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PREFACE TO SECOND EDITION 

The most important change in the second edition of Elastic Energy 
Theory is the revision of the notation. In the preface to the first edition 
the author acknowledged his indebtedness to August Foppl, from whom 
he obtained the formula PA = 2CP/S for the elastic deformation of 

trusses. The formula PA =/ 
MpMqds 

El ’ 
for the elastic deformation of 

beams, the author developed independently by a process rigorously 
analogous to the development of the formula for trusses. He was un¬ 
aware at the time that this formula already existed. 

Notation is a serious problem in scientific writing. Viewing the 
matter in retrospect, the author deemed it worth while to simplify the 
original notation and bring it into closer agreement with notations found 
elsewhere. In this second edition, then, what was originally written as 

_ f MpMqds, . r, r 
PA = J —IS now written as PA = J — 

The subject matter and its arrangement are substantially maintained. 
Some new material, however, has been added, notably on signs, page 60; 
symmetry and anti-symmetry, page 95; piston rings, page 104; pipe 
problems, etc., page 126; spiral springs, page 185; and columns, 
page 226. 

The author wants to express his indebtedness to Mr. P. C. Hu for the 
very effective assistance which he has rendered. 

Ann Arbor, Michigan 

January, 1942 

J. A. Van den Broek 





PREFACE TO FIRST EDITION 

The theory of strength of materials, assuming elasticity, gives rise 
to two further theories and offers various methods for the analysis of 
statically indeterminate structures. While in the Teutonic countries 
the “Formanderungs Arbeit,” energy of deformation, generally receives 
preferred consideration, in most American and English textbooks on 
strength of materials the elastic energy theory is either entirely omitted 
or else very inadequately treated. American textbooks on strength of 
materials generally stress the theory of the elastic curve. They conven¬ 
iently neglect to discuss such problems as require the theory of elastic 
energy for their solution, and so place the burden of developing that 
theory upon the authors of books on design. 

Thus it happens that the student is likely to have the theory of 
elastic energy brought to him piecemeal. One part, as it applies to 
redundant frames, will come to him from one author, and other parts 
applying to arches, bents, or resilience, will come from others. The 
student thereby may be compelled to adjust himself to a varying termi¬ 
nology. He finds after much confusion that the phrase ‘‘kinetic theory 
of structures” has reference to structures that are at all times in a state 
of static equilibrium; that “virtual velocities” means imaginary dis¬ 
placements; and that “equivalent loads” signifies bending-moment 
areas. Further, he meets with the theory of least work, which tells 
only a small part of the story of elastic energy and tells even that very 
inadequately. One of the purposes of this book is to eliminate this con¬ 
fusion. 

In connection with the elastic energy theory, the author advances 
two claims: First, that the theory of elastic energy may be developed 
inductively from the principles of conservation of energy equally as 
well as it may be developed deductively from Castigliano's partial differ¬ 
ential equation; second, that the theory of elastic energy is a general one, 
that it is alike applicable to trusses, straight beams, bents, and curved 
beams. 

The theory of elastic energy, within the assumption of elastic be¬ 
havior of material and the principle of superposition, will accomplish all 
that any other theory or method will do. Furthermore, in the author's 

ix 



X PREFACE TO FIRST EDITION 

opinion, it is not only the most general theory available, but it is also 

the simplest and easiest to grasp. 
The basic philosophy given in Chapter II along with the principle 

of conservation of energy underlies every argument and every analysis 

of the problems either discussed in the text or listed in the back of the 
book. 

During the past ten years the subject matter of this book has been 

given from mimeographed notes to seniors and advanced engineering 

students at the University of Michigan. The analytic integration 

method was used while the possibilities of the graphical summation 

method were merely pointed out. Vfhen, in the fall of 1929, the author’s 
colleagues decided to teach the elastic energy theory in the elementary 

course in strength of materials, the graphic summation method was 

adopted as the most general and the one most easily applied. A similar 
procedure has been followed in this book. 

The question of what class of readers to keep in mind while writing 

this book, what previous training to presuppose, has been somewhat of 

a problem. The author’s own classes of college students have already 
been mentioned. Although they have training in calculus, he not only 

prefers to present to them the graphic summation method because of its 

simplicity but also feels justified in doing so. Another type of men 

who may conceivably be interested was suggested by a group of prac¬ 

ticing engineers, to whom the material of this book was presented in 

evening classes in Detroit, Michigan. It is among men with college 
training and several years of practical experience that the author has met 

with the greatest response and the most sincere appreciation for his 
efforts in expounding one general philosophy, applicable to the largest 

possible range of problems in structural design. Readers with previous 

experience in the analysis of statically indeterminate structures are 

referred to the last chapter in this book, ‘^Estimate of Elastic Energy 
Theory.” 

The book is not a handbook, and browsing therein is likely to lead 

to disappointment and to an incorrect estimate of its contents. Great 

pains have been taken to anticipate queries and to treat matters in the 

greatest detail. 

The majority of examples and problems are original. For the solution 

of the problems on combined beam and truss action listed in the back of 

the book, the author is indebted to Mr. H. J. Kist of New York City. 

August Foppl’s ‘Torlesungen fiber technische Mechanik” has for years 

been the author’s inspiration. Some problems are taken from Foppl. 

The author favors what the Germans call ‘‘Vorlesungen,” lectures, as a 
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method of procedure in either classroom or textbooks. The material in 

this book, therefore, is presented in the same order and sequence that he 

employed in presenting it to his classes. 

J. A. Van den Bkoek 
Ann Arbor, Michioan 

February, 1931 





NOTATION AND TYPOGRAPHICAL CONVENTIONS 
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ELASTIC ENERGY THEORY 

area (in.^). 
linear acceleration (ft./sec.^). 

width (in.). 
constant; specifically (C = LJAE) (in./lb.), 
distance from neutral axis to outer surface of beam, 
diameter, as of spiral spring coil or spiral stairway (in. or ft.), 
diameter, as of spiral spring wire (in. or ft.), 
depth (in.). 
modulus of elasticity in tension or compression, E = s/e (Ib./in.^). 
linear strain (A/Z), abstract number, 

eccentricity (in.). 
shear strain abstract number. 
linear relationship between stress and strain. A material is elastic 

when E is constant in the equation s = Ee, 
auxiliary force (lb.). 
tensile or compressive forces in members of trusses caused by the 

application of an auxiliary load of magnitude F (lb.), 
coefficient of sliding friction, abstract number, 
modulus of elasticity in shear, G = Ss/ea (Ib./in.^). 
acceleration of gravity (32.2 ft./sec.^). 
horizontal reaction Qb.). 
depth (inches), I = hh//12, 
height (in. or ft.), 
horsepower (ft-lb./min.). 

moment of inertia of an area about a line (in.^). 
radius of gyration (in.) 1 = Ai^, 
moment of inertia of an area about a point (polar moment of 

inertia) (in.^). 
radius of gyration (in.) J = Af. 
constant, 

length (in. or ft.), 

length (in. or ft.). 

bending moments in beams due to actual loading (in-lb. or ft-lb.). 

auxiliary couple (in-lb.). 
bending moment at any section in a beam due to an auxiliary 

force F, couple M', or torque T' (in-lb.), 
xiii 



XIV NOTATION AND TYPOGRAPHICAL CONVENTIONS 

N constant, 
n constant. 
n number of revolutions per minute (r.p.m.). 
P concentrated load (lb.). 
p pressure per unit area (Ib./in.^). 
Q concentrated load. 
E radius, as of curved beam (in. or ft.). 
R radius of curvature (in.). 
El, E2, etc. reactions (lb.). 
r radius, as of spiral spring wire (in. or ft.). 
S tensile or compressive forces in members of trusses caused by the 

application of the actual loading (lb.). 
s tensile or compressive stress (force intensity) (Ib./in.^) s = Me/1, 
s distance along an arc (in.) s = (i)E or distance. 

Si elastic limit stress, 
s, shear stress Ss = VyA/hl, 
Strain deformation per unit length (abstract number). 

Stress load intensity (Ib./in.^). 
T torque in beams or shafts due to actual loading (in-lb. or ft-lb.). 

T forces in members of redundant trusses caused by the actual 
loading after all redundants have been removed (lb.). 

T tangential forces in rings, 
r' auxiliary torque (in-lb.). 
t torque at any section in a beam due to an auxiliary force F, 

couple M', or torque T' (in-lb.). 
t thickness (in.). 

t temperature (degrees). 
U tensile or compressive forces in members of trusses caused by the 

application of an auxiliary load of unit magnitude (lb.). 
u weight per unit volume (in case of hydrostatic pressure p = uy, 

w = uyt) (Ib./in.^). 
V volume. 
V shear (lb.). 
V linear velocity (ft./sec.). 
V variable distance from neutral axis. 
W energy or work (in-lb. or ft-lb.). 
W total distributed load (lb.). 
w load per unit distance (Ib./in. or Ib./ft.). 
X or y linear displacements, ordinates of elastic curves (in.). 
X distance to centroid measured from y axis. 

V distance to centroid measured from x axis. 

z variable radius. 
A deformation (in.) A = c? or A = esh 
A Knear displacement as of a panel point on a truss or of a point 

on the elastic curve of a beam (in.). 

0£, jS, By and angles (radians or degrees). 
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coefiicient of theraial expansion, 
angular acceleration (radians/sec.^). 
angular velocity (radians/sec.), 
poisson’s ratio, 
force vector (lb.), 
torque vector (in-lb.). 

m bending-moment diagram. 

M bending-moment diagram, 

summation (tabular addition). 

/ summation (integration, either analytical or semi-graphical). JrB rx2 r<t> rA 
f , / , / or / . 
A i/O A 

It is entirely immaterial whether the integration proceeds from 

left to right or from right to left. I means integration from a 

point A on a closed structure, such as a culvert or a ring, entirely 
around the structure back to the starting point A. 

If, for purposes of cross reference, equations are labeled, they are marked 
(a), (6), (c), etc. Formulas are designated as (1), (2), (3). 
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CHAPTER I 

STATICALLY DETERMINATE VERSUS STATICALLY 
INDETERMINATE STRUCTURES 

In the analysis of a large group of engineering structures the equa¬ 
tions of static equilibrium (for coplanar structures = 0, hFy = 0, 
and ilf = 0) are sufficient to enable us to solve for unknown reactions, 
shears, and bending moments, and for unknown forces in various 
members in structures. The frame shown in Fig. 1 and the beam shown 
in Fig. 2 represent two such structures. The forces in the members of 
the frame, the reactions, shears, and bending moments at various 
points in the beam, may be completely determined by the foregoing 

equations. Structural types that lend themselves to this method of 
analysis are designated by the term “statically determinate structures.” 

In other types of engineering structures the conditions of static 
equilibrium do not provide sufficient equations to solve for all the 
unknowns. If, for example, an additional bar were introduced in Fig. 1, 
or if the beam in Fig. 2 were built into a wall instead of being hinged at 
the left support (see Figs. 3 and 4), one additional unknown would be 
introduced in each case. (In the former a new force would appear in 
bar e [Fig. 3], and in the latter an additional bending moment would 
occur at the left end of the beam [Fig. 4].) Since we need as many equa¬ 
tions as we have unknowns, the introduction of an additional unknown 
would call for an additional equation. If the equations of static equi¬ 
librium are just sufficient for the analysis of problems represented by 
Figs. 1 and 2, they would obviously not be adequate for the analysis of 

1 



2 DETERMINATE VERSUS INDETERMINATE STRUCTURES 

those given in Figs. 3 and 4. Structures of this type are designated by 
the term ^^statically indeterminate structures.’^ 

This distinction between the two types of structures is essentially a 
mathematical one. It explains and justifies the terminology by which 
the two main types of engineering structures are differentiated with 
regard to stress and strain analysis. Nevertheless, it is important also 
to realize clearly the physical distinction which exists between the two 

types. 
Physical Distinction between Statically Determinate and Statically 

Indeterminate Structures. In the analysis of structures such as those 
of Fig. 1 and Fig. 2 we assume: first, that the structure and its indi¬ 
vidual members shall be strong enough to resist whatever forces may 
be brought to bear upon them; second, that it shall not deform to the 

extent of disturbing materially the geometric relation between its 
various parts. 

In Fig. 1 we find not only that every bar has to carry a definite 
force, but also that all the bars are necessary to the proper functioning of 
the structure. In Fig. 2 the left support must supply a horizontal as 
well as a vertical reaction. If it were changed into a sliding support, 
such as the right one, the structure would not be stable. If in Fig. 2 
the right support were removed, the structure would likewise become 
unstable. 

As a characteristic physical feature of statically determinate structures 

it may he said, then, that every member, every support, every part, has a 

definite function to perform. 

..Since Fig. 3 was obtained by the introduction of an extra member 
into Fig. 1, it may be said that Fig. 3 contains more members than are 
absolutely necessary for purposes of equilibrium. Not only bar e, but 
also any other bar, may be regarded as superfluous. In fact. Fig. 3 may 
be looked upon as representing two trusses, as illustrated by Figs. 5 and 6, 
both functioning to the same end, namely, that of carrying the load Q 

as shown in Fig. 3. The main difficulty in the analysis of Fig. 3 lies in 
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determining the value of Qi, that portion of Q carried by the truss 
shown in Fig. 5, and the value of Q2> the portion of the load Q carried 
by the truss as shown in Fig. 6. In Fig. 2 the function of the right 
reaction is to hold up the right end of the beam. If, however, the beam 
is built into a wall at the left end (Fig. 4), the beam might conceivably 
function as a cantilever beam without aid of a reaction at the right end. 
It follows, then, that the bending moment supplied by the wall and the 
right reaction in Fig. 4 function to the same end. 

A characteristic physical feature of statically indeterminate structures^ 
therefore, is that two or more members, two or more supports, two or more 
parts, function to one and the same purpose. 

In determining the reactions, forces in members, etc., of statically 
determinate structures, the sizes of various members and the elastic 

behavior of the structure are immaterial, provided that the structure 
is strong enough to carry the superimposed loads, and provided that the 
deformations are not sufficient to affect materially the geometric rela¬ 
tions of its various parts. 

This is not true in the analysis of statically indeterminate struc¬ 
tures. In Fig. 3, for example, if we assume all bars to be of equal size, 
bars a, e, c, and d to be of steel and bar b to be of rubber, it would seem 
that the truss as shown in Fig. 6 will have to carry the major part of the 
load. This is true simply because bar b is not capable of transferring any 
large portion of the load to the truss shown in Fig. 5. Similarly, in Fig. 4 
the magnitude of the right reaction depends very largely on whether or 
not the reaction itself will yield, or whether or not the left support is 
completely rigid. If the right support (Fig. 4) should settle slightly 

when the loads are placed upon the beam, less reaction would result 
than there would be if the support permitted no such settling. Since 
the elastic properties of various members so materially influence the 
magnitude of the stresses and forces set up in statically indeterminate 
structures, it would seem that we must take into account the elastic 
behavior of these structures if we are to make an analysis of the stresses 
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and strains involved therein. We have stated before that, for the 
analysis of statically indeterminate structures, the equations of static 
equilibrium are insufficient. These equations, for reasons just given, 
must be supplemented by others involving the elastic behavior of struc¬ 
tures. 

The theory of elasticity gives us a choice of two philosophies, two 
methods of attack, which may lead to identical mathematical expres¬ 
sions, but which differ fundamentally in underlying physical concepts. 
The one method is based upon the consideration and the analysis of the 
elastic curve; the other rests upon the principle of the conservation of 
energy. The first method is found in nearly all English textbooks on 
strength of materials, and it may be studied by consulting any one of the 
numerous textbooks on the subject. Although effective in certain in¬ 
stances, it is limited, because curvature is very much of an abstraction 
ai'd in complicated problems becomes greatly involved. Furthermore, 
the theory of curvature is limited to beams and is inapplicable to trusses. 

In these pages it is proposed to base our arguments upon the principle 
of conservation of energy, which, w^e believe, makes a direct and strong 
appeal and which is applicable to trusses and beams alike. 

Deflections and displacements of engineering structures are rarely 
important for their own sake. As a key to the analysis of statically 
indeterminate structures, however, they are of the greatest significance. 
In Fig. 4, for example, we may have little interest in the extent to which 
the beam may sag in the middle. However, if the displacement of the 
right end of the beam can be expressed in terms of the load on the beam 
and of its right reaction, if we know in advance that this displacement is 
a certain amount, zero for instance, such an expression will produce the 
needed additional equation. The expression statically indeterminate^^ 
does not mean that the equations of static equilibrium do not apply. These 
equations are always essential for a complete analysis. It means that the 
equations of static equilibrium must be supplemented. 

Limitations of the Theory of Elasticity, The foregoing arguments 
will form the basis of our present analysis of statically indeterminate 
structures. Large and impressive books based upon the theory of 
elasticity and full of mathematical arguments might be written. In 
common parlance the terms “theoretical” and “mathematical” are not 
infrequently used as synonymous terms. It must be clearly recognized, 
however, that the science of mathematics, as far as engineering is con¬ 
cerned, is merely a tool, a means to an end. A theory is not correct 
unless it takes into account all the facts bearing upon the subject at 
hand. If it does this accurately, it will be correct, independently 
of the amount or kind of mathematical reasoning involved in the 
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development of the theory. If in our theory relating to engineering 

structures we assume perfect homogeneity and perfect elastic behavior, 

our conclusions will be correct only so far as these structures actually 

are homogeneous and elastic. Steel is almost perfectly elastic within 

a certain range; concrete and wood are neither so elastic nor so homo¬ 

geneous. Therefore, the results of our theory as applied to structures 

made of concrete and wood will be in error to the extent that these 

materials fail to behave in accordance with our assumptions. 

Mathematical developments may be impressive because of their 

intricacy and the amount of work often involved. Assumptions, on the 

other hand, are difficult to emphasize because once they are stated one 

can do little more than repeat them. Nevertheless, the importance of 

the assumptions upon which a theory is based is at least equal to that 

of the rest of the theory, mathematical or otherwise. In our treatment 

of the elastic energy theory we assume: 

First, that the structures to be analyzed shall behave as per¬ 

fectly homogeneous and elastic bodies. 

Second, that the deformations of the structure are not sufficient 

to alter materially the geometric relation of its various parts to one 

another. 

Third, that the law of superposition holds. 

It should constantly be kept in mind that, whenever we violate any 

one of the assumptions upon which a theory is based, the conclusions 

reached by the theory will be in error. Furthermore, it should be 

remembered that the possibility remains for the development of other 

theories, taking other factors into account. (See footnotes, page 267.) 



CHAPTER II 

ELASTIC ENERGY 

Work is defined as the product of force and distance. For a con¬ 
stant force F acting over a finite distance A, the work done is given by the 
expression W = FA. When we have a variable force, acting over an 

infinitesimal distance dA, the work done is expressed as dW = FdA. 
The total amount of work over a finite distance may be obtained by 
means of the summing process called integral calculus, thus: 

Force being expressed in pounds and distance in feet or inches, work 
is expressed as foot-pounds or inch-pounds. By plotting force F as 
ordinate and distance A as abscissa, work W may be represented graph¬ 

ically as an area. 
If, for example, a weight Q fastened to a rubber bar is placed upon 

one’s hand and the hand is lowered, the load on the bar will uniformly 
increase from zero to Q, and the load on the hand ^\ill gradually decrease 
from Q to zero. The total work done by Q will be its change of potential 

energy. Work equals the weight Q times the distance A and is repre¬ 
sented by the rectangular area QA (Fig. 7). The weight acts partly 
against the rubber bar and partly against the hand. The work expended 
in stretching the rubber bar is represented by the left triangular area 
QA 

2 
(Fig. 7), whereas the work done against the hand is shown by the right 

triangular area and is represented by the same expression 
QA 

2 ' 

If the 

weight on the rubber bar at some intermediate position is called F', the 

differential quantity of work done on it while stretched a differential 

distance dA will be dW = F'dA. This differential work dW is repre¬ 

sented by the small rectangle within the first triangle (Fig. 7). If the 

bar is perfectly elastic, the force applied to it is directly proportional 
to its elongation. The total work done on it will be stored within it 

in the form of elastic energy, to be given up when the load is removed 

(Fig. 7). 
6 
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If we assume that a load F is suspended from the rubber bar and sub¬ 
sequently a load Q is added (Fig. 8), then the total energy stored in the 

bar will be equal to the large triangle . This large 

triangle may be divided into two small triangles o and n and a rec¬ 

tangle m. Triangle o represents the energy stored in the rubber bar 
as F is gradually applied, the force increasing from zero to F. Triangle n 
represents the energy that would be stored in the bar if Q were gradually 
applied, the force increasing from zero to Q. As Q is applied, however, 
F is in full action. During the application of Q, F is displaced over the 
distance A2. The work done on the rubber bar by F during the application 
of the load Q is represented by the rectangle m and is equal to FA2. 



CHAPTER III 

ANALYSIS OF FRAMES 

DISPLACEMENT OF ANY JOINT IN A FRAME IN ANY DIRECTION 

We assume a frame to be loaded with any system of loads Q, and 
propose to find the displacement of point A in the direction 6i (Fig. 9a). 

As the loads are placed upon the structure, each member will behave 
like the rubber bar shown in Figs. 7 and 8. The elongations and con¬ 
tractions of the various bars may be small, but if the structure is elastic 

and if, for the purpose of stress computation, it may be assumed to 
maintain its original shape, such decrease or increase of length will be 
proportional to the stresses in the bars. These stresses in turn are 
proportional to the loads placed upon the structure. 

For purposes of analysis let us assume an auxiliary load F to be 
applied at point A in the direction 6i. The load F causes a displacement 
of point A. The dead load likewise causes such displacement. We are, 
however, in no way concerned with these displacements. Our sole 
interest is in the displacement of A in the direction 0i as caused by the 
actual loads Qi and Q2, etc. 

8 



DISPLACEMENT OF ANY JOINT 9 

Let us direct our attention to what takes place in any one member, 
say bar k. As the auxiliary load F is applied, bar k will be loaded with 
a force (Fig. 9&). If subsequently the actual loads Qi, Q2, etc., 
are applied and the principle of superposition is assumed to hold, 
another force will be superimposed upon the already Pixisting force. 
This force is designated Sk. Corresponding to the increment of force 

Sk, the bar will change in length 
SkLk 

AkEk 
, in which Lk stands for length 

of bar, Ak for area of bar, and Ek for its modulus of elasticity. A part 
of the total elastic energy stored in bar k is due to the auxiliary force F 
acting on the truss while the actual loads Q are being applied, or to a 
force fk acting on bar k while force Sk is being superimposed. This 
elastic energy is graphically represented by the smaU rectangle in Fig. 

9b, and its value is expressed by the term-'^'^^‘ We may represent the 

term 

Thus 

Lk 

AkEk 
fhEkLk 
AkEk 

AkEk 

by the constant Ck, called the elastic coefficient of bar k. 

= CkfkSk- 

What is true for bar k is true for any bar in the structure. The 
total energy stored in the structure, stored because the auxiliary load F is 
assumed to be acting on the structure before loads Qi, Q2, etc., are 
applied, is therefore the sum of expressions of the form CfS for all bars. 
If the structure is perfectly elastic, if the principle of superposition is 
applicable, and if the principle of conservation of energy is assumed to 
hold, then this stored internal elastic energy must equal the work done 
by F. F does no work in a direction at right angles to its line of action. 
Therefore we may say 

FA = 2(7/5. Formula (1) 

Here F = an auxiliaiy load applied at a certain point in the frame 
acting in the direction 

A = displacement of this point in direction 0i. 
2 = summing over all bars in the frame. 
/ = forces in bars due to auxiliary load. (First applied.) 
S = forces in bars due to actual loads. (Subsequently applied.) 
(7 = elasticity coefficient for bars. 

The auSffliary load F may be assumed to be of any value. In the 
developing of formula (1) it is shown that the/forces are proportional 
to F, and so F may be canceled if desired, or F may at the outset be 
selected as unity. 
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Formula (1) is sometimes written A = SC/S. This, however, is to 
be avoided. Formula (1) purports to equate elastic energy against 
external work. As written in the modified form it would appear as if 
inches were equated against energy, thus obscuring the most essential 
attribute of the formula. 

Example 1 

To find the horizontal displacement Aj, of point B (Fig. 10a) under 
the action of vertical load Q, we introduce an auxiliary load F (Fig. 106) 
which stresses all the bars with forces / proportional to the stress dia¬ 

gram (Fig. lOd). The values of /, letting F = 10,000 lb., are given in 
the table. The forces S, shown in Fig. 10c, are caused by the actual 
load Q. The values of S for the various bars, letting Q = 10,000 lb., 
are also shown in the table. ■ 

Bar Length Area 
^ AE 

s f CfS S* CS* 

a 346 2 0.00000577 + 8,667 -5000 -250.0 + 75,000,000 433 
b 400 2 0.00000667 -15,000 +8667 -867.0 +225,000,000 1500 
c 200 3 0.00000222 + 5,000 +8667 + 96.5 + 25,000,000 55 
e 346 3 0.00000384 + 8,667 -5000 -166.5 + 75,000,000 288 

l^CfS = 
-1187.0 

2276 

A* = 
ZCfS 

F 

-1187 

10,000 
= - 0.119 in. 

The minus agn indicates that the displacement of point B is in opposition 
to the sense of the assumed load F, that is, to the left. 
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Example 2 

To find the vertical displacement Aj, of point B (Fig. 10a) under 
the action of a vertical load Q, we assume an auxiliary load F to be 
acting at point 5 in a vertical direction before load Q is applied. Since 
we already have a stress diagram S and since we are at liberty to assume 
F to be of any value, we may assume F to be equal to Q, in which case the 
/ forces will be equal to the S forces and formula (1) becomes 

ZCfS 2CS2 

F ^ F 

+2276 

10,000 
= +0.228 in. 

The plus sign in this answer indicates that the displacement of point 
B has the same direction and sense as the auxiliary load F, which in 
this case is the same as the actual load Q. 

Example 3 

Formula (1), as it stands, provides a means for the solution of cer¬ 
tain types of statically indeterminate trusses. For example, let Fig. 11 
represent a five-panel truss over three supports. For the sake of sim¬ 

plicity the slope of all inclined members is assumed to be a 3 :4 : 5 
relationship; furthermore, the areas of all bars are assumed to be equal. 

Fig. 12. 

The supports at points A, C, and F are assumed to be unyielding, and 
the vertical loads applied at points B, D, and E are assumed to be 
100 tons each. The truss is once redundant, that is, it contains one 
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more member, or one more reaction, than is absolutely necessary for 
stability. Let us select R2, the reaction at C, as the redundant one. 
R2 having been obtained, the other two reactions and the forces in all 
the members may be obtained by means of the equations of statics. 

With R2 removed (Fig. 12) the truss is statically determinate. 
The forces in the members under this condition of loading are indicated 
on the respective members for convenient reference. 

With the loads at JB, D, and E removed and R2 replaced by a con¬ 
centrated load F, say of 100 tons (Fig. 13), the truss is statically deter¬ 

minate and the forces in members for this condition of loading are 
recorded on Fig. 13. 

Under the condition of loading represented by Fig. 12 the vertical 
^CfT XLfT 

displacement of C may be found as Ai = —— = • Under 
r IwAE 

the application of a single load of 100 tons at C (Fig. 13), the vertical 
displacement of C may be found as 

^ XCfT ^ ^ 
F ^ F mAE 

R2 may be regarded as the force necessary to return point C to its 
original position after having been displaced a distance Ai under the 
action of the external loads (Fig. 12). If a force of 100 tons displaces 
point C a distance A2, then R2J the force necessary to reduce the dis¬ 
placement Ai to zero, is 

Ai 
i?2 = —— X 100 tons = 

^2 

~SL/T IQOAE 
^X-^XIOO 

-SL/r 

2Lf 
X 100 tons = 

167,850,000 

849,000 
= 198 tons. 

In order to reduce to a Tninimuin the numerical work in this example, 
the amplest posable truss was assumed, and the moduli of elasticity 
and areas of all bars were assumed to be equal. The factors A and E 
therefore cancel. In any practical example, however, they would not 



DISPLACEMENT OF ANY JOINT 13 

cancel, and where our table shows columns for the values L, L/T, and L/^, 
columns for the values C, CfT and Cf^ would have to be substituted. 

Bar L T / LfT Lf 

a 6 -210 + 90 - 113,400 48,600 
h 6 -270 +180 - 291,600 194,400 
c 6 -330 +120 - 237,600 86,400 
d \ 6 -240 i + 60 - 86,400 21,600 
e 5 -175 + 75 28,125 

f 5 +175 - 75 - 131,250 28,125 

g 5 - 50 + 75 28,125 
h 5 + 50 - 75 - 37,500 28,125 
i 5 - 50 - 50 

3 5 + 50 + 50 + 25,000 
k 5 + 75 - 50 
1 5 - 75 + 50 - 37,500 
m 5 +200 - 50 
n 5 -200 + 50 - 100,000 75,000 
0 6 +105 - 45 - 28,350 12,150 

V 6 +240 -135 - 194,400 109,350 

Q 6 +300 -150 - 270,000 135,000 
r 6 +285 - 90 - 153,900 48,600 
8 6 +120 - 30 - 21,600 5,400 

-1,678,500 849,000 

In adding the LfT column it is essential that strict attention be 
paid to signs. Signs frequently prove the largest source of errors in 
the application of our theory. The minus sign under the LfT column 
means that the displacement of C (Fig. 12), due to the loads at points 
B, Z), and E, is of opposite sense to the auxiliary load as shown in Fig. 13. 

If we assume the areas of all bars equal to 20 sq. in., their lengths 
either 24 or 20 ft., and E equal to 15,000 tons per sq. in., then 

^ XLf ^ 849,000 X 12 X 4 ^ . 3. . 
^ “ mAE 100 X 20 X 15,000 ■ “■ 

(The lengths of bars in the L colunm are to be expressed in inches. 
To modify the lengths as given in the table requires a multiplication 
factor 4, changing the units 5 and 6 to 20 and 24, respectively, and the 
factor 12 to reduce the feet units to inch units.) A change of 1 in. 
in the elevation of point C, therefore, would change the value of R2 by 

100 «o o . , or 73.8 tons. 



CHAPTER IV 

REDUNDANT FRAMES 

The last example given on the foregoing pages constitutes a special 
case of a frame with one redundant member. In this frame any one 
of the reactions whose displacement is known to be zero may be selected 
as the superfluous or redundant one. This procedure, however, is not 
always practicable or desirable. Our analysis should be as general as 
possible and independent of the condition of zero displacement. Such 
an analysis may be made by assuming any one or more bars in a stati¬ 
cally indeterminate frame as redundant, and by a reasoning analogous 
to that followed in the development of formula (1). 

FRAME WITH ONE REDUNDANT MEMBER 

Let Fig. 14a represent a frame with one redundant member. 

Let Say Sbf etc., represent the forces in bars a, b, etc., caused by the 
actual loading Qi, Q2j etc. (In our example [Fig. 14a] we have 
assumed the actual loading to consist of but a single concentrated 
load Q.) 

Let bar e be regarded as the redundant member. 

Let Ta, Thy Tcy etc., be the forces in bars a, 6, c, etc., caused by the 
actual loading Qi, Q2? etc,, when the redundant bar e is removed 
(Fig. 146 and 14/). 

Let Uay Uby Ucy ctc., be the forces in bars a, 6, c, etc., caused by a 
tensile force unity acting in the place of the redundant bar e 
(Fig. 14c and 14gr). 

Let R be an initial auxiliary force acting in the redundant bar e 
(Fig. 14e). 

In the development of formula (1) we introduced an auxiliary force 
F merely for purposes of analysis. In the analysis of redundant frames 
a similar procedure is advantageous, but instead of an external force F 
we assume an auxiliary internal force R, acting in the redundant bar e, 

14 
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We are familiar with the procedure of computing live-load forces in 
structures independently of dead-load forces. Similarly in our example, 
if the principle of superposition is to apply, the forces Sa, Sb, Sc, etc., 

caused by actual loads Qi, Q2, etc., will be independent of dead-load 
forces, erection forces, and temperature forces that may be within the 
frame before the application of load Qi, Q2, etc. To gain a physical 
picture of the idea, let us assume a tumbuckle to be built into the 
redundant bar e, and let this tumbuckle be turned so as to cause a 
force to be set up within bar f. Previously, with bar e removed and 
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tensile forces of magnitude unity assumed acting in its place (Fig. 14c), 
we designated the resulting forces in the remaining bars as Uh, 
etc. The forces caused by the auxiliary force R acting in bar e may 
then be designated as RVa, RUbj RVcy etc. (Fig. 14c). 

Let the forces produced in the various bars, under the action of the 
load Qiy Q2, etc., with bar e removed, be designated as Taj Th, Tc, etc. 
The fact that in our example Taj Tbj and Te have the value zero (Fig. 146) 
does not preclude our representing such forces by the symbol T. 

In accordance with the definition at the beginning of this chapter, 
the actual force in the redundant bar c may be represented by Sej or 
Te + Selle if we SO choose, since, for bar e, Te = 0 and Ue = 1. 

The actual force in any bar caused by the loading Qi, Q2, etc., with 
bar e in place, will therefore be given by the expressions Ta + SeUaj 
Tb + SeUbj etc. (Fig. 14d). If we assume the auxiliary load R to be 
acting before the actual loads Qi, Q2J etc., are applied, the elastic energy 
stored in the frame because of this assumed condition may be com¬ 
puted from formula (1), FA = SC/>S. 

Here, however, the auxiliary force is called R instead of F. The 
auxihary forces within the bars, instead of being called /, are designated 
by RVaj RUbj etc., and the actual forces within the bars are not labeled 
as S but are represented by the expressions Ta + SeUaj Tb + Sellbj etc. 
The auxiliary force ]?, assumed to be acting in bar e before the application 
of load Qj gives rise to stored elastic energy in the structure. This 
stored energy, in accordance with formula (1), is given as XCRU^T + 
Sell). This energy must equal the external work done by the auxiliary 
force R, 72, however, is an internal force and its external work is zero. 
Therefore, 1^CRU{T + SeU) = 0. In this expression 72 is a constant 
and may be canceled, or, in other words, R might have been assumed as 
unity at the outset. C, C/, and T differ for different bars. Se is the 
unknown for which we must solve. 

l^CRUiT + SeU) = 0 = SCri/ + SeSCC/^. 

Therefore _ 
Se = - Formula (2) 

Note the minus sign in the numerator, and also note the fact that the 
force unity assumed to be acting in the place of the redundant bar 
(Fig. 14c) is a tensile force. 
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Example 4 

Compute the forces in the redundant frame represented by Fig. 14a. 
Let Q = 10,000 lb. and E = 30,000,000 lb. per sq. in. The lengths 

and areas of the various bars are listed in the accompanying table, as 
are also the values of the various factors needed in the solution of the 
problem. The U loading is shown by Fig. 14c, and the corresponding 
U forces are shown by the force diagram of Fig. 14g. The T loading is 
represented by Fig. 146, and the corresponding T force diagram by 
Fig. 14/. 

Bar Length Area c = -^ 
AE 

U T CUT cu^ 

a 346 2 0.00000577 
1 

+1 0 0 0.00000577 
h 400 2 0.00000667 -1.73 0 0 0.00002000 
c 200 3 0.00000222 1 4-1.73 -10,000 -0.0384 0.00000666 
d 346 2 0.00000577 -2 4-17,330 -0.2000 0.00002308 
e 346 3 0.00000385 4-1 0 0 0.00000385 

-0.2384 0.00005936 

Therefore 
-'SCUT 

SCU^ 

-(-0.2384) 

0.00005936 
= +40001b. 

The force in bar a is 

Sa=Ta + SeUa = 0 + 4000(+l) = + 4000 lb. 

The force in bar 6 is 

Sb = Tb + SeUb = 0 + 4000(-1.73) = - 6920 lb. 

The force in bar c is 

Sc =Tc + ScUc = - 10,000 + 4000(+1.73) = - 3080 lb. 

The force in bar d is 

Sd=Ti + ScUd = + 17,330 + 4000(-2) = + 9330 lb. 

In this problem the plus sign means tension and the minus sign means 

compression. 
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Example 5 

Our problem in example 3 (page 11, Fig. 11) involved essentially 
the same analysis as that used in the development of formula (2). We 
computed XCfS and and found R2 to be equal to the ratio of 
—SC/S : SC/^. If one of the bars, instead of one of the reactions, is 
taken as the redundant member, formula (2) should be applied. 

-76 -160 -150 

If we assume the top chord 6 (Fig. 11, page 11) as the redundant 
bar, then the respective T and U forces in the various bars are as indi¬ 
cated on Figs. 15a and 156. 

^ -scc/r -aei:lut 
i:cu^ “ AEl^LU^ 

-(-2250) 

26.21 
= + 85.8 tons. 

Taking moments about point C (Fig. 11) we have 

Therefore 
12i?i + 4 X 85.8 - 6 X 100 = 0. 

Ri = 21.4 tons. 

18123 + 4 X 85.8 - 6 X 100 - 12 X 100 = 0. 

Therefore 
fia = 80.8 tons, 

Ri + R2 + 123 = 300. 
Therefore 

R2 = 198 tons. 
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Bar L U T LUT 1/2 LIT* 

a 6 +0.500 - 75.0 -225.0 0.25 1.500 
b +1.000 0.0 0.0 1.00 6.000 
c 6 +0.667 -150.0 -600.0 0.444 2.667 
d 6 +0.333 -150.0 -300.0 0.111 0.667 
e 5 +0.417 - 62.5 -130.0 0.173 0.865 
f 5 -0.417 + 62.5 -130.0 0.173 0.865 
9 5 +0.417 + 62.5 +130.0 0.173 0.865 
h 5 -0.417 - 62.5 +130.0 0.173 0.865 
i 5 -0.278 -125.0 +174.0 0.077 0.385 

3 5 +0.278 +174.0 0.077 0.385 
k 5 0.0 0.0 0.077 0.385 
1 5 0.0 0.0 j 0.077 0.385 
m 5 -0.278 +125.0 -174.0 0.077 0.385 
n 5 +0.278 -125.0 -174.0 0.077 0.385 
0 6 + 37.5 - 56.25 0.062 0.375 

V 6 + 37.5 -168.75 1 0.563 3.375 

9 6 + 75.0 -375.0 0.695 4.167 
r 6 +150.0 -450.0 1.500 
s 6 -0.167 + 75.0 - 75.0 0.167 

-2250.0 26.208 

Example 6 

Airplane Fuselage 

Given, An airplane fuselage, constructed of welded tubes and 
eccentrically loaded by air loading applied to fin and rudder (Fig. 16a). 

To find. The stresses in the fuselage as a function of the loading. 
A welded fuselage is a highly redundant structure. Every weld 

represents a condition of redundancy and would require an extra 
simultaneous equation in order to permit a rigorous solution. Such a 
solution would be prohibitively lengthy and involved. By making 
certain reasonable assumptions, however, the degree of redundancy 
may be reduced to one. The magnitude and location of the resultant 
air pressure on fin and rudder are questions of aerodynamics and will 
not be discussed here. Let the resultant air pressure equal Q and let 
its application be at point X (Fig. 16a). 

Elementary mechanics teaches that a single force Q is equal to 
another and parallel force Q plus a torque equal to the product of Q 
and the distance between the forces. The effect of the eccentrically 
applied force may thus be translated in terms of a side thrust Q and 
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Fig. 16. Airplane Fuselage. 
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a torque Qd, The principle of superposition being assumed, two 
distinct stress analyses may be made, one for the effect of the side thrust 
and another for the effect of the torque. The resultant stresses are 
then to be added algebraically. One of the assumptions we propose 
to make is that the side thrust is carried exclusively by the top and 
bottom trusses. The resistance of the two vertical trusses against any 
horizontal side thrust is of negligible magnitude. 

The manner in which the horizontal side thrust Q distributes itself 
between the bottom and the top trusses is important on two counts: first, 
because the stresses due to the side-thrust loading are affected by it; 
and second, because the value d (Fig. 16a) and thus the torque Qd are 
affected by it. The manner in which the side thrust is distributed 
between the top and the bottom trusses depends on the stiffness coeffi¬ 
cient of the two trusses. A few extreme examples will illustrate this 
point. 

Let us suppose that a diagonal in the bottom truss were cut, and 
thus the effectiveness of the truss completely destroyed. The side 
thrust Q would then be carried entirely by the top truss and d (Fig. 16a) 
would be measured down to point J. 

If, on the other hand, the bottom truss were intact and the resist¬ 
ance of the top truss were assumed reduced to zero, then Q would be 
carried by the bottom truss and d (Fig. 16a) would be measured down 
to line GK. 

With both top and bottom trusses identical, or, more correctly 
speaking, if both top and bottom trusses have the same stiffness coeffi¬ 
cient—require the same load to produce the same deflection—then the 
side thrust Q distributes itself equally between top and bottom trusses 
and d (Fig. 16a) would be measured to the halfway point between 
J and K. 

The point to which d is to be measured may be located by consider¬ 
ing the top and the bottom trusses separately. Determine in each case 
the force necessary to produce a unit displacement. The force Q will then 
distribute itself between the top and the bottom trusses in direct ratio 
to these forces. The line of action of the transverse force Q is then the 
centroid of the forces producing unit displacement in top and bottom 

trusses. 
The most important consideration in the analysis of air loading in a 

fuselage is the effect of the torque Qd upon the stresses in the fuselage. 
Let us concentrate our attention on the second bay from the end. 

As a torque is applied to the fuselage, point F moves vertically 
relative to point B and point E moves horizontally relative to point A 
(Fig. 16a). 
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These relative motions are resisted by the front and top trusses 
respectively. The fact that the tubes are welded induces bending as 
well as direct stresses in the members. The bending of the members 
of the truss is relatively far less effective in resisting distortion of the 
truss than are the direct stresses in the members. By ignoring the 
effects of the welds, in other words, by assuming the trusses as pin- 
connected, we materially simplify our problem without seriously affecting 
the accuracy of our analysis. In the analysis of riveted bridge trusses 
a similar assumption is made. The trusses are analyzed as if they 
were pin-connected and later corrections are made for the stiffening 
effect of the rivet connections, if such are desired. 

Assuming the fuselage pin-connected and a wire strung diagonally 
across the bulkhead from C to A, then a very small force in the wire 
would readily distort the bulkhead and cause it to assume a diamond 
shape without materially affecting the stresses in longerons or truss 
diagonals. In other words, two diagonals from C to A and from B to D 
would, with very little force, keep the bulkhead from being distorted. 

For this reason, although all bulkheads should be braced, the stresses 
in the bracing tubes or bracing wires need not be considered as materially 
affecting the stresses in the top, bottom, or side trusses. It is thus 
quite reasonable to ignore the stresses in the bulkhead braces. 

If we are satisfied that the fuselage may be regarded as pin-connected 
and that the stresses in the bulkhead wires or tubes may be ignored, 
we may proceed with the analysis. 

It is best to analyze as a unit a segment of the fuselage consisting of 
several bays, the ends of which may be regarded as rigid and the sides 
as essentially continuous planes. 

For the purpose of illustration, we analyze a segment consisting of 
one bay only, bay BCGF (Fig. 166). (It should be realized that a 
segment of a fuselage consisting of several bays may advantageously be 
analyzed as a unit, provided that the foregoing conditions are satisfied.) 

The torque Qd is to be transmitted through the bay. The primary 
forces which the trusses of the fuselage are able to transmit are forces 
l3dng in the different planes of the fuselage. Since the sum of the 
horizontal and vertical forces must in each case equal zero, the forces 
in the different planes of the fuselage appear as represented in Fig. 16e. 

The forces Fi in top and bottom trusses must necessarily be the 
same, as must the forces F2 in the two side trusses. Letting torque 
Ti = Fih and torque T2 = F26, then one of our conditions is 

Ti “f- ?2 “ Fih F26 = Qd (Fig. IGc). (a) 



AIRPLANE FUSELAGE 23 

Suppose that a diagonal in the bottom truss is cut and the effective¬ 
ness of the truss destroyed; then the truss is statically determinate. Fi 

then equals zero; therefore Ti = 0 and ^2 = ^ • Furthermore, the trans-. 
o 

verse force Q would be carried exclusively by the top truss. With all 
trusses effective we have one condition of redundancy. The two horizon¬ 
tal trusses together carry one torque Ti = Fih; the two vertical trusses 
carry another torque T2 = ^26* The two torques Ti and T2 equal the 
total applied torque Qd. The problem is to find the magnitudes of 
torques Ti and 7^2. 

If the bulkheads are completely rigid then one bulkhead will rotate 
relative to the other through an angle 0 (Fig. 16/). 

e = 
Ai + A2 A3 + A4 

(Fig. 16e and 16/). (&) 

Ai and A4 may be expressed by means of formula (1) as a function of 
F2 and Fi respectively, while A2 and A3 may also be expressed as a func¬ 
tion of F2 and Fi, thus establishing the second of the required equations 
necessary for the determination of Fi and F2. 

The magnitudes of Ai, A2, A3, and A4 are evaluated in the tables 
below. 

Note, The auxiliary load F is applied in the direction of the displacement A. 
Although in the front side truss the actual stress in bar BF is a function only of the 
actual force F2, in the rear side truss the actual stress in bar AE is a function of the 
actual force Fi in the top truss as well as of the actual force F2 in the side truss. 
If, however, the diagonal DE were replaced by a diagonal AH, this would not be 
true. Although, in the latter case, there appears to be less geometric symmetry, 
there is actually more elastic symmetry. 

Bar L 

i 

A 11 f s CEfS 

BF 32 0.10 320 -1.185F -1.185^2 4-449.6F/?’2 
CF 42 0.10 420 +1.555F + I.555F2 -hl016.4FF2 

+1466FF2 

SC/S I466FF2 +1466^2 
Ai =- 

F FE E 
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Bar B A OE-i / S CEfS 

AE 32 0.10 ■1 +1.185F +1.185/?’2 - l.SSSi^’i +449.6Fi^2-505.6FFi 
DE 42 0,10 -1.555F -I.555F2 +1016.4m 

■ +1466m“505.6m 

. SC/S 1466^2 505.6^1 

F ~ E E 

Bar L A li S CEfS 

AE 32 0.10 320 -I.33F1 +1.185^2 +566.4FFi - 505.6FF2 

BE 38 0.065 584 +1.58^?^ +I.58F1 +imFFi 

+2026.4m - 505.6m 

i:CfS +2026Fi 505.6F2 
P ~ E E 

Bar ■ D If f s CfS 

DH 32 0.10 320 +1.33F +1.33F1 +566.4FFi 
CH 38 0.065 584 -1.68F -1.58F1 +1460FFi 

+2026.4FFi 

+ 2026F1 

Substituting these values in equation (6) we obtain 

(2932F2 - 505.6Fi)ft = (4052Fi - 505.6^2)6. 

Since ft = 23 and 6 = 16 

2932^2 - 5O5.6F1 = 2819Fi - 351.7^2, 

3284^2 - 3325Fi = 0, 

I6F2 "f" 23Fi = Qd, 

(6) 

(a) 
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Solving equations (a) and (6) simultaneously we obtain 

Fi = 0.0255Qd; F2 = 0.0258^^. 

Note. Since both bulkheads were assumed as completely rigid, bars AB, BC, 
CDy and DA did not enter into our computations. The procedure in analyzing a 
segment of a fuselage composed of several bays is similar. The top, bottom, and 
side trusses are analyzed separately, and bulkhead bars, such as bars ABj BC, CDy 
and DE, woidd appear in the computations as members of side or horizontal trusses. 

The foregoing example might have been analyzed by means of 
formula (2). If the cross section of the fuselage were other than rec¬ 
tangular, this procedure would be the simpler one. 

Analysis of Stresses in Bay FGKJ as a Function of the Torque Qd. 
The last bay of the fuselage, bay FGKJ, is once redundant. Any one 

of the bars may be regarded as redundant. Let FJ be the redundant 
bar. Then, according to formula (2), 

^ -SCTC7 

Let us further assume bulkheads JKL as completely rigid. The V 
and T forces are listed in the table below. They are evaluated in 
the following manner. The XJ forces are those induced in the frame 
by the application of a unit force in the direction of bar FJ, A unit 
tensile force in the direction of FJ induces a unit compressive force in 
bar EJ, These two forces in turn induce a force through J, in the plane 

of the bulkhead, having a magnitude ^ (Fig. 16g^). 
This force is resisted by another force of magnitude ^ in the plane 

HGKL (Fig. 166) and by two equal and opposite parallel forces in the 
hf 16 

planes of the ade trusses, of magnitude 77 X — • Since A' = 20 and 
0 aO 

6' = 10, these forces are (Fig. lOgr). 
The force ^ induces in bar FK a tensile force X -fl- = + 1.725, 

and in bar EL a compressive force of the same magnitude. Bar HL is 

simultaneously stressed M X |-| = + 1.336 by the force in the vertical 
plane and X -^ = + 0.96 by the force in the horizontal plane, or a 

total of 2.296 unit forces. 

The T forces are those that are induced in the frame by the applica¬ 

tion of torque Qd with the bar FJ removed. With FJ removed the two 

side trusses are the only ones able to resist the torque Qd. The T 
, Qd Qd 

forces carried by the tide trusses then are — or — • 
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Bar FK is stressed by a compressive force, 

31 Qd 

bar GK is stressed with a tensile force, 

^Qd 
"^23 10 

= +0.104Qd. 

Bar L A II U T If- CETU CEU^ 

FJ 25 0.10 250 +1.0 0.0 1.0 0.0 250 
EJ 25 0.10 250 -1.0 0.0 1.0 0.0 250 
FK 31 0.10 310 +1.725 -0.135Qd 2.975 -72.3Qd 923 
EL j 31 0.10 310 -1.725 +0.135Qd 2.975 -72.ZQd 923 
GK 24 0.10 240 -0.336 0.104Qd 1.785 -33.3Qd 429 
HL 24 0.10 240 +2.296 -0.104Qd 5.270 -57.3Qd 1266 
GL 27 0.65 415 -1.08 0.0 1.17 0.0 486 

—2Z5.2Qd +4527 

-SC!r?7 -XCETU 
i:CU^ “ 

-(-235,2Qd) 

+4527 
= +0.0519Qd. 

FRAMES WITH TWO OR MORE REDUNDANT MEMBERS 

In the analysis of frames with two or more redundant members the 
work is somewhat more lengthy and the resulting formulas are some¬ 
what more involved, but the argument and the underlying reasoning 
are the same as those applied to frames with one redundant member. 

Figure 17a, for example, has two bars more than are absolutely 
necessary to insure stability, and therefore has two statically indeter¬ 
minate unknowns. (Compare problem 5, page 274, which is statically 
determinate.) Any two of the bars may be regarded as redundant. 
In this example let us regard the bars m and n, marked X (Fig. 17a), 

as the two redundant bars. 
The forces Sm and Sn, which these two bars ultimately carry under 

the action of the external loading, are the two unknowns for which we 
must solve. With Sm and Sn once determined we may readily proceed 
to find the forces in the other bars by analyzing the remaining frame as a 
statically determinate one. 
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Following the logic employed in the proof for formula (2) we may 
imagine bars tn and n removed and compute, in the remaining bars, the 
forces resulting from the external loads only. These forces for the 

Fig. 17, Analysis of Truss with Two Redundants. 

different bars a, b, etc., we designate as Ta, Tb, etc. (see Figs. 176 
and 17ff). 

Let us assume a tensile force unity, represented by the symbol u, 
acting in place of bar m, and a tensile force unity, represented by », 
acting in the place of bar n (see Figs. 17c and 17d). The forces in the 
different bars caused by these two unity forces may then be separately 
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computed and represented by I7o, Ubf etc., and Vat Vht etc. (see Figs. 
17c and 17/). 

The true fibal forces in any bar may then be represented by the 
expressions: 

Sa= {Ta + S„,Ua + SnVa); 

Sh = {Tb + SmJJb + SnVb)'t 

Sm = {Tm + SmUm + SnVm)] etC. 

The last expression will also serve to represent the final force in 
bars m and n, if we keep in mind that, for bar m, Tm = 0, Um = 1> and 

Vm = 0, whereas, for bar n, Tn = 0, I7n = 0, and Vn = 1. 
If next we assume an auxiliary internal force R acting in bar m 

and an auxiliary internal force K acting in bar n before the external 
loads are applied, then we may apply the same argument we used in 
the proof of formula (2). The deformations of the truss caused by the 
applications of the actual loads will be independent of the presence of 
the auxiliary forces R and if, provided that the elastic limit is not 
exceeded, that the deformations are of a relatively small order of mag¬ 
nitude, and that the principle of superposition holds. 

Bar a (Fig, llh) may be regarded as representative of all the bars 
in the frame. RVa is the auxiliary force with which bar a is loaded 
because of the presence of the auxiliary force R acting in member m, 
KVa is the auxiliary force with which bar a is loaded because of the 
presence of the auxiliary force K acting in member n. Sa = To + 
SmUa + SnVa is the force in the bar produced by the actual loading. 
The rectangles O = CaSaRUa and P = CaSaKVa (Fig. 17A) represent 
the elastic energy stored in bar a because the auxiliary forces R and K 
are present in bars m and n, respectively, while the actual loads are 
applied. ^CSRU and 'ZCSKV represent the elastic energy stored in 
the entire frame because the auxiliary forces R and K are present while 
the actual loads are applied. This elastic energy must equal the external 
work done by R and K. Since R and K are both internal forces, the 
external work done by each will necessarily be zero. Therefore 

' I^CSRU = RXCU(T + SmU + SnV) = 0 
and 

l^CSKV = K^CViT + SmU + SnV) = 0. 

K and 72, being constants, may be canceled. Then we obtain 

scc/r + Sm^cu^ + Sn^cuv = o, 
SCFT + SmZCVU + SnZCV^ - 0. 
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All factors are known except Sm and /S„. Solving for Sm and (S» we 
obtain 

„ {^CUT)CZCV^) - (2CFD(SC7t7) 

" (SCt/F)^ - (201/2) (SCy2) ' 

„ (SOFiT) (201/2) - (S01/r)(S01/F) 

" {^CUVf - (S01/2)(S0F2) 

Here Sm = force in redundant bar m due to external loading. 
Sn = force in redundant bar n due to external loading. 
T = force in any bar caused by external loads when both 

redundant bars are removed. 
U = force in any bar caused by a tensile force unity in the 

direction of the redundant bar m (with bar n out). 
F = force in any bar caused by a tensile force unity in the 

direction of the redundant bar n (with bar m out). 

Note. T for redundant bars, U for bar n, and V for bar m are zero. U for bar 
m and V for bar n are vinity. 

The analysis of frames with two redundant members is rare enough, 
and it is not likely that the analysis of three redundant members in one 
frame is called for. However, if such an analysis is desired, the proof 
for formulas (1) and (2) and example 7 point the way. The numerical 
work may become more involved, but the logic and the method of 

procedure are the same. 

Example 7 

Compute the forces in bars m and n in the frame shown in Fig. 17o, 

page 27. 
Figures 17e and 17/give the stress diagrams for the u and v forces act¬ 

ing in place of the m and n bars, respectively. The table ^ves the areas 
and lengths of the different bars, also the different factors needed in the 
solution. If we assume all the bars to be of the same material, the modu¬ 

lus of elasticity E for all bars would be the same. Therefore C would 

have to be multiplied by the same factor L/E throughout. It is readily 

seen that, as long as we are not concerned with actual displacements, 
E cancels, and we are therefore justified in using a simpler factor for 

C, namely, C = —• The angles which the different bars in Big. 17o 
XX. 

make with one another are 30®, 60®, or 90® throughout. 
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Bar Length Area 
-I 

T U V CUT CVT CUV CU^ CV* 

a 115.6 2 67.7 +2.487 -0.577 +0.333 - 83.0 + 47.8 -11.1 19.2 6.4 
b 173.3 3 57.7 -3.243 -0.577 -0.667 + 108.0 + 125.0 +22.2 19.2 25.6 
c 100 2 50 +2.308 0.0 +0.677 0.0 + 66.6 0.0 0.0 16.6 
d 100 2 60 -1.154 0.0 -1.155 0.0 + 66.7 0.0 0.0 66.7 
e 57.7 3 19.2 +4.23 +0.577 -0.333 + 46.8 - 27.6 3.7 6.4 2.1 

f 100 4 25 -1.285 +0.667 -0.962 - 21.4 + 30.8 -16.0 11.1 23.2 

9 100 2 50 +4.89 +0.667 +0.77 +163.0 +188.0 +25.6 22.2 29.6 
h 100 2 50 -0.70 -0.333 -0.385 + 11.6 + 13.5 + 6.4 5.5 7.4 
m 100 2 50 0.0 +1.0 0.0 0.0 0.0 0.0 50.0 0.0 
n 173.3 3 57.7 0.0 0.0 +1.0 0.0 0.0 0.0 0.0 57.7 

+225.0 +510.8 +23.4 133.6 235.3 

(+225.0) (235.3) - (+510.8) (+23.4) 

(23.4)2 - (133.6) (235.3) 

52,900 - 11,950 

548 - 31,400 

40,950 

-30,852 
= — 1.33 tons. 

