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Abstract 

Water is one of the natural resources for living, which is being used carelessly by 

human beings. The population growth has increased water consumption, but the 

resources are limited. Among all forms of the water available on earth, only 3% is 

freshwater, out of which glaciers and the icecaps cover 69.7%, 30% is groundwater, 

and 0.3% is surface water. With swift growth in urbanization, the water consumption 

has been increased and the contamination has also been increased in proportion due to 

industrialization, domestic and industrial waste discharge into water resources. Hence, 

water quality monitoring is always a matter of concern before consumption. The 

contaminated water causes severe diseases, such as cholera, diarrhea, and dysentery. 

Traditional water quality monitoring involves the sample collection and subsequent 

laboratory testing of the samples, resulting in high labor costs and time consumption. 

Also, the measurement is not in a real-time environment and involves analytical 

instruments in experimentation. So, there is a need for real-time water quality 

monitoring. The development of a Multi-Sensor System (MSS) for the same will be an 

excellent solution, enabling accurate real-time and online water quality monitoring with 

minimum use of chemicals.  

Different regions have different geological conditions, so the parameters 

responsible for water quality will differ. Hence, selecting water quality parameters will 

be a critical step in the development, as overall water quality will be decided based on 

the selected parameters. The sensor selection and system development are also 

essential. So, the proposed work deals with selecting water quality parameters and 

designing and developing a sustainable water quality monitoring system for real-time 

as well as online measurement. The water quality analysis based on statistical modeling 

and soft computing techniques has been carried out in this thesis work. The proposed 

water quality analysis techniques are simple, accurate, and easily implementable on the 

hardware platform.  

This thesis work is the continuation of project granted by the Department of Science 

and Technology (DST), Govt. of India, New Delhi (Grant No. 

DST/TM/WTI/2K16/103). The work discussed above was the requirement of the 
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funding agency, such as the selection of water quality parameters and the design & 

development of a water quality monitoring system. The following work has been 

extended as a further part of the thesis work. 

Although sensor technology has achieved the manufacturing of low-cost and 

portable water quality sensors, the calibration is also a concern as the sensor faces the 

drift problem sooner or later after embedding in the system. This sensor drift will 

demolish the calibration model of any instrument. The sensor drift compensation has 

also been carried out in this thesis work employing a soft computing technique. 

Conventional water distribution systems always face leakage, failure, delay in 

maintenance, which results in high wastage of water. The online water quality 

monitoring in the water distribution network is also presented in this thesis work. 
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Chapter 1  

Introduction 

Water is essential for all known forms of life and covers 70% of the earth’s surface. 

Out of which, 96.5% is found in oceans and seas, 3.4% in ice caps and glaciers, and 

0.0001% in clouds and vapors. Among all forms of the water available on earth, only 

3% is freshwater, out of which glaciers and the icecaps cover 69.7%, 30% is 

groundwater, and 0.3% is surface water. The fresh surface water is distributed in lakes, 

swamps, and rivers in the ratio of 87:11:2. The distribution of available water is shown 

in Figure 1.1 [1], [2].  

Water is an essential resource of survival for a human being, whether for drinking 

purposes, industrial purposes, irrigation, or any other application. Globally, we utilize 

70% of our water assets for agriculture and irrigation purpose and 10% for residential 

uses [3]. It is consumed carelessly by a human being day by day. The population is 

increasing rapidly, and thus, the consumption of water is increasing in proportion, but 

the resources (either natural or artificial) are limited. The freshwater is regularly 

decreasing and may create a worse situation in the future. In developing countries, 

eighty percent of sicknesses are connected to poor water quality and sanitation 

conditions [4]. India is one of the most water-challenged developing countries in the 

world. In India, 5% of death in an individual is due to diarrhea, which is among the top 

ten death causes in India. Death statistics in India are shown in Figure 1.2. 

Water quality is defined by various physical, chemical, and biological parameters. 

Monitoring of these parameters will be helpful in deciding the suitability of water usage 

for different applications (domestic, industrial, or irrigation). The chemical parameters 

are mostly invoked for characterizing the water quality, such as pH, dissolved oxygen 

(DO), nitrogen, organic and inorganic compounds, nitrate, fluoride, and toxicants. 

Below are some parameters responsible for the overall water quality indicator. 
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• Physical parameters → temperature, turbidity, odor, color, salinity, dissolved 

solids, and suspended solids. 

• Chemical parameters → pH, dissolved oxygen (DO), nitrogen, organic and 

inorganic compounds, nitrate, fluoride, and toxicants. 

• Biological parameters → algae and bacteria 

Figure 1.1 Distribution of earth’s water systems  

 

Figure 1.2 Top ten causes of death in India 
(Source: World Health Organization-India: WHO statistical profile) 

Drinking water quality monitoring is essential before consumption in daily life. It 

affects human health directly or indirectly [5]. Most of the available water is 

contaminated and can cause severe diseases like cholera, dysentery, diarrhea, and skin 

problems. The leading cause of contamination or pollution is the discharge of domestic 
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and industrial wastes into natural water resources. According to recent reports from the 

Delhi government officials, the water quality fails 19 water quality standards [6]. India 

water tool (IWT-2.1) is a publicly available web platform created by a group of 

companies, research organizations, and industry associations, including Water 

Resources Institute (WRI), and coordinated by the World Business Council for 

Sustainable Development (WBCSD) [7]. The IWT-2.1 estimates water quality as per 

the Indian government standard called the Bureau of Indian Standards (BIS). When the 

contamination exceeds prescribed BIS limits, drinking water is considered unsafe. The 

groundwater quality was measured by ITW 2.1 tool in 632 districts in India. The 

contamination was found more than prescribed BIS limits in 59 out of 632 districts. 

The yellow and red zones in Figure 1.3 indicate places where chlorine, fluoride, iron, 

arsenic, nitrate, and electrical conductivity surpass national standards. Safe drinking 

water will be a dream for humans in the future. All the reasons mentioned earlier lead 

us to the monitoring of water quality before consumption. We have confined our 

research to groundwater quality as the study area has groundwater as a primary resource 

of consumption. 

 

Figure 1.3 Groundwater quality (number of BIS standard breaches) 



Chapter 1. Introduction  4 

 

 

1.1. Research Motivation 

There is always a motivation behind conducting any research work. Some of the 

facts/issues which motivated us to carry out the research work are as follows: 

• Approximately 0.2 million people lack access to safe drinking water [8]. 

According to a survey from the World Health Organization (WHO), by the end 

of 2025, half of the world population will be living in water stresses areas. 

• The freshwater resources are depleting, resulting in groundwater abstraction for 

domestic, industrial, and agricultural uses.  

• The groundwater is contaminated by agrochemicals (pesticides and fertilizers). 

As a result, most of the population does not have access to safe drinking water 

and depends on contaminated water for their daily needs.  

• Water quality monitoring before consumption can reduce the risk of illness in 

an individual. 

These facts mentioned above motivated us to carry out our research work in water 

quality monitoring. When there were no techniques available for real-time water quality 

parameter measurement, the traditional methods were used in which samples were 

collected on-site and sent to quality testing labs for measurement. This process is time-

consuming and results in delays in test reports along with labor and cost consumption. 

A real-time water quality monitoring system is much needed to reduce the time and 

effort involved in traditional measurement techniques. So, our research work will focus 

on the design and development of a drinking water quality monitoring system that can 

further help us determine whether or not the government regulations are being complied 

with. The real-time water quality monitoring will also help reduce the risk of illness in 

an individual before consumption. 
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1.2. Organization of Thesis 

Chapter 1 discusses the background, introduction to the research topic, motivation of 

research work, and the proposed objectives to be carried out in this thesis. 

Chapter 2 discusses an extensive literature survey covering the existing water quality 

monitoring methods (statistical modeling and soft-computing techniques), drift 

compensation methods, and water quality monitoring in distribution networks. 

Chapter 3 presents the proposed methodology, including water parameter selection 

criteria, prototype development based on commercial off-the-shelf (COTS) modules, 

software framework development, and experimental procedure. 

Chapter 4 presents the water quality analysis based on statistical modeling and soft 

computing technique.  

Chapter 5 discusses the problem encountered pertaining to drift in commercial water 

quality sensors and the compensation for the same using Artificial Neural Network 

(ANN). 

Chapter 6 presents the proposed water quality monitoring in water distribution systems 

and implementing a centralized network employing the Internet of Things (IoT). 

Chapter 7 discusses the conclusion of the thesis work, specific contributions, and 

possible future recommendations of the research work.  



 

 

Chapter 2  

Literature Review 

Preamble 

There are various methods for water quality parameter measurement, including 

traditional laboratory-based and In-situ techniques. The traditional techniques involve 

on-site sample collection followed by laboratory testing, which is time and cost-

consuming. In comparison, in-situ measurements are fast, accurate, time-saving and 

cost-saving as well. The overall water quality is defined by a single term or a numeric 

value, obtained by different techniques employing statistical and soft computing 

methods. This chapter describes various techniques for water quality parameter 

measurement (traditional and in-situ). This chapter also provides an in-depth review 

of work done by researchers and scientists for water quality analysis using the 

statistical method and soft computing techniques. The drift analysis and compensation 

techniques have also been discussed in the chapter. Finally, the water quality 

monitoring in distribution networks has been presented in this chapter. The flow of the 

chapter is shown in Figure 2.1. 

 

Figure 2.1 Literature review-chapter flow 

Study and investigation of drift analysis and compensation 
techniques for water quality sensors

Study and investigaton of different water quality analysis 
methods based on indexing tool and statistical modeling.

Study and investigation of different water quality parameter 
measurement techniques (traditional and in-situ)
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2.1. Introduction 

Water quality deterioration is a global concern as urbanization and industrialization 

has affected human life and the aquatic ecosystem. The water quality varies by natural 

as well as human influences. The natural influences may be geological or climatic on 

which human has no control. In comparison, human influences have worsened the water 

quality and can still be controlled [9]. Some of the common reasons across the globe 

for water contamination are as follows [10], [11]. 

• Direct drainage of human feces into water resources pollutes the water. Such a 

problem occurs when there is no facility for waste disposal or on-site sanitation 

facility. 

• Almost 75% of the industrial waste and sewage water is disposed into the water 

resources without any treatment, which pollutes the usable water. 

• Contamination is also caused by naturally occurring minerals and chemicals, 

which is uncontrollable. 

• Urbanization and agricultural run-off are also responsible for water pollution.  

Water quality is defined by various physical, biological, chemical, and aesthetic 

(smell and visual) parameters. Additionally, the water quality depends on the geological 

condition, and according to that, different governing bodies have decided the criteria 

for defining the water quality. The various governing bodies are US Environment 

Protection Agency (USEPA) [12], National Water Quality Standard 

(NWQS), Malaysia [13], Central Pollution and Control Board (CPCB), India [14], etc. 

In India, CPCB has defined the criteria for water quality for different applications, such 

as drinking, bathing, irrigation, industrial, and fishing, as shown in Table 2.1. 

Water is a good solvent that picks up the impurities easily [15]. Pure water is 

tasteless, colorless, and odorless, is often called the universal solvent. Dissolved solids 

refer to any minerals, salts, metals, cations, or anions dissolved in the water. Total 

Dissolved Solids (TDS) consist of inorganic salts (primarily calcium, magnesium, 

potassium, sodium, bicarbonates, chlorides, and sulfates) and a small amount of organic 

matter dissolved in water. TDS in natural water originates from natural sources, sewage, 

urban run-off, industrial wastewater, and chemicals used in the water treatment process. 
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When the TDS level exceeds 1000 mg/l, it is considered unfit for human consumption. 

A high level of TDS should be considered a high priority and should also be examined 

before drinking. The best water purification system ensures that the filters effectively 

remove unwanted particles from water [16]. 

Table 2.1 Central Pollution and Control Board (CPCB) criteria for water quality 

Type of Water Category Quality Parameter Criteria 

Drinking-

Water Source 

without 

conventional 

treatment but 

after disinfection 

‘A’ 

1. Total Coliforms Organism MPN/100ml 

shall be 50 or less 
2. pH between 6.5 and 8.5 
3. Dissolved Oxygen 6mg/l or more 
4. Biochemical Oxygen Demand 5 days 20°C 

2mg/l or less 

Outdoor bathing 

(Organized) 
‘B’ 

1. Total Coliforms Organism MPN/100ml 

shall be 500 or less 
2. pH between 6.5 and 8.5 
3. Dissolved Oxygen 5mg/l or more 
4. Biochemical Oxygen Demand 5 days 20°C 

3mg/l or less 

Drinking water 

source after 

conventional 

treatment and 

disinfection 

‘C’ 

1. Total Coliforms Organism MPN/100ml 

shall be 5000 or less 
2. pH between 6 to 9 
3. Dissolved Oxygen 4mg/l or more 
4. Biochemical Oxygen Demand 5 days 20°C 

3mg/l or less 
5. TDS 1000 mg/l 

Propagation of 

Wildlife and 

Fisheries 

‘D’ 

1. pH between 6.5 to 8.5 
2. Dissolved Oxygen 4mg/l or more 
3. Free Ammonia (as N) 1.2 mg/l or less 

Irrigation, 

Industrial 

Cooling, 

Controlled Waste 

disposal 

‘E’ 

1. pH between 6.0 to 8.5 
2. Electrical conductivity at 25°C 

micromhos/cm Max.2250 
3. Sodium absorption Ratio Max. 26 
4. Boron Max. 2mg/l 

Dissolved Oxygen (DO) is the amount of dissolved gaseous oxygen (O2) in water. 

It is essential for the assessment of water quality. Oxygen enters the water by direct 

absorption from the atmosphere, rapid movement, or as a waste product of plant 
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photosynthesis. Too high or too low levels of dissolved oxygen can harm aquatic life 

and affect the water quality. Water temperature, moving water, turbulence, and salinity 

can affect dissolved oxygen levels [17]. Adequate dissolved oxygen is essential for 

good water quality and necessary for all forms of life. The range for the DO 

concentration is 5 to 14.5 mg O2 per liter. A rapid fall in DO indicates higher organic 

pollution in the river. The optimal value for good water quality is 4 to 6 mg/l of DO, 

ensuring healthy aquatic life in water. Dissolved oxygen levels below 5.0 mg/l may 

cause stress to aquatic life. 

Turbidity measures any liquid’s cloudiness caused by particles. Turbidity can be 

caused by silt, sand, mud, chemical residues, bacteria, and other germs. It is essential 

to measure the turbidity in water supplies because it can cause filter blocking and stop 

the treatment plant’s effective working. In high turbidity conditions, the mud and silt 

can cause blocking of water supply pipes and damage the taps and valves. The low 

turbidity can prevent chlorine from killing the bacteria in the water [18].  

A pH is not the primary determinant of adverse effect because pH in the stomach 

has a range between 1.0 and 3.5 with a mean of approximately 2.0, and there are certain 

foods like vinegar, lemon juice that have pH less than 3.0. So, there is no direct 

relationship between the health and pH of drinking water, and it is impossible to 

ascertain [19]. However, pH can indirectly affect health because pH can affect the 

degree of corrosion of pipes, and there will be ingestion of heavy metals in the body 

from plumbing and pipes. 

2.2. Methods for Water Quality Parameter Measurement 

There are different techniques available for the water quality parameter 

measurement, such as lab-based chemical measurement technique, electrochemical 

sensor-based measurement, optical sensor-based measurement technique, etc. These 

techniques are discussed in this section.  

2.2.1. Conventional Approach for Water Quality Parameter Measurement 

In the early days, there were no techniques available for real-time water quality 

parameter measurement; the only solution was to collect the sample and subsequently 
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testing it in the laboratory. The water quality parameters; turbidity, TDS, pH, chlorine, 

DO, and BOD are commonly measured to define water quality.  

Turbidity measurement was based on the Jackson method of candle, which is the 

oldest method of measurement. In this method, a glass platform is used. A cylindrical 

glass container is placed above the platform, and a lighted candle is placed beneath. 

Then the water is poured into the cylindrical container until the candle ceases to be seen 

from above. Finally, the water level is measured, and turbidity is analyzed. The turbidity 

is inversely proportional to the height of the water column. The unit of the turbidity is 

Jackson Turbidity Unit (JTU). This method is slow and consumes more time in 

measurement [20]. The TDS measurement was based on the gravimetric method. In 

this method, the water is boiled at 103°C, and the evaporated particles are trapped in 

the mineral matrix. The dried evaporated particles are weighted on analytical balance 

having an accuracy of 0.0001 gm. This method is slow but accurate. The only 

disadvantage is that low boiling chemicals may also evaporate with the water. The 

chlorine measurement was based on the membrane electrode-based colorimetric 

method. The method is time-consuming, laborious and its output is affected due to the 

presence of other heavy metals in water.   

The pH measurement technique was based on titration with sodium hydroxide and 

litmus paper. The limitation of this method is less accurate. DO measurement was based 

on the Winkler method and polarographic Clark electrode measurement. This method 

consumes oxygen in the process. The BOD measurement technique was based on the 

oxidation process by hydrogen peroxide with ultraviolet light. These methods are time-

consuming and have a limited range [21]. A summary of the measurement method has 

been presented in Table 2.2.  

All these conventional or traditional methods discussed are chemical based, use of 

toxic reagents, high cost of measurement and operation. Also, the disposal of toxic 

reagents produced in the measurement process was a problem [22]. These problems 

lead the researchers and scientists to move toward the real-time water quality parameter 

measurement approach described in the next section. 
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Table 2.2 Traditional methods for water quality parameter measurement 

Water Quality 

Parameter 

Traditional lab-based 

method 

Limitation 

pH Titration with sodium 

hydroxide and litmus paper 

Less Accurate 

Dissolved Oxygen 

(DO) 

Winkler method and 

polarographic Clark 

electrode measurement 

Consumes Oxygen 

Turbidity Nephelometric Method Less Sensitive 

Chlorine Membrane electrode-based 

colorimetric method 

Time-Consuming and other 

heavy metals affect the 

output  

Biochemical 

Oxygen Demand 

(BOD) 

Oxidation process by 

hydrogen peroxide with 

ultraviolet light 

Limited Measurement range 

2.2.2. Real-Time Approach for Water Quality Parameter Measurement 

The real-time analysis allows the user to acquire accurate water quality information 

without delay. Different sensor technologies are available for real-time parameter 

measurement based on electrochemical sensors, ISFET based sensors, MEMs based 

sensors, and Optical sensors (refer to Figure 2.2).  

