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ABSTRACT

The pricing of options is a fairly complicated aspect of applied finance that has been

getting a lot of attention. Investigating the sensitivities of the price of an option with

various parameters known as Greeks are as important as pricing an option. Knowing how

option prices fluctuate allows a trader to mitigate the risks of holding an option. For trading

an option various analytical and numerical approaches have been developed to compute

its price. Yet the pricing of options is not trivial and has many complexities thus it still

remains a topic open to research. In this thesis, we develop more simple and efficient

numerical approaches to compute the price and Greeks of various option pricing problems.

It comprises of eight chapters.

The fundamental components of option pricing will be covered in the first chapter. It

all starts with the idea of a financial derivative, option, its classification, and its features.

Then, to set the groundwork for estimating the fair price of an option, we introduce the

well-known scientific option pricing model known as the Black–Scholes option model.

The chapter will then move on to some basic concepts in numerical analysis, as well as the

numerical complexities in solving the Black-Scholes PDE.

An approach based on the wavelet approximation is developed in Chapter 2 for

European vanilla options. In it, the Haar basis functions constructed by simple block

pulse functions are used to generate the solution of the Black-Scholes PDE. As the payoff

function (terminal condition) for the European option problem is discontinuous in nature

thus its Greeks result in spiked functions. To this end, the Haar wavelet method is

appropriate to compute the Greeks since the discontinuous nature of the Haar wavelets

gives a better approximation of the spiked functions. Also, the present method explicitly

provides the values of all derivatives of the solution function, making the option Greeks

easy to approximate. Also, we will prove the convergence of the proposed scheme and

implement the algorithm with a variety of examples.

In Chapter 2, we investigate the Greeks of American options. Even though tractable

solutions can be obtained for European option pricing in most for most of the methods,



this is not possible for American options. Since the American options result in a free

boundary value problem with a discontinuous payoff and non smooth Greeks. Therefore

to investigate this problem we have constructed the novel Haar wavelet based method

for various such option pricing problems Also in this chapter on the American call and

put options, the wavelets’ multi-resolution approach and the proposed wavelet scheme’s

convergence are thoroughly examined. Later in this chapter to demonstrate the competency

and resilience of the current method, the wavelet analysis is accompanied by informative

examples and graphical representations.

To explore the exotic options, and to deal with the discontinuity of payoff and Greeks

a wavelet based approximation technique is developed. The proof of the consistency and

stability of the proposed method are given and it has been shown that the proposed method

is the first and second-order accurate in the temporal and spatial directions, respectively.

Several numerical examples of distinct binary options have been taken into account,

confirming the theoretical findings (consistency and stability).

Extending the work to higher dimensions, we have considered the multi-asset option

pricing model. The two dimensional Haar wavelet method is constructed to study the

solution to this problem and to investigate various hedging parameters. To explore these

financially relevant problems systematically, the final value problem is reformulated into a

less cluttered dimensionless initial value problem. Also, it has been shown that irrespective

of the problem’s geometry, the proposed method is highly accurate and the time taken to

get this level of accuracy is significantly less.

The accuracy in numerical analysis plays an important role thus in Chapter 6 a highly

accurate orthogonal spline collocation approach is provided to improve the precision

of the approximation in space. Furthermore, because the suggested problem includes

non-smooth underlying data, we have examined the Rannacher time-marching scheme

instead of the BE and CN methods to increase time accuracy. unlike wavelet methods,

the present approach has a higher order of convergence also as in wavelet methods to

handle spiked payoff and Greeks we have used a non-classical time marching scheme. To

validate the performance and accuracy of the current strategy, numerical experiments are

x



conducted for call and put American option pricing situations.

It’s worth noting that the time derivatives as fractional are catching more attention

these days because integer-order derivative base models would miss some important

historical details. Due to their nonlocal nature, fractional derivatives, on the other hand,

are highly versatile for defining the behavior of differential equations and adding historical

information. Therefore in Chapter 7, we will move on to the fractional order option

pricing problems. In this chapter a time fractional constant elasticity of variance model is

considered. Its importance over the standard Black-Scholes model will also be explained.

To solve this model the Atangana-Baleanu Caputo operator is used in time and a finite

difference scheme is considered in space. The stability analysis of the proposed scheme

will be provided. Two test problems will be considered to validate the theoretical results.

xi
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Chapter 1

Introduction

1.1 Background
Finance is the management of wealth and includes topics like investing, borrowing, lending,

budgeting, saving, and forecasting [1–3]. The financial industry is usually one of the most

important parts of a country’s economy. The wave of globalisation and liberalisation has

seen multiple increases in the amount of international trade and business during the last

decade. As a result, global demand for international money and financial instruments has

risen dramatically.

1.1.1 Financial derivatives

A derivative is a financial instrument whose value is determined by the value of the

underlying assets or group of assets which means a derivative has no independent value,

its value is entirely derived from the value of the underlying asset. Thus, the security of a

derivative contract is the underlying asset. This could be a derivative value stock, bond,

currencies or other hybrid securities [4–6]. Most financial derivatives are just mixtures of

older generation derivatives and/or regular cash market instruments, rather than innovative

new products. Derivatives markets are vast and rapidly expanding around the world, and

1



Chapter 1

Figure 1.1: Representing different types of derivatives

their expansion in developing countries is likely to be even faster. Derivative trading,

which was first introduced in India in the mid-2000s, has become an inextricable feature of

the stock markets. The derivatives market operates in the same way as any other financial

market, with three main types of participants:

1. Hedgers. Hedgers are traders who want to secure themselves against the danger of

price fluctuations. They are always searching for new ways to pass this risk on to

those who are ready to take it.

2. Speculators. These are those who have an opinion on the market’s future trajectory.

They predict whether prices will rise or fall in the future, and then buy or sell futures

and options to profit from the underlying asset’s future price changes.

3. Arbitragers. These are the derivatives market’s third most prominent players. They

invest in financial markets in order to obtain lower-risk profits. Arbitragers are

always looking for a position with minimum risk.

Note. The key distinction between derivatives and shares is that, although shares are

assets, derivatives are typically contracts (with the exception of warrants and convertible

bonds, which are assets).

Basically, there are four types of derivatives: options, futures, forwards, swaps [7].

Each of these derivatives allows investors to lodge their money in a variety of ways,
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ensuring both the preservation of their initial investment and the development of further

returns. It’s the finest instrument for investors who want to forecast their cash flows in the

future, but it can also have a market impact. In the long run, derivatives assist investors in

increasing their savings and investments. It aids in the transfer of risks from risk averse to

risk takers. Modern derivative contracts are made up of many different combinations of

these four fundamental categories, resulting in incredibly complicated contracts.

1.1.2 Options

An option is a type financial derivative that gives its owner the right but not the duty to sell

or acquire an underlying asset at a defined price (strike price) on or before a certain date

(expiration date) [8, 9]. Because of this, options typically require you to pay a premium

representing a fraction of the agreement’s value known as the option premium. Options

are of two types - calls and puts. Calls give the buyer the right but not the obligation

(compulsion) to buy a given quantity of the underlying asset, at a given price on or before

a given future date. Puts give the buyer the right, but not the obligation to sell a given

quantity of the underlying asset at a given price on or before a given date.

Option terminologies

• Premium. The price that traders pay for a put or call option contract is known as

the option premium.

• Intrinsic value. Intrinsic value refers to the value of an option that the buyer derives

from the right to exercise that option on a specific day.

• Option buyer/holder. The buyer of an option pays a premium and acquires the

right to exercise that option, but not obligated to do so.

• Option seller/writer. A premium is paid to an option seller in exchange for losing

his right to asset until it expires.

• Strike price/Exercise price. The pre-agreed price at which you can buy or sell the

stock if you choose to exercise the option.
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• Asset price. It is the current price of the underlying asset in the market.

• Interest rate. Interest rates determine the amount paid by borrowers (debtors) for

holding money from lenders (creditors).

• Dividend. It is the amount of money paid by the company to its shareholders out of

its profits.

• Volatility. It is the degree to which the price of the underlying asset fluctuates on a

regular basis.

• Expiration date/Maturity. The last day that derivative contracts, such as options or

futures, remain valid is known as an expiration date.

• Exercise date. The date on which actually the underlying asset is purchased (in the

case of a call) or sold (in the case of a put) by the option holder.

• Payoff. It is the net profit or we say the gross of the premium paid by the buyer and

received by the seller.

Moneyness of options

Moneyness refers to the market’s intrinsic worth of an option’s premium. It is a criteria

that assesses whether an option contract will profit if it is exercised promptly.

• In the money. The word “in the money” refers to an option that has intrinsic value.

• Out of the money. The word “out of the money” refers to an option that does not

have intrinsic value.

• At the money. If the options contract strike price is the same as the stock price then

it is said to be “at the money”.

Over the course of an option contract, the degree of moneyness can fluctuate.

There are numerous regulations that govern how and when the option may be exercised.

The most basic type is the “European” option, which can be exercised at a set price on a

4



Chapter 1

future date. An “American” option can be exercised at any time prior to a future date. The

aforementioned alternatives are sometimes referred to as “vanilla” options because they

are more standardised and less intriguing than “exotic” options [10].

During the last several decades the trade of options has experienced an increasing in-

terest in both scientific work and everyday life. Therefore, there is a great need of different

price calculation models to forecast the fair value of options. To better comprehend and

examine the creation of financial options and their prices, we will look at some financial

models.

1.2 Financial modelling and option pricing
We must first introduce the foundations upon which financial models [11] are built in order

to examine and understand such natural phenomenon.

1.2.1 Stochastic differential equation

We see differential equations everywhere, almost any phenomenon, whether physical,

chemical, biological, or financial, can be represented using differential equations. We

deal with deterministic differential equations in most of these phenomena, but we also get

stochastic differential equations (SDEs) in some of them. A SDE is a differential equation

which involves one or more stochastic terms, resulting in a stochastic solution [12]. The

differential equation which is resultant of the modelling of unstable asset prices S is a

SDE defined as

dS = (r − δ)S dt+ σS dWt,

where r is the rate of interest, δ is the dividend yield and σ is the volatility, whereas Wt

denotes the Wiener process which is a random process.

Wiener process. A Wiener process is a time-continuous process for t ⩾ 0 with the

following properties

1. Wt is a stochastic process.

2. W0 = 0.
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3. Wt ∼ N (0, t) for all t ⩾ 0. That is, for each t the random variable Wt is distributed

normally, with mean 0 and variance t.

4. All increments △Wt = Wt+△t−Wt (△t is an increment in time) on non overlapping

time intervals are independent.

The key role in financial modelling belongs to a concept of the fair price of options.

Nonetheless, the buyer and seller might utilise a theoretical fair price as a reference point

in their negotiations by obtaining one. The most influential mathematical model in modern

finance for option pricing is the Black-Scholes (B-S) model given by Fisher Black and

Meron Scholes [13] in 1973. The B-S equations derive their essence from the stochastic

dynamic of options and other financial derivatives.

1.2.2 The Black-Scholes model for option pricing

The B-S equation is a partial differential equation (PDE) that was developed in the

1970’s as a tool to value the price of a call or put option over time. In the situation

where the underlying assets prices follow specific stochastic processes, it describes the

relationship between the prices of the options and the underlying assets under the following

assumptions:

• Stock prices follow a lognormal distribution, which is based on the idea that asset

prices can’t go negative and are bounded by zero.

• There are no arbitrage opportunities (that is, there is no way to make a risk-free gain

at no expense).

• Buying or selling the underlying asset has no transaction fees.

• Stock returns are normally distributed therefore volatility remains constant through-

out time.

• The rate of return is a constant function.
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Let V (S, t) be the value or price of an option, assuming r be the interest rate, δ be the

dividend, and σ be the volatility then the call or put option price V satisfies the parabolic

PDE [14],
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0.

This is a parabolic PDE and is titled the B-S equation. To ensure a unique solution to a

specific type of option, final conditions at t = T and boundary conditions are required (we

always consider the option holders case).

1.2.3 European option

The option which gives buyer or seller a chance to exercise the contract only at the

maturity date is known as European option [14, 15]. The price of this option satisfies the

B-S equation with the the terminal and boundary conditions are defined as follows:

Call Option. The payoff function (final condition) and boundary conditions for the call

option are as follows:

V (S, T ) = max {S −K, 0} .

In the case of the call option, the contract becomes out of the money when the price of the

stock decreases to zero i.e., the contract becomes meaningless when S → 0, so

lim
S→0

V (S, t) = 0,

and the other boundary condition is given by

lim
S→+∞

V (S, t) = Se−δ(T−t) −Ke−r(T−t).

Put Option. The payoff function and boundary conditions for the put option are as follows:

V (S, T ) = max {K − S, 0} .
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The boundary condition as S → 0 is

lim
S→0

V (S, t) = Ker(T−t) − Se−δ(T−t).

In the case of a put option, the contract becomes out of the money when the price of the

stock increases boundlessly i.e., the contract becomes meaningless when S → +∞, so

lim
S→+∞

V (S, t) = 0.

1.2.4 American option

In contrast to European options, which have set maturities, American options can be

exercised at any moment before they expire [16–18]. The value of American option can

never be less than the value of European option i.e,

V Am(S, t) ⩾ V Eur(S, t),

where V Am is the value of American option and V Eur is the value of European option. At

any moment, the American option cannot be less than the pay-off. Otherwise, the option

provides a possibility for arbitrage i.e., for put and call options, we have

V (S, t) ⩾ (K − S)+,

and

V (S, t) ⩾ (S −K)+,

respectively, for all (S, t). Here (K − S)+ represents the max {K − S, 0} and similar

holds for the other equation. We present the formulation of the American option problem

as a linear complementarity problem (LCP). The associated differential operator to the
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LCP is of the form

L ≡ ∂

∂t
+

1

2
σ2S2 ∂

2

∂S2
+ (r − δ)S

∂

∂S
− rI,

where S ∈ (0,∞) is the price of the underlying asset at any time t ∈ [0, T ), and the rest

of the parameters r ≥ 0, δ ≥ 0, and σ > 0 are same as defined the in previous section.

The American option under the B-S framework defined on an unbounded domain is a

free BVP, with no closed-form solution. In the case of American style call option with

strike price K, for V (S, t) > payoff, the B-S equation holds, i.e., LV (S, t) = 0, and for

V (S, t) = payoff, it is optimal to exercise the option. Through the combined effect of

both the relations, we can derive the following LCP:

(LV (S, t)).(V −F) = 0, S ∈ (0,∞), t ∈ [0, T ),

with the constraints

LV (S, t) ≥ 0, and (V −F) ≥ 0,

where F = (S −K)+ is the terminal condition, also known as the payoff function. In

a similar manner, we get this inequality for the American style put option with F =

(K − S)+. In pricing the option, the following boundary condition is imposed at the left

end of the underlying interval

lim
S→0

V (S, t) =

0, for call,

(K − S)+, for put,

that means in the case of a call option, the contract becomes worthless and for a put option,

it is deep in the money for S → 0. The right boundary condition is given by

lim
S→∞

V (S, t) =

(S −K)+, for call,

0, for put,
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that means in the case of a call, the option is in the money and for a put option, it is

meaningless for S → ∞.

1.2.5 Binary option

A binary option is a form of option in which the payout is either fixed or nothing if the

underlying stock passes a certain threshold (or striking price) [19]. In the option life,

the option value depends upon whether the underlying price staying inside the barriers

or cross it. If the underlying price ends up above the striking price, a binary call pays a

specified amount, whereas a binary put pays a fixed amount if the underlying price ends

up below the strike price at option maturity. They are classified as high investments. After

all, trading binary options necessitates a thorough examination of the relevant market.

A binary option is also known as a digital or fixed return option, there are several

binary options such as: high/low binary option i.e., if a high/low option is employed, a

specified profit is encashed if the price of the underlying asset rises/falls respectively, by

one or more ticks before expiration. When dealing with boundary type binary options,

the profit is realised if the price of the underlying asset is within predefined boundaries at

the time of expiry. Another type is above/below binary option. In this case, we estimate

that the price at expiry is above or below a certain price level. This price level is usually

different than the current price, which in the previous case is known as the strike price.

Some of the examples of binary options are cash-or-nothing call, asset-or-nothing call, gap

call, etc. Under the B-S framework the payoff function and final boundary condition for

the cash-or-nothing call option are

V (S, T ) =

A, if S ⩾ K,

0, if S < K,

and

lim
S→+∞

V (S, t) = Ae−r(T−t),

respectively [20]. It means that the value of the option is determined by a predetermined
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fixed amount and time in conjunction with an increase in the asset price. Unlike a cash-

or-nothing option, the payoff of the more complex binary call “asset-or-nothing” option

is not predetermined; it is subject to the underlying asset price. It pays off nothing if the

underlying asset price S finishes below the strike price K, or pays out the asset price S

itself if the underlying asset finishes above the strike price. The payoff function for the

asset-or-nothing call option satisfies

V (S, T ) =

S, if S ⩾ K,

0, if S < K,

and the right boundary condition is given by

lim
S→+∞

V (S, t) = Se−δ(T−t).

In the case of call options, the contract becomes out of the money when the price of the

stock decreases to zero, i.e., the contract becomes meaningless when the price of the stock

drops, so in all the binary calls limS→0 V (S, t) = 0.

1.2.6 Multi-asset option pricing model

Multi-asset, multivariate or correlation options are instruments whose payment depends on

at least two underlying assets not necessarily belonging to the same class. These include

stock prices, exchange rates, index values or prices of commodities.

Multi-asset options have payoffs that are based on N separate assets, and the option’s

price is based on these assets. The pricing of these options is a higher dimensional

version of the standard B-S model. In option contract trading many options involve

trading of more than one asset, and the payoff of these multi-asset options is some

function of ranked vanilla payoffs. The multi-asset option price V (S, t) of European-style

with N underlying assets satisfies a parabolic PDE under the B-S framework [21, 22],

S = (S1, S2, . . . , SN) ∈ R+N
, N ∈ N, and Sn > 0, 1 ≤ n ≤ N , at the time t ∈ [0, T ), is
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diagnosed by the following PDE:

∂V (S, t)

∂t
+ LV (S, t) = 0, (S, t) ∈ R+N × [0, T ).

In the above equation the operator L is defined as

L ≡ 1

2

N∑
n=1

N∑
n′=1

σnσn′ρnn′SnSn′
∂2V

∂Sn∂Sn′
+

N∑
n=1

(r − δn)Sn
∂V

∂Sn

− rI,

where r ≥ 0 is the risk-free interest rate, σn > 0 indicates the volatility of the nth

underlying asset, δn ≥ 0 is the corresponding dividend yield and ρnn′ symbolizes the

correlation between the n-th and n′-th underlying assets. It represents the relationship

between different underlying assets. The price of the option is affected by the increase and

decrease in the value of this correlation coefficient.

In options linked with multiple assets, there are distinct ways of defining the payoff

function as in the case of a European-style multi-asset option. Different assets can behave

differently at the time of maturity T , and based upon their performance, the boundary

conditions change. Some of the examples are max/min options, index option, spread

option, multi-strike option, etc.

Options on the minimum or maximum of the underlying assets are known as max/min

option. The payoff functions of these options are determined by

V (S, T ) =

(max(S1, S2, . . . , SN)−K)+ , Max call option,

(min(S1, S2, . . . , SN)−K)+ , Min call option,

where K is the strike price and a+ = max{a, 0}. The corresponding boundary conditions

(for (S, t) ∈ ∂R+N × [0, T )) are

V (S, t) =


(
max(S1e

−δ1(T−t), . . . , SNe
−δN (T−t))−Ke−r(T−t)

)+
, Max call option,(

min(S1e
−δ1(T−t), . . . , SNe

−δN (T−t))−Ke−r(T−t)
)+
, Min call option.
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Another most common example of multi asset option is the basket or index option.

These options are traded with the payoff function

V (S, T ) =

(
N∑

n=1

wnSn −K

)+

,

and the boundary conditions

V (S, t) =

(
N∑

n=1

wnSne
−δn(T−t) −Ke−r(T−t)

)+

, (S, t) ∈ ∂R+N × [0, T ),

where wn are the portfolio weights.

Such options provide a more realistic view of the financial markets since most of the

assets are related to each other. Thus, the change in any of the assets, using correlation

parameter will show a combined affect on the price of an option.

1.2.7 Fractional Black-Scholes model

In this part, we introduce the time-fractional option pricing model under the B-S framework,

where the order of the temporal derivative is taken to be a fraction rather than an integer.

Fractional derivatives are quite flexible for characterizing the behavior of differential

equations and adding historical information due to their nonlocal nature [23]. Therefore,

in this section we derive the time fractional B-S PDE. Therefore, if the path of the stock

price S is modelled by the following fractional stochastic differential equation

dS = (r − δ)Sdt+ σSWt(dt)
α(S,t)

2 , 0 < α ≤ 1.

Now, using the fractional Taylor series expansion and the fractional Ito’s lemma, we obtain

the time-fractional B-S equation [24, 25]

∂α(S,t)V

∂tα(S,t)
+σ2S2Γ(1 + α(S, t))

2

∂2V

∂S2
+(r−δ)S t1−α(S,t)

Γ(2− α(S, t))

∂V

∂S
−r t1−α(S,t)

Γ(2− α(S, t))
V = 0,
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subject to the following terminal and boundary conditions for a European call option

V (S, T ) = max {S −K, 0} ,

lim
S→0

V (S, t) = 0,

lim
S→+∞

V (S, t) = Se−δ(T−t) −Ke−r(T−t),

and for European put the boundary condition as S → 0 is V (S, t) → Ker(T−t)−Se−δ(T−t),

and for → +∞, V (S, t) → 0. Also, the payoff function is defined as

V (S, T ) = max {K − S, 0} .

1.3 Greeks

The B-S model depends upon various parameters. This section will consider the various

measures of how the price of an option changes by varying these parameters. These

measures are known as the Greeks as each of them is symbolized by a Greek letter.

Greeks are important for determining how sensitive a portfolio of options is to market

conditions [26–28]. In an option position, the Greeks can be useful tools for assessing and

managing risk. Different and unique Greeks are used to measure different aspects of the

risk associated with an option position. As the price of an option fluctuates, so does the

risk of the option. As a result, knowing how the option price varies allows the trader to

mitigate the risk of the option. Here, we explain some of these Greeks and how they are

used.

Delta (∆). The simplest Greek “Delta” is the rate at which the option price changes

with respect to the price of the underlying asset. In the B-S model, the generic option price

V depends on the parameters, S, t,K, r, σ, then the Greek ∆ is given by ∆ = ∂V
∂S

, where

S is an underlying asset price.

Gamma (Γ). “Gamma” measures the delta’s sensitivity to a small change in the

underlying assets. It is also the second derivative of the option price with respect to the
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underlier. In the B-S model, the Greek Γ is given by Γ = ∂∆
∂S

= ∂2V
∂S2 . As the put and call

prices differ by a linear function, their Gamma’s are the same. It measures the convexity

of the value function, which makes options interesting for many investors.

Theta (Θ). The Greek “Theta” is the derivative of the value of a given option expiring

on a given day with respect to time. As it measures the change in the option price to the

movement of time to maturity, it is negative of the derivative with respect to the parameter

t and is given by Θ = −∂V
∂t

, where t is the passage of time. It represents that with the

passage of time, the value of an option contract will change. In most cases, the option will

experience a decrease in value with the passage of time. This is known as time decay.

Charm. “Charm”, also known as delta decay or delta bleed, measures the delta’s

sensitivity to a small movement in time to maturity i.e., it is the rate at which the delta of

an option or warrant changes with respect to time to the maturity. Thus it refers to the

negative of the second-order derivative (one with respect to both time and asset) of an

option’s value. It is also the derivative of theta with respect to the underlying asset price.

Mathematically, it is given by

Charm = −∂∆
∂t

= − ∂2V

∂S∂t
.

Color. “Color”, also known as the gamma decay, measures gamma’s sensitivity

to a small movement in time to maturity i.e., it is the rate at which the gamma of an

option changes with respect to time towards maturity. It is a negative of the third-order

derivative (one and two with respect to time and asset, respectively) of the option’s value.

Mathematically, it is given by

Color = −∂Γ
∂t

= − ∂3V

∂S2∂t
.

Now we’ll go over some fundamental risk concepts that involve the use of Greeks.
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1.3.1 Delta hedging

Delta hedging is an investment strategy that combines the purchase or sale of an option

with an offsetting transaction in the underlying asset to minimize the risk of the option’s

price moving in one direction [29]. It makes the portfolio less sensitive to small price

changes in the securities invested in.

For example if the price of a call option does not change at all, the call option loses

its time value, and the investor makes money on call options while losing money on the

underlying stock by selling the call option. Using the delta derived from the B-S option

pricing model, the option holder can find out the delta-hedged portfolio with lower risk

than the non-hedged portfolio.

Figure 1.2: Managing risk

How other Greeks help in risk management: Gamma and other Greeks’ (which

are derived from delta) hedging are trading strategies in which the option holder tries to

maintain a constant delta in an options position, often one that is delta-neutral, with the

change in respective parameters.

Formally, theta is the negative of the first derivative of the option pricing model with

respect to changes in the time until expiration. To reduce the risk one has to construct

a portfolio with a positive theta, i.e., with the passage of time there is an increase in the
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value of the portfolio. In the similar manner, we analyse rest of the Greeks to study the

market impact on the option’s price.

1.4 Numerical techniques
Many important and challenging problems in computational science and engineering

involve PDEs which are tedious to solve analytically. Therefore, mathematicians have

developed numerical techniques (methods) to solve such differential equations [30]. These

methods require development, analysis and use of algorithms. Numerical algorithms

invariably involve a large number of arithmetic calculations and, therefore, require fast

and efficient computing devices

Numerical methods are explicit or implicit computed in one step or multiple steps.

An explicit method computes the numerical solution at the next time point using the

previous numerical solution at the previous time point. While an implicit method evaluates

a function using the numerical solution at the next time point which is solved for.

1.4.1 Characteristics of computational numerical methods

The following are some properties that can be used to validate and prove the efficacy of a

numerical method:

• Accuracy. Every method of numerical computation contains flaws. It is possible

that they are caused by the computer’s inexact representation and manipulation of

numbers. The accuracy of the results is harmed as a result of these inaccuracies.

• Efficiency. It refers to the amount of human and computer effort required to put the

method into practise.

• Consistency. A discretization scheme is said to be consistent if the discretized

equations for decreasing mesh size should approach to the original differential

equations.

• Stability. The general idea behind stability is to investigate how small perturbations

(e.g., caused by round-off errors) influence the subsequent time steps.
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• Convergence. When the spatial and temporal grids are refined, one of the most

important requirements for a discretization method is that the approximate solution

approaches the actual solution.

1.4.2 Challenges in the Black-Scholes option pricing model

The following are the difficulties that must be overcome while numerically investigating

an option:

• Discontinuous payoff. In the B-S model, the payout function (final condition) is

discontinuous. Standard numerical techniques struggle with discontinuous final con-

ditions. In particular, expected convergence rates are not observed, and oscillations

are more likely to occur in the solution.

• Non dimensionalization. The actual B-S model is not dimension free, so it is tough

to assess the relation between different parameters. As a result, before solving the

problem, it is preferable to make it dimensionless.

• Infinite domain. The B-S model has a unbounded domain. Thus, to avoid the large

truncation error, finite boundaries should be employed for numerical implementation

[31].

• Non-smooth Greeks. Approximating Greeks in option pricing is a challenging task

since they are non-smooth functions. This non-smoothness creates quantization

error, which can lead to a significant reduction in numerical scheme convergence

rates.

• Final value problem. The B-S model results in a final value problem. But for the

numerical implementation it is necessary to convert the final value problem to an

initial value problem.

• Free boundary. American style vanilla options result in free-boundary value

problems since such options can be exercised at any time on or before expiration
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date. Thus, one has to use special techniques to such moving boundary value option

pricing models.

Options are like miraculous pills but must be handled with care and caution, as they may

be detrimental to your financial health if wrongly used (calculated). Thus the goal is

to develop an appropriate numerical technique with suitable transformation to correctly

predict the price of an option. Also, the technique should be efficient to compute the

derivatives of the option price function to replicate the portfolio periodically to offset any

risk associated with the movements in different parameters present the model.

1.5 Motivation

An applied mathematics research thesis covers the area that makes a remarkable change

to the world. In financial markets a significant number of prices must be calculated in a

short period of time, hence an accurate and quick calculation of option pricing is critical.

Thus, there is always a need for fast, accurate and efficient numerical methods for the

valuation of various contracts. Every research project must, in some way, address a gap

which covers the topic that has not yet been explored or is under-explored. Therefore the

numerical schemes presented here are not yet applied to option pricing problems.

Moreover, a research always starts with new developments and creations. In this

context, we have developed various computational methods to study a variety of problems

and conquer the challenges present in solving the option pricing models and finding the

hedging parameters, useful for managing financial risks. Also, there is always a scope

of extension and improvement in a research topic therefore, we have taken it to a new

platform of fractional option pricing models.

1.6 Thesis contribution

In this thesis we develop, analyse, and implement a number of numerical approaches for

simulating the price and Greeks of various options involving higher dimensional models,

free boundary value problems, fractional differential equations and other problems. More-

19



Chapter 1

over, since numerical approaches are more for application purposes, we are investigating

the Hedging parameters (risk management parameters in finance, specifically the change

in the option price with various factors) that are difficult to determine with usual methods.

Therefore, option pricing principles and techniques are both reflected in this thesis.

The present work fills the applicability gaps of various computing schemes on financial

models. Wavelet schemes are applied to an option pricing model on which no light has yet

been shed. We are also filling in the blanks in methodologies that provide high accuracy

for financial models in space. The combination of Rannacher time marching scheme with

the highly accurate orthogonal spline collocation method to tackle the non smoothness

of the payoff function is an example. Also, we have extended our work to fractional

option pricing models. Since fractional derivatives are quite flexible for characterizing

the behavior of differential equations and adding historical information due to their non-

local nature. A novel fractional operator known as Atangana-Baleanu Caputo derivative is

operated and analysed to study the solution of the fractional financial differential equations.

This work concentrates on the creation of various numerical schemes such as wavelet

approaches, spline based approximations, difference schemes etc, for PDEs with discontin-

uous initial and final conditions. It also provide the readers the idea to solve free boundary

value problems using wavelets and spline based approaches. We have also discussed the

convergence, stability, and consistency of various techniques. The pros and cons of the

described option pricing techniques are discussed.

1.7 Thesis organisation
This thesis is a result of my true interest in option pricing. It consists of eight chapters.

The fundamental components of the financial derivatives and B-S pricing model have been

covered in Chapter 1. It all starts with the idea of an option, its classification, and its

features. The stochastic differential equation depicting the movement of the asset price

is next introduced to build the groundwork for our ultimate deduction of the famous B-S

Equation. Finally, we look at how different styles of exercising, payoff functions and

boundary conditions generate distinct options. Following that, we have introduced a section
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involving the discussion on numerical approaches and their various characteristics with the

challenges one faces to solve the B-S PDEs. Finally, in this section, we have introduced

the motivation behind the present work and the thesis contribution. Chapter 2 covers the

theoretical and numerical aspects of the simple and widely used European options. The

chapter comprises the literature survey on the European option pricing problem and the

methods developed to solve them. A new method known as the Haar wavelet method is

constructed to solve these options and their Greeks. Details of the method including the

introduction, formation, implementation, convergence, and application are presented.

Chapter 3 deals with the pricing of American options with applications to the hedging

parameters. The chapter discusses the challenges related to solving free boundary problems.

It included an overview of the American option in context to the the European option.

The chapter focuses on solving the Greeks of American option having vast applications in

financial markets using the Haar wavelet scheme. The explanation of the method and its

properties are discussed comprehensively. Chapter 4 presents the wavelet based numerical

approaches for solving the various path-independent binary options with spiked solution

functions and Greeks. The present wavelet based approach is proved to be a good option

to solve such spiked functions. The consistency and stability analysis of the Haar wavelet

scheme is discussed in detail.

Chapter 5 extends the B-S PDE to higher dimensions and covers the effectiveness of

the two-dimensional Haar wavelet scheme to solve it. The effectiveness of the method

to solve multi-dimensional problems is shown theoretically and numerically. Moreover,

various hedging parameters are computed and their applications have been discussed

to find notifiable facts in various subsets. Chapter 6 discusses the challenges related to

solving the PDEs with non-smooth initial data with classical time marching schemes. To

address the challenges, the standard finite difference schemes are studied and compared to

their conjunctive Rannacher scheme. Moreover to improve the accuracy of the method in

space in this chapter we consider a new scheme known as the spline collocation at Gauss

points. Following that, in the core of the chapter, the convergence of the numerical method

is presented. Finally, numerical results in the form of tables and graphs are provided to
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prove the effectiveness of the scheme.

In Chapter 7, we extend the integer order option pricing problems to fractional PDEs,

which is a challenging target problem with a lot of applications. In this chapter, we discuss

a modified B-S model of option pricing with variable order time-fractional derivative. The

model’s formulation is briefly described, and then the approach and operator used to solve

the model are thoroughly explored. Furthermore, through rigorous analysis, the stability

of the numerical scheme is described. Finally to support the theoretical findings numerical

results are discussed. Subsequently, Chapter 8 provides some closing observations and

discuss potential future extensions of the work.
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A wavelet based numerical scheme to

explore Greeks’ of European options

In financial markets, investors use options to speculate or hedge against investment risk. As

a result, one of the major difficulties in both theoretical study and practical implementations

is to find the fair price of the option, and to determining the Greeks of an option. As

discussed earlier, options are a great investment instrument because they provide you more

freedom, lower your risks, and improve your earnings in the stock market. You will utilise

options in your financial portfolio for the rest of your life if you understand how to use

them effectively. In this chapter, we develop an efficient numerical scheme to investigate

the price and sensitivities of European vanilla option. European option is the simplest

of vanilla style options, therefore it gives the reader a detailed look at how option prices

and Greeks react to changes in input prices as well as graphical representations of these

changes.

2.1 Literature survey

Many studies have made a significant contribution in investigating the price of European

options and their Greeks. The pioneering work done by Fischer Black and Merton Scholes
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provided one of the effective and widely used models for option pricing problem that is

the well-known Black-Scholes model [13]. Several analytical and numerical methods have

been developed for European options, for instance, Achdou and Tchou [32] proposed a

variational analysis and provide FEM and FDM based numerical simulations for the Black-

Scholes equation for the price of a European option. Later, using discontinuous functions

in time and continuous functions in space Ern et al. [33] investigated FEMs for European

options. They have used adaptive mesh refinement technique which is computationally

better compared to the usual mesh. For a detailed literature survey of valuation models to

the option pricing problems from its origin to 2004 the readers are referred to [34]. To

solve the PDE associated with the European option pricing, Matache et al. [35] suggested

θ-scheme in temporal direction and a wavelet Galerkin method in the spatial direction.

Gracia and Oosterlee [36] have developed a novel method for pricing European options

based on the wavelet approximation method and the characteristic function. They have

focused on the discounted expected payoff pricing formula and computed it by means of

wavelets.

Černá and Finěk [37] used quadratic and cubic spline wavelet functions to solve the

Black-Scholes model for calculating the price of European put and call options on a basket

of assets. Rad et al. [38] suggested the meshfree radial basis point interpolation (RBPI)

method for the Black–Scholes model for the European and American options. The RBPI

is combined with a number of numerical techniques, including an exponential change

of variables, which allows the option prices to be approximated over their entire spatial

domain. A mesh refinement algorithm, which has proven to be very useful in dealing with

non-smooth options’ payoff, and an implicit Euler Richardson extrapolated scheme, which

provides a satisfactory level of time accuracy was used.

In another work, Rad et al. [39] proposed and analyzed the local weak form meshfree

methods for option pricing. In this study, they have considered the local boundary integral

equation approach, which is based on moving least squares approximation, and the local

radial point interpolation, which is based on Wu’s compactly supported radial basis

functions. They [40] have also proposed a meshfree local Petrov–Galerkin method for the
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American option problems. Recently, Maree et al. [41] extended the theory of Shannon

Wavelet Inverse Fourier Technique (SWIFT) for European options. They have shown

that the method converges exponentially to the wavelet approximation scale. They have

also shown that under specific parameter choices the SWIFT can be reduced to the COS

method which is based on Fourier-cosine series [42]. Most of the researches listed above

have not concentrated on computing the Greeks of the European options since the Greek

functions are non-smooth in nature and hard to evaluate.

To this end, there is always a need for more effective and simple numerical algorithms

to explore such problems. In this chapter, a two-dimensional Haar wavelet method is

developed to study the sensitivities of the price of an option. The method is appropriate

to analyze these sensitivities as it explicitly gives the values of all the derivatives of

the solution, so it easily approximates the option Greeks. The Black-Scholes model

for European style options has been considered to analyze the physical and numerical

aspects of the put and the call option Greeks. We have used the concept of coordinate

transformation to make the Black-Scholes equation dimensionless and to resolve the

obstacle in approximating the Greeks having discontinuities at the strike price. Also, the

infinite spatial domain has been truncated into the finite domain to avoid large truncation

errors. Through rigorous analysis, the method is shown to be first-order accurate in

the L2−norm. The numerical computations performed to approximate the option price

and various Greeks, like delta, theta, gamma, etc, confirm the theoretical results in the

L2−norm. The relative errors and the maximum absolute errors are also presented. The

motivational work of option Greeks analysis may leave a significant impact on financial

institutes; it helps them to manage the risk by setting the portfolio’s new value and to

estimate the probability of losing money.

2.2 Model description
We can determine the price of European call and put options with the help of the Black-

Scholes PDE with specified initial and boundary conditions. We denote by V (S, τ), the

value of option before the expiry time T , where S is the current price of the underlying
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asset in the market at the time τ . The value of the option also depends upon the risk-free

interest rate r, the strike price K, the volatility σ, and the dividend yield δ. The equation

governing the price of different options is given as

∂V

∂τ
+

1

2
σ2S2∂

2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0, 0 < S <∞, 0 ⩽ τ < T . (2.2.1)

For call option in which the option holder has the right but not the obligation to buy the

option, the payoff function is defined as

V (S, T ) = max {S −K, 0} ,

and the boundary conditions for the call option are as follows

lim
S→0

V (S, τ) = 0,

lim
S→+∞

V (S, τ) = Se−δ(T−τ) −Ke−r(T−τ).

In case of put option, when the option holder has the right not the compulsion to sell the

option, therefore the payoff function and boundary conditions for the put option are as

follows:

V (S, T ) = max {K − S, 0} .

The boundary conditions are

lim
S→0

V (S, τ) = Ker(T−τ) − Se−δ(T−τ), and lim
S→+∞

V (S, τ) = 0.

Using a log-transformation, we transform the equation (2.2.1) from final value problem to

a non-dimensional initial value problem by introducing the new variables x = ln(S/K)

and τ = T − 2t
σ2 , which reduces the Black-Scholes equation (2.2.1) into

∂u

∂t
=
∂2u

∂x2
, (2.2.2)
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where V (S, τ) = Ke
−[2( r−δ

σ2 )−1]x2−
[
1
4(2(

r−δ

σ2 )−1)
2
+ 2r

σ2

]
t
u(x, t). After transformation, the

initial and boundary conditions for the call and put options are as follows:

Call option. The initial condition for the call option is given by

u(x, 0) = max
{
e

x
2 (

2(r−δ)

σ2 +1) − e
x
2 (

2(r−δ)

σ2 −1), 0
}
,

and the boundary conditions become

lim
x→−∞

u(x, t) = 0,

and

lim
x→+∞

u(x, t) = e
x
2 (

2(r−δ)

σ2 +1)+ t
4(

2(r−δ)

σ2 +1)
2

− e
x
2 (

2(r−δ)

σ2 −1)+ t
4(

2(r−δ)

σ2 −1)
2

.

