].

A comparative study of the published works in EMD, LMD, VMD based algorithms,

reported in the literature, is given in Table 2.2.



under harsh working con-
dition using imf-based ad-
aptive envelope order ana-
lysis (Zhao et al. 2014)
[76]
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Table 2.2: Review of empirical mode and other decomposition methods (EMD - Empir-
ical Mode Decomposition, LMD - Local Mean Decomposition, VMD - Variational Mode
Decomposition, EEMD - Ensemble EMD, CEEMD - Complementary EEMD, CEEM-
DAN - CEEMD with Adaptive Noise, IMF - Intrinsic Mode Function, PF - Product Func-
tion, AR - Auto-Regressive Model, HHT - Hilbert Huang Transform)

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
A comparison study of | Vibration EMD (Optim- | HHT (Hilbert | Fault Character- | Visual
improved Hilbert-Huang ised Correlation | Spectrum) istic Frequencies
transform and wavelet Coefficient)
transform: Application to
fault diagnosis for rolling
bearing (Peng et al. 2005)
[74]
A fault diagnosis approach | Vibration EMD NA AR Model Para- | Visual
for roller bearings based meters
on EMD method and AR
model (Junsheng et al
2006) [84]
Sifting process of EMD | Vibration EMD Envelope Spec- | Fault Character- | Visual
and its application in trum of first | istic Frequencies
rolling element bearing IMF
fault diagnosis (Dong et
al. 2009) [85]
An insight concept to se- | Vibration EMD (Reson- | Envelope Spec- | Fault Character- | Visual
lect appropriate IMFs for ance based IMF | trum istic Frequencies
envelope analysis of bear- selection)
ing fault diagnosis (Tsao et
al. 2012) [86]
Faulty bearing signal re- | Vibration Kurtogram and | Envelope Spec- | Fault Character- | Visual
covery from large noise EEMD (Optim- | trum istic Frequencies
using a hybrid method ised Correlation
based on spectral kurtosis Coefficient)
and ensemble empirical
mode decomposition (Guo
etal. 2012) [87]
A fault diagnosis approach | Vibration Local ~ Mean | Order Envelope | Fault Character- | Variable Pre-
for roller bearing based Decomposition | Spectrum istic Frequencies dictive Model
on VPMCD under variable based Class
speed condition (Yang et Discriminate
al. 2013) [79]
Bearing fault detection | Vibration EMD HHT (Hilbert | Mean and Stand- | Majority Voting
based on hybrid ensemble Spectrum) ard Deviation
detector and empirical of IMFs, Prin-
mode decomposition cipie Component
(Georgoulas et al. 2013) Analysis
[88]
Ensemble empirical mode | Vibration Ensemble EMD | Teager Energy | Fault Character- | Visual
decomposition-based (Correlation Spectrum istic Frequencies
teager energy spectrum based rejection
for bearing fault diagnosis and  Kurtosis
(Feng et al. 2013) [75] based selection
of IMFs)
Generalized empirical | Vibration EMD (Adaptive | Envelope Spec- | Fault Character- | Visual
mode decomposition and baseline selec- | trum istic Frequencies
its applications to rolling tion)
element bearing fault
diagnosis (Zheng et al.
2013) [89]
Multi-Fault detection of | Vibration Ensemble EMD | Enveloe Order | Fault Sensitive | Thresholding
rolling element bearings Spectrum Matrix

Continued on next page
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Table 2.2 — continued from previous page

