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Chapter 4

Maximal Rectangularly Dualizable Graphs

In this chapter, for a given RDG, we ask for a new RDG by introducing new adjacen-
cies while preserving all the existing adjacencies among the vertices of the given RDG
until no more adjacency can be added to the vertices of the RDG. We first prove that
such transformation is always possible and then present an algorithm that constructs
the new RDG. As an RDG admits a rectangular dual, therefore transforming an RDG
to another RDG is equivalent to finding a transformation between the corresponding

rectangular duals.

4.1 Introduction

For a given n, the counting of rectangular duals having n-rectangles has been a funda-
mental theme in combinatorial geometry [2, 27, 50, 56, 70, 72]. In context of graphs,
a series of papers studies transformations of rectangular duals [37, 40, 64] and the
goal is to find a topologically distinct rectangular dual of the same RDG. In other
words, transformed rectangular dual has the same adjacencies among rectangles, but
directions of adjacencies among rectangles are not the same. This means that these
transformations preserve adjacencies among rectangles. However, Wang et al. [67]
studied transformation between rectangular duals by adding (removing) rectangles to
(from) a rectangular dual.

Contrary to the existing work for transformation between rectangular duals, in
this chapter, we study a method of transformation between rectangular duals with the
property that the set of adjacencies of rectangles of transformed rectangular dual is the
superset of adjacencies of rectangles of the input rectangular dual from graph notion.
In fact, we are here looking for the answer of a major question: can any two given non-

adjacent rectangles of a rectangular dual be made adjacent provided adjacencies of the
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remaining rectangles of the rectangular dual do not get disturbed and the resultant dual
is a rectangular dual? To do this, we define a class of maximal RDGs (MRDGs) in this
chapter and first develop theory on graphs to construct MRDGs from RDGs. Then we
present a polynomial time algorithms for the construction of MRDGs

The class of MRDGs can play an important role in floorplanning because they
are rich in adjacency relations. As an application, their respective rectangular duals
supply maximal adjacencies of its rectangles. Therefore, it is interesting to construct
an MRDG of a given RDG. Intuitively speaking, an MRDG is an RDG having max-
imal adjacencies of its vertices. In fact, an MRDG with n vertices has 2n — 2 or
3n —7 edges. We show that there always exists an MRDG for a given RDG. Then we
present a polynomial time algorithm that constructs the MRDG for the given RDG by
adding new edges among its non-adjacent vertices. The number of such new edges is
2n—2 —k or 3n — 7 — k where k is the number of edges in the RDG. It would be more
interesting if the given RDG is a path graph ( the one which has minimal adjacencies)
because then it requires the new edges to be added in bulk. Equivalently the new edges
in bulk can be added to a Hamiltonian path of the given RDG to realize a new desired
form of the RDG. In this way, we can just add those edges of an RDG that are missing
in the RDG and we are done. As an RDG admits a rectangular dual, therefore trans-
forming an RDG to another RDG is equivalent to finding a transformation between
the corresponding rectangular duals.

The chapter is structured as follows. In Section 4.2, we introduce an MRDG and
show that the number of edges in an MRDG is 2n — 2 or 3n — 7 where n represents
the number of vertices. MRDGs with 2n — 2 edges are wheel graphs whereas MRDGs
with 3n — 7 edges are obtained from the class of maximal plane graphs with the prop-
erty that they do not have any separating triangle in their interiors by deleting one of
their exterior edges. In Section 4.3, we prove that it is always possible to construct an
MRDG for a given RDG. In Section 4.4, we present an algorithm for the construction
of an MRDG from the given RDG. Finally, we conclude our contribution in Section
4.5.

4.2 Properties of Maximal RDGs

In this section, we introduce an MRDG and drive some important properties of the
MRDG.
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Definition 4.2.1. An RDG G = (V,E) is an MRDG if there does not exist an RDG
G' = (V,E’) such that E G E'. Intuitively, an RDG is an MRDG if adding a new edge
to it violates the RDG properties.

