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Chapter 3

Theory of Rectangularly Dualizable Graphs

In this chapter, we derive a necessary and sufficient condition for a plane graph to be
an RDG. The main result of this chapter is that in the extended Euclidean plane, a

rectangular dual can be realized by a quadrangulation.

3.1 Introduction

The theory of rectangular dualizable graphs plays an important role in floorplanning,
particularly at a large scale such as VLSI circuit design. It provides us information
at early stage to decide whether a given plane graph can be realized by a rectangular
dual.

It is known that every plane graph can be dualized, but not rectangularly dualized
[38, 41, 51]. Kozminski and Kinnen [38] were the first who gave the theory of RDGs.
We found a critical flaw that invalidates the result given by Kozminski and Kinnen

[38] which states as follows:

Theorem 3.1.1. [38, Theorem 5] Let G be a separable connected planar graph with
all triangular faces except the exterior one. Then G is an RDG if and only if

(i.) it has no separating triangle,
(ii.) BNG is a path,

(iii.) each of its maximal blocks corresponding to the endpoints of the BNG contains

at most 2 critical CIPs,
(iv.) no other maximal block contains a critical CIP.

As a counter example, consider the separable connected graph G shown in Fig.

3.1. Although the given graph in Fig. 3.1 satisfies all the conditions given in Theorem
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3.1.1, but it is not an RDG. Using the existing algorithm [8], one can find a rectangular
dual for each of its blocks and then a rectangular dual for G can be constructed by
gluing them in a rectangular area. But it is not possible because of the occurrence
of adjacency of cut vertices v4 and vg. Note that corresponding to a cut vertex, there
always associate a through rectangle [52] in the rectangular dual of G. But in Fig.
3.1, the cut-vertices are adjacent. Hence, it is not possible to maintain rectangular
enclosure while keeping R4 and Rg as through rectangles.

Another issue with this theorem is that its proof is not rigorous, but an outline.
Except this theorem, there is no result to check the existence of a rectangular dual for

separable connected planar graphs.
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Figure 3.1: A counter example that invalidates Theorem 3.1.1.

Rinsma’s work [51] is very restrictive, i.e., it cover the class of rectangular dualiz-
able outer planar graphs only. She didn’t develop any theory, but presented a counter
example showing that it is not always possible to be realized a rectangular dual for a
vertex-weighted outer planar graph having 4 vertices of degree 2. Besides this prop-
erty, there are infinite outer planar graphs that are not rectangularly dualized. In fact,
an outer planar graph having more than four CIPs can not be rectangularly dualized.
This can be contradicted by our proposed Theorem 3.4.2 in Section 3.4. Since the
graph setting of a VLSI system is obviously non-outer planar due to its large size,
this theory can not be preferable for VLSI circuit’s design. The theory of rectangular
dualizable outer planar graphs plays a limited role in building architecture also.

Lai and Leinward [41] derived the following necessary and sufficient condition for
an EPTG to be an RDG:
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Theorem 3.1.2. [41, Theorem 3] An EPTG is an RDG if and only if each of its
triangular region can be assigned to one of its corner vertices such that each vertex v;

has exactly d(v;) — 4 triangular region assigned to it.

Lai and Leinward [41] showed that solving an rectangular dualization problem of
a planar graph is equivalent to a matching problem of a bipartite graph derived from
the given graph. This theory relies on the assigned regions to vertices of a graph.
The result is not implementable until a method for checking assignments of regions to
vertices in an EPTG is known.

The outline of our contribution in this chapter is as follows: Section 3.2 describes
the extended RDG construction process. In Section 3.3, we find stereographic pro-
jection of dual of an RDG in order to extract some result pertaining to the exterior
(unbounded) region of the dual. In Section 3.4, we derive a necessary and sufficient
condition for an EPTG to be an RDG. Finally, we conclude our contribution and dis-
cuss future scope in Section 3.5.

3.2 Extended RDG

In a graph described by a VLSI system, vertices and edges correspond to component
modules and required interconnections respectively. Communication with units out-
side the given system are modeled by edges having one end incident to a vertex at the
infinity (denoted by v, see Fig. 3.2). The vertex v, of an RDG corresponds to the
unbounded region of its rectangular dual.