Put option. The initial condition for the put option is given by

u(x, 0) = max
{
e

x
2 (

2(r−δ)

σ2 −1) − e
x
2 (

2(r−δ)

σ2 +1), 0
}
,

and the boundary conditions become

lim
x→−∞

u(x, t) = e
x
2 (

2(r−δ)

σ2 −1)+ t
4(

2(r−δ)

σ2 −1)
2

−e
x
2 (

2(r−δ)

σ2 +1)+ t
4(

2(r−δ)

σ2 +1)
2

, lim
x→+∞

u(x, t) = 0.

For the numerical implementation, we truncate the infinite domain into a finite domain to

avoid the unacceptable large truncation error, by taking the relatively large value of x to

get the high accuracy of asymptotic results such that (x, t) ∈ [xmin, xmax]×
[
0, σ

2T
2

]
.

2.3 Methodology

Wavelets are mathematical functions that satisfy specific properties. These used to localize

data sets and functions according to space and scale. To approximate the required function,

wavelet analysis uses the precise technique of scaling and shifting of two prototype

functions known as the scaling function and the mother wavelet. This technique is also
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known as the windowing technique in which we analyze the function by changing the size

of the window i.e., we split the domain into sub-domains of different sizes and study each

sub-domain separately with a resolution matched to its scale. The “mother wavelet” is

defined as follows:

ψd1,d2(x) =
1√
|d1|

ψ

(
x− d2
d1

)
, d1, d2 ∈ R, d1 ̸= 0,

where d1 measures the degree of compression and known as the scaling parameter, whereas

d2 determines the location of the wavelet and known as the shifting parameter i.e., change

in the value of d2 moves the localization center: each function ψd1,d2(x) localized around

x = d2. Based on the nature of the mother wavelet, there are two types of wavelet transfor-

mations: continuous wavelet transformation (CWT) and discrete wavelet transformation

(DWT). Any function belonging to the Hilbert space of L2(R), is determined by the DWT

using the formula f(x) =
∑∞

d1,d2=−∞ ⟨f, ψd1,d2⟩ ψd1,d2(x), where the wavelets ψd1,d2 form

an orthonormal basis.

Table 2.1: Examples of different families of orthogonal wavelets and their abbreviations.

Wavelet families Abbreviations
Haar wavelet haar
Symlets sym
Coiflets coif
Daubechies wavelet db
Meyer wavelet meyr

2.3.1 Haar wavelet function approximation

Haar wavelet transform is the discrete type of wavelet transform introduced by Alfred Haar

in 1909. Haar wavelet is a family of square-shaped functions generated by translation and

dilation of a discrete function (mother wavelet), which collectively form the Haar basis

[43, 44]. In Haar analysis, the father wavelet (scaling function) and the mother wavelet
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are defined as

h1(x) =

1, x ∈ [a, b),

0, elsewhere,

and

h2(x) =


1, x ∈ [a, a+b

2
),

−1, x ∈ [a+b
2
, b),

0, elsewhere,

respectively, and the rest of the Haar wavelet family generated by the above two basic

wavelets for x ∈ [a, b] is defined as follows:

hi(x) =


1, x ∈ [αi, βi),

−1, x ∈ [βi, γi),

0, elsewhere,

where αi = a+ k(b−a)
m

, βi = a+ (k+0.5)(b−a)
m

, and γi = a+ (k+1)(b−a)
m

. In these formulae

m = 2j , j = 1, 2, . . . , J , and k = 0, 1, . . . ,m−1, where j indicates the level of resolution,

k indicates the translation parameter, and J indicates the maximum level of resolution.

The index i is determined by the formula i = m+ k + 1.

Moreover, the minimal values of k and m are 0 and 2, respectively, and the maximal

value of i is 2J+1. The given interval [a, b] is partitioned into 2M sub-intervals of equal

length using the collocation points xl = a+ (l−0.5)(b−a)
2M

, l = 1, 2, . . . , 2M .

The integrals of the wavelets are defined as pi(x) =
∫ x

a
hi(x) dx and qi(x) =∫ x

a
pi(x) dx, these integrals can be calculated using the values of hi(x) and are given
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by

pi(x) =


x− αi, x ∈ [αi, βi),

γi − x, x ∈ [βi, γi),

0, elsewhere,

and qi(x) =



(x−αi)
2

2
, x ∈ [αi, βi),

(x−αi)
2−2(x−βi)

2

2
, x ∈ [βi, γi),

(x−αi)
2−2(x−βi)

2+(x−γi)
2

2
, x ∈ [γi, b),

0, elsewhere.

Remark In Haar analysis, the mother wavelet is dilated by a power of two and

translated by an integer.

2.3.2 Implementation of 2D Haar wavelets

Consider the transformed equation (2.2.2) of the Black-Scholes PDE, where (x, t) ∈

[a, b] ×
[
0, σ

2T
2

]
, where a = xmin and b = xmax. To find the solution of the original

equation (2.2.1) and its derivatives, we have to determine the unknown functions u(x, t),

ut(x, t), ux(x, t) and uxx(x, t) satisfying given initial and boundary conditions. Let U and

u are the approximate and exact solutions of (2.2.2), respectively. Discretize the spatial

domain [a, b] and the temporal domain
[
0, σ

2T
2

]
into 2M1 and 2M2 parts of equal length

with J and J1 as maximal level of resolution, respectively. Now, consider the wavelet

approximation
∂3U(x, t)

∂t∂x2
=

2M1∑
i=1

2M2∑
i1=1

ci,i1hi(x)hi1(t),

where ci,i1 are the unknown coefficients and i, i1 denotes the indices of Haar functions on

spatial and temporal domains, respectively. After integrating the above expression twice

with respect to x from a to x, we get

∂U(x, t)

∂t
=

2M1∑
i=1

2M2∑
i1=1

ci,i1qi(x)hi1(t) +
1∑

N1=0

(x− a)N1

N1!

∂1+N1U(a, t)

∂t∂xN1
.
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Now, by integrating it with respect to t from 0 to t, we get

U(x, t) =

2M1∑
i=1

2M2∑
i1=1

ci,i1qi(x)pi1(t) + U(x, 0) +
1∑

N1=0

(x− a)N1

N1!

∂N1U(a, t)

∂xN1

−
1∑

N1=0

(x− a)N1

N1!

∂N1U(a, 0)

∂xN1
.

After expanding it, we get

U(x, t) =

2M1∑
i=1

2M2∑
i1=1

ci,i1qi(x)pi1(t) + U(x, 0) + U(a, t) + (x− a)
∂U(a, t)

∂x

− U(a, 0)− (x− a)
∂U(a, 0)

∂x
.

Now, by taking x = b and considering the boundary conditions, we get

∂U(a, t)

∂x
=

1

b− a

{
U(b, t)−

2M1∑
i=1

2M2∑
i1=1

ci,i1qi(b)pi1(t)− U(b, 0)− U(a, t) + U(a, 0)

+ (b− a)
∂U(a, 0)

∂x

}
.

On replacing the value of ∂U(a,t)
∂x

back into U(x, t), we get

U(x, t) =

2M1∑
i=1

2M2∑
i1=1

ci,i1qi(x)pi1(t) + U(x, 0) + U(a, t)− U(a, 0)

+
x− a

b− a

{
U(b, t)−

2M1∑
i=1

2M2∑
i1=1

ci,i1qi(b)pi1(t)− U(b, 0)− U(a, t)

+ U(a, 0)

}
. (2.3.1)

Now by differentiating U once with respect to x, we get

∂U(x, t)

∂x
=

2M1∑
i=1

2M2∑
i1=1

ci,i1pi(x)pi1(t) +
∂U(x, 0)

∂x
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+
1

b− a

{
U(b, t)−

2M1∑
i=1

2M2∑
i1=1

ci,i1qi(b)pi1(t)− U(b, 0)− U(a, t) + U(a, 0)

}
. (2.3.2)

Again, differentiating it with respect to x, we get

∂2U(x, t)

∂x2
=

2M1∑
i=1

2M2∑
i1=1

ci,i1hi(x)pi1(t) +
∂2U(x, 0)

∂x2
. (2.3.3)

Similarly, by differentiating (2.3.1) once with respect to t, we get

∂U(x, t)

∂t
=

2M1∑
i=1

2M2∑
i1=1

ci,i1qi(x)hi1(t) +
∂U(a, t)

∂t
+
x− a

b− a

{
∂U(b, t)

∂t

−
2M1∑
i=1

2M2∑
i1=1

ci,i1qi(b)hi1(t)−
∂U(a, t)

∂t

}
. (2.3.4)

Now, by putting the approximated values of ∂u(x,t)
∂t

and ∂2u(x,t)
∂x2 in equation (2.2.2), and

by considering the initial and boundary conditions, we get a system of linear equations

in unknown coefficients ci,i1 . By substituting the values of the coefficients ci,i1 into the

equations (2.3.1)-(2.3.4), we get the solution and derivatives of the transformed equation.

Finally, for applying back substitution of the coordinate transformation we use S = Kex

and τ = T − 2t
σ2 to get the solution of the Black-Scholes equation and the values of the

option Greeks.

2.4 Convergence analysis
In this section, we will show that the two-dimensional Haar wavelet method is the first-

order convergent in the L2−norm.

Theorem 2.4.1. The upper bounds for the Haar wavelets and their derivatives are as

follows:

hi(x) ⩽ 1, ∀ i and pi(x) ⩽
1

2j+1
, qi(x) < B

(
1

2j+1

)2

, for i > 1,
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where j is the level of resolution and B =
8

3(⌊(3/2)⌋!)2
.

Proof. Refer [45].

Theorem 2.4.2. Let g(x, t) = ∂3u(x,t)
∂x2∂t

∈ L2(R2) be a continuous function on the domain

[a, b]×
[
0, σ

2T
2

]
and g, ∂g

∂x
, ∂g
∂t

, ∂2g
∂x∂t

are bounded by η, for some η. Then, the proposed 2D

Haar wavelet method converges linearly to the exact solution i.e.,

∥ErrorJ,J1(x, t)∥2 = O

(
1

2J+1

)
, where J = min{J, J1}.

Proof. The exact solution of the transformed second-order PDE of the Black-Scholes

equation can be written as

u(x, t) =
∞∑
i=0

∞∑
i1=0

ci,i1qi(x)pi1(t) + Ψ(x, t)

=c1,1q1(x)p1(t) +
∞∑
j=0

2j−1∑
k=0

c2j+k+1,1q2j+k+1(x)p1(t) +
∞∑

j1=0

2j1−1∑
k1=0

c1,2j1+k1+1q1(x)

× p2j1+k1+1(t) +
∞∑
j=0

2j−1∑
k=0

∞∑
j1=0

2j1−1∑
k1=0

c2j+k+1,2j1+k1+1q2j+k+1(x)p2j1+k1+1(t)

+ Ψ(x, t),

where j, j1, and k, k1 indicate the levels of resolution and translation parameters in spatial

and temporal domains, respectively. The function Ψ(x, t) is determined by the given

initial and boundary conditions. Moreover, i = 2j + k + 1, and i1 = 2j1 + k1 + 1 are the

respective indices. Now, the approximate solution at the maximum level of resolution is

U(x, t) = c1,1q1(x)p1(t) +
J∑

j=0

2j−1∑
k=0

c2j+k+1,1q2j+k+1(x)p1(t) +

J1∑
j1=0

2j1−1∑
k1=0

c1,2j1+k1+1q1(x)

× p2j1+k1+1(t) +
J∑

j=0

2j−1∑
k=0

J1∑
j1=0

2j1−1∑
k1=0

c2j+k+1,2j1+k1+1q2j+k+1(x)p2j1+k1+1(t) + Ψ(x, t).
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Then, the error at the maximum level of resolution is

ErrorJ,J1(x, t) = u(x, t)− U(x, t)

=
∞∑

j=J+1

2j−1∑
k=0

c2j+k+1,1q2j+k+1(x)p1(t) +
∞∑

j1=J1+1

2j1−1∑
k1=0

c1,2j1+k1+1q1(x)

× p2j1+k1+1(t) +
∞∑

j=J+1

2j−1∑
k=0

∞∑
j1=J1+1

2j1−1∑
k1=0

c2j+k+1,2j1+k1+1q2j+k+1(x)p2j1+k1+1(t).

By taking L2−norm of the error function, we get

∥ErrorJ,J1(x, t)∥22 = S1 + S2 + S3 + S4 + S5 + S6,

where

S1 =
∑
j,k

∑
r,s

c2j+k+1,1c2r+s+1,1

∫ b

a

q2j+k+1(x)q2r+s+1(x) dx

∫ σ2T
2

0

p1(t)p1(t) dt,

S2 =
∑
j1,k1

∑
r1,s1

c1,2j1+k1+1c1,2r1+s1+1

∫ b

a

q1(x)q1(x) dx

∫ σ2T
2

0

p2j1+k1+1(t)p2r1+s1+1(t) dt,

S3 =
∑
j,k

∑
r,s

∑
j1,k1

∑
r1,s1

c2j+k+1,2j1+k1+1c2r+s+1,2r1+s1+1

∫ b

a

q2j+k+1(x)q2r+s+1(x) dx

×
∫ σ2T

2

0

p2j1+k1+1(t)p2r1+s1+1(t) dt,

S4 = 2
∑
j,k

∑
r1,s1

c2j+k+1,1c1,2r1+s1+1

∫ b

a

q2j+k+1(x)q1(x) dx

∫ σ2T
2

0

p1(t)p2r1+s1+1(t) dt,

S5 = 2
∑
j,k

∑
r,s

∑
r1,s1

c2j+k+1,1c2r+s+1,2r1+s1+1

∫ b

a

q2j+k+1(x)q2r+s+1(x) dx

×
∫ σ2T

2

0

p1(t)p2r1+s1+1(t) dt,

S6 = 2
∑
r,s

∑
j1,k1

∑
r1,s1

c1,2j1+k1+1c2r+s+1,2r1+s1+1

∫ b

a

q1(x)q2r+s+1(x) dx
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×
∫ σ2T

2

0

p2j1+k1+1(t)p2r1+s1+1(t) dt.

The coefficients ci,i1 are given as

ci,i1 =

∫ b

a

(∫ σ2T
2

0

g(x, t)hi1(t) dt

)
hi(x) dx

=

∫ b

a

∫ (k1+ 1
2)

(
σ2T/2

2j1

)
k1

(
σ2T/2

2j1

) g(x, t) dt−
∫ (k1+1)

(
σ2T/2

2j1

)
(k1+ 1

2)
(

σ2T/2

2j1

) g(x, t) dt

hi(x) dx.

By using mean value theorem, there exists t1 and t2 satisfying k1(
σ2T/2

2j1
) ⩽ t1 ⩽ (k1 +

1
2
)(σ

2T/2

2j1
) and (k1 +

1
2
)(σ

2T/2

2j1
) ⩽ t2 ⩽ (k1 + 1)(σ

2T/2

2j1
) such that

ci,i1 = 2−j1−1σ
2T

2

∫ b

a

(g(x, t1)− g(x, t2))hi(x) dx.

Again by using Lagrange’s mean value theorem, there exists t∗ ∈ [t1, t2] so that

ci,i1 = 2−j1−1σ
2T

2

∫ b

a

(t1 − t2)
∂g(x, t∗)

∂t
hi(x) dx.

Similarly, by applying mean value theorem of integral calculus and Lagrange’s mean

value theorem, there exist x1, x2 satisfying a + k( b−a
2j

) ⩽ x1 ⩽ a + (k + 1
2
)( b−a

2j
),

a+ (k + 1
2
)( b−a

2j
) ⩽ x2 ⩽ a+ (k + 1)( b−a

2j
), and x∗ ∈ [x1, x2] such that

ci,i1 = 2−j−j1−2σ
2T

2
(b− a)(x1 − x2)(t1 − t2)

∂2g(x∗, t∗)

∂x∂t
.

Now as x1 − x2 ⩽ b− a and t1 − t2 ⩽ σ2T
2

, so

|ci,i1| ⩽
η(b− a)2(σ2T/2)2

2j+12j1+1
.
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To find the upper bounds for S1, S2, S3, S4, S5, and S6, we use the following result

∞∑
j=J+1

2j−1∑
k=0

(
1

2j+1

)3

⩽ C

(
1

2J+1

)2

, for some constant C.

By using bound for ci,i1 and Theorem 2.4.1, we get

S1 <
∑
j,k

∑
r,s

B2η(b− a)2(σ2T/2)2

(1!)2(2j+1)3(2r+1)3
<

C1

(2J̄+1)4
, where C1 = CB2η(b− a)2(σ2T/2)2.

Similarly, we can get the following bounds for S2, S3, S4, S5, and S6,

S2 <
C2

(2J̄+1)2
, S3 <

C3

(2J̄+1)6
, S4 <

C4

(2J̄+1)3
, S5 <

C5

(2J̄+1)5
, S6 <

C6

(2J̄+1)4
,

for some constants C2, C3, C4, C5, and C6. Thus,

∥ErrorJ,J1(x, t)∥22 = S1 + S2 + S3 + S4 + S5 + S6

<
C1

(2J̄+1)4
+

C2

(2J̄+1)2
+

C3

(2J̄+1)6
+

C4

(2J̄+1)3
+

C5

(2J̄+1)5
+

C6

(2J̄+1)4
.

So,

∥ErrorJ,J1(x, t)∥22 ≤ C
(

1

2J̄+1

)2

,

for some constant C. Hence, the result follows.

2.5 Simulating greeks
Using the model proposed by Black and Scholes, in this section, we perform the numerical

and physical analysis of the sensitivities of the price of the European call and put options

through two test examples. The Black-Scholes model for option pricing consists of various

parameters that affect the financial institutes directly or indirectly. In our analysis, we fix

the parameters r, σ, δ, K and vary the values of T to compute the values of the price and

the Greeks of the options in both examples. The effect of change in the price of the stock

and time on the price of the option and the values of the Greeks are depicted pictorially.
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Although the numerical solutions of option Greeks can be found by using any numerical

method, we consider the two-dimensional Haar wavelet method, since this method is

designed in such a form that it directly provides all the possible values of derivatives of

the solution function, and hence, we get the values of all the option Greeks explicitly.

Moreover, this method gives a small error even by using a few points. The infinite spatial

computational domain is truncated into a finite domain by taking the sufficiently large value

of stock price indicated as Smax. For numerical simulations, we consider the transformed

equation (2.2.2) and finally use back substitution to get the solution of equation (2.2.1).

So, we consider the transformed computational domain [xmin, xmax] and partitioned it

into 2J+1 equidistant spatial nodes, and similarly, we discretize the temporal domain. For

convenience, we take equal maximum levels of resolutions (J = J1) in both directions.

The computational errors are given in three different norms. For a function w(S, τ) the

error measures are computed by using the following formulae:

E2 =

(
N1∑
ν=1

N2∑
υ=1

∣∣∣∣w2N1,2N2(S2ν−1, τ2υ−1) + w2N1,2N2(S2ν , τ2υ)

2
− wN1,N2(Sν , τυ)

∣∣∣∣2
)1/2

,

E∞ = max
ν=1,2,...,N1

max
υ=1,2,...,N2

∣∣∣∣w2N1,2N2(S2ν−1, τ2υ−1) + w2N1,2N2(S2ν , τ2υ)

2
− wN1,N2(Sν , τυ)

∣∣∣∣ ,

Erms =

(
1

N1N2

N1∑
ν=1

N2∑
υ=1

∣∣∣∣w2N1,2N2(S2ν−1, τ2υ−1) + w2N1,2N2(S2ν , τ2υ)

2
− wN1,N2(Sν , τυ)

∣∣∣∣2
)1/2

,

where N1 = 2J+1 and N2 = 2J1+1; w2J+1,2J1+1 and w2J+2,2J1+2 are the approximated

values of w obtained by using (2J+1, 2J1+1) and (2J+2, 2J1+2) nodal points, respectively.

All the numerical simulations are performed using MATLAB 2019b.

Example 2.5.1. Consider the Black-Scholes equation (2.2.1) for the European call option

with a fixed rate of interest r = 0.08, volatility σ = 0.3, the exercise time T = 1 year, and

strike price K = 40 with no dividend.
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In this example, the computational domains in the spatial and temporal directions are

taken [−1, 1] and [0, σ
2T
2
], respectively. In Table 2.2 we have presented the different error

measures along with the order of convergence and CPU time (in seconds), the time taken

by the computer while calculating the price of the option. Here a noteworthy observation

is that we obtained a different order of convergence for different error measures. It can

be easily examined that the proposed method achieves a quadratic order of convergence

in the case of maximum absolute error and relative mean square error while it gives the

linear order of convergence in the L2−norm.

The Haar solution of the Black-Scholes equation for the European call option and

the relation between the call option price (V ) and time (τ ) is depicted in Figure 2.1. It

elucidates that for a fixed asset price the value of the European call option decreases and

approaches the payoff function value monotonically as the time approaches maturity T .

We also observed that the option price decreases to zero for S < K i.e., the option is

getting out of the money, and it increases linearly for S > K i.e., the option is in the

money in this case. So, an increase in the price of the asset in the case of a European call

option leads us to profit.

In Tables 2.3, 2.4, and 2.5, we have tabulated relative mean square errors with distinct

values of time to maturity T for different derivatives of the option price. The increase

in the levels of resolution of the Haar wavelet leads to a decrease in the error measure

reveals that the proposed method gives accurate approximations for the derivatives of

option pricing function with respect to different parameters. Figure 2.2 illustrates that the

delta of the European call option changes non linearly with change in the asset price. The

figure reports that the value of delta for the European call option lies between 0 and 1. We

also observed that for S > K the value of delta approaches 1 as τ approaches expiry T .

This can be explained by the fact that as the price of the asset is greater than the price of

the strike then there are more chances of exercising the option because the option is in the

money in this case. Similarly, for the case when S approaches zero the option becomes

out of the money and hence delta approaches zero.

The change in the behavior of option delta with a change in the price of an asset (that
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is gamma) is plotted in Figure 2.3. From the figure, we observed that the value of gamma

for the European call option is always positive because the value of delta increases as

the asset price increases. The graphical analysis also reveals that the gamma becomes

more and more spiked near the strike price as there is a sudden change in the value of

delta near the strike price. From Figure 2.3(b) it can be observed that for S > K gamma

approaches zero because in that region the value of delta approaches 1 (a constant). A

similar observation has been made for gamma tends to zero for S < K as the option is out

of the money so delta approaches zero there.

The change in the price of the option with a decrease in the time to maturity is depicted

in Figure 2.4. The figure illustrates that the variation in the option price with the change

in time is always negative for the European call option. This observation is in agreement

with the results given in [46]. The negative value of theta is due to the decrease in the

price of the option as the time approaches expiration date because as the time approaches

maturity the chance of expiration of the option in the money is getting low with time.

Example 2.5.2. Consider the Black-Scholes equation (2.2.1) for the European put option

with fixed rate of interest r = 0.06, volatility σ = 0.45, the exercise time T = 0.25 year

and strike price K = 10 with no dividend.

In this example, we have demonstrated the efficiency of the 2D Haar wavelet method to

calculate the price of the European put option and its Greeks. Throughout this example we

take xmin = −1, xmax = 1, and t ∈ [0, σ
2T
2
]. In Table 2.6 we have shown the convergence

trends of the present method via three different types of error measures. The computational

orders of convergence in L2−norm have been validated with the theoretical results proved

in the previous section. A significant difference can be noticed in the order of convergence

of the proposed numerical method with different error measures.

Figure 2.5(b) represents the value of the European put option for different values of

τ along with the payoff function. The surface plot in Figure 2.5(a) reveals that the value

of the European put option approaches zero for S > K, however, it increases linearly for

S < K as the option is in the money here. A noteworthy observation is that the option
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price function’s behavior change rapidly near the strike price which can be explained by

the fact the for S < K the put option is in the money and for S > K the put option

becomes out of the money.

In Tables 2.7, 2.8, and 2.9, we have presented the relative mean square errors of the

proposed method while computing the Greeks with the increase in the level of resolution

of Haar wavelets. The approximated value of delta of the European put option at T = 0.25

is drawn in Figure 2.6(a) while Figure 2.6(b) depicts the value of delta of European put

option at different values of τ . It is evident from Figure 2.6 that the value of delta for

European put option approaches zero as the price of the asset increases, it can be justified

from the fact that the increase in the asset price reduces the put option price. A novel

observation is that there are fewer chances for the option to expire in the money as we

approach maturity.

The value of gamma of European put option at different values of τ and the approx-

imated solution of gamma of the European put option at T = 0.25 is being pictorially

depicted in Figure 2.7. This figure illustrates that the value of gamma is negative since the

value delta is decreasing. It is perceived from the figure that the value gamma is almost

equal to zero for S > K which is evident from the fact that the value of delta for the put

option approaches zero in the region S > K, which means that there is not much change

in the value of delta with when the asset price is greater than the strike price.

Figure 2.8 depicted that the value of theta is positive which means that the option is

deep in the money. The fall in the graph reports that the value of the option decreases as

time increases. A significant observation is that there is a rapid change in theta near the

maturity which explained the fact that when we are at a short distance from the maturity,

the time decay is at its peak. The present numerical study shows the significant impact of

the study of option Greeks in the financial markets and good agreement with the financial

theory given in [47].

40



Chapter 2

Table 2.2: E2, E∞, Erms, and the CPU time (in seconds) with parameters as given in
Example 2.5.1 for calculating the call option price.

Maximum Level of Resolution J
1 2 3 4 5

E2 9.9753e− 02 5.1062e− 02 2.5806e− 02 1.3033e− 02 6.5836e-03
0.9661 0.9845 0.9855 0.9852

E∞ 4.9917e− 02 1.3394e− 02 3.7811e− 03 1.0314e− 03 2.7535e− 04

1.8979 1.8247 1.8742 1.9053

Erms 2.5213e− 02 6.5089e− 03 1.6662e− 03 4.2541e− 04 1.0855e− 04

1.9537 1.9659 1.9696 1.9705

CPU Time 0.077 0.103 0.113 0.171 1.643

(a) T = 1 (b) different values of τ and option’s payoff

Figure 2.1: The approximated value of the European call option.

41



Chapter 2

Table 2.3: Erms in delta for European call option at different values of time to expiration T
with parameters as given in Example 2.5.1.

Maximum Level of Resolution J

Maturity 1 2 3 4 5

T = 0.25 3.8629e− 03 1.1154e− 03 2.8874e− 04 8.0163e− 05 2.1882e− 05

T = 0.50 3.6960e− 03 1.0424e− 03 3.0811e− 04 8.7528e− 05 2.4451e− 05

T = 0.75 3.3796e− 03 1.0744e− 03 3.2843e− 04 9.3679e− 05 2.6212e− 05

T = 1.00 3.1199e− 03 1.1041e− 03 3.3867e− 04 9.6062e− 05 2.6708e− 05

(a) T = 1 (b) different values of τ

Figure 2.2: The approximated value of delta for the European call option.
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Table 2.4: Erms in gamma for European call option at different values of time to expiration
T with parameters as given in Example 2.5.1.

Maximum Level of Resolution J

Maturity 1 2 3 4 5

T = 0.25 2.3205e− 03 2.6828e− 03 6.1163e− 04 1.3720e− 04 3.3630e− 05

T = 0.50 3.5729e− 03 1.9224e− 03 4.1024e− 04 1.0009e− 04 2.4879e− 05

T = 0.75 3.9969e− 03 1.5113e− 03 3.5490e− 04 8.8514e− 05 2.2112e− 05

T = 1.00 4.0736e− 03 1.3229e− 03 3.3081e− 04 8.3296e− 05 2.0857e− 05

Table 2.5: Erms in theta of European call option at different expiration times T with
parameters as given in Example 2.5.1.

Maximum Level of Resolution J

Maturity 1 2 3 4 5

T = 0.25 2.8736e− 02 2.4061e− 02 5.3181e− 03 1.4441e− 03 4.1072e− 04

T = 0.50 4.1368e− 02 1.4242e− 02 3.1775e− 03 9.4063e− 04 2.8735e− 04

T = 0.75 4.6973e− 02 9.6357e− 03 2.0895e− 03 6.1565e− 04 1.9393e− 04

T = 1.00 5.0589e− 02 8.1650e− 03 1.5309e− 03 3.8782e− 04 1.1813e− 04
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(a) T = 1 (b) different values of τ

Figure 2.3: The approximated value of gamma for the European call option.

(a) T = 1 (b) different values of τ

Figure 2.4: The approximated value of theta for the European call option.
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Table 2.6: E2, E∞, Erms, and the CPU time (in seconds) with parameters as given in
Example 2.5.2 for calculating the put option price.

Maximum Level of Resolution J
1 2 3 4 5

E2 1.4014e− 01 7.2345e− 02 3.6872e− 02 1.8556e− 02 9.2973e− 03

0.9539 0.9724 0.9906 0.9970

E∞ 5.9864e− 02 1.6949e− 02 4.5116e− 03 1.1639e− 03 2.9560e− 04

1.8205 1.9095 1.9547 1.9772

Erms 3.5259e− 02 9.2693e− 03 2.3637e− 03 5.9422e− 04 1.4897e− 04

1.9275 1.9714 1.9920 1.9960

CPU Time 0.6554 0.6638 0.7145 2.3217 79.0715

(a) T = 0.25 (b) different values of τ and option’s payoff

Figure 2.5: The approximated value of the European put option.
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Table 2.7: Erms in delta for European put option at different expiration times T with
parameters as given in Example 2.5.2.

Maximum Level of Resolution J

Maturity 1 2 3 4 5

T = 0.25 2.0652e− 03 5.5494e− 04 1.4230e− 04 3.5991e− 05 9.0389e− 06

T = 0.50 2.1042e− 03 5.5317e− 04 1.4218e− 04 3.6515e− 05 9.4341e− 06

T = 0.75 2.2241e− 03 5.8418e− 04 1.5398e− 04 4.1123e− 05 1.1117e− 05

T = 1.00 2.4416e− 03 6.4221e− 04 1.7475e− 04 4.8628e− 05 1.3659e− 05

(a) T = 0.25 (b) different values of τ

Figure 2.6: The approximated value of delta for the European put option.

Table 2.8: Erms in gamma for European put option at different expiration times T with
parameters as given in Example 2.5.2.

Maximum Level of Resolution J

Maturity 1 2 3 4 5

T = 0.25 6.8206e− 03 2.5420e− 03 5.2746e− 04 1.2776e− 04 3.1674e− 05

T = 0.5 6.7964e− 03 1.6829e− 03 4.0131e− 04 9.9477e− 05 .4799e− 05

T = 0.75 6.0714e− 03 1.4448e− 03 3.5848e− 04 8.9480e− 05 2.2354e− 05

T = 1.00 5.4687e− 03 1.3399e− 03 3.3728e− 04 8.4478e− 05 2.1135e− 05
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(a) T = 0.25 (b) different values of τ

Figure 2.7: The approximated value of gamma for the European put option.

Table 2.9: Erms in theta for European put option at different expiration times T with
parameters as given in Example 2.5.2.

Maximum Level of Resolution J

Maturity 1 2 3 4 5

T = 0.25 1.6114e− 02 5.0884e− 03 1.0800e− 03 2.7921e− 04 7.4581e− 05

T = 0.50 1.6696e− 02 3.7015e− 03 9.7470e− 04 2.7738e− 04 7.9451e− 05

T = 0.75 1.6067e− 02 3.7863e− 03 1.0867e− 03 3.2108e− 04 9.4038e− 05

T = 1.00 1.5922e− 02 4.1289e− 03 1.2291e− 03 3.6878e− 04 1.0891e− 04
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(a) T = 0.25 (b) different values of τ

Figure 2.8: The approximated value of theta for the European put option.

2.6 Conclusions
The present study is a novel numerical approach to analyze the sensitivity of the price of an

option with respect to the different parameters involved in the Black-Scholes equation. In

this chapter, we have used a two-dimensional Haar wavelet method for finding the numeri-

cal solution to the Black-Scholes equation and its Greeks. The windowing technique and

the multi-resolution analysis of Haar wavelets are used to get a more accurate estimation

of the initial functions. This approach of finding the numerical solutions of the option

Greeks is novel and effortless as it explicitly gives the approximation of the derivatives of

the initial function. For avoiding the truncation error, the infinite domain is truncated into

a finite domain. Although, we have proved the convergence of the proposed method in

the L2−norm, the computational errors and the associated orders of convergence of the

proposed method are also presented in different error measures. We do emphasize that this

method gives better accuracy even when only a few points are used. The effects of various

parameters on the price of options such as varying stock price S, time τ , maturity T are

depicted numerically and graphically. The observations and outcomes can be used by the

money investors or shareholders in small markets as well as in big financial institutes in

hedging the risk and managing the portfolios.
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Exploring the Greeks of American

options, a free boundary value problem

One of the most widely studied topics in quantitative finance is the pricing of American

options. In the United States and Canada, a large range of commodities and commodity

futures contracts are currently traded. Almost majority of these choices are in the American

style. Unlike European option, an American option can be exercised at any time before it

expires that leads to an optimization problem, namely, the linear complementarity problem

(LCP). As a result, American options are more adaptable, and so more useful in general.

The “moneyness” of the option, the interest rate, the remaining time until expiry, and

whether the underlying pays dividends are the primary factors that determine the price

difference between American and European options. Finding solutions to the American

option valuation problem is more challenging than it is in European because of the added

feature of early exercise.

The challenge with pricing an American option is that determining the ideal moment

to exercise it is tough. The “early exercise premium” is the value of the right to exercise

early. The goal of American option pricing is to figure out how much the early exercise

premium is worth. Also, due to future uncertainties, underlying assets may increase or
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decrease in value. American options as important financial derivatives will generate more

diverse financial markets. In general, there is no closed form approach to pricing American

options. Therefore, option price simulations can serve as a key input when important

financial decisions are made.

This chapter presents a novel and highly accurate wavelet-based approximation tech-

nique to explore the sensitivities and value of American options diagnosed by linear

complementarity problems. For a detailed analysis of such financially relevant problems,

first the actual final value problem under the Black-Scholes framework is transformed into

a dimensionless initial value problem. To avoid the unacceptable large truncation error, the

unbounded domain is trimmed into a bounded domain [31]. A remarkable observation is

that to investigate the various physical and numerical aspects of the options’ sensitivities;

the proposed scheme is efficient as it explicitly provides the numerical approximation of

all the derivatives of the solution function. The multi-resolution technique of the wavelets

and the convergence of the proposed wavelet scheme are comprehensively analyzed. The

wavelet analysis is accompanied by illustrative examples to demonstrate the proficiency

and robustness of the present method coupled with graphical representations. It has been

shown that the present method is efficient to solve free boundary problems. It is worthy to

note that the highly accurate and promising computational results are enough to confirm the

performance of the proposed method. The simulated results of options’ Greeks analyzed

and discussed have vast applications in different financial institutes and trading markets.

3.1 Literature survey
For the theoretical development of American option pricing problem see [48], while an

extensive literature on the resolution of LCPs can be seen in the book by Cottle et al. [49].

The discretized linear complementarity approach for a wide range of the options ranging

from vanilla American to highly complex multi-asset option can be seen in Wilmott et al.

[50]. [51], to the best of our knowledge is one of the earliest researches on the LCP for

pricing an American put option. There are several numerical methods developed for these

problems, such as finite volume methods (FVM) [52–54], finite element methods (FEM)
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[55–57], and finite difference methods (FDM) [51, 58–60]. The meshfree algorithms

based on the radial basis functions approach can be seen in [61, 62]. For operator splitting

methods for American option pricing the readers are referred to [17]. On the other hand,

for the analytic solutions for these problems the readers are referred to [63] for the integral

equation method, and [64] for the Laplace transform method.

The most common numerical tool for pricing options is the FDM. In particular, a

more accurate approach (second-order in time) is the Crank-Nicolson scheme, which

is difficult to apply to the LCPs. Huang and Pang [65] presented second-order upwind

FDMs for the problem of the form (3.2.1) and derived the fundamental properties of the

discretized form. Using a PDE approach Christara and Dang [66] developed adaptive

schemes for the solution of the problems of the form (3.2.1). They have used a penalty

method for free boundary; the FDMs and FEMs on the adaptive mesh, generated by an

error equidistribution technique in spatial direction; and the Crank-Nicolson difference

formula with the time step size selector in the temporal direction. Reisinger and Witte

[67] demonstrated a policy iteration algorithm for the solution of LCPs obtained by using

the FDM and FEM approximation of American options. To formulate the LCP from the

parabolic variational inequality, Memon [68] used the penalty function approach. The

unbounded domain is truncated into a bounded domain and the FEM is applied to the

penalized problem on the truncated domain. To formulate an LCP of American options

under the Bates model, Salmi et al. [69] used FDM and quadrature rule. The resulting

LCP is then solved by using a projected algebraic multigrid (PAMG) method. They have

observed that for small stepsize the PAMG method leads to better scalability than the

PSOR method when the discretization is refined.

Later, to solve the Black–Scholes model for European and American options, Rad

et al. [39] proposed meshfree radial basis point interpolation (RBPI) combined with

an exponential change of variables, a mesh refinement algorithm, and an implicit Euler

Richardson extrapolated scheme. In the case of American options, they have used PSOR,

the Bermudan approximation, and the penalty approach for the solution of free boundary

problems. Rad et al. [40] proposed the local weak form meshless methods for the
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American option. They have used the Richardson extrapolation technique to covert the

free boundary problem into LCP. The infinite domain is truncated into a finite domain by

using the change of variables proposed by Clarke and Parrott [70]. The matrix method is

used to show the unconditional stability of the θ-weighted scheme for the implicit Euler

(θ = 0) and Crank-Nicolson (θ = 1/2) schemes. The power penalty methods for LCP

arising from American option pricing can be seen in [71] where the authors have applied

the nonlinear Jacobian method to solve the penalized equations obtained by discretizing

the LCP in space and time. For more development of the penalty methods, the readers are

referred to [72, 73]. For reduced basis methods for pricing options with the Black-Scholes

model readers can go through [16]

To solve the LCP resulting by using a log-transformation for the Black-Scholes-Merton

model of American option pricing, Shi et al. [74] used θ method. A fixed point iterative

method via the splitting technique of the matrix, which is more accurate than the PSOR,

is used to solve the resulting system of equations. Recently, for the solution of LCP,

Cen and Chen [75] introduced a first-order in time and second-order in spatial directions,

differential identity expansion FDM comprising an implicit Euler method to discretize the

time variable and FDM on a piecewise-uniform mesh in the spatial variable which results

in an M -matrix.

How the value of an option price changes if one (or more) of the parameter changes is

equally important as pricing an option. So, we also explore the sensitivities such as Delta

(∆), Gamma (Γ), and Theta (Θ). The sensitivity of a portfolio of options to change in

market conditions is diagnosed by using Greeks. As the price of an option changes the

risk of the option changes too. Therefore, knowing how the option price changes enable

the trader to hedge the risks of holding the option.

3.2 American option pricing model
The early exercise feature of an American option results in a moving boundary value

problem (BVP). The value P (S, τ) of such an option is diagnosed by one of the pricing

methods that includes the linear complementarity formulation introduced in [50]. The
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associated differential operator L to the LCP is of the form

L ≡ ∂

∂τ
+

1

2
σ2S2 ∂

2

∂S2
+ (r − δ)S

∂

∂S
− rI,

where S ∈ (0,∞) is the price of the underlying asset at any time τ ∈ [0, T ), r ≥ 0 is the

risk-free rate of return, δ ≥ 0 is the dividend yield and σ > 0 is the volatility, which is the

fickleness of the underlying asset in the market.

