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Chapter 5

Edge-Reducible Rectangularly Dualizable Graphs

In Chapter 4, we derived a new RDG from a given RDG by introducing new adjacen-
cies among the vertices of the given RDG while preserving all the existing adjacencies
among the vertices of the RDG until no more adjacency can be added. In this chap-
ter, we are doing reverse of the previous Chapter 4 , i. e., the goal of this chapter
is: we are removing adjacencies of the vertices of an RDG to construct a new RDG
and looking for those minimal RDGs from which no adjacency among the vertices
can be removed without violating RDG property. We also present an algorithm that
constructs the new RDG and an algorithm that directly transform a rectangular dual to
another rectangular dual by removing adjacencies of its rectangles.

5.1 Introduction

In Modern VLSI technology, one of constraints for circuit’s floorplan known as bound-
ary constraint is essential for better establishing input-output connections between
VLSI circuit and outside world. In fact, adding this constraint in floorplanning in-
creases the quality of circuit’s floorplan [77, 78]. A boundary constraint refers to
rectangles which need to be packed on the boundary of a floorplan. There lacks graph
theoretic characterization for this constraint in floorplanning. In this chapter, we deal
with this constraint with the help of graph notion.

There is some work on generation of rectangular duals from a given rectangular
dual [37, 40, 64, 67]. In these methods except [67], a topologically distinct rectangular
dual was obtained from an existing one for a given graph preserving the adjacencies of
the existing one. Wang et al. [67] developed a method to generate a new rectangular
dual by adding or deleting rectangles from an existing one.
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A series of papers [2, 25, 27, 50, 56, 70, 72] studies enumerations of rectangular
duals. Though it is trending recently to generate all rectangular partitions, each with
n-rectangles of a given rectangle, but it is not preferable because computationally it is
very expensive to pick a rectangular partition with the desired number of rectangles
on its boundary from the large solution space.

In Chapter 4, we have seen that the generation of a new RDG by adding edges to
a given RDG reduces the size of the new RDG. For a better understanding, consider
an RDG G and its rectangular dual R shown in Fig. 5.1a and Fig. 5.1b respectively.
If we want v4 to be an exterior vertex in G, its corresponding rectangle R, needs to
be shifted to the boundary of R as shown in Fig. 5.1c or Fig. 5.1d. Clearly, it either
creates dead space (the shaded area as shown in Fig. 5.1d) which is not desirable [55]
or it generates a rectilinear dual with an L—shaped region, but we are interested in
rectangular duals only. From this example, it is clear that it is not always possible
to shift a rectangle to the exterior while maintaining the rectangularity of a floorplan.
Hence in this chapter, we present a graph theoretical characterization of rectangular
duals for addressing their boundary constraints.

Mathematically, it is interesting to identify whether a given rectangular dual is
transformable to another given rectangular dual by reducing adjacencies of its rect-
angles which may not always be true. Therefore we study the methods of transfor-
mations for rectangular dual from a graph theoretic perspective by introducing the
concept of edge-reduction in an RDG. In this chapter, we introduce edge-reducible
as well as edge-irreducible RDGs. Then we derive a necessary and sufficient condi-

tion for an RDG to be edge-reducible to another RDG. Further, we derive a necessary
and sufficient condition for an RDG to be edge-irreducible. Then we show that such
RDGs have no proper subgraph (except Hamiltonian path) which is an RDG. We also
present a polynomial time algorithm to transform an edge-reducible RDG to an edge-
irreducible RDG.

The chapter is structured as follows: In Section 5.2, we introduce the concept of
edge-reduction of an RDG. Section 5.3 describes a necessary and sufficient condition
for an RDG to be edge-reducible to another RDG. Section 5.4 describes a necessary
and sufficient condition for an RDG to be edge-irreducible (a minimal one). In Section
5.5, we describe mainly two algorithms: the first one transforms an RDG to another
RDG and the second directly transforms a rectangular dual to another rectangular dual.

Finally, we conclude the derived results in Section 5.6.
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Figure 5.1: Example showing that it is not always possible to shift a rectangle to the
boundary while preserving the rectangularity of a floorplan.

5.2 Concept of Edge-Reduction

In this section, we introduce two type of RDGs: an edge-reducible RDG and an edge-
irreducible RDG.

Definition 5.2.1. Any two adjacent vertices v; and v; in an RDG G = (V,E) are said
parable if G' = (V,E') is an RDG where E' = E — (v;,v;)

tobe s i)

Definition 5.2.2. An RDG is called edge-reducible if it has separable vertices, other-
wise it is called edge-irreducible RDG.

Consider the two RDGs G and G, shown in Fig. 5.2a and 5.2b respectively. Here
G is edge-reducible because the pairs of adjacent vertices vs and v7, and v3 and vs in
G are separable. After deleting the edges (vs,v7) and (vs5,v3), G| reduces to G,. Now
we claim that G, is an edge-irreducible RDG.

Since G, is nonseparable, the removal of any interior edge (v;,v;) of G» makes one
of its interior faces quadrangle. Then the corresponding four rectangles in its a rect-
angular dual meet at a point. This contradicts the assumption that no four rectangles

meet at a point in a rectangular dual .
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Now to the contrary suppose that any two exterior adjacent vertices v; and v; are
separable in G,. For instance, assume v; = v, and v; = v3. Then BNG of G, — (v2,v3)
is a path of two vertices such that one of the maximal blocks corresponding to the end
vertex of BNG has three critical CIPs (vgv7vs,vavivio, v4vsve), which is a contradic-
tion to the third condition of Theorem 2.2.2. Similarly we arrive at contradiction if we
choose any other exterior edge. This implies that none of the exterior adjacent vertices

are separable, i.e., G is an edge-irreducible RDG.
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Figure 5.2: (a) An edge-reducible RDG G|, (b) an edge-irreducible RDG G», (c) a rect-
angular dual for G| and (d) a rectangular dual for G,

5.3 Theory of Edge-Reducible RDG

In this section, we derive a necessary and sufficient condition for an RDG to be edge-
reducible to another RDG.

