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Chapter 6

Fault Diagnosis Framework

‘New frameworks are like climbing a mountain - the larger view encompasses rather

than rejects the more restricted view.’

-Albert Einstein

Highlights:
* A framework for diagnosis of bearing faults under variable and constant
speed conditions is proposed.
* This chapter includes comparative analysis of three existing and two pro-
posed signal processing algorithms.
1. Hilbert transform based enveloping
2. Wavelet packet transform and enveloping
3. Variational mode decomposition
4. Fractional enveloping
5. Cumulative distribution sharpness profiling
* Two time-frequency domain fault features - Prominence and Compliance -
are defined for diagnosis.
* The proposed CDSP method is found to be superior under different object-

ives of fault diagnosis.
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In previous chapters, two signal processing methods - fractional enveloping (FE)
and cumulative distribution sharpness profiling (CDSP) - are proposed and validated on
publicly available datasets. These methods effectively enhanced the fault signature in
the signal. The objective of this chapter is to verify these algorithms under proposed
framework. A comparative analysis is carried out with well-established signal processing

algorithms.

6.1 Proposed Framework

A common framework for diagnosis of bearing faults under constant as well as variable
speed conditions is proposed in Fig. 6.1. Fractional enveloping and cumulative distribu-
tion sharpness profiling are the proposed signal processing methods, which are discussed,
in detail, in previous chapters. Available MTFCE algorithm [153] is used for extraction
of the ridge curves. Two time-frequency domain features - Prominence and Compliance

are also proposed for diagnosis.

Prominence
Vibration Data Sienal Multiple Time- >
or Sound —p L ena »  Frequency Ridge Diagnosis
. Acquisition Processing h o
Signal Curves Extraction
Compliance

* Signal Envelope (Hilbert Transform)

* Wavelet Packet Transform

* Variational Mode Decomposition

* Fractional Enveloping

* Cumulative Distribution Sharpness
Profiling

Figure 6.1: Proposed framework for diagnosis of bearing faults under constant as well
as variable speed conditions.
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6.1.1 Signal Processing

Following signal processing methods are used in the proposed framework and their results

are compared.

L.

Method 1: This is the conventional Hilbert transform method to calculate the signal
envelope.

Method 2: As discussed in the literature review, signal enveloping alone is not
enough, but has to be preceded by band-pass filtering or signal decomposition.
Since wavelet transform is a well-established method for bearing fault diagnosis,
it is used with signal enveloping. The discrete wavelet packet transform (dual-tree,
maximum overlap) is used as the decomposition technique with the mother wave-
lets ‘db8’ and ‘tk4’. Maximum decomposition level is 3. For selection of optimum
band and optimum mother wavelet, the diagnosis percentages, calculated from two
proposed features - Prominence and Compliance - are maximised for each case.
Method 3: As discussed in the literature review, variational mode decomposition
(VMD) is a modification of the empirical mode decomposition. Using the VMD,
the signals are decomposed into the intrinsic mode functions (IMF). For selection
of optimum IMF, the diagnosis percentages, calculated from two proposed features
- Prominence and Compliance - are maximised for each case.

Method 4: This is the fractional enveloping method, in which the fractional Fourier
transform (FrFT) is applied followed by the wavelet packet transform. The op-
timum fractional parameter is found by maximising the diagnosis percentages, cal-
culated from two proposed features - Prominence and Compliance, over the range
[0, 1] with an interval of 0.1. The wavelet decomposition is optimised as discussed
in Method 2.

Method 5: The cumulative distribution sharpness profile (CDSP) of the signal is
calculated in this method. The procedure for calculating CDSP is discussed, in

detail, in Chapter 5.
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6.1.2 Multiple Time-Frequency Ridge Curves Extraction

The signal envelope obtained from each of the above methods is represented using the
short-time Fourier transform (STFT). Although, the time-frequency representation using
STFT is not necessary for constant speed conditions, it provides a uniform way of analysis
for different operating conditions. That is, using STFT both the constant as well as the
varying speed conditions can be processed. The window type, window length and overlap
are empirically selected during validation as hamming, 4.5% and 0.1% of the signal length
respectively. First four TFR ridge curves are then extracted from the STFT using the

algorithm given in [153].

