Chapter 1

Introduction

The dual representations of planar graphs have many applications in real life world.
Among planar graphs, rectangularly dualizable graphs (RDGs) realize very nice geo-
metric representations. Such geometric realizations are rectangular partitions as their
duals. A rectangular partition is a partition of a rectangle into n-rectangles. The use of
RDGs can be seen in cartogram maps [49, 65], floorplans for VLSI circuits [40, 55]
and building architecture [21, 67]. In this thesis, we study planar graphs which can
rectangularly be dualized, i.e., can be realized by rectangular partitions. We mainly
develop various methods of transformations among rectangular duals.

1.1 Motivation

Constructing an optimal rectangular floorplan (rectangular partition) for VLSI circuit
is a challenging problem due to its increasing size. A VLSI system structure can be
described by a graph where vertices correspond to component rectangles and edges
correspond to their required connections. The theory of rectangular dualizable graphs
helps in deciding whether a rectangular floorplan can be realized from a given graph
and therefore in this thesis, we study rectangularly dualizable graphs. For a given
graph structure of a VLSI circuit, floorplanning is concerned with allocating space
to component modules and their interconnections. An embedding method given by
Heller [42] enforces interconnection by abutment. Modules are designed in such a
way that their connectors exactly match with their neighbors. Adapting this method-
ology, interconnections are coped with a clever design. Due to the advancement of
VLSI technology, it is extremely large and on the other hand, an RDG can handle at-
most 3n — 7 interconnections [56], where n is the number of modules. Consequently,

its graph described by VLSI circuit may not necessarily be planar and hence in modern
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VLSI system, component modules and interconnections can not be treated as indepen-
dent entities. In such a situation, not all interconnections can be enforced by abutment.
Linking the remaining interconnections with nonadjacent modules utilize additional
routing space.

For practical use, a graph described by a VLSI circuit can be embedded in such
a way that most of the interconnections can be made by abutment and the remaining
interconnections linking with nonadjacent modules use additional routing space. For
instance in Fig. 1.1d, Ry and Rg, R, and Rg are interconnected through shaded red
areas Rjg and Ry, respectively. These routing areas are anticipated by introducing
crossover vertices. In fact, these vertices are introduced at the intersection of edges if
it exists in order to embed a graph as a plane graph at a common point of intersection
of edges.

The use of an RDG in floorplanning for VLSI circuits is explained through the
following example. Consider a graph described by a VLSI system as shown in Fig.
1.1a. Note that input-output connections between VLSI system and outside world is
represented by arrow heads (these are edges adjacent to a vertex at infinity). Although
this extended graph is not planar, it is planarized [48] by adding cross over vertices
as shown in Fig. 1.1b. In order to satisfy the necessary adjacency requirements,
new edges (red edges) have been added in Fig. 1.1c. After these modifications, it is
possible to construct a rectangular dual (rectangular floorplan) as shown in Fig. 1.1d

where a component rectangle R; is dualized to a vertex v;.
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Figure 1.1: A rectangular dual of a plane graph described by a VLSI system.
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Another representations of planar graphs are rectangular cartograms. A rectangu-
lar cartogram is a rectangular partition wherein rectangles represent the size of geo-
graphic regions (of some land, State etc.), and adjacencies and positions of rectangles
are chosen to suggest the locations of geographic regions. The size of geographic
regions can be proportion to some statistical parameter such as the gross national
product, the population, the total birth etc. A cartogram of Germany is depicted in
Fig. 1.2a where the districts of the federal states are reset according to their popula-
tion. Fig. 1.2b is a corresponding rectangular cartogram (weighted rectangular dual).
Therefore, the rectangular cartograms [49] are useful to visualize spatial information
(it may be economic strength, population etc.) of geographic regions, i.e. they are
used to display more than one quantity associated with the same set of geographic
regions (in [49], the population, land area and wealth within the United States were
shown as cartograms). The visual comparison of multiple cartograms corresponding
to the same set of geographic regions can be made easier if each of the cartograms is

area-universal.