Electrochemical sensor systems provide quick, precise, selective, sensitive, easy-

to-use analytical tools for examining environmental samples. Since the electrochemical 

analysis requires a relatively small amount of the sample, the sensor systems are 

effective and excellent for detecting and monitoring contaminants. Heavy metals, 

pesticides, herbicides, dye compounds, and medicinal chemicals may be detected using 

electrochemical sensor systems based on amperometry and voltammetry, which are 

inexpensive, quick, sensitive, reliable, and user-friendly [23]. The ISFET based sensors 

are used for pH measurement in a real-time environment but always face drift and 

hysteresis problems. The ISFET based sensor strongly requires a drift compensation 

[24], [25]. 
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Figure 2.2 Sensor technology for water quality monitoring 

Micro-Electro-Mechanical Systems (MEMS) are a collection of micro-and nano-

sensors that can perceive their surroundings and react to changes in that environment 

using a microcircuit. It is based on nanotechnology. Due to the massive scale production 

of MEMS-based sensors, there was a substantial cost reduction. Furthermore, low 

power consumption eliminates repetitive calibration [26], [27]. However, this 

technique is still under development and will require many changes to be suitable for 

detecting temperature, pH, and heavy metals [28]. The optical sensors measure the 

visible properties of the water that respond with the change of light intensity and have 

high accuracy [29]. The optical sensors can measure turbidity, DO, pH, and chlorine in 

the water. 

The biosensor converts a biological signal into measurable quantities. It consists of 

a transducer and an interface. The microbial cells or tissue slices or cell membrane or 

enzymes can be used as biological indicators. These indicators interact with a specific 

parameter. The signal (potential or current) generated by the transducer is proportionate 

to the object and signifies a physical or chemical reaction change. The biosensors are 

portable and easy to use. On the other hand, bio-sensors are expensive non-linear 

Sensor technology for water quality monitoring

Electrochemical sensor

Optical sensor 

MEMS sensor
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system, and their application is problematic due to population expansion, biological 

indicator genetic evolution, and a complicated fabrication procedure [30]–[33]. The 

real-time water quality parameter measurement approach is far better and competitive 

with the traditional method described earlier. 

2.3. Methods for Water Quality Analysis 

Water quality analysis is necessary to ensure the safety of the water supply and to 

prevent health risks associated with contamination. There are different methods for 

water quality analysis based on indexing tool, statistical modeling, and soft-computing 

techniques. In the previous section, traditional and in-situ water quality parameter 

measurement techniques were studied. In this section, different methods for water 

quality analysis have been discussed in detail. 

2.3.1. Indexing Tool for Water Quality Analysis 

Various methods are available for water quality analysis in literature. Water Quality 

Index (WQI) tool is one of them. This tool defines water quality by a unique rating to 

determine water quality based on a single value. A considerable number of water 

quality indices have been formulated around the world. Several national and 

international organizations have formulated the Weighted Arithmetic Water Quality 

Index (WAWQI), National Sanitation Foundation Water Quality Index (NSFWQI), 

Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI), 

Oregon Water Quality Index (OWQI). Most of these indices are based on the WQI 

developed by the US National Sanitation Foundation (NSF) in 1970, and it is commonly 

used in the world, including the Indian continent [34].  

Horton [35] proposed the WQI term for the first time and introduced the aggregate 

function to calculate the WQI. It was based on ten water quality parameters, including 

pH, conductance, alkalinity, chloride, and Dissolved Oxygen (DO). The aggregate 

function multiplied the arithmetic weight of individual parameters with temperature. 

Brown et al. [36] applied a similar method but without multiplying the weights. The 

other researchers used the concept with slight modification in terms of different 

aggregate functions such as arithmetic aggregate mean, multiplicative aggregate 
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function, geometric mean, harmonic mean, and minimum operator to calculate WQI. 

Harkins et al. [37] developed a new method by varying the number of water quality 

variables. The standardized distance for each observation vector and rank of variance 

was calculated for individual water quality parameters. The proposed model was more 

sensitive but inconvenient to use. 

McClelland [38] developed a new geometric mean approach to calculate the water 

quality index. The earlier developed arithmetic mean method for WQI was insensitive 

to low-value parameters, a trait later dubbed “eclipsing”. Walski & Parker [39] used 

the geometric mean method to calculate the quality of individual water quality 

parameters and expressed the quality in the range of 0 to 1. The proposed function was 

called the “sensitivity function”. Various curves and formulas were suggested to 

determine sensitivity functions from the measured water quality parameters. 

Dinius [40] introduced a water quality index employing multiplicative aggregation 

on a decreasing scale. The indexing values were expressed as the percentage of water 

quality correspondence to 100%. The relationship between each pollutant and the water 

quality was obtained using the proposed method. Bhargava [41] developed a simplified 

water quality indexing model for the classification of water quality of river Ganga for 

its different uses, such as bathing, swimming, public water supply, irrigation, industry, 

fish culture, wildlife, and boating. The proposed model was the modification of the 

model proposed by Harkins et al. [37] and Walski & Parker [39]. 

Smith et al. [42], [43] developed a new water quality indexing method based on the 

minimum operator for different water uses. It was based on two indexing methods: 

water quality standards and expert opinion. The water quality parameter selection, 

subindices calculation, and weight assignments were calculated using the Delphi 

method [44].  

Dojildo et al. [45] suggested and developed the harmonic mean method to define 

water quality indexing. The calculated mean does not use the weights for individual 

water quality parameters. The method is more sensitive as compared to geometric or 

arithmetic mean. The harmonic mean-based methods have been adopted by many 
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countries, such as the British Columbia Water Quality Index (BCWQI) and the 

Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 

Dwivedi et al. [46] used an integrated water quality index to assess the changes in 

physiological and chemical properties of river Ganga over the years 1985-86, 1986-87, 

and 1987-88. The pollutant load of the Ganga River was also assessed over a 13-

kilometer stretch in India’s Varanasi district. Jonnalagadda and Mhere [47] 

characterized the nature, source, and extent of pollution. Various water quality 

parameters, namely, pH, temperature, conductance, total and dissolved solids and 

nitrate, were considered for the water quality assessment of the Odzi River. Bordalo et 

al. [48] studied the effect of different agroindustry effluents in the Salado River in 

Buenos Aires Province (Argentina). The indexing was done using a minimum water 

quality index (WQImin), measuring two water quality parameters, electrical 

conductivity and dissolved oxygen. The efficacy of WQImin was also studied for river 

management. 

Avvannavar and Srihari [49] applied the Bhargava WQI method for water quality 

monitoring in the Netravathi river, Mangalore, India. Different water quality 

parameters were used to calculate WQI, such as Most Probable Number (MPN), DO, 

TDS, turbidity, and pH. Chaturvedi and Bassin [50] have assessed water quality in 

different borewells and a treatment plant in the Delhi province of India. The samples 

were collected over nine months, and NSFWQI was used to calculate the water quality 

index. Total five water quality parameters, namely, temperature, pH, nitrate, turbidity, 

and TDS, were used for indexing. Singh and Kamal [51] proposed water quality 

assessment in different talukas of Goa (India), employing the weighted arithmetic mean 

method. Around thirty-two samples were collected from various places during pre- and 

post-monsoon season, and indexing was calculated. The WQI ranges from 34 to 107.  

Bhutiani et al. [52] proposed the WQI calculation in the Ganga River Ecosystem at 

Haridwar, Uttarakhand, India. The WQI was calculated by analyzing 16 physio-

chemical parameters over a period of eleven years. The weighted arithmetic mean 

method was applied to the acquired data for WQI calculation. Shah et al. [53] used the 

weighted arithmetic mean method to calculate the WQI in the Sabarmati river located 
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in the Gujarat province of India. Shah used six variables, pH, DO, Biochemical Oxygen 

Demand (BOD), nitrate, nitrogen, total coliform (TC), and electrical conductivity (EC), 

to calculate WQI. Chaurasia et al. [54] calculated the WQI of the groundwater samples 

collected from the southern part of the Varanasi district of Uttar Pradesh Province 

(India). Chaurasia selected eight important water quality parameters out of twenty-four 

for the WQI calculation employing the weighted arithmetic mean method. Ameen [55] 

proposed the drinking water quality assessment of samples collected from ten villages 

during wet and dry seasons in Barwari Bala, Duhok, Kurdistan Region, Iraq. Different 

physio-chemical water quality parameters were used for indexing employing the 

weighted arithmetic mean method. Tyagi et al. [56] studied and compared various water 

quality index methods adopted in different countries. As there is no globally accepted 

water quality index method, Tyagi has studied different indexing methods used in 

various continents. 

2.3.2. Statistical Modeling for Water Quality Analysis 

Regression is a powerful tool for statistical modeling, which is widely used in 

weather forecasting and prediction. The least-squares approach was the first type of 

regression, which was developed by Legendre in 1805 [57] and Gauss in 1809 [58] for 

astronomical measurements. They determine the orbits of bodies around the Sun. In 

1821, Gauss published a continuation of the theory of least squares, which included a 

variant of the Gauss–Markov theorem. There are mainly two types of regression: linear 

regression and nonlinear regression. Linear regression analysis can further be divided 

into univariate regression and multivariate regression analysis. Nonlinear regression 

analysis may be further categorized based on function such as gaussian function, 

logarithmic function, exponential function, power function, and trigonometric function. 

Various methods are available in the literature for water quality monitoring, 

characterization, and parameter prediction based on different regression algorithms. 

Some of the relevant papers are studied in this section. 
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Table 2.3 Summary of indexing tool for water quality monitoring in Indian continent 

Reference WQI Calculation 

Method 

Application Parameters used for 

Modeling 

Dwivedi et al. [46] 

Multiple aggregate 

functions were 

used 

River water 

quality 

pH, TDS, TC, nitrate, 

BOD, DO and more 

Jonnalagadda and 

Mhere [47] 

Weighted 

arithmetic mean 
-do- 

pH, temperature, 

conductance, total and 

dissolved solids and 

nitrate 

Bordalo et al. [48] 
Minimum 

Operator 
-do- 

pH, COD, TDS, N-

KTN, DO, and PT 

Avvannavar and 

Srihari [49] 

Harmonic mean 

method 
-do- 

Turbidity, DO, MPN, 

TDS, pH and BOD 

Chaturvedi and Bassin 

[50] 
NSFWQI method 

Borewell 

and 

treatment 

plant 

Temperature, pH, 

nitrate, turbidity and 

TDS 

Singh and Kamal [51] 
Weighted 

arithmetic mean 

Talukas 

water quality 

pH, DO, TDS, TH, 

BOD, TSS, Nitrate, 

Sulphate Magnesium, 

Calcium and Chloride 

Bhutiani et al. [52] -do- 
River water 

quality 

EC, Temp, DO, COD, 

BOD, pH, turbidity, 

TDS, TS, free CO2, 

chlorides, alkalinity, 

phosphates, nitrates 

and velocity 

Shah et al. [53] -do- -do- 
pH, DO, EC, TC, 

nitrate, BOD and DO 

Chaurasia et al. [54] -do- 
Groundwater 

quality 

22 water quality 

parameters including 

pH, EC, TDS and TH 

 

Christensen et al. [59] analyzed the bacteria and nutrient concentrations based on 

the least-squares regression analysis in the Kansa streams, USA. Selected water quality 

parameters were used for the modeling, such as pH, DO, turbidity, temperature and 
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chlorophyll. The predicted parameters were Chemical Oxygen Demand (COD), filtered 

COD, Total Suspended Solids (TSS) and nitrate. The PLSR was used to develop the 

calibration model to achieve robustness and high correlation quality. Singh et al. [60] 

used a multiway PLSR (unfold PLS, tri-PLS and N-PLS) for river water quality 

analysis. A ten-year dataset was used to develop the proposed model for predicting 

biological oxygen demand (BOD) in river water.  

Chenini and Khemiri [61] characterized the ground water quality using hydro-

chemical data by Multiple Linear Regression (MLR) and Structural Equation Modeling 

(SEM) in Maknassy Basin, central Tunisia. Twenty-eight samples were collected from 

October 2005 to November 2005 in the study region, and the proposed methodology 

was applied. Koklu et al. [62] used the Principal Component Analysis and Factor 

Analysis (PCA-FA) and MLR for water quality monitoring in the Melen River, Turkey. 

The data from five different monitoring stations for 20 years during the period 1995-

2006, containing 26 different physical and chemical parameters. The dependency of a 

water quality parameter with other parameters was also studied in detail. 

Shareef et al. [63] proposed a new method to determine the contaminants and water 

quality parameters. A Gray Level Co-occurrence Matrix (GLCM) was used to predict 

six water quality parameters (WQP) employing a multi-regression model followed by 

the fuzzy k-means clustering algorithm. Two different strategies were used in the 

measurement: one used different fusion levels, and the second was to generate slope-

derived spectra by calculating the slope of absorbance. 

Shrestha and Basnet [64] used the linear regression analysis for water quality 

monitoring in Ratuwa River and its tributaries in Nepal. The water quality parameters 

were obtained using the standard procedure, i.e., ALPHA methods. The correlation of 

conductivity with other parameters, such as TDS, DO, fluoride, magnesium, total 

alkalinity (TA), total phosphorous (TP), calcium (Ca) and sodium (Na) was also found 

out. Dutta and Sarma [65] evaluated different groundwater samples (boring or tube 

wells) and studied the potability of the water samples in the Nagaon district of Assam, 

India. Twelve water quality parameters (physical, chemical and biological) were used 

for the regression modeling, and correlation was found between different physio-
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chemical water quality parameters. Ahamad et al. [66] developed a regression model 

for water quality as well as pollution prediction inside two lakes situated in Tezpur 

university. The modeling was done employing regression analysis and artificial neural 

network (ANN) and results were compared, and the best suitable technique was 

suggested. 

Table 2.4 Summary of statistical modeling for water quality monitoring 

Reference Regression 

Method Used 

Application Parameters 

used for 

Modeling 

Christensen et al. [59] 
Least Squares 

Regression 
Stream water 

pH, DO, 

turbidity, 

temperature and 

chlorophyll 

Singh et al. [60] PLSR River water 
19 water quality 

parameters 

Chenini and Khemiri 

[61] 

MLR and structural 

modeling 
Groundwater 

pH, TDS, EC, 

NA+, Cl, K+ and 

Mg2+ 

Koklu et al. [62] PCA-FA River water 
26 water quality 

parameters 

Shareef et al. [63] 

Multi-regression 

model coupled with 

fuzzy k-means 

clustering 

-do- 

pH, nitrate and 

phosphate 

Shrestha and Basnet 

[64] 
Linear regression River water 

EC, TDS, DO, 

fluoride, 

magnesium, TA, 

TP, Ca and Na 

Dutta and Sarma [65] -do- Groundwater 

Twelve water 

quality 

parameters 

(physical, 

chemical and 

biological) 

Ahamad et al. [66] -do- Lake water 
TS, EC and 

Turbidity 
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2.4. Drift Analysis of Water Quality Sensors 

In recent years, there has been a growing interest in sustainable development for 

water quality monitoring. The Multi-Sensor Systems (MSS) or E-tongue, which is used 

for water quality monitoring, mimics the human taste perception [67], [68]. The MSS 

consists of an array of water quality sensors based on electrochemical, or membrane-

based, or optical technology, which depend on application and availability. There are 

many techniques for water quality monitoring available in the literature. These 

techniques are real-time monitoring as well as contamination detection in distribution 

networks [69]–[73] and wireless monitoring [74]–[77]. A typical step in these 

techniques includes calibration of the sensors before the measurement. The MSS is 

trained during the calibration with the high-cost known standard concentration solution. 

For calibration, a considerable amount of labor and time is required. To reduce the 

calibration frequency, some mathematical models are developed with the help of 

acquired post-calibration data. Though calibration samples are expensive, the 

developed model is expected to have a longer lifetime. 

This calibration process has been done in a controlled environment chamber or a 

laboratory environment with a high-cost instrument. But this is not feasible after the 

field deployment of the instrument, and later, the sensors need to be calibrated regularly 

based on the field environmental conditions. In such circumstances, poor or incomplete 

calibration leads to uncertainty in sensor measurement. The limitations of the 

calibration lifetime are typically associated with the evolution of the sensor material in 

the measurement process, which leads to the change in the sensor properties, causing 

drift. Drift is a continuous change in the measuring instrument reading over time due to 

the change in the metrological properties [78]. It is neither related to the quantity being 

measured nor to any recognized influence quantity [79]. Various effects like aging, 

temperature deviation, surface chemical reactions, adsorption of sample components, 

contamination and/or poisoning of the working electrode (change in catalytic activity) 

and the reference electrode may lead to sensor deviation, especially in the case of 

electrochemical sensors [80]–[82]. The electrochemical sensors are the prevalent type 
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of sensors in MSS so far. It is not possible to prevent sensor drift after field deployment, 

especially when the sensor lifetime can be as long as years [68], [83]. 

There are some ways to evade such mishappenings: 1) calibrate the sensors before 

every measurement and 2) by some mathematical drift correction, considering the 

evolution of sensor readings. The first method is unfavorable since it is not possible to 

go into the field to calibrate the sensors. In contrast, the second method seems to be 

more approachable since it reduces frequent calibration of the sensors. The 

mathematical drift correction can be implemented using statistical methods or machine 

learning techniques, as shown in Figure 2.3.  

