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Chapter 7

A Class of Area-Universal Rectangular Duals

In this chapter, we describe a class of RDGs wherein each RDG can be realized by an
area-universal weak rectangular dual upto combinatorial equivalence in polynomial
time. We also show that every induced rectangularly dualizable subgraph of graphs in
this class can also be realized by an area-universal weak rectangular dual.

7.1 Introduction

Recall that a rectangular dual is area-universal [22] if any assignment of areas to each
of its rectangles can be realized by a combinatorially weak equivalent rectangular
dual. If there assign area to each of its rectangles, then the rectangular dual is known
as a rectangular cartogram. More precisely, a rectangular cartogram is a map in which
each region is a rectangle enclosing a rectangular area where the size of each rectangle
relies on the area assigned to it.

The rectangular cartograms [49] are used to visualize spatial information (it may
be economic strength, population etc.) of geographic regions, i.e. they are used to
display more than one quantity associated with the same set of geographic regions
(in [49], the population, land area and wealth within the United States were shown
as cartograms). The visual comparison of multiple cartograms corresponding to the
same set of geographic regions can be made easier if each of the cartograms is area-
universal. Area-universal rectangular duals are useful in controlling aspect ratios [30,
44, 79]. At an early stage, the areas of soft modules are not yet known, however
the relative positions of modules of a VLSI circuit are known. Constructing an area-

universal rectangular dual enables us to assign areas to its rectangles (modules) at the



92 Chapter 7. A Class of Area-Universal Rectangular Duals

later stage. Thus, the ability of constructing an area-universal rectangular dual at an
early stage optimizes circuit’s area at the later stage.

Not every RDG can be realized by an area-universal rectangular dual [22, 51].
Rinsma [51] described a vertex-weighted outer planar G (area is assigned to each of
its vertex) such that there exists no rectangular dual for G having these weights as
rectangles’ areas. Thus it is interesting to know when a rectangularly dualizable graph
can be realized by an area-universal rectangular dual. Recently, Eppstein et al. [22]
derived the following necessary and sufficient condition for a rectangular dual to be

area-universal.

Theorem 7.1.1. [22, Theorem 2] A rectangular dual R is area-universal if and only
if every maximal internal line segment of R is a side of atleast one of its component

rectangles.

Eppstein et al. [22] described an algorithm that constructs an area-universal weal
rectangular dual for an RDG G, if it exists. The computational complexity of this algo-
rithm is 0(20(K2)n0(1)) where K is the maximum number of 4 degree vertices in any
minimal separation component. This algorithm is not fully polynomial. For instance,
if K is fixed, it runs in a polynomial time but in general, it runs in an exponential time.

The chapter is structured as follows: any efficient algorithm to construct an area-
universal weak rectangular dual for a given RDG, if it exists, still unknown. We
describe an important class of RDGs in which each RDG can be realized by an area-
universal weal rectangular dual in polynomial time. We also show that every induced
rectangular dualizable subgraph of graphs in the class can also be realized by an area-
universal rectangular dual. This work can be seen in Section 7.2. In Section 7.3, we

conclude our contribution.

7.2  Constructive Algorithm for Area-Universal Weak

Rectangular Duals

In this section, we first identify a class .Z of planar graphs in which every graph admits
an area universal rectangular dual. Then we present four algorithms. Algorithm 6
computes a set P of 4 degree vertices forming a path in a given RDG G which is the
input for Algorithm 7 as well as Algorithm 8. Algorithm 7 decides whether the given
RDG belongs to .. Algorithm 8 constructs an area-universal rectangular dual for the

given RDG that belongs to .. Algorithm 9 computes the position of rectangles to be
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inserted in the rectangular dual. It is used as a call function by Algorithm 8. Then we
analyze the computation complexity of these algorithms. The proof of correctness of
Algorithm 8 follows from Theorem 7.2.1 and the characterization of .Z follows from
Theorem 7.2.2. It is noted that Algorithm 7 works for biconnected graphs only which
may not be seen as a restriction since a separable connected graph can be partitioned
into biconnected subgraphs.