Figure 1.2: (a) A population cartogram of Germany [34] and (b) its rectangular cartogram

1.2 Research Objectives

The thesis focuses on the following objectives:

* To find a necessary and sufficient condition for a plane graph to be rectangularly
dualized.

* To find a necessary and sufficient condition for a rectangular dual to transform
to another rectangular dual and develop transformation algorithms for the con-

struction.
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* To find a necessary and sufficient condition for a plane graph to admit a unique
rectangular dual upto combinatorially equivalence.

* To determine a class of planar graphs wherein each planar graph can be realized

by an area-universal rectangular dual upto combinatorially equivalence.

1.3 Fundamentals of Rectangular Duals

A graph G is atriplet (V,E, ) consisting of a set V of vertices and a set E of edges with
the relation e that every edge associates to a pair of vertices [68]. A graph is planar if
it can be drawn in the Euclidean plane without crossing its edges except endpoints. A
plane graph refers to a fixed planar embedding with no edge crossings. A plane graph
is called a plane triangulated graph (PTG) if it has triangular faces. The exterior face
may not be triangular in a PTG. In case, the exterior face is triangular, then the PTG
is called plane triangulation. In this thesis, we consider PTGs with interior triangular
faces only. An extended PTG (EPTG) can be obtained by adding edges between the
vertices on the exterior and a vertex in the exterior face of the PTG.

A generic rectangular partition or simply a rectangular partition is a partition of
arectangle into n— rectangles provided that no four of them meet at a point. A generic
rectangular dual R of a plane graph G is a partition of a rectangle into n— rectangles
such that (i) no four of them meet at a point, (ii) rectangles in R are mapped to vertices
of G and (iii) two rectangles in R share a common boundary segment if and only if the
corresponding vertices are adjacent in G. The point where three or more rectangles
of a rectangular dual meet is called a joint. It is known that a rectangular dual has
3-joints and 4-joints only where 4-joints are regarded as a limiting case of 3-joints
[52]. The term ‘generic rectangular dual’ was introduced by Reading [50] because of
not allowing 4-joints in the rectangular dual. In fact, a quadrangle region can always
be partitioned into two triangular regions. In such cases, some extra adjacencies allow
unrelated components in the given graph to connect, but these connections are not used
for interconnection. Hence abiding by common design practice, we consider generic
rectangular duals and simply call a generic rectangular dual by a rectangular dual in
this thesis.

Two rectangular partitions with n-interior rectangles are strongly equivalent if the
partitions contain (i) the same adjacency relations among rectangles and (ii) these
adjacency relations have the same orientation (vertical or horizontal).
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Two well-known classes of rectangular duals are slicible and area-universal rect-
angular duals. A rectangular dual is slicible if it can be recursively subdivided by
axis-aligned line segments. Such rectangular duals are also known as guillotine par-
titions or floorplans. If a graph admits a slicible rectangular dual, then the graph is
called a sliceable graph. Rectangular duals which are not sliceable are called nonsli-
cible rectangular duals. The set of all slicible and nonslicible rectangular duals are
mosaic rectangular duals. Fig. 1.3 depicts slicible and nonslicible rectangular duals.
A rectangular dual is area-universal [22] if any assignment of areas to its rectangles
can be realized by a combinatorially equivalent rectangular dual. If there associate
areas to each of its rectangles, then the rectangular dual is known as a rectangular

cartogram.

a b

Figure 1.3: (a) a slicible rectangular dual and (b) a non-slicible rectangular dual

1.4 The State of the Art

The main problem in this thesis is to find the methods of transformations among rect-
angular duals. Before finding these methods of transformations, we first ask for a
rectangular dual of a plane graph. We are also dealing with more demanding class:
area-universal rectangular duals. We seek an important class of RDGs wherein every
RDG can be realized by area-universal rectangular dual upto combinatorial equiva-

lence in polynomial time.
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1.4.1 Characterizations of Rectangular Duals