Lemma 5.3.1. If (v;,v;) is an exterior edge of a nonseparable RDG G, then N(v;) N

N(v;) is singleton.
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Proof. To the contrary, suppose that N(v;) N N(v;) is not singleton. Then there exist
two triangles v;v;vs and v;v;v; in the plane embedding of G such that one of them is
contained in other where v, and v; belongs to (N(v;) NN (v;)). Clearly, the one which
encloses the other is a separating triangle of G. This is a contradiction to Theorem
2.2.1 since G is an RDG. Hence the result. 0

Lemma 5.3.2. If (v;,v;) is an exterior edge of a nonseparable plane graph G with
d(vi) > 2 and d(v;) > 2, then the number of CIPs of G’ = G — {(v;,v;)} is atleast the
number of CIPs of G.

Proof. Suppose that P is a CIP in G. Then the following two cases arise:

i. (vi,v;) lieson P
Since (v;,v;) is an exterior edge of G, by Lemma 5.3.1, there is exactly one
common vertex v belonging to N(v;) NN(v;). If v is an exterior vertex of G,
then v;, v; and vy form a triangle in G such that either d(v;) =2 or d(v;) = 2,
which is a contradiction. This implies that v is an interior vertex of G. Also,
P and the edge joining its endpoints forms a cycle because of which v can not
be a cut vertex of G. Hence, the removal of (v;,v;) from P increases its length
by one in G’ since on removing (v;,v;) from P, two sides of the triangle passing

through (v;,v;) become a part of P. Thus we see that P is a CIP in G'.

ii. (vi,vj) does not lie on P

Here P is of course a CIP in G'. But in this case, if N(v;) N N(v;) is adjacent to
an exterior vertex v, in G, then (N(v;) NN (v;),v;) is a shortcut in G’ and hence

there is a new CIP in G’ joining N(v;) NN (v;) and v;.

Thus, we see that the number of CIPs of G — {(v;,v;)} always exceeds the number
of CIPs of G. O

Lemma 5.3.3. If G is an RDG, then each of its face (region) is triangular.

Proof. Since G is an RDG, it admits a rectangular dual R. By the definition of a
rectangular dual , no four rectangles of R meet at a point, i.e., there can only be 3-
joints in R. Let Ry, Ry, R3 be three rectangles of R meeting at a point or forming a
3-joint. Then three vertices of G which are duals to these rectangles of R form a cycle
of length 3 in the interior of G. Hence each interior face (region) of G is triangular. [
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Theorem 5.3.1. A necessary condition for two adjacent vertices v; and v; of an RDG

to be separable is that (v;,v;) is an exterior edge of the RDG.

Proof. Let C and C' be the exterior faces of G and G’ respectively. Suppose that there
exist separable vertices v; and v; in an RDG G. Then G’ = (V,E’) is an RDG where
E' = E — (vi,vj). By Lemma 5.3.3, all interior faces of both G and G’ are of equal
length (i.e., of length 3). But E/ C E and, G and G’ have the same number of vertices.
This implies that C and C’ have different length, i.e., |C| < |C'|. Also, when (v;,v;) is
removed from C, the two other edges of the triangle passing through (v;,v;) becomes
a part of C’, i.e., removing an edge from C increases the size of C’ by one. Hence,

|C'| = |C| = 1 and (v;,v}) belongs to C, i.e., (v;,v;) is an exterior edge of G. O

It is interesting to note that for an exterior edge (v;,v;), v; and v; may not be
separable. For example, refer to the RDG G5 in Fig. 5.2b where none of the exterior
vertices are separable. Hence, the converse of Theorem 5.3.1 is not true. Also, we can

conclude that any two interior vertices v; and v; of an RDG G can never be separable.

Theorem 5.3.2. Suppose that C and C’ are the exterior regions (faces) of RDGs G =
(V,E) and H = (V,E') respectively. Denote E — E' by Q. If G is edge-reducible to H,
then |Q| =|C'| —|C|and E' C E.

Proof. Suppose that G is edge-reducible to H. By the definition of an edge-reducible
RDG, we have E' C E.
Consider G; = G. Since G is edge-reducible, by Theorem 5.3.1, there exists a

nonempty set Q1 of exterior edges incident to separable vertices of G;. If G| — Q1 #

H, then there exists a nonempty set ) of exterior edges incident to separable vei-
tices of G; — Q1. Denote G| — Q| by G,. Similarly, if G, — Q> # H, then there
exists a nonempty set Q3 of exterior edges incident to separable vertices of G, — Q5.
Continuing in this way until Gy — Qy = H. Consequently there exists a partition'
{01,02,...,0k} such that each Q; contains the exterior edges incident to separable

vertices of G; where G| = G, Gy 1 =H and G+ = G; — Q;, (2<i<k).

A partition of a nonempty set A is a collection of its nonempty subsets Aj, Ay, ..., A, such that
A,-ﬂAj (l 7é ]) and A :Al UAQU"'UA,,.
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Suppose that C; is the exterior face of G;. Then

01| = |G| = |G| (5.1
02| = |G3| — |2 (5.2)

(5.3)
Ok| = |Cri1 | — |G (5.4)

adding (5.1)-(5.4), we get

|01+ [Q2| + -+ Qx| = |Cry1| — |C1]
— |0|=IC"|—|C|

Hence the proof. O

Theorem 5.3.3. Suppose that G = (V,E) and H = (V, E') are two nonseparable RDGs
where E/ C E. Denote E — E' by Q. A necessary and sufficient condition for G to be
edge-reducible to H is that there exists a partition {Q1,02,...,0x} of Q such that
each Q; contains the edges of G; and each G; has atmost four CIPs where G| = G,
Gry1 =Hand Giy1 = G;— Q;, (1 <i<k).

Proof. Necessary Condition: Suppose that G is edge-reducible to H. By Theorem
5.3.2, there exists a partition {Q1,02,...,0x} of Q such that each Q; contains the
edges of G; where G| = G, Gy, =H and Gi11 = G; — Q;, (1 <i<k).