^ (+510.8)(133.6) - (+225.0)(+23.4) 

-30,852 
= — 2.04 tons. 

68,200 - 5260 

-30,852 

The stress in bar m therefore is a compressive stress of = 0.66 
tons per sq. in. 

With the forces in bars m and n computed, the forces in the remain¬ 
ing bars in the frame can now easily be calculated. The values of the 
forces for the different bars as recorded in stress diagrams U and V 
(Figs. 17e and 17/) need only be multiplied by (—1.33) and (—2.04), 
respectively, and subsequently added to values of the forces as recorded 
in stress diagram T (Fig. 17g), to obtain the desired end. 

TEMPERATURE STRESSES 

In a statically determinate structure changes in the temperature of 
its parts, or of the entire structure, do not affect the forces in the mem¬ 

bers. The structure readily deforms to allow for such changes in length 
as are produced by temperature changes. In a statically determinate 
truss, for example, one of the supports moves slightly in or out with the 
seasonal changes in temperature. In a statically indeterminate struc¬ 
ture, however, the situation is very different. In a two-hinged arch, 
for example, the fact that the supports are unable to move laterally with 
respect to each other constitutes the reason for the statically indeter- 
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minate nature of the structure. Temperature changes may produce 
very high stresses, and it is important that we be able to compute them. 

Two conditions may be considered. The first occurs when the 
redundant member itself is not changed in length or location. For 
example, in a two-hinged arch (see problem 12, page 277) we may 
assume one support changed into a sliding support. When the tem¬ 
perature is changed to the amount t, this sliding support changes its 
location relative to the other by the amount Ai = \tl (X is the coefficient 
of expansion, I is the linear distance between supports). If next we 
introduce a force unity acting at the sliding support and in the direction 

of the line connecting the two supports, then, by formula (1), (FA2 = 
SC/S). The displacement due to this force unity is A2 = SCC/^. (See 
example 2.) The force H necessary to keep the arch supports fixed 
in position is equal to a force necessary to return the sliding support 

to its original position. When t is positive, H is 

always negative. 
For the second condition let us assume bar e (Fig. 18a) to have its 

temperature changed to the extent of t degrees. The force to solve for 
is Sey the force in bar e due to its change in temperature. Let us assume 
a force R to be initially acting in bar e (Fig. 18&) before the change in 
temperature. If U represents the forces in the members due to a 
tensile force unity acting in bar e, then the forces in the members induced 

by the auxiliary force R will be RVay RUby etc. The forces in the mem¬ 
bers due to the actual loading Se will be SeUay SeUby etc. 

The relative change of position of points A and B at the extremities 
of the two trusses (Fig. 186) may be expressed as 
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(Note that the summations proceed only up to and including bar d.) 
The change of length of bar e is influenced by two factors, Se and X. 

Numerically, also, this change is equal to A^b. JJ for bar e is 1. There¬ 
fore 

^AB ” “f* CeSe “1“ X^X/® “ CeSeU^ -f- \tLe* 

The two expressions for A^b are numerically equal but necessarily 
opposite in sign, for if, in the first case, points A and B come closer 
together, moving in the direction and sense of R, ^iCU^ would be 
positive. By the same token the points A and B, considered as the 
extremities of bar e, would move in sense opposite to 22, which was 
assumed to be a pull, and therefore CeSeUl + \tLe would be negative. 

=-\Let- CeU%. 

+ CeU^eSe = KCU^Se = - \Ljt. 

Formula (3) 

Example 8 

Assume bar e (Fig. 14a) to be heated 100° C. 
Assume size and length of bars the same as in example 4, page 17. 

X = 0.000013 per centigrade degree. 
XLei is therefore 0.000013 X 346 in. X 100 = 0.450 in. 

From the table in example 4, page 17, we have SCC/^ = 0.00005936; 
—0 450 

therefore Se = , - = — 7580 lb. 
0.00005936 

The stress in bar e, therefore, due to a rise in temperature of 100° C. in 
bar e only, is a compressive stress of ^ = 2530 lb. per sq. in. 

Sa = SeUa = “ 7580 X (+1) = — 7580 lb. (compression). 

= Sef/b =- 7580 X (-1.73) =+ 13,100 lb. (tension). 

CHECK ON COMPUTED STRESSES IN FRAMES 

Figure 19a represents the familiar example of a frame. The forces in 
the members of this frame are found in example 4 (page 17). Though we 
have taken an indeterminate frame with one redundant member for 
our example, it is well to keep in mind that the arguments apply with 
equal force to any other frame, statically determinate or indeterminate, 

having any number of redundant members. 
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Regarding the frame as a free body and ignoring its dead weight 
it will be in equilibrium under the action of the external loads and the 
reactions. In fact, from the point of view of equilibrium, no essential 
distinction can be made between loads and reactions. It is immaterial 
whether the reactions are shown as resultant single forces, as resultant 
vertical and horizontal components, or as forces equal to those acting 
in members a, d, 6, and c shown in Fig. 19o. 

Not only is the truss as a whole in equilibrium, but also all the joints 
individually (Fig. 196) are in equilibrium. 

Let us select as origin an arbitrary point 0 an3where in the plane 
of the frame. Now draw Unes from 0 to the various points A, B, etc. 

The angles made at the joint A by the forces Se, Sb, Sa, are designated 
by ^1, B29 Osf etc., and the line connecting the joint A and point 0 (Fig. 196) 
is designated by AO. For point B the angles which the forces make 

with the line BO are shown as ai, a2, as, and If we resolve the forces 
at each joint into components parallel to the line connecting the joint 
with O, we obtain equations of equilibrium for each joint. 

For joint A, for example, we have 

Se COS — Sb cos $2 “f" Sa COS 0^ = 0. 

For joint B, we have 

+ Sc cos a\ + Sd cos a2 — Sc cos a3 + Q cos a4 = 0. 

If we write an equation for each joint we will find, when considering 

all such equations as a group, that each internal force S occurs twice 

and each external load occurs once. 
Let us multiply each equation thus obtained by the length of the 

line connecting the joint with 0: 

OA{Se cos 01 — Sb cos 02 + Sa COS 0s) = 0; 

OB{Se COS ai + Sd cos a2 — iSc cos as + Q cos 04) = 0; etc. 
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Since the equation of each joint equals zero, their sum must equal 
zero. Because of such addition the internal forces within the members 
of the frame, represented by S in Fig. 196, will group themselves in such 
expressions as Se(PA cos + OB cos ai), etc., while the external forces 

(including reactions) will appear as QiOB) cos a4. 

OA cos + OB cos ai = AB = length of member e = Le. 

OB cos ^4 is the distance from a joint to the point at which a per¬ 
pendicular dropped from 0 cuts the line of action of an external force 
acting at this joint—the projection of OB on the line of action of Q, 
We may designate this expression OB cos ^4 by d as shown in Fig. 196. 

The sum of all the equilibrium equations for the various joints, 

resolved in the direction of the lines connecting the joints and the 
origin 0, may then be written as follows: 

SSL + SQd = 0 or SSL = - SQd. 

The S forces are positive in sign (+) when they are tension, and 
negative (—) when compression, and d is positive when the distance is 

measured from the joint (in the sense of the force) to the point of inter¬ 
section between the line of action of the force and the perpendicular on 
this line dropped from 0. 

We may eliminate the negative sign in our equation simply by 
reversing the definition of sign for d; thus: 

' SSL = SQd. Formula (4) 

HereS = force in a member (+ for tension and — for compres¬ 
sion). 

L = length of member. 

Q = external force (including reactions). 
d = distance from point of application of force Q to point 

where line of action of force is intersected byperpen- 
. dicular dropped from 0 {d is positive when Q points 

away from this point of intersection, negative when it 
points towards this point of intersection). 

The proof of this formula being general, it is applicable to both stati¬ 
cally determinate and indeterminate frames. Furthermore, our point 

of origin 0 was arbitrarily chosen. By selecting 0 judiciously we may 
simplify the evaluation of SQd. Proof of formula (4) involves the equi¬ 

librium equations written for all the joints in a truss. We may write 

equations of equilibrium for all joints, and satisfy ourselves that each 
joint is in equilibrium. In doing so we would accomplish exactly what 
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we aim to do by formula (4). The advantage of formula (4) is that it 
offers a simple means for accomplishing this result. It will check for 
possible errors in sign, length of bars, or forces T, C7, or V involved in our 
stress analysis. Stress and strain, relationships underl3dng the elastic 
behavior of our structure, did not enter into the development of formula 
(4). Therefore we cannot expect to detect errors in the elastic coeffi¬ 

cient C = , particularly errors in the values for area A and modulus 
AiL 

of elasticity E of the bars, by the use of formula (4). 

Example 9 

Let us check the values of the stresses in the frame shown in Fig. 19a 
as obtained in example 4 (page 17). If we select the origin 0 at point C 
(Fig. 19a), the value of d for Rh, Rc, and Ra will be zero. The other 
factors S, L, Q, and d, also SSL and SQd, are shown in the accompanying 

Bar L S SL Force Q d Qd 

a 346 +1,384,000 di^+100 
h -2,768,000 0.0 
c - 616,000 0.0 
d 346 +3,228,000 0.0 
e 346 +1,384,000 9,330 (i2 = + 173 

+2,612,000 +2,614,000 

table. The fact that SSL = + 2,612,000 is, to all intents and purposes, 
equivalent to SQd = + 2,614,000 is a check on the values of the forces 
in the members of the truss as computed in example 4 (page 17). 

Example 10 

In example 3 (page 11), involving a five-panel truss with three sup¬ 

ports, R2 was computed to be 198 tons. The actual forces in the mem¬ 

bers are the T forces, due to the external loads in the absence of R2, 
plus the forces caused by R2- The / forces, as shown in the table on 

page 13, are caused by a 100-ton load acting in the place of R2. The 
R f 

actual forces, then, are T + If we place the origin 0 on a horizon¬ 

tal line passing through the points of application of the loads and 
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reactions, then for each load and reaction d would be zero. Therefore 
ZQd, in this example, is zero. S/SL is the sum of the values tabulated 
in the last column of the table. The actual forces, in accordance with 

100/ 
the notation of example 3, are represented by I T + 

Jl. 

(t The sum of 

the values in the last column of the table is + 1638 — 1632 = 6, prac¬ 
tically zero, which checks the results of example 3 (page 11). 

Bar L T Forces —— Forces 
100 

m . ^2/ T+ — 
100 

a 6 -210 +178 - 32 -192 
b 6 -270 +356 + 86 +516 
c 6 -330 +238 - 92 -552 
d 6 -240 +119 -121 -726 
e 5 -175 +149 - 26 -130 

f 5 +i75 -149 + 26 +130 

9 5 - 60 +149 + 99 +495 
h 5 + 60 -149 - 99 -495 
i 5 - 60 - 99 -149 -745 

i 5 + 60 + 99 +149 +745 
k 6 + 75 - 99 - 24 -120 
1 5 - 75 + 99 ' + 24 +120 
m 5 +200 - 99 +101 +505 
n 5 -200 + 99 -101 -505 
0 6 +105 - 89 + 16 + 96 

V 6 +240 -267 - 27 -162 

Q 6 +300 -297 + 3 + 18 
r 6 +285 -178 +107 +642 
8 6 +120 - 59 + 61 +366 

MAXWELL’S LAW OF RECIPROCITY OF DISPLACEMENT 

Let us consider the displacement of point B (Fig. 20a) in the direction 
02, and under the action of load Q applied at point A in direction 

To evaluate this displacement we apply formula (1), FA = S(7/S. In 

connection with this formula we introduce an auxiliary force F at B, 
which may be of any magnitude and operates in the direction 62. Since 

F may be chosen to be of any value, let it be equal to Q (Fig. 206). The 

displacement of point B in direction 02 under action of load Q at A 
would then be 

Ab 
SC/S 

Q ' 
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Next, let us consider the truss loaded with a force Q at B in direction 
02 (Fig. 21a) and find the displacement Aa of point A, in direction 0i. 
For purposes of analysis we introduce an auxiliary force F at point A 

Fig. 21. 

in direction 0i. Let F in this case also be equal to Q (Fig. 216). For¬ 

mula (1) pves us 

in which f represents the forces induced by the loading as shown in 
Fig. 216 and S represents the forces induced by the loading as shown in 
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Fig. 21a. By comparing the figures it may be seen that the / forces of 
Fig. 21& are identical with the S forces of Fig. 20a and that the S forces 
of Fig. 21a are identical with the / forces of Fig. 206. 

SC/S 
Since Aj, = —— = A^, it follows that A5 = A^. 

Q 
If a force Q, applied at point A in direction ^1, causes a displacement 

A at point B in direction 629 then the same force Q applied at B in direc- 
. tion $2 would cause the same displacement A at point A in direction 61. 

This rule states a part of MaxwelVs Law of Reciprocity of Displace¬ 
ment as applied to frames. (For proof of MaxwelFs law as applied to 
beams, see page 198.) Note that the proof is equally valid for both 
statically indeterminate and statically determinate frames. 

INFLUENCE LINES 

In example 3 (page 11) we computed the displacement A^ of point C 
under the sole action of a 100-ton load applied at C (Fig. 13). By means 

Fig. 22. Influence Line for R2. 

of formula (1) we may compute the displacements of points B, D, and 
E under the action of a single 100-ton load applied at C, and construct a 

diagram as shown in Fig. 226. If a 100-ton load applied at C causes 

a displacement A^ at Z), then, according to Maxwell’s law, a 100-ton 

load applied at D would cause this same displacement A^; at C. If there 
is a reaction R2 at point C to prevent this displacement, this reaction 

would be 722 = “ X 100 tons. Figure 226 is the infiuence diagram for 

the reaction R2, and A^ is a measure of the influence of a load, applied 
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at Z), upon the reaction R2- (For definition and examples of influence 
lines see page 200.) 

The load need not have been exactly 100 tons. It might have been 
of any value, represented by Q, as long as we understand and A^ to 
be the displacements at C and D under the sole influence of Q applied 

at C. With Ac and A^ thus interpreted, R2 = —Q- We know that 
Ac 

Ad, Ac, and Q will always be in a fixed ratio. If Ac = 1, then R2 = AdQ, 
In other words, if the influence diagram is constructed with Ac = 1, 
the effect of a load Q at D upon the reaction at C is represented by 
Ad X Q when Ad is measured by the same scale as Ac. Any panel load 
between panel points, say load Q (Fig. 22a), would distribute itself as 

Qb Qa 
to point B, and ; - to point C. The effect of Q upon follows: ^ - r-,-^ , 

(z -j- 0 a -f- 0 

R2> therefore, would be equal to the effect of 
Qa 

at C plus 
Qb 

at 
a b fl -f" 6 

point B, which would be shown graphically on the influence diagram by 

Q (— Vo + 
, X Ac H- 

-f- 6 a "f* 6 
Aft^ = 

Q(flAc + &Ai,) 
fl ■)” 6 

Q{aAi + bAb + oAc — aAb) 

= <? (a6 + 

a -j- 6 

a(Ac - Ab) 

d b )■ 

This is Q multiplied by the ordinate under the load Q. 
The effect of the 100 tons suspended from points B, D, and E upon 

the reaction R2 would be R2 = 100(0.598 + 0.881 + 0.502) = 198 tons. 
The influence upon R2 of the concentrated locomotive wheel loads, 
shown in Fig. 22a, would be the value of each load multiplied by its 
corresponding ordinate on the influence diagram, and summed for all 

the wheel loads. 
If we had a model of our truss, we might pin it at its extremities and 

give it unit displacement at point C. Then we would have a mechanical 

device which in one operation would give us our influence diagram, and 

we might measure the values of A5, Ad, and Ac instead of computing 

them. 
We may then express our conclusions as follows: All mathematical 

theory of elasticity is for the purpose of expressing the elastic behavior 
of structures. We may obtain the elastic behavior of structures from 
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models, and MaxweWs Law of Reciprocity of Disphcemenis provides 
the key to the interpretation of such elastic behavior. 

Maxwell’s law, as may be seen from the foregoing proof and, in 
fact, from its strict adherence to the logic presented in all the preceding 
pages, is the embodiment of the soundest theories of elasticity we have, 
mathematical or otherwise. The success of its application is contingent 
only upon the quality of workmanship in the model. The application 
of Maxwell’s law has one striking advantage. When a mathematical 
analysis becomes disproportionately difficult with more than one stat¬ 
ically indeterminate unknown. Maxwell’s law holds true regardless of 
the degree of indeterminateness of the structme. Therefore, the influ¬ 
ence diagram of a structure having many redundant members may be 
obtained with little or no more effort than that of a structure having 
only one redundant member. 

The construction of models for trusses may be too difficult for 
practical purposes. Mawell’s law, however, is equally applicable to 
beams, and a more detailed discussion of its use in connection with 
influence lines will be presented in the chapter on beams. (See page 198.) 

The ai^uments we have just advanced in the construction of an 
influence line for R2 (Fig. 226) are equally applicable to Ri and Rz- 
To obtain the influence line for Bi, give the point of application of Ri 
a unit displacement, then measure or compute the displacements at 
the remaining panel points and connect such displacements by straight 
lines. (See problem 13, page 277, for influence lines, or elastic curves, 
for a truss with two redundant members.) 



CHAPTER V 

ANALYSIS OF BEAMS 

In the analyds of structures composed of beams our logic is identical 
with the reasoning involved in our analysis of frames. Our first con¬ 
sideration is the law of conservation of energy. We asstune the con¬ 
dition of elastic behavior, Hooke’s law, and of the principle of super¬ 
position. We further assume that the deformations are of a magnitude 
so small as not materially to affect the geometric relations of various 
parts of the structure to one another. And finally we presuppose the 
absence of abrupt changes in either modulus of elasticity or cross section 
of members. 

In the analysis of frames we proceeded as follows: 

1. Introduced, solely for the sake of analysis, an auxiliary load 
P at a certain point and operating in the direction in which we 
wanted to find the displacement of the point. 

2. Foimd the forces / (first applied) produced in members by 
the auxiliary load F. 

3. Found the forces S (subsequently applied) produced in members 
by the actual loading Q. 

4. Used the expression CfS to represent the elastic enei^ stored 
in a member because the force / is present during the application of 
the force S. 

' 5. Summed the expression CfS over all the bars in the frame, 
and equated SC/S to the external work done by F, namely, ‘ 

SC/S = FA 

DEFORMATION OF BEAMS 

In the analysis of beams our procedure will be rimilar to that 
followed in the analysis of frames. Such differences as may appear 
will be differences in the mechanism used for evaluation purposes 
rather than differences in reasoning. In the analysis of a frame we 
based our reasoning upon the elastic behavior of a single member as 
a representative unit. In the analyris of beams we diall base our 

41 
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reasoning upon the elastic behavior of an element of infinitely small 

dimensions. 
Length is represented by the symbol ds, dx, or dy, and cross-section 

area by the symbol da. 

(e) 
Fig. 23. 

Let Q (Fig. 23a) represent the actual loading on a beam. (Q may 
be any loading, either several concentrated loads or distributed 
loads or both.) 

Let Aa (Fig. 236) represent the vertical displacement of the point A 
under the action of load Q, 

Let F represent an auxiliary force, introduced merely for the sake of 
analysis, applied at point A in the direction of (Fig. 23d). 

Let M (Fig; 23c) represent the bending moment caused by the actual 
load Q. 

Let m (Fig. 23c) represent the bending moment caused by the 
auxiliary force F, 

Let V represent the distance from the neutral axis * of any point in 
a beam, as point B, 

Let fb represent the stress (unit force) on a particle at point B 
caused by the auxiliary load F, 

Let Sb represent the stress at point B caused by the actual load Q. 

* The “neutral axis of a beam'* passes through the center of gravity of the cross- 
sectional area of the beam. (See section at B [Fig. 23a]. See also any textbook on 
elementary strength of materials.) 
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Let ds, dx, or dy represent differential distance. 
Let da represent differential area. 

In the analysis of a frame we select any one bar as a representative 
unit, ignore the weight of the bar itself, and assume the S and f forces 
be constant throughout the length of the bar. 

In a beam the stresses vary continuously from left to right and from 
top to bottom. If we take an element (Fig. 24), say of length n at point 

B, the stresses at the ends, Si and S2, will be of different magnitude. 
The difference between si and §2 will depend, among other things, on 
the length n of the element. The smaller the distance n becomes, the 
less will be the difference between Si and S2 at the two extremities. 
If n becomes infinitely small, if it approaches zero as a limit, then the 

■ 
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Fig. 24. 
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Fig. 25. 

quantity si — §2 will likewise approach zero as a limit. In other words 
the element (Fig. 24) will be subjected to a constant stress throughout 
its infinitely small length. 

The same reasoning may be applied to the vertical variation of 
stress. In a beam loaded as in Fig. 23a the bottom fibers would be 
stressed in tension, the top fibers in compression, and at the neutral 

axis the fibers would not be stressed at all. 
If the element (Fig. 24) is of finite dimension, the stress cannot be 

considered as uniformly distributed over its cross-sectional area. The 
smaller we assume the cross-sectional area of the element to be, the more 
nearly uniform would be the distribution of the stresses over its entire 

cross-sectional area. If the area is assumed to be approaching zero as 
its limit, then the stress would be uniformly distributed. 

This is not, as might seem, indulging in inaccuracies. No extremely 

small quantities are being disregarded. In terms of calculus, differ¬ 

ential quantities of a higher order may be ignored without causing 

any error. In this process, if we assume the dimensions of our element 

(Fig. 24) to be approaching zero as a limit, the stresses at its extremi¬ 

ties are uniformly distributed over the cross-sectional area. Further, the 
difference between si and S2 vanishes, and the element is stressed with 
a constant stress over its entire length. For such an element the con¬ 

ditions of loading are identical with those we assumed for bars in a 
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truss (see page 9), and we may proceed to develop our beam formula as 
we developed formula (1). 

In Fig. 25 is shown the infinitesimally small particle of the beam 
(Fig. 23a) at point B of length dx and cross-sectional area da, and located 
a distance v from the neutral axis. The auxiliary load F at point A 
(Fig. 23d) will cause a bending moment m to act at point and a 

Wit) ^ 
corresponding stress, == -z- to be set up in the particle. The load 

on the particle will be 

Stress X area = fhda = 
mvda 

If the actual loading Q is applied after F is in full operation, a bending 
moment M will be superimposed upon the moment m already acting. 

The particle at B (Fig. 25) will have a stress Sb = — superimposed upon 

the stress fh already there. This stress Sb will, according to Hooke's 
law, cause the particle at B to elongate. 

stress 

strain 
strain = 

stress 

E 

Total elongation == strain X length 

stress X length Sbdx Mvdx 

“ E " ~E~ “■ El ‘ 

The energy stored in the particle at B because F is fully acting 
while Q is applied is shown by the rectangle m (Fig. 25), and is repre¬ 
sented by the expression: 

fhda X 
Sbdx mvda Mvdx mMv^dadx 

The energy stored in the shaded block (Fig. 23a) is 

mMdx 

EP 

As long as we limit our attention to the shaded block, dx will be constant 
and da the only variable. The summation of Pda over the entire 
cross-sectional area of the beam, v being measured to the neutral axis 
(center of gravity axis of the cross-sectional area), is the moment of 

* See any elementary textbook on strength of materials. 
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inertia of the cross-sectional area of the beam about its center of gravity 
axis. Therefore, the energy stored in the shaded block (Mg. 23a) is 

mMdxI mMdx 
EP ~ El 

The energy stored in the entire beam then is ^ 
mMdx 

summed 
ft El 

over the entire length of the beam. This energy, if we assume the law 
of conservation of energy to hold, must equal the external work done by 
F, which is FA. Therefore, 

FA = J' Formula (5) * 

Fra. 26. 

If the displacement sought were that of the point at which load 
Q is applied, then the auxiliary force F might be taken equal to Q, and 
then m at every point would be equal to M, and formula (6) would 

appear as 
M^dx 

El ' 
If we wanted to find the angular displacement of the beam at a point 

A (Fig. 23a), we would apply an auxiliary moment M' (Mg. 26d) at that 
point instead of an auxiliary force F. 

* We have here considered only the elastic energy due to bending. The par¬ 
ticle of the beam represented by Fig. 24 is subject to shear stresses on the end planes, 
and some elastic energy due to shear is stored in the particle. However, the shear 
elastic energy in beams of ordinary proportions is negligible. See page 173. 
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Figure 25, which has reference to Fig. 23o, is equally applicable to 
Fig. 26o, and the arguments introduced to find the linear displacement 
of A fully apply to the problem of finding the angular displacement of 
the tangent to the elastic curve at A. 

Thus the work done by M', rotating while the loading represented 
by Q is being applied, is equal to M'0i. The elastic energy stored in 
the beam, because M' was fully acting while Q was applied, is 

Therefore 

mMdx 

El 

r mMdx 

-J IT- Formula (6) 

Note that m is a linear function of M' and is proportional, but not 
always equal, to M'. 

A comparison between formulas (1), (5), and (6), 

FA = SC/S, 

FA = 

M'di = 

/ 
/ 

mMdx 

El ’ 

mMdx 

El ’ 

will reveal that all give expression to the same philosophy, the same 
physical phenomena. The left side of each equation represents mechani¬ 
cal work done by an auxiliary force or moment, expressed in inch- 
pounds; the right side of the equation expresses elastic energy stored 
because an auxiliary force or moment is acting during the application 
of the actual loading. Qualitatively, m and M in formulas (5) and (6) 

dx 
are of the same nature as/and S in formula (1); and — in formulas (5) 

and (6) qualitatively takes the place of the elastic coefficient C = — 
AE 

in formula (1). 

TOTAL ELASTIC ENERGY DUE TO BENDING 

Let us consider an infinitesimal element in the beam, length dx, cross- 
sectional area dA, and situated a distance x from the right end and a dis¬ 

tance V from the neutral axis (Figs. 23o, 27a, and 27c). This element is 
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Mv 
dA and is deformed a distance A = strain loaded with a force 

1 

, , stress , , Mvdx , 
X length = X length = (Fig. 27c). 

The total elastic energy stored in the element is represented by the 
triangular area DEF (Fig. 27c) and is equal to 

1 MvdA Mvdx 

2 ^ 1 ^ 

M^v^dAdx 

2EP 

At any cross section x only v is variable. The energy stored in the 

shaded block GHIK (Fig. 27a) may be written 

M^dx 

L 
v^dA. 

2EI^ 

Since ^v^dA over the cross-sectional area A of the beam is the 

moment of inertia of this area, we have 

M^dx 
i^dA = 

2EI^Ja'''~^^ 2EI 

The energy stored in the entire beam, then, is 

'Mx 

2EI ' 

I' 

tir( 

-f 

M^dx 

Formula (7) 

Example 11 

Find the displacement of point A, distance a from the wall, in a 

cantilever beam loaded with a concentrated load Q at its free end. 

E and I are assumed constant (Figs. 28o and 286). The bending 



48 ANALYSIS OF BEAMS 

moment m for the auxiliary load is shown by a dotted line (Fig. 2Se), 
The bending moment M for the actual load is shown by the solid line 
(Fig. 28c). 

According to formula (5), 

Aa = 
mMdx 

FEI ‘ 

Note that the product mM has significance only between points 
A and B) as between points A and C its value is zero. In other words, 
F produces no bending moment in the beam and therefore creates no 
stresses between A and C. It follows, then, that no elastic energy can 
be stored within that portion of the beam in which F fails to make itself 
felt. 

pmMdx r^FxMdx 1 
— = — / xMdx. 

Jq FEI FEI El 

Here ^, as a constant, may be written outside of the summation 
El 

sign. The subscripts 0 and a, or B and A, at the top and bottom of the 

summation sign, namely signify that the summation applies only 

to that portion of the beam lying between points B and A. We may 
conceive the area under the bending moment curve M to be divided 
into an infinitely large number of small rectangles. One of these rec¬ 
tangles Mdx is shown on the sketch (Fig. 28c). Then xMdx would 
represent the moment of the small rectangle about the point A. Further, 

J xMdx would be the sum of all the moments of the infinite number 

of rectangles within the trapezoidal area between A and B about the 
point A. This sum is equivalent to the trapezoidal area between 
points A and B multiplied ^ its X, the distance from A to its centroid. 

To evaluate this Area X it is convenient to divide the trapezoidal 
area into a rectangle and a triangle and take the sum of the moments 
of both, thus: 

Aa -- f El Je 
xMdx = 

Area X AiXi + A2X2 

El El 

if CL a 2 1 
= Yi -«)XaX- + QaX-X-oJ 

Q (aH a^\ _ Qa^ 
EI\2 2"^ 3/ 
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from which we derive 

>-hf: Mdx, 

Mdx is the small rectangle, with altitude M and base dxy shown cross- 

hatched in Fig. 28c. j Mdx is the sum of an infinite series of such 

small rectangles, all within the bending-moment diagram M summed 

between the limits of A and B, J Mdx, therefore, is the area under 

the bending-moment diagram M between points A and B. Therefore 

‘■-X 
Mdx 
El 

When a = I, di = 

-\B 

Area 
JA 

El 

Ql^ 
2EI 

Q {(Z — a) l]a 
m 2 

Q(2U - a^) 
2EI 

Example 13 

Find the displacement Ac of the free end of a cantilever beam under 
the action of a concentrated load at its extremity. E and I are assumed 
constant (Fig. 286). 

Introduce an auxiliary load F at point C in the direction of Ac 
(Fig. 28A). The bending moment m, caused by the auxiliary load F, 
is m = Fx (Fig. 28t). The actual bending moment, x being measured 
from point C, is ilf = Qx, From formula (5) we have /mMdx p FxMdx p xMdx Area X 

FEI ^Jo FEI ^ Jo El El 

By ‘‘Area’^ is meant the area under the bending-moment curve M. 
In examples 11 and 12 only the area under the M curve between points 
A and B is considered. In this instance, since m extends over the 
entire length of the beam, the entire area under the M curve is meant 
(Figs. 28c and 28i). X is the distance to the centroid of the M bending- 
moment area measured from point C, Therefore 

Ac = 

I 2 
Qix-x-i 

El ZEI 

This value might also have been obtained from example 11 by substi¬ 
tuting I for a. 
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THE TOOLS OF ENGINEERING MECHANICS 

In the development of the science of strength of materials we employ 
three different means for the expression of thought, all of which are 
intimately related. These are: 

1. S3niibolic logic (mathematics). 
2. Free-body sketches (graphs and diagrams). 
3. Language. 

Free-Body Sketches 

As formulated by Sir Isaac Newton, every action has an equal and 
opposite reaction. The distinction, therefore, between external and 
internal forces is an artificial one. In nature external forces are non¬ 
existent. The truss represented by Fig. 12, page 11, for example, in 
reality forms part of the earth. What are commonly called external 
reactions are in reality internal forces; the abutments act upon the truss 
and the truss in turn acts upon the abutments with equal intensity, but 
with opposite sense. What may appear to be external loads at the panel 
points are in reality internal forces acting between floor beam and truss. 
The principal value of the free-body sketch lies in the fact that it per¬ 
mits internal forces and moments to be represented by vectors as 
external forces. There are no restrictions as to size, or dimensions, in 
the representation of free bodies. An entire locomotive, an entire 
bridge, in fact anything varying in size from an infinitesimal particle to 

the entire solar system, may be represented as a free body. In Fig. 19a 
the truss is shown as a free body separated from the earth as well as 
from the loads. The effects of the earth and the load on the truss are 
the forces shown as arrows. Though many textbooks make the attempt, 
the forces in the members. Fig. 19a, cannot be effectively shown by 
arrows. Such forces occur in pairs, equal and opposite, and their 

resultant is zero. If it is desired to show the forces in the members 
themselves as external forces acting on the joints, then the joints them¬ 
selves must be represented as free bodies. 

The free-body sketch principle is one of the most effective tools in 

mechanics. The use of the free-body sketch may well be made fool 

proof if a few simple propositions are observed. The reason they are 

here especially emphasized is that, simple as these propositions are, 
they are yet frequently violated, causing errors which might easily have 

been avoided. 
Proposition 1. A free-body sketch must account for all forces, known 

and unknown, no more and no less. If one chooses to show components 
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of a force rather than the force itself, then the force itself should be 
eliminated. 

Proposition 2. All bodies with which the engineer is concerned are 
part of the earth. Any part of the earth under special investigation—a 

bridge, a locomotive, a crankpin, or an infinitesimal particle—^is sepa¬ 
rated from the earth by passing imaginary planes along boundaries of 
our own choice. At any point where such an imaginary plane cuts the 
body, if the body be three-dimensional and of finite dimensions, there 
are six unknowns to be accoimted for, three unknown forces parallel to 
the Xy y, and z axes of a coordinate system and three unknown moments, 
one about each of these three axes of the coordinate system. If the body 
is two-dimensional and of finite dimensions, then the unknowns are 
reduced to only three in number, namely, two component unknown 
forces and one unknown moment. In Fig. 26, page 45, for example, 
the structure is two-dimensional. The unknown reactions at each end 
are in fact three in number. However, the beam is supposed to rest on 
rollers, which means that both the horizontal and the moment reaction 
are zero. They are, therefore, not shown. In Fig. 406, page 78, the 
horizontal reaction is assumed to be zero and is therefore not shown. 
The remaining two reactions, the linear one, Vay as well as the moment 
reaction. May are both shown. 

One pitfall must be guarded against, namely, the error of allowing 
our wish to become the father of our thought. Whenever we decide not 
to show a possible unknown force acting on a free body, we must be 
certain that our reasons for assuming it to be zero are incontestably 
valid. 

Proposition 3, Forces are represented by vectors. The inclination 
of the line designates the direction of the force. The magnitude of the 
force may be shown by the length of the line, if drawn to scale. More 
commonly the magnitude of a force is indicated by writing on the 
sketch a number designating the magnitude. The arrow on the vector 
represents the sense of the force. We differ here, possibly, with defini¬ 
tions of direction and sense found in other textbooks. A person sitting 
in a chair, for example, exerts a force on the chair, while the chair exerts 
a force on the person. Both forces have the same direction, which is 

vertical. They differ, however, in sense, the one being downward while 
the other is upward. 

As we stipulated at the outset, the three media for the expression 
of logic are interrelated. It is important to realize that the arrowheads 
on the force vectors have exactly the same significance as the plus or 

minus signs in algebraic equations. Many times the direction and 
sense of an unknown force are known and the magnitude only remains 
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to be found. At other times both magnitude and sense of the unknown 
forces are unknown (see Fig. 44c, page 88). 

It is entirely immaterial how we show the arrows of any unknown 
force acting on a free-body sketch provided that we rigidly observe two 
rules. One is that the plus and minus signs in any algebraic equation 
are strictly in harmony with the arrowheads on the vectors in the free- 
body sketch. The other is Newton’s third law of motion, which says 
that for any action there is an equal and opposite reaction. In Fig. 44c 
(page 88) it is entirely immaterial how the arrows in the free bodies 
appear. If at point A, at the top of the vertical leg, Fi is shown pointing 
downward. Hi pointing to the left, and Ma acting clockwise, then at the 
same point. A, the left end of the horizontal beam AH, Vi must be shown 
pointing upward. Hi must point to the right, and Ma must act counter¬ 
clockwise. 

Semi-Graphic Integration 

The method of semi-graphic integration as a means of solving certain 
differential equations was first proposed by Mohr in Germany, and by 
Greene in Michigan. At the time, especially in the United States, 

, . d^y I M 
the differential equation 3~2 ~ ^ stressed almost to the 

dx K EjI 
exclusion of any other. If we multiply the foregoing expression by dx 
and integrate, we obtain 

d^y dy 
--|dx = -r = tan^ = ^ = 
dx dx 

Area 

~W 

(when the deflections are small, tan 0 = 0). The conventional pro¬ 
cedure was to write Af as a function of x and integrate analytically. 
Mohr’s and Greene’s suggestion was to the effect that the integration, 
instead of being accomplished by analytical means, might be effected by 
evaluating the area, or the moment of the area, under the bending- 
moment curve. Greene called his suggestion the method of area 
moments. When first meeting with it the present author regarded the 
area-moment method of analyzing redundant problems in structural 
engineering as one of the outstanding advances in the science of strength 
of materials of his generation. He continues so to regard it until this 
day. In this book the method of semi-graphical integration is also 
stressed wherever feasible. No special name is offered for it, however. 
The two procedures are identical in that they are both methods of 
semi-graphical integration. The student who is familiar with the 
method of area moments, however, must realize that, beyond this one 
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identity (and an identity in appearance of resulting expressions, 
Ai*ftf^ A^rea 3/1 

and ——— ) , all similarity between the two procedures ends. 
£jI hi / 

Any writing down of an equation in connection with the analysis of 
an engineering structure must of necessity be based upon some apprecia¬ 
tion of how this structure behaves physically. The method of area 
moments, being predicated on the differential equation for curvature, 
requires that the structure be studied from the point of view of curva- 

The equation Q = is defined as the deflection of a tangent 

at one point on the structure relative to a tangent at some other point, 
A.rea 3/ 

and A = —is defined as the linear displacement of a point on a 

structure relative to a tangent at some other point. /mMdx 
— ; 
r hi 

—In these expressions both A and & 
M'EI 

signify not relative but absolute displacements. Furthermore, the con¬ 
sideration of the elastic curve plays no part whatsoever in our analy¬ 
sis. Instead, our analysis is predicated on the principle of conserva¬ 
tion of energy. 

The advantage of the semi-graphical integration procedure arises 
from the fact that the kinds of loading most commonly encountered in 
engineering practice are of only four types. The bending moments of 
these four types of loading, when applied to straight beams, may, with a 
little practice, be represented by four stereotyped simple bending- 
moment curves, the areas and moment areas of which may be evaluated 
and subsequently utilized without requiring re-evaluation (see Ap¬ 
pendix I). 

Figures 29 to 32 represent bending-moment diagrams for the four 
basic types of loading applied to straight beams. 

or formula (6), 6 -I In these expressions both A and Q 

Rules for Graphic Integration 

1. For a concentrated load Q the bending-moment diagram may 
always be represented as a straight line. The area under the bending- 
moment curve will always be a triangle (Fig. 29a), a rectangle (Fig. 296), 
or a trapezoid (Fig. 29e), a combination of the first two. If the area 
under the bending-moment curve is a triangle, the equation of this 
curve will be M = KQxj provided that we measure x from the vertex of 
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the triangle. In the accompanying sketches the constant K will be 
unity as shown in Fig. 29o, and -g- and -g in Fig. 29c. 

2, For a uniformly distributed load the bending-moment diagram 

will always be some form of parabola. For the simple beam, carrying a 
uniformly distributed load, the bending moments of the reaction and 
load may be combined and represented graphically by a single curve 
(Fig. 30a); or they may be shown separately (Fig. 306). No hard and 
fast rule about the drawing of bending-moment diagrams can be ^ven. 
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It may be said, however, that, if graphic integration is to be resorted to, 
it is advantageous to draw the bending-moment diagrams in as simple 
a form as possible. This is generally best accomplished by drawing 
the component parts; that is, the bending moment of each reaction, 
each force, and each loading is pictured separately. 

If a cantilever beam is uniformly loaded throughout its entire 
length (Fig. 29d), the bending-moment area between points A and B 
presents a truncated parabolic area. The loading, however, may be 
regarded as two loadings, one extending from B A (Fig. 29/) and one 

W Lb. per Ft. 

Fig. 30. Fig. 31. 

from A to (7 (Fig. 29e). This arrangement divides the bending-moment 
area between A and B into a trapezoidal area (Fig. 29e) and a simple 
parabolic area (Fig. 29/). Together they are equivalent to the trun¬ 
cated parabolic area (Fig. 29d). 

3. For a uniformly varying load (Fig. 31), if the load intensity is 
directly proportional to the distance (being w at A), the load intensity 

at distance x is 
wx 

T’ 
the maximum load intensity is w; the total load 

on the beam is — ; and the equation of the bending-moment curve is 

W3? 
a cubic equation, M = • The area imder the bending-moment 

curve is one-fourth of its circumscribed rectangle, 

Mgl _ wT? 
4 “ 24 ’ 

and the distance X from the wrtex to the centroid of the area under 

the bending-moment curve iB X = 
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I 

4. For a beam loaded with a couple (Figs. 26d, 28/, and 296) the 
bending-moment curve will always be a straight line, and the area under 
the bending-moment curve will always be either a rectangle or a triangle. 

For the properties of the areas ^ ^ ^ ^ 
under the ben(hng-moment curves 
for varying conditions of loading 
see Appendix I. p ^ 

A bending-moment diagram 
may usually be drawn in many (^|L- ■ - ■ ■ bW 
different ways. The facility and 
success of graphic integration are 
somewhat dependent on the man- 
ner in which the bending-moment 
diagram is represented. Figure 32a 
represents a built-in beam loaded 
with a concentrated load. Figure ^ 
326 represents a free-body sketch 
of this beam. Figure 32c shows the 
resultant bending moment. Figure 
32d graphically shows the bending “L,--— Qb 
moment at any section in the beam Tri-^ 
in terms of all the forces to the 
right of the section. Figure 32c 
shows the bending moment at any ^ * 
section of the beam in terms of all ^ (/) 
the forces to the left of the section. _ 

The fact that each of the graphs ^ 
of Figs. 32c, dj and e accurately ___ 
represents the bending moment at ^<>1 _ 
any point in the beam should be 
self-evident. Figure 32/ is con- 
structed by first drawing the bend- -- 
ing moment of the beam in the 
manner of a simply supported beam (Jp ^ 
(the triangle above the x axis), 32 

then laying off the bending mo¬ 
ments Ma and Mb at each end and connecting the ordinates Ma and 
Mb by a straight line (the trapezoid below the x axis). 

That Fig. 32/ accurately represents the bending moment of the beam 
as loaded in Fig. 32a may be proved as follows: 

The equation for the bending moment shown in Fig. 32a is 

M = Rhx — Mb (see Fig. 32d); 

Fig. 32. 



58 ANALYSIS OF BEAMS 

for the bending moment shown in Fig. 32/ it is 

M5 + 
(Ma - M^)x 

If we can show the two expressions to be identical, the legitimacy of 
drawing the bending-moment curves in the manner of Fig. 32/ will be 
established. 

Taking the moments about the point A (Fig. 32&) we have the fol¬ 
lowing equations, the third of which is the identity desired: 

Ma + Rbl — Mb — Qa = 0, 

Qa (Ma - Mb) 

RbX — Mb 
Qax \(Ma — Mb)x 

+ Mb 

The composite bending-moment diagram of Fig. 32c gives us the 
best picture of the manner in which the bending moment varies along 
the beam. However, it will be of little use in the graphic integration 
process as long as the quantities involved in the drawing, such as the 

values of Ma and Mb and the location of the points of intersection of 
the curve with the x axis,.are unknown. Graphic integration means 
the evaluation of areas under the bending-moment diagram and of the 
moments of such areas about certain points. For purposes of graphic 
integration, then, the bending-moment diagrams are drawm in the 
manner shown by either Fig. 32d, 326, or 32/, presenting in each case 
simple rectangles, triangles, or trapezoids. The trapezoid of Fig. 32/ 
may be divided by one of its diagonals as shown in the sketch and con¬ 
sidered as two triangles. In connection with the analysis of continuous 
beams or built-in beams, and particularly in connection wdth the analysis 

of bents and culverts, the representation of bending-moment diagrams 
in the manner of Fig. 32/ will prove advantageous. 

The bending-moment diagram for a beam with a positive bending 

moment at one end, a negative moment at the other, and no loading 
between the ends is shown as in Fig. 32g, By adding a constant positive 

and negative moment of the same magnitude. Fig. 32gf may be changed 
into Fig. 32h without changing its meaning. By adding and subtract¬ 

ing the same positive and negative triangular bending-moment area. 
Fig. 32h may be changed into an equivalent bending-moment diagram 
as shown in Fig. 32i. 
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In the application of formulas (5) and (6), A = ^ 

/mMdx 
9 ^ ^} representing the auxiliary force or moment, 

mMdx 

FBI 

will always cancel. {F or M', being of any arbitrary magnitude, might 
have been selected as unity, in which event they would not have appeared 
in formulas (5) and (6).) In the analysis of straight beams and com¬ 
binations of straight beams, such as bents and culverts, the foregoing 
expressions which are to be summed will invariably reduce to the form 

or xMdx. 

If M is the ordinate at any point in the M bending-moment curve, 
and dx is an infinitesimally small length at the same point, Mdx will 

/ be an infinitely small rectangle and / Mdx will represent the summing 

of such small rectangles over the entire range from a to 6. This repre¬ 
sents the area under the bending-moment curve 
shown cross-hatched in Fig. 33. If x is always 
measured from the same point, then xMdx repre¬ 
sents the moment of the small rectangle Mdx 

rh 

about that point, and / xMdx represents the 
a 

sum of ail such moments for an infinite series of 
consecutive small rectangles. The student must 
keep in mind that dx is an infinitely small dis¬ 
tance, or, to be more exact, a distance approaching zero as its limit. 
Therefore, no error is caused by measuring x to the edge of the small 
rectangle Mdx instead of measuring it to its centroid. 

This summation, by principles of elementary mechanics, is defined 
as the moment of the entire area about the point, and may be repre¬ 
sented as Area X- (Area refers to a portion under the bending-moment 
diagram between definite limits, and X represents the distance to the 
centroid of such area measured from the point from which x was meas¬ 

ured.) 

In evaluating the expressions Mdx and xMdx by graphic 

means, it is important that both the m and the M diagram shall be 
drawn, so that the areas under the M curve and their moments may 
be easily visualized. Furthermore, to distinguish clearly between the 
effect of the auxiliary loading and the actual loading, it is of great 
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importance to emphasize the inherent distinction between m and M. 
This may be shown by representing m as a dotted graph and M as 
a solid graph. 

The principle of conservation of energy underlies this entire trea¬ 
tise. Where the graph shows that either m or M is zero there can 
be no energy involved, and the expression for energy must thus be zero. 

The m diagram, caused by an auxiliary concentrated load F, or 
an auxiliary couple Af', will always be one of two things, a rectangle 
or a triangle. If m is represented in the graph by a rectangle. 

its equation will be m == KM^y and the expression mMdx takes the 

form K I M'Mdx, Since Af' cancels, K I M'Mdx will be merely a 

constant times the area under the M diagram. (The constant K will 
generally be unity.) If m is represented in the graph by a tri¬ 

angle, its value will be expressed as CxF, and J' mMdx will appear as 

C J'xFMdx. Since F always cancels, C J'xMdx will always be 

a constant multiplied by the moment of the area under the M curve, 
Oie moment to he taken about the vertex of the m diagram. 

Signs 

The determination and interpretation of signs, in problems of 
strength analysis, frequently constitute a major difficulty. The mag¬ 
nitude determination of an unknown amounts to one half of the answer. 
The correct interpretation of the sign is the other half. One may, for 
example, determine the magnitude of the moment which a reinforced- 
concrete beam must carry, and proportion the beam accordingly. The 
interpretation of the sign will determine whether the reinforcing steel is 
to be placed in the top or in the bottom of the beam. The author recalls 
arguments about the meaning of signs which continued for weeks. In 
one instance which he recalls the checker and the designer compromised 

by specifying that reinforcing steel be placed in both bottom and top 

of the beam. 

Any confusion about the meaning of mgns, the author feels, is gen¬ 

erally due to the influence of tradition, to the attempt to apply archaic 
definitions which are basically illogical. Engineering may be defined as 
applied science, but engineers are human, and, in common with the rest 

of the race, they attempt at times to substitute rule for logic. 
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The meaning of signs is essentially relative. One of the important 
rules of mathematics is that an equation may be multiplied by — 1, 
changing the signs of all the terms in the equation, without in any way 
changing its meaning. A plus or a minus sign by itself has no meaning. 
It assumes significance only in its relationship to other signs. 

One definition of sign, which has given rise to a great deal of confu¬ 
sion, is the one applied to bending moments. In his youth the author 
learned that when a beam bends so a^ to “hold water’’ the bending 
moment is positive; when it bends so as to “shed water” it is negative. 
The second edition of the supposedly up-to-date textbook from which 
he teaches his elementary students still offers this definition. This 
definition is archaic, unscientific, and in violation of one of the first 
rules of logic. This is not advanced as a personal opinion, but as a 
statement of fact. 

In a beam of uniform cross section, built in at both ends and loaded 
with a uniformly distributed load, the bending moment at the wall is of 
a sign opposite to that in the middle of the beam. If one is designated 
as positive, the other is marked negative. No issue is taken with that 
procedure. It is only when we say that the moment at the wall is 

negative, and that the one in the middle of the beam is positive that we 
violate the rules of logic. Consider a long and slender piece of spring 
steel. If it is long enough and slender enough and loaded with equal 

and opposite couples at each end, it will assume the shape of a complete 
circle. According to the aforementioned definition the moment at the 
top would be negative, at the bottom it would be positive, but those 
at the sides the rule ignores. The structural engineering profession 
offers to provide a rule for the moments at the sides of a long, slender 
spring-steel beam curved in the shape of a complete circle. The beam, 
or the drawing, is to be turned clockwise through 90°, and the rule 
of signs is then to be applied as before. This is merely adding an 
arbitrary convention to a supremely illogical rule. Should we 
wonder that confusion often reigns in matters of signs when the 
analysis of complicated structures is encumbered with such rules and 

conventions? 
One other source of confusion about signs arises from the fact that 

in a single analysis several different rules of signs may be applied to one 

equation. The final sign in the answer then presents a problem analo¬ 

gous to that of unscrambling the egg. It is to be remembered that, 
in the analysis of redundant structures, the theory of elasticity is but a 
supplementary theory, and that the theory of static equilibrium is 

primary. A complete solution will always require one or more equations 
of static equilibrium. These equations, however, are quite distinct, and 
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any rule of sign applying to them need in no way affect rules for signs 
applying to the elasticity equations. 

As to the elasticity equations, we may have one rule of sign for 
bending moments, and another for curvature, or elastic energy, depend¬ 
ing on which theory is used. Still another rule of sign ihay assert itself, 
namely, the rule derived from the mathematical traditions associated 
with the cartesian, or some other coordinate, system. One advantage in 
the application of the theory of elastic energy lies in the fact that only 
one rule of signs applies. We are completely indifferent to all rules of 
signs as appl3dng to bending moments; and distances x, measured either 
to the left or to the right, have no sign associated with them. Any 
attempt to apply the rules associated with the cartesian coordinate 
system, to attach minus signs to distances measured to the left and plus 
signs to distances measured to the right, cannot possibly make any con¬ 
tribution, since these definitions are completely foreign to the philosophy 
of elastic energy. 

In applying the theory of elastic energy we are primarily concerned 

with the evaluation of the integral J* In the proof of our 

formulas we represented by an area that quantity of elastic energy in 
which we are interested, a small rectangle, the product of two sides. In 
our formula it is well to regard the product mM also as the essential 
quantity. It is thus immaterial what individual sign is associated with 
either m or ilf. The product of two minus quantities is a plus quantity, 
as is the product of two positive quantities. The only rule of sign (by 
this we mean to exclude all arbitrary rules of signs relative to bending 
moments as well as the rules of signs associated with the cartesian 
coordinate system) involved in the application of the theory of elastic 
energy is the one which is initiated when we begin writing an equa¬ 
tion, and whose function terminates when the equation is completed. 

Whether we evaluate J* mMdx analytically or graphically, the only 

thing we must make sure of is that the same rule of sign is applied to 
the auxiliary moment m as to the actual moment M. 

In example 11 (pages 47 and 49) Q is shown acting downward 
(Fig. 28a), and the M bending moment was drawn below the x axis 
(Fig. 28c). The auxiliary force F in Fig. 28d is also shown as acting 

downward. If the M bending moment is negative, surely the m bending 

moment is of the same sign. Since both bending moments m and M 
have the same sign, the product mM is positive. A positive answer for 

— I is interpreted in relation to the assumed auxiliary load F 
J t hi 
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(Fig. 28d). Since this F (Fig. 28d) is acting downward, the displace¬ 

ment Aa is a downward displacement. 

Regardless of any rules concerning bending-moment diagrams advo¬ 

cated by others, we might with full justification have shown the M 

bending-moment diagram as positive. However, if we had done so, 

we should also have shown the m bending-moment diagram as positive 

and our answer would have been in no way affected thereby. 

The application of the auxiliary load F, or auxihary couple M', is 

specified to be at the point where, and in the direction in which, we seek 

the displacement. The sense of neither F nor M' is specified. We 

naight, therefore, have shown F in Fig. 28d as acting upward instead of 

downward. If we had done so, the m and M bending moments would 

have been of opposite sign and the product mM would have been nega¬ 

tive. A negative value for Aa, interpreted in relation to the sense of 

the auxiliary load F, would mean that it would be in a sense opposite to 

the upward pointing force F, or downward. The answers thus are 

identical no matter what procedure is followed. 

No matter how complicated the problem, the rule regarding signs 

here promulgated and illustrated by our discussion of example 11 is 

absolutely the only valid rule of signs involved in any elastic-energy 

equation. Any other rules relative to signs are only too apt to confuse 

matters. 

It is possible that bending moments which are positive in one of a 

series of simultaneous equations must be regarded as negative in another 

equation of the same series (see page 87). 



CHAPTER VI 

REDUNDANT BEAMS 

The description of the elastic behavior of beams given in Chapter V 
is important, not so much for its own sake as for the sake of providing 
means of analyzing redundant structures. It is rarely that we are 
interested in the deflection of a beam as such. Once this deflection is 
known, however, this knowledge may well serve as a means of analyzing 

statically indeterminate structures. 
The following examples cover 

Rectilinear beams. 
Bents, and 
Curved beams. 

RECTILINEAR BEAMS 

Example 14 

Given: A beam built in at the left end, freely resting upon an unyield¬ 
ing support at its right end, and loaded with a uniformly distributed 
load w pounds per foot. E and I are assumed constant (Fig. 34a). 

To find: The reaction R2 at the right end. 
The vertical displacement of any point in the beam is given by 

formula (5): ^ 

j mMdx 

A = 

FBI 

The vertical displacement of the end of the beam is represented by 

^ mMdx 

Ab = 0 = 
FEI 

The auxiliary force F applied at point B may be of any value. 
Then, m Fx (Fig. 34c) and 

/ mMdx 

FEI 

xMdx 

FEI 
= 0. 

64 
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Therefore xMdx = 0. As previously shown (pp. 59 and 60), 

^ xMdx is equal to Area Z, which is the moment of the area under the 

M bending-moment diagram about the point of vertex of the triangular 
bending-moment diagram m. Thus 

or 

^xMdx = Area X = AiXi — A2X2 = 0 

/ , Z\2, (v)P Z\3, ^ 

From this last equation we obtain 

■^2 ~ 

To obtain this solution analytically we substitute the bending- 
moment equation for M and integrate: 

fxMdx - x).- "• 

Therefore 

i?2 “ 

Example 15 

General Rule Concerning Application of Auxiliary Load F or M' 

Given: A beam built in at the left end, freely resting upon an 
unyielding support at the right end and loaded with a uniformly dis¬ 
tributed load w pounds per foot. E and I are assumed constant. 

To find: The displacement Aa at any point A in the beam any 
distance a from the left end. (Figs. 35a and 355.) 

Formula (5) again applies. An auxiliary load F is applied at A and 
its corresponding bending moment sketched and algebraically expressed. 
As we apply F, however, the question arises whether we shall consider 
the beam a cantilever (Fig. 35d), a simply supported beam (Fig. 35/), 
or the original statically indeterminate beam (Fig. 35i). /mMidx 

we shall see that it is 

immaterial which of the three alternatives is taken. The left side 
of the equation represents work done by the auxiliary force F; the right 
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side expresses the elastic energy stored because F is present before the 
application of the actual loads w. Whether the structure is redundant 
or not when the auxiliary load F is applied has no bearing on either the 
theory or the development of formula (5). 