6.1.3 Time-Frequency Features and Diagnosis

Two proposed features - Prominence and Compliance - are defined for the extracted TFR
ridge curves. Out of the four TFR ridge curves (f1, f2, f3 & f1), curve with minimum
mean squared error (MSE) with theoretical fault frequency is selected as the estimated
fault frequency. Prominence is defined as a measure of how prominent is the estimated
frequency curve compared to other extracted curves.

Let Ay, be the average amplitude of the first four extracted curves and A ¢ be the aver-
age amplitude of the estimated fault frequency curve. Then the Prominence is proposed
as Pr=100x (Ap — u)/u, where u =X Ay, /4.

Larger value of Prominence indicates the presence of fault. Depending on closeness of
prominent frequency with the fault frequency, the location of fault can also be identified.
But, in case of variable speed conditions, Prominence is not sufficient for diagnosis.

Compliance is defined as a measure of closeness between the estimated frequency
curve and the theoretical fault frequency. The Compliance is proposed as Co = 100 x
n./N. Where, the estimated fault curve (f’) has N samples and for n. samples it satisfies
|/ — ff| < €, where f is the theoretical fault frequency for inner race or outer race and &

is the threshold for closeness between these curves.



Chapter 6. Fault Diagnosis Framework 82

This deviation is estimated to be 2% [182] to 5% for the dataset under study [152].
This 5% tolerance is in fault characteristic coefficient (FCC), which is nothing but a multi-
plication factor to calculate the fault frequency. Considering, the range of operating speed
upto 2000 rotations per minute, that is 33.33 Hz, and the FCC of inner race fault to be
5.43, the 5% tolerance becomes € = 33.33 x 5.43 x 5/100 = 9.05 Hz. Thus, the value of
€ is chosen as 10 Hz.

Larger value of Compliance indicates that the estimated fault curve follows the theor-
etical fault frequency closely for larger duration of time. Compliance is mainly important
under variable speed conditions and is helpful in fault localization. For example, if the
estimated fault curve has larger Compliance with inner race frequency than outer race
frequency, then inner race fault is detected.

The fault detection thus depends on proposed features - Prominence and Compliance
and the diagnosis percentages (Di) are calculated as a product of Prominence (Pr) and

Compliance (Co) scaled down to 100.
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6.2 Results

CWRU (2013), Set 1

Description: Diagnosis of small (7mil), medium (14 mil) and large (21 mil) size
inner race and outer race faults under constant operational speed
using primary accelerometer located near the BUT.

Operating Speeds: Constant; around 1700 rotations per minute

Data Acquisition: ~ Vibration signals; for 10 sec;

48 KHz (Down sampled to 20 KHz for processing)

Results: Maximum accuracy of 91% using proposed method of CDSP
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Figure 6.2: Comparative analysis of results for bearing dataset by Case Western Reserve
University (2013), Set 1. (Note: The confusion matrices are row normalised, that is, the
rows should add up to 100. If this exceeds 100, then some cases are wrongly diagnosed as
multiple fault cases. Method 1 - Hilbert Transform, Method 2 - Wavelet Packet Transform,
Method 3 - Variational Mode Decomposition, Method 4 - Fractional Enveloping, Method
5 - Cumulative Distribution Sharpness Profiling.)
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CWRU (2013), Set 2

Description: Diagnosis of small (7mil), medium (14 mil) and large (21 mil) size
inner race and outer race faults under constant operational speed
using secondary accelerometer located away from the BUT.

Operating Speeds: Constant; around 1700 rotations per minute

Data Acquisition:  Vibration signal; for 10 sec;

48 KHz (Down sampled to 20 KHz for processing)

Results: Maximum accuracy of 86% using proposed method of CDSP
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Figure 6.3: Comparative analysis of results for bearing dataset by Case Western Reserve
University (2013), Set 2. (Note: The confusion matrices are row normalised, that is, the
rows should add up to 100. If this exceeds 100, then some cases are wrongly diagnosed as
multiple fault cases. Method 1 - Hilbert Transform, Method 2 - Wavelet Packet Transform,
Method 3 - Variational Mode Decomposition, Method 4 - Fractional Enveloping, Method
5 - Cumulative Distribution Sharpness Profiling.)
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UO0O (2018)

Description: Diagnosis of inner race and outer race faults under varying speed
using primary accelerometer located near the BUT.