It is given that G and H are nonseparable graphs. This implies that each G; is

Al (7. ic an RNG Ry Thearem 221 . h tmo
Dy 11U L

Alse, G is an RDG orem 2.2.1, Gy has atmo
four CIPs. Now Q; contains the edges (edge) incident to separable vertices of Gj.
Therefore G, = G| — Q; is an RDG. By Theorem 2.2.1, G, has atmost four CIPs.
Again Q) contains the edges (edge) of G, incident to separable vertices of G,. This
implies that Gz = G, — Q> is an RDG. By Theorem 2.2.1, G3 has atmost four CIPs.
Continue in this way, we can show that each G;, (i > 4) has atmost four CIPs.
Sufficient Condition: Suppose that there exists a partition {Qy,Q>,...,Qk} of O

such that each Q; contains the edges of G; and each G; has atmost four CIPs where
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G1 =G, Gy =Hand Giy1 =G;— 0, (1 <i< k) Note that

G, =G -0 (5.5)
G3=Gr— 0 =G —(Q1UQ) (5.6)
5.7
Git1=G1— (Q1UQ2UQ3U---UQy) (5.8)
H=G-0. (5.9)
Consequently, we get
H=G1 CGCGC--CG3C G C G =G, (5.10)

In order to prove that G is edge-reducible to H, it is sufficient to prove that each
RDG G; is edge-reducible to RDG G since edge-reduction of RDGs is an equiva-
lence relation.

Now Gy, is a proper subgraph of G1. As G is an RDG, each of its interior faces is
triangular and Q; contains the exterior edges of G;. Hence, each interior face of G, is
triangular.

Now we claim that G, is edge-reducible to G, i.e., we need to show that Q; is a
set of those edges which are incident to separable vertices of Gy, i.e., G| — Q1 (G3)
is an RDG. Since G is an RDG, it has no separating triangle and it is obvious to see
that the removal of a set Q; of exterior edges from G| does not create any separating
triangle. Also, G, is a nonseparable graph as it is a supergraph of H and it is given
that G, has atmost four CIPs. Thus, by Theorem 2.2.1, G is an RDG. In the simila

(7> 11, 7 11C

fashion, we can show that each G, (i > 3) is an RDG.

=

O

Corollary 5.3.1. Suppose that G = (V, E) is a nonseparable RDG and G’ = (V,E’) is
anonseparable graph where E' = E — (v;,v;) such that (v;,v;) is an exterior edge of G.

Then the vertices v; and v; of G are separable if and only if G’ has atmost four CIPs.

Theorem 5.3.4. Suppose that G = (V,E) and H = (V,E’) are separable RDGs where
E'CE LetQ=E—-E,G =G,Gy1=Hand Gi11 =G;—Q;, 1<i<k A
necessary and sufficient condition for G to be edge-reducible to H is that there exists
a partition {Q1,0>,...,0x} of O such that

i. each Q; contains the edges of G;,
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ii. each maximal block corresponding to the endpoints of the BNG of G; has atmost
two critical CIPs,

iii. other maximal blocks of the BNG of G; has no critical CIP.

Proof. 1t directly follows by applying Theorem 5.3.3 on each of its blocks and com-
plying with Theorem 2.2.2. 0

Corollary 5.3.2. Suppose that G = (V,E) is a nonseparable RDG and G’ = (V,E’) is
a separable graph where E’ = E — (v;,v;). Then vertices v; and v; of G are separable if
and only if each maximal block corresponding to endpoints of BNG of G’ has atmost
2 critical CIPs and other maximal blocks of the BNG has no critical CIP [2.2.4].

Consider two RDGs G = (V,E) and H = (V,E’) as shown in Fig. 5.3a and 5.3b
respectively. Their respective rectangular duals are shown in Fig. 5.3c and 5.3d where
v; is dualized to R;. It is clear that E' C E.

Q=E—E"={(v1,v3),(v1,v9),(v7,v9) }.

V3 Vi Vo v3 Vi Vo
o

V. V.
2 Vio Vi ? Vio Vi
Vs Vs

% A%

Va Ve Vg Via Vg

¢a

R [ .
_Hﬂ
B

c

Figure 5.3: (a) A nonseparable RDG G is reducible to (b) another nonseparable RDG H.
Their respective rectangular duals are shown in (c) and (d).
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01 ={(v1,v3), (vi,v)}

0> ={(v7,v9)}

G =G

Gy = G1 —{(v1,v3),(v1,v9)}
G3 =Gy —{(v7,v9) }.

We can see that G| has no critical shortcut. This implies that there is no CIP in G;.
(v2,v4) and (v2,v7) are the critical shortcuts in G,. Then there are two CIPs in G,. By
Theorem 5.3.3, G is edge-reducible to H.

5.4 Theory of Edge-Irreducible RDGs

In Section 5.3, we presented a necessary and sufficient condition for an RDG to be
edge-reducible to another RDG. Now a natural question arises: Are there RDGs which
are not reducible to any of RDGs? In this section, we derive a necessary and sufficient
condition for a given RDG to be an edge-irreducible RDG.

Theorem 5.4.1. An RDG G has a vertex of degree 2 if and only if there exists a CIP
of length 2 in G.

Proof. First assume that v; is a vertex of degree 2 in G. Let G admit a rectangular

dual R. We can see that any interior rectangle R; of R is surrounded by atleast four

shows that v; is an external vertex. Let v, and v, be the two external vertices that are
adjacent to v;. By Lemma 5.3.3, every interior face of G is triangular. This implies
that the vertices v,, v; and v, form a triangle such that (v,,v,) is a shortcut and hence
there exists a CIP joining vertices v, and v, in G.

Conversely, assume that there exists a CIP P of length 2 in G. Since P has length
2, there are three vertices v;, v; and vy such that v; and vy are the endpoints of P and v,
is an interior vertex in P. As each interior face of G is triangular, vertices v;, v; and vy

forms a triangle and hence d(v;) = 2. This proves our result. |

Lemma 5.4.1. If an RDG G has a vertex of degree 2, then it corresponds to a corner
rectangle or an end rectangle in its rectangular dual. In particular, if there are 4 vertices

of degree 2 in G, each corresponds to a corner rectangle in its rectangular dual .
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Proof. Assume that G admits a rectangular dual R. Then by Lemma 5.3.3, each inte-
rior face of G is triangular. Also, it is given that G has a vertex v, of degree 2. This
implies there exists two vertices v; and v; that are adjacent to v, only. Also, v; and v,
must be adjacent since each interior face of G is triangular. Then there is a shortcut
(chord) joining vertices vy and v, and hence there exists a CIP P containing vertices
v1, v, and vo where vy and v, are the endpoints of P in G.