Fig. 34. Fig. 35.' 

This problem is analogous to that of stress analysis in a redundant 
truss, in which it is assumed that the redundant restraints are removed 
before the auxiliary loads R and K are applied, and in which the stresses 
caused by the actual loads are assumed superimpose^ upon those caused 
by the auxiliary loads. 
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The m bending-moment diagrams which we would obtain in these 
cases are shown in Figs. 35e, 35g, and 35k, The m bending-moment 
diagram of Fig. 35g may also be shown as in Fig. 35A. In all three 
figures, 35e, 35A, and 35fc, the m bending-moment diagrams have in 
common the curve below the x axis, expressed by the equation m = Fx, 
But the last two figures, 35h and 35k, in addition to a curve below the 
X axis, show another straight line curve above the x axis. This second 
curve cuts the x axis at C. It is similar to the m bending moment in 
example 14 (Fig. 34c), differing only in that it contains a constant, that 
is, the curves above the x axis are all straight lines in Figs. 34c, 35h, 
and 35k, Only the slopes of the lines differ. The M bending-moment 
diagram is identical with that in example 14. 

In example 14 we have seen that / mMdx is zero. Therefore, 
Jq 

if we choose to express m as shown in Figs. 35A and 35A;, it may be said 
to consist of two parts; mi, the curve above the x axis, and m2, the 

curve below the x axis. Thus considered, / mMdx would be equal to 

i i 

/miMdx + / m2Mdx, 

The value of / miMdx is 0 because it is identical, except for the 
•/o 

r 
presence of a constant, with the expression / mMdx of example 14. 

•/o 
We may therefore generalize as follows: 
In applying an auxiliary load F or M' to a redur^nt structure it is 

theoretically immaterial how we imagine the beam supported as long as it 
is stable, and as long as no supports or restraints are introduced other than 
those originally there. However, it is always permissible and generally 
advantageous to remove sufficient restraints from the structure to make it 
statically determinate before the auxiliary load F or couple M' is applied. 

Having satisfied ourselves that the load F as applied in Fig. 35d 
gives the simplest m bending-moment diagram with its vertex at point 
A and x measured from point A to the left, we may proceed with the 
evaluation of Aa. 

Letting m and M be represented as shown in Figs. 35e and 35c, 

becomes 
FxMdx _ r 

FBI ~J 

mMdx 

FBI 

xMdx 

BI 

Area X 

~Ei 
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The X is defined by x, and since x isjneasured from the vertex of 
the m diagram (from point A) therefore X is measured from the same 
point. 

Since m (between points A and C) is zero, mMdx between these 
points is likewise z^. 

The only Area X that comes under consideration, therefore, is the 
moment of the M bending-moment area lying between points A and B 
about the point A. 

Area ^ ^ + AiXi -j- A2X2 + A3X3 — A4X4 — A5X5 

El "" m 

(wb^a a wba^ 2a wa^ 3a /Zofea a R2la 2a\ 1 

Substituting (Z — a) for b, and %lw for R2 (example 14), we have 

A« = ^ (2a2 - 5ia + 3P). 

Note that the signs are to be interpreted by checking back to the 
auxiliary loading of Fig. 35d, in which F is vertical in a downward 
sense. The plus sign in the above expression, therefore, means a dis¬ 
placement in the direction and sense of F, namely, downward. 

Adopting the symbolism of analytical geometry, that is, expressing 
Aa as y, a as x, and changing signs in order that downward displacements 
may be negative instead of positive, we obtain 

which is the equation of the elastic curve. 

Example 16 

Given: A beam built in at the left end, freely resting upon an unyield¬ 
ing support at its right end, and loaded with a uniformly distributed 
load w pounds per foot. E and I are assumed constant. 

To find: The angular displacement 61 of the tangent to the elastic 
curve at point B (Figs. 34a and 34e). 

Formula (6) gives 

f mMdx 
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If we apply an auxiliary couple at B, the beam being regarded as a 
simple cantilever beam (see rule, page 67), the auxiliary bending 
moment m will at all points be a constant and equal to Af' (Figs. 34/ 
and 34gf). rB ^b 

/ mMdx I M'Mdx j Mdx 
^ ^ A_ _ A_ _ •y A_ 

^ “ M'EI ~ M'EI ~ El 
pB 
/ Mdx is the area under the M diagram between points A and B. 

Therefore, from Fig. 34d, 

h = 

/B -|i 

Mdx Area 
-A 

El El 

+Ai - A. 

El 

^ (RjP _ J_ 
“ V 2 6 / El' 

Substituting the value for R2 which was found in example 14, 
namely, R^ = ^wl, we obtain 

/3 „ wP\ 1 

6/El 

W Lb. per Ft 

wP 

iSEI Kx-f 

(The plus sign indicates that di 
is to be regarded in the same sense Elastic c^ve 

as M' in Fig. 34/, that is, as coun¬ 
terclockwise.) 

Example 17 

Given: A simply supported 
beam loaded with a uniformly dis¬ 
tributed load w pounds per foot 
over its entire length. E and I are 
assumed constant. 

To find: The angular displace¬ 
ment ^1, at point Ay a certain 

1 1 

l ^ 
1^-'* 

(e) ^ 

Fig. 36. 

distance, a, from the left end (Figs^ 36a and 366), 

Formula (6) gives 

= 

mMdx 

M'EI 

If we apply an auxiliary moment M' at point A (Fig. 36c), the m 
moment diagram will be as shown in Fig. 36d (see also Figs. 26d and 
26e, page 45). 
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The M bending-moment diagram, due to the actual loading, is 
shown in Fig. 36e (see also Figs. 30a and 30&, page 56). 

J*mMdx 

The expression Bi = —— must be summed over the entire 
M^EI 

length of the beam. This cannot be done in one operation but may be 
done in two steps: first, from B to A, and then from C to A, 

mMdx mMdx mh 

M'EI ^ Jb M'EI ^ Jc ^ 

^ mMdx mMdx 

- M'EI 

-£ 

M' 
AY^Mdx 

'b M'EI 

.A^^xMdx 

M'EI 

Area XY Area XY 

AiXi — A2X2 + A3X3 — A4X4 

(See page 59 for proof of J xMdx = Area X,) 

Note that in Fig. 36d, ior both por^ns ofjthe beam, x is measured 
from the free end. In waluati^ Area X, the Xi and X2 are measured 
from point 5, whereas X3 and X4 are measured from point C. 

When the m and M diagrams are shown on the same side of the 
X axis, they are of the same sign, and the product mM will therefore 
be positive. When they_are showi^on opposite sides of the axis thdr 
produces negative. AiXi and A3X3 will thus be positive, but A2 X2 

and A4X4 will be negative. 
^ , . 
Evaluating / , we obtain 

wa^ a 3 wla a 2 wlh b 2, wb^ & 3, 

wa^ wla? wtt? wb^ 
-1-- SilEI. 

8 6 6 8 ^ 
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Substituting (Z — a) for 6, we obtain 

When a = 0, ; when a = I, 61 = ; when 0 = 2, 

$1 = 0. 
The plus sign signifies rotation in the sense of ikf'; the minus sign 

signifies rotation in the sense opposite to M\ 
Suppose that we allow the F loading to correspond to Fig. 28/ 

(page 49) and the m bending-moment diagram to be that shown in 
Fig. 28gf. This is the wrong procedure because it violates the rule 
given on page 67. This rule says that we may remove as many redun- 
dants as we like, so long as equilibrium is maintained and no reactions 
or restraints are added to help support the auxiliary load M\ If the 
beam were supported in the manner shown in Fig. 28/, then we would 
have a moment reaction Af' at the left end. If a beam is supported in 
this manner by an auxiliary loading Af' at point B as well as at point A, 
and subsequently loaded in the manner shown in Fig. 36a, the expres- /Tixl^dx 

would equal the total work done by the entire auxiliary 

, f mMdx . . , 
loading. That is, M 6i + M $2 == / .., where 02 is the rotation 

of the tangent to the elastic curve at B, 

Example 18 

Given: A continuous beam 18 ft. long, resting on three un5delding 
supports, and loaded with 10 tons per foot over the first span and with 
7 tons per foot over the second span (Fig. 37a). E and I are assumed 
constant. 

To find: The reactions. 
In this example we have three unknowns: Ri, R2, and However, 

we have two independent equations from statics, 'LFy = 0 and SAf = 0, 

and thus need but one additional equation from the elastic-energy 
theory. One of the limiting conditions of the problem is that the sup¬ 
ports are unyielding, that is, that the displacements of points A, 
and C are zero. We may apply an auxiliary load F at B, and, on the 
basis of formula (5), derive the following: /c rB nB 

mMdx = / ^FxMdx + / ^FxMdx, 
Jq 



72 REDUNDANT BEAMS 

Therefore 

EI^b — if xMdx + i f xMdx 
-Ja 

= I ^Area +i (atce • 

Fig. 37. 

The equation is broken up into two parts: first, a summation 
between limits A and B; second, a summation between limits C and B. 
We measure x from points A and C, and thus Z, the distance to the 
centroid of the M bending-moment area, will likewise be measured 
from A and C, that is, from the vertices of the m bending-moment 
diagram. 

AbEI = 0 = ^(AiXi — A2X2) + ^{A^X^ — ^14X4) 

= ■§’(8i2i X ■§■ X ^ X 8 320 X ■§• X £ X 8) -^(10/23 X 

X I X 10 - 350 X ^ X f X 10) 
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512iJi - 15,360 + 8OOE3 - 21,000 = 0. (a) 

^Fy = 0 gives us J2i + 222 + ^3 = 80 + 70 = 150. (6) 

SM = 0 gives us IOR3 — 350 = 812i — 320. (c) 

The simultaneous solution of equations (a), (6), and (c) gives 
Ri = 29.5, R2 = 93.9, and Rs = 26.6. 

If we base our analysis on the limiting condition Ao = 0 (in place of 
Ab = 0), the auxiliary load F is applied at point A (Fig. 37e), and the 
expressions for m for the left and right halves of the beam are m ^ Fx 
and m = ^Fx, respectively (Fig. 37/). 

Under this condition the equation EIFA, mMdx appears 

/B 

xMdx + / ^xMdx, which is identical with the equation 
*/b 

we obtain for EIFA^ = 0, except for the constant 
Since any equation may be multiplied by a constant without altering 

its meaning, it follows that it is immaterial whether we use the equation 
Aa = 0 or Ab = 0. 

Example 19 

Given: A continuous beam of uniform cross section and uniform 
modulus of elasticity, spanning three successive openings, 3, 2, and 
4 feet in length, respectively (Fig. 38a). The beam is loaded with a 
uniformly distributed load, iv pounds per foot, and is supported at 
points Aj B, Cj and D by unyielding supports.* 

To find: The four reactions Ri, R2J R3, and 724. 
The equations of static equilibrium provide us with two of the four 

necessary equations, namely, XFy = 0 and SAf = 0. The fact that 
the displacements of points A, B, C, and D are all zero enables us, by 
means of formula (5) to write four additional equations involving the 
four unknown quantities we are to find. Having the two equations of 
static equilibrium, however, we need apply formula (5) only twice to 
find the last two equations required. It is immaterial which of the 
points A, S, C, or D we select as a basis for our analysis. Let us select 
points B and C, and express, by means of formula (5), the fact that 
the vertical displacement of both these points is zero: 

* See also theorem of three moments, page 79. 
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Therefore 

REDUNDANT BEAMS 

Fig. 38. 

We apply an auxiliary load F at point B (Fig. 386) and draw the 
corresponding m diagram (Fig. 38c). 

The M bending-moment diagram is shown in Fig. 38d. Both the 
m and M curves being discontinuous at point B, the integration will 
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have to proceed in two steps: (1) over the region AB] (2) over BD. /mMdx, 
The m diagram being a triangle, 

F 
is equivalent to the moment 

of the area under the M bending-moment diagram. This moment is 
taken about the vertex of the m bending-moment diagram. (See 
page 60.) Thus: 

Ab = 0 

2 
3 

/mMdx / 
^ 

F 3 

Area Z ^ Area zj 

B 

xMdx 

~F 

D 

B 

D 

xMdx 

F 

= I(AiZi - A2Z2) + iiAsXs - A4Z4 - A5Z5) 

= f XfXfX3-3EiXfXfX3) 

+ |(18u; X f X f X 6 - 6R4 X f XI X 6 - 2R3 X f X ^) = 0. 

Simplifying this equation we obtain 

2187u; - 216Jf2i - 1287^3 - 864ie4 = 0. (a) 

The second equation is based on the limiting condition that the 
linear displacement of point C equals zero. 

-/ •'A 

mMdx 

FEI 
= 0. 

We introduce an auxiliary load F at point C (Fig. 38e) and draw its 
bending-moment diagram (Fig. 38/). In connection with this develop¬ 
ment we should reconstruct the M moment diagram in the manner of 
Fig. 38ff. If we use Fig. 38d in connection with Fig. 38/, though equally 
correct in theory, it would be necessary to express the moment of the 
trapezoidal and truncated parabolic bending-moment area l3dng between 
points B and C (Fig. 38d) about the point A. We can avoid this by 
using the equally valid and expressly constructed M bending-moment 
diagram of Fig. 388^. Thus: 

=„.r mMdx 

FEI 
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Therefore 
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mMdx 4 FxMdx 5 FxMdx 

Ja F ~ qJa F '^9Jc ~F 

"D 
= 0. 

AC 
= ^ Area X \ + # Area X 

X i X j X 5 - 5Ei X i X i X 5 — 2Ii2 X § X 

+ i(Sw XiXfX4-4i24XfXfX4)=0. 

2835iy - lOOOi?! - 2O8B2 - 640724 = 0. 

= 0. 
Therefore 

Therefore 

7Ji -f- R2 “f" E3 "I" -^4 — — 0* 

ZM = 0. 

9^1 -f- 6^2 "f" 47^3 — = 0. 

(b) 

(c) 

(d) 

Solving equations (a), (b), (c), and (d) simultaneously, we obtain 

72i = I.3O11;; R2 = 2.30ty; R3 = 3.75w; R4 = 1.65i^. 

W Lb. per Ft. 

P- M 

1 («) i 

Example 20 

Given: A built-in beam, perfectly 
restrained at both ends (Fig. 39a) and 
loaded with a uniformly distributed 
load, w pounds per foot. 

To find: The restraining moment 
at the end. 

The free-body sketch of the beam 
(Fig. 396) permits us to solve for a few 
unknowns by inspection. Since the 
beam is symmetrical with respect to a 
vertical through the center, Va = Vb 

and Ma = Mb- 

7a + ^6 = 276 = wl. 

r.-f. (e) 
Fig. 39. 

Therefore 
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Two limiting conditions suggest themselves as a means of solving 
for the remaining unknown Mo, the restraining moment at the wall. 
We may assume the vertical displacement of point J5, namely Ab, to be 
zero, and use formula (5), or we may assume the angular displacement 
of the beam at point jB, namely dsy to be zero, and use formula (6). 

Let us use formula (6) in this case. If we apply an auxiliary moment 
M' at point B (Fig. 39c), the m diagram will be as shown in Fig. 39d, 
m = M'. 

mMdx 

-eT- 
Since m = M', 

B 

Mdx = 0. 

This is equivalent to saying 

Area = 0. 

The M bending-moment diagram is shown in Fig. 39c. Therefore, 

8 
X or Mo = 

wP 
12 ‘ 

Example 21 

Given: A built-in beam, restrained at both ends and loaded with a 
total load W, which varies uniformly from zero at the right end to a 
maximum at its left end (Fig. 40a). 

To find: The reaction and bending moment at B, 
w 

If W is the total load, then y, or the load intensity at a distance 
V 

2W 2W 
unity, is , and the load intensity at any point x is x (Fig. 406). 

(The loading of the beam in example 21 lacks the symmetry of that 
in example 20. This is the essential difference between the two.) 

We may still write SFj, = Fo + F& — IT = 0. 
However, as we cannot tell by inspection what the relation is between 

Fo and F^, we are as yet unable to solve for these two unknowns. It 
cannot be too much emphasized that Fo and F^ are not equal to the 
values of the reactions of a simple beam similarly loaded. 

Again, as in the previous example, two limiting conditions exist, 
namely, that the vertical displacement of point B is zero, Ab = 0, and 



80 REDUNDANT BEAMS 

ArXr represents static moment of the positive bending-moment area 
over right span about the right end of the two consecutive spans. 

One of the limiting conditions of the problem is that the supports 
are un3delding. We may say then that the displacement of the middle 

Fia. 41. 

support of two consecutive spans, A^, is zero. The expression for Am is 
/7ftJM[dx 

—• We apply an auxiliary load F at the middle support of 
FEI 

the two consecutive spans (Fig. 41c) and construct its moment diagram 
(Fig. 4Id). On page 67 we have seen that, as the auxiliary load F is 
applied, suflScient restraints may be thought removed to reduce the beam 
to a statically determinate one. /mMdx 

w”- 

The integration is to proceed only so far as the product mM pves real 
values. Since m extends only over two spans, the integration therefore 
extends only over two spans and is best performed in two steps. Thus: 

mMdx 

~FEI 

FLfxMdx 

{Li + Lr)FEl 
+ 

FLixMdx 

(Li + Lr)FEI 
= 0. 
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Canceling F and multiplying through by (Lj + Lr)EI we obtain 

rLi ^Lr _-\Ll _1Lr 
J LfXMdx + J LixMdx = L, Area + Li Area = 0; 

Lr{MiX^X^ + M„X^ x\u) 

+ Li ^ ^ 3 ~3^ ~ ~ EiArXf = 0. 

0 
Multiplying by —— and transposing we obtain 

_ _ 

Mill + 2M^{Ll + Lr) + MrLr = 6 

When, as in Fig. 41a, the loading is uniformly distributed, 

= and x,-f. 

k • -1 I ”’2^’-* thus becomes ; similarly 
Li 24 Lr 24 

The foregoing then becomes 

MiLl + 2M„{Li + Lr) + MrLr = ^ 
4 4 

Repeating this process (n — 2) times and adding two equations 
from the theory of static equilibrium we obtain the n simultaneous 
equation necessary for the solution of the n unknowns. 

The general equation just stated is called the theorem of three 
moments. This theorem is largely of historic interest. It would 
seem that, once the theory by which the theorem is derived is properly 
mastered, it is no more trouble to set up the necessary simultaneous 
equations for the analysis of redundant structures by the application 
of first principles than it is to do so by means of a special formula. 

* In our proof the bending moments over the supports are assumed to be of a sense 
opposite to that produced in the beam by the loads, the beams being considered as 
cut at the supports. A positive answer for moments over the support would mean, 
then, a bending moment of the same sense as that assumed in our proof. In proof 
of the three-moment theorem in American textbooks the bending moments over the 
support are frequently assumed as of the same sign as those produced by the lo^ 
on simply supported beams. This results in the same theorem except that the fac- 
tors on the right-hand side of the equation have the negative sign. 
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BENTS 

Example 22 

Given: A bent of a certain width I, with two equal legs of height 
pin-connected at bottom, and loaded with a concentrated load Q oS 
center. Ii represents the moment of inertia for the legs; /2> the moment 

id) {e) 
Fig, 42. 

of inertia for the cross tie. The modulus of elasticity E is the same, 
both for legs and cross tie (Fig. 42a). 

To find: The horizontal reaction H, 
The pin-connection of the bent insures zero displacement and zero 

moment at points A and D. The horizontal reactions H, at points A 
and D, are necessarily the same, being the only horizontal forces acting 
on the bent (Fig. 426). Taking the moments of all the forces about 
point A and equating them to zero gives us the vertical reactions 

Rd 
Qa 

I 
and Ra 

Qb 

I ’ 
The horizontal reaction H is the only remain¬ 

ing unknown. H is the force necessary to keep the points A and D from 
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separating when the structure is loaded. The value of H will depend 
on the effectiveness with which this restraint is accomplished. If points 
A and D retain their original position, H will have a certain value. Its 
value decreases in the proportion to which this restraint yields. If by 
some mechanical device the supports could be moved more closely 
together, H would necessarily have to be larger. It is logical, therefore, 
to base our attempt to solve for the unknown H upon the displacement 
of point D relative to point A. 

As stated at the outset, assuming A as a reference point, the hori¬ 
zontal displacement of D is zero and is expressed by the symbol 

To obtain an expression for displacement according to formula (5), 
we introduce an auxiliary force F at the point in question and in the 
direction of the displacement (Fig. 42c). The resulting bending mo¬ 
ment for this condition of loading is shown in Fig. 42d. The actual 
M bending moment is shown in Fig. 42c. The bending moment for 
the top strut BC is drawn after the manner of Fig. 32/, page 57. 

FAd, 
mMds 

El 
= 0. 

This summation cannot be accomplished in one operation but must 
be performed in three steps, thus: 

mMds 

El 

mMdy 
Eh 

mMdx 

Eh 

mMdy ^ 

Eh ^ 

For the explanation of these summations see Figs. 42d and 42c. 
The three summations taken together being equal to zero, E may be 
canceled. Note that in this example the summations from A to B and 
from C to D involve the factor 7i, while the summation from 5 to C 
involves a different moment of inertia, namely, 72- The 7 factors, 
therefore, are not to be canceled in this case. 

mMdy 

Fh 

r^mMdx 

Jb Fh 

r^FyMdy _ f 

Jj. Fh Ja 
yMdy 

'A 

Hh 

A h 

h 2, Hh^ 

f 
-f 
/2 V 

FhMdx 

Fh 

rmdx 

i. 

, Q06 i ) 

Area Fl® h L 

h Areal^ h L 
HhH Qabh 

h 2/2 ’ 
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Note that, in Figs. 426 and 42c, H and F are applied in the same 
sense. Therefore, the m and M bending-moment diagrams for the 
legs (Figs. 42d and 42e) are placed on the same side of the y axis. In 
the summation from A\jo B their product is positive. 

In our evaluation of the summation from 5 to C we find, in the M 
diagram (Fig. 42c), the moment Hh drawn below the x axis and the tri¬ 
angular moment diagram above the x axis. The moment effect of F 
and the moment Hh therefore are positive and the triangular bending- 

I ■ (for the right leg) is identical 
c 

mMdy 
Eh 

with I El 
(for the left leg) and may be expressed by the factor 

+Hh^ 

3/, ■ 
We thus obtain 

£ ^ mMdx 
FBI 

= 0 = 

2Hh^ HhH 

3/i ^ h 
Qdbh 

”2^7* 

H = 
SQabli 

2(2/26^ + Shhl) 

Example 23 

Given: A bent with equal legs, built in at its extremities and unsym- 
metrically loaded. To simplify the process we shall assume I and E 
constant throughout. 

To find: The moments at the corners of the bent (Figs. 43a and 43c). 
Whereas in the preceding example we had only one degree of redun¬ 

dancy, in this case it is necessary to consider three superfluous restraints. 
The point D, with reference to point A, is restrained in its sidewise 
motion, and also in its vertical displacement; and the tangent to the 
elastic curve at D is restrained against rotation. We may express the 
three limiting conditions thus: 

— 
« 

miMds „ 

A H 
(a) 

P2^y = 
« 

r^m^Mds „ 

A El -»• 
(b) 

M% = 
■ 

r^mMds d
 II (c) 
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Figure 436 presents a free-body sketch of the bent showing a total of six 
unknown quantities. In addition to the foregoing equations the equa¬ 
tions of static equilibrium give three more equations: 

= 0 = ffa - = 0, (d) 
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To write the first three equations in algebraic form we regard the 
bent as a statically determinate structure, with all three restraints at 
point D removed. Then we apply the auxiliary force Fi in the direction 
of Ax (Fig. 43d), F2 in the direction of Aj, (Fig. 43e), and the auxiliary 
moment M' in the direction of 6d (Fig. 43/). 

The corresponding moment diagrams are shown in Figs. 43g, 43A, 
and 43i. (In accordance with the general rule on page 67 we eliminate 
a sufficient number of restraints to simplify the structure to a statically 
determinate one before the auxiliary loading Fi, F2, or M' is applied.) 

Figure 43c shows the M bending-moment diagram for the structure. 
(See also Figs. 32/, 32^1, S2h, and 32i.) 

To write the first equation, 

miMds 
= 0 or 

^ miMds 

in algebraic form we multiply the mi ordinate at any point in Fig. 43gf 
by the Mds of the M ordinate corresponding to the same point of 
Fig. 43c. For the leg CD we obtain 

Jc Jc Jc JC 

Meh 2 Mgh h 

2^3^ 2^3 

In the top strut BC we have 

miMdx _ FihMd: 

Jb Fi Jb Fi 
/’W.tAreal' 

Jb F 1 Jb Jf 

For the left leg AB we have 

miMdy __ Fi yMdy 

Ja Fi Ja Fi 

= / yMdy = Area Y 

miMds __ miMdy ^ 'i 

Ja Fi Ja Fi Jb 

2^ 
Xjj- 

miMdx ^ mMidy 

Mdh^ . Mchl Mbhl QPh Mbh^ 

9 3 

Mah - Mb(3J + 2ft) - Mc(3l + 2ft) + Mjft + |Q? = 0. 
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In a similar manner 

r^m2Mds r, r, 
ElAdy = / —-— = I Area + Area X =0. 

Ja ^2 L Ja I JB 

For the right leg m2 = 0. Therefore 

,^Mah Mbh\ 

Area 

21 21 2Ql 1 I 

2 / 9 ^2^3 

X 

X 
„ Z 2, Mol I ^ 

ZMah - M4(3A + 21) - Mol + 
lOQZ^ 

27 
= 0. (6) 

Equation (c), expressed algebraically, is written thus: 

mMds 
M'dd 

-£ 
= 0. 

El 

It will be noted (Fig. 43i) that m for all members is equal to M', 

Therefore 
r° M'Mds „ 

w"- 
Therefore 

J^z) rc rD 

f ilfds = / Mdy + / Mdx + / Mdy 
A A B C 

-iB -jC -lO 
= Area + Area + Area = 0. 

Ja Jb Jc 

Mah Mbh Mil , Mol 2Ql I , Moh M^h „ 
2 2 • 2 '' 2 0 2 2 2 

M„A - MbQi + Z) - Mc(A + Z) + MdA + fQZ^ = 0. (c) 

Solving equations (o), (6), (c), and (/) simultaneously, we obtain the 
values for the moments Ma, Mb, Mo, and M^. 

QP(37h + 8Z) 
Mb = 

27(6Zi2 + 13ZiZ + 2Z2) 
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Example 24 

Vierendeel Truss 

Given: A Vierendeel truss, consisting of two rectangular panels, h 
representing their height, I the length of one, and t the length of the other. 
The truss is unsymmetrically loaded with a load Q (Fig. 44a). Assume 
E and I constant throughout. 

To find: The bending moments at the corners. 

Figure 446 shows the M bending-moment diagram for the entire 
structure. The M bending moment may be drawn in various ways. 
It is here drawn in accordance with the example demonstrated by Figs. 
32/ and 32i, page 57. 

The free-body sketches of the various members, shown in Fig. 44c, 
are drawn as an aid in representing the moments. We must remember 
that at the outset we know nothing about any of the reactions at any 
section in the structure. All we know is that in coplanar structures 
any reaction at any section may be represented by a horizontal force, a 
vertical force, and a moment. 

There is no way of determining in advance whether Hi, at left end 
of beam AB (Fig. 44c), acts to the right, and whether Ma acts counter¬ 
clockwise or not. It is immaterial, as long as Newton's third law of 
motion, that action and reaction at all points are always equal and 
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opposite, is kept in mind. Having shown Hi at point A in beam AB 
to be acting to the right, it must be shown at top of beam AD as operat¬ 
ing to the left. 

(d) (/) (« 

Fig. 44 {d-6). 

Similarly, if Ma in the one case is shown as counterclockwise, it must 
be indicated in the other as clockwise. Furthermore, if Mo, at the left 
of beam AB (Fig. 446), is negative, it must also be negative at top of 
beam AD, 

If any one of the moments shown in Fig. 44c should be of a sense 
opposite to the one assumed, it will manifest itself by a negative value in 
the final answer. 
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There are eight unknowns, and thus eight independent equations 
are required. The first two equations we obtain from statics. Taking 
moments about B (Fig. 44c), 

Ql 
Vil = Ma + j- M,. 

Taking moments about C, 

Vsl = Md + Me, 

Therefore 
Vs = Ri- 7i. 

Ril = Md + Me + Vil 

Ril = Ma-Mb + Mi + Me + Y 

Taking moments about F (Fig. 44c), 

(a) 

y^t = Me + M/. 

Taking moments about G (Fig. 44c), 

V^t = Mh + Mg, 
(74 + 75)^ = R2t = Me + M/ + Mg + M,. (&) 

To obtain the required additional six equations, the three conditions 
of restraint for each panel may be expressed in terms of elastic energy. 
For example, point A (Fig. 44a) will be displaced as a result of the load¬ 
ing of the truss. However, we may regard point A, at the left of beam 
AB, as the beginning, and point A, at the top of member AD, as the 
end of the structure. Since the two points are permanently adjacent, 
the horizontal displacement of the structure's beginning, relative to its 
end, is zero; or 

rrtiMds 
FiEI 

= 0. 

By / we mean a summation over all members of the structure 
Ja 

wherever the product mM gives real values. 
. Similarly, 

m2Mds 

F2EI 

Since the vertical and horizontal tangents to the structure at point 
A permanently form a 90° angle, we may express it thus: 

Sa 
m^Mds 

M'EI 
= 0. 
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To express Aa^ algebraically we apply an auxiliary load Fi in a 
horizontal direction at point A (Fig. 44d). As nothing would be gained 
by leaving the structure statically indeterminate when Fi is applied, 
we follow the general rule (page 67) and cut the structure at A and F, 
thus making it statically determinate. Its mi bending moment is 
shown in Fig. 446. Note that mi, for members AB, EF, FG, and GH, 
is zero. 

rriiMdx 
FiEI 

= 0 

therefore becomes 

miMdy 

FiEI 

miMds 

FiEI 
niiMdy 

FiEI ' 

El, being constant, may be canceled, and the above expression may 
be written 

pFiyMdy ^ ^ FihMdx ^ F,yMdy _ ^ 

Fi Jc Fi Fi 

Area Y 
- D _ 

Area + Area Y 
- c 

( 
, h 2, Meh h Mbh 
+ J/.X-X3*-^X3-^ 

]:=«■ 
xh¥x|‘) 

+ 
(Md MA, ^ (Mdi ^2h MJi^h\ ^ 

To express A Ay algebraically we apply an auxiliary vertical force F2 

at A (Fig. 44/). Its m bending-moment diagram is shown in Fig. 44gf. 
Note that it is zero for all members except AB, BC, and CD. 

then becomes 

^Ay 
m2Mds 

F2EI 
= 0, 

FjxMdx FjlMdy FjxMdx 

F2 Jb F2 Jc F2 

-V r -T Area X + I Area I + Area X 

= 0, 

= 0. 

or 
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fQl I I 
X 2 X 2 

+ 

+ 

/h MJi Mih Mch\ 
\Mh 2-2-2-^ ‘ 

/,, I I MJ. 2l\ „ 
W 

To express algebraically the equation, 

Ba 
mMds 
M'EI 

= 0, 

we introduce an auxiliary moment M' at point A (Fig. 44A). Its m 
moment diagram is shown in Fig. 44t and for all four members of the 
left panel is expressed by the equation 

Ms = Af'. 

For three members of the right panel its value is zero. 

^ rA. 7i/f'ii/fy7« rA. 

Therefore 

m^Mds ^ M'Mds ^ n 

Jj, M'EI ^ Ja M'EI ^ Ja 

-IB . 1C ID Y 

Area + Area + Area + Area = 0. 
JA JB Jc Jn 

Mj^ 
2 

Meh 

2 
_ 

In a manner similar to the analysis just completed we may write 
three conditions of restraint for the remaining right panel: 

= 0, Apy = 0, and Bp = 0. 

We cut the structure at A and F to simplify it and make it a statically 
determinate structure (general rule, page 67). We apply auxiliary 
forces F3 and F4 in the direction of x and y at point F (Figs. 44j and 44fc) 
and draw their respective m moment diagrams (Figs. 44m and 44n). 
We apply an auxiliary moment, M" (Fig. 44Z), and draw its m moment 
diagram (Fig. 44o). 
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[A«“»'],+ k(AMa)^ + [Areay]^.0. 

+ (^x|4 + ^x^ + ^x5-^xf)-o. W 

[A«ar]^+{Area]^ + Areax]^.0. 

t Mnt 2t 

<2^3 2^3 

lt\ , jMch , Mifi , MeA M^h\ 

+ 2'+ 2 + 2 ~~2) 

+ (f xf-f x|).0. 

_ m^Mds _ 

“X “ ■ 

_ rm,Mds_ 

"’-J, WM-^- 
For all four members m is equal to M" (Fig. 44o). Therefore 

f’^meMds M''Mds Mds „ 

M''EI 

M"Mds . 

~ Jf M"EI ~ Jp 

El, being constant, may be canceled, and 

rG rU rE 

/ Mds=^ / Mdy+ / Mdx+ / Mdy+ / Mdx ^ 0] 
Jf Jf Jg Jh Je 

]G -{H -^E -|F 
+ Area + Area + Area = 0. 

if’ Jg J^ 

Mgh Mfh Mgt Mht Mch Mbh 

~2 Y' "^~2 

Meh Mhh Met __ Mft _ 

The simultaneous solution of the above eight equations will give 
values for the eight bending moments at the eight comers. 

This foregoing example is typical. A Vierendeel truss of any number 

of panels and under any condition of loading may be analyzed similarly. 
The setting up of the required number of equations will be no more 

difficult than it was in this example. The simultaneous solution of 
more than eight equations, however, is disproportionately more bother- 
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some, and the advisability of seeking a solution based upon the theory 
of elasticity in more complicated problems may be questioned. (See the 
chapter on limitations of elastic energy theory, page 264.) 

Since we are applying the theory of elasticity, the author feels that 
the elastic energy theory, in problems of this kind, offers a distinct 
advantage in that a great share of the work can be done by means of 
sketches. 

With reference to the analysis of the foregoing type of problem a 
few important points may, for purposes of emphasis, be reiterated. 

1. In the philosophy of elastic energy there can be no objection to 
the elimination of as many restraints as desired in order to make a 
structure statically determinate before any auxiliary forces are applied. 

2. Only when there are real values of both m and M for any member 
do vre have stored elastic energy of the kind in which we are interested. 
When either m or M is zero, the product mM will, of course, be zero. 

3. The m diagram will always be either a triangle or a rectangle. 

When the m diagram is a triangle the expression f mMdx is equivalent 

to Area X, the moment of the area under the M bending-moment dia¬ 
gram about the vertex of the m bending-moment diagram. When m 

is a rectangle the expression /■ mMdx is always a constant, multiplied 

by the corresponding M bending-moment area. 
4. Signs are of the greatest importance in writing the equations. As 

pointed out with reference to Fig. 44c, it does not matter in what direction 

the forces are shown to operate, but they must be shown in agreement 
with Newton’s third law, action and rea^ion are equal and opposite. 

The expressions '^Area” and ^'Area X” are positive when m and M 
are of the same sign, and negative when they are of opposite sign. Thus 

for the central member, for example, the area 
Mch 

2 
appears as negative in 

equations (c), (d), and (e) because it was of opposite sign from m in Figs. 
44c, 44gr, and 44i, and appears as positive in equations (/), (gr), and (A), 
because it was of the same sign as m in Figs. 44m, 44n, and 44o. 

Note. Attention is here called to Bulletin 108 of the University of Illinois 
Experimental Station, entitled Analysis of Statically Indeterminate Structures/' 
1918, by Wilson, Eichart, and Weiss. This bulletin is devoted to the analysis of 
bents and culverts by the slope deflection method. The authors develop the slope 

deflection method from the differential equation of curvature, —a --It 
dx^ El 

might be equally well derived from the elastic energy equations used in this book. 
The author does not favor the development of special methods. In connection with 
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the analysis of bents and culverts, however, he cannot fail to call attention to the 
above bulletin, because it is outstanding in its scope and accuracy. In it one may 
find the answers to the analysis of statically indeterminate structures with straight 
members, composed of a great variety of shapes and subject to a great variety of 
loadings. 

Symmetry and Anti-Symmetry 

In example 20 (page 76) we discussed the built-in beam subject to a 
uniformly distributed load. We found from symmetry considerations 
that the reactions at each end were identical and that therefore we needed 
only a single elasticity equation to effect a solution. In example 21 
(page 77), in which we discussed the built-in beam subject to a uniformly 
varying load, we found that the reactions at each end of the beam were 
dissimilar and that therefore two elasticity equations were required, in 
addition to the equations of static equilibrium, to effect a solution. 

Symmetry considerations are twofold. They apply to the loading 
as well as to the geometric relations of the structure. The structures 
as given in examples 20 and 21 are geometrically symmetrical. In 
example 20 the loading also is symmetrical, but in example 21 it 
is not. 

Rule for S}umnetry. A structure subject to a certain loading condition 
is said to be symmetrical about an axis of symmetry when, on being turned 
about this axis through 180°, the resulting structure and loading are identical 
with the original. 

When symmetry conditions exist relative to the geometric propor¬ 
tions of the structure and not relative to the loading then advantage 
may be taken of what is called anti-symmetry. 

Rule for Anti-Symmetry. A structure subject to a certain loading 
condition is said to be anti-symmetrical about an axis of antisymmetry 
when, on being turned about this axis of antisymmetry through 180° and 
the sense of the loading reversed, the resulting structure ajid loading are 
identical with the original. 

Any loading on a geometrically symmetrical structure may be repre¬ 
sented as the equivalent of two component loadings, one symmetrical, 
the other anti-symmetrical. Symmetry and anti-symmetry considera¬ 

tions are valid only when the principle of superposition applies, or when 

the load-deformation relationship is linear. 

Example 25 

Figure 45a presents the same problem that was discussed in 
example 21 (page 77). Figures 456 and 45c, combined, are identical 
with Fig. 45a. 
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Figure 456 presents a built-in beam subject to a uniformly dis¬ 
tributed load TF. This problem was solved in example 20. There we 

wP Wl 
found the moments at each wall to be — or — , while the shear at each 

wall was found as — or — • 

Figure 45d is the free-body sketch for Fig. 45c. Both Figs. 45d and 
45c are anti-symmetrical with respect to a vertical axis through the center 
of the structure. If Fig. 45c or 45d is rotated 180° about this axis and 
the sense of the loading reversed (the arrows on the figures reversed), 
then the resulting figures are identical with Fig. 45c or 45d. 

Figure 45c represents the bending-moment diagram for the structure 
shown in Fig. 45c or 45d. The moment of these bending-moment areas 
about point B (see case V of Appendix I) is 

W P 81 Mil 

2 ‘ 12 ■ 15 2 

Therefore 

I 

3 ' 

M 

W 

’ 2 ' 12 

m 
^ ~ 60' 

n 
15 

Mil ^ 

2 ■ 3 

If, for Fig. 45d, we write SAf = 0, we obtain 

Therefore 

W I 
-- FiZ + - . - = 0. 

2W 
Vi = —• 

^ 10 

Combining these values for Mi and Vi with the values for the moment 
and shear at the ends of the beam as given in Fig. 456, we obtain the 
values for the reactions of the beam shown in Fig. 45a. Thus: 

Wl Wl Wl TF , 2TF 7TF 

“ 12 60 ~ 10 ’ “ 2 10 10 ' 

„ Wl Wl Wl W 2W 3W 

Example 26 

Figure 46(1) represents a culvert loaded with a uniformly distributed 
load W2 pounds per foot over the top, and with a hydrostatic pressure 

wiy 
I 

against one of the sides. Since we are primarily concerned with 
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illustrating a method of solution we shall assume the length and width 
of the culvert to be equal as well as E and I to be constant. The method 
used would be equally applicable, even though the length differed from 

the height and E and I were not constant, so long as the culvert had a 
geometric axis of symmetry. 

Figure I might be resolved into Figs. II and III. Figure III in turn 
might be resolved into Figs. Ilia and III6. The analysis of the problems 
presented by Figs. II and Ilia does not require special attention. The 
culvert as shown in Fig. III6 is anti-symmetrical; and so is its bending- 
moment diagram (Fig. Illc). The auxiliary loading represented by 
Fig. Illd and its bending-moment diagram. Fig. IIIc, are also anti- 
symmetrical. Anti-symmetry shows that no tension is transmitted 
through the member AB and that the bending moment at the midpoint 
between A and B, as well as the moment at the midpoint between C and 
D, is zero. Draw a free-body sketch of the right half of Fig. III6. 
Rotate this sketch about the axis of anti-symmetry, and then reverse 
all the arrows. This will show that the condition of zero moment and 
zero tension or compression at the midpoint is the only condition con¬ 
sistent with that of anti-symmetry as well as with Newton^s third law. 
If we apply an F loading as shown in Fig. Illd, the m bending moments 
will appear as given in Fig. Ille. Since the auxiliary loading is an 

internal loading its external work will be zero. Therefore: 

= 0 = J mMds. As the result of the anti-symmetry of both m and 

M bending moments, we have 

/ 
mMds 

El 

A 

mMds = 2 
G 

mMds = 0. 

mMds = Area x ] 
B 

K 
+ 

z 
2 

]C -iG 

+ Area x 
B JC 

Z 1 2 Z , I (Mai Mol , WP\ 

MJ, I 2 I Wf S I 

2 ‘ 2 ’ 3 ’ 2 96 ’ 15 ’ 2 “ ' 

Since there is no horizontal reaction at A we obtain from statics 

Ma “1“ Me = 

W I 

2 ‘ 3 

m 
6 ’ 



100 REDUNDANT BEAMS 

Solving simultaneously, we obtain 

In Kg. I, 

„ , ^Wll^ 27 ,2 ^2^^ 

"•-ir+w-95“’-' -w 
ii 
960 

«?!?• 

CURVED BEAMS 

Example 27 

Given: A semicircular ring, hinged at its extremities and loaded 

with a concentrated load Q at the center (Fig. 47a). The curvature 

of the beam is relatively small. E and / are assumed constant. 
To find: The horizontal reaction J7. 

The hinges at points A and C insure zero moments and zero dis¬ 
placement at those points. We may say that 

Ac—A = 0, 

or, since the structure is symmetrical about the center line, that 

A{c-b)x = 0- 

The latter equation expresses the horizontal displacement of the point 
C relative to the point B. 

The general expression for A, in terms of elastic energy, is expressed 
by formula (5): 

A = 
mMds 

FBI ‘ 

In this formula ds stands for the element of length much the same as 

dx and dy represent this element in the foregoing examples involving 

structures composed of straight beams. 

In the proof of formula (5) we make use of the formula 

a 
Stress = — 



CURVED BEAMS 101 

Tlus flexure formula is not strictly applicable to curved beams. The 
stress analysis of curved beams is a rather complicated matter. How¬ 
ever, in a large group of important engineering structures, varying 
in size from watch springs to arches, the curvature of the beam is 
relatively small (the thickness of the beam compared to the radius 
of curvature is small), and the formula 

Stress = 
Mv 

holds without appreciable error. 
In evaluating the expression 

/ mMds we cannot apply the h 

process of graphical summation 
used in examples 11 to 26. We 
may, however, conceive of our 
structure as divided in short 
segments, ds, evaluate mMds 
for each segment, and complete 
the summation by ordinary 
addition. The procedure is thus 
seen to be similar to the one we 
followed in analyzing trusses, 
and a tabular arrangement will 
also serve the purpose here. 

The loaded semicircular 
beam of Fig. 47a is assumed 
divided in nine equal segments 
of length ds (Fig. 47c). With a 
radius R = 100 in., ds = 17.45 

F- 

in., the vertical and horizontal 

R sind 

distances of the midpoints of the 
segments from the point C are 
partly shown in Fig. 47c, and may 
also be found in the table below. 

In the column m are found the values of m for the midpoints of 
the segments caused by the auxiliary load F as applied in Fig. 476. In 
the column M are found the values of M for the midpoints of the seg¬ 

ments caused by the actual loads, H and ^ (Fig. 47a). 
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Seg- 
ment 

Hori¬ 
zontal 

Distance 
from C 

m = (Vert. 
Distance 

from C) X F 
M mM 

1 0.38 S.72F 8.72H - 0.38^ 
2 

FQ 
76.04FH- 3.31 “T 

2 

2 3.41 25.88F 25.88R- 3.41- 
2 

FQ 
m.77FH - 88.25-^ 

2 

3 9.37 42.26F 42.26H- 9.37^ 
2 

FO 
l,785.90Fff- 395.97^ 

2 

4 18.08 57.36F 57.36ff - 18.08- 
2 

3,290.16PH - 1,037.07^ 

5 29.29 70.71F 70.71H - 29.29- 
2 

FQ 
5,000.OOFH - 2,071.10^ 

6 42.64 81.91F 81.91ff - 42.64- 
2 

6,709.24ra - 3,497.50^ 

7 57.74 90.63F 90.63ff - 57.74- 
2 

8,213.80ra - 5,233.00 Y 

8 74.12 96.60F 96.60ff -74.12^ 
2 

9,301.56Fff - 7,160.00 Y 

9 91.30 99.62F 99.62ff -91.30- 
2 

9,924.14fff - 9,095.31 ^ 

'LmM = 

44,970.6ira-28,581.61 ^ 

'ZmMds = ^44,970ra - 28,581 17.45. 

E and I being constant, the expression 

r mMds 
^ = 0 

reduces to 

44,970ff = 28,5811- 

Therefore 

H = 0.3178Q. 

In this computation the values for the horizontal and vertical dis¬ 
tances from the midpoint of the segments to point C were found from a 
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trigonometric table instead of being scaled from a drawing. The com¬ 
putations are carried out to a greater degree of accuracy and the answer 
is given to a greater number of digits than would be warranted in good 
engineering practice. This is done to permit a comparison with the 
answer which we will presently obtain by means of analytic integration. 

To accomplish the same analysis of our problem by means of integral 
calculus we let 

ds = RdB, 

m = FR sin 6, 

Q 
M = HR sin 6 — -^(R — R cos 0). 

Then 

A(c - r 
- Jc 

mMds 

FEI 
= 0 

becomes S 

FR sine \ 

Jo FEI 1 
Q 

HR sind — — (R — R cos 6) f RdS 

E, If and r being constant, this reduces to no Q \ 
H sin^ 0 — ^ sin ^ ~ sin ^ cos dj dS 

sin20'\ Q 
^ I;;-:— J + ■;; cos 0 + - — 

\2 4 / 2 2 2 Jo 

^_Q Q 
4 2 4 

0. 

0, 

0, 

0, 

In the analysis of straight beams we have freely resorted to graphic 
integration. In the analysis of structures of circular outline we may 
frequently resort to a similar procedure. For example, in the preceding 
problem we might say 

m = Fy, 

mMds = 0becomesJ FyyHy ~ = 0- 
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The values of X 
•t/2 /•t/2 

xyds and / y^ds are obtained from the Appendix, 
Jq 

page 270. Thus 

2tR^ tc 

Example 28 

Piston Ring Design 

To find the shape of a piston ring which, when installed in a cylinder, 
will assume a perfectly circular outline and will bear against the 
cylinder wall with uniformly distributed radial pressure p pounds per 
square inch. 

In Fig. 48a the solid black line represents a split ring of a perfectly 
circular outline of elastic material of a width b (measured radially) and 
a thickness t. When the ring is loaded with a radial pressure p pounds 
per square inch (the pressure per length ds will then be ptds), it will 
deform and assume the shape indicated by the dash line (Fig. 48a). 

Let us next consider Fig. 48b where the solid black line represents 
the outline of a non-circular split ring in an unstressed condition. The 
solid black line in Fig. 48b is identical with the dashed line in Fig. 48a. 
When this ring, represented by Fig. 48b, is loaded with a uniformly 
distributed radial pressure (pt pounds per linear inch) directed inwardly, 
its final elastic curve will be the perfect circle represented by the dashed 
line (Fig. 48b), which is identical with the perfect circle represented by 
the solid black line (Fig. 48a). 

It would seem then that the only remaining step necessary for the 
solution of our problem is to obtain the elastic curve of a circular split 
ring loaded in the manner of Fig. 48a and manufacture a ring to that 
shape. Several procedures suggest themselves. Procedure one: Obtain 
the elastic curve of a circular ring, loaded in a manner of Fig. 48a, by 
means of the elastic energy equations. The point on the ring marked 
by the angle 6 moves radially a distance and tangentially a dis¬ 
tance A^ 
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The bending moment M in the ring, at a point marked by the angle <l>, 
and caused by the actual loading pt, is 

M = J' (jptds) Rsm(<t> — a) = ptR^ J' sin (<^ — a)da 

= ptR^ (1 — cos 4>) 

Ar = 
/ •'a 

mMds 

FBI 

In order to obtain the algebraic expression for m we load the ring at the 
point marked by the angle a with an auxiliary force F, 

Thus, 
m = FR sin (0 — a) 
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Then 

EI^ 
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= J* sin {<t> — a)(l — cos <j>) d<t> = I — sin a + cos a, 

vtR^ ( ^ \ 
Lr = yl- cosd + - sin e J- 

The expression for the tangential displacement is 

mMds 

•^a FEI 
where 

Thus, 

m = FR{ 1 — cos {<!> — a)}. 

M = ptR^(l — cos 

El A 
—= / {1 — cos (0 — a)} (1 — cos 4>)d<l> 
PIK J a. 

/ X , (’T — «) sin a 
= (ir - a) -I-^-cos a-— • 

/ 0 „ sin 

When 6 = TT, then 

= 
. SirptD^ SirD^P 

Z2EI “ 16^/ ' 
where P = ptR. 

^ Me ePD 
Stress = 5 = — = ; 

therefore, when 6 = r, then A^ may also be expressed as 

3wDh 
At = 

ShE 
The total gap is 2At. 

Procedure two: Load a circular split ring with a uniformly dis¬ 
tributed radial pressure and obtain the resultant elastic curve by direct 
measurement. This procedure, however, involves serious difficulties. 

Procedure three: Consider Fig. 48c, which represents a perfectly 
circular split ring identical with the solid black line in Fig. 48a, except 
that it is loaded with two equal and opposite forces P at the ends of the 
ring. The bending-moment equation for a circular split ring loaded in 
this manner is 

M = PP(1 — cos <t>). 
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When P = ptRy this bending-moment equation for a ring loaded in 
the manner of Fig. 48c becomes 

M = 'ptR^iX — cos 0), 

which equation is identical with the one for the ring loaded in the manner 
of Fig. 48a. If the bending-moment equations for the two rings (Fig. 48a 
and Fig. 48c) are identical and both rings are otherwise identical, then 
their elastic curves also must be identical. (Not only are the bending 
moments under loading conditions represented by Fig. 48a and 48c 
identical, but the shears also are identical. The direct compression 
under the two types of loading differ. In Fig. 48a it is ptR [cos <^> — 1], 
while in Fig. 48c it is ptR cos As compared with the bending effect on 
the elastic functioning of slender structures, the effect of direct compres¬ 
sion is inconsequential. It is ignored in this analysis.) 

Procedure two has its disadvantages because of the difficulty of 
obtaining a uniformly distributed radial pressure. It now appears that 
we can obtain identical results merely by loading a ring in the manner 
of Fig. 48c, which offers little difficulty. 

Suppose that we take a ring of any shape, cast of a material which 
need not obey Hooke’s law (stress proportional to strain), but which 
must be elastic in the sense that it returns to its original shape when the 
load is removed. A section of this ring is cut out and the ring is drawn 
together with two equal and opposite tangential forces acting in a sense 
opposite to that shown in Fig. 48c. When thus loaded this ring is 
machined to a true round shape. Neither the thickness t nor the radial 
depth b need be uniform. 

When the force which closes the ring is removed the effect will be 
the same as if a force of equal magnitude but opposite sense (as shown 
in Fig. 48c) were superimposed. When next the ring is fitted in a 
cylinder of exactly the size to which the ring is machined the effect will 
be equivalent to a uniformly distributed radial loading as shown in 
Fig. 48a. Should an extra pressure at the gap be required to prevent 
flutter, it may be obtained in a similar manner. 

If we followed the conventions of the guidebook publishers, we 
would mark this “procedure three” with four stars. From the point of 
view of engineering philosophy it is a nearly perfect solution. It is one 
problem in which, so far as the bending and the shear effects are con¬ 
cerned, the principle of superposition may be truly said to apply. 

It is not to be inferred, however, that the foregoing is the final 
answer to piston-ring-design problems. We have discussed only the 
problem that applies to rings of circular shape combined with uniform 
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radial pressure. Various other problems are involved in piston-ring 

design. 

RINGS SUBJECTED TO VARIOUS LOADINGS 

Example 29 

Given: A circular ring supported at one point and loaded by its 
own weight (Fig. 49c). The curvature of the ring is small compared 

Mv 
to its thickness, so that the formula, Stress = -y, may be assumed 

to apply. The material is homogeneous and elastic (E is constant), 
and the cross section of the ring is constant. Therefore, I is constant. 

To find: The maximum bending moment in the ring. 
We present two solutions: first, by means of tabular summation; 

second, or alternative solution, by means of analytic integration. 
(Throughout this text the semi-graphic solution is stressed, because it 
constitutes the most general as well as the simplest method. In problems 
such as this one, analysis by means of tabular summation is still the 
most general method. If, as in our example, the moment of inertia, 7, 
varies, or if the shape of the ring deviates from a perfect circular shape, 
tabular summation is clearly the best method to use. [See Example 34, 
page 149.] However, when the shape of the ring is a perfect circle 
easily expressed in polar coordinates, and when the moment of inertia 
and the modulus of elasticity are constant, the analytic integration 
method is the simpler of the two.) 

FmsT Solution: 

Let R = radius of ring (in Fig. 46a it is drawn as 100 units). 
ui = weight of one cubic inch of material (for steel ui = 

= 0.2835 lb. per cu. in.). 
A = cross section of ring. 

(If we have under consideration a section of a water pipe of length b 
[perpendicular to the plane of the sketch] and thickness A = bt, and 

Figure 49a represents one half of the ring. Since the ring is sym¬ 
metrical about a vertical center line there can be no vertical force at B, 
From the equation SFj, = 0, we conclude that the total weight of the 
right half of the ring, uiAirRj is balanced by one-half the reaction at C, 
as shown in Fig. 49a. The horizontal forces H at B and C are the only 
horizontal forces acting on the free body. Their sum must be zero; 
therefore, they must be equal and opposite. At both top and bottom 
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we have an unknown bending moment, here indicated by Mi and M2. 
We thus have three unknowns, H, Mi, and Af2, requiring three simul¬ 
taneous equations for their solution. In arguing that the forces H, at 

(c) 
Fig. 49. Circular Ring Loaded by Its Own Weight. 

points B and C, are equal and that there is no vertical force at B, we 
have used the equations 'SFy = 0 and SFx == 0. These equations are 
taken from statics, leaving available for use the only remaining statics 

2R 
equation, namely, SAf = 0. The centroid of a semicircular ring is- 

T 
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Ml -f- wiAttjR -M2- 2HR = 0. (a) 

From the theory of elastic energy we obtain two more equations. 
One of these is based upon the limiting condition that the tangents to 
the ring at points B and C always remain horizontal. The change of 
slope between B and C caused by the loading (not caused by the initial 
curvature of the beam) is zero. Therefore 

Q>) 

The other equation is built upon the limiting condition that, as the 
ring is loaded and thus deformed, point B is displaced downward along 
the vertical center line. Therefore, horizontal displacement 
of point B relative to the point C, is zero. 

^(5-0* = 0. (c) 

The general equation for change of slope is formula (6): 

_ r^mMds 
^\b ~ Jb M'EI 

If we imagine an auxiliary moment M' applied at By then m, for all 
points of the structure, is equal to M'. Therefore 

or 

M'Mds 
M'EI 

= 0 

c 
Mds = 0. 

Let the right half of the ring be divided into twenty parts so that 
the horizontal projection of each element shall be a constant (Fig. 49a). 
This, of course, gives a variable length to the quantity ds for each part 

of the structure. We might have made ds constant and the horizontal 
projections variable. It is a matter of individual judgment how we 
divide the ring, provided that we make a relatively large number of 
divisions ds, compute Mds for each division, and add the products 
Mds for the entire length of the beam between B and C. 