The class .2 of RDGs is defined as follows: Let G be an RDG. Let L be a set of
4 degree vertices forming a path in G such that |L;| > 1. Let L; (i > 2) be the sets of
vertices of G such that L; ; C L; and has exactly one more vertex vy other than the
vertices of L;_ with the property |[N(vs) — (N (vs) NLi—1)| < 3.

Algorithm 6 getDegree4AdjacentVertices

Input: AnRDG G = (V,E)
Output: A set P of 4-degree vertices forming a path

1: P=9¢

2: checked = ¢

3: chainStarted = true

4: forallveV do

5: if d(v) == 4 then

6: while chainStarted == true do

7 P=PU{v}

8: checked=checked U{v}

9: for u € (N(v)— checked) do
10: chainStarted = true
11: if d(u) ==4 then
12: v=u
13: break
14: end if
15: end for
16: chainStarted = false
17: end while
18: if |[P| > 1 then
19: return P
20: else
21: print G does not belongs to .Z.
22: end if
23: end if
24: end for

As the elements of P forms a path, therefore they can be indexed by another set
Py ={v1,v2,...,v } in such a way that v; is adjacent to v;1; where v; is the initial point
and vy is the end point of the path. We use this indexed set P as the input requirement
of Algorithm 8.
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Algorithm 7 Checking whether G belongs to .Z

Input: AnRDG G = (V,E) and P (computed by Algorithm 6),
Output: Either G belongs to .Z or not

1:
2:

11:
12:
13:

A A S

L=P
for allv; € V—Ldo
if v; is adjacent to a vertex of L such that |[N(v;) — (N(v;) NL)| < 3 then
L=LU {V,’}
else
continue
end if
end for
if L ==V then
return G belongs to .
else
print G does not belong to .
end if

the set P = {v,,v3} of 4 degree vertices

For an example, consider an RDG G shown in Fig. 7.1. For G, we have
Ly ={v2,v3},

Ly ={v1,v2,v3} and [N(vy) — (N(vi)NLy)[ =2,

Lz = {vi,v2,v3,v4} and |[N(v4) — (N(va) NLp)| =2,

Ly = {vy,v2,v3,v4,vs} and |[N(vs) — (N(vs) N L3)| = 3,

Ls = {v1,v2,v3,v4,vs,v6} and |N(vg) — (N(ve¢) NL4)| = 2,

Le = {v1,v2,v3,v4,Vs5,v6,v7} and |[N(v7) — (N(v7) NLs)| =3,

L7 = {v1,v2,v3,v4,vs,v6,v7,v8} and [N(vg) — (N(vs) N Lg)| = 1,

Lg = {v1,v2,v3,v4,Vs5,v6,V7,V8,v9} and |N(vg) — (N(v9) NL7)| = 1,

Lo = {v1,v2,v3,v4,Vs,v6,V7,V8,v9,v10} and [N (vig) — (N(vip) N Lg)| = 0.

But there can be more than one path consisting of 4 degree vertices in G. In such

case, using Algorithm 7, we first check whether G belongs to . for each such set. If

we have more than one such set for which G belongs to .Z, we can derive an area-

universal rectangular dual for each such set. If for every such set, G fails to belong

to .Z, then it is inconclusive whether G admits an area-universal rectangular dual.

Another case for inconclusiveness is that each set is either empty or singleton (line 20,
Algorithm 6).

Let R denote a rectangular dual and R;((x;,;),1;, h;) denote the i component rect-

angle corresponding to v; with bottom left coordinate (x;,y;), length /; and height ;.

In Algorithm 8, the input graph is same as that of Algorithm 7.
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Algorithm 8 Constructing an area-universal weak rectangular dual

Input: G= (V,E), P, N(v;), Vv; €V, k and [ are integers such that k = |P;| and / = |[N(v,) N L|, a fix point (xp,yo) in the plane
Output: An area-universal rectangular dual of G
I:L=¢
2:F=¢
3: forall i fromi=1to k do
for all v; € P, do

4
5 X0 = X, Y0 = Vi
6: InsertRectangle R;((xi,yi),1,1) in R
7 X0 ¢ x0+1

8 L=LU{v;}

9:  end for

10: end for

11: forallv, € (V—L)do

12:  if [N(v,) — (N(v;)NL)| < 3 then

13: if N(v,) NL == {v,1 <k <[} then
14: InsertRectangleFunction(F,v;,L,N(v;))
15: L=LU{v}
16: end if
17: end if
18: end for
19: return R
Vg
Va4
Vi v
= 10
Ve
Vo

Figure 7.1: An RDG G; that belongs to .Z.
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Algorithm 9 InsertRectangleFunction(F,v,,L,N(v;))

Input: F,v,,L,N(v,)
Output: R is updated with the addition of rectangle R, for some vertex v;.