From [38], we know that a vertex on a CIP (except initial or end vertex of path)
corresponds to either a corner rectangle or an end rectangle in the corresponding rect-
angular dual . It implies that there exists a vertex v, in P that corresponds to either a
corner rectangle or an end rectangle in R.

If there are four vertices of degree 2 in G, by Theorem 5.4.1, there are 4 CIPs each
containing a vertex of degree 2 and hence, a vertex of degree 2 lying on each CIP
correspond to a corner rectangle in R.

O

Theorem 5.4.2. A necessary condition for a nonseparable RDG G to be an edge-

irreducible RDG is that it has exactly 4 vertices of degree 2.

Proof. In order to prove that G has exactly 4 vertices of degree 2, it is enough to show
that there exist four CIPs, each of length 2, in G. To the contrary, first suppose that
there does not exist a CIP in G. Consider a graph G defined by G = G — {(v;,v;)}
where (v;,v;) is an exterior edge of G. To arrive at a contradiction, we prove that G| is
an RDG. By Lemma 5.3.1, N(v;) N N(v;) is singleton. Suppose that N(v;) "N (v;) =

{v}. For all possible cases for v;, G| can have atmost one CIP as follows:

e If v, is an interior vertex of G and is incident to some exterior vertex vy of G,
then (vy, ;) is a shortcut in G;. Hence Gy has a CIP.

* If v, is an interior vertex of G and is not incident to any exterior vertex of G,

then there is no shortcut in G and hence G; has no CIP.

* If v, is an exterior vertex but not a cut vertex of G, then either (v;,v;) or (v;,v;)
is a shortcut in any plane embedding of G; and hence there exists a CIP joining

vertices either v; and v, or v; and v; in G.
* If v; is a cut vertex of G, then clearly there is no CIP in Gj.

Thus we see that G| can have atmost one CIP. Now if G is a nonseparable graph, by
Corollary 5.3.1, v; and v; are separable and hence G is an RDG. If G is a separable
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connected graph, by Corollary 5.3.2, v; and v; are separable and hence G| is an RDG.
This contradicts our assumption that G is an edge-irreducible RDG and therefore G
has atleast one CIP.

Again consider a graph G, = G| — {(vk,v;)} where (vg,v;) is an exterior edge of
G1. Using the same analogy used for G, we can show that G, has a CIP and hence G
has atleast two CIPs. Continuing in this way until G has exactly 4 CIPs. In fact, if G
has more than four CIPs, then by Theorem 2.2.1 it no longer remains an RDG, which
is a contradiction.

Now we prove that each of the four CIPs has length 2 in G. To the contrary,
suppose that P is a CIP of length greater than 2 in G. Consider a graph Gz = G —
{(vp,vq)} where (v,,v,) belongs to P. To contradict our assumption, we prove that
G3 is an RDG as follows:

» Every interior face of Gs is triangular

Since G is an RDG, by Lemma 5.3.3 each of its interior faces is triangular. Since

(vp,vq) is an exterior edge of G, every interior face of Gj3 is triangular.

* (3 is a nonseparable graph

Since G is a nonseparable graph, d(v,) > 2 and d(v,) > 2. If either d(v,) =2
ord(vy) =2, by Theorem 5.4.1 there is a CIP of length 2 in G which contradicts
our assumption. This implies that d(v,) >2 and d(v,) >2in G. Also by Lemma
5.3.1, N(v,) NN(v,) is singleton. Suppose that N(v,) N\N(v4) = {v,}. Then vy
lies on the cycle Cp formed by CIP P and the edge joining to its endpoints or
lies inside Cp in any plane embedding of G3. Now if v; lies on Cp, then either
(vp,vs) or (vg,vy) is a shortcut in any plane embedding of G and hence there
exists a CIP joining vertices either v, and v or v, and v, in G having length 2
which contradicts our assumption. Therefore it lies inside Cp. Also, we have
shown that d(v,,) > 2 and d(v,) > 2 in G. Thus G3 is a nonseparable graph.

¢ (3 has atmost 4 CIPs

Since (vp,v,) is an exterior edge of G and every face of G is triangular, by
Lemma 5.3.1, N(v,) NN (v,) has exactly one vertex and hence the edge (N (v,)N
N(vq),v;) is well defined for some vertex v; of Gz where v; ¢ (N(v,) NN(vy)).
If v; is an interior vertex of G, then (N(v,) NN(vg4), ;) is not a shortcut in G and
hence G3 has no CIP joining the vertices N(v,) "\N(v,) and v;. If v; is an exterior
vertex of G, (N(v,) NN (v,),v;) is a shortcut in G3 and hence there exists a CIP
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joining vertices N(v,) NN (v4) and v, in G3. Note that P is no longer a CIP in G3
since P contains endpoints of the shortcut joining vertices N(v,) NN (v,) and v;.

This implies that the number of CIPs in G3 can not exceed the number of CIPs

in G. But G has exactly 4 CIPs. Thus G3 has atmost 4 CIPs.

* (3 has no separating triangles

Since G is an RDG, by Lemma 5.3.3 each of its interior faces of G is trian-
gular. Also by Theorem 2.2.1, it is independent of separating triangles. Note
that (vp,v,) is an exterior edge of G. Clearly, G3 is independent of separating
triangles and every interior face of Gj3 is triangular.

Thus by Theorem 2.2.1, G3 is an RDG which contradicts our assumption that G is an
edge-irreducible RDG. This implies that P is of length 2. Since P is arbitrary, every

CIP has length 2. Thus G has exactly 4 CIPs, each of length 2.

Consider a nonseparable RDG G shown in Fig. 5.4a whose rectangular dual is
shown in Fig. 5.4b. It is interesting to note that G has 4 vertices of degree 2 and it is
an edge-reducible RDG. Here vertices vg and v are separable and G — (vg,vyo) is an
RDG admitting rectangular dual shown in Fig. 5.4c. Thus, the condition in Theorem

5.4.2 is not sufficient.
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Figure 5.4: Showing that the converse of Theorem 5.4.2 is not true.

Theorem 5.4.3. A necessary and sufficient condition for a nonseparable RDG G to be

an edge-irreducible RDG is that:

i. it has exactly 4 vertices of degree 2 on its outermost cycle C,

ii. for any edge (v;,v;) of C with d(v;) > 2, d(v;) > 2 and for an exterior vertex
veonC, (N(vi)\N(v;),v;) (t # 1, ) is an interior edge such that there exists no
vertex of degree 2 on a path lying on C joining the vertices N(v;) \N(v;) and v;.
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Proof. If G has atmost two vertices, then necessary and sufficient conditions are triv-
ial. Let us consider that G has atleast 3 vertices.