Furthermore, the dual of an RDG needs to be fitted in a rectangular enclosure while
connecting to the outside world. Vertices that correspond to regions next to the enclo-
sure are called enclosure vertices [40] and those vertices correspond to corner regions
are called corner enclosure vertices. In Fig. 3.2, vertices v7,vg,Vs,Vv4,V3,V2,V] are
enclosure vertices and v7,vs,v3, v are corner enclosure vertices. Since the enclosure
has 4 sides, out of these enclosure vertices, the enclosure corner vertices correspond
to corner rectangles or end rectangles of a rectangular dual where a corner rectangle
shares its two sides to the unbounded (exterior) region and end rectangle shares three
sides to the exterior. Therefore, we need to consider atmost 4 extra edges between the
selected enclosure corner vertices and v... These atmost 4 extra edges are known as
construction edges [41]. A PTG where enclosure vertices are connected to v., together
with 4 additional construction edges is called an EPTG . An EPTG of a rectangular
dual is depicted in Fig. 3.2 by red edges.



30 Chapter 3. Theory of Rectangularly Dualizable Graphs

It is interesting to note that all regions including unbounded region are triangulated
in EPTG so that every region including unbounded region of the dual of an RDG is
quadrangle. This permits the enclosure to be rectangular. A detailed description of
unbounded quadrangle region of the dual can be seen in Section 3.3. Since there is
one to one corresponding between the edges of a plane graph and its dual, there are
multiple edges between an enclosure corner vertex and v... In this thesis, we consider a
simple PTG. However, some minor changes (parallel edges between enclosure corner

vertices and v., only) in the EPTG is done in order to choose four construction edges.
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Figure 3.2: Construction of an extended RDG (red edges) of a rectangular dual (dark
edges).

3.3 Stereographic Projection
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surface of a sphere.

Let D be the rectangular dual graph of an RDG G. Note that a connected plane
graph is a single piece made up of Jordan curves (called edges) joining their ends to
pairs of the specified points (called vertices) in the Euclidean plane. Consider a sphere
S centered at (0,0,1/2) having radius 1/2, and a fixed plane embedding D* of D in
the Euclidean plane passing through z = 0 (xy-plane). Let (0,0,1) be the north pole
N and p be a point of an edge of D*. Draw a line segment joining the points N and
p. Let ¢ be a point where it intersects the surface of S. Thus we see that the point p is
mapped to the point ¢. In this way, the image of each of its points is a curved line on
the surface of S and hence each edge of D* is mapped to a curved line on the surface

of S. This results an embedding of D* on the surface of a sphere.
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Now, it is important to identify why the edges of D* is mapped to the edges on
the surface of §? In fact, a connected graph is carried to a connected graph by a
continuous map. Thus being the mapping continuous, the image of D* is again a
plane graph on the surface of S with its exterior bounded. Note that the unbounded
region is now mapped into a bounded region on S passing through N. This process
is known as stereographic projection and sphere is known as Riemann sphere. But
D* is a rectangular dual graph. Its exterior is a four sided rectangular enclosure. This
results the unbounded region of D* corresponds to a four sided bounded region of
the corresponding plane graph embedded on the surface of S. Consequently, when
we assign horizontal or vertical orientations to the edges of D* to transform into a
rectangular dual, the unbounded region of D* corresponds to an unbounded rectangle
(region) R. passing through co. Thus we see that the exterior of a rectangular dual is
a rectangle R.. passing through co. Note that R.. is not a part of a rectangular dual,
but is a rectangle that shares its two adjacent sides to each of its enclosure corner
rectangles. Recall that a rectangle is a four-sided region with 4 right interior angles
formed by its sides. Although in case of R., these interior angles can be realized to
be 90° by looking at it from a point at o, otherwise we realize every interior angle
to be 270°. The role of the point at « is played by N and hence an alternative way
is to realize right angle between two sides of the four-sided region passing through N
in the stereographic projection of the rectangular dual graph is the angle between the
intersection of their tangents to the sides of this region. This discussion realizes us

that a rectangular dual is quadrangulation of the Euclidean plane.

3.4 RDG Existence Theory
In this section, we derive the necessary and sufficient conditions for PTGs to be RDGs.

Theorem 3.4.1. A necessary and sufficient condition for an EPTG G* to be an RDG
is that it is 4-connected and has atmost 4 critical separating triangles passing through

Voo.

Proof. Necessary Condition. Assume that G* is an RDG. Then it has a rectangular
dual D. Let v; be an arbitrary vertex of G* dual to some interior region R; of D.
Since every region of D is four-sided, atleast 4 regions are required to fully enclose
an interior region of D. This implies that R; is surrounded by atleast 4 regions of D
and hence v; is adjacent to atleast 4 vertices of G*, i. e., d(v;) > 4. Let v, be an
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arbitrary vertex of G* dual to an enclosure (exterior) region R, of D. There arise two
possibilities:

* R, surrounds exactly its two sides with R, if it is an enclosure corner region,
* R, surrounds exactly its one side with R if it is not an enclosure corner region.