M = H{R — R cos <#>) — Afi + {R sin </) — jB sin a)dF. 
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Note that M consists of three factors. The first is H{R — R cos 0). 
(Coefficient [R — R cos <l>] is listed in table on page 113.) The second is 

Ml, and is a constant. The third factor, ^ {R sin <l> — R sin a)dFj 

represents the moment at the point in the beam marked by <t> and is 
caused by the dead weight of the beam to the left of this point. The 
weight of each element is designated as, dF = UiAds; its moment is 
dF(R sin 0 — 72 sin a), and the total moment at the point marked by <l> 
is the sum of all expressions dF(R sin — 72 sin a) to the left of that 
point. 

For the center of the eighth element ds, taking 72 as 100, the moment 
(element 1 X 70 + element 2 X 60 • • • etc.) is equal to 

UiA(10 X 70 + 10.2 X 60 + 10.3 X 50 + 10.65 X 40 + 11.15 X 30 

+ 12 X 20 + 13.2 X 10) = + 2959wiA (see table on page 113). 

For the center of the thirteenth element, the moment is the same as 
for the eighth element, except for the negative moment of elements 9, 
10, 11, and 12. Thus 

(+2959 - 2 X 19.4 X 10 - 2 X 45 X 20)uiA ^+771uiA. 

/^^Mds = /^^g(72 — 72 cos <l>)ds — / ]^Mids 

+ ^^^| ^ (72 sin </) — 72 sin a)dF^j ds = 0- 

From the table: 

H{R - 72 cos (l>)ds = 31,39477. 

^ — Mids = — MiwR = — IOOttMi. 

From the table: 

y^^|^^^(72 sin — 72 sin a)dF ds 296Awi. 

Therefore 
31,39477 - IOOtMi - 296Awi = 0. (6) 

The general expression for equation (c) is 

mMds 
FBI ’ 
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To develop this equation we apply an auxiliary force at 5 in the 
direction x. This force F acts similarly to H, and its moment is 

Therefore 

= / 
Jb 

F(fi — R cos <t>). 

^ F{R — R cos <t>)Mds 
= 0 

or 

FEl 

f (R — R cos <t))Mds = 0. 
Jb 

This may be written as 

E(R—R cos <t>)^Hds — ^ ^ (R—R cos 4>)Mids (R—R cos <t>) 

"y ^ (R sin </> — jB sin a)dF ds = 0. 

The various factors are evaluated in the table on page 113. 

I Z(R- R cos ^fds = 4,697,727.0. 
B 

^ — R cos <i>)ds = 31,394.2. 

— R cos </))| sin 0 — 12 sin a)dl^|ds = — 76,490,000At^i. 

Thus: 
4,697,70011 - 31,394Mi - 76,490,000Awi = 0 (c) 

Solving equations (a), (6), and (c) simultaneously, we obtain 

H = 49.3Awi. 

Ml = 4,930Awi. 

M2 = 15,070-4^1. 

Alternative Solution. From Fig. 49a it is seen that the bending 
moment at the point marked by the angle is 

M = Ml — H{R — 12 cos <^>) — f {R sin — 12 sin a)dF. 
•/o 

A = cross-sectional area of ring, 

ds = Rda. 

dF = ui-4ds. 
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JIf = Afi — H{R — R cos 4>) — UiAR^ f (sin <t> — sin o^da, 
Jo 

M = Ml — H{R — R cos <#)) — sin 4> + cos aj , 

M = Afi — H{R — R cos 4>) — uiAR^{(t> sin <l> + cos (l> — 1). 

Since the ring is symmetrical about the center line through the point 
of support, the tangents to the ring at points B and C always remain 
horizontal. The change of slope, therefore, between the limits of B and 

V C is zero. 0 =0. The general expression for 6 from formula (6) is 
JB 

^ r mMds 
J M'EI 

^\b~ Jb M'EI ~ 

We assumed at the outset that E and I are constant, that the curva¬ 
ture is slight as compared to the thickness of the ring, and that the law of 
superposition holds, that is, that the ring maintains essentially the shape 
of a circle throughout the loading. If we imagine an auxiliary moment 
Af' applied at point B, then, for all points on the ring, m — M'; and 

mMds M'Mds 

^\b~ Jb M'EI~ Jb M'EI ~ ‘ 
Thus rr 

I Mds = / Mds = 0. 
Jb Jo 

In establishing the general expression for M we integrated between 
limits 0 and <A, and ds was expressed as Rda, However, integrating 
between points B and C, or between limits 0 and x, ds is expressed as 
Rd<l>. Thus 

jMds^ f MRd<t> 
Jo Jo 

= {Ml — H{R — Rcos<l>) — wiAR^(0sin</) + cos</> — l)}Rd(l>=0, 

J Md<l>= ^Mi<t>—HR4>-{-HR sin <l)—uiAR^{2 sin <<>—</> cos <^—<#))| = 0. 

Md^=Miv - HRir - uiAR%+ «• - tt) = Mur - HRir = 0 

Ml = HR. (d) 
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Since the ring is symmetrical about the center line through the point 
of support, point B will remain directly above point C. Thus the 
horizontal displacement of point B, relative to point C, is zero. 

The general expression for linear displacement is obtained from 
tormak (5): 

J FEI ' 

/•C' ^ 71/fx7o ^ 

- f ?-c = / 
Jb 

mMds 

FEI 
mMds 

If we imagine an auxiliary load F acting in the horizontal direction at 
point B, while the loading is applied, we have 

m = F(R — R cos <t>) (see Fig. 49a). 

(R — R cos <t>)Mds 

. -H-"■ 

ds = Rd<l>; R^ and El may be canceled. 

Thus, 

f Md<l>- f . 
•/o 

ished equation (d) 

Cud^ 
Jq 

cos <i>Md4> = 0. 

When we established equation (d) we found that 

Md4 = 0. 

cos <l>Md<l> 

= J" cos <!> jikf 1 — H(R — R cos (t>) — UiAR^(<l> sin 0 + cos 0 — 1)| d<l> 

r ,, . .XX. / . sin 2A . /sin 20 0 cos 20 . 0 
I Ml ^ ^-HR [sin 4,-^-^ j - UiAR^ [—^ - 1 

cos 20 , 0 

~l ^2 

sin 20 

sin 20\ , /sin 20 0 cos 20 

= HrI-UiAR^^ = 0. 

Solving equations (d) and (e) we obtain 

„ UiAR uiAR^ 
H = —; Mx = —. 
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Substituting these values in equation (a) (page 110), we obtain 

M2 = Ml- 2HR + 2uiAR^ = ^mAR^. 

Substituting the values of Mi, M2, and H in the equation for M 
(page 114), we obtain the general equation for bending moment in its 
simplest form: 

uiAR^ 
2 

uiAR^ 
2 

(1 — cos ^ — UiAR^{<t> sin </> + cos — 1) 

= UiAR^ — <l> Qin <l> — —^ <!> sin. (f) 

where Wi is weight of entire ring. 
To determine the maximum value of M we differentiate M with 

respect to and equate to zero. Thus 

2Tr dM . sin 
cos <l> 

sin (j) 
T” 

= 0. 

sin <l> 
“2~~ 

= — cos 0. 

tan <t> = — 2(1). 

The value of <#>, other than zero, which satisfies the above equation is 

<l> = 105° 15' = 1.835 radians. 

To make sure whether the foregoing value of <l> gives a maximum or 
minimum, we differentiate a second time: 

2t d^M . cos 0 . 3 
^ = </> sm - cos -— = <#) sm </) - - cos </>. 

d^M 
For the value <l> = 105° 15', is positive. Therefore, <l> = 105° 

d<l> 
15' gives a minimum value of the bending moment, which is 

cosl05°15'\ 
—-j = - QMuiAR^ M = uiAR; 1.835 sin 105° 15' - 

The point of inflection of the elastic curve of the ring may be found 
by equating the bending moment to zero, which gives the positions of 
zero bending moment as </> = 50° 40' and = 146° 20'. 

Figure 496 shows the bending-moment curve plotted in polar coordi¬ 
nates. The curve reveals that, although for a value of </» = 105° 15' 
we obtain a maximum bending moment, the numerically largest bending 
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moment occurs at point C, the pfoint of support, and is equal to M2, 
which is ^lAR^, 

The maximum bending stress in a ring of a rectangular section, 
loaded by its own weight and supported at one point, may be expressed 
in terms of the dimensions of the ring as follows: 

Stress = s = 

If the length of the ring is b, the thickness and the diameter D, then 

^ ^ 9uiUR^ __ 9uiR^ ^ 9uil^ 

® ~ hf ~ t “ 4< ‘ 

For steel, Ui is 0.2835 lb. per cu. in. For a steel pipe, then. 

9 
5 = 7X0.2835 — 

4 t 
0.638D^ 

t 

In comparing the values derived by the two methods, we find that 
the difference in the two values of M2 is 0.5 per cent, and the difference 
in the two values of iT is 1.5 per cent. 

The tensile stress T, at any point in the ring, may be found by 
resolving all forces to the left of the point, marked by the angle <#>, in the 
direction tangent to the ring at that point. 

Thus 
^ X. . uiAR ^ ^ 

T = ii cos 0 — UiAR<t) sm 0 = —-— cos 0 — UiAR^ sm 4> 

TFi 
= -— (cos <#> — 20 sin 0). 

Ak 

Example 30 

Ring Subjected to Hydrostatic Pressure 

Given: A ring supported at one point and filled to the top with a 
liquid. E and / are assumed constant (Fig. 50a). 

To find: The maximum bending moment in the ring. 
In this case we submit only a solution by means of analytic integration. 

Let R = radius of ring. 
t = thickness of ring, 

W2 = weight of 1 cu. in. of liquid. 
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Assume section of ring analyzed to be of length unity, perpendicular 
to plane of sketch (Fig. 506). 

The ring being symmetrical about the center line through the point 
of support we may limit our attention to one half of the cross section 
(Fig. 506). Because of symmetry there can be no vertical force acting 

at point B. At point C, therefore, the vertical force is equal to all the 
liquid contained in the right half of the pipe. If the pipe is of unit 
length and if the weight of the liquid per cubic inch is U2, then this 

vertical force at C is 
U2TrR^ 

(Fig. 506). Horizontal forces Hi and H2 

are acting at points B and C respectively. Hi and H2 together must equal 
the total hydrostatic pressure on the line BC, The head h at point C 
is 2B. Therefore 

Hi + H2 = 
U2h^ 

= 2u2R^. ia) 

Taking moments about point C, not only must we include the factors 
Ml, M2, and Hi, shown in Fig. 506, but the downward weight of the 
water in the semicircular ring to the right of the line BC and the hydro¬ 
static pressure on the line BC must also be taken into consideration. 
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The centroid of a semicircular area is 
3x 

The moment of the weight of the water, then, is 

The hydrostatic pressure on the line BC is 2u2R^. The moment of this 
hydrostatic pressure, therefore, is 2u2R^ X ^ X 2R = 

Ml - Hi X2R - M2 + h2R^ + iu2R^ = 0 
or 

Ml - 2HiR - M2 + 2u2R^ = 0. (6) 

On a small length ds marked by the angle a the hydrostatic pressure 
is U2(R — R cos a)ds. The moment of this pressure about the point 
marked by angle <l> is U2(R — R cos a)ds X R sin (</> — «). The moment 
of the total hydrostatic pressure between point B and the point marked 
by the angle (t> is 

— R cos a)ds X R sin (</> — a). 

Since ds == Rda^ this expression may be written 

(1 — cos a) sin (0 — a)da. 

(In this integration 0 is constant and a is the only variable.) 
The hydrostatic pressure moment about the point marked by <!> is 

~ cos - sin 0 
)• 

The total moment of all the forces to the left of the point marked 
by the angle <^, therefore, is 

M — Ml — Hi{R — R cos (I)) + U2R^ — cos 0 — ^ sin 0^ 

Since the ring is symmetrical about the center line B-C, the tangents 
to the ring at points B and C will permanently remain horizontal. The 
change of slope, due to the loading, between points B and C will thuj? 
be zero. 

mMds 

M'EI 

mMds 

M^EI 
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If an auxiliary load ilf' is assumed acting at point B, then m = 
for all points of the structure. Thus 

/ Mds = 0 = Rd<l), 

J' Md<t> = J" jilfi — — cos^)+ M2S® ~ COS0 —^sin<^^|d0 

[, / . sin d> <t> cos <6\ 1*^ 
Mi<l> - HiRi4> - sin4,) + waK® [<t>-sin0- -^ + 

= Miir - HiRir + UzR^ (’^ “ |) = 

Mi - ffii? + ^ = 0. (c) 

Since the ring is symmetrical about the center line B-C, point B 
will move only along the line BC relative to point C. The horizontal 
displacement of point B relative to point C is zero. A(b-c)x ~ 0* 

mMds r 
PEI - X mMds 

FBI 
= 0. 

If we assume an auxiliary load F applied at point B in the horizontal 
direction (similar to Hi, Fig. 506), then m = F{R — R cos 0), and 

We have 

Therefore 

A(b-c).= r~^ 
•/o 

^(1 — cos <t>)Mds 
Fm 

ds = Rd<t>. 

/(I — cos (l})Md<l> = I Md<t> — f < 
Jq Jq 

We have seen that / Md<l) = 0. 
•/o 

cos = 0. 

Therefore 
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COS <t>Md<l> — J" I^Mi cos <l> — HiR(cob d> — cos^ 4>) 

+ ^cos <l> — cos^ 4> ~ ^sin <j> cos j 

= an 0 — HiR ^sin ~ | 

^ T>z( ■ j. ^ _ sin 2<^ 2</. COS 2<t\Y 

HiRt 3/ TT 27r\ HiRt 3 « r. / - ^ + «,8>( - - + - j . — - - V . 0. W 

Solving equations (c) and (d) simultaneously, we obtain 

Ml = ^ ; ffi = fM2ii:2. 

Substituting the value for Hi in equation (a) (page 118) of the first 
solution, we obtain 

H2 = iu2R^. 

Substituting the values for Hi and Mi in equation (b) (page 119) 
of the first solution, we obtain 

M2 = 

Substituting the values for Mi and Hi in the equation for M 
(page 119) we obtain the general equation for the bending moment in 
polar coordinates: 

M = -- U2R^{R — R cos <l>) + U2R^ ^1 — cos — I sin 

—U2R^ . 3 U2R^<I> sin <t> 
= —^-h ~ U2R^ cos <I> + U2Rr — U2R^ cos 0--- 

__ v^R^ U2R^ cos <I> U2R^<t> sin 

" "2 4 2 

U2R^(^ cos<^ , , W2r(^ C0S<I> , . 

where TF2 is the total weight of water. 
It is interesting to note that this equation is identical with the 

general equation for the bending moment found in example 29. 
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Figure 496, therefore, shows the bending moment in polar coordinates 
for the ring subjected to hydrostatic pressure from the inside out as 
well as the bending moment for the ring subjected to the effects of 
gravity. 

The point of maximum stress is at C, where the force, H2 = 
coincides with the maximum moment, M2 = ^2^^- The maximum 

P Me 
stress IS s = -7 + — • 

A I 

We assumed the ring to be of length unity and of thickness t. 
Therefore 

t 
6* 

Thus, 
5u2R^ 2>U2R^ X 6 

"" it 4 X 

U2R^(^ . 18i2\ 

^ +—y 

It may be seen that for ordinary values the effect of direct stress caused 
by H2 is negligible as compared to the bending stress caused by M2* 
The above formula may, therefore, be simplified to read 

® “ ~W~ ~ 16 <2 » 

in which D is the diameter of ring. If the ring is full of water, U2 = 
62.4 , 0.0203D3 ^ , 

= 0.0361 lb. per cu. m., and s = -^-^ ^ 6e 
1728 t 
expressed in inches. 

The tensile stress T at any point in the ring may be found by resolv¬ 
ing all forces to the left of the point marked by the angle 0 in the direc¬ 
tion tangent to the pipe at that point. 

= -|- II\ cos ^ ”f" U2R^ 

r 
Thus, r = + 1 cos <^ + / U2{R — R cos a) sin (<^ — a)ds 

•/o 

= + ffi cos <1) + U2R^ I (1 — cos a) sin (<#> — a)da 

= + ff 1 cos 0 + U2R^ ^1 — cos <#) — ^ sin 

W2 A cos (j) </) sin <;>\ 

=TV"“i—2~y 
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Example 31 

Derivation of Bending-Moment Equation for a Ring Subject to Shear Loading 

W, 
Sj = —— sin a* (Case II, page 127) 

A free-body sketch for one half of the ring is shown in the left half of 
diagram for Case II, page 127. 

jYo 
sin a ds{R — R cos {(f) — a)} 

ttK 

= Ml — TiR(l — cos <!>) + — cos 0 — I sin (a) 

Since the tangents to the ring at points A and D remain horizontal, 

/Md<t> = 0. Thus 

^ |mi — TiR + TiR cos <l> -f- ^1 — cos ^ ~ sin cf0 = 0, 

Mitt - TiRt + = 0. 

Since the horizontal displacement of point A relative to point D is zero, 

/(R — R cos <t))Md<l) = 0; and since, according to (6), / Md<l> = 0, 
Jo 

/cos <i>Md(t> = 0. Thus 

jTI"' cos <t> — TiR cos 0 + TiR cos^ <l> 

. W2R ( , 2 r 2(;> sin 
d-l cos 0 — cos^ <l>--- 

IT \ 8 > 

Solving (b) and (c) simultaneously, we obtain 

rp _ 3^2 , _ W2R 
- IT ’ " 4, 

* For derivation of this formula see Appendix II. 
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Substituting these values in (o) we obtain 

M = ^(l 
2ir \ 

r = Ti cos 

^/3 
27r \2 

I f ^ cos . \ 
-yl---(t>8m(l>J- 

W2 sin a 
--— cos 

wK 

/3 . \ 
I - cos <l) — <l> sm <!>]• 

cos (0 — a)Rd(l> 

Example 32 

Ring Subjected to Concentrated Vertical Loads 

Given: A ring loaded at the bottom point with a concentrated load 
acting coincident with the vertical diameter and supported by two 
symmetrically placed vertical reactions. 

To find: The bending moment and thrust in the ring as a function of 
the loading. 

A free-body sketch for one half of the ring is shown in the left half 
of diagram for Case VI, page 128. 

The bending moment M, marked by the angle <l> between the values 
</» = 0 and <#> = TT — 01, is 

Ma^c = Ml — TiR{l — cos 0). (a) 

Between the values 0 = tt — 0i and 0 = tt we have 

O R 
Mc^d = Ml — TiR{l — cos 0)-^ (sin 0i — sin 0). (6) 

Since the tangents to the ring at points A and D remain horizontal. 

Md<t} = 0. 

Therefore /(ir —0i) rx 

Md<f>+ I Md<l> = 0 
J(x-^ 

/{Ml — TiR{\ — cos ^)}d<t> — I (sin — sin = 0 

Ml — TiR = — (01 sin 0i 1 + cos 0i). 
2ir 
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Since the horizontal displacement of point A relative to point D is zero, 

/(R — R cos <t>)Md(l> = 0; and, according to (c), / Md(l> = 0, 
•/o 

therefore 

r I cos 4>Md4 = 0. 
Ja 

/(it —0l) 

[Ml — TiR(l — cos 4>)}cos 4)64 

+ r \mi - TiRiX - cos ^ 
QiR 1 

TiR(l — cos <l>)-^ (sm<l>i — sin</))| cos<i)d<<) = 0. 

Therefore 

/{Ml — TiR(l — cos <!>)} cos <t>d<l> 

QiR f (sin <i>i — sin <f>) cos <t>d<l> = 0. 

Thus 

TiRir QiR • 2 j A / \ + —- sin^ <^1 == 0. (e) 
2 4 

Solving (d) and (e) simultaneously, we obtain 

Ti = — ^ sin^ <l>i and Mi = (0i sin <^i — 1 + cos 0i — sin^ <t>i), 
2ir 27r 

Substituting these values in (a), we obtain for the moment between points 
A and C: 

C Q Jl 
M = {(t>i sin <t)i + cos 01 — sin^ 0i cos 0 — 1). 

A 2^ 

Substituting them in (6) we obtain 

D ^ O R 
M =M - ^ (sin - sin «) 

c 4 2 

O R 
= [(01 — -tt) sin 01 + cos 01 — sin^ 0i cos 0 — 1 + sin 0]. 

2ir 

m ^ m . Qi sin^ 4>i T = Ti cos 0 --T-cos 0. 
^ 2x 

^ ^ Qi sin^ 01 cos 0 , Qi . ^ 
r--+ -™*. 
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The following diagrams, referred to as Cases I-IX, give expression 
to the bending moments, Af, and the tangential forces, T, induced in 
circular rings by various loading conditions. The development of the 
equations for Cases I, II, V, and VI is given in detail in examples 29, 31, 
30, and 32, respectively. The equations for Cases III, IV, VII, VIII, 
and IX are derived in similar manner. The derivation of these equations, 

however, is not reproduced. 
Cases I to IX may be regarded as key diagrams. The development, 

by suitable superposition, of the resulting equations for the moment, Af, 
and the tangential force, T, in problems involving complex loading is 
illustrated in the following seven problems. 

PIPE PROBLEMS 

1. Pipe Flowing Full and Supported along the Invert Line 

Consider a pipe of indefinite length, of uniform thickness, full of 
water (with its ends closed to retain the water), and resting on a hori¬ 
zontal surface. We may then obtain the resulting bending-moment 
equation merely by adding the component equations obtained from 
Cases I and V. 

ilf = (TFx + Tfs) £ (l - <^ sin 0 - 

WI represents weight of pipe, and represents weight of water which 
it contains. 

2. Pipe Subjected to Hydrostatic Head 

subjected to a surcharge, 
say, ahead, h. In that event the hydrostatic loading would be increased 

constant factor u^h represents weight per unit volume oi water"\. 
This would in no way affect the bending-moment equation and would 
merely increase the circumferential tension in the pipe at all points by a 
constant amount. 

3. Pipe Afloat with Top Surface Awash 

Consider a pipe of uniform thickness, of indefinite length, with ends 
closed, and afloat in water with the top of the pipe awash, that is, the 
top of the pipe just breaking the surface of the water. Under these 
conditions the problem is identical with problem 1, except that the 
hydrostatic pressure is acting radially inward instead of radially out- 
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Case /. Shell, of length dx, loaded with its 
own dead weight wj. lb./in-* 

W\R / . cos 

_ TTi /cos 0 . \ 

For derivation of equations see page 108. 

Case II, Shell, of length dx, loaded with shear¬ 
ing forces acting parallel to the circumference. 

^ W's /3 . \ 
T = ^ I 2 — 0 sm 0 I • 

For derivation of equations see page 123.. 

Case III, Shell partially filled with liquid, 
weighing U2 lb./in.® 

— cos 02 cos (0 — 02) — (0 — 02) sin 0 

— cos 0] d®. 
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Case IV, Shell half filled with liquid. 

M 

M 

/ TT 

^ r V 

— 1 + - cos 0 I dx 

. 3ir 
- 1 - — cos </> + 

Case V, Shell completely filled with liquid. 

__ WJt / cos<l>\ 

Jt ^ A _ _ C08 <A\ 

IT \ 2 4 / 

For derivation of equations see page 117. 

Case VI, Two symmetrical, vertical supports 

c 
M 

M 

QiR, . 
= [01 sm 4>i + cos 01 

—sin^ <t>i cos 0 — 1]. 

Ol^ r/ N • 
= — [(01 - it) sm 01 + cos 01 

-sin^ 01 cos 0 — 1 + T sin <^] 

Qi sin^ 01 

2t 

Oisin**! 

cos <t>- 

^ cos ^ sm 

For derivation of equations see page 124. 
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Case VIL Symmetrical uniform radial sup¬ 
port. 

M = -—r— [01 - sin 0i + (0i cos 0i 
A 2ir Sin 01 

—sin 0i) cos 0]. 

M = -—[01 - x - sin 0i 
c 2ir sin 01 

■}“ (01 *■) cos 01 cos 0 

4- IT sin 01 sin 0 

— sin 01 cos 0]. 

Case VIII. Two symmetrical radial supports. 

M = —— (sec 01 — 1—01 tan 0i cos 0). 
A 2ir 

D 

M = — (sec 01 — 1—01 tan 0i cos 0) 
c 2ir 

+ sin (.^ + 0i). 
2 cos 01 

„ Q3<<)itan<fri 
r ----cos <t>. 

„ ® 03 01 tan 
T --r-cos 0 

C 27r 

+ z-— sin (0 + 0i). 
2 cos 01 

Case IX. Symmetrical, elastic radial support. 

„ ^ 

A *•(■^1 + I 
_r 

I sin 20i) L' 
an0i — • 

sm20i sin 201 0icos20i 
--—cos 0-4-:-cos 

4 8 4 

M =M +-—. 7 ■ ^ , 
c A (01 + § Sin 20i) 

■ /»! +» - T , sin20i 

■*■1, 2 "^4 

cos 201 "1 
—-COS0 . 

[sin® 01 

—jsm0j 
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ward. Then the sign for the coeflScient W5 will change, and the resulting 
bending-moment equation will be 

R ( cos <f>\ 
M = (TTi - W,) - (^1 - c^sin<A - 

If next we consider that for any length of pipe, with the top of the pipe 
awash, the weight of the pipe is equal to the water displaced, then 
W5 = Wi and the resulting bending moment is 

M = 0. 

4. Pipe Suspended in a Liquid 

Suppose a pipe of uniform thickness, indefinite length, and closed 
ends, is suspended, instead of floating, in water. Here problem 4 is the 
negative of problem 2, just as problem 3 is the negative of problem 1. 
The hydrostatic pressure is increased by a constant Uihy in which Ui 
represents the weight of unit volume of liquid and h the distance of top 
of pipe from surface of liquid. This constant surcharge of radial hydro¬ 
static pressure does not affect the bending moment M, It merely 
increases the tangential compression in the pipe. The moment M 
thus remains zero. 

5. Pipe Suspended and Loaded along Center Line 

Consider a pipe like the ones we have been discussing (problem 3 or 
4), but loaded with a concentrated load We (Fig. 51a) uniformly dis¬ 
tributed along the bottom of the pipe. The pipe is of uniform thickness, 
ends closed, and is suspended in water. Wi represents the weight of 
unit length of pipe. We the concentrated load applied to unit length of 
pipe, and W5 the weight of water displaced by unit length of pipe. The 
resulting bending moment is 

M={Wt- Ws)~(l - 

Wi + TTe = TTs; therefore 

j/f TTefi , . , cos^\ M-j. 

6. Submarine or Dirigible 

Consider a pipe like the one discussed in problem 5 except that the 
concentrated load TF7, instead of being applied at the bottom, is applied 
S3mimetrically to both sides of the center line. It is observed that the 
conditions of this problem may be obtained by superimposing the follow¬ 
ing three cases upon each other: Case I; the negative of Case V; and 
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the negative of Case VI. Figure 516 presents a composite picture of the 
figures representing the loading in Case I, the negative of Case V, and 
the negative of Case VI. Note that, since the weight of the shell Wi plus 
the concentrated loads W^ equals the liquid displaced TVs, the resultant 

Fig. 51. 

concentrated reaction at the bottom of Fig. 516 equals zero. The 
resultant moment for the top part of the shell, therefore, is 

M = (Tf 1 - Tfs) £ (l - sin <^ - - ^7 £ («i sin 4>i 

+ COS 01 — sin^ 01 cos 0—1). 

Since TVi + Wy = TF's, or — TVr = TFi — TVs, we have 

W7R / . . COS0 , . o 
M = —— I 0 sin 0 i---h sm 0i cos 0 — cos 0i — 4>i sm 0i 

2x \ 2 

The midsection of a submarine, or a dirigible, of uniform shell 
thickness and circular outline, long enough to permit ignoring of end 
effects, and its loading symmetrically framed into its sides, constitutes 
an example of the problem we have just discussed. 

Fitting into this general picture one more problem is worthy of 
special attention. 

7. Circular Pipe Lines 

In recent years steel pipe lines with diameters of the order of mag¬ 
nitude of 20 ft., stiffened and supported by rings placed at intervals, 
have become popular. Figure 52 represents such a pipe in a horizontal 
position and filled with water. (If the water is under an extra head A, 
this will affect our analysis only in that the tangential forces in the 
pipe will be increased, while the bending moments will not be affected.) 
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The pipe, obviously, constitutes a continuous beam loaded uniformly. 
This phase of the problem is too well known to require special discussion. 
However, the analysis of a transverse section of such a beam is of 
particular interest to us here. 

Figures 526 and 52c represent a section of the pipe halfway between 
supports of length dx. A side view is shown in Fig. 526, while 52c shows 
a cross-sectional view. The large arrow in Fig. 526 and the vertical 

Fig. 52. Steel Pipe Line. 

and radial arrows in 52c represent the dead-weight effect of the pipe as 
well as the radial pressure due to the water. The shear is represented 
by vertical arrows on the sides of Fig. 526, and by arrows acting in the 
tangential direction on Fig. 52c. The value of the resulting shear stress 
on a section of the pipe of length dx is given by the expression Ss = 
wR^ sin adx w sin a dx . 
-- Qj, - — ig weight per unit length of pipe plus the 

i irKt 
weight of the water which it contains). If we replace wdx by W2, then 

W2Rr sin a W2 sin a 
(see Appendix II). 

The bending moment for a thin shell cylinder, subjected to a shear 
loading, is represented in Case II. Whether the section be taken half¬ 

way between supporting rings (section B), or at any other point (section 
(7), W2 equals the weight of the ring plus the water which it contains. 
Therefore, W2 = Wi + Ws- 

Figure 52c shows a section of a circular pipe subjected to the simulta¬ 
neous loadings of its dead weight (Case I), of hydrostatic pressure 
(Case V), and of shear loading (the negative of Case II). If we super- 
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impose the bending moments of these three separate loadings, we obtain 
the resultant bending moment for any section of pipe: 

M = (PTi - Fa + - «sin« - 

TFi + Ws represents the weight of a section of pipe and the water it 
contains. W2 represents the difference of the total shear on either side 
of the section. Wi + Ws must necessarily equal TF2. Therefore, 

Wi — W2 + Ws = 0, and M = 0 

Stiffening Ring. An interesting problem is presented by the design 
and manner of support of the stiffening ring. Figure 52/ represents a 
supporting ring. Note that in Fig. 526 the shears point upward and 
that in Fig. 52d the upward-pointing shear is larger than that pointing 
downward, thus causing the resultant shear to point upward. In Fig. 
52/, however, we find that the shears transmitted to the ring on both sides 
point downward. If we consider the depth of the ring to be small relative 
to the diameter of the pipe, then the shear may be assumed acting 
through the neutral axis of the ring. If supported at the bottom point, 
the bending moment in the ring is represented by the expression 

W represents the total weight of water, pipe, and ring from center to 
center of span on both sides. 

If the ring is considered as being of considerable depth compared with 
the diameter of the pipe, then it is not justifiable to assume the shear as 
acting along the center line of the ring, and a simple correction must 
be made for the shear loading which is tangential to the inner surface 
instead of acting along the center line. 

Saddle Support. A pipe is not likely to be supported by a single 
reaction at its bottom point. A uniformly distributed radial support 
(Case VII), or an elastic support (Case IX), provided by some kind of 
saddle, is frequently considered feasible. When a thin-shell pipe is 

continuously supported in a rigid saddle, or when the pipe is intermit¬ 
tently supported in rigid saddles by means of stiffening rings, the pipe or 
the stiffening rings will draw away from the saddle as indicated by Fig. 
53. When the angle <^i, through which the saddle extends, is less than 
37®, then the pipe will ride on the comers of the saddle and the so-called 
saddle support will in reality be two radial supports (Case VIII, Figs. 
56 and 57). For the limiting value, <l>i = 37®, the elastic curve will 
just touch the saddle at the bottom. Figure 53 shows the elastic curve 
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of a pipe drawn to scale and supported in a saddle which extends through 
this limiting value of <l>i = 37°. 

A stiffening ring of a steel pipe imbedded in a concrete saddle would 
not constitute a saddle support in the same sense as we have used it here. 
It would rather approximate the problem of a fixed-ended arch. A 
solution of this problem does not lend itself readily to representation in a 

Fig. 53. Elastic Curve of Radially Supported Pipe Flowing Full. 

generalized form. However, the analysis of such a special problem is so 
simple as hardly to require special attention. 

Vertical or Radial Supports of Stiffening Ring. The common manner 
of supporting stiffening rings is similar to that given in Case VI. Figures 
54 and 55 present four different analyses with a view to obtaining the 
value of <l>iy marking the best location of the vertical support (Case VI). 
It would appear from these diagrams that when <l>i = 90° the maximum 
moment anywhere in the ring is smaller than it is when has values 
other than 90°. Figures 56 and 57 present four similar analyses made for 
the purpose of obtaining the most favorable value of <^i, the angle 
marking the position of the radial supports (Case VIII). 
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Fia. 64 (above) and Fra. 55 (below). Moment Diagrams, Symmetrical about 

Center Line, for Cylindrical Shell Flowing Full with Vertical Supports. 
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Fig. 56 (above) and Fig. 57 (below). Moment Diagrams, Symmetrical about 

Center Lines, for Cylindrical Shells Flowing Full with Radial Supports. 
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Figures 56 and 57 show a localized, acute, bending moment over the 
radial supports. These supports are assumed to be concentrated forces 
applied at a point or along a hne. Although forces are commonly 
assumed as acting at a point or along a line, such apphcation of forces 
is never realized. The reaction is bound to be distributed over an area. 
The acute point on the bending-moment curve (Figs. 56 and 57) is, 
therefore, likewise not realized. Thus the bending moment over the 
support will not be as severe as it appears in Figs. 56 and 57, while 
the rest of the bending-moment curve will not be materially affected by 
the fact that the reactions are distributed over an area instead of applied 
at a point. In view of these considerations it would appear from Figs. 
56 and 57 that a saddle support, or radial supports, defined by the angle 
01 = 37°, would result in bending moments of practically the same 
magnitude at the top, side, and bottom of the ring and would thus be 
most favorable. 

In comparing the bending moments resulting from radial supports 
with those induced by vertical supports (comparing Figs. 55 and 56) 
it appears that for rings carried by vertical supports the absolute value 
of the maximum bending moment is less than 50 per cent of that found 
with the radial support. 

In connection with an analysis of transverse bending moments in 
thin-shell pipes one more point should be mentioned. In considering 
pipes filled with liquid we must also consider the condition of the pipe in 
the process of being filled, even if this partially filled condition happened 
only once in the lifetime of a pipe line. Cases III and IV provide some 
data for a pipe partially filled with liquid. These data may be applied 
with confidence to pipes continuously supported. It is not immediately 
applicable to pipes supported by stiffening rings and only partially 
filled. For a discussion of this problem see “Design of Large Pipe 
Lines’’ by Herman Schorer, Trans, Am, Soc, C, E,, 1933, Vol. 98, p. 101. 



CHAPTER VII 

COMBINED BENDING AND DIRECT STRESS 

In the preceding chapters we have successively analyzed frames and 
beams. In engineering practice structures occur which are simul-' 
taneously subjected to bending and direct stresses. When such struc¬ 
tures are statically determinate the analysis is very simple. For the 
eccentrically loaded strut, for example, we compute the stresses due 
to the direct loading, and add to or subtract from them the stresses 
caused by the bending. When the structure simultaneously subjected 
to bending and direct stresses is redundant, the analysis is not so simple. 
However, no principles other than the ones already discussed are 
involved. The following three examples will illustrate how structures, 
acting simultaneously as frames and beams, may be analyzed. 

Example 33A 

^ Braced Beam 

Given: A wooden beam, braced by a steel truss and loaded with a 
uniformly distributed load w pounds per foot over the left half of its span 
(Fig. 58a). 

The working stress for wood is 1200 lb. per sq. in. 

The working stress for steel is 18,000 lb. per sq. in. 

The modulus of elasticity for wood, = 1,500,000 lb. per sq. in. 

The modulus of elasticity for steel. Eg = 30,000,000 lb. per sq. in. 

The beam is continuous from A to C and has a rectangular cross section 

6 in. by 14 in. Its depth is 14 in. 

Bars a, d and e have a cross-sectional area of ^ sq. in. 

Bars h and c have a cross-sectional area of 2 sq. in. 

To find: The maximum load, w pounds per foot, which the structure 
can support, loaded as shown in Fig. 58a. 

By applying the test as given on page 3 it is seen that the structure 
is once redundant. By assuming any one of the bars removed the 
structure is statically determinate. It is immaterial which one of the 
bars is regarded as the redundant one. We may also regard the moment 
in the beam at any point, say point B, as the redundant factor. 
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Let bar e be the redundant bar, and we solve for Se, the final load in 
bar e. The same reasoning as that used in developing formula (2) 
(page 16) is here applied. 

tv Lb. per Ft. 

Fig. 58 (a-/). Braced Beam. 

Suppose, for purposes of analysis, that a tumbuckle is built into bar e. 
This tumbuckle is slightly tightened so as to produce in bar e an auxihary 
force RUe- (Let C/ be a unit tensile force acting in the place of bar c. 
Fig. 586.) The auxiliary forces in the members are as shown in Fig. 586 
and as listed under column / in the table given with this example. Note 
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that the beam AC acts simultaneously as a beam and as a top chord of 
the truss. In other words, beam AC is subjected to compression by an 
auxiliary force / of 0.5 R lb. and to an auxiliary moment m = 0.866i2a;, 
as shown in Fig. 58c. 

When the load w pounds per foot is applied over the left half of the 
structure, bar e is loaded with a force Se. The various bars are loaded 
with forces as shown in the table in column S, Beam AC is loaded with 
the load w pounds per foot and its reactions, plus the extra loading 
applied through the steel truss (Fig. 58d). The M bending moment, 
caused by the actual loading, therefore, will be as shown in Fig. 58c or 58/. 

That portion of the total elastic energy in the entire structure, present 
because an auxiliary force R is acting in bar e while the actual load w 
pounds per foot is applied, is given by the expression 

r mMdx r CfdaMvdx f CmvdaSdx 

The force R is an internal force and its external work is zero. 

If the law of conservation of energy is assumed to hold, we have 

. r 'i^Mdx , f r fdaMvdx f C -W+JJ -AiE^+JJ mvdaSdx 

lAE 
= 0. 

Since the truss is assumed pin-connected, both m and M for the 
bars are zero, and the last three factors in the above equation, therefore, 
apply only to the beam AC, Since the auxiliary load R causes direct 
compression as well as an m moment in the beam AC, the expression If fdaMvdx 'ECfS must include the beam as well as the bars. 

AIE 
repre¬ 

sents the elastic energy stored in the beam AC because an auxiliary force 
/ is acting during the application of the actual bending moment M, 
The force / causes stresses uniformly distributed over the cross section of 
the beam. The moment Af, on the other hand,N causes tensile stresses 
on one side of the neutral axis of the beam and compressive stresses on 
the other side. The elementary theory of strength of materials proves 
that the total tension on a cross section of a beam, due to bending, 

f r fdaMvdx , 
IS equal to the total compression. J J - thus represents an 

equal amount of positive and negative energy the sum of which is zero. 
rrmvdaSdx 

Similarly, J J equal to zero, and the equation reduces to 

ICJS+f^-O. 
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The elastic coefficient C = —^ is not given in the accompanying 
A,£j 

CE 
table. The factor —^ is listed instead. In the table, therefore, the 

lengths are given in foot units and the modulus of elasticity of steel is 
given as 20Eu,- 

Bar CErc 
12 

/ s CEy,fS 

12 

a 20/0.25 X 20 +R -\-Se +4.000JK/Se 
h 20/2 X 20 -R -s. -\-0.mRSe 
c 20/2 X 20 -R -s. • +0.500JB/Se 
d 20/0.25 X 20 +R +4.000jB5, 

e 20/0.25 X 20 +R +4.(mRSe 

f 20/84 -0.5R -0.5Se +0.05^5RSe 
g 20/84 -0.5R -0.5Se +0.0595RSe 

ST 
From the table we have 

SC/S 
12 X 13.12 

1,500,000 rmMdx f^Q.^mRxMdx 0.866RxMdx 

El ~Jj, El ^Jb EI 

X and X, in both terms, are measured from the vertex of the m 
diagram (Fig. 58c). When m an^M (Figs. 58c and 58c) are shown on 
the same side of the x axis. Area -^is positive; when they are shown on 
opposite sides of the x axis. Area X is negative. 

_20 3 20 2 
AreaZ) = 200«> X — X t X 20 X 12^ + 17.32S. X — X - X 20 

/A 3 4 2 3 

20 2 
X 12® - 300w X — XrX20X12® = 12®(20,000w 

2i o 

+ 2312S. - 4p,000io). 
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^AreaX^^ = 17. 
20 20 

SaSe X — X-X20X12®- lOOto X — X - X 20 
2 3 

X 12® = 123(2312Se - 13,330w). 

(The factor 12^ in the above expression is applied to change the foot 
units of Fig. 586 to inch units.) 

r mMdx 

El 
then is 

0.866/2 X 12 X 12^ 

Adding SC/S and f 
1,500,000 X 6 X 14^ 

mMdx 

(4624Se - 33,330w;). 

El 
, and simplifying and equating their 

sum to zero, we obtain . 

13.12Se + 0.091(4624Se - 33,330ti;) = 0. 

433.9Se = 3033w?. 

Se = 6.99116. 

The bending moment at B is 

Mb = lOOw - 17.32Se = lOOw - 121.224w; = - 21.224i6. 

The resultant bending-moment curve is shown in Fig. 58/. 
The maximum bending moment over the portion AB occurs where the 

shear is zero. 

Shear = Ibw — 0.866Se — m = Ibw — — wx = 0. 

a; = 8.94 ft. 
16(8.94)2 

Mxnax. = (15t6)8.94 ~ (0.866Se)8.94 = 40z6 ft-lb. 

On the basis of maximum bending moment plus maximum direct 

. . 1. P Me 
compression in the beam, « = "t + "y • 

Jx. 1 

0-5S. . 0.5(6.991)»i , 6 X 40w X 12 
1200- — +-^-84“+ 6X14^ ■ 

w = 482 lb. per ft. 

On the basis of the maximum stress in the truss, 

P 6.991W 
s = — : 18,000 =-: 

A’ ’ 0.25 ’ 
w = 644 lb. per ft. 

The safe allowable load is 482 lb. per ft. 
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Example 33B 

Given: The structure of example 33A loaded with a uniformly dis¬ 
tributed load w' pounds per foot over its entire length. 

To find: The maximum load 
w' pounds per foot the structure 
can carry. 

In example 33A the loading 
of the beam AC, when loaded 
^vith w pounds per foot over half 
its length, is as shown in Fig. 58g. 
When the same beam, as part of 
the same structure, is loaded with 
w' pounds per foot over its entire 
length, its loading is as shown in 
Fig. 58h, and its bending mo¬ 
ment as shown in Fig. 58i. 

The maximum bending mo¬ 
ment is at B. Mb = 42Aw' ft-lb. 

The maximum force in bar e 
is twice the magnitude of that 
found in example 33A. 

Se = 13.982W;'. 

W Lb. per Ft. 

w'Lb. per Ft. 

Fig. 58 (g-k). 

On the basis of the maximum moment plus 
compression, p 

s = - + T- 

the maximum direct 

1200 = 

0.5S. 6 X 42.4w' X 12 

84 6 X 14^ 

w' = 448 lb. per ft. 

On the basis of the maximum stress in the truss, 

_P_ Se 

A 0.25 ’ 
18,000 = 

13.982w' 

0.25 ’ 

w' = 322 lb. per ft. 

The safe allowable load is 322 lb. per ft. 
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Example 33C 

Given: The same structure used in example 33A loaded with a uni¬ 
formly distributed load, w pounds per foot, over its entire length. A tum- 
buckle is built into bar e for the purpose of putting initial stresses in the 
structure so that, under the full load w pounds per foot, the points A, B, 
and C, shall be on a straight line. 

To find: The required initial force in bar e. 
Beam AC is symmetrical about the center line through B. If points 

Ay By and C are on a straight line, beam BC is identical with a beam fixed 
at its left end and freely supported at its right end. Under the condition 
of loading shown in example 14 (Fig. 34a), it was shown that the right 
reaction is ^wl and the left reaction is ^wL The resultant vertical reac¬ 
tion at B is ^wl for the span BC and the same for the span AB, There¬ 
fore, Rb = l.25wl = 1.25 X 20w = 25w, 

In order that the vertical component of the forces in the truss at 
point B may be 25w lb. the vertical component of the forces in the diag¬ 
onal bars must be 12.5w lb., and the forces in the diagonal bars are 

2 
X I2.5w = 14.43t£? lb. In bar e the force Se also equals 14:Adw lb. 

In example 33B it is shown that the force increment in bar e, due to a 
uniformly distributed load pounds per foot, is 13.98!/;' lb. To keep 
points Ay By and C on a straight line, under the action of w pounds per 
foot uniformly distributed, bar e must have an initial tensile force of 
(14.43 - 13.98)!/; = 0.45!/; lb. 

Example 33D 

Given: The structure for example 33A loaded with a uniformly dis¬ 
tributed load w pounds per foot over its entire length. (Similar to exam¬ 
ple 33B and as shown in Fig. 58/i.) 

To find: The initial force in bar e necessary to insure maximum 
efficiency. Also, to consider the redesigning of the structure for the 
purpose of securing maximum efficiency. 

In example 33B the truss was found to be the weakest part of the 
structure, that is, the stress in the steel reached its allowable maximum 
(18,000 lb. per sq. in.) before the maximum allowable stress for the wood 
(1200 lb. per sq. in.) was obtained. The condition of example 33C, in 
which an initial force was built into the truss so that points A, J5, and C 
would be on a straight line under a uniformly distributed load, was even 
more unfavorable. This would suggest, at first glance, an increase of 
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the cross-sectional area of the tension members of the truss. These 
considerations are typical of design of statically indeterminate structures. 
We assume dimensions, make our analysis, and if the results are not en¬ 
tirely satisfactory we make changes in accordance with the conclusions 
of our analysis and recompute stresses. We repeat this operation until 
we are satisfied with the results. 

Before investigating the effect of a change in the size of the tension 
members of the truss, let us investigate another possible improvement. 

In example 33C, with points A, B, and C kept on a straight line, the 
moments in the beam are 28.125iy ft-lb. at a point 7.5 ft. from A, and 
bOw ft-lb. at point B, 

In example 33B the moments in the beam are 31.05ty' ft-lb. at a 
point 7.88 ft. from A, and 42.4ii;' ft-lb. at point B (Fig. 58z). 

Beam B will function most efficiently when the positive moment 
between points A and B is equal to the negative moment at B, To 
accomplish this, point B must be lowered, that is, the reaction of the 
truss against the beam must be decreased. This reaction is computed as 
follows: 

Measuring x from point C to the left, the moment between B and C is 
. w2Qp 

RcX-— ; the moment at point B is 20JSc-^ ; taking SFy == 0 

for the entire beam, we have 

Ra + Ri, -f- Rc = 40t(^. 

Because of the condition of symmetry Ra == Rc- Therefore 

Rj, + 2Rc = 40w. 

Taking the two moments equal to each other (equal except that they 
have opposite signs), we have 

w20^ 

2 
- 20Rc- 

w 
Rcix + 20) = - (x2 + 202). 

• _ + 202) 

‘ 2{x + 20) ■ 

At the point of maximum moment between points B and C the 
shear must be zero. Therefore, Rc = And 

w{7? + 202) 
wx = 

2(® + 20) 
2a:2 4Qx = + 400. 
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+ 40x - 400 = 0. 

X — 8.3 ft. 

Under these conditions Re = 8.3m), and Rb = 40io — 16.6to = 23.4ii;. 
In example 33C we find that the force Sg, necessary to insure a reac- 

2 25 
tion of 25k; lb., is X — w = 14.43 lb. In this instance the force Se, 

V3 2 
2 23.4k; 

necessary to insure a reaction of 23.4k; lb., is X —^— = lZ,51w lb. 

In example 33B the increment of force in bar 6, due to a uniformly 
distributed load Wi pounds per foot over the entire beam, is a tensile force 
of 13.98k;i lb. For a most favorable distribution of stress the tensile 
force in bar e, as has been shovTi, should be 13.51i/;i lb. To accomplish 
this, bar e should be loaded with an initial compressive force of (13.98 

-13.51)k;i = 0.47K;ilb. 
Possibly the easiest way to impose an initial compressive force of 

0.47k;i lb. in bar e is as follows: A load Wi pounds per foot uniformly dis¬ 
tributed from A to C would impose a tensile force of 13.98k;i lb. on bar e. 

0.47 
Therefore, the load, X k;i = 0.0336k;i lb. per ft., uniformly dis- 

13.9o 
tributed over the entire length of the beam, would impose a tensile 
force of 0.47k;i lb. on bar e, 

A load of 0.0336k;i is uniformly distributed over the beam before 
bar e is fitted and pin-connected to the truss. When the load 0.0336k;i 
is removed bar e remains stressed with an initial compressive force of 
0.47k;i lb., or rather, it has a slack equivalent to a force of 0.47k;i lb. 

It is of course one thing to assume a uniformly distributed load of 
0.0336k;i lb. per ft. and quite another thing to accomplish the same in 
practice. However, the procedure as outlined may be followed with 

reference to a concentrated load Q placed at B. First, compute the 
stress in 6 as a function of a concentrated load Q at B. Next compute the 
magnitude that must be given to Q to produce a tensile force 0.47k;i lb. 
in 6. Then place such a load at B, fit bar e to the truss, and subsequently 

remove the concentrated load. 

It should be realized that the present discussion is an academic one, 

presented solely for purposes of illustrating theory and method. It 

should also be realized that, if we are going to compute to a refinement of 

0.47k;i lb., we should likewise take the dead-load stresses into account. 

The action of the dead load of the beam, if it is allowed to be acting 
before the truss is fitted, will, in a measure, act similarly to the load of 
0.0336k;i lb. per ft. used in our problem. For this condition of maximum 
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eflSciency the beam AC must resist a maximum moment of 2>.Zwi X 8.3 — 

—-— = 34.45t<Ji ft-lb. On the basis of the maximum moment in the 

beam plus the direct stress, we have 

P Me 
S-- + T- 

13.51wi . 6 X 34.45 X Wi X 12 

6304 + ^3oi^ 
wi = 516 lb. per ft. 

On the basis of the maximum stress in the truss, we have 

P 13.517/; 

Wi = 333 lb. per ft. 

Comparing this with example 33B it is seen that the efficiency of the 
truss is increased 3 per cent, perhaps a negligible quantity. However, 
the discrepancy between the strength based on the beam and that based 

on the truss is more pronounced. This suggests that, to obtain max- 
mum efficiency, we strengthen the truss by increasing the cross-sectional 
area of the tension members. This of course will depend on the available 
commercial sizes. Tension bars of approximately ^ sq. in. cross-sectional 
area may give the best results. 

Example 33E 

Given: The structure described in example 33A loaded with a uni¬ 
formly distributed load w pounds per foot over its entire length, similar to 
example 33B and as shown in Fig. 58h. 

To find: The amount a turnbuckle in bar e must be tightened to 
maintain points A, B, and C on a straight line. 

In example 33C we compute the initial force necessary in bar e to 

maintain points A, P, and C on a straight line; in this example we com¬ 

pute the amount bar e must be shortened, after being fitted, to accom¬ 

plish the same purpose. 

In shop assemblage it is quite feasible to put an initial force on the 

truss, but in field assemblage this may not be practicable. Since bar e 
is provided with a turnbuckle of which the thread is known, it may be 

more to the point to compute the number of turns that must be given to 
it, that is, find the amount bar e must be shortened, to obtain the 
desired result. If bar e were fitted to fixed pins, the problem would be 
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extremely simple. 
s^]r0ss 

The formula E =-r- would give the answer 
strain 

directly. Bar e, however, is part of an elastic structure, and the elastic 
behavior of the entire structure must be taken into account. We assume 
bar e to be fitted to the truss at one extremity and disconnected at the 
other. A unit force is applied at the free end of bar e, and an equal and 
opposite one at the point from which bar e is assumed to be disconnected. 
By means of formulas (1) and (5) [formula (5) must be included because 
beam AC is subject to bending as well as compression, see example 33A], 
we compute the displacement Ae of the free end of bar e relative to the 
point from which we assume it to be free. This displacement is a func¬ 
tion of the unit load and the elastic coefficients of the structure. 

1 X Ae = SC/S + 
^ mMdx 

El 

Assuming an auxiliary force acting in the place of the actual force 
unity and also of magnitude unity, we obtain: 

^.SmxMdx ^ ^^2 + 0-866 Area Ae=X:'C5^+ f ^ 
Ja A El 

2 X 0.866 Area X 

W 

=y"cs^+' 

I 

El 

m and M both are shown by Fig. 58A:. 

Bar 
CE^ . 

12 
S 

CEJS^ 

12 

a 4.0 +1.0 +1.0 +4.0 

h 0.5 -1.0 +1.0 +0.5 

c 0.5 -1.0 +1.0 +0.5 

d 4.0 +1.0 +1.0 +4.0 

e 4.0 +1.0 +1.0 +4.0 

f 0.238 -0.5 +0.25 +0.06 

9 0.238 -0.5 +0.25 +0.06 

13.12 

12 X 13.12 

1,500,000 ’ 

Areazl 
B 17.32 X 20 

X 20 X 12* = 2312 X 12*. 
2 
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(The factor 12® is necessary to reduce foot imits to inch imits.) 

^ _ 12 X 13.12 2312 X 12® X 12 X 2 X 0.866 

* 1,600,000 1,500,000 X 6 X 14® 

In example 33C it is seen that we need an initial tensile force of 0A5w 
in bar e to keep points A, B, and C on a horizontal line. By means of a 
tumbuckle bar e is shortened in the ratio of 0.003467 in. to every pound. 
The total required shortening of bar e, therefore, is 

0.45u; X 0.003467 = 0.00156u; in. 

Example 34 

The Arch 

Given: A fixed arch rib in the shape of an arc of a circle which has a 
radius of 200 ft. The rib is of rectangular cross section, width b, and 

depth as indicated in Fig. 59a. The supports are on different levels; the 
total vertical depth is 100 ft.; the horizontal span is 301.76 ft. 

To find: The influence lines for horizontal reaction H, vertical reac¬ 
tion Vi, and moment Mi at the left end. 
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A large number of textbooks on arcH design are available. Questions 
such as the relative merits of the hinged and fixed arches, steel and con¬ 
crete arches, and the preliminary analysis for the purpose of deciding 
on the most suitable shape are left to the professional treatise. These 
questions disposed of, one still remains, namely, the stress analysis of the 
arch finally decided upon. The present example deals exclusively with 
this. 

To make our analysis general we have selected a structure com¬ 
pletely restrained at both supports, and unsymmetrical as to dimensions 
as well as to loading. To avoid unnecessarily involved figures we have 
chosen homogeneous material and even numerical values for the depth 
of the arch at different points, so that the moment of inertia will be 

hh^ 
merely — • All dimensions throughout will be in foot units. In the 

analysis of an actual arch,, of either reinforced concrete or steel, the 
moment of inertia of the arch at the various sections involves more 
elaborate computations. Likewise computations of the horizontal and 
vertical distances between center points of segments, if the shape of the 
arch is other than an arc of a circle, will be more involved. These, 
however, are only matters of minor detail. So far as the analysis on the 
basis of the theory of elasticity is concerned, methods of obtaining 
results advocated in various books may differ, but their results coincide 
and are in exact agreement with what we propose to accomplish in this 
analysis. 