For instance, the graph in Fig. 4.1a is an MRDG since adding a new edge to
it, its exterior becomes triangular and hence one of rectangles of the corresponding
rectangular dual (see 4.1a) transforms to a non-rectangle. Note that R; is dualized to

V.

Theorem 4.2.1. The number of edges in an MRDG is 2n — 2 or 3n — 7 where n denotes
the number of vertices in the MRDG.

Proof. Let M be an MRDG with n vertices. If d(v;) = n— 1 for some vertex v; € M,
then clearly it is a wheel graph W,,. W,, is independent of separating triangle as well as
CIPs. By Theorem 2.2.1, it is an RDG. Note that adding a new edge to W,, generates
a separating triangle passing through its central vertex and two of its exterior vertices.
This implies that it is a maximal RDG. Now by the degree sum formula, the sum of
degrees of all vertices of a graph is twice of the number of its edges. This implies that
3(n—1)+ (n— 1) =2 (the number of edges in W,,) and hence the number of edges in
W, is 2n—2.

We have shown that W, is an MRDG with 2n — 2 edges and in this case, the number
of edges in M is 2n — 2.

Now suppose that d(v;) <n—1, Vv; € M. Consider a maximal plane graph G
with n vertices such that there does not exist any separating triangle in its interior. We
claim that M = G — (v;,v;) for some exterior edge (v;,v;) of G. In order to claim this,
we need to show that G — (v;,v;) is an MRDG with 3n — 7 edges.

By our assumption on G, it is evident that G — (v;,v;) has no separating triangle.
Suppose that G — (v;,v;) has a CIP. Then there is a shortcut (vy,v) in G — (v;,v;). This
implies that G has a separating triangle v;v;v, in its interior where v, is its exterior
vertex. This is a contradiction to our assumption that G has no separating triangle in
its interior. Thus we see that G — (v;,v;) has no CIP. Thus By Theorem 2.2.1, it is an
RDG.

The number of edges in a maximal plane graph is 3n — 6. This implies that
G — (vi,vj) has 3n — 7 edges. Note that adding a new edge to G — (v;,v;), creates
a separating triangle in G — (v;,v;) and hence it is an MRDG.

Thus we see that G — (v;,v;) is an RDG with 3n — 7 edges and hence M is an
MRDG with 3n — 7 edges.
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Figure 4.1: (a) An MRDG and (b) corresponding rectangular dual

Theorem 4.2.2. The number of vertices on the outermost cycle of an MRDG with n

vertices is 4 orn — 1.

Proof. Let M be an MRDG with n vertices. If M is a wheel graph W,,, then it is clear
that it has n — 1 vertices on its exterior. Otherwise it is obtained from a maximal plane
graph that has no separating triangle in its interior by deleting one of its exterior edges.
But a maximal plane graph has 3 vertices on its exterior. Then it is evident that M has

4 vertices on its exterior. O

4.3 MRDG Construction

In this section, we prove that it is always possible to construct an MRDG M = (V, E)
for a given RDG G = (V,E;) such that E; G E.

Before proceeding to the main result, we first need to prove some lemmas. Denote
IN(vi) NN(v;)| by s for any two adjacent vertices v; and v; of an RDG G.

Lemma 4.3.1. If s =0, then (v;,v;) is an exterior edge of G.
Proof. Fors =0, (v;,v;) is a cut-edge (bridge) and hence is an exterior edge. U
Lemma 4.3.2. For all adjacent vertices v; and v;, we have s < 2.

Proof. To the contrary, suppose that s = 3. Consider a plane embedding G, of G.