Necessary Condition: First suppose that G is an edge-irreducible RDG and C is
the outermost cycle of G. The first condition follows from Theorem 5.4.2.

Consider an edge (v;,v;) on C such that d(v;) > 2 and d(v;) > 2. By Lemma 5.3.1,
N(vi)NN(v;) is singleton and hence the edge (N(v;) NN(v;),v;) is well defined.

Now consider a graph G defined as G| = G — {(vi,vj)}. By Theorem 5.4.2, G
has exactly 4 vertices of degree 2 and therefore by Theorem 5.4.1, G has exactly four
CIPs, each of length 2. Then by Lemma 5.3.2, G| has at least 4 CIPs. Specifically,
all four CIPs of G are the CIPs of G| and considering the proof of Theorem 5.4.2, G
may have one more CIP other than these 4 CIPs.

Since G is an edge-irreducible RDG, no two adjacent vertices in G are separable.
This implies that G is not an RDG. Also, it is given that G is an RDG. By Theorem
2.2.1, it is independent of separating triangles and by Lemma 5.3.3, each of its interior
faces is triangular. Now (v;,v;) is an exterior edge of G. Therefore, G is independent
of separating triangles and each interior face of G| is triangular. At the same time, G
is not an RDG. It implies that G| has more than 4 CIPs. Consequently, G has a CIP
P, joining vertices N(v;) NN(v;) and v;, other than those of 4 CIPs which are common
to both G and G. Then there exists an exterior vertex v; such that (N(v;) "N (v;),v;)
is an interior edge (critical shortcut) in G. Now (N(v;) \N(v;),v;) is a critical shortcut
in G. It has no endpoints of any of the four CIPs. But each of these four CIPs has
length 2. By Theorem 5.4.1, there exists no vertex of degree 2 on a path lying on C
joining vertices N(v;) N\N(v;) and v;.

Sufficient Condition: Assume that the given conditions holds. Consider a graph
G, defined by G, = G —{(v,v,) }, where (v,,v,) is an exterior edge such that d(v,) >
2 and d(v4) > 2. By the second condition of the assumption, there exists some exterior
vertex v; in G such that (N(v,) NN(vy),v;) is an interior edge in G. Then N(v,)N
N(vg) and v; are the exterior vertices in G, which is in turn implies that (N (v,) NN (v),
V;) is a shortcut in Go. Now we claim that (N(v,) "N (v,), v) is a critical shortcut in
G,. By the first condition of the assumption, G has 4 vertices of degree 2. Then by
Theorem 5.4.1, G has exactly 4 CIPs, each of length 2. By Lemma 5.3.2, G, has atleast
four CIPs. Also, it is given that there exists no vertex of degree 2 on a path P, lying
on C joining vertices N(v,) NN(v,) and v;. This means that the endpoints of the four
CIPs (each having length 2) does not lie on the path joining vertices N(v,) NN (vg)
and v;. Then (N(v,) NN(v,), v;) is a critical shortcut in G, and hence there exists
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a CIP P; joining vertices N(v,) NN (v,) and v, in G,. Consequently, G has exactly
5 CIPs. Now if G, is a nonseparable graph, then by Theorem 2.2.1, G, is not an
RDG. If G, is a separable connected graph, then we claim that all the CIPs of G»
are critical, i.e., none of the CIPs contains a cut vertex in its interior. Since G is a
nonseparable graph, the vertex N(v,) N N(v,) is the only cut vertex of G,. Also, it is
not the interior vertex of Py since N(v,) NN(vg4) is one of the endpoints of P;. This
implies that P, is a critical CIP of G,. Now each of the remaining four CIPs of G is of
length 2. By Theorem 5.4.1, each of them has exactly one vertex of degree 2. We first
show that d(N(v,) "N (v4)) > 2. To the contrary, suppose that d(N(v,) N\N(v,)) = 2.
Then N(v,) NN (v,) is an exterior vertex of G,. This implies that either d(v,) =2 or
d(v4) = 2 which is a contradiction since d(v,) > 2 and d(v,) > 2. This shows that
d(N(vp,) NN (v4)) > 2 and hence it cannot be in the interior of any of the four CIPs
having length 2. Therefore all the four CIPs each of length 2 are also critical. Thus,
we have shown that all CIPs of G, are critical. Recall that G, has only one cut vertex.
This implies that it has only two blocks and clearly one of the two blocks has atleast
three critical CIPs, since G, has 5 critical CIPs. Then by Theorem 2.2.2, G, is not an
RDG.

Thus we see that the pair of vertices v, and v, is not separable in G. Since (v,,v,) is
arbitrary, no pair of adjacent vertices in G is separable. Hence G is an edge-irreducible
RDG. O

The RDG shown in Fig. 5.2b fulfills all the conditions of Theorem 5.4.3 and hence

it is an edge-irreducible RDG admitting a rectangular dual shown in Fig. 5.2d.

i. each maximal block corresponding to the endpoints of BNG of G is either a
complete graph with two vertices or has exactly two vertices of degree 2 on its
outermost cycle C and for any edge (v;,v;) on C with d(v;) # 2, d(v;) # 2 and
for an exterior vertex v, on C, (N(v;) NN (v;),v;) (t # i, j) is an interior edge
such that there exists no vertex of degree 2 on a path lying on C joining vertices
N(vi)N\N(v;) and v;.

ii. any other maximal block is a complete graph with two vertices or for any edge
(vi,v;) on C and an exterior vertex v; on C, (N(v;) NN(v;),v;) (t #i,j) is an

interior edge.
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Proof. 1t directly follows by applying Theorem 5.4.3 on each of its blocks and com-
plying with Theorem 2.2.2. U

Fig. 5.5a fulfills all the conditions of Theorem 5.4.4 and hence it is an edge-
irreducible RDG whose rectangular dual is shown in Fig. 5.5b.

Theorem 5.4.5. A necessary and sufficient condition for RDG G = (V, E ) to be edge-
irreducible RDG is that no proper subgraph H = (V,E>) (except Hamiltonian path) of
G is an RDG.