 

Figure 2.3 Drift compensation methods 

Machine learning is becoming part of system design as it has an adaptive nature, 

which makes it robust for measurement applications. The learning techniques can be 

supervised, unsupervised, or semi-supervised. In this work, we proposed a method 
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using Artificial Neural Network (ANN), which is a subclass of ML techniques to 

increase the calibration lifetime of commercial water quality sensors. ANN is inspired 

by a biological neural network. ANN is a collection of interconnected artificial nodes 

in which every node can send a signal to another node [84]. It solves the problem in the 

same way as the human brain does and thus being using in many complex real-life 

computing applications. 

Many researchers have attempted drift compensation either for a sensor or an 

instrument using traditional statistical analysis and machine learning techniques. 

Traditional statistical methods for drift correction include multiplicative drift correction 

(MDC), orthogonal signal correction (OSC), component correction (CC) based on 

principal component analysis (PCA), and partial least squares regression (PLSR), 

independent component analysis (ICA). These traditional methods offer drift prediction 

and compensation efficiently in case of linear variation in sensor drift. While having 

nonlinearity and outliers in the dataset, the traditional methods might have incorrect 

assumptions. To overcome this problem, researchers have tried alternative approaches 

that can handle nonlinear data as well. 

Wold et al. [85] proposed the signal correction of Near Infrared (NIR) reflectance 

spectroscopy data employing the OSC (a variant of PLSR) without preprocessing the 

data. Two different datasets were taken from the spectra of modified cellular glucose 

and the pulp samples. The proposed method showed significant improvements in results 

as compared to traditional methods, which employ preprocessing techniques. Li et al. 

[86] studied the  PLSR technique correcting the calibration models. The calibration 

model was developed with the spectra of the primary instrument, and the secondary 

instrument was calibrated with the developed model, assuming that the spectral 

difference and the prediction error have a linear relationship. Ziyatdinov et al. [87] used 

the Common Principal Component Analysis (CPCA) for gas sensor drift compensation. 

The algorithm’s performance is assessed using a classification task, focusing on 

determining the variance component of drift, which is a fundamental aspect of the 

approaches. The CPCA technique is unique in that it expresses drift direction as a 

variance that is common to all odor classes, eliminating the need for a single reference 



Chapter 2. Literature Review  23 

 

 

gas. Laref et al. [88] proposed a method for correcting the E-nose signal employing 

baseline manipulation and OSC. The data was obtained from the gas sensor array with 

different concentrations of gas vapors. The PLSR model was then used to predict the 

unknown gas concentration. The proposed method shows the good stability of the 

results obtained. Yi [89] proposed a novel dimensionality reduction technique to 

encounter the intelligent system’s sensor drift issue. Also, an optimization algorithm is 

developed to solve the problem encountered in dimensionality reduction. To show the 

effectiveness of the proposed method, extensive experiments have been performed.  

Out of these above-mentioned statistical methods for E-tongue drift correction, 

Laref got the best results for drift compensation. Similarly, E-tongue drift correction 

has been attempted by Holmberg et al. [90], Holmin et al. [91], Luo et al. [92], Zhang 

et al. [93]. More papers for different drift compensation techniques employing 

statistical methods can be found in [94]–[96]. 

In the past decade, machine learning techniques have become popular as an 

alternative to conventional statistical methods. Current applications of machine 

learning are human activity recognition systems [97], IoT cultural data [98], boredom 

classification [99], load balancing [100], enhancing the accuracy of data-driven models 

[101], classification problems [102] and drift correction as well. Pereira et al. [103] 

proposed a temperature drift correction in a signal conditioning circuit employing 

ANN. A temperature sensing system containing an AD595 conditioning circuit was 

considered for the proposed technique. The measurement system was analyzed for pre 

and post-temperature correction. The system shows significant accuracy after the post 

drift compensation method. 

Kashwan and Bhuyan [104] developed a robust E-Nose system for determining the 

flavor and aroma of spices and tea employing the drift correction method. The 

temperature and humidity variation were compensated. The change in temperature and 

humidity were constantly monitored to determine the net deviation. The E-nose 

response is quickly and automatically corrected for the net deviation determined from 

drift calculations by programming. Uthra et al. [105] applied the ANN for drift 

correction in an induction motor drive control system. The feedback signals fed to the 



Chapter 2. Literature Review  24 

 

 

control system face the problem of drift, which were used as input to the proposed ANN 

model before feeding the control system. The results show good accuracy in controlling 

the induction motor. Adhikari and Saha [106] combined an ANN and K-Nearest 

Neighbor (KNN) model for drift compensation in gas sensors. The data was obtained 

from the UCI machine learning repository. The PCA method was used for classification 

after applying the compensation methods. The PCA shows significant accuracy post 

compensation. Sinha et al. [107] applied the drift compensation technique for Ion-

Sensitive Field-Effect Transistor (ISFET) based pH sensor employing different 

machine learning techniques. The drift occurs in the pH sensor due to temperature 

variation was compensated employing Multi-Layer Perceptron (MLP), Random Forest 

(RF), Decision Trees (DT), Support Vector Machine (SVM) and Linear Regression 

(LR). 

Among the above-mentioned machine learning techniques, Sinha got the best 

results for the drift correction using machine learning techniques. So, it can be stated 

that for drift compensation, the machine learning techniques are better than the 

statistical ones. Therefore, we can explore the application of ANN for the drift 

compensation of water quality sensors. 

Table 2.5 Summary of drift compensation methods 

Reference 
Compensation 

Method 
Application 

Wold et al. [102] OSC 
Cellular glucose and pulp 

samples 

Li et al. [103] PLSR Calibrating instrument 

Ziyatdinov et al. [104] CPCA Gas sensor drift compensation 

Laref et al. [105] OSC -do- 

Yi [106] PCA Instrument drift correction 
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Holmberg et al. [107], 

Holmin et al. [108], Luo et 

al. [109], Zhang et al. [110] 

-- E-tongue 

Pereira et al. [120] ANN Temperature drift correction 

Kashwan and Bhuyan 

[121] 
Deviation subtraction 

Temperature and humidity 

correction 

Uthra et al. [122] ANN Motor drive control 

Adhikari and Saha [123] ANN and KNN Gas sensor drift compensation 

Sinha et al. [124] 
MLP, RF, DT, SVM 

and LR 

ISFET pH sensor drift 

correction 

 

2.5. Gaps in the Existing Research 

Based on the extensive literature survey presented above, the research gaps 

identified in water quality monitoring are below. 

• Real-time monitoring of water quality is a challenge as it is rarely found. There 

is a need for the development of real-time water quality monitoring with 

minimum or no sample preparation. 

• There are many benchmark instruments available for water quality monitoring. 

All these sensors used in the instruments have one common problem that is drift. 

Only a few authors have attempted the drift analysis and compensation of water 

quality sensors. There are two solutions for the same: one is the sensor’s timely 

calibration, and the second is the auto-calibration of the sensors through some 

soft computing methods. The first solution is time-consuming and cost-effective 

as the reference solutions for the calibrations are expensive. The second 

approach is more approachable using compensation methods. 

• There is a scope of water quality monitoring in conventional water distribution 

networks as it always faces leakage, failure and illegal connection.  
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2.6. Objectives of the Proposed Work 

The focus of the presented work in the thesis has been to devise and develop a real-

time water quality monitoring system. The main objectives of the work, based on the 

research gaps are stated below. 

• Study and investigate different methods for water quality analysis techniques 

based on statistical modeling and soft computing techniques. 

• Design and develop a real-time water quality monitoring system based on Multi-

Sensor Array (MSA). 

• Water quality analysis based on statistical modeling and soft computing 

techniques. 

• Drift analysis and compensation of commercial water quality sensors by soft 

computing method. 

• Centralized water quality monitoring in water distribution networks employing 

the Internet of Things (IoT).  

 



 

 

Chapter 3  

Methodology and Experimentation 

Preamble 

Water quality always plays an essential role in human health as it is one of the most 

prominent survival resources. The overall water quality depends on available water 

resources in the specific geological region; hence, it is required to identify the region-

specific quality parameters before developing a hardware framework. In addition to 

that, selecting a core controller and related modules and peripherals is essential for 

hardware development. A detailed description explaining the methodology for adapting 

the specific water quality parameters, selection of core controller, associated modules, 

hardware, software, and experimental methodologies has been presented in this 

chapter. 

3.1. Water Quality Parameter Selection 

The selection of water quality parameters for water quality monitoring must be 

made very carefully as it will be used to determine the overall water quality. Different 

criteria for different locations decide the water quality parameters as the significant 

parameters responsible for water quality will vary with the geological conditions. These 

criteria are determined by water availability and quality surveys conducted by agencies. 

In India, the water quality criteria have been defined by Central Pollution and Control 

Board (CPCB), India [14].  

The CPCB has categorized the water quality according to their uses and 

consumption that has already been discussed in chapter 2. The type ‘C’ category has 

been selected for this study. The parameters that fall in this category are pH, Dissolved 

Oxygen (DO), and Total Dissolved Solids (TDS), Biochemical Oxygen Demand 

(BOD) and Total Coliform. The study area is the Shekhawati region of Rajasthan, India, 

where groundwater is the only source of consumption [108]. We have not added 

coliform and BOD in our work, as mentioned in the category ‘C’ of CPCB water quality 
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standards. No literature has been identified reporting E. Coli. in Rajasthan province, as 

the study area has dry weather conditions where the chance of growth of E. Coli. is very 

less. E. Coli. is present only where the storage container is not appropriately cleaned or 

old distribution pipeline or the pipeline leakage or bad sanitation condition [109], [110]. 

Two additional parameters, Oxidation Reduction Potential (ORP) and temperature have 

been added to the measurement. So, the total parameters, which have been added in the 

measurement are pH, DO, ORP, EC, and temperature. 

3.2. Hardware Modules 

The hardware platform plays an essential role in any system development since data 

acquisition and data processing are done with the help of the hardware platform itself. 

In this work, commercial off-the-shelf (COTS) modules and devices have been used to 

develop the experimental setup. These individual modules have been described in detail 

in the following sections. 

3.2.1. Water Quality Sensors 

The water quality sensors are selected according to the requirement and cost criteria. 

The water quality sensors were purchased from the ATLAS scientific [111]. The detail 

of each water quality sensor, including the development technology, measurement 

range, and interfacing circuit is described below. The pictorial representation of sensors 

& their signal conditioning circuits is given in Appendix A. 

(a) pH Sensor 

The ATLAS Scientific pH sensor has a 0-14 moles/L measurement range with 

accuracy and resolution of ± 0.002 and ± 0.001, respectively. These specifications make 

it suitable for various applications, such as water quality monitoring, soil monitoring, 

hydroponic industries and food industries. The reference electrode used in the pH 

sensor is made of silver/silver chloride (Ag/Ag-Cl). The sensor body is made of 

extruded epoxy, which can withstand extremely powerful acids and bases [112]. 

(b) Electrical Conductivity Sensor 

The ATLAS Scientific electrical conductivity sensor has a measurement range of 

0.07 − 50,000 μS/cm. The accuracy of the conductivity sensor is ± 2 %, and the response 
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time is 90% in 1 second. Most conductivity sensors have the problem of fringe effect, 

which means the reading varies when a sensor comes nearby any object. Still, the 

ATLAS Scientific sensor is designed in a way that it has no fringe effect resulting in 

stable measurement readings. The applications of the conductivity sensor are water 

quality testing, soil testing, hydroponics, and fish keeping [113]. 

(c) Dissolved Oxygen Sensor 

The ATLAS scientific DO sensor is a tiny probe that can work in different ambient 

environments, from water quality monitoring to fish farming. It has a measurement 

range of 0-100 mg/L with an accuracy of ± 0.05 mg/L. The response time of the sensor 

is ~0.3 mg/L/sec. The sensor can be used for environmental monitoring, wine testing, 

fish farming, and hydroponic applications [114]. 

(d) Oxidation Reduction Potential Sensor 

The ATLAS scientific ORP sensor has a measurement range of ± 2000 mV with an 

accuracy of ±1 mV. The sensor response time is 95% in 1 sec. Because of the probe's 

chemical inert body, it can be exposed to fluorinated compounds and other potent 

oxidizers and reducers that would ordinarily damage a lower-quality ORP probe. The 

Atlas Scientific lab-grade ORP probe provides accurate results in bizarre chemicals also 

[115]. 

(e) Temperature Sensor 

The ATLAS scientific platinum sensor (PT-1000) has a measurement range from -

200ºC to +850ºC. It is a Class-A high purity platinum sensor. The platinum sensor 

within is quickly heated by the 304 stainless steel tip, resulting in short latency and high 

precision readings [116].   

All the water quality sensors have their dedicated signal conditioning circuits 

[117]–[121], making them suitable for quick connection and measurement from any 

controller board which supports UART, SPI, or I2C communication protocol. The pH 

and ORP sensors are based on electrochemical technology. The DO sensor is 

membrane-based, and a 2-probe measuring technique is used for the conductivity 

sensor. The unit and measurement range of water quality sensors is shown in Table 3.1. 
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Table 3.1 Water quality parameters: unit and measurement range 

Parameter Unit Measurement Range 

Dissolved Oxygen (DO) mg/l 0 to 100 

Temperature ºC -200 to 850 

Electrical Conductivity (EC) µS/cm 5 to 200,000 

Oxidation Reduction Potential (ORP) mV -2000 to 2000 

pH moles/L 0 to 14 

3.2.2. Core Controller 

The Raspberry Pi is used as a core controller in the experimental test-bed setup for 

data acquisition and further processing. The proposed system architecture uses 

Raspberry Pi 3 as a core controller. It is a credit card-sized mini-computer operating on 

a 5V micro-USB power supply with an ARM cortex A-53 quad-core 1.2 GHz 64-bit 

CPU. It has many onboard components like four USB ports, 40 GPIO pins, one Wi-Fi 

and one Bluetooth module, one camera connector, one HDMI port, one display 

connector, one Micro SD slot, LEDs for the status indicator, and one Ethernet port 

[122]. The Debian OS is installed in a Micro SD card inserted in the SD card slot. 

Different applications of the Raspberry Pi can be found in  [123]–[127]. Many 

controller boards are available in the market, such as Arduino, NodeMCU, Raspberry 

Pi, etc. The main advantage of using Raspberry Pi over other development boards is 

that it has almost every module on board. Hence, there is no need to interface any 

module externally. Additionally, the computational capability of Raspberry Pi is much 

better than other controller boards. A diagram of Raspberry Pi (Model No. 3 B+) with 

detailed information is shown in Figure 3.1. 

3.2.3. Display Screen 

A 7-inch touchscreen from Waveshare (firmware 2.1) [128] was used for the 

interactive human-machine interface (HMI) and displaying the results acquired from 

measurement and analysis. The LCD screen resolution is automatically set while 

connecting to windows OS. In the case of Raspberry Pi, the screen resolution needs to 

be set manually by editing the root file of the Debian OS; otherwise, the LCD screen 
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will not work. This touch screen supports multi-touch up to 10-points. A detailed 

schematic of the Waveshare touch screen is shown in Figure 3.2.  

 

Figure 3.1 Raspberry Pi 3 B+ board detailed schematic 

  

(a) Front View     (b) Back View 

Figure 3.2 Waveshare 7-inch touch screen 

3.2.4. Pump and driver circuitry 

The peristaltic pump is used in this work to automate water intake and throughput 

from the sample container. It is a type of positive displacement pump in which a flexible 
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tube is inserted within a circular pump casing to confine the sample. Most peristaltic 

pumps use rotary motion to carry the sample. Several rollers are attached to the rotor's 

external circumference, compressing the flexible tube as it rotates. A peristaltic pump 

and schematic of the pump head are shown in Figure 3.3. A 12V power supply operates 

the DC motor attached to the pump head.  

       

(a)        (b)  

Figure 3.3 Peristaltic pump and pump head 

An L298N driver module was used for driving the pump in both directions, 

clockwise and anticlockwise. The speed and direction can both be controlled using the 

module. The direction can be changed using H-bridge, and the speed can be controlled 

by Pulse Width Modulation (PWM). Figure 3.4 shows the L298N driver module, which 

was used in this work. Four DC motors or two motors with directions can be controlled 

with this module. The specifications of the driver module are shown below [129]. 

• Model No – L298N 2A 

• Dual H Bridge 

• Maximum Voltage – 46 V 

• Minimum Current – 2A 

• Logical Current – 0-36 mA 

• Maximum Power – 25 Watt 

• Heatsink for better performance 

• Current Sensor for motor 
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Figure 3.4 L298N motor driver module 

3.2.5. Zigbee Module 

A Zigbee module is used in this work for wireless data transmission for water 

quality monitoring in a distribution network. It is a series 2 module (S2C), which 

provides a low-cost wireless solution for device development. The Zigbee module is 

based on the wireless communication protocol standard IEEE 802.15.4. It is most 

widely used in home automation applications. The data transmission rate is 250 Kbps 

(RF) and up to 1 Mbps (serial). The coverage range of the Zigbee module is 200 feet 

indoor and 1200 meters outdoor. It has a low transmission power of 3.1 mW (+5 dBm) 

and supports up to 16 channels [130]. Figure 3.5 depicts a Zigbee module. 

Figure 3.5 Zigbee module 

3.2.6. Arduino and NodeMCU Development Boards 

The Arduino is an open-source prototype used to read the sensor output, activate an 

actuator, and publish the data online. It consists of an ATmega2560 microcontroller, 

which can be programmed using embedded C or C++ in the Arduino software 
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Integrated Development Environment (IDE). The Arduino board has several analog and 

digital channels along with 6-PWM channels to sense the input and generate the output. 