Operating Speeds:  Variable; around 1700 rotations per minute

Data Acquisition:  Vibration signal; for 10 sec;
200 KHz (Down sampled to 20 KHz for processing)

Results: Maximum accuracy of 100% using proposed method of CDSP
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Figure 6.4: Comparative analysis of results for bearing dataset by University of Ottawa
(2018). (Note: The confusion matrices are row normalised, that is, the rows should add
up to 100. If this exceeds 100, then some cases are wrongly diagnosed as multiple fault
cases. Method 1 - Hilbert Transform, Method 2 - Wavelet Packet Transform, Method 3 -
Variational Mode Decomposition, Method 4 - Fractional Enveloping, Method 5 - Cumu-
lative Distribution Sharpness Profiling.)
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BITS (2021), Set 1
Description: Diagnosis of medium (0.6 mm) and large (0.7 mm)
inner race and outer race faults under constant and varying speed using
primary accelerometer located near the BUT.
Operating Speeds: Constant; approximately 1000, 1200, 1400, 1600,
1800 and 2000 rotations per minute
Variable; approximately 1200-1500,
1500-1200, 1700-2000, 2000-1700 rotations per minute
Data Acquisition: ~ Vibration signal; for 10 sec;
100 KHz (Down sampled to 20 KHz for processing)
Results: Maximum accuracy of 100% using proposed method of CDSP
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Figure 6.5: Comparative analysis of results for experiments performed at Birla Institute of
Technology and Science (2021), Set 1. (Note: The confusion matrices are row normalised,
that is, the rows should add up to 100. If this exceeds 100, then some cases are wrongly
diagnosed as multiple fault cases. Method 1 - Hilbert Transform, Method 2 - Wavelet
Packet Transform, Method 3 - Variational Mode Decomposition, Method 4 - Fractional
Enveloping, Method 5 - Cumulative Distribution Sharpness Profiling.)
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BITS (2021), Set 2
Description: Diagnosis of medium (0.6 mm) and large (0.7 mm)
inner race and outer race faults under constant and varying speed using
primary microphone located near the BUT.
Operating Speeds: Constant; approximately 1000, 1200, 1400, 1600,
1800 and 2000 rotations per minute
Variable; approximately 1200-1500,
1500-1200, 1700-2000, 2000-1700 rotations per minute
Data Acquisition: Sound signal; for 10 sec;
100 KHz (Down sampled to 20 KHz for processing)
Results: Maximum accuracy of 94% using proposed method of CDSP
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Figure 6.6: Comparative analysis of results for experiments performed at Birla Institute of
Technology and Science (2021), Set 2. (Note: The confusion matrices are row normalised,
that is, the rows should add up to 100. If this exceeds 100, then some cases are wrongly
diagnosed as multiple fault cases. Method 1 - Hilbert Transform, Method 2 - Wavelet
Packet Transform, Method 3 - Variational Mode Decomposition, Method 4 - Fractional
Enveloping, Method 5 - Cumulative Distribution Sharpness Profiling.)
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6.2.1 CWRU-2013

It is a widely studied dataset for bearing fault diagnosis. The details of this dataset can be
found in Chapter 3. The analysis for different subsets is carried out under the framework

discussed in Fig. 6.1 and the results are shown in Fig. 6.2 and Fig. 6.3.

Diagnosis Using Primary Accelerometer

Fig. 6.2 shows results for the CWRU-2013 dataset when the signal is acquired using
the primary accelerometer located near the bearing under test (BUT). The conventional
Hilbert transform method has poorest accuracy for both inner race and outer race faults.
Although all the healthy cases lie below the 25% diagnosis threshold, several faulty cases
also lie in this region and, thus, wrongly identified as healthy cases. The medium and
large size inner race faults are misclassified by this method. The accuracy of detecting
outer race faults is better compared to that of the inner race faults. However, the overall
accuracy of 59% makes this method unsuitable for fault diagnosis.