Since, s =3, N(v;) and N(v;) must have 3 common vertices vk, v; and v,,, which results
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in 3 cycles v;vjvg, vivjv; and vjvjv,, in G,. Now (v;,v;) is a common edge in these 3
cycles. This implies that atleast 2 of 3 cycles would lie on the same side of (v;,v;) in
G.. This means that one of the cycles encloses some vertex v; of the other cycle and
hence is not a face in G,. Therefore its removal results G, in a disconnected graph and
hence it is a separating triangle in G, which is a contradiction to Theorems 2.2.1 and

2.2.2 since G is an RDG. Similarly, if s > 3, we arrive at the contradiction. O]
Lemma 4.3.3. (v;,v;) is an interior edge of G if and only if s = 2.

Proof. First suppose that s = 2. We need to show that (v;,v;) is an interior edge in
G. To the contrary, suppose that (v;,v;) is an exterior edge of G. Let N(v;) "\N(v;) =
{vi,vi}. Since (v;,v;) is an exterior edge, there exist two triangles v;v vy, v;v;v; in
the plane embedding of G such that both lie on the same side of (v;,v;). This implies
that one of them contains the other and hence is not a region (face) and is a separating
triangle. This is a contradiction to Theorems 2.2.1 and 2.2.2 since G is an RDG.
Conversely, suppose that (v;,v;) is an interior edge in G. Since G is an RDG, each
of its interior regions is triangular. This implies that there exist two triangles v;v;v; and
viv;jvy in the plane embedding of G. Hence N(v;) and N(v;) have atleast two vertices
in common, i.e., s > 2. By Lemma 4.3.2, we have s < 2. Hence s = 2. O

Corollary 4.3.1. If s = 1, then (v;,v;) is an exterior edge of G.
Proof. 1t is the direct consequence of Lemmas 4.3.1 and 4.3.3. 0J

Lemma 4.3.4. It is always possible to construct a nonseparable (biconnected) RDG

from a separable connected RDG by adding edges to it.

Proof. Let G; = (V,E;) be a separable connected RDG such that it has atleast one
bridge (cut-edge). Suppose that L; = {(v;,v;) € E; | |[N(vi)NN(v;)| =0} and L, =
{(va,vp) € E1 | |N(va) NN(vp)| = 1}. Consider two adjacent edges, (v;,v;) from L;
and (v;,vx) from L, such that |[N(v;) "N (vk)| = 1. Such selection is always possible
since both edges belongs to different blocks and N(v;) NN (vx) = {v,}.

Construct a graph G, = (V,E,) where E; = Ey U {(vi,v)}. To prove G, is an
RDG, we prove the following:

* there does not exist a separating triangle passing through (v;,vx) in G,

There would be a separating triangle passing through (v;,v¢) in G if [N(v;) N
N(vk)| =2 in G,. In this case, vj,v, € N(v;) NN (v) such that v, lies inside the
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triangle passing through (v;, vg). But (v;,v;) € Ly and (v, vk) € L,. Therefore by
Lemma 4.3.1 and Corollary 4.3.1, both (v;,v;) and (v}, i) are the exterior edges
and v; and vy belongs to different blocks in G1. Hence in G, [N(v;) NN (v¢)| =1
is the only possibility.

¢ the number of critical CIPs in G, can not exceed the number of critical CIPs in
Gy

In G, a critical CIP can only pass through (v;, i), which already passes through
(vi,vj) and (vj,v) in Gi. But v; is a cut vertex which is a contradiction to the
fact that a critical CIP never passes through a cut vertex.

Since G| is an RDG, each of its region is triangular. The new edge (v;, vy) is added
with the property that [N(v;) "N (v;)| = 1. By Corollary 4.3.1, (v;,v¢) is exterior edge
in G,. Therefore, the new region v;v;vy is triangular in G,. By Theorem 2.2.2, G, is
an RDG.

After adding (v;,vx) to Gy, the edge (v;,v;) from L; belongs to L, since |N(v;) N
N(vj)| =1 (IN(vi)NN(v;)| = {vk}). Therefore a recursive process shows that at the
iteration until L; is empty, Gr+1 = (V,Er+1) becomes a separable connected RDG
with cut-vertices (vertex), but no cut edge where Ej. | = E; U (v4,V,) such that (v, vp)
is from L and (vp,v,) is from L, with the property |N(v,) N\N(v.)| = 1. In this way, we
can construct a separable connected RDG having cut-vertices of the given separable
connected RDG only.