The communication between sensors and Arduino is done through the UART protocol 

[131]. The NodeMCU development board is based on the ESP8266 controller, which 

combines GPIO, UART, I2C, PWM, and ADC on a single board. It is an open-source, 

simple, low-cost, programmable, and Wi-Fi-enabled IoT platform [132]. A detailed 

pinout schematic of the Arduino and NodeMCU development boards is shown in 

Figures 3.6 and 3.7, respectively. 

 

 Figure 3.6 Arduino development board schematic 

3.2.7. Power Supply and Protective Case 

A 5V-2A adaptor operates the Raspberry Pi development. A 3.3V supply to operate 

the water quality sensors and interfacing circuitry is available on the Raspberry Pi 

board. Additionally, a 12V Switch Mode Power Supply (SMPS) is used for the motor 

as the 5V adaptor cannot supply the current and voltage needed for the peristaltic pump. 

A case made of a Perspex sheet has been used to protect all the components of the 

system. The dimensions of the case are 30x30x30 cm3. 
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Figure 3.7 NodeMCU development board schematic 

3.3. Benchmark Instrument 

The reference data used for calibration and evaluation of the developed system was 

obtained from an Industrial-grade water quality monitoring system. Exo-1 

Multiparameter Sonde as shown in Figure 3.8. It is imported from YSI Incorporated, 

Yellow Springs, Ohio, USA [133]. It is a highly versatile instrument having the ability 

to monitor various water quality parameters such as conductivity, dissolved oxygen 

(DO), oxidation reduction potential (ORP), pH, turbidity, total dissolved solids (TDS), 

total suspended solids (TSS), and salinity. It can be used for marine water, freshwater, 

surface water, groundwater, and estuarine water. The reference is calibrated regularly 

to maintain its accuracy. The sampling time of the benchmark is ~30 seconds. The 

measurement can be done with a wired connection or wireless via Bluetooth in the 

computer attached. It is a very robust instrument and can be deployed anywhere in the 

field. There are four universal ports in the reference instrument. The sensor can be 

connected to any port. It will automatically identify the sensor and measures the water 

quality parameter accordingly. The sensor specifications are shown in Table 3.2. 
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Figure 3.8 Exo-1 multiparameter sonde 

Table 3.2 Benchmark instrument sensor specifications 

Sensor Unit Measurement 

Range 

Accuracy 

pH  Moles/L 0-14 ±0.1 pH units within ±10°C of 

calibration temperature; ±0.2 pH 

units for entire temp range 

DO Mg/L 0-50 0-200%: ±1% reading or 1% air 

sat., whichever is greater; 200-

500%: ±5% reading 0-20 mg/L: 

±1% of reading or 0.1 mg/L; 20-50 

mg/L: ±5% reading 

ORP mV -999 to +999 ±20 mV in Redox standard 

solution 

EC  mS/cm  0-200 0-100 mS/cm: ±0.5% of reading or 

0.001 mS/cm, whichever is 

greater; 100-200 mS/cm: ±1% of 

reading 

Temperature ºC -5 to +50 -5 to 35°C: ±0.01°C 

35 to 50°C: ±0.05°C 

 

 

Sensors
High Impact 

Xenoy Housing

6-Pin Cable 

Connector

LED Status, Magnetic 

Switch and Bluetooth 

Assembly
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3.4. Proposed Framework  

A major part of the hardware development is the integration of different modules 

with the core controller. As discussed earlier, five water quality sensors were selected 

and characterized. The sensors are arranged in an array to make a Multi-Sensor Array 

(MSA), as shown in Figure 3.9.  

The hardware was developed on a step-by-step basis, starting from sensor 

interfacing to experimental testbed setup to final prototype development. The MSA was 

connected to a signal conditioning circuit dedicated to each sensor. The signal 

conditioning circuit can provide raw data (voltage) and the measured water quality 

parameter. Then the signal conditioning circuits were connected to the core controller 

(Raspberry Pi) through a multiplexer to extend the UART channels as the Raspberry Pi 

has a limited number of UART. A keyboard and a mouse were also interfaced with the 

Raspberry Pi for programming and user interfacing. The interfacing of water quality 

sensors to Raspberry Pi is shown in Figure 3.10.  

 

Figure 3.9 Multi-Sensor Array (MSA) 
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(a)

(b)

Raspberry Pi 

Board

Serial Port 

Expander

MSA Connectors with 

Signal Conditioning Circuit

 

Figure 3.10 Experimental testbed setup 

Initial experiments were performed on this setup by manually pouring the sample 

into the container and placing the sensor array in the container. The next step in the 

final hardware development was the automation of measurement. The peristaltic pump 

was used for auto intake and throughput. The SMPS was used to supply sufficient 

voltage and current to the peristaltic pump. The proposed schematic and final developed 

prototype are shown in Figures 3.11 and 3.12, respectively. The specifications of the 

developed prototype are given in Appendix B.  
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Figure 3.11 Schematic of water quality monitoring system 
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(a) Front view                                          (b) Back view 

Figure 3.12 Prototype system 

3.5. Software Framework Development 

3.5.1. Python-Programming Software 

Python is an open-source software platform, which is freely distributable or usable 

for educational and commercial use. It was suggested by the DST project review 

committee. Python was coined by Guido Van Rossum in the late 1980s, and its first 

version was released in December 1989. Afterward, many versions were released. The 

latest version is Python 3.9.7, which was released on 31st August 2021. The Python 

software can be downloaded from www.python.org. Different sample scripts, modules, 

tools, or documentation can also be downloaded from the Python site. It supports 

object-oriented programming and graphical programming as well. It can be used for 

data analysis, exploration, and visualization by embedding different libraries [134]. The 

programming for the experimental procedure was written in Python V3.7, which was 

installed in the Debian OS on the Raspberry Pi board. Many scientific packages, e.g., 

NumPy, SciPy, scikit-learn and Matplotlib have been embedded in the programming 

for the proposed system.  

 

 

http://www.python.org/
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3.5.2. Interactive User Interface 

The graphical representation was provided for real-time data obtained from various 

sensors with the help of the GUI platform for the interactive HMI. An interactive GUI 

has been designed in the Python framework with a touch interface. Initially, the user 

login function is provided to enter the GUI, as shown in Figure 3.13. The touch interface 

is provided for ease of operation for the operator. In the GUI, the operator can select 

the measurement from the menu, whether it is an individual parameter or the overall 

water quality, with a single touch (refer to Figure 3.14). The acquired data were kept 

for future use by saving them in a memory drive provided with the Raspberry board. 

The live plotting of data is shown in Figure 3.15. The x-axis represents time, and the y-

axis represents the sensor node reading. 

 

Figure 3.13 Login panel to access GUI 

 

Figure 3.14 Interactive user interface 
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Figure 3.15 Conductivity plot in GUI 

3.6. Experimental Procedure 

3.6.1. Study Area and Sample Collection 

The sample collection area in this study is BITS-Pilani, Pilani campus, which is 

located at the Pilani town in Rajasthan province of India, which comprises an area of 

1320 acres (5.3 km2). This area is located at 28° 21′ 49.96″ N and 75° 35′ 13.26″ E. Six 

different locations have been considered for the sample collection. The only source of 

water on the campus is groundwater. There are different wells located on the campus, 

which have been targeted for sample collection. 

3.6.2. Calibration of the sensors 

The calibration should be done before the measurement to get accurate readings 

from the sensors. We have calibrated the water quality sensors using reference solutions 

at ambient temperature. The reference solutions for the pH sensor are 4 pH, 7 pH, and 

10 pH. The conductivity sensor was calibrated using a 1000 µS/cm reference solution. 

The DO sensor was calibrated using 0 mg/l solution, and the ORP sensor using a 225-

mV reference solution (refer to Appendix B). A 3-point calibration was performed for 

the pH sensor, whereas the conductivity, DO, and ORP sensors were calibrated using 

1-point calibration [133]. This calibration procedure was followed for benchmark 
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equipment. For the developed system, the calibration procedure was the same for pH, 

DO, and ORP sensors. For the conductivity sensor, 2-point calibration was performed 

to cover a wide range of accuracy [135]. All the reference solutions were of analytical 

grade and non-toxic. 

         

 

Figure 3.16 Location of sample collection  
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3.6.3. Sample Collection Procedure 

The samples were collected from different wells located in the campus area 

mentioned above. The sample collection and subsequent testing were done on 

experimental test-bed setup (as shown in Figure 3.10) as well as the benchmark 

instrument. The sensors were calibrated with the reference solutions before the 

measurement procedure to avoid any uncertainty in the measurement.  

For the developed prototype, approx. 50 ml of the water sample for each sample 

measurement is injected from the sample container into the sample holder by the 

peristaltic pump. After the injection, the signals of the electrodes are acquired by the 

Raspberry Pi. After each measurement, the sample is throughput into the sample 

container. This measurement sequence was controlled by an algorithm written in 

Python installed on the Raspberry Pi board. The block diagram shown in Figure 3.17 

represents the overall process of the sample measurement. 

Awake and Scan 

Sensors

Water Sample 

Intake

Read Sensor 

Response

Water Sample 

Throughput

Sensors in Sleep 

Mode

 

Figure 3.17 Block diagram of sample measurement 

3.7. Summary 

Water quality monitoring before consumption is essential to reduce the risk of 

illness in an individual. The traditional chemical-based water quality approach 

consumes more time for sample collection and conveyance to the laboratory for testing. 

These conventional methods are now obsoleting due to the development of a real-time 

water quality monitoring system. The design and development of a water quality 

monitoring system are presented in this chapter. The proposed water quality monitoring 

system can provide the measurement of various water quality parameters. The 

measured parameters are pH, EC, DO, ORP, and temperature. Based on the acquired 

water quality parameters, the overall water quality can be defined based on the 

statistical method or soft computing technique, which has been presented in the next 

chapter.   



 

 

Chapter 4  

Data Analysis and Results 

Preamble 

After the data acquisition from the developed setup, the next essential step is water 

quality analysis. The water quality can be defined by either statistical method or soft 

computing method. Water Quality Index (WQI) is a unique rating for water quality 

monitoring. It represents overall water quality in a single term and helps decision-

makers evaluate the water quality and its possible usage. As discussed in the literature 

review chapter, people collect the measurement data and later perform the analysis for 

water quality monitoring, which is not real-time. This chapter deals with the data 

analysis employing different methods for water quality monitoring on the developed 

setup in a real-time environment right after the data acquisition. The classification of 

water quality employing fuzzy modeling is presented in this chapter. This chapter also 

deals with the WQI calculation by statistical method and Artificial Neural Network 

(ANN). The validation of measured water quality parameters has also been presented 

in this chapter. 

4.1. Introduction 

Data analysis is a process of visualizing, cleansing, smoothing, modeling, and 

analyzing the data, which helps in extracting information from the data and making 

decisions based on the analysis. We can relate data analysis with our day-to-day lives, 

analyzing our daily observations and making future decisions. The same happens with 

the data analysis. There are multiple ways for data analysis based on statistical 

modeling and soft computing techniques. The statistical modeling establishes the 

mathematical relationship between dependent and independent variables, which results 

in regression coefficients that can be used for the analysis. Various statistical modeling 

methods are Principal Component Analysis (PCA), Principal Component Regression 

(PCR), Multiple Linear Regression (MLR), and Partial Least Squares Regression 
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(PLSR). The soft computing methods are based on machine learning methods, such as 

Artificial Intelligence (AI) algorithms, fuzzy computing, and Genetic Algorithm (GA). 

Whilst talking about water quality analysis, three types of analysis are available based 

on indexing tool, statistical modeling and ANN, which have been discussed in the 

following sections. 

4.2. Indexing Tool for Water Quality Analysis 

Water Quality Index (WQI) is a specific and clear metric for policymakers to assess 

water quality and its potential applications. The WQI provides overall quality by 

integrating information from water quality sensors and converging information into a 

single value. Different aggregate functions include arithmetic aggregate mean, 

multiplicative aggregate function, harmonic mean, and geometric mean to calculate 

WQI [53]. The calculation of the WQI includes three necessary steps [136]. 

(a) Obtaining individual water quality parameters, 

(b) Transforming water quality parameters into subindices to represent them on the 

same scale 

(c) Applying an aggregate function to measure the WQI.  

The researchers developed several water quality indices based on the aggregate 

functions used, but there is no specific globally accepted method. Even though multiple 

aggregation algorithms have been devised, with various changes suggested, arithmetic 

mean, and multiplicative geometric mean functions remain the most widely used [137]. 

Choosing the best aggregation methodology is a never-ending task, given that each 

method has its own set of benefits and drawbacks. As a result, it is up to the water 

quality index (WQI) developers to use their expertise and knowledge to choose the most 

appropriate method, preferably with the minimum drawbacks. Based on the 

abovementioned facts, we have adopted the arithmetic mean aggregation method for 

WQI calculation. The water quality has been divided into five categories based on their 

uses, as shown in Table 4.1. The aggregate function for WQI calculation is given by 

Eq. (4.1). 

𝑾𝑸𝑰 =
∑𝑾𝒏𝑸𝒏

∑𝑾𝒏
     (4.1) 
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Where 𝑊𝑛 is the unit weight and 𝑄𝑛 is the rating for nth parameter. 𝑄𝑛 is given by 

Eq. (4.8). 

𝑸𝒏 =
𝑫𝒏−𝑫𝒊

𝑫𝒔−𝑫𝒊
∗ 𝟏𝟎𝟎     (4.2) 

Table 4.1 WQI: range, category, and possible application 

Water Quality 

Index 
0-25 26-50 51-75 76-100 >100 

Category Excellent Good Poor Very Poor Not suitable for 

any application 

Possible 

applications 
Industrial, 

irrigation, 

and 

drinking 

Industrial, 

irrigation, 

and 

drinking 

Industrial 

and 

irrigation 

purpose 

Irrigation 

purpose 

only 

Treatment is 

necessary 

before use 

 

Where 𝐷𝑖 is the optimal value for the parameter which is ‘0’ (with the exception of 

DO (14.6 mg/L) and pH (7.0)), 𝐷𝑛 is the value of nth parameter, and 𝐷𝑠 is the standard 

value. 𝑊𝑛 is determined by 𝑊𝑛 = 𝑘/𝐷𝑠. Here 𝑘 is the proportionality constant and given 

by Eq. (4.3). 

𝒌 =
𝟏

∑𝟏 𝑫𝒔⁄
           (4.3) 

Where 𝑠 = 1,2, … , 𝑛. The WQI range, it’s category, and possible application can be 

found in Table 4.1 [36]. Table 4.2 shows the standard value and calculated weight for 

each parameter. The constant of proportionality is calculated using Eq. (4.3) and is 

equal to 2.875. 

Table 4.2 Standard values and calculated unit weights for all the parameters 

Parameters Standard 

permitted limit 

Calculated weight 

Temperature  35  0.088  

pH 6.5-8.5 0.365 

Dissolved Oxygen 5 0.62 

Oxidation Reduction Potential 600 0.0051 

Electrical Conductivity 1,000 0.0031 
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After the calculation of unit weight, the WQI is calculated using Eq. (4.1). The 

measured water parameters and their calculated water quality index is shown in Table 

4.3. From Table 4.3, it can be found that two samples are of good quality, which can be 

used for industrial, irrigation and drinking purposes. The remaining samples are of poor 

quality and can only be used for irrigation purposes and agriculture. 

Table 4.3 Measured water quality parameters and their calculated WQI 

Location pH EC DO ORP Temp WQI Category 

1 7.45 385 8.20 213 22.5 49.7051 Good 

2 7.62 435 7.90 212 21.5 55.4431 Poor 

3 6.95 510 9.50 185 19.6 30.7766 Good 

4 8.1 390 9.23 171.1 18.9 55.9950 Poor 

5 7.8 445 8.05 191 23.8 58.9636 Poor 

6 8.2 1582 7.5 170.5 29.2 73.5747 Poor 

4.3. Statistical Modeling for Water Quality Analysis 

Different regression methods are available, such as multiple linear regression 

(MLR), principal component regression (PCR), and partial least squares regression 

(PLSR). The MLR is the basic of the regression analysis, but the disadvantage of this 

regression modeling is that it cannot handle missing data and collinearity. This can be 

handled by PCR analysis. The principal components of X are used as independent 

variables in PCR to predict the response variable Y. This approach focuses solely on 

variables that describe X. Unlike PCR, PLSR identifies X components that are 

significant for Y also. In this study, the PLS regression (PLSR) method is used for the 

water quality indexing of different water samples. PLSR projects the input and output 

matrix to the direction of maximum covariance and is utilized to model the relationship 

between the score matrix of two data sets: X-data and Y-data. Here X is the input data 

matrix (measured water quality parameters), and Y (WQI) is the output or response data 

matrix given by Eqs. (4.4) and (4.5).  
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After centralization 𝑋 and 𝑌 are decomposed into the form [138] given by Eqs. (4.6) 

and (4.7).  

𝑋 = 𝑚1𝑜1
𝑇 +𝑚2𝑜2

𝑇 +⋯+𝑚𝑛𝑜𝑛
𝑇 = 𝑀𝑂𝑇 + 𝑅        (4.6) 

𝑌 = 𝑛1𝑝1
𝑇 + 𝑛2𝑝2

𝑇 +⋯+ 𝑛𝑛𝑝𝑛
𝑇 = 𝑁𝑃𝑇 + 𝑆         (4.7) 

Where 𝑀 and 𝑁 are score matrices, 𝑂 and 𝑃 are loading matrices, 𝑅 and 𝑆 are 

residuals of input and output data matrix, respectively. The relation between 𝑀 and 𝑁 

is known as inner relation [139], and coefficient 𝐵 of this inner relation (𝑁 = 𝑀𝐵) is 

called regression coefficient. Now, the final response of matrix 𝑌 can be expressed as 

Eq. (4.8). And the residuals can be found out using Eq. (4.9) and (4.10). 