In the chapter on influence lines we show how the influence line 
in one graph gives a complete record of the effect of varying loads applied 
at different points. Here we solve in detail for the horizontal, vertical, 
and moment reactions at the left support under action of the load Q at 
the center of the sixth segment (Fig. 595). This will give us one point 
on each of the three influence diagrams (Figs. 59c, d, and c). By repeat¬ 
ing the same analysis for the load Q applied to the center of the other 
nine segments we obtain the other nine points on the influence diagram. 
With the influence lines completed we may obtain the effect upon the 
three left reactions of the dead weight of the arch, of the vertical com¬ 
ponent of the earth fill, and of any concentrated loads which may be 
placed upon the arch. The three left reactions determined, the stress 
condition on any other section of the arch may be obtained by means of 
the equations of static equilibrium. In fact, once the three infiuence 
lines are obtained, the influence line for the thrust, the shear, or the 
moment at any section may be constructed by making use of the equa¬ 
tions of static equilibrium only. 
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Upon close analysis of the structure represented by Fig. 596 we 
find that it is threefold redundant. The three reactions, H, Fi, and Afi, 
may be removed from the left support. The structure, provided that it is 

Fig. 59 (6-e). Influence Lines for Vertical, Horizontal, and Moment Reactions at 

Left End of Unsymmetrical Arch. 

strong enough, will remain stable and becomes statically determinate. 
We may regard the three component reactions at the left support as the 
three redundants. Their function is to insure a zero value for the linear 
horizontal displacement A^, for the linear vertical displacement Ay, and 
for the angular displacement di of the left end relative to the right end. 
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These three physical limitations enable us to use the elastic energy equa- 
tions three times, namely: 

f mMds ^ 
(a) e,.j 

C mMds 
(b) V-j 

f minds ZCfS 

FBI ' ~ F ~ ' 
(c) 

We may evaluate the equations and solve them simultaneously as in 
numerous previous examples, particularly examples 27 and 29. We do 
not meet with anything unusual in the evaluations of the three equations 
given above except in one respect. When the auxiliary load F is applied 
to the left end, the arch is conceived as fixed at the right end and free at 
the left end, as we have it in a cantilever (Fig. 596). In connection with 
equation (c) we assume an auxiliary load F applied at the left end in a 
horizontal direction, while in connection with equation (6) we assume an 
auxiliary load F applied in a vertical direction. By means of these 
equations we evaluate the elastic energy in the structure, stored therein 
because stresses induced by F are present while stresses induced by Q are 
being applied. It is readily seen that F causes three kinds of stresses, 
bending stresses, direct stresses, and shear stresses. All these should be 
separately considered. In other words, our structure acts both as a 
beam and as a strut. In example 33, page 140, in which we have a 
combination of truss and beam action, we discuss the same phenomenon 
in detail. In fact, the combination of shear and bending stresses occurred 
in practically all structures composed of beams which we analyzed. 

It is well to realize the similarity between arches and cables. The 
one, in a measure, may be considered the negative of the other. A 
cable is subjected only to tensile stresses, and, when loaded with a load 
uniformly (hstributed in a horizontal direction, it will assume the shape 
of a parabola. An arch of parabolic shape and loaded in a similar manner 
will be subjected to compressive stresses only. Under circumstances in 

which the cable readily changes shape to adjust itself to locally applied 
concentrated loads, the load line of an arch will similarly change as con¬ 

centrated loads are applied. Since the arch is rigid and does not change 
its shape, a load line in the arch other than one coinciding with the center 
line, or with the elastic curve of the arch, will induce both transverse 
stresses and moments. Transverse stresses in the arch are of relatively 
less importance than they are in the beams which we analyzed in all 
preceding examples. Since we did not discuss them in these previous 
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examples (see page 171), we may well ignore them here also. That is not 
true, however, of the direct stresses. It may be said that the ideal arch is 
one subjected to a direct stress only. It is obvious then that the direct 
stress must be taken into account. The direct stress is relatively more 
important in flat arches. 

In the present instance the effect of the direct stress may prove to be 
insignificant compared with the effects due to bending. Since we are 
primarily concerned with theory, we shall include the direct stress effects 
for purposes of illustration. 

In connection with equation (a) an auxiliary load Af' is assumed 
acting at the left end, while the actual loading due to H, Fi, Mi, and Q is 
being applied. On page 140 it is shown that a direct stress, caused by 
H, Vi, or Q, and superimposed upon existing bending stresses produced 
by M', stores no elastic energy. This is true because the bending stresses 
caused by M' are tensile and compressive stresses on opposite sides of 
the beam and are of the same magnitude, therefore accounting for equal 
amounts of positive and negative elastic energy stored as the Q loading 
and its consequent reactions are being superimposed. In connection 
with equation (a), therefore, the effect of direct stress is zero, and the 
terms representing it will not be enumerated in the development of the 
equation. 

In connection with equation (b) an auxiliary vertical force F is 
assumed to be acting at the left end, while the arch is fixed at the right 
end. We have already argued that the effects of direct stresses are 
important only in flat arches, arches with a relatively small rise. In a 
flat arch the component of the auxiliary force F at the left end, normal 
to the cross section of the arch, is very small. Furthermore, it is zero 
at the crown of the arch, positive on one side, and negative on the other 
side. If the arch were symmetrical, the stresses caused by the actual 
force II (the force causing the largest direct stresses), being of constant 
sign throughout and being of the same intensity in the left half of the 
arch as in the right half, would store equal amounts of positive and 
negative elastic energy and could thus be ignored. In our example, in 
which the arch is not symmetrical, we conclude that in connection with 

formula (2) (page 16) the effect of direct stresses is largely compensating 

and need not be taken into account. In terms of physics we may put it 

somewhat more tersely. In considering the vertical displacement of the 
left end of the arch relative to the right end, the effect of bending is 

paramount, whereas the effect of direct compression is negligible. 

The same reason that leads us to ignore the effects of direct stress 
in equation (b) compels its inclusion in equation (c). The auxiliary force 
F, assumed acting at the left end while the actual forces are being 
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superimposed, causes compressive forces throughout the length of the 
arch. The major actual load, causing a direct stress ff, also causes 
compressive forces throughout. The two being of the same sign, the 
elastic energy in the arch, stored therein because F is acting while H 
is being applied, is accumulative and, in flat arches, may be of appreciable 
magnitude. Again, in terms of physics, considering the horizontal dis¬ 
placement of the left end of the arch relative to the right end, we may 
say that the effect of direct stress may be appreciable and in flat arches 

it should be taken into account. 
Formulas (1) and (5) express the elastic energy in the arch stored 

therein because a horizontal force F is assumed acting at the left end 
while the actual loading Q and its induced reactions are being super¬ 
imposed. We have argued, in connection with equation (c), that we 
are to consider the structure acting simultaneously as a beam and as a 

"mMds 
strut. Both formulas 

El 
and 2C/aS, must thus be used to 

evaluate the two kinds of elastic energy—that due to beam action and 
that due to strut action. Equation (c) on page 152 is therefore written 

-f mMds , SC/5 

FEI 
+ = 0. 

^CfS 
The second expression, —— , in this equation is quite often approxi- 

F 

HL 
mately evaluated by considering it equal to —^, H representing the 

AE 

actual force S, L representing the span length, and A being given an 
average value of the cross-sectional area of the arch. In our example, the 
arch being unsymmetrical, the factor SC/aS is evaluated in Table III 
on page 159. 

Letting H, Fi, and Mi be the horizontal, vertical, and moment 

reactions, respectively, at the left end of the arch (Fig. 596), the actual 
moment at any point in the arch is 

M =Vix-Ml-Hy- Qz. 

(The last term, —Qz, applies only to points in the arch to the right of 

the point of application of Q.) The signs in this expression merely 

indicate that the bending caused by Fi is of sense opposite to that caused 
by Ml. 

For that part of the arch above the x axis the sense of the moment 
caused by iff is the same as that caused by Mi; for the extreme right 

end of the arch, that portion that lies below the x axis, the sense of the 
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moment caused by H is opposite to that caused by ilfi. For this latter 
portion of the arch y becomes negative, and thus automatically takes 
care of the change in sense above referred to. In our solution this 

change of signs must be carefully watched. To evaluate equation (a) 
we assume an auxiliary moment M\ similar in every respect to ilfi, to 
be acting at the left end of the arch before the actual loading Q and the 
reactions HyVi^ and Mi, caused by Q, are applied. 

The auxiliary moment m caused by M' is at all points equal to M'. 
Equation (a) therefore becomes 

Si = 

mMds 

M'EI 

M'Mds 

M'EI 

Mds 

~EI 
= 0. 

Since E is constant for the entire arch and since I = ^ , we may 
12 

multiply through by ^ • Then we have 

Mds ^ 

T'-' - "• / 
Thus, 

The integration in the above expression is to proceed over the entire 
length of the arch. 

The depth h of the beam being a variable, we shall evaluate the sum¬ 
mations in the above expression by means of tabular arrangement and 
algebraic addition. The manner of dividing the arch in segments ds 
is subject to various interpretations. Some designers make ds variable 

. , ^ ds , 
m such manner that y is a constant. Others make ds variable so as to 

make the horizontal projection of ds a constant. As a third alternative 
the arch may be divided in a number of segments ds of equal length. In 
the present instance we adopt the last named method. Ten segments, 

each 34.90 ft. long, are sufficient to exemplify our theory. 

Because ds is constant it may be canceled. Thus we have 

The various terms under the summation signs are evaluated in Table I 

(page 157). The h is shown on Fig. 59a; and x, y, and z may be obtained 

from Fig. 596. 
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Substituting the summations obtained in Table I for the factors 
appearing under the integral signs in equation (o), we obtain 

8.943Fi - 0.06566Mi - 2.3615H - 0.6640Q = 0. (o) 

To evaluate equation (6) (page 152) we assume an auxiliary load F 
acting at the left end of the arch in tlie direction and sense of Ti. The 
arch is conceived as a cantilever held at the right end and loaded with 
F only. The auxiliary moment caused by F is m = Fx. 

/rtiMds _ r FxMds _ F 

FEI ~J FBI ~J 
Substituting for I its value 

tion through by , we obtain 
VMS 

FEI 

bXh^ 

xMds 
~W 

= 0. (6) 

12 
and multiplying the above equa- 

The expression for Af is to be found on page 154. Thus, 

mation signs are evaluated in Table II. 

1485.27i - 8.943Mi - 292.0ff - 169.2Q = 0. (6) 

To evaluate equation (c) (page 152) we assume an auxiliary load F 
acting at the left end of the arch in the direction and sense of H. The 

arch is conceived as a cantilever held at the right end and loaded with F 
only. The auxiliary moment caused by F is m — — Fy. The auxihary 
direct force caused by F is/ = F cos B. {6 is the angle which the tangent 

to the arch at the center of the segments makes with the x axis.) 

rmMds zcfs__ r 
~ J FEI F ~ J FEI 

In this equation, 

FyMds , SCSF cos 0 . ,. 
-;;-= 0- (c) FEI F 

C = 

and 

AE 

S = H coa B. 

ds 
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Thus, /yMds ^ 

El 

dsH cos^ 0 
= 0. 

bh^ bE 
Substituting for I its value — and multiplying through by 

12ds’ 

we obtain 
H cos^ 0 

J h? '^12^ = 0. 
12^ h 

Substituting M as expressed on page 154, we have 

= 0. 

J*^ may be obtained from Table II, and J*^ from Table 1. The 

other terms under the summation signs are evaluated in Table III, 
(page 159). Equation (c) then becomes 

-291.987i + 2.3615Mi + 104.7m - 1.3941Q + H = 0. 
12 

1,44 
The last term, H, in the equation represents the effect of direct 

compression in the arch on the horizontal displacement of the left end 
relative to the right end. As compared with the third term, 104.7m, 
which represents the effects of the bending caused by H on the same 
displacement, it constitutes only 0.1 per cent. In the arch under con¬ 

sideration the direct compression effect, as compared with the bending of 
the arch, is negligible. As a general rule the effect of direct compression 
need be considered only in very flat arches. 

Solving equations (a), (6), and (c) simultaneously, we obtain 

Vi =+0.1834Q. 

H = + 1.0029Q. 

il/i = - 21.2050. 

To obtain influence lines for the reactions at the left end of the arch 

the load Q is placed in different positions and the foregoing analysis 
repeated. The various columns would then appear the same as those 

in Tables I, II, and III. In fact only the columns involving the variable 
z would be different for each new position of the load Q. Table IV gives 
the evaluation of the various terms in equations (a), (6), and (c) which 
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TABLE IV 

Segment I X y 

Load Q Applied at Center of Segment 1 

1— z/rfi xz xz/lfi vz yzflfi 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

7 
6 
5 
4 
4 
5 
6 
7 
8 
9 

343 
216 
125 
64 
64 

125 
216 
343 
512 
729 

13.85 
44.04 
76.80 

111.13 
145.99 
180.32 
213.08 
243.27 
269.97 
292.38 

+ 11.20 
+28.63 
+40.55 
+46.60 
+46.60 
+40.55 
+28.63 
+ 11.20 
-11.21 
-37.92 

0 
30.19 
62.95 
97.28 

132.14 
166.47 
199.23 
229.42 
256.12 
278.53 

0 
.1398 
.5036 

1.5200 
2.0647 
1.3318 

.9224 

.6689 

.5002 

.3821 

0 
1.329.57 
4.834.56 

10.810.73 
19.291.12 
30,017.87 
42.451.93 
55.811.00 
69.144.72 
81.436.60 

6.1554 
38.6765 

168.9177 
301.4237 
240.1430 
196.5367 
162.7142 
135.0479 
111.7098 

0 
864.34 

2552.62 
4533.25 
6157.72 
6750.36 
5703.95 
2569.50 

-2871.10 
-10561.86 

8.0335 1361.3249 259.2746 

Load Q AppUed at Center of Segment 4 

Segment h *3 X V 

z z/h^ xz xz/}fi VZ yz/h^ 

4 4 64 111.13 +46.60 0 0 0 
5 4 64 145.99 +46.60 34.86 0.5447 5.089.21 79.5189 1624.48 25.3825 
6 5 125 180.32 +40.55 69.19 0.5535 12.476.34 99.8107 2805.65 22.4452 
7 6 216 213.08 + 28.63 101.95 0.4720 21.723.51 100.5718 2918.83 13.5131 
8 7 343 243.27 + 11.20 132.14 0.3852 32,145.70 93.7192 1479.97 4.3143 
9 8 512 269.97 -11.21 158.84 0.3102 42.882.03 83.7538 -1780.60 -3.4777 

10 9 729 292.38 -37.92 181.25 0.2486 52,993.88 72.6938 -6873.00 -9.4280 

2.5142 530.0682 52.7499 

Load Q AppUed at Center of Segment 8 

S^^ent h X V 

z z/f^ xz xzfh^ yz zy/tfi 

8 7 343 243.27 + 11.20 0 0 0 
9 8 512 269.97 -11.21 26.70 0.0521 7,208.20 14.0785 -299.31 -.5846 

10 9 729 292.38 -37.92 49.11 0.0674 14,355.86 19.6925 -1861.87 -2.5540 

0.1195 33.7710 -3.1386 

are different from those enumerated in Tables I, II, and III. With 
the load Q placed successively at the center of each of the ten segments, 
we obtain ten groups of three simultaneous equations each. The solu¬ 
tion of these ten groups of simultaneous equations gives us ten answers 
for the values of Vi, H, and Mi corresponding to each of the ten posi¬ 
tions of the load Q. The results are graphically represented in Figs. 59c, 
59d and 59c. 

The ordinate to the curves of Figs. 59c, 59d, and 59c measures the 
influence of the load Q (directly over the ordinate) upon the reactions 
at the left end of the arch, namely, Fi, H, or Mi, These curves then 
constitute influence lines. From them the effect of any vertical load, 
or any combination of vertical loads, upon the left end reactions may be 
found. With these reactions evaluated the stress condition at any 
point within the arch may readily be obtained with the aid of elementary 
strength of materials theory and the equations of static equilibrium. 
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TABLE IV 

Load Q Applied to Center of Segment 2 Load Q Applied to Center of Segment 3 

2 z/lfi XZ xz/lfi vz yz/lfi z XZ xz/lfi VZ Vz/lfi 

0 
32.76 
67.09 

101.95 
136.28 
169.04 
199.23 
225.93 
248.34 

2.515.97 
7.455.71 

14.883.68 
24.574.01 
36.019.04 
48.466.68 
60.994.32 
72.609.65 

20.1278 
116.4955 
232.5575 
196.5921 
166.7548 
141.3022 
110.1292 
09.6016 

1328.42 
3126.39 
4750.87 
5526.15 
4839.62 
2231.38 

-2532.68 
-9417.05 

10.6274 
48.8498 
74.2323 
44.2092 
22.4056 
6.5055 

-4.9466 
-12.9177 

0 
34.33 
69.19 

103.52 
136.28 
166.47 
193.17 
215.58 

0 
0.5364 
1.0811 
0.8282 
0.6309 
0.4853 
0.3773 
0.2957 

0 
3,815.09 

10,101.05 
18,666.73 
29,038.54 
40,497.16 
52,150.10 
63,031.28 

0 
59.6108 

157.8289 
149.3338 
134.4377 
118.0674 
101.8554 
86.4625 

0 
1599.78 
3224.25 
4197.74 
3901.70 
1864.46 

-2165.44 
-8174.79 

0 
24.9966 
50.3789 
33.5819 
18.0634 
5.4357 

- 4.2294 
-11.2137 

6.1390 1092.5607 188.9655 4.2349 807.5965 117.0134 

Load Q Applied at Center of Segment 5 Load Q Applied at Center of Segment 7 

2 2//|3 XZ xz/y^ n yz/Jfi z z/hZ XZ xz/hZ VZ yz/hZ 

0 
34.33 
67.09 
97.28 

123.98 
146.39 

0.2746 
0.3106 
0.2836 
0.2421 
0.2008 

0 
6.190.39 

14.295.54 
23.665.31 
.33,470.88 
42.801.51 

49.5231 
66.1831 
68.9950 
65.3726 
58.7125 

0 
1392.08 
1920.79 
1089.54 

-1389.82 
-5551.11 

11.1366 
8.8925 
3.1765 

-2.7145 
-7.6147 

0 
30.19 
56.89 
79.30 

QQIII 
WliiWjl 

0 
7,344.32 

15,358.59 
23,185.73 

21.4120 
29.9972 
31.8048 

0 
338.13 

-637.74 
-3007.06 

.9858 
-1.2456 
-4.1249 

1.3117 308.7863 12.8764 83.2140 -4.3847 

Load Q Applied at Center of Segment 9 

2 z/h^ XZ xz/h^ VZ yz/hZ 

0 
22.41 0.0307 

0 
6.552.24 8.9880 

0 
-849.79 -1.1660 

0.0307 8.9880 -1.1660 

Temperature Stresses in Arch. Let X represent coefficient of expan¬ 
sion, t temperature change, L horizontal distance, and N vertical dis¬ 
tance between the two ends of the arch. 

If we assume one end of the arch to be unrestrained and the arch to 
undergo a temperature change of t degrees, then \tL represents the hori¬ 
zontal displacement and \tN the vertical displacement of one end of the 
arch relative to the other end. If the arch is completely restrained, not 
only will such horizontal and vertical displacement not occur, but the 
angular displacement of the tangents to the center line of the arch at the 

ends will likewise be prevented. 
We may assume the left end of the arch (Fig. 59/) to have under¬ 

gone horizontal and vertical displacements of \tL and \tNj respectively, 
under a change in temperature t, and subsequently forces and 
V2 applied to return the end to its original position. The problem, then, 
is to fffid H2, M2, and V2, the forces necessary to ^ve a horizontal linear 
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displacement, XiL, accompanied by a vertical displacement, \tN, and a 
zero angular displacement. 

The theory of elastic energy furnishes us with the following three 
equations: 

, . ^ r rnMds , ^ 
A X = = J ETEir > 

A'j, = \tN -I 
and 

FEI ’ 

mMds 

FEI ’ 

mMds , ^ r mMds 
<i' = 0 = /- 

y M'jS/ 

(fc) 

(c) 

In all these three equations 

M = M2 + ^2^ + (Fig. 59/) 

For equation (a), m = Fy. 

For equation (6), m -«= Fx, 

For equation (c), w = M'. 

The three equations thus become 

and 

(а) 

(б) 

(c) 
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or 

12ds 
(a) 

Eb\tN 
(b) 

(c) 

The various coefficients under the summation signs are obtained from 
Tables I, II, and III. 

\tL = 2.36M2 + 105^2 + 292F2. 
12(ds) 

(a) 

= 8.94M2 + 292^2 + 1485F2. 
1205 

(b) 

0 = 0.0657M2 + 2.36F2 + 8.94F2. (c) 

We assume the arch to be built of masonry with a coefficient of 
expansion X = 0.0000065, a temperature change t = + 100° F., and a 
modulus of elasticity E = 2,000,000 lb. per sq. in. = 288,000,000 lb. 
per sq. ft. 

If we substitute these values in equations (a) and (fc) in addition to 
substituting the values 301.7 for L, 53.2 for N, and 1 for 6, and solve 
equations (a), (6), and (c) simultaneously, we obtain 

H2 = + 8036 lb. 

M2 =- 417,870 ft-lb. 

F2 =+949.7 lb. 

The values for H2 and F2 are positive while that for M2 is negative. 
For a positive temperature change, that is, for a rise in temperature of 
t degrees, H2 and V2 are in the sense and direction as indicated in Fig. 
59/, while M2 will be of sense opposite to that indicated by the arrow 
representing M2 in Fig. 59/. 

The depth of the crown is 3^ ft., the vertical distance from the line 
of action of H2 to the center line of the arch at the crown is 46.8 ft., the 
horizontal distance from the line of action of 7? to the crown of the arch 
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is 128.6 ft. The maximum compressive stress in the arch at the crown, 
due to a temperature change of 100® F., then is 

P Me P M6 H2 (46.8iy2 + 128.672 + -9^2)6 

“ A I ^ hh~^ hh^ bh^ 

_ 8036 (46.8 X 8036 + 128.6 X 949.7 - 417,870)6 

1 X 3.5 1 X 3:52 

= 2296 + 39,361 = 41,657 lb. per sq. ft. 

= 289.2 lb. per sq. in. 

Temperature Stresses in a Symmetrical Arch. If the arch were 
symmetrical about a center line through the crown, the vertical reac¬ 
tions at the ends 72 would be equal in magnitude and of the same 
sense. (Since the vertical forces at the ends would be the only vertical 
forces acting on the arch, since sjrmmetry insures their being of the 
same magnitude and sense, and since their sum equals zero, SPy = 0, 
their numerical value must likewise be zero.) Since 72 is zero, there 
remain but two unknowns, namely, H2 and Af2. Therefore, we can dis¬ 
pense with equation (6) and the remaining equations simplify to 

EhXtL 

12ds = f$ (a) 

0 = M2J (c) 

If the lack of symmetry is not very pronounced, we may at the outset 
assume 72 to be zero and thus materially reduce our required computa¬ 
tions. For purposes of establishing the extent of the error involved in 
this process, we shall solve for the forces M2 and H2 induced by a tem¬ 
perature change of 100® in the arch represented by Fig. 59a, assuming 
72 to be zero. 

= 2MM2 + m.OHz. (a) 

0 = 0.0657M2 + 2.36H2. 

Solving these two equations we obtain 

M2 
2MEb\tL 

12 X 1.35 X ds 
= - 236,800 Ib-ft. 

ic) 

0M57Eb\tL 

® 12 X 1.35(is 
= 65321b. 
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The maximuin compressive stress in the arch at the crown, due to a 
temperature change of 100°, then is: 

P Me H2 (46.8^2+ ^2)6 

“ A hh^ 

6532 , (46.8 X 6532 - 235,800)6 69,900 X 6 

W 12.25 

= 1866 + 34,235 

= 36,100 lb. per sq. ft. = 250.7 lb. per sq. in. 

Comparing this value with the values previously obtained, our error, due 
to the assumption that V2 is zero, is 15.5 per cent. 

Temperature Stresses in a Symmetrical Two-Hinged Arch. If the 
arch under consideration were symmetrical about a center line through 
the crown and hinged at both ends, both V2 and M2 would be zero. 
Equations (6) and (c) could then be dispensed with, and equation (a) 
would simplify and give the value directly: 

Eb\tL „ 

12ds A®' 
(a) 

EhXtL 

Note: The following table gives a comparison of results obtained in an arch 
analysis for two conditions: Case I, direct stress effect (2c/s) ignored; Case II, direct 
item effect (Sc/s) included in the equation Ax = 0. The arch in question has the 
outline shown in Fig. 59(a), p. 149, but has a constant rectangular cross section of 
6 ft. by 1 ft. 

Case 1 Case 11 

Vi Ml Hi Vi Ml 

0.98846 0.05526 ft 0.03057 0.98848 0.05529/2 
.90218 .10193 R .23744 .90235 .10217/2 
.75168 .08355 H .53736 .75207 .08408/2 
.56823 .03107/2 .80752 .56881 .03188/2 
.38408 -.02502 R .95167 .38478 - .02407 R 

1 .22577 -.06233 R .92417 .22645 -.06140/2 
.10966 -.07063 R .73772 .11020 - .06988 R 
.03938 -.05370/2 .46066 .03972 -.05324/2 
.00776 - .02517 R .18951 .00790 - .02498 R 
.00021 -.00324/2 .02233 .00023 -.00321 R 



CHAPTER VIII 

COMBINED BENDING AND TORSION 

We may find the angular displacement of shafts subjected to torsion 
by the same reasoning used in finding the angular displacements of 
beams subjected to bending (page 46). 

If an auxiliary torque t is assumed acting before an actual torque T 
is applied, then each of the various particles in the shaft carries a load 
tvda 

If, subsequently, the shaft is subjected to a torque T, each 

particle is strained an amount 
Tvds 

1g^ 
The elastic energy stored in the 

tTv^dads 
particle, because t is acting while T is applied, is —^-^2— > for the 

. . . 1. , . r ftTv^dads ftTds , 
entire shaft this elastic energy IS J J —~ J This elas¬ 

tic energy must equal the mechanical energy of the force, or torque, 
which is responsible for t 

Thus, 

FA or T'<t> 
ftTds 

a/’ 
Formula (8) 

Example 35 

Given: A round rod of radius r in the shape of a 90® arc of a circle 
which has a radius R, The rod is rigidly held at one end and loaded with 

a concentrated load Q, applied at the free end and acting perpendicularly 
to the plane of the circle (Fig. 60). 

To find: The displacement Ax of the free end of the rod in the direc¬ 
tion of the load Q. 

Any section of the beam is simultaneously loaded with a bending 
moment, M = QR sin 0, and with a torque, T = Q{R — R cos 4>). 
If we assume an auxiliary load F applied at the point at which we 
desire to evaluate A^, and assume this load operating in the direction of 
Axj then an auxiliary moment m = FR sin 0, and an auxiliary torque, 

166 
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t = F{R — R cos </>), will be induced in the structure. The total elastic 
energy stored because F is assumed acting while Q is being applied, 
therefore, is 

mMds 

El 
tTds 

'W' 

(See formula (5), page 45, and formula (8), page 166.) 
If the law of conservation of energy applies, this elastic energy equals 

the mechanical energy involved in displacing F through the distance A^;. 
Thus 

sin 

4 A 

Assuming that, for a steel rod, E = 28,000,000 lb. per sq. in. and 

G = 11,000,000 lb. per sq. in., then 

(0.0000000357 + 0.0000000203) = 
r T 



168 COMBINED BENDING AND TORSION 

Example 36 

Given: A semicircular beam, rigidly supported at its extremities and 
loaded with a concentrated load Q, acting on its axis of symmetry and 
perpendicularly to the plane in which the beam lies (Fig. 61). 

To find: The end reactions as well as A^, the vertical displacement of 
point B, 

Figure 61 gives three views of the structure built into a wall, as well 
as three views of it (a, 6, and c) drawn as a free body. At each end 
there are six unknowns, three linear reactions, Rx, Ry, and Rzj and three 
moment reactions Mx, My, and Mz. Three of these reactions may be 
determined from equilibrium and S3nimietry considerations, and two of 
them from considerations of anti-s3mnLmetry, leaving but one to be 
determined by means of an elasticity equation. Symmetry and equi- 

P PR 
librium considerations prove that Ry = ~, Rg = 0, and Mx = — ; 

considerations of anti-symmetry prove that Rx = 0, also that My — 0. 
To determine Af* we write: 0^ = 0. The auxiliary loading is shown in 
Fig. 61d. 

»* = 0 = 
mMds 

M'EI 
tTds 

M'GJ 

mMds 

M'EI 

’ tTds 

Wgj' 

m = M' sin 0; t = M' coS </>. 

_ _ ^ _ . PR t P • 
M == Mz sin <t)-j— cos — it sin 

id 

^ . P ^ 
T = Mg cos <l> + — sm <l> — — {R — R cos 

The cross at point B (Figs. 61a and c) indicates the force P directed 
perpendicular to the paper and downward, while the circle at points 

P 
A and C indicates the forces — directed perpendicular to the paper and 

upward. 
The signs in the foregoing expressions are determined as follows: 

The second term in the expression for M carries a negative sign because 
PR 

the component of Mxy or — , is of opposite sense to the component of 

M\ On the other hand the torque component of Mx, or — , has the 

same sense as the torque component of M', and therefore the second 
term in the expression for T is written with a plus sign. The third term 
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Fig. 61. The Semicircular Balcony. 

in the expressions for M and T respectively represents the moment, or 
P 

torque, effect of the reaction Ry, or — • r/2 ^ / jPi? P \ 
-j^ \Mz sin<^-—cos<l> + —Rd4 

/ir/2 ^ f PR P 
|m* cos^ + — an<^--(i?-i2cos<^) 
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Thus 
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M* = —^ (2 - t) = - O.lSlPi?. 
27r 

The minus sign in the answer signifies that Mg is of a sense opposite to 
the one assumed in the free-body sketches. 

In order to find the vertical displacement of point B, we apply 
an auxiliary vertical load F at B, Under this load as many restraints 
as possible may be eliminated provided that equilibrium is maintained. 
The cross in Fig. file indicates the F load acting on the structure which 
is cut loose from the wall at C, Over the portion BC both m and t are 
zero. Between A and B, m and t may be expressed either as a function 
of the reactions at A, or as a function of the loading at B. We choose 
the latter procedure as the simpler one. Thus 

m = FR sin a, and t = F{R — R cos a). 

The actual torque at B is zero. 

P 
The actual moment at B is-f2 + Mz = (0.5 — 0.181)PiB = 0.319P/2. 

p 
The shear at B is — • 

Therefore, M, expressed in terms of the loading at J5, is 

M = — i? sin a — 0.319P/2 cos a 

T = — (R — R cos a) 

mMds r 

FEI '^Jo 

FR . // 
= I sm a I - 

Jo FEI \2 

F{R - R cos a) \P 

Jo FGJ 12 

- 0.319PI2 sin a. 

tTds 

FGJ 

in a ^ P sin a — 0.319P/2 cos Rda 

{R — R cos a) — 0.319PR sin a [ Rda. 

Ab, = 
PR^ I (tt - 1.276) /3w - 9.276\ 

\ GJ ) 



CHAPTER IX 

ELASTIC ENERGY AND DEFORMATIONS DUE TO SHEAR 

Formula (1), A 
F 

I. BEAMS 

, gives expression to deformations of structures 

in terms of elastic coefficients and concentric, axial loading stresses. 
Formulas (5), (6), and (7), 

/mMds r mk 
FBI ’ J W 

mMds 
and W -f 

M^ds 

2EI ' 

give expression to linear and angular deformations and to elastic energy 
stored in a beam as functions of bending-moment stresses. However, 
while a beam is being loaded, not only bending stresses but also shear 
stresses are present in the beam. It remains for us to consider these shear 
stresses. 

Consider a cantilever beam loaded with a force Q at its end. The 
shear forces are proportional to Q, but independent of the length of the 
beam. If we assume the shear forces as uniformly distributed over the 
cross section of the beam, a particle of length dx and cross-sectional 

Q 
area da is loaded with a shear force across its surface equal to — da. The 

A 

shear deformation in the length dx is 

^ . , , stress , Qdx 
Strain X length = —X dx = • 

(t A(j 

By analogy with the development of formula (7) the total energy 
in the particle is 

1 Qdx Qda 

2AG 

The total shear elastic energy stored in the beam is 

r r Q^dadx 

M Ja 2A^G ' 
171 
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The summation must include all the particles of the beam. 

means summation over the entire cross section of the beam, and 

/Qda 
> pro- 

vided that ^ fa constant, fa as: ^ = |- f Qdx _ QL 

. Q^L 
Therefore, the total energy due to shear stresses is This energy is 

2AG 
QA Q^L QA 

equal to the work done by Q, which is —. Therefore, = — , or 

A = ^. 
AG 

The shear stress, notwithstanding our assumption, is not uniformly 
distributed over the cross section of the beam. The shear stress is at 
its maximum at, or in the region of, the neutral axis, and is zero at the 

top and bottom of the beam. The expression J may be modified 

in agreement with the common formula for shear stress, s® 
VyA 

hi 
, and 

integrated over the cross section of the beam, in which case the value 
for A is iV times the value obtained on the assumption of uniform 
distribution of shear stress over the cross-sectional area of the beam. For 
rectangular beams iV = f; for circular beams iV = This procedure, 
though not strictly accurate, is in somewhat closer agreement with 
facts. However, as we shall presently see in the type of problems dis¬ 
cussed in this book, the deformations in beams caused by horizontal 
and vertical shear stresses are negligible compared with those caused 
by bending stresses. 

For a cantilever steel beam (cross section 2 in. by 6 in. and length 

60 in., (? = 11,000,000 lb. per sq. in., and E = 30,000,000 lb. per sq. in.) 

the displacement of its end, due to shear stresses under the action of a 

load Q applied at the end, is 

A = 
NQL 

AG 

1.2 X 60<? 

12 X 11,000,000 
= 0.0000005450 in. 

This value remains the same whether the 6-in. side of the beam is placed 

vertically or horizontally. 
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The deflection of the same beam due to bending (see example 13, 
page 50) is 

3SJ‘ 

With the 6-in. side vertical, 

Q X 60^ X 12 

3 X 30,000,000 X 2 X 6^ 
= 0.0000667Q in. 

With the 6-in. side horizontal. 

0 X 60^ X 12 

3 X 30,000,000 X 6 X 2^ 
0.0006Q in. 

The displacement due to shear is less than 1 per cent of the displacement 
due to bending when the 6-in. side of the beam has a vertical position, 
and less than 0.1 per cent of the displacement due to bending when 
the 6-in. side has a horizontal position. To equalize the displacement 
due to shear with that due to bending we equate the two expressions 
for displacements to each other and solve for L. 

Thus, 
1.2QL ^ QL^ 
AG WI 

12QL_QL^ X 12 

12 X 11,000,000 3 X 30,000,000 X 2 X 6^’ 

L = 5.43 in. 

The end of a rectangular cantilever beam is loaded with a load Q. 
To equalize the shear displacement of this end with the displacement 
caused by bending, the length of the beam must be made less than its 
depth. We are primarily concerned with structures composed of beams 
with a length-to-depth ratio much greater than unity. In the analysis 
of such structures the effects of shear may be ignored without causing 

appreciable errors. 
In shafts subjected to twisting loads, shear stresses are the primary 

stresses, and shear elastic energy and deformations caused by shear 

stresses are of primary importance. 
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n. SHAFTS 

The development of the expression for elastic energy due to twisting 
is similar to that of formula (7) (page 47), which expresses the elastic 
energy due to bending. 

If a torque T is applied to a shaft, any particle, of length dx (parallel 
to the axis of the shaft), cross-sectional area da, and a distance z from 

Tz 
the axis, is stressed with a stress — • The shearing force on the face da 

of the particle is 
Tzda 

The particle undergoes a shear deformation of 

strain X length, or 

Stress , , Tzdx 
X length = 

G JG 

The elastic energy stored in the particle is one-half the force times 
the displacement, or 

T^z^dadx 1 Tzda ^ Tzdx 

2^~j~ ^~JO 2J^G 

The elastic energy stored in the entire shaft will be obtained by sum¬ 
ming the elastic energy of the particle, first, over the cross section of 

the shaft / , and second, along the length of the shaft / . 
Ja Jl 

Thus 
r fTV^ 

JlJa 

Considering dx as a constant, the summation of z^da over the cross- 

sectional area of the shaft gives / z^da. This expresses the polar 
Ja 

moment of inertia J of the cross-sectional area of the shaft with reference 
to its axis. 

Summing over the entire length of the shaft, T, J, and G being con 
stant, 

'T^dx T^L 

F = 
T^U 

2J^G 

J^G 

T^L 

2JG' 

Therefore 



SHAFTS 176 

This total elastic energy is equal to the work done by T as it is grad¬ 
ually applied to the shaft and increased from zero to T. This mechan- 

. T4> . 
ical work performed by T is —, in which is the angular displacement 

2i 

of the point of application of the torque T. 

2 

<t> = 

T^L 
2JQ 

TL 

JG 
Formula (9) 

This value of ^ is also obtainable directly from formula (8), page 166. 



CHAPTER X 

RESILIENCE 

Resilience is that property of a structure by which, under the applica¬ 
tion of a load, it stores within itself elastic energy which may be utilized 
as mechanical energy when the load is removed. A watch spring is an 
example of the property of resilience put to practical use. The degree 
of deformation is not a measure of resilience, although in most practical 
applications a large potential deformation is desirable along with the 
greatest possible capacity for storing energy. 
^ Material contains its maximum amount of stored energy when all its 
fibers are stressed to their elastic limit. A unit volume of mild steel, 
subjected to tensile stresses in one direction, will store its maximum 
elastic energy when the tensile stress equals the elastic limit stress, si, 

Si 
and when the corresponding elongation is The maximum tensile 

Ml 

. • • . 1. • elastic energy per unit volume, then, is — • 

The same unit volume, subjected to shear stresses ^the shear elastic 

Si \ Si 
limit for mild steel is — ), would be deformed to the amount —, and 

2 / 2G 
1 Si Si 

the maximum shear elastic energy would be-X~X — = —• Since, 
2 2 2u oCr 

for mild steel, E and G have values of 30,000,000 and 11,000,000 lb. per 
sq. in., respectively, the ratio of the two quantities of stored elastic 
energy is 

si^ si^ 4G 44 

Theoretically, therefore, when a material such as mild steel is sub¬ 
jected to either tensile or compressive stresses, it will store about 50 
per cent more energy than it will when subjected to shear stresses. In 
practice a difficulty presents itself because the storing of elastic energy 
generally calls for relatively large deformations, as in shock absorbers. 

176 
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The tensile and compressive stresses are commonly applied in the form 
of bending stresses, while shear stresses are usually most effectively 
applied by means of twisting. The following examples will make this 
clear. 

Example 37 

Given: A cantilever beam of mild steel, cross section hh and length L. 
The beam is loaded with a concentrated load Q at the end, which will 
stress the material to its elastic limit stress Si. The modulus of elas¬ 
ticity is E pounds per square inch. 

To find: The elastic energy stored in the beam. 
The maximum stress is at the support. The load Q, producing this 

elastic limit stress at the support, is obtained from the formula 

Me QLh 2sil 
*‘"T' 

In example 13, page 50, the displacement of the end of a cantilever 
QL^ 

beam under a concentrated load Q is A = The work done by Q 
oEI 

in deflecting the beam, or the total elastic energy stored in the beam, is 
QA 

therefore — = • Substituting the value found for Q, this total 
2 oEI 

elastic energy in the beam is 

WIL 2si%h^L si%hL Si^V 

h^LHEI Sh^E 3 X 12 X h^E ISE 18E 

(In this equation V is volume of beam.) 
The average elastic energy per unit of volume stored in the beam is 

18£?* 
This is one-ninth of the potential elastic energy that the material 

is capable of storing when subjected to uniformly distributed tensile or 

compressive stresses throughout. Note in the foregoing development 
that it is immaterial whether the greatest cross-sectional dimension of 
the beam is placed vertically or horizontally. 

Example 38 

Given: The same cantilever beam as in example 37, but loaded with 
a couple Ml applied to the free end. 

To find: The total elastic energy stored in the beam. 
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The angular displacement of the free end of a cantilever loaded with 
a couple Ml at the free end is 

ei = 
rtiMdx 

M'EI 
Thus 

/ M'Mdx 
M'EI 

Bi 
MiL 
EI ■ 

Area 

~W 

The work done by Afi, as it is displaced through the angular distance 

Bi, is . This is equal to the total elastic energy stored. Substitut- 

. MiL , . Mi^L ,. , . , , , . 
mg, for ^1, its value - - - , we obtain: —- , which is the total elastic 

EI 2EI 
energy stored. 

To produce the maximum elastic energy the beam should be stressed 
, . . Mic 2sil ^ 

to its elastic limit, si = —r- , or Mi = —— * Substituting this value 
/ h 

of Ml, we obtain the expression for maximum elastic energy stored in 
the beam, which is: 

L 2si^IL 2si%h^L Si%hL si^V 

^ 2EI ~ h^E ~ 12h^E ~ &E ~ 6E' 

The average elastic energy per unit volume is — • This value is 
oE 

three times the value obtained for the same beam loaded with a concen¬ 
trated load at the free end, and is one-third of the maximum potential 
energy the material is capable of storing when subjected to direct ten¬ 
sion or compression. In a beam of circular cross-sectional area similarly 

loaded, the total elastic energy stored per unit volume is — • 
oE 

BEAMS OF CONSTANT STRENGTH AND MAXIMUM RESILIENCE 

The Leaf Spring 

The maximum elastic energy stored in a structure is obtained when 
all the material is stressed to its elastic limit. Because of the small 
deformations in most materials this is usually not practicable except in 
rubber. To store the maximum elastic energy in structures subject to 
bending it is aimed to design these structures so as to make the bending 
stresses as large as possible over as large a portion of the structures as is 
practicable. This object may be attained in either of two ways: first. 



THE LEAF SPRING 179 

make the bending moment constant over as large a portion of the struc¬ 
ture as possible, leaving the dimensions of the structure constant also; 
second, make the bending moment a variable, but vary the dimensions 
of the structure in such a manner as to make the maximum bending 
stresses constant. 

The common leaf spring (Fig. 62) is designed to satisfy the first 
condition. For the inner leaf, the portion A — B is subjected to con- 

Fig. 62. Leaf Spring. 

stant bending moments while the projections beyond the points A and B 
are cantilever beams. For leaves other than the inside ones similar 
conditions obtain. 

In airplane design we aim primarily to obtain lightness consistent 
with strength. This, in turn, may be interpreted to mean that the 
largest possible percentage of the material used shall absorb the largest 
poLisible stress increments when the loads are applied. This is the same 
condition as for obtaining maximum resilience in a structure. 

Example 39 

Given: A cantilever beam of rectangular cross section bd, with a 
constant force Q at the free end. 

To find: The degree of variation in the cross section of the beam from 

point to point, so that the beam will store a maximum of elastic energy 
and will be of constant strength. 

A cantilever beam loaded with a concentrated load Q at the free 
end has a bending moment M ^ Qx {x is measured from Q to the point 

of bending moment). Stress = s 
m 
I ’ 

For a rectangular sectioui 

I bd^ 

c 6 ‘ 



180 RESILIENCE 

Therefore 
6M 6Qa: 

This is the Assuming 6 as constant and d as variable, ^ 

equation of a parabola. 

Assuming the depth d as constant, b — @) X, This is the equation 

of a straight line. 
A cantilever beam of constant strength, width b variable, and depth 

d constant, therefore, is wedge-shaped and tapers uniformly to a vertical 
line at the point of application of the load. A beam of rectangular cross 
section (example 38) subjected to a constant bending moment, that is, 
having the top and bottom fibers of the beam throughout its length 
stressed to the elastic limit, stores an amount of elastic energy per unit 

The stress condition of the wedge-shaped canti- volume equal to 

lever beam with a concentrated load at the end is the same as that of the 

beam in example 38. Its energy stored per unit volume also is — • The 
6A 

total energy stored in the beam is therefore 

.2 .r V 7. ,7. Si^Lbidi 1/ X bidi 
2 12E 

(bi and di are the width and depth, respectively, of the beam at the 
fixed end). This elastic energy is one-half the force Q times its displace- 

QA 
ment, or — • The displacement of the end of the beam is therefore 

2 

A = 
Si^Lbidi 

&EQ 

Me 6M 
Si = — = 

Therefore 

_^ GQL 
bidi^ bid/ 

A = 
6QL® 

bidi^E 
or 

QL* 

2EIi 

Example 40 

Given: A cantilever beam of rectangular cross section bd, with a uni¬ 
formly distributed load w poimds per inch along its length. 
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To find: The variation in cross section of the beam from point to 
point so that the beam will store a maximum elastic energy and will 
be of constant strength. 

A cantilever beam, loaded with a uniformly distributed load w pounds 
wx 

per inch, is subjected to a bending moment M = , x being measured 
A 

Me 
from the free end of the beam, s = —, and, for a rectangular cross 

section, s = 
m 

If the beam is to be stressed to its maximum stress 

at the extreme fiber, and if the beam is of constant width b and variable 
depth dy then 

_ 6ikf 6wx^ 

IZw 
^^bsi 

The above expression is the equation of a straight line. 
A cantilever beam, designed to carry a uniformly distributed load w 

pounds per inch, of constant strength, constant maximum fiber stress at 
the top and bottom of the beam for any point on the beam, and of rec¬ 
tangular cross section, is, therefore, a wedge-shaped beam. It tapers from 
a depth di and width 6i at the fixed support to a horizontal line of width 
bi at the extremity of the cantilever. On any cross section the conditions 
are again similar to the stress conditions of the preceding example and 
of example 38. The elastic energy per unit volume, therefore, again is 

6JS 
, and the total elastic energy is 

QE 2 

si%diL 

12E 

Example 41 

Given: A cantilever beam of rectangular cross section 6d, with a uni¬ 
formly varying load wx pounds per inch along its length {x is measured 
from the free end and 5 is in a fixed proportion to d, 6 = nd). 

To find: The variation in cross section of the beam so that the 
beam will store a maximum elastic energy and will be of constant 
strength. 
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A cantilever beam loaded with a uniformly varying load wx pounds 

per inch (see Fig. 31, page 56) is subjected to a bending moment M = ——; 
6 

Me 
Si = — = 

M6 

hd^ 

wx"" 

If & is in a fixed proportion to d, 6 = nd, then 

hd^ = nd^ = —3?. 
Si 

^sin 

This is again the equation of a straight line. 
A vertical section, including the axis of the beam, will thus be a tri¬ 

angle. And since fe is a fixed proportion of d throughout, a horizontal 
section through the beam including the beam^s longitudinal axis will also 
be a triangle. The beam is thus wedge-shaped in elevation as well as 
in plan. If the ratio of 6 to d is unity, then the shape of the beam is a 
pyramid. 

Another example of a cantilever beam of uniform strength is in the 
pine or fir tree as it grows undisturbed in nature. The outline of the tree 
is cone-shaped. If the vertical distance from the top of the tree is 
the width of the beam\s branches is proportional to y. From this it 
follows that the wind pressure upon the branches is likewise proportional 
to y. The bending moment caused by the wind at any section of the 
beam, therefore, is 

,, wy^ y wy^ Me 

‘-T- 
Since 

^ irr^ 4tMr 
I = —, S = -4^ 

4 

^wy^ 

67rr^ 

In a beam of constant strength s, the maximum fiber stress, is constant. 
Therefore, 

3/ 2w 

This is the equation of a straight line. Since the tree has to resist 
wind pressure from all directions, the moment of inertia should be equal 
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about all possible axes. A pine tree, therefore, can resist wind loads to 
l)est advantage whm its cross section is circular in shape. The ideal 
shape for the tree is that of a cone. The only way in which the design 
of a pine tree can be improved, to achieve a minimum expenditure of 
material, is to make the tree hollow. Nature has not seen ht to desi^ 
trees in this manner. It has done so, however, in the design of reeds and 
grasses. 

Example 42 

The Helical Spring 

Given: A closely coiled helical spring (Fig. 63a). The diameter D of 
the coil extends from center to center of wire, radius of coil /?, diameter 
of the wire d, radius of wire r. The spring is concentrically loaded with 
a force Q. 

To find: (a) The elongation Ay of the spring as a function of the 
load Q] (b) the rotation about the axis of one end of the spring relative 
to its other end, dyy as a function of the load Q, 

Fig. 63. Helical Spring. 

Figure 636 represents a free-body sketch of a portion of the spring 
under the action of a load Q applied along the axis of the spring. At the 
point where the spring is cut the reactions consist of a force Q, represented 
by a single-headed vector, and a couple QR, represented by a double¬ 

headed vector. The same condition exists along the entire length of the 

spring except for the ends where the wire is bent in. In order to find the 

displacement Ay we conceive of an auxiliary load F being applied along 

the y axis prior to the applica.tion of the Q loading. The F loading and 
the Q loading then will be qualitatively identical. Figure 636 would 

show a free-body sketch of part of the spring subject to the auxiliary 

loading merely by replacing Q by F. 
The couple FR subjects the wire to an auxiliary torque t = FR 

cos a, and an auxiliary moment m = FR sin a, respectively, while 
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the couple QR subjects the wire to a torque T = QR cos a, and a 
moment M = QR sin a. 

/mMds f tTds cos^a\ 

w+y ¥w~^’“^VEr'^~dr)’ FEI J FGJ 

in which L represents the length of the wire. 

I L =-, N representing the number of coils, j 
\ cos a / 

Therefore 
_ SQD^N (2 sin^ a cos a\ 

^ \E cos G ) 

For a closely coiled spring cos a. is nearly unity, and sin a is nearly zero. 
The expression for Ay then reduces to 

mD^N 

To find the rotation about the y axis, By, we introduce an auxiliary 
couple ilf' acting about this axis prior to the application of the Q load. 
A free-body sketch of this auxiliary loading is shown in Fig. 63c. The 

auxiliary couple M' is resolved into an auxiliary torque t — M' sin a, and 
an auxiliary moment m = ilf' cos a. 

tTds CmMds CiT 

J M'EI ^ J M'GJ 

/cos a QR sin a ds 
+ / sin a QR cos a ds 

g7 

= Qi2sinacosaL(^-^) 

16QZ)2i\r sin a /1 2\ 

~ d^ \G e)' 

Since both t and T have the same sense, the term tTds is positive; since 

m and M are opposite in sense (see Figs. 636 and c), the term mMds 
. . /1 2\ 
is ^ven a negative sign. The expression ~ ^ J for a steel wire is 

positive. Therefore the rotation of the lower end of the spring relative 

•We have considered only the torsion and bending effects on the wire. The 
transverse shear effect would give an additional displacement dDNQ/d^Cr cos a. 
This displacement, however, is so small that it is generally ignored. 
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to the upper end, under the action of the load Q, is of the same sense as 

that indicated by the auxiliary load Afthat is, it is counterclockwise as 

viewed from above. 

The Spiral Spring 

The spiral spring is used for two distinct purposes: (1) storing me¬ 
chanical energy for purposes of propelling a mechanism; (2) governing 
or regulating the rate of propulsion of a mechanism. Both these uses 
are exemplified in the modern watch. The power spring propels the 
mechanism, while the hairspring regulates the rate of propulsion of this 
mechanism. In this book only the power spring will be discussed. 

The Power Spring. As we have seen on page 176, the maximum 
elastic energy that may be stored in a structure is represented by the 

expression , in which si is the elastic limit stress, V the volume, and 
2iE 

E the modulus. To obtain this objective we strive to stress as large a 
portion of the structure as possible, to the value of this limiting stress 

Si. Either we vary the cross-sectional dimensions of the structure so as 
to allow for variations in torque or bending moments, or (if the cross- 
sectional dimensions of the structure are constant) we direct our efforts 
to maintaining the torque or bending moments constant. The closely 
coiled helical spring is substantially a long slender shaft of constant cross 
section, compacted into a small space and subject to a constant torque 
from end to end. The spiral spring, on the other hand, properly de¬ 
signed, may be made to function as a long slender beam, subject to a 
constant bending moment from end to end. 

A beam, initially straight and of constant E and /, when subjected to 
a constant bending moment would assume the shape of an arc of a circle. 
A beam, initially shaped as an arc of a circle and of constant E and /, 
when subjected to a constant bending moment would assume the shape 
of another arc of a circle with a radius of curvature differing from the 
initial radius of curvature. 

We are privileged to represent the spring shown in Fig. 64 either by 

the equation of the involute of the circle or by the equation of the Archi¬ 

medes spiral, or we may regard it merely as a series of arcs of circles 

having different radii. The three choices would come equally close to 
representing an actual spring. The one shown in Fig. 64 was actually 

drawn by fitting together a series of half circles. We select the last 
choice, a series of arcs of circles, which in this discussion fits our purpose 
best. If the arcs of circles of which the spring is composed are subjected 
to constant bending moments, these arcs will assume different radii of 

curvature. 
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Let the spring, Fig. 64, be considered mounted on an arbor at 
and loaded with a constant moment Mi from end to end. Each complete 
turn of the arbor would add one more loop to the spring. If we are 

justified in regarding the outline of the spring as being substantially 
equivalent to a number of concentric circles, then, upon loading, the 
outline of the spring would remain substantially equivalent to a number 

Fig. 64. 

of concentric circles. This statement is contingent on permitting the 
outer loop to assume the shape indicated by the dash line. Fig. 64. In 

other words, the mounting of the extremity, point i4, should be such 
as fully to restrain the tangent to the curve at A against rotation, while 
allowing complete freedom of linear motion of point A in a radial 
direction. 

Traditionally, in coplanar structures we employ three types of 
restraints: rollers, which provide a restraint against linear displacement 

in only one direction, the direction normal to the plane upon which the 

roller rests; pins, which provide restraint against linear displacement in 

any direction; and so-called built-in or fixed-ended restraints, which 

prevent rotation as well as linear displacement in any direction. We 
employ these restraints either singly or in combination with each other. 

The restraint called for in this instance is the one which only prevents 

rotation of the tangent to the structure at point A. 
The tangential displacement of point A affects the functioning of the 

spring only indirectly. Suppose that the arbor is rotated through a 
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clockwise angle 0 while point A moves in an arc of a circle through a 
clockwise angle </>, and while the tangent to the structure at A turns 
through the same angle. Such a displacement would result in neither 
loading nor elastic deformations. The loading of the spring results only 
from the relative angular displacement of the tangents to the spring at 
the two extremities, points A and B, This may be accomplished as 

Fig. 65. 

follows: (1) by restraining the tangent at A and displacing the tangent 
at B (rotating the arbor or winding the spring); (2) by fixing the tangent 
at B (clamping the arbor) and rotating the tangent at A (such a rotation 

of the tangent would involve a motion of point A along an arc of a 
curve); (3) by displacing the tangents to the structure at points A and B 
by different amounts. The manner in which this may be accomplished 

is illustrated by Figs. 65, 66, 67, and 68.* 
In Fig. 65 the outer extremity of the spring is fitted into a groove in a 

piece of wood. The wood is fastened to a bar which is loaded with two 

equal and opposite forces, one supplied through the string, the other by 

the bearing on the arbor. The bar travels freely in a radial direction. 

Upon winding the outer extremity moves in, and the coils remain con¬ 

centric. 
Figure 66 shows two similar springs connected through a link JK, 

Through a system of ratchets both springs are wound simultaneously 

* These figures are reproduced from the author’s paper ‘^Spiral Springs, A New 
Theory Regarding Their Stress, Strain and Energy Functions,” Trans. Am. Soc, 
Mech. Engrs., APM-53-18, 1931. 
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and at the same rate, but in opposite sense. Each spring provides the 
necessary reaction for the other. Upon winding, points J and K move 

radially and the coils remain open to the last. 

j A K 

Fig. 66. 

Figures 67 and 68 show an arrangement very similar to that shown in 

Fig. 66, except that the two springs are placed one above the other 

(^) 

instead of side by side. The clamp connecting the two springs might 

easily be dispensed with, if the entire spring is manufactured out of one 
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piece. If the top and bottom halves of the spring are wound at the same 
rate but in opposite sense, then the connecting link will move radially 
only. The same result may be obtained by clamping, say, the bottom 
spring and winding the top one, in which case the clamp will move 
radially as before but will make only one revolution for every two of the 
winding arbor. 

Figure 67 shows a spacer placed between the two halves of the spring 
to prevent the leaves from fouling. This is sometimes necessary. As the 
spring is loaded a condition of instability is reached. The spring buckles. 
This buckling manifests itself by a tendency on part of the leaves to 

move suddenly out of their normal plane. The conventionally mounted 
spring does not exhibit this phenomenon because the friction between 
the leaves prevents it. In a spring mounted in the manner shown by 
Figs. 65 to 67 the container of the spring and the spacer, if there be one, 
generally are sufficient to control this tendency to buckle. 

Residual Stresses. This treatise is devoted to the presentation of 
the elastic energy theory. However, this theory fails to explain what is 
possibly the most important aspect of the spiral-spring problem. The 

author would feel himself remiss if he failed to present those theoretical 
aspects of the problem which he regards as the most significant. To 
present these aspects he will draw on his notes on the theoiy of limit 
design (see footnote, page 267). 