Proof. Necessary Condition: Assume that G is an edge-irreducible RDG. This im-
plies that there do not exist two adjacent vertices v; and v; in G which are separable
and hence there exists no RDG such that G’ = (V,E’) where E’ C E. Consequently,
there does not exist no proper subgraph H that is an RDG.

Sufficient Condition: Assume that H is not an RDG. Since H is an arbitrary
proper graph such that |[E>| < |Ey|, consider E; = Ej — (v;,v;). As H is not an RDG,

vertices v; and v; are not separable in G and hence G is an edge-irreducible RDG. [

As discussed in Section 5.2, no pair of the vertices of G, shown in Fig. 5.2b is
separable. This implies that no subgraph of G, with the same number of vertices is an
RDG except Hamiltonian path of G;. A rectangular dual for Hamiltonian path of G,
can be constructed by arranging unit rectangles corresponding to its vertices in a row.

5.5 Constructive Algorithms for Rectangular Duals

In this section, we present algorithms for constructing new rectanguiar duais from the
existing one by reducing its adjacencies: with graph notion and without graph notion.

We first mould proposed results in the form of algorithms. Algorithm 3 transforms
an edge-reducible biconnected RDG to an edge-irreducible biconnected RDG and Al-
gorithm 2 determines the number of CIPs in an RDG, which is a input requirement
for Algorithm 2. We also analyze the complexity of these algorithms. In spite of de-
veloping the method of transformations of a rectangular dual to another rectangular
dual from the context of graph theoretic notion, Algorithm 5 directly generates a new
rectangular dual from a given rectangular dual. Algorithm 4 is a input requirement of
Algorithm 3.
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5.5.1 RDG Transformation Algorithm

In the most design problems, the underlying graphs of floorplans are biconnected.
Therefore abiding by common design practice, we have described Algorithm 3 for
transforming a biconnected RDG to another biconnected RDG. In fact, Algorithm
3 gives an edge-irreducible biconnected RDG as an output for an input biconnected
RDGs only. Also, one can obtain output as the edge-reducible RDG by imposing some
restrictions to Z or W (in the lines 10 and 13 of Algorithm 3 respectively). Suppose
that one desires that a particular set X of adjacency relations must not be removed
from the given RDG. Then Z or W needs to be replaced by Z — X or W — X. Thus we
see that Algorithm 3 can be made easily applicable to design problems. Algorithm 2

determines the number of CIPs in a nonseparable graph and it is used as a call function

in Algorithm 3.
Ve
Vz
L
Vv, \
5 Vg Ve
Vi Va V3

Figure 5.5: (a) A separable connected edge-irreducible graph G and (b) its rectangular
dual .
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Algorithm 2 ListOfCIPs(G, W)

Input: A biconnected RDG G = (V,E)
Output: The list of CIPs in G
I: W9, L9, U ¢, X ¢

2: forall (v;,v;) €E do

3 s [N(vi) NN (v;)]
4: if s == 1 then

5: L+ LU{(vi,vj)}
6: U+ UU{v,vj}
7 else

8: continue

9: end if
10: end for

11: forall (v;,v;) € (E—L) do
12: if vi,v;eU then

13: W —WuU{(vi,vj)}
14: X —XU{v,vj}
15: else

16: continue

17: end if

18: end for

19: forall (v;,v;) €W do
20: if (vi,vie1), (Vig1,vig2),-.-,(vj—1,vj) € L then

21: if vieX,i+1<k<j—1 then
22: W —W—{(vi,v;)}

23: elseif (vi,vi_1), (vi-1,vi-2),...,(vjs+1,v;) € L then
24: if vieX,i+1<k<j—1 then
25: W W —{(vi,vj)}

26: end if

27: end if

28: else

29: continue

30: end if

31: end for

32: return W
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Algorithm 3 Reducing a biconnected RDG to an edge-irreducible biconnected
RDG

Input: A biconnected RDG G = (V,E)
Output: An edge-irreducible biconneted RDG G’ = (V,E’)
L Z+ 9
. forall (vi,v;) € E do
s [N(vi)NN(v;)|
if s == 1 then
Z—ZU{(vi,vj)}

1

2

3

4

5

6 else

7 continue

8 end if

9: end for

10: for all (v;,v;) € Z do

11: i [N()| > 2AINO;)| > 2A (N(v) AN(v;)) == {v} then
12: ListOfCIPs(G = (V,E — {(vi,vj)}),W)
13 if |W| < 4 then

14 E(—E*{(V,’,vj‘)}

15 Z <+ ZU{(iv), vi,vj)} —{(vi,vj)

16 else

17 print G is an edge-irreducible biconnected RDG.
18 end if

19 end if

20: end for

21: return G

Analysis of computational complexity

* The computational complexity of Algorithm 2 is linear
The complexity of the lines 2 — 10 is |[N(vs)||N(v;)||E| = K1 K3 |E| = O(n), the
complexity of the lines 11 — 18 is |U||E — L| = O(n) and the complexity of the
lines 19 — 31 is |W||L||X|?> 22 O(n). Hence complexity of

ithm 2 is linear.

18810 1LYy s 18 11 1

» The computational complexity of Algorithm 3 is O(n?).
The complexity of the lines 3 —9 is |[N(vs)||[N(v/)||E| = K1 Kz2|E| = O(n),. The

computational complexity of the lines 10— 20 is the product of [N (v;)||N(v;)||Z|.|P:||A]|

and the computational complexity of Algorithm 2. But [N(v;)[.|N(v;)|.|Z||P:||A| =
O(n?). Hence complexity of Algorithm 3 is quadratic.

Remark 5.5.1. If for some graphs, |[N(vy)||N(v;)| or [N(v)| is near to |V|, then com-
plexity of Algorithm 2 and Algorithm 3 is cubic. However, in design problem such
graphs do not appear quite often. It can be noted that both |N(vs)| and |N(vy)| can not
be near to |V| in a plane graph simultaneously.