1: if yy ==y, == ... ==y, then
xp =min{x;, 1 <k <1}

»

!
insertRectangle R; ((xp,yp — 1), ¥ li,1)in R
=1

else if x; ==x, == ... ==x; then
yp =min{y,, 1 <k <1}

!
insertRectangle R, ((x, — 1,yp),1, ¥ ki) in R
i=1

else if there exists x; # xj,i # j,1 <i,j <[ then
yp =min{y,, 1 <k <1}

e A

I
9:  insertRectangle R,((x, +1p,yp),1, ¥ h;) in R
i=1

10: else
11: xp =min{x, 1 <k <1}

!

12:  insertRectangle R, ((xp,yp+hp), ¥ li;1) in R
=1

13: endif

Now we construct an area-universal rectangular dual for the graph G in Fig. 7.1
using Algorithm 8. Algorithm 8 first updates R by inserting rectangles R, and R3 dual
to the vertices of P as shown in Fig. 7.2a. Again, Algorithm 8 recursively updates
R by inserting rectangles dual to the vertices of V — P = {vy,v4,vs,Vs,V7,V8,V9,V10}
such that |N(v;) — (N(v;) NL)| < 3 as shown in Fig. 7.2b-7.2i. Thus, Algorithm 8

constructs an area-universal rectangular dual as shown in Fig. 7.2i for Gj.
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Figure 7.2: Constructing an area-universal rectangular dual for G| in Fig. 7.1
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Analysis of computational complexity

For Algorithm 6, to search P, the entire list of vertices requires scanning in worst case.
This implies that the computational complexity of Algorithm 6 is |P||N(vs)| = O(n)
where v; is a vertex of the largest degree.

For Algorithm 7, it is easy to note that |V — L| is large if and only if |L| is small.
This implies that both of them can not approach to |V| simultaneously. Therefore,
the computational complexity of Algorithm 7 is |V — L||(N(vi) N L)| = [N(vi)||L||V —
L| = [N(vs)||L||V| = O(n) where vy is the vertex of the largest degree. Hence, the
computational complexity of Algorithm 7 is linear.

The computational complexity of lines 3 —9 and lines 10 — 17 in Algorithm 8
are k|Py| and |V — L|.|(N(v;) N L)| respectively. The complexity of |(N(v;) NL)| is
IN(vs)| x |L| where vy is the vertex of the largest degree. Now max{k|Py|,|V —L|.|(N(vs) N
L)|} = |V|.IN(vs)||L| = O(n). Hence the computational complexity of Algorithm 8 is
O(n).

Remark 7.2.1. The case when |N(vy)| is so large that it approaches to |V| for some
graphs, then the computational complexity of Algorithm 6, Algorithm 7 and Algo-
rithm 8 is O(n?). However in design problems, such graphs do not appear quite often.
Using binary search method, this complexity can be reduced to nlogn but at present,
we are not considering this method.
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Figure 7.3: (a-b) Possible positions for an exterior rectangle R; in the rectangular dual R
of G, (c) dual R’ after deleting R; from R and (d) adjusting R, so that the resultant dual is
a rectangular dual for H;.

Theorem 7.2.1. Every RDG G in ., admits an area-universal rectangular dual.

Proof. We know that a rectangular dual is area-universal if and only if every internal
line-segment is maximal. It is noted that Algorithm 8 updates an empty dual R by

inserting rectangles one by one for each vertex of G such that every resultant dual is
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an rectangular dual and there generates a new internal line segment (one of the sides
of a rectangle) while inserting each rectangle (except the first one) in R. We prove that
every generated internal line segment is maximal and is the side of atleast one of the
rectangles of the rectangular dual for G, i.e., we need to prove that each internal line
segment is not extendable at its endpoints.