As highlighted in the literature review in Chapter 2, conventional signal enveloping
alone is not useful. But, when preceded by a wavelet packet transform, it shows signi-
ficant improvement in the overall accuracy - from 59% to 79.5%. This improvement is
mainly due to maximisation of diagnosis percentages in the wavelet domain. As the cal-
culation of diagnosis percentages involves computation of short-time Fourier transform,
it takes more amount of time. This limits the maximum level at which the signal can
be decomposed. However, as further diagnosis depends on these percentages, proposed
maximisation achieves better results over kurtosis or Hoyer index optimised level 7 de-
composition. The accuracy of detecting healthy and inner race fault cases, using this
method, is at par with the best performing method. Whereas, some of the outer race faults
are wrongly diagnosed as healthy cases. This method still outperforms the variational
mode decomposition.

Variational mode decomposition (VMD) method is modification of the empirical mode

decomposition and is advantageous over the wavelet transform because the basis function
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need not be chosen for this method. In wavelet based methods (Method 2 and 4), choice
of mother wavelet is a critical issue, but in VMD only the optimum intrinsic mode func-
tion (IMF) needs to be selected. This is proposed to be done by maximising the diagnosis
percentages. Selection of IMFs based on kurtosis, Hoyer index or other sparsity based
measures is found to be less effective to the proposed maximisation. However, the ac-
curacy of this method is poor and few outer race fault cases are wrongly diagnosed as
multiple fault cases, that is, cases having both inner and outer race faults.

Application of fractional enveloping is discussed, in detail, in Chapter 4. This method
is found to improve the accuracy compared to conventional enveloping. However, for this
dataset, accuracy of Method 2 and Method 4 is equal. This method improves detection of
outer race faults, but it also loses on the inner race fault detection. The overall accuracy
of 79.5% is still a significant improvement.

The proposed cumulative distribution sharpness profiling (CDSP) method outper-
forms other methods in this framework. With overall accuracy of 90.9%, only few inner
and outer race fault cases are misclassified as healthy cases. This is mainly due to two
reasons - shorter duration of data acquisition and severe misalignment or imbalance.

The effect of misalignment or imbalance is discussed in detail in [169] and many cases
in this dataset are non-diagnosable because of this. The CDSP method also fails in such
cases. From signal processing perspective, this problem can be tackled by pre-processing
the signal using cepstral editing to remove the speed harmonics. However, this is not
possible in variable speed condition. Two misclassified cases are found to have shorter
time duration. This affects the time resolution of the short-time Fourier transform and
thus such cases are not properly diagnosed. It is therefore recommended that the signal
should be acquired for a duration of at least 10 sec.

Improvement in the diagnosis percentages is also seen in this method. Thus, CDSP
creates better separation between the fault types and allows diagnosis with increased con-

fidence.

Diagnosis Using Secondary Accelerometer
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Fig. 6.3 shows results for the CWRU-2013 dataset when the signal is acquired using
the secondary accelerometer. As the secondary accelerometer is located away from the
bearing under test, the acquired signal has more interference and noise from other machine
components. Thus, diagnosis of faults is difficult for this set, compared to that of the
primary accelerometer data.

Similar to the results from previous set, the accuracy of conventional Hilbert trans-
form is poorest. Only 17% inner race fault cases are correctly diagnosed, remaining are
misclassified as healthy.

This method shows significant improvement over Method 1, but diagnosis of outer
race faults is poor compared to the results of primary accelerometer.

The accuracy of VMD is improved for secondary accelerometer compared to the
primary accelerometer. It is evident that the effect of interfering signal components can
be reduced using this method. Because of this reason it is an efficient signal processing
method.

For secondary accelerometer also, the fractional domain maximisation shows signific-
ant improvement in the accuracy of diagnosis. This method gives better result compared
to the wavelet or VMD alone.