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
Rolling bearing diagnos- | Vibration EMD (Optim- | Frequency Fault Character- | Visual
ing method based on em- ised Correlation | Spectrum istic Frequencies
pirical mode decomposi- Coefficient)
tion of machine vibration
signal (Dybata and Zimroz
2014) [90]
An adaptively fast en- | Vibration Complementary | Envelope Spec- | Fault Character- | Visual
semble empirical mode EEMD (Relat- | trum istic Frequencies
decomposition ~ method ive Root-Mean-
and its applications to Square  Error
rolling element bearing Optimised)
fault diagnosis (Xue et al.
2015) [91]
Rotating machine fault | Vibration Intrinsic Envelop Spec- | Fault Character- | Visual
diagnosis based on in- Characteristic- trum istic Frequencies
trinsic characteristic-scale scale  Decom-
decomposition (Li et al. position
2015) [92]
The rolling bearing fault | Vibration Local ~ Mean | Envelop Spec- | Fault Character- | Visual
feature extraction based on Decomposition | trum, Teager | istic Frequencies
the LMD and envelope Energy  Spec-
demodulation (Ma et al. trum
2015) [93]
A data-driven method to | Vibration EMD (Dis- | Envelope Spec- | Fault Character- | Visual
enhance vibration signal similarity trum istic Frequencies
decomposition for rolling Index based
bearing fault analysis combined
(Grasso et al. 2016) [94] mode function
selection)
Bearing fault diagnosis | Vibration Variational Envelope Spec- | Fault Character- | Visual
based on  variational Mode De- | trum istic Frequencies
mode decomposition and composi-
total variation denoising tion  (majori-
(Zhang et al. 2016) [81] ation—minization
based total
variation  de-
noising)
Multivariate empirical | Vibration EMD  (Non- | Frequency Fault Character- | Visual
mode decomposition and local  means, | Spectrum istic Frequencies
its application to fault dia- Correlation
gnosis of rolling bearing Analysis)
(Lv et al. 2016) [95]
The Fault Feature Extrac- | Vibration EMD (Differ- | Envelope Spec- | Fault Character- | Visual
tion of Rolling Bearing ence Spectrum | trum istic Frequencies
Based on EMD and Differ- of Signular
ence Spectrum of Singu- Value for IMF
lar Value (Han et al. 2016) selection)
[96]
Underdetermined ~ blind | Vibration VMD (In- | Envelop Spec- | Fault Character- | Visual
source separation with dependent trum istic Frequencies
variational mode decom- Component
position for compound Analysis  for
roller bearing fault signals IMF selection)
(Tang et al. 2016) [97]
A Frequency-Weighted | Vibration CEEMD (En- | Envelop Spec- | Fault Character- | Visual
Energy  Operator and ergy, Kurtosis, | trum istic Frequencies
complementary ensemble Entropy based
empirical mode decom- IMF selection)

position for bearing fault
detection (Imaouchen et
al. 2017) [98]

Continued on next page
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Table 2.2 — continued from previous page

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
Low-speed rolling bearing | Vibration EMD (Kurtosis | NA Alpha-Stable Dis- | Particle Swarm
fault diagnosis based on Optimised) tribution Paramet- | Optimisation
EMD denoising and para- ers based Sup-
meter estimate with alpha port Vector
stable distribution (Xiong Machines, Min-
etal. 2017) [99] imum  Output
Coding
Time-frequency represent- | Vibration Robust LMD | Envelope Spec- | Fault Character- | Visual
ation based on robust local based  Kurto- | trum istic Frequencies
mean decomposition for gram
multicomponent AM-FM
signal analysis (Liu et al.
2017) [100]
Compound  fault dia- | Vibration VMD, Fast | Envelope Spec- | Fault Character- | Visual
gnosis of bearings using Spectral  Kur- | trum istic Frequencies
improved fast spectral tosis
kurtosis with VMD (Wan
et al. 2018) [101]
Data decomposition tech- | Vibration LMD NA Multi-scale  Per-
niques with multi-scale mutation Entropy
permutation entropy cal-
culations for bearing fault
diagnosis (Yasir and Koh
2018) [102]
EEMD-based notch filter | Stator Cur- | EEMD (Cor- | NA Statistical ~ Ana-
for induction machine | rent relation based lysis (Chi-Square)
bearing faults detection Cancellation)
(Amirat et al. 2018) [103]
Rolling Bearing Fault | Vibration CEEMD  with | Envelop Spec- | Fault Character- | Visual
Diagnosis Based on an Adaptive Noise | trum istic Frequencies
Improved Denoising (Energy based
Method Using the Com- IMF selection)
plete Ensemble Empirical
Mode Decomposition and
the Optimized Threshold-
ing Operation (Abdelkader
et al. 2018) [77]
A fault diagnosis method | Vibration VMD NA Energy, Root- | Support Vector
for rotating machinery Mean-Square, Machine
based on improved Singular  Values,
variational mode decom- Artificial ~ Sheep
position and a hybrid Algorithm
artificial sheep algorithm
(Shan et al. 2019) [104]
A modified scale-space | Vibration Modified Scale- | Envelope Spec- | Fault Character- | Visual
guiding variational mode Space  VMD | trum istic Frequencies
decomposition for high- (Selection  of
speed railway bearing Number of De-
fault diagnosis (Huang e compositions
al. 2019) [105] and Penalty
Factor)
A New Feature Extrac- | Vibration LMD NA Fractional Lower | K-means Clus-
tion Method for Bearing Order  Statistics | tering
Faults in Impulsive Noise and Low Dimen-
Using Fractional Lower- sional ~ Mapping
Order Statistics (Xu and Matrix
Liu 2019) [106]
An  improved  com- | Vibration Complementary | Minimum Fault Character- | Visual
plementary ensemble CEEMDAN Entropy  De- | istic Frequencies
empirical mode decom- convolution
position with adaptive and Envelope
noise and its application Spectrum