As R is updated by inserting a rectangle R; (except for the first one) by Algorithm
8, a new internal line segment /; is generated in R. We claim that /; does not make an
angle of 180° with any of the preceding internal line segments (segment). There arise
the following two possibilities:

i. [; is perpendicular to some preceding internal line segments (segment) meeting
at one of the endpoints of these preceding internal line segments (segment) (for
instance, the new generated line segment /g (say) due to the insertion of Rg in
Fig. 7.2e is perpendicular to the preceding internal line segments lying at the

common borders of R; and R», R, and R3, and R3 and R5),

ii. none of the endpoints of any of the preceding internal line segments (segment)
is intersected by /; (for instance, the new generated line segment /3 (say) due
to the insertion of R3 in Fig. 7.2b does not meet to the preceding internal line

segment [3).

From above two possibilities, it is clear that /; does not allow to extend the preced-
ing internal line segments (segment). Since /; is arbitrary. Hence every internal line
segment of R is not extendable and is one of the side of rectangles of R. Hence the

proof. O

Theorem 7.2.2. Every induced rectangularly dualizable subgraph of the graphs in .
admits an area-universal rectangular dual.

Proof. Suppose that H, is an induced rectangularly dualizable subgraph of any of the
graph G = (V,E) of Z. Since Hj is a rectangularly dualizable graph, it admits a
rectangular dual where no four component rectangles meet at a point. This implies
that the interior regions of H; are triangular. Since Hy is an induced subgraph of G, H;
is the graph whose vertex set V' C V and the edge set E’ contains the edges of G whose
endpoints are in V'. Suppose that V/ =V —§. Clearly, S is nonempty. First we claim
that S contains an exterior vertex of G. To the contrary, suppose that S has no exterior
vertex of G. This implies that S only contains the interior vertices (vertex) of G and

hence H has atleast one region of length atleast 4 which is a contradiction to the fact
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that every interior region of Hy, is triangular. Therefore, S contains atleast one exterior
vertex of G. Let v, € S be an exterior vertex of G. Consider an induced graph H; of
G obtained by deleting v, together with all the edges incident to v;. There arise two
possibilities for deletion of the rectangle R; (corresponding to v;) in the rectangular
dual R for G as shown in Fig. 7.3a and 7.3b. Note that the remaining possibilities
can be covered by flipping or rotating R. The first possibility shows that on deleting
R, from R, the remaining part is still an area universal rectangular dual for H; while
the second possibility shows that on deleting R, from R, the remaining part is not a
rectangular dual (see Fig. 7.3c) for H;, but can be transformed to an area universal
rectangular dual by adjusting the dimension of the rectangle R, as shown in 7.3d.
Proceeding as before, we can find an exterior vertex vy € § — v, since H; being an
induced subgraph of G admits an area-universal rectangular dual and the induced sub-
graph H, of Hj obtained by deleting v from H; admits an area-universal rectangular
dual. Continuing in this way until S = ¢, we find that H;, admits an area-universal

rectangular dual. Hence the proof. 0

7.3 Concluding Remarks

In this chapter, we have identified a class .Z of RDGs wherein each RDG can be
realized by an area-universal rectangular dual. The algorithm described by Eppstein
et al.[22] for the construction of an area-universal weak rectangular dual for an RDG
if it exists is, in general, not fully polynomial. We have described a polynomial time
algorithm to construct an area-universal weak rectangular dual for every graph in .Z.
Further every induced rectangularly dualizable subgraph o i
area-universal weak rectangular dual.

Recently the most challenging problem is to find an efficient algorithm to construct
an area-universal rectangular dual for a given RDG, if it exists.

It can be observed that the importance of class .Z lies in the fact that if a given
RDG G can be split into the union U of graphs in ., then G also admits an area-
universal weak rectangular dual. In fact, area-universal weak rectangular duals for
RDGs from U can be glued to obtain an area-universal weak rectangular dual for G.
Contrarily, it is interesting to find out in future that if a given RDG can not be split into
the union of graphs in .Z, then whether this RDG can be realized by an area-universal

weak rectangular dual.
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