𝑌 = 𝑀𝐵𝑃𝑇     (4.8) 

𝑅 = 𝑋 −  𝑀𝑂𝑇    (4.9) 

𝑆 = 𝑌 −  𝑁𝑃𝑇    (4.10) 

The regression coefficients are used to determine the relationship between the input 

data matrix 𝑋 and the output data matrix 𝑌. A PLS flow diagram is shown in Figure 

4.1, and a detailed description of the PLS algorithm is explained in Annexure D. 
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Figure 4.1 PLS flow diagram 

The water quality is defined using an index rating (water quality index (WQI)) 

developed by the PLSR technique. The dataset was generated using uniformly 

distributed random numbers, and different categories were assigned to the water quality 

parameters according to their range, as seen in Table 4.4. 

Table 4.4 Different water quality parameters, their range, water quality, and defined 

rating 

Water Quality Parameters Water 

Quality 
Rating 

pH  EC DO ORP Temp. 

(6.5-7.5) (0-250) (10-15) (150-400) (20-25) Excellent Class I 

(7.5-8.5) (250-500) (8-10) (400-600) 
(15-20) & 

(25-30) 
Good Class II 

(6-6.5) & 

(8.5-9) 
(500-1000) (4-8) (600-800) 

(10-15) & 

(30-35) 
Satisfactory Class III 

(4-6) & 

(9-11) 
(1000-2000) (2-4) 

(0-150) & 

(800-1000) 

(5-10) & 

(35-50) 
Poor Class IV 

(0-4) & 

(11-14) 
(>2000) (0-2) (>1000) 

(>50) & 

(<5) 
Bad Class V 

To assign different categories for water quality parameters, reference [140] has been 

referred. A total of 1800 samples were used in the modeling. The parameters used in 

modeling are pH, EC, DO, ORP, and temperature. The PLSR model was constructed 

using a scikit-learn python library. The water quality index was calculated for 50 
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iterations to ensure the model’s reproducibility. The plot for model calibration and 

validation is shown in Figure 4.2. The regression coefficients and PLSR-WQI equation 

is shown in Eq. (4.11). The same equation was applied to calculate PLSR-WQI for real 

water samples also.  

𝑃𝐿𝑆𝑅 −𝑊𝑄𝐼 = 4.2556 + 0.0024 ∗ 𝑝𝐻 + 0.0003 ∗ 𝐸𝐶 − 0.2590 ∗ 𝐷𝑂 + 0.0001 ∗

𝑂𝑅𝑃 − 0.0006 ∗ 𝑇𝑒𝑚𝑝     (4.11) 

 

(a) Model Calibration 

 

(b)  Model Validation 

Figure 4.2 Predicted vs. reference for model calibration and validation 
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4.4. Soft Computing for Water Quality Analysis 

Soft computing can be defined as a collection of computational methods based on 

artificial intelligence mimicking the human brain. The word “Soft Computing” was first 

introduced by Zadeh in 1992. Unlike hard computing techniques, soft computing 

methods are robust, fast, accurate and cost as well as computationally effective. The 

distinctive advantages of soft computing are as follows. 

• Multiple variables can easily be handled. 

• These techniques are scalable and have adaptive nature. 

• The hybridization of different soft computing techniques can be done, which 

reduces the traditional packages dependency. 

• Local minima can be prevented in optimization problems. 

Different techniques, such as fuzzy modeling, Artificial Neural Networks (ANN), 

and Genetic Algorithm (GA), were used to usher soft computing in the computing 

world. Later scope of these techniques was extended to encompass the particle swarm 

optimization (PSO) and bacterial foraging algorithm (BFO) [141]. In this work, fuzzy 

modeling and ANN have been used for water quality analysis, which are discussed in 

the following sections. 

4.4.1. Fuzzy Modeling for Water Quality Analysis 

There are two approaches for obtaining the information required to design, evaluate, 

and implement real-world engineering systems. One method gathers knowledge 

through sensors in experimental measurements, while another extracts expert 

knowledge in linguistic form. The language information is simple to comprehend and 

apply. Expert systems are systems that are built on expert knowledge. The primary goal 

behind the development of fuzzy systems is to create a systematic and efficient 

mechanism to express expert knowledge. Among the numerous artificial intelligence 

methodologies, fuzzy modeling is one of the most appealing strategies. 

The fuzzy inference system (FIS) can include vagueness in decision-making and 

reasoning. Hence, techniques based on fuzzy logic have proved very useful since they 

are less mathematically intensive than neural networks, genetic algorithms, etc., and 
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they support approximate reasoning. In FIS, knowledge is presented as linguistic rules. 

The inputs are converted from a crisp value to a linguistic variable by fuzzification, and 

these variables are fed to the inference system. This interference system gives a new set 

of linguistic variables converted to a crisp value with the help of defuzzification [142]. 

The process to design fuzzy logic thus involves three necessary steps as shown in Figure 

4.3: (1) define the membership function for each variable, (2) perform fuzzy inference 

based on the inference method, and (3) select the defuzzification method to determine 

water quality. 

 

Figure 4.3 Fuzzy logic designing process 

The proposed fuzzy logic was implemented in Python with the help of a library 

developed by the SciKit-Fuzzy development team [143] to define the water quality 

from groups of five linguistic variables defined as bad, poor, satisfactory, good, and 

excellent. The fuzzy system uses the Mamdani implication model, which takes five 

inputs: pH, electrical conductivity (EC), oxidation reduction potential (ORP), dissolved 

oxygen (DO), and temperature. The Mamdani FIS produces a more accurate response 

than the Takagi–Sugeno type model since it uses the centroid method of defuzzification. 

The defuzzified output of the model is water quality, which corresponds to five inputs 

of the model. In this work, the Mamdani-type FIS model was implemented for the 

decision support system since it has a spontaneous and rule-based decision-making 

capability. The modeling was performed based on five input parameters and one output 

parameter to determine the water quality. The selection of the membership function was 

made based on the complexity of the system considered for decision-making. 

1
• Define membership function for each input variable

2
• Perform Fuzzy inference based on the inference method 

3
• Selection of Defuzzification method to define water quality
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Triangular membership functions (MFs) are the most commonly used membership 

functions because of their linear nature and ease of implementation [144], [145]. Hence, 

we have selected a triangular MF to fuzzify the crisp variable into a linguistic one. The 

triangular membership function depends on three parameters, l, m, and n, given by Eq. 

(4.12). 
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   (4.12) 

The logic operations used in the fuzzy logic are min, max and complement. These 

operations are defined by the Eqs. (4.13), (4.14), and (4.15), respectively. A and B are 

two subsets. 

 𝜇𝐴∪𝐵(𝑥) = max [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]   (4.13) 

𝜇𝐴∩𝐵(𝑥) = min [𝜇𝐴(𝑥), 𝜇𝐵(𝑥)]   (4.14) 

𝜇𝐴̅(𝑥) = 1 − 𝜇𝐴(𝑥)     (4.15) 

After the logic operations, the “if-then” rule was applied. All the rules were applied 

in parallel, and the rule which did not affect the output was ignored. The outputs of all 

rules were then aggregated, and all fuzzy sets that affect the output were combined into 

a single fuzzy set. Finally, the fuzzy set was converted into a crisp set through 

defuzzification, in which a single number was generated. There are several methods for 

defuzzification, such as the centroid, maximum, mean of maxima, height, and modified 

height method. In this work, the centroid defuzzification method was used, which is the 

most popular method. The output was calculated by averaging individual centroids, 

weighted by their heights as given by Eq. (4.16) [146]. 
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where 𝜇(𝑢𝑖) is the min and max value of the membership degree of the input values 

(depends on min and max operator). Here, we have assigned two groups to each water 

quality parameter: desirable (DES) and undesirable (UNDES), as described in Table 

4.5. The triangular membership functions for each water quality parameter are shown 

in Figure 4.4. If the parameters are in the desirable range, then only fuzzy logic has 

been applied; otherwise, not. For example, if the pH is in the range of 6.5 and 8.5, the 

assigned group is DES; similarly, if pH < 6.5 or pH > 8.5, the assigned group is 

UNDES. In the same way, the group is checked for all five water quality parameters. 

After checking the desirable group, the individual membership function is assigned to 

each parameter. Also, we have defined the membership function for water quality on a 

scale of 0 to 100. After assigning the membership functions, the if-then rule was 

applied, and overall quality was defined based on the adopted rule-based formulation. 

Table 4.5 Groups defined for water quality parameters 

          Range 

Parameters 
UNDES DES UNDES 

pH < 6.5 6.5-8.5 > 8.5 

EC < 300 300-1000 > 1000 

ORP < 200 200-800 > 800 

DO < 3 3-11 > 11 

Temperature < 2 2-35 > 35 

     * UNDES = undesirable DES = desirable 
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Figure 4.4 Input and output membership functions 

4.4.1.1. Experimental Procedure and Results 

The developed system has been tested for water samples from five different 

locations. The sensors were calibrated before the measurement to get accurate readings. 

The calibration has already been discussed in chapter 3. Initially, the measurement 

iteration was carried out for at least 5 min so that sensor reading became stabilized 

because the original readings must be recorded only after the sensor attains stability in 

order to make any conclusive decision out of data. The system was tested for a total 

duration of 21 hours over seven days. The average values of the experiment for all 

locations are shown in Table 4.6. Locations 1 to 5 are the drinking-water samples from 

the distribution networks, and the samples from locations 6 to 8 are the simulated sensor 

readings. This was done to validate the sensor readings, as the acquired results from the 
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distribution networks are in real-time. Hence, sensor readings do not have much 

variation within the desirable range. All the targeted parameters were measured through 

the developed system and benchmark instrument as well. The results obtained from 

MSA were accumulated through the fuzzy inference system implemented in the Python 

framework. The water quality defined by the fuzzy modeling is shown in Table 4.7. 

The water quality is good for locations 1, 2, 4, and 5 in the distribution network and 

satisfactory for location 3. For locations 6 to 8, the water quality is poor. To measure 

the accuracy of the developed system and for the authenticity of the results acquired, 

the proposed system was compared with the benchmark instrument, and the percentage 

relative error (PRE) was calculated [147]. PRE expresses the percentage error to 

determine the accuracy given by the following formula. 

100
actual observed

PRE *
actual

− 
=  

 
             (4.17) 

Table 4.6 Measured water quality parameters and their calculated PRE 

(a) pH, DO and EC 

L
o
ca

ti
o
n

 

pH DO (mg/l) EC (µS/cm) 

MSA 

B
en

ch
m

a
rk

 

PRE 

(%) 
MSA 

B
en

ch
m

a
rk

 

PRE 

(%) 
MSA 

B
en

ch
m

a
rk

 

PRE 

(%) 

1 7.45 7.51 0.8 8.20 8.16 0.49 385 387 0.51 

2 7.62 7.68 0.78 7.90 7.89 0.13 435 426 2.1 

3 6.95 6.99 0.57 9.50 9.47 0.32 510 515 0.97 

4 8.1 8.2 1.2 9.23 9.21 0.22 390 385 0.13 

5 7.8 7.87 0.88 8.05 7.98 0.88 445 455 0.22 

6 8.2 8.21 0.12 7.8 7.7 1.2 1582 1576.2 0.36 

7 8.1 8.04 0.75 7.5 7.4 1.35 1635 1621.8 0.81 

8 8.1 8.01 1.12 7.5 7.4 1.35 1672 1662.1 0.59 
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(b) ORP and Temperature 

Location 
ORP (mV) Temperature (ºC) 

MSA Benchmark PRE (%) MSA Benchmark PRE (%) 

1 213 212 0.47 22.5 22.7 0.88 

2 212 210 0.95 21.5 21.3 0.93 

3 185 187 1.06 19.6 19.7 0.50 

4 206 208 0.96 18.9 19.1 1.04 

5 191 194 1.54 23.8 24.1 1.24 

6 170.5 168.5 1.18 29.2 28.98 0.76 

7 170.9 168.7 1.30 30.1 29.84 0.87 

8 171.1 168.4 0.58 30.5 30.21 0.96 

The calculated PRE is presented in Table 4.6 for all the samples, and the graphical 

representation is shown in Figure 4.5. The x-axis shows the different locations, and the 

y axis displays the corresponding calculated PRE. For all the acquired water quality 

parameters, the PRE lies in between 0 % and 2 %, except EC, which is in the range of 

0 % to 3 %, thus showing the good accuracy of the sensors used. Based on the results 

of the parameters obtained from MSA, water quality has been defined for all the 

locations using fuzzy libraries, as shown in Table 4.7. 

 

Figure 4.5 PRE calculated for different locations 



Chapter 4. Data Analysis and Results  59 

 

 

Table 4.7 Fuzzy water quality for all locations 

Location Fuzzy Water Quality (FWQ) 

1 Good 

2 Good 

3 Satisfactory 

4 Good 

5 Good 

6 Poor 

7 Poor 

8 Poor 

4.4.2. Artificial Neural Network (ANN) for Water Quality Analysis 

The ANN can mimic the human brain as this has been inspired by a biological 

neural network. McCulloch first coined the ANN in 1943. The ANN may be seen as a 

parallel processor, which stores knowledge as well as performs computing. It can learn 

in either supervised mode or unsupervised mode. Figure 4.6 depicts the structure of an 

ANN neuron in which the input variable can be represented as a matrix (𝐴) of the 

dimension 𝑁𝑥1. These inputs are fed to the neuron, where they are multiplied by 

weights (𝑤𝑖). Then these weighted inputs are summed up, and a bias (𝑏) is added. The 

output of the neuron can be denoted as 𝑥. The final output 𝑦 is the transfer function of 

𝑥, represented by Eq. 4.18. 

𝑦 = 𝑓(𝑥) = 𝑓(𝑤𝐴 + 𝑏)   (4.18) 

In the ANN network, the neurons are placed in parallel, and this parallel form of 

the neuron is collectively called a layer. Layers may be arranged one after the other as 

the complexity of the neural network grows, with the output of one layer acting as the 

input to the next. Each layer does not have to have the same number of neurons. There 

are three basic steps to implement the ANN as follows: 
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1. Data generation: The weights and biases of every neuron in all layers have a 

significant role in how a neural network works. The input-output linkages in the 

given problem are studied to determine these values. As a result, a neural network 

for the problem requires a large quantity of accurate, pre-determined input and 

output. This information can be gathered by experimentation or simulation. 

2. Training: By modifying its weights and biases, the neural network ‘learns' to 

produce the desired output. i.e., a neuron learns a certain rule, alters its weight and 

bias, and trains itself to produce a specific set of outputs. Perceptrons—computer 

models that can imitate the brain's ability to discriminate—are used throughout the 

process. 

3. Testing: The neural network is tested for specified test vectors, and the outputs are 

inspected and validated for accuracy after obtaining the optimal weights and biases 

of the neurons. The values for the weights and biases can be regarded as finalized 

if the desired results are obtained.  
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Figure 4.6 Structure of an ANN neuron 

A multi-layer perceptron (MLP), the most popular supervised ANN model, is used 

in this work for water quality rating calculation. It consists of three layers: the input 

layer, hidden layer and output layer. All three layers have the computational units called 

nodes which mimics human biological neuron. All the nodes of a layer are connected 
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to the adjoining layer but not connected to each other. There is no feedback connection 

in the entire architecture, as seen in Figure 4.7. Hence it is known as feed-forward MLP 

(FF-MLP) architecture. 
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Figure 4.7 3-layered feed-forward MLP architecture  

The input layer corresponds to the different water quality parameters (i.e., 

independent variables), and the output layer corresponds to the water quality rating 

(WQR) (i.e., dependent variable). Several activation functions have been used in the 

literature for MLP architecture, such as linear, logistic, tanh, threshold, and Gaussian. 

The logistic activation function (𝑓(𝑥) = 1 (1 + 𝑒−𝑥)⁄ ) has been used in this work. In 

the hidden layer, if the number of nodes is too less, the training of the network will not 

be proper. And if the number of nodes is too high, the ANN model will be complex. 

Hence, the mean square error (MSE) or quadratic or L2 loss function was used for 

optimization given by Eq. (4.19). 

𝑀𝑆𝐸 =
∑ (𝑦𝑖

𝑡−𝑦𝑖
𝑝
)2𝑛

𝑖=0

𝑛
    (4.19) 

Where 𝑦𝑖
𝑡 is the target variable and 𝑦𝑖

𝑝
 is the predicted variable. The number of 

nodes was selected based on the MSE loss function for training & validation and found 

to be 30. The same can be observed in Figure 4.8 that with 30 hidden nodes, we are 
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getting minimum MSE-T (Mean Square Error for Training) and MSE-CV (Mean 

Square Error for Cross Validation). The overall architecture of MLP consists of 5-input 

layer nodes (water quality parameters, i.e., independent variables), 30-hidden layer 

nodes (logistic activation function), and 1-output node (water quality rating, i.e., 

dependent variable). 