In the first case, R surrounds the two sides of R,. There are two edges between v
and v, where v., corresponds to R... The remaining two sides of R, are surrounded by
atleast two interior regions other than R.. This implies that d(v.) > 4. In the second
case, only one side of R, is surrounded by R.. and the remaining sides are surrounded
by atleast three interior regions. This implies that d(v,) > 4. Since v, and v; are
arbitrary vertices of G*, G* is 4-connected. This proves the first condition.
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Figure 3.3: Two possibilities of a critical separating triangle enclosing an enclosure cor-
ner vertex.

As discussed in Secti
of the enclosure corner regions of D and exactly one side to the remaining exterior
regions of D. Let v, be a vertex of G* dual to an enclosure corner region of D. We
have already shown that G* is 4-connected, i.e., d(v.) > 4, Yv. € G*. If d(v.) = 4,
then two adjacent sides of R, are surrounded by R., whereas the remaining two sides
of R, are surrounded by two regions R, and R;,. Clearly, R, and R}, are the enclosure
regions. Since G* is an EPTG, every region of G* is triangular. This implies that R,
and R;, are adjacent. Consequently, there is a separating triangle passing through v
and vertices that are dual to R, and R;,. Clearly, it encloses exactly one vertex v.. This
implies that there is no separating triangle inside this separating triangle and hence it
is a critical separating triangle. This situation is depicted in Fig. 3.3a. If d(v.) > 4,
there are atleast three interior regions that surround R.. Vertices that are dual to these
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interior regions together with v., is a cycle of length atleast 4. Only possibility for
the existence of a critical separating triangle passing through v., and enclosing v, is
depicted in Fig. 3.3b. Now it is evident that there is atmost one critical separating
triangle passing through v.. corresponding to each enclosure corner region. Since a
rectangular graph has atmost four enclosure corner regions, there can be atmost 4
critical separating triangles passing through v... This proves the second condition.

Sufficient Condition. Assume that the given conditions hold. We prove the result
by applying the induction method on the vertices of G*. Recall that an EPTG contains
atleast two vertices. Let n be the number of vertices of G*. If n = 2, then it is a graph
consisting of a single edge and hence it is an RDG. Let us assume that n > 2 and the
result holds for n — 1 vertices, i.e., every (n — 1)-vertex EPTG satisfying the given
conditions is an RDG. In order to complete induction, we need to prove that n-vertex
EPTG H satisfying the given conditions is an RDG. Since there can be atmost four
critical separating triangles in H, there arise two possibilities: (1) there are exactly
three edges between v., and atleast one of the enclosure vertices, (2) there are exactly
two edges between v., and each enclosure corner vertex. Let v; be an enclosure corner
vertex of H and A = {vy,v,...,v, } be the set of vertices adjacent to v;.

Consider the first case, i.e., there exist edges (vi,Ve), (vi,vp), (vi,v4) Where ver-
tices v, and v, are incident to v., as shown in Fig. 3.4a. Construct a new EPTG H,
by deleting v; together with the incident edges and introducing new edges (Ve, V1),
(Vooy v2) ... (Veo, ) (see Fig. 3.4b). We prove that H; satisfies the given conditions
stated in the theorem.

Consider two vertices v, and v, of H such that i # a,b. As H is 4-connected,
by

Menger ’s Theorem 2.1.1
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Y 1 there exist four vertex-disjoint path
vp. Choose each path of the shortest possible length. If none of these paths uses
the edges (vi,vp) and (v;,v,), then the same path would exist in H; with the edge
(Veoy Vk)» (1 < k <'t) substituted in the place of (vg,vi) U (vi,ve) if they occur in the
path. Otherwise suppose that one of the four paths passes through (v;,v,). Being the
shortest possible path, it can not pass through ve, or v, (1 < k <t). Consequently, it
must use the edge (v;,v,). If a path passes through v.., it would pass through v, or
vy, contradicting to the facts that path is the shortest. Thus vertex v., is not used by
any of the four paths. Now by substituting the part (v;,v,) U (v;,v4) of the path in H
by (Vp,Ves) U (Veo, vg) in Hy, we can obtain 4 vertex-disjoint paths in H; also. Then by
Menger’s theorem, H; is 4-connected.

Next we claim that the number of critical separating triangles in H; can not be more
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than the number of critical separating triangles in H. As discussed in the necessary part
that there is atmost one critical separating triangle enclosing an enclosure corner vertex
and H has three enclosure corner vertices, there are atmost three critical separating
triangles in H. Then the only possibility of occurring a separating triangle in Hj is as
follows.