to rolling element bearing
fault diagnosis (Cheng et
al. 2019) [78]

Continued on next page
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Table 2.2 — continued from previous page

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
Improving the accuracy of | Vibration LMD (Correla- | Envelope Spec- | Fault Character- | Visual
fault frequency by means tion based PF | trum (Ratio | istic Frequencies
of local mean decompos- selection) Correction)
ition and ratio correction
method for rolling bearing
failure (Duan et al. 2019)
[107]
Multi-Bandwidth  Mode | Vibration VMD NA Multi-bandwidth Visual
Manifold for Fault Dia- Mode Manifold,
gnosis of Rolling Bearings Local Tangent
(Jiang et al. 2019) [108] Space Alignment,
Gini Index

Optimized LMD method | Vibration Optimised Envelope Spec- | Fault Character- | Visual
and its applications in LMD (Spectral | trum istic Frequencies
rolling bearing fault dia- Negentropy
gnosis (Xu et al. 2019) Termination,
[80] Order Statistics

based  Local

Envelopes)
An  optimized VMD | Vibration VMD (Fre- | Envelope Spec- | Fault Character- | Visual
method and its applic- quency Band | trum istic Frequencies
ations in bearing fault Entropy based
diagnosis (Li e al. 2020) IMF selection)
[109]
Compound bearing fault | Vibration Resampling, Envelope Order | Fault Character- | Visual
detection under varying VMD, In- | Spectrum istic Frequencies
speed conditions with vir- dependent
tual multichannel signals Component
in angle domain (Tang et Analysis
al. 2020) [83]
Optimal IMF selection and | Vibration EEMD (Spec- | NA Piecewise Mean
unknown fault feature ex- tral  Amplific- Value Feature
traction for rolling bear- atio Factor for
ings with different defect IMF selection)
modes (Yang et al. 2020)
[110]
The VMD-scale space | Vibration VMD, Hoyer | Envelope Spec- | Fault Character- | Visual
based hoyergram and Index based | trum istic Frequencies
its application in rolling Kurtogram
bearing fault diagnosis
(Shi et al. 2020) [82]

2.3 Fractional Domain Methods

Bearing fault signals encapsulate a complex interaction between different machine com-
ponents. The envelope spectrum, wavelet decomposition and intrinsic mode decomposi-
tion methods are advantageous, but are sometime not enough. In light of this, fractional
domain generalisations of the signal processing algorithms provide an extra dimension
over which the performance of fault diagnosis can be improved. Several fractional time-
frequency representations (TFR) are proposed and their application for bearing fault dia-
gnosis is discussed in [111-114]. The fractionality introduced in these is mainly due to

the lower-order distribution representation of the bearing signal. Such TFRs are found
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to provide better resolution and noise resistance compared to their conventional coun-
terparts. A blind source separation algorithm is also proposed based on one of these
representations [112].