In the paper referred to in the footnote on page 187, he presented a 
new theory. However, it was not an ultimate one. In it he remarked: 

^‘The current theory of spiral springs appears to be one more case in 

which theory and practice disagree—with practice carrying off the 

honors.’^ This statement was objected to by one of those who discussed 
the paper. In the author^s opinion practice generally leads theory. 

Practice leads the way, and theory comes awkwardly and clumsily limp¬ 

ing behind. The first failure of the Quebec Bridge had a far-reaching 
influence on the theory of bridge design. One hardly can doubt that ten 
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years hence the theory of suspension bridge will be far from perfect, but 
that, thanks to the Tacoma Bridge failure, it is likely to be a far better 
theory than the present one. In spite of our best intentions we are crea¬ 
tures of habits. We involuntarily get into ruts, and, much as we may 
fight dogmatism, we are all more or less dogmatic. To criticize anyone 
for ^^thinking in a rut” can hardly be taken as a reflection, since no one 
escapes it. What constituted the ‘‘newness” of the earlier spiral-spring 
theory (footnote, page 187) lay in our abandonment of the conventional 
habit of restricting the possibilities of restraining the outer end of the 
spring to either pinning or fixing it, and in our investigation and recom¬ 
mendation of the possibilities of a support against rotation without any 
linear restraint whatsoever. Further, any analysis based on an initial 
geometric configuration, which analysis became completely invalid as 
soon as the spring began materially to deform, was likewise abandoned. 
In spite of these possible advances the author remained in still another 
rut in that he assumed a perfectly elastic material free from any initial 
stresses. We have consistently made this assumption throughout this 
book, which is the general practice. Certain contradictions appeared 

which only recently, to the author^s mind at least, have become clarified. 

These contradictions were forcibly expressed by Mr. Wadlow of Hayes 

End, England, in his discussion of the author’s paper. Mr. Wadlow 

wrote: “The best way to appreciate the merits and conveniences of the 

spiral spring is to attempt to substitute for it a spring of another form.” 

He further wrote: “The curves are calculated on the assumption that the 

elastic limit for the material is 375,000 lb. per sq. in., but judged by the 

material used in this country [England] this stress is much too high.” 

A few years back, the author, discussing spiral springs with his stu¬ 

dents, would say: “A spiral spring is substantially a long slender beam 

with a constant modulus and constant rectangular cross section.” The 

elastic energy stored in such a beam is given by the expression W = 
s^F 

6E 
(see example 38, page 177). The maximum elastic energy to strive for is 

s^V 

2E' 
Apparently, then, there is room for a 200 per cent improvement. 

At the present time the author holds that the elastic energy stored in a 

fully wound spiral spring is actually 100 per cent. The usable portion 

of this energy is 75 per cent rather than 33 per cent. 

The criticism of the excessively high stress of 375,000 lb. per sq. in., 

coming from such an authority as Mr. Wadlow, might well have been 

accepted except for one thing. This stress was used in the computation 

of the outline which a spring must have in order that, when fully wound, 
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it may be stressed uniformly from end to end. The initial cross-sectional 
dimensions were taken from a spring conveniently at hand. Upon com¬ 
pletion of the analysis the curve was plotted to scale and the outline of 
the commercial spring was then compared with this theoretical curve. 
A very close agreement between the commercial spring and the theoreti¬ 
cal curve was observed. This close agreement seemed all the more re¬ 
markable when the extreme simplicity of manufacture is considered. 

30,000 

U) 

Fig. 69. 

15.000| 

(/) 

This manufacturing process, except for provision for end connections, 
is little more than taking a flat piece of spring steel, winding it on an 
arbor, slipping a clamp over it to prevent its release, wrapping it in tissue 
paper, and shipping it to a customer. 

The high efficiency of spiral springs as well as the avoidance of error 
when using an exceptionally high elastic limit stress in design is explained 
by means of the following numerical example, which is taken from lecture 
notes on the theory of limit design: 

Consider a solid rectangular beam. Cross section is bh = 2 in. by 
6 in., modulus E = 30,000,000 lb. per sq. in., and elastic limit stress 

Si = 30,000 lb. per sq. in. This beam is loaded with a moment Mi sA 
each end until two-thirds of the beam is strained beyond the elastic limit. 

(a) How large is Mi? 

The stress distribution over any cross section of the beam loaded in 
this manner is represented by Fig. 69a. The resisting moment corre¬ 

sponding to this stress distribution, readily developed from this sketch, is 

Ml = Sib 

t 
= 30,000 X = 520,000 in-lb. 
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(5) What is Ri, radius of curvature, when Mi is fully acting? 
The radius of curvature is determined by the elastic core, the middle 

third portion of the beam, and is given by the expression 

Therefore 

^ _ i _ ^ _ 30,000 
d3^~R~yE~ IX 30,000,000* 

Ri = 1000 in. 

(c) What is R2, radius of curvature, when Afj is removed? 
When an elastic and ductile material is stressed and strained beyond 

the elastic limit and the stresses are subsequently removed, then the 
stress-strain relationship is again substantially linear. This holds true 
not only until the zero value for stress is again reached, but also when 
the process continues beyond the zero stress value and the stresses change 
sign. When Mi is removed the beam’s behavior is again substantially 
elastic and the resulting R2 may be obtained from the formula 

J_ _ J_ ^ M ^ -520,000 X 12 ^ J_ 

R2 Ri~ El ~ 30,000,000 X 2 X 6® “ ^2 1000* 

Therefore, R2 = 1928 in. 

(d) How are residual stresses distributed over the cross section of the 
beam after the removal of Mi? 

The negative stress pattern, as Mi is removed, is illustrated in Fig. 
696 and is computed by the formula 

m ^ 520,000 X 6 

I ~ 2X6® 
43,333 lb. per sq. in. 

The residual stress pattern is obtained by adding Figs. 69o and 696, 
and is represented by Fig. 69c. 

(e) Find the moment M2 necessary to stress all fibers in the beam 
beyond the elastic limit. 

The stress pattern when all fibers are stressed beyond the elastic limit 
is represented by Fig. 69d. The moment corresponding to this stress 
pattern may be computed from the formula used in question (a) by 
letting y = 0, thus: 

M = 
S166® 

4 

30,000 X 2 X 6® 

4 
= 540,000 in-lb. 

(/) What is the residual stress pattern when M2 is removed? 
The values belonging to the negative stress pattern (Fig. 69e) are 

Me 540,000 X i 
8 = 

2X6® 

= 45,000 lb. per sq. in. 
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Superimposing Fig. 696 upon Fig. 69d, we obtain the residual stress 
pattern Fig. 69/. 

ig) What is the residual elastic energy when M2 is removed? 

We have seen from example 38 that, in a beam subject to a constant 
bending moment and to a linear stress variation, the strain energy is 
s^V 

• If we consider an element of the beam 1 in. long (12 cu. in.), we 

find that the middle two-thirds of the beam (8 cu. in.) contains 

_ 30,000^ 

6B ~ 6 X 30,000,000 
5 in-lb. per cu. in., 

or 40 in-lb. of elastic energy. The other one-third of the beam (4 cu. in.) 
contains 

^ 15,000^ 

6^ ~ 6 X 30,000,000 
1.25 in-lb. per cu. in.. 

or 6 in-lb. of elastic energy. The entire element of the beam (12 cu. in.) 
thus contains 45 in-lb. of elastic energy. The residual elastic energy in 
the beam, therefore, is 

45 
— = 3.75 in-lb. per cu. in. 

(h) What is the total elastic energy in the beam when M2 is fully 
acting? 

When M2 is fully acting the stress pattern (Fig. 69d) prevails and the 
strain energy is given by the expression 

_ 30,000^ 

2E ~ 2 X 30,000,000 
15 in-lb. per cu. in. 

(z) What is the usable elastic energy? 

The available elastic energy is 

15 — 3.75 = 11.25 in-lb. per cu. in. 

(f) What is the elastic energy in a 2 in. by 6 in. rectangular beam if 

a moment M3 (elastic limit stress equal to 45,000 lb. per sq. in.) is applied 

elastically, when there are no residual stresses in the beam to begin with 

and no fibers are strained beyond the elastic limit? 
The elastic energy under this condition is 

fV ^ 45,000^ 

QE 6 X 30,000,000 
11.25 in-lb. per cu. in. 
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Spring steel stock is alloy steel drawn quite hard. It is not to be too 
hard drawn lest it break when being coiled. If the steel submits to being 
coiled and takes on a permanent set, this is evidence of its being 
strained beyond the elastic limit. The routine manufacturing process 
thus leaves residual stresses in the spring closely resembling Fig. 69/. 
To quote from the author^s paper on limit design (see first footnote, 
page 267), pages 645 and 646, ^^This means that for an application of 
one type of limit loading^ up to ductile capacity, the first application and 
removal of the load induce in the structure residual stresses of such a na¬ 
ture and magnitude that subsequent application of loads does not call 
forth additional ductile deformation. After the first application of the 
loads the behavior of the structure again becomes completely elastic,'* 
The ultimate stress distribution is that represented by Fig. 69d. The 

energy represented by this stress distribution does not all become 

available upon releasing the spring. However, 11.25/15 or 75 per cent 
of it (see questions h and i) is available. It thus would seem that Mr. 
Wadlow was quite justified when he said: ‘^The best way to appreciate 
the merits and conveniences of the spiral spring is to attempt to sub¬ 
stitute for it a spring of another form.^^ 

In the operation of spiral power springs we are not bothered with 
either working stresses or factors of safety. The spring is a self-locking 
device. Upon being completely wound the elastic limit stresses will be 
reached. There is, however, no chance of exceeding these stresses. If 
the spring were subject to reversal of stress, then the residual stresses 
would prove to be detrimental. This, however, is not contemplated 
in regard to power springs. 

The subject of aging and tempering cold-worked steel, which has a 
bearing on the functioning of spiral springs, will not be discussed here. 
This may be found treated fully in ‘‘Effects of Cold Working on Elastic 
Properties of Steel.’^ * 

With the advent of electrically driven clocks and phonographs, the 
commercial interest in spiral springs is declining. The foregoing detailed 
discussion would seem justified, however, if for no reason other than 
that the purely academic aspects of the problem are interesting on 

several counts. 
1. The applicability of the principle of superposition is sometimes 

made contingent on the displacements, or deformations, being relatively 
small. That this is not a sound criterion is illustrated, on the one hand, 
by the phenomenon of stability (column action) in which very small de- 

* “Effects of Cold Working on Elastic Prox)erties of Steel,” by J. A. Van den 
Broek, Carnegie Scholarship Memoirs of the Iron and Steel Institute of Great Britain 
Vol. IX. 1918. 
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flections cause the principle of superposition to be violated, and, on the 
other hand, by the spiral-spring phenomenon, in which very large defor¬ 
mations may take place (the spring may be wound some ten to twenty 
complete turns) without violating the principle of superposition. The 
criterion by which we decide whether the principle of superposition 
applies or not is that any load-stress-deformation relationship which is 
formulated shall remain unchanged throughout the entire load-stress- 
deformation phenomenon, from the state of initial loading to that of 
final loading. 

2. The residual stresses, which are automatically introduced in spiral¬ 
spring manufacture, account for a gain in efficiency of 33 to about 75 
per cent. We may equally well take advantage of these residual stresses 
in other types of structures. In his paper, “Effects of Cold Working on 
Elastic Properties of SteeF’ (see footnote, page 194), the author recom¬ 
mended that shafts, subject to torsion in only one sense, be pre-cold- 
twisted before manufacture. Many helical springs are shafts which are 
loaded in this manner. The manufacturing process of inducing residual 
stresses in these springs is not automatic, as it is in spiral-spring manu¬ 
facture, because of the requirement that the wire be twisted beyond the 
elastic limit before it is coiled. However, the suggestion has been acted 
upon in the manufacture of helical springs subject to one type of loading, 
either tension loading or compression loading, with very beneficial 
results. Manufacturers of leaf springs, so far as the author knows, do 
not take advantage of the possibilities of residual stresses. It would 
therefore appear that herein lies a distinct possibility for improvement. 
The theory of limit design teaches that residual stresses automatically 
introduced in many structures are generally very beneficial; in others 
they might well be consciously introduced. 

3. The special mounting of the spiral spring (the double spring) 
appears to be advantageous not only because it eliminates friction, thus 
providing smoother performance, but also because it obviates the neces¬ 
sity of providing a lubricant. Since the elastic energy is proportional to 
the volume, any space occupied by lubricant instead of metal reduces 
efficiency. 

The Pin-Ended Spiral Spring. Figure 70 represents a spiral spring 
consisting of a large number of substantially concentric rings, mounted 

upon an arbor at J5, and pinned at its outer extremity A. The loading 
consists of a couple Mx applied at B and its induced reactions P at both 
A and P. So long as the configuration of Fig. 70 is maintained, the 
bending moment is Px. The elastic energy stored is 
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the moment of inertia of the outline of the spring about the y 

axis, may be written as in which i is the radius of gyration. The 
radius of gyration of a muuber of closely spaced concentric rings is the 

5 
same as that of a circular area. Therefore = 7 R^. Thus 

4 

Fig. 70. 

The maidmum stress occurs at point C where the moment is 2PR. For a 
spring leaf of rectangular cross section bt, this stress is 

Me 12PR „„ she 
or PB - 

The bending stress at C is the controlling stress, and the maximiun elastic 
energy will be reached when this stress reaches the value of the elastic 
limit stress Si. The expression for maximum elastic enei^ stored in the 

spring then becomes 
5siWL X 12 5si^V 

TVmax.- g ^ ~ 96B ’ 

This value for energy is only or 31 per cent, of that obtained for the 

spring mounted in the manner of Fig. 64. 
The foregoing analysis has no relation to watch, clock, or phonograph 

springs, the outer extremities of which are generally pinned. Even 
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though their outline initially may resemble Fig. 70, as soon as a small 
load is applied a pronounced shift takes place. The spring then comes to 

resemble a number of rings tangential to the arbor rather than a number 
of concentric rings. The efficiency of such a spring, except for the fric¬ 

tion between the leaves as they slide over each other, may be proved to 
be as high as that of the double coiled spring represented by Fig. 64. 

The proof of this statement is as follows: In either case the fully wound 
springs would be identical. Two identical springs in identical states of 
strain would contain identical quantities of elastic energy. The excep¬ 

tion referred to, however, the friction between the leaves, is a serious 
one. It makes the motion intermittent, and it requires lubrication, and 

this lubricant occupies space which otherwise might have been occupied 

by steel. 
The analysis of the pin-ended spiral spring is included here because 

very stiff springs, to which this analysis applies, are manufactured and 

used. 



CHAPTER XI 

ELASTIC CURVES AS INFLUENCE LINES 

The use of elastic curves as influence lines is predicated upon Max¬ 

well’s law of the reciprocity of displacement. On page 37 Maxwell’s 

law as applied to trusses is developed. Three cases of Maxwell’s law 

as applied to beams will be discussed in the present chapter prelimi¬ 

nary to the discussion of the principle of reciprocity of displacement in 

connection with elastic curves as influence lines. 

MAXWELL’S LAW OF RECIPROCITY OF DISPLACEMENT 

Case I. 

Given: A beam loaded with a concentrated load Q applied, first, at 

point A (Fig. 71a), second, at point B 

(Fig. 71d). 

To find: The vertical linear displace¬ 

ment: 

Q 
1 I . 1 

f ^ {a) B A 

_J 
ib) \ 

'f ■ -(c)- ■ 
> 
B f 

' 

¥ 

1. Ab at point B when Q is applied at 

point A (Fig. 716). 

2. at point A when Q is applied at 

point B (Fig. 71e). 

1. To find Ab we apply an auxiliary 

force of any magnitude acting vertically 

at point B. Let this auxiliary force be of 

magnitude Q (Fig. 71c). From formula (5) 

we derive the equation 

^(/) 

Fio. 71. 

T 
I Ab -I mMdx 

QEI 

in which m is the bending moment corresponding to the loading shown in 

Fig. 71c and M is the bending moment corresponding to the loading 

shown in Fig. 71a. 

198 
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2. To find A A with load Q acting at B (Fig. 7 Id) we apply an auxil¬ 
iary vertical force of any magnitude at point A. Let this auxiliary force 
be of magnitude Q (Fig. 71/). Again applying formula (5) we have 

Aa 
mMdx 

QEI ‘ 

The factors dx, Q, E, and I are equal throughout both equations. 
In the first equation m, corresponding to the loading in Fig. 71c, is 
identical with M in the second equation corresponding to the loading 
in Fig. 7Id. M of the first equation, corresponding to the loading in 
Fig. 71a, is identical with the m of the second equation corresponding 
to the loading in Fig. 71/. Therefore, mM of one equation is equal to 
mM of the other. Therefore, 

Aa = Ab» 

If a farce Q applied at point A in a beam causes a displacement As 
at point B, then the same force Q applied at B will cause the same displace¬ 
ment Ab at point A. 

Comparing this statement and its proof with MaxwelFs law as 
given on pages 37 and 38, it is seen that both statement and proof are 
identical in principle and differ only in symbols. 

The arguments here presented are based upon the simple sketches 
of Figs. 71a to 71/. To simplify the process the loads and displacements 
are taken to be vertical. The same reasoning as applied to redundant 
structures, with loads and displacements taken in any direction, is 
equally valid and gives identical results. MaxwelPs law of reciprocity 
of displacement, therefore, is true, regardless of the shape or degree of 
redundancy of the structure, and regardless of the directions of loads 
and displacements. It is assumed, of course, that the directions remain 
invariable, that material is elastic and continuous, and that the law of 
superposition holds. 

Case II. 

In this case the actual couple Mi is substituted for the actual loading 
Q of Case I; auxiliary couple Mi for auxiliary load Q; angular displace¬ 

ment Sa for linear displacement A^; and angular displacement 0b for 

linear displacement Ab- The reasoning is the same as in Case I, but the 

statement of MaxwelFs law corresponds to the change of symbols. 

If a couple Ml applied at point A in a beam causes a displacement 

Ob ai point By then the same couple Mi applied at B will cause the same 
displacement 6b at A. 
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Case III. 

(a) Given: A beam loaded with a concentrated load Q at point A 

(Fig. 72a). 
To find: The angular displacement Ob at point B, 
An auxiliary couple M' of any magnitude is applied at point B (Fig. 

72c). Let M' be numerically equal to Q. By means of formula (6), 

page 46, we obtain 

Ob 
mMdx 

M'EI 

mMdx 

QEI ‘ 

The bending moment m is caused by the loading shown in Fig. 72c, 
and M is the bending moment caused by 
the loading shown in Fig. 72a. 

(b) Given: A beam loaded with a couple 
Ml applied at B (Fig. 72c). 

To find: The linear displacement A a at 
point A (Fig. 72d). 

An auxiliary force of any magnitude, say 
force Q, is applied at point A (Fig. 72a). 
By means of formula (5) we have 

Aa 
mMdx 

QEI ‘ 

In both expressions for Ob and Aa the 
factors Qj E, and I are equal throughout. The m in the first equation 
corresponds to the M in the second; the M in the first equation corre¬ 
sponds to the m in the second; and the product mM of the one is equal 

to the product mM of the other. 
Therefore 

Ob = Aa» 

If a force Q, applied at point A in a beam, causes an angular displace¬ 
ment 6b oi point jB, then a couple Mi expressed in inch-pounds and numeri¬ 
cally equal to the force Q, applied at point 5, will cause a linear displacement 
A A oi point A. A a expressed in inches is numerically equal to Ob expressed 

in radians. 

INFLUENCE DIAGRAMS 

We are familiar with graphs, such as shear and bending-moment 
curves, the ordinate of which, at any point, gives the value of the func¬ 

tion at that point. 
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An influence diagram is a curve the ordinate of which, at any point 
By gives the value of function at a fixed point E while the load unity is 
being applied at B, For example, if 
a load unity is applied to a simply 
supported beam at point B, distance 
X from the left end (Fig. 73a), the 

reaction at A will be ■ 

and the reaction at E will be -• 

The shear at point A is equal to the 
left reaction. Therefore, for any 
position of the load unity, or, for any 
value of Xy the shear at point A is 
expressed by the equation 

[ Influence Line for Shear at Point A 
'Influence ** “ ** “ “ E 

ib) 

Influence Line for Shear at Point D 

X (c) 
(Fig. 736). ^ 

2 
. 

8 

The shear at point E is numeri¬ 
4 

cally equal to the right reaction, but Influence Line for Bendinsr Moment 

it carries a negative sign. For any (d) at Point C 

value of Xy therefore, the shear at 1 1 1 
point E is expressed by the equation 2 ' '10 '1 m_] \b 8 

' 1 

Ve-^(Fig. 736). 

The equations of the influence 
diagram for the shear at points A and E are 

iBeam Loaded with Concentrated Loads' 

(^) 

Fig. 73. 

X X 
Fo = 1 —j and Ve = —;, respectively. 

A load unity applied in the region from A to D will cause a negative 
shear at point Z>; a load unity applied in the region from D to E will 
cause a positive shear at point D, The influence diagram for the shear 
at point D is shown in Fig. 73c. 

The bending moment at point C, the middle of the beam, caused by 

a load unity applied at B in the region from A to C, is equal to the right 

reaction multiplied by 
A 

,, a; Z X 

2* 

Therefore 
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For the right half of the beam (the beam is symmetrical about the 
center line) the influence line for the bending moment at C will be a 
graph symmetrical to the one for the left half of the beam (Fig. 73d). 

If a load unity, placed at the quarter position of the beam, causes a 
I 

moment at C equal to - ft-lb., then a load Q in that position will cause 
o 

Ql 
a moment. Me = — ft-lb. 

o 

A beam loaded with concentrated loads, 10, 12, and 8 lb. at the one- 
fourth, one-half, and two-thirds points, respectively (Fig. 73e), will 
cause a moment at C. 

M<, = 10X^ + 12X7 + 8X^ 
8 4 6 12 

ft-lb. (Fig. 73d). 

If the beam is loaded with a uniformly distributed load w pounds per 
foot, the load on any short element of the beam dx will be equal to wdx. 
The influence of wdx on the function for which the influence diagram is 

drawn will be wydx, if y is the ordinate to the influence diagram. Inte¬ 
grating over that portion of the beam on which the load w is applied 
(see page 59) we have 

/ •//i 

wydx = w = w Area w times the area under the 

influence diagram below the uniformly distributed load. 
For example, if a uniformly distributed load w pounds per foot ex¬ 

tends entirely across the simple beam (Fig. 73a), the value of the shear at 
points A and Disw times the area under the influence diagram for those 
points (Figs. 736 and 73c), namely: 

■rr . ^ 

Fa = ^CXlX-=+—• 
2 Ji 

/ 3 3Z 1 1 / i\ wl 

T‘ 

The bending moment at point C, when the beam is completely 
loaded with a uniformly distributed load w pounds per foot, is the area 

under the influence diagram (Fig. 73d) times w. 

Mc = «>X^X^ = ^ ft-lb. 
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Influence lines provide a condensed and convenient record; they 
give a general view of the effect of loads on certain important functions, 
when these loads are placed in different positions upon the structure. 
In the analysis of engineering structures it is common to draw influence 
lines for shear, bending moments, reactions, and stresses in principal 
members. 

ELASTIC CURVES AS INFLUENCE LINES 

Influence Line for Ra. Consider a continuous beam over four sup¬ 
ports with spans Li, L2, and L3 (Fig. 74a). Let us assume that load Q, 
applied at point A, displaces point A a distance Ai, point B a distance 

A2, and point C a distance A3 (Fig. 746). It follows, then, according 
to MaxwelFs law of reciprocity of displacement, page 199, that load 
Q applied at point B (with the beam held at Z>, E, and F, but free to 
move at A) would displace point A a distance A2, and a load Q applied 
at point C would displace point A a distance — A3. 

To hold point A in place with load Q applied at B requires a reaction 

Ra of sufficient magnitude to displace point A a distance A2. 

Imagine a load Q applied at B, point A displaced a distance A2, and 
a reaction Ra subsequently applied for the purpose of returning point A 
to its original position. 

Since force Q causes a displacement Ai at point A, it will require the 

force Ra = — Q to hold point A in place under the action of the load Q 
Ai 

A3 
at point B. Similarly, for a load Q applied at (7, a reaction Ra —Q 

Ai 

is required to hold point A in place. 
Since the structure is elastic, Ai, A2, and A3 will always be in a fixed 

ratio regardless of their numerical value (see note on page 205, and also 

General Comments, page 216). 
For example, we may obtain the elastic properties of a steel I-beam 

of uniform cross section and supported at four points by means of a 

flexible spline. A steel straight-edge, or a T-square, is placed on edge 

and properly supported on a drawing board, the points of support for 

the spline on the drawing board being in the same relative positions as 

the supports of the steel beam. Furthermore, Ai may be constructed 

as unity to any scale, in which case Ra = A2Q, or 12® = — A3Q. When 
load Q is applied at points B and C its influences upon the reaction at 

A are measured by A2 and A3, respectively. What is true for points B 

and C is true for all points on the beam. Thus we may obtain the influ¬ 
ence line for the reaction at A from a small model of the beam. 
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What is true of a beam on four supports is equally true for a beam 
on any number of supports. It is in fact applicable to any elastic 

A 

structure regardless of its shape and the number of statically indeter¬ 
minate unknowns. The various examples worked out in the text show 
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that the theoretical analysis becomes disproportionately more difficult 
as the number of redundant restraints is increased. It was pointed out 
that Maxwell’s law of reciprocity of displacement is true for statically 
determinate and indeterminate structures alike. Herftin lies the great 
advantage of influence lines mechanically constructed. We know fiat a 
load on a span farthest removed from the left end has relatively little 
effect on the reaction at the left end. In a mathematical procedure that 
fact becomes clear only after a painstaking analysis. In an elastic curve 
mechanically constructed, however, it is at once apparent in its true 
signiflcance. For a further discussion of the theoretical value of elastic 
curves as influence lines, mechanically obtained, see page 217. 

Influence Line for Rd. The influence line for any of the other reac¬ 

tions, as Rd, may be obtained by the same process as the one used for 
finding the influence line for Ra- Give to the point at which Rd is applied 
a displacement A4, and measure the displacement at point B as A5 

(Fig. 74c). Since load Q at point D gives a displacement A5 at point B, 
a load Q at B would cause a displacement A5 at D (Maxwell’s law). The 
reaction at D, necessary to prevent this displacement, is 

Rd 
A4 

Q. 

If A4 is initially laid off as unity, we obtain 

Rd = AsQ. 

What is true for point B is true for all other points on the beam. 
Figure 74c, constructed as suggested, gives the influence line for the 

reaction at D. 

Note. The use of elastic curves as influence lines is predicated upon Maxwell’s 
law of reciprocity of displacement, and Maxwell’s law in t\im is proved by means 
of formulas (1), (5), and (6); that is, it is subject to the assumptions and limitations 
of the theory of elastic energy. 

It is well to test our rules concerning the use of elastic curves as influ¬ 
ence lines by the assumptions underlying the theory of elastic energy. 

Formulas (1), (5), and (6) are limited by the assumption of elastic mate¬ 

rial and the principle of superposition. The latter principle is contingent 
on the assumption that the structure does not materially change its shape 

under loading conditions. In influence lines we want measurable dis¬ 

placements, and this last assumption does not always strictly hold. 
For example, suppose that the left end of the beam is given a vertical 

displacement, with the load constantly kept acting on a vertical line 
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through the original position of point A. As the beam is being deformed 
the point of application of the load will travel along the beam. In other 
words, the span length of the beam for the left span will be somewhat 
increased. This violates the theory involved in the proof of formula (5), 
and Maxwell’s law for this condition of loading does not hold exactly true. 
Suppose, however, that the load, displacing point A, always acts verti¬ 
cally and is maintained at point A. The horizontal distance from point 
D decreases, and the moment of the load likewise decreases. If the de¬ 
formations involved are appreciable, this decrease is also appreciable and 
is in conflict with our theory to the effect that the moment caused by the 
auxiliary load m remain constant while the moment caused by the actual 
load M is being applied. Very few authorities have taken the trouble to 
mention the error involved. In fact, one finds the rule not uncommonly 
given that the unit displacement should be in the line of operation of the 
reaction. The error involved may not be serious in individual cases, but 
if not considered at all it may, under certain conditions, lead to incorrect 
analysis and cause serious difficulty. (See page 210.) 

Finally, suppose the load displacing point A to be always acting nor¬ 
mally to the path it actually travels. Then the span length remains 
essentially constant, the moment of the auxiliary load F about point D 
also remains constant, and we avoid both disagreements with the elastic 
energy theory that are involved in the two preceding constructions. For 
this reason it is pointed out that A2 is to be measured along the arc and 
not as a vertical ordinate from the base line (Fig. 746). 

Thus the error due to large deformations may easily and accurately be 
corrected in the drawing of the influence line for Ra and Rf, But a similar 
correction of the influence lines for Rd and Re becomes more involved, and 
will not be taken up in this elementary discussion. The error, however, is 
not a serious one. In any mathematical analysis the assumptions of 
loads applied at points instead of distributed over areas and the neglect 
of thickness of members, brackets, and gusset plates are commonly far 
more serious than the errors involved in elastic curves as influence lines. 
Some devices for drawing influence lines anticipate the possible error, 
involved in large deformations, by giving very small deflections and em¬ 
ploying a microscope to measure these deflections. (See General Com¬ 

ments, page 216.) 

Influence Line for Moment at D. For any position between D and 

F the moment at point D is given by the expression Md = RaLi, There¬ 
fore, the influence line for Ra between points D and F (Fig. 746) will 

serve as influence line for the moment at point D. The ordinate to the 

influence line must be multiplied by Li to give the value of the moment 

Md- If the displacement of point A is made equal to Li instead of unity 



ELASTIC CURVES AS INFLUENCE LINES 207 

(Fig. 74d), the curve between D and F is the true influence line for Ma for 
the portion DF of the beam. 

For a load Q in a position somewhere between points A and D, say at 
point Gj the moment at D is 

Mi = RiLi - Qo = Q^Li - Qa = ^(a6 - ^ A7. 
Ai Ai \ Li/ Ai 

If Ai = unity (Fig. 746), Md =— QL1A7. 

If Ai = Li (Fig. 74d), Md=- QA7. 

In either case (Fig. 746 or 74d) the elastic curve of the beam repre¬ 
sents the influence diagram of Md for the first span of the beam. But 
the ordinates must be measured along the arc and from the straight line 
connecting A and D, instead of being measured from the horizontal as 
a base line. However, measuring the ordinates at right angles to the 
connecting line A-D is for all practical purposes equivalent to measuring 
them along the arc. (See also Alternative Construction for Infiuence 
Line for Moment, page 208.) 

Influence Line for Moment at B. Point B on the beam, for which 
the bending-moment infiuence line is constructed, is located a distance 6 
to the right of point A. The diagram is constructed by giving point A a 
displacement equal to 6, Ai = 6 (Fig. 74e). For any point on the beam 
anywhere between B and F, Mh — Ra!b- For a load Q, in position G, 

QAq 
for example. Mi, = RJ> =-6, and when Ai is equal to 6, Af & = QAe. 

Ai 

For a load Q between A and B, say at point H (Fig. 74e), the moment 
at B is 

Mb = Rab — Qc (c is the distance from H to B). 

n/r nh (A (A A\ A Mb = —Qb-— c = — I As-— j = "7“ (^8 “■ ^9) — "T" Aio. 
Ai Ai Ai \ 6 / Ai Ai 

c is only approximately equal to Ag ) 
When Ai is laid off equal to 6, = QAiq. 
Figure 746, obtained by giving point A a displacement equal to 6 and 

connecting point A with point B by a straight line, gives the influence 
line for the moment at point B. The ordinates must be measured 
between the elastic curve and the base line BF, or between the elastic 
curve and the connecting line AB, as the case may be. (See Alternative 
Construction of Influence Line for Moment on next page.) 
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Alternative Construction of Influence Line for Moment The influ¬ 

ence line for the moment at point B (Fig. 75o) is pven by the elastic 
curve, the ordinates being measured at right angles from the straight 
lines AB and BC (Fig. 766). If a force Qa is required to produce this 

displacement of point A, it will require a force Qe = applied at point 
1(2 

C (Fig. 756) to keep the structure in equilibrium. Draw a tangent DBE 
to the elastic curve at point B (Fig. 756), and assume the elastic curve to 
be displaced from the original position DBE to a final position ABC. 
The linear displacement, relative to this tangent, is 

-f mMdx Area X 

FEI El 
Therefore 

and 

Also 

nA — sx ^ sx ? r 
El ^ 2 ^ 

DA QaL^ 

~ Li ZEI ' 

$2 = 

EC QaElLi2 
IZ ZEI 

If E and I are assumed constant. 

^ 
O2 L2 

From Fig. 756 we have; 

= 1 radian. 

If, instead of pving point A a displacement equal to Li, we cut the 

spline at B, and by a suitable device superimpose a unit angle at B 
keeping points A, B, and C in their original position (Fig. 75c), it is seen 

that we obtain, in Fig. 75c, the same elastic curve, and thus the same 

influence line, as shown in Fig. 756. This is in strict agreement with the 

third case of Maxwell’s law of reciprocity of displacement as developed 
on page 198. 



c| 
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According to Maxwell’s law of reciprocity of displacement, third case 
(page 200), the influence line for the bending moment at any point in a 
beam may be obtained by cutting the beam at the point in question, 
superimposing on the beam at this point an initial angle of magnitude 
one radian, and leaving unchanged the support of the beam at other 
points. Figures 756 and 75/ give the influence line for the bending mo¬ 
ment at point B. 

In actual construction of an influence line for a moment it may not 
be practicable to impose a unit angle (57° 18'). An angle of magnitude 
one-fourth or one-half unity may be used, and the resulting ordinates 
multiplied accordingly by 4 or 2. 

The foregoing argument with reference to the moment at point B 
(Fig. 75a) applies equally to the moment at point D (Figs. 74a and 
lid). 

Influence Line for Moment at the Wall for a Built-in Beam. Figure 

755 represents the influence line for the moment at point B of the beam 
over three supports (Fig. 75a). If the left span Li approaches zero as a 
limit, the point A approaches infinitely close to point B. Two adjacent 
points determine the direction of a tangent. A and B being on a hori¬ 
zontal line and infinitely close to each other, the tangent to the elastic 
curve of the beam under all conditions of loading must remain horizontal. 
This is the same limitation as that offered by the condition of complete 
restraint at a wall. Therefore, the limiting condition of Li approaching 
zero (Fig. 75a) is identical with the condition of restraint shown in Fig. 
75d. If Li (Fig. 75a) approaches zero as a limit, di (Fig. 755) also 
approaches zero as a limit and 62 (Fig. 755) approaches unity as a limit. 
The influence line for Mb then becomes identical with Fig. 756. This 
influence line in turn is in agreement with the third case of Maxwell’s 
law of reciprocity of displacement. 

The foregoing discussion is given as a check, to illustrate the funda¬ 
mental reasoning involved. It should assist in avoiding a common, 
though serious, error. If the displacement A'-A (Fig. 755) were ver¬ 
tical instead of extending along the arc, the limiting value of $2 (as 61 

approaches zero) would be 45° instead of 1 radian. This in turn would 
cause the limiting shape for the influence line for Mb (as Li approaches 

zero. Fig. 755) to differ from the influence line (Fig. 756) constructed by 

application of Maxwell’s law (third case). There would thus be a 

contradiction. This discussion also corroborates the argument given on 

page 206 to the effect that ^‘theoretically” the displacement of the point 

A (Figs. 745 and 755) should be along the arc. Furthermore, it confirms 

the theory that, to obtain an influence line for a moment, we must impose 
an angular displacement of 1 radian. 
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Units of Measurement. In the influence line for the reaction Ra (Fig. 745) the 
effect of a load Q at point C on the reaction at A is 

Only when Ai is unity does this expression simplify to 

Ra = QA3. 

_ . _ , pounds X linear umt , ^ . 
Ra IS expressed by-----= pounds. It is thus seen that Ra is 

linear unit 
independent of the scale of the model. The only essential consideration is to make 
the dimensions of the model proportional to those of the structure it is to represent, 
and to measure Ai and A3 by the same scale. Thus, in Fig. 745, if Ai equals 1 in., 
A3 (measured in inches) will give the value of Ra in pounds provided load Q is given 
in pounds (in tons provided load Q is given in tons). If Ai is measured with a centi¬ 
meter rule, A3 must be measured with the same rule regardless of the scale of Li, 
1/2) s-nd L3. 

In regard to influence lines for moments the procedure differs in that A is measured 
on the same scale as the model. According to Maxwell’s law, the bending moment at 
point By caused by the load at E (Fig. 75e), is given by the equation 

The units are expressed in 

Mb = 

QAg 

0b 

pounds X linear unit , 
——-:-;-= pounds X hnear unit. 

abstract number 

The hnear unit Ae and L are measured on the same scale. 
Let Fig. 75d represent a beam 10 ft. long, fixed at B and freely supported at C. 

Let Fig. 75e represent a model constructed to a scale, i in. = 1 ft. 0 in., that is, 
actual size. If E is at the midpoint and Ag is measured to be ^ in., we have: 

^6 = il X 48 X Q = 22.50 in-lb. 

Or Ae may be measured on the scale of the model, i in. = 1 ft. 0 in.; in which case 
the answer is obtained directly: Mb = Ag = 1.8750 ft-lb. 

Influence Lines for a Beam Built in at Both Ends. The four curves 

in Figs. 76&, 76c, 7Qd, and 76c represent the influence lines for the shear 

at the wall, the bending moment at the wall, the shear at point C in the 

beam, and the bending moment at point C, respectively. 

If an elastic curve is to serve as an influence line for a restraint, we 
impose a unit displacement at the point of application and in the direc¬ 

tion of this restraint, leaving the other restraints unaltered (MaxwelFs 

law). 
Ab we impose a unit displacement at point B to obtain the influence 

line for the shear at point B, the question may arise whether we should 
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make such unit displacement with the tangent at B free to rotate (Fig. 
76/), or retain the tangent at B continuously parallel to its orij^al posi¬ 
tion. We refer to the proof of Maxwell’s law, page 198, which is applica- 

Fio. 76. Influence Lines for Shear and Moment at Points B and C of Fixed Beam. 

ble to statically indeterminate as well as to statically determinate struc¬ 

tures: 

Figures 74a and 76a each represent a beam with four reactions. In 

each case we have two redundants. However, whereas in Fig. 74a all 

the reactions are vertical forces applied at different points, in Fig. 76a the 

reactions consist of a vertical force and a couple each at points A 
and£. 
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To obtain an influence line for any support, whether it is a vertical 
force or a moment, we superimpose a unit displacement, making sure 
that the other supports are acting in accordance with the original con¬ 
ditions of support. When we gave point A (Fig. 746) a unit displace¬ 
ment, points D, E, and F were kept in their original positions. In Fig. 
76a we have at point B a restraint to prevent vertical displacement and 
another restraint to prevent angular displacement of the tangent to the 
elastic curve. If we impose a unit displacement (Fig. 766) to obtain the 
influence line for the vertical reaction at point J5, all other supports at 
points A and B (including the restraining effect at point B to insure a 
horizontal tangent) must be fully acting. The resultant curve is shown 
by Fig. 766 rather than 76/. The latter curve would be the influence line 
for the reaction at B when there is no restraining moment at B (Fig. 76/ 
and Fig. 75d). 

The beam AB (Fig. 76a) might be cut at any point, say point C, and 
still be stable. It would act as two independent cantilever beams. The 
shear and the bending moment at point C may be regarded as the two 
redundants instead of the reactions at either point A or point B, The 

influence line for either redundant, for the shear or the bending moment 
at C, may be obtained by imposing a unit linear displacement (Fig. 76d) 
for the shear and a unit angular displacement for the moment (Fig. 76e). 
As the spline is cut at C and both parts given a unit linear displacement 
relative to each other, the tangents to the elastic curves at both ends 
must not be displaced in relation to each other, that is, they must be kept 
parallel. Similarly, to obtain the influence line for the moment at point 
C the tangents are displaced through a unit angle, but the points must 
not undergo any vertical displacement relative to each other. They are, 
however, free to assume a vertical displacement relative to points A 
and B, 

To obtain the influence line for the moment at B the tangent at B is 
rotated through a unit angle while point B is kept in its original position. 
Figure 76c gives the influence line for Mh- However, since in Fig. 76c the 
tangent at B was rotated through only one-half radian, the ordinates to 

the curve of Fig. 76c must be multiplied by 2. 
Check on Influence Line for Shear at One Extremity of a Beam Built 

in at Both Ends. Influence lines can be obtained by three methods of 

procedure: 
1. By deriving the equation for influence lines directly. 

2. By computing mathematically the equation of the elastic curve 

under conditions outlined in this chapter on elastic curves as influence 

lines. 
3. By means of a model. 
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First Method: Figure 776 is a free-body sketch of the restrained beam 1 shown in Fig. 77a, loaded with a coti- 
centrated load Q at distance x from 

I -the left end. Figure 77c gives its bend- 
^S-®aoment diagram. The angular 

I displacement of point B is zero. 
l”- Therefore 

/mMdx 
M'EI ^ 

In this case m equals M\ 
Therefore 

(I -- fRU-x) 1- 

Ml 

I F ^ ' 

1_, 

JC (/) B 

Fig. 77. 

RilX^-- (Qx) ^-Mbl-= 0. (a) 

The vertical displacement of point 

B is zero. 

Therefore 

FsMds ^ r 
A fei ~ Ja 

Therefore 

mMds 

'a fei ~ ■ 

f^sMds _ AreaSI^ 

'a EI ~ El ]a 

IB 

AresiS 
- B 

= 0. 
_A 

s and S in these equations are measured from point B to the left. 

RblX^X-l-(Qx) gj 2 

RiP QxH ^0^ MbP - 

3 2 6 2 
(6) 
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Solving for Rb between equations (o) and (6) gives 

Bb = I (3xH - 2x^). 

This is the equation of the influence line for Rb. 
Second Method: To obtain the elastic curve to serve as the influence 

line for the shear at point B (pages 201 and 213) we displace the right 
end of the beam a unit distance, the tangent to the elastic curve at B 
remaining horizontal. The beam will thus be loaded as shown in Fig. 
77d, and its bending moment will be as shown in Fig. 77e. To write the 
equation for the elastic curve of the beam, subjected to the loading of 
Fig. 77d, we introduce an auxiliary force F at point C a distance x from 

the left end (Fig. 77/; see page 41). The m bending moment will then 
h& m = Fz. 

The displacement of point C, which we will designate as y instead of 

Ac, is, according to formula (5), 

r^mMdz r^FzMdz zMdz AreaZl® 

^~Ja FBI ~Ja FBI ~ Ja BI ~ BI U 

Area Z 

El _ 

From Fig. 77d we derive 

Bly = (Rx) (l) (I) + R(l - xKx) (0 - iM^x) (|). 

EIy = 

One of the limiting conditions is that the tangent to the elastic curve 

at B shall remain zero. 
Therefore /.» ,,, 

mMdx ^ 

In this case m = M', 
Therefore, 

Mdx = Area ]:=»■ 

Substituting the value of Mi in equation (a) gives 

R:^l Rx^ 
EIy = --- 
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One more limiting condition is that y = \. when x 

From this we obtain 

El 
12 ’ 

R 
\2EI 

1; thus 

Substituting the value of in equation (c) we obtain 

Thus 

y = j - 2x3). 

02/ = I {ZxH - 2x3). 

(d) 

The right side of the equation is identical with the equation of the 
influence line as obtained by Method 1. Therefore, Rh = Qy, or the 
shear at point B is Q times the ordinate to the elastic curve of the beam, 
provided that the elastic curve is obtained as outlined by Method 2. 

Third Method: The elastic curve is obtained from a model instead of 
being obtained by means of mathematical logic. 

GENERAL COMMENTS ON ELASTIC CURVES AS INFLUENCE LINES 

Maxwell formulated his law of reciprocity of displacements in an 
article published in the Philosophical Magazine in the year 1864. The 
importance of it appears to have escaped notice at the time. It was not 
until Mohr independently discovered it and pointed out its possibilities 
(1875) that it received, to a degree, the attention it deserves. Not until 
in very recent years, however, has it claimed the serious consideration of 
engineers. 

Various instruments designed to obtain elastic curves to be used as 
influence lines are at present obtainable. The author is familiar with 
three of these instruments. All have their strong as well as their weak 
points. Their common weakness is the insufficient explanation of their 

rules, though these rules may be mostly correct. However, the merit or 

lack of merit of individual instruments does not concern us here. The 

manufacturer and proponent may be relied upon to point out their 
merits. The student may easily find objections to them once he has 

properly familiarized himself with the fundamentals involved. It is held 
that not only may commercial instruments be employed to advantage, 
but that frequently it appears advantageous to construct models, or, as 



ELASTIC CURVES AS INFLUENCE LINES 217 

in relatively small airplane structures, to use the structure itself, or part 
of it, to obtain the influence lines. It is one thing to theorize about 
obtaining an elastic curve on paper, but in practice it is a quite different 
matter to obtain a curve equal to those obtained by mathematical analy¬ 
sis. 

The theoretical validity of elastic curves as influence lines, as well as 
a few obvious practical considerations, will be discussed here. 

A scientific theory is a logical interpretation of facts. (See “Logic— 
A Challenge to Engineering Educators,'^ Engineering and Ccrntradingy 
January, 1929, VoL 68, page 1.) A mathematical theory involves the use 
of mathematical logic. Such a theory is valuable, not in proportion to 
the amount of mathematics involved, but rather in proportion to the 
number of pertinent facts it includes. The mathematical theory of elas¬ 
ticity is extensively applied in the science of strength of materials. It 
sheds some light on the phenomena of strength and resistance of struc¬ 
tures. The accuracy and reliability of the science of mathematics cannot 
be questioned. It should be self-evident, however, that the value of any 
mathematical theory is limited by the assumptions which it makes at the 

outset. 
The theory involved in this book, although we have successfully 

avoided the compulsory use of integral calculus, is none the less a mathe¬ 
matical theory. Several limitations entered into the theory at successive 
stages. We started by assuming (1) that we have elastic material (stress 
is proportional to strain); (2) that the principle of superposition holds 
(deformations of the structures assumed to be of a relatively small order 
of magnitude); (3) that concentrated loads may be assumed as loads 
applied at points (a load applied at a point is equivalent to an infinite 
stress, which, of course, is impossible); and (4) that, in the analysis of 
Vierendeel trusses and bents, dimensions may be taken to the center line 
of members, and that irregularities at corners, such as fillets, brackets, or 

gusset plates, may be ignored. All the foregoing assumptions detract 
from the value of the theory. However, without these assumptions pro¬ 
cedure is impracticable and often impossible. If our theory were 100 

per cent correct, there would be no need of a safety factor. But in prac¬ 

tice the highest attainment of accuracy possible must be discounted by 

applying a factor of safety ranging from 2 to 8. 

Scientists, who have given thought to the subject, are agreed to meas¬ 

ure dimensions to center lines of members and to ignore the irregularities 
at comers (as in the analysis of bents and Vierendeel trusses, for exam¬ 

ple) . But this agreement of scientists does not make the resulting theory 
a correct one. It means that we do not know enough about the matter 
to do otherwise. However, much as we may regret it, our mathematical 
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theory is bound to be a limited one. Not infrequently we hear of theory 
conflicting with practice. If practice is based upon accurately observed 
facts, any disagreement between theory and such practice is evidence 
that the theory is faulty. 

The theory of elastic curves as influence lines is predicated upon 
MaxwelTs law of reciprocity of displacement, and MaxwelFs law, in turn, 
is predicated upon the theories and limitations underlying this treatise. 

Elasticity. When we apply our mathematical theory, we assume 
perfect elasticity and infinitely accurate dimensions. When we use a 
spline, or a model, we are bound by human imperfections, and we can 
attain neither infinite accuracy nor perfection in the elastic properties. 
Mathematical analysis, however, is not done for the fun of the thing. 
The essential object is to learn something about the probable distribution 
of stresses in an imperfect, humanly made structure. 

Suppose, for example, that we wanted an influence line for the left 
reaction of a wooden beam, as shown in Fig. 75a. We may proceed in 
any one of three ways as mentioned on page 213. If we use our mathe¬ 
matical theory, we must assume perfect elasticity, because the elastic 
behavior of wood is too erratic to be included in formal mathematical 
logic. However, by placing a wooden T-square on edge on a drawing 
board we can obtain the influence line by practical means, namely, by 
supporting it at the proper points, displacing the left end a unit distance, 
and tracing the elastic curve. We shall probably find little disagreement 
between the two influence fines thus obtained. 

Some engineers have admitted that the elastic curve so obtained 
checks quite nicely with the theory, the implication being that the results 
obtained mathematically should be regarded as the standard. To be 
sure, in our model the material is not perfectly elastic, nor are the sup¬ 
ports finite loads applied at points. Neither of these conditions, how¬ 
ever, is true for the beam. If we accept the definition of theory herein 
stated, we submit that the elastic curve obtained from a model exempli¬ 
fies the better of the two theories. If the beam to be analyzed is a steel 
beam, a slender steel straight-edge placed on edge will serve the purpose 
better than a wooden T-square. 

Sound judgment must be exercised at all times in selecting material 

for models and in deciding upon their proportion. For example, to 

obtain the influence fine for a concrete bent it is inadvisable to construct 
the model from cardboard. The elastic properties of concrete may be far 
from ideal, but concrete is not likely to be as fibrous and directional as 
cardboard. 

The Principle of Superposition. The principle of superposition 

underlies our mathematical theory of strength of materials. It states 
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that the resultant effects are equal to the sum of the component effects. 
In our theory we assumed that the stress increments, due to the actual 
loads Q, are independent of the stress increments caused by the auxiliary 
load F. 

One instrument, designed for the purpose of obtaining influence lines 
by constructing elastic curves, specifies that the displacements at all 
times shall be very small, and that they shall always be of equal distance 
to each side of the neutral position. A microscope is used to measure the 
resulting displacements. This practice of obtaining elastic curves is no 
doubt well within the assumption of superposition of effects. It is unde¬ 
sirable on two counts. First, no continuous elastic curve can be obtained. 
The microscope must be moved from point to point, and the influence 
line must be constructed from readings thus obtained. Second, giving a 
displacement to both sides of the neutral position magnifies any error due 
to slack that may be present between the model and its supports. 

To eliminate any danger of error due to slack at the supports, it is 
best to start from a base line obtained with an initial small displacement 
and subsequently superimpose a unit displacement in the same direction. 

In doing this, however, there must be no serious conflict with any of our 
assumptions. 

On pages 206 and 210 we have shown how, in certain cases, the viola¬ 
tion of the principle of superposition, due to large displacements, may be 
anticipated and mainly avoided. On page 210 it is suggested that the 
displacement should ‘^theoretically^’ be measured on the path along which 
point A' travels from A' io A, The word “theoretically” was deliberately 
put in quotation marks. At this place the author wants to make one 
point clear. It is a difficult thing to measure displacement along an arc. 

Thirty years’ experience with the mathematical theory of strength of 
materials has reconciled the author to inaccuracies, to violations of 
assumptions, to seeing the best theories discounted 50 per cent by 

applying a factor of safety. It is a subversion of our best theories to 
compute answers to more than three significant figures, or to quibble 
over methods of measuring distances along arcs. Errors are inevitable. 

At best, we can estimate their relative magnitude. Thus it may be left 

to the operator to decide how he may attain the desired end. However, 

it is important to realize clearly the manner of measuring displacements, 

if we would be in close agreement with the basic philosophy involved. 
Neglect of Fillets and Brackets. As previously pointed out Maxwell’s 

law of reciprocity of displacements is appficable to statically determinate 

and statically indeterminate structures alike. Herein lies the outstand¬ 
ing significance of the possibilities of elastic curves as influence lines. 
The mathematical theory of strength of materials is founded on simple 
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laws. If the behavior of material cannot actually be expressed in simple 
laws, we assume that it can be so expressed. We estimate the degree of 
error introduced by such assumption and discount the results propor¬ 
tionately. In complicated structures, as pointed out in the text, we 
require an independent equation for every redundant member or reac¬ 
tion. The required number of equations may easily become too large 
for practical solution. Further, in bents and Vierendeel trusses, for 
example, the dimensions of members are taken to the center line and the 
disturbing effects of comers are ignored. In practical cases fillets or 
gusset plates are found in the corners, since sharp corners should by all 
means be avoided. These brackets or gusset plates materially influence 
the behavior of the structure, but we must ignore them also because we 
do not know enough about the variation of stresses in fillets and gusset 
plates to include them accurately in our mathematical theory. 

No such discrediting arguments apply to the use of models in the con¬ 
struction of infiuence lines. It may be difficult to find suitable material 
and difficult also to construct the model. Once it is constmcted, how¬ 
ever, no complexities due to the large number of redundants, to variable 
dimensions of members, to irregularities at comers, enter the problem to 
detract from the value of the result. The answer obtained from an 
elastic curve of a well-constmcted model of a complicated structure is 
likely to be in much better agreement with the theory of elasticity than 
one obtained by mathematical process. In fact, the result obtained from 
the model would give expression to parts of the theory of elasticity 
which, as yet, we are unable to formulate mathematically. 

Conclusion. The mathematical theory of elasticity, as applied to 
the theory of strength of materials, is employed to give expression to the 
elastic behavior of stmctures. This elastic behavior of stmctures may 
also be obtained directly from models. MaxwelFs law of reciprocity of 
displacement, which is as sound as the theory of elasticity—in fact forms 
a part of it—^provides a key to the interpretation of results. As to the 
relative merits of the two methods, the mathematical analysis is the 
easier one for the simpler problems and is generally accurate enough. 

In complicated problems the work involved in a mathematical analysis 

becomes very burdensome and the accuracy suffers because of successive 

assumptions that have to be made. The value of influence lines obtained 

from models depends on the quality of the model. Errors due to large 

displacement need not be feared; they should be kept in mind, however. 
Even extreme degrees of redundancy do not detract from the value 

of the use of models in obtaining influence lines. In complex structures 
they often yield results more closely in agreement with the theory of 

elasticity than can be obtained by mathematical processes. 



CHAPTER XII 

THE THEORY OF LEAST WORK 

Assume a beam to be loaded with any system of loads, Qi, Qg • • • Qn 
(Fig. 78a). 

Fio. 78. 

Let Ml be the bending moment at any point in the beam caused by 

Qi. 
M2 be the bending moment at any point in the beam caused by 

Qs- 
M„ be the bending moment at any point in the beam caused by 

Qn- 

M be the bending moment at any point in the beam caused by 

(Ql> Qs ' ‘ ‘ Qn)' 

The total elastic energy stored in the beam because of the applica* 

tion of all the loads, Qu Q2 • • • Qn is given by formula (7) (page 47): 
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If we differentiate this total elastic energy with respect to a single 
force, say Qi, 

rM^dx 
dW 2EI r2M dM , 

-I 

2M dM 

2EI dQi' 

(Note that we are not differentiating with respect to dx, in which case 

we would merely drop the integral sign.) 

To evaluate we refer to Figs. 78b and 78c. M being the resultant 
dQi 

moment of all the loads may be regarded as the algebraic sum of the 

component bending moments, Mi, M2, Mn- If Qi varies, Q2 • • • Qn 

remaining constant, M2 will not be affected. , or the rate of change 
dQi 

of the total bending moment with respect to Qi, therefore, will be equal 

to • Ml being a linear function of Qi, 
dQi 

dMi Ml 

dQi Qi 
Therefore 

Formula (5) (page 45) gives us: 

dw ^ r 
dQi J 

MiMdx 

~^EI 

, in which F was allowed 

= Ai, the displacement of the application of 
J QiEI 

to have any value. If, in formula (5), we let F = Qi, m will equal Mi 

and we obtain: f = Ai, the displacement of the application of 
J QiEI 

the load Qi in the direction of Q. 
Therefore 

dW ^ 

dQi~ 

Castigliano’s law states that “The partial derivative of the total 

elastic energy, stored in a structure with respect to one of the loads, gives 

the displacement of the point of application of the load in the direction of 

the load.” 

For purposes of illustration we referred to the simple beam of Fig. 78o. 

The law holds for redundant structures and statically determinate struc- 
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tures alike. It holds regardless of shape and dimensions of the structure, 
as long as the material is elastic and the principle of superposition applies. 