     

Figure 4.8 Hidden nodes vs. MSE-T and MSE-CV 

4.4.2.1. Training and analysis of the Proposed Architecture 

The dataset was developed according to the water quality parameter range and their 

water quality rating, as shown in Table 4.8. The same dataset was used for training in 

Python using the scikit-learn library. The dataset was divided into a 70:15:15 ratio for 

training, testing, and validation. The user can choose the range according to the 

geological conditions and the local water quality. The training and analysis procedure 

is explained in Figure 4.9. The generated dataset, based on the range of the water quality 

parameters, was imported and applied as input to the proposed ANN model. After the 

modeling, 15% of data was used for validation, followed by 15% data for testing of 

unknown samples. The programming for the presented workflow is done in Python. 
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Table 4.8 Quality, rating, and range for water quality parameters 

Water Quality Parameters Water 
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Figure 4.9 Data training and analysis procedure 

For the FF-MLP architecture, the dataset was generated for 1800 samples. The ratio 

of training, validation, and testing was kept at 70:15:15. The proposed ANN model was 

trained for 1260 samples with the defined water quality rating, and 270 samples were 

used for each validation and testing. The graph for training data vs. targeted water 

quality parameters is shown in Figure 4.10, and the plot for testing is shown in Figure 

4.11. The R2 of training and testing is 0.955 and 0.933, respectively, proving ANN to 

be beneficial for water quality indexing. 
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     Figure 4.10 Training vs. target regression plot                

 

Figure 4.11 Predicted vs. target regression plot 

The overall performance of the model is presented by the ROC curve, as shown in 

Figure 4.12. The ROC (receiver operating characteristics curve) is used to define the 

model sensitivity, which contains two parameters, namely true positive rate (TPR) and 

false positive rate (FPR). The TPR and FPR can be defined by Eqs. (4.19) and (4.20). 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (4.19) 
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
       (4.20) 

Where 𝑇𝑃 is the true positive, 𝐹𝑁 is the false negative, 𝐹𝑃 is the false positive, and 

𝑇𝑁 is the true negative. 

 

Figure 4.12 ROC for developed ANN model 

The suitability of the proposed ANN model for water quality monitoring has been 

studied in this section. The analysis shows decent results for the training and testing of 

the proposed ANN model and it can be stated that the proposed ANN model can be 

quite useful for water quality monitoring in smart water grid development. The alarm 

or early warning system for any leakage or contamination in the distribution network 

can be set up based on the water quality rating. 
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4.5. Summary 

The methodologies for data analysis to define overall water quality have been 

proposed in this chapter. The proposed methodologies were based on indexing tool, 

statistical modeling, and Artificial Neural Networks (ANN). The water quality was also 

defined into a single term in the range of 0 to 100, employing the aggregate mean 

method. Based on the WQI value, it will be easier for the decision-makers to categorize 

the water quality and take the necessary action. The fuzzy modeling was used to 

determine the water quality in different categories, such as ‘Excellent’, ‘Good’, 

‘Satisfactory’, ‘Poor’, and ‘Bad’ for easily understandable its uses to a layman. The 

fuzzy modeling employed in this work is an efficient way to predict the water quality 

in real-time compared to manual approaches. PLSR technique and FF-MLP 

architecture were also used to define the water quality in different classes. A synthetic 

dataset was generated to develop the proposed model, and the real-time samples were 

fed to the developed model, and water quality was defined. The dataset was divided 

into the ratio of 70:15:15 for training, testing, and validation. Currently, we have not 

added the E. Coli. in modeling, as mentioned in the category ‘C’ of CPCB water quality 

standards. No literature has been identified reporting E. Coli. in Rajasthan province, as 

the study area has dry weather conditions where the chance of growth of E. Coli. is very 

less. E. Coli. is present only where the storage container is not appropriately cleaned or 

old distribution pipeline or the pipeline leakage or bad sanitation condition [109], [110]. 

Although sensor technology has achieved the manufacturing of low-cost and 

portable water quality sensors, the sensors face drift sooner or later after installation. 

The drift may occur due to sensor aging, temperature & humidity variation, poisoning 

among the sensor array, or due to a combination of all. This sensor drift will demolish 

the calibration model of any instrument. This issue can be solved by calibrating the 

sensors, which is also a challenge for field-deployable instruments. An alternate 

solution is provided for the drift compensation based on ANN modeling in chapter 5.   



 

 

Chapter 5  

Drift Analysis and Compensation of Commercial 

Water Quality Sensors 

Preamble 

Although sensor technology has achieved the manufacturing of low-cost and 

portable sensors, there are specific issues in the multi-sensor systems used for water 

quality monitoring, which prevents these systems from the routine measurement of 

water samples. An important issue is drift; related to sensor readings, which may refute 

the calibration of sensors leading to the necessity of frequent recalibration of the 

sensors that required effort as well as shut down the system. An alternative approach 

for drift correction is based on the mathematical correction method. In this chapter, a 

regression calibration method employing an Artificial Neural Network (ANN) is 

devised. A feed-forward ANN-based regression model has been used to extend the 

calibration lifetime of sensors. The evaluation of the model was performed based on 

the Root Mean Square Error (RMSE) and the RMSE for cross-validation (RMSE-CV). 

The proposed model is also compared with the traditional statistical method and proved 

superior. The experimental results demonstrate the best performance with a negligible 

error rate. Based on the results of the current study, ANN appears to be more adaptive 

for data analysis in environmental monitoring applications. The introduction to drift, 

its causes, and compensation methods have already been discussed in chapter 2. In this 

chapter, only the adopted methodology and results will be discussed in detail. 

5.1. Reference Solutions 

The standard reference solutions used for the measurement were pH solution (4 pH, 

7 pH, and 10 pH), Electrical Conductivity (EC) solution (1000 µS/cm), Dissolved 

Oxygen (DO) solution (0 mg/l), and Oxidation Reduction Potential (ORP) solution (225 

mV). These solutions were purchased along with the water quality sensors from 

ATLAS Scientific, USA [111]. All the reference solutions used in the proposed work 
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were of analytical grade and non-toxic. The reference solutions used in this work are 

presented in Appendix A.  

5.2. Sensors and Their Measurement Procedure 

A total of four sensors were used for the record of measurement in this work: pH 

sensor, EC sensor, DO sensor, and the ORP sensor. The pH and ORP sensors are the 

electrochemical sensors; the DO sensor is membrane-based, and the EC sensor is 

electrode-based. All these sensors were calibrated with reference solutions (mentioned 

earlier) in the laboratory environment to avoid uncertainty in measurement. A 2-point 

and 3-point calibration were performed for the conductivity and pH sensor, 

respectively. The ORP and DO sensors were calibrated using 1-point calibration. The 

calibration procedure is explained in [148].  

A summary of water quality sensors, their sensor technology, recalibration time, 

and reference solution has been presented in Table 5.1. The recalibration time for pH, 

DO and ORP sensor depends on the uses (there is no fix time for recalibration), whereas 

the conductivity sensor does not need the recalibration once it is properly calibrated 

with reference solution as claimed by the manufacturer. 

Prior to measurement, the sample temperature was required to maintain at 25°C to 

prevent the deviation in readings due to temperature variation. During the experimental 

period, a total of 20 sessions for measurement were performed within 120 measurement 

days in the laboratory conditions. The experiment was uniformly distributed for a 

period of four months.  
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Table 5.1 Water quality sensors, their sensor technology, recalibration time and 

reference solutions 

Sensor Sensor Technology Recalibration Time Reference 

pH Sensor Reference Electrode 

(Ag/AgCl) 

There is no set schedule for 

recalibration. Depends on 

different uses. 

7 moles/L 

ORP Sensor Glass Electrode 

(Reference Solution not 

Specified) 

There is no set schedule for 

recalibration. Depends on 

different uses. 

225 mV 

Conductivity 

Sensor 

Two Probe 

Measurement Technique 

(Graphite Plates)  

Conductivity probes work 

by measuring the electrical 

current of the water 

between two graphite 

plates. The plates do not go 

bad or change, so 

recalibration is not 

necessary. After the first 

calibration, conductivity 

probe is good to go. 

1000 µS/cm 

DO sensor Membrane-PTFE 

(Polytetrafluoroethylene) 

There is no set schedule for 

recalibration. Depends on 

different uses. 

0 mg/L 

 

5.3. Spyder Platform-The Python Development Environment 

Spyder is a scientific development environment written in Python and designed for 

data analysts, engineers, and scientists. It is an open-source platform with inbuilt 

libraries that supports object-oriented dynamic programming and graphical 

programming as well. It has many in-built features, such as editing, analysis, 

debugging, data exploration, deep inspection, and data visualization as well. The 

environment is integrated with many scientific packages, including NumPy, SciPy, 

Matplotlib, SymPy and many more [149] so, these libraries need not be installed 

separately. This python environment is used for the ANN implementation in this work. 

The Spyder platform is shown in Figure 5.1. It has an editor window with syntax 
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highlighting, introspection, and code completion. In the help window, the user can get 

detailed information about any command and function at the time of programming. 

 

Figure 5.1 Spyder platform 

5.4. Proposed Artificial Neural Network (ANN) Architecture 

A fully feed-forward artificial neural network (FF-ANN) architecture with 3 layers 

(input, output, and hidden) has been used in this study, as shown in Figure 5.2. It 

consists of three consecutive layers: the input layer, output layer, and hidden layer. All 

three layers consist of computational nodes, which are represented by the circle. The 

input layer corresponds to the independent variables, which in this case, are drifted and 

targeted water quality parameters. The output layer corresponds to the corrected water 

quality parameters. Several activation functions can be used in the ANN architecture, 

such as linear, Gaussian, logistic, tanh, and threshold. In this work, three different 

activation functions were used in the ANN architecture given below.   

ReLu function:  𝑓(𝑥) = {
0    𝑓𝑜𝑟   𝑥 < 0
𝑥   𝑓𝑜𝑟   𝑥 ≥ 0

   (5.1) 

Logistic function:  𝑓(𝑥) =
1

1+𝑒−𝑥
     (5.2) 
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tanH function:   𝑓(𝑥) =
2

1+𝑒−2𝑥
− 1    (5.3) 
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Figure 5.2 An 8-input (drifted pH, DO, EC, ORP, and targeted pH, DO, EC, ORP) 

and 4-output (corrected pH, DO, EC, ORP) 3-layer feed-forward ANN architecture 

An optimization strategy was used to fix the number of hidden layer nodes, and it 

was found that for ReLu and tanH neurons, 45 nodes were giving the best results. 

Whereas, for logistic neurons, the number of hidden layer nodes could not be decided. 

The reason behind this will be discussed in the next section. The overall architecture 

has 8-input layer nodes (drifted and targeted water quality parameters, i.e., independent 

variables), 45-hidden layer nodes, and 4-output layer nodes (corrected water quality 

parameters, i.e., dependent variables). 

5.5. Data Pre-processing 

Data Preprocessing is a step in any Machine Learning process in which the data is 

transformed, or encoded, to get it to such a state that the algorithm can easily interpret 

the features of the data. In the sensor fusion method, the measured values from the 

sensors are on different scales. So, these measured parameters should be brought on the 

same scale for further analysis of data. It is crucial to identify the suitable preprocessing 



Chapter 5. Drift Analysis and Compensation  72 

 

 

technique so that the desired results are met. There are different preprocessing 

techniques available as discussed below [150]. 

5.5.1. Standardization 

Data standardization is the process of converting any distributed data into a normal 

distribution. In data standardization, the mean is subtracted from the data, and then the 

result is divided by standard deviation. The normal distribution will always have ‘0’ as 

mean and ‘1’ as standard deviation. Assume a data set 𝑋 = {𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛} with 

standard normal variate (𝑧) defined by 

𝑧 =
(𝑥−𝑥̅)

𝜎
     (5.4) 

Where 𝑧 represents the area covered by the distribution curve, positive values of 𝑧 

denote that the value is the right side of the mean and vice versa.  

5.5.2. Normalization 

In normalization, all the variables are converted to the same scale without changing 

the data pattern or losing any information. Min-max scaling is the basic method, in 

which all the values are converted between -1 and 1 {-1, 1} or 0 and 1 {0, 1}. If 𝑋 =

{𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛} is the data set, then the normalized value 𝑋𝑛 can be represented by  

𝑋𝑛 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
     (5.5) 

Where 𝑋𝑛 is the normalized value, 𝑋𝑚𝑖𝑛 is the minimum value from the column of 

dataset and 𝑋𝑚𝑎𝑥 is the maximum value. 

5.5.3. Multiplicative Scattering Correction (MSC)  

MSC is used in the spectroscopic data analysis for both offset variation correction 

(baseline correction) and scaling. The variation is common and is caused by the light 

scattering in the measurement sample. An additive and a multiplicative term are used 

in the equation defining the scattering contributions in addition to the spectral signal 

for a single spectrum.  
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𝑎 = 𝑥 + 𝑦𝑎̂ + 𝑒    (5.6) 

Here, 𝑎̂ is the reference spectrum, and 𝑥 & 𝑦 are the regression coefficients obtained 

from fitting the measurement sample spectrum (𝑎) with the reference (𝑎̂). Now the 

corrected spectrum is defined by the following equation. 

𝑎𝑚𝑠𝑐 =
(𝑎−𝑥)

𝑦
     (5.7) 

5.5.4. Data Smoothing 

The data smoothing technique is used for revealing patterns from data, removing 

outliers, and reducing noise. It also improves the Signal-to-Noise Ratio (SNR). The 

most popular technique for smoothing is moving average. This can be explained by a 

simple example of five points moving average filter. It takes the current value and four 

previous values and takes the average, then replaces the current value with the average 

value. The final smoothed data point is given by 

𝑌𝑚 =
∑ 𝑋𝑖𝑌𝑚
𝑛
𝑖=−𝑛

∑ 𝑋𝑖
𝑛
𝑖=−𝑛

               (5.8) 

In this work, Normalization is done to change the values of all columns in the 

dataset to a common scale without changing the differences in the range [151]. In our 

case, since all the water quality parameters are on a different scale, normalization is 

used to bring all the water quality parameters on the same scale. As all of the data is 

positive, we can normalize it between {0, 1}. The min-max scaling is used to normalize 

the data in the range of 0 to 1. The normalization in Python has been done using the 

sklearn MinMaxScaler library. 

5.6. Training and Analysis Procedure 

The simulation was done in the Spyder platform [152] using a scikit-learn (sklearn) 

library [143]. The sklearn library is built on NumPy, SciPy and Matplotlib. It is used in 

classification, regression, clustering, dimensionality reduction, model selection and 

preprocessing. The data set was generated using the recorded readings for every sensor 

during measurement days. The complete data was divided into training, testing, and 

validation in the ratio of 70:15:15. The training was performed up to a maximum of 
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2000 epochs. The learning rate was fixed at 0.0001. During the testing of 15% data, the 

trained model was used for prediction. The reason for analyzing the test set was to 

ensure whether the training model could be used for later analysis of the samples. For 

the remaining 15% data, 10-fold cross-validation was performed in the validation 

procedure in order to see that the model was working fine. 

5.7. Traditional Statistical Method 

The drift correction has also been attempted using a statistical method for testing 

and comparison. The principal component analysis based drift correction (PCA-DC) 

has been used in this study to compare with the proposed ANN model.  If the sensors 

show significant drift in reference solutions, the first principal component of PCA of 

reference describes the drift direction [153]. The loading vector 𝑃𝑟 of reference PCA 

model is used to determine the projection 𝑇𝑟 of the new measuement samples 𝑋𝑛𝑒𝑤. 

Now, subtracting the drift component from new measurement samples will give the 

new measurement matrix as given in Eq. (5.9). The scaling and transformation should 

be the same for both the reference and the measurement samples.  

𝑋𝑛𝑒𝑤
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑋𝑛𝑒𝑤 − 𝑇𝑟𝑃𝑟

′    (5.9) 

5.8. Performance Evaluation of the Proposed ANN Model 

To evaluate the performance of proposed ANN model, root mean square error 

(RMSE) was calculated using Eq. (5.10) [154]. RMSE is the standard deviation that is 

used to measure the difference between the predicted and the observed values. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑝−𝑦𝑜)2

𝑛
𝑛
𝑖=1               (5.10) 

Where 𝑦𝑝 is the predicted value and 𝑦𝑜 is the observed one. The Root Mean Square 

Error for Cross-Validation (RMSECV) was also calculated for every activation 

function. The RMSECV was used to construct the proposed ANN model, and RMSE 

was used to test the model against new data that the model has not seen. 
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5.9. Results and Discussion 

The development of an experimental test-bed setup has already been discussed in 

detail in chapter 3. The sensors used were pH, conductivity, dissolved oxygen, and 

oxidation-reduction potential sensors. The responses of these sensors for their standard 

solutions were recorded over 120 days. The deviation of the sensors in standard solution 

between the experimental study was observed that can lead to the biased measurement 

for target samples, thus resulting in unreliable readings. The measurement records for 

each sensor are shown in Figure 5.3. It can be observed from the measurement record 

that for pH, DO, and EC sensors, there is more deviation in sensor readings, whereas in 

the ORP sensor, the deviation is less as compared to others. 

 

(a) pH Readings 

 
(b) EC Reading 



Chapter 5. Drift Analysis and Compensation  76 

 

 

 
(c) DO Readings 

 

(d) ORP Readings 

Figure 5.3 Drift readings for different water quality sensors 

5.9.1. Effect of drift variation on water quality 

As discussed in the chapter 4, the water quality has been defined by statistical and 

soft computing methods. We will take an example of the fuzzy water quality analysis 

and see how the drift in the sensors may affects the overall water quality. The water 

quality parameters have been acquired from the sensors without any drift correction or 

calibration as well as from the reference instrument, which was regularly calibrated. A 

confusion matrix is presented in Table 5.2 showing the overall water quality of the 

samples with timely calibration (reference instrument) and without calibration (the 

sensors used in this work). It can be observed from the table that the some of the samples 



Chapter 5. Drift Analysis and Compensation  77 

 

 

have been misclassified as compared to the true water quality class, which may refute 

any developed model for precisely predicting the water quality. Thus, it is essential to 

compensate the sensor deviation over time and the same has been proposed in this 

chapter. 

Table 5.2 Confusion matrix for overall water quality of different samples without 

drift compensation 

 

5.9.2. Drift compensation of water quality sensors 

In order to correct the deviation, we have applied the ANN method in Spyder, as 

described in section 5.3. We simulated the Python program for different activation 

functions, as discussed earlier, and predicted and cross-validated results were plotted 

with respect to measurement days. Some of the plots of predicted and cross-validated 

values for different water quality sensors are shown in Figure 5.4. The red and blue 

points correspond to the predicted and cross-validated values, respectively. The X-axis 

represents the measurement days, and the Y-axis corresponds to the values for different 

water quality sensors. 