CDSP is again found to be an efficient fault diagnosis method compared to other signal
processing methods. Overall, inner race fault diagnosis is not affected due to the location
of the accelerometer, but the accuracy of outer race fault diagnosis drops. The reasons of

misclassification for this method are same as discussed for previous set.

6.2.2 UOO0-2018

The objective of this dataset is diagnosis of bearing faults under varying speed conditions.

The details are discussed in Chapter 3 and can also be referred to in the original paper

[168]. The analysis is carried out under the framework discussed in Fig. 6.1.
Performance of Method 1 is much better compared to the CWRU (2013) dataset, as

shown in Fig. 6.4. It even outperforms the wavelet based Method 2. In fact, although
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accuracy of Method 3 and Method 4 is improved, the diagnosis percentages are very less
and thus the confidence in the diagnosis is deteriorated. This shows that, decomposition
based methods perform poorly under variable speed conditions. This is due to selection
of improper node of decomposition. To improve this performance, deeper levels of de-
composition need to be calculated, but it increases the computational cost. The resonance
band is also likely to be spread over multiple nodes in variable speed conditions. Thus
appropriate node selection criteria need to be applied. CDSP, on the other hand, achieves

100% accuracy as it is made adaptive with the varying rotational speed.

6.2.3 BITS-2021

Based on the publicly available datasets, similar sets of experiments are performed during
this research. The details of these experiments are discussed in Chapter 3. The analysis is
carried out under the framework discussed in Fig. 6.1.

Two sets of experiments are performed for testing the proposed algorithms. In the
first set, vibration data from bearing under test (BUT) is acquired using an accelerometer
mounted on the housing of that bearing. These experiments include both constant as
well as variable speed conditions. The proposed CDSP (Method 5) is found to correctly
classify all the cases, as shown in Fig. 6.5-6.6. The fractional enveloping also outperforms
the wavelet and VMD based methods. All the outer race fault cases are easily diagnosed
using each of these methods. Lower size (0.6 mm) inner race faults are somewhat difficult
to diagnose and can be correctly diagnosed only by Method 5 at lower confidence. Large
size faults comparatively easy to detect.

Similar trend is observed in second set of experiments using microphone. Sound
is, conventionally, an indicator of sever fault in a machine. Sound signal is prone to
surrounding noise and is difficult from signal processing perspective. This is reflected in
the results of this set. CDSP is still the best performing method, but its overall accuracy

is slightly dropped.
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6.3 Comparison of Computational Time

Computational time is an important aspect of real-time, online fault diagnosis. Critical
machines are often continuously monitored to detect any presence of fault as early as
possible. If the diagnosis algorithm is computationally demanding, this task of continuous
processing of machine signals becomes cumbersome. It is always desirable for the fault
diagnosis algorithm to have less computational requirements.

For the proposed analysis framework, the average time taken by each method for pro-
cessing a 10 sec, 200000 sample signal (sampling rate of 20 KHz) is calculated. The time
taken by the conventional Hilbert transform is the least (3.37 sec), whereas proposed frac-
tional enveloping takes highest time (142.87 sec). The proposed cumulative distribution
sharpness profiling (CDSP) takes around 41 sec, which is better compared to the wavelet
and variational mode decomposition based methods. The wavelet analysis takes around
98 sec for level 3 decomposition because of the calculation of multiple time-frequency
ridge curves extraction (MTFCE) at each node. If kurtosis or some other sparsity index is
used for selection of the optimum node, then wavelet analysis becomes much faster, but

the accuracy reduces.

6.4 Conclusion

The proposed CDSP and MTFCE framework is faster and has better accuracy compared
to the Hilbert transform, wavelet transform, variational mode decomposition and frac-
tional enveloping. This framework does not free from training as opposed to the machine
learning algorithms. Also, the classification is based on simple thresholding of diagnosis
percentages. This makes the CDSP, MTFCE framework suitable for automatic fault dia-
gnosis under constant as well as varying speed conditions. Next chapter gives concluding
remarks on the thesis by discussing the motivation, need, limitations and future scope of

the proposed approaches.
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