Throughout the work with redundant structures we have been inter¬ 
ested in displacements A, not for themselves but as a means to an end. 
Frequently the limiting conditions of the problem determined in advance 
a zero displacement of a point of the structure. In such a case the expres- 
/Tizli^dx 

= 0 constitutes a useful equation in our analysis. Cas- 
t hi 1 

mMdx . , , . . , 
as a partial derivative. Further, the 

FBI 

tigliano’s law interprets 
FBI 

science of calculus teaches that, whenever a derivative of a function is 
zero, the function itself is either a maximum or a minimum. The ques¬ 
tion which of the two it is (maximum or minimum) in this particular 
instance needs further investigation. We are certain that such a thing 

dW 
as a minimum elastic energy m a structure exists. The equation = 0, 

dQi 
being a first degree equation in Qi, gives but a single solution. Since 

= 0 gives but one answer, and since we know that a minimum 
dQi 

dW 
elastic energy must exist, it follows that “ == 0 gives the minimum 

dQi 
elastic energy stored in the structure. 

Three points in this connection are worthy of special emphasis: 

1. In the theory of least work there is no question of an absolute 
minimum of elastic energy. 

2. The term “leastapplies only to the elastic energy stored in a 
structure in so far as it is affected by a single force applied at a par¬ 
ticular point. 

3. The theory of least work is not a general theory. We can speak 
of least work only when a single force applied at a particular point 
keeps that point from being displaced. 

Example 43 

Given: A continuous beam 18 ft. long resting on three supports. Left 

span, 8 ft. long, loaded with 10 tons per ft.; right span, 10 ft. long, loaded 
with 7 tons per ft. B and I are assumed constant. (See example 18, 

page 71, Fig. 37.) 
To find: The three reactions, fii, R2, and by means of the theory 

of least work. 
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The total elastic energy in the beam as shown in Fig. 37c, page 72, 
is found by applying formula (7) (page 47): 

fM^dz 

-I 

We evaluate this expression in two steps. First, we integrate between 
points A and B, and, second, between points C and B. The expressions 
for M will be simplest if we measure x for the first step from A to the 
right, and for the second step from C to the left. Thus: 

2EIW 

r^M^dx_ r 
2EI 

_ rRi^3^ 25a:® 

■ L 3 “ 

,(R^x - ^Jdx Jr^x - 

25a:® lOiJix fJgV 49x® IRzX*^ 

3 20 4 

120F?7Tf = 20 X 8^ X + 300 X 8® - 150 X E^Ri + 20,mR3^ 

+ 14,700,000 - 1,050,000123. 

Taking moments about the point A (Fig. 37a) we have 

Taking moments about the point C (Fig. 37a) we have 

T, 245 5 „ 

Substituting these values for Ri and Rs in the foregoing expression 
and dififerentiating with respect to R2, we obtain 

dW 
mEI— = 20 X 8® 

dR2 

2450\ ^ 5 
—) + 150X8^X- 

/32 
+ 20,000(^-122 

1640\ , 4,200,000 

27 / "^ 9 

512,000 „ 10,240 X 2460 , 3,072,000 
- = -Ro — --4- - 
dl22 81 27 ^ 9 

640,000122 32,800,000 4,200,000 

“^81 27 9 * 

dW 1,152,000 „ 108,200,000 

-ii— 
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dW 
According to Castigliano’s law, = A2, which is the displacement 

(1112 

of the point of application of Rz. In this instance A2 = 0. Therefore 

1,152,000^2 = 108,200,000. 

i?2 = 93.9 tons. 

This value of Rz is the same as found in example 18, page 71. 

Examples 18 and 43 represent two methods of solving a t3rpical prob¬ 

lem involving a statically indeterminate unknown. The one method 

is based upon the theory of conservation of energy, the other upon 

Castigliano’s law. It may be argued that in the last analysis the two 

methods are the same. But in a practical §ense they are not the same. 

First, to square the bending moment Af, second, to integrate, and third, 

'mMdx 
to differentiate, in order to arrive at the expression J FBI 

, is indeed 

a very roundabout way compared with expressing m and M directly. 

The accuracy of Castigliano’s law cannot be questioned. 

In differential calculus, when a derivative is zero, we may look for a 

maximum or minimum. This frequently proves to be of great value, but 

this is no reason for applying Castigliano’s law when it fails to clarify the 

procedure. 

The theory of least work, although true, is a mathematical abstrac¬ 

tion, and makes no essential contribution to the theory of elastic energy. 

Any problem known to the author, of the type we have been discussing, 

can be more effectively solved by the method developed in this text than 

by that of the theory of least work. 



CHAPTER XIII 

COLUMNS 

Criteria op Strength 

This book deals with certain phases of the theory of strength. We 

have grown familiar with formulas which express stress, or moment, as a 

fimction of either a concentrated load P, or a uniformly distributed 

load w. The implication is that any such relationship holds good inde¬ 

pendent of the magnitude of either P or w, provided that the elastic 

limit is not exceeded. Traditionally we specify a safe stress (working 

stress) as a fraction either of the elastic limit stress or of the ultimate 

stress. Then the problem of design consists of proportioning our struc¬ 

ture so that, under a specified loading, the working stress is not exceeded. 

Having done so we conclude that we have designed our structure with a 

factor of safety proportional to the ratio between the elastic limit stress 

and the working stress, or to the ratio between ultimate stress and work¬ 

ing stress, as the case may be. We have called this procedure a tradition 

—a tradition which obviously has a certain merit, else it would not have 

persisted to the present day. However, it would seem obvious that this 

tradition is valid only when the relationship between load and stress is 

linear, since only then does the principle of superposition apply. 

The Principle op Superposition 

In the stress analysis of trusses (for example, see problem 3) we either 

make free-body sketches of the joints and write equilibrium equations 

for each joint, or we draw a force diagram for the entire truss. In the 

analysis of problem 3 the angles introduced in the equilibrium equations, 

or the inclination of the lines in the force diagram, are all either 45° or 0°. 

When the truss is loaded it deflects, the various members of which it is 

composed change their lengths, and the inclination of these members in 

relation to the horizontal, which originally may have been 45° or 0°, no 

longer has these same values. A rigorous analysis would require that the 

angles introduced in the equilibrium equations or in the force diagram 

correspond to the final inclination of the members instead of to their 
226 
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initial inclinations. Thus, in a rigorous analysis, we find that we must 
know at the outset the final inclinations of the members, but these 
inclinations cannot be determined until we know the stresses acting in 
the truss. This constitutes a vicious circle often very difficult to over¬ 
come. In the analysis of problem 3 we side-step the difficulty as follows: 
We say that the deformations are of relatively small order of magnitude. 
The inclusion of these deformations in either stress or deformation 
analyses would therefore affect the results only slightly. We say then 
that we assume the principle of superposition to apply: we assume the 
deformations to be zero for purposes of stress or deformation analyses. 

A literal interpretation of the principle of superposition implies that 
we may, for example, make an analysis for dead loads, live loads, snow 
loads, wind loads, and impact, and that the resulting stress or deforma¬ 
tion, when all five types of loading act simultaneously, may be obtained 
by merely adding algebraically (superimposing) the component stresses 
or deformations found in the component analyses. 

T he author does not know of a single instance where the principle of 
superposition applies rigorously. However, he is quite ready to agree 
that in a majority of problems we are justified in assuming that it does 

apply. 
The expression ‘^relatively small order of magnitude^’ was used 

advisedly. Occasionally we meet with the statement to the effect that 
small deformations are sufficient to insure the validity of the principle of 
superposition. This, however, is not true. We have seen on page 185 

that a spiral spring, loaded with equal and opposite moments at each end, 
may be wound some ten to twenty complete turns—^which certainly con¬ 
stitutes a displacement of very large order of magnitude—without 
violating the principle of superposition. That is, the moment-deforma¬ 
tion, or the moment-stress, relationship is substantially linear over the 
entire range of loading, from zero stress to elastic limit stress. Note: We 
said “substantially linear” instead of “rigorously linear” for the following 
reason: The stresses across a curved beam of rectangular cross section 
vary parabolically, not linearly. As the curvature of the spiral spring leaf 

is increased the neutral axis shifts, and the equation of the parabolic 

stress distribution over the cross section changes. This, however, is a 

consideration of minor consequence, even as the deformation of the truss 

in problem 3 is of minor consequence in the stress analysis. 
On the other hand, as we shall now show, deformations in the same 

structure which in one analysis appear to be of secondary importance may 

in another analysis assume primary importance. Consider, for exam¬ 

ple, Figs. 83a and 836, page 237. First assume P to equal zero. Then 
Fig. 83a presents a simply supported beam subject to a uniformly dis- 
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tributed load kuA. The maximum stress at the midpoint is s = -y = 

kuAl^c 

81 
We say so confidently, recognizing, however, that the formula 

s = — is not rigorously applicable to a curved beam. However, the 

curvature in a floor beam in a building, as the result of the load which it 
supports, is so slight as not to warrant its being considered as modifying 

the familiar formula s = • 

Next we consider the same beam represented by Fig. 83a. This time, 
however, the load P is acting alone and the transverse load kuA is re¬ 
moved. When the beam is loaded to capacity, with either the transverse 
load kuA or the direct load P acting singly, the deflection A in both cases 
is of the same order of magnitude. When P is acting singly the maximum 

P PAc 
stress in the column is 5 == —- H-- • Whereas in the one case we 

A I 
ignored the curvature, or the term A, in the other the term A is of pri¬ 
mary importance. In the one case we found the deformations so small 
that the principle of superposition was not disturbed; in the other we 
found that these same deformations wholly invalidated the principle of 
superposition. 

As another illustration consider problem 33. The ring is loaded with 
two equal and opposite loads acting along a diameter. When the loads 
compress the ring it changes into a somewhat elliptical shape with the 
major axis at right angles to the line of action of the loads. When the 
loads are reversed the structure changes again into a somewhat elliptical 
shape. In this circumstance the major axis is coincident with the line of 

QR 
action of the load. The answer given in the problem, Mb = —, is 

IT 

quite accurate for small values of Q. However, since we are discussing 
strength, the load-stress relationships for small loads concern us but 
little, if at all. Our real interest lies in the load-stress relationship that 

exists when the load reaches its maximum value. _This load-stress rel^,- 

tionship is obviously a function of the somewhat elliptical sliape of the 

rmg that prevails when tne maxunum value ol the load is reached, an 

not that of the circular outline which may have prevailed unaer mi^ 

The difference in value of the loads that cause the elastic limit stress 
in the ring to be first reached—one pair of loads compressing the ring and 

the other acting in reversed sense—may easily be as great as 40 per cent. 
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Though the listed answers to problem 33 may be said to be accurate for 
small loads, they may be ±20 per cent in error for large loads. The 
conclusion we reached on page 133, that the circumferential bending 
moments in large pipes is zero, is absolutely correct. The equations 
listed in connection with Cases I, II, and V, page 127, were based on the 
assumption that the principle of superposition applies. These answers, 
as applied to individual instances of loading flexible rings and correspond¬ 
ing to Cases I, II, and V, are somewhat in error because the principle of 
superposition does not apply rigorously. However, the results of Cases 
I, II, and V, predicated on the assumption that the outline is perfectly 
circular, may be applied collectively to a section of a large thin-shelled 
pipe. Here, since the theory assumes that the shape of the pipe under 

ultimate loading is the same as under initial loading, the principle of 
superposition rigorously applies, and the theoretical results may be 
accepted as fully trustworthy. We may state, as a test for the applica¬ 
bility of the principle of superposition: 

The principle of superposition is applicable when any load-stress or 
load-deformation relationship which we may formulate is valid for initial 
and intermediate loading as well as for capacity loading. 

Statement of the Problem of Column Analysis 

A column is a beam intended to carry a load substantially parallel to 
its axis. The structure is statically indeterminate, and the principle of 
superposition is inapplicable. 

Consider a column loaded through frictionless hinges RmfiP it nannnf. 

possibly be perfectly straight, perfectly homogeneous, and perfectly 

elastic, ana since tne eccentricity cannot possibly be abs^tely zero, the^ 
column deflects as the load is applied and gradually increased. The stress 
at point B in Fig. 80a, page 231, is accurately represented by the formula 
-F Me P PAc ' " ! ' _ 
5 = ± — = -7 ±—^ • The bending moment of the deflected 

column is Px, and thus the bending-moment diagram (Fig. 806), laid off 
to suitable scale, is identical with the elastic curve. In other words, 

the elastic curve is a function of the bending moment, and the bending 

moment in turn is a function of the elastic curve, presenting a vicious 
circle similar to the one discussed in connection with the ring analysis 

when deformations are so large as to make the principle of superposition 

inapplicable. 
We referred earlier to the practice of predicating strength upon the 

concept of working stress as a tradition, acceptable in certain cases but 
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quite intolerable in others. We are creatures of habit, and traditions are 

valuable. If we have the firmly established habit of regarding working 

stress as a safe criterion of strength, then this habit requires careful 

scrutiny when we undertake to study the strength of columns. A new 

orientation and a new sense of value in regard to strength must then be 

developed. 

In the study of beams subject to bending, we regard the elastic limit 

stress as the criterion of strength of the beam. Then we derive the work¬ 

ing stress from this elastic limit stress by means of a safety factor intro¬ 

duced for that purpose. This procedure is acceptable although not 

strictly in agreement with fact. That is, after the elastic limit stress in a 

beam is reached, a certain increase in carrying capacity may still be 

anticipated. Nevertheless, even as the elastic limit stress in beams is 

conservatively regarded as a criterion of the strength of beams, so we 

propose to regard the elastic limit stress in columns as the criterion of the 

strength of columns. In slender columns the reaching of the elastic limit 

stress marks the absolute limiting strength of the columns, while in short 

struts a certain percentage of increase in strength of columns may be 

envisaged after the elastic limit stress is reached. This consideration 

may well be ignored as it is in beams subject to bending. 

A general relationship between load and stress in columns is of no 

interest to the designer. As we show in detail in example 47 on page 

259, a wide-flange 25 column, 16 ft. 0 in. long, loaded with a load of 

100,000 lb., applied with an eccentricity of | in., is stressed with a maxi¬ 

mum stress of 37,900 lb. per sq. in. The same column loaded with a load 

of 110,000 lb. applied with the same eccentricity of ^ in. is stressed to a 

maximum stress of 84,600 lb. per sq. in. The maximum stress of 37,900 

lb. per sq. in. under the load of 100,000 lb. gives no indication of the true 

strength of the column, since an increase of only 10 per cent in the load 

results in an increase of more than 100 per cent in the stress. The 

designer is interested in the safe load which a column can carry, which 

safe load is a fraction of the ultimate, the critical, or the limit load. Our 

analysis then should be directed towards establishing a special load-stress 

relationship in which the load is the capacity load and the stress is the 

elastic limit stress. Any other load-stress relationship, since such a rela¬ 

tionship is not linear, has no more than academic interest, and throws no 

light on the problem of strength of columns. 
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Euler’s Column Formulas * 

When a slender, straight column with rounded ends, uniform cross 
section, and homogeneous material (constant E and I) (Fig. 80) is con¬ 
centrically loaded with two mutually opposing forces P, the column will 
remain substantially straight until P reaches a certain critical value. 
Then the column will suddenly bend sidewise and take on a curved shape. 
This phenomenon is called buckling of the column. In view of the fact 

Fig. 79. Fig. 80. Fig. 81. Fig. 82. 

that the bent column is symmetrical relative to the midpoint, point B, 
we decide that the maximum deflection A (Fig. 80) will occur at the mid¬ 
point of the column. While the column remains straight the stress 

P 
therein is given by the equation s = —• Once the column buckles an 

A. 

eccentricity is created and the maximum stress at its midpoint becomes 

This formula is correct, hut it has praY^tinnl valnp gin 

ininate and a function of the elastic curve. The elastic atm 
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The analysis of the column will be materially simplified if we can 
make an intelligent guess as to the type of curve the column will assume 
once it buckles. In Figs. 81 and 82, which represent columns with re¬ 
strained ends, we note that the elastic curves of these columns in the 
buckled state present reversed curves with one or more points of inflec¬ 
tion, points of zero bending moment. For example: The center portion 
A-C (Fig. 82c) represents a column loaded in a manner identical with the 
one represented by Fig. 80a. This fact eliminates the possibility of the 
elastic curve of a buckled colunm assuming the form of a conic section. 
Any one of the conic sections, the circle, the parabola, or the hyperbola, 
could not possibly be expressed as a continuous function, as graphically 
shown in Figs. 81 and 82. 

One equation which might express all of the various elastic curves 
which a column might assume when it buckles under the various condi¬ 
tions of loading represented by Figs. 79, 80, 81, and 82 is the equation of 
the sine curve. Let us then assume the equation of the elastic curve of a 
buckled colunm to be a sine curve, and on the basis of this assumption 
derive Euler^s formula, a formula which is substantiated by a very large 
number of authenticated tests. This procedure is not so arbitrary as it 

Me 
might seem. For example: in the development of the formula s = , 

it is assumed that a transverse plane before bending of the beam remains 
a plane after bending. Once developed, the formula is tested in the 
laboratory and found to be reliable. Throughout this procedure no one 
has ever looked inside a beam and seen a transverse plane in its entirety. 
The best that can be done is to see the intersection of such a plane with 
the outer surface of a beam. Similarly the process we propose to apply 
appears as follows: the assumption is made, the formula is developed, the 
formula is checked by every conceivable test and, if found reliable, this 
check in turn establishes the reasonableness of the assumption. 

If, then, the elastic curve of a buckled column may be mathematically 
represented by the equation of a sine curve, the equation of Fig. 80a is 

a: = A sin — • 
L 

the expresaon 

The bending moment in this buckled column is given by 

M = Px = PA sin 
Try 

(Fig. 806). 

The deflection is 

Area y 
B 

A 

El 
(Fig. 806). 
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The area under one-quarter of a sine curve is - times the circumscribed 

rectangle. Thus the area in which we are interested, that between the 
limits of point A and point B (Fig. 806), is 

2 I 
- X PA X X = 
T 

PM 

TT 

The y for this area is - times the base of this circumscribed rectangle, 
IT 

thus: 
I 

IT 

We thus obtain 
Area y PAP 

El ^ 

From the above expression it appears that A is a function of A. This is 
precisely what we discussed at the outset. If P is held constant after 
buckling has commenced, an increase in A increases the bending moment, 
which in turn increases the deflection A. If we cancel A and solve for P, 

we obtain 2i^r 

P = (Euler^s formula). 

The value of P obtained by this formula is the critical value which initi¬ 
ates the buckling of the column. Equilibrium would be obtaiued for 
any value of A, provided that the column is not stressed beyond the 
elastic limit. With only a very slight increase in the value of P, equilib¬ 

rium would be destroyed, A would continue to increase until the elastic 
limit in the material of the column is passed, and the column would col¬ 
lapse completely and fail to return to its original form after removing the 

load P. 
Figure 79a represents a column built in at the base but unrestrained 

at its top. When such a column is loaded with a critical load P the top 
will sway to one side and the column will assume a form as shown in Fig. 

79a. If free-body sketches be made of Fig. 79a and of the top half (A~P) 

of Fig. 80a, it will appear that both sketches are qualitatively identical. 

Thus Fig. 79a is both quahtatively and quantitatively identical with the 

top half of Fig. 796, which represents a column loaded similarly to Fig. 
80a. However, this column has a length L = 21. The critical load car¬ 

ried by the column (Fig. 796) is 

_ ic^EI ir^EI 
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which is identical with the critical load carried by the column shown in 

Fig. 79a. 
Figure 82a represents a column with both ends built in. The free- 

body sketch for Fig. 82a appears as shown in Fig. 826 and this in turn is 
identical with Fig. 82c. Figure 826 may be divided in four equal parts 
which will show that all four parts are loaded identically. Thus the 
central portion (A-C)of the elastic curve of the column, shown in Fig. 82, 

is of a length: = g* This central portion A-C is loaded in a manner 

identical with that shown in Fig. 80a. The critical load P carried by this 
central portion A-C (Fig. 82c) is identical with the critical load carried 
by the column shown in Fig. 82a. Thus 

t^EI 4.ir^EI 

Figure 81a represents a column built in at the bottom. The top is 
rounded and is restrained against side sway by friction, or by means of a 
pin. This column is prevented from assuming the form as shown in Fig. 

79a, and its elastic curve, therefore, is as represented in Fig. 81a. The 
point of inflection at C is a distance L from the top. There is no bending 
moment at this point of inflection (7. If a free-body sketch is made of 
portion A-C (Fig. 81a), it appears that portion A-C is in equilibrium 
under the action of two forces which, therefore, must be collinear. The 
force applied at A must then have a horizontal component in order that 
it may pass through point C. The loading of column 81 will thus consist 
of a vertical component V and a horizontal component H as shown in 
Fig. 81a, or it will consist of a single resultant P as shown in Fig. 816. If 
we knew the relation betw^een L and I (Fig. 81), the value of P would 
immediately be determined. The elastic curve of the buckled column 
(Fig. 81) will be qualitatively the same curve as those appearing in Figs. 
79, 80, and 82, However, it will be a sine curve with respect to a y axis 
drawn through points A-C (shown by the dash line. Fig. 816), but not 

with respect to the vertical through A. If we draw a line through point 

D, tangent to the sine curve and parallel to the dash line A-Cj it appears 

that the distance A-C is two-thirds of the distance D-A. From this it 

follows that the distance A-C, or L, must be greater than f Z. The exact 

value of this distance L, as a function of I, may be computed as follows: 

dx 
The tangent to the elastic curve is given by the expression — • At the 

dy 
. X\ 

point where the column is built in, the tangent is—• Thus, the problem 
L 
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dx 
resolves itself in finding L as a function of Z, so that, at y = Z, — 

dy z ■ 

A • ^ 
X = A Sin — • 

Li 

dx dA sin (.ry/L) Av d sin (vylL) Av iry 
— — = —- cos —• 

dy dy 

For y = I, X — xi; hence 

while a;i = A sin ^ • 
Li 

h diirylL) 

Therefore 

or 

dx At tI 
— = — cos — , 
dy L L 

At tI Xi A . tI 

The solution of this equation gives 

Y = 4.4933 
L 

or 

L = 
vl 

4.4933 
= 0.69921. 

Thus, for a column built in at the base and hinged at the top, Fig. 81a, 

t^EI 2.0iQ7^EI 
~ ~ (0.69921)2 “ f 

It appears from Figs. 81a and 816 that F is of necessity somewhat smaller 

than P, the former being only the vertical component of the latter. The 

relationship between V and P depends on the magnitude of the deflection 
when buckling occurs. From this it follows that, under a loading as rep¬ 

resented by Fig. 81, the vertical component V being held constant, the 

load P would progressively increase as the deflection increases. Thus, 

once the process of buckling commences, the column will continue to 

deform until it is destroyed. 



236 COLUMNS 

The Beam Column * 

All columns which are placed in a horizontal position have to carry at 
least their own dead weight in addition to the axial column load P. If, as 
in a top chord of a bridge, the structure vibrates (the maximum accelera¬ 
tion of the particles of which the column is composed being greater than 
that of gravity), the transverse loading of the column will be propor¬ 
tionately greater than dead-weight loading. 

When an airplane takes a nose dive and is subjected to an acceleration 
of kg, then the horizontal struts in the airplane are subjected to a trans¬ 
verse loading h times as great as the dead-weight loading. 

Figure 83a represents a column {E and I constant) with a cross- 
sectional area that has at least one axis of symmetry, which is simulta¬ 
neously loaded with axial loads P and transverse uniformly distributed 
loads kuA acting coincident with the axis of symmetry. Let u represent 
the weight per unit volume of the material of which the column is made. 
(For steel u = 0.2833 lb. per cu. in.; for duralumin u = 0.101 lb. per 
cu. in.; for magnesium alloy u = 0.085 lb. per cu. in.) A represents the 
cross-sectional area of column. Thus Au = w is dead weight per unit 
length of column, and k represents the factor by which the dead weight 
per unit length must be multiplied to arrive at the value of the transverse 
loading. Thus, if the transverse load carried by a beam (including the 
weight of the beam) is 7500 lb. per ft. and the weight of the beam is 100 
lb. per ft., then k = 75. 

The columnj subject to uniformly distributed transverse loads (Fig. 83), 
does not, strictly speaking, present a problem in stability. That is, 
instead of failing as the result of sudden buckling, the column will at all 
times suffer a deflection. The deflections and stresses will vary with 
changes either in the transverse loads kuA or in the axial load P. How¬ 
ever, such variations will not be linear; they will not be proportional to 
the changes in the value of P. In other words, the principle of superposi¬ 
tion does not apply. In the analysis of the beam-column, even though 
the principle of superposition is inapplicable, the elasticity equations 
may still be used with confidence within certain limits. 

In the development of Euler^s column formulas we surmounted the 

difficulty resulting from the fact that the principle of superposition was 

inapplicable by making an intelligent guess as to the type of elastic 

curve which the column would assume. Successfully deciding the type 

♦ Part of the following discussion is quoted from a paper by the author published 
in the Engineering Journal of the Engineering Institute of Canada, March, 1941, 
entitled “Columns Subject to Uniformly Distributed Transverse Loads—Illustrating 
a New Method of Column Analysis.” 
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of elastic curve which the structure will assume is equivalent to elimi¬ 
nating one of the unknowns of our problem. With this unknown elimi¬ 
nated the problem presents no further difficulties. In this instance we 
propose to follow a procedure identical with that followed in the devel¬ 
opment of Euler’s formulas. 

If, in Fig. 83a, P is finite and kuA approaches zero as a limit, then 
the elastic curve of the column will approach the sine curve, y = — A sin 

kuA lb. per in. 

c 3 
1 1 1 

h- ““ 

(a) 

Fig. S3. 

TTX 

T as a limiting curve. If, on the other hand, kuA is finite and P 

approaches zero as a limit, then the elastic curve will approach the fourth- 
16^ 

degree parabola, y = —(Px — + x*), as a limiting curve. 

Figure 84 shows a number of curves plotted to scale. It may be 
observed that the sine curve and the fourth-degree parabola are so nearly 
alike as to be almost indistinguishable. The true elastic curve will be one 
which lies somewhere between these two curves. Since we know the 
limiting value of the elastic curve and since these limiting values are so 

close as to be nearly identical, we may assume the elastic curve to be 

either the fourth-degree parabola or the sine curve without introducing 

an appreciable error. 
In formula (5) 

„ /* mMds 

F (Fig. 83c) represents an auxiliary load. It is of finite magnitude- 
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However, if we choose we may conceive it to be extremely small. The 

are identical. This identity is inde¬ 

pendent of the principle of superposition and is merely contingent on the 
assumption that m remains constant and that the material is elastic. 
Since the bending moment ilf is a function of the elastic curve, the use 
of formula (5) would be extremely involved if this elastic curve itself 
varied in type as well as in magnitude. If, on the other hand, we assume 

this elastic curve for all values of kuA and P to be a sine curve, then 
formula (5) may be easily integrated: 

,, ^ kuAl kuAx^ 
M=Py + -^x-^ 

^ . TTX kuAlx kuAa^ 

~2 

m = 
F 

2 
X. 

FA 
mMds 

El 

However, owing to symmetry of both m and M about the center of the 
span, this equation can be expressed as 

2 
FA = ^ / mMds. 

El 
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If we here introduce the two assumptions which are commonly found to 
be acceptable, namely that I is constant and ds = dx, then we may write 

EIFA 

and 

or 

= 2 f mMds = 2 f 
Ja •/b 

rm Fx ( . irx 

mMds 

kuAl kuAx^\ , 
X-::— J dx 

El A = 
PaP 

H-kuAP 
384 

(a) 

In the case of a sine curve 

y = 

^ - 
dx 

. vx 
— A sm — • 

L 

vA TTX 

a-^A . 'KX 

The curvature, and therefore the stress in a column of constant E and I, 

is a maximum when x = 
Ji 

then is 

The maximum curvature in the column 

(: 
d^y\ _ 

dx^/n 

The expression at any point may be given as — , in which s is stress 
s 

dx^-- -.-- -- 

at the extreme fiber resulting from curvature and c is distance from the 
neutral axis to the extreme fiber. The stress in the extreme fiber of the 

midpoint of the column, expressed as a function of the curvature, or as a 

function of the maximum deflection A, would then be 

(b) 

As the load P is eccentrically applied, relative to a bent column, the 
p 

stresses throughout the column are augmented by the factor — • 
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The expression for the controlling stress, the elastic limit stress as a 
function of the curvature and of the load P therefore is 

t^AEc . P 

or 

Combining equations (a) and (c) we obtain 

or 

- (fSiA + EIit^)P - (kuAPw^Ec - EIsi"^ = 0. 

Solving this quadratic equation we obtain 

p=‘\ (si^ + Pot ± VisiA - P„? + bSnUkuEcA^ • (c) 

We select the minus sign in order to obtain the minimum value for P. 

Thus 

P = i i^siA + Per - V(siA - Per)^ + 5.07SikuEcA^^^ Formula (10) 

P = limiting load which induces elastic limit stress. 

Si = elastic limit stress. 
A = cross-sectional area. 
u = weight per unit volume. 
k = constant by which uA is to be multiplied to arrive at uni¬ 

formly distributed transverse load. 
c = distance from neutral axis to extreme fiber. 

P .fn. 

At this point the accuracy of formula (10) may be checked against 
the known results which we should obtain in the two limiting cases; 
either when P is a maximum and kuA is zero, or when kuA is a maximum 

and P is zero. By making kuA = 0 in equation (e), we obtain two lim¬ 

iting values for P, namely, P = siA and P = Per. When on the other 
hand the length is such that the elastic limit stress would be reached as 
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the result of the transverse loading only, then P = 0, or, from equa¬ 
tion (d). 

kuA 
7.78siZ 

cf* (/) 

In a simple beam subject to a uniformly distributed capacity load 

kuAJ? 

8 
£xJ 

c 
or kuA 

8s,7 

■ 
(s) 

The discrepancy between (/) and (gr) is clearly the result of our assump¬ 
tion that the elastic curve is a sine curve, whereas, for this limiting case, 
when P = 0, it is a fourth-degree parabola. 

If we divide formula (10) through by A we obtain 

P if 1/ 1 

A ■ il*' + “ mv + 
P 

We must not be misled and attempt to interpret the term y as stress. 

The only symbol for stress in formula (11) is si, the elastic limit stress. 
P . 

The term -- in no sense represents a critical stress. It is a term which 
Jx. 

must be multiplied by A before it yields a value to which we can attach 
any real significance—the value of P, the load which spells collapse. 

Had we predicated our analysis on the assumption that the elastic 

curve is the fourth-degree parabola, 

y = 2lx^ + X*), 

then the resulting formula would have been 

„ If, 9.836P7 [r~, 9 836P7\2~~~^1 
P = 2 [si-4  ^-yjyiA-^—J + iMSkucEA^j 

Formula (12) 

or 

f “ I [*■+w “ 
The advantage of formulas (11) and (13) over formulas (10) and (12) 

lies in the fact that when they are plotted graphically the resulting curves 

* See footnote, page 245. 
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have a general application to all columns of the same material and the 
same elastic limit stress. 

Figure 85 shows a graphical representation of formula (13), plotted 
for mild steel with a modulus of 29,500,000 lb. per sq. in. and an elastic 
limit stress of 36,000 lb. per sq. in. 

Figure 86 shows similar curves for a steel of the same weight and 

Fig. 85. 

modulus, but differs from Fig. 85 in that the elastic limit stress is 54,000 
instead of 36,000 lb. per sq. in. 

Figure 87 shows curves similar to those of Figs. 85 and 86, except that 
in this instance the modulus E, the weight per unit volume w, and the 
elastic limit stress si correspond to the values for aluminum alloy 24S~T. 

One very interesting feature of these curves is that either Euler's 
, ir^E. 9.836E.. . 

formula - . 2 (formula [11]) or -—-"g- (formula [13]) appears as a limiting 
{1/i) {1/1) 

curve for the case when A; = 0. Note that the graph for Euler's formula 

as expressed by formula (11) turns a sharp corner when the value equals 
t 

P I 
critical, and is a level line corresponding to — = for all values of - 

A t 
between zero and this critical value. 
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If in formula (11) we insert k = 0 and a value smaller than critical, 
i 

then TjTTi will be larger than si, say (si + B). Thus formula (11) 
{l/i) 

will appear as 

^ = 2 ~ ~ ~ 

= - (2si + B - V{-Bf) 

= ^ (2si + B - VF) 

= 2 + B — B) = Si. 

FoniJula(13) ‘ f =i[si+ 

__ _4_4— P = finut axial load 
k = constant by which the wei^rht per unit volume 

__ is to be multiplied to arrive at uniformly 
L distributed transverse load 
\_c = distance from neutral axis to extreme fiber 
\ E = modulus of elasticity 

_ V_u = weight per unit volume 
\ s, =3 elastic limit stxiess 

(1) Jfec^ZO 
(2) ko = 20 
(3) Jkc = 20 
(4) kc = 20 
(6) Jfec = 20 

£ = 29.6x10® 
E = 29.6xl0« 
£=29.6x10® 
£ = 10.3x10® 
£= 6.6x10® 

”(6) fee = 66.66 £=10.3x10® 
V(7) fec = 87.17 £= 6.6x10® 

‘ tt= 0.2833 kcu = 6.666 ^ 
u =0.2833 fecti = 6.666 ' 
u =0.2833 fecti = 6.666 
u = 0.100 kcu = 2.000 
u = 0.066 kcu = 1.300 
li = 0.100 kcu = 6*666 
« = 0.066 feeu = 5.666 

■■■ 
■■■■ISgSfflISSiBaHBBHn 

0 15 30 45 60 76 90 105 120 136 150 165 180 196 210 226 240 256 270 286 300 
-f-l/i- 

Fio. 88. 

P 
Figure 88 shows how the term — is affected by a change in the value 

of the elastic limit si, all other factors remaining constant. It also shows 

how the value of — is affected by a change in the modulus of elasticity E. 
JL 
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Eccentrically Loaded or Partially Restrained Columns * 

The eccentrically loaded column is a special example of the concen¬ 
trically loaded pin-ended column (Fig. 80a)—hence the phrase “or par¬ 
tially restrained” in the title of this discussion. Logically, this might 
well have been discussed as a fifth case under the heading “Euler’s 
Column Formulas.” We propose to discuss it separately because of its 
somewhat greater complexity. 

(a) (h) (c) 

Fig. 89. 

Figure 89a represents a pin-ended column of length L. This colunm 
in its buckled state assumes the shape of the sine curve, the equation for 

TT^ 
which is X = (A + e) sin • The central portion BD of this column, 

L 
symmetrical about the horizontal center line through C, is represented by 

either the free-body sketch Fig. 896 or 89c. Figure 89c also truly repre¬ 

sents an eccentrically loaded column. This then constitutes proof that 

an eccentrically loaded column is a special case of a concentrically loaded 

column. 
Suppose that the eccentricity e in Fig. 89c approaches zero as a limit; 

then the elastic curve BCD approaches a fuU arch of a sine curve as a 

* See “Rational Column Analysis,” by J. A. Van den Broek, Engineering Journal 
of the Engineering Institute of Canada, December, 1941. 
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limit. If on the other hand the eccentricity e in Fig. 89c should approach 
infinity as a limit, then the elastic curve BCD would approach a circle as 
a limiting curve. Actually, for any normal value of eccentricity e, the 

curve BCD is an arc of an arch of a sine curve. 
A strength formula for an eccentrically loaded column. Fig. 89c, may 

be derived as follows: 

X = (A + e) sm —• 

e = (A + e) sin = (A + e) cos ^ 

- = (A + c)-cos-. 

—2 = - (A + e) -2 sm —• 
dr 

d^x/dy^ 
The curvature, or -, equals 

This expression is a maximum for the value 2/ = — • Thus 
A 

d^X /a , X S 

(h) 

(i) 

in which s is .stress due to curvature in the extreme fiber of column at 

point C. 

s = 
i^Ec 

(A + e). 

This stress s, due to curvature, is augmented by a stress — due to the 
A 

direct load. Thus the equation 

r^c(A + e) P 

A 01 

pves a general, load-maximum-stress relationship for columns. But, 
since the principle of superposition does not apply, this relationship as 

discussed on page 230 throws no light on the strength of the column. An 
estimate of the column strength can be made only when we assign a 

definite maximum value for s, say the elastic limit stress Si, and simulta¬ 
neously define the corresponding load P as being equivalent to the limit 
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load, critical load, or maximum load, which the column can carry. 
With Si and P so defined we may write 

or 

Si 

(A + e) 

A’ 

(k) 

Eliminating (A + e) between equations (h) and (k), we obtain 

^2r L2[si - (P/A)] T I 
e =-^-cos - - • 

n^Ec 2 L 

From Fig. 89a we have = 
t^EI 

and 
I 

_ t^EI 
these values in (Z) we obtain 

-(■-Si-i'/J- 
ecP 

Si - - = 

A I cos I V PI El 12 

Si 

Substituting 

Formula (14) 

This formula (14) is theoretically perfect; that is, it cannot be criticized 
on the basis of sound logic. Nevertheless it contains two flaws, one 
minor and one major. Both these flaws pertain to the use of formula 
(14) as applied to the problem of column design. 

The minor flaw in formula (14) lies in the fact that it does not lend 
itself to a direct solution for the limit load P. Formula (14) cannot be 
solved for P except by trial and error. We keep on substituting different 
values for P until we finally arrive at one which gives a value for si that 
comes close to being the true value of the elastic limit stress Si. The 
exponents of “exact^^ formulas will have to acknowledge that we need an 

infinite number of lifetimes to accomplish an infinite number of trial- 

and-error solutions in order to arrive at an ‘‘exact^' answer. Of course, 

we are going to be satisfied with an approximate solution of formula (14) 

obtained after a few trial-and-error solutions. An approximate solution 
being inevitable, we propose to develop a formula, avowedly approxi- 

P 
mate, but one which permits of a solution for -7 by direct substitution, 

A 
one which in the hands of a designer is more usable. 
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Development of Formula (16) 

We shall in this instance follow a procedure similar to the one em¬ 
ployed in the development of Euler’s formulas and the formulas for 
colunms subject to transverse loading, that is, we select a likely elastic 
curve and proceed to develop our formula upon this elastic curve as a 
basis. In the development of Euler’s formula we selected a sine curve 
which is, so far as anyone knows, the correct curve, and which therefore 
gave us the correct result. 

In the development of the column formula, which was to include the 
effect of the transverse loading, we concluded, from Fig. 84, that by 
basing our analysis upon either the fourth-degree parabola or upon the 
sine curve we could not go far wrong, since the two curves are nearly 
identical. A study of Fig. 84 bore out this truth so convincingly that we 
did not deem it necessary to compare our results with those obtainable 

from some other rational analysis. 
In the analysis of eccentrically loaded columns we are not so fortunate 

in our selection of a likely compromise elastic curve upon which to base 

our analysis. We have concluded (page 245) that when e approaches 
zero the elastic curve approaches a full arch of a sine curve, and that 
when e approaches infinity the elastic curve approaches an arc of a circle 
as a limiting curve. These two'curves differ greatly as shown in Fig. 84. 
Therefore in this instance it is well to have formula (14) available to 
serve as a standard. The true curve is an arc of an arch of a sine curve. 

The analysis based upon such a true curve results in formula (14). Of 
the several curves investigated for the purpose of obtaining an approxi¬ 
mate formula which would not contain the minor flaw of formula (14), 

the author found the second-degree parabola to give the most satisfac¬ 
tory results. 

Figure 90a represents an eccentrically loaded column, assumed to be 
curved in the shape of a second-degree parabola. The cross-hatched 
area represents the bending-moment area to which this column is sub¬ 
jected. 

^ Area y 

El 
- 5 1 

The yi for the parabola bending-moment area is - X - (see Appendix I). 
8 2 

The y2 for the rectangular bending-moment area is Therefore 
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or 

(E/-|pp)A = |i>. 

4t;2 
The equation of the parabola is 2 = A. 

dz 8vA d^z 8A 

dv~~F T' 

Fra. 90. 

The maximum curvature 

1\ 8A /l\ _ _f_ SEcA 
or s = 

f Ec 

This stress due to curvature is augmented by a direct stress 

the maximum stress as a function of P is 

SEcA , P 

'■“p“+r 

Defining P as limit load and si as elastic limit stress we have 

(m) 

8PcA , P 

A' 
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or 

Eliminating A between (m) and (n), we obtain 

or 
\ , AceE\\ „ , Q.QEIsiA „ 

P» - («.A + 9.6 P + —^ - 0, 

Solving this equation we obtain 

P 

A 

if 9.6E / ce\ /T ' 9.&E / ceM^ 38.4si.E 

■sh+ + 'r‘ + (iA)^v + p/l 
Formula (15) 

Figure 91 shows graphs for both formulas (14) and (15), plotted for an 
elastic limit stress Si = 40,000 lb. per sq. in., a modulus of elasticity 
E = 30,000,000 lb. per sq. in., and for various values of eccentricity ratio 

6C 
-ig' It appears from Fig. 91 that formula (15) gives results which are 
% 

not materially different from those obtained by formula (14). One inter¬ 
esting aspect of formula (15) lies in the fact that, when we replace the 
9.6 by TT^, 38.4 by 47r^, and let e = 0, it appears identical with formula 
(11) when fc in formula (11) equals zero. This suggests the possibility of 
a general formula which will include both transverse loading and eccen¬ 
tricity effects, a suggestion which will be discussed in more detail later. 

The major flaw in formula (14) is equally in evidence in formula (15). 
This flaw lies in the difficulty, the impossibility in fact, of determining in 
advance of a solution the magnitude of the eccentricity e. Even in the 
most carefully controlled laboratory tests we find it impossible wholly to 
eliminate eccentricity when we seek to do so, and when we attempt to 

introduce it deliberately we have no satisfactory way of knowing the 

amount present at the instant of collapse. In a laboratory test, if any¬ 

where, we may align a column so as to have a substantially zero eccen¬ 

tricity of the applied load, or else we may contrive to give to the initially 
applied load a definite, predetermined value. Neither of these proce¬ 
dures has any bearing on the problem of strength of columns. In this 

connection the initial loading conditions are of no consequence whatso¬ 

ever; only the final conditions at the instant of collapse count in the 
reckoning. 
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By a positive eccentricity we mean an eccentricity which aggravates 
the curvature of a column (Fig. 89c or 90a). By a positive end restraint 
we mean one which reduces the effective length of a column. Thus a 
positive eccentricity is identical with a negative end restraint. Figures 

Pia. 91. Comparison between Approximate Eccentric Loading Formula (15) with 
Exact, Secant Formula (14). 

825 and 82c represent two free-body sketches identical in meaning. We 

may speak of Fig. 825 as a column subject to a positive end restraint, 

while the same column, as shown in Fig. 82c, may be referred to as a 
colunm with a negative eccentricity. 

Figure 92o represents one end of a column loaded through a pin, and 
Fig. 925 represents one end of a column having rounded ends. As the 

column deflects, the point of contact between load and column shifts in 
both columns. In both columns, provided that the pin is frictionless, the 

load passes through the center of curvature of either the pin or the 
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rounded end. The length I of these columns therefore should be meas- 
ured between these centers of curvature at each end. 

Figure 926 comes nearest to representing what we call the ideal pin- 
ended column. (A frictionless pin is inconceivable.) As a column is 
loaded as shown in Fig. 92a, friction will be induced as soon as the 
column starts bending. At the instant of failure, then, the column 

would be loaded not concentrically 
but with a somewhat positive end 
restraint or, which is the same thing, 
with a somewhat negative eccen¬ 

tricity. 
The only way, as the author con¬ 

ceives it, in which a column may be 
loaded so as to give a predetermined 
eccentricity at the instant of failure 
is that suggested by Fig. 92c. Here 
a string runs over an arc of a circle, 
and as the column bends the eccen¬ 
tricity remains constant and equal 
to the radius of this arc. The length 
of this column is to be measured 
from center to center of these arcs 
of the circles at each end of the col¬ 
umn. The author has never heard 
of or seen any eccentric loading 
tests performed in this manner. All 
colunm tests he knows of involve 
variable loading conditions, due to 
change in value of eccentricity or to 
friction which is introduced as the 
loading progresses. 

If it is difficult in laboratory tests to predetermine the amount of 
eccentricity that exists at the instant the column fails, it is equally diffi¬ 

cult to determine this eccentricity with any degree of exactness in a 

column which functions as part of a complicated structure. Yet we are 

able to form a fairly clear picture of what eccentricity means in engi¬ 
neering construction. 

Example 44 

Figure 93 represents a column AC fully restrained at both ends. If 
loaded the column bends to the left; this is evidence that there must 

have been an initial slight crookedness to the left, or an initial positive 



RESTRAINED COLUMNS 253 

eccentricity to the right. As the bending progresses and the restnants 
at the ends make themselves felt, the restraints become positive and the 

eccentricity passes through zero and becomes negative. One of the major 

theorems of the theory of static equilibrium says that a force P and a 

couple M may be represented by a single force equal and parallel to P, 
M 

acting with an eccentricity e = — • Thus the loadings of the column, 

shown differently for each end of the column (Fig. 

93), nevertheless mean the same thing. As the 

loading increases both P and M increase but, since 

the principle of superposition is inapplicable, they 

do not increase at the same rate. 

The conditions pictured at the top of the column 
(Fig. 93) pve a fair representation of what takes 

place. As the loading increases the resultants of 
the moment M and the force P always pass through 

the points of inflection. That is, the application 

of each resultant assumes different positions as 

indicated by the arrows, 1, 2, 3, and 4 (Fig. 93). 
The eccentricity of the load is negative, that is, 

favorable, and changes progressively from 0 through 

62 to 63, and finally to 64, which represents the 
maximum eccentricity. This maximum eccen¬ 

tricity, corresponding to the elastic limit stress 

4321 

Fig. 93. 

being reached in the column, may be found as follows: 

P Pec P Pec 

Therefore 

ec siA 

f~~P~ ~ ~ 
(P) 

The fact that, in this example, we finally succeeded in evaluating the 

critical e at the instant of failure is small satisfaction. This critical 6 is a 

function of L*, the length of a full arch of a sine curve corresponding to 

the distance between points of contraflexture. It is not, generally, the 

function of I which is the geometric length of the column and is the only 

initial datum as to length of columns that we have. We were able to 

determine e only after all other unknowns about the column were known. 
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Example 45 

Figure 94 represents a 24 W.F. 74 beam 32 ft. 0 in. long freely sup¬ 
ported at its ends, and supported at its midpoint on a 12 W.F. 25 column 
16 ft. 0 in. long. This column, in turn, is supported on another 24 W.F. 
74 beam, equal in length and similarly supported. Suppose, for the sake 

Fia. 94. 

of argument, that the beams are continuous, but that the column is pin- 
ended. The limit load for the column is 

9.87 X 30,000,000 X 14.5 

P 16^ X 12^ 
= 116,0001b. 

I 16 X 12 
Its ratio is ——— = 137. Suppose that both beams are loaded over 

t 1.4 

only one span with a load wi pounds per foot. The center reaction of 
this beam is fwil. In order that the limit strength of the column may 

be developed, fwil should be 116,000 lb., or Wi = 11,600 lb. per ft. The 

1 1 • 49wiP mi . . 1 

maximum moment in the beam is - • Thus the maximum bending 
512 

stress in the beam would be 

m ^ 11,600 X 16^ X 12 

I ~ 512 170.4 
20,000 lb. per sq. in. 

The rotation of the tangent to the elastic curve of the beam at the 
midpoint, point B, is: 

01 
wP X 12^ 

48EI 

11,600 X 16» X 122 

48 X 30,000,000 X 2034 
= 0.00234 radian. 

The curvature and the deflection of the tangent to the elastic curve at 
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the top of the column, point is indeterminate, except that the limiting 
safe deflection is restricted by the elastic limit stress Si. 

From equation (fc), page 247, we have 

A = 

From equation (i), page 246, we have 

dx At Ty 
— = — cos —• 

Thus the limiting angular displacement of the tangent to the elastic 
curve of the column at its end is 

tL 
= + 

At 

T' 

Eliminating A between these two equations we obtain 

. [st - (P/A)]L 
0 = -- 

tEc 
Formula (16) 

The letter L in formula (16) represents the complete arch of a sine curve, 
which in this instance is equal to the geometric length I of the column. 
Thus 

[36,000 - (116,000/7.39)] X 192 
<t>2 — 

3.14 X 30,000,000 X 3.25 
= 0.0128 radian. 

It appears that the rotation of the tangent to the hinged column at 
point B, at the time the elastic hmit stress in the column is reached, is 
more than five times as great as the rotation of the tangent to the elastic 
curve of the beams at the same point. Therefore, if the column were 
rigidly connected to the beams, the rotation of the top of the column 
would be resisted by the beams; in other words, the column would be 
partially restrained. 

If we visualize what takes place when the column is rigidly connected 

to the beams and the beams are loaded over only one span, we conclude 

that, under an initial small load, the beam, in addition to its reaction, 
transmits to the column a positive moment or a load with a positive 

eccentricity. As the load is gradually increased, the reaction on the 

column increases substantially in direct proportion to the load. The 

moment transmitted from the beam to the column, however, decreases, 
passes through zero, and changes sign. This means that the column is 

initially loaded with a positive eccentricity. During an intermediate 
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loading the eccentricity becomes zero, after which it becomes negative. 
At the time of critical loading, which is the only condition of loading we 
are interested in, it has become quite pronoimcedly negative and the 
colimm is now partially restrained. 

Example 46 

Consider a 24 W.F. 74 simple beam supported by a 12 W.F. 25 hinged 
column, which in turn is supported on the free end of another simple 
beam like the first one (Fig. 95). The limit load for the column is 

116,000 lb. To reach this limit load the beam must be loaded with 
W2 = 14,500 lb. per ft. The stress in the beam under this load is 

Me wt‘ X 12c 

I 81 

14,500 X 16^ X 12 

8 X 170.4 
32,800 lb. per sq. in. 

The deflection of the tangent to the elastic curve of the simple beam 
at point B is 

<l>i 
wl® X 12® 

2iEI 

14,500 X 16® X 12® 

24 X 30,000,000 X 2034 
0.00584 radian. 

This is only 45 per cent of the angular deflection 4>2 of the tangent to the 
elastic curve at the top of the column, a deflection which obtains when the 

column curvature is sufficiently acute to cause the stress due to curvature 
P 

and to direct loading — to reach the value of the elastic limit stress. It 
JL 

follows from this that tiie column would be partially restrained if it were 
rigidly connected to the beam, no matter how unfavorable an eccentricity 
might prevail under small-load conditions. 

On the basis of the foregoing discussion we are able to draw some 
pertinent conclusions. 
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1. The effect on columns of eccentricity or of partial restraint is identical. 

Partial restraint may be positive = ^ < 1, Fig. 93^ , or negative 

= y > 1, Fig. 89^. The proof of this statement is given on page 245. 

This proof involves only one simple equilibrium consideration. The 
validity of this proof, however, is not to be questioned because of its 
inherent simplicity. On the contrary, equilibrimn considerations take 
precedence over elasticity or any other considerations. If eccentricity 
and partial restraint are identities, then we are privileged to confine our 
attention to one and exclude the other without in any way doing violence 
to the soimdness of our logic. We have seen in example 44 (Fig. 93) how 

elusive is the eccentricity e, while the term n = ^ ^ is constant for all 
L 2t 

stages of loading, including the critical loading. Furthermore, equation 
(o), page 253, shows that eccentricity e at the instant of collapse is a 
function of 1?. Thus, for two columns loaded in the manner shown in 
Fig. 93, identical in all their properties except that one is longer than the 
other, the eccentricity prevailing at the instant of collapse would be much 

the larger in the longer column. In both the y ratio or the constant n 
V 

would be the same. 
In examples 45 and 46 we have seen that, no matter how great it may 

be initially, the eccentricity becomes negative, that is favorable, before 
the condition of collapse is reached. This statement applies only to rela¬ 
tively long columns. 

2, As in aeronautical engineering, where a sharp distinction is made 
between velocities of a magnitude greater than the velocity of sound and those 
velocities smaller than that of sound, so in column analysis we make a sharp 

I 
distinction between columns with an - ratio greater than critical and those 

with an - ratio smaller than critical. 
i 

As may be seen from formula (16), <l> = 
[si - iP/A)]L 

ttEc 
, and ^ 

becomes zero for si = 

The critical - for the colunm specified in examples 45 and 46 is 90.8. 
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Therefore, since i for this column is 1.40, its critical length is 10 ft. 7 in. 
Had we specified a column length of 10 ft. 7 in. or less, in examples 45 
and 46, then the deflection </»2 (Figs. 94 and 95) would have been zero for 
the pin-ended column. Therefore such columns, if rigidly connected to 
the beam, would suffer a negative end restraint, positive eccentricity, or 

. L 
a ratio — = n > 1. The conclusion that columns eccentrically loaded 

are a special case of concentrically loaded columns is equally as valid for 
short as for long columns. (For a more detailed discussion of eccen¬ 
trically loaded or partially restrained short columns, see footnote, page 
245.) 

3, Eccentricity, end moments, partial restraint, and uniformly dis¬ 
tributed transverse loads are subject to evaluation in one general formula. 

End moments, or eccentricities, derived by means of end-moment 
distribution methods or by other elasticity theories (when such argu¬ 
ments are predicated on the assumption that the principle of superposi¬ 
tion applies), are meaningless, because they ignore the essential charac¬ 
teristics of column action. End moments, or eccentricities, may be 
most effectively incorporated in column analysis as partial restraints, or 
L . 
y ratio. In slightly modified form, then, formula (11) would incorporate 

both the transverse loading and the partial restraint effect, which partial 
restraint is another way of including either end moments or eccentricity. 
This formula appears as follows: 

P ^ 1 r tt^E 

A “ 2 (nl/if 
Si 

2 

+ 5.073^kuEc 

Formula (17) * 

The minimum value for n, or — , is 0.5. For columns of a slenderness 

. I 
ratio -, 10 per cent or more above the critical value, the value for n is 

% 

* If the distance from the neutral axis to the extreme fiber on the tension side 
of the column is called ci, the distance to the compression side is called c; further¬ 
more, if Cl is materially greater than c, then the elastic limit stress in tension may be 
the determining factor in the strength of columns. (For example, consider the 
channel in problem 54 to be turned upside down.) In this case the formula for 
limit strength of the column will be 

p I r i^E rr^ ^ n 
Formula (17a) 
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0.5 < n < 1. For columns of a slenderness ratio equal to or less than 
critical the value of n is greater than unity. When n = 1 and fc = 0, 
formula (17) reduces to a particular version of Euler's formula, which 

P I 
gives the value of -r = Si for all values of - smaller than critical. 

A ^ 
Formula (17) is restricted to columns made of elastic material, of 

constant E and /, with at least one axis of symmetry, and loaded with a 
uniformly distributed transverse load kuA coincident with this axis of 
symmetry. 

Example 47 

Consider a W.F. 25 column, 16 ft. 0 in. long and loaded with a load Q 
having an eccentricity of ^ in., offset from the axis of minor moment of 
inertia. If the loading is applied in the manner of Fig. 89c, the eccen¬ 
tricity will remain constant throughout the entire load range from zero 
load to limit load, and a modified form of formula (14) applies. This 
modified form of formula (14) reads 

= |(l + |sec^V^). 

In its original form si represented elastic limit stress and P represented 
buckling load. The formula is equally valid as written here with s repre¬ 
senting any stress less than the elastic limit stress and Q representing 
any load short of the buckling load. We assume the elastic limit of the 
column to be 90,000 lb. per sq. in. The constants for this column are as 
follows: 

A — 7.39 j € — c — 3.25^ 

I = 192; 

When Q = 100,000 lb., then 

i = 1.40; £? = 30 X 10^ 

and ^ = 0.207. 

I = 14.6; 

s = 
100,000/ 

7.39 V "*■ 
0.207 sec 96 

I 100,000 \ 
^30 X 10® X 14.5/ 

Therefore 

96 4 100,000 

30 X 10® X 14.5 

sec 1.4565 

1.4555 radians. 

1 

0.1150’ 

100,000/ 0.207\ 

7.39 0.115/ 
37,900 lb. per sq. in. s = 
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When Q = 110,000 lb., then 

110,000/ , / 110,000 

- 14,880 n 
0.207 

0.0442/ 

30 X 10® 

84,600 lb. per sq. in. 

Thus, an increase of 10 per cent in the value of the load Q results in an 

increase of more than 100 per cent in the value of the maximum stress. 