It now remains to show that it is always possible to construct a nonseparable (bi-
connected) RDG of the given separable connected RDG G| = (V,E;) having cut-
vertices but no cut-edges. Let v; be its cut-vertex. Since it has no cut-edge, d(v;) > 4.
A plane embedding of G with exterior cycles C; and C; sharing a cut vertex v; is
shown in Fig. 4.2a. It is evident from this embedding that there is no separating tri-
angle passing through the new added edges (red edges) in the resultant graph shown
in Fig. 4.2b. Since v, is a cut-vertex, none of the vertices vy, v2, v3 and v4 in Fig. 4.2,
which are adjacent to v;, can be the endpoints of a shortcut in G;. This implies that the
number of CIPs in the resultant graph (shown in Fig. 4.2b) can not exceed the number

of critical CIPs in G. This proves the required result. U
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Figure 4.2: Constructing a nonseparable RDG of a separable connected RDG G; with a
cut-vertex v, shared by its two components C; and C.

Remark 4.3.1. It is not straight forward to add edges to a separable connected RDG
provided RDG properties do not violate. Randomly adding new edges to an RDG may
disturb the RDG properties, i.e., can produce either a CIP or a separating triangle in
the resultant graph. In the lie of this, we have shown the procedure of adding edges
according to Lemma 4.3.4. For instance, consider a separable connected RDG shown
in Fig. 4.3a. It is transformed to a nonseparable graph by adding new edges (red
edges) randomly. As a result, the nonseparable graph thus obtained is not an RDG. In
fact, it contains a separating triangle v4v5v7. On the other hand, red edges are added
to the same graph by using Lemma 4.3.4 in order to construct a nonseparable RDG
shown in Fig. 4.3b. Thus, Lemma 4.3.4 is helpful in introducing pattern of new edges
to be added to a separable connected RDG to be a nonseparable RDG.
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Figure 4.3: (a) A random addition of new edges (red edges) to a separable connected
RDG destroy the RDG property because of the presence of a separating triangle v4vsv7vvy
in the resultant graph (b) while addition of new edges (red edges) using Lemma 4.3.4 do
not destroy RDG property ( neither separating triangle nor any CIP in the resultant graph).

Lemma 4.3.5. It is always possible to construct an MRDG from a biconnected RDG
by adding edges to it.

Proof. Let G| = (V,Ej) be a biconnected RDG. If |E|| = 3|V| —7 or G| = W, then
G is itself an MRDG and the proof is obvious.
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Suppose that |[Ej| < (3|[V|—7) and G| # W,,. Assume that L, = {(v;,v;) € E| |
IN(vi)NN(v;)| = 1}. By Lemma 4.3.1, L, is a list of all exterior edges of Gj.

We now prove that there exists atleast a pair of adjacent edges (v;,v;) and (v;,vk)
in L such that |N(v;) NN (vk)| = 1. If such pair does not exist, then [N (v,) NN (vc)| =2
for each pair (vq4,vp) and (vp,v.) in L. In fact, since G is a biconnected graph, by
Lemma 4.3.2, we have |[N(vqs) N\N(vc)| € {1,2}. Let viv,...v), be the outermost cycle
of Gi. Note that all edges (vi,v2), (v2,v3) ... (vp—1,vp) and (v,,v1) are exterior and
hence by Lemma 4.3.2, all these edges belongs to L. Now if we choose (v1,v;) and
(v2,v3), then [N(vi) NN (v3)| = {v2,v.}. Again if we choose (v,,v3) and (v3,vy4), then
IN(v2) NN (v4)| = {v3,v.}. Continuing in this way, we see that all the exterior vertices
are adjacent to v.. Observe that the vertex v, and every adjacent exterior vertices v; and
v;j forms a triangle. Therefore, if G| has any other vertex (except vi,v2,...,v, and v¢
), it would lie inside the triangle v;v v, which is a separating triangle. This contradicts
the fact that G is an RDG. This implies that G| cannot have any other vertex (except
v1,V2,...,Vp and v.) which concludes that G; is a wheel graph W,, which is again a
contradiction since we assumed that G| # W,,. This proves our claim.