If an enclosure vertex v; is incident to both v, v; where v € A, then there exists a
separating triangle in H passing through v, v, and v;. Similarly, there can be another
separating triangle in H; passing through v;, v, and vy € A. Thus there can be atmost
two newly separating triangles in H;. If there exists a critical separating triangle 7

containing v; in H, then there are three possibilities:
i. there no longer remains 7, in Hj,
ii. T, is contained in one of the new created separating triangles in Hj,
iii. One of the newly created separating triangle is contained in 7.

All these possibilities show that there can not be more than four critical separating
triangles in Hj. This shows that H| has atmost 4 critical separating triangles. Thus, H;
has n — 1 vertices satisfying the given conditions. By induction hypothesis, H; is an
RDG and hence admits a rectangular dual. This rectangular dual can be transformed
to another rectangular dual by adjoining a region R; (corresponding to v;) as shown in

Fig. 3.4c. Then the resultant rectangular dual corresponds to H. Hence H is an RDG.

RFP for H, R,

Remainder of H

Remainder
a of Hy b c

Figure 3.4: (a) Sketch of the graph H when there are three edges between v and enclo-
sure vertex v;, (b) sketch of the graph H; when there are exactly two edges between each
enclosure corner vertex and v.,, and (c) the construction of an rectangular dual for H.

Consider the second case. In this case, H appears as shown in Fig. 3.5a with
atleast four more vertices vi,v,,v3 and v4. Consider the four enclosure corner vertices

V1, v2, v3 and v4 as shown in Fig. 3.5a. Now we show that there is a separating cycle
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C passing through v;, v. and an enclosure vertex v; but not passing through v3 or
v4 such that the removal of vertices of C from H disconnects it into two connected
components, each containing atleast one vertex.

If there is an edge (v1,v3) in H, there is a separating cycle passing through vy, v3
and v.. In this case, H is separated into two parts, one of which contains atleast v
and another contains atleast v4.

If there is no edge (v1,v3) in H. All vertices adjacent to v3 lie on a path y;y; ...y
where y; and y; are the enclosure vertices. Let yx1x; ... v, be a path of the enclosure
vertices starting from y; and ending with v,. Then C =ty y,...yiXx1x2... V2 is a sep-

arating cycle which separates H into two parts, one of which contains atleast v; and
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Figure 3.5: (a) A separating cycle shown by red edges and (b) the appearance of H,,.

Once a separating cycle exists, there also exists the shortest separating cycle Cy =
VeoZ122 - - - ZmZm+1. Lhis situation is depicted in 3.5b. Without loss of generality, sup-
pose C; separates v; and v3. Construct an EPTG H, from the subgraph contained in
the interior of C by adding a vertex v., and edges between v, and enclosure vertices of
this subgraph. The new edges in this construction are (V.,,z1), (V%,22), - .- (Veoy Zmt1)-
Now we show that H, satisfies the given conditions. Only possibility for creating a
separating triangle is a triangle z;zj+1ve for 1 <i < n. If there would exist an edge
(zi,zi+1) in Hy, then it contradicts that C is the shortest separating cycle. Therefore,
any cycle in H,, is of length atleast 4 and consequently, H, is 4-connected and can
not have more than 4 separating triangles. By induction hypothesis, H, is an RDG.
Similarly, we can show that the EPTG H), constructed from the remaining part of H is
an RDG. Then the corresponding rectangular dual can be placed one above the other
and can be merged after applying homeomorphic transformation so as to preserve or-

thogonal directions of the edges such that the resultant floorplan is a rectangular dual
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of H as shown in Fig. 3.6. This completes the induction process and hence completes

the proof. Il
-
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Figure 3.6: (a) Merging two RDGs of H,, and H,, into an RDG for H

Now we turn our attention to derive a necessary and sufficient condition for a PTG
to be an RDG. A plane graph can be either nonseparable graph (block) or a separable
connected graph. A disconnected graph is also a separable graph. However, we are
not considering this case since a rectangular dual or floorplan are concerned with

connectivity.

Theorem 3.4.2. A necessary and sufficient condition for a nonseparable PTG G to be

an RDG is that it is 4-connected and has atmost 4 critical shortcuts.

Proof. Necessary Condition. Assume that G is an RDG. Then it admits a rectangular
dual R. Let v; be an interior vertex of G dual to a rectangle R; of R. Recall that there
require atleast 4 rectangles to surround a rectangle in a rectangular dual. Therefore,
there exist atleast 4 rectangies in R enclosing R;. Then v; is adjacent to atleast 4
vertices. Since v; is an arbitrary interior vertex of G, G is 4-connected.