Another type of fractional processing is introduced in [115], in which the system res-
onance is modelled using a fractional order differential equation. The parameters of this
equation are estimated from theoretical values of the fault characteristic frequencies and
the estimated bearing signature, in comparison, to the actual signal is found to diagnose
the occurrence of the fault. In [116], a generalisation of conventional envelope analysis
is applied for bearing fault diagnosis. Finally, application of 1.5 dimensional spectrum
for bearing fault diagnosis is proposed in [117, 118]. Such a spectrum is a generalisation
between the conventional power spectral density (PSD) and the bispectrum of a signal.
PSD is obtained by taking Fourier transform of the autocorrelation of the signal and is
related to signal variance, whereas the bispectrum of the signal is the Fourier transform of
a third order cummulant taken across two frequency axes. It is related to the skewness of
the signal. The concept of 1.5-dimensional spectrum arises from the third order cumulant
along the single frequency axis. A repetitive application of such a transformation is found
to be beneficial for bearing fault diagnosis [118], whereas the review on cyclic bispectrum

is done in next subsection on cyclostationarity analysis.

Table 2.3 gives a review of relevant papers on fractional domain methods.

Table 2.3: Review of fractional domain processing (SVD - Singular Value Decomposi-
tion, GA - Genetic Algorithm, FCF - Fault Characteristic Frequency)

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
Rolling bearing fault de- | Vibration Adaptive 1.5 Dimension | Fault Character- | Visual
tection using an adaptive Lifting Multi- | Spectrum istic Frequencies
lifting multiwavelet packet wavelet Packet
with a 1 1/2 dimension Transform
spectrum (Jiang et al. (SVD En-
2013) [117] tropy and GA
Optimised, L8)
Applications  of  frac- | Vibration Fractional Time- Fault Character- | Visual
tional lower order time- Lower Or- | Frequency istic Frequencies
frequency representation der Time- | Represntation
to machine bearing fault Frequency
diagnosis (Frac2017Long Representations
2017) [Frac2017Long]

Continued on next page
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Table 2.3 — continued from previous page

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis

Fractional envelope ana- | Vibration Fractional Hil- | Fractional Fault Character- | Visual

lysis for rolling element bert Transform Envelope istic Frequencies,

bearing weak fault fea- Spectrum Kurtosis

ture extraction (Wang et
al. 2017) [116]

A WHT Signal Detection- | Vibration Fractional Time- Fault Character- | Visual
Based FLO-TF-UBSS Al- Lower Or- | Frequency istic Frequencies

gorithm Under Impulsive der Pseudo | Represntation

Noise Environment (Long Wigner-Hough

etal 2018) [112] Transform

Applications of fractional | Vibration Fractional Time- Fault Character- | Visual
lower order frequency Lower Or- | Frequency istic Frequencies

spectrum technologies der Time- | Represntation

to bearing fault analysis Frequency

(Long et al. 2019) [113] Representations

Weak signal enhancement | Vibration Fractional FFT Fault Character- | Visual
by fractional-order system Order System istic Frequencies

resonance and its applica- Resonance

tion in bearing fault dia- Model

gnosis (Wu et al. 2019)
[115]

Applications of Frac- | Vibration Fractional Time- Fault Character- | Visual
tional  Lower  Order Lower Order | Frequency istic Frequencies
Synchrosqueezing Trans- Synchrosqueez- | Represntation

form Time Frequency ing Transform

Technology to Machine
Fault Diagnosis (Wang
and Long 2020) [114]

Bearing fault diagnosis | Vibration WPT of signal | Envelope Spec- | Fault Character- | Visual
based on iterative 1.5- obtained after | trum istic Frequencies
dimensional spectral 3 iterations of

kurtosis (Zhang et al. Teager Energy

2020) [118] Operation and

1.5D Spectrum

2.4 Cyclostationarity Based Methods

Bearing fault signature shows complex modulation due to the high-frequency resonance
and low-range fault characteristic frequency. For correctly diagnosing the fault, it is im-
perative that such hidden periodicity is amply revealed in the spectrum. Conventional
power spectral density (PSD) assumes that the signal is stationary and thus fails to bring
out the fault signature. Thus, application of cyclostationary analysis was proposed for
bearing fault diagnosis [119]. In particular, bearing fault signals were characterised as
second-order cyclostationary processes, which have periodic autocorrelation. Being peri-
odic, the autocorrelation of such signals can be represented using Fourier series coeffi-