Rectangular partitions are characterized in term of graphs and in this context, they are
known as rectangular duals of planar graphs. A plane graph is a rectangularly du-
alizable graph (RDG) if its dual can be embedded as a rectangular partition. Every
planar graph can be dualized, but not rectangularly dualized, i.e., the class of RDGs is
quite restrictive [38, 41, 51]. In 1985, Kozminski and Kinnen [38] derived a necessary
and sufficient condition for a plane triangulated graph to be an RDG. In 1988, Lai and
Leinward [41] showed that solving the rectangular dualization problem of an RDG is
equivalent to a matching problem of a bipartite graph derived from the given graph.
This theory relies on the assigned regions to the vertices of a plane graph. But this the-
ory is not easy to implement, i.e., how can we check the assignments of regions to the
vertices in an arbitrary given plane graph? In fact, this theory is not implementable
until a method for checking assignments of regions to the vertices of an EPTG is
known. Rinsma [51] showed through a counter example that it is not always possible
for a vertex-weighted outer planar graph having 4 vertices of degree 2 to be an RDG.
Besides this property, there are infinite outer planar graphs that are not rectangularly
dualized. In fact, an outer planar graph having more than four critical shortcuts can not
be rectangularly dualized. For practical reasons, outer planar graphs are not prefer-
able for VLSI circuit’s design and architectural complex buildings, i.e., the theory of
rectangular dualizable outer planar graphs is limited to architectural small buildings
only.

There are some interesting results about slicible rectangular duals, however slici-
ble rectangular duals are not still fully characterized. The result given by Yeap and
Sarrafzadeh [74] in 1995 is that all RDGs independent of a separating 4-cycle are
always slicible. Then the result was modified to some extent by Dasgupta and Sur-
Kolay [18]. They showed that if all 4-separating cycles are maximal in an RDG, then
it is slicible. However, Mumford [43] found a critical flaw that invalidates these re-
sults. Recently, Kusters and Speckmann [39] introduced a recursively defined class
of graphs, so-called rotating pyramids, which contain exactly one separating 4-cycle.
It was conjectured that configurations of rotating pyramids can be determined only
if a plane graph is slicible and verified the conjecture for the plane graphs that con-
tain exactly one separating 4-cycle. The non-slicible graphs in this class are exactly
the graphs that reduce to rotating windmills: rotating pyramids with a specific corner

assignment. They proved that rotating windmills are not slicible and argued that all



1.4. The State of the Art 7

other graphs with exactly one separating 4-cycle are slicible.

1.4.2 Constructive Algorithms for Rectangular Duals

Implementing the theory of rectangular duals, a series of papers provided constructive
algorithms.

Kozminski and Kinnen [36] implemented the rectangular dualization theory in
quadratic time. Then making use of rectangular dualization theory, Bhasker and Sa-
hani [8] provided a faster algorithm to construct rectangular duals of planar graphs
and improved time complexity from quadratic to linear. Using regular edge labelings,
a simpler construction method of rectangular duals was given by He [28] and the ex-
tension of regular edge labeling for 4-connected planar graphs was given by Kant and
He [31].

Rectangular duals have been studied extensively by the VLSI community. Slicible
layouts more easily facilitate certain steps in the layout process [47]. For instance,
the problem of minimizing the perimeter or area of modules in a rectangular layout
according to a given measure can be solved in polynomial time for sliceable layouts,
but is NP-complete in general [58].

Slicible rectangular duals are studied without using graph notion and such rect-
angular duals are known as guillotine partitions or guillotine layouts. In this context,
the notion of equivalence is different as in case of a dual graph. In fact, two guillo-
tine partitions are equivalent if they induce the same structure tree [62]. Yao et al.
[72] showed that the exact number of guillotine partitions is the n™ Schioder number.
Ackerman et al. [3] found the asymptotic number of guillotine partitions in higher
dimensions.

The class of RDGs in which no RDG has any slicible realization is known as the
class of inherently non-slicible graphs [59, 60, 61]. Dasgupta et al. [17] searched a
method by which a rectangular dual with minimum number of non-slice cores can be
constructed from a given RDG.