CHAPTER XIV 

ESTIMATE OF ELASTIC ENERGY THEORY 

Throughout this book we have applied one argument and one philoso¬ 
phy to the analysis of stresses in a large variety of problems. We have 
introduced an auxiliary force. We have ^ven expression to the elastic 
energy which is stored in structures because this auxiliary force is acting 
while the actual loading is being applied, and, on the basis of the law of 
conservation of energy, we have equated this energy to the work done 
by the auxiliary force. Whenever this auxiliary force is an external force, 
its work done is FA; when it is an internal force, it occurs in pairs equal 
and opposite, and its work done is zero. 

It remains for us to consider where this theory of elastic energy 
belongs in the general scheme of things. How does it compare with other 
theories? What are its outstanding merits or demerits? What are its 
possibilities and its limitations? 

To avoid possible misunderstanding let us begin by defining a few 
commonplace terms: 

Theory: (a) The logical correlation of facts. 
(6) The philosophical explanation of phenomena. 

Philosophy: (a) The science of effects and their causes. 
(6) The knowledge of phenomena as explained by and 

resolved into laws. 
Science: Ordered knowledge of the phenomena of nature. 

Advantages of the Elastic Energy Theory 

The science of strength of materials as conventionally treated, or, to 
be more exact, all the treatises on strength of materials which have come 
to the author's attention, are predicated upon the assumption of the 
elastic behavior of material. They depart from the assumption of elas¬ 
ticity only in the theory of rivets, but there it is merely assumed that the 
stresses are uniformly distributed over the rivets. The most important 
part of the rivet theory, namely, that part which is meant to justify the 
assumption of uniform distribution of loads over all the rivets, is not, 
to the author’s knowledge, discussed in treatises on strength of materials. 

261 
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With reference to the analysis of redundant structures a large number 

of theories appear to be available. We mention only a few: theory of 

the elastic curve, theory of elastic energy, theory of least work, elastic 

weights, area moments, conjugate beams, slope deflection theory, kinetic 
theory of structures. 

As a matter of fact, within the assumption of elastic behavior of mate¬ 

rial and the law of superposition but two theories are available, the 

theory of the elastic curve and the theory of elastic energy. All other 
so-called theories are the personal methods of their proponents, all of 

which may be developed from the theory of elastic energy, some of them 
from the theory of the elastic curve. 

When simple redundant structures were first analyzed, it was natural 

that the differential equation of the elastic curve 
R’' El' 

should be applied. The equation of the elastic curve is the basis of the 

analysis of redundant structures in practically all English and American 

textbooks on strength of materials. It still dominates to such an extent 

that structures which cannot be analyzed by the theory of the elastic 

curve are conveniently omitted. The theory of the elastic curve will 

serve our purpose well enough as long as we deal with relatively simple 

structures. In connection with bents and Vierendeel trusses it becomes 

very involved, especially as regards the plus and minus signs. In con¬ 

nection with trusses, or resilience, it fails us altogether. 
The theory of elastic energy is the only alternative to the theory of 

the elastic curve. It is predicated, within the limiting condition of elastic 
behavior, upon the principle of conservation of energy. That fact has 
not always been stressed nor always made clear. One reason for this is 

that the theory of elastic energy antedates the general acceptance of the 

law of conservation of energy. Old treatises on the subject now appear to 

us involved and clothed in a more or less obscure terminology. Fre¬ 

quently the theory of elastic energy is regarded as synonymous with 
Castigliano's principle of least work. We have attempted to show in this 
book that the principle of least work, although true enough, constitutes 

only a part of the theory of elastic energy; that it appears to be essenti¬ 

ally a mathematical abstraction in which it is difficult to recognize any 

physical law. Furthermore, the bibliography on the subject very often 

makes use of such terms as ‘‘virtual velocity,'^ “kinetic theory of struc¬ 

tures,^^ terms which, fortunately, are not generally found in American 

engineering literature. 
De la Grange, in his Mechanique analitique, 1788, page 11, says of 

virtual velocity: “Et en general je crois pouvoir avancer que tous les 
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principes g^n^raux qu^on pourroit peut-6tre encore d^couvrir dans la 
science de F^quilibre, ne seront que le meme principe des vitesses vir- 
tuelles, envisage difFerement, et dont ils ne diflFereront que dans Texpres- 
sion/' (‘‘And in general I think I am able to maintain that all general 
principles which might conceivably yet be discovered in the science of 
equilibrium will be nothing more than this same principle of virtual 
velocities differently expressed, and from which they will not differ except 

in the mode of expression/^ 
With due feeling of admiration and indebtedness to pioneers in me¬ 

chanics of a different age, it would seem justifiable in the present years 
to differ with certain conclusions made by De la Grange in 1788. The 
validity of De la Grangers statement is not here contested, but the 
advisability of continuing a terminology which would call displacement 
“velocities,'' and imaginary displacements “virtual velocities" is, how¬ 
ever, seriously questioned. 

In all fairness it should be recorded that some of the author's pro¬ 
fessional associates take sharp exception to his conclusions. On the 
other hand, he quotes the great authority, August Foppl, who in Vol. 1, 
page 74, of his classic six volume series, Vorlesungen iiber die technische 
Mechanikj says: “Dieser Satz wird ein Prinzip, auch ein grundlegender 
Satz genannt, obschon er bei unserer Darstellung nur eine einfache 
mathematische Folgerung aus dem Satze vom KrMteparallelogramme 
bildet." (“This proposition is called a principle, a fundamental law, 
although on the basis of our statement it appears nothing more than an 
inference of the parallelogram law of forces.") Where Foppl argues that 
the principle of virtual velocities may well be dispensed with, we have 
gone a step farther and have effectively dispensed with it, without in any 
way detracting from the validity of our arguments. 

It is frequently argued that the theory of elastic energy, although 
universally applicable, is undesirable because it is in such a large meas¬ 
ure a mathematical abstraction and difficult to sense physically. We 
feel that this is true only when it is considered as synonymous with Cas- 
tigliano's theory of least work. We have presented this theory of conser¬ 
vation of energy in terms of elastic energy stored in a structure because an 

auxiliary force is acting while the actual loading is being applied, in terms 

of m bending-moment diagrams which may be represented by dotted 

lines and M bending-moment diagrams which may be represented by 

solid lines. For this reason we believe that the theory may be more 

readily interpreted in physical terms than the theory of the elastic curve. 
The author confidently makes this statement after many years' experi¬ 

ence in analyzing statically indeterminate structures with the aid of the 

theory of the elastic curve only. 
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We thus reach the conclusion that the theory of elastic energy, within 
the assumption of elasticity and the principle of superposition, is univer¬ 
sally applicable. The same philosophy may be applied with equal success 
to trusses, straight beams, bents, and curved beams. As regards prob¬ 
lems in resilience or problems involving redundant trusses, it reigns 
supreme. It thus serves to analyze all problems that may be analyzed 
by means of the theory of the elastic curve. It will generally do so much 
more effectively, even in cases where the elastic curve itself is to be 
obtained (see pages 49 and 215). Furthermore, by means of it we may 
analyze problems that cannot be analyzed by the theory of the elastic 
curve. 

Limitations of the Elastic Energy Theory 

If the definition on page 261 is accepted, a true theory must take into 
account all facts relating to the particular problem at hand. A mathe¬ 
matical theory employs mathematical symbolism and mathematical 
logic. All this may sound commonplace, and it would not be mentioned 
here if it were not that the term 'Theory^’ is so frequently misused. A 
treatise that makes use of complicated mathematical symbolism is often 

regarded as very theoretical. The more mathematical, the more theoreti¬ 
cal, seems to be the common interpretation. The use of the word “theo- 
reticaF’ as synonymous with ^‘mathematicar^ is responsible for the com¬ 
mon observation that theory and practice often conflict. Such a state¬ 
ment, on the face of it, would appear an absurdity. To be sure, alleged 
theories, utterly useless mathematical jugglings which gain recognition as 
theories, do often conflict with practice. As a general thing, however, 
any true conflict between an alleged theory and practice may be taken 
as prima facie evidence that the theory is unsound. 

Few things are more inspiring than the marvelous accuracy with 
which the astronomer predicts an eclipse of the sun or discovers a planet. 
The mathematical logic which makes such predictions or discoveries pos¬ 
sible commands our admiration. We must not, however, overlook the 
circumstance that all the factors entering into the astronomer's computa¬ 
tions are known. Otherwise his mathematical deductions would be in 
error. 

In the science of strength of materials we may but rarely expect re¬ 

sults with a degree of accuracy comparable with that obtained by the 

astronomer. The author would say that the assumptions underlying a 
theory constitute 90 per cent of that theory. Assumptions may be 

grouped in two classes: 

1. Assumptions dictated by the physically limiting conditions of 

the problem to be analyzed. 
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2. Assumptions dictated by the limited capacity of the human 
mind. 

A few examples will serve to illustrate different analyses based upon 
the two different kinds of assumptions. 

A steel frame for a high office building constitutes a highly redundant 
structure. What is known as ‘‘exact'^ analysis of stresses induced by 
wind loading on skyscrapers is more or less recognized by the structural 
engineering profession and, if not directly advocated, is alluded to as the 
ideal toward which we should strive, in specific cases being reluctantly 
abandoned only because of the insurmountable difficulties it presents. 
The author takes sharp issue with these conclusions. Writers on engi¬ 
neering science lend themselves to the perpetuation of many ambiguous 
terms, such as ^‘equivalent loads^' for bending-moment areas, “elastic 

ds 
weight” for y , and “virtual velocities” for imaginary displacements. 

But the qualification “exact” as applied to the analysis of wind stresses 
in a skyscraper and predicated upon the theory of elasticity and other 
assumptions that ordinarily are made is the most misleading and unfor¬ 
tunate ambiguity of all. Not only can such a theory not be called 
“exact,” but we should not even call it a theory at all. 

The assumptions underlying the “exact” method of analysis of wind 
stresses in skyscrapers are: 

1. Material is elastic. 
2. Structure is continuous. 
3. Principle of superposition applies. 
4. Dimensions may be taken to center line of members. 
5. Gusset plates and bracing may be ignored. 
6. The effect of shear may be ignored. 
7. The effect of direct stress due to wind loading may be ignored. 
8. The bracing effects of walls may be ignored. 
9. Conditions of equilibrium apply. = 0; ="= 9; XM = 0. 

Let us look more closely at some of these assumptions. 

It is first assumed that material is elastic. Suppose that a structural 

engineer in charge of construction of a skyscraper is offered a very high- 

grade cast iron which obeys Hookers law perfectly and which may have 
an elastic limit as high as 200,000 lb. per sq. in., but which is totally lack¬ 

ing in ductility. Can there be serious doubt as to what his answer would 
be? Every specification relating to skyscraper construction emphatically 
insists on a certain amount of ductility in the material of which the frame 
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is to be built. Yet by this first assumption we close our theory against 
this very important factor of ductility. By our definition this ‘‘exact” 
theory is limited to the extent determined by the exclusion of this one 
very important factor. 

Again we assume that the structure is continuous. A building com¬ 
posed of thousands of pieces is assumed to act as a homogeneous and con¬ 
tinuous structure! To be sure, it is difficult to allow, by any definite 
criterion, for the degree of discontinuity at the connections. However, to 
assume there is continuity only because we cannot estimate the degree of 
discontinuity would seem to be rather loose reasoning. 

Assumptions 4 and 5 are the star assumptions. We propose to design 
for gusset plates and begin by assuming that they do not exist at all! 
Of course, we must, as previously defined, frequently make assumptions 
dictated by the limited capacity of the human mind, but we should not 
lose sight of the fact that any such assumption detracts from the validity 
of our theory. In the author’s opinion the “exact” analysis of wind 
stresses, on the basis of the theory of elasticity and the assumptions that 
are usually associated with it, is completely invalidated by any one of 
the first five assumptions we have listed. The so-called “exact” method 
is saved from the discard only by the fact that the theory of elasticity is 
not an independent theory, but one that supplements the theory of 
equilibrium. As long as the material is ductile and the conditions of 
equilibrium (assumption 9) are applied, the “exact” method of analysis 
of wind stresses in skyscrapers fails to make a valid contribution. It 
merely befogs the issue. It does not, however, make the conclusions 

invalid. 
In example 24, page 88, we analyzed the stresses in a Vierendeel truss. 

We ignored possible brackets, fillets, or gusset plates, in the corners. 
Furthermore, we ignored the thickness of members and measured the 
dimensions to center lines of the members. That analysis is included in 
this book because some reader may look for it in the index and because 
it is a more or less standard analysis. 

A well-trained engineer should know the analysis of the Vierendeel 
truss. How often or to what extent he should apply such analysis is 
another question. Applying to the skyscraper frame the same reason¬ 

ing as that presented in the analysis of the Vierendeel truss, one may, 

without great difficulty, set up hundreds of simultaneous equations. In 

a one-hour talk before his colleagues in the University of Michigan, the 

author accounted for the sixty simultaneous equations necessary for the 

solution of wind stresses in a ten-story, four-bent office building. He 

accounted for them, but did not solve them. He did not solve them for 
two reasons: first, because he does not possess the endurance to solve 
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sixty simultaneous equations; second, he is satisfied in advance that the 
result of the hypothetically '^correct'^ solution is utterly valueless. 

These remarks are not primarily directed against the validity of the 
elastic energy theory. Rather are they directed against the present con¬ 
ventional status of the science of strength of materials. If the author 
did not value the theory of elasticity in general and the theory of elastic 
energy in particular, he would not have written this treatise. The theory 
of elastic energy is exceedingly valuable, but it is restricted by all the 
limitations that circumscribe the theory of elasticity. As long as the 
theory of elasticity is to be used, the elastic energy theory is at once the 
simplest, the most comprehensive, and the easiest to apply. If one 
insists on making the nine assumptions enumerated above in the analysis 
of wind stresses, the method given in the solution of example 24 covers 
the ground adequately. In the author^s opinion the theory of strength of 
materials is notoriously backward in recognizing the limitations of the 
theory of elasticity. Practice in designing offices is several laps ahead of 
textbooks on strength of materials. 

When, in 1917, Mr. N. C. Kist was appointed to the chair of '^Con¬ 
structions in Iron and Steel’’ at the Technical University of Delft, Hol¬ 
land, one of the leading technical schools of Europe, he chose for his 
inaugural address the following topic: "Does a Stress Analysis, Which 
Assumes Elastic Behavior of Material, Lead to Economical Construction 
of Bridges and Buildings?” East’s conclusions were that, so far as 
bridges are concerned, it does not. In this conclusion the author con¬ 
curs.* 

Although the theory of elastic energy is shown to be deficient in the 
analysis of wind stresses in skyscrapers, it applies with a very high 
degree of exactness in the analysis of hairsprings in watches. In the 
analysis of rings loaded by their own weight and subject to hydrostatic 
pressure (examples 29 and 30) the theory may be some 20 per cent in 
error. The cause for this error lies in the assumption that the principle 
of superposition applies, whereas, as a matter of fact, flexible rings will 
materially deform before the elastic limit stress is reached. Yet the 
rings must be flexible, if the simple theory of bending stresses is to apply 

to curved beams. This same theory, however, as used in the analysis of 

a cylindrical shell suspended in a liquid without concentrated loading 

applies with a very high degree of exactness. This is true because the 

result shows a zero bending moment. This, in turn, gives us zero 

* See ‘'Theory of Limit Design’' by J. A. Van den Broek, Transactions, Am. Soc. 
C.E., Vol. 105 (1940), page 638. 

See also "Theory of Limit Design” by J. A. Van den Broek, Journal of the 
Western Society of Engineers^ Vol. 44, No. 5, October, 1939, page 245. 
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changes from the original assumed shape, and thus we have agreement 
with the assumptions upon which the theory is based. The fact that 
a theory of stress analysis is correct during the initial stages of load 
application is of limited value in the theory of strength. To be en¬ 
tirely satisfactory, the theory must hold good for stress values nearly 
as great as the elastic limit stress. 
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Parabolic Areas and Their Properties. 

Circular Arc and Its Properties. 

/-t/2 

/ *ds = — (i-2) = 0.5708R^ 
•'o 2 

^ yds = 
0 

^ir/2 p3 

/ (Stt - 8) = 0.3562/23, 
0 4 

/ y^ds = -R^ = 0.7854R*, 
•/q 4 

jfTrl2 

r xyds= 0.5 /23, 
0 

rvl2 

/ 2/** ds = 0.3333B<, 

^ir/2 j^4 

/ xy^ds = — (3ir - 4) = 0.4521R<, 
0 12 

J^»/2 
' j^ds= 0.6667B^ 
0 

y-ir/2 p4 

y ds = — (15x - 44) = 0.26035^. 

= 0.7854R* 

0.5 B» 

0.3333B< 

0.6667B‘ 



APPENDIX II 

LONGITUDINAL SHEAR STRESSES IN CIRCULAR PIPES 

Figure a represents a hollow circular beam with a relatively thin wall, 
in which t represents thickness of wall, Zi inner radius, and 22 outer radius 

Me 
(Z2 - 2i = /). We assume that the formula s = -y, and the assumptions upon 

which this formula is predicated, are applicable. The bending stresses will vary 
linearly and appear as shown in Fig. c. If we consider an element of the beam 

bounded by the planes A, B, and C as shown in Figs, d and e (planes C are 
defined by the angle a measured from the vertical diameter), then the bending 
stresses on this element will appear as shown in Fig. e. The total normal force 
on plane B (Fig. e) is 

Mhyda 

I 

The corresponding force on plane A is 

*/yi 

Mayda 

The difference between these two forces must equal the sum of the shearing 

forces, Fci acting on the planes C. Thus: 

/ 

{Mg - Mh)yd<i 

I 
(a) 

In the foregoing equation the force Fc is multiplied by the factor 2 because it is 
bounded by the two planes C, each an angle a removed from the vertical diameter. 

A question arises about the direction and distribution of the shear stresses, s,, 

that are involved in the building up of the shearing force Fc« 
271 
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Prom the well-known principle that shearing stresses always occur in pairs, 

at right angles to each other, it follows that at the boundaries zi and Zi the shear 

stresses can have no components normal to these boundaries and must therefore 
be acting in a direction normal to the radius (Fig. d). If Z2 — Zi, or t, though 
relatively small, is large enough to prevent secondary failure by buckling, we 

may assume the shear stress s, to be uniformly distributed over the area cut by 

plane C and bounded by planes A and B. Thus 

Therefore, from equation (a) 
Fe = s,tdx. 

Therefore 

„ r«*dM ^ „ r^dM 
2sjdx = I yda = 2 # — z cos p mp. 

Jyi ^ Jo ^ 

s, = — zH sin a. 

Q>) 

(c) 

dJIf 
Here z represents average radius; fedjS = da, and — =7. Since, for small 

dx 

values of t, I may be written tzH, 

s, = 
7 sing 

vzt 
id) 

As previously argued, the shear stresses, on the longitudinal plane C and on the 
transverse plane A at the intersection of planes A and C, are equal in intensity. 

Therefore equation (d) which gives the value of the longitudinal shear stress on 

plane C also gives the value of the tangential shear stress on plane A. 



PROBLEMS 

ELASTIC DEFORMATIONS OF FRAMES 

1. In the frame shown: 
Bar a is 2 sq. in., cross-sectional area. 
Bar & is 4 sq. in., cross-sectional area. 
The modulus of elasticity E is 30,000,000 lb. per 

sq. in., or 15,000 tons per sq. in. 
Find the displacement of point B. 

Ans. Ay = 0.048 in. 
A* = 0.00925 in. 

B 2. In the frame shown: 
Bars 6, d, and e are 2 sq. in. each, cross-sec¬ 

tional area. 
Bars c, /, and ^ are 5 sq. in. each, cross-sec¬ 

tional area. 
The modulus of elasticity E for all bars is 

30,000,000 lb. per sq. in., or 15,000 tons per sq. in. 
(а) Find the ^splacement of point C. 

Ans, Ax = 0.0261 in. 
Ay == 0.0768 in. 

(б) Find the displacement of point D, 

Ans, Ax = 0.0094 in. to the left. 
Ay = 0.0184 in. downward. 

3. In the truss shown: 
The cross-sectional area of each bar is 2 sq. in. E is 30,000,000 lb. per 

sq. in., or 15,000 tons per sq. in. 
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(а) Ignoring the loads at points B and E, find the vertical displacement 

of point D, 
Ans. Ay = 0.123 in. 

(б) Ignoring the load at point D, but with loads at B and E acting, find 

the vertical displacement of point D. 
Ans, Ay = 0.0582 in. 

(c) Assuming all loads to be acting as shown in sketch, find the vertical 

displacement of point O. 
Ans, Ay = 0.181 in. 

4. In the truss shown: 
Bars a, 6, c, and h are 20 sq. in. each cross-sectional area. 

Bars dj e, /, and i are 2 sq. in. each cross-sectional area. 

The modulus of elasticity E is 15,000 tons per sq. in. 

Find the vertical displacement of point C and of point B, 

Ans, Ac = 0.153 in. 

Ab = 0.25 in. 

5. The frame shown in the accompanying sketch 
is statically determinate, pin-connected at points 
A, B, C, D, Ey and F, 

The modulus of elasticity E for all bars is 15,000 
tons per sq. in. 

The areas of bars a, c, d, /, and h are 2 sq. in. 
each. 

The areas of bars 6, e, and g are 4 sq. in. each. 

Find the vertical and horizontal displacement of 

point C under the action of the loads applied at 

points B, Cy Dy and E. 

Ans, Ay “ 0.0352 in. 

Ax = 0.022 in. 
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REDUNDANT FRAMES 

6. The frame shown in the sketch consists of five bars, pin-connected at 
points A, B, C, and D. A concentrated vertical load of 6 tons is applied at C. 

(а) Assume the cross-sectional area of bar d to be very large and the 
cross-sectional areas of the remaining bars to be equal. 
Find the force in bar c. 

Ans. iSc = — 5 tons. 

(б) Assume cross-sectional area of bars a and 
6 to be 2 sq. in. each, and of bars c, d, and e to be 
4 sq. in. each. 

Find the force in bar c. 

Ans. Sc 5.285 tons. 

(c) Assume cross-sectional area of all bars to 
be equal. 6 Tons 

Find the force in bar c. 

Ans. Sc 4.667 tons. 

(d) Assume cross-sectional area of all bars to be 2 sq. in. each. Assume, 
further, that bar d alone is heated 100° F. 

Coefficient of expansion X is 0.000005. 

Find the increment of force in bar c due to the change in temperature of 
bar d. 

Ans. Sc-+ 1.67 tons. 

7. A square frame is pin-connected at the comers 
and braced by two diagonals. 

The frame transmits a load Q acting in the 

direction of one of the diagonals. 
The cross-sectional areas of all the bars are 

equal. 
Find the force in the diagonal e and in the side bar o. 

Ans. Se =+ 0.707Q. 

Sa =+0.207Q. 

8. A hexagonal frame is braced by six spokes, pinned at the center and at the 

comers of the frame. A load Q is applied in line with two of the spokes. 

The cross-sectional areas of all the bars are equal. 

Find the forces in the bars marked a, 6, and c. 
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9. In the wheel shown in the sketch: 
Assume the segments of the rim and the spokes to be pin-connected. 

Assume the segments of the rim to be straight 

bars. 
Assume the spokes to be able to carry tensile 

stresses only. 
The wheel is loaded with two equal and op¬ 

posite forces Q, acting in the direction of one of 

the spokes. One of the forces is applied at the 
center and the other at the periphery of the 
wheel. 

Find the forces in the wheel. 

Ans, Sb — Sc = Sd Qj 
^a = 0; 

S,=.Sf^S, = SH = 
2sin- 

2 

10. In the wheel described in problem 9: 
Assume the spokes as well as the rim to be capable of taking compression. 
Let Cl represent the elasticity coefficient for the spokes. 

Let C2 represent the elasticity coefficient for the rim segments. 

Let n represent number of spokes. 
Find the forces in the wheel. 

Ans, <Sa = — Q 4 
Ajt^CiQ 

n{4T^Ci + n^C2y 

Sc ==Sd = 
+4w^CiQ 

n{A!r^Ci + n^C2) 

Se = SH = 
-2irCiQ 

^^Ci + n^C2 

11. The figure shown in the sketch represents the simplest kind of two-hinged 
arch. The structure consists of five bars, pin-connected at the points A, B, C, 

and 2>. 
The cross-sectional areas of 

bar a and d are 25 sq. in. each, 

of bars b and e, 15 sq. in. each, 

and of bar c, 10 sq. in. 

Find Hy the horizontal com¬ 
ponent of the reaction at either 

point A or 2). 

Ans. ^ = 0.88Q. 
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12. In the two-hinged spandrel-braced steel arch, shown in the accompany¬ 
ing sketch, all the bars are straight and are pin-connected. 

The joints of the bottom chord lie on a parabolic curve. 
The top chord is horizontal. 

Figures to the left of the center line represent lengths in inches. 
Figures to the right of the center line represent areas in square inches, 

(a) Find the horizontal component H of one of the reactions. 

Ans. H = 8.8Q. 
(р) Construct the influence diagram for H. 
(с) Find Hf assuming a change in temperature of 100° F. 

13. The sketch represents a continuous truss supported on four unyielding 
supports. 

The bars of which the truss is composed are of equal cross-sectional area, 
and constant modulus of elasticity. 

All members are pin-connected. 
The diagrams represent the influence lines for all four reactions. 

Check the values on the influence diagrams. 
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14. The figure represents one bay of an airplane fuselage. 
Planes ABC D and E F G H are assumed to be rigid. 

B 

A total torque of 4500 in-lb. is applied to one end of the fuselage (6Qi + 

I2Q2 = 4500 in-lb.). 
The dimensions of the members are given below: 

AE BF CG DH DE AF CF CH 

Length. 20.55 20.55 21.35 21.35 27.22 22.55 27.22 23.35 

Area. 0.07862 0.07862 0.07862 0.07862 0.06487 0.05113 0.06487 0.05113 

Find Qi and Q2. 
Ans, Qi = 194 lb. 

Q2 = 278 lb. 

RESTRAINED BEAMS, CULVERTS, AND BENTS 

In the following problems, unless otherwise stated, the reactions are assumed 
to be un3delding, the modulus of elasticity E, and the cross-sectional areas of 
the beams are assumed to be constant. 

15. A beam A-C is 10 ft. clear length. At point A it is built into a wall so 
as to be completely restrained. (A support such 

as shown at A is called a “built-in,"’ a “fixed,” 

or a “restrained” support.) At the right end C 

the beam is freely supported, that is, the beam is 

restrained against vertical displacement, but is left 
free to rotate. At point R, 6 ft. from the wall, the beam is loaded with a con¬ 
centrated load Q. 

Find the reaction at C. 

1 Q 

B 
^ 1" > c > 

Ans, Re = 0.432Q. 
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16. A round rod is bent L-shape with a clear vertical length of 10 ft. and a 
horizontal length of 3 ft. At its lower vertical end, point A, 
it is fixed, that is, it is restrained against all motion, angular 

as well as linear. At the free horizontal end, point C, the rod 
is loaded with a concentrated vertical load of 2 tons. 

The modulus of elasticity E is 15,000 tons per sq. in. 
The moment of inertia of the cross-sectional area of the 

rod is 12 in.^ 
Find the vertical displacement Ay and the horizontal dis¬ 

placement A* of point C. 
Ans, Ax = 2.88 in. 

Ay = 1.92 in. 

17. A beam is loaded and supported as shown 
in figure. 

Find the reaction at A, 

Ans, Ra = IQ. 
18. A 16-ft. beam is built into a wall, point A, 

freely supported 12 ft. out from the wall, point B, 

and loaded over its entire length with a uniformly 

distributed load w pounds per foot. 

Find the reaction at B. 
Ans. Rb = 9.5w> 

200 Lb. 200 Lb. 

19. A beam is loaded and supported as 
shown in figure. 

Find the reaction at B. 

Ans. Rb = 180 lb. 

20. A horizontal beam 5 ft. long, built in at its left end, point A, freely sup¬ 
ported at its other end, point R, is loaded with a 

horizontal load of 500 lb. through an offset 

2 ft. long. 
Find the bending moment in the beam at the 

wall support, point A. 

Ans. Ma = 500 ft-lb. 

21. An 8-in. I-beam 5 ft. long with a moment of inertia of 60 in.^ and a 

6 in. by 10 in. timber beam 4 ft. long are both built in at one end, and have their 

free ends just in contact. A concentrated load of 4000 lb. is placed at the mid¬ 

point of the wooded beam. 

The modulus of elasticity for steel E, is 
30,000,000 lb. per sq. in. 

The modulus of elasticity for wood Ev> is 
1,500,000 lb. per sq. in. 

Find the load on the steel beam. 

Ans. Rb = 688 lb. 
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22. A cantilever beam of constant cross-section and constant modulus of elas¬ 

ticity is loaded with a uniformly vary¬ 
ing load. 

Find the vertical displacement of the 
free end. 

Arts. Ay 
llwl* 

msf 

23. An 18-ft. beam is built in at its left end, point A, and supported on knife- 
edge supports at points B and C, 10 and 18 ft. from the wall. Over the span from 
A to B the beam is loaded with a uniformly dis¬ 
tributed load of 100 lb. per ft. Over the span from 
B to C it is loaded with a load of 200 lb. per ft. 

Find the reactions of the knife-edge supports. 

Ans. Rb = 1510 lb. 

Rc = 646 lb. 

24. A beam of length I is built in at both ends 
and is loaded with a uniformly varying load. 

Find the bending moment at the end of the 

beam, point A, at which the load intensity is zero. 

Ans. Ma 
wP 

lo 
m 

15* 

25. A culvert of length I and height h is loaded along one of its axes of sym¬ 
metry with two equal and opposite forces Q. The 
cross-sectional areas and the moduli of elasticity of all 

the members are assumed to be constant throughout. 
Perfect continuity is assumed to exist at the corners. 

Find the bending moment at one of the comers of 
the culvert. 

Ans, Ma 
QP 

8(h + iy 

26. A bent of length I and height h is pin-connected at the bottom. Across 

Uf Lb. per Ft. the top it is loaded with a uniformly distributed 
load w pounds per foot. 

The moment of inertia for the top member is 
hi for the legs, h. 

Find the bending moment at one of the comers. 

Ans. Ma 
hwP 

4(2A/2 + 3Z/i)’ 
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27. The culvert shown in this problem differs from that shown in problem 25 

in that it has only one axis of symmetry. In problem 

25 the moments at all four comers were equal. In 
this problem the moments at points A and B will be 
alike, but those at point A and point D will differ 
from each other. To solve problem 25 we require 

but one elastic energy equation. This problem, how¬ 

ever, will require two simultaneous elastic energy 

equations for its solution. 
Find the moment at point A. 

Ans. Ma = 
i2h + 3l)QP 

+ m + 3^2)* 

28. A bent of height h and width I is pin-connected to the ground and loaded 
with a transverse horizontal force Q applied to one 

of the comers. The moments of inertia of the legs 

and of the horizontal member of the bent all differ 
from one another. 

Find the bending moment in the bent at the 
comer at which the load Q is applied. 

Ans. Me 
^Qh/_ 3II2I3 + 2hlil2 

2 \3iI2Id “t" hlJz -f- hl\l2 ;)■ 
29. A beam is fully restrained at 

both its extremities and is loaded 
with a uniformly distributed load, w 
pounds per foot, over half its length. 

Find the bending moment at the 

support of the unloaded end of the 

beam. Ans. Ma = tIt 

30. A mill building, dimensions and properties as on sketch, is loaded with a 

load of w pounds per foot along 

tion H at the hinges. 

the slope of the roof. Find the horizontal reac 

Ans. H = 
wt^LQi + fs)7i 

2h^l2 "1“ ^hHIi ^hili 4" 2sHIi 
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31. A 20-ft. beam is completely restrained at both ends. The beam has a 

1 200 Lb. per Ft. 1 r| 
m ^ Sv ^ 

Find the maximum stress in the beam. 

constant width of 4 in., but its depth 
varies uniformly from 10 in. at the 

right end to 12 in. at the left end. 
The beam is loaded with a uniformly 
distributed load of 200 lb. per ft. 
over its entire length. 

Ans, The maximum stress in the beam is 1430 lb. per sq. in. and occurs 
at point B, 

32. A-C is a wooden beam 20 ft. long, of circular cross-sectional area 12 in. 
in diameter. DE is a wooden 
beam 10 ft. long, of circular cross- 

sectional area 10 in. in diameter. 

The two beams are pin-connected 
by a steel bar B-E, of 1 sq. in. 

cross-sectional area and 5 ft. in 
length. Both beams are loaded 
with an upward uniformly dis¬ 

tributed pressure of 100 lb. per ft. 

The modulus of elasticity for the wood is 1,000,000 lb. per sq. in. 
The modulus of elasticity for the steel is 30,000,000 lb. per sq. in. 

Find the force in the bar B-E, 
Ans, 437 lb. tension. 

A 1 5 C 

1 100 Lb. per Ft. 
7 flOjtTH f I f f 

6'0" 

D f \ 

1 TFnmHtrnt 
100 Lb. per Ft. ^ in'-” 10 0-^ < 10 0 ^ 

4. 

CURVED BEAMS 

The theory of curved beams in this book is predicated upon two mutually 
contradictory assumptions. It is assumed on the one hand that the theory of 

curved beams is essentially the same as the theory of straight beams, provided 
that either the curvature of the beam or the thickness of the curved beam is 
relatively small. On the other hand it is assumed that the law of superposition 
holds. This is equivalent to saying that the ultimate deformations are relatively 
small, and that the structure maintains essentially its original shape throughout 
the loading process. 

It is obvious that, the nearer we approach fulfilment of the first assumption, 

the more we violate the second. In problem 33, for example, we have a ring 

loaded with two equal and opposite forces acting along a diameter. In this cir¬ 

cumstance, if the deformation of the circular ring that takes place during the 

loading process may be ignored, the values obtained for bending moments, dis¬ 

placements, or stresses would be the same, except for sign, regardless of whether 
the loading were directed towards the center or away from it. However, if the 

loads are vertical and acting towards the center, then the horizontal diameter 

will increase and the moment at A will be greater than the one obtained by means 
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of a theory which neglects to take this change of dimensions of the structure 
into account. Vice versa, if the vertical loads are acting away from the center, 

then the horizontal diameter will decrease and the moment at A will be smaller 
than that coniputed on the basis of a theory which neglects to take this change 
of dimensions into account. 

For thin beams and small loads the law of superposition holds, and the stresses 
may be computed with a high degree of accuracy without any further adjust¬ 

ments. However, we are as a rule interested primarily in maximum loads and, 

therefore, in elastic limit stresses. In problems which involve relatively large 
distortions, an improved analysis may be made by first computing the appro::?- 

mate distortions under the action of loads of a value near the breaking load. 

Then, on the basis of the new shape of the structure thus obtained, recompute 
the values of moments and stresses desired. 

The answers to the problems 33 to 44 are computed on the assumptions that 

the law of superposition holds and that the curvature of the beams is relatively 
small. 

33. A circular ring is loaded with two equal and opposite loads Q acting along 
a diameter. 

34. A circular ring is loaded along the top and bottom with a uniformly dis¬ 

tributed load w lb. per horizontal ft. 

W Lb. per Horizontal Ft. 
Note. The load is uniformly distributed relative 

to the diameter, not relative to the length of the 

ring. 

Find the moments at A and B, also the dis¬ 

placements of these points. 

Ans, Ma 
wR^ 

T” 

A, 
wR^ A __ 

l2El‘ 
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is hinged at both extremities and loaded along the 
axis of symmetry with a concentrated load Q. 

Find the horizontal component of one of the 
reactions. Also find the vertical displacement of 
the point of application of the load. 

Am. H = -- 
TT 

a.-<y-r8^,-1)gg,0.019g. 
Stt BI EI 

36. Problem 36 differs from problem 35 in that the extremities of the beam 
are built in, fixed, instead of being pin-connected. 
Whereas in problem 35 the moment at A is zero, 

in problem 36, at point A, there i^ an unknown 
moment Ma for which we have to solve. In 
problem 35 one elastic energy equation suffices for 
its solution, whereas here we have need of two 

elastic energy equations. 
Find: the horizontal component of one of the reactions; the vertical dis¬ 

placement of point B] the bending moment at one of the reactions. 

Am. H = 0.46Q; A, = 0.0117 Ma = O.lllQR. 

35. A semicircular beam 

37. A semicircular beam is built in at its extremities and loaded with a load 
uniformly distributed with respect to the plane of support. 

Find the horizontal component of the reaction 

at one end, the moment at one end, and the 
vertical displacement of point B the center of the 
beam. 

to Lb. per Horizontal Ft. 

Am, H = 
wR 

Mo 

(7r2-8) 3 

= 0.106w;/?2. 

El' 

= 0,5QwR. 

A„ = 0.0068 

38. A semicircular beam is built in at both its extremities, points A and C. 

The beam is eccentrically loaded with a concen¬ 
trated load Q, The load acts along a line passing 

through the midpoint of the horizontal radius. 
Find the horizontal component of the reaction; 

the bending moment at the right support. 
Am. H = 0.312Q. 

Ma - 0.1127QR. 
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39. A two-hinged curved beam is supported at two points differing 20 ft. in 
elevation. The center line of the beam consists of 
two quarter circles, one of 40-ft. and the other of 
60-ft. radius. A concentrated load Q is applied at 
the junction of the two curves. 

The beam is of uniform cross section and 
has a uniform modulus of elasticity throughout. 
Find: the horizontal component of a reaction; 

the moment at the point of application of the load. 
Ans, H = .304Q. 

Mb = 9.41Q. 

40. A two-hinged curved beam with a span of 120 ft. and a rise of 20 ft. is 
loaded with a concentrated load of 3000 lb. applied at the midpoint. 

Find H, the horizontal component of a reaction. 
Q * 3000 Lb. Ans. Assuming the center line of a beam to be 

a parabola, and further assuming that ds may 

^ be replaced by dx, then H = ^ ^ = 3515.7 lb. 
L=120' ^ 

Assuming the center line of the beam to be a 
parabola without making the simplifying assumption that ds = dXy then H = 
3652.8 lb. Assuming the center line of the beam to be an arc of a circle and 
further assuming that ds may be replaced by dx^ then H = 3404.7 lb. Assuming 
the center line of the beam to be an arc of a circle without making the assump¬ 
tion that ds = dXf then H = 3518.7 lb. 

41. A circular ring of radius r rotates with an angular velocity w about a 

vertical diameter. 
The weight per unit volume of the 

ring is u pounds per cubic foot. 
The cross-sectional area of the 

ring is A. 
Find the bending moments in the 

ring at the top, point jB, and at the side, 

point C. Also find the increase in length 

of the horizontal radius OC. 
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42. A ring is rotated about an axis perpendicular to its plane with an angular 
velocity o). It is completely restrained against radial motion by spokes. (The 

elongation of the spokes is to be ignored.) Find the tension, P, in the spokes 
and the moments Ma and Mb respectively, in the ring. 

4 A 

i is the radius of gyration of the cross-sectional area of the ring about the neutral 
axis perpendicular to the paper. 

CYLINDERS SUPPORTED IN EARTH 

The analysis of stresses in cylinders supported in earth is a complicated 
process. Such cylinders as large sewer sections are probably built of concrete, 

are of non-circular cross section, and have variable thickness. Stresses in con¬ 

crete structures are generally computed on the assumption that the concrete is 

elastic, although in fact it is not. The difficulty arising from the facts that the 

cylinder does not have a circular cross section, and that its walls are of variable 
thickness, may be overcome by using the method of arithmetical summation as 

exemplified in examples 29 and 30. One serious obstacle remains in that earth 
loading on top of the cylinder and the earth reactions against the bottom of the 

Qvlinder may be difficult to determine with any degree of certainty. 
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43. In problem 43 we assume that the cylinder is of circular cross section and 
of constant thickness, and that it maintains essentially its circular shape while it 
is being loaded by being filled with a liquid. It is assumed that the cylinder is 
supported in earth up to half its height. Furthermore, it is assumed that the reac¬ 
tion developed by the earth is directly pro¬ 
portional to the compression to which the 
earth is subjected. Thus, as the cylinder 
moves downward a distance A-B, the earth 
at point A is compressed an amount D-B. 
The earth pressure p, then, at that point 
is given by the expression p — C cos B, 
in which C is a constant that must be 
determined. 

Let u represent the weight of a unit 
volume of liquid with which the cylinder is 
being filled. The diagrammatic sketch 
shows the hydrostatic pressure on the 
inside of the cylinder as well as the earth 

pressure on the outside. Furthermore, the 
bending moments at top and bottom and on 
the side of the cylinder, and other answers 

to the solution of the problem are marked 

on the sketch. The horizontal force at both 
uR^ 

top and bottom of cylinder is Hi -- 
A 

The student is to check the value for Afi, and for Bi, and is to show that 
2 

the bending moment and horizontal force at the top of the cylinder are equal to 

those at the bottom. 

PIPE BENDS IN STEAM-PIPE LINES 

As steam is injected into steel pipes, they tend to expand. With the modern 
tendency towards the use of superheated steam, high temperatures and large 
pipes, the expansion forces set up in steam-pipe lines may be of great magnitude. 
This expansion may be provided for in a variety of ways of which the pipe bend 
is one. Whereas in the majority of problems in this book we have evaluated 
deformations as caused by loads, in pipe bends the problem is reversed in that 

we compute the loads caused by the deformations to which the pipe bend is 

subjected. Suppose X to be temperature coefficient, Xi the overall length of the 

pipe; then X^Xi represents the deformation in the pipe, provided that it is unre¬ 

strained. If the pipe is restrained, the expansion joint, or the pipe bend, must 

absorb this deformation X^Xi. 

The problem, then, is to compute the forces induced in a pipe bend which is 

subjected to a deformation X^Zi. 
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44. The pipe bend shown in the sketch is symmetrical with reference to the 
vertical center line. The bending moments Afi are such as to prevent rotation 

of the ends. The modulus of elasticity and moment of inertia for all sections of 

the pipe are constant. 
Find the moment M i and the force Q, induced at points A and X, as a function 

of the pipe constants and temperature change, ignoring the effects due to direct 

compression. 

Note. The bend shown in the sketch represents a rather general case of a pipe 
bend. If Afi = 0, then the ends may be said to be pin-connected. By ysxymg the 
values for Ri, R2, and <^, the solution for a variety of bends is obtained. This problem 
constitutes a part of a report on ^The Elasticity of Pipe Bends,” submitted by the 
author to the Detroit Edison Co. 

Am. X«Xi = = + 

4“ RiR2{Ri<I> — 2(Ri + R2)(cos + 2R2 sin 

+ («1 + BiY Biicos^ 0)0 + (1 - 2 cos 0) ^ + (cos* 0) | 

+ Bj* — I Bs sin 20 - Bi sin 20| j - j^Bi*(0 — 8in0) 
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In case L = 0, S = 0, Ri = R2 and ^ , then Mi = QR and 
z 

3QjrE® 2Q>rJ2» QkR* 

El El El ' 
Stt 

In case L = 0, S = Oj Ri = R2 and <#> = — then Mi = 1.707QR and 
4 

_ 39.89Q/23 27A6QR^ 12.43022* 

^ El El El ^ 

BRACED BEAMS 

45. A wooden frame braced by a steel tie rod is loaded with a concentrated 
load Q as shown. 

Et = 29,000,000 lb. per sq. in. 
Ey, = 1,600,000 lb. per sq. in. 

Find the force S acting in the tie rod. 

Ans. S = 0.198Q. 
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46. A rectangular wooden beam 8 in. by 10 in., loaded with a uniformly dis¬ 

tributed load w pounds per foot over half its length, is braced by a li-in. round 
steel rod and a 3 in. by 8 in. by 4 ft. 0 in. wood post. 

W Lb. per Ft. 

Ea = 29,000,000 lb. per sq. in. and 

Ew = 1,600,000 lb. per sq. in. 
Find the compression S in the wood post. 

Arts, S = 13.9w. 

47. A 3i-in. standard pipe is braced by steel rods as shown. 

E is the same for pipe and rods. 

Find the tension in the vertical rod. 
Ans. S = 0.5570. 

COMBINED TORSION AND BENDING 

48. A rod is bent in a right 
angle, one end is fixed, and the 

other end is loaded with a concen¬ 

trated load 0 acting perpendic¬ 

ularly to the plane of the rod. 

Find A*, the displacement of 
the point of application of the 

load 0 in the direction of Q, 
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49. A round rod of radius r in the shape of a 360® arc of a circle of radius 
The rod is loaded with two equal and opposite forces Q, one applied 

each of the two extremities and acting perpendicularly to the plane of the 

circle. 
Find Ax, the relative displacement of the two ends of the rod. 

If £7 = 28,000,000 and G = 11,000,000 lb. per sq. in. 

A, = (0.0000000714 + 0.000000273) = 
|.4 

50. A rectangular frame is built in at both 
extremities and loaded with a concentrated 
load Q apphed perpendicularly to the plane 

of the frame, on the axis of symmetry, at 

point B, 
Find the torque Ta, acting at A in the 

plane of the wall, and the vertical displace¬ 

ment, Ae^, of point E. 

_ 
8(W?/ + 2aEl,) 

+ Q¥ - &TAb\ 
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51. A rectangular frame, of constant E and 7, is supported along one diagonal 
BD, The comer C is restrained against vertical displacement while the comer A 
is loaded with a load P. Find Aa, the vertical displacement of point A. 

Am A = Po^h\aGJ + ZhEl){hGJ + 3aP7) 

^ QEIGJib^GJ + Zabm + a^GJ + Zhami) ‘ 
When a = 6, then 

= Pa? (+ —V 
\12EI 4GjJ 

52. A circular ring of diameter D is made of a solid round steel rod of diameter 

d. The ring is supported at points B and D which lie on one diameter. It is 

loaded with a load P at point A which lies on another diameter at right angles 
to the first one. The point C, opposite point A, is prevented from tipping up. 
Find A^, the deflection of point A. 

Am. Aa 
/tt - 2 IT - 3\ 

Trd^ \ P G / 
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53. A solid, circular steel rod, radius r, is built in at G. It has a height H in 
v 

the y direction. It is bent through an arc -, radius /2i, in the xy plane. Further, 
A 

it has a length L in the x direction, and is bent through an arc 
T 

2' 

radius R2, in 

the xz plane. Finally, its length in the z 
direction is 1. It is loaded at its extrem¬ 

ity, point A, with a force P acting in 
the X direction. 

To find: the linear displacement 

of point A in the y direction, and 
the rotation of the rod at point A about 

the z axis. 
The modulus of elasticity is E; the 

shear modulus is G. The auxiliary forces 
and moment are indicated on the figure 
in order that the plus and minus signs 
in the answer may be properly inter¬ 
preted in the light of the arrowheads on 
these auxiliaries. 

Am, AAy 
PRi^ 
2EI 

Kt - 2)(L + R2) + Ri] - 
P{1 + R2yRi 

2EI 

P(l + R2yRi 
2GJ 

PH{L + Ri + R2){Ri + [H/2]) 

El 
PRx^ 

2EI 
- 2) + 

PH{2Ri + H) 

2EI 

COLUMNS 

54. A 12 in. by 3 in. 25-lb. channel (A = 7.32 sq. in., t = 0.79 in., si = 36,000 
lb. per sq. in., and E = 29.5 X 10® lb. per sq. in.) is supported on a pin at its 

right end and by a cable having a slope of 1 :10 at its other end. Find the limit 

transverse load which this beam column can carry when the lengths are respec¬ 

tively 47.4 in., 94.8 in., and 189.6 in. 

Am. wi = 2270 lb. per ft.; W2 = 560 lb. per ft.; wz = 129 lb. per ft. 
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A 

Airplane fuselage^ analysis of, 1&-26 
assumptions, 21-22 

Anti-symmetry, 95 
rule, 95 

Arch, 149-165 
assumptions in analysis of, 152-154 
effect of direct compression on, 158 
influence lines for reactions of, 151 
similarity and difference between 

cable and, 152 
temperature stresses in, 161-165 

Area X, explanation of, 48, 59 
Assumptions, classified, 264-265 

in analysis of airplane fuselage, 21-22 
in analysis of curved beam, 101 
in arch analysis, 152-154 
in elastic energy theory, 5 
relating to wind stress analysis of 

skyscrapers, 265 
Auxiliary load, general rule for applica¬ 

tion of, 65-67 

B 

Balcony, semicircular, 168-170 
Beam column, 236-244 
Beams, braced, 138-149 

effect of initial force on, 144-147 
effect of tightening tumbuckle on, 

147-149 
maximum efficiency of, 144-147 

curved, 100-137 
assumptions in analysis of, 101 
piston ring design, 104-108 
ring, loaded by its own weight, 

108-117 
subjected to concentrated loads, 

124-125 
subjected to hydrostatic pressure, 

117-122 

Beams, curved, ring, subjected to shear 
loading, 123-124 

semicircular balcony, 168-170 
deformation of, due to bending, 41-46 

due to shear, 171-173 
due to torsion, 166 

rectilinear, 64-81 
redundant, 64-137 
total elastic energy due to bending, 

46-47 
Beams of constant strength, 178-197 

leaf spring, 178-179 
spiral spring, 185-197 

available energy in, 193-194 
residual stresses in, 191-193 

Bending and direct stress, combined, 
138-165 

Bending and torsion, combined, 166-170 
Bending-moment areas and their prop¬ 

erties, 269-270 
Bending-moment diagrams, hints about 

drawing, 57-58 
Bents, 82-95 

Vierendeel truss, 88-95 
Braced beam, see Beams 

C 

Castigliano’s law, 222 
Check on computed stresses in frames, 

32-36 
Circular pipe, shear stresses in, 271-272 
Circular pipe lines, 131-137 
Column, 226-260 

beam, 236-244 
conclusions, 257-259 
criteria of strength, 226 
eccentrically loaded or partially re¬ 

strained, 245-252 
Euler’s formulas, 231-235 
failure in tension, 258 
general formulas, 258 

295 



296 INDEX 

Column, problem of colunm analysis, 
229-230 

secant formula, 245-247 
flaws in, 247, 260 

Combined bending and direct stress, 
138-165 

Combined bending and torsion, 166-170 
Comparison, of analytic integration with 

tabular summation, 100-104, 108- 
117 

of arch and cable, 152 
of formulas (1), (5), and (6), 46 
of statically determinate and statically 

indeterminate structures, 1-3 
of vertical and radial supports for 

stiffening ring of pipelines, 134,137 
Curved beams, see Beams 
Cylinders supported in earth, 286-287 

Elastic energy theory, estimate of, lim- 
itations, 264-268 

philosophy of, 94 
rule of signs, 62 

Elasticity, limitations of theory of, 4-5; 
see also Elastic energy theory 

Euler’s column formulas, 231-235 

F 

Foppl, August, ix 
quotation from, on virtual veloci¬ 

ties, 263 
Formulas: 

(1) 

(2) 

fa = 2C/Sf, 9 

T^CTU 
.16 

D 

Definition, of resilience, 176 
of statically determinate structure, 1 
of statically indeterminate structure, 

1-2 
of theory, 261 

Deformation, of beams, due to bending, 
41-46 

due to shear, 171-173 
due to torsion, 166 

of frames or trusses, 8-10 
of shafts, due to shear, 174-175 

Dirigible, 130-131 
Distinction between statically determi¬ 

nate and statically indeterminate 
structtires, 2-3 

\Let 
(3) S.—^.32 

(4) 2SJ = S0i,34 

mMds 

(8) 

-TTr f 

/tTds 
-^,166 

TL 
(9) « =70.176 

E 

Eccentrically loaded or partially re¬ 
strained columns, 245-252 

Elastic curves as influence lines, beams, 
198-216 

frames, 38-40 
units of measurement, 211 

Elastic energy, due to bending, 46-47 
due to shear, 171-175 

Elastic energy theory, assumptions, 5 
estimate of, 261-268 

advantages, 261-264 

(10) (beam column formula), 240 
(11) (beam column formula), 241 
(12) (beam column formula), 241 
(13) (beam column formula), 241 
(14) (secant formula), 247 
(15) (approximate eccentricity col¬ 

umn formula), 250 

(16) ^ 
[81 - (P/A)]L 

icEe 
255 

(17), (17a) (general column formulas), 
258 
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Frames, check on computed stresses in, 
32-36 

deformation of, 8-10 
temperature stresses in, 30-32 
with one redimdant member, 14-19 
with two or more redundant members, 

26-30 
Free-body sketches, 51-63 
Fuselage, airplane, analysis of, 19-26 

assumptions in, 21-22 

G 

Graphic integration, 53-60, 269 

discussion of j' mMdXi 60 

four basic types of loading, 54r-57, 269 

hints about drawing bending-moment 
diagrams, 57-58 

rules for, 54-68 

H 

Helical spring, 183-185 
Hydrostatic pressure, ring subjected to, 

117-122 

I 

Influence lines, by use of Maxwell’s law, 
38-40, 203-216 

definition of, 201 
for reactions of arch, 151 
See also Elastic curves as influence 

lines 

E 

Kist, N. C., 267 

L 

Leaf spring, 178-179 
Least work, theory of, 221-225 

comments on, 223, 225 
Limitations, of elastic energy theory, 

264-268 
of Maxwell’s law, 205 
of theory of elasticity, 4 

M 

Maxwell’s law of reciprocity of dis^ 
placement, for beam, 198-200 

for truss, 36-38 
for use in influence lines, 38-40, 

203-216 
advantage of, 40, 219-220 

limitations of, 205 

P 

Parabolic areas and their properties, 270 
Pin-ended spiral spring, 195-197 
Pipe, afloat with top surface awash, 126 

flowing full and supported along invert 
line, 126 

subjected to hydrostatic head, 126 
submarine or dirigible analyzed as, 

130-131 
suspended and loaded along center 

line, 130 
suspended in a liquid, 130 

Pipe lines, circular, 131-137 

saddle support of, 133-i34 

stiffening ring of, 133 

Piston ring design, 104r-108 

Principle of superposition, 218-219, 

226-229 

rule for applicability of, 229 

R 

Rectilinear beams, 64-81 
Redundant beams, 64-137 
Redundant frames, with one redundant 

member, 14^19 
with two or more redundant members, 

26-30 
Residual stresses in spiral spring, 191- 

193 
Resilience, 176-197 

beams of constant strength and maxi¬ 
mum, see Beams 

definition of, 176 
Rings, see Curved beams 
Rule, of anti-symmetry, 96 

of application of auxiliary load, 65-67 
of signs for elastic energy theory, 62 
of ssmimetry, 95 
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S 

Saddle support of pipe lines, 133-134 
Secant formula, 245-247 

flaws in, 247, 250 
Semi-graphic integration, see Graphic 

integration 
Shafts, 17^175 
Shear, deformation due to, 171-175 

of beams, 171-173 
of shafts, 174-175 

elastic energy due to, 171-175 
of beams, 171-173 
of shafts, 174^175 

stresses in circular pipes, 271-272 
Signs, 60-63 

rule for elastic energy theory, 62 
Spiral spring, see Spring, spiral 
Spring, helical, 183-185 

leaf, 178^179 
spiral, 185-197 

available energy in, 193-194 
pin-ended, 195-197 
residual stresses in, 191-193 

Statically determinate structures, see 
Structmes 

Statically indeterminate structmes, see 
Structm^ 

Steam pipe lines, pipe bends in, 287-289 
Stiffening ring of pipe lines, 133 

comparison of vertical and radial sup¬ 
ports for, 134,137 

Stresses, temperature, in arch, 161-165 
in frames, 30-32 

Structures, distinction between statically 
determinate and indeterminate 

structures, 2-3 

Structures, statically determinate, 1-2 
characteristics of, 2 
definition of, 1 

statically indeterminate, 2-4 
characteristics of, 3 
definition of, 1-2 

Submarine, 130 
Superposition, principle of, 218-219,220- 

229 
rule for applicability of, 229 

Symmetry, 95 
rule, 95 

T 

Temperature stresses, in arch, 161-165 
in frames, 30-32 
in steam pipe lines, 287-289 

Theorem of three moments, 79-81 
Theory, of elasticity, limitations of, 4 

of least work, 221-225 
comments on, 223, 225 

of limit design, spiral spring, 191-194 
Three moments theorem, 79-81 
Tools of engineering mechanics, 51-63 

free-body sketches, 51-53 
semi-graphic integration, see Graphic 

integration 
signs, 60-63 

rule for elastic energy theory, 62 
Torsion, combined bending and, 166-170 
Truss, see Frames 

Vierendeel, 88-94 

V 

Vierendeel truss, 88-94 
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