Choose two adjacent edges (v;,v;) and (v}, vy) from L, such that [N (v;) "N (vg)| =
1 and construct a graph G, = (V,E;) where E; = E1 U {(vi,v) }.

Now we show that the number of CIPs in G, can not exceed the number of CIPs

in Gy. For Gy, there are the following possibilities:
i. None of vertices v; and vy is the endpoint of a shortcut in G,
ii. One of vertices v; and vy is the endpoint of a shortcut in Gy,
iii. Both vertices v; and v are the endpoints of a shortcut in G.

These 3 possibilities are shown in Fig. 4.4a-4.4c respectively. In the first case, clearly
there is no CIP passing through (v;,vx) in G>. In the second case, VivgVii1 ... Vg—1Vyg
becomes a CIP in G and v;vjvgviy1 ... v4—1v4 no longer remains a CIP in G,. In fact,
the edges (v;,v;) and (v;,vx) of the existing CIP in Gy are replaced by (v;,vx) in G.
Thus, in this case, the number of CIPs do not get increased. The third case is not
possible since [N (v;) NN (vx)| = 2. In fact, N(v;) NN (vx) = {v;,vs} and G, is obtained
from G| by adding an edge (v;,vx) such that [N(v;) N N(vx)| = 1. This proves our
claim.

Now we claim that there does not exist a separating triangle passing through (v;, vy)
in G,. Since |[N(v;) NN (vr)| = 1, i.e., N(vi) "N (vx) = {vj}. Therefore v;v;vy is the
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only cycle of length 3 having no vertex inside and passing through (v;,v¢) in G;. This
shows that v;v vy is not a separating triangle, it is a new added triangular region (face)
in G,. By Theorem 2.2.1, G, is an RDG. A recursive process shows that each G; =
(V,E;), (i > 3) is an RDG where E; = E;_; U{(v4, V) } such that [N(vy) "N(ve)| =1
for some edges (va,Vs), (v, ve) belong to L, which is defined as L, = {(v;,v;) € Ei_1 |
IN(vi) N (vj)| = 1}

It can be noted that the recursive process will terminate when the outermost cycle
has four vertices for some RDG Gy. In fact, (v;,v;), (vj,vk), (vi,v) and (v;,v;) are
four edges constituted by the four exterior vertices v;, v;, vx and v; of some RDG G;.
For any two edges (v4,vp) and (vp,v.), we have |[N(v,) NN (v)| = 2. This terminate
our process. On the other hand, there does not exist any other way for adding a new
edge such that the resultant graph is an RDG with a new triangular region. Recall that
a maximal plane graph has 3|V;| — 6 edges where V; denotes its vertex set and has all
triangular regions including exterior. In our case, every region of Gy is triangular, but
exterior is quadrangle. This implies that the number of edges in Gy is 3|V| —7 and
hence it is an MRDG. This completes the proof of lemma. O

From Lemmas 4.3.4-4.3.5, we conclude that the following main result of the paper.

Theorem 4.3.1. It is always possible to construct an MRDG of a given RDG.

Remainder

V; ViV
of graph
Remainder Remainder
of graph of graph
Vq Vq-l
a b C

Figure 4.4: Three possible depictions of G, obtained from G| (consists of black edges)
by adding a red edge.

4.4 Algorithm for Constructing of an MRDG

In this section, we present an algorithm that constructs an MRDG for a given RDG.