1.4.3 Adjacency Preserving Transformations of Rectangular Du-
als
In general, an RDG may admit a lot of rectangular duals. Rectangular duals of a given

RDG thus generated are adjacency preserving. Adjacency preserving transformations

of rectangular duals have been studied using graph notion [37, 40, 64]. By these
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transformations, a number of topologically distinct rectangular duals of a given RDG
can be generated. Such transformations generate different regular edge labelings of an
extended RDG representing a given rectangular dual. A rectangular dual R naturally
induces a labeling of its extended dual graph E(G). If two rectangles of R share a
boundary vertical segment, then blue color is assigned to the corresponding edge in
E(G) and is directed from left to right otherwise if they share a horizontal segment,
red color is assigned to the corresponding edge in E(G) and is directed from bottom
to top. Then the orientations of all edges incident to some vertex v; of an RDG G is
a clockwise sequence of these edges composed of four subsequences: vertical edges
directed into v;, followed by horizontal edges directed into v; and then vertical and
horizontal from v;. Such labeling is called regular edge labeling. Corresponding to a
distinct regular edge labeling of an RDG, there is a topologically distinct rectangular
dual of the RDG. Any arbitrary regular edge labeling of an RDG may not guarantee to
admit a rectangular dual. More precisely, an RDG, in general, admits a lot of regular
edge labelings. In 1997, Kant and He [31] presented an algorithm that produces a
regular edge labeling obtained from assigning the directions of the edges of an RDG.
Buchin et al. [13] established an upper bound on the number of edge regular labelings
of an RDG. The concept of regular edge labelings is not only important because of
their connection to find topological distinct rectangular partitions but also because of
their connection to 4-connected plane graphs. Biedl et al. [9] showed that 4-connected
plane graphs with at least four vertices on the exterior face can be extended to an
irreducible triangulation. Regular edge labelings can then be used to obtain straight-
line drawings of these graphs on a small grid [26]. Fusy [26] showed that there is
a function o : V — Z (the set of integers) such that the regular edge labelings of an
irreducible triangulation G are in bijection with the ¢c-orientations of the angular graph
of G.

Besides the notion of strong equivalence of rectangular partitions, there is also a
notion of weak equivalence, where two rectangular partitions are said to be equivalent
if the incidence structure among rectangles and maximal line segments is the same.
The number of weak equivalence classes can be seen in [2].

The approach considered by Felsner and Zickfeld [24] counts different ways of
orienting the edges of planar graphs. The most general among these orientations is an
o-orientation given by a planar graph G = (V,E) and a function ¢ : V — N where an

orientation of the edges of G is an a-orientation if every vertex v has out-degree o(v).
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They established an upper bound that a planar graph can admit at most O(3.73") a-
orientations, for a given fixed function ¢. Regular edge labelings and ¢-orientations
may not seem apparently related, however Fusy [26] showed that there is a bijection
ap between the regular edge labelings of an irreducible triangulation G and the op-
orientations of the angular graph of G (the angular graph of G is obtained by adding
a vertex in every interior region of G and is connected to the three vertices of that
region, then removes all original edges). There are 3n — 6 vertices in the angular
graph, implementation of the general bound on «-orientations only gives a bound
of O(51.90") on the number of regular edge labelings which is far from the bound
acheived in [13].

Another orientation of a connected plane graph G is bipolar orientation. This is
an acyclic orientation of the edges of G with the property that there are exactly two
vertices one with no incoming edges called the source and other with no outgoing
edges called the sink. Felsner and Zickfeld [24] found an upper bound on the number
of bipolar orientations that any connected planar graph has at most O(3.97") bipolar
orientations, while also showing that there exists planar graphs with (2.91") bipolar
orientations. Note that a regular edge labeling consists of two disjoint bipolar orien-
tations (one on the red edges and one on the blue edges), one might expect that the
number of regular edge labelings is related to the number of bipolar orientations. In-
deed, any regular edge labeling can be turned into a bipolar orientation by adding a
source and a sink vertex and connecting the new source to the red and blue sources
and connecting the red and blue sinks to the new sink. However, in this way many
regular edge labelings can be mapped to the same bipolar orientation, as some regu-
lar edge labelings differ only in edge colors. Conversely, although Kant and He [31]
developed an algorithm that produces a regular edge labeling from the directions of
the edges, not every bipolar orientation can be turned into a regular edge labeling this
way. The reason for this is that bipolar orientations only require each (non-source
and non-sink) vertex to have an in-and out-degree of at least one, while regular edge
labelings require an in- and out-degree of at least two, one blue and one red.