E
x

ce
ll

en
t

G
o

o
d

S
a
ti

sf
ac

to
ry

P
o

o
r

Excellent Good Satisfactory Poor

T
ru

e 
W

at
er

 Q
u

al
it

y

Predicted Water Quality



Chapter 5. Drift Analysis and Compensation  78 

 

 

 
(a) pH values for tanh activation function 

 
(b) DO values for ReLu activation function 

 
(c) EC values for logistic activation function 
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(d) ORP values for ReLu activation function 

Figure 5.4 Predicted and cross-validated values of water quality sensors using 

different activation functions 

For ReLu and tanH functions, we are getting the best results with 45 hidden nodes, 

whereas for the logistic function, the RMSE is too high. The minimum RMSE and 

RMSECV are 0.00 and 0.00, and the maximum RMSE and RMSECV are 416.87 and 

820.05, respectively. It is observed from the plot that the drift compensation has been 

achieved in a quite efficient manner using different activation functions except for the 

logistic function. For the logistic function, the simulation was performed using every 

combination of the number of hidden layer nodes and the number of iterations. But the 

optimization does not converge in any case. 

5.9.2.  Comparison of the proposed model with a statistical method 

The PCA-based drift correction (PCA-DC) has been implemented in this study, as 

discussed in section 3.4. Some of the plots of drifted and compensated values for water 

quality sensors are shown in Figure 5.5. The blue and red points correspond to the 

drifted and compensated values for water quality sensors, respectively. Table 5.1 shows 

the RMSE and RMSECV calculated for both the proposed ANN model and the PCA-

based drift correction. The PCA-DC method has the maximum and minimum RMSE 

of 2.3683 and 0.4750 for DO and pH sensors. It can be observed from the Table 5.3 

that the proposed ANN model is superior to the PCA-DC method. 
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(a) DO Sensor  

 

(b) EC Sensor 

Figure 5.5 PCA based drift correction of water quality sensors 

Table 5.3 RMSE and RMSECV for different activation functions 

Water 

Quality 

Sensors 

Proposed Method (FF-ANN)  
PCA-DC Method 

ReLu Logistic tanH 

RMSE RMSECV RMSE RMSECV RMSE RMSECV RMSE RMSECV 

pH 1.3101 0.2386 411.18 0.0014 0.00 0.0003 0.4750 1.9087 

DO 0.5781 0.3315 416.87 0.0001 0.00 0.00 2.3683 2.4289 

EC 0.6924 2.5688 409.41 820.05 0.00 0.0242 1.3345 1.2058 

ORP 0.2923 0.8333 410.47 77.66 0.00 0.00 2.0039 2.6014 
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5.10. Summary 

The application of a multi-sensor system for water quality monitoring is 

problematic as the uncertainty increases due to sensor drift over time. This drift may 

refute established models and reduce the lifetime of model results in imprecise 

prediction in measurement. In this work, we have used an FF-ANN model for drift 

compensation of water quality sensors. The RMSE is achieved zero for activation 

function tanH for the proposed ANN model, which is far better than the PCA-DC 

method (0.4750%). It was evident that the ANN model was superior to the statistical 

method. As discussed earlier, the proposed ANN model can be implemented in our 

developed hardware setup at no additional cost. Our results showed that machine 

learning could be an alternative approach to traditional statistical methods for 

environmental monitoring applications. Since the MSS is multivariate, ANN proved to 

be quite an efficient methodology for drift correction. This proposed work can prevent 

frequent calibration of the sensors and increase the calibration lifetime. 



 

 

Chapter 6  

Water Quality Monitoring in Distribution Networks 

Preamble 

There are many challenges while developing a smart or sustainable city, such as 

air/water quality monitoring, water resource management, power grid implementation, 

and transport management. Water quality monitoring is one of them in which many 

researchers and scientists showed interest. The current distribution systems always 

face leakage, failure, illegal connections, delay in maintenance. The solution to this 

problem is the implementation of a smart water grid. A smart water grid can manage 

the water supply in the distribution systems by real-time monitoring of water quality, 

flow, pressure, and distribution network status. In this chapter, a real-time assessment 

of water quality is proposed in the smart water grid employing and machine learning 

algorithms. The proposed model can analyze various water quality parameters such as 

temperature, pH, dissolved solids, electrical conductivity (EC), salinity, turbidity, 

dissolved oxygen (DO) and oxidation reduction potential (ORP). The proposed 

architecture can log, analyze data and remotely monitor the data. The data obtained 

from various sensing nodes were uploaded to the cloud, a service provided by 

ThingSpeak®. Experimental results show that the proposed low-cost sensing network 

can be an ideal early warning system in smart cities. 

6.1. Introduction 

60% of the world’s population will be living in cities by the end of 2050. With the 

growth in urbanization, many problems arise, jeopardizing the environmental 

sustainability of the cities. The rapid growth of urbanization also raises numerous 

challenges, such as water and air pollution, waste disposal, saturated transport, and 

more energy consumption, resulting in poor public health. These problems can be 

solved by implementing Information and Communication Technologies (ICT) [155], 

[156]. Ensuring water quality monitoring in the distribution network is a challenge due 
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to frequent failures and pipeline leakages. The current distribution system consists of 

different components, such as a pump, pipeline network, and valves. The performance 

and reliability of these components decrease over time, and the distribution systems 

have a higher risk of pipeline leaks, failures and wastage of water.  It is difficult to 

access the leakage and consumes time, which results in high wastage of water. To 

overcome these problems, scientists and researchers have introduced a smart water grid 

for the management of distribution systems. A smart water grid is capable of real-time 

as well as online water quality, flow, and pressure monitoring, failure detection, leakage 

detection in distribution systems. The smart water grid implementation can also manage 

water consumption and supply. A smart grid includes a wireless network to cover the 

entire distribution network, sensors for monitoring connected to the wireless network, 

smart meters to monitor, control, and automate the water supply. This enables the real-

time status monitoring of distribution networks to locate leakages and timely 

maintenance. The management can be made easy with a smart grid platform to supply 

water 24/7 to the consumers. A smart water grid is an integration of various sensing 

and communication technologies (SCT), which are driven by the Internet of Things 

(IoT), cloud computing, and big data analysis [157]. 

In this work, an attempt has been made to form a smart water grid employing a 

sensing platform, a Wireless Sensor Network (WSN), and an Internet of Things (IoT) 

to monitor the water quality in the distribution network. Cyber-Physical Systems are a 

network of interconnecting individual elements that fulfill sensing, computing, 

monitoring, multiple communication among modules, sensory output and data 

analytics. The integration of the above-mentioned individual modules of the smart grid 

forms a CPS structure. The water quality parameters to be monitored were chosen based 

on the criteria defined by the Central Pollution and Control Board (CPCB), India [14]. 

The parameters targeted in this work are temperature, pH, Electrical Conductivity (EC), 

Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP) and E. Coli.  

Two sensing nodes and one server node were developed for demonstration in the 

star network in this work. A server based on Raspberry Pi has been used as an IoT 

platform for updating the acquired data to the cloud. Water quality sensors were 
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interfaced with the NodeMCU through the signal conditioning board at each sensing 

node. The water quality parameters were obtained from the developed setup. Based on 

the acquired parameter, the water quality is defined by employing an artificial neural 

network (ANN) into five categories based on their water quality rating. 

In the experimental procedure, a tri-stage attempt was made. Different water quality 

parameters were acquired in the first stage, based on sensor readings interfaced with 

the NodeMCU Panel. In the second stage, the water quality rating was determined using 

the ANN model based on the results collected, and in the last stage, the data was sent 

to the ThingSpeak cloud platform and published. 

The contributions of the presented work can be stated as follows: 

• A network is formed to demonstrate the functioning of a smart water grid 

employing two sensing nodes and a server node. 

• Different water quality parameters were acquired using the developed setup 

• ANN was used to define the water quality rating based on acquired data from 

sensors 

• Online monitoring is enabled using the ThingSpeak cloud platform 

Different hardware modules, including water quality sensors, Zigbee, Arduino, 

NodeMCU, have already been discussed in chapter 3. Here, we will discuss the 

proposed distribution network architecture for wireless sensing and the ANN 

architecture for water quality monitoring, and the online monitoring of water quality 

parameters. 

6.2. Proposed Hardware Architecture  

A block diagram of the proposed distribution network is shown in Figure 6.1. The 

water from the water tank is supplied to the household through the distribution 

network’s pumping station. In the network, nodes 2, 3, 4, and 5 are the sensing node 

for water quality parameter acquisition, and node 1 is the server node, which is located 

at the water supply station. 
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Figure 6.1 Proposed distribution network architecture 

As discussed in the introduction, the water quality monitoring in distribution 

networks is attempted in 3-layered architecture as shown in Figure 6.2. The first layer, 

which is the physical layer (sensing nodes), comprises the NodeMCU, sensors and 

dedicated signal conditioning circuits. The NodeMCU development board is used as a 

core controller for the sensing node. The physical layer performs the water quality 

parameter acquisition. The communication between sensors and NodeMCU is done 

through the I2C protocol. The sensor array generates a data matrix that contains water 

quality parameters. The second layer is the edge computing layer or the server node, 

where Raspberry Pi setup is used for data acquisition and ANN model implementation 

to calculate the water quality rating. A separate database is also generated on the server 

node, where the authority can access the data of different nodes. In the third layer 

(Application layer), the water quality parameters are uploaded on the ThingSpeak cloud 

service. In the application layer, real-time node data can be accessed through the App, 

API request or terminal. 
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Figure 6.2 A 3-layered functional architecture of the proposed work 

The sensing node block diagram and the experimental setup are shown in Figures 

6.3 and 6.4. Five water quality sensors (temperature, EC, pH, ORP, and DO) were 

interfaced with the NodeMCU development board through a signal conditioning circuit 

(SCC). The signal conditioning circuit works as a mediator between the sensors and 

NodeMCU. The sensors and signal conditioning circuit require a 3.3 V, which is 

available on NodeMCU. Only the NodeMCU needs to power up with a 5 V DC adaptor. 

NodeMCU

SCC

SCC

SCC

SCC

SCC

Power Supply

pH Sensor

EC Sensor

DO Sensor

ORP Sensor

Temp. Sensor

 

Figure 6.3 Sensing node block diagram 
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Figure 6.4 Sensing node experimental setup 

The server node architecture and experimental setup are shown in Figures 6.5 and 

6.6, respectively. A NodeMCU, keyboard, mouse, and 7 inch LCD touch screen from 

the Waveshare, were interfaced with the Raspberry Pi 3 development board at the server 

node. The server receives the water quality parameters as a data matrix, which is then 

used as input to the ANN model for water quality rating calculation. Although the 

developed sensing and server node setup was demonstrated in the laboratory 

environment using a 5V adaptor power supply, they are also tested using a power bank 

for field deployment and functioning correctly. 
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Figure 6.5 Server node block diagram 
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Figure 6.6 Server node experimental setup 

6.3. Software framework 

In addition to hardware development, a software framework for water quality 

parameter acquisition and further analysis has been designed. The programming for the 

sensing node is written in Arduino programming software (IDE) (which supports the 

NodeMCU programming) for data acquisition from the sensor array and to send the 

data over the wireless network. Python was used to program the Raspberry Pi for 

sensing nodes data acquisition and the implementation of the proposed neural network 

model with the help of the scikit-learn library [143].  

6.4. Experimental procedure 

The layered architecture shown in Figure 6.2 has been followed for the experimental 

procedure. Initially, the sensors were calibrated with the reference before measurement 

to avoid any uncertainty. The first step involves the water quality parameter 

measurement in the physical layer. The measurement was carried out after the sensor 

stabilized with minimum variation in readings. Later the acquired water quality 

parameters were sent to the server node and the ANN model proposed in chapter 4 was 

applied to define overall water quality based on the acquired data. The ANN model has 

already been discussed, thus not described here. The necessary steps for the 

experimental procedure are as follows: 
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• Wireless sensor network setup. 

• Sensing node data acquisition and transfer it to the server node. 

• Apply the ANN model on received data at the server node. 

• Upload the data to cloud ‘ThingSpeak’ for real-time monitoring. 

The data updating and real-time monitoring on the cloud server is shown in Figure 

6.7. The acquired data was regularly updated and stored on the “Thingspeak” cloud by 

the server node. Thingspeak helps consumers archive the data, interpret the data, and 

analyze the website’s data. 

 

Figure 6.7 Data uploading and real time monitoring  

A channel is created with the name ‘‘Water Quality Monitoring System’’ at the 

ThingSpeak server. Different data fields of the channel are named as different water 

quality parameters. The water quality parameters are updated on the ThingSpeak server 

by channel write API key and the ‘urllib2’ on Raspberry Pi.  The parameters can be 

monitored from any digital device (either PC or Tablet, or Mobile). For Mobile, an 

apkfile (ThingView) needs to be installed, which is verified by MATLAB. After 

installing the ThingView, the water quality parameters can be monitored by accessing 

the channel by entering the channel ID and reading the API key of the channel. A 

screenshot of the IoT platform on PC, as well as mobile, is shown in Figure 6.8. 
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(a) Online parameters monitoring in PC 

    

(b) Online parameters monitoring in Mobile 

Figure 6.8 Online monitoring of water quality parameters 
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In addition to the data updating and monitoring on the cloud, a local server (without 

internet) has been set up on the edge computing layer where data from all the nodes 

have been saved on the Raspberry Pi as shown in Figure 6.2. The data from any node 

can be requested from the server at any time. If the node number and password match 

the saved password, the data for the requested node will be displayed; otherwise, an 

error message will be displayed. The procedure for server setup and requesting data is 

shown in Figure 6.9. 
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Specific Node 

along with 
Password 

Start

If node number and 
password matches

Display Error 
Message and 

Return 

YES

NO

Display Water 
Quality 

Parameters for 
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END
 

Figure 6.9 Local server set up and data request procedure 

The user interface is developed on the application layer, as shown in Figure 6.10. 

The user can select the individual node and monitor the water quality parameter in a 

real-time environment. When the user clicks on a particular node, a pop-up window 
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appears and displays the water quality parameters from the selected node. An example 

of a pop-up window is shown in Figure 6.11. 

 

Figure 6.10 Server user interface 

 

  

(a)      (b)  

Figure 6.11 Pop-up window GUI and water quality parameters for selected node 

6.5. Discussion 

The implementation and practicability of different modules of a smart water grid 

are investigated in this work. An example of a distribution network was presented for a 

successful demonstration. As discussed earlier, two sensing nodes and one server node 

were developed for the same. The water quality parameters used for ANN modeling are 

pH, DO, EC, ORP, and Temperature. The suitability of the proposed ANN model for 

water quality monitoring is also studied. The analysis shows decent results for the 
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training and testing of the proposed ANN model. According to the experiment results, 

it can be stated that the proposed modules and ANN model can be quite useful for smart 

water grid development. The alarm or early warning system for any leakage or 

contamination in the distribution network can be set up based on the water quality 

rating. The early warning system requires a different decision-making algorithm, which 

can be implemented using fuzzy logic. The proposed work’s advantages are low-cost 

hardware compared to high-end conventional instruments and open-source software for 

programming, data analysis, and ANN implementation. To avoid any uncertainty in 

sensor readings, all the water quality sensors were calibrated with standard solutions 

before the measurement.  

The maintenance can be easy-going if any sensing node malfunctioning, which can 

easily be spotted due to real-time monitoring of the pipeline network. The development 

board (Raspberry Pi) is advanced in the proposed work as any machine learning 

algorithm can be implemented in Python with open source libraries, and there is no 

memory limit in the Raspberry Pi. More parameters can be monitored in the proposed 

work. There are many remote locations in rural areas where there is no internet 

connection for real-time monitoring. In that case, the GSM module can be interfaced to 

send the data directly to the cloud for real-time monitoring.  

6.5.1. Critical Challenges for a Smart Water Grid 

Despite having multiple experimental trials, a smart water grid will face various 

challenges, as mentioned below. First, the cost of updating the current distribution 

system architecture is too high, which is not possible without government funding. 

Second, the integration and communication among different sensing nodes in the WSN 

will be a challenge in a smart water grid.  The data generated by different sensing nodes 

will have a massive amount of data, which requires high storage and big data analytics. 

The job redesign of existing staff will also be a challenge as the old rules need to be 

redundant, and a new one will be imposed on them. Society must accept the technology 

and the fact that it is going to benefit them in the long term.  
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6.6. Summary 

A smart water grid is part of sustainable and smart city implementation in which 

information and communication technologies (ICT) play a key role. A smart water grid 

integrates different individual modules, such as sensor interfacing, data acquisition, 

cloud updation, real-time, and online monitoring. The proposed ANN model can be a 

practical tool for water quality assessment. The ANN can also be helpful for big data 

analytics as the smart water grid will generate a massive amount of data. The presented 

work can be the foundation of smart cities where water quality monitoring, distribution 

systems status, water pressure, and flow can easily be monitored in real-time. The 

developed system may also be helpful in monitoring the water quality in remote areas 

where there is no internet connection. GSM module can be interfaced to send the data 

directly to the cloud for real-time monitoring. The data acquired are translated into a 

single term to define the water quality rating. The developed system is also competent 

in monitoring, processing the data, decision-making based on the results obtained from 

the data analysis, and displaying the water quality parameters and water quality rating. 

The smart city program has already been implemented in some cities worldwide, such 

as the Australian SEQ water grid and the United States National smart water grid 

project. Many of the countries are also investing in smart city implementation by 

replacing the current distribution systems. The smart water grid’s remaining features 

are a smart water meter, end-user intimation in terms of either SMS or email, which we 

plan to implement in the future. 