Remark 5.5.2. The proof of correctness follows from the above sequence of theorems.
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5.5.2 Transformation algorithm for rectangular duals

In this section, we present a transformation algorithm (Algorithm 5) to derive a new
rectangular dual from a given rectangular dual. In Algorithm 5, a list of transforma-
tions is to be applied on a rectangular dual to reduce it to another rectangular dual. If
a rectangular dual is rotated by 90°, its length and height get interchanged. Two rect-
angles m; and my in a rectangular dual are said to be adjacent vertically (horizontally)
if they share a wall or a section of a wall which is aligned vertically (horizontally).
Denote a rectangular dual with n-rectangles by RD(n). Let m;((x;,y;), w;, h;) de-
note the ith—rectangle with lower left coordinate (x;,y;), length w; and height A; cor-
responding to a vertex v;. Let m; and m; be two external rectangles that need to be
separated and m, be a rectangle adjacent to both m; and m . Identify " and " rectan-
gles accordingly as h; > h; and if h; = h;, then choose j' rectangle satisfying x; > x -
Let (x;,y;) be the lower left co-ordinate of m; and ¢; ; represents the part of a wall that
is common to both m; and m ;. Further, denote i'" condition and i"" transformation by

C; and T; respectively.

Conditions and Transformations

Here, we provide all conditions and transformations that arise due to all possible cases
of rectangles m; and m; that need to be separated with the help of rectangles m,. ad-
jacent to both m; and m;. The remaining cases are covered by rotations, flips of a
rectangular dual as defined in Algorithm 5.

1. (a) Cy:If h; > h;, x. > x; and m; and m; are adjacent horizontally (Fig. 5.6a).

(b) T;: hj —>hj+cij,wi — Wi —Cij, (xj,yj) — (xj,yj—c,-j) and (x,-,y,-) — (X,'—}—
C[j,y[) (Fig. 56b)
2. (a) Cy:we <wj, hi <hj(Fig. 5.6¢).

(b) Tr:wi—wi—we,he = he+hi, (xi,vi) = (xi+we,yi) and (x¢, ye) — (Xe, e —
hi) (Fig. 5.6d).
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Figure 5.6: Geometric demonstrations of conditions and transformations

3. (@ Gy:le<li+lj, 1. <l . <ljand h; = h; (see Fig. 5.6q).

) T3 .
ihe = hethij, li = li—lie, l; = 1j—1jc, (xe,ye) = (Xe,ye — 1;) and

(xj,vj) = (xj+1jc,yj) (see Fig. 5.6r)
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Algorithm 4 TFunction(m;,mj,m.,RDy)

Input: (m;,mj,m:,RDy)
Output: (Boolean flag, RD)
1: if C| then
newRD; = T1(RDy)
return (true, newRD))
else if C; then
newRD; = 7>(RDy)
return (true, newRD))
else if C; then
newRD; = T3(RDy)
return (true, newRD))
. else if C; then
11: newRD; = T4(RD;)
12: return (true, newRD;)
13: else if C5 then
14: newRD; = T5(RD;)
15: return (true, newRD/)
16: else if Cs then
17: newRD; = T4(RD;)
18: else if C; then
19: newRD; = 75(RD;)
20: return (true, newRD;)
21: elseif Cs then
22: newRD; = T3(RD;)
23: return (true, newRD;)
24: else if Cy then
25: newRD; = To(RD;)
26: return (true, newRD;)
27: elseif Cjo then
28: newRD; = Tjo(RDy)
29: return (true, newRD;)
30: elseif C;; then
31: newRD; = 7;;(RDy)
32: return (true, newRD,)
33: elseif Cyy then
34:  newRD; = Tj,(RDy)
35: return (true, newRD;)
36: else
37: return (false, RD;)
38: end if

SP9XIQUN ALY

4. (a) C4:we=wj, hy <hj, mis adjacent to mg, my, (a,b # j,c)and m;, 1 <t <
p,t # i (Fig. 5.6e).
(b) Ty :

iowi = wi+wp, wa = wa—wp, by = by, — iy (Xa,Ya) = (Xa + Iy, Ya)
(Fig. 5.6f),
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ii. hy — ha+cip+he/2 and by — by — cip — he/2, (X, 51) — (X, 50 +
c¢ip+he/2) for 1 <t < p (Fig. 5.6f).

iii. 7, ( Fig. 5.6g).

Algorithm 5 Transformation of an RD (n) to an another RD;(n).

Input: ARD|,G,,X =X, UX,---UX.
Output: A RD;(n) for H.
1: forall7 froms=1to k do

2: forall (v;,v;) €X; do

3: ve = getNeighbor(v;,v;,G,)

4. (flag, RDy)«TFunction(m;, m;,me,RDy)

5: if flag = true then

6: continue

7: else

8: ROTATE RD; 90° anticlockwise

9: (flag, RDy)«TFunction(m;,m;,m¢,RDy)

10: if flag = true then

11: continue

12: else

13: ROTATE RD; by 180° anticlockwise
14: (flag, RD )« TFunction(m;,m,m.,RDy)
15: if flag = true then

16: continue

17: else

18: FLIP RD; right to left

19: (flag, RD) )« TFunction(m;,m;,m¢,RDy)
20: if flag = true then

21: continue

22: else

23: FLIP RD; upper to lower

24 (flag, RDy)«TFunction(m;,m;,m.,RDy)
25: if flag = true then

26: continue

27: else

28: ROTATE RD; 90° clockwise
29: (flag, RD;)+TFunction(m;,m;,m;,RDy)
30: end if

31: end if

32: end if

33: end if

34: end if

35: end for

36: end for
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Figure 5.7: Geometric demonstrations of conditions and transformations

5. (a) Cs:we=wj, hi < hj and both m. and m; are adjacent to the same side of
the exterior (Fig. 5.6h). Here we assume that exterior has four sides, i.e.,
east, west, north and south.

(b) TIs:
iowi = 2w, (x;,yi) = (xi,yi) (Fig. 5.61),
il. he = he+cijwi = wi/2,(xe,ye) = (xe,yi — hi), and

1ii. h,‘ — hc — h; and (x,-,y,-) — (x,-+wc,y,-) (Fig. 56_])

6. (a) Cg:we=w;, h; <hj, and m; is adjacent to the exterior rectangle my,a # j,c
(Fig. 5.6k).
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(b) Ts :

i. hg — hg— hi, (Xa,Ya) = (Xa,Ya + Cia) and w; — w; +w, (Fig. 5.61),
ii. T, (Fig. 5.6m).