The American option under the Black-Scholes framework defined on an unbounded

domain is a free BVP, with no closed-form solution. In the case of American style call

option with strike price K, for P (S, τ) > payoff, the Black-Scholes equation holds, i.e.,

LP (S, τ) = 0, and for P (S, τ) = payoff it is optimal to exercise the option. Through the

combined effect of both the relations we can derive the following LCP:

(LP (S, τ)).(P −F) = 0, S ∈ ΩS = (0,∞), τ ∈ [0, T ), (3.2.1a)

with the constraints

LP (S, τ) ≥ 0, and (P −F) ≥ 0, (3.2.1b)

where F = (S −K)+ is the terminal condition, also known as the payoff function, and

for a function a the superscripted a is defined as a+ = max{a, 0}.

In a similar manner, we get this inequality for the American style put option with

F = (K − S)+. In pricing the option, the following boundary condition is imposed at the

left end of the underlying interval

lim
S→0

P (S, τ) =

0, for call,

(K − S)+, for put,
(3.2.1c)

that means in the case of a call option, the contract becomes worthless and for a put option,
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it is deep in the money for S → 0. The right boundary condition is given by

lim
S→∞

P (S, τ) =

(S −K)+, for call,

0, for put,
(3.2.1d)

that means in the case of a call, the option is in the money and for a put option, it is

meaningless for S → ∞.

Since the problem (3.2.1) is defined over an infinite domain ΩS and in practice from

the numerical point of view it is difficult to consider the problem over the infinite domain.

So, for numerical implementation by introducing a log-transformation y = ln(S/K), we

truncate the infinite domain ΩS into the finite domain Ωy = (α, β), where α and β are

chosen to be sufficiently large negative and large positive number respectively, to avoid the

large computational error which occurs due to the truncation of the domain. Furthermore,

for detailed analysis of such financially relevant problem and to make it convenient for

numerical implementation, the terminal value problem is transformed into a dimensionless

initial value problem by taking τ = T − 2t
σ2 . As pointed out in [76], the truncation of

the domain from ΩS to Ωy only bring inconsequential error in the solution of (3.2.1). It

is expected that if the desired error estimate of (3.2.1) is finally derived through that of

(3.2.2), the value of α will not affect the former, as a result of the domain of (3.2.1) being

a subset of containing α. Moreover, for symmetric purposes, we set α = −β as adopted

by some published works.

Also, under the above transformation, the Black-Scholes equality (3.2.1a) reduces into

(
∂v

∂t
− ∂2v

∂y2

)
(v − g̃) = 0, y ∈ (−∞,∞), t ∈

(
0,
σ2T

2

]
, (3.2.2a)

and the constraints expressed in (3.2.1b) get transformed into

∂v

∂t
− ∂2v

∂y2
≥ 0, and (v − g̃) ≥ 0, (3.2.2b)
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where g̃(y, t) is expressed as

g̃(y, t) =

e
(

t
4(

2(r−δ)

σ2 −1)
2
+( 2r

σ2 )t
) (
e

y
2 (

2(r−δ)

σ2 +1) − e
y
2 (

2(r−δ)

σ2 −1)
)+

, for call,

e

(
t
4(

2(r−δ)

σ2 −1)
2
+( 2r

σ2 )t
) (
e

y
2 (

2(r−δ)

σ2 −1) − e
y
2 (

2(r−δ)

σ2 +1)
)+

, for put.

Furthermore, the transformed initial condition for call and put options is given by

v(y, 0) = g̃(y, 0),

and the reformulated boundary conditions are obtained as

lim
y→−∞

v(y, t) = lim
y→−∞

g̃(y, t), (3.2.2c)

and

lim
y→∞

v(y, t) = lim
y→∞

g̃(y, t). (3.2.2d)

The new variable v(y, t) is related to P (S, τ) as

P (S, τ) = Ke
−[2( r−δ

σ2 )−1] y2−
[
1
4(2(

r−δ

σ2 )−1)
2
+ 2r

σ2

]
t
v(y, t).

3.3 Wavelet based approximation technique

Wavelets are wave-like oscillations of limited duration that are used to approximate a

function through the compression and reconstruction techniques.

3.3.1 Properties of Haar wavelets and their integrals

Haar wavelets are the rectangular-shaped wave-forms consist of piecewise constant func-

tion. Haar wavelet transform does not permit the overlapping of the window while

approximating a function. Haar wavelets are a discrete type of wave-forms that is gener-

ated by operating translation and dilation on a single prototype function. The Haar wavelet
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family of orthogonal functions for y ∈ [α, β] is defined as follows:

hi(y) =


1, y ∈ [ν1(i), ν2(i)),

−1, y ∈ [ν2(i), ν3(i)),

0, elsewhere,

where

ν1(i) = α +
κ(β − α)

m
,

ν2(i) = α +
(κ+ 0.5)(β − α)

m
,

ν3(i) = α +
(κ+ 1)(β − α)

m
.

We indicate the different levels of resolution by j and the maximum level of resolution

by J so that j = 0, 1, . . . , J . We also consider m = 2j with κ = 0, 1, . . . ,m − 1,

as the translation parameter. The Haar index i is computed by the formulaic expression

i = m+κ+1. From the choices of j, the minimal value of κ andm are 0 and 1, respectively.

2M = 2J+1 is the maximal value of i which signifies the total number of Haar wavelets.

The grid points are determined by ys = α + (s−0.5)(β−α)
2M

, where s = 1, 2, . . . , 2M , which

splits the given interval [α, β] into 2M uniformly distributed sub-intervals.

Orthonormality. The collection of Haar functions generated by the mother wavelet

ξ(y) = h2(y) =


1, y ∈

[
α, α+β

2

)
,

−1, y ∈
[
α+β
2
, β
)
,

0, elsewhere,

form an orthonormal basis in the interval [α, β], i.e.,

∫ β

α

hi(y)hĩ(y) dy = δĩi, i, ĩ = 1, 2, . . . , 2M,
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where δĩi is the Kronecker delta.

Function approximation. An arbitrary function u ∈ L2(R) can be expanded as the

linear combination of functions of Haar basis as

u(y) =
∞∑
i=1

cihi(y), (3.3.1)

where the Haar coefficients ci are determined by

ci =

∫ β

α

u(y)hi(y) dy, i = 1, 2, . . . , 2M.

If u(y) can be approximated as a piecewise constant function in each sub-interval then

RHS of Equation (3.3.1) is terminated after 2M finite terms and thus we deduce

u(y) =
2M∑
i=1

cihi(y).

In matrix form, we can write it as

U = CTH(y),

where the row vector U is the discrete form of the function u(y); CT is a transpose of a

2M × 1 column vector of constant coefficients, and

H =


h1(y1) h2(y1) . . . h2M(y1)

h1(y2) h2(y2) . . . h2M(y2)
...

... . . . ...

h1(y2M) h2(y2M) . . . h2M(y2M)

 ,

is a square matrix of order 2M × 2M . In the following analysis, the first and second
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integrals of the Haar wavelets are defined as

pi(y) =

∫ y

α

hi(y) dy, and, qi(y) =

∫ y

α

pi(y) dy.

In general, the k-th integral of hi(y) is given by

Ikhi(y) =



1
k!
(y − ν1(i))

k, y ∈ [ν1(i), ν2(i)),

1
k!
[(y − ν1(i))

k − 2(y − ν2(i))
k], y ∈ [ν2(i), ν3(i)),

1
k!
[(y − ν1(i))

k − 2(y − ν2(i))
k + (y − ν3(i))

k], y ∈ [ν3(i), β),

0, elsewhere.

An important advantage of Haar functions is the possibility to integrate these wave-forms

arbitrary times.

3.3.2 Multi-resolution analysis

In this section, we discuss the technique used by Haar wavelet to approximate an arbitrary

function. Multi-resolution analysis (MRA) is an approach that refers to the sequence of

functions approximated at different levels of resolution. At each level, the approximation

gets more accurate and finer than the preceding version. Such an analysis provides the

existence of shifting and scaling filters. In order to prove the MRA of L2(R), the following

theorems and lemmas are useful.

Theorem 3.3.1. Assume that Yj, j ∈ Z be a space of constant functions defined on the

intervals of the form
(

κ
2j
, κ+1

2j

)
, where κ ∈ Z. Then

. . . Y−2 ⊂ Y−1 ⊂ Y0 ⊂ Y1 ⊂ Y2 . . . .

Moreover,
⋂
j∈Z

Yj = {0} and
⋃
j∈Z

Yj is dense in L2(R).

Proof. Any function g ∈ Yj implies g ∈ Yj+1, so far every interval
(

κ
2j+1 ,

κ+1
2j+1

)
is con-

tained in
(

κ
2j
, κ+1

2j

)
, thus . . . Y−2 ⊂ Y−1 ⊂ Y0 ⊂ Y1 ⊂ Y2 . . .. Also, if g ∈

⋂
j∈Z

Yj then for
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all j; g is constant function on the interval (0, 2j). If g = c on (0, 2j), then for all j

∥g∥2 ≥
∫ 2j

0

|c|2 dy = 2j|c|2,

and if ∥g∥ <∞ i.e., c = 0 and hence g = 0 a.e. on (0,∞). In similar manner, g = 0 a.e.

for (−∞, 0). Furthermore, to show
⋃
j∈Z

Yj is dense in L2(R), let g ∈ L2(R) and ϵ > 0.

Now from standard results on functions belong to L2, we say there exist N ∈ N and g1, a

continuous function, such that g1(y) = 0 for |y| ≥ N and ∥g − g1∥2 < ϵ
2
.

Now g1 is uniformly continuous on the interval [−N,N ], so there exist j > 0 such

that g1 does not differ more than ϵ√
8N

for all
(

κ
2j
, κ+1

2j

)
, implies there exist a step function

g2 such that

∥g1 − g2∥2 ⩽
(∫ N

−N

ϵ2

8N
dy

)1/2

=
ϵ

2
,

hence by using triangle inequality, we deduce ∥g − g2∥2 < ϵ, so
⋃
j∈Z

Yj is dense in

L2(R).

Lemma 3.3.1. A function g belongs to Yj iff the function y → g(2−jy) belongs to

Y0. Also, Yj has an orthonormal basis consisting of functions that are represented as

ψ(y) = 2j/2ψ(2jy − κ).

Proof. Refer [77].

Lemma 3.3.2. Yj+1 = Yj ⊕ Xj for all j ∈ Z, where Xj has the orthonormal basis

2
j
2 ξ(2jy − κ), κ ∈ Z, where ξ represents the Haar wavelet given by ξ(y) = ψ(2y) −

ψ(2y − 1).

Proof. Refer [77].

Theorem 3.3.2. L2(R) can be written as an orthogonal direct sum of . . . , X−1, X0, X1 . . .,

i.e.,

L2(R) = . . .⊕X−2 ⊕X−1 ⊕X0 ⊕X1 ⊕X2 ⊕ . . . .

Hence, the wavelets ξ(y) = 2
j
2 ξ(2jy − κ), j, κ ∈ Z form an orthonormal basis of L2(R).
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Proof. If g ∈ Xi and g1 ∈ Xj , for i < j, then g ∈ Yi+1 ⊂ Yj , hence ⟨g, g1⟩ = 0, as

Yj ⊥ Xj , thus all combined orthonormal bases from all Xj gives a sequence which is

still orthonormal. Now particularly we show that it also give a basis for L2(R). Clearly,

any closed subspace Y of L2(R) has an orthogonal complement Y ⊥, such that, L2(R) =

Y ⊕ Y ⊥, where Y ⊥ = {g ∈ L2(R) : ⟨g, g1⟩ = 0, ∀g1 ∈ Y }. Let PY : L2(R) → Y be an

orthogonal projection, such that PY (r + s) = r, where r ∈ Y and s ∈ Y ⊥. It is a closed

point in Y to r + s.

Now using Lemma 3.3.2

L2(R) = Yn+1 ⊕ Y ⊥
n+1 = Yn ⊕Xn ⊕ Y ⊥

n+1, n ∈ N.

Thus

I = PYn +PXn +PY ⊥
n+1
,

where I is the identity operator yields

I = PYn +PXn + (I −PYn+1).

So,

PXn = PYn+1 −PYn . (3.3.2)

Now PYn(g) → g, for n → ∞, as
⋃
n∈Z

Yn is dense in L2(R). Also, PYn(g) → 0 for

n→ −∞, as
⋂
n∈Z

Yn = {0}. This implies

PX−2M⊕...⊕X−1⊕X0⊕X1⊕...⊕X2M
(g) =

2M∑
n=−2M

PXn(g),

using (3.3.2), we deduce

PX−2M⊕...⊕X−1⊕X0⊕X1⊕...⊕X2M
(g) =

2M∑
n=−2M

(PYn+1 −PYn)(g)
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= (PY2M+1
−PY2M

)(g)

→ g, as M → ∞.

Hence L2(R) = . . .⊕X−2 ⊕X−1 ⊕X0 ⊕X1 ⊕X2 ⊕ . . ..

MRA of L2(R) is illustrated by the existence of a cluster of subspaces Yj, j ∈ Z,

generated by the direct sum of orthogonal or semi-orthogonal wavelets as

Yj = . . .⊕Xj−2 ⊕Xj−1.

The subspaces Yj possess the following properties [78, 79]:

• Nested: Yj ⊂ Yj+1, ∀ j ∈ Z.

• Dense:
⋃
j∈Z

Yj = L2(R).

• Separation:
⋂
j∈Z

Yj = {0}.

• Yj+1 = Yj ⊕Xj, ∀ j ∈ Z.

• Scaling: For any function g; g(y) ∈ Yj ⇐⇒ g(2y) ∈ Yj+1, ∀ j ∈ Z.

• Orthonormal basis: There exists a scaling function ϕ ∈ Y0 such that {ϕ0,l′(y) =

ϕ(y − l′) : l′ ∈ Z} is an orthonormal basis for Y0.

Here Yj denotes the approximation spaces and different choices of Xj yield distinct

resolution analysis. From the above properties, it is clear that the nested subsequence of

subspaces {Yj}j∈Z covers L2(R). Here Xj are the orthogonal wavelet subspaces generated

by the single prototype function.

Similarly, let {Y 2
j }j∈Z be the multi-scaling approximation of L2(R2). One can show

that there exists a unique mother wavelet whose translation and dilation provide an

orthonormal basis of each space Y 2
j . To solve the PDEs numerically, the multi-scaling

approximation technique includes the representation of unknown function or signals into
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wavelets of different resolutions. The key attribute of wavelets is their propensity to

reorganize the given differential equation into a system of linear or non-linear equations,

which can be solved by different numerical methods.

3.4 Implementation of the proposed wavelet scheme

In this section, we provide the numerical procedure to approximate the solution and

the derivatives of the reformulated LCP for the American option. Let V and v are the

approximate and exact solutions for the problem (3.2.2), respectively. First, we discretize

the spatial domain [α, β] and the temporal domain [0, σ2T/2] into 2M1 and 2M2 uniformly

distributed points (as defined in section 3), respectively. To construct the Haar wavelet

method, first, we expand the approximation ∂3V (y,t)
∂t∂y2

in a linear combination of Haar

functions as
∂3V (y, t)

∂t∂y2
=

2M1∑
i=1

ai,lhi(y),

here, i symbolizes the index of Haar functions in the spatial direction, l represents the

present time level in the temporal direction, and ai,l are the unknown coefficients. On

integrating this expression with respect to t from tl to t, yields

∂2V (y, t)

∂y2
= (t− tl)

2M1∑
i=1

ai,lhi(y) +
∂2V (y, tl)

∂y2
.

Similarly, on integrating it with respect to y from α to y, we deduce

∂V (y, t)

∂y
= (t− tl)

2M1∑
i=1

ai,lpi(y) +
∂V (y, tl)

∂y
− ∂V (α, tl)

∂y
+
∂V (α, t)

∂y
.

Again, by integrating the above expression with respect to y from α to y, we obtain

V (y, t) =(t− tl)

2M1∑
i=1

ai,lqi(y) + V (y, tl)− V (α, tl)− (y − α)
∂V (α, tl)

∂y

+ (y − α)
∂V (α, t)

∂y
+ V (α, t). (3.4.1)
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To find the unknown terms ∂V (α,tl)
∂y

and ∂V (α,t)
∂y

we use the final boundary condition i.e., by

taking y = β, in (3.4.1) yields

∂V (α, t)

∂y
− ∂V (α, tl)

∂y
=

1

β − α

[
V (β, t)− (t− tl)

2M1∑
i=1

ai,lqi(β)− V (β, tl) + V (α, tl)

− V (α, t)

]
.

Replacing the value of ∂V (α,t)
∂y

− ∂V (α,tl)
∂y

back into (3.4.1), we obtain

V (y, t) =(t− tl)

2M1∑
i=1

ai,lqi(y) + V (y, tl)− V (α, tl) +
y − α

β − α

[
V (β, t)

− (t− tl)

2M1∑
i=1

ai,lqi(β)− V (β, tl) + V (α, tl)− V (α, t)

]
+ V (α, t). (3.4.2)

To find the derivatives of the solution function, first, we differentiate (3.4.2) with respect

to t, to obtain

∂V (y, t)

∂t
=

2M1∑
i=1

ai,lqi(y) +
y − α

β − α

[
∂V (β, t)

∂t
−

2M1∑
i=1

ai,lqi(β)−
∂V (α, t)

∂t

]
+
∂V (α, t)

∂t
.

(3.4.3)

Similarly, the differentiation of (3.4.2) with respect to y gives

∂V (y, t)

∂y
= (t− tl)

2M1∑
i=1

ai,lpi(y) +
∂V (y, tl)

∂y
+

1

β − α

[
V (β, t)− (t− tl)

2M1∑
i=1

ai,lqi(β)

− V (β, tl) + V (α, tl)− V (α, t)

]
. (3.4.4)

Again, differentiating the above expression with respect to y, yields

∂2V (y, t)

∂y2
= (t− tl)

2M1∑
i=1

ai,lhi(y) +
∂2V (y, tl)

∂y2
. (3.4.5)
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Finally, by substituting the values of ∂V (y,t)
∂t

and ∂2V (y,t)
∂y2

(from (3.4.3) and (3.4.4)) into the

transformed diffusion Equation (3.2.2a) and assuming t→ tl+1 and y → ys, we get

2M1∑
i=1

ai,lqi(ys) +
ys − α

β − α

[
∂V (β, tl+1)

∂t
−

2M1∑
i=1

ai,lqi(β)−
∂V (α, tl+1)

∂t

]
+
∂V (α, tl+1)

∂t

= (tl+1 − tl)

2M1∑
i=1

ai,lhi(ys) +
∂2V (ys, tl)

∂y2
. (3.4.6)

To calculate the Haar coefficients ai,l, first we impose the given constraints, initial condition,

and boundary conditions and then solve the system of equations given by (3.4.6) by using

a suitable numerical method. Then by successively substituting the value of these wavelet

coefficients into (3.4.2)-(3.4.5), we get the approximated solution of the reformulated PDE

for American option (3.2.2) and its derivatives. Finally, for applying back substitution of

the coordinate transformation we use y = ln(S/K) and τ = T − 2t
σ2 , to get the solution of

the original problem (3.2.1) for different American options and options’ sensitivities.

3.5 Convergence analysis

In the present section, we prove the convergence of the proposed Haar wavelet method.

Initially, we introduce some lemmas needed to prove the convergence.

Lemma 3.5.1. The Haar waveforms and their integral functions are bounded above and

their upper bounds are as follows :

hi(y) ⩽ 1, ∀ i and pi(y) ⩽
1

2j+1
, qi(y) < C

(
1

2j+1

)2

, for i > 1,

with C =
8

3(⌊(3/2)⌋!)2
.

Proof. Refer [45].

Lemma 3.5.2. Assume that f(y, tl+1) =
∂2v(y,tl+1)

∂y2
∈ L2(R) be a function defined on [α, β]

at (l + 1)-th time level and f(y, tl+1) ≈
∑2M1

i=1 ai,lhi(y). If for all y ∈ [α, β] there exist ω
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such that |f| and
∣∣∣ ∂f∂y ∣∣∣ are bounded by ω. Then for all l = 1, 2, 3, . . . , 2M2 − 1, the wavelet

coefficients ai,l are bounded.

Proof. The wavelet coefficients ai,l can be written as

ai,l =

∫ β

α

f(y, tl+1)hi(y) dy

=

∫ (κ+ 1
2)(

β−α

2j
)

κ(β−α

2j
)

f(y, tl+1) dy −
∫ (κ+1)(β−α

2j
)

(κ+ 1
2)(

β−α

2j
)
f(y, tl+1) dy.

By applying mean value theorem, there exist y∗ and y∗∗ satisfying κ
(
β−α
2j

)
⩽ y∗ ⩽(

κ+ 1
2

) (
β−α
2j

)
and

(
κ+ 1

2

) (
β−α
2j

)
⩽ y∗∗ ⩽ (κ+ 1)

(
β−α
2j

)
, such that

ai,l = 2−j−1(β − α) [f(y∗, tl+1)− f(y∗∗, tl+1)] .

Again by using Lagrange’s mean value theorem there exists ȳ ∈ [y∗, y∗∗] such that

ai,l = 2−j−1(β − α)(y∗ − y∗∗)
∂f(ȳ, tl+1)

∂y
.

Now as |y∗ − y∗∗| ⩽ β − α and
∣∣∣∂f(ȳ,tl+1)

∂y

∣∣∣ ⩽ ω, so for all l

|ai,l| ⩽
ω(β − α)2

2j+1
.

In this theorem, we perform the convergence analysis for the present wavelet-based

approximation scheme

Theorem 3.5.1. Let ∂2v(y,tl+1)

∂y2
∈ L2(R) be a continuous and bounded function, defined on

[α, β]. Then the approximated solution obtained by the present wavelet scheme converges

to the actual solution i.e., ∀k ∥ErrorJ(y, tl+1)∥2 → 0 as J → ∞.

Proof. Suppose v(y, tl+1) be the exact solution of the transformed LCP for American

option (3.2.2) and V (y, tl+1) be its approximate solution obtained by the proposed Haar
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wavelet method at (l + 1)-th time level. Then, we can write

v(y, tl+1) = η

∞∑
i=0

ai,lqi(y) + ϕ

= ηa1,lq1(y) + η
∞∑
j=0

2j−1∑
κ=0

a2j+κ+1,lq2j+κ+1(y) + ϕ,

where η = T/(2M2 − 1), ϕ is the function determined by imposing the given initial and

boundary conditions, i, j and κ are the earlier defined parameters. Now, the Haar solution

at the maximum level of resolution can be determined by

V (y, tl+1) = ηa1,lq1(y) + η
J∑

j=0

2j−1∑
κ=0

a2j+κ+1,lq2j+κ+1(y) + ϕ.

The error function at the maximum level of resolution is computed by

ErrorJ(y, tl+1) = v(y, tl+1)− V (y, tl+1)

= η
∞∑

j=J+1

2j−1∑
κ=0

a2j+κ+1,lq2j+κ+1(y).

Taking L2−norm to deduce

∥ErrorJ(y, tl+1)∥22 = η2
∑
j,κ

∑
r,s

a2j+κ+1,la2r+s+1,l

∫ β

α

q2j+k+1(y)q2r+s+1(y) dy.

To get the upper bounds for ∥ErrorJ(y, tl+1)∥22, we use the following result [45]

∞∑
j=J+1

2j−1∑
κ=0

(
1

2j+1

)3

⩽ C

(
1

2J+1

)2

, for some constant C.

By using upper bound for wavelet coefficients ai,l from Lemma 3.5.2 and upper bounds
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for Haar wavelets and their integral functions from Lemma 3.5.1, we obtain

∥ErrorJ(y, tl+1)∥22 < η2
∑
j,κ

∑
r,s

C2ω2(β − α)4

(2!)2(2j+1)3(2r+1)3
<

C1

(2J+1)4
,

for some constant C1. Thus, the Haar wavelet approximation method is convergent.

3.6 Numerical experiments
In this section, some numerical experiments are performed to demonstrate the proficiency

and robustness of the proposed scheme to price the American options and to explore the

options’ Greeks under the Black-Scholes framework. Since the Black-Scholes model

involves various parameters and the change in those parameters affect the price of the

option, these effects are depicted graphically and discussed in detail. Although the value of

an American option can be calculated by using other methods, to calculate the numerical

solution of the option’s Greeks Haar wavelet method is explicit and straightforward. Also,

the multi-resolution technique of the Haar wavelet method to approximate the spiked

function plays a primary role in confining the non-smooth payoff function and the Greeks

of American options. For numerical simulations, first, we consider the transformed LCP

for an American option, and then we use the back-substitution to the price of the option

and compute the Greeks. The computed numerical results are analyzed to rationalize

the procedure and to justify the performance of the proposed scheme. Also, it has been

shown that the present method is effective for solving moving boundary problems with

different constraints conditions. It is worthy to note from the results (Tables 3.1 and

3.2) that the proposed wavelet scheme requires fewer computational nodes than standard

numerical methods to achieve a high level of accuracy. We can see that to hit the error level

10−15, the Haar wavelet requires a hundred times fewer points than traditional methods.

In all the experiments without the loss of generality, we take M1 = M2. As the exact

solutions are not known, the errors are computed in the form of residual. Thus if P (S, τ)

is the actual solution of (3.2.1), then its approximate solution C(S, τ) introduces an error

E(S, τ) = (LC(S, τ)).(C − F) (known as the residual). The formulaic expressions for
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different residual error measures are

E2 =

(
2M1∑
µ1=1

2M2∑
µ2=1

∣∣[(LC(S, τ)).(C −F)](µ1,µ2)

∣∣2)1/2

,

E∞ = max
1⩽µ1⩽2M1

max
1⩽µ2⩽2M2

∣∣[(LC(S, τ)).(C −F)](µ1,µ2)

∣∣ .
The simulations are performed in MATLAB 2019b, and the computation time needed

to solve the present LCP to get the American option price is denoted as CPU Time in

seconds.

3.6.1 Simulations and discussion for an American call option

To demonstrate the efficiency of the proposed scheme, we perform an experiment by

considering the American call option pricing problem. For the numerical implementation,

we fix the option’s parameters as in Example 3.6.1.

Example 3.6.1. Let the value of the risk-free rate of return and volatility are r = 0.05 and

σ = 0.2, respectively with maturity T = 0.5, considering K = 30 as the strike price, and

the dividend yield δ = 0.

In this example, for numerical simulation, the computational domain is considered as

α = −2 and β = 2. The numerical errors while computing the solution of the American

call option pricing problem in the form of residual is presented in Table 3.1. From the

table, it is perceived that the proposed scheme is highly accurate in computing both the

price and the Greeks of the American call option. Also, it is easily observed that even

at a fewer number of grid points, the present scheme is hundred times accurate than the

standard numerical methods. It is significant to note that there is an increase in the error

measures in both L2 and L∞ norms. It is justified from the fact that with the increase

in the value of the maximum level of resolution J , we have to perform more complex

calculations, hence the roundoff error accumulate (see [80] for more details). Moreover,

we can observe that after many steps, the accumulated error is still quite small.
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Table 3.1: E2, E∞, and the CPU time (in seconds) with parameters as given in Example
3.6.1 for calculating the American call option price.

Maximum Level of Resolution J
2 3 4 5 6

E2 1.208e− 15 2.757e− 15 8.471e− 15 2.393e− 14 6.845e− 14

E∞ 8.219e− 16 1.182e− 15 2.623e− 15 2.910e− 15 5.819e− 15

CPU Time 0.0806 0.0846 0.0862 0.1252 0.3197

(a) Option price (b) Delta

Figure 3.1: Approximated values of option price and delta for Example 3.6.1.

Figure 3.1(a) depicted the price of the American call option, which is non-linear, it

also reveals that the option is deep out of the money for S ≤ K, and it goes deep in the

money for S > K with a high probability that the option will be exercised. The effect

of moneyness and the time to maturity on the delta is depicted in Figure 3.1(b). It is

significant to note that the value of delta lies between 0 and 1. Also, for extremely high

and low values of the underlying asset the option’s delta approaches the limits of its range.

For S approaching its maximum the intrinsic value of the option is very high, so the delta

of the call option approaches 1, and for S approaching towards 0 the option is deep out

of the money, thus the value of delta tends to 0. The value of delta helps the investor in
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(a) Gamma (b) Theta

Figure 3.2: Approximated values of gamma and theta for Example 3.6.1.

hedging the option by keeping the net delta exposure at zero.

The surface plot of the second derivative of the option price to the underlying asset is

illustrated in Figure 3.2(a), which represents the convexity of the option price. The figure

reports that close to maturity the value of gamma is negligible. It is justified from the fact

that the value of delta is almost constant and equals to 1 near maturity T = 1. It is also

clear from the figure that the option seller faces higher profit or lower loss arising for S

tending to Smax. It is worthy to note that the value of gamma is always positive because of

the value of delta increases as the asset price increases. The sudden change in the gamma

value near the strike price is due to the non-smoothness of the solution function governing

the American call option price.

The change in the value of the call option with decay in the time to maturity is depicted

in Figure 3.2(b). It is noteworthy that the value of the option is negative as with the passing

of time the value of the option will decrease because less time is left for the option to

expire.
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Table 3.2: E2, E∞, and the CPU time (in seconds) with parameters as given in Example
3.6.2 for calculating the American put option price.

Maximum Level of Resolution J
2 3 4 5 6

E2 2.362e− 18 1.064e− 17 3.102e− 17 7.006e− 17 1.827e− 16

E∞ 1.705e− 18 6.002e− 18 1.178e− 17 1.970e− 17 4.147e− 17

CPU Time 0.0806 0.0846 0.0862 0.1252 0.3197

3.6.2 Simulations and discussion for an American put option

We consider the following example to illustrate the performance of the present method for

computing the price of the American put option and its Greeks with zero dividend yield.

Example 3.6.2. Consider the LCP with a fixed rate of interest r = 0.08 and volatility

σ = 0.3. Assume the expiry T = 1 year with strike price K = 100.

The truncated and artificial computational domain for numerical simulations is taken

to be [−1, 1]. Different error measures presented in Table 3.2 confirm the proficiency and

effectiveness of the proposed method. It is worthy to note from the table that the present

method is highly accurate and robust, and the CPU time taken by the method to deliver

the option price is not so high. Similar to the case of the call option, the numerical error

increases with the increase in the number of collocation points are due to the accumulation

of the round off error, which is because of the increase in the complexity and non-sparsity

of the operational matrix.

In Figure 3.3(a), we have plotted the price of the American put option, which is non-

linear in nature. We can observe that the option is out of the money for S ≥ K and it goes

deep in the money for S < K, in this case, the option will most likely be exercised. The

amount of change in the price of the option due to the change in the price of the underlying

asset is represented in Figure 3.3(b). It is noteworthy that if we are sufficiently close to
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(a) Option price (b) Delta

Figure 3.3: Approximated values of option price and delta for Example 3.6.2.

Smax, the option delta is negligible. Exploring the behavior of the American put option’s

delta helps to manage the portfolio to maintain the delta neutrality.

The value of gamma which represents the second-order sensitivity of the option with

the change in the asset’s price is depicted in Figure 3.4(a). The figure reveals gamma fades

away as the underlying moves closer to its upper bound since delta is close to 0, i.e., the

trader faces more loss and lesser profit in case of the put option for S ≥ K. Probing the

gamma behavior affects the gamma-hedging strategies of the trader, which increases the

probability of getting more profit. It is noteworthy that the value of gamma is highest and

faces a rapid change near the strike price hence at these points, there is a need for frequent

Greeks hedging to manage the risk.

Figure 3.4(b) depicted that the value of theta is positive which means that the option

is deep in the money. The fall in the graph reveals that the value of the option decreases

as the asset price increases. A noteworthy observation is that there is a rise in the value

of theta near the expiry, which can be justified from the fact that when we are close to

maturity, the time decay is at its peak. The present numerical simulations and discussion

reveal the significant impact of the study of options’ Greeks in trade markets and in nice

agreement with the financial theory given in [47].
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(a) Gamma (b) Theta

Figure 3.4: Approximated values of gamma and theta for Example 3.6.2.

3.7 Conclusion, motivation and extension

In this chapter, we have presented a novel and highly accurate wavelet-based approximation

technique for the valuation of the American options and their Greeks. The multi-resolution

technique of wavelet approximation is used to get better approximation at each successive

level. For numerical implementation, the final value problem is converted into a less

cluttered initial value problem, and the unbounded domain is transformed into a bounded

domain using log-transformation. We utilize the excellent approximation technique of

the Haar wavelet method for spiked functions to approximate the non-smooth solution

functions and to estimate the Greeks. Through the study of the convergence behavior

of the proposed Haar scheme, it can be concluded that the present method is stable and

consistent. Moreover, two test examples are presented to demonstrate the efficiency and to

validate the theoretical results of the contributed approach. Computational results, coupled

with graphical representations confirm the proficiency and robustness of the proposed

method. It is worthy to note that the present method is efficient to solve the free boundary

problems. The inspirational and motivational work of the simulated results of options’

Greeks analyzed and discussed has a significant impact on various hedging strategies,
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which leads to vast applications in different financial institutes and trading markets. This

method can be used as an alternative to obtaining highly accurate results of different types

of PDEs that arise in mathematical finance. Furthermore, it can also be used to solve

moving boundary problems arising in the various areas different from finance.
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Investigating the sensitivities of various

path-independent binary options

A European option can only be exercised at the expiry date, while an American option

can be exercised at any time on or before its expiry. On the other hand, the exotic options

differ from the vanilla options in several ways [81]. A binary option is a financial exotic

option in which the reward is either a predetermined financial value or nothing at all.

Due to the all-or-nothing character of its payoffs, binary options are generally referred to

as “digital options.” These options are ideal for short-term trading since they provide a

potentially significant short-term profit with minimal risk. Here comes the question that

what is the significance of binary options? There are different motivations for this such

as these options give traders the opportunity to succeed on numerous levels beyond just

making a profit. Also, the binary options are an excellent way for novice traders to put

their talents to the test because binary option trading begins with predicting direction.

The binary option deal is indeed exciting, but it is based on an emotional wave. It is

also not a passive experience; it necessitates attention because the chances of winning are

not based on numbers. Instead, and in direct contrast to a gambling situation, the trader’s

ability to recognize market conditions and manage risk determines the probabilities of

75



Chapter 4

winning. In order to evolve and improve your binary options trading performance, you

must be willing to review your own performance on a regular basis. There is no such thing

as a free lunch, as we all know. Binary option investments come with hazards in addition

to great gains. The purpose of a competent binary option risk management program is not

to remove risks, in order to keep up with it you need the Greeks. Pricing a binary options

and computing its Greeks with a discontinuous payoff is a challenging task.

This chapter proposes a novel idea of a wavelet-based approximation technique using a

multi-resolution analysis to investigate the sensitivities of various path-independent binary

options under the Black-Scholes environment. The final value problem is transformed into

a dimensionless initial value problem; also, to avoid the large truncation error, the infinite

domain is truncated into a finite domain. The suggested Haar wavelet scheme is effective

and simple to implement for assessing the different physical and numerical aspects of the

options’ Greeks since it explicitly offers the numerical approximation of all the derivatives

of the solution function. Also, the non-smooth payoff functions are approximated well with

the Haar wavelet approximation technique of estimating the spiked functions, so there is no

need to deal with the discontinuity separately. The proofs of the consistency and stability

of the proposed method are given and it has been shown that the proposed method is the

first and second-order accurate in the temporal and spatial directions, respectively. Several

numerical examples of distinct binary options have been taken into account, confirming

the theoretical findings (consistency and stability). Different attributes of the Greeks are

analyzed graphically.

4.1 Literature survey
As an over-the-counter instrument, binary options have been used for decades. Still, it is

relatively new for the traders, as the first time, they used it in the United States in 2008

after the approval by the Commodity Futures Trading Commission (CFTC) and regulation

through the Nadex [19]. However, Jaworsky [82] reported that the first binary options

were presented by the Chicago Board Options Exchange (CBOE) in 2006.

To solve the European and American option pricing models, numerous analytical
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and numerical approaches have been proposed. For binary options problems, however,

only a few numerical techniques have been proposed [83–89]. The well-known available

numerical methods are the finite element method and the finite difference method. These

methods use the concept that since the parabolic partial differential equations (PDEs)

are the extension of the ordinary differential equations (ODEs) in some sense [90] so,

most of the numerical methods first convert the parabolic PDEs into the system of ODEs,

called the semi-discretization, and then solve the system of ODEs. It is challenging to

price the binary option with a discontinuous payoff as the final payoff is not continuous.

Therefore, the classical FDM cannot be used as it gives a significant error in the solutions

around the strike, especially for their Greeks [20]. Rannacher [91] presented FEM for

the diffusion problems with the irregular initial/boundary data. Heston and Zhou [92]

shown that the order of convergence of a method depends on the smoothness of the payoff

functions and is much lower than expected in the case of binary option as the payoff

functions are discontinuous. However, the accuracy can be improved by modification

with some care. They proposed two different methods to enhance the accuracy as we

expect for the continuous payoffs: adjusting the discrete-time solution before maturity

and smoothing the payoff function. Pooley et al. [93] used FEM by using special time-

stepping in conjunction with various procedures (averaging the initial data, shifting the

grid, and a projection method) for smoothing discontinuities. They have observed that

these procedures individually are not sufficient to get the expected solution error, but

with the special time-stepping, these are highly efficient. It would also be challenging

for the spectral element method to enforce the final condition at the strike price without

proper enforcement. Kim and Moon [20] used two types (Type I: at each time it changes

adaptively the size of the time step, Type II: it combines two uniform meshes) of hybrid

FDMs with variable time-stepping for the solution of the binary option. Recently, Yang

et al. [94] have suggested a novel local meshfree method based on Hermite radial basis

function (RBF) interpolation on set of local nodes for simulating cash-or-nothing and

asset-or-nothing options.

Traditional numerical approaches fail to approximate the highly non-smooth behavior
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of the payoff function at the strike price. In contrast, as the discontinuous behavior of

discrete Haar functions senses the points of discontinuities easily, the estimation technique

of the Haar wavelet method for spiked function resolves the obstacle of the discontinuities

and jumps. So, the Haar wavelet method effortlessly deals with the numerical sensitivity

of computation of discontinuous and spiked functions. Based on the Haar basis functions,

in this chapter, we construct an alternative numerical methodology for investigating the

sensitivities of the various path-independent binary options. Unlike other methods, such

as FDM, it does not require semi-discretization.

4.2 Binary option pricing valuation model

In this chapter, we consider various path-independent binary options with non-smooth

payoff functions under the Black-Scholes environment. Consider S as the current price of

the underlying asset (referred to stock) in the market at the time τ . The price V (S, τ) of

the derivative with expiry T is diagnosed by the following PDE [10]:

LV (S, τ) ≡ ∂V

∂τ
+

1

2
σ2S2∂

2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0, 0 < S <∞, 0 ⩽ τ < T,

(4.2.1)

where r is the risk-free interest rate, σ is the volatility, and δ is the dividend yield. For

different binary options, the payoff mechanism switches entirely and hence the boundary

conditions. In the case of call options, the contract becomes out of the money when the

price of the stock decreases to zero, i.e., the contract becomes meaningless when the price

of the stock drops, so in all the binary calls

lim
S→0

V (S, τ) = 0.

