Contents

C	Certificate			
A	cknov	vledgements	ix	
Al	bstrac	et	xi	
1	Intr	roduction	1	
	1.1	Motivation	1	
	1.2	Research Objectives	3	
	1.3	Fundamentals of Rectangular Duals	4	
	1.4	The State of the Art	5	
		1.4.1 Characterizations of Rectangular Duals	6	
		1.4.2 Constructive Algorithms for Rectangular Duals	7	
		1.4.3 Adjacency Preserving Transformations of Rectangular Duals .	7	
		1.4.4 Rectangulations	10	
		1.4.5 Rectangular Duals With Area-Universality Characteristic	11	
		1.4.6 Extension of Rectangular Duals	12	
	1.5	Research Gaps and Results	13	
	1.6	Outline	14	
2	Fun	damentals Tools and Methodology	17	
	2.1	Planar And Plane Graphs	17	
	2.2	Rectangularly Dualizable Graphs	18	
	2.3	Concept of Regular Edge Labeling	20	
	2.4	Area-Universality	24	
	2.5	Methodology	24	
3	The	ory of Rectangularly Dualizable Graphs	27	
	3 1	Introduction	27	

	3.2	Extended RDG	29	
	3.3	Stereographic Projection	30	
	3.4	RDG Existence Theory	31	
	3.5	Concluding Remarks	39	
4	Max	cimal Rectangularly Dualizable Graphs	41	
	4.1	Introduction	41	
	4.2	Properties of Maximal RDGs	42	
	4.3	MRDG Construction	44	
	4.4	Algorithm for Constructing of an MRDG	49	
	4.5	Concluding Remarks	53	
5	Edg	e-Reducible Rectangularly Dualizable Graphs	55	
	5.1	Introduction	55	
	5.2	Concept of Edge-Reduction	57	
	5.3	Theory of Edge-Reducible RDG	58	
	5.4	Theory of Edge-Irreducible RDGs	64	
	5.5	Constructive Algorithms for Rectangular Duals	70	
		5.5.1 RDG Transformation Algorithm	71	
		5.5.2 Transformation algorithm for rectangular duals	74	
	5.6	Concluding Remarks	82	
6	Unio	Uniqueness of Rectangular Duals		
	6.1	Introduction	83	
	6.2	The Class of Unique Rectangular Duals	84	
	6.3	Concluding Remarks	90	
7	A Class of Area-Universal Rectangular Duals			
	7.1	Introduction	91	
	7.2	Constructive Algorithm for Area-Universal Weak Rectangular Duals	92	
	7.3	Concluding Remarks	99	
8	Sun	mary and Future Research Work	101	
	8.1	Conclusive Summary	101	
	8.2	Open problems and conjectures	102	
Li	st of l	Publications	112	

	XV	
Presented Works	113	
Brief Biography of the Candidate	114	
Brief Biography of the Supervisor	115	

List of Figures

1.1	A rectangular dual of a plane graph described by a VLSI system	2
1.2	(a) A population cartogram of Germany [34] and (b) its rectangular cartogram	3
1.3	(a) a slicible rectangular dual and (b) a non-slicible rectangular dual .	5
2.1	R_1 and R_4 are corner rectangles, R_3 is an end rectangle, and R_2 is a	
	through rectangle	19
2.2	(a) Presence of CIPs $v_1v_2v_3$ and (b) a separating triangle $v_4v_6v_7$	19
2.3	(a) An RDG G , (b) an extended graph $E(G)$ and (c) a rectangular dual	
	of $E(G)$	20
2.4	(a) Regular edge labeling of an extended graph $E(G)$	21
2.5	Two combinatorially equivalent rectangular duals induce the same	
	regular edge labeling of their extended graph	22
2.6	Two topologically distinct rectangular duals induce the different reg-	
	ular edge labelings of their extended graph	22
2.7	(a-d) Single edge simple T-structures in a rectangular dual and (e-h)	
	corresponding single edge simple T-structures in its RDG	23
2.8	Multiple edge simple T-structures in G	23
2.9	(a) An area-universal rectangular dual and (b) an rectangular dual that	
	is not area-universal.	24
2.10	Rectangular dualization: (a) A plane graph G , (b) its extended graph,	
	(c) dual of the extended graph, and (d) a rectangular dual of G	25
3.1	A counter example that invalidates Theorem 3.1.1	28
3.2	Construction of an extended RDG (red edges) of a rectangular dual	
	(dark edges)	30
3.3	Two possibilities of a critical separating triangle enclosing an enclo-	
	sure corner vertex	32