7. (a) C7:we>wj, hi+h. < hjand m; is adjacent to my vertically, my is adjacent
to my vertically, (1 <k < (p—1)) and hj < hy,hy < gy, (1 <k <
(p—1)) (Fig. 5.7a).

(b) T7:
il — b=y, (G 1,5%-1) = (1 — Wi Y1) and wy_ g — wyp +
wy, repeat it for every k, where k = p,p—1,...,2, in succession (Fig.
5.7b),

ii. iy = hy—hj,w; = wj+wiand (xj,y;) = (x;—wi,y;) (Fig. 5.7b),
iii. w; = w;+wj, hj = hj—h; and (x;,y;) = (x; —wj,y;) (Fig. 5.7b),
iv. T1 (Fig. 5.7¢),

v. T (Fig. 5.7d).

8. (a) Cg:we>wi, hi+he=hj,mj,m;,my,...,m,_1 be such that m; is adjacent
to my vertically, my is adjacent to my 1 vertically such that h; < hy,h; <
cit1, (1 £k < (p—2)) and mp,mp,...,m; be such that m; and m, are
adjacent to m,, horizontally, m; is adjacent to m; | horizontally such that
wi+we <wp,wi <wp, (p <1< (t—1)) (Fig. 5.7e).

(b) Ty :
ioh— b —h, wim = wi—r+weand (—1,y-1) = (-1 — W, Yi—1)-
Perform it for every ¢t where t = p,p —1,...,3,2 in succession (Fig.
5.7%),

ii. iy = hi—hj,w; = wj+wiand (xj,y;) = (x; —wi,y;) (Fig. 5.7f),

iii. hj = hj+1, wi —>wj+1, (xj,y;) = (xj,yj+1) and wy — w1 + 1
for 2 < g <t (Fig. 5.71),

iv. wi = wi+wj, hj = hj—h;, and (x;,y;) = (xi —wj,yi) (Fig. 5.7f),

v. T1 (Fig. 5.7g),

Vi. wi—=wit+wi, (x,y) = (xj—w1,yj), hp = hp—cjp, (Xp,¥p) = (Xp,yp+

hj,) (Fig. 5.7h),

vil. By — hj+hy /2, (xe,v6) = Ok — e, ), (p<1<1),(1<k<(p—1))
(Fig. 5.7h),
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10.

11.

12.

viil. hp = hp1+hp—1,(xp,yp) = (xp —1y,y,) (Fig. 5.7h),
ix. T (Fig. 5.71).
(a) Co : we =wj, hi < hj, hi > hg and m; is adjacent to both the exterior rect-
angles m, and my, a,b # j,c (Fig. 5.6n).
(b) Ty :
i hj = hi+hg, wy — wp —wg i, and (xp,¥5) = (Xp,¥p — hiq) (Fig. 5.60),
. hy — hy+h;, (an’a) - (xa "‘Wba)’a) (Fig. 5.6p),
iii. 7, (Fig. 5.6m).
(@) Cio:we=w;+wj, hj =h;, m; is adjacent to rectangles m;, (1 <t < p), (1 #

jc) such that h; < ¥'¥_| hy, and ¢;,, < h, and m; is adjacent to rectangles
my, (1 <k<gq), (k#i,c)suchthath; <Y{ b andcj, < hy (Fig. 5.7),

(b) Tho :.
i. hy = hp—cip, wi > wi+wi /2, and w, = w; —w; /2, (1 <t <(p—
1),
ii. hy = hg—cig,wj—=wj+wi/2,and wy = wr—w; /2, (1 <k < (g—
1),
ii. Tp.
(@ Ci:

We = w;i +wj, hi = hj, wi. < w;, and m; is adjacent to rectangles my,
(1<k<gq), (k#i,c)suchthath; <Y{_ hgandcj, < hy (Fig. 5.7k).

(b) Ty :
i hg—=hg—cigowj—wj+wi/2,and wg = wi—w; /2, (1 <k < (q—
1)),
. 1.
(a) Cr2:

we = wj, hi < hj, wi . = wj, m; is through rectangle?, and m, is adjacent to
both m; and m, (Fig. 5.71).

(b) Tz :

3 A rectangle in a rectangular dual is called through rectangle if its two opposite sides are adjacent
with exterior.
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i (xj,5j) = (xj+1,¥j+1) and (xg, %) = (Xk41,Yk+1), Where every rect-
angle my lies on the right side of m;, (1 < k < ) (Fig. 5.7m),

il. Ay — hi—hjg, wg = wa+we, he = hj, and (xc,y.) = (xi+1,yi+1) (Fig.

5.7m).
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Figure 5.8: (a) An existing rectangular dual, (b-i) intermediate steps of the transforma-
tions, and (i) a reduced rectangular dual.

Theorem 5.5.1. Algorithm 5 can be implemented in O(n)-time.

Proof. Note that

(a) v. can be found in linear time (line 3).

(b) All (v;,v;) € X; can be found in n|X;| time.

k
(c) Time complexity of the lines 1-30is n Y. |X;| = n|X|.
=1
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Hence, the complexity of Algorithm 5 is O(n). O

For instance, consider an RDG G and its rectangular dual RD;(9) shown in Fig.
5.8b and Fig. 5.8a respectively. Using Algorithm 5, the rectangular dual RD;(9) can

be transformed to another rectangular dual RD»(9) shown in Fig. 5.8i.

5.6 Concluding Remarks

We studied the method of transformations among rectangular duals from graph notion.
We derived a necessary and sufficient condition for an RDG to be edge-reducible
to another RDG and implemented it in polynomial time. It is useful to deal with
boundary constraint in rectangular floorplans. The crux of this approach is to identify
the maximum size of the exterior of a rectangular dual. In other words, whenever an
RDG G, = (V,E5) is a super graph of any edge-irreducible RDG G| = (V,E;) such
that £y C E», its rectangular dual can be constructed with desired number of rectangles
on its boundary.

We also derived a necessary and sufficient condition for an RDG to be edge-
reducible RDG and to be edge-irreducible RDG. We also showed that no subgraph
H (except Hamiltonian path) of each of edge-irreducible RDGs is an RDG.

We also showed that an edge-reducible RDG can be restored to a minimal one
(an edge-irreducible RDG) and presented an algorithm (Algorithm 3) to restore the
first one to the minimal one. The removal of an edge from a reducible RDG takes an

interior vertex to the exterior.
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