Binary options intensify the dual role of the strike price: not only it acts as a barrier

that decides whether the option finishes in the money, at the money, or out of the money,

but it also tells about the size of the payoff. The terminal conditions for different binary

calls, also known as the payoff functions and the right boundary conditions, are defined as
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follows:

Cash-or-nothing calls. The simplest binary call pays off nothing if the underlying

asset price S finishes below the strike priceK or pays out a predetermined constant amount

A if the underlying asset finishes above the strike price. The payoff function and final

boundary condition for the cash-or-nothing call option are

V (S, T ) =

A, if S ⩾ K,

0, if S < K,

and

lim
S→+∞

V (S, τ) = Ae−r(T−τ),

respectively. It interprets that the valued option depends upon the predetermined fixed

amount and time with an increase in the asset price.

Asset-or-nothing calls. Unlike a cash-or-nothing option, the payoff of the more

complex binary call “asset-or-nothing” option is not predetermined; it is subject to the

underlying asset price. It pays off nothing if the underlying asset price S finishes below

the strike price K, or pays out the asset price S itself if the underlying asset finishes above

the strike price. The payoff function for the asset-or-nothing call option satisfies

V (S, T ) =

S, if S ⩾ K,

0, if S < K,

and the right boundary condition is given by

lim
S→+∞

V (S, τ) = Se−δ(T−τ).

Gap call options. These options are slightly more complex than the standard options.

These are paid off nothing if the underlying asset price S finishes below the strike price K,

or pays out the difference of asset price S and a predetermined constant amount A if the
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underlying asset finishes above the strike price. The payoff function of the gap call option

is

V (S, T ) =

S − A, if S ⩾ K,

0, if S < K,

with the right boundary condition given by

lim
S→+∞

V (S, τ) = Se−δ(T−τ) − Ae−r(T−τ).

The difference A −K is defined as a gap. The positive gap calls will sell for less than

standard calls. It can be derived by taking the difference between the two options (a

cash-or-nothing option and an asset-or-nothing option).

Using a log-transformation, we transform the Equation (4.2.1) from the final value

problem to a non-dimensional and less cluttered initial value problem by introducing

the new variables. We take x = ln(S/K) and t = σ2

2
(T − τ), which reformulate the

Black-Scholes equation into
∂u

∂t
=
∂2u

∂x2
, (4.2.2)

where V (S, τ) and u(x, t) are related by

V (S, τ) = Ke
−[2( r−δ

σ2 )−1]x2−
[
1
4(2(

r−δ

σ2 )−1)
2
+ 2r

σ2

]
t
u(x, t).

After the transformation, the left boundary condition for all the three binary options

described above is as follows:

lim
x→−∞

u(x, t) = 0.

The terminal conditions are now turned into initial conditions, which can be easily extended

into boundary conditions for the numerical implementation. The transformed initial
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condition and asymptotic right boundary condition for the cash-or-nothing call option are

u(x, 0) =


A
K
e

x
2
(
2(r−δ)

σ2 −1), if x ⩾ 0,

0, if x < 0,

and

lim
x→+∞

u(x, t) =
A

K
e

x
2 (

2(r−δ)

σ2 −1)+ t
4(

2(r−δ)

σ2 −1)
2

,

respectively. After transformation the initial conditions for the asset-or-nothing and gap

options become

u(x, 0) =

e
x
2 (

2(r−δ)

σ2 +1), if x ⩾ 0,

0, if x < 0,

and

u(x, 0) =

e
x
2 (

2(r−δ)

σ2 +1) − A
K
e

x
2 (

2(r−δ)

σ2 −1), if x ⩾ 0,

0, if x < 0,

respectively. Moreover, the right boundary condition for the asset-or-nothing option is

transformed into

lim
x→+∞

u(x, t) = e
x
2 (

2(r−δ)

σ2 +1)+ t
4(

2(r−δ)

σ2 +1)
2

,

while the right boundary condition for the gap option becomes

lim
x→+∞

u(x, t) = e
x
2 (

2(r−δ)

σ2 +1)+ t
4(

2(r−δ)

σ2 +1)
2

− A

K
e

x
2 (

2(r−δ)

σ2 −1)+ t
4(

2(r−δ)

σ2 −1)
2

.

For the numerical implementation, to avoid the unacceptable large truncation error and

to get the highly accurate results, we truncate the infinite domain into a finite domain

by taking the relatively large value of x i.e., we take (x, t) ∈ [xmin, xmax] × [0, tmax],

where tmax =
σ2T
2

; xmin and xmax indicate sufficiently large negative and sufficiently large

positive numbers, respectively.

The derivatives of the option price are equally important as the option price, so the

question is, how does the option price change if one of the parameters changes? To
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answer this question, we introduce the “Greeks”. Studying numerous Greeks of various

binary options has a big impact on the hedging techniques employed by various financial

institutions. The Greeks are the derivatives of option prices with respect to time, the

underlying asset, or the parameters used in the formula. The sensitivity of a portfolio of

options to change in market conditions is diagnosed using Greeks. As the price of an

option varies, the risk of the option changes too. Therefore, knowing how the option price

changes enable the trader to hedge the option’s risks. All these Greeks have differentiation

formulas derived from the Black-Scholes model. In this work, we will study the following

Greeks: delta (∆), gamma (Γ), theta (Θ), charm and color.

4.3 Haar wavelet methodology
The discrete wavelet, in particular the Haar wavelets (hi(x)), can be used to construct

a basis of L2(R) by using the multi-resolution technique. The maximal value of i is

2M1 = 2J+1, where J is the maximum level of resolution. The given interval [xmin, xmax]

is partitioned into 2M1 sub-intervals of equal length using the collocation points xs =

xmin+
(s−0.5)(xmax−xmin)

2M1
, s = 1, 2, . . . , 2M1. We denote by pi(x) and qi(x) as the first and

second integrals of the Haar wavelet function.

4.4 Implementation of the numerical method
To approximate the solutions and the derivatives of the transformed equations of the path-

independent binary options under the Black-Scholes model, first divide the spatial domain

[xmin, xmax] and the temporal domain [0, tmax] into 2M1 and 2M2 parts of equal length,

respectively. Let U and u are approximate and exact solutions of (4.2.2), respectively. To

derive the Haar wavelet method, the approximation of ∂3u(x,t)
∂t∂x2 is represented in the form:

∂3U(x, t)

∂t∂x2
=

2M1∑
i=1

ci,lhi(x), t ∈ [tl, tl+1],

where ci,l are the unknown coefficients, i denotes the index of Haar functions in the spatial

direction and l denotes the time level. Integrating the above expression once with respect
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to t from tl to t, we get

∂2U(x, t)

∂x2
= (t− tl)

2M1∑
i=1

ci,lhi(x) +
∂2U(x, tl)

∂x2
.

Now, by integrating the above expression with respect to x from xmin to x, we obtain

∂U(x, t)

∂x
= (t− tl)

2M1∑
i=1

ci,lpi(x) +
∂U(x, tl)

∂x
− ∂U(xmin, tl)

∂x
+
∂U(xmin, t)

∂x
.

Again, integrating it with respect to x from xmin to x, we obtain

U(x, t) =(t− tl)

2M1∑
i=1

ci,lqi(x) + U(x, tl)− U(xmin, tl)− (x− xmin)
∂U(xmin, tl)

∂x

+ (x− xmin)
∂U(xmin, t)

∂x
+ U(xmin, t). (4.4.1)

To find the unknown terms ∂U(xmin,tl)
∂x

and ∂U(xmin,t)
∂x

, using the boundary condition for

x = xmax, we get

∂U(xmin, t)

∂x
− ∂U(xmin, tl)

∂x
=

1

xmax − xmin

[
U(xmax, t)− (t− tl)

2M1∑
i=1

ci,lqi(xmax)

− U(xmax, tl) + U(xmin, tl)− U(xmin, t)

]
.

Replacing it back into (4.4.1) gives

U(x, t) = (t− tl)

2M1∑
i=1

ci,lqi(x) + U(x, tl)− U(xmin, tl) +
x− xmin

xmax − xmin

[
U(xmax, t)

− (t− tl)

2M1∑
i=1

ci,lqi(xmax)− U(xmax, tl) + U(xmin, tl)− U(xmin, t)

]
+ U(xmin, t).

(4.4.2)
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Now by differentiating (4.4.2) with respect to t, we obtain

∂U(x, t)

∂t
=

2M1∑
i=1

ci,lqi(x) +
x− xmin

xmax − xmin

[
∂U(xmax, t)

∂t
−

2M1∑
i=1

ci,lqi(xmax)−
∂U(xmin, t)

∂t

]

+
∂U(xmin, t)

∂t
. (4.4.3)

Also, the differentiation of (4.4.2) with respect to x, gives

∂U(x, t)

∂x
=(t− tl)

2M1∑
i=1

ci,lpi(x) +
∂U(x, tl)

∂x
+

1

xmax − xmin

[
U(xmax, t)

− (t− tl)

2M1∑
i=1

ci,lqi(xmax)− U(xmax, tl) + U(xmin, tl)− U(xmin, t)

]
.

(4.4.4)

Differentiate it with respect to x, to obtain

∂2U(x, t)

∂x2
= (t− tl)

2M1∑
i=1

ci,lhi(x) +
∂2U(x, tl)

∂x2
. (4.4.5)

Substituting the approximated values of

∂U(x, t)

∂t
and

∂2U(x, t)

∂x2

(given by (4.4.3) and (4.4.5)) into the Equation (4.2.2) and discretizing the results by

assuming t→ tl+1 and x→ xs, we obtain

2M1∑
i=1

ci,l

[
qi(xs)−

xs − xmin

xmax − xmin

qi(xmax)− (tl+1 − tl)hi(xs)

]
= − xs − xmin

xmax − xmin

×
[
∂U(xmax, tl+1)

∂t
− ∂U(xmin, tl+1)

∂t

]
− ∂U(xmin, tl+1)

∂t
+
∂2U(xs, tl)

∂x2
. (4.4.6)

Here tl and tl+1 represent the present and next temporal levels, respectively, and xs denotes

the s-th collocation point in the spatial direction. From (4.4.6) we can successively calcu-
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late the wavelet coefficients ci,l, and then by substituting the values of these coefficients

into (4.4.2)-(4.4.5), we get the approximated solution of the transformed Equation (4.2.2)

and its derivatives. Finally, for applying back substitution of the coordinate transformation

we use S = Kex and τ = T − 2t
σ2 , to get the solution of the original Equation (4.2.1) for

different binary options and the values of the options’ Greeks.

4.5 Analysis of the numerical method
In this section, we present the consistency and stability analysis of the proposed method

by following the technique given in [95]. We also introduce some lemmas, needed to

study the consistency and stability. Let the solution of the transformed second-order PDE

of the Black-Scholes equation be smooth lying in C2,1((xmin, xmax) × [0, tmax]) and is

approximated as

U(x, t′) = (t′ − tl)

2M1∑
i=1

ci,l

[
qi(x)−

x− xmin

xmax − xmin

qi(xmax)

]
+ ϕ(x, t′),

where t′ ∈ [tl, tl+1] and ϕ(x, t′) is the function determined by the given initial and boundary

conditions. We denote Λ = [xmin, xmax] and define a projection map P : L2(Λ) → V,

where V is a subspace in L2(Λ) generated by the direct sum decomposition of orthogonal

Haar wavelets defined on Λ (refer section 3.1), such that

Pu(x, tl+1) = U(x, tl+1) =
σ2T

4M2

2M1∑
i=1

aiQi(x),

where ai’s are the Haar coefficients at l-th time level, andQi(x) = qi(x)− x−xmin

xmax−xmin
qi(xmax).

4.5.1 Investigating consistency

We need the following lemma to prove the consistency of the proposed method.

Lemma 4.5.1. Assume that f(x, tl) =
∂2u(x,tl)

∂x2 ∈ L2(R) be a function defined on Λ at the

(l + 1)-th time level, and f(x, tl+1) ≈
∑2M1

i=1 aihi(x). If for all x ∈ Λ there exist ξ such

that f and ∂f
∂x

are bounded by ξ. Then, the wavelet coefficients ai are bounded at every
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time level.

Proof. At the l-th time level the wavelet coefficients ai can be written as

ai =

∫ xmax

xmin

f(x, tl+1)hi(x) dx, (using orthonormality)

=

∫ (k+ 1
2)(

xmax−xmin
2j

)

k(xmax−xmin
2j

)
f(x, tl+1) dx−

∫ (k+1)(xmax−xmin
2j

)

(k+ 1
2)(

xmax−xmin
2j

)
f(x, tl+1) dx.

Applying mean value theorem, there exist x∗ and x∗∗ satisfying k
(
xmax−xmin

2j

)
⩽ x∗ ⩽(

k + 1
2

) (
xmax−xmin

2j

)
and

(
k + 1

2

) (
xmax−xmin

2j

)
⩽ x∗∗ ⩽ (k + 1)

(
xmax−xmin

2j

)
, such that

ai = 2−j−1(xmax − xmin) [f(x
∗, tl+1)− f(x∗∗, tl+1)] .

Again using Lagrange’s mean value theorem there exists x̄ ∈ [x∗, x∗∗] such that

ai = 2−j−1(xmax − xmin)(x
∗ − x∗∗)

∂f(x̄, tl+1)

∂x
.

Now as |x∗ − x∗∗| ⩽ xmax − xmin and
∣∣∣∂f(x̄,tl+1)

∂x

∣∣∣ ⩽ ξ, so for all l

|ai| ⩽
ξ(xmax − xmin)

2

2j+1
.

For some u ∈ L2(Λ), the bound for ∥u− Pu∥ is given by the following lemma.

Lemma 4.5.2. Let P be the projection map defined as above and u(x, t) be defined on

L2(Λ). Then

∥u− Pu∥ ⩽
C1

(2M1)22M2

,

where 2M1 and 2M2 are the total numbers of collocation points in spatial and temporal

directions, respectively, and C1 = max |ai|.

Proof. The integration of U(x, t) gives a ramp function tmaxai
(2M1)22M2

(
1

2M1
+ (x− γi)

)
on

the interval Λ. It has the average value tmaxai
2(2M1)22M2

(
1

2M1
+ (1− γi)

)
. The difference
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between the average and actual ramp values (denoted by e(x)) over the interval Λ and

given by

e(x) =
tmaxai

2(2M1)22M2

(
1

2M1

+ (1− γi)

)
− tmaxai

(2M1)22M2

(
1

2M1

+ (x− γi)

)
,

is known as the error in approximating the ramp. So, the least square of the error on the

interval Λ is as follows:

(Error(x))2 =
∫
Λ

[e(x)]2 dx

=

∫
Λ

[
tmaxai

2(2M1)22M2

(
1

2M1

+ (1− γi)

)
− tmaxai

(2M1)22M2

(
1

2M1

+ (x− γi)

)]2
dx

=

(
tmaxai

(2M1)22M2

)2 ∫
Λ

[
1

2

(
1

2M1

+ (1− γi)

)
−
(

1

2M1

+ (x− γi)

)]2
dx

=

(
ai

(2M1)22M2

)2 ∫
Λ

(tmax)
2

[
1

2
+
γi
2
− 1

4M1

− x

]2
dx

⩽

(
ai

(2M1)22M2

)2

.

Thus, we deduce

∥u− Pu∥ = max
Λ

(|Error(x)|) ⩽ C1

(2M1)22M2

.

The following theorem shows that the proposed method is consistent.

Theorem 4.5.1. Suppose U = Pu be the approximate solution obtained by the Haar

wavelet collocation method of the equation

∂u

∂t
=
∂2u

∂x2
, (4.5.1)

which is the transformed equation of the Black-Scholes equation. Then we can write

∂U

∂t
=
∂2U

∂x2
+ E, (4.5.2)
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where the error term E satisfies

∥E∥ ⩽
C2

(2M1)22M2

,

for C2 = max
∣∣∂u
∂t

∣∣+max
∣∣∣∂2u
∂x2

∣∣∣.

Proof. By subtracting Equation (4.5.1) from (4.5.2), we obtain

∂U

∂t
− ∂2U

∂x2
− E − ∂u

∂t
+
∂2u

∂x2
= 0.

This implies

E =

(
∂U

∂t
− ∂u

∂t

)
−
(
∂2U

∂x2
− ∂2u

∂x2

)
=

(
∂Pu

∂t
− ∂u

∂t

)
−
(
∂2Pu

∂x2
− ∂2u

∂x2

)
=
∂(Pu− u)

∂t
− ∂2(Pu− u)

∂x2

=
∂(P − I)u

∂t
− ∂2(P − I)u

∂x2
.

Taking the maximum norm on both sides, we get

∥E∥ ⩽ ∥P − I∥max

∣∣∣∣∂u∂t
∣∣∣∣+ ∥P − I∥max

∣∣∣∣∂2u∂x2

∣∣∣∣
= ∥P − I∥

(
max

∣∣∣∣∂u∂t
∣∣∣∣+max

∣∣∣∣∂2u∂x2

∣∣∣∣) .
Now, by applying the result of Lemma 4.5.2, we deduce

∥E∥ ⩽
C2

(2M1)22M2

,

where C2 = max
∣∣∂u
∂t

∣∣+max
∣∣∣∂2u
∂x2

∣∣∣.
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4.5.2 Stability analysis

The following lemma, which estimates the bounds of the norm of the adjoint of a square

matrix will be used to prove the stability.

Lemma 4.5.3. Let X be a 2M1 × 2M1 matrix with no zero rows. Then

∥adj(X)∥ ⩽ ηmax
k

2M1∏
j=1, j ̸=k

∥rowj(X)∥, for some constant η.

Here, adj(X) denotes the adjoint of the matrix X , rowj(X) indicates the transpose of the

j-th row of X .

Proof. Let Y be any non-singular matrix, then

adj(Y −1X)adj(Y ) = adj(X).

In particular, let Y be a diagonal matrix and the diagonal entries of matrix Y are

∥rowi(X)∥, i = 1, 2, . . . , 2M1. Then

∥adj(Y )∥ = ∥b1b2b3 . . . b2M1diag(b
−1
i )∥ = max

k

2M1∏
j=1, j ̸=k

∥rowj(X)∥.

Note that the rows of Y −1X have norm 1. Now if all the entries X and Y −1 are finite then

by the definition of norm, max ∥adj(Y −1X)∥ exists, and hence we deduce

∥adj(X)∥ ⩽ ∥adj(Y −1X)∥∥adj(Y )∥ ⩽ ηmax
k

2M1∏
j=1, j ̸=k

∥rowj(X)∥,

where η = max ∥adj(Y −1X)∥ is independent of M1.

There are many ways to prove the boundedness of the approximate solution of a given

PDE. One way to investigate this is to show that the approximate solution U is bounded

for all time levels by the initial condition U0 and some Haar functions. The spatial domain
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[xmin, xmax] is divided into 2M1 equal parts and l represents the time level. The system of

equations (4.4.6) can be written in matrix form as

AC = B,

where A is 2M1 × 2M1 matrix; C and B are 2M1 × 1 column vectors. The elements of

A = (aνω) are given by

aνω = qω(xν)−
xν − xmin

xmax − xmin

qω(xmax)− (tl+1 − tl)hω(xν),

with ν = 1, 2, . . . , 2M1, ω = 1, 2, . . . , 2M1, and the column vectors B and C are given by

B =



− x1−xmin

xmax−xmin

(
∂U(xmax,tl+1)

∂t
− ∂U(xmin,tl+1)

∂t

)
− ∂U(xmin,tl+1)

∂t
+ ∂2U(x1,tl)

∂x2

− x2−xmin

xmax−xmin

(
∂U(xmax,tl+1)

∂t
− ∂U(xmin,tl+1)

∂t

)
− ∂U(xmin,tl+1)

∂t
+ ∂2U(x2,tl)

∂x2

...

...

−x2M1
−xmin

xmax−xmin

(
∂U(xmax,tl+1)

∂t
− ∂U(xmin,tl+1)

∂t

)
− ∂U(xmin,tl+1)

∂t
+

∂2U(x2M1
,tl)

∂x2



,

and

C =


c1,l

c2,l
...

c2M1,l

 .

Now we confirm the invertibility of the matrix A by showing that all the columns of matrix
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A are linearly independent. Assume

λ1

(
q1(x)−

x− xmin

xmax − xmin

q1(xmax)− (tl+1 − tl)h1(x)

)
+λ2

(
q2(x)−

x− xmin

xmax − xmin

q2(xmax)− (tl+1 − tl)h2(x)

)
+λ3

(
q3(x)−

x− xmin

xmax − xmin

q3(xmax)− (tl+1 − tl)h3(x)

)
+ · · ·

+λ2M1

(
q2M1(x)−

x− xmin

xmax − xmin

q2M1(xmax)− (tl+1 − tl)h2M1(x)

)
= 0,

for some λ1, λ2, . . . , λ2M1 . On replacing the values of qi(x) and hi(x) which gives

λ1





(x−α1)2

2
, x ∈ [α1, β1),

(x−α1)2−2(x−β1)2

2
, x ∈ [β1, γ1),

(x−α1)2−2(x−β1)2+(x−γ1)2

2
, x ∈ [γ1, xmax),

0, elsewhere.

−
(

x − xmin

xmax − xmin

q1(xmax)

)
− (tl+1 − tl)


1, x ∈ [α1, β1),

−1, x ∈ [β1, γ1),

0, elsewhere,



+ λ2





(x−α2)2

2
, x ∈ [α2, β2),

(x−α2)2−2(x−β2)2

2
, x ∈ [β2, γ2),

(x−α2)2−2(x−β2)2+(x−γ2)2

2
, x ∈ [γ2, xmax),

0, elsewhere.

−
(

x − xmin

xmax − xmin

q2(xmax)

)
− (tl+1 − tl)


1, x ∈ [α2, β2),

−1, x ∈ [β2, γ2),

0, elsewhere,


+ . . .

+ λ2M1





(x−α2M1
)2

2
, x ∈ [α2M1

, β2M1
),

(x−α2M1
)2−2(x−β2M1

)2

2
, x ∈ [β2M1

, γ2M1
),

(x−α2M1
)2−2(x−β2M1

)2+(x−γ2M1
)2

2
, x ∈ [γ2M1

, xmax),

0, elsewhere.

−
(

x − xmin

xmax − xmin

q2M1
(xmax)

)

−(tl+1 − tl)


1, x ∈ [α2M1

, β2M1
),

−1, x ∈ [β2M1
, γ2M1

),

0, elsewhere,

 = 0

The first row of the above expression gives

λ1

[
(x− α1)

2

2
−
(

x− xmin

xmax − xmin
q1(xmax)

)
− (tl+1 − tl)[α1, β1)

]
+ λ2

[
(x− α2)

2

2
−
(

x− xmin

xmax − xmin
q2(xmax)

)
− (tl+1 − tl)

]
+ . . .

+ λ2M1

[
(x− α2M1)

2

2
−
(

x− xmin

xmax − xmin
q2M1(xmax)

)
− (tl+1 − tl)

]
= 0,
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where for the k-th term x ∈ [αk, βk). Now as these expressions (the terms including the

coefficients λ1, λ2, . . . , λ2M1) are in different intervals so for this expression to be zero we

must have λi = 0 for i = 1, 2, . . . , 2M1. Thus, the matrix A is invertible. Now, we claim

that ∥A−1∥ is bounded. As

∥A−1∥ =
1

|det(A)|
∥adj(A)∥,

from Lemma 4.5.3 and the definitions of Haar functions and their integrals on [xmin, xmax],

we deduce that, ∀ l there exists ζl such that

∥adj(A)∥ ⩽ ηmax
k

2M1∏
j=1, j ̸=k

∥rowj(A)∥ ⩽ ζl,

which clearly implies

∥A−1∥ ⩽ ςl, for some ςl.

Thus, from the initial and boundary conditions, we can say ∥B∥ is also bounded at every

time level on [xmin, xmax]× [0, tmax], which gives

∥C∥ ⩽ ρl, for some ρl. (4.5.3)

Using the above result and (4.5.3), we can say small changes in initial and boundary

conditions bring only a small change in the solution therefore the method is stable.

4.6 Numerical simulations and discussions

This section presents and analyzes the numerical results obtained for the pricing of

different binary options acquired by applying the Haar wavelet method. We also explore

various Greeks of these options. The attractiveness of binary options trading is a route to

profitability, and the study of their Greeks makes this course tranquil. We perform three

test problems to study the behavior of the values and Greeks of path-independent binary

options. All these solutions and Greek profiles are depicted graphically to explore different
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physical and numerical aspects.

For numerical simulations, we consider the transformed equation (4.2.2) and finally

use back substitution to get the solution of the original equation (4.2.1). As discussed

in Section 2, the spatial is unbounded, and since numerical computation needs finite

bounds for x, it is necessary to introduce the artificial value of xmin and xmax, so in all

test problems we are considering [xmin, xmax] = [−1, 1] and T = 1. These values are

taken from previous studies for performing the numerical simulations. For numerical

computations, we discretize the spatial domain into N1 = 2M1 = 2J+1 parts of equal

length using the collocation points xs = xmin +
(s−0.5)(xmax−xmin)

2M1
, s = 1, 2, . . . , 2M1, and

the temporal domain into N2 = 2M2 uniformly spaced points so that each partition is of

width tmax/(N2 − 1).

The computational error produced while estimating different expressions by the pro-

posed numerical scheme is measured using maximum error norm and root mean square

(RMS) deviation with the following definitions:

EN1,N2 = max
ν=1,2,...,N1

∣∣∣∣w2N1(S2ν−1, τ2υ) + w2N1(S2ν , τ2υ)

2
− wN1(Sν , τυ)

∣∣∣∣ , for some υ,

eN1,N2 = max
ν=1,2,...,N1

max
υ=1,2,...,N2

∣∣∣∣w2N1,2N2(S2ν−1, τ2υ−1) + w2N1,2N2(S2ν , τ2υ)

2
− wN1,N2(Sν , τυ)

∣∣∣∣ ,

ERMS =

√√√√ 1

N1N2

N1∑
ν=1

N2∑
υ=1

∣∣∣∣w2N1,2N2(S2ν−1, τ2υ−1) + w2N1,2N2(S2ν , τ2υ)

2
− wN1,N2(Sν , τυ)

∣∣∣∣2,
where wN1,N2 and w2N1,2N2 are the approximated values of w obtained by using (N1, N2)

and (2N1, 2N2) nodal points, respectively. All the numerical simulations are performed

using MATLAB 2019b. Additionally, the numerical rate of convergence is computed by

the formula log2(errorN1,N2/error2N1,2N2), where error can be any one of the above three

error measures.
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4.6.1 Numerical results for cash-or-nothing option

We consider the following example to demonstrate the price and Greeks of the cash-or-

nothing call option, which pays a fixed amount at the expiry, but this amount is payable

only when at maturity T option ends up in the money.

Example 4.6.1. Consider the Black-Scholes equation for a cash-or-nothing call option

with a fixed rate of interest r = 0.1 and volatility σ = 0.6. Assume the exercise time

T = 1, strike price K = 100 with a fixed predetermined amount of payout A = 80, and

the zero dividend yield.

We have tabulated different error measures with their rates of convergence produced

during the computation of the cash-or-nothing option price in Table 4.1 for different

maximum levels of resolution J . A worthy observation is that the Haar wavelet method

is second-order convergent in the spatial direction, but overall it is first-order convergent.

These computational rates of convergence also agree with the theoretical results proved in

the previous section. The processing time taken by the computer to calculate the value of

the option in seconds denoted by CPU(s) is also presented. These results show that the

present scheme is fast and accurate.

The solution of the transformed equation of the cash-or-nothing option under the Black-

Scholes model is depicted in Figure 4.1(a). The figure justifies the problem statement as

the value of u drops steeply when x→ xmin, and there is a sudden shift in the value of u

at x = 0. In Figure 4.1(b) we have plotted the actual and numerical values of the payoff,

which reveals that the proposed scheme provides good approximation even at a few points.

A noteworthy observation is that the payoff profile of the cash-or-nothing option looks

similar to the delta of a vanilla call option.

Figure 4.2(a) illustrates the behavior of the cash-or-nothing option at different values

of S and τ . From this figure, we can observe that if the stock price at any time τ is lesser

than the strike price, which acts as a barrier, the option is still active and out of the money

i.e., V = 0. The more important fact is to check the stock price at T because, based upon

that, we can exercise our option.
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Table 4.1: Different errors and CPU time (in seconds) for calculating cash-or-nothing call
option price with parameters as given in Example 4.6.1.

Maximum Level of Resolution J
Error 2 3 4 5 6 7
EN1,N2 7.504e-05 1.902e-05 4.789e-06 1.201e-06 3.008e-07 7.528e-08

1.980 1.990 1.994 1.997 1.998

eN1,N2 7.413e-04 3.690e-04 1.683e-04 7.560e-05 3.448e-05 1.612e-05
1.006 1.132 1.154 1.132 1.097

CPU(s) 0.0705 0.0846 0.0919 0.0925 0.1042 0.1844

(a) (b)

Figure 4.1: (a) The approximated value of the solution of the transformed equation, and
(b) the approximated and actual payoff for the cash-or-nothing call option.
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(a) (b)

Figure 4.2: The approximated values of (a) the price, and (b) theta over time to maturity
of the cash-or-nothing call option.

Table 4.2: RMS Error for theta of cash-or-nothing call option at different expiries T with
parameters as given in Example 4.6.1.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 2.745e-02 1.124e-02 4.454e-03 1.794e-03 7.536e-04 3.326e-04

T = 0.50 3.229e-02 1.400e-02 6.036e-03 2.665e-03 1.217e-03 5.731e-04

T = 0.75 3.759e-02 1.701e-02 7.685e-03 3.538e-03 1.668e-03 8.028e-04

T = 1.00 4.324e-02 2.005e-02 9.298e-03 4.378e-03 2.098e-03 1.021e-03
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The error tables for the Greeks of the binary option prove that this method also has

a good level of accuracy for the derivatives of the solution function. From Tables 4.2

and 4.3, it can be noticed that for different maturity times, the RMS error, calculating

the value of theta and delta, is decreasing uniformly as we increase the number of grid

points (decreasing the mesh size). The behavior of theta of a cash-or-nothing call option

is depicted in Figure 4.2(b), an obvious observation is that near the strike price, there is

a rapid change in the value of theta, which signifies that the option pricing function is

discontinuous at K for all the values of τ .

Table 4.3: RMS Error for the delta of cash-or-nothing call option at different expiries T
with parameters as given in Example 4.6.1.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 1.687e-04 6.822e-05 2.755e-05 1.159e-05 5.155e-06 2.406e-06

T = 0.50 2.621e-04 1.103e-04 4.658e-05 2.037e-05 9.298e-06 4.395e-06

T = 0.75 3.378e-04 1.463e-04 6.348e-05 2.841e-05 1.318e-05 6.293e-06

T = 1.00 4.015e-04 1.772e-04 7.823e-05 3.552e-05 1.664e-05 7.998e-06

The delta profile of the cash-or-nothing option is represented in Figure 4.3(a). It

resembles the gamma profile of the vanilla call option as the value of delta for the cash-

or-nothing option is highest at K, which is a feature of gamma of a vanilla call option. A

significant observation is that the value of delta is positive, which can be explained because

the option pricing function is monotonically increasing. This study of the behavior of delta

helps to remove the risk in the trading direction. The change in the behavior of delta with

the decay in time towards maturity is depicted in Figure 4.3(b). It is perceived that the

value of charm is positive near the strike price; its value is slightly increasing just before

the strike price and then decreasing slowly, which signifies that at K, the value of the delta

function is first increasing steeply and then decreasing suddenly with respect to time.
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(a) (b)

Figure 4.3: The approximated values of (a) delta, and (b) charm of the cash-or-nothing
call option.

Table 4.4: RMS Error for the charm of cash-or-nothing call option at different expiries T
with parameters as given in Example 4.6.1.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 3.349e-04 1.233e-04 4.542e-05 1.737e-05 7.181e-06 3.214e-06

T = 0.50 1.718e-04 6.539e-05 2.425e-05 9.980e-06 4.709e-06 2.380e-06

T = 0.75 8.775e-05 3.115e-05 1.042e-05 4.913e-06 2.907e-06 1.676e-06

T = 1.00 5.452e-05 2.017e-05 9.146e-06 5.594e-06 3.382e-06 1.907e-06

In Tables 4.4, 4.5, and 4.6, we have presented the RMS error produced during the

computation of the values of charm, gamma, and color Greeks of the cash-or-nothing

option. The surface plot of the gamma of cash-or-nothing binary option, which represents
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Table 4.5: RMS Error for the gamma of cash-or-nothing call option at different expiries T
with parameters as given in Example 4.6.1.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 2.759e-06 8.871e-07 3.908e-07 1.974e-07 1.021e-07 5.250e-08

T = 0.50 2.671e-06 9.250e-07 3.553e-07 1.555e-07 7.508e-08 3.769e-08

T = 0.75 2.523e-06 8.279e-07 2.881e-07 1.205e-07 5.937e-08 3.081e-08

T = 1.00 2.469e-06 1.000e-06 4.828e-07 2.528e-07 1.330e-07 6.903e-08

Table 4.6: RMS Error for the color of cash-or-nothing call option at different expiries T
with parameters as given in Example 4.6.1.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 7.542e-05 1.517e-05 6.613e-06 3.597e-06 1.915e-06 9.904e-07

T = 0.50 2.222e-05 1.010e-05 6.110e-06 3.427e-06 1.819e-06 9.387e-07

T = 0.75 1.455e-05 6.164e-06 3.269e-06 1.760e-06 9.318e-07 4.841e-07

T = 1.00 1.287e-05 4.186e-06 1.475e-06 6.634e-07 3.596e-07 1.984e-07
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the change in the value of delta with the change in the price of the underlying asset, is

depicted in Figure 4.4(a). Measuring gamma helps to monitor the delta-hedging process,

we can notice that the value gamma is positive for S < K and negative for S beyond K,

this can be interpreted from the increase in the value of delta for S < K and drop in the

value of delta for S ⩾ K with respect to the stock price. As we have explained, the value

of the delta of the cash-or-nothing option resembles the gamma of a vanilla European

option implies that the gamma of the cash-or-nothing option resembles the third derivative

with respect to stock price speed (Greek) of the vanilla option. The change in the value of

gamma with the decrease in time to maturity is known as color and graphically depicted in

Figure 4.4(b). The value of color is highest and lowest near the strike price, which can be

justified by looking at the rise and fall of gamma near the strike price corresponding to the

time axis in Figure 4.4(a).

(a) (b)

Figure 4.4: The approximated values of (a) gamma, and (b) color of the cash-or-nothing
call option.

4.6.2 Numerical results for asset-or-nothing option

Example 4.6.2. Consider the Black-Scholes equation for asset-or-nothing call option with

fixed rate of interest r = 0.02 and volatility σ = 0.6. Assume the exercise time T = 1,
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strike price K is 80 with zero dividend yield.

This example considers a European-style asset-or-nothing binary option where the

barrier condition is applied and exercised only at expiry. If the option is out of the money

at the expiry date, it is worthless and valueless to the holder. Unlike a cash-or-nothing

option, this option has a varying payoff that changes with the change in the underlying

asset price. The approximated value of the price (of the transformed equation) of the

asset-or-nothing option is represented in Figure 4.5(a). From this figure, we observe that

compared to the value of u for the cash-or-nothing option, it is increasing linearly for

x > 0. A comparative analysis of the actual and approximated payoff function is depicted

in Figure 4.5(b), which reveals that the Haar wavelet scheme is efficient for calculating the

price of the asset-or-nothing binary option.

(a) (b)

Figure 4.5: (a) The approximated value of the solution of the transformed equation, and
(b) the approximated and actual payoff for the asset-or-nothing call option.

The numerical error generated during the calculation of the asset-or-nothing option

price at different levels of resolution is listed in Table 4.7. We can notice that the Haar

wavelet approximation scheme gives quadratic and linear convergence rates in the spatial

and temporal directions, respectively, for the asset-or-nothing option. The price of the

asset-or-nothing option for different values of S and τ is presented in Figure 4.6(a). A
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Table 4.7: Different errors and CPU time (in seconds) for calculating asset-or-nothing call
option price with parameters as given in Example 4.6.2.

Maximum Level of Resolution J
Error 2 3 4 5 6 7
EN1,N2 9.802e-04 2.537e-04 6.453e-05 1.627e-05 4.086e-06 1.023e-06

1.950 1.975 1.987 1.993 1.996

eN1,N2 8.300e-03 4.300e-03 2.100e-03 9.795e-04 4.670e-04 2.256e-04
0.948 1.033 1.100 1.068 1.049

CPU(s) 0.0670 0.0707 0.0762 0.1028 0.1865 0.5416

noteworthy observation is that unlike the cash-or-nothing option this option’s value is not

fixed for S ⩾ K, and for S < K it is zero in both the options. It is clear from the figure

that the option is in the money for S ⩾ K and it is out of the money for S < K. Also, the

discontinuous behavior of the option pricing function results in the abrupt changes in its

Greeks.

(a) (b)

Figure 4.6: The approximated values of the (a) price, and (b) theta over time to maturity
of the European asset-or-nothing call option price.

In Table 4.8, we have listed the RMS error, which we get during the computer process-
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ing for calculating the theta of the asset-or-nothing call option for different maturity times.

The error decreases as the value of J increases, which is justified by the MRA technique.

Change in the price of an option with the decrease in time towards maturity is graphically

depicted in Figure 4.6(b). It is observed from the theta profile presented in this figure that

the fall in option value with respect to time τ results in the negative value of theta while

the rise in the value of the option for S < K results in the positive value of theta.

Table 4.8: RMS Error for theta of asset-or-nothing call option at different expiries T with
parameters as given in Example 4.6.2.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 1.511e-01 5.836e-02 2.032e-02 6.774e-03 2.241e-03 7.688e-04

T = 0.50 1.234e-01 4.609e-02 1.530e-02 4.748e-03 1.456e-03 5.007e-04

T = 0.75 9.761e-02 3.639e-02 1.186e-02 3.701e-03 1.307e-03 6.017e-04

T = 1.00 7.903e-02 2.976e-02 9.732e-03 3.182e-03 1.289e-03 6.575e-04

The dissimilar character of the delta of cash-or-nothing and asset-or-nothing binary

options is revealed from Figure 4.3(a) and Figure 4.7(a). In the case of an asset-or-nothing

option the value of delta is approaching towards one for S > K because the option is in the

money and varying linearly with the underlying asset, but in the case of a cash-or-nothing

option the value of delta approaches zero for S > K as the payout is a fixed amount there.

The RMS error produced in the numerical calculation of the delta is reported in Table 4.9.

In Tables 4.10, 4.11, and 4.12, we have listed the computational errors for different

Greeks, namely, charm, gamma, and color. A remarkable observation is that the error

reductions in these tables are uniform, which validates the theoretical results of the

proposed scheme. It is easily noticeable from tabulated results that the proposed scheme

gives reasonable accuracy in computing the Greeks of European asset-or-nothing options.

The value of the charm is depicted in Figure 4.7(b). It is significant to observe that unlike

cash-or-nothing charm here, the value of charm is not changing steeply only at maturity.
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(a) (b)

Figure 4.7: The approximated values of (a) delta, and (b) charm of the asset-or-nothing
call option.

Table 4.9: RMS Error for the delta of asset-or-nothing call option at different expiries T
with parameters as given in Example 4.6.2.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 1.583e-03 6.388e-04 2.551e-04 1.058e-04 4.658e-05 2.160e-05

T = 0.50 2.502e-03 1.046e-03 4.389e-04 1.913e-04 8.742e-05 4.144e-05

T = 0.75 3.299e-03 1.418e-03 6.149e-04 2.766e-04 1.293e-04 6.222e-05

T = 1.00 4.073e-03 1.787e-03 7.939e-04 3.649e-04 1.733e-04 8.416e-05

104



Chapter 4

However, at all time levels near the strike price K, there is a rapid change in the value of

charm because here the value of the option depends upon the price of the underlying asset

which changes with time.