cients which constitute the cyclic autocorrelation of the signal.
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A review of the published work on cyclostationarity analysis for bearing fault dia-
gnosis is given in Table 2.4 and it reveals that cyclic autocorrelation is prevalently used
as a signal processing tool. Just as the PSD can be calculated from the conventional auto-
correlation, the Fourier transform of the cyclic autocorrelation gives spectral correlation
density (SCD). The application of SCD and degree of cyclostationarity (DCS) for rotating
machines is proposed in [119]. This idea is elaborated in [120] and it is shown that by
taking the quadratic transform, the hidden periodicity is converted to first-order period-
icity and revealed in the PSD. This fundamental concept is further explored in [121] and
the conventional envelope spectrum is shown to be a specific case of the DCS spectrum.
This lays down the foundation for the application of squared envelope spectrum (SES),
which is now a common practice for bearing fault diagnosis.

The research on cyclostationarity analysis has served three important purposes. First,
it has created a sound theoretical foundation for bearing fault diagnosis and justified the
use of envelope analysis [119-121]. Second, it has created a framework for fault diagnosis
using spectral correlation density (SCD) [122—-124], which was further extended to higher
order analysis in [125—-127]. Third, it has paved a way for defining cyclostationarity based
fault indices, which can be used to guide the denoising or source separation algorithms
[128-132].

It should be noted that fault analysis using SCD, or its higher order counterparts, is not
straightforward. These spectra are often computationally expensive, difficult to interpret
and can not be used directly for automatic fault diagnosis. Also, for fault diagnosis under
variable speed conditions, the signal has to be resampled before calculating its SCD [124].
However, the performance of cyclostationarity analysis is found to be better compared to

other methods [133].
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Table 2.4: Review of cyclostationarity analysis (FCF - Fault Characteristic Frequency)

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
Cyclostationarity in ro- | Vibration Cyclic autocor- | Degree of | Fault Character- | Visual
tating machine vibrations relation ~ with | Cyclostationar- istic Frequencies
(McCormick and Nandi cycle frequency | ity  Spectrum,
1998) [119] Spectral Correl-
ation Density
Cyclostationary ana- | Vibration Cyclic autocor- | Degree of | Fault Character- | Visual
lysis of rolling-element relation ~ with | Cyclostationar- istic Frequencies
bearing vibration signals cycle frequency | ity  Spectrum,
(ANTONIADIS and Spectral Correl-
GLOSSIOTIS 2001) [120] ation Density
Differential diagnosis of | Vibration Cyclic autocor- | Spectral Correl- | Fault Character- | Visual
gear and bearing faults relation  with | ation Density istic Frequencies
(Antoni and Randall 2002) cycle frequency
[122] equal to shaft
speed
Cyclic statistics in rolling | Vibration Cyclic Autocor- | Cyclic  Spec- | Fault Character- | Visual
bearing diagnosis (Li and relation trum (Selection | istic Frequencies
Qu 2003) [123] of band of cyc-
lic frequency)
Novel cyclostationarity- | Vibration Cyclic  Auto- | NA Fault Character- | Visual
based  blind  source correlation istic Frequencies
separation algorithm Based Cost
using second order stat- Function  and
istical properties: Theory Blind  Source
and application to the Separation
bearing defect diagnosis
(Bouguerriou et al. 2005)
[128]
Cyclic bispectrum patterns | Vibration Cyclic Autocor- | Cyclic Bispec- | Fault Character- | Visual
of defective rolling ele- relation trum istic Frequencies
ment bearing vibration re-
sponse (Yiakopoulos and
Antoniadis 2006) [125]
A feature  extraction | Vibration Symptom Envelope Spec- | Fault Character- | Visual
method based on inform- Information trum istic Frequencies
ation theory for fault Wave
diagnosis of reciprocating
machinery (Wang and
Chen 2009) [134]
Cyclostationarity of | Acoustic Cyclic Autocor- | Spectral Correl- | Fault Character- | Visual
Acoustic Emissions (AE) | Emission relation ation Density istic Frequencies,
for monitoring bearing Integrated ~ Spec-
defects (Kilundu et al. tral  Correlation
2011) [129] (for fault size)
Wigner-Ville distribution | Vibration Cyclic Autocor- | WVD based on | Fault Character- | Visual
based on cyclic spectral relation CSD istic Frequencies
density and the application
in rolling element bear-
ings diagnosis (Zhou et al.
2011) [126]
Application of the hori- | Vibration Cyclic Autocor- | Horizontal Fault Character- | Visual
zontal slice of cyclic bis- relation Slice of Cyclic | istic Frequencies
pectrum in rolling element Bispectrum
bearings diagnosis (Zhou
etal. 2012) [127]
Cyclostationarity applied | Acoustic Cyclic Autocor- | Spectral Correl- | Fault Character- | Visual
to acoustic emission and | Emission relation ation Density istic Frequencies,