We also analyze its complexity and present an illustrative example.
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Algorithm 1 Constructing an MRDG of a given RDG

Input: AnRDG G| = (V,E))
Output: An MRDG M = (V,E) for G| = (V,E;) such that |[E| < |E|

1: Ly« ¢
2: L+ ¢
3: forall (v;,v;) €E| do
4: s [N(vi)NN(v;)|
5: if s == 0 then
6: L1<—L|U{(V,‘,v/')}
7: else if s == 1 then
8: Lz(—LzU{(V,‘,v/')}
9: else
10: continue
11: end if
12: end for

13: for all (v;,v;) € L, do
14: if (vj,v) € L, then

15: Ly + (LyU{(vi,vj), vivi) }) = {(vj, )}
16: E; + E;U{(vi,v)}

17: else

18: continue

19: end if

20: end for

21: forall (vi,v;),(vj,vk) € L> do
22: if IN(vi) N N(v)| == 1 then

23: Ly — Ly U{(vi,vi) } — {(vi,vj), (vj,vie) }
24 Ey < EyU{(vi,v)}

25: else

26: continue

27: end if

28: end for

29: for all (v;,v;) € E; do
30: if (vi,v;) € (Ey —{(vi,vj)}) then

31: E1<—E17{(v,',vj‘)}
32: else

33: continue

34: end if

35: end for

36: return M

Since the output of Algorithm 1 is an MRDG having four vertices on its exterior,
the corresponding RFP would have four rectangles on the exterior. It may not always
be desirable to transform a given RDG to an MRDG. In such a case, we can replace
L, by L, — A where A is the set of edges not to be added to the given RDG. Thus we
can obtain the required RDG from a given RDG.

For a better understanding to Algorithm 1, we explain its steps through an exam-
ple. Consider an RDG G, = (V, E}) shown in Fig. 4.5a. First of all, Algorithm 1 com-
putes two sets Ly and L, (the lines 3 — 12) from G» such that L; contains those edges
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whose endpoints have no common vertex and L, contains those edges whose endpoints
have exactly one common vertex. Then L; = {(v7,v19)} and L, = {(v,v2), (v2,v3),
(v3,v4), (v4,v6), (v6,v8), (v7,v8), (vio,v12), (vi1,v12), (vo,v11), (vo,V10), (V7,v1)}.

Now it executes the rest of its steps ( 13 —20) as follows:

Since for (v7,v10) € Ly, there is an edge (vi9,v9) belonging to L, the loop (13 —
20) adds (v7,v9) and (v7,vi0) to Lp, and adds (v7,v9) to E;. Further, it subtracts
(vio,v9) from L. Thus, Ly = {(v7,v10), (v7,v9), (vi,v2), (v2,v3), (v3,va), (va,vs),
(ve,v8), (v1,v8), (Vio,v12), (vi1,v12), (vo,v11), (v7,v1)} and E; = E; U{(v7,v9)}. Since
L; has exactly one edge, this loop terminates (in fact, we have transformed the given
separable connected RDG to an nonseparable RDG. This method was proved by
Lemma 4.3.4) and Algorithm 1 executes the next loop (21 — 28) as follows:

Suppose that Algorithm 1 picks (vg,v7) and (v7,vi) from L. Since N(vi)N
N(vg) = {v7}, IN(vi) N N(v9)| = 1. Then it subtracts (v9,v7) and (v7,v;) from L, and
adds (vg,v;) to both Ly and E) ( the lines 23 and 24). Thus L, = {(v9,v1), (v7,v10),
(vi,v2), (v2,v3), (v3,v4), (va,ve), (V6,v8), (v7,v8), (Vi0,v12), (Vi1,vi2),(vo,v11)} and
Ey =E U{(vg,v1),(v7,v9)}.
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Figure 4.5: (a-b)A given RDG G and its rectangular dual, and (c-d) the derivation of an
MRDG M, from G, and its rectangular dual.