Table 4.10: RMS Error for the charm of asset-or-nothing call option at different expiries T
with parameters as given in Example 4.6.2.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 3.143e-03 1.141e-03 4.057e-04 1.467e-04 5.688e-05 2.423e-05

T = 0.50 1.697e-03 6.231e-04 2.168e-04 8.295e-05 3.801e-05 1.935e-05

T = 0.75 1.048e-03 3.791e-04 1.324e-04 5.878e-05 3.205e-05 1.779e-05

T = 1.00 7.638e-04 2.782e-04 1.061e-04 5.436e-05 3.124e-05 1.745e-05

Table 4.11: RMS Error for the gamma of asset-or-nothing call option at different expiries
T with parameters as given in Example 4.6.2.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 3.300e-05 1.261e-05 5.514e-06 2.630e-06 1.305e-06 6.551e-07

T = 0.50 4.010e-05 1.654e-05 7.169e-06 3.299e-06 1.586e-06 7.802e-07

T = 0.75 4.368e-05 1.710e-05 6.824e-06 2.889e-06 1.305e-06 6.181e-07

T = 1.00 4.349e-05 1.631e-05 6.114e-06 2.404e-06 1.015e-06 4.585e-07

From Figure 4.8 it is clear that the character and behavior of gamma and color of an

asset-or-nothing option price are similar to that of the cash-or-nothing option. It explains

that the change in delta with the decay in time to maturity and underlying asset behaves

similarly but provides different values.
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Table 4.12: RMS Error for the color of asset-or-nothing call option at different expiries T
with parameters as given in Example 4.6.2.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 8.236e-04 1.731e-04 6.643e-05 3.366e-05 1.756e-05 9.029e-06

T = 0.50 2.558e-04 8.350e-05 4.450e-05 2.498e-05 1.346e-05 7.025e-06

T = 0.75 1.800e-04 5.715e-05 2.595e-05 1.425e-05 7.884e-06 4.227e-06

T = 1.00 1.649e-04 4.747e-05 1.491e-05 7.317e-06 4.407e-06 2.539e-06

(a) (b)

Figure 4.8: The approximated values of (a) gamma, and (b) color of the asset-or-nothing
call option.
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4.6.3 Numerical results for gap option

Example 4.6.3. Consider the Black-Scholes equation for gap call option: with fixed rate

of interest r = 0.1 and volatility σ = 0.6. Assume the exercise time T = 1, strike price

K = 100 with a fixed predetermined amount A = 80 and the zero dividend yield.

This example is considered to demonstrate the efficiency achieved by the Haar wavelet

method to calculate the gap option price and its Greeks. In the gap option, the payment

depends upon the current price of the stock and the fixed monetary amount. As the name

suggests, its payoff precisely indicates the gap or difference between the cash-or-nothing

option and the asset-or-nothing option.

Table 4.13: Different errors and CPU time (in seconds) for calculating gap option (call)
price with parameters as given in Example 4.6.3.

Maximum Level of Resolution J
Error 2 3 4 5 6 7
EN1,N2 2.300e-03 5.967e-04 1.529e-04 3.872e-05 9.743e-06 2.443e-06

1.946 1.963 1.982 1.990 1.995

eN1,N2 1.760e-02 9.200e-03 4.500e-03 2.200e-03 1.100e-03 5.127e-04
0.935 1.031 1.032 1.000 1.101

CPU(s) 0.0623 0.0655 0.0728 0.0890 0.1989 0.5654

Different error measures are computed in Table 4.13 to investigate the convergence

trends of the proposed scheme for gap options. A novel observation is that the rate of

convergence of the Haar wavelet approximation scheme is the same for all the binary

options, but the error measures change based upon the complexity of the problem, so

the gap option price errors (Table 4.13) are higher than the other two options (cash-or-

nothing and asset-or-nothing) given in Tables 4.1 and 4.7. Figure 4.9(a) represents the

solution u of the transformed equation of the gap option under the Black-Scholes model.

It perceived that the value of u for the gap option resembles the gap between u for the

cash-or-nothing and asset-or-nothing options. The effectiveness of the present wavelet
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(a) (b)

Figure 4.9: (a) The approximated value of the solution of the transformed equation, and
(b) the approximated and actual payoff for the gap call option.

scheme for approximating the option pricing problems is shown in Figure 4.9(b), the

perfect overlapping of the actual payoff function and the approximated payoff function

reveal its effectiveness.

The value of the gap option is depicted in Figure 4.10(a). It suggests that the price of

the gap option is always less than the asset-or-nothing option as the graph of V in the case

of the gap option is steeper than that of the asset-or-nothing option. The figure reveals that

the gap option is out the money for S < K and in the money for S > K. The change

in the price of the gap option with respect to the decrease in the time towards maturity

is represented in Figure 4.10(b). A novel observation is that the smaller steepness factor

in gap option price (see Figure 4.10(a)) as compared to the other two path-independent

binary options prices (refer Figures 4.2(a) and 4.6(a)) results in small fluctuations in the

value of theta of the gap option near the strike price.

In Tables 4.14 and 4.15, we have tabulated the computational errors for theta and delta

of gap option, respectively. The change in the gap option price with the change in the price

of the underlying asset is depicted in Figure 4.11(a). It is perceived that the value of delta

lies between zero and one, which we justify from the fact that the option is in the money
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(a) (b)

Figure 4.10: The approximated values of the (a) price, and (b) theta over time to maturity
of the European gap call option price.

and its value is increasing linearly for S ⩾ K results in the value of delta approaching

towards one and as the option is out of money for S < K implies that the value of delta is

approaching towards zero. The character of charm is similar for asset-or-nothing and gap

option depicted in Figure 4.11(b) because the delta behavior is the same for both options

with the change in the time towards maturity.

Table 4.14: RMS Error for theta of gap option (call) at different expiries T with parameters
as given in Example 4.6.3.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 2.643e-01 9.904e-02 3.344e-02 1.075e-02 3.459e-03 1.215e-03

T = 0.50 2.080e-01 7.334e-02 2.256e-02 6.347e-03 2.009e-03 9.840e-04

T = 0.75 1.571e-01 5.310e-02 1.513e-02 4.589e-03 2.395e-03 1.483e-03

T = 1.00 1.194e-01 3.854e-02 1.049e-02 4.367e-03 2.898e-03 1.789e-03

The error behavior for charm, gamma, and color for gap option is shown in Tables 4.16,
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Table 4.15: RMS Error for delta of gap option (call) at different expiries T with parameters
as given in Example 4.6.3.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 2.473e-03 9.898e-04 4.060e-04 1.755e-04 8.028e-05 3.826e-05

T = 0.50 3.936e-03 1.649e-03 7.124e-04 3.221e-04 1.517e-04 7.343e-05

T = 0.75 5.337e-03 2.306e-03 1.030e-03 4.788e-04 2.296e-04 1.123e-04

T = 1.00 6.787e-03 2.994e-03 1.366e-03 6.458e-04 3.130e-04 1.539e-04

(a) (b)

Figure 4.11: The approximated values of (a) delta, and (b) charm of the gap call option.
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Table 4.16: RMS Error for charm of gap option (call) at different expiries T with parame-
ters as given in Example 4.6.3.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 4.353e-03 1.552e-03 5.641e-04 2.173e-04 9.245e-05 4.290e-05

T = 0.50 2.146e-03 8.111e-04 3.276e-04 1.563e-04 8.190e-05 4.328e-05

T = 0.75 1.151e-03 4.375e-04 2.109e-04 1.247e-04 7.265e-05 4.007e-05

T = 1.00 6.287e-04 2.949e-04 2.017e-04 1.317e-04 7.749e-05 4.256e-05

Table 4.17: RMS Error for gamma of gap option (call) at different expiries T with
parameters as given in Example 4.6.3.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 4.058e-05 1.536e-05 7.426e-06 3.828e-06 1.974e-06 1.008e-06

T = 0.50 4.886e-05 2.053e-05 9.337e-06 4.474e-06 2.203e-06 1.097e-06

T = 0.75 4.809e-05 1.792e-05 7.006e-06 2.976e-06 1.365e-06 6.564e-07

T = 1.00 4.123e-05 1.492e-05 6.131e-06 2.876e-06 1.435e-06 7.273e-07

Table 4.18: RMS Error for color of gap option (call) at different expiries T with parameters
as given in Example 4.6.3.

Maximum Level of Resolution J
Maturity 2 3 4 5 6 7
T = 0.25 1.115e-03 2.120e-04 8.840e-05 5.001e-05 2.732e-05 1.430e-05

T = 0.50 2.911e-04 1.112e-04 7.828e-05 4.714e-05 2.583e-05 1.353e-05

T = 0.75 1.599e-04 7.974e-05 5.597e-05 3.354e-05 1.847e-05 9.740e-06

T = 1.00 1.219e-04 4.323e-05 3.166e-05 2.069e-05 1.204e-05 6.562e-06
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4.17, and 4.18. Looking at these tables, we observe that the present scheme is efficient

for calculating Greeks. The surface plot of the value of gamma of gap option is depicted

in Figure 4.12(a). The study of the gamma function behavior helps to reduce the risk

when there are sharp ups and downs in the underlying asset’s value, and it is useful in

the analysis of delta hedging strategies. Figure 4.12(b) represents the color Greek of the

gap option looks similar to other path-independent binary option’s color Greeks, which

signifies that the character and pictorial behavior of gamma for all of them are the same,

but their values are different since their methods of payment are different.

(a) (b)

Figure 4.12: The approximated values of (a) gamma, and (b) color of the gap call option.

4.7 Concluding remarks
In this chapter, we have examined a compactly supported Haar wavelet-based approxi-

mation technique to estimate the values of the solution and its Greeks for various binary

options, also known as digital or bet options, under the Black-Scholes environment. The

windowing technique and multi-resolution analysis are used to get a more accurate solution

at each successive level. We utilize the excellent approximation technique of the Haar

wavelet method for spiked functions to approximate the discontinuous solution functions

112



Chapter 4

and estimate the Greeks. To avoid the large truncation error, we truncated the infinite

domain into a finite domain. This approach of finding the numerical solutions of the

options’ Greeks is novel and effortless as it explicitly gives the approximation of the

derivatives of the solution function. Through the consistency and stability analysis, it has

been proved that the proposed scheme is consistent and unconditionally stable with linear

and quadratic rates of convergence in the temporal and spatial directions, respectively.

Moreover, various computational experiments are presented to demonstrate the efficiency

and validate the theoretical results of the contributed approach. The outputs computed and

analyzed through numerical simulations can be used in financial institutes to hedge the

directional risks associated with the moves of different parameters.
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Wavelet based numerical approximation

of the Greeks of multi-asset option

pricing models

Multi-asset investing is defined as any investment activity in which the composition of an

investment product, service, or solution includes more than one asset class. This encom-

passes everything from the client’s needs and product design to the many components of

the investing process and portfolio analysis needed to maintain such a product. Multi-asset

option is one such investment products. Multi-asset options form a class for which efficient

solution methods are not easily obtained.

The initial concept of diversifying a portfolio by investing in several asset classes was

founded on the assumption that doing so would provide diversification and that investing

in stocks would earn a risk premium. Also, multi-asset option pricing improves in asset

allocation, which has long been a cornerstone of good investment management. When the

value of an option is determined by the prices of many assets, the linkages between these

assets become crucial. Therefore, for successful option trading and risk management the

study of multi-asset option Greeks i.e., the change in the option’s price with respect to
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various assets or other market parameters becomes important.

Trading only one rather than several options involves lower transaction costs, to hedge

a risky position consisting of several assets, a cheaper alternative is multi-asset options.

Multi-asset options are those whose payoffs depend on N independent stocks and the price

of the option depends on these stocks. This chapter presents a numerical method to solve

the problems where the payoffs depend on multi underlying assets i.e., the multi-asset prob-

lems. In particular, we consider the problems for three different options: Max/Min, Index,

and Multi-strike options. These options’ pricing are the higher dimensional generalization

of the Black-Scholes model initially proposed by Black and Scholes [13]. Since then,

several analytical/numerical methods have been developed/improved for option pricing

problems by many researchers.

The main contributions of this chapter involve the development of a wavelet-based oper-

ational method to study the sensitivities of multi-asset options of diverse forms. To explore

these financially relevant problems systematically, the final value problem is reformulated

into a less cluttered dimensionless initial value problem. To avoid unacceptable large

truncation error the actual infinite domain is trimmed into the finite domain by constructing

artificial boundaries. Also, it has been shown that irrespective of the problem’s geometry,

the proposed method is highly accurate and the time taken to get this level of accuracy

is significantly less. The convergence of the present scheme is proved theoretically. The

robustness and efficiency of the contributed scheme are conclusively demonstrated with a

variety of test examples. The present approach of analyzing the sensitivities of multi-asset

options can be used in trading to explore different Greek exposures for hedging.

5.1 Literature survey
Some development of the numerical methods for the multi-asset option pricing problems

are introduced here as a review. Fasshauer et al. [96] proposed an implicit θ method in tem-

poral discretization and a mesh-free approximation scheme for the assets for the solution

of multi-asset American option problems. Kovalov et al. [97] suggested a FEM of lines for

the problem of pricing multi-asset American-style options in the Black–Scholes–Merton
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framework. Persson and Sydow [98] presented an adaptive technique (reduces the number

of grid points to a minimum, still keeping the discretization error at a pre-described level)

to solve the multi-dimensional European options in the generalized Black-Scholes equation.

Jeong et al. [99] presented an FDM without transformations of variables for the solution

of multi-underlying assets Black-Scholes PDEs. Ruitjer et al. [100] extended the COS

method for one dimension to higher dimensions to price options on multi-underlying assets.

The extension referred to as the 2D-COS method is a highly efficient method. By using

Milstein–Taylor explicit and implicit schemes, Hu and Li [101] proposed a forward-path

method under general diffusion processes for pricing multi-asset American-style options.

Based on the exponential time differencing approach, Yousuf et al. [102] investigated

an efficient second-order L-stable implicit predictor-corrector method for multi-asset

American options. Kadalbajoo et al. [103] suggested a θ method in the temporal direction

and a local RBF based FDM in the spatial direction for the multi-asset American option

problems.

In 2016, Shcherbakov et al. [104] proposed a global RBF method as well as RBF

partition of unity methods for American multi-asset call options. They have used a penalty

approach and designed a penalty term. They have shown that the RBF partition of unity

method is reasonably good as compared with FDM and global RBF method. Papiol et

al. [105] generalized the SWIFT method for one dimension to the multidimensional

case (referred to as the 2D-SWIFT method in two-dimensional case). The 2D-SWIFT

method is the same advantages over the 2D-COS method as in the one-dimensional

case. A numerical method comprising the backward difference formula in time and an

RBF generated FDM in space for European and American type multi-asset options was

presented by Milovanović and Sydow [106]. In the RBF generated FDM a constant value

of the shape parameter always leads to ill-conditioning. To avoid ill-conditioning they

have used the shape parameter proportional to the reciprocal of space step-size.

To solve the options prices on several underlying assets Khodayari and Ranjbar [22]

used a conventional FDM in temporal direction and the derivatives of linear combinations

of multi-quadric RBFs in spatial direction. The method does not require solving a full
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matrix at each time step and thus the method is very fast and unlike global RBF the

ill-conditioning problem is eliminated. Fazlollah [107] constructed a pseudo-spectral

method with a non-uniform mesh (Chebyshev-Gauss-Lobatto points) for solving multi-

asset option pricing problems. Recently, Kim et al. [108] suggested an operator splitting

method for two and three dimensional Black–Scholes equations. Based on the fast Fourier

transform, Zhao and Li [109] extended the PROJ method (see [110]) to priced an option

in two-dimension. They have shown that the PROJ method for 2D is as good as the

one-dimensional approach proposed in [110] for European options. In other methods such

as FDM, the correlation term must be treated with special care otherwise it may cause

instability in solving the system of linear equations. However, the Haar wavelets based

approach does not suffer from such difficulties encountered by cross derivative terms. In

this chapter, we propose a Haar wavelet-based numerical method to solve the multi-asset

problems for three different options. The proposed method is stable and efficient as it can

be seen from the numerical results presented in the tables.

5.2 Multi-dimensional option pricing problems and sensi-

tivities (Greeks)

In option contract trading many options involve trading of more than one asset, and the

payoff of these multi-asset options is some function of ranked vanilla payoffs. Under the

Black-Scholes framework, the multi-asset option price V (S, τ) with N underlying assets

S = (S1, S2, . . . , SN) ∈ R+N
, N ∈ N and Sn > 0, 1 ≤ n ≤ N at the time τ ∈ [0, T ) is

diagnosed by the following PDE [22]:

∂V (S, τ)

∂τ
+ LV (S, τ) = 0, (S, τ) ∈ R+N × [0, T ). (5.2.1)

In (5.2.1) the operator L is defined as

L ≡ 1

2

N∑
n=1

N∑
n′=1

σnσn′ρnn′SnSn′
∂2

∂Sn∂Sn′
+

N∑
n=1

(r − δn)Sn
∂

∂Sn

− rI,
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where r ≥ 0 is the risk-free interest rate, σn > 0 indicates the volatility of the n-th

underlying asset, δn ≥ 0 is the corresponding dividend yield, and ρnn′ symbolizes the

correlation between the n-th and n′-th underlying assets.

In options linked with multiple assets, there are distinct ways of defining the payoff

function as in the case of a European-style multi-asset option. Different assets can behave

differently at the time of maturity, and based upon their performance, the boundary

conditions change. In this chapter, we consider the following three different options with

distinct payoff functions i.e., in each case, the price of the options behave non-identically

at the maturity (T ):

• Max/Min Options: The payoff functions of these options are determined by

V (S, T ) =

(max(S1, S2, . . . , SN)−K)+ , Max call option,

(min(S1, S2, . . . , SN)−K)+ , Min call option,

where K is the strike price and a+ = max{a, 0}. The corresponding boundary

conditions (for (S, τ) ∈ ∂R+N × [0, T )) are

V (S, τ) =


(
max(S1e

−δ1(T−τ), . . . , SNe
−δN (T−τ))−Ke−r(T−τ)

)+
, Max call,(

min(S1e
−δ1(T−τ), . . . , SNe

−δN (T−τ))−Ke−r(T−τ)
)+
, Min call.

• Index Options: These options are traded with the payoff function

V (S, T ) =

(
N∑

n=1

wnSn −K

)+

,

and the boundary conditions

V (S, τ) =

(
N∑

n=1

wnSne
−δn(T−τ) −Ke−r(T−τ)

)+

, (S, τ) ∈ ∂R+N × [0, T ),

where wn are the portfolio weights.
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• Multi-Strike Options: For multi-strike options, the payoff function is given by

V (S, T ) = (S1 −K1, S2 −K2, . . . , SN −KN)
+,

where K1, K2, . . . , KN are the strike prices corresponding to the underlying assets

S1, S2, . . . , SN , respectively. The boundary conditions (for (S, τ) ∈ ∂R+N × [0, T ))

are given by

V (S, τ) =
(
S1e

−δ1(T−τ) −K1e
−r(T−τ), . . . , SNe

−δN (T−τ) −KNe
−r(T−τ)

)+
.

To study the class of financially relevant problems in a systematic way by introducing the

new independent variables xn = ln(Sn/K), t = T − τ , we transform the problem (5.2.1)

into a non-dimensional and less cluttered problem in which only the free parameters of the

problem appears in the coefficients of the equation. For the numerical implementation,

we trim the unbounded domain into the bounded domain to avoid the unacceptable large

truncation error, i.e., (x, t) ∈ ΛN × (0, T ] = (a1, b1)× (a2, b2)× · · · × (aN , bN)× (0, T ],

where x = (x1, x2, . . . , xN). The endpoints of the interval [an, bn], n = 1, 2, . . . , N

are sufficiently large negative number and sufficiently large positive numbers, respec-

tively. Then, the multi-asset Black-Scholes Equation (5.2.1) is thus reformulated into the

following PDE:

∂u

∂t
− 1

2

N∑
n=1

N∑
n′=1

σnσn′ρnn′
∂2u

∂xn∂xn′
−

N∑
n=1

(
r − δn −

1

2
σ2
n

)
∂u

∂xn
+ ru = 0, (5.2.2)

where (x, t) ∈ ΛN × (0, T ]. After introducing the transformation, the terminal value

problems are now turned into initial value problems.

The reformulated initial and boundary conditions for Equation (5.2.2) are as follows:
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• For max/min options the transformed initial and boundary conditions are

u(x, 0) =

(max(Kex1 , Kex2 , . . . , KexN )−K)+ , x ∈ ΛN , Max call,

(min(Kex1 , Kex2 , . . . , KexN )−K)+ , x ∈ ΛN , Min call,

and

u(x, t) =


(
max(Kex1−δ1t, Kex2−δ2t, . . . , KexN−δN t)−Ke−rt

)+
, Max call,(

min(Kex1−δ1t, Kex2−δ2t, . . . , KexN−δN t)−Ke−rt
)+
, Min call,

with (x, t) ∈ ∂ΛN × (0, T ].

• The dimensionless initial and boundary conditions for index options are read as

u(x, 0) =

(
N∑

n=1

wnKe
xn −K

)+

, x ∈ ΛN ,

and

u(x, t) =

(
N∑

n=1

wnKe
xn−δnt −Ke−rt

)+

, (x, t) ∈ ∂ΛN × (0, T ],

respectively.

• Finally, after the transformation, the initial and boundary condition for multi-strike

options get converted into

u(x, 0) = (K1e
x1 −K1, K2e

x2 −K2, . . . , KNe
xN −KN)

+ , x ∈ ΛN

and

u(x, t) =
(
K1e

x1−δ1t −K1e
−rt, K2e

x2−δ2t −K2e
−rt, . . . , KNe

xN−δN t −KNe
−rt
)+
,

120



Chapter 5

with (x, t) ∈ ∂ΛN × (0, T ].

Remark. For multi-strike options the transformation depends on the n-th strike price so

we use xn = ln(Sn/Kn), n = 1, 2, . . . , N , t = T − τ .

5.2.1 Description of sensitivities

When the value of an option is determined by the prices of many parameters and assets,

the linkages between these assets become crucial. The analysis of these sensitivities will

be discussed in Section 6. The differential formulae for the Greeks can be derived from

the Black-Scholes model.

Deltas. We consider the Greek delta for the constant correlation model. Delta is the

rate at which the option price changes with respect to the price of the underlying asset.

For the multi-dimensional problem (5.2.1), the deltas are the sensitivity of the option

price to changes in the price of the n-th underlying. Mathematically, these are defined as

∆Sn = ∂V
∂Sn

, where Sn is the n-th underlying asset price. This gives an N -component delta

vector. Furthermore, suppose a (long) call option is deep-in-the-money in Sn1 , then ∆Sn1

becomes larger, whereas ∆Sn2
and ∆Sn3

are very close to zero, where Sni
denotes the

ni-th underlying asset for i = 1, 2, 3. These deltas get even more polarized as the volatility

of Sn1 decreases or as the option approaches maturity.

Gammas. It is the measure of the rate at which the n-th delta changes with respect to

the n-th underlying asset. It measures the convexity of the value function, which makes

options interesting for many investors. It is also the second derivative of the option price

with respect to the underlier. For the multi-dimensional problem (5.2.1), gamma estimates

the sensitivity of the delta with respect to the n-th underlying. Mathematically, it is given

by ΓSn = ∂∆
∂Sn

.

Cross-Gammas. It estimates the sensitivity of the delta with respect to the n-th

underlying to changes in the price of the n′-th underlying, i.e., the cross-gamma with

respect to the n-th and n′-th underlying. Mathematically, it is given by Cross-gamma =

∂2V
∂Sn∂Sn′

. It is interesting to note that an option may have positive gammas but negative

cross-gammas (in the case when Sn increases, ∆Sn increases but ∆Sn′ decreases). Thus
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cross-gammas may be interpreted as a measure of the stability of ∆Sn′ as other underlying

prices increase.

Theta. The Greek “Theta” is the derivative, of the value of a given option expiring

on a given day with respect to time. As it measures the change in the option price to the

movement of time to maturity, it is negative of the derivative with respect to the parameter

τ and is given by Θ = −∂V
∂τ

, where τ is the time to maturity.

5.3 Implementation of 2D Haar wavelet method

Let hi1(x1) and hi2(x2) denotes the Haar wavelet basis functions in x1 and x2 direc-

tions, respectively. pi1(x1) and pi2(x2) denotes the first integral of hi1(x1) and hi2(x2),

respectively. Furthermore, qi1(x1) and qi2(x2) represents the second integral of Haar basis

functions in their respective directions. For the numerical approximation and simulation

purpose, we consider the two-asset option pricing problems (N = 2). To adopt the above

wavelet approach for the proposed problem, let the numerical solution U(x1, x2, t) of the

two-asset option pricing problem (5.2.2) can be expressed in the form of wavelets. To

proceed, we discretize the spatial domain [a1, b1]× [a2, b2] and the temporal domain [0, T ]

into 2M1 × 2M2 and 2M3 uniformly distributed mesh points respectively. Further, we

consider the wavelet approximation of ∂5u(x1,x2,t)

∂t∂x2
1∂x

2
2

, expressed as

∂5U(x1, x2, t)

∂t∂x21∂x
2
2

=

2M1∑
i1=1

2M2∑
i2=1

ci1,i2,khi1(x1)hi2(x2),

where ci1,i2,k are the unknown coefficients (note that these are functions of t and are

constants at a particular time level); i1, i2 symbolize the indices for Haar wavelets in x1

and x2 directions, respectively; and k indicates the time level. Now, on integrating the

above expression twice with respect to x1 from a1 to x1, we obtain

∂3U(x1, x2, t)

∂t∂x22
=

2M1∑
i1=1

2M2∑
i2=1

ci1,i2,kqi1(x1)hi2(x2) +
1∑

N1=0

(x1 − a1)
N1

N1!

∂1+N1+2U(a1, x2, t)

∂t∂xN1
1 ∂x22

.
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Similarly, integrating it twice with respect to x2 from a2 to x2, yields

∂U(x1, x2, t)

∂t
=

2M1∑
i1=1

2M2∑
i2=1

ci1,i2,kqi1(x1)qi2(x2) +
1∑

N1=0

(x1 − a1)
N1

N1!

∂1+N1U(a1, x2, t)

∂t∂xN1
1

−
1∑

N1=0

(x1 − a1)
N1

N1!

1∑
N2=0

(x2 − a2)
N2

N2!

∂1+N1+N2U(a1, a2, t)

∂t∂xN1
1 ∂xN2

2

+
1∑

N2=0

(x2 − a2)
N2

N2!

∂1+N2U(x1, a2, t)

∂t∂xN2
2

.

Again, by integrating it once with respect to t from tk to t, we obtain

U(x1, x2, t) = (t− tk)

2M1∑
i1=1

2M2∑
i2=1

ci1,i2,kqi1(x1)qi2(x2) + U(x1, x2, tk)

+
1∑

N1=0

(x1 − a1)
N1

N1!

∂N1U(a1, x2, t)

∂xN1
1

−
1∑

N1=0

(x1 − a1)
N1

N1!

∂N1U(a1, x2, tk)

∂xN1
1

+
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(x1, a2, t)

∂xN2
2

−
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(x1, a2, tk)

∂xN2
2

−
1∑

N1=0

(x1 − a1)
N1

N1!

1∑
N2=0

(x2 − a2)
N2

N2!

∂N1+N2U(a1, a2, t)

∂xN1
1 ∂xN2

2

+
1∑

N1=0

(x1 − a1)
N1

N1!

1∑
N2=0

(x2 − a2)
N2

N2!

∂N1+N2U(a1, a2, tk)

∂xN1
1 ∂xN2

2

. (5.3.1)

In the above expression to deduce the unknown terms ∂U(a1,x2,t)
∂x1

, ∂U(a1,x2,tk)
∂x1

, ∂2U(a1,a2,t)
∂x1∂x2

and ∂2U(a1,a2,tk)
∂x1∂x2

we use the boundary condition at x1 = b1, which gives

[
∂U(a1, x2, t)

∂x1
− ∂U(a1, x2, tk)

∂x1

]
− (x2 − a2)

[
∂2U(a1, a2, t)

∂x1∂x2
− ∂2U(a1, a2, tk)

∂x1∂x2

]
=

1

b1 − a1

[
U(b1, x2, t)− U(b1, x2, tk)− (t− tk)

2M1∑
i1=1

2M2∑
i2=1

ci1,i2,kqi1(b1)qi2(x2)

− U(a1, x2, t) + U(a1, x2, tk)−
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(b1, a2, t)

∂xN2
2
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+
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(b1, a2, tk)

∂xN2
2

+ U(a1, a2, t) + (b1 − a1)
∂U(a1, a2, t)

∂x1

+ (x2 − a2)
∂U(a1, a2, t)

∂x2
− U(a1, a2, tk)− (b1 − a1)

∂U(a1, a2, tk)

∂x1

− (x2 − a2)
∂U(a1, a2, tk)

∂x2

]
. (5.3.2)

Substituting the value of
[
∂U(a1,x2,t)

∂x1
− ∂U(a1,x2,tk)

∂x1

]
−(x2−a2)

[
∂2U(a1,a2,t)

∂x1∂x2
− ∂2U(a1,a2,tk)

∂x1∂x2

]
from (5.3.2) into (5.3.1) yields

U(x1, x2, t) = (t− tk)

2M1∑
i1=1

2M2∑
i2=1

ci1,i2,k

[
qi1(x1)−

x1 − a1
b1 − a1

qi1(b1)

]
qi2(x2) + U(x1, x2, tk)

+ U(a1, x2, t)− U(a1, x2, tk) +
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(x1, a2, t)

∂xN2
2

−
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(x1, a2, tk)

∂xN2
2

− U(a1, a2, t)− (x1 − a1)
∂U(a1, a2, t)

∂x1

− (x2 − a2)
∂U(a1, a2, t)

∂x2
+ U(a1, a2, tk) + (x1 − a1)

∂U(a1, a2, tk)

∂x1

+ (x2 − a2)
∂U(a1, a2, tk)

∂x2
+
x1 − a1
b1 − a1

[
U(b1, x2, t)− U(b1, x2, tk)− U(a1, x2, t)

+ U(a1, x2, tk)−
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(b1, a2, t)

∂xN2
2

+
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(b1, a2, tk)

∂xN2
2

+ U(a1, a2, t) + (b1 − a1)
∂U(a1, a2, t)

∂x1
+ (x2 − a2)

∂U(a1, a2, t)

∂x2
− U(a1, a2, tk)

− (b1 − a1)
∂U(a1, a2, tk)

∂x1
− (x2 − a2)

∂U(a1, a2, tk)

∂x2

]
. (5.3.3)

Similarly, to get the unknown terms ∂U(x1,a2,t)
∂x2

and ∂U(x1,a2,tk)
∂x2

, we use the final boundary

condition in x2 direction i.e., put x2 = b2 in (5.3.3), to get

∂U(x1, a2, t)

∂x2
− ∂U(x1, a2, tk)

∂x2
=

1

b2 − a2

[
U(x1, b2, t)−

{ 2M1∑
i1=1

2M2∑
i2=1

ci1,i2,k

[
qi1(x1)−

x1 − a1
b1 − a1

qi1(b1)

]
qi2(b2)
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+ U(x1, b2, tk) + U(a1, b2, t)− U(a1, b2, tk) + U(x1, a2, t)− U(x1, a2, tk)

− U(a1, a2, t)− (x1 − a1)
∂U(a1, a2, t)

∂x1
− (b2 − a2)

∂U(a1, a2, t)

∂x2
+ U(a1, a2, tk)

+ (x1 − a1)
∂U(a1, a2, tk)

∂x1
+ (b2 − a2)

∂U(a1, a2, tk)

∂x2
+
x1 − a1
b1 − a1

(
U(b1, b2, t)

− U(b1, b2, tk)− U(a1, b2, t) + U(a1, b2, tk)−
1∑

N2=0

(b2 − a2)
N2

N2!

∂N2U(b1, a2, t)

∂xN2
2

+
1∑

N2=0

(b2 − a2)
N2

N2!

∂N2U(b1, a2, tk)

∂xN2
2

+ U(a1, a2, t) + (b1 − a1)
∂U(a2, a2, t)

∂x1

+ (b2 − a2)
∂U(a1, a2, t)

∂x2
− U(a1, a2, tk)− (b1 − a1)

∂U(a1, a2, tk)

∂x1

− (b2 − a2)
∂U(a1, a2, tk)

∂x2

)}]
. (5.3.4)

Substituting the value of ∂U(x1,a2,t)
∂x2

− ∂U(x1,a2,tk)
∂x2

from (5.3.4) into (5.3.3), we obtain

U(x1, x2, t) = (t− tk)

2M1∑
i1=1

2M2∑
i2=1

ci1,i2,k

[
qi1(x1)−

x1 − a1
b1 − a1

qi1(b1)

] [
qi2(x2)−

x2 − a2
b2 − a2

qi2(b2)

]
+ U(x1, x2, tk) + U(a1, x2, t)− U(a1, x2, tk) + U(x1, a2, t)− U(x1, a2, tk)− U(a1, a2, t)

− (x1 − a1)
∂U(a1, a2, t)

∂x1
− (x2 − a2)

∂U(a1, a2, t)

∂x2
+ U(a1, a2, tk) + (x1 − a1)

∂U(a1, a2, tk)

∂x1

+ (x2 − a2)
∂U(a1, a2, tk)

∂x2
+
x1 − a1
b1 − a1

[
U(b1, x2, t)− U(b1, x2, tk)− U(a1, x2, t) + U(a1, x2, tk)

−
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(b1, a2, t)

∂xN2
2

+
1∑

N2=0

(x2 − a2)
N2

N2!

∂N2U(b1, a2, tk)

∂xN2
2

+ U(a1, a2, t)

+ (b1 − a1)
∂U(a1, a2, t)

∂x1
+ (x2 − a2)

∂U(a1, a2, t)

∂x2
− U(a1, a2, tk)− (b1 − a1)

∂U(a1, a2, tk)

∂x1

− (x2 − a2)
∂U(a1, a2, tk)

∂x2

]
+
x2 − a2
b2 − a2

[
U(x1, b2, t)−

{
U(x1, b2, tk) + U(a1, b2, t)

− U(a1, b2, tk) + U(x1, a2, t)− U(x1, a2, tk)− U(a1, a2, t)− (x1 − a1)
∂U(a1, a2, t)

∂x1

− (b2 − a2)
∂U(a1, a2, t)

∂x2
+ U(a1, a2, tk) + (x1 − a1)

∂U(a1, a2, tk)

∂x1
+ (b2 − a2)

∂U(a1, a2, tk)

∂x2

+
x1 − a1
b1 − a1

(
U(b1, b2, t)− U(b1, b2, tk)− U(a1, b2, t) + U(a1, b2, tk)
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−
1∑

N2=0

(b2 − a2)
N2

N2!

∂N2U(b1, a2, t)

∂xN2
2

+
1∑

N2=0

(b2 − a2)
N2

N2!

∂N2U(b1, a2, tk)

∂xN2
2

+ U(a1, a2, t) + (b1 − a1)
∂U(a1, a2, t)

∂x1
+ (b2 − a2)

∂U(a1, a2, t)

∂x2

− U(a1, a2, tk)− (b1 − a1)
∂U(a1, a2, tk)

∂x1
− (b2 − a2)

∂U(a1, a2, tk)

∂x2

)}]
. (5.3.5)

Thus, we obtain the approximated values of all derivatives needed in (5.2.2). Putting the

values of these approximations in Equation (5.2.2), we get a 2M1 × 2M2 system of linear

equations with unknown coefficients ci1,i2,k. Solving this system by using any efficient

algorithm such as Gauss elimination gives the values of the coefficients ci1,i2,k at each

time level. Substituting these values of ci1,i2,k into (5.3.5) we get the solution of (5.2.2)

at the k-th time level. Finally, the back substitution of the transformation S1 = Kex1 ,

S2 = Kex2 and τ = T − t gives the solution of (5.2.1).

Algorithm. To get the numerical approximation of price and sensitivities of two-assets

(N = 2) option pricing problem governed by Equation (5.2.1) we follow the following

algorithm.

• we first compute the wavelet coefficients from the preceding implementation.

• use these coefficients to approximate the value of the solution of Equation (5.2.2)

and its derivatives.

• use the coordinate transformations S1 = Kex1 , S2 = Kex2 and τ = T − t to apply

back substitution.

• compute the approximate values of V (S1, S2, τ).

• compute the solution derivatives (Greeks) of the option price with respect to different

variables.
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5.4 Convergence analysis
In this section, we show that the proposed 2D Haar wavelet scheme is convergent. First,

we introduce some lemmas needed to prove the convergence.

Lemma 5.4.1. The upper bounds for the Haar wavelets and their integrals are as follows:

hi(x) ⩽ 1, ∀ i and pi(x) ⩽
1

2j+1
, qi(x) < B

(
1

2j+1

)2

, for i > 1,

where B =
8

3(⌊(3/2)⌋!)2
.

Proof. Refer [45].

Lemma 5.4.2. Let g(x1, x2, tk) = ∂4u(x1,x2,tk)

∂x2
1∂x

2
2

∈ L2(R2) be a continuous function on

the domain Λ2 = [a1, b1] × [a2, b2] which can also be written as g(x1, x2, tk+1) =

η
∑2M1

i1=1

∑2M2

i2=1 ci1,i2,khi1(x1)hi2(x2), where k represents the k-th time level and η =

T
2M3−1

. If g, ∂g
∂x1

, ∂g
∂x2

, and ∂2g
∂x1∂x2

all are bounded by λ in Λ2. Then, the Haar coefficients

ci1,i2,k are also bounded for all k.

Proof. The Haar coefficients ci1,i2,k can be written as

ci1,i2,k = η

∫ b1

a1

(∫ b2

a2

g(x1, x2, tk+1)hi2(x2) dx2

)
hi1(x1) dx1

= η

∫ b1

a1

(∫ (κ2+
1
2)

(
b2−a2

2j2

)
κ2

(
b2−a2

2j2

) g(x1, x2, tk+1) dx2

−
∫ (κ2+1)

(
b2−a2

2j2

)
(κ2+

1
2)

(
b2−a2

2j2

) g(x1, x2, tk+1) dx2

)
hi1(x1) dx1.

By using mean value theorem, there exists x∗2 and x∗∗2 satisfying κ2
(
b2−a2
2j2

)
⩽ x∗2 ⩽(

κ2 +
1
2

) (
b2−a2
2j2

)
and

(
κ2 +

1
2

) (
b2−a2
2j2

)
⩽ x∗∗2 ⩽ (κ2 + 1)

(
b2−a2
2j2

)
such that

ci1,i2,k = 2−j2−1(b2 − a2)η

∫ b1

a1

(g(x1, x
∗
2)− g(x1, x

∗∗
2 ))hi1(x1) dx1.
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Again by using Lagrange’s mean value theorem there exists x′2 ∈ [x∗2, x
∗∗
2 ] such that

ci1,i2,k = 2−j2−1(b2 − a2)η

∫ b1

a1

(x∗2 − x∗∗2 )
∂g(x1, x

′
2)

∂x2
hi1(x1) dx1.