development of a new
indicator for monitoring

bearing  defects  (Ke-
dadouche er al. 2014)
[130]

Integrated  Spec-
tral  Correlation
based Indices

Continued on next page
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Table 2.4 — continued from previous page

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis

Angle-time cyclostationar- | Vibration Resampling Spectral Correl- | Fault Character- | Visual

ity for the analysis of and Cyclic | ation Density istic Frequencies

rolling element bearing vi- Autocorrelation

brations (Abboud er al
2015) [124]

A comparison of cepstral | Vibration Cepstral  Edit- | Squared Envel- | SES Feature Visual
editing methods as signal ing ope Spectrum
pre-processing techniques (SES)

for vibration-based bear-
ing fault detection (Peeters
etal. 2017) [135]

Blind deconvolution based | Vibration Cyclostationary | NA Fault Period, | Visual
on cyclostationarity max- Blind Deconvo- Integrated Cyclic
imization and its applic- lution Spectrum  based
ation to fault identifica- cost function for
tion (Buzzoni et al. 2018) deconvolution
[131]
Weighted Cyclic | Vibration Filter Bank Squared Envel- | Fault Character- | Visual
Harmonic-to-Noise ope Spectrum | istic Frequencies,
Ratio for Rolling Element (SES) Weighted Cyclic
Bearing Fault Diagnosis Harmonic-to-
(Mo et al. 2020) [132] Noise Ratio
(for filter band
selection)

2.5 Order Tracking Methods

The incipient bearing faults can be diagnosed in envelope spectrum using the fault char-
acteristic frequencies (FCF). These FCF values depend on bearing geometry and the ro-
tational speed. Speed fluctuations are very common, particularly, during start-up and
shut-down operations or load variations. Under speed variations, bearing fault signals
become completely non-stationary. Broadly, there are two approaches to diagnose faults
under varying speed conditions, order tracking and instantaneous frequency estimation
using time-frequency representation. Once the speed is measured, the vibration signal
can be resampled and converted to the angle domain, in which the frequency compon-
ents represent multiples of rotational speed or fault characteristic orders (FCO) [136]. An
order spectrum thus obtained readily gives the information about the location of fault in
the bearing. This method is known as order tracking and can be implemented in either
hardware or software [137]. But, the hardware required for adaptive resampling is ex-
pensive and unreliable, thus, the focus of the research has shifted towards the computed

order tracking.
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A review of relevant work on different order tracking related algorithms is given in
Table 2.5. It shows that almost every signal processing method, discussed earlier, is used
with resampling for fault diagnosis under variable speed conditions - wavelet [138, 139],
EMD [140], VMD [83], STFT [139, 141], Cepstrum Analysis [142, 143]. A detailed ana-
lysis of computed order tracking shows that it is highly sensitive to the timing accuracy of
resampling and the order of interpolation used [136]. Other modifications of conventional
order tracking are also reported, like hybrid order tracking [144] and iterative enveloping
followed by low-pass filtering to improve the fault features [145].