To the contrary, if there exist 5 critical shortcuts in G, the corresponding EPTG G*
would contain 5 critical separating triangles, each passing through exactly one critical
shortcut. This is a contradiction to Theorem 3.4.1. This shows that G can not have
more than 4 critical shortcuts.

Sufficient Condition. Assume that the given conditions hold. Choose 4 enclosure
corner vertices, each on the path joining the endpoints of the critical shortcut lying on
its outermost cycle but not as the endpoints of these paths. If the number of critical
shortcuts are less than 4, choose the remaining enclosure corner vertices randomly
among enclosure vertices. Join each of these 4 vertices to v by two parallel edges
and join each of the remaining n — 4 enclosure vertices to v, by a single edge. This
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constructs an EPTG G* satisfying all the conditions given in Theorem 3.4.1. Hence G
is an RDG. This completes the proof. U

Theorem 3.4.3. A necessary and sufficient condition for a separable connected PTG
G to be an RDG is that:

i. each of its blocks is 4-connected,
ii. BNG is a path,
iii. both endpoints of an exterior edge of each of its blocks are not cut vertices,

iv. each maximal blocks corresponding to the endpoints of the BNG contains at
most 2 critical shortcuts, not passing through cut vertices,

v. other remaining maximal blocks do not contain a critical shortcut, not passing

through a cut vertex.

Proof. Necessary Condition. Assume that G is an RDG. The proof of the first con-
dition is a direct consequence followed by Theorem 3.4.1. The BNG of G has the

following possibilities:
i. it can be a path,
ii. it can be a cycle of length > 3,
iii. it can be a tree.

To the contrary, suppose that the BNG is a cycle of length atleast 3. This implies that
atleast three blocks share some cut vertex v. of G. The construction of an EPTG G*
create more than 4 critical separating triangles, each passing through v., v, and a
vertex adjacent to v, that belongs to the outermost cycle of each block. This situation
can be depicted in Fig. 3.7a. Then by Theorem 3.4.1, G no longer is an RDG. A
similar argument can be applied when it is a tree. This situation can be depicted in
Fig. 3.8a. Thus, the BNG is left with one possibility, i.e., the BNG is a path.

To the contrary, suppose that both the endpoints of an exterior edge (v;,v;) of a
block are cut vertices, then there are more than 4 critical separating triangles passing
through v;, vj and ve.. in G*, which is a contradiction to Theorem 3.4.1. Hence both
the endpoints of an exterior edge of a block can not be cut vertices simultaneously.
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Figure 3.7: (a) A separable connected graph constituted by three blocks A, B and C, and
(b) its BNG. Here only the outermost cycles of the blocks are shown.

Let M; be a maximal block corresponding to the endpoints of the BNG. Since
G is an RDG, each of its block is an RDG. Suppose that M; is an RDG. Then it
admits a rectangular dual F;. It can be easily noted that out of 4 corner rectangular
regions of F;, only two can be the corner rectangular regions of F. Then there can
be atmost two critical separating triangles in G* and hence there can be atmost two
critical shortcuts in each M;. This implies that the fourth condition holds. Also, any
other maximal block of the BNG can not share critical separating triangles since any
corner rectangular region in R is a rectangular dual. This implies that no other maximal
block has a critical separating triangle in G* and hence there is no critical shortcut in
the remaining maximal blocks.

Sufficient Condition. Assume that the given conditions hold. The first condition
shows that G* is 4-connected. The remaining conditions show that there are atmost
four critical separating triangles in G*. By Theorem 3.4.1, G is an RDG. Hence the
proof. 0
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Figure 3.8: A separable connected graph constituted by three blocks A, B, C and D, and
(b) its BNG. Here only the outermost cycles of the blocks are shown.
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3.5 Concluding Remarks

We showed that a rectangular dual can be realized by a quadrangulation in the ex-
tended Euclidean plane. We found a critical flaw that invalidates the result given by
Kozminski and Kinnen [38] and renewed existing graph theoretic characterizations of
rectangular duals. A new RDG theory we developed, is easily implementable and it
simplifies the floorplan construction process of the VLSI circuits as well as architec-
tural buildings.

In future, it would be interesting to transform a non-RDG into an RDG by remov-
ing those edges which violates the RDG property and then adding new edges (main-
taining RDG property) in such a way that the distances of endpoints of the deleted
edges can be minimized. This idea would be useful in reducing the interconnection
wire-lengths as well as in complex buildings, it gives the shortest possible paths for

those pairs of rooms which are impossible to directly connect.
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