Similarly, by applying mean value theorem of integral calculus and Lagrange’s mean

value theorem, there exists x∗1, x
∗∗
1 satisfying κ1

(
b1−a1
2j1

)
⩽ x∗1 ⩽

(
κ1 +

1
2

) (
b1−a1
2j1

)
and(

κ1 +
1
2

) (
b1−a1
2j1

)
⩽ x∗∗1 ⩽ (κ1 + 1)

(
b1−a1
2j1

)
and x′1 ∈ [x∗1, x

∗∗
1 ] such that

ci1,i2,k = 2−j1−j2−2(b1 − a1)(b2 − a2)(x
∗
1 − x∗∗1 )(x∗2 − x∗∗2 )η

∂2g(x′1, x
′
2)

∂x1∂x2
.

Since x∗1 − x∗∗1 ⩽ b1 − a1, x∗2 − x∗∗2 ⩽ b2 − a2, and |∂
2g(x′

1,x
′
2)

∂x1∂x2
| ≤ λ, so

ci1,i2,k ⩽
ηλ(b1 − a1)

2(b2 − a2)
2

2j1+12j2+1
.

The convergence of the present wavelet-based approximation scheme is given by the

following theorem.

Theorem 5.4.1. Let ∂4u(x1,x2,tk+1)

∂x2
1∂x

2
2

∈ L2(R2) be a continuous function on domain Λ2. Then,

the approximate solution obtained by the proposed 2D Haar wavelet method converges to

the exact solution in the L2−norm, i.e., ∀ k ∥ErrorJ1J2(x1, x2, tk+1)∥2 → 0 as J1, J2 →

∞.

Proof. Suppose u(x1, x2, tk+1) and U(x1, x2, tk+1) are the exact and approximate so-

lutions of the transformed Black-Scholes equation (5.2.2) at the k + 1-th time level,

respectively. Then, we can write

u(x1, x2, tk+1) = η
∞∑

i1=0

∞∑
i2=0

ci1,i2,kqi1(x1)qi2(x2) + ζ(x1, x2, tk+1)

= ηc1,1,kq1(x1)q1(x2) + η
∞∑

j1=0

2j1−1∑
κ1=0

c2j1+κ1+1,1,kq2j1+κ1+1(x1)q1(x2)

+ η

∞∑
j2=0

2j2−1∑
κ2=0

c1,2j2+κ2+1,kq1(x1)q2j2+κ2+1(x2)
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+ η
∞∑

j1=0

2j1−1∑
κ1=0

∞∑
j2=0

2j2−1∑
κ2=0

c2j1+κ1+1,2j2+κ2+1,kq2j1+κ1+1(x1)q2j2+κ2+1(x2)

+ ζ(x1, x2, tk+1),

where η = T
2M3−1

, ζ(x1, x2, tk+1) is the function determined by imposing the given initial

and boundary conditions; j1, j2 and κ1, κ2 indicate the levels of resolution and translation

parameters in x1 and x2 directions, respectively, and i1 = 2j1+κ1+1 and i2 = 2j2+κ2+1

are the respective Haar indices. Now, the Haar solution at the maximum level of resolution

can be determined by

U(x1, x2, tk+1) = ηc1,1,kq1(x1)q1(x2) + η

J1∑
j1=0

2j1−1∑
κ1=0

c2j1+κ1+1,1,kq2j1+κ1+1(x1)q1(x2)

+ η

J2∑
j2=0

2j2−1∑
κ2=0

c1,2j2+κ2+1,kq1(x1)q2j2+κ2+1(x2)

+ η

J1∑
j1=0

2j1−1∑
κ1=0

J2∑
j2=0

2j2−1∑
κ2=0

c2j1+κ1+1,2j2+κ2+1,kq2j1+κ1+1(x1)q2j2+κ2+1(x2)

+ ζ(x1, x2, tk+1).

The error function at the maximum level of resolution is computed by

ErrorJ1,J2(x1, x2, tk+1) = u(x1, x2, tk+1)− U(x1, x2, tk+1)

= η
∞∑

j1=J1+1

2j1−1∑
κ1=0

c2j1+κ1+1,1,kq2j1+κ1+1(x1)q1(x2)

+ η
∞∑

j2=J2

2j2−1∑
κ2=0

c1,2j2+κ2+1,kq1(x1)q2j2+κ2+1(x2)

+ η

∞∑
j1=J1

2j1−1∑
κ1=0

∞∑
j2=J2

2j2−1∑
κ2=0

c2j1+κ1+1,2j2+κ2+1,kq2j1+κ1+1(x1)q2j2+κ2+1(x2).
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Taking L2−norm of the error function ErrorJ1,J2(x1, x2, tk+1), deduce

∥ErrorJ1,J2(x1, x2, tk+1)∥22 = V1 + V2 + V3 + V4 + V5 + V6,

where

V1 =η
∑
j1,κ1

∑
r1,s1

c2j1+1+κ1+1,1,kc2r1+s1+1,1,k

∫ b1

a1

q2j1+k1+1(x1)q2r1+s1+1(x1) dx1

×
∫ b2

a2

q1(x2)q1(x2) dx2,

V2 =η
∑
j2,κ2

∑
r2,s2

c1,2j2+κ2+1,kc1,2r2+s2+1,k

∫ b1

a1

q1(x1)q1(x1) dx1

×
∫ b2

a2

q2j2+κ2+1(x2)q2r2+s2+1(x2) dx2,

V3 =η
∑
j1,κ1

∑
r1,s1

∑
j2,k2

∑
r2,s2

c2j1+κ1+1,2j2+κ2+1,kc2r1+s1+1,2r2+s2+1,k

×
∫ b1

a1

q2j1+κ1+1(x1)q2r1+s1+1(x1) dx1

∫ b2

a2

q2j2+κ2+1(x2)q2r2+s2+1(x2) dx2,

V4 =2η
∑
j1,κ1

∑
r1,s1

c2j1+κ1+1,1,kc1,2r2+s2+1,k

∫ b1

a1

q2j1+κ1+1(x1)q1(x1) dx1

×
∫ b2

a2

q1(x2)q2r2+s2+1(x2) dx2,

V5 =2η
∑
j1,κ1

∑
r1,s1

∑
r2,s2

c2j1+κ1+1,1,kc2r1+s1+1,2r2+s2+1,k

∫ b1

a1

q2j1+κ1+1(x1)q2r1+s1+1(x1) dx1∫ b2

a2

q1(x2)q2r2+s2+1(x2) dx2,

V6 = 2η
∑
r1,s1

∑
j2,κ2

∑
r2,s2

c1,2j2+κ2+1,kc2r1+s1+1,2r2+s2+1,k

∫ b1

a1

q1(x1)q2r1+s1+1(x1) dx1∫ b2

a2

q2j2+κ2+1(x2)q2r2+s2+1(x2) dx2.
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To find the bounds for V1, V2, V3, V4, V5, and V6, we use the following result [45]

∞∑
j1=J1+1

2j1−1∑
κ1=0

(
1

2j1+1

)3

⩽ C

(
1

2J1+1

)2

.

By using the bounds for the Haar functions and their integrals from Lemma 5.4.1 and

ci1,i2,k from Lemma 5.4.2, we deduce

V1 < η
∑
j1,k1

∑
r1,s1

B2λ2η2(b1 − a1)
2(b2 − a1)

2

(2!)2(2j1+1)3(2r1+1)3
<

C1

(2J̄+1)4
, for some constant C1,

where J̄ = min{J1, J2}. Similarly, we compute the following upper bounds for V2, V3,

V4, V5, and V6

V2 <
C2

(2J̄+1)4
, V3 <

C3

(2J̄+1)8
, V4 <

C4

(2J̄+1)4
, V5 <

C5

(2J̄+1)6
, V6 <

C6

(2J̄+1)6
,

where C2, C3, C4, C5 and C6 are some constants. Thus,

∥ErrorJ1,J2(x1,x2, tk+1)∥22 = V1 + V2 + V3 + V4 + V5 + V6

<
C1

(2J̄+1)4
+

C2

(2J̄+1)4
+

C3

(2J̄+1)8
+

C4

(2J̄+1)4
+

C5

(2J̄+1)6
+

C6

(2J̄+1)6

= C
(

1

2J̄+1

)4

,

where C = C1+C2+
C3

(2J̄+1)4
+C4+

C5

(2J̄+1)2
+ C6

(2J̄+1)2
. Thus, we obtain ∥ErrorJ1,J2(x1, x2, tk+1)∥2 →

0 as J1, J2 → ∞. Hence, the 2D Haar wavelet approximation method is second-order

convergent.

5.5 Numerical simulations and discussions
In this section, we demonstrate the efficiency and robustness of the proposed method

through three test examples involving different multi-asset option pricing problems. It is

worth noticing that the 2D Haar wavelet method gives high accuracy even when a very
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few points are used. To enhance the speed while calculating the operational matrix, we

use the MATLAB inbuilt command of Kronecker tensor product (kron) instead of the

computationally complex loops. The numerical experiments for different two-asset option

pricing problems are given. As discussed in the previous section, we confine the actual

infinite domain to a finite domain by constructing artificial boundaries. For numerical

computations, we discretize the domain Λ2 × [0, T ] into 2M1 and 2M2 equidistant points

using the Haar mesh formulaic expression defined in Section 3 in x1 and x2 directions,

respectively, and into 2M3 equidistant points using the traditional uniform mesh of width
T

2M3−1
in the time direction. For convenience, in all numerical experiments we have used

equal number of nodal points in all three directions. Initially, the transformed problem

(5.2.2) is solved and then by using the back substitution, we get the solution and derivatives

to the original problem (5.2.1).

Since the Haar wavelet method does not allow to use the double mesh principle,

the error measures are computed in the form of residual. Thus, if V (S1, S2, τ) is the

exact solution to (5.2.1) then its approximate solution P (S1, S2, τ) introduces an error

E(S1, S2, τ) =
∂P (S1,S2,τ)

∂τ
+ LP (S1, S2, τ) (known as the residual). In our analysis, we

fix the parameters of the rate of return, volatility, dividend, and the correlation between

two assets to compute the values of the price and the Greeks of the options in all examples.

The effect of change in the price of different underlying assets and time on the price of the

options and their sensitivities are depicted graphically.

5.5.1 Max option

Example 5.5.1. We consider the problem for which the rate of return r has the value 0.06,

the volatilizes σ1 and σ2 are fixed at 0.2 and 0.25, respectively. The value of correlations

are ρ11 = ρ22 = 1 and ρ12 = ρ21 = 0.25, the strike price has given the value K = 100,

and the maturity T is equal to 1 year.

This example demonstrates the efficiency of the 2D Haar wavelet method to compute

the sensitivities and price of the European style max call option. In this option, associated

with every asset the payoff has the same expiry T = 1 year, but on the day of expiry, only
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Table 5.1: Computational error obtained for solving two-asset max option pricing problem
for J = 3 with T = 1.

S2

S1 47 58 78 86

47 6.2172e-15 1.7764e-14 1.7764e-14 2.3093e-14
52 6.2172e-15 1.0658e-14 1.5987e-14 2.4869e-14
58 1.1546e-14 1.0658e-14 1.0658e-14 1.9540e-14
64 4.4409e-15 1.4211e-14 1.9540e-14 3.5527e-14
78 6.2172e-15 8.8818e-15 1.4211e-14 2.8422e-14
70 7.1054e-15 8.8818e-15 2.6645e-14 1.4211e-14
86 3.5527e-15 8.8818e-15 1.9540e-14 1.4211e-14
95 4.4409e-15 4.4409e-15 5.3291e-15 2.6645e-15

(a) τ = 0 (b) S1 = 50

Figure 5.1: The approximate value of two-asset max option price.
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payoff of the best performing asset becomes the final payout. The computational domain

for the transformed equation (5.2.2) is taken [−0.8, 0.8]× [−0.8, 0.8]× [0, 1]. In Table 5.1

the computational errors in the form of residual are tabulated at varying stock prices. The

table illustrates that the proposed scheme is highly accurate for solving financially relevant

option pricing problems.

The price of the max two-asset option is depicted graphically in Figure 5.1(a). It is

worthy to note that the value of the price of the option approaches 0 for S1 < K and

S2 < K, which implies that the option is out of the money below the strike price. For

S1 ≥ K and S2 ≥ K, the price of the option increases linearly deduce that the option

is in the money and the sudden shift and non-smoothness in the layer of linearity is due

to the choice of payoff function taken for payout. The solution of equation (5.2.1) for

the max option is presented in Figure 5.1(b) by setting S1 = 50. Different sensitivities

profiles for the two-asset max option are plotted in Figure 5.2. The surface plot of deltaS1

profile depicted in Figure 5.2(a) reveals that the value of deltaS1 lies between 0 and 1

which implies that the option is worthless for deltaS1 approaches 0 and the option is in the

money and will most likely be exercised for deltaS1 approaches 1. A similar observation

has been made in Figure 5.2(b) depicting the deltaS2 i.e., for fix value of S1 the change in

the option price with the change in the second underlying asset. Using these observations

we can rebalance the initial hedges and construct the delta neutral position. Figures 5.2(c)

and 5.2(d) represent the gamma profile for the max option with respect to S1 and S2,

respectively. It reveals that the value of delta is almost constant for both S1, S2 ≥ K,

hence the gamma approaches 0. The change in the price of the option with the change

in both the underlying assets is illustrated in Figure 5.2(e). From this figure it can be

observed that there is a sudden rise in the value of cross-gamma near the initial and final

boundaries corresponding to both the underlying assets together while there is a sudden

drop in the value of cross-gamma near the initial boundary of one underlying asset and

final boundary of another underlying asset is due to there different speeds of approaching

the initial and terminal condition. Figure 5.2(f) shows the change in the option price with

the decay in the time towards maturity T . The graphical analysis discloses that the value of
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theta of the max option decreases with the increase in the stock price but there is a sudden

rise in the value of theta near final boundaries corresponding to both the underlying assets

because time decay is at its peak there.

5.5.2 Index option

This example illustrates the efficiency and accuracy of the proposed scheme to compute

the index option and its Greeks. We will also discuss the behavior of its sensitivities in

detail.

Example 5.5.2. For numerical simulation of an index option, let the risk-free rate r

of interest is 0.05, the value of σ1 and σ2 representing the volatilities are 0.2, and 0.1,

respectively. The value of correlations are ρ11 = ρ22 = 1 and ρ12 = ρ21 = 0.25, the strike

price is K = 70, and the time to maturity T is equal to 1 year.

Here, the two-asset index option is interpreted over the domain [−1, 1]× [−1.5, 1.5]×

[0, 1] with portfolio weights w1 = 2 and w2 = 1 under the Black-Scholes framework with

zero dividends. The residual errors that occur for different stock prices in solving the

index option are presented in Table 5.2. Since the tabulated errors are highly accurate

irrespective of the problem’s geometry, it shows that the present numerical scheme provides

a competitive approach for solving the higher-dimensional option pricing problems. It is

perceived that to hit the error level 10−15, Haar wavelet requires a very fewer number of

points than other standard numerical methods.

Figure 5.3(a) illustrates the character of the index option price with respect to the

two underlying assets of different weights. It is evident from the figure that the value of

the option is 0 initially, and then it increases linearly for both the assets, but for S1, it

grows rapidly, which is justified from the fact that the portfolio weight for S1 is greater

than for S2. The behavior of option price with respect to the single asset S2 and time τ

is graphically depicted in Figure 5.3(b). Figure 5.4 depicts various Greeks of the index

option exerted in financial markets to rebalance the dynamic hedges, which is a trading

decision. It is evident from the values of deltaS1 and deltaS2 depicted in Figures 5.4(a)
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(a) S2 = 215 (b) S1 = 215

(c) S2 = 200 (d) S1 = 200

(e) τ = 0 (f) τ = 0.013

Figure 5.2: Sensitivities of max option with maturity T = 1.
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Table 5.2: Computational error obtained for solving two-asset index option pricing problem
for J = 2 with T = 1.

S2

S1 18 40 84 178

29 8.8818e-16 1.7764e-15 4.4409e-16 1.3323e-15
37 8.8818e-16 8.8818e-16 1.3323e-15 3.9968e-15
48 1.3323e-15 1.3323e-15 2.2204e-15 2.6645e-15
62 1.7764e-15 1.7764e-15 8.8818e-16 2.2204e-15
79 1.7764e-15 2.2204e-15 2.6645e-15 2.2204e-15

102 1.7764e-15 2.2204e-15 2.2204e-15 4.8850e-15
130 2.2204e-15 2.6645e-15 3.1086e-15 7.9936e-15
168 1.7764e-15 3.9968e-15 3.5527e-15 4.8850e-15

and 5.4(b) that for S ≥ K the option price increases linearly for both the assets but it

rises with a double rate in case of S1. Besides this, an abrupt change in the value of deltas

(Figures 5.4(a) and 5.4(b)) and gammas (Figures 5.4(c) and 5.4(d)) for both assets near

the strike price is due to the non-smoothness of the solution function at K = 70. Figure

5.4(e) reported the movement of S2 on the delta sensitivity of the option to S1. Moreover,

the negative value of theta for a call option is in good agreement with the financial theory

[111] and is depicted in Figure 5.4(f).

5.5.3 Multi-strike option

Example 5.5.3. Consider the two-asset Black-Scholes equation with different strike prices

K1 = 100, K2 = 120 and the other financial parameters as follows: risk free rate of

return r = 0.05, volatilizes σ1 = 0.2 and σ2 = 0.1, correlations ρ11 = ρ22 = 1 and

ρ12 = ρ21 = 0.25, with expiry T = 1 year.

We consider this example to show the proficiency of the Haar wavelet method to

approximate the non-smooth functions effortlessly by its excellent technique of approxi-

mating the spiked functions. Here, the simulations are carried out for the computational

domain [−1, 1]× [−1, 1]× [0, 1]. The residual error that occurs in solving the multi-strike

option is presented in Table 5.3. The reported numerical errors show that the present
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(a) τ = 0 (b) S1 = 30

Figure 5.3: The approximate value of two-asset index option price.

method is a reasonably better approach to solve the multi-asset option pricing problem.

The surface plot of the solution of problem (5.2.1) for the multi-strike option is

presented in Figure 5.5(a) at τ = 0. The difference in the peak of the option price function

with respect to S1 and S2 instead of having the same domain is due to their different strike

prices. The option price for a fixed value of S1 (= 40) is plotted in Figure 5.5(b). To

hedge the directional risks associated with the moves of different parameters, we study

the behavior of different sensitivities depicted in Figure 5.6. The sensitivity of the option

to the price of S1 and S2 are presented in Figures 5.6(a) and 5.6(b), respectively. It is

perceived from the figure that the value of delta for both the underlying asset approaches

its maximum value of 1 as the option goes deep in the money, and it approaches 0 as

the option goes deep out of the money. The sensitivity of delta to the movement of the

underlying assets S1 and S2 are plotted in 5.6(c) and 5.6(d), respectively. It is perceptible

that near maturity, the gammas approach 0 since deltas are close to 1. Moreover, the study

of cross-gamma depicted in Figure 5.6(e) is important part of risk management and with

the increase in the number of asset cross-gamma become more important than gamma.

The value of theta depicted in Figure 5.6(f) is negative which is in good agreement with

the theoretical fact in finance that the value of theta for a call option is always negative
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(a) S2 = 300 (b) S1 = 185

(c) S2 = 270 (d) S1 = 170

(e) τ = 0 (f) τ = 0.013

Figure 5.4: Sensitivities of index option with maturity T = 1.
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Table 5.3: Computational error obtained for solving two-asset multi-strike option pricing
problem for J = 3 with T = 1.

S2

S1 46 77 127 210

39 2.6645e-15 4.4409e-15 4.4409e-15 6.2172e-15
50 3.5527e-15 1.2434e-14 1.2434e-14 1.0658e-14
64 4.4409e-15 1.3323e-14 2.3093e-14 2.4869e-14
82 6.2172e-15 1.7764e-14 1.0658e-14 3.3751e-14

106 2.6645e-15 1.7764e-14 1.4211e-14 2.1316e-14
136 4.4409e-15 1.7764e-14 3.5527e-14 4.2633e-14
175 6.2172e-15 1.5987e-14 8.8818e-15 4.6185e-14
225 5.3291e-15 1.7764e-14 1.0658e-14 1.4211e-14

as the passing of time will lower the value of the option. It is significant to note that the

rebalancing of initial hedges is important here since the dynamics of the underlying assets

in these options change dramatically.

5.6 Concluding observations and future scope

In this chapter, we have presented a wavelet-based approximation technique to study and

analyze the physical and numerical aspects for a variety of option pricing problems with

more than one asset and their Greeks under the Black-Scholes framework. The multi-

scaling approximation technique of the 2D Haar wavelet is used to estimate the sensitivities

and price the different multi-dimensional options. It is difficult to approximate the non-

smooth payoff functions and discontinuous Greeks using the standard numerical methods

but the Haar wavelet technique of estimating the spiked functions fix this obstruction

effortlessly. The present wavelet scheme is convergent and requires fewer computational

nodes than traditional methods to achieve a high level of accuracy. We can see that to hit

the error level 10−15, Haar wavelet requires a hundred times fewer points than standard

numerical methods. Furthermore, it is more economical i.e., the time taken to get this

level of accuracy is significantly very less. Numerical simulation shows that the proposed
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(a) τ = 0 (b) S1 = 40

Figure 5.5: The approximate value of two-asset multi-strike option price.

method is a reasonably better approach to solve the multi-dimensional option pricing

problems and their sensitivities. The proof of the convergence of the present scheme

signifies that the method is stable, so the rise in the error is not because of the instability

issue. The sensitivities of different options are investigated and depicted graphically from

which it is observed (already explained in the previous section) that the extracted results

and observations are in good agreement with the financial theories. The motivational work

of the study of various sensitivities of diverse multi-asset options leads to a significant

impact on the hedging strategies used by different trading institutes. The convergence rate

of the proposed scheme is independent of the number of underlying assets and so this

approach should be increasingly attractive as the dimension of the problem grows. The

proposed scheme can be extended to other option pricing problems such as to investigate

the sensitivities and explore hedging strategies of various path-independent binary options

under the Black-Scholes environment.
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(a) S2 = 315 (b) S1 = 265

(c) S2 = 300 (d) S1 = 250

(e) τ = 0 (f) τ = 0.013

Figure 5.6: Sensitivities of multi-strike option with maturity T = 1.
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A highly accurate numerical approach

for retrieving the discontinuous behavior

of the hedging parameters

6.1 Introduction

Options are the most common instruments on the trade markets and their valuation is of

immense interest to the financial world. In the field of trading, there exists a large variety

of options, which can be traded in different styles. The price of an option grounds on

different parameters, which limit the behavior of the value of an option. As a resultant,

the investigation of the options with respect to the parameters which affect their price

is the most interesting topic for researchers. In financial mathematics, such sensitivity

of the price of an option with respect to some fundamental parameters is referred to as

Greeks (hedging parameters) [29]. Besides this Greeks can also be used in the context

of actuarial-specific risk management such as to hedge short and long term risks, profit

guarantee from equity linked insurance, pension funding. Thus, these hedging parameters

are effective tools for managing the risk in an option position [47]. Any attempt at valuing

143



Chapter 6

and studying the behavior of these Greeks leads the holder towards a smart move. There

are several methods for calculating an option’s price and Greeks, but there is always a

need for a more efficient and accurate method. Also, since the payoff function and Greeks

are non-smooth in nature, it is a challenging task to solve them with the classical time

marching schemes.

In this chapter, we extensively study the orthogonal spline collocation method with

Rannacher time-marching scheme for free boundary value option pricing problems. Such

financial problems commonly feature non-smooth payoff functions that cause inaccuracies

in approximating the solution and its derivatives. As a result, unlike for the problems

with the smooth initial data, the quadratic convergence is not realized by the Crank-

Nicolson time-stepping scheme for these problems. Furthermore, the non-smoothness in

the initial condition leads to serious degradation in the convergence rates and spurious

oscillations near the discontinuity. The rationale is that classical schemes strongly rely on

the smoothness of the initial data. To smoothen the data, a rigorous time-marching scheme

referred to as Rannacher time-stepping scheme is introduced for the American option’s

price diagnosed by a linear complementarity problem. Moreover, with careful analysis,

second and fourth orders of convergence are established for the present scheme in the

temporal and spatial directions, respectively. To validate the theory, the numerical results

for two test problems are presented in the form of tables and graphs. These results show

that the present scheme achieves higher accuracy and is sufficient to restore the expected

behavior.

6.1.1 Overview

In finance, the most effective and widely used model for pricing an option is the famous

Black-Scholes model [13], named after the pioneers Fischer Black and Merton Scholes.

This model was extended by Merton [112]. We consider here the basic model for the

American option and a similar treatment can also be done for other extended models

for various options. The payoff function of the option pricing problems is non-smooth

i.e., the terminal condition defined in the Black-Scholes partial differential equation is
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piecewise smooth, which results in the poor estimation of the Greeks [7]. Spikes in the

derivative function (Greeks) lead to decay in the convergence rate of a numerical scheme.

A super convergent method that deals with the non-smooth behavior of the American

option and its Greeks is proposed in this chapter. A lot of work has been done to compute

the price of the option but there is always a need for more accurate methods which tackle

their non-smooth behavior with ease and at the economical computational cost. Tavella

and Randall [59] presented a finite difference numerical scheme for pricing the options

and instigated that the discontinuity in the terminal condition leads to an increase in

the discretization error, which affects the rate of convergence. For the last two decades,

amazing work has been done to improve the approximation in space for option pricing

problems. In [113], Longstaff and Schwartz developed a linear unconditionally stable

least square Monte Carlo simulation method. Ikonen and Toivanen [17] suggested an

operator splitting method for linear complementarity problem arising for American option

and proved that it is more efficient than the projected SOR, while the accuracy of both

the methods is linear. Furthermore, the integral method proposed by Kim [114] and the

analytical approximations given by Barone-Adesi et al. [115, 116] are first-order accurate

in space.

Plenteous research has been done by various finite difference approaches to estimate

the price of the option but much focus has been paid only to improve the accuracy in

space for e.g., in [18], Zhao et al. designed a compact finite difference scheme for

American option pricing, which is capable to achieve a quadratic rate of convergence in

space but at the cost of more computational time. In 2011, Cen and Le [117] presented

a numerical scheme for generalized Black-Scholes equation based on central difference

spatial discretization on a piecewise uniform mesh and an implicit time-stepping scheme.

They proved that the scheme is stable and second-order convergent in space. Kwon

and Lee [118] proposed a three time level scheme that results in a linear system with

tridiagonal matrices. Furthermore, they have investigated that the scheme is stable and

second-order convergent in the discrete L2−norm. Other numerical schemes based on

the finite difference approach can be seen in [60, 75, 119, 120]. All the above schemes
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are second-order convergent in space but only first-order accurate in time. In context

to the comparison of the spline interpolation with the difference schemes, Caglar et al.

[121] have analyzed that there is a big difference in the computational errors, although

no remarkable difference is noticed in the rates of convergence. Later, Chang et al.

have also examined that the spline interpolation is more efficient and feasible than the

finite difference schemes in order to solve the boundary value problem (BVP) of linear

ODEs. For more details the readers are referred to [122] and the references therein. Many

authors considered different numerical approaches based on the spline interpolation to

approximate the price of an option. Khabir and Patidar [123] presented a classical Euler

implicit scheme withB-spline based collocation method to compute the price of the vanilla

options. They observed that the B-spline method is efficient than the quasi-radial basis

functions based numerical scheme. In 2017, Rashidinia and Jamazadeh [124] developed

an algorithm based on a modified cubic B-spline method for American and Barrier options.

The order of convergence is found to be approximately two and one in the spatial and

temporal directions, respectively. In literature there are many numerical schemes based

on spline interpolation to approximate the option price but have a low order of accuracy

[125–127] and provide little analysis on the misbehaving temporal convergence rate. All

the above investigations are concerned with the accuracy in space but due to the low

order of convergence in time the global error decreases with the linear rate. To achieve a

higher rate of convergence in both directions a combination of smoothing and modified

time-stepping method with a highly accurate numerical scheme in space is required.

In [128], Zlamal has shown that the backward Euler scheme provides unconditionally

smoothing results since it is ’strongly A-stable’. On the other hand, being only A-stable

the Crank-Nicolson (CN) scheme cannot be expected to have the smoothing property

unconditionally since the classical convergence schemes rely on smoothness assumption

for the underlying data violated in the case of American option pricing. To resolve the

non-smoothness of the initial data, different smoothness techniques are suggested by

many authors. In [129], Giles and Carter observed that the accuracy of the CN scheme

is inadequate due to the reduced regularity in the initial data. They have also examined
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that the CN scheme is unconditionally stable in the L2−norm (for more detail refer to

[130]). They have also investigated a Rannacher time-stepping technique that performs

better than the Euler backward and the classical CN schemes. Using this new technique,

the non-smoothness of the initial condition can be reduced by using the strongly stable

Backward Euler (BE) scheme for the first four time steps and then to improve the accuracy

for the rest of the time-steps CN is used. In 2016, Mashayekhi and Hugger [131] analyzed

and discussed the conjunction properties of three different time stepping schemes with

finite difference method. They have concluded that the Rannacher time stepping scheme

removed the high frequency oscillations and provided second order convergence in time.

In [132], Mohammadi proposed a quintic spline based collocation scheme to solve the

Black-Scholes equation. The author has compared the results using different time-stepping

schemes and shown that Rannacher time-marching scheme provides better convergence in

time. The method has been proved to be convergent of order O(h3 + k2) in the maximum-

norm. But due to the use of higher order polynomials, it has a high computational cost.

This chapter also provides an overview of the formulation, analysis, and implementa-

tion of the spline collocation method at Gauss points. The chapter’s aim is not to touch the

deep concepts of finance but to develop an efficient algorithm to solve the problems arising

in financial mathematics. So, it does not require any prerequisite knowledge of finance,

however, it can be applied to all the financial models. Furthermore, this chapter provides a

new insight in improving the order of convergence in both directions, for problems with

discontinuities. We outline possible steps explicitly to implement and extend the present

scheme towards different non-smooth problems for future computational studies. In partic-

ular, in this work we have studied the linear complementarity American option pricing

problem with moving boundaries under the Black-Scholes framework to estimate the

option’s price and the hedging parameters. To improve the accuracy of the approximation

in space a highly accurate orthogonal spline collocation method is presented. Moreover,

since the proposed problem has non-smooth underlying data, in order to improve the

accuracy in time, instead of the BE and CN schemes we have considered the Rannacher

time-marching scheme. The computational results show that away from singularity the
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conjunction scheme yields good results and does not increase the computational cost.

The performance and proficiency of the proposed scheme are validated through two test

examples and by comparing with the existing results.

The remainder of the chapter is organized as follows: first, we state the linear com-

plementarity American option pricing problem as a moving boundary value problem in

Section 2. Then in Section 3, we comprehensively discuss the orthogonal spline collo-

cation technique together with an overview of the analytical results that require to prove

the convergence. The convergence analysis of the present scheme in spatial direction is

discussed in Section 4. Then, we shift the focus on the different time-marching schemes

that we conjunct with the proposed super-convergent OSC method and prove the overall

convergence of the proposed numerical scheme. Moreover, we demonstrate the perfor-

mance and accuracy of the present method in Section 5. Finally, concluding remarks and

future scopes are shared in the last section.

Nomenclature

P Price of the option

S Current stock price

τ time period

K Strike price

T Maturity

ν Transformed variable P

x Transformed variable S

t Transformed variable τ

r Rate of interest

σ Volatility

δ Dividend Yield

Q Payoff function

α1 Transformed finite left boundary

α2 Transformed finite right boundary

A+ max{A, 0}
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Remark. Throughout the manuscript C is a generic positive constant, independent

of the spatial and temporal discretization parameters. Furthermore, C can take different

values at different places.

6.2 Black-Scholes option pricing model

There are many approaches to price American options and evaluate their Greeks but the

most effective one is based on the partial differential problem. The linear complementarity

problem under the Black-Scholes framework is an proficient way of pricing American-type

options. Mathematically, it is a final value problem with free-boundary on an unbounded

domain. Define the differential operator

LP ≡ ∂

∂τ
+

1

2
σ2S2 ∂

2

∂S2
+ (r − δ)S ∂

∂S
− rI, S ∈ (0,∞), τ ∈ [0,T),

where δ ≥ 0 represents the dividend yield, r ≥ 0 is the interest rate parameter, and

σ > 0 denotes the volatility which is the unpredictable change in the price of the security

(underlying asset) over time. In case of American-style call option, if Q = (S − K)+

is the payoff function where K is the strike price, then for P(S, τ) > Q the Black-

Scholes equation holds, i.e., LPP(S, τ) = 0. Although for P(S, τ) = Q, it is feasible to

exercise the option. Through cumulative impact of both the cases, P(S, τ) the price of an

American-style option satisfies the partial differential complementarity problem

LPP(S, τ)(P −Q) = 0, (6.2.1a)

subject to

LPP(S, τ) ≤ 0, (P −Q) ≥ 0. (6.2.1b)

By the same token, we get a similar differential equation for put option of American-style

with Q = (K− S)+. In order to price the option along with the above defined constraints
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the left boundary condition is imposed as

lim
S→0

P(S, τ) =

0, for call,

(K− S)+, for put,
(6.2.1c)

i.e., for S → 0, in case of a call, it is valueless to exercise the option besides this, put

option is rich in cash. The right boundary condition is given as

lim
S→∞

P(S, τ) =

(S −K)+, for call,

0, for put,
(6.2.1d)

i.e., for S → ∞, a call option is highly profitable, while a put option is worthless.

Now, by considering τ = T − 2t
σ2 , the final value problem is reformulated into a

dimension free initial value problem for deep contemplation on a problem that is important

in terms of business and to make it more convenient for numerical implementation.

Furthermore, in order to obtain a finite domain, the unbounded domain is truncated

on introducing a logarithmic change in S by defining a new variable x = ln(S/K). Also,

we take P(S, τ) = Ke−[2(
r−δ

σ2 )−1]x2−
[
1
4(2(

r−δ

σ2 )−1)
2
+ 2r

σ2

]
t
ν(x, t), hence the equation (6.2.1a)

is deduced in (
∂ν

∂t
− ∂2ν

∂x2

)
(ν − f̃) = 0, (6.2.2a)

and the constraints are reduced into

∂ν

∂t
− ∂2ν

∂x2
≥ 0 and ν − f̃ ≥ 0, (6.2.2b)

where f̃(x, t) is formulated as

f̃(x, t) =

e
t
4(

2(r−δ)

σ2 −1)
2
+ 2r

σ2 t
(
e

x
2 (

2(r−δ)

σ2 +1) − e
x
2 (

2(r−δ)

σ2 −1)
)+

, for call,

e
t
4(

2(r−δ)

σ2 −1)
2
+ 2r

σ2 t
(
e

x
2 (

2(r−δ)

σ2 −1) − e
x
2 (

2(r−δ)

σ2 +1)
)+

, for put,
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where (x, t) ∈ (−∞,∞) × (0, T1] such that T1 = σ2T
2

. After transformation the initial

condition for call and put options are

ν(x, 0) = f̃(x, 0), (6.2.2c)

and in terms of new variables the boundary conditions are

lim
x→−∞

ν(x, t) = lim
x→−∞

f̃(x, t), (6.2.2d)

and

lim
x→∞

ν(x, t) = lim
x→∞

f̃(x, t). (6.2.2e)

In summary, in addition to the boundary conditions, we require ∂ν(x,t)
∂t

− ∂2ν(x,t)
∂x2 = 0 as

well as

ν(x, 0) = f̃(x, 0), and ν(x, t) ≥ f̃(x, t).

For numerical implementation, the interval (−∞,∞) is truncated into a bounded interval,

Ω = (α1, α2), where in order to nullify the computational error α1 and α2 are chosen to

be big enough negative and positive numbers, respectively.

6.3 Orthogonal spline collocation method

6.3.1 Preliminaries

Discretize the temporal domain [0, T1] in to Nt parts of equal length k = T1/Nt, so that

the nodal points are tn = nk, n = 0, 1, 2, . . . , Nt. Now, say ρh = {xj}Nx
j=0 be the partition

of Ω such that

α1 = x0 < x1 < . . . < xNx−1 < xNx = α2,

where Nx be a positive integer with the mesh size h = xj − xj−1, j = 1, 2, . . . , Nx. Let

Pr(Ωj) be the set of all polynomials of degree ≤ r defined on Ωj = (xj−1, xj) and C1(Ω)

be the space of functions which are one time continuously differentiable on Ω. Hence, the
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subspace of piecewise polynomials of H1(Ω) can be defined as

M r
1 = {µ | µ ∈ C1(Ω), µ|Ωj

∈ Pr(Ωj), j = 1, 2, . . . , Nx}, r ≥ 3.

One can see that M r
1 is a linear space of dimension Nx(r − 1) + r + 1.

Let δk and ωk are the nodes and weights, respectively, for the (r − 1) Gauss-Legendre

quadrature rule on Ω. Moreover, let

G = {ζ}Nx,r−1
j=1,k=1,

be the set of Gauss points on Ω, expressed as

ζ2(j−1)+k = xj−1 + hδk, j = 1, 2, . . . , Nx, k = 1, 2, . . . , r − 1.

Collection of these Gauss points form a set of collocation points in the OSC scheme. For

any χ, ψ ∈ C0(Ω), the discrete inner product can be defined as

⟨χ, ψ⟩ =
Nx∑
j=1

⟨χ, ψ⟩j =
Nx∑
j=1

r−1∑
k=1

ωj,kχ(ζj,k)ψ(ζj,k).

This inner product gives rise to the norm

|χ|D =

(
Nx∑
j=1

|χ|2j

) 1
2

,

where

|χ|j = ⟨χ, χ⟩
1
2
j =

(
r−1∑
k=1

ωj,kχ
2(ζj,k)

) 1
2

.

If ∥.∥L2 denotes the usual L2−norm on the interval Ω, then from ([133], Lemma 3.1),

−⟨u,wxx⟩ ≥ (ux, wx), u, w ∈M r
1 ,
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so that

−⟨u, uxx⟩ ≥ ∥ux∥2L2 , u ∈M r
1 ,

and

|ux|D ≤ ∥ux∥L2 , u ∈M r
1 .

We use the remarkable fact that (r−1) point Gauss quadrature is exact for a polynomial g of

degree ≤ 2r − 3, so that ⟨ g, 1⟩ =
∫ 1

0
g(x) dx, g ∈ P2r−3. Hence, |uxx|D = ∥uxx∥L2 , u ∈

M r
1 .

Let Hm(Ω), Hm
0 (Ω) represent the regular Sobolev spaces on Ω, and Lp(Y ) be the set

of vector valued functions from [0, T1] to Y , so that

∥χ∥pLp(Y ) =

∫ T1

0

∥χ∥pY dt, 1 ≤ p <∞,

where Y with ∥.∥Y is a normed linear space with prescribed norm, and for p = ∞

∥χ∥L∞(Y ) = sup
0≤t≤T1

∥χ∥Y .

The weighted H1−norm, that we consider is defined as

∥χ∥H1(Ω) =
(
∥χx∥2L2 + |χ|2D

) 1
2 .

6.3.2 Important inequalities

Following inequalities and results will be used to prove the convergence of OSC scheme.

• Cauchy-Schwartz inequality : Let Y be a normed linear space and u1, u2 ∈ Y ,

then

|⟨u1, u2⟩| ≤ ∥u1∥∥u2∥.

• Poincaré inequality : For all, u ∈ W 1,p
0 (Sobolev space) and 1 ≤ p <∞

∥u∥Lp ≤ C∥∇u∥Lp .
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• Young’s inequality : Let P and Q are non negative real numbers such that a, b > 0

and 1
a
+ 1

b
= 1, then

PQ ≤ P a

a
+
Qb

b
.