There is also a connection between Bipolar orientations and ¢-orientations. Specif-
ically, Rosenstiehl [53] showed that there is a bijection between bipolar orientations of
a graph G and 2-orientations (a-orientations where every vertex has out-degree 2) of
the angular graph of G. As this angular graph is always a quadrangulation, Felsner and
Zickfeld [24] proved an upper bound of ©(1.91") and a lower bound of ©(1.53") on
the maximum number of 2-orientations that a quadrangulation can have. Although,
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there exists a bijection between 2-orientations and bipolar orientations, the bounds
differ because the number of vertices differs.

There also exist studied many other interesting substructures in planar graphs.
Aichholzer et al. [4] listed the known upper bounds for various subgraphs contained
in a triangulation: perfect matchings, spanning trees, Hamiltonian cycles, connected
graphs etc. Recently, Buchin et al. [12] improved several of these bounds. Some of
the techniques used to count these substructures can be helpful to count regular edge

labelings.

1.4.4 Rectangulations

Counting of topological distinct rectangular partitions has been a major concern in
combinatorics. Recently, trend of finding all partitions of a rectangle into a set of finite
number of rectangles without considering prior adjacency relations of rectangles has
been focused widely. In fact, these methods do not enumerate all rectangular partitions
for a given adjacency list (i.e., for an RDG). This enumeration results into a large
solution space. Then it is computationally expensive to pick a desirable solution from
such a large solution space. Also, these approaches are restricted to blocks-packing in
the minimal rectangular area only. From the context of practicality of these solutions,
the other major concerns such as interconnection wire-lengths, aspect ratios etc. are
lagged behind.

Earlier, Bloch and Krishnamurti [11] gave two algorithms that counts the number
of rectangular partitions. These algorithms have no proofs of the correctness.

There exist special classes of rectangulations which are all based on Avis and
Fukuda’s reverse search method [7]. Specifically, the CAT (constant amortized time)
algorithm described by Nakano [45] for generic rectangulations which does not pro-
duce a Gray code [54]. This algorithm further has been adapted by Takagi and Nakano
[63] that generates generic rectangulations producing bounds on the number of rect-
angles that do not touch the outer face. Yoshii et al. [76] described a Gray code for
diagonal rectangulations that is based on a generating tree. This Gray code requires
at most 3 edges of the rectangulation in each step. Consequently, none of the listings
produced by these earlier algorithms corresponds to a walk along the skeleton of the
underlying polytope.

There exists a lot of work based on combinatorial properties of rectangulations.
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Yao et al. [73] showed that there is one-to-one correspondence between diagonal rect-
angulations and the Baxter numbers and that guillotine diagonal rectangulations have
one-to-one corresponds with the Schroder numbers. Ackerman [2] also established
a bijection between diagonal rectangulations and Baxter permutations, which also
yields a bijection between guillotine diagonal rectangulations and separable permu-
tations. Shen and Chu [57] found asymptotic estimates for these two rectangulation
classes. Moreover, He [27] gave an optimal encoding on diagonal rectangulations
having n rectangles using 3n — 3 bits only.

The term ‘generic rectangulation’ was introduced by Reading [50], who showed
a bijection between generic rectangulations and 2-clumped permutations and showed
that these permutations are representatives of equivalence classes of a lattice congru-
ence of the weak order on the symmetric group. Earlier, generic rectangulations had
been studied under the name ‘rectangular drawings’ by Amano et al. [6] and by Inoue
et al. [6, 25], who gave recursion formulas and asymptotic bounds for finding number
of the rectangulations. As a more recent result, more general classes of rectangulations
were given by Conant and Michaels [16].