Another disadvantage of order tracking is its inability to perform tacholess fault dia-
gnosis. Several modifications of conventional order tracking are reported to overcome this
disadvantage. These techniques mainly use an additional step of extracting the speed in-
formation from the time-frequency representation (TFR) of the signal, but the actual fault
diagnosis is carried out using order tracking. Extraction of speed curve from the TFR can
be carried out using direct local maximum ridge detection (DMRD) [146], cost function
based ridge detection (CFRD) [147, 148], dynamic path optimization based ridge detec-
tion (DPORD) [149], tunable E-factor based ridge detection (TERD) [150]. Each of these
methods is a modification of its predecessor. Tacholess order-tracking of current signals
is proposed in [151]. All of these methods resample the bearing signal using the speed
curve extracted from the TFR. However, as claimed in [152, 153], use of order tracking is

not necessary if multiple ridge curves are extracted from the TFR.

Table 2.5: Review of order tracking analysis (FCF - Fault Characteristic Frequency, EMD
- Empirical Mode Decomposition, STFT - Short Time Fourier Transform, CWT - Con-
tinuous Wavelet Transform

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis

Bearing fault detection and | Vibration EMD, Discrete | Teager-Huang Fault Character- | Visual

diagnosis based on or- Energy Separa- | Order Spectrum | istic Order

der tracking and Teager- tion Algorithm

Huang transform (Li er al.

2010) [140]

Order  bi-spectrum for | Vibration Resampling Order Bi- | Fault Character- | Visual

bearing fault monitoring and Hilbert | spectrum istic Order

and diagnosis under run- Transform

up condition (Li 2011)

[154]

Continued on next page
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Table 2.5 — continued from previous page

Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis

Application of cepstrum | Vibration Order Tracking | Squared  En- | Fault Character- | Visual

pre-whitening for the dia- and Synchron- | velope Order | istic Order

gnosis of bearing faults ous Averaging, | Spectrum

under variable speed con- Cepstrum  Pre-

ditions (Borghesani et al. whitening

2013) [142]

Rotating speed isolation | Vibration Fast Kurtogram | Spectrogram Fault Character- | Visual

and its application to istic Order, Ridge

rolling element bearing Detection

fault diagnosis under large

speed variation conditions

(Wang et al. 2015) [155]

Rolling element bear- | Vibration Resampling, Envelope Order | Fault Character- | Visual

ing  defect diagnosis Wavelet  De- | Spectrum istic Order

under  variable  speed noising, Angle

operation through angle Synchronous

synchronous averaging of Averaging

wavelet de-noised estim-

ate (Mishra et al. 2016)

[138]

Bearing fault diagnosis | Vibration Windowed Order Spectrum | Fault Character- | Visual

under variable rotational Fractal Dimen- istic Order

speed via the joint applic- sion Transform,

ation of windowed fractal STFT and

dimension transform and Generalised

generalized demodulation: Demodulation

A method free from prefil-

tering and resampling (Shi

etal. 2016) [141]

Specialization improved | Vibration Resampling, Envelope Order | Fault Character- | Visual

nonlocal means to detect Specialisa- Spectrum istic Order

periodic impulse feature tion Improved

for generator bearing fault Modified Non-

identification (Chen et al. local Means

2017) [156] Denoising

A PLL-based resampling | Vibration Phase Locked | Order Spectrum | Fault Character- | Visual

technique for vibration Loop based istic Order

analysis in variable-speed Resampling

wind turbines with PMSG:

A bearing fault case

(Pezzani et al. 2017) [157]

Bearing fault diagnosis | Vibration STFT Spectrogram Ridge Detection, | Thresholding

under unknown time- Fault  Character-

varying rotational speed istic Ratios

conditions via multiple

time-frequency curve

extraction (Huang er al

2018) [158]

A New Methodology to | Vibration Resampling Envelope Order | Fault Character- | Visual

Estimate the Rotating and Hilbert | Spectrum istic Order

Phase of a BLDC Motor Transform

with Its Application in (Optimised

Variable-Speed ~ Bearing with  Sinusoid

Fault Diagnosis (Lu and Similarity)

Wang 2018) [159]

High-accuracy fault | Vibration Iterative Envel- | Time- Fault Character- | Visual

feature  extraction for ope Tracking | Frequency istic Order

rolling bearings under Filter Representation

time-varying speed con-
ditions using an iterative
envelope-tracking  filter
(Chen et al. 2019) [160]