6.3.3 Important lemmas

The following two lemmas will be used in the proof of the main theorem.

Lemma 6.3.1. Let ν ∈ Hr+3(Ωj), j = 1, 2, . . . , Nx, and νH is the interpolant of ν. If

ϕ = ν − νH then, for s1 = 0, 1,∣∣∣∣∣ ∂s1+s2ϕ

∂ts1∂xs2

∣∣∣∣∣
j

≤ Chr+1−s2

∥∥∥∥∥∂s1ν(r+1)

∂ts1

∥∥∥∥∥
L2(Ωj)

, s2 = 0, 1,∣∣∣∣∣∂s1ϕxx

∂ts1

∣∣∣∣∣
j

≤ Chr

∥∥∥∥∥∂s1ν(r+2)

∂ts1

∥∥∥∥∥
L2(Ωj)

,〈
∂s1ϕxx

∂ts1
, 1

〉
≤ Chr+

3
2

∥∥∥∥∥∂s1ν(r+3)

∂ts1

∥∥∥∥∥
L2(Ωj)

.

The proof of this lemma can be seen in [133].

Lemma 6.3.2. If ν ∈ Hr+1(Ω) ∩H1
0 (Ω) then

∥ϕ∥Hj ≤ Chr+1−j∥ϕ∥Hr+1 , j = 0, 1, 2.

The proof of this lemma is followed by the Peano Kernel theorem.

Hermite cubic functions

When r = 3, the space M3
1 is known as the space of piecewise Hermite cubic functions

with dimension 2Nx + 4. To define the basis functions of M3
1 , let

µ1(x) = −2x3 + 3x2, and µ2(x) = x3 − x2,
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then the piecewise Hermite cubic functions can be expressed as

s0(x) =

µ1(1− l0(x)), x ∈ Ω1,

0, otherwise,

sNx(x) =

µ1(lNx(x)), x ∈ ΩNx ,

0, otherwise,

and for 1 ≤ i ≤ Nx − 1

si(x) =


µ1(li−1(x)), x ∈ Ωi,

µ1(1− li(x)), x ∈ Ωi+1,

0, otherwise.

Also,

w0(x) =

−hµ2(1− l0(x)), x ∈ Ω1,

0, otherwise,

wNx(x) =

hµ2(lNx(x)), x ∈ ΩNx ,

0, otherwise,

and for 1 ≤ i ≤ Nx − 1

wi(x) =


hµ2(li−1(x)), x ∈ Ωi,

−hµ2(1− li(x)), x ∈ Ωi+1,

0, otherwise.

Here si and wi are also known as the value function and slope function, respectively, at xi

which collectively form the basis of M3
1 .
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6.3.4 Spatial discretization

In this scheme, we seek V ∈M3
1 such that

LV (ζ, t) = 0, ∀ζ ∈ G, t ∈ (0, T1], (6.3.1a)

where LV (ζ, t) is given by
(

∂V (ζ,t)
∂t

− ∂2V (ζ,t)
∂x2

)
(V (ζ, t)− f̃(ζ, t)),

∂V (ζ, t)

∂t
− ∂2V (ζ, t)

∂x2
≤ 0, (V (ζ, t)− f̃(ζ, t)) ≥ 0, (6.3.1b)

V (ζ, 0) = f̃(ζ, 0), (6.3.1c)

lim
ζ→−∞

V (ζ, t) = lim
ζ→−∞

f̃(ζ, t), (6.3.1d)

lim
ζ→∞

V (ζ, t) = lim
ζ→∞

f̃(ζ, t). (6.3.1e)

The solution to the LCP (6.3.1) can be written as

V (x, tn) =
Nx∑
j=0

βj,nsj(x, tn) + γj,nwj(x, tn),

the substitution of this form of the solution function in Equation (6.3.1) yields the collo-

cation equations in addition to the given constraints as well as the boundary conditions.

Here sj and wj are associated with the collocation points ζj,k, defined as

ζ2(j−1)+1 = xj−1 + hδ1, j = 1, 2, . . . , Nx,

ζ2(j−1)+2 = xj−1 + hδ2, j = 1, 2, . . . , Nx,

where δ1 = 1
2

(
1− 1√

3

)
and δ2 = 1

2

(
1 + 1√

3

)
. Finally, calculate the coefficients βj,n

and γj,n at each time step. Subsequently, use Sj = Kexj and τn = T − 2tn
σ2 , where

j = 1, 2, . . . , Nx = NS and n = 1, 2, . . . , Nt = Nτ to add the coordinate transformation

for applying back substitution, to obtain the solution of the original Equation (6.2.1).
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6.4 Convergence analysis of proposed method with Ran-

nacher time-marching scheme

This section is devoted to the convergence analysis of the proposed method. Initially, we

will prove that the present scheme is third and fourth order accurate in the spatial direction

for two different norms. Then, we will show that the method is second-order convergent

in time.

6.4.1 The continuous-time orthogonal spline collocation method

The solution to the problem (6.2.2) approximated by orthogonal B-spline collocation

method, in particular, using Hermite cubic basis functions is a differentiable map

V : (0, T1] →M3
1 ,

that satisfies

Vt(ζ, t)− Vxx(ζ, t) = 0, ζ ∈ G, t ∈ (0, T1], (6.4.1)

which is equivalent to

⟨Vt − Vxx,Υ ⟩ = ⟨ 0,Υ ⟩, Υ ∈M3
1 , t ∈ (0, T1]. (6.4.2)

Set e = ν − V and write

e = (ν − νH)− (V − νH) := ϕ−Θ,

where ϕ = ν − νH defined as before and Θ = V − νH.

The error bounds in different norms for the spatial coordinate are derived in the

following theorem.

Theorem 6.4.1. Suppose ν and V are the solutions of (6.2.2) and (6.4.2), respectively and
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let V (0) = νH(0). If ν ∈ L∞(H6) ∩ L∞(H1
0 ) and νt ∈ L2(H6) for t ∈ (0, T1], then

∥ν − V ∥L∞(H1) ≤ Ch3,

and

∥ν − V ∥L∞(D) ≤ Ch4.

Proof. The equivalent form of (6.2.2) coupled with (6.4.2), yields

⟨Θt,Υ ⟩ − ⟨Θxx,Υ ⟩ = ⟨ϕt,Υ ⟩ − ⟨ϕxx,Υ⟩, Υ ∈M3
1 , (6.4.3)

for Υ = Θt

|Θt|2D − ⟨Θxx,Θt⟩ = ⟨ϕt,Θt⟩ − ⟨ϕxx,Θt⟩. (6.4.4)

From the bounds given in [133] and inequalities provided in subsection 6.3.2, we obtain

−⟨Θxx,Θt⟩ ≥
1

2

d

dt
∥Θx∥2L2(Ω), (6.4.5)

and

⟨ϕt,Θt⟩ ≤ C|ϕt|2D +
1

2
|Θt|2D. (6.4.6)

Rewriting (6.4.4) as

1

2
|Θt|2D +

1

2

d

dt
∥Θx∥2L2 ≤ C|ϕt|2D − ⟨ϕxx,Θt⟩, (6.4.7)

which on integrating over the interval (0, t) and using Θ(0) = 0 deduces into

∫ t

0

|Θt|2D dτ + ∥Θx∥2L2 ≤ C

∫ t

0

|ϕt|2D dτ − 2(⟨ϕxx,Θ⟩ −
∫ t

0

⟨ϕxxt,Θ⟩ dτ). (6.4.8)

We now calculate the bounds for ⟨ϕxx,Θ⟩ and
∫ t

0
⟨ϕxxt,Θ⟩ dτ as follows

⟨ϕxx,Θ⟩ =
Nx∑
j=1

⟨ϕxx,Θ⟩j =
Nx∑
j=1

⟨ϕxx,Θj⟩j +
Nx∑
j=1

⟨ϕxx,Θ−Θj⟩j, (6.4.9)
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where

Θj =
1

h
⟨Θ, 1⟩j.

The inequalities from subsection 6.3.2 together with Lemma 6.3.1, yields

⟨ϕxx,Θj⟩j ≤
Nx∑
j=1

⟨ϕxx, 1⟩j|Θj|j

≤ Ch4∥ν6∥L2(Ωj)|Θ|j

≤ Ch8∥ν6∥2L2(Ωj)
+

1

4
|Θ|2j . (6.4.10)

Also, we have

⟨ϕxx,Θ−Θj⟩j ≤ Ch4∥ν(5)∥L2(Ωj)∥Θx∥L2(Ωj) ≤ Ch8∥ν(5)∥2L2(Ωj)
+

1

4
∥Θx∥2L2(Ωj)

.

(6.4.11)

Substitution of (6.4.10) and (6.4.11) in (6.4.9) deduces

⟨ϕxx,Θ⟩ ≤ 1

4
(∥Θx∥2L2 + |Θ|2D) + Ch8(∥ν(5)∥2 + ∥ν(6)∥2). (6.4.12)

Now we integrate (6.4.12) over the interval (0, t) to get the bound for

∫ t

0

⟨ϕxxt,Θ⟩ dτ ≤ 1

4

∫ t

0

(∥Θx∥2L2 + |Θ|2D) dτ +Ch8
∫ t

0

(∥ν(5)t ∥2 + ∥ν(6)t ∥2) dτ. (6.4.13)

Substituting (6.4.12) and (6.4.13) in (6.4.8) and using Lemma 6.3.1, we get

∫ t

0

|Θt|2D dτ + ∥Θx∥2L2 ≤
∫ t

0

((∥Θx∥2L2 + |Θ|2D) dτ + Ch8(∥ν(5)t ∥2

+ ∥ν(6)t ∥2 + ∥ν(4)∥2 + ∥ν(4)t ∥2)) dτ

+ Ch8(∥ν(5)∥2L∞(L2) + ∥ν(6)∥2L∞(L2)) + ∥Θx∥2L2 + |Θ|2D.

(6.4.14)
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Clearly ∫ t

0

|Θ|2D dτ ≤ C

∫ t

0

(∥Θx∥2L2 + |Θ|2D) dτ. (6.4.15)

Now the use of Gronwall’s inequality yields

∫ t

0

|Θt|2D dτ + ∥Θ∥2L∞(H1) ≤ Ch8(∥ν(4)∥2L∞(L2) + ∥ν(5)∥2L∞(L2) + ∥ν(6)∥2L∞(L2)

+ ∥ν(4)t ∥2L2(L2) + ∥ν(5)t ∥2L2(L2) + ∥ν(6)t ∥2L2(L2)). (6.4.16)

Also, Lemmas 6.3.1 and 6.3.2 provide

∥ϕ∥2L∞(H1) ≤ C(h6∥ν(4)∥2L∞(L2) + h8∥ν(4)∥2L∞(L2)). (6.4.17)

Finally, the inequalities (6.4.16) and (6.4.17) with the bounds for the derivative of ν yield

∥ν − V ∥L∞(H1) ≤ ∥ϕ∥L∞(H1) + ∥Θ∥L∞(H1) ≤ Ch3. (6.4.18)

Since Θ(0) = 0, an application of

|Θ|D =

∫ t

0

|Θt(t)|D dτ ≤
(∫ t

0

|Θt|2D dτ
)1/2

,

and

∥ν − V ∥L∞(D) ≤ ∥ϕ∥L∞(D) + ∥Θ∥L∞(D) ≤ Ch4,

gives ∥ν − V ∥L∞(D) ≤ Ch4.

6.4.2 The Rannacher time-marching scheme and its convergence anal-

ysis

With the notations

V n(·) = V (·, tn), 0 ≤ n ≤ Nt,
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∂tV
n =

V n − V n−1

k
, 1 ≤ n ≤ Nt,

V n− 1
2 =

V n + V n−1

2
, 1 ≤ n ≤ Nt,

the Rannacher scheme with OSCM consists to determine {V }Nt
n=1 ⊂M3

1 such that

∂tV
n(ζ)− V n

xx(ζ) = 0, ζ ∈ G, n = 1, 2, 3, (6.4.19)

and

∂tV
n(ζ)− V

n− 1
2

xx (ζ) = 0, ζ ∈ G, n = 4, 5, . . . , Nt. (6.4.20)

Remark. In the above scheme, the first finite steps (there here) are solved using

backward Euler method, though exactly how much is sufficient is not known a priori and

has to be found experimentally.

As to smoothen the solution, the backward Euler scheme is used only for first few

steps, so in the convergence analysis of this method, we use the following equivalent form

of (6.4.20) 〈
∂tV

n(ζ)− V
n− 1

2
xx (ζ),Υ

〉
=
〈
0,Υ

〉
, Υ ∈M3

1 . (6.4.21)

The error bounds in both directions in distinct norms are given by the following

theorem.

Theorem 6.4.2. Suppose ν ∈ L∞(H6) ∩ L∞(H1
0 ) is the solution of (6.2.2) and νt ∈

L2(H6) for t ∈ (0, T1]. Then, if {V n}Nt
n=1 with V 0 = ν0H is the solution obtained by the

Rannacher scheme (6.4.19)-(6.4.20). Then, for sufficiently small k

∥νn − V n∥l∞(H1) ≤ C(k2 + h3),

and

∥νn − V n∥l∞(D) ≤ C(k2 + h4).

Proof. Since νn−V n = (νn− νnH)− (V n− νnH) ≡ ϕn−Θn, n = 4, . . . , Nt, at t = tn− 1
2
,
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(6.2.2) and (6.4.21) yield

⟨∂tΘn,Υ⟩ −
〈
Θ

n− 1
2

xx ,Υ
〉
= ⟨∂tϕn,Υ⟩ −

〈
ϕ
n− 1

2
xx ,Υ

〉
+ ⟨λn−

1
2 ,Υ⟩, (6.4.22)

where λn−
1
2 = λ

n− 1
2

1 + λ
n− 1

2
2 with λ

n− 1
2

1 = ∂tν
n − νt(tn− 1

2
), λ

n− 1
2

2 = ν
n− 1

2
xx − νxx(tn− 1

2
).

Substituting Υ = ∂tΘ
n in (6.4.22), we obtain

|∂tΘn|2D −
〈
Θ

n− 1
2

xx , ∂tΘ
n
〉
= ⟨∂tϕn, ∂tΘ

n⟩+ ⟨λn−
1
2 , ∂tΘ

n⟩ −
〈
ϕ
n− 1

2
xx , ∂tΘ

n
〉
. (6.4.23)

The bound for the second term in the L.H.S. of (6.4.23) is given by

−
〈
Θ

n− 1
2

xx , ∂tΘ
n
〉
≥ 1

2
∂t∥Θn

x∥2. (6.4.24)

Also, for the first two terms in the R.H.S. of (6.4.23), we consider the inequality

⟨∂tϕn, ∂tΘ
n⟩+ ⟨λn−

1
2 , ∂tΘ

n⟩ ≤ C(|∂tϕn|2D + |λn−
1
2 |2D) +

3

4
|∂tΘn|2D. (6.4.25)

The inequalities (6.4.24)-(6.4.25) when used in (6.4.23) give

1

4
|∂tΘn|2D +

1

2
∂t(∥Θn

x∥2 ≤ C(|∂tϕn|2D + |λn−
1
2 |2D) +

1

2
⟨∂tΘn,Θn−1⟩ −

〈
ϕ
n− 1

2
xx , ∂tΘ

n
〉
.

Applying summation from n = 4 to m, we obtain

k

m∑
n=4

|∂tΘn|2D + ∂t(∥Θm
x ∥2 ≤ C

[
k

m∑
n=4

|∂tϕn|2D + k
m∑

n=4

|λn−
1
2 |2D + k

m∑
n=4

⟨∂tΘn,Θn−1⟩

− 2k
m∑

n=4

〈
ϕ
n− 1

2
xx , ∂tΘ

n
〉]
. (6.4.26)

Now, Lemma 6.3.1 yields

k

m∑
n=4

|ϕn|2D ≤ Ch8∥ν(4)∥2L2(L2),
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k

m∑
n=4

|∂tϕn|2D ≤ Ch8∥ν(4)t ∥2L2(L2),

k

m∑
n=4

|∂tϕn
xx|2D ≤ Ch6∥ν(5)t ∥2L2(L2).

Moreover, on applying the Young’s inequality, the third term of the R.H.S of (6.4.26) gives

k

m∑
n=4

⟨∂tΘn,Θn−1⟩ ≤ Ck

m∑
n=4

|Θn|2D. (6.4.27)

For any fixed m such that 4 ≤ m ≤ Nt, we have

⟨ϕm
xx,Θ

m⟩ =
Nx∑
j=1

⟨ϕm
xx,Θ

m⟩j =
Nx∑
j=1

⟨ϕm
xx,Θ

m

j ⟩j +
Nx∑
j=1

⟨ϕm
xx,Θ

m −Θ
m

j ⟩j, (6.4.28)

where Θ
m

j = 1
h
⟨Θm, 1⟩j . Using the combination of inequalities of subsection 6.3.2 along

with Lemma 6.3.1, yield

⟨ϕm
xx,Θ

m

j ⟩j ≤ Ch9/2h−1h1/2∥ν(6)∥L2(Ωj)|Θm|j

= Ch4∥ν(6)∥L2(Ωj)|Θm|j

≤ Ch8∥ν(6)∥2L2(Ωj)
+

1

4
|Θm|2j . (6.4.29)

Using Poincare’s inequality, the second term on the right-hand side of (6.4.28) gives

⟨ϕm
xx,Θ

m −Θ
m

j ⟩j ≤ Ch8∥ν(5)∥2L2(Ωj)
+

1

4
∥Θm

x ∥2L2(Ωj)
. (6.4.30)

Substituting (6.4.29) and (6.4.30) in (6.4.28), to obtain

⟨ϕm
xx,Θ

m⟩ ≤ 1

4
(∥Θm

x ∥2L2 + |Θm|2D) + Ch8(∥ν(6)∥2L2(Ω) + ∥ν(5)∥2L2(Ω)). (6.4.31)
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Now, using the notation

dtΘ
n ≡ 1

2k
(Θn −Θn−2) =

1

2
(∂tΘ

n + ∂tΘ
n−1), n = 4, 5, . . . , Nt,

we obtain

k
m∑

n=4

〈
ϕ
n− 1

2
xx , ∂tΘ

n
〉
= ⟨ϕm

xx,Θ
m⟩ − k

m−1∑
n=4

〈
dtϕ

n
xx,Θ

n
〉
. (6.4.32)

Using the argument discussed in (6.4.28)-(6.4.31), we obtain

k
m∑

n=4

〈
dtϕ

n
xx,Θ

n
〉
= k

m∑
n=4

〈
∂tϕ

n
xx,Θ

n
〉
− k

m∑
n=4

〈
∂tϕ

n−1
xx ,Θn

〉
≤ 1

4
k

m∑
n=4

(∥Θn
x∥2L2 + |Θn|2D) + Ch8

∫ tm

0

(∥ν(5)t ∥2 + ∥ν(6)t ∥2) dτ. (6.4.33)

On combining (6.4.31)-(6.4.33), we obtain

k
m∑

n=4

〈
ϕ
n− 1

2
xx , ∂tΘ

n
〉
≤ 1

4
(∥Θm

x ∥2L2 + |Θm|2D) + Ch8(∥ν(5)∥2L∞(L2) + ∥ν(6)∥2L∞(L2))

+
1

4
k

m∑
n=4

(∥Θn
x∥2L2 + |Θn|2D) + Ch8

∫ tm

0

(∥ν(5)t ∥2L2 + ∥ν(6)t ∥2L2) dτ. (6.4.34)

To estimate ϕn− 1
2 , use of Taylor’s theorem provides

k
m∑

n=4

|ϕn− 1
2

1 |2D ≤ Ck4∥νttt∥2L∞(L∞), k
m∑

n=4

|ϕn− 1
2

2 |2D ≤ Ck4∥ν(2)tt ∥2L∞(L∞).

Hence

k

m∑
n=4

|ϕn− 1
2 |2D ≤ Ck4. (6.4.35)

Substituting (6.4.34) and (6.4.35) in (6.4.26), the use of discrete form of the Gronwall’s

inequality yields

k

m∑
n=4

|∂tΘn|2D + max
0≤m≤Nt

∥Θm∥2H1 ≤ C[h8(∥ν(4)∥2L2(L2) + ∥ν(5)∥2L∞(L2) + ∥ν(6)∥2L∞(L2)
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+ ∥ν(4)t ∥2L2(L2) + ∥ν(5)t ∥2L2(L2) + ∥ν(6)t ∥2L2(L2)) + k4].

Now, by following the equivalent approach to that of Theorem 6.4.1, we get the required

results.

6.5 Numerical simulations and discussion

In this section, we numerically validate the theoretical work for the problems with non-

smooth terminal condition by solving two different American option pricing problems.

Through the experiments it is shown that the proposed algorithm based on the orthogonal

spline and Rannacher time-marching scheme is effortless and efficient in attaining high

accuracy. It can also be concluded from this section that the present scheme is equally

efficient for problems like moving boundary problems, linear complementarity problems,

and the problems with non-smooth underlying data arising in different fields. In order

to avoid the mess, the selective figures and tables are presented effectively which are

in themself sufficient to prove the robustness of the scheme. In both the examples, we

consider α1 = −1 and α2 = 1, as the end points of the spatial domain. Also, it is

significant to note that in numerical simulations, when OSC scheme is applied we obtain

almost block diagonal (ABD) linear system [134] at each time step. To solve the ABD

system (at the cost of O(N) operations) COLROW package [135] has been used.

6.5.1 Computational error analysis

The validity of a novel or conjunctive scheme can be checked through error analysis. Since

the problems considered in this work do not have the exact solution, we are using the

double mesh principle to compute the errors in different norms. The maximum absolute

error ENS ,Nτ

1 in L∞−norm is estimated by using the following formula

ENS ,Nτ

1 = max
j

(
max

i
|P2NS ,2Nτ (S2i, τ2j)− PNS ,Nτ (Si, τj)|

)
,
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and the error ENS ,Nτ

2 in the L2−norm is computed by

ENS ,Nτ

2 =

√∑
j

∑
i

h(P2NS ,2Nτ (S2i, τ2j)− PNS ,Nτ (Si, τj))2.

Moreover, the error ENS ,Nτ

3 in H1−norm is computed by

ENS ,Nτ

3 =

√
ENS ,Nτ

2 +
∑
j

∑
i

h(P2NS ,2Nτ

S (S2i, τ2j)− PNS ,Nτ

S (Si, τj))2.

The expression log(errorNS ,Nτ )−log(error2NS ,2Nτ )
log 2

is used to compute the numerical order of

convergence. Typically the error depends on the underlying data of the problem and its

complexity. Thus even though with the A-stable schemes such as CN scheme, it is tough

to deal with the discretization error. It leads to decay in the convergence rate as shown in

Tables 6.1 and 6.4 for Example 6.5.1 and 6.5.2, respectively. It can also be observed that

the scheme is still convergent but the decay in the error is no longer quadratic. On the other

hand, one can examine that the BE scheme is strongly A-stable but it converges slowly to

the exact solution and exhibits linear order of convergence. Hence, a new scheme known

as Rannacher time-stepping scheme is implemented. Table 6.1 and 6.4, also depicted the

effectiveness of the Rannacher scheme over the BE and CN schemes. The error decay for

different schemes with the increase in number of grid points has been shown in Figures

6.2 and 6.5. We observe that the error for the Rannacher time-marching scheme decay

rapidly as compared to BE and CN schemes. In spatial context, note that Tables 6.2 and

6.5 confirm the better accuracy of the present scheme as compared to the non-spline and

spline based methods (refer to the articles [136, 137]). Hence, the fourth order accuracy in

space and after smoothness quadratic rate of convergence in time makes the method more

valuable.

Example 6.5.1. Consider the Black-Scholes Equation (6.2.1) for the American call option

with fixed rate of interest r = 0.08, volatility σ = 0.3, dividend yield δ = 0.06, the exercise

time T = 1 year and strike price K = 100.
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(a) The price of American call option (b) The solution of the transformed equation

Figure 6.1: Computational results for Example 6.5.1.

Table 6.1: ENS ,Nτ

1 for the American call option price given in Example 6.5.1

Number of collocation points
16 32 64 128 256

BE 7.08e− 04 3.33e− 04 1.64e− 04 8.14e− 05 4.06e− 05
1.0882 1.0218 1.0106 1.0035

CN 9.03e− 03 4.51e− 03 2.26e− 03 1.13e− 03 5.64e− 04
1.0016 0.9968 1.0000 1.0026

Rannacher 3.99e− 04 8.84e− 05 2.13e− 05 5.26e− 06 1.31e− 06
2.1743 2.0532 2.0177 2.0055

Example 6.5.2. Consider the following parameters set in the Black-Scholes Equation

(6.2.1) for the American put option: rate of interest r = 0.25, volatility σ = 0.6, dividend

yield δ = 0.2, the exercise time T = 1 year and strike price K = 10.

6.5.2 Analysis of oscillation reduction

In this section, we numerically investigate the oscillation eliminating property of the

Rannacher scheme. The non-smoothness of the terminal condition of problem (6.2.1)

causes computational noises since the second derivative of the option price P does not

belong to L2. Figures 6.3 and 6.6 reveal that the CN time-stepping scheme is prone to

spurious oscillations. Although no-oscillation is realized by the BE scheme, it converges
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Figure 6.2: Error behavior in L2-norm for different schemes constructed for Example 6.5.1

Table 6.2: Spatial errors in different norms occur while determining the American call
option price for Example 6.5.1 at t = 0.25

Number of collocation points
16 32 64 128 256

ENS ,Nτ

1 1.68e− 05 8.89e− 07 5.38e− 08 3.34e− 09 2.08e− 10
4.2401 4.0465 4.0097 4.0052

ENS ,Nτ

2 3.62e− 06 1.97e− 07 1.10e− 08 6.41e− 10 3.8535e− 11
4.1997 4.1626 4.1010 4.0561

ENS ,Nτ

3 7.97e− 05 6.64e− 06 5.79e− 07 5.09e− 08 4.49e− 09
3.5853 3.5195 3.5078 3.5029
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(a) BE (b) CN

(c) Rannacher

Figure 6.3: Values of delta computed using different time-marching schemes for Example
6.5.1.
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Table 6.3: Numerical results for American call option with parameters as in Example 6.5.1
and T = 1 year at various asset prices.

S = 60 S = 100 S = 165

Nτ NS Option price Delta Option price Delta Option price Delta
8 4 0.4036 0.054 11.8808 0.580 68.3689 0.986
16 8 0.4541 0.065 12.3849 0.583 68.6258 0.985
32 16 0.4917 0.069 12.6093 0.584 68.7546 0.984
64 32 0.5123 0.071 12.7162 0.585 68.8190 0.984
256 64 0.5227 0.072 12.7693 0.585 68.8513 0.984

(a) The price of American put option (b) The solution of the transformed equation

Figure 6.4: Computational results for Example 6.5.2.

slowly. On the other hand, the Rannacher time-marching scheme smoothen the solution

function, dampes the oscillations, and provides the expected rate of convergence at the

same computational cost.

6.5.3 Application to option pricing

So far in this section, we have discussed the performance and robustness of the scheme

numerically and validated the computed results by comparing with the theoretical findings.

Now, we explain the application of the present scheme in option pricing and validate the
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Figure 6.5: Error behavior in L2-norm for different schemes constructed for Example 6.5.2

Table 6.4: ENS ,Nτ

1 for the value of American put option given in Example 6.5.2

Number of collocation points
16 32 64 128 256

BE 1.15e− 03 5.58e− 04 2.73e− 04 1.35e− 04 6.71e− 05
1.0433 1.0314 1.0159 1.0086

CN 5.47e− 04 2.23e− 04 9.96e− 05 4.70e− 05 2.28e− 05
1.2945 1.1628 1.0835 1.0436

Rannacher 6.23e− 04 1.43e− 04 3.44e− 05 8.47e− 06 2.10e− 06
2.1232 2.0555 2.0220 2.0120

Table 6.5: Spatial error in different norms occur while determining the American put
option price for Example 6.5.2 at t = 0.25

Number of collocation points
16 32 64 128 256

ENS ,Nτ

1 1.10e− 05 7.17e− 07 4.53e− 08 2.84e− 09 1.77e− 10
3.9394 3.9844 3.9955 4.0041

ENS ,Nτ

2 2.59e− 06 1.57e− 07 9.20e− 09 5.46e− 10 3.29e− 11
4.0441 4.0930 4.0747 4.0527

ENS ,Nτ

3 1.48e− 03 1.16e− 04 9.55e− 06 8.10e− 07 7.01e− 08
3.6734 3.6025 3.5595 3.5304
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(a) BE (b) CN

(c) Rannacher

Figure 6.6: Values of delta computed using different time-marching schemes for Example
6.5.2.
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Table 6.6: Numerical results for American put option with parameters as in Example 6.5.2
and T = 1 year at various asset prices.

S = 6 S = 10 S = 16

Nτ NS Option price Delta Option price Delta Option price Delta
8 4 4.6362 −0.875 1.9793 −0.377 0.5973 −0.108
16 8 4.6909 −0.878 2.0461 −0.376 0.6481 −0.112
32 16 4.7184 −0.880 2.0784 −0.376 0.6729 −0.114
64 32 4.7323 −0.880 2.0945 −0.376 0.6851 −0.115
256 64 4.7392 −0.881 2.1025 −0.376 0.6912 −0.116

computations which are comparable with the results provided in [7, 14]. Figure 6.1(a)

illustrates the price of the American call option. It discloses that when S ≤ K, the call

option price is nearly 0 i.e., the option is no longer viable. Instead for S > K, it is rich

in cash with a strong likelihood of the option being exercised. For the convenience of

readers, American call option price and the values of delta Greek at various asset prices are

provided in Figure 6.3. This figure depicts the temporal effect and impact of moneyness on

the delta Greek. A remarkable fact is that all the values of delta are occupied in the interval

[0, 1]. Furthermore, the option’s delta reaches the limits of its spectrum for exceptionally

high and low underlying asset values, i.e., since the option’s intrinsic value is extremely

high as S approaches its limits, the value of call option’s delta reaches 1. While, for S

tending to 0, the option becomes worthless, and hence the delta Greek approaches zero.

Figure 6.4(a) unveils that the function of price of the American put option behaves

non-linearly. One can unwound from the graphical result that the put option holder faces

loss for S ≥ K. Although for S < K, it is deep in money, in such a situation, it is feasible

to exercise the option. To make it preferable for readers, American put option price and

the values of delta Greek at various asset prices are supplied in Figure 6.6. Computational

values of delta are depicted in Figure 6.6 for American put option. The figure unwounds

that for S ≥ K, the value option delta becomes negligible if we are sufficiently close

to the expiry. Additionally to manage a portfolio, delta neutrality can be maintained by

analyzing the behavior of the delta Greek. The algorithm can be used to compute all other
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Greeks at no additional cost. Moreover, it can be effortlessly applied to all other models

and payoff profiles. Empirically Figures 6.1, 6.3, 6.4, and 6.6, confirm the robustness of

the present orthogonal collocation spline based scheme. Moreover, from these figures, one

can observe the performance gained by the present method due to the use of Rannacher

scheme over the well known CN and BE finite difference schemes. Hence, the experiments

confirm that the present scheme can be used to explore various option pricing problems.

6.6 Concluding observations and future scope

In this chapter, we present the formulation, analysis, and implementation of a fourth-order

accurate orthogonal spline collocation strategy with a second-order time-marching scheme

for simulating the hedging parameters of the American option. Solving a problem with

irregular initial data using the CN scheme leads to spurious oscillations, hence, a particular

attention is paid to a more accurate scheme referred to as Rannacher time-marching

scheme. Mainly the present chapter emphasizes on the high accuracy of the present

scheme in the given computational cost. Along with solving linear complementarity

problems from finance, a practical advantage of the present scheme is that it can be applied

to various physical and chemical models with non-smooth data. In addition, it provides

high accuracy, and reduces the quantization error near the discontinuity. Moreover, for

the linear complementarity American option pricing problem under the Black-Scholes

framework, the super convergent behavior of the proposed spline scheme is provided. Also,

it has been observed that the proposed method with Rannacher time-marching scheme is

second and fourth order convergent in the temporal and spatial directions, respectively.

Furthermore, it is significant to conclude that the Rannacher scheme is stable and can be

effortlessly used to obtain the second-order convergence even with discontinuities in the

initial data. Numerical experiments (in the form of tables and graphs) are carried out for

call and put American option pricing problems to validate the performance and accuracy of

the present method. Comparative study of the present time-stepping method with different

finite difference schemes unveils that the given time-marching scheme is sufficient to
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restore the expected behavior. The present work can be used in the trading market to

minimize the risk and to manage the portfolios. Also, it is easy to implement and extend the

present scheme towards different non-smooth problems for future computational studies.
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A higher order novel numerical scheme

for variable order time-fractional option

pricing model

7.1 Introduction

A major issue in the financial market is the pricing or hedging of financial instruments

for investment. Options are amongst the popular financial instruments. The pricing of

option contracts has been a hot topic in recent decades because options are one of the most

important and widely traded financial products. Thus, in the recent few years, a lot of work

has been done to approximate the price of various options based on the Black-Scholes

model [138–140]. The standard Black-Scholes model, on the contrary, is based on a set of

harsh assumptions [141, 142]. On the other hand, these assumptions are vastly different

from the rules that govern the actual financial market. As a result, to obtain perfect pricing

outcomes, one must adequately relax the preconceptions of the Black-Scholes model.

Even though the Black-Scholes price is quite near to the observed prices, it nevertheless

contains well-known flaws such as being dependent on the assumption that with given
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constant volatility, the underlying asset moves in a geometric Brownian motion. However,

statistical findings illustrate that the distributional assumption of constant volatility does

not fit market data well enough [143]. Therefore, in this chapter, we consider the CEV

model [144] in which the volatility is determined as a function of the underlying asset’s

price.

The CEV model permits volatility to change in response to the underlying price, cap-

turing a fundamental regularity in empirical data that is important for option pricing. As a

result, when it comes to anticipating option prices, the CEV model beats the Black-Scholes

model [145–147]. In financial literature, various approximation methods techniques have

been used in pricing an option under the framework of the CEV model, see [148–151]. We

can also point out that the traditional Black-Scholes model and its enhancements are based

on the notion of constant risk-free interest rates and no dividends. These assumptions

often fail to account for real-world issues. As a result, we assume that the interest rate and

dividend yield are functions of time.

To this end, it’s worth mentioning that we consider the time derivative to be fractional

since the integer-order derivative base models would not capture some typical historical

features. On the other hand, fractional derivatives are quite flexible for characterizing the

behavior of differential equations and adding historical information due to their nonlocal

nature [152]. Fractional derivative is defined in a variety of ways. This chapter considers

the Atangana-Balenau derivative’s definition in Caputo’s sense since it has a non-singular

and nonlocal kernel. Due to the memory quality of the variable order differential and

integral operators, the mathematical systems simulated in engineering, quantum mechanics,

pharmacology, and economics are more sensitive and accurate [153, 154]. Thus, we

consider the order of the fractional derivative to be variable (space and time-dependent).

Refer to [155, 156] for some current numerical techniques for variable-order fractional

differential equations.
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7.2 Literature survey

In financial literature, recently, various techniques have been used to approximate the value

of various options using the fixed-order classical fractional Black-Scholes model since

analytical solutions are usually not easy to find. To cite a few, in context to the standard

Black-Scholes model, Zhang et al. [24] developed an implicit discrete strategy with order

2− α temporal precision and second-order spatial accuracy, where α is the order of the

fractional derivative. Later, Zhao and Tian [157] investigated the second-order implicit

finite difference scheme to solve the space fractional Black-Scholes equation. To explore

the higher-dimensional model, Chen and Wang [158] presented a second-order ADI finite

difference approach for a 2D fractional Black-Scholes equation deriving European two

asset option pricing. For a time-fractional Black-Scholes model, Golbabai and Nikan

[159] investigated a computational method based on the moving least-squares approach

for pricing double barrier options.

By employing the Jacobi polynomials for the temporal discretization and Fourier-like

basis functions for the spatial discretization, An et al. [160] proposed a method for the

Black-Scholes model with fractional order derivative in time. However, there has been

less research into simulating the behavior of fractional CEV model-based option pricing

problems. In the last few years, Zhou and Gao [25] utilized the Laplace transform and

finite difference method to price American options using the time-fractional Black-Scholes

equation under the CEV model. Under the CEV model, Rezaei et al. [161] presented

numerical pricing based on fractional Black-Scholes equation with time-dependent param-

eters for barrier options with Caputo’s definition of fractional derivative. Most of the work

described above is done with the Riemann-Liouville derivative or Caputo’s derivative, both

of which are quite old in fractional calculus. Thus, other fractional derivative formulations

must be investigated.
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7.3 Time-fractional constant elasticity of variance model

In this section, we specify the variable order time-fractional CEV model and its derivation.

The model assumes that under the risk neutral probability, the underlying asset S at time t

evolves according to the following stochastic differential equation introduced by Jumarie

[162]

dS(t) = (r −D)S(t)dt+ δSγ+1(t)W (t)(dt)
α(S,t)

2 , 0 < α(S, t) ≤ 1. (7.3.1)

The representations of the symbols used in the above model are given below:

α(S, t) : the fractional order depending upon S and t
r : the rate of interest
D : the dividend yield
γ : the elasticity factor
δ : the scaling parameter

W (t) : the Gaussian white noise with mathematical expectation 0 and variance 1
σ(S) : the local volatility function which for γ < 0 is defined as σ(S) = δSγ

To derive the time-fractional CEV model, let the option price P is sufficiently smooth

with respect to both S and t. More precisely, it is twice differentiable in S and the α-order

fractional derivative in t exists. Therefore, according to [162], using fractional Taylor’s

expansion for multivariate functions, we get

dP =
1

Γ(1 + α(S, t))
∂α(S,t)P

∂tα(S,t)
(dt)α(S,t) +

∂P

∂S
dS +

1

2

∂2P

∂S2
(dS)2. (7.3.2)

Using the definition of mathematical expectation and following the details in [163], we

obtain

(dS)2 =(r −D)2S2(t)(dt)2 + (r −D)δSγ+2(t)W (t)(dt)1+
α(S,t)

2

+ δ2S2γ+2(t)W 2(t)(dt)α(S,t)

=δ2S2γ+2(t)(dt)α(S,t). (7.3.3)
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Replacing Equations (7.3.1) and (7.3.3) in Equation (7.3.2) yields

dP =
1

Γ(1 + α(S, t))
∂α(S,t)P

∂tα(S,t)
(dt)α(S,t) + (r −D)S ∂P

∂S
dt+

1

2
δ2S2γ+2∂

2P

∂S2
(dt)α(S,t)

+ δSγ+1W (t)
∂P

∂S
(dt)

α(S,t)
2 . (7.3.4)

Now on substituting (dt)α(S,t) = Γ(1 + α(S, t))Γ(2− α(S, t))tα(S,t)−1dt, we get

dP =

(
Γ(2− α(S, t))tα(S,t)−1∂

α(S,t)P

∂tα(S,t)
+ (r −D)S ∂P

∂S

+
Γ(1 + α(S, t))Γ(2− α(S, t))

2
δ2S2γ+2tα(S,t)−1∂

2P

∂S2

)
dt+ δSγ+1W (t)

∂P

∂S
(dt)

α(S,t)
2 .