 

 

Chapter 7  

Conclusions and Future Recommendations 

Preamble 

The conclusions drawn from the work are presented in this chapter covering the 

design and development of a water quality monitoring system, data analysis, drift 

compensation and water quality monitoring in distribution networks. Despite the work 

presented in the thesis, there is a scope for improvement and further extension of the 

work done. This chapter also discusses the future recommendation that can enhance 

the functionality of the developed prototype. 

7.1. Conclusions 

Water quality monitoring before consumption is essential nowadays as the available 

water is severely polluted due to domestic and industrial waste discharge into the 

natural resources (either surface or ground), runoff from agricultural land. Traditional 

water quality monitoring methods are quite tedious as these require sample collection 

on-site and subsequent lab-based chemical analysis, which is laborious and cost-

intensive. These methods are offline, so the user has to wait for the report outcome of 

the chemical analysis. The following conclusions can be made based on the work 

presented in the thesis. 

➢ There are various methods for water quality parameter measurement, including 

traditional laboratory-based and In-situ techniques. The conventional 

techniques involve on-site sample collection followed by laboratory testing, 

which is time and cost-consuming. In comparison, in-situ measurements are fast 

& accurate and save both time as well as cost. The overall water quality can be 

defined by a single term or a numeric value, obtained by different techniques 

employing statistical and soft computing methods.  

➢ The overall water quality depends on available water resources in the specific 

geological region; hence, it is required to identify the region-specific quality 



Chapter 7. Conclusions and Future Recommendations 96 

 

 

parameters before developing a hardware framework. In addition to that, 

selecting a core controller and related modules and peripherals is essential for 

hardware development. The methodology for adapting the specific water quality 

parameters, selection of COTS modules, software, and experimental 

methodologies has been presented in this thesis.  

➢ The water quality can be defined by either statistical method or soft computing 

method. The data analysis employing different methods for water quality 

monitoring on the developed setup in a real-time environment right after the 

data acquisition has been presented in this thesis work. The classification of 

water quality employing fuzzy modeling has also been presented in this thesis. 

➢ Although sensor technology has achieved the manufacturing of low-cost and 

portable water quality sensors, the sensors face drift sooner or later after 

installation. The drift may occur due to sensor aging, temperature & humidity 

variation, poisoning among the sensor array, or a combination of all. The soft 

computing techniques for drift compensation of commercial water quality 

sensors have been presented in this thesis work. 

➢ The current distribution systems always face leakage, failure, illegal 

connections, delay in maintenance. The solution to this problem is the 

implementation of a smart water grid. A smart water grid can manage the water 

supply in the distribution systems by real-time monitoring of water quality, 

flow, pressure, and distribution network status. A real-time assessment of water 

quality in the smart water grid employing and machine learning algorithms has 

been presented in this thesis work. 

7.2. Contribution of Thesis 

The specific contributions of this thesis work are as follows: 

➢ The existing methods for the assessment of water quality parameters 

(conventional methods and real-time measurement) have been investigated. 

Also, various significant water quality monitoring techniques have been 
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investigated in this work. This work has also investigated different methods for 

drift analysis and compensation. 

➢ In the thesis work, a prototype is developed based on different commercial off-

the-shelf (COTS) modules for real-time drinking water quality monitoring. The 

developed prototype is capable of real-time water quality display, logging the 

results, and uploading the results on the cloud. An interactive human-machine 

interface is given for ease of operation to the end-user where the user can 

measure individual water quality parameters or overall water quality. 

➢ In the developed setup, we have observed the drift in water quality sensors after 

a certain period, which has been rectified in this work. Initially, the sensors were 

calibrated with the available reference solution, and after that, their 

measurements were recorded for a period of 120 days. The drift was observed 

and compensated employing the Feed Forward-Artificial Neural Network (FF-

ANN) model. The proposed work can also extend the calibration time of the 

commercial water quality sensors. 

➢ In this work, a distributed network architecture has been proposed for real-time 

water quality monitoring, preventing delays in maintenance and high wastage 

of water. The preliminary results show that the proposed architecture can be 

helpful in smart water grid implementation. 

7.3. Future Recommendations 

The thesis work paved the way for new research directions. The following are some 

of the captivating aspects that can be addressed as an extension of the current work. 

➢ The developed hardware prototype has been tested for the samples collected 

from the campus. This can be further tested for the water samples outside the 

campus (locality). 
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➢ The proposed algorithm for drift compensation of the water quality sensors can 

be implemented on the Raspberry Pi. Further investigation & validation of the 

algorithm on hardware can be performed. 

➢ While developing any system, self-diagnosis and self-calibration are always 

important, which can be carried out as an extension of the work. Predictive 

maintenance is also an important aspect, which can be addressed in future work. 

➢ E. Coli. has not been included in the current ANN modeling for water quality 

analysis as the study area has dry weather conditions and has very little chance 

of E. Coli. Growth. There are shreds of evidence that E. Coli. is found only in 

old distribution pipelines, pipeline leakage, bad sanitation conditions, or where 

the storage container is not properly cleaned [109], [110]. There are methods 

available for the prediction of E.Coli based on the ANN model and statistical 

analysis [158]–[161], which will be added in the upgraded version of our 

system. Such a system can be used in other areas of Rajasthan or India.   
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Appendix-A 

A.1. Sensors and Signal Conditioning Circuit  

  

  Conductivity Probe (ENV-40-EC-K1.0)  DO Probe (ENV-40-DO) 

  

           ORP probe (ENV-40-ORP)     pH Probe (ENV-40-pH) 
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Temperature Probe (#PT-1000) 

A.2. Reference Solutions 

                    

ORP reference (225 mV)   DO reference (0 mg/l) 

        

  EC reference (84 µS/cm and 1413 µS/cm)  pH reference (4, 7 and 10) 
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Appendix-B 

Specification of the Developed Prototype 

• Software:   Python (open source) 

• Logging capabilities:  Yes 

• Memory:   depends on Raspberry Pi memory (more than  

100000 logged readings are possible) 

• Power:   230 V Adapter 

• Smart sensor/ports:  No 

• Measurement unit:  Parameter dependent 

• User calibratable:  Yes 

• Waterproof:   No 

• Measured parameters: pH, EC, ORP, DO, and temperature 

• Derived parameters:  TDS, salinity 

• Sampling rate:  up to 2 Hz 

• Online Monitoring:  Available on ThingSpeak Cloud Platform  
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Appendix-C 

Fuzzy Sets Theory 

Assume that 𝑋 is a set of objects and 𝑥 is an element of 𝑋. A classical set (𝐴) can 

be defined such that each element belongs to set 𝐴. So, the membership function of a 

classical set can be defined as 1 if it belongs to 𝐴 and 0 if it does not belong to A. The 

membership function for a classical set can be represented as follows. 

𝜇𝐴(𝑥) = {
1,         𝑖𝑓    (𝑥 ∈ 𝐴)
0,         𝑖𝑓   (𝑥 ∉ 𝐴) 

    (C.1) 

A fuzzy set, unlike the classical set described above, expresses the degree to which 

an element belongs to a set. As a result, the membership function of a fuzzy set can 

have values between 0 and 1, denoting an element's degree of membership in the set. 

A.1. Fuzzy Sets and Membership Functions 

Let 𝑋 be a collection of 𝑥 objects; then a fuzzy set can be defined as 𝐴 =

{(𝑥, 𝜇𝐴(𝑥))|𝑥𝜖𝑋}. In the given fuzzy set, 𝜇𝐴(𝑥) is the membership function (MF). Each 

element of 𝑋 is assigned a membership value between 0 and 1, which can be called as 

an extension of a crisp set. The property of membership functions is subjective, 

meaning it can vary from person to person for the same idea. 𝑋 is partitioned into 

different fuzzy sets, each with MFs that cover 𝑋 more or less uniformly. Linguistic 

values or linguistic labels are fuzzy sets that usually have names that conform to 

descriptors that arise in our everyday verbal usage, such as “small,” “medium,” or 

“large.”   

A.1.1. Membership functions 

MFs can be specified in several ways, and they can be based on different functions. 

Following are some functions that are commonly used. The standard triangular and 

trapezoidal membership functions are shown in Figures C.1 and C.2. The triangular 

membership function can be given as Eq. (C.2). 
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Figure C.1 Triangular Membership Function          Equation C.2  
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Figure C.2 Trapezoidal Membership Function  Equation C.3 

The membership function for the given trapezoidal membership function can be 

defined as Eq. (C.3). The gaussian and sigmoid membership functions are shown in 

Figures C.3 and C.4. The gaussian MF (𝐺: 𝑋 → {0; 1}) is given in Eq. (C.4). Where, 𝛾 

is the slope and 𝛽 is the midpoint. The slope must be positive and should never reach 

‘0’. The sigmoid MF (S-MF) (𝑆: 𝑋 → {0; 1}) is given by Eq. (C.5). The value of S-MF 

neither reaches ‘1’ nor ‘0’. In the S-MF, 𝛾 is the slope value at inflexion point and 𝛽 is 

the midpoint. 

 

 

𝑓(𝑥; 𝑙,𝑚, 𝑛) =

{
 
 

 
 
0          for  𝑥 < 𝑙
𝑥 − 𝑙

𝑚 − 𝑙
     for 𝑙 ≤ 𝑥 ≤ 𝑚

𝑛 − 𝑥

𝑛 −𝑚
    for 𝑚 ≤ 𝑥 ≤ 𝑛

0          for 𝑥 > 𝑛

 

 

𝑓(𝑥; 𝑙,𝑚, 𝑛) =

{
  
 

  
 
0          for  𝑥 < 𝑙
𝑥 − 𝑙

𝑚 − 𝑙
     for 𝑙 ≤ 𝑥 ≤ 𝑚

1          for 𝑚 < 𝑥 < 𝑛
𝑜 − 𝑥

𝑜 − 𝑛
    for 𝑛 ≤ 𝑥 ≤ 𝑜

0          for 𝑥 > 𝑛
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Figure C.3 Gaussian Membership Function           Equation C.4 
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Figure C.4 Sigmoid Membership Function           Equation C.5 

𝐺(𝑥; 𝛽, 𝛾) = exp (−𝛾(𝑥 − 𝛽)2) 

𝑆(𝑥; 𝛽, 𝛾) = 1 (1 + exp(−𝛾(𝑥 − 𝛽)))⁄  
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Appendix-D 

Partial Least Squares Regression (PLSR) 

The PLS Regression algorithm estimates the matrices W, T, O, and P through the 

following steps. 

 

Algorithm D.1 Partial Least Squares Regression pseudo algorithm 

 

1.   Initialize the residuals matrices R0  =  Xnxp and S0 = Ynxk; 

      for i =  1 to p  do 

2. Calculate PLS weights vector 

 𝐖𝐢 = 𝐑𝟎
𝐓𝐒𝟎; 

3.  Calculate and normalize scores vector 

 𝐓 𝐢 = 𝐑𝟎𝐖𝐢(𝐖𝐢
𝐓𝐑𝟎

𝐓𝐑𝟎𝐖𝐢)
−𝟏

𝟐   ; 

4. Calculate X loading vector 

 𝐎𝐢  =  𝐑𝟎
𝐓 𝐓𝐢; 

5. Calculate Y loading vector 

 𝐏𝐢  =  𝐒𝟎
𝐓 𝐓𝐢; 

6.         Update the X residuals vector 

 𝐑𝟎  =  𝐑𝟎 − 𝐓𝐢𝐎𝐢
𝐓 ; 

7.         Update the Y residuals vector 

 𝐒𝟎  =  𝐒𝟎 − 𝐓𝐢𝐏𝐢
𝐓 ; 

      end for 

8.   Obtain output matrices 𝐖,𝐓, 𝐎, 𝐏. 

 



 

 

 

List of Publications 

➢ Work Specific 

Journal Paper: 

• Khatri P, Gupta K.K. and Gupta R.K. Raspberry Pi-based smart sensing platform 

for drinking-water quality monitoring system: a Python framework approach. Drink 

Water Eng Sci. 2019;12(1):31-37. doi:10.5194/dwes-12-31-2019 

• Khatri P, Gupta K.K. and Gupta R.K. A Comprehensive Study on the Effects of 

Water Quality Parameter Variation on Water Quality and Water Quality Index. Res. 

J. Chem. Environ., vol. 23, no. 12, pp. 114–123, 2019. 

• Khatri P, Gupta K.K. and Gupta R.K. Drift compensation of commercial water 

quality sensors using machine learning to extend the calibration lifetime. J Ambient 

Intell Humaniz Comput. August 2020. doi:10.1007/s12652-020-02469-y 

• Khatri P, Gupta K.K. and Gupta R.K. Assessment of Water Quality Parameters in 

Real-Time Environment. SN Comput Sci. 2020;1(6):340. doi:10.1007/s42979-020-

00368-9 

• Khatri P, Gupta K.K. and Gupta R.K. (20xx) ‘Real-time Water Quality Monitoring 

for Distribution Networks in IoT Environment’, ‘Int. J. Environment and 

Sustainable Development’, In Press. 

• Khatri P, Gupta K.K., Gupta R.K. and Panchariya P.C., Towards the Green 

Analytics: Design and Development of Sustainable Drinking Water Quality 

Monitoring System for Shekhawati Region in Rajasthan, MAPAN. (2021). 

doi:10.1007/s12647-021-00465-x. 

Conference and Proceedings: 

• Khatri P, Gupta K.K. and Gupta R.K. Development of Cyber-Physical Systems for 

Water Quality Monitoring in Smart Water Grid. AICTE Sponsored Online 3rd 

International Conference on Recent Trends in Communication & Intelligent 

Systems (ICRTCIS), Oct 2021. In press. 

• Khatri P, Gupta K.K. and Gupta R.K. "Water Quality Index Calculation: Switching 

from MATLAB Fuzzy Toolbox to Python for Real-Time Implementation," 2020 

IEEE International Conference on Advent Trends in Multidisciplinary Research 

and Innovation (ICATMRI), 2020, pp. 1-5, doi: 

10.1109/ICATMRI51801.2020.9398318. 



 

120 

 

• Khatri P, Gupta K.K. and Gupta R.K. Smart Water Quality Monitoring System for 

Distribution Networks. SSRN Electron J. 2019. doi:10.2139/ssrn.3352296 

• Bhardwaj J, Gupta K.K., and Khatri P. Real Time Assessment of Potable Water 

Quality in Distribution Network based on Low Cost Multi-Sensor Array. In: IOP 

Conference Series: Materials Science and Engineering. Vol 331. Institute of Physics 

Publishing; 2018. doi:10.1088/1757-899X/331/1/012027J. 

Book Chapter: 

• Khatri P, Gupta K.K. and Gupta R.K. (2021) Drift Compensation of a Low-Cost 

pH Sensor by Artificial Neural Network. In: Bansal J.C., Paprzycki M., Bianchini 

M., Das S. (eds) Computationally Intelligent Systems and their Applications. 

Studies in Computational Intelligence, vol 950. Springer, Singapore.  

https://doi.org/10.1007/978-981-16-0407-2_8 

➢ Others 

• Khatri P, Gupta K.K. and Gupta R.K. A review of partial least squares modeling 

(PLSM) for water quality analysis. Model Earth Syst Environ. 2020;1:3. 

doi:10.1007/s40808-020-00995-4 

• Khatri P, Gupta K.K. and Gupta R.K. Multi-way Partial Least Squares (MPLS) 

Calibration of Low-Cost Water Quality Instrument. J Ambient Intell Humaniz 

Comput. Revision Under Review 

  



 

121 

 

Brief Biography of Candidate 

 

 

Mr. Punit Khatri joined BITS-Pilani in 2017 as a Junior Research Fellow in the 

Department of Electrical and Electronics Engineering. In 2019, he was awarded CSIR 

SRF-Direct fellowship. He has completed his Diploma (Electronics), B. Tech. (E & C), 

M. Tech. (Instrumentation) in 2007, 2010, and 2015 respectively. He has R & D work 

experience of almost 8 years. He has published many papers in conferences and 

International Journals of repute. His area of interest is intelligent system design, 

multivariate data analysis, instrumentation system, and prototype development.  

  



 

122 

 

Brief Biography of Supervisor 

 

 

Prof. Karunesh Kumar Gupta completed his Ph.D. in digital image processing. He 

has completed his M.E. in control and instrumentation from NIT Allahabad, UP, India, 

and B.Tech. in electronics from Lucknow University in 1994 and 1991, respectively. 

His major field of study is acoustic and vibration-based machine health monitoring. 

Currently, he is working as an Associate professor in the Department of Electrical and 

Electronics Engineering, Birla Institute of Technology and science, Pilani, India. He 

has published many research articles in conferences and peer-reviewed journals. He has 

also served as a Reviewer in many reputed International Journals. His current research 

interests are high-speed vision application in robotics, acoustic and vibration-based 

machine health monitoring, drinking water quality measurement, biometrics, and 

compressed domain image analysis.  

  



 

123 

 

Brief Biography of Co-Supervisor 

 

 

Prof. Raj Kumar Gupta completed his Ph.D. in Physical Sciences from Raman 

Research Institute affiliated to Jawaharlal Nehru University, New Delhi, India in 2006. 

He has completed his M.Sc. and B.Sc. in Physics from Calcutta University in 1999 and 

1997, respectively. His major field of study is understanding the change in properties 

of materials in the ultrathin film regime and its application for device fabrication. 

Currently, he is working as a Professor in the Department of Physics, Birla Institute of 

Technology and Science, Pilani, India. He has filed an Indian patent on the topic entitled 

"A novel optomechanical system for measuring surface plasmon resonance". He has 

published many research articles in peer-reviewed journals. He has also served as a 

Reviewer in many reputed International Journals. His current research interests are 

surface plasmon resonance, instrumentation, and related software development, 

scanning probe microscopy of thin film of nanoparticles, controlling parameters for 

defect formation in thin films, scanning tunneling microscopy/spectroscopy, and 

application of ultrathin films for device development etc. 

 

 

 


	Blank Page
	Blank Page
	Blank Page