Ackerman et al. [1] considered the setting by letting a set of n points in general
position in a rectangle are given, and the goal is to partition the rectangle into smaller
rectangles by axis-aligned n walls with the property that different walls passes through
different points of the given set. They proved that for every set of points that forms
a separable permutation in the plane, the number of possible rectangulations is the
(n+ 1)st Baxter number, and for every point set the number of possible guillotine
rectangulations is the n'™ Schroder number. They also described an enumerating and

generation procedure based on simple flips and T-flips

using reverse search, which was

Recently, Shekhawat [56] described an

ectangular partitions with four rectangles

later improved by Yamanaka et al. [70, 71].

- —

algorithm that computes a specific class of

on the exterior.

1.4.5 Rectangular Duals With Area-Universality Characteristic

A more demanding property of rectangular duals is area-universality. A series of pa-
pers studies area-universal rectangular duals in the context of rectangular cartograms
where geographic regions are represented by rectangles. The position and adjacency
relations of these rectangles are chosen to suggest their geographic locations and their

areas correspond to the numeric values that the cartogram communicates. Kreveld
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and Speckmann [65] provided the first algorithm that compute rectangular cartograms.
Eppstein et al. [22] presented a numerical algorithm for computing area-universal rect-
angular duals that approximates the correct areas assigned to its rectangles. A slicible
RDG can be realized by a combinatorially equivalent rectangular dual with exactly the
specified area assignment. A recent survey on various rectangular cartogram models
can be seen in [46].

Not every RDG can be realized by an area-universal rectangular dual [51, 22].
Rinsma [51] described a vertex-weighted outer planar G (area is assigned to each of
its vertices) such that no rectangular dual can be realized for G having these weights as
rectangles’ areas. Thus it is interesting to know when a rectangularly dualizable graph
can be realized by an area-universal rectangular dual. Recently, Eppstein et al. [22]
derived a necessary and sufficient condition for a rectangular dual to be area-universal:
a rectangular dual is area-universal if and only if it is one sided. In general, the al-
gorithm described by Eppstein et al. [22] for the construction of an area-universal
rectangular dual for an RDG G (if it admits) is not fully polynomial. In fact, the com-
putational complexity of this algorithm is O(20*)z0()) where K is the maximum
number of 4 degree vertices in any minimal separation component. For instance, if K
is fixed, it runs in polynomial time but in general, it runs in exponential time.

Several heuristic attempts for constructing area-universal rectangular duals can be
seen in [69, 66]. The area-universal convex polygonal drawings for biconnected outer
planar graphs are given in [14].

Recently, it has been shown that a planar graph G is area-universal if for any area
assignment to its inner regions, a straight line drawing of G can be realized [33, 35] and
raphs can be seen in [10]

the area-universality characteristics for st

ranhs of such o 1 n
b whnd o il has
r

g .
The area-universality concept is not limited to rectangular duals. It is also extended
to rectilinear duals [32, 5]. More recently, William et al. [23] proposed methods of
area-universality for large classes of plane quadrangulations. They showed that these
methods work strongly for all plane quadrangulations with up to 13 vertices to prove

their area-universality.

1.4.6 Extension of Rectangular Duals

Several papers consider rectilinear duals: a generalization of rectangular duals which
is composed of simple (axis-aligned) rectilinear polygons instead of rectangles [5, 15,

29,75, 80]. Every PTG admits a rectilinear dual where every polygon has eight sides,
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and eight sides are sometimes necessary [29, 15, 75]. A series of papers studies the
question of how many sides are required to respect all adjacency relations and area
requirements in general. The first bound was given by Berg et al. [20] showing that
forty sides for each polygon is always sufficient. Recently an improved bound was
given by Alam et al. [5] proving that eight sides for each polygon is always sufficient.

1.5 Research Gaps and Results

On the basis of the above literature discussion, we found that there exist gaps in the
study of rectangular duals.