(7.3.5)

Assuming arbitrage free market with a riskfree hedging portfolio and following [161], we

get the following fractional differential equation for S varying from Smin to Smax and t

lying in [0, T ) with T being the expiry time

∂α(S,t)P

∂tα(S,t)
+ δ2S2γ+2Γ(1 + α(S, t))

2

∂2P

∂S2
+ (r(t)−D(t))S t1−α(S,t)

Γ(2− α(S, t))
∂P

∂S

− r(t)
t1−α(S,t)

Γ(2− α(S, t))
P = f̃(S, t), (7.3.6a)

where we consider the interest rate and dividend to be time-dependent, since the charac-

teristics of an asset price are time-dependent. In addition, the equation which implicitly

defines the optimal exercise boundary is as follows

P (S, T ) = ϕ(S), Smin ≤ S ≤ Smax, (7.3.6b)

and the option’s behavior at the boundaries of S is defined as

P (Smin, t) = ν(t), 0 ≤ t ≤ T, (7.3.6c)

P (Smax, t) = µ(t), 0 ≤ t ≤ T. (7.3.6d)
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To describe the negative relation between the asset price and its return volatility, a similar

model was also derived in [161] using Jumarie’s fractional model of 2008. The numerical

algorithm is implemented by converting the final value problem to an initial value problem

using the transformation t = T − t. As a result, the problem (7.3.6) is transformed into

∂α(S,t)P

∂tα(S,t)
= δ2S2γ+2Γ(1 + α(S, t))

2

∂2P

∂S2
+ (r(t)−D(t))S t1−α(S,t)

Γ(2− α(S, t))
∂P

∂S

− r(t)
t1−α(S,t)

Γ(2− α(S, t))
P + f(S, t). (7.3.7a)

The terminal condition is now converted into initial condition written as

P (S, 0) = ϕ(S), Smin ≤ S ≤ Smax, (7.3.7b)

and the option’s behavior at the boundaries of S is reformulated as

P (Smin, t) = ν(t), 0 ≤ t ≤ T, (7.3.7c)

P (Smax, t) = µ(t), 0 ≤ t ≤ T. (7.3.7d)

7.4 Fractional operators
This section contains some fundamental definitions of variable-order fractional calculus.

Further material on the subject can be found in [23, 164].

Definition 7.4.1. The variable order Reimann-Liouville fractional derivative with order

α(S, t) ∈ R of a function g is defined as

0D
α(S,t)
t g(t) =

1

Γ(r − α(S, t))
dr

dtr

∫ t

0

(t− s)r−α(S,t)−1g(s) ds, t > 0, (7.4.1)

where r is a positive integer and r − 1 < α(S, t) < r.

The Riemann-Liouville derivative has some drawbacks when using fractional differen-

tial equations to simulate real-world processes [23]. These drawbacks limit the scope of
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the Riemann-Liouville fractional derivative’s application.

Definition 7.4.2. Caputo variable order derivative operator with order α(S, t) ∈ R is

defined as

C
0D

α(S,t)
t g(t) =

1

Γ(r − α(S, t))

∫ t

0

(t− s)r−α(S,t)−1g(r)(s) ds, t > 0, (7.4.2)

where r is a positive integer and r − 1 < α(S, t) < r.

One of the critical features of the Caputo fractional derivative is that it permits for the

inclusion of classical initial and boundary conditions in the problem formulation. This

operator, however, has some restrictions due to its singular kernel. It is taken into account

in Atangana and Baleanu’s definition given below.

Definition 7.4.3. Atangana-Baleanu Caputo variable order derivative operator with order

α(S, t) ∈ [0, 1] of a function g ∈ H1(0, 1) is defined as

ABC
0D

α(S,t)
t g(t) =

N (α(S, t))
1− α(S, t)

∫ t

0

g′(s)Eα(S,t),1

[
−α(S, t)
1− α(S, t)

(t− s)α(S,t)
]
ds, (7.4.3)

where N (α(S, t)) is termed as normalization function obeying N (0) = N (1) = 1, and

Eα(S,t),β(z) =
∞∑
r=0

zr

Γ(α(S, t)r + β)
, (7.4.4)

is the Mittag-Leffler function.

7.5 Discretization techniques
To derive the discretized form of the problem (7.3.7), assume that h and τ are the mesh

sizes in the spatial and temporal directions, respectively. Let Smin = S0 < S1 < S2 <

. . . < SNS = Smax, Si = ih, i = 0, 1, 2, . . . , NS , where h = Smax−Smin

NS
and 0 = t0 < t1 <

t2 < . . . < tNt = T , tn = nτ , n = 0, 1, 2, . . . , Nt, where τ = T/Nt. We describe the

numerical approximation of ABC derivative by two different methods.
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7.5.1 Time discretization

We use Taylor’s expansion of the derivative of a function g(t) in this method to attain the

higher level of convergence. Expand g′(t) using the Taylor’s expansion around tq for t

∈ (tq, tq+1) to get

g′(t) = g′(tq) + (t− tq)g
′′(tq) + (t− tq)

2 g
(3)(tq)

2!
+O( (t− tq)

3). (7.5.1)

Now using

g′(tq) =
g(tq+1)− g(tq−1)

2τ
− g(3)(tq)

3!
τ 2 +O(τ 4),

g′′(tq) =
g(tq+1)− 2g(tq) + g(tq−1)

τ 2
− g(4)(tq)

12
τ 2 +O(τ 4),

in the Equation (7.5.1), we get

g′(t) =
g(tq+1)− g(tq−1)

2τ
+ (t− tq)

g(tq+1)− 2g(tq) + g(tq−1)

τ 2
− g(3)(tq)

3!
τ 2 − g(4)(tq)

12
τ 2

+ (t− tq)
2 g

(3)(tq)

2!
+O((t− tq)

3), t ∈ (tq, tq+1).

Therefore,

ABC
0D

α
t g(t)|t=tn =

N (α)

1− α

∫ tn

0

g′(s)Eα,1

[
−α
1− α

(tn − s)α
]
ds

=
N (α)

1− α

n−1∑
q=0

∫ tq+1

tq

g′(s)Eα,1

[
−α
1− α

(tn − s)α
]
ds

=
N (α)

1− α

n−1∑
q=0

∫ tq+1

tq

{
g(tq+1)− g(tq−1)

2τ
+
g(tq+1)− 2g(tq) + g(tq−1)

τ 2
(s− tq)

}
Eα,1

[
−α
1− α

(tn − s)α
]
ds+Rn

=
N (α)

1− α

n−1∑
q=0

{ (
g(tq+1)− g(tq−1)

2τ

)[
− (tn − s)Eα,2

[
−α
1− α

(tn − s)α
] ]tq+1

tq
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+

(
g(tq+1)− 2g(tq) + g(tq−1)

τ 2

)[ {
− (s− tq)(tn − s)Eα,2

[
−α
1− α

(tn − s)α
] }tq+1

tq

+

∫ tq+1

tq

(tn − s)Eα,2

[
−α
1− α

(tn − s)α
]
ds

] }
+Rn

=
N (α)

1− α

n−1∑
q=0

{ (
g(tq+1)− g(tq−1)

2

)[
(n− q) 1E

n
q − (n− q − 1) 1E

n
q+1

]
+

(
g(tq+1)− 2g(tq) + g(tq−1)

)[
− (n− q − 1) 1E

n
q+1 − (n− q − 1)2 2E

n
q+1

+ (n− q)2 2E
n
q

] }
+Rn

=
n−1∑
q=0

[(
g(tq+1)− g(tq−1)

)
An

q +

(
g(tq+1)− 2g(tq) + g(tq−1)

)
Bn

q

]
+Rn.

On simplifying, finally we have

ABC
0D

α
t g(t)|t=tn =

n−1∑
q=0

[
g(tq−1)a

n
q + g(tq)b

n
q + g(tq+1)c

n
q

]
+Rn, (7.5.2)

where i−1E
n
q is used for Eα,i

[ −α
1−α

(tn − tq)
α
]
, i = 2, 3, . . ., and

An
q =

1

2

N (α)

1− α
[(n− q) 1E

n
q − (n− q − 1) 1E

n
q+1],

Bn
q =

N (α)

1− α
[−(n− q − 1) 1E

n
q+1 − (n− q − 1)2 2E

n
q+1 + (n− q)2 2E

n
q ],

anq = −An
q +Bn

q , b
n
q = −2Bn

q , c
n
q = An

q +Bn
q .

Furthermore, the error Rn in this approximation is given as follows:

Rn =
N (α)

1− α

n−1∑
q=0

∫ tq+1

tq

(
− g(3)(tq)

3!
τ 2 +

g(3)(tq)

2!
(s− tq)

2 − g(4)(tq)

12
τ 2
)

× Eα,1

[
−α
1− α

(tn − s)α
]
ds

=
N (α)

1− α

n−1∑
q=0

[
− g(3)(tq)

3!
τ 2
∫ tq+1

tq

Eα,1

[
−α
1− α

(tn − s)α
]
ds+

g(3)(tq)

2!

∫ tq+1

tq

(s− tq)
2
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× Eα,1

[
−α
1− α

(tn − s)α
]
ds− g(4)(tq)

12
τ 2
∫ tq+1

tq

Eα,1

[
−α
1− α

(tn − s)α
]
ds

]
=

N (α)

1− α

n−1∑
q=0

[
g(3)(tq)

3!
τ 2
{
(tn − s)Eα,2

[
−α
1− α

(tn − s)α
] }tq+1

tq

− g(3)(tq)

2!

{
(s− tq)

2(tn − s)Eα,2

[
−α
1− α

(tn − s)α
] }tq+1

tq

+
g(3)(tq)

2!

{
− 2(s− tq)(tn − s)2Eα,3

[
−α
1− α

(tn − s)α
] }tq+1

tq

− g(3)(tq)

2!

{
2(tn − s)3Eα,4

[
−α
1− α

(tn − s)α
] }tq+1

tq

− g(4)(tq)

12
τ 2
{
− (tn − s)Eα,2

[
−α
1− α

(tn − s)α
] }tq+1

tq

]

=
N (α)

1− α

n−1∑
q=0

[
g(3)(tq)

3!
τ 2
{
(tn − tq+1) 1E

n
q+1 − (tn − tq) 1E

n
q

}
− g(3)(tq)

2!
τ 2
{
(tn − tq+1) 1E

n
q+1

}
− g(3)(tq)

2!
2τ(tn − tq+1)

2
2E

n
q+1 −

g(3)(tq)

2!

{
2(tn − tq+1)

3
3E

n
q+1

}
+
g(3)(tq)

2!

{
2(tn − tq)

3
3E

n
q

}
+
g(4)(tq)

12
τ 2
{
(tn − tq+1) 1E

n
q+1 − (tn − tq) 1E

n
q

} ]
.

Let M1 = max
0≤t≤tn−1

|g(3)(t)|, M2 = max
0≤t≤tn−1

|g(4)(t)|, and M = max{M1,M2}. Then

|Rn| ≤
N (α)

1− α
τ 3MC2, (7.5.3)

for some constant C2.

7.5.2 Spatial discretization

Now, the space derivatives of first and second order are approximated as

∂P

∂S
=
P n
i+1 − P n

i−1

2h
+O(h2), (7.5.4)
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∂2P

∂S2
=
P n
i−1 − 2P n

i + P n
i+1

h2
+O(h2), (7.5.5)

where P n
i = P (Si, tn), for 1 ≤ i ≤ NS − 1 and 1 ≤ n ≤ Nt.

7.5.3 Fully discrete scheme

For the deriving the fully discrete scheme for problem (7.3.7), let

K1(Si, tn) = δ2(Si)
2γ+2Γ(1 + α(Si, tn))

2
,

K2(Si, tn) = (r(tn)−D(tn))Si
(tn)

1−α(Si,tn)

Γ(2− α(Si, tn))
,

K3(Si, tn) = r(tn)
(tn)

1−α(Si,tn)

Γ(2− α(Si, tn))
,

and substitute the values obtained from Equations (7.5.2), (7.5.4), and (7.5.5) in Equa-

tion (7.3.7), the following difference scheme is obtained for the given fractional partial

differential equation which yields accuracy of order O(τ 3 + h2)

n−1∑
q=0

[
anqP

q−1
i + bnqP

q
i + cnqP

q+1
i

]
= K1(Si, tn)

(
P n
i−1 − 2P n

i + P n
i+1

h2

)
+K2(Si, tn)

(
P n
i+1 − P n

i−1

2h

)
−K3(Si, tn)P

n
i + f(Si, tn),

where 1 ≤ i ≤ NS − 1, 1 ≤ n ≤ Nt, and the terminal and boundary conditions are

discretized as

P (Si, 0) = ϕ(Si), 1 ≤ i ≤ NS − 1,

P (Smin, tn) = ν(tn), 0 ≤ n ≤ Nt,

P (Smax, tn) = µ(tn), 0 ≤ n ≤ Nt.

On rearranging the above system, for 1 ≤ i ≤ NS − 1, 1 ≤ n ≤ Nt, we obtain

(
− K1(Si, tn)

h2
+
K2(Si, tn)

2h

)
P n
i−1 +

(
2K1(Si, tn)

h2
+K3(Si, tn)

)
P n
i
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+

(
− K1(Si, tn)

h2
− K2(Si, tn)

2h

)
P n
i+1 +

n−1∑
q=0

[
anqP

q−1
i + bnqP

q
i + cnqP

q+1
i

]
= f(Si, tn),

(7.5.6a)

with

P (Si, 0) = ϕ(Si), 1 ≤ i ≤ NS − 1, (7.5.6b)

P (Smin, tn) = ν(tn), 0 ≤ n ≤ Nt, (7.5.6c)

P (Smax, tn) = µ(tn), 0 ≤ n ≤ Nt. (7.5.6d)

For n = 1, it gives

(
− K1(Si, t1)

h2
+
K2(Si, t1)

2h

)
P 1
i−1 +

(
2K1(Si, t1)

h2
+K3(Si, t1) + c10

)
P 1
i

+

(
− K1(Si, t1)

h2
− K2(Si, t1)

2h

)
P 1
i+1 = −(a10 + b10)P

0
i + f(Si, t1),

For n = 2, it gives

(
− K1(Si, t2)

h2
+
K2(Si, t2)

2h

)
P 2
i−1 +

(
2K1(Si, t2)

h2
+K3(Si, t2) + c21

)
P 2
i

+

(
− K1(Si, t2)

h2
− K2(Si, t2)

2h

)
P 2
i+1 = −(a20 + b20 + a21)P

0
i − (c20 + b21)P

1
i + f(Si, t2),

while for 3 ≤ n ≤ Nt, we get

(
− K1(Si, tn)

h2
+
K2(Si, tn)

2h

)
P n
i−1 +

(
2K1(Si, tn)

h2
+K3(Si, tn) + cnn−1

)
P n
i

+

(
− K1(Si, tn)

h2
− K2(Si, tn)

2h

)
P n
i+1 = −

n−2∑
q=1

[
anqP

q−1
i + bnqP

q
i + cnqP

q+1
i

]
− ann−1P

n−2
i

− bnn−1P
n−1
i − (an0 + bn0 )P

0
i − cn0P

1
i + f(Si, tn). (7.5.7)

187



Chapter 7

Assuming

ãi,n = −K1(Si, tn)

h2
+
K2(Si, tn)

2h
,

b̃i,n =
2K1(Si, tn)

h2
+K3(Si, tn) + cnn−1,

c̃i,n = −K1(Si, tn)

h2
− K2(Si, tn)

2h
,

the matrix form of the above system of equations can be written as

LnP n = Hn +Gn + F n,

where

Ln =


b̃1,n c̃1,n 0 . . . 0

ã2,n b̃2,n c̃2,n . . . 0
...

... . . . ...
...

0 0 . . . ãNS−1,n b̃NS−1,n


(NS−1)×(NS−1)

,

P n = [P n
1 , P

n
2 , P

n
3 , . . . , P

n
NS−1]

T ,

Gn = [ã1,nP
n
0 , 0, . . . , 0, c̃NS−1,nP

n
NS

]T ,

F n = [fn
1 , f

n
2 , f

n
3 , . . . , f

n
NS−1]

T ,

Hn =



−(a10 + b10)P
0, n = 1,

−(a20 + b20 + a21)P
0
i − (c20 + b21)P

1
i , n = 2,

−
∑n−2

q=1

[
anqP

q−1 + bnqP
q + cnqP

q+1
]

−ann−1P
n−2 − bnn−1P

n−1 − (an0 + bn0 )P
0 − cn0P

1, 3 ≤ n ≤ Nt.

7.6 Stability analysis

In this section, we will prove that the proposed scheme is unconditionally stable. For that

purpose, it is enough to prove the stability of the scheme (7.5.6) without the source term
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f(S, t). Moreover, in the stability theorem, we use the following notations:

(P n
i )S =

P n
i+1 − P n

i−1

2h
,

(P n
i )SS =

P n
i−1 − 2P n

i + P n
i+1

h2
.

Theorem 7.6.1. Let P 0 ∈ H2
0 [Smin,Smax], then there exist a positive constant C such that

the solution of the finite difference scheme (7.5.6) satisfies ∥P n∥ ≤ C, n = 1, 2, . . . , Nt.

Proof. Consider the numerical scheme

n−1∑
q=0

[
anqP

q−1
i + bnqP

q
i + c

n
qP

q+1
i

]
= K1(Si, tn)(P

n
i )SS +K2(Si, tn)(P

n
i )S −K3(Si, tn)P

n
i ,

(7.6.1)

where 1 ≤ i ≤ NS − 1, 1 ≤ n ≤ Nt, with P (Smin, tn) = ν(tn) andP (Smax, tn) = µ(tn).

Rewrite Equation (7.6.1) as

an0P
−1
i +bn0P

0
i + cn0P

1
i +

n−1∑
q=1

[
anqP

q−1
i + bnqP

q
i + cnqP

q+1
i

]
= K1(Si, tn)(P

n
i )SS

+K2(Si, tn)(P
n
i )S −K3(Si, tn)P

n
i .

Now considering P−1
i = P 0

i , the above equation can be written as

(an0 + bn0 )P
0
i + cn0P

1
i +

n−1∑
q=1

[
anqP

q−1
i + bnqP

q
i + cnqP

q+1
i

]
−K2(Si, tn)(P

n
i )S +K3(Si, tn)P

n
i = K1(Si, tn)(P

n
i )SS .

(7.6.2)

Multiplying (7.6.2) by hP n
i and summing up for i from 1 to NS − 1, we get

(an0 + bn0 )(P
0
i , P

n
i ) + cn0 (P

1
i , P

n
i ) +

n−1∑
q=1

[
anq (P

q−1
i , P n

i ) + bnq (P
q
i , P

n
i ) + cnq (P

q+1
i , P n

i )
]
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− hK2(Si, tn)

NS−1∑
i=1

P n
i+1 − P n

i−1

2h
P n
i +K3(Si, tn)∥P n

i ∥2

= K1(Si, tn)((P
n
i )SS , P

n
i ), (7.6.3)

where (P q
i , P

n
i ) = h

∑NS−1
i=1 P q

i P
n
i and ∥P n

i ∥2 = (P n
i , P

n
i ). Now using the expression

−hK2(Si, tn)

NS−1∑
i=1

P n
i+1 − P n

i−1

2h
P n
i =

−K2(Si, tn)

2

NS−1∑
i=1

(P n
i+1 − P n

i−1)P
n
i

=
−K2

2
(P n

2 P
n
1 − P n

1 P
n
0 + P n

3 P
n
2 − P n

2 P
n
1 + . . .+ P n

NS−1
P n
NS−2

− P n
NS−2

P n
NS−3

+ P n
NS
P n
NS−1

− P n
NS−2

P n
NS−1

),

the Equation (7.6.3) can be written as

(an0 + bn0 )(P
0
i , P

n
i ) + cn0 (P

1
i , P

n
i ) +

n−1∑
q=1

[
anq (P

q−1
i , P n

i ) + bnq (P
q
i , P

n
i ) + cnq (P

q+1
i , P n

i )
]

+
K2

2
(P n

1 P
n
0 − P n

NS
P n
NS−1

) +K3(Si, tn)∥P n
i ∥2 = K1(Si, tn)((P

n
i )SS , P

n
i ).

(7.6.4)

Note that ((P n
i )SS , P

n
i ) = −((P n

i )S , (P
n
i )S) = −∥(P n

i )S∥2. Thus, we have from (7.6.4)

(an0 + bn0 )(P
0
i , P

n
i ) + cn0 (P

1
i , P

n
i ) +

n−1∑
q=1

[
anq (P

q−1
i , P n

i ) + bnq (P
q
i , P

n
i ) + cnq (P

q+1
i , P n

i )
]

+
K2

2
(P n

1 P
n
0 − P n

NS
P n
NS−1

) +K3(Si, tn)∥P n
i ∥2 = −K1(Si, tn)∥(P n

i )S∥2.

Rearranging the terms in the above expression, provides

cnn−1∥P n
i ∥2 +K1(Si, tn)∥(P n

i )S∥2 +K3(Si, tn)∥P n
i ∥2 = −

n−2∑
q=1

[
anq (P

q−1
i , P n

i )

+ bnq (P
q
i , P

n
i ) + cnq (P

q+1
i , P n

i )
]
− (an0 + bn0 )(P

0
i , P

n
i )− cn0 (P

1
i , P

n
i )− ann−1(P

n−2
i , P n

i )

− bnn−1(P
n−1
i , P n

i )−
K2

2
(P n

1 P
n
0 − P n

NS
P n
NS−1

).
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Now, by using the Young’s inequality for inner product, we obtain

cnn−1∥P n
i ∥2 +K1(Si, tn)∥(P n

i )S∥2 +K3(Si, tn)∥P n
i ∥2 ≤

1

2

{
−

n−2∑
q=1

[
anq (∥P

q−1
i ∥2 + ∥P n

i ∥2)

+ bnq (∥P
q
i ∥2 + ∥P n

i ∥2) + cnq (∥P
q+1
i ∥2 + ∥P n

i ∥2)
]
− (an0 + bn0 )(∥P 0

i ∥2 + ∥P n
i ∥2)

− cn0 (∥P 1
i ∥2 + ∥P n

i ∥2)− ann−1(∥P n−2
i ∥2 + ∥P n

i ∥2)− bnn−1(∥P n−1
i ∥2 + ∥P n

i ∥2)
}

− K2

2
(∥P n

1 ∥2 + ∥P n
0 ∥2) +

K2

2
(∥P n

NS
+ ∥2∥P n

NS−1
∥2).

Using the results anq + bnq + cnq = 0 and ann−1 + bnn−1 = −cnn−1, the above inequality gives

1

2
cnn−1∥P n

i ∥2 +K1(Si, tn)∥(P n
i )S∥2 +K3(Si, tn)∥P n

i ∥2 ≤
1

2

{
−

n−2∑
q=1

[
anq ∥P

q−1
i ∥2 + bnq ∥P

q
i ∥2

+ cnq ∥P
q+1
i ∥2

]
− ann−1∥P n−2

i ∥2 − bnn−1∥P n−1
i ∥2 − K2

2
(∥P n

1 ∥2 + ∥P n
0 ∥2)

+
K2

2
(∥P n

NS
∥2 + ∥P n

NS−1
∥2)
}
.

Since ∥P 1
i ∥2 ≤ ∥P 0

i ∥2, so let ∥P q
i ∥2 ≤ ∥P 0

i ∥2 holds for q < n, then the above inequality

on using the boundary conditions yields

1

2
cnn−1∥P n

i ∥2 +K1(Si, tn)∥(P n
i )S∥2 +K3(Si, tn)∥P n

i ∥2 ≤− 1

2

n−1∑
q=1

[
anq + bnq + cnq

]
∥P 0

i ∥2

− 1

2
(ann−1 + bnn−1)∥P 0

i ∥2.

Again using anq + bnq + cnq = 0 and ann−1 + bnn−1 = −cnn−1, we get

1

2
cnn−1∥P n

i ∥2 +K1(Si, tn)∥(P n
i )S∥2 +K3(Si, tn)∥P n

i ∥2 ≤
1

2
cnn−1∥P 0

i ∥2,

or

cnn−1∥P n
i ∥2 ≤ cnn−1∥P 0

i ∥2, as K1, K3 ≥ 0.
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Hence,

∥P n
i ∥2 ≤ ∥P 0

i ∥2, as cnn−1 > 0.

Thus, by mathematical induction, we say ∥P q
i ∥2 ≤ ∥P 0

i ∥2 for all q = 1, 2, 3, . . . , n.

Therefore, there exists a constant C such that

∥P n∥ ≤ C, n = 1, 2, . . . , Nt.

Using the above theorem and the definition of stability given below, we have shown

that the present scheme is unconditionally stable.

Definition 7.6.1. Let P n and P̃ n be two distinct approximate solutions for (7.3.7), and

P0(S) and P̃0(S) are the corresponding initial conditions, then there exist a constant λ

such that the numerical scheme is stable i.e.,

∥P n − P̃ n∥ ≤ λ∥P0 − P̃0∥.

7.7 Examples and applications

In this section, the proposed scheme is demonstrated on two test problems with varying

parameters present in the CEV model. Through, the numerically computed results pre-

sented in the form of tables and graphs, we prove that the present scheme is proficient

and robust to compute the numerical solution of various time-fractional partial differen-

tial equations, in particular for option pricing problems. Furthermore, the theoretically

established findings are validated by these computationally extracted results, effectively

proving the accuracy of the scheme developed in this study. For error analysis, the formula

used to evaluate the difference between the exact and approximate solutions is expressed
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as

ErrorNS ,Nt = ∥exact − approx∥ = max
0≤n≤Nt

√√√√ NS∑
i=0

|exact(Si, tn)− approx(Si, tn)|2,

and to show the high precision achieved by the numerical scheme we compute its order of

convergence using the formula

ln(ErrorNS ,Nt/Error2NS ,2Nt)

ln 2
,

where “exact” denotes the exact solution and “approx” represents the approximate solution

to the problem (7.3.6). In both examples, the Atangana-Baleanu Caputo derivative variable

orders are chosen arbitrarily. The spatial and temporal errors occur while computing the

solution of Example 7.7.1 are listed in Tables 7.1 and 7.2 at different values of α(S, t).

Based on these tables, we observe that the numerical order of convergence for the present

scheme is two and three in the spatial and temporal directions, respectively. In Table 7.1,

we have also computed the CPU-time taken to evaluate the solution function for different

values of α(S, t). The lesser values of CPU-time are sufficient to prove that the method is

fast and computationally efficient since the present scheme is explicit. Using the surface

plot and the line plot in Figures 7.1 and 7.2 respectively, we can investigate the behavior of

the numerical solution of Example 7.7.1. Through Figure 7.3 we examine the accuracy of

the present method by plotting the exact and numerical solution together. The overlapping

of the approximation points on the exact solution line shows that both the solutions are

almost identical.

Example 7.7.1. Consider the Equation (7.3.6) for r(t) = 0.1 + 0.05e−t, D(t) = 0.03 +

0.001e0.01t, Smin = 0, Smax = 1, T = 1, δ = 1 and γ = −0.1 subject to the terminal

condition P (S, T ) = S(S − 1)eS and the boundary conditions given by P (Smin, t) =

P (Smax, t) = 0.

Example 7.7.2. Consider the Equation (7.3.6) for r(t) = 0.2 + 0.3t2, D(t) = 0.01 + 0.3t,
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Table 7.1: Errors, orders of convergence, and CPU time (in seconds) for Example 7.7.1
with NS = Nt

NS
8 16 32 64 128

α = 2+cos(S)t
4

1.95e− 02 4.34e− 03 1.14e− 03 3.24e− 04 8.94e− 05
2.1677 1.9287 1.8150 1.8576

CPU-time 0.1071s 0.1287s 0.1909s 0.6757s 1.2638s

α = 1+sin(S)t
2

1.86e− 02 4.56e− 03 9.05e− 04 2.07e− 04 5.56e− 05
2.0282 2.3330 2.1283 1.8965

CPU-time 0.1081s 0.1280s 0.2001s 0.6817s 1.1563s

Table 7.2: Errors and orders of convergence for Example 7.7.1 with NS = 1000

Nt

S 8 16 32 64 128
0.25 1.28e− 03 1.79e− 04 2.36e− 05 3.03e− 06 3.93e− 07

2.8381 2.9231 2.9614 2.9467

α = 2+cos(S)t
4

0.5 2.07e− 03 2.91e− 04 3.84e− 05 4.96e− 06 6.33e− 07
2.8305 2.9218 2.9527 2.9701

0.75 1.93e− 03 2.72e− 04 3.61e− 05 4.72e− 06 6.11e− 07
2.8269 2.9135 2.9351 2.9495

0.25 7.74e− 04 1.09e− 04 1.45e− 05 1.89e− 06 2.42e− 07
2.8280 2.9102 2.9396 2.9653

α = 1+sin(S)t
2

0.5 1.98e− 03 2.77e− 04 3.65e− 05 4.72e− 06 6.01e− 07
2.8375 2.9239 2.9510 2.9733

0.75 3.07e− 03 4.26e− 04 5.58e− 05 7.19e− 06 9.18e− 07
2.8493 2.9325 2.9562 2.9694
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Figure 7.1: Numerical approximation of option price for Example 7.7.1
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Figure 7.2: Numerical solution at different values of t for Example 7.7.1
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Figure 7.3: Comparing the exact and numerical solution of Example 7.7.1 at t = 0.5

Smin = 0, Smax = 1, T = 1, δ = 1 and γ = −0.2 subject to the terminal condition

P (S, T ) = sin(πS) and the boundary conditions given by P (Smin, t) = P (Smax, t) = 0.

Tables 7.3 and 7.4 contain the error occur while computing the solution of Example

7.7.2. From Table 7.3, one can observe that the order of convergence for the proposed

method is two in the spatial direction, as the magnitude of the error decreases by one-

fourth with the increasing number of collocation points by double. Similar to the previous

example, the CPU time is shortened here, strengthening the claim that the current approach

is easy to implement with less complexity. From the results presented in Table 7.4, we

claim that the present scheme is accurate of O(τ 3) which is better than several existing

methods having O(τ 2) as their order of convergence. Figure 7.4 represents the price of

the option with the changing stock prices and time to maturity. In Figure 7.5, the price of

an option at different time levels is presented. Using Figure 7.6, a significant observation

is that the numerical solution is in good agreement with the exact solution. To draw all

figures, we have used NS = Nt = 64.
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Table 7.3: Errors, orders of convergence, and CPU time (in seconds) for Example 7.7.2
with NS = Nt

NS
8 16 32 64 128

α = 2+cos(S)t
4

1.06e− 02 2.98e− 03 9.09e− 04 2.72e− 04 7.18e− 05
1.8307 1.7130 1.7407 1.9216

CPU-time 0.1252s 0.2148s 0.6766s 0.9667s 2.3478s

α = 1+sin(S)t
2

6.60e− 03 1.72e− 03 4.45e− 04 1.15e− 04 3.21e− 05
1.9401 1.9505 1.9522 1.8410

CPU-time 0.1407s 0.1903s 0.6730s 1.5159s 2.7575s

Table 7.4: Errors and orders of convergence for Example 7.7.2 with NS = 1000

Nt

S 8 16 32 64 128
0.25 4.51e− 03 6.31e− 04 8.32e− 05 1.08e− 05 1.30e− 06

2.8374 2.9230 2.9456 3.0544

α = 2+cos(S)t
4

0.5 6.50e− 03 9.10e− 04 1.20e− 04 1.55e− 05 2.01e− 06
2.8365 2.9228 2.9527 2.9470

0.75 5.03e− 03 7.08e− 04 9.34e− 05 1.19e− 05 1.49e− 06
2.8287 2.9223 2.9725 2.9976

0.25 2.80e− 03 3.96e− 04 5.29e− 05 6.98e− 06 9.01e− 07
2.8219 2.9042 2.9220 2.9536

α = 1+sin(S)t
2

0.5 5.86e− 03 8.20e− 04 1.08e− 04 1.40e− 05 1.79e− 06
2.8372 2.9246 2.9475 2.9674

0.75 6.86e− 03 9.52e− 04 1.25e− 04 1.58e− 05 2.00e− 06
2.8492 2.9290 2.9839 2.9819
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Figure 7.4: Numerical approximation of option price for Example 7.7.2
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Figure 7.5: Numerical solution at different values of t for Example 7.7.2
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Figure 7.6: Comparing the exact and numerical solution of Example 7.7.2 at t = 0.5

7.8 Concluding remarks and future scopes
This chapter presents a novel numerical scheme with faster calculation speed and lower

storage for a variable order time-fractional option pricing problem under the CEV model.

The proposed method is proven to be third-order convergent in time and second-order

in space through rigorous analysis. Also, it has been shown that the numerical method

is unconditionally stable. Numerous simulations presented in the previous section have

validated the reliability and accuracy of the anticipated method. The proposed method’s

order of convergence and stability are numerically examined. The numerical results

disclosed that the present scheme overcomes classical numerical schemes’ low temporal

convergence rate with time-fractional derivative. We will use the suggested approach to

solve other time-fractional variable-order applications in mathematical finance in future

research.
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Conclusions

8.1 Summary

This thesis includes a number of unique and efficient numerical approaches for calculating

the price and Greeks of various options. It commences with a description of the conceptual

and mathematical background of option pricing problems in Chapter 1. The objective

of this thesis is to design robust numerical approaches to overcome the challenges of

numerically solving option pricing problems. The majority of these issues are discussed in

the first chapter.

In Chapter 2, we have presented the two-dimensional Haar wavelet method to approxi-

mate the price and Greeks of European call and put options. To explore these financially

relevant problems systematically, we reformulate the final value problem into a less clut-

tered dimensionless initial value problem. To avoid unacceptable large truncation error

the actual infinite domain is trimmed into the finite domain by constructing artificial

boundaries. To solve the transformed PDE the detailed description and implementation

based on the wavelet approximation has been provided. Through rigorous analysis it has

been proved that the present wavelet scheme is convergent in the L2 norm. It is worthy to

note from the numerical simulation and discussion part that the proposed Haar wavelet
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approach effectively approximate both the Greeks and the solution even if they are not

fully smooth in nature. This numerical technique achieves a good compromise between

pricing precision and computational effort.

Later in Chapter 3, we looked at a more difficult problem known as the American style

choice, which is more difficult than European style options. Due to the possibility of early

exercise, American style option pricing problems are moving boundary value problems.

Such options under the Black-Scholes framework result in a linear complementarity

problem. The payoff function and the Greeks, like the European option, are non-smooth

in nature, thus we employed the Haar functions to approximate the spiking functions for

better results because to their discontinuous behaviour. Here also, first we reformulate the

final value problem into a less cluttered dimensionless starting value problem to study these

financially important concerns in a methodical manner. Through numerical investigation

the influence of various parameters on the moneyness of the option has been explained.

The suggested Haar wavelet approach is effective and straightforward to implement for

assessing the different physical and numerical features of the options’ Greeks, and it

explicitly gives the numerical approximation of all the derivatives of the solution function.

Moving on to Chapter 4, we come to the more complex options than the European and

American vanilla options known as the exotic options. Many of the misunderstandings

and misuses of exotic derivatives were brought to light during the current financial crisis.

Therefore, there is a great need to study the hedging parameters of these option. In

this chapter, to study these options numerically we have considered the binary options

more precisely, we have considered the cash or nothing, asset or nothing and gap options.

To explore these options, we have considered the Haar wavelet method which handles

non-smooth reward functions and discontinuous Greeks with ease, thanks to its good

approximation technique for estimating spiking functions. The detailed explanation of

the method and its implementation have been provided. The stability and consistency of

the Haar scheme have been proved. These theoretical implications have been validated

through computational results in the end of this chapter. The numerical results presented in

the form of graphs and tables reveals the high proficiency of the Haar scheme for solving
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the Greeks and solution of the binary option PDE.

The present thesis also contributes the development of the effective numerical approach

for the higher dimensional option pricing problems. The options based on a variety of asset

plays a significant role in the financial market, therefore in Chapter 5, we have considered

a variety of options depending on more than one asset. It results in a multi-dimensional

Black-Schole PDE. To solve this, we have considered the higher dimensional Haar wavelet

approximation method. The implementation of the proposed scheme has been given in

detail. Finally, the proposed method is tested on various test examples based on different

types of multi-asset based options. It is worthy to note that irrespective of the problem’s

geometry, the proposed method is highly accurate and the time taken to get this level of

accuracy is significantly less.

We have concentrated on the numerical technique that yields better approximation

for spiking functions till chapter 5. (Greeks and payoff in our case). Using it, it’s time

to shift our focus to the scheme’s accuracy, therefore Chapter 6 covers a very accurate

orthogonal spline collocation approach with Rannacher time marching. Rannacher time

marching is the conjunction of the two classical time stepping scheme BE and CN to

reduce the quatization error that occur due to the non-smooth terminal condition present

in the Black-Scholes model. Furthermore, with careful examination, second and fourth

orders of convergence in the temporal and spatial directions are found for the current

method in combination to the Rannacher time stepping scheme. The numerical results

for two test problems are supplied in the form of tables and graphs to validate the theory.

These findings suggest that the present algorithm is more accurate and capable of restoring

predicted behaviour of the solution and the hedging parameters.

In Chapter 7, we extend the present work from the integer order models to fractional

order models, since the integer-order derivative base models would miss some important

historical details due to their nonlocal nature, fractional derivatives, on the other hand, are

highly versatile for defining the behaviour of differential equations and adding historical

information. Also, as the standard Black-Scholes model, on the contrary, is based on a set

of harsh assumptions. Therefore, in this chapter, we have considered the time-fractional
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CEV model in which we have taken the rate of interest and the dividend yield as the

function of time. Also, the order of the temporal derivative is considered to be variable in

nature since as compare to constant function the variable functions would provide more

precise results. We have used the definition given by Atangana and Baleanu in Caputo

sense to approximate the time derivative and the finite difference approximation in space.

Through meticulous analysis the proposed method is shown to be third order convergent in

time and second order convergent in space. The reliability and accuracy of the anticipated

procedure have been validated by a number of simulations described in the preceding

section. With time-fractional derivative, the new method overcomes the low temporal

convergence rate of traditional numerical schemes, according to the numerical results. The

methods for assessing option sensitivities given in this thesis can be employed in trading

to examine alternative Greek exposures for hedging.

8.2 Future Scopes
Based on the approaches presented in this thesis, we can extend the present work to

1. The system of PDEs arising in finance and engineering, such as the models with

variable volatility.

2. The fractional higher order option pricing problems in application of various frac-

tional derivatives.

3. The option pricing jump diffusion models.

4. Various non-financial engineering integer or fractional order models having a huge

range of applications in various fields.
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1. International conference on computational sciences- modelling,computing and soft

computing held at Manipal institute of technology, Manipal in 2022. (Presented)

2. International conference on advances in mechanics, modelling, computing and

statistics held at BITS Pilani, Pilani Campus in 2022. (Presented)

3. International Conference on Computational Applied Sciences and Its Applications

organized by department of Applied Sciences, University of Engineering Manage-

ment Jaipur, 2022. (Presented)

4. International conference on and 22nd annual convention of vijana parisad of India

on advances in operational research, statistics and mathematics held at BITS Pilani,

Pilani Campus, 2019.

5. Indo-french research workshop on theory and simulation of hyperbolic PDEs arising

mathematical biology and fluid flow held at BITS Pilani, Pilani Campus, 2019.

Workshops
1. TEQIP-III sponsored two days Faculty Development Programme, Research Method-

ology and Latex held at Rajasthan technical university, Kota, 2018.

2. A seven days workshop on academic writting organised by the department of

humanities and social sciences of BITS Pilani held at BITS Pilani, Pilani Campus in

2019.

3. Five days workshop on parallel finite element computing using parmoon held at

Indian Institute of Science, Bangalore in 2019.
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4. ATAL FDP in financial mathematics and machine learning held at International

Institute of Information Technology, Naya Raipur in 2021.
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