3.4	(a) Sketch of the graph H when there are three edges between v_{∞} and	
	enclosure vertex v_i , (b) sketch of the graph H_1 when there are exactly	
	two edges between each enclosure corner vertex and v_{∞} , and (c) the	
	construction of an rectangular dual for H	34
3.5	(a) A separating cycle shown by red edges and (b) the appearance of H_u .	35
3.6	(a) Merging two RDGs of H_u and H_b into an RDG for H	36
3.7	(a) A separable connected graph constituted by three blocks A, B and	
	C, and (b) its BNG. Here only the outermost cycles of the blocks are	
	shown.	38
3.8	A separable connected graph constituted by three blocks A, B, C and	
	D, and (b) its BNG. Here only the outermost cycles of the blocks are	
	shown	38
4.1	(a) An MRDG and (b) corresponding rectangular dual	44
4.2	Constructing a nonseparable RDG of a separable connected RDG G_1	
	with a cut-vertex v_t shared by its two components C_1 and C_2	47
4.3	(a) A random addition of new edges (red edges) to a separable con-	
	nected RDG destroy the RDG property because of the presence of a	
	separating triangle $v_4v_5v_7v_4$ in the resultant graph (b) while addition	
	of new edges (red edges) using Lemma 4.3.4 do not destroy RDG	
	property (neither separating triangle nor any CIP in the resultant graph).	47
4.4	Three possible depictions of G_2 obtained from G_1 (consists of black	
	edges) by adding a red edge	49
4.5	(a-b)A given RDG G_1 and its rectangular dual, and (c-d) the derivation	
	of an MRDG M_2 from G_1 and its rectangular dual	51
5.1	Example showing that it is not always possible to shift a rectangle to	
	the boundary while preserving the rectangularity of a floorplan	57
5.2	(a) An edge-reducible RDG G_1 , (b) an edge-irreducible RDG G_2 , (c)	
	a rectangular dual for G_1 and (d) a rectangular dual for G_2	58
5.3	(a) A nonseparable RDG G is reducible to (b) another nonseparable	
	RDG H . Their respective rectangular duals are shown in (c) and (d)	63
5.4	Showing that the converse of Theorem 5.4.2 is not true	67
5.5	(a) A separable connected edge-irreducible graph G and (b) its rectan-	
	gular dual	71
5.6	Geometric demonstrations of conditions and transformations	75

5.7	Geometric demonstrations of conditions and transformations	78
5.8	(a) An existing rectangular dual, (b-i) intermediate steps of the trans-	
	formations, and (i) a reduced rectangular dual	81
6.1	(a) An RDG that admits (b) a unique rectangular dual upto combina-	0.4
	torial equivalence	84
6.2	(b) An RDG with exactly 4 vertices of degree 2, (a) and (c) the corre-	
	sponding more than one topological distinct rectangular duals, (d) and	
	(e) respective regular edge labelings of these rectangular duals in (c)	
	and (d)	85
6.3	Two 4-cycles intersecting at two non-adjacent vertices of each other	86
6.4	Demonstrations of all possible T-structures upto isomorphism	88
6.5	(a) A nonseparable RDG, (b) its extended RDG and (c) a unique rect-	
	angular dual for the RDG upto the fixed orientations of its corner rect-	
	angles	89
6.6	Multiple rectangles on both sides of a maximal line segment s	90
7.1	An RDG G_1 that belongs to \mathscr{L}	95
7.2	Constructing an area-universal rectangular dual for G_1 in Fig. 7.1	96
7.3	(a-b) Possible positions for an exterior rectangle R_t in the rectangular	
	dual R of G, (c) dual R' after deleting R_t from R and (d) adjusting R_D	
	so that the resultant dual is a rectangular dual for H_1	97
		- '

List of Abbreviations

RDG(s): rectangularly dualizable graph(s)

MRDG(s): maximal rectangularly dualizable graph(s)

PTG(s): plane triangulated graph(s)

EPTG(s): extended plane triangulated graph(s)

CIP(s): corner implying path

BNG: block neighborhood graph

T-structure: turnable structure 4-cycle: cycle of length 4

xxi

List of Symbols

G: RDG

R:rectangular dual v_i :vertex of a graphV:vertex set of a graphE:edge set of a graph R_i :component rectangle

E(G): extended rectangular dual of G

C: cycle of a graph W_n : wheel graph

M: MRDG

 $N(v_i)$: neighborhood of v_i

P: path

 $d(v_k)$: degree of v_k

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/