Investigations in the literature shows that rectangular dualization theory is not well
studied. Kozminski and Kinnen [38] found a necessary and sufficient for a separable
connected PTG to be an RDG. We have found a critical flaw that invalidates this nec-
essary and sufficient condition. We present a counter example in Chapter 3 showing
thereby that it is not true for all separable connected PTGs. Another result on the
rectangular dualization theory was given by Lai and Leinward [41]. They derived
a necessary and sufficient condition for an EPTG to be an RDG. This theory is not
implementable until a method for checking assignments of regions to vertices in the
EPTG is known. The work described by Rinsma [51] is given for very restrictive class
of RDGs (outer planar graphs).

This motivated us to reconsider rectangular dualization method and we have de-
rived a necessary and sufficient condition for a given PTG to be an RDG. The result
derived in this thesis is much simpler and very useful in constructing floorplans for
VLSI circuits and architectural buildings.

As we have seen that a series of papers studies transformations methods among
rectangular duals preserving adjacency relations. More precisely, a new topological
distinct rectangular dual is derived from an existing one without disturbing adjacency
relations of component rectangles of the existing one. The result is that both rectangu-
lar duals corresponds to the same RDG. Contrary to this, we have given the different
methods of transformations among rectangular duals where the set of adjacencies of
the new rectangular dual is either subset or superset of the original rectangular dual.
By these methods of transformations, one can introduce new adjacency relations to a
given rectangular dual to generate a new one and remove possible existing adjacency
relations in a rectangular dual until it remains a rectangular dual. We also present

transformations algorithms for their constructions.
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In general, it is well known that the dual solution space of an RDG is very large.
But we have found that there exists a class of RDGs wherein each RDG can be realized
by a unique rectangular dual upto combinatorial equivalence. Such class of RDGs is
still unknown. Keeping this in mind, we derived a necessary and sufficient for a plane
graph to admit a rectangular dual upto combinatorially equivalence. On the basis of a
deep investigation through examples, we have conjectured that no biconnected RDG
admits a unique rectangular dual.

As we have seen that the existing algorithm [22] for constructing area-universal
rectangular dual for a given RDG (if it admits) is, in general, not fully polynomial.
We have derived an important class of RDGs wherein each RDG can be realized by an
area-universal rectangular dual in polynomial time. Although it apparently looks very
simple class, but by a closer examination, it will contribute a lot in the direction of
area-universality characterizations. We have further conjectured that an RDG admits
an area-universal rectangular dual if and only if it can be split as the union of graphs
of this class. This results that every area-universal rectangular dual can be constructed

in polynomial time.

1.6 Outline

A brief description of the structured work in this thesis is given as follows:

In Chapter 2, we provide basic facts about RDGs and rectangular duals that would
be helpful to understand the subsequent chapters of this thesis. We also describe the
methodology, we adapt to derive the results of this thesis.
graph to be an RDG.

In Chapter 4, we introduce a maximal rectangularly dualizable graph (MRDG) and
discuss its properties. In particular, we introduce RDG property preserving operations
and characterization of an RDG in the term of MRDG. We also show that there always
exists an MRDG for a given RDG and provide a polynomial time algorithm for the
construction of the MRDG.

In Chapter 5, we introduce the concept of edge-reduction in an RDG and define
two types of RDGs: an edge-reducible RDGs and irreducible RDGs. Then we derive a
necessary and sufficient condition for an RDG to transform to an edge-reducible RDG.
Next we derive a necessary and sufficient condition for an RDG to be edge-irreducible

RDG. We also present a polynomial time algorithm for their constructions.
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In Chapter 6, we derive a necessary and sufficient condition for an RDG to admit
a unique rectangular dual upto combinatorial equivalence.

In Chapter 7, we derive a class of RDG wherein each RDG can be realized by
an area-universal rectangular dual. We present a polynomial time algorithm for its
construction. We deals with the computational complexity of area-universality. Every
RDG of this class is characterized by the fact that every induced subgraph of each
of RDGs can be realized by an area-universal rectangular dual upto combinatorial
equivalence.

Chapter 8 consists of conclusive summary of the work done in this thesis, several

opens problems and various conjectures related to the work described in this thesis.
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