Continued on next page
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Title Measurement| Decomposition | Spectral Ana- | Features Classification
lysis
A Two-Stage Method | Vibration Chirplet Trans- | Order Spectrum | Fault Character- | Visual
Using  Spline-Kernelled form  (Spline istic Order
Chirplet Transform and Kernel), Res-
Angle Synchronous Aver- ampling, Angle
aging to Detect Faults at Synchronous
Variable Speed (Wang and Averaging
Xiang 2019) [161]
Bearing fault diagnosis | Vibration Band-pass Envelope Order | Fault Character- | Visual
under time-varying rota- Filtering (Fault | Spectrum istic Order
tional speed via the fault Characteristic
characteristic order (FCO) Order Index
index based demodu- Optimised),
lation and the stepwise STFT and
resampling in the fault CWT  Curves
phase angle (FPA) domain Extraction and
(Wang and Chu 2019) Resampling
[139]
Order spectrogram visual- | Vibration Band-pass Envelope Order | Fault Character- | Visual
ization for rolling bear- Filtering (Fault | Spectrum istic Order
ing fault detection under Characteristic
speed variation conditions Order  Index
(Wang et al. 2019) [162] Optimised),
STFT  Curves
Extraction and
Resampling
Fault diagnosis of rolling | Vibration Teager Energry | Envelope Order | NA Stacking Auto-
bearing under fluctuat- Demodulation, Spectrum Encoder
ing speed and variable Resampling
load based on TCO
Spectrum and  Stacking
Auto-encoder (Xiang et
al. 2019) [163]
Multi-band identification | Vibration Resampling, Envelope Order | Fault Character- | Visual
for enhancing bearing fault Cepstrum Spectrum istic Order
detection in variable speed Pre-whitening
conditions (Klausen et al.
2020) [143]

2.6 Summary

There is a wide pool of articles available in the field of bearing fault diagnosis. A brief re-
view of literature focussing on important signal processing tools is carried out. The details
of the fault diagnosis algorithm, in comparison with Fig 1.2, are tabulated chronologic-
ally and evolution of such techniques is discussed. Amongst all the signal processing
techniques, wavelet analysis is thoroughly explored. Several articles try to address the
key issues regarding the wavelets - base wavelet selection, selection of optimum scale or
node, maximum level of decomposition, type of wavelet transform used, application spe-
cific design of the wavelets ef cetra. However, due to the shear simplicity, empirical mode

decomposition has gained popularity and to overcome its key problem of mode mixing,
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several modifications, Ensemble EMD, Complementary EEMD, variational mode decom-
position (VMD) are suggested. VMD, however, suffers from the problem of parameter
selection.

On the other hand, very little research is found in fractional domain processing. The
fractional domain generalisations of existing signal processing methods provide an extra
degree of freedom over which the performance of the method can be improved. Hence,
the first algorithm proposed in this thesis focuses on this aspect. The second proposed
algorithm, on the other hand, focuses on the cyclostationary nature of bearing signal. In
the available literature, the cyclostationarity is explored rather theoretically, but is often
found practically difficult to interpret because of the complex nature of signal representa-
tion. However, the cyclic changes in the statistics is an inherent characteristic of bearing
fault signals and can be explored further to achieve practically efficient fault diagnosis

algorithms.

2.7 Gaps in Existing Research

After the study of available literature, following gaps are identified -

1. A common framework for fault diagnosis under constant as well as variable speed
conditions needs to be further explored.

2. Although wavelets are widely explored in the literature, choice of wavelet signific-
antly affects the accuracy of such methods. Thus ideally the fault diagnosis frame-
work should be independent of wavelet selection.

3. The choice of fault features to select optimum demodulation band may badly affect
the overall accuracy. Kurtosis and other sparsity indices are often used for this
purpose, but their accuracy is poor.

4. Fractional domain methods have a potential of maximising the fault features, but is

not given enough attention in the literature.
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5. A dataset of acoustic signals is not publicly available for bearing fault diagnosis.
The dataset for variable speed conditions is made available in 2018. All the cases of
this dataset are not yet explored in the literature apart from the benchmark method.

6. Rolling element faults are still the most elusive type of faults. Many cases of such

faults can not be adequately diagnosed using state of the art techniques.
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