Again it picks (vi0,v7) and (v7,vg) from L,. Since N(vio) NN (vs) ={v7}, IN(vip)N
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N(vg)| = 1, it subtracts (vip,v7) and (v7,vg) from Ly, and adds (vio,vg) to both L,
and E (the lines 23 and 24).Thus, L, = {(vi9,vs8), (vo,v1), (vi,v2), (v2,v3), (v3,v4),
(v4,v6), (v6,v8), (Vio,vi2), (Vi1,v12,(ve,v11)} and Ey = E;U{(vi0,v8), (vo,v1),(v7,v9)}.

Thus a recursive process of this loop adds {(ve,vi1), (v3,v6), (vo,v3), (vo,vi1)}
to Ly and Ey = E; U {(ve,v3), (ve,v12), (v8,v12), (v3,v6), (vo,v3), (v8,v10), (vo,v1),
(v3,v1), (vo,v7)} respectively.

Since there has not been added any duplicate edge (multiple edges), the loop (30 —
35) skips automatically.

Thus we see that the output is an MRDG M, shown in Fig. 4.5¢ where red edges
are the new edges which are added to G|. Note that G; admits a rectangular dual R
shown in 4.5b and M, admits a rectangular dual R, shown in 4.5d. Consequently to

this, Ry can be transformed to R, (a maximal one).

Analysis of computational complexity

Let v, be a vertex of the largest degree in the input RDG G. This implies that |[N(v;| <
K where d(vy) = K. Now we consider each of the following loops:

i. The computational complexity of the lines 3 — 12 is (|N(v;)|[N(v;)||E1|) = K?|E; | =
O(n).

ii. The computational complexity of the lines 14 — 20 is (|L;].|Lz|) = |L2| = O(n).
In fact, L; contains edges whose endpoints are cut vertices. |Lj| = O(n) if the
given RDG is a path graph. In that case, L, is empty. Both L and L, can not be

large simultaneously.
iii. The computational complexity of the lines 21 —28 is (|N(v;)||N(v;)|+ |L2|)|L2|
=~ K?|L,|* =2 O(n?).
iv. The computational complexity of the lines 29 — 35 is |E;|> = O(n?).
Hence, the computational complexity of Algorithm 1 is quadratic.

Remark 4.4.1. If [N (v;)| or [N(v;)| or [N(v;)| x |[N(v;)| is near to |V|, then the com-
putational complexity of Algorithm 1 becomes O(n®). However, in design problems
such graphs do not appears quite often. Both |[N(v;)| and |[N(v;)| can not be near to
|V| in a plane graph.

Remark 4.4.2. The proof of correctness of the algorithm follows from the above

sequence of lemmas.
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4.5 Concluding Remarks

In this chapter, we developed a graph based approach for the transformation of rectan-
gular duals. We showed how to transform an RDG into another RDG whose edge set
is a superset of the first one in polynomial time and hence proposed a transformation
of a rectangular dual to another rectangular dual with the same number of rectangles.

We proved that it is always possible to construct an MRDG from a given RDG.
Then we presented an algorithm for its construction from the given RDG. Since adding
new edges to an RDG without disturbing RDG property reduce distances among its
vertices (usually it is measured by the shortest path between vertices) and hence it
is useful in reducing wire-length interconnections among the modules of VLSI floor-
plans. This method adds new edges to an RDG in bulk if it is a path graph ( minimal
one which is obvious an RDG). In other words, if we pick a Hamiltonian path of an
RDG, then a new desired form of the RDG can be constructed by adding edges in bulk.
If it is not possible to make some pair of vertices of a given RDG adjacent in its MRDG
without disturbing RDG property, then it would be interesting to find a method that
can minimize distances between these vertices. In this case, it is equivalent to finding
a minimal spanning tree for routability of interconnections in rectangular floorplans.

Consequently, we can construct an efficient rectangular dual by introducing new
adjacencies among rectangles of a